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ABSTRACT

Let G be a locally compact group, w be a continuous weight function on G,
and L'(G,w) be the corresponding Beurling algebra. In this thesis, we study weak
amenability of L'(G,w) and of its centre ZL'(G,w) for non-commutative locally
compact groups G.

We first give examples to show that the condition that characterizes weak amena-
bility of L'(G,w) for commutative groups G is no longer sufficient for the non-
commutative case. However, we prove that this condition remains necessary for
all [IN] groups G. We also provide a necessary condition for weak amenability of
L'(G,w) of a different nature, which, among other things, allows us to obtain a
number of significant results on weak amenability of /! (Fy,w) and ¢*((ax + b),w).

We then study the relation between weak amenability of the algebra L'(G,w)
on a locally compact group G and the algebra L'(G/H,®) on the quotient group
G/H of G over a closed normal subgroup H with an appropriate weight @ induced
from w. We give an example showing that L'(G,w) may not be weakly amenable
even if both L'(G/H, ) and L'(H, w|y) are weakly amenable. On the other hand, by
means of constructing a generalized Bruhat function on G, we establish a sufficient
condition under which weak amenability of L'(G,w) implies that of L'(G/H,®).
In particular, with this approach, we prove that weak amenability of the tensor
product LY(G1,w;)® L (Gy,ws) implies weak amenability of both Beurling algebras
LY (Gy,wy) and L' (Gy, ws), provided the weights wy, wy are bounded away from zero.
However, given a general weight on G = G| X Go, weak amenability of L'(G,w)
usually does not imply that of L'(G1,wl|g,), even if both G, Gy are commutative.
We provide an example to illustrate this.

While studying the centres ZL' (G, w) of L'(G,w), we characterize weak amenabil-
ity of ZL'(G,w) for connected [SIN] groups G, establish a necessary condition for
weak amenability of ZL'(G,w) in the case when G is an [FC| group, and give a
sufficient condition for the case when G is an [FD] group. In particular, we obtain
some positive results on weak amenability of ZL'(G,w) for a compactly generated
[FC] group G with a polynomial weight w.

Finally, we briefly discuss the derivation problem for weighted group algebras and

present a partial solution to it.
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0.1 Notations

In this section, we list the notations used throughout the thesis. The notations
introduced in the subsequent chapters are listed with a reference to the page they

are defined on.

e 7 denotes the set of all integer numbers;

N denotes the set of all positive integer numbers;

1,n denotes the set of all integer numbers in the interval [1,n];

R denotes the set of all real numbers;

R* denotes the set of all positive real numbers;

e (RT,:) denotes the multiplicative group of all positive real numbers;

|z] denotes the floor function of € R, which is equal to the greatest integer

number that does not exceed z;

C denotes the set of all complex numbers;

¢ denotes the complex unity of C;

Fy denotes the free group on two generators;

(ax 4+ b) denotes the group of all affine transformations x +— ax + b of R with
a>0and b € R;

#A denotes the cardinality of a set A;

A denotes the closure of a set A;

lin A denotes the linear span of a set A;

1 denotes the left Haar measure of a locally compact group G;

e denotes the identity of a locally compact group G;



G’ denotes the commutator subgroup of a group G generated by all elements

of the form zyz~'y™! (x,y € G);
0, denotes the point mass at an element x of a locally compact group G}

[z] denotes the coset of an element z of a locally compact group G in the

quotient group G/H of G over a normal subgroup H of G;

Aut(G) denotes the set of all continuous algebraic automorphisms of a topo-

logical group G;
I(G) denotes the set of all inner automorphisms of a topological group G;
C(K) denotes the set of all continuous functions on a compact set K;

C.(G) denotes the set of all continuous functions with compact support on a

locally compact group G;

Co(G) denotes the set of all continuous functions vanishing at infinity on a

locally compact group G;

LY(G,w) denotes the weighted group algebra, or Beurling algebra, on a locally
compact group G with respect to a weight w (see page 6);

(*(G, w) denotes the discrete weighted group algebra on a locally compact group

G with respect to a weight w;

L>®(G,1/w) (see page 7);

(>°(G, 1/w) denotes the discrete analogue of L>(G,1/w);
Co(G,1/w) (see page 14);

M (G, w) denotes the weighted measure algebra on a locally compact group G

with respect to a weight w (see page 14);

ZL'(G,w) denotes the centre of the Banach algebra L'(G,w);



supp f = {z € G : f(x) # 0} denotes the support of a function f on a locally

compact group G,
f|a denotes the restriction of a function f to a set A;

L,f (resp. R,f) denotes the left (resp. right) translation of the function f on
a locally compact group G by an element x € G defined by L,f(t) = f(z~'t)

(resp. R, f(t) = f(tx)), t € G;

f * g denotes the convolution of functions f and g on a locally compact group

G (see page 5);

a-z (resp. x-a) denotes the left (resp. right) module multiplication of z € X
by a € A, where A is a Banach algebra and X is a Banach left (resp. right)
A-module (see page 7);

B(X,Y) denotes the set of all bounded linear operators from a Banach space

X to a Banach space Y;

L(X) denotes the set of all bounded linear operators from a Banach space X

to itself;
X* denotes the dual of a Banach space X;

(x, @) denotes the value of a continuous linear functional ¢ € X* at an element

T € X;

M(A) denotes the multiplier algebra of a Banach algebra A (see page 15);
A&®B denotes the projective tensor product of Banach algebras A and B;
A ~ B means that Banach algebras A and B are isomorphic;

A = B means that Banach algebras A and B are isometrically isomorphic.



Chapter 1
Introduction

We begin by introducing some basic concepts that are used throughout the thesis.

A topological group is a group G equipped with a topology with respect to which
the group operations are continuous, i.e., (x,y) — xy is continuous from G x G to
G and z — 27! is continuous from G to G. The group G is called locally compact if
there is a compact neighborhood of the identity element in G. The locally compact

groups considered in this thesis are always assumed to be Hausdorff.

There is a special type of measure defined on locally compact groups. A left
(respectively, right) Haar measure on a locally compact group G is a non-zero Radon
measure £ on G (Radon measure is a locally finite inner regular Borel measure) that
satisfies u(xE) = u(E) (respectively, u(Ez) = p(E)) for every Borel set E and every
x € G. In other words, left (respectively, right) Haar measure is invariant under left
(respectively, right) translations.

It is well-known (see, for example, [11, Theorem 2.10]) that every locally compact
group possesses a unique up to a scalar multiple left (right) Haar measure. We always
equip a locally compact group G with the left Haar measure. This allows us to
consider the Banach space L'(G) of all absolutely Haar integrable Borel functions,
where, as usual, we identify functions that are equal to each other locally almost

everywhere on G. The integral of f € L!'(G) with respect to the left Haar measure
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is denoted by [, f o f(7)dr. There exists a continuous function A on G, defined by

Alw) = fo tx—l dt
G

when [, f(t)dt # 0, and is independent of the choice of f € L'(G). If A =1, then

xr € G,

the group G is called unimodular.
The space L'(G) becomes a Banach algebra, called the group algebra of G, with

the convolution product

(f*g)a /f gy 'x)dy (ne we G, f.ge LNG)).

Next we list several types of locally compact groups that are of special interest

to us.
Definition 1.1. Let G be a locally compact group.

1. G is an [IN] group if there exists a compact neighborhood of identity in G
invariant under all inner automorphisms of G (an inner automorphism is an

automorphism of the form x — gzg™! for a fixed element g € G);

2. G is an [SIN] group if there is a base of compact neighborhoods of identity
invariant under inner automorphisms, i.e., for every neighborhood U of identity
there exists a compact neighborhood V' C U of identity invariant under inner

automorphisms.

It is obvious that the class of [IN] groups contains the class of [SIN] groups. We
also remark that an [IN] group is always unimodular. A centre of a Banach algebra
A is the set of all elements a € A that commute with any other element of A. It
was proved in [30] that [IN] groups are precisely those groups G for which the centre
ZL'(G) of the group algebra L'(G) is non-trivial, i.e., ZL'(G) # {0}, and [SIN]
groups G are those for which ZL'(G) has a bounded approximate identity. We
recall that a bounded net {e,} C A is called a bounded approximate identity for a
Banach algebra A if lime,x = limze, = z for all x € A. The group algebra L'(G)
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always has a bounded approximate identity. In fact, if {U,} is a base of compact
symmetric (U ! = U,) neighborhoods of identity e in G, then {ﬁwxw} forms a
bounded approximate identity for L'(G), where p is the left Haar measure on G,
and x,, is the characteristic function of the set U C G.

The main objective of study in this thesis is the weighted group algebra L'(G, w).

Definition 1.2. Let GG be a locally compact group. A weight on GG is a measurable
function w : G — (0, 00) satisfying the weight inequality

w(zy) S w(@)w(y), z,y€C.
Two weights w and @ are called equivalent if there exist constants c¢;,cs > 0 such
that yw(z) < @(z) < cow(x), z € G.

Given a weight w on G, consider
L'(G,w) = { Borel measurable f : /]f(:c)|w(x) dx < 0o
G

Equipped with the norm

1l (G = /G (@) |w(z) da

and the convolution product, L'(G,w) becomes a Banach algebra. This algebra is
usually referred to as Beurling algebra after A. Beurling, who first studied L'(R,w) as
a weighted convolution algebra in [4]. For the investigation of weighted convolution
algebras on totally disconnected locally compact groups see [39]. Tt is easy to observe
that if two weights w; and ws on G are equivalent, then the corresponding Beurling
algebras L'(G,w;) and L'(G,w,) are isomorphic as Banach algebras. The Banach
space dual of L!(G,w) is

A
L (G, 1/w) = {Borel measurable A : [|A|| o (q,1/w) = €8s supM < oo} :
zeG w(‘II")
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Remark 1.3. As follows from [10, Proposition 2.1}, any weight w on a locally com-
pact group G must be locally bounded. Then, by [35, Theorem 3.7.5] any locally
bounded weight w on G is equivalent to a continuous weight on G. Combining these
results with the observation above, we conclude that for any weight w on G there is a
continuous weight @ on G such that the Beurling algebra L'(G,w) is isomorphic to
the Beurling algebra L'(G,©). So, from now on we will always assume the weight w

to be continuous.

We note that as Banach spaces L'(G,w) and L'(G) are isometric. In fact, the
map f +— fw provides an isometry from L'(G,w) onto L'(G). However, as Banach
algebras they are substantially different. For example, it is well-known that L'(G) is a
quantum group algebra. But L'(G, w) is not, unless w is equivalent to a multiplicative
weight on G, which is regarded as the trivial case. Moreover, except for the trivial
case, L'(G,w) is not even a member of the larger class of F-algebras. F-algebras
were introduced in [22] as those algebras A whose dual A* is a W*-algebra such that
the identity of A* is a multiplicative linear functional on A. The class of F-algebras
is rather wide. It contains the group algebra L'(G), the Fourier algebra A(G), and
the Fourier-Stieltjes algebra B(G) of a locally compact group G. It also contains
all semigroup algebras and all quantum group algebras (see [25] for details). To see
that L'(G,w) is not an F-algebra, we note that (L'(G,w))* = L=(G,1/w) is a von
Neumann algebra with the product f-g = fg/w. So, the identity of L>*(G, 1/w) is w,
which is not a multiplicative linear functional on L'(G,w) unless w is multiplicative,
ie., w(zy) = w(r)w(y), z,y € G. The notion of F-algebra has strong connections
with amenability theory that we will discuss next.

We first give some definitions.

Definition 1.4. Let A be a Banach algebra. A Banach A-bimodule is a Banach
space X together with bilinear maps (a,x) — a -z and (a,z) — = -a from A x X to

X satisfying the following axioms:

a-(b-z)=ab-x, (z-b)-a=z-ab, a-(x-b)=(a-x)- b,
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max(|la -zl [« -al) < Cllafllz] - (a,b € A, x € X),

where C' > 0 is a constant.

The Banach algebra A itself is naturally a Banach A-bimodule with the module
actions implemented by the product of A. If X is a Banach A-bimodule then its dual
X* can also be equipped with the structure of a Banach A-bimodule in the following

way:
(r,0-a)=(a-xz,0), (x,a-¢) =(v-a,90) (a€A recX, pecX).

In this case X* is called a dual Banach A-bimodule.

Definition 1.5. Let A be a Banach algebra and X be a Banach A-bimodule. A

linear map D : A — X is called a derivation if it satisfies the following relation:
D(ab) =a-D(b)+ D(a)-b  a,be A.

A derivation is called bounded if it is a bounded linear operator, i.e., if it is contin-

uous.

For every z € X the map ad, : A — X defined by
ady(a)=a-xr—x-a

is a bounded derivation, called an inner derivation.

