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CAMKK2 regulates mitochondrial function 
by controlling succinate dehydrogenase 
expression, post‑translational modification, 
megacomplex assembly, and activity 
in a cell‑type‑specific manner
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Abstract 

Background:  The calcium (Ca2+)/calmodulin (CAM)-activated kinase kinase 2 (CAMKK2)-signaling regulates several 
physiological processes, for example, glucose metabolism and energy homeostasis, underlying the pathogenesis 
of metabolic diseases. CAMKK2 exerts its biological function through several downstream kinases, therefore, it is 
expected that depending on the cell-type-specific kinome profile, the metabolic effects of CAMKK2 and its underly-
ing mechanism may differ. Identification of the cell-type-specific differences in CAMKK2-mediated glucose metabo-
lism will lead to unravelling the organ/tissue-specific role of CAMKK2 in energy metabolism. Therefore, the objective 
of this study was to understand the cell-type-specific regulation of glucose metabolism, specifically, respiration under 
CAMKK2 deleted conditions in transformed human embryonic kidney-derived HEK293 and hepatoma-derived HepG2 
cells.

Methods:  Cellular respiration was measured in terms of oxygen consumption rate (OCR). OCR and succinate dehy-
drogenase (SDH) enzyme activity were measured following the addition of substrates. In addition, transcription and 
proteomic and analyses of the electron transport system (ETS)-associated proteins, including mitochondrial SDH 
protein complex (complex-II: CII) subunits, specifically SDH subunit B (SDHB), were performed using standard molecu-
lar biology techniques. The metabolic effect of the altered SDHB protein content in the mitochondria was further 
evaluated by cell-type-specific knockdown or overexpression of SDHB.

Results:  CAMKK2 deletion suppressed cellular respiration in both cell types, shifting metabolic phenotype to aerobic 
glycolysis causing the Warburg effect. However, isolated mitochondria exhibited a cell-type-specific enhancement 
or dampening of the respiratory kinetics under CAMKK2 deletion conditions. This was mediated in part by the cell-
type-specific effect of CAMKK2 loss-of-function on transcription, translation, post-translational modification (PTM), 
and megacomplex assembly of nuclear-encoded mitochondrial SDH enzyme complex subunits, specifically SDHB. 
The cell-type-specific increase or decrease in SDHs protein levels, specifically SDHB, under CAMKK2 deletion condi-
tion resulted in an increased or decreased enzymatic activity and CII-mediated respiration. This metabolic phenotype 
was reversed by cell-type-specific knockdown or overexpression of SDHB in respective CAMKK2 deleted cell types. 
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Background
CAMKK2, a Serine/Threonine protein kinase, plays 
important role in a variety of physiological processes 
including glucose homeostasis and utilization, adipo-
genesis, as well as whole-body energy balance [1, 2]. 
Activated CAMKK2 directly phosphorylates multiple 
downstream effectors including Ca2+/CAM-dependent 
protein kinase I and 4 (CAMKI and CAMK4), AMP-acti-
vated protein kinase (AMPK), and the NAD-dependent 
protein deacetylase—Sirtuin 1 (SIRT1), each have their 
distinct signaling effects on cellular metabolism [2]. For 
example, AMPK is a cellular energy sensor activated by 
metabolic stresses that inhibits mitochondrial ATP pro-
duction or accelerates ATP consumption [3, 4]. Activated 
AMPK stimulates glucose uptake and lipid oxidation to 
produce energy while turning off energy-consuming pro-
cesses including glucose and lipid production to restore 
energy balance and maintain homeostasis [5, 6]. On the 
other hand, the  CAMK4 signaling cascade activates the 
cAMP response element-binding (CREB) transcrip-
tion factor regulating the expression of genes associated 
with cellular metabolism and growth [2]. For example, 
CREB upregulates the expression of glucose transport-
ers thereby increasing the uptake of glucose and elevating 
intracellular glucose levels [7, 8]. CREB also regulates gly-
colytic enzymes [7, 9] and enables mitochondrial respira-
tion and biogenesis under stress conditions [10]. CAMK4 
inhibition results in decreased levels of glycolytic inter-
mediates suggesting a direct role in glucose metabolism 
[11]. The  CAMKK2 downstream effector SIRT1 [12] 
is also a key modulator of hepatic gluconeogenesis [13] 
and glucose homeostasis [14]. Thus, multiple mecha-
nisms exist that may link disturbed calcium-CAMKK2 
signaling with altered cellular metabolism underlying 
the pathogenesis of diseases. The mechanistic basis of 
CAMKK2-mediated glucose oxidation and mitochon-
drial bioenergetics is not well characterized despite a 
wealth of knowledge accumulated over the years regard-
ing CAMKK2-downstream effector-mediated regulation 
of cellular glucose homeostasis and the maintenance of 
energy balance.

Energy homeostasis is a complex biological pro-
cess involving the coordinated regulation of food 
intake, energy production, and expenditure. It has 

been suggested that CAMKK2 regulates whole-body 
energy balance by coordinating the actions of key 
metabolic tissues [2]. CAMKK2 is expressed in a vari-
ety of cell types in different tissues [15–17]. Different 
cells within an organ or tissue environment have dif-
ferent metabolic roles and energy demands. Besides, 
it is a well-established fact that the proteome, includ-
ing the kinome, differs between the constituent cell 
types in any organ or tissue system since it is meant 
to meet the specific niche of structural and functional 
goals. In this context, it is important to note that both 
RNA sequencing as well as validated antibody-based 
immunohistochemistry studies under the Human Pro-
tein Atlas (HPA) project [18] revealed that CAMKK2 
is expressed in diverse human tissues and cell types 
including many transformed cells. Our previous studies 
revealed the presence of CAMKK2 full-length mRNA 
in adult human adipose, artery, bone marrow, cortex, 
cerebellum, intestine, liver, skeletal muscle, and skin 
tissues [17]. Furthermore, we characterized CAMKK2 
expression in primary human endothelial and mye-
loid cells [17], and our previous studies demonstrated 
CAMKK2 expression in different transformed human 
cell types including human embryonic kidney-derived 
HEK293 cells, hepatoma-derived HepG2 cells [16, 17], 
and a hybrid (endothelial and alveolar) cell line with 
endothelial characteristics, designated EA.hy926 [17]. 
Thus, the expression of CAMKK2 in diverse cell types 
leads to an important question—does CAMKK2 func-
tion uniformly in regulating cell-type-specific glucose 
metabolism? This important biological question was 
addressed in this study by performing a comparative 
bioenergetics analysis of cellular glucose metabolism 
and mitochondrial respiration using multiple CAMKK2 
deleted HEK293 and HepG2 cell clones. Our choice 
of these two CAMKK2 expressing cell lines was influ-
enced by their distinctive metabolic phenotypes which 
are reflected in the differences in their proteome com-
position [19], physiological properties [20], metabo-
lite signature [21], and cell doubling time (HEK293 
vs HepG2: ~ 24  h vs ~ 44  h) [22–24]. In addition, the 
expression of oxidative phosphorylation (OXPHOS)-
associated proteins, specifically SDH enzyme com-
plex subunits, and their PTMs and association into 

CAMKK2 loss-of-function also affected the overall assembly of mitochondrial supercomplex involving ETS-associated 
proteins in a cell-type-specific manner, which correlated with differences in mitochondrial bioenergetics.

Conclusion:  This study provided novel insight into CAMKK2-mediated cell-type-specific differential regulation of 
mitochondrial function, facilitated by the differential expression, PTMs, and assembly of SDHs into megacomplex 
structures.
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Page 3 of 29Sabbir et al. Cell Commun Signal           (2021) 19:98 	

multiprotein complexes, were studied to correlate with 
cell-type-specific differences in mitochondria bioener-
getics. Furthermore, the mitochondrial ultrastructure 
was compared between the cell types. Overall our find-
ings indicate that CAMKK2-mediated cellular glucose 
metabolism is regulated in a cell-type-specific manner 
at multiple levels, including gene expression, protein 
modification, and protein complex assembly.

Methods
CAMKK2 deleted HEK293 and HepG2 cell clones
The HEK293 cell line was originally developed by trans-
formation of primary cultures of human embryonic kid-
ney (HEK) cells with sheared adenovirus 5 DNA [25]. 
The HepG2 cells were derived from primary liver car-
cinomas [26]. The CRISPR/Cas9-mediated CAMKK2 
deleted (CAMKK2−/−) HEK293 and HepG2 cell clones 
were generated as previously described [16]. The cells 
were cultivated in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% heat-inactivated FBS 
and 1 × antibiotic antimycotic solution (Sigma, Cat No: 
A5955).

Mitochondrial function test
Oxygen consumption rate (OCR) and extracellular 
acidification rates (ECAR) were measured simulta-
neously using a Seahorse Biosciences XF24 analyzer 
(Agilent) [17, 27]. Cultured cells were grown in 24 well 
assay plates overnight. Cells were then washed thrice in 
a pre-warmed XF assay medium (non-buffered DMEM) 
supplemented with 1  mM sodium pyruvate (pH 7.4) 
and finally, 475  µl assay medium was added to each 
well and incubated in a non-CO2 incubator for 1  h. 
Meanwhile, appropriate volumes of pre-warmed glu-
cose, oligomycin, 2-[2-[4-(trifluoromethoxy)phenyl]
hydrazinylidene]-propanedinitrile (FCCP), rotenone 
and antimycin A were added into injector ports A, B, 
C, and D of the sensor cartridge, respectively. The final 
concentrations of injections were as follows: 5  mM 
Glucose (Glu), 2  µM oligomycin (Oligo), 1  µM FCCP, 
and 0.5  µM rotenone/antimycin-A (Rtn/AA). The car-
tridge was calibrated by the XF24 analyzer (Agilent 
Seahorse Bioscience, Billerica, MA, USA), and the OCR 
was measured using the Agilent XF Cell mitochondrial 
function test according to the manufacturer’s instruc-
tions. Briefly, basal OCRs were measured in the absence 
of glucose followed by the sequential addition to each 
well of glucose, oligomycin, FCCP, and rotenone/anti-
mycin-A. The OCR values were normalized by setting 
the pre-glucose injection OCR as 100%.

Isolation and enrichment of endoplasmic reticulum (ER)/
mitochondrial fraction
Mitochondria were isolated by a method previously 
described [17, 27]. Briefly, 80–90% confluent cells were 
washed with 1 × phosphate-buffered saline (PBS) and 
harvested in mitochondrial stabilization buffer (MSB) 
containing 70  mM sucrose, 210  mM mannitol, 5  mM 
HEPES pH 7.2, 1  mM EGTA, 5  mM MgCl2, 10  mM 
KH2PO4, and pH adjusted to 7.4. The cells were disrupted 
with a Teflon Dounce homogenizer and the homogen-
ate was centrifuged at 800 g for 10 min at 4 °C. Following 
centrifugation, the supernatant was decanted through 2 
layers of cheesecloth into a separate tube and centrifuged 
at 8000 g for 10 min at 4 °C. After removal of the super-
natant, the pellet was resuspended in mitochondrial iso-
lation buffer, washed thoroughly and the centrifugation 
was repeated. The final pellet was resuspended in lysis 
buffer and used for immunoblotting. The enriched mito-
chondrial pellet was also used for transmission electron 
microscope-based examination as well as bioenergetics 
analysis for ETS function. The entire process of mito-
chondrial enrichment was performed either at 4  °C or 
by keeping the intermediate/enriched fractions on ice to 
minimize any hypoxia-induced effect.

