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Abstract

In this thesis the eigenstructure (eigenvalues and eigenvectors) assignment tech-

nique based algorithm has been developed for the design of controllers for power

system applications. The application of the algorithm is demonstrated by designing

power system stabilizers (PSSs) that are extensively used to address the small-signal

rotor angle stability problems in power systems. In the eigenstructure assignment

technique, the critical eigenvalues can be relocated as well as their associated eigen-

vectors can be modified. This method is superior and yield better dynamical per-

formance compared to the widely used frequency domain design method, in which

only the critical eigenvalues are relocated and no attempt is made to modify the

eigenvectors.

The reviewed published research has demonstrated successful application of the

eigenstructure assignment technique in the design of controllers for small control

systems. However, the application of this technique in the design of controllers for

power systems has not been investigated rigorously.

In contrast to a small system, a power system has a very large number state

variables compared to the combined number of system inputs and outputs. Therefore,

the eigenstructure assignment technique that has been successfully applied in the

design of controllers for small systems could not be applied as is in the design of

power system controllers. This thesis proposes a novel approach to the application of

the eigenstructure assignment technique in the design of power system controllers. In

this new approach, a multi-objective nonlinear optimization problem (MONLOP) is

formulated by quantifying different design objectives as a function of free parametric

vectors. Then the MONLOP is solved for the free parametric vectors using a nonlinear

optimization technique. Finally, the solution of the controller parameters is obtained

using the solved free parametric vectors.

ii



The superiority of the proposed method over the conventional frequency domain

method is demonstrated by designing controllers for three different systems and val-

idating the controllers through nonlinear transient simulations. One of the cases

includes design of a PSS for the Manitoba Hydro system having about 29,000 states

variables, which demonstrates the applicability of the proposed algorithm for a prac-

tical real-world system.
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Chapter 1

Introduction

Power systems are the largest dynamic systems ever constructed by humankind. A

modern power system comprises extensive interconnections of generating systems and

loads that are often thousands of miles apart. Large amounts of power transfer over

long transmission lines, high gain automatic voltage regulators (AVRs), and fast act-

ing exciters give rise to low frequency (0.2 Hz to 2 Hz) generator rotor oscillations

under small disturbances that manifest as power and voltage oscillations in the sys-

tem, and if such oscillations persist for a long time or grow in magnitude, they threaten

system security and restrict the allowable power flow in the network. Power system

stabilizers (PSSs), controllers that provide auxiliary control signals to the excitation

system of generators, have been successfully used to damp such oscillations for sev-

eral decades. Recently, controllers have been implemented for power electronics based

devices, such as high voltage dc (HVDC) systems, static VAR compensators (SVCs),

thyristor controlled series capacitors. In this thesis, a new algorithm based on the

eigenstructure assignment technique is presented, which can be applied in the design

of such controllers. A superior dynamic performance can be achieved by employ-

ment of a controller designed using the proposed algorithm compared to that can be

achieved using a controller designed using the conventional frequency domain design

method. Because, using the proposed algorithm it is possible to design a controller

1



that can alter the eigenvectors of the closed-loop system, the possibility of which is

ignored in the conventional method.

The eigenstructure assignment technique has been successfully used in the design

of controllers for small systems, such as in aerospace applications; however, it is

relatively new to power system controller design. In this thesis, the inadequacies of the

conventional application of the technique in the design of controllers for power systems

are identified, and a novel optimization-based algorithm is presented to address these

inadequacies.

In this chapter, the motivation for the research, the goals of the research, the

definition of the problem, and the methodology adopted in the research are presented.

Prior to that, an overview of stability problems in power systems is presented, followed

by an introduction to the concepts of eigenvalues and eigenvectors, which are the basic

concepts of small-signal (linear) analysis and controller design. Then, the conventional

frequency domain method for power system controller design is reviewed followed by

a brief description of the eigenstructure assignment technique.

1.1 Power System Stability

A power system comprises geographically separated generators and loads intercon-

nected through a network of transmission lines, complex control systems, power elec-

tronics based devices, and other equipment and machines. The generators must con-

stantly meet the demands of continuously changing loads through an ever-changing

transmission network by continuously adjusting their operating parameters. Addi-

tionally, a power system intermittently experiences many severe disturbances, for

example, fault due to an insulation failure or a lightning strike on a transmission

line, a loss of a transmission line, or loss of a generator. Maintaining overall power

system stability when the power system is constantly being disturbed from its oper-

ating equilibrium is an important problem for secure power system operation. The
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overall stability of a power system can be defined more formally as “that property of

a power system that enables it to remain in a state of operating equilibrium under

normal operating conditions and to regain an acceptable state of equilibrium after

being subjected to a disturbance” [6].

Due to its nature, a power system exhibits different types of instability depending

on the system configuration. Though the different types of instability are interrelated,

they cannot be treated as a single problem; therefore, they are classified into various

stability problems such as voltage stability, frequency stability, small-signal stability,

and transient stability [7]. This thesis is concerned with the small-signal stability of

the power system.

A small-signal stability analysis involves the stability study of a power system

under small disturbances. If the disturbances permit linearization of the dynamic

equations of the power system for the purpose of analysis, then they are classified

as small disturbances. Small changes in load or generation, change in the voltage

reference of the excitation system, and tripping of transmission lines carrying a small

load are examples of small disturbances.

A small-signal study can be undertaken to identify and solve many types of prob-

lems in power systems, such as rotor angle stability, subsynchronous resonance, con-

troller interaction, and stability of the power system due to power electronics based

devices. Small-signal rotor angle stability is concerned with the stability of syn-

chronous generator speed oscillations. Such oscillations are called electro-mechanical

oscillations because they arise as a result of unbalance in electrical and mechanical

torques under small disturbances. Rotor angle stability is a frequently encountered

problem in power systems because generating systems are in the majority among the

various dynamic devices in power systems. It is also one of the important problems

because the generating systems are the almost exclusive sources to meet the power

demand. In this thesis, the superiority of the proposed control design technique

over the conventional frequency domain design method is demonstrated by designing
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controllers that successfully address small-signal rotor angle stability problems.

1.2 Eigenstructure and its Significance in Small-Signal

Stability Analysis

Eigenstructure (eigenvalues and eigenvectors) of the plant matrix of a linearized sys-

tem can be used to describe the small-signal behavior of a power system. Power

systems are inherently nonlinear in nature; that is, the dynamics of the system are

governed by a set of first order nonlinear ordinary differential equations. For the

purpose of small-signal stability analysis, the system can be linearized around an

operating point in order to yield a set of linear differential equations

˙x(t) = Ax(t) (1.1)

where x(t) ∈ Rn is state vector and A ∈ Rn×n is called the plant matrix. The proce-

dure for linearization of a power system is described in detail in Appendix A. The

plant matrix of a linearized power system is a real square matrix.

The eigenanalysis ofA produces n real and/or self conjugate eigenvalues {λ1, . . . , λn}

and associated right eigenvectors {v1, . . . , vn} and left eigenvectors {w1, . . . , wn}. The

eigenvectors are column vectors. The eigenvalues are assumed to be distinct for the

sake of simplicity. The mathematical definitions of eigenvalues and eigenvectors are

presented in § 2.2.

In order to understand the usefulness of the eigenvalues and eigenvectors in small-signal

analysis, consider a case in which a power system is not at steady state equilibrium

following a disturbance, and the system is let go free. The well-known time domain

solution of state variable x(t) is given by [6]

xi(t) =
n∑

j=1

vji cj e
λjt (1.2)
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where

cj =
n∑

k=1

wjk xk(0). (1.3)

In (1.2) and (1.3) vpq (wpq) is qth element of the right (left) eigenvector associated

with the pth eigenvalue; and x(0) is the initial condition of the state vector evaluated

numerically by taking the difference of the state value at the time when the system

is let go free and at the stable operating point, at which the system will eventually

settle and around which the system is linearized.

It is clear from (1.2) and (1.3) that both eigenvalues and eigenvectors together

determine the dynamic response of the system.

By investigating the exponential part in (1.2), it is evident that eigenvalues deter-

mine the rate of decay (or rise) and frequency of oscillations. A complex conjugate

pair of eigenvalues λi, λ
∗
i = α± jω constitute a mode; and the mode will decay at

the rate of eαt and the frequency of oscillation of the mode will be ω rad/s. If the

system has one or more eigenvalues with a positive real part, those modes will be

unstable, which will cause the system to become unstable. Such modes are called

unstable modes. If the system has one or more eigenvalues with their real part nega-

tive but close to zero, then the system will exhibit oscillation of variables lasting for

a long period of time before attaining the equilibrium. Such modes are called poorly

damped modes.

When small-signal analysis reveals the presence of unstable or poorly damped

modes controllers are implemented in order to improve the small-signal behavior of

the system.

In addition to eigenvalues, the eigenvectors are also key parameters that determine

the shape of the transient responses. From (1.2) it is evident that the right eigenvector

vj determines the presence of the jth mode in various state variable time responses,

and from (1.3) it is apparent that the left eigenvector wj determines the excitation of

the jth mode for a given initial condition.
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1.3 Motivation for the Research

Controllers known as power system stabilizers (PSSs) have been extensively used to

address the most frequently encountered small-signal rotor angle stability problems

of power systems. In this section, the conventional frequency domain PSS design

method is reviewed and a description of the eigenstructure assignment controller

design technique is presented. This is followed by a review of successful applications of

the eigenstructure assignment technique in the design of controllers for small systems.

Then, the motivation for the research work regarding the application of the technique

in the design of the controllers for power systems is presented.

1.3.1 Conventional Frequency Domain PSS Design

Poorly damped or unstable low frequency (0.2 Hz to 2 Hz) electromechanical modes

are mainly due to power transmission over a long distance with weak ac ties and the

application of fast acting exciters in conjunction with high gain AVRs. Since the

1960s, controllers known as power system stabilizers (PSSs) have been successfully

used in power systems to damp these low frequency oscillations. The concept of

PSS was first introduced in [2]. PSSs aid in improving the stability and dynamic

performance of the system by introducing a component of electrical torque in phase

with the generator rotor speed (damping torque) by modulating the voltage reference

signal of the excitation system.

Four distinct widely used PSS models are described in IEEE Std 421.5 [8]. For

three of the PSSs described in the standard, the underlying structure can be summa-

rized as shown in Fig. 1.1. The other PSS can be thought of as three such PSSs in

parallel, each targeting a specific frequency range, with the final output obtained by

summing the outputs of the individual PSSs. Generator speed, bus frequency, and

generator power are some of the common stabilizer input signals.

The function of the filter is to remove unwanted frequency components from the
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input signal, and the high pass filter is the most commonly employed filter type for

that purpose. In the case of a two-input PSS, an additional role of the filter is to

synthesize inputs and generate a signal that is representative of the rotor speed. The

phase compensator blocks provide the necessary phase compensation to the signal,

which is amplified by a proportional gain to yield the final PSS output.
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Figure 1.1: Block diagram of a lead-lag type PSS.

The design of a single PSS in frequency domain is relatively straight-forward; and

many excellent references are available that provide guidance regarding the selection

of the PSS parameters, such as [6], [9], [10], [11], [3], [12], [13] and [14]. The coor-

dinated design of multiple controllers in a multi-machine power systems requires a

different approach [14]. In this thesis, the design problem of a single controller in a

multi-machine power system is investigated in order to demonstrate the application

of the proposed algorithm. Therefore, the theoretical concept of the design of a single

PSS in frequency domain is explained below.
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Fig. 1.2 shows the block diagram of a single generating station connected to a

power system. As shown in the figure, the generating system comprises an exciter, a

generator, a prime mover, and a speed input PSS. The speed of the local generator

is conditioned by the PSS shown in Fig. 1.1, and is fed back at the Vref summing

junction of the exciter. Often a signal other than the speed are used as input to the

PSS; nevertheless, the concept of phase compensator and gain parameter selection will

be the same. The objective of a PSS is to introduce a component of electrical torque

(∆Te) in phase with the rotor speed to improve the damping of electromechanical

oscillations. As can be seen from Fig. 1.2, the signal Vpss passes through the exciter

and the generator before introducing any electrical torque, which introduces phase lag

to the signal. Hence, the phase compensator is designed to introduce the necessary

phase lead over a range of frequencies to compensate the phase lag introduced by the

exciter and the generator. The necessary phase response can be evaluated using the

frequency response of the system [3], and then phase compensator parameters are

selected to achieve the desired phase response. After selecting the phase compensator

parameters, the gain of the PSS is gradually increased and damping is evaluated by

eigenvalue analysis. Usually, the increase in gain results in increased damping to a

certain point, beyond which further increase in gain decreases damping. Ideally, the

gain that results in maximum damping is selected.

Thus, the objective of the conventional frequency domain design of a PSS is lim-

ited to pushing the critical eigenvalues further left in the complex X − Y plane, and

no attempt is made to explore the advantages of assigning eigenvectors. As men-

tioned in the previous section, the real parts of the eigenvalues determine the rates

of decay of the system variables. However, the eigenvectors also play a role in shap-

ing the response. Therefore, if the eigenvectors of the critical modes are exploited

in addition to moving them to a better damped location, then a better performing

controller in terms of the dynamic response of the system during small disturbances

can be achieved. The technique that assigns the eigenvalues and the associated eigen-
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vectors is termed the eigenstructure assignment technique. The technique has been

successfully used in the design of controllers for aerospace applications.

The following subsection describes the eigenstructure assignment technique, the

degrees of freedom available in controller design, and the possible distribution of these

degrees of freedom among eigenvalues and eigenvectors.

1.3.2 Eigenstructure Assignment Technique for Controller

Design

As described previously, the conventional PSS design solution to addressing small-signal

stability is based on the concept of introducing electrical torque in phase with the

speed deviation. As an alternate approach, the design techniques available in classical

control theory can be used to address the small-signal stability problem of power sys-

tems. Some fundamental results from the control theory regarding controller design

for linear systems are presented in the following.

Consider a linear time invariant control system

ẋ(t) = Ax(t) +B u(t)

y(t) = C x(t) (1.4)

where x(t), u(t), and y(t) are n, r, and m-dimensional state, input, and output

vectors respectively; and A, B, and C are the plant, input, and output matrices

of the appropriate dimensions. In order to demonstrate the classical eigenstructure

assignment method, it is assumed that m+ r > n. This criterion inevitably fails in

the case of a power system and is one of the important conditions considered in the

research work that will be discussed later along with related problems and solutions.

Without loss of generality, it is assumed that B and C are of full rank. Let the

proportional output feedback law be applied to the above control system as

u(t) = Ky(t) (1.5)
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where K is an m× r real matrix; then, the resulting closed-loop system is given by

x(t) = (A+BKC)x(t) (1.6)

= Acx(t). (1.7)

The above represents a very general form of an LTI output feedback control sys-

tem. Complete state feedback, partial state feedback, single-input, and single-output

type LTI feedback systems encountered in practical situations are specific cases of the

above system, differentiated by the appropriate and specific choices of the number of

inputs and outputs and by the output matrix.

In the field of control theory, the controller design problem evolved as eigenvalue

assignment followed by eigenstructure assignment. In the 1960s, the research was

focused on identifying the number of eigenvalues that can be assigned arbitrarily to

the closed-loop system Ac in (1.7) through the gain feedback matrix K. It was well

known that for a controllable single-input complete-state output system (m = 1,

r = n, C = In) the complete spectrum (n eigenvalues) can be assigned arbitrarily. In

[15] it was proved that this property of a complete-state output feedback system also

applies to a controllable multi-input system (m > 1, r = n, C = In) as well. Then,

in [16] and [17] it was shown that for a controllable multi-input, multi-output system

(m, r > 1) at least the max(m, r) eigenvalues can be assigned to the closed-loop sys-

tem. Later in [18] and [19] it was proved that it is possible to arbitrarily assign up

to min(n,m+ r − 1) eigenvalues for the observable and controllable MIMO system.

In the meantime, in [20] and [21]it was identified that there are extra degrees of

freedom in the design of feedback gain K for a multi-input, complete-state output

feedback system (m > 1, r = n, C = In), and algorithms were presented to assign n-

eigenvalues and associated right eigenvectors. Later, in [22] it was shown that (under

the assumption that m+ r − 1 ≤ n) in addition to assigning (m+ r − 1) eigenvalues,

m entries in (r − 1) right eigenvectors can be arbitrarily prescribed.

Since the above results regarding utilization of degrees of freedom in state and

output feedback were published, many methods and algorithms for the design of a
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proportional gain feedback matrix have emerged to assign an eigenstructure to the

closed-loop control system. The different methods and algorithms consider different

constraints on the system.

The principle of eigenstructure assignment in very general form is described in

[23]. It is suitable for an uncontrollable or an unobservable system having multiple

open-loop eigenvalues, and the eigenvalues to be assigned can be multiple and can be

identical to those of the open-loop system.

In this thesis, a controller design algorithm suitable for a large power system

is presented based on one of the eigenstructure assignment techniques described

in [24], in which a complete parametric multi-stage solution to compute an out-

put feedback matrix is presented. According to the technique, p-eigenvalues with

1 ≤ p ≤ min(m+ r − 1, n) can be assigned arbitrarily to the closed-loop system. Ad-

ditionally, if p ≤ m, then a maximum (r − 1)-entries can be prescribed arbitrarily to

the associated left eigenvector; and if p ≤ r, then maximum (m − 1)-entries can be

selected arbitrarily for the associated right eigenvector.

If the desired degrees of freedom in the assignment of eigenvalues and associ-

ated eigenvectors are not provided by the given number of inputs and outputs of the

system, then the available degrees of freedom can be increased to the desired level

by employing a dynamic compensator, instead of proportional output feedback con-

troller, between the inputs and the outputs of the system. The dynamic compensator

with a-dimensional state vector z(t) is given by

ż(t) = D z(t) + E ȳ(t)

ū(t) = F z(t) +G ȳ(t). (1.8)

An LTI system with the above dynamic compensator can be transformed into its

equivalent LTI proportional output feedback system having a-additional inputs and

outputs of the system [25], which increases the total available degrees of freedom to

(m+ a)(r + a).
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1.3.3 Applications of Eigenstructure Assignment

The eigenstructure assignment technique has been applied in the design of controllers

for various kinds of systems, and the results demonstrate the superiority of eigen-

structure assignment over eigenvalue assignment in terms of transient performance.

However, the majority of the applications are related to the field of aerospace, for ex-

ample helicopters, aircraft, and missiles [23]. Partial decoupling of the lateral dynam-

ics modes is achieved through appropriate eigenstructure assignment when designing

the controllers for an L-1011 aircraft in [26] and for an advanced fighter aircraft in

[27]. In [28], a controller is designed for an electronics navigation box to minimize the

vibration of the box, and the authors note that the results would have been difficult to

achieve using any other technique. The partial eigenstructure assignment technique

is developed in [29] and applied for modal control of large flexible space structure

systems.

The application of the eigenstructure assignment technique for power system con-

troller design is reported in [30] and [31]. In these references, it is claimed that the

magnitude of the critical modes in the transients of generator speeds can be reduced

through appropriate right eigenstructure assignment. However, in the research work

there are some shortcomings as described below.

In [30], the right eigenstructure of the inter-area mode of the 14-generators system

was modified by designing power system stabilizers for each of the generators. The

local generator speed and rotor angle were used as input to each of these PSSs.

This is the first limitation of the paper; the rotor angle is not an easily measurable

variable. The results presented show that the response of the closed-loop system (the

system with all the PSSs implemented) is better than the response of the open-loop

system (the system without any PSSs). However, the results do not prove that the

improvement is due to right eigenstructure assignment and is not due to improved

damping. If the improvement is solely due to eigenvalue relocation, then a similar

closed-loop system response can be achieved by designing PSSs using the conventional
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frequency domain method.

In [31], the controller design problem of assigning partial right eigenstructure is

formulated as a constrained optimization problem, and its application is illustrated by

designing decentralized controllers for a sample three-generator system. It is demon-

strated that assigning right eigenvectors in addition to assigning eigenvalues yields

better dynamic performance. Again, this application does not prove that PSSs de-

signed using the eigenstructure assignment technique would perform better than those

designed using the conventional frequency domain method.

Apart from the above shortcomings, the applications considered in [30] and [31]

may not represent practical situations. For example, if a new generating station is

to be connected to an existing system, the design problem would be to appropriately

design PSSs for the incoming generators, and the utility would likely prefer to keep

the existing settings of the installed PSSs that have been proven to work well so far.

In spite of aforementioned shortcomings, the work presented in [30] and [31] show

the potential of the eigenstructure assignment technique in the design of controllers

for power system applications.

In summary, the eigenstructure assignment technique has been applied successfully

in small systems, such as in the field of aerospace, and research has demonstrated its

limited applications for power systems; but the full potential of the technique in the

design of power system controllers has not been explored, and it is not known whether

the technique is superior to the conventional frequency domain design method.

This has motivated the author to explore possible avenues for the eigenstructure

assignment technique in the design of power system controllers, to investigate the

possible advantages of the eigenstructure assignment technique over the conventional

frequency domain method, and to devise a controller design method that is suitable

for a large-scale power system.
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1.4 Goals and Objectives of the Research

The research presented in this thesis has following goals.

1. Use the eigenstructure assignment technique in the design of power system

controllers so that the following objectives are achieved.

• Critical eigenvalues are moved to, preselected, well damped locations

• Optimal eigenvectors are assigned to the closed-loop eigenvalues

• The non-critical eigenvalues that are not prescribed new values are accept-

able subsequent to the application of the controller

• The new modes introduced by the controller are well damped

2. Evaluate the advantages of using the eigenstructure assignment technique over

using conventional frequency domain design methods in the design of controllers

for power systems.

Following is the methodology adopted in the research to achieve the above goals.

1. Define the objectives of the power system controller design.

The rotor angle stability problem due to poorly damped or unstable electrome-

chanical oscillations is a well known small-signal stability problem in power

systems. Hence, as a first step the conventional solution to the stability prob-

lem will be reviewed, and using the basic results of eigenstructure assignment

technique, additional objectives that can be achieved using the technique will

be determined.

2. Identify a suitable eigenstructure assignment technique.

As mentioned, many eigenstructure assignment techniques have recently been

developed to design controllers. Each of these techniques is based on specific

assumptions about the system. Hence, the next step will be to review the

available techniques and identify the one with the following characteristics:
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• Its underlying assumptions are applicable for the power system controller

design case. If an assumption cannot be applied, then the technique should

be flexible enough so that it can be modified before applying it in the design

of power system controllers.

• It can achieve all the objectives of power system controller design identified

in the previous step.

• It is implementable with relative ease for the design of controller for a

large power system in which the number of states of the control system

can easily be in the tens of thousands.

3. Identify limitations of the available technique.

The eigenstructure assignment technique has been applied successfully in the

design of controllers for small systems, but power systems are different than

small systems in many ways, and not all the assumptions underlying the tech-

nique are applicable to power system, and so all the objectives of power system

controller design may not be achievable readily. Hence, the next step is to iden-

tify the problems that may arise when the technique is applied in the design of

controllers for a power system.

4. Devise an algorithm for power system controller design.

After identifying the inadequacy of the selected eigenstructure assignment tech-

nique, the next step is to devise a new algorithm based on the technique in order

to be able to design power system controllers that achieve the design objectives.

5. Evaluate the advantages of the eigenstructure assignment technique over the

conventional frequency domain method by design controllers for sample power

systems.

First, the algorithm will be tested by designing controllers for small sample

systems. If necessary, the algorithm will be further modified by implementing
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additional measures after small-signal analysis and nonlinear analysis of the

systems. In this manner, the benefits of using the eigenstructure assignment

technique over the conventional frequency domain method will be established.

6. Design a PSS for a large power system.

In order to prove the usefulness of the newly developed algorithm for real-world

applications, the algorith will be used in the design of a controller for a large

power system, and the performance of the controller will be compared to that

of the controller designed using the conventional frequency domain method.
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Chapter 2

Linear Analysis

Small-signal rotor angle stability is classified as one of the stability problems that

threatens the secure operation of power systems, and is defined as “the ability of the

power system to maintain synchronism under small disturbances” [7]. In this chapter,

the small-signal (linear) analysis of a power system is reviewed, and the concepts of

eigenstructure, sensitivity, residues, and participation factors, which are fundamental

concepts of linear analysis, are presented.

2.1 Linearized Power System

Generators, exciters, prime movers, and the governing system are the most common

dynamic devices in the power system. Some of the other dynamic devices frequently

encountered in power systems are motors, High Voltage DC (HVDC) systems, Flexible

AC Transmission System (FACTS) devices, static var compensators, and synchronous

condensers. The modeling of the dynamic devices for stability studies has been in-

vestigated extensively. The references [6] and [32] provide comprehensive analytical

details of these dynamic devices and their industry-wide accepted models for use in

stability studies. The formulation of a linear time invariant (LTI) control system for

a power system is described in Appendix A. The dynamics of each of the dynamic
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devices in a power system may be described in a very general form. Then, in con-

junction with transmission network node equations, the linearized model of a power

system can be obtained as

ẋ=Ax+B u (2.1a)

y=C x (2.1b)

where

x is the n-dimensional vector of states of the system,

u is the m-dimensional vector of input to the system,

y is the r-dimensional vector of output of the system,

A is the n× n real plant (system) matrix,

B is the n×m real input matrix, and

C is the r × n real output matrix.

If the outputs of the system are some generator variable (e.g., generator speed or

generator power) or some network variable (e.g., line flow or bus voltages), then they

are independent of the inputs to the system. This is usually the case, and therefore,

y in (2.1b) is shown to be a function of the states and not of the inputs.

