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Aleksandrs Aleksejevs

NEXT TO LEADING ORDER AND HARD-PHOTON

BREMSSTRAHLUNG EFFECTS IN ELECTROWEAK

ELtrCTRO NI-N U CLEO NI S CATTERI I\ G

Parity-violating electron-proton scattering experiments are a rapidly de-

veloping area dedicated not only to measuring the weak nucleon form fac-

tors, but also, more generall¡ to search for effects beyond the Standard

Model of Particle Physics.

The main purpose of the present work is to take into consideration the next

to leading order effects in parity-violating (PV) electron-nucleon scatter-

ing with realistic form factors for the hadronic currents, and to compute

corrections to the weak charges of the proton and neutron. We do so with-

out using the usual zero momentum t¡ansfer approximation. A compiete

analytical example for the 1- Z box type of correction for electron-proton

scattering is considered.

The method for evaluation of the electron-nucleon radiative corrections

most commonly found in the literature is to follow the Feynman rules for

the elementary particles of the Standard Model, and calculate electron-
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quark corrections first. Then the single quark terms are combined to

form hadronic vector and axial vector corrections. However, this ap-

proach leaves us with infrared divergences generated by the integration

in the loops involving massless particles. One way to treat such infrared

divergences of the electroweak radiative corrections is by adding PV soft-

photon emission graphs. Although reasonable, the results are lefb with

a logarithmic dependence on the photon detector acceptance, which can

only be eliminated by considering PV hard-photon bremsstrahlung (HPB)

graphs. We present what we believe to be the first complete treatment of

HPB for electroweak scattering. Parity-violating HPB differential cross

sections for electron-proton scattering have been computed using the ex-

perimental values of form factors in the diagram vertices. It allows us to

avoid uncertainties associated with unknown quark dynamics.

The final results are conveniently expressed through kinematical param-

eters, making it possible to apply the computed HPB asymmetries to

virtually any PV electron-nucleon scattering process. Wb also provide a

complete set of numerical results for one-ioop eiectron-nucleon radiative

corrections for SAMPLE, HAPPEX, G0, 44, and Q-Weak experiments.

The methods developed for electron-nucleon scattering are applied to cal-

ctllations of the weak charges of mrclei. Several numerical results are



listed, and found to be in good agreement with the current experimental

data.
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1 Introduction

The Standard Model introduces an asymmetry between left- and right-handed par-

ticles, and predicts a parity-violating interference between the weak and electromag-

netic forces. These interference effects are small, but have been clearly detected

in recent experiments [1]. Extracting the physics of interest from the measrrred

asymmetry requires evaluating radiative corrections to electroweak scattering at very

high precision. Naturall¡ one-loopl radiative corrections will give the dominant

contribution. Electroweak radiative corrections to intermediate energ¡ parity non-

conserving semi-leptonic neutral current interactions have been addressed previously

in Refs. 12,3,4,5, 6]. Later work in Ref. [7] improved the techniques for one.quark

radiative corrections computation by retaining analytical momentum-dependent ex-

pressions and providing the precise numerical evaluations of 446 one-loop diagrams.

However, in Ref. [7], even after regulating infrared divergences through soft-photon

emission, the calculated one.-quark radiative corrections showed a logarithmic depen-

dence on the detector's photon acceptance parameter.

The thesis presented here proves that elimination of this dependence can be

1 Here one-loop refers to the leading order correction in perturbation theory, generally involving one
integration over virtual internal foru-momenta in a topological closed-loop Feynman diagram.
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achieved by adding the Hard-Photon Bremsstrahlung (HPB) term. For on+.quark

radiative corrections, the HPB term is hard to account for due to the poorly known

quark dynamics. Thus, we have to define the next to ie_ading order hadronic ra-

diative corrections for the electron-nucleon parity-violating scattering directly. This

approach has its own challenges and advantages. In the case of the HPB computation

for electron-proton scattering, vre can avoid this theoretical uncertainty by represent-

ing cumulative quark dynamics directly through an experimentally determined set

of form factors. Using a monopole approximation for the form factors, we modify

general electroweak couplings by inserting appropriate form factors into vertices and

construct a HPB factor as a function of Mandelstam invariants.

In the current work, we provide a detailed description of both hard- and soft-

photon emission treatment. For each set of experimental constraints, integration over

the emitted photon phase space can be performed numerically.

Oneloop corrections are generally sub-divided into three topological classes: boxes,

self energies, and vertex (triangle) graphs. To preserve gauge invariance, we include

all the possible bosons of the Standard Model in these topological classes, and develop

partially-computerized techniques applicable for each class.

Our theoretical predictions are in excellent agreement with the currently available

results from the atomic parity-violating experiments for the weak charges. We plan to

provide the radiative corrections for the ongoing Q-Weak experiment, which is directly

2



focused on the measurements of the weak charge of the proton. One-quark radiative

corrections have a theoretical error associated with uncertainty of quark dynamics.

In this work, we take into conside¡ation the next to leading order effects in parity-

violating electron scattering with realistic form factors for the hadronic currents, and

compttte corrections along with the weak charges of the proton and neut¡on. Thus,

\¡/e are be able to avoid uncertainties associated with one-quark radiative effects by

absorbing terms which are responsible for the quark dynamics into experimentally

measured electromagnetic form factors. Previously, the estimates were done for the

case of 1- Z box (Ref. [8]) in the zero momentum transfer approximation. The

rest of the corrections used for calculations of the weak charges of the nuclei in

Ref. [8] are on the one-quark level only. We hope that modification of the couplings

with model-dependent form factors and replacement of one-quark corrections with

the hadronic ones developed in this thesis will contribute more clarity to tests of

the Standard Model. Also, in the treatment of the infrared divergences with the

hard-photon bremsstrahlung, it is more natural to consider photon emission from

the proton instead of the quark. By this, we expect to reduce theoretical error up to

the level of uncertainty of current electromagnetic form factor measruements. Finally,

preserving the momentum transfer dependence in all types of our radiative corrections

makes it easier to adopt our results to the current parity-violating experiments.

The thesis is constrtrcted as follows. The next chapter, "standard Model", out-
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lines the general features of the Glashow-Salam-Weinberg model, focusing on elec-

troweak interactions. The chapter briefly explains the concept of spontaneous sym-

metry breaking and corresponding gauge theories. It also lists the Feynman rules used

as a starting point for our calculations. Special attention is paid to the regularization,

tensor decomposition, and tensor reduction methods. Three selected types of regular-

ization schemes are explained (Pauli-Villars, lattice, and dimensional regularization

(DR)), and our choice for DR scheme is justified.

The equivalence at the one-loop level of our chosen method, Const¡ained Dif-

ferential Reno¡malization (CDR), to regularization by dimensional reduction is ex-

plained in Chapter 3. This chapter also lists four rules for the Constrained Differential

Renormalization, allowing us to renormalize any one-loop Feynman graph. A set of

Ward-Takahashi identities which simplifies our work by reducing the number of inde-

pendent renormalization constants is given. Chapter 3 also shows the relation of the

renormalized parameters to the bare parameters, and the counterterms chosen in the

on-shell renormalization scheme in the 't Hoofb-FeJmman gauge.

Chapter 4, "Radiative Effects", is the most important part of this work. It starts

with expressions for realistic Pauli and Dirac couplings in terms of fermion weak and

electric charges, and the definition and classification ofone-loop radiative corrections.

After that, a complete analytical example for the b - Z\ box type of correction for

electron-proton scattering is considered. The key idea here is to avoid uncertainties

4



associated with one-quark radiative effects by absorbing terms which are responsible

for the quark dynamics into experimentally measured electromagnetic form factors.

The numerical results are compared with Ref. [9]. Parts 4.5 and 4.6 give computa-

tional details for the self-energy graphs and vertex correction graphs, respectively.

Chapter 5 is dedicated to the soft- and hard-photon bremsstrahlung effects. The

proper account for these effects allows us to achieve final results that are free both

of infrared divergences and a logarithmic dependence on the detector's photon ac-

ceptance parameter. Again, when computing hard-photon bremsstrahlung terms for

electron-proton scattering, we replace the unknown quark dynarnics by the measured

set of form factors. Using the monopole approximation, we modify general elec-

troweak couplings by inserting appropriate form factors directly into the vertices and

construct a HPB factor as a function of Mandelstam invariants. For the several se-

lected experiments, SAMPLE [10, 11], HAPPEX [i2], G0 [18], A4 [14], and e-Weak

[15], we provide a complete set of mrmerical resrilts for one-loop electron-nucleon

radiative corrections. Although a very valuable result on its own, the radiative cor-

rections for electron-proton scattering are considered only as a numerical example

here. Otrr work on bremsstrahlung effects is methodological, and the same technique

can be expanded to many other processes.

Chapter 6, "Discussion and Analysis", shows how the methods described above

for electron-ntrcleon scattering can be applied to calculations of the weak charges

5



of nuclei. Several numerical results are listed, and found to be in good agreement

with the ctrrrent experimental data. Some directions for the improvement of our

computational model which can be pursued in the near future are discussed.



2 Standard Model

The Glashow-Salam-Weinberg model [16], originally developed for leptons, has be.

come the "Standard Modei" of electroweak interactions after being successfrrlly ex-

tended to the hadronic sector by incorporating the concept of Cabbibo-Kobayashi-

Maskawa mixing. The Standard Model is the most comprehensive formulation of

a theory of the unified electroweak interaction at present [17]. It is theoretically

consistent and in agreement with all known phenomena of electroweak origin.

The Standard Model asserts that the material in the universe is made up of el-

ementary fermions interacting through fields, of which they are the sources. The

elementary fermions of the Standard Model are of two types: Ieptons and quarks.

The particles associated with the interaction fields are bosons. Out of four types of

interaction fields, the Standard Model excludes the gravitational field from considera-

tion . The quanta of the electromagnetic interaction field between electrically charged

fe¡mions are the massless photons. The quanta of the weak interaction fields between

fermions are the charged W+ and W- bosons and the neutral Z boson, discovered at

CERN in 1983. Since these cârry mass, the weak interaction is short ranged. The

quanta of the strong interaction field, the gluons, have zero rna^ss, and, like photons

might be expected to have infinite range. However, unlike the electromagnetic field,

the gluon fields are confining.

The Standard Model, like the QED it contains, is a theory of interacting fields,

7



whose construction has been guided by principles of symmetry. Some of the s)¡rnme-

tries are not exact becatrse of the different quark masses and different quark charges.

The s¡rmmetry breaking due to quark mass differences precedes over the electromag-

netic.

The electroweak Standard Model is a non-Abelian gauge theory based on the

gauge group SU(2) x U(1), where the ideas of Yang-Mills theories, isospin invari-

ance, spontaneous s¡rmmetry breaking, and Higgs mechanism merge in one common

concept. The renormalizability of this class of theories was proven by 't Hooft in

1971 [18]. It gives the possibility to perform perturbative calcuiations for measur-

able quantities order by order, using a few input parameters. The input parameters

themselves cannot be predicted but have to be taken from appropriate experiments.

The renormalizability makes it possible to calculate higher order quant¡m ef-

fects (i.e. radiative corrections) to the processes accessible by experimental facilities.

Such processes include the weak decays of particles, neutrino-lepton and neutrino-

nucleon scattering, electron-nucleon scattering, and electron-positron annihilation. If

hadrons2 are involved, the basic electroweak processes are considered to be the cor-

responding sub¡eactions at the level of quarks as their constituents. Thus, these kind

of fundamental reactions are all a type of 4fennion process.

Electroweak processes between fermions can essentially be described with the heip

mpositeparticlewhicheitherafermion(baryon)orboson
(meson).
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of three input parameters, besides the masses of the fermions themselves and CKM

mixing angles: the non-Abelian SU(2) gâuge coupling constant 92, Abelian t/(1)

coupling gl, an9 the Higgs field vacuum expectation value u. This set can be replaced

by any other set of three independent parameters, having theoretical relations to the

previotts set. Since the input parameters eventually have to be taken from experiment,

it is practical to choose a set of more or less well measured quantities.

One of the examples would be [19]:

- the fine structure constant a: 11I37.03599976(50)

- the Fermi coupling constant Gp:1.16639(1) x I0-5 GeV-2

- the Weinberg mixing angle sin2 0w :0.23113(15) (Z-pole, MS renormalization).

Another possible choice of parameters could include the masses of W+ and Z

bosons:

2.L Electroweak Lagrangian:'Weinberg-Salam model

The lowest order description of a 4fermion process starts with the classical La-

grangian. According to the general principles of constructing a gauge invariant field

theory with a spontaneous symmetry breaking mechanism, the electroweak classical

I

¡¡2 1fd.
lvt1¡¡: 

ãGñe*

W:L-sin2,,1r¡

(1)

(2)



Lagrangian consists of the following gauge, Higgs, and fermion parts [17]:

Lclassical: Lgoug" * Ln¿ss" t L¡er*ion.

The gauge Lagrangian Lnoun" formed from the isotriplet of vector frelds W--, :

(W:,,Wl,Wf) (*e wili use notation Wi,o:1,2,3) and the isosinglet vector freld, B,

transforming under a gauge transformation according to the adjoint representation

of the gauge grolrp SU(z) x U(1), and leading to the field strength tensors

Using the field tensors Eq. ( ) and (5), we can form the pure gauge field La-

granglan:

11Ln*n.: -iW;,Wþu'a - ÃBp"Bt"".

Wi, : ð*Wi - A"Wi - g2e"b"WÍW:,

Br, : ôrBr-ôrBp.

Now let us consider the Higgs field components.

The electric charge operator Q is built from the generators 7 of the weak isospin

and the weak hypercharge Y:

(3)

7L¡ is assigned a quantum number of +å(-å) for the upper (lower) component

of left-handed fermion doublets of Table 1 and zero for all right-handed fe¡mions.
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Quarks QL: (:)" 
uP

doun

Leptons

QR: UR,

¡_LL:

ln=

d,n

e-neutrino

l:) 
" electron

€p

2.2 Spontaneous Symmetry Breaking

charm
(:),

strange

Mass generation for fermions and gauge bosons proceeds by means of spontaneous

breaking of the su(z) x u(1) symmetry [20]. Due to the presence or suQ), a non-

Abelian group, self-interactions occur between the gauge bosons. The corresponding

field tensors yield the gauge-kinetic Lagrangian.

We shall only know for strre what breaks the electroweak symmetry when we can

see the scattering of \M's and Z's at very high energies, of the order of 1 TeV. This

should be possible at the LHC - the Large Hadron Collider, expected to operate at

CERN in the first decade of the this millennium.

For spontaneous breaking of the SU(2) x tr(1) syrnmetry leaving the electromag-

netic gauge srtbgroup U(1) rinbroken, a single complex scalar doublet field with hyper

11

cRt

Table 1: Fermions of the Standard Model.

S¿

(";) 
" ::*'"'

ltn

(Ð, 
toP

botton

tR, bp

(";) 
" 

r-neutrino

tau
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charge Y : I

is coupled to the gauge fields

Lntug": (DpÕ).(DI"A) - V@)

with the covariant derivative

@(z):

The Higgs field self-interaction is constructed in a way that it gives rise to spon-

taneous symmetry breaking:

(il3ì)

Dt,: ð, - i.g2T"W[ + x+zt,.

Here, coeffi.cients ¡-t and À are related to the non-vanishing vacuum expectation value

UAS

Using Eq. (12), let us re-write Eq. (8) in the following way:

/ ó+(r) \Õ(ø) : (.t, * ,ø ì-nlrtù)lJr),

Y(O): -p,zQ+Q + À(Õ+O)2.

(8)

where the components /+, I/ and X now have zero vacuum expectation values.

The real component 11(u) describes a physical neutral scalar particle with mass

(e)

l_r" '{^

(10)

( 11)

Ma: þ,

72

(r2)

( 13)



i.e. Higgs boson, which has so far escaped experimental detection at present colliders.

This non-observation allows one to set a lower bound of M¡1> 114.8 GeV [1g].

At the European Laboratory for Particle Physics (CERN) in Geneva 121], a new

particle accelerator, the Large Hadron Collider (LHC) is presently being constructed.

In the year 2007 beams of protons are expected to collide at a center of mass energy of

14 TeV. In parallel to the accelerator two general purpose detectors, ATLAS and CMS,

are being constructed to investigate proton-proton collisions in the new energy dornain

and to study fundamental questions of particle physics. The ATLAS experiment will

be capable of detecting the Higgs boson with a high significance ( > 5o) in the mass

range from 100 GeV to 1 TeV.

The Higgs field components have cubic and quartic self couplings following from l/,

and couplings to the gauge fields via the kinetic term of Eq. (9). Yukawa couplings

give masses to the charged fermions, although the values of these masses are not

specified by the Standard Model.

The left-handed fermion fields of each quark and lepton family are grolrped into

SU(2) doublets

r,: : (ú;":), G4)

where j is the doublet index and-ll- refers to the component index (o: t). The

right-handed fields form singlets:

'þf 
:'þf"

13

(15)



The left-handed fermion doublets and right-handed fermion singlets, included into

otrr calctrlations, are listed in the Table 1, Each left and right-handed multiplet is an

eigenstate of the weak hypercharge Y according to Eq. (7). The covariant derivative

(see Eq. (10))

Dt": 0, - i,g2T"W", + lgrYtø,

induces the fermion-gauge field interaction.

The interaction with the Higgs field is expressed in terms of Yukawa couplings:

with

L ¡",^ion : Ð {rt'¡ry, D urþ! + þf"4u n rrþf"} * Lyuko-o ,

I'o

Here, @- denotes the adjoint of ó+. The Yukawa coupling g¿ constants are directly

related to the masses of the charged fermions as will be specified later. For one family

of leptons and quarks only (let's say z and d) and neglecting quark mixing, Eq. (18)

will look as follows:

Lyuko-o : -gúu Ló*Io +I^ó- r" +lLóotR +l1óo.tL).

Lyuko-o : -g¿(ató+da-l d,nó-urt d¡þÙdp+ d¡ó0.d1)

-g.(úRó+ dr * d,t ó-un l upsour, I u7þ0*up)

(16)

According to the expressions above, the Standard Model has included parameters

(17)

(18)

þ2, À, 9t, 92, 9¡o

74

(1e)

(20)



i.e. two parameters coming from the Higgs self-interaction Eq. (II) t-t" and À (which

are positive but otherwise arbitrary), gauge coriplings 91 and 92, and Yrùawa coupling

constants gjo. None of them is physical and can be measured directly, so we have to

find a way to replace the original set Eq. (20) by the set of some physical, measurabie

quantities.

