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Aleksandrs Aleksejevs

NEXT TO LEADING ORDER AND HARD-PHOTON
BREMSSTRAHLUNG EFFECTS IN ELECTROWEAK
ELECTRON-NUCLEON SCATTERING June 20, 2005

Parity-violating electron-proton scattering experiments are a rapidly de-
veloping area dedicated not only to measuring the weak nucleon form fac-
tors, but also, more generally, to search for effects beyond the Standard
Model of Particle Physics.

The main purpose of the present work is to take into consideration the next
to leading order effects in parity-violating (PV) electron-nucleon scatter-
ing with realistic form factors for the hadronic currents, and to compute
corrections to the weak charges of the proton and neutron. We do so with-
out using the usual zero momentum transfer approximation. A complete
analytical example for the y— Z box type of correction for electron-proton
scattering is considered.

The method for evaluation of the electron-nucleon radiative corrections
most commonly found in the literature is to follow the Feynman rules for

the elementary particles of the Standard Model, and calculate electron-




quark corrections first. Then the single quark terms are combined to
form hadronic vector and axial vector corrections. However, this ap-
proach leaves us with infrared divergences generated by the integration
in the loops involving massless particles. One way to treat such infrared
divergences of the electroweak radiative corrections is by adding PV soft-
photon emission graphs. Although reasonable, the results are left with
a logarithmic dependence on the photon detector acceptance, which can
only be eliminated by considering PV hard-photon bremsstrahlung (HPB)
graphs. We present what we believe to be the first complete treatment of
HPB for electroweak scattering. Parity-violating HPB differential cross
sections for electron-proton scattering have been computed using the ex-
perimental values of form factors in the diagram vertices. It allows us to

avoid uncertainties associated with unknown quark dynamics.

The final results are conveniently expressed through kinematical param-
eters, making it possible to apply the computed HPB asymmetries to
virtually any PV electron-nucleon scattering process. We also provide a
complete set of numerical results for one-loop electron-nucleon radiative
corrections for SAMPLE, HAPPEX, GO, A4, and Q-Weak experiments.
The methods developed for electron-nucleon scattering are applied to cal-

culations of the weak charges of nuclei. Several numerical results are




listed, and found to be in good agreement with the current experimental

data.
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1 Introduction

The Standard Model introduces an asymmetry between left- and right-handed par-
ticles, and predicts a parity-violating interference between the weak and electromag-
netic forces. These interference effects are small, but have been clearly detected
in recent experiments [1]. Extracting the physics of interest from the measured
asymmetry requires evaluating radiative corrections to electroweak scattering at very
high precision. Naturally, one-loop' radiative corrections will give the dominant
contribution. Electroweak radiative corrections to intermediate energy, parity non-
conserving semi-leptonic neutral current interactions have been addressed previously
in Refs. [2, 3, 4, 5, 6]. Later work in Ref. [7] improved the techniques for one-quark
radiative corrections computation by retaining analytical momentum-dependent ex-
pressions and providing the precise numerical evaluations of 446 one-loop diagrams.
However, in Ref. [7], even after regulating infrared divergences through soft-photon
emission, the calculated one-quark radiative corrections showed a logarithmic depen-

dence on the detector’s photon acceptance parameter.

The thesis presented here proves that elimination of this dependence can be

! Here one-loop refers to the leading order correction in perturbation theory, generally involving one
integration over virtual internal four-momenta in a topological closed-loop Feynman diagram.




achieved by adding the Hard-Photon Bremsstrahlung (HPB) term. For one-quark
radiative corrections, the HPB term is hard to account for due to the poorly known
quark dynamics. Thus, we have to define the next to leading order hadronic ra-
diative corrections for the electron-nucleon parity-violating scattering directly. This
approach has its own challenges and advantages. In the case of the HPB computation
for electron-proton scattering, we can avoid this theoretical uncertainty by represent-
ing cumulative quark dynamics directly through an experimentally determined set
of form factors. Using a monopole approximation for the form factors, we modify
general electroweak couplingé by inserting appropriate form factors into vertices and

construct a HPB factor as a function of Mandelstam invariants.

In the current work, we provide a detailed description of both hard- and soft-
photon emission treatment. For each set of experimental constraints, integration over

the emitted photon phase space can be performed numerically.

One-loop corrections are generally sub-divided into three topological classes: boxes,
self energies, and vertex (triangle) graphs. To preserve gauge invariance, we include
all the possible bosons of the Standard Model in these topological classes, and develop

partially-computerized techniques applicable for each class.

Our theoretical predictions are in excellent agreement with the currently available
results from the atomic parity-violating experiments for the weak charges. We plan to
provide the radiative corrections for the ongoing Q-Weak experiment, which is directly

2




focused on the measurements of the weak charge of the proton. One-quark radiative
corrections have a theoretical error associated with uncertainty of quark dynamics.
In this work, we take into consideration the next to leading order effects in parity-
violating electron scattering with realistic form factors for the hadronic currents, and
compute corrections along with the weak charges of the proton and neutron. Thus,
we are be able to avoid uncertainties associated with one-quark radiative effects by
absorbing terms which are responsible for the quark dynamics into experimentally
measured electromagnetic form factors. Previously, the estimates were done for the
case of v — Z box (Ref. [8]) in the zero momentum transfer approximation. The
rest of the corrections used for calculations of the weak charges of the nuclei in
Ref. [8] are on the one-quark level only. We hope that modification of the couplings
with model-dependent form factors and replacement of one-quark corrections with
the hadronic ones developed in this thesis will contribute more clarity to tests of
the Standard Model. Also, in the treatment of the infrared divergences with the
hard-photon bremsstrahlung, it is more natural to consider photon emission from
the proton instead of the quark. By this, we expect to reduce theoretical error up to
the level of uncertainty of current electromagnetic form factor measurements. Finally,
preserving the momentum transfer dependence in all types of our radiative corrections

makes it easier to adopt our results to the current parity-violating experiments.

The thesis is constructed as follows. The next chapter, “Standard Model”, out-

3




lines the general features of the Glashow-Salam-Weinberg model, focusing on elec-
troweak interactions. The chapter briefly explains the concept of spontaneous sym-
metry breaking and corresponding gauge theories. It also lists the Feynman rules used
as a starting point for our calculations. Special attention is paid to the regularization,
tensor decomposition, and tensor reduction methods. Three selected types of regular-
ization schemes are explained (Pauli-Villars, lattice, and dimensional regularization

(DR)), and our choice for DR scheme is justified.

The equivalence at the one-loop level of our chosen method, Constrained Dif-
ferential Renormalization (CDR), to regularization by dimensional reduction is ex-
plained in Chapter 3. This chapter also lists four rules for the Constrained Differential
Renormalization, allowing us to renormalize any one-loop Feynman graph. A set of
Ward-Takahashi identities which simplifies our work by reducing the number of inde-
pendent renormalization constants is given. Chapter 3 also shows the relation of the
renormalized parameters to the bare parameters, and the counterterms chosen in the

on-shell renormalization scheme in the 't Hooft-Feynman gauge.

Chapter 4, “Radiative Effects”, is the most important part of this work. It starts
with expressions for realistic Pauli and Dirac couplings in terms of fermion weak and
electric charges, and the definition and classification of one-loop radiative corrections.
After that, a complete analytical example for the {7 — Z} box type of correction for
electron-proton scattering is considered. The key idea here is to avoid uncertainties

4




associated with one-quark radiative effects by absorbing terms which are responsible
for the quark dynamics into experimentally measured electromagnetic form factors.
The numerical results are compared with Ref. [9]. Parts 4.5 and 4.6 give computa-

tional details for the self-energy graphs and vertex correction graphs, respectively.

Chapter 5 is dedicated to the soft- and hard-photon bremsstrahlung effects. The
proper account for these effects allows us to achieve final results that are free both
of infrared divergences and a logarithmic dependence on the detector’s photon ac-
ceptance parameter. Again, when computing hard-photon bremsstrahlung terms for
electron-proton scattering, we replace the unknown quark dynamics by the measured
set of form factors. Using the monopole approximation, we modify general elec-
troweak couplings by inserting appropriate form factors directly into the vertices and
construct a HPB factor as a function of Mandelstam invariants. For the several se-
lected experiments, SAMPLE [10, 11], HAPPEX [12], GO [13], A4 [14], and Q-Weak
(15], we provide a complete set of numerical results for one-loop electron-nucleon
radiative corrections. Although a very valuable result on its own, the radiative cor-
rections for electron-proton scattering are considered only as a numerical example
here. Our work on bremsstrahlung effects is methodological, and the same technique

can be expanded to many other processes.

Chapter 6, “Discussion and Analysis”, shows how the methods described above
for electron-nucleon scattering can be applied to calculations of the weak charges

)




of nuclei. Several numerical results are listed, and found to be in good agreement
with the current experimental data. Some directions for the improvement of our

computational model which can be pursued in the near future are discussed.




2 Standard Model

The Glashow-Salam-Weinberg model [16], originally developed for leptons, has be-
come the “Standard Model” of electroweak interactions after being successfully ex-
tended to the hadronic sector by incorporating the concept of Cabbibo-Kobayashi-
Maskawa mixing. The Standard Model is the most comprehensive formulation of
a theory of the unified electroweak interaction at present [17]. It is theoretically
consistent and in agreement with all known phenomena. of electroweak origin.

The Standard Model asserts that the material in the universe is made up of el-
ementary fermions interacting through fields, of which they are the sources. The
elementary fermions of the Standard Model are of two types: leptons and quarks.
The particles associated with the interaction fields are bosons. Out of four types of
interaction fields, the Standard Model excludes the gravitational field from considera-
tion . The quanta of the electromagnetic interaction field between electrically charged
fermions are the massless photons. The quanta of the weak interaction fields between
fermions are the charged W+ and W- bosons and the neutral Z boson, discovered at
CERN in 1983. Since these carry mass, the weak interaction is short ranged. The
quanta of the strong interaction field, the gluons, have zero mass, and, like photons
might be expected to have infinite range. However, unlike the electromagnetic field,
the gluon fields are confining.

The Standard Model, like the QED it contains, is a theory of interacting fields,
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whose construction has been guided by principles of symmetry. Some of the symme-
tries are not exact because of the different quark masses and different quark charges.
The symmetry breaking due to quark mass differe_znces precedes over the electromag-
netic.

The electroweak Standard Model is a non-Abelian gauge theory based on the
gauge group SU(2) x U(1), where the ideas of Yang-Mills theories, isospin invari-
ance, spontaneous symmetry breaking, and Higgs mechanism merge in one common
concept. The renormalizability of this class of theories was proven by ’t Hooft in
1971 [18]. It gives the possibility to perform perturbative calculations for measur-
able quantities order by order, using a few input parameters. The input parameters
themselves cannot be predicted but have to be taken from appropriate experiments.

The renormalizability makes it possible to calculate higher order quantum ef-
fects (i.e. radiative corrections) to the processes accessible by experimental facilities.
Such processes include the weak decays of particles, neutrino-lepton and neutrino-
nucleon scattering, electron-nucleon scattering, and electron-positron annihilation. If
hadrons® are involved, the basic electroweak processes are considered to be the cor-
responding subreactions at the level of quarks as their constituents. Thus, these kind
of fundamental reactions are all a type of 4-fermion process.

Electroweak processes between fermions can essentially be described with the help

2 A bhadron is a strongly interacting composite particle which either a fermion (baryon) or boson
(meson).




of three input parameters, besides the masses of the fermions themselves and CKM
mixing angles: the non-Abelian SU(2) gauge coupling constant g,, Abelian U(1)
coupling ¢, an@ the Higgs field vacuum expectation value v. This set can be replaced
by any other set of three independent parameters, having theoretical relations to the
previous set. Since the input parameters eventually have to be taken from experiment,
it is practical to choose a set of more or less well measured quantities.

One of the examples would be [19]:

- the fine structure constant o = 1/137.03599976(50)

- the Fermi coupling constant G, = 1.16639(1) x 1075 GeV 2

- the Weinberg mixing angle sin® 6y = 0.23113(15) (Z-pole, M S renormalization).

Another possible choice of parameters could include the masses of W* and Z

bosons:
M2 =% 1
w \/éG“ Sil’l2 9W ( )
Mz, .
F% =1- Sll'l2 0W (2)

2.1 Electroweak Lagrangian: Weinberg-Salam model

The lowest order description of a 4-fermion process starts with the classical La-
grangian. According to the general principles of constructing a gauge invariant field
theory with a spontaneous symmetry breaking mechanism, the electroweak classical

9




Lagrangian consists of the following gauge, Higgs, and fermion parts [17]:
Lclassical - Lgauge + LHiggs + Lfermion' (3)

The gauge Lagrangian Lg,ug. formed from the isotriplet of vector fields 17[/_; =
(W, W2, W2) (we will use notation W2, a = 1,2,3) and the isosinglet vector field B,,
transforming under a gauge transformation according to the adjoint representation

of the gauge group SU(2) x U(1), and leading to the field strength tensors

We, = 8,W;—-08,Ws— gzeabcwgws, (4)

B,, = 0,B,—0,B,. (5)

Using the field tensors Eq. (4) and (5), we can form the pure gauge field La-
grangian:

1 a v,a 1 v
Lga.uge = —ZW#,,W# = ZB#VB'M . (6)

Now let us consider the Higgs field components.

The electric charge operator @ is built from the generators T of the weak isospin

and the weak hypercharge Y:

T3 is assigned a quantum number of +%(—1) for the upper (lower) component
of left-handed fermion doublets of Table 1 and zero for all right-handed fermions.

10




up charm top
—_ U c i
Quarks || g = (d)L <S)L (b)L
down strange bottom
gr = | ug, dr CR; SR tr, br

e—neutrino p—neulrino T—neulrino
€ H/L T/L
electron muon tau

Leptons || I, = (

lr= | er KR TR

Table 1: Fermions of the Standard Model.

2.2 Spontaneous Symmetry Breaking

Mass generation for fermions and gauge bosons proceeds by means of spontaneous
breaking of the SU(2) x U(1) symmetry [20]. Due to the presence of SU(2), a non-
Abelian group, self-interactions occur between the gauge bosons. The corresponding

field tensors yield the gauge-kinetic Lagrangian.

We shall only know for sure what breaks the electroweak symmetry when we can
see the scattering of W’s and Z’s at very high energies, of the order of 1 TeV. This
should be possible at the LHC — the Large Hadron Collider, expected to operate at

CERN in the first decade of the this millennium.

For spontaneous breaking of the SU(2) x U(1) symmetry leaving the electromag-
netic gauge subgroup U(1) unbroken, a single complex scalar doublet field with hyper

11




charge Y =1

o= ()

is coupled to the gauge fields
Luiggs = (Du®)"(D®) — V(2) (9)

with the covariant derivative

D, = 8, —igsTW® + z'%B,, (10)

The Higgs field self-interaction is constructed in a way that it gives rise to spon-

taneous symmetry breaking:
V(®) = —p2®Td + \(&1®)2 (11)

Here, coefficients p and A are related to the non-vanishing vacuum expectation value
v as

v=-t_. (12)

Using Eq. (12), let us re-write Eq. (8) in the following way:

N #* ()
o(z) = ((U+H(x) +z‘x(m))/~/5>’

where the components ¢*, H and x now have zero vacuum expectation values.

The real component H(x) describes a physical neutral scalar particle with mass

12




i.e. Higgs boson, which has so far escaped experirﬁental detection at present colliders.
This non-observation allows one to set a lower bound of My > 114.3 GeV [19].

At the European Laboratory for Particle Physics (CERN) in Geneva [21], a new
particle accelerator, the Large Hadron Collider (LHC) is presently being constructed.
In the year 2007 beams of protons are expected to collide at a center of mass energy of
14 TeV. In parallel to the accelerator two general purpose detectors, ATLAS and CMS,
are being constructed to investigate proton-proton collisions in the new energy domain
and to study fundamental questions of particle physics. The ATLAS experiment will
be capable of detecting the Higgs boson with a high significance ( > 5¢) in the mass
range from 100 GeV to 1 TeV.

The Higgs field components have cubic and quari;ic self couplings following from V,
and couplings to the gauge fields via the kinetic term of Eq. (9). Yukawa couplings
give masses to the charged fermions, although the values of these masses are not
specified by the Standard Model.

The left-handed fermion fields of each quark and lepton family are grouped into

SU(2) doublets
o= (1), (14)

j....
where j is the doublet index and +/— refers to the component index (o = +£). The

right-handed fields form singlets:

YE =yl (15)

J jo

13




The left-handed fermion doublets and right-handed fermion singlets, included into
our calculations, are listed in the Table 1. Each left and right-handed multiplet is an
eigenstate of the weak hypercharge Y according to Eq. (7). The covariant derivative
(see Eq. (10))

Y
Dy = Oy~ igs T W +ig1 7B, (16)

induces the fermion-gauge field interaction.

The interaction with the Higgs field is expressed in terms of Yukawa couplings:

Lfe-rmion = Z {'l)b]LZ’Y“Dy'Q/}JL + J}'?gi’)’#D,u ;,20-} + LYukawa. ) (17)

o

with
Lyurawa = —91@d™lr + Ird vy + 1p¢%1R + 1rg™11). (18)
Here, ¢~ denotes the adjoint of ¢t. The Yukawa coupling g; constants are directly
related to the masses of the charged fermions as will be specified later. For one family
of leptons and quarks only (let’s say v and d) and neglecting quark mixing, Eq. (18)

will look as follows:

Lywkawa = —ga(Brdtdp+drd~ur +drddg + drg™dy) (19)

”“gu<—'ljR¢+dL -+ Equ—’uR + ﬂRq’)OuL -+ ﬂLQSO*UR)
According to the expressions above, the Standard Model has included parameters

,LL2, )‘7 g1, 92; Gjo (20)

14




i.e. two parameters coming from the Higgs self-interaction Eq. (11) p2 and A (which
are positive but otherwise arbitrary), gauge couplings g; and g», and Yukawa coupling
constants Yio- None of them is physical and can be measured directly, so we have to
find a way to replace the original set Eq. (20) by the set of some physical, measurable
quantities.

The symmetry is manifested in terms of fields W¢, B,. The gauge invariant Higgs
gauge field interaction in the kinetic part of Eq. (9) leads to mass terms for the vector
bosons in the non-diagonal form
2 (ﬂvf W2+ W)+ L (we B,) I <W3> (21)

g~ . B,
—9192 93

Let us now transform W, B,, to the physical fields Wf and Z,, A, :

WE =

b ﬁ(Wj FiW?) (22)

Z, = cosOwW} —sinfwB, (23)

A, = sinHWWﬁ—FcosBWBy

where Oy is called the Weinberg or weak mixing angle (although Glashow was the
first to introduce the idea). The SU(2); x U(1)y proposal made by Glashow in 1961
was extended to accommodate massive vector bosons by Weinberg (1967) and Salam
(1968). It is important to remember that sinfy is a scheme dependent parameter,
i.e. its value depends on the renormalization scheme used.

