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Abstract

Classification is the empirical process of creating a mapping from individual patterns to a set of
classes and its subsequent use in predicting the classes to which new pattems belong.
Tremendous energies have been expended in developing systems for the creation of the mapping
component. Less effort has been devoted to the nature and analysis of the data component,
namely, strategies that transform the data in order to simplify, in some sense, the classification
process. The purpose of this thesis is to redress somewhat this imbalance by introducing two
novel preprocessing methodologies. Fuzzy interquartile encoding determines the respective
degrees to which a feature belongs to a collection of fuzzy sets and subsequently using these
membership grades in place of the original feature. Burnishing tarnished gold standards
compensates for the possible imprecision of a well-established reference test by adjusting, if
necessary, the class labels in the design set while maintaining the test’s vital discriminatory
power. The methodologies were applied to several synthetic data sets as well as biomedical
spectra acquired from magnetic resonance and infrared spectrometers.

Both fuzzy encoding and burnishing consistently improved the discriminatory power of the
underlying classifiers. They are insensitive to outliers and often reduce the training time for
iterative classifiers such as the multi-layer perceptron. With the latter, reclassification only occurs
for data within the design set; outliers within the test set are flagged but not altered. Therefore,

the accepted gold standard is left in a pristine state sullied only by its original tarnish.



Acknowledgement

I would like to thank Dr. Pedrycz for his infinite patience, gentle prodding, and
guidance as I marshaled my intellectual forces to complete these investigations. His
penetrating insights tempered by his subtle humour will always be appreciated.

Also, I want to express my gratitude to Dr. Walton, Dr. Roventa, and my good friend,
Dr. Barakat, for their thorough review of my work and their useful suggestions.

And, of course, many thanks to my wife, Cindy. Without her love, faith, and support,
none of this would have been realized.



Table of Contents

Table of Contents.
Table of Tables

Table of Figures

1 INTRODUCTION

2 PRELIMINARIES

2.1 CLASSIFICATION

2.2 ARTIFICIAL NEURAL NETWORKS

2.3 Fuzzy SET THEORY

.......

2.4  ROBUST STATISTICS
3 THE PROCESS OF CLASSIFICATION

3.1 CLASSIFICATION SYSTEMS

311 Classification block.

3.12 Preprocessing block.
313 Postprocessing block.

3.2  CLASSIFICATION ISSUES .....

321 “DeGaussing normality”: the law of errors

322 A priori knowledge

3.2.3 Verification
33 DATA SETS

3.3.1 Bounding problem in n-dimensions.

332 Disk and torus.

333 One-dimensional points with various distributions.

334 Magnetic resonance spectral data
3.3.5 Infrared spectral data

34 FIELD REVIEW

4 CLASSIFIERS

4.1 LINEAR DISCRIMINANT ANALYSIS

4.2  MULTI-LAYER PERCEPTRON

4.2.1 Conventional enhancements

4.3 PROBABILISTIC NEURAL NETWORKS

4.3.1 Parzen estimators

44  RADIAL BasIs FUNCTION NEURAL NETWORKS

§ CONVENTIONAL PREPROCESSING METHODOLOGIES
5.1 RECEPTIVE FIELDS

5.2  PRINCIPAL COMPONENT ANALYSIS
6 FUZZY DATA ENCODING AND GOLD STANDARD BURNISHING
6.1 Fuzzy ENCODING OF FEATURE SPACE

6.1.1 Fuzzy interquartile encoding

6.1.2 Dimension-preserving fuzzy interquartile encoding...
6.1.3 Fuzzy cluster encoding

6.1.4 Class-wise variants

6.1.5 Fuzzy encoded multi-layer perceptron

.......

6.2  BURNISHING TARNISHED GOLD STANDARDS

6.2.1 Robust reclassification.
6.2.2 Fuzzy gold standard adjustment ..............................

6.2.3 Reclassification versus adjustment ................ccccceeceemernnreecmverseseercsnesessenes

......................



7 EXPERIMENTS USING SYNTHETIC DATA

7.1 Two-CLASS 1-DIMENSIONAL DATA SETS

7.1.1 Normal distributions with equal variances.

7.1.2 Normal distributions with unequal variances

91

98

7.1.3 Bimodal distribution
7.14 Skewed distribution

7.2  Fuzzy ENCODING AND LINEAR SEPARABILITY

73 DATA SETS WITH TARNISHED GOLD STANDARDS

7.3.1 Robust reclassification and normal distributions

7.3.2 Robust reclassification with contamination
7.3.3 Fuzzy gold standard adjustment and normal distributions.

7.3.4 Normal Distributions with Contamination

7.4  Fuzzy INTERQUARTILE ENCODED MULTI-LAYER PERCEPTRON

7.4.1 The 2-dimensional case

7.4.2 The 3-dimensional case
7.4.3 The 4-dimensional case

7.4.4 Noisy data and non-normal distributions

15 ADDITIONAL EXPERIMENTS

7.5.1 20-dimensional hypercube

7.5.2  Disk and torus.
8 EXPERIMENTS USING BIOMEDICAL SPECTRA

8.1 MAGNETIC RESONANCE SPECTRA OF THYROID BIOPSIES

8.2  INFRARED SPECTRA OF ALZHEIMER’S DiSEASED BRAIN TISSUE
821 Two class problem

822 Five class problem

8.2.3 Effect of auxiliary data on principal components

8.3 BURNISHING TARNISHED GOLD STANDARDS

8.4  ADDITIONAL EXPERIMENTS
9 CONCLUSION

9.1 SUMMARY

9.2 CONCLUDING REMARKS

10 REFERENCES

105
112
123
124
128
131
132
134
142

.. 144

145
146
146
146
148

150

150
151
152
153
155
157
159

162

162
164

167

i



List of Tables

Table 1: Typical data for discrimination
Table 2: Relative efficiency (RE) of dy with increasing contamination (€)

Table 3:300-vector 3-group contingency table (P.=0.66)

Table 4: 300-vector 3-group contingency table (P.=0.52)

Table 5: Design set results using normally distributed data

Table 6: Design set results for fuzzy cluster encoding using different cluster numbers
Table 7: Test set results using normally distributed data

Table 8: Test set results for fuzzy cluster encoding using different cluster numbers

Table 9: Design set results using normal distributions with unequal variances

Table 10: Design set results for fuzzy cluster encoding using different cluster numbers
Table 11: Test set results for each method using narmally distributed data

Table 12: Test set results for fuzzy cluster encoding using different cluster numbers

Table 13: Design set results using a bimodal distribution

Table 14: Design set results for fuzzy cluster encoding using different cluster numbers

Table 15: Test set results using a bimodal distribution
Table 16: Test set results for fuzzy cluster encoding using different cluster numbers

Table 17: Design set results using skewed data

Table 18: Design set results for fuzzy cluster encoding using different cluster numbers...............

Table 19: Test set results using skewed data

Table 20: Test set results for fuzzy cluster encoding using different cluster numbers
Table 21: Design set results using an MLP

Table 23: Design set results for class-wise variants using an MLP

Table 25: Test set results using an MLP

Table 27: Test set results for class-wise variants using an MLP

Table 29: CL (c=2) design results using MLP (v;=1.76, v,=8.24)
Table 31: CL (c=2) test results using MLP

Table 33: CL (¢=3) design results using MLP (v;=0.27, v,=5.24, v;=10.28)

Table 35: CL (c=3) test results using MLP

Table 37: CLc (C-2) destgn results usmg MLP (V“--O 18 v21-10 24, Vug‘ 30, Vn= =5. 83)

Table 39: CLc (c=2) test resuits using MLP

Table 41: CLc (c=3) MLP design results (v,;=0.10, v2,=9.63, v3,=10.31, v|2—3 96, v22=5.03, v3,6.06)...

Table 43: CLc (c=3) MLP test results

Table 45: Design set results

Table 46: Test set results

Table 47: Robust reclassification using the design set
Table 49: Robust distance measures for the test set

Table 50: Design set results

Table 51: Test set results

Table 52: Robust reclassification using the contaminated design set.

Table 53: Design set results
Table 54: Test set results......

Table 55: FST GS Adjustment of the design set

Table 56: Design set results

Table 57: Test set results

Table 58: FST GS adjustment results for contaminated data.
Table §9: Vectors in the 2-dimensional case...........ccccceneee.....

Table 60: Vectors in the 3-dimensional case

Table 61: Vectors in the 4-dimensional case

Table 62: Classification results averaged over 100 runs

Table 63: Sample 2D results — NE versus FE eeceretsssssressactasesesesraseet s nerenarterere

Table 64: Sample 3D results — NE versus FE

Table 65: Sample 4D results — NE versus FE.............ccovvveeeeneens

Table 66: Test results using different classification systems with a hypercube .....

iii



Table 67: Test results using different classification systems with a hypercube with noise ..........ccccc.coe.. 148

Table 68: Test results using different classification systems with a disk/torus 149
Table 69: Classification results averaged over 100 runs ... 150
Table 70: ANN versus LDA (principal components and two classes) 153
Table 71: Classification results (original spectra and two classes) 153
Table 72: ANN versus LDA (principal components and five classes) 154
Table 73: Classification results (original spectra and five classes) 155
Table 74: ANN versus LDA results (principal components and four classes) 155
Table 75: ANN versus LDA results (four classes and PCs based on all five classes) 156
Table 76: Performance results using test spectra (RR”, outliers removed) 158

Table 77: Performance results using design spectra (RR”, outliers removed) 159




List of Figures

Figure 1: Decision rule, x,—x,=0, for a 2-dimensional 2-class problem 7
Figure 2: Possible effects on a decision rule by a suspect individual 7
Figure 3: A suspect individual as an outlier 9
Figure 4: A supervised artificial neural network 10
Figure 5: Membership function for the crisp set definition of “‘approximately zero” 11
Figure 6: Membership functions for fuzzy set definitions of “approximately zero” 12
Figure 8: Fitting a line through a set of points. In (a), without outliers. In (b), with an outlier. .................. 14
Figure 9: A generalized classification architecture 19
Figure 9: x as a function of P, (P,=0.66) 30
Figure 10: The bounding problem in two dimensions. 31
Figure 11: Distribution of design data 32
Figure 12: Normal distributions with equal variances 33
Figure 13: Normal distributions with unequal variances 33
Figure 14: Normal and bimodal distributions i3
Figure 16: Normal and log narmal distributions 34
Figure 18: Typical MR spectra 35
Figure 19: Typical IR Spectra 36
Figure 19: Error distributions affect discriminant functions. . 41
Figure 20: Decision boundaries produced by linear discriminant analysis 42
Figure 22: A multi-layer perceptron 44
Figure 23: PNN architecture .49
Figure 25: RBFN architecture 51
Figure 26: A two-dimensional RBFN PE 53
Figure 27: Receptive field of a two-dimensional RBFN 53
Figure 28: Two principal components, Y; and Y> 57
Figure 29: Construction of two fuzzy sets . 61
Figure 30: Membership functions used to fuzzy encode coordinate x; 64
Figure 31: Membership functions used to fuzzy encode highly skewed data 64
Figure 32: A single membership function constructed from feature quartiles..... 66
Figure 33: Plot of u;(x) with 2 cluster centroids 69
Figure 34: Probability density functions for a narmally distributed class between a bimodal distribution.. 70
Figure 35: Good discriminatory performance using fuzzy cluster encoding with 3 centroids..................... 70
Figure 36: Poor discriminatory performance using fuzzy cluster encoding with 2 centroids.............ccc..... 71
Figure 37: Good discriminatory performance using fuzzy cluster encoding with 2 centroids per class....... 71
Figure 38: Feature membership functions constructed for oy and @, 72
Figure 39: Fuzzy interquartile FE-MLP with two inputs, x, and x;, four fuzzy sets, and k classes.............. 74
Figure 40: A FE-MLP using a class-wise extension to fuzzy interquartile encoding 76
Figure 41: Dimension-preserving FE-MLP with two inputs, x; and x;, and k classes 76
Figure 42: Class-wise dimension-preserving FE-MLP 76
Figure 43: FE-MLP employing fuzzy cluster encoding with input vectors x=[x, X2, ..., X --ecrerrrecervmcennen 77
Figure 45: FE-MLP employing class-wise fuzzy cluster encoding with input vectors x=[x|, x3, ..., X,] ..... 77
Figure 46: Plot of f{x) with varying p (g=2) 81
Figure 48: Plot of f{x) with varying g (p=2) . 81
Figure 50: Non-encoded design set resuits 85
Figure 51: Non-encoded test set results 86
Figure 52: Fuzzy interquartile encoded design set results (e=-1.81, 0=0.31, m=1.76, 0,=3.30, 3=5.00)... 86
Figure 53: Fuzzy interquartile encoded test set results 86
Figure 54: Dimension-preserving design set results («=-1.81, @;=0.31, m=1.76, Q,,-3 30, p=5.00) ........... 87
Figure 55: Dimension-preserving test set results ... 87
Figure 56: Fuzzy cluster (c=2) encoding usmg design set (1=0.16, v,=3.30).....cccccerereeun.ec.n. 88
Figure 57: Fuzzy cluster (c=2) encoding usmg test set. 88
Figure 58: Fuzzy cluster (¢=3) encoding usmg design set (1=0.05, v,=2.23, v3=3.81) cocevvreerreeeereeerecan. 88

Figure 59: Fuzzy cluster (c=3) encoding using test set..... eereteeieearaes st n e s s s e e e s s e anansenas 89




Figure 60: IQc design results (a;=-1.81, On=-0.28, m=0.32, 0,,=0.69, B;=2.47, 0;=0.32, Qp=2.49,

m,=3.28, 0,,=3.80, p,=5.00) 89
Figure 61: IQc test set results 89
Figure 62: DPc design results (a;=-1.81, 0;=-0.28, m=0.32, 0,;=0.69, p;=2.47, «;=0.32, QOp=2.49,

my=3.28, Q.,=3.80, p,=5.00) 90
Figure 63: Class-wise dimension-preserving encoding using test set 90
Figure 64: CLc (c=2) using design set (v,;=-0.69, v»,=0.68, v|,=2.30, v,=3.83) 9%
Figure 65: Class-wise fuzzy cluster (c=2) encoding using test set 91
Figure 66: CLc (c=3) using design set (vi;=-1.11, v;=0.33, v3;=1.53, v;;=1.97, v,=3.04, v3;=4.07) ......... 91
Figure 67: CLc (c=3) using test set 91
Figure 68: Non-encoded design set results 92
Figure 69: Non-encoded test set results 93
Figure 70: Fuzzy interquartile encoded design set resuits (a=-2.10, 0;=-0.42, m=0.70, Q,=2.48, =7.23)..93
Figure 71: Fuzzy interquartile encoded test set results 93
Figure 72: Dimension-preserving design set results (a=-2.10, 0;=-0.42, m=0.70, 0,=248, §=7.23) .......... 94
Figure 73: Dimension-preserving test set results ...94
Figure 74: Fuzzy cluster (c=2) encoding using design set (v;=-0.05, v,=4.14) 9%
Figure 75: Fuzzy cluster (c=2) encoding using test set 95
Figure 76: Fuzzy cluster (c=3) encoding using design set (v;=-0.64, v,=1.62, v;=4.85) 95
Figure 77: Fuzzy cluster (c=3) encoding using test set 95
Figure 78: IQc design results (a;=-1.80, 0n=-0.80, m;=-0.06, Q,=0.61, 8;=2.10, ay=-2.10, Qp=1.10,

my=247, Q.,=4.35, p,=7.23) 96
Figure 79: Class-wise fuzzy interquartile encoding using test set 96
Figure 80: DPc design results (o;=-1.80, On=-0.80, m,=-0.06, Q,,=0.61, p;=2.10, ay=-2.10, Qp=1.10,

m=247, Q,=4.35, 8,=7.23) 96
Figure 81: Class-wise dimension-preserving encoding using test set 97
Figure 82: CLc (c=2) using design set (v;;=-0.83, v5;=0.82, v3=0.71, v»,=4.59) 97
Figure 83: Class-wise fuzzy cluster (c=2) encoding using test set 97
Fignre 84:CLc (C=-’3) d&sign results (V[ [=-1.03. V21=0.29, V31=1.53, V12=-0.76. Vn=2-12, Vnﬂ.94) ............ 98
Figure 85: Class-wise fuzzy cluster (c=3) encoding using test set 98
Figure 86: Non-encoded design set results 99
Figure 87: Non-encoded (St SEt FESUILS .........oonmvrirrieicciiiincsececceneeseeesenscssssssorssssstasencnssnssasenssssessross 99
Figure 88: Fuzzy interquartile encoded design set results (a=-1.78, 0;=1.40, m=4.91, Q,=8.00, p=12.37)100
Figure 89: Fuzzy interquartile encoded test set results 100
Figure 90: Dimension-preserving design set results (c=-1.78, gi=1.40, m=4 91, 0,=8.00, p=12.37)........ 100
Figure 91: Dimension-preserving test set results 101
Figure 92: Fuzzy cluster (c=2) encoding usmg design set (v,=0.60, v,=7.19) 101
Figure 93: Fuzzy cluster (c=2) encoding using test set 101
Figure 94: Fuzzy cluster (c=3) encoding using design set (v;=-0.09, v,=4.98, v3=9.83) .....cccccceeereurrcrecenc- 102
Figure 95: Fuzzy cluster (c=3) encoding using test set 102
Figure 96: IQc design results (ay=-1.78, On=-0.19, m;=4.70, Q,,=9.85, B;=12.37, a;=3.53, Qp=4.33,

m;=4.91, 0,,=5.73, p,=6.73) .102
Figure 97: Class-wise fuzzy interquartile encoding using test set 103
Figure 98: DPc design results (a;=-1.78, @n=-0.19, m;=4.70, Q,;=9.85, p;=12.37, «y=3.53, Qp=4.33,

my=4.91, Q,,=5.73, ,;=6.73) 103
Figure 99: Class-wise dimension-preserving encoding using test set 103
Figure 100: CLc (c=2) using design set (v;;=-0.13, v5,=9.88, v3=4.75, v53=5.40) .....oeeerreceeveerercereneanenens 104
Figure 101: CLc (c=2) using test set 104
Figure 102: Clc (C=3) USing dﬁign set (v |=-0.86, V21=0.64, v31=9.89, Vuﬂ‘.l4. vp=4.99, v3,=6.19)...... 104
Figure 103: Class-wise fuzzy cluster (c=3) encoding using test set 105
Figure 104: Non-encoded design set results 106
Figure 106: Non-encoded test set results 106
Figure 108: IQ design set results (0=0.51, 0=7.07, m=10.54, 0,=12.45, 3=54.80) 106
Figure 109: Fuzzy interquartile encoded test SEt [ESUILS........coceuerremerreereeeseerernsenesmassemesensesesesnsssansens 107

Figure 110: Dimension-preserving design set resuits (e=0.51, 0;=7.07, m=10.54, 0,=12.45, p=54.80) ... 107
Figure [11: Dimension-preserving test et reSUILS .........eceevvecrereeereeeeeeerersessserserensseseeneseesens .107

vi



Figure 112: Fuzzy cluster (c=2) encoding using design set (v,=9.49, v»=33.41)

Figure 113: Fuzzy cluster (c=2) encoding using test set

Figure 114: Fuzzy cluster (c=3) encoding using design set (v;=6.06, v»=12.21, v4=32.71)

Figure 115: Fuzzy cluster (c=3) encoding using test set

.......................

Figure 116: IQc design results (a;=6.38, 0n=9.43, m;=10.63, 0,,=11.37, 8,=14.94, 0;=0.51, 0;=4.42,

m=9.73, 0,,=16.45, §,=54.80)

Figure 117: Class-wise fuzzy interquartile encoding using test set

Figure 118: DPc design results (o;=6.38, 0,=9.43, m;=10.63, Q,;=11.37, 8;=14.94, 0;=0.51, QOp=4.42,

m=9.73, 0.2=16.45, p,=54.80)

Figure 119: Class-wise dimension-preserving encoding using test set

Figure 120: CLc (c=2) using design set (v1;=8.63, v,;=11.36, v|,=7.94, vp=32.46)

Figure 121: Class-wise fuzzy cluster (c=2) encoding using test set

Figure 122: CLc (c=3) design results (v;;=7.77, vy =10.66, v3;=13.07, v;;=4.64, vp=15.22, v;,=3593)...

Figure 123: Class-wise fuzzy cluster (c=3) encoding using test set

Figure 124: A linearly inseparable data set

Figure 126: A linearly separable transformation

Figure 128: Linearly inseparable transformation using CL (c=2)
Figure 130: Linearly separable transformation using CL (c=3)

Figure 132: MLP non-encoded results using design set

Figure 133: MLP non-encoded results using test set

Figure 135: Design results for MLP with robust reclassification

Figure 137: Test results for MLP with reclassified design points
Figure 138: MLP NE design results using contaminated data

Figure 139: MLP test set with contamination

Figure 140: MLP robust results using test set

Figure 141: An ideal n-dimensional MLP solution
Figure 142: An ideal 2D solution (step function or logistic function with gain)
Figure 143: A geometrical interpretation of the 2-dimensional problem

Figure 144: An ideal 3D solution (step function or logistic function with gain)
Figure 145: An ideal 4D solution (step function or [ogistic function with gain)

Figure 146: An ideal 2D solution (the logistic function with no gain)

Figure 147: An ideal 3D solution (logistic function with no gain)
Figure 148: An ideal 4D solution (logistic function with no gain)

Figure 149: A non-ideal solution

Figure 150: NE MLP with four hyperplanes

Figure 151: NE MLP with three hyperplanes

Figure 152: NE MLP with one hyperplane
Figure 153: NE MLP with two hyperplanes

Figure 154: x scores for classification systems

108
108
108
109

109
110

110
110
111
111
111
112
113
113
114
114
125

125

126
127
129
129
131
135
136
136
136
137
138
138
138
139

.143

143
143
144

... 161

vii



1 Introduction
Classification is the empirical process of creating a mapping from individual patterns to a set of

classes and its subsequent use in predicting the classes to which new patterns belong.
Tremendous energies have been expended, with some measure of success, in developing systems,
and methodologies, for the creation of the mapping component. Less effort has been devoted to
the nature and analysis of the data component, namely, strategies that transform the data in order
to simplify, in some sense, the classification process. The purpose of this thesis is to redress
sormewhat this imbalance by introducing new transformational techniques that deal specifically

with the data component.

This thesis argues that in practical pattern recognition problems preprocessing seems to be of
paramount importance. Advanced technologies contribute ever more sophisticated models upon
which to build ever more sophisticated classifiers. Herein lies a major problem: if these models
are highly non-linear, they may be unstable, if they are iterative, they may not converge, if they
are probabilistic, they may be based on underlying statistical assumptions that are often not true
in real-world scenarios. Preprocessing may address these concerns: data may be transformed such
that a non-linear model may be replaced by a linear one, the dimensionality of the data may be
reduced so that an iterative method may converge or may be substituted for an analytic one, or the
data may be “normalized”, in some sense, such that the underlying statistical assumptions of a
probabilistic mode] are realized. Years of investigations into pattern recognition problems have
led this researcher to conjecture that the 80/20 rule holds in the construction of good classification
systems: 20% of the investigator’s time should be spent on seiecting and tuning a classifier for a
particular pattern recognition problem; the initial 80% should be spent on a thorough analysis of
the data in order to preprocess it in such a way as to simplify, in some sense, the data that is to be
presented to the classifier of choice. To this end, this thesis presents two novel preprocessing

methodologies:



- fuzzy encoding, the process of determining the respective degrees to which a datum belongs
to a collection of fuzzy sets or fuzzy clusters and subsequently using these membership
grades in place of the original daturmn;

~  burnishing tamished gold standards, compensating for the possible imprecision of a well-

established reference test while maintaining its vital discriminatory power.
Three new fuzzy encoding strategies and three respective variants are presented:

-  fuzzy interquartile encoding, intervalizing a single input value across a collection of fuzzy

sets, thereby producing a list of degrees of membership for each of the fuzzy sets;

dimension-preserving fuzzy interquartile encoding, a variant of fuzzy interquartile encoding

that does not increase the dimensionality of the feature space;

fuzzy cluster encoding, transforming the input space using a membership measure to

determine how similar an individual is to centroids computed using the fuzzy c-means

algorithm;

class-wise variants, identical to the above methods except that they take into account class

assignments for the data set.

Two new strategies for burnishing tarnished gold standards are presented that may be used

independently or may augment the fuzzy encoding methods:

- robust reclassification, uses a robust estimation of deviations from class medoids for the

reclassification of spectra in a design set;

- fuzzy gold standard adjustment, a fuzzy set theoretic preprocessing method to enhance the

gold standard by incorporating non-subjective within-class medoid information.

In order to properly discuss these methodologies, this thesis will begin with a preliminary

introduction (chapter 2) to some key concepts necessary for their understanding: classification,

[ 2% ]



fuzzy set theory, robust statistics, and artificial neural networks. Chapter 3 is devoted to the
classification process, a multi-faceted exercise, realized through a classification system. In the
most general sense, the system creates a discrimination function mapping individuals to a set of
class indices. This chapter also discusses verification issues and presents the data sets that will be
used to test the efficacy of the methodologies. While some data sets are synthetic, “real-world”

data were also acquired from the biomedical domain.

Specific classifiers are revisited in chapter 4, including linear discriminant analysis, a classical
multivariate discrimination technique, as well as several artificial neural network (ANN)
architectures: multi-layer perceptrons, probabilistic neural networks, and radial basis function
neural networks. Chapter 5 then presents two conventional preprocessing methods: adjustments to
the receptive fields of the radial basis function neural network and principal component analysis.
In the former case, standard techniques are discussed to determine the location, size, and
interaction of the local receptive fields used in the radial basis function neural network. The
motivation behind the latter method is to find a set of orthogonal directions that explain as much

of the variability of the original data as possible.

Chapter 6 thoroughly discusses fuzzy data encoding and burnishing tarnished gold standards. It
begins with a mathematical description of fuzzy interquartile encoding, dimension-preserving
fuzzy interquartile encoding, fuzzy cluster encoding, and their class-wise variants. Integration of
these methods into a classification system is then presented. A specific classifier, the multi-layer
perceptron (MLP), is used. Robust reclassification and fuzzy gold standard adjustments are then

presented as well as the motivational differences between reclassification and adjustment.

A set of experiments using synthetic data are performed in Chapter 7 in order to measure the
efficacy of the novel preprocessing methods described in the previous chapter. All fuzzy
encoding methods are applied to two-class 1-dimensional data with different distributions. Fuzzy

encoding and linear separability issues are also presented. The burnishing methods are also tested



using some of these data sets along with contaminated counterparts, that is, data sets where some
individuals were intentionally mislabeled. This chapter also explores the performance of fuzzy
interquartile encoding when integrated with an artificial neural network, namely, the MLP. The
chapter concludes with performance measures for all of the novel strategies using several other

synthetic data sets.

A set of experiments using “real-world” data is performed in Chapter 8. These data are from the
biomedical domain: infrared and magnetic resonance spectra of human tissue. The gold standard
is a pathologist’s report concerning the disease state of the tissue specimens. The novel
preprocessing methods are applied to these data and are benchmarked against some conventional

preprocessing and classification strategies.



2 Preliminaries
A number of essential concepts must be discussed in order to understand properly the nature

and intent of the novel preprocessing methodologies presented in this thesis. This chapter begins
with a background of the classification process and a typical methodology, artificial neural
networks, which may be used to create a classification mapping. As these new techniques involve

concepts from fuzzy set theory and robust statistics, overviews of these topics are also presented.

2.1 Classification
Classification, or discrimination, systems involve the process of finding a function mapping N

individuals to an index set of k class identifiers, @ (i=1....,k). The individuals normally take the
form described in Table 1 where V; is the total number of individuals in class @. Each individual
(case, sample, pattern, vector, or point) comprises # features (measurements or coordinates) and
belongs to some class, ay. To be more precise, a distinction can be made between discrimination
and verification.

Discrimination is the process of determining a decision rule that partitions the individuals’
space into k regions, £; such that if an individual belongs to the class, @, it will also lie in the
region ;. For example, Figure 1 is an example of a 2-dimensional 2-class problem with the
decision rule, x-x;=0, that divides the space into two regions, ; and Q,. If x,—x;<0 then the
individual lies in §; and is classified as coming from @, otherwise it lies in region £, and is
classified as coming from @,. This is a linearly separable problem: an n-dimensional hyperplane
can be defined that serves as a decision boundary between two classes of n-dimensional
individuals. In this specific case, the line, x~—x;=0, is the decision boundary that divides

individuals belonging to ay from those belonging to ;.

Since the intent of discrimination is to group classes into regions, the concept of similarity must

be quantified. Similarity is often measured using the Euclidean metric
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not only for historical reasons but also for analytic ones since it has a derivative at every point (x
and y are individuals and x; and y; are their respective features). If d(x,y) is near zero, the two
individuals are said to be similar. Other similarity measures may also be used.
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Table 1: Typical data for discrimination
Verification, on the other hand, specifically refers to the application of the decision rule to a

new individual of unknown class. In the case of Figure 1, the individual denoted by 9 would be
classified as belonging to class @ since it lies in Q;. The discrimination process typically
employs a subset of the N individuals, specifically; the defining parameters of the decision rule
are estimated from this subset. This subset is known as the design (or training) set. The
verification process uses the remaining individuals, the test set to measure the efficacy of the
decision rule. A typical measure of the error rate is to divide the number of individuals that lie in

a region that do not belong to the corresponding class by the total number of individuals.
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Figure 1: Decision rule, x,—x;=0, for a 2-dimensional 2-class problem
A number of problematic situations may arise in the discrimination/verification process. For

example, the discrimination problem shown in Figure 2 is identical to the one in Figure 1 except
that one of the original ®, individuals now belongs to @. If the decision rule that produced the
original boundary is used here then the suspect individual will lie in the wrong region, €,. This
occurs because the problem is no longer linearly separable. If we use the original boundary then

misclassifications will occur with individuals in the test set that are near the suspect individual.