The symmetry is manifested in terrns of fields Wi, Bp. Tlie gauge invariant Higgs

gauge field interaction in the kinetic part of Eq. (9) leads to mass terms for the vector

bosons in the non-diagonal form

, (3,)" w? +wÏ) +{rwi,",r( sB -hez 
I fgtl

\ -n,n, sZ /
Let us now transform Wfr, B, to the physical fields I/r+ and Zr, A* :

wl:-ftfw)+,iwl)

where Ory is called the Weinberg or weak mixing angle (although Glashow was the

first to introduce the idea). The SU(2) ¡ x u(L)y proposal made by Glashow in 1961

was extended to accommodate massive vector bosons by Weinberg (1967) and Salam

(1968). It is important to remember that sin 01a is a scheme dependent parameter,

i.e. its value depends on the renormalization scheme used.

15

zp

Ap

cos01a,W| - singy¡Ù,

sinl¡,yW| * cosîq¡B*

(21)

(22)

(23)



In Eq. (23), Ap is the regular electric (photon) field which is massless and couples

to the electron via the electric charge e: t/4nã. Wf, and, Z* descrlbe two charged

W+ and one neutral Z heavy vector bosons.

In these fields the mass term Eq. (21) is diagonal and has the form

Milwlw"- +){ar,rrr(o^ 
":, I Gr)\o M'" J\ '

with

if the mixing angle in Eq. (23) is chosen as

^Mwcost/r¡¡ _ _:"M2

The electric charge e can be expressed in terms of the gauge couplings

following way

M,ry : |nr,
Ms : |"t[nl*,

OI

The fermion masses can be obtained from the Yukawa coupling terms Eq.

't)
rTLjo : 9j" n.yz
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(24)

9z---.-
1ls? + sB

-:-L
tlo? + sZ

ee9t: *'o*' 92: 
"i"o-

(25)

(26)

in the

(27)

(28)

(19) as



Quantity

n'Lu

TrL¿

ffis

Vahre

ffic

47 MeY

TL6

47 MeY

Tnt

Table 2: Standard Model parametels used in this calculation. Here, light quark
masses are calculated from the fit presented in the subsection "Self-Energy Graphs".
Other parameters are taken from Ref. [19].

150 MeV

Quantity

1.25 GeV

Tne

4.2 GeY

Thus, instead of the original set of non-physical parameters Eq. (20), we have the

equivalent set where every parameter can be measured directly:

rnp

174.3 GeV

rTLT

Value

M2

0.51100 MeV

Mst

The values used in this work are summarized in the adjacent table (Table 2).

The quark mass eigenstates are not the same as the weak eigenstates, and the

matrix relating these bases is called the Cabibbo-Kobayashi-Maskawa (CKM) matrix,

or the qtrark miúng matrix V . Its matrix elements are not predicted by the Standard

Model and must be extracted from experiment.

105.66 MeV

M¡¡

1777.0 l|.4eY

91.1882 GeV

80.419 GeV

rn¡o, Mw, M2, M¡y, e

100 GeV

For three quark generations, the matrix is expressed by convention in terms of a

3 x 3 rinitary matrix V operating on the lower (a-) quarks mass eigenstates (d, s,
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and ä):

with current experimental magnitudes [19]

d'

s

b'

V"a W

V¿ Vu

V¿ V"

V-
0.974I to 0.9756 0.219 to 0.226 0.0025 to 0.0048

0.219 to 0.226 0.9732 to 0.9748 0.038 to 0.044

0.004 0.037 to 0.044 0.9990 to 0.9993

For some elements the values can be obtained from the weak decays of the relevant

quarks or from deep inelastic neutrino scattering. The rest are restricted using unitar-

ity constraints. See [19] for more experimental details. We actually do not use these

values directly in the evaluation of the weak charges of the nucleon. We substitute V

by the unitary matrix there. However, in the case of the one-quark radiative correc-

tions supplementing the Hard-Photon Bremsstrahlung effects, the parametrization,

involving the four angles 0t,02,93, and á, was used:

V"u

vr¡

Vu

(30)

d'

s

b'

where ci : cos 0¿ and s¿ : sin 0¿ for i:1,2,3.

18

C1 -Sl Cg

S1CZ C1C2C3 - S2S3êi6

Stsz C132Cg i c2sge¿6

(31)

-stsa

c1C2sg i s2cgei6

C1s233 - C2cgei6

d

s

b

(32)



2.3 Gauge Theories

Gauge theories have an invariance of Lagrangian under group transformations g(ø)

which depend on a point in the space-time manifold. Fields in such theories are

divided into two classes: matter fields T/i(z) and gauge fields ,4fi(z). The number

of gauge fields is equal to the number of group generators. The gauge fields are

vector fields; the inatter fields can have an arbitrary Lorentz structure. Their internal

components are transformed according to some representation of the group. fetñ@)

be an operator which performs an infinitesimal transformation of fields under the local

gauge transformation. For matter fields we have

For gauge fields the local gauge transformations are defined by

D (u)tþ (r) : ia" (r)îtþ (r) .

To const¡uct a local invariant Lagrangian, we need to define a covariant derivative

and a gauge field tensor:

çn çw¡,1,r¡*(") : ffirAfl(r)wt(") + 0 *a. (r).

V r'þ(")

rf"@)

ôrrþ(") - b1,+r¡r¡tç"¡

)rAj(x) - 0"Afi(r) +
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(33)

: 0*rþ(r) - i'Afi(r)î;Þ(r),

Ífi",afl@)4,@).

(34)

(35)



In these terms, the Lagrangian of gauge theory is defined by lZ2l

following:

1t : -orr"FË" + L*(v *rþ,1þ),

where g is the coupling constant and L,.(Y ,rþ, rþ) 1" some Lagrangian of the matter

fields which is invariant under the global gauge transformations. In order to quantize

the gauge theory we must add to Eq.(36) a gauge fixing term and the corresponding

Faddeev-Popov term [24]. The first term breaks the gauge syrnmetry and in this

way removes the divergence of the functional integral. The general form of the gauge

fixing term is

where Q'(") corresponds to the vector boson fields of the theory.

For example, in the case of t'Hooft-Feynman gauge we use in this work, the gauge

fixing terms are

or [23] as the

Lcr(r): -+Ð(o'(")),,

Lce(ù: -f,{u,or)'-}{arzr+ M2z¡), -larw* + Mwwfl2 ,

where the squared Goldstone field terms (MzZ¡)' give a mass to the Goldstone par-

ticle equal to the mass of the corresponding vector boson field.

The second terrn we have to add to Eq.(36) improves the integration measure

to provide correct predictions for gauge invariant observables. The corresponding

20
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Faddeev-Popov term is

where c.(z) and co(r) are the auxiliary anti-commutative fields, called the Faddeev-

Popov ghosts ana D(c) defined by the Eq.(3a).

Based on the specific form of the Lagrangian, we can develop a set of Feynman

rules applicable for the given physicai situation. Some of Feynman rules we use most

often for semi-leptonic electroweak processes are listed in the following section.

L e p(*) : -e.(r) (î (c) [@'] )c* (z),

2.4 Feynman Rules

The full set of electroweak Feynman rules can found in [25]. Below are shown se-

lected mles most commonly applied in the present work, expressed in terms of bare

parameters.

(3e)

-,#rur,e-r')

Fermion W-boson vertex.
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14/

v\-^/\,^/vv \,rv
vqp

-,ffiy*G[-sly')

Fermion Z-boson vertex.

Z
'\,r\,^,4/vw\,rv
vqp

¡ |_- _qoq,(t-ä*)f
q, -¡øi,L oo' ' q, -4.u1 I

W-boson propagator

a-æl-r,..T#l

Unphysical charged Higgs propagator.

Z-boson propagator

l___, I
Y 14,î |

We use notation { for the gauge-fixing parameter. The limit of € - 0 corresponds

to the Landau gauge, whereas the limit € * oo defines the unitary gauge. In the

unitary gauge only physical polarization states of the incoming and outgoing tr4l+ and

Z bosons are considered. Consequently, in the unitary gaìrge all ghost and Goldstone

fields may be omitted.

For otrr case, the most convenient choice is the 't Hooft-Feynman gauge, defined

22



by setting all the gauge-fixing parameters to unity, € : 1. In this gauge, the lowest

order propagators for the physical gauge bosons and unphysical Higgs and ghost fields

have poles at either M!, or M2" . 'this condition can be maintained in higher order

by a suitable renormalization of the gauge.fixing parameters [20].

As one can see from the expressions above, all boson propagators are gauge de-

pendent. The more detailed consideration of different gauge choices is given in the

next section, "Renolm alization" .

The reader should note that all the couplings chosen in an example above are

defined for the pointlike particles of the Standard Model. Much more complicated

couplings applicable for the electron-nucleon vertex will be derived later.

The vector and axial-vector "charges" of the fermion , gr, and, gro, ut" defined as

The same quantities are also called "coupling constants"

More specificall¡ for the electron and the (u,d,s) quarks we have:

grv : r!",

st : T!"",

- 2Q ¡ sin2 Tyr,

1gi : _ 
r+2sin2gy¡,
1A

si, : +; - jsin2 0w,

d.s72g"ì" : -r+isin20w,
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(41)

.T
9"e: -5,
_1g*A: +t,

d.s IgÁ:-,

(42)



Let us form combinations

where "1" represents the unit 4x4 matrix. The quantities tþ7 and tþpare Dirac

equation solutions of definite chiralit¡ i.e. handedness. For zero mass particles,

chirality coincides with helicity. The matrices

,þr:

,þn :

| -'Yu ,

2 'lt,

r+^lu ,zv,

are chirality projection operators. 
.We 

re-define aL àß ø- , and ep às øa . In this

thesis, it was found more convenient to define amplitudes using chirality projection

operators @+ : $ and Ø- : f instead of explicit Dirac matrices 'y5. Thus,

@R,L:

and

r L^yt

(43)

2.5 Coupling Constants

At a generic level, for vertex {F - F - Vr} we can write

{F - F - Vrl * zrf (F, F,Vr) rr,
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9v: 9t* gp

9n- 9r9o: 
2

(44)

(45)

(46)



where C (F, F,V*) is a generic coupling defined from the SM Lagrangian as

t (F, F,vr) : (r*-_, .yp@+ 
) 

d""" (42)

where d ,r, is a coupling matrix containing couplings of the classes up to the desired

counterterm order. In the case of one-loop calculations, we restrict coupling matrices

up to the first counterterm order only (zero order - tree level, first order - one-loop,

etc.). We define five types of fermion-fermion-vector boson coupling matrix d re, ,

d ,,r,^, (any fermions, photon),d r,¡," (any fermions, Z-boson),C,,,,,- (leptons only,

charged W-boson), dn\.o),nto"-,¡,, (up and down type quarks only, I,Z--boson), and

d n{a"-^),n{*ol,- (down and up type quarks only, lØ+-boson).

Let us start with the coupling matrix d r,r,-, (fermion-fermion-photon vertex):

/"\
7 | -qt -Q¡@"+ry+ Re[ó fl)+s'r-'v? ìGf,f,t-i"l l, (48)

\ -or -e¡@"++ + Re[ó#])+ d;" !? )
where the first coltrmn represents tree level coupling and the second one one loop

counterterm. Furthermore, 'we give a list of the generic couplings for various interac-

tions, as well as coupling matrices up to the first order counterterm, where necessary.

The rest of the coupling matrices entering Eq. (+7) have the following structure:

/\_) . I nl,-" sl-"úí" +6gL-" - a¡vf + s|-z neþ ¡[] ìG¡,1r-i"l l, (49)

\ nt.-" sr;z lzíz + 6gr*-" - a ¡ 
gf + sL-" R"t6 ril )

C,,u,*:r"(T)
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d n\'o',n<o"-n),w: n"( i*'"\I o )'
d n{a"-*),0{-Ð,w r"("r" 

)
Combining Eq. (47) with Eq. (48) and Eqs. (49-52), we obtain the couplings

needed to construct vertex, boxes and self-energy graphs.

To construct counterterm amplitudes for self-energy graphs, generic coupling for

I (V"(kì ,W (kz)) has been used:

where

t (vt" @ù ,W (k )) : ( -n* @rk ) ep, -krrrrr,) d ,r, (b3)

and

(51)

----+Gzz:i

(52)

0 6222

0 *', 62zz * 6m2z

0 -6222

As an example, let us consider an electron interacting with an upquark via

Z -boson exchange on tree level:
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0 621z + 6zz"y

0 -6212 - 6Zzt

(54)
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u (kz)

According to the Feynman rules stated above and for the momenta specified on

the diagram, we obtain the following parity-violating amplitude:

1e7z-tree : a(te3,m.)|ffi .'H#*fu@t,m") (56)

xn (tc a, *,; lffi -'';:¿?:# -.l u @2, *,)

u 9P'
" (kn - k')' - MZ

Let us now consider the ZZ-box diagram as a simple example of a one-loop process:

u (k4)

This amplitude will include four propagators (last line) and require integration

over 4dimensional momenta in the loop:

M{z-z}ro, : -, t d,ao T,kc,.-,_rl¿e(-T + sin2 gùlrø- 
*iesin0w'yrø+l

76na J ""'' L cosî;1vsinîv,l ¿.sTw l
x(m"+(þs+ þa- ,nz- ,4))
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I le(| - ]sin2 
g1r¡)7" ø- 2i,esin0w "yo ænf ,xu(tct,*ò l- - -r 

I (*" + (rt2+ þ)¡ (57)\ ¡/ "' I cos9srsin?yr 3cos?y, l ' * rt - ttt )

..\¿"G - {sin2 7w)lp-- 2iesinlw^yrø+f ,,"1ffi )u(kz'm")
1 1 I g,pgpov-

q2 - MZ (kz+q)2 -m? (kz* q- kn)2 - MZ @z+ q- Iç4- ks)2 -*?

The task of constructing an amplitude according to the Fe¡'nman rules is rela-

tively straightforward. The amplitude shown above is not divergent. The integration

will require more of an effort if the amplitude is divergent. The vacuum polarization

tensot, entering all self-energies and triangles, is divergent due to singular high mo-

mentum behavior. Generally speaking, v/e can teli whether the integral diverges by

simply counting the powers of q in a given Fe¡mman graph. Each fermion propagator

contributes g-i, each boson propagator contributes q-2, each loop contributes a loop

integration with qa, and each vertex with n. derivatives contributes at most n powers

to q. If, as a result, you have q* and m ) 0, the graph diverges. The methods of

regularization and renormalization applicable here are discussed in the next section.

2.6 Regularization

,.l¿"?T * sin2 0-)-y,--
cos?s sin?yt

+
'iesin1s.,l, @+

cos 0¡,y lu,o''*')

To interpret the behavior of the divergent integrals, a wide variety of regulariza-

tion schemes have been developed over the decades, each with its own advantages

and disadvantages. Let us consider three selected types: Pauli-Villars, Lattice, and
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Dimensional regularizations.

In the Pauli-Villars regularization scheme, we cut off the integrals by assuming

the existence of a fictitious particle of mass M. The propagator becomes modified by

1 1 m2-M2
q'z-n*- q'z-M'z:6'

where relative minus sign means that the new particle is a ghost, i.e. it has negative

norm. The propagator now behaves us llqa, rendering all graphs finite. Then, we

make M2 go to infinity so that the unphysical fermion decouples f¡om theory. The

Pauli-Villar scheme preserves local gauge invariance and Ward identities in QED, but

they get broken for higher groups [26].

Lattice regularization is the most widely used regularization scheme in QCD for

non-perturbative calculations. Combined with Monte-Carlo techniques, it makes it

possible to extract qualitative and even some quantitative information from QCD.

Hete, we assume that space-tirne is actually a set of discrete points arranged in some

kind of hyper cubical array. The lattice spacing then serves as the cutoff for the

space-time integral. Because this method is defined in Euclidean space, it allows to

calculate only the "static" properties of QCD.

In this work, we choose to employ the method of dimensional regularization. Ac-

cording to this method, we consider the vacuum polarization tensor as the four-

dimensional limit of a function defined in d dimensions. To follow the standard

convention, Iet trs introduce the variable r : 4 - d for contimration away from the

29



physical space-time dimension. Now, mathematical operations like summing over

Lorentz indices or evahrating loop integrals, can be carried out in d dimensions, with

the results expressed as an expansion of e. The divergences from loop integrals will-

take the form of poles in e. The last step is to continue the results back to d.: 4.

Although in the dimensional regularization procedure v¡e define our firnctions in

d dimensions, all physical parameters entering the theory must retain the original

dimensionality. To maintain the units corresponding to d, : 4 while dimensionally

regularizing Feynman integrals, we introduce an arbitrary quantity p having dimen-

sion of mass. The parameter ¡-t allows us to modifu the integration measure over

mornentum as

Of course, the arbitrary mâ^ss parameter p shall not change the relationships

between physical observables. Indeed, it does not, as it serves only in the intermediate

parts of calculations.

2.7 Tensor Decomposition

1ffi.-p'Iffi

In the CDR scheme, Feynman diagrams are considered completely in four dimen-

sions. Thereafter, the reduction of singular basic functions (products of propagators

and their derivatives) has been renormalized into the sum of "regular" ones by im-

plementing a set of rules in such a way that 'Ward identities are satisfied. It was
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Pt

Pw- Pw-t

proven in Ref. [27] that CDR is equivalent at the one-loop level to regularization by

dimensional reduction [28], after taking the Fourier transform of the basic renormal-

ized functions into momentum space. This last approach corresponds to a modified

dimensional regularization, where one-loop integrals are considered in d dimensions,

but all the tensors and spinors are kept 4-dimensional [28]. To preserve gauge invari-

ance in dimensional reduction, one should. use jr, (Oi: d) with gt",î"p : jfl lor the

tensor decomposition.

In dimensional regularization, the general structure of one-loop tensor integral can

Pz-Pt

Figure 1: General form of one.loop diagram with N propagators.

Dw-t
Pu-t - Pw-z

be w¡itten in the form:

z-A/
J t r...t"o

which corresponds to the on+.loop diagram shown in Fig. (1).

Unlike at Born level, where all momenta nrnning along the internal lines of a
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Feynman diagram are fixed by the overall momentum conservation, at one loop ievel

there remains one momentum q which must be integrated over. The (qr)'s in the

numerator arise from fermion propagators or from vertices that correspond to terrns

with derivatives in the Lagrangian.

The denominators of Eq. (59) arise from the propagators running in the loop:

P, the nurnber of (qr)'s in the numerator, determines the Lorentz tensor structure

of the whole integral, e.g. P:0 denotes a scalar integral, P:I avector integral,

etc.

Ds : q'-m\,

D¿ : (q + p?) - n'L?, ,i : 7,..., ¡/ - 1.

To have the proper units for the integral in d space-time dimensions, we have to

introduce an arbitrary reference mass p¿. Basically, /¿ means the regularization scale

parameter of dimensional reduction, which is related to the CDR renormalization scale

by log (n') :loe?t\* 2. The final renormalized amplitude will be independent of

¡r, of course.

