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Abstract 
Classification is the ernpuicai procws of aeathg a inapping fiom individual pattern to a set of 

classes and its subsequent use in pfedicting the classes to which uew patterns belong, 

Trenmdow energies have been expended in develophg systems for the creation of the mapping 

component. Less effort bas been devoteci to the nature and aoalysis of the data componenb 

namely, sûategies that traasfocm the data in order to simpüfy, in some sehse, the classification 

process. The purpose of this thesis is to redre~s somewhat this i m b u e  by innoducing two 

novel preprocessing methodologies. Fuzzy interquarcile encoding determines the respective 

degrees to whkh a fauun belongs to a coliection of funy sets and subsapenly using these 

membership grades in place of the original featwe. Burnishing tarnished gold standards 

compensates for the possible imprecision of a weU-established reference test by adjusting, if 

necessary, the class labeis in the design set wbile m;iintaining the test's vital discriminatory 

power. The methodologies were applied to several synthetic data sets as well as biomedical 

spectra ac@ed nom mapetic resonance and in.fkared spectromters. 

Both fuzzy encoding and bumishing consistently improved the discriminatory power of the 

underlying classifiers. They are insensitive to outliers and often reduce the training time for 

iterative classifiers such as the rrailti-Iayer perceptron. With the latter, reclassification only occurs 

for data witbin the design set; outliers within the test set are flagged but not alcered. Therefore, 

the accepted gold standard iç left in a pristine state suüied only by its origiaal tamish. 
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1 Introduction 
Classification is the empiricai process of creating a mapping from individual patterns to a set of 

classes and its subsequent use in predicting the classes to which new patterns belong. 

Tremendous energies bave been expendeci, with some rneasue of success, in developing systems, 

and methodologies, for the creation of the mapping component. Less effm has been devoted to 

the nature and d y s i s  of the data component, namely, strategies that b~ansfo0rXn the data in order 

to simpi;fv, in some sense, the classification process. The purpose of this thesis is to redress 

somewhat this imbalance by introducing new transfortnational techniques that deal specincaiiy 

with the data component. 

Tbis thesis argues that in practicai pattern recognition problems preprocessiag seems to be of 

paramount importance. Advanceci technologies contribute ever more sopbisticated models upon 

which to build ever more sopbisticated classifiers. Herein lies a major problem: if these models 

are bighiy non-linear, they may be unstable, if they are iterative, they may not converge, if they 

are probabilistic, they =y be based on underlying statistical assumptions that are often not me 

in real-world s c e ~ o s .  Preprocessing may address these concem: &ta may be transformed such 

that a non-hear mode1 may be replaced by a hear  one, the dimensionality of the data may be 

reduced so that an iterative method may converge or may be substituted for an aaalytic one, or the 

data may be "normalized", in some sense, such rhat the underlying statistical assumptiom of a 

probabilistic mode1 are tealized. Years of investigations into pattern recognition problems have 

led this researcher to conjecture that the 80120 nile holds in the construction of good classification 

systems: 20% of the investigator's time should be spent on seiecting and tuning a classifier for a 

particular pattern recognition problem; the initiai 80% s W d  be spent on a thorough anaiysis of 

the data in order to preprocess it in such a way as to siaiplZy, in some sense, the &ta that is to be 

presented to the classifier of choice. To ihis end, tbis thesis presents two novel preprocessing 

rnethodologies: 



- k y  encoding, the process of determining the respective degrees to which a datum beiongs 

to a collection of fuzsr sets or fuzy clusters and subsequentiy using these membership 

grades in place of the origiaal datum; 

- bumishing tamished gold s t h r d s *  compensatiag for the possîble iqrecision of a weii- 

established reference test while miintaining its vital discriminatory power. 

Three new fiiay encoding strategis and three respective variants are presented: 

- fUpy interqwrtife encoding, intervalizing a singIe input value across a coiiection of fiiwy 

sets, thereby producing a List of degrees of membership for each of the tirzzy sets; 

- dimension-preservingm interquar!iie encoding, a variant of fuzzy interq.de encoding 

that does not increase the dimensiomlity of the feature space; 

- j k z y  ciuster mcoding, transforming the input space using a membership measure to 

determine how similar an individual is to centroids computed using the fuuy c-means 

algorithru; 

- clas-wise v a ~ n t s ,  identical to the above methods except that they rake into account class 

assignmets for the data set, 

Two new strategis for burnishing tarnished gold standards are presented that may be used 

independently or may augment the fuzzy encoding methods: 

- robust reclussifzcation, uses a robust estimation of deviatioas fiom class medoids for the 

reclassification of spectra in a àesign set; 

- fuuy gold standard odjustment, a fuzzy set theoretic preprocessing method to enhance the 

gold standard by incocporating non-subjective withia-class medoid information. 

In order to properly discuss these methodologies, this thesis wili begin with a preluninary 

Uitroduction (chapter 2) to some key concepts necessary for their understanding: classifiation. 



ficuy set theory, robust stmistics, and aniffcial neural neiworks. Chapter 3 is devoted to the 

cI~1ssijictzn'on process, a muiti-faceted exeocise, fealized through a ~Lassijication systern. in the 

most generai sense, the system creates a discrimination finction mapping individuals to a set of 

class indices. This chapta also discusses verification issues and presents the &ta sets tbat wiU be 

used to test the efficacy of the methodologies. While some data sets are synthetic? "rd-world9* 

data were also acquired fkom the biomsdicai domain. 

Specific classifiers are: revisited in chapter 4, including Iinear discrimiaant anaiysis, a classical 

mui tivariate disahbation technique, as weii as several artjEiciai neuraI network (ANN) 

architectures: dti-layer perceptrons, probabilistic neural networks, and radial basis fiinction 

neural networks. Cbapter 5 then presents two conventional preprocessing methods: adMtments to 

the receptive fields of the radiaf basis fiinction neural network and principal component analysis. 

In the f o w  case, standard tecboiques are discussed to determine the location, size, and 

interaction of the local receptive fields used in the radial basis funchon neural network. The 

motivation bebind the latter method is to tind a set of orthogonal directions that expiain as much 

of the variabïiity of the originai data as possible. 

Chapter 6 thorougtùy discusses fuzzy data encoding and burnishing tarnished gold standards. It 

begins with a mathematical description of fuzzy interpuaaile encoding, dimension-preserving 

fbzy interquartile encoding, fuuy cluster encoding, and their class-wise variants. Integration of 

these methods into a classification system is then presented A specific classifiert the multi-layer 

perceptron (MLP). is used. Robust reciassification and hiuy gold standard adjustments are then 

presentd as weil as the motivational Werences between reclassification and adjustment. 

A set of experiments using synthetic &ta are perfofmed in Chapter 7 in order to measure the 

efficacy of the novel preprocessing methods desmbed in the previous chapter. AU huzy 

encoding methods are applied to two-class 1-dimensionai data with different distributions. Fuzq 

encoding and linear separability issues are also presented. The burnishing methods are also tested 



using some of these data sets dong with contaminateci counterparts, that is, data sets where some 

individu* were intentiody mislabeled. This chapter aiso explores the peformwe of f u u y  

interquarcile encodmg when integrated with an artifïcial neural network, namely, the MLP- The 

chapter concludes with PerfOrmauce measures for all of the novel strategis using several other 

synthdc &ta sets. 

A set of experiments ming "teal-world" &ta is PerfOrared in Chapter 8. These data are from the 

biomedical doniain: infiad and rnagnebc resonance spectra of h u m  tissue. The gold standard 

is a pathologist's report concerning the disease state of the tissue speciirnem. The novel 

preprocessing methods are appiied to these &ta and are benchnratked against some conventional 

preprocessing and classincation strategies. 



2 Preliminaries 
A aumber of essenaal concepts must be discussed in order to understand properly the nature 

and intent of the novel pteprocessing metbcxiologies presented in this thesis. This cbapter begins 

with a background of the classification process and a typid methodology, a r c i f i d  neural 

networks, which m y  be used to mate a chsif'ication mapping. As these new techiques involve 

concepts fiom fuzzy set theory and robust statïstis, ovenriews of these topics are also presented. 

2.1 C\8bbifiicafion 
Classincation, or discnmioation, systems involve the process of findiog a fwction mapping N 

individuah to an index set of k class identiners, y (i=l,- - .&. The indivithiaIs normaliy take the 

form descrilbed in Table 1 where Ni is the total number of individuals in class y. Each individual 

(case, sample, pattern, vector, or point) comprises n features (measurements or coordinates) and 

belongs to some class, O+ To be more precise* a disMction can be made between di.scrimination 

and verification. 

Discrinù~tion is the proçess of determini~g a decision d e  that partitions the individu&' 

space into k regions, Ri such that if an individuai belongs to the cIass, qi it will also lie in the 

region Q. For example, Figure 1 is an example of a 2-dimensional 2-class problem with the 

decision rule, that divides the space into two regions, RI and a. If x2-~1<0 then the 

individuai lies in Ri and is classifieci as coming fkom a, otherwise it Lies in region and is 

classified as comiag fiom @. This is a lineady separable probbm: an n-dimensional hyperplane 

can be defineci that serves as a decision boundary between two classes of n-dimensional 

individuais. In this specific case, the line, w i = O ,  is the decision bouodary that divides 

individu& belonging to wt from those belonging to a. 

Since the intent of discrimination is to group classes into regions. the concept of similarity wtst 

be quantified. Similarity is often measured using the Euclidean metric 



not only for historiai reasons but ais0 for analytic ones since it has a derivative at every point (x 

and y are individuab and xi and Yi are their respective features)- If d ( w )  is near zero, the two 

individuals are said to be similar. Other similarity measufes m y  also be used 

Table 1 : Typical data for disaimination 

Ven~cation, on the other band, specitïcally refers to the appiication of the decision d e  to a 

new individual of unlaiown ciass. In the case of Figure 1, the individual denoted by ô would be 

classified as belonging to class q since it lies in QI. The ~ECMIIM 
- . .  tion process typically 

employs a subset of the N individuals, specificaily; the defining parameters of the decision d e  

are estiraated from this subset. This subset is hown as the design (or training) set. The 

verification process uses the reniaining individualS. the test set to measure the efficacy of the 

decision de. A typical m u r e  of the error rate is to divide the number of individuals that lie in 

a region that do not beloag to the corresponding class by the total number of individuals. 
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exampie, the discrimiaation problem shown in Figure 2 is identical to the one in Figure 1 except 

that one of the original individuals now belongs to <ul. If the decision nile that produceci the 

originai boundary is used here then the suspect individual will lie in the wrong region, a. This 

occurs because the problem is no longer Linearly separable. If we use the original bowdary then 

misclassifications will occur with individuals in the test set that are near the suspect individual. 

Figure 2: Possible effem on a decision d e  by a suspect individual 

One solution that would reduce these mixiassificatioas is to use a discrimination method that 

can produce a non-hear decision rule. In this example, a non-linear boundary can be denved 



ushg a piece-wise iinear decision nile. However, suspect individuais may cause problems that are 

more serious. Figure 3 has the suspect individual fuaher fiom the originai decision boundary. 

Discrimination inetbods that produce piece-wise linear decision rules may not work weli in tbis 

case. Fortunately. othec methods exist that can proctuce decision boundaries that are arbitrarily 

complex. In this case, such a method could produce a non-lùiear nile that ciraes the original 

boundary as weii as a sphericai S2[ boundaty disjoint fkom the other RI region. This may be a 

good soiution especially if there is a signifiant nu& of other iadividuals belonging to the ciass 

near the suspect individual: this would indiate that there are two distinct clusrers of Q and a 

more complex decision bounda~~ is therefme required However, a problem m y  exist with the 

suspect individual itseif. For instance, an error may have occurred during the measurement 

process for this individual such that its features were imorrectly recordeci. In this case, the 

suspect individual may be an outlier and should not be used during the discrimination process. In 

this example, if the suspect individual is indeed an outlier and were removed, the problem once 

again becomes hearly separable. Outlier detection and removal is a standard practice in statistics 

but there are pitfalls. If there is a paucity of individuals upon which to build a decision boundary, 

removuig an individual that is coasidered an outiier may not be possible. Detecting outliers in a 

high dimensionai space is an extremely difficuit problem (see section 2.4). The individu& that 

are identifieci as outliers may not be outliers at al l  and theu existence warrants the use of non- 

linear decision des. F i i y ,  the suspect individuai's features may have been measured 

accurately but it may bave been mistakenly assigned to a wrong ciass. In this case, the individual 

is not an outlier: if the suspect individuai in Figure 3 were reclassified as belonging to then 

this problem would again be iinearly separable (in fact, it wmld be the identical problem to 

Figure 1). 
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Figure 3: A suspect individual as an outlier 

The next few sections WU discuss systems that are used to derive decision rules and awuliary 

techniques that s i inp l i fy  the data in some fashion in orQ to produce more succinct decision ruies 

or better discrimination boundaries. The focus of the remainder of this thesis is presented in the 

hnal section of tbis chapter. In the iaterest of brevity, and since this thesis is concerneci with both 

the discriminatition and verificahon processes, the term classification wiii be us4  to refer to both 

processes. 

2.2 Artificial Neural Networks 
The artficial neural network paradigm [14,18,40] has consistentIy demonstrated its 

effectiveness as a reiiable nonlinear classification technique. An ANN is a self-adaptive, 

massively paralle1 machine learning system composed of iayers of processing elements used 

primarily for pattern recognition problems. A processing element (PE) is a coastruct composed of 

a set of inputs and corresponding weights (input connection strengths) tbat are combined to 

produce a result that is passed to a transfet hiaction (used to constrain output to a particular 

range) dtimately generating an output value that may be used by other PEs. Typicaiiy. an ANN is 

composed of thcee types of iayers: an input layer that passes &ta vectors to other layers; an 

output layer that produces an output vec tor (this vec tor ofien represents the classification outcome 

for the corresponding input vector); and the hidden layers that take data from an input layer or a 



previous hidden iayer and p a s  the transfonned &ta to an output layer or a subsequent hidden 

layer. A le-g strategy is used to make incrernental changes to the weights in order to opumize 

some error criterion. 

A supervised ANN [95] requires the desireci output for each input vector in order that it may be 

compared to the actuai output generated by the ANN (Figure 4). The leaniing strategy attempts to 

minimize a @&al erra function for the set of design data- Local mors are computed for each PE 

in or& to adjust the weights. This process is repeated for each input vector in the design set and 

the ANN continues to iterate through the set uniil an acceptable m k h h t i o n  of the error is 

achieved. The back-propagation algorithm is the most cornmon technique used to pass thk error 

back to the network. A feed-forward ANN bas an uni-directional data flow kom the input layer, 

through each hidden layer, and finally to the output layer. In other words, no PE may pas  its 

output to a PE in a previous layer nor may it pass the output back to itseif (f-ack). 

desircd 
output 

Ïnput 
output 

\ 

Figure 4: A supervised artiûciai neurai network 

2.3 Fuzzy&t Theory 
Fuay set theory (FST), a generalization of conventional or Booiean set theory, was introduced 

by Zadeh Cl231 as a mturai and inaiitively plausible way to represent vagueness in everyday Me. 

A central generalization of FST is the extension of the notion of elementhood korn the range {O, 

1) to the entire unit interval [O, 11 [84]. Conventional sets are crisp; elements in the universe of 

discourse must satisfy precise properties required for membership. Let us examine an example 



where the universe of discourse is the set of real numbers and the set, A, that is to be defined is 

the set of numbers that are approximately zero. Conceptuaiiy. 

Ushg a conventionai definition for tbis set, one m s t  k t  define the uppa and lower crisp 

M t s  for this set- These limits are, of course, domain-specific. Say, in this example, the ümits are 

S . 5 ,  then 

Equivalently, this Bwlean set may also be dacribed by its membership fiinction* A(x) 

Every real number, x, is either in A or it is not, More specifïcally~ A(x) maps aii real numbers 

onto the two points {O, 1 ). Hence, x is "approximately zero" if and oniy if A(x)=l. Udortunately, 

this sharp transition between inclusion and exclusion is problematic wbeo deaiing with values 

immediately outside the transition (Figure 5). If x=O.Sûûûl, A(x)=û, hence, x is not 

"approximately zero". In many r&world appücations, this sharp transition from auth to falsity 

is intuitively unappeaiing. Conceptualiy. the degree to which 0.50001 belongs to A is certainiy 

not one (A(xN1) but it s h d d  be greatet than zero, especially since it is approximately equal to 

0.5. FST quantifies this gradua1 transition fiom faIsity to tmth by gene);alipL1g the membership 

fwction such that it maps values into the entire unit interval [O, 11 [63,124]. 

Figure 5: Membership hinction for the crisp set definition of "approximately zero" 
A fwzy set, F, contains objects that satisfjr. possibly imprecise. properfies to varying degrees. 

The value of the membership hinction F(x) is known as the grade of membership of x in F. As 



with Boolean sets, there is no unique domain-independent mernbership function for F- Sorne 

plausible properties for a fuay set are domain-independent, however. The f b t  property is 

normoliiiy. at some point the grade of membership equais one (in the example, F(0) should val 

one). A fiuzy set s h d d  also sacisfy the criterion of munotortici~ 11251. Although not necessary, 

a fuzy set may also sam the criterion of symnretry- Using our example, the former criterion 

simply means that as x approaches 0, F(x) approaches 1 (the converse must also hold). The latter 

criterion is satisfied if numbers equidistant fiom O have the same membership grade. One 

membership e t i o n  (see Figure 6) cbat saMies the conceptual pro- "approximately zero" is 

Note that normality (F(O)= l), monotonitity (F(0.5)20.29 and F(0- l)=û.9 l), and s ymmetry 

(F(0.4)=0.38 and F(-0.4)=0.38) are dl satisfied by ( 5 ). Severai advantages occur: conventionai 

set theory is reduced by FST; FST represents vagueness in a more intuitiveIy piausible manneer 

using gradua1 transitions from falsity to truth; membership grades are more informative (in the 

example, A(xr)=l and A(xi)=l oniy indicate that xi and x2 are both between -0.5 and 0.5 whereas 

F(xr)=0.88 and F(x2)=û.95 not only indicate that XI and x2 are "approxïmately zero" but also that 

x2 is ''closef>' to zero than xi. 

O 
I I I 1 I 
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Figure 6: Possible membership functions for the fuzzy set "approximately zero" 



The membersbip function is a measure of the degree to which an object satisfies imprecisely 

defineci propetties and in order to combine fuzty sets a coiiection of operators nnist be defined 

[126]. Let 3 ( X )  be the f d y  of aü fuzEy sets of the domain X ami A&S(X). For a11 XEX,  the 

foliowing operations may thea be &fineci [6OJ: 

Intersection: (AnB)(x)=min{A(x), B(x)) 

Note chat there is no definition fBr the law of the exchideci midde (h=0 a d  AVA=X) 1391. 

For instance, if A(xW.6 then ( A d ) ( x ) = = { ~ ( x ) ,  &)}= min{0.6. 1-A(x) )= min{0.6. 0.4)dA. 

More interestingly. ifA(x)aS tûen ~ d =  ÂfM= AUA. 

It shmId &O be noted that FST is not reduced by probabiiity theory. An example will now be 

discussed to show the diffetencw; for thorough discussions refer to [48,62,63]. Let P={aiI 

philosophers} and P={d empirical philosophers) and let pl, BEP where Pb1)=û.9 and 

Pr(p2&P)=û.9. In the latter case* ali that cm be said about pr is that there is a 1 in 10 chance that 

the phüosopher is not an empiricist. In the fonaer case, tbe philosopher is quite s i n i i l a r  to the 

ided empiricist (for instance, Hum). In othet words, with the Iatter, the infixmation that is 

conveyed concerm relative i?equency, whereas the formr deals with the representation of 

simikity to imprecisely defioed properties- Another fundamental Merence involves 

observational effixts on iafomation content. In this exampie, say it is now observed that 

pI=Aristotle and pPlato. The iaforxmîion content in the former case does not change. 

P(Aristotle)=û9 but in the Ianer case the probability now drops from 0.9 to 0.0. 



A statistic is considered robrcst if it is cesistant to effects caused by extreme values [5 11. More 

specifically, a statisticai esthate is robust if it is insensitive to siight deviations fiom its requisite 

mode1 assumptions (ofien nonaal assumptions) about the underlying distribution [98]. 

Discussions about robust st;ttistics ofien go hand in band with the notion of outliers, observations 

that do not foiiow the pattern of the mjority of the data [4]- For instance, say one is fittïng a h e  

through a set of points by miniminng a standard -of-squares enor 

A potential difncuity with ( 6 ) is that it receives its largest conm'butions from points that bave 

the largest mors and it is outliers that wül have the largest mors [27]. In Figure 7(a), the line 

appears to be a good fit of the systematic aspects of the points. However, in Figure 7(b), a single 

outlier bas dominateci the Iine fitting process, siuce it produced the largest error, and bas, as a 

result, skewed the line away fiom the other points. 

Figure 7: Fitting a line ttuough a set of points. In (a), without outliers, In (b), with an outlier 

One solution to this problem is to use the robust error 

Outliers will have s d e r  mors using ( 7 ) M e r  than ( 6 ) and hence their contri'butioas are 

diminished. Moreover, miniminne ( 7 ) with respect to y gives 

which is satisfied when y is the median of al1 the xi [15]. If one of the points is an outiier this has 

no additional effect on the solution. 



Another instructive example comparbg a standard and robust m u r e  of dispersion is given in 

[114]. The mean sqyre deviation is 

and the mean absolute deviation is 

Under certain reguiarity conditions, we cm define the relative mciency of d~ to SN as 

where va&) is the variance of snr . For instance if the relative efficiency of dnr to SN were 0.5 then 

d~ would reqtiire Nvice the sampie size needed for SN in order tbat both m u r e s  have the sanie 

statistical power. Tulrey took two groups of normaiiy distributed observations having the same 

mean. The second group, however, had three ùmeS the standard deviation of the first (in other 

words. the mors of some of the observations in the second group are increased by a factor of 

three). Each observation belongs to the first group with a probability of 1-E and to the second 

group with a probability of E where WS1.  Table 1 kts the relative efficiency of dN to SN with 

increasing contamination of the tint group of observations by the second. For exactiy normal 

observations, SN is 12% more efficient than d ~ .  However, with as Little as 0.2% contaminatioa, the 

robust measure is slightly more efficient. It becomes more than twice as efficient when there is 

5% contamination. 

Table 2: Relative efficiency (RE) of dN with increasing cmtamiaatim (E) 

Looked at another way, this example demonstrates that lengthening the rails of a distribution can 

greatly increase the variabdity of SN. S k e  d~ is less sensitive to such a change it is 



distributionafiy robust. Moreover, because it is in the long tails where outliers reside, it is 

concomitantly outlier resistunt. 

In [52], Huber suggests that, with typical " g d  &ta9* samples in the physical sciences, 

0.0 l<c<n. 1, and if tbis holds then robust statisticai measures are invaluable. One may argue that 

these examples do n a  corroborate the need for robust statisticai procedures but only suggest that 

outlying observations must be detected and dealt with in s o m  fshion. But outlier detection is a 

contentims pmblem. Causes of outfiers f d  ïnto two brmd and somewhat overlapping categories, 

mode1 wealcness and naturai variability. Mode1 weakness includes response variables in the 

wrong scaie and isolat& measurement and recording errm. Identification of an outlier may lead 

to its subsqent rejection, important new information cootahed in concomitant variables that 

would othenuise have gone unnoticeci, its incorporation through mode1 revision, or a recognition 

of an iaherent weahess in the data and thus to additional experimentation 181. Multiple outlier 

detection, espenally in a ùigh-dimensional space, suffers fiom two mjor problems. Two or three 

outiying observations that are roughiy @distant fiom their sample mean can drastically inflate 

the mean as weU as the variance, to such a degree th the outliers are not detected. This problem 

is knom as masking- Further, as the sample size increases, the masking effect between any two 

outiiers decreases, but Utlfurtunately, the number of outliers increases so the overail masking 

effect does not change. Nevertheless, sorne success has ken achieved in unmasking mulùvariate 

outliers using robust estates of location and covariance [99]. Swamping is the converse to 

masking and occurs in an inappropriate block test for multiple outlien when a highly discordant 

outlier carries with it another observation that is not an outlier. In [24], it is argued tbat it is better 

to defer to domain-dependent tecbnicai expertise than any statisticd criterion for straight outher 

rejection. F ' i y ,  with respect to methods for detecting mulavariate outhers, Gnanadesikan [38] 

states that the " ... complexity of the multivunate case suggests fha t  it would be jhitless to search 

for a tnily omnibus oudier detection procedure. A more reasonable approach seems ro be to 



railor detection procedures to protect againsr specific types of situations, e-g., correlation 

distomrZLon, thus building up an arsenal of techniques with dgerent sensitivin'es- This appraach 

recognizes t h t  an outlier for one purpose rnay nut necessarily be one for unother purpose!" 



