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Abstract

Two-level fractional factorial (FF) designs are commonly used at the early stage of

investigation in industrial experiments. They can often identify which factor effects

are significant by running only a fraction (subset) of a full factorial experiment (Wu

and Hamada (2000), Box, Hunter ancl Hunter (2005), Montgomery (2005), Ryan

(2007)). However, there will be aliasing of effects in a FF design, which may lead to

ambiguities in interpreting the results of an experiment.

One strategy for de-aliasing effects of interest is to run a follow-up experiment,

such as a foldover design. One cost-conscious alternative strategy for de-aliasing low-

order effects is to ar-rgment the initial FF design with only one-half of the runs from

a foldover plan. This apploach is known as semi-folding.

The primary objective of this thesis is to select semi-foldover plans, that have

appealing projection properties. In this thesis, we rank non-regular, orthogonal, com-

bined designs (ie., initial plus semi-foldover) based on the number of estimable models

containing a subset of main effects and their corresponding two-factor interactions.

With this objective in mind, we use the plojection estimation capacity (PEC) and

projection information capacity (PIC) criteria (Loeppky, Sitter ancl Tang (2007)) to

rank the combined designs.



A second objective of this thesis is to assess the alias structures of the combined

designs using the generalized minimum aberration (minimum G-aberration) criterion

(Deng and Tang (1999)). Generaily speaking, a design possessing minimum aberra-

tion will minimize, or come close to minimizing, the aliasing of low-orcler effects.

Our research concludes that combined designs possessing desirable projection

properties are often non-minimum aberration designs. We also observe that the

semi-foldover appr.oach can pr-oduce combinecl designs possessing superior projection

properties than the folclover approach.
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Chapter 1

fntroduction and Summary

Two-level full factorial designs and two-level fractional factorial designs (FF) are

commonly usecl for screening for significant effects in industrial and agricultural ex-

periments (Wu and Hamada (2000), Box, Hunter and Hunter (2005), Montgomery

(2005), ancl Ryan (2007)). The full factorial "2' design" denotes a factorial clesign

with n. factors each varied at two levels. Such a design is comprised of all possible 2'

observations) or treatment combinations, of Llne n factors. A 2"-p design is a two-level

FF design with n factors, where p is th.e number of added (generated) factors. The

added factors are assigned to the interactions of the n - p basi,c (independent) factors

in the design matrix of a full factorial design in n - p factors.

Example 1.1. Consider a 27-3 FF design, as displayed in Table 1.1. This design

requires 16 runs rn'hereas a 27 full factorial design requires 128 runs. There arc7-3: 4

basic factors, whose colresponding columns are denoted by L, 2, 3 and 4. The three

added factors are generated by 5 : I23,6: I24 and 7 :234, respectively. By taking

all possible products of the generators, we obtain I : 1235:7246:2347:3456:
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1457 : 7367 : 2567, which is called the complete defining relation of the design.

Note that all two-factor interactions in this 27-3 design are completely aliased with

other two-factol interactions (eg. 72 : 35 : 46). Effects that ale aliased with one

auother are completely indistinguishable from one another in the subsequent data

analysis. This aliasing is a consequence of running only a fraction (subset) of the

rnns of the 27 design.

If srifficient resources exist, various follow-up strategies may be used for de-aliasing

effects of interest aftel an initial 2n-p FF design has been run. The 2-optimality

criterion (Atkinson and Donev (1992)) provides one algorithmic approach for selecting

follow-up runs. A more computationally-demanding Bayesian approach rnay also be

10



CHAPTER 1. INTRODUCTION AND SUM\4ARY

used (\4eyer, Steinberg and Box (1996)).

The use of foldover designs would be another follow-up strategy. A foldover design

is a 211-p FF design obtained by rever-sing the signs of one or more factors (columns)

in the initial design (Box and Wilson (1951), Li and Lin (2003)). Foldover designs

are useful when an experimenter is faced with one of the two following situations.

In the first situation, only a few effects appear to be significant, after the data from

the initial experiment has been analyzed. Here it may be possible to discern the

key effects basecl on the initial experiment; otherwise, choose a foldover strategy that

will de-alias the few aliased effects. In the second situation, a larger group of effects

appear to be significant in the initial experiment. It may be impossible to identify

exactly which effects one wishes to de-alias. Here the objective should be to select a

foldover plan that minimizes, in some sense) the amount of aliasing in the combined

(initial plus foldover) design.

Consider reversing the added factors 5, 6 and 7 in the initial design provided in

Table 1.1. The foldover design that results is shown in Table 1.2. Note that the

foldover design is of equal size (that is, requires 16 runs) to that of the initial 27-3

experiment. It can be shown (Chapter 2) that this foldover design will de-alias all

two-factor interactions involving 2.

On occasion, it may not be possible to run another 2"-p experiment, because of

constraints upon lesources (for-example, time, money, etc.). One alternative approach

for de-aliasing low-order effects is to augment the initial FF design with only one-half

of the runs from a foldover clesign. This procedure is known as semi,-foldi,ng (Barnett,

Czitrom, John and Leon (1997), John (2000), \4ee and Peralta (2000)).

As discussed in l\¿lee and Peralta (2000), the use of semi-foldover designs is an

11



CHAPTER 1. INTRODUCTION AND SUNINIARY

Table 1.2: A 16-run Foldover Design Obtained by Folding on Factors 5, 6 and 7 in
the Initial 27-3 Design

Rui't

77

18

19

20

2t
22

23

24

25

26

27

28

29

30

31
.).)
t)L

attractive alternative follow-up strategy because:

semi-foldover designs are simple to construct: we obtain a foldover plan and

,"1."t one-half of the runs from it, no software is required;

semi-foldover designs are often more "degree-of-freedom-efficient" than foldover

designs (that is, semi-folding can be a run-frugal strategy for estimating addi-

tional low-order effects) ;

semi-foldover designs can) if necessary, be followed by the remaining foldover

runs to complete the 2"-@-1) design.

Given the proceeding lz-r design, one possible semi-foldover plan is obtained by

I2



CHAPTER 1. INTRODUCTION AND SUN4N4ARY

first folding on all three added factors (5,6 and 7), and then selecting the eight runs

for which the effect I27 is "+". The resulting 24-run combined design is shown in

Table 1.3, where the 8 runs of the semi-foldover design are in bolcl.

In this thesis, we consider the determination of optimal semi-foldover plans, given

an initial 2n-p FF design, where 51n ( 10 and I <p < 6. This thesis is organizecl

as follows. Chapter 2 provides a brief review of 2-p FF designs, including their

construction and use in industrial applications. The approach for enumerating all

possible semi-foldover plans is reviewed in Chapter 3. Projection estimation capacity

(PEC), projection information capacity (PIC) (Loeppky, Sitter ancl Tang (2007)) and

genelalized minimum abelration (Fries and Hunter (1980), Deng and Tang (1999),

(2002), Li, Lin and Ye (2003)) are also discussed in Chapter 3, and ale the three

optimality criteria we use for ranking the semi-foldover plans. Catalogs of optimal

semi-foldover plans, ranked according to the PEC, PIC and the generalized minimum

aberration criteria, are provided in Appendices 4.1 and 4.2. Sample R code, illus-

trating the ranking of semi-foldover plans for an initial 2a-1 design, is provided in

Appendix B.

13
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Table 1.3: A 24-r'un Design: The 8-Run Semifoldovel Combined with the 16-Run
27-3 Initial Design
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Chapter 2

Fractional Factorial Designs

2.L Two-Level Fbll Factorial and FF Designs

In many industrial experiments, factorial designs are used as a systematic methocl for

assessing the significance of main effects and low-order interactions of some number',

say n) of factors. Suppose that each of the n factors are varied at two-levels, for

example, at a "l.ow" (ot "-") and a "high" (or "*") vahie. In this setting the

experimenter could consider all2" possible treatment combinations. For large n, full

factorial designs reqrúre many runs to be performed. It is typically not possible to

run a full factorial experiment due to the constraints on resources. In this case, one

may consider using trvo-level FF designs to reduce the run size. In such clesigns we

assignp of the factols to interactions amongst the n-pfactors in a 2'"-p fill factorial

design.

Example 2.1. Consider again the 27-3 FF design introduced in Chapter 1. We

denote the 7 factors using the integers 1 thru 7. As a fuìl factorial clesign would

15



CHAPTER 2. FRACTIONAL FACTORIAL DESIGNS

Table 2.1: A 27-s Initial Design
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require 27 : L2S runs) we may reduce the number of runs by generating the factors 5,

6 and 7 by assigning their levels to select interaction columns of the 2a fuif. factorial

design. One possible assignment is 5:7-23,6:724 and 7 :234. The resulting

2-3 : |t/z fraction, or 27-3 FF design, is displayed in Table 2.7. (This design is also

displayed in Table 1.1

Let 1 denote the identity element, whicir is the column of all positive levels "+" (or

1's). Consider the added factor (or generator), 5 : I23. If both sides are multiplied

by 5, we obtain

5x5:I23x5
52 :7235
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CHAPTER 2. FRACTiONAL FACTORIAL DESIGNS

I :1235.

Therefore, the prodr-rct of columns 1, 2, 3 and 5 will yield all runs at the "*"

level. That is, this product yields the identity column, 1. Similar'ly, we have I :1246

and 1 : 2347 from the added factors 6 : I24 and 7 : 234. Note that if I : 7246

and,I :2347, then 1 : 12 : 1246 x2347:72234267:7367. Here, the exponents

in the products are formed by using modulus 2 arithmetic, so that any even power

of a factor is eqrial to 1 and any odd power is equal to the factor itself. By taking

the product of the generators, it will imply another relation in the group. The group

formed by the p defining words (generators) is cailed the defining contrast subgroup

(DCS) (Wu and Hamada (2000)) or complete defining relation (l\4ontgomery (2005)).

If.we multiply 1235, 1246 and2347 together two at a time and three at a time, then

we obtain ihe DCS of the proceeding example as

I :1235:1246:2347: 3456 : 1457 :1367 :2567.

There is a total of 2p : 23 : 8 elements, including the identity 1, in the DCS and

each element is referred to as a "word".

The DCS enables us to determine the ali,as structure of the 27-3 design. For

example, if we multiply every element in the DCS by 1, we can determine which

effects are aliased (indistinguishable) with l in the subsequent data analysis. The

alias chain associated with l is given by

I:235:246: 12347: 13456 :457 :367 : t2567.

Using the preceding approach we can display a list of alias chains for every factor and

two-factor interaction in the experiment.

t7



CHAPTER 2. FRACTIONAL FACTORIAL DtrSIGNS

Table 2.2: The Alias Structure of the 27-3 Design having Generators 5 : I23, 6 : I24
and 7 : 234 (Ignoring Forir-factor and Higher-order Interactions)

Defining relation: I : L235: 1246:2347 :3456: 1457 : 1367 :2567

l:235:246: 457:367
2: I35:746:567:347
3:725:247: 456:767
4:237:126: 356: 157

5: I23:345:737:267
6: I24:345:137:257
7: 234: 745: 137: 256

12:35: 46
L3:25:67
74:26:57
75:23: 47
16:24:37
77: 45:36
27:34:56

727: 357: 467:245: 236: 756

The list of all alias chains is known as the alias structure of the design. There are

15 possibie alias chains (one for each degree-of-freedom) for this 27-3 design, as shown

in Table 2.2. If â main effect or a two-factor interaction is not aliased with other main

effects or two-factor interactions, we say that the effect is clear. Table 2.2 shows that

all main effects (nr-rmbered 1 thru 7) are aliased with three-factor interactions and all

two-factor interactions ale âliased with other two-factor interactions. Therefore, all

two-factor interactions for this 2l;3 clesign are not clear although all main effects are

clear.

18



CHAPTER 2. FRACTIONAL FACTORIAL DESIGNS

2.2 Resolution and Minimum Aberration

Box and Hunter'(1961) intloduced the notion of the resoluti,on of a FF design. The

resolution is the length of the shortest word in the DCS, where the length of a word

is defined to be equal to the number of letters in the word. The resolution is used to

distinguish between two compeling2n-n designs. The shortest word in the DCS of this

27-3 design is of length 4; therefore, we say that this design is a "resolution IV" 27-3 or-

2l;3 design. All other things being equal, designs with higher resolution are preferred,

in order to minimize aliasing of low-orcler effects. To distinguish between two or more

2"-p designs having the same resolntion, Flies and Hunter (1980) introduced the

minimum aberration (NIA) criterion. The MA criterion selects a "good" 2'-p design

by choosing a design that sequentialiy minimizes the occurrence of short words in its

DCS.

Before formally defining the MA criterion, we need to introdrice the notion of a

design's word length pattern (WLP). Recall that the number of letters in a word is

its word length. The vector W : (At, Az, . . . , An) is called the WLP of the design,

where A¿ are the number of words of length i, (i,:7,2, . . . ,n) in the design. An 1VIA

design may now be defined as follows:

Definition 2.2.L. For any two 2''-p designs d1 and cl2, let r be the smallest integer

snch that Á,(dt) I A,(d"), wheLe ,4¿ denotes the number of woi'ds of length z in its

DCS, 1< i, <n. Then d1 is said to have less aberration than d2 if ,A"(dr) < Á"(dr).

If there is no design with less aberration than d1, then d1 is the N4A FF design.