— Non-Linear _
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0 X
x Q,
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Figure 2: Possible effects on a decision rule by a suspect individual

One solution that would reduce these misclassifications is to use a discrimination method that

can produce a non-linear decision rule. In this example, a non-linear boundary can be derived



using a piece-wise linear decision rule. However, suspect individuals may cause problems that are
more serious. Figure 3 has the suspect individual further from the original decision boundary.
Discrimination methods that produce piece-wise linear decision rules may not work well in this
case. Fortunately, other methods exist that can produce decision boundaries that are arbitrarily
complex. In this case, such a method could produce a non-linear rule that creates the original
boundary as well as a spherical £, boundary disjoint from the other Q; region. This may be a
good solution especially if there is a significant number of other individuals belonging to the class
@, near the suspect individual: this would indicate that there are two distinct clusters of ax and a
more complex decision boundary is therefore required. However, a problem may exist with the
suspect individual itself. For instance, an error may have occurred during the measurement
process for this individual such that its features were incorrectly recorded. In this case, the
suspect individual may be an outlier and should not be used during the discrimination process. In
this example, if the suspect individual is indeed an outlier and were removed, the problem once
again becomes linearly separable. Outlier detection and removal is a standard practice in statistics
but there are pitfalls. If there is a paucity of individuals upon which to build a decision boundary,
removing an individual that is considered an outlier may not be possible. Detecting outliers in a
high dimensional space is an extremely difficult problem (see section 2.4). The individuals that
are identified as outliers may not be outliers at all and their existence warrants the use of non-
linear decision rules. Finally, the suspect individual’s features may have been measured
accurately but it may have been mistakenly assigned to a wrong class. In this case, the individual
is not an outlier: if the suspect individual in Figure 3 were reclassified as belonging to @, then
this problem would again be linearly separable (in fact, it would be the identical problem to

Figure 1).
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Figure 3: A suspect individual as an outlier

The next few sections will discuss systems that are used to derive decision rules and auxiliary
techniques that simplify the data in some fashion in order to produce more succinct decision rules
or better discrimination boundaries. The focus of the remainder of this thesis is presented in the
final section of this chapter. In the interest of brevity, and since this thesis is concerned with both
the discrimination and verification processes, the term classification will be used to refer to both

processes.

2.2 Artificial Neural Networks
The artificial neural network paradigm [14,18,40] has consistently demonstrated its

effectiveness as a reliable nonlinear classification technique. An ANN is a self-adaptive,
massively parallel machine learning system composed of layers of processing elements used
primarily for pattern recognition problems. A processing element (PE) is a construct composed of
a set of inputs and corresponding weights (input connection strengths) that are combined to
produce a result that is passed to a transfer function (used to constrain output to a particular
range) ultimately generating an output value that may be used by other PEs. Typically, an ANN is
composed of three types of layers: an input layer that passes data vectors to other layers; an
output layer that produces an output vector (this vector often represents the classification outcome

for the corresponding input vector); and the hidden layers that take data from an input layer or a



previous hidden layer and pass the transformed data to an output layer or a subsequent hidden
layer. A learning strategy is used to make incremental changes to the weights in order to optimize

some error criterion.

A supervised ANN [95] requires the desired output for each input vector in order that it may be
compared to the actual output generated by the ANN (Figure 4). The learning strategy attempts to
minimize a global error function for the set of design data. Local errors are computed for each PE
in order to adjust the weights. This process is repeated for each input vector in the design set and
the ANN continues to iterate through the set until an acceptable minimization of the error is
achieved. The back-propagation algorithm is the most common technique used to pass this error
back to the network. A feed-forward ANN has an uni-directional data flow from the input layer,
through each hidden layer, and finally to the output layer. In other words, no PE may pass its

output to a PE in a previous layer nor may it pass the output back to itself (feedback).

desired
k output
—»{ ANN ———-)6
input actual
output
cIror
learning
method [€&——

Figure 4: A supervised artificial neural network

2.3 Fuzzy Set Theory
Fuzzy set theory (FST), a generalization of conventional or Boolean set theory, was introduced

by Zadeh [123] as a natural and intuitively plausible way to represent vagueness in everyday life.
A central generalization of FST is the extension of the notion of elementhood from the range {0,
1} to the entire unit interval [0, 1] [84]. Conventional sets are crisp; elements in the universe of

discourse must satisfy precise properties required for membership. Let us examine an example



where the universe of discourse is the set of real numbers and the set, A, that is to be defined is

the set of numbers that are approximately zero. Conceptually,

A={xeRx=0}. (2)
Using a conventional definition for this set, one must first define the upper and lower crisp
limnits for this set. These limits are, of course, domain-specific. Say, in this example, the limits are

0.5, then
A={reR-05<x<05} (3)
Equivalently, this Boolean set may also be described by its membership function, A(x)

1if —0.5<x <05

A(x)={ : (4)

0 otherwise

Every real number, x, is either in A or it is not. More specifically, A(x) maps all real numbers
onto the two points {0, 1}. Hence, x is “approximately zero” if and only if A(x)=1. Unfortunately,
this sharp transition between inclusion and exclusion is problematic when dealing with values
immediately outside the transition (Figure 5). If x=0.50001, A(x)=0, hence, x is not
“approximately zero”. In many real-world applications, this sharp transition from truth to falsity
is intuitively unappealing. Conceptually, the degree to which 0.50001 belongs to A is certainly
not one (A(x)#1) but it should be greater than zero, especially since it is approximately equal to
0.5. FST quantifies this gradual transition from falsity to truth by generalizing the membership

function such that it maps values into the entire unit interval [0, 1] [63,124].

A

| ] |
-1 -0.5 0 0.5 i x
Figure 5: Membership function for the crisp set definition of “approximately zero”

A fuzzy set, F, contains objects that satisfy, possibly imprecise, properties to varying degrees.

0

The value of the membership function F(x) is known as the grade of membership of x in F. As

bl



with Boolean sets, there is no unique domain-independent membership function for F. Some
plausible properties for a fuzzy set are domain-independent, however. The first property is
normality, at some point the grade of membership equals one (in the example, F(0) should equal
one). A fuzzy set should also satisfy the criterion of monotonicity [125]. Although not necessary,
a fuzzy set may also satisfy the criterion of symmetry. Using our example, the former criterion
simply means that as x approaches 0, F(x) approaches 1 (the converse must also hold). The latter
criterion is satisfied if numbers equidistant from O have the same membership grade. One

membership function (see Figure 6) that satisfies the conceptual property “approximately zero” is

F(x)=(1+10x2)". (5)
Note that normality (F(0)=1), monotonicity (F(0.5)=0.29 and F(0.1)=0.91), and symmetry
(F(0.4)=0.38 and F(-0.4)=0.38) are all satisfied by ( 5 ). Several advantages occur: conventional
set theory is reduced by FST; FST represents vagueness in a more intuitively plausible manner
using gradual transitions from falsity to truth; membership grades are more informative (in the
example, A(x;)=1 and A(x,)=1 only indicate that x; and x, are both between —-0.5 and 0.5 whereas
F(x;)=0.88 and F(x;)=0.95 not only indicate that x; and x; are “approximately zero” but also that

x; 1S “closer” to zero than x;.

Flx)=(1+10x%)"

] i S R R
-1 05 0 05 !
Figure 6: Possible membership functions for the fuzzy set “approximately zero”
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The membership function is a measure of the degree to which an object satisfies imprecisely
defined properties and in order to combine fuzzy sets a collection of operators must be defined
[126]. Let J(X) be the family of all fuzzy sets of the domain X and A,Be 3(X). For all xeX, the

following operations may then be defined [60]:
Complement: A(x)=1-A(x)
Intersection: (ANB)(x)=min{A(x), B(x)}
Union: (AUB)(x)=max{A(x), B(x)}.

Note that there is no definition for the law of the excluded middle (ANA=@ and AUA=X) [39].
For instance, if A(x)=0.6 then (A~A)(x)=min{A(x), A(x)}= min{0.6, 1-A(x)}= min{0.6, 0.4}=0.4.

More interestingly, if A(x)=0.5 then A=A= AnA= AUA.

It should also be noted that FST is not reduced by probability theory. An example will now be
discussed to show the differences; for thorough discussions refer to [48,62,63]. Let P=({all
philosophers} and P={all empirical philosophers} and let p,, p,eP where P(p;)=0.9 and
Pr(p.eP)=0.9. In the latter case, all that can be said about p; is that there is a 1 in 10 chance that
the philosopher is not an empiricist. In the former case, the philosopher is quite similar to the
ideal empiricist (for instance, Hume). In other words, with the latter, the information that is
conveyed concerns relative frequency, whereas the former deals with the representation of
similarity to imprecisely defined properties. Another fundamental difference involves
observational effects on information content. In this example, say it is now observed that
pi=Aristotle and p,=Plato. The information content in the former case does not change,

P(Aristotle)=0.9 but in the latter case the probability now drops from 0.9 to 0.0.

—
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2.4 Robust Statistics
A statistic is considered robust if it is resistant to effects caused by extreme values [S1]. More

specifically, a statistical estimate is robust if it is insensitive to slight deviations from its requisite
model assumptions (often normal assumptions) about the underlying distribution [98].
Discussions about robust statistics often go hand in hand with the notion of outliers, observations
that do not follow the pattern of the majority of the data [4]. For instance, say one is fitting a line

through a set of points by minimizing a standard sum-of-squares error

Ey =Y (-x). (6)

A potential difficulty with ( 6 ) is that it receives its largest contributions from points that have
the largest errors and it is outliers that will have the largest errors [27]. In Figure 7(a), the line
appears to be a good fit of the systematic aspects of the points. However, in Figure 7(b), a single
outlier has dominated the line fitting process, since it produced the largest error, and has, as a

result, skewed the line away from the other points.

Figure 7: Fitting a line through a set of points. In (a), without outliers. In (b), with an outlier

One solution to this problem is to use the robust error

E(y)=Y|y~x| (7)

Outliers will have smaller errors using ( 7 ) rather than ( 6 ) and hence their contributions are

diminished. Moreover, minimizing ( 7 ) with respect to y gives

z.s'ign(y—x,-)=0 (8)

which is satisfied when y is the median of all the x; [15]. If one of the points is an outlier this has

no additional effect on the solution.
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Another instructive example comparing a standard and robust measure of dispersion is given in

[114]. The mean square deviation is

DU ) )

and the mean absolute deviation is

dy =% |x - (10)
Under certain regularity conditions, we can define the relative efficiency of dy to sy as

lim var(sy)

v vard,)’ ¢

where var(sy) is the variance of sy . For instance if the relative efficiency of dy to sy were 0.5 then
dy would require twice the sampie size needed for sy in order that both measures have the same
statistical power. Tukey took two groups of normally distributed observations having the same
mean. The second group, however, had three times the standard deviation of the first (in other
words, the errors of some of the observations in the second group are increased by a factor of
three). Each observation belongs to the first group with a probability of 1-¢ and to the second
group with a probability of € where 0<e<l1. Table 1 lists the relative efficiency of dy to sy with
increasing contamination of the first group of observations by the second. For exactly normal
observations, sy is 12% more efficient than dy. However, with as little as 0.2% contamination, the
robust measure is slightly more efficient. It becomes more than twice as efficient when there is

5% contamination.

€ 0 001 002 005 .01 .02 05 .10 .15 .25 .50 1
RE | 88 95 1.02 1.20 1.44 1.75 2.04 190 1.69 1.37 1.02 0.88

Table 2: Relative efficiency (RE) of dy with increasing contamination (g)

Looked at another way, this example demonstrates that lengthening the tails of a distribution can

greatly increase the variability of sy. Since dy is less sensitive to such a change it is



distributionally robust. Moreover, because it is in the long tails where outliers reside, it is

concomitantly outlier resistant.

In [52], Huber suggests that, with typical “good data” samples in the physical sciences,
0.01<e<0.1, and if this hoids then robust statistical measures are invaluable. One may argue that
these examples do not corroborate the need for robust statistical procedures but only suggest that
outlying observations must be detected and dealt with in some fashion. But outlier detection is a
contentious problem. Causes of outliers fall into two broad and somewhat overlapping categories,
model weakness and natural variability. Model weakness includes response variables in the
wrong scale and isolated measurement and recording errors. Identification of an outlier may lead
to its subsequent rejection, important new information contained in concomitant variables that
would otherwise have gone unnoticed, its incorporation through model revision, or a recognition
of an inherent weakness in the data and thus to additional experimentation [8]. Multiple outlier
detection, especially in a high-dimensional space, suffers from two major problems. Two or three
outlying observations that are roughly equidistant from their sample mean can drastically inflate
the mean as well as the variance, to such a degree that the outliers are not detected. This problem
is known as masking. Further, as the sample size increases, the masking effect between any two
outliers decreases, but unfortunately, the number of outliers increases so the overall masking
effect does not change. Nevertheless, some success has been achieved in unmasking multivariate
outliers using robust estates of location and covariance [99]. Swamping is the converse to
masking and occurs in an inappropriate block test for multiple outliers when a highly discordant
outlier carries with it another observation that is not an outlier. In [24], it is argued that it is better
to defer to domain-dependent technical expertise than any statistical criterion for straight outlier
rejection. Finally, with respect to methods for detecting multivariate outliers, Gnanadesikan [38]
states that the “... complexity of the multivariate case suggests that it would be fruitless to search

Sfor a truly omnibus outlier detection procedure. A more reasonable approach seems to be to

16



tailor detection procedures to protect against specific types of situations, e.g. correlation
distortion, thus building up an arsenal of techniques with different sensitivities. This approach

recognizes that an outlier for one purpose may not necessarily be one for another purpose!”

17



3 The Process of Classification
Classification, a multi-faceted exercise, is realized through a classification system. In the most

general sense, the system creates a discrimination function mapping individuals to a set of class

indices. The performance or accuracy of the system must also be validated.

This chapter describes the general architecture for a classification system inciuding the optional
preprocessing and postprocessing blocks and the classification block proper. Issues revolving
around normally distributed data, a priori knowledge, and veﬁﬁcaﬁon strategies are discussed.
With regards to verification, the data sets that are used throughout this thesis are presented. Also,
a chance-corrected measure of agreement is discussed. This agreement measure is used
throughout the thesis to measure classification performance. The chapter concludes with a review

of the field.

3.1 Classification Systems
In the most general sense, the problem of classification is a problem of function approximation:

attempt to estimate an unknown function
R ->[o1f (12)

from observed pair-wise random samples, (x;, y;), (X2, ¥2), ..., (X, yn), where x,€R" is an n-
dimensional input vector and y,e R” is an k-dimensional output vector. Normally, an association is

established between the output vectors and a set of groups (or classes), @, @, ..., ax such that
R -{.2...k} (13)

Each o; comprises a subset (usually non-empty) of N; input vectors. A common association, 1-of-

k classification encoding

R =>P1}F (14)
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assumes that each input vector, x, belongs to one and only one group, say «, and sets all
coordinates of the respective output vector, y, to

= Wi=j (15)
Oif i # j

A classification system attempts to approximate f using the input/output pairs such that, for any
given input vector, its corresponding output vector is generated within some error tolerance. After
the approximating function is computed, its effectiveness should be tested by mapping new input
vectors to output vectors. An input vector, x, is considered to be correctly classified by the

system, if the generated output vector is the same as the desired output vector within the error

tolerance. Figure 8 is a diagram of a generalized classification architecture.

Input Space Classification Output Space
(Features) Block (Classes)
.-Ill.lululu.vtt
X 4|
X2 y2
Postprocessing
X3 r—b Block | Y3
Xn Yk

Figure 8: A generalized classification architecture

3.1.1 Classification block
The classification block is the core of the classification system. This block predicts the output

vector or group assignment of an input vector or a modified input vector if a preprocessing block
is present. Usually, the classification block contains a single classifier but it is not uncommon to
have a set of m>1 classifiers operating in concert. This set may be comprised of any combination
of classifiers including linear discriminant analysis and ANNs. In general, classifiers attempt to

minimize some objective function, usually an Euclidean metric, comparing the desired output



with the actual output, in order to correctly predict output vectors given input vectors. The
objective function may be minimized iteratively as with ANNs or non-iteratively as with linear
discriminant analysis. Although the typical topology is full interconnectivity between all elements
from the preprocessing (or input) block to each classifier, it is not a necessary requirement. Each
classifier may be connected to only certain, possibly disjoint, regions of the feature space.
Moreover, the preprocessing block may also pass the original data to the classification block in

addition to any preprocessed features.

FST may also be used as an internal constituent of a classifier system. This may involve the
fuzzification of some component or mechanism of the classifier system. In the case of a multi-
layer perceptron ANN (see section 4.1) that uses the back-propagation algorithm, for example,
one could have a set of fuzzy inference rules that would make dynamic adjustments to the
learning parameter, ¢, based on the change of classification error. These inference rules would be
of the form, “If the change in the error is X then the learning rate is ¥ where X and ¥ would be
fuzzy sets {44,58]. Another example would be the fuzzification of the probabilistic neural
network (see section 4.3). The set of Gaussian receptive fields that are normaily used in this
network could, in theory, be replaced by fuzzy sets. The role of FST within a classifier system
may be much more pervasive, that is, the architecture may have been completely developed using
FST. Examples of this approach inciude referential fuzzy neural networks and neuro-fuzzy

networks.

3.1.2 Preprocessing block
It may be difficult to cull discriminatory information from data (for instance, diagnostic

information from magnetic resonance spectra) due to their complex nature, the confounding
effects of noise, and/or the presence of artifacts produced by the data acquisition process itself.
One of the most pernicious effects is the “curse of dimensionality”, a phenomenon associated

with a paucity of high-dimensional input vectors (that is, n/N is large). In many applications, for



instance, acquisition of biomedical magnetic resonance spectra of tissue in different disease
states, this problem is all too common. The optional preprocessing block attempts to deal with
issues such as this by simplifying, in some fashion, the original input data prior to presentation to

the classification block.

Preprocessing methods fall into several categories and may be used singly or in concert. The
first category is the set of techniques that diminish the effects of noise. For instance, input vectors
are often smoothed (averaged) with the assumption that the signal-noise ratio is not unreasonably
low and that the noise signature, not being predominant, will be “washed away” by the
smoothing. Another method used is to add uniform or Gaussian noise to the original noisy input
vectors. The rationale is that the additional noise will, on average, cancel out the existing noise
signature.

The second category comprises those methods that reduce the dimensionality of the problem.
One common method is to average over a fixed number of contiguous coordinates of the input
vectors. The average for each “window” may be the mean or median of the coordinates. A more
sophisticated average method such as a-trimmed or o-Winsorized means [32] may also be used.
The a-trimmed mean, py,, of N observations drops the smallest and largest observations from the
sample

N-j

X 16
Fa =N 2 2}.Z 0 (1)

i=j+l

where j is the smallest integer greater than or equal to aN and X; are the ordered observations.
Instead of dropping the extreme observations, in the Winsorized mean, |, they are replaced by
the remaining respective largest and smallest observations

1 N—j-1
u., =ﬁ (j+lxx(j+l)+X(N—j))+ X(i) }. (17)

i=j+2



Another common method is principal component analysis (discussed in section 5.2) that
performs a linear transformation of the original data such that the coordinates of the
transformation, known as principal components, account for decreasing amounts of variance (41].
Another dimensionality reduction method is domain-specific and involves the use of a priori
knowledge of the input vectors. For instance, it may be known that signals acquired from MR
spectrometers of thyroid tissue may have regions that are not particularly relevant to the specific
diagnostic issue or that specific regions are highly significant. Appropriate selection or rejection

of such regions will achieve dimensionality reduction.

The third category of preprocessing strategies involve the adjustment of the input space
dimensionality for reasons other than its reduction. In fact, the adjustments may increase the input
space’s dimensionality. For instance, one may take all quadratic combinations of the coordinates
for submission to the classification block. This is especially effective if the classifier is linear but
the original problem is not linearly separable, that is, n-dimensional hyperplanes could not
separate the input vector into their respective groups. It may then be the case that the linear
classifier will succeed in discriminating between the groups because the problem is still linear in
the new input space; only the parameter space is quadratic. For example, say there is a 2-
dimensional input space and two groups. If the point is inside a cluster of points bounded by a
circle it is in one group, otherwise it is in the other. A linear classifier would perform poorly
because a single line cannot be computed to separate the two groups. However, if the input space
is adjusted by adding two new coordinates, namely, the square of each of the original coordinates,

a linear classifier would be able to successfully discriminate between the two groups.

FST may also be used for this type of preprocessing, for example, data may be fuzzy encoded
prior to presentation to the classification block [89]. Fuzzy encoding is the process of determining

the respective degrees to which a datum belongs to a collection of fuzzy sets and subsequently



using these membership grades in place of the original datum. This procedure is akin to 1-of-n

intervalization encoding except that gradual transitions occur at the boundaries {18].

The next category of preprocessing is the set of normalization and scaling methods and their
relatives [91]. The intent of these methods is variance stabilization [76]. It may be the case that
some features have far greater variance than do others and hence the former may play a more
significant role during classification process simply by nature of this greater variance than the
latter. This is problematic if the latter features are, at the same time, highly discriminatory. If,
however, collinear vectors need to retain their distinctiveness, for instance, pixel values of the

same image at different illumination levels, normalization methods cannot be used.

Burnishing tarnished gold standards is another preprocessing category that has only recently
been investigated [88]. A reference test, or gold standard, that is used as a benchmark, against
which the classification system is measured, may itself be imprecise or even unreliable.
Contributing factors include subjective estimates by a domain expert (or panel of experts) or
simple clerical errors. Of course, while this preprocessing category addresses the possible
imprecision of the gold standard, at the same time, the vital discriminatory power of a well-
established reference test must also be retained. One possibility is to use FST or robust deviation
measures [109] to enhance the gold standard by incorporating non-subjective within-group

centroid information.

The final category of preprocessing is artifact suppression. Discriminatory information within
input vectors might be systematically distorted by the very process used to acquire them. Unlike
noise, which is introduced due to limitations of physical devices used in data acquisition, an
artifact is a phenomenon that is an inherent part of the signal. For example, an infrared spectrum
of -ex vivo thyroid tissue will have little noise but an enormous water signature that completely
dominates any interesting metabolites. The baseline signal is usually adjusted to suppress the

water signature. Techniques to suppress artifacts are highly domain-specific and are often ad hoc.



3.1.3 Postprocessing block
The optional postprocessing block may perform several functions. It may perform some inverse

transformation on the outputs generated by the classification block in order to reverse the effects
of a preprocessing technique (for instance, scaling) prior to generating a final output vector. If
there is more than one classifier then this block combines the outputs from each classifier and
produces a final output vector. Combination strategies include, “winner-take-all”, weighted

competition, consensus, and fuzzy integration.

3.2 C(Classification Issues

3.2.1 “DeGaussing normality”: the law of errors
Many preprocessing techniques as well as certain classifiers assume that data are sampled with

a normal distribution. Unfortunately, there is, in general, no guarantee that this is the case. In fact,
in many biomedical classification problems, data are sampled with non-normal distributions. Data
that correspond to some rare disease state, for example, may be under-represented with respect to
data corresponding to a non-disease state. Moreover, the presence of errors in the data, whether
manifested as signal noise in spectral information, inaccurate classifications, or imprecise
attribute values, may or may not be normal. Part of the problem in dealing with the above issues
resides in the fact that Gauss’ “law of errors™ is often applied inappropriately. The law states that
if repeated measurements are made on the same object, the distribution of the random component
on the errors can be well approximated by the Gaussian distribution. For instance, this implies
that repeated measurements based on the acquisition of an infrared signal from a particular
diseased tissue sample would follow the Gaussian distribution. However, this does not necessarily
imply that measurements of the infrared signals from all diseased tissue samples would follow the

Gaussian distribution.

As a historical remark, Rietz, in his famous 1927 monograph on mathematical statistics [94],

contends that one of the factors behind the relative lack of progress in this subject for fifty years



after Laplace’s Théorie Analytique des Probabilités published in 1812, was that “the followers of
Gauss retarded progress in the generalization of frequency theory by overpromoting the idea that
deviations from the normal law of frequency are due to lack of data”. Cramér also levels this
charge in his 1946 book [23]; “Under the influence of the great works of Gauss and Laplace, it
was for a long time more or less regarded as an axiom that statistical distributions of practically
all kinds would approach the normal distribution as an ideal limiting form, if only we could
dispose of a sufficiently large number of sufficiently accurate observations. The deviation of any
random variable from its mean was regarded as an ‘error’, subject to the ‘law of errors’

expressed by the normal distribution.”

The Bayes classifier is often highly touted as the only classification technique to be used
because it is the theoretically best classifier. Assuming that the distributions of the random
vectors are known then it is the case that the Bayes classifier does indeed give the smallest error
that can be achieved from the given distributions [118]. Unfortunately, these distributions often
are not known. Furthermore, even if they were known, there is the pragmatic consideration of its
implementation. Although the Bayes classifier, under the previous assumption, is optimal, its
implementation is often difficult in practice because the probability density function is not

accessible, particularly when the dimensionality is high [35].

Now, this should not be construed as some wholesale condemnation of “normality” for “it is
undeniable that, in a large number of important applications, we meet distributions which are at
least approximately normal’. Nevertheless, it is prudent not to fall into the trap, described by
Lippman, that “everybody believes in the law of errors, the experimenters because they think it is
a mathematical theorem, the mathematicians because they think it is an experimental fact”.
“Mathematical proof tells us that, under certain qualifying conditions, we are justified in
expecting a normal distribution, while statistical experience shows that, in fact, distributions are

often approximately normal”.



The problem is that, in many “real world” classification scenarios, the qualifying conditions do
not hold: one class of data may be sampled differently from that of another class; due to the
nature of an experiment, all data may be sampled with a skewed distribution; or the curse of
dimensionality issue. Practical experience suggests that there are times when distributions are
simply not normal, not even approximately so. The thrust of this argument is that it is prudent to
examine the efficacy of non-parametric methods when dealing with classification problems. This
includes judicious use of FST and robust statistics at the preprocessing level of the classification

architecture that do not require the satisfaction of normality preconditions.

3.2.2 A priori knowledge
It is often sufficient to classify data using strictly objective general mathematical discrimination

techniques that do not take into account the nature of the domain space under investigation. Not
only are these objective methods often sufficient but they are often preferred because they
elimipate “subjective” bias. All objective methods use some quantitative measure to determine
the similarity of one data point to another. These measures include Euclidean distance,
Mahalanobis distance, the L, norm, correlation/covariance measures, and relative entropy {65].
Nevertheless, there are occasions when it may be extremely worthwhile to exploit the nature of
the domain space. A fine line exists between subjective “bias™ and subjective information and it
may, at times, be crucial to cross that line and exploit any a priori knowledge that may be
acquired from the specific problem domain [79,93]. In the case of biochemical spectral data, for
instance, a priori knowledge may allow the investigator to focus his attention to a small set of
spectral regions corresponding to the presence or concentration of some metabolites that are
known to be significant in the diagnosis or monitoring of a disease state. Dimensionality
reduction, therefore, occurs and the subsequent classification process is simplified. Artifact
suppression is also extremely domain-dependent. Dealing with tarnished gold standards may also

be domain-dependent although general preprocessing techniques can be employed. The



exploitation of a priori knowledge is not without its pitfalls, however. The investigator must have
a thorough understanding of the underlying domain and this often involves consultation with one
or more domain experts and all the requisite perils this knowledge acquisition process entails.
Further, the subjective information may obfuscate, otherwise obvious, objective relationships in
the data that similarity measures would have uncovered. The former problem has often
manifested itself in expert system technology [3]. Knowledge acquisition is of paramount
importance in this methodology and poor acquisition leads to poor system performance especially
with respect to “brittleness” — steep rapid, and sometimes complete, degradation of performance
when the expert system is pushed to the periphery of the particular problem domain [77]. As in
the knowledge acquisition versus rule codification dichotomy, the 80/20 rule applies in
classification systems; only 20% of the investigator’s time should be spent on the mechanics of
the selected classifier system, 80% of the time should be spent on a thorough analysis, including
preprocessing, of the data and an understanding of the problem domain. The latter problem can be
resolved by using subjective information only after a strict objective analysis has been performed.
In conclusion, a priori knowledge of a particular problem domain may be invaluable in the

classification process but caution must be exercised in its exploitation.

3.2.3 Verification
How is the performance of a classification system to be measured? One verification method is

to divide the data into a design set and a test set (a 2:1 ratio is often used). The classification
system uses the design set to set all the necessary parameters particular to it. The system is then
presented with vectors from the test set and the corresponding output vectors are computed. An
nxn contingency table of desired versus actual classification outcomes is constructed. A typical

measure of performance is

F, =-Z—1‘fi—(’=1....,k (18)
N )



where N is the total nurber of vectors in the test set and & is the number of groups.

There are a number of concerns with this method. First, biases are introduced when the data are
artificially divided into design and test sets. That is, the measure of agreement, P,, will change
depending on the selection of design and test sets. A simple solution is to build several randomly
sampled design and tests set pairs and compute the average P, of all pairs. Another method is to
use the leave-one-out cross-validation strategy: build N (V is now the total number of vectors)
design/test set pairs where each test set comprises a single vector and each design set comprises

the remaining N-1 vectors.

Another issue is poorly distributed groups in the sample, that is, at least one of the groups has a
small number of vectors with respect to the remaining groups. It is important, especially with
non-linear iterative classifiers, that the design set has roughly the same number of vectors from
each group, otherwise the under-represented group will contribute less significantly to the design
process and, therefore, there will be a concomitant loss of agreement between the desired and
actual outcomes for the test vectors within the under-represented group. If the smallest group is
still large, in absolute terms, one can simply use a percentage of the number of vectors in that
group as a design set floor for all other groups. Unfortunately, if the smallest group is small, in
absolute terms, this will not work. One could artificially increase the number of samples in the
smallest group by adding copies of randomly selected vectors into the group. Additionally, noise

can be introduced to the copies.