Definition 1.6. A Banach algebra A is called amenable if every bounded derivation
from A to any dual Banach A-bimodule is inner. A is called weakly amenable if

every bounded derivation D : A — A* is inner.

The notion of amenability was originally introduced for groups and semigroups
in response to the Banach-Tarski paradox (see, for example, [36]) and has become
an important concept in abstract harmonic analysis since the 1940-s. Amenability
theory for Banach algebras started in 1972, when B.E. Johnson proved the remark-
able result ([19]) that amenability of a locally compact group G is equivalent to
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amenability of the group algebra L!(G). Since then, many important investigations
were conducted regarding amenability of various classes of Banach algebras. For
example, it was shown that the unital uniform algebra is amenable if and only if it
is isomorphic to C'(K) for some compact Hausdorft space K ([7]), and a C*-algebra
is amenable if and only if it is nuclear ([17]). Extending the Johnson’s celebrated
result on L!'(G), N. Gronback ([14]) characterized amenability for Beurling algebras
LYG,w).

Theorem 1.7. [14, Theorem 0] The Beurling algebra L*(G,w) is amenable if and

only if the group G is amenable and the weight w is diagonally bounded, i.e,

sup{w(g)w(g™) : g € G} < o0,

M. White proved in [38] that for any weight w on an amenable group G there is
a continuous character function ¢ : G — R7 (i.e., ¢(zy) = ¢(x)p(y), x,y € G) such
that ¢ <w on G. So, if w is also diagonally bounded, then

w)w(x™)  w@)w(@™?)

$(r) < w(z) = = d(z)w(z)w(z)

<

(@) o)
< ola) supu(aju(e™) < co(a)

This shows that except for the trivial case when the weight w is equivalent to a
multiplicative weight, L'(G,w) is intrinsically not amenable.
In 1986 W.G. Bade, P.C. Curtis and H.G. Dales introduced in [2] the concept of

weak amenability for commutative Banach algebras as follows.

Definition 1.8. [2, Definition 1.1] Commutative Banach algebra A is called weakly
amenable if every continuous derivation from A into a symmetric Banach A-bimodule

is zero (here an A-bimodule X is symmetricifa-z=x-a,a € A, v € X).

Note that this is the same as to say that every continuous derivation from A into
a symmetric Banach A-bimodule is inner, since an inner derivation into a symmetric
bimodule, obviously, must be zero. In the same paper it was proved that a commu-

tative Banach algebra is weakly amenable if and only if every bounded derivation
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D : A — A*is zero (inner). This motivated B.E. Johnson to introduce the notion of
weak amenability for general Banach algebras ([19]) in the way we already given in
Definition 1.6. The following theorem proved in [20] shows that we do not need to

put any restrictions on the group G to guarantee weak amenability of L'(G).

Theorem 1.9. [20, Theorem, p.282] The group algebra L*(G) is weakly amenable

for every locally compact group G.

This is quite different from the situation for amenability of L!(G), which depended
on the properties of the group G. A shorter proof of the above result that uses the
lattice structure of L (G) was given by M. Despic and F. Ghahramani in [9].

It turns out that the method of M. Despic and F. Ghahramani still works for
the Beurling algebra L!(G,w) if we assume that the weight w is diagonally bounded.

Hence we have the following.

Theorem 1.10. [34, Theorem 3.14] Let G be a locally compact group and w be
a diagonally bounded weight on G. Then the Beurling algebra L'(G,w) is weakly

amenable.

The first characterization of weights making L'(G,w) weakly amenable was given

by N. Gronbaek for discrete Abelian groups.

Proposition 1.11. [13, Corollary 4.8] Let G be an Abelian discrete group, and w
be a weight function on G. The Beurling algebra (*(G,w) is weakly amenable if and

only if
1P _
g w(g)w(—g)

for every non-zero group homomorphism ® : G — C.

Recently, the N. Gronbaek’s result was extended by Y. Zhang to all Abelian

locally compact groups.

Theorem 1.12. [41, Theorem 3.1] Let G be an Abelian locally compact group, and
w be a weight on G. The Beurling algebra L' (G, w) is weakly amenable if and only if

[2(9)]

set w(@w(—g)
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for every continuous non-zero group homomorphism ® : G — C.

The situation for non-commutative groups is almost completely unknown, except
for the diagonally bounded case of Theorem 1.10.

In this thesis, we study weak amenability of L'(G,w) for several types of locally
compact non-commutative groups G. In Chapter 3 we consider polynomial weights
on two basic groups: on Fy and on (ax + b) equipped with the discrete topology.
We show that neither of the corresponding Beurling algebras is weakly amenable.
In particular, ¢*(Fy,w,) is not weakly amenable for any weight of the form w,(z) =
(14]x])*, @ > 0, where |z| denotes the length of the word z in [Fy. This contrasts with
the following combination of the results of [2, Theorem 2.4 (iii), (iv)] and [13, Remark
on p. 161].

Theorem 1.13. Let a > 0 and wo(n) = (1+ |n|)¥, n € Z. Then (Y(Z,w,) is weakly
amenable if and only if 0 < a < 1/2.

The result of Theorem 1 is still true if one replaces Z with R ([41]). The situation
for the free group Fy exposes how different it is for weak amenability of Beurling
algebras on non-Abelian groups.

In Chapter 4 we present some general theory regarding weak amenability of non-
Abelian Beurling algebras. In particular, we show that the necessary and sufficient
condition on w for weak amenability of L'(G,w) given in Theorem 1.12 for Abelian
groups G remains necessary for all [IN] groups. Whereas, as follows from the dis-
cussion above, it is no longer sufficient even for ¢*(Fs,w) to be weakly amenable.
We give one more necessary condition for weak amenability of L'(G,w) for general
locally compact group G, which is of a different nature. Using this condition, we
are able to characterize weak amenability of ! (Fy, w) for several important classes of
weights. The free group Fs is of special interest since it is the simplest non-amenable
group and is the source of many counterintuitive results. Some study concerning
Beurling algebras on Fy was conducted by H.G. Dales and A.T.-M. Lau in [8]. The
questions regarding weak amenability of ¢!(Fy,w) remained open.

In Chapter 5 we consider the relation between weak amenability of the Beurling

algebra L'(G,w) on a locally compact group G and the Beurling algebra L'(G/H,®)
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on the quotient group G/H of G over a closed normal subgroup H with an ap-
propriate weight @ induced from the original weight w. More precisely, we follow
[35] to define & by w([z]) = inf.c,w(z), where [z] stands for the coset of x in
G/H. Tt is known that L'(G/H,») = L'(G,w)/J.,(G, H) as Banach algebras, where
J,(G, H) is a closed ideal in L'(G,w). We show that J (G, H) is always comple-
mented in L'(G,w) as a Banach subspace, which allows us to establish a sufficient
condition under which weak amenability of L'(G,w) implies that of L'(G/H,®).
In particular, with this approach we prove that weak amenability of the tensor
product LY(G1,w;)® L (Gy,ws) implies weak amenability of both Beurling algebras
LY (Gy,wy) and L' (Gy, ws), provided the weights wy, wy are bounded away from zero.
In general, the question about relation between weak amenability of Banach algebras
A and B and weak amenability of their tensor product A® B is open. However, there
are some partial results in [13] and [40], in particular, in the case when at least one
of A, B is Abelian.

It was proved in [41] that for Abelian locally compact groups H and R, the
Beurling algebra L'(H x R,w) is weakly amenable whenever the algebras L'(H,w|x)
and L'(R,w|r) are weakly amenable. In Chapter 3 we give an example showing
that the converse is not true even for H = R = Z. In Chapter 5 we prove that for
any Abelian groups H and R admitting a non-zero continuous group homomorphism
into C there exists a weight w on H x R such that L'(H X R,w) is weakly amenable,
but L'(H,w|g) is not weakly amenable. Finally, we conclude Chapter 5 by giving
an example of a locally compact group G, a closed normal subgroup H of G, and
a weight w on G such that both Beurling algebras L'(H,w|y) and L'(G/H,&) are
weakly amenable, but L'(G,w) is not weakly amenable.

The centre ZL'(G,w) of a Beurling algebra L'(G,w) was extensively studied in
[26]. However, weak amenability of this algebra is completely unknown except for
the trivial cases. Note that when G is Abelian, ZL'(G,w) = L'(G,w). So studying
weak amenability of ZL'(G,w) is a natural extension of the study of that of L'(G,w)
for Abelian groups G. Some results on the centre ZL!(G) of the group algebra L!(G)

were obtained in [1]. More precisely, the following result was proved.
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Theorem 1.14. [1, Theorem 0.2, Theorem 2.4] If G is an [FC| group then ZL'(Q)

15 weakly amenable.

The same result was obtained independently by Y. Zhang in [41] for compact
groups using the dual object and the representation theory.

In Chapter 6 we study weak amenability of ZL'(G,w). We prove that the nec-
essary and sufficient condition on w for weak amenability of L'(G,w) given in Theo-
rem 1.12 for Abelian groups G is also necessary and sufficient for weak amenability
of ZLY(G,w) if G is a connected [SIN] group. In the case when G has a compactness
property of being an [FC] group, we show that this condition remains necessary. On
the other hand, we provide a sufficient condition for weak amenability of L'(G, w) for
[FD] groups G. In particular, we obtain some positive results on weak amenability
of ZL'(G,w) for a compactly generated [FC] group G with a polynomial weight w,,.
Following [32], we define the length function | - | on a compactly generated group G
by

|z =min{n e N:z € U"}, =z €@,

where U C G is an open symmetric neighborhood of identity with compact closure
such that G = U2 ,U™. We show that if G is a compactly generated [FC| group and
wol(z) = (1 + |2|)%, a > 0, then ZL'(G,w,) is weakly amenable for 0 < a < 1/2.
This perfectly agrees with the aforementioned Theorem 1 on weak amenability of
LY(Z,wg) with the polynomial weight w, = (1 + |n|)*, n € Z.

The derivation problem asks whether every continuous derivation D from a group
algebra L'(G) to a measure algebra M (G) must be inner. B.E. Johnson posed the
question in 1970-s and pursued it over the years in developing his theory of cohomol-
ogy in Banach algebras. The derivation problem for L'(G) has been attempted by
many researchers and was completely solved affirmatively by V. Losert ([28]) in 2008.
Recently, a shorter proof, that uses a special fixed point property for L-embedded
Banach spaces, was given by U. Bader, T. Gelander and N. Monod in [3] in 2010.
As for the weighted group algebra L!'(G,w), the corresponding derivation problem
is completely open. Using the method of U. Bader et. al., we were able to prove in

Chapter 7 that continuous derivations from L'(G,w) into M(G,w) are inner if the
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weight w is diagonally bounded.



Chapter 2
Preliminaries

In this section, we define several more important objects and state some general
results that we will use throughout the thesis.
We start from defining a measure algebra M (G, w) for a locally compact group

G and a weight w on G:

M(G,w) = | regular Borel measures u : || ]| mcw) = /w(x) dlp|(r) < oo p,
G

where || denotes the total variation of p. With the norm || - ||y g w), M(G,w) is a

Banach space isometrically isomorphic to M (G). Indeed, it is the dual space of

. oo},
Wlleo (@)

which becomes a Banach algebra with the convolution product

Co(G. 1) = {f 0@ Lec@), e = Hi

/ o(t) d(v = o) (1) = / / olay) dv(@)do(y), v,0 € M(G,w), ¢ € Cu(G),

GxG

where C.(G) denotes the set of all continuous functions with compact support on G
(Note that C.(G) is dense in Cy(G,1/w)). The map f + f(z)dzx embeds L'(G,w)
isometrically into M(G,w). Moreover, L'(G,w) is an ideal in M (G,w).

15
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There is also another relation between these two algebras. Namely, M (G, w) can

be identified with the so-called multiplier algebra of L'(G,w).

Definition 2.1. The multiplier algebra M(A) of a Banach algebra A is the set of

pairs (L, R) of bounded linear operators on A satisfying the following properties:
L(ab) = L(a)b, R(ab) =aR(b), aL(b)= R(a)b, a,be A.

Since L'(G,w) is an ideal in M (G, w), each element p € M(G,w) gives rise to two
bounded linear operators L, and R, on L*(G,w): L,(f) = px f and R,(f) = f*u,
f € LYG,w). According to [12, Theorem 4], the map u ~ (L,, R,) identifies
M(G,w) with the multiplier algebra of L*(G,w).

We will consider two more topologies on M (G, w). The first is the strong operator
(SO) topology. In general, if X is a Banach space and £(X) denotes the space of
all bounded linear operators on X, the strong operator topology on £(X) x L(X) is
induced by the family of seminorms {p, }.cx defined by

P2 (8, T) = max{|[S()[, [ T(x)[[}, ST e LX).