For the Z!¡3 ff design in Example 2.I, all 7 words in the DCS are of length 4.

19



CHAPTER 2. FRACTIONAL FACTOR]AL DESIGNS

Therefore, this design has WLP W : (0,7,0,0,0). It turns out that this design is the

1\4A. 27-3 design (Chen, Sun and Wu (1993)), since there is no other' 27-3 FF design

having less aberration than this design. Note that due to the likely significance of main

effects and two-factor interactions, we do not consider designs having main effects or

tow-factor intelactions aliased with the identity (overalÌ mean) 1. Therefore, we do

not consider designs have non-zero entries for ,41 and 42. We then write a design's

WLP by beginning with ,43.

The following exampie illustrates how the MA criterion may be used to distinguish

between two designs have the same resolution.

Example 2.2. Consider two 27-2 designs, say d1 ancl d2. We denote the 7 factors

nsing the integers 1 thru 7. Factors 6 and 7 arc lhe two added factors. Let d1 have

generators 6 : 1234 and 7 : 1245, and d2 have 6 : 123 and 7 : 745. The DCS of

Iz: L236 : 7457 :234567 with WLP W2: (0,2,0, 1,0).

By comparing 14{ a:ndW2, we observe that both 27-2 designs have resolution 17.

However, note that d1 has only 1 four-letter word, whereas d2 has 2 four-letter words.

Thus, d1 has less aberration than d2. it turns out that d1 is the iVIA design.

Generally speaking, the MA criterion provides a usefui approach for selecting

"good" FF designs when all factors are of equal importance. Note that Deng and

Tang (1999) generalized the VIA criterionto non-regular designs. Non-regular designs

have a more complicated alias structure than "reglllan" FF designs in that effects may

also be partially aliased with one another. Also, the run size of non-regular designs

need not be a powet of 2. \Me reserve discussion concerning "genelalized" i\44 until



CHAPTER 2. FRACTIONAL FACTORIAL DESIGNS

Chapter 3.

2.3 Foldover Plans

A standard follow-up strategy for de-aliasing effects from an initial 2"-p design is

achieved by mea.ns of conducting a foldover design (Box and Wilson (1951), Li and

1\4ee (2002), Box, Hrinter and Hunter (2005), Montgomery (2005)). This approach

adds a second design of equal size, by reversing the signs of one or more of tire n

columns (factors) in the initial design.

Li and Lin (2003) proved that any non-trivial foldover plan (the set of factors to be

sign-reversed) is equi,ualentto one of the 2p -L possible non-trivial core foldouer plans,

where a core foldover plan is a foldover plan consisting only of added factors. We say

that two folclover plans are eqnivalent if they produce the same foldover runs.

Example 2.3. The preceding result implies that there are2p - 1- 23 - I:7 non-

trivial core foldover plans fol the 27r;3 FF design in Exarnple.2.I. One possible core

folclover plan is obtained by reversing th.e signs of all three added factors (5, 6 and 7).

Tlrat is, column 5 becomes "-5" ,6 becomes "-6" and 7 become "-7" . The 32-run

combined (initial plus foldover) design is shown in Table 2.3.

The DCS of the initial N,{A 27-3 design (Example 2.1) is I : 1235 : 1246 :

2347 :3456 : 1457 : 1367 : 2567. The DCS of the foldover design is 1 : -7235 :

-1246: -2347:3456 :7457 : 1367: -2567. Combining the two DCS's yields

I : 3456 : 7457 : 1367. Although the combined design has the same lesolution

(1V) as the initial design, it has 4 fewer four-letter worcls than the initial design. In

27



CHAPTER 2. FRACTIONAL FACTORIAL DESIGNS

Table 2.3: A 32-run Combined Design Obtained by Folding on Added Factors 5, 6
and 7 in the initial 27-3 Design

Run
1

2

,)

4

5

t)

7

8
o

10

11

T2

13

L4

15

16

77

18

19

20

2I
22
ÔD.áò

24

25

26

27

28

29

30

31
DÕJ.á
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CHAPTER 2. FRACTIONAL FACTORIAL DESIGNS

the initial design, recall that al1 two-factor interactions are aliased with other two-

factor intelactions, although all main effects are are clear (Table2.2). After folding

on added factors 5, 6 and 7, we observe that all two-factor interactions involving 2 are

de-aliased in the combined design, since 2 does not appear- in any of the four-letter

words in the DCS of the combined design.

.lÐ
¿L)



Chapter 3

Optimal Semi-Foldover Plans

3.1 Semi-Foldover Designs

Ntlost books on "experimental design" mention various strategies for augmenting an

initial 2"-p design with follow-up runs. One of the most popular follow-up strategies is

to run a foldover design; however', the plimary argument against conducting foldovers

is that they are degree-of-freedom inefficient. Mee and Peralta (2000) point out that

for 16- and 32-run initial zn-p FF designs, a foldover plan typically provides no

more than one-half of the clegrees=of-freedom for de-aliasing two-factor interactions.

Barnett et a1.. (1997) desclibed u 21rn semi-conductor experiment in which they

used only one-half of the runs from a foldover design to estimate the 7 two-factor

interactions involving one of the factors. This approach was named "semi-folding"

by the authors.

Assuming that three=factor and higher-order interactions are negligible, semi-

foldover clesigns and foldover designs may de-alias the same number of low-order

24
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effects. Since a semifoldover design requires only one-half of the runs of a foldover

design, this may allow for considerable cost-savings.

Example 3.1. Recall the 27r¡3 clesign given in Examples 2.1 and 2.3. One possible

semi-folclover plan is obtained by first folding on a1l three addecl factors (5, 6 and

7), and then selecting the eight luns for which the three-factor interaction 127 is

" + " . The resulting 24-run combined (initial plus semi-foldover) design is shown in

Table 3.1, where the runs of the semi-foldover design come from the foldover design

displayed in Table 2.3. (This 24-tun design is also provided in Table 1.3.)

Example 3.2. Consider semi-folding the 32-run NIA design, d1, in Example 2.2. One

possible semi-foldover plan is obtained by first folding on added factor 6, and then

selecting the 16 runs for which the effect 135 is "-". The resulting 48-run combined

design is shown in Table 3.2.

3.2 Enumerating the Semi-Foldover Plans

Li and Lin (2003) showed that for a given 2'-p design, any (non-tlivial) foldover

plan is equivalent to one of. 2p - 1 core foldover plans where a core foldover plan is

constructed by reversing the signs of one ol more of the added factors. To construct a

semi-foldover plan, we select one-half of the runs of a core foldover plan by subsetting

on one of the 2n-p - 1 effects that are in distinct alias chains in the alias structure

of the folclover design. (For example, consider Table 3.3 rvhich displavs the alias

ôr¿.)
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Table 3.1: The 24-run Combined Design Obtained by Folding on Added Factors 5,

6 and 7 in the Initial 2l¡3 Design and Subsetting on L27+ in the Foldover Design

727

+

+
+

I
I

+

+

+

+
+
+
I

I

+
+
+
+
+

1

2

,f

4

5

lr

7

8

I
10

11

T2

13

T4

15

16

t7
18

19

20

2T

22

23

24

72345:1236:7247:234

+
+
+
+

+
+

+
+

+
+

+
+

+

+
+

+

+
+

+

+

+
+

+

+
+

+
+
+
+

+

+
+

+

+

+

+

+
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Table 3.2: The 48-run Combined Design Obtained by Folcling on Added Factor 6 in
the Initial 27-2 Design and Subsetting on 135- in the Folclover Design

RUN

1

2

3

4

o

7

I
o

10
l-1

T2
13
L4
15
16
'1.7

18
19
20
2I
22

24
25
26
27
28
90

30
31
ao

.lJ
2À

35
36

38
39
40
4I

44
4¡)

4t)

47
48

+

+
+

+

r
+
+

+

+

+

+

+
+

+

+

+

+

+
+

;
+
+

;
+

+
+

+
+

+

;
:
+

+

+

+

l
+
+

i
+
+

r
+
+

;
+

1

;
+

;
+
+

+

l
+
+

+

+
+

i
+

l
+

+

+

i
+
+
+

:
+
+

+

+

+

+

+

+

+

+

;
+

;
+

+
+

+
+

+
+
+
+

+
+
+
+

+
+
+
+
+
+
+
+
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Table 3.3: The Alias Structure of the 27r¡3 Foldover Design Obtained by Folding on
Added Factors 5, 6 and 7 (Ignoring Four-factor and Higher-order Interactions)

Defining relation: I : -7235: -1246: -2347 : 3456 : 1457 : 1367 : -2567

1 : -235 : -246 : 457 :367
2 : -135 : -746: -567 : -347
3: -I25: -247 : 456:767
4: -237: -126:356:I57
-5 - 723: -345: -137 :267
-6 - I24: -345 : -137 : 257

-7 - 234: -I45: -I37 :256
12:-35:-46
1¡) _ r)É. _ ÊnL¿-_L¿-UI

14: -26 : 57
1r q, ¡.7

-_LJ-Z¿--+t
1C_qn- Ðn

-ru-z*--Òt

-77 : -45: -36
-27 :34:56

-727 :357 :467 : -245: -236: 156

structure of the foldover design obtain by fotding the 2!¡3 design (Example 2.3) on

the added factors 5, 6 and 7. From Table 3.3 we note that the main effect, 1, is

aliased with the three-factor interactions -235, -246,457 and 367. This alias chain

indicates that we will obtain the same 8 follow-up runs r-egardless if we subset on 1,

-235, -246, 457 or 367 . Simiìarly for the 14 remaining alias chains.) By keeping

the effect on which we subset constant at either " -" or "+", this implies that for

a given 2"-p tnitial design, there arc (2n - 1) x (2'-n - 1) x 2 distinct semi-foldover

plans to consicler for optimality.

Refer to the initial 16-run WA Z!¡3 design in Example 2.3. By the preceding

28
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"connting rule", there will be (2" - I) x (27-s - 1) x 2 : 2L0 possible semi-foldover

plans to assess. One possible semi-foldover plan has already been described in Ta-

ble 3.1. For the MA 2];2 design in Example 3.2, there will be (2' - I) x (22-z - 1) x

2 : 786 possible semi-foldover plans. One possible semi-foldover plan has already

been described in Table 3.2.

3.3 Ranking Semi-Foldover Plans Using the PEC

and PIC Criteria

The combined (initial plr-rs semi-foldover) design is a non-regular design. Although

non-regulal designs have a more complicated alias structure than FF designs (Section

2.2), non-regr:lar designs possess some very useful projection properties.

A design is said to "projected" when we consider the design composed of the

subset of significant main effects. This procedure allows us to consider a design with

fewer factors and a higher resolution than the original design from which we projected.

To illustrate the projection approach we first consider a simple example from the FF

context.

Example 3.3. (N4ontgomeïy (2005), pp. 287*289.) Consid er a2j¡l design, as shown

in Table 3.4, with added factor D : ABC, (here A : l, B : 2, C : 3 and

D : 4). For this design, all two-factor interactions are aliased with other two-factor

interactions. Suppose that main effect B is deemed not significant after analyzing the

main effects. If we discard B from any subsequent analysis, the 2f;1 clesign yields

(i.e., "projects" into) a 23 full factorial tn A, C and D. This projection is displayed
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Table 3.4: A 2a-1 Design with D : ABC

RUN D:ABC Rln Label

1

2
t
L)

4
É
r-,

6

7

8

(1)
acl

bd
ab
Cd

ac

bc
abcd

in Fignre 3.1. Note that ail two-factol interactions amongst A, C and D are clear in

the (projected) 23 design whereas they are not clear in the 2f;1 design. The 23 design

in A, C and , is displayed in Table 3.5.

In this chapter we use the projecti,on estimat'ion capaci,ty (PEC) and projecti,on

i.nformati,on capacitg (PIC) criteria (Loeppky, Sitter and Tang (2007)) to systemati-

cally select combined designs with good projection properties.

Definition 3.3.1. Given an ly' x n non-regr-rlar design, d, wher-e n is the number of

factors, let p¡(d) be the number of estimable models containing k main effects and

their associated two-factor interactions. Also, let

+
+

+

+

pr(d) : +^g),
\r/

so that 01pu ( 1, for aIIk,k - 1,...,n. The sequence (pt,pr,...,pn) is called the

PEC sequence of the design d. It is desirable to sequentially maximize the coordinates

30
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Figure 3.1: Projection of the Zf;i Design to a 23 Design in Factors A, C and D

D-
..,____L lkd

./i ./,

Table 3.5: The Projected 23 Design in Factors A, C ancl D

Run Label

c

It

i-l
Project

{,f

cd

' 
rb'd

,/1,/to'--* 
I

tirl+t i I I

llll.l i I Il _______________t____

| .."' L"o*
-1,/ l,/ D

_A+

(1)

ad
d
a

cd
ac

c

acd
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of the PEC sequence.

Before we discuss the PEC criterion any further, it is useful to describe what we

mean by an "estimable model". We u'ill do this by considering a FF design, although

our emphasis in this chapter will be upon (non-regular) combined designs.