15




In Eq. (23), A, is the regular electric (photon) field which is massless and couples
to the electron via the electric charge e = V4ra. W#i and Z, describe two charged
W+# and one neutral Z heavy vector bosons.

In these fields the mass term Eq. (21) is diagonal and has the form

1 0 0 AH
MEWWE 4 2(Ay 7,) (7) (24
0 M2
with
1
MW = é-gz’U (25)
1
Mz = 50\/9% + 93
if the mixing angle in Eq. (23) is chosen as

cos By = =
Mz /g2 + g3

The electric charge e can be expressed in terms of the gauge couplings in the

following way

e— 9192 (27)
V9t + g3
or
€ €
= =— 28
N= os 0w’ 92 = Sin Oy (28)

The fermion masses can be obtained from the Yukawa coupling terms Eq. (19) as

v

Mig = o
j gj V2

16




Quantity Value Quantity Value

My 47 MeV Me 0.51100 MeV
My 47 MeV my 105.66 MeV
My 150 MeV mMr 1777.0 MeV
me 1.25 GeV Mz 91.1882 GeV
™y 4.2 GeV My 80.419 GeV
my 174.3 GeV My 100 GeV

Table 2: Standard Model parameters used in this calculation. Here, light quark
masses are calculated from the fit presented in the subsection ”Self-Energy Graphs”.
Other parameters are taken from Ref. [19]. ~

Thus, instead of the original set of non-physical parameters Eq. (20), we have the

equivalent set where every parameter can be measured directly:
Mjo, MW; MZ7 MH7 € (29)

The values used in this work are summarized in the adjacent table (Table 2).

The quark mass eigenstates are not the same as the weak eigenstates, and the
matrix relating these bases is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix,
or the quark mixing matrix V . Its matrix elements are not predicted by the Standard
Model and must be extracted from experiment.

For three quark generations, the matrix is expressed by convention in terms of a
3 X 3 unitary matrix V operating on the lower (¢—) quarks mass eigenstates (d, s,

17




and b):

d Vaa Vus Vi d
s = Va Vs Vyu S ’ (30)
b/ ‘/td ‘/ts ‘/tb b

with current experimental magnitudes [19]

0.9741 to 0.9756 0.219 to 0.226 0.0025 to 0.0048
V=1 0.219 to 0.226 0.9732 to 0.9748 0.038 to 0.044 (31)

0.004 0.037 to 0.044 0.9990 to 0.9993

For some elements the values can be obtained from the weak decays of the relevant
quarks or from deep inelastic neutrino scattering. The rest are restricted using unitar-
ity constraints. See [19] for more experimental details. We actually do not use these
values directly in the evaluation of the weak charges of the nucleon. We substitute V
by the unitary matrix there. However, in the case of the one-quark radiative correc-
tions supplementing the Hard-Photon Bremsstrahlung effects, the parametrization,

involving the four angles 6;, 65, 63, and §, was used:

7
d 1 —81C3 —8183 d
;| ) )
s | T | sica cicacs — s283€®  cicos3 + spcze® s | (32)
b’ 5 ) b
§182 C189C3 + C2S3€ C18983 — CqoC3€

where ¢; = cos6; and s; = sinf; for i = 1,2, 3.
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2.3 Gauge Theories

Gauge theories have an invariance of Lagrangian under group transformations g(z)
which depend on a point in the space-time manifold. Fields in such theories are
divided into two classes: matter fields ¢*(z) and gauge fields A%(z). The number
of gauge fields is equal to the number of group generators. The gauge fields are
vector fields; the matter fields can have an arbitrary Lorentz structure. Their internal
components are transformed according to some representation of the group. Let f)\(w)
be an operator which performs an infinitesimal transformation of fields under the local

gauge transformation. For matter fields we have

D(w)y(z) = iw®(z)7h(z). (33)

For gauge fields the local gauge transformations are defined by

(D(w)Au)*(z) = f3,A0(2)w™(2) + B (x). (34)

To construct a local invariant Lagrangian, we need to define a covariant derivative

and a gauge field tensor:

Vuip(z) = Oup(z) — ]-A)(A;L)"l’(x) = Outp(z) - Z'Az(w)'f’a'(,[)(:v), (35)
Fo(z) = 0.A3(z) — 8,A%(x) + f5,A5(x) A) ().
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In these terms, the Lagrangian of gauge theory is defined by [22] or [23] as the

following;:

L=t R P i L (V). (36)

492 2%

where g is the coupling constant and L,,(V,1,) is some Lagrangian of the matter
fields which is invariant under the global gauge transformations. In order to quantize
the gauge theory we must add to Eq.(36) a gauge fixing term and the corresponding
Faddeev-Popov term [24]. The first term breaks the gauge symmetry and in this
way removes the divergence of the functional integral. The general form of the gauge

fixing term is

oy

Ler(z) = —5 S (@%(@))%, (37)

where ®*(z) corresponds to the vector boson fields of the theory.

For example, in the case of t’'Hooft-Feynman gauge we use in this work, the gauge

fixing terms are
1 1 2
Lor(n) = —5(0"A4,) = 5 (0" Z, + M3 Zy)* — |0* W, + MwWF|,  (38)

where the squared Goldstone field terms (MzZf)? give a mass to the Goldstone par-
ticle equal to the mass of the corresponding vector boson field.

The second term we have to add to Eq.(36) improves the integration measure
to provide correct predictions for gauge invariant observables. The corresponding
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Faddeev-Popov term is

o~

Lpp(z) = —Ca(@)(D(c)[2%])ca(z), (39)

where ¢,(x) and c,(z) are the auxiliary anti-commutative fields, called the Faddeev-

Popov ghosts and D(c) defined by the Eq.(34).

Based on the specific form of the Lagrangian, we can develop a set of Feynman
rules applicable for the given physical situation. Some of Feynman rules we use most

often for semi-leptonic electroweak processes are listed in the following section.

2.4 Feynman Rules

The full set of electroweak Feynman rules can found in [25]. Below are shown se-
lected rules most commonly applied in the present work, expressed in terms of bare

parameters.

. & 5
—i Voy (1—
242 Uy'u( 7))

oh

Fermion W-boson vertex.
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4
_ 8
(VAVAVAVAY
2cos 2 —=2—y (g7 -gl7")
f
Fermion Z-boson vertex.
’\/\/\/\/p\V/\/\/\/\/ ! r—g +quy(1—§+)]
v q H qZ_M;/L #v P~ M
W-boson propagator
Z

ANANNNNANAN i1, +q"q"a_52)}

v q y7i q —Mzz',_ w qz‘szz%

Z-boson propagator.

i
q2 - §+Ml'2

Unphysical charged Higgs propagator.

We use notation ¢ for the gauge-fixing parameter. The limit of £ — 0 corresponds
to the Landau gauge, whereas the limit £ — oo defines the unitary gauge. In the
unitary gauge only physical polarization states of the incoming and outgoing W= and
Z bosons are considered. Consequently, in the unitary gauge all ghost and Goldstone
fields may be omitted.

For our case, the most convenient choice is the 't Hooft-Feynman gauge, defined
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by setting all the gauge-fixing parameters to unity, £ = 1. In this gauge, the lowest
order propagators for the physical gange bosons and unphysical Higgs and ghost fields
have poles at either M7, or M2 . This condition can be maintained in higher order
by a suitable renormalization of the gauge-fixing parameters [20].

As one can see from the expressions above, all boson propagators are gauge de-
pendent. The more detailed consideration of different gauge choices is given in the
next section, “Renormalization”.

The reader should note that all the couplings chosen in an example above are
defined for the point-like particles of the Standard Model. Much more complicated
couplings applicable for the electron-nucleon vertex will be derived later.

The vector and axial-vector “charges” of the fermion, g‘f, and gfl, are defined as

g‘f, = T£3—2Qf sin? Oy, (40)
g = T, (41)

The same quantities are also called “coupling constants”.

More specifically, for the electron and the (u,d, s) quarks we have:

. 1 ) . 1
gy = —§+281n29w, ga = —“2‘,
1 4 L1
g = +5 3 sin® 0y, g4 = +3) (42)
1 2 1
d,s . d,s
gv = —“2'+§Sln2ew, g4 = ——‘2‘
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Let us form combinations

b = =y, 43)
de = 12Dy,

where “1” represents the unit 4x4 matrix. The quantities 1;, and g are Dirac
equation solutions of definite chirality, i.e. handedness. For zero mass particles,

chirality coincides with helicity. The matrices

145

- (44)

WR,L =

are chirality projection operators. We re-define wy, as w_ , and wg as w, . In this
thesis, it was found more convenient to define amplitudes using chirality projection

operators wy = % and w_ = 1= instead of explicit Dirac matrices 5. Thus
+ 2 2 7 )

_ gL+ 9gr
gv 2 )
and
4= gR;gL. (45)

2.5 Coupling Constants

At a generic level, for vertex {F' — F — V,} we can write

{F-F-V,} - apl (F,F,V,) up, (46)
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where C (F, F,V,) is a generic coupling defined from the SM Lagrangian as

I'(F,FV,) = ( VT, Vst ) —G?FFV (47)
where G Frv 1s a coupling matrix containing couplings of the classes up to the desired
counterterm order. In the case of one-loop calculations, we restrict coupling matrices
up to the first counterterm order only (zero order — tree level, first order — one-loop,
etc.). We define five types of fermion-fermion-vector boson coupling matrix G FFV :
fel #.# (any fermions, photon), [el 7.5,z (any fermions, Z-boson), —@z,l',w (leptons only,
charged W-boson), 3q§up)’q§down)’w (up and down type quarks only, W~-boson), and
6q§down)’q;up)1w (down and up type quarks only, W*-boson).

_)
Let us start with the coupling matrix G ., (fermion-fermion-photon vertex):

_, —Q; —Qs(Se+ 2% + Rel6 f]]) + g7 Z2x
Gf,f,’T = z'e ] (48)

—Q5 —Qs(be+ = 8Zyy Re[éfRD +gi? 5222

where the first column represents tree level coupling and the second one one loop

counterterm. Furthermore, we give a list of the generic couplings for various interac-

tions, as well as coupling matrices up to the first order counterterm, where necessary.

The rest of the coupling matrices entering Eq. (47) have the following structure:
917" ol 7%= + 69177 ~ Qs % + 9177 Rel§ f]]

.—_)
Gf,f’z =1e 3 (49)
9{2_2 QIJ;—ZLZzU‘ + ‘59R - Qy J_ + gR 7 Re[6 fR]

1
—C?z,l',w=i6 Vasw , (50)

0
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= | AU
quup),q:gdown)’w = 1€ 3 (51)
0
1 U*
- . \/-2—SW ZJ
qudown)’q‘gup),w = 1€ . (52)
0

Combining Eq. (47) with Eq. (48) and Egs. (49-52), we obtain the couplings
needed to construct vertex, boxes and self-energy graphs.

To construct counterterm amplitudes for self-energy graphs, generic coupling for

I'(V, (k1) , V., (k2)) has been used:

_}
F(Vu (kl) ’ 2 (kz)) = ( —9uw (klkz) Gy —klpk2l/ ) GVV) (53)
where
0 67254
—9 .
Gzz =1 0 mQZ 6Zz7 + (5m22 ) (54)
0 —6Z35
and

0 6Z,7+ 0624,
— i
Gz = 2l 0 m% 62z . : (65)
0 —6Z,z —6Zz,
As an example, let us consider an electron interacting with an up-quark via

Z—boson exchange on tree level:
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e(ky e (ks

u (ky) u (ky

According to the Feynman rules stated above and for the momenta specified on

the diagram, we obtain the following parity-violating amplitude:

. 1 .9 L
_ —5 +sin“ Oy )y, w-  desinby v, w
Z—tree _. k . ze( 2 © W L .
M w(ks, me) [ cos Oy sin Oy cos Oy u(ki,me) (56)
ie(3 — 2sin® 6 )y, w.  Zesinby v, @
[ k (1 2 3 Y - Y * k U
(g, ) [ cos Oy sin Oy 3 cos Oy u(ks, mu)
X S/
(ks — k2)? — M7

Let us now consider the ZZ-box diagram as a simple example of a one-loop process:

e (ky) e (k)

u (k) u(ky

This amplitude will include four propagators (last line) and require integration

over 4-dimensional momenta in the loop:

] ie(—% +sin® Oy )y, w_  iesinby vy, w,
M{Z—Z}bom — ? /d4 alk , e 2 [ ©
1674 g T(ks,me) cos Gy sin Oy + cos Oy

X(me + (f3+ ka— ko— 4))
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8 {ie(—% +sin® 0w )y, w_  desinby vy, @y

cos Oy sin Oy cos By } ulbr, me)

_ ie(: — Zsin®Ow )y, w_  2iesin by v, wy ,
XTfegr o) [ c0s By sin By 3 cos By (m+ (Fat ) (57)
o ie(% - %Sinziﬂw)’yp w-  Ziesin by v, w4 (s, ma)
cos By sin Oy 3 cos Oy
1 1 1 GvpGuo

>< - . .
=Mz (ka+q)?—m2 (ka4 q—ka)?— M2 (ky+q—ky—k3)2 —m2

The task of constructing an amplitude according to the Feynman rules is rela-
tively straightforward. The amplitude shown above is not divergent. The integration
will require more of an effort if the amplitude is divergent. The vacuum polarization
tensor, entering all self-energies and triangles, is divergent due to singular high mo-
mentum behavior. Generally speaking, we can tell whether the integral diverges by
simply counting the powers of ¢ in a given Feynman graph. Each fermion propagator
contributes g7, each boson propagator contributes g2, each loop contributes a loop
integration with ¢*, and each vertex with n derivatives contributes at most n powers
to ¢. If, as a result, you have ¢™ and m > 0, the graph diverges. The methods of

regularization and renormalization applicable here are discussed in the next section.
2.6 Regularization

To interpret the behavior of the divergent integrals, a wide variety of regulariza-
tion schemes have been developed over the decades, each with its own advantages
and disadvantages. Let us consider three selected types: Pauli-Villars, Lattice, and
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Dimensional regularizations.
In the Pauli-Villars regularization scheme, we cut off the integrals by assuming

the existence of a fictitious particle of mass M. The propagator becomes modified by

1 1 m? — M?

¢-m? @—M> (¢ —m2)(¢?— M?)’

where relative minus sign means that the new particle is a ghost, i.e. it has negative
norm. The propagator now behaves as 1/¢*, rendering all graphs finite. Then, we
make M? go to infinity so that the unphysical fermion decouples from theory. The
Pauli-Villar scheme preserves local gauge invariance and Ward identities in QED, but
they get broken for higher groups [26].

Lattice regularization is the most widely used regularization scheme in QCD for
non-perturbative calculations. Combined with Monte-Carlo techniques, it makes it
possible to extract qualitative and even some quantitative information from QCD.
Here, we assume that space-time is actually a set of discrete points arranged in some
kind of hyper cubical array. The lattice spacing then serves as the cutoff for the
space-time integral. Because this method is defined in Euclidean space, it allows to
calculate only the "static” properties of QCD.

In this work, we choose to employ the method of dimensional regularization. Ac-
cording to this method, we consider the vacuum polarization tensor as the four-
dimensional limit of a function defined in d dimensions. To follow the standard
convention, let us introduce the variable &£ = 4 — d for continuation away from the
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physical space-time dimension. Now, mathematical operations like summing over
Lorentz indices or evaluating loop integrals, can be carried out in d dimensions, with
the results expressed as an expansion of e. The divergences from loop integrals will
take the form of poles in . The last step is to continue the results back to d = 4.
Although in the dimensional regularization procedure we define our functions in
d dimensions, all physical parameters entering the theory must retain the original
dimensionality. To maintain the units corresponding to d = 4 while dimensionally
regularizing Feynman integrals, we introduce an arbitrary quantity u having dimen-
sion of mass. The parameter p allows us to modify the integration measure over

momentum as

d4p . ddp
/(%)4 = /W (58)

Of course, the arbitrary mass parameter p shall not change the relationships
between physical observables. Indeed, it does not, as it serves only in the intermediate

parts of calculations.

2.7 Tensor Decomposition

In the CDR scheme, Feynman diagrams are considered completely in four dimen-
sions. Thereafter, the reduction of singular basic functions (products of propagators
and their derivatives) has been renormalized into the sum of “regular” ones by im-
plementing a set of rules in such a way that Ward identities are satisfied. It was
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P D1 P2—pPi

— o ——
D,y
Dy,
DPN—DPN-1 Pn-1—PnN-2

Figure 1: General form of one-loop diagram with N propagators.

proven in Ref. [27] that CDR is equivalent at the one-loop level to regularization by
dimensional reduction [28], after taking the Fourier transform of the basic renormal-
ized functions into momentum space. This last approach corresponds to a modified
dimensional regularization, where one-loop integrals are considered in d dimensions,
but all the tensors and spinors are kept 4-dimensional [28]. To preserve gauge invari-
ance in dimensional reduction, one should use g, (g;; = d) with g,,g"” = gf, for the
tensor decomposition.

In dimensional regularization, the general structure of one-loop tensor integral can

be written in the form:

JN — (271-/1’)4_(1 /ddq q#l e qﬂP (59)
pi--bp 172 DyD; - 'DN—l ’

which corresponds to the one-loop diagram shown in Fig. (1).
Unlike at Born level, where all momenta running along the internal lines of a
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Feynman diagram are fixed by the overall momentum conservation, at one loop level
there remains one momentum ¢ which must be integrated over. The (gu)’s in the
numerator arise from fermion propagators or from vertices that correspond to terms
with derivatives in the Lagrangian.

"The denominators of Eq. (59) arise from the propagators running in the loop:
Dy = ¢*—mj, (60)
D; = (qg+p})—-mf, i=1,..,N~1.

P, the number of (g,)’s in the numerator, determines the Lorentz tensor structure
of the whole integral, e.g. P = 0 denotes a scalar integral, P = 1 a vector integral,
ete.

To have the proper units for the integral in d space-time dimensions, we have to
introduce an arbitrary reference mass p. Basically, 4 means the regularization scale
parameter of dimensional reduction, which is related to the CDR renormalization scale
by log (M 2) = log (%) + 2. The final renormalized amplitude will be independent of
4, of course.