Because M (G,w) is identified with M(L'(G,w)) C L(X) x L(X), we can talk about
SO topology on M(G,w) with respect to X = L'(G,w). Then, by definition of SO

topology, we have
Py 2l == frpy o frp e fopsfoin LG w), feLY(Gw)

Another topology on M(G,w) we will deal with is the usual weak* topology
generated by its Banach space predual Cy(G, 1/w).
In this thesis we will substantially use several times the following powerful tool

from general amenability theory due to B.E. Johnson.

Proposition 2.2. [7, Theorem 2.9.53] Let A be a Banach algebra with a bounded
approximate identity, and let E be an essential Banach A-bimodule. Suppose that

D : A — E* is a derivation. Then there is a unique derivation D : M(A) — E*
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extending D, that is such that lN)\A = D. If D is continuous, then D is continuous

in both norm and SO-weak* topologies.

Recall that a Banach A-bimodule E is called essential if AE = FA = E.

Another important technique for us is the following.

Lemma 2.3. Let G be a locally compact group and w be a weight on G. Then the
linear space generated by the point masses 0;, t € G, is dense in M(G,w) in strong

operator topology.

The non-weighted version of Lemma 2.3 is classical, for example, see [7, Proposi-
tion 3.3.41(i)]. The weighted case was proved in [41, Lemma 2.1].

We will sometimes need the weight w to be bounded away from zero. The fol-
lowing result of M. White allows to assume without loss of generality that w > 1 if

the group G is amenable.

Lemma 2.4. [38, Lemma 1] Let G be an amenable group and w be a weight on G.
Then there is a continuous positive character (i.e., a multiplicative weight) ¢ : G —

(RT,-) such that ¢(x) < w(z) for all z € G.

It is evident that @ = = > 1 is also a weight on G. Moreover, L'(G,©) is Banach
algebra isometrically isomorphic to L'(G,w). In fact, the map 6 : L'(G,w) —
LY(G, ) defined by 0(f) = f¢ is a Banach algebra isometry, where by f¢ we mean
the pointwise product of f and ¢.

We can summarize the above observations as follows.

Remark 2.5. Let G be an amenable group and w be a weight on G. Then there exists

a weight & > 1 on G such that L*(G,w) is isometrically isomorphic to L}(G, o).

In general, the pointwise supremum of a collection of continuous functions is not

necessarily continuous. However, it must be Borel measurable.

Lemma 2.6. Let E be a Hausdorff space and {f,} er be a collection of real-valued

continuous functions on E. Suppose that the function f on E defined by

fz) =sup f,(x), z€E
yel’
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is finite on E. Then f is a Borel function. Analogous conclusion also holds for the

point-wise infimum of continuous functions.

Although the proof is straightforward, we include it here for the sake of com-

pleteness.

Proof of Lemma 2.6. For every a € R, we have

{rel: flx)<a}={xeE: f(x)<a, WEF}:ﬂ{xEE:f,y(x)ga}.
vyel
Because all f,-s are continuous, each set {z € G : f,(z) < a} is closed. Therefore, as
an intersection of closed sets, {z € G : f(z) < a} is also closed, and thus is a Borel

set. This implies that f is a Borel function. ]

More generally, the pointwise supremum of a non-void collection of lower semi-
continuous functions is still a lower semicontinuous function by [18, Theorem 11.10].

But we will only need Lemma 2.6.



Chapter 3
Testing examples

In this chapter we consider several specific weights on some basic non-commutative
groups, and show that contrary to the expectations based on the theory of weak
amenability for Abelian Beurling algebras, the corresponding weighted group alge-
bras are not weakly amenable. Then we turn to the Abelian group Z2. We give
a simple procedure of verifying whether ¢*(Z? w) is weakly amenable. Finally, we
present an example of the weight w on Z? making ¢'(Z?, w) weakly amenable, but
whose restriction w; to the first coordinate makes EI(Z,wl) not weakly amenable.

This shows that the converse to the first part of [41, Theorem 3.8] does not hold.

3.1 Polynomial weights on [,

We start by a technical observation that will be used several times in this chapter.

Lemma 3.1. Let G be a discrete group, and w be a weight on G. Suppose a map D
from {0, }rec to (G, 1/w) has the following properties:

D(64,) = D(6,) - 6, + 0, - D(8,), =y€e€G, and (3.1)

ID@ (G < cwla), T €G, (3.2)

where ¢ > 0 is a constant. Then D can be extended to a bounded derivation from

NG, w) to I*(G,1/w).

19
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Proof. We first extend D to the linear span of {J,}.cc by linearity. The bilinear
mapping D(f * g) satisfies the derivation relation

D(fxg)=D(f) g+ f-D(g)

for f,g from the generating set {0,}.cc by (3.1). So, the relation still holds for
f,g € lin{d, : = € G}. Moreover,

(5
1=1

<> lailllD(ss,)
=1

n
E ozi(L;i
=1

< c |vi|w(;)
AP

s TLGN,iEiQG,G{Z'EC.
(G w)

=C

Since lin{d, : © € G} is dense in £!(G,w), we can extend D to a bounded operator

on (*(G,w), which is still a derivation by continuity. ]
The necessity part of Proposition 1.11 also holds for a general discrete group.

Lemma 3.2. Let G be a discrete group, and w be a weight on G. If there exists a

non-zero group homomorphism ® : G — R such that

12

e wlrw( )~

then (*(G,w) is not weakly amenable.

Proof. Tt suffices to construct a non-inner bounded derivation D : (}(G,w) —
(G, 1/w). We first define D on {0, }.eq:

D(6;) = P(x)0,-1, z€G.

We claim that D satisfies the conditions of Lemma 3.1, and thus it can be extended

to a bounded derivation from (!(G,w) to (*(G,1/w). Indeed, since ® is a group
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homomorphism, and

5(ry)*1(z) = 6y*1m*1(2) = 0,-1(yz) = 5y71(zx),

D(02y)(2) = ®(2y)0y-12-1(2) = B(2)0a1(y2) + P(y)d,-1 (22)
= D(0:)(yz) + D(8y)(22) = (D(dz) - 9y)(2) + (32 - D(0y))(2),  ,9,2 € G,

o
and (3.1) is verified. If we denote ¢ = sup &

5, then for every = € G we have
ze w(x)w(z1)

D 51‘ oo w) —
ID@ (@) =

and (3.2) is also verified. Due to Lemma 3.1, D can be extended to a bounded
derivation from (!(G,w) to ¢*°(G,1/w). We now show that D is not inner. Assume,
to the contrary, that there exists ¢ € ¢*(G,1/w) such that D(h) = h-¢ — ¢ - h,
h € (1(G,w). Then

D(0:)(z7") = (da 9)(x™!) = (¢ 0x) (™) = ple) —p(e) =0, z€G,  (33)

where e is the identity of G. On the other hand, according to our definition of D,
D(6,)(z™!) = ®(x). Combined with (3.3), this yields ® = 0, which contradicts the
assumption that @ is non-zero. So, D is not inner, and hence, ¢*(G,w) is not weakly

amenable. ]

Later, in Section 4.2, we will see that Lemma 3.2 is true even for [IN] groups G.
We now examine the free group Fy with a polynomial weight. First, let us define

several notions.

Definition 3.3. Let a and b denote the two generators of the free group Fy. Then
every ¢ € Fy can be written in a non-cancelable form z = a*b" ... a*bln, where

ki, l; € Z, and all k;, [; are non-zero except possibly ky and [,, 1 <i<n,n € N. We
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denote |z| = > 7", (Jk;| + |I;]) and call it the length of z. The number . | k; (resp.
> 1) will be called the total power of a (resp. the total power of b) in x and we
denote it by A(x) (resp. B(x)).

Example 3.4. Let o > 0 and w, be a function on Fy defined by w,(x) = (1 + |z])®,
x € Fy. Then w, is a weight on Fy (called a polynomial weight), and (*(Fq,w,) is

not weakly amenable.

Proof. Since the length function |- | on Fy obviously satisfies the triangle inequality

lzy| < |x| + |y|, x,y € Fy, it follows that w, is a weight on Fy:
wa(ry) = (L+ zy))* < A+ [z +[y)* < (A +[2[)(1 + |y]))* = walz)wa(y)-

To prove that £1(IFy, w,) is not weakly amenable, we first consider the case when o >
1/2. Since the total power function A : Fy — Z is, obviously, a group homomorphism

and |A(t)| < [t] for every t € Fy, we obtain:

O AL t

——————— =8SUp ———5— JSup ———7— < 00,
vty Wa(D)wa(t D) rem (LF )2 = rem (1+ ]t

which, by Lemma 3.2, implies that ¢*(Fy,w,) is not weakly amenable.

Now let @« < 1/2. In this case we will directly construct a non-inner derivation
D : (}(Fy,w) — (°°(Fy,1/w). Take an arbitrary 8 € (a,2a), and consider the
function v : Fy — R defined by

(@) It|?, if © =tat™!, t € Fy, and this representation is non-cancelable,
€Tr) =

0, otherwise.
We use 1 to define a map D from {9, },er, to (>°(Fy, 1/w):
D@:)(y) = ¢(zy) — d(yx), =y €Fs.

We claim that D satisfies the conditions of Lemma 3.1, and so it can be extended

to a bounded derivation from ¢*(Fa,w,) to £*(F2,1/w,). The condition (3.1) holds
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since

D(62y)(t) = (zyt) — Y(tzy) = (Y(zyt) — P(ytr)) + (W(ytz) — P (tzy)) (3.4)
= D(0.)(yt) + D(0,)(tx) = (D(0z) - 0,)(t) + (6 - D(6y))(t), ,y,t € Fa.

Now we prove that

|D(62)(y)| = |[¥(2y) — ¥(yz)| < wa()waly), x,y € Fo, (3.5)

which will immediately imply (3.2) for ¢ = 1. Indeed, in this case

[D(0:)(y)]

[1D(02)lleoe (#2,1/00) = SUP <

’ (F21/e) y€lFa Wa(y) yEF2 w(y)

By our definition of v, it vanishes off the conjugacy class £ = {tat™'};cr,. Since
yr = y(zy)y~', the elements xy and yz always belong to the same conjugacy class,
and so we only need to prove (3.5) in the case when both zy and yz are in E. Let
ry = wau"' and yr = vav~!, both representations being non-cancelable. Assume

without loss of generality that |u| < |v|. Because

vav™! = Yyr = y@y)y_l = yuau_ly_l,
we have that (v'y~'v)a = a(u"'y~'v). So, the elements a and u~'y~'v commute,
which can happen in a free group only if both of them are powers of a third element
(see, for example, [29, Proposition 2.17]). Since a is the generator of Fy, it is only

v = a* for some k € Z. In other words,

a power of itself, which implies that u =1y~
yu = va~*. We consider two cases: k = 0 and k # 0.
If k=0, then y = vu=t and x = (xy)y~' = (vau™')(uv™!) = uav~!. In this case,

the inequality (3.5) that we want to prove becomes the following:
[lul” = ol?| < (1 + ou™ (1 + Juav™])*.

Since a < 1/2, we have that 8 < 2a < 1, and so the real function f(7) = 77 is
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concave for 7 > 0. It easily follows that |[ul” — |[v|?| < |Ju] — |UH6. We also have

that [vu™'| > [Ju| — [v]

, and [uav™!| > ||u| — |[v|| — 1. Therefore,

(14 fou™ ) (1 + Juav™[)* = (14 [Jul = ol)*]lul = ol]* = [Ju] = o]
> |

ful = Jol|” > [Jul® - [v]?],

since 8 < 2o and ||u| — |v]| € NU{0}. Hence, (3.5) is verified for the case k = 0.
Now let k # 0. Then yu = va~*. Recall that both expressions uau™' and vav—!
are non-cancelable. This means that both v and v end with a power of the second
generator b of Fy. Hence, the equality yu = va~" is only possible for k # 0if y = tu1,
and this expression is non-cancelable. In this case t = va™*, and [t| = |v| + |k,
implying that [v| = [t|—|k|. We also have that x = (zy)y~™ = (vau™")(ut™') = uat ™.

Thus, the inequality (3.5) that we want to prove becomes the following:
[lul? = (] = kD] < (1 + [t (1 + [uat ™).

Recall that we assumed from the very beginning that |u| < |v| = |t| — |k|, and so,

using the same arguments as in the previous case, we obtain:

[lul? = (1] = 1)) = (1t] = [k)® = Jul® < [[t] = k] = lul]” < [1t] = Jul|”

< (L [t DA+ Juat ™))",

and (3.5) is verified for k # 0 as well.