Transmission electron microscopy (TEM)
TEM was performed as described previously [17, 27]. 
Briefly, the cells were grown on nitrocellulose mem-
branes and subsequently fixed with 2% glutaraldehyde 
in Sorenson’s buffer (133 mM Na2HPO4/KH2PO4, pH 
7.4) at 4  °C for 2  h. The enriched ER/mitochondrial 
pellet resuspended in MSB buffer was layered on top 
of a circular piece of nitrocellulose membrane in a 96 
well plate and centrifuged at 4000g for 30  min using 
a horizontal plate rotor and subsequently fixed with 
2% glutaraldehyde in Sorenson’s buffer at 4  °C for 
2  h. Following fixation, the membranes containing a 
monolayer of cells or ER/mitochondrial pellets were 
dehydrated and finally embedded in epoxy resin and 
polymerized at 60  °C overnight. Sections were cut 
on a Leica EM UC7 ultra-microtome. Semi-thin sec-
tions (0.5  µm) were stained with toluidine blue and 
examined under light microscopy to identify the area 
of interest and confirm the orientation of the cells. 
Ultrathin sections (70  nm) were then transferred to 
copper grids (Ted Pella Inc), and stained with uranyl 
acetate and lead citrate, and examined on a Phillips 
CM 100 Compustage transmission electron micro-
scope. Digital micrographs were captured with an 
AMT CCD camera (Deben).
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Western blotting and quantification
Relative quantification of proteins by Western blot anal-
ysis was performed as described previously [17]. Briefly, 
20–30  µg of protein was loaded for each sample to run 
two SDS-PAGE-based gels in parallel; one of them was 
used for immunoblotting and the other was used for ori-
ole staining and subsequent imaging using the ChemiDoc 
MP Imaging System (Bio-Rad). The 1–1.5 mm thick poly-
acrylamide gels were operated in a vertical electrophoresis 
chamber at a field strength of 10–20 V/cm, respectively. 
A reference protein detected in the same immunoblot as 
the target protein-of-interest was used for normalization 
during the relative quantification of proteins-of-interest. 
The choice of reference protein was decided based on 
the uniformity of the reference protein level under all 
experimental conditions as determined by visual inspec-
tion of the image-J-based plot profile of the immunoblot 
band intensities. The protein-of-interest bands within a 
single immunoblot were first normalized by dividing the 
band intensities with the intensities of the correspond-
ing reference protein bands [28]. Next, the normalized 
band intensity of the protein-of-interest in the control (X) 
was converted to 100% by using the formulae (X/X*100). 
The protein-of-interest bands in the experimental group 
within the same immunoblot were then converted to a 
percent of control by using the formula (Y/X)*100, where 
“Y” is the normalized band intensity of the protein-of-
interest in the experimental set. This allows comparison 
between different immunoblots derived from independ-
ent experiments or biological replicates. Table 1 lists the 
primary antibodies used in this study.

The cell lysates were prepared in 1 × RIPA lysis and 
extraction buffer (ThermoFisher Scientific, Cat No: 
89900) supplemented with 1 × Halt protease and phos-
phatase inhibitor cocktail (ThermoFisher Scientific, Cat 
No: 78441). The protein lysates were denatured in Lae-
mmli buffer containing 2% SDS, 10% glycerol, 0.002% 
bromophenol blue, and 0.75  M Tris–HCl pH 6.8 sup-
plemented with 100  mM DTT. The ER/mitochondrial 
lysates that were meant for anti-OXPHOS and anti-SDH 
antibody-based quantification were heat-denatured at 
55 °C for 10 min. The lysates for the rest of the antibodies 
were boiled in a water bath for 10 min. The SDS-PAGE 
separated proteins were transferred to 0.2 μm nitrocellu-
lose membrane using a Trans-Blot Turbo Transfer System 
(Bio-Rad). The membranes were blocked using EveryBlot 
Blocking Buffer (Bio-Rad, Cat No: 12010947). The immu-
noblots were detected using chemiluminescence, imaged 
with the ChemiDoc MP Imaging System (Bio-Rad), and 
quantified using ImageJ (version 1.48) Software [29].

Isolated mitochondrial function test
We performed “coupling” and “electron flow” assays 
using microgram (10  µg) quantities of enriched mito-
chondria derived from parental (wild-type: WT) and 
CAMKK2 deleted HEK293 and HepG2 cells (only elec-
tron flow assay) and different respiratory complex inhibi-
tors to study ETS function [30] (Additional file  1: Fig. 
S1). To minimize variability between wells, 10  µg of 
enriched mitochondria was first diluted in 50 µL of MSB 
supplemented with 0.5% fatty acid-free BSA (pH 7.2), 
known as assay buffer, and delivered to each well of a 
Seahorse XF24 analyzer (Agilent) and spun in a swing-
ing bucket rotor centrifuge at 2000 g for 20 min at 4 °C. 
After centrifugation, 450 µL of assay buffer and appro-
priate substrate were added to each well and incubated 
at 37  °C for 10  min and the experiments were initiated 
immediately. For the electron flow assay, 10  mM pyru-
vate (Pyr), 2  mM malate (Mal), and 4  µM FCCP were 
used at the beginning, and 2 µM rotenone (Rtn), 10 mM 
succinate (Succ), 4 µM antimycin A (AA), 10 mM ascor-
bate + 100  µM  N,N,N9,N9-Tetramethylp-phenylenedi-
amine (Asc + TMPD) were sequentially injected, and 
measurements of OCR were taken after each injection. It 
is important to note that in both the coupling and elec-
tron flow assays, appropriate and uniform loading of the 
mitochondrial sample is a critical factor for OCR meas-
urement and comparison. Overloading may deplete O2 
from the microchamber (zero O2 tension) during the 
measurement period and the system may not have an 
adequate time to recover to normoxia (return to ambi-
ent O2 tension, 158 mmHg) before the next set of meas-
urements which may lead to an erroneous result [30]. 
Therefore, in both assays, thorough mixing of the assay 
media was performed between each measurement. The 
duration of typical mixing and measurement cycles was 
adopted from the protocol standardized by Rogers et al. 
(Additional file 8: Table S1) [30].

Blue‑native polyacrylamide gel electrophoresis (BN‑PAGE)
The BN-PAGE analysis was performed as described pre-
viously [27]. Briefly, the lysates were prepared by soni-
cating the proteins in 1 × BN-PAGE lysis buffer (pH 7) 
containing 20  mM Bis–Tris, 500  mM 6-aminocaproic 
acid (Sigma, Cat. No: A2504), 20 mM NaCl, 2 mM EDTA, 
10% glycerol, 1.5% n-Dodecyl β-D-maltoside (Sigma, 
Cat. No: D4641), and supplemented with 1 × Halt pro-
tease and phosphatase inhibitor cocktail (ThermoFisher 
Scientific, Cat. No: 1861281). The proteins and multi-
protein complexes (MPCs) were then separated under 
native conditions in a 4–15% gradient 1.0  mm thick 
and 13.3 × 8.7  cm BN-PAGE gel using a cathode buffer 
(pH 7) containing 15 mM Bis–Tris, 50 mM Tricine, and 
0.002% Coomassie blue G250, and an anode buffer (pH 



Page 5 of 29Sabbir et al. Cell Commun Signal           (2021) 19:98 	

Ta
bl

e 
1 

Li
st

 o
f r

ea
ge

nt
s

N
am

e
So

ur
ce

Ty
pe

H
os

t s
pe

ci
es

Ca
t. 

N
o

Lo
t N

o
D

ilu
tio

n

An
tib

od
ie

s

α-
tu

bu
lin

 (T
U

-
02

)
SC

BT
M

on
oc

lo
na

l
M

ou
se

Sc
-8

03
5

L1
41

6
1:

10
00

C
A

M
KK

2(
ZZ

9)
SC

BT
M

on
oc

lo
na

l
M

ou
se

Sc
-1

00
36

4
A

02
20

1:
10

00

G
A

PD
H

SC
BT

M
on

oc
lo

na
l

M
ou

se
Sc

-2
57

78
C

09
10

1:
10

00

O
XP

H
O

S-
co

ck
ta

il
A

bc
am

M
on

oc
lo

na
l

M
ou

se
M

S6
01

P9
55

2
1:

20
00

N
D

U
FB

8 
(C

I)
A

bc
am

M
on

oc
lo

na
l

M
ou

se
ab

11
02

42
N

A
N

A

SD
H

B 
(C

II)
A

bc
am

M
on

oc
lo

na
l

M
ou

se
ab

14
71

4
N

A
N

A

U
Q

C
RC

2 
(C

III
)

A
bc

am
M

on
oc

lo
na

l
M

ou
se

ab
14

74
5

N
A

N
A

CO
XI

I (
C

IV
)

A
bc

am
M

on
oc

lo
na

l
M

ou
se

ab
11

02
58

N
A

N
A

AT
P5

A
 (C

V
)

A
bc

am
M

on
oc

lo
na

l
M

ou
se

ab
14

74
8

N
A

N
A

SD
H

A
A

bc
am

M
on

oc
lo

na
l

Ra
bb

it
A

B1
37

04
0

G
R3

25
22

56
-5

1:
10

00

SD
H

A
SC

BT
M

on
oc

lo
na

l
M

ou
se

Sc
39

03
81

E2
72

0
1:

10
00

SD
H

B
SC

BT
M

on
oc

lo
na

l
M

ou
se

Sc
-2

71
54

8
L2

61
9

1:
10

00

SD
H

C
SC

BT
M

on
oc

lo
na

l
M

ou
se

SC
-5

15
10

2
F0

71
9

1:
10

00

VD
A

C
1(

B-
6)

SC
BT

M
on

oc
lo

na
l

M
ou

se
Sc

-3
90

99
6

D
19

18
1:

10
00

G
en

e
Fo

rw
ar

d
Re

ve
rs

e
A

m
pl

ic
on

 (b
as

e 
pa

ir
)

M
ul

tip
le

x/
qR

T-
PC

R 
pr

im
er

s

SD
H

A
C

A
G

​TC
A

​A
G

G
​CG

A
​A

A
G

​G
TT

​TA
TG

​
CC

C
​A

G
C​G

TT
​TG

G
​TT

T​A
AT

​TG
G

​
50

8

SD
H

B
TC

C​G
A

A
​G

AT
​C

AT
​G

C
A

​G
A

G
​A

A
G

​
TA

C
​A

G
C

​A
G

G
​C

A
C

​A
G

A
​G

A
A​T

G
31

2

SD
H

C
CC

C
​A

G
C

​AT
C

​AT
C

​TT
C​C

TA
​C

A
C

​
TG

C
​A

G
C​C

A
C​C

TC
​AT

C
​TT

T​A
G

20
2

SD
H

C
*

G
TG

​G
C

A
​C

TG
​G

TA
​TT

G
​C

TT
​TG

C
A

C
​A

G
A

​G
C

T​G
G

C
​AT

T​G
TT

​TC
48

8

SD
H

D
A

G
C

​TC
T​G

TT
​G

C
T​T

CG
​A

A
C

​TC
C

A
G

​AT
G

​CC
C

​A
C

A​T
CG

​TG
A​T

A
G

​
39

9

D
ic

er
-s

ub
st

ra
te

 sh
or

t i
nt

er
fe

rin
g 

RN
As

 (D
si

RN
As

): 
se

ns
e 

an
d 

an
tis

en
se

SD
H

B
G

U
A​U

U
G

​G
AU

​G
C

U
​U

U
A

​AU
C

​A
A

G
​AU

T​A
U

A
A​U

C
U

​U
G

A​U
U

A
​A

A
G

​C
AU

​CC
A

​AU
A

​CC
A

​

Co
nt

ro
l

CC
U

​U
CC

​U
C

U
​C

U
U

​U
C

U
​C

U
C​C

C
U

​U
G

U
​G

C
A

C
​A

A
G

​G
G

A
​G

A
G

​A
A

A
​G

A
G

​A
G

G
​A

A
G

​G



Page 6 of 29Sabbir et al. Cell Commun Signal           (2021) 19:98 

7) containing 50 mM Bis–Tris. The first dimension BN-
PAGE gel was electrophoresed at 100  V in a cold room 
(4  °C) until the samples traversed the 3.2% stacking gel 
and entered the separating gel. Subsequently, the volt-
age was increased to 180 V and allowed to run until the 
dye front reached the end of the gel. After a run, the gel 
strips (individual lanes) were carefully excised including 
the 3.2% stacking gel and immersed in freshly prepared 
sample buffer containing 12.5 mM Tris–HCl (pH 6.8), 4% 
SDS, 20% glycerol, 100 mM DTT, and 0.02% bromophe-
nol blue, for 30 min at 50 °C. Subsequently, the proteins 
in the gel slices were separated in the second dimension 
using SDS-PAGE and immunoblotted. As a result, the 
component monomeric proteins in the MPCs would 
appear on a vertical line in the second dimension corre-
sponding to the MPCs separated in the first dimension.