The integrals with a tensor structure can be reduced to linear combinations of

scalar integrals. Because the integrals Eq.(59) are s)¡rnmetric, Lorentz covariant ten-

sors (i.e. they transform in a definite way under Lorentz transformations), they can

be decomposed into a tensor basis formed from the linearly independent external mo-

menta p¿ and the metric tensor gp,.'lhe choice of this basis is not unique; the basis

t.t
ù¿¿

(60)



can be chosen such that the coefficients are totally symmetric in their indices [29].

Using the Passarino-Veltman [30] method for tensor decomposition, we can represent

the above integral as the linear combination of tensor coefficient functions, which

reads explicitly

B'* : k'*B''

B'r, : Qp,Boo*k1¡'le1rBy,

cL : Ðkorcu,
i:L

2

C'r, : Q*Coo+ f k¿rk¡,C4,
¿,i:r

,
CL,o : D(îr"ttoo -l î,pk¿p * îroko,) Coo¿ I \ te*kr,kqoCnj€,,

i.:L ó,J,Ê:L

3

D'* : Ðlr,rDo,
i.:L

3

D'r, : i*Doo+ t k¿rk¡,D4,
i,i=r

tt
ùt)

(61)



D,,,0 : Ð (î r"troo * î,pk¿t, t î *ok*) Doo¿ *
;.:l

D',,,po : (Q¡'"îw * îroî,o I îpoî,p) Doooo

.,å[

2

\ tc;rk¡,k€,pD¿jt,
; ; è-1

î ¡,rlctpk¡ o * j, ple¿¡"le¡ o * j ¡"pk¿,k¡o

Here (B', C' , D') mean two, three, and four point tensor integrals, with two, three,

and four propagators, respectively. The rank of the above tensors is equal to the

number of integrable momenta (eprepr...ep) in the numerator of Eq. (5g). The

standardnotationisAforly':1, Blor N:2,C for.ly': B, etc. Thescalar

integrals are denoted by a subscripted zero: As, B¡, etc. In four dimensions, only

-4¡ and B¡ are divergent; they depend, in dimensional regularization, on the scale

parameter ¡¿. Aslve are dealing with one-loop diagrams onl¡ the maximum Iy' we

can have is 4. Thus, the Passarino-Veltman approach deals with two, three, and four

point tensor integrals with two, three, and four propagators, respectively.
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2.8 Tensor Reduction

To reduce the number of Lorentz indices, we contract with pf,:

2qrpl: @+pr)'-q'-p"t" (62)

: l@ + pr)' - *'r] - lq' - *31 - pn2 + *?" - *3

: Dx- Do-p7+m2n-mZ

: Dn-Do-f*,

where

Thus,

pl.rî,,,: t#-lo,nw (63)

I r tN_t,V
2\u t"r...pr-, - {r--.'if;-, - f¡$r. .rr-r),

where f indicated that D* has been cancelled.

If we contract with gP",

fn: p? - m2r+ mf;.

and

gq"qpq, : (q' - *?ò + *3: Do + m3. (04)

@#loonffi (65)

tN-7,V _ *2 tN
" t"t...t"p.-tt"p-2 "u0u 1"1...pp-tpp-2'
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Let us introduce notations

We have now .fy' linear equations relating the rank P tensors with rank P - 1 and

P - 2 tensors:

with Æ running from 1 to i/ - 1. Substituting Eq. (61) in the above yields linear

eqrrations relating the coefficient functions f{...,i", RI'.|¿"_, und Af;:o?"_", which have

to be solved for Jfl..r, .In d dimensions, the solutions are given by

RI;|.r,-, : Pl" 4,...r,,

RI:?.?u" : g"-'*' JT,....r,,

and

r-A/Jooir...io-r:

where X¡¿-r is non-singrilar Gram matrix:

Jil,...u,-": (xñ1r)¡ r,lrl;.:.:r,-, Ð 6o,t",Joloo,...o,.-,u,*,...,"-,1 , (09)

d+ P
l

¡/-1 [*f,tt"-, -l af:l?"-,] ,

(67)

X¡¡-r :

tPí PtPz PtPw-t

tPzPt P2 PtP¡v-t

: .. :

Pn-tPt Pw-t4t P2u-t

36

(68)

(70)



This procedure of Eq. (68) - Eq. (70) can be iterated until all tensor coeffi.cients are

reduced to scalar filnctions.

It is worth noting here, that it is not directly possible to calculate radiative correc-

tions for exact forward or backward scattering, because the exbernal momenta become

Iinearly dependent in this case, and the Gram matrix in Eq. (69) becomes singular.

tn
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3 Renormalization

Divergences found in Quantum Field Theory came from the transition to an infinite

number of degrees of freedom from a finite number found in Quantum Mechanics. We

have to sum continually over an infinite number of internal modes in loop integration,

which leads to divergences. Not all theories are renormalizable. Renormalizability of

Yang-Mills theory, proven by't Hooft, made it possible to successfully apply Quantum

Field Theory to the weak interactions in order to calculate effects beyond the tree

level.

There are numerous renormalization proposals with the details varying from scheme

to scheme, but they ali share the same basic physical features. The divergences are

absorbed into a set of "bare" physical parameters such as the coupling constants and

particles masses. Those parameters are, consequently, divergent and unmeasurable.

The divergences of these parameters are chosen in a way so that they cancel against

the ultraviolet infinities coming from infinite classes of Feynman diagrams. After the

divergences are absorbed by the bare parameters, parameters become renormalized

and "dressed", i.e. physical and measurabie. Here, the schematic point of view is

presented. For more cornprehensive descriptions, the reader is directed to Refs. [26],

1291, [31], [32], and [33].

38



3.1 CDR, Scheme

At the one-loop level, Constrained Differential Renormalization (CDR) was intro-

duced in Ref.[34]. Standa¡d dimensional renormalization manipulates singular objects

as if they were well-defined, expresses them in terms of simple singular functions, and

substitutes these by their renormalized value. In the CDR scheme, Feynman diagrams

are considered completely in four dimensions. Thereafter, the reduction of singular

basic functions (products of propagators and their derivatives) has been renormalized

into the sum of "regular" ones by implementing a set of rules in such a way that

Ward identities are satisfied. It was proven in Ref. l27l that CDR is equivalent at

the one-loop level to regularization by dimensional reduction [28], after taking the

Fourier transform of the basic renormalized functions into momentum space. This

last approach corresponds to a modified dimensional regularization, where one-loop

integrals are considered in D dimensions, but all the tensors and spinors are kept 4

dimensional [28]. To preserve gauge invariance in dimensional reduction, one should

rse Qr, (Of, : D) with ¡p,î"p : ifl lor the tensor decomposition.

If the ¡enormalized expressions are compatible with a minimal set of consistent

formal manipulations, i.e. rules, the ambiguities and arbitrary renormalization scales

of DR are fixed and the resulting renormalized Green functions automatically preserve

Ward identities. Ref. [3a] proposes the following set of rules, allowing us to renor ma\ize

any one-loop Fe5,.nman graph:
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3.2 Rules for CDR:

I. Differential reduction. In two steps, singular expressions are substituted by deriva-

tives of regular ones:

a) F\rnctions with singular behavior worse than logarithmic (- *-n) are reduced to

derivatives of logarithmically singular functions without introducing extra constants.

b) Logarithmically singular ftrnctions are written as derivatives of regular func-

tions, which are solutions of the Lorentz invariant differential equation af(r) :

log(nM)" f ra,

where M is a constant to make argument of the logarithmic function dimensionless.

It has dimensions of mass, plays the role of the renormalization group scale, and is

the only a constant needed for the whole process.

II. Formal integration by parts. Derivatives act formally by parts on test firnctions,

i.e.

lå1"
(tr

7 los(r2 M2\
412 1

þþ)

where F is an arbitrary function and superscript R labels for renormalized function.

III. Delta ftrnction renormalization rule:

IF (r, 11, rz, ... t r-)6(r - ù]R

lAFl": õFR,
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lV. Propagator equation:

lF (r, r 1, 12, ..., 
",) 

(3' - m2) A,,.(r)] " : [f (", r L ¡ t2, ..., r *) (- 6 (") )] 
*,

with

where K{rnr) is the modified Bessel function of the second kind.

Rule I and Rule II reduce the degree of singularity, connecting singular and regular

expressions. The actual procedure of renormalization involves two steps:

1) express a Feynman diagram in terms of basic functions, and

2) replace the basic functions by their renormalized value.

1 mK1þnr)L*(x):;-;j,
4'1T' :D

As an example, let us consider a Feynman-like gauge, so propâ,gators of the gauge

fields are proportional to the scalar Feynrnan propagator. The for-nalism can be

directly extended to general covariant gauges. Table (3) summarizes the singular

basic functions for renormalizable theories in four dimensions. l/ stands for the

number of propagators in the given Feynman graph. Rows are ordered according to

the number of propagators and columns according to the degree of singularity.

It is important to distinguish basic functions with contracted and uncontracted

differential operators, because contraction of Lorentz indices does not in general com-

mute with CDR, i.e,

""[¡] 
: 

16 r,Tla ra"]l^ + 6 p,T&la pa"l.
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¡,¡ logarithmic

1

2 B*r*"ll)

3
T*r*"*"fll

T*r^r*rlôr0"1

Q*r*r*"*n[JD)

Q*r*r*"*nl\apa"l

Q*r*"*"^n[ApA"ApA")

Iinear

4

B*rrn l0*]

Trnrrn"r,,"lZÔ*f

T*r*"*"[ApA"Ap)

Table 3: Singular basic functions for renormalizable theories in four dimensions.

As the simplest example of point contraction, let us consider the renormalization

of A,"l1l and B*r*r[1]. For the massless case, renormalized expressions of massless

one- and two-point functions are given by:

quadratic

A*IT]

B*r*rlz|

B*r^rlô*õ"1

cubic

A,"[ôr]

,40[1]

A'l0rl

B'[1]

s*[ð*]

B"[!]

BRIApA,]

:0

:0
1 ios n2 M2__T1 "

6412- ï2

)a,aR¡1

0

!@,u, -)t*o¡a"[r] + #@,u, - 6r"r)6(r)
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For massive basic functions, we have to use the recurrence relations among modified

Bessel functions to obtain the expressions for non-singular points. In this case,

pR 11l : IlmtKt(mp)?zK{mzr)lRDntnzLLJ ß"4 lTl

++ (ørQmlw)' *?t_progtl) a1";,
ltiø'z \ ' rntmz mt*nt2--o *,)

where 'yn : I.78L is Euler's constant. The massive one-point function AXIII can be

determined from ,48[1] and Bfir^, as

A*trl: ]-^' (, -,o, Qul:")'\ 6ç,¡.ttLLr 16¡12 \ " rnz /

The renormalization of the remaining basic functions is obtained from Bfir,n,11] and

AXII] by recurrence relations based on Rules II-IV.

: J , *'*' ll-(*r¡mr¡21{oþ!r)!,þ"Ð
32ra rn1 + rn2'

The functions listed above, including the amplitude, are defined in coordinate

space. If we take the Fourier transform of the amplitude, thus expressing it in momen-

tum space, the resulting expression will include the Passarino-Veltman many-point

tensor coefficients. These are exactly the amplitudes obtained in momentum space by

the dimensional reduction in on-sheli renormalization. The next section will contrast

and compare the CDR and dimensional regularization in on-shell renormalization.

3.3 CDR to On-Shell Connection

* Ks(m2n)K{'m1r)
T

As was established earlier, CDR and dimensional reduction are equiva.lent at the

one-loop level (Ref. [27]). One-loop integrals in D dimensions satisfy the relations im-
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posed by the CDR rules. Once CDR has been translated into momentum space, the

minimally subtracted D-dimensional tensor integrals are identical in the limit D ---+ 4

to the Fourier transforms of the corresponding renormalízed basic functions of CDR.

As we are free to choose the renormalization scale, a discrepancy which can arise in

the initial conditions is not a problem. All the algebra outside tensor integrals has

4 dimensions in both CDR and dimensional reduction. Thus, in dimensional reduc-

tion, where it is possible to contract the 4dimensional metric with D-dimensional

integration momenta before performing the integrals, we have

,
gp'Ct", : gp'(þ,",Coo+ t p¿pp¡,C¿¡):Tl.Coo+ t(prp¡)Co¡

i,j:t i,j:L

The resulting contracted tensor integrals also satisfii the CDR relations. As C66 and

C¿¡ are the same in both methods, we only need to add the extra local term, -], to

obtain the tensor integral Cft from gp' times the renormalized tensor integral C* in

CDR.

The results in D and 4 dimensions will differ for the electron self-energy in QED.

Electron self-energy by dimensional regularization is

Md..,"g. : -#l4m"Bs(k2,*?,,0) + 2 þBr(k',*2,0)+ /, - 2m.f ,

but CDR gives

Mç p p : - #rnm"Bs(k2, r'r\, o) + 2 þBr@', *?, o)l-
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where Bs and Bl are two-point functions. As a result, ',¡/e chose to use the CDR idea

and just add local terms, which allows us to work completely in 4 dimensions.

The most natural choice for the renormalization scheme in electroweak theory

is the on-shell renormalization scheme [33]. The difference between renormalization

schemes is reflected mostly by various definitions of the weak mixing angle. The on-

shell scheme is the simplest conceptually, carrying the tree level relation, cos 0w :

ffi, to all orders.

3.4 Ward-Takahashi ldentities

Dimensional regularization preserves all properties of the theory that are independent

of the dimension of space-time, such as the Ward-Takahashi identities. Actuall¡

the Ward-Takahashi identities are required to prove the renormalizability of gauge

theories. A set of Ward-Takahashi identities ([35]) also sirnplifies our work by reducing

the number of independent renormalization constants. Because'we have introduced

more renormalization constants than physical parameters, we are free to fix the exbra

constants by requiring the residue to be equal to one for a corresponding number of

propagators. Tbaditionally, these residue conditions are applied for the photon and

the charged lepton propagators.

The renormalization conditions include the on-shell subtraction of the self energies

which makes the particle content of the theory evident ([17]). Figure (2) gives an

example of graphical representation of the on-shell subtraction conditions.
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Re@

Figure 2: Graphical representation of renormalization conditions. Class 1.

Here, the shaded blobs denote the renormalized one-particle irreducible amputated

two-point functions, i.e. self-energies. It is equivalent to demanding that

nefw çtwfu) : R"î" (MZ) : Refr (m2,) :0. (Tr)

Another class of conditions is depicted in Fig. (3), with the corresponding equa-

tions:

îtr*ltt' : o, þ:,4 - *") :,i€.y,

lrt e) : o, (72)

aÊr
akro : 0'

tim ot ît&)u-(k):o.
H_*_ þ _ n-L_

In the last condition, z- is the spinor for charged leptons and quarks with 13 : -I12.

It implies the condition for the renormalization constants Z7 and Z^ for the lefb-

40

,ra z yt¡, z

Re ;N-i*l

Ã.--N---.
HH

_^-U
k = tuf ,,.,

r-: Mt,

rl 1K: ffir

:0

:0



-r-l(ñlY./v\/\..N.1
\

v

*"t

,+(--ñ-)'Í-J-

Figure 3: Graphical representation of renormalization conditions. Class 2.

and right-handed fermion fields. The constant ZI corresponding to the right-handed

quark fields can be fixed so that the renormalized left- and right-handed parts of the

up-type propagators have eqrial residues at lc2 : m?+.

Let us consider an example of extracting two constraints on renormalization con-

stants using the Ward-Takahashi identities and the expression for the renormalized

self-energy,

k2:0, iþ:Á:trL¿

k2 :0

t2 
-nfr. 
- 

t_,

:'ie1p

þ-m-

:0

ît (t') : Ðz (k2) - 6MZ + 6zl &2 - MZ)

First, in Eq. (73) we set lc2 : M2z and leave only the real part.

immediately

neî'z çtttt2"¡ : ReÐz (MZ) - 6MZ,
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:0

(73)

After obtaining

(74)



r¡/e use the Ward-Takahashi identities from Eq. (71):

aeîz çtvt|¡ : s.

It is obvious now that 6M2" is

Thrm, we have derived the mass renormalization condition entering the set of Eq. (94)

given in the next section.

Now, Iet us go back to Eq. (73), differentiate it with respect to le2 , take the real

part, and set k2 : M|,just as done previously:

*e#) *:*r: ^"(ry#) *:,r+6zt
Using the condition sirnilar to the third line in Eq. (72), but for Z :

aîz
6*z 

(MZ) : o'

we arrive at

6zf : -^"(ar-a:r:\) r":,r,

6MZ: nefzltttt|¡.

(75)

which we will encounter again in Eq. (89), describing the wave function renormaliza-

tion.

Another example will refer to the more abstract case of the arbitrary symmetry

(76)

(77)

ç"(r) - ç"(t:) * e\tp"(r),
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\¡/here we can use the Schwinger-Dyson equation as the Ward Takahashi identity:

: -t 1çXç"1rr)6(, - rt))çt (rz) + p.@1)(Lç6(r2)6(r- 
"z))) 

.

Now, how does an expression like Eq. (81) help us to reduce the number of in-

dependent renormalization constants? Let us consider the simplest example of the

electron-photon vertex, where on the left hand side of Eq. (81) we would have the

three-point function with one entering (p) and one exiting (p + k) electron and one

external photon (k). Then the Ward Takahashi identity reads ([at]):

(0, j r (r) ç "(" t) ç u (" r))

s(p + k)[-iek rtp (p + k, p)] S (p) : 
"(S 

(p) -,S(p + k) ),

where quantities ,S are the electron propagators and fp is the vertex.

both sides by,S-t(p) and S-1(p* k) gives:

-i,tc*lp (p + k, p) : ,9-1 (p + k) - ,S-t (p) .

Let us now define the renormalization factors Zland Zz as

l*(p+k,p)-Zltt

(8i)

for k --+ 0, and

(82)

Multiplying

,s(p) - :Z-p-n'L
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Setting p near the mass shell and expanding Eq. (82) about lc:0, for the first-order

terms we obtain:

t.e.

Zt : Zz. (87)

In this section, we introduced the general idea defining the the Ward Takahashi

identities helpful in reducing the number of independent renormalization constants.

Eqs. (76), Eq. (79) and (87) were derived to serve as examples. The futl sets of

constraints imposed on the renormalization constants necessary in our calculations

are given in the following section.