One final problem is that the measure of agreement, P,, does not take into account the

agreement that might be due to chance [30]

= Z(Zj;jzzinﬁ )(i,j = 1.-..,k) ( 19 )

F,

For example, Table 3 and Table 4 are two contingency tables for a 300-vector classification

problem where 10%, 80%, and 10% of the vectors are in groups 1, 2, and 3, respectively. At first



glance, since P,=0.66 for both tables, the results seem to indicate equivalent classification
performance. In Table 3, however, the vectors were randomly assigned in accordance with their
marginal rates, that is, 10% of the vectors were assigned to each of groups 1 and 3 and the
remaining 80% were assigned to group 2. This is evident if we compute P, for both tables. For

Table 4 P.=0.52 but P.=0.66 for Table 3 clearly indicating, in this case, that all of the measured

agreement is due simply to chance.
Groupl Group2 Group 3
Group 1 3 24 3 N;= 30
Group 2 24 192 24 N,=240
Group 3 3 24 3 Ny= 30
P, 0.66 N= 300

Table 3: 300-vector 3-group contingency table (P=0.66)
Groupl Group2 Group 3

Group 1 15 10 S N= 30
Group 2 37 163 40 N,=240
Group 3 2 8 20 N;= 30

P, 0.66 N= 300

Table 4: 300-vector 3-group contingency table (P.=0.52)

This example strongly suggests that chance must be accounted for by an agreement measure.
One option is to use the x coefficient {21,33] as a chance-corrected measure of agreement

between the desired and actual group assignments

c=b—F 20
P (20)

c

If the agreement is due strictly to chance then x=0. If the agreement is greater than chance then
©>0; k=1 indicates complete agreement. If the agreement is less than chance then k<0 with the
minimum value dependent upon the marginal distributions. Figure 9 plots decaying x values for
P,=0.66 as P. increases. Returning to the example, k=0.00 for Table 3 indicating that the

observed agreement is due strictly to chance but x=0.29 for Table 4.

An arbitrary but useful benchmark for the strength of the agreement is discussed in [68],

namely, the agreement strength is poor if x=0, slight if 0.00<x<0.20, fair if 0.20<x<0.40,



moderate if 0.40<x<0.60, substantial if 0.60<x<0.80, and almost perfect if 0.80<x<1.00. Under a

number of assumptions the asymptotic large sample variance of K may also be computed [30,34].
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Figure 9: k as a function of P_ (P,=0.66)

3.3 Data Sets
The data sets that will be used throughout the thesis will now be presented. These data sets are

widely divergent in character. Artificial data will be used for a thorough pedagogical examination
of the techniques to be described since we have “control” over them. Three “real world”
biomedical spectral data sets will also be used: spectra acquired from an infrared spectrometer
using diseased and control brain tissue; spectra acquired from a magnetic resonance spectrometer
using normal and cancerous thyroid tissue; and magnetic resonance spectra of brain neoplasms.
These data are classified according to their respective gold standards; the edict of the medical

pathologist after performing a morphological analysis of the tissue samples.

3.3.1 Bounding problem in n-dimensions
Consider a data set consisting of points, x=[x;, x;J, such that xe0, if -0.75<x;<0.75 and

-0.75<x2<0.75, otherwise, x€ ;. Figure 10 shows four (2n) lines, H1 through H4, that perfectly

separate the two classes.
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Figure 10: The bounding problem in two dimensions
This bounding problem can easily be extended to the n-dimensional case. Artificial data were

generated that fall into two classes: those points that are bounded by a set of hyperplanes and
those that are outside the region. A point x=[xi, x», ..., x;]J€ @, if -0.75<x<0.75 (Vi=l1, 2, ..., n),
otherwise xe @ (note that 2n hyperplanes will perfectly separate the two classes). Equal numbers
of points were selected from each class: @, points were randomly selected from a uniform
distribution in the range (-0.75,0.75)"; @, points were randomly selected from a uniform

distribution in the disjoint ranges [-1.0,-0.75]" and [0.75,1.0]".

3.3.2 Disk and torus
In this artificial data set, a unit circular disk centred at the origin is surrounded by a 2-

dimensional torus of equal area (Figure 11). The data set falls into two classes: those points that
lie within the disk, @y, and those points that lie within the torus, ;. The design and test sets each
contain N points: N/2 within the disk and N/2 within the torus. Points from class @ were
randomly selected from a uniform distribution in the range [-1.0,1.0]* such that they were in the
unit circular disk centred at the origin (with area ). Points from class w, were randomly selected
from a uniform distribution in the disjoint ranges [-V2,-1.0]* and [1.0,V2]? such that they were in
the torus centred at the origin (also with area &t). In order to determine the efficacy of the

classifiers when data are not equally distributed, the data in the design set were randomly selected
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such that only 10% of the data within the disk had their first coordinate less than zero and only

10% of the data within the torus had their second coordinate greater than zero.

Figure 11: Distribution of design data

3.3.3 One-dimensional points with various distributions
For each of a collection of data sets, 200 one-dimensional points were randomly selected using

two different distributions. All points from the first distribution were assigned @y (N;=100) with
the remainder assigned to @, (N>=100). The design set was comprised of S0 @ points and 50 w,

points (N,=100) with the remaining points assigned to the test set (N=100).

For the first data set (Figure 12), the @, points were sampled from the normal distribution
N(0,1) (mean of 0 with standard deviation of 1) and the @, points were sampled from N(3,1). For
the second data set (Figure 13), the @, points were sampled from the normal distribution N(0,1)
and the o, points were sampled from N(3,2). For the third data set (Figure 14), half of the ay
points were sampled from the N(0,1) and the other half were sampled from N(5,1) while all of the
@, points were sampled from N(10,1). For the fourth and final one-dimensional data set (Figure
15), all e points were sampled from the N(10,2), while all & points were sampled from a log
normal distribution with mean of 2 and a standard deviation of 1. Hence, ®; is a highly skewed

group with a probability density function (pdf) that significantly overlaps the pdf of w,.
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Figure 13: Normal distributions with unequal variances
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Figure 14: Normal and bimodal distributions
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3.3.4 Magnetic resonance spectral data

Magnetic resonance (MR) spectroscopy is quickly emerging as an effective noninvasive

diagnostic tool. MR spectra reflect altered cellular chemistry before gross morphological changes
are manifest.

One-dimensional magnetic resonance spectra were obtained at 360 MHz (37°C) for 25 thyroid
biopsies. Of these, 16 had papillary carcinomas and 9 were classified as normal. Two phased
spectral regions were analyzed: the main lipid CH, and CH; peaks, 0.64-2.59 ppm; and the
choline-like species, 2.59~3.41 ppm. Analysis was based on 170 input points for the choline
region and 400 input points for the lipid region. This data is particularly difficult to classify: it is a

small data set, the classification assignments are not particularly crisp, and the spectra are quite

noisy.

The other data set comprises 206 'H MR spectra (360 MHz, 37°) consisting of 95 meningiomas
(M), 74 astrocytomas (A), and 37 control samples of non-tumourous brain tissue from patients
with epilepsy (E). The 550 data points in the region of 0.3—4.0 ppm were used in the analyses.
The phased spectra were randomly assigned to either a design set (n=80) or a test set (n=126).
The design set contained 29 M’s, 31 A’s, and 20 E’s. Figure 16 shows typical spectra. A

subsequent normalized data set was also created where each datum was divided by the area of its

spectrum.
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Figure 16: Typical magnetic resonance spectra

3.3.5 infrared spectral data

Alzheimer’s disease (AD) is a progressive brain disease usually occurring in persons over fifty
years of age. It is the most common dementia of adult life and is marked by a general atrophy of
the brain. Chief symptoms include memory loss, disorientation, and impaired judgment and
speech [S57]. The pathological hallmarks of AD are the abnormal neuritic plaque deposits and
neurofibrillary tangles in the cortical regions of the brain. Neuritic plaque deposits are roughly
spherical particles that accumulate extracellularly in the AD brain. Neurofibrillary tangles are
bundles of abnormal filaments found intracellularly within neurons that appear up to ten years
after neuritic plaque deposition. Alzheimer’s disease (like all other disease states) is accompanied
by biochemical changes in tissues and cells. Infrared (IR) spectroscopy has been extensively used
in the past for characterizing simple organic molecules, and more recently for the structural
analysis of biological compounds including lipids, proteins and deoxyribonucleic acid (DNA)
[54]. IR spectroscopy, by probing molecular vibrations, is a technique sensitive enough to detect
these changes. An IR spectroscopic study [20] indicates considerable variability in spectra of AD
grey matter which make it difficult to classify AD tissue based upon a subjective spectroscopic

evaluation alone thus making this set a good candidate for investigation.
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Grey and white matter were sampled from various regions of histopathologically confirmed
non-Alzheimer’s (control) and Alzheimer’s diseased age matched brains. For each sample, 200
interferograms were accumulated and Fourier transformed to generate spectra with a nominal
resolution of 4 cm™ in the regions between 10004000 cm™. Each spectrum was discretized to
416 data points. The initial data set was composed of 114 spectra and divided into 49 control
spectra (C) and 65 AD spectra (A). Subsequently, additional spectra were collected and separated
into five classes. The original spectra were also subdivided into these five classes. Of the 163
spectra in this subsequent data set, 49 spectra were from control grey matter tissue (CG), 23
spectra were from control white matter tissue (CW), 58 spectra were from Alzheimer’s diseased
grey matter tissue (AG) and 24 spectra were from Alzheimer’s diseased white matter tissue
(AW). Finally, nine spectra of tissue from a brain with a condition known as 18q ™, characterized
by the presence of neurofibrillary tangles (NT) without any neuritic plaques, were included in the
data set. Figure 17 shows some typical IR spectra in this data set. Note that the control and
Alzheimer’s spectra are significantly different. Distinguishing between gray and white matter

within each is much more difficult, however.
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Figure 17: Typical infrared spectra
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3.4 Field Review
A set of classifiers whose combination is based on the Dempster-Shafer theory of evidence,

which uses statistical information about the relative classification strengths of several classifiers
is characterized in [97] and it is reported that misclassifications are reduced by 15-30%. In [1],
the fusion of several types of robotic scene data using a fuzziness measure enhanced the
recognition capability of an autonomous system. In [53], a bias constraint based on prior
knowledge about the underlying distribution of the data is discussed as 2 means for reducing the

overall error measure of a classifier.

Modular neural networks involve adaptive mixtures of local experts [55]. It consists of a group
of ANNs competing to learn different aspects of a problem. A gating network controls the
competition and learns to assign different regions of the data space to different local expert

networks.

Stacked generalization [120] is a scheme for minimizing the generalization error rate of one or
more generalizers. Stacked generalization works by deducing the biases of the generalizer(s) with

respect to a provided learning set.

A hybrid architecture is described in [73] for classification expert systems that combines
semantic networks and ANNs for representing knowledge. A semantic network is used to
describe the objects of the problem domain and their relations at the intensional and extensional
levels. This hybrid scheme allows the construction of fuzzy expert systems able to inherit useful
properties from the sub-symbolic neural networks and symbolic expert systems, such as: expert
knowledge representation, integration of mmitiple expert knowledge sources, heuristic and

incremental learning, feature selection, and treatment of vague input data.

Flexible data structures and retrieval specifications within a database are achieved using
standard relational formalisms but their implementations are in terms of crisp, static, and

deterministic relations whereas real-world applications data are often imprecise, inherently

~!
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dynamic and non-deterministic. In (36], it is shown how FST can be incorporated into relational
database systems to allow for a wider range of real-world requirements and closer human-

machine interaction.

An approach based on fuzzy classification of epileptiform spikes in electroencephologram
recordings to minimize the number of false positive classifications returned by the monitoring
system is described in [59]. A system is illustrated in [13] that uses fuzzy sets as the
representation framework for the classification of multisource remote sensing data. An interesting
comment made in this paper is that one of the main limitations to properly classifying remote
sensing data is the acquisition of domain knowledge from the experts. In [92], a fuzzy
classification method for FFT spectra is described to distinguish abnormal vibrational conditions
of rotating machinery. Nonlinear fuzzy operators, optimally tuned using genetic algorithms
(optimal tuning of fuzzy sets is a vital area of investigation [5]), bave been successfully used as
an image processing method [101]. A plethora of research has been undertaken in the area of
enhancing classification, signal processing, and sensors using FST [6,26,66,101,102). Analysis
and classification of esophageal motility records were investigated in {2] using signal processing
and fuzzy-set pattern recognition techniques. The FST extensions reduced the classification error
rate by half. Similar results were achieved in [115] where blood cell anomalies were

discriminated.

Computerized alarm systems have been well accepted in clinical medicine but suffer from not
being able to handle patient/disease specificity, temporal changes, dynamic patterns, and
multivariable combinations. The approach in [46] uses techniques from fuzzy set theory and

artificial intelligence in order to initialize the alarm system and interpret the incoming data.

One of the earliest fuzzy neural network hybrids is found in [70]. One of the first practical
applications of a fuzzy controller, the operation of a cement kiln, is described in [116]. The

classification performance of an ANN in a prognostic problem in aviation medicine was

38



enhanced using similar FST-based extensions as above to the ANN’s PEs [67] that conceptually
resembled some components from the physician’s decision process. In [117], fuzzy discriminant
analysis, based on the technique described in [85], is used to successfully diagnose valvular heart
disease. In [81], a fuzzy multi-layer perceptron is used for diagnosing hepatobiliary disorders. A
good review of fuzzy neural networks is offered in [16].

Fuzzy integrals have also been used to combine multiple neural networks to improve the
classification performance of any individual networks. For instance, [19] reports the success of a
fuzzy integration technique that nonlinearly combines objective evidence, in the form of a
membership function, with subjective evaluation of the worth of the individual neural networks
with respect to the decision. In [28], possibility theory and its use in data fusion in poorly defined

environments is discussed in detail.
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4 Classifiers
This chapter describes the classifiers that will be used on the transformed data generated by the

preprocessing techniques. The first, linear discrimination, is a traditional technique and the
remaining three are ANN architectures: the MLP, the probabilistic neural network (PNN), and an
ANN implementation of radial basis functions. Some enhancements of each classifier are also

presented.

4.1 Linear Discriminant Analysis
When building a decision boundary between groups, it is not sufficient to simply examine the

differences between the classes, the error distributions must also be taken into account. Notice the
first decision boundary perfectly separating the & and ®; centroids in Figure 18. Now, assuming
the first error distribution, this decision boundary continues to perfectly separate the two groups.
However, if the second error distribution is the case, the first decision boundary is perpendicular
to the best decision boundary (boundary 2). Therefore, in addition to taking into account the
between-group variances, a classifier must also account for within-group variances. Linear
discriminant analysis is a classifier strategy that builds linear decision boundaries between groups
while taking into account between-group and within-group variances [76]. If the error
distributions are the same, it can be shown that linear discriminant analysis constructs the optimal
linear decision boundary between groups [56]. Unfortunately, this optimality is gained by the
underlying assumption that the covariance matrix within each group is the same for each group,
that is, the only difference among groups are different central tendencies. In real-world situations,
this is seldom the case, different groups may give rise to different distributions. For instance, if
the first group in Figure 18 has the first error distribution but the second group has the second
error distribution, a linear decision boundary can no longer be constructed to completely separate

the two groups.
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Figure 18: Error distributions affect discriminant functions
If x is an n-dimensional vector it will have a different probability distribution, f(x), in each of

the groups, @, ®,, ..., &%, otherwise some or all of the groups are indistinguishable. As described
in section 2.1, a classification rule can be defined by a partition of the input space into &
exhaustive and mutually exclusive regions, £, £, -.., Q; with the decision rule that assigps to o
those vectors that fall in ;. As the theoretical derivation of the following is not germane to the
thesis and is thoroughly described in the literature {22], only an intuitive justification of linear
discriminant analysis will be offered. Let ¢; be the prior probability of observing a vector from .
If the prior probabilities are not known, they may all be set to 1/k, or proportional probabilities,
NN, may be used for each ®;. A vector, x, should be allocated to the group for which the
probability distribution, f(x), is greater than any other distribution, while taking into account

known prior probabilities. So,
xe @, if q.f(x)2q,f;(x)(Vi=1...,k). (21)

The two key assumptions for linear discriminant analysis are: all groups are multivariate
normal populations (with different mean vectors, W; (i=l,...,k)); all groups have the same

covariance matrix, W. Given these assumptions, then

a.f (x)= g ((Zﬂrlwly e("%(x-u.)’W'l(x—ug ) (22)
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and, with some algebraic manipulations,

log(q.£,(x))= logq, + Llog(2x Y W)~ £ (x— 11, Y W' (x~ 1, (23)

hence,

log(g. £, (x))=t1og(2x Y W)~ LW 'x+log g, + WTW ™ (x—$p,).  (24)

Given ( 21 ), it is clear that x should be allocated to the group for which ( 23 ) is highest. The
linear discriminant function, L{(x), may now be defined for w;. Since the first two terms in ( 24 )

are the same for all groups, x should be assigned to the group @ for which

L(x)=logq +u W (x—+u,) (25)
is greatest. If the prior probabilities are assumed to be equal then the first term in ( 25 ) may be
ignored. The difference, Dj(x)=Li(x)~L{(x)=0, defines the hyperplane in the input space that
separates @ from « [38]. Figure 19 shows a three class 2-dimensional classification problem and
the decision boundaries produced by linear discriminant analysis. The decision rule is
straightforward: if Dy,(x)>0 and D.;(x)>0 then xewy; if Di2(x)<0 and D;i(x)>0 then xewy;

otherwise, xe a,.
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Figure 19: Decision boundaries produced by linear discriminant analysis



4.2 Multi-layer Perceptron
The MLP [45], a supervised feed-forward ANN employing the back-propagation algorithm, has

served as a workhorse and a touchstone for many fruitful inquiries (Figure 20). The nonlinear

transfer (activation) function, ¥, is traditionally the logistic function,

y(x)=(1+e™)" (26)

however, any sigmoid function is permissible. A sigmoid function is an “S-shaped” function, and
the logistic form of it maps the interval [-ec,co] onto {0,1]. If I is small, then Yy can be

approximated by a linear function. The output of PE j is
x, = 1w + X war,). (27)

The transfer function is applied to the summation of the outputs of the PEs from the previous
layer multiplied by the respective i weights. The term, wy, is the PEs bias (or threshold).
Assuming n inputs, the geometrical interpretation of ( 27 ) is as follows. The summation term
defines the orientation of an (n-1)-dimensional hyperplane about the origin in the n-dimensional
input space. The bias term defines the distance of the hyperplane from the origin [29]. Non-
linearity is introduced when multiple PEs are used in the same layer. As a notational convenience,
the bias term may be thought of as an additional weight term for the PE except that its input is

always equal to one. It may then be absorbed into the summation.
The global error function that is typically used in a MLP is
E= O.5§((dk -0,)%) (28)
where the d;'s and o,’s are the respective components of the desired and actual outputs. Different
performance indices may be used, however. For instance, an L, norm variant can be used instead

of the L, norm in ( 28 ) in order to make the function more robust. The weight changes are

calculated using a gradient descent strategy (delta rule)
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Awﬁ =—a[ I9E ] (29)

where @ is a learning coefficient in the range [0,1]. The local error for 2 PE is determined by
solving ( 29 ) using ( 26 ), ( 27 ), and ( 28 )(see [100] for a derivation). In general terms, a MLP
may be considered a non-linear regression system that performs a gradient descent search through
the weight space, searching for minima. Thorough discussions on MLPs and ANNs in general

may be found in [25,47,61,113].

Figure 20: A multi-layer perceptron

4.2.1 Conventional enhancements
A number of enhancements may be made to MLPs that: increase the rate of convergence;

increase robustness; or improve the accuracy of the final results. A few of these will now be

discussed.

To increase the rate of convergence, a momentum term, §, in the weight update equation

Awﬁ=—a(;f ]+ﬁAwﬁ (30)

i

may be used [72].

Using the hyperbolic tangent function as the transfer function instead of the logistic function

typically improves the performance of a MLP [43]. The transfer function’s output is a multiplier



in the weight update formula. The logistic function’s range of [0,1] may cause a bias towards
learning larger values. However, the hyperbolic tangent function is bipolar hence this will not

occur. A gain term, g, may also be introduced into the sigmoid
tr(x)=(1+e™*)" (31)

A large gain value may increase the rate of convergence but at the same time makes the MLP

more susceptible to pitted error surfaces and may cause wild oscillations during learning.

Different learning and momentum rates may be used for each layer and/or after each of a set of
predetermined number of iterations. A typical scenario is to use large learning and momentum
values for the initial layers and/or the initial sets of iterations and successively smaller values for
subsequent layers and/or sets of iterations. The end effect of this modulated learning strategy is to
search for gross data features at the initial layers and/or during the initial sets of iterations and

successively refine these detected features by subsequent layers and/or sets of iterations.

4.3 Probabilistic Neural Networks
The PNN has been successfully used as a general technique for solving pattern classification

problems [106,111]. It uses design data to build probability density functions that are used to
estimate the likelihood of a given vector falling into a particular category. For example, sonar
spectra have been presented to a PNN to determine hull-to—emitter correlations in order to predict
the likelihood of a given signal coming from submarines, ships, or other objects [75]. A PNN is
an ANN implementation of a Bayesian classifier that uses Parzen estimators to build the required
density functions. As a Bayesian classifier, a PNN can take advantage of a priori probabilities if
they are available (for instance, if a test vector is equally likely to fall into class X or class ¥ but
class X has a higher relative frequency than class Y, then the vector will, inter pares, be classified
as a class X vector). If relative frequencies are not known then proportional probabilities are used.

Compared with MLPs (and gradient descent methods in general), PNNs offer several advantages:

15



training is typically significantly faster; the design set may be modified without the need for
extensive retraining periods; unlike MLPs that only guarantees convergence to a local minimum,
as more design data is included, the PNN converges to a Bayesian classifier. This last point is
important because a Bayesian classifier provides an optimum approach to pattern classification in
terms of minimizing expected risk and, as such, is a benchmark of optimality. At the same time,
PNNs retain the same advantages of MLPs: they are universal function approximators —
arbitrary nonlinear decision boundaries can be constructed based solely on design data; in other

words, they can robustly generalize.

Bayes theorem provides a method for performing optimal classifications; given enough data, it
demonstrates how to classify a test vector with the maximum probability of success. Due to its
sound theoretical foundations, the Bayesian classifier is often used as a standard against which

other methods are evaluated [74].

Suppose that we wish to classify the magnetic resonance spectra of thyroid tissue (as described
in section 3.3.3) to determine whether it is normal, moderately diseased, or severely diseased
based on a two-dimensional feature vector; namely, the choline and lipid regions of the spectra.
Assume that the probabilities of each disease state having the measured choline and lipid spectral
properties are known. In other words, the two-dimensional probability density functions (choline
and lipid) is known for normal, f,, moderately diseased, f,, and severely diseased, f,, thyroid
tissue. Also assume that, from medical history, the a priori probabilities of a tissue sample falling
into one of the three classes are also known to be h,, hn,, and h;, respectively. If the a priori
probabilities are not known then proportional probabilities may be used. Finally, let /,, /n, /; be the
respective loss or penalty incurred for misclassifying a tissue sample as normal, moderately
diseased, or severely diseased (for example, there may be a greater financial (and ethical) cost
associated with misclassifying moderately-diseased tissue as normal than for normal tissue to be

misclassified as moderately-diseased). In general, each class may have a different
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misclassification loss for each other class thereby resulting in a loss matrix. This complexity is
avoided by assuming the loss to be equal and positive for each class. An optimal classification

can be made by assigning the tissue sample to the class whose product, fiolw, is greatest.

4.3.1 Parzen estimators
The ideal f for each class is its pdf [104). If they are known then a PNN may be constructed

whose architecture would correspond exactly to a Bayesian classifier. Unfortunately, pdfs are
rarely known and must be approximated through the construction of a sampling histogram. As the
number of sampling bins are increased, the histogram approaches the corresponding pdf assuming
appropriate scaling to ensure the integral of the approximating curve is unity (a necessary
criterion for pdfs). Parzen [86] developed a technique whereby pdfs may be estimated using
sparse or inaccurate data sets. This technique — Parzen estimators — involves constructing unit
area Gaussian functions centered at the values of the features for every design set vector. These
Gaussian functions are summed and scaled to produce a composite curve. Parzen demonstrated
that, as the number of design vectors increase, the composite curve asymptotically approaches the
true pdf. Since PNNs use Parzen estimators, it is clear that the more design data used, the more
accurate the final classification outcomes. However, it is not possible to determine the number of

vectors required to estimate the pdf to a specified accuracy.

Parzen estimators can be easily extended to the n-dimensional case [110). Moreover, it is
unnecessary to compute the approximated pdf but rather only the values at each point,

x=[xy, X, ..., X], to be classified. The value of the pdf of ay at x is:

R SR A, [,V
fite) 2n%6"N, .gx'e 32

where x’; is the i® ay design vector, and 6=0(N}) is a smoothing parameter which must satisfy two

conditions [17],

47



G(Nj)=0 (33)
and

},ff_{l,N,-"(N;)=°° (34)

olv,)=N" (35)

where 0<b<]1, then ( 33 ) and ( 34 ) are satisfied. If d<<1 then each Gaussian constituent of ( 32 ),
known as Parzen kernels, will be sharply peaked. As ¢ approaches zero, the PNN approximates a
nearest neighbour classifier. Specht [107] demonstrated that classification performance is
relatively Iusensitive to the choice of 6. However, as G increases, the decision boundaries
approach hyperplanes thereby limiting the classifier to functions that are linearly separable.
Therefore, it is desirable to keep ¢ small in order that the more robust nearest neighbor scenario

occurs.
An unknown test vector will be classified as belonging to @ if
hil;f; 2 nl.f,(vi# ) (36)

where 4 and [ are the respective prior probabilities and loss functions for each class, if available

(see section 3.2.1). Now if we rewrite the Parzen kernels from ( 32 ) as
2x7 x}=xTx- (2 2
e( xf ‘/r o V o ) (37)

and if we also normalize all input data (x"x=1), the PNN implementation of the above is

straightforward since ( 37 ) can then be rewritten as

e(x’r.'—lyv’ (38)
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Normalization can be problematic if collinear vectors need to retain their distinctiveness — for
instance, pixel values of the same image at different illumination levels. Although normalization
simplifies its architecture, a PNN can deal with Parzen kernels of the form found in ( 37 ) rather

than ( 38 ) with only a corresponding increase in complexity.

The term x"x’; is the inner product of the unknown vector and a design vector. If a PE has its
incoming weights set to the design vector, »/, then a standard MLP treatment of that PE will

implement ( 38 ) as a transfer function.

Figure 21 illustrates the architecture of a PNN. The input layer passes an n-dimensional vector
to the normalization layer. The weights entering a pattern layer PE, %/, are simply the component
values of the i design vector from the class @ The output from each pattern layer is the value of
the corresponding Parzen kernel, ( 38 ). Each PE, f, in the summation layer sums all Parzen
kernels for ay. The classification layer is basically a competitive layer; if the summation layer PE,
Jfi has a value greater than any other PE, f; (i#/), then the corresponding classification layer PE, c;,
will output a 1, otherwise it will output a O, thereby indicating the class of the current input

vector.

@ Classification Layer

Summation Layer

Normalization Layer

x X2 .. I Input Layer

Figure 21: PNN architecture
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4.4 Radial Basis Function Neural Networks
A radial basis function neural network (RBFN) has an internal representation of hidden PEs

that are radially symmetric [45,121]. It should be noted that the literature has referred to RBFNs
by different names: localized receptive fields {82], locally tuned processing units [83],
regularization networks [37], and Gaussian potential functions [69]. Since radial symmetry is the
essential concept with this architecture, the more descriptive, “RBFN” will be used. The output of

a PE possessing radial symmetry is
fx)=0(x-u|) (39)

where: | is the PE's centre, represented by a vector in the input space, that is stored in the
weights from the input layer to the PE; the distance metric (often Euclidean distance) determines
how far an input vector is from W; and, the transfer function, @ (typically a Gaussian function),
must output high values when the distance from an input vector to p is small, and low values
otherwise. RBFNSs are a class of universal function approximators [90] that are often used as
classifiers [71]. That is, given an RBFN with enough hidden layer PEs, it can approximate any
continuous function with arbitrary accuracy [42]. RBFNs typically train more quickly than
traditional MLPs [119]. Also, there is the useful feature that the hidden PEs represent density
functions for the input space and may be used as a probability measure for new input vectors.
However, there are also several problems with this architecture: since the receptive fields are
localized they do not perform well if discriminatory features are globally distributed throughout

the input space; the selection of the number of receptive fields is strictly an ad hoc procedure.

Figure 22 illustrates the topology of a RBFN. If J; is a column vector representing the centre of
pattern layer PE i, and o; is the diameter of its receptive region, then the PE’s output, f;, for a

given test vector, x=[x;, x;, ..., X}, is

fi(x)=e“H ) (x-p)/2aly (40)
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PE j in the output layer generates the sum, y;, of the product of the pattern layer fs and the

respective weights;
Yi= Zﬂ“’ii (41)

The normalization layer is optional. PE j in the normalization layer generates, c;, which is the

normalized y; from the output layer

(42)
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5 Conventional Preprocessing Methodologies
As discussed in section 3.1.2, many preprocessing strategies exist that transform the input space

prior to presentation to a classifier. Three main problems potentially exist when trying to build a
classification system that deals with a small set of high-dimensional data. Of course, the first is
the computational burden placed upon the classifier. The second is overfitting: the classifier may
focus on meaningless or unimportant idiosyncrasies of individual design cases instead of building
a genuine generalization, based on the design set, that may be successfully used on a test set. The
final problem is correlation between variables — variables can be highly correlated even in a
low-dimensional problem (or completely independent in a high-dimensional space, for that
matter), however, the probability of interdependencies in general increases with the
dimensionality of the input space. Many classifiers assume that input variables are independent
and high correlation can seriously degrade their performance. This chapter reviews two
traditional methods: adjustments to the receptive fields of the RBFN, and principal component

analysis.

5.1 Receptive Fields -
Figure 23 illustrates a two-dimensional example of ( 40 ) and ( 41 ) where the final outputs are

not normalized (hence we can ignore ( 42 )). Figure 24 shows the response of the RBFN, given a
two-dimensional input vector. The top of the Gaussian bump is p=[j,;, 1,] and the distance from
W to the point at which the curve flattens out is o; that is, the function is radially symmetric
around 4. When an input vector, x=[x;, x], is equal to W, the response function produces its
maximum output, one. As x deviates from , the response quickly drops to zero. The range of the
receptive field of the response function is determined by the value of 6. (The receptive field of a
RBFN pattern layer PE differs from that of a neuron in the visual cortex as well as other regions
of the human brain, where the receptive field is determined by neuronal interconnectivity. In

contrast, a RBFN PE'’s receptive field range is controlled by the shape of the exponential
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function. Since this report is not concerned with the biological plausibility of the ANNs under
investigation, this is not an issue of contention.) The values 4 and ¢ may analogously be viewed

as the mean and standard deviation of the response curve, respectively.