RNA extraction, cDNA synthesis, multiplex 
reverse‑transcription polymerase chain reaction (RT‑PCR) 
and quantitative real time‑PCR (qRT‑PCR)
Total RNA from HEK293 and HepG2 cells were extracted 
with Trizol reagent (ThermoFisher Scientific, Cat. No: 
15596026) as per the manufacturer’s recommended 
protocol. Total RNA (1 µg) was treated with RNase-free 
DNase I (New England Biolabs Inc., Cat. No: M0303) at 
37 °C for 15 min, subsequently heat-inactivated at 75 °C 
for 10 min and used for cDNA synthesis. The first-strand 
cDNA was synthesized using an iScript cDNA synthesis 
kit (Bio-Rad, Cat. No: 1708891). Multiplex RT-PCR was 
performed as described previously [17]. Briefly, a 50 µL 
reaction mix containing 1 × buffer, 2  mM dNTP mix, 
0.2  µM oligonucleotide primers, cDNAs equivalent to 
100 ng total RNA, and 1.25 units DreamTaq™ Hot Start 
DNA Polymerase (ThermoFisher Scientific, Cat. No: 
EP1701), respectively, was prepared and amplified using 
98/95 °C for 1 min, 35 cycles of 95 °C for 10 s, 62 °C for 
10 s and 72 °C for 30 s. The RT-PCR products were sepa-
rated using agarose gel electrophoresis and visualized. 
The qPCR was performed in a Mastercycler®ep real-
plex real-time PCR system (Eppendorf, Hamburg, Ger-
many) using SYBR green dye (ThermoFisher Scientific, 
Cat. No: S7563) and cDNAs equivalent to 100  ng total 
RNA. The PCR efficiencies were calculated using the for-
mula E = 10[−1/slope]. The efficiency of amplification was 
checked for all targets by performing a series of serial 
dilutions of the template for each primer pair in triplicate 
[31]. The calculated PCR efficiency for all target genes 
was between 98%-99%. The relative gene expression was 
calculated using 2 − ΔΔCT method [32].

Isoelectric focusing (IEF)
Isoelectric focusing was performed as previously 
described [17]. Briefly, 50  µg of total cell lysate was 

precipitated by acetone and dissolved in rehydration 
buffer containing 8  M Urea, 2% CHAPS, 50  mM dithi-
othreitol (DTT) and 0.2% Bio-Lyte ampholytes pH 3-10. 
The dissolved proteins were then incubated in BioRad 
readystrip IPG strips pH 3-10 nonlinear (NL) 11 cm strips 
(ThermoFisher Scientific) overnight and focused at 175 V 
for 15  min, 175–8000  V ramp for 1  h, and 8000  V for 
30,000 V-hours. After focusing, the proteins in the strips 
were reduced (by DTT), alkylated (by iodoacetamide), 
and resolved on 2D SDS-PAGE and immunoblotted.

Knockdown and overexpression of SDHB
Chemically synthesized Dicer-Substrate Short Inter-
fering RNA (DsiRNA) [33] targeted to exon 3 was used 
for knockdown of the SDHB gene. The control and 
SDHB-targeted DsiRNAs (Table  1) were transfected in 
CAMKK2−/− HEK293 cells using Lipofectamine™ Mes-
sengerMAX™ Transfection Reagent (ThermoFisher Sci-
entific, Cat. No: LMRNA001). The transfected cells were 
cultured for 48  h and then harvested for ER/mitochon-
drial enrichment, SDH enzyme activity measurement, 
and Western blotting. The full-length SDHB open read-
ing frame (ORF: Accession number: NM_0030000.3) 
was chemically synthesized in the pcDNA3.1(+)
N-DYK vector (GenScript: clone identification number: 
OHu18105C) and transfected in CAMKK2−/− HepG2 
cells using Lipofectamine™ 3000 Transfection Rea-
gent (ThermoFisher Scientific, Cat. No: L3000001). The 
transfected cells were selected by adding 800  μg/mL 
G-418 (Sigma, Cat. NO: 4727878001) to the cell culture 
medium, and a pool of SDHB overexpressed cell popu-
lations were harvested after two weeks of culture. Sub-
sequently, the SDHB overexpressed cells were expanded 
and used for ER/mitochondrial enrichment, SDH enzyme 
activity measurement, and Western blotting.

Colorimetric SDH enzyme activity assay
The SDH enzymatic activity was measured by using a kit 
(Sigma, Cat. No: MAK197) according to the manufac-
turer’s protocol [34]. Briefly, the enriched ER/mitochon-
drial fractions from parental and CAMKK2−/− ± SDHB 
knockdown/overexpressed cell types were lysed under 
ice-cold conditions using the lysis buffer provided in 
the kit, supplemented with 1 × Halt protease and phos-
phatase inhibitor cocktail (ThermoFisher Scientific, Cat 
No: 78441). Equal amounts of protein were used for the 
enzymatic activity assay. The SDH activity was deter-
mined by the formulae Sa/(reaction time × Sv), where Sa 
is the amount (nmole) of DCIP (2,6-Dichlorophenolin-
dophenol) generated in a sample well between T (initial: 
3 min) and T (final: 30 min) which was calculated from 
the standard curve, reaction time is the time differ-
ence (min) between T(initial) and T(final), and Sv is the 
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sample volume (μl) added to each well. The SDH activ-
ity was reported as nmole/min/mg ER/mitochondrial 
protein.

Statistical analysis
Statistical analysis was performed using Prism version 
7.00 (GraphPad Software). Comparisons between two 
groups were performed using Student’s t-test (unpaired). 
When there were 3 or more groups, data were analyzed 
by one-way ANOVA (randomized) [35, 36] followed by 
Dunnett’s post hoc multiple comparison test to deter-
mine differences between specific experimental groups 
and the control group [35]. Differences were considered 
significant with P < 0.05 and throughout the text, if a P 
value is ≤ 0.05, ≤ 0.01, ≤ 0.001, or ≤ 0.0001, it was flagged 
and represented with one, two, three, or four asterisks, 
respectively.

Results
Constitutive expression of CAMKK2 differed 
between HEK293 and HepG2 cells
Previously, alternatively spliced (exon 14) CAMKK2 iso-
forms were detected as two distinct protein bands in the 
range of p70-75 kDa [17]. In this study, immunoblotting 
confirmed the presence of p70-75 CAMKK2 isoforms 
in parental HEK293 and HepG2 cells (Fig.  1A). Immu-
noblotting also confirmed complete loss of CAMKK2 
expression in CAMKK2 deleted (CAMKK2−/−) HEK293 
and HepG2 cell clones (Fig.  1A) as reported previously 
[16, 17]. Relative quantification revealed a significantly 
lower level of CAMKK2 proteins in HepG2 (66%) cells 
compared to HEK293 (100%) cells under basal conditions 
(Fig. 1B).

CAMKK2 deficiency dampened cellular respiration 
in HEK293 and HepG2 cells
Cellular glucose metabolism was interrogated by simul-
taneous measurement of OCR and extracellular acidi-
fication rate (ECAR) using a Seahorse flux analyzer 
(mitochondrial function test). ECAR approximates glyco-
lysis and OCR is an important metric for mitochondrial 
function [37]. The OCR vs ECAR plot provides a system-
level snapshot of cellular metabolic function when mito-
chondria are engaged in oxygen consumption and energy 
generation through complex-V (ATP synthase) activity 
[37]. The mitochondrial function test revealed a signifi-
cant decrease in the OCR/respiration within 30  min of 
glucose treatment to the glucose-starved CAMKK2−/− 
HEK293 and HepG2 cell clones compared to parental 
cells (Fig.  1C–G, respectively). The ECAR vs OCR plot 
identified different cellular metabolic phenotypes under 
CAMKK2 deleted conditions that reflected a shift in the 
utilization of energy pathways to a more aerobic glyco-
lytic/quiescent state within 30 min of glucose treatment 
(Fig.  1EH, yellow arrows). Interestingly, CAMKK2 dele-
tion decreased ECAR in both cell types but the over-
all degree or extent of the decrease in ECAR exhibited 
some variability within the cell types which is possibly 
due to the metabolic differences which were highlighted 
in a study showing a difference in the glycolytic capacity 
(the difference between ATP in the presence and absence 
of 2DG normalized to vehicle) following treatment of 
HEK293 and HepG2 cells with 1  μM ellagic acid [38]. 
Overall, these results indicated dampened cellular respi-
ration under CAMKK2 deletion conditions in both cell 
types, suggesting a universal metabolic effect (Table 2).

Fig. 1  Cellular respiration in CAMKK2 deleted HEK293, HepG2 and EA.hy926 cell clones measured with an XF-24 extracellular flux analyzer. A: 
Immunoblots showing expression of CAMKK2 in HEK293 and HepG2 cells. WT: wild-type (parental), KO: CAMKK2 knockout (CAMKK2−/−), M: 
molecular weight ladder, and ns: nonspecific band. B Scatter plot showing CAMKK2 protein levels in HEK293 (HEK), HepG2 cells. The relative 
expression was normalized based on HEK293. Data presented as Mean ± SEM. N = 3 replicates from 3 independent experiments. Statistical 
significance from one-way ANOVA followed by multiple comparisons test. C, F Line graphs showing OCR kinetics at different time points following 
glucose/drug injections in the parental and CAMKK2 deleted HEK293 (C), and HepG2 (F) cell clones. Glu: glucose, Oligo: Oligomycin, FCCP: Carbonyl 
cyanide 4-(trifluoromethoxy), and Rtn/AA: rotenone/antimycin. The grey and yellow highlighted areas in D indicate basal respiration following 
injection of glucose and non-mitochondrial respiration following Rtn/AA injection, respectively. Data presented as Mean ± SEM, N = 10 replicates. 
Arrows indicate pre-glucose injection OCR rate set at 100 for normalization. This allows comparison between different biological replicates. D, G Bar 
graphs showing OCR (basal respiration) at 30 min after glucose injection. The basal respiration was calculated by subtracting non-mitochondrial 
respiration rate from 2nd rate measurement after glucose injection. Data presented as Mean ± SEM, N = 20 replicates from 2 independent 
experiments. Statistical significance from one-way ANOVA followed by multiple comparisons test. “×” indicates fold change. E, H: ECAR versus OCR 
plots after 30 min of glucose injection. Data presented as Mean ± SEM, N = 20 replicates from 2 independent experiments. The yellow arrows 
indicate a shift in the metabolic phenotype under CAMKK2 deleted condition

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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ER and mitochondrial organization differed 
between HEK293 and HepG2 cells
The ER/mitochondrial distribution in HEK293 and 
HepG2 cells was examined by TEM to assess cell-type-
specific differences in mitochondrial distribution as well 
as to validate a subcellular enrichment process which 
was subsequently used to analyze isolated mitochondrial 
function. TEM images revealed a comparatively random 
distribution of ER and mitochondria in HEK293 cells 
compared to HepG2 cells (Additional file 2: Fig. S2A–B). 
In HepG2 cells, mitochondria were frequently sand-
wiched (yellow arrow) or partially encircled (cyan arrow) 
by rough endoplasmic reticulum structures (RER) with 
relatively increased contacts (red arrows) between these 
structures known as mitochondrial-associated ER mem-
branes (MAMs) (Additional file 2: Fig. S2B). In contrast, 
MAMs were rarely observed in HEK293 cells. TEM-
based images revealed the presence of both ER and mito-
chondrial structures in the enriched fractions (Additional 
file 3: Fig. S3A–D). The frequency of MAMs in  the  iso-
lated ER/mitochondrial fraction was comparatively 
higher in HepG2 compared to HEK293 cells as previously 
observed in cells grown on nitrocellulose membrane 
(Additional file 3: Fig. S3D).

