
WW\¡ú-Database lntegration via

Mobile Agents

A Thesis

Submitted to the Faculty of Graduate Studies

in Partial Fulfillment of the Requirements

for the Degree of

By

Quang M. Trinh

MASTER OF SCIENCE

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba

@ Copyright by Quang M. Trinh, 2001

l*I tr¡$onat,t-iurav

Acquisitions and
Bibliographic Services

395 Well¡ngrton Str€et
OttawaON K1A0t.¡4
Canada

Bibliothèque natíonale
du Canada

Acquisilions et
services bibliographiques

395, rue Wellington
Ottawa ON KIA 0N4
Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains oumership of the
copynght in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Yout frlê Voùê ¡éléM

Ou¡ 6lo Nolte réMtM

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/fiIm" de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent êne imprimés
ou autrement reproduits sâns son
autorisation.

Canadä

0-612-80064-4

THT', ¡1Y¡YERSITY OF MANITOBA

FACULTY OF GRADUATE STUDMS

COPYRIGHT PERMISSION PAGE

WWW-DATABASE INTEGRATION VIA MOBILE AGENTS

BY

Quang M. Trinh

A ThesislPracticum submitted to the Faculty of Graduate Studies of The University

of Manitoba in partial fulfillment of the requirements of the degree

of

Permission has been granted to the Library of The University of Manitoba to Iend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and
to lend or sell copies of the film, and to University Microfilm Inc. to publish an abstract of this
thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced without the author's written
permission.

MASTER OF SCTENCE

QUANG M. TRrr\H 02001

For my parents Minh Trinh and Kim Do, and my brother, Hai Trinh.

Acknowledgments

This thesis would have not been completed without the guidance, assistance, and

support of two people: Dr. Randal Peters and my advisor, Dr. Ken Barker. I would like

to thank Dr. Peters for the encouragement and financial assistance he provided. I

would like to thank Dr. Barker for his constant inspiration and support. Lastly, and most

impoftantly, I would like to thank my family, my parents and my brother, for their support

and encouragement throughout the years. Without them, this work would not have

been possible.

Abstract

This thesis studies the integration of two current topics in the Database Research

and Development; namely, WWW-Databases and Mobile Agents. This thesis uses the

Web as a medium and agents to locate and deliver information by exploring how to

exploit multi-agent system in a heterogeneous database system. By using metadata,

Mobile Agents can effectively provide users access to multiple data sources on the

Web. The goal is develop techniques so component databases can be added or

removed dynamically thereby creating a flexible system model. Another contribution of

this research is that the data transported by the agents are presented in the eXtensible

Markup Language (XML) format, a markup language that has been widely used as

metadata standard. XML is a good choice because it not only support enriched

document structures but it also formats data results to support Business To Business

(B2B) data exchange. By combining mature existing technologies with new

technologies this architecture can support legacy systems while deploying the next

generation of software. The key question to be addressed by this thesis is:

a How can mobile agents facilitate data exchange between various data

sources while protecting the sources autonomy and providing the user with a

globally consistent date view?

This is done while ensuring that:

o The addition and removal of component databases is done dynamically and

D Data exchanged on the WWW occurs while supporting existing applications.

iv

Table of Contents
Acknowledgments iii

Abstract..iv

Table of Contents............. v

List of Figures.... viii

List of Tables.....ix

List of Terms x

Chapter 1 lntroduction 1

1.1 lntroduction.............. 1

1.2 Problem Statement2

1.3 Research Goals,..... g

1.4 Organization of the thesis4

Chapter 2 Background Material 6

2.1 lntroduction.............. o

2.2 A Distributed DataBase Management System (DDBMS) Model7

2.2.1 Homogeneous Distributed Databases8

2.2.2 Heterogeneous Distributed Databases9

2.2.3 Distributed Query Processing............. g

2.3 WWW-Databases 10

2.4 XML........ 11

2.5 JDBC 15

2.6 Software Agents 16

2.6.1 Benefits of Software Agents 18

2.6.2 Drawbacks of Software Agents.............. 1B

2.6.3 Software Agents vs. OO Models.... 19

2.6.4 Aglets Software Development Kit (ASDK)20

Chapter 3 : Architecture of the Aglets Software Development Kit (ASDK)21

3.1 lntroduction..............21

3.2 Aglets Context (Aglets Server)..,.22

3.3 Aglets Proxy.......29

3.4 Aglets Communication24

3.5 Aglet Migration2S

3.6 Other Aglet Behaviors26

3.7 Aglet Construction..........28

3.8 Aglet Security...29

Chapter 4 Agents in Economics...........01

4.1 lntroduction.............. 31

4.2 The Basics of Financial Markets g2

4.3 Basic Algorithms3S

4.4 The Design of An Agent-Based Binomial Lattice Option Pricing System37

Chapter 5 : The WWW-DIMA Prototype: Architecture and lmplementation41

5.1 lntroduction..............41

5.2 The WWW-DIMA Prototype Architecture.............42

5.3 Summary of Components of the WWW-DIMA.............44

5.3.1 Directory Database44

5.3.2 Tahiti Servers44

5.3.3 Service Agent Managert44

5.3.4 Service Agentst45

5.3.5 Agent Manager45

5.3.6 Agents45

5.4 Component lnteractions of the WWW-DIMA Prototype46

5.5 lmplementation Details of the WWW-DIMA Prototype..............42

5.6 Operations Supported by the WWW-DIMA Prototype b1

5.7 Optimization of the WWW-DIMA Prototype52

Chapter 6 : Performance Evaluation of the WWW-DIMA Prototype 54

Chapter 7 : Related Work60

7.1 Performance of Mobile Agents..... 60

7.2 Design Comparisons..........62

vi

Chapter B : Conclusions and Future Research Directions64

8.1 Conclusions............64

8.2 Future Work66

References.............. 69

vil

List of Figures
Figure 2.1: A Well-formed XML document 11

Figure 2.2: A Well-formed XML document with an internal DTD........12

Figure 2.3: An external employee list DTD file 13

Figure 2.4: A Well-formed XML document with an external DTD reference........14

Figure 2.5: XML document validation process14

Figure 2.6: Overview of JDBC architecture 15

Figure 3.1: Relationship between a host, an aglet, and an aglet server......22

Figure 3.2: The internal migrating process of aglets from one host to another host.....25

Figure 4.1: A general one-step binomial model (n = 1) g4

Figure 4.2: A general two-step binomial model (n = 2)......8s

Figure 4.3: Architecture design with two processors and fi = B g7

Figure 4.4: Architecture design with four processors and fi = B gB

Figure 4.5: Communication timing......39

Figure 5.1: The proposed architecture of the WWW-DIMA prototype.............42

Figure 5.2: Details of the proposed www-DIMA prototype architecture49

Figure 5.3: Component interactions of the WWW-DIMA prototype.............47

Figure 5.4: Details implementation of the WWW-DIMA prototype.................................49

Figure 6.1: Comparison of the WWW-DIMA prototype and Applet at off-peak hours.... 56

Figure 6.2: Comparison of the WWW-DIMA prototype and Applet at peak hourss7

Figure 6.3: Comparison of the WWW-DIMA prototype at peak and off-peak times.......58

Figure 6.4: The WWW-DIMA prototype communication time at peak and off-peak times

............... 59

Figure 7.1: lntegration of the WWW-DIMA prototype with other applications................ 68

viii

List of Tables
Table 3.1: Mobility event handler27

Table 3.2: Cloning event handler27

Table 3.3: Persistence event handler....28

IX

List of Terms
ACE........49ent-based Computational Economics

ASDK Aglets Software Development Kit

APIApplication Programming lnterface

CGl......... Common Gateway lnterface

CORBACommon Object Request Broker Architecture

828......... Business To Business

DDBMS Distributed Database Management System

DTD......... Document Type Declaration

EARTH Efficient Architecture for Running THreads

HTML .. HyperText Markup Language

HTTP..'.... HyperText Transfer Protocol

11S............ lnternet lnformation Server

JDBC...... Java Database Connectivity

JDK........Java Development Kit

MGA Multi-population Genetic Algorithms

oo """"" ' object oriented

RDMBS Relational Database Management System

RMI,.. Remote Method lnvocation

SGAsingle-population Genetic Algorithms

SGML Standard Generalized Markup Language

SeL........ Structured euery Language

W3C World Wide Web Consortium

WWW..... .World Wide Web

WWW-DIM4............. World Wide Web Database lntegration via Mobile Agents

XML......... eXtensible Markup Language

Chapter 1

lntroduction

1 . 1 lntroduction

The idea of using the World Wide Web (WWW) to provide access to the global

information resources has been an attractive research area. However, with the

advances in technologies and the exponential growth of the number of resources on the

WWW, not only providing access but also managing multiple information sources is

necessary. Today, combining the WWW and Relational Database Management

Systems (RDBMS) [5] is a dominant technology for storing and processing data on the

WWW, but there are drawbacks of using such a centralized RDBMS model. The two

critical and most important drawbacks are:

E Performance: degradation in performance as the number of users increases

and

a Reliability: failure of the centralized DBMS is the important (in the system)

means no information is available

Chapter 1 : lntroduction

Distributed Database Management Systems (DDBMS) were designed to
overcome the drawbacks of RDBMS albeit with some additional complexity (e.g.

consistency and availability issues). A DDBMS is logically a single database system

that is fragmented into several fragments where each fragment is stored in different

machines on the network. The focus of a DDBMS is on the distribution and location of

both data and processing so better performance can be achieved and to maximize

accessibility. DDBMS can also be used for data integration of heterogeneous

databases. Database integration encourages the use of emerging technologies (for

example, relational databases and mobile agents [35]) and, at the same time, enables

users to correlate information from multiple sources. Database integration sometime

requires interoperability between database systems. Support for interoperability

requires many additional requirements such as: platform and DBMS independence,

schema semantic, data exchanging language, efc.

ln the past 20 years, many clienVserver-based data access and exchange

techniques for DDBMS have been developed. Such techniques include: Remote

Method lnvocation (RMl), Common Object Request Broker Architecture (CORBA) and

XML-RPC. Although, these techniques are well understood, however, their

pedormance is inadequate.

1.2 Problem Statement

Current network technologies and the WWW permit easy sharing of information;

though some techniques may be better than others. Presently, access to the vast

amount of information on the WWW requires multiple steps for searching and

navigating. This process can be time consuming. This is not to mention whether or not

the information presented to the users is consistent. For example, what if the price of a
particular round tr¡p ¡s lower in one travel agency than in another, how can this

information be presented to the users so that the price is guaranteed to be the lowest?

2

Chapter 1 : lntroduction

The key issue to be considered by this thesis is how mobile agents can facilitate

data exchange between various data sources on the WWW while protecting the data

sources' autonomy and providing the user with a global consistent data view? This

should be done while ensuring that

tr The addition and removal of component databases dynamically is possible,

and

tr Data exchange on the WWW occurs while supporting existing applications

1.3

This thesis studies the integration of two cutting edge technologies: WWW-

Databases and Mobile Agents [25]. This thesis proposes to use the Web as a medium

and agents to locate and deliver information. The design of a multi-agent system in a

heterogeneous database environment is explored. The goals of this thesis are:

tr To show that through the use of metadata mobile agents can easily and

effectively provide users access to multiple data sources on the Web,

B To develop techniques so that component databases can be added or

removed dynamically thereby creating a flexible system architecture.

o To make use of the eXtensible Markup Language (xML) IgBl. Data

transported by the agents are presented using XML, a markup language that

has been widely used as an ad-hoc metadata standard. XML is a good

choice because not only does XML support enriched document structures but

it also formats data results to support Business To Business (B2B) data

exchange.

o lntegration of existing and emerging technologies. By combining mature

existing technologies with new technologies, this architecture can support

legacy systems while deploying the next generation of software.

Research Goals

.J

Chapter 1 : lntroduction

1.4

The remainder of this thesis is divided into seven chapters that provide further

details on the problem area, the approach and the related work, evaluation of the

prototype and the conclusions. Chapter 2 surveys the background information and the

related work. ln particular, details of existing related technologies and emerging

technologies that are used in the new prototype architecture are discussed in Chapter 2.