The integrals with a tensor structure can be reduced to linear combinations of
scalar integrals. Because the integrals Eq.(59) are symmetric, Lorentz covariant ten-
sors (i.e. they transform in a definite way under Lorentz transformations), they can
be decomposed into a tensor basis formed from the linearly independent external mo-
menta p; and the metric tensor g,,. The choice of this basis is not unique; the basis
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can be chosen such that the coefficients are totally symmetric in their indices [29].
Using the Passarino-Veltman [30] method for tensor decomposition, we can represent
the above integral as the linear combination of tensor coefficient functions, which

reads explicitly

B, = kB,
B:u/ = gyVBOO+k1pk1uBlla
2
C, = S kuCh
i=1
2
C/{u/ = §MUOOO+ Zki,ukjucij,

4,j=1

2 2
C;,wp = Z (guukip + .aupkip. + gupkiu) Cooi + Z kiyka/kﬁpc’ij&

=1 ijE=1
3
=1
3
D,, = GuDoo+ > kiuki Dij,
i=1
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3 2
D;u/p = Z (gﬂVkiP + §Vpki[t + gﬂpkiu) DOOZ' + Z kipkjukprian

i=1 i,5,6=1
D:u/pa' = (./g\/w.’q\pa + gupgua + §pa§up) DOOOO

gwkipkja + ngkiukja + §Mpkivkja
+ Z Daoi;
+§uakivkjp + §uokiukjp + gpakiukjv

3
+ Z ki”kjukﬁpkmD‘ijfm7

in)E)m=1

Here (B',C’, D') mean two, three, and four point tensor integrals, with two, three,
and four propagators, respectively. The rank of the above tensors is equal to the
number of integrable momenta (gy,qy, - - -gu,) in the numerator of Eq. (59). The
standard notation is A for N = 1, B for N = 2 , C for N = 3, etc. The scalar
integrals are denoted by a subscripted zero: Ay, By, etc. In four dimensions, only
Ap and By are divergent; they depend, in dimensional regularization, on the scale
parameter . As we are dealing with one-loop diagrams only, the maximum N we
can have is 4. Thus, the Passarino-Veltman approach deals with two, three, and four
point tensor integrals with two, three, and four propagators, respectively.
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2.8 Tensor Reduction

To reduce the number of Lorentz indices, we contract with pl:

2.0 = (g+p)°—¢ —pp

= [(g+p)® —mi] — [¢ — m] — pi® +mi — m

= Dy — Dy —p}+mi—m]

= Dy—Do— fi,
where
fe =Pt —mi+mg.
Thus,
BT = (272”?6):—(1 / gig B Gpos (D = Do = i)
s DoD; - -Dy—1
1

= QUM N N ),

9\ HLppa1 B1epp—1 Bl pip—1

where £ indicated that Dy has been cancelled.

If we contract with g*,

9" q.q, = (¢ — m3) +ml = Dy +m3.

and
4~d 2
g.”'P—l#PJN — (27"#) /ddq Gua """ Qupa (DO + mo)
H1...pbp qqr2 DODl . ’DN—l
N-1,§f 2 7N
J#l---#p—l#P—z - mO‘]m---uP—l#P—z‘
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Let us introduce notations

1
N,k — _—(JN-L¥K _ JgN-10  __ N
R#L--#P—l - 2 (']#1--#?—1 ‘]Ml-nliP—l ka#l---#P-1 )7 (66)
N,00 — N-1,¢¢ a2 N
Rl‘»l~~~l—‘P—2 - J/—Ll---#P—WP—z mOJ#l-u#P-l#p—z'

We have now N linear equations relating the rank P tensors with rank P — 1 and

P — 2 tensors:

N,k _ up TN
Ryl.../,tp_l - pk J‘u,}_...up’ (67)
N,00 —  akp—1pp JN
R#l oz 9 J#L-#P ’

with £ running from 1 to N — 1. Substituting Eq. (61) in the above yields linear

equations relating the coefficient functions J}Y ;_, Rf\l’ ke »_, and Rﬁ j?gp_z, which have

to be solved for JY , . In d dimensions, the solutions are given by

i3...0p°
N | 1 N,00 Ni:l N,00
Jo0iy.ip_y = |:Ri ip_g T Ry i } ) (68)
1..ip_2 d+P—-—N-1 1...2p_2 = 1..4p_2
and
N Nk gy N
_..1 y
Jkil...ip_g = (XN—l)kk’ [Ril...z'p_z - Z; 6irk"]OOil...ir_lir_‘_l...ip_l:l 1 (69)
where Xy_; is non-singular Gram matrix:
P2 P2 - PiPN-1
Pop1 P35 -+ PiPN-1
Xyoy = ) (70)
bPn-P1 PN-1P1 - P?v—1
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This procedure of Eq. (68) - Eq. (70) can be iterated until all tensor coefficients are
reduced to scalar functions.

It is worth noting here, that it is not directly possible to calculate radiative correc-
tions for exact forward or backward scattering, because the external momenta become

linearly dependent in this case, and the Gram matrix in Eq. (69) becomes singular.
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3 Renormalization

Divergences found in Quantum Field Theory came from the transition to an infinite
number of degrees of freedom from a finite number found in Quantum Mechanics. We
have to sum continually over an infinite number of internal modes in loop integration,
which leads to divergences. Not all theories are renormalizable. Renormalizability of
Yang-Mills theory, proven by ’t Hooft, made it possible to successfully apply Quantum
Field Theory to the weak interactions in order to calculate effects beyond the tree

level.

There are numerous renormalization proposals with the details varying from scheme
to scheme, but they all share the same basic physical features. The divergences are
absorbed into a set of “bare” physical parameters such as the coupling constants and
particles masses. Those parameters are, consequently, divergent and unmeasurable.
The divergences of these parameters are chosen in a way so that they cancel against
the ultraviolet infinities coming from infinite classes of Feynman diagrams. After the
divergences are absorbed by the bare parameters, parameters become renormalized
and “dressed”, i.e. physical and measurable. Here, the schematic point of view is
presented. For more comprehensive descriptions, the reader is directed to Refs. [26],
[29], [31], [32], and [33].
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3.1 CDR Scheme

At the one-loop level, Constrained Differential Renormalization (CDR) was intro-
duced in Ref.[34]. Standard dimensional renormalization manipulates singular objects
as if they were well-defined, expresses them in terms of simple singular functions, and
substitutes these by their renormalized value. In the CDR scheme, Feynman diagrams
are considered completely in four dimensions. Thereafter, the reduction of singular
basic functions (products of propagators and their derivatives) has been renormalized
into the sum of “regular” ones by implementing a set of rules in such a way that
Ward identities are satisfied. It was proven in Ref. [27] that CDR is equivalent at
the one-loop level to regularization by dimensional reduction [28], after taking the
Fourier transform of the basic renormalized functions into momentum space. This
last approach corresponds to a modified dimensional regularization, where one-loop
integrals are considered in D dimensions, but all the tensors and spinors are kept 4-
dimensional [28]. To preserve gauge invariance in dimensional reduction, one should
use g (§;f = D) with g,,§"? = gi, for the tensor decomposition.

If the renormalized expressions are compatible with a minimal set of consistent
formal manipulations, i.e. rules, the ambiguities and arbitrary renormalization scales
of DR are fixed and the resulting renormalized Green functions automatically preserve
Ward identities. Ref.[34] proposes the following set of rules, allowing us to renormalize
any one-loop Feynman graph:
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3.2 Rules for CDR:

L. Differential reduction. In two steps, singular expressions are substituted by deriva-
tives of regular ones:
a) Functions with singular behavior worse than logarithmic (~ z™%) are reduced to
derivatives of logarithmically singular functions without introducing extra constants.
b) Logarithmically singular functions are written as derivatives of regular func-

tions, which are solutions of the Lorentz invariant differential equation Of(z) =

log(zM)" /=,
11%  1_log(z®M?)
I
o = 279

where M is a constant to make argument of the logarithmic function dimensionless.
It has dimensions of mass, plays the role of the renormalization group scale, and is
the only a constant needed for the whole process.
IL. Formal integration by parts. Derivatives act formally by parts on test functions,
ie.
[OF)® = OF%,
where F'is an arbitrary function and superscript R labels for renormalized function.

III. Delta function renormalization rule:

[F($7 Zy,Z2, 7mn)5($ - y)]R = [F(iL’, Ty, T2, -'-7$Tl)]R6(m - y)
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IV. Propagator equation:
[F(z, 21,29, ooy 22) (0% — m?) A (2)]% = [F(z, 21, %2, -y 20 ) (—6(2))]F,

with
1 mKi(mx)
4n? T ’

Am(z) =
where K;(mz) is the modified Bessel function of the second kind.

Rule I and Rule II reduce the degree of singularity, connecting singular and regular
expressions. The actual procedure of renormalization involves two steps:

1) express a Feynman diagram in terms of basic functions, and

2) replace the basic functions by their renormalized value.

As an example, let us consider a Feynman-like gauge, so propagators of the gauge
fields are proportional to the scalar Feynman propagator. The formalism can be
directly extended to general covariant gauges. Table (3) summarizes the singular
basic functions for renormalizable theories in four dimensions. N stands for the
number of propagators in the given Feynman graph. Rows are ordered according to
the number of propagators and columns according to the degree of singularity.

It is important to distinguish basic functions with contracted and uncontracted

differential operators, because contraction of Lorentz indices does not in general com-

mute with CDR, i.e,

TR[D] = [5ﬂvT[aﬂav]]R # 5#VTR[8u6u]~
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N | logarithmic linear quadratic cubic

1 A1) An[0,]
Biym, (O]
2 B‘rn1m2 [1] Bm1m2 [aﬂ}
Bimyms[0,0,]
g | Tmimama (O] Torimams [00,]
Tm1m2m3 [auau] Tm1m2m3 [apauap]

Qm1m2m3m4 [DD]
4 Qm1m2m3m4 [Daﬂa"]

Qm1m2m3m4 [apaz/apaa']

Table 3: Singular basic functions for renormalizable theories in four dimensions.

As the simplest example of point contraction, let us consider the renormalization
of A,,[1] and B m,[1]- For the massless case, renormalized expressions of massless

one- and two-point functions are given by:

ARl = 0

ARp] = 0

) = e

B9 = 50,B71)

BEOl = 0
BR[5,0,] = %(a#aV — Tw0)BA + K;ﬁ(auay — 8, )6(z)
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For massive basic functions, we have to use the recurrence relations among modified

Bessel functions to obtain the expressions for non-singular points. In this case,

BE 11 = 1 |miKi(miz)my Ky (maz) B
m1m2[] - 167‘(’4 352
I mm Ko(miz) K1 (mox) + Ko(mez)Ki(myx
= 2 0 (4 my)?] o(m1z) K1 (max) + Ko(maz) K1 (maz)
321t my + mo T
1 (2M/’)’E)2 m, — My mi
1 log —~
+167r2 (O mims Jr’ml + mo 8 ma 5(),

where vg = 1.781 is Euler’s constant. The massive one-point function AE[1] can be

determined from A®[1] and BE . as

AR = -w%mz (1 — log (2—]\%1/—2—@—)—) 6(z).

The renormalization of the remaining basic functions is obtained from BE . [1] and
AZR[1] by recurrence relations based on Rules II-IV.

The functions listed above, including the amplitude, are defined in coordinate
space. If we take the Fourier transform of the amplitude, thus expressing it in momen-
tum space, the resulting expression will include the Passarino-Veltman many-point
tensor coeflicients. These are exactly the amplitudes obtained in momentum space by
the dimensional reduction in on-shell renormalization. The next section will contrast

and compare the CDR and dimensional regularization in on-shell renormalization.

3.3 CDR to On-Shell Connection
As was established earlier, CDR and dimensional reduction are equivalent at the

one-loop level (Ref. [27]). One-loop integrals in D dimensions satisfy the relations im-
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posed by the CDR rules. Once CDR has been translated into momentum space, the
minimally subtracted D-dimensional tensor integrals are identical in the limit D — 4
_ to the Fourier transforms of the corresponding renormalized basic functions of CDR.
As we are free to choose the renormalization scale, a discrepancy which can arise in
the initial conditions is not a problem. All the algebra outside tensor integrals has
4 dimensions in both CDR and dimensional reduction. Thus, in dimensional reduc-
tion, where it is possible to contract the 4-dimensional metric with D-dimensional

integration momenta before performing the integrals, we have

2 2
9" Cuw = ¢"(§uCoo+ Y piupsCij) = §4Coo + Y (pip;)Cyj

%,j=1 2,j=1

2 1 2
= DCo+ Y (pip;)Cij = 4Co0 — 3 + > (pip;)Cy-

5,j=1 4,j=1

The resulting contracted tensor integrals also satisfy the CDR relations. As Cyg and
Cj; are the same in both methods, we only need to add the extra local term, —%, to
obtain the tensor integral C¥ from g" times the renormalized tensor integral C,,, in
CDR.

The results in D and 4 dimensions will differ for the electron self-energy in QED.

Electron self-energy by dimensional regularization is
2
Md.reg. = “W[4meBO(k27mZ7 0) -+ 2 /kBl(kza m§7 0)+ /k - 2me]a

but CDR gives

82

Mecpr = —m—wg[zlmeBo(kz, m2,0) +2 kB (k% m?,0)].
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where By and B; are two-point functions. As a result, we chose to use the CDR idea
and just add local terms, which allows us to work completely in 4 dimensions.

The most natural choice for the renormalization scheme in electroweak theory
is the on-shell renormalization scheme [33]. The difference between renormalization
schemes is reflected mostly by various definitions of the weak mixing angle. The on-
shell scheme is the simplest conceptually, carrying the tree level relation, cos by =

Mw 14 all orders.
Mz

3.4 Ward-Takahashi Identities

Dimensional regularization preserves all properties of the theory that are independent
of the dimension of space-time, such as the Ward-Takahashi identities. Actually,
the Ward-Takahashi identities are required to prove the renormalizability of gauge
theories. A set of Ward-Takahashi identities ([35]) also simplifies our work by reducing
the number of independent renormalization constants. Because we have introduced
more renormalization constants than physical parameters, we are free to fix the extra
constants by requiring the residue to be equal to one for a corresponding number of
propagators. ‘Traditionally, these residue conditions are applied for the photon and
the charged lepton propagators.

The renormalization conditions include the on-shell subtraction of the self energies
which makes the particle content of the theory evident ([17]). Figure (2) gives an
example of graphical representation of the on-shell subtraction conditions.
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Figure 2: Graphical representation of renormalization conditions. Class 1.

Here, the shaded blobs denote the renormalized one-particle irreducible amputated

two-point functions, i.e. self-energies. It is equivalent to demanding that
ReSW (MZ) = ReSSZ(M2) = Reif(mfr) = 0. (71)

Another class of conditions is depicted in Fig. (3), with the corresponding equa-

tions:

Fyee (1,2 L .
LI(k" = 0, p=4=m.) = iey,

S77(0) = 0, (72)
)
a0 = 0

Jim __lm_flf(k)u_(k) = 0.

In the last condition, u_ is the spinor for charged leptons and quarks with Iy = —1/2.
It implies the condition for the renormalization constants Z; and Zj for the left-
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Figure 3: Graphical representation of renormalization conditions. Class 2.

and right-handed fermion fields. The constant Z} corresponding to the right-handed
quark fields can be fixed so that the renormalized left- and right-handed parts of the
up-type propagators have equal residues at k? = m?.

Let us consider an example of extracting two constraints on renormalization con-
stants using the Ward-Takahashi identities and the expression for the renormalized
self-energy,

SZE?) = 22 (k) — 6ME + 627 (K* — M2). (73)

First, in Eq. (73) we set k*> = M2 and leave only the real part. After obtaining
immediately
ReSZ(M2) = ReX?(M32) — 6MZ, (74)
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we use the Ward-Takahashi identities from Eq. (71):
ReSSZ(M2) = 0. | (75)
It is obvious now that §M% is
M2 = Re$? (M3). (76)

Thus, we have derived the mass renormalization condition entering the set of Eq. (94)

given in the next section.
Now, let us go back to Eq. (73), differentiate it with respect to k? , take the real

part, and set k? = M2, just as done previously:

$3NZ (1.2 Z (1.2
Re M = Re M + 5ZZZ_ (77)
Ok? k2=M2 Ok? k2=M2

Using the condition similar to the third line in Eq. (72), but for Z :

%7
‘a—k‘z‘(Mg) =0, (78)
we arrive at
ZzZ k.z
6222 = —Re (82(%(2 )> ) (79)
K2=M%

which we will encounter again in Eq. (89), describing the wave function renormaliza-
tion.

Another example will refer to the more abstract case of the arbitrary symmetry

®a(T) = pa(z) + eApa(z), (80)
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where we can use the Schwinger-Dyson equation as the Ward Takahashi identity:

(03" (z)alz1)pp(22)) (81)

= i {(Apa(@0)8(z — 2))ou(z2) + gale2) (Ap(22)6(@ — 2))) -

Now, how does an expression like Eq. (81) help us to reduce the number of in-
dependent renormalization constants? Let us consider the simplest example of the
electron-photon vertex, where on the left hand side of Eq. (81) we would have the
three-point function with one entering (p) and one exiting (p + k) electron and one

external photon (k). Then the Ward Takahashi identity reads ([31]):
S(p + k)[—iek,T"(p + &, p)IS(p) = e(S(p) — S(p+ K)), (82)

where quantities S are the electron propagators and I'* is the vertex. Multiplying

both sides by S~1(p) and S~1(p + k) gives:
~ik T*(p+k,p) = S™ p+ k) — S (p). (83)

Let us now define the renormalization factors Z; and Z, as

T(p+k,p) — Zy ' (84)
for K — 0, and
125
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Setting p near the mass shell and expanding Eq. (82) about k£ = 0, for the first-order

terms we obtain:

—iZ7t k= —iZy" K, (86)

i.e.
Zy = Zs. (87)
In this section, we introduced the general idea defining the the Ward Takahashi
identities helpful in reducing the number of independent renormalization constants.
Egs. (76), Eq. (79) and (87) were derived to serve as examples. The full sets of
constraints imposed on the renormalization constants necessary in our calculations

are given in the following section.

3.5 Renormalization Constants

Generally, tensor coeflicient functions are ultraviolet divergent (inversely proportional
to the parameter e = 4—D). In order to cancel divergences and transform bare param-
eters into physical observables one has to introduce a renormalization scheme. The
renormalized parameters are related to the bare parameters (denoted by a subscript

0) as follows:

Mk, = Mz+5§M3,
My, = Mg +6My,
Mg, = ME+6M},
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mypo0 = myf +0my,

ey = 1 + be) e,
Zy 1+ 15ZZZ %5ZZA A
= , (88)
Ap 15ZAZ 1+ %(5ZAA A

Wy = (1+ 6ZWW W,

H, = <1+;52H)

L 1

o = (8+30Ms) £,
. 1

0 = (50 + ‘2“ 6fR)1J)

Counterterms were chosen in the On-Shell Renormalization (OSR) scheme in the
't Hooft-Feynman gauge, where the gauge parameter ¢ = 1 with the following renor-

malization constants (Ref.[29]):

Wave function renormalization:

o
6ZZZ=—R( »Z kz) ,

Bkz ( ) k2=M%

»47 (0
§2%4 = 2Re( j\@( )>, (89)
6744 = —Re(ZLpp (¥)

Ok? k2=0,

AZ 12

§Z4%7 = _9Re (-&T(%MZ—)) (90)
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0
57%W  — _Re (@EYW (k2)>k2=M2
§7H = _Re (.8_22_2}1 (kz))kz=M§, 7
0
87X = —Re (éﬁzx (k2)>k2=M§ ,
2]
§2% = -Re (5]:224) (kz) ) k2=MZ,
(6f)s = —Re (E{{L (mi))

5ME = Re(z7%(M3)),
§My; = Re(BYW (M3)),
sME = Re(2” (MF)),

omy, = —;—mfiRe (Ezfi’L (m?) + E{;R (m?c) + 22{,{3 (mi)) .