3 The Process of Classification 
Classification, a d t i - f a c d  exetcise, is realized thtough a classification system. In the most 

* . -  general sense, the system mates a discnmrnation fiction mapping individuals to a set of class 

indices. ï he  perfimmce or afcuracy of the system mut also be validated. 

This chapter d e s m i  the generd architecture for a classification system inciudiag the optional 

prepraiessing and postpcocessing blocks and the classification block proper. Issues revolving 

a r o d  nonaally distributeci &ta, a priori knowledge, and verification strategies are discussed 

With regards to verification, the data sets tbat are used throughout tbis thesis are presented. Also, 

a chance-c~te~ted measure of agreement is discussedt This agreement measure is used 

throughout the thesis to measure classification performance. The chapter concludes with a review 

of the field 

In the most general sense, the problem of classification is a problem of function approximation: 

attempt to estimate an unknown function 

£kom observeci pair-wise random samples, (XI, yl), (a, y$, . . ., (XN, yd ,  where xe Sn is an n- 

dimensional input vector andy&Rk is an k-dimensional output vector. Normally, an association is 

established between the output vectors and a set of groups (or classes), a, ~ r .  . . ., @ such that 

f :w + g,2 ,..., k}. ( 13) 

Each y comprises a subset (usually non-empty) of Ni input vectors. A common association, l-of- 

k classification encoding 



assumes that each input vector, x, belongs to one and only one group, Say q, and sets ail  

coordinates of the respective output vector, y, to 

A classification system attcmpts to approximate f using the input/output pairs such that, for any 

given input vector* its correspondhg output vector is generated wit4i.n sorne error tolerance. After 

the approximaring function is computed, its afenveness should be tested by mppiag new input 

vectors to output vectors. An input vectm* x, is considered to be correctly classified by the 

system, if the generated output vector is the same as the desired output vector within the error 

tolerance. Figure 8 is a diagram of a generaiized classification architecture. 

Input Space 
(Features) 

The classification block is the core of the cla~sification system This block pdic t s  the output 

vector or group assignment of an input vector or a modifieci input vector if a preprocessing block 

is present. Usually, the classification block contains a single ciassifier but it is not uncornmon to 

have a set of m>l classifiers operating in concert. This set may be comprised of any combination 

of classifias including linear disCrMinant analysis and ANNs. ui general, classifiers attempt to 

rninimize some objective function, usuaUy an Euclidean metric, comparing the desired output 

XI 

x2 

x3 

S.. 

xn 
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Y1 
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Figure 8: A generalized classincation architecture 

1.1 Classification block 



with the actuai output, in order to correctly predict output vectors given input vectors. The 

objective fiinction may be minimi2ed iteratively as with ANNs w non-iteratively as with linear 

discriminant anaiysis. Although the typicai topology is fidi intercomezavity between al1 elements 

fiom the preprocessing (or input) block to each classifier, it is not a necessary requirement. Each 

classifier miy be connecteci to only certain, possi'bly disjoint, regions of the feature space. 

Moreover, the preprocessing block m y  also p a s  the original &ta to the classification block in 

addition to any preprocessed fanites. 

FST may also be used as an iaternal constituent of a classifier system. Tbis may involve the 

finification of some component or mecbanisrn of the classifier system. In the case of a mlti- 

layer perceptmn ANN (see section 4.1) that uses the back-propagation algorithm, for example, 

one could bave a set of b z y  infeteuce des that would make dyoamic adjustments to the 

learning parameter, a, based on the change of classification error. These inference des would be 

of the form, "if the change in the error is X then the learning rate is Y" where X and Y would be 

fuay sets [44,58]. Another example would be the fimification of the probabilistic neurai 

network (see section 4.3). The set of Gaussian receptive fields that are normaîiy used in this 

network could, in theory, be replaced by fuzzy sets. The role of FST within a classifier system 

may be much more pervasive, that is, the architecture may have been comp1etely deve10ped using 

FST. Exampies of this approach mciude referential f i m y  neural networks and neuro-fuzzy 

networks. 

3.1.2 Preprocessing Mo& 
It rnay be difficuit to culi discriminatory information fiom data (for instance, diagnostic 

information frorn mgnetic resonance spectra) due to their complex nature* the confounding 

effects of noise, a d o r  the presence of amfacts produced by the data acquisition process itself. 

One of the most pernicious effects i s  the ''curse of dimemionality", a phenomeaon associated 

with a paucity of high-dimensional input vectors (that is. n/N is large). in many applications. for 



instance. acquisition of biomedicd magnetic resonance spectra of tissue in different disease 

States, this problem is ail too common. The optional preprocessing block attempts to deal with 

issues such as ihis by simplifying, in some fahion, the originai input data prior to presentation to 

the classification block 

Preprocessing methods fall d o  several categmies and may be used shgly or in CO- The 

first category is the set of techniques that diminish the effécts of noise. For instance, input vectors 

are ofien smoothed (averaged) Mt6 the assumption that the signakioise ratio is not unreasonably 

Iow and that the noise signature, not king predominant, will be "washed away" by the 

smoothing- Another method used is to add d o m  or Gaussian noise to the origjnai noisy input 

vectors. The rationaie is that the additional noise wiU, on average, cancel out the e x i s ~ g  noise 

signature. 

The second category comprises those methods that r a c e  the dimensionality of the problem. 

One common method is to average over a fixed number of contiguais coordinates of the input 

vectors. The average for each "window" may be the mean or median of the coordinates. A more 

sophisticated average method such as a-mmllzmed or a-Wimorited rneans [32] may also be used. 

The a-trirnrned mean, ~ r ,  of N observations drops the smallest and largest observations from the 

sample 

whne j is the srnallest integer greater than or equal to aN and Xw are the ordered observations. 

Instead of dmpping the extreme observations, in the Winsorized mea~~, b, they are repiaced by 

the rema;ning respective iargest and sniallest observations 



Another common methoci is principal component anaiysis (discussed in section 5.2) that 

perfom a hear trilIlSf~rmation of the original data such that the coordinates of the 

transfmtion, boum as principal cotnponents, account for decreashg amounts of variance [4 11. 

Another dimensionalitty reduction method is domain-specific and involves the use of a prion 

howledge of the input vectors. For instance, it may be known that signais acQuited fiom MR 

spectrom%ers of thyroid tissue may bave regions that are not particularly relevant to the specific 

diagnostic issue or that specific regions are highiy sigaificant. Appropriate sclection or rejection 

of such regions will achieve bnsionality reduction. 

The third category of preprocessing strategies involve the adjustment of the input space 

dimensionality for reasons other than its reduction. In fact, the adjustments may increase the input 

space's dimensionality. For instance, one rnay take aii quaciratic combinations of the coordinates 

for submission to the classification block. This is especially effective if the classifier is hear but 

the original problem is not iinearIy separable, that is, n-dimensional hyperpianes could not 

separate the input vector into their respective groups. h may then be the case that the hear 

classifier will succeed in discriminating between the groups because the problem is still linear in 

the new input space; only the parameter space is quaciratic. For example, Say there is a 2- 

dintensiod input space and two groups. If the point is inside a cluster of points bounded by a 

circle it is in one group, otherwise it is in the other- A hear classifier would perfmn poorly 

because a single h e  cannot be computed to separate the two groups. However, if the input space 

is adjusted by adding two new coordinates, namely, t&e square of each of the original coordinates, 

a linear ciassifier would be able to successfuily discriminate between the two groups. 

FST niay also be used for this type of pteprocessing, for exampie, data niay be fuzzy encoded 

prior to presentation to the classification block [89]. Fuzy encoding is the prwess of deterxnining 

the respective degrees to which a ciahun belongs to a collection of h u y  sets and subsequently 



using these membership grades in place of the original datua This procedure is akin to 1-of-n 

intervaiization encoding except that graduai transitions occur at the boundaries [18]. 

The next category of preprocesshg is the set of norrriali2ation and scaling methods and their 

relatives [91]. The intent of these methods is variance stabilization [76]. It may be the case that 

some features have far gceater variance than do 0th- and hence the former may play a more 

si&nificant role during classification process simply by nature of this greater variance thao the 

latter. This is problemtic if the latter featutes are, at the same time, highiy discriminatory. If, 

however, collintzar vectors need to retain thek distinctiveness, for instance, pixel values of the 

same image at different iUumination Ievels, nocmahation meth@ canna be used 

Burnishing tarnished gold standards is another preprocessing category that has only recently 

been investigated 1883. A ceference test, or gold standard, that is used as a benchmark, against 

which the classification system is mea~u~ed, may itseif be imprecise or even uarehble. 

Conmiuting factors include subjective estimates by a domain expert (or panel of experts) or 

simple clerical errors. Of course, whiie this preprocessing category addresses the possibIe 

imprecision of the gold standar, at the same time, the vital discriminatory power of a weil- 

established reference test must ais0 be retained One possibility is to use FST or robust deviation 

measures [IO91 to enhance the gold standard by incorporating non-subjective witbin-group 

centroid information. 

The final category of preprocessing is artifact suppression. Discriminatory information witbin 

input vectors might be systematicaiiy distortd by the very process used to acquire them. Unlike 

noise. which is introâuced due to limitations of physical devices used in data acquisition, an 

artifact is a phenornenon that is an inherent part of the signal. For example, an infrard spectrum 

ofex vivo thyroid tissue wiil have littie noise but an enonmus water signature that completely 

dominates any interestkg metabolites. The baseline signal is usually adjusted to suppress the 

water signature. Techniques to suppress artifacts are highiy domain-specific and are often ad hoc. 



3.1 -3 Postprocessing block 
The optional postprocessing block may perfom several functions. It may perform s o n  inverse 

transformation on the outputs generated by the classisication b1wk in ocder to reverse the effects 

of a preprocessing technique (for instance, scaling) prior to generaing a finai output vector. If 

there is more than one classifier then this block combines the outputs Born each cIassiner and 

produces a final output vector. Combination strategis include, "winner-take-all", weighted 

cornpetition, consensus, and fuzzy iategration. 

3.2.1 "DeGaussing normality": the law of errors 
Many preprocessing techniqes as well as certain classifiers assume that data are sanipled with 

a normal distribution. Unfortunately, k e  is, in general, no guaranttee that this is the case. In fact, 

in m y  biomedical classification problems, &ta are sampled with non-normal distributioas, Data 

that correspond to some rare disease state, for example, niay be under-represented with respect to 

data cmesponding to a non-disease state. Moreover, the pcesence of mors in the data, whether 

manifesteci as signal noise in spectral information, inaccurate classificatioas, or imprecise 

attribute values, may or may not be normal. Part of the problem in dealing with the above issues 

resides in the fact that Gauss' "law of errors" is often applied inappropriately. The iaw States that 

if repeated meanirrmnts are made on the same abject, the distribution of the random component 

on the errors can be weU approxiniated by the Gaussian distribution. For instance. this implies 

that repeated measwernents based on the acquisition of an uifrared signal from a particuiar 

diseased tissue sample would foiiow the Gaussian distri'bution. However, tbis does not necessariiy 

imply h t  measurenàents of the infrared signals fiom a l l  diseased tissue samples would foilow the 

Gaussian distribution. 

As a historical remk,  Rietz, in his fmous 1927 monograph on mathematicai stacistics [94], 

contends that one of the factors behuid the relative lack of progras in this subject for fïfty years 



after Laplace's Théorie Analytique des Probabilités published in 1812, was that "the followers of 

Gauss retarded progress in the generaiization offrquency theory by overpromoting the idea thnt 

deviations fiom the normal law of frequency are due to lack of &ta". Cramér also levels this 

charge in his 1946 book 1231; "Undcr the influence of the great w o h  of Cours and @&ce, it 

w m  for a long time more or less regarded as an axiom thut stm0stical distributions of praeticully 

al1 kinds wouId upproach the normal dismbution as un ideal linüting fonn, only we couid 

dispose of a su#ïciently large n d e r  of sufficiently accurare obsewations. The deviation of any 

r w b m  variable j?om its mean was regarded as un 'enor', subject to the 'law of errors' 

expressed by t h  normal distribrctr'on." 

The Bayes classifier is often highly touted as the only classification technique to be used 

because it is the theoreticaily best classifier. Assuahg that the distributions of the random 

vectors are hown then it is the case that the Bayes classifier does indeed give the s d e s t  error 

that cm be achievd from the given distributions 11 181, Uafortuately, these distributions often 

are not known. Fwthermore, even if they were known, there is the pragtilatic consideration of its 

implementation. Although the Bayes classifier, under the prevîous assumption, is opbal,  its 

implementation is often di&cult in practice because the probability density function is not 

accessible, particularly when the dimensionaiity is high [35]. 

Now, tbis should not be construed as some wholesale condemnation of "normalitty" for "it is 

undeniable t h ,  in a large number of important applications, we meet distnbutiom which are at 

Zemt approximutely nonnaf'. Nevertheless, it is prudent not to f d  into the trap, descri'bed by 

Liepinan, that "everybody believes in the Imv of emors, the qperimenten becouse they think it is 

a muthematical theorem, the mathemticians because they thntk it is an eqerirnental facr"'. 

c6Mathetnati~al proof tells us that, under ceriain qualrfjling condillons. we are jutified in 

expecting a n o m 1  distribution, while statisrical experience shows that, in fuct, distributions are 

ufien approximateiy n o d * .  



The problem is tbat, in rnany "red world" classification xenarios, the qualïfying conditions do 

not ho& one class of data may be sampled differentiy from that of anocther ciass; due CO the 

nature of an experiment, al1 data may be sampled with a skewed distribution; or the curse of 

dimensiouaiity issue, Practical exmence suggests tbat there are times when distributions are 

simply not normal, not even approxirriafely so- The thrust of this argument is that it is prudent to 

examine the efficacy of non-parametric methods when dealùig with classification problems. This 

indudes judicious use of FST and robust statistics at the preprrocessing levei of the classification 

architecture that do not require the satisfaction of normaiity preconditions. 

3.2.2 A prion' knowledge 
It is often mflicieat to classify data using strictly objective general mathematicai discrimination 

techniques that do not take bto account the nature of the domah space under investigation. Not 

only are these objective methods oftea m~ient but they are often prefaed because they 

eliminate "subjective" bias. All objective aiethods use some quantitative measure to determine 

the similarity of one &ta point to another. These m e s  iaclude Euclidean distance, 

Mahalanobis distace, the LI nom, correlatiodcovariance measutes, and relative entropy [651. 

Nevertheless, there are occasions when it may be extremely worthwhüe to exploit the nature of 

the domain space. A fine line exists between subjective "bias" and subjective information and it 

may, at times, be crucial to cross that line and exploit any a priori knowledge that may be 

acquired from the specific problem domiin 179,931. In the case of biochemical spectral &ta, for 

instance, a priori knowledge may aiîow the investigator to focus hÏs attention to a s d  set of 

spectral regions corresponding to the presence or concentration of some metabolites that are 

known to be sisnificant in the diagnosis or monitoring of a disease state. Dimensionality 

reduction, therefore, occws and the subsequent classification process is simplified. Artifact 

suppression is also extremely domaindependent. Dealing with tanùshed gold standards may also 

be domain-dependent although general preprocessing techniques can be employed. The 



exploitation of a priori knowledge is not without its pitfalisv however. The investigator must bave 

a thorough understanding of the underlying domain and tbis often involves consultation with one 

or more domain experts and ail the reqoisite perils this k n o w w e  acquisition process enta&. 

Furthet, the subjective information =y obfuscatte, othefwise obvious, objective reiaaonships in 

the data that simüarïty measmes would have uncovered. The former problem has often 

manifesteci itseJf in expert system technology 131. Knowledge acquisition is of paranmunt 

importance in this methodology and poor actpkition leads to poor system performance especially 

with respect to "bnttleness" - steep rapid, aod sometimes complete, degraàation of perîorniaoce 

when the expert system is pushed to the periphery of the part icth problem domain [7q. As in 

the knowledge acquisition versus rule codification dichotomy, the 80/20 d e  applies in 

chssificaaon systems; ody 208 of the investigator's time should be spent on the mechanics of 

the selected classifier system, 80% of the time should be spent on a thorough anaiysis, incIuding 

preprocessing, of the data and an understanding of the problem domain. The latter problem can be 

resolved by using subjective information only after a sûict objective analysis has been performed. 

In conclusion, a priori knowledge of a particuiar problem domain may be invaluable in the 

classification process but caution must be exercised in its exploitation. 

3.2.3 Verification 
How is the performance of a classification system to be measured? One verfication method is 

to divide the &ta into a design set and a test set (a 2:l ratio is often used). The classification 

system uses the design set to set aU the necessary parameters particuiar to it. The system is then 

presented with vectors fiom the test set and the correspondhg output vectors are computed. An 

nxn contingency table of desired versus actual classification outcornes is constructed. A typical 

masure of performance is 



where N is the total nurnber of vectors in the test set and k is the number of groups. 

There are a number of concetns with this d o d  Fit, biases are introduced when the &ta are 

artificiaüy divided into design and test sets. Tbat is, the measure of agreement, P,, wi i i  c h g e  

depending on the selection of design and test sets. A simple soiution is to build several randorniy 

sarnpled design and tests set pairs and compute the average Po of ai l  pairs. Another method is to 

use the leave-one-out cross-validation strategy: build N (N is now the total number of vectors) 

desigdtest set pairs where aich test set coqrises a single vector and each design set comprises 

the remaining N-1 vectors. 

Another issue is poorly distributed groups in the sample, that is, at least one of the grwps has a 

small number of vectors with respect to the reniaining groups. It is important, especialiy with 

non-hear iterative classifiers, that the design set has roughly the same number of vectors from 

each group, otherwise the uder-represented group will conüiiute less significantly to the design 

process and, therefore, there wiU be a concomitant loss of agreement between the desired and 

actual outcomes for the test vectors within the under-represented group. If the smaiiest group is 

still large, in absolute t m ,  one can simply use a percentage of the number of vectors in that 

gmup as a design set tloor for all otha groups. Unformnately, if the sniallest group is s m a  in 

absolute terms, this will n a  work. One could artifichüy increase the nuder of sampLes in the 

smallest group by adding copies of raudomly setected vectots into the group. Additionaily. noise 

cm be introduced to the copies- 

One final ptoblem is that the measure of agreement, Po, does not take into account the 

agreement that might be due to cbance [30] 

For example, Table 3 and Table 4 are two contingency tables for a 300-vector classification 

problem where 10%. 808,  and 10% of the vectors are in groups 1. 2, and 3. respectively. At first 



glace, since P0=û.66 for both tables. the results seem to indicate equivalent classification 

performance. in Table 3, however, the vectors were iaL1C10dy assignecl in accordance with k i r  

mginal rates, tbat is, 10% of the vectors were assigneci to each of groups 1 and 3 and the 

remaining 80% were assigmd to group 2. This is evident if we compte P, for both tables. For 

Table 4 P4.52 but P4.66 for Table 3 clearly indicatin, in tbis case, tbat d of the measured 

agreement is due sirnply to chance. 

Group 1 Group 2 Group 3 
Group 1 3 24 3 NI= 30 
G m ~ p  2 24 192 24 N2=240 
Group 3 3 24 3 N3= 30 

Po 0.66 N= 300 
Table 3: 3 ~ v e c t o r  3-group contingzncy table ( P 4 . 6 6 )  

Table 4: 3Wvecta 3-group contingency table (P4.52) 

This example strongly suggests ihat chance nmst be accounted for by an agreement m u r e .  

One option is to use the K coefficient [21,33] as a chance-correcteci measure of agreement 

between the desireci and actuai group assignments 

if the agreement is due strictly to chance then M. If the agreement is pater than chance then 

KA); e l  indicates complete agreement- If the agreement is less than chance then K<O with the 

minimum value dependent upon the muginai distriiutions. figure 9 plots decaying r valus for 

P,=0.66 as P, inçreases. Re~~rning to the example, @.O0 for Table 3 indichg  that the 

observed agreement is due strictly to chance but W.29 for Table 4. 

An arbitrary but usehl benchmark for the strength of the agreement is discussed in 1681, 

namely, the agreement saength is poor if K=O, slight if 0.ûûcW3.20, fair if 0 . 2 M . 4 0 ,  



moderate if 0.4CkSû,60, substantial if 0.60~1cSû.80, and almost perfect if O.8O<ic<I -00. Under a 

nurnber of assumptions the asymptotic large sample variance of K may also be computed [30,34]. 

1C 

Figure 9: ic as a fimctim of P, (P4.66) 

3.3 Data !Sets 
The data sets that will be used tûrougbout the thesis wiiI now be presented These data sets are 

widely divergent in character. A r t i f i d  data wïli  be used for a thoruugh pedagogical examination 

of the techniques to be desmbed since we have "contrai" over them. Three "real worid" 

biomedical spectrai data sets will also be use& spectra acQuired from an infrared spectrometer 

using diseasai and control btain tissue; spectra acquired from a nngnetic resonance spectrometer 

using normal and cancerous thyroid tissue; and magnetic resonance spectra of brain neoplasms, 

These data are classified accordkg to their respective gold standards; the edict of the medical 

pathoiogist after performing a morphologicaî anaiysis of the tissue sarnples. 

3.3.1 Boundingproblem inrrdimensions 
Consider a data set coasisting of points, r=[xl, xd, such that XE Q if -0.75a1<0.75 and 

-0.75e24.75. otherwise, xc q. Figure 10 shows four (2n) hes, Hl through H4. that perfeçtly 

separate the two classes. 



Figure IO: The boundùig problem in two dimensions 

This bounding problem can easily be extendeci to the n-dimensionai case, Artifkial &ta were 

generated that fatI into two classes: those points rhat are bouaded by a set of hyperphes and 

those that are outside the region. A point =[XI, xû . . .. x,]e@ if -0.750rt4.75 (Vi=I, 2, . . .. n), 
otherwise XE a (note that 2n hyperplaaes will perfectly separate the two classes). *al numbers 

of points were selected fiom each class: Q points were randomly selected from a wiform 

disûiution in the range (-0.75,0.75)n; 9 points were randomly selected from a uniform 

distribution in the disjoint ranges 1-1 .O,-û.7Sr and [OX, 1 .O]". 

3.3.2 Disk and torus 
In this art i f id  &ta set, a unit circular disk centred at the orïgin is surrounded by a 2- 

dimensional torus of equal area (Figure 11). The &ta set fails into two classes: those points that 

lie within the disk, Q, and those points that lie within the torus, q. The design and test sets each 

contain N points: N/2 withh the disk and N'2 within the toms. Points ftom class q were 

rmdomly selected from a uniform distribution in the range 1-1 .O. 1 .OS such that they were in the 

unit cucular disk centred at the origin (with area a). Points £tom class q were randomly selected 

h m  a unifotm distribution in the disjoint ranges [-42,-1.0]~ and [1.0*d2]~ such that they were in 

the torus centreci at the ongin (&O with area x). In oràer to determine the efficacy of the 

classifiers when data are not equally distributed, the data in the design set were randomly selected 



such that only 10% of the data within the disk had their fust coordinate less than zero and oaly 

10% of the data withui the t o m  had their second coordinate greater tban zero. 