Therefore, we can use Lemma 3.1 to extend D to a bounded derivation from
01 (Fy,we) to £°°(Fy, 1/w,). The only thing left to show is that D is not inner. Assume,
to the contrary, that there exists ¢ € (>°(Fs, 1/w,) such that D(f) = ¢ f — f - for
every f € (1(Fy,w,). In particular,

D(6:)(y) = (¢ 0:)(y) — (62 - ) (v) = p(xy) — p(yz), z,y € Fa.
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By the definition of D, we obtain that

Y(xy) —Y(yz) = p(ry) — p(yz), x,y € Fy. (3.6)

Taking y = az™!, we see that ¢ (zaz™) — ¥ (a) = p(zaz™) — ¢(a) for all z € F,.
Therefore, the functions ¥ and ¢ are different only by a constant C' = ¥ (a) — ¢(a)
on the whole conjugacy class E = {tat™'};cr,. It follows that

()] |p(b"ab™™)] prab™) - C
%0 (a1 Juw) = SU > su > su
oo a1/ teﬁ w(t) HEIN) w(brab=m) nEIN) (2n + 2)«
n® —C

= sup

e OO,
neN (2n + 2)a

since > «. This is a contradiction to ¢ € *°(Fs, 1/w,) and proves that D is not

mner. OJ

3.2 Polynomial weights on the group (ax + b)

In this section we consider the non-commutative amenable group (ax + b) of all
affine transformations = — az + b of R with @ > 0 and b € R, where the map
x +— ax + b is identified with the pair (a,b). Multiplication in this group is given by
the composition of the corresponding transformations of R, which can be expressed
as

(a,b)(c,d) = (ac,ad +b), a,c>0,b,deR.

The identity of (ax + b) is a pair (1,0) corresponding to the identity map on R.

Therefore,

)
a a

1 —=b
(a,b) ' = (— —>, a>0,beR.

Throughout the remainder of this section, for the sake of notational convenience

we denote the group (ax + b) by G.

Example 3.5. Let o be a positive number, and w, be the function on G defined by

wal(a,b) = (1 +|Inal)®, (a,b) € G. Then w, is a weight on G, and (*(G,w,) is not
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weakly amenable.

Proof. To verify the weight inequality for w,, let (a,b), (¢,d) € G. Then

wal(a,b)(c,d)) = wa(ac,ad +b) = (1 + | In(ac)))* < (1 + |Ina| + [Inc|)®
< (T4 |Ina)(1 4+ |Inc])* = wala, b)wa(c,d).

Again, as in the case of a polynomial weight on [y, we consider two possibilities:

a > 1/2 and a < 1/2. Suppose first that o > 1/2. Then

|Inal | Inal
su = su
(b @ala: D) ((a,0) 1)~ 26 (1+ [Ia])o(1+ [In (L))"
|Inal
= sup < 00,

and since (a,b) + Ilna is a group homomorphism from G to R, we obtain that
*(G,wy) is not weakly amenable by Lemma 3.2.

Now suppose that o < 1/2. In this case, to prove that ¢!(G,w,) is not weakly
amenable, we construct a non-inner derivation D from ¢}(G,w,) to (*(G,1/w,). We

define the function ¢ : G — R as follows:

Inb|, if a=1,b>0,
Y(a,b) =

0, otherwise.

Using v, we define D on {0, }yueq:
D(6,)(v) = ¥(uwv) — ¥(vu), u,veG.

We claim that D satisfies the conditions of Lemma 3.1, and so it can be extended to
a bounded derivation from ¢*(G, w,) to (*(G,1/w,). Note that (3.4) from the proof
of Example 3.4 with Fy replaced by G still works to verify (3.1) in our case. So, we
only need to show that there is a constant C' > 0 such that

|D(6,)(v)| = [ (uv) — Y(vu)| < Cwa(u)ws(v), v,ue€G. (3.7)
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We will prove this inequality for C' = 1. Let v = (a,b) and v = (¢, d), where a,c > 0,
b,d € R. Then uv = (ac, ad+b), vu = (ac,bc+d). If ac # 1, then ¢ (uv) = (vu) = 0,
and (3.7) holds for any C' > 0. Suppose now that ac = 1. Then

c=1/a, bc+d=0b/a+d= (ad+b)/a.

Since a > 0, we have that either both ad + b and bc + d are negative, in which case
(3.7) again holds for any C' > 0, or both ad 4+ b and bc + d are positive. In the latter

case, we obtain

ad+b

In

ad +b
a

\www—wwwv=wumd+m—w(L )\zhmmd+ww—
= |In(ad + b)| — |In(ad + b) — Inal| < |Ina| < (1 +|Inal)*

=, )  7.) =l d) = (o),

and (3.7) is verified.

So, by Lemma 3.1, we can extend D to a bounded derivation from (G, w,) to
(G, 1/w,). We now show that D is not inner. Assume, to the contrary, that there
exists p € £°°(G, 1/w,) such that D(f) = ¢ f— f -y for every f € *(G,w,). Then,
analogously to (3.6) from the proof of Example 3.4, we obtain:

Y(uv) — P(vu) = p(uv) — p(vu), u,v € G.

For v = (a,1) and v = (%,O), a > 0, we have uv = (1,1), vu = (1, é), and so
1 1

1
Therefore, ¢ (1, —) = |Ilnal + ¢(1,1), implying that
a

= sup||Inal + ¢(1,1)] = co.
a>0
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This is a contradiction to ¢ € ¢*°(G,1/w,), proving that D is not inner. Hence,

(Y(G,w,) is not weakly amenable. O

We also call the weight w, defined in Example 3.5 the polynomial weight on
(ax 4+ b). Note that, unlike Fy, the group (ax + b) is amenable. Example 3.5 shows
that even a “nice” weight on an amenable group may still make the corresponding

weighted convolution algebra not weakly amenable.

Remark 3.6. In fact, the proof of Fxample 3.5 can be adopted to produce an example
of a finitely generated (and hence separable) non-commutative amenable group G such
that Proposition 1.11 does not hold for G. Indeed, all our arguments will work for

the subgroup
G = {(2",b) neZ be H } =((2,0),(1,1))

of (ax 4 b)-group and the weight w3 restricted to G. This shows that the pathology
of the example is really the result of non-commutativity rather than of non-separability

of the group.

3.3 Beurling algebras on Z?

We begin with noting that the complex-valued homomorphisms ¢ in the character-
ization of weak amenability of L'(G,w) for Abelian groups G from Theorem 1.12
can, in fact, be replaced with real-valued homomorphisms, see [41, Theorem 3.5]. It
follows that ¢!(Z? w) is weakly amenable if and only if for every non-trivial group

homomorphism ® : Z? — R we have that

(1)
rem w(bw(—t)
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Because every such homomorphism has the form ®(k, m) = ck+dm for some ¢,d € R
with ¢ + d* # 0, the group algebra ('(Z?, w) is weakly amenable if and only if
|ck + dm)|

su =00
k,mfz w(k,m)w(—k, —m)

for every pair (¢, d) € R? with ¢+ d* # 0. We aim to find a procedure that allows us
to determine weak amenability by checking the supremums for only two pairs (¢, d),
instead of all non-trivial pairs (c,d). This will significantly simplify the verification

process in most cases. We start from proving the following simple technical lemma.

Lemma 3.7. Suppose that w is a weight on Z*. Let c¢y,dy,ca,dy be Teal numbers
satisfying the relation cidy — cody # 0 and such that

su <oo (1=1,2).
k,mgz W(kam)w(_kv _m> ( )

Then for all c,d € R we have that

|ck + dm)| _
su 00.
ko, EZ w(k,m)w(—k, —m)

Proof. Denote

|lcik + d;m|
M; = su
k,mgz w(k, m)w(—k, —m)

Then for every k,m € Z we have
lcik + dim| < Myw(k, m)w(—k,—m) (i =1,2).

Since cydy — cody # 0, the vectors (¢, dy) and (co, dy) are linearly independent in R2.
Fix an arbitrary (c,d) € R% Then, there exist real coefficients «, 3 such that (c,d) =
a(c1,dy) + B(c, ds), and we obtain

|ck + dm| = |a(c1k + dim) + B(cok + dom)| < |a - |e1k + dym| + | 5] - |e2k + dam)|
< (Ja|M; + |B|Ma)w(k, m)w(—k, —m) (k,m € Z).
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This immediately implies that

|ck + dm)|
< |a|M M, < <.
ez w(k, m)w(—k, —m) = || My + [B[ My < o0

The proof is complete. [

It follows from Lemma 3.7 that for any weight w on Z? there are three possible
situations:

S1. for every non-trivial pair (c,d) € R?

< |ck + dm|
u = o0,
otz Wk, m)e(—k, —m)
and ¢*(Z?* w) is weakly amenable;
S2. for every pair (c,d) € R?
|ck + dm|
sup < 00,

kmeZ w(ka m)w(—k, _m>

and ¢*(Z* w) is not weakly amenable;
S3. there is a unique, up to a non-zero multiple, non-trivial pair (¢, d) € R? such

that

|ck + dm| _
sup 00,
kmeZ W(k’, m)w(—k,‘, _m>
and, (1(Z?,w) is not weakly amenable.
Employing this observation, we can prove the following.

Proposition 3.8. Let w be a weight on Z?, which is symmetric and even with respect

to the second variable, i.e., it satisfies the relation
wk,m) =w(k,—m) =w(m,k) (k,me€Z). (3.8)

Then (*(Z*,w) is weakly amenable if and only if there exist c,d € R such that

|ck + dm|
su = 00. 3.9
km EZ w(ka m)(d(—k), _m> ( )
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Remark 3.9. The conclusion of Proposition 3.8 means that if (3.9) holds for one
pair (c,d), then it holds for all pairs (c,d) of real numbers. So, in practice, if w
. : : |ck + dm)|
1s symmetric and even, then one simply computes sup

kmez W(k,m)w(—k, —m)
single non-trivial pair (c,d) € R? to determine whether (*(Z?,w) is weakly amenable.

for any

If the supremum is infinite, then (*(Z* w) is weakly amenable; if the supremum is

finite, then (*(Z?*,w) is not weakly amenable.

Proof of Proposition 3.8. We only need to prove that S3 is not possible for any weight
w satisfying (3.8). According to Lemma 3.7, it is enough to show that if for some
non-trivial pair (cg, dy) € R? the corresponding supremum is finite, then there exists
another pair (¢,d) € R? not proportional to (cy,dp), for which the supremum is
also finite. First we consider the case when ¢y # £ dy. Then the pair (dy, cp) is not

proportional to (co, dp), and for this pair we also have

|dok + com)| |dok + com|
sup = su
kmez wW(k,mw(=k,—m) wkm)=wmk) gmez w(m,kw(=m,—k)
i su |Cok' + d0m| < 00
kgm k,m IE)Z w(k, m)w(—k:, —m) )
Now, if ¢y = dy or ¢y = —dp, then dy # 0 (since the pair (cg, dp) is non-trivial), and

so the pair (co, —dp) is not proportional to (co,dy). For this pair we still have

‘Cgk — d0m| ‘Cgk‘ — d0m|
sup = su
kmez w(k:, m)w(—k‘, —m) w(km)=w(k,—m) kmez w(k:, —m)w(—k:, m)
. su ’C()k + dgm’ < 00
mer —m k,ng w(k,m)w(—k, —m) .
The proof is complete. m

Example 3.10. In particular, Proposition 3.8 holds for any weight of the form
w(k,m) = W(||(k,m)||), i.e., any weight depending only on the norm ||(k,m)| =

VEE+m2, k,m e Z.

Now let us consider the situation S3 in more detail. Let w be a weight for which we

have this situation. Without loss of generality, we can assume that the corresponding
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supremum is finite for a pair (¢,d) with ¢ = 1, i.e., that there exists a real d such

|k 4 dm|
that su
lang w(k,m)w(—k, _m)

= M < oo. This implies the following:

%uc +dml| < wk, mw(—k,—m) (k,m € Z). (3.10)

Since we are in the situation S3, the supremum is infinite for every pair (¢, d’') that

is not proportional to (1, d), in particular, for the pair (0,1). So, we have that

m|

sup = 00,

kmeZ W(ku m)w(—k, _m)

which means that there exists a sequence {(k,,m,)}>>, C Z?* such that

and so

[

> w(kn, mp)w(—kp, —my,), n €N,

Combining the last inequality with (3.10), we obtain

1
MU{:” + dmy,| < w(kp, mp)w(—kn, —my) < |an| (n € N).

By dividing the whole inequality by (non-zero) |m,,| and multiplying by M, we finally
get that

M
— N).
< (n e N)

— +d
My,

mt

It follows that d = — lim —.

n—00 M,
Now we are ready to formulate the aforementioned procedure involving calcula-

tion of at most two supremums.

Procedure for verification of whether (' (Z? w) is weakly amenable.

Step 1. We calculate sup [m] If it is finite, then ('(Z? w) is
km€eZ w(k,m)w(—k, _m)
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not weakly amenable. If it is infinite, then we are either in situation S1 or in the

situation S3, and we proceed to the second step.