Also, discussed in Chapter 2 are the benefits and drawbacks of software agents'

technology, as well as a comparison between software agents and Object Oriented

(OO) programming model.

Chapter 3 demonstrates the use of agents by discussing their use in the solution

of computationally intensive problems in the area of computational finance. This

chapter begins with a basic introduction to financial markets and then discusses the

algorithms for generating a binomial, lattice tree-like structure for pricing security

options. The chapter ends with a discussion of the agent-based implementation's

overhead and the general communication timing between the agents.

Chapter 4 introduces the key concepts of agent systems. The architecture and

implementation of the Aglets Software Development Kit (ASDK), a mobile agent API

that was designed and developed by IBM are discussed in detail. lncluded in this

discussion are aglets context, aglets communication, aglets migration, aglets event

handlers and current security features suppofted by the ASDK. Chapter 4 ends with a

general summary of the advaniages of agent systems.

ln Chapter 5, the proposed agent-based architecture for database integration is

introduced and described in detail. Definitions of, and interactions between major,

components in the architecture are examined individually. Supporting tools and

software components are identified and the details of the implementation of the

Organization of the thesis

4

Chapter 1 : lntroduction

architecture are described. ln parlicular, the details of the implementation and the

interactions of the components are described at a low level abstraction. The chapter

then provides detailed descriptions of the operations supported by the architecture and

concludes with a discussion of optimization issues related to the architecture.

Chapter 6 provides an evaluation of the prototype described in Chapter 5. The

evaluation is performed mainly with respect to Applets, which use a traditional

clienVserver model. To understand the behavior of the prototype under heavy and/or

light network traffic, the timing observations of the prototype were done at peak hours

and off-peak hours. Chapter 6 ends with some timing comparisons and explanations of

the results by comparing the prototype and the clienVserver Applet model.

Chapter 7 summarizes the recent publications related to the work presented in

this thesis. These recent publications provide frame-works for comparisons with the

work presented here. Such comparisons are also made in this chapter.

Conclusions and future research directions for the thesis are presented in

Chapter L This chapter summarizes the work done, lists the contributions made and

provides some suggestions for future research directions.

5

Chapter 2

Background Material

2.1 lntroduction

ln the early days of the WWW, accessing a single database on the WWW was a

big accomplishment that brought the WWW "alive" by supporting dynamic content. The

Common Gateway lnterface (CGl) was one of the first approaches used to provide

users access to dynamic (i.e. non pre-specified) data (e.9. from a database) on the

WWW. Used in conjunction with the HyperText Markup Language (HTML), CGI is still

widely used, but demands for better accessing techniques increase as the web

becomes larger and more complex. With the vast amount of information available on

the WWW, the bottleneck on the network increases as more users' request for

information increases. Currently, distribution of data, processing and access to multiple

data sources on the WWW are essential for building the next generation of web

databases technology. This chapter introduces technologies that will be used in the

research presented in this thesis to develop a new technique for accessing multiple data

sources on the WWW.

Chapter 2: Background Material

2.2 A Distributed DataBase Management System

(DDBMS) Model

A DDBMS is logically a single DBMS that is partitioned into several fragments

where each fragment is stored on different machines in the network. The data model

for a DDBMS is designed so that each data fragment is stored in a machine on the

network where data in the fragment will be frequently accessed. Since data in a
distributed environment are stored in multiple locations, improvements on reliability and

performance can be achieved.

o Reliability: since data are distributed on multiple locations, failure of any

location does not affect the availability of data from the other locations. This

is possible because, in a distributed environment, all data and services at

each location are independent of each other.

o Performance: storing data where it is accessed the most leads to faster

response time and therefore increases throughputs and improves the overall

performance of the system

A current motivation for the use of DDBMSs is the competition in global business

operations among corporations. With the WWW as a medium, corporations are

competing against each other to deliver information to their customers in the most

efficient manner. While the concentration of DDBMSs is on the delivery of information,

DDBMS can also be used for integrating legacy database technologies. Not only does

the integration process encourage the use of emerging technologies by combining

resources, it also enables users to correlate information from multiple sources. ln

general, DDBMSs can be classified into two categories: homogeneous dístributed and

heterogeneous distributed database management system.

7

Chapter 2: Background Material

2.2.1 Homogeneous Distributed Databases

A homogenous distributed database system is a distributed database system that

integrates DBMS of only onetype. Homogeneous distributed database can be further

divided into two groups: autonomous and non-autonomous homogeneous distributed

databases.

E An autonomous homogeneous distributed database system is a distributed

database system where both data and services in all nodes are independent

of each other. This type of DDBMS is most appropriate for supporting

independent data requests from the individual component databases.

D A non-autonomous homogeneous distributed database system is a

distributed database system where all data and services are managed by one

DDBMS through a global schema. This global schema is defined by

combining the local schemas of all the component databases in the system.

ln particular, when a query is posed to the global schema, the query

translator, a component of the DDBMS, translates the particular query to sub-

queries for each of the component databases involved. Each sub-query is

then executed locally using the local schema of the component database.

The result of the original query is the combined query results of the sub-

queries from the component databases presented in a format consistent with

the global schema. Potentially, the global schema introduces two problems.

First, any definition discrepancies between the global schema and the

component schema must be resolved immediately. Second, to preserve data

consistency, coordination between component DBMS must be enforced.

I

Chapter 2: Background Material

2.2.2 Heterogeneous Distributed Databases

A heterogeneous distributed database system is a distributed database system

that integrates various types of DBMSs. ln fact, a heterogeneous distributed database

system is very similar to non-autonomous homogeneous distributed database system,

except that a heterogeneous distributed database system also integrates multiple types

of DBMSs. All data requests submitted locally to the component databases are

processed using the local schema, and likewise, all data requests submitted from a

remote location are processed using the global schema.

2.2.3 Distributed Query Process¡ng

When constructing a query execution plan, and in addition to all the functions of a

centralized query processor, a distributed query processor must take the following two

factors into consideration: the network bandwidth and the amount of data to be

transferred. ln general, when a given query is submitted to a DDBMS, the following

steps are taken [9]:

The raw query is parsed and checked for valid syntax (to ensure that the

query is valid for the particular DBMS).

The DDBMS uses the global schema to construct functionally equivalent

query-processing plans.

o The query optimizer compares the equivalent query plans, estimates the cost

for each plan, and returns the optimal query plan.

e The optimal plan is executed and the result is returned to the user.

o

Chapter 2: Background Material

2.3

Traditional HTTP applications supported the distribution of only static hypertext-

based information. Web-databases (and related tools) support the distribution of

dynamic hypertext-based information. Although, there are many ways to access the

contents of databases via the web, the two most common approaches are: the CGI and

the Java Database Connectivity (JDBC) interface.

ln general, there are three main components of any Web-database applications:

the database itself, the information server (or the web-server) and a database interface

(for example CGI or JDBC). Depending on the complexity of the applications, most

Web-database applications involve either just server-side processing or both seryer-

side and client-side processing. Server-side processing performs tasks on the seryer-

side such as accessing the database and business-logic rules. The client-side

processing, on the other hand, performs client-oriented tasks such as input validation.

However, combining both client-side and seruer-side processing is essential to improve

the overall performance of the Web-database application. That is, client-side

processing can be used to validate or to preprocess users input(s) before the request is

submitted to the server for processing.

Using the WWW as a medium and databases to store information, corporations

create more opportunities to make profits by extending their services to the global

market. ln general, there are two categories of services on the WWW: secure and non-

secure services. Secure services are secure electronic transactions such as online

banking, airline reservations, efc. Non-secure services include all services that do not

require protection such as providing general information about a parlicular corporation

or about a particular product, efc. Another important use of the WWW is for Business

To Business (B2B) information sharing between corporations. Besides protecting the

WWW-Databases

10

Chapter 2: Background Material

information, another major problem with information sharing is that a common data

exchange format must be defined or agreed to between corporations ahead of time.

2.4

The eXtensible Markup Language (XML) I38l is a recent standard markup

language developed by the World Wide Web Consortíum (W3C) [36] in 1996. XML is a

subset of the Standard Generalized Markup Language (SGML) [31], which was also

developed by the W3C. The primary purpose of XML is to provide a user-defined and

application-independent data format that supports data exchange between applications

and/or data sources on the WWW. Unlike the relational data model, XML uses

elements, tags and attributes to describe the data structure and semantics of the data.

ln general, all XML documents must be well4ormed. A well-formed XML document is a

document that satisfies the following two criteria:

E All elements and tags in the document must match exactly (case sensitive)

and

o All elements and tags in the document are nested properly

XML

<EMPLOYEE>
<lD>12345<ilD>
<FNAME>Jenni e</FNAME>
<LNAME>La</LNAME>
<ADDRESS>41 1 Cumberland Ave</ADDRESS>
<PHONE> 1 -2 04 - 1 23-4561 </PHONE>

</EMPLOYEE>
<EMPLOYEE>

<lD>12346</lD>
<FNAME>Tammy</FNAME>
<LNAME>Pearson</LNAME>
<ADDRESS>256 Morley Ave</ADDRESS>
<PHONE/>

</EMPLOYEË>

Figure 2.1: A Well-formed XML document

11

Chapter 2: Background Material

Figure 2.1 shows an example of a well-formed XML document. ln particular,

<EMPLOYEE> is the beginning element and </EMPLOYEE> is the ending element of

an employee record. <lD>, <FNAME>, <LNAME>, etc. are the beginning elements and

</lD>, </FNAME>, </LNAME>, etc. are the ending elements that describe employee

records. ln the case of the second employee record, the element <PHONE/> indicates

that the phone element is empty and does not have any value associated with it.

ln addition to being well-formed, an XML document may be validated if the

particular document has a Document Type Declaration (DTD) associated with it. The

first purpose of the DTD is to allow a user to define the document's structure, legal

elements and attributes. lt also specifies the order of the elements and attributes that

will appear throughout the document. With the use of a pre-agreed-upon DTD,

independent organizations can share their business data without any modifications to

their current infrastructure system, even with legacy or incompatible systems. While

DTDs are not required for XML documents, they can be defined externally or internally

to the document.

<?xml version= 1.0"?>
<tDoCTYPE EMPLOYEELTST I

<tELEMENT EMPLOYEE (tD, FNAME, LNAME,)>

<tELEMENT FNAME (#PCDATA)>
<|ELEMENT LNAME (#PCDATA)>

It
< EMPLOYÊËLIST >

<EMPLOYEE>
<lD>12345</lD>
<FNAME> Jenni e</FNAME>
<LNAME>La</LNAME>

</EMPLOYEE>

< r¡øpt ovrEltsr >

<IELEMENT ID

Figure 2.2: A Well-formed XML document with an internal DTD

(#PCDATA)>

12

Chapter 2: Background Material

The first line in Figure 2.2 is the header of the XML document. This indicates to

the XML parser that the document is an XML document. The second line in Figure 2.2

defines the document type. That is, EMPLOYEELIST is the document type. The third

line defines that there exists element(s) EMPLOYEE in the EMPLOYEELIST document.

The same line also defines lD, FNAME, LNAME, etc. as elements within each

EMPLOYEE element. The fourth line in Figure 2.2 indicates that the element lD is of

type PCDATA (Parse Character DATA). Collectively, line 2 through to the line defining

an <EMPLOYEELIST> constitute an internal DTD.

<?xml version="1.0"?>
< I DOCTYPE EMPLOYEELIST I

<IELEMENT EMPLOYEELIST (EMPLOYEE)+>
<!ELEMENT EMpLOyEE (tD, FNAME, LNAME,

Figure 2.3 shows an external DTD of the EMPLOYEE element within the

EMPLOYEELIST document. Figure 2.4 below shows an employee list XML document

with a reference to an external DTD file. The second line in Figure 2.4 indicates the

external DTD reference to the file elisr. drd (shown in Figure 2.3).