Isolated mitochondrial function, specifically SDH (C‑II) 
driven respiration, differed between CAMKK2 deleted 
HEK293 and HepG2 cells
We performed coupling and electron flow assays to 
assess mitochondrial function in isolated and enriched 
mitochondria derived from CAMKK2−/− HEK293 and 

HepG2 cells (Additional file  3: Fig. S3) [17, 27]. The 
experiments described as the coupling assay examine 
the degree of coupling between ETS and OXPHOS, and 
this can distinguish mitochondrial function/dysfunc-
tion. In the coupling assay, the level of respiratory cou-
pling was assessed by sequentially measuring OCR in the 
presence of succinate as a substrate and rotenone as a 
respiratory complex-I (CI) inhibitor (Fig. 2A, Additional 
file 1: Fig. S1). ADP, oligomycin, FCCP, and antimycin A 
were sequentially injected, and OCR measurements were 
taken after each injection (Fig.  2A). Addition of ADP 
increased OCR as expected (Fig. 2A). The ADP-activated 
state (Substrates + ADP + inorganic phosphate) at maxi-
mum oxygen flux is a measure of the capacity for oxida-
tive phosphorylation (state-3) [39]. Subsequent injection 
of oligomycin inhibited ATP synthase (complex-V: CV) 
and decreased OCR (State 40), however, addition of the 
uncoupler FCCP [40] increased OCR (State 3u) (Fig. 2A). 
In an uncoupled state at optimal uncoupler concentra-
tion, the maximum oxygen flux is an apparent measure of 
ETS excess capacity (state-3u) (Fig. 2A) [39]. The biologi-
cal significance of ETS excess capacity (uncoupled respi-
ration) over ADP-stimulated OXPHOS capacity cannot 
be explained at present but significant differences have 
been observed between human and mouse skeletal mus-
cle mitochondria [39]. Finally, addition of the complex-
III (CIII) inhibitor antimycin A decreased OCR (Fig. 2A). 
The absolute O2 tension (in mmHg) in the microchamber 
(microplate) was in the range of 75–175 mmHg (Fig. 2C) 
which is within the permitted range [30]. The coupling 
efficiency of oxidative phosphorylation (the percentage 

Table 2  Summary of the cell-type-specific differences involving bioenergetics, relative expression of SDHs, SDHs-multiprotein 
assembly, and PTMs of SDHs observed under CAMKK2 deletion conditions in HEK293 and HepG2 cells

Cell line HEK293 HepG2

Effect of CAMKK2 deletion

Tissue source Embryonic kidney Liver

Origin/disease Transformed cell line Hepatocellular carcinoma

Morphology Epithelial Epithelial-like

Basal cellular respiration Decreased Decreased

CI-IV respiration Increased Decreased

CII-IV respiration Increased Decreased

SDHA mRNA level Decreased Unaltered

SDHB mRNA level Increased Decreased

SDHC mRNA level Unaltered Unaltered

SDHA protein level Increased Unaltered

SDHB protein level Increased Decreased

SDHC protein level Increased Unaltered

SDHB-associated MPC Shifted to the higher mol. weight Shifted to the lower mol. weight

SDHB PTM state Charged fractions altered Charged fractions unaltered

SDH enzymatic activity Increased Decreased
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of respiration rate at a given mitochondrial membrane 
potential that is used for ATP synthesis) was measured 
by calculating the respiratory control ratio (RCR: State 3/
State 4o) [41]. The coupling assay revealed no difference 
in the coupling efficiency (WT vs CAMKK2−/− RCR; 
Mean ± SEM = 6.26 ± 0.12 vs 6.49 ± 0.14; P value 0.23 
by unpaired t-test; N = 10 replicates from 2 independent 
experiments) of isolated enriched mitochondria derived 
from CAMKK2−/− and parental cells.

The electron flow assay was designed to follow and 
interrogate each complex of the ETS (Fig. 2B, Additional 
file 1: Fig. S1). As oxidation of pyruvate/malate is medi-
ated via CI, injection of rotenone inhibited this process, 
and respiration was halted. Injection of succinate allowed 
the mitochondria to respire via complex-II (CII), and 
OCR values increased. Electron flow was then inhib-
ited at CIII by antimycin A, and respiration stopped as 
expected. Finally, addition of ascorbate and N,N,N′,N′-
Tetramethyl-p-phenylenediamine (TMPD), which act as 
electron donors to CIV, elicited an increase in the OCR. 
In both assays (Fig. 2AB), equivalent protein (10 µg) load-
ing in each well was confirmed by immunoblotting after 
completion of the Seahorse run using the protein lysates 
derived from the individual wells (Fig.  2D). Simultane-
ous immunoblotting using anti-CAMKK2 and VDAC1 
revealed the absence of CAMKK2 in CAMKK−/− 
HEK293-derived enriched mitochondrial fractions as 
expected and the relative amount of VDAC1 was simi-
lar (p > 0.05) between CAMKK−/− and parental experi-
mental sets indicating equivalent mitochondrial protein 
loading (Fig. 2D). In the electron flow assay, CII-IV medi-
ated respiration was measured by setting the basal OCR 
value as 100% at the time point before rotenone injection. 
(Fig. 2E, H).

Electron flow analysis using 10 µg protein of enriched 
ER/mitochondrial fractions revealed a significant 
increase in the uncoupled state-3u [42] respiration in 

the presence of 10  mM pyruvate and 2  mM malate as 
substrates in CAMKK2−/− HEK293 cell clones com-
pared to parental cells (Fig. 2E–G). Both CI-IV and CII-
IV-mediated respiration were significantly higher in 
the uncoupled state in isolated CAMKK2−/− HEK293-
derived enriched mitochondria compared to parental 
cells (Fig.  2FG). In contrast, state-3u respiration was 
significantly decreased in HepG2 cell clones compared 
to parental cells (Fig.  2H–J). Both CI-IV and CII-IV-
mediated respiration was significantly decreased in 
CAMKK2−/− HepG2 cell clones-derived mitochondrial 
fractions compared to parental cells (Fig. 2IJ). This indi-
cates a cell-type-specific effect of CAMKK2 on isolated 
mitochondrial function and a yet uncharacterized factor 
may regulate the dissipation of promotive force in the 
FCCP-induced uncoupled state in a cell-type-specific 
manner. The biological relevance of respiration under 
the FCCP-induced uncoupled state is not clearly known, 
therefore, further elucidation of this difference is subject 
to future studies. Overall, these experiments revealed the 
effectiveness of the electron flow assay to perform func-
tional analysis of the individual respiratory complexes, 
specifically CII-mediated respiration, in different cell-
types which was further validated by the measurement of 
SDH enzymatic activity presented in Fig. 8. In summary, 
these results indicate that CAMKK2 loss differentially 
affected isolated mitochondrial function in a cell-type-
specific manner with CII-mediated respiration increased 
in HEK293, but decreased in HepG2 cells (Table 2).

CAMKK2 was detected in the enriched ER/mitochondrial 
fractions in both HEK293 and HepG2 cells
The enriched ER/mitochondrial fractions [17, 27] were 
examined for the presence of CAMKK2 and were vali-
dated using mitochondria/cytosol-localized proteins 
as subcellular markers (Fig.  3A–C). Immunoblotting 

(See figure on next page.)
Fig. 2  Coupling and electron flow assays to study OXPHOS functioning in enriched mitochondria from parental and CAMKK2 deleted HEK293 and 
HepG2 cells. (A-B): Line graphs showing OCR kinetics in coupling (A) and electron flow (B) assays performed simultaneously using 10 µg protein 
equivalent of enriched mitochondria in a Seahorse 24X flux analyzer. Final concentration of the inhibitors and substrates are mentioned in the text. 
The data were generated using a “point-to-point” mode in the Seahorse XF24 software package. The point-to-point displays OCR as a series of rates 
across the measurement period and can show changes of the rate across the measurement period [30]. The electron flow assay data presented in 
B is also provided as a “middle point” mode in (E, H) which is a preferred method for statistical comparison between groups (WT and CAMKK2−/−). 
The middle point mode shows a single OCR value for the measurement period which is the average of the point-to-point rates. Note that when 
the point-to-point rates are stable (relatively constant) across the measurement period, both point-to-point and middle point modes will provide 
an equivalent rate [30]. C Line graphs showing the O2 tension kinetics in the transient microchamber for 10 µg protein samples. D Immunoblots 
showing the relative abundance of CAMKK2 and VDAC1 in 10 μg of protein loaded in the Western blot to evaluate presence of equal amounts of 
proteins in the Seahorse assay. The yellow arrow indicates longer exposure of the top panel immunoblot. ns: nonspecific. E, H Line graphs showing 
OCR kinetics in the electron flow assay performed using 10 µg protein equivalent of enriched ER/mitochondrial fractions in a Seahorse 24X flux 
analyzer. Final concentration of the inhibitors and substrates are mentioned in the text. F, I Bar graphs showing uncoupled CI-IV driven OCR. N = 20 
replicates from 2 independent experiments. G, J Bar graphs showing CII-IV mediated uncoupled OCR. Data were normalized by setting the OCR as 
100% before rotenone injection. Statistical significance in F-G and I-J is from one-way ANOVA followed by multiple comparisons
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Fig. 2  (See legend on previous page.)
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revealed the presence of CAMKK2 in the cytosolic and 
ER/mitochondrial fractions derived from HEK293 cells 
(Fig.  3A). The enrichment of mitochondria in the ER/
mitochondrial fractions was confirmed by the presence 
of the mitochondrial solute carrier protein VDAC1, CV 
subunit ATP5A, and CIII subunit UQCRC2 (Fig. 3B, C, 
DE, I). The VDAC1 and OXPHOS-associated proteins, 
ATP5A and UQCRC2, were used as mitochondrial mark-
ers. Subsequent immunoblotting revealed the presence 

of GAPDH and α-tubulin in the cytosolic fractions in 
respective cell types (Fig.  3D–G, H. The anti-OXPHOS 
antibody cocktail used in this study (Table 1) consists of 
a mixture of antibodies specific to CI (NADH-Ubiqui-
none Oxidoreductase Subunit B8: NDUFB8), CII (Suc-
cinate Dehydrogenase Complex Iron-Sulfur Subunit B: 
SDHB), CIII (Ubiquinol-Cytochrome C Reductase Core 
Protein 2: UQCRC2), CIV (Mitochondrially Encoded 
Cytochrome C Oxidase II: MT-CO2), and CV (ATP 

Fig. 3  Fractionation of enriched ER/mitochondria. A–C: Immunoblots showing presence of CAMKK2, VDAC1, ATP5A and UQCRC2 proteins in 
subcellular fractions derived from HEK293 and HepG2 cells. Individual lanes under each category represent multiple replicates from a single set of 
experiments. WT: wild-type (parental), KO: CAMKK2 knockout, M: molecular weight ladder, and ns: nonspecific band. Yellow arrow indicates that the 
blot was incubated with a different set of antibodies without stripping. D–L Immunoblots showing abundance of cytosolic GAPDH and α-tubulin, 
mitochondrial ATP5A, SDHB, UQCRC2 and VDAC1, and ER-associated CALR [108] proteins in the subcellular fractions derived from parental (WT) 
and CAMKK2−/− (KO) HEK293 (D–G) and HepG2 (H–L) cells, respectively. “ × ”: Blank lane. The yellow arrows indicate longer exposure of the 
corresponding immunoblots. The cyan arrow indicates incubation of the corresponding blot with anti-VDAC1 antibody after striping anti-GAPDH. 
The red and blue rectangles indicate relatively increased or decreased SDHB levels



Page 13 of 29Sabbir et al. Cell Commun Signal           (2021) 19:98 	

synthase subunit alpha :  ATP5A). The co-abundance 
of VDAC1 and OXPHOS proteins in the enriched ER/
mitochondrial fraction indicated enrichment of mito-
chondria (Fig.  3D–G, H–L). The presence of ER struc-
tures was verified by using ER-specific CALR which was 
detected in both cytosolic and ER/mitochondrial frac-
tions in HepG2 cells (Fig. 3J). Overall, these results indi-
cated the effectiveness of the enrichment process. One 
striking observation was the comparative increase in CII-
associated SDHB levels in CAMKK2−/− HEK293-derived 
ER/mitochondrial fractions compared to parental cells 
(Fig.  3FG, red rectangles). In contrast, the SDHB level 
was relatively reduced in CAMKK2−/− HepG2 cells com-
pared to the parental cells (Fig.  3KL, green rectangles). 
The relative difference in the SDHB level correlated with 
the increased/decreased CII-driven respiration in the 
respective cell types (Fig. 2G, J).