1|

Step 2. We choose {(kn,m,)}>2, C Z? such that > n,
w

(kpy ) w(—ky, —my,)

n € N, and consider lim —. If the limit does not exist or is infinite, then, according

n—00 My,

to what we have discussed above, we cannot be in situation S3. This means that we
k
are in the situation S1, and so £}(Z?, w) is weakly amenable. Now, if lim —- exists
n—0c0 My,

and is finite, we denote it by —d and proceed to the last step.

|k + dm)|
Step 3. We calculate su
p ko, EZ w(k,m)w(—k, —m)

weakly amenable. On the other hand, if it is infinite, we cannot be in the situation S3,

. If it is finite, then ¢'(Z?, w) is not

so we must be in the situation S1, which means that ¢*(Z? w) is weakly amenable.

Remark 3.11. The procedure above will also work if in the first step we start from

" |ck 4+ dm| nstead of |m|
any other su , tnsiteaa o su ,
Y k,m gZ w(ka m)w<_k7 _m> k,m gZ w(ka m)w(_ka _m>

nor adjustments in the next steps.

with mi-

It was proved in [41] that if w is a weight on Z? such that both ¢'(Z,w;) and
(N(Z,ws) are weakly amenable, where w; (k) = w(k,0), wo(k) = w(0,k), k € Z, then
((Z?,w) is also weakly amenable. We finish this section by presenting an example
showing that the converse is not true.

Consider the function w on Z? defined by
w(k,m) = 1+ kD21 + |k +m))®  (k,m € Z). (3.11)

It is easy to see that w is a weight on Z2. This follows from the fact that both
mappings (k,m) — k and (k,m) — k +m from Z* to Z are linear, and from the

obvious inequality
(I+]a+0]) < (1+a))(1+[0) (a,be€Z)

Example 3.12. For the weight w defined by (3.11), the algebra (*(Z?,w) is weakly
amenable, but (1(Z,w:) is not weakly amenable, where w, (k) = w(k,0), k € Z.
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Proof. The weight w; is precisely given by w;(k) = w(k,0) = (1 + |k|)*/3, and so
(Y(Z,w1) is not weakly amenable by Theorem 1. We now prove that ¢!(Z? w) is

weakly amenable. According to Theorem 1.12, it is enough to show that

@)
serr w(bw(—t)

for every non-trivial group homomorphism ® : Z? — C. Since every such homomor-
phism is of the form ®(k,m) = ck + dm, k,m € Z, for some complex numbers ¢, d
with |¢|? 4 |d|?* # 0, we only need to show that

|ck + dm| B |ck + dm)|

S = S
iy Wk, m)w(—k, —m)  kmiz (L+ [K)2B3(1 + [k + m|)2/3

=0

for all ¢,d € C with |¢[* + |d|* # 0. If d # 0, then

- |ck + dm)| S - |d| - |m| B
SO A+ FDPPA+ R+ m)2B  puiieo o T+ [m])2

Now, if d = 0, then ¢ # 0 since |c|? + |d|* # 0, and we have

“up |ck + dm| S sup ERLI.
kmez (L4 [KD2A(1+ 1k +m))*?  pum=s  rez (1+][k[)*?

So, we got that
|ck + dm|
sup

kmez (14 [E)*P(1+ [k +m])*/?

=00

for all non-trivial pairs (¢, d) € C%. Hence, (*(Z?,w) is, indeed, weakly amenable. [
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Weak amenability of L'(G,w)

In this section, we begin with proving Theorem 1.10 which provides us with a suf-
ficient condition for weak amenability of the Beurling algebra L!'(G,w). Then, in
Section 4.2, we give two necessary conditions for weak amenability of L'(G,w). One
of them is for [IN] groups; it generalizes [41, Remark 3.2]. The other one is for
general locally compact groups. To prove these results, we need a characterization
of bounded derivations from L'(G,w) to its dual L>°(G,1/w). This characterization
generalizes the corresponding result of Johnson [20] for the weight w = 1.

Section 4.3 is devoted to the study of weak amenability of ¢!(FFy,w). We show
that for two natural classes of weights w, ¢!(Fy,w) is weakly amenable if and only
if w is diagonally bounded. We also give an example of a weight on Fy which is
diagonally bounded, but is not equivalent to a multiplicative weight. This contrasts
with the case of amenable groups.

Finally, in Section 4.4 we consider the Beurling algebra ¢'(G,w) on a general
discrete group G. We prove a result that can be considered a first step towards
weakening the sufficient condition for weak amenability of /!(G,w) given in Theo-

rem 1.10. Hence, this brings us closer to characterizing weak amenability of /' (G, w).

35
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4.1 A sufficient condition for weak amenability of
LY(G,w)

As we have mentioned in the Introduction, this result was first proved in [34]. We
have observed its validity independently applying the same method as was used by
M. Despic and F. Ghahramani [9] to prove weak amenability of L'(G). Since the

paper [34] is not easily accessible, we include a proof here for the sake of completeness.

Theorem 1.10. [34, Theorem 3.14] Let G be a locally compact group and w be
a diagonally bounded weight on G. Then the Beurling algebra L'(G,w) is weakly

amenable.

Proof. Let D be a bounded derivation from L'(G, w) to L®(G, 1/w). Since L>(G, 1/w)
is the dual of the essential L!(G, w)-bimodule L' (G,w), and M (G,w) = M(L'(G,w))
(see Chapter 2), we can extend D to a bounded derivation D : M (G, w) — L®(G, 1/w),
which is continuous in SO-w* topology. If we show that D is inner, then it will au-

tomatically imply that D is inner. Consider the set
S = {Re(0-1 - D(8,)) : t € G},

where ¢, denotes the point mass at 7 € G, and Re(¢)) stands for the real part of
the function ¢ € L>*(G,1/w). Then S is a bounded subset of the vector lattice
L¥(G,1/w) of real-valued functions in L*(G, 1/w). Indeed,

Re(de-1 - D)) llz=(G1w) < D101 ar(c IOt ar(G) = IPllw(t)w(t™) < €| DI,

because w is diagonally bounded. Then, since Ly°(G,1/w) is a complete vector

lattice, ¥y = sup(9S) exists in L¥(G,1/w). Because D is a derivation, for every
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z € G we have

8, - b1 = sup Re(d, - (8,-1 - D(6;))) = sup Re(0yp-1 - D (61 * 0,))

teG teG
= sup Re(0p1 - D(8(ay-1y-1) - Oy + Ogr1 - (61 - D(3,)))
te

= sup Re(Gy1 - D(0ps-1y1)) - 6, + Re(D(8,)) = ¢y - 6, + Re(D(4,)).

zt—le@
It follows that
Re(D(8,)) = 6p -t — 1 -6,y @ € G.

Similarly, by considering imaginary parts, we obtain ¢, € L (G, 1/w) such that
Im(ﬁ((sﬂc)) :5m'¢2—¢2'5x, red.

Therefore,

D(0,) =06, -t —v-6,, z€G,

where 1) = 1y 4+ 41)5. Since by Lemma 2.3 every measure p € M (G, w) is the so-limit
of a net of linear combinations of point masses and D is so-w* continuous, we obtain

that
D(p)=p-v—t-p, peMGuw).

This precisely means that D is inner, which completes the proof. ]

4.2 Necessary conditions for weak amenability of
LY G, w)

We first provide a characterization of bounded derivations from L'(G,w) to its dual
L>*(G,1/w). It is particularly important to us for studying weak amenability of
L'(G,w). We use the same approach as in [20], which dealt with the non-weighted
case. For Abelian group G see [34].

Let G1, G be locally compact groups, and w; be a weight on G; (i = 1,2). We
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denote by w; X wy the weight on G7 x GG defined by
(w1 X Q)Q)(ZL'l,l’Q) = Wl(I1>WQ(l’2), T € Gl, To € GQ.

Proposition 4.1. Let G be a locally compact group, and w be a weight on G. Then
for every bounded derivation D : L*(G,w) — L*(G,1/w) there exists a function
a € L®(G x G,1/(w X w)) generating D in the following sense:

(9, D(f)) = / / a(e,y)f(@)gly) dedy (f.9 € L'(C,w)), (4.1)
GxG

and satisfying the relation
a(zry, z) = a(z,yz) + ay, zx)  (for almost all (z,y,2) € G x G xG).  (4.2)

Conversely, every function a € L>®(G x G,1/(w X w)) satisfying (4.2) defines a
bounded derivation D : L'(G,w) — L>(G,1/w) by the formula (4.1).

Proof. Let D : LY(G,w) — L=(G,1/w) be a bounded derivation. Then, in partic-
ular, D belongs to B(L'(G,w), (L}(G,w))*), the set of all bounded linear operators
from L'(G,w) to its dual. Tt is well-known (see, for example, [33, Proposition 1.10.9])
that B(X,Y™) is isometrically isomorphic to (X®Y)* by means of the map F ~ T(F)
defined by

@y, T(F)) =y, F(z)), FeBX,Y)(zeX, ycY).

So, there is an element o € (L'(G,w)®L'(G,w))* that corresponds to D and is
related to D by

(f@g.0)={g.D(f)) (f,9€ LG w)). (4.3)

Since

LNG,w)®LY (G, w) 2 LNG x G,w x w), and

(LNG x G,w x w))* = L=(G x G,1/(w x w)),
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we have that o € L*(G x G,1/(w x w)). From the action of a functional from
L®(G x G,1/(wxw)) on L' (G x G,w X w), we immediately obtain (4.1) from (4.3).
So, it is only left to prove that « satisfies (4.2). Since D is a derivation, we have that

D(f*g)=D(f)-g+ f-D(g) for all f,g € L'(G,w). Hence,

(h, D(f * g)) = (h, D(f) - g) + (h, f - D(g))
= (g*h,D(f)) + (h* f,D(9)), f.g.heL' (G w).

Combining this with (4.1), we obtain

// Ar g bl dedy = // a(z,y) (@) (g * h)(y) dedy (4.4)
+//a(:c,y)9(x)(h*f)(y) dady, f.g,h € LY(G,w).

Using the definition of convolution, we derive the following equalities for all f, g, h €

LY G, w):

// alz,y)(f x g)(z dxdy—/// alz,y)f )h()dmdydz

GxG GxGxG
— [[[ a0 dedyaz
GxGxG
// z,x)f(z)(g*h)(x dzdac—/// Z,1) h(t x)dxdtdz
GxG GxGxG

— [[[ atetwsigtonty) ey

GxGxG
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// a(t,)g(t)(h* f)(2)h(y) dtdr = /// (t,z)g )f(y 1:[:) dtdzdy

GxG GxGxG

_ / / / alt, y2) f(2)g()h(y) dtdydz.

GxGxG

Adding the last three equalities together and combining this with (4.4), we obtain

/// (zt,y) f(2)g(t)h(y) dzdtdy = /// (t,yz)f(2)g(t)h(y) dtdydz (4.5)

GxGxG GxGxG
+ a(z,ty) f(2)g(t)h(y) dzdtdy,  f,g,h € L'(G,w).
J

Since a € L>®(G x G,1/(w x w)), all maps (z,y, 2) = a(zy, 2), (z,y,2) = a(x,yz),
and (z,y,z) — a(y,zz) belong to L*(G x G x G,1/(w X w X w)) which is the
dual of L'(G x G x G,w X w X w). Then, because L'(G x G x G,w X w X w) =
LYG,w)QLY G, w)® LY (G, w), equality (4.5) is equivalent to

a(zt,y) = a(z,ty) + a(t,yz) for almost all (¢,y,2) € G x G x G,

which is the same as (4.2) up to a change of variables. So, we have shown that «
satisfies all our requirements.
The proof of the converse statement follows the same lines in the reversed order.

]

It is well-known that the left and right translation operators on L!(G) are con-
tinuous. We state this formally here for completeness (see, for example, [11, Propo-

sition 2.41]).

Lemma 4.2. Let G be a locally compact group with identity e and f € L*(G). Then
lim L, f =lim R, f = f,
y—e y—e

where (L, f)(z) = f(y~'z), (R, f)(x) = f(xy) stand for the left and right translations
of f respectively, and the limits are taken with respect to the norm topology of L*(G).
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Now we are ready to establish a necessary condition for weak amenability of
L}(G,w) in the case when G is an [IN] group (see Definition 1.1). The construction
of a non-inner derivation in our proof is the same as in [41, Remark 3.2]. However,

some continuity arguments allow us to remove a restriction assumed there.

Theorem 4.3. Let G be an [IN] group and w be a weight on G. Suppose that there

exists a non-trivial continuous group homomorphism ® : G — C such that

[@()]

su —_— < X0
et w(t)w(t)

Then LY(G,w) is not weakly amenable.

