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Abstract

Two-level fractional factorial (FF) designs are commonly uséd at the early stage of
investigation in industrial experiments. They can often identify which factor effects
are significant by running only a fraction (subset) of a full factorial experiment (Wu
and Hamada (2000), Box, Hunter and Hunter (2005), Montgomery (2005), Ryan
(2007)). However, there will be aliasing of effects in a FF design, which may lead to
ambiguities in interpreting the results of an experiment.

One strategy for de-aliasing effects of interest is to run a follow-up experiment,
such as a foldover design. One cost-conscious alternative strategy for de-aliasing low-
order effects is to augment the initial FF design with only one-half of the runs from
a foldover plan. This ‘approach is known as semi-folding.

The primary objective of this thesis is to select semi-foldover plans, that have
appealing projection properties. In this thesis, we rank non-regular, orthogonal, com-
bined designs (ie., initial plus semi-foldover) based on the number of estimable models
containing a subset of main effects and their corresponding two-factor interactions.
With this objective in mind, we use the projection estimation capacity (PEC) and
projection information capacity (PIC) criteria (Loeppky, Sitter and Tang (2007)) to

rank the combined designs.



A second objective of this thesis is to assess the alias structures of the combined
designs using the generalized minimum aberration (minimum G-aberration) criterion
(Deng and Tang (1999)). Generally speaking, a design possessing minimum aberra-
tion will minimize, or come close to minimizing, the aliasing of low-order effects.

Our research concludes that combined designs possessing desirable projection
properties are often non-minimum aberration designs. We also observe that the
semi-foldover approach can produce combined designs possessing superior projection

properties than the foldover approach.
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Chapter 1

Introduction and Summary

Two-level full factorial designs and two-level fractional factorial designs (FF) are
commonly used for screening for significant effects in industrial and agricultural ex-
periments (Wu and Hamada (2000), Box, Hunter and Hunter (2005), Montgomery
(2005), and Ryan (2007)). The full factorial “2" design” denotes a factorial design |
with n factors each varied at two levels. Such a design is comprised of all possible 27
observations, or treatment combinations, of the n factors. A 2"P design is a two-level
FF design with n factors, where p is the number of added (generated) factors. The
added factors are assigned to the interactions of the n — p basic (independent) factors

in the design matrix of a full factorial design in n — p factors.

Example 1.1. Consider a 2~® FF design, as displayed in Table 1.1. This design
requires 16 runs whereas a 27 full factorial design requires 128 runs. There are 7—3 = 4
basic factors, whose corresponding columns are denoted by 1, 2, 3 and 4. The three
added factors are generated by 5 = 123,6 = 124 and 7 = 234, respectively. By taking
all possible products of the generators, we obtain / = 1235 = 1246 = 2347 = 3456 =

9



CHAPTER 1. INTRODUCTION AND SUMMARY

Table 1.1: A 2773 Design

RUN | 1 2 3 4 5=123 6=124 7=234
1 — — - — - — —
2 + - - - + + -
3 - + - - + + +
4 + + - - - - +
5 — - + - + - +
6 + - + - - + +
7 - + + - ~ + -
8 + + + - + - -
9 - = - + - + +
10 + - - + + - +
11 — + - + + - -
12 + + - + - + -
13 - - + + + + -
14 + - + + - - -
15 - + + + - - +
16 + + + + + + +

1457 = 1367 = 2567, which is called the complete defining relation of the design.
Note that all two-factor interactions in this 2773 design are completely aliased with
other two-factor interactions (eg. 12 = 35 = 46). Effects that are aliased with one
another are completely indistinguishable from one another in the subsequent data
analysis. This aliasing is a consequence of running only a fraction (subset) of the

runs of the 27 design.

If sufficient resources exist, various follow-up strategies may be used for de-aliasing
effects of interest after an initial 2" 7 FF design has been run. The D-optimality
criterion (Atkinson and Donev (1992)) provides one algorithmic approach for selecting

follow-up runs. A more computationally-demanding Bayesian approach may also be

10



CHAPTER 1. INTRODUCTION AND SUMMARY

used (Meyer, Steinberg and Box (1996)).

The use of foldover designs would be another follow-up strategy. A foldover design
is a 2"P FF design obtained by reversing the signs of one or more factors (columns)
in the initial design (Box and Wilson (1951), Li and Lin (2003)). Foldover designs
are useful when an experimenter is faced with one of the two following situations.
In the first situation, only a few effects appear to be significant, after the data from
the initial experiment has been analyzed. Here it may be possible to discern the
key effects based on the initial experiment; otherwise, choose a foldover strategy that
will de-alias the few aliased effects. In the second situation, a larger group of effects
appear to be significant in the initial experiment. It may be impossible to identify
exactly which effects one wishes to de-alias. Here the objective should be to select a
foldover plan that minimizes, in some sense, the amount of aliasing in the combined
(initial plus foldover) design.

Consider reversing the added factors 5, 6 and 7 in the initial design provided in
Table 1.1. The foldover design that results is shown in Table 1.2. Note that the
foldover design is of equal size (that is, requires 16 runs) to that of the initial 2773
experiment. It can be shown (Chapter 2) that this foldover design will de-alias all
two-factor interactions involving 2.

On occasion, it may not be possible to run another 2*P experiment, because of
constraints upon resources (for example, time, money, etc.). One alternative approach
for de-aliasing low-order effects is to augment the initial FF design with only one-half
of the runs from a foldover design. This procedure is known as semi-folding (Barnett,
Czitrom, John and Leon (1997), John (2000), Mee and Peralta (2000)).

As discussed in Mee and Peralta (2000), the use of semi-foldover designs is an

11



CHAPTER 1. INTRODUCTION AND SUMMARY

Table 1.2: A 16-run Foldover Design Obtained by Folding on Factors 5, 6 and 7 in
the Initial 27~2 Design

RUN | 1 2 3 4 5 6 7
17 - — — - + o+
18 + - - - - +
19 - + - - - - -
20 + o+ - -+ -
21 - -+ - -+ -
22 + —~ - - - = -
23 - + o+ -+ +
24 + o+ o+ - -+ 4
25 - - -+ o+ = -
26 + — = + = + =
27 - + —~ + = - -
28 - - - + + - +
29 - -+ o+ - -
30 + —~ + + - - =
31 - 4+ o+ 4+ o+ o+ -
32 + + + - - -

attractive alternative follow-up strategy because:

e semi-foldover designs are simple to construct: we obtain a foldover plan and

select one-half of the runs from it, no software is required;

e semi-foldover designs are often more “degree-of-freedom-efficient” than foldover
designs (that is, semi-folding can be a run-frugal strategy for estimating addi-

tional low-order effects);

e semi-foldover designs can, if necessary, be followed by the remaining foldover

runs to complete the 2%~ ®=1) design.

Given the proceeding 2772 design, one possible semi-foldover plan is obtained by

12



'CHAPTER 1. INTRODUCTION AND SUMMARY

first folding on all three added factors (5, 6 and 7), and then selecting the eight runs
for which the effect 127 is “+”. The resulting 24-run combined design is shown in
Table 1.3, where the 8 runs of the semi-foldover design are in bold.

In this thesis, we consider the determination of optimal semi-foldover plans, given
an initial 27?7 FF design, where 5 <n < 10 and 1 < p < 6. This thesis is organized
as follows. Chapter 2 provides a brief review of 2°7? FF designs, including their
construction and use in industrial applications. The approach for enumerating all
possible semi-foldover plans is reviewed in Chapter 3. Projection estimation capacity
(PEC), projection information capacity (PIC) (Loeppky, Sitter and Tang (2007)) and
generalized minimum aberration (Fries and Hunter (1980), Deng and Tang (1999),
(2002), Li, Lin and Ye (2003)) are also discussed in Chapter 3, and are the three
optimality criteria we use for ranking the semi-foldover plans. Catalogs of optimal
semi-foldover plans, ranked according to the PEC, PIC and the generalized minimum
aberration criteria, are provided in Appendices A.1 and A.2. Sample R code, illus-
trating the ranking of semi-foldover plans for an initial 2*~! design, is provided in

Appendix B.

13



CHAPTER 1. INTRODUCTION AND SUMMARY

Table 1.3: A 24-run Design: The 8-Run Semi-foldover Combined with the 16-Run
273 Initial Design

Run| 1 2 3 4 5 6 7| 127
1 — — — — - — — —
2 + - - - + + - +

3 - + - - + + + -
4 + + - - - - + +
5 - — + - + - + +
6 + - + - - + + -
7 - + + - - + - +
8 + + + - + - - -
9 — - - + - + + +
10 + - - + + - + —
11 - + - + + - - +
12 + + - + - + - -
13 - - + + + + - -
14 + - + + - - - +
15 - + + + - - + -
16 + + + + + + + +
17 — — — —~ + + + +

+ - - - - - + -
18 - + — - - - - +
+ + - - + + - -
19 + - + - + - - +
- + + - + - + -
20 + + + - - + + +
21 + - - + - + + +
- + - + - + - -
22 + + - + + - + +
23 - - + + - - + +
+ - + + + + + -
24 - + + + + + - +
+ + + + - - - -

14



Chapter 2

Fractional Factorial Designs

2.1 Two-Level Full Factorial and FF Designs

In many industrial experiments, factorial designs are used as a systematic method for
assessing the significance of main effects and low-order interactions of some number,
say n, of factors. Suppose that each of the n factors are varied at two-levels, for
example, at a “Uow? (or “=”) and a “high” (or “+”) value. In this setting the
experimenter could consider all 2" possible treatment combinations. For large n, full
factorial designs require many runs to be performed. It is typically not possible to
run a full factorial experiment due to the constraints on resources. In this case, one
may consider using two-level FF designs to reduce the run size. In such designs we
assign p of the factors to interactions amongst the n — p factors in a 2" 7 full factorial

design.

Example 2.1. Consider again the 2772 FF design introduced in Chapter 1. We

denote the 7 factors using the integers 1 thru 7. As a full factorial design would

15



CHAPTER 2. FRACTIONAL FACTORIAL DESIGNS

Table 2.1: A 2773 Initial Design

RUN | 1 2 3 4 5=123 6=124 7=234
1 — _ _ — — — —
2 + —~ - E + + ~
3 —~ + - — + + -
4 + - — — - — -
5 - —~ + = + - +
6 o = + - - + +
7 = + - — - + —
8 + b + - + — —
9 —~ - — + — - +
10 - — - + - — +
11 = - — + + - -
12 + + — - - + —
13 - - + - + + —~
14 - — + + - — -
15 - + + -+ — - +
16 - 5 + + + +

require 27 = 128 runs, we may reduce the number of runs by generating the factors 5,
6 and 7 by assigning their levels to select interaction columns of the 2* full factorial
design. Omne possible assignment is 5 = 1.23,6 = 124 and 7 = 234. The resulting
273 = Lth fraction, or 2773 FF design, is displayed in Table 2.1. (This design is also

displayed in Table 1.1

Let I denote the identity element, which is the column of all positive levels “+” (or
1’s). Consider the added factor (or generator), 5 = 123. If both sides are multiplied

by 5, we obtain

5x5=123x5
5% = 1235

16



CHAPTER 2. FRACTIONAL FACTORIAL DESIGNS

I =1235.

Therefore, the product of columns 1, 2, 3 and 5 will yield all runs at the “+”
level. That is, this product yields the identity column, I. Similarly, we have I = 1246
and [ = 2347 from the added factors 6 = 124 and 7 = 234. Note that if [ = 1246
and [ = 2347, then I = [? = 1246 x 2347 = 12234267 = 1367. Here, the exponents
in the products are formed by using modulus 2 arithmetic, so that any even power
of a factor is equal to I and any odd power is equal to the factor itself. By taking
the product of the generators, it will imply another relation in the group. The group
formed by the p defining words (generators) is called the defining contrast subgroup
(DCS) (Wu and Hamada (2000)) or complete defining relation (Montgomery (2005)).
If we multiply 1235, 1246 and 2347 together two at a time and three at a time, then

we obtain the DCS of the proceeding example as
I =1235 = 1246 = 2347 = 3456 = 1457 = 1367 = 2567.

There is a total of 27 = 23 = 8 elements, including the identity 7, in the DCS and
each element is referred to as a “word”.

The DCS enables us to determine the alias structure of the 27~ design. For
example, if we multiply every element in the DCS by 1, we can determine which
effects are aliased (indistinguishable) with 1 in the subsequent data analysis. The

alias chain associated with 1 is given by
1 =235 = 246 = 12347 = 13456 = 457 = 367 = 12567.

Using the preceding approach we can display a list of alias chains for every factor and

two-factor interaction in the experiment.