3.5 Renormalization Constants

-i.Zr' þ: -i,Zîr þ,

Generall¡ tensor coefficient functions are ultraviolet divergent (inversely proportional

to the parameter e : 4- D). In o¡der to cancel divergences and transform bare param-

eters into physical observables one has to introduce a renormalization scheme. The

renormalized parameters are related to the bare parameters (denoted by a subscript

0) as follows:

(86)

M2,o

M?",0

Mrr,o

M/ + 6u|,

ul" + 6M?r,

Mh + 6M'r,
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ffilu,o

€g

(;)

wf

Hs

tL
J ¿,0

¡r.,

m¡, l6m¡0,

(t + 6e) e,

(t*+62"" f,6-za \/-\

l'-r,)^" ,îiu,^^)1"^)
(t+|oz**) **,

(' *|sz") n,

(uu, *'rørÐ,,) t,
(t,, *)ort"l,,) ff

Counterterms were chosen in the On-Shell Renormalization (OSR) scheme in the

't Hooft-Feynman gauge, where the gauge parameter 6 : 1 witli the following renor-

malization constants (Ref. [29]) :

'Wave function reno¡malization :

6222 : -o. ($",,' (r)) *:*2,
622A: ,""(ff),

(88)

62AA : -n" ($" î (r)) *:,,
62A2 : -2Re (UY#),
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6ZWW

6ZH

6ZX

6ZÔ

-o" ($"y' (4) 
t"z:¡ø.v

-o" ($" " Ø)) *:,r,
-*" ($"'(*')) 

nz:Mz

-*" ($"'(*')) 
o":tr?,

(dÍÐoo : -n" (r/;¿ (^?,))

-m2,Re (#l"tt" (o,) nr{;" (0,) + z>{;' (r))) 
,,_*",,

(dÍt^)n, : -ne (r/;n (^?,))

Mass renormalization:

-rn2,Re (fif"r @) * >{;! (n ) + zzro;s (o)1) 
,,_*; 

. (e3)

(e1)

a¡wZ :
A¡r,t?" :

dtttl :

6*ro :

ne (zz,z (*2)) ,

ne (rfw (ri,)) ,

n" (rH (*?,)) ,

Here L and ,R correspond to left- and right-handed fermions, X means the one-loop
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(e2)

)*¡,n" (ztÍ (*7.) + z{;' (*',,) * z>{;' (*',)) .

(e4)



integral of the truncated self-energy graph, and l- denotes the transverse part only.

Charge and mixing angle renormalization:

6(sin2 g1y) : cos2. ( 6MZ 6M?'\, 
(95)"*\Mî- MT)'

6(cos2 0,¡) : -6(sin2 01p), (96)

6e: -T(ot^^.mor'o),

with sin2 gw :1- MTrlMz

trtUt)



4 Radiative Effects

4.L Introduction

The ongoing Q-V/eak experiment is dírectiy focused on measurements of the weak

charge of the proton. One-quark radiative corrections have theoretical error associated

with the uncertainty of quark dynamics, and must be accounted for the valid test of

the Standard Model. If we take into consideration the next to leading order effects

in parity-violating scattering with realistic Pauli and Dirac parts of the coupling,

and compute corrections along with the weak charges of the proton and neutron,

we will be able to avoid uncertainties associated with one-quark radiative effects

by absorbing terms which are responsible for the quark dynamics into experimentally

measured electromagnetic form factors. Estimates have been already done for the case

of 7- Z box (Ref. [8]) in the zero momentum transfer approximation. The rest of the

corrections used for calculations of the weak charges of the nuclei in Ref. [8] are on

the one.quark level. Modification of the couplings with model-dependent form factors

and replacement of one-quark corrections with hadronic ones will contribute more

clarity in situation where the Standard Model is tested. Also, in the treatment of the

infrared divergences with hard photon bremsstrahlung, it is more natural to consider

photon emission from the proton instead of the quark. By this, we expect to reduce

theoretical error down to the level of uncertainty of current electromagnetic form

factor measurements. Finally, having momentum transfer dependence in radiative
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corrections makes it possible to adapt our results to the current parity violating

experiments.

4.2 Dirae and Pauli Coupling

In the approúmation where the nucleon behaves as a point-like particle, vector boson

couplings obey general rules of electroweak theory. Having left and right handed

fermions, it is easy to use the following structure for the {Z - N} type couplings:

where @+ : ff are chirality projectors and. gzL-"N have meaning of the coupling

strength for the left and right handed fermions, respectively. Substítution of ø¡ irrto

Eq. (97) will give us vector and axial vector representation in the couplin1l|-u:

lL-* : ¿" lgl-*-Yþæ- + gzR-N7r*+],

It is obvious that equality of gl-N and gfl-N will produce no difference whatsoever

in the cross sections for left or right handed type particles, and the coupling lL-*

will contain only a vector part. On the other hand, the nonzero difference between

gfl-N and gf-* i" directly responsible for the asymmetry; andTf-'* has axial vector

part as well. Couplings of vector bosons to fermions derived from the neutral current

part of the electroweak Lagrangian relate coupling strengths gz"-N and gzo-N to the

electric and weak charges of the fermion in the following way (See Chapter 1):

(s7)

gl-N + gzR-N :
2
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Here, C3 and Ç are the fermion weak and electric charges respectively, s- and c-

are sin01¡¡ and cosî,¡¡. In the case when a photon couples to the nucleon, gl-* :

gT* :Q and tl_, : i,eQ.yr.

For a realistic nucleon, the couplings preserve their vector and vector-axial struc-

ture, but with the charges replaced by the corresponding form factors. The most

general electromagnetic f{-rv coupling has two vector components responsible for

static electric and magnetic interactions:

gt-* - g7-* : _!c,
4c-s.

where ffl (q) and Ffl (q) are the Dirac and Pauli forrn factors, respectively, and q.

is the four-momentum transferred to the nucleon. As for lL_* (q), we have:

rL-* (q) : ielffl {ø) t, + ¡};o*'q-Íl (q) + gfl Q)tx), (101)

with /fl (q), f{ (q) and gfl (q)as weak electric, magnetic and axial-vector form factors.

According to the first line of the Eq. (99), form factors /fl (q) and f{ (q) are expressed

âS:

rï-' (q) : *lr{ (q)t * #,*q.e{ (q)f ,

(ee)

f{,r (q) : #, F{,1' (q) - +s2-r{r (q)),

*irh FW) : -p{(') : Fl,z - Fîr.For efl (s) we have

g{ (q): -*,nI (q),
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where f¡(q): -9Åk) : go(q) is a well known axial form factor. To simplify ana-

lytical expressions considerably, we will use the monopole stnrcture for form factors

(Â' : 0.83rnfu), which is a quite reasonable approximation in our case. The value of

the parameter Â v/e use is found after the fit of the electromagnetic formfactors by

monopole approximation in the low momentum transfer region.

Comparing Eq. (98) and Eq. (101), combined with Eq. (102) and Eq. (103), it is

possible to write

rrr-* (r) : ælWrr + s""-* (ù - sl-* Q) f,s+'2lt2

{"fl,,af} (ø) :4p,!p9,

*ho'*n'rî (q)) :
(105)

: æþl-* (q) f -- + szR-N (q) f-* * hor"u^f{ (ø)f

r{-ru (ø) : *lW^,' * #o'oq.F{tø)] 
:

(106)

: æþT* (q) f -- + sTN (q) f -* * ho'"q.r{ k)f 1
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where

gí:{ (q) :

In Eqs. (105) and (106), we have adopted the general structure of the coupling from

Eq. (97), with coupling strengtn" g"r,{ (q) and gi,i @ given by Eq. 102. Moreover,

to represent splitting between strength and kinematical parts of the couplingr we

introduce the following matrix representation of Eq. (105) and Eq. (106):

/ \.--I (¡/, ¡/, v*) : I ^r*--, .tpø+, [lr, ,4)--, ll*, ,4]-* I G **u (q) , (108)
\ 

Lt ttt) t LL'aJ , 
/

with C¡¿ryy expressed as a2 x 4 matrix

si-,{ (q) : s'_N (q)- F," (o) - tr1-
t\' - q-

4c-s- ("f,', (o) - as'zrfl (o) +gf Aù &
(107)

The second column of d w¡vv represents counterterms of the first order, which will be

described later in this work. The Pauli form factor Fv-N has the following structure:

Frt-* (q) : rl-* @),

----+

G wtvv :'ie

g[-" (q) c{;"

gro-" @) crt"'

-#r{-* (q) crr;"

-#r{-* (q) crr""

pl-* (q) : p{ (q)
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4.3 Definition of Radiative Corrections

In analogy with one.quark corrections, we define the next to leading order hadronic

radiative corrections using the electron-nucleon parity violating Hamiltonian in the

following form:

HPV
Gp

J'

Forrn factors Crru and C2¡¡ represent perturbative ex¡ransion resulting in

lct* @"1'1uu.) (n*tru*) + c2¡¡ (u"1'u.)

Srrperscript in Ci'z¡w represents tlie order of the perturbation ("zero"- tree level,

"one" - one loop level and so on). Here Cfr,z¡N can be defined as one-loop radiative

corrections normalized to the Fermi constant Gp: ffi One-loop corrections are

generally split into three topological classes: box, self energy, and vertex (triangle)

graphs. To preserve gauge invariance we have to include all the possible bosons of the

Standard Model in these topological classes. Taking into account that in the t'Hooft-

Feynman gauge the contribution coming from the Higgs scalar and gauge fixing fields

is negligible, we choose to consider boxes, triangles and self energies with 7, Z,W+

vector bosons only. Accordingly, we will give details on radiative corrections for every

cLass, starting with an analytical example for the 1 - Z boxes.
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C¡,2¡w :lCfu,zl* : Cfr,z¡u + Clr,z¡w + O ("3) .

i
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4.4 Example of {l - Z) Box Diagram in e - l/ Scattering

A reason to provide analytical details for {7 - Z} boxonly is straightforward. First of

all, precise formulae for an entire set of-graphs are cumbersome, and it is not feasible

to show them in the present work. Secondly, as will be seen later, this example will be

used as a generalization of the computational model which was applied in this work

toward calculations of weak charges and hadronic radiative corrections. According to

the Feynman nrles, the arnplitude for a {l - Z} box can be written as (see Fig. ( )):

¡4tt-z\ : # I anø (n.ry-.ffiri-.,.)
(113)

(.- -, mxl- ,ó+ þz ^,, \ t 1

\?IrN|z-N @2 + qf_ mkLl-NuN ) æffi

Here, the coupling lf _. can be found in Eq. (98) and Eq. (99). Substituting

Eq. (100) - Eq. (10a) into amplitude in Eq. (1i3), and using the fact that in each

nucleonic vertex couplings behave as a function of momentum transferred through a

vertex, we can write

¡4{^r-z} : + [ daqtn.tf_" !.+ !t+ þ,- ,4- þz ^,LYL -r6traJ* \pz-kt-h+æ-n?,1',-eu"
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Figure 4, {l - Z} box in case of realistic {" - ¡f} scattering

,.. (-u)( FvGv) (o) - 4s2r''N (o))'Y'- 
I

\ -6; (r{'*' (0) - as2*{ (o)) ['y,, (ftr- þz- Á)i -gf (o) t,x )

h+4-PrQ

(114)

'm,u-r 
'4]- 1 þy e){ - +ErN /n\ r^,' ,r\ '

6, + ¡ - 7nñl \ *m*'z (u/ [? ' 'al )ur'r

.^4_1 1

4cs (tt2 - q;)1ui - Ø; e, -Ðæffi

We should note that the latter expression is written for the b - ZI box diagram

only. To have a complete analysis, it is imperative to consider {Z - l}, {1 - Z} and

{Z - l} crossed boxes as well. In addition, {Z - Z} and {W -W} box diagrams

should be considered. To work out the integration in Eq. (114) we will split the

ntrcleon ctrrrent into four parts, then use the notation of Eq. (97). The nucleon
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current from Eq. (114) now becomes

JKí : tar (-e'z) o (q) .

g""-* (o)l*-- + gzR-N (o)l*-*-

-ß^:--" ("lt'' (0) - +s'z-F{ (o)) [r', (þr- þr- ,á)]

where Õ (q) :

mw* þ* þz

@;æ -nk

results with four parts of nucleon current:

gZ-N (o) 'YPø- + sTN (o) tr-*-

Jfr : tn* (-"') a @lgí-* (0)t*-- + s"R-* Q)'y*-+]'

(116)

*.* 
.#* * ' þr. Q) t'-- + gT* Q) 1pø¡)u¡¡(nr+q7" -tu'N

Jtrí, : tø* (-"') a @ þí-* (0) tr-- + s"*-* (0) "y*-+)

(117)

##k l-*'{(o)ru"' Át]".

Jtrí" : m* (-"')o (q) .
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l-"."^ (r{rn Q)_ asz*{ (o)) [r'' u"- þ'- Á)]f '

(118)

rn¡¡* ,á+ þz I ry-

ffi ' lni-* Q) tr-- + gT* Q) 1Pø¡]u¡¡

Jffi : n* (-"") o (q) .

l-ß#-,, (r{rn Q) - +s2-r{ (o)) ['v'' (þ'- þ'- Ð1]'

(11e)

ngl '41-É2-. l- 1 nN (n\t^,, 
^1 

,,

@;+æ -n?N' L- +**" \u/ ['/ ; HJlur¡'

The fourth current carries a coupling between weak magnetic and electric magnetic

fields of the nucleon, and has a negligible contribution. Nevertheless we take it into

account in our actual calculations, although in this example it is not given. As for the

first current, we can see coupling between weak static and electric static fields here.

This current gives small but sizable contributions into the amplitude. The second and

third currents are the most important, and represent couplings between weak static

and electric magnetic, and weak magnetic and electric static fields, respectively. It

is worthwhile to point out that only the second current contributes to the {" - "}
box amplitude, and, as result, the value of the {" - n} radiative correction is directly

proportional to the neutron's anomalous magnetic moment. Moreover, for the {" - ")
amplitude we will not have infrared divergences due to the absence of the electric static

part in the coupling. The third current gives surprisingly the biggest contribution
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into the {" - p} box amplitude which makes weak magnetism dominant in this type

of calculation.

4.4.L Results

To integrate the amplitude according to Eq. (114), we will have to split it into four

integrals. Each of them could be expanded into a linear combination of the "usual"

four-point tensor integrals. Details are in the section calied "Tensor Decomposition".

Let us provide a simple example by taking into account the first current only. As we

know, the general deflnition of four-point tensor integral is

TÍ,.-.ro : # IO

By adding the monopole forrn factor approximation into the above definition, we

will obtain a six-point tensor integral which could be reduced into a combination of

four-point integrals by using following simple expansion:

111 
^4

q

æffi

(121)

^2 ( t _1\ ( r _ 1 \
(L'-*'") \q'- l\' q') \(pr+ q-kr)2 - ¡z (nr+q_ kr)'-*'")'

Now, we put this expansion into Eq. (116)-Eq. (119) and evaluate each of the integrals

with FormCalc language (FormCalc was developed by Thomas Hahn and modified by
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the author of this thesis to include hadronic sector in the e-Iy' scattering. FormCalc is

available from http://www.feynarts.de) by contracting indeces in the numerator and

using dimensional reduction within tensor decomposition algorithms. The ¡esults are

listed below.

First Current (static weak and static electric coupling only) Before going

into the analytical details, let us introduce the following notation for the variables of

the four-point tensor coefficients. We set

Dn, {*2,s,n12¡¡,t,rn2*,m?,0,^!,,*"*,lf} 
: no¡ {0,lr'} ,

where {s,t,u} are Mandelstam Lorentz invariant variables defined as follows:

D o¡ {*?, E, ffi2N, t, ffi2N,, rn?, L2

Using the tensor coefficient reduction approach, v/e can now reduce D¿¡ functions

into Ds, Co and Bs scalar integrals. This step makes the final expressions very

cumbersome. However, we only need to expand the IR divergent terms, which are

represented by Do {0, 
^'} 

scalar integral alone. The vector-axial part of the first
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: (kt

: (kt

: (kt

: nr{t.2,tf),

* Irr)' ,

r 12

-Ks) )

-kù'.
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current is

r rv-A a2L2g7-NMv-A: a"ffil(nß-.

(ro {0, ^'} -

(Doo {0, ^'} - 
noo {L ,n'}) * (n"- - r) (ní-. - nß-*) (^k -, - ")

oo {n',n'}) * , (rnf-* (z - s"r) + fo-* (t

- ní-*) (*2 * *'* - s) (n"z- - r) .

(r' {0, ^'} - 
,, {n',n'}) * (*? n *T - ')

'nr, {0, tv')

+ (sf,-*

+ z (s'"-* - ní-*) (z*?. + *'* - ') (n'i - t) o*

- n?,-*) (*? * 2*k - ') (n"- - r) (D,{o,n'} - ,, {n',n'}) *

+ ro"]))

+z (s"^-*

sl-'Q-los])+
+zg'*-* (rsfl - t)

- ní-*) (n"- - r) *?" (Drr {0,^'} - nrr {L ,n'}) *

+z (s"^-* - ní-*) (*? * 2*"* -') (n'i - t) r,r{0, n'} +

)

{0, n'} +

(124)
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+z (s""-* - ní-*) (*? * ffi2N - ') (+'i- t) (r, {o,n'} * Dn

Here, D6 {0, 
^'} 

is the IR divergent term. As for

MA-V
o2¡2nt-N

4c-s- (L' - *L)

+z (s?-*

l(sí-* + sß-*) (*'.*-' - ") (

' \u."Ypu") \u¡v'Yp"Ysu¡,t )

the axial-vector part, we have

(n - ut'-)

{0, n'})J'

* g"r-* (1

- (ní-. * n""-*) (^k - t - ")r, {o, n'} * (r"'. + *'* -')

. (ní-* (t - r'i) + zs"*-' (t + 
"?,)) 

D,2 {0,n'} * z (sí-* * n""-*)

+ 6"i)) (r* {0,^'} - noo {L',n'}) -

Do {0, 
^2} 

-

-Do {L2, L2ll

(z*! + ffi2* - ") D,, {o,n'} + þi-n

).

(r, {0, ,r'} - ,, {n' ,n'z}) + z

+z(sf-* * nf,-*)

(ní-* * n"^-*)-r (

+ g""-*)

(*Z*2m2* - s)
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(*3 * 2m2¡¡ - s) -

Dzz {0, L,l -

-Dzz {L', L'}

(rr. {0,^'} - Dr, {L",n'}) *



z þi-* * nf,-*) (*2 * 
^'N - ") 

p, 
{0, n'}l (u"-yr.yuu.) (uwt*u¡,) ,

where gl-N : gt-t (0), gl,{ : gíi (0). It is obvious that for the neutron the first

current contribution is zero because g1-n :0. We have kept only terms of O (o'2) to

reduce the size of our expressions.