2.2 Eigenvalues and Eigenvectors

The eigenvalues of the plant matrix A in (2.1a) are n solutions, λ1, . . . , λn, of the

characteristic equation obtained by expanding

|λ In − A| = 0. (2.2)

For a real plant matrix, the eigenvalues are either real or complex conjugate pairs.

The eigenvalues are assumed to be distinct throughout this document for the sake of

simplicity.

The right and left eigenvectors, vi and wi, respectively, associated with the eigen-

value λi of the plant matrix A are non-trivial n-dimensional column vectors (i.e.,
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vi 6= 0 and wi 6= 0) those satisfy

(λi In− A) vi = 0; i = 1, . . . , n (2.3)

and

wT
i (λi In− A) = 0; i = 1, . . . , n. (2.4)

If the eigenvalues are real, then their associated eigenvectors are also real; and if

the eigenvalues are complex conjugate pairs, then their associated eigenvectors form

complex conjugate pairs. The right and left eigenvectors associated with different

eigenvalues are orthogonal, that is

wT
i vj = 0 (2.5)

where i, j = 1, . . . , n and i 6= j.

It is common practice to normalize eigenvectors of an eigenvalue such that

wT
i vi = 1, i = 1, . . . , n. (2.6)

Let the modal matrices of the right and left eigenvectors, V and W , respectively,

and diagonal matrix Λ of the eigenvalues be defined as

V = (v1 . . . vn) , W = (w1 . . . wn) , Λ = diag(λi), i = 1, . . . , n.

The following results can be obtained using (2.3)-(2.6)

AV=V Λ, (2.7)

W T A=ΛW T , (2.8)

W T V=In. (2.9)

Simple manipulations of the modal matrices yields

W T AV = Λ, (2.10)

A = V ΛW. (2.11)
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One of the very important and useful properties of a matrix is

f(A) = V f(Λ)W T (2.12)

where f() is some function of matrix.

2.3 Residues, Participation Factors and Sensitivi-

ties

The concept of residues and participation factors for a linear system are reviewed in

this section. Then, the sensitivity of an eigenvalue to a parameter of the dynamic

output feedback controller is presented. Following that, the specific conditions in

which the sensitivity will coincide either with the participation factor or with the

residue are described.

1. Residues

The transfer function of the system in (2.1) is given by

G(s)=
y(s)

u(s)
(2.13)

=C(sIn − A)−1B. (2.14)

Using (2.12), the above equation becomes

G(s) = C V (sIn − Λ)−1W T . (2.15)

Since (sIn − Λ) is a diagonal matrix, its inverse is also a diagonal matrix, and

therefore, the above can be rewritten as

G(s)=
n∑

h=1

C vhw
T
h B

s− λh

(2.16)

=
n∑

h=1

Rh

s− λh

(2.17)
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where

Rh = C vhw
T
h B (2.18)

is the residue matrix of the transfer function at eigenvalue λh.

2. Participation factors

The concept of participation factors was first introduced in [33]. The generalized

participation factors can be computed using the ith and the jth component of

the hth right and left eigenvectors, respectively, as

ph
ij = vihwjh. (2.19)

The ph
ij describes the relative presence of the hth mode in the ith state due

to excitation of the jth state variable. Participation factor is a widely used

parameter to study the power system. For a particularly case of i = j, the

participation factor describes the participation of the ith state in the hth mode

and vice versa [33].

3. Sensitivities[34]

Let the dynamic output feedback control law

ż = D z + E y

u = F z +Gy (2.20)

be applied to the system (2.1), where the vector z is the a-dimensional vector of

the dynamic compensator states. Then, the closed-loop system can be described

as

x̄ = Acx̄

where

x̄ =

x
z

 , and Ac =

A+BGCB F

E C D

 .
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The transfer function of the feedback system is given by

H(s) = F (s Ia −D)−1E +G. (2.21)

Let λ be an eigenvalue of the closed-loop plant matrix Ac, and v and w be

the associated right and left eigenvectors, respectively. The eigenvectors can be

partitioned in accordance with the dimension of the system and the compensator

state variables as

v =

v1

v2

 w =

w1

w2


where subscripts 1 and 2 denote the association of part of the eigenvector with

system states x and controller states z, respectively.

As shown in Appendix B, the sensitivity of closed-loop eigenvalue λ to a pa-

rameter q of feedback system transfer function, H(s), is given by

λ′ = wT
1 BH ′(λ, q)C1 v1 (2.22)

where the prime over a varibale denotes partial derivative of the variable with

respect to parameter q. Using (2.18), the above can be written as [34]

λ′ = trace(RH ′(λ, q)). (2.23)

In [34], very important properties regarding the sensitivity of eigenvalues are iden-

tified. Consider a case in which static gain is employed between a single output and

a single input of the system. In such a case, the residue becomes a scalar (complex

scalar if the eigenvalue is complex, real otherwise) and sensitivity will coincide with

residue, i.e.,

λ′ = R if H(s, q) = q. (2.24)

Consider a case in which the state xi is an output of the system. If this output is

multiplied by a proportional gain q and added to ẋj, it will alter the aij element of

the plant matrix. For such case, the following results can be obtained :
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1. The residue Rh of the eigenvalue λh coincides with the participation factor ph
ij

2. The sensitivity of the eigenvalue λh to the parameter q coincides with the par-

ticipation factor ph
ij. In other words the participation factor ph

ij is the sensitivity

of the eigenvalue λh to the aij element of the plant matrix.
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Chapter 3

Conventional PSS Design Method

The objective of this thesis is to implement the eigenstructure assignment technique

in the design of the controllers for the power systems. In order to demonstrate the

applications of this technique, controllers are designed using it to improve the eigen-

structure of the system and address the most commonly encountered small-signal

problem in the power systems, which is poorly damped or unstable electromechani-

cal oscillations. The advantage of this technique is demonstrated by comparing the

dynamic performance of the controller designed using it with that of the controller

designed using the conventional frequency domain method.

Before proceeding to the application of the eigenstructure assignment technique

in the design of controllers for power systems, the concept of PSS and the conven-

tional frequency domain design method of a single PSS in a multi-machine system are

reviewed. The local generator speed input is the most widely used PSSs in power sys-

tems. Therefore, in this chapter and later in this thesis, speed input PSS is considered

to be the conventional PSS.

In this chapter, the concept of PSS is presented first. The design of a PSS involves

two distinct steps. The first step in the design is identification of the most suitable

generator to equip with PSS, and the second step is selection of PSS parameters.

The PSS siting selection based on residue and participation factor is reviewed, fol-
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lowed by the PSS parameter selection procedure. Evaluation of the necessary phase

compensation is one of the key steps in PSS parameter selection. Three methods to

calculate necessary phase compensation are described in this chapter: (1) the residue

method; (2) the method based on the frequency response of the generator and the

exciter; and (3) the conventional method, which uses the frequency response method

with the assumption that the participation factors are real. Through analysis and

with the aid of an example, it is demonstrated that the residue method is the most

accurate for identifying the best location for PSS. Additionally, it is shown that the

residue and frequency response methods are identical methods for the selection of

PSS parameters, and that the eigenvalues can be relocated more accurately using

these methods than using the conventional method.

Later, the controllers designed using the residue method will be used to evalu-

ate the performance of the controllers designed using the proposed eigenstructure

assignment based method.

3.1 The Concept of PSS

The basic concept of a PSS was presented in §1.3.1, is summarized here using Fig. 3.1,

which is reproduced from that section.

System perturbations disturb the equilibrium of the electrical torque Te and the

mechanical torque Tm. This causes a generator or a group of generators to accelerate

or decelerate resulting in deviation of their rotor speed and angle from their constant

values. Such oscillations are termed electromechanical oscillations; and it is well-

recognized that the frequency of such oscillations is in the range of 0.1 Hz to 2.0

Hz.

Power system stabilizers (PSSs) are installed if the system would exhibit poorly

damped or unstable electromechanical oscillations. Usually, a single PSS is sufficient

to improve damping of a single mode that is deemed critical from the system perfor-
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mance point of view. A generator is equipped with a PSS with a complex structure or

a number of generators are equipped with PSSs if damping of more than one critical

mode must be improved. Here, a problem of a single PSS design to improve damping

of a electromechanical mode is analyzed.

PSS introduces signal Vpss to modulate voltage reference signal of an exciter Vref ,

as shown in Fig. 3.1. The additional signal introduced by the PSS would generate

additional electrical torque.

When the signal Vpss is introduced to modulate Vref , the exciter and generator

introduce phase lag into the signal before it can introduce any electrical torque. The

PSSs are designed to compensate phase lag so that when the signal arrives at ∆Te it

is in phase with the speed deviation ∆ωr.

Introduction of electrical torque in such a manner will provide additional braking

torque whenever the rotor speed advances from the steady state value, and it will pro-

vide additional accelerating torque whenever the rotor speed recedes from the steady

state value thereby improving the damping of the electromechanical oscillations.
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Gg(s)

1
s
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ΔTe
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+
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Figure 3.1: Block diagram of a generator plant connected to a power system.

Finding the most suitable PSS location for improving the damping of the critical

mode(s) and shaping the frequency response of the PSS are two distinct steps involved
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in PSS design and are discussed in following sections.

3.2 PSS Siting

A power system comprises many generators, and not all of them are equally suitable

for equipping with PSS to improve damping of an electromechanical mode. The

procedure for selecting the generator to equip with a PSS is reviewed in this section.

The PSS modulates the Vref of an exciter; therefore, smaller gain in the feedback

path is desirable in order to minimize its interference with the voltage control action

of the exciter. Hence, the best generator to equip with PSS is the one that requires

minimum gain to move the critical mode a given distance.

In the previous chapter it was shown that the sensitivity of an eigenvalue to a

static output feedback gain between a given input-output pair is given by the residue

between the input-output pair for the eigenvalue. Therefore, the best location to

install PSS is the generator having the highest residue among all the generators,

which will, in turn, require minimum gain to move the eigenvalue to a given distance.

It should be noted that the residue depends on the units of the variables, and that

care must be exercised in comparing the residues. However, if consistent units of

measurement are used throughout the system for all the variables, then residues can

be compared directly without any further processing. Determining the most suitable

location based on the residue was first suggested in [1]. However, the algorithm

involved the calculation of a complete set of right and left eigenvectors of the plant

matrix, which is impossible for a large system. In [34] and [35] this obstacle was

removed by showing that the residues can be calculated using the right and left

eigenvectors of only the critical eigenvalue(s).

In [34] it was suggested that the generator that has the largest participation

factor between its rotor speed and the critical mode be selected for PSS siting. This

suggestion was based on the conclusion that for a large system the residues coincide
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with the participation factors. Also, similar participation factor based method was

proposed in [36]. This is a simpler approach and a great deal of computational effort

can be saved because the input/output pair for each of the generators in the system

need not be defined to calculate the participation factor.

However, the use of the participation factor is not accurate and may lead to

selection of a generator that is not optimal for improving the damping of the critical

mode. The participation factor between speed and an eigenvalue is the sensitivity of

the eigenvalue to the proportional feedback gain employed between the speed output

and input to its time derivative, which is point a in Fig. 3.1. Clearly, selecting a

generator based on the participation factor does not take into consideration the gain

or attenuation that a signal experiences while going through the exciter and the

generator. Hence, this approach may fail to find the optimal location.

Later, in [13], an approach that combines the use of the participation factor and

the residue, was suggested. Accordingly, the most suitable generator to equip with

PSS can be selected using the participation factor to screen the potential locations,

and then evaluating them using residues.

In this thesis, the PSS siting or the controller siting is determined according to

the residue method if the dimension of the system under study permits evaluation

of the residue of all the generators; if that is not feasible, the approach based on

the combined use of the participation factor and the residue described above will be

used. After the most suitable location is determined, the controller (PSS) is designed

using the proposed algorithm or the conventional frequency domain method. The

conventional method of PSS design is described in the following section.

3.3 PSS Parameter Selection

The most widely used single input lead-lag type PSS is shown in Fig. 3.2. PSS

parameters selection consists of selection of the washout filter time constant Tw, the
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Figure 3.2: Single input lead-lag type PSS.

stabilizer gain Ks, and the lead-lag compensator constants T1 − T4. The parameters

selection procedure is presented in the following subsections.

3.3.1 Washout Filter

A washout filter is a high pass filter employed to remove the unwanted dc compo-

nents present in the signal and to allow only the rotor speed oscillations signal. The

parameter Tw must be selected so that the rotor oscillation signals at the frequencies

of interest are passed relatively unchanged. Also, Tw must be large enough so the

washout filter does not introduce excessive phase lead at the frequency of interest.

If the modes of interest are local mode (frequencies in the range of 0.8 Hz to

2.0 Hz), then a filter time constant of 2.0 s is satisfactory. This will introduce a

phase lead of 5.6 degrees and provide a gain of 0.995 at the frequency of 0.8 Hz.

For inter-area modes having frequencies in the range of 0.1 Hz to 0.8 Hz, the time

constant of 10.0 s can be selected. This value of washout filter will introduce a phase

lead of 9.0 degrees and a gain of 0.988 at 0.1 Hz. In general, the washout filter time

constant Tw can range from 1.0 s to 20.0 s [3], and it does not play a very critical role

in PSS performance.

In this thesis, washout filters are designed using the above guidelines.

3.3.2 Lead-Lag Compensator and Gain

The purpose of the lead-lag compensator is to introduce phase lead or lag to the

signal; and the compensator along with the gain play a critical role in the PSS design.
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Two methods of calculating the necessary phase compensation to be provided by the

lead-lag compensator, residue analysis and frequency response analysis, are analyzed

in this section, followed by a description of the procedure to determine the necessary

PSS gain.

3.3.2.1 Residue Based Design [1]

The transfer function of the PSS shown in Fig. 3.2 is

Gp(s)=Ks

(
s Tw

1 + s Tw

) (
1 + s T1

1 + s T2

) (
1 + s T3

1 + s T4

)
(3.1a)

=KsHw(s)Hp(s) (3.1b)

where Hw(s) and Hp(s) are the washout filter and phase compensator transfer func-

tions, respectively. Let λi be the critical eigenvalue whose damping is to be improved,

and let Ri be its residue for a given input-output pair.

Using the results presented in § 2.3, the sensitivity of an eigenvalue λi to gain Ks

is given by

λ′i=RiGp(λi)
′ (3.2a)

=RiHw(λi)Hp(λi) (3.2b)

where prime denotes partial derivative with respect to gain Ks. Using the above

equations, the change in eigenvalue after introducing the PSS is given by

∆λi = RiHw(λi)Hp(λi)Ks. (3.3)

For the complex mode all the variables in the above equation are complex values

except Ks, which is a real constant. As shown in Fig. 3.3, the objective of the PSS

is to improve the damping factor of the critical eigenvalue λi to at least ζ(= sin(φ)).

If λi is moved to point y, where ∆λi makes a right angle with the ζ = constant line,

then the objective is achieved by moving λi the least distance. In practice, the real

part of the critical eigenvalue and the angle φ are very small values. Hence, if the
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Figure 3.3: New preferred location of a poorly damped eigenvalue.

λi is moved parallel to X-axis to point x, then the additional distance to be moved

is not significant. Moving the critical eigenvalues parallel to X-axis is the standard

practice in PSS design. Therefore,

∠∆λi = π. (3.4)

Using (3.3), the necessary phase compensation to be provided by PSS is

∠Hp(λi)=∠∆λi − ∠Ri − ∠Hw(λi) rad (3.5a)

=π − ∠Ri − ∠Hw(λi) rad. (3.5b)

The required phase compensation may be divided among two phase compensator

blocks equally, and the time constants T1 to T4 may be calculated using standard

design technique. Then, again using (3.3), the necessary gain Ks is

Ks =
|∆λi|

|Ri| |Hw(λi)| |Hp(λi)|
. (3.6)

When a PSS is implemented with the phase compensation and the gain calculated

using (3.5b) and (3.6), respectively, the critical eigenvalue may not move precisely to

the desired location because the system is nonlinear. Minor adjustment in phase

compensation and gain may be necessary in such cases.
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3.3.2.2 Frequency Response Based Design [2], [3]

As noted in § 2.3, the sensitivity of λi to static output feedback gain between generator

speed and input point a in Fig. 3.1 coincides with the participation factor. Therefore,

the sensitivity of an eigenvalue λi to the static gain Ks employed between generator

speed and its time derivative is given by

λ′i = pi
jj (3.7)

where j is the location of the generator speed in the state vector and ∆λ′i is the partial

derivative with respect toKs. When the PSS is employed between the generator speed

and the Vref summing junction, as shown in Fig. 3.1, the sensitivity of λi to gain Ks

of the PSS transfer function Gp(s), using (3.7), is given by

λ′i = −pi
jj Gp(λi)

′Ge(λi)Gg(λi)
1

2H
. (3.8)

Using (3.1b), the change in eigenvalue after implementing PSS is given by

∆λi = −pi
jj KsHw(λi)Hp(λi)Ge(λi)Gg(λi)

1

2H
. (3.9)

In the above equations, all the variables are complex except Ks and H, which are

real values. The phase relationship using the above equation is given by

∠∆λi = π + ∠pi
jj + ∠Hw(λi) + ∠Hp(λi) + ∠Ge(λi) + ∠Gg(λi) rad. (3.10)

Substituting π for ∠∆λi, according to (3.4), in the above equation will yield

π + ∠Hw(λi) + ∠Hp(λi) + ∠pi
jj + ∠Ge(λi) + ∠Gg(λi)=π (3.11a)

∠Hw(λi) + ∠Hp(λi) + ∠pi
jj + ∠Ge(λi) + ∠Gg(λi)=0 (3.11b)

and

∠Hp(λi) = −∠pi
jj − ∠Ge(λi)− ∠Gg(λi)− ∠Hw(λi) rad. (3.12)

Theoretically, the calculation of the necessary phase compensation using the above

equation is an alternate approach to the residue method, and the value of ∠Hp(λi),
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calculated using (3.12), will be identical to the value calculated using (3.5b). In con-

ventional PSS design, assumptions/approximations are made in the above frequency

response method as described in the following.

The participation factor between the rotor speed and the electromechanical modes

is considered to have a positive real part and a comparatively very small imaginary

part [2], [3], [13], [34], that is ∠pi
jj ≈ 0. Also, the phase lead introduced by the

washout filter is ignored, that is ∠Hw(λi) ≈ 0, because the phase lead is very little at

the frequency of interest. Therefore, the approximate necessary phase compensation

is

∠Hp(λi) ≈ −(∠Ge(λi) + ∠Gg(λi)) rad. (3.13)

In other words, the lead-lag compensator should be designed to have inverse phase

response to that of the combined exciter and generator. The design of the lead-lag

block in this manner is an industry-wide practice in lieu of the use of the more

accurate residue method and the frequency response method without assumptions,

as described earlier.

It must be noted that if the lead-lag blocks are designed to compensate the phase

angle given by (3.13), then ∠∆λi using (3.10) is given by

∠∆λi=π + ∠(pi
jj) + ∠Hw(λi) (3.14)

≈∠−pi
jj. (3.15)

Hence, the lead-lag block designed to provide phase compensation calculated us-

ing (3.13) will improve the damping of the critical mode only if the phase of the

participation factor between the speed of the generator to be equipped with the PSS

and the critical mode is close to zero. This is what has been observed, however there

is no mathematical proof for it. Hence, this method should be used carefully.

The combined lead or lag introduced by the exciter and the generator may be

obtained using the frequency response between input Vref and output Te shown in

Fig. 3.1, (provided speed deviation is the input to the PSS). When calculating the
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frequency response, the inertia of the generator must be assumed to be very large in

order to avoid any feedback due to change in generator angle, and thereby yield the

frequency response only between the exciter and the generator where the PSS is to

be installed [3].

After designing the lead-lag compensator, as described earlier, the necessary gain

using (3.8) may be given by

Ks =
2H |∆λi|

|pi
jj| |Hw(λi)| |Hp(λi)| |Ge(λi)| |Gg(λi)|

. (3.16)

Similar to the case in which the residue method is used, the critical eigenvalue may

not move precisely to the desired location using gain calculated using (3.16) because

the system is nonlinear and adjustment may be necessary.

3.4 PSS Design for an Example System

The frequency domain techniques of PSS design, described in the previous section,

were employed for a two-area four-generator system. The results of the applica-

tion of these techniques are compared in this section. It has been shown that the

residue method correctly identifies the best generator to equip with PSS, and that

the participation factor based method does not. Additionally, if the argument of the

participation factor is not close to zero, the phase compensation determined using

the conventional frequency response-based method will not move the critical eigen-

value as intended. However, the phase compensation determined by using the residue

method or by using the frequency response based method without any approximation

will move the eigenvalue in a direction very close to the desired one.

The example power system in Fig. 3.4 has two areas, each with two generators,

interconnected through a high-impedance transmission line. All the generators are

equipped with a fast acting IEEE type AC4A excitation system. The block diagram

of the excitation system is shown in Fig. 3.5. The line impedances and load flow are

marked in the figure and the synchronous generator and exciter data are listed in
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Figure 3.4: One line diagram of 2-Area 4-generator system.

Figure 3.5: Block diagram of the IEEE type AC4A excitation system.

Appendix D. Power transfer of 410 MW from Area-1 to Area-2 is considered. The

generators are modeled using a two-axis model with one winding in each axis, and

each has four states: rotor angle δ, rotor speed ω, field winding flux linkage ψfd, and

quadrature axis flux linkage ψqd. One state is associated with each of the TR, TB, and

TA blocks in the exciter model (Fig. 3.5). Thus, each exciter has three states. Each

plant has seven states; the system has twenty-eight states in the absence of any PSS.

The loads are modeled as constant impedance.

The eigenanalysis reveals the presence of three electromechanical modes. Table 3.1

shows these modes along with the magnitude of the participation factors and the ar-

gument of the right eigenvectors (mode shape) for the generator speeds. The partic-
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Table 3.1: Electromechanical modes and their properties without PSS.

Mode M1 M2 M3

λ1, λ
∗
1 λ2, λ

∗
2 λ3, λ

∗
3

Eigenvalue 0.001± j2.1034 −1.07± j8.00 −1.35± j7.81

Freq. (Hz) 0.3348 1.2736 1.2433

Damp. Ratio −0.0005 0.1329 0.1703

Generator PF ∠REV PF ∠REV PF ∠REV

G1 0.5007 124.66 0.9594 177.42 0.0048 123.38

G2 0.3616 135.21 1.00 0.00 0.0054 -24.5620

G3 1.000 0.00 0.0049 140.00 0.8998 176.277

G4 0.9576 -4.6708 0.0057 -68.10 1.00 0.000

ipation factors and the right eigenvectors are normalized so that the maximum value

is unity. The 0.3348 Hz mode M1 is the inter-area mode since all the generator speeds

have high participation in that mode, and the angle of right eigenvector for Area-1

and Area-2 are out of phase with each other. The modes M2 and M3 are Area-1

and Area-2 local modes, respectively, since only the generators in the respective ar-

eas participate the most and the angle of the right eigenvectors of the generators of

the respective areas are out of phase with each other. The inter-area mode is un-

stable due to the positive real part, and the objective is to find the most suitable

location for the PSS and select its parameters so the damping factor is improved to

0.05. If the eigenvalues are moved parallel to the X-axis, their new location will be

−0.1053± j2.1034.

In the following subsection, a PSS is designed for each of the generators, and the

results are compared to demonstrate the concepts developed in previous subsections.
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Table 3.2: Generator rank for PSS siting based on

the magnitude of residues and participation factors.

Gen.
Residue PF 1

Normalized Rank Normalized Rank

G1 0.221 4 0.50 3

G2 0.48 2 0.36 4

G3 0.34 3 1.00 1

G4 1.00 1 0.96 2

1 PF=Participation Factor

3.4.1 PSS Location Selection

In § 3.2, two methods for selecting the most suitable location for the PSS are de-

scribed: the residue based method and the participation factor based method. The

magnitude of the residues and the participation factors for all of the generators as

well as their rank in terms of suitability for PSS location based on those two values

are shown in Table 3.2. The two methods are not in agreement regarding the ranking.

The participation factors based method is not a precise method, and in this particu-

lar case it fails to correctly rank the generators. Therefore, the participation factor

based method cannot be relied upon for the selection of the most suitable generator

to locate PSS.

This is verified in the following subsection by comparing the gains required in four

different cases when a PSS is installed on one of the four generators to improve the

damping of the inter-area mode to a preselected value.

3.4.2 PSS Parameters Selection

The washout filter time constant of 10.0 s is selected according to § 3.3.1. The washout

filter transfer function has a gain of 0.96 and introduces a phase lead of 2.7 deg at the

inter-area mode frequency, that is Hw(λ1) = 0.96∠2.7◦.
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3.4.2.1 Parameters Selection Using the Residue Method

Table 3.3 shows the magnitude and the argument of the residues between the input

Vref of the exciter and the speed output for each generator in the inter-area mode, as

well as the necessary phase compensation to be provided by the lead-lag blocks and

the approximate gain if a PSS is installed on individual generators. The necessary

phase compensation and the approximate gain are calculated using the procedure

described in § 3.3.2.1. The parameters T1− T4 of the lead-lag blocks are calculated

using standard techniques so that each of the lead-lag block will provide half of

the necessary phase compensation and maximum gain at the frequency of interest.

The values of Ks were further adjusted to achieve a damping factor of 0.05 for the

inter-area mode and the final values are shown in Table 3.4.

The results of the eigenanalysis and sensitivity analysis of the four cases of a PSS

installed on different generators are presented in Table 3.4 and Table 3.5. It can be

seen from the tables that the PSSs moved the eigenvalue almost parallel to the X-

axis and the actual sensitivities of the eigenvalue are very close to its residues. If

the generators are ranked according to the overall gain of the PSS, the ranking is in

agreement with what is predicted using the residues.