Example 3.4. Consider a 2f;1 design, where 4: \23 such that I : 1234. Suppose

that the design matrix is given by

x-

The design matrix, X, consists of main effects \,2,3, 4 and the two-factor inter-

actions L2, 23 and 34. Note that the columns of X are not linearly independent since

12 : 34. A consequence of this dependence is that det(X'X) will equal 0, and v/e say

that the model (consisting of I,2, 3, 4, 12,23 and 34) is not estimable.

The PEC critelion implies that a given design matrix, X, will contain k main

effects and their correspondi"s (f) two-factor interactions. X will be an N xp rnatrix,

32
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where p : I -l k * (l), and includes a term for the overall mean (denotecl bv l3o).

To obtain the PEC sequence of the 24-run combined design in Table 3.1, we first

observe that for k: I,2,3,4,b,6 and 7, there aLe (f) :7,(t) - 2I, (l) : gf,

(;) : 35, (1r) : zt, ([) : z ana (f) : 1 possible models, respectively, to consider.

Suppose that Æ : 3. \Aie use X1 thru X35 to denote the 35 possible design (model)

matrices. One of the 35 possible design matrices is given by

0o1 3 72 13

-1 1 1

-1 -1 -1

-1 -1 1

-1 1 -1
1 1 -1
1 -1 1

24x7

Xr:

-1
1

-1
1

-1
1

1

¿,)

1

1

-1

-1

-1

-1

1

-1

-1
1

1

-i
-1

where the entries for columns (factors) 7, 2 and 3 are taken from Table 3.1. Note that

det(Xix1) : 4586477424 (non-zero). Therefore, we say that the model comprised of

the main effects 1, 2 ancl3 and their corresponding two-factor interactions is estimable.

Another possibie design matrix is give by X¡s, where the three factors under

.).)
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consideration are 5, 6 a,nd 7. Using columns 5, 6 and 7 from Table 3.1, rve have

l3o 5

Xss :

-1 -1
1 -1
11

-1 1

-1 1

11

1 -1
11

i1

1 -1
11

1 -i

1 -1

56 57

11
1 -i
11
1 -1

-1 1

-1 -1

67

1

-1
i

-1

-1
1

1-1 -1 24x7

Here, det(X!uX35) is 786432000. We conclude that the rrodel comprised of the

main effects 5, 6 and 7 (and their corresponding two-factor interactions) is also es-

timable.

For the combinecl clesign in Table 3.1, it turns orit that for k:3, all 35 moclels

have a non-zero detelminant. We conclude that pz : 7 for this 24-run combined

design. We may proceed in a similar fashion to obtain p3 for the 209 (remaining)

semi-folclovel plans. This procedure must also be performed for pa, . .. ,pz for all 210

semi-foldover plans.

Note that all combined designs are orthogonal arrays in that the columns are

pairwise orthogonal. (However, the combined designs are unbalanced due to the fact

that we subset on a given effect.) Therefore, for a given initial 2"-p design, all PEC-

optimal semi-foldover plans have p1 : pz : I. Consequently, we begin our PEC

sequences with p3, rather than p1 or pz.
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Table 3.6: Given the Initial \fA, Zl¡3 Design: Two Semi-Foldover Plans Ranked
According to the PEC Criterion

Core Foldover Sribset On (pt, pn, ps, pa)

an optimal semi-foldover plan

a poorer semi-foldover plan

5,6,7

5, 6,7

r27+

27+

(1, 0.914, 0.571, 0)

(1, 0.857, 0.286, 0)

Example 3.5. Recall that the \¿tA Zl¡3 initial design has 210 possible semi-foldover

plans. Table 3.6 displays two of these plans ranked according to the PEC criterion.

An optimal 24-run combined clesign is obtained by first folding on columns 5, 6 ancl

7 and then subsetting on 127+. The values of pa and p5 for the optimal semi-foldover

plan exceed those fol the pooler semi-foldover plan, the latter plan being constructed

by first folding on columns 5, 6 and 7 and then subsetting on 27+ .

From Table 3.6 we infer that the design in Table 3.1 allows for the estimation of

all models containing any 3 of the 7 main effects (along with their corresponding two-

factor interactions). We similarly conclude that the optirnal semi-foldover plan results

in 9L4% of the models containing four main effects, along with their corresponding

two-factor interactions, to be estimable. This is superior to the poorer semi-foldovel

plan in which only 85.7% of models involving four factors, and theil cor-responding

two-factor interactions) ale estimable.

It is interesting to note that the optimal semi-foldover plan in Table 3.6 has a

PEC sequence identical to that obtained by folding on factors 5, 6 and 7, despite the

.) É.Jd



CHAPTER 3. OPTIN4AL SENII-FOLDOVER PLANS

semi-foldover design being only one-half the run size of the foldover.

It tulns out that there are 126 semi-foldover plans that have the optimal PEC

sequence in Table 3.6. The remaining 84 plans possess the poorer PEC sequence in

Table 3.6. One reasonable question to ask is "can one further distinguish between

the 126 optimal semi-foldover plans?" In this section we use the PIC sequence as a

secondary criterion for choosing between designs with the same PEC sequences.

Definition 3.3.2. Given an ly' x n non-regular design, d, let -F be the class of models

containing k main effects and their corresponding two-factor interactions and define

d*(d) : I
2t- J-

[det(x;xcl N))1/n

(;)

where X¿ is the ¿úh. model matrix ancl p : 1 + k + (!) is the number of palameters in

themoclel. Notethat 0 < dx ( 1, for allk,k: 1,...,n. Thesequence (dt,dr,...,dn)

is called the PIC sequence of d. As with the PEC criterion, it is also desirable to

sequentially maximize the entries of the PIC sequence.

Consider the semi-foldover plan in Example 3.1. We may obtain d3, for example,

by summing r-rp the 35 entries in the column entitled 'ldet(x't\!24)11/7 " in Table 3.7.
(å)

It tnrns out that d¡ : 0.9901549. The values of d"a, d5 d6 and d7 f.or the semi-foldover

plan in Example 3.1 are obtained in a similar fashion.

It turns out that 14 of the 126 PEC-optimal semi-foldover plans share the optimal

PIC sequence displayed in Table 3.8. The remaining 126 - 74 : 112 PEC-optimal

semi-foldover plans have an inferior PIC sequence, which is not displayed in Table 3.8.

The remaining 210- 126 :84 pla,ns possess PEC ancl PIC sequences identical to those
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Table 3.7: Calculating d3 for the SemiFoldover Plan in Example 3.1

oesien i\¿atrices 

| 
¿et(xíx¿) 

| 
ßs{Iã¿eIL

X1
X2
x3
Xa
X5
X6
Xz
XB
xs
Xrc

i,o
Xsr
Xsz
X¡s
Xs+
,Y:S

: 0.9901549

Table 3.8: Given the Initial MÃ 27r¡3 Design: Semi-Foldover Plans Rankecl Sequen-

tially According to the PEC and PIC Criteria

Cor-e Foldover- Subset On

0.02857743
0.02857143
0.02220902
0.02857143
0.02776498
0.027t6498
0.02857143
0.02857t43
0.02220902
0.02857t43

0.027L6498
0.02857743
0.02857743
0.02857743
0.02716498
0.02220902

(pz, p+, ps, pa) (ds. d.y, dr,, da) No. of Semi-
FoÌdovel Plans

an optimal serni-
foldover plan

a poorel semi-
foldovel plan

4586477424
4586477424
786432000
4586477424
3227225472

3227225472
4586471424
4586471424
786432000
4204265472

:

3227225472
4586471424
4586477424
4586471424
322L225472
786432000

5,6 &.7 727+ (1, 0.914, 0.57r, 0)

5,6 &.7 27+ (1, 0.857, 0.286, 0)

(0.990, 0.885, 0.529, 0)

(0.979, 0.825, 0.283, 0)

Ðt7
Jf
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Table 3.9: Optimal Semi-Foldover Plans for the Five Non-Isomorphic Initial 27-3

Designs Assessed According to the PEC and PIC Criteria

ID I Design Generators Core Foldover Subset On (ps, p¿, ps, pe) (d.s, d¿, ds, de)

7.3.1*

l.ù.ò

7.3.5

5,6,7,56,
57,67,567

É_1ôt

6:124,7:234

5:L2,6:23,7:234

5:I2,6:23,
, 1t

E_1ô

6:123,7:1.24

5:12, 6:13
-_1 À

(127)*

(4,7,14,77,27)+

(t3,76,24,27 ,34,
37,46,67)+

(73,L4,L6,77 ,34,
37, L34, r37)+

(4,74,76,24,34,
45,46, 47 , L46)+

(L, 0.971, 0.857, 0)

(1,0.943, 0.714, 0)

(1, 0.914, 0.571, 0)

(1, 0.914, 0.571, 0)

(l-, 1, 0.857, 0.571)

(1, 0.943, 0.714, O.743)

(1, 0.914, 0.571, 0)

(i, 0.914, 0.57i, 0)

(1, 0.914, 0.571, 0) (0.990, 0.885,0.529,0)

Note:
1. * Denotes the NIA 27-3 design.
2. The optimal semifoldover plans are in bold

of the poorer semi-foldover plan in Table 3.8.

We wish to point out that Table 3.8 displays "an optimal semi-foldover plan" and

a "pooler semi-foldover plan" for just one possible initial 27-3 design. We need to also

consider ranking 24-run combined designs using the four remaining non-i,som,orph'ic

27-3 designs listed in Chen, Sun and \Ä¡u (1993). (\Äfu and Hamada (2000, pg. 311)

state that "two designs or arrays are said to be isomorphic if one design can be

obtained from the other by row permutations, column permutations, or relabeling of

levels." ) The non-isomorphic designs in essence represent the entire class of designs for

a given value of n and p. Table 3.9 displays the results when all five non-isomorphic

27-3 designs are consideled. The five non-isomorphic initiat 27-3 FF designs are

38



CHAPTER 3. OPTII\4AL SEMI-FOLDOVER PLANS

Table 3.10: Optimal Foldovel Plans for the Five Non-Isomorphic Initial 27-3 Designs
Assessed According to the PEC Criterion

ID I Design Generator' Core Foidover (pz, ps, Ps, Pa)

n Ð 1+l.d.r

t.J..)

7.3.4

7.3.5

5:123,
6:124,7:234

5:L2r 6:23¡7:234

5:I2,6:23,
- 1ÁI 

-t+

( 10¿-LL,

6:123,7:124

5:12, 6:13
a 1Á| 

-L+

(1, 0.914, 0.571, 0)

(1 0.914, 0.571, 0)

(1, 0.943, 0.714, 0.143)

(1 0.914, 0.57i, 0)

(1, 1, 0.857, 0.571)

5,6,7,56,

567

567

5

567

Note:
1. * Denotes the MA 27-3 design.
2. The optimal foldovel plan is in bold

labeled 7.3.7-7.3.5, which follows the notation of Chen, Sun and Wu (1993). Given

a non-isomorphic initial design, the semi-foldover plans are assessed according to the

PEC ancl PIC criteria.

Table 3.9 shows that the combined design that uses the initial N4A 27-3 design

does not have the optimal PEC sequence. Using the PEC criterion, we lank the 5

combined designs in the following descending ordel': (1) 7.3.2 (bold in the table),

(2) 7.3.3, (3) 7.3.L,7.3.4 ancl 7.3.5 (three-way tie). We use the PIC sequence in an

attempt to distinguish between clesigns 7 .3.7,7.3.4 and 7.3.5. In doing so, we observe

that designs 7.3.4 and 7.3.5 a1'e also tied with respect to the PIC criterion but ale

snperior to design 7.3.7.

Given the initial designs 7.3.L-7.3.5, we also rank their foldover plans accorcling

to the PEC criterion. The results are displayed in Table 3.10. It is useful to point
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out that the optimal semi-foldover plan (in bold) in Table 3.9 has a PEC sequence

superior to that of the PEC-optimal foldover plan in Table 3.10, (1, 0.971, 0.857,

0) vs. (1,0.914, 0.571, 0). The implication is that superior projection properties,

if of interest to an experimenter, may be obtained by run-frugal design construction

strategies, such as semi-folding.

3.4 Ranking Semi-Foldover Plans IJsing the Gen-

eralized Minimurn Aberration Criterion

A non-regular design is an orthogonal array whose columns do not folm an Abelian

gloup. One consequence is that main effects may be partially aliased with two-factor

interactions. An appealing feature of non-regular designs is that they possess more

flexible run-sizes than legular FF designs. Whereas FF design run-sizes must be a

power of 2, non-regular orthogonai designs can have run-sizes that, for example, are

a multiple of 4. The combined designs in this thesis are all non-regular designs.

Deng and Tang (1999) generalized the resolution and MA criteria as a means for

r-anking non-regular designs. The mi,ni.mum Gaberration cri,teri,on is a generalization

of the MA criterion introduced by Fries and Hunter (1980) for ranking FF designs.

Let D denote a 2'full factorial design. Any n-factor regular or non-regular design, d,

is a collection of points in D, srich that d C D. Therefore, D represents the "design

space" of the n factors. Li, Lin and Ye (2003) defined Xr(") : ilr., r¡ ot'r D, where

x€d,JePandPisthecollectionofallsubsetsof{t,...,r2}.Thenthei,nd'icator

functi,on of cl can be written as P(x) : Ðtrpb¡X¡(x), where bt : # I*e¿X"r(*)

denotes the coefficients of this polynomial function. Note that bo : #. (Additional
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details can be found in Ye (2003) and Li, Lin and Ye (2003)).