It

<IELEMENT ID
<!ELEMENT FNAME (#PCDATA)>
<IELEMENT LNAME (#PCDATA)>

Figure 2.3: An external employee list DTD file

(#PCDATA)>
)t

13

Chapter 2: Background Material

<?xml version="1.0"?>
<IDOCTYPE EMPLOYEELIST SYSTEM

.'elist
dtd''>

< EMPLOYEELIST >

.=."1+f*fi

Ëiiî,îi*r*-=
</EIvIPLOYEE>

*¡ rn¿plöYEELtsT >

The second purpose of a DTD is that one can also use a DTD to validate an XML

document. The validation process is done through an XML parser. There are free XML

parsers available in just about every programming language [40, 41,97,21,92,99].

Figure 2.4: AWell-formed XML document with an external DTD reference

Figure 2.5 below shows the validation process for an XML document. ln general,

XML was chosen for, and is significant in this thesis because it presents a format that

both users and machines can understand.

Figure 2.5: XML document validation process

14

Chapter 2: Background Material

2.5 JDBO

Java Database Connectívity (JDBC) [18] is an Application Programming lnterface

(APl) developed by Sun. The purpose of the JDBC API is to provide a standard for

access to relational databases from Java programs. Since the JDBC API is written

purely in Java [20], it supports platform-independent applications with virtually any

DBMS as the back-end. JDBC technology has been widely accepted so many

database vendors have endorsed it and provide their own drivers to their backend

DBMSs. A list of vendors who have endorsed the JDBC technology and their

supporting drivers can be found in [19].

Java Applicalion

r
I-JDBC N.r I
I o,¡vrr

I

f
ffi

0
mBCsDB-l
I er¡oge or¡ver

I

$
t oDBõ;d -l
I oe onu"r

I

f
KÐ
KJ

JDBC Driver

The JDBC API supports both two-tier and three{ier models. ln both models, an

appropriate JDBC driver for the particular DBMS product must be loaded before a

database connection ¡s established between the application and the DBMS itself. After

a database connection is established, the application can use the provided API to send

t
[j-DBt--l
I o'u"r

I

f
Ê
æ

ttl*.*-l
I or¡urr

I

f
ffi
kd

Figure 2.6: Overview of JDBC architecture

JDBC API

15

Chapter 2: Background Material

Structured Query Language (SOL) statements to manipulate the data in the database.

Figure 2.6 provides an overview of the JDBC/ODBC architecture.

2.6

A software agent system is a software engineering paradigm that supports the

concepts of being autonomous, learning and supporting collaboration, and

communication between objects. Typically, an agent is an object or a single component

in an application domain that was designed for some specific task. For example, an

agent can be as simple as a sub-routine or can be as complicated as a daemon

manager. An agent can also be intelligent if the agent can handle tasks with minimal

intervention from users. Agents can either learn from past experiences or from the

training of some knowledge-based system and they use the knowledge for references

when making decisions about what to do next.

ln general, software agents are categorized into two types: stationary agents

and mobile agents. Stationary agents operate only in the environment where they are

created and are appropriate for solving simple and isolated problems. All stationary

agents support the autonomous, learning and collaboration, and communication

properties. Mobile agents are like stationary agents, but in addition, they have the

ability to move between hosts under their own control to obtain better performance. For

more complicated problems, more than one agent may be needed to solve the

problems effectively.

The following properties are defined for all software agent systems.

tr Autonomous

ln addition to inheriting all the Object Oriented (OO) properties, agents are

independent of each other and are typically designed with some specific

tasks in mind.

Software Agents

16

Chapter 2: Background Material

o Communications and Collaborations

Agents can communicate and collaborate with one another.

Communication between agents is done primarily through message

passing. Collaborations, on the other hand, are more general having

agents (from the same domain or different domains) working together by

exchanging data. This results in a multi-agent system.

o Mobility

Agents with mobility properties can migrate between machines on the

network. When transporting between servers, all agent states are

transported with the agents.

lntelligence and mobility is a good combination for many applications, especially

for networks and distributed applications. For example, in distributed query processing,

it is important to reduce the amount of data communication between the client and the

server. One way of doing this is to migrate the agent with the query to where the data is

located. Upon arrival, the agent can extract the data and bring back only the required

data. Working where the data is located minimizes the amount of data that must be

transferred on the network and therefore it uses less of the available bandwidth. An

alternative, more traditional approach is a permanent connection available from the

client to the server. This connection is maintained while the processing is carried out on

the server. The connection is terminated only after the data result is delivered to the

client. Extensive recent studies [[35], [24], 1271, [16], [30]l have shown that in the

traditional approach, the performance of the application is directly proportional to the

number of clients (or users) and the size of the databases. ln particular, the network

throughput decreases as the number of users increases.

Currently, there are many available implementations of mobile agent software

packages. A listing of documents and source code for these implementations can be

found in [28].

17

Chapter 2: Background Material

2.6.1 Benefits of Software Agents

Over the past 4 years, there have been many significant performance

evaluations of the software agent paradigm. Recent publications have shown that

software agent paradigm is suitable for distributed processing [14] and software agents

have better performance than existing clienVserver models such as RMI [16] and

Applets [30]. Other significant benefits of software agents are:

o Software agents can be used to support real-time application. An example of

this is provided by KoIz et al. [23] who uses agents to support a data filtering

application on real-time wireless networks.

tr Though, software agents increase the load on the server, they can be used to

reduce the required network bandwidth. This is especially appealing for

wireless environments or low bandwidth networks and or when the server is a

cluster of processors and is capable of handling the load. Mobile agents can

also be used to support disconnected operations. Mobile agents can be

created and sent to the server to do some particular tasks while the original

host or owner disconnected from the network. Once the processing is

completed, and only when the original host is re-connected, the agents return

back to the original host.

2.6.2 Drawbacks of Software Agents

Although, software agents offer certain advantages over conventional OO

programming model, there are also difficulties with their use that have not yet been

thorough ly investigated :

tr To support the agent's mobility, a network of agent servers must be built.

This requires an agent server to run on each of the hosts to be used by the

agents.

18

Chapter 2: Background Material

Security is a major issue in all mobile agent systems. ldentification,

authentication, and authorization of all agents must be strictly enforced.

Other security issues that have not been addressed adequately are how to

deny entrance of agents from another or untrusted domain, or how to prevent

malicious acts of agents that arrived from another or untrusted domain?

A centralized authority is necessary for authorization. Since agents are

independent objects, there is no central control over the agents. lf an agent

poses malicious acts, then how can another agent terminate the agent with

the malicious acts?

2.6.3

Since software agents are designed and implemented as objects, both software

agents and OO models have very similar properties. Both objects and agents, in their

own rights, are individual components and can be added or removed from the system

dynamically. lnteractions in both models are done primarily by exchanging messages

between the components in the system. Both models support data encapsulation and

polymorphism. One major difference between the two models is that software agents

are objects that have the ability to move between machines on the networks. When

moving between machines on the networks, agents carry all their state and code with

them. Agents can also be intelligent. That is, agents can be trained to adapt

themselves to surrounding environmental changes and make decisions based on past

experiences.

Software Agents vs. OO Models

19

Chapter 2: Background Material

2.6.4 Aglets Software Development K¡t (ASDK)

The Aglets Software Development Kit (ASDK) [1] is a Java based mobile agent

software package that was designed and developed by lBM. ASDK supports the

concepts of autonomous, independent and dynamic execution of agents. ASDK is an

extension of the Java Development K¡t (JDK) [20] and is based on the clienVserver

model. The unique combination of the Java language (platform independent) and

dynamic execution makes ASDK appropriate for distributed and parallel applications in

heterogeneous environments. ASDK is platform-independent and also supports

mobility services and dynamic workload adjustment. Thus, with the ASDK, agents can

roam the networks until the task is completed and they can be added or removed

dynamically from the application. Other factors supporting for the choice of ASDK are:

o Security

Current ASDK, Aglets1.2.0, supports a fine grained security model.

o Communication

Both current and previous versions of ASDK support message passing

protocol as a communication mechanism.

o Hyper Text Transfer Protocol (HTTP)

Both current and previous versions of ASDK support submit and response

http requests.

o Agent Transfer Protocol (ATP) t2l

Both current and previous versions of ASDK support the ATP. ATP is a

protocol for transferring agents between networked computers.

20

Chapter 3:

Architecture of the Aglets Software

Development Kit (ASDK)

3.1

Aglets (Agents and App/ef$ t1l is a software agent development kit that adopts

the concepts based on everyday human activities [25]. Some agents created with the

Aglets Software Development Kit (ASDK) will do what they are told while others are

programmed with heuristics to decide on what to do next. The latter requires training

from either a knowledge-based system or from past encountered experiences. Unlike

other paradigms, aglets can move from one host to another on the network. When

moving between hosts, aglets carry their code and state with them. Upon arrival at the

destination host, aglets resume their execution from where they left off. Though, there

are difficulties yet to be dealt with, it is predicted that software agents will be the next

generation of software engineering for application developments.

lntroduction

Chapter 3: Architecture of the Aglets Software Development Kit (ASDK)

3.2

Because of their unique ability to transport themselves from one host to another,

aglets (or software agents or just agentsl) require a service provider on every host on

the network where they may execute. This service provider is called an aglet context or

an aglet seruer. Each host on the network can have more than one context, and

contexts on the same host are differentiated from each other by unique port numbers.

Each aglet context in a host can have a number of aglets and aglets created in one

context can be dispatched to another context on the same host or on a different host.

Aglets in the same context share the same resources provided by that context.

Aglets Context (Aglets Server)

Figure 3.1 shows two aglet servers in the host named quíllaja. The first aglet

server is atp://quillaja:4000, which has two aglets residing in it and the second aglet

server is atp://quillaja:5000 has one aglet residing in it. The values 4000 and 5000

indicate the port numbers of the two aglet servers.

quillaja

[-.t p q r]-'il
"l "4

0 0 0 I [-ij-jr.,'il.þs o ñll_-------------llll(Aoent) I I I

I \-: ,-'-'' | | || r;;¡t t t-lry
Il-l

Figure 3.1: Relationship between a host, an aglet, and an aglet server

t The term software agents and agents are used interchangeably from this point forward.

Nelwork

22

Chapter 3: Architecture of the Aglets Software Development Kit (ASDK)

3.3

Communication between aglets in the same or in different contexts is done

through each aglet's proxies. A proxy is a public interface between the aglet and the

rest of the world. A proxy is also a shield that protects aglets from each other. For an

aglet to send a message to another aglet, the sender aglet must first obtain the proxy of

the recipient aglet. For all stationary aglets, the values of their proxies remain the same

for the aglets' entire lives. However, for mobile aglets, the values of their proxies

change when the aglets arrived at new aglet servers. To maintain the communication

channel, the values of the new proxies must be updated immediately after the aglets'

arrive at their new aglet servers. Aglet proxies can be obtained either when aglets are

created or by using the aglet name and the aglets' unique identification in a call to get

the aglet's proxy. The following shows how aglet proxies can be obtained.

Aglet.Proxy ap =

getAgletcontext . createAglet (getcodeBase () , name, parameters) ;

where:

getCodeBase () :

a function that gets the codebase address of where the aglet code resides

name:

the path and name of the seryer where the aglet's class object is located

parameters:

an array of object parameters to be used to initialize the specific aglet to

be created

The method getAgletContext. createAglet (...) is used to create aglets

and to obtain the proxies of the newly created aglets. The method gerproxy(...), on

the other hand, is used to get an aglet's proxy after the aglet arrives at a new aglet

server.