Proof. To prove the theorem, it is enough to build a continuous derivation D :
LYG,w) — L>(G,1/w) that is not inner. Since G is an [IN] group, there exists a
compact neighborhood B of identity that is invariant under all inner automorphisms

of G. Then we define D as in [41, Theorem 3.1]:

D(h)(t) = /@(t—lg)h(t—lg) d¢, hel'(Gw), ted. (4.6)
B
The fact that D is a derivation can be proved analogously to the corresponding part
of [41, Theorem 3.1], but we will use a slightly different approach here. Note that we
can use the duality of L!'(G,w) and L*(G, 1/w) to equivalently rewrite the formula
for D in the following way:

/ [ ene gty d - / / Yo (OBER(E)g(t) dedt

t—1B
/ / \a(E)B(E) h(E)g(t) dedt, g, h € L'(G,w).

G a(&,t)

So, if we can show that « satisfies the conditions of Proposition 4.1, we then have

shown that D is a bounded derivation from L'(G,w) to L®(G,1/w). We first verify
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that @ € L>®(G x G,1/(w X w)):

S CSY) TR (. 5] BN (5]

o WOW) R w©wll)  ern e w(©wl)

o BEkE) o RE | w(E)

e s OwDWED) R SEOWETD) s w(D)
< sup PO W) <o

wizy) <w(@)w(y) cea W(EW(ET) crea,een

since sup LEHI
cec w(§w(E™)
set B. Next we prove that

< 00, and the continuous function w is bounded on the compact

a(ry,2) = a(z,yz) + aly, zx), ©,y,2€G.

1

Fix x,y,z € G. Since yzzr = y(zzy)y~ ' and B is invariant under inner automor-

phisms, we have that x,(zxy) = x,(yzz). Then we can use the fact that ¢ is a

homomorphism to obtain

a(zy, z) = x5 (22y)P(2y) = X5 (22y)(P(2) + P(y)) = X5 (y22)P(2) + X5 (22y)P(y)

= a(z, y2) + aly, zx),

and we are done. So, we have shown that D is a bounded derivation from L'(G,w)
to L*(G, 1/w).

We now show that for every h € L'(G,w) the function D(h) € L>(G,1/w) is
continuous. Fix any ty € G and let C' be a compact neighborhood of ¢,. Then it is
easy to see that the values of D(h) on C' depend only on the values of the functions

® and h on C7'B, and so D(h)(t) = / B(t1€) d¢ for t € C, where

O(x)h(z), xe€C'B,
0, r¢ C1B.

Because C~!'B is compact, ® is continuous, h € L'(G,w), and w is bounded on
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compact sets, we have that 3 € L'(G). Then it follows from Lemma 4.2 that
L — Ly, in L*(G). Therefore, for ¢ € C' we have

D(h)(t) — D(R)(to)] = / (LB(E) — L B(E)) de| < / ILB(E) — L BE)| de

B G
= ||LtB — Ly BllLry — 0, t = to,

which proves the continuity of D(h) at ;. Since ¢, was taken arbitrarily, we obtain
the continuity of D(h) on G for every h € L'(G,w).

We are now ready to show that D is not an inner derivation, which will complete
the proof of the theorem. Suppose, to the contrary, that there exists f € L*(G, 1/w)
such that

D(h)=f-h—h-f heLl' (G w). (4.7)

Fix any t; € G and take h = x . Then
to

D(h)(t) = (f - W) (to) — (- f)(ts) = / f(yto)h(y) dy — / f(toy)h(y) dy
/ f(yto) dy — / f(toy) dy = / £(y) dy — / f(y) dy =0,

h=
XtO_lB t-'B t-1B t-1Bt
0 0 0 0

since G is unimodular as an [IN] group and B is invariant under inner automorphisms.
As we have already shown, D(h) is a continuous function. It is also standard that
f+h—"h- fisa continuous function when f € L>*(G,1/w) and h € L'(G,w), since
L®(G,1/w) - LYG,w) = LUC(G,1/w) and LY(G,w) - L*(G,1/w) = RUC(G,1/w)
(see, for example, [8, Proposition 7.17]). Therefore, the formulas (4.6) and (4.7) for
the function D(h)(t) must agree at every point ¢t € G, and, in particular, at ¢ = t,.

Hence,

0= D) = [ @t Onits"e) de = [ alayten, (50 de = [ el de

B B B
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Since ® is a homomorphism, we obtain:

o=/@%%wxz/@@%@ﬁ@ﬂ&a/maﬁ—@%m&m

B

which implies that

(ty) = —fB;i(é; df’

where ;1 denotes the Haar measure on G (u(B) > 0 since B is a neighborhood of
identity and thus contains an open subset). Because tq € G was chosen arbitrarily, it
follows that ® = const, which can only happen if & = 0, since ® is a homomorphism.
The obtained contradiction shows that D cannot be an inner derivation, and the proof

is complete. O

Remark 4.4. Discrete groups are, obviously, [IN] groups. So, Lemma 3.2 in Chap-

ter 3 is a special case of Theorem 4.5.

Our next result provides a necessary condition for weak amenability of L!(G,w)

for a general locally compact group G when w is bounded below, away from zero.

Theorem 4.5. Let G be a locally compact group, w be a bounded away from zero
weight on G, i.e, w > & for some constant 6 > 0, and B # 0 be an open set in G
with compact closure. Define the set Cg C G by Cg = {zyz~' : z € G,y € B}.
Suppose that there exists a measurable function v : G — C bounded on B such that

ess sup [W(xy) = v lye) < o0, and (4.8)

z,ye G w(x)w(y)

ess sup el = 00. (4.9)

z€Cp W(Z>

Then L'(G,w) is not weakly amenable.

Proof. To show that L'(G,w) is not weakly amenable, it is enough to build a non-
inner bounded derivation D : L'(G,w) — L>®°(G,1/w). We define D by

@Duwz/www—wwmﬂmmmmw,fﬂeLmlm.

G2
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Note that the condition (4.8) implies that the function ¥(z,y) = ¥(zy) — ¥(yz)
belongs to L®(G x G,1/(w X w)). Also, we can easily check that U satisfies (4.2):

U(zy, 2) = P(zyz) — blzay) = (Plzyz) — Pyze)) + (V(yzz) — ¢ (zry))
= VU(x,yz) + U(y, 2x).

Therefore, by Proposition 4.1, the operator D defined above is a bounded derivation
from L'(G,w) to L>°(G, 1/w). Now we just need to show that D is not inner.
Suppose, to the contrary, that D is inner, which means that there exists a function

¢ € L*(G,1/w) such that

D(fy=¢-f~f¢. feL(Guw).

Using the explicit formula for the module action of L'(G,w) on L*°(G,w) and com-

paring the result to our definition of D, we obtain

(9, D(f)) = / (o(yz) — o(zy)) f(y)g() ddy

- / ((ye) — W(ey) f)g(a) dedy, fog e DNGow).  (4.10)

GQ

We already know that W(z,y) = (yx) —¢(zy) € L®(G x G,1/(w X w)). Also, since
¢ € L*(G,1/w), we have that ®(x,y) = p(zy) — p(yx) € L>®(G x G,1/(w X w)).
Recall that

L¥(G x G,1/(w xw)) = (L'(G x G,w xw))" and

LNG x Gw x w) =2 LYG,w)®LYG,w),

which implies that the linear span of elementary tensor functions F'(z,y) = f(x)g(y),
f,9 € LYG,w)is dense in L'(G x G,w x w). Then from (4.10) it follows that ¥ = &

as L*(G x G,1/(w x w)) functions, which means that there exists a locally null set
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A C G? such that

U(yz) — (xy) = plyr) — o(zy), (z,y) € G*\ A (4.11)

By our assumption v is bounded on B, and w is bounded on B since the closure of
B is compact and the weight w is assumed continuous. Therefore, we can use the

condition (4.9) to find a subset K of Cp of positive Haar measure such that

[¥(2)]
w(2)

Moreover, because of the inner regularity of the Haar measure, we can assume without

1
> ellim@arort (Iellomam supilt) +suplof@)] ) +1 (: € K). (412
S

te B

loss of generality that K is compact. Note that

KcCp={oyr':2€G,yc B} = UxBx’l,
zed
and each of the sets {x Bx™'},¢¢ is open, since so is the set B. Then, the compactness
of K yields the existence of its finite subcover by the sets from {zBz'}.cq, ie.,
there exist {z;}; C G such that K C |J_, z;Bz;". Because the measure of K is
non-zero, we can assume without loss of generality that the set K; = K N (z;Bx;")
also has a non-zero measure. We claim that there exists a compact neighborhood
U of the identity e such that p((uKiu™) N K;) > 0 for all u € U. According
to Lemma 4.2, for every function f € L'(G) we have that ||L,f — fllri ) — 0
and [[R.f — fllz1@) — 0 as @ — e. In particular, this is valid for f = x, , the
characteristic function of the set K. Hence, there exists a compact neighborhood U

of e such that

1
p(Ky \u K, p(Ky \ Kyut) < §N(Kl), uel.
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It follows that

p(uKiu™ N K = p((Kaw ™) N (' Ky)) > p(K N Ku tne K
= p(K1\ (K1 \ Ko ') U (K1 \u™ K1)

> () — S () — () = S (K >0, wel,

1
3
and the claim is proved. Consider the set V = (Uxy) x (Bx1U™') C G?. Since U

is compact and B has a compact closure, the set V' has a finite measure. It then
follows from (4.11) that

U(yz) —P(ay) = p(yz) — p(zy) for almost all (z,y) € V.
In particular, this implies the existence of xq = uxq, u € U, such that
(ymo) — ¥(aoy) = p(yao) — p(aoy) for almost all y € BalU~,
and, in particular, for almost all y € Bz, 1 If we let t = yz, then we obtain that
o(t) — (xotay ') = ¥(t) — Y(zotzy ) for almost all t € B. (4.13)
Denote Ky = (a:ongl) N K. Since K; C xlefl, we have that
Ky = (v9Bxy") N K = (uz,Bxy'uw™") N K, D (uKu™) N Ky,

and so from the choice of U it follows that u(Ks) > p((uKju=')NK;) > 0. We then
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use (4.13) to obtain the following estimates:

t
esssup M < esssup ———— [ (wotg >|

(
eky  w(2) KoCzoBzyl  t€B W<$Ot$0) (4.13)  teB
1

(st )

o)

1
< lellze(Ga/w) + 5 (Sup [V ()] + ol (a1 /w) Supw(t)>-
te B te B

p(rotzyt) | P(t) — (1)
w(zotzy ) - w(zotzyt) ‘

< esssup
teB

1
< oo W) = esssu
5, Ielle@age + 5 esssup (W( )|+

Because pu(K3) > 0, the inequality above contradicts (4.12), which should hold for
every z € Ky, since Ky C K. This completes the proof of the theorem. O

A direct consequence of Theorem 4.5 for discrete group G and B = {x(} is the

following.

Corollary 4.6. Let G be a discrete group, and w be a weight on G. If there is a

function ¢ : G — R, xg € G, and a constant ¢ > 0 such that w is bounded away from

zero on {yxoy ' }yea,
[(zy) = Y(yz)| < cw(z)w(y), z,y€C, and (4.14)

sup = 00, (4.15)

yec w(ywoy=t)

then LY(G,w) = (*(G,w) is not weakly amenable.

Corollary 4.6 was also obtained by C.R. Borwick in his PhD thesis [5]. Note,
that, in fact, we have implicitly used it to prove that ¢!(Fy,w) and ¢*((ax + b),w)

are both not weakly amenable for non-trivial polynomial weights.

4.3 Weak amenability of ¢!(F,,w)

In this section we, as usual, denote the two generators of Fy by a and b. Then

every x € Fy can be uniquely written in the irreducible form x = a*1bt .. a*nbln
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with k;,[; € Z, where all k;, [; are non-zero, possibly except k; and [,,. We start by

characterizing weak amenability of ¢! (Fy,w) for a special class of weights w.

Theorem 4.7. Let w be a weight on Fy such that there exists an increasing function

W from NU {0} to Rt and constants ¢y, co > 0 such that
aW(lz]) <w(x) < eW(lz|), = €Ty,

where |z| is the length of the element x € Fy as described in Definition 3.3. Then

01 (Fy,w) is weakly amenable if and only if w is bounded.
We will need the following technical result.

Lemma 4.8. Let W be an increasing function from NU{0} to R™. Then there exists
a function f: NU{0} — RT with the following properties:

1. f is increasing;

2. flm+n)— f(m—n) < W(m)W(n) for all m > n in N;

P Vn f(k)
3. if W is not bounded and su
/ neh W(n) W (k)

Proof. We define the function f inductively by the following formulas:

18 not bounded.

= o0, then

foO)y=1, f(1)=1, f(k)= 1<€gifkj(w(l)w(k — )+ f(k=20), k>1
We then prove that it satisfies conditions 1-3 (by |z] we mean the standard floor
function, which is equal to the greatest integer that does not exceed x).