Table 3.3: The PSS parameters designed using the residue method when a PSS is

to be installed on different generators.

PSS Residue Required phase T1=T3 T2=T4 Approximate

Location Mag. Phase comp. (deg) gain

Gen-1 0.00566 154.86 22.42 0.57035 0.38457 13.50

Gen-2 0.01234 136.72 40.56 0.68061 0.33010 4.44

Gen-3 0.00870 -161.17 -21.55 0.39200 0.57237 18.89

Gen-4 0.02552 -179.57 -3.15 0.45710 0.48295 4.66
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Table 3.4: PSS design using residue

method: The final PSS gain that is re-

quired to achieve damping ratio of 5.0%

for the inter-area mode when the PSS is

installed on different generators and the

inter-area mode with the PSS.

PSS Final Close-loop

Location Ks Inter-Area Mode

Gen-1 17.15 −0.1062± j2.1190

Gen-2 4.99 −0.1046± j2.0889

Gen-3 21.15 −0.1051± j2.0981

Gen-4 4.37 −0.1050± j2.0971

Table 3.5: Sensitivity of inter-area mode to overall gain of a PSS.

PSS Effective Gain ∆λ Actual Residue

Location |Gp(λ)| 1 Mag. Phase sensitivity 2 magnitude

Gen-1 25.23 0.10843 171.74 0.004298 0.00566

Gen-2 10.24 0.10669 -172.17 0.010415 0.01234

Gen-3 14.47 0.10633 -177.12 0.007348 0.00870

Gen-4 4.13 0.10629 -176.58 0.025739 0.02552

1 |Gp(λ)| = Ks |Hw(λ)| |Hp(λ)|
2 Actual sensitivity= |∆λ|

|Gp(λ)|
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3.4.2.2 Parameters Selection Using Frequency Response (Without Any

Assumption)

As an alternative to using the residue, the necessary phase compensation can be

calculated using the frequency response of the generator and the exciter in conjunc-

tion with the participation factors, as described in § 3.3.2.2. In this subsection it is

demonstrated, as was anticipated, that if no assumption is employed regarding the

value of the participation factors, then the necessary phase compensation and the

approximate gain calculated in this manner will be same as if they were calculated

using the residue method.

The results of the frequency response between the Vref of the exciter as an input

and generator electrical torque as an output of the system are shown in Table 3.6.

While evaluating the frequency response, the inertia (H) of the generator of interest

was increased to one-hundred times [6].

The necessary phase compensation and the approximate gain calculated using the

frequency response method and the residue methods are compared in Table 3.7. The

calculated approximate gains using the frequency response method are obtained using

(3.16) and using the lead-lag parameters determined based on the residue method that

are shown in Table 3.4. The lead-lag parameters determined based on the residue

method are used in this case because the necessary phase compensation calculated

using the frequency response method is identical to that calculated using the residue

method.

The necessary phase compensation and the approximate gain are identical for

each method. Hence, a PSS designed using the frequency response method will be

identical to a PSS designed using the residue method, provided no assumptions are

made regarding the participation factors.

40



Table 3.6: Frequency response be-

tween Vref as input and Te as output

for different generators for inter-area

mode frequency.

Location Mag Argument (deg)

Gen-1 0.7667 11.70

Gen-2 2.3111 -13.30

Gen-3 0.5878 1.40

Gen-4 1.8056 -10.50

Table 3.7: Necessary phase compensation and the approximate

gain calculated using the frequency response method and that

calculated using the residue method.

PSS

location

Necessary phase Approximate

compensation (deg) gain

Frequency

response

method

Residue

method

Frequency

response

method

Residue

method

Gen-1 22.56 22.42 12.76 12.90

Gen-2 40.59 40.56 4.20 4.24

Gen-3 -21.60 -21.55 17.92 18.06

Gen-4 -3.22 -3.15 4.41 4.46

3.4.2.3 Parameters Selection Using the Conventional Method (Approxi-

mated Frequency Response)

The conventional PSS design method is a simplified form of the frequency response

method using the assumption that the participation factors are positive real values.
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It is shown here that a PSS designed using such assumption will not move the critical

eigenvalue in the desired direction. As described in § 3.3.2.2, in the conventional

method the lead-lag parameters are designed to provide an inverse phase response to

that of the combined exciter and generator. The phase response at the inter-area mode

frequency between Vref of the exciter as an input and generator electrical torque as an

output of the system presented in the previous subsection is reproduced in Table 3.8.

The necessary phase compensation calculated using the conventional method is shown

in the table and compared to the necessary phase compensation calculated using the

residue method. The value of required phase compensation calculated using these

two methods differs from the value calculated using the residue method by the angle

of participation factor, as expected.

In order to evaluate the conventional method, the lead-lag blocks of the PSS are

designed to provide the necessary phase compensation shown in Table 3.8. The PSS

parameters and the approximate gain required to improve the damping factor of the

inter-area mode to 0.05, calculated using (3.16), are shown in Table 3.9.

The PSSs are installed on different generators as separate cases and the gains, Ks,

were further adjusted to achieve the desired damping factor for the inter-area mode.

The final values of Ks and the new locations of the inter-area modes are tabulated in

Table 3.10. The sensitivity of the eigenvalue to the effective gain shown in Table 3.11

is close to the residues shown in Table 3.3. As predicted in § 3.3.2.2, the eigenvalue

moved in the direction opposite to the phase of the participation factors.
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Table 3.8: Analysis of the necessary phase compensation using the residue

method and using the conventional method (approximated phase compensation).

PSS Frequency Phase compensation using Difference Participation

Location response Conventional Residue factor

argument method method argument

(deg) (deg) (deg) (deg)

(a) (b) (b-a)

Gen-1 11.70 -14.43 22.42 36.85 -36.99

Gen-2 -13.30 10.57 40.56 29.99 -30.029

Gen-3 1.40 -4.13 -21.55 -17.42 17.46

Gen-4 -10.50 7.77 -3.15 -10.92 10.99

Table 3.9: The PSS parameters designed using the conven-

tional method when a PSS is to be installed on different

generators.

Phase Approximate

Compensation (deg) T1=T3 T2=T4 gain

-14.43 0.4181 0.5383 24.21

10.57 0.5203 0.4325 7.19

-4.13 0.4594 0.4938 13.21

7.77 0.5060 0.4418 3.65
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Table 3.10: PSS design using conventional

method: The final PSS gain that is required

to achieve damping ratio of 5.0% for the

inter-area mode when the PSS is installed on

different generators and the inter-area mode

with the PSS.

PSS Adjusted closed-loop

Location Ks Inter-area Mode

Gen-1 49.20 −0.1094± j2.1841

Gen-2 8.55 −0.1072± j2.1422

Gen-3 16.50 −0.1036± j2.069

Gen-4 3.75 −0.1038± j2.0752

Table 3.11: Sensitivity analysis of inter-area mode of the system

with a PSS (designed using conventional method) on different gen-

erators.

PSS Effective ∆λ ∠−pi
jj Actual

Location Gain Mag. Phase sensitivity

Gen-1 38.15 0.13683 143.8649 143.01 0.003587

Gen-2 10.26 0.11504 160.3013 149.98 0.011215

Gen-3 15.31 0.11021 -161.792 -162.54 0.007197

Gen-4 4.28 0.10862 -164.934 -162.54 0.025366
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3.5 Conclusions

In this chapter, the conventional PSS and its frequency domain design methods were

presented. PSS design is a two-step process. The first step is to identify the most

suitable generator to equip with a PSS to ensure that the critical eigenvalues can be

moved to a given distance with minimum gain in order to minimize the interference

of the PSS with exciter operation. Use of the participation factors, residues, and a

combination of these two parameters in the selection of the siting of the PSS were

reviewed. It was shown that the use of the residues is the most accurate method and

that the use of the participation factors, though they are easy to calculate, is less

accurate. The combined use of the participation factor and the residue recommended

in [13] is a practical approach for the selection of the optimal location for the PSS in

a large power system.

Once the location of the PSS has been determined, the next step is to design the

filter, the lead-lag blocks, and the gain components of the PSS. The filters do not

play a critical role, and the filter time constant can be selected in a straightforward

manner. The design of lead-lag parameters requires knowledge of the necessary phase

compensation to be provided at the frequency of interest. The residues and the

frequency response based methods, the two most accurate methods for determining

the required phase compensation, were described in this chapter. The conventional

method, which uses the frequency response based method with the assumption that

the participation factor is real, was also analyzed. It was demonstrated that the

lead-lag parameters designed based on the results of the residues and the frequency

response are identical, and that the new location of the critical eigenvalues can be

predicted more accurately. It was also shown that the conventional method is less

accurate than the other two methods and should be used with due diligence.

Later in this thesis, the eigenstructure assignment technique is employed in the

design of the power system controllers that comprise a filter and a dynamic com-

pensator. The controller siting and filter parameter selection methods used for the

45



conventional PSS described in this chapter are used in these cases. The dynamic

compensator is designed using the new technique and is used in lieu of the lead-lag

type compensator of the conventional PSS.
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Chapter 4

Eigenstructure Assignment

Technique

The objectives and characteristics of a typical controller in a power system are de-

scribed in this chapter, followed by description of the eigenstructure assignment tech-

nique that is suitable for use in the design of controllers in power systems.

4.1 Power System Controller and Identification of

Suitable ESA Technique

The objective of this thesis is to apply the eigenstructure assignment technique in

the design of PSS in order to address the small-signal rotor angle stability problem

of power systems. In general, the characteristics of the PSS can be summarized as

follows:

1. The PSS should relocate the critical modes to relatively more damped locations

in the complex plane.

2. The PSS should not introduce unstable or poorly damped modes or degenerate

the damping of other modes in the system to an unacceptable level.
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3. Since the PSS modulate the voltage reference signal of the exciter, the PSS

should not interfere excessively with the normal function of exciter, which is to

maintain the voltage to the set value.

4. The combined number of the inputs and outputs of the system is very small

compared to the number of states of the system. For example, a typical PSS

for a power system would have one system input (the voltage reference signal

of the exciter) and a few system outputs (for example, generator rotor speed,

terminal voltage, power),but it would have tens of thousands of states.

5. A conventional PSS utilizes a single conveniently available local output of the

system as its input, and has a single output that is used as a local input to

the system. Usually, it is possible to increase the number of system outputs.

However, it is not possible to increase the number of system inputs, which is

dictated by the physical arrangement.

6. Generally the structure of the PSSs is such that it can be classified as output

feedback controller. That is, the input to the PSS is some output of the system,

which can be a function of more than one system state variables.

7. A PSS designed for one operating condition should work effectively for a variety

of operating conditions and disturbances.

Researchers have proposed several algorithms for controller design that assign

suitable eigenstructure [23]. Each of these algorithms has been developed to address

a specific control system problem.

The parametric approach to assign eigenstructure developed in [24] was identified

as the most suitable among those reviewed in terms of applicability to power system

controller design. Its important features are described below.

1. It offers a parametric solution for the controller, allowing implementation of

optimization using the parametric vectors as decision variables. This is a very
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useful feature because, as identified later, optimization is a necessary part of

the controller design for power system applications.

2. It is possible to assign q eigenvalues where 1 < q < min(n,m+ r − 1). Hence,

assignment of the complete spectrum is not a prerequisite to obtain a solution

of the proportional output feedback controller.

3. The conditions and requirements in the solution of the output feedback con-

troller are as follows:

• Open-loop eigenvalues cannot be assigned to the closed-loop system.

• Only real or complex conjugate pairs of eigenvalues can be assigned to the

closed-loop system.

The above conditions are easy to satisfy during the design of controllers for

power systems.

4. Either the right, the left, or both eigenstructures can be assigned. (However,

the number of inputs and outputs of the system will determine the available

degrees of freedom in the assignment of eigenvectors. Also, the input and output

variables will be key variables in determining the assignable eigenvectors. The

degrees of freedom and the assignable eigenvectors are general results of the

eigenstructure assignment method and are not limited to just this particular

technique.)

The technique is inadequate from the power system controller design perspective

because of the following:

1. In the case of a power system, the combined number of system inputs and

outputs is very few compared to the number of states of the system. Hence,

when using the eigenstructure assignment technique it is not possible to assign

the complete spectrum; rather, only a subset of eigenvalues can be assigned.
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This leaves the possibility that some of the closed-loop eigenvalues from the

remaining subset are unacceptable; and such unacceptable eigenvalues could

not be anticipated or discovered during the design of the controller.

2. The objective of a PSS is to relocate the critical eigenvalues to new preselected

locations in the complex plane. A controller designed using the technique will

assign the prescribed set of eigenvalues (and additionally the associated eigen-

vectors) to the closed-loop system; however, it is not possible to ensure that the

eigenvalues deemed critical have moved to the prescribed locations.

These inadequacies will pose some challenges when the technique is applied in

the design of controllers for power systems, and it cannot be applied in the manner

in which it has been applied in the design of controllers for small systems. A new

optimization based algorithm for controller design is presented in this thesis to address

the inadequacies of the technique for use in power system controller design. These

inadequacies, their implications, and a new algorithm based on the eigenstructure

assignment technique are discussed in next chapter. The eigenstructure assignment

technique developed in [24] is presented in the following sections.

4.2 The Control System

In this section, the linear control system model of a power system and the dynamic

compensator type output feedback controller are described. The linear system is

transformed into an equivalent augmented system in which the dynamic compen-

sator is transformed into a proportional output feedback controller. Later, a propor-

tional output feedback controller is designed for this system using the eigenstructure

assignment technique.

The linearized uncompensated power network in state variable form can be de-
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scribed as

˙̄x(t) = Ā x̄(t) + B̄ ū(t)

ȳ(t) = C̄x̄(t) (4.1)

where x̄(t) ∈ Rn̄, ū(t) ∈ Rm̄, and ȳ(t) ∈ Rr̄ are the state, control input, and output

vector of the system, respectively, and Ā, B̄, and C̄ are the constant real plant, input,

and output matrix of the system, respectively. In (4.1), it is assumed that the output

is only a function of the states and not a function of the input, which is generally

true for linearized power systems. The state-space representation of a power system

includes any dynamics associated with the filters employed for the system outputs.

Let the dynamic output feedback control law described using

ż(t) = D z(t) + E ȳ(t)

ū(t) = F z(t) +G ȳ(t) (4.2)

be applied to the system (4.1), where z(t) ∈ Ra is the state vector of the controller and

D,E, F , and G are matrices of appropriate dimensions that describe the dynamics of

the controller. During the design of a PSS, the dimension of dynamic compensator

state vector z(t), a, is selected judiciously as described later in this thesis. In a special

case of a = 0 the matrices D,E, and F vanish and the dynamic output feedback

control system reduces to proportional output feedback control system given by

ū(t) = G ȳ(t). (4.3)

For the case of a > 0, the system in (4.1) can be transformed into an equivalent

proportional output feedback control system as described by [25]

ẋ(t) = Ax(t) +B u(t)

y(t) = C x(t)

u(t) = K y(t) (4.4)
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where the new plant, input, and the output matrices, and the proportional output

feedback matrix are given by

A =

Ā 0

0 0

, B =

B̄ 0

0 Ia

, C =

C̄ 0

0 Ia

, K =

G F

E D

 (4.5)

and the new state, input, and output vectors are given by

x(t) =

x̄(t)
z(t)

, u(t) =

ū(t)
ż(t)

, y(t) =

ȳ(t)
z(t)

 . (4.6)

The modified system in (4.4) will have n,m, and r states, inputs, and outputs, re-

spectively, where

n=n̄+ a, (4.7a)

m=m̄+ a, (4.7b)

r=r̄ + a. (4.7c)

Without loss of generality, the following assumption is made for the system (4.4)

rank(B) = m; rank(C) = r. (4.8)

The resulting closed-loop system can be described as

ẋ(t) = (A+BK C)x(t) = Ac x(t). (4.9)

In the following subsection, the eigenstructure assignment technique for a linear

output feedback control system is presented. This technique is directly applicable

to the system given by (4.1) when proportional output feedback is employed (i.e.,

a = 0). When dynamic output feedback control law is employed, i.e., a > 0, the

analysis can be applied in a straightforward manner to its equivalent system (4.4).

The parametric approach to assign left and/or right eigenstructure developed in [24]

is presented in the following section.
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4.3 The Partial Eigenstructure Assignment Tech-

nique

The eigenstructure assignment problem is to determine gain matrix K in (4.4) such

that the closed loop system plant matrix Ac in (4.9) is assigned a prescribed self

conjugate set of eigenvalues and associated permissible right and/or left eigenvectors.

The left and right eigenstructure assignment technique developed in [24] is presented

in the following subsection. In this approach, the prescribed set of eigenvalues to be

assigned to the closed-loop system is selected first, and then the solution of assignable

(left or right) eigenvectors and, subsequently, the solution of the gain matrix K is

obtained as a function of the set of free parametric vectors. The distribution of

degrees of freedom in assigning eigenvalues and eigenvectors using the eigenstructure

assignment technique is discussed in a subsequent subsection to provide insight into

the solution to the eigenstructure assignment problem offered by this technique.

4.3.1 Partial Left Eigenstructure Assignment

Let the partial set of distinct self-conjugate eigenvalues {λ1, . . . , λp}, p ≤ m ≤ n be

assigned to the closed-loop system matrix Ac in (4.9). The conditions for the eigenval-

ues to be assigned are explained later in the section. The left eigenvector associated

with λi; i = 1, . . . , p is given by [24]

wT
i = gT

i C (λiIn − A)−1; i = 1, . . . , p (4.10)

where the r-dimensional parametric vectors gi; i = 1, . . . , p can be arbitrarily selected.

For the case of p < m, the m×r matrix K and the n×m matrix B are partitioned

as

K =

K1

K2

, B = [B1 B2] (4.11)

where K1 and K2 are of dimension p × r and (m − p) × r, respectively; and B1 and
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B2 are of dimension n× p and n× (m− p), respectively. Then, the output feedback

controller gain matrix K1 that will assign the desired eigenstructure, {λ1, . . . , λp},

{w1, . . . , wp}, to the closed-loop system is given by [24]

K1 = (WpB1)
−1 (Gp −WpB2K2) (4.12)

where K2 is arbitrary and

Wp =
(
w1 . . . wp

)T

; Gp =
(
g1 . . . gp

)T

. (4.13)

There remain unused degrees of freedom for the case of p < m, resulting in non-

unique K due to arbitrary K2. Whereas all the available degrees of freedom are

utilized for the case of p = m, in which case the partition of K and B according to

(4.11) is not required and from (4.12) the unique solution of K for a given parametric

vectors matrix Gm is given by:

K = (WmB)−1Gm. (4.14)

Equations (4.10), (4.12), and (4.14) give solutions of (w1, . . . , wm), K1 and K as a

function of free parametric vectors (g1, . . . , gm) and assigned eigenvalues (λ1, . . . , λm)).

The assigned eigenvalues and the free parameter vectors must satisfy the following

conditions [24]:

1. A necessary condition for the assigned (closed-loop) eigenvalues is that they

must be different from the n original (open-loop) eigenvalues. This follows from

the invertibility requirement of the matrices (λiIn − A)−1 in (4.10).

2. The necessary and sufficient condition for real eigenvalue λi to be assignable to

the closed-loop is

rank(C((λiIn − A)−1)B) ≥ 1.

By extension of the above, the complex conjugate pair of eigenvalues λi, λ
∗
i is

assignable if

rank[C((λiIn − A)−1)BC((λ∗i In − A)−1)B] ≥ 2.

54



3. The matrix WmB must be full rank (i.e., |WmB| 6= 0) so that (WmB)−1 exists

and K1 and K can be calculated using (4.12) and (4.14), respectively.

4. For the design to be physically implementable, the matrix K must be real.

For that reason, the parametric vector gi must be real if the corresponding

eigenvalue λi is real. Similarly, if the assigned eigenvalues form a complex

conjugate pair the corresponding parametric vector, must also form a complex

conjugate pair.

4.3.2 Partial Right Eigenstructure Assignment

Let the partial set of distinct self-conjugate eigenvalues {λ1, . . . , λp}, p ≤ r ≤ n be

assigned to the closed-loop system matrix Ac in (4.9). Then, using the non-unique m-

dimensional free parametric vectors fi, i = 1, . . . , p, the right eigenvector associated

with λi, i = 1, . . . , p is given by [24]

vi = (λiIn − A)−1B fi; i = 1, . . . , p. (4.15)

For the case of p < r, them×r matrixK and the r×nmatrix C can be partitioned

as

K = [K1 K2], C =

C1

C2

 (4.16)

where K1 and K2 are of dimension m× p and m× (r − p), respectively, and C1 and

C2 are of dimension p × n and (r − p) × n, respectively. Then, the output feedback

controller gain matrix K1 that will assign the desired eigenstructure, {λ1, . . . , λp},

{v1, . . . , vp}, to the closed-loop system is given by [24]:

K1 = (Fp −K2C2 Vp) (C1 Vp)
−1 (4.17)

where K2 is arbitrary and
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Vp =
(
v1 . . . vp

)
; Fp =

(
f1 . . . fp

)
. (4.18)

Similar to the case of left eigenstructure assignment, there remain unused degrees

of freedom if p < r, resulting in non-unique K due to arbitrary K2. Whereas all

the available degrees of freedom are utilized for the case of p = r, in which case the

partition of K and C according to (4.16) is not required and from (4.17) the unique

solution of K is given by

K = Fm (C Vm)−1. (4.19)

Equations (4.15), (4.17), and (4.19) give solutions of (v1, . . . , vm), K1, and K in

terms of free parametric vectors (f1, . . . , fm), and assigned eigenvalues (λ1, . . . , λm).

The assigned eigenvalues and the free parameter vectors must satisfy the following

conditions [24]:

1. A necessary condition for the new assigned (closed-loop) eigenvalues is that they

must be different from the n original (open-loop) eigenvalues. This follows from

the invertibility requirement of the matrix (λiIn − A)−1 in (4.15).

2. The necessary and sufficient condition for a real closed-loop eigenvalue λi to be

assignable to the closed-loop system is

rank(C((λiIn − A)−1)B) ≥ 1;

and for a complex conjugate pair of eigenvalues λi, λ
∗
i it is

rank[C((λiIn − A)−1)BC((λ∗i In − A)−1)B] ≥ 2.

3. The matrix C1 Vm must be full rank (i.e., |C1 Vm| 6= 0) so that (C1 Vm)−1 exists

and K1 and K can be calculated using (4.17) and (4.19), respectively.
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4. For the design to be physically implementable, the matrix K must be real.

Therefore, the parametric vector fi must be real if the corresponding eigenvalue

λi is real. Similarly, if the eigenvalues to be assigned form a complex conju-

gate pair λi, λ
∗
i the corresponding parametric vector must also form a complex

conjugate pair fi, f
∗
i .

4.3.3 Discussion

In the design procedure, the total degrees of freedom available are mr, which corre-

sponds to the independently selectable number of elements of the proportional gain

output feedback matrix K.

The possible distribution of available degrees of freedom in the design of pro-

portional output feedback controller using the partial left eigenstructure assignment

technique presented in § 4.3.1 is described in the following. Similar results regarding

the possible distribution of the degrees of freedom using the right eigenstructure as-

signment technique can be obtained by like analysis of the technique that is presented

in § 4.3.2.

1. Using the partial left eigenstructure assignment technique, it is possible to assign

up to m eigenvalues utilizing equal amounts of degrees of freedom. Each of the

associated left eigenvectors can be selected using the r-dimensional parametric

vector suggesting the utilization of r degrees of freedom in each eigenvector.

However, multiplying a left eigenvector by a constant is essentially the same

eigenvector, and therefore, only (r − 1) degrees of freedom are consumed in

the selection of each of the eigenvectors. If p < m eigenvalues and associated

left eigenvectors are assigned, then p degrees of freedom are utilized in the

assignment of the eigenvalues and p(r − 1) are utilized in assignment of the

left eigenvectors, resulting in a total utilization of p+ p(r − 1) = pr degrees of

freedom.
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2. For the case of p = m, all the degrees of freedom available in the selection of

output feedback matrix are utilized.

3. A maximum of (r − 1) entries of the left eigenvector associated with each of

eigenvalues can be selected precisely.

4. The left eigenvector associated with each of the eigenvalues that can be assigned

to the closed-loop system matrix lie in r-dimensional subspace spanned by rows

of C (λiIn − A)−1.

5. If the number of inputs to the system are same as the number of states (i.e.,

m = n), then it is possible to assign the complete spectrum.

6. For the case of p < m, (m − p)r degrees of freedom are unused and can be

utilized in further assignment of the right or left eigenstructure.

4.4 Conventional Eigenstructure Assignment Pro-

cedure

The right or left eigenstructure assignment techniques presented in the previous sec-

tion may be employed in the design of a proportional output feedback controller in

the following manner.

Select the eigenvalues to assign:

The first step is to select eigenvalues to assign to the closed-loop system that

satisfy the conditions described in § 4.3.1 (if left eigenstructure assignment tech-

nique is to be employed) or § 4.3.2 (if the left eigenstructure assignment tech-

nique is to be employed) so that they are assignable.

Select the eigenvectors to assign:

After selecting the desired closed-loop eigenvalues, the next step is to select
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the desired eigenvector associated with each of the eigenvalues based on the

system performance criteria. However, a desired eigenvector may not reside

in the allowable subspace and therefore cannot be achieved. In that case, an

optimal choice for an achievable eigenvector can be made by projecting the

desired eigenvector onto allowable subspace.