17



CHAPTER 2. FRACTIONAL FACTORIAL DESIGNS

Table 2.2: The Alias Structure of the 272 Design having Generators 5 = 123, 6 = 124
and 7 = 234 (Ignoring Four-factor and Higher-order Interactions)

Defining relation: I = 1235 = 1246 = 2347 = 3456 = 1457 = 1367 = 2567

1= 235= 246= 457= 367
2= 135= 146= 567= 347
3= 125= 247= 456= 167
4= 237= 126= 356= 157
o= 123= 345= 137= 267
6= 124= 345= 137= 257
7= 234= 145= 137= 256

12= 35= 46
13= 25= 67
14= 26= 57
15= 23= 47
16= 24= 37
17= 45= 36
27= 34= 56

127= 357= 467= 245= 236= 156

The list of all alias chains is known as the alias structure of the design. There are
15 possible alias chains (one for each degree-of-freedom) for this 2772 design, as shown
in Table 2.2. If a main effect or a two-factor interaction is not aliased with other main
effects or two-factor interactions, we say that the effect is clear. Table 2.2 shows that
all main effects (numbered 1 thru 7) are aliased with three-factor interactions and all
two-factor interactions are aliased with other two-factor interactions. Therefore, all
two-factor interactions for this 27> design are not clear although all main effects are

clear.

18



CHAPTER 2. FRACTIONAL FACTORIAL DESIGNS

2.2 Resolution and Minimum Aberration

Box and Hunter (1961) introduced the notion of the resolution of a FF design. The
resolution is the length of the shortest word in the DCS, where the length of a word
is defined to be equal to the number of letters in the word. The resolution is used to
distinguish between two competing 2" ? designs. The shortest word in the DCS of this
27-3 design is of length 4; therefore, we say that this design is a “resolution IV” 273 or
25‘73 design. All other things being equal, designs with higher resolution are preferred,
in order to minimize aliasing of low-order effects. To distinguish between two or more
2P designs having the same resolution, Fries and Hunter (1980) introduced the
minimum aberration (MA) criterion. The MA criterion selects a “good” 2777 design
by choosing a design that sequentially minimizes the occurrence of short words in its
DCS.

Before formally defining the MA criterion, we need to introduce the notion of a
design’s word length pattern (WLP). Recall that the number of letters in a word is
its word length. The vector W = (A, Ao, ..., A,) is called the WLP of the design,
where A; are the number of words of length ¢, (¢ = 1,2, ...,n) in the design. An MA

design may now be defined as follows:

Definition 2.2.1. For any two 2"7P designs d; and ds, let 7 be the smallest integer
such that A,(d;) # A,(ds), where A; denotes the number of words of length ¢ in its
DCS, 1 <7 < n. Then d; is said to have less aberration than ds if A,(d;) < A.(d2).

If there is no design with less aberration than dj, then d; is the MA FF design.

For the 27* FF design in Example 2.1, all 7 words in the DCS are of length 4.

19



CHAPTER 2. FRACTIONAL FACTORIAL DESIGNS

Therefore, this design has WLP W = (0,7,0,0,0). It turns out that this design is the
MA 2773 design (Chen, Sun and Wu (1993)), since there is no other 23 FF design
having less aberration than this design. Note that due to the likely significance of main
effects and two-factor interactions, we do not consider designs having main effects or
tow-factor interactions aliased with the identity (overall mean) I. Therefore, we do
not consider designs have non-zero entries for A; and A;. We then write a design’s
WLP by beginning with As.

The following example illustrates how the MA criterion may be used to distinguish

between two designs have the same resolution.

Example 2.2. Consider two 2772 designs, say d; and dy. We denote the 7 factors
using the integers 1 thru 7. Factors 6 and 7 are the two added factors. Let d; have
generators 6 = 1234 and 7 = 1245, and dy have 6 = 123 and 7 = 145. The DCS of
d; is I; = 12346 = 12457 = 3567 with WLP W; = (0,1,2,0,0). The DCS of d, is
I, = 1236 = 1457 = 234567 with WLP W, = (0,2,0,1,0).

By comparing W; and W5, we observe that both 2772 designs have resolution IV.
However, note that d; has only 1 four-letter word, whereas dy has 2 four-letter words.
Thus, d; has less aberration than d,. It turns out that d; is the MA design.

Generally speaking, the MA criterion provides a useful approach for selecting
“good” FF designs when all factors are of equal importance. Note that Deng and
Tang (1999) generalized the MA criterion to non-regular designs. Non-regular designs
have a more complicated alias structure than “regular” FF designs in that effects may
also be partially aliased with one another. Also, the run size of non-regular designs

need not be a power of 2. We reserve discussion concerning “generalized” MA until

20



CHAPTER 2. FRACTIONAL FACTORIAL DESIGNS

Chapter 3.

2.3 Foldover Plans

A standard follow-up strategy for de-aliasing effects from an initial 2”77 design is
achieved by means of conducting a foldover design (Box and Wilson (1951), Li and
Mee (2002), Box, Hunter and Hunter (2005), Montgomery (2005)). This approach
adds a second design of equal size, by reversing the signs of one or more of the n
columns (factors) in the initial design.

Li and Lin (2003) proved that any non-trivial foldover plan (the set of factors to be
sign-reversed) is equivalent to one of the 2P — 1 possible non-trivial core foldover plans,
where a core foldover plan is a foldover plan consisting only of added factors. We say

that two foldover plans are equivalent if they produce the same foldover rumns.

Example 2.3. The preceding result implies that there are 2 — 1 =2% — 1 = 7 non-
trivial core foldover plans for the 21* FF design in Example 2.1. One possible core
foldover plan is obtained by reversing the signs of all three added factors (5, 6 and 7).
That is, column 5 becomes “—5", 6 becomes “—6" and 7 become “—7”. The 32-run

combined (initial plus foldover) design is shown in Table 2.3.

The DCS of the initial MA 277% design (Example 2.1) is [ = 1235 = 1246 =
2347 = 3456 = 1457 = 1367 = 2567. The DCS of the foldover design is [ = —1235 =
—1246 = —2347 = 3456 = 1457 = 1367 = —2567. Combining the two DCS’s yields
I = 3456 = 1457 = 1367. Although the combined design has the same resolution

(IV) as the initial design, it has 4 fewer four-letter words than the initial design. In

21



CHAPTER 2. FRACTIONAL FACTORIAL DESIGNS

Table 2.3: A 32-run Combined Design Obtained by Folding on Added Factors 5, 6
and 7 in the Initial 2773 Design

Run| 1 2 3 4 5 6 7
1 — — — — - — —
2 + - - - + + -
3 - + - - + + +
4 + + - - - - +
5 - - + - + - +
6 + - + - - + +
7 - + + - - + -
8 + + + - - -
9 - - - + - + +
10 + - - + + - +
11 - + - + + - -
12 + + - + - + ~
13 - - + + + + -
14 + - + + - - -
15 — + + + - - +
16 + + + + + + +
17 ~ — - - + + +
18 + - - - - - +
19 - + - - - - -
20 + + - - + + -
21 - - + - - + -
22 + - + - + - -
23 - + + - + - +
24 + + + - - + +
25 — - - + + - -
26 + - - + - + -
27 - + - + - + +
28 + + - + + - +
29 - - + + - - +
30 + - + + + + +
31 - + + + + + -
32 + + + + - - -

22



CHAPTER 2. FRACTIONAL FACTORIAL DESIGNS

the initial design, recall that all two-factor interactions are aliased with other two-
factor interactbns, although all main effects are are clear (Table 2.2). After folding
on added factors 5, 6 and 7, we observe that all two-factor interactions involving 2 are
de-aliased in the combined design, since 2 does not appear in any of the four-letter

words in the DCS of the combined design.

23



Chapter 3

Optimal Semi-Foldover Plans

3.1 Semi-Foldover Designs

Most books on “experimental design” mention various strategies for augmenting an
initial 2"7P design with follow-up runs. One of the most popular follow-up strategies is
to run a foldover design; however, the primary argument against conducting foldovers
is that they are degree-of-freedom inefficient. Mee and Peralta (2000) point out that
for 16- and 32-run initial 2" P FF designs, a foldover plan typically provides no
more than one-half of the degrees-of-freedom for de-aliasing two-factor interactions.
Barnett et al.. (1997) described a 23,* semi-conductor experiment in which they
used only one-half of the runs from a foldover design to estimate the 7 two-factor
interactions involving one of the factors. This approach was named “semi-folding”
by the authors.

Assuming that three-factor and higher-order interactions are negligible, semi-

foldover designs and foldover designs may de-alias the same number of low-order
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effects. Since a semi-foldover design requires only one-half of the runs of a foldover

design, this may allow for considerable cost-savings.

Example 3.1. Recall the 25;3 design given in Examples 2.1 and 2.3. One possible
semi-foldover plan is obtained by first folding on all three added factors (5, 6 and
7, and.then selecting the eight runs for which the three-factor interaction 127 is
“4 7. The resulting 24-run combined (initial plus semi-foldover) design is shown in
Table 3.1, where the runs of the semi-foldover design come from the foldover design

displayed in Table 2.3. (This 24-run design is also provided in Table 1.3.)

Example 3.2. Consider semi-folding the 32-run MA design, d;, in Example 2.2. One
possible semi-foldover plan is obtained by first folding on added factor 6, and then
selecting the 16 runs for which the effect 135 is “—". The resulting 48-run combined

design is shown in Table 3.2.

3.2 Enumerating the Semi-Foldover Plans

Li and Lin (2003) showed that for a given 2"? design, any (non-trivial) foldover
plan is equivalent to one of 2P — 1 core foldover plans where a core foldover plan is
constructed by reversing the signs of one or more of the added factors. To construct a
semi-foldover plan, we select one-half of the runs of a core foldover plan by subsetting
on one of the 2"7? — 1 effects that are in distinct alias chains in the alias structure

of the foldover design. (For example, consider Table 3.3 which displays the alias
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Table 3.1: The 24-run Combined Design Obtained by Folding on Added Factors 5,
6 and 7 in the Initial 27, Design and Subsetting on 127+ in the Foldover Design

Run| 1 2 3 4 5=123 6=124 7=234 | 127
1 — — — — — — — —
2 + - - - + + - +
3 - + - - + + + -
4 + + - - ~ - + +
5 - - + - + - + +
6 + - + - - + + -
7 - + + - - + - +
8 + + + - + - - -
9 — - - + - + + +
10 + - - + + - + -
11 — + - -+ + - - +
12 + + - + - + - -
13 - - + + + + - -
14 + - + + - - - +
15 - + + + - - + -
16 + + + + + + + +
17 - — — - + + + +
18 - + - - - ~ - +
19 + - + - + - - +
20 + + + - - + + +
21 + - - + - + + +
22 + + - + + - + +
23 - - + + - - + +
24 - + + + + + - +
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Table 3.2: The 48-run Combined Design Obtained by Folding on Added Factor 6 in
the Initial 27=2 Design and Subsetting on 135~ in the Foldover Design

RUN | ] 2 3 1 5 6=1234 7=1245 [ 135
1 - - - - - + + -
2 + - - - - - - +
3 - + - - - - - -
4 + + - - - + + +
5 - - + - - - + +
6 + - + - - + - -
7 - + + - - + - +
8 + + + - - - + -
9 - - - + - - - -
10 + - - + - + + +
11 - + - + - + + -
12 + + - + - - - +
13 - - + + - + - +
14 + - + + - - + -
15 - + + + - - + +
16 + + + + - + - -
17 - - - - + + - +
18 + - - - + - + -
19 - + - - + - + +
20 + + - - + + - -
21 - - + - + - - -
22 + - + - + + + +
23 - + + - + + + -
24 + + + - + - - +
25 - - - + + - + +
26 + — - + + + - -
27 - + - + + + - +
28 + + - + + - + -
29 - - + + + + + -
30 + - + + + - - +

31 - + + + + - - -
32 + + + + + + + +
33 - - - - - - + =
34 - + - - - + - -
35 + - + - - - -

36 + + + - - + + -
37 - - - + - + - -
38 - + - + - - + -
39 + - + + - + + -
40 + + + + - ~ - -
41 + - - - + + + -
42 + + - - + - - -
43 - - + - + + - -
44 - + + - + - + -
45 + - - + + - - -
46 + + - + + + + -
a7 - - + + + - + -
48 - + + + + + - -
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Table 3.3: The Alias Structure of the 2};3 Foldover Design Obtained by Folding on
Added Factors 5, 6 and 7 (Ignoring Four-factor and Higher-order Interactions)

Defining relation: [ = —1235 = —1246 = —2347 = 3456 = 1457 = 1367 = —2567

1= -235= —246 = 457 = 367
2= —135 = —146 = =567 = —347
3= —125 = —247 = 456 = 167
4 = -237=—126 = 356 = 157
—5 =123 = -345 = —-137 = 267
—6 =124 = —345 = —137 = 257
—7 =234 = —145 = —137 = 256

12=-35=—46
13 = —25 =67
14 = —26 = 57
—15 =23 = 47
—16 =24 = 37
~17 = —45 = —36
—27 =34 =56

—127 = 357 = 467 = —245 = —236 = 156

structure of the foldover design obtain by folding the 21,,* design (Example 2.3) on
the added factors 5, 6 and 7. From Table 3.3 we note that the main effect, 1, is
aliased with the three-factor interactions —235, —246, 457 and 367. This alias chain
indicates that we will obtain the same 8 follow-up runs regardless if we subset on 1,
—235, —246, 457 or 367 . Similarly for the 14 remaining alias chains.) By keeping
the effect on which we subset constant at either “ —” or “+”, this implies that for
a given 2"7? initial design, there are (27 — 1) x (2*7P — 1) x 2 distinct semi-foldover
plans to consider for optimality.