Example 3.6. Consider the 2l;3 design from Example 2.1. The indicator function

of this regular design is

F(x) : ] + lr p 21 3r s+ lr p 31 61 7 + lr 7r 2r ar 6+ lr p at sr 7

I lr 24r ar z I lr 2u su 6r z * är zr sr sr a.

The term r1r2!Lsr5, for example, in the preceding indicator function represents the

four-factor interaction between main effects 7, 2,3 and 5. Note that all of the terms

in the indicator function of the 2l;3 design are exactly those words in its DCS. We

defer discussion concerning the interpretation of the öy until after the next example.

Example 3.7. Consider the 24-run combined design from Example 3.1. The indica-

tor frinction of the design is

F (x) : *Å - ft r p 21 7 + ]6r p 3r a+ fi r p 51 6 - ]61 24r 6 - |61 2r ar 5

I ]641 51 7 I |6r ar 61 7 I |6r p 24r 5l ft r p 21 41 6* :r 1r 31 61 7

ir 11 4rsr7 I fir 2r sr arz * hrzrsr 6z7 +ll 3r ar5r 6- |6r yï 2r sr 4:x 51 6:17.

The term r1t2r7, for example, in the preceding indicator function denotes the three-

factor interaction between factors I,2 and 7.

The coefficients of an indicator function are useful for illustrating the alias struc-

ture of the corresponding design. In particular, b¡fbs measures the degree of alias-

ing (i.e., correlation) associated with a word, X7. For example, consider bnTfbs:

-+l#: -å,in Example3.7. This implies that factor 1is partially aliasecl (having

correlation of -å) with the two-factor interaction 27. Similarly, factor 2 is partially
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aliasecl with 17 (having correlation ot -å) and 7 is partially aliased with 12 (also

having correlation of -å)
The generali,zed word, length of a word, X¡, in the indicator fi-rnction is defined to

be tlre number of letters in the word * (7 - lbrlbol) (Li, Lin and Ye (2003)). For

example, the word-length of the three-factor interactioír r1r2r7 in Example 3.7 is

3+ (1 -ll3) - 3?. As in the i\44 criterion for FF designs, longer words are preferred.

Here, the generalized word length definition penalizes words with larger borrelations.

Finally, recall that for a regular design partial aliasing does not occur. Therefore, in

a FF design the word length of a word reduces to the number of letters that comprise

the word.

Definition 3.4.L. Let d be an N x n design, and let fn*t¡, b" the number of words of

fractional length, i+llt, in the indicator function, where 'i:7, .. .,fr,1:0, ...,t-7

a.nd ú: Nl4. The ertendedwordlengthpattern (EWLP) of d is defined to be

(ft, ... , "fr+1t-r¡ /t, fz, . .., fr+ç-t¡/t, ... , fr, .. . , fn+þ-t)/t).

Furthermore, the generali,zed resoLuti,on is the length of the smallest word in the

EWLP.

Example 3.8. Recall the 2!¡3 initial design having 210 possible semi-foldover plans.

Consider the two semi-foldover plans listed in Table 3.11. For both semi-foldover

plans, we rank the resulting combined designs according to the generalized i\44 cri-

terion. Here we may clenote the entries of the EWLP by (Ír, fz.taz, fz.zss, fz.s, fr.øør,

fz.ass, fs,...,,fz.s¡s), where t : Nl4 : 2414 : 6. However, note that Ingram and

Tang (2005) state that, if the number of runs is a multiple of 8, then f*.0 X7(x) can

only take on values from the set 0,8, . . . , ¡y' - 8, N. Therefore, in this example we
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Table 3.11: Given the initial \[.A 27r¡3 Design: Two Semi-Foldover Plans Ranked
According to the Genelalized N4A Criterion

I Cole Foldover Subset On (fz, fz.zsz, fz.aa¡, fs, ... , fs,,fs.¡¡e, ,f¡.ooz)

Semi-foldover pian 1

Semi-foldovel plan 2

5, 6,7

5, 6,7

t27+

27+

(0, 0,0,0,0, 7,3,0,4,0, 0,0)

(0, 0, 3, 0, 0, o, 3, o, 8, o, 0, 0)

can modify (i.e., shorten) the EWLP to be of the form (fr, f r.ttt, f".aar, f z,. . ., f.,.aer).

Generally speaking, in this thesis we wili truncate EWLPs beginning at words of

length 6 in orcler to save space. This is acceptable since we assume that higher-order

interactions are negligible. Table 3.11 displays the general EWLP æ (fr, Ír.tss, fr.euz,

12,..., fs, fs.ßs, fs.eaz). Semi-foldover plan t has 7 words of length 3.667,3 words

of length 4 and 4 words length of 4.667. Semi-foldover plan 2 has 3 words of length

2.667,3 words of length 4 and 4 words of length 4.667.

For given N and ??, a generalized MA design is one that results from sequentially

minimizing the EWLP. Flom Table 3.11, we observe that the (generalized) resolution

of semi-folclovel pians 1 ancl 2 are 3.667 and 2.667, respectively. Therefore, semi-

foldover plan t has higher resolution. It turns out that semi-foldovel plan 1 is the

generalized MA semi-foldover plan for N : 24 and n : 7.

43



CHAPTER 3. OPTIMAL SEN4I-FOLDOVER PLANS

3.5 Overview of the Catalog of Optimal Semi-Foldover

Plans

The previous sections utilized the PÐC, PIC and generalized \¡IA criteria for ranking

combined designs. The tables in Appendix A contain 72-,24- and 48-run combined

designs ranked according to the three preceding criteria. The 24- and 48-run com-

bined designs begin with an initial 16- and 32-run non-isomorphic 211-p FF design,

respectively, for n:5,.. .,10 and p: I,.. .,6. The non-isomorphic 16- and 32-run ini-

tial FF designs are obtained from the catalog provided by Chen, Sun and Wu (1993).

The 8-run MA iniiial FF designs are obtained from Wu and Hamada (2000, pg. 193).

In Appendix 4.1, all 12-, 24- and 48-run semi-foldover plans (or equivalently,

combined clesigns) are assessed sequentially with respect to the PEC and PIC criteria.

Note that the first column heading, "ID", indicates the initial design. All 1\44 initial

designs are labeled with a x. The columns labeled "Cole fo" and "SS" record the

cole foldover plan(s) and the effect(s) upon which we should subset, for a given initial

design.

Example 3.9. Consider the 12-run combined designs. Table 4.1 in Appendix A'.1

only considers 8-run 1\44 initial designs. Consider semi-folding the \[,A, Z]¡L clesign.

The optimal PEC sequence is achieved by folding on (added) factor 4 and then by

subsetting on one of the factors, 7, 2, 3 or 4, at, either theil low or high levels.

The resulting optimal PEC sequence is (ps,p¿,ps) : (1, 1,0). The PIC sequence is

(dt, dn, ds) : (0.951, 0.858, 0).

Example 3.10. Considel the 24-run combinecl designs. Table A..2 uses the non-
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isomorphic 16-r'un initial designs from Chen, Sun and \Irtr (1993). For exampie, the

notation 7.3.I, 7.3.2,. . .,7.3.5 in Table 4.2 implies that there are five non-isomorphic

27-3 designs. This notation follows that of Chen, Sun and Wu (1993). For N :24

ancl n : 7, lhe optimal semi-foldover plan is achieved by first using the initial design

labeled 7.3.2. We then folci on the three-factor interaction 567, and choose the semi-

foldover runs by subsetting on 4,7,74,17 or 27 at either their low or high levels. The

PEC sequence of the corresponding design ir (pr, p¿,ps,po) : (1,0.971,0.857,0). We

nse the PIC criterion to distinguish between designs 7.3.7,7.3.4 and 7.3.5, which are

tied with respect to the PEC critelion. Here, (ds,dd,ds,da): (1,0.914,0.577,0) for

designs 7.3.4 and 7.3.5 and (dt,dn,ds,da): (0.990,0.885,0.529,0) for design 7.3.7.

All entries in the row colresponding to design 7.3.2 are displayecl in bold to indicate

their optimality with respect to the PEC criterion.

It is useful to compare the PEC sequences (for oul PEC-optimal 24-run com-

binecl designs) with the PEC sequences obtained by Loeppky, Sitter ancl Tang (2007).

To constlucL 24-run designs, Loeppky, Sitter ancl Tang (2007) developed a pÌoce-

dure for efficiently searching through all design projections arising from a catalog of

non-isomolphic Hadamar-d matrices. (Wu and Hamada (2000, pg. 309) describe a

Hadamard matrix as follows: "A Hadamard matrix of order N, denoted by fl¡¿, is

an ly' x l/ orthogonal matrix with entries 1 or -1. We can assume without loss of

generality that its first column consists of 1's. Then the remaining l/ - 1 columns

are orthogonal to the first column and must have half 1's and half -1's". It is also

useful to note that for Hadamard matrixes, l/ is always a multiple of 4.) Table 3.12

cornpares oru five 24-run PEC-optimal combined designs (from Table 4.2) witli those
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Table 3.12: Comparison of Select 24-Run PEC-Optimal Semi-Foldover Plans with
Corresponding 24-Run PEC-Optimal Designs from Loeppky, Sitter and Tang (2007)

Design from Loeppky et al. , P+, Ps, Pa) (pt, po, Ps, Pø)

6.1
7.t
8.1
9.1
10.1

1,1,1,1 6.2.2
F7t^
I .¿..¿

8.4.2
9.5.4
10.6.3

(1,1,1,1)
(1, 1, 1,0.796)
(1, 1, 1, 0)

(1, 1, 1, 0)

(1, 1, 1, o)

(1, 0.971, 0.857, 0)

(1, 0.957, 0.786, 0)

(1, 0.929, 0.643, 0)

(1, 0.929, 0.643, 0)

in Table 5 of Loeppkv, Sitter and Tang (2007).

By comparing our 24-rw PEC-optimal designs with those in Table 5 of Loeppky,

Sitter and Tang (2007), we note that all of our semi-foldover plans possess inferior

PEC sequences. This is not surprising since Loeppky, Sittel and Tang (2007) begin

witlr a 24-rw design whereas we take a 16-run FF and then semi-fold it.

Example 3.11. Consider the 48-run combinecl designs. Table 4.3 in Appendix 4.1

lists the non-isomorphic 32-r'un initial designs fi'om Chen, Sun and \.Ahr (1993). Con-

sider semi-folding an initial 27-2 design. The optimal semi-foldover- plan is achieved

by using the initial designs labeled 7.2.7 (the MA initial design) or 7.2.6. Note that an

identical PEC sequence ((p3, p¿,ps,pa,pz): (1, 1, 1, 1, 1)) is obtained when beginning

witlr initial designs 7.2.L,7.2.2,7.2.4,7.2.5,7.2.6 and7.2.7. Using the PIC criterion as

a secondary criterion fol distingr-rishing between the PEC-optimal semifoidover plans

we note that semi-folding the initial clesigns 7.2.I and 7.2.6 results in the optimal PIC

sequence; namely, (dt, dr, ds, dq, ds, da, dz) : (0.997, 0.990, 0.978, 0.959, 0.930). All en-

tries in the rows colresponding to initial clesigns 7.2.I and 7.2.6 arc clisplayed in bold

to indicate their optimality.
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For a given non-isomorphic initial clesign, the tables in Appendix 4.2 lists 12-,

24- and 48-run semi-foldover plans lanked according to the generalized MA criterion.

Note that to save space we truncate EWLPs beginning at words of length 6.

Example 3.L2. Table 4.4 assesses the various 12-run combined designs according

to the genelalized I\44 criterion. For example, consider the 2j;1 initial design. By

folding on (added) factor 4 and subsetting on the two-factor interactions, 12, 13 or 14,

at either the low or high levels, we obtain the minimum G-aberration 12-run combined

design. The corresponding EWLP has entries (fr, fr.ttt, fr.aa.,, fr,..., fn.øar): (0, 0, 0,

0,0,2,0, 0, 0, 0, 0, 1). Therefore, the minimum G-aberration combined designs have

2 words of length 2.667,1word of length 4.667, and possess a generalized resolution

(B) of 2.667.

Example 3.13. Table 4.5 assesses the various 24-run combined designs according to

the generalized N{A criterion. Consider semi-folding an initial27-3 design. The NIA

initial design, 7.3.L, procluces the minimum G-abelration 24-rw combined design

lraving EWLP (Ír, fr.sst, fz.sø2,..., ls.aaz) : (0, 0, 0, 0, 0, 7, 3,0, 4, 0, 0, 0) and

R: 3.667. This is achieved by folding on either 5, 6, 7, 56,57, 67 or 567, and then

by sr,rbsetting on the three-factor interaction 727 at either the low or high levels. All

entries in the low corresponding to design 7.3.1 are displayed in bold to indicate that

the suggested semi-foldover plans are optimal with respect to the generalized MA

criterion.