Aglets Proxy

23

Chapter 3: Architecture of the Aglets Software Development Kit (ASDK)

Aglet.Proxy ap = getProxy(id, hostAddress) ;

where:

id:
the aglet's unique identification

hostAddress:

the address of the host where the codebase of the aglet is located. The

port number of the aglet server is also included in this hostAddress

Aglets Communication3.4

Aglets communicate with each other by message passing. ln particular,

messages can be sent using two protocols: a one-to-one communication protocol or a

one-to-all communication protocol (also known as broadcast). One-to-one

communication options include:

o One way (non-blocking, asynchronous)

The sender aglet sends a message and continues execution regardless of

whether or not the intended recipient aglet gets the message

o Wait-for-reply (blocking, synchronous)

The sender aglet sends a message and waits for a reply from the intended

recipient aglet before continuing execution

o Future reply (non-blocking, synchronous)

The sender aglet sends a message, continues executing but expects a

reply back from the intended recipient aglet at sometime in the future

24

Chapter 3: Architecture of the Aglets Software Development Kit (ASDK)

3.5

When aglets move between hosts on the network, they carry all their current

state and code with them. This means, upon the arrival at the destination host, aglets

can request resources, if needed, and continue on from where they left off.

Furthermore, aglets can be programmed to detect the status of hosts on the network

and pick the destination host that has the most available resources before moving to the

destination host. Once the new host is selected, agents can release resources currently

held and prepare for dispatch to the new destination. Figure 3.2 shows the internal

process of migrating aglets from one host to another. The following steps take place

when an aglet is preparing for migrating to a new destination host.

Aglet Migration

Source

Figure 3.2: The internal migrating process of aglets from one host to another host

At the source (or the current) host:

1. Stop or wait for the current instruction to complete.

2. Serialize all state (including data and code) into "packages".

3. Encode the serialized packages for the particular network transpoñ

protocol to be used.

Destination

Network

25

Chapter 3: Architecture of the Aglets Software Development Kit (ASDK)

4. Transfer the encoded packages to the destination host.

At the destination host:

1. Receive the packages from the network transport protocol.

2. Decode the received packages.

3. De-serialize the packages into state, and code of the agent.

4. Continue execution where left off.

3.6

Other aglet behaviors are based on the message handling routine and the

following three event handlers: the mobility event handler, the cloning event handler and

the persistence event handler. Each handler has a event listener. ln all cases, these

three listeners are added at the beginning of the aglets' execution and removed when

the aglets are terminated. Mobility and cloning events are used in distributed and/or

parallel computing applications. The mobility handler dispatches or retracts aglets from

one host to another host while cloning duplicates aglets resulting in multiple aglets with

the same functionalities but different states. The persistence handler stores the

serialized aglet (consisting of the aglet's code and state) into secondary storage. Table

3.1 below summarizes the API of the mobility event handler, Table 3.2 summarizes the

API of the cloning event handler and Table 3.3 summarizes the API of the persistence

event handler.

Other Aglet Behaviors

26

Chapter 3: Architecture of the Aglets Software Development Kit (ASDK)

Mobility Event Handler

onDispat.ching ()

onArrival ()

Table 3.1: Mobility event handler

dispatch ()

OnReverting ()

is called when an aglet attempts to dispatch to

a remote host.

is called when the aglet arrives at a destination

host.

is called when the aglet dispatches itself to a

remote host. This method automatically

invokes the onnispatching () method

Cloning Event Handler

is called when a parent aglet attempts to

retract a child aglet from a remote host.

onCloning ()

Table 3.2: Cloning event handler

onClone ()

onCloned ()

is called when an aglet attempts to clone itself.

is called to initialize the state of the cloned

aglet. (This method acts as the constructor of

the cloned aglet).

is called on the cloner after the cloning process

is successful. From this point on, both the

cloner and the clonee are independent of each

other.

27

Chapter 3: Architecture of the Aglets Software Development Kit (ASDK)

Persistence Event Handler

Table 3.3: Persistence event handler

Deactivate ()

Activate ()

is called when an aglet temporary halts its

current execution for a known period of time

(specified in milliseconds). The aglet server

will re-activate the deactivated aglet after the

duration of the time period.

3.7

Aglet construction is very similar to object creation in the OO model. lnstead of

constructors and destructors, however, aglets have oncreation (...) and

onDisposingO methods. The onCreation(...)method takes an array of objects as

arguments. These arguments are used to initialize the aglet. The argument array can

either be empty (nu11) or contains a number of arguments. The onoisposing (. .)

method, on the other hand, is automatically invoked when the aglet terminates its

execution. The purpose of onDisposing O method is to free up allocated resources.

After onCreation (...) is executed, the method run O is automatically invoked on the

new aglet and the aglets' execution begins. Aglets can also create child-aglets. This is

known as the parent-and-childor master-and-slave model. The child-aglets, in turn, can

also create child-aglets of their own and so on. Aglets and their ancestors or

descendants can communicate with each other by using either broadcast or the one-to-

one communication protocols described previously.

Aglet Construct¡on

is called when an aglet attempts to activate

another aglet that has been deactivated

earlier.

28

Chapter 3: Architecture of the Aglets Software Development Kit (ASDK)

3.8

Security is a major concern for all mobile agent systems. All untrusted aglets are

capable of committing malicious acts. An example of this is an untrusted agent from

one host can dispatch itself to another host and take many of the available resources

and/or commit other malicious acts. Theoretically, all agent systems must include all of

the following security services, as suggested by Harrison, et al.114l:

E Domain authorization and authentication

The network domain authorities are responsible for protecting local

network resources, allocating and reallocating resources in the domain to

local agents and visitor agents. Only those trusted agents (from trusted

domains) will get resources. Untrusted agents and/or agents from

untrusted domains will be denied both access to the domain and to its
resources.

o Host authorization and authentication

Host authorization and authentication are used to protect the underlying

operating system. This includes allocating and reallocating the resources

of the host. Resource authorization and authentication are given to

agents based on their rights. For example, an agent from a neighbor

domain may have more rights than an agent from a domain elsewhere.

o Secure communication

All communications between agents must be secured. Validating the

identity of the sender aglet is required prevent message forgery and

certain other malicious acts.

Aglet Security

Currently the ASDK does not fully support all these recommended security

services. Security features supported by the ASDK are: domain authorization and

authentication, host authorization and authentication, and resource authorization and

29

Chapter 3: Architecture of the Aglets Software Development Kit (ASDK)

authentication. Resource permissions are set in the aglet's policy file (located in the

user's .as1et./security folder). This policy file is very similar to that of the Java

security policy file. Aglet security defined in the Aglet's policy file supports the following

three categories of permissions:

a Code base ATP (Agent Transfer Protocol) permissions

o Code base HTTP (HyperText Transfer Protocol) permissions

D Agent code-based permissions

Depending on where the code base of the aglet is loaded, appropriate security

enforcement will be applied to the aglet accordingly. That is, initially, when the code

base of an aglet is loaded from a remote context then the code base ATP permissions

are applied to the aglet. When the code base of an aglet is loaded from an archive (that

is a JAR file) then the code base HTTP permissions are applied to the aglet. When the

code base of an aglet is loaded from a local host the agent code base permissions are

applied to the aglet. Although, there are three different categories of security

permissions, they all include the same set of permissions (e.9.: all three categories have

read and write access permissions). Other security features included in the current

implementation of ASDK are: file access permissions, network access control

permissions, run-time permissions for libraries, aglet run-time permissions, message

permissions.

Aside from the difficulties mentioned in Section 2.6.2, software agent's paradigm

forces developers to look at problems from a wide perspective rather than just focusing

on solving the problems themselves. Some benefits of using the mobile agent

paradigm include:

o Reduced network load

o Ease of distributing workload

o Scalability

30

Chapter 4

Agents in Economics

4,1

Agents can be applied to solve problems in many different areas. Well-known

areas such as parallel and distributed processing, e-commerce, scientific computing,

information retrieval in the WWW as well as new emerging areas such as Agent-Based

Computational Economics (ACE). ACE is a relatively new concept, which has recently

received the attention of many researchers. Tesfatsion t33l presents a general

overview of, and discusses current research directions, for ACE. LeBaron [26] presents

a rule-based approach using past information (including instrument prices) to forecast

future outcomes while Chen and Yeh [4] use Single-population Genetic Algorithms

(SGAs) and Multi-population Genetic Algorithms (MGAs) with "schools" to imitate

strategies from other agents (a school is a collection of up-to-the-minute updated

market information and market participants). Thulasiram, et al. [34] present multi-

threaded algorithms using the Efficient Architecture for Running THreads (EARTH) 112l

for pricing American call and puf options. This chapter will discuss the construction of a

lntroduction

Chapter 4: Agents in Economics

dynamic multi-agent architecture for forecasting the pricing of an American option using

a non-combining binomial lattice approach described later in the section.

ln the world of financial markets, any delay in information processing can

potentially lead to financial losses [34]. Computational Finance (CF) problems are

typically non-linear, computationally intensive and dynamic so they are difficult to solve

"on-demand". Prices and market information change dynamically and collaborations

between sellers and buyers are expected. With this in mind, and because of the

complexities of the problems, solving any of these problems sequentially would be very

slow and inefficient. A better approach for solving these problems is to apply parallel

algorithms so the overall workload can be distributed among several processors and

therefore better performance can be achieved. Designing effective parallel algorithms

for these problems can be very complex and time consuming. Multi-agent systems may

offer an environment where some CF algorithms can be easily converted into parallel

algorithms and where the load is dynamically and evenly distributed on each processor.

4.2

There are always risks involved with investments. As a rule of thumb in all

investments, the higher the risk, the higher the return. ln the early years of investments,

a small number of investors instantly became millionaires' when their stock prices

skyrocketed while others lost all or a large part of their investments when their stock

prices tumbled drastically. To help protect and attract more investors, futures and

options were introduced in the trading markets. A Future is the right or contract to buy

or sell stocks at some future time with obligations (e.9. a future is a contract, which

grants the holderlbuyer the right to buy or sell stocks within a specific period). An

Option, on the other hand, is the right or contract to buy or sell stocks at a future time

without any obligations (e.9. an option is a contract, which grants the holder/buyer the

righi to buy or sell stocks at anytime within a specific period). There are two types of

The Basics of Financ¡al Markets

32

Chapter 4: Agents in Economics

options: call-options and put-options. A call-option is the right to buy and a put-option is

the right to sell without obligations. Even with futures and options, there are still risks

involved with some investments.

ln 1973, however, Merton, Scholes and Black developed a mathematical risk free

management model (the Black-Scholes Model t3l) that guaranteed profitable

investments using an option pricing technique. This complex option-pricing model led to

explosive growth in stock options and other financial derivatives worldwide and earned

Merton and Scholes a Nobel Price in Economics.

One useful and very popular technique for pricing options is to use a binomial

lattice model to represent different possible paths that might reflect the security price

over the life of the option. The binomial model is particularly useful in setting up option

portfolios with reduced risk factors according to the risk-neutral valuation principal in

pricing options [15]. Using such a scheme, the option pricing is always equal to its
expected payoff in a risk-neutral world, discounted at the risk-free interest rates. Using

this technique, it is possible to calculate the future price of an underlying asset and its

option value over any given period. The input parameters required for creating a

binomial lattice are:

o S: the current asset price

ä the time period (from the current date) to the expiration date

n the risk-free interest rate

o: the volatility of the asset

n: the number of intervals to be calculated

K the strike price

33

Chapter 4: Agents in Economics

The height of the lattice is the number of intervals to be calculated (n), ln

general, the higher the value of n, the better the accuracy of the result. Figure 4.1

shows a general, one-step binomial lattice model (n = 1) with an initial asset price (S) of

$40 and a strike price (K) of $SO.

01
r

For simplicity, we generalized the problem to calculating the price of an option

with the underlying initial asset price S over the period of [O,Tf. During this period, the

asset price can either move up (e.9. Su in Figure 4.1) or down (e.9. Sdin Figure 4.1).

The new prices, Su and Sd, are calculated by the factors at which the asset price

moves. Let u and d be the factors for which the asset price moves up and down at each

time interval. At time t = T, we have two new possible prices: Su and Sd, where

u=roã and d-r-oJÑ and u> 1.0 and d< 1.0. A more detailed description of the

binomial lattice model can be found in [34] and [3]. Figure 4.2 shows a general two-step

binomial lattice model (n = 2).