Refer to the initial 16-tun MA 27.° design in Example 2.3. By the preceding
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“counting rule”, there will be (22 — 1) x (2773 — 1) x 2 = 210 possible semi-foldover
plans to assess. One possible semi-foldover plan has already been described in Ta-
ble 3.1. For the MA 2};,% design in Example 3.2, there will be (22 — 1) x (2772 — 1) x
2 = 186 possible semi-foldover plans. One possible semi-foldover plan has already

been described in Table 3.2.

3.3 Ranking Semi-Foldover Plans Using the PEC

and PIC Criteria

The combined (initial plus semi-foldover) design is a non-regular design. Although
non-regular designs have a more complicated alias structure than FF designs (Section
2.2), non-regular designs possess some very useful projection properties.

A design is said to “projected” when we consider the design composed of the
subset of significant main effects. This procedure allows us to consider a design with
fewer factors and a higher resolution than the original design from which we projected.
To illustrate the projection approach we first consider a simple example from the FF

context.

Example 3.3. (Montgomery (2005), pp. 287-289.) Consider a 27;,* design, as shown
in Table 3.4, with added factor D = ABC, (here A = 1, B = 2, C = 3 and
D = 4). For this design, all two-factor interactions are aliased with other two-factor
interactions. Suppose that main effect B is deemed not significant after analyzing the
main effects. If we discard B from any subsequent analysis, the 2?;1 design yields

(i.e., “projects” into) a 23 full factorial in A, C and D. This projection is displayed
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Table 3.4: A 247! Design with D = ABC

>
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RUN |
1

D=ABC  Run Label
| (1)

ad

bd

ab

cd
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be
abed

CoO ~3 O U i W D
o+ L+
0+t
+ 4+
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in Figure 3.1. Note that all two-factor interactions amongst A, C and D are clear in
the (projected) 2° design whereas they are not clear in the 27, design. The 22 design
in A, C' and D is displayed in Table 3.5.

In this chapter we use the projection estimation capacity (PEC) and projection
information capacity (PIC) criteria (Loeppky, Sitter and Tang (2007)) to systemati-

cally select combined designs with good projection properties.

Definition 3.3.1. Given an N x n non-regular design, d, where n is the number of
factors, let pp(d) be the number of estimable models containing & main effects and

their associated two-factor interactions. Also, let

so that 0 < p, <1, forall k, k=1, ...,n. The sequence (p1,ps,...,p,) is called the

PEC sequence of the design d. It is desirable to sequentially maximize the coordinates
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Figure 3.1: Projection of the 27;;' Design to a 23 Design in Factors A, C and D
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Table 3.5: The Projected 23 Design in Factors A, C and D
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of the PEC sequence.

Before we discuss the PEC criterion any further, it is useful to describe what we
mean by an “estimable model”. We will do this by considering a FF design, although

our emphasis in this chapter will be upon (non-regular) combined designs.

Example 3.4. Consider a 2?;1 design, where 4 = 123 such that I = 1234. Suppose

that the design matrix is given by

[ 1 203 4 12 93 34 |
- - - — 4+ 4
+ - -+ -+ -
L4
X = + - - + -
- -+ -
+ -+ - - = -
o4 o4
R

The design matrix, X, consists of main effects 1, 2, 3, 4 and the two-factor inter-
actions 12, 23 and 34. Note that the columns of X are not linearly independent since
12 = 34. A consequence of this dependence is that det(X'X) will equal 0, and we say

that the model (consisting of 1, 2, 3, 4, 12, 23 and 34) is not estimable.

The PEC criterion implies that a given design matrix, X, will contain & main

effects and their corresponding (12”) two-factor interactions. X will be an N X p matrix,
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where p=1+k + (}2”), and includes a term for the overall mean (dénoted by Bo)-
To obtain the PEC sequence of the 24-run combined design in Table 3.1, we first

observe that for £ = 1,2,3,4,5,6 and 7, there are (Z) =7, (;) = 21, (;) = 35,

(Z) = 35, (g) = 21, (g) =7 and (;) = 1 possible models, respectively, to consider.
Suppose that &k = 3. We use X; thru ng to denote the 35 possible design (model)

matrices. One of the 35 possible design matrices is given by

G 1 2 3 12 13 23

1 11 1 1 1 1

L d 24x7

where the entries for columns (factors) 1, 2 and 3 are taken from Table 3.1. Note that
det(X1X;) = 4586471424 (non-zero). Therefore, we say that the model comprised of
the main effects 1, 2 and 3 and their corresponding two-factor interactions is estimable.

Another possible design matrix is give by Xas, where the three factors under
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consideration are 5, 6 and 7. Using columns 5, 6 and 7 from Table 3.1, we have

Bo 5 6 7 56 57 67

1 -1 -1 -1 1 1 1

L 4 24%7

Here, det(X5,X35) is 786432000. We conclude that the model comprised of the
main effects 5, 6 and 7 (and their corresponding two-factor interactions) is also es-
timable.

For the combined design in Table 3.1, it turns out that for & = 3, all 35 models
have a non-zero determinant. We conclude that p3 = 1 for this 24-run combined
design. We may proceed in a similar fashion to obtain ps for the 209 (remaining)
semi-foldover plans. This procedure must also be performed for py, ..., pr for all 210
semi-foldover plans. |

Note that all combined designs are orthogonal arrays in that the columns are
pairwise orthogonal. (However, the combined designs are unbalanced due to the fact
that we subset on a given effect.) Therefore, for a given initial 277 design, all PEC-
optimal semi-foldover plans have p; = p, = 1. Consequently, we begin our PEC

sequences with ps, rather than p; or ps.
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Table 3.6: Given the Initial MA 27% Design: Two Semi-Foldover Plans Ranked
According to the PEC Criterion

I Core Foldover  Subset On (p3, Pa, D5, Ds)
an optimal semi-foldover plan 56,7 127+ (1, 0.914, 0.571, 0)
a poorer semi-foldover plan 56,7 27T (1, 0.857, 0.286, 0)

Example 3.5. Recall that the MA 2;‘73 initial desigﬁ has 210 possible semi-foldover
plans. Table 3.6 displays two of these plans ranked according to the PEC criterion.
An optimal 24-run combined design is obtained by first folding on columns 5, 6 and
7 and then subsetting on 127%. The values of ps and ps for the optimal semi-foldover
plan exceed those for the poorer serﬁi—foldover plan, the latter plan being constructed

by first folding on columns 5, 6 and 7 and then subsetting on 277.

From Table 3.6 we infer that the design in Table 3.1 allows for the estimation of
all models containing any 3 of the 7 main effects (along with their corresponding two-
factor interactions). We similarly conclude that the optimal semi-foldover plan results
in 91.4% of the models containing four main effects, along with their corresponding
two-factor interactions, to be estimable. This is superior to the poorer semi-foldover
plan in which only 85.7% of models involving four factors, and their corresponding
two-factor interactions, are estimable.

It is intel‘esting’ to note that the optimal semi-foldover plan in Table 3.6 has a

PEC sequence identical to that obtained by folding on factors 5, 6 and 7, despite the
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semi-foldover design being only one-half the run size of the foldover.

It turns out that there are 126 semi-foldover plans that have the optimal PEC
sequence in Table 3.6. The remaining 84 plans possess the poorer PEC sequence in
Table 3.6. One reasonable question to ask is “can one further distinguish between
the 126 optimal semi-foldover plans?” In this section we use the PIC sequence as a

secondary criterion for choosing between designs with the same PEC sequences.

Definition 3.3.2. Given an N X n non-regular design, d, let F be the class of models

containing k& main effects and their corresponding two-factor interactions and define

et(X.X, 1/p
dk(d) — Z [d t(szz/N)]

7 (x) |

where X is the th model matrix and p = 1+k+ (12”) is the number of parameters in
the model. Note that 0 < dp < 1,forallk, k=1, ...,n. Thesequence (di,ds,...,dy)
is called the PIC sequence of d. As with the PEC criterion, it is also desirable to

sequentially maximize the entries of the PIC sequence.

Consider the semi-foldover plan in Example 3.1. We may obtain d3, for example,

« m?)m_@]/ in Table 3.7.
3

It turns out that dz = 0.9901549. The values of d4, ds dg and d; for the semi-foldover

by summing up the 35 entries in the column entitled

plan in Example 3.1 are obtained in a similar fashion.

It turns out that 14 of the 126 PEC-optimal semi-foldover plans share the optimal
PIC sequence displayed in Table 3.8. The remaining 126 — 14 = 112 PEC-optimal
semi-foldover plans have an inferior PIC sequence, which is not displayed in Table 3.8.

The remaining 210—126 = 84 plans possess PEC and PIC sequences identical to those
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Table 3.7: Calculating ds for the Semi-Foldover Plan in Example 3.1

[det(X; X /24)] /7

Design Matrices | det(X;X;) o

3
X4 4586471424 0.02857143
Xy 4586471424 0.02857143
X3 786432000 0.02220902
Xy 4586471424 0.02857143
X5 3221225472 0.02716498
Xs 3221225472 0.02716498
X7 4586471424 0.02857143
X3 4586471424 0.02857143
Xy 786432000 0.02220902
X10 4204265472 0.02857143
X3 3221225472 0.02716498
Xs1 4586471424 0.02857143
X3 4586471424 0.02857143
X33 4586471424 0.02857143
X34 3221225472 0.02716498
Xss 786432000 0.02220902

>~ =0.9901549

Table 3.8: Given the Initial MA 21 Design: Semi-Foldover Plans Ranked Sequen-
tially According to the PEC and PIC Criteria

Core Foldover  Subset On (ps, p4, P5, D6) (ds, d4, ds, ds) No. of Semi-
Foldover Plans
an optimal semi- 5 6&7 127+ (1, 0.914, 0.571, 0) | (0.990, 0.885, 0.529, 0) 14
foldover plan
a poorer semi- 5 6&7 27+ (1, 0.857, 0.286, 0) | (0.979, 0.825, 0.283, 0) 84
foldover plan
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Table 3.9:

Designs Assessed According to the PEC and PIC Criteria

Optimal Semi-Foldover Plans for the Five Non-Isomorphic Initial 273

1D | Design Generators Core Foldover Subset On (ps, P4, Ps, P6) (ds, da, ds, dg)
7.3.1% 52123, 5,6,7,56, (127)% (1,0.914, 0.571,0)  (0.990, 0.885, 0.529, 0)
6=124, 7=234 57,67,567
7.3.2 | 5=12, 6=23,7=234 567 (4,7,14,17,27)+ (1, 0.971, 0.857, 0) (1, 1, 0.857, 0.571)
7.3.3 5=12, 6= 23, 567 (13,16,24,27,34, (1,0.943,0.714,0) (1, 0.943, 0.714, 0.143)
7=14 37,46, 67)%
7.3.4 5=12, 5 (13,14,16,17,34, (1, 0.914, 0.571, 0) (1, 0.914, 0.571, 0)
6=123, 7=124 37,134,137)%
7.35 5=12, 6=13 567 (4,14,16,24,34, (1, 0.914, 0.571, 0) (1, 0.914, 0.571, 0)
7=14 45,46, 47, 146)+
Note:

1. * Denotes the MA 273 design.

2. The optimal semi-foldover plans are in bold

of the poorer semi-foldover plan in Table 3.8. -

We wish to point out that Table 3.8 displays “an optimal semi-foldover plan” and

a “poorer semi-foldover plan” for just one possible initial 2772 design. We need to also

consider ranking 24-run combined designs using the four remaining non-isomorphic

2773 designs listed in Chen, Sun and Wu (1993). (Wu and Hamada (2000, pg. 311)

state that “two designs or arrays are said to be isomorphic if one design can be

obtained from the other by row permutations, column permutations, or relabeling of

levels.” ) The non-isomorphic designs in essence represent the entire class of designs for

a given value of n and p. Table 3.9 displays the results when all five non-isomorphic

2773 designs are considered. The five non-isomorphic initial 2772 FF designs are
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Table 3.10: Optimal Foldover Plans for the Five Non-Isomorphic Initial 273 Designs
Assessed According to the PEC Criterion

1D ] Design Generator Core Foldover (ps, P4, Ps, D6)
7.3.1% 5=123, 5,6,7,56, (1, 0.914, 0.571, 0)
6=124, 7=234
7.3.2 | 5=12, 6=23,7=234 567 (1 0.914, 0.571, 0)
7.3.3 5=12, 6= 23, 567 (1, 0.943, 0.714, 0.143)
T=14
7.3.4 5=12, 5 (10.914, 0.571, 0)
6=123, 7=124
7.3.5 5=12, 6=13 567 (1, 1, 0.857, 0.571)
7=14

Note:
1. * Denotes the MA 273 design.
2. The optimal foldover plan is in bold

labeled 7.3.1-7.3.5, which follows the notation of Chen, Sun and Wu (1993). Given
a non-isomorphic initial design, the semi-foldover plans are assessed according to the
PEC and PIC criteria.