CAMKK2 deletion differentially altered OXPHOS and SDHB 
protein levels in HEK293 and HepG2 cells
The cell-type-specific difference in isolated mitochon-
drial function, specifically CII driven respiration, and 
the difference in the relative amount of SDHB in the ER/
mitochondrial fractions under CAMKK2 deleted condi-
tions (Figs. 2, 3) encouraged us to examine the effect of 
CAMKK2-deficiency on OXPHOS levels in both cell 
types using multiple cell clones (Fig. 4). Immunoblotting-
based quantification revealed a significant and consistent 
increase in SDHB levels in the enriched ER/mitochon-
drial fractions derived from multiple independently 
selected CAMKK2−/− HEK293 cell clones compared 
to parental cells (Fig.  4A, C red rectangles). The rela-
tive amount of NDUFB8 (CI), UQCRC2 (CIII), MTCO2 
(CIV), and ATP5A (CV) also exhibited significant clonal 
variations within CAMKK deleted cell clones compared 
to parental HEK293 cells, however, the general trend 
was not consistent, and therefore, relative expression of 
these proteins was not quantified in the cell types as the 
inconsistency may be due to clonal variations (Additional 
file 4: Fig. S4A–D). Interestingly, in contrast to HEK293 
cells, SDHB levels were significantly and consistently 
decreased in the same fraction of multiple independently 
selected CAMKK2−/− HepG2 cell clones compared to 
parental cells (Fig. 4BD, blue rectangle; Table 2).

SDHs mRNA levels differentially increased or decreased 
in CAMKK2 deleted HEK293 and HepG2 cells
CII is an enzyme complex bound to the inner mito-
chondrial membrane and composed of four subunits: 
the flavoprotein SDHA, iron-sulfur protein SDHB, 
and cytochrome b560 composed of SDHC and SDHD 
(Fig.  5A) [43, 44]. It is the only enzyme complex that 
participates in both the tricarboxylic acid (TCA) cycle 
and the electron transport chain (ETC) (Fig.  5A) [43, 
44]. Therefore, we examined the mRNA levels of SDHs 
in HEK293 and HepG2 cells by multiplex RT-PCR. All 
four SDHs were co-amplified using four primer pairs 
that amplified four amplicons within a range of 202–
508 nucleotides each separated by approximately 100 
nucleotides (Table  1). Agarose gel electrophoresis and 
subsequent ImageJ-based plot intensity profiling of 
the PCR bands revealed cell-type-specific differential 
increases or decreases of SDHs (Fig.  5B–D). For exam-
ple, the SDHB mRNA level was comparatively increased 
in HEK293 cells; in contrast, it was decreased in HepG2 
cells (Fig. 5CD, green space filled areas under the curve). 
This correlated with an increased/decreased protein lev-
els observed in these cell types, respectively (Figs. 3, 4). 
The SDHA mRNA level was considerably decreased in 
CAMKK2 deleted HEK293 cells compared to parental 
cells but remained relatively unaltered in HepG2 cells 
(Fig.  5CD). Further, the SDHC mRNA level remained 
relatively unaltered in both cell types whereas, SDHD 
showed some variation. The multiplex-RT-PCR-based 
observation encouraged us to quantify the relative 
expression of SDHB and SDHA mRNAs.

Based on the plot profile, we concluded the SDHC 
mRNA levels were relatively unaltered under differ-
ent CAMKK2 deleted conditions. Therefore, to use it 
as a reference gene, we first examined the uniformity of 
SDHC mRNA expression under all conditions by design-
ing a set of primers that amplified a larger 488 bp ampli-
con which was then gel purified and used to generate a 
standard curve using serial dilutions [31]. Absolute quan-
tification using a nested primer set and a standard curve 
based on serial dilution of the copy numbers revealed 
no statistically significant difference between CAMKK2 
deleted and parental HEK293 or HepG2 cells (Additional 
file  4: Fig. S4EF). This justified the use of SDHC as a 

(See figure on next page.)
Fig. 4  Effect of CAMKK2-deficiency on the abundance of OXPHOS-associated proteins in HEK293, EA.hy926, and HepG2 cell-derived enriched ER/
mitochondrial fractions. A, B Immunoblots showing abundance of OXPHOS-associated proteins. The red rectangle marked areas indicate a relatively 
high level of SDHB in CAMKK2−/− HEK293 cell clones (clone-A5 and -A10) compared to the parental cells. The blue rectangle marked area in B 
indicates a relatively low level of SDHB in CAMKK2−/− HepG2 cell clone (clone-C1) compared to the parental cells. Yellow arrows indicate longer 
exposure of some segment of the top immunoblot to highlight bands that are underexposed. C, D Scatter plots showing relative level of SDHB in 
different CAMKK2 deleted cell clones. Statistical significance by one-way ANOVA followed by multiple comparisons (EG). “×” indicates fold change
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Fig. 4  (See legend on previous page.)
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reference gene to calculate the fold change of SDHB and 
SDHA. The SDHA level was significantly decreased in 
CAMKK2-deificient HEK293 cells compared to parental 
cells; in contrast, SDHA remained unaltered in HepG2 
cells (Fig.  5EF). Interestingly, SDHB levels significantly 
increased in HEK293 cells but decreased in HepG2 cells 
under CAMKK2 deleted conditions (Fig. 5GH) and this 
correlated to a corresponding increase or decrease of the 
respective protein levels observed previously (Figs.  3, 4, 
Table 2).

Subunits of SDH protein complex differentially increased 
or decreased in CAMKK2 deleted HEK293 and HepG2 cells
In Figs. 3–4, we demonstrated cell-type specific increases 
or decreases of SDHB using an anti-SDHB (Abcam) anti-
body that is part of a cocktail containing 5 monoclonal 
antibodies specific to different OXPHOS-associated pro-
teins (Table  1). The Abcam anti-SDHB was generated 
using full length protein corresponding to Cow SDHB. To 
further validate this observation, we used another mono-
clonal anti-SDHB antibody that was raised against amino 
acids 1–280 representing full length SDHB of human 
origin (Table 1). Immunoblotting using a cocktail of anti-
SDHA, anti-SDHB and anti-SDHC, all obtained from 
Santa Cruz Biotechnology, revealed a relative increase 
of all three proteins in CAMKK2−/− HEK293 cells com-
pared to parental cells (Additional file  5: Fig. S5AB, red 
dotted rectangles). Relative quantification revealed sig-
nificant increases of SDHA, SDHB and SDHC proteins 
in CAMKK2−/− HEK293 cell clones compared to paren-
tal cells (Fig.  5I). In contrast, SDHA and SDHC levels 
remained unaltered in CAMKK2−/− HepG2 cell clones 
compared to parental cells, whereas the SDHB level was 
found significantly decreased (Fig.  5J, Additional file  6: 
Fig. S6A–D) as observed previously (Figs.  3KL, 4BD). 
Overall, these results indicate that mRNA levels of SDHs 

do not necessarily correlate with the translated protein 
levels in a cell-type-specific manner (Table 2).

CAMKK2 deletion differentially altered mitochondrial 
OXPHOS and SDH‑associated megacomplexes in HEK293 
and HepG2 cells
Two-dimensional BN-PAGE/SDS-PAGE was used 
to study OXPHOS-associated multiprotein com-
plexes (MPCs) [45–47]. The OXPHOS-associated 
MPCs exhibited a considerable difference between 
CAMKK2−/− and parental HEK293 cell-derived mito-
chondria (Fig. 6A–C) due to the alterations in the rela-
tive abundance of OXPHOS-associated proteins as 
highlighted in Figs.  3and 4 and Additional file  5: Fig. 
S5AB. The BN-PAGE/SDS-PAGE is not quantitative 
for the relative abundance of MPCs between control 
(parental) and experimental (CAMKK2−/−) groups due 
to multiple variables but it may reflect an overall differ-
ence. One of the variables may be due to the fact that 
though the control and experimental proteins were 
resolved in the same first dimension native PAGE, pro-
teins may be unintentionally lost during excision of the 
first dimension BN-PAGE gel strips. Another factor is 
that the immunoblots derived from the second-dimen-
sion SDS-PAGE are separately incubated with primary/
secondary antibodies and detected individually using 
chemiluminescence under different sets of exposures 
to highlight under/over saturated bands within a broad 
dynamic range due to high vs low abundant proteins. 
However, if all conditions are kept nearly uniform, a rea-
sonable comparison can be made by careful quantifica-
tion of the immunoblots. False-colored overlaid images 
of 2D-BN-PAGE separated OXPHOS-associated pro-
tein complexes revealed an overall shift of OXPHOS-
associated MPCs to a higher molecular weight region, 
and the abundance of SDHs in CAMKK2−/− HEK293 

Fig. 5  Cell-type-specific differential expression of SDHs mRNAs and proteins. A Diagram showing the involvement of the SDH protein complex 
(CII) in both the electron transport system and TCA cycle. The ribbon representation of the crystal structure of Escherichia coli SDH, analogous to 
the mammalian mitochondrial respiratory complex II, was based on Protein Data Bank (PDB) entry: 1NEK [109]. Molecular graphics were prepared 
using UCSF Chimera package [110]. B Agarose gel showing four subunits of SDH complex (SDHA, SDHB, SDHC, SDHD) and their specific PCR 
products simultaneously co-amplified by multiplex RT-PCR. WT: wild-type (parental), KO: CAMKK2 deleted HEK293 and HepG2 cells, L: molecular 
weight ladder. C, D The ImageJ-based plot profile of the SDH-specific bands presented in Figure B showing relative band intensities (arbitrary 
units) corresponding to respective gene expression level. The green space-filled areas indicate the relatively increased/decreased SDHB expression 
corresponding to an increased/decreased area under the curve in the respective cell types. E–H SDHA and SDHB fold change normalized to 
SDHC. Data presented as Mean ± SEM. N = 3 replicates from 2 independent experiments. Statistical significance from one-way ANOVA followed 
by multiple comparisons test. Ns: not significant (P > 0.05). I, J Scatter plots showing SDHA, SDHB and SDHC protein levels in parental (WT) and 
CAMKK2 deleted HEK293 (clone A5, 10) and HepG2 (clone C1, D1) cell clones. The SDHB was detected using mouse monoclonal anti-SDHB 
antibody obtained from Santa Cruz Biotechnology Inc. (Table 1)

(See figure on next page.)
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mitochondria compared to parental cells (Fig.  6C). 
Dimeric and oligomeric ATP synthase are essential for 
maintaining mitochondrial ultrastructure and func-
tion [48]. Relatively increased abundance of oligomeric 
ATP5A in the range of ~ 480–1200 kDa in CAMKK2−/− 
HEK293 mitochondria compared to the parental mito-
chondria may indicate increased association with other 
complexes or interactive protein and may thereby pro-
vide a functional advantage. The SDHB/SDHA (CII), 
ATP5A (CV), UQCRC2 (CIII), MT-CO2 (CIV)-associ-
ated MPCs were vertically aligned in the 242–720 kDa 
range (Fig.  6A–C, red and pink dotted rectangle). The 
vertical alignments of these complexes may represent 
the formation of a respiratory megacomplex structure 
which was relatively improved in CAMKK2−/− HEK293 
cells compared to parental cells due to increased abun-
dance of OXPHOS-associated proteins (Additional 
file  6: Fig. S6AB). The vertical alignment of ATP5A 
(CV), MT-CO2 (CIV), UQCRC2 (CIII), and SDHB/
SDHA (CII)-associated MPC in a very high molecu-
lar weight region (> 1200  kDa) may indicate a poten-
tial respirasome supercomplex (Fig.  6C, white dotted 
rectangle).