0
()
o9

ONO

Figure 23: A two-dimensional RBFN PE

X1

Figure 24: Receptive field of a two-dimensionai RBFN
The response function of a RBFN PE diminishes rapidly as an input vector deviates from the

PE’s mean. Since this function is typically (but not exclusively) characterized by a Gaussian
exponential function it gives rise to a localized “Gaussian bump” response. The set of pattern
layer PEs is designed so that their responses cover all significant regions of the input vector
space. In the simplest case, both the pattern layer and output layer weights remain fixed; there is
no training at all. Further there is one pattern layer PE for every design vector. In a slightly more
complex extension, only the output layer weights are trained; this is a straightforward, and rapid,
training of a single layer linear system. A further extension includes training the pattern layer
weights as well as the location and shape of the response curves. In this section, we will examine
several strategies for training the different parameters in a RBFN. As with other ANNs, a RBFN

has two operational modes: a training mode where the parameters such as y;, o;, and the weight



matrix, are adjusted in order to minimize the mean error (over the design vector set) between the
desired classification outcomes and the actual outcomes produced by the RBFN; and a test mode

where the performance of the trained RBFN is evaluated by using previously unseen vectors.

There are several alternatives for determining the location of the centers of the receptive fields
of the pattern layer PEs. The simplest alternative is to have one PE for every vector in the design
set. However, this may become completely impractical if there are a large number of design
vectors; the amount of time required to train such a network as well as to test it would be
inordinately great. A more robust strategy is to take advantage of the fact that design vectors
typically tend to occur in clusters, and use an unsupervised clustering algorithm to reduce the

number of pattern layer PEs.

Standard k-means clustering is one possible strategy to compute a set of p;s. This algorithm
assumes that all of the design vectors are available and that there are a fixed number of clusters
(centres). Approximately k centres are usually selected (for clarity, assume k centres here). The
standard k-means algorithm will ensure that the sum of the squares of the distances between each
design vector and its closest centre is a local minimum. The algorithm begins with a set of k
random centres. Each design vector is examined to determine the closest centre to it. A new set of
centres is computed by taking the average of all design vectors, for each centre, and using those
averages as the new centres. This step is repeated for a fixed number of iterations or until the

membership function no longer changes.

The adaptive k-means clustering algorithm is a modification of the previous algorithm that does
not require retention of past design vectors. It is basically competitive Kohonen learning [61] that
begins with a set of & random centres. For every design vector, x;, the centre, y;, closest to x;, is

modified as follows,

we = p +a(x, - u™) (43)
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where o is a learning rate that decreases with the number of epochs. This step repeats for a fixed

number of iterations or until the learning rate decreases to zero.

One final variation involves the dynamic initialization of the adaptive k-means clustering
algorithm to ensure that all centres are actually used. The k centres are initially disabled. For each
design vector, x; if it is within a specified distance to the closest enabled centre, then modify that
centre using ( 43 ), otherwise, enable a new centre at x;. The termination condition is the same as
with the adaptive k-means algorithm.

The radius of the receptive region of y; is determined by the o;. If the y;s are widely separated
then the g;s should be large to cover the gaps. If the ;s are tightly packed then the 6;s should be
small enough to accurately retain the distinctiveness of each receptive field. One technique that
may be used to determine the ©; is to use a P-nearest neighbour heuristic. Given a centre, J;, let

i1, iz, -.., ip be the indices of the P centres nearest to ;. Then the corresponding o; is

In order to simplify the computations required for ( 44 ), P is often set to one so that only the

2

(44)

single nearest neighbour is considered.

Once the J;s and G;s have been selected, the output layer weight matrix may then be optimized.
A standard technique is to use a supervised training strategy such as gradient descent learning as
described by ( 29 ). Most of the y;s will be close to zero for a given input vector since that vector
will be near only one receptive field. As a consequence, the corresponding weight changes will be
small. To improve training time, this fact can be exploited by ignoring the receptive fields with

small activations.

An ill-advised strategy to determine the values of the weights is to treat the problem as a

solution of the matrix equation, W=Y"'D; where W is the weight matrix, D is a matrix whose rows
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are the desired outcomes, and Y is a matrix whose rows are the outputs from the output layer for
each design set vector. The matrix Y is generally not invertible because it is typically not square.
Further even if a pseudoinverse exists it may not be easily determined [108]. The matrix may be
ill-conditioned because it is singular or nearly singular. Even more complex techniques such as

singular value decomposition may fail because of the possible limited accuracy of the results.

5.2 Principal Component Analysis
The motivation behind principal component analysis, first described by Pearson [87] with a

practical computing method described by Hotelling [49], is to find a set of directions that explain
as much of the variability of the original data as possible. In other words, given a set of N n-
dimensional points, the principal components are a new set of orthogonal linear coordinates such
that the variances of the original points with respect to these derived coordinates are in decreasing
orders of magnitude [9]. As a result each principal component is uncorrelated with the other
principal compouents (in a normal distribution, they are statistically independent). Moreover, it
can be shown [65] that no other set of k variables can account for more of the variability in the

original data than the first k principal components.

The first principal component, Y,, of the original input variables x;, x;, ..., X, is the linear

combination
4 =ialixr'9 zaxzi =1 (45)
i=l

The constraint on the coefficients is necessary otherwise the variance of ¥; can be increased
simply by increasing the value of any coefficient. The second principal component, Y,, would be
computed in a similar fashion to ( 45 ). Figure 25 is a plot of some bivariate data and its two
principal components. It is clear from this figure that an additional constraint, orthogonality to the
first principal component, is required to compute the second principal component, otherwise it

would simply be driven to the first principal component. Orthogonality is ensured by restricting



the variables of the second principal component to those that are uncorrelated with the first
principal component. As a result of this orthogonality constraint, if there are n variables then
there can be up to n principal components [76]. In fact, if the original variables are completely
uncorrelated, then all # principal components must be used to take into account the variance in
the original variables. In this particular case, principal component analysis serves no useful
purpose since the motivation behind the technique is to reduce the dimensionality of the original
input space. However, in “real-world” high-dimensional data, the converse is usually true; the

variables are highly correlated and hence only 1<k<<r principal components are required to

account for all of the variation.

Figure 25: Two principal components, Y, and Y-

Determining the principal components is a straightforward process involving the computation
of the eigensystem of the original data’s covariance matrix, C, whose element ¢, is the sample
covariance between variables / and m

1 N
Cbu":‘ﬁ"':l‘Z(xu‘ﬂtxxm -u,). (46)

i=l
The proof that this is the case will not be presented here; it is not difficult but somewhat lengthy
and can be found in any good text on multivariate statistics [32,38,65,103). The variances of the

principal components are the eigenvalues of C, A;2A,>...2A,20 (the covariance matrix is



quadratic and hence admits no negative eigenvalues). The variance of a principal component, Y.,
is A; and its constants a;;, agz, ..., an are the elements of the corresponding eigenvector. A
potential problem here is that the significance of a variable in principal component analysis
changes with a change of scale of one or more of the variables. In order to avoid a variable having
an undue influence on the principal components the original variables can be standardized
(means of zero and variances of one). If the variables are standardized then, instead of using the

sample covariance matrix, C, one may use C, the sample correlation matrix.

The principal components that are computed for the data sets described in section 3.3 use their
respective correlation matrices. The strategy employed in this thesis is to take the first k principal
components whose cumulative variance exceeds some threshold (>95%). This reduction is
significant, that is, k<<n: it is often the case that more than 80% of the cumulative variance of
sets of high-dimensional (72>500) biomedical spectra acquired from magnetic resonance

spectrometers, are accounted for by only the first one or two principal componems.

PCA is often an effective preprocessing technique [7] but it suffers from several deficiencies.
First, if new data are to be analyzed then the principal components of the original data need to be
re-computed and the principal components of the new data must be calculated. Second, it is not
possible, in general (and especially for high dimension problems), to determine what input
features are relevant in the classification, that is, original input values cannot be determined solely
using the principal component values. Unfortunately, it is often important to make such
determinations in order to have a better understanding of the problem at hand. Finally, PCA
orders the components based on maximal variance. Unfortunately, this does not necessarily
translate into maximal discriminatory power [56]. For instance, say the method used to acquire
values for a particular variable is extremely prone measurement error, then this variable will have
a high variance. Now, assuming this variance is greater than other variables, the first principal

component will be approximately equal to this suspect variable, and hence, this principal
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component will be useless in discriminating between groups. Conversely, a highly discriminatory
variable may have an extremely small variance and hence will not contribute to the first few
principal components. Section 8.2 presents examples where better discrimination is achieved
using sets of principal components other than the first k. In summary, the moral of all this is:

maximal discriminatory power is not the same as maximal variance.
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6 Fuzzy Data Encoding and Gold Standard Burnishing
Fuzzy encoding, the process of determining the respective degrees to which a datum belongs to

a collection of fuzzy sets and subsequently using these membership grades in place of the original
datum, is presented. Two preprocessing strategies are presented to deal with tarnished gold
standards. Enhancing gold standards by incorporating non-subjective within-group centroid
information via a fuzzy set theoretic approach is also discussed. The second uses a robust
estimation of deviations from group medians for the reclassification of spectra in a design set.
This robust reclassification is more radical than enhancing the gold standard in that individuals in

the design set may be assigned to another group.

6.1 Fuzzy Encoding of Feature Space

6.1.1 Fuzzy interquartile encoding
Fuzzy encoding involves taking a single input value and intervalizing it across a collection of

fuzzy sets, thereby producing a list of degrees of membership for each of the fuzzy sets. In other
words, if we have s fuzzy sets, F,, F>, -.., F., and f; is the membership function for fuzzy set i then
the list of values for a single input value x is {fj(x), fo(x), -.., fi(x)}. Selecting intervals for the
fuzzy sets is usually an experimental or heuristic process and is similar to the techniques used in
standard 1-of—k intervalization encodings. The purpose of intervalization is to reduce the effects
of noise in the data as well as to transform the problem in such a way that a non-linear regression
model such as MLP can provide better solutions. The membership functions are simple enough to
define once the intervals have been selected because the definition corresponds to 1-of-k

intervalization with the addition of gradual transitions at the respective interval boundaries.

Now let us derive a formmla to generate a collection of membership functions. First, select the
number of fuzzy sets, m, that are to be used. Let w be the width of the top of the trapezoid of the

fuzzy sets. If w=0, then the f;’s are triangular fuzzy sets Let b, 0<b<I1, be the boundary value at
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the intersection of the fuzzy sets. For simplicity, b is constant for each intersection. Let /; and r;
be the left and right boundary, respectively, of F; such that f(l)= f(r)=b. Let {; and #; be the left

and right boundary, respectively, of F; such that f(#)= f(r)=0 and for all x if fi(x)=0 then x<¥ or
x>r;. Finally, let x be the original non-encoded (NE) input value. Then,

1A(OV[1+w-21+w-b{x-[";';H] f L<g

=&
fi(x)=1 1 if L=r=x (47)
0 if L=r#x

where v and A are the max and min operators, respectively. The bottom two cases define a delta
function when /=r.. This delta function satisfies the definition of a fuzzy set: it is monotonic and
it maps onto the unit interval. Figure 26 shows two trapezoidal fuzzy sets constructed using ( 47 )
overlapping at b. Note that since fi(r)=fir(li1)=b, r=liy; (Vi=l, ..., c~1). It should also be noted

that the corresponding fuzzy sets are symmetric about /; and r;.

1.0 z
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Figure 26: Construction of two fuzzy sets
Substituting /; for x in ( 47 ) gives

f,.(z,.)=1A(0v(1+w-1—*—;—"111'1|4-r,.|n (48)
and, canceling terms,
) =1A0vVb))=b. (49)

Similarly, substituting r; for x in (47 ) gives
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fi(n)=b (50)

Now let us determine ¢ and »;. We need to find x such that fi(x)=0. We can ignore the A and v

operators (to solve 1A9%'=0, one must solve %°=0 and to solve 9’'=0v9=0, one must solve 9=0).

From ( 47 ), we have

1+w—b| L+r]
l+w=-2 -+—4=0
¥ r—l I 2 I b
collecting terms,
2| 2(1+w-b)
and, hence,

Qw-b+2);~bl, , (2w—b+2),~br,
2w~-b+1) " 2(w—b+1)

%= (53)

When b is at least 0.5 then there exists a strict 1-1 correspondence between the fuzzy encoding
and the original input value. Since a particular fuzzy encoding can be produced by only one input
value, the fuzzy encoding of the data does not change the nature of the problem. If 5<0.5 then we
have a 1-many correspondence and the information content of the fuzzy encoding is reduced and
hence the nature of the problem is changed. Furthermore, because of the relationship across each

fuzzy set, the encoding does not introduce any extra degrees of freedom into the problem.

Given a data set, a method is now required to determine appropriate values for /; and r;. One
strategy is to use specific percentiles for each /; and r. The P" percentile of a sample of n
observations is a value such that P% of the area under the relative frequency distribution for the
observations lies to the left of the P percentile and (100-P)% of the areas lies to its right [78].
The specific percentiles used are the 25™ percentile, or lower quartile (Q;), the 50” percentile, or

midquartile (more commonly referred to as the median (m)), and the 75 percentile, or upper



quartile (Qy). To calculate the quartiles for small data sets, where it may be difficuit to use
relative frequency distributions, the measurements may simply be ranked in increasing order of
magnitude and the appropriate values selected: O, is the measurement with rank %(n+1), rounded
to the nearest integer (rounded up if it falls halfway); Qv is the measurement with rank %(n+1),
rounded to the nearest integer (rounded down if it falls halfway); and, m is the measurement with
rank Y2(n+1), if n is odd, or the mean of the measurements with ranks %2n and Y2(n+2), if n is
even. In order to effect uniform coverage, the quartiles are computed for each coordinate, x;, and
the fuzzy sets, F';, F, Fs, F, are constructed around them. The corresponding membership
functions for these four fuzzy sets are used to generate the fuzzy encoded data. To ensure a strict

1-1 mapping between the non-encoded and fuzzy encoded values, w=0 and b=0.5. Specifically,

the membership functions are
£x)=1afov fi~Jx-056 +07)/l0; -o’)] (54)
£G)=1abv i ~[x-05(0; +m’) fn-0})] (55)
F)=1abvli-|x~05(n' + 0} ) /(0] -m)] (56)

file)=1abv h-[x-0.560s + ) /(8" - 0; )| (57)

where ¢¢, (;, n?, O, and P are the smallest value, lower quartile, median, upper quartile, and

largest values of coordinate j, respectively. The & and » boundaries (ignoring the coordinate

index) for ( 54 )=( 57 ) are
3x-0, 30 -
= | = 58
h 2 2 (38)
3QL m 3‘" QL
- . E — — 59
b 2 2 (39)
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A graphical representation of the membership functions, ( 54 }~( 57 ), is shown in Figure 27. This

strategy is not restricted to four fuzzy sets: any number of percentiles may be used.

p o m Qo B Xi
L l Interquartile Range l J
r Data Range 7}

Figure 27: Membership functions used to fuzzy encode coordinate x;
The fuzzy sets shown in Figure 27 assume that the distribution of the underlying data is normal

and that there are sufficient samples to make that distribution apparent. However, this is seidom
the case when dealing with real-world data. Fortunately, normality assumptions are not built into
this method. For example, assume a set of data where a=-1, 0;=0, m=0y=3, and B=9 (see Figure
28). The underlying distribution of this data is highly skewed: a dense population of points are
around 3 and values around 9 may be outliers. Notice that the fuzzy set f; is a delta function since
m=0y.

1.0

0.5
0.0

o Q m=Qy ]
Figure 28: Membership functions used to fuzzy encode highly skewed data
Fuzzy encoding exhibits several useful properties. First, since the membership functions map

values onto the unit interval, the data are automatically scaled. This is particularly useful in the

classification process since scaled data diminish the effects of extreme variances across features.



Without scaled data, features with large variances will predominate over features with small
variances although the latter features may be discriminatory. Another beneficial property is that
values that may be considered outliers impact less severely upon classifiers, such as the MLP,
that employ any type of iterative adjustments to its error function. This does not mean that
samples with features that are outliers are removed during the design or test phases of the
classification process, however. The farther a value is from the interquartile range, the fuzzy
encoded values all tend to zero. In the case of a MLP where its hidden layer PEs are summing
products of weights and input values this is important since, if the fuzzy encoded values of an
outlier are all zero or near zero, those values will contribute very little to the learning process
regardless of the PEs weights; an extremely useful feature if the original value is indeed an outlier
yet if it is not an outlier it still does contribute to a degree. For instance, using the example
quartiles from the previous paragraph, if x=10 then the fuzzy encoded values are {0, 0, 0, 1/3}. If
x=12, the fuzzy encoded values are {0, 0, 0, 0}. Conversely, values that are within the
interquartile range will contribute strongly to the learning process. If x=3, the fuzzy encoded

values are {0, 14, 1, Y2}. If x=2, the fuzzy encoded values are {0, 5/6, 0, 1/3}.

6.1.2 Dimension-preserving fuzzy interquartile encoding
A variant of fuzzy interquartile encoding exists that does not increase the dimensionality of the

feature space. Instead of constructing four triangular fuzzy sets around the quartiles of each
feature, a single piece-wise linear fuzzy set is constructed whose vertices are the lower quartile,
median, and upper quartile. Figure 29 is an example of a single membership function constructed
from a feature’s quartiles where he (0, 1) is a membership threshold such that feature values
within the interquartile range will have membership values greater than h, values outside the

interquartile range but within the minimum and maximum values will have values less than A.
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Figure 29: A single membership function constructed from feature quartiles
Assuming a<Q;<m<Q,<P (respectively, the smallest value, lower quartile, median, upper

quartile, and largest value for feature j), the membership function for the fuzzy set of feature j is

2% if a<x<Q,
0. —-a
(1-h)7’;—’—'%-+h f O, <x<m
) -
fix= r-)=""-41 f ms<x<Q, (62)

-h%:—og—:’,--i—h if Q,<x<p

if x<avx>p

.

For the degenerate cases, occurring when the data are extremely skewed,

fl(x)={1 if a<QL=mvﬁ>QU=m (63)

h if m>Q =avm<Q,=p

6.1.3 Fuzzy cluster encoding
This method employs the fuzzy c-means algorithm [11,122] to determine a set of ¢ centroids

for the data. A distance measure is then used to determine how similar an individual is to each
centroid. These values are substituted for the original data. A particularly useful property of this

methaod is that it changes the dimensionality of the problem space from n to c.

Let X=(x,, x5, ..., X} be a set of data where x,=€R". A fuzzy c-partition or pseudopartition of

X is a family of fuzzy subsets of X, denoted by P={u,, «,, ..., u.} such that
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Yulx)=1 Vk={L.N}

=L (64)

0< Y ulx)<N Vi={l..c}
k=1

Clustering involves finding the fuzzy c-partition and the associated centroids by which the
structure of the data is represented as best as possible, specifically, that the associations are strong
within clusters and weak between clusters. The criterion used as a performance index is computed

by first calculating the cluster centres associated with the pseudopartition P

Z&MW&
gmmw

V.

i (65)
where v; (i=1...c) is the centroid associated with the partition u; and me(1,=) governs the
influence of membership grades. Using ( 65 ), v; the weighted average of data in u; where the
weight of x; is the m® power of the membership grade of x; in the fuzzy set ;. The performance
index Q(P) may now be defined in terms of these centroids

N ¢

Q(P) =YY [, (e, )| = viff (66)

k=1 i=l
where Ibe,~v,|I? is the distance between an individual and a centroid (any inner product-induced
norm in R" may be used but the Euclidean norm is most often selected). Q(P) measures the
weighted sum of distances between cluster centroids and individuals in the corresponding fuzzy
clusters; a small values indicates a good P, hence the objective of the fuzzy c-means algorithm is
to find a fuzzy c-partition that minimizes Q. This optimization may be solved using the following

steps:

0. Select ¢, m, and a small positive number, €, as a stopping criterion. Let t=0 and select an initial

c-partition P satisfying ( 64 ).
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1. Compute the ¢ centroids v using ( 65 ) for P*°.
2. Compute PV, Do the following Vx;:

if [bee-v<2NI>>0 Vv, then

-1

1
c (I -y 2 ¥m-1
4 (x, )= 2 ML_‘_IL (67)

2
S

Otherwise: when lx,—v#i*=0, u™"(x)=0; and &*(x,) is set to any non-negative real number

such that
Z"i(ﬁn(xk ) =1 (68)
for all remaining i.
3. If
(z+1) —_p®
T )

then stop. Repeat steps 1-3, otherwise.

As m approaches 1, the fuzzy c-means algorithm converges to a classical hard means algorithm
as described in section 5.1 [80]. As m approaches o, all cluster centroids tend towards the
centroid of X. In other words, the pseudopartition becomes fuzzier as m increases. No theoretical
basis exists for an optimal m but Bezdek proved [10] that the algorithm converges for me(1,20).
Empirical evidence suggests that good results are typically obtained for me[1.5,2.5] (in the

discussion that follows m=2) [12].

The membership function, ui(x,), that is used is based upon the update equation ( 67 ) in the

second step of the fuzzy c-means algorithm. Specifically,

68



-1

m

X = V; .

[} X, £V,
)= K| T

(70)

is a measure of the degree to which an individual x; belongs to the cluster centroid v; that also
takes into account the individual’'s membership in other cluster centroids (as previously
mentioned m=2). That is, for two individuals, x; and x,, that are equidistant (in a strict Euclidean
sense) from a cluster centroid v,, if x; is near another cluster centroid (once again in a strict
Euclidean sense) and x; is not, then u;(x,)<u;(x,). Furthermore, as the Euclidean distance between
x; and all cluster centroids approaches =, u(xy) approaches 1/c. Figure 30 is a plot of u(x) with
two cluster centroids, v, and v,. Note that u;(x) and u,(x) both approach ¥z as the distance between
x and the cluster centroids increase. Note further that «,(x) and u;(x) are %2 when x is between v,

and Vva.

i Va

Figure 30: Plot of u,(x) with 2 cluster centroids
The encoding is straightforward: replace every individual x; with [u;(xy), ua(xs), - .., u(x0].

6.1.4 Class-wise variants
The encoding methods described in the previous sections do not take into account any class

information. This may be problematic when classes have extremely different distributions or

when the underlying probability density functions for each class significantly overlap. For
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example, Figure 31 shows the probability density functions for @, whose data are normally

distributed, and «,, whose data are bimodally distributed about w,.

Figure 31: Probability density functions for a normally distributed class between a bimodal distribution
Using the membership function, u(x), described in section 6.1.3 and ¢=3, the fuzzy cluster

encoding should find one cluster centroid near the mode of @ and one centroid near each of the
two modes of o, (Figure 32). Intuitively, this should give good discriminatory performance since
ui(x) will be high for individuals near the class modes. However, if c=2 one centroid will be
placed between the one mode of ®, and the mode of u and the other centroid will fall between
the mode of @ and the other mode of w, (Figure 33). Now the discriminatory power will more

than likely be poor since u{x) will be greatest for a few individuals between the modes.

Figure 32: Good discriminatory performance using fuzzy cluster encoding with 3 centroids
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Figure 33: Poor discriminatory performance using fuzzy cluster encoding with 2 centroids

Now, if two cluster centroids are used for each class, the previous problem dissolves. The two
cluster centroids for @, will be centred near its two modes, whereas the two cluster centroids for

@, will both be near its mode (Figure 34). The discriminatory power should be similar to that in

Figure 32.

Figure 34: Good discriminatory performance using fuzzy cluster encoding with 2 centroids per class
Class-wise variants of the previously mentioned encoding techniques will now be described.

The fuzzy interquartile encoding technique described in section 6.1.1 can be extended to deal
with class information by computing the feature quartiles for each ®. So, ignoring the coordinate

index j, ( 54 }~( 57 ) may be rewritten as

fl,jk(xj)=1/\bv[l—|x_0‘5(ak +QL,&1/(QLJ< _ak)]] (71)
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fﬁ(x,):lAE)v[l-lx—O.S(Qu -l-mk]/(mt -Qu)]] (72)
j;i(xj)=lAk)V[l—[x—0.5(mk +QU.kl/(QU.k -mk)]] (73)

£, )= 1AV - - 050, , + B.)/(B. - .. )] (74)

where j is the feature coordinate for an @ individual and o/, Q'rs, mi, Qus and B; are the
smallest value, lower quartile, median, upper quartile, and largest value of feature j for the N;
individuals of @x.

The class-wise extension to the dimension-preserving fuzzy interquartile (Section 6.1.2)
encoding involves constructing a single piece-wise fuzzy set for each @. As in the previous
paragraph, of, @y, n?, @'y, and ' must be computed for each class (Figure 35). Extending ( 62 ),

and ignoring the feature index, the membership function for feature j of a is

i x~a,

h, ——*— [ a £x<
kQu_ak ‘f k QL.E
(l‘hk)'f:gLL'*’hk if Qsx<m,
) m, =Lk
U = -—
Fe@=y o) Z"™ vy i mo<x<Q,, (73)
Qyi~m,
x— )
"ht_ﬁ::QQLU'i""hk if Qll.ksx(ﬂk
L 0 f x<ovx>p,
For the degenerate cases, the extension to ( 63 ) is
. 1 if a<Q,,=m VB> =m
fg’(x)={ : k Lk eV P >0y, k (76)
h if m>0,=a,vm<Q,,=p,

T VAN
/ A4
/ A X 2 \

ol Q1 m Quicy, B:1Qz M  Qup» B.
Figure 35: Feature membership functions constructed for @, and a,
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The class-wise extension to fuzzy cluster encoding involves employing the fuzzy c-means
algorithm for each ® instead of once for the entire data set. Let P.={u\., tzv, --., 4o} be the

pseudopartition for @, such that

f_“uﬁ,(x,‘)=1 Vk={1...N,}

N (77)
0<Y u,(x)<N, Vi={l.c}
k=1
and the associated cluster centroids are
N,
Y e (5 )™
V. = k=1 (78)

D NN
k=1

where v, (1=1, 2, ..., ¢) is the centroid associated with the partition u;, and m,& (1,20) governs the

influence of membership grades for @, individuals. The performance index ( 66 ) is used on a

class-by-class basis. The algorithm described in section 6.1.3 is now applied to each @. The

membership function ( 70 ) is used for each set of w cluster centroids v;,

~1

‘lx-v»l] .
U (x,) = S if  xn#v,
w\*k/ = i p—

—

1 X =V

(79)

6.1.5 Fuzzy encoded multi-layer perceptron
Fuzzy encoding may be integrated into a MLP classifier. The basic ANN structure of a fuzzy

encoded multi-layer perceptron (FE-MLP) is described in section 4.2. Specifically, the global
error function ( 28 ) is used. The learning rate, &, may be in the range [0,1], but in all of the
experiments described in the next chapters ae[0.7,0.9]. No momentum term is ever employed.

The logistic function ( 26 ) is used as the transfer function. A single hidden layer is used with the



number of hidden PEs determined experimentally (empirical evidence suggests using one or two
more hidden PEs than the number of classes). The output layer has & PEs corresponding to the &

classes. The FE-MLP assigns an input vector to @y if output PE j has the largest activation.

Recall in section 4.2.1 that the logistic function’s range of [0,1] may cause a bias towards
learning larger values and hence the bipolar hyperbolic tangent function is often used instead.
However, the logistic function bias may be exploited within the FE-MLP. A large fuzzy encoded
value indicates that the original value is similar to a “typical” value for that feature. For instance,
with fuzzy interquartile encoding, one or two large fuzzy encoded values indicate that the original
value was within the interquartile range for the feature whereas no large values indicate that the
original value was an outlier. Therefore, the logistic function’s natural bias will further diminish
the impact of feature values that are far outside the interquartile range. This is similarly the case

for the dimension-preserving fuzzy encoding as well as the fuzzy cluster encoding.

In the case of fuzzy interquartile encoding, the input layer will have pn PEs where n is the
dimensionality of the original input space and p is the number of fuzzy sets used for the fuzzy
encoding (more generally, different numbers of fuzzy sets may be used for each feature). Figure
36 shows the architecture of a FE-MLP using four fuzzy sets constructed around the quartiles and

two original input variables, x; and x,.




At first glance, it may appear that fuzzy encoding would significantly increase the complexity
of the design phase of the classification process since it is increasing the dimensionality of the
feature space (in the previous example by a factor of four). The experimental results in the next
two chapters consistently demonstrate not only does fuzzy encoding not increase the complexity
of the design phase but, in fact, it actually dramatically reduces the number of iterations required
by MLPs to converge during the design phase. This reduction is, at times, greater than an order of
magnitude while, at the same time, improving the classification accuracy for the test phase.
Several factors contribute to this efficiency. First, as previously mentioned, fuzzy encoding
naturally scales the data to the unit interval and scaled data improves the performance of an MLP
(and neural networks, in general) by reducing the impact of variance disparities across the
features [96]. Second, many of the fuzzy encoded values are zero (or near zero) and, the
corresponding terms in the PE summations are zero (or near zero) regardless of the respective
weights. Ultimately, this means that they contribute little to the overall error of the FE-MLP so
resultant errors propagated back through the network are not caused (to any great extent) by these
values. Finally, outliers can be problematic to a standard MLP since they can cause large resultant
errors and many more iterations will typically be required for the classifier to converge. Fuzzy

encoding reduces the impact of outlying feature values and hence improves the convergence time.

In the case of the class-wise extension to fuzzy interquartile encoding, the input layer will have
kpn PEs where n is the dimensionality of the original input space, p is the number of fuzzy sets
used for the fuzzy encoding, and & is the number of classes. Figure 37 shows the architecture of a
FE-MLP using four fuzzy sets constructed around the quartiles and two original input variables,

x; and x; for a two class problem.



Input
Layer

Figure 37: A FE-MLP using a class-wise extension to fuzzy interquartile encoding
FE-MLPs employing dimension-preserving and class-wise dimension-preserving fuzzy

encoding have more straightforward architectures, with n input layer PEs, than those using the

fuzzy interquartile encoding counterparts (Figure 38 and Figure 39, respectively).
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FE-MLPs employing fuzzy cluster encoding will have a simpler architecture than its non-
encoded MLP counterpart when the number of dimensions of the feature space, n, is greater than
the number of clusters, ¢, used in the fuzzy c-means algorithm. In general, when the MLP
counterpart has n input layer PEs, the FE-MLP will have c input layer PEs. Figure 40 is an
example of a FE-MLP architecture for a 10-dimensional, 2 class, feature space using 2 cluster

centroids.