Second Current (static weak and electric magnetic coupling only) This

part is tÌre only contribution to the neutron's scattering amplitude. ffl (O), ttre

nucleon's anomalous magnetic moment, is equal to Fi (0): -1.91 for the neutron,

and Ff (0) :1.79 for the proton. For both neutron and proton,

Mv-A : ###%¡zñ (0"*-, - n""-*) (t - n,,-)ro {n,,^,} *

++(s"^-' (r+a'|) +sl-N (r-r"i)) (r*{0,^'}- noo{L,n'})*

+s (ol-* - n'"-*) (n"- - ,) (*?" - , - ") D1B {0,lr'} -

-ztf (o?.-* - gß-*) (n'i - r) nz {rr2,l'} *

(126)

+ (sl-* - n'o-*) (n"- - r) (*'. - mlu - ') Drr{0,.r.'} +
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+ (ul-* - nf,-.) (n"i *

+z (sl-* - st"-.) (n"'- - t) {" - u) Dr 
1o, 

l'}J (u".y*u") (u*trtuu*) .

As for the axial-vector part, here we have

t) (t f" - u) - 8-î,) (r,, {0,^'} - nrr{L',n'})t+

MA-v : ø##%¡zñ (s"n-N * nf-*) no {L,,r,}*

++(s"r-* Qz"i- t) * sí-* (s - tr"i)) (poo {0,^'} - Doo{L",1'})*

.-þ' '(
*2Q - +'I) -

-+@k - s) (s] - t)

+ (s""-* * nl-*) (' - *2 - *K) (n,, {0, t'}

. (rrr{o,n'} - Dn{n', n'}) + s^.2 (n,"-* * nl-*) ,, {n,

\-rr-.( 
*20+4s'2")+ \\

/ \ +2(m2*- 
") 

(1 *r"Z¡ ))

- (n*2 - 4s - st) (n,r{o,n'} - o,r {^

- Dzz{nr,nr}) + (0""-* * nl-*) .

(127)

,n')*
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.tr, 
{0, t'2}] (a"t*tuu.) (a¡¡1*u¡¡) .

The second current amplitude has no infrared divergences in it, and that makes the

neutron amplitude finite.

(n""-- + s7,-*) rr{n',t'}* r(n""-* + sl-*) @- s -2t)

Third Current (weak magnetic and static electric coupling only) The nu-

merical analysis of the third current's amplitude shows that it gives a dominant con-

tribution into proton's radiative correction. The following expressions show {V - A}

and {,4 - I/} amplitudes, respectively:

¡ ¡v-A 3o2 lyzFï""ÀlNl '^' ^' ^r1u13:#(poo{o,^,}-noo{L",r,\)@.l*u.)(n¡¡1*15u¡¡),

(128)

and

M{-" -

+i6 (r00 {o,n'} - Doo{n',n'}) ++(zm!*^"* - ") (a, {0,n,} - rr{nr,^r}) -

o2 ¡2 ptueak(N) 
iO¡ nr-rv

4c.s- (Ìt' - *'r)

-a (*? + m2¡¡ - s)

lq (*? * *'* - ") (4, {o,n'} - oo {n',n'}) *

(P', {0, n'} - Dn{n', n'}) + + (tm'z. t *'* - ") Dr. {0, n'} +
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+4 (rn? + 2m2¡v - ') nr{o,n'} * (,,t.' - a^3 - B*?* + as) ,, {n',n,} *

(r2e)

* (*'. - 5*?u - ') (nrr{o, n'} - Dzz{n', nt}) + (+*! * Bm2* - +s - t) .

' (or'{o,n'} - Dzs{n', n'}) + e (*i t *'* - ") t, {0, n'} +

+z(tf -a*3-4*'*+as) ou{n',n'} * z(z*!*2m2*-zs -t).

Here,

Comparing the strengths of the weak static and weak magnetic couplings for the pro.

ton's vector current, we can see that þ"'-o(q!sl-'rÐ\ - \-4sI: 0.08b is almost twelve2 k-s-

times smaller than Ff'"kþ) (O) : 1.08, which is a partial proof of the weak magnetism

dominance in the {l - Z} box amplitude. The presence of infrared divergences in

the proton't h - Zj boxes makes it impossible to provide conclusive numerical anal-

ysis. Later, the proton's box diagrams will be combined \¡/ith IR divergent vertex

graphs, soft and hard-photon bremsstrahlung terms. As for the neutron, it is possible

to compare results with Ref. [9] right now. If we take Gr : 1.166 . 70-5 GeV-2

7L

¡,taeak(N) ,n - 
F{@'(O) - +slf{ Q)r'2 t"l- 2 .

.Dæ 
{0, tf}) (a"t*tru.) (a¡¡6u¡¡)

(130)



in Eq. (111) and consider extrapolation

Eq. (126),

following:

and Eq. (I27), and include all of t.

CÏy-" boxæonlY)

The discrepancies are minimal and can be explained by the differences in the

definitions of the Weinberg mixing angle and the fact that the monopole form fac-

tor approximation was used. The momentum transfer dependencies from which the

zero momentum transfer extrapolation was taken are shown in Fig. (5) and Fig. (6).

Numerical noise can be explained by the fact that box graphs have Landau singular-

ities at small momentum transfer coming from the condition for the Gramm matrix

det(X,y-1)¿-o : 0.

CIO-z boxesonlY)

Current results

to zero momentum transfer, use Eq. (111),

-0.00273

-0.00219

rc11-z
Ref. [e]

boxes, r¡/e can comptrte the

-0.0032

-0.0025

Although nor¡/ we have {7 - Z} box results for a realistic nucleon, it is still not

sufficient for the definite determination of the weak charges of the proton and neutron.

As was mentioned before, we need to include the rest of the graphs in the perturbative

expansion. With the procedure used for the {'y - Z} box at hand, it is rather com-

putationaily complex to use the proposed expansion technique (See Eqs. (116-119)).

For the particular monopole form factor approximation, we may use Eq. (121) instead

to create a rather simple representation of the tensor one-loop integrals (Eq. (tZO)).
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Figrrre 7: Expansion of the {l - Z} box in terms of {á7, 62} particles.

Explicitly, in the right-hand side of Eq. (121) is written in the form

DtDz

L2 11_r
@-qP @,+;ke-4-r

each of the four terms can be interpreted as giving a contribution identical to the

contribution coming from the pointJike nucleon with nonzero magnetic moment de-

fined at tree level. Also, in this consideration, the couplings between nucleon and

@-qF=P6,+q-k*-4
_L2

NN

vector boson are adjusted by the factor +rfæÐ, and the structure of the sec-

ond, third and fourth terms suggests the introduction of "rì.ew" vector boson particles

{fi,62) with fixed masses equal to mp.r,az¡ : l\. A diagrammatic representation

of the proposed expansion is given by the set of Feynman graphs in Fig. (7).The
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already developed and tested autornated approach used in the one-quark radiative

corrections (Ref. [7]) can be used here as well to complete the calculations of the

radiative corrections and weak charges. In this case, however, to consider electron

nucleon scattering, one should add additional massive vector boson into the Standard

Model. In addition, the set of the Feynman rules (see section "Fe5,.nman Rules" ) will

be modified in the following way:

1. Each coupling in the vertex {¡/ - V - N} has to be multipli eð,by B{t'z,w*}-* :

* ( +'- - ,) 
t'' 

,n the case of.v : {.y, z,w+} and,by p{at,tz,6w+}-N -- 
\il,¡^';¿;7 

r' rIIe caöe

-( 
n"^ \t'"'^- rl-t- (rËËã/ ror v : {6-y,62,6w+). Here, rnyn corresponds to rhe

mass of theV taken frorn Table (2) (even in the case of V : {6^y,62,6W+},

masses of the corresponding bosons are {0, Ms, Mey+}), and n is the total num-

ber of the couplings between vector bosons and the nucleon in the loop.

2. Propagators have the same structure, where for the case of V : {6.y,62,6W+}

vector boson carry mass rmp,,az¡w+) : Â.

AIso, as will be seen later, these Feynman rules are topology dependent, and for

the vertex correction graphs rule mrmber 1 will be modified. As for the boxes, we

have all we need to complete the automated calculations using the FormCalc language.

Parts of the code are presented in Appendix 1. The computed contribution to the PV

amplitude coming from the boxes (36 in total) and the detailed analysis is presented
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Figure 8: Self-energy graphs giving dominant contribution into PV {e - ¡/} ampli-
tude.

in the "Results and Discussion" part of the thesis.

4.5 Self-trnergy Graphs

In total, 116 self-energy graphs plus 6 counterterms contribute to the PV {e - ¡/}

amplitude. This includes gauge and gauge-fixing fields, Higgs field, and virtual lep

tonic and quark pairs in creation-annihilation processes in the loops. Moreover, the

vertex {¡/ - y - ¡/} does not belong to the loop integrals and plays the role of a

multiplication factor proportional to the coupling defined in Eq. (105) and Eq. (106).

As an example, the parity-violating amplitude for {Z - 7} and {Z - 6ll¡ mixing is
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shown below:

¡4{z-t}+{z-6ù - # I daqn(les,*.) (gT"l*ø- * g'R z-yr"æ+) uQe¡,m") .

r,(tea,,m¡¡) (ni-' Q) t,-- + sH-, (o) t,-* - *ry (0) ['y,, (/rr- þr)]) uQe2,m¡¡) .

(132)

Ðr,
i.

*¡,-d m¡,+(As-YFû / f,-z f,-z \
n"Z,6r:x;ry=4, \9ï 'Yoø- t g¡i 'Ya@+ ) ,

Lpo 9,p L2

(kt - kt)' (ks - kt)' - ffi22 L' - (kn - kr)'

A tensor integral like that in the equation above can be evaluated using tensor de-

composition and tensor reduction techniques, leaving the final result as a combination

of one and two point scalar integrals which were computed using Gauss integration

subroutines. Accordingly, the counterterms should be introduced to cancel ultraviolet

divergences, so for Eq. (132) we have:

5¡4{z-t}+{z-6t} - i u(t.*,*.) (gî" l.ø- r g'-R 
z l.æ+) u(lc1,m") -

(s';-' t o- - + srÉ.-"t "Y p@ +)

u(ka,m¡¡) (ni-' Q) to-- + sH-' (0) to-* - iry (0) h, U'"- /'ùl) uQq,mp) .

(133)



|lazze g¡",m2s r i

(kt - kù' (kz - kt)2 - m/ L' - (t n - Irr)'

(utto + 6zA2) (k, - k)r(ks - Irt),+

Çpo 9"p

+;

Here,622A and 62A2 are the h - Z\ mixing field renormalization constants repre.

sented by the set of Eq. (89-90) according to the constrained differential renormal-

ization scheme described above. The assumption made about "free" quarks in the

self-energy loops places certain constraints here. Flee quarks are not detected, and

we should consider the gluon couplings between them. This leads to a contribution

coming frorn the sector of the color interactions. It is possible to bypass these com-

plications by replacing quarks with pions and their resonances, or use "free" quarks

but with adjusted effective masses. Here we used the second approach with the ef-

fective mass of the quarks coming from a fit of hadronic vacuum polarization to the

measurements of QED cross bection of the process e*e- ---hadrons normalized to

the QED ete- ---t tr+l-r- cross section. The real part of the renormalized hadronic

vacuum polarization satisfies the dispersion relation:

(ot"o + 62A2) er, (ks - kr)'

l\2

Lalo¿,(s) : -,?eîl"o4): fi, I^Ïrffion,
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Figure 9: Tbuncated Seif-Energy graph in hadronic vacunm polarization.

with

being a very well known experimental quantity and used as an input.

Hadronic vacuum polarizatio"ll*(s) is related to the truncated b - ù renor-

malized self-energy (See Fig. (g)) by the following expression:

Ê? (s) :
t!_\o \e' e ---+ Irâd.rons.l

which can be easily evaluated by employing the free quark approximation. An up

dated value of the dispersion integral, along with a logarithmic parametrization, can

be taken from Ref. [36]. A new reported value coming from the light quark con-

tribution at s: rn2ris n"ifì(*'r): _.0.0276t. This value can be reproduced by

Eq. (136) using the following masses of the light quarks: n-Lu: rrLd: 53 MeV (corre-

sponds to l,'c,ffi(*'"): -0.027609). Clearly, the values of the light quark masses

at low-Q scattering processes should be adjusted by using the latter approach, but

with Aal$, (s) calculated at the c.m.s. energy in the region of 
^ß 

< 4.0 (GeV). The
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1,.,,.(s) : sÎfi, (") + n r* (1,.,- (")) ,
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lE (Gev)

0.0 - 0.7

0.7 - 2.0

2.0 - 4.0

4.0 - 10.0

70.0 - m2

rrLT - 10000.0

10000.0 - 100000.0

A

0.0

0.0

0.0

0.0

B

simple logarithmic parametrization can be used here to extract quark masses at low

momentum transfer:

Table 4: Parametrization coefficients. Results taken from Ref. [36]

0.0023092

0.0022333

0.0024402

0.0027340

0.0029431

0.0029237

0.0028984

C

0.0010485

0.0072234

0.0016894

3.9925370

4.2197779

3.2496684

2.0995092

1.0

1.0

1.0

with A, B and C parameters taken from the Table 4.

For low-momentum transfer experiments, the c.m.s. energy ir .Æ < 4.0 (GeV),

which gives, ffiu: ffi¿ = 45 MeV.

4.6 Vertex Corrections Graphs

n"lfl,(s) : .4 * BIn (1+ C .s) 
,

The vertex correction ("penguin" graph) contributions can be split into two classes.

In the first class, where the electron vertex is at one-loop level, the amplitude is

calcrilated according to the set of Feynman graphs shown in Fig. (10), pius the coun-
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Figure 10: Electron vertex corrections contribution
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terterms graphs from Fig. (11).

Figure 11: Counterterm in electron vertex corrections

As in the case of the self-energy graphs, the hadronic vertex does not belong to the

Ioop integrals, and therefore the PV amplitude was constructed according to the SM

Feynman ruies taken from the section "Fe¡mman Rules" with counterterms computed

according to Eq. (48) and Eq. (a9). Moreover, the electron vertex corrections will have

an infrared divergence at q ---+ 0 and wiil be treated by the soft-photon bremsstrahlung

contribution considered later in this work.

The second class of the triangle graphs are nucleonic vertex corrections. In this

case, the Feynman rules described above have to be modified due to specifics of the

topology of the triangle graphs. To work out the set of Feynman rules for the triangle

topology, it is sufficient to consider the example in Fig. (12).
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Figure 12: Nucleonic vertex correction graph (shaded bubble corresponds to the real
nucleon)

For the graph in F

1

DrDzDzD¿

rg.

:

(12), the amplitude denominator has the structure

111

which can be easily expanded into

11

@;æ -^k@;æ -*k@;kÍ -*Z

&^ - kÍ - Lr rz - *7@-þf '

L2 1^4

( Bz-N B6z-N \
l-,_l

\(¿n - lrr)' - *r"' (kn- k )' - L2 )

{n,B*n(H.W.
83
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Figrrre 13: Nucleon ve¡tex expansion in the terms of {2, 6ú, 622} particles.

Here, the coefficients Bz-N ur¿ 362-N are defined according to the Feynman rules

(n: 1) described previously. Cz-N,g\z-ttr, and C6zz-Âz can be caiculated using

the following formulae:

(c'-*7'

(Ca'z-*¡' :

^4M,

Expansion of the amplitude denominator in Eq. (139) has a simple graphical repre-

sentation (See Fig. (13)). The latter expansion suggests, in this particular case of the

triangle topology, introducing a set of virtual particles fiZ and 622 as a part of SM
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(co"-*¡' : - #æ, (#",- *+)

ffi22 - A? 
^? 

- L3'
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in the nexb to leading order corrections. It is straightforward now to give a set of

additional Feynman nrles:

1. In the case where a vector boson couples to a nucleon through self-energy in-

teraction, each coupling in the vertex {¡,/ - y - ¡f} has to be multiplied by

ç{t,z,w+}-t: (

,(ëq(+*,- -fu))''n ,o, v : {62.y,622,62w+}. Here, rlyn col-

responds to the mass of the V taken from Table (2) (here, even in the case

of. V : {6g,fi2,6,,W*} or V -- {621,622,6rW*}, masses of corresponding

bosons are {0, M2, Ms¡+}), and n is the total mrmber of couplings between vec-

tor bosons (the vector boson should be part of the ioop) and the mrcleon in the

loop (n:2 in the triangle graphs case).

V : {6r^t,6LZ,6rW+}, and by g{6zt'6zz'azt*}-'u :

t 1/n
\
) rot v : {-y, z,w+} ,by C{on,atz,atw+}-u
/

Propagators have the same structure, where for the case of V : {6fy,6ú,,6rw+}

vector bosons carry mass ntr{6q,\2,61w*} : Âr, and for V : {62.1,622,62W+)

the masses are r11621¡22,62wtj - 1\2.

Particles {6g,612,6rW*} and {ô27, 622,62W+} do not couple to any other

particles except the nucleon. Couplings of the type {W+ - b,Z} -W*},

{W* - {1, Z} - 6W*} and {6W+ - b, Z} -W+) are the same as in the case

of the couplings of the three vector bosons V*(kr) -W(kr) -V"(kz) defined

85



in the Standard Model.

Although ultraviolet divergences are absent in the nucleonic vertex corrections

dtte to the additional terms proportional b fp in the coupling, it is still necessary

to compute the counterterm amplitude. The coupling defined in Eq. (109) has a

counterterm part at the one-loop level represented by the column matrix

which can be replaced by

c{;'
crr""

clr;"

nf -Vv2R

Here, we have used the fact that at {N -V - ¡/} vertex, parts of the counterterm

coupling related to the 6Z'u,r, mixing are defined by

s[-z n"þ ¡[1

sr^-" nuþ ¡E1

-#e{-* (q) Re[á/fl]

-#e{-* (q)Re[ó/fl]

(62'¡u"ui :

nf -vw7L

nÍ-vu1,R

crr;"

crr""

(c{",",'*}-w)' 6 Zv,u¡ + (C{at,u, 
z,o,w +} - n)2

+ (C{0"'øz'o'w+}-u)2

(141)
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14: Nucleonic field renormalization expan

g{t,zw+}-t)' + ( g{anr,z,a,wt }-,v) 
2 

*/\/
:+2

This can be justified by the fact that all of the vector bosons field renormaliza-

tion constants are defined by the tnrncated self-energy graphs at lcz : m?n and

that all of them will have the same contribution. A property (C{''"'-*}-t)' *

(g{t,r,arz,arw*}-ru)2 + (C{u,"r,o,z,a,w+}_ w\' :¡will leave the counterterm ampli-\/\)
tude only with the nucleonic field renormalization constants computed through the

expansion given by Fig. (14). As well as in the case of electron vertex corrections,

the nucleon vertex will have an infrared divergence at the pole q --+ Q. A detailed

discussion of the treatment of this type of divergence is given in the next section.

ô.v

+ (c{ø''o'z'o'wr)_w)2

SIon.