Time

,7

^Su: $7û

Figure 4.1: A general one-step binomial model (n = 1)

Æ= $50

"Sd = $30

34

Chapter 4: Agents in Economics

4.3

ln general, there are two approaches that can be used to generate the binomial

lattice structure: top-down and bottom-up. Each approach solves the same option-

pricing problem in a manner consistent with the input parameters mentioned in the

previous section. While there are advantages and disadvantages in both approaches,

the top-down approach generates the actual tree structure while the bottom-up

approach uses formulas. Since the focus of this chapter is on load distribution, we will

not address the bottom-up approach because it is more natural to generate the actual

tree structure in load distribution.

ln the top-down approach, the binomial lattice is generated in a recursive top-

down manner starting from f = O. The generating process stops when the required

number of intervals (n) in the lattice have been created. There are two phases during

Figure 4.2: A general two-step binomial model (n = 2)

Basic Algorithms

35

Chapter 4: Agents in Economics

the generating process: the generating phase and the propagating phase. During the

generating phase, the tree-like structure is generated and the asset price for each node

in the lattice is calculated down the tree-like structure. When the bottom of the lattice is

reached, both the asset price and the option price are calculated and propagated up the

tree. For all other levels I 0 < I < n, the option price of the asset is calculated based on

the asset price and option price from the previous level of the lattice. The following

pseudo-code shows how the binomial lattice structure is created.

GenerateBinomialTopDown(fN inputs, OUT outputs)
Begin

fF (current 1eve1 - n) (1)

calculate the asset price for t.his leve1 (2)

calculate t.he option price for this 1eve1 (3)

return the asset. price and the option price (4)

ELSE

currenL_level=current_level+1 (5)

Generate the l-eft sub tree (lat.tice) (6)

GenerateBinomialTopDown (input.s , out.puts) (l)

Generate the right sub tree (lattice) (B)

GenerateBinomialTopDown(inputs, outputs) (9)

calculate t.he asset price for t.his 1evel (10)

calculat.e the option price for this 1evel (j_l-)

return (Lhe asset price and t.he option price) (L2)

END IF
End / / end of GenerateBinomialTopDown

36

Chapter 4: Agents in Economics

4.4 The Design of An Agent-Based Binomial

Lattice Option Pricing System

The design presented in this section is focused on dynamic-load distribution

among the available processors. The load distribution is calculated based on the

number of available2 agent servers so that the workload is evenly distributed among

these agent servers. Each agent in the system is responsible for a portion of the overall

lattice. ln particular, the workload for each agent is the computational portion of that

particular sub-lattice. Figure 4.3 shows this process for a system with two processors

(processor 0 is excluded since it does not do any of the actual computation of the

lattice) and where /? = 3.

t--w--@
1

@ wru,tsrnt

Processor 0

O No¿*

2 For simplicity, the number of agent servers available is always assumed to be a power of 2. Handling

different numbers of servers is not difficult but would complicate the presentation of the design.

Figure 4.3: Architecture design with two processors and fi = 3

Processor 2

@ Service Agent

Communication between agents

Processor Ì.

@ AeerrtJÏode

37

Chapter 4: Agents in Economics

ln the design, the web agent, located on processor 0, is responsible for handling

the interaction between the users via a GUI (Graphical User lnterface) and the service

agent. This interaction is based on event triggers. The service agent, also located on

processor 0, is responsible for fonryarding requests/results from the web agent to the

agents (in the same processor) and vice versa. lnteraction between all the agents is

based on the message passing protocol. All agents in the system, except the web

agent and the service agent, are dynamically created in a recursive top-down manner

with respect to the top of the lattice. The number of agents created depends on the

number of processors used. For example, in Figure 4.3 above, we have an agent in

processor 0 and an agent in each one of the two processors used. The agenVnode in

processor 0 acts as the root of the lattice and is responsible for collecting results from

the other two agents in the two processors used. ln general, in addition to the web

agent and the service agent, the number of agents/nodes created is f-1 - 7 where P is

the number of processors used (P does not include processor 0). Figure 4.4 shows the

same design with four processors (P = 4) and /? = 3.

Figure 4.4: Architecture design with four processors and /7 = 3

Pracessor 4

Processor 3

Pracessor 2

Prvcessor l

38

Chapter 4: Agents in Economics

The purpose of this chapter is to use mobile agents to develop a technique that

allows for dynamic workload adjustment. The design ensures that the overall lattice

computation is always evenly distributed among the available processors. ln general,

given P and n intervals, n must be greater than or equal To log2 (P) for all P = 2 where i
> 1.

Communication between the agents is a major overhead determining the overall

performance. The overhead here is the communication time between the agent(s) in

processor 0 and the other P agents in the other P processors. This communication time

is largely dependent on the network traffic (i.e. that number of bytes send by the agents

and the current available bandwidth). This particular design works best when n is large

and logz (P) is relatively large. That is each processor should handle a reasonably large

sized sub-lattice. When n is closer to the value of log2 (P), the time required for

communication may be larger than the actual computational time of the sub-lattice at a

particular processor P¡. ln this case, because the network is much slower compares to

the processing time of the sub-lattice at a particular processor.

2000

1 tt0
1 6ûû

14ûrl

1 2ût
1Otrl

8ürl

Ëtú
4tl0

2rl0

û

fi

t¡

Figure 4.5: Communication timing vs. number of processors

,loTU

llumber of Frocessor*

39

Chapter 4: Agents in Economics

Figure 4.5 shows the communication time between processors. As the number

of processors increases, the communication time between the processes grows

exponentially.

This chapter demonstrates the effectiveness of mobile agents in a distributed

environment. Beside from the use of multi-agents to construct the well-known binomial

tree-like structure, another focus of this chapter is the use agents for load distribution

among processors. That is, each agent in the system is responsible for a sub-lattice on

a particular processor so that the total computational of the lattice is evenly distributed

among the processors. The use of mobile agents and their effectiveness presented in

this chapter motivated the use mobile agents in this thesis.

40

Chapter 5:

The WW\¡ú-DI MA Prototype:

Architecture and lmplementation

5.1

This chapter introduces a scalable architecture capable of delivering information

from multiple data sources on the WWW. This new architecture uses the dynamic

deployment of mobile agents in a distributed environment. The design goals of the

architecture are as follows. First, the architecture must allow the dynamic addition and

removal of component data sources while providing users with a single-step access to

multiple data sources on the WWW. Second, the architecture must also allow support

Business To Business (B2B) data exchange. These two requirements are particularly

important as the former allows scalability of the architecture and the later allows

integration of data sources on the WWW including legacy data sources. Section S.2

describes the architecture together with the supporting software and tools used in the

lntroduction

Chapter 5: The WWW-DIMA Prototype: Architecture and lmplementation

implementation. Section 5.3 summarizes the function of the components while Section

5.4 describes the interactions between the components of the architecture. Section 5.5

presents the implementation of the architecture in some detail. Section 5.6 describes

the operations supported by the architecture, and Section 5.7 discusses certain

optimization issues related to the implementation details of the architecture.

5.2

Recall that the purpose of this research is to explore the use of a mobile-agents

system to integrate homogeneous/heterogeneous databases on the WWW. Figure 5.1

below shows the overall architecture of the WWW-DIMA (WWW-Database lntegration

via Mobile Agents) prototype.

The WWW-DIMA Prototype Architecture

Web Server, Age

Figure 5.1: The proposed architecture of the WWW-DIMA prototype

CIient

42

Chapter 5: The WWW-DIMA Prototype: Architecture and lmplementation

Figure 5.1 shows the overall architecture of the WWW-DIMA prototype. The

WWW-DIMA prototype uses mobile agents to integrate component database schemas

into a global directory (the Directory Database) and to deliver data to the users from

one or more relational data sources. The Directory Database is created with the

assumption that all the component database schemas are semantically correct.

The implementation of WWW-DIMA prototype is on the Windows Families

(Windows 2000 and Windows NT) using Aglets [1]and Java [20]. Othertools used in

the development are:

o Microsoft lnternet lnformation Services (llS) [17]

o IBM Universal Database DB2 [8]

tr Microsoft Access Database

o Java Database Connectivity/Open Database Connectivity (JDBC/ODCB) [18]

m
lt vil
lJ

'
I

| , t ,l

@l
Component
Database

Figure 5.2: Details of the proposed WWW-DIMA prototype architecture

Server

Componant
Database

43

Chapter 5: The WWW-DIMA Prototype: Architecture and lmplementation

5.3

5.3.1

Summary of Components of the WWW-DIMA

Directory Database

The directory database contains a catalog of all the other component

databases on the network. Only the Agent Manager and the Service

Agent Manager (both defined later) use the information in this database.

lnformation included in this database is:

B Host names of all the component databases.

o Host status of all the component databases.

tr Database ínstance names of all the component databases.

o Data source names (DSNs) for all the component databases.

o User ids and passwords to connect to the data sources for all

components hosts.

Tahiti Servers

Tahiti seryers provide the contexts or aglet servers that provide the

resources and environments for aglets that are to be created and

executed. An instance of the Tahiti server is required to run on each of

the component database hosts.

Service Agent Manager T

The Service Agent Manager coordinates and manages all the Service

Agents in the system. Task assignments to each individual service agent

are based on the information from the Directory Database.

5.3.2

5.3.3

t Neither the Service Agent Manager nor the Service Agents are shown in Figure 5.2 because they are

only periodically created and activated.

44

Chapter 5: The WWW-DIMA Prototype: Architecture and lmplementation

5.3.4 Service Agentsï

Periodically, these aglets, as directed by the Server Agent Manager, roam

the network and collect the information about the component databases

and their corresponding host statuses. Any changes in the local

component schemas will be detected and updated in the Directory

Database by these Service Agents.

Agent Manager

The Agent Manager is a component of the WWW-DIMA prototype, which

responsible for handling requests from the Web Server and delivering of

data from the Agents to the Web Server. When a request query is

received, the Agent Manager decodes the request and re-directs the

request to those Agents that are responsible for handling the request (i.e.

those Agents running on sites with data needed to evaluate the query).

Decoding is the process of extracting the location(s) of data and the

catalog information from the Directory Database. After the decoding

process is done, the Agent Manager sends messages and waits for

replies from the necessary agent(s). When all the replies are received

and combined, the result of the request is forwarded to the web server

(llS), which then presents it to the user. By using the information from the

Directory Database, the Agent Manager can effectively direct agents to

appropriate data sources. ln the case where a data source is unavailable,

the Agent Manager can direct agents to alternative data source(s). The

current implementation of the WWW-DIMA prototype, however does not

support this functionality.

Agents

Agents are created and sent to remote locations by the Agent Manager.

The number of agents created depends on the number of online-available

5.3.5

5.3.6

45

Chapter 5: The WWW-DIMA Prototype: Architecture and lmplementation

databases in the Directory Database. That is, an Agent for each online-

available database. Upon arrival at the destination hosts, these agents

wait for messages from the Agent Manager. When a message is

received, the agent will carry out the corresponding task and respond back

to the Agent Manager with the query result.

5.4 Component lnteractions of the WWW-DIMA

Prototype

Figure 5.3 illustrates the interactions between the components in the WWW-

DIMA prototype. These interactions are:

1. Client submits a request to the Web Server.

2. The Agent Manager obtains the request from the Web Server.

3. The Agent Manager decodes the user request and formats the user

request into an internal format using information from the Directory

Database.

4. The Agent Manager sends the internal request to the particular Agents (at

remote hosts) that are responsible for handling the request.

5. Agents, at the remote location, receive the request, extract the requested

data from their local databases and format the data result as XML.

6. The requested data, in XML format, is sent back to the Agent Manager.

7. The Agent Manager parses the XML data and fonruards the raw data result

to the Web Server.