Determine the free parametric vectors:

Once the desired and allowable choice of eigenvalues and eigenvector has been

made, the free parametric vectors can be uniquely determined by back-solving

the linear system of equations of the right or left eigenvectors as the case may

be.

Calculate the controller gain matrix K:

As a final step, the controller gain matrix can be calculated by appropriately

using (4.12), (4.14), (4.17), or (4.19).

Using the above single stage procedure and employing the left eigenstructure as-

signment technique, a maximum m eigenvalues can be assigned along with precise

selection of (r − 1) elements in each of the associated left eigenvectors. If the partial

right eigenstructure assignment technique is employed, then a maximum r eigenvalues

can be assigned along with the precise selection of (m − 1) elements in each of the

associated left eigenvectors.

Thus, in a single-stage process, the maximum eigenvalues that can be assigned

to the closed-loop system is min{max(m, r), n}, and if max(m, r) < n, then the

complete spectrum cannot be assigned. However, if the number of system inputs

and outputs is such that max(m, r) < n ≤ (m+ r − 1), then it is possible to as-

sign the complete spectrum because, as noted earlier, by using a proportional out-

put feedback controller the maximum number of eigenvalues that can be assigned is

min(n,m+ r − 1). The assignment of the complete spectrum can be accomplished in

two or more stages by successive application of the above described procedure. After
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each stage is completed, and before proceeding to the next stage, the already assigned

eigenstructure can be preserved by appropriately modifying the control system [24].

In general, however, the multistage controller design process results in the reduced

degrees of freedom in assignment of right and/or left eigenvectors.

For small system to which the eigenstructure assignment technique has success-

fully been applied, it is possible to achieve the condition of min(n,m + r − 1) = n

and, thereby, it is possible to assign n eigenvalues. A power network is considerably

different than small systems. The assignment of all the eigenvalues is not feasible for

a large-scale power network because it is not possible to achieve the above condition.

Hence, straightforward application of the eigenstructure assignment technique (sin-

gle stage or multistage) in the manner described above is not suitable and is at risk

for some potential problems. The challenges that arise when applying the conven-

tional procedure in the design of controllers for power systems are discussed and the

optimization based design algorithm to address these challenges is presented in the

following chapter.
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Chapter 5

PSS Design Algorithm Based on

the Partial Left Eigenstructure

Assignment Technique

In this chapter, first the conventional lead-lag type PSS described in Chapter 3, which

is the most suitable for frequency domain design, is assessed as to its suitability for the

application of the eigenstructure assignment technique. Based on this assessment, a

conventional PSS is shown to be unsuitable due to the insufficient degrees of freedom

offered by the structure of the PSS. Then the generic dynamic compensator type PSS

is justified.

In the previous chapter, the objectives and requirements of a power system con-

troller were identified. Also, an elegant and simple parametric eigenstructure as-

signment technique was presented. However, the application of that technique in the

design of a power system controller is inadequate when applied in a conventional man-

ner. The shortcomings of the conventional eigenstructure assignment based controller

design procedure for meeting the objectives and requirements of a power system con-

troller are identified in this chapter. This is followed by a description of the use of an

optimization based algorithm to address the inadequacies of the conventional tech-

61



nique. Finally, the complete power system controller design procedure that can be

used to assign optimal eigenstructure is presented in this chapter.

5.1 Suitable PSS Model

The PSS models widely used in power systems are described in IEEE Std. 421.5-2005

[8]. These PSS models comprise two or three phase-compensation blocks of first or

second order transfer functions. This allows the designer to design the controller with

a certain frequency response. PSSs with similar structures have been in use since the

1960s. These conventional PSSs were discussed in Chapter 3.

The eigenstructure assignment method is an alternate method of controller de-

sign. The parametric solution for the proportional output feedback controller was

presented in Chapter 4. The solution assumes that each parameter of the controller

is independent and can be assigned an arbitrary real value. This provides the maxi-

mum degrees of freedom possible for a given number of system inputs and outputs.

The eigenstructure assignment technique based on this assumption forms the basis of

the PSS design algorithm presented in this thesis.

It is possible to design the conventional PSS comprising lead-lag type phase com-

pensators, shown in Fig. 5.1, using the proposed algorithm to assign the eigenstruc-

ture; however, the structure of the PSS will not offer all the possible degrees of

freedom. The design of the gain and lead-lag blocks parameters is usually the main

focus of the design; they are marked as “Dynamic Compensator” in Fig. 5.1. For the

purpose of the design of the gain and lead-lag blocks parameters using the eigenstruc-

ture assignment technique, the dynamic compensator needs to be transformed into

state-space form and then into an equivalent proportional output feedback controller.
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Figure 5.1: Block diagram of single input lead-lag type PSS.

It can be shown that the proportional output feedback controller K given by

K =


K T1 T3

T2 T4

(
T3

T4
− T1 T3

T2 T4

)(
1− T3

T4

)
K
T2

−1
T2

0

K T1

T2 T4

(
1
T4
− T1

T2 T4

)
−1
T4

 (5.1)

is one of the representations of the dynamic compensator output feedback controller.

The proportional controller K of dimension 3×3 given by (5.1) has only five indepen-

dently assignable parameters. This is consistent with the number of independently

selectable PSS parameters, K,T1 − T4. The remaining four elements of K are either

dependent parameters or have fixed values. The number of free elements in the set

of parametric vectors cannot be greater than the number of independently assignable

controller parameters. So, in such a case the number of arbitrarily assignable elements

in the set of parametric vectors is reduced to five. Thus, design of a conventional PSS

using the proposed technique renderers less degrees of freedom. This is not desirable

since as many degrees of freedom are needed as possible in order to be able to assign

the best eigenvector.

Even if the maximum possible number of free parameters are selected (five in

this case), then the calculation of K and the extraction of the PSS parameters re-

quires additional processing. The novel approach to controller design presented later

in this chapter requires the minimization of an objective function using the opti-

mization technique. The additional processing required is especially onerous for such

an optimization-based approach. Therefore, the design of a conventional PSS using

the proposed techniques increases the computational burden in addition to offering
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reduced degrees of freedom.

Therefore, in order to utilize every possible degree of freedom and to minimize the

computational burden, a state-space type power system controller, shown in Fig. 5.2,

is considered in this thesis when designing a controller using the eigenstructure assign-

ment technique. It consists of two functional blocks: (1) a filter, and (2) a dynamic

compensator. The filter serves a purpose similar to that of the conventional PSS

described earlier in § 3.3.1, and the filter parameter is selected accordingly. Any

dynamics associated with filters are included in the state-space representation of a

linearized power system described by § 4.2. The dynamic compensator is the main

controller in a state-space (SS) type PSS described by

ż = D z + E ȳ

ū = F z +G ȳ. (5.2)

where

z ∈ Ra, ȳRr̄, ū ∈ Rm̄.

The objective of the proposed eigenstructure assignment based design algorithm

is to determine the parameters of the dynamic compensator that will assign optimal

eigenstructure. The dimension of the state vector a is a design parameter and a

method for its selection is detailed later. As described in § 4.2, a system with such a

controller can be transformed into an equivalent system having a proportional output

feedback controller whose parameters are independently selectable.

5.2 Suitability of Right and Left Eigenstructure

Assignment for PSS Design

In this section, the suitability of the partial right and left eigenstructure assignment

techniques are examined from the point of view of their application to power systems.
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the proposed eigenstructure assignment technique.

5.2.1 Possible Inputs and Outputs of the System

The operating condition of a generator in a power system is uniquely defined by the

generated power and the voltage of a bus (usually its own, but it can be that of some

other system bus). Therefore, a generator control system provides two inputs for

reference signals, which are set by operator, to achieve the desired power generation

and voltage when system is operating in a closed-loop: (a) Vref of an exciter to

generate the desired bus voltage; (b) Pref of the prime-mover governor to generate

the desired electrical power.

Transient and small-signal stability enhancement are the main objectives of the

PSS. To be effective in achieving these objectives “the controller must act within

0.5 to 0.75 s following a disturbance during when the generator rotor angle swing

normally peaks” [6]. The turbines are inherently slow in response to change in the

Pref of the governor and cannot respond that quickly. Therefore, modulating Pref of

the governor is not effective in achieving the objectives. Whereas “use of high-initial-

response excitation systems supplemented with PSS is by far the most effective and

economical method of enhancing the overall system stability” [6]. Thus, the possible

maximum number of system input is one (i.e., m̄ = 1 in (4.1)) when designing a

controller of the generator to address the small-signal stability problem.

The speed of the generator, its terminal voltage, and its electrical power are
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the most common outputs of the system employed as input(s) to the PSS for the

following reasons: a) the electromechanical modes, which are usually of concern, are

most observable in these outputs; b) the outputs are easy to measure. Therefore,

there is some freedom in selecting the number of outputs of the system (i.e., r̄ ≥ 1 in

(4.1)) when designing the PSS of a generator.

The objective of employing a controller is to push the critical electromechanical

oscillatory modes further left in the complex plane. Hence, the controller should be

able to assign at least two eigenvalues (i.e., p ≥ 2) to the system. If more than

one critical mode is to be addressed, the controller shall be able to assign even more

eigenvalues.

So, considering m̄ = 1, r̄ ≥ 1, and p ≥ 2, and assuming that a dynamic com-

pensator of any dimension can be selected, the suitability of partial left and right

eigenstructure assignment techniques are analyzed in following subsection.

5.2.2 Assessment of Right and Left Eigenstructure Assign-

ment

The right eigenvector of a mode determines the presence of that mode in different

state variables during disturbances; whereas, the left eigenvector of a mode deter-

mines the excitation magnitude of that mode during disturbances ( § 1.2). Thus,

appropriate assignment of the right and/or left eigenstructure will improve the dy-

namical performance of the system. However, it is not possible to assign any desired

eigenvector. The input and output matrices are the key parameters that determine

the subspace where the assignable right and left eigenvector, respectively, lie, as was

described in Chapter 4. In what follows, the suitability of the right and left eigen-

structure assignments are assessed from the point of view of the available freedom in

selection of the number of system inputs and outputs for the case of power systems,

which was discussed in the previous section.

Using the partial right eigenstructure assignment technique, the maximum number
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of eigenvalues that can be assigned to the closed-loop system is the same as the

number of outputs of the system. If the number of eigenvalues to be assigned exceeds

the number of outputs of the system, a dynamic compensator with the appropriate

number of states can be employed. Hence, as many eigenvalues as desired (up to

the combined number of system and dynamic compensator states) can be assigned

to the closed-loop system by employing a dynamic compensator with the appropriate

number of states. .

In order to assess the assignability of the right eigenvectors, consider, for the sake

of simplicity, a real eigenvalue λi is to be assigned to the closed-loop system. The

assignable right eigenvector associated with the real eigenvalue λi is a combination of

the columns of the matrix Mnm = (λiIn − A)−1B of dimension n×m. Substituting

for A and B from (4.5) reveals that the right eigenvector is a combination of columns

of

Mnm =

(λiIn − Ā)−1 B̄ 0

0 1
λi
Ia

 =

Mn̄m̄ 0

0 Maa

 . (5.3)

In (5.3) the partitioned matrix Mn̄m̄ has m̄ columns. It is apparent that the right

eigenvector entries corresponding to the system states are linear combinations of the

columns of Mn̄m̄. As identified in the previous section, m̄ = 1 is the usual case when

designing a PSS for a power system. In this case the matrix Mn̄m̄ degenerates to a

column vector and the entries corresponding to the system states are scalar multiple of

that column vector. Therefore, using a single input PSS, the magnitude of the entries

of the right eigenvector corresponding to the system states can be altered; however,

the underlying structure of the right eigenvector that determines the relative presence

of the modal variable in the state variables remains unaltered. A similar conclusion

can be drawn regarding the right eigenvectors of an assignable complex conjugate

pair of eigenvalues.

Using the partial left eigenstructure assignment technique, the maximum number

of eigenvalues that can be assigned to the close-loop system is the same as the number

of inputs of the system. If the number of eigenvalues to be assigned exceeds the
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number of system inputs, then, somewhat like the previous case, the effective number

of the system inputs can be increased by employing a dynamic compensator with

the appropriate number of states, and as many eigenvalues as desired (up to the

combined number of system and dynamic compensator states, maximum) can be

assigned to the closed-loop system. The left eigenvector associated with each of the

real eigenvalues to be assigned is a combination of the rows of the m × n matrix

Mrn = C (λiIn − A)−1. Substituting C and A by (4.5) yields that the left eigenvector

is obtained by a combination of the rows of the matrix Mrn given by

Mrn =

C̄ (λiIn − A)−1 0

0 1
λi
Ia

 =

Mr̄n̄ 0

0 Maa

 . (5.4)

In (5.4) the partitioned matrix Mr̄n̄ has r̄ rows and Maa has a rows. If r̄ = 1,

then the available degrees of freedom are not sufficient to alter the structure of the

part of the left eigenvector that is associated with the system states. Thus, for such a

control system the relative contribution of system states to the excitation of the mode

remains unaltered. However, it is always possible to employ an increased number of

outputs of the system (i.e., constructing the system with r̄ > 1). In that case, the

left eigenvector entries corresponding to the system states are linear combinations of

rows of the matrix Mr̄n̄. This allows the selection of an alternate structure for the

part of the left eigenvector associated with the system states. Thus, the eigenvectors

closer to the desired one can be assigned by employing increased system outputs.

In order to assess the advantage of left eigenstructure assignment, consider a linear

time invariant control system ẋ = Ax. The free response of the state variable xi(t) is

given by [6]

xi(t) =
n∑

j=1

vji cj e
λjt (5.5)

where

cj =
n∑

k=1

wjk xk(0) (5.6)
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where vi and wi are right and left eigenvectors of eigenvalue λi, and x(0) is the initial

condition of the state vector.

The elements of the left eigenvector wj can be selected to give a small value

for cj, the magnitude of excitation of the jth mode. However, it is the product

vjicj which really determines the presence of the jth mode in state variable response

xi(t). Therefore, it is theoretically possible that reducing cj may still result in a

larger vjicj and the presence of the jth mode in state variable xi is increased. This

may defeat the prime objective of the controller design, which is improvement in the

transient response of the state variables by means of a reduction in the magnitude

of the assigned mode. However, this possibility is unlikely for a single input system.

Because, as argued in previous subsection, for such a system (a system with a single

input) it is not possible to alter the right eigenstructure of the system.

It is clear from above analysis that if a control system permits only a single

system input and more than one system output, there would be a greater possibility

of assigning the left eigenstructure closer to the one desired than would be the case if

the right eigenstructure were assigned. Therefore, in this thesis the design algorithm

has been developed to assign the left eigenstructure when designing controllers for

power systems. However, the algorithm can be extended without much modification

to assign the right eigenstructure if that is the design requirement for a multi-input

system.

5.3 Inadequacy of Conventional Left Eigenstruc-

ture Assignment Technique for Power System

Controller Design[4]

For smaller systems, to which the left eigenstructure assignment technique has suc-

cessfully been applied in the past [23], the available degrees of freedom permit assign-
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ment of all the eigenvalues (and additionally, partial right and/or left eigenvectors)

by following the conventional procedure described in § 4.4. Power systems are much

different from smaller systems. Assignment of all the eigenvalues is not feasible in

a much larger power system because it is not practical to obtain information from

remote geographic locations. Also, assigning all the eigenvalues (which could number

in the tens of thousands) is computationally impractical. Hence, only a smaller sub-

set of m eigenvalues can be assigned. This can potentially result in the deficiencies

described below.

5.3.1 The Objectives of Left Eigenstructure Assignment Tech-

nique Based Controller Design

Consider the linearized proportional output feedback power system with n-state, m-

input, and r-output, developed in § 4.2

ẋ(t) = Ax(t) +B u(t) (5.7a)

y(t) = C x(t) (5.7b)

u(t) = K y(t). (5.7c)

By substituting for u(t) and y(t) in (5.7a), the closed-loop system can be described

as

ẋ(t) = (A+BK C)x(t) = Ac x(t). (5.8)

Based on the linear analysis of the system, the m-eigenvalues of the open-loop

plant matrix must be relocated from Λ̄m = {λ̄1, . . . , λ̄m} to a new location Λm = {λ1, . . . , λm}.

Then the desired objectives can be stated as follows:

• Move Λ̄m to Λm.

• Assign the left eigenvectors Wm, corresponding to the set of eigenvalues Λm, to

the closed-loop system that will minimize the excitation of the critical modes.
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• The modes corresponding to the remaining (n−m) closed-loop eigenvalues must

be stable and well-damped.

• The controller should be able to the achieve above objectives without excessive

control action.

The straightforward application of eigenstructure assignment according to the proce-

dure described in § 4.4 can fail to achieve the controller design objectives, as described

below.

5.3.2 Critical Eigenvalues May Not Move to Desired Loca-

tions

The design procedure does indeed assign the desired eigenvalue {λ1, . . . , λm} to the

closed-loop system. However, there is no guarantee that it is precisely the previously

targeted critical eigenvalues Λ̄m = {λ̄1, . . . , λ̄m} that have moved to the desired new

locations. It is possible that some other open-loop eigenvalues (previously deemed

non-critical) may have moved to the assigned locations. Fig. 5.3.a shows that eigen-

value λ̄j was supposed to occupy location λj, but instead it is λ̄k that has done so. In

such a case, the objective of PSS design is defeated for two reasons: (1 ) the critical

mode may move further to the right in the complex plane making it an even more

poorly damped mode or, in the worst case, making the system unstable, as shown

in Fig. 5.3a; (2 ) even if a critical eigenvalue λ̄j move to an acceptable region, but

not precisely to the assigned location λj, the design may fail to achieve the objective

because the eigenvector associated with the new location of the critical eigenvalue

will be unknown during design and it would not be possible to determine whether the

eigenvector has been altered as desired.
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5.3.3 The Set of Unassigned Eigenvalues May be Unaccept-

able

Even if the design moves all critical Λ̄m precisely to Λm, a number of unassigned

eigenvalues may move to unacceptable locations in the complex plane, as shown by

the movement of eigenvalue λ̄u to λu in Fig. 5.3.b. This is again due to the fact that

for the power system controller design problem it is practically possible to assign only

a subset of the m eigenvalues of the n system eigenvalues and, using the conventional

approach, there is no control over the unassigned eigenvalues.

Critical open-loop eigenvalue

* Non-critical open-loop eigenvalue
x Assigned closed-loop eigenvalue

Unassigned closed-loop eigenvalue

Acceptable Unacceptable

Re( )

* x

Im( )*

(a) (b)

Acceptable Unacceptable

Re( )

x

constant

Im( )

*

*

constant

k j j x

u u

k j jk

uu

Figure 5.3: Potential problems with conventional left eigenstructure assignment tech-

nique (a) Critical eigenvalue λ̄j gets worse while non-critical eigenvalue λ̄k moves to

assigned location λj; (b) Non-critical eigenvalue λ̄u becomes unstable.

Thus, controller design objectives cannot be achieved using a straightforward ap-

plication of the partial left eigenstructure assignment technique. A modified multi-objective

nonlinear optimization problem (MONLOP) algorithm that uses the iterative method

is introduced in this thesis to address these problems.
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5.4 Multi-Objective Nonlinear Optimization Prob-

lem (MONLOP)[4]

A major contribution of this thesis is the development of a procedure that overcomes

the drawbacks of the straightforward application of the eigenstructure assignment

technique described in the previous section. The proposed technique reformulates

the left eigenstructure assignment objectives into a multi-objective nonlinear opti-

mization problem (MONLOP) that is solved by an iterative technique. In MONLOP,

individual objectives are quantified as a sub-objective function of the free parametric

vectors {g1, . . . , gm} in (4.10) in such a manner that the function has its smallest value

(typically zero) when the objective is satisfied. The overall objective function that

attempts to fulfill all individual objective requirements is then realized as a suitable

weighted sum of the sub-objective functions. The resulting optimization problem

having this multi-objective functions is subsequently solved to obtain the values of

{g1, . . . , gm}.

5.4.1 Decision Variables

Different choices of the parametric vectors {g1, . . . , gm} in (4.10) result in different

controllers with the same m assigned eigenvalues for the closed-loop system. Com-

parison amongst all possible choices for the set {g1, . . . , gm} allows the selection of

the optimal set that gives the best system performance. A nonlinear optimization

procedure is one way of achieving this. Most optimization programs use scalar real

variables as the ‘decision variables’, i.e., those variables for which optimal values are

to be found. In order to convert the parametric vectors to this form, the real and

imaginary parts of each of the parametric vector elements are treated as one of the

elements of the decision variable vector φ.
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5.4.2 Ensuring the Critical Eigenvalues move to the Desired

New Locations

One drawback of a straightforward application of the left eigenstructure assignment

technique is that there is no guarantee that the assigned eigenvalues Λm of the

closed-loop system are precisely the eigenvalues (Λ̄m) targeted for relocation (§ 5.3.2).

The procedure discussed in this subsection attempts to rectify this problem. By cal-

culating the sensitivity of a typical original targeted eigenvalue (λ̄i) to the feedback

controller gain K, it is possible to get an indication of where the eigenvalue has moved

for a given choice of K. If this estimate is close to (λi), the objective is deemed to

have been achieved; if not, then it means a non-critical eigenvalue has surreptitiously

occupied the position (λi).

By consideration of (5.8) it is clear that the system with K = 0 includes all

poles in the open-loop (non augmented) system. Let λ̄ be the eigenvalue of Ā in

(4.1) and w̄i and v̄i be the associated left and right eigenvectors, respectively. The

corresponding eigenvector of the augmented system, say wi, includes the elements of

w̄i as its first n̄ elements. When the linear output feedback control law described

by (5.2) is employed, the approximate change ∆λ̄i in an eigenvalue λ̄i is given by

(Appendix B)

∆λ̄i = w̄i
T B̄ G C̄ v̄i + w̄i

T B̄ F M(λ̄i)E C̄ v̄i (5.9)

where

M(λ̄i) = (λ̄iIn −D)−1. (5.10)

Using the above equation, the approximate new location of λ̄ is given by

λ̃i = λ̄i + ∆λ̄i. (5.11)

Also, each choice of parametric vectors {g1, . . . , gm} results in a uniqueK (§ 4.3.1).

Note that K is made up of the sub-matrices D,E, F , and G as seen in (4.5). Hence

(5.9) and (5.11) may be used to estimate the closed-loop pole locations. Equation
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(5.9) is based on linearization; it only gives a first order estimate of the movement

of the given pole. If the predicted location of each (say, i th pole) of the m poles

(λ̄i + ∆λ̄i) from the above sensitivity analysis closely agrees with its assigned pole

location (λi), then it can be assumed that the critical poles have moved to the new

locations. If this is not the case, it means that some of the non-critical poles have

moved to some of the new locations. Therefore, setting up a nonlinear optimization

problem that minimizes the distance between the assigned poles and their values pre-

dicted via (5.9) and (5.11) provides a means to discriminate between those solutions

that actually move only the critical eigenvalues to the new locations and those solu-

tions that undesirably move non-critical eigenvalues to the new locations. To further

improve the discrimination, the distance between non-critical eigenvalues and the new

locations can be maximized by adding a second sub-objective to the original mini-

mization problem: minimizing the inverse of the distance between the approximate

new locations of the non-critical eigenvalues (which can be calculated as before using

(5.9) and (5.11)) and the assigned eigenvalues. With λ̃i, i = 1, . . . ,m, represent-

ing the predicted (and hence approximate) values of the critical eigenvalues and λ̃j,

j = m + 1, . . . , n, representing the non-critical eigenvalues, the objective function to

be minimized is given by (5.12) below. In (5.12) the distance between the new desired

location for each eigenvalue and the predicted value from the sensitivity calculation

has been normalized by dividing it by the distance between the open-loop and the

closed-loop eigenvalues.

f1(φ) =
m∑

i=1

|λi − λ̃i|
|λi − λ̄i|

(5.12a)

f2(φ) =
n∑

j=m+1

m∑
i=1

|λi − λ̄j|
|λi − λ̃j|

(5.12b)
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5.4.3 Selection of the Optimal Left Eigenvector to Minimize

Excitation of Problem Modes

From (5.6), the magnitude of excitation of a mode is the dot product of the initial

condition immediately after clearing a disturbance and its left eigenvector. As the

initial condition is not predictable, an approach that minimizes the weighted sum of

the left eigenvector elements is used. The idea behind this approach is that if all the

elements of (5.6) are reduced, then the excitation of the mode ck is also likely to be

small, regardless of the values of xk(0). Instead of using equal weights for all the

elements, the participation factors can be effectively used for this purpose because

they reflect the proportion of how much a given state contributes to the mode. Hence,

the sub-objective function to be minimized to achieve assignment of the optimal left

eigenvector may be defined as the sum of dot products:

f3(φ) =
m∑

i=1

|wT
i · pi| (5.13)

where wi is left eigenvector associated with the assigned eigenvalue λi calculated using

(4.10), and pi is the participation factor of the open-loop eigenvalue λ̄i that is used

as weight vector.

5.4.4 Controlling Unassigned Eigenvalues

The above procedures discuss how to formulate the optimization problem to ensure

that all targeted eigenvalues move to their designated new locations. However, this ob-

jective should not result in the unassigned eigenvalues moving to problematic (poorly

damped) locations as discussed in § 5.3.3.