R"(
,"i'' (*T)
---æ:t2

V¡ )
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5 Bremsstrahlung Effects

The contribution of soft-photon emission to the asymmetry was calculated in Ref. [7],

giving final results that are free of infrared divergencer. Ho*urrur, even after remov-

ing IR divergences through soft-photon emission corrections, calculated one-quark

radiative corrections show a logarithmic dependence on the detector's photon accep-

tance parameter AE. Elimination of this dependence can be achieved by adding

the hard-photon bremsstrahlung3 (HPB) term. For one-quark radiative corrections,

the HPB term is hard to account for due to the poorly known quark dynamics. In

the case of the HPB computation for electron-proton scattering, we can avoid the

theoretical problem of having to know detailed quark dynamics by representing cu-

mulative quark dynamics directly through an experimentally determined set of form

factors. Using the monopole approximation, we modify general electroweak couplings

by inserting appropriate form factors into vertices and construct a HPB factor as a

function of Mandelstam invariants. For each set of experimental constraints, integra-

tion over emitted photon phase space can be performed mrmerically. We provide ab

initio numerical results for SAMPLE (Ref. [10]), (Ref. [11]), HAPPEX (Ref. [i2]), G0

(Ref. [13]), A4 (Ref. [1a]), and Q-Weak (Ref. [15]) experiments.

The present chapter on bremsstrahlung effects can be considered as methodologi-

3 Although SPB and HPB are parts of the same photon emission process, in the SPB approximation
momentum of the emitted photon is negligibly small to account in the numerator algebra. Generally,
we can approximate SPB as 2 --+ 2 process, which is not possible for HPB emission.
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cal, where electron-proton scattering is considered as ân example. The same technique

of treating IR divergences can be expanded to many other processes. We describe

both hard- and soft-photon_emission treatment, starting with the latter.

5.1 Soft-Photon Bremsstrahlung

The independence of the soft-photon emission amplitude from the magnetic part of

the hadronic current, and more generally from any form factors in photon-nucleon

coupling, makes the soft-photon approximation universal and applicable for almost

any radiative process. The diagrams responsible for cancellation of IR dive¡gences in

one-loop parity violating radiative corrections are shown in Fig. (15).

Generally, bremsstrahlung diagrams can be described as (2 -+ 3) processes in

which the integration over the emitted photon's phase space should be performed.

If the momentum of the emitted photon is small enough to be neglected in the nu-

merator algebra, we can present the bremsstrahlung cross section as a soft-photon

factor multiplied by the tree level cross section of (2 -+ 2) process.

Let us consider a corresponding example. The scattering amplitude for the first

diagram of Fig. (15) has the following structure:

Mt : (û(*, Irs)ll"z _. lu(m., k)) -

(u(**,k+)lt7-n,(q¡ þz- þsrmru- ,.ffitï-,v (ks) lu(m ¡¡, k))
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Figure 15: Phoio emission diagrams
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where the photon polarization vector enters as e.(k5); l'"-.,1b-* and fÇ*ru are the

couplings of electron with Z boson, nucleon with Z boson, and photon with nucleon,

respectively, defined as

1,"_. : ,t"l-l- zt' 
7,ø- + fu1,-*1 

," L 2c-s- c-' 'l'

9p,
(t a - kz ¡ trr)' - ;2"€.'(ks)'

rL-* Q) : *lf{ @)t* * ho'oq, f{ (q) + s{ (q)"y*.y51, í44)

r{-,v (ks) : zeq lr{ çnuh' * };o" ç-ks) eF{ (kù] .

For the form factorr /flr(q), F{,r(ku), and g{v(q) we have used

Í{e(q) : *^(r,Yrrru Q) - +sl+{,(o)) 

^#n,

F{,r(ku) : rfl, (o) #",: ¡,î, (o) ,

(145)

r,ur(")(o) : Fi,re) - F{,r(o) , p{,[,) e) : Fl,r(o) - Flp (0) ,

gi(ù: -#2,&,
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v/ith ,FrT2 (0) and gf; (0) defined as the nucleon's Dirac, Pauli, and axial form factors

at zero momentum transfer, respectively.

In the soft-photon emission approximation the coupling lÇ-rv(ks) becomes equal

to ieQf . The numerator of the nucleon's propagator þz- fts * m¡¡ can be replaced

by þ, * mu, and (le2 - ku)" - ffi2N can be easily simplifi.ed into -2 (k, - kù. Using the

Dirac equation for free spinors, we have

rtz*m¡¡ :^î\-.dt,,(*-- r-^\\.*/r.-\ ,^nftz'Yo +''l'þr",(^-, /-^\\ -* rb-\ -ffiieQ.Y*|,(**,k2))e\(k5):-n"qffilu\m¡,¡,k2))ei\k5¡:
(146)

: -i'a%#fu(m¡¡'k2))'

Now we can present the soft-photon amplitude in the following form:

Mï"r' : (u(^".,lrz)ll"z-.lu(*., k)) (n(m¡¡, kn)ll|-¡u(fl lu(m¡¡, k2))

(147)

(kn-kr¡kù2-ffi22

Here, Ms is a tree level amplitude of (2 --- 2) process. Eq. Q 7) can be used for the

other photon emission diagrams with a different factor (*n"q ßã'"sd''o,). O. one can

see, M"r"it does not depend on the magnetic part. This is a very important result.
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The independence of soft-photon emission amplitude from the magnetic part, arid

generally from any form factors in photon-nucleon coupling; makes the soft-photon

approximation universal and applicable for almost any radiative process.

We can sum over all four graphs in Fig. (15) and square the total amplitude to

get the following:

l*i""1':tMot" lq#P -q&?-{&etÐ *o%Ï#l'
(148)

The photon couples to a current which is conserved: lepMu:0. This fact, and the

srrmmation over all photon polarizations, gives us the possibility to replace Ð,(k,-), (k¡)" uiu,

with -gp,(kn)r(k¡)' : -(ko.k¡). The last step is to integrate over the emitted photon

phase space dlt"s #fE and regularize the infrared divergence by assigning to the

photon a small rest rnass À. This dependence on the rest mass of the photon will

be canceled when added to the IR divergent radiative corrections, and the final ra-

diative corrections will be free of IR divergences. The resulting soft-photon emission

differential cross section is expressed as

do sort : (doo) e-,, (- #) l,*u=ou i

: (doo)e-r, (-#) em!I (k,,kr) - (2^? - t) I (kr,ks) + ze2rnlu I (tç2,k2) -
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Q' (z*'* - t) I (kz, trn) - 2Q @ - m! - *"*) I (kr, n¿) - 2(t - m! - *?ò I (kt, kr))

: (doo)p-z¡.6soft.

Here, A.E is the maximum possible energ"y of the emitted photon where the soft-

photon approximation is stili valid. Numerical analysis leads to the condition À <

LE < Lo-38. 
".

I (ki,ki): I¡nu,-a,nffiø"*;ø is the soft-photon emission integral evalu-

ated earlier by Ref. [37], and is equal to

I (ki, ki) : oznuooi- \'-11 '-r./ al¡ml _ m]

+'" (#)'" (#) + !rn, (ffi) - î,t n, (ä=j*iÍ) .

(150)

- d?.m?-m2
where uu¡ : ffi, and E¿,l,kl, are the fermion's energy and spatial momentum in

the center of mass reference frame, respectivqly' Th-g Ralameter a¿¡ can be extracted

from Table (5) . We expect the dependence on LE to be canceled as a result of

adding the soft- and hard-photon emission differential cross sections. It is worthwhile

to mention here that dosoft is proportional to (doo)e-z) which makes it possible to
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4

1

j

2

t

1

Tfl,¿

2

2

TTLe

ô

1

nL¡

Tnq

4

1

Tne

Table 5: Soft-photon emission integral parameters of Eq.(149)

insert the soft-photon factor óso¡t into radiative corrections and to treat them from

IR divergences:

ffie

4

a¿j

n-Lq

Tnq

2

1

TTL"

Tne

1

rnq

Tne

1- ft+

T'nq

1- t -t/F=4- 2rnt, ' 2rn2,

n-Lq

,r'" + rn", - u+ \lf (u - rn? - rn'r)" - ¿^Zrn'¡

2rn?

Here .Ry and ,R¡ correspond to the radiative corrections defined as

/alRv: #u1N

D Cl*ñ'A : /-o 'v2N

" - 
*Z - *r, + I (rn? + ror, - ")' - ¿*Z*r,

2*Z

R,

RA

Rv * 
Tu*,,,

Rn +T6""¡r.

However, in the case of hard-photon emission, parametrization in tliis simple way is

not possibie, which makes it harder to get rid of radiative corrections of the photon
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detector acceptance A.E.

5.2 Hard-Photon

This section gives details on

ferential cross section. The

analysis.

Bremsstrahlung

5.2.L Electron-Nucleon Scattering

the evaluation of the hard-photon bremsstrahlung dif-

results are expressed in a form convenient for frrrther

In the case where the momentum of the photon (kg > AE) can no longer be neglected

in the numerator algebra, we have to account for all the differences between hard-

and soft-photon emission. Besides the fact that the hard-photon amplitude will have

k5 in the numerator, calculations for the differential cross section will have to include

matrix elements with different helicity. These matrix elements come from the use

of the momentum conservation law for (2 * 3) process. Thus, the helicity matrix

elements will depend on the extended set of Mandelstam variables:

s : (/'4i-tçz)z,

t - (k, - ttr)' ,

u : (tt, - ttn)' ,
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s' : (lq I kn)' ,

t' : (lcz - kn)' ,

u' : (kz - ttr)' .

(153)



Let us start with the total amplitude for the set of the graphs in Fig. (15):

-rr':(

+

+

. (zr(kn) I r2 _ *þ) ffiffifrifi_r,, (ks) 
I "" (kr) )

(A(ks)l r""_.1u.(k)) -

. (2" (kn) I r]î_ N&ù #+{ffiiï _' Q) l" * (k,))

(2" (kr) I l'2 -. lu"(le))'

(% (r¡ ) I rî _.#,i{ffi"t"" _. lu "(k)) 
.

. (a * (kn)l rL _ * (t' ) l" * (kr))

@ (¿r) I r", _.ftffiii_. lu.(kù) .

ffi':tr'l

Here, ú' - m?, can be replaced by ú - rnz, d:ue to the fact that {t,t'} K *'". The

evaluation of the total amplitude squared is somewhat cumbersome because it in-

cludes calculations of 3136 helicity matrix elements. To avoid complications in the

HPB differential cross section, we decided to split the amplitude into two terms:

M?;t - M&'t + Ml-t. Here, Ml-3 is the total amplitude withorit dependence on
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,9ry=rl&r)L-rnz

- (z'(kn)l r|_*(t') l"*&"))

ffi,:rr;

ffi,:rr;

(154)



the momentum of the emitted photon in the numerator, and Ml-3 is everything that

is left up to order O (kt). Now, the sqrrared amplitude has a very simple form:

The first term of Eq. (155) can be obtained from

M&-,:^2M,0(ffi% _a#æõ

l*:;'f :l*3-'l' +z(twl'r). (*?-') *lm?-'l' .

M'o: (ie) (a(m",t s)I1""-.lu(*",k1)) (a(ml¡,kn)I (lL-*)' lu{**,kr} h.
(157)

The term (rL-*)' represents a coupling which was modified in a v/ay so it would no

Ionger have a dependency on the monopole te.- ffi, and no longer contain the

momentum of the photon in its magnetic part:

In Eq. (157) and Eq. (156), the coupling fi-t",rl was replaced by (i"Q)f .As for

{tflr, nfl}, we use Eq. (145) but without the monopole term4 & It is straight-

forward to see that after the integration over the phase space of the emitted photon

only the amplitude M&" squared will have a logarithmic dependence on the pho.

ton detector acceptance parameter A,E. Therefore, M&" squared, when combined

,sfl}u'formfactors{/fl,tol,sfl(o)iatthezeromomen-
tum transfer.
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(k3e.(k5))

(krkr) (tP - trl

(rL_*)' : r"lÍ{f +

(155)

.}ffiffi),

ho,, (k+ - kr)o fl + ø{:,xf .

(156)

(158)



with the soft-photon bremsstrahlung differential cross section, will be responsible for

cancellation of the Iog( AE2) term .

Further numerical analysis shows that the second and third terms of Eq. (155)

have no dependence on AE. They both are small compared to the first term when

the energy of incident electrons is less than 6 GeV. For energies Ent ) 6 GeV, the

second and third terms become non-negligible in the HPB cross section.

We can write the term lM!-312 of Eq. (155) in the following form:

l*,-1''^ : - | 
Måf'R' 6 u, u,

6npn:#(-t(#.Gþ) _

#+(*.(#."h) -

(*|+mk - u

\ (/"kJlk"/"I

The scalar products (koks) are the Lorentz invariants and can be replaced with the

Mandelstam variables as

(krkr) : -m2. - rn?v + þ-+9,

s-m?-mk
(krkò (krkr)

2m?" - t
(krkr) (krkr)

2m2* - t'
(krku) (knkr)

).

"' - *Z - ffi2N, rn\ + m'w - u'\
TrkJ@^kr) - (krkr) (krkù )

). (^, - t) (Ì\2 - t,)
QLn

(15e)
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(kzkr) : -m! - m2u *@#9,
(160)

(kekr) : m!+mr, -þ' 
+t+u') 

.Mz'

As for lMå\"r,*, in the case of the left-handed incident electrons, we have

lM'ol'": #ffifffirru*fu - arnfuls + s,+ u+ u,) +

(knks) : m!+m2* - þ' +t!+ u) 
.

4m2*(s* z)(s' + u') + t' (us' - ss' + tt' I sut - uu')) +

g""-*f{Ø*4* - +m2*çu+ u') - ss' +tt' * stu ¡ su' +Zuu') +

z (sí-*)" (*'* - ,)(*'* - s') + , (nfr-*)' (*'* - r)(*'* - u') +

gl-* (+gt"-* *'* t + fy (4n'L4N - 4rn2*(s+ s') + 3ss' + tt' + s' u * su' - uu'))],

and for the right-handed incident electrons

lM'ol'*: fffirfft u*fu - a-f,1, + s'+ u+u,) +
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4m2*(s* z)(s' + u') + t' (us' - ss' + tt' t su' - uu')) +

gfr-* fl @*4* - +mz*çs+ r') - uu' + tt' + s'u + sd +3ss') +

z (s"^-*)' @?u - ')@?u - s') + z þ2"-u¡' (*'* - u)(*'* - u') +

gl-*Øgß-**'* t+fy(4rn4N - 4rn2*(u+u') +Buu' +tt' + s'u* su' - ""'))].

For simplicity, we have introduced a set of coupling constants øf,-/ defined as

gt",t: : ffl+sfl,

(163)

(r2-*)' : æloß-Nfæ+ * sl-N'T*-- * ho'o (kn- k )o f{7, (164)

where @+: ff are the chirality projector operators (see Eq. (aa) and the discussion

below).

The amplitude Ml-3 entering expression Eq. (t55) has eight terms. Each term is

responsible for a different type of product of static or magnetic parts of the (Z - N)

coupling. Explicitl¡ we have :

¡ ¡2+3 
- 

9P"Ml-o : ffi'L@ò'R
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p : (n.(tes)l r'" 
- " lu.(kr))(z' (kn) I (rL -.)' 6+#ñ Q"Q) t' lu * (k )) *

+

(ø"(kr)lti-"1u"(te1)) (zr(kn)l þ"a)f @n# _*kFL-*)' l,,r(kr)) *
+

(ø 
" 

(k r) l ri -.6# _ *Zr', -. lu. (tc 1) ) (2, ( kn ) I (, L - *)'

+

(2" ( Æ, ) l rL -. ø5# *Ztl - " lu.(k t) ) (2, (kn) I (rL - *)'

+

' (z'(kn)l eù # @s) o ffifu (i"Q) t" l"*(k,))
+

(2, (kr) I 1"" -. lu"(k)) -

.L2
lux(kz)) 

^2 ,ttt - L

(165)

A2l"x(k")|fu

. (z"(frn)l þ"e) f øffih eù # @) olu¡¡(k2))
+

(2" (kr) I t""_"1u.(k)l .

-(n*(kn)l(r,r-*)' G#h

(ø(r') I ti_"1u.(k)) .

L2

L2 -t

þq# (ks)olu¡¡(k2))

r02

L2

L2 -t

L2

L2 -t



+

(n*(t ùl@a)"# @)o6ffii4 (rL-*)'lu*(k ))

The second and third parts of Eq. (155) are too lengthy to show them here explicitly.

We have them analytically expressed in a Mathemat'ica file available upon request.

(u 
"(kt)l 1"" _ 

" lu "(k1)) 
.

5.2.2 Electron-Quark Scattering

The case of electron-quark scattering is much simpler than the more general electron-

nucleon scattering, and can be easily derived. First of all, there is no magnetic part in

the coupling. Second, the monopole form factor approximation is no longer required.

Now we have

L2

lvz -t

where

lb-n : 'ie þf,-'f-*

ri-o : 'i"Q''/o,

+ gl-'f--1,

Z-a9r ':
rl-Q"-

sfi-n : -AX
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Here, Zj, Q are quark's isospin and charge, respectively. The amplitude Ml'3 be-

comes

/
M&-' :,, (Ï# - rT'-å;f,l' - i# . os€#),

(168)

M() : (i.e) (n(m., kr)11""-"lu(*", k1)) \a(mn, k+)llrz-nlu(*n, kù) 
&

The first term of Eq. (155) for polarized incident electrons can be expressed as

l*&-'l,o : - lMál'",n' 6 u 
"u,

l r( r - t \- r*2,t,\*
6nPP: [-: (ir¿Y * rr¡Í)- @E;@Ãõ)

(16e)

o"(*'(#-*þ) -m).
n ( m? + m2n - u _ s - mZ - m? _ s' - mZ - m? *m? + m? - u'\
v 

\ (k"bt (k-l'r) - (krkJ@rk) - &tkt) (k^k') - (t'rk') @N ) '

and lMfi|,* is

t n¡t t2 8a3r3 (t - zsï)z
ltvtllL ô ô /, cr2

cí,, 3ít, \t - rnh )

(ní-')' (*'* - ,)(^', - s')+

* (n1-')' (*'* - u)(*'n - r')+

zgl-n g"^-n*? t
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lM'ol'r: #+
The amplitude M!'3 will have oniy four parts with the following structure:

¡¡2-3 9P"
tvtl , ,

' - "12€:(k5) 
'Ê'

(nf,-')' @?u - ")@i,u- s')+

+ (gí-')' (*"* - u)(*'* - u')+

zgl-o g"^-n*| t

R : (a 
"(kr)l 

r'2 
- " 1u.(k1)) (n 

n & n)l rL 
- r 6*#_ *r, 

(i 
"Q) t' lu nØr))

+

(n 
" 
(kr) I r,, - " lu. (k 1)) (t o @ n) I þ 

" 
a) f 

Ø 
^ 
# _ñt | - o lu n @z))

+

(ú.(kr)lri-"n J# ^rt's-.1u.(tcy)) 
(øo@n)ltfi 

-nlunrrc2)l\ft3 -.1_ tu5/ - tlt,e

+ (171)

(ø ( rs ) l r"" -. ø5P_,r¿tl - " lu 
" 

(k t) ) (zn (kn ) I t 
p" 

- n lu o@2)l .