In order to reduce the variability in relative quanti-
fication of CII assembly during BN-PAGE/SDS-PAGE, 
we excised the first-dimension BN-PAGE gel at 146–
480 kDa region containing MPCs from the parental and 
CAMKK2−/− mitochondria and loaded in the second-
dimension SDS-PAGE and subsequently transferred 
to a single nitrocellulose membrane and both samples 
were immunoblotted and visualized together (Fig.  6D, 
grey arrows). This strategy allowed us to remove few 
variables. Immunoblots revealed the perfect vertical 
alignment of SDHA, SDHB, and SDHC indicating their 
association in the same complex (Fig. 6D). The relative 
abundance of CII, specifically SDHB was more promi-
nent in CAMKK2−/− HEK293 mitochondria compared 
to the parental mitochondria (Fig. 6D, blue dotted rec-
tangle). The ratio of SDHA versus SDHB versus SDHC 

in CAMKK2−/− HEK293 mitochondria is 5.4 versus 
1.2 versus 3.4 compared to 5.8 versus 0.5 versus 3.7 
in parental mitochondria. This indicates that there 
were approximately 2 × more SDHB protein molecules 
associated with other SDHs in MPCs which may be 
responsible for the increased efficiency of CII-mediated 
reparation under CAMKK2 deletion condition.

CAMKK2 deficiency in HepG2 cells exhibited the 
opposite effect in the assembly of OXPHOS-associated 
MPCs compared to HEK293 cells. Overall, the ATP5A 
and UQCRC2-associated MPCs were aligned but 
shifted to relatively lower molecular weight regions in 
CAMKK2−/− HepG2 mitochondria compared to paren-
tal cells (Fig.  6E–G, red rectangles, and white arrow). 
Also, the SDHB-associated MPC shifted to a relatively 
low molecular weight region in CAMKK2−/− HepG2 
mitochondria compared to the parental mitochondria 
(Fig. 6G, white rectangle), whereas the MT-CO2-associ-
ated MPCs also shifted to a lesser extent (Fig. 6E–G, pink 
and white rectangles). Thus, the exact vertical alignment 
of SDHB and MT-CO2-associated MPCs as previously 
observed in HEK293 cells was abolished in CAMKK2−/− 
HepG2 mitochondria compared to parental mitochon-
dria (Fig. 6C, H–J, pink rectangles). Further, to establish 
the cell-type-specific differential shift of SDHB-associ-
ated MPCs, we performed BN-PAGE analysis by loading 
both parental and CAMKK2 deleted HEK293 and HepG2 
cell lysates simultaneously in the same first dimension 
native gel (Additional file  7: Fig. S7) and the immuno-
blotting was performed on second dimension SDS-
PAGE-derived blots using anti-SDHA/SDHB antibodies 
obtained from Abcam and Santa Cruz Biotechnology, 
respectively (Table 1, Additional file 7: Fig. S7). Immuno-
blotting revealed a significantly increased abundance of 
SDHB-associated MPCs vertically aligned with SDHA-
associated MPCs in CAMKK2−/− HEK293 mitochondria 
compared to parental mitochondria (Additional file  7: 
Fig. S7A, B, H, green rectangles) and in addition, there 
was an overall shift of SDHA/SDHB-associated MPCs 

(See figure on next page.)
Fig. 6  Cell-type-specific effect of CAMKK2 loss-of-function on the SDH and OXPHOS-associated MPCs. A, B, E, F Immunoblots showing 
OXPHOS-associated MPCs in the parental and CAMKK2−/− HEK293 cell clone-derived mitochondria. The immunoblot was generated by 
simultaneous use of a cocktail of six antibodies (Table 1). C, G Immunoblots in AB and EF were false colored and overlaid to show relative amount\
shift of OXPHOS-associated protein complexes. Vertical alignment of OXPHOS-associated proteins indicates association in multiprotein complexes 
that co-migrated during first-dimension native PAGE. D Immunoblots showing relative abundance of SDHA, SDHB and SDHC in complex II. The 
vertical alignment of SDHA, SDHB and SDHC indicates their association in a single megacomplex. Interpretation of colored markings and arrows: 
A–C Red/pink rectangles: potential megacomplex involving different OXPHOS complexes. White dotted rectangle: a > 1200 kDa MPCs potentially 
associated with different OXPHOS complexes to form respirasome structures. E–G Blue rectangles: differential oligomerization of ATP5A and 
UQCRC2. Green rectangles: differential shift of MT-CO2 MPCs. Red rectangle: differential shift of ATP5A. White rectangle: vertical alignment of SDHB 
MPCs. White and yellow arrow: relative abundance or differential shift of respective MPCs. D Grey arrows: placement of excised first dimensional 
BN-PAGE gel on the second dimension SDS-PAGE. Yellow arrow: Incubation of the same blot with a different antibody without stripping. Blue 
dotted rectangle: relative abundance of SDHB
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to a higher molecular weight region under CAMKK2 
deleted condition (Additional file  7: Fig. S7EG, yellow 
arrows). In contrast, the SDHB was significantly less 
abundant in the SDHA associated MPCs in CAMKK2−/− 
HepG2 mitochondria compared to parental mitochon-
dria (Additional file  7: Fig. S7C-D, H, green rectangles) 
and SDHA/SDHB-associated MPCs shifted to a lower 
molecular weight region under CAMKK2 deleted condi-
tion (Additional file  7: Fig. S7F-G, red arrows). Overall, 
these data indicate improved CII MPCs in HEK293 cells 
compared to HepG2 cells which correlated with func-
tional improvement under CAMKK2 deleted conditions.

CAMKK2 loss altered PTMs (charged fractions) of OXPHOS, 
specifically SDHB, in a cell‑type‑specific manner
We performed two-dimensional IFE/SDS-PAGE to study 
differential PTMs of OXPHOS and SDHs to understand 
the cell-type-specific difference in mitochondrial func-
tion. Immunoblotting followed by IEF/SDS-PAGE using 
anti-OXPHOS antibodies revealed a considerable dif-
ference in SDHB PTMs in CAMKK2−/− HEK293 mito-
chondria compared to parental mitochondria (Fig. 7AB, 
E–G). The basal isoelectric point of SDHB (protein 
ID: ENSP00000364649.3) is 9.03, but IEF revealed the 
appearance of 2 major fractions at pI/pH 3–4 (desig-
nated as fraction-1 and 2) in both HEK293 and HepG2 
cells (Fig. 7A-D, E–G, L). Relative quantification revealed 
a significant increase of fraction-1 and a corresponding 
decrease of fraction-2 SDHB in CAMKK2−/− HEK293 
mitochondria compared to parental mitochondria. 
In contrast, the relative amount of both fractions 
remained unaltered in HepG2 mitochondria under 
CAMKK2 deleted conditions. The pI of SDHA (pro-
tein ID: ENSP00000264932.6) and SDHC (protein ID: 
ENSP00000364649.3) are 6.39 and 6.13, respectively. 
Interestingly, both SDHA and SDHC exhibited cell-type-
specific differences in the charged fraction under native 
as well as CAMKK2 deleted conditions; however, the dif-
ference was not as considerable as compared to SDHB 
(Fig. 7A-D, H–K, L, M–N). Further, the OXPHOS-asso-
ciated proteins also exhibited considerable cell-type-spe-
cific differences, for example, the MT-CO2 and NDUFB8 

(Fig.  7A–D, red and green rectangles). Overall, these 
datasets indicate cell-type-specific differential PTMs of 
OXPHOS, specifically SDHB protein modification under 
CAMKK2 deleted conditions which may account for the 
cell-type-specific mitochondrial functional difference 
(Table 2).

Knockdown of SDHB in CAMKK2−/− HEK293 cells 
significantly decreased SDH enzymatic activity
In Figs. 2–5, we demonstrated that CAMKK2 deletion in 
HEK293 cells significantly increased SDHA, SDHB and 
SDHC protein levels which correlated to an increase in 
CII-mediated respiration compared to parental cells. 
Based on this, we hypothesized that knockdown of SDHB 
in CAMKK2−/− HEK293 cells would reverse this phe-
notype. DsiRNA targeted to exon 3 was used to knock-
down SDHB in CAMKK2−/− HEK293 cells (Table  1). 
Immunoblotting revealed a significant reduction (~ 70%) 
of SDHB protein level in SDHB-targeted DsiRNA trans-
fected CAMKK−/− HEK293 cells compared to con-
trol DsiRNA transfected cells (Fig.  8AB). Enzymatic 
activity assay using enriched ER/mitochondrial frac-
tions revealed a significant reduction in SDH activity in 
CAMKK2−/−/SDHB knockdown mitochondria com-
pared to CAMKK2−/− mitochondria (Fig. 8E). Also, the 
significantly increased SDH enzymatic activity observed 
in isolated CAMKK2−/− mitochondria compared to 
parental HEK293 mitochondria (Fig.  8E) supported our 
previous flux analysis-based experiments that measured 
CII-mediated respiration (Fig.  2G). Overall, these find-
ings indicate that a CAMKK2 loss-of-function-mediated 
increase in SDHB protein content is responsible for the 
enhanced mitochondrial function.