Hence, all unassigned eigenvalues must be constrained to the un-hatched region

in Fig. 5.4. In this region, the damping ratio of any complex pair of eigenvalues

ζ (, −Re(λ)/|λ|) is greater than a pre-specified design limit ζmin. Additionally, no

eigenvalue has a real part that is greater than a pre-assigned limit αmin. These require-
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Figure 5.4: Acceptable and unacceptable region of the closed-loop eigenvalues.

ments can be incorporated into the optimization problem in the form of additional

constraint defining sub-objectives as shown in (5.14) and (5.15). In the equations, ζ̃j

and α̃j are the damping factor and the real part of the estimated location of a typ-

ical unassigned eigenvalue calculated from a sensitivity analysis, as in § 5.4.2. Note

that f4(φ) and f5(φ) have a zero value if the objective is met, and have a penalizing

positive value that increases with the degree of violation of the objective.

f4j(φ) =

∣∣∣∣∣∣∣
(ζ̃j − ζmin)

2
if ζ̃j < ζmin

0 otherwise

(5.14a)

f4(φ) =
n∑

j=m+1

f4j(φ) (5.14b)

and

f5j(φ) =

∣∣∣∣∣∣∣
(α̃j − αmin)

2
if α̃j > αmin

0 otherwise

(5.15a)

f5(φ) =
n∑

j=m+1

f5j(φ) (5.15b)

5.4.5 Minimizing Controller Effort

Because K is the feedback gain, the magnitude of the feedback signal components

is proportional to the elements of K. If the problem is properly scaled, selecting
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the largest element (in magnitude) of K to be less than a certain limit klim permits

the minimization of the control effort. The sub-objective given in (5.16) provides a

penalty component if the largest component of K lies outside the limits.

f6(φ) =

∣∣∣∣∣∣ (kmax − klim)2 if kmax > klim

0 otherwise
(5.16)

where kmax = max(|K|).

5.5 MONLOP and the Solution[4]

With the sub-objective functions as defined in the previous sections, the MONLOP

problem can be now be transformed into a single-objective nonlinear optimization

problem (SONLOP) in which the single objective is a weighted sum of the individual

sub-objectives as

minimize F (φ) =
6∑

i=1

βifi(φ) (5.17)

where βi is a suitable positive weight for the i th sub-objective. The scalar weight

βi is increased if more importance is assigned to the achievement of the i th sub-

objective in comparison to the others. Some experimentation is usually required to

arrive at a suitable set of weights because not all the objectives are equally important,

and additionally, because the objectives are measured in different units. It should be

noted that if φ can be selected so that F (φ) = 0 all sub-objectives are perfectly

achieved, and hence the design is ideal. If this ideal is not achievable, the next best

course of action is to select values for variables φ that result in the smallest possible

value for F (φ), thereby yielding the best achievable design. The Nelder and Mead

nonlinear simplex method is used in this thesis to conduct the minimization process.

Details of this nonlinear optimization (NLO) algorithm can be found in [37] and the

underlying concept of the algorithm is shown in Appendix D. As described in § 5.4.1,

the design vector φ contains the real and imaginary parts of the parametric vector

Gp. In the first optimization step, the NLO selects a starting value for the vector φ.
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Note that the choice of φ is essentially the choice of Gp. The eigenvalues are moved

to the new locations as described in § 4.3.1 and the functions f1(φ), f2(φ), . . . f6(φ),

which determine how successful the move was in meeting the various sub-objectives

described in § 5.4, are evaluated. Then, using (5.17), the single combined objective

function F (φ) is calculated. In any given optimization step, the NLO observes the

value of F (φ) and by comparing it to the previous optimization steps, strategically

selects a new candidate value for φ that has a high likelihood of further reducing the

value of F (φ). The procedure converges when the change in F (φ) from the previous

iteration falls below an exit threshold. This finds a ‘local’ best for the starting search

vector φ and hence for the free parameter Gp, from which the controller gain K can

be determined (§ 4.3.1). Although the Nelder and Mead method is utilized here,

any other suitable NLO algorithm could have been used. Nonlinear functions often

exhibit multiple local minima. By selecting a different starting point for the above

optimization search, it is often possible to converge to a different local minimum. The

different controllers generated from several of these starting choices can be further

compared amongst themselves to see if any of them provide additional benefits, such

as robustness or some other design criteria.

5.6 Power System Controller Design Procedure

The complete procedure for designing controllers using the proposed eigenstructure

assignment based algorithm can described as follows.

1. Calculate the plant matrix of the power system

The design procedure begins with the linearization of the non-linear power

system around an operating point to yield the linear differential equations of ns

state variables as

ẋs = As xs (5.18)
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where

xs ∈ Rns , As ∈ Rns×ns .

The vector xs is the system state vector and As is the system plant matrix. At

this stage the input-output matrices of the system need not be defined. The

procedure to develop the plant matrix As using the general structure of each

of the dynamic devices in the power system is described in Appendix A. The

plant matrix can be developed explicitly for a small power system comprising

up to several hundred states, but for a large scale power system it is implicitly

expressed using several intermediate matrices.

2. Identification of Critical Eigenvalues

The objective of the controller considered in this thesis is to address the rotor

angle stability of the power system, and it is assumed, for the sake of simplicity,

that the system will exhibit only this kind of stability problem. The frequency

of the electromechanical modes in a power system are usually in the range of

0.2 Hz to 2.0 Hz. Hence, the eigenvalues of As can be screened accordingly to

identify critical modes.

The electromechanical modes having a damping ratio below 0.025 are usually

considered critical modes, and a PSS is installed for such cases to apply correc-

tive measures.

It is possible to perform a complete eigenanalysis, i.e., calculation of all the

eigenvalues and eigenvectors, of a small system having several hundred states.

For a complete eigenanalysis of a matrix, a QR algorithm and its variant are

the most stable and commonly used algorithms. For a large scale power sys-

tem, the number of states can easily be tens of thousands. For such a system,

few eigenvalues around a point in the complex plane may be computed us-

ing the well known Implicitly Restarted Arnoldi method. This algorithm has

been implemented in the freely available software package ARPACK [38]. The

80



implementation of the program for the case of a power system is shown in

Appendix C.

3. PSS location and output variables

The next step is to identify the most suitable generator to equip with a PSS

to improve the damping of the critical mode(s) identified in the previous step.

The most commonly used procedures for this are analyzed in § 3.2. The method

suggested in [13] is practical at the same time is the most accurate, which can

be summarized as: using the participation factor between the speed of the

generators and poorly damped modes, screen the potential locations for the

PSS, and then select the most suitable location by further evaluating them

using residues.

Input and output matrices for various candidate generators are computed at

this stage in order to carry out the residue analysis. The residues between as

many system outputs as possible that are local to the candidate generators and

local input are computed in order to identify their effectiveness in improving

the damping of the critical mode(s). In this manner the system outputs most

suitable to be employed as PSS inputs can readily be identified.

During sensitivity analysis, the dynamics of the filters can be excluded. Since

the filters are designed to provide a gain close to unity and close to zero phase

shift at the frequency of interest, the impact of filters on the sensitivity results

will be negligible.

After choosing the PSS location and the number and type of outputs, the input

and output matrices of the system are calculated and included in the linearized

system (5.18). The resulting ns-state, m̄-input, and rs-output linearized power

system is given by
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ẋs = As xs +Bs ū

ys = Cs xs (5.19)

where

xs ∈ Rns , ū ∈ Rm̄, ys ∈ Rrs

and the matrices are of appropriate dimensions.

4. Critical eigenvalues and their new location

The next step is the selection of the critical open-loop eigenvalues, those are

to be assigned new locations. The set will comprise m such critical eigenval-

ues, {λ̄1, . . . , λ̄m}. There is no restriction on the number of eigenvalues to be

included in the set; however, the eigenvalues included should be observable and

controllable (i.e., should be sensitive to the PSS inputs and outputs), and their

relocation should be justifiable based on some or all of the potential benefits

described below.

The set will definitely include the critical eigenvalues identified in Step 2, as

those have warranted corrective measures in the first place. Additionally, the

eigenvalues having higher sensitivities to the selected input-output pair(s) will

be included in the set. For example, when a PSS is installed on a generator to

improve the damping of an inter-area mode, then the local mode of the generator

is also likely to be very sensitive to the PSS. As described earlier, the algorithm

will try to move the open-loop eigenvalues to the prescribed locations. Hence,

the inclusion of such sensitive eigenvalues (in this case plant mode) in the set

of critical eigenvalues will ensure that they are moved precisely to a desirable

location when MONLP is solved, and the uncertainty regarding the movement

of sensitive eigenvalues can be avoided.

After identifying the set of critical eigenvalues, {λ̄1, . . . , λ̄m}, new locations to be

assigned to each of them {λ1, . . . , λm} are selected. While moving an eigenvalue
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to a new location, its real part is usually made more negative without altering its

imaginary part. The real part may be made sufficiently small (i.e., sufficiently

more negative) so that the damping ratio satisfies the criteria. The controllers

will be designed subsequently using the proposed algorithm to assign the set of

eigenvalues {λ1, . . . , λm} to the close-loop system.

The set of eigenvalues to be assigned should comprise either real eigenvalues

or complex conjugate pairs of eigenvalues. This condition is imposed by the

fact that assignment of only real eigenvalues or complex conjugate pairs of

eigenvalues will yield a real valued controller.

5. Filter Design

The outputs of the system ys in (5.19) are usually filtered using high pass

washout before supplying them to the PSS. The purpose of the filter and the

design method are described in § 3.3.1. Additional filters may be employed

(e.g., band pass, low pass) to generate more signals from a given system output

in order to make the controller selectively respond to the problem modes. Thus,

the dimension of output ȳ that is available to the PSS can be higher than the

dimension of the system output ys.

The dynamics of the filter can be expressed in state space form having nf -states;

rs-input and r̄-output as

ẋf = Af xf +Bf ys

ȳ = Cf xf +Df ys (5.20)

where

xf ∈ Rnf , ys ∈ Rrs , ȳ ∈ Rr̄

and the matrices those described dynamics of filter are of appropriate dimen-

sions. The output of the filter ȳ will then be supplied to the SS type PSS.
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6. Dynamic compensator states [4]

As noted in § 4.3.1, the maximum eigenvalues that can be assigned to the

closed-loop system are equal to the number of inputs to the system when using

the partial left eigenstructure assignment technique in the design of a propor-

tional output feedback controller. A power system stabilizer normally controls

the power network through one output signal, typically through the reference

voltage setting of the exciter. Hence, from the point of view of the controller,

the power system appears to be a single input system. However, it is usually

necessary to relocate at least one complex conjugate pairs of eigenvalues, (i.e.,

at least two eigenvalues), to more favorable locations. Thus, assignment of the

desired number of eigenvalues is not possible by employing a strictly propor-

tional output feedback controller. Nonetheless, as described in § 4.2, employing

a dynamic compensator type controller having a states will increase the effective

number of system inputs (and outputs as well) by a when the system is trans-

formed into its equivalent proportional output feedback control system. This

will permit assignment of additional a eigenvalues. Hence, if m eigenvalues are

to be assigned and system inputs are m̄, then the required minimum number of

dynamic compensator states is given by a = m− m̄.

Of course, a dynamic compensator can be employed with states greater than

(m − m̄); however, this will not provide any additional benefits. In such a

situation, the number of inputs of the equivalent system will be (m̄+a) greater

than the number of assigned eigenvalues (m). Moreover, the resulting increased

number of outputs will not be beneficial in improving the left eigenvector of the

eigenvalues to be assigned.

Therefore, the number of dynamic compensator states must be selected to be the

minimum number that will enable assignment of m eigenvalues, i.e., a = m−m̄.
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7. Control system

The control system resulting from the combination of linearized power system
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Figure 5.5: (a) Schematic of the control system comprising a linearized power sys-

tem, a filter and a dynamic compensator. (b) Equivalent linear proportional output

feedback control system.

in (5.19), the filter in (5.20), and the dynamic compensator in (5.2) is described

schematically in Fig. 5.5.a. The eigenstructure assignment technique is suitable

for the proportional output feedback controller. Hence, for the purpose of the

design of the dynamic compensator parameters using the eigenstructure assign-

ment technique, the system can be transformed into its equivalent linear output

feedback control system shown Fig. 5.5.b. The equivalent system is given by

ẋ(t) = Ax(t) +B u(t)

y(t) = C x(t)

u(t) = K y(t) (5.21)
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where

x =


xs

xf

z

 , u =

 ū

ż

 , y =

 ȳ

z



A =


As 0 0

Bf Cf Af 0

0 0 0

 , B =


Bs 0

0 0

0 Ia

 , C =

Df Cs Cf 0

0 0 Ia



K =

G F

E D


x ∈ Rn, u ∈ Rm, y ∈ Rr

n = ns + nf + a,m = m̄+ a, r = r̄ + a (5.22)

8. Optimizing the parametric vector

After formulating the control system as above, a single objective function de-

fined by (5.17) shall be optimized using a suitable optimization algorithm. The

nonlinear simplex algorithm described in Appendix E is used in this thesis.

A PSS or a controller can now be designed using the above described procedure to

optimally assign partial left eigenstructure to the closed-loop system so that excitation

of selected critical modes is minimized in addition to moving them to a preselected

location in the X − Y plane.

5.7 Proposed Algorithm and Practical Controller

Design

In a practical environment often coordinated and robust design of controllers are

required [39]. Whereas, using the proposed algorithm only one controller can be

designed for a given operating point. The proposed algorithm is reviewed from the

robustness and coordinated design perspective in the following.
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For a practical application, the controllers are required to be robust, i.e., they

should work effectively work well over a range of operating conditions, because the

operating point of a power system can changes significantly over a period of time. For

example the generator dispatches and loads during summer time and during winter

time can be significantly different. The robustness criteria is not included in the

proposed algorithm. However, it is still possible to design a robust controller in an

indirect method using the proposed algorithm. As described in §5.5, the optimization

process using a different starting point may converge to a different local minimum

resulting in a different controller solutions. The different controllers generated from

several of these starting choices can be further compared amongst themselves in order

select the robust controller that works well over a range of operating points. A robust

controller will be designed in such a manner for a wind-turbine generator in the

following chapter.

A typical power system usually comprises more than one controllers that are em-

ployed to address small signal stability problems. By means of coordinated design of

such controllers, the parameters for all the controllers can be designed simultaneously

to optimally realize collective small signal stability enhancement objectives. In the

proposed algorithm, problem of design of only one controller is considered. How-

ever, the coordinated design of multiple controller can be implemented with little

modification.

Thus, the proposed method has some limitations for the practical application

that are not addressed in this thesis. Yet, the research work presented in this thesis

is the first successful step in the direction of practical application of eigenstructure

assignment in the design of power system controllers.
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Chapter 6

Application of Proposed PSS

Design Algorithm

The PSS design algorithm that will assign the optimal left eigenstructure was pre-

sented in the previous chapter. Practical applications of the proposed technique and

its superiority over the conventional frequency domain method are demonstrated in

this chapter by designing PSSs for three different systems having small-signal stability

problems:

1. Two-Area, Four-Generator System: The system exhibits a poorly damped

inter-area mode.

2. Doubly Fed Induction Generator (DFIG) System: The system exhibits unstable

blade and turbine oscillation modes.

3. Mid-continent Area Power Pool (MAPP) System: The system has an unstable

local plant mode.

As discussed in Chapter 4, the output of the system (the number of system outputs

and output variables) is one of the important factors that define the subspace where

the assignable left eigenvector lies. Thus, the system outputs will be a key factor

in determining the possible excitation minimization of the assigned critical modes.
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Hence, different system outputs are explored when designing the PSSs using the

proposed method, and their effectiveness in minimizing undesirable oscillations is

evaluated using transient simulations. Additionally, the dynamic performances of the

PSSs designed using the proposed technique are compared against the PSSs designed

using the conventional method.

6.1 Two-Area, Four-Generator System

In Chapter 3, the conventional frequency domain PSS design method was demon-

strated using a two-area, four-generator system. The same system with a slightly

different value of power flow and dynamic data is used here. The single-line diagram

of the system is shown in Fig. 6.1, and the line impedances and load flow are marked

in the figure, and the dynamic data of the devices are shown in Appendix D. Power

transfer of 400 MW from Area-1 to Area-2 is considered. The modeling details of the

system are described in detail in § 3.4.

Bus-1 Bus-2

Bus-3 Bus-4

Bus-5

Bus-6

Gen.-1 Gen.-2

Gen.-3
Gen.-4

Area-1

Area-2

z=0.0025+j0.025 pu
z=0.001+j0.010 pu

z=0.022+j0.22 pu

1.02 pu
0.00 Deg

1.02 pu
55.08 Deg

1.02 pu
64.28 Deg

1400MW
250MVAR

242.41 MVAR

900MW
250MVAR

400 M
W

P=664 MW
Q=12.85 Mvar

1.02 pu
-7.84 Deg

z=0.0025+j0.025 pu
z=0.001+j0.010 pu

0.98 pu
47.70 Deg

0.98 pu
-13.71 Deg

244.25 MVAR

P=670.4 MW
Q=500.0 Mvar

P=565.98 MW
Q=-17.69 Mvar

P=500.0 MW
Q=486.5 Mvar

slack

Figure 6.1: One line diagram of 2-Area, 4-generator system.
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Possible advantages of using generator speed and electrical power, two locally and

conveniently available signals, as input(s) to the PSS for the eigenstructure assignment

based design methods are investigated in this sections.

6.1.1 Open Loop System Analysis

The eigenanalysis of the system without PSS reveals three electromechanical modes

of oscillations. Table 6.1 shows the frequency and damping ratio of the modes; the

magnitude of the participation factors between the modes and the state variable

generator speeds; and mode shapes of generator speeds.

For the first mode (0.335 Hz), all the generators have high participation and the

mode shape angle suggests oscillation of generators in Area-1 against Area-2, which

indicates that it is an inter-area mode. The second mode is a plant mode for Area-1

because Gen-1 and Gen-2 in the area have high participation in the mode, and they

oscillate against each other according to the mode shape angle. Similar analysis of

third mode suggests it is a plant mode for Area-2.

The plant modes are well damped, but the inter-area mode is poorly damped. In

order to assess the transient performance of the system, the system was simulated

for a three phase fault at Bus 4 that was removed after 0.2 s. The transient response

of the speed of the four generators are shown in Fig. 6.2. It can be seen that the

high frequency transients die out within 2.5 s of removal of the fault. Subsequently,

a poorly damped 0.3 Hz frequency inter-area mode dominates the responses. The

speed of the generators are oscillating even after about 30.0 s from removal of the

fault.

In order to improve the transient performance of the system, PSSs are designed

using the conventional frequency domain method and designed using the proposed

algorithm in the sections that follow.
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Table 6.1: Electromechanical modes of the system without a PSS.

Mode M1 (λ̄1, λ̄
∗
1) M2 (λ̄2, λ̄

∗
2) M3 (λ̄3, λ̄

∗
3)

Eigenvalue −0.06± j2.1 −1.3± j7.7 −1.5± j7.5

Freq. (Hz) 0.335 1.23 1.2

Damp. Ratio(%) 2.8 16.13 19.08

Generator |pf | Mode |pf | Mode |pf | Mode

Shape Shape Shape

G1 0.43 0.41∠26◦ 0.92 0.92∠−172◦ 0.00 0.02∠27◦

G2 0.35 0.43∠27◦ 1.00 1.00∠0◦ 0.00 0.02∠−54◦

G3 1.00 1.00∠−2◦ 0.00 0.09∠111◦ 0.86 0.88∠−175◦

G4 0.88 1.00∠0◦ 0.00 0.10∠−109◦ 1.00 1.00∠0◦
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Figure 6.2: Transient response of the speed of generators without a PSS.
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6.1.2 Selection of PSS Location

The procedure for selection of the PSS location was described in § 3.2, and the residues

of the critical inter-area mode are used for that purpose.

Generator speed is the most commonly used input for a conventional PSS. Local

generator power is another easily accessible variable. For a controller designed using

the eigenstructure assignment method, speed and power are considered as candidate

input to the PSS in order to investigate the possible advantages of using different

system output and more than one system output. The output of the PSS will then

be used to modulate the voltage reference signal Vref of the local excitation system.

Therefore, the residues are evaluated for each generator between the local exciter

input Vref and the local outputs speed and electrical power. The magnitude of the

calculated residues are shown in Table 6.2 and their arguments are shown in Table 6.3.

Table 6.2: Magnitude of the residues between the generator speed

and power output and the exciter Vref input of different generators

for the critical inter-area mode.

M1 M2 M3

Generator (−0.06± j2.1) (−1.3± j7.7) (−1.5± j7.5)

speed power speed power speed power

G1 0.0073 0.2107 0.0072 0.7231 0.0000 0.0015

G2 0.0138 0.3773 0.0054 0.5509 0.0000 0.0009

G3 0.0134 0.3738 0.0000 0.0005 0.0067 0.6633

G4 0.0258 0.7057 0.0000 0.0025 0.0053 0.5229
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Table 6.3: Argument of the residue between the generator speed and

power output and the exciter Vref input of different generators for the

critical inter-area mode.

M1 M2 M3

Generator (−0.06± j2.1) (−1.3± j7.7) (−1.5± j7.5)

speed power speed power speed power

G1 −26.1◦ −134.8◦ 85.9◦ −0.5◦ 0.2◦ −84.5◦

G2 −21.0◦ −111.5◦ 68.2◦ −13.1◦ 136.5◦ 57.0◦

G3 120.9◦ 19.0◦ 127.1◦ 42.7◦ 82.3◦ −0.4◦

G4 126.6◦ 35.6◦ 0.2◦ −81.2◦ 70.2◦ −9.5◦

The main objective of PSS design is to improve the damping of the least damped

inter-area mode. Hence, for PSS siting purposes the residue of mode M1 will be

examined. For mode M1, Generator-4 has the highest residue for the speed and

power outputs of all the generators. Therefore, Generator 4 is the optimal location

to install a PSS, irrespective of type of PSS employed.

6.1.3 Conventional PSS Designed in the Frequency Domain

As shown in Fig. 6.3, the lead-lag type PSS considered here comprises a filter and

two lead-lag blocks. This PSS is designed using the conventional frequency domain

method.
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Figure 6.3: Single input PSS1A (lead-lag) type PSS.
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For acceptable dynamical performance of the sample system it is necessary to

improve the damping ratio of the inter-area modes to a certain minimum value. Here,

a 5% damping ratio is considered acceptable; and accordingly, the objective of the PSS

design is to improve the damping ratio of the inter-area mode to at least 5% by moving

the associated complex conjugate pair of eigenvalues further left in the complex plane.

This requires that the inter-area mode be relocated from (−0.06±j2.1) to somewhere

about (−0.105± j2.1).

6.1.3.1 PSS Parameters

The purpose of the washout filter is to remove dc components present in the input

signal, and it does not play a very critical role in PSS performance. The role of

the washout filter and the guidelines for selection of the washout filter constant are

described in § 3.3.1. Accordingly, the value of 10.0 s is selected for time constant TW .

The PSS design procedure described in § 3.3.2.1 is used to design the lead-lag

blocks of the PSS. Accordingly, the required phase compensations to improve damping

of the inter-area mode (λ̄1, λ̄
∗
1 = −0.06 ± j2.1) for the speed input and the power

input PSSs, are shown in Table 6.4. Each of the lead-lag blocks was designed so

that it provides half of the required phase compensation with maximum gain at

the inter-area mode frequency of 2.1 rad/s (0.33 Hz). The values of the lead-lag

parameters calculated in this manner are shown in Table 6.4. The approximate gains,

evaluated after determining the lead-lag parameters for speed input and power input

PSSs are shown in Table 6.4 in the “Approximate Gain” column. If the PSS, when

using approximate gain, has not improved the damping of the inter-area mode to

the desired value of 5%, then the value of gain is adjusted until the desired damping

is achieved. The final value of the gain is shown in Table 6.4 in the “Final Gain”

column.
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Table 6.4: The lead-lag type PSS parameters designed using the residue

method.

Input Phase T1=T3 T2=T4 Gain (Ks)

Compensation Approximate Final

Speed 50.7◦ 0.7582 0.3114 0.73 0.705

Power 141.6◦ 2.7495 0.091371 0.0019 0.0019

6.1.3.2 Results

Speed Input Lead-Lag Type PSS

A speed input lead-lag type PSS (simplified IEEE stabilizer type PSS1A) designed

using the frequency domain method was incorporated into the system model for

small-signal and nonlinear transient analysis purposes. The electromechanical modes

of the oscillations of the system are shown in Table 6.5. By comparing the frequencies

of the electromechanical modes of the closed-loop system with those of the open loop

system shown in Table 6.1, it can be observed that implementation of the PSS has

improved the damping of the inter-area mode without altering its frequencies or any

other electromechanical modes.

Table 6.5: Electromechanical modes of the system with the

speed input lead-lag type PSS.

No. Eigenvalue Freq. Damping Dominant

(Hz) (%) state

1 −0.1058± j2.1063 0.3352 5.01 δ3

2 −1.2632± j7.7302 1.2303 16.13 ω2

3 −1.4677± j7.5552 1.2024 19.07 ω4
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This is further confirmed using non-linear simulations of the system. The transient

response of the speed of generators for the case without a PSS and for the case with

the speed input PSS are compared in Fig. 6.4.
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Figure 6.4: Transient response of the speed of generators for the case without a PSS

and that for the case with the speed input PSS1A (lead-lag) PSS.

It is evident from the plot that 0.3 Hz is the dominant frequency (which is the

inter-area mode frequency) in the speed transients in both cases, and it is also evi-

dent that there is better damping for the case with the PSS. Hence, the speed input

PSS designed using the frequency domain method has improved the damping of the

inter-area mode without altering its frequency. As mentioned earlier, the conventional

design method does not attempt to alter the eigenstructure of the system. This is

evident from the properties of the inter-area mode shown in Table 6.12. The table

shows the right and left eigenvector entries corresponding to generator speed. Since

the inter-area mode is dominant in the transients, only the properties of the inter-area

mode are produced; and since the mode is electromechanical, only the entries corre-
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sponding to the speed are produced. It can be seen from the table that the values of

the eigenvectors for the system with the speed input lead-lag PSS are very similar to

those of the open-loop system.