Figure 11: Distribution of design data 

3.3.3 One-dimensional points with various distributions 
For each of a coilection of data sets, 2 0  one-dimensiouai points were randomly selected using 

two different distniutions. AU points fiom the fxst distribution were assigneci a (N1=lOO) with 

the remainder assigned to @ (N~100). The design set was comprised of 50 q points and 50 c& 

points (Nelûû) with the cemaining points assigned to the test set (A+100). 

For the first data set (Figure 12), the points were sampled from the n o r d  distribution 

N(O.1) (mean of O with standard deviation of 1) and the @ points were sarnpled from N(3,l). For 

the second &ta set (Figure 13), the q points were sampled from the normal distribution N(0,l) 

and the points were sampled from N(3,2). For the third data set (Figure 14), half of the 

points were sampled €rom the N(0.1) and the other half were sampled fiom N(5.1) while ail of the 

points were sampled from N(10.1). For the fourth and final one-dimensional &ta set (Figure 

15). dl q points were sampled from the N(10.2). while ail o > ~  poims were sampled from a log 

normal distribution with mean of 2 and a standard deviation of 1. Heace. is a highly skewed 

group with a probabw density tùnction @df) that significantly overlaps the pdf of y. 



Figure 1 2  Nannal dimibutions with quai variances 

Figure 13: Normal distributions with unequai Vanances 

Figure 14: Normal and bimodal distributions 
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Figure 15: Normai and log namal distributicms 

3.3.4 Magnetic resonance spectral data 
Magnetic cesonance (MR) spectroscopy is quickly emerging as an e f f d v e  noninvasive 

diagnostic ml. MR spectra reflect altered ceiluiar chemistry before gross morphological changes 

are manifa t. 

One-dimensional mgnetic resonance spectra were obtained at 360 MHz (37°C) for 25 thyroid 

biopsies. Of these, 16 had papillary carcinomas and 9 were ciassifieci as n o d .  Two phased 

spectral regions were d y z e d :  the main lipid CH2 and CH3 peaks, 0.64-259 ppm; a d  the 

choline-like species. 2.59-3.41 ppm. Analysis was based on 170 input points for the choline 

region and 400 bput points for the iipid region. This data is particukly àifficult to classify: it is a 

s d  data set, the classification assignments are not particularly Misp. and the spectra are quite 

nois y. 

The other data set comprises 206 'H MR spectra (360 MHz, 37') consis~g of 95 meningiomas 

(M), 74 astrocytomas (A), and 37 control samples of non-tumowous brain tissue fiom patients 

with epüepsy (E). The 550 data points in the region of 0 . 3 4 0  ppm were used in the analyses. 

The pbased spectra were randomly assigneci to either a design set (n=80) or a test set (n=126). 

The design set contained 29 M's, 31 A's, and 20 E's. Figure 16 shows typical spectra. A 

subsequent nofmaljzed data set was &O created where each &mm was diMded by the area of its 

spectmm 



Figure 16: Typical maguetic cesonance spectra 

3.3.5 lnfrared spectral data 
Alzheimer's disease (AD) is a progressive brain disease usuaîiy occuning in persons over fifty 

years of age. It is the most comrnon dementh of addt life and is marked by a general atrophy of 

the brain. Chief symptoms include memory loss, disorientation, and impaireci judgment and 

speech [Sv. The pathological hallmarks of AD are the a b n o d  neuritic piaque deposits and 

neurofiôrillary tangles in the cortical regions of the brain. Neuritic plaque deposits are roughiy 

sphencal particles that accumulate extraceliuiarly in the AD brain, Neurofibrillary tangles are 

budles of abnonnal filaments faind intrace11uIariy within neurons that appear up to ten years 

after neuritic piaque deposition- Alzheimer's disease (like ail other distase states) is accompanied 

by biochemical changes in rissues and cells. Infrared (IR) spectroscopy has been cxtensively used 

in the pst for characterizhg simple organic molecules, and more recently for the swctural 

ana1ysi.s of biological compounds ùicluding lipids. proteins and deoxyriionucleic acid (DNA) 

[54]. IR spectroscopy, by probing molecular vibrations, is a technique sensitive enough to detect 

these changes. An IR spectroscopie study [20] indicates considerable variability in spectra of AD 

grey mana which make it difficult to classe AD tissue based upon a subjective spectmscopic 

evahation alone thus making this set a good candidate for investigation. 



Grey and white mner were sarnpled from various regions of histopathologicaUy c o n f i i d  

non-Aizheimer's (control) and Alzheimer's diseased age matched brains. For each sample, 200 

interferograms were accumuiated and Fourier ûa&ormed to generate spectra with a nominal 

resolution of 4 cm" in the regions between 1- cm-'. Each specmim was discretued to 

416 &ta pomts. Ttre initiai data set was composeci of 114 spectra and divided into 49 control 

spectra (C) and 65 AD specaa (A). Subsequently, additionai spectra were collecteci and separated 

into five classes. The original spectra were also subdivided into these five classes. Of the 163 

spectra in this subsequent data set, 49 spectra were from control grey matter tissue (CG), 23 

spectra were from control white matter tissue (CW), 58 spectra were fiom Alzheimer's diseased 

grey matter tissue (AG) and 24 spectra were from Alzheimer's diseased white rnatter tissue 

(AW). F i y ,  nine spectra of tissue fkom a brain with a condition Lwwn as 18q-, cbanicterized 

by the presence of neurofibtillary tangles (NT) without any newitic plaques, were included in the 

data set. Figure 17 shows some t y p a  IR spectra in this data set- Note that the control and 

Alzheimer's spectra are significantiy different. Distinguishing between gray and white matter 

witbia each is much more digicult, however. 

- - 

Figrire 17: Typical infrated spectra 



3.4 Field Review 
A set of classifiers whose combination is based on the Dempster-Shaf' theory of evidence, 

which uses statistical information about the relative classification strengths of several ciassifiers 

is characterized in [9T] and it is reported that misclassifications are reduced by 15-30%. In Cl]. 

the fusion of several types of robotic scene Qta using a fuzziness measure enhanced the 

recognition capability of aa autonomous system. In [531, a bias constraint based on ptior 

bowledge about the underlying distn'bution of the &ta is discussed as a meam for reciucüig the 

overail -or tibeasure of a classifier. 

ModuIar neural networks involve adaptive mi- of local experts [551. It consists of a group 

of ANNs cornpethg to l e a .  Merent aspects of a problem A gating network controb the 

cornpetition and l e m  to assis diff'ent regions of the data space to different local expert 

networks. 

Stacked generalization [12q is a scheme for minimigng the genefalization errm rate of one or 

more generaiizers. Stacked generalization works by deducing the biases of the generaiizer(s) with 

respect to a provided learning set. 

A hybrid architecture is desmïed in 1731 for classification expert systems that combines 

semantic networks and G N N s  for representing knowledge. A seamtic network is used to 

describe the objects of the problem domain and their relations at the intensional and extensional 

IeveIs. This hybrid scheme allows the construction of fiizzy expert systems able to iaherit useful 

propeaies fiom the sub-symbolic neufal networks and symbolic expert systems, such as: expert 

knowledge representation, imegration of d t i p l e  expert knowledge sources, heuristic and 

incremental learaing, feature selection, and treatment of vague input data 

Flexible &ta structures aiad retrieval specifications within a database are achieved using 

standard relational formalisms but their impIementations are in terms of crisp, static, and 

determiaistic relations whereas red-worId applications data are often imprecise, inherently 



dynamic and non-detetministic. In [36], it is shown how FST can be incorporated into relational 

àatabase systems to aiiow for a wider range of real-world requùements and closer human- 

machine interaction. 

An approach based on hiuy classification of epileptiform spikes in electroencepholograrn 

recordiags to minimize the numba of false positive classifications re~nied by the monitoring 

system is descriied in [59]. A system is illustrateci in 1131 that uses fuzzy sets as the 

representation framework for the classification of dtisource remote sensing data. An hteresting 

comment made in this paper is that one of the main limitations to properly classifying remote 

sensing &ta is the acqyisition of domain kuowledge hm the experts. In [92], a fuPy 

classification method for FFï spectra is ckscriied to distinguish abnormal vi'brational conditions 

of rotating machinery. Nonlinear fuzzy operators, optiudy tuned using genetic aigorithms 

(optimal tuning of fuzzy sets is a vital area of investigation [SI), have been successfidiy used as 

an image processing method [101]. A plethora of research has been undertaken in the area of 

enhancing classification, signal processing, and sensors using FST [6,26,66,101,102]. Anaîysis 

and classification of esopbageal motility records were investigatd in 121 ushg signal pracessing 

and fuzzy-set pattern recognition techniques. The FST extensions reduced the classification error 

rate by haif. Simiiar results were achieved in [f 151 where blood ceiî a n o d e s  were 

discriminated. 

Cornputerized a h  systems have been weU accepted in clinical medicine but suffet from not 

being able to hancile patieddisease specificity, temporal changes, dyuarnic patterns, and 

multivariable combinations. The approach in 1461 uses techniques fkom fuzzy set theory and 

artificial intelligence in order to initiahe the alarm system and interpret the incoming data. 

One of the earliest hizzy neural network hybrids is found in [70]. Oae of the Fust practical 

applications of a fuzzy controiler, the operation of a cernent kiln, is describeci in [116]. The 

classification performance of an ANN in a prognostic problem in aviation medicine was 



enhanced using similar FST-based extensions as above to the ANN's PEs [67] that conceptually 

resembled some components from the physician's decision process. In 11 171, fuzzy discriminant 

analysis, based on the technique described in [85], is used to saccessfuiiy diagnose valvuiar heart 

disease- In [al], a fuzzy mula-layer perceptron is used for diagnosing hepatobiliary disorders, A 

good review of fuzzy neurai netwotks is offered in [16]. 

Fuzzy integrais have also been used to combine multiple neural networks to improve the 

classification performance of any individual networks. For instance, [19] reports the success of a 

fuzzy integdon technique that nonlinearly combines objective evidence, in the form of a 

membership function, with subjective evaluation of the woah of the individual neurai networks 

with respect to the decision. In [28]. possiiiüty theory and its use in data fusion in poorly dehed 

environments is discussed in detail. 



4 Classif iers 
This cùapter describes the classifiers tbat will be used on the transformeci &ta generated by the 

preprocessing techoiques. The kt, bear discrimibation, is a traditionai technique and the 

remaining three are ANN architectures: the MLP, tbe probabilistic neurai network (PNN), and an 

ANN impiemntation of radial basis functions. Some dmcements of each classifier are also 

presented 

4.1 Linear Di8ctiminant Analysis 
When building a decision boundary between groups, it is not sufEcient to simply examine the 

ciifferences between the classes, the =or distriIbutions must ais0 be taken into account. Notice the 

first decision boundary perfectly separating the and @ centroids in Figure 18. Now, asswning 

tûe fkst error distribution, Uiis decision boundacy continues to perfectly separate the two groups. 

Kowever, if the second e r ra  distribution is the case, the first decision boundary is pepndicular 

to the best decision bu11dary (boundary 2). Therefore, in addition to taking into account the 

between-group variances, a classifier must also account for within-group variances. Linear 

discriminant arialysis is a classifier strategy that builds iinear decision boundaries between groups 

while taking into account between-group and within-group variances [76]. If the error 

distributions are the same, it can be showo that linear d b a h h m t  d y s i s  coastructs the optimal 

liacar decision boundary between groups 1561. Unfortuuately, this optimality is gained by the 

underlying assumption that the covariance matrix within each group is the same for each group, 

that is. the only Merence among groups are different centrai tendencies. In ceai-world situations. 

this is seldom the case, different gmups may give rise to different distributions. For instance, if 

the first group in Figure 18 bas the fmt error distribution but the second group bas the second 

ermr distribution, a hlineac decision boundary can no longer be constnicted to completely separate 

the two groups, 
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Figure 18: Errm ~ b u t i c m s  affect discriminant fimctions 

If x is an IL-dimensional vector it will have a different probability distribution, x(x), in each of 

the groups, u>~, ol, ,. ., CQ, otherwise s o m  or aii of the groups are indistinguishable. As describeci 

in section 2.1. a classification d e  can be defineci by a partition of the input space into k 

exhaustive and mutuaiiy exclusive regions, ni. 5L2, . . ., with the decision d e  tbat assigns to y 

those vectors tbat fd in Ri- As the theoreticai derivation of the foUowing is not gemme to the 

thesis and is thoroughly desmïed in the literanire [22], only an intuitive justification of linear 

discriminant anaiysis will be o f i d  Let qi be the prior probability of observing a vector fiom 4- 

If the prior probabilities are not known, they may all be set to l/k, or proportionai probabiiities, 

NJN, may be used for each @. A vector, x. should be aliocated to the graip for which the 

probability distribution, f;(x), is pater  than any d e r  distribution, whiïe taking into account 

known prior probabilities. So. 

X E  tq if q i f i ( x ) ~ q ,  fj(x) ( ~ j =  1, ..., k). 

nie two bey assumptions for linear discriminant analysis are: aU groups are muitivariate 

normal populations (with diffixem mean vectors. (i=l. ..., k)); ail gmips have the same 

covariance matrix. W. Given these assumptions, then 



and, with some algebraic rnanipulatioos, 

hence, 

Given ( 21 ), it is clear that x should be a i l m  to the goop for which ( 23 ) is highest The 

hear discriminant function, L&), may MW be defineci for W. Since the first two tams in ( 24 ) 

are the same for aU gmups, x should be assignecl to the graip y for which 

is greatest. If the prior probabilities are assumed to be equd then the first term in ( 25 ) may be 

ignoreb The diffaence, Dil(x)=L,{x~Li(x)=û. defines the hyperpiaue in the input space that 

separates CQ f?om y [38]. Figure 19 shows a three ciass 2-dimensioaal classification pmbIem and 

the decision bwndaries produced by iinear discriminant aaalysis. The decision nile is 

straightforward: if Di&)- and D&)M then xeq; if D&)4  and D&)S then SE*; 

otherwise, XE US. 
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Figure 19: Decision boundarïa praduced by linear discriminant analysis 



4.2 MuIti-hyer Perceptron 
The MLP [45], a supervised feed-forward ANN employing the back-propagation aigorithm. has 

served as a wmkhorse and a toucbstone for many fivitfui inqpirïes (Figure 20). The nonlinear 

tramfer (activation) function, y, is traditionaiiy the logistic fiindon, 

however, any sigmoid function is permissiile. A sigmoid firnction is an "S-sha@ fiinction, and 

the logistic brm of it maps the interval [--,ml onto If M is sniail. then y can be 

approximated by a linear fuoction. The output of PE j is 

The transfer function is appiïed to the summation of the outputs of the PEs fiom the previous 

Iayer dtiplied by the respective i weights. The tenn, wp, is the PEs bias (or threshold). 

Assuming n inputs, the geometricai mterpretation of ( 27 ) is as follows. The sumniation term 

defines the orientation of an (n-1)-nimensional hyperplane about the origin in the naimensionai 

input space. The bias term defiaes the distance of the hyperpIane fkom the origin [29]. Non- 

iinearity is iatroduced when d t i p l e  PEs are used in the same iayer, As a notationai convenience, 

the bias term may be thought of as an additionai weight t e m  for the PE except that its input is 

always equal to one. It may then be absorbeci into the summation. 

The global =or function that is typically used in a MLP is 

where the dis  and O< s are the respective components of the desired and actual outputs. Different 

performance indices may be use& however. For instance, an Li nom variant can be used instead 

of the h nom in ( 28 ) in order to mike the function more robust The weight changes are 

calculated using a gradient descent strategy (delta d e )  



where a is a Ieaming coefficient in rhe range [0,1]. The local ermr for a PE is determineci by 

solving ( 29 ) using ( 26 ), ( 27 ), and ( 28 )(sec [lOO] for a derivation). In geuerai t m ,  a MLP 

may be consideteci a non-linear regression system that performs a gradient descent search through 

the weight space, searching for minima. Thorough discussions on MLPs and ANNs in general 

may be found in [ZS,47,6 1,1131. 
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Figure 20: A multi-layer perceptron 

4.2.1 Conventional enhancements 
A number of enhancements niay be made to MLPs that: increase the rate of convergence; 

increase robustness; or hprove the accuracy of the final resuits. A few of these will now be 

kussed 

To increase the rate of convergence, a momennun term. $, in the weight update e~uation 

may be used 1721. 

Using the hyperboiic tangent function as the transfer function instead of the logistic function 

typicaiiy improves the performance of a MLP [43]. The transfer function's output is a multiplier 



in the weight update formula, The logistic function's range of [0,1] may cause a bias cowards 

learning larger values. However, the byperbolic tangent h a i o n  is bipolar hence this wili not 

occur. A gain term, g. may also be introduced into the sigmoid 

A large gain value may increase the rate of convergence but at the sanie rime d e s  the MLP 

more susceptiible to pitted error surfaces and may cause wild oscillations during leaming. 

Different learning and momentum rates may be used for each layer a d o r  after each of a set of 

predetermined number of iterations. A typical scenario is to use large leaming and momentum 

values for the initial layers d m  the initial sets of iterations and successively s d e r  values for 

subsequent layers a d o r  sets of iterations. The end effect of this modulateci leanring strategy is to 

search for gross data features at the initiai layers andor during the initial sets of iterations and 

successively refine these detected features by subsequent layers and/or sets of iterations. 

4.3 Pmbabilistic Neural Networûs 
The PNN has been successfuily used as a general technique for solving pattern classification 

problems [lOd,lll]. It uses design &ta to build probability density fuactions that are used to 

es th te  the likelihood of a given vector falling into a p a r t i c h  category. For example, sonar 

spectra have been presented to a PNN to determine h&toemitter correlations in order to predict 

the likelihood of a given signai coming fiom submarines, ships, or other objects [75]. A PNN is 

an ANN implementation of a Bayesian classifier that uses Panen estimators to buiid the required 

density hinctions. As a Bayesian classifier, a PNN can take advantage of a prion' probabiiities if 

they are avaüable (for instance. if a test vector is equally Lürely to fidi ioto class X or class Y but 

class X has a higher relative Grequeacy than class Y. then the vector wili, inter pores. be classified 

as a class X vector). If relative frequencies are not known then proportional probabilities are used. 

Compared with MLPs (and gradient descent methods in gened), PNNs offet several advantages: 



training is typically significantly faster; the design set niay be modifieci without the need for 

extensive retraining periods; unlike MLPs that only guarantees convergence to a local minimum, 

as more design &ta is included, the PNN converges to a Bayesian ciassifier. This last point is 

important because a Bayesian classifier provides an optimum approach to pattern classification in 

terras of mhhizbg expected tisk and, as such, is a benchmark of optimality- At the sanie time, 

PNNs retain the sam advamages of MLPs: they are u n i v d  fwction approxiniatm - 
arbitrary nonlinear decision boundaries can be coostmcted based solely on design data; in other 

words, thêy can robustly generalize- 

Bayes theorem provides a method for performing optimal classifications; given enough &ta, it 

demonstrates how to classif'y a test vector wirh the maximum probability of success. Due to its 

sound theoretical fmdaaons, the Bayesian classifier is oftea used as a standard against whicb 

other methods are evaluated 1741. 

Suppose chat we wish to classe the magnetic cesonance spectra of thyroid tissue (as describeci 

in section 3.3.3) to detetmine whether it is normal, mocterately diseased, or severely diseased 

based on a two-dimensional feature vector; aamely* the choline and lipid regions of the spectra, 

Assume that the probabiiities of each disease state having the measured choline and lipid spectral 

properties are known. In other words, the twwiimensionai probability density fwictions (choline 

and lipid) is known for normal, f,, modetately diseased, f,, and severely diseased, f, tbyroid 

tissue. Also assume tiiat, fiom medical history, the a priori probabiiities of a tissue sample falling 

into one of the three classes are also known to be h,, hm, and h,, respectively, if the a priori 

probabilities are not known then proportionai probabilities may be use& F i i y ,  let la, lm, I, be the 

respective loss or penalty incmed for nPscIassifying a tissue sarnple as nomai, moderately 

diseased, or severely diseased (for example, there rnay be a greater financial (and ethical) cost 

associated with misclassifyhg moderately-diseased tissue as nonoal than for nonoal tissue to be 

misclassified as moderately-diseased). In general, each class may have a different 



misciassification loss for each other class thereby r e s u i ~ g  in a loss matrix- This complexity is 

avoided by assumuig the 10s to be e@ a d  positive for each class. An optimal classification 

c m  be made by assigniag the tissue sample to the ciass whose product, f&Jm is greatest- 

4.3.1 Parzen estimators 
The ideal f for each class is its pdf [104]. If they are lcnown then a PNN tnay be constmcted 

whose architecture wouid correspond exaciy to a Bayesian ciassifier. Unfoftwately, pdfs are 

rareiy known and mist be approximated through the constnictio~ of a sampihg histogram. As the 

number of sampling bins are increased, the histogram approaches the corresponding pdf assumhg 

appropriate scaling to ensure the integrai of the approximating cuve is mïty (a necessary 

criterion for pdfs). Parzen [86] developed a technique whereby pdfs niay be esbimated using 

sparse or inaccurate &ta sets. This technique - Parzen estimators - involves constructing unit 

area Gaussian functions centered at the values of the features for every design set vector. These 

Gaussian functions are summed and Scaled to produce a composite curve. Parzen demonstrated 

that, as the number of design vectors inmase, the composite curve asymptoticaliy approaches the 

m e  pdf. Since PNNs use Panen estimators, it is clear that the more design data use& the more 

accurate the final classification outcornes. However, it is not possible to determine the number of 

vectors required to estimate the pdf to a specified accuracy. 

Parzen estimators can be easily exteaded to the n-dimensional case [110]. Moreover, it is 

mecessary to cornpute the approxïmated pdf but rather only the values at each point, 

x=[xlr x2, . . .. xJ, to be classified, The value of the pdf of q at x is: 

where r'i is the iQ q design vecta; and -a($) is a smoothing parameter which m s t  satisfy two 

conditions [17], 



where O<b<l, then ( 33 ) and ( 34 ) are satisfled If@<<l then each Gaussian constituent of ( 32 ), 

known as Parzen kernels, will be shatply peaked As a approaches zero, the PNN approximates a 

nearest neighbour classifier. Specht 11071 demonstrad that classification petformuce is 

relatively hensitive to the choice of a. However, as a increases, the decision boundaries 

approach hyperplanes thereby iimiting the classifier to fuactions that are linearly separable. 

Thererefore, it is desirable to keep a smaü in order that the more robust nearest neighbor scenario 

Occurs. 

An unknown test vector MU be classified as belonging to a+ if 

where h and 1 are the respective prior probabfities and loss functions for each class, if available 

(see section 3.2.1). Now if we rewrite the Parzen kernels from ( 32 ) as 

and if we also nonnalize aii input data (xTx=l). the PNN hplementation of the above is 

sctaightforward since ( 37 ) can then be rewntten as 



Normalization can be problematic if cohear vectors need to cetain their distinctiveness - for 

instance, pixel vaiues of the sarne image at different illuaination levels. Aithough nornialization 

sinphfies its architecture, a PNN can ded with Panen kernels of the form found in ( 37 ) rather 

than ( 38 ) with ody a corresponding increase in complexity, 

The tenn xTdi is the inner product of the unhiown vector and a design vector. If a PE bas its 

hcoming weights set to the design vector, x't. then a standard MLP treatment of tbt  PE will 

implement ( 38 ) as a transfer function. 

Figure 21 iilustrates the arcbitecture of a PNN. The input layer passes an n-dimesional vector 

to the oornialization layer. The weights entering a pattern layer PET di, are simply the cornponeat 

values of the L~ design vector fiom the class q. The output nom each pattern laya is the value of 

the corresponding Panen kernel, ( 38 ). Each PET in the summation layer sums aU Panen 

kemels for q. The classification layer is basicaily a competitive iayer, if the summation layer PET 

has a value greater than any other PE,fi (i+j). then the corresponding classification layer PE, c, 

will output a 1. otherwise it wiii output a O, thereby indicating the class of the current input 

vector. 