Table 3.9 shows that the combined design that uses the initial MA 27 design
does not have the optimal PEC sequence. Using the PEC criterion, we rank the 5
combined designs in the following descending order: (1) 7.3.2 (bold in the table),
(2) 7.3.3, (3) 7.3.1, 7.3.4 and 7.3.5 (three-way tie). We use the PIC sequence in an
attempt to distinguish between designs 7.3.1, 7.3.4 and 7.3.5. In doing so, we observe
that designs 7.3.4 and 7.3.5 are also tied with respect to the PIC criterion but are
superior to design 7.3.1.

Given the initial designs 7.3.1-7.3.5, we also rank their foldover plans according

to the PEC criterion. The results are displayed in Table 3.10. It is useful to point
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out that the optimal semi-foldover plan (in bold) in Table 3.9 has a PEC sequence
superior to that of the PEC-optimal foldover plan in Table 3.10, (1, 0.971, 0.857,
0) vs. (1, 0.914, 0.571, 0). The implication is that superior projection properties,
if of interest to an experimenter, may be obtained by run-frugal design construction

strategies, such as semi-folding.

3.4 Ranking Semi-Foldover Plans Using the Gen-
eralized Minimum Aberration Criterion

A non-regular design is an orthogonal array whose columns do not form an Abelian
group. One consequence is that main effects may be partially aliased with two-factor
interactions. An appealing feature of non-regular designs is that they possess more
flexible run-sizes than regular FF designs. Whereas FF design run-sizes must be a
power of 2, non-regular orthogonal designs can have run-sizes that, for example, are
a multiple of 4. The combined designs in this thesis are all non-regular designs.
Deng and Tang (1999) generalized the resolution and MA criteria as a means for
ranking non-regular designs. The minimum G-aberration criterion is a generalization
of the MA criterion introduced by Fries and Hunter (1980) for ranking FF designs.
Let D denote a 2" full factorial design. Any n-factor regular or non-regular design, d,
is a collection of points in D, such that d C D. Therefore, D represents the “design
space” of the n factors. Li, Lin and Ye (2003) defined X;(x) =[], z; on D, where
x €d, J € P and P is the collection of all subsets of {1, ...,n}. Then the indicator
function of d can be written as F(x) = Y ;.pbsXs(x), where by = 55 >,y Xs(x)

denotes the coefficients of this polynomial function. Note that by = é—\i (Additional
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details can be found in Ye (2003) and Li, Lin and Ye (2003)).

Example 3.6. Consider the 2;‘73 design from Example 2.1. The indicator function

of this regular design is

1,1 1 1 1
F(X) =g+§x1x2$3$5+§x1x3x6$7+§$1$2$4$6+§x1x4x53:7

1 1
+§$2$3$C4£C7+§$2$5$6$7+%$3$4$5$6.

The term z1z9x375, for example, in the preceding indicator function represents the
four-factor interaction between main effects 1, 2, 3 and 5. Note that all of the terms
in the indicator function of the 27,,® design are exactly those words in its DCS. We

defer discussion concerning the interpretation of the b; until after the next example.

Example 3.7. Consider the 24-run combined design from Example 3.1. The indica-

tor function of the design is

_3 1 1 1 1 1
F(x) =35 —16 13207+ 15212324+ 55 T1T5T6— 55 T2 T3T6— 55 T2 T4 Ts

1 1
—|—ECE3I5.’E7—|—%$4$6$7+1%$1$2$3$5+ECE1.’1§2$4$6+CE1$3$6$7

1 1 1
+$1CE4CE5$7+E$2$3$4$7+I‘é$2$5$6$7+$3$4$5.’1§6—E$1$2$3$4$5$6$7.

The term z1x227, for example, in the preceding indicator function denotes the three-

factor interaction between factors 1, 2 and 7.

The coeficients of an indicator function are useful for illustrating the alias struc-
ture of the corresponding design. In particular, b;/by measures the degree of alias-
ing (i.e., correlation) associated with a word, X;. For example, consider bja7/by =

1 /24 _ ’

—16/5 = —%, in Example 3.7. This implies that factor 1 is partially aliased (having

correlation of —%—) with the two-factor interaction 27. Similarly, factor 2 is partially

41



CHAPTER 3. OPTIMAL SEMI-FOLDOVER PLANS

~aliased with 17 (having correlation of —3) and 7 is partially aliased with 12 (also
having correlation of —3).

The generalized word length of a word, X, in the indicator function is defined to
be the number of letters in the word + (1 — |bs/bo|) (Li, Lin and Ye (2003)). For
example, the word-length of the three-factor interaction x;zsx7 in Example 3.7 is
3+(1—1/3) = 32. As in the MA criterion for FF designs, longer words are preferred.
Here, the generalized word length definition penalizes words with larger correlations.
Finally, recall that for a regular design partial aliasing does not occur. Therefore, in
a FF design thé word length of a word reduces to the number of letters that comprise

the word.

Definition 3.4.1. Let d be an N x n design, and let f;1;/; be the number of words of
fractional length, 7+ 1/¢, in the indicator function, wherei =1, ...,n,1=0,...,t—1
and ¢ = N/4. The extended word length pattern (EWLP) of d is defined to be

-(fl: SR fl-*—(t—l)/t, f27 T f?-l—(t—l)/t) ce 7fn> LR fn-l-(t—l)/t)'
Furthermore, the generalized resolution is the length of the smallest word in the

EWLP.

Example 3.8. Recall the 21,,° initial design having 210 possible semi-foldover plans.
Consider the two semi-foldover plans listed in Table 3.11. For both semi-foldover
plans, we rank the resulting combined designs according to the generalized MA cri-
terion. Here we may denote the entries of the EWLP by (f2, fo167, f2.333, fo.5, fe.667
fo.833, f35---y frsss), where t = N/4 = 24/4 = 6. However, note that Ingram and
Tang (2005) state that, if the number of runs is a multiple of 8, then > __, X;(x) can

only take on values from the set 0,8, ..., N — 8, N. Therefore, in this example we
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Table 3.11: Given the Initial MA 27® Design: Two Semi-Foldover Plans Ranked
According to the Generalized MA Criterion

| Core Foldover  Subset On  (f2, fo.333, f2.667, f3, -+ » Jf5, J5.333, f5.667)

Semi-foldover plan 1 56,7 127+ (0,0,0,0,0,7,3,0,4,0,0, 0)

Semi-foldover plan 2 56,7 27t (0,0,3,0,0,0,3,0,8,0, 0, 0)

can modify (i.e., shorten) the EWLP to be of the form (f2, f2.333, f2.6675 [3+- - -» fr.667)-
Generally speaking, in this thesis we will truncate EWLPs beginning at words of
length 6 in order to save space. This is acceptable since we assume that higher-order
interactions are negligible. Table 3.11 displays the general EWLP as (fa, f2333, f2.667
faye -y f5y f5.333, fs.667). Semi-foldover plan 1 has 7 words of length 3.667, 3 words
of length 4 and 4 words length of 4.667. Semi-foldover plan 2 has 3 words of length
2.667, 3 words of length 4 and 4 words of length 4.667.

For given N and n, a generalized MA design is one that results from sequentially
minimizing the EWLP. From Table 3.11, we observe that the (generalized) resolution
of semi-foldover plans 1 and 2 are 3.667 and 2.667, respectively. Therefore, semi-
foldover plan 1 has higher resolution. It turns out that semi-foldover plan 1 is the

generalized MA semi-foldover plan for N =24 and n = 7.
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3.5 Overview of the Catalog of Optimal Semi-Foldover

Plans

The previous sections utilized the PEC, PIC and generalized MA criteria for ranking
combined designs. The tables in Appendix A contain 12-, 24- and 48-run combined
designs ranked according to the three preceding criteria. The 24- and 48-run com-
bined designs begin with an initial 16- and 32-run non-isomorphic 2"7? FF design,
respectively, for n = 5,...,10 and p = 1,...,6. The non-isomorphic 16- and 32-run ini-
tial FF designs are obtained from the catalog provided by Chen, Sun and Wu (1993).
The 8-run MA initial FF designs are obtained from Wu and Hamada (2000, pg. 193).

In Appendix A.1, all 12-, 24- and 48-run semi-foldover plans (or equivalently,
combined designs) are assessed sequentially with respect to the PEC and PIC criteria.
Note that the first column heading, “ID”, indicates the initial design. All MA initial
designs are labeled with a *. The columns labeled “Core fo” and “SS” record the
core foldover plan(s) and the effect(s) upon which we should subset, for a given initial

design.

Example 3.9. Consider the 12-run combined designs. Table A.1 in Appendix A.1
only considers 8-run MA initial designs. Consider semi-folding the MA 27, design.
The optimal PEC sequence is achieved by folding on (added) factor 4 and then by
subsetting on one of the factors, 1, 2, 3 or 4, at either their low or high levels.
The resulting optimal PEC sequence is (ps,ps,ps5) = (1,1,0). The PIC sequence is
(d3,dy, ds) = (0.951,0.858,0).

Example 3.10. Consider the 24-run combined designs. Table A.2 uses the non-
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CHAPTER 3. OPTIMAL SEMI-FOLDOVER PLANS

isomorphic 16-run initial designs from Chen, Sun and Wu (1993). For example, the
notation 7.3.1, 7.3.2,...,7.3.5 in Table A.2 implies that there are five non-isomorphic
273 designs. This notation follows that of Chen, Sun and Wu (1993). For N = 24
and n = 7, the optimal semi-foldover plan is achieved by first using the initial design
labeled 7.3.2. We then fold on the three-factor interaction 567, and choose the semi-
foldover runs by subsetting on 4, 7, 14, 17 or 27 at either their low or high levels. The
PEC sequence of the corresponding design is (ps, ps, ps, ps) = (1,0.971,0.857,0). We
use the PIC criterion to distinguish between designs 7.3.1, 7.3.4 and 7.3.5, which are
tied with respect to the PEC criterion. Here, (ds,d4,ds, ds) = (1,0.914,0.571,0) for
designs 7.3.4 and 7.3.5 and (d3, dy, ds,ds) = (0.990, 0.885,0.529, 0) for design 7.3.1.
All entries in the row corresponding to design 7.3.2 are displayed in bold to indicate

their optimality with respect to the PEC criterion.

It is useful to compare the PEC sequences (for our PEC-optimal 24-run com-
bined designs) with the PEC sequences obtained by Loeppky, Sitter and Tang (2007).
To construct 24-run designs, Loeppky, Sitter and Tang (2007) developed a proce-
dure for efficiently searching through all design projections arising from a catalog of
non-isomorphic Hadamard matrices. (Wu and Hamada (2000, pg. 309) describe a
Hadamard matrix as follows: “A Hadamard matrix of order N, denoted by Hy, is
an N x N orthogonal matrix with entries 1 or —1. We can assume without loss of
generality that its first column consists of 1’s. Then the remaining N — 1 columns
are orthogonal to the first column and must have half 1’s and half —1’s". It is also
useful to note that for Hadamard matrixes, N is always a multiple of 4.) Table 3.12

compares our five 24-run PEC-optimal combined designs (from Table A.2) with those
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CHAPTER 3. OPTIMAL SEMI-FOLDOVER PLANS

Table 3.12: Comparison of Select 24-Run PEC-Optimal Semi-Foldover Plans with
Corresponding 24-Run PEC-Optimal Designs from Loeppky, Sitter and Tang (2007)

Design from Loeppky et al. (p3, P4, Ps, ps) | Ow ID  (ps, pa, Ps, Ps)

6.1 (1, 1,1, 1) 6.2.2 (1, 1, 1, 0)

7.1 (1, 1,1, 1) 7.3.2 (1, 0.971, 0.857, 0)
8.1 (1,1, 1,0.786) | 8.4.2 (1, 0.957, 0.786, 0)
9.1 (1,1, 1, 0) 9.5.4 (1, 0.929, 0.643, 0)
10.1 (1,1, 1, 0) 10.6.3 (1, 0.929, 0.643, 0)

in Table 5 of Loeppky, Sitter and Tang (2007).

By comparing our 24-run PEC-optimal designs with those in Table 5 of Loeppky,
Sitter and Tang (2007), we note that all of our semi-foldover plans possess inferior
PEC sequences. This is not surprising since Loeppky, Sitter and Tang (2007) begin

with a 24-run design whereas we take a 16-run FF and then semi-fold it.