(91)

(92)

. (93)

(94)

Here L and R correspond to left- and right-handed fermions, 3 means the one-loop
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integral of the truncated self-energy graph, and L denotes the transverse part only.

Charge and mixing angle renormalization:

. SMZ  SME )
8(sin*Oy) = cos’ Oy ( M%Z — M&:,V > , (95)
§(cos® Oy ) = —6(sin’ Oy), (96)

1 sin? @
Se = —- AA W 5774
o 2 <6Z + cos? Oy, J !

with sin® Oy = 1 — Mg,/ M3.
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4 Radiative Effects

4.1 Introduction

The ongoing Q-Weak experiment is directly focused on measurements of the weak
charge of the proton. One-quark radiative corrections have theoretical error associated
with the uncertainty of quark dynamics, and must be accounted for the valid test of
the Standard Model. If we take into consideration the next to leading order effects
in parity-violating scattering with realistic Pauli and Dirac parts of the coupling,
and compute corrections along with the weak charges of the proton and neutron,
we will be able to avoid uncertainties associated with one-quark radiative effects
by absorbing terms which are responsible for the quark dynamics into experimentally
measured electromagnetic form factors. Estimates have been already done for the case
of vy — Z box (Ref. [8]) in the zero momentum transfer approximation. The rest of the
corrections used for calculations of the weak charges of the nuclei in Ref. [8] are on
the one-quark level. Modification of the couplings with model-dependent form factors
and replacement of one-quark corrections with hadronic ones will contribute more
clarity in situation where the Standard Model is tested. Also, in the treatment of the
infrared divergences with hard photon bremsstrahlung, it is more natural to consider
photon emission from the proton instead of the quark. By this, we expect to reduce
theoretical error down to the level of uncertainty of current electromagnetic form
factor measurements. Finally, having momentum transfer dependence in radiative
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corrections makes it possible to adapt our results to the current parity violating

experiments.

4.2 Dirac and Pauli Coupling

In the approximation where the nucleon behaves as a point-like particle, vector boson
couplings obey general rules of electroweak theory. Having left and right handed

fermions, it is easy to use the following structure for the {Z — N} type couplings:

Ty =ie [gf Vy'w_ + gf Ny, (97)

where wy = %ﬁ are chirality projectors and gf,}_N have meaning of the coupling

strength for the left and right handed fermions, respectively. Substitution of w. into
Eq. (97) will give us vector and axial vector representation in the coupling T';,_

Z-N Z—N Z—N Z—N
. + -
Yy y=ie | —TI9R 5 95wy IR 9L 5 —p (98)

It is obvious that equality of gZ~" and g2~ will produce no difference whatsoever
in the cross sections for left or right handed type particles, and the coupling I';_
will contain only a vector part. On the other hand, the nonzero difference between
g5 and g7V is directly responsible for the asymmetry; and Iy _, has axial vector
part as well. Couplings of vector bosons to fermions derived from the neutral current

part of the electroweak Lagrangian relate coupling strengths g7~ and gZ ™" to the

electric and weak charges of the fermion in the following way (See Chapter 1):

gt N4ggN 1G5 -45%Q

2 4 cuSw
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(99)

Z-N _ Z-N 1 G

2  dey sy
Here, C3 and @) are the fermion weak and electric charges respectively, s, and ¢,

are sinfy and cosfy. In the case when a photon couples to the nucleon, gZ_N =

gV =Q and T%_y = ieQy*.

For a realistic nucleon, the couplings preserve their vector and vector-axial struc-
ture, but with the charges replaced by the corresponding form factors. The most
general electromagnetic I'Y_y coupling has two vector components responsible for

static electric and magnetic interactions:
. i
D (9) = e [ (@) + o0} ()] (100)

where F{Y (q) and Fy' (g) are the Dirac and Pauli form factors, respectively, and g,

is the four-momentum transferred to the nucleon. As for I';;_, (q), we have:

1

M v (@ = ie | @7 + ol @ +o¥ @a*] . (o)

2mN

with fV (q), f&¥ (¢) and g} (q)as weak electric, magnetic and axial-vector form factors.
According to the first line of the Eq. (99), form factors f{¥ (¢) and fI¥ (q) are expressed

as:
£ (9) = —— (FA (@) — 452 F2 (), (102)

4¢SSy

with FY P = —FY{™ = FP, — Fn,. For gV (q) we have
1.2 , 12— L1 1

1
Vg =- A 103
g (q) L (@), (103)
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where ¢ (¢) = —¢% (¢) = g4 (q) is a well known axial form factor. To simplify ana-

lytical expressions considerably, we will use the monopole structure for form factors

g
(P8} (9) = {A —7 A0 (104)

(A? = 0.83m%), which is a quite reasonable approximation in our case. The value of
the parameter A we use is found after the fit of the electromagnetic formfactors by
monopole approximation in the low momentum transfer region.

Comparing Eq. (98) and Eq. (101), combined with Eq. (102) and Eq. (103), it is

possible to write

Z—N Z—N Z—N Z—N
. + —
TE(q) = ie[E (@) ! ' (q)7u+ gr_ (9) . 9 (Q)7#75+
i po N —
+2mNO' Gafo (Q)]
(105)
_ _ 0} o
= de [gf Y(@r'w-+ i " (@) V'm0 Sy (q)]
my
y—N —N .
. q) + i e
T _n(g) =ie [gL ) Ik @)y P (Q)] =
(106)




where

A2
A2 — (]2

_ 1
giR (@) = g (R (0) - 45°F" (0) + g} (0))

(107)
-N -N N A?
9tr (@ = g7 (¢)=F (0) g
In Egs. (105) and (106), we have adopted the general structure of the coupling from
Eq. (97), with coupling strengths g7 " (¢) and gz’}cN (g) given by Eq. 107. Moreover,

to represent splitting between strength and kinematical parts of the coupling, we

introduce the following matrix representation of Eq. (105) and Eq. (106):

I'(N,N,V,) = ( Yw-, Yoy, [Y*, Alwo-, [ 4w > G v (@), (108)

_+
with G ynv expressed as a 2 x 4 matrix

oV  G”

., , g @  GlRY
GNNv=Z€ . (109)

—=F "V (g) GV

—=F " (q) GIz"

The second column of 5’) NNV represents counterterms of the first order, which will be

described later in this work. The Pauli form factor £~ has the following structure:
FNa) = 7V (9),
(110)
g = B ().
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4.3 Definition of Radiative Corrections

In analogy with one-quark corrections, we define the next to leading order hadronic
radiative corrections using the electron-nucleon parity violating Hamiltonian in the
following form:

Gr

HPV:_
V2

[C’lN (ﬂe’y“ ’YBUe) (@ny un) + Con (Tey ue) (HN7#7SUN)] . (111)
Form factors Cyy and Caypy represent perturbative expansion resulting in

Cuan = Z Cf1,2}1v = 0?1,2}1\1 + 031,2}1\7 +0 (043) . (112)

Superscript in O};l,z} y represents the order of the perturbation (”zero”- tree level,

"one” - one loop level and so on). Here Cf; 4y can be defined as one-loop radiative

corrections normalized to the Fermi constant Gg = \/29‘7’;2 . One-loop corrections are
w

generally split into three topological classes: box, self energy, and vertex (triangle)
graphs. To preserve gauge invariance we have to include all the possible bosons of the
Standard Model in these topological classes. Taking into account that in the t’Hooft-
Feynman gauge the contribution coming from the Higgs scalar and gauge fixing fields
is negligible, we choose to consider boxes, triangles and self energies with v, Z, W*
vector bosons only. Accordingly, we will give details on radiative corrections for every
class, starting with an analytical example for the v — Z boxes.
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4.4 Example of {y — Z} Box Diagram in ¢ — N Scattering

A reason to provide analytical details for {y — Z} box only is straightforward. First of
all, precise formulae for an entire set of graphs are cumbersome, and it is not feasible
to show them in the present work. Secondly, as will be seen later, this example will be
used as a generalization of the computational model which was applied in this work
toward calculations of weak charges and hadronic radiative corrections. According to

the Feynman rules, the amplitude for a {y — Z} box can be written as (see Fig. (4)):

met it fom A= b2 p )

1
MO-2 = / dq (m.rs_
16m4 ) © 1 Ty — ki —ky+q) —m2 T

(113)

my+ 4+ P v ) 1 1

( (p2+q)° —m} "

7 (P2+q—k2)2—mzz'

Here, the coupling I';_, can be found in Eq. (98) and Eq. (99). Substituting
Eq. (100) - Eq. (104) into amplitude in Eq. (113), and using the fact that in each
nucleonic vertex couplings behave as a function of momentum transferred through a

vertex, we can write

M2 = L /d4q AT met frt Fo A= b I'Y_ .
167 ki —kpt+ g —m2 7°
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Figure 4: {y — Z} box in case of realistic {e — N} scattering

it (~<?) (™ @) 27 () 1=

— i (B (0) — 452 FYY (0)) [y#, (Joo— 2= A)] = g} (0) 7"

(114)
T (Y 0~ e O 1 )
N
A ! .

des (A2 —¢?) (AZ — (k2 —p2 — q)z) ¢ (P2 +q—ks)* —m%

We should note that the latter expression is written for the {y — Z} box diagram
only. To have a complete analysis, it is imperative to consider {Z — v}, {y — Z} and
{Z —~} crossed boxes as well. In addition, {Z — Z} and {W — W} box diagrams
should be considered. To work out the integration in Eq. (114) we will split the
nucleon current into four parts, then use the notation of Eq. (97). The nucleon
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current from Eq. (114) now becomes

Jy = dun (—62)@(4)'

g7V (0) yHo_ + g5V (0) Yooy —

| st (B (0) — 453 EY (0)) v, (o o A)

(115)
g N (0) v + gi ™ (0) Y —
_my+ g+ P2 un
(2 +9)" —m ’
By
where @ (q) = = A2ﬁ;k2-—p2—q)2)' Expansion of J§ will lead to the following
results with four parts of nucleon current:
Ty = iuy (=€) ®(q) [g7 7V (0)v'w- + gF 7V (0)v*wy] -
(116)
mn+ 4+ P2 =N y—N
: oL O)v'w- +gp " (0) 7wy | un
(p2 +q)* — m% [L 5 ]
Ty = iay (—*) @ (g) [¢7 7N (0)vw- + g& "V (0) v*wy ]
(117)

'(pn:i)ff ff%v [ B O ]

T =y (—e*) @ (q)-
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[ (B ) - 4B ©) b, (o e 4]

16csmy
(118)
e [ O a7 07w
T = iy (—¢?) @ (q)-
: [_m (B (0) — 452 FLY (0)) v*, (Joo— o /ﬁ)]] :
(119)

_mn+ A+ b2
(p2 +q)° —m

[ @b )

The fourth current carries a coupling between weak magnetic and electric magnetic
fields of the nucleon, and has a negligible contribution. Nevertheless we take it into
account in our actual calculations, although in this example it is not given. As for the
first current, we can see coupling between weak static and electric static fields here.
This current gives small but sizable contributions into the amplitude. The second and
third currents are the most important, and represent couplings between weak static
and electric magnetic, and weak magnetic and electric static fields, respectively. It
is worthwhile to point out that only the second current contributes to the {e —n}
box amplitude, and, as result, the value of the {e — n} radiative correction is directly
proportional to the neutron’s anomalous magnetic moment. Moreover, for the {e — n}
amplitude we will not have infrared divergences due to the absence of the electric static
part in the coupling. The third current gives surprisingly the biggest contribution
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into the {€ — p} box amplitude which makes weak magnetism dominant in this type
of calculation.

4.4.1 Results

To integrate the amplitude according to Eq. (114), we will have to split it into four
integrals. Each of them could be expanded into a linear combination of the “usual”
four-point tensor integrals. Details are in the section called “Tensor Decomposition”.
Let us provide a simple example by taking into account the first current only. As we .
know, the general definition of four-point tensor integral is

= i/d‘iq Qs - uk )
pete i )T (py — by — ket q) = m2) ((p2 + 0)” —m)

(120)

1 1
@ (py+q—ke)® —my

By adding the monopole form factor approximation into the above definition, we
will obtain a six-point tensor integral which could be reduced into a combination of

four-point integrals by using following simple expansion:

1 1 1 Al
— - .

DDy @ (p2+q-— k’2)2 —mg (¢* —A%) ((Pz +q— k2)2 - Az)

(121)

a2 2) (s i)
M2=m)\@-A @) \(m+q-k)" -1 (+q—k) —mi/)

Now, we put this expansion into Eq. (116)-Eq. (119) and evaluate each of the integrals
with FormCalc language (FormCalc was developed by Thomas Hahn and modified by
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the author of this thesis to include hadronic sector in the e— N scattering. FormCalc is
available from http://www.feynarts.de) by contracting indeces in the numerator and
using dimensional reduction within tensor decomposition algorithms. The results are

listed below.

First Current (static weak and static electric coupling only) Before going
into the analytical details, let us introduce the following notation for the variables of

the four-point tensor coefficients. We set

D;; {mg,s,m%,,t,m?v,mz, 0, m2, m3, AZ} = Dy {O,AQ},
(122)
D;; {mz, s, ma, t, m?v,mf,AZ,mz,m?V,Az} = D {AZ,Az} ,
where {s, t,u} are Mandelstam Lorentz invariant variables defined as follows:
s = (kl -+ k2)2,
t = (ks —ks)?, (123)

u = (kb —ks)®.

Using the tensor coeflicient reduction approach, we can now reduce D;; functions
into Dy, Cy and By scalar integrals. This step makes the final expressions very
cumbersome. However, we only need to expand the IR divergent terms, which are
represented by Dg {0, A?} scalar integral alone. The vector-axial part of the first
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current is

My~ = 40;3/(\;9;:];22 ) (g™ = g27™) (m2 +m}, - 5) (453 — 1) -
(Do {0,4} — Do {A%,A%}) + 2 (2977 (2-55") + 95 (1+10s2))-
. (Dgo {0, Az} — Do {Az, AZ}) + (453, - 1) (gf_N — gg"N) (mjzv o u)

-(D1{0,0%} — Dy {A%, A%}) + (m? +m3 — s) (

g7V (3 —10s2) +
+2g57" (552 — 1)
(124)

Dio {0, A%} +2 (gf ™ — gf ™) (2m2 +md, —s) (452 - 1) D3 {0, A%} +
+ (98N = g7 ™) (m2+2m} —s) (453 — 1) (D2 {0,4%} — D, {2, 4%}) +
+2 (987 = g77™") (452 — 1) md, (D22 {0, A%} — Doy {42,A%}) +

+2 (g8 = gf ™) (mi +2m3 — 5) (453 — 1) Das {0, A%} +
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+2 (gf ™™ — g7V (m2 +mj, —s) (452 — 1) (D5 {0,A%} + D35 {0,A})]-

- (Teyute) (BNYLYsUN)

Here, Dy {0, A%} is the IR divergent term. As for the axial-vector part, we have

v - A (2™ + &™) (m2 +miy — s) (

 4eysy (A2 —m2)

Dy {0, A%} —
+
—Dy {A? A?}

+2 (g7 (4—6s7) + g5~ (1+652)) (Doo {0,A%} — Do {A%,42}) —
— (gf“N + gg”N> (m?\, —t— u) Dy {0, A2} + ('mz + m?v — s) .

(125)

. (gf_N (3 — 25;21,) + 295N (1 + sfu)) Dys {O,Az} + 2 (gf_N + g}Z{N> .

. (Zmﬁ +m? — s) D3 {0, A2} + (gf‘N + g,Z{N) (mi +2m3; — s) .

D22 O,A2 -
(D2 {0,A%} — Do {A%,A2}) + 2 (gF ™V + g5 7) mfv( A9 )

— Dy {A% A%}

+2 (gf—N + gg_N) (mﬁ + 2m?\, - S) (ng {0, AQ} — D23 {A2, Az}) +

67




2 (gf"N + gIZz_N) (mz +m2 — s) Dy {0, AQ}] (Teyuyste) (BnYuN)

where g7~V = g7V (0), g7 7" = gZ7" (0). It is obvious that for the neutron the first
current contribution is zero because g”~™ = 0. We have kept only terms of O (a?) to

reduce the size of our expressions.

Second Current (static weak and electric magnetic coupling only) This
part is the only contribution to the neutron’s scattering amplitude. FJ¥ (0), the
nucleon’s anomalous magnetic moment, is equal to Fy (0) = —1.91 for the neutron,

and Ff (0) = 1.79 for the proton. For both neutron and proton,

a?AF) (0)
16¢y 8y (A2 — m%)

MY = 2% (57 — g7 ) (1 — 453) Do {42, A7) +

+4 (g7 (1+8s%) + 977V (5—852)) (Doo {0, A%} — Doo {A%,A?}) +
+8 (g7 —g& ) (42— 1) (md —t - u) Dy3 {0,A%} —
—3A% ( Z-N ng{N) (43120 - 1) D, {Az, A2} +

(126)

+ (g™ — g&™) (452 = 1) (m2 — m}, — 5) Dn {0,A%} +
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+ (gf_N - gg_N) (433, - 1) (3 (s —u) — Sm?v) (ng {0, AZ} — Dos {A2, A2})]+

+2 (gf_N - g}ZZ_N) (43121; - 1) (s —u) Ds {0, A2}] (TeVute) (@NYLV5UN) -

As for the axial-vector part, here we have

2A2 N
AV _ A FyY (0) 2( Z-N Z—N 2 A2
M2 - 16Cwsw(A2'—m2z)[2A (gR +gL )DO{A ,A }+

+4 (g5 (125 — 1) + g7 ™™ (5 — 1252) ) (Doo {0, A%} — Doo {A%, A%}) +

. m2 (3 — 4s2) — . m2(1+4s2) +
+4 |9z +9r :
—4(m¥% —s) (s2 — 1) +2(m% — ) (1+2s2)

(127)

(D12 {0,A%} — Dy {42, A%}) + 8A (gZ N + g7 ) Do {A%, A%} +
+ (g2 +g77) (s = m? — md) (D22 {0,A%} — Do {2, A?}) + (927 + g77) -
(4m? — 45— 3t) (D23 {0,4%} — D3 {A2, Az}) +2(30% +1)-

69




(9B +977) D3 {A2, A%} + 2 (gZ N + g ) (w— s — 21) -

D33 {Oa Az}] (ﬂ67#75ue) (ﬂN7#uN) .