8. The raw data result is sent to the original request through a web page.

46

Chapter 5: The WWW-DIMA Prototype: Architecture and lmplementation

Client Web Seruer Agent Manager Agents
11l
l-.+l

lg
t<--l
lt

5.5 lmplementation Details of the WWW-DIMA

I

I

Jl

Figure 5.3: Component interactions of the WWW-DIMA prototype

Prototype

7

Figure 5.a highlights some implementation details of the proposed architecture.

Since the WWW-DIMA prototype uses mobile agents to locate and deliver information

from multiple component databases, an agent context or an agent server must run on

each of the component database hosts, including the server. (The server here refers to

the host that has the web server running on it). As described in Section 5.3.2, an agent

server (in this case, the agent server for Aglets, called Tahiti) is an application program

that provides the services and environment permitting agents to execute. Using a Tahiti

context, the system is launched on the server and a WWW-DIMAAgent is created. This

agent is the main thread of execution of the WWW-DIMA system. Once created, the

WWW-DlMAAgent creates an agent called ServiceAgentManager. At this point, the

WWW-DlMAAgent halts its execution and waits for a "complete" signal from the

._.

t-"ï"'J
¡ ,_\! f\-------ii--t "" ,|

I G
É+l Access I

|

-

r É+--l4ffJ
I

¡

I

I

I

47

Chapter 5: The WWW-DIMA Prototype: Architecture and lmplementation

ServiceAgentManager. The main purpose of the ServiceAgentManager is to

periodically create and coordinate the ServiceAgents which check and update the status

of the component database hosts in the Directory database. Once created, the

ServiceAgentManager establishes a local database connection to the Directory

database and extracts the 'available' component hosts and database information (the

'available' component hosts here refer to the component hosts that were last known to

be 'available'for connecting to via the network). The information extracted includes the

component host names, the component host lP (lnternet Protocol) addresses, the agent

server port numbers, the ODBC names, and user ids and passwords for connecting to

each component database. For each record extracted, the ServiceAgentManager

creates a ServiceAgent and it with the record information. The ServiceAgentManager

also tracks the number of ServiceAgents created so that it knows when the

ServiceAgents have completed their work (checking each component database). Once

a ServiceAgent is created, the ServiceAgent tries to dispatch itself to the component

host. At this point, there are two possible scenarios:

a Scenario 1: the component host is unreachable. That is, the component host

became unavailable sometime after the last 'checkpoint'. This means the

ServiceAgent will not be able to dispatch to the component host. The

ServiceAgent then marks this component host as 'unavailable' in the

Directory database. The ServiceAgent then terminates its own execution.

tr Scenario 2: the component host is reachable. The ServiceAgent dispatches

itself to the component host, connects to the component database locally and

extracts information about the component database. The information

extracted includes the number of relations, number of attributes for each

relation and the data type for each attribute. This information is then saved

as state of the agent and brought back to the server. The information brought

back is checked against the information in the Directory database and

updates are made accordingly. ln the case of component schema changes,

additional schemas, attributes and data types are added or marked as

48

Chapter 5: The WWW-DIMA Prototype: Architecture and lmplementation

'removed' in the Directory database. The ServiceAgent then terminates its

own execution.

Web Server /
Agent Server

When all ServiceAgents are terminated, the ServiceAgentManager sends a

message to the WWW-DIMAAgent indicating the checking process is now completed.

After the message is sent, the ServiceAgentManager then deactivates itself for a period

of 5 minutes (this 5 minutes time frame was chosen because 5 minutes is a reasonable

amount of time for checking the status of the component hosts. As shorter time frame

would create unnecessary overhead). While deactivated, all the state and code of the

ServiceAgentManager are written to the local disk. After the deactivated time period,

the ServiceAgentManager is activated automatically by the agent context and the

checking process is repeated again.

Figure 5.4: Details implementation of the WWW-DIMA prototype

Ì

I

When the WWW-DlMAAgent receives the message indicating the checking

status is done from the ServiceAgentManager, it creates another agent called the

Component

Database(s)

49

Chapter 5: The WWW-DIMA Prototype: Architecture and lmplementation

AgentManager. Once created, the AgentManager establishes a local database

connection to the Directory database and extracts the available component host and

database information. For each record extracted, the AgentManager creates an Agent

and initializes it with the record information. The number of Agents created depends on

the number of available component hosts (i.e. an Agent for each component host) in the

Directory database and is tracked by the AgentManager. Once created, Agents

dispatch themselves to their assigned component hosts and wait for requests from the

AgentManager. The operations supported by the WWW-DIMA architecture are

described in Section 5.6.

As stated in Section 1.3, one of the research goals is to be able to add or remove

component databases dynamically. Adding a new component database is done

manually by adding the following information to the Directory database: the component

host name, the component host lP address, the port number, the ODBC name, the user

id and password for accessing the component database. Removing component

databases can be done in two ways:

o Removing the entry completely from the Directory database. This scenario is

appropriate when the data source will no longer be used.

tr Marking the entry as 'removed' in the Directory database. This scenario is

appropriate when the data source is temporary unavailable.

Terminating the WWW-DIMA system can be done in two ways: by terminate the

agent context or by terminating the WWW-DIMAAgent. ln either case, the method

dispose O of the WWW-DlMAAgent is called on terminating. Before the WWW-

DlMAAgent is terminated, a terminating message is composed and sent to the

AgentManager and the ServiceAgentManager. The WWW-DlMAAgent is then

terminated. Upon receiving the terminating message from the WWW-DIMAAgent,

again, before terminating itself, the AgentManager fonruard the terminating message to

all Agents in remote component hosts. The AgentManager then terminates itself. ln the

component hosts, upon receiving the terminating message, Agents de-allocate the

50

Chapter 5: The WWW-DIMA Prototype: Architecture and lmplementation

resources held and then terminate themselves. When agents are terminated, their

threads are permanently removed from the agent context. Similarly, the terminating

process is the same for the ServiceAgentManager and all ServiceAgents.

A major drawback of the WWW-DIMA prototype is that failure of either the server

or the AgentManager means no information is available. The former is obvious. The

later is because the AgentManager is the mediator between web server and the Agents

in the component hosts.

5.6 Operations Supported by the WWW-DIMA

Prototype

Using a web browser (e.9. Netscape or lnternet Explorer), the users can connect

to the AgentManager and query the contents of any component databases in the

system. Users submit their requests and receive results through the web server (llS in

the prototype) in the form of HTTP POST response and HTTP response messages. For

all requests submitted by the users, the AgentManager (see Figure 5.4) decodes the

requests and forwards the requests to the appropriate (at remote locations) that are

responsible for satisfying the requests. At this point, the AgentManager blocks and

waits for a reply back from the Agents in the remote locations.

At the remote location, once a request from the AgentManager is received, the

Agent establishes a local database connection to the component database via ODBC.

The Agent then extracts only the required data and formats the query result into XML

format. Since Agents use JDBC/ODBC to connect to the database locally, the agents

can connect to viftually any DBMS back-end that supports the JDBC/ODBC

technologies on the local host. Once the data formatting is done, the XML-query result

51

Chapter 5: The WWW-DIMA Prototype: Architecture and lmplementation

is encoded as a message and sent back to the AgentManager as a message though the

Agent's proxy.

Back on the web server, when the XMl-query result is received, the Agent

Manager uses JDOM [21] to parse the XML-query result and format the contents of the

query result into an HTML page. This includes generating the heading and appropriate

HTML tags for the HTML result page. Once this assembly process is done, the Agent

Manager forwards the HTML page as a response to the Web Server. The web server

then presents this page to the users as the result of the original query.

5.7

ln the first implementation of the WWW-DIMA prototype, a number of Agents are

created when the prototype is launched. The number of Agents created is dependent

on the number of available component databases in the Directory Database (i.e. an

Agent per component host). Each Agent is then responsible for handling data requests

from a component database in the system. For every query submitted by the users, the

particular Agent responsible for the query is dispatched to a remote host where the

requested data is located. Once the data extraction is complete, the agent then

dispatches itself back to the original location with the requested data. The requested

data is then presented to the user by the web server via the AgentManager.

The overhead in the first implementation arises because every query submitted

by the users requires an Agent to be dispatched to the data source, and then back to

the server with the query result. As mentioned previously, every time an Agent

transports itself from one host to another, all state, and code are transported with the

Agent. This is costly because for every query, in addition to the data result, all agent

state, and code must be transported. The second efficiency issue is the network

bandwidth. That is, as the number of requests submitted by the users increases, the

Optimization of the WWW-DIMA Prototype

52

Chapter 5: The WWW-DIMA Prototype: Architecture and lmplementatíon

traffic between the host where the AgentManager resides and the hosts of the

component databases increases. This is because large amount of data (query results,

states and code(s) of Agents) being transferred between these hosts.

ln the second implementation, Agents are created and dispatched to the hosts of

the component databases when the system is launched. Upon arrival at the

destination, Agents await messages from the AgentManager. When a user request is

received, the AgentManager formats the user request into an internal format and then

composes the internal format into a message. The message, and only the message, is

then sent over the network to the Agent who is responsible for the request. When a

query is received from the AgentManager, the Agent will carry out the corresponding

task and reply back with only the query result. ln this implementation, only the

requested queries and the queries' results are sent over the network, instead of

dispatching Agents for every single request. As estimated, the speed up of the second

implementation over the first implementation is about 25%.

53

Chapter 6:

Performance

WWVü-DIMA Prototype

Two databases are used in evaluating the performance of the WWW-DIMA

prototype. To simulate a heterogeneous environment, two different DBMSs are used:

Microsoft Access [42] and IBM DB2 [8]. The Microsoft Access database is called

U-RECORDS. U-RECORDS is a typical university student records database. This

database contains information about students, staff, courses, efc. The second is an

IBM DB2 database called MANUFAC. MANUFAC is a typical production manufacturer

database. lnformation included in this database are products, suppliers, product

category, efc. To obtain consistent timing results, each query in the WWW-DIMA

prototype was submitted 100 times and the average time was obtained. The same

queries were also evaluated using the ClienVserver model using Applets. Applets were

chosen because, like the WWW-DIMA prototype, Applets use the web server to connect

to the database thus they represent afairer type of comparison.

Evaluation of the

Chapter 6: Performance Evaluation of the WWW-DIMA Prototype

Evaluations of the WWW-DIMA prototype were performed on a network of

workstations running Windows 2000 (Pentium 4, 1AGHz processor speed with 512 MB

of RAM) on 1O0Mbps switched Ethernet. The following are used in evaluating both the

WWW-DIMA prototype and the clienVserver implementations.

o Total query time (T): the time between when the request is submitted on the

client and when the query result is received. This does not include the time

taken to display the query result.

E Agent processing time (T) on component hosts. We do not include constant

time factors such as time to decode the user requests, time to compose the

query results and present the results to the user. T" includes only the

following:

o Too-xmli time taken to extract the data from the database and format the

query result(s) in XML

o T"n-'.n.si time taken to encode the XML-query results into messages (at

the sender end)

o Td"-r.sr time taken to decode the messages back to the XMl-query

results.

o Communication time (Tr): the time between when the request is sent from the

Agent Manager and the time when the reply is received. T" is largely

dependent on the load of the network at the time when the message is sent

and, of course, on the size of the data being sent.

Furthermore, to minimize the runtime differences, the same runtime environment

(Java) and the same database definitions were used in both approaches. ln general,

T = Tc * Too-xm¡ + Trn-r.g + Td.-r.g (1)

55

Chapter 6: Performance Evaluation of the WWW-DIMA Prototype

oo

Èg
Ëi't- lhF6)
s+õ0)
õE

'1,700.00

1,650.00

1,600.00

1,550.00

1,500.00

1,450.00

1,400.00

WWW-DIMA vs. Applet

a..: : t.) :: .: :a..ta.....:r.:.. ..
...:...: t....a..:..,.,1,:.:.:41...,,.: ::"::): ..at::j /a.a;::.-'::t a:a:i).....):.1..;.r ..-.'.-::

l
tu -sta-------:---ø

Figure 6.1: Comparison of the WWW-DIMA prototype and Applet at off-peak hours

The timing observations of the prototype were done at two different times on a

closed subnet: at peak hours and during off-peak hours (early in the morning when the

network traffic is low). The timing was repeatedly observed over a period of four days

and very similar patterns were obtained. To ensure variation, the size of the data

results requested were purposely set to vary from 1.6 KB to 11 KB. Figure 6.1 shows a

comparison of the WWW-DIMA implementation and the traditional clienVserver

implementation (Applet) at off-peak hours. The results from Figure 6.1 show that the

time required for the Applet implementation changes only slightly as their size of the

query results increases. This is because all Applets are downloaded before they are

executed in the web browser environments and while Applets are running, permanent

connections to the server are established; note that, as the number of Applets increases

so does the traffic on the server's end. The time required for the WWW-DIMA

prototype, on the other hand, increases as the query result size increases but remains

lower than the time required for the Applet-based implementation.