Figure 40: FE-MLP employing fuzzy cluster encoding with input vectors x=[x;, x3, ..., X,]
The class-wise extension to the FE-MLP employing fuzzy encoding will have kc input layer

PEs instead of n (Figure 41 is an example of a 10-dimensional, 2 class, feature space with 2
cluster centroids per class). This architecture can be further generalized by having different

numbers of cluster centroids for each class.

Figure 41: FE-MLP employing class-wise fuzzy cluster encoding with input vectors x=[x, x3, ..., x,]
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6.2 Burnishing Tarnished Gold Standards
Data, such as magnetic resonance spectra, are often difficult to analyze due to their complex

nature and the presence of noise. Many preprocessing methods exist that transform the original
input data in order to eliminate or diminish the effects of noise and/or reduce the dimensionality
of the input space. Unfortunately, culling diagnostic information is further exasperated by the fact
that the reference test or gold standard, against which a new and possibly imperfect diagnostic
test is measured, may itself be imprecise or even unreliable. However, little work has been done
to investigate a methodology whereby the possible imprecision of a well-established but tarnished
gold standard may be addressed while at the same time maintaining its vital discriminatory

power.

Two strategies are discussed to burnish such tarnished gold standards. The first uses a robust
estimation of deviations from class medoids (the robust equivalent of a centroid) for the
reclassification of spectra in a design set. The second uses a fuzzy set theoretic preprocessing
method to enhance the gold standard by incorporating non-subjective within-class medoid
information. Either strategy may be used to augment any of the fuzzy encoding approaches

described in section 6.1.1.

6.2.1 Robust reclassification
This preprocessing strategy involves the robust reclassification (RR) of vectors in a design set

using a robust estimation of deviations from class medians. The median of the absolute deviations

(MAD)

median|x — median(x)|

80
0.6745 (%)

T(x)=

is a robust estimator of the standard deviation (the constant is used so that as the error distribution

becomes more normal the MAD estimate converges to the standard deviation) [50]. Only 40%
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efficient for normal data [98], it is robust to outliers and long-tailed distributions, nevertheless
{103].

Although a univariate estimator, it may be extended to the multivariate case by computing a
vector, T, whose elements are dispersion measures for each feature of ax vectors. Specifically,

Vxew (=1, 2, ..., n), feature i of T, is

median|x, ~ median(x ;)

T, = ( 81 )
g 0.6745
A feature of x; is considered to be an «y feature i outlier if
X ; —median,,.l >ty (82)

where median;; is element i of the @y medoid. The constant, c21, is the spread across the median
indicating whether or not a feature is an outlier. Specifically, it is a robust version of the empirical
corollary of Tchebysheff’s theorem. Tchebysheff’s theorem states that for c21, at least (1-1/c%) of
a set of N measurements will lie within ¢ standard deviations of their mean (78]. The empirical
corollary states that, if a data set has a normal distribution, then the following heuristics may be
used to describe the data set: approximately 68% of the measurements will lie within c=1
standard deviation of their mean; approximately 95% of the measurements will lie within c=2
standard deviations of their mean; and, almost all the measurements will lie within c=3 standard
deviations of their mean. For the robust case, the standard deviation is replaced by ( 80 ) and the
mean is replaced by the median. For the remainder of the thesis, c=2.5, hence, approximately
99% of the measurements will lie within 2.5 MADs of their median. Finally, for each vector, x;,

compute its membership in each class medoid using
D =% dY (83)

where
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0 if lxﬁ —~median,;| > 2.51,

(1 + lx ; —median, Ul otherwise )

d;’(x;) ={

A vector, x;, from oy will be reassigned to @y, if D/’<D,?. In other words, a vector must be
sufficiently distant from its class’ medoid and sufficiently near another class’ medoid. Note that

reclassification may only occur for vectors in the design set.

6.2.2 Fuzzy gold standard adjustment
Given an input vector x:=[xi, x3, ..., x,]€ @, the associated gold standard may be encoded using

output vectors of the form, y;=[y;, y, .-.. ys] where

Lif j=I
.= 85
Vi {Oif j#l (83)
The weighted distance, dj, of x; from the o medoid is defined as
X, ~m,
Ty

where m; and 7, are the respective feature-wise median and MAD of the oy vectors. This distance
measure is then incorporated into the gold standard using membership functions (see section 2.3)
— monotonic functions that are continuous in the interval [0,1] indicating the degree to which an

element belongs to a set. The membership function for ay is defined as

fie)=l+@asay 87>
where p>1 and >0 describe the shape and amount of fuzziness for the membership function.
Figure 42 plots f{x) for different values of p with a constant g. Note that fx) is sigmoidal and that
as p increases, f approaches a step function. The crossover point, which occurs when the

membership function is ¥, occurs when the distance equals q.
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1 2 3 n 5
Figure 42: Plot of f{x) with varying p (g=2)

Figure 43 plots fix) for different values of g with a constant p. As ¢ increases, f becomes

fuzzier; that is, membership values will remain high even at great distances.

' 1 2 3 4 5
Figure 43: Plot of f{x) with varying g (p=2)

In general, the further a vector is from a class medoid, the lower its membership value for that
class. It is possible for a vector, x, that was originally assigned to ax to be closer to the medoid of
another class, ay. In such cases, fi(x)<f{(x) and, hence, the original gold standard assignment will
no longer predominate. To rectify this situation, let fi(x)=f(x). That is, a vector will never be
reassigned to a class different from the class to which it was originally assigned. However, if a
vector is near another class medoid then the corresponding output element for that vector will not

be zero. The fuzzy gold standard adjustment (FA) may now be encoded by the vector

yi'=b', y2', ..., y¢'] where
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. 2f  if 0<f,<05
y,-={ I g Osd (88)

1-20-f,Fif0.5< £, <10
This operation is known as contrast intensification [124] and here the intent is to increase values
of f that are above 0.5 and reduce those that are below this point, in other words, contrast

intensification has the effect of reducing the fuzziness of f.

6.2.3 Reclassification versus adjustment
The FST gold standard adjustment strategy described in section 6.2.2 is not as radical as the

robust reclassification strategy discussed in section 6.2.1 where an individual may actually be
reclassified in the design set if it is sufficiently distant from the class to which it was originally
assigned and sufficiently near another class’ medoid. A conservative variant of the robust
reclassification strategy may be defined that mirrors the intent of the FST goid standard
adjustment. Similarly, a radical variant of the latter may be defined that mirrors the radical nature

of the robust reclassification strategy.

For each vector, x;, the robust reclassification variant produces the output vector, an augmented
gold standard, y’=[D,?, D.?, ..., D], where D are defined using ( 83 ) and ( 84 ). Since
D®[0,1], and it approaches 1 as the vector approaches the ey medoid, this new gold standard
mimics the behaviour of FA_ It is still possible, however, for a vector assigned to some class by
the original gold standard, to have a distance value that is greater for some other class. Hence,
although more conservative than the original strategy, this variant may still reclassify the vector.
To ensure that the original gold standard predominates, its corresponding distance value may be

set to the maximum of all distance values for the input vector.

The radical variant of FA is straightforward: for an input vector’s enhanced gold standard
encoded by the vector y.'=[y,’, y2', .... y¢'] defined by ( 88 ), reassign it to &y where y’ is

maximum.



Finally, most classifiers, such as ANNs, accommodate class labels that have been encoded as
1-of—k output vectors. Hence, these classifiers may also accommodate output vectors of the form
[0,1]*. However, some classifiers, such as linear discriminant analysis, admit only discrete integer
values from 1 to k. For this latter case, only RR or the FA variant may be used to burnish

tarnished gold standards.
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7 Experiments Using Synthetic Data

7.1 Two-Class 1-Dimensional Data Sets
In the experiments described in this section, 200 one-dimensional points were randomly

generated using two different distributions. All points from the first distribution were assigned to
@, (M=100) with the remainder assigned to @, (N1=100). The design set was comprised of 50
points and 50 @, points (M=100) with the remaining points assigned to the test set (N=100). All
performance results for both design and test sets are measured using the chance-corrected
measure of agreement, k (section 3.2.3). Linear discriminant analysis is used as the classifier for
all experiments. Four fuzzy sets are used for the fuzzy interquartile encodings. The quartiles for
the fuzzy interquartile encodings and the dimension-preserving encodings are computed using
only the points in the design set. Similarly, the cluster centroids for the fuzzy cluster encodings
are computed using only design points. The threshold for the dimension-preserving fuzzy
encoding was set at % for all experiments. Each subsection will contain two pairs of performance
tables, one for the design set and one for the test set. One pair of tables contains performance
results using different cluster centroids for the fuzzy cluster encodings. The other pair of tables
contains x results for: the non-encoded data (NE); fuzzy interquartile encoding (IQ); dimension-
preserving fuzzy encoding (DP); and the best fuzzy cluster encoding (CL) results from the
previously mentioned table; and the respective class-wise variants (IQc, DPc, and CLc). For each
experiment, a plot is listed showing the underlying probability density functions for each class,
the misclassified points (large grey points on the axis), and the underlying fuzzy sets (for IQ and
DP) or membership functions (for CL) for the different encodings.

7.1.1 Normal distributions with equal variances
In this experiment, the @, points were sampled from the normal distribution N(0,1) and the @,

points were sampled from N(3,1). This is an ideal data set in the sense that the two classes are

normally distributed with equal variance, hence LDA will produce an optimal decision boundary
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for the design set as is the case here (see Table 5). The only errors that should occur should be
where the probability density functions of the two classes overlap (see Figure 44). Apart from
DP, all methods produced comparable results for the design set.

N NE 1Q DP CL (=2 1Qc DPc CLc (c=3)

‘lo o o o | oy o | o o ]o o | o oo

47 3| 47 3| 18 321 41 3| 47 3| 4T 3| 44 6
48

ay
W 2 48 2 21 29 2 48 2 48 3 47 2 48
K 0.90 0.90 -0.06 0.90 090 0.88 0.84

Table 5: Design set results using normally distributed data
Note that CLc with two clusters produced poorer results than other CL methods (Table 6).

N CL (c=2) CL (c=3) CLe (c=2) CLe (c=3)
W o | o a» (0] ay [} o
o | 47 3|46 4|50 0] 44 6
2 48 2 48 21 29 2 48
X 0.90 0.88 0.58 0.84

Table 6: Design set results for fuzzy cluster encoding using different cluster numbers
For each method, concomitant results were obtained using the test set (Table 7) with IQc and

DPc producing slightly better results than NE.

N NE IQ DP CL (=2) 1Qc DPc CLc (c=3)

‘o o oy & | o o | o oy oy @ | o @ | o oy
a | 45 s | 45 5] 15 35 | 45 s | 45 5| 45 5] 35 1S
o] 6 44 6 44 | 15 35 6 44 4 46 4 46 2 48

0.78 0.78 0.00 0.78 0.82 0.82 0.66
Table 7: Test set results using normally distributed data

N, CL (c=2) CL (=)3) CLc (c=2) CLc (c=3)

o > oy o le o |le o
o | 45 S|4 9| s0 0] 35 15

>»]| 6 44f 3 417|277 23| 2 48

X 0.78 0.76 0.46 0.66
Table 8: Test set results for fuzzy cluster encoding using different cluster numbers
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Figure 44: Non-encoded design set results
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Figure 45: Non-encoded test set results

Figure 46 and Figure 47 show that IQ, like NE (Figure 44 and Figure 45), only misclassified

some points that overlapped the pdfs of the two classes.

Figure 46: Fuzzy interquartile encoded design set resuits (o=-1.81, 0=0.31, m=1.76, 0,=3.30, B=5.00)
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Figure 47: Fuzzy interquartile encoded test set results

Figure 48 and Figure 49 clearly demonstrate the problem with DP: not only does it suffer from

misclassification of points at the overlap of the pdfs of the two classes, it also misclassifies many
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points that are to the right of the overlap. This occurs because the encoded value for a point in this
region will be nearly identical to the encoded value to the left of the overlap. Since @, points
predominate to the right and @, predominate to the left this will wash away the discrimination
between the two classes. This weakness is precisely the strength in the class-wise variant of this

method (see below).

Figure 48: Dimension-preserving design set results (e=-1.81, 0=0.31, m=1.76. 0,=3.30, B=5.00)
1 L

s /\
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Figure 49: Dimension-preserving test set results
As with the NE and IQ methods, CL with two cluster centroids misclassified only points that

fell between the class’ pdfs (Figure 50 and Figure 51). Note that ; is maximum at the mode of oy
and u, is maximum at the mode of ; and that the fuzzy c-means algorithm found centroids near

these modes (0.16 and 3.30, respectively).
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Figure 51: Fuzzy cluster (c=2) encoding using test set
Figure 52 and Figure 53 show CL using three cluster centres with results comparable to CL

using only two clusters. However, while «; is maximum at the mode of @, and the corresponding
cluster centre (0.05) is near its mode the other centres (2.23 and 3.81) are to either side of the
mode of ®;, and, hence, u, and u; are not maximum at the mode. Nevertheless, since u; is near

zero at this point, it does not confound this method.

Figure 52: Fuzzy cluster (c=3) encoding using design set (v,=0.05. v.=2.23, v;=3.81)
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Figure 55: IQc test set results
A dramatic improvement occurs with DPc compared to DP (Figure 56 and Figure 57) since

each membership function nearly uniquely encodes each class’ points. Apart from the typical
errors at the overlap of the pdfs, an additional two points were misclassified by this method.
These points were the maximum and minimum points of @, B>=5.00 and o,=0.32, respectively,

which were both encoded as (0,0).
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Figure 58: Class-wise fuzzy cluster (c=2) encoding using design set (vi;=-0.69, v2,=0.68, v1;=2.30, v»=3.83)
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Figure 61: CLc (c=3) using test set

7.1.2 Normal distributions with unequal variances
In this experiment, the @ points were sampled from the normal distribution N(0,1) and the o,

points were sampled from N(3,2). Note that apart from DP, all methods produced comparable

results using the design set (Table 9 and Table 10).
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NE IQ DP CL (c=3) IQc DPc CLe (=3)

N,
‘Lo o o o | o o | oy oy oy ey |y oy | ey o

45 5 42 8 35 15 41 9 45 5 38 12 42 8

oy
o, 14 36 14 36 24 26 10 40 14 36 il 39 11 39
K 0.62 0.56 0.22 0.62 0.62 0.54 0.62
Table 9: Design set results using normal distributions with unequal variances
N, | CL=d | CL(=3) | Cle(=2) | CLe(c=3)
Jo o o oo oo o
o] 46 4| a1 9 4 1| 92 8
o | 15 35} 10 40 }F 21 29 11 39
X 0.62 0.62 0.56 0.62
Table 10: Design set results for fuzzy cluster encoding using different cluster numbers
N NE 1Q DP CL (c=3) IQc DPc CLc¢ (c=3)
‘o o | oo o o | o o | ey o | o o | & o
w | 46 4 | 46 4] 32 18| 45 5| 47 3] 40 10 | 45 5
(O 7 43 7 43 26 24 5 45 12 38 7 43 5 45
K 0.78 0.78 0.12 0.80 0.70 0.66 0.80

Table 11: Test set results for each method using normally distributed data

CL (c=2) CL (c=3) CLc(c=2) CLc (c=3)

Nl oo olo oo

aw | 47 3| 45 S| s0 0] 45 5
| 13 37| 5 4] 16 34| 5 45
x 0.68 0.80 0.68 0.80

Table 12: Test set results for fuzzy cluster encoding using different cluster numbers
As with the data in section 7.1.1, the points misclassified by NE occur where the pdfs for each

class overlap. Since the variances are unequal, the overlap is greater, and the x value decreases
(Figure 62 and Figure 63). This also occurs with IQ (Figure 64 and Figure 65). Also note, with
IQ, how f; has a wider span than the other membership functions to account for the greater

variance in ,.
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Figure 62: Non-encoded design set results
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Figure 65: Fuzzy interquartile encoded test set results

Although faring slightly better than its counterpart in section 7.1.1, DP still underperformed

compared to all other methods. The marginal improvement can be attributed to the skewing of the
membership function caused by the unequal variances of the two classes.
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10
Figure 66; Dimension-preserving design set results (c=-2.10, Q=-0.42, m=0.70, 0,=2 48, §=7.23)

10
Figure 67: Dimension-preserving test set results

CL with two cluster centres produced poorer, but acceptable, results (Figure 68 and Figure 69).
Part of this may be attributed to the location of the second cluster centre at 4.14 which is to the

right of the ®, mode. This is due to the greater variance for the second class.

10
Figure 68: Fuzzy cluster (c=2) encoding using design set (v,=-0.05. v.=4.14)
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Figure 70: Fuzzy cluster (c=3) encoding using design set (v=-0.64, v,=1.62, v1=4.85)

-2 o 2 4 6§ 8 10
Figure 71: Fuzzy cluster (c=3) encoding using test set
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Figure 72: IQc design results (a;=-1.80, Qn=-.80. m=-06, 0u1=61, $1=2.10, @p=-2.10, Qn=1.10, my=2.47, 0,;=4.35, B;=7.23)
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Figure 73: Class-wise fuzzy interquartile encoding using test set
4 6 8 10

Figure 74: DPc design results (a,=-1.80, Qy=-80, m;=-06, Qu1=.61, B;=2.10, 0:=-2.10, Qp=1.10, m;=2.47, Q,;=4.35, B,=7.23)

96



0. 5
0.
Oo ------ - \\‘

-2 0 2 4 6 8 10

Figure 75: Class-wise dimension-preserving encoding using test set

Figure 77: Class-wise fuzzy cluster (c=2) encoding using test set
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Figure 79: Class-wise fuzzy cluster (c=3) encoding using test set

7.1.3 Bimodal distribution
In this experiment, half of the ; points were sampled from N(0,1) and the other half were

sampled from N(5,1) while all of the ®; points were sampled from N(10,1). The nature of this
data set is such that NE cannot construct a discriminatory decision boundary. Since the @, pdf is
between the two modes of the @, pdf a linear decision boundary can, at best, only produce

classification results that misclassify about half of the points (Table 13). NE produced design

results worse than chance and poor results using the test set (Table 14). Misclassified points occur

with roughly equal frequency on either side of the @, mode (Figure 80 and Figure 81).

N, NE IQ DP CL (c=3) IQc DPc CLe¢ (c=3)

ay a y o ay (5] LV} (0] y [0/] oy oy (U 0]

| 25 25 50 0 44 6 [ 50 0] 50 0 50 o 37 13

W] 27 23 0 50 0 50 0 SO 0 50 6 4 | 21 29
K -0.04 1.00 0.88 1.00 1.00 0.88 0.32

Table 13: Design set results using a bimodal distribution
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Ny

CL (c=2)

W

w,
25

103

CL (c=3)
(L T

[y

Clc(c=2)

CLc (c=3)

[
X

12
0.26

25
38

50 0
0 50

20

w
25 25

30

]
37 13

21 29

1.00

0.10

IQ

0.32

Table 14: Design set results for fuzzy cluster encoding using different cluster numbers
NE

DP

CL

ni§ 8
08u§

R

ay oy

1| 48

0

L

2| S0

(c=3)
o

0] 50

1Qc DPc

CLc (c=3)
oy @

0] (L]
0

.06

0.98

0.96

50 0

1.00

50 6

50 0

38 12
9 41

44

0.88

12 38

0.82 0.52

N

CL (=2)

Table 15: Test set results using a bimodal distribution

0]

2o
25 25

CL (c=3)
o 2

Cle(c=2)
oy ak»

Clc(c=3)

]
K

12 38
0.26

50 0
0 50

26 24
28 22

(L) o
38 12

1.00

-0.04

12 38

0.52

Table 16: Test set results for fuzzy cluster encoding using different cluster numbers
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Figure 80: Non-encoded design set results
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Figure 81: Non-encoded test set results
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Figure 82 and Figure 83 show that IQ is immune to bimodally distributed data. The encoding is
such that f; is at a maximum near the first mode of @ and f; is at a maximum near the other mode

of a%. However, f; and f; both approach Y2 at the @, mode.

I2s 0 2.5 5 7.5 10 12.5 15
Figure 82: Fuzzy interquartile encoded design set results (o=-1.78, 0=1.40, m=4.91, 0,=8.00, f=12.37)

25 0 2.5 5 7.5 10 12.5
Figure 83: Fuzzy interquartile encoded test set results

-2.5 0 2.5 5 7.5 10 12.5 15
Figure 84: Dimension-preserving design set results (o=-1.78. 0=1.40, m=4.91, 0,=8.00, B=12.37)
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l2s o0 2.5 5 7.5 10 12.5 15
Figure 85: Dimension-preserving test set results

Figure 86 and Figure 87 demonstrate a potential problem with CL; using fewer cluster centres
than numbers of modes. In this case, only two cluster centres were used while the data had three
modes; hence, the cluster centres (0.60 and 7.19) were not near any of the modes (0, 5, or 10). In

fact, the centres are situated near the overlaps of the pdfs about ;.

0.
0.
0.
0.
-2.5 0 2.5 ] 7.5 10 12.5 15
Figure 86: Fuzzy cluster (c=2) encoding using design set (v=0.60, v;=7.19)
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125 0o 2.5 5 7.5 10 12.5 15
Figure 87: Fuzzy cluster (c=2) encoding using test set
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Conversely, when 3 clusters are used (-0.1, 5.0, and 9.8) they are situated near each of the 3
modes. Hence, «; is at a maximum near the first mode of oy, u; is at a maximum near the other ay
mode, and u; is at 2 maximum near the @, mode (Figure 88 and Figure 89). This was the only test

set case where there was perfect agreement between the actual and desired outcomes.

1}
0.

0.&

-2.5 0 2.5 5 7.5 10 12.5 15
Figure 88: Fuzzy cluster (c=3) encoding using design set (v;=-0.09, v;=4.98. v,=9.83)

-2.5 0 2.5 5 7.5 10 12.5 15
Figure 89: Fuzzy cluster (c=3) encoding using test set

-2.5 0 2.5 5 7.5 10 12.5 15
Figure 90: IQc design results (o;=-1.8. Qn=-0.2. m;=4.7. 0,;=9.9, Bi=12.4, ®,;=3.5, On=4.3. my=4.9. 0.x=5.7, p=6.7)
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Figure 91: Class-wise fuzzy interquartile encoding using test set
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Figure 92: DPc design results (@,=-1.8, @n=-0.2, m=4.7, Qu1=9.9. B¢
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Figure 93: Class-wise dimension-preserving encoding using test set
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Figure 95: Class-wise fuzzy cluster (c=2) encoding using test set
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Figure 96: Class-wise fuzzy cluster (c=3) encoding using design set (v;;=-9, vu=86, v5;=9.9, viz=4.1, vn=5.0, v5=6.2)
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Figure 97: Class-wise fuzzy cluster (c=3) encoding using test set
7.1.4 Skewed distribution
In this experiment, all @, points were sampled from N(10,2), while all o, points were sampled

from a log normal distribution with a mean of 2 and a standard deviation of 1. Hence, ; is a
highly skewed class with a pdf that significantly overlaps the pdf of ay. NE performed poorly

with both the design and test sets (Figure 98 and Figure 99). DP and IQc performed surprisingly

well with such a highly skewed data set (Table 17 and Table 19).

NE IQ DP CL (c=2) IQc DPec CLc (c=2)

N,
oy |l o | o w o oo oo @] o o

42 8] 43 7 438 2 40 10 | 48 2| 42 8 36 14
13 37 17 33 14 36 8 42 12 38

0.28 0.68 0.70 0.46 0.68 0.68 0.48

nIEE
S
8
O
&

Table 17: Design set results using skewed data

CL (=2) CL (c=3) Clc(c=2) | CLe(c=3)
oy (0] (0] ay )] /] ay 0]
o | 50 0 40 10 36 14 | 38 12
[0 35 15 17 33 12 38 15 35

K 0.30 0.46 0.48 0.46
Table 18: Design set results for fuzzy cluster encoding using different cluster numbers
N NE IQ DP CL (c=3) IQc DPc CLc (=2)
o o le oo oo olo oo oo o
o] 26 241 35 15 | 47 3 40 10 | 47 3] 38 12 | 36 14
o | 35 15 8§ 42 9 41 11 39 9 41 7 43 6 44
K -0.18 0.54 0.76 0.58 0.76 0.62 0.60

Table 19: Test set results using skewed data

N, CL (c=2) CL (c=3) CLc (c=2) CLc (c=3)

@ oy L] 1 oy 3 LY a
o> | 50 0| 40 103 14| 28 22
@] 36 14| 11 39 6 4| 14 36
X 0.28 0.58 0.60 0.28

Table 20: Test set results for fuzzy cluster encoding using different cluster numbers
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Figure 100: Fuzzy interquartile encoded design set results (a=0.51, 0=7.07, m=10.54, Q,=12.45, B=54.80)
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Figure 101: Fuzzy interquartile encoded test set results

Figure 102 and Figure 103 show that DP mimics the skewness of the design and test sets. The

results from this and previous sections suggest that DP classification performance improves as the

data become less normal.

0 10 20 30 40 50 60

Figure 102: Dimension-preserving design set results (a=0.51, 0=7.07. m=10.54, 0,=12.45, B=54.80)
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Figure 103: Dimension-preserving test set results
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Figure 104 and Figure 105 show that CL with two cluster centres completely breaks down

producing classification results worse than chance with all of the errors occurring around the pdf

overlap of the two classes. The situation improves dramatically with three cluster centres with the

errors distributed throughout the pdfs (Figure 106 and Figure 107).
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Nl T 3 JOPSP AP, o,

0 10 20 30 40 50 60
Figure 104: Fuzzy cluster (c=2) encoding using design set (v;=9.49, v-=33.41)

0 10 20 30 40 S50 60
Figure 106: Fuzzy cluster (c=3) encoding using design set (v;=606. v.=12.21, v,=32.71)
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Figure 107: Fuzzy cluster (c=3) encoding using test set
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Figure 108 and Figure 109 demonstrate an advantage of IQc; membership functions capture the

skewness of their respective classes. The membership functions f;,—f: are all narrow and near the

mode of ;. The membership functions fi—f;, are slightly less narrow and similarly surround the

@ mode but f;; spans the entire pdf of ®, compensating for its significant amount of skewness.

Once again, the misclassifications all occur at the overlap.
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Figure 108: IQc design results (a,=6.4, 0n=9.4, m=10.6, 0,;=11.4, B1=149, 0:=0.5, Qn=4.4, m:=9.7. 0.>=16.5, P,=54.8)
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DPc design results (a;=6.4, 0n=9.4, m=10.6, Q,;=11.4, fx
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Figure 112: Class-wise fuzzy cluster (c=2) encoding using design set (v;;=8.63, vn=11.36, vp=7 94, vp=32.46)
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Figure 113: Class-wise fuzzy cluster (c=2) encoding using test set

-

A T T T ——

0 10 20 30 40 50 60
Figure 114: CLc (c=3) design results (v,;=7.77, vu=10.66, v5;=13.07, vn=4.64, yn=15.22, v3=35.93)
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Figure 115: Class-wise fuzzy cluster (c=3) encoding using test set

7.2 Fuzzy Encoding and Linear Separability
Section 7.1 clearly demonstrated that linear discriminant analysis is a good classifier when

classes possess a normal distribution and are well separated, the only misclassified points
occurring where the pdfs of the two classes overlap. Classification performance significantly
degrades as the data become less normal. As a whole, the fuzzy encoding methods are more
robust to skewed data. IQ and IQc gave consistently good results for all data sets. As class pdfs
became less symmetric, DP produced better x scores. In some cases, taking class information into
account produced better results using the class-wise variants of the encoding methods (as a
whole). CL is the most variable fuzzy encoding method, at times, producing the best resuits over
all methods. This variability is due, in large part, to the number of clusters that are selected a

priori: good results are typically obtained when there is one cluster for every mode.

Although some of the variability in classification results may be attributed to changes in the
information content of the fuzzy encoded transformations, another significant factor is the nature
of the classifier. Linear discriminant analysis is a linear classifier, it can only discriminate classes
that are linearly separable (see section 4.1). In section 7.1.3, for instance, LDA could not
discriminate between the two classes because of the bimodal distribution of one of them. None of
the fuzzy encoding methods necessarily performs a transformation of the data that is strictly

linear. It is possible, therefore, to have an original data set that was linearly separable become



linearly inseparable after a transformation using one of the fuzzy encoding methods. In such a
case, LDA would be able to successfully discriminate using the original data set but fail using the
encoded data. The converse may also occur: a data set that is linearly inseparable may be encoded
such that the transformation becomes linearly separable. For instance, assume a data set with
points inside, ax, or outside, @, the unit circle. Figure 116 illustrates that this data set is linearly
inseparable; the unit circle is the optimal decision boundary. However, if each coordinate is
squared, this transformation becomes linearly separable, and LDA will successfully discriminate

points inside and outside the circle; the line in Figure 117 is the optimal decision boundary.

PR -

. s ~1. q. - -
Figure 116: A linearly inseparable data set

0.5 1 1.5 2 x
Figure 117: A linearly separable transformation
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Recall from section 7.1.3, that CL with two clusters had an agreement measure of k=0.26 for
the design set where one class had a bimodal distribution. Figure 118, a plot of u; versus u, for
this case, demonstrates the reason for the poor performance: the transformation is linearly
inseparable and LDA will, consequently, perform poorly (the dashed line is a possible decision
boundary). With the same original design set, CL with three clusters produced perfect results.
Figure 119, a three-dimensional scatter plot of u; versus u, versus us;, demonstrates the reason for
the perfect agreement: the transformation into three-dimensional space is linearly separable (the
dashed plane is a possible decision boundary).
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Figure 119: Linearly separable transformation using CL (c=3)
The experiment in section 7.1.3, will now be repeated except that a non-linear classifier, MLP,

will be used instead of LDA. The architecture has two output PEs: if the first one is larger than
the second then the actual outcome indicates the corresponding input belongs to @y, otherwise, it
belongs to @,. The number of input PEs varies depending upon the method used: | for NE and

DP; 2 and 3 for CL using 2 and 3 clusters, respectively (double for the class-wise variants); 2 for
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DPc; and 4 for IQ (double for IQc). One hidden layer with 3 PEs was used with all methods. For

IQ and DP, a=-1.6, @=1.3, m=5.3, Q.=8.2, B=12.5. For IQc and DPc, a,=-1.6, Qn=0.3, m;=4.7,

Qu=10.3, Bi=12.5, 0,;=2.3, Qr=4.5, m=5.3, Q,;=5.8, P,=7.0. Table 21 and Table 22 list the

scores using the design set with all encoding methods and their class-wise variants, respectively.