The second current amplitude has no infrared divergences in it, and that makes the

neutron amplitude finite.

Third Current (weak magnetic and static electric coupling only) The nu-
merical analysis of the third current’s amplitude shows that it gives a dominant con-
tribution into proton’s radiative correction. The following expressions show {V — A}
and {A — V'} amplitudes, respectively:

302 A2FPeH ) () gr—N

MY = ) (Doo {0, A%} — Dop { A%, A2}) (@eryute) (Tvyursun)
(128)

and
g = PRI OF N ) (Do .07 — o {7, 47)) +

4Cy Sy (A% — m%)
+16 (Doo {0, A%} — Do {A%, A°}) + 4 (2m2 +m}, —s) (D1 {0,A%} — Dy {42, 4%}) -
—4(mg +my —5) (D12{0,A’} — D1 {A%,A%}) + 4 (3m2 + m3, — 5) D13 {0,A} +
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+4 (mg + 2m3, — s) Dy {O, Az} + (A2 — 4m? — 8m?2, + 43) D, {Az, AZ} +
(129)

+ (mg - Sm?\, — 3) (Dzz {O, A2} — Doy {A2, A?‘}) + (4m§ + Sm%, — 45 — t) .

(D2 {0, A?} — Dy {A%,4%}) +8 (mg +m} —s) Dy {o, A2} +

+2 (A? - 4m] — 4m}, + 4s) Dy {A?, A} + 2 (2m2 + 2m3, — 25 — t) -

-Dasg {0, A? }] (Teyuystte) (TN Y UN)

Here,

V(N) 4«2 N
Fz'weak(N) (0) _ 12 (0) 24SwF2 (O)

(130)

Comparing the strengths of the weak static and weak magnetic couplings for the pro-

(92720 +9277(0)) _ 1-4s2
2

=Tt = 0.085 is almost twelve

ton’s vector current, we can see that
times smaller than F3***®) (0) = 1.08, which is a partial proof of the weak magnetism
dominance in the {7y — Z} box amplitude. The presence of infrared divergences in
the proton’s {y — Z} boxes makes it impossible to provide conclusive numerical anal-
ysis. Later, the proton’s box diagrams will be combined with IR divergent vertex
graphs, soft and hard-photon bremsstrahlung terms. As for the neutron, it is possible

to compare results with Ref. [9] right now. If we take Gr = 1.166 - 1075 GeV 2
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in Eq. (111) and consider extrapolation to zero momentum transfer, use Eq. (111),

Eq. (126), and Eq. (127), and include all of the {y — Z} boxes, we can compute the

Current results | Ref. [9]

following: | (Ly=Z boxesonly) | _y 073 —0.0032

in
0217(,:7—2 boxes only) —0.00219 —0.0025

The discrepancies are minimal and can be explained by the differences in the
definitions of the Weinberg mixing angle and the fact that the monopole form fac-
tor approximation was used. The momentum transfer dependencies from which the
zero momentum transfer extrapolation was taken are shown in Fig. (5) and Fig. (6).
Numerical noise can be explained by the fact that box graphs have Landau singular-
ities at small momentum transfer coming from the condition for the Gramm matrix

det(XN_l)t_.,o = 0.

Although now we have {y — Z} box results for a realistic nucleon, it is still not
sufficient for the definite determination of the weak charges of the proton and neutron.
As was mentioned before, we need to include the rest of the graphs in the perturbative
expansion. With the procedure used for the {y — Z} box at hand, it is rather com-
putationally complex to use the proposed expansion technique (See Egs. (116-119)).
For the particular monopole form factor approximation, we may use Eq. (121) instead
to create a rather simple representation of the tensor one-loop integrals (Eq. (120)).
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Figure 5: Axial part of the contribution to the neutron’s weak charge coming from
the {7y — Z} boxes.
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-0.0015 |
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Figure 6: Vector part of the contribution to the neutron’s weak charge coming from
the {v — Z} boxes.
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Figure 7: Expansion of the {y — Z} box in terms of {é-y,6Z} particles.

Explicitly, in the right-hand side of Eq. (121) is written in the form

A2 1 1 + —AZ2 1 1 +
(A2-m2 ) ¢* (p2tq—k2)*—m% (A2-m%) & (pa+g—hz)"—A?
1
= + 131
5D, (131)
_A2 1 1 A2 1 1
(W2—mZ) P22 (prtq—hz)*—m} (A2-m3) =A% (prtq—ha)*—A?

each of the four terms can be interpreted as giving a contribution identical to the
contribution coming from the point-like nucleon with nonzero magnetic moment de-
fined at tree level. Also, in this consideration, the couplings between nucleon and

vector boson are adjusted by the factor &4 and the structure of the sec-

A
(@=rg)
ond, third and fourth terms suggests the introduction of “new” vector boson particles
{6,6Z} with fixed masses equal to mys, 573 = A. A diagrammatic representation

of the proposed expansion is given by the set of Feynman graphs in Fig. (7).The
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already developed and tested automated approach used in the one-quark radiative
corrections (Ref. [7]) can be used here as well to complete the calculations of the
radiative corrections and weak charges. In this case, however, to consider electron
nucleon scattering, one should add additional massive vector boson into the Standard
Model. In addition, the set of the Feynman rules (see section “Feynman Rules”) will

be modified in the following way:

1. Each coupling in the vertex {IV — V' — N} has to be multiplied by B {rzw}-N _

1/n
+ (Hn A% > in the case of V = {, Z, W*} and by plovezewt}-N _
i=1

2 _m2
A my,

1/n

— (Hn ’f: - ) for V. = {6v,6Z,6W=*}. Here, my, corresponds to the
=1\ Ty

mass of the V; taken from Table (2) (even in the case of V = {6v,6Z, W=},

masses of the corresponding bosons are {0, Mz, My+}), and n is the total num-

ber of the couplings between vector bosons and the nucleon in the loop.

2. Propagators have the same structure, where for the case of V = {§v,6Z,6W*}

vector boson carry mass mysy sz,sw) = A.

Also, as will be seen later, these Feynman rules are topology dependent, and for
the vertex correction graphs rule number 1 will be modified. As for the boxes, we
have all we need to complete the automated calculations using the FormCalc language.
Parts of the code are presented in Appendix 1. The computed contribution to the PV
amplitude coming from the boxes (36 in total) and the detailed analysis is presented
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Figure 8: Self-energy graphs giving dominant contribution into PV {e¢ — N} ampli-
tude.

in the “Results and Discussion” part of the thesis.

4.5 Self-Energy Graphs

In total, 116 self-energy graphs plus 6 counterterms contribute to the PV {e — N}
amplitude. This includes gauge and gauge-fixing fields, Higgs field, and virtual lep-
tonic and quark pairs in creation-annihilation processes in the loops. Moreover, the
vertex {N —V — N} does not belong to the loop integrals and plays the role of a
multiplication factor proportional to the coupling defined in Eq. (105) and Eq. (106).
As an example, the parity-violating amplitude for {Z — v} and {Z — §v} mixing is
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shown below:

MIZ—H{Z=6v} =

16 4 /d4q ’I.L(k3, me) (gz_Z’Y/J.w- + g;Z—Z’Y,uw-i-) u(klv me) *

(ke ma) (9877 O) -+ g8 O nms — 3F (0) by (o= Bo)]) iy ) -

(132)

my —¢  myg+s—t—q)
q2im2 ’ (kaf k3 3q)""im2 ’ (gL Yo +9R ’Yaw—l—)

ZTT’

P

(gL ’pr—+gR 7pw+)

Juoe Guvp A?
(k‘g - k1)2 (kg - k1)2 — mZZ A2 - (ki4 — k2)2 )

A tensor integral like that in the equation above can be evaluated using tensor de-
composition and tensor reduction techniques, leaving the final result as a combination
of one and two point scalar integrals which were computed using Gauss integration
subroutines. Accordingly, the counterterms should be introduced to cancel ultraviolet

divergences, so for Eq. (132) we have:

SMZ=HZ=Y — (kg ) (g};“zfyaw_ + gfz_z’)’aw+) u(ky, me) -

ks, ma) (95 (09 + 977 (0) yms = 55 (0) by (o= )} (i )

(133)
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168274 gy mi + £ (6274 + 6247 (ks — k) u(ks — k)t

+1 (6274 + 624%) gy, (ks — F1)?

Jua Gvp Az
(k3 — kl)z (kg — kl)z — m2z AZ — (k4 —_ k2)2.

Here, 6Z%4 and §Z4% are the {y — Z} mixing field renormalization constants repre-
sented by the set of Eq. (89-90) according to the constrained differential renormal-
ization scheme described above. The assumption made about “free” quarks in the
self-energy loops places certain constraints here. Free quarks are not detected, and
we should consider the gluon couplings between them. This leads to a contribution
coming from the sector of the color interactions. It is possible to bypass these com-
plications by replacing quarks with pions and their resonances, or use “free” quarks
but with adjusted effective masses. Here we used the second approach with the ef-
fective mass of the quarks coming from a fit of hadronic vacuum polarization to the
measurements of QED cross section of the process e*e™ — hadrons normalized to
the QED ete™ — u*u~ cross section. The real part of the renormalized hadronic

vacuum polarization satisfies the dispersion relation:

~ o RY(s
P () = ~ReThog(5) = s [ 1 gy (134

~ 3 m2 §' (s’ — s)
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Figure 9: Truncated Self-Energy graph in hadronic vacuum polarization.

with

o (ete™ — hadrons)
o(ete” — ptu~)

R (s) = (135)

being a very well known experimental quantity and used as an input.
Hadronic vacuum polarization II,, (s) is related to the truncated {y — v} renor-

malized self-energy (See Fig. (9)) by the following expression:

—y

D oo (8) = 8Tq (s) + i Im (f;m (s)> : (136)

which can be easily evaluated by employing the free quark approximation. An up-
dated value of the dispersion integral, along with a logarithmic parametrization, can
be taken from Ref. [36]. A new reported value coming from the light quark con-
tribution at s = m% is Aa]C). (m%) = —0.02761. This value can be reproduced by
‘Eq. (136) using the following masses of the light quarks: m, = mg = 53 MeV (corre-
sponds to Aazg)r (m%) = —0.027609). Clearly, the values of the light quark masses
at low-Q scattering processes should be adjusted by using the latter approach, but
with Aa;’g)r (s) calculated at the c.m.s. energy in the region of /s < 4.0 (GeV). The
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V5 (GeV) A B C
0.0—0.7 0.0 0.0023092 | 3.9925370
0.7 20 0.0 0.0022333 | 4.2191779
2.0 - 4.0 0.0 0.0024402 | 3.2496684
4.0-10.0 0.0 0.0027340 | 2.0995092
10.0 — mz 0.0010485 | 0.0029431 | 1.0
mz — 10000.0 0.0012234 | 0.0029237 | 1.0
10000.0 — 100000.0 | 0.0016894 | 0.0028984 | 1.0

Table 4: Parametrization coefficients. Results taken from Ref. [36]

simple logarithmic parametrization can be used here to extract quark masses at low
momentum transfer:

Aazg)r (s)=A+BIn(1+C-s), (137)

with A, B and C parameters taken from the Table 4.
For low-momentum transfer experiments, the c.m.s. energy is /s < 4.0 (GeV),

which gives, m, = mg ~ 45 MeV.
4.6 Vertex Corrections Graphs

The vertex correction (“penguin” graph) contributions can be split into two classes.
In the first class, where the electron vertex is at one-loop level, the amplitude is
calculated according to the set of Feynman graphs shown in Fig. (10), plus the coun-
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Figure 10: Electron vertex corrections contribution
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Figure 11: Counterterm in electron vertex corrections

terterms graphs from Fig. (11).

As in the case of the self-energy graphs, the hadronic vertex does not belong to the
loop integrals, and therefore the PV amplitude was constructed according to the SM
Feynman rules taken from the section “Feynman Rules” with counterterms computed
according to Eq. (48) and Eq. (49). Moreover, the electron vertex corrections will have
an infrared divergence at ¢ — 0 and will be treated by the soft-photon bremsstrahlung

contribution considered later in this work.

The second class of the triangle graphs are nucleonic vertex corrections. In this
case, the Feynman rules described above have to be modified due to specifics of the
topology of the triangle graphs. To work out the set of Feynman rules for the triangle
topology, it is sufficient to consider the example in Fig. (12).
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Figure 12: Nucleonic vertex correction graph (shaded bubble corresponds to the real
nucleon)

For the graph in Fig. (12), the amplitude denominator has the structure

1 i 1 1
DiDyD3Dy (kg — q)* — m2, (ky — q)* —m% (ky — ks)? — m5
(138)
A? 1 N
(ks — k)® — A2 ¢* — m% (g2 — A2)”’
which can be easily expanded into
1 B 1 1
D1D;DsDy (kg — q)* — m2 (ky — q)* —m3
BZ——N B&Z—N
+ .
((’% — ko)’ —my  (ky— k)’ — A2>
(139)
Z-N\2 612—N)2 622—N\2
(e (o (o)
{anhe}-a | @2 —mf @ — A} ¢* — A3
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Figure 13: Nucleon vertex expansion in the terms of {Z, 6,7, 632} particles.

Here, the coefficients BZ~" and B%%~N are defined according to the Feynman rules
g Y
(n = 1) described previously. CZ~N C%Z=A1 and C%%~42 can be calculated using

the following formulae:

" -

4
sz-N\? _ A 1
@) = mmm—w
(140)
(0522—N)2 - A4 1 . 1
mf— M \my -] AZ—AZ)

Expansion of the amplitude denominator in Eq. (139) has a simple graphical repre-
sentation (See Fig. (13)). The latter expansion suggests, in this particular case of the
triangle topology, introducing a set of virtual particles §;Z and 6,7 as a part of SM
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in the next to leading order corrections. It is straightforward now to give a set of

additional Feynman rules:

1. In the case where a vector boson couples to a nucleon through self-energy in-

teraction, each coupling in the vertex {N —V — N} has to be multiplied by

1/n
clrzwl-n _ A% for V= {y,Z,W*} by C (b z 8w }-N
(mzvi —Ag) (mg, —Ag)

1/n
: ((m——AAT(A——AQ for V = {617,6:2,6,W*}, and by Clon@ZoWei-N _

; AZn 1 1 L +
i <(m22_A§) (mQZ_A% - A%_A§)> for V.= {b27,6:2,6oW=}. Here, my, cor-
responds to the mass of the V; taken from Table (2) (here, even in the case
of V.= {617,612, 66W*} or V = {627,622,6,W*}, masses of corresponding
bosons are {0, Mz, Myy+}), and n is the total number of couplings between vec-

tor bosons (the vector boson should be part of the loop) and the nucleon in the

loop (n = 2 in the triangle graphs case).

2. Propagators have the same structure, where for the case of V = {6;,6: Z, 6; W*}
vector bosons carry mass mys, s 25w} = A1, and for V = {657, 027, SoW*}

the masses are mys,.5,76,w=} = Ag.

3. Particles {617,6:2,6:W*} and {647,622, 6,W*} do not couple to any other
particles except the nucleon. Couplings of the type {W=* — {v, Z} — W%},
(W= —{v,2} — §W*} and {§W* — {,Z} — W*} are the same as in the case
of the couplings of the three vector bosons V, (k;) — V,, (k2) — V, (k3) defined
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in the Standard Model.

Although ultraviolet divergences are absent in the nucleonic vertex corrections
due to the additional terms proportional to (12‘1—21\2 in the coupling, it is still necessary

to compute the counterterm amplitude. The coupling defined in Eq. (109) has a

Gi”
Glr"
counterterm part at the one-loop level represented by the column matrix ,
Gi”
Glr”
which can be replaced by
Gir” g1 " Rel6 f7']
Glr" gk 7 Rel6 fR]
= . ' (141)
Gir” — B3 N (@) Rel6 £
Gir" ~ gy P2 7V (@) Re[6 ff]

Here, we have used the fact that at {V —V — N} vertex, parts of the counterterm

coupling related to the ‘5Z{/i,vj mixing are defined by

(O{"f»vai}—N>2 VA (O{Mﬁzmwi}-”) Cszmvivig

(62" = =

4 <C{527,622752Wi}—'N>2 5762V Vs
(142)
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Figure 14: Nucleonic field renormalization expansion.

2

(C{'y,Z,Wi}—-N>2 4 (C{an,slz,&lwi}—N> L ]

i < o{s2r.822,80w }—N) 2

This can be justified by the fact that all of the vector bosons field renormaliza-~

tion constants are defined by the truncated self-energy graphs at k* = m?

i

and
that all of them will have the same contribution. A property (C{'Y’Z’Wi}_Nf +
(C’{'S”’élz"slwi} "N>2 + <C{6”’6ZZ BaWE}-N )2 = 0 will leave the counterterm ampli-
tude only with the nucleonic field renormalization constants computed through the
expansion given by Fig. (14). As well as in the case of electron vertex corrections,
the nucleon vertex will have an infrared divergence at the pole ¢ — 0. A detailed

discussion of the treatment of this type of divergence is given in the next section.
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5 Bremsstrahlung Effects

The contribution of soft-photon emission to the asymmetry was calculated in Ref. [7],
giving final results that are free of infrared divergences. Howéver, even after remov-
ing IR divergences through soft-photon emission corrections, calculated one-quark
radiative corrections show a logarithmic dependence on the detector’s photon accep-
tance parameter AE. Elimination of this dependence can be achieved by adding
the hard-photon bremsstrahlung® (HPB) term. For one-quark radiative corrections,
the HPB term is hard to account for due to the poorly known quark dynamics. In
the case of the HPB computation for electron-proton scattering, we can avoid the
theoretical problem of having to know detailed quark dynamics by representing cu-
mulative quark dynamics directly through an experimentally determined set of form
factors. Using the monopole approximation, we modify general electroweak couplings
by inserting appropriate form factors into vertices and construct a HPB factor as a
function of Mandelstam invariants. For each set of experimental constraints, integra-
tion over emitted photon phase space can be performed numerically. We provide ab
initio numerical results for SAMPLE (Ref. [10]), (Ref. [11]), HAPPEX (Ref. [12]), GO

(Ref. [13]), A4 (Ref. [14]), and Q-Weak (Ref. [15]) experiments.