Power Input Lead-Lag Type PSS

The electromechanical modes of the oscillations of the system with the power input

PSS are shown in Table 6.6. Similar to the previous case of a system with the speed

input PSS, the power input PSS has improved the damping of the inter-area mode

without altering its frequency or any other electromechanical mode. The comparison

of the generator speed responses of the system with the power input PSS to those of

the system without a PSS in Fig. 6.5 shows that the power input PSS, like the speed

input PSS, has improved the damping of the inter-area mode.

The transient response of the speed of generators for the power input PSS cases

are compared with those of the speed input PSS in Fig. 6.6. The identical response

suggest that the eigenstructure of the electromechanical modes (the dominant modes

in transients) for both the systems are identical. This is due to the fact that no

attempt is made to alter the associated eigenstructure of the mode. This is evident

from the values of the generator speed entries of the eigenvectors of the inter-area

mode shown in Table 6.12.

Table 6.6: Electromechanical modes of the system with the

power input lead-lag type PSS.

No. Eigenvalue Freq. Damping Dominant

(Hz) (%) state

1 −0.1052± j2.1042 0.3349 5.00 δ3

2 −1.2638± j7.73315 1.2305 16.13 ω2

3 −1.6023± j7.9486 1.2651 19.76 ω4

97



0 5 10 15 20 25 30

59.9

59.95

60

60.05

60.1

Time (s)

S
pe

ed
 (

H
z)

G1− Speed comparision

 

 
No PSS
PSS1A

0 5 10 15 20 25 30

59.9

59.95

60

60.05

60.1

Time (s)

S
pe

ed
 (

H
z)

G2− Speed comparision

 

 
No PSS
PSS1A

0 5 10 15 20 25 30

59.9

59.95

60

60.05

60.1

Time (s)

S
pe

ed
 (

H
z)

G3− Speed comparision

 

 
No PSS
PSS1A

0 5 10 15 20 25 30

59.9

59.95

60

60.05

60.1

Time (s)

S
pe

ed
 (

H
z)

G4− Speed comparision

 

 
No PSS
PSS1A

Figure 6.5: Transient response of the speed of generators for the case without a PSS

and that for the case with the power input PSS1A (lead-lag) PSS.
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Figure 6.6: Transient response of the speed of generators for the case with the power

input PSS1A (lead-lag) PSS and that for the case with the speed input PSS1A (lead-

lag) PSS.
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6.1.4 SS type PSS Design using the Eigenstructure Assign-

ment Technique

The SS type PSSs in this section are designed to improve the damping of the critical

mode and to assign an optimal left eigenvector using the algorithm developed earlier.

The number of inputs and the signals used for inputs will play a critical role in the

determination of the assignable left eigenstructure. Hence, in order to assess the im-

provement in eigenstructure made possible by employing alternate inputs signals and

by employing more than one signal, the following three different PSSs were designed

using the proposed technique:

• Speed input PSS

• Power input PSS

• Speed and power input PSS

6.1.4.1 Filters

An SS type PSS comprises a filter and a dynamic compensator, as described in § 5.1.

The block diagram of the single input SS type PSS is shown in Fig. 6.7 and the block

diagram for the dual input SS type PSS is shown in Fig. 6.8. The block diagrams

show the detailed filter transfer functions.
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Figure 6.7: Block diagram of the single input state-space (SS) type PSS.

A simple high-pass washout filter, similar to the one used for the PSS1A type PSS

in § 6.1.3, is considered for the single input type PSS; and the washout filter time
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Figure 6.8: Block diagram of the dual input state-space (SS) type PSS.

constant of 10.0 s selected for the Stab1 type PSS is also chosen for the single input

SS type PSS.

For the dual input SS type PSS, the detailed filter model used in the dual input

IEEE type PSS2A type PSS [8] is selected. The Tw1-Tw4 control blocks are washout

filters for the inputs, and the T4-T5 control blocks represent an output measurement

transducer. The practical parameters of the filters and transducers presented in [5]

were used here and are shown in Table 6.7.

Table 6.7: Filter and transducer parameters [5]

for the dual-input SS type PSS.

Tw1 Tw2 Tw3 Tw4 Tw5 Tw6 K

10.0 10.0 10.0 30.0 0.1 10.0 1.462

6.1.4.2 Critical Eigenvalues and Their New Locations

The main objective of the design is to improve the damping ratio of the critical

inter-area mode to 5% without altering its frequency. Hence, as a first design criteria

the inter-area mode (−0.059± j2.10) will be moved to (−0.1058± j2.10). The PSS
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is to be installed on Gen-4 as determined in § 6.1.2. It is evident from Table 6.2 that

the Area-2 plant mode (Mode 3) is sensitive to the signals to be used as PSS input. In

order to ensure it moves to a suitable well-damped location when MONLP is solved,

the plant mode (−1.463± j7.5345) will be moved (−1.6± j7.5345).

Thus, one of the objectives of SS type PSS design is to move open-loop eigenvalues

Λ̄m = {−0.059± j2.10,−1.463± j7.53} to Λm = {−0.1058± j2.10,−1.6± j7.53}.

6.1.4.3 Selection of the Dimension of the Dynamic Compensator

According to the design criteria established in the previous step, four eigenvalues (two

sets of complex conjugate pairs of eigenvalues) along with their left eigenvectors are

to be assigned to the closed-loop system. In order to make this possible, at least four

system inputs (m = 4) are required (§ 4.3). However, the linearized system offers

only one input (i.e., m̄ = 1), Vref of the excitation system of Gen-4. In order to be

able to assign the desired number of eigenvalues, the dynamic compensator with the

minimum required dimension a = m− m̄ = 4− 1 = 3 (§ 5.6) for the state vector is

selected.

6.1.4.4 SS type PSS Parameters

After selecting the eigenvalues to be assigned to the closed-loop system and the di-

mension of the dynamic compensator, the PSSs were designed to optimally assign

the left eigenstructure by solving MONLOP, as described in § 5.4. The designed PSS

parameters for the three SS type PSSs are shown in Table 6.8.
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PSS

Input

D E F G

Speed


1.8 3.34 4.99

−10.73 −3.57 6.81

−3.89 −2.0 −2.78




0.42

2.13

1.32

 (
2.97 3.62 1.28

) (
0.68

)

Power


−14.55 −46.51 −52.38

13.45 −30 7.90

−3.92 21.95 16.2




1.02

1.28

−1.40

 (
−0.77 −1.31 −1.89

) (
0.22

)

Speed &

Power


−4.59 5.70 17.75

−4.58 −8.42 −11.62

10.96 4.00 −7.12




−7.33 −11.46

−3.35 1.16

13.04 12.51

 (
−65.71 −39.95 16.06

) (
−48.84 −52.87

)

Table 6.8: Parameters of the speed input, power input and speed-power (dual) input SS type PSSs.
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6.1.4.5 Results

In the previous section, the following three PSSs were designed using the proposed

eigenstructure assignment algorithm:

• Speed input PSS

• Power input PSS

• Speed and power input PSS

The transient performance of the system and the eigenstructure of the inter-area

mode of the system with above PSSs implemented as separate cases are analyzed in

this section.

Speed input SS type PSS

The electromechanical modes of the oscillations of the system are shown in Table 6.9.

Note that the eigenvalues associated with Modes 1 and 3 are the eigenvalues assigned

to the closed-loop system during design. Fig. 6.9 shows the trace of the open-loop

electromechanical modes (M1 = −0.059 ± j2.1062 and M2 = −1.463 ± j7.534)

for a gradual increase in the F and G gains of the PSS from zero to their fi-

nal values (the corresponding values in first row of Table 6.8). The trace shows

that the PSS has moved the open-loop eigenvalues to their assigned locations, as

desired, (i.e., Λ̄m = {−0.059 ± j2.1062,−1.463 ± j7.5345} are moved to Λm =

{−0.1058± j2.1063,−1.6± j7.5345}).

The generator speed transients with the speed input lead-lag PSS and an SS type

PSS are compared in Fig. 6.10. It evident that the transient responses of the two

systems are identical, which suggests that the eigenstructure of the inter-area mode

could not be altered by the speed input SS type PSS. This can be ascertained from

the entries of the eigenvectors of the inter-area mode shown in Table 6.12.
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Table 6.9: Electromechanical modes of the system with the

speed input SS type PSS.

No. Eigenvalue Freq. Damping Dominant

(Hz) (%) state

1 −0.1058± j2.1073 0.3354 5.01 δ3

2 −1.2624± j7.7335 1.2308 16.11 ω2

3 −1.600± j7.5345 1.1992 20.77 ω4
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Figure 6.9: Mode traces of the system with the speed input SS type PSS for increasing

gain from zero to the designed value.
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Figure 6.10: Transient response of the speed of generators for the case with the speed

input SS PSS and that for the case with the speed input PSS1A (lead-lag) PSS.

105



Power input SS type PSS

In § 6.1.4, the power input SS type PSS was designed by assigning the optimal

eigenstructure. The electromechanical modes of the oscillations of the system with

this PSS are shown in Table 6.10.

Fig. 6.11 shows the trace of the open-loop electromechanical modes ( M1 =

−0.059 ± j2.1062 and M2 = −1.463 ± j7.534) for a gradual increase in the gains of

the PSS, F and G in Fig. 6.7, from zero to their final values (the values in the second

row of Table 6.8). The trace shows that the PSS has moved the open-loop eigenvalues

to their assigned locations, as desired.

The generator speed transients with the power input SS type PSS are compared

with those of a power input lead-lag type PSS in Fig. 6.12. The smaller magnitude

of the low frequency oscillation is evident from the plots and suggests a somewhat

improved eigenstructure of the system with the power input SS type PSS. This can be

ascertained from the eigenstructure of the inter-area mode shown in Table 6.12. It can

be seen that in this case, the magnitude of the left eigenvector entries corresponding

to speed have smaller magnitudes compared to those of the system without a PSS,

with the speed input lead-lag PSS, with the power input lead-lag PSS, and with the

speed input SS type PSS.

Table 6.10: Electromechanical modes of the system with the

power input SS type PSS.

No. Eigenvalue Freq. Damping Dominant

(Hz) (%) state

1 −0.1058± j2.1073 0.3354 5.01 ss3

2 −0.3082± j1.9081 0.3037 15.94 ss3

3 −1.2635± j7.7306 1.2304 16.13 ω2

4 −1.600± j7.5345 1.1992 20.77 ω4
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Figure 6.11: Mode traces of the system with the power input SS type PSS for in-

creasing gain from zero to the final design value.
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Figure 6.12: Transient response of the speed of generators with the power input SS

PSS and that for the case with the power input PSS1A (lead-lag).
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Speed and Power, Dual Input, SS Type PSS

The electromechanical modes of the oscillations of the system with the dual input

SS type PSS are shown in Table 6.11. Note that the eigenvalues associated with

Modes 1 and 4 are the eigenvalues assigned to the closed-loop system during design.

Fig. 6.13 shows the trace of the open-loop electromechanical modes ( M1 =

−0.059 ± j2.1062 and M2 = −1.463 ± j7.534). The trace shows that the PSS

has moved the open-loop eigenvalues to their assigned locations: Λm = {−0.1058 ±

j2.1063,−1.6± j7.5345}.

The speed transients of the system with the dual input SS type PSS are compared

with those of the system with the power input lead-lag type PSS in Fig. 6.14. The

substantially smaller magnitude of the low frequency oscillation is evident from the

figure, and is a direct consequence of the significantly altered eigenstructure of the

inter-area mode due to implementation of the speed-power input SS type PSS. This

can be ascertained from the eigenstructure of the inter-area mode shown in Table 6.12.

It can be seen that the entries of the left eigenvector and the participation factor for

Gen-1 to Gen-3 speed are significantly smaller. The combined effect is the negligible

excitation of the inter-area mode.

Table 6.11: Electromechanical modes of the system with the

dual-input SS type PSS.

No. Eigenvalue Freq. Damping Dominant

(Hz) (%) state

1 −0.1068± j2.1063 0.3352 5.06 ω4

2 −1.2635± j7.7307 1.2305 16.13 ω2

3 −0.3522± j2.0348 0.3239 17.05 ω4

4 −0.0171± j0.0818 0.0130 20.47 ω4

5 −1.6200± j7.6000 1.2096 20.85 δ4

6 −0.5029± j1.1707 0.18636 39.47 ω4
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Figure 6.13: Mode traces of the system with the dual input SS type PSS for increasing

gain from zero to the final design value.
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Figure 6.14: Transient response of speed of generators for the case with the speed-

power (dual) input SS PSS and that for the case with the speed input PSS1A (lead-

lag) PSS.
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Table 6.12: Modal Properties of the inter-area mode and the Area-2 plant mode

of the system without any PSS and of the system with different types of PSS.

State No Speed, Power, Speed, Power, Speed-power,

PSS lead-lag lead-lag SS SS SS

LEV

ω1 0.6678 0.7085 0.7084 0.7133 0.4435 0.0713

ω2 0.5284 0.557 0.5571 0.5607 0.3486 0.056

ω3 0.6481 0.6934 0.6924 0.6986 0.4343 0.0698

ω4 0.5658 0.6011 0.5875 0.6054 0.3667 4.1365

REV

ω1 0.2425 0.2462 0.2464 0.2461 0.2447 0.2463

ω2 0.2514 0.2552 0.2554 0.255 0.2536 0.2552

ω3 0.5862 0.5861 0.5858 0.5862 0.5829 0.5861

ω4 0.5887 0.5859 0.5857 0.5859 0.5826 0.5858

pf

ω1 0.1619 0.1744 0.1746 0.1755 0.1085 0.0175

ω2 0.1328 0.1421 0.1423 0.143 0.0884 0.0143

ω3 0.3799 0.4064 0.4056 0.4095 0.2531 0.0409

ω4 0.3331 0.3521 0.3441 0.3547 0.2136 2.4232

1 The right eigenvectors are normalized by their L2-Norm. Left eigenvectors

are normalized such that the dot product of the right and left eigenvectors

is unity.
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6.2 System with a Wind Turbine Generator[4]

6.2.1 System Description

The eigenstructure assignment procedure was used to design a combined power system

stabilizer and active damping controller for a very large DFIG wind turbine generator

in a projected wind power scenario in Scotland [40]. This unit is connected to a

large power system, as shown in Fig. 6.15. The generators G1 and G3 are steam

turbine driven round rotor synchronous generators rated at 2,800 MVA and 21,000

MVA, respectively [40]. They form a lumped equivalent of the network in the south

of Scotland and the networks of England and Wales, respectively. Generator G2

represents a large 2400 MW wind turbine park in northern Scotland equipped with

doubly fed induction generators (DFIG). The schematic diagram of the DFIG system

is shown in Fig. 6.16.

The model of the generators, the generator data, and the network data used in this

thesis are essentially identical to the model presented in[40]. The principal difference

of the model used in this thesis is the use of a more detailed three mass model for

the wind turbine, which allows investigation of the blade vibrations.

Load

Load

G1 G2

(DFIG)

G3

Fault

Bus1 Bus2

Bus3

Bus4Bus5

England-Wales

System Equivalent

Southern Scotland

System Equivalent Wind Park

Figure 6.15: One line diagram of the system comprising DFIG wind generation.

Each synchronous generator is represented using a sixth order model. Exciters
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Figure 6.16: Schematic of the wind turbine and the doubly fed induction generator

system.

and governors are also modeled. The loads are modeled as constant impedances, and

the DFIG system is represented using a third order model. The wind turbine system

is modeled using a three mass model, as shown in Fig. 6.17. In this model, at one end

the generator rotor is connected to the turbine hub via a shaft (including the gearbox).

The blades are mounted on the hub; they are not rigid, and for the purposes of the

model all the blades are assumed to oscillate in unison. The turbine hub-blade system

is represented by considering the hub to be connected to a third mass via a flexible

shaft. The oscillations in the speed of this third mass are considered to represent the

oscillations of the blades. Various constants of the three mass model are shown in

Table 6.13.The adequacy of lumped mass model of wind turbine considered in this

example is explained below.

In a typical wind turbine system, the forces generated by wind on the turbine

results in multitude of structural oscillatory modes. These oscillatory modes can be

studied using higher order representations of the structural dynamics [41]. Analysis

using detailed structure dynamics would provide useful information about stability

of a wind turbine and structure due to forces generated by wind.

On the other hand the transients generated in the electric system can also excite

certain oscillation modes of wind turbine. Usually the interaction between the electri-
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cal system and the turbine through subsynchronous oscillatory modes of turbine are

of chief concern. In order to study small signal stability of wind turbine-generator at

subsynchronous frequency, two or three lumped mass model of turbine is considered

adequate.

In this example case, the focus of the study is to examine the small signal stability

of a wind turbine and its structure during disturbances in the electrical system rather

that due to wind force. Hence, three lumped mass model of wind turbine has been

used in this case.

Blade

Mass

Mb

b

Turbine Hub & 

Gearbox Mass

Mt

t

Generator

Rotor Mass

Mg

r

Ktb Ktg

Figure 6.17: Three mass model of DFIG wind turbine.

Table 6.13: DFIG three mass model data.

Inertia constants Torsional stiffness

(MW·sec/MVA) (pu torque/electrical rad)

Hb Ht Hg Ktb Ktg

7.6416 1.2749 1.9250 5.6184 6.3912

The desired DFIG terminal voltage vs and stator power Ps are achieved by giving

the appropriate rotor voltage magnitude |vr| and phase angle ∠vr orders to the PWM

inverter. The signals are produced by the flux magnitude-angle controller (FMAC)

shown in Fig. 6.18 [40]. The power and voltage control loops of the DFIG produce

variations in generator torque that introduce negative damping at the turbine shaft

and rotor blade natural oscillation frequencies. To avoid instability, an active damping
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controller needs to be introduced into the DFIG control scheme to provide damping

of these oscillations in order to permit stable DFIG operation. The same controller

can be augmented so that it also provides a positive contribution to the damping of

network electromechanical oscillations by modulating the current injected into the

network by the stator of the DFIG. The designed PSS controller then performs the

dual task of stabilizing the low-frequency electromechanical oscillations and providing

the necessary damping to the DFIG shaft oscillations.

The controller designed using the proposed approach affects the system by adding

its output uc to the power reference order Ps−ref of the FMAC controller, as shown

in Fig. 6.18.

sv

s ref
v

s refP

sP

cu

rv

rv

 controllerrv

controllerir

ie

| |ie

+
-

-
+

-

Figure 6.18: Block diagram of flux magnitude-angle controller (FMAC).

A comprehensive range of operating conditions (slip and DFIG output power) for

the wind park are considered, as listed in Table 6.14. The components of output power

provided by the stator and rotor circuits are also listed in the table. The controller

is designed for the base case operating condition of a slip of -0.1 pu. As discussed

earlier in § 5.5, the nonlinear optimization problem has multiple solutions. The most

robust amongst these multiple controller designs (i.e., the one that provides the best

average transient performance at the other three operating conditions) is selected as

the final design.
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Table 6.14: Various operating conditions of the

DFIG system.

Slip DFIG stator DFIG rotor DFIG output

power (Ps) power (Pr) power (Pg2)

(MW) (MW) (MW)

-0.2 1928 -375 2303

-0.1 1622 -153 1775

0.1 1085 119 966

0.2 857 182 675

6.2.2 Controller Design Specifications

Three critical modes, M1, M2, and M3 of frequencies 4.81, 1.87, and 0.98 Hz, respec-

tively, are identified using eigenanalysis of the system. Two of these modes, M1 and

M2, are unstable modes, and the third mode, M3, is stable but has a small real part.

The damping and oscillation frequencies of the modes are shown in Table 6.15. Anal-

ysis of the participation factor and the mode shape suggest modes M1 (4.81 Hz), M2

(1.87 Hz), and M3 (0.98 Hz) are DFIG turbine oscillation, DFIG blade oscillation,

and conventional electromechanical oscillation modes, respectively.

As the controller is located on the DFIG (Generator 2), conveniently available

local signals - generator speed ω2 and power Pg2 - are selected as controller inputs.

These signals are effective in controlling the modes, which can be seen from the large

sensitivities (residues) between these modes and these signals, as shown in Table 6.16.

In order to make the controller selectively respond to the problem modes, these inputs

are first passed through signal-conditioning filters. Modes M2 and M3 fall in the pass-

band of the (2-15 rad/s) first filter whereas the 20 rad/s cutoff frequency high pass

filter allows M1 to pass unchanged. Thus, the presence of two filters in each of

the system outputs, (i.e., ω2 and Ps), increases the effective number of outputs of
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Table 6.15: Critical Modes of the system without con-

troller.

Mode Eigenvalue, Damping Frequency,

λ̄ = ᾱ± j β̄ ratio, ζ̄a(%) ω̄b(Hz)

M1 0.0885± j30.231 −0.29 4.81

M2 0.2692± j11.727 −2.23 1.87

M3 −0.5553± j6.185 8.94 0.98

a ζ , −α 100.0/|λ|
b ω , β/(2 π)

the system to four. The block diagram of the controller with filter and dynamic

compensator as distinct functional blocks is shown in Fig. 6.19.

The required re-located positions of the critical modes are shown in Table 6.17.

These positions correspond to the horizontal movements of the problem eigenvalues

to well damped positions in the left-hand side of the complex plane.

Table 6.16: Residues between various DFIG out-

puts and Ps−ref as input for the critical modes.

Output M1 M2 M3

Gen1 speed 0.0000 0.0006 0.0200

Gen2 (DFIG) speed 0.0083 0.0640 0.0039

Gen3 speed 0.0000 0.0000 0.0023

Gen1 power 0.0256 0.1628 2.5650

Gen2 (DFIG) power 0.0429 0.2176 1.0386

Gen3 power 0.0119 0.039 2.2471
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Figure 6.19: State-space (SS) type controller for the DFIG system.

Table 6.17: New locations of the critical modes.

Mode Assigned Damping Frequency

(Open-loop eigenvalue) eigenvalue ratio (%) (Hz)

M1 (0.0885± j30.231) −1.6± j30.2 5.29 4.81

M2 (0.2692± j11.727) −2.1± j11.7 17.67 1.86

M3 (−0.5553± j6.185) −1.5± j6.2 23.51 0.99

6.2.3 Controller Design Results

The dynamic compensators were designed using the proposed algorithm, which moves

the critical modes horizontally to well-damped locations in the left-hand complex

plane. As discussed in § 5.4.3, this procedure also selects the optimal associated left

eigenvector to minimize possible adverse excitation of the problem modes. Controller1

is a design obtained using the proposed method. The parameters of the Controller1
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are

D =



−7.02 −1.27 7.71 10.64 0.91

−4.97 −2.47 −3.09 6.18 −7.63

−10.58 −5.53 1.86 −15.93 8.11

−17.44 −11.18 12.42 −2.43 −12.50

−10.86 10.63 −4.4 15.93 −1.32



E =



3.37 −16.41 0.12 0.29

1.99 −12.95 0.03 −0.18

9.78 −12.30 0.03 −0.01

0.12 −15.33 0.05 0.37

−9.81 14.01 −0.08 −0.06


F =

(
−16.79 −20.14 −26.58 −22.20 26.34

)
G =

(
15.45 12.66 0.44 2.37

)
. (6.1)

A second design, Controller2, was designed using the same procedure as that used

for Controller1, except that the weight associated with the sub-objective function

quantifying optimal left eigenvector β3 in (5.17) was set to zero. This is somewhat

similar to using the conventional pole-placement algorithm normally employed for

control system design. The controller designed in such manner ensures that critical

modes move to their assigned (better damped) locations. Additionally, in contrast to

conventional pole placement, the method used to develop Controller2 ensures that the

unassigned closed-loop eigenvalues are also acceptable. However, unlike Controller1,

118



the associated left eigenvectors are not optimized. The parameters of Controller2 are

D =



−9.45 2.57 9.55 15.02 −1.96

−8.37 0.10 −3.03 8.93 −9.35

−12.25 −3.48 2.20 −13.45 6.49

−14.44 −13.24 13.14 −4.34 −11.57

14.49 6.07 −5.25 10.61 −7.90



E =



0.97 −16.86 0.10 −0.06

2.05 −14.23 −0.10 −0.07

8.96 −12.89 −0.09 −0.09

−1.51 −13.80 −0.25 −0.12

−8.00 15.18 0.12 0.12


F =

(
−13.74 −9.80 −17.15 −9.23 17.73

)
G =

(
1.95 15.91 0.22 0.08

)
. (6.2)

The effectiveness of the PSSs in improving the transient performance was eval-

uated by nonlinear simulation of a 4-cycle 3-phase fault at the location shown in

Fig. 6.15. Fig. 6.20 shows the transient response of the rotor speed deviation of gen-

erators G1 (ω1) and DFIG (ω2), and the DFIG turbine hub speed deviation (ωh). The

superiority of Controller1, which is based on eigenstructure assignment, is clearly ev-

ident. The magnitudes of the low frequency oscillation in the speed signal ω1, and

the high frequency oscillation in signals ω2 and ωh, are smaller with Controller1 than

with Controller2.