Example 3.11. Consider the 48-run combined designs. Table A.3 in Appendix A.1
lists the non-isomorphic 32-run initial designs from Chen, Sun and Wu (1993). Con-
sider semi-folding an initial 2772 design. The optimal semi-foldover plan is achieved
by using the initial designs labeled 7.2.1 (the MA initial design) or 7.2.6. Note that an
identical PEC sequence ((ps, p4, 05, Ps, p7) = (1,1,1,1,1)) is obtained when beginning
with initial designs 7.2.1, 7.2.2, 7.2.4, 7.2.5, 7.2.6 and 7.2.7. Using the PIC criterion as
a secondary criterion for distinguishing between the PEC-optimal semi-foldover plans
we note that semi-folding the initial designs 7.2.1 and 7.2.6 results in the optimal PIC
sequence; namely, (dy, do, d3, dy, ds, dg, d7) = (0.997,0.990, 0.978, 0.959, 0.930). All en-
tries in the rows corresponding to initial designs 7.2.1 and 7.2.6 are displayed in bold

to indicate their optimality.
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CHAPTER 3. OPTIMAL SEMI-FOLDOVER PLANS

For a given non-isomorphic initial design, the tables in Appendix A.2 lists 12-,
24- and 48-run semi-foldover plans ranked according to the generalized MA criterion.

Note that to save space we truncate EWLPs beginning at words of length 6.

Example 3.12. Table A.4 assesses the various 12-run combined designs according
to the generalized MA criterion. For example, consider the 2?;1 initial design. By
folding on (added) factor 4 and subsetting on the two-factor interactions, 12, 13 or 14,
at either the low or high levels, we obtain the minimum G-aberration 12-run combined
design. The corresponding EWLP has entries (f1, f1.333, f1.667, J2;- - -» fase7)= (0, 0, 0,
0,0,2,0,0,0,0,0, 1). Therefore, the minimum G-aberration combined designs have

2 words of length 2.667, 1 word of length 4.667, and possess a generalized resolution

(R) of 2.667.

Example 3.13. Table A.5 assesses the various 24-run combined designs according to
the generalized MA criterion. Consider semi-folding an initial 2772 design. The MA
initial design, 7.3.1, produces the minimum G-aberration 24-run combined design
having EWLP (f2, fos333, fae67:- - f5.667) = (0, 0, 0, 0,0, 7, 3,0, 4, 0, 0, 0) and
R = 3.667. This is achieved by folding on either 5, 6, 7, 56, 57, 67 or 567, and then
by subsetting on the three-factor interaction 127 at either the low or high levels. All
entries in the row corresponding to design 7.3.1 are displayed in bold to indicate that
the suggested semi-foldover plans are optimal with respect to the generalized MA

criterion.

Example 3.14. Table A.6 assesses the various 48-run combined designs according

to the generalized MA criterion. Consider semi-folding an initial 2”72 design. Here,
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the MA initial design, 7.2.1, does not produce the minimum G-aberration combined
design. Rather, the optimal semi-foldover plan is achieved by using the initial design
7.2.3. By folding on effects 6, 7 or 67 and by subsetting on the four-factor interactions
1345 or 1357 at either their low or high levels we obtain the minimum G-aberration
48-run combined design. The optimal combined designs have EWLP (f3, f3.167, f3.333,
fa.5, f3.667, f3.833) fasr -+, f5.833) = (0,0,0,0,0,0,1,0,0,0,6,0,0,0,0,0,0,0) and
R = 4. All entries in the row corresponding to design 7.2.3 are displayed in bold to
indicate that the given semi-foldover plans are optimal with respect to the generalized

MA criterion.
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Chapter 4

Conclusion and Future Work

This thesis has primarily focused upon the selection of semi-foldover plans that have
desirable projection properties. To assess such properties we have used the PEC and
PIC criteria (Loeppky, Sitter and Tang (2007)). We have also used the generalized
MA criterion (Deng and Tang (1999, 2002)) in this thesis to select semi-foldover plans
that sequentially minimize the presence of short words in their corresponding EWLPs.
. One avenue for future research is to again use the semi-foldover approach for con-
structing the follow-up runs but rather select the runs using criteria other than PEC,
PIC and generalized MA. For example, one might deem an optimal semi-foldover
plan to be one that de-aliases the largest number of low-order effects in the initial
design. Although the generalized MA criterion will likely perform well according to
this criterion, it is unlikely to be optimal in all situations.
An interesting feature of semi-foldover plans is that they may be superior to
foldover plans when assessed with respect to the PEC criterion. Examples of such

occurrences were noted in Chapter 3. Future research might seek to determine if
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" the projection properties of semi-foldover plans (compared to foldover plans) are
frequently superior. If so, this would be another argument in favor of running a
semi-foldover plan rather than a foldover plan which requires more runs.
Semi-folding is but one approach proposed in the literature for constructing follow-
up runs. Another possibility for future research is to investigate different approaches
for constructing the follow-up runs. For example, D-optimal or Bayesian strategies
may also be used. Mee and Peralta (2000) highlight the general pros and cons of such
competing follow-up strategies, although they do not investigate these competing

follow-up strategies in any detail. They conclude that:

1. D-optimal designs can de-alias more low-order effects than semi-foldover designs
but are less appealing when taking into account other useful design criteria
(for example, robustness to model mis-specification and suitability of further

augmentation);

2. A Bayesian follow-up strategy is highly flexible and can take into account mul-
tiple design criteria and model uncertainty but is considerably more tedious to

implement than semi-folding.
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Appendix A

Optimality Criteria

A.1 12-, 24- and 48-Run Combined Designs As-
sessed Sequentially with Respect to the PEC
and PIC Criteria
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Table A.1: 12-Run Combined Designs Assessed Sequentially with Respect to the PEC
and PIC Criteria

Initial design (ID) Core fo SS (ps3, P4, D5) (ds, d4, ds)

41 4 (1,2,3,+ (1, 1,0) ~ (0.951, 0.858, 0)
5.2 45 (23, 24)+ (1, 0.8, 0) (0.951, 0.686, 0)
6.3 456 (16)+ (1, 0.8, 0) (0.951, 0.686, 0)
7.4 45,46,47,56, 1,2,3,4, (0.914, 0.571, 0) (0.869, 0.490, 0)

(
57,67,4567  5,6,7)%

Note: All 4 designs are MA designs.
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Table A.2: 24-Run Combined Designs Assessed Sequentially with Respect to the PEC
and PIC Criteria

1D Core fo SS (p37 D4, Ds, pS) (d37 d47 d57 dG)

511% 5 (12,13,14,15, (1,1,1,0) (0.980, 0.962, 0.943, 0)
93,24.25,
34,35, 45)+

512 5 (12,13, 15)+ (1,0.8, 0, 0) (0.970, 0.766, 0, 0)

513 5 (134,234,345)+ (1, 1, 1, 0) (0.990, 0.968, 0.926, 0)

6.2.1* 5,56 (5,6,124,134)+ (1, 0.933, 0.667, 0)  (0.981, 0.835, 0.330, 0)

6.2.2 56 (23,24,26,35, (1, 1,1, 0) (0.983, 0.958, 0.912, 0)
45,56)%

623 56 (13,14,16,23,24, (1,1, 1, 0) (0.980, 0.951, 0.904, 0)
26,35, 45, 56)+

73.1% 567,56, (127)+ (1,0.914, 0571, 0)  (0.990, 0.885, 0.529, 0)

57 .67,567

7.3.2 567 (4,7,14,17,27)+ (1, 0.971, 0.857, 0) (1, 1, 0.857, 0.571)

733 567 (13,16,24,27,34,  (1,0.943,0.714,0) (1, 0.943, 0.714, 0.143)
37,46,67)+

734 5 (13,14,16,17,34,  (1,0.914,0.571,0) (1, 0.914, 0.571, 0)

37,134,137)%

735 567 (4,14,16,24,34, (1, 0.914, 0.571, 0) (1, 0.914, 0.571, 0)
45,46, 47,146)+

Note:
1. * denotes the initial MA design
2. Entries in bold depict semi-foldover plans that are optimal with respect to the PEC criterion
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(Cont’d) Optimal 24-Run Combined Designs

1D Core fo SS (p?n D4, Ps, pG) (d39 d4, d5a dG)

8.4.1% 5678 (4,5,6,7, (1, 0.914, 0.571, 0) (0.975, 0.875, 0.521, 0)
8,15)%

8.4.2 5678 (8,18)+ (1, 0.957, 0.786, 0)  (0.975, 0.912, 0.712, 0)

843 5678 (58)+ (1, 0.929, 0.643, 0) (0.982, 0.889, 0.588, 0)

8.4.4 567 (48)+ (1, 0.957, 0.786, 0)  (0.975, 0.912, 0.712, 0)

8.4.5 5678 (48,78)+ (1, 0.929, 0.643, 0) (0.986, 0.893, 0.589, 0)

8.4.6 567 (14,24,34,45, (1, 0.9, 0.5, 0) (0.986, 0.865, 0.457, 0)
46,47, 48)=+

9.5.1* 567,678  (17)% (0.988, 0.873, 0.492, 0)  (0.968, 0.836, 0.466, 0.041)

9.5.2 5678 (17)+ (1, 0.921, 0.603, 0) (0.984, 0.882, 0.551, 0)

953 5678 (19)+ (1, 0.921, 0.603, 0) (0.984, 0.882, 0.551, 0)

9.5.4 56789  (38,39,69)+ (1, 0.929, 0.643, 0)  (0.984, 0.890, 0.588, 0)

9.5.5 5679 (24,29,34,39, (1, 0.921, 0.603, 0) (0.984, 0.882, 0.551, 0)
47,48)% |

10.6.1* 5670,6780 (17)x (0.983, 0.867, 0.524, 0)  (0.961, 0.826, 0.489, 0.042)

10.6.2 56789 (20,39)+ (1, 0.924, 0.619, 0) (0.982, 0.884, 0.565, 0)

10.6.3 567890 (17,19,110, (1, 0.929, 0.643, 0) (0.982, 0.887, 0.586, 0)
20,50)+

10.6.4 56790 (34,39,30,48)% (1, 0.924, 0.619, 0) (0.982, 0.884, 0.565, 0.010)
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Table A.3: 48-Run Combined Designs Assessed Sequentially with Respect to the PEC

and PIC Criteria

ID Core fo SS (p3, s, s, Ps, P7) (ds, dy, ds, ds, d7)

6.1* 6 123,124,125,126, (1,1,1,1,0) (0.995, 0.987, 0.978, 0.968, 0)
134,135,146,145,
146, 156)-+

7.2.1* 6,7 (135,137,235,237, (1,1,1,1,1) (0.997, 0.990, 0.978, 0.959, 0.930)
345,347)+

7.2.2 67 (124,125,127,134, (1,1,1,1,1) (0.996, 0.987, 0.974, 0.955, 0.930)
135,137,146,156,
167)+%

7.2.3 6,7,67 (1345,1356, )+ (1,0.971, 0.857, 0.571, 0) (1, 0.966, 0.838, 0.540)

7.2.4 6,67 (234,235,237,245, (1,1,1,1, 1) (0.996, 0.987, 0.974, 0.955, 0.930)
247,257)+

7.2.5 67 (13,14,15,17,23, (1,1,1,1,1) (0.990, 0.978, 0.959, 0.931, 0.894)
24,25,27,36,46,
56,67)%

7.2.6 67 (235,245,257,356, (1,1,1,1,1) (0.997, 0.990, 0.978, 0.959, 0.930)
456,567)+

7.2.7 67 (135,145,157,235, (1,1,1,1, 1) (0.996, 0.987, 0.974, 0.955, 0.930)
245,257,356,456, '
567)+

7.2.8 67 (2345,2357)+ (1, 0.971, 0.857, 0.571, 0)  (0.997, 0.962, 0.841, 0.553, 0.261)

Note:

1. * denotes the initial MA design
2. Entries in bold depict semi-foldover plans that are optimal with respect to the PEC criterion
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(Cont’d) Optimal 48-Run Combined Designs

247,257,278)+

ID Core fo SS (p3, p4, Ps, Ps, P7) (ds, d4, ds, dg, dv)
8.3.1* 6,7,67, (125)i (1, 0.986, 0.929, 0.786) (0.997, 0.976, 0.908,0.753)

68,78,678
8.3.2 78 (145,148, 178):1: (1, 0.986, 0.929, 0.786, 0.5) (0.996, 0.975, 0.906, 0.751, 0.465)
8.3.3 67,68,78 (1345, 1348):|: (1, 0.971, 0.857, 0.571, 0) (1, 0.966, 0.838, 0.540, 0)
8.3.4 6,7,8,67, (l258):|: (1, 0.957, 0.786, 0.429, 0) (1, 0.952, 0.769, 0.405, 0)

68,78,678
8.3.5 678 (145,148,157,178)+ (1,1, 1,1, 1) (0.996, 0.989, 0.976, 0.957, 0.930)
8.3.6 67,678 (14:57 148, 158):t (l, 0.986, 0.929, 0.786, 0.5) (0.996, 0.972, 0.903, 0.7495, 0.465)
8.3.7 678 (148, 248, 456, 468) - (1, 0.986, 0.929, 0.786, 0.5) (0.997, 0.976, 0.908, 0.753, 0.465)
8.3.8 678 (145,148,157):§: (1, 1, 1,1, 1) (0.996, 0.989, 0.976, 0.957, 0.930)
8.3.9 67 (35,38,57,78, (1, 0.971, 0.857, 0.571, 0.125) (0.992, 0.954, 0.829, 0.541, 0.115)