The present chapter on bremsstrahlung effects can be considered as methodologi-

3 Although SPB and HPB are parts of the same photon emission process, in the SPB approximation
momentum of the emitted photon is negligibly small to account in the numerator algebra. Generally,
we can approximate SPB as 2 — 2 process, which is not possible for HPB emission.
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cal, where electron-proton scattering is considered as an example. The same technique
of treating IR divergences can be expanded to many other processes. We describe

both hard- and soft-photon emission treatment, starting with the latter.
5.1 Soft-Photon Bremsstrahlung

The independence of the soft-photon emission amplitude from the magnetic part of
the hadronic current, and more generally from any form factors in photon-nucleon
coupling, makes the soft-photon approximation universal and applicable for almost
any radiative process. The diagrams responsible for cancellation of IR divergences in
one-loop parity violating radiative corrections are shown in Fig. (15).

Generally, bremsstrahlung diagrams can be described as (2 — 3) processes in
which the integration over the emitted photon’s phase space should be performed.
If the momentum of the emitted photon is small enough to be neglected in the nu-
merator algebra, we can present the bremsstrahlung cross section as a soft-photon
factor multiplied by the tree level cross section of (2 — 2) process.

Let us consider a corresponding example. The scattering amplitude for the first

diagram of Fig. (15) has the following structure:

My = (@(me, k3)| T%_, |u(me, k1)) -

(143)

(@, k) T (o) TS (0 o, ) -
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Figure 15: Photo emission diagrams
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Jpv *
e (ks),
(k4 _ k2 + k5)2 _ mZZ a( 5)

where the photon polarization vector enters as e,(ks); T';_., [';_y and I'S_ are the
couplings of electron with Z boson, nucleon with Z boson, and photon with nucleon,

respectively, defined as

ry,_. = ie l:—

i

Dhowle) = ie| @y + o—omq, @)+ ol @], (140

2mN

Y _y(ks) = ieQ [F{v(ks)’fa + gni—NUap(—kS)szN(kS)] :

For the form factors f15(q), F{5(ks), and g{' (¢) we have used

1 A?
fiala) = T5uco (Fl‘,/z(N) (0) — 455 Fy (0)> g
N N A? N
F1,2 (k5) = F1,2 (0) m =,2 (0) )
5

(145)

FIP0) = F2(0)— Fy(0), FAP (0) = FF,(0) — F, (0),

N 2
N _ 94 0) A
a'le) = 48, cy A2 — g%’
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with FY%, (0) and g% (0) defined as the nucleon’s Dirac, Pauli, and axial form factors
at zero momentum transfer, respectively.

In the soft-photon emission approximation the coupling I'S_y(ks) becomes equal
to 2eQ@y*. The numerator of the nucleon’s propagator ks— ks -+ my can be replaced
by 2+ my, and (ks — ks)? — m% can be easily simplified into —2 (k3 - ks). Using the

Dirac equation for free spinors, we have

k2 +my e . * _ . /k2’ya + ,ya /kz * _

—9 (kz . ks)zeQ’Y IU(mN, k2)> 6a(k5) - ZGQ 9 (k2 R kS) |u(mN7 k2)> Ea(kS) -
| (146)

.k - £"(ks))
= —jeQ)———— lu(mpy, ko)) .
Q or ) [u(m, k2))
Now we can present the soft-photon amplitude in the following form:
MY = (@(me, ks)| T [u(me, k) (@(ma, ka)| TG n(q) u(ma, k2))
(147)
Guv . (k2 ) 6*(k5)) _
(kq — kg + ks)2 — m3 ( e e k)

il

My <-z‘eQ—————(k2 e(ks)) ) .

(k2 - ks)
Here, My is a tree level amplitude of (2 — 2) process. Eq. (147) can be used for the
other photon emission diagrams with a different factor (:f:ieQi gﬂk—sn) As one can

(Kivks)

see, Mfof * does not depend on the magnetic part. This is a very important result.
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The independence of soft-photon emission amplitude from the magnetic part, and
generally from any form factors in photon-nucleon coupling; makes the soft-photon
approximation universal and applicable for almost any radiative process.

We can sum over all four graphs in Fig. (15) and square the total amplitude to

get the following:

(ks - e* (ks)) |
(ky - ks)

(k1 - €7 (ks))
(K1 - ks)

ke -e*(ks) (ks -e*(ks))
< (k2 - ks) (ks - ks) +Q

2
IMlsoft = | Mp|* €

(148)
The photon couples to a current which is conserved: k*M, = 0. This fact, and the
summation over all photon polarizations, gives us the possibility to replace 3, (k:)*(k;)" €€,
with —g,., (k;)*(k;)" = —(k;-k;). The last step is to integrate over the emitted photon
phase space dl'y, = (—27‘{3?%@ and regularize the infrared divergence by assigning to the
photon a small rest mass A. This dependence on the rest mass of the photon will
be canceled when added to the IR divergent radiative corrections, and the final ra-
diative corrections will be free of IR divergences. The resulting soft-photon emission

differential cross section is expressed as

k k
(kxis) - Q(kzis) -
2

d = (doo) _e / _ dhs _
Tsoft = \490)(2-2) 272 ) Jiks|<AE 9 [k2 + 22 -

k k
o) T Qe

2
= (da‘o)(2_)2> <——207:r—2> (sz I (k)l, kl) - (2mz - t) 1 (kl, k3) + ZQQm?V I (kQ, kz) —
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Q*2m% — ) I (ks, ky)

- (ddo)(2_’2) . 6SOft’

—2Q (u—m2 —m3) I (ky, ky)

— 2(s —mZ —m3) I (K1, k2))

(149)

Here, AF is the maximum possible energy of the emitted photon where the soft-

photon approximation is still valid. Numerical analysis leads to the condition A <

AE < 103 E 5.

I(ki, ki) = Jiksi<ae 3 dei/\z )07 1 the soft-photon emission integral evalu-
-_— 5 £

ated earlier by Ref. [37], and is equal to

1

I (ks k;) = 2mau;
iy Vg 2.2 9
agmg —m;
where v;; = —-"————LE %, and E;

2Ln(

052777.

4AE?

>Ln( ) 1L2(

“N

Lis (1

Liz (1- & (B; +|kl;)) — Lia (1 -

Bi—|k|;
E;+kl;

— %5 (B + [kl,)) + Lz (1 —

1 E;—k|;
)~ () +

aij

Vij (EZ -

|kl,)) —

o (B = k1))

(150)

, |k|; are the fermion’s energy and spatial momentum in

the center of mass reference frame, respectively: The parameter ;; can be extracted

from Table (5) .

We expect the dependence on AFE to be canceled as a result of

adding the soft- and hard-photon emission differential cross sections. It is worthwhile

to mention here that dos,s is proportional to (doy) (2-2) Which makes it possible to
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1 1 Me M, 1
2 2 My my 1
t t2—4tm2
1 3 Me M, 1—5= oz
12— 4tm?
t
2 4 My my 1—55 5
2,2 2 m2 )V —an2m?
1 4 me+mf—u+ (u—-me——mf) —4memy
Mg my G
2.2 20 m2 )2 _4m2m2
1 9 s—mg mf-l— (me—i-mf—s) —4dmgmy
Me myg S

Table 5: Soft-photon emission integral parameters of Eq.(149)

insert the soft-photon factor ., into radiative corrections and to treat them from

IR divergences:

1
Ry = RV+§6soft7 (151)

1
RA = RA+§6soft-

Here Ry and R,4 correspond to the radiative corrections defined as

Cl

Ry = N

YT O
(152)

Cll

Ry = 2,

Con

However, in the case of hard-photon emission, parametrization in this simple way is
not possible, which makes it harder to get rid of radiative corrections of the photon
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detector acceptance AF.

5.2 Hard-Photon Bremsstrahlung

This section gives details on the evaluation of the hard-photon bremsstrahlung dif-
ferential cross section. The results are expressed in a form convenient for further

analysis.

5.2.1 Electron-Nucleon Scattering

In the case where the momentum of the photon (k) > AE) can no longer be neglected
in the numerator algebra, we have to account for all the differences between hard-
and soft-photon emission. Besides the fact that the hard-photon amplitude will have
ks in the numerator, calculations for the differential cross section will have to include
matrix elements with different helicity. These matrix elements come from the use
of the momentum conservation law for (2 — 3) process. Thus, the helicity matrix

elements will depend on the extended set of Mandelstam variables:

s = (kl + kz)z, s = (k3 + k4)2 ,
t = (ky—ks)?, ¢/ = (ko — ka)?, (153)
u = (kl —_ k4)2, ’U,I = (kz —_ k3>2 .
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Let us start with the total amplitude for the set of the graphs in Fig. (15):

<ﬂe(k3)! F%—e |ue(kl)> :

- g *
Mt20t 3 = u;;l2 Ea(k5)

i — Z

- (un (kq)] FI’ZL—N(t)@%%T—mME S n(ks) lun(ka))

(e (k3)| T [e(kr)) -

g/»‘” *
Ee(ks)
t —m?

(i (k)| Ty (k) (it Ty (8) un (R2))
(154)

(Te(ka)| T ot ea T e |ue (k) -

y—e (k3+k5)2—m3

Guv *
ee(ks)
t' —m%

(U (ko) | Tz () [un (k2))

—_—— t e+

_|_
(Te(ka)| o Bt 2ea TS Jue(Rr)) -

(k1 —k5)2—m% Y

uv *
Ea(kg,).
t' —m%

(TN (ka)| Ty (t) lun (K2))

Here, ¢’ — m% can be replaced by ¢ — m% due to the fact that {¢,#} < m%. The
evaluation of the total amplitude squared is somewhat cumbersome because it in-
cludes calculations of 3136 helicity matrix elements. To avoid complications in the
HPB differential cross section, we decided to split the amplitude into two terms:
M2 = MZ% + ME73. Here, MZ™3 is the total amplitude without dependence on
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the momentum of the emitted photon in the numerator, and M?™3 is everything that

is left up to order O (ks). Now, the squared amplitude has a very simple form:
2 2 * 2
M3 = |33 + 2 (M%) (M%) + |z (155)

The first term of Eq. (155) can be obtained from

03 aoap | (kig*(ks)) (koe™ (ks)) (kse*(ks))
Mo =AMy ((klks) 02 —7) k) (A2~ 1) (kaks) (A2 — 7)

+0 (kg™ (ks)) ),

(kaks) (A2 — t)
(156)

where

t—m
(157)

M = (ie) (@(me, k3)| T_, [u(me, k1)) (@(my, ka)| (F;_N)' (e, b)) 222 ;-

The term (F‘Z‘_ N>, represents a coupling which was modified in a way so it would no
longer have a dependency on the monopole term ﬁ, and no longer contain the

momentum of the photon in its magnetic part:

1

! .
(T%_w) =ie [f{v Pt 0 (kg — k), B+ oY 7#75] : (158)

2mpy
In Eq. (157) and Eq. (156), the coupling I'S_,, v, was replaced by (ieQ)~*. As for
{fffz, gV } , we use Eq. (145) but without the monopole term* (Té\i—t) It is straight-
forward to see that after the integration over the phase space of the emitted photon

only the amplitude MZ3 squared will have a logarithmic dependence on the pho-

ton detector acceptance parameter AE. Therefore, M2™3 squared, when combined

4 Alternatively we can define terms {f{'5, gf } as formfactors {f{ (0), g7’ (0)} at the zero momen-
tum transfer.
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with the soft-photon bremsstrahlung differential cross section, will be responsible for
cancellation of the log(4AE?) term .

Further numerical analysis shows that the second and third terms of Eq. (155)
have no dependence on AE. They both are small compared to the first term when
the energy of incident electrons is less than 6 GeV. For energies Ej,, > 6 GeV, the
second and third terms become non-negligible in the HPB cross section.

We can write the term |MZ™3 |2 of Eq. (155) in the following form:

2
2—3 _ 712
lMo ‘LR*‘ "|M0|L,R'5HPBv

P A4 (m2< 1 1 >_ 2m? — ¢ >+
HPE = (02 =02\ \(knks)®  (ksks)?)  (kuks) (ksks)

(159)

QA (1 1) omd ¢ QA*
(Az—t)2< N((k2k5)2+(k4ks)2) (kaks) (k4k5)>+ (A% 1) (A% =)

(m§+m%\,—u s—m2-m% §—m2-m% m§+m%,—u’)

(kiks) (kaks) — (kuks) (kaks) — (ksks) (kaks) N (k2ks) (ksks)

The scalar products (k;ks) are the Lorentz invariants and can be replaced with the

Mandelstam variables as

(kiks) = _m2_m§/+w

[
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(s+t' +u)

(koks) = —m¢—mpy +—F—,
(160)
§4+t+d
(ksks) = m2+mk — gz—),
s+t +u
(ksks) = m2+m3 — (—_2——)
As for ]M{)ﬁ g in the case of the left-handed incident electrons, we have
, 4o3n3 (1 —2s2)% (FY
|MJ2 = & (1o )Q[El 2 (16mS — 8mp(s+ 8 +u+u) +
dm% (s +uw)(s + o) +t'(us’ — 88’ +tt' + su/ —un)) +
(161)

Vi (4miy — 4my (u+ o) — 8’ + ¢ + s'u + su' + 3uad) +
_N\2 Ay 2
2(gf™) (3 — s)(m3y — &) +2 (gE7) (mh —w)(miy — ) +

gZF N (4gZ NV m?2 t + 1Y (dmy — dm% (s + ') + 358 + tt' + s'u + su' — ut))],

and for the right-handed incident electrons

(2

4m 2

16a37

§2
| Mol = ;u
2 (t— z)

(16m$, — 8miy (s + & +u+u) +
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am3 (s +u)(s’ + o)+t (us’ — s’ +tt' + su’ —u)) +

gV (4mYy, — d4m3 (s + ) — wu' +tt + s'u+ su’ + 3ss') +
(162)

2 (7™ (% — s)(m% — &) +2 (g7 (my — u)(md — ) +

gZ N (495 Nm? t + 55 (dm}y — 4mZ(u + ') + 3uu’ + ¢’ + s'u + s’ — s5'))).
For simplicity, we have introduced a set of coupling constants gf’}N defined as
gri = R *ol,

(163)

! . — _ 1
(Ms_y) = ie [9}3 Yoytwy 4 gl M+ g

N
ot (ks — k), £ | (164

where wy. = 255 are the chirality projector operators (see Eq. (44) and the discussion
below).

The amplitude M?2~3 entering expression Eq. (155) has eight terms. Each term is
responsible for a different type of product of static or magnetic parts of the (Z — N)

coupling. Explicitly, we have :

M= I (k) R
1 t—'mZZ a( 5)
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R = (@) T o) ()| (U5 ) G 5e@) 7 o (B2) oy

—t
_|_
R Ny v AZ
(Te (k3)| T'7 e [ue(kr)) (@ (ka)| (ieQ) v (o 1 F)? — 2, (M5-n) lun(k2)) 55—
+
Lo /k5 57 H ! A2
(@e (ks)| T T T k)2 FZ——eIue(kl» (@n (k)| (Th_n) lun(kz)) 7
+ (165)
— v (_ /k5) n ! A2
(Ue(k3)| Tz (i = Foe)? — 72 TS, Jue(kn)) (@ (ks)| (T5_n) luw(ks)) o
+
(Ue(ks3)| Iz _e [ue (k1)) -
AZ
A2 —¢
(T (k)| () G- (ks),, gt (10Q) 7= fuw (k)
+
(e (ks)| T |ue(k1)) -
A2
A2 —1¢
\ - (v (k)] (eQ) v e (- &) Tl (ks), lun (k2))
_I_.
(e (ks)| T'7 . lue (k1)) -
A2
A2 —t¢

/ m a.cprN
(@n (ko) (T5-n) G (€Q) TG (ks), lun (k)
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(Te(k3)| Iy fue(kr)) -

. A2 —t
o< N m ) i
(T (k)] (eQ) T (ks), Gty (T ) Jun(k2))

The second and third parts of Eq. (155) are too lengthy to show them here explicitly.

We have them analytically expressed in a Mathematica file available upon request.

5.2.2 Electron-Quark Scattering

The case of electron-quark scattering is much simpler than the more general electron-
nucleon scattering, and can be easily derived. First of all, there is no magnetic part in
the coupling. Second, the monopole form factor approximation is no longer required.

Now we have

%, = ielgh "Wws+g7 o],
(166)
I = 1eQ7%,
where
Z—q T.'g - QS%U
ar = s ¢
(167)
_ Suw
9r = ‘QC_
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Here, T{, Q are quark’s isospin and charge, respectively. The amplitude Mg be-

comes

MER = M) ((klé‘*(k‘s)) B Q(k2€*(k5)) _ (kee(ks)) | Q(k4€*(k5))> 7

(k1ks) (koks) (Kksks) (ksks)
(168)

I

M(,) = (7'6) <E(me7 k3)| Pg—e Iu(me7 kl)) <ﬂ(mq’ k4)| F%—q Iu(mm k2)> t— m2Z :

The first term of Eq. (155) for polarized incident electrons can be expressed as

2
2—3 . 112
’Mo lLR - |MOIL,R - 0mps,

i) )
HPB = |, (kiks)®  (kaks)® (k1ks) (ksks)

(169)

of o 1 1 B 2m§ -t
“ (mq ((kﬂfs)z i (k4k5)2> (k2ks) (k4ks)> *

2 2 2 2 2 2 2 2
(me—i-mq—u s—m;—m; §—m;—m; me+mq—~u>
?

(kiks) (kaks)  (kuks) (haks)  (kaks) (kaks) | (kaks) (akis)

and IM(’,[i’R is

8am3 (1 — 252

| M3
- ¢ 2, (t —m3)”

(170)

104




(957)" (m3 — 5)(m3, — &)+
32013 3 2 N
M = Y Z—q 2 2 i

Z—q  Z—
291, Y gg ‘mlt

The amplitude M?2™3 will have only four parts with the following structure:

23 _ Guv &
M = t*jn—zgga(ks) ‘R,

R= (ko T bl () e 2 (60) 7 )
+
_ y _ : o ks "
() T ) (0] 5e@) ¥ oy T )
+
ks v
<ue(k3)| F'y— (k Tk )2 PZ e lue(kl» (uq(k‘l)l F —q ‘uq(k2)>
+ (171)
— v (— /k5)
(Ue(k3)|rz_e(kl “ ) — i IS |ue(kr)) (@q(ka)| Ty lug(k2)) -

Now we can give some details on the 2(MZ73)* (M2~%)and |M2~3° terms. The
electron mass enters into calculations of helicity matrix elements as a small parameter.