Although Controller1 and Controller2 were stable at the designed operating

point, they were unstable at the other operating point where slip = 0.2 (row 4

of Table 6.14). This is evident from the transient response of ω1, ω2, and ωh shown

in Fig. 6.21. A solution to this problem is possible by realizing that the MONLOP

optimization procedure produces several locally-optimal solutions depending on the

starting point for optimization, as discussed in § 5.5. Each of the multiple solu-
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tions can be evaluated as to its effectiveness in achieving good transient performance

at operating points different from the operating point for which the controller was

designed. This selection allows the design of a more ‘robust’ controller. In this exam-

ple, Controller3 is another such design obtained with a different optimization starting

point than the one used for obtaining Controller1. The parameters of Controller3

are

D =



−8.14 1.40 12.65 12.50 −3.6

−7.06 −0.57 0.11 6.95 −11.14

−1.73 −4.03 4.29 −15.11 5.74

−14.86 −12.34 10.13 −2.56 −9.92

13.19 7.40 −9.69 14.07 −5.99



E =



1.00 −16.65 0.14 −0.11

1.58 −13.99 0.06 −0.56

9.09 −12.63 −0.21 −0.30

−0.33 −13.99 −0.08 0.73

−8.00 14.74 0.19 0.54


F =

(
−14.14 −13.90 −13.54 −15.32 17.58

)
G =

(
4.36 16.27 −0.15 1.63

)
. (6.3)

As seen in Fig. 6.22, the dynamic response of Controller1 and Controller3 are

very similar at the designed operating point. However, in contrast to Controller1 and

Controller2, Controller3 is stable with good transient response at the other operating

points also (Fig. 6.23), and is hence selected as the final design.
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Figure 6.20: Transient response of speeds for the case with Controller1 and that for

the case with Controller2 when operating at slip = −0.1 pu.
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Figure 6.21: Transient response of speeds for the case with Controller1 and that for

the case with Controller2 when operating at slip = +0.2 pu.
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Figure 6.22: Transient response of speeds for the case with Controller1 and that for

the cases with Controller3 when operating at slip = −0.1 pu.
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Figure 6.23: Transient responses of speeds for the case with Controller3 when oper-

ating at different slips.
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6.3 Large Power System

In previous sections, the proposed eigenstructure assignment based algorithm was

used in the design of controllers for small systems. The results clearly show the ad-

vantage of the proposed technique over the conventional frequency domain method.

In this section, the PSS is designed for a large power system. The results demon-

strate that the proposed algorithm is equally suitable in the design of controllers for

a practical large power system, and that, it is possible to achieve better dynami-

cal performance for a large-scale systems by employing a controller designed using

the algorithm compared to that obtained by employing a PSS designed using the

conventional design technique .

The application of the proposed technique involves various mathematical opera-

tions on matrices. The computations involving small matrices, such as those associ-

ated with the relatively smaller systems described in previous sections, can be carried

out in a relatively straightforward manner using the basic subroutines available in

commercial programs. The use of such techniques and programs for a large power

system is computationally prohibitive. The available techniques and programs suit-

able specifically for large matrices and used in the design of controllers for large power

systems are shown in Appendix C.

6.3.1 System Description

In this section, a PSS for the Manitoba Hydro system is designed using the proposed

algorithm. The Manitoba Hydro system is an integral part of the mid-continent area

power pool (MAPP) system, which is inter-connected electrical system of upper Mid-

west North American area and comprise electrical utilities of Manitoba, Minnesota,

Nebraska, North Dakota, Wisconsin, Montana, Iowa, and South Dakota. The model

comprises the generation, load, and transmission network of the complete upper mid-

western part of North America. The summary of the power system model is shown
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in Table 6.18 to Table 6.19. The case considered here represents the peak load flow

during summer. The total number of state variables of the system is 28,883. As

described in Appendix A, calculation of intermediate matrices is the first step in the

small-signal study of the system. The required intermediate matrices for controller

design purposes were obtained using a small-signal analysis tool (SSAT), a component

of the commercial program DSATool by Powertech Labs Inc.

Table 6.18: MAPP power system sum-

mary.

Component Numbers

Buses 21747

Areas 138

Zones 358

Generating units 3847

Loads 14930

Fixed shunts 4310

Switched shunts / SVCs 1644

Lines 24500

Adjustable transformers 8466

Table 6.19: Summary of powerflow of the MAPP

power system.

MW Mvar

System
Generation 577393.9 136509.6

Total Load 564924.1 37436.49

Manitoba Generation 4755.7 2974.1

Hydro Load 2354.4 516.4

Area Export 2097.3 187.8
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Table 6.20: Summary of EHV and HV bus and branch in the

MAPP power system.

Voltage Level (kV) Number of Branches Number of Buses

765 44 31

500 341 253

345 1363 781

230/220 3331 1888

138 6160 3497

120/115/110 6225 3457

DC 12 24

6.3.2 System Open Loop Analysis

The system is unstable, as shown in Fig. 6.24, due to the loss of 50% of 120 MW

load for a duration of 50 ms at 138 kV bus 67703. The system instability is the

result of negatively damped electromechanical mode (0.095± j3.75) of the system.

The participation factors and right eigenvector analysis shown in Table 6.21 suggest

that the electromechanical mode is a local plant mode. The generators close to each

other - two equally rated Kettle generators and a Kelsey generator - will oscillate

in unison against the rest of the system. Related to these generators is an another

electromechanical mode (−0.25±j8.18) that has higher frequency and is relatively well

damped. The participation factors and the mode shape of the generators in the mode

are also shown in Table 6.21. The mode shape suggests that the higher frequency

electromechanical mode is an interplant mode where the two Kelsey generators will

oscillate against Kettle generator.

As the first step in PSS design, the most suitable location for the PSS is deter-

mined using the procedure described in § 3.2. Accordingly, the Kettle and Kelsey

generators are selected for residue analysis because they participate most in this elec-

tromechanical mode. The other generators have a participation factor of 0.01 or less.
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Figure 6.24: Transient response of variables of generators without a PSS.

Table 6.21: Modal analysis of critical plant and local plant modes.

Plant mode Local mode

Eigenvalue λ̄1, λ̄
∗
1 = 0.0951± j3.7464 λ̄2, λ̄

∗
2 = −0.25± j8.18

Frequency 0.60 1.30

Damping -2.54 3.05

Generator Participation Mode Participation Mode

Factor Shape Factor Shape

Kelsey 1.00 1.00∠0◦ 1 0.96∠− 173.8◦

Kettle 0.43 0.43∠5.47◦ 0.45 1∠0◦

The one line diagram of the system around Kettle and Kelsey generating stations,

which are in the northern part of the Manitoba Hydro system, are shown in Fig. 6.25.

The experience with the small sample system presented in previous sections sug-

gests that using more than one signal as input for the PSS would result in improved
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Figure 6.25: Manitoba Hydro northern area power system.

dynamical performance when an SS type PSS is designed using the proposed eigen-

structure assignment based algorithm. Therefore, generator power, speed, and volt-

age, the locally available and easily measurable signals, are selected as candidate

inputs for the PSS. The residue of the plant mode between the output variables and

the local exciter voltage reference input are shown in Table 6.22.

The residues of speed and power for the three generators are comparable, whereas

the residue of the voltage of the Kelsey generator is almost twice that of the Kettle

generators. Hence, the Kelsey generator was selected for equipping with a PSS.

Note that if only a speed input PSS is to be employed, then, ideally, the most

suitable location for the PSS will be Kettle according to the selection based on residue

analysis; whereas, it will be Kelsey according to selection based on participation

factor. This provides another example that selection of the location based on only the

participation factor may not be an optimal location (a similar example was provided
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in § 3.4.1).

The residue of the Kelsey generator outputs for the interplant mode is shown in

Table 6.23. The interplant mode is somewhat sensitive to Kelsey generator power,

and is almost insensitive to the generator speed and voltage. This necessitates some

measure to ensure that the interplant mode remains well damped when a PSS is

designed using the proposed algorithm. The measures implemented during the design

are described later in this section.

Table 6.22: Residues of critical plant mode, λ̄1, λ̄
∗
1 = 0.0951 ± j3.7464

between various outputs and exciter Vref input of Kelsey and Kettle

generators.

Generator Speed Power Voltage

Kelsey G1 0.015∠30.3◦ 0.46∠− 57.6◦ 0.146∠− 49.6◦

Kettle G1 and G2 0.019∠− 14.8◦ 0.485∠78.7◦ 0.072∠− 35.9◦

Table 6.23: Residues of interplant mode, λ̄2, λ̄
∗
2 = −0.25±j8.18 be-

tween various outputs and exciter Vref input of Kelsey and Kettle

generators.

Generator Speed Power Voltage

Kelsey G1 0.003∠− 62.4◦ 0.201∠29.8◦ 0.003∠5.0◦

Kettle G1 and G2 0.030∠− 64.7◦ 1.689∠28.4◦ 0.123∠76.3◦

6.3.3 Conventional PSS Designed in Frequency Domain

The speed input lead-lag type stabilizer (used earlier for a two-area four-generator

system in § 6.1.3) was designed to improve the small-signal stability of the system.

The objective of PSS design is to make the plant mode (λ̄, λ̄∗ = 0.095± j3.75) stable

and push it further to the left in the X−Y plane until acceptable damping is achieved.
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Here, 3.0% is considered as the desired damping ratio. This corresponds to relocation

of the plant mode λ̄, λ̄∗ to λ, λ∗ = −0.115± j3.75 when moved parallel to the X-axis.

6.3.3.1 PSS Parameters

The value of 10.0 s is selected for washout filter time constant Tw; and the lead-lag

parameters are designed using the residue method described in § 3.3.2.1. The required

phase compensation, the lead-lag parameters, and the approximate and actual gain

are shown in Table 6.24.

Table 6.24: Lead-lag type PSS parameters.

Phase
T1=T3 T2=T4

Ks

Compensation Approximate Adjusted

149.7◦ 2.18 0.032 0.2162 0.25

6.3.3.2 Results

The new location of two critical electromechanical modes (plant and inter-plant

modes) after implementation of the lead-lag PSS are compared against their orig-

inal locations, (i.e., without a PSS) in Table 6.25. It can be seen from the table

that the desired damping of almost 3.0% is achieved for the plant mode by moving

it almost parallel to the X-axis. The damping of the interplant mode has worsened;

however, it is stable, and its real part (which decides the rate of decay of the mode) is

still more negative than the plant mode, which means that the interplant mode will

still decay faster than the plant mode.

The transient performance of the system is evaluated by nonlinear simulation of

the system with the speed input lead-lag type PSS. A disturbance due to the loss

of 50% of the 120 MW load at the 138 kV bus 67703 for a duration of 50 ms was

considered for the nonlinear simulations. The transient response of the speed, power,

field voltage, and bus voltages of the Kelsey and Kettle generators with the PSS are
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compared to those for the system without a PSS in Fig. 6.26 and Fig. 6.27. It is

evident from the plots that the PSS has stabilized the system and that the transients

are well damped.

Table 6.25: Comparisons of electromechanical modes with the lead-lag PSS and

without a PSS.

Interplant mode Plant mode

Eigenvalue Freq Damping Eigenvalue Freq Damping

Without

PSS

0.095± j3.75 0.600 -2.54 −0.25± j8.18 1.30 3.05

With

PSS

−0.114± j3.86 0.616 2.95 −0.142± j8.3 1.32 1.70
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Figure 6.26: Transient response of Kelsey generator variables for the case with the

speed input STAB1 (lead-lag) PSS and that for the case without a PSS.
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Figure 6.27: Transient response of Kettle generator variables for the case with the

speed input STAB1 (lead-lag) PSS and that for the case without a PSS.
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6.3.4 SS PSS Design Using the Proposed Technique

A state-space type PSS, shown in Fig. 6.28, was designed using the proposed tech-

nique in the following subsection. The SS type PSS is described in detail in § 5.1.
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Figure 6.28: Block diagram of the three input SS type PSS.

6.3.4.1 Inputs to the SS type PSS

Here, the objective of PSS design using the proposed technique is to relocate the

unstable critical plant mode to a suitable location in theX−Y plane and, additionally,

to assign the appropriate left eigenvector so that its excitation is minimized during

disturbances. The subspace where the assignable left eigenvector lies depends on

the number and type of the PSS inputs. The probability of assigning an improved

eigenstructure increases as the number of system outputs increases. This concept was

proven in § 6.1 by designing three PSSs, each having different inputs-speed input PSS,

power input PSS, and speed and power (dual) input PSS. It was shown that using

two inputs, speed and power, the excitation of the inter-area mode was suppressed

almost completely. Therefore, in this case of large power system, local generator,

speed, power, and voltage are employed as inputs to the SS type PSS.
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6.3.4.2 Desired New Location of Electromechanical Modes

The system exhibits an unstable electromechanical plant mode. The main objective

of installing a PSS is to improve damping of the plant mode to at least 3%. Therefore,

the eigenvalues of the plant mode λ̄1, λ̄
∗
1 = 0.0951± j3.746 will be assigned eigenvalues

λ1, λ
∗
1 = −0.115± j3.75.

As a secondary objective, the interplant mode is assigned a new, somewhat better-

damped location for two reasons. The first reason is that the interplant mode has

a large enough residue for Kelsey generator power, and hence, implementation of a

PSS may reduce its damping, was as observed in the previous section for the case in

which a speed-input lead-lag type PSS was installed. The second reason is that, by

assigning a new location provides an opportunity to improve its left eigenvector so that

its excitation is minimized during a disturbance, thereby attaining further improved

dynamical performance. The new location of the interplant mode is selected so that

the distance to be moved is somewhat proportional to the distance the plant mode

is to be moved and to the ratio of the residue of the interplant mode and the plant

mode. Accordingly, the new location of the interplant mode λ̄1, λ̄
∗
1 = −0.25± j8.18

will be assigned an eigenvalue of λ1, λ
∗
1 = −0.28± j8.18.

6.3.4.3 Dynamic Compensator States

As decided in the previous subsection, there are four eigenvalues (two complex con-

jugate pairs) to be assigned to the closed-loop system. In order to be able to assign

four eigenvalues using the left eigenstructure assignment technique, the system should

have at least four inputs, (i.e., m = 4). However, the actual number of inputs to the

system that will be used to modulate Vref of an exciter for the Kelsey generator is

one (i.e., m̄ = 1). Thus, the number of states of the dynamic compensator is selected

to be a = m − m̄ = 3. This increases the number of inputs of the control system

by three when the dynamic output feedback control system is transformed into its

equivalent gain output feedback system (§ 4.2).
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6.3.4.4 SS type PSS Parameters

Each of the measured signals is passed through a washout (high pass) filter, as shown

in Fig. 6.28. The objective of the high pass filter is to remove the dc components

present in the signals; a value of 10.0 s is selected for the washout filter time constants,

Tw1, Tw2, and Tw3.

The PSS was designed to assign the eigenvalues determined in the previous section

and optimally assign the left eigenstructure by solving the MONLOP described in

§ 5.4. The designed parameters of the SS type PSS are shown in (6.4).

D =


2.69 −1.07 26.84

−4.96 −13.63 6.61

4.27 23.26 −25.87

 E =


−11.63 −7.9 6.76

15.29 −9.83 −19.27

−20.91 13.06 −11.45


F =

(
−1.60 −6.68 8.17

)
G =

(
5.4 −4.55 2.15

)
(6.4)

6.3.5 Results

The optimization moved the open-loop electromechanical modes (0.0951± j3.746 and

−0.25± j8.18) to their assigned locations (−0.115± j3.75 and −0.28± j8.18), as can

be seen from their mode trace shown in Fig. 6.29. The mode traces were obtained

by gradually increasing the gains F and G of the PSS.

The system was simulated for loss of 50% of a 120 MW load for a duration of 50

ms at the 138 kV bus 67703. The transient response of speed, power, voltage, and

field voltage of the Kelsey and Kettle generators with the SS type PSS are compared

with those of the system with the lead-lag type PSS in Fig. 6.30 and Fig. 6.31. The

improved transients for the case of an SS type PSS compared to the case of a lead-lag

PSS are visible. In order to quantify the improvement, the magnitude of the assigned

modes (−0.115± j3.75 and −0.28± j8.18) obtained through prony analysis and the

peak-to-peak values for the transient responses are compared in Table 6.26. The
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peak-to-peak values of the variables shown in the table correspond for the transient

after 0.5 s of clearing disturbance. As can be seen from the table, employment of an

SS type PSS results in considerably reduced magnitudes of the interplant and plant

modes and also of the peak-to-peak values compared to the magnitudes from the case

with the lead-lag type PSS.

Table 6.26: Magnitudes of electromechanical modes in different generator variables

due to disturbance.

Variable Kelsey Generator Kettle Generators

Lead-Lag SS Change Lead-Lag SS Change

Mode M1 Magnitude

Speed (Hz) 0.0301 0.0251 16.61% 0.0298 0.0251 15.77%

Power (MW) 4.444 3.5297 20.57% 1.6709 1.299 22.26%

Voltage (pu) 0.0062 0.0039 37.10% 0.0022 0.0014 36.36%

Field Voltage (pu) 0.0722 0.0277 61.63% 0.1277 0.0846 33.75%

Mode M2 Magnitude

Speed (Hz) 0.0104 0.0096 7.69% 0.0098 0.0106 -8.16%

Power (MW) 3.2396 2.8709 11.38% 1.1381 1.1752 -3.26%

Voltage (pu) 0.0008 0.0004 50.00% 0.001 0.0007 30.00%

Field Voltage (pu) 0.0322 0.0051 84.16% 0.0548 0.0422 22.99%

Peak-to-Peak Magnitude

Speed (Hz) 0.0588 0.049 16.67% 0.0536 0.056 -4.48%

Power (MW) 10.7525 9.1734 14.69% 4.1072 2.9436 28.33%

Voltage (pu) 0.011 0.0084 23.64% 0.0051 0.0041 19.61%

Field Voltage (pu) 0.139 0.0552 60.29% 0.2954 0.1837 37.81%
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Figure 6.29: Mode trace of the system with the three input SS type PSS for varying

gain from zero to the final value.
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Figure 6.30: Transient response of Kelsey generator variables for the case with the

three input SS type PSS and that for the case with the speed input STAB1 (lead-lag)

PSS.
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Figure 6.31: Transient response of Kettle generator variables for the case with the

three input SS type PSS and that for the case with the speed input STAB1 (lead-lag)

PSS.
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6.3.6 Conclusions

In this chapter, PSSs were designed for three different systems, a two-area four-

generator system, a system with a DFIG wind turbine, and a large power system,

using the proposed optimization-based eigenstructure assignment PSS design algo-

rithm.

For the case of the 2-area 4-generator system, three different PSSs were examined

in order to assess the influence of employing alternate input signals and the influence

of employing more than one signal. The signals considered for the SS type PSSs

were speed input, power input, and speed-power dual input. Their small-signal and

dynamic performances were evaluated by comparing them with those of the PSSs

designed using the frequency domain method. The results show that PSS input

signals affect the possible improvement in eigenstructure and dynamic performance.

The speed input SS type PSS does not provide any benefit over the conventional

PSS. However, somewhat improved eigenstructure, and therefore improved dynamic

performance, is achieved by employing power as an input to the SS type PSS. Also,

excellent performance is achieved when speed-power dual inputs are employed for

the SS type PSS, excitation of the problematic inter-area mode is almost completely

suppressed.

The proposed algorithm was successfully used to design a controller that greatly

improved the system response for the system with a DFIG wind generator. Damping

of critical shaft oscillations and electromechanical modes was improved by eigenvalue

assignment, and the excitation of these modes was minimized through eigenvector as-

signment. The proposed controllers were validated through a time-domain transient

solution. The nonlinear nature of the MONLOP algorithm developed in this thesis

leads to multiple solutions depending on the initial values used. The resulting con-

trollers can then be further evaluated for robustness, and the controller that provides

universally good performance over the range of potential operating conditions can be

selected as the final design.
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Finally, the proposed algorithm was employed to design a PSS for a large power

system to demonstrate the practical application of the algorithm. The SS type PSS

with three inputs-speed, power, and voltage-was designed so that optimal eigenstruc-

ture is assigned to the system. It was demonstrated by a comparison of the tran-

sient performance of the system that significantly improved dynamic performance

is achieved by employing an SS type PSS compared to that which can be achieved

by employing a lead-lag type PSS designed using the conventional frequency domain

method.
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Chapter 7

Conclusions and Future Work

7.1 Summary and Conclusions

In this thesis an optimization based eigenstructure assignment algorithm is developed

for power system controller design. This design method uses extra degrees of freedom

to assign partial left eigenvector in addition to re-positioning the system eigenvalues to

improve damping. Since this method permits optimization of the left eigenvectors, the

excitation of the critical modes could be minimized. This possibility is not explored

in the frequency domain design method that is widely used in power systems, and

therefore the proposed method is superior.

The algorithm presented in this thesis is an improvement over previous eigenstruc-

ture assignment methods. These methods are suitable for small systems where the

number of system inputs and outputs exceeds number of states; but these methods

are not feasible in the much larger power networks where it is not practical to obtain

system information from remote geographic locations. Hence, when these methods

are employed for power system controller design, they do position the eigenvalues

to the specified locations, but there is a risk that a non-critical eigenvalue will be

moved instead of the critical one. Even in those cases where the critical eigenvalues

are properly repositioned, there remains the possibility of the non-critical eigenvalues
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moving to poorly damped or unstable locations.

These inadequacies have been addressed in the proposed algorithm presented in

this thesis by formulating and solving an unconstrained multi-objective nonlinear op-

timization problem (MONLOP). The MONLOP comprises six sub-objective functions

of parametric vectors to be minimized simultaneously. These functions are formulated

to accomplish a number of objectives: ensure that the critical open-loop eigenvalues

move to their assigned new locations; penalize inadvertent movement of open-loop

eigenvalues that are not assigned new locations; quantify the weighted sum of the left

eigenvectors associated with the assigned eigenvalues; and quantify the required con-

troller efforts. After defining the sub-objective functions, the MONLOP problem is

transformed into a single-objective nonlinear optimization problem (SONLOP) where

the single objective is a weighted sum of the individual sub-objectives.

The Nonlinear Simplex Method of Nelder and Mead is used in this thesis to

conduct the minimization process. The nonlinear nature of the MONLOP algorithm

developed in this thesis leads to multiple solutions depending on the initial values.

The resulting controllers can then be further evaluated to ensure that they meet all

the design objectives and any additional performance criteria.

When the proportional output feedback controllers are designed using the partial

left eigenstructure assignment technique, the maximum number of eigenvalues that

can be relocated is the number of system inputs. For a typical case of PSS design,

two or more eigenvalues are to be relocated to suitable locations, whereas only one

system input is available in terms of the voltage reference signal of exciter. In such a

case, a dynamic compensator with enough states can be employed so that the desired

number of eigenvalues can be assigned.

The achievable optimal left-eigenvectors (and hence the extent to which the exci-

tation of the modes could be minimized) depend on the system output variables and

the number thereof. This aspect was explained theoretically and demonstrated by

designing a PSS using the proposed algorithm for a two-area, four-generator system.
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Using the example, it was shown that when a single system output is employed, the

extent of minimization depends on the output variable employed; furthermore, by

employing two system outputs, the excitation of the critical mode is reduced even

further, resulting in even better dynamical performance.

The algorithm was applied to the design of two additional controllers: a com-

bined PSS and active damping controller for a DFIG; and a PSS for a generator

in the Manitoba Hydro system. Based on the earlier conclusion that increasing the

number of system outputs results in superior dynamic performance, two conveniently

available local outputs were employed. For the DFIG controller, the number of sys-

tem outputs was further increased to four by passing the system outputs through

additional filters. The proposed controllers were validated by comparing the time-

domain transient performance of the system with the proposed controller to that of

the system with a controller designed using either the conventional frequency domain

method or a similar method. It was shown that not only was the damping of critical

modes improved by eigenvalue assignment, but the excitation of these modes was

minimized through partial eigenvector assignment resulting in significantly improved

system response.

7.2 Recommendations

The proposed algorithm involves minimization of a single-objective nonlinear function

where the single objective function is a weighted sum of the individual sub-objectives.

In this thesis, the appropriate weights were determined by an iterative process. Us-

ing a given set of weights, a couple of controllers are obtained by minimizing the

objective function from random starting points. The new values of the weights are

then estimated based on the assessment of how successful these controllers are in

achieving various design objectives. This process of weight adjustment is continued

until the controllers are found to satisfy all the desired objectives. The assessment of
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each of the controllers required eigenanalysis, mode trace, and (sometimes) transient

simulations. Arriving at the appropriate weights in this manner is a time-consuming

process.

Further research work can be undertaken to refine the above optimization process

so that controllers can be designed in less time and with less designer intervention.

Study of the nonlinear nature of the optimization problem and identification of a

more suitable optimization technique are further avenues to explore.

An important aspect of the controller design is the robustness of the controller

over a range of operating conditions. This aspect is not included in the proposed

algorithm. Rather, a robust controller for a DFIG system was designed using the

brute-force method. In this method, a robust controller was designed for the system

by evaluating different controllers, which were obtained by carrying out optimization

with different starting points, for a variety of operating conditions. The controller

that performed universally well over the range of operating conditions was selected

as the final robust controller. There are further avenues for research regarding the

inclusion of the robustness aspect in the design process.
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Appendix A

Linearized State Equations

Dynamics of each the devices in the power system can be described using a first order

nonlinear differential equation of device state variables

ẋd = fd(xd, vd, ud). (A.1)

where

(˙) is derivative of ( ) with respect to time.

xd is the nd-dimensional states vector of the dynamic device.

vd is the 2 k-dimensional column vector of real and imaginary parts of

bus voltages upon which the device dynamics depend. For one port

devices (e.g., generator without remote sensing) k = 1 ; and for two

port devices (e.g., HVDC system) or for remote bus voltage sensing

devices (e.g. generator controlling remote bus voltage) k > 1.

ud is the md-dimensional column vector of reference inputs to the device

(e.g. Vref of an exciter or Pref of governing system of a prime mover).

fd is a set of nd non-linear functions of xd, vd, and ud.