135,138,157, 178)%
. 8.3.10 678 (234,235,238, (l, 0.986, 0.929, 0.786, 0.5) (0.996, 0.974, 0.906, 0.753, 0.465)
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(Cont’d) Optimal 48-Run Combined Designs

ID Core fo SS (p3, P4, Ps, Ps, P7) (d3, d4, ds, ds, dr)
9.4.1* 67, 68, 69, (156):b (1, 0.984, 0.921, 0.762) (0.998, 0.975, 0.900, 0.729)
78, 79, 89
9.4.2 6,7,8,67,68, (15,19,25,29, (1, 0.976, 0.881, 0.667, 0.333) (0.994, 0.963, 0.857, 0.635, 0.309)
69,78,79,89, 35,39,45,49,
678,679,689, 57,58,79, 89)i
789,6789
9.4.3 67,68,78,689, (169):1: (1, 0.976, 0.881, 0.643, 0.25) (0.996, 0.966, 0.861, 0.616, 0.234)
789,6789
9.4.4 89 (135,139,145, (1, 0.976, 0.881, 0.667, 0.333) (0.996, 0.965, 0.859, 0.637, 0.310)
149,158, 189)%
9.4.5 67 1384 (1, 0.952, 0.762, 0.381, 0) (0.998, 0.944, 0.747, 0.369, 0)
68 157+
69 145+
78 156+
79 125k
89 135+
6789 159+
9.4.6 6789 (148):!: (1, 1, 0.976, 0.667, 0.333) (0.981, 0.981, 0.920, 0.315, 0)
9.4.7 6 (239, 369):|: (1, 0.944, 0.722, 0.333, 0) (0.998, 0.937, 0.707, 0.320, 0)
9.4.8 678,679,6789 (139):|: (1, 0.992, 0.960, 0.881, 0.722) (0.996, 0.981, 0.938, 0.843, 0.672)
9.4.9 678,6789 (159)+ (1, 0.976, 0.881, 0.667, 0.333) (0.995, 0.962, 0.856, 0.636, 0.310)
9.4.10 6789 (56,69):|: (l, 0.984, 0.921, 0.762, 0.472) (0.993, 0.968, 0.892, 0.724, 0.437)
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(Cont’d) Optimal 48-Run Combined Designs

1D Core fo SS (p3, p4. Ps, P6, P7) (ds, d4, ds, dg, d7)
10.5.1* 67,68,69,60,78, (12,13,14,15,186, (1, 0.981, 0.905, 0.724) (0.992, 0.964, 0.877, 0.688)
79,70,89,80,90, 17,18,19,23,24,26,
678, 679,670,689, 27,28,34,37,45,46) &
680,690,789,780,
790,890
10.5.2 678,679,689,690, (125,128,129, (1, 0.976, 0.881, 0.683, 0.25) (0.996, 0.964, 0.859, 0.614, 0.232)
789,780 120,137)+
10.5.3 70,89,789,780, (120, 145, 149, 170) % (1, 0.971, 0.857, 0.590, 0.2) (0.996, 0.960, 0.836, 0.564, 0.186)
790,890
10.5.4 890 (135,136,145, (1, 0.971, 0.857, 0.610, 0.267) (0.997, 0.961, 0.836, 0.582, 0.248)
140, 158, 159)
10.5.5 678 (29, 69)+ (1, 0.971, 0.857, 0.610, 0.267) (0.995, 0.958, 0.833, 0.579, 0.246)
679 (28,68)+
670 (25,56)%
689 (27, 67)%
680 (24, 46)x
690 (23, 36)%
67890 (20, 60)%
10.5.6 67890 (110)+ (1, 0.986, 0.929, 0.781, 0.367) (0.995, 0.972, 0.901, 0.739, 0.339)
10.5.7 6789 50+ (1, 0.986, 0.929, 0.790, 0.5) (0.989, 0.964, 0.896, 0.747, 0.461)
6780 24+
6790 13+
10.5.8 67890 (140)% (1, 0.991, 0.952, 0.857, 0.667)  (0.997, 0.980, 0.930, 0.820, 0.620)
10.5.9 87890 (135,130, 157, 150) % (1, 0.981, 0.905, 0.724, 0.4) (0.996, 0.970, 0.883, 0.692, 0.372)
10.5.10 6789 (25,20,35,30,45, (1, 0.986, 0.929, 0.791, 0.517) (0.994, 0.971, 0.901, 0.752, 0.478)

40, 56, 57, 58, 60, 70, 80)+
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A.2 12-, 24- and 48-Run Combined Designs Ranked
According to the Generalized Minimum Aber-
ration Criterion
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Table A.4: 12-Run Combined Designs Ranked According to the Generalized Minimum
Aberration Criterion

ID  Core fo SS R EWLP (f1, f1.333, fr.e67, -, fa. fa.333, fae67)
41 4 (12,13,14)f 2667 (0,0,0,0,0,2,0,0,0,0,0, 1)
52 45 (23,25)+  2.667 (0,0,0,0,0,2,0,0,4,1,0,0,0, 0, 0)
63 456 (16)+  2.667 (0,0,0,0,0,3,0,0,8,3,0,0,0, 0, 0)
74 456 (1,23, 1667  (0,0,1,0,0,3,0,0,11,70,4,0,0,3)
4,5,6,7)+

Note: (f1,...) denotes EWLPs starting with word length equal to 1
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Table A.5: 24-Run Combined Designs Ranked According to the Generalized Minimum
Aberration Criterion

1D Core fo 5SS R EWLP (fa, fa.333, f2.667:- -, [5, [5.333, f5.667)
5.1.1% 5 (12,13,14,15,  2.667 (0,0,1,0,0,1,0,0,0,0,0, 1)
23,24.25,34,
35, 45)+
5.1.2 5 (124,134,145)+  3.667 (0,0, 0,0,0,2,0,0, 1,0, 0, 0)
5.1.3 5 (134,234,345)+  3.667 (0,0,0,0,0,2,0,0,1,0,0, 0)
6.2.1" 5,6,56 (124,134)+  3.667 (0,0,0,0,0,4,1,0, 2,0, 0, 0)
6.2.2 56 (23,24,26,35,  2.667 (0,0,1,0,0,3,0,0,2, 1,0, 0)
' 45, 56)+
6.2.3 56 (13,14,16,23, 2.667 (0,0,1,0,0,4,0,0,1,0,0, O)
94,26,35,
45,56)%
7.3.1*  5,6,7,56,57,67,567 (127)+ 3.667 (0,0, 0,0,0,7, 3,0, 4, 0, 0, 0)
7.3.2 567 (14,17)+ 2.667 (0,0,1,0,0,86,1,0,4,2,0,0)
7.3.3 567 (13, 16):|: 2.667 (O, 0,1,0,0,6,1,0,4, 2,0, 0)
7.3.4 567 (34,37,134,137)%  2.667 (0,0,1,0,0,6,2,0,3,0,0, 2)
7.3.5 567 (14,24.34,45,  2.667 (0,0,1,0,0,6,3,0,20,0,2)
- 46,47, 146)+
Note:

1. * denotes the initial MA design
2. (f2,...) denotes EWLPs starting with word lengths equal to 2 and truncated at fg
3. For given n and p, entries in bold denote semi-foldover plans that are optimal with respect to the generalized MA

criterion
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(Cont’d) 24-Run Combined Deisgns Ranked According to the Generalized Minimum
Aberration Criterion

ID Core fo SS R EWLP (fa, f2.333, f2.667:- - -» f5, [5.333, [5.667)

8.4.1* 56,57,58,67, (12,13,14,15, 2.667 (0,0, 4,0,0,0, 6,0, 16, 0, 0, 0)
68,78,5678  16,17,18)+

842  567,5678 (18)% 2.667 (0,0,1,0,0,10,7,0,4,0,0, 4)
8.4.3 5678 (58)% 2.667 (0,0,2,0,0,8,5,0,5,0,0, 8)
8.4.4 567 (14,18,24,28,  2.667 (0,0,2,0,0,8,3,0,7,4,0,4)
34,38)+
8.4.5 5678 (48,78)+  2.667 (0, 0,1, 0,0, 10, 5, 0, 6, 0, 0, 4)
8.4.6 567 (14,24,34,45,  2.667 (0,0,1,0,0,10,7,0,4,0,0, 4)
46,47, 48)+
9.5.1* 567,578 (17)+ 2.667 (0,0,4,1,0,7,5,0, 17, 6, 0, 10)
9.5.2 5678 17+ 2.667 (0,0, 2,0,0, 14, 10, 0, 8, 0, 0, 12)
9.5.3 56789 (19)+ 2.667 (0,0,2,1,0,13,5,0, 13, 6, 0, 6)
9.5.4 56789  (38,39,69)+ 2.667 (0,0, 2,0,0,14, 9,0, 9, 0, 0, 12)
9.5.5 5679 (24,29,34,  2.667 (0,0, 2,0,0, 14, 10, 0, 8, 0, 0, 12)
39,47,48)+
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(Cont’d) 24-Run Combined Designs Ranked According to the Generalized Minimum
Aberration Criterion

D Core fo SS R EWLP (f5, fa.333, fo.667: - [5, [5.333, f5.667)
10.6.1* 5 (13,14,15, 2.667 (0,0,5,6,0, 10, 10, 0, 16, 8, 0, 24)
17,18)+
1062 567890 (20,39)+ 2.667 (0,0,3,5,0,14,7, 0, 22, 6, 0, 21)
10.6.3 567800  (18,19,110,  2.667 (0,0, 3,0,0, 20, 15, 0, 13, 0, 0, 24)
20, 50)+
10.6.4 56890 (34,39,30,48)+ 2.667 (0,0, 3, 0, 0, 19, 16, 0, 13, 0, 0, 27)
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Table A.6: 48-Run Combined Designs Ranked According to the Generalized Minimum
Aberration Criterion

1D Core fo SS R EWLP (f2, f2.167, f2.33, f2.5, f2.667, [2.833, - -, f5.833)
6.1.1* 6 (123,124,125, 3.667 (0, 0,0,000,000,0,20,0,0,0,0,0,0,0,0, 0, 0, 0, 0)
126,134,135,
136,145,146,
156)+
7.2.1* 6,7 (135,137,235, 3.667 (0, 0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,3,0,1,0,0,0, 1, 0)
237, 345, 347)i
7.2.2 6,7 (124,125,127, 3.667 (0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,1,0,0,0, 0, 0, 1, 0)
134,135,137,
146, 156, 167)+
7.2.3 6,7,67 (1345,1357):t 4 (0, o, 0,0, 0,0,0,0,0,0,0,0,1,0,0,0,6,0,0,0,0, 0,0, 0)
7.2.4 6 (134,135,137, 3.667 (0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,2,0,1, 0, 0, 0, 0, 0)
245,247, 257):}:
7.2.5 67 (134,135,137, 3.667 (0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0, 3,0,0,0, 0, 0, 0, 0)
234,235,237,
346, 356, 367)+
7.2.6 67 (135,145, 157) 3.667 (0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,2,0,1, 0,0, 0, 0, 0)
7.2.7 67 (135,145,157, 3.667 0,0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,2,0,0,0,0, 0, 1, 0)
235,245,257,
356, 456, 567)
7.2.8 67 (2345, 2357)+ 3.667 (0,0,0,0,0,0,0,0,0,0,2,0,1,0,0,0,2,0,0, 0, 0, 0, 2, 0)
8.3.1* 6,7,67, (125):|: 3.667 (0, o, 0,0,0,0,0,0,0,0,3,0,1,0,0,0, 6,0, 2,0, 0,0, 2,0)
68,78,678
8.3.2 78 (145, 148, 178)i 3.667 (0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0,4,0,0,0,0, 0, 4, 0)
8.3.3 67,68,78 (1345, 1348)i 4 (0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0, 12,0, 0, 0, 0, 0, 0, 0)
Note:

1. * denotes the initial MA design
2. (fa2,...) denotes EWLPs starting with word lengths equal to 2 and truncated at fg
3. For given n and p, entries in bold denote semi-foldover plans that are optimal with respect to the generalized MA

criterion
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(Cont’d) 48-Run Combined Designs Ranked According to the Generalized Minimum
Aberration Criterion

1D Core fo SS R EWLP (f2, fo.167, f2.33, f2.5, fo.667, f2.833,- .-, f5.833)