Using this fact, for 2 (MZ™3)" (MZ73) we derive:

2 (M) (M), , = 32| 2

i=

kl)LR QI (k2)p g R (ks)pr n QI (ka)p, g
(172)
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Expressions for 90; (k;) are explicitly listed below. For k; = k;, we have

im<k) _ 803 (1 — 252)°
(ky)y, = — _

2
& 52, (t—m3)

N2 _ _ N2
[(g77)" (m — s)(m§; — ') + 207 % g~} £+ (g77) " (m — w) (i — o) —

Q z-q\%, 2 2 Z-q\2 2
(s + ¢+ —2m2 — 2m2) ((gL q) (g — s)(my — )@ + (gR q) (mq — u)w21) +

Q
(s +t +u—2m2 —

2m2) <<gg—q)2 (mg — 8)ws1 + (gﬁ""f (mz —u) (m§ - u’)wu) +
(173)

—q\2 — -
(gf q) (m? — s)ws; — 2979 ga~"m? tw+
1
(s’ +t+u —2m2 — 2m2)

Zoo\2
+ (QR q) (m?2 — u)wn
where coeflicients w;; are
wi = (2ml—s—t—u),
wn = (2mg—my(s' — ¢ +2s + o)+ s(s + o) —t(t' + ),

wy = (2mi—m (s —t+2u+u) -t + 5 (u—1t)+u).
q q

For kj = k2,
£ 8am3 (1 — 2s2)°
Ak P ws_ o,
2= = )
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Q A Z-q\2, 2 /
[(S/+t/+u_2mg_2mz) ((gL ) (mq—‘S)CU12+ (gR ) (mq———u)w22> +

—q\2 —q 7—
(gf q) (mf — 8 )wsz + 297 9% my wa—

1
(s +t+u—2m2—2m2) +
N2
—(9279) (m2 —w)ws
(174)
2 o 2~
(9777) (m2 — s)wrs + 297 % gt m? war—
1
+

(' +t+u — 2mg —2m2)

_ (gg—qf (m2 — w)wsy

Q Z-\2, 2 Z-q\% . 2
(s +¢ +u —2m2 — 2m2) ((gL ) (mi = s+ (9277) (mq—u)wm)]’

with

wip = (2mg—mi(s' —u+2+)+ ' + 5t — o) —u),
wee = (2mg+ m?(s’ —2—t —u)—s(s +u)+t'({t+u)),
way = (6ms—mi(5s+2t+1t' +2u+u)+s(s+t' +u)),

Way = (mg(s—}-s' —u—u)—s(s+t)+u(t+u)),

wse = (6my—mi(5u +2t+t +25 +s)+u(s+t +)).

When kj = kg, L (kj) is given by
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4 8adnm3 (1 — 282 2
Zm(k3)[4=——2 2( 2) :
=1

2
Cu Sw (t - mZ)

_a\2 — — —q\2
[(977%)" (m2 = 5)(mj — &) + 297 g7 "mg t+ (97 *) " (m} —u)(m} — ) —

Q
(8 +t' +u—2m2 —

' (95—4)2(m§—5)(m§—8')w13+(gg_q)z(mg——u')w% +
2m3)

Q
(s+t'+u —

2 2] ((gf“”f (m2 — Yz + (92 7) (m2 — w)(m? — u’)wlg,) +
(175)

—q\2 — _
(gf q) (m2 — &' )wss — 29779 g2 7"m? twwia+
1
(s +t+u—2m2—2m2)

+ (g}z{“q)Q (m? — u)ewas

where

Wiz = (27’)72—'8,**25-—11/),

wes = (2mg— mg(s’ +28 —t+u)+ss’ —tt +uls —t)),

wss = (2m;—m(s —t+u+2u) +u — &t + (v —1t)).

And, finally, for k; = k4 we have

80P (1 — 2s2)°

¢ 52, (t—m3)’

Z;Emi (k4)L ==

7=
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with

Q Z 2 2 g 2 9
{(s ¢+ —2m2 — 2m2) ((gL q) (my — swia + (gR q) (myg — u)w24) +

—g\2 _ _
(9779) (m2 — " )wua + 297 2 g7 “m? waa—

1
(s +t+u—2m2 —2m2) +
o2
- (gg q) (mﬁ — v )wsq
(176)
—a\2 — _
(gf q) (m2 — s)wss + 297 g2 Im? wy—
1
+

(¢ +t+u —2mZ — 2m2)

_ (gg—q)2 (m? — u)wny

Q

Z—q 2 2 _ Z-q\? 2
(5 + ¢ +u—2m2 —2m2) ((gL ) (g — SJwsa+ (g77)" (mg “)wfm)]’

wig = (2mg—mis+2+t —u)+tt' + s’ —u) —ur),

wy = (@mi+mi(s—2—t —u)—s(s+u)+(+)),
wya = (6my—ml(bu+2t+1t +25+5)+u(s +t' +u)),

Way = (mi(s—i—s'—u—u’)—s’(s—!—t)+u(t+u')),

wsg = (6my—mi(5s'+ 2+t + 20 +u)+5(s + +u)).
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To get the right-handed matrix elements Y%, 9; (k;) , , all we have to do is to replace

2
8aln3 (1—2s,2”) 32037352

c?, 52, (t—m%)z 2, (t—m"é)2 ’

As for the rest, the expressions for 37 ; 9; (k;), and Y-f, M (k;) , are identical.

the coupling constants gi}q by gﬁ;ﬂ , and the coefficient

Let us continue with the last term of Eq. (155) [M273|%. It is given simply by

a2 = ZZ (M), (177)
=1 j=i
with the following four sums.
The first sum is
z“: (M), = 8043;?362 (1 25%)° :
= 2 52 (t—m%)" (s’ +t' +u— 2m2 — 2m2)

2

0 ((gfﬂ])z (m2 — s)wis + (g}Zz—q) (m2 — u’)wu) +

—q\2 — -
(gf q) &1y — 297 "gp 'mZ wnwist
1
(s +t+u—2m2 — 2m?)

2
+2 (gg q) (m? — v w3
(178)
—A2
2 (gf q) (m2 — 5)P1pt013—

i
(s’+t+u’—2m§—2m§) +

2
Z—q Z—q, 2 Z—q
—291 “gr "My wnwiz — (gR D13

Q Z—q\? Z—q Z—q_ 2 Z—q 2
(s +t +u' —2m2 — 2m2) <(gL ) & 491 "gr Mg Tuwis — (gR ) (1)13)]’
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where

&1 = (mi(8t—4(u+u'))+ ma(—2t* — 61"t — ut + u? + u? + t'u + v’ 4 6un’ +

s(=3t —t' +3u+u)+ (=3t —t' +u+3u)) +

st + 8t +t —u—u) —2uw) + (28" +t+t' + u+ o) — wi)),

Py = (2m2 -5 —t' —u),

q

D13 = (dmi(s+s —2t) —mi(s®+ (65 —t+1' +3u+u)s + s —

2% — 6tt' — 3tu — t'u — 3tu’ —t'u + (¢ —t +u+3u)) -t +

28 — 2 — 't — 2t u — 2t + Suu — tud — tu +

s(s?+ (t+t +2u+u))s — tt' +uwu)).
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The second sum is

24: (M), = 8eAm3Q (1 — 252)°
25/0 —

pa 252 (t—m2)’ (s + ¢ +u — 2m2 — 2m32)

Q ((gg—q)Q (mZ — &' w11 + (gfzz—q)2 (mZ — u)w13> +

—a\2 —q 7-
(gf q) Oy — 297 Vg "m? wywist
1
(s +t+u —2m2 — 2m2)

_\2
+2 (gg q) (m? — u)®a 013

(179)
N2
2 (gg q) (m? — 8") @1 0011 —
1 |
(s +t+u—2m2 — 2m2) '
o 7o 2
—2977 g% ‘m? wywis — (g}Zz q) D3
with
(1)21 = (ng -8 — t/ - ’U,l).
The third sum is given by
24: (D), = 8aB73 (1 — 2s2)°
ST a2 (t—m2)P (s + t+ o — 2m2 — 2m?2)
(180)

—_A\2 _ _ N2
[(9779)" (m2 — 5)®12 — 297 9 g *mZ iy + (g7 ¢) " (mZ — w) @1+
q q
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1 Z—q\2 Z—q\2
(8 Lty — ng _ 2777%) <(gL ) q)ll - (gR ) @13>]
And, finally, the fourth sum is equal to

2 8ol (1 — 2s2)°

Myj), = '
Z( 4)L ) (t_mzz)2(5+t+u—2mg—2mg)

J=1

(181)

_\2 e 7 A2
[(9779)" (m2 — )21 — 297~ g~ *mi w13 + (9579) (m2 — u)®yy]

Similarly, to get the matrix elements for the right-handed incident electrons, we have

8aln? (1—23,2”)2 320‘3.“_33121]
0,2‘, 512” (t-—m2z)2 c?u (t—mQZ)

to proceed to the next section, where we shall give the details on the parametrization

to replace gIZl,}q by gﬁ";, and coefficient ». Now we are ready

of the emitted photon’s phase space and calculations of the differential cross section.

5.3 HPB Differential Cross Section

The parameterization of the phase space for a {2 — 3} process has been chosen ac-
cording to Fig. (16). Here, the angle 6 is a scattering angle and £ corresponds to the
angle between emitted photon and scattered electron. The momenta are represented

as

kv = {E1,0,0,pi},

ky = {E30,0,—pin},

ks = {R,[ks| 2}, (182)
ke = {K, k),
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Figure 16: Momenta for (2 — 3) process in the center of mass reference frame.
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kS = {k&I?S)’e_S) )

where the unit vectors are

sin(6)
e = o |
cos(6)
(183)
cos(6) cos () sin(€) + sin(d) cos (£)
e = sin(n) sin (£)

cos (0) cos (§) —sin(0) cos (n) sin (§)

For on-shell particles, the incident momentum p;, can be found as

DPin = 1/ By — m27 v (184)

with

2 2
Ecms +m; —mg y

B, =
! 2Ecus

(185)

Here, Ecss is center of mass energy and m, v is a mass of the target particle (quark

or nucleon). Center of mass energy can be determined as follows:

Ecus = \/ mZ + m?,N + 2Ep My T (186)

When we consider {e — g} scattering, myn = m,, and the parameter z repre-
sents the fraction of the nucleon’s energy carried by a quark. For the case of {e — ¢}
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scattering, the parameter z was chosen to be equal to %. It is believed what three

constituent quarks contribute —;- to the mass of the nucleon. Rest of the mass of the

nucleon is made up from the contribution coming from the quark antiqurak sea. Hav- _

ing three quarks in the nucleon it is possible to assume what single quark contributes

é to the total mass. If we consider electron scattering on the nucleon as a whole, z is

equal to 1.

Momentum k4 is determined by the four-momentum conservation law in the CMS

frame:

Vs =k +ky =kJ -+ kS + kL,

and

— = —
ks + ky + ks = 0.

The HPB differential cross section reads as follows

M s
do = —Z—-dI’
a (I) )
where @ is a flux factor and given by
o= 4pm\/§

The {2 — 3} process phase-space element dI'® is

s ks Bk, dks

I° = (27‘(‘)4(5(4) (k1+k2—k3—k4——k5).

(2m)® 2k (27)° 29 (27)° 20
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Using
5]

k;
@k kY,

- = d'%;6 (K} —m?) =

and the fact that the photon is a massless boson, i-e ‘l_c;i = k2, we can write

—
4(2)

8d0dkYdQs6 (K — m ) d*ka8™ (ks + ky — ks — ka — ks) . (191)

Employing the delta function 6 (...} to eliminate the integration over momentum

k4, we arrive at
[ [ |

dTs = kYA dkeds8 (K — m2 ), (192)

4 (2)
with d€l3 = d cos 6 dp and dQ5 = d cos & dn. The remaining delta function § (kg —mZ N)
will be used to eliminate the integration over the scattered electron’s energy k9.

We need to do some modifications first:

k2—m? (k“) -|k4| —m2y = (v5— k§ — ko) —;kg\ —\ | —~2 k3| | s | cos —m2 .
(193)
Now, using
(8)* = |&] +m?, (194)
we arrive at
ki —mly = s — 2y/sk) +m} —m? y — 2k (\/— ko) — 2‘k3| Elcosé.  (195)

The electron’s mass can be considered as a small parameter with respect to k3. In
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. —>
this case, we can replace |k3| by k2, thus

m?

2Ky’

[kgj ~ k) — (196)

Substitution of Eq. (196) into Eq. (195) leads to the following:

ki—mi = (3—2\/_k0+m —m? ) —2k3 (\/_ k2 + k2 cos§) —ko—. (197)

6!Icg—r1‘!

The property of the delta function §{g (k)] = ¥ I

(r; is i-th root of the

equation k} —m?y = 0, solved with respect to k) makes it possible to replace

§ (kg — mg,N) by

1
(k2 —m2 ) = . 6 (kY —1), 198
(=) 2 (y/5 + k2 (cos (€) — 1)) + mekages®) (1 =7) 1)

where

(5 — 2+/5k3 4+ m? —qu) 4 m2kS cos (£)
2(Vs ki (cos () = 1) (s— 25k +m2 —m2 )’

The delta function 6 (k] — r) will eliminate integration over kJ leaving kJ = r. Inte-
gration over the emitted photon’s phase space dk2d(2s can be performed numerically

using the cuts on the photon’s energy k2 :

(kg) min - AE’
(199)

(kg) Vs _ (me + mq,N)2.




Finally, Eq. (189) becomes

— |k3 | K |M237,  dk3dQs

b 4(27r /// 2 (/5 + k2 ( cos(g)—1))+—2fzoi;2@

leaving the final differential cross section differential with respect to the scattered

dQs,  (200)

electron’s solid angle df23.

The asymmetry in parity-violating scattering is defined as

tot tot

Apyr = —8 7L 201
RL de{ot + dO'%)t, ( O )
where
tot 1 1 ' l 242 22 |2
dotot, = |ME~2 + MZ22,,,, s % (202)

T LR e Ve

The contribution of the soft- and hard-photon bremsstrahlung modifies the differ-

ential cross sections in Eq. (201) according to the following:
d5iy, = doy, + (do§ ™) . - buos + dofil”. (203)

In order to combine HPB differential cross section with the soft-photon emission
contribution, and all this with previously calculated radiative corrections (Ref. [7]),
we propose the following parametrization for the HPB differential cross section:

doHPB _ j,HPB

~HPB _ (.22 R L _ (7,252 5
dURL (d )R,L ) (dag—a)R — (da(z)—a)L = (do'o )R,L OmpB- (204)

As can be easily seen, the substitution of Eq. (204) into the expression for asymmetry
Eq. (201) will leave terms related to the HPB in the usual form (dagp B _dolFP B).
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It is worth noting that the term (do%* + do’*) has a dominant contribution from the

parity-conserved part of the differential cross section. Because of that, the denomina-
tor of Eq. (201) is left without parity-violating soft- and hard-photon bremsstrahlung
terms.

One of the most important results of this work is that the combination of soft and

HPB terms with radiative corrections can be written as follows

- 1 _
Ry =Ry + 2 (5soft + 5HPB) , (205)

i.e. all of the effects can be accounted for and put together on the level of radiative
corrections.

For the case of {e — N} scattering, we will show the contribution from soft
and HPB terms, taking into account only the IR finite part of the soft-photon
bremsstrahlung. We can do so because IR divergences are canceled when {e — N}
radiative corrections are added. As for {e — ¢} scattering, after computing the total
radiative corrections, we will demonstrate explicitly that the final result is indeed free

of IR divergences as well as of a logarithmic dependence on AE parameter.
5.4 Numerical Results

Before going into the numerical details which involve various parity-violating ex-
periments, let us first demonstrate that, indeed, we do not have AE dependence
in the term % (5soft + ngB) for an arbitrarily chosen kinematical point. We take
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Figure 17: Term associated with |M0|i in the HPB differential cross section for elec-
tron proton scattering as a function of {k2,&} (Eip = 5.0 GeV, 6§ = 140.0°).

Eip = 5.0 GeV and 6 = 140°. Before the integration of Eq. (200) over the emit-
ted photon’s phase space, it is interesting to illustrate the expression in parenthe-
sis of Eq. (200) graphically, studying the general behavior of terms associated with
|M23%, 2 (M273)* (M?~3) and |M2?~3]? as a function of {k2, €} (See Fig.(17), (18)
and (19)). Of all the terms, it is obvious that only the integrated |M2—3|* will have
a logarithmic dependence on photon detector acceptance and make a dominant con-
tribution to HPB at this energy. During the numerical integration, we have used the
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Figure 18: Term associated with 2 |MyM;|, in the HPB differential cross section for
electron proton scattering as a function of {k2,€} (Eiap = 5.0 GeV, 0 = 140.0°)
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Figure 19: Term associated with ]Mlji in the HPB differential cross section for elec-
tron proton scattering as a function of {k2,£} (Ei = 5.0 GeV, 6 = 140.0°)
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AE (V/s) % (5soft + gHPB)
1078 —0.15032
107 —0.15035
107° —0.15035
107 —0.15035
1077 —0.15036

Table 6: Dépendence on the photon detector acceptance (electron nucleon scattering
case (Fjq = 5.0 GeV, 0 = 140.0°))

adaptive Genz-Malik algorithm which is implemented in the Mathematica program.
For electron-proton scattering, the term % (5soft + 6, HP B) for different values of AE is
shown in Table (6). We see that the variation of % (6soft +85p B) is within 0.03% of
that coming from the numerical “noise” due to the integration. As for electron-quark
scattering, Table (7) gives convincing evidence that the final results are independent

of the introduced photon’s energy cutoff.

Various experiments in parity-violating electron scattering can be used as a base
for our numerical calculations. We will include SAMPLE (Ref. [10]), (Ref. [11]),
HAPPEX (Ref. [12]), GO (Ref. [13]), A4 (Ref[14]), and Q-Weak (Ref. [15]). In Table
(8) we give total radiative corrections with the soft- and hard-photon bremsstrahlung
taken into account. One-quark radiative corrections now will be modified by the soft-
and hard-photon emission terms for the electron-quark scattering case. We take AF

124




AE (5) | 3 (8sose +8up5) (ew) | 3 (8soe + Burp) (ed) | § (8soe+8mpn) (e5)
1073 —0.20461 ~0.17176 —0.16842
10~ —0.20472 —0.17182 —0.16849
1075 —0.20473 ~0.17183 —0.16850
1076 ~0.20473 ~0.17183 —0.16850
1077 —0.20474 ~0.17183 ~0.16850

Table 7: Dependence on the photon detector acceptance (electron-quark scattering
case (Ejqp = 5.0 GeV, § = 140.0°))

= 10~%,/s simply because there is no need to show again that there is no dependence
on the AFE parameter.

Combination of the above leads to the nucleonic radiative corrections listed in
Table (9).