Example 3.L4. Table 4.6 assesses the various 48-r'un combined designs according

to the generalized N4A criterion. Consider semi-folding an initial 27-2 design. Here,
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the N4A initial design, 7.2.I, does not produce the minimum G-aberration combined

design. Rather, the optimal semi-foldover plan is achieved by using the initial design

7.2.3. By folding on effects 6, 7 or 67 and by subsetting on the four-factor interactions

1345 or 1357 at either their low or high levels we obtain the minimum G-aberration

48-run combined design. The optimal combined designs have EWLP (/3, fz.rur,.fs.sse,

fs.s, fz.asz,,fs.s¡¡, fa,"',,fs.s¡¡) : (0, 0, 0, 0, 0, 0, 1, 0, 0' 0, 6, 0, 0, 0, 0, 0, 0, 0) and

R:4. AII entries in the row corresponding to design 7.2.3 are displayed in bold to

indicate that the given semi-foidover plans are optimal with respect to the generalized

NdA criterion.
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Chapter 4

Conclusion and Future Work

This thesis has primarily focused upon the selection of semi-foidover plans that have

desirable projection properties. To assess such properties we have usecl the PEC and

PIC criteria (Loeppky, Sitter and Tang (2007)). We have also used the generalized

N4A criterion (Deng and Tang (1999, 2002)) in this thesis to select semi-foldover plans

that sequentially minimize the presence of shor-t words in their corresponding EWLPs.

, 
One avenue for future research is to again use the semi-foldovel approach for con-

strr-rcting the follow-up runs but rather select the runs using criteria other than PEC,

PIC and generalized MA. For example, one might deem an optimal semi-foldover

plan to be one that de-aliases the largest number of low-order- effects in the initial

design. Althor-rgh the generalized NIA criterion will likely perform well according to

this criterion, it is unlikely to be optimal in all situations.

An interesting feature of semi-foldover plans is that they may be superior to

foldover plans when assessed with respect to the PEC criterion. Examples of such

occrurences were notecl in Chapter 3. Future research might seek to determine if
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the projection properties of semi-foldover plans (compared to foldover plans) are

fi'equently supelior. If so, this would be another argument in favor of running a

semi-foldover pian rather than a foldover plan which requires more r-Lrns.

Semi-folding is but one approach proposed in the literature for constructing follow-

up runs. Another possibility for future research is to investigate different approaches

for constructing the follow-up runs. For example, 2-optimal or Bayesian strategies

may also be used. Mee and Peralta (2000) highlight the general pros and cons of such

competing follow-up strategies, although they do not investigate these competing

follow-up strategies in any detail. They conclude that:

1. 2-optimal designs can de-alias mor-e low-order effects than semi-foldover designs

but are less appealing when taking into account othel useful design criteria

(for example, robustness to model mis-specifi.cation and suitability of further

augmentation);

2. A Bayesian follow-up strategy is highly flexible and can take into account mul-

tiple design criteria ancl model uncertainty but is considerably more tedious to

implement than semi-folding.
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Appendix A

Optimality Criteria

4.1 L2-, 24- and 48-Run Combined Designs As-
sessed Sequentially with Respect to the PEC
and PIC Criteria
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Table 4.1: 12-Run Combined Designs Assessed Sequentially with Respect to the PtrC
ancl PIC Criteria

Initial design (ID) Cole fo SS (pz, pq, ps) (d4, d,a, d'5)

4.1

5.2

6.3

4 (r,2,3,4)+ (1, 1, o) (0.951, 0.858, 0)

4,5 (23,24)+ (1, 0.8, 0) (0.951, 0.686, 0)

456 (16)+ (1, 0.8, 0) (0.951, 0.686, o)

7.4 45,46,47,56, (1,2,3,4, (0.914, 0.571, 0) (0.869, 0.490, 0)

57,67,4567 5, 6, 7)+

Note: All 4 designs ale MA designs.
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Table A.2: 2í-Ptrn Combined Designs Assessed Sequentially with Respect to the PEC
and PIC Critelia

ID Cole fo SS (ps, pn, Ps, Pa) (dz, d+, ds, da)

5.1.1* 5 (t2,73,1-4,15, (1, 1, 1, 0) (0.980, 0.962, 0.943, 0)

23,24,25,
34,35,45)+

5.1.2 5 (12,13,15)+ (1, 0.8, 0, 0) (0.970, 0.766, 0, 0)

5.1.3 5 (134,234,345)+ (1, 1, 1, 0) (0.990, 0.968, 0.926, 0)

6.2.r* 5,6,56 (5,6,724,134)+ (1, 0.933, 0.667, 0) (0.981, 0.835, 0.330, 0)

6.2.2 56 (23,2L26,35, (1, 1, 1, 0) (0.983, 0.958, 0.912, 0)
45,56)+

6.2.3 56 (13,14,16,23,24, (1, 1, 1, 0) (0.980, 0.951, 0.904, 0)

26,35,45,56)+

7.3.7* 5,6,7,56, (127)+ (1, 0.914, 0.571, 0) (0.990, 0.885, 0.529, 0)

57,67,567

7.3.2 567 (4,7,L4,L7,27)+ (1, 0.971, 0.857, 0) (1, 1, 0.857, 0.571)

7.3.3 567 (73,t6,24,27,34, (1,0.943,0.714,0) (1,0.943,0.714,0.143)
37,46,67)+

7.3.4 5 (73,t4,\6,77,34, (1, 0.914, 0.571, 0) (1, 0.914, 0.571, 0)

37,r34,137)+

7.3.5 567 (4,t4,t6,24,34, (1, 0.914, 0.571, 0) (i, 0.914, O.SZ1, O¡

45,46,47 ,146)+

Note:
1. x denotes the initial MA design
2. Entries in bold depict semifoldovel plans that are optimal with respect to the PEC crite¡ion
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ID

(Cont'd) Optimal

Cole fo SS

24-Run Combined Designs

(pz, ps, Ps, Pa) (ds, d+, ds, da)

8.4.1* 5678 (4,5,6,7,
8,15)t

(8,18)+

(58)+

(48)+

(48,78)+

(74,24,34,45,
46,47 ,48)+.

8.4.2

8.4.3

8.4.4

8.4.5

8.4.6

5678

5678

567

5678

567

(1, 0.914, 0.571, 0)

(1,0.957,0.786, 0)

(1, 0.929, 0.643, 0)

(L, 0.957,0.786, o)

(1, 0.929, 0.643, 0)

(1, o.g, 0.5, 0)

(0.975, 0.875, 0.521, 0)

(0.975, 0.912, O.7t2, O)

(0.982, 0.889, 0.588, 0)

(o.975, o.9t_2, O.7L2, O)

(0.986, 0.893, 0.589, o)

(0.986, 0.865, 0.457, 0)

9.5.1*

s.5.2

9.5.3

9.5.4

9.5.5

567,678

5678

5678

56789

5679

(17)+

(17)+

(1e)+

(38,39,69)+

(24,29,34,39,
47,48)t

(0.988, 0.873, 0.492, o)

(1, 0.921, 0.603, 0)

(1, 0.921, 0.603, 0)

(1, 0.929, 0.643, 0)

(1, 0.921, 0.603, 0)

(0.968, 0.836, 0.466, 0.041)

(0.984, 0.882, 0.551, 0)

(0.984, 0.882, 0.551, 0)

(0.984, 0.890, 0.588, 0)

(0.984, 0.882, 0.551, 0)

10.6.1* 5670,6780 (17)+

70.6.2 56789 (20,39)+

10.6.3 567890 (17,19,110,
20,50)+

(0.983, 0.867, 0.524, 0)

(1, 0.924,0.619, 0)

(L, 0.929,0.643, 0)

(0.961, 0.826, 0.489, 0.042)

(0.982, 0.884, 0.565, 0)

(0.982, 0.887, 0.586, 0)

(34,39,30,48)+ (1, 0.924, 0.619, 0)10.6.4
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Table 4.3: 48-Rrin Combined Designs Assessed Sequentially with Respect to the PEC
and PIC Criteria

ID Core fo SS (pz, pn, ps, pa, pz) (ds, dq, d,5, cI6, d.7)

6.1* 6 123,124,725,126, (1, 1, 1, 1, 0) (0.995, 0.997, 0.979, 0.969, 0)
134,135,146,145,
146, 156)+

7.2.L" 6,7 (735,L37,235,237, (1, 1, 1, 1, 1) (0.997, 0.990, 0.978, 0.959, 0.930)
345,347)+

7.2.2 67 (124,725,127,134, (1, 1, 1, 1, 1) (0.996, 0.987, 0.974, 0.955, 0.930)
135,137,146,156,
i67)+

7.2.3 6,7,67 (1345, 1356, )t (1, 0.971, 0.957, 0.571, 0) (1, 0.966, 0.83g, 0.540)

7.2.4 6,67 (234,235,237,245, (1, 1, 1, 1, 1) (0.996, 0.997,0.974, 0.955, 0.930)
247,257)+

7.2.5 67 (r3,74,r5,r7,23, (1, 1, 1, 1, 1) (0.990, 0.97g, 0.959, 0.93i, 0.g94)
. 24,25,27,36,46,

56,67)+

7.2.6 67 (235,245)257)356) (1, 1, 1, 1, 1) (0.997, 0.990, 0.978, 0.959, 0.930)
456)567)+

7.2.7 67 (135,1.45,157,235, (1, 1, 1, 1, 1) (0.996, 0.997,0.974,0.955, 0.930)
245,257,356,456,
567)+

7.2.8 67 (2345,2357)+ (1, 0.971, 0.857, 0.571, 0) (0.997, 0.962, 0.841, 0.553, 0.261)

Note:
1. x deuotes the initial À44 design
2. Entlies in bold depict semi-foldover plans that are optimal with lespect to the PEC criterion
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(Cont'd) Optimal 48-Run Combined Designs

ID Cor-e fo SS

8.3.1- 6,7,67, (125)+ (1, 0.986, 0.929, 0.786) (0.997, 0.976, 0.908,0.753)
68,78,678

8.3.2 78 (145,148,178)* (1, 0.986, 0.929, 0.786, 0.5) (0.996, 0.975, 0.906, 0.751, 0.465)

8.3.3 67,68,78 (1345,1348)+ (1, 0.971, 0.857, 0.571, 0) (1, 0.966, 0.838, 0.540, 0)

8.3.4 6,7,8,67, (1258)+ (1, 0.957, 0.786, 0.429, 0) (1,0.952,0.769,0.405,0)
68,78,678

8.3.5 678 (L45,748,L57,178)+ (1, 1, 1, 1, 1) (0.996, 0.989, 0.976, 0.957, 0.930)

8.3.6 67,678 (145,148,158)+ (1, 0.986, 0.929, 0.786, 0.5) (0.996, 0.972, 0.903, 0.7495, 0.465)

8.3.7 678 (148,248,456,468)* (1, 0.986, 0.929, 0.786, 0.5) (0.997, 0.976, 0.908, 0.753, 0.46s)

8.3.8 678 (746,148,157)+ (l-, L, t-, 1-, L) (0.996, 0.989, 0.976, 0.957, 0.930)

8.3.9 67 (35,38,57,78, (1,0.971, 0.857, 0.571, 0.125) (0.992, 0.954, 0.829, 0.54i,0.115)
135, 138, 157, 178)+

8.3.10 678 (234,235238, (1,0.986,0.e29,0.786, 0.5) (0.996, 0.974,0.906,0.753,0.465)
247,257,278)*.
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(Cont'd) Optimal 48-Run Combined Designs

ID C"." fo SS ør,pr,p
9.4.1* 67, 68, 69, (156)+ (1, 0.984, 0.921., 0.762) (0.998, 0.s75, 0.900, 0.729)

78, 79, gg

9.4.2 6,7,8,67,68, (15,19,25,29, (1, 0.976, 0.881, 0.667, 0.333) (0.994, 0.963, 0.857. 0.635. 0.309)
69,78,79,89, 35,39,45,49,
678,679,689, 57,58,79,89)+
789,6789

9.4.3 67,68,78,689, (169)+ (1, 0.976, 0.881, 0.643, 0.25) (0.9e6, 0.966, 0.861, 0.616, 0.234)
789,6789

9.4.4 8s (135,139,145, (1, 0.976,0.881,0.667, 0.333) (0.996, 0.s65,0.859, 0.637,0.310)
149, 158, 189)+

9.4.5 67 138È (1, 0.952, 0.762, 0.381, 0) (0.998, 0.944,0.747, 0.369, 0)
68 157+
69 145+
78 i56+
79 r25+.
89 135+
6789 159+

9.4.6 6789 (148)+ (1, 1, 0.976, 0.667, 0.333) (0.981, 0.981-, 0.920, 0.315, 0)

9.4.7 6 (239,369)+ (1, 0.944, 0.722, 0.333,0) (0.s98, 0.937, 0.707, 0.320, 0)

9.4.8 678,679,6789 (139)+ (1,0.992, 0.960, 0.881, 0.722) (0.996,0.981,0.938, 0.843, 0.672)

9.4.9 678,6789 (159)+ (1.0.976,0.881, 0.667,0.333) (0.995,0.962, 0.856,0.636, 0.310)

9.4.10 6789 (56,69)+ (1. 0.984, 0.927, 0.762, 0.472) (0.993, 0.968, A.892, 0.724, 0.437)
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(Cont'd) Optimal 48-Run Combined Designs

lD Core fo SS (ps, pc, ps, pe , pz) (d.3, d4, d.s, d.6, d7)

10.5.1* 67,68,69,60,78, (12,13,14,15,16,
79,70,89,80,90, 17,tA,r9,23,24,26,
678, 679,670,689, 27,2a,34,37,45,46)*
680,690,789,780,
790.890