Figure 6.2 shows the comparison of the WWW-DIMA implementation and the

traditional clienVserver (Applet) implementation during peak hours. The time required

for the Applet implementation (shown in Figure 6.2) is similar to that in Figure 6.1,

1,673 6,923 9,089 11,342

Number of Bytes Requested

).. u a: :.: t:.:.... :.1:,: .:.:at':::::t .l::att;:/::::. 4.'. ::.: a
. :.:..,::. :. . . ,:a,....:.:....:... : ... ::...':4.: tt.:a.a::. '::::'.:

--+_WWW-DIMA

-ø- Applet

56

Chapter 6: Pedormance Evaluation of the WWW-DIMA Prototype

except with some additional overhead due to the higher network traffic. The time

required for the WWW-DIMA implementation shows a similar trend to that of Figure 6.1.

During testing it was noted that the timing of the WWW-DIMA prototype was

occasionally higher than that of the Applet implementation. These anomalies were the

results of network congested at the time when the experiment was done. Experiments

with the WWW-DIMA prototype have shown that even with the number of bytes

requested as large as 45K, the response time of the WWW-DIMA prototype is still better

than that response time of the Applet implementation.

oo

Èe
Ëãrà (n
FO'
dJJ
E'ìcr(Eq)
õtr

1,800.00

1,700.00

1,600.00

1,500.00

1,400.00

1,300.00

Figure 6.2: Comparison of the WWW-DIMA prototype and Applet at peak hours

The response times obtained by the WWW-DIMA prototype in both Figure 6.1

and 6.2 are also consistent with those obtained by lsmail, et al [16] and Papastavrou, et

al [30]. Though, the response times of the WWW-DIMA prototype are better than those

of the Applet implementation, even better response times can be obtained by reducing

the complexity of the internal implementation of the Aglets frame-work. Recent studies

of Aglets [16,30] have suggested that the main overhead in Aglets is the ATP (Agent

Transport Protocol). Since the WWW-DIMA prototype uses the aglet's ATP, its

performance is affected because of the additional overhead. A future implementation

might want to look at replacing the ATP with a simpler ATP implementation.

WWW-DIMA vs. Applet

1,673 6,923 9,089 11,342

Number of Bytes Requested

--._WWW-DIMA

-e-Applet

57

Chapter 6: Performance Evaluation of the WWW-DIMA Prototype

Figure 6.3 below compares the response time of the WWW-DIMA prototype at

peak and off-peak times. As the number of bytes requested increases, the response

time of the WWW-DIMA prototype at peak times grows faster than at off-peak time.

This is because at peak times the network traffic is higher than that at off-peak times.

By observation and under the assumption that the network traffic is constant, the

response time of the WWW-DIMA prototype is directly proportional to the number of

bytes requested.

1,750.00

1,700.00

1,650.00

1,600.00

1,550.00

1,500.00

1,450.00

1,400.00

.D

E

0)
tr
¡=

WWW-DIMA Peak vs. Off-peak

Figure 6.3: Comparison of the WWW-DIMA prototype at peak and off-peak times

Unlike other recently published work, the agents in the WWW-DIMA prototype

use messages to communicate with each other. As mentioned previously,

communication time (T') for the WWW-DIMA prototype is largely dependent on two

factors: the network traffic and the amount of data being transferred. Based on the

evaluation of the WWW-DIMA prototype, the average data exchange time between the

agents is about 816 ms. That is, the WWW-DIMA prototype performs bestwhen the

size of the requested data is small.

-/f- ,----e

1,673 6,923 9,089 11,342

Number of Bytes Requested

--:- Peak Time

-ø- Off-Peak

58

Chapter 6: Performance Evaluation of the WWW-DIMA Prototype

WWW-DIMA Gommunication: Peak Time vs. Off-Peak
Time

1,000.00

950.00

900.00

850.00

800.00

750.00

700.00

at

(l,

E
i:

Figure 6.4: The WWW-DIMA prototype communication time at peak and off-peak times

Figure 6.4 compares the communication time of the WWW-DIMA prototype at

peak time and off peak time. Communication time of the WWW-DIMA prototype is

largely dependent on the network traffic at the time of the evaluation and the number of

bytes been transferred.

-a.-1

1,673 6,923 9,089 11,342

Number of Bytes Requested

J
;ir,1:

--+- Peak Time

-w- Off-Peak Time

59

Chapter 7 .

Related Work

Many working prototypes of systems that support distributed information retrieval

using mobile agents have been implemented and evaluated recently. Although, all the

prototypes make use of the same software engineering paradigm, mobile agents, their

underlying implementations and approaches are very different. Though, different agent

frame-works were used, the following work is related to that presented in this thesis.

7.1

Kotz, et al. [23] has analyzed and studied the performance of mobile agents for

filtering data streams in a wireless network environment. They assumed that the agent

seryer received steady raw input data streams broadcast from the lnternet. They also

assumed that each wireless client is interested in only a subset of the raw streams. ln

this particular application, the following two observations were made. First, to minimize

the workload on the wireless network, transmitting only the relevant data should be

transmitted. Second, to minimize the power consumption on the wireless clients,

Performance of Mobile Agents

Chapter 7: Related Work

filtering of the raw input data streams should be done on the server before sending the

data to the wireless clients. With a set of predefined parameters and assumptions, the

authors developed an analytical model and a set of equations for filtering the input data

streams on both the server and the clients. These equations are based on the number

of agents used and the available bandwidth between the agent seruer and the agents

on the wireless clients. They had demonstrated the benefit of using mobile agents in a

wireless network. They presented only an analytical model of their experiments

Kotz, et al. l24l compare the performances of four different agent-based frame-

works (D'Agents 16,71, EMAA [10, 11, 13], KAoS [22], NOMADS [29]) with traditional

client/server techniques for distributed information retrieval [24]. ln the agent-based

approach, agents are dispatched from the client hosts to a server where a collection of

documents is stored. On the server, the agents search for the requested document(s)

and bring back only the requested document(s). ln the clienVserver approach, clients

connect to the server, download all available documents, and filter for the requested

document(s) on the client-side. Though, the four frameworks share a common

implementation language, Java, their performance are much slower. These differences

are due to the internal implementation of each framework. (For example, both EMAA

and KAoS cache the open socket on the agent server and re-use the socket for

migrating the agents between the hosts. Caching and re-using these sockets save

overhead in pedormance. D'Agents and NOMADS, on the other hand, reopen a new

socket for each migration)

These performance differences are insignificant when compared to the cost of

migrating the agents between hosts. Their experiment was done with different numbers

of clients (1 to 20) on a 1 , 10 and 100 mbps network. Kotz, et al. conclude that both the

agent-based model and the clienVserver model are dependent on the bandwidth of the

network. They also conclude that the clienVserver application's performance is best on

high bandwidth network. Agent-based application performance, on the other hand,

depends on two factors: the network bandwidth and the overhead of the agent's

61

Chapter 7: Related Work

framework. The model presented by Kotz, et al. dispatches an agent for every user

request. This is inefficient compared to the WWW-DIMA prototype, which uses a

message for every user request. That is, with messages, only relevant data are

transferred (instead of relevant data, agent's state and code).

lsmail, et al.116l compare the performance of RMI (Remote Method lnvocation),

Aglets and a minimal self-built mobile agent prototype. All three models were built using

the same language, Java. Their comparisons were done based on the following

assumptions: in the clienVserver model, the client uses two RPCs (Remote Procedure

Calls) to connect to two different seryers to obtain the requested information. ln the

mobile agent model, an agent is created and sent sequentially to two servers to collect

information. The collected information from the second server is based on the

information collected from the first server. Once the information is collected from the

two servers, the agent dispatches itself back to the client. Their results confirm that

both mobile agent models (Aglets and the minimal self-built mobile agents prototype)

provide better performance than the RMI clienVserver model. Also, the Aglets timing

they report is consistent with that of the WWW-DIMA prototype.

7.2

Papastavrou, ef a/. [30] has developed a very similar model to that of the WWW-

DIMA prototype. Unlike the WWW-DIMA prototype, however, Papastavrou ef al. is a

web-based Aglet framework that uses Applets as the client interface and to control the

agents behind the scene. An advantage of using Applets as an interface is that other

standard Java GUI components can easily be integrated. However, the more

components that are added to the Applet, the slower the download of the Applet will be.

Other major differences in WWW-DIMA prototype are that: the WWW-DIMA prototype

uses HTML as the user interface (usable even with minimal bandwidth) and additional

component databases can be added or removed from the system dynamically. Overall,

Design Comparisons

62

Chapter 7: Related Work

the network performance of the WWW-DIMA prototype is also better because it avoids

the downloading overhead of the Applet.

Vlach [30], is another prototype multidatabase management system based on

mobile agents that is similar to the WWW-DIMA prototype. Vlach supports all database

operations (search, insert, update and delete) as well as database stored procedures.

As with the WWW-DIMA prototype, Vlach confirmed that migrating agent(s) for each

query is slow and that using message passing will result in better performance. Vlach

also employs migration of agents to support both global distributed query execution and

procedures.

Magnanelli, et al. [27] use a database to store "knowledge data" and "statistical

information" to assist agents with their tasks on the WWW. That is, Magnanelli, et al.'s

agents use information stored in user's database as the starting point of the search.

Knowledge data includes the searching starting point(s), user preferences, agent

preferences, efc. Statistical information, on the other hand, includes the location of

data, past frequent data access patterns, the results, efc. Magnanelli, et al.'s agents

use both keyword search and pattern-based search. ln both cases, agents follow the

'interesting' links to find the information requested. Search results are saved, filtered

and presented to the users at a later time. Over time, preferences and past reference

information are updated in a database for future uses. Future work by Magnanelli, et al.

includes web-access and XML documents, features that are included in the WWW-

DIMA prototype.

63

Chapter 8:

Conclusions and Future Research

Directions

8.1 Conclusions

Past research has shown that using the traditional clienVserver model for

accessing multiple data sources on the web is sometimes slow, and can be complicated

to implement. ln addition, the clienVserver model changes the performance of the

applications as the number of users increases. The new architecture described in this

thesis is both flexible and scalable. The new architecture is flexible because

deployments of Agents are done dynamically. Also, the new architecture uses

SeruiceAgents to check and update the status of component data sources before

Agents are sent to the data sources. The new architecture is scalable because

additional data sources can be added to the architecture by adding the data source

information and the component host information in the Directory Database. With the

Chapter 8: Conclusion and Future Research Directions

use of mobile agents, the new architecture allows users to effectively access multiple

data sources on the web and yet manages the complexity of the system.

The new architecture described here is also offers a performance advantage

compared to other recent systems. Unlike other work, the WWW-DIMA prototype uses

message passing instead of agent dispatching. Dispatching agents can be costly as the

transfer time is directly related to the total number of bytes transferred across the

network. Although, some publications have studied the concepts of integrating mobile

agents and WWW-Databases, they require additional components or services to be

installed on the clients. The implementation of this work is mainly relies on the Directory

Database, AgentManager, Agents, ServiceAgentManger, ServiceAgent and other

existing supporting tools and software used in the prototype. No changes are required

to the existing tools and software. One disadvantage of the work presented here, and

of all mobile agent systems in general, is that agent servers must be installed on all the

component hosts.