We first show that the defined function f is increasing. We will do this by
induction. The base is trivial: f(0) =1 < f(1). Suppose now that for all 0 < m <
n < k we have that f(m) < f(n). We then show that f(k) < f(k +1). According

to the definition of f, we have

flk+1)= min WOW(k+1-10)+ f(k+1-2l)) and

1<i<| A4

f(k)= min (WOW(k—-1)+ f(k—2l)).

1<i<| 4]
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For each [ such that 1 <[ < LSJ we have that
WOW(k -0+ flk=20) <WUOW(k+1-0)+ f(k+1-2l),

because W > 0 is increasing and f(k — 2l) < f(k + 1 — 2[) by our assumption.

If k£ is even, then LgJ = {%J, and so the last inequality automatically implies

f(k) < f(k+1). Now let k = 2p+ 1 be an odd integer. Then ! = p+1, and
so the minimum for f(k + 1) is taken over (p + 1) terms, whereas the minimum for
f(k) is taken over p terms. So, in this case we only need to show that the last term
in the minimum for f(k + 1) (corresponding to [ = p + 1) is not smaller than f(k).
We have

WOWE+1 1)+ fk+1—20) =W(p+DHW(p+1) + £(0)
>Wp)Wp+1)+1=W(p)W(k—p)+ f(k—2p)
> min (WOW(k—1)+ f(k — 20)) = f(k),

~isis|})

so f(k) < f(k+1) also holds for any odd integer k. By induction, f is increasing.

We now verify the inequality:
fm+n)—f(m—n) <WmW(n), mmneN, m>n.
By the definition of f, we have

fim+n)=min (W)W (m+n—0)+f(m+n-20)) < W(n)W(m)+f(m—n),

1<i<| min | take I=n

which gives the desired inequality.

Finally, we prove that if the function W is not bounded and sup no_ 00, then
neN W(”)
k k
sup M = 00. Suppose, to the contrary, that sup M < N for some positive
wen W (k) ren W (k)

k
integer N. This means that W (k) > % for all £ € N. By the definition of the
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k
function f, for each k € N there exists an lgk) such that 1 < l§k) < {iJ and
Ry =w (Y w (k= 1) + 5 (k= 2). (4.16)

k—215"
Then either k—2l§k) is equal to 0 or 1, or there exists an lék) (in fact, lék) = l1( ' )) ,

k
such that 1 < lgk) < {iJ — lgk) and

f (k: - 25§’“>) —W (zg’”) W (k Py ’“)> 4 f ( Y. zzg’”) .

Combining the last formula with (4.16), we get that
Fky=w (1) w (k=) 4w () w (k=210 = i) 45 (k- 21 - 27)

Continuing this process, we will eventually get the last term to be either f(0) =1

or f(1)=1:

Fky=w () w (k=) w () w (k-2 — i)
+w () w (k=2 -2l — 1)+ 1,
f

k
Because we assumed that sup ( ) < N < oo, we have that

ren W (k)

g W) w (k=)< w () w (k-2 = 1)+ 41

(
N N

wik) =L
(4.17)

for every k € N and some 1 < l§k) < {SJ, 1< lék) < g - lgk),
Since W is unbounded, there is ng € N such that W (ng) > 3N. Our goal here is

to prove by induction that

W (3°"'Nng) > 3°N, peN. (4.18)
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For p = 1, we have that W (32Nng) > W (ng) > 3N by the monotonicity of W
and the choice of ng. So, the inequality (4.18) is true for p = 1. Now suppose that
W (3PT1Nngy) > 3PN for some p € N. We aim to prove that W (3P72Nny) > 37T N.
The inequality (4.17) applied to k = 3?72 Nng gives us the following:

W(ll) W (3p+2Nn0 - ll) + W(lg) W (3p+2NTLO - 2l1 - 12) +...+1
N

3p+2 )y Ip+2 N\
for some 1 <; < {—TLOJ, 1<, < {—nOJ — Iy, ...

w (3p+2N7’L0) >
(4.19)

2 2
If I > ng, then W (I;) > W (ng) > 3N by the monotonicity of W. Also, because
W < {%J, we have that

372 N,

3p+2NTL0—l1 > >3p+1Nn0,

which implies that W (3?72 Nngy — [;) > W (3T Nny) > 3PN by the assumption. So,

in this case, using (4.19), we obtain:

> W(ll)W(ngrZNno—ll) Z 3N - 3PN

W (3" Nng) > ¥ N~ 3PN,

and the desired inequality is verified in this case.
Now suppose that l; < ng. Then 3P*2Nny — 2l; > 1, and hence I, is present
in (4.19). If Iy > ng, then W (ly) > W (ng) > 3N. Also, since Iy < {%J — 1y,

we get

32N P+2 N o — 2
2Ny — 2y — Iy > T”O > 7;0 "o

> 3P N,

(the last inequality holds since 3P**Nng — 2ng > 0). From this it follows that
W (3PT2Nng — 21y — l) > W (3P Nngy) > 3PN by our assumption, and so from
(4.19) we obtain

= 3PHN.

W(lg)W(3p+2Nn0 —211 —lg) = 3N - 3N

W (372N ng) > = =
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So, we verified the inequality for the case when l; < ng and Iy > ny.

Suppose now that both [; < ng and Il < ng. Continuing in the same manner,
we will either find some [, (¢ < 3N) such that l,ls,...,l,-1 < no, [, > ng, or we
will have that li,[ls,...,l3y < ng. In the first case, similar argument shows that

W (l,) > 3N and
P2 N
W (37**Nng — 21y — ... — 21 — 1) ZW(%—ZI—Q_'--_@I)

3PN 3PN
> W (T"O _ qno) > W (T”O - 3Nn0> > W (37" Nng) > 3N (4.20)

by the assumption and the fact that 3?™ Nny — 6Nny > 0. In view of (4.19), this

implies
W ()W (3?*2Nng — 2l — ... = 2l,1 —1,) _ 3N -3’N

W 3p+2N > q q q > — 3p+1N

( ) 2 N =7 N ’
which is exactly what we need.

So, the only remaining case is when Iy, 1y, ..., I3y < ng. Similarly to (4.20), we
have that
W (3772 Nng — ;) > W (3P’ Nng — 2, — lo) > ...

Z W (3p+2Nn0 — 2[1 — ... 2l3N_1 - lgN) Z W(3p+1Nﬂ,o) Z 3PN.

Then, since all [; > 1, and hence W (I;) > W (1) = 1, the inequality (4.19) gives us
the following:

W (372N no)

> W(ll)W<3p+2NTLO—ll)+...+W(13N)W<3p+2NTL0—2l1—...—lgN>
- N
o
NG LN
- N

Therefore, we have proved that W (3?71 Nngy) > 3PN for every positive integer p. We
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n

now use this to get a contradiction to the condition that sup

neN W(n)
For each n € N with n > 9Nn, there exists a unique number p € N such that

3P Nny < n < 37"2Nngy. Then, the monotonicity of W implies that W(n) >

W (3Pt Nny) > 3PN by what we have just proved. Also, /n < v/3?72Nny, and so

\/ﬁ < \/3p+2N7L0 —.0
W (n) B¥N  pooo

From this it follows immediately that sup < o0, which gives us the desired

Jn
neN W(’I’L)
f (k)

contradiction. Thus, sup m = 00, which completes the proof. O
keN

Proof of Theorem 4.7. If w is a bounded weight, then ¢'(Fs,w) is isomorphic to
(}(Fy), and it is weakly amenable by Theorem 1.9. So, the non-trivial part is to
prove that if w is not bounded and satisfies the conditions of Theorem 4.7, then
0*(Fy,w) is not weakly amenable.

Recall that the total power A(z) of a in = (see Definition 3.3) is a group ho-
momorphism from Fy to Z. So, according to Remark 4.4, (*(Fy,w) is not weakly
amenable if

veF, W(T)w(z™!)
Assume now that

sup AL _

aeF, W(T)w(z™!)

Since, obviously, |A(z)| < |z|, |z7| = ||, and w(z) > ;W (|x]), it follows that

2|
vem (W(a]))?

= 0Q,

and hence

= OQ.

sup vn
neN W(TL)

Therefore, we can apply Lemma 4.8 to the function W to get an increasing function
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f:NU{0} — R such that

fm+n)—f(m—n) <Wm)W(n), mneN, m>n, and (4.21)
78116111\31 VJ;/((T;)) = 0. (4.22)

We show that ¢ (z) = f(|x|) satisfies the conditions of Corollary 4.6 either for zq = a,
or for 7y = a?, implying that ¢*(Fy,w) is not weakly amenable. Note that because
w(z) > aW(|z|) and W : NU{0} — RT is an increasing function, we have that the

weight w is bounded away from zero on the whole group Fy and, in particular, on

any conjugacy class {yzoy ' }yer,.

We now aim to find a constant ¢ > 0 such that
[(zy) — P(yz)| < cw(r)w(y), =,y € Fa. (4.23)
Let z,y € Fy be given. According to the definition of 1, we have that

[ (zy) — (y)| = |f(lzyl) = flyz))].

Let |z| = m, |y| = n, and assume without loss of generality that m > n. By the

triangle inequality,
m—n = ||z| = |yl| < leyl, lyz] < |z|+ y| = m +n.
Since f is an increasing function, it follows that
|f(lzyl) = f(lyzD] < f(m +n) — f(m —n).

Together with (4.21) and the inequality w(x) > ¢; W (|x|), this implies the desired
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inequality (4.23) with ¢ = 1/c%:

[W(ay) = (ya)l = | f(lzyl) = flyz))] < f(m+n) = f(m —n)

< W(m)W(n) = W([z)W(lyl) < 5 w(z)w(y).

»—le =

We now check the second condition of Corollary 4.6 for the function ¢. We
take o to be either a or a® and consider conjugacy classes {raz™' : x € Fy} and

{za?z™ : x € Fy}:

sup Y(yay™) prab™) o G LD 1 fCr+ )

yec w(yay™t) T nen w(brab—n) neN oW (2n + 1) Co nelf\’] W(2n+1)

sup —T/J(yaQy*I) > sup —d}(bnagbin) > i sup —f(Qn +2)
yee w(yaly™) T neny w(dma?bm) T ¢y pen W(2n+2)

Therefore, it is enough to show that either

L Jensl) o 2n+2)
nek W(2n + 1) D W@n+2)

is infinite. But this is a direct consequence of (4.22), and the proof is complete. [

In fact, we can extend Theorem 4.7 to a more general class of groups. Using the
approach of [32], we define a length function on all finitely generated discrete groups

as follows.

Definition 4.9. Let G be a finitely generated discrete group with identity e and min-
imal set of generators {aj,as, ..., a,}, n € N. Denote U = {ax}7_, U{a;'}7_, U {e}.

The length function |- | : G — N is defined as follows:
|z] =min{m e N: 2z € U™}, z€G.

It is easy to see that the length function | - | satisfies the triangle inequality
lzy] < |z| + |y|, z,y € G. Tt also follows from the definition of the set U that
|z| = |2~ for all z € G. There are two places in the proof of Theorem 4.7 where we

used some structural properties of the free group 5. The first one is for the existence
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of a group homomorphism A : Fy — R satisfying the inequality |A(z)| < |z|, x € F.
The second one is for the existence of two conjugacy classes C; = {zraz™" : x € Fo}
and Cy = {za*x™! : x € Fy}, such that {|y| : y € C1 U Cy} covers the whole set of
positive integers N except for finitely many numbers. We will show that any discrete
group G that can be written as a free product G = G * G5 of an infinite finitely
generated Abelian group (7 and a non-trivial finitely generated group G5 also has
these properties, if the set of generators of (G is taken to be the union of the sets of
generators of G; and G5. Here, by the free product of two groups we mean the most
general group generated by the elements of these groups. In particular, any finitely
generated free group F,,, n > 2, can be written as such a product: F,, = F; x[F,,_q,

where [F; is, obviously, infinite and Abelian and [F,,_; is non-trivial.

Lemma 4.10. Let G = G * Go, where Gy is an infinite finitely generated Abelian
group and Gy is a non-trivial finitely generated group. Further, let |- | be the length
function on G defined by the set of generators described above. Then the following
hold:

1. there exists a group homomorphism ® : G — R such that |®(z)| < |z|, x € G;

2. there exist conjugacy classes Cy, Cy in G such that {|z| : x € C; UCy} D N\ {1}.

Proof. By the fundamental theorem of finitely generated Abelian groups (see, for
example, [6, Theorem 19.2.2]), G} admits a decomposition G, = Z* ® Z,, @ ...Z,, ,
where Z,, is a cyclic group of prime order p;, 1 <7 <m, m > 0, and k£ > 0 since G
is infinite. Without loss of generality we may assume that a; is a generator of G of
infinite order. We define ® by setting ®(a;) = 1, ®(a;) = 0 for any other generator
a; of G, i € 2,n, and then extend it to a group homomorphism on the whole G. It is
easy to see that ® satisfies the inequality |®(z)| < |z|, * € G, and the first property
is verified.