Table 23 and Table 24 are the corresponding results using the test set. Note the across the board

improvement using MLP as the classifier instead of LDA. NE, which originally gave results no

better than chance using LDA, now produces good results for both the design and test sets. This

indicates that MLP was able to produce a non-linear decision boundary. IQ now produces perfect

results for the design and test sets. IQc and DPc show improvement with the test set. The most

dramatic improvements occurred with CL and CLc: all variations now give good results for both

design and test sets. This demonstrates that CL transformations are non-linear. While LDA may

or may not discriminate using these transformations, MLP is not affected by the non-linearities.

N, NE IQ DP CL =2 CL (c=3)
oy L] (L] (] oy O o o oy )]
Y 47 3 50 0 50 0 50 0 50 0
o 0 50 0 50 0 50 6 44 0 50
LY 094 1.00 1.00 0.88 1.00
Table 21: Design set results using an MLP
Ny IQc DPc Cle(=2) CLc (c=3)
0 0 o L. o | o o
o | SO 0 50 0 50 0 50 0
o 0 50 2 48 1 49 0 50
x 1.00 0.96 0.98 1.00
Table 22: Design set results for class-wise variants using an MLP
N, NE IQ DP CL (=2 CL (=3)
o o o o | oy o | oy o | o o
o | 41 9 50 0 48 2 50 0 50 0
o 0 50 0 50 0 50 10 40 o 50
L 0.82 1.00 0.96 0.80 1.00
Table 23: Test set results using an MLP
N, IQc DPc CLle(e=2) CLe (=3
(L] o | o 2o | oy 2 0 | oy @
o | 46 4 50 0 50 0 49 1
oy 0 50 1 49 0 50 0 50
X 0.92 0.98 1.00 0.98

Table 24: Test set results for class-wise variants using an MLP
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For completeness, a set of tables follows that list the points, the CL encodings, and class labels,
for both the design and test set: Table 25and Table 26 for CL using two clusters; Table 27 and
Table 28 for CL using three clusters; Table 29and Table 30 for CLc using two clusters; Table
3land Table 32 for CL using three clusters. Entries in italics indicate points that were

misclassified.

Point [ 3 [ 7]
1044 006 094
050 097 003
970 0.03 097
073 098 002
819 000 100
033 097 003
1034 006 094
085 092 008
10.32 006 094

Point L u
5.18 044 056
404 077 023
646 013 087
6.10 020 0.80
5§32 040 0.60
3.71 084 0.16
526 042 058
4.53 064 0.36
446 066 034
582 026 074
464 061 039
291 0% 004
4.65 061 039
584 026 074
5.08 047 053
629 0.6 084
658 011 089
232 099 o0.0!
5.61 032 0.68
§76 028 072
405 077 023
548 036 0.64
5.85 025 075
427 071 029
476 057 043
491 053 047
424 072 028
435 0.69 031
381 082 0.18
559 032 068
426 072 028
700 005 0595
530 041 059
575 028 0.72

Table 25: CL (c=2) design results using MLP (v;=1.76, v,=8.24)
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Point ) uz @ | Point 3 uz o | Poimt uy Uz
10.16 005 095 1 129 100 000 1 535 039 06l
1.45 100 000 1 1056 006 094 1 514 046 054
1060 007 093 1 048 094 006 1 416 0.74 0.26
092 099 001 1 858 000 100 1 354 087 0.13
1027 005 095 1 -149 090 010 1 443 067 033
077 098 002 1 1023 005 095 1 537 039 061
899 001 099 1 089 099 001 1 575 028 O0m2
091 099 001 1 11.LiI4 009 091 1 6.23 0.17 083
834 000 100 1 109 099 001 1 405 077 023
128 100 000 1 880 001 099 1 396 079 021
1092 008 092 1 192 100 000 1 456 0.63 037
106 099 001 1 833 000 100 1 523 043 057
11.19 009 091 1 028 097 003 1 469 060 040
1.75 100 000 1 969 003 097 1 620 0.17 083
1086 008 092 1 -143 09 010 1 6.54 011 089
09 099 001 1 1091 008 092 1 314 093 007
1084 008 092 1 1.81 100 000 1 429 071 029
172 100 000 1 58 026 074 2 4.17 0.74 0.26
1049 006 094 1 509 047 053 2 434 069 031
1.18 099 001 1 377 083 017 2 372 084 0.16
975 003 097 1 455 064 036 2 6.57 011 089
[.I2 099 001 1 581 026 074 2 482 055 045
10.18 005 095 1 604 021 079 2 4.16 074 0.26
021 096 004 1 339 090 010 2 600 022 078
972 003 097 1 485 055 045 2 500 050 050
021 095 005 1 535 039 061 2 530 041 0.5
937 002 098 1 476 057 043 2 427 071 029
002 096 004 1 429 071 029 2 479 057 043
1046 006 094 1 609 020 08 2 5§63 031 0.69
052 098 002 1 29 095 005 2 649 012 088
8.14 0.00 1.00 1 406 077 023 2 243 099 00!
1.37 1.00 000 1 591 024 076 2 3.53 088 0.12
1178 011 089 1 593 023 077 2 427 071 029
6.51 012 0.88

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNIJNjf

Table 26: CL (c=2) test results using MLP
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Point '8 uz us () Point uy uz U3 ®
1044 0.00 100 0.00 1 580 001 002 097 2
0.50 1.00 000 0.00 1 552 000 0.0 099 2
9.70 000 098 002 1 679 004 016 080 2
0.73 099 000 0.01 1 6.01 002 003 095 2
819 004 064 032 1 449 003 002 095 2
0.33 100 000 000 1 626 003 006 091 2
1034 0.00 100 000 1 566 001 0.01 099 2
08 096 0.01 0.03 1 492 000 000 099 2
1032 0.0 1.00 0.00 1 540 0.00 0.00 100 2
0.53 1.00 000 0.00 1 487 001 000 099 2
998 000 099 000 1 640 003 008 089 2
.15 099 000 00! 1 505 000 0.00 100 2
853 003 075 0.21 1 5.71 001 0.01 098 2
Q.19 100 000 000 1 479 001 0.01 098 2
1071 000 099 0.01 1 560 000 0.01 099 2
072 099 000 0.01 1 402 009 0.03 087 2
996 000 099 000 1 5.18 000 0.00 100 2
085 096 001 0.03 1 404 0.09 0.03 088 2
1094 000 098 0.01 1 646 003 009 088 2
024 1.00 000 000 1 6.10 002 004 094 2
10.59 0.00 1.00 0.00 1 532 000 0.00 1.00 2
0.26 1.00 000 0.00 1 37 016 004 030 2
960 0.01 097 0.02 1 5.26 000 0.00 1.00 2
-159 091 0.02 007 1 4.53 003 0.01 09 2
10.28 0.00 1.00 0.00 1 446 003 002 095 2
-149 092 002 006 1 582 001 002 097 2
875 003 08 0.5 1 464 0.02 0.01 097 2
0.15 1.00 000 0.00 1 291 041 005 053 2
1199 002 092 0.06 1 465 0.02 001 097 2
069 099 000 0.01 1 584 001 002 097 2
11.21 0.01 097 002 1 508 0.00 0.00 1.00 2
0.51 1.00 000 000 1 629 003 006 091 2
1047 0.00 1.00 0.00 1 6.58 0.04 0.11 08 2
0.09 .00 0.00 0.00 1 232 064 004 032 2
938 Q.01 095 0.0s 1 5.61 0.00 0.01 099 2
052 098 0.01 002 1 576 001 001 098 2
9.29 0.01 093 006 1 405 009 003 088 2
0.31 100 000 000 1 548 000 0.00 100 2
1247 003 089 0.08 1 58 001 002 097 2
1.27 093 0.01 006 1 427 005 002 092 2
11.23 001 097 002 1 476 001 001 098 2
0.55 .00 000 000 1 491 001 000 099 2
10.01 0.00 1.00 0.00 1 424 006 003 092 2
0.32 100 000 000 1 435 004 002 094 2
972 000 098 002 1 3.81 0.13 004 083 2
1.01 096 0.01 0.03 1 559 000 001 099 2
1190 0062 0.93 005 1 426 006 002 092 2
073 099 000 Q.01 1 700 005 021 074 2
995 000 099 000 1 530 0.00 0.00 1.00 2
0.68 099 0.00 0.01 1 575 0.01 001 098 2

Table 27: CL (c=3) design results using MLP (v;=0.27, v,=5.24, v;=10.28)
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Point uy u2 U Point Uy u2 us
10,16 000 1.00 000 1 583 001 002 097
145 090 002 009 1 509 000 0.00 1.00
1060 000 100 000 1 377 0.14 004 082
092 097 000 002 1 455 003 001 096
1027 000 100 000 1 581 001 002 097
077 098 000 001 1 604 002 003 095
899 002 088 010 1 339 025 005 0.7
09t 097 000 002 1 485 001 001 099
834 004 069 027 1 535 000 0.00 1.00
128 093 001 006 1 476 001 001 098
1092 000 098 001 1 429 005 002 092
106 096 001 003 1 609 002 004 094
1119 001 097 002 1 296 039 005 055
1.7 083 003 015 1 406 009 003 0.88
1086 000 099 001 1 591 001 002 096
096 097 00t 003 1 S93 001 002 096
1084 000 099 001 1 535 000 000 1.00
172 083 002 014 1 514 000 000 1.00
1049 0.00 100 000 1 416 007 003 090
.18 094 001 005 1 354 020 005 0.75
975 000 098 001 1 443 004 002 095
1.12 095 001 004 I 537 0.00 0.0 1.00
10.18 000 100 000 1 575 001 001 098
021 100 000 000 1 623 003 005 092
972 000 098 002 1 405 009 003 088
021 099 000 001 1 396 0.10 004 0386
937 Q01 094 005 1 456 002 001 096
002 100 000 000 1 523 000 0.00 1.00
1046 000 100 000 1 469 002 00t 098
052 100 000 000 1 620 002 005 093
8.14 005 062 034 1 654 004 010 086
137 091 001 007 1 314 033 005 062
11.78 002 094 005 1 429 005 002 092
1.29 093 001 006 1 417 007 003 090
1056 000 100 000 1 434 005 002 093
048 098 000 002 1 372 016 004 080
88 003 077 020 ! 657 004 0.11 085
-149 092 002 006 I 48 001 001 099
1023 000 1.00 000 1 416 007 003 090
0.89 098 000 002 1 6.00 002 003 095
11.14 001 097 002 1 500 000 000 100
.09 095 001 004 1 530 000 000 100
880 002 083 014 1 427 005 002 092
192 078 003 0.19 1 479 001 001 098
833 004 069 027 1 §63 001 0.01 099
028 100 000 000 1 649 004 010 0387
969 000 098 002 1 243 060 005 0.J3s
-143 092 002 006 1 353 021 005 075
1091 000 098 001 1 427 005 002 092
1.81 081 003 0.16 1 651 0.04 0.10 0.87

Table 28: CL (c=3) test results using MLP
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Point w11 u 12 un
1044 100 000 036 064
050 000 1.00 066 034
970 100 000 034 066
073 000 1.00 067 033
819 094 006 027 073
033 000 100 066 034
1034 100 000 036 064
085 001 099 0.63 037
1032 100 000 036 064
053 000 100 066 034
998 100 000 035 065
015 000 100 064 036
853 096 004 029 071
019 000 100 065 035
10.71 1.00 000 037 063
072 000 100 067 033
996 1.00 000 035 065
08 001 099 063 037
1094 100 000 037 063
024 000 100 065 035
1059 100 000 036 064
026 000 100 065 035
960 100 000 034 066
-159 002 098 061 039
1028 1.00 000 036 064
-149 002 098 061 039
875 097 003 030 0.70
01S 000 100 065 035
1199 098 002 039 061
069 000 100 067 033
1121 099 001 038 0.62
051 000 1.00 066 034
1047 100 000 036 064
009 000 100 065 035
938 099 001 033 0.67
052 000 1.00 063 037
929 099 001 033 0.67
031 000 100 066 034
1247 097 003 040 0.60
127 001 099 069 031
11.23 099 001 038 0.62
0S5 000 100 066 034
10.01 100 000 035 0.65
032 000 100 066 034
9.72 1.00 000 034 066
101 001 099 068 032
1190 098 002 039 0.1
073 000 100 067 033
995 100 000 035 0.65
068 000 100 067 033

s

1
i
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
i
[
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Point iyt U2 Uy2 U
§s80 062 038 0.00 1.00
552 056 044 006 094
6.79 078 022 0.3 0.87
6.01 0.65 0.35 0.01 0.99
449 036 064 098 0.02
626 070 030 005 095
566 059 041 0.01 0.99
492 044 0S6 069 031
540 0S4 046 013 087
487 043 057 074 026
640 072 028 007 093
505 047 053 052 048
5.7 060 040 0.01 0.99
479 042 058 082 0.18
560 058 042 0.03 097
402 0.28 072 098 0.02
5.18 049 051 0.35 0.65
404 0.28 0.72 098 002
646 073 0.27 0.08 092
6.10 067 033 002 098
532 082 048 020 0.0
3N 0.23 0.77 0.93 0.07
526 051 049 027 073
453 037 0.63 097 003
446 035 065 099 001
58 062 038 000 100
464 039 0.61 093 0.07
291 0.12 0.88 0.81 0.19
465 039 0.61 092 008
$84 062 038 000 1.00
508 047 0.53 048 0.52
629 071 0.29 0.05 095
6.58 0.75 025 0.10 0.90
232 007 093 076 0.24
s5.61 0.58 042 003 097
5.76 0.61 039 0.00 1.00
405 028 072 098 0.02
548 055 045 008 092
585 0.62 0.38 0.00 1.00
427 032 068 100 0.0
476 041 059 085 O0.15
491 044 056 070 030
424 031 0.69 1.00 000
435 033 0.67 1.00 0.00
3.81 0.24 0.76 094 006
559 057 043 0.03 0.97
426 032 0.68 1.00 0.00
700 082 0.18 0.16 0.84
530 052 0.48 0.22 0.78
5.7 06l 0.39 0.00 1.00

NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNe

Table 29: CLc (c=2) design results using MLP (v1;=0.18, v;=10.24, v;3=4.30, v»=5.83)
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Point U1 Uy 12 Uz o | Point My 421 412 422 @ |
1016 1.00 000 035 065 I 583 o062 038 000 1100 2
145 002 098 070 030 1 509 048 052 047 053 2
1060 100 000 036 064 1 377 024 076 094 006 2
092 001 099 068 032 1 455 037 063 096 004 2
1027 100 000 036 064 1 581 062 038 000 100 2
077 000 100 067 033 1 604 066 034 001 099 2
899 098 002 031 069 1 339 018 082 08 012 2
091 001 099 068 032 1 485 043 057 077 023 2
834 095 005 028 072 1 535 053 047 017 083 2
128 001 099 069 031 1 476 041 059 084 016 2
1092 100 000 037 063 1 429 032 068 100 000 2
1.06 001 099 068 032 1 609 067 033 002 098 2
11.19 099 o001 038 062 1 296 013 087 082 018 2
1.7 003 097 072 028 1 406 028 072 098 002 2
1086 100 000 037 063 1 591 064 036 000 100 2
096 001 099 068 032 1 593 064 036 000 100 2
1084 100 000 037 063 1 535 053 047 017 083 2
1.72 003 097 072 028 1 5.14 049 051 041 0359 2
1049 100 000 036 064 1 416 030 070 099 001 2
1.1I8 001 099 069 031 1 354 020 o080 090 0l10 2
975 100 000 034 066 1 443 035 065 099 001 2
.12 001 099 069 031 1 §37 053 047 016 084 2
10.18 100 000 035 065 1 S75 060 040 000 100 2
021 000 100 065 035 I 623 069 031 004 096 2
972 100 000 034 066 1 405 028 072 098 002 2
-02f 000 100 064 036 1 396 027 073 097 003 2
937 099 001 033 067 1 456 037 063 096 004 2
002 000 100 065 035 1 523 050 0s0 030 07 2
1046 100 000 036 064 1 469 040 060 090 010 2
052 000 100 066 034 1 620 069 031 004 096 2
814 094 006 027 073 1 654 075 025 009 091 2
137 0.02 098 070 030 1 314 015 08 084 016 2
11.78 098 002 039 061 1 429 032 068 100 000 2
129 002 098 069 031 1 417 030 070 099 001 2
1056 100 000 036 064 1 434 033 067 100 000 2
048 000 100 064 036 I 372 023 077 093 007 2
858 09 004 029 071 1 657 075 025 010 090 2
-149 002 098 06! 039 1 48 042 058 079 021 2
1023 1.00 000 036 064 1 416 030 070 099 001 2
089 00I 099 068 032 1 600 065 035 001 099 2
11.14 099 001 038 062 1 500 046 054 059 041 2
109 001 09 069 031 1 530 052 048 022 078 2
880 097 003 030 070 1 427 032 068 100 000 2
192 004 096 073 027 1 479 042 058 082 018 2
833 095 005 028 072 1 563 058 042 002 098 2
028 000 100 066 034 1 649 074 026 008 092 2
969 100 000 034 066 1 243 008 092 077 023 2
-143 002 098 062 038 1 353 020 o080 09 o010 2
1091 1.00 000 037 063 1 427 032 068 1.00 000 2
(.81 004 096 072 028 1 651 074 026 009 091 2

Table 30: CLc (c=2) test results using MLP



Pt Uy 31 U un /7% U3z ® Pt U _Ua U s Uy Un __ ©
1044 000 098 002 031 047 022 | 580 021 033 046 010 088 002 2
050 100 000 000 030 020 OSI 1 552 026 032 043 053 042 005 2
970 000 00! 059 030 050 020 1 679 010 035 054 014 081 005 2
073 099 000 000 029 019 052 1 601 018 034 048 000 100 000 2
819 002 031 067 027 059 015 1 449 045 024 031 046 005 049 2
033 100 000 000 030 020 050 1 626 015 035 0S50 002 097 001 2
103¢ 000 100 000 031 048 021 U §66 023 032 044 028 068 004 2
08 098 001 00t 031 022 046 I 492 036 028 036 098 001 0Ol 2
1032 000 100 000 031 048 021 1 540 028 031 042 073 023 005 2
053 100 000 000 030 020 051 1 487 037 027 036 095 002 003 2
998 000 052 048 031 049 021 1 640 014 035 051 006 093 002 2
015 100 000 000 030 021 048 1 505 034 029 038 100 000 000 2
853 001 027 072 028 0S6 0.6 1 571 023 032 045 021 076 003 2
019 100 000 000 030 020 0S50 ! 479 039 027 035 089 003 008 2
1071 000 088 012 031 047 022 1 560 024 032 044 039 057 005 2
072 099 000 000 029 019 052 1 402 055 020 025 000 000 100 2
996 000 046 054 031 049 021 1 518 031 029 039 09 003 002 2
08 098 001 001 031 022 046 I 404 054 020 026 001 000 099 2
1094 000 081 019 031 046 023 1 646 013 035 052 007 051 002 2
024 100 000 000 030 020 050 ! 610 017 034 049 000 100 000 2
1059 000 092 008 031 047 022 | 532 029 030 041 084 002 004 2
026 100 000 000 030 020 0S50 1 371 061 017 021 004 001 095 2
960 000 000 100 030 050 020 1 526 030 030 040 050 007 o003 2
-159 095 002 002 032 024 045 1 453 044 025 032 052 006 042 2
1028 000 100 000 03T 048 021 1 446 045 024 031 041 005 054 2
-149 096 002 002 031 023 045 | 582 021 033 046 008 09 001 2
875 001 024 075 028 054 017 I 464 042 025 033 070 005 024 2
Q1S 100 000 000 030 021 049 1 29t 077 o010 013 018 008 074 2
1199 001 066 033 032 044 024 | 465 041 026 033 072 005 022 2
069 099 000 000 029 019 052 1 58 021 033 046 007 091 001 2
1121 001 075 024 032 045 023 1 508 033 029 038 100 000 000 2
051 100 000 000 030 020 051 1 629 0I5 035 050 003 09 001 2
1047 000 097 003 031 047 022 1 658 012 035 053 010 087 003 2
009 100 000 000 030 021 049 1| 232 087 006 007 024 012 064 2
938 000 007 093 030 o051 019 1 561 024 032 044 037 059 008 2
052 099 000 o001 031 022 047 1 576 022 033 045 015 083 002 2
929 000 010 090 030 052 019 1 405 0S4 020 026 001 000 099 2
0.31 1.00 000 000 030 020 050 1 548 026 031 042 060 035 005 2
1247 002 062 036 032 043 025 1 58 021 033 046 006 092 o001 2
127 097 001 002 028 0147 055 1 427 049 022 028 014 003 083 2
1123 001 075 025 032 045 023 1| 476 039 026 034 086 008 0.0 2
055 100 000 000 030 020 051 1 49t 036 028 036 097 001 002 2
1001 000 061 039 031 049 021 1 424 050 022 028 o0l 002 087 2
032 100 000 000 030 020 0S50 1 435 048 023 029 024 004 072 2
972 000 002 098 030 050 020 1 381 059 018 023 002 000 098 2
1.01 098 001 001 029 0.8 053 1 559 024 032 044 040 0S6 005 2
1190 001 066 032 032 044 024 1 426 0S50 022 028 012 002 086 2
073 099 000 000 029 019 052 1 700 008 035 0S6 017 076 007 2
995 000 045 055 031 049 021 1 530 029 030 040 086 010 003 2
068 099 000 000 029 019 _ 052 1 335 022 033 045 046 082 003 2

Table 31: CLc (c=3) design results using MLP (v,,=0.10, v3,=9.63, v3;=10.31, v1,=3.96, v=5.03, v5,=6.06)



Pt [ U un Uz Un U2 Pt Un un 3t 13 2 usy

583 021 033 046 008 091 001
509 033 029 038 099 000 0.00
337 o060 018 022 002 001 097
455 043 025 032 056 006 038
5§81 021 033 046 009 089 002
604 0.8 034 048 000 100 000
339 068 014 018 0.10 004 086
485 038 027 035 094 002 004
535 028 031 041 079 046 004
476 039 026 034 086 004 0.10
429 049 022 029 016 003 082
609 018 034 048 000 100 000
296 076 oIl 0.3 017 008 075
406 054 020 026 001 000 099
S91 o020 033 047 003 097 001
593 020 033 047 002 098 000
$35 028 031 041 079 0.16 004
514 032 029 039 098 001 001
416 052 021 027 005 001 094
354 065 Q6 019 007 003 0950
443 046 024 030 036 005 059
537 028 03t 041 077 019 004
022 033 045 016 081 003
623 016 034 050 002 098 o001
405 054 020 026 001 000 099
39¢ 056 020 025 000 000 1.00
456 043 025 032 059 006 036
523 030 030 040 093 005 002
469 041 026 033 078 005 0.7
620 016 034 049 001 098 0.0
654 012 035 052 009 088 003
344 073 012 015 015 006 0.79
429 049 022 029 015 003 082
417 051 021 027 005 001 094
434 048 023 029 023 004 074
372 061 017 022 003 001 096
657 012 035 053 0.0 087 003
482 038 027 035 092 003 006
416 052 o021 027 005 001 094
600 019 034 048 000 099 000
500 035 028 037 100 000 000
530 029 030 041 086 0.i1 004
427 049 022 028 0.4 002 084
479 039 027 035 089 003 008
563 024 032 044 033 063 004
649 013 035 052 008 050 003
243 085 007 008 023 0.12 066
353 065 016 019 008 003 090

1016 000 092 008 031 048 021
145 096 002 002 028 017 056
1060 000 092 008 031 047 02
092 099 001 001 029 018 053
1027 000 100 000 031 048 021
077 099 000 000 029 019 052
899 000 0.9 081 029 053 0.8
091 099 001 00l 029 018 053
834 002 029 069 027 057 016
128 097 001 002 028 017 055
1092 000 082 0.8 031 046 022
106 098 001 001 029 0.I8 053
1LI9 000 075 024 032 046 023
L7S 053 003 004 026 015 058
1086 000 083 017 031 046 022
096 099 001 001 029 0.I8 053
1084 000 08 016 031 046 022
172 094 003 003 027 0I5 058
1049 000 096 004 031 047 o022
LIS 098 001 001 028 018 054
975 000 005 095 030 050 020
112 098 001 001 028 018 054
1018 000 094 006 031 048 021
021 100 000 000 030 020 050
972 000 002 098 030 050 020
021 100 000 000 031 021 048
937 000 007 093 030 051 019
002 100 000 000 030 021 049
1046 000 097 003 031 047 02
052 100 000 000 030 020 051
814 002 031 066 026 059 0I5
137 096 002 002 028 017 055
178 001 067 031 032 044 024
129 097 001 002 028 017 055
1056 000 093 007 031 047 022
048 099 000 000 031 022 047
858 001 027 072 028 056 0.6
149 096 002 002 031 023 045
1023 000 098 002 031 048 021
089 099 001 001 029 019 053
114 000 077 023 032 046 023
109 098 00L 001 028 018 054
880 001 023 076 029 054 017
192 092 004 005 026 0I5 060
833 002 030 069 027 057 OIS
028 100 000 000 030 020 050
969 000 001 099 030 050 020
143 096 002 002 031 023 045
1091 000 082 048 031 046 022 427 049 022 028 0.4 002 084
181 093 003 004 026 0.5 059 651 __013 035 052 008 089 003
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Table 32: CLc (c=3) test results using MLP

7.3 Data Sets with Tarnished Gold Standards
In the experiments described in this section, 200 one-dimensional points were randomly

selected from two different distributions. All points from the first distribution were assigned to oy
(N1=100) with the remainder assigned to @, (N>=100). The design set was comprised of 50
points and 50 ®;, points (N,=100) with the remaining points assigned to the test set (N¥=100). All

performance results for both design and test sets are measured using the chance-corrected
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measure of agreement, x (section 3.2.3). Unlike the previous section, an MLP is used as the
classifier. The MLP has one input PE, two output PEs, and two hidden layer PEs with the
learning rate set to 0.7. The classifier is presented with the non-encoded data from the design set.
The design set is then subjected to the robust gold standard reclassification described in section
6.2.1 and subsequently presented to the MLP. For each case, the test set is presented to the trained
network and results recorded.

7.3.1 Robust reclassification and normal distributions
In this experiment, the & points were sampled from N(0,1) while the @, points were sampled

from N(3,1). Table 33 shows that when reclassification occurred perfect agreement was obtained
using the design set as opposed to x=0.90 with NE. A concomitant improvement was also

obtained using the test set (Table 34).

N, NE Robust
d
oy (/8 o o
o | 47 3 49 0
an 2 48 0 51
X 0.90 1.00
Table 33: Design set results
N NE Robust
lo olo o
46 4 45 5
] 4 46 2 48
K 0.84 0.86

Table 34: Test set results
Figure 120 shows that, with NE, any misclassifications with the design set occurred at the

overlap of the pdfs of & and ,. Specifically, five points were misclassified: three ax points,
2.11, 1.59, and 1.67; and two @, points, 0.73 and 1.02. Figure 121 shows that eight test set
misclassifications also occurred at the overlap: four o points, 2.13, 1.97, 1.85, and 2.16; and four

o, points, 1.05, 1.41, 0.81, and 1.43.
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Figure 120: MLP non-encoded results using design set
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Figure 121: MLP non-encoded results using test set
Table 35 is a list of points in the design set, their class labels (®), and their membership values

for o, (D;) and o, (D,). The points that were misclassified by NE are shown in italics and points
that were reclassified are shown in bold. In this case, all and only those points that were originally
misclassified were reclassified. Of course, this, in general, is not the case. Figure 122 shows that
no design points were misclassified when robust reclassification of the gold standard was

employed.
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Point (1)) D, D, Point ® D, D, Point (1] D, D,
082 1 0.64 0] 034 1 0.92 0 367 2 0 063
000 1 0.79 0y 007 1 0.84 0 279 2 0.24 0.76

1.23 1 040 034] -051 1 0.80 0 0.73 2 050 030

104 1 043 032 028 1 0.64 0 254 2 026 0.63
Q11 1 0.86 07 -010 1 0.86 0 490 2 0 035

211 1 a.30 050 08 1 046 031 219 2 0.28 0.52

1.07 1 042 0321 026 1 0.99 0 102 2 044 032
-1.57 1 043 01 227 1 0.33 0 296 2 0 087

140 1 037 037] -2.13 1 0.34 0 243 2 027 059
095 1 0.59 0 063 1 0.52 0.28 352 2 o 070
031 1 0.94 0 067 1 0.51 0.29 317 2 0 093
025 1 0.99 0] 033 1 093 1] 330 2 0 0383

084 1 047 030)] -065 1 0.71 0 417 2 0 048
-1.87 1 0.38 0f 051 1 0.79 0 473 2 0 038

076 1 049 029 050 1 0.56 0 1.81 2 032 043
049 1 0.81 0] 094 1 0.59 0 282 2 024 0.78
-1.83 1 0.38 0 190 2 031 045 1.52 2 035 038
061 1 0.74 0 335 2 0 080 304 2 0 094
-1.02 1 0.56 0 388 2 0 0.56 384 2 o 057

079 1 048 030 457 2 0 040 377 2 0 059
-1.55 1 043 0 281 2 0.24 0.77 197 2 030 046
254 1 0.30 0 407 2 0 0.50 33 2 o 079

056 1 0.54 0 .79 2 032 043 302 2 0 092

20 1 040 034 185 2 032 044 390 2 0 055

045 1 0.58 0 259 2 0.25 0.66 321 2 0 090
226 1 0.33 0 272 2 025 0.72 386 2 0 056

159 1 035 040 471 2 0 038 322 2 0 089

L67 1 0.34 041 266 2 0.25 0.69 397 2 0 053
-1.50 1 0.44 0 308 2 0 098 269 2 025 070
-138 1 047 0 312 2 0 098 395 2 0 054

052 1 0.55 0 401 2 0 052 278 2 0.24 075
063 1 0.73 0 301 2 0 091 358 2 0 067
099 1 0.57 0 233 2 0.27 0.56 424 2 0 046

060 1 0.53 0

Table 35: Robust reclassification using the design set
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Figure 122: Design results for MLP with robust reclassification
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Figure 123 shows that fewer points in the test set were misclassified, at the overlap of the pdfs.
Specifically, seven points were misclassified: five oy points, 1.41, 2.13, 1.97, 1.85, and 2.16; and

two a», points were misclassified, 1.05 and 0.81.