Overexpression of SDHB in CAMKK2−/− HepG2 cells 
significantly increased SDH enzymatic activity
In contrast to HEK293 cells, CAMKK2 deletion in 
HepG2 cells significantly decreased the SDHB protein 
level, which corresponded with the decrease in CII-
mediated respiration compared to parental cells (Figs. 2–
5). In order to see if an increase in SDHB protein level in 
CAMKK2−/− HepG2 cells would reverse this phenotype, 

Fig. 7  Loss of CAMKK2 differentially affected PTMs of OXPHOS, specifically SDHA in a cell-type-specific manner. A–D Immunoblots showing 
charged fractions of OXPHOS proteins. H–K The immunoblots presented in A–D were treated with a rabbit monoclonal anti-SDHA antibody. 
Therefore, the previously detected proteins using mouse monoclonal anti-OXPHOS antibodies may show some variation compared to A-D due 
to loss of mouse antibodies after prolonged incubation and washing. E, L The immunoblots presented in A-D (only SDHB fractions) and H–L were 
false colored and overlapped. “+”: pH/pI-10. F Plot profiles of the SDHB charged fractions. Fraction 1and 2 indicates same protein with different 
sets of modifications. G Bar graphs showing relative percentage of fraction 1 and 2 of SDHB protein. Statistical significance from one-way ANOVA 
followed by multiple comparisons. M–N Immunoblots showing charged fractions of SDHC. N False colored overlay of immunoblots presented 
in M. Interpretation of colored rectangles and arrows: Difference in charged fractions of MT-CO2 (green dotted rectangles), NDUFB8 (red dotted 
rectangles) and SDHC (black/white dotted rectangles)

(See figure on next page.)
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we overexpressed SDHB in CAMKK2−/− HepG2 and 
measured SDH enzymatic activity in the enriched ER/
mitochondrial fractions. Immunoblotting revealed a sig-
nificant increase (~ 1.85 fold) in the SDHB protein level 
in a pool of SDHB overexpressed CAMKK2−/− HepG2 
cells compared to untransfected cells (Fig.  8CD). Enzy-
matic activity assay using enriched ER/mitochondrial 
fractions revealed a significant increase in SDH activity in 
CAMKK2−/−/SDHB overexpressed HepG2 mitochondria 
compared to CAMKK−/− HepG2 mitochondria (Fig. 8F). 
Also, a significant decrease in SDH enzymatic activ-
ity was observed in isolated CAMKK2−/− HepG2 mito-
chondria compared to parental mitochondria (Fig.  8F) 
supporting the previous flux analysis-based experiments 
which measured CII-mediated respiration (Fig. 2J). Over-
all, these findings indicate that the CAMKK2 loss-of-
function-mediated decrease in SDHB protein content in 
HepG2 cells is responsible for the dampened mitochon-
drial function.

Discussion
In this study, we demonstrated that inhibition of mito-
chondrial respiration during glucose metabolism is a 
universal phenotype under CAMKK2 deleted conditions 
irrespective of the organ or tissue-specific origin of the 
cell-types (Kidney: HEK293, Liver: HepG2). Interest-
ingly, this universal suppression of respiration was not 
reciprocated in the isolated mitochondrial function 
which exhibited cell-type-specific differential respiratory 
kinetics under CAMKK2 deleted conditions compared 
to the kinetics of corresponding unperturbed paren-
tal cells. For example, the respiration of isolated mito-
chondria in an uncoupled state (state-3u) was increased 
in CAMKK2−/− HEK293compared to parental cells, 
whereas, it was decreased in CAMKK2−/− HepG2 cells 
compared to parental cells. Furthermore, we have shown 
that cell-type-specific increases or decreases in the 
mRNA as well as protein levels of nuclear-encoded SDHs 
(CII), specifically SDHA, SDHB, and SDHC, correlated 
with a corresponding increase or decrease of CII-medi-
ated respiration in the respective cell-types. In addition, 
we demonstrated that the cell-type-specific effect on 
mitochondrial function under CAMKK2 deletion condi-
tion is associated with post-translational modification of 

OXPHOS proteins, including SDHs, specifically SDHB, 
and their assembly in supercomplex/megacomplex struc-
tures in the respective cell types. Overall, this study pro-
vided a unique mechanistic insight into CAMKK2-SDHs 
mediated regulation of mitochondrial bioenergetics 
which may provide the mechanistic basis for organ/tis-
sue/cell-type-specific metabolic reprogramming.

CAMKK2 deletion affected both transcription and 
translation of nuclear-encoded SDHs in a cell-type-
specific manner. The altered mRNA level may be due to 
increased/decreased transcriptional activity or mRNA 
stability. Similarly, the altered protein level may be due 
to increased/decreased translation or altered protein 
half-life due to PTMs. Interestingly, the cell-type-specific 
increase or decrease of SDHs mRNA levels was not recip-
rocated in a corresponding increase or decrease in the 
protein levels (Fig.  5), suggesting the regulatory mecha-
nisms are operating at multiple levels. For example, 
under CAMKK2 deleted conditions, SDHC mRNA lev-
els remained unaltered in both cell types but the SDHC 
protein level was considerably increased in HEK293 cells, 
whereas, in HepG2 cells, it remained unaltered. Also, 
CAMKK2 loss significantly reduced SDHA mRNA in 
HEK293 cells, in contrast, the protein level was consid-
erably increased. On the other hand, both SDHA mRNA 
and protein levels remained unaltered in HepG2 cells. 
The reciprocal relation between mRNA, protein level 
and functional consequence (CII-mediated respiration) 
was only fulfilled in the case of SDHB, where an increase/
decrease in SDHB mRNA level was reciprocated in a 
corresponding increase/decrease in the protein level as 
well as enhanced/dampened CII activity in the respec-
tive CAMKK2 deleted cell types. In addition, the cell-
type-specific SDHB knockdown/overexpression-based 
study further validated this cause-and-effect relation-
ship involving altered SDHB level leading to an altered 
CII activity under CAMKK2 loss-of-function conditions 
(Fig. 8). As SDHB is a mitochondrially localized protein, 
the relative increase or decrease in the SDHB protein 
level under CAMKK2 deficient condition was reflected in 
an increased/decreased abundance of the protein in the 
ER/mitochondrial fraction in the respective cell types. 
The exact mechanism of this cell-type-specific potential 
transcriptional/translational regulation is not known at 

(See figure on next page.)
Fig. 8  Knockdown and overexpression of SDHB in CAMKK2−/− HEK293 and HepG2 cells, respectively. A, C Immunoblots showing ATP5A (A), 
GAPDH (B), and SDHB (A, B) protein levels in the SDHB knockdown (A) and SDHB overexpressed ER/mitochondrial fractions derived from 
CAMKK2−/− HEK293 and HepG2 cells, respectively. B, D Bar graphs showing the relative amount of SDHB protein in the SDHB knockdown (B) 
and SDHB overexpressed ER/mitochondrial fractions derived from CAMKK2−/− HEK293 and HepG2 cells, respectively. N = 6 replicates from 2 
independent experiments. Data represented as Mean ± SEM. Statistical analysis by t-test (unpaired). E, F SDH enzymatic activity in the enriched ER/
mitochondrial fractions derived from parental, CAMKK2−/−, and CAMKK2−/− + SDHB knockdown/overexpressed HEK293 (E) and HepG2 (F) cells, 
respectively. N = 10 replicates from 2 independent experiments. Statistical significance from one-way ANOVA followed by multiple comparisons
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this stage of the study but a hypothesis can be conferred 
based on the evidence in the existing literature. The dif-
ferential transcriptional regulation can be mediated by 
transcription factors regulated by the cell-type-specific 
difference in CAMKK2 downstream signaling. Acti-
vated CAMKK2 directly phosphorylates multiple down-
stream effectors including CAMK1, CAMK4, AMPKα, 
and SIRT1 [2]. The transcriptome data available in the 
HPA database indicates considerable difference between 
HEK293 and HepG2 cells in the CAMKK2 downstream 
effector’s mRNA levels, and therefore, may support this 
hypothesis. For example, the normalized RNA expres-
sion values for CAMK1, CAMK4, AMPKα (PRKAA1) 
and SIRT1 is 21.1, 2.6, 7.9, and 10.9 in HEK293 cells 
whereas it is 7.4, 0, 8.8, and 8.2 in HepG2 cells, respec-
tively. AMPKα phosphorylates and activates transcrip-
tion factors PGC1α (peroxisome proliferator-activated 
receptor γ coactivator 1 α) [49] and NRF2 (respiratory 
factor 2) [50]. PGC1α is a master regulator of mitochon-
drial biogenesis [6] and regulates energy metabolism by 
modulating the expression of genes involved in oxida-
tive phosphorylation via co-activation of NRF1/2 [51, 
52]. Both NRF-1 and -2 are transcriptional regulators 
of SDHs [53]. Therefore, CAMKK2-AMPKα-PGC1α-
NRF1/2 pathway may be a potential mediator of the tran-
scriptional regulation of SDHs. Interestingly, the reduced 
level of PGC1α mRNA observed in Camkk2 knockout 
mouse hepatocytes supports this hypothesis [54]. On 
the other hand, constitutively expressed CAMK1 and 
CAMK4 may activate the nuclear transcription factor 
CREB [55]. An isoform of CAMKI (CAMK1δ) has been 
shown translocated to the nucleus in hippocampal neu-
rons and stimulated transcription by phosphorylating 
CREB [56]. CAMK4 is predominantly localized in the 
nucleus and there is good evidence that it is responsible 
for Ca2+-dependent stimulation of transcription through 
phosphorylation of CREB at Ser133 [57]. Co-expression 
of CAMKK2 with CAMK4 resulted in a 14-fold enhance-
ment of CREB-dependent gene expression compared to 
the solitary expression of CAMK4 only [58]. Thus, it is 
conceivable that CAMKK2-CAMK1/4-CREB signal-
ing may be an alternative signaling pathway potentially 
regulating SDHs expression. However, validation of these 
hypotheses is subject to future studies.

A major finding in this study is the cell-type-specific 
PTMs of OXPHOS proteins including SDHs, specifi-
cally; SDHB under CAMKK2 deleted conditions which 
correlated with mitochondrial functional differences. 
The exact nature of the PTMs in two major SDHB pI 
fractions needs to be identified in the future. Phos-
phorylation usually induces an acidic shift in the pI 
[59] and single phosphorylation may alter pI by 1–2 
pH units [60], therefore, multiple phosphorylations 

may be involved in shifting SDHB pI from basic (pH 
9) to an acidic (pH 3–4) pI (Fig.  7EF). Interestingly, 
high throughput mass spectrometric analysis docu-
mented a variety of SDHB PTMs archived in the Phos-
phositePlus database [61, 62]. Mining of the publically 
available databases for the evidence of phosphorylation 
in the ETC components identified 284 reported phos-
phorylation events, includeing P-SDHA (S456, T24, 
and Y215/365604/606/629), P-SDHB (S222, T119, 
and Y61/216), P-UQCRC2 (S56/87/88/111/226/367, 
T86/100/113/369, and Y55/191/207), and P-ATP5A1 
(S53/65/76/99/100/166/184/254/419/451, T225/264, 
and Y243/246/299/337/343/440) proteins [63]. Thus, it 
is tempting to suggest that CAMKK2 loss may have dif-
ferentially altered the phosphorylation state of OXPHOS 
proteins, including SDHs and more specifically SDHB, 
and an altered phosphorylation state of the ETC machin-
ery was responsible for the cell-type-specific differences 
in mitochondrial bioenergetics.

BN-PAGE is a convenient method to study OXPHOS-
associated MPCs [45–47]. Our results indicated con-
siderable cell-type-specific differences in the assembly 
of OXPHOS-associated MPCs under CAMKK2 deleted 
conditions which correlated with altered mitochondrial 
function. The current concept of mitochondrial architec-
ture states that OXPHOS complexes are not randomly 
distributed within the inner mitochondrial membrane, 
but assemble into supramolecular structures [64–66]. 
Supercomplex formation is important for the stability of 
the ETC and for reducing the production of reactive oxy-
gen species (ROS) [65, 67]. The majority of CI is found 
bound with a CIII dimer and CIV (CI + CIII2 + CIV), 
a structure that contains all complexes required to pass 
electrons from NADH to O2 and hence is known as a 
“respirasome” [65]. Other combinations also exist, for 
example, C-1 bound to a CIII dimer (CI + CIII2) [68], or 
CIII dimer bound to CIV (CIII2 + CIV1) independent of 
CI [64] or CII and CIV bound together to form a stand-
alone megacomplex not associated with any of the other 
respiratory complexes [69]. The existence of a super-
complex/megacomplex-like structure is supported by 
the vertical alignment of OXPHOS complexes in a very 
high molecular weight (> 1200  kDa) and multiple 146–
720 kDa complexes in HEK293 and HepG2 cells (Fig. 6C, 
G). The vertical alignment of SDHB and MT-CO2 in 
HEK293 and HepG2 cells is an indication of the exist-
ence of CII + CIV megacomplex (Fig.  6). Interestingly, 
increased levels of SDHB and an increased presence of 
CII + CIV megacomplex in CAMKK2−/− HEK293 cor-
related to an enhanced CII-mediated state-3u respiration 
in the isolated mitochondria compared to parental mito-
chondria. Also, the reduced SDHB levels and disassem-
bled CII + CIV megacomplex in CAMKK2−/− HepG2 
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correlated to the decreased CII-mediated state-3u respi-
ration in the isolated mitochondria compared to paren-
tal mitochondria. This supported the conclusion that 
CAMKK2 regulates mitochondrial respiration by influ-
encing both OXPHOS assembly and abundance in a 
cell-type-specific manner. It has been suggested that the 
natural integrity of respirasome or megacomplexes can 
be partially compromised during BN-PAGE or cryo-EM 
sample preparation due to lack of natural environment, 
loss of cardiolipin, mitochondrial isolation (centrifuga-
tion and washing), solubilization (detergents), air–water 
interface, and random collision, which, therefore, may 
induce artifacts [70]. However, a comparison of natural 
or disintegrated super/megacomplexes between control 
and experimental sets under identical conditions may 
provide a clue to the structure–function relationship 
which is reflected in this study. Under CAMKK2 deleted 
conditions, OXPHOS-associated MPCs shifted to the 
relatively higher molecular weight regions in HEK293 
(Fig. 6C) whereas, in HepG2 cells, the relative shift was 
comparatively towards the lower molecular weight 
regions (Fig. 6G). This cell-type-specific difference in the 
OXPHOS super/megacomplex profile correlated with an 
overall increased or decreased mitochondrial function, 
respectively.