(1, 0.98r, O-905, 0.724)

(1, 0.976, 0.881, 0.683, 0.25)

(1, 0.971, 0.857, 0.590, 0.2)

(1, 0.971, 0.857, 0,610, 0.267)

(1, 0.97r, 0.857, 0.610, 0.267)

(1, 0.986, 0.929, 0.781, 0.367)

(1, 0.986, 0.929, 0.790, 0.5)

(1, O.991, O.952, O.8õ7, O.667)

(1, 0.981, O.9O5, O.724, O.4)

(1, 0.986, 0-929, 0.791, 0.517)

(0.992, 0.96J, 0.877, 0.688)

(0.996, 0.964, 0.859, 0.614, 0.232)

(0.996, 0.960, 0.836, 0.564, 0.186)

(0.997, 0.961, 0.836, 0.582, 0.248)

(0.995, 0.958, 0.833. 0.579, 0.246)

(0.99s, 0.972, 0.901, 0.739, 0.339)

(0.989, 0.964, 0.896, 0.747, 0.461)

(o.997, O.98O, O.93O, O.82O, O,620)

(0.996, 0.970, 0.883, 0.692, 0.372)

(0.994, 0.971, 0.901, 0.752, 0.478)

70.5.2 678,679,689,690,
789,780

10.5.3 70,89,789,780,
790,890

10.5.4

10.5.5 678
679
670
689
680
690
67890

10.5.6 67890

10_5.7

( 125,1 28,1 29,
r20,137)+

(120, 145, 149, r70)+

(135,136,1.15,
1.10,158, r59)t

(2e,6e):!
(28,68)+
(25,56)+
(27 ,67)+.
(24,46)+
(23,36)+
(20,60)+

(r10)+

50+
24+

(140)j:

(r35, 130, 157, 150)+

(25,20,35,30,45,
40, s6, 57, 58, 60, 70, 80)+

6789
6780
6790

10.5.8 67890

10.5.9 67890

10.5.10
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^.2 
L2-,24- and 48-Run Combined Designs Ranked
According to the Generalized Minimum Aber-
ration Criterion
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Table 4.4: 12-Run Combined Designs Ranked According to the Generalized Minimum
Aberration Criterion

4.r 4

5.2 45

6.3 456

7.4 456

(12, 13, 14)+

(23,25)+

(16)+

(r,2,3,
4,5,6,7)+.

2.667

2.667

2.667

r.667

(0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1)

(0, 0, 0, 0, 0, 2, 0, 0, 4, 1, 0, o, 0, o, o)

(0,0,0,0, 0, 3, 0,0,9,3,0,0, 0, 0,0)

(0, 0, 1, 0, 0, 3, 0, 0, 11, 7,0,4,0, 0, 3)

EWLP (ft, .ft.szs, .ft.aaz,..., .f4, .f4.szz,

Note: (fi....) denotes E!VLPs starting with wold length equal to 1
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Table 4.5: 24-Run Combined Designs Ranked According to the Generalized Nlinimum
Aberration Criterion

ID

5.1. i "

5.L.2

5.1.3

Core fo

5

SS

(t2,r3,14,15,
23,24,25,34,

35,45)+

(t24,734,L45)+

R, EWLP (fz, fz.zzs, fz.aaz,..., fs, fs.ssz, "fs.ooz)

2.667 (0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1)

3.667 (0, 0, 0, o, o, 2,0, 0, 1, 0, 0, 0)

(134J234345)+ 3.667 (0, o, o, o) o) z) o, o, 1, o, o, o)

6.2.L'^

6.2.2

6.2.3

5,6,56

56

56

(L24,L34)+

(23,24,26,35,
45,56)+

(t3,L4,16,23,
24,26,35,
45,56)+

3.667

2.667

2.667

(0, o, o, o, o, 4,, L) o) 2) o, o, o)

(0, o, 1, o, o, 3, 0,0,2,1, o, o)

(0, 0, 1, 0, 0, 4, 0, 0, 1, 0, 0, 0)

7.3.L" 51617 )56157 167 1567

7.3.2 567

/ .J.J ÐD /

7.3.4 567

7.3.5 567

(L27)+

(14,17)+

(13,16)+

(34,37,134, 137)+

(14,24,34,45,
46,47,146)+

(0, o, o, o, or Tr B, o) 4) o, o, o)

(0, 0, 1, 0, 0, 6, L,0,4,2, 0, 0)

(0, 0, 1, 0, 0, 6, I,0, 4,2, 0, 0)

(0, 0, 1, 0, 0, 6, 2, 0, 3, 0, 0, 2)

(0, 0, 1, 0, 0, 6, 3, 0, 2, 0, 0, 2)

3.667

2.667

2.667

2.667

2.667

Note:
1. x denotes the initial NIA design
2. (12,...) denotes EWLPs starting with wold lengths equal to 2 and truncated at /6
3. Fol given n and p, ent¡ies in bold deuote semi-foldover plans that are optimal with lespect to the generalized NIA
critelion
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(Coni'd) 24-Run Combined Deisgns Ranked According to the Generalized N4inimum
Abelration Criterion

TD Col'e fo SS R EWLP (fz, fz.sss, fz.aaz,..., fs, Ís.szs, fs.aat

8.4.1*

8.4.2

8.4.3

8.4.4

8.4.5 5678 (48,78)+

8.4.6 567 (14,24,34,45,
46,47,48)+

(0,0,4,0, 0,0, 6, 0, 16,0,0, 0)

(0, 0, 1, 0, 0, 10, 7,0,4,0, 0, 4)

(0,0,2,0, o, 8, b, o, 5, o, o, g)

(0, 0, 2, 0, 0, g, 3, o, 7, 4, 0, 4)

(0,0, 1,0, o, 10,5, 0,6,0,0,4)

(0, 0, 1, 0, 0, 10, 7,0, 4,0, 0, 4)

56,57,58,67,
68,78,5678

567,5678

5678

567

(I2,73,74,15,
16,17,18)+

(18)+

(58)+

(r4,r8,24,29,
34,38)+

2.667

2.667

2.667

2.667

2.667

2.667

9.5.1* 567,579

9.5.2 5678

9.5.3 56789

9.5.4 56789 (38,39,69)+

9.5.5 5679 (24,29,34,
39,47,49)+

(0, 0, 4, r, 0, 7, 5, 0, 17,6, 0, 10)

(0,0, 2, 0,0, 14, 10, 0, 9,0,0, 12)

(0, 0, 2, 1, 0, 13, 5, 0, 13, 6, 0, 6)

(0, o, 2, o) o) L4) g, o, g, o, o, l-2)

(0,0,2, 0, 0, 14, 10, 0, 9,0, 0, 12)

(17)+

(17)+

(1e)+

2.667

2.667

2.667

2.667

2.667
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(Cont'cl) 24-Run Combined Designs Ranked According to the Generalized Nlinimum
Aberration Criterion

ID Cole fo SS R EWLP (fz, fz.szs, fz.aaz,..., fs, Ís-zzs, fs.aaz)

10.6.1* 5

10.6.2 567890

10.6.3 567890

10.6.4 56890 (34,39,30,48)+ 2.667

(0, 0, 5, 6, 0, 10, 10,0, 16,9,0, 24)

(0, 0, 3, b, o, 14, 7, 0, 22,6, 0, 21)

(0, 0, 3, 0, 0, 20, 15, 0, 13, 0,0,24)

(0, o, g, o, o, 19, 16, o, 18, o, or zr)

(13,14,15,
17,18)+

(20,39)+

(18,19,1 10,

20,50)+

2.667

2.667

2.667
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Table 4.6: 48-Run Combined Designs Ranked According to the Generalized Nlinimum
Aberration Criterion

ID Core fo SS R EWLP (/¿, lz.ß2, fz.zs, fz.s, Íz.aø2, Í2.ae2,..., fs.sgs)

6.1.1* 6 (123,124,125. 3.667 (0,0,0,0,0,0,0.0,0,0,2.0,0,0,0,0,0,0,0,0,0,0,0,0)
126,134,135,
136,145,146,

156)+

7.2.r* 6,7 (135,137,235, 3.667 (0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,3,0, 1,0,0,0, 1,0)
237,345,347)+.

7.2.2 6,7 (724,125,127, 3.667 (0,0,0,0,0,0,0,0,0,0,3,0, 1,0,0,0, 1,0,0,0,0,0, 1,0)
134,135,137,

146, 156, 167)+

7.2.3 617167 (1345,1357)+ 4 (Or 0,0,0,0,0,0,0,0,0, O, O, 1, O,0,0,6,0,0,0,0,0,0,0)

7.2.4 6 (134,135,L37, 3.667 (0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,2,0, 1,0,0,0,0,0)
245,247,257)*

7.2.5 67 (134,135,137, 3.667 (0,0,0,0,0, 0,0.0,0,0,3, 0,0,0, 0,0, 3,0,0,0, 0, 0, 0, 0)
atA ñcÉ aoazo+rL¿orL¿ I ,

346, 356,367)+

7.2.6 67 (135,145,157)* 3.667 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 2, 0, i, 0, 0, 0, 0, 0)

7.2.7 67 (135,1.45,757, 3.667 (0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,2,0,0,0,0,0, 1,0)
235,245,257,

' 356,456,567)*

7.2.8 67 (2345,2357)+ 3.667 (0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,2,0,0,0,0,0,2,0)

8.3,1* 617,67, (125)+ 3.667 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, O, 0, 6, O, 2, O) O,0, 2, 0)
68,78,678

8.3.2 78 (145,148,178)+ 3.667 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4. 0, 1, 0, 0, 0, 4, 0, 0, 0, 0, 0, 4, 0)

8.3.3 67,68,78 (1345,1348)+ 4 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0)

Note:
1. x denotes the initial MA design
2. Uz,...) denotes EWLPs stalting rvith wold lengths equal to 2 and tluncated at /6
3. Fol given n ar'd p, eltlies in bold denote semi-foldove¡' plaus that are optimal with lespect to the generalized I\44
criterion
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(Cont'd) 48-Run Combined Designs Ranked According to the Generalized iVlinimum
Aber-ration Criterion

ID Core fo SS R EWLP (/2, Í2.ß2, fz.zs, Í2.s, fz.eaz, fz.ass,..., -fs.ssa)

8.3.4 617,8167, (L2580+ 4 (0,0,0,0,0,0,0,0, O, O,0, O,3,0,0,0, 11,0,0, O,0,0, o,0
68,78,678

8.3.5 678 (145,148,157,178)+ 3.667 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 5, 0, 2, 0, 0, 0, 2, 0)

8.3.6 67,678 (145,148, 158)+ 3.667 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 1, 0, 0, 0, 4, 0, 2, 0, 0, 0, 0, 0)

8.3.7 67,68 (148, 248, 456, 468)+ 3.667 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 1, 0, 0, 0, 6, 0, 1, 0, 0, 0, 3, 0)

8.3.8 678 (245,248,257)+ 3.667 (0,0,0,0,0,0,0, 0, 0,0,4, 0,0,0, 0,0, 5, 0, 2, 0,0, 0, 2,0)

8.3.9 678 (35,38,57,78, 2.667 (0, 0, 0, 0, 1,0,0, 0,0,0, 3,0, 1,0,0, 0, 4, 0, 1,0, 0, 0, 3, 0)
135, 138, 157,178)+

8.3.10 678 (234,235,238, 3.667 (0,0,0,0,0,0,0,0, 0, 0,4, 0, 1,0,0, 0, 5,0, 2, 0,0, 0, 2,0)
247,257,278)*.