Classitïcacion Layer 

Summation Laycr 

Nomakation Layer 

XI x2 . Input kyer  

Figure 21: PNN architecture 



4.4 Radial Basis Function Neural Nètworks 
A radial basis function neufai network (RBFN) has an internai representation of hidden PEs 

tbat are radially symmetric [45,121]. It should be noteci that the iiterature has referred to RBFNs 

by diffixent names: localized ceceptive fields 1821. locally tuneci praessing uni& 1831. 

regulaiization networh [37]. and Gaussian potential fiuictions [69]. Since radial symmetry is the 

essential concept with this architecture, the more descriptive, "RBW will be d The output of 

a PE possessing radial symmetry is 

where: p is the PE's centre, represented by a vector in the input space, that is stored in the 

weights from the input layer to the PE; the distance metric (ofien Euclidean distance) determines 

how fat an input vector is fiom ~r; and, the aansfa funciion, Q ( typidy  a Gaussian fiinction). 

must output high values when the distance fiom an input vector to p. is smaii, and low values 

otherwise. RBFNs are a class of universai funchon approxiriiatm [90] that are often used as 

classifiers 11711. That is, given an RBFN with enough hidden iayer PEs, it cm approxiniate any 

continuous fwction with arbitrary accuracy [42]. RBFNs typicaiiy train more quîckly than 

traditional MLPs n19]. Aiso, there is the useful featwe that the hidden PEs represent density 

functions for the input space and may be used as a probability measure for new input vectors. 

However, then are also several problems with this architecture: since the receptive fields are 

localizd tbey do not perform weli if discriminatory features are giobly  distributeci tbroughout 

the input space; the selection of the number of meptive fields is stnctly an ad hoc procedure. 

Figure 22 illustrates the topology of a RBM. If is a column vector represen~g the centre of 

pattern iayer PE i. and ai is the diameter of its receptive ~ g i o n ,  then the PE's output, fi, for a 

given test vector, -[XI, x2, . . ., xJ~ is 



PE j in the output layer generates the sum yi. of the product of the pattern layer fi and the 

respective weights; 

The normalisation layer is optionai- PE j in the normalization iayer geaenttes. cj, wbch is the 

normalized yi fkom the output layer 

Nofmalizaaon Layer 

Output Layer 

Pattern Layer 

Input Layer 

Figure 22: RBFN architecture 



5 Conventional Preprocessing Methodologies 
As discussed in section 3.1.2, many preprocessing strategies exist that traasfom the input space 

prior to presentation to a classifier. Three main problems potentially exist when trying to build a 

classification system that deals with a small set of highaimensional &ta. Of course, the h t  is 

the computatiod bm&n p k e d  upon the ciassifier- The second is overfitring: the classifier may 

focus on ~ g l e s s  or unimportant idiosyncrasies of individual design cases instead of building 

a genuine genefalization, based on the design set, that may be successfully used on a test set. The 

final problem is correlation between variables - variables can be highly correlateci even in a 

low-dimensional problem (or completely independent in a h i g h ~ n s i o n a l  space, for that 

matter), however, the probability of interdependencies in general increases with the 

dimensionality of the input space. Many classifiers assume that input variables are independent 

and high cordation can sexiously degrade their performance. This chapter reviews two 

traditional methods: adjustments to the receptive fields of the RBFN, and principal component 

analysis. 

5.1 Receptive Fields - 

Figure 23 illustrates a two-dimensionai example of ( 40 ) and ( 41 ) where the final outputs are 

not normalized (hence we cm ignore ( 42 )). Figure 24 shows the response of the RBFN, given a 

twedimensional input vector. Tùe top of the Gaussian bump is p[)Li, pd and the distance fiom 

p to the point at which the curve flattens out is a; that is, the firnction is radiaiiy symmetric 

around ~ i ,  When an input vector, x=[x~, xz], is equd to p, the response function produces its 

maximum output, one. As x deviates fiom p, the response quickiy drops to zero. The range of the 

receptive field of the response function is determined by the value of a. (The receptive field of a 

RBFN pattern layer PE ciiffers from chat of a neuron in the visual cortex as well as other regions 

of the human brain, where the receptive field is determined by neuronal interconnectivity. In 

contrast, a RBFN PE's reccptive field range is controlled by the shape of the exponential 



funftion. Shce this report is not concerned with the biotogïcal plausibiiïty of the ANNs under 

investigation, this is not an issue of contention.) The values JA and a niay analogaisly be viewed 

as the mean and standard deviation of the respow curve. respectively. 

Figure 23: A two-dimensional RBFN PE 

Figure 24: Receptive field of a twoaMensionai RBFN 

The respoose function of a RBFN PE diminishes rapidiy as an input vector deviates from the 

PE's mean. Since this fùnction is typicaily (but not exclusively) characterized by a Gaussian 

exponential function it gives rise to a localized "Gaussian bump" respoose. The set of pattern 

layer PEs is designeci so tbat their respomes cover a l i  sinnificant regions of the input vector 

space. In the simplest case, both the pattern layer and output hyer weights nmain fixeci; there is 

no training at aii. Further there is one pattern layer PE for every design vector. In a slightly more 

complex extension, ody the output iayer weights are trained; this is a straightforward, and rapid, 

training of a single layét linear system A M e r  extension includes training the pattern layer 

weights as weil as the location and shape of the respoase curves. In this section, we wil i  examine 

several strategis for training the dflerent parameters in a RBFN. As with other AMVs, a RBFN 

has two operational modes: a training mode where the parameters such as b. ai, and the weight 



mauix, are adjusted in order to mùlimize the mean error (over the design vector set) between the 

desired classification outcomes and the actuai outcomes produceci by the RBFN; and a test mode 

where the performance of the trained RBFN is evaiuated by using previously unseen vectors. 

There are severai alternatives for determinhg the location of the centers of the receptive fields 

of the pattern layer PEs. The simplest aitemative is to have one PE for every vector in the design 

set. However, this may become completely impraCacal if there are a large number of design 

vectocs; the amouat of tixne required to train such a network as weU as to test it w d d  be 

inordinately great. A more robust strategy is to take advantage of the fact that design vectors 

typicaiiy tend to occur in clusters, and use an unsupenrised clustering algonthm to reduce the 

number of pattern layer PEs. 

Standard k-means clustering is one possible strategy to compute a set of W. Th" algorithm 

assumes that all of the design vectors are available and that thece are a fîxed number of clusters 

(centres). Approxùnately k centres are usually seIected (for clarity, assume k centres here). The 

standard k-means aigorithm will ensue that the sum of the squares of the distances between each 

design vector and its closest centre is a local minimum. The algorithm begins with a set of k 

random centres. Each design vector is exarnined to determine the ciosest centre to it. A new set of 

centres is cornputed by taking the average of ail  design vectors, for each centre, and using those 

averages as the new centres. This step is repeated for a fixed number of iterations or until the 

membership function no longer changes. 

The adaptive k-meaos clustering algorithm is a modification of the previous algorithm that does 

not require retention of past design vectors. It is basicaiiy competitive Kohoneii learning [61] that 

begins with a set of k random centres. For every design vector, xi. the centre, (i/. closest to Xi, is 

mOdified as foilows, 



where a is a learning rate that decreases with the number of epochs. This step repeats for a fixed 

aumber of iterations or until the learning rate decreases to zero- 

One fiaal variation involves the dynarnic inithbtion of the adaptive k-means clustering 

aigorithrn to ensure uiat al l  centres are actuaily use& Tùe k centres are initiaily disabled Fm each 

design vector, Xi* if it is within a specined distance to the closest embied centre. then modify tbat 

centre using ( 43 ), otherwise, enable a new centre at Xi. The terminatition condition is the same as 

with the adaptive k-means algorithm. 

The r a s  of the receptive region of yi is determineci by the Bi- If the )qs are widely separated 

then the ais should be large to cover the gaps. If the bs  are tightly packed then the as should be 

s d  enough to accurately retain the distiactiveness of each receptive field. One technique that 

niay be used to determine the ai is to use a P-nearest neighbour heuristic. Given a centre, h, let 

il, i2. . . -, i' be the indices of the P centres nearest to b .  Then the corresponding bi is 

In order to simplify the computations required for ( 44 ), P is often set to one so that only the 

single nearest neighbour is considered- 

Once the &s and ais have been selected, the output layer weight matrix may then be opùmizd 

A standard technique W to use a superviseci trajning strategy such as gradient descent learning as 

desmied by ( 29 ). Most of the yis will be close to zero for a givea input v-or since that vector 

will be near only one receptive field. As a consequence, the corresponding weight changes WU be 

srnail. To improve îraining the, this fact can be exploited by ignoring the receptive fields with 

sxnaii activations- 

An iil-advised strategy to detennine the values of the weights is to treat the problem as a 

solution of the matrix equation. W=Y'D; where W is the weight matrix. D is a matrix whose rows 



are the desired outcornes, and Y is a matrix whose rows are the outputs from the output layer for 

each design set vector. The matrix Y is generally not invertible because it is typicaLiy not square. 

FuRher even if a pseudoinverse uists it may not be easily detamiaed [108]. The ma& may be 

dl-conditioned because it is singular or nearly singuiar. Even m e  complex techniques such as 

singular value decomposition may fail because of the psible  limiteci accuracy of the resuits. 

The motivation behind principal component analysis, first d e s m i  by Pearson 1871 with a 

practical coqu thg  d o d  deScnieci by Hoteüing [49]. is to fïnd a set of directions that explain 

as much of the variability of the ori@ data as possible, In d e r  words, given a set of N n- 

dimensional points, the principal components are a new set of orthogonai Iinear coordinates çuch 

that the variances of the original points with respect to these deriveà coordinates are in decreasing 

orders of magnitude pl. As a result eacb principal component is uncorreiated with the other 

principal components (in a normal dism%ution, they are statistidy independent). Moreover, it 

can be shown [65] that no other set of k variables cm account for more of the variability in the 

original &ta than the first k principal components- 

The first principal component, Y[. of the original input variables a, x2, ..., x., is the linear 

combination 

The constraint on the coefficients is necessary otherwise the variance of YI cm be increased 

simply by increasing the value of any coefficient. The second principal component, Y*, would be 

computed in a simiiar fashion to ( 45 ). Figure 25 is a plot of some bivariate data and its two 

principal components. It is clear from this figure that an additional constraint, orthogonality to the 

first principal component, is required to compte the second p ~ c i p a l  component, otherwise it 

would simply be driven to the fust principal component. Orthogonality is ensured by restricting 



the variabIes of the second principal component to those that are uncorteiated with the fnst 

principal component. As a result of this ortùogonality constraint, if there are n variables then 

thne cm be up to n priacipal components [76]. in fact, if the origiaal variables are coinpletely 

uncorrelateci, then ail n principal cornpownts must be used to tale into account the variance in 

the original variables. In this particuiar case, principal component analysis serves no useful 

purpose since the motivation behiDd the technique is to reduce tbe dùaensionality of the original 

input space. However, in b'&-world" hi@-dimensional &ta, the converse is usuaüy me; the 

variables are highly correlateci and hence ody ISkcur principal components are requlled to 

account for aU of the variation. 

I 

Figure 25: Two principal components, YI and Yz 

Determining the principal components is a srraightforward process involving the computation 

of the eigensystem of the origioal data's covariance mtrix, C, whose element ch is the sample 

covariance between variables i and m 

The proof that this is the case wiU not be presented here; it is not difficult but somewhat lengthy 

and can be found in any good text on multivarhte statistics [32,38,65,103]. The variances of the 

principal components are the eigenvaiues of C, hlLh2 ...a, (the covariance  mat^ is 



quadratic and hence admits no negative eigenvalues). The variance of a principal component, Y,, 

is Ai and its constants ail, a ~ ,  ..., a, are the elements of the componding eigenvectar. A 

potentiai problem here is that the significance of a variable in principal component analysis 

changes with a change of sale of one or more of the miables. In order to avoid a variable having 

an uodiie influence on the principal components the original variables can be stQndardized 

(means of zero and variances of one). If the variables are smdadbed then, instead of using the 

sample covariance matrix, C, me may use c*, the sample correlation matrix. 

The principal components that are computed for the data sets describeci in section 3.3 use their 

respective correlation matrices. The strategy employed in this thesis is to take the first k principal 

components whose cumulative variance exceeds some threshold 1>95%). This reduction is 

signifiant, that is, k < a :  it is often the case that more than 80% of the cumulative variance of 

sets of hi&-dimensional (0500) biomedical spectra acqyird from magnetic resonance 

spectrometers, are accounted for by only the first one or two principal components. 

PCA is often an effective preprocessing technique 1171 but it suffers from several deficiencies. 

First, if new data are to be anaiyzed then the principai components of the original data need to be 

re-computed and the principal components of the new &fa must be calculateci. Second, it is not 

possible, in general (and especially for high dimension problems), to determine what input 

features are relevant in the classification, tbat is, original input values cannot be detefmined solely 

using the principal component values. Unfortunately, it is often important to make such 

deteminations in order to have a better understanding of the problem at haad Finaliy, PCA 

orders the cotuponents based on maximal variance. Unfortunately, this does not necessarily 

translate into maximal discriminatory power [56]. For instance, Say the methad used to acquire 

values for a particuiar variable is extrernely prone measurement error, then this variable will bave 

a high variance. Now, assuming this variance is pater tbaa other variables. the first principal 

component wiil be approximately equal to this suspect variable, and hence, this principal 



component wül be useiess in discriminatiag between groups. Conversely, a highiy discriminatory 

variable may have an extremely srna11 variance and hence will not contribute to the first few 

principal components. Section 8.2 presents examples where better discrimination is achieved 

using sets of principal components d e r  than the first k- In sumniary, the moral of ail this is: 

maximal discriminatory power is not the same as maxunal variance. 



6 Funy Data Encoding and Gold Standard Burnishing 
Futty encoding, the process of determinhg the respective degrees to which a datum belongs to 

a coiiection of fuzzy sets and subseqyently using these membership grades m place of the original 

datum. is presented. Two pnpraessing strategis are presented to deal with tamished gold 

standards, Enhancing golil s t d r d s  by incorporating non-subjdve wirhin-gcoup centroid 

information via a fuay set theoretic approach is also discussd The second uses a robust 

estimation of deviations nom group medians for the ceclassification of spectra m a design set. 

This robust reclarsifrcution is more radical than eabancing the gold standard in that individu& in 

the design set may be assigned to motber group. 

6.1 .1 F u a y  interquartile encoding 
Fuzzy encoding involves taking a single input vaiue and intervaiizïng it across a coUection of 

fuzzy sets, thereby prochicing a kt of degrees of mexnbership fot each of the fuzzy sets, In other 

words, if we have s fuzzy sets, FI, Fz, . . ., Fs, and$ is the mernbership function for fuzzy set i then 

the k t  of values for a single input value x is Cl;(& ft(x), ... ,fXx)). Selecting intervals for the 

fuzzy sets is usuaily an experirnental or heuristic process and is similar to the techniques useà in 

standard 1 4 ' 4  intervabation encodings. The purpose of intervaiization is to reduce the effects 

of noise in the &ta as weli as to transform the probiem in such a way that a non-linear regession 

mode1 such as MLP can provide better solutions. The mmbership hinctions are simple enough to 

d e h e  once the intervais bave been selected because the definition corresponds to 1-of-k 

intervalization with the addition of gradua1 transitions at the respective intervai boundaries, 

Now kt us derive a famula to generate a collection of membership functions. First, select the 

number of fuay sets. m. ibar are to be useci. Let w be the width of the top of the trapezoid of the 

fuzzy sets. if d, then thexs are triangular hzzy sets Let b, -1, be the boundary value at 



the intersection of the fixzzy sets. For simplicity, b is constant for each intersection. Let li and ri 

be the Iefi and tight boundary, nspectively, of F, such tbatf;(l)=f;(rJ=b. Let Ci and fi be the left 

and right boundaxy, respectively, of fi such thâtJ&=$@=û and for all x ifX{x)=O then x 4  or 

mi. F i y ,  let x be the origïnai non-encoded (NE) input value. Then, 

where v and A are the max and min operators, mpctïvely. The bottom two cases define a delta 

functionwhen ii=ri- This delta function saiisnes the definition of a hiay set: it is monotonie and 

it maps ont0 the unit interval. Figure 26 shows two trapezoidal fuzzy sets constnicted using ( 47 ) 

overhpping at b- Note that since J{ri)=$+i(li+l)=b, r A t  (VF1, . . ., el) .  It should aIso be noted 

that the corresponding fiiay sets are symmetric about Li and ri. 

Figure 26: Construction of two fuzzy sets 

Substituting Ii for x in ( 47 ) @ves 

and, canceling terms, 

&(li) = h ( 0 v b ) )  = b .  

S irnilariy, substituthg ri for x in ( 47 ) gives 



Now let us determine 4 and q. We aeed to find x such that${x)=û. We cm ignore the A and v 

operatos (to solve 1 ~ W = 0 ,  one mt solve 6'10 and to solve .6'=0, one must solve M). 

From ( 47 ), we bave 

an4 hence, 

When b is at least 0.5 then there exists a strict 1-1 correspondence between the fllzzy encoding 

and the originai input value. Since a particular futzy encoding cm be praduced by only one input 

value, the fuuy encoding of the &ta does not change the nature of the problem. If k0.5  then we 

have a 1-many correspondence and the inf-tion content of the f u u y  encoding is reduced and 

hence the nature of the problem is changed. Furthemore, because of the relationship across each 

fuuy  set, the encoding does not introduce any extra degrees of freedom into the problem. 
l 

Given a data set, a method is now required to determine appropriate values for li and ri. One 

snategy is to use specific perceutiles for each 4 and ri. The percentiie of a sample of n 

observations is a value such that P% of the area under the relative fkequency distribution for the 

observations Les to the lefi of the pb pacentile and (100-P)% of the areas Lies to its right [78]. 

The specific percentiles used are the 25& pacentiie, or lower quartile (Qr), the 5om percentile, or 

nidquaaile (more commonly referred to as the median (m)), and the 75" percentile, or upper 



quartile (QU). To calculate the quaailes for srnail data sets, where ir may be diff~cult to use 

relative freqyency distributions, the measutements =y simply be ranked in beasing order of 

mgnitude and the appropriate values selected: & is the rneasurement with rank ?4(n+l), rounded 

to the nearest integer (rounded up if it fa& halfway); Qu is the measurement with rank %(n+l), 

rounded to the nearest integer (rounded down if it f& haifway); and, m is the measurement with 

rank Y;r(n+l), if n is odd, or the mean of the measurements with ranks '14n a d  '/(n+2), if n is 

even. In order to effect Worm coverage, the quaràles are computed for each cwcdinate, xi, and 

the fiuzy sets. FI. Ft fk Fb are constructeci around them. The corresponding membership 

functions for these four fuuy sets are used to generate the fuzzy encodd &ta. To ensure a strict 

1-1 mapping between the non-encoded and fuzzy encoded vaIues, w=O and M . 5 .  Specifically, 

the membership fiuictions are 

where d. fi ni* and are the s d e s t  value, lower Quartile, median, upper quartile. aod 

iargest values of coordinate j, respectively. The and +i buniiaries (ignoring the coordinate 

index) for ( 54 )-( 57 ) are 



A graphical representation of the membership fuactions, ( 54 )-( 57 ), is shown in Figure 27. This 

strategy is not resaricted to four fuay sets: any number of petcentiles niay be d 

1 IntcrquaftiIc Range r Data Range 

Figure 27: Membership functions used to fuzy encode cocudinate Xi 

The fuzy sets shown in Figure 27 assume that the distribution of the underlying data is normal 

and that there are SuffiCient samples to malce that distriibution apparent. However, this is seidom 

the case when dealing with real-world data. Fortunately, normality assumptions are not built h to  

this methd For example. assume a set of data whae a l ,  a., rn=Que3, and p=9 (see Figure 

28). The underlying distribution of rhis &ta is highly skewed: a dense population of points are 

around 3 and values amund 9 niay be outLiers. Notice tbat the fuzzy seth is a delta functioa since 

Figure 28: Membership fimctions used to fuzzy encode highly skewed data 

Fuzzy encoding exhibits several u&l properties. Fust, since the membership functions map 

values onto the unit interval, îhe data are automaticaiiy scaled. This is particularly useful in the 

classification process since scaled data diminish the effects of extreme variances across features. 



Without scaled data, featwes with large variances will predominate ovec features with small 

variances although the latter features may be diicnminatory. Another beneficial property is that 

values that may be consideteci outliers impact les severely upon classifiers, such as the MLP, 

that employ any type of iterative adjustments to its error function. This does not mean that 

sampIes with feahires that are outliers are removed duting the design or test phases of the 

classification process, however. The farther a value is from the interqyrtïle range, the fuzy 

encoded values aii tend to zero. in the case of a MLP where its hidden layer PEs are summing 

products of weights and input values this is important since, if the fuay encoded values of an 

outlier are all zero or near zero, those values will contriiute very M e  to the Iearning process 

regardless of the PEs weights; an extremely usefiil feature if the original value is indeed an outlier 

yet if it is not an outlier it still does contriiute to a degree. For instance, using the example 

quartiIes from the previous paragraph, if x=10 then the fuzzy encoded values are {O, 0,0, 1/3 ). If 

x=12, the fuzzy encoded values are {O, 0, 0, O). ConverseIy, values that are within the 

interquartde range wiil contribute strongly to the Iearning process. If x=3, the fuzzy encoded 

values are {O, Y% 1,fi). h = 2 ,  the f u q  encoded values are {O, 5/6,0, 1/31. 

6.1.2 Dimension-presedng funy interquartile encoding 
A variant of fuzy interquartile encoding exists tbat does not increase the dimensionaiity of the 

featwe space. htead of constnicting four triangukr f k y  sets amund the quartiles of each 

featwe* a single piece-wise l ine.  fuuy set is constmcted whose veaices are the lower quade, 

median, and upper quartde. Figure 29 is an example of a single membership function constnicted 

from a fatue's quactiles where h ~ ( 0 ,  1) is a membership threshold such that feature values 

within the interquaaile range will have membership values gmter than h, values outside the 

interquartile range but within the minimum and maximum values wiii have values Iess than h. 



Figure 29: A single m e m b d p  fiincricm coastructed nom f e a e  quartiles 

AssUming acQtun<Q& (tespectiveiy, the smaiiest vahe, lower quartiie, median, uppa 

quartile, and largest value for feature j), the ~mbersh ip  W o n  fa the hiay set of feature j is 

For the degenerate cases, occming when the data are extremely skewed, 

6.1.3 Funy cluster encoding 
This d o d  employs the hipy c-means algorithm [11,122] to detamine a set of c centroids 

for the &ta. A distance measure is then used to determine how similar an individual is to each 

centroid These values are substituted for the originai data. A particuiarly usefiil property of this 

method is that it changes the dimensionality of the ptoblem space fiom n to c. 

Let X=(rl, 12. . . .. XN}  be a set of data where X- %". A hlZzy c-partition or pseudopartition of 

X is a faniily of- subsets ofX, denoted by P--(ui, u2, ..., uc) S U C ~  that 



Clustering involves tinding the fuzzy c-partition and the associated centroids by which the 

structure of the data is tepresented as best as possiile, specircaily, tbat the associations are strong 

within clusters and weak between clusters. The critericm used as a perfbrmance index is computeû 

by tïrst calcuiating the cluster centres associated with the pseudopartïtion P 

where vi (id ... c) is the centroid associated with the partition ui and rn~(1.m) govenis the 

influence of membership -des. Ushg ( 65 ), vi the weighted average of data in ui where the 

weight of xi is the mm powa of the mmbership grade of zk in the htny set ui. The performance 

index Q(P) may now be defmed in terms of these centroids 

where 1 ~ ~ 1 1 ~  is tbe distance between an individual and a centroid (any uuier product-hduced 

wrm in Sn m y  be used but the Euclidean nomi is mwt often selected). Q(P) masures the 

weighted sum of distances between clusta cewoids and individuals in the cornsponding funy 

clusters; a s d  values iadicates a g d  P, hence the objective of the fuzzy c-means algorithm is 

to find a fÙ.zzy c-partition that minimizes Q. This opthkation may be soived using the following 

seps: 

O. Select c. m, and a srnaIl positive number. E, as a stopping criterioo. Let z=û and select an initial 



1. Compute the c centroids v:" using ( 65 ) for P'? 

2. Compute p'n? Do the foiiowing Vxk: 

if l ~ r , v ~ ) i b O  Vvc, then 

such that 

for all remaining i. 