Now we can give some details on the 2 (M&-"). (Utl-s)and. lM?-tl' terms. The

electron mass enters into calculations of helicity matrix elements as a small parameter.

Using this fact, lor 2 (Ml'"). (M?-t) we derive:

, (m&-'). (M?-') 
",^ 

: ÐlI#o, - nru:XJ''' Wf . Wl
(172)
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Expressions for ÐJÇ (k¡) are explicitly listed below. For k¡ : kr, we have

4 8 a3ñ (r - 2t?")'
ÐllIø(tcùt.:á:r c2- s2- (t - *'r)'

l(sí-')' @? - ')(*?- s') + zsf-n s'*-n*? t + (szo-')' @? - ")(^? - u') -

(s * tt * ut - 2mf, - 2m!)

a

a

(s'+t'-fu-zml-2m!)

({ní-')' @? - ,)(*? - ,')-,, * (n'r-')' @3 - u)-r,) +

(s'+ú *ut-2ml-2m!)

where coefficients a¿¡ ãrê,

({nfl' @? - s)-zt * (n1-')' @? - u)(*? - u'),,,) +

(173)

(ní-')' @? - s)øn - zsl-o g"*-'*? tø1*

an: Q*?-s-t-u),

Ø2t : (z*l - ^f,(t' - t +zs * u')* s(s' + u') - t(t' + u')),

@at : (z*î - mf,(s' - t +2u + u') - ttt + s'(u - t) + uu').

For le¡ : k2,

4 8 a3n3 (r - 2t"-)'
Ðnr"Utz)r:i:L c?- s2- (t - *'r)'

+ (sz*-')' @? - u)øzt
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(s+ú*u-2ml-2m!)

(ní-')' @? - ,')rr, + zgf-n g"o-n*? øqz-

(s'+t+Ll -2ml-2m!)

with

- (n'*-')' @3 - u')azz

(ní-')' @? - s)un + zgf-n gß-o*? @az-

atz : (z*t-mf,(t' -utzt+t') +tt'+ t'(t' _ u') -uu'),

uzz : (zml+mf,(s' - 2t - t' - u)- s("' +z) + t'(t +u)),

u3z : $*t- *!(s" +zt +t' +zu+u') *s(s*ú' *u')),

æqz : (*?(t* s' - " - d)- 
"("' 

+t) + u'(t +u)),

as2 : $*t - *f,çsu' +2t +t' +2s' + s) + u'(s *t' +u')).

When ki : kt, W@) is given by

- (nf,-')' @? - u)usz

+

(174)

+

L07



f,*Q,s)r.:Yffi

l(oí-')' @? - ')(*?- "') + zsl-o g'o-n*? t + (sl-o)' @3 - ù@? - u') -

(s+úlu-2ml-2m!)

where

an : Q*?-s'-t-d),

azz : (z*l-mf,(s'*2s' -t*u) *ss'- tt'+u(s'-t)),

uzt : Q*î-m](s -t*ui2u')*LL,:-L'-tt'+ s(tf -Ð).

And, finally, for le¡: k¿ we have

4 
8 o'3r3 (7 - zt'-)'

Ðnr" Uca) t :i.:L c2- sl, (t - *L)'
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(ní-')' @? - s')-zz - zgf-o gf,-n*? tø6*

* (n'o-')' @?- u)æzs

u')rrr) +

(175)



(s+útu-2ml-2m!)

(ní-')' @?- r')rrn+2szL-a sf,-n*? @4+-

(s'*úiu'-2ml-2m!)

- (ni-')' @? - u')uz+

with

(ní-')' @? - s)øs¿ * zsf-n g"^-n*? @44-

- (n'o-')' @? - u)uz¿,

Øta : Q*l - m?oþ +2t +t' - u) + tt' + s(t' - u) - uu'),

Ø2+ : (2ml+-l(t -2t-t'-u) - s'(s* u')+t'(t+u')),

Øsa : $*t - *?oþ"+zt +t' + 2s+ s') + u(s' +t' + u)),

@44 : (ml(s*s' - " -d)- s'(s+t) + u(t+u')),

{n54 : $*î - *?nçst' +2t + t' + 2u' + z) + s'(s' + t' + u)).
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To get the right-handed matrix elements Ðl:rtllh (k¡) 
^ 

, all we have to do is to replace

the corrpling constants sl¡-n by g"R:: ,and the coefficient i::"t:-'-::l: Av *f&c-- s¡ ¡t-m2 1 ci, \t-",,2z)2 
'

As for the rest, the expressions for Dî'rlfd (k¡) 
" 

and Ð|:rm, (k¡)o are identical.

Let us continue with the last term of Eq. (755) lM?-s¡2. It is given simply by

with the following four sums.

The first sum is

4

Ð('JJtr¡) "::_:

^44
lu?-'\": Ðt (rrL¡)t.

i:r j:i'

w ((sí-,)"

8azn}Q Q - zs2*)2

(^? - s)ør¡ +

(s+útu-zml-2ml)

(n'*-')' @? -,'),,,) +

(sf-')'o,,

(s'-lt*ut-zml-2m!)

(r77)

- zgl-o gt^-n*? @¡.,.¡,*

+z (sz^-')' @? - ut)u¡æ1s

(s*t'*u'-2ml-2rn!)
a

z (sí-')' t*?

^ Z-o Z-o t
-¿9t ' 9n 'mã @tto'{3 -

({n""-')' @rr -

- s)Qpøp-

+gl-n gf,-n*? @tro'ts -
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(s"^-n)'a"

(178)

+

(n"^-')' o,r)1,



where

Õrr : (ml(tt - 4(" + u')) + mf,(-ztz - 6t't - ut t u2 + u'2 * ttu * t'u' + 6uu' *

s(-3ú - t' + 3u + u') + s'(-3t - t' + u + 3u')) +

s(2tt' + s'(t + t' - u - ú) - 2ud) + (2s' -l t + tt + u + u')(tt' - uu')),

Qn: (Z*?- s'-t'_ u),

ors : @m[(s*s'- zt¡ -ml(s2 +(6"'-t+t'r3u*u')s+ s'2 -

2* -6tt'-Jtu-t'u-3tu'-t'd + s'(t' -t*u]. 3u')) -tt'2 +

s2s' - t2tt - s'tt' - Ztt'u - 2tt'ut + s'tlr-L' - tuu' - t'uu' *

s(s'2 + (t + t' + 2(u * u'))s' - tt' + "rl)).
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The second sum is

4
\-/rr.rr \ SagnsQ!-2s2-)2
/r \¿¿e¿3 / L - c2_ "I G - -r")' (s * ú/ * ut - 2,m2n - Zm2.)

w ((sí-')' @? - ,'),,, + (s"r-')' @? -,),,,) +

("'

("

+

+

t +

+

1,-4-rr"Z

1

-t4:ñ

u

u

(ní-")' Q' - zsl-o g"*-n*? æyaçr

with

t,

+z (s"^-')' @? - u)e2yø1s

, (ní-')" @? - st)@21øv1-

The third sum is given by

4"'1 2

t ltlt',1 - - 
ga3r3 (t - zs2-)

i_-_.i'" 
"'t' L 

c?- s2- (t - *'")' (s' * t * ut - 2m2n - 2m2.)

-zgl-n s"^-n*? @rtuts - (sl-n)' o*

(180)

l(g""-')' @? - s)Qrz - zsl-n g"o-n^? æt * (n"*-')' @? - u)Qn+

(Þzr:(Z^Z-s-t'-u').

(17e)

l,

r12



1

@
And, finally, the fourth sum is equal to

n- ,* . 8 o'3r3 (l - zt1)'
/,\rrvvilr.- -

,-t'\"-'+1 
t L - 4 t?* (t - *?")' (s + ú * u - 2m2n - 2m!)

(181)

l(ní-')' @3 - r')or, - zgf-n g'*-o*? øn * (n"^-')' @? -u)Õrzl

Similarly, to get the matrix elements for the right-handed incident electrons, we have

to replace sl¡-o uy ozn!, anacoefficient .-*-'!=Ð*r: w #þ-"-ffiÐ". 
Now we are ready

to proceed to the next section, where we shall give the details on the parametrization

of the emitted photon's phase space and calculations of the differential cross section.

5.3 HPB Differential Cross Section

({nz-')' Õrr - (,f,-')'o*)l

The parameterization of the phase space for a {2 - 3} process has been chosen ac-

cording to Fig. (t6). Here, the angle d is a scattering angle and { corresponds to the

angle between emitted photon and scattered electron. The momenta are represented

as

lcL

lq

ks

ka

{8t,0, 0,p¿"']¡ ,

{8r,0,0,-P¿n},

{kg,lk;l ã},

{n2,Ê},
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\/here the unit vectors are

tc5 : {*g, l*il a} ,

sin(d)

0

cos(0)

For on-shell particles, the incident

cos(á)cos (4) sin({)+ sin(9) cos ({)

with

cos (d)

sin(4) sin ({)

cos (0 - sin(d) cos (4) sin ({)

momentum p¿n càrl be found

Here,E¿¡4siscenterof massenergy andmq,ru isamassof thetargetparticle(quark

or nucleon). Center of mass energ-y can be determined as follows:

Ecus:@. (186)

'When we consider {e - q} scatteringt rnq,N - rnqt and the parameter Í repre-

sents the fraction of the nrtcleon's energ-y carried by a quark. For the case of {" - q}
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Et - nLZ,

(183)

(184)

(185)



scattering, the parameter z was chosen to be equal to |. It is believed what three

constittrent quarks contribute j to the mass of the mrcleon. Rest of the mass of the

nucleon is made up from the contribution coming from the quark antiqurak sea. Hav-

ing three quarks in the nucleon it is possible to assume what single quark contributes

I to ttre total mass. If we consider electron scattering on the mrcleon as a whole, z is

equal to 1.

Momentttm Æa is determined by the four-momentum conservation law in the CMS

frame:

and

The HPB differential cross section reads as follows

¿o:Y#ar,,

where Õ is a flux factor and given by

,/t : k?, + k3: k! + teon + tQ,

--+ ---)
lcs * lca

@ : Ap¿^t/s.

The {2 - 3} process phase-space element df3 is

--+
* k5 :9.

d'r3 : #fu#fu#hQt)a 5@ (kt * kz - Ics - k+ - tcs) .
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(188)

(18e)

(1e0)



Using

and the fact that the photon is a massless boson, t." ldl : ,k3, we can write

dr3 : JEI-*Ëo*3 d%dk?desu (ri - *?,*) d,Atcn5.,) (kt -t kz - te3 - k+ - ks). (1e1)
4 (2tr)' o

Employing the delta function á(n) (...) to eliminate the integration over momentum

I{4, we arrive at

# : d4ku6 (Ê - *?) :$o*Yono,

with df)3 : dcos 0 d,þ and dç15: dcos( d,r\. Theremaining deltafunction6 (kl - *?,*)

will be used to eliminate the integration over the scattered electron's energy k$.

We need to do some modifications first:

rcl-mf,,n : (r2)" -lñl'-*?n,* : (J; - k3 - ,k3)'-lk;l' -lËl' -rldl lËl cos(-ml,u

(1e3)

Now, using

d,tr : | 9llE | ,- lan,arclan,o (ni - *7*) ,
4 (2tr)' ¿

we arrive at

rQ - m],n: s - zJ'kg + *2 - *?,* - zkg (J'- fr$) - rlËl,k! cos{.

The electron's mass can be considered as a small parameter with respect to

TL7

(rt)':lËl'+*7,

(le2)

(1e4)

(1e5)

k!. In



this case, we can replace ldl Ot k$, thus

lËl = rs-ffi

Substitution of Eq. (196) into Eq. (195) leads to the following:

k1-*?,: (" - z^/ ,kg + ^2 - *?,*) -zkg (J ,- fr$ + ,k! cos Ð .4+f=! . OsT)

The property of the delta function A Ig (fS)] : Ð¿ ffi e, is i-rh root of rhe

equation k2n - m]g : 0, solved with respect to k!) makes it possible to replace

u (rZ - *?,*) bv

u (r7 - *?,*): a (r! - r) , (les)

where

_ _ (' - z^/'kg + *3 - *?,*) , n-Llkf cos ({)
' - 2Gas+/cg(co'(€) - Ð - 6

The delta function ó (,kg - r) will eliminate integration over kf leaving k3 : r. Inte-

gration over the emitted photon's phase space dkgdns can be performed mrmerically

using the cuts on the photon's energy k$ :

(*3)-,": LE,

(1ee)

(1e6)

(*3)*"- : ,/t _(rn.*rnq,w)22 zJE
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Finally, Eq. (t89) becomes

d.Ftu:#+(il 
)on,,

leaving the final differential cross section differential with respect to the

electron's solid angle d03.

The asymmetry in parity-violating scattering is defined as

^ _dofiL -dnft'-nL dotfit + dot;t,

where

The contribution of the sofb- and hard-photon bremsstrahlung modifies the differ-

ential cross sections in Eq. (201) according to the following:

doß¡" : # ä$ P.' + ul;1?,"*l'^," 0Q,'

In order to combine HPB differential cross section with the soft-photon emission

contribution, and all this with previously calculated radiative corrections (Ref. [7]),

we propose the following parametrization for the HPB differentia.l cross section:

(200)

scattered

dõßi, : doß!" + (do3'2) R,r. 6sort + d,of,l.B

do{,lB :

As can be easily seen, the substitution of Eq. (204) into the expression for asymmetry

Eq. (201) will leave terms related to the HPB in the risual form (a"fl'" - aoy"u]).
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(0"3-'),,,

(201)

do{'" - dofca
(do|-')*- (do|")"

(202)

: (d"ï-r) 
^,"

(203)

'6r"". (204)



It is worth noting that the tern (dotft + dotft) has a dominant contribution from the

parity-conserved part of the differential cross section. Because of that, the denomina-

tor of Eq. (201) is left without parity-violating soft- and hard-photon bremsstrahlung

terms.

One of the most important results of this work is that the combination of sofb and

HPB terrns with radiative corrections can be written as follows

i.e. all of the effects can be accounted for and put together on the level of radiative

corrections.

For the case of {" - ¡/} scattering, we will show the contribution from soft

and HPB terms, taking into account only the IR finite part of the soft-photon

bremsstrahlung. We can do so because IR divergences are canceled when {e - ¡f}

radiative corrections are added. As for {" - q} scattering, after computing the total

radiative corrections, we will demonstrate explicitly that the final result is indeed free

of IR divergences as well as of a logarithmic dependence on A.E parameter.

5.4 Numerical Results

ffv,¡ : ff ,¡ * | (0""r, + 6o"u),

Before going into the numerical details which involve various parity-violating ex-

periments, let us first demonstrate that, indeed, we do not have A-Ð dependence

in the term ] (6*n+drru) for an arbitrarily chosen kinematical point. We take
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LE (^ß)

Table 6: Dependence on the photon detector acceptance (electron nucleon scattering
case (E¿o6: 5.0 GeV, 0 : 140.0'))

adaptive Genz-Malik algorithm which is implemented in the Mathemat'ico program.

For electron-proton scattering, the term T (O*n + ãr"u) for different values of A.E is

shown in Table (6). We see that the variation ol l (6*¡, +6rr") is within 0.03% of

that coming from the mrmerical "noise" due to the integration. As for electron-quark

scattering, Table (7) gives convincing evidence that the final results are independent

of the introduced photon's energy critoff.

10-3 -0.15032

10-4 -0.15035

10-5 -0.15035

10-6 -0.15035

10-7 -0.15036

ä (6*o +6u"u)

Various experiments in parity-violating electron scattering can be used as a base

for our numerical calculations. We will include SAMPLE (Ref. [10]), (Ref. [11]),

HAPPEX (Ref. [12]), G0 (Ref. [13]), A4 (Ref[14]), and Q-\Meak (Ref. [t5]). In Table

(8) we give total radiative corrections with the sofb- and hard-photon bremsstrahlung

taken into account. One-quark radiative corrections now wiil be modified by the soft-

and hard-photon emission terms for the electron-quark scattering case. We take AE
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AE (,ß)

10-3

10-4

10-5

10-6

10-7

à (6*,, + 6¡7'o) þu)

-0.2046i

-0.20472

-0.20473

-0.20473

-0.20474

Table 7: Dependence on the photon detector acceptance (electron-quark scattering
case (E¿o6: 5.0 GeV, d: 140.0'))

: !0-4^ß simply because there is no need to show again that there is no dependence

on the AE parameter.

Combination of the above leads to the nucleonic radiative corrections listed in

Table (9).

ï(u*o+õ¡v"u) çea¡

-0.r7176

-0.L7r82

-0.17183

-0.17183

-0.17183

ï (a""o + 6¡¡pB) þs)

The HPB parity-violating differential cross sections for the electron-proton scat-

tering case, including tree level PV and IR finite soft-photon emission terms (dotf,t":

(do|-\ r,r(r + 6on.-¡o"p * 6*¡t) + dofrPrB : (do3'2) a,¡6-,.-Ioop*qn,r), can be found

in Table (10).

-0.16842

-0.16849

-0.16850

-0.16850

-0.16850

125



R{/; I sAM. I sAM. II HAp. I HAp. rr Go(a) Aa(a) e-weak

l)eutLvA

Rílo

Ríì¡

-0.335 -0.333

-0.545 -0.552

-0.596 -0.607

RTv

RÍ,

ReÅv

-0.071 -0.069 -0.073 -0.072

-0.024 -0.025 -0.036 -0.033

-0.030 -0.031 -0.036 -0.033

-0.368 -0.371

-0.543 -0.544

-0.593 -0.597

Table 8: Modified by HPB one-quark radiative corrections

-0.335

-0.545

-0.588

-0.351 -0.360

-0.550 -0.552

-0.597 -0.602

Table 9: Modified by HPB and combined radiative corrections (SAMPLE I experi-
ment).