The HPB parity-violating differential cross sections for the electron-proton scat-
tering case, including tree level PV and IR finite soft-photon emission terms (dofy, =
(dog™) g1, (14 bone—toop + 8soft) +doR LY = (do5™2) i 1, done—toop +7r,1), can be found

in Table (10).
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R}/, | SAM.I SAM.II HAP.I HAP.II GO0(a) Ad(a) Q-Weak
e | —0.335 —0.333 —0.368 —0.371 —0.335 —0.351 —0.360
R, | —0.545 —0.552 —0.543 —0.544 —0.545 —0.550 —0.552
e | —0.596 —0.607 —0.593 —0.597 —0.588 —0.597 —0.602
e | —0.071 —0.069 -—0.073 —0.072 —0.070 —0.071 —0.069
R, | —0.024 —0.025 —0.036 —0.033 —0.031 —0.036 —0.033
<, | —0.030 —0.031 —0.036 —0.033 —0.032 —0.035 —0.031

Table 8: Modified by HPB one-quark radiative corrections

T=0 T=1 1isosinglet P n
Ry | 0.040 —0.042 —0.017 —0.366 —0.0055
R4 | —0210 -0.440 -0.817 —-0.650 —0.231

Table 9: Modified by HPB and combined radiative corrections (SAMPLE I experi-

ment).

nro (1079mb) | SMPL1 SMPLII HPXI HPXII GO(a) Ad(a) Q-Weak
R 0.048  0.034 3613 4.183 0061 0.553 1.295
n 0251  0.114  6.036 6.644 0573 1.267  2.086

Table 10: Combined HPB and soft-photon differential cross sections in e-p scattering
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6 Discussion and Analysis

The application of the methods described above for {e — N} scattering can be seen in
calculations of the weak charges of the nuclei. Consider the parity-violating Hamilto-

nian in Eq. (111). Here, for a heavy nucleus we have a coherent effect for V (N)®A (e):
(@NY*UN) = Pruc (T) buo- (206)

The contribution coming from V (e¢)®A (N) is small as it depends on unpaired valence
nucleons. The latter will determine the Hamiltonian for the electron parity-violating

interaction with the nucleus in the following form:

G
H (T) = #éQweak’YSPnuc (T) . (207)

A relation between the weak charge Queqr and form factors {Ci,, Ci,} is straightfor-

ward:

fveak = 20117’
(208)
Z}eak = 2017’7-'

If we take into account only the leading order of the interaction, the weak charge of

the proton and neutron have the simple definitions:

AWl = 1-a,
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& ety

Figure 20: Momentum transfer dependence of Cy, neutron vector formfactor.

(209)
QA = -1,
and for the nucleus
Queak = Z * Qiyear, + N * Qipeak 5 (210)

where QY i, Q% .. are the weak charges of the proton and neutron including next
to leading order radiative corrections.

Extrapolation of the {Ci,, Cs,} and {C1,Cop} to zero momentum transfer (see
Fig. (20) and Fig. (21)), and combining with the HPB contribution, gives the following

numerical results:

Cip, = 0.0481 £ 0.0005,

Cyp = 0.0600.010,
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Figure 21: Momentum transfer dependence of Cy, proton vector formfactor.

Cin = —0.5017 & 0.0020,

Cs, = —0.058 £0.010.

(211)

We believe it is useful to give some details on the angular dependence of Cy, and Cip
(see Fig. (22) and Fig. (23). Here, the numerical noise at forward angles is associated

with Landan singularities, and was incorporated into the theoretical error estimation.

Some of the existing measurement results are obtained from atomic parity viola-
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tion (APV), deep inelastic neutrino-nucleus scattering (NuTeV), and from Z° pole
asymmetries (LEP+SLC). The available results from atomic parity-violating experi-

ments for the weak charges of C'si2®, TI12% and B2}’ can be used as an experimental
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Figure 22: Angular dependence of the Ci, vector form factor
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Figure 23: Angular dependence of the Cy, vector formfactor
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test of the theoretical predictions:

CsiB(exp) = —72.65+0.28 +0.34,

(212)
TI2%®(exp) = —114.8+1.2+34,
Bi2¥(exp) = —140 &+ 40.

Here, the errors are statistical, systematic and coming from an uncertainty of the

atomic-physics theory, respectively. For example, in the case of Csi¥3, one should
observe 7s (ezcited) — 6s (ground) parity-violating electric dipole transitions in
order to extract the weak charge of Csi3®. This requires an accurate knowledge of

the atomic wave functions. Using Eq. (211), Eq. (208) and Eq. (210) we compute the

following results for the corresponding nuclear weak charges:

Csi¥3(theor) = —72.9740.26,

(213)
T12%(theor) = —116.8+0.4,
Bi2¥(theor) = -118.4+04.

The model predictions are in good agreement with the available experimental
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results. However, to make more definitive conclusions about the validity of the pro-
posed computational model, we have to reduce the experimental errors for precision
measurements of the weak charge of the nucleon. This type of measurement is pro-
posed by the Q-Weak collaboration. The general purpose of the Q-Weak experiment
is to search for new physics at 4.6 TeV scale to challenge predictions of the Standard
Model. More precisely, Q-Weak is designed to measure the weak charge of the proton.
The Standard Model evolution predicts a shift of Asin? 8y = +0.007 at low Q? with
respect to the Z° pole best fit value of 0.23113 + 0.00015. The weak mixing angle
at the energy scale close to the Z% pole was measured very precisely. A precision
experimental study of the evolution of sin® @y to lower energies still has to be carried
out. The asymmetry measurements proposed for Q-Weak experiment will go as low

as 0.1 GeV.

At tree level, Eq. (209) has a definite prediction in the electroweak Standard
Model. Any significant deviation of sin? By from the Standard Model prediction at
low Q2 would be a signal of new physics. The proton’s weak charge Q7. is also a

well-defined experimental observable. At Q% — 0 and # — 0 the asymmetry can be

parameterized as

. —GFQ2 2P 4 2
A= |55 Qs + B

where B(Q?) is a function of Sachs electromagnetic form factors G ), related to the
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Dirac and Pauli formfactors by the following expressions.

t
4m?

G} = Fi(g) + Fy(q), G = Fi(q) + F2(q) (214)

At JLab, the Q-Weak collaborators [15] propose a new precision measurement
of parity-violating electron scattering on the proton at very low @2 and forward
angles. According to [15], “A unique opportunity exists to carry out the first precision
measurement of the proton’s weak charge, Q% = 1 —4sin® fy building on technical
advances that have been made in JLab'’s parity violation program.”

The parity-violating asymmetry in elastic e — p scattering at @* = 0.028 GeV?
will be measured employing 180 pA of 80% polarized beam of Epegr, = 1.165 GeV
on a 35 cm liquid hydrogen target. This 2200 hour measurement will allow one to
determine the proton’s weak charge with ~4% combined statistical and systematic
errors. The electrons are collimated to 8, = 9° &+ 2°. The production is expected to
make multiple runs from 2007 to 2009.

As for our computational model, several directions for improvement can be pur-
sued in the near future. In the Pauli and Dirac couplings, electric and magnetic form

factors will give a better fit of the experimental results for the electromagnetic (EM)

form factor measurements if we use the dipole approximation. Using the identity

(E;—/&—ZJVY B ((:L\ e 7:)—!1 d ((j\n;)—;-1 (@ . ) (215)

we can achieve the dipole approximation (m = 2) by differentiating form factors Cf,

133




and C},, with respect to A%. Although analytical expressions for the Cy, and Cj,, have
been derived, it is easier to carry out differentiation using numerical techniques. The
latter will require additional CPU power, and one possibility is to use parallelization
techniques available through Beowulf clusters.

Also, in the current work, we have only included the static part ('7“759{\’ (q)) of

the (N |7#°%| N) nucleon axial matrix elements. Extension of the (N [j#%¢| N) as

(]

o P>
N) =uy (7”759{\' (q) + p— 95 Fy (Q)) un (216)
my

along with the strange electric and strz;nge magnetic form factors in the vector and
axial parts of the nucleon matrix elements should give us more complete description
of the parity-violating electron-nucleon interaction.

In general, we are highly satisfied with the unique and innovative computational
model developed in this work. Our numerical results are in a very good agreement
with the experimental data; our analytical and programming routines show a consid-

erable promise for extension, and future plans are well defined.
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7 Appendix

The following appendix gives partial details on the code developed in this thesis. The
first part explains model definitions and the second gives details on the {y — Z} box

code.

7.1 Mathematica Code for Model Definitions

Prior to execution of the code for the one-loop calculations, model files along with an
unevaluated amplitude should be defined. Below is an example of definitions in the

model file.

7.1.1 Definition of the nucleon and vector bosons propagators

General fermion propagator:
(external propagator takes the form either Majorana or Dirac spinors)
(internal propagator takes the form as defined by the Feynman rules in this work)
AnalyticalPropagator[External][ s1 F[j1, mom] | ==
NonCommutative[ If] SelfConjugate[F[j1]], MajoranaSpinor,
DiracSpinor |[-mom, Mass[F[j1]]] |,
AnalyticalPropagator|[Internal][ s1 F[j1, mom] | ==
NonCommutative| DiracSlash[-mom] + Mass[F[j1]] ] *
I PropagatorDenominator[mom, Mass[F[j1]]],
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General vector boson external propagator: (external propagator is represented by
polarization vector of the vector boson (used in the HPB calculations))
AnalyticalPropagator[External][ s1 V[j1, mom, li2] | ==
PolarizationVector[V[j1], mom, li2],
General wvector boson internal propagator: (internal propagator defined by the
Feynman rules of SM)
AnalyticalPropagator[Internal][s1V[jl,mom,lil->]i2]|==
-I*PropagatorDenominator[mom,Mass[V[j1]]]*
(MetricTensor|[lil1,li2]-(1-GaugeXi[V[j1]]) *
FourVector[mom,li1]FourVector[mom,li2]*

PropagatorDenominator[mom,Sqrt[GaugeXi[V[j1]]]Mass[V[j1]]])

7.1.2 Structure of the {V — N —V} coupling

AnalyticalCoupling| s1 F[j1, mom1], s2 F[j2, mom?2],
s3 V[j3, mom3, 1i3] | == G[-1][s1 F[j1], s2 F[j2], s3 V[;3]] .
NonCommutative[DiracMatrix[li3], ChiralityProjector[-1]],
NonCommutative[DiracMatrix[li3], ChiralityProjector[+1}],
(NonCommutative[DiracMatrix[li3], DiracSlash|- mom2 - momi1]] -
NonCommutative[DiracSlash[- mom2 - mom1], DiracMatrix[li3]]) *
NonCommutative[ChiralityProjector[-1]], (NonCommutative[DiracMatrix[li3],
DiracSlash[- mom?2 - mom1]] - NonCommutative[DiracSlash[- mom2 -
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moml],

DiracMatrix[li3]]) * NonCommutative[ChiralityProjector[+1]] ,

7.1.3 Definitions for neutron and proton

(*Neutron:[3=-1/2,Q=0%)

SelfConjugate -> False,

Indices -> Index[neutron],

Mass -> Mprot,
QuantumNumbers -> 0 Charge,
MatrixTraceFactor -> 1,
PropagatorLabel -> ComposedChar[’n”, Index[neutron]],
PropagatorType -> Straight,
PropagatorArrow -> Forward },
(*Proton:13=1/2,Q=1%)

F[6] ==

SelfConjugate -> False,

Indices -> Index[proton],

Mass -> Mprot,
QuantumNumbers -> 1 Charge,
MatrixTraceFactor -> 1,
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PropagatorLabel -> ComposedChar[’p”, Index|[proton]],
PropagatorType -> Straight,

PropagatorArrow -> Forward },

7.1.4 Coupling {F -V — F}

(Case of {p —~ — p} coupling)
C[ -F[s, j1], F[6, j2], V[1] | ==
I EL * CNP[1] *
{ {-FermionCharge[5] IndexDelta[j1, j2],
-FermionCharge[5] * dZfL1cc[6, j1, j2]},
{-FermionCharge[5] IndexDeltalj1, j2],
-FermionCharge[5] * dZfR1cc[6, j1, j2]},
{F2P /2 IndexDeltalj1, j2|,
F2P/2 IndexDelta[j1, j2] dZfL1cc|6, j1, j2]},
{F2P /2 IndexDelta[j1, j2|,
F2P/2 IndexDeltaljl, j2] dZfR1cc[6, j1, j2]} },
(Case of {p— Z — p} coupling)
C[ -F[6, j1], F[6, j2], V[2] ] == 1 EL * CNP|2] *
{ {GLZP IndexDeltalj1, j2],
GLZP dZfLlccl6, jl, j2]},
{GRZP IndexDeltaljl, j2],
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GRZP dZfR1cc[6, j1, j2]},

{ -F2WEAKP/2 IndexDeltalj1, j2],

-F2WEAKP /2 dZfL1cc[6, j1, j2] IndexDelta[jl, j2]},
{ -F2WEAKP/2 IndexDeltalj1, j2],

-F2WEAKP /2 dZfR1cc[6, j1, j2] IndexDeltalj1, j2]} },

7.2 Details on {y— Z} box in the case e — n scattering

Below, is the Mathematica code for {y — Z} box. Due to the extremely lengthy

expressions involved in the output of the following program only input parts of the

cells are presented.

(Loading packages)

<< ”"FeynArts®”

<< ” /data/FormCalcNew /FormCalc.m”

num = Simplify

SetOptions|InsertFields, InsertionLevel -> Particles]
(Small electron mass approzimation)

Small[ME] := 0

SetOptions[CalcFeynAmp, OnShell -> True, Dimension -> 4, MomSim-

plify -> True, EditCode -> False]

GLGN = GN; GRGN = GN; CNP[1] = 1; CNP[2] = 1; CNPB[1] = 1;

CNPB[2] = 1;
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(Passing amplitude GZenbozonlyfrommodel.amp to the ”Form”)

resO0 = CalcFeynAmp[<< ” /data/FormCalc/GZenboxonlyfrommodel.amp”,
VADecompose -> True| //. Abbr][]

(Taking only parity-violating part of amplitude)

axialenself = Coefficient[res0, Mat[DiracChain[Spinor[k[3], ME, 1], Lor[1],
Spinor[k[1], ME, 1]]* DiracChain|[Spinor[k[4], MN, 1], 5, Lor[1], Spinor[k[2],
MN, 1]]]]

axialneself = Coefficient[res0, Mat[DiracChain[Spinor[k{4], MN, 1], Lor[1],
Spinor[k[2], MN, 1]]* DiracChain[Spinor[k[3], ME, 1], 5, Lor[1], Spinor[k[1],
ME, 1]]]]

axialneselfl = Coefficient[res0, Mat[DiracChain[Spinor[k[3], ME, 1], 5,
k[2], Spinor[k[1], ME, 1]]* DiracChain[Spinor[k[4], MN, 1], Spinor[k[2],
MN, 1]]]]

axialenselfl = Coeflicient{res0, Mat[DiracChain[Spinor[k[4], MN, 1], 5,
Spinor[k[2], MN, 1]}* DiracChain[Spinor[k[3], ME, 1], k[2], Spinor[k[1],
ME, 1]]]]

(Expanding abbreviations)

MLE2[1] := ME2; MLE2[2] := MM2; MLE2[3] := ML2; MQU2[1] :=
MU2; MQU2[2] := MC2; MQU2[3] := MT2; MQD2[1] := MD2; MQD2[2]
:= MS2; MQD2[3] := MB2; MLE[1] := ME; MLE[2] := MM ; MLE[3] :=
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ML; MQUI[1] := MU; MQUJ2] := MC; MQUI[3] := MT; MQD[1] := MDj;
MQD[2] := MS; MQD[3] := MB;

(Tree level definition of the mixing angle)

SW2 := (MZ2 - MW2)/MZ2

CW2 := MW2/MZ2

(On-shell definitions)

Pair[k[1], k[1]] := ME2

Pair[k[2], k[2]] := MN2

Pair[k[3], k[3]] := Pair[k[1], k[1]]

Pair[k[4], k[4]] := Pair[k[2], k[2]]

Mass2[1] := ME2

Mass2[2] := MN2

(Mandelstam variables)

p2 := (ecms”2+4 Mass2[2] - Mass2[1])"2/(4*ecms"2) - Mass2[2]

el := Sqrt[p2 4 Mass2[1]] ef := Sqrt[p2 + Mass2[2]]

S := 2¥%p2 + Mass2[1] + Mass2[2] + 2¥el*ef

T := -2¥p2*(1 - Cos[theta))

U := Mass2[1] + Mass2[2] - 2*el*ef - 2*¥p2*Cos[theta]

(Loading integration package)

Install[”’ LoopTools”]
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(Numerical values of the masses)

ME := 0.510998902/10"3; MU := 47/10°3; MD := 47/10°3; MM :=
105.658357/10°3; ML := 1777.03/10°3; MC := 1.25; MB := 4.2; MT
:= 174.3; MS := 0.125; Alfa := 1/137.0359895; Alfa2 := Alfa"2; MZ :=
91.1882; MW := 80.419; MH := 100.;

MH2 := MH*MH; MM2 := MM*MM; ML2 := ML*ML; MC2 :=
MC*MC; MB2 := MB*MB; MT2 := MT*MT; MS2 := MS*MS; MZ2
= MZ*MZ; MW2 := MW*MW; MD2 := MD*MD; MU2 := MU*MU;
ME2 := ME*ME; MN2 := MN*MN;

MN := 0.93972

f:=1

(Centre of the mass energy definition)

ecms := (ME2 4+ MN2 + 2¥Elab*(MN/f)* (1 - ((Elab"2-ME2)"(1/2)*((MN/f)"2-
MN2)"(1/2)*Cos|angle])/ (Elab*(MN/f))))"(1/2)

Den[a,b]:= 1/(a - b)

GN:=0

(Fermi constant (tree level definition))

Gf := (Pi*Alfa) /(SW2*MW2*Sqrt[2])

(Numerical values of the electric and magnetic form factors at zero momentum

transfer)
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NAB := Sqrt[0.83*MNZ2]

NAB1 := 1.0000001*NAB

Flneutron := 0

Flproton := 1

F2neutron := -1.91

F2proton := 2.79 -1

F1Vneutron := Flneutron - Flproton

F2Vneutron := F2neutron - F2proton

Glneutron := -1.25

GLGN := Flneutron

GRGN := Flneutron

F2N := F2neutron/2/MN

F2WEAKN := (F2Vneutron - 4¥SW2*F2neutron) /(2*MN)/4/SW/CW

GLZN := (F1Vneutron - 4*SW2*F1neutron + Glneutron)/(4*SW*CW)

GRZN := (F1Vneutron - 4*SW2*F1neutron - Glneutron)/(4*SW*CW)

en := axialenself

ne := axialneself

(Energy and scattering angle values at close to zero momentum transfer (smallest
moment transfer without Landau singularities))

Elab := 0.5
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theta := (Pi/180)*9

SetLambda[10°0]

SetMudim[1070]

(Monopole formfactor approximation)
BOX2 := (1/(NAB"2- MZ2))*NAB"2
(Getting final numericall results)

(en + MN*axialenself1)*(Sqrt[2]/Gf/2)

(ne + MN*axialneselfl)*(Sqrt[2]/Gf/2)
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