Figure 123: Test results for MLLP with reclassified design points
Table 36 lists the points in the test set, their class label (), and the membership values for o,

(Dy) and @, (D»). Points in italics indicate they were misclassified whereas points in bold indicate
that they would have been reclassified had they been in the design set. The last points needs to be
emphasized; robust reclassification never alters the test set, to do so would be to ignore the
relevance of the established gold standard. Nevertheless, it can be quite informative to, at least,
flag points in the design set that are considered to be outliers or suspect points. Note that all
points that were misclassified would have been reclassified.
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Points ® D, D, Points (1] D, D, Points (1] D, D,
064 1 054 0.29 013 1 0.95 0 394 2 0 053
010 1 0.78 0 094 1 0.56 0 L05 2 045 0.33
0.1 1 0.75 0 044 1 0.61 0 235 2 0 058

037 1 0.83 0 070 1 0.65 0 238 2 0 059
036 1 0.84 0 062 1 055 0.29 272 2 0 074
079 1 0.62 0 021 1 0.96 0 33 2 0 077
025 1 0.93 0 041 1 0.80 0 195 2 031 047
141 1 0.39 038 090 1 048 0.1 390 2 0 054
015 1 0.97 0 -1.25 1 0.48 0 335 2 o 077
-l4 1 0.44 0 053 1 0.58 0 464 2 0 038
0.64 1 0.54 029 067 1 053 0.29 141 2 038 0.37
0.80 1 0.50 030 217 1 0.33 0 081 2 0.50 0.31
040 1 0.63 0 051 1 0.74 0 209 2 030 050
213 1 0 052 1.22 1 041 03s 325 2 0 083
197 1 0.32 048 071 1 0.65 0 358 2 0 065
-1.37 1 0.45 0 039 1 0.82 0 143 2 038 038
-1.28 1 047 0 3.7 2 0 059 2499 2 0 063
1.07 1 044 033 305 2 0 098 194 2 031 047
094 1 0.56 o 333 2 0 0.78 445 2 0 041
085 1 049 031 228 2 0 0.56 236 2 0 058
047 1 0.76 0 274 2 0 075 374 2 0 059
063 1 0.68 0 289 2 0 085 240 2 0 060
067 1 0.66 0 473 2 0 037 292 2 0 087
185 1 033 045 239 2 0 059 412 2 0 048
216 1 0 052 339 2 0 075 329 2 0 081
012 1 0.76 0 356 2 0 066 385 2 0 056
038 1 0.63 0 297 2 0 091 309 2 0 097
020 1 097 0 436 2 0 043 1.78 2 0.33 043
059 1 0.70 0 432 2 0 044 3.10 2 0 096
024 1 0.93 0 3.00 2 0 094 307 2 0 098
1.18 1 042 034 417 2 0 047 365 2 0 062
041 1 0.62 o 28 2 0 0382 386 2 0 055
084 1 0.59 0 206 2 030 049 145 2 0.37 038
071 1 0.65 0

Table 36: Robust distance measures for the test set

7.3.2 Robust reclassification with contamination
The data from the previous section is again used except that four @, points from the design set,

3.95, 2.79, 3.59, and 4.25, have been relabeled as @, points. This contamination significantly
affects NE; x for both design (Table 37) and test (Table 38) results degrade and misclassifications
occur not only at the overlap of the pdfs of the two classes but also where the contamination
occurred (Figure 124). The robust reclassification strategy is able to compensate for this
contamination. NE misclassified nine points from the design set: six @, points, 3.95, 2.79, 3.59,

4.25, 2.11, and 1.67; and three , points, 0.73, 1.02, and 1.52. All four mislabeled points were
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misclassified. Nine points were misclassified by NE from the test set (Figure 125): four o; points

2.13, 1.97, 1.85, and 2.16; and five o, points, 1.05, 1.41, 0.81, 1.43, and 1.46.

Ne

]
(1)) 3 43 0 51
-

0.82 1.00
Table 37: Design set results
N, NE Robust

@ 2 § 6 26
46 4] 45 S

ax
o] S 45| 2 48

0.82 0.86
Table 38: Test set results
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Figure 124: MLP NE design results using contaminated data
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Figure 125: MLP test set with contamination
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Table 39 lists the design points, their class label (w), and the membership values for @, (D)

and @, (D). Points in italics indicate that they have been misclassified whereas points in bold

indicate that they were reclassified. Note that all mislabeled points have been reclassified.

Points o D D, Points o D D, Points o D D,
395 1 0 053 052 1 0.61 0 312 2 023 094
279 I 026 0.78 063 1 0.65 0 401 2 0 051
359 1 0 066 099 1 0.52 0 300 2 024 094
425 1 0 046 060 1 058 028 233 2 029 057

082 1 058 0 034 1 0.80 0 367 2 0 062
000 1 090 0 007 1 0.97 0 279 2 025 078
123 1 042 035 051 1 0.71 0 073 2 055 030
.04 1 046 033 028 1 0.71 0 254 2 027 065
011 1 099 0 -0.10 1 0.99 0 490 2 0 035
211 I 031 051 089 1 050 031 219 2 030 053
1.07 1 045 033 02 1 0.86 0 L02 2 046 032
-1.57 1 040 0 227 1 0.31 0 296 2 024 090
140 1 039 0.37 213 1 0.33 0 243 2 028 061
095 1 054 0 063 1 057 0.29 352 2 0 0.68
031 1 082 0 067 1 056 0.29 3.17 2 0 090
025 1 086 0 033 1 0.81 0 330 2 ¢ 0381
084 1 051 031 065 1 0.64 0 4.17 2 0 047
-1.87 1 036 0 051 1 0.71 0 473 2 0 037
076 1 053 0.30 050 1 0.61 0 181 2 034 044
049 1 072 0 094 1 0.54 0 282 2 025 0380
-1.83 1 036 0 190 2 033 046 .52 2 038 0.39
061 1 066 0 335 2 0 077 304 2 024 098
-1.02 1 052 0 3.88 2 0 055 384 2 0 0.56
079 1 052 0.30 4.57 2 0 039 377 2 0 058
-1.55 1 040 0 281 2 025 079 197 2 032 047
254 1 029 0 4.07 2 0 049 33 2 o 077
056 1 059 0 .79 2 034 044 302 2 024 095
1.20 1 043 034 1.85 2 033 045 390 2 0 054
045 1 063 0 259 2 027 0.67 321 2 0 087
226 1 031 0 272 2 026 0.74 38 2 0 055
159 1 037 040 471 2 0 037 322 2 0 086
167 1 036 042 266 2 026 071 397 2 0 052
-1.50 1 041 0 308 2 023 098 269 2 026 0.72
-1.38 1 043 0

Table 39: Robust reclassification using the contaminated design set

Figure 126 shows that seven test set points were misclassified by MLP when robust

reclassification was performed on the design set: five ; points, 1.41, 2.13, 1.97, 1.85, and 2.16;

and two o, points, 1.05 and 0.81.
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Figure 126: MLP robust results using test set

7.3.3 Fuzzy gold standard adjustment and normal distributions
In this experiment, the @, points were sampled from N(0,1) while the o, points were sampled

from N(3,1) and p and q are both set to 2. FST gold standard adjustment was employed. Table 40
shows that NE and the encoded method produced identical design results but the encoded method
produced slightly better results with the test set (Table 41). Both methods misclassified the samé

five design points: three @, points, 2.11, 1.59, and 1.67; and two @, points, 0.73 and 1.02.

N, NE Fuzzy

‘lo o | o
o> | 47 3|47 3
o| 2 48] 2 a8
K 090 0.90

Table 40: Design set results
N NE Fuzzy

[ 4

)] (L] oy
o | 46 4 | 47 3
a| 4 46| 3 47
0.84 0.88

Table 41: Test set results

Table 42 lists the design set points, their associated class label (@), and the FST adjustment to
the original gold standard (y;” and y,’). Rows in italics indicate points that were misclassified in
the design set. Note that in all cases the adjusted gold standards are such that y,’ is identical or

nearly identical to y,’ indicating that the associated point is nearly equidistant to the centroids of
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both classes. The FST adjusted method misclassified six points in the design set: three a points,

2.13, 1.97, and 2.15; and three w, points, 1.41, 0.81, 1.43.

Points o v’ y2 | Points o y’ ) | Points o w' y2’
082 1 099 008 03 1 099 012 367 2 016 098
000 1 099 0.16 007 1 099 0.15 279 2 032 099

.23 1 086 055 05t 1 099 0.10 0.73 2 096 096
1.04 1 091 046 028 1 099 022 254 2 039 098
0.11 1 099 0.15 010 1 099 015 490 2 007 059
211 1 092 092 089 1 093 0.39 219 2 052 094
107 1 09 047 026 1 1.00 0.I3 L2 2 091 091
-157 1 090 0.04 227 1 069 002 296 2 028 099
140 1 081 064 213 1 074 003 243 2 043 097
095 1 099 0.07 063 1 097 030 352 2 018 099
-031 1 1.00 0.12 067 1 097 032 317 2 024 099
025 1 1.00 0.13 033 1 099 0.12 330 2 022 099
08 1 094 0.38 065 1 099 009 417 2 011 089
-1.87 1 083 0.03 051 1 099 0.10 473 2 008 067
076 1 095 0.34 050 1 098 0.27 181 2 067 082
049 1 099 0.10 094 1 099 007 282 2 031 099
-1.83 1 084 003 190 2 063 085 .52 2 077 077
061 1 099 0.09 335 2 021 099 304 2 026 099
-102 1 098 0.07 388 2 014 096 384 2 014 097
079 1 095 0.36 457 2 009 075 377 2 015 097
-1.55 1 091 004 281 2 032 09 197 2 060 0.88
254 1 059 002 407 2 012 092 335 2 021 099
056 1 098 0.28 .79 2 067 0381 302 2 027 099
1.20 1 087 054 1.8 2 0.65 0.83 390 2 014 096
045 1 098 0.25 259 2 038 099 321 2 023 099
226 1 069 0.02 272 2 034 099 386 2 014 096
159 1 075 0.73 471 2 008 068 322 2 023 099
167 1 076 076 266 2 036 099 397 2 013 094
-1.50 1 092 004 3.08 2 0.26 1.00 269 2 035 099
-1.33 1 094 0.05 312 2 025 1.00 395 2 013 095
052 1 098 027 401 2 013 094 278 2 032 099
063 1 099 009 301 2 027 099 358 2 017 099
099 1 098 007 233 2 046 096 424 2 011 0.87
060 1 097 0.29

Table 42: FST GS Adjustment of the design set

7.3.4 Normal Distributions with Contamination
The contaminated data from section 7.3.2 is again used in this experiment. NE misclassifed

nine points from the design set (Table 43): five o, points, 3.95, 2.79, 3.59, 4.25, 2.11, and 1.67;
and three ®; points, 0.73, 1.02, and 1.52. Note that all mislabeled points were misclassified. NE
misclassified nine points from the test set (Table 44): four o, points, 2.13, 1.97, 1.85, and 2.16;

and five o, points, 1.05, 1.41, 0.81, 1.43, and 1.46.



NE Fuzzy
Mo olea o
o | 48 6] 48 6
)y 3 43 3 43
K 0.82 0.82
Table 43: Design set results
N, NE Fuzzy
[4
a a ) oy a
o | 46 4| 47 3
[y S 45 3 47
K 0.82 0.88

Table 44: Test set results
Table 45 lists the points in the design set, their class labels (@), and their FST adjusted gold

standard. Rows in italics indicate points that were misclassified in the design set. Specifically,
nine points were misclassified: six @, points, 3.95, 2.79, 3.59, 4.25, 2.11, and 1.67; and three o,
points, 0.73, 1.02, and 1.52. Note that all four mislabeled points were misclassified. Also note
that, for all four mislabeled points, y," is identical to y,’. Recall that this method will not
reclassify a point in the design set. In these cases, y,’ was assigned the value y,’: all of which
were near one, clearly indicating that they were much nearer to the ®, centroid than to the

centroid.

Six test set points were misclassified: three o points, 2.13, 1.97, and 2.16; and three o, points,

0.81, 1.43, and 1.46.
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Points o yi' v’ |Points o yi’ y’ |Points o y’ y2'
395 I 095 095 052 1 099 028 312 2 031 099
279 I 100 1L0o0] -063 1 099 0.10 401 2 016 093
359 I 099 099] 099 1 097 007 300 2 033 099
425 I 08 086 060 1 099 031 233 2 056 097

082 1 099 008] 034 1 099 012 367 2 020 098
000 I 099 017] -007 1 100 0.16 279 2 039 099
123 1 091 0S57] 051 1 099 O.I1 073 2 098 098
104 1 094 048 028 1 099 022 254 2 048 099
011 1 100 O0I5] -010 1 100 015 490 2 009 057
211 1 093 093 089 1 096 041 219 2 061 094
107 1 094 049] 026 1 099 0.13 Lo2 2 095 095
;157 1 088 004] 227 1 066 002 296 2 035 099
140 1 087 066)] -213 1 071 0.03 243 2 052 098
095 1 098 0.07 063 1 098 0.32 352 2 023 099
031 1 099 0.3 067 1 098 033 317 2 029 099
025 1 099 0.13] 033 1 099 0.12 330 2 027 099
084 1 097 039] 065 1 099 0.09 417 2 0.14 088
-187 1 080 0.03 051 1 099 0.1 473 2 010 065
076 1 098 0.36 050 1 099 0.28 181 2 075 083
049 1 099 0.11 094 1 098 007 282 2 039 099
-1.83 1 081 003 190 2 072 0.86 152 2 084 084
061 1 099 0.10 33 2 026 099 304 2 033 1.00
-102 1 097 007 388 2 017 095 384 2 018 096
079 1 097 037 457 2 011 073 377 2 019 097
-155 1 088 0.04 281 2 039 099 197 2 069 0.89
254 1 056 002 407 2 015 091 335 2 026 099
056 1 099 0.29 179 2 075 083 302 2 033 099
1.20 1 091 056 185 2 073 0.85 390 2 017 095
045 1 099 026 259 2 046 099 321 2 029 099
226 1 066 0.2 272 2 042 099 386 2 018 096
159 1 082 074 471 2 0.10 0.67 322 2 028 099
167 I 080 078 266 2 044 099 397 2 016 094
-150 1 090 005 308 2 032 1.00 269 2 043 099
-1383 1 092 0.05

7.4 Fuzzy Interquartile Encoded Multi-Layer Perceptron

Table 45: FST GS adjustment results for contaminated data

The n-dimensional bounding set (see section 3.3.1) is used here to experimentally justify the

efficacy of the fuzzy encoding preprocessing strategy. Recall that 2n hyperplanes are required as

an accurate decision boundary. In the case of an MLP classifier, this translates into the

requirement that at least 2z PEs in a hidden layer are needed where each PE corresponds to one of

the hyperplanes. Figure 127 illustrates the weights and biases for an n-dimensional MLP solution.
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Figure 127: An ideal n-dimensional MLP solution
Figure 10 suggests that the ideal solution for the n-dimensional problem requires exactly 2n

hyperplanes. If a step function

(x)= lif x>0 (59)
Y= x<0

was used as the transfer function then the solution is straightforward. For each dimension, i, we
have a pair of hidden PEs corresponding to the pair of hyperplanes used for that dimension. The
weights for the corresponding coordinate, x, are set to 1. The weights are set to O for the
remaining features. The weight value between the first PE and the output node is 1 and -1 for the
second. The bias for the first PE is 0.75 and -0.75 for the second. Finally, the bias for the output
PE is ~(n—€), where € is a small positive real. If x; is bounded by the corresponding hyperplanes
then the summation of the pair of PEs is large, otherwise, it tends towards zero. If all features,
X1, X2, ..., Xn, are bounded by their respective hyperplanes then the summation of the outputs of
the 2n hyperplanes is large. Figure 128 illustrates the solution to the 2-dimensional boundary
problem shown in Figure 129. Figure 130 and Figure 131 illustrate the 3- and 4-dimensional

solutions.
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Figure 128: An ideal 2D solution (step function or logistic function with gain)
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Figure 129: A geometrical interpretation of the 2-dimensional problem
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Figure 130: An ideal 3D solution (step function or logistic function with gain)
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Figure 131: An ideal 4D solution (step function or logistic function with gain)
Of course, an MLP cannot use the step function as a transfer function because the gradient

descent strategy requires a differentiable transfer function. Moreover, because the logistic
function produces continuous values between 0 and 1, it smoothes the output values instead of
providing a discrete, non-contimous jump from O to 1. The smoothing nature of the sigmoid
tends to affect the results such that data points near the boundaries become misclassified. One
way to compensate for this is to use a gain term with the logistic function. As the gain term
approaches infinity, the logistic function tends towards a step function. It was experimentally
determined that if the gain term is set to 80 the same weight and bias values used with the step
function would work with the logistic function. Unfortunately, such a large gain term usuaily

causes the MLP to wildly oscillate so this strategy is of little use.

However, if the logistic function is used without any gain (g=1), an ideal solution may still be
obtained if the bias values are changed for the hidden PEs and the weights from the input values
to them. In fact, the larger values (two orders of magnitude) tend to produce the same results as
those where a large gain term is used. The advantage, though, is that this approach does not tend
to cause wild oscillations. Figure 132, Figure 133, and Figure 134, illustrate the weights and

biases for 2-, 3-, and 4-dimensional solutions using this strategy.
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X X2 Xi X2 X2 Xi Xz X1

Figure 132: An ideal 2D solution (the logistic function with no gain)

X1 X2 Xi R X X1 X2 X1 X3 X1 X3 X1
X3 b <] X3 Xa X2 X2

Figure 133: An ideal 3D solution (logistic function with no gain)

100 -100 -100 100 100 100 100 100
0 0 OI 0 0 0 0 0
X1 X2 X1 X2 X2 X1 X X1 Xa Xt X3 X1 X4 X1 Xe X1
X3 X3 X3 X3 X2 X2 X2 X2
Xa X } 71 Xa } /) Xa X3 X3

Figure 134: An ideal 4D solution (Togistic function with no gain)
However, in practice a MLP may not find these hyperplanes. Figure 135 illustrates a sub-

optimal solution for the 2-dimensional problem using three lines. In this case, one of two events
will have occurred: one of the hidden PEs will have weights that are similar to one of the other
three PEs in the hidden layer (in which case it will duplicate the functionality of the other PE); or,
the weights of one of the PEs are near zero in which case it contributes negligibly to the outcome.

It should be noted that even when only three hyperplanes are used, a MLP might converge to a
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point where a majority of the vectors will be correctly classified. However, this benefit may also
be considered a disadvantage — when it begins to converge to a solution, a MLP is not able to
escape from the associated local minimum to determine if better solutions exist. This is a result of
the gradient descent strategy — the error cannot increase, thus when the algorithm begins to

converge towards a solution it cannot diverge from it.

Figure 135: A non-ideal solution
The data range for the classification problem is [-1,1] and is discretized in intervals of 0.1.

Apart from ensuring that vectors were randomly selected from the entire pool, the overriding
constraint was to ensure that there was an equal number of class O and class 1 vectors in the
design sets. Another constraint was to attempt to select approximately 2/3 of the total number of
vectors for the design set. As the dimensionality of the problem increases, this constraint begins
to conflict with the one ensuring an equal number of vectors from each class. The following
strategy was used in order to maximally satisfy these two constraints. For each case, 2/3 of the
vectors from the class with the fewer number of vectors was randomly selected for inclusion in
the design set. The same number of vectors were then randomly selected from the other class for
inclusion in the design set. The remaining vectors were then used as test vectors. Table 46, Table
47, and Table 48 list the number of vectors used for the 2-, 3-, and 4-dimensional cases,
respectively, as well as their classification and how many were used for the design and test sets.
In the interest of achieving convergence in a reasonable period of time, the same number and
breakdown of vectors was used in the 20-dimensional case as in the 4-dimensional case. All the

experiments discussed in this section used the same MLP architecture. The learning rate was set
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at 0.9 and no momentum term was used. The transfer function is the logistic function and the
learning rule is the generalized delta rule. As data were carefully generated for this paper, they
were neither scaled, normalized, nor was any noise introduced into the MLPs. For each specific
n-dimensional problem, one hidden layer was used that contained 2n PEs. After some initial
trials, the number of iterations was fixed for each set of experiments in order to more accurately
compare the performance of the MLP using NE data versus the corresponding MLP using FE
data. Finally, each pair of NE and FE runs used the same set of initial randomized weights. Four
triangular fuzzy sets were selected at intervals of [-1,-0.5], [-0.5,0], [0,0.5], and [0.5,1],

respectively. The membership functions were computed to be

[i(x)=0v(1-2x+.75)
f(x)=0v(1-2}x+.25)
f(x)=0v(1-2x-.25)
fi(x)=0v(1-2|x~.75)

(90)

Additional runs were made using eight triangular fuzzy sets for each input value by simply

splitting the original boundaries in half.

72 (33) 216 (49)
144 (64) 81 (36) 225 (51)
288 (65) 153 (35) 441

2250 (38) 3636 (62) 5886 (64)
2250 (67) 1125 (33) 3375 (36)
4500 (49) 4761 (51) 9261

33750 (23) 110106 (77) 143856 (74)
33750 (67) 1125 (33) 50625 (26)
67500 (35) 126981 (65) 194481

Table 48: Vectors in the 4-dimensional case

For each 2-, 3-, 4-, and 20-dimensional case, 100 design and test sets were generated in order to

provide a more statistically accurate set of observations. Each set was then fuzzy encoded and
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paired with its corresponding NE set. The generated data were neither scaled nor normalized. For
each specific n-dimensional problem, one hidden layer was used that contained 2n PEs. After
some initial trials, the number of iterations was fixed for each set of experiments in order to more
accurately compare the performance of a MLP using NE data versus the corresponding MLP
using FE data. After the training phase terminated, the test sets were classified and the

performance results were recorded.

In all cases, the FE MLPs that used four fuzzy sets attained their k values with an iteration
count of roughly an order of magnitude less than their NE counterparts. Moreover, when eight
fuzzy sets were used an additional order of magnitude reduction in the number of iterations was
achieved. These significant reductions do not precisely translate to corresponding increases in
speed because there are roughly four times the number of computations that have to be performed
for the FE MLPs using four fuzzy sets (eight times for the FE MLPs using eight fuzzy sets).
Nevertheless, taking this fact into account, the FE MLPs performance were still many times
better. It should also be noted that when eight fuzzy sets were used the FE MLPs were somewhat
sensitive to overtraining. That is, as the iteration count increased, their performance with respect
to classification success was slightly degraded. Table 49i clearly indicates that the FE MLPs

outperformed their NE MLPs counterparts for the 2-, 3-, 4-, and 20-dimensional cases.

In the following discussion, representative experiment pairs were selected from each case. The
weights were recorded for subsequent analysis. The ensuing sections will clearly demonstrate that
FE data does improve the performance of MLPs. Not only are the results consistently better for
every pair of experiments, but the MLPs that used FE data also produced these superior results in

far fewer iterations.
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NEm  Iters !Fﬂ(ﬂ Iters Iters
i) 2 dimensions 0.86 300 1.00 50 1.00 S

3 dimensions 0.83 600 1.00 100 0.99 10
4 dimensions 090 2000 1.00 200 0.99 100
20 dimensions 0.85 5000 0.98 500 0.98 200
ii) 2DNoise (5%) 1.00 400 0.99 90 0.99 9
Noise (10%) 0.99 400 0.99 90 0.99 9
Noise (20%) 0.81 400 0.99 90 098 9
Noise (30%) 092 1500 0.92 400 097 50

i 0.88 0.90 400 0.90 S&J
097 60 0.99 5
0.92 60 098 5
1.00 60 097 5
1.00 60 0.97 5

( FE4=fuzzy-encoded data using 4 fuzzy sets, NE=noa-encoded data
FES=: -encoded data using 8 sets, lters=number of iterations (x1.000

Table 49: Classification results averaged over 100 runs

7.4.1 The 2-dimensional case
In the 2-dimensional case, the NE version of experiment 87 (Figure 136) that yielded perfect

classifications, is very similar in structure to the MLP found in Figure 132. That is, the relative
magnitudes are similar and the signs identical for each respective weight and bias value. This
suggests that each hidden PE corresponds to a unique and significant hyperplane. The NE version
of experiment 31 (Figure 137) produced an accuracy rate of 86%. Note that the PE, H4 (shaded),
contributes very little to the final outcome. In this case, only three hyperplanes are used thereby
degrading overall performance. The NE version of experiment 23 (Figure 138) produced the
poorest results which is to be expected since each hidden PE duplicates the functionality of the
others and this implies that only one hyperplane is used. The NE version of experiment 8 (Figure
139) produced results only slightly worse than experiment 31 using only two hyperplanes. In the
FE versions of all the experiments, perfect results were achieved (see Table 50). The structures of
the FE MLPs suggest that the information content is more uniformly distributed than the NE

MLP counterparts.



Figure 138: NE MLP with one hyperplane
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Exp.23:NE 0 (0) 81(100) 81 (53)
FE 72(100 81(100 153100) |
Exp31:NE 60 (83) 72 (39) 132 (86)
FE 72(100) ____ 81(100) 153(100)
Exp.8T:NE 72(100) 81(100) 153(100)
FE 72(100) $1(100) 153(100)
Total Vectors 72 81 153

Table 50: Sample 2D results — NE versus FE

7.4.2 The 3-dimensional case
In the 3-dimensional case, the NE version of experiment 19 (see Table 51), which produced a

correct classification for all test vectors, is similar in structure to the MLP described in Figure
133. The hidden PEs, H2 and H3, represent the hyperplanes for the first coordinate, H1 and H6
represent the hyperplanes for the second coordinate and H4 and HS represent the hyperplanes for
the third coordinate. The NE versions of experiments 51 and 69 are quite similar in structure. The
hidden PE pairs H1/H4 and H3/H6 correspond to the hyperplanes for the second and third
coordinates, respectively, whereas H2 and HS contribute far less to the final outcome. A
testament to the robustness of MLPs can be found in these two runs: with only four of six
hyperplanes, the MLP still achieved an accuracy rate of 83%. In the NE version of experiment 93,
five of six hyperplanes are well defined: H1 and HS for the second coordinate; H2 and H6 for the

third coordinate; and H3 for the first coordinate. If this MLP ran for several thousand more
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iterations, H4 would probably settle to correspond to the last required hyperplane. As in the 2-

dimensional case, all FE runs had uniformly distributed values for weights and biases.

[ Accuracy | 1
3636(100) 1125(100) 4761(100)
FE (% 3636(100 1125(100 4761(100

2812 (7D 1125(100) 3937 (83)
- FE 3636(100 1125(100 4761(100
Exp.69:NE 2812 (77) 1125(100) 3937 (83)
FE 3636(100 1125(100 4761 (100

3297 (91) 863 (77) 4169 (87)

3636(100 1125(100 4761 (100

Table 51: Sample 3D results — NE versus FE

7.4.3 The 4-dimensional case

In the NE version of experiment 28, good results were achieved after two million iterations

(Table 52). All hyperplanes are evident and with more iterations it is suspected that the MLP

would produce even better results. The FE versions of this experiment produced perfect results.

Hidden PEs are paired as in Figure 134 (for example, H1 and H2 represent hyperplanes for the

first feature — fi(x) (i=1, 2, 3, 4) is near 0 for ji and large, =100, for j=I) but neither the biases

nor the weights to the output PE alternate their signs. This suggests that the value of a coordinate

x; need not be between its corresponding hyperplanes but rather it needs only be on one side of a

single hyperplane (therefore we need only sum the outputs of all the hidden PEs and determine if

the sum exceeds a threshold). This suggests that the dimensionality of the problem has been

reduced. Specifically, the original 4-dimensional problem (8 hyperplanes) has been reduced to a

2-dimensional problem (4 hyperplanes) while still producing perfect classifications.

Class lJL Total
16875(100) 116856 (92)
110106100 16875(100 126981 (100
Total Vectors 110106 16875 126981

Table 52: Sample 4D results — NE versus FE

[ Exp.28:NE(%) 99981 (91)
FE (%
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7.4.4 Noisy data and non-normal distributions
Table 49ii lists performance results when varying amounts of Gaussian noise were added to the

first coordinate of the 2-dimensional data sets. The FE MLPs produced comparable or more
accurate classifications with far fewer iterations. It should also be noted however that NE MLPs
tended to produce better results than their noise-free counterparts. This suggests that the
introduction of noise is indeed a useful enhancement to MLPs.

The distribution of the design data in all of the previous experiments was uniform. Additional
experiments were run for the 2-dimensional case to determine how well the two types of
networks performed if the design data were not uniformly distributed. Design data were carefully
reselected to ensure non-uniform distributions: two distinct bimodal distributions and two distinct
skewed distributions. Results in Table 49iii indicate that FE MLPs again consistently

outperformed NE MLPs and with far fewer iterations.

7.5 Additional Experiments

7.5.1 20-dimensional hypercube
A number of different classification systems are now used with the 20-dimensional hypercube

data set described in section 3.3.1:
- LDA is linear discriminant analysis (section 4.1);

- MLP is a multi-layer perceptron (section 4.2) with 20 input PEs, 2 output PEs, and 40

hidden layer PEs;
- E-MLP is an enhanced MLP (section 4.2.1);
- RBFN is aradial basis function network (section 4.4) with 40 receptive fields;

- PNN is a probabilistic neural network (section 4.3) with 40 kernels.

The fuzzy encoding techniques all employ an underlying MLP identical to the one mentioned

above except that there are different numbers of input PEs depending on the encoding method:
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- DP (section 6.1.2) and DPc are the dimension-preserving fuzzy interquartile encoding

method and its class-wise variant;
- IQ (section 6.1.1) and IQc are the interquartile encoding method and its class-wise variant;

- CL (section 6.1.3) and CLc are the fuzzy cluster encoding method and its class-wise variant
(the number of clusters were varied from 2 to 20 and the best result is listed; respectively,

c=7 and c=3).