T:0 T:I i,sos'inglet p n

Rv I 0.040 -0.042 -0.017 -0.366 -0.0055

-0.070

-0.031

-0.032

RA | -0.210 -0.440 -0.817 -0.650 -0.231

-0.071 -0.069

-0.036 -0.033

-0.035 -0.031

qp.1 (L}-ramb)

Tn

rlt

Table 10: Combined HPB and soft-photon differential cross sections in e-p scattering
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SMPL I SMPL II HPX I HPX II GO(a) Aa(a) Q-Weak

0.048

0.25L

0.034

O.LL4

3.613

6.036

4.183

6.6M

0.061 0.553

0.573 7.267

r.295

2.086



6 Discussion and Analysis

The application of the methods described above for {e - ¡/} scattering can be seen in

calculations of the weak charges of the mrclei. Consider the parity-violating Hamilto-

nian in Eq. (111). Here, for a heavy nucleus we have a coherent effect for V (l/)8 A(e):

The contribution coming from V (e)øA (,n/) is small as it depends on unpaired valence

nucleons. The latter will determine the Hamiltonian for the electron parity-violating

interaction with the nucleus in the following form:

H (r) : S*Q-".n1sp...(r). (207)\ / 2\/Z_

Arelationbetweentheweakcharge Q-.ot" andformfactors {Cro,Ct} isstraightfor-

ward:

QP-"ok : 2Cþ,

(a¡ul,uw) + pnu"(r) ôp,0.

If we take into account

the proton and neutron

(206)

QT"."* : 2Cn'

only the leading order of the

have the simple definitions:

A'JYr : r- 4s2-'

r27

interaction, the weak charge of

(208)



Figure 20: Momentum transfer dependence of. C6 neutron vector formfactor.

(2oe)

o'(eutr

and for the nucleus

Q-.ok: Z .Ql"..È + ¡/ 'QT,"ot , (210)

where QP-"ot", Q\,".n are the weak charges of the proton and neutron including next

to ieading order radiative corrections.

Q:9r : -1,

Ðxtrapolation of the {Cr,, C2.) and {CroCrr} to zero momentum transfer (see

Fig. (20) and Fig. (2I)), and combining with the HPB contribution, gives the following

numerical results:

Cþ : 0.048i+0.0005'

\J2p 0.060 + 0.010,
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a

Figure 21: Momentum transfer dependence of. Cp proton vector formfactor.

(2r1)

We believe it is useful to give some details on the angular dependence of C6 and C4

(see Fig. (22) and, Fig. (23). Here, the numerical noise at forward angles is associated

with Landarr singularities, and was incorporated into the theoreticai error estimation.

o' r*u'ì

Cn : -0.5017+0.0020'

Czn : -0.058+0.010.

Some of the existing measurement results are obtained from atomic parity viola-

tion (APV), deep inelastic neutrino-nucleus scattering (NuTeV), and from Z0 pole

asymmetries (LEP*SLC). The available results from atomic parity-violating experi-

ments for the weak charges of Cs|!3 , Tl|lt and Bzr2le can be trsed as an experimental
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Figure 22: Angular dependence of the C6 vector form factor

Figure 23: Angular dependence of the Cg vector formfactor
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test of the theoretical predictions:

Cs]f3(exp) : -72.65+0.28+0.34,

Here, the errors are statisticaÌ, systematic and coming from an uncertainty of the

atomic-physics theory, respectively. For example, in the case of Cs|!3, one should

observe 7s (erci,ted) ---+ 6s (grøund) parity-violating electric dipole transitions in

order to extract the weak charge of Cs|!3. This requires an accurate knowledge of

the atomic wave functions. Using Eq. (211), Eq. (208) and Eq. (210) we compute the

following results for the corresponding nuclear weak charges:

Cs]!3(theor) : -72.97+0.26,

?/r2!s(exp) : -114.8 + I.2 + 3.4,

Bz!!e(exp) : -140+40.

(212)

The model predictions are in good agreement with the available experimental
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?lfifs(theor) : -116.8 +0.4,

Bzlle(theor) : -118.4+0.4.

(213)



results. However, to make more definitive conclusions about the validity of the pro-

posed computational modei, we have to reduce the experimental errors for precision

measurements of the weak charge of the nucleon. This type of measurement is pro-

posed by the Q-Weak collaboration. The general purpose of the Q-Weak experiment

is to search for new physics at 4.6 TeV scale to challenge predictions of the Standard

Model. More precisely Q-Weak is designed to measure the weak charge of the proton.

The Standard Model evolution predicts a sliift of A sin2 0w : 10.007 at low Q2 wîth

respect to the Z0 pole best fit vaiue of 0.23113 + 0.00015. The weak mixing angle

at the energ"y scale close to the Z0 pole was measured very precisely. A precision

experimental study of the evolution of sin2 7py to lower energies still has to be carried

orit. The asl'rnmetry measllrernents proposed for Q-Weak experiment will go as low

as 0.1 GeV.

At tree level, Eq. (209) has a definite prediction in the electroweak Standard

Model. Any signifi.cant deviation of sin2 0,¡¡ from the Standard Model prediction at

Iow Q2 would be a signal of new physics. The proton's weak charge Qo-."r is also a

well-deflned experimental observable. At Q' - 0 and 0 ---, 0 the asymmetry can be

parameterized as

where B(8') is a function of Sachs electromagnetic form factors €þ,, related to the
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Dirac and Pauli forrnfactors by the following expressions.

At JLab, the Q-Weak collaborators [15] propose a new precision measurement

of parity-violating electron scattering on the proton at very low Q2 and forward

angles. According to [15], "A unique opportunity exists to carry out the first precision

measurement of the proton's weak charge, Qlo", : I_ 4sin2 gs¡ building on technical

advances that have been made in Jlab's parity violation ptogram."

GL: fifu) + hr^or, Gh: fi@) + F2(q)

The parity-violating asymmetry in elastic e - p scattering at Q' :0.028 GeV2

wiil be measured employing 180 ¡rA of 80% polarized beam of E6"o*: 1.165 GeV

on a 35 crn liquid hydrogen target. This 2200 hour rneasurement wili allow one to

determine the proton's weak charge wiLh -4% combined statistical and systematic

errors. The electrons are collimated to 0":9" +2". The production is expected to

make multiple runs from 2007 to 2009.

As for our complrtational model, several directions for improvement can be prtr-

sued in the near futu¡e. In the Pauli and Dirac couplings, electric and magnetic form

factors will give a better fit of the experimental results for the electromagnetic (EM)

form factor measurements if we use the dipole approximation. Using the identity

(214)

we can achieve the dipole approximation (rn :2) by differentiating form factors C1o
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( -L, \- _ (-Lr)*-' A*-t ( 1 \
\k, - 

^, 
) - @: U u':,ry- \k, - ^,)'

(215)



and C6 with respect to Â2. Although analytical expressions for the Cq and C6have

been derived, it is easier to carry out differentiation using nume¡ical techniques. The

latter will require additional CPU power, and one possibility is to use parallelization

techniques available through Beowulf clusters.

Also, in the current work, we have only included the static part (l¿ls.øfl(ø)) .t

the (,n/ lj*5"1N) nucleon axial matrix elements. Extension of the (N lj,t"l .l/) *

along with the strange electric and strange magnetic form factors in the vector and

axial parts of the nucleon matrix elements should give us more complete description

of the parity-violating electron-nucleon interaction.

çvl¡,u|r/) : o* (t,tusfl(q) + ffiw,ri(ø)) ",

In general, we are highly satisfied with the unique and innovative computational

model developed in this work. Our numerical results are in a very good agreement

with the experimental data; our analytical and programming routines show a consid-

erable promise for extension, and future plans are well defined.

(216)
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7 Appendix

The following appendix gives partial details on the code developed in this thesis. The

first part explains model definitions and the second gives details on the {1 - Z} box

code.

7 .L M athemat'ica Code for Model Definitions

Prior to execution of the code for the one.loop calculations, model files along with an

unevaluated amplitude should be defined. Below is an example of definitions in the

model file.

7.LJ Definition of the nucleon and vector bosons propagators

G en eral f ermi,o n prop ag at o r :

(erternal propagator takes the form either Majorana or Dirac spi,nors)

(internal propagator talces the form as defined bg the Feynman ru,Ies 'in thi.s worle)

AnalyticalPropagator[External][ sl" F[L, mom] ] ::

NonCommutative I If I SelfConjugate [F [i ]"] ], Maj oranaSpinor,

DiracSpinor ] þmom, Mass[F[il]]] ],

AnalyticalPropagator[Internal][ sL FfiL, mom] ] ::

NonCommutative[ DiracSlashþmom] f Mass[F[il]] ] *

I PropagatorDenominator [morn, Mass [F fi 1]]],
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General uector boson erternal propagator: (erternal propagator is represented by

polarization uector of the uector boson (used i,n the HPB calculati,ons))

AnalyticalPropagator[Externat][sf VUl, rnorn, li2] ] ::

PolarizationVector[Vül], mom, Ii2],

General uector boson i,nternal propagator: (internal propagator defined by the

Feynman r"ules of SM)

AnalyticalPropagator [Internal] [s LV [i 1-,mom,li1- > li2]] ::

-I* PropagatorDenominator [mom,Mass [V fr 1] ] ] 
*

(MetricTensor [lil,li2] - ( l-Gaugexi [V f r] I ) 
*

FourVector [morn,lil] FourVector [mom,li2] *

PropagatorDenominator [mom,Sqrt [GaugeXi[Vfi r]]] MasslV[t 1]]l )

7.'T-..2 Súrucúure of the {V - N - V} couplíng

AnalyticalCoupling[ sI" F[j1-, moml], s2 Fff2, mom2],

s3 V[i3, mom3, li3] I :: G[-1][sL F[1], s2 Ffi21, s3 Vfi3ll .

NonCommutative[DiracMatrix[li3], ChiralityProjectorþl]],

NonCommutative[DiracMatrix[i3], ChiralityProjector[a 1]],

(NonCommutative[DiracMatrix[li3], DiracSlashþ mom2 - moml]] -

NonCommutative[DiracSlashþ mom2 - moml], DiracMatrix[Ii3]]) *

NonCommutative[ChiralityProjectorþ1]], (NonComrnutative[DiracMatrix[li3],

DiracSlashþ mom2 - moml]] - NonCommutative[DiracSlashþ morn2 -
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moml-],

DiracMatrix [li3] ] ) * NonCommutative [ChiralityProjector [* 1] ]

7.L.3 Definitíons for neutron and proton

( x N eutron : I t :- 1 / 2, Q : 0 r )

F[5] :- {

SelfConjugate -) False,

Indices -> Index[neutron],

Mass -> Mprot,

Quantu-rrrNumbers -> 0 Charge,

MatrixTbaceFactor -) 1,

Propagatorlabel -> ComposedChar["ntt, Index[neutron]],

PropagatorType -> Straight,

PropagatorArrow -> Forward ),

( * Proton: I t: 1 / 2, Q : 1 r )

F[6] :: {

SelfConjugate -> False,

Indices -> Index[proton],

Mass -) Mprot,

QuantumNurnbers -> 1 Charge,

MatrixTraceFactor -) 1,
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Propagatorlabel -> ComposedCha¡["p", Index[proton]],

Propagator\rpe -> Straight,

PropagatorArrow -> Forward ),

7.1..4 Couplíns {F -V - F}

(Case oÍ {p - ^t - p} coupling)

c[ -F[6, jL], F[6, j2], v[1] I ::

r EL * CNPII] *

{ {-FermionCharge[5] IndexDeltalil, j2],

-FermionCharge[5] * dZfLLcc[6, j1, j2]],

{-FerrnionCharge[5] IndexDelta[ 1, j2],

-FermionCharge[5] * dZfP.Lc{6, j1, j2]],

{F.zP* / 2 IndexDelta[j 1, j2],

F2P /2IndexDelta[jl, j2] dZfLLcc[6, j1, j2]],

{FzP / 2 IndexDelta[i L, j2],

F2P /2IndexDelta[L, j2] dZfRlcc[6, jl, j2]] ],

(Case oÍ {p - Z * p} coupling/

c[ -F[6, j1], F[6, j2], V[2] I :: I EL * CNP[2] *

{ {GLZP IndexDeltafiL, j2l,

GLZP dZfL1cclî, jl, j2lÌ,

{GRZP IndexDelta[il, j2],
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GRZP dZfRlcc[6, jl, j2]],

{ -F2WEAKP /2 fndexDelt aþL, j21,,

-F2WEAKP /2 dzfLlcc[6, jl, j2] fndexDeltaffl, j2]],

{ -F2WEAIKP /2IndexDeltafiil, j2],

-F2.WEAKP /2 dZfRl"cc[6, jL, :2] IndexDeltalil, j2]] ] ,

7.2 Details on {l - Z} box in the case e - n scattering

Below, is the Mathemat'ica code for {7 - Z} box. Due to the extremely lengthy

expressions involved in the output of the following program only input parts of the

cells are presented.

(Loadi.ng paclcages)

(( ttFeynArtstt'

< < " f data/Form CalcNew/FormCalc. rn"

mrm : Simplify

SetOptions[InsertFields, Insertionlevel -> Particles]

( SmaII electron nxo,s s o,pprorimati,on)

Small[ME] :: 0

SetOptions[CalcFeynAmp, OnShell -) Thue, Dimension-] 4, MomSim-

plify -> Tbue, EditCode -> Fatse]

GLGN - GN; GRGN - GN; CNPII] : 1; CNPI2] :1-; CNPB[I] : L;

CNPB[2] : 1;
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(Passing amplitude G Zenboæonlyfrom,rnodel. ørnp to the " Form" )

resO : CalcFeynAmp [< < " f data f FormCalc/GZenboxonlyfrommodel.ampt',

VADecompose -> True] / /. Ãbtut]

(Taking only parity-violating part of amplitude)

axialenself : Coefficient [resO, Mat [DiracChain[Spinor[k[3], M8, 1], Lor[L],

Spinor[k[l],M8, L]]* DiracChain[Spinor[k[4], MN, 11, 5, Lor[l], Spinor[k[2],

MN, lllll

axialneself : Coeffi cient [resO, Mat [DiracChain [Spinor [k[ ], MN, L], Lor [L],

Spinor[k[2],MN, 1-]]* DiracChain[Spinor[k[3], ME, 1], 5, Lor[L], Spinor[k[1],

ME, lllll

axialneselfl :

k[2], Spinor[k[l],

MN, lllll

axialenselfl :

Spinor[k[2], MN,

ME, lllll

Coefficient[res0, Mat[DiracChain[Spinor[k[3], ME, 1], 5,

ME, 1-]]* DiracChain[Spinor[k[a], MN, L], Spinor[k[2],

Coefficient[res0, Mat[DiracChain[Spinor[k[4], MN, 11, 5,

1ll* DiracChain[Spinor[k[3], ME, 1-1, k[2], Spinor[k[L],

(Expanding abbreviations)

MtE2[1] :: ME2; jt{LE,2[21 :: MM2; MtE2[3] :: }¡'4L2; MQU2[1] ::

MU2; MQU2[2] :: MC2; MQU2[3] :- MT2; MQD2[1] :: MD2; MQD2[2]

:: MS2; MQD2[3] :: MB2; MtE[l] :: ME; MtE[2] :: MM ; MLE[3] ::
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ML; MQU[I] :: MU; MQU[2] :: MC; MQU[S] :: MT; MQDII] :: MD.

MQD[2] :: MS; MQD[$] :: MB;

(Tbee level definition of the mixing angle)

Sw2 2: (MZ2 -Mw2)/Mzz

CW2 :: ]ÛlIV/2/MZz

(On-shell definitions)

Pair[k[L], k[1]l :: ME2

Pair[k[2], k[2]l :: MN2

Pair[k[3], k[3]l :: Pair[k[1], k[r]l

Pair[k[a], k[a]l :: Pair[k[z], k[z]l

Mass2[I"] :: ME2

Mass2[2] :: MN2

(Mandelstarn variables)

p2 :: (ecrns^2f Mass2[2] - Mass2[1])^2/(+*ecms^2) - Mass2[2]

el :: Sqrt[p2 f Mass2[1]] ef :: Sqrtlpz + Mass2[2]]

S :: 2*p2 * Mass2[l] * Masszlzl * 2*el*ef

T :: -2*p2*(L - Cos[theta])

u :: Mass2[l] f Mass2[2] - 2*el*ef - 2*p2*Cos[theta]

(Loading integration package)

Install[" LoopTools"]
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(Numerical values of the masses)

ME :: 0.5109989O2/LO^3; MLJ :: a7/ß^3; MD :: 47/LO^3; MM ::

1-05.658357/LO^3; ML :: L777.O3/L0^3; MC :: L.25; MB :: 4.2; MT

z: 174.3; MS :: O.L25; AIfa :: L/137.O359895; -þ¡lfa2 :: Alfa^2; MZ ::

91.1882; M'W::80.419; MH :: 100.;

MH2 :: MH*MH; MM2 :: MM*MM; ML2 :: ML*ML; l|4C2 ::

MC*MC; MB2 :: MB*MB; MT2 :: MT*MT; MS2 :: MS*MS; MZ2

:: MZ*MZ; ]tl4W-2 :: M'W*MW; MD2 :: MD*MD; MU2 :: MU*MU;

ME2 :: ME*ME; MN2 :: MN*MN;

MN :: 0.93972

f:: 1"

(Centre of the mass energ.y definition)

ecms:: (ME2 + MN2 * 2*Elab*(MN/f)* (1- ((Elab^2-ME2)^(1/2)*((MN/f)^2-

MN2) ^ (t/z)*cos[angle])/ (Elab*(MN/f)))) ^ (L/2)

Den[a,b]:: r/(a - b)

GN::0

(Fermi constant (tree level definition))

Gf :: (Pi*Alfa)/(SW2*MW2*Sqrt[2] )

(Numerical values of the electric and magnetic form factors at zero momentum

transfer)
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NAB :: Sqrt[0.83*MN2]

NAB1 :: I".0000001*NAB

Flneutron :: 0

Flproton :: 1

F2neutron :: -1-.91

F2proton z:2.79 - L

FlVneutron :: Flneutron - Flproton

F2Vneutron :: F2neutron - F2proton

Glneutron:: -L.25

GLGN :: Fl-neutron

GRGN :: Flneutron

F2N :: F2neutron/2/MN

F2'WEAKN :: (F2Vneutron - 4*SW2*F2neutron)/(2*MN)/4/SW / CW

GLZN ¡: (FlVneutron - 4*Sw2*Flneutron * Glneutron)/(4*Sw*Cw)

GRZN :: (FlVneutron - 4*Sw2*Flneutron - Glneutron) /( *SW*CW)

en :: axialenself

ne :: axialneself

(Energy and scattering angle values at close to zero momentum transfer (smallest

moment transfer without Landau singularities))

Elab :: 0.5
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rhera :: (Pi/180)*9

Setlambda[r0^0]

SetMudim[10^0]

(Monopole formfactor approximation)

BoX2 :: (1/(NAB_^2- MZ2))*N Ar^^2

(Getting final numericall results)

("n + MN*axialenselfl)* ( Sqrt[Z] / Gf / Z)

(tt. + MN*axialneselfl) x ( Sqrtlzl / Gf / z)
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