3. If 

then stop. Repeat steps 1-3, otherwise. 

As m approaches 1. the huy c-means algorithm converges to a classicai hard maas algorithm 

as described in section 5.1 (801. As m approaches 0. aU cluster cenwids tend towards the 

centroid of X. In d e r  words, the pseudopartition becomes fuzzier as rn increasû. No theoretical 

basis exists for an optimal n but Bezdek proved [IO] that the algorithm converges for m ~ ( 1 , - ) .  

Empirical evidence suggests that good resuîts are typically obtained for m~[1.5,2.5] (in the 

discussion that foUows -2) 1121. 

The membership fuoction, u&), that is used is based upon the update equation ( 67 ) in the 

second step of the hiny c-meaas algorithm. Specifically, 



is a measure of the degee to which an individual xk klongs to the cluster centroid vi tbat also 

tskes imo account the individual's membenbip in d e r  clusta antroids (as previously 

mentioned -2). That is, for two individuals, xi and s% that are apidistant (in a strict Euclidean 

sense) tkom a cluster centroid V I .  if 11 is near another cluster centroid (once agah in a smct 

Euclidean sense) and x2 is not, then ul(xl)ucl(xz). Furthemiore, as the Euclidean distance between 

x, and di cluster centroids approaches =, udxd approacbes 1lc- Figure 30 is a plot of u&) with 

two cluster centroids, vt and VZ. Note that ui(x) and u2(x) bath approach YI as the distance between 

x and the cluster centroids inaease. Note fiuther that u,(x) and u&) are !4 when x is between vl 

and v2. 

The encoding 

VI v2 

Figure 30: Plot of ÿ(x) with 2 cluster centroids 

stcaightforwar6- replace every individual xk with l u & ) ,  u2(x& 

6.1.4 Class-wise variants 
The encoding methods described in the previous sectioos do not take into accouot any class 

inforniatioo. This may be problematic when classes have extremely different distributions or 

when the underlying probability density hinctions for each class significantly overlap. For 



example, Figure 31 shows the probability density hinctions for CO,, whose data are normally 

distributeci, and uh. whose data are bimodally distributed about a. 

Figure 3 1: Robability density fiinctions for a nmnaiiy dimibuted dass between a bimaiai distribution 

Using the membership fiinction, udx), describeci in section 6.1.3 and -3, the fuzzy cluster 

encoding should tind one cluster centroid near the mode of <ul and one centroid near each of the 

two modes of y (Figure 32). Inautively. thïs should give good discriminatory performance since 

u&) Will be bigh for individuah near the class modes. However. if c=2 one centroid will be 

placed between the one mode of & and the mode of a and the other centroid will fa11 between 

the mode of <ul and the otber mode of uq (Figure 33). Now the discrimu>atory power will more 

than iikely be p o a  since udx) will be greatest for a k w  individuais between the modes. 

Figure 32: Good discriminatory pafmmce using h t e y  cluster encoding with 3 centroids 



Figure 33: P m  clirrimiaaiory perfixmaoce using fuzzy cluster e n d g  with 2 centroids 

Now. if two clustci centroids are used for each class. the ptevious problem dissolves. The two 

cluster centroids for @ wîil be centred near its two modes. whereas the two cluster centroids for 

cq wiü both be near its mode (Figure 34). The discriminatory p o w a  should be siniilar to that in 

Figure 32. 

Figure 34: Good discriminatory prftmumce ushg fimy cluster mcodiiig with 2 centroids pcz c h  

Class-wise variants of the previously mntioned encoding techniques will now be demi ied  

The huzy inequartile encoding technique descri'bed in section 6.1.1 can be extended to deai 

with class inforruation by computing the featwe quartiles for each w So, ignoring the coordinate 

index j, ( 54 )-( 57 ) niay k rewritten as 



where j is the feature coordhate for an individpal and dk, & d;, aid B: are the 

s d e s t  value, lower quartiie, niedian, upper quartile, and largest value of feature j for the 

The class-wise extension to the dimension-preserving futzy interquartile (Section 6.1.2) 

encoding involves constructing a single piece-wise fuay set for each w As in the previous 

paragaph, d, & ni! and IUUS~ be cornpitecf for each c k s  (Figure 35). Extending ( 62 ), 

and ignoring the feature index, the membersùip function fot feature j of CI& is 

For the degenerate cases, the extension to ( 63 ) is 

1 .O 
ht 
h 
0.0 
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Figure 35: Feahwe membership funcuons consaucted for a, and 



The class-wise extension to huzy cluster encoding involves employing the funy c-means 

algorithm for each o instead of once for the entire data set. Let P,,={u~, U% - - .* U-) be the 

pseudopartition for such that 

and the associateci cluster centroids are 

where v,  (i=l, 2 . . -, c) is the centroid associated with the partition u, and m,,s (1 .4  govems the 

influence of membership grades for c& individuais. The performance ioda ( 66 ) is used on a 

class-by-cIass basis. The algorithm descriied in section 6.1.3 is now applied to each o. The 

membership function ( 70 ) is used for each set of cluster centroids v, 

6.1.5 Fuzzy encoded multi-layer perceptron 
Fwzy encodiog may be integrated into a MLP classiner. The basic ANN structure of a fuay 

encoded multi-layer perceptron (FE-MLP) is descnibed in section 4.2. Specificaily, the global 

erm fûnction ( 28 ) is u s d  The 1e-g rate, a, may be in the range [0.1], but in ai i  of the 

experiments describeci in the next chapters a~ [0.7,0.9]. No rnomentum term is ever employed. 

The logistic function ( 26 ) is used as the transfer fuoaion. A single hidden layer is used with the 



number of hidden PEs determineci experimentally (empiricai evidence suggests using one or two 

more hidden PEs than the number of classes). The output layer has k fEs corresponding to the k 

cIasses. The FE-MLP assigns an input vector to q if output PE j has tée kgest activation, 

Recaii in section 4.2.1 that tbe logistic fiinctiods range of [OJ] may cause a bias towards 

learniag larger values and hence the bipolar hyperbolic tangent fitnction is ofien used instead. 

However, the logistic function bias may be exploited within the FE-MIR A large fuzzy eacoded 

value indicates that the originai value is similar to a "typical" value fot that feature* For instance, 

with fuuy interquartile encodiag, one or two large futzy encodeci vdues indicate that the original 

value was within the i n t e r m e  range for the feature whereas no large values indicate that the 

original value was an outlier. Therefore, the logistic fimction's naturai bias will further diminish 

the impact of feature values that are far outside the interqmtüe range, This is similarly the case 

for the dimension-preserving fiizzy encoding as well as the hray cluster encoding. 

In the case of fuzy interquartile encoding, the input layer will have pn PEs where n is the 

dùnensionality of the onginai input space and p is the number of fuzzy sets used for the fuvy 

encoding (more generaUy, different numbers of fuzzy sets may be used for each feature). Figure 

36 shows the architecture of a FE-MLP using four fuzzy sets constructed around the cprt ï les and 

two original input variables, xi and xz. 

Figure 36: Fuzzy interquade FE-MLP with two inputs, xl and xz. four f i  sets, and k classes 



At fnst dance, it may appear that fuzzy encoding wouid sifl~cantly Uicrease the complexity 

of the design phase of the classification process since it is incfeasing the dimensionality of the 

feature space (in the previous example by a factor of four). The experimental results in the next 

two chapters consistently demonstrate not oniy does fuzzy encodiag not increase the complexity 

of the design phase but, in fa= it actually draniatidy reduces the number of iterations required 

by MLPs to converge during the design phase. This reduction is, at times, greater than an order of 

magnitude while, at the same tirne, improving the ~Iassification accutacy for the test phase. 

Several factors contribute to this eficiency. Fmt, as previously mentioned, fiip;y encoding 

naturaiiy scales the data to the unit interval and scaied data improves the perfofl13af~:e of an MLP 

(and neural networks, in generai) by reducing the impact of variance disparities across the 

features [9q. Second, many of the fiizzy encoded values are zero (or near zero) and, the 

corresponding tenns in the PE sununations are zero (or near zero) regardles of the respective 

weights. Uitiiriately, this means that they contribute httie to the overail enor of the FE-MLP so 

resuitant errors propagated back kmgb the network are not caused (to any great extent) by these 

values. Finally, outliers can be problemattic to a standard MLP sioce they can cause large resultant 

errors and many more iterations wiU typically be reqpired for the classifier to converge- Fuzzy 

encoding reduces the impact of outiying feature values and hence improves the convergence time. 

In the case of the class-wise extension to fuay interQuartile encoding, the input layer wiU have 

kpn PEs where n is the dinensionaiity of the 0 r i g h . I  input space, p is the nurnber of f u u y  sets 

used for the fuzzy encoding, and k is the number of classes. Figure 37 shows the architecture of a 

FE-MLP using four huzy sets constructeci a r d  the quartiies and two original input variables, 

xl and x2 for a ~ W O  class problem. 



Figure 37: A FE-MLP using a class-wist extension to hipy interquartille eocoding 

FE-MLPs employing dimension-preserVmg and ciass-wise dimension-preserving furzy 

encoding bave more straightfomard arcbitectwes, with n input layer PEs, than those using the 

fuzzy i n t e r e e  encodiog counterparts (Figure 38 and Figure 39, cespectively). 

Figure 38: x2, and k classes 

Figure 39: Ciass-Wise dimension-prese~ng FE-= 



FE-MLPs employing fuuy cluster encoding will have a simpler architecture than its non- 

encoded MLP counterpart when the number of dimensions of the feature space, n, is greater than 

the number of clusters, c, used in the fiizzy c-nipans algorithm. In general, when the MLP 

counterpart has n input iaya PEs, the FE-MLP wiU have c input kyer PEs. Figure 40 is an 

example of a FE-= architecture for a LOaimensio~ 2 class, feature space ushg 2 cluster 

centroids. 

Figure 40: FE-MLP employing fllzzy cluster encoding with input vectors x=[xl, xz, . . -. x,J 

The class-wise extension to the FE-MLP employing fuzzy encoding wiU have kc iaput layer 

PEs instead of n (Figure 41 is an exanple of a 10-dimensional, 2 class, feature space with 2 

cluster centroi& per ciass). This architecture can be further generalized by having different 

numbers of cluster centroids for each class. 

Figure 41: FE-MLP 



6.2 Burnishlng Tamished Gold Standatds 
Data, such as magnetic resonaace spectra, are o h  dinicuit to analyze due to their complex 

nature and the presence of noise. Many preprocessing mwhods cet that transfocm the original 

input &ta in order to eliminate or dirninish the e f f ~  of noise andlor mhce the dimensionality 

of the input space. Unfortunately, culhg diagnostic iafotniation is further exasperated by the fact 

that the reference test or gold standard, against which a new and possibly impafect diagnostic 

test is measured, may itself be imprecise or even unreliable. However, h i e  work has been done 

to investigate a methodology whereby the possible imprecision of a weli-estabüsheà but taraished 

goid standard m y  be addressed whiie at the same thne maintainkg its vital discrllniaatory 

power. 

Two strategies are discussed to bumish such tamished goid standards. The first uses a robust 

estimation of deviations from ciass d o i d s  (the robust equivaient of a centroid) for the 

reclassification of spectra in a design set. The second uses a huzy set theoretic preprocessing 

method to enhance the gold standard by incorporating non-subjective within-class medoid 

ioformati~n~ Either strategy may be used to augment any of the fuuy encoding approaches 

descri'bed in section 6.1 - 1. 

6.2.1 Robust reclassification 
This preprocessing strategy involves the robust reclassification (RR) of vectors in a design set 

using a robust estimation of deviations fkom class medians. The median of the absolute deviatiom 

(MAW 

is a robust estiniator of the standard deviation (the constant is used so tttat as the error distribution 

becomes more no& the MAD estirriate converges to the standard deviation) [SOI. Only 40% 



efficient for normal data 1981, it is robust to outliers and long-tded distributions, nevertheless 

[ 1031. 

Although a univariate estimator. it may be extended to the altivariate case by computing a 

vector, q, whose elemnts are dispersion masurrs for each feature of 4 vectors. Specificdy, 

VXF q Q=l, 2, ..., n& feature i of TL is 

A feature of xi is considered to be an 4 feature i outlier if 

where -- is eiement i of the Q medoid The constant, c2l. is the spread across the median 

indicating whethn or not a feature is an outlier.. Specifically, it is a robust version of the empirical 

corollary of Tchebys heff s theorem. Tcheb ysheff s theorem States tbat for e l ,  at least (1-l/c2) of 

a set of N meaniremnts wiii lie within c standard deviations of their mean [78]. The empirical 

corollary states that, if a data set bas a normal distri'bution. then the foiiowing heuristics may be 

used to describe the data set: approxirnately 68% of the meanuements will lie withia c=l 

standard deviation of their mean; approhtely 95% of the measurements wiii Lie within -2 

standard deviations of their mean; and, almost aii the measurexnents wiii lie within c=3 standard 

deviations of their mean. For the robust case, the standard deviation is replaced by ( 80 ) and the 

mean is repiaced by the median. For the remainda of the thesis. ~ 2 . 5 ,  hence, approximately 

99% of the measurements will Lie withia 2.5 MADs of tbeir mdian. F i ï y ,  for each vector. xi, 

compute its membership in each class medoid using 

w here 



A veaor, q, from CQ wül be ceassignai to q, if D?)cU~~.  In other words, a vgxor mus< be 

sufnciently distant fkom its class' medoid and sufncienly near d e r  class' d o i d  Note that 

reclassification may only occur for vectms in the design  se^ 

6.2.2 Fuuy gold standard adjustment 
Given an input vector r ~ [ x , .  XZ, . . ., x.1~ m, the associated gold standard may be encoded ushg 

output vectors of the form, y&,, y% . . ., yd where 

The weighted distance, dil, of xi fiom the @ medoid is defined as 

where ml and t~ are the respective feature-wise median and MAD of the y vectors. This distance 

measure is then incorporated into the gold standard usmg mernbership functions (see section 2.3) 

- monotonie functions that are concinuous in the interval [OJ] indicating the degree to which an 

element belongs to a set, The membaship function for CQ is defined as 

where p>l and q>O describe the s h a p  and amount d fiizziness for the membersbip hinctioo. 

Figure 42 plots f lx )  for different values of p with a constant q. Noce that Ar) is sigrnoidai and that 

as p Uicreases, f approaches a step m o n .  The crossover point, which occm when the 

mernbership function is !4, occurs when the distance quals q. 



I 2 3 4 5 
Figure 42  Plot ofAx) with varyuig p (pz) 

Figure 43 plots A.) for different valaes of q with a constant p. As q Ïncreases, f k c o m  

fuzaer; that is, mmbership values wiu cemain high even at great distances. 

Figure 43: Plot offlx) with v-g q @;2) 

In g e n e d  the further a vector is fkom a c k s  medoid, the lower its membersbip value for that 

class. It is possible for a vector. x. that was orïgioally assigned to <4: to be closer to the medoid of 

another ciass. ap. In such cases. fdxwjx) and, hence, the o r i g i ~ I  gold standard assignment wiii 

no longer predominirte. To roctay this situation, let fdx)==fx). Tbat is. a vector wiU never be 

reassigned to a class ciiffereut fiom the class to which it was originally assiped. However. if a 

vector is near another ciass meâoid then the correspondhg output element for that vator will not 

be zero. The funy goid standard adjustxmnt (FA) may now be encoded by the vector 

yiv=Cyr*, y2*, Y;] where 



This operation is known as conmut intensification Cl241 and here the intent is to iacrease vaIues 

off tbat are above 0.5 and reduce those that are below this point, in d e r  words, contrast 

intensification has the &kt of reducing the fuzziness off. 

6.2.3 Reclassification verws adjustment 
The FST gold standard adjustrnent strategy descfiied in section 6.2.2 is not as radical as the 

robust reclassification strategy discussed in section 6.2.1 where an individual may actually be 

recIassified in the design set if it is sufficiently distant from the cIass to which it was originaily 

assigned and suEFiciently near another cbs '  medoid, A conservative variant of the robust 

rechsification strategy may be defined that mirrors the intent of the FST gold standard 

adjustment. Similarly. a radical variant of the latter may be defieci that &on the radical nature 

of the robust reclassification strategy. 

For each vector. xr the robust reclassification variant produces the output vector, an augmented 

gold standarcl, y'=[~io', ~ 2 ~ '  , . . ., ~ k ~ ' ] .  where D?' are defined using ( 83 ) and ( 84 ). Since 

LI/"€ ml], and it approaches 1 as the vector appmaches the CQ medoid, this new gold standard 

mimics the bebviour of F A  It is still possible, however, for a vector assigned to some class by 

the originai gold standard to have a distance value that is greater for some other class. Hence, 

aithough more conservative than the originai strategy, tbis variant rnay still reclassïfy the vector. 

To ensure that the original gold standard preciomiiiates. its corresponding distance value may be 

set to the maximum of aü distance values for the input vector. 

The radical variant of FA is straightfomard: for an input vector's enhaaced gold standard 

encodeci by the vector yi'=b,'. yz', ..., y;] defined by ( 88 ), reassign it to y where yl' is 

maxunum, 



Fiiaiiy, most classifiers, such as A N N s ,  accommodate class labels that have been encoded as 

1-of-k output vectors. Hence, these classifiers may also accommodate output vectors of the form 

[O, llk. Howeva. som ciassifiers. nich as lioear discriahant analysis. admit ody discrete heger 

values fiom 1 to k, For ttüs latter case, only RR or the FA variant may be used to burnish 

tarnished gold standards. 



7 Experiments Using Synthetic Data 

7.1 fweCIlasu 1-DirnensbnaI Da& Sefs 
In the experiments descnied in tùis section, 200 one-dimensional points were randomly 

generated ushg two di€fmt distsibutions. An points from the k t  disaibution wae assiped to 

a (Ni=lOO) with the remahder assigned to (K=100). The design set was compriseci of 50 q 

points and 50 points (NAûû) with the rerriaining points assigned to the test set (N+lûû)* AU 

performance results for both design and test sets are measured using the chance-corrected 

rneasure of agreement, K (section 3.2.3). hear  discriminant amiysis is used as the classifier for 

al1 experiments. Four fuay sets are used for the fuzzy interquade encodings. Tbe quarciles for 

the fuzzy interquartile encodings and the dimension-preserving encodings are computed using 

only the points in the design set. SimiiarIy, the cluster centroids for ttie fUzy cluster encodings 

are computed using only design points. The thresbold for the dimension-preserving fuzzy 

encoding was set at % for d experbnts. Each subsection will contain two pairs of performance 

tables, one for the design set and one for the test set. One pair of tables contains performance 

results using m i r e n t  cluster centroids for the fuPy cluster encodings. The other pair of tables 

contains K results for: the non-encoded data (NE); fuuy interquaaile eacoding (IQ); dimension- 

preserving fuzy encoding (DP); and the b a t  fiizy cluster encoduig (CL) r d t s  €rom the 

previousfy mentioned table; and the respective class-wise variants (IQc, DPc, and CLc). For each 

experiment, a plot is iisted showing the mderlying probabiiïty density functions for each class, 

the misclassifieci points (large grey points on the a&), and the underlying fùny sets (for IQ and 

DP) or mmbership functions (for CL) for the different encodings. 

7.1.1 Normal distributions with equal variances 
In this experiment, the CO, points were sampled fiom the normal distribution N(0.1) and the y 

points were sampled fkom N(3.1). This is an ideal data set in the sense that the two classes are 

normally distributed with equd variance, hence LDA will produce an optimal decision boundary 



for the design set as is the case here (see Table 5). The only errors that should occur should be 

where the probability density functions of the two classes overlap (see Figure 44). Apart from 

DP, ail metbods produceci comparable resuits for the design set- 

Table 5: Design set d t s  using n<nmally distributecl data 

Note that CLc with two clustas produceci poaa d t s  than other CL me&& ('T'abk 6). 

For each method, concomitant r d t s  were obtained using the test set (Table 7) with IQc and 

Nd 

q 

K 

DPc producing slightly better r d t s  than NE. 

Table 6: Design set results for fiizzy cluster encoding using different cluster numbers 

- CLW) 

47 3 
2 48 
0.90 

Table 8: Test set resub fa huy clus& mcodingusing diffêrent cluster numbm 

Table 7: Test set results using narmaiiy disbcibuted data 

-2 O 2 4 6 

Figure 44: Non-encoded design set results 
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K 

CLC(S~) 
ot 
44 6 
2 48 
0.84 

m (o~, 
ol 
46 4 
2 48 
0.88 

CLC(=~) 
ol 
50 O 
21 29 

058 

CL(&) 
Û>I 
45 5 
6 44 
0.78 

CLc(03) 
oi 
35 15 
2 48 
0.66 

CL(03)  
oi 
41 9 

3 47 
0.76 

cLc(c=2) 
Y 
50 O 
27 23 

0.46 



Figure 45: Non-encoded test set r a d &  

Figure 46 and Figure 47 show that IQ, like NE (Figure 44 and Figure 45). oniy niisclassïf~ed 

some points that overlapped the pdfs of the two ciasses. 

Figure 47: Fuzy interquartile encoded test set results 

Figure 48 and Figure 49 clearly demonstrate the problem with DP: not ody does it &fer from 

mLsclassification of points at the overlap of the pdfs of the two classes. it also misclassifies many 



points that are to the right of the overlap. This occurs because the encoded value for a point in this 

region will be nearly identical to the encoded value to the lefi of the overiap. Suice m points 

predominste to the right and Q piedomhate to the kft this wiil wash away the dimimiaation 

between the two classes. This weahess is pmisely the strength in the ciass-Wise variant of tbis 

method ( s e  below). 

Figure 48: Dimeasion-preseMng design m results (ot-1-81. W31. -1.76. Q.a.30. p5.00) 

Figure 49: Dimension-pracrviog test set r d t s  

As witb the NE and IQ mthods, CL with two cluster centroids misciassüied oniy points that 

fell between the class' pdfs (Figure 50 and Figure 5 1). Note that u, is maximum ai the mode of 

and uz is maximum at the mode of q and that the fuzzy c-means algorithm found centroids near 

these modes (0.16 and 3.30, respectively). 



Figure 51: Funy duster ( e 2 )  encoding using test set 

Figure 52 and Figure 53 show CL uskg ttiree cluster centres with resuits comparable to CL 

using only two clusters. However, while ul is maximum at the mode of q and the corresponding 

cluster centre (0.05) is near its mode the other centres (2.23 and 3.81) are to either side of the 

mode of y and, hence, s ami u3 are not niaxinum at the mode. Nevertheless, since u, îs near 

zero at this point, it does not confound this method 



Figure design 

-2 O 2 4 6 
Figure 53: Fupy cluster (03) eneoding usiag test set 

-2 O 2 4 6 
Figure 55: IQc test set results 

A dtaniatic improvement occm with DPc compareà to DP (Figure 56 and Figure 57) s k e  

each membership fiinction neady uniquely encodes each class' points. Apart from the micd 

mors at the ovalap of the pdfs, an additional two points were misclassifieci by this method. 

These points were the maximum and minimum points of y, 8&.00 and w . 3 2 .  respectively, 

which were both encoded as (0.0). 



Figure 56: DPc design results <a1=l.81. &=-A% m,=32. Q1=0.69* Bi=247. m32. &-2-49, md.28. QirJ.80. W-0) 

Figure 57: Class-Wise dimensim-preserving encoding using test set 

Figure 58: Ciass-wise hiay cluster (c2) encoding using design set c~,,=-o.ss. vz,d.6s.  1 1 ~ 2 3 0 .  *-3.83) 



Figure 59: Class-wise huzy cluster c d )  encoding using test set 

Figure 

Figure 61: CLc (-3) using tcst m 

7.1.2 Normal distributions with unequal variances 
In this experiment, the CO, points were sampled from the no& distribution N(0.1) and the 

points were sampled from N(3.2). Note that apan fiom DP, aii methods produced comparable 

results using the design set (Table 9 and Table 10). 