8.3.4 6,7,8,67, (12580+ 4 (o, 0, 0, 0, 0,0,0,0,0,0,0,0,3,0,0,0,11,0,0,0,0,0,0, 0

68,78,678
8.3.5 678 (145, 148,157,178)+ 3.667 (0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,5,0, 2,0, 0, 0, 2, 0)
8.3.6 67,678 (145,148, 158)£ 3.667 (0,0,0,0,0,0,0,0,0, 0,‘5, 0,1,0,0,0,4,0,20,0,0,0,0)
8.3.7 67,68 (148, 248, 456, 468)+ 3.667 (0,0,0,0,0,0,0,0,0,0,3,0,1,0,0,0,6,0, 1, 0, 0, 0, 3, 0)
8.3.8 678 (245,248, 257)+ 3.667 (0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,5,0, 2,0,0, 0, 2, 0)
8.3.9 678 (35,38,57,78, 2.667 (0,0,0,0,1,0,0,0,0,0,3,0,1,0,0,0,4,0, 10,0, 0, 3, 0)

135, 138, 157, 178)+
8.3.10 678 (234,235,238, 3.667 0,0,0,0,0,0,0,0,0,0,4,0,1,0,0,0, 5,0, 2,0,0, 0, 2, 0)
247,257, 278) %

9.4.1*  67,68,69, (156)+ 3.667 (0,0,0,0,0,0,0,0,0,0,4,0,2,0,0,0,12, 0,4, 0,0, 0,4, 0

78,79,89
9.4.2 9 (15,19,15,29, 2.667 0,0,0,0,1,0,0,0,0,0,3,0,7,0,0,0, 4, 0,0, 0, 0, 0, 11, 0)

35,39,45,49,
56,57;58,67,
79,89)+
9.4.3 67,69,78, (169)+ 3.667 (0,0,0,0,0,0,0,0,0,0,6,0,3,0,0,0,6,0,0, 0,0, 0, 9, 0)
689,789,6789
9.4.4 89 (135,139,145, 3.667 (0,0,0,0,0,0,0,0,0,0,6,0,3,0,0,0,7,0,0, 0, 0, 0, 8 0)
149, 158, 189)-£

9.4.5 67,68,69, (125,135,145,156, 3.667 (0,0,0,0,0,0,0,0,0,0,4,0,6,0,0,0,8,0,0, 0,0, 0, 8 0)

78,79,89, 157,158, 159)+

6789
9.4.6 67,68,69,678, (148)+ 3.667 0,0,0,0,0,0,0,0,0,0,8,0,3,00,0,7,0,2,0,0, 0, 2, 0)
689,789
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(Cont’d) 48-Run Combined Designs Ranked According to the Generalized Minimum
Aberration Criterion

1D Core fo SS R EWLP (fo, fa.167, f2.33, f2.5, f2.667, f2.833,. . ., f5.833)
9.4.7 6 (239)t 3.667 (0,0,0,0,0,0,0,0,0,0,4,0,7,0,0,0,7,0,0, 0,0, 0, 8 0)
9.4.8 678,679,6789 (139)+ 3.667 (0,0,0,0,0,0,0,0,0,0,6,0,1,0,0,0, 80,4, 0,0, 0, 5, 0)
9.4.9 6789 (159)+ 3.667 (,0,0,0,000,000,8,0,3,0,0,0,7,0,0,0, 0, 0, 4, 0)
9.4.10 6789 (158,189)+ 3.667 (0,0,0,0,0,0,0,00,0,7,0,20,0,0,7,0,3,0,0,0, 3, 0)
10.5.1* 6,7,8,9,0, (12,13,14,15, 2.667 (0,0,0,0,2,00,0,0,0,4,0,6,0,0,0, 10, 0, 8, 0, 0, 0, 16, 0)
6789,6780,6790, 16,17,18,19,
6890,7890 23,24,25,26,
27,28,34,35,
36,37,45,46)%
10.5.2 678,679,689, (125,128,129, 3.667 (0,0,0,0,0,0,0,0,0,0, 10, 0, 5, 0, 0, 0, 10, 0, 0, 0, 0, 0, 12, 0)
689,789,780 120,137)+
10.5.3 70,89,789, (120,145,149, 3.667 (0,0,0,00,0,0,0,0,0,9,0,6,0,0,0, 10, 0, 0, 0, 0, 0, 15, 0)
780,790,890 170)£
10.5.4 890 (135,136,145, 3.667 (0,0,0,0,0,0,0,0,0,0,8,0,6,0,0,0, 12,0, 0, 0, 0, 0, 16, 0)
140, 158) =
10.5.5 678,679,670, (23,24,25,27, 2.667 (0,0,0,0,1,0,0,0,0,0,5,0,6,0,0,0, 15,0, 4, 0, 0, 0, 11, 0)
689,680,690, 28,29,20,36,
67890 46,56,67,68,
69,60)%
10.5.6 789 (110)% 2.667 (0,0,0,0,1,0,1,0,0,0,4,0,3,0,0,0, 18, 0, 4, 0, 0, 0, 11, 0)
10.5.7 678,679,670, (14,17,23,27, 2.667 (0,0,00,1,0,0,0,0,0,8,0,3,0,0,0, 11, 0, 6, 0, 0, 0, 10, 0)
6789,6780,6790, 36,46)+
67890
10.5.8 67890 (149)+ 3.667 (0,0,0,0,0,0,0,0,0,0,8,0,2,0,0, 0, 16, 0, 8, 0, 0, 0, 8, 0)
10.5.9 67890 (235, 230, 257, 250)+% 3.667 (0,0,00,0,0,0,0,0,0,9,0,4,0,0,0, 12,0,6,0,0,0, 9, 0)
10.5.10 6789 (25,20,35,30, 2.667 (0,0,0,0,1,0,0,0,0,0,7,0,3,0,0,0, 12,0, 7,0, 0, 0, 12, 0)
45,40,56,57,

58, 60, 70, 80)+
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Sample Code: R Code for Ranking an Initial MA
2%;1 Design According to the PEC, PIC and Gener-
‘alized Minimum Aberration Criteria

getPECandPIC<-function(n_f,p,d,n_r,m_r,k3,k4,k5) {
getsemi<-function(n_f,p,d,n_r,m_r,;k3,k4,k5) {
x1<-c(~1,1,-1,1,-1,1,-1,1,0,0,0,0)
x2<-c(-1,-1,1,1,-1,-1,1,1,0,0,0,0)
x3<-c(~1,-1,-1,-1,1,1,1,1,0,0,0,0)
getdesign<~function(n_f,p,d,n_r,m_r,k3,k4,k5){
getnonadd<-function(n_f,p,d,n_r,m_r,k3,k4,k5){
x<-vector(length=(m_r*d))
X<-matrix(data=x, nrow=m_r, ncol=d, byrow=TRUE)
getcol<-function(a) {
c<-vector(length=m_r)
if(a==1) {
c=x1 }
if (a==2) {
c=x2}
if (a==3) {
c=x3 }
c
}
for(i in 1:4) {
if (i<=(n_£-p)){
c<~getcol (i)

X[,il<-¢
}
}
X
}
Y<-getnonadd(n_f,p,d,n_r,m_r,k3,k4,k5)
Y

yi<-vector(length=m_r)
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y2<-vector(length=m_r)
y3<-vector(length=m_r)
y4<-vector (length=m_r)
y5<-vector(length=m_r)
y6<-vector(length=m_r)
y7<-vector(length=m_r)
for(i in 1:d){
if (i==1){
yi<-Y[,1] }
if (i==2){
y2<-Y[,2]%}
if(i==3) {
y3<=Y[,31}
if (i==4) {
ya<-Y[,4]1%
if(i==5) {
y5<-Y[,5]}
if (i==6){
y6<-Y[,61}
if (1==7){
y7<-¥[,71}
¥

addgen<-function(n_f,p,d,n_r,m_r,gl,g2,g3,g4,85,g6,87)1{

getgen<-function(b) {

g<-vector(length=n_r)

if (b==1){
g<-gi}
if (b==2) {
g<-g2}
if (b==3){
g<-g3}
if (b==4){
g<-g4}
if (b==5){
g<-gb}
if (b==6){
g<-gb}
if (b==7){
g<-gT}
g
¥
for(i in 1:d){

if (1> (n_f-p)&& i<=n_£){

c<-getgen(i)
Y[,il<-c

¥
Y

3

Z1<-addgen(n_f,p,d,n_r,m_r,gl,g2,g3,yl*y2+*y3,g5,g6,g7)

yi<-vector(length=m_xr)
y2<-vector(length=m_r)
y3<-vector(length=m_r)
yé4<-vector(length=m_r)
y5<-vector(length=m_r)
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y6<-vector(length=m_r)
y7<-~vector(length=m_r)
for(i in 1:4) {
if(i==1) {
yi<-Z1[,1] }
if(i==2) {
y2<-Z1[,2]1%}
if (i==3) {
y3<-Z1[,31%}
if(i==4) {
y4<~Z1[,41}
if (i==5){
y5<-21[,5]}
if (i==6){
y6<~Z1[,61}
if (i==7){
y7<-21[,71}
}
addint<-function(n_f,p,d,n_r,m_r,gl,g2,g3,g84,85,86,87){
y<-vector(length=m_r*d)
Y<-matrix(data=y, nrow=m_r, ncol=d, byrow=TRUE)
getint<-function(b){
g<-vector(length=m_r)
if (b==1){
g<-gi}
if (b==2){
g<-g2}
if (b==3){
g<~g3}
if (b==4){
g<-gd}
if (b==5){
g<-gb}
if (b==6){
g<-g6}
if (b==7) {
g<-g7}
g
¥
for(i in 1:d){
if(i>n f && i<=d){
c<-getint (1)
Y[,il<-¢

}
Y
}
Z2<-addint(n_£f,p,d,n_r,m_r,gl,g2,g3,g4,y1*y2,yl*y3,yl*y4)
Z<~ Z1 $+$ Z2
yA
¥
getsemidesignoneadded<-function(n_f,p,d,n_r,m_r,k3,k4,k5,g){
getnonadd<-function(n_f,p,d,n_r,m_r,k3,k4,k5,g){
x<-vector(length=(m_r+*d))
X<-matrix(data=x, nrow=m_r, ncol=d, byrow=TRUE)
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getcol<-function(a){
c<-vector(length=m_r)
if (a==1){
c=x1}
if (a==2){
c=x2}
if (a==3){
c=x3}
c
}
for(i in 1:d){
if (i<=(n_£f-p)){
c<~getcol(i)

X[,il<-¢c
}
¥
X
¥
Y<-getnonadd(n_f,p,d,n_r,m_r,k3,k4,k5,g)
Y

yi<-vector(length=m_r)
y2<-vector (length=m_r)
y3<-vector (length=m_r)
y4<-vector (length=m_r)
yb<-vector(length=m_r)
y6<-vector (length=m_r)
y7<-vector (length=m_r)
for(i in 1:d){
if (i==1){
yi<-Y[,13%}
if (i==2){
y2<-Y[,21%}
if (i==3){
y3<-Y[,31}
if (i==4){
ya4<-Y[,41}
if (i==5){
y5<-Y[,51}
if (i==6){
y6<-Y[,6]}
if (i==7){
y7<-Y[,71}
¥
addgen<-function(n_f,p,d,n_r,m_r,gl,g2,g3,e4,g5,6,g7){
getgen<-function(b){
g<-vector(length=n_r)
if (b==1){
g<~gl}
if (b==2){
g<-g2}
if (b==3){
g<-g3}
if (b==4){
g<-g4}
if (b==5){
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g<-g5}
if (b==6)1{
g<-gb}
if (b==7){
g<-g7}
g
}

for(i in 1:d){
if(i>(n_£f-p)&& i<=n_f){
c<-getgen(i)

Y[,il<-¢c
}
¥
Y[,gl<~(-1*Y[,gl)
Y

¥
Zl<—addgen(n_f,p,d,n_r,m_r,gl,g2,g3,y1*y2*y3,g5,g6,g7)
yi<-vector(length=m_r)
y2<-vector(length=m_r)
y3<-vector (length=m_r)
y4<-vector(length=m_r)
y5<~vector (length=m_r)
y6<-vector (length=m_r)
y7<-vector (length=m_r)
for(i in 1:d){
if (i==1){
yi<-zZ1[,11}
if (i==2){
y2<-Z1(,21}
if (i==3) {
y3<-21[,31}
if (i==4){
y4<-Z1[,41}
if (i==5){
y5<-Z1[,51%}
if (i==6){
y6<-21(,6]}
if (i==7){
y7<-Z1[,71}
}
addint<-function(n_f,p,d,n_r,m_r,gl,g2,g3,g4,g5,g6,87)1{
y<-vector(length=m_r*d)
Y<-matrix(data=y, nrow=m_r, ncol=d, byrow=TRUE)
getint<-function(b) {
g<-vector (length=m_r)
if (b==1){
g<-g1}
if (b==2){
g<-g2}
if (b==3){
g<~g3}
if (b==4){
g<-gi}
if (b==5){
g<-gb}
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if (b==6){
g<-gb}
if (b==7){
g<-g7}
g
T

for(i in 1:d){
if(i>n_f && i<=d){
c<~getint (i)
Y[,il<-c

}
Y
¥
Z2<-addint(n_f,p,d,n_r,m_r,gl,82,83,g4,yl*y2,yl*y3,yl*y4)
Z<— Z1 $+$ Z2
Z
¥
Y<-getdesign(n_f,p,d,n_r,m_r,k3,k4,k5)
count<-1
makesemi<-function(n_f,p,d,n_r,m_r,k3,k4,k5){
s<-vector(length=((2"p-1)*2*d*m_r*d))
S<-matrix(data=s, nrow=((2°p~1)*2%d*m_r), ncol=d, byrow=TRUE)
for(g in (n_f-p$+$1):n_£){
for(m in 1:d) {
Y<-getdesign(n_f,p,d,n_r,m_r,k3,k4,k5)
X<-getsemidesignoneadded(n_f,p,d,n_r,m_r,k3,k4,k5,g)
for(j im 1:n_r){
Slcount,]<-Y[j,]
count<-count$+$1
¥
1<-1
for(r in (n_r$+$1):m_r){
while(X[1,m]!=1){
1<-1$+$1
}
Y[r,1<-X[1,]
S[count,]<-Y[r,]
count<-count$+$1
1<-1$+$1