Finally, mobile agents are appropriate for solving computationally intensive

applications (discussed in Chapter 4) and are appropriate for wireless environment [16]
(an environment where the server is a cluster of powerful processors capable of

handling intensive computational processing and the network bandwidth between the

server and the users is limited). ln this environment, agents can be dispatched to the

server, process the requests on the server and bring back to the clients only the

relevant data results. This approach reduces the network loads but increases the

server loads. One attractive feature of the WWW-DIMA is that it can integrate any

DMBS that supports the JDBC technology. Other contributions of the WWW-DIMA

prototype include:

o The WWW-DIMA prototype can integrate any DBMS that supports the JDBC

technology.

o Addition and removal of component databases is done automatically.

65

Chapter 8: Conclusion and Future Research Directíons

E Data exchanged on the WWW occurs while supporting existing applications.

That is, the data transported by the agents are presented in the eXtensible

Markup Language (XML) format, a markup language that has been widely

used as metadata standard. With rich document structures like XML, not only

can data transported by the agents now can be used over the web, but the

data can also be used for Business To Business (B2B) data exchange

between existing and/or future applications.

8.2

Since software agents are a relatively new area, much more work is still required.

The drawbacks described in Section 2.6.2 must be address adequately before this

software engineering paradigm can be used widely. Currently, the WWW-DIMA

prototype does not support multiple concurrent requests. As mentioned previously, for

every single request submitted by the user(s), the Agent Manager has to decode the

request, fonryard the request to the Agent who is responsible for the request, and wait

for the response to be returned from the Agent. As a result, when multiple concurrent

requests are submitted, the Agent Manager's HTTP requests queue grows until the

queue is full and subsequent requests are ignored. Aside from handling concurrent

multiple requests, other future research areas include:

o Data caching

Caching of frequently accessed data records to improve access time and

performance of the system. However, some mechanism is required to guarantee

data consistency. Data caching can be handled by the AgentManager.

tr Distribution of Agent code

Since the Agent Manager knows the locations of all agents at the component

hosts, pre-distribution of the agent code to all the component hosts would save

time when agents are created in the remote host. This does not apply to WWW-

DIMA prototype since agents are created and dispatched to component hosts

Future Work

66

Chapter 8: Conclusion and Future Research Directions

once at the beginning when the system is launched. No additional agents are

created on the component hosts. Distribution of the agents' code can be used to

improve performance in other applications.

Support of other database operations

The WWW-DIMA prototype can be extended further to support other concurrent

database operations: update, insert and delete. Clearly some modifications of

the WWW-DIMA prototype interface is required.

Secure communication channel

ln any agent system, a secure communication medium between agents is

required. This is critically important for applications with sensitive data such as

online banking or e-commerce applications. Authentication of agents should also

be included so interactions are properly validated.

Support of disconnected operations

Mobile agents are appealing to wireless clients because mobile agents can be

disconnected from the client, move to the location of the data to be accessed,

carry out the requested task and bring back only the relevant data once the client

is reconnected.

a Save time by pre-processing

Agents can also be parts of a real-time system. ln particular, agents can be used

for pre-processing by requesting and downloading information ahead of time.

This requires the agents to 'memorize' user preferences. That is, 'what'

information needs to be downloaded and 'when'. The downloaded information is

then presented to the user when appropriate.

lntegration with other existing client applications

With the use of XML, other existing applications and/or future applications can be

easily integrated with the WWW-DIMA prototype. Figure 7.1 shows an example

of the integration of the WWW-DIMA prototype with other desktop applications.

67

Chapter 8: Conclusion and Future Research Directions

Desktop
Applications

Browser(s)
Netscape or lE

Agents

Figure 7.1: lntegration of the WWW-DIMA prototype with other applications

o Support for alternate data sources

As discussed at the end of Section 5.3.5 (and assuming that there are replicas of

the data sources), in the case where a data source is unavailable, the

AgentManager can assign agents with alternate data sources. So, if an agent

encounters an unavailable data source, the agent can dispatch to the alternate

data source and extract the data from there.

E

î.

tr

68

References
11l IBM Aglets Software Development Kit (ASDK), available at

http ://www. trl. ibm. com/aglets/

l2l Agent Transfer Protocol, available at http://www.trl.ibm.com/aglets/atp/atp.htm

t3l Fisher Black and Myron Scholes. The Pricing of Options and Corporate

Líabilities, Journal of Political Economy, Vol.81, Jan.-June 1973, pp.637-GS4

t4l Shu-Heng Chen and Chia-Hsuan Yeh. Evolvíng Traders and the Business

School with Genetic Programming: A New Architecture of the Agent-Based

Artificial Stock Market, Journal of Economic Dynamic & Controls, Vol. 25, Feb

2001, pp.363-393

tsl Edgar F. Codd, A Relational Model of Data for Large Shared Databanks,

Communications of the ACM, June 1970, pp. 337-387

t6l R. S. Gray. Agent Tcl: A Flexible and Secure Mobile-Agent System. PhD thesis,

Department of Computer Science, Dartmouth College, June 1997. Available as

Dartmouth Computer Science Technical Report RT9S-927

l7l R. S. Gray, D. Kotz, G. Cybenko, and D. Rus. D'Agents: Security in a Muttipte-

Language, Mobile-Agent System. ln G. Vigna, editor, Mobile Agents and

Security, Vol. 1419 of LNCS, p. 154-187. Springer-Verlag, lgg8

l8l D82 Universal Database, available at http://www-4.ibm.com/cgi-bin/db2www/

tgl Bipin Desai, An lntroduction to Database Systems, Reading, Galgotia

Publications (West Publishing) 1 991

[10] S. McGrath, D. Chacón, and K. Whitebread. lntelligent Mobile Agents ín the

Military Domain. ln Proc. Of the Autonomous Agents 2000 Workshop on Agents

in lndustry, Barcelona, Spain, 2000

111l D. Chacón, J. McCormick, S. McGrath, and C. Stoneking. Rapid Application

Development Using Agent ltinerary Patterns. Technical Report #01-01 .

Lockheed Martin Advanced Technology Laboratories, March 2000

112l K. B. Theobald, J. N. Amaral, G. Heber, O. Maquelin, X. Tang, and G. R. Gao.

overuiew of the Threaded-c language. Technical Report 1g, computer

Architecture and Parallel Systems Laboratory, University of Delaware, Mar. l gg8

Chapter 8: Conclusion and Future Research Directions

[13] Russell P. Lentini, Goutham P. Rao, Jon N. Thies, and Jennifer Kaye. An

Ertendable Mobile Agent Architecture. Lockheed Martin Advanced Technology

Laboratories.

L14l Colin G. Harrison, David M. Chess, Aaron Kershenbaum. Mobile Agents: Are

they a good idea?, Research Report, IBM Research Division, T. J. Watson

Research Center, Yorktown Heights, NY, 10598

[15] John C. Hull. Options, Futures and Other Derivatiyes, Reading, Prentice Hall,

Fourth Edition

[16] L. lsmail and D. Hagimont. A performance Evaluation of the Mobile Agent

Paradigm. ACM SIGPLAN Notices, p.306-313, 1999

l17l William R. Stanek, Microsoft Windows 2000 And llS 5 0 Administrators Pocket

Consultant, Reading, Microsoft Press, April 2001

[18] Java Database Connectivity (JDBC) rM: Application Programming lnterface (APl),

avai I ab I e at http ://java. s u n. com/p rod u cts/jd k/1 .21 docs I gui d e/j d bc/i n dex. htm I

[19] Java Database Connectivity (JDBC)-|ndustry Support, available at

http ://java. s u n. com/p rod u cts/j d bc/i n d u st ry. htm I

I20l J. Gosling, B. Joy, and G. Steele, The Java Language Specífication, Addison-

Wesley, Reading, MA, 1996

l21l JDOM Documentation, available at http://www.jdom.org/downloads/docs.html

l22l J. M. Bradshaw, S. Dutfield, P. Benoit, and J. D. Woodley. KAoS: Toward an

Industrial-strength open agent archítecture. ln J. Bradshaw, editor, Software

Agents, p.375-418. AAAI/MIT Press, 1997

[23] David Kolz, Guofei Jiang, Robert Gray, George Cybenko, Ronald A. Peterson.

Performance Analysis of Mobile Agents for Filteríng Data Streams on Wireless

Networks. Mobile Networks and Applications, Computer Science Technical

Report Dartmouth College TR2000-366, May, 2000

Ï241 Robert S. Gray, David Kotz, Ronald A. Peterson Jr., Joyce Barton, Daria

Chacon, Peter Gerken, Martin Hofmann, Jeffrey Bradshaw, Maggie Breedy,

Renia Jeffers, and Niranjan Suri. Mobile-Agent versus Clieníserver

70

Chapter 8: Conclusion and Future Research Directions

Performance: Scalability in an Information-Retrieval Task. Tech Report TR2001-

386, Dartmouth College, Jan 2001

[25] Danny B. Lange and Mitsuru Oshima. Programming and Deploying Java Mobile

Agents with Aglets. Addition Wesley, Reading, MA, USA, 1998

126l Blake LeBaron. Building Financial Markets with Artíficial Agents: Desired Goals,

and Present Techniques, Computational Markets, MIT Press, Feb. 1999

l27l Mario Magnanelli. and Moira Norrie. Databases for Agents and Agents for

Databases. ln Proc. of 2nd lnternational Bi-Conference Workshop on Agent-

Oriented Information Systems, June 2000.

[28] Mobile Code, Agents, and Java, available at

htt p ://www. i n f o sys. t u w i e n . ac. aV Re s e a rc h/A g e n ts/

l29l N. Suri, J. M. Bradshaw, M. R. Breedy, P. T. Groth, G. A. H¡ll, and R. Jeffers.

Strong Mobility and Fine-Grained Resource Control in NOMADS. ln Proc. of the

second lnt'l Symp. on Agent Systems and Applications and Fourth Int'l Symp.

On Mobile Agents (ASNMA 2000), volume 1882 of LNCS, p. 2-15, Zurich,

Switzerland, September 2000. Springer-Verlag.

t30l Stavros Papastavrou, George Samaras, Evaggelia Pitoura, Mobile Agents for

WWW Distributed Database Access. ln 15th Inft Conference on Data

Engineering (lCDE99), Sydney, 1 999

t31l Standard Generalized Markup Language (SGML), The World Wide Web,

avai lab le at http://www.w3. org/MarkU p/S G M UOve rview. htm I

t32l TcIXML (TclXML), available at http://www.zveno.comlzm.cgilin-tclxml/

t33l Leigh Tesfatsion, lntroduction to the Special Issue on Agent-Based

Computational Economics, Journal of Economic Dynamics & Controls Vol.25 pp.

281-293, Feb. 2001

t34l R. K. Thulasiram, L. Litov, H. Nojumi, C. T. Downing and G. R. Gao.

Multithreaded Algorithms for Pricing a Class of Complex Options, lnternational

Parallel and Distributed Processing Symposium, April 2001

t35l Richard Vlach. Mobile Database Procedures in MDBAS. ln Proceedings of

Mobility in Databases and Distributed Systems, IEEE,2001

71

Chapter 8: Conclusion and Future Research Directions

[36] The World Wide Web Consortium, available at http://www.w3c.com

[37] Xerces Java Parser (XERCES-J), available at http://xml.apache.org/xerces-j/

[38] Extensible Markup Language (XML), The World Wide Web ConsorTium, available

at http ://www. w3. orgÆF/R EC-xm I

[39] The Perl Extension Module XML::Parser, available at

http://wwwx. netheaven.com/-coopercc/xmlparser/intro. html

t40l XML Parser for Java (XML4J), available at

http ://www. alphaworks. ibm. com ltechlxml4j

l41l XML Parser for C++ (XML4C++), available at

http ://www. al phaworks. ibm.com llechlxmlâc

[42] J. Viescas, Running Mícrosoft Access 2000, Reading, Microsoft Press, 1999

72