Nd 
NE 

ol 
q 45 5 
Oz 14 36 
K 0.62 

Table 9: M g n  set rsults using namal  disuibutions wirh unquai variances 

As with the data in section 7.1.1, the points misclassified by NE occur where the pdfs for each 

fQ 
or m 
42 8 
14 36 

0.56 

N d  CL (02) 

q 46 4 
15 35 

K, 0.62 

Table 1 1: Test set results for each methcd using n d y  distributed data 

class overlap. Shce the miances are un& rhe ovetlap is greater, and the K value decreases 

fi 

Nt 

', 

K 

(Figure 62 and Figure 63)- This &O occurs with IQ (Figure 64 and Figure 65). Also note. with 

DP 
ot % 
35 15 
24 26 

0.22 

CL(-3) 
@l 

41 9 
10 40 

0.62 

IQ, how f i  bas a wider span than the other membership functions <O account for the greater 

Table 10: Design set results for fuuy c1uster eacoduig using dinerent cluster numbers 

Table 12: Test set resuits for fuay cluster encoduig using different cluster nunibers 

CL (e2) 

2 3 
13 37 

0.68 

variance in y. 

CL (-3) 
ol 0, 

41 9 
10 40 

0.62 

CLc(c=2) 
a 
49 1 
21 29 

0.56 

Nt 
NE 

q 46 4 
% 7 43 
K .  0.78 

Figure 62: Non-encoded design set results 
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Figure 

Figure 63: Non-encoded test set r d t s  

Fuzzy interquade mcoded design set results (a=-2.10. ~,=-0.42 reo.70. 

Figure 65: Fuzy UiterquaRi1e eocoded test set results 

Although facing siightly better ihan its cornterpart in section 7.1.1, DP stiü underperformed 

compared to ail other methods. The marginal improvement can be attributed to the skewing of the 

mernbership hinction caused by the unepal variances of the two classes. 



CL with two ciuster centres praduced poorer, but acceptable, results (Figure 68 and Figure 69). 

Part of this may be attriiuted to the location of the second cluster centre at 4.14 which is to the 

nght of the mode. This is due to the greater variance for the second class. 

Figure 68: Fuzzy cluster ( ~ = 2 )  encodhg using design set (v,=-ü.os. ~ ~ 4 . 1 4 )  



Figure 69: Fuay cluster ( e2 )  encoduig usiag test m 

Figue 70: Fuay cluster ( ~ 3 )  encoding using design set ( ~ ~ 4 . 6 4 .  ~ ~ 1 . a  v3=4.85) 



Figure 

Figure 73: Class-wise fuuy intcrquartile mcaiing using test set 



Figure 75: Ciass-wise dimensim-praervbg encaüng using test set 

Figure 76: Ciass-Wise funy cluster (-2) encodhg using design set (~ , ,so .83 .  ~ ~ , a s ~  v&-~I .  ~ ~ 3 9 )  
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Figure 77: Clas-wir huty dusta enccaüng using test set 



' -2 O 2 4 6 8 10 
Figure 7 9  Class-Wise f i m y  cluster ( e 3 )  encoding using test set 

7.1.3 Bimdal distribution 
In this experiment, half of the a>, points were sampled from N(O.1) and the other haif were 

sampled from N(5.1) while aii of the points were sampled fiom N(10.1). The nature of this 

data set is such that NE cannot coasmict a discriminatory decision boundary. Since the q pdf is 

between the two modes of the q pdf a bear decision boundary can, at kt, ody produce 

classification resdts bat misciass~ about haif of the points (Table 13). NE pmhiced design 

results worse than chaace and poor d t s  using the test set (Table 14). Misciassified points occur 

with roughly equal frequency on eitber side of the mode (Figure 80 and Figure 8 1). 

Table 13: Design set resuIts using a birnodal distribution 



Table 

Nd 
CL (=2) 

<pi 2!5 2 5  
qL 12 38 
K 0.26 

16: Test set results for fuvy dusta enmihg using ciiffixent clust& 

Figure 80: Non-encoded design set resuits 

Table 14: Design set results fa fbzzy cluster ocaihg using dinient cluster n u m h  

2î 28 O 50 O 50 O 50 6 44 9 41 12 38 
; K 0.06 0.98 0.96 1.00 0.88 0.82 0.52 

A 

Table 15: Test set r d t s  using a bimodaI disaibution 

CL(o3) 
ol 
50 O 

O 50 
1.00 

Figure 81: Non-encoded test set results 

CLe(=2) 
wf 
25 25 
20 30 

O, 10 

cLc(c=3) 
Q oL 
37 13 
21 29 
0.32 



Figure 82 and Figure 83 show that IQ is immune to bimodally distributed data. The encoding is 

such chat fi is at a maximum near the first mode of and fi is at a maninaim near the otha mode 

of a. Howeva. fi and5 both approach '/i at the oh mode. 

Figure 83: Funy interquade encaded test set results 

Figurr 84: Dimension-pesening design set results (a=-1.78. QF 1-40, m 4.9 1. Q ~ 8 . 0 0 .  &. 12-37) 



Figure 85: Dimension-preserviag test set r d &  

Figure 86 and Figure 87 demonstrate a potential problem with CL; usmg fewer clusta centres 

than numbers of modes. In thk case, ody two cbter centres were used while the data had three 

modes; hence, the c b t e r  centres (0.60 and 7.19) were not near any of the modes (0, 5, or IO). In 

fact, the centres are situated near the overiaps of the pdfs about y. 

Figure 87: Fuuy cluster (~2) encoding using test set 



Conversely, when 3 clusters are used (-0.1, 5.0, and 9.8) they are siruated near each of the 3 

modes. Hence, ui is at a maximum near the h t  mode of cq, 14 is at a maximum near the other Q 

mode. and uz is at a maximum near the O>L mode (Figure 88 and Figure 89). This was the only test 

set c e  where there was perfect agreement between the actuai aad desireci outcoms. 

Figure 89: Funy cluster (-3) encoding usbg test set 

Figure design resutts (api.8. Qn=-û.t.m+.7. Q.,=9.9. f&=12.4. az=35. Qc4.3. n1~34.9. Qd=5.7. 



Figure 91: Class-Mse huIy intecquattile endhg  usïng test set 

Figure 93: Class-wise dimensiau-preserving encoding ushg test set 



Figure 94: Chss-wk funy C ~ W  2 c g  using design set (~,~4.13. b,=9.88, ~,.+.75, ~&.a) 

Figure 95: Class-wïse hiuy clusta cc=2) encodhg using test set 

Figure 96: Chs-~ise funy duster (-3) enCOdiLIg ushg design Set (v,,=3. v ~ . 6  v3,=9.9. ~ ~ 4 . 1 .  vnJ.0. v d 2 )  
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Figure 97: Class-wise fiizzy cluster (c=3) enadhg usiag test set 

7.1 -4 Skewed distribution 
In this experiment. aU points were sanpled from N(10,2). while aii points were sanpled 

fiom a log normal distriiutioa with a mean of 2 and a standard deviation of 1. Hence, @ is a 

highly skewed class with a pdf tbat significantly overlaps the pdf of CO,. NE performed poorly 

with both the design and test sets (Figure 98 aod Figure 99). DP and IQc performed surprisingiy 

weii with such a highly skewed data set (Table 17 and Table 19). 

Nf C L ( e 2 )  CL (c=3) CLc(c=2) CCc(c=3) 
cy q Q or 

y 50 O 40 10 36 14 38 12 
Or 35 15 17 33 12 38 15 35 
K 0.30 0-46 0.48 0.46 

Table 18: Design set resuits for fiizzy cluster encoding using ciiffereut cluster numbers 

N d  

' m  

Table 19: Test set results using skewed data 

Table 

i K i 0.28 i 0.68 r 0.70 i 0.46 i 0-68 i 0.68 i 0-48 i 
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20: Test set results for fuzq cluster encoding using different cluster numbers 
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figure 98: Non-encoded design set results 
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figure 99: Non-encodeci test set results 

Figure 100: Fuzzy interquanile e a d e d  design set results (w~i. Q~7.07. a i o s .  Q~i2.45,  f3&.#0) 



Figure 101 : Fuzzy iaterquartile en& test set results 

Figure 102 and Figum 103 show tbat DP rnimics the skemess of the design and test sers. The 

r d t s  fiom th& and previous sections suggest that DP classification paformance improves as the 

data become less n o d .  

Figure 103: Dimension-preseMng test set results 



Figure 104 and Figure 105 show that CL with two cluster centres completdy breaks down 

producing classification resuhs worse than chaace Mth ail of the errors occurring arouad the pâf 

overiap of the taro classes. The situation improves dramatidy with tbree cluster centres with the 

errors disaibuteci throughout the pdfs (Figure 106 and Figure 107). 

Figure 105: Fupy c l m a  ( ~ 2 )  encoding using test set 

Figitre 106: Fwzy cluster ( ~ 3 3 )  encoding using design set (.,&.os. ~:=122 1. ~ ~ ~ 3 2 7  1 ) 



Figure 107: Ftery cluster(o~) acoding Wng test set 

Figure 108 and Figure 109 demonstrate an advantage of IQc; membership fiinctions capture the 

skewness of their respective classes. The membership fiuictions fi ,--j$~ are aU narrow and near the 

mode of W. The membership fuoctionsfi& are slightly las narrow and similarly surround the 

col mode buth* spw the entire pdf of f& compen~a~g for its significant amount of skewness. 

Once again, the misclassifications ai l  occur at the overiap. 

Figure 
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design resuhs (a,-. Qw9.4. mi=10.6. a,=1~4, $,=14.9. @S. W.J. m4.7. 



Figure 109: Ciass-wise fiipy interqurt.de enadhg ushg test set 

Figure 1 1 1: Ciass-wir dimensiai-pceamhg eacoding using test sa 



Egure 113: Class-wise huly cluster ( ~ 2 )  encoding using test set 

u21 



O 10 20 30 40 50 60 
Eigure 1 15: Class-wise fiizy cluster ( ~ 3 )  encaiing using test set 

Section 7.1 ciearly demonstrated tbat iinear discriminant analysis is a good classifier when 

classes possess a norrnal disaiiution and are well separated, the ody misclassified points 

occurring where the pdfs of the two ciasses overlap. Classification pafonnance significantly 

degrades as the data become less normal. As a whole, the fuzy encoding tnethods are more 

robust to skewed data. IQ and IQc gave consistently good results for aii dam sets. As claçs pdfs 

became less symmetric, DP produceci better K scores. In some cases, taking class information into 

account produceci better r d t s  using the class-wise variants of the encoding methods (as a 

whole). CL is the most variable fupy encoding method, at times. producing the best resuits over 

all methods. This variability is due, in iarge part, to the d e r  of clusters that are selected a 

prion': good resuits are typicaiiy obtained when there is one cluster for every mode. 

Although SOUE of the variability in classificati011 r d t s  niay be ateibuted to cbanges in the 

information content of the l ù a y  encoded transformations. another significant factor is the nature 

. . .  of the classifier. Linear discriminant anaiysis is a hear classifier, it can only drscnmuiate classes 

that are bearly separable (see section 4.1). In section 7.13, for instance, LDA could not 

discriminate between the two classes because of the b i m d  distriiution of one of them. None of 

the fwzy encoding mthocis necessady perfonns a transformation of the data tbat is strictly 

hear. It is possible. therefore, to have an originai data set that was linearly separable become 



iineariy inseparable &r a aansfonnation using one of the fuPy encoding metbods. in such a 

case, LDA would be able to successfidly discriminate using the original data set but fail usiag the 

encoded data. The converse may also occw a data set that is hearly inseparable may k encoded 

such that the ftansf~f~lliition becomes h e d y  separable. For instance. assume a data set with 

poiau inside, q, a outside, or, the unit circle- Figure 116 austrates that this data ra is Linearly 

inseparable; the unit &de is the optimai decision bouidary. However. if esch coordinate is 

squared, this transfofmation becornes hearly separable, and LDA wül succes&idly discriminate 

points inside and outside the circle; the Line in Figure 1 17 is the optimai decision boundary. 

. - . -* .  .. . 
- - . -  - . 

. - - 1 

- .  
Figure 116: A linearly inseparabIe &ta set 

Figure 1 17: A hearly separable transformation 



Recd from section 7.1.3, tbat CL with two clusters had an agreement measure of d I . 2 6  for 

the design set where one class had a birnaial distriiutioa Figure! 118, a plot of u, versus u2 for 

this case, demonstrates tbe n e s o n  for the poor performance: the transformation is hearly 

inseparable aod LDA wiil, conseqyently, perfimn poorly (the dashed h e  is a possible decision 

boundary). W1th the same  Onginai design set, CL with three clustas produceci @et results. 

Figure 119, a thteedimensional scatter plot of u~ vetsus uz versus u3, &monstrates the reason for 

the perfect agreement: the transformation hto three-dimensional space is linearly separable (the 

dashed plane is a possible decision bowidary). 

Figure 

0.2 0.4 0-6 0 . 8  1 
Li1  

1 18: Linearly inseparable n a a s f u o n  using CL 

Figure 1 19: Linearly separable transfbrmation using CL (c=3) 

The experiment in section 7.1.3, will now be repeated except that a non-linear classifier, MLP, 

will be used htead of LDA. The architecture has two output PEs: if the fmt one is larger than 

the second then the achial outcome indicaies the correspondhg input belongs to m. otherwise, it 

belongs to Q. The number of input PEs varies depending upon the mpt&od used: 1 for NE and 

DP; 2 and 3 for CL ushg 2 and 3 clusters. respectively (double for the class-wise variants); 2 for 



DPc; and 4 for IQ (double for IQc). One hidden layer with 3 PEs was used with aiI methods. For 

IQ and DP. a=-1.6, Q~1.3.  m=53. QA.2. p=125. For IQc anâ DPc, ap1 .6 ,  Qpû.3. mi=4.7, 

Qui=L0.3. $,=12.5. e-2.3. Q&5. m ~ 5 . 3 ,  &=S.& p ~ 7 . 0 .  Table 21 and Table 22 List the w 

scores ushg the design set with ali encoding methods and their class-wise variants, respeztively. 

Table 23 and Table 24 are the corresponding teSul& using the test set. Note the across the board 

Mprovement using MLP as the classifier instead of LDA. NE, which oripinalty gave r d t s  no 

betta than chance using LDA, now produces good resuits for both the design and test sets. This 

indicates that MLP was able to produce a non-hear decision boundary. IQ now produces perfect 

resuits for the design and test sets. IQc and DPc show improvement with the test set  The most 

ciramatic impcovements occuned wiih CL and CLc: aîi variations now give good rrsults for both 

design and test sets. This demonstrates that CL üansfomtions are non-linear. While LDA may 

* * .  or may not discnminate using mese transformations. MLP is not affecteci by the non-lineariues. 
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Table 21: Design set r d t s  using an MLP 
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Table 23: Test set resultts using an MLP 
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Table 22: Design set results fm cIass-wise variants using an MLP 
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Table 24: Test set results for class-wise variants using an MLP 
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For completeness, a set of tables fotlows that list the points, the CL encodings. and class labels, 

for both the design and test set: Table =and Table 26 for CL using two clusters; Table 27 and 

Table 28 for CL using three clusters; Table 29and Table 30 fm CLc using two clusters; Table 

3land Table 32 for CL using tbree clusters. Entries in italics indicate points that were 

Table 25: CL (-2) design resuits using MLP (v1=1.76, ~ ~ 8 . 2 4 )  



Point Ml uz (ip 

5-35 0.39 0.61 2 

Table 26: CL ( ~ 2 )  test results using MLP 



Table 27: CL (-3) design results using MLP (v1=û.27, ~ ~ 5 . 2 4 ,  v3=10.28) 



Table 28: CL ( ~ 3 )  test results usiag MLP 



Table 29: CLc (c=2) design resuits using ML9 (vll=O. 18, vzt=10.24, ~ ~ 4 . 3 0 ,  ~ ~ ~ 5 . 8 3 )  



Table 30: CLc ( ~ 2 )  test results using MLP 



Table 3 1: CLc (c=3) design results using MIR (vll=O. 10, 



028 0.17 056 1 
031 0-47 O-'? 1 
0.29 0.18 053 1 
031 0.48 0.21 L 
029 0.19 052 1 
0.29 053 0.18 1 
0.29 0.18 053 1 
0.27 OS7 0.16 1 
028 0.17 O55 1 
031 0.46 O Z  1 
029 0.18 053 1 
032 0.46 O23 1 
O26 0.15 058 1 
031 0.46 0.22 1 
039 0.18 053 1 
031 0-46 0.22 1 
027 O 058 1 
031 0.47 O Z  1 
028 0-18 054 1 
030 050 020 1 
028 0.18 054 1 
031 0.48 021 1 
030 020 O50 1 
030 050 020 1 
031 021 0.48 1 
030 051 0.19 1 
030 021 0.49 1 
031 0.47 0.22 1 
030 020 051 1 
0.26 059 0.15 1 
028 0.17 055 1 
032 0.44 024 1 
0.28 0.17 055 1 
031 0.47 022 1 
031 022 0.47 1 
0.28 056 0.16 1 
031 023 0.45 1 
031 0.48 021 1 
0.29 0.19 O53 1 
032 0.46 023 1 
028 0.18 054 1 
029 054 0.17 1 
0.26 0.15 0.60 I 
027 057 0.15 1 
030 0.20 O50 1 
030 050 020 1 
031 0.23 0.45 1 
031 0.46 022 1 
026 0.15 059 1 

Table 32: C L  (-3) test fesuits using MLP 

7.3 Data !Sets with Tambhed Gold Standards 
In the experiments described in this section, 200 one-dimensionai points were randomly 

selected from two dinerent distributions. AU points fiom the fint distribution were assigned to q 

(N,=lûû) with the remainder assigned to (&=100). The design set was compriseci of 50 q 

points and 50 Q points (&=l00) with the remaining points assigned to the test set (Nd00). AI1 

performance results for both design and test sets are measured using the chance-corrected 



rneasure of agreement, K (section 3.2.3). Unlike the previous section. an MLP is used as the 

classifier. The MLP has one input PE, two output PEs, and two hidden layer PEs with the 

learuing rate set to 0.7. The classifier is presented with the non-encodeci data from the design set. 

The design set is then subjected to the robust gold standard reclassincation desmieci in section 

6.2.1 and subseqyenly presented to the MW- For each case. the test set is presented to tbe trained 

network and cesuits recocâed. 

7.3.1 Robust re~la~fication and normal distributions 

In this wrperirnent, the poins were sampled nom N(0.1) while the 4 points were sanipled 

fiom N(3.1). Tqbie 33 shows tbat when reclassification occurred perfect agreement was obtained 

using the design set as opposed to ML90 with NE. A concomitant irnprovement was also 

obtained using the test set (Table 34). 

Table 33: Design set results 

. - -  

~ ~ b i e  34: Test set resuits 

Figure 120 shows that, with NE, any misclassifications with the design set occurred at the 

overiap of the pdfs of Q and @. Specificaiiy, five points were misciassifiecl: three oh points. 

2.11, 1.59, and 1.67; and two q points. 0.73 and 1.02. Figure 121 shows that eight test set 

rnisclassifications &O occumd at the ovaiap: four <q points, 2.13. 1.97. 1.85. aml2.16; and four 

@points, 1.05, 1.41,0.81, ad 1.43. 



Figure 120: MLl? nan-encoded resuits using design set 

-2 O 2 4 6 

Figure 121: MLP ncm-encaied results using test set 

Table 35 is a List of points in the design set, their class labels (a>). and their membership values 

for y (Dl)  and <y (03. The points <bat were misclassified by NE are shown in itaiics and points 

that were reclassined are shown in bold In this case, al l  and only those points that were originally 

misciassified were reclassified, Of course, this, in generai. is not the case. Figure 122 shows that 

no design points were misclassifieci when robust ceclassification of the gold standard was 

employed. 



Point a DI Dr 
3.67 2 O 0.63 

Table 35: Robust reclassiûcatiors using the design set 

-2 O 2 4 6 

Figure 122: Design results for MLP with robust reclassification 



Figure 123 shows that fewer points in the test set were misclassified at the overlap of the pdfs. 

Specifically. seven points were misckifed: five CO, points, 1 Al, 2- 13, 1.97. 1-85, aad 2.16; and 

two y, points were misclassified, 1.05 and 0.8 1, 

. -. 

Figure 123: Test r d t s  fa MLP with rslassioed design points 

Table 36 kits the points in the test set, their class label (a). and the membenhip values for q 

(Dl)  and @ (m. Points in italics iadicate they were misclassified whereas points in bold uidicate 

that they would have been reclassified had they been in the design set. The last points needs to be 

empbasize& robust reclassification never aiters the test set, to do so would be to ignore the 

relevance of the established gold standard Nevenheless. it can be cpite informative to, at least, 

flag points in the design set that are cornidacd to be outlien or suspect points. Note that aii 

points that were misclassified would have b e n  recbified- 





rnisclassifid Nine points were misclassified by NE nom the test set (Figure 125): four q points 

2.13, 1-97. 1-85, and 2-16; and five Q points. 1.05, 1.41.0.81. 1.43. aad 1.46. 

Table 37: Design set d t s  

Table 38: Test set results 

b 
- 

Figure 1%: MLP NE design resuiu uing contaminated data 
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Etgure 125: MLP test set with contamination 
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Table 39 bts the design points. their class label (a), and the membership values for (Di) 

and 0~ (03- Points in itdics indicate that they have been misclassifieci whereas puits in bold 

indicate tht  they were reciassified. Note <bat ail mislabeled points bave been reciassifed. 

Points DI & Pdats a, DI D2 R h t ~  ap DE D2 
0.61 O 3.12 2 0.23 0.94 

Table 39: Robust r~lassincation using the c m k a t e d  design set 

Figure 126 shows that seven test set poins were misciassifieci by MLP when robust 

reclassification was performed on the design set: five points, 1.41, 2.13, 1.97, 1.85. and 2.16; 

and two (r)r points, 1 .O5 and 0.8 1. 



Figure 126: MLP robust r d t s  d g  test set 

7.3.3 Fuzq gold standard adjustment and normal distributions 

In this expaiment, the o>l points were sampled fkom N(O.1) wbile the Q points were sampled 

fiom N(3.1) and p and q are boih set to 2. FST gold standard adjustment was employed. Tabk 40 

shows that NE and the encodeci method produced identical design r d t s  but the encoded method 

produced slightly better resuIts with the test set (Table 41). Both methaûs misclassifieci the samë 

five design points: three a points, 2.1 1. 1.59. and 1.67; and two points, 0.73 aad 1-02. 

- - - - - - - - 

T'able 41: Test set results 

Table 42 lists the design set points. their associateci class label (a), and the FST adistment to 

the origioal gold standard Cyi' and y27. Rows in italics indicate points that were misclassifiecl in 

the design set. Note that in aii cases the adjusted gold standards are such that y*' is identical or 

nearly identical to y; indica~g  that the associateci point is neariy quidistant to the centroids of 



both classes. The FST adjusted method misclassified six points in the design set: three q points, 

2.13, 1.97, and 2-15; and three e p o i n r .  1.41,0.81, 1.43. 

Table 42: FST GS Adjusmieat of the design sa 

7.3.4 Normal Distri butions wit h Contamination 
The contaminated data from section 7.3.2 is again used in thïs experïment NE misclassifed 

nine points fiom the design set (Table 43): five points, 3.95, 2.79, 3.59, 4.25, 2.1 1, and 1.67; 

and three < ~ 1  points. 0.73, 1.02, and 1.52. Note that ail mislabeled points were misclassifiied. NE 

misciassifieci nine points from the test set (Table 44): four q points. 2.13, 1.97, 1.85. and 2.16; 

and five %points, 1.05, 1.41,0.81, 1.43, and 1.46. 