One emerging question is – what is the relevance of 
an increase or decrease in uncoupled mitochondrial 
respiration? Uncoupling is a general term comprising 
diverse mechanisms [71]. In the coupled state, the pro-
ton motive force generated by electron transport is dis-
sipated by the vectorial movement of protons across the 
inner mitochondrial membrane (IMM) through ATP 
synthase (CV), which generates energy in the form of 
ATP, thus proton flow is coupled with ATP production. 
In uncoupled respiration, the proton flow bypasses CV 
and is not coupled with ATP production. Uncoupled 
respiration occurs due to intrinsic “proton leaks” [72] 
or is mediated by uncoupling proteins (UCPs) or chem-
ical mediators, for example, FCCP [73]. Uncoupling 
mechanisms involving UCPs generate a large amount of 
heat for thermoregulation, limit the production of ROS 
and assist in metabolic reprogramming [74]. FCCP-
mediated uncoupling may involve some IMM proteins 
although the mechanistic details remain obscure [75]. 
In this context, it is important to note that STO-609 has 
been proposed as a mitochondrial uncoupler [76] and 
pharmacological inhibition of CAMKK2 in mice using 
STO-609 caused an acute increase in body temperature 
and a significant decrease in body weight. Furthermore, 
CAMKK2 downstream effector—AMPK has been 
linked to UCP2 for exerting a cardio-protective effect 
under mitochondrial dysfunction condition [77]. Thus, 

the cell-type-specific increased or decreased uncoupled 
respiration observed under CAMKK2 deleted condi-
tion supports previous reports and implies a role of 
CAMKK2 in thermoregulation and organ/tissue-spe-
cific metabolic reprogramming.

Another emerging question is—how does cellular res-
piration differ between unperturbed cells and isolated 
mitochondria and how does CAMKK2 regulate this 
process? It is difficult to provide a definitive explana-
tion within the premise of this study, however, a reason-
able hypothesis can be proposed based on the evidence 
in the existing literature. It is important to note that 
mitochondria are embedded in the cytosol of unper-
turbed cells, whereas, the cytosolic factors are absent in 
the isolated mitochondria. The latter may thus account 
for the difference in function. One cytosolic factor that 
regulates mitochondrial function is α-tubulin. Free 
dimeric α-tubulin mediates reversible blockage of VDAC, 
inhibiting VDAC permeability for ATP/ADP and other 
mitochondrial respiratory substrates, thus limiting mito-
chondrial function [78, 79]. Specific association of VDAC 
with α-tubulin was demonstrated in reconstituted planar 
lipid membranes [78, 79], as well as in immunoprecipita-
tion studies [80]. VDAC is a component of MAM which 
creates an interface between the ER and mitochondria 
and provides a level of regulation in energy production 
and Ca2+ buffering [81]. It is important to note that the 
TEM-based experiment revealed that MAM is more fre-
quent in HepG2 cells compared to HEK293 cells (Addi-
tional file 2: Fig. S2, Additional file 3: Fig. S3) which may 
account for some of the functional differences between 
these cell types. Since MAM structures were retained 
in the enriched ER/mitochondrial fraction (Additional 
file  3: Fig. S3), it is tempting to suggest that altered 
MPCs in the mitochondrial fraction may indicate poten-
tial impairment of MAM functioning under CAMKK2 
deleted condition. Identification of the interacting 
proteins associated with OXPHOS and MAM under 
CAMKK2 deleted conditions may shed light on the dis-
cussed aspects of CAMKK2 regulation.

Another important question is what is the physiologi-
cal relevance of CAMKK2-mediated differential regu-
lation of mitochondrial metabolism through SDHs in 
relation to a specific cell type? This can be explained by 
discussing the role of CAMKK2 in the maintenance of 
whole-body energy homeostasis [2]. Organismal energy 
homeostasis is achieved by the communication between 
different metabolic organs and tissues to ensure balanced 
calorie intake, utilization, and proper energy flow. Some 
organs/tissues are destined for energy expenditure, for 
example, skeletal muscle, whereas others are dedicated 
to energy storage and balance, for example, adipose and 
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liver tissues. Ca2+ is one of the most important second 
messengers [82] mediating a large variety of signal trans-
duction pathways that regulate virtually all of the physi-
ologic actions relevant to metabolism and organism 
function [2]. Therefore, it is conceivable that depend-
ing on the kinome, Ca2+/CAM-CAMKK2-downstream 
signaling will differ between cell types to meet the met-
abolic requirements of the organ/tissue. This has been 
reflected in our study as well as other studies involving 
tissue-specific diversity in CAMKK2 functioning [2]. 
For example, CAMKK2-AMPK signaling controls appe-
tite and energy homeostasis in the brain [83], whereas, 
the CAMKK2-CAM4 axis contributes to nonalcoholic 
fatty liver disease (NAFLD) and is instrumental during 
the progression of hepatocellular carcinoma [84]. On the 
other hand, CAMKK2 plays a role in adaptive thermo-
genesis involving brown adipose tissue [2, 85]. In addi-
tion to Ca2+/CAM signaling, CAMKK2 is also regulated 
by two upstream Ser/Thr kinases, cyclin-dependent 
kinase 5 (CDK5) and glycogen synthase kinase 3 (GSK3); 
both phosphorylate CAMKK2 in the regulatory domain 
and control its autonomous activity [86, 87]. GSK3 is a 
downstream regulatory switch for numerous signaling 
pathways, including Wnt (Frizzled), Insulin (INSR), Ree-
lin (VLDLR), Hedgehog (Patched), and GPCR signaling 
[88]. On the other hand, CDK5 is regulated by Calpain-
dependent signaling [89]. Thus, CAMKK2 mediated 
cell-type-specific regulation of SDHs may indicate a 
mechanistic link wherein a multitude of signaling path-
ways converge to regulate mitochondrial function in 
a tissue/cell-type-specific manner to maintain energy 
homeostasis. This has been further reflected in the 
involvement of CAMKK2 in several metabolic diseases 
characterized by the manifestation of dysregulated mito-
chondrial function as part of their pathogenic process, 
including, for example, cancer [84, 90–92], obesity [83], 
diabetes [54], neurodegeneration [16, 17], and NAFLD 
[76]. One of the underlying pathogenic factors in these 
diseases is the excessive production of ROS through 
overactive OXPHOS which is damaging. It has been sug-
gested that excessive mitochondrial ROS production in 
hepatocytes is one of the pathogenic factors for NAFLD 
[93]. In this context, CAMKK2-mediated downregulation 
of SDHB and reduced OXPHOS function in hepatocyte-
like HepG2 cells [94] becomes physiologically relevant 
as it supports the findings that pharmacological treat-
ment with STO-609, a selective small-molecule inhibitor 
of CAMKK2, conferred protection against NAFLD in a 
Streptozotocin and high fat-diet induced mouse model 
[76].

Another important physiological implication of this 
study involves the role of CAMKK2 in the regulation of 

inflammation [95]. It has been demonstrated that inhi-
bition of CAMKK2 in myeloid cells suppresses tumor 
growth by increasing intratumoral accumulation of 
effector CD8 + T cells and immune-stimulatory myeloid 
subsets [91]. In this context, it is important to note that 
the TCA cycle intermediates succinate and fumarate are 
involved in “non-metabolic” signaling in both immuno-
physiology and disease contexts [96–98]. Succinate is 
considered pro-inflammatory [99, 100] and fumarate as 
an anti-inflammatory metabolite [98]. Succinate recep-
tor 1 (SUCNR1) is highly expressed in dendritic cells 
resulting in the succinate-mediated production of pro-
inflammatory cytokines and is responsible for enhanc-
ing activation of T helper cells and migration of dendritic 
cells, all underlying immunity [101, 102]. An elevated 
level of succinate in various diseases [96] is the therapeu-
tic basis for targeting succinate metabolism [103–106]. 
On the other hand, fumarate signals through diverse 
signaling pathways regulating both innate and adaptive 
immune systems and rewires the epigenetic landscape of 
the cells through inhibition of histone and DNA demeth-
ylases [98]. Therefore, it is possible that reduction or loss 
of CAMKK2 function may alter SDH activity in a cell-
type-specific manner, leading to a disturbed succinate/
fumarate homeostasis in the tissue microenvironment 
which may have pro- or anti-inflammatory consequences 
depending on the context. Furthermore, impaired SDH 
activity may serve as the molecular basis for diverse 
signaling pathways associated with tumorigenesis which 
is discussed in detail by Moosavi et al. [107]. For exam-
ple, increased succinate leads to the accumulation of 
hypoxia-inducible factor (HIF) which favors tumorigen-
esis by stimulating angiogenesis, reinforcing apopto-
sis resistance, and promoting the Warburg effect under 
hypoxia [107].

Conclusions
This study provides novel insight into the cell-
type-specificity and multiplicity of complex factors 
associated with CAMKK2-mediated regulation of 
mitochondrial function. These findings indicate that 
future studies should be directed towards understand-
ing the mechanistic basis of calcium signaling and 
metabolic reprogramming, an area of research that 
has received minimal attention. Previously we estab-
lished that CAMKK2-CAMK4 signaling regulates ER-
mediated calcium homeostasis, receptor-mediated 
transferrin trafficking, and iron homeostasis [16, 17]. 
Therefore, the iron-sulfur protein SDHB representing a 
connecting link between the TCA cycle and ETS may 
serve as an important target for understanding the role 
of CAMKK2-CAMK4 signaling in calcium/iron home-
ostasis and metabolic regulation. The identification of 
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cell-type-specific differences in CAMKK2 downstream 
effector kinase signaling and their effect on transcrip-
tional, post-transcriptional, translational, and post-
translational as well as structural assembly of OXPHOS 
proteins, specifically SDHs and more specifically 
SDHB, is the subject for future research to understand 
the mechanistic basis of CAMKK2 deficiency-induced 
phenotypes and its functional consequence in the 
pathogenesis of various diseases. Also, this study pro-
vides a hint to a unique therapeutic strategy in which 
manipulation of the yet uncharacterized cytosolic fac-
tor causing CAMKK2 mediated universal suppression 
of cellular respiration in different cell types may pro-
vide an opportunity to take the advantage of improved 
mitochondrial function under CAMKK2 deficient con-
ditions in a cell/tissue/organ-specific context.
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