Current injected by each device into the network is expressed using a set of nonlinear

algebraic equations as

id = gd(xd, vd) (A.2)
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where

id is the 2 p-dimensional column vector of real and imaginary parts of

current injected by the device. For one port devices (e.g., generator)

p = 1 and for two port devices (e.g., HVDC system) p > 1 .

gd is a set of 2 p non-linear functions of xd, vd.

The transmission network can be expressed using node equations as:

i = Yn v (A.3)

where

i is the 2nb-dimensional column vector of real and imaginary parts

of the current being injected by dynamic devices into the network

through nb number of nodes, and is the combination of id in (A.2)

v is the 2nb-dimensional column vector of real and imaginary parts of

nb number of nodes, and is a combination of vectors vd in (A.2).

Yn is the node admittance matrix including nonlinear loads

For the system, the equilibrium points are those points where the system is at

rest and all the variables are constant and unvarying with time. The system is said

to be asymptotically stable if, when it is subjected to a small perturbation, it returns

to its original equilibrium point. The asymptotically stable points are also referred

to as Stable Equilibrium Points (SEPs). The SEPs by definition satisfy

fd(xd0, vd0, ud0) = 0 (A.4a)

gd(xd0, vd0) = id0 (A.4b)

i0 = Yn v0 (A.4c)

where the subscript 0 denotes the numerically evaluated vector at the SEPs. To study

small-signal stability, the nonlinear functions in (A.1)and (A.2) can be linearized using
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Taylor series expansion about xd0, i0, and v0, to yield

∆ẋd = Ad ∆xd +Bd ∆vd + Fd ∆ud (A.5a)

∆id = Cd ∆xd +Dd ∆vd (A.5b)

where ∆ denotes a deviation of variable from its steady state value at the SEP and

Ad =
∂fd(xd, vd, ud)

∂xd

∣∣∣∣ xd0, vd0, ud0 (A.6a)

Bd =
∂fd(xd, vd, ud)

∂vd

∣∣∣∣ xd0, vd0, ud0 (A.6b)

Fd =
∂fd(xd, vd, ud)

∂ud

∣∣∣∣ xd0, vd0, ud0 (A.6c)

Cd =
∂gd(xd, vd)

∂xd

∣∣∣∣ xd0, vd0 (A.6d)

Dd =
∂gd(xd, vd)

∂vd

∣∣∣∣ xd0, vd0 (A.6e)

Such linearized equations for all the dynamic devices may be combined as:

∆ẋ = AD ∆x+BD ∆v + FD ∆u (A.7a)

∆i = CD ∆x+DD ∆v (A.7b)

where

x is the n-dimensional column vector of the states of the complete

system.

AD is the n× n block diagonal real non-symmetric matrix of Ad.

BD is the n × 2nb matrix obtained using block matrix Bd such that

vector v in (A.7a) is consistent with that in (A.3).

FD is the n×m diagonal matrix obtained using block matrix Fd.

CD is the 2nb × 2n block diagonal matrix of Cd.

DD is the 2nb× 2nb matrix obtained using block matrix Dd such that v

in (A.7b) is consistent with that in (A.3).

The Ad(D), Bd(D), Cd(D), and Dd(D) matrices in the above equations are intermedi-
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ate matrices of the linearized power system and should not be confused with those

encountered in the standard form of linear equations in the control system.

The relation between the perturbed values of i and v using network equation (A.3)

is given by

∆i = Yn∆v (A.8)

Using (A.7b)and (A.8), ∆v can be expressed in terms of ∆x; and substituting it

in (A.7a) yields

∆ẋ =
(
AD +BD (Yn −DD)−1 CD

)
∆x+ FD ∆u

= A∆x+ FD ∆u (A.9)

where the plant matrix of the complete system, A, is defined by

A , AD +BD (Yn −DD)−1 CD. (A.10)

For the sake of brevity, the symbol ∆ in (A.9) may be dropped. Thus, we have

obtained the linearized equation of the dynamics of the state variables of the power

system in its standard form of control system

ẋ = Ax+B u (A.11)
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Appendix B

Change in eigenvalue due to

dynamic output feedback controller

The proposed PSS design algorithm optimally assigns eigenstructure by solving a

multi-objective nonlinear program. In this thesis, the multi-objective nonlinear prob-

lem is solved by combining multiple objectives into a single objective function and

then minimizing the function using some suitable optimization routine. During the

minimization process, each evaluation of the objective function requires the approx-

imate new locations of open-loop eigenvalues due to the implementation of the dy-

namic compensator type output feedback controller. In this appendix, the mathe-

matical expression for the approximate new location of an open-loop eigenvalue due

to implementation of the output feedback controller is presented. The mathematical

expression derived is based on the sensitivity of eigenvalue λ to some parameter q of

controller that is presented in [34]. In the following, first the results from [34] are

reviewed and then the main results are presented.

Let the n̄-states, m̄-inputs, and r̄-outputs Linear Time Invariant (LTI) control

system be defined as:

˙̄x(t) = Ā x̄(t) + B̄ ū(t)

ȳ(t) = C̄ x̄(t) (B.1)
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Let the dynamic output feedback control law described as

ż(t) = D z(t) + E ȳ(t)

ū(t) = F z(t) +G ȳ(t) (B.2)

be applied to the system (B.1), where z(t) ∈ Ra. The dynamics of the closed-loop

system are given by: ˙̄x(t)

ż(t)

 = Ac

 x̄(t)

z(t)

 ; Ac ,

 Ā+ B̄ G C̄ B̄ F

E C̄ D

 . (B.3)

The resultant closed-loop system will have n = n̄+ a states. This is a simplified

expression of the closed-loop dynamic output feedback control system described by

(4.4)-(4.6). Let λ be a distinct eigenvalue of Ac; and let v, w ∈ Cn be the associated

right and left eigenvectors respectively. There will be such n eigenvalues and the

following results apply to each of them. The eigenvalue and eigenvector hold the

following relations.

Ac v = λ v (B.4)

wT Ac = λwT (B.5)

wT v = 1 (B.6)

λ = wT Ac v (B.7)

Let us denote the derivative with respect to some parameter q of the dynamic output

feedback controller as (.)′. The derivative of the eigenvalue with respect to q using

(B.7) is given by:

λ′ = wT A′
c v. (B.8)

Let us analyze the terms on the right hand side of the above equation. Using the

definition of Ac in (B.3), its derivative with respect to q is given by:

A′
c =

 B̄ G′ C̄ B̄ F ′

E ′ C̄ D′

 . (B.9)
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The right and left eigenvectors, v and w respectively, associated with the eigenvalue

λ of the plant matrix Ac can be partitioned according to the dimension of the system

and the dynamic compensator state vectors as:

v =

 v1

v2

 ; w =

 w1

w2

 (B.10)

where v1, w1 ∈ Cn̄, and v2, w2 ∈ Ca. Using (B.3)-(B.5) the relations between parti-

tioned vectors can be shown to be

v2 = M(λ)E C̄ v1 (B.11)

wT
2 = wT

1 B̄ F M(λ) (B.12)

where

M(λ) = (λ Ia −D)−1. (B.13)

Therefore

v =

 In̄

M(λ)E C̄

 v1 (B.14)

wT = wT
1

(
In̄ B̄ F M(λ)

)
(B.15)

Substituting (B.14), (B.15), and (B.9) into (B.8) yield

λ′ = wT
1

(
In̄ B̄ F M(λ)

)  B̄ G′ C̄ B̄ F ′

E ′ C̄ D′

  In̄

M(λ)E C̄

 v1. (B.16)

The transfer function of the controller is given by:

H(s) = F M(s)E +G (B.17)

where

M(s) = (s Ia −D)−1. (B.18)

So, the derivative of controller transfer function (B.17) with respect to q s given

by

H ′(s) = F ′M(s)E + F M(s)D′M(s)E + F M(s)E ′ +G′. (B.19)
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Expanding (B.16) and by substituting s with λ in (B.17) gives

λ′ = wT
1 B̄ H ′(λ) C̄ v1. (B.20)

Using the above equation, the incremental change in eigenvalue ∆λ due to change

in the dynamic output feedback controller parameters is given by

∆λ = wT
1 B̄∆H(λ) C̄ v1 (B.21)

where ∆H(λ) using (B.19) is given by

∆H(λ) = ∆F M(λ)E + F M(λ) ∆DM(λ)E + F M(λ) ∆E + ∆G. (B.22)

In the above expression of ∆H(λ), the matrices D,E, F , and G are initial (un-

perturbed) values of the matrices and λ is an eigenvalue of the unperturbed plant

matrix Ac in (B.3).

The approximate new location of an open-loop eigenvalue λ due to application

of the dynamic compensator type output feedback controller (B.2) can be calculated

using (B.21) and (B.22) as follows. Consider that firstly the dynamic output feedback

controller with zero output gain is employed i.e. F = 0 and G = 0 in (2.20). The

resulting closed-loop system using the definition of Ac in (B.3) is given by

Ac =

 Ā 0

E C̄ D

 . (B.23)

Let λ be an eigenvalue of the open-loop system matrix Ā and let v1 and w1 be the

associated right and left eigenvectors. It can readily be shown that the λ is also an

eigenvalue of Ac, and that v1 and w1 constitute the first n̄ entries of the associated

right and left eigenvector v and w, respectively, as shown in (B.10). In order to

implement the controller, the values of output gains F and G are changed from zero

to their final values. The change in transfer function due to implementation of the

gains using B.22 is

∆H(λ) = F M(λ)E + ∆G (B.24)
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and the approximate change in eigenvalue using (B.21) is

∆λ = wT
1 B̄ (F M(λ)E + ∆G) C̄ v1. (B.25)
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Appendix C

Computational Methods for a Very

Large Power System

Power system controller design using optimal eigenstructure assignment requires opti-

mization of the objective function value that uses knowledge of eigenvalue and eigen-

vector of the control system, and requires many different mathematical operations

on matrices during calculation of the eigenvalues, eigenvectors and objective func-

tion value. Design of PSSs using the proposed algorithm for the systems presented

in this thesis was accomplished by developing a program in the Fortran language

using commercially available software: Compaq Visual Fortran Ver. 6.0. The stor-

age and computation can be performed using conventional methods for the matrices

having dimension up to several hundred. For a large power system, the number of

states (which equals the dimension of plant matrix and eigenvalues) may easily ex-

ceed 10,000. A plant matrix of such a dimension is well outside the range of the

conventional methods used to find eigenvalues and eigenvectors. Special techniques

are available in such cases to find a sub-set of eigenvalues of the complete system.

This appendix describes one of such techniques, modified Arnoldi method, that is

employed while developing the Fortran computer program to design a PSS for a very

large power system.
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C.1 Calculation of Eigenvalue and Eigenvector of

Very Large Power System

C.1.1 The Arnoldi Factorization Method

Implicitly restarted Arnoldi method (IRAM) is an efficient algorithm for finding a

subset of the eigenvalues and associated eigenvectors of a very large sparse matrix.

The method and algorithm is described in [38]. In the following, the underlying

concept of the algorithm is presented.

The Arnoldi factorization of a matrix is defined as follows.

If A ∈ Cn×n, then a relation of the form

AVk = VkHk + fke
T
k (C.1)

where Vk ∈ Cn×k has orthonormal columns, V T
k fk = 0, and Hk ∈ Ck×k is upper

Hessenberg with non-negative subdiagonal elements is called a k-step Arnoldi factor-

ization of A. If λ is an eigenvalue of Hk and v is the associated right eigenvector,

then Hkv = λv, and the vector x = Vkv will yield

‖Ax− xλ‖ = ‖AVkv − Vkvλ‖

= ‖(AVk − VkHk)v‖

= ‖fke
T
k v‖

= ‖fk‖|eT
k v| (C.2)

From the above, it can be observed that if ‖fk‖ = 0, then λ is the exact eigenvalue

of original matrix A, and the associated right eigenvector can be computed using

Vkv. This forms the basis of the Arnoldi method and the algorithm drives ‖fk‖

to zero iteratively by continually modifying Vk. In the implicitly restarted Arnoldi

algorithm, the vectors Vk are reevaluated implicitly after a certain number of iterations

to preserve the orthogonality of Vk and to accelerate convergence.
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C.1.2 The ARPACK Software

The IRAM has been implemented in the ARPACK software package, which is a

collection of subroutines to calculate a certain number of eigenvalues based on certain

criteria for a large system. This software is used in the SSAT tool of the commercially

available DSA Power Tool program. Therefore, the same program was considered for

a small-signal analysis of large power system during the research so that the analysis

results can be validated and yield consistent results.

The following describes two important features of the software:

1. A reverse communication interface:

With reverse communication, the control is returned to the calling program

whenever interaction with the matrix A is required. The required operation

on the matrix is indicated by the reverse communication parameter. This is a

very convenient feature for power system applications where, as will be seen,

the matrix vector product cannot be obtained in a straight forward manner and

requires lengthy computation.

A sample Fortran code that demonstrates usage of reverse communication is

shown below:

DO

CALL ZNAUPD ( IDO, ’I’, N, WHICH, NEV, TOL, RESID, NCV, &

V, LDV, IPARAM, IPNTR, WORKD, WORKL, LWORKL, &

RWORK,IERR ),

IF((IDO.EQ.-1).OR.(IDO.EQ.1)) THEN

CALL OPV( N, WORKD(IPNTR(1)), WORKD(IPNTR(2)),IPATH, FNAME)

ELSE

EXIT

ENDIF

END DO

The ZNAUPD is a top level subroutine supplied with the software. The code per-

forms the action based on parameter IDO set by ZNAUPD.
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The subroutine OPV is a user defined subroutine, which multiples the matrix (of

which eigenvalue to be found) with a vector stored in WORKD(IPNTR(1)) (supplied by

ZNAUPD) and stores resultant vector at WORKD(IPNTR(2)), which is used by subroutine

ZNAUPD during next iteration.

Upon successful convergence of the ZNAUPD, the results are post-processed us-

ing the subroutine ZNEUPD to get eigenvalues of the original problem and the

corresponding eigenvectors.

2. Calculations of limited eigenvalue, based on a criterion, and associated eigen-

vector:

The program returns a certain number of eigenvalues that satisfy a criterion

(e.g. largest absolute value, largest real part, largest algebraic value) along

with the associated right eigenvectors. The desired number of eigenvalues and

the criterion is selected in prior by the user. If the left eigenvector is desired,

then the operation be performed on AT whenever the operation on the matrix

is requested by the program, realizing that finding the left eigenvector is a dual

problem of finding the right eigenvector.

C.1.3 The Shift and Invert Transformation

As mentioned earlier, the ARPACK software has the ability to calculate the eigen-

values that satisfy user criteria (e.g. largest absolute value, largest real part, largest

algebraic value). However, the software is the most efficient in finding eigenvalues

with the largest absolute value. In conjunction with selecting the criteria of the

largest absolute value, the shift invert transformation on matrix A, whose eigenvalues

are to be found, can be applied to achieve convergence to a desired neighborhood of

the spectrum.

If λ and w are the eigenvalue and associated eigenvector of matrix A and σ 6= λ,

162



then

(A− σIn)−1w =
1

λ− σ
w = βw. (C.3)

The largest magnitude eigenvalues of transformed matrix (A−σIn)−1 corresponds to

the eigenvalues of the original matrix A that are nearest to shift σ in absolute value.

Once the largest eigenvalues of the transformed matrix are found, the eigenvalues of

the original matrix can easily be computed as

λ = σ + 1/β. (C.4)

Computation of the eigenvalues of matrix A around shift σ using ARPACK soft-

ware requires computation of vector u = (A−σIn)−1v when ZNAUPD requests operation

on the matrix through parameter IDO during reverse communication. The technique

for computing u for a large power system is described in following section.

C.1.4 Computing u = (A− σIn)
−1v

For a given vector v, the method to compute

u = (A− σIn)−1v (C.5)

specifically for the power system plant matrix A, described in [6], is presented in

following.

As shown in (A.10), the plant matrix of a power system is given by

A , AD +BD (Yn −DD)−1 CD. (C.6)

where AD, BD, CD, andDD are block diagonal matrices and Yn is the node admittance

matrix. It is impossible to explicitly evaluate plant matrix A using the above equation

because it involves inversion of a large sparse matrix. Therefore, the resultant vector

u in (C.5) is evaluated indirectly as shown in the following.

Upon substituting definition of A from (C.6) in to (C.5) and rearranging
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(AD − σIn)u+BD (Yn −DD)−1 CDu = v (C.7a)

u+ (AD − σIn)−1BD (Yn −DD)−1 CDu = (AD − σIn)−1v (C.7b)

CDu+ CD(AD − σIn)−1BD (Yn −DD)−1 CDu = CD(AD − σIn)−1v (C.7c)

By defining a new vector q as

q = (Yn −DD)−1 CDu (C.8)

and rearranging the above equation yield

CDu = (Yn −DD) q. (C.9)

Substituting (C.8) and (C.9) in (C.7c)and rearranging yields

(
Yn −DD + CD(AD − σIn)−1BD

)
q = CD(AD − σIn)−1v. (C.10)

Thus, solution of u in (C.5) can be accomplished in two steps:(1) solve (C.10) for

q and (2) solve (C.9) for u. As can be seen by examination of the equations, the

problem of finding vectors q and u is equivalent to, after a few operations on the

matrices and the vectors, finding a solution of x for a set of linear equations Ax = b.

The solution to the set of linear equations can be obtained using the sparse matrix

factorization method. Note the evaluation of Ae = (AD − σIn)−1 is not difficult to

achieve because AD is a block diagonal of matrices having dimensions in the order of

a few tens, and,therefore, the Ae can be obtained by inverting each of these matrices

individually using the conventional small matrix inversion technique. The subroutines

used to evaluate matrix-matrix multiplications, and to obtain the solution of a set of

linear equations are described in following sections.

C.2 Multiplication of Large Sparse Matrices

The SMMP package available in the aicm library, which is freely available at www.netlib.org,

was implemented for matrix-matrix multiplication. The multiplication is performed

164

http://www.netlib.org


in two steps. First, the nonzero structure of the resulting matrix is determined sym-

bolically using subroutine SYMBMM. Once the nonzero structure for the resultant matrix

is known, the numerical matrix-matrix multiplication is computed using the subrou-

tine NUMBMM.

The subroutines support the old Yale sparse format for the matrices. The matrix,

M , in old Yale sparse matrix format is stored using two integer vectors , IA(N + 1)

and JA(NZ), and one real or complex vector A(NZ), where N is dimension of matrix

and NZ is number of non-zero elements of M . The column index of non-zero elements

of row I are stored in JA(IA(I)) through JA(IA(I + 1)− 1). For element A(J), the

column index is JA(J).

C.3 Solution to a Sparse System of Linear Equa-

tions

The subroutines available in the IMSL Fortran 90 MP Library distributed with Com-

paq Visual Fortran software, were implemented in the program to solve the system

of linear equations

Ax = b (C.11)

where A is large and sparse. The solution to linear equations is obtained in two steps.

As a first step, the LU factorization of coefficient matrix A is obtained using DLFTZG

subroutine. Then in second step, the system of linear equations is solved using the

LU factorization of the coefficient matrix obtained in first step [42].
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Appendix D

Dynamic Device Data

D.1 2-Area 4-Generator Sample System of Chap-

ter 3

Generator 1 - 4 Data (GENROU)

T ′
d0 = 8.0, T ′′

d0 = 0.03, T ′
q0 = 0.4, T ′′

q0 = 0.05, H = 6.5, D = 1.0, Xd = 1.8,

Xq = 1.7, X ′
d = 0.3, X ′

q = 0.55, X ′′
d = X ′′

q = 0.25, Xl = 0.1,

Generator MVA base = 900 MVA

Exciter 1 - 4 Data (AC4A)

Tr = 0.01, Tc = 1.0, Tb = 2.0, Ka = 200.0, Ta = 0.01

D.2 2-Area 4-Generator Sample System of Chap-

ter 6

Generator 1 Data (GENROU)

T ′
d0 = 8.0, T ′′

d0 = 0.0, T ′
q0 = 0.4, T ′′

q0 = 0.0, H = 6.5, D = 10.0, Xd = 1.8,

Xq = 1.7, X ′
d = 0.3, X ′

q = 0.3, X ′′
d = X ′′

q = 0, Xl = 0.0,

Generator MVA base = 900 MVA
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Generator 2 Data (GENROU)

T ′
d0 = 8.0, T ′′

d0 = 0.0, T ′
q0 = 0.4, T ′′

q0 = 0.0, H = 6.5, D = 1.0, Xd = 1.8,

Xq = 1.7, X ′
d = 0.3, X ′

q = 0.3, X ′′
d = X ′′

q = 0, Xl = 0.0,

Generator MVA base = 900 MVA

Generator 3 Data (GENROU)

T ′
d0 = 8.0, T ′′

d0 = 0.0, T ′
q0 = 0.4, T ′′

q0 = 0.0, H = 6.5, D = 6.5, Xd = 1.8,

Xq = 1.7, X ′
d = 0.3, X ′

q = 0.3, X ′′
d = X ′′

q = 0, Xl = 0.0,

Generator MVA base = 900 MVA

Generator 4 Data (GENROU)

T ′
d0 = 8.0, T ′′

d0 = 0.0, T ′
q0 = 0.4, T ′′

q0 = 0.0, H = 6.5, D = 1.2, Xd = 1.8,

Xq = 1.7, X ′
d = 0.3, X ′

q = 0.3, X ′′
d = X ′′

q = 0, Xl = 0.0,

Generator MVA base = 900 MVA

Exciter 1 - 4 Data (AC4A)

Tr = 0.01, Tc = 1.0, Tb = 10, Ka = 100.0, Ta = 0.01

D.3 Kelsey Generating System Data

Generator Data (GENSAL)

T ′
d0 = 3.6, T ′′

d0 = 0.05, T ′′
q0 = 0.0, H = 4.1, D = 0, Xd = 0.915, Xq = 0.5411,

X ′
d = 0.244, X ′′

d = 0.1624, Xl = 0.133, Ra = 0.0002,

Generator MVA base = 262.5 MVA

Exciter Data (IEEET1)

Tr = 0, Ka = 12.0, Ta = 0.2, Vrmax = 1.0, Vrmin = −1, Ke = 0, Te = 0.4,

Kf = 0.133, Tf = 1.0, E1 = 2.3659, SE(E1) = 0.13, E2 = 3.1546, SE(E2) = 0.37

Governor Data(IEESGO)

T1 = 0.44, T2 = 0.671, T3 = 74.4, T4 = 0.0, T5 = 0.63, T6 = 0.0, K1 = 24.4,

K2 = 3.0, K3 = 0.0, Pmax = 0.92, Pmin = 0.0

167



Appendix E

Nelder-Mead Simplex Algorithm

The Nelder-Mead Simplex method is employed in this thesis to find the minimum of

the multi-objective function. The simplex method is an efficient iterative algorithm for

unconstrained nonlinear optimization. The minimization achieved using the simplex

algorithm is not guaranteed to be globally minimum, but it is able to crawl out of some

local minima to find better minima. It requires only function evaluations and does

not use derivatives. A simplex is a geometric figure in n-dimensional space specified

by n + 1 linearly independent vertices (e.g., a triangle for n = 2 and a tetrahedron

for n = 3).

The simplex size is continuously changed and mostly diminished, so that finally it

is small enough to contain the minimum with the desired accuracy. The operations

of changing the simplex optimally at a given iteration that determine a new simplex

for the next iteration are either reflection, expansion, contraction, or shrinking. The

overall effect is for the simplex to crawl around the parameter space, creeping down

valleys and shrinking to get to the very bottom of narrow valleys. The Nelder-Mead

simplex minimization algorithm may be explained using pseudo code.

Simplex Pseudo Code

1. Select coefficients of reflection(ρ), expansion(χ), contraction(γ), and shrinkage(σ).
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Figure E.1: New simplex after (a) reflection step (b) expansion step (c) contraction

step; and (d) shrinking. The simplex at the beginning of iteration is shown with a

solid line and the new simplex at the end of one iteration is shown with a dashed line.

Typical choices of these coefficient are

ρ = 1, χ = 2, γ =
1

2
, and σ =

1

2
. (E.1)

2. Create a simplex defined by n+ 1 vertices; and calculate the function values at

these vertices.

3. Order n+ 1 vertices such that f1 ≤ f2,≤ · · · ≤ fn+1 where fi denotes f(xi).

4. Calculate the centroid of first n best points xc =
∑n

i=1 xi/n; and the reflection

point xr using

xr = xc + ρ(xc − xn+1). (E.2)

Evaluate fr = f(xr). If f1 < fr < fn, then replace xn+1 with xr and go to step

8 before proceeding to the next iteration.

5. If fr < f1 calculate expansion point xe from

xe = xc + χ(xr − xc) (E.3)
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and evaluate fe = f(xe). If fe < fr, then replace xn+1 with xe, otherwise with

xr. Go to step 8 before proceeding to the next iteration.

6. If fn ≤ fr < fn+1, calculate the contraction point from

xt = xc + γ(xr − xc) (E.4)

and evaluate ft = f(xt). If ft < fr, replace xn+1 with xt and go to step 8.

Otherwise go to the next step to shrink the simplex.

7. A point at least better than xn is not found; therefore, shrink the simplex.

Calculate n new points from

x′i = x1 + σ(xi − x1), i = 2, . . . , n+ 1. (E.5)

Replace x2, . . . , xn+1 with x′2, . . . , x
′
n+1

8. If the termination criteria is not met, then go to step 3.
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