9.4.7* .67,68,69, (156)+ 3.667 (0, 0, 0, 0, 0, 0, 0, 0, 0, O, 4, O, 2, O, O) O, 'J.2, O,4, O, 0, O) 4, O

7g,7g,gg

9.4.2 9 (15,19,15,29, 2.667 (0, 0, 0,0, 1,0, 0,0, 0, 0, 3,0, 7, 0, 0,0,4, 0,0, 0,0, 0, 11,0)
35,39,45,49,
56,57;58,67,

79,8e)+

9.4.3 67,69,78, (169)+ 3.667 (0,0,0,0,0,0,0,0,0,0,6,0,3,0,0,0,6,0,0,0,0,0,9,0)
689,789,6789

9.4.4 89 (135,139,145, 3.667 (0,0,0,0, 0,0,0, 0, 0, 0,6, 0, 3,0,0,0, 7,0, 0,0, 0, 0,8,0)
149, 158, 189)*

9.4.5 67,68,69, (125,135,145,156, 3.667 (0,0,0,0,0,0, 0,0,0,0,4,0, 6. 0, 0.0, 8, 0, 0,0,0,0, 8,0)
78,79,89, 157, r58,159)+

6789

9.4.6 67,68,69,678, (148)+ 3.667 (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 3, 0, 0, 0, 7, O, 2,0, 0, 0, 2, 0)
689,789
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(Cont'd) 48-Run Combined Designs Ranked According to the Generalized l\4inimurn
Aberration Criterion

ID C"r. tu SS R EWLP (/
9.4.7 6

9-4.8 678,679,6789

6789

(23e){

(13e) f

(1ss)+

(158, 189)+

3,667

3.667

3.667

3.667

(0, o, o, 0, 0, 0, 0, 0, 0, 0,.1, 0, 7, 0, 0, 0, 7, 0, o, 0, 0, 0, 8, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 1, 0, 0, 0, 8, 0, 4, o, o, 0, 5, o)

(0,0,0, o, o, o,0,0,0,0,8,0,3, o, o,0,7,0,0,0,0,0,4, o)

9.4.10 6789 (0, 0, 0, 0, 0, 0, 0, o, 0, 0, 7, 0, 2, 0, 0, 0, 7, 0, 3, 0, 0, 0, 3, 0)

10.5.1" 6,7,8,9,0,
6 789,6780,6790,

6890,7890

( 12,13,14,15,
16, 17, 18, 19,
23,24,25,26,
27 ,28,34,35,

36, 37, 4s, 46)t

(r2s,128,r29,
120,137)+

( 1 20,145,149,
170)+

(135,r36,145,
140,158)*

(23,24,25,27,
2A,29,20,36,
46,56,67,68,

6e,60)+

(110)*

(r4,r7,23,27 ,

36,46)*

(14e)+

2.667 (0,0, 0, 0, 2,o, 0, 0, 0, 0,4, 0, 6, 0, 0,0, 10, 0, 8, 0, 0, o, 16, 0)

(0, 0,0, 0, 0, 0, o,0, 0, o, 10, 0, 5,0, 0,0, 10, 0, 0, o, 0, 0, 12, 0)

(0, 0, 0, 0, 0, 0, 0, 0,0,0, 9,0, 6, o, o, 0, 10, 0, 0, o, 0, 0, 15, 0)

(0, 0, 0,0, 0, 0, 0, o,o,0, 8,0, 6, 0, 0, 0, 12, o, o, 0, 0, 0, 16, 0)

(0, o, o,0,1,0, o, o, o,0,5,0,6,0,0,0,15,0,4,0,0,0, 11, o)

(0,0,0,0,1,0, 1,0, o,0,4,0,3,0, o, o, 18,0,4,0,0,0,11, o)

(0, 0, 0, 0, 1, 0, 0, 0, o,0, 8, 0, 3, 0, 0, o, 11, 0, 6, 0, 0, 0, r0, 0)

10.5.2

10.5_3

10.5.4

10.5.5

678,679,689,
689,789,780

70,89,789,
780,790,890

890

678,679,670,
689,680,690,

67890

789

3.667

3.667

3.667

2.667

2.667

2.66710.5.7 678,679,670,
6789,6780,6790,

67890

10.5.8

10-5.9

10.5.10

67490

67890

6789

(235,230,2î57,2'oO\+ 3.667

(25,20,35,30,
45,40,56,57,

58, 60, 70, 80)+

3.667 (O, O, O, O, O, O, O, O, O, O, a, O, 2, Or O, O, 16, O, a, O, O, O,8, O)

(0, 0, 0, 0, o, o, 0, 0, 0, 0, 9, 0,,1, 0, 0, 0, 12. 0, 6, 0, 0, 0, 9, 0)

(0,0,0,0, 1,0,0,0,0,0,7, o,3,0,0,0, 12,0,7,0, o, o, 12, o)
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Appendix B

R Code

Sample Code: R Code for Ranking an Initial MA
Zlit Design According to the PEC, ÞIC and Gener-
alized Minimum Aberration Criteria

getPECandPIC<-f rnction (n_f , p, d, n_r,rn_r, k3, k4, k5) {
getsemi<-f unct j.on (D_f ,p, d, n_r, m_r, k3, k4, k5) {

x1<-c (-1 , 1 , -1 ,7 ,-I ,L ,-L ,L ,0,0,0 ,0)
x2<-c(-1,-1, 1, 1,-1,-1, 1, 1,0,0,0,0)
x3<-c(-1,-1,-1, -1, 1, 1, 1, 1,0,0,0,0)
getdesign<-function (n_f ,p, d, n_r,m_r, k3, k4, k5) {

getnonadd<-function(n_f ,p,d,n_r,n_r,k3,k4,kS){
x<-vector ( Iength= (m-r*d) )
X<-matrix(data=x, ntow=n_r, ncol=d, byrow=TRUE)
getcol<-function(a) {

c<-vector (length=m-r)
it (a==1) {

c=xl Ì
i ¡ /-__ô\ aLr \d--z) 1

c=x2l.
if(a==3) {

c=x3 )
c

Ì
for(i in 1:d) {

if ( i<= (n_f-p) ) {
c<-getcol (i)
X [, i] <-c

I)
a
J

x
Ì
Y<-getnonadd(n_f ,p,d,n_r,m_r,k3,k4,k5)
Y

y1(-vector (length=o_r)
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y2<-vector (length=n-r)
y3<-vector ( length=n_r)
y4<-vector ( f ength=m-r)
y5<-vector ( Iength=m-r)
y6<-vector (Length=m_r)

y7<-vector (length=m-r)
for(i in 1:d){

if (i==1) {
yl<-Y[,1J ]

if ( i==2) {
y2<-Y 1,2)j

if(i==3) {
y3<-Y [ ,3J ]

if(i==4) {
y4<-Y [,4J ]

if (i==5) {
ys<-Y t, sJ Ì

Íf ( i==6) {
y6<-Y[,6J]

if ( i==7) {
y7<-v l,7l)

Ì
addgen<-function(n-f,p, d,n-r,rn-r, 91, 92,93, 94, 95,96,g7) {

getgen<-function(b) {
g(-vector ( Iength=n-r)
if (b==1){

c<-c1Ì
if(b==2) {

c<-82Ì
if (b==3) {

c<-cs]
if (b==a) {

c<-c4)
if (b==5) {

c<-csÌ
if (b==6) {

c<-96]
if (b==7) {

g<-97Ì

]
for(i in 1:d){

if (i>(n-f-p)&& i<=n-f ) {
c<-getgen ( i)
Y [, i] <-c

)
Ì
Y

a

Zl<-addgen (n-f , p, d, n-r,m-r, 97, 92, 93,y7+y2+y3, 95, 96, 97)
y1<-vector (length=m-r)
y2<-ve ctor ( length=n-r)
y3<-vector ( length=m-r)
y4<-vect or ( Iength=n-r)
Y5<-vector ( Iength=m-r)
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y6<-vector (length=m-r)
y7<-vector ( length=m-r)
for(í in 1:d) {

if(i==1) {
v1<-21 [, 1] ]

i¡l:--^\ r¡¡ \r--zl a

y2<-zLl,2lj
rt (1==J) t

y3<-21 [,3J ]
1f(1==4) t

v4<-Z\l -41I
11 (1==b)t

y5<-21 t,5l Ì
if ( i==6) {

y6<-21 [,6i ]
if ( i==7) t

y7<-zLl,7Jl
)
addint <-f unct i on (n-f , p, d, n -r,m-r, 97, 92,g3, 94, g5, g6, 97 ) {

y<-vector ( length=In-r*d)
Y<-matrix(data=y, nrow=m-r, ncol=d, byrow=TRIJE)

getint<-function(b) {
g<-vect or ( l-ength=m-r)
if (b==1) {

-/--1 \
É' é¡J

if (b==2) t
E<-E2l

if (b==3) {
c<-c3Ì

if (b==4) {
a<-a4].

if (b==s) {
c<-c5)

if (b==6) t
c<-86Ì

if (b==7) t
c<-c7Ì

Ì
for(i in 1:d){

if(i>n-f && i<=d){
c<-getint (i)
Y [, i] <-c

I
J

]
Y

Ì
Z2<-addint (n-f , p, d, n-r, m-r, gl, 92, e3, 94,y1*y2, y1*y3, y1*y4)
z<- zL ç+Û 22

z

]
getsemidesignoneadded<-funct ion (n-f , p, d, n-r,m-r, k3, k4, k5, g) {

getDonadd<-fu-DctÍon(n-f ,p,d,n-r,n-r,k3,k4,k5, g){
x<-vector ( length= (m-r*d) )
X<-uratrix (data=x, nro!¡=¡n-r, ncol=d, byrow=TRilE)
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getcol<-function ( a) {
c(-vector (Iength=m_r)
if (a==1 ) {

c=x1Ì
if (a==2) {

c=x2Ì
if (a==3) {

c=x3Ì

I)
for(i. in 1:d){

if (i<=(n_f-p) ) {
c<-getcol (i)
X['i]<-c

Ì
Ì

x
]
Y<-getnonadd(n-f ,p,d,n-r,m-r,k3,k4,k5, g)
Y

y1(-vector (length=m_r)
y2<-vector (length=m-r)
y3<-vector (length=n_r)
y4<-vector (Iength=m-r)
y5<-ve ct or ( length=m-r)
y6<-vector (length=m_r)
y7(-vector (Iength=m-r)
for(i in 1:d){

if (i==1) {
v1<-Yl-1lÌ

:¡/i--ô\ rr1 \I--Zl I

y2<-Y l,2l\
if ( i==3) {

y3<-Y t, 3J Ì
if (i==a) {

y4<-Y[,aJ]
if ( i==5) t

ys<-Y t, Sl Ì
if ( i==6) {

v6<-Yl-61Ì
if (í==7) {

y7<-\ 1,7)I
Ì
addgen<-function(n_f,p, d, n_r,m_r,91, 92, 93, 94,g5,96, g7) {

getgen<-funct ion (b) {
g(-vector (length=n-r)
if (b==1 ) {

c<-91Ì
if (b==2) t

a<-o)\Þ- õ-r

i.f (b==3) t
c<-c3Ì

if (b==a) {
8<-C4Ì

if (b==s) {
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c<-95Ì
if (b==6) {

c<-86Ì
Íf (b==7¡ ¡

g<-87I
c
]
for(i in 1:d){

if (i>(n_f -p)&& i<=n_f ) {
c<-getgen (i)
Y [, i] <-c

I)

Ì
Y[,s] <-(-1*Yt,sl )
Y

]
Z1<-addgen(n-f ,p, d, n_r,n_r , g1 , g2, g3, y1*y2*y3 , gS , 96, gZ)

y1<-vector (Iength=m_r)
y2<-vector ( length=n_r)
Y3<-vector (length=m-r)
y4(-vector (length=n_r)
y5<-vector (leugth=n_r)
y6(-vector (length=m_r)
y7<-vector (leDgth=m_r)
for(i in 1:d){

if (i==1) {
y1.<-ZIl,L7I

if ( i==2) {
y2<-zrl,2JI

if (i==3) t
y3<-21 [,3J ]

if (i==a) {
yâ<-zIl,4)l

lÏ (1==5'¡1

ys<-z1 [, SJ ]
if (i==6) {

y6<-21 [,6J ]
if (i==7) {

y7<-zrL,7lI
Ì
addint<-f u¡ction (n_f , p, d, n_r, m_r, 91, 92, 93, g , gS, 96, g7) {

y(-ve ctor ( length=n_r*d)
Y(-matrix(data=y, Drowr-r, ncoL=d, byrow=TRUE)
getint<-function(b) {

8<-vector (length=m_r)
if (b==1 ) {

o<-ol Ì
ò- õ_J

i¡ (u==2) {
o<-a)l
è- ò-r

if (b==3) {
c<-c3Ì

if (b==a) {
c<-c4Ì

if (b==s) {
c<-s5Ì
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i_f (b==6) {
c<-c6Ì

Íf (b==7) {
8<-87Jî

]
for(i in 1:d){

if(i>n_f && i<=d){
c<-gerint ( i )
Y [, i] <-c

Ì
I
Y

Ì
Z2<-addint (n-f , p, d, n-r, m-r, g1, 92, 93, g4,y1*y2, y1*y3, y1+y4)

z<- 27 $+g 22
7

Ì
Y<-getdesign(n-f ,p, d,n-r,m_r,k3,k4,k5)
cou¡t <- 1

makeseni<-f uction (n_f , p, d, n_r, m_r, k3, k4, k5) {
s<-vector (length= ( (2^p-1 ) *2*d*m-r*d) )
S<-matrix(dat¿=s, a¡6ç=((2^p-1)*2*d*m-r), ncol=d, byrow=TRUE)

for(g ín (n-f-p$+$l) :n_f ){
for(m in 1:d) {

Y<-getdesign(n_f , p, d,n_r,n_r,k3,k4, k5)
X<-getsemidesignoneadded (n_f , p, d, n_r,m_r, k3 , k4, k5 , g)

for(j in 1:n-r){
S fcount , J <-Y [j , J

count <-cor:¡t$+$ 1

l
1<-1

for(r in (n-r$+$l) :m-r){
r¡hiIe (X [l,m] ! =1) {

1<-1$+$1

Ì
y[r,]<-X[I,]
S [count , ] <-Y [r , ]
cou_nt <-cou¡t $+$ 1

1<_t$+$1

)
]
for(n Ín 1:d){

Y<-getdesiga(n_f ,p, d,n_r,m_r,k3,k4, k5)
X<-getsemidesignoneadded (n_f , p, d, n_r,m_r, k3 , k4, kS , g)

1<-1
for(j in 1:n_r){

S lcou¡t , ] <-Y [j , ]
cou¡t<-coì.ìnt$+$ 1

Ì
for(r in (n-r$+$l) :n-r){

uhile (X [1 ,m] ==1) {
1<-1$+$1

Ì
Y [r, ] <-x [1, ]
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S lcou¡t , ] <-Y [r, ]
count <-cou-nt $+$ 1