}
for(m in 1:4){
Y<-getdesign(n_f,p,d,n_r,m_r,k3,k4,k5)
X<—getsemidesignoneadded(n_f,p,d,n_r,m_r,ks,k4,k5,g)
1<-1
for(j in 1:n_r){
S{count,]<~Y[j,]
count<-count$+$1
}
for(r in (o_r$+$1):m_r){
while(X[1,m]==1){
1<-1$+$1
}
Y[r,1<-X[1,]
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S[count,]<~Y[r,]
count<-count$+$1

1<-1$+$1
}
}
F<-F$+$1
}

S
}
S<-makesemi(n_f,p,d,n_r,m_r,k3,k4,k5)
¥

S<-getsemi(n_f,p,d,n_r,m_r,k3,k4,k5)
X_Allinitalsi<-8[,1:d]
X_Allinitals<-S[,1:n_f]
X_inital<-matrix(0,m_r,n_£f)
M_d<-matrix(0, ((2"p-1)*2% (2~ (n_f-p)-1)),1)
Pk<-matrix(0, ((27p-1)*2x (2" (n_f-p)-1)),1)
determine_2<-matrix(0, ((27p-1)*2* (2" (a_f-p)-1)),1)
p-p3=1$+$k3$+$choose(k3,2)
p.p4=1$+$kd$+$choose(k4,2)
p_p5=1$+$kb5$+$choose (k5,2)
nck3=choose (n_f,k3)
nckd=choose (n_f ,k4)
nckb5=choose (n_f,k5)
determine3<-matrix(0,nck3,1)
determine3_1<-matrix(0,nck3,1)
determined4<-matrix(0,nck4,1)
determined_1<-matrix(0,nck4,1)
determineb<~matrix(0,nck5,1)
determine5_1<-matrix(0,nck5,1)
xO=matrix(1,m_r,1)
for(t in 1:((27p-1)*2% (2" (n_f-p)-1))){
Y_nck3<-matrix (0, (m_r*nck3),k3)
Y_kc23<-matrix (0, (m_r*nck3),choose(k3,2))
Y3<-matrix (0, (m_r*nck3) ,p_p3)
Y_nck4<-matrix (0, (m_r*nck4) ,k4)
Y_kc24<—matrix20,(m_r*nck4),choose(k4,2))
Y4<-matrix (0, (m_r*nck4) ,p_p4)
Y_nckb<-matrix (0, (m_r*nck5),k5)
Y_kc256<-matrix (0, (m_r*nck5),choose(k5,2))
Y5<-matrix (0, (m_r*nck5),p_p5)
Dk=0
pk=0
count=0
X_initall<-X_Allinitalsi[(((t=1)*m_r$+$1): (t*m_1)),]
X_inital<-X_Allinitals[(((t-1)*m_r$+$1): (t*m_r)),]
print(X_initall)
t2=1
if (k3==3){
for(i in 1:(n_£f-2)){
for(j in (i$+$1):(n_f-1)){
for(b in (j$+$1):n_£){
aal=(t2-1)*m_r$+$1
aa2=t2*m_r
Y_nck3[(aal:aa2),] <- array(c(X_inital[,i],X_inital[l,j],X_initall,bl),dim=c(m_r,k3))
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Y3[(aal:aa2),(1:(k3$+$1))] <- array(c(x0,Y_nck3[(aal:aa2),]),dim=c(m_r,k3$+$1))
ti=1
for(i_1t in 1:(k3-1)) {
for(j_1 in (i_1$+$1):k3){
Y_kc23[(aal:aa2),t1]<-array(c(¥3_nck[(aal:aa2),i_1]1*¥3_nck[(aal:aa2),j_11),
dim=c(m_r,1))
Y3[(aai:aa2), ((k3$+$1)$+$t1)] <~ array(c(¥Y_kc23[(aal:aa2),ti]),dim=c(m_r,1))
ti=t1$+$1

}
determine3[t2,1]<~det (t(Y3[(aal:aa2),])%*%Y3[(aal:aa2),]/(m_r))
determine3_1[t2,11<-det(t(Y3[(aal:aa2),])%*%Y3[(aal:aa2),])
Dk<-Dk$+$ ((determine3(t2,1]~(1/p_p3))/nck3)
if(determine3_1{t2,1]!=0){

count=count$+$1

pk<-(count/choose(n_f,k3))
t2=t2%+$1

}
MAKE=matrix (0, ((2°p-1)#2% (2" (n_£f-p)-1)),12)
count1=0 countl1i=0 count12=0 count2=0 count21=0 count22=0 count3=0
count31=0 count32=0 count4=0 count41=0 count42=0 CFV1=0 CFV11=0
CFV12=0 CFV2=0 CFV21=0 CFV22=0 CFV3=0 CFV31=0 CFV32=0 CFV4=0
CFV41=0 CFV42=0 t1i=1 t22=1 t3=1 t4=1
X _nc3i<-matrix(0,m_r+*choose(n_f,1),1)
X_nc32<-matrix(0,m_r*choose(n_£,2),1)
X_nc33<-~matrix(0,m_r*choose(n_f,3),1)
X.nc34<-matrix(0,m_r+*choose(n_f,4),1)
X_sumi<-matrix(0,choose(n_£,1),1) X_sum2<-matrix(0,choose(n_f,2),1)
X_sum3<-matrix(0,choose(n_f,3),1) X_sumé<-matrix(0,choose(n_f,4),1)
for(i in 1:n_f£){
aal=(t11-1)*m_r$+$1
aal2=tli*m_r
X_nc3i[(aal:aa2),]<- X_inital[i:m_r,i]
X_suml[til,]<-sum(X_nc3i[(aal:aa2),])
if (abs(X_sumi[t11,])==m_r){
countl=counti$+$1}
if (abs(X_suml[t11,])==m_r-4){
countli=counti1§+$1}
if (abs(X_sumi[t11,])==m_r-8){
count12=count12$+$1}
CFV1<- countl
CFV11<~ countll
CFV12<- counti2
t11=t11$+$1
}
for(i in 1:(n_f-1)) {
for(j in (i$+$1):n_£){
aal=(t22-1)*m_r$+$1
aal2=t22*m_r
X_nc32[(aai:aa2),]<- array(c(X_inital[il:m_r,i]J#X_inital[i:m_r,j]),dim=c(m_r,1))
X_sum?2[t22,]<~-sum(X_nc32[(aal:aa2),])
if (abs(X_sum2[t22,])==m_r){
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count2=count2$+$1}
if (abs (X_sum2[t22,])==m_r-4){
count2l=count21$+$1}
if (abs(X_sum2[t22,]1)==m_r-8){
count22=count22$+$1}
CFV2<~ count2
CFV21<~ count21
CFV22<- count22
£22=t22$+$1
}
}
for(i in 1:(n_£f-2)){
for(j in (i$+$1):(n_£-1)){
for(b in (j$+$1):n_£){
aal=(t3-1)*m_r$+$1
aa2=t3*m_r
X_nc33[(aal:aa2),]<~ array(c(X_inital[l:m_r,il*X_initalll:m_r,j]#X_inital[i:m_r,b]),
dim=c(m_r,1))
X_sum3[t3,}<-sum(X_nc33[(aal:aa2),])
if (abs(X_sum3[t3,])==m_r){
count3=count3$+$1}
if (abs(X_sum3[t3,])==m_r-4){
count3il=count31$+$1}
if (abs(X_sum3[t3,])==m_r-8){
count32=count32$+$1}
CFV3<- count3
CFV31<~- count31
CFV32<~ count32
t3=t3$+$1

}
¥
for(a in 1:(n_£-3)){

for(i in (a$+$1): (n_£-2)){
for(j in (i$+$1): (a_f-1)){
for(b in (j$+$1):n_£){
aal=(t4-1)*m_r$+$1
aa2=t4*m_r
X_nc34[(aal:aa2),]<- array(c(X_inital[l:m_r,al*X_initall[l:m_r,il*X_inital[t:m_r, j]
*X_inital[l:m_r,b]),dim=c(m_r,1))
X_sumd{t4,]<~sum(X_nc34[(aal:aa2),])
if (abs(X_sum4 [t4,])==m_r){
countd=count4$+$1}
if (abs(X_sum4 [t4,])==m_r-4){

count4l=count4i$+$1}
if (abs(X_sum4[t4,])==m_r-8){
count42=count42$+$1}

CFV4<~ count4
CFV41<~ count4l
CFV42<- count4?2
t4=t4$+$1
}
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¥
MAKE=matrix(c(CFV1,CFV11,CFV1i2,CFV2,CFV21,CFV22,CFV3,CFV31,CFV32,CFV4,CFV41,CFV42) ,1,12)
write (MAKE,file="2" (4-1)EWLP.txt",12, (2°p~1)#2% (2" (n_f-p)-1))
}
if (kd==4){
for(a in 1:(n_£f-3)){
for(i in (a$+$1):(n_f-2)){
for(j in (i$+$1):(n_f-1)){
for(b in (j$+$1):n_£){
aal=(t2~1)*m_r$+$1
aal2=t2*+m_r
Y _nck4[(aal:aa2),] <- array(c(X.initall,al,X_inital[,i],X_initall,j],
X_initall,b]),dim=c(m_r,k4))
Y4[(aal:aa2), (1:(k4$+$1))] <~ array(c(x0,Y_nck4[(aal:aa2),]),dim=c(m_r,k4$+$1))
ti=1
for(i_l in 1:(k4-1)){
for(j.1 in (i_1$+$1):k4){
Y_kc24{(aal:aa2),ti]l<-array(c(Y_nck4[(aal:aa2),i_1]*Y_nck4[(aal:aa2),j_11),
dim=c(m_r,1))
Y4[(aal:aa2), ((k4$+$1)$+$t1)] <- array(c(Y_kc24[(aal:aa2),t1]),dim=c(m_r,1))
t1=t1$+$1
¥
}
determine4[t2,1]<~det (t(Y4[(aal:aa2),])%*%Y4[(aal:aa2),]/(m_ 1))
determined_1[t2,1]<-det(t(Y4[(aal:aa2),])%*%Y4[(aal:aa2),])
Dk<-Dk$+$((determine4[t2,1]~(1/p_p4))/nck4d)
if(determine_14[t2,1]!=0){
count=count$+$1}
pk<~(count/choose(n_f,k4))
t2=t2$+$1

¥
¥
1f (k5==5){
for(h in 1:(n_f-4)){
for(a in (h$+$1): (n_£-3)){
for(i in (a$+$1):(n_£-2)){
for(j in (i$+$1):(n_£-1)){
for(b in (j$+$1):n_£){
aal=(t2~1)*m_r$+$1
aa2=t2%m_r
Y.nck5[(aal:aa2),] <- array(c(X_initall,h],X_inital[,a],X_inital[,i],X_ initall,j]
,X.initall[,b]),dim=c(m_r,k5))
Y5[(aai:aa2), (1:(k$+$1))] <- array(c(x0,Y_nck5[(aal:aa2),]),dim=c(m_r,k5$+$1))
ti=1
for(i.l in 1:(k5-1)){
for(j_1 in (i 1$+$1):k8){
Y_kc25[(aal:aa2),t1]<~array(c(Y_nck5[(aal:aa2),i_1]*Y_nck5[(aal:aa2),j_11),
dim=c(m_r,1))
Y5[(aal:aa2), ((k5$+$1)$+$t1)] <~ array(c(Y_kc25[(aal:aa2),t1]),dim=c(m_r,1))
t1=t1$+$1
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determine5[t2,1]<-det(t(Y5[(aal:aa2),])%*%Y5((aal:aa2),]1/(n_x))
determine_15[t2,1]<-det (t(Y5([(aal:aa2),])%*%Y5[(aal:aa2),])
Dk<-Dk$+$ ((determine5{t2,1]~(1/p_p5))/ncks)
if (determine5_1[t2,1]!=0){

count=count$+$1}

pk<-(count/choose(n_f,k5))
t2=t28$+$1

}

¥
###it#type in getPECandPIC(4,1,7,8,12,3,4,5) ######
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