The boundaries, averaged over all 20 dimensions, for IQ and DP are ¢=-1.00, Q=-0.50,
m=0.03, 0,=0.40, 8=1.00. The boundaries, averaged over all 20 dimensions, for IQc and DPc are
0,=-0.70, Qn=-0.40, m;=0.00, Q,,=0.40, B;=0.70 and ;=~1.00, 0p=-0.70, m,=-0.05, 0.,=0.50,

B=1.00.

Performance results for these methods using the test set are listed in Table 53. As this problem
is not linearly separable, LDA fails to discriminate; specifically, LDA achieved a x=0.00 by
computing the hyperplane to fall directly through the hypercube. The non-encoded ANNS, on the
other hand, perform adequately, especially RBFN. DP and IQ produced superior results whereas

CL and CLc did not perform as well as the non-encoded ANN .

N LDA MLP E-MLP RBFN PNN
‘1l o o | o oy | o o | o o | o o
o | 25 25 44 6 31 9 a3 7 a4 6
w | 25 25 14 36 10 40 6 44 14 36
| x 0.00 0.60 0.62 0.74 0.60
N, DP CL (=1 | (4]
o Q O (/] (.8 o
o | 46 4 37 13 26 2
o | 4 46 8§ 42 4 46
| x 0.84 0.58 0.84
N, DPc CLec (=3) IQc
o o | oo @ o |
o | 43 7 ry) 8 40 10
ol 7 43 16 34 34 16
x 0.72 0.52 0.48

Table 53: Test results using different classification systems with a hypercube
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The above classification systems are again used with the 20-dimensional hypercube bounding
problem except that 20% Gaussian noise is added to each coordinate. The boundaries, averaged
over 20 dimensions, for IQ and DP are o=-1.18, Q=-0.48, m=0.03, 0,=042, p=091. The
boundaries, averaged over 20 dimensions, for IQc and DPc, are a;=-0.90, Qn=-0.34, m;=0.00,

0.:=0.38, B,=0.79 and a;=-1.02, 0,=-0.63, m;=-0.02, Q,,=0.48, B,=1.10.

Performance results using these methods with the test set are listed in Table 54. Performance

results significantly degrade for all methods except for IQ that appears to be robust to the noise.

. LDA MLP E-MLP RBFN PNN
‘] o o | oy oy | o oy | oo oy | ooy
oy 23 27 35 1§ 3s 15 38 12 36 14
o 25 25 12 38 12 38 11 39 15 35
x -0.04 046 0.46 0.54 0.42
N, DP CL (c=6) IQ
o o | oo 2o | @ o |
o | 33 17 | 24 26 45 5
m| 5 45 17 33 6 4
x 0.56 0.14 0.78
N, DPc CLc (=) IQc
()] (/] 0y 2 0
a | 37 13 42 8 36 14
o | 17 33 16 34 15 35
x 0.40 0.52 0.42

Table 54: Test results using different classification systems with a hypercube with noise

7.5.2 Disk and torus
The classification systems described in section 7.5.1 are used with the disk/torus problem

described in section 3.3.2. The only difference is that MLP and E-MLP have 4 hidden layer PEs,
RBEFN has 4 receptive fields, and PNN has 4 kernels. The boundaries for IQ and DP are a=[0.01,
0.00], O=[0.23, 0.24], m=[0.43, 0.45], 0.~<[0.81, 0.70], B=[0.99, 0.98]. The boundaries for IQc
and DPc are a;=[0.01, 0.00], Qy=[0.10, 0.13], m;=[0.63, 0.41], Q.,=[0.86, 0.78], §,=[0.89, 0.98]
and op=[0.13, 0.15}, @p=[0.31, 0.35}, m;=[0.42, 0.47], Q.,=[0.69, 0.63), B,=[0.89, 0.89). The
three cluster centres for CL are v;=[0.81, 0.35], v»=[0.36, 0.79], v5=[0.25, 0.31)]. The four cluster

centres for CLc are v;,=[0.18, 0.65], v»,={0.80, 0.29], v;»=[0.36, 0.38], v»,=[0.60, 0.60].
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Performance results using these methods with the test set are listed in Table 55. Performance
results significantly degrade for all methods except for IQ that appears to be robust to the noise.
Note that RBFN was the only non-encoded ANN to perform reasonably well with the disk/torus
data set; a single receptive field at the centre of the unit circular disk is all that would be required

to get good classification performance. As a whole, the fuzzy encoding methods performed

extremely well.
N, LDA MLP E-MLP RBFN PNN
oy o | o o o o ay o | o o
o 36 14 37 13 32 18 42 8 31 19
o | 32 18 8 42 12 38 2 48 12 38
K 0.08 0.58 0.40 0.80 0.38
N pP CL (c=3) IQ
o o | o o | o o |
o | 47 3 | 48 2 46 2
o 2 48 18 32 0 50
© 0.90 0.60 0.92
N, DPc CLc (=2 IQc
o () o o o [
o | 45 5 47 3 38 12
o | © 50 1 49 14 36
x 0.90 0.92 0.48

Table 55: Test results using different classification systems with a disk/torus
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8 Experiments Using Biomedical Spectra

8.1 Magnetic Resonance Spectra of Thyroid Biopsies
The magnetic resonance (MR) spectra set of thyroid biopsies was used to test the effectiveness

of fuzzy interquartile encoding in a “real-world” scenario. It has been demonstrated in [105] that
a MLP can be constructed that produces a robust classification of thyroid biopsies given their MR
spectra. The inputs to the MLP were the ten best principal components of the original data that
accounted for 97% of the total variance. Here, MLPs using the original spectral regions are used
without any PCA preprocessing and compared with MLPs using the corresponding FE spectral
regions. Twenty experiments were run for each case described below. Unlike the results
discussed previously that were based solely on the test data, the average performance results

listed in Table 56i~ii are based on all of the data (due to the paucity of data).

NEx) [Iters | FEdx) Iters | FE8«x) [Iters
i) Choline I 0.64 1400 0.92 3 0.84 0.1
Lipid [ 0.80 4000 0.88 5 0.88 0.4
ii)Choline I 0.96 600 0.96 10 0.76 1.0
Lipid I 1.00 2000 0.92 25 0.80 3.0
( FE4=fuzzy-encoded data using 4 fuzzy sets, NE=non-encoded data
FE8=! -encoded data using 8 sets, Iters=aumber of iterations (x1,000

Table 56: Classification results averaged over 100 runs
Four fuzzy sets were computed for each feature and the FE data were generated (680 and 1600

input points for the choline and lipid regions, respectively). The intersection, b, was set to 0.5 for
all sets. Subsequently, eight fuzzy sets were computed by dividing each quartile in half. Table 56i
lists the performance results. Again FE-MLPs outperformed their NE counterparts. What is
particularly surprising is the rate of convergence for the FE-MLPs (for instance, the NE-MLPs

used to classify the lipid regions are 800 times slower than the corresponding FE-MLPs).

Finally, comparisons were made using MLPs with some enhancements: momentum term;
modulated learning; hyperbolic tangent function instead of the logistic function; and data scaling.
In this case, the FE-MLPs using four fuzzy sets performed as well as their NE-MLP counterparts

for the choline region but slightly poorer results were obtained for the lipid region (Table 56ii).
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Although convergence still occurred much more quickly with the FE-MLPs, the NE-MLPs
converged approximately twice as quickly with enhancements as without, whereas the FE-MLPs
converged roughly 3-S5 times more slowly. Moreover, when eight fuzzy sets were used, the
overall classification rates were significantly poorer. Since data scaling occurred after the data
were fuzzy encoded, the information content of the FE data may have actually changed, thereby
affecting the nature of the problem. It was noted that when at least one of the MLP enhancements
was deactivated, the FE-MLPs performance resuits approached those found in the FE-MLPs

without any enhancements.

8.2 Infrared Spectra of Alzheimer’s Diseased Brain Tissue
Three architectures are used to classify the original infrared (IR) spectra of the Alzheimer’s

diseased brain tissue (as described in section 3.3.5), an MLP employing an enhanced back-
propagation algorithm as described in section 4.2.1, an FE-MLP as described in section 6, and an
RBFN (section 4.4). The enhanced MLP (E-MLP) has ten hidden PEs and Gaussian noise was
added to the system. The noise-free version produced significantly poorer results. The hyperbolic
tangent was selected as the transfer function and modulated learning (a=0.7-0.02) and
momentum (f=0.4-0.01) are used across layers as well as across epochs. The FE-MLP did not
employ modulated learning. The transfer function was the logistic function and the learning and
momentum rates were 0.7 and 0.4, respectively. Four fuzzy sets were computed for each feature
and the FE data were generated (1664 input points). Triangular fuzzy sets were chosen and the
intersection point was set at 0.S. Although there are four times as many inputs for this MLP than
in the E-MLP case, mean square error convergence occurred in approximately an order of
magnitude fewer iterations. For this investigation, the RBFN used three, five, and six prototypes
for the 2, 4, and 5 class problems, respectively. The transfer point from unsupervised k-means

clustering (to determine the centroids) to supervised gradient descent learning from the hidden
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prototype layer to the output was varied in order to achieve good resuits for each of the two, four,

and five class problems.

The spectra were randomly assigned to either the design or test set. Once assigned these sets
were fixed for all runs. The ANN results are averages of ten runs using different initial random
weight assignments and different random presentation sequences of the design set. All
performance results are calculated using the test set. In the conventional preprocessing cases,
PCA (using correlation matrices) is performed using all spectra. The first £ principal components
that accounted for 99.9% of the cumulative variance were used as inputs for both the LDA and
ANN techniques. A MLP is used for the preprocessed spectra. Apart from the hidden layer
consisting of three PEs rather than ten, this network’s architecture is the same as the E-MLP

above.

8.2.1 Two class problem
Of the 114 spectra used in the two class problem, 66 were placed in the design set (33 C and 33

A) and 48 in the test set (16 C and 32 A). The first nine principal components accounted for
99.99% of the cumulative variance (the first five, two, and one principal components accounted
for 99.90%, 99.79%, and 99.24% of the cumulative variance, respectively). The ANNs
consistently outperformed LDA in all cases by approximately 4% (Table 57). This performance
gain can be explained by the non-linear nature of ANNs. Unlike LDA, they are not restricted to
hyperplanar decision boundaries. It is interesting to note that the performance results were
slightly better for the two principal component case than for the five principal component case.
This is a testament to the fact that accounting for maximal variance does not necessarily translate
into maximal discriminatory power. Table 58 lists results from the three ANNs using the original
spectra. FE-MLP outperformed E-MLP and RBFN and produced results comparable to the best
case from Table 57. This can be attributed to the fact that FE-MLP preprocesses the spectra by

transforming each discrete data point into an ordered set of membership values whose



corresponding fuzzy sets are centred around the quartiles of each discrete spectral coordinate. As
a result, a point that lies significantly outside the upper or lower quartile will have a diminished
impact during leamning (all but one of the membership values will be zero and the non-zero
membership value will go to zero the further the data point is from the lower [or upper] quartile).
Such spectral points are often considered to be outliers. Hence, FE-MLPs naturally reduce the

negative role that outliers often play during training.

LDA ANN
#PCs I C A C A

C 16 0 16 1]

9 A 1 31 o 32
X 0.95 1.00

C 12 4 14 2

5 A 5 27 6 26
X 0.58 0.65

C 13 3 14 2

2 A 5 27 4 28
K 0.64 0.73

C 10 6 9 7

1 A 7 25 4 28
X 0.40 0.46

Table 57: ANN versus LDA (principal components and two classes)
FE-MLP E-MLP RBFN
C A cC A C A

ciie O 13 3 14 2
Al 31 0 32 7 25
K 0.95 0.85 0.61

Table 58: Classification results (original spectra and two classes)

8.2.2 Five class problem
Of the 163 spectra used in the five class problem, 104 were used in the design set (33 CG, 16

CW, 6 NT, 33 AG, and 16 AW) and 59 in the test set (16 CG, 7 CW, 3 NT, 25 AG, and 8 AW).
The first ten principal components accounted for 99.99% of the cumulative variance (the first
eight and five principal components accounted for 99.95% and 99.90% of the cumulative
variance, respectively). Again the MLPs outperformed the corresponding LDAs (Table 59) but
this time by a wider margin. The fact that both methods did not perform as well as in the two

class problem is to be expected. It is more difficult to discriminate between control grey and
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white matter and Alzheimer’s diseased grey and white matter. Moreover, the increased
discriminatory complexity and the concomitant requirement for finer discriminatory
hypersurfaces also accounts for the wider performance margin between ANN and LDA. It should
also be noted that although there were more misclassifications in this five class problem using the
first ten principal components, both methods exhibited conservative misclassification (except for
one spectrum in the LDA case). That is, control tissue was always classified as control tissue and
AD tissue was always classified as AD tissue. When errors occurred it was only in the
determination of the tissue as white or grey matter. Unfortunately, all of the NT spectra were
misclassified in all cases. This problem is due to the paucity of NT spectra in the design set.
Nevertheless, these spectra were classified as being either AG or AW. Since NTs are one of the
hallmarks of AD, it is at least more preferable that NT spectra be misclassified as AD tissue

rather than control tissue.

‘ LDA MLP
#PC I CG CW NT AG AW | CG CW NI AG AW
CG 16 0 0 0 0 16 0 0 0 0
cw 0 7 0 Q 0 0 7 0 0 0
10 NT 0 0 0 2 1 0 0 1) 1 2
AG 1 0 5 19 0 0 0 2 23 0
AW 0 0 2 0 6 0 0 1 0 7

K 0.75 0.86
CG 16 0 0 0 0 16 0 0 0 0
cw 1 6 0 0 0 0 7 0 0 0
8 NT 0 0 0 2 1 0 0 0 2 1
AG 1 0 2 21 1 0 i) 0 24 1
AW 0 0 2 0 6 0 0 1 1 6

X 0.76 0.81
CG 13 1 0 2 0 12 2 0 2 0
CwW 2 h 0 0 0 2 S 0 0 0
5 NT 1 0 0 1 1 1 0 0 1 1
AG 3 0 4 17 1 3 0 3 19 0
AW 1 0 0 3 4 1 0 0 2 5

X 0.52 0.57

S— -

Table 59: ANN versus LDA (principal components and five classes)
Table 60 lists the performance results of the three ANNs using the original spectra. Once again

FE-MLP produced the best results. It performed almost as well as the best case from Table 59 and

outperformed all LDA results.
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Table 60: Classification results (original spectra and five classes)

8.2.3 Effect of auxiliary data on principal components
It is often the case that new spectra collected after the initial classification process has been

completed need to be classified. In cases where principal components are used to preprocess the

data, this means that the principal components must be computed for the new spectra. Further, the

components for the original spectra need to be recomputed. We now investigate this issue using a

four class variant of the problem discussed above. The spectra were divided into 3 sets: a design

set with 33 CG, 16 CW, 33 AG, and 16 AW for a total of 98 spectra; a test set with 16 CG, 7 CW,

25 AG, and 8 AW for a total of 56 spectra; and, an auxiliary test set with 9 NT spectra. Table 61

lists the results using the first ten principal components that accounted for 99.99% of the

cumulative variance. In this case, the principal components were computed using only the spectra

in the design and test set. The overall results were x¥=0.92 for the ANN and x=0.87 for LDA.

CcG
cw
AG
AW
K

LDA ANN

CG CW AG AW | CG_CW AG AW
0 0 0 16 0 0 0
7 0 0 0 7 0 0
0 22 2 0 0 24 I
0 2 6 0 0 2 6
0.87 0.92

Table 61: ANN versus LDA results (principal components and four classes)
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Finally, principal components were re-computed using the above spectra as well as the
auxiliary test set (for a total of 163 spectra). The first ten principal components accounted for
99.99% of the cumulative variance. In this case, the classification results are calculated using
only the test set. However, since the principal components have been calculated for the auxiliary
test set, their classification outcomes can be generated (Table 62). The overall classification rate
for the ANN remained unchanged at x=0.92 but the LDA rate dropped to x=0.84. The notion of
accuracy is meaningless with regard to the classification of the auxiliary test spectra because no
desired outcomes were associated with them. Nevertheless, it is interesting to note that, as in the

five class problem, both the ANN and LDA classified the auxiliary test set as spectra from AD

tissue (either AG or AW).
LDA ANN
CG CW AG AW |{CG CW AG AW
CG 16 0 0 0 16 0 0 0
CcwW 1 6 0 0 0 7 0 0
AG 1 0 22 2 0 (] 24 1
AW 0 0 2 6 0 0 2 6
X 0.84 0.92
NT 0 0 5 4 0 0 7 2

Table 62: ANN versus LDA results (four classes and PCs based on all five classes)
Diagnosis of AD from autopsy material by IR spectroscopy has proven to be difficult based

simply upon a spectroscopic analysis, due to the different degree of involvement of brain tissue,
the difficulty in staging the disease and the extensive biochemical changes associated with gross
degeneration of the grey matter. Classification of IR spectra of control and Alzheimer’s disease
tissue has been achieved with a high degree of accuracy by both LDA and ANNSs. Separation of
grey and white matter into distinct classes is not surprising, given the known biochemical
differences between the two tissue types. The separation of AD and control grey matter
presumably reflects spectral differences associated with the pathological features of AD, namely
general atrophy of the cerebral cortex and the presence of neuritic plaques and neurofibrillary
tangles. The ability to distinguish between AD and control white matter may be considered

surprising as AD is a disease of the grey matter. However, recent studies [112] have shown that
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significant variations in the phospholipid composition of white matter is also associated with AD,
a finding which probably explains the ability of LDA and ANNs to discriminate between control

and AD white matter.

Table 57, Table 59, and Table 62 clearly show that ANNs consistently outperform their LDA
counterparts in all cases where PCA was used as a preprocessing technique. Of course, as the
complexity of the problem increased (from two to five classes) both techniques suffered some

loss in classification accuracy but this loss was more pronounced with LDA than ANN.

Although preprocessing the spectra using PCA is quite useful and often improves performance
results, there is a concomitant loss in flexibility in the addition or deletion of data as well as a loss
(in general) of the ability to analyze relevant features in the original spectra that contributed to the

discriminatory power of the underlying method.

Finally, in the cases where the original spectra were used, FE-MLPs outperformed E-MLPs and
RBFNs and had classification results that were only slightly worse than the best results achieved
using PCA. This may be expected since FE-MLP explicitly employs fuzzy encoding as a
preprocessing technique as opposed to the other two architectures. Further, since the fuzzy sets
are constructed around the quartiles for each data point any outlier values end up having a smaller

influence during the iterative training of the net.

8.3 Burnishing Tarnished Gold Standards
The data set used to test the efficacy of FA and RR is the MR spectra of human brain

neoplasms described in section 3.3.3. The phased spectra were normalized (each datum was
divided by the area of the spectrum) and randomly assigned to either a design set (n=80) or a test
set (n=126). The design set contained 29 M’s, 31 A’s, and 20 E’s. The GS was provided by a

pathologist and was encoded using the procedure described in section 3.1.
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The FA method described in section 6.2.1 was integrated into an MLP architecture consisting
of two hidden layers with three PEs in the output layer (one for each class). The networks were

trained on spectra from the design set using the GS and its adjustments.

FA improved the overall diagnostic performance of the MLP compared to the original GS.
Table 63 lists the performance results using the test MR spectra. A 13% improvement in the
score was achieved using FA. FA does not alter the original GS classification of the design
spectra but it does modify the traversal of the MLP’s weight space during the training process;
those spectra that are near class medoids other than their own contribute less to the incremental

changes to the MLP compared to those design spectra that are near their own medoids.

In the RR case, when the outliers were reclassified in the design set, a 10% improvement in the
K score was achieved. Interestingly, if these outlying spectra were removed from the design set,
degraded to 0.62 for the test set (a 13% decrease from the original GS « score). Although none of
the spectra in the test set was reclassified, using the MAD criterion two test spectra were flagged
as outliers (two M spectra were flagged as A spectra). In all three cases, GS, FA, and RR, these

spectra were indeed misclassified as A spectra.

Finally, the classification errors were also more conservative for both FA and RR as compared
to the original GS. That is, while the original GS classified 5 E’s (non-tumourous) as either M’s
or A’s (tumours) and 4 tumours as E’s, FA and RR classified only 1 E as tumourous and 3

tumours as E’s.

GS FA RR RR"
M E Al M E AIM E A M E A
M| 61 2 3] S8 2 6 57 1 8| 56 4 6
E 1 12 4 0 16 1 0 16 1 0 16 1
A 9 2 32 5 1 37 5 2 36| 13 5 25
K 0.71 0.80 0.78 0.62

Table 63: Performance results using test spectra (RR", outliers removed)

It is informative to examine the k scores for the design spectra using the different methods

(Table 64). Although the GS and FA contingency tables are identical, the weights of the



underlying MLP’s are sufficiently different to exact a significant performance gain in the

classification of the test spectra.

With RR, three spectra were reclassified in the design set: a M spectrum to A; a E spectrum to
A; and, an A spectrum to E. When reclassification took place, x improved from 0.97 to 1.00.
However, if those spectra were removed from the design set, as is often the case in classification
problems, x actually degrades to 0.93, suggesting that these spectra, although identified as
outliers, have sufficient import to affect the leaming cycle of the MLP. Further, the M and E
spectra that were identified as outliers were classified as M and E spectra, respectively, using the
GS. However, the A spectrum that was identified as an outlier (and reclassified as an E spectrum

using RR) was misclassified as an E spectrum using the GS.

GS FA RR RR’

. M E A|M E A|/M E AJ|M E A
M| 2 0 0] 29 0 of 28 0 o] 28 0 0
E 0O 20 0f 0 2 o0f 0 2 o0 0 19 o
A 0 2 29( 0 2 291 0 0 32| 2 2 26
X 0.97 0.97 1.00 0.93

Table 64: Performance results using design spectra (RR’, outliers removed)
The resuits demonstrate that the adjustment of a GS using a fuzzy or robust measure of

deviation of MR spectra from their respective class medoids leads to a reduction in classification
errors. Moreover, misclassifications tend to be more conservative. Recall that, if reclassification
occurs, it only occurs for spectra within the design set; outliers within the test set are simply
flagged but not altered using this method. Therefore, the accepted GS is left in a pristine state
sullied only by its original tarnish.

8.4 Additional Experiments
The final set of experiments were performed using the magnetic resonance spectra, described in

section 3.3.4 (N=206, N,=80, N=126, n=550), consisting of 95 meningiomas (M), 74
astrocytomas (A), and 37 control samples of non-tumourous brain tissue from patients with

epilepsy (E). The following classification systems were used:
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- linear discriminant analysis (LDA);

- linear discriminant analysis with principal component analysis (PC);
- multi-layer perceptron (MLP);

- multi-layer perceptron with principal component analysis (PCM);

- multi-layer perceptron with fuzzy gold standard adjustments (FA);

- multi-layer perceptron with robust reclassification (RR);

- radial basis function neural network (RBF);

- probabilistic neural network (PNN);

- fuzzy interquartile encoding (IQ) and its class-wise variant (IQc);

- dimension-preserving interquartile encoding (DP) and its class-wise variant (DPc);
- fuzzy cluster encoding (CL) and its class-wise variant (CLc).

For PC and PCM, the first 90 principal components were used and accounted for 99.99% of the
cumulative variance of the original data. MLP, FA, and RR, have exactly the same structures
described in section 8.3. RBF and PNN have 50 receptive fields and 5O kernels, respectively. For

CL and CLc, the best results obtained using 2-20 clusters are listed (c=19 and c=5, respectively).

For all methods, ¥>0.90 for the design set, however, x varied widely for the test set as is shown
in Figure 140. Note the dramatic improvement of PC (k=0.74) compared to LDA (x=0.52). While
part of this is certainly due to the use of the principal components instead of the original data
another contributing factor is that the original 550%550 covariance matrix that LDA had to invert
was nearly singular and hence ill-conditioned. Using the same principal components, PCM
{(x=0.70) fared slightly worse than MLP (x=0.71) using the original spectra. Section 8.3 discusses

the efficacy of FA (x=0.80) and RR (x=0.78). Neither PNN (x=0.43) nor RBF (x=0.53)
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performed particularly well; the former suffered from round-off error in computing the Parzen
kemnels. The class-wise variants. CLc (x=0.55), DPc (x=0.50), and IQc (=0.44), also were
underperformers. IQc classification results were especially poor but this was due to the large
increase in the dimensionality of the transformed space; from n=550 to n=6600 (550 x 4 fuzzy
sets X 3 classes). DP performed well (x=0.72) as did CL (x=0.74). IQ (x=0.83) had the best

agreement measure in spite of the fact that n=2200.

LDA PC MLPPCM FA RR RBFPNN IQ DP CL IQc DPc CLc
Classification System

Figure 140: x scores for classification systems
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9 Conclusion
The intent of this thesis was to introduce, derive, implement, and determine the efficacy of two

new preprocessing methodologies, fuzzy feature space encoding, and burnishing tarnished gold
standards. The former comprises a collection of methods (fuzzy interquartile encoding,
dimension-preserving fuzzy interquartile encoding, fuzzy cluster encoding, and their class-wise
variants) for determining the respective degrees to which a datum belongs to a collection of fuzzy
sets or fuzzy clusters and subsequently using these membership grades in place of the original
datum. The latter comprises methods (robust reclassification, fuzzy gold standard adjustment, and
their variants) to compensate for the possible imprecision or unreliability of a well-established
gold standard while, at the same time, maintaining its vital discriminatory power by incorporating
non-subjective within-class medoid information. The underlying purpose of these methodologies
is to simplify the feature space prior to presentation to a classifier. As they are independent of any

particular classification method, they may be integrated into any classification system.

9.1 Summary
This thesis began with an introduction to some essential concepts necessary for the

understanding of the fuzzy encoding and gold standard burnishing methodologies:
- classification, the construction of a discrimination function mapping individuals to a set of
class indices;
-  artificial neural networks, a self-adaptive, non-linear, massively parallel machine learning

system composed of layers of processing elements used primarily for pattern recognition

problems;

- fuzzy set theory, a generalization of Boolean set theory, extending the notion of

elementhood from the range {0, 1} to the interval [0, 1];



- robust statistics, statistics resistant to outlier effects; they are insensitive to slight deviations

from their requisite model (often normal) assumptions about the underlying distribution.
Issues concerning the classification process were then discussed:
- the different stages of classification

- classifiers,

- preprocessing and postprocessing;
- linear separability and linear classifiers;
- conventional preprocessing methods such as principal component analysis;
- artificial neural networks as non-linear classifiers

- multi-layer perceptron,

- probabilistic neural network,

- radial basis function neural network;
- misconceptions concerning Gauss’ law of errors and normality assumptions;
- synthetic data

- l-dimensional 2-class sets with different distributions,

- disk/torus,

- hypercubes;
- “real-world” data

-  magnetic resonance biomedical spectra,

- infrared biomedical spectra;

- measuring classification performance.
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Concerning the last point, the chance-corrected measure of agreement, K, was selected to assess
the performance of all classification strategies used as it is more accurate than the conventional

measure of the ratio of number of correctly classified data and the entire data set.

Fuzzy feature space encoding and gold standard burnishing are then introduced and
mathematically described. Integration of these methods into classifiers is discussed. The
burnishing methods, robust reclassification and fuzzy gold standard adjustments are also detailed
as well as the motivational differences between reclassification and adjustment. A set of
experiments using synthetic data were performed in order to measure the efficacy of these
methods and benchmarked against linear discrimination and a multi-layer perceptron. A set of
experiments using magnetic resonance and infrared biomedical spectra were also performed and

the results presented and discussed.

9.2 Concluding Remarks
As a general preprocessing methodology, fuzzy encoding is effective in improving

classification performance by transforming the feature space prior to presentation to a classifier.
The fuzzy encoding methods, applicable to any classifier, exhibit several useful properties. First,
since the membership functions map values onto the unit interval, data are automatically scaled.
This is particularly useful in the classification process since scaled data diminish the effects of
extreme variances across features. Without scaled data, features with large variances will
predominate over features with small variances although the latter features may be
discriminatory. Another beneficial property is that values that may be considered outliers impact
less severely upon classifiers, such as the multi-layer perceptron, that employ any type of iterative
adjustments to its error function. This does not mean that samples with features that are outliers
are removed during the design or test phases of the classification process, however. With the
interquartile encoding methods, as the value moves away from the interquartile range, the fuzzy

encoded values tend to zero. In the case of a multi-layer perceptron where its hidden layer



processing elements are summing products of weights and input values this is important since, if
the fuzzy encoded values of an outlier are all zero or near zero, those values will contribute very
little to the learning process regardless of the processing elements weights; an extremely useful
property if the original value is indeed an outlier (nevertheless, if it is not an outlier it still does

contribute to a degree).

Fuzzy interquartile encoding is the most robust encoding method; it was least sensitive to
changes to the underlying distributions of the synthetic data and performed well with all
biomedical spectra. Dimension-preserving interquartile encoding and fuzzy cluster encoding are
more erratic in their performance. The former method does not work well if features have a
unimodal distribution; values that are equidistant from a feature’s median will then have the same
encoded value. However, this weakness is also its strength when features do not have an
unimodal distribution or the distribution is skewed. Fuzzy cluster encoding is sensitive to the
correlation of initial clusters to the underlying clusters of the data. The experiments with the
synthetic data sets indicate that if the initial clusters are near the modes of the underlying
distributions of the data then the performance results are excellent. If not, the results may degrade

significantly. The class-wise variants of all three methods also produced variable results.

Concerning the gold standard burnishing methodology, the results from the synthetic data sets
and the biomedical spectra demonstrate that the fuzzy gold standard adjustment and robust
reclassification methods improved the classification performance compared to the original gold
standard assignments. Moreover, misclassifications with the biomedical spectra tend to be more
conservative. If reclassification occurs, it only occurs for data within the design set; outliers
within the test set are simply flagged but not altered using this method. Therefore, the accepted

gold standard is left in a pristine state sullied only by its original tarnish.

In conclusion, this thesis has argued that, in pattern recognition problems, preprocessing is of

paramount importance and the methodologies of fuzzy feature space encoding and gold standard
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burnishing are good additions to the preprocessing arsenal. In the construction of good
classification systems, the 80/20 rule most certainly holds: only 20% of an investigator’s effort
should be devoted to the selection and tuning of a classifier; the remaining, and more crucial,
effort should be devoted to a thorough analysis and preprocessing of the data in order to reduce

the complexity of the feature space prior to its presentation to the classifier of choice.
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