- - -  

Table 43: Design set resuits 

Table 44: Test set resuits 

Table 45 lists the points in the design set, their class labels (a), and their FST adjusted gold 

standard Rows in italics iadicate points that were misciassifieci in the design set. Specifidy, 

nine points were misclassified: six cq points, 3.95, 2.79, 3.59,4.25, 2.1 1, and 1.67; and three Q 

points, 0.73, 1.02, d 1.52. Note that a l i  four mislabeled points were misciassified. Ais0 note 

that, for all four mislabe1ed points, y,' is identicai to yLV. Recall that this method will not 

reclassify a point in the design set. In these cases, y,' was assigneci the value y;: ai i  of which 

were near one, cleariy indicating tbat they were m c h  nearer to the centroid tbao to the 

centroid. 

SU test set points were miscîassified: three cq points, 2.13, 1.97, and 2.16; and t h  Q points, 

0.81, 1.43, and 1.46. 



Table 45: FST GS adjusanent r a t s  for contaminated data 

The n-dimemional boundhg sa (see section 3.3.1) is wd here to experimentally justify the 

efficacy of the huy encoding preprocessing strategy- Recaii that Zn hyperpianes are required as 

an accwdte decision bmdary. In the case of an MLP classifier, this translates into the 

requirement rhat at least Zn P b  in a hidden iayer are needed where each PE corresponds to one of 

the hyperplanes- Figure 127 iliusûates the weights and biases for an n-dimensioual MLP solution. 



Figure 127: An ideal n-dimensional MLP solution 

Figure 10 suggests that the ideal solution for the n-diaiensionai problem re@ exactly 2n 

hyperplanes. if a step function 

was used as the transfer fùnction then the solution is straightfofwacd. For each dimension, i, we 

have a pair of hidden PEs corresponding to the pair of hyperplanes used for that dimension. The 

weights for the cottesponàing coordinate, x, are set to 1. The weights are set to O for tbe 

remaining features. The weight value between the fht PE and the output node is 1 and -1 for the 

second The bias for the first PE is 0.75 and -0.75 for the second. F i y ,  the bias for the output 

PE is -(n-E), where E is a small positive reaL Ifxi is bounded by the corresponding hyperpianes 

then the summation of the pair of PEs is large, otherwise, it tends towards zero- If all features, 

XI, xt, ..., x,, are bounded by their respective hyperplanes then the summation of the outputs of 

the Zn hyperplanes is large. Figwe 128 ilhisrrates the solution to the 2dimensiona.l boundary 

problem shown in Figure 129. Figure 130 and Figure 13 1 illustrate the 3- anci 4dirnensional 

solutions. 



Figure 128: An ideal 2D soIotim (srcp fimctim or 1-c hinction with gain) 

Figure 129: A gcometrical iuterpretation of the 2-dimensimai W l e m  

Figure 130: An i M 3 D  solution (step hmction or logistic finciion with gain) 



Ergure 131: Aa ideal 4D duticsu (step fiinetion or logistic fiinctitm with gain) 

Of course, an MLP cannot use the step fimaion as a traosfer W o n  because the gradient 

descent strategy requires a differentiable transfeer function. Moreover, because the logistic 

w o n  produces continuous values between O and 1, it sInOOthes the output values instead of 

providing a discrete, noa-contimious jump fiom O to 1, The smoothhg nature of the sigmoid 

tends to e t  the Wts such tbat data points near the boundaries become misclassifiecl. One 

way to compensate for this is to use a gain term with the logistic function. As the gain term 

approaches iafinity, the logistic function tends towards a step fiinction. It was experimentally 

determinecl that if the gain term is set to 80 the same weight and bias values used with the step 

function w d d  work with the logistic furaction. Unfortunately, such a large gain tenn usually 

causes the MLP to wildly oscillate so this strategy is of iittle use. 

Howeva, if the logistic function is used without any gain (pl), an ideai solution may s t i i l  be 

obtained if the bias values are changed for the hidden PEs and the weights from the input values 

to them. In fact, the larger valus (two orders of magnitude) tend to probe the same resuits as 

those where a large gain term is use& The advaatage, though, is that this appmach does not tend 

to cause wild oscillations. Figure 132, Figure 133. and Figure 134. illustrate the weights and 

biases for 2,. 3-, and 4-dimensional solutions using this saategy. 



Figure 132 An ideai 2D solution (the Iogistic fimctim with no gain) 

Figure 133: An ideal 3D soIution (Iogistic function with no gain) 

Figure 134: An ideal 4D solution (Iogistic functicm with no gain) 

However, in practice a MLP may not find these hyperplanes. Figure 135 illustrates a sub- 

opticnai solution for the 2-dimensionai ptoblem using three Lines. In this case, one of two events 

wiU have occurred: one of the hidden PEs will have weights that are simüat to one of the odKr 

tbree PEs in the hidden layer Ci which case it wiii duplicate the functionality of the other PE); or, 

the weights of one of the PEs are near zao in which case it contri'butes negiigibly to the outcorne. 

It should be noted that even when only three hyperplanes are useci, a MLP might converge to a 



point where a mijority of the vrctors wiil be correctiy classified However, this benefit may aiso 

be considered a disadvantage - when it begins to converge to a solution, a MLP is not able to 

escape fiom the associated Id minimum to determine if bettet solutions exist. This is a result of 

the gradient descent strategy - the error cannot increase, thus when the algaiihm beguis to 

converge towards a solution it cannot diverge h m  it. 

Figure L35: A non-ideal solution 

The &ta range for the classification problem is [-1,1] and is discretized in intmals of 0.1. 

Apart fiom ensuring that vectors were raridomly selected from the entire pool, the ovemding 

comtraint was to easure tbat there was an equal number of class O and class 1 vectors in the 

design sets. A n d a  constraint was to attempt to select approXiniateLy Zn of the total numba of 

vectors foi the design set. As the dimensionaiity of the problem increases, this constcaint begins 

to confiict with the one ensuring an equd number of vectm fiom each class. The following 

strategy was used in order to muumally satisfy these two constraints. For each case, 2/3 of the 

vectors fkom the class with the fewer number of vectors was raadomly seîected for inclusion in 

the design set. The same number of vectors were then randomiy selected fiom the other class for 

inclusion in the design set. The remaining vectors were then used as test vectors. Table 46, Table 

47, and Table 48 List the number of vectors used for the 2-, 30, and 4-dimensionai cases, 

respectively, as weU as k i r  classification and how many were usai for the design and test sets. 

In the interest of acbieving convergence in a reasonable perial of the, the s a m  number and 

breakdown of vectors was used in the 2û-dimensioaal case as in the 4-dimensional case. AU the 

experiments discussed in this seaion used the same MLP architecture. The learning rate was set 



at 0.9 and no momentum term was u d  The transfa fiuiction is the logistic hinction and the 

learning nile is the generaîized delta d e -  As data were carefuiiy generated for this paper, they 

were neitber scaied, notmalized, nor was any noise introduced iaio the MLPs. For each specific 

R-dimensional probLem, one hidden layer was used tbat containeci 2n Pi%- After some initial 

aials. the n i m k t  of itaations was k e d  for each set of experiments in orda to more accurately 

compare the performance of the MLP using NE data vasus ihe c~ne~p~nding MLP using FE 

&ta. F i y ,  eadi pair of NE ami FE nms uscd the same s a  of initial randomized weights. Four 

trianguiar fuzzy sets were selected at interva of [-1,-0.!5l. [-0.5,0]. [0,0.5], and [OS, 11. 

respectively. The membaship fwictions were computed to be 

Additiouai cuns were made usbg eight trianguIar huzy sets for each input value by simply 

splitting the original bouadaries in half. 

Clriss1 
T U  

144 (64) 81 (36) 2 Z  (51) 
288 (65) 153 (35) 441 

CirssO 
Cirss 1 
Totol 

Table 46: Vectors in the 2dimensioaal case 

Design (96) Test (96) T d  (96) 
2250 (38) 3636 (62) 5886 (64) 
2250 (67) 1125 (33) 3375 (36) 
4500 (49) 4761 (51) 9261 

1 Clor O 

For each 2-, 3-, 4-, and 2Odimensioaal case, 100 design and test sets were generated in order to 

L 

Table 47: Vectors in the 3-dimensimal case 

Design (96) Test (96) Toril (96) 
33750 (23) 110106 (77) 143856 (74) 

Ciass 1 
T d  

provide a more statisticaiiy accurate set of observations. Each set was then hizzy encoded and 

33750 (67) 1125 (33) 50625 (26) 
67500 (35) 126981 (69 19448 1 

Table 48: Vectors in the 4-dimensioasù case 



paired with its corresponding NE set. The generated &ta were neither scaled nor nocmaiized. For 

each specific n-diniiensional proôlem, one hidden layer was used that containeci Sn Ph- After 

some initiai triais, the number of itaations was nxed for each set of experiments in order to more 

accu~ately compare the perfomance of a M W  using NE data versus the correspondhg MLP 

using FE data, After the traiuing phase tetmiaated, the test sets were classifiecl and the 

performance r d t s  were recorded. 

In aiI cases, the FE MLPs tbat used four fuzy sets attained their K values with an itecation 

count of roughly an order of magnitude las than their NE counterpcts. Moreover, when eight 

fuuy sets were used an additional order of magnitude reduction in the number of iterations was 

achieved. These sigaificant reductiom do not precisely translate to corresponding tocreases in 

sped because there are roughïy four times the nimba of computatious that have to be performed 

for the FE MLPs using four fuay sets (eight times for the FE MLPs using eight fuzzy sets). 

NevertheIess, taking this fact into accomt, the FE MLPs @ocmance were stiU rnany times 

better. It should also be noted that when eight fuzzy sets were used the FE MLPs were somewhat 

sensitive to ovaaaining. That is, as the iteration couat increased, their performance with respect 

to classification success was slightly dejpded. Table 49i clearly indicates that the FE MLPs 

outperformed their NE MLPs counterparts for the 2--3-, 4, and 2(Mimensional cases. 

Ln the following discussion, representative experiment pairs were selected fkom each case. The 

weights were recorded for subsequent analysis. The ensuing sections will clearly demonstrate that 

FE data does improve the performance of MLPç. Nat only are the r d t s  consistently better for 

every pair of experiments, but the MLPs h t  used FE data also produced these superior results in 

far fewer iterations. 



i) 2 dimensions 
3 dimensions 
4 dimensions 

7.4.1 The 2-dimensionai case 
In the 2-dimensioaal case, the NE version of expaimnt 87 (Figure 136) tbat yielded perfect 

classifications, is very similar m structure to the MLP fwad in Figure 132. That is, the relative 

magnitudes are simüar and the signs identical for eacb respective weight and bias vahe. This 

suggests that each hidden PE corresponds to a unique and significant hyperplane. The NE version 

of experiment 3 1 137) producd an accuracy rate of 86%. Note that the PE, H4 (shaded), 

contributes very Iiale to the final outcorne. In ihû case, only three hyperplanes are used thereby 

degradins overaiî perfomce. The NE version of expriment 23 (Figure 138) produced the 

poorest resultr which is to be expected since each hidden PE duplicates the huictionality of the 

others and this impties that oniy one hypaplane is used. The NE version of experiment 8 figure 

139) produced results oniy sslightly wcase than urperiment 3 1 using ody two hyperphes. In the 

FE versions of all the expetiments, perfect resuits were achieved (see Table 50). The stnictures of 

the FE MLPs suggest that the information content is more uniformly àistributed than the NE 

MLP countetparts. 



Figure 136: NE MLP with fair hyperplmes 

Figure 137: NE MLP with three hyperplmes 

Figure 138: NE MLP with aie hyperplane 



Figure 139: NE MLP with two hyperplanes 

Table 50: Sample 2D r d t s  - NE versus FE 

7.4.2 The 3-dimensional case 
In the 3-dimensional case, the NE version of experiment 19 (see Table SI), which pcoduced a 

correct classification for aii test vectors, is simüar in structure to the MLP describeci in Figure 

133. The hidden PEs, H2 and H3, repment the hyperplaoes for the fmt coordinate, H l  and H6 

represent the hyperpianes for the second coordinate and H4 and H5 represent the byperplanes for 

the third coordinate. The NE versions of expaiments 51 and 69 are @te sunilar in structureture The 

hidden PE pairs HUH4 and H3H6 cottespond to the hyperplanes for the second and tbird 

coordinates, respectively, whereas H2 and H5 conmaute far less to the final outcorne. A 

testament to the robustness of MLPs can be found in these two runs: with only four of six 

hyperplaws, the MLP s a  achieved an accunicy rate of 83%. In the NE version of experiment 93. 

five of six hyperplanes are weU defined: Hl and H5 for the second coordinate; H2 and H6 for the 

third coordinate; and H3 for the fust coordinate. If this MLP ran for severai thousand more 



iteratiom, H4 would probably settle to cornespond to the last required hyperplane. As in the 2- 

dimeosionai case. ali FE nios bad unüocmly distriiuted values for weights and biases. 

Table 51: Sample 3D results - NE versus FE 

7.4.3 The 4-dimensional case 
In the NE version of experiment 28, g d  resuIts were achieved afier two million iterations 

(Table 52). AU hyperplanes are evuient and with more iterations t is suspecteci that the MLP 

would produce even better resuits. The FE versions of this experimnt pcociuced pnfect results. 

Hidden PEs are paired as in Figure 134 (for example, Hl and HZ represent hyperplanes for the 

~ s t  featute -A<+) (i=l, 2,3,4) is near O for* and large, 400, forj=l) but neither the biases 

nor the weights to the output PE alternate their signs. This suggeçts that the value of a coordinate 

xi need not be between its cmesponding hyperplanes but raîher it needs only be on one side of a 

single hyperplane (therefore we need only sum the outputs of aii the hidden PEs and determine if 

the sum excwds a threshofd). Tbis suggests that the dimensionaiity of the pmblem bas been 

reduced. Specificaily, the originai 4-dimensional problem (8 hyperphes) has been reduced to a 

2-dimensionai pmblem (4 hyperplanes) while stiîl produchg perfect classifications. 

Table 52: Sample 4D results - NE versus FE 



7.4.4 Naisy data and non-noml distributions 
Table 49ii lis& performance results when varying amounts of Gaussian noise wete addd to the 

first coordiaate of the 2dimensionaI &ta sets- The FE MLPs producd comparable or more 

accurate classifications with far fewer iterations- It shdd &O be noted however tbat NE MLPs 

tended to produce better d t s  than their noise-fke counterparts. This suggests that the 

introduction of noise is indeed a usefiil enhancernent to MLPs. 

The distribution of the design data in aU of the previous experiments was d o m  Additional 

experiments were rn for the 2-diaiensiod case to determine how weil the two types of 

networks paformed if the design data were not unSormly distributed Design data were c a r M y  

reselected to ensure non-UIUfimn dism'butions: two distinct bimodal distn'butions and two distinct 

skewed distniutions. R d t s  in Table 4% indicate tbat FE MLPs again consistently 

outperformed NE MLPs and with far fewer iterations. 

7.5.1 20-dimensional hypercube 
A number of different classification systenis are now used witb the 20-dimensional hypercube 

&ta set descnibed ia section 3.3.1: 

- LDA is linear discriminant anaiysis (section 4.1); 

- MLP is a muiti-layer perceptron (section 4.2) with 20 input PEs, 2 output PB, and 40 

hidden layer PEs; 

- E-MLP is an enhanceci MLP (section 4.2.1); 

- RBFN is a radial basis function network (section 4.4) with 40 receptive fields; 

- PNN is a probabilistic neural network (section 4.3) with 40 kernels. 

The f u z y  encoding techniques aU employ an underlying MLP identical to the one mentioned 

above except that there are d i frent  numbers of input PEs deptnding oa the encoding method: 



- DP (section 6.1.2) and DPc are the dimasion-preservhg huzy interquanile encodiag 

method and its class-wise variant; 

- IQ (section 6.1.1) and IQc are the intequartde encoding method and its class-wise variant; 

- CL (section 6.1.3) a d  CLc are the fozzy cluster encodmg method and its ciass-wise variant 

(the numba of clustas tvac varied from 2 to 20 and the best result is liste& nspectiveiy, 

-7 aad ~ 3 ) .  

The boundaries, averaged over all 20 dimnsions, for IQ and DP are ~ 1 . 0 0 ,  Qpû.50, 

md.03 .  Qp0.40, &l.ûû. The boundaties. averaged over A20 dimensions. fm IQc and DPc are 

al=-0.70, &=-û.4û, rn+Mû. &=û-4û. 81=0.70 and -1.00. Qp4.70, mpû.05, Qd.50* 

P r 1  -00. 

Pafonnance results for these mahods using the test set are listed in Table 53. As this problem 

is not iinearly separable, LDA fails to discriminate; specificaiiy, LDA achieved a W.00 by 

computing the hyperplane to fa11 directly through the hypercube. The nonencodeci ANNs, on the 

other han4 perform adeqyately, especially RBM. DP and IQ produceci superior resuits whereas 

CL and CLc did not perform as weii as the non-encoded A N N s .  

L 

Nt 

rn 

K 

LDA 
* @ a l  

25 25 
C q w  25 

0.00 

Nt 

a9 
K 

MLP 
am 

44 6 
14 36 

0.60 
DP 

QDi a9 
aOra 4 

4 46 
0.84 
DPc 

am 
7 

Oq 7 43 
K 0.72 

EMLP 
aoi 09 

41 9 
10 40 

0.62 
CL Cc-7') 

ml a02 
37 13 

8 42 
0.58 

(c=3) 

Table 53: Test results using diffcrent classification systems with a hypercube 

IQ 
QDi aDz 

46 4 
4 46 

0.84 

WC 
aor 002 

42 8 
16 34 

0.52 

RBFN 
aoi 

43 7 
6 44 

0.74 

aDi 
40 10 
34 16 

0.48 

PNN 
aDi aq 

44 6 
14 36 

0.60 



The above classification system are again used with the 20-dimensionai hypercube bounding 

problem except tbat 20% Gaussian noise is added to each coordinate. The bouodaries, averaged 

over 20 dimensions. for IQ and DP are CJW-1.18. Qpû.48, ni-0.03. Q,,=û-42, pd.91. The 

boundanes, averaged over 20 dimensions, far IQc a d  DPc, are a1=4.!30, Q0=-0.34, ml=O.OO, 

QUl=û.38. P1=û.79 and a-l.02, Q~4.63, m-,CI-,CIûZ, Q 4 . 4 8 ,  &Fl.lO. 

Performance resuits using these methods with the test set are iisted in Table 54. P e r f m e  

resuits significanity degrade for all methods except for IQ that appears to be robust to the noise. 

7.5.2 Disk and torus 

k 

Nt 

aS 
a9 
K 

The classification systems describeci in section 7.5.1 are used with the disWtoms problem 

descri'bed in section 3.3.2. The oniy diffaence is that MLP and E-MLP have 4 hidden layer PB, 

LDA 
aoi oh 
23 27 
25 25 

-0.04 

RBFN has 4 receptive fields, and PNN has 4 kernels. The boudaries for IQ and DP are ae&l.01, 

Nt 

al 
a9 
K 

Nt 

a 
@ 
K 

0.001, Qp10.23, 0241, m=[0.43, 0.451. Q,,=[0.8 1, 0.70], p=[0.99, 0.981. Tbe baindaries for IQc 

MLP 
aDr 
35 15 
12 38 

0.46 

three cluster centres for CL are vl=[0.81, 0.351, v~LO.36, 0.791, v3=[0.25, 0.3 11. The four cluster 

Table 54: Test results using ciiffixent ciassification systems witb a hypercube with noise 

DP 
soi 

33 17 
5 45 

0.56 
DPC 

centres for CLc are vll=[0.18, 0.651, v ~ ~ = P . ~ O ,  0.291. vr-[0.36, 0.381, vu=[0.60, 0.601. 

EMLP 
al 
35 15 
12 38 

0.46 
CL (c-6) 

24 26 
17 33 

O. 14 
-<-v 

IQ 
aoi aq 

45 5 
6 44 

0.78 
ZQc 

RBFN 
al m 

38 12 
11 39 

0.54 

aoi 09 
36 14 
15 35 

0.42 

PNN 
soi 
36 14 
15 35 

0.42 h 

aoi 
37 13 
17 33 

0-40 

42 8 
16 34 

0.52 



Performance results using these methods with the test set are listeci in Table 55. Performance 

results significaatly degrade for all mtbods except for IQ that appears to be robust to the noise. 

Note tbat RBFN was the oniy non-encoded ANN to pafam reasonably well with the disWtms 

data set; a single receptive field at the centre of the unit circukr disk is ail that wodd be required 

to get good classification perf'onnance. As a whole, the fwy encoding mthods PetfOflDed 

L 

Nt 

rn 
@ 
K 

LDA 
aR 

36 14 
32 18 

0.08 

MLP 
m aq 
37 13 
8 42 

0.58 
DP 

2 a 9 -  
3 

a 2  48 
0.90 
DPC 

Nt 

ODi 

1c 

aq 
5 

- 0  50 
1c 0.90 

1 

EMLP 
aq 

32 18 
12 38 

0.40 
CL (-3 

ooi 
48 2 
18 32 

0.6Q 
cLc(c52, 

TabIe 55: Test results ushg different ~Iassification systems with a diskhms 

m 
47 3 

1 49 
0.92 

spi a 9 ,  
38 12 
14 36 

0.48 

RBFN 
aoi 

42 8 
2 48 

0.80 

IQ 

PNN 
aoi 
31 19 
12 38 

0.38 

aoi 
46 4 
O 50 

0.92 
IQc 



8 Experiments Using Biomedical Spectra 

The magnetic tesonance (MR) spectra set of thyroid biopsies was used to test the effkctiveness 

of fuay interQuartile encoding in a "reai-world" scenario. It has been demonstrated in [IO51 that 

a MLP can be const~cted that produces a robw classitication of thyroid biopsies given their MR 

spectra. The inputs to the MLP wac the ten bat principaï components of the originaî data tbai 

accounted fm 97% of the total variance- Ha+ MLPs ushg the original spectral regions are used 

without any PCA prepmcessing and compared wïth MLPs using the corresponding FE spectral 

regions. Twenty experiments were run for each case d e s m i  beIow. Unlike the results 

discussed previously tbat were based solely on the test data, the avaage pafonimuice results 

listeci in Table 56i-u are based on d of the &ria (due to the paucity of data). 

Lipid II 1 1.00 2 0  1 O92 25 1 0.80 3.0 

Lipid 1 
5) Choline II 

Tabk 56: Classification resuits averagexi over 100 nins 

Four funy sets were computed for each feature and the FE data were generated (680 and 1600 

input points for the choline and lipid regions, respectively). The intersection, b. was set to 0.5 for 

ali sets. Subserpientiy, eight hiey sets were computed by dividing each quartile in half. Table 56i 

lists the performance results. Again FE-MLPs outperfonned their NE countepans. Wbat is 

particularly suiprising is the rate of convergence for the FE-h4LPs (for instance, the NE-MLPs 

used to classe the lipid regions are 800 times slower than the corresponding FE-MLPs). 

0.80 4000 
O.% 600 

Finally, cornparisons were made using MLPs with some enhancements: momentum te= 

moduhted learning; hyperboiic tangent function instead of the logistic function; anâ data scaling. 

in this case, the FE-MLPs uskg four fwzy sets performed as well as their NE-MLP counterparts 

for the choline region but slightly poorer results were obtained for the Lipid region (Table 56ii). 