1<-1$+$ 1

Ì
F<-F$+$ 1

a
J

e

]
S(-nakesemi (n-f ,p,d,n_r,n_r,k3,k4,k5)
Ì

S<-getseni (n_f ,p,d,n_r,rn_r,k3,k4, k5)
X-41ÌinÍtaIs 1r-5 [, 1 : dl
X-AllinitaIs<-S [, 1 :n-f ]
X-inital(-matrix (0 ,n_r, n_f )
M-d<-matrix (0, ( (2^ p- L) +2+ (2^ (n_f -p) -1 ) ), I )
Pk<-narrix (0, ( (2^ p-7) *2* (2^ (n_f -p) -1) ), 1 )
det ermine-2(-natrix (0, ( (2' p- t) +2* (Z^ (n_f -p) - 1 ) ), 1 )
p-p3=1$+$k3$+$choose (k3, 2)
p-p4=1$+$k4$+$choose (k4, 2)
p-p5=1$+$k5$+$choose (k5, 2)
nck3=choose (n_f,k3)
nck4=choose (n_f,k4)
nckS=choose (n_f,k5)
determine3<-nattix (0 , nck3, 1)
determíne3_1(-matrix (0, nck3, 1 )
det ermine4<-matrix ( 0 , nck4, 1 )
determine4_ 1<-matrix (0,nck4, 1 )
det ermine5<-matrix ( 0 , uck5 , 1 )
determine5_1<-matrix (0 , ncks, 1 )
xo=matrix(1,n_r,1)
for(t in 1: ((2^p-1)'iz*(2^(n_f-p)-1))){

Y_nck3<-matrix (0, (m_r*nck3), k3)
Y-kc23<-natrix (0, (m_r*nck3) , choose (k3,2) )
Y3<-matrix (0, (m-r,tnck3),p-p3)
Y_nck4<-natlix(0, (m_r*nck4), k4)
Y-kc24<-matríx (0 , (m-r*nck4) , choose (k4,2) )
Y4<-matrix (0, (n-r*nck4), p-p4)
Y_ncks<-matrix (0, (m_r*nck5), kS)
Y_kc25<-matrix (0 , (m_r*nckS) , choose (k5,2) )
Y5<-matrix (0, (m-r*ncks), p-pS)
Dk=0
nL=ô

count=0
X-initaIl<-X-Allínita1sl [ ( ( (t-1) *m_r$+$1) : (t*¡o_r) ), ]
X_inital<-X_Allinitals [(( (t-1)+n_r$+$1) : (t*m_r)),]
print (X-initall)
Í¿= r
if (k3==3) {

for(i in 1: (n_f-2)){
for(j in (i$+$1) : (n-f-1) ){

for(b in (j$+$1):n_f){
aal= (t2-1 ) *m_rg+91

aa2=t2*m_T
Y-nck3[(aa1:aa2),] <- array(c(X_inital[,i],X_inital[,jl,X_iniral[,b]),dim=c(n_r,k3))
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Y3[(aa1:aa2), (1: (k3$+$1))] <- array(c(x0,Y-nck3[(aaL:aa2) ,]),dim=c(m-r,k3$+$1))
t1=1
for(i-l in 1:(k3-1)) {

for(j-1 in (i-1$+$1) :k3){
Y-kc23 [(aa1:aa2) ,t1] <-a¡ray(c(Y3-nck[(aa1: aa2) ,i-1] *Y3-nck[(aa1:aa2),j-1] ) ,
dím=c(m_r,1))

' Y3l(aa1:aa2),((k3$+$1)$+$t1)l <- array(c(Y-kc23[(aa1:aa2),t1]),din=c(m-r,1))
t 1=t1$+$1

Ì
Ì
determine3 [t2, 1] <-det (t (Y3 [ (aal : aa2), ] ) 7.*%Y3 [ (aal : aa2), ] / (m_r) )
determine3-l [t2, 1] <-det (t (Y3 [ (aa1 : aa2), ] ) 7.*7.Y3 [ (aa1 : aa2), ] )
Dk<-Dk$+$ ( (det ermine3 [r2 , 1] ^ ( 1 /p_p3) ) /nck3 )
if (determine3-1 [t2, 1] ! =0) {

"6.¡¡tr=çe¡¡¡ 
$+$ 1

]
pk<- ( cor:atlcboose (n-f , k3 ) )

t2=t2$+$1

Ì
MAKEaatrix (0 , ((2^p-7)*Z* ç2^ (n-f-p) -1) ) , 12)

countl-o countll=0 corntl2=o count2=O count2l=o count22-0 cou¡t3=o
cout31=0 count32=O comt4=O court4l=O cou¡t42=O CFVI=O CFV11=0

CFV12=0 CFV2=0 CFV21=O CFY22=0 CFV3=0 CFV31=0 CFV32=0 CFV4=0

cFV41=0 CFV42=0 t77=L t22=7 t3=1 t4=1
X-nc31<-matrix (0,m-r*choose (n_f , 1), 1)
X-nc32(-matrix (0,m-r*choose (n_f , 2), 1)
X-nc33<-natrix (0 

, n-r* choose (n-f , 3 ) , 1 )
X-nc34<-matrix ( 0 , m-r*choose (n_f , 4) , 1 )
X-str¡nl<-matrix (0, choose (n-f , 1 ), 1 ) X-sun2(-matrix (0, choose (n_f ,2), 1)
X-sum3<-natrix (0, choose (n-f , 3), 1 ) X-sum4<-natrix (0, choose (n-f , 4), 1 )

for(i ín 1:n-f){
aa1=(t11_1) *m_rg+91

aa2=t 1 1 *m_r

X-nc31 [(aa1:aa2),]<- X-inital [1:m-r,i]
X-sm1 [t11, ] <-sr¡n(X-nc31 [(aa1 : aa2), ] )
if (abs (X-sml |t11,I )==m-r) {

countl=cou¡t 1$+$1Ì
Íf (abs (X-su¡rl [t11, ] )==m-r-4) {

count 1 1=cornt 1 1$+g 1)
if (abs(X-sum1 [t11,] )==n-r-8){

court 12=cou.nt 1 2$+$ 1Ì
CFVI<- countl
CFV11<- coìlnt11
CFV12<- count12

t11=t11$+$1
]
for(i in 1:(n-f-l)) {

for(j in (i$+$1):n-f){
aa1=(t22-1) *m_r$+$1

aa2=t22*m_T
X-nc32[(aal:aa2),]<- array(c(X-initat[1:n-r,i]+X-inital[1:m-r,jJ),dim=c(m-r,1))
X-sun2 [t22,] <-sum(X_nc32 [(aa1 : aa2),] )
if ( abs (X-sum2 [t22, ] ) ==Iû-r) {
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count2=count2$+$ 1)
if ( abs (X-sum2 [t22 , ] ) ==m_r-4) {

count2l=cout21$+$ 1Ì
if (abs (X_sum2 [t22, ] ) ==¡r_r-8) {

c ou¡.t 22=cormt22 $ + $ 1 Ì
CFV2<- cornt2
CFV21<- count2l
CFV22<- count22
t22=t22*+$r

Ì

for(i Ín 1: (n-f-2) ){
for(j in (i$+$1): (n_f-1)){

for(b in (j$+$1):n_f)t
aa1=(r3-1) +m_rg+91

aa2=t3*n_r
X-nc33[(aal:aa2),]<- array(c(X-inítaI[1:m-r,i],r,X-inital[1:m_r,j]*X_inital[1:m_r,b]),
din=c(m_r,1))
X-sun3 [t3, ] <-sum(X_nc33 [ (aa1 : aa2), ] )

if (abs (X-srm3 [t3, ] ) ==n-r) {
court3=count3g+g 1Ì

if (abs (X_sun3 [t3 , ] ) =m_r-4) {
count3 1=cou¡t3 1 $+$ 1 )

if (abs (X-sun3 [t3, ] ) ==rn-r-8) {
coì:¡t 32=coìmt32$+$ 1)

CFV3<- count3
CFV31<- cout31
CFV32<- count32

t3=t3$+$1
I

Ì
I)

for(a in 1: (n-f-3)){
for(i in (a$+$1) : (n-f-2)){

for(j in (i$+$1) : (n_f-l) ){
for(b in (j$+$1):n_f){
aa1= (t4-1 ) *m_rg+g 1

aa2=t4'tm_r
X-nc34[(aa1:aa2),]<- array(c(X-1nital[1:m-r,a]*X-inital[1:n-r,i]*¡-i¡1¡¿1[1:m_r,ji
*X_initat [1 : m_r,b] ), dim=c (m_r, 1) )
X_sum4 [t4, ] <-su.m(X_nc34 [ (aa1 : aa2), ] )
if (abs (X-sr:.m4 [t4, ] ) ==n-r) {
count4=count4g+g 1 Ì
if (abs (X-sr:m4 [t4, ] ) =a-r-4) {

comt41=count41$+$ 1Ì
if ( abs (X-sm4 [t4 

' 
] ) =m-r-8) {

coùnt42=count42$+$ 1Ì
CFV4<- cout4
CFV41<- count4l
CFV42<- covnt42
r4=t4$+$1
Ì

Ì
Ì

Ì
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]
MAKEmatrix(c(CFV1,CFV11,CFV72,CFV2,CFV2|,CFV22,CFV3,CFV31,CFV32,CFV4,CFV41,CFV42),7,72)
etrite (MAKE, f ile=" 2^ (4-1 ) EWLP. txt ", 12, (2^ p- 7) *2* (Z^ (n_f -p) -1 ) )

)
if (ka==a) {

for(a in 1:(n-f-3)){
for(i in (a$+$1): (n_f-2)){

for(j in (í$+$1) : (n_f-l) ){
for(b in (j$+$1):n_f){

aa1=(t2-1) *m_r$+$1

aa2=t2*m-T
Y-nck4 [(aa1 : aa2),] <- array(c (X-inital [, a],X-inital [, i], X_inital [, j i,
X-inital [,b] ),dim=c (n-r,k4) )
Y4[(aa1:aa2),(1:(k4$+$1))] <- array(c(x0,Y_nck4[(aal:aa2),]),dim=c(m_r,k4$+$1))
T f=1
for(i-l ín 1: (k4-1)){

for(j-1 in (i_1$+$1) :k4){
Y-kc24 [(aa1: aa2) ,t1] <-array(c(Y-nck4 [(aa1: aa2) , í-1] *y_¡ç¡4 ¡(aal: aa2) ,j_11 ) ,
dim=c(m_r,1))
Y4 [ (aa1 : aa2), ( (k4$+$1) $+$tl) ] <- array(c (Y-kc24 [ (aa1 : aa2),t 1] ), din=c (m_r, 1 ) )
t 1=t 1$+$1

]
Ì
detemine4 [t2, 1] <-det (t (Y4 [ (aa1 : aa2),) )'/.*l,Y4l(z.at : aa2 ), ] / (m_r) )
deternine4-1 [t2, 1] <-det (t (Y4 [ (aal : aa2),] )'/,*Iy  lãal: aa2), I )
Dk<-Dk$+$ ( (deternine4 [t2, I)^ (L/p_pa)) /nck|)
if (deter¡aine-1a tt2 , 1l ! =0) {

count=cou¡t$+$ 1Ì
pk<- ( comt/choose (n_f , k4) )

t2=t2$+$ 1

Ì
Ì

I
J

Ì
Ì
if (ks==s) {

for(h in 1: (n-f-4)){
for(a in (h$+$1) : (¡_f-3)){

fo¡(í in (a$+$1): (n_f-2)){
for(j in (í$+$1) : (n_f-l) ){

for(b ín (j$+$1):n-f){
aa1= (t2-1) +m_rg+g 1

aa2=t2*m-T
Y-nck5[(aa1:aa2),] <- array(c(X-inital[,h],X_inital[,a],X_inital[,i],X_inital[,jJ
,X-inital [,b] ) ,dim=c(m_r,k5) )
Y5[(aa1:aa2),(1:(k$+$1))] <- array(c(x0,Y_nck5[(aa1:aa2),]),dim=c(m_r,kS$+$1))
t 1=1

for(i-l in 1:(k5-1)){
for(j-1 in (i-1$+$1) :k5){

Y-kc25 [(aa1: aa2) ,t1] <-array(c (Y-nck5 [(aa1: aa2) , i-1] *y-¡ç¡5 ¡(aa1: aa2) ,j-11 ) ,
di¡n=c (n_r , 1) )
Yst(aal:aa2),((k5$+$1)$+$t1)l <- array(c(Y-kc25[(aal:aa2),t1]),di¡n=c(m-r,1))
t1=t 1$+$1

]
Ì
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determines[t2,1] <-det(t (Y5 [(aa1: aa2),] )7.*7.Y5 [(aal :aa2) ,) / (ø_t))
deternine-15 [t2, 1] <-det (t (Y5 [ ( aa1 : aa2), ] ) 7*%Y5 [ (aar : aa2),f )
Dk<-Dk$+$( (deternines [t2,1J ^ (1/p_ps) )/nckb)
if (deternineS_1 [t2 , 1] ! =0) {

cout=count$+$1Ì
pk<- (cout/choose (n_f , k5) )

t2=t2$+$1

I

]
#####type in getPECaadPIC(4,I,7,8,I2,3,4,5)######
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