0.88 5 
0.96 10 

0.88 0.4 
0.76 1.0 



Although convergence still occurred m c h  more quickly with the FE-MLPs, the NE-MLPs 

conveiged approximately twke as quickly with enhancements as without, whereas the FE-MLPs 

converged roughly 3-5 tirnes mon slowly. Moreover, when eight fuzzy sets were use& the 

overall classification rates were sigoificantly pooter- Since data scaling occurred after the data 

were fuzsr encodeci, the info1plation content of the FE data rmy have actually changeci, thereby 

affectiag the nature of the problern. It was noted that when at k t  one of the MLP enbancements 

was deactivated, the FE-MLPs performance r d t s  approached those found in the FE-MLPs 

without any enhancements- 

T h m  architectures are used to classify the original infiared (IR) spectra of the Alzheimer's 

diseased btain tissue (as de-scrii in section 3.3.5), an MLP employing an enhanced back- 

propagation algonthm as descn'bed in section 4.2.1, an FE-MLP as descri'bed in section 6, and an 

RBFN (section 4.4). The enhanced M W  (E-MLP) has ten hidden PEs and Gaussiaa noise was 

added to the system The noise-free version producd signincantiy poorer results. The hyperbolic 

tangent was selected as the transfer fiinctioo and moduiated learning ( W . 7 4 0 S )  and 

momentum (8=0.4-0.01) are used across layers as weli as across epochs. The FE-MLP did not 

employ moduhted learning. The transfer -ion was the logistic function and the 1earniag and 

momentum rates were 0.7 and 0.4, respectively. Four fuzzy sets were cornputteci for each feature 

and the FE &ta were generated (1664 input points). Triaagular fuzzy sets were chosen and the 

intersection point was set at 0.5. Altbough there are four times as m a .  inputs for this MLP than 

in tbe E-MLP case, mean square mm convergence occurred in approximately an order of 

magnitude fewer iterations. For this investigation, the RBFN used three, five, and six prototypes 

for the 2, 4. and 5 class problems, respectively. The transfer point from unsupervisecl k-meam 

c lus te~g  (to determine the ceatroids) to superviseci gradient descent leacning from the hidden 



prototype layer to the output was varied in order to acbieve good resuits for each of the two. four, 

and five ciass problems. 

The spectra were randomiy assiped to either the design or test set. Once assigned these sets 

were fixed for ai l  runs, The ANN d t s  are averages of ten runs Psing different initial d o m  

weight assipnrnents and diffkrent random presentation sequences of the design set. AU 

performance results are caicuiated using the test set, In the conventid preprocessiug cases, 

PCA (using correlation mattices) is pet fmd usiag aU spectra. The 6rst k principal components 

that accounted for 999% of the cumuiative variance were used as inputs for both the LDA and 

ANN techniques. A MLP is used for the preprocessed spectra, Apat fkom the hiddea iayer 

consisting of three PEs rather than ten, this network's architecture is the same as the E-MLP 

above. 

8.2.1 Two clam problem 
Of the 114 spectra used in the two ciass problem, 66 were pked  in the design set (33 C and 33 

A) and 48 in the test set (16 C and 32 A). The first nine principal components accowted for 

99.9996 of the cumuiative variance (the first five. two, and one principal components accounted 

for 99.90%, 99.79%. aad 99.24% of the cumuiative variance, respectively). The A N N s  

consistently outperformed LDA in ai i  cases by approximately 4% (Table 57). This performance 

gain can be explainecl by the non-iinear nature of ANNs. Unlike LDA, they are not restcicted to 

hyperplanar decision boundaries. It is interesting to note that the performance resuits were 

slightly better for the two principal component case ttian for the five principal c o y n e n t  case. 

This is a testament to the fact tbat accounting for maximal variance does not necessdy translate 

into niaximal discrimuiatory power. Table 58 kts results fiom the three ANNs using the original 

spectra. FE-MLP outperfomed E-MLP and RBFN and produced results comparable to the best 

case from Table 57. This can be attributed to the fact that FE-MLP preprocesses the spectra by 

transforming each discrete data point into an ordered set of membership values whose 



correspondhg funy sets are centred amund the ~uartiles of each discrete specaal coordinate. As 

a r d t ,  a point ihat lies sigaificantly outside the uppa or lower quartile will have a diminished 

impact during 1e-g (ail but one of the rnembership values wiii be zero ancl the aon-zero 

mmbership value wül go to zero the humer the &ta pomt is fiom the Iowa [or uppr] quartde). 

Such spectral points are o h  considemi to be outliem. Hence. FE-MLPs naturaiîy reduce the 

negative role that outliers often play during training. 

Table 57: ANN versus LDA (principai componarts and two classes) 

Table 58: Classification results (original spectra and two classes) 

8.2.2 Five class problern 
Of the 163 spectra used in the five ciass probIern, 104 were used in the design set (33 CG, 16 

CW, 6 NT, 33 AG, and 16 AW) and 59 in the test set (16 CG, 7 CW, 3 NT, 25 AG, and 8 AW). 

The first ten principal components accounted for 99.99% of the cumulative variaire (the fwst 

eight and five p ~ c i p a l  coinponents accountd for 99.95% and 99.90% of the cumuiative 

variance, respectively). Again the MLPs outperformed the correspondhg LDAs (Table 59) but 

this tixne by a wider margin. The fact that both mwhods did not perform as well as in the two 

class problem is to be expected. It is more dficult to discriminate between control grey and 



white tnatter and Alzheimer's diseased grey and white matter. Moreover, the increased 

discriminatory complexity and the concomitant requirement for finer discriminatory 

hyperdaces ais0 accounts for the wider perfimmce margin b e e n  ANN and LDA It should 

aiso be wted that altbough there were more misclassincations in this five class problem ushg the 

6rst ten principal components, bot& metbods &'biteci conservative misciassification (except for 

one spectnim in the LDA case). That is, cmtrd tissue was aiways ciassified as control tissue and 

AD tissue was always classifieci as AD tissue. When errors occurred it was oniy in the 

determination of the tissue as white or grey matter. Unfortunately, d of the NT spectra were 

misclassified in aU cases. This problem is due to the paucity of NT spectra in the design set. 

Nevertheles, these spectra were classified as being either AG or AW- Since NTs are one of the 

hallrnarks of AD, it is at least more preferable <bat NT spectra be misclassifieci as AD tissue 

rather than control tissue. 

LDA MLP 

Table 59: ANN versus LDA (principal components and five classes) 

Table 60 Lis& the performance results of the thcee ANNs using the original spectra. Once again 

FE-MLP produceci the best results. It paformed almost as weU as the best case from Table 59 and 

outperformed al1 LDA results. 



Table 60: Classincation r d t s  (original spectra and five classes) 

CW 
FEMLP NT 

AG 
A W  
K 
CG 
CW 

EMLP NT 
AG 
AW 
K 

CG 
CW 

RBFN NT 
AG 
AW 
K 

8.2.3 Effect of auxiliary data on principal components 
It is ofken the case that new spectra collecteci after the Uutial classification process bas been 

3 4 0 0  O 
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O O O 25 O 
1 O O 3 4 

0.78 
14 1 O 1 O 
O 6 O 1 O 
3 0 0 0  O 
3 O O 22 O 
3 0 0 5  O 

0.57 
13 2 0 0  1 
2 5 0 0  O 
O O 2 1 O 
4 O 1 19 1 
I O 1 3 3 

0.60 

cornpieteci need to be ciassified. In cases where priacipal components are used to preprocess the 

data, this means that the principal components must be computd for the new specua. Further, the 

components for the origuial spectra need to be recomputed. We now investigate this issue using a 

four class variant of the problem discussed above. The spectra were divideci into 3 sets: a design 

set with 33 CG, 16 C W .  33 AG, and 16 AW for a total of 98 specaa; a test set with 16 CG, 7 CW, 

25 AG. and 8 AW for a total of 56 spectra; and, an auxiliary test set with 9 NT spectra. Table 61 

lis& the results using the fim ten priacipal components that accounted for 99.99% of the 

cumulative variance. In this case, the principal components were computed using ody the spectra 

in the design and test set. The overaii results were ~ d . 9 2  for the ANN and W.87 for LDA, 

b 
LDA ANN 

A CG CW AG A W  CG CW AG AW 
CG 
cw 
AG 
AW 
K 

16 O O O 16 O O O 
O 7 O O O 7 O O 
1 O 22 2 O O 24 L 
O O 2 6 O O 2 6 

0.87 0.92 
Table 61: ANN versus LDA results (principal components and four ctasses) 



Finaliy, principal components were re-computed using the above spectra as weîi as the 

auxiiiary test set (for a totai of 163 spectra). The first ten principal components accounted for 

99.99% of the cumulative variance. In this case, the classification results are calculateci using 

only the test set. Nowever, since the principal components have been calcuiated foc the auxiliary 

test set, their classincation outcornes can be geaerated (Table 62). The overall classification rate 

for the GNN remaineci unchangeci at W.92 but the LDA rate dropped to 1~û .84 .  The notion of 

accuracy is meaningless with regard to the classification of the auxiliary test spectra because no 

desired outcornes were associated with them. Neveaheless, it is interesthg to note tbat, as in the 

five class problem, both the ANN and LDA classified the auxiliacy test set as spectra fiom AD 

tissue (either AG or AW). 

Table 62: ANN versus LDA results (fout classes and PCs based on a l i  five classes) 

Diagnosis of AD €rom autopsy material by IR spectroscopy bas proven to be difficuit based 

simply upon a spectroscopie analysis, due to the different degree of involvement of brain tissue. 

the difficuity in staging the disease and the extensive biochemicai changes associated with gros 

degeneration of the grey matter. Classification of IR specmi of control and Alzheimer's disease 

tissue bas been achieved with a hi& degree of accvracy by both LDA and ANNs. Separation of 

grey and white matter into distinct classes is not surprising, given the known biochemical 

différences between the two tissue types. The separation of AD and control grey matter 

presumably reflects spectral diffaences associated with the pathologîcal features of AD. oamely 

general atmphy of the cerebral cortex and the presence of neuritic plaques and aeurofibrillary 

tangles. The ability to distinguish between AD and control white matter may be considered 

surprising as AD is a disease of the grey matter. However, recent studies [Il21 have show that 



sipif~cant variations in the phosphotipid composition of white matter is also associated with AD, 

a hding which probably explains the ability of LDA and ANNs to discriminate between control 

and AD white matter. 

Table 57, Table 59, and Table 62 clearly show that ANNs consistentiy outperform their LDA 

counterparts in ail cases where PCA was used as a preprocessing technique- Of course* as the 

comp1exity of the problem iacreased (fiom two to five classes) both techniques suffered sorne 

loss in classification accuracy but this loss was more pronowced with LDA rban ANN. 

Although preprocessing the spectra using PCA is @te useful and often improves p e d o ~ c c  

results, thece is a concomitant loss in flexiiility in the addition or deletion of data as weU as a loss 

(in generai) of the ability to d y z e  relevant featrrres in the original spectra tbat contriiuted to the 

discriminatory power of the undeclying mthd 

Finally* in the cases where the original spectra were use4 FE-MLPs outperfor~ned E-MLPs and 

RBFNs and had classification results that were only slightiy worse than the best results achieved 

using PCA. This rnay be expected since FE-MLP explicitiy employs fuzzy encoding as a 

preprocessing technique as opposed to the other two architectures. Further. since the fimy sets 

are constnicted a r d  the quartiles for each &ta point my outlier values end up having a snialler 

Muence during the iterative training of the net, 

The data set used to test the efficacy of FA and RR is the MR spectra of h u m  brain 

neoplasus describeci in section 3.3.3. The phased spectra were normalized (each datum was 

divided by the! area of the spectrum) aud randomly assigned <O either a design set (n=80) or a test 

set (n=126). The design set contahed 29 M's, 3 1 A's, and 20 Es. The GS was provided by a 

pathologist and was encoded using the procedure describeci in section 3.1. 



The FA methoci d e s c n i  in section 6.2-1 was integrated into an M W  architecture consisting 

of two hidden layers with three PEs in the output layer (one for each ciass), The uetworks were 

trained on spectra from the design set using the GS and its adjustments. 

FA improved the overd diagnostic perfixmance of the MLP compared to the original GS. 

Table 63 lis& the performance resultts using the test MR spectra. A 13% improvemnt in the K 

score was achieved using F A FA does not aiter the original GS classification of the design 

spectra but it does modify the traversai of the MLP's weight space during the training pmcess; 

those spectra tbat are near class medoids other than their own contribute less to the incremental 

changes to the MLP compared to those design spectra that are near theu own medoids. 

In the RR case, when the outliers were reclassified in the design set, a 10% improvement in the 

K score was achieved. Iaterestingly, if these outlying spectra were removed fkom the design set, K 

degraded to 0.62 for the test set (a 13% decrease from the original GS K score). Although noue of 

the spectra in the test set was reclassified, using the MAD criterion two test spectra were flagged 

as ouùiers (mo M spectra were fiagged as A spectra)- In ai i  three cases, GS, FA. and RR. these 

spectra were indeed misclassifieci as A spectra, 

Finally, the classification errm were *O more conservative for both FA and RR as compared 

to the original GS. That is, whiie the original GS ciassifieci 5 E's (non-tumou~ous) as either M's 

or A's (tumours) and 4 t u m m  as E's, FA a d  RR cIassined only I E as tumourous and 3 

tumours as E's. 

- . -  

Table 63: Performance resuits using t&t s&tra (RRI outiias removed) 

It is informative to examine the K scores for the design spettra using the mereut rnethods 

(Table 64). Aithough the GS and FA contingency tables are identical, the weights of the 

M 
E 
A 
K 

b 

GS 

61 2 3 
1 1 2  4 
9 2 3 2 5  

FA 

58 2 6 
O 16 1 

1 37 
0.71 0.80 

RR 
M E A M E A M E A M E A  

57 1 8 
O 16 1 
5 2 36 

1 

RR' 

56 4 6 
O 16 1 

13 5 25 
0.78 0.62 , 



underlyîng MLP's are sufficiently dBerent to exact a ~ i ~ c a n t  performance gain in the 

classification of the test spectra, 

With RR, three spectra were reclassified in the design set: a M spectnim to A; a E specaum to 

A; and, an A spectnim to El When reciassification took place, K improved from 0.97 to 1.00. 

However, if those spectra were removed fiom the design set, as is often the case in classification 

problems. K actually degrades to 0-93, suggesting that these spectra, although idencified as 

outliers. have SuffiCient import to affect the learning cycle of the MLP. Further, the M and E 

spectra tbat were identifieci as outliers wece ciassified as M and E spectra, tespectively, using the 

GS. However. the A spectnrm that was identifid as an outlier (and reclassified as an E spectnun 

using RR) was misciassified as an E spectrum using the GS. 

M E A M E A M E A  
M 29 O O 29 O O 28 O O 28 O O 
E 0 2 0 0 0 2 0 0 0 2 0 0 0 1 9 0  
A O 2 2 9 0  2 2 9 0  O 3 2 2  2 26 
K 037 097 1.00 033 

Table 64: Performance resuits using design spectra (RR: airlias removed) 

The results demonstraa that the ad.tmenr of a GS using a fuuy or robust masure of 

deviation of MR spectra ftom tùeir respective class medoids leads to a reduction in ~Iassifcation 

mors. Moreuver, misclassifications tend to be more consemative- R e d  that, if reclassification 

occurs, it only occm for spectra within the design set; outliers within the test set are simply 

flagged but not aitered using this rnethd Therefore, the accepteci GS is left in a pristhe state 

sullied only by its original tarnish. 

8.4 Additional Ekperiments 
The final set of experhnts were performed using the magnetic cesonance spectra, descnbed in 

section 3.3.4 (N=206, b80, N~126. n=550). consisting of 95 meaiagiomas (M), 74 

astrocytomas (A). and 37 control sarnples of non-tumourous brain tissue from patients wirh 

epilepsy (E). The following classification systems were used: 



- hear discrimiaant analysis (LDA); 

- linear discrimiBant analysis witb principal component anaiysis 0; 

- multi-layer perceptron (MW); 

- multi-iayer perceptron with principal component analysis 0; 

- multi-iayer perceptron with fuzzy gold standard adjustments (FA); 

- mdti-layer perceptron with robust reciassification (RR); 

- radial basis fiinction neural nerwotk (RBF); 

- probabibtic neural network (PNN); 

- fuzzy intempde encoding (IQ) and its class-wise variant (IQc); 

- dimension-presenting interquade encoding (DP) and its ciass-wise variant WC); 

- fuzzy cluster encoding (CL) and its class-wise variant (CL& 

For PC and PCM, the hrst 90 principal components were used and accounted for 99.99% of the 

cumulative variance of the original &ta- MU, FA, and RR, have exactiy the same structures 

describeci in section 8.3. RBF and PNN have 50 receptive fiel& and 50 kemels, respectively. For 

CL and CLc, the best r d t s  obtained using 2 4  clusters are listeci (-19 and -5, respectively). 

For all methods, i00.90 for the design set, however, K varied widely for the test set as is show 

in Figure 140. Note the dramatic improvernent of PC (d .74 )  c o m p d  to LDA (1d.52). Whiie 

part of this is catainly due to the use of the principal components instead of the onginai data 

another contributing factor is that the original 550x550 covariance matrix that LDA had to invert 

was nearly singular and hence iiiconditioned. Using the same principal components, PCM 

(M.70) fared slightly worse tban MLP (W.71) using the original sptra .  Section 8.3 discusses 

the efficacy of FA (W.80) and RR (d .78 ) .  Neither PNN ( d . 4 3 )  nor RBF (-53) 



performed particuiarly weii; the former suffered from round-off error in cornputhg the Parzen 

kemels. The ciass-wise varianis. CLc (H.55), DPc (WSO), and IQc (H.44). also were 

underpafonms. IQc ciassification results were especially poor but this was due to the large 

increase in the dimensioaality of the tramfamai space; from n=5SO to n=6600 (550 x 4 huzy 

sets x 3 classes). DP performed weil (M.72) as did CL (-74). IQ (W.83) had the best 

agreement measure in spite of the fact that n=2200. 

LDA PC MLP K M  FA RR RBF PiW XQ DP CL IQc DPc C L  

Classitication System 

Figure 140: K. scaes for classification systems 



9 Conclusion 
The intent of this thesis was to introcluce, derive, implement, and determine the efficacy of two 

new preprocessing methodologies, firtzy feature spce encoding, and burnishing tamshed gold 

stCUtdCIrdr. The former comprises a coflection of methods (fiizy interqyartile encoding, 

dimension-preserving fiizzy interquartile encoding, fuay cluster encoding. and theu class-wise 

variants) for determiring the respective degrees to wbich a datum belongs to a collection of fiizzy 

sets or fuzzy clusters and subsequently using these membership graQes in place of the original 

datum. The latter comprises methods (robust ceclassincation, fuzzy gold standard adjusment, and 

tùeir variants) to compensate for the possible imprecision or unreliability of a weli-established 

gold standard whiie, at the same time, mintainhg its vital discriminatory power by incorporatïng 

non-subjective within-ciass d o i d  information. The underlying purpose of these methodologies 

is to simplify the feature space prior to presentation to a classiner. As they are independent of any 

particular classification method, they may be integrated into any classification system. 

9.1 Summary 
This thesis began with an uitroduction to so~ne essentiai concepts necessacy for the 

understanding of the hiuy encoding and gold standard buraishing methodologies: 

. . .  - classification, the construction of a discrimination function mappiag individuais to a set of 

ciass indices; 

- artrpcial neural nefworks, a self-adaptive, non-linear, aiassively parailel machine learning 

system composeci of layers of processing elements used pnmarily for pattern recognition 

problems; 

- set theory, a generaiïzation of Boolean set theoy, extending the notion of 

elementhd from the range {O, 1 ) to the interval [O, 11; 



- robust statistics, statistics mistant to outlier effectts; they are insensitive to slight deviations 

fiom their requisite mode1 (ofien nomai) assunptions about the underlying distributioa 

Issues conceming the classification process were then discussed: 

the different stages of classification 

- classifiers, 

- preprocessing and postprocessiug; 

hear separability and linear classifiers; 

conventional preprocasing methods such as principal component analysis; 

artificial neural networks as non-linear ciassiners 

- muiti-layer perceptmn, 

- probabiiistic neural network, 

- radiai basis function n e d  network 

misconceptions concembg Gauss' law of errors and nonnality assumptions; 

synthetic &ta 

- 1-dimensional 2-class sets with different distributions, 

- disk/tonis, 

- hypercubes; 

"real-world" &ta 

- magnetic resonance biomedical spectra, 

- infiareci biomedical spectra; 

measuring classification performance. 



Concerning the last point, the cbance-corrected meastue of agreement, K. was selected to assess 

the performance of aü classification straîegies used as it W more accurate than the conventionai 

measure of the ratio of n u d m  of correctly classifiai data and the entire data set- 

Fuzzy feature space encoding and gold standard burnishing are then introduced and 

rnathemtically descriid Integrattion of these rnethods into classifiers is discussd The 

buniiçhing IIliethods, robust reclassification and futzy gold standard adjustments are aiso detailed 

as weU as the motivational diffixencw between reclassification and adjllstmeat- A set of 

experiments using synthetic &ta were perfoinied in order to masure the efficacy of these 

meth& and b e n c k k e d  against liaear discrimination and a multi-layer perceptron. A set of 

experiments using mgnetic cesonance and innared biomedical spectra were also perfonned and 

the r d t s  presented and discussd 

9.2 Concludlng Remarks 
As a generai preprocessing methodology, fiiay encoding is effective in improving 

classification petfomance by transforming the feature space prior to presentation to a classifier. 

The fuzzy encoding methods, appbble  to any classifier, exhi'bit several useful properties. First, 

since the membership functions map values onto the unit intervai, data are automatidy scaled. 

This is particuiarly usefiil in the classification process since scaled &ta diminish the effects of 

extreme variances across features. wthout scaled data, features with large variances will 

predominate over features with small variances although the latter features may be 

discriminatory. Another beueficial property is tbat values that may be considered outliers impact 

less severely u p n  classifiers, such as the dti-layet perceptron, that employ any type of iterative 

adjustments to its error function. This does not mean that samples with features tbat are outliers 

are removed during the design or test phases of the classification process, however. With the 

interquartile encodiag mthods, as the value rnoves away fiom the interquartile range, the huzy 

encaded values tend to zero. in the case of a multi-layer perceptron where its hidden layer 



processing elements are summiag products of weights and input values this is important since, if 

the fuzzy encoded values of an outlier are all zero or near zero, those values wiU contribute very 

little to the learning process regardess of the p e s s i n g  elements weights; an exuernely usefiil 

property if the original value is indeed an aulier (nevertheless, if it is n a  an outlier it stül does 

conûiiute to a &gree)* 

Fuzzy interquarnle encoding is the most robust encoding metbod; it was least sensitive to 

changes to the underlying distniïutions of the synthetic data and performed weli with ail 

biomedical spectra. Dimension-preserving interquade encoding and fuzzy ciuster e~~oding are 

more erratic in their performance. The former method does not work weli if features have a 

unimodal distribution; values that are equidistant fiom a feature's median will then bave the same 

encoded value* However, this weakness is aiso its strength when feanues do not bave an 

unimodai distribution or the distribution is skewed Fuzzy cluster encoding is sensitive to the 

correlation of initial c1usters to the underlying cluters of the data. The experiments witb the 

synthetic data sets indicate that if the initiai clusters are near the modes of the underlying 

distributions of the &ta then the performance results are excellent. If not, the results may degrade 

significaotly. The class-wise vaRants of ail three methods also produced variable resuits. 

Concerning the gold standard burnisbing methodology, the resuits fiom the synthetic &ta sets 

and the b i o d c a l  spectra demonstrate tbat the fuzy goid standard adjustment and robust 

reclassifxation methods improveâ the classification performance compared to the original gold 

standard assignments. Moreover, misclassifications with the biomedical spectra tend to be more 

conservative. If reclassification occurs, it ody occurs for data within the design set; outliers 

within the test set are simply flagged but not altered using this methocl. Theref~re~ the accepted 

gold standard is left in a pristhe state sullied only by its original tarnish. 

In conclusion, this thesis has argued that, in pattern recognition problems, preprocessing is of 

paramount importance and the methodologies of hzzy feature space encoding and gold standard 



bumishing are good additions to the pcqrocessing arsenal. In the construction of good 

~Iassification systems, the 80/20 d e  most ceaainly ho&: only 208 of an mvestigator's effort 

should be devoted to the selection and tuning of a classifiet; the remaining, and more crucia.L 

effort shouId be devoted to a thorough analysis and preprocessing of the data in order to reduce 

the complexity of the featwe space prior to its presentation to the classifier of choice- 
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