Now we show that the conjugacy classes C; = {za;jxz™! : x € G} and Cy =

{za2z~1 : x € G} possess the second property. Let aj € G be one of the generators
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of G, 2 <k <n. Then

{|$| cx e} UCQ}
O {la] tarara; ta;™ | m € N} U {|a]" Tagaiay tay ™t m € N}

={2m+1:meN}uU{2m+2:me N} =N\ {1},

and the lemma is proved. [

Following the proof of Theorem 4.7 and applying Lemma 4.10 when needed, we

obtain the following result.

Proposition 4.11. Let G = G x Gy, where Gy is an infinite finitely generated
Abelian group and Go is a non-trivial finitely generated group. Let w be a weight
on G and suppose that there exists an increasing function W : N — R* together

with constants c1,co > 0 such that
aW(lz|) Sw(z) < eW(lz|), =€a.

Then (1(G,w) is weakly amenable if and only if w is bounded.

Now we consider the class of weights w on Fy that can be written as a function
of a group homomorphism, i.e., w(x) = W(p(x)), x € Fy, where ¢ : Fs — C is a
group homomorphism. We characterize the weights of this type that make ¢!(F,,w)

weakly amenable.

Proposition 4.12. Let ¢ : Fy — C be a group homomorphism and w be a weight
on Fy of the form w(x) = W(p(x)), © € Fay, for some function W : C — RT.
Then the Beurling algebra (*(Fy,w) is weakly amenable if and only if w is diagonally
bounded.

Proof. The sufficiency part of this proposition is a direct consequence of Proposi-
tion 1.10. So, we only need to show that if w is not diagonally bounded, then
(*(Fy,w) is not weakly amenable. Let 2 = aba'b~! € Fy. Then p(x) = 0 since ¢ is
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a group homomorphism. We show that the function

ot) = 4 P, i =gy,

0, otherwise,

satisfies the conditions of Corollary 4.6 for the conjugacy class {yzy™' : y € Fy}.
First, we note that since w(x) = W(A(x), B(z)) and both A and B are group ho-
momorphisms, we have that w is constant, and hence, bounded away from zero, on
each conjugacy class, in particular on {yxy '},cr,. Next we check that ¢ is well-
defined, i.e., if t € Fy has two different representations ¢ = yzy; ' = yaxy, ', then
Y(ypay; ') = Y(yeryy ). To this end, it is enough to show that o(y;) = ¢(y2). Note
that

ey ) (yeyr ) = izyr ' = oryy " = (voyr ) 1y ), (4.24)

which means that the elements y;7y; " and y,y; ' commute. In a free group two
elements commute if and only if both of them are powers of a third element (see,
for example, [29, Proposition 2.17]). So, since Fy is a free group, (4.24) implies the
existence of u € Fy and integers k, [ such that y12y, ' = u* and ypy; ' = u!. Because

¢ is a homomorphism, we have that

o(y2) — o() = o(yayr ") = Lo(u).

Hence, to prove that ¢(y1) = ¢(ys), it suffices to show that p(u) = 0. Recalling that
¢(x) =0, we obtain:

0=o(x) =e(nzy; ") = e((izy, ) yy ")) = oW ) = (k+ De(u).

In the case when k + [ # 0, it immediately follows that ¢(u) = 0, and our claim is
proved. If k+1 =0, then ylxyfl = u**! = e, which implies that z = e, contradicting
the choice of . This proves that the function v is well-defined.

Our next goal is to show that i satisfies the conditions of Corollary 4.6. First,
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we prove that there exists a constant ¢ > 0 such that

|h(uv) — P(vu)] < cw(u)w(v), u,v € Fy.

1

Since 9 is non-zero only on the conjugacy class {yzy~' : y € Fy}, the inequality

above will obviously hold if both uv and vu do not belong to this class. We also note

that vu = v(uv)v™!

, and so uv and vu always belong to the same conjugacy class,
which implies that we only need to consider the case when uv, vu € {yzy™ : y € Fy}.

Let uwv = yzy~!. Then vu = (vy)z(vy)~!, and we have

[ (wv) — P(vu)| = [d(yay™") — ((vy)x(vy) ™)

= | In(w(®y)wy™)) = In(wy)w((vy) )| = [In w(y)w(yil)
= [In(w(y)w(y™)) — In(w(vy)w((vy) )| = |1 (o)l |

Using the weight inequality for w, we obtain

which implies

< wv Hw(v), (4.25)

and

which yields that
—1,-1
w(vy)w(y _11} ) <w(v)w(v_1).
w(y)wly™)
From the inequalities (4.25) and (4.26) it follows that

(4.26)

w(y)w(y™) 1
1 <l .
" Sy o) | = M)
Since w(v)w(v™') > w(e) = const > 0, by elementary calculus there exists a constant
¢ > 0 such that
In(w@)wv™)) < cw@)w(™). (4.27)
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Combining all of the above, we get

¥ (u) — Y (vu)| < cw(v)w(v™).

1 1

Recalling that uv = yzy~!, we obtain that v™! = yz~ly~'u, and so p(v) = p(u),

since ¢(x) = 0 and ¢ is a group homomorphism. Therefore, w(v™') = W (p(v™1)) =
W(e(u)) = w(u), which implies the desired inequality

[ (uv) = P (vu)] < cwlu)w(v).

-1

Finally, we show that sup ML@J_J
yer, w(yzy™')

homomorphism, we obtain

= oo. Employing the fact that ¢ is a group

sup Py ) _ o @) @)l T)
yeF WYry™)  yer, Wlelyzy™))  yerm  Wip(z))

b In(w(ywly™") 1 ; m(

yeR: w(x) w(e

sup W(?J)W(?Jl)> = 00,
yEF2
since w is not diagonally bounded. Applying Corollary 4.6, we conclude that £!(F, w)

is not weakly amenable, and the proposition is proved. ]

The results of Propositions 1.10 and 4.12, and Theorem 4.7 lead us to the follow-

ing.

Conjecture 4.13. Let w be a weight on Fy. Then (*(Fy,w) is weakly amenable if
and only if w is diagonally bounded.

As we noted in the Introduction (see p. 9), every diagonally bounded weight on
an amenable group is equivalent to a multiplicative weight. For the non-amenable
group [Fy the situation is different, as shows [8, Example 10.1] which is based on the
function of B.E. Johnson from [19, Proposition 2.8] (notice that if ¢'(G,w) is not
isomorphic to £!(G) then, obviously, w is not equivalent to a multiplicative weight).
We finish this section by providing another example of a diagonally bounded weight

on [Fy that is not equivalent to a multiplicative weight.
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Consider the function g : Fy — Z defined as follows:
gla®b™ak2pm2 . aM ™) = #i ki =my =1} — #{i 0 my = ki = —1},

where # stands for the number of elements in a finite set, and the representation

akrbmigk2bmz | qFrbh™n is non-cancelable. It is easy to see that
glx™') = —g(z), €Ty, (4.28)
We claim that g also satisfies the following inequality:
9(@) +9(y) =3 < glzy) < g(x) +9(y) +3, z,y € Fa. (4.29)

To prove this, take arbitrary z,y € F, and write them in the form x = x,2, y = 271y,
where z, a factor of x, is chosen in such a way that there is no further cancelation in

7191, and, of course, no cancelation in ;2 or z71y;. Then it is easy to see that

g(w1) +9(2) =1 < g(w12) = g(x) < g(x1) + 9(2) + 1, (4.30)
9z +9() —1<g(z"'y) = g(y) <g(z7") +9(n) +1, and (4.31)
g(z1) +g(y1) — 1 < glmy) = g(oy) < g(@1) +g(y) + 1. (4.32)

Adding inequalities (4.30) and (4.31) and using (4.28), we obtain

g(z1) + g(y1) — 2 < g(z) + g(y) < g(z1) + g(y) + 2.

Combining this inequality with (4.32), we get

g(x) +g(y) — 3 < glwy) < g(z) +9(y) + 3,
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and (4.29) is verified. We define w : Fy — R™ by

2943 if g L e, x € Fy,
w(z) = (4.33)
1, ifx=e.

Example 4.14. The function w on Fy defined in (4.33) is a diagonally bounded

weight, but it is not equivalent to a multiplicative weight.

Proof. First we show that w is a weight. In view of (4.29), we have that
2 w(z)w(y) < wlzy) < w(@)w(y), (4.34)

when z,y,zy # e. If x = e or y = e, then, obviously, w(zy) = w(z)w(y), and the

inequality (4.34) is still satisfied. Finally, if zy = e, then y = 27!

, implying that
g(y) = —g(x), and, hence, 1 = w(ry) < 25 = w(z)w(y). So, the inequality (4.34)
holds for all z,y € Fy. It follows that w is, indeed, a weight on F5. Moreover, w is
diagonally bounded since w(z)w(z™!) < 25w(e), z € Fy.

It only remains to show that w is not equivalent to a multiplicative weight. Let
w be any multiplicative weight. Then for the generators a and b of Fy we have
w(a™) = (@(a))™ and @(b") = (w(b))™ for every n € Z. From our definition of w it
follows that w(a™) = w(b") =23, n € Z\ {0}, and so w can only be equivalent to @
if @(a) = @(b) = 1. This, in turn, implies that @ = 1 on Fy, and hence, w must be
bounded in order to be equivalent to w. However, w is, obviously, unbounded, and

the proof is complete. m

4.4 The form of derivations for discrete groups

In this section we deal with discrete groups G, in which case L'(G,w) = (1(G,w).
According to Proposition 1.10, if w is diagonally bounded, then L}(G,w) is always
weakly amenable. On the other hand, [41, Theorem 3.1} implies that the condition
of w being diagonally bounded is not necessary for weak amenability of L'(G,w)

for most Abelian groups G. For non-Abelian groups, we still have no example of a
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weakly amenable group algebra with a weight that is not diagonally bounded. In
this section we study the form of the derivations from L'(G,w) to L>=(G, 1/w) for a

special class of weights w on discrete groups G.

Theorem 4.15. Let G be a discrete group and w be a weight on G such that

sup —————— =00, x€G
ek @) |
Then for every bounded derivation D : {*(G,w) — £>*(G,1/w) there exists a function

f on G such that
D(d,:)(y) = f(zy) — flyz) (2,9 € G). (4.35)

Remark 4.16. If we could guarantee that f € (*°(G,1/w), we would get that D(0,) =
Op- f— [0y for every x € G. In turn, this would imply that D is an inner derivation

implemented by f, since {0, }zeq is a basis for (*(G,w).
To prove Theorem 4.15, we need the following technical result.

Lemma 4.17. Let G be a discrete group, w be a weight on G, and D : (*(G,w) —
(>°(G,1/w) be a bounded derivation. If for all commuting elements x,y € G we have

that D(6,)(y) = 0, then there exists a function f such that (4.35) holds.

1

Proof. Replacing x with zy~!, we obtain the following condition equivalent to (4.35):

D(dsy-1)(y) = f(2) = flyzy™) (2.9 € G). (4.36)

It is easy to see that the right hand side of (4.36) only depends on the values of the
function f on the same conjugacy class. Since different conjugacy classes have empty
intersection, we construct the function f separately on each class. Fix zg € G and

define f on {yxey~':y € G} as follows:

fyxoy™) = =D(840y1)(y), yE€G.

First, we check that f is well-defined, i.e., if an element u has two representations
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u=yxoy ' = zxoz "', then

=D (0agy-1)(y) = =D (0zgz1)(2)-

1 1

= 22027, we have that zoy ™! ! !

Since yxoy~ =y zxoz ', and using the derivation

identity, we obtain

D((S:coy‘l)(y) = D((S(y—lz)(xoz—l))(y) = (D((Sy—lz) ) 5xoz‘1)(y) + <5y‘1z ) D((Sazoz—l))(fw
= D(0,-1.) (2027 "y) + D(8p--1)(2).

Therefore, we need to show that D(d,-1,)(zoz"'y) = 0. Because of our condition

on D, it is enough to prove that y~'z and x9z 'y commute. Indeed, since zxgz~! =

yxoy~ !, we have

(v "2)(xozy) =y M (zmoz )y =y~ (yzoy )y = w0 = (w02 'y) (¥~ '2).

Thus, the function f is well-defined. The next step is to show that f satisfies (4.36)

for any x = zz92~! and any y € G. If we denote v = yz, then

1

yry " = y(zmoz )yt = (y2)zo(yz~") = uzou

,oxy = (zwoz Y (2uY) = zmou,

and (4.36) becomes
D(8,pyu-1)(uz™") = =D(63y2-1)(2) + D(0pgu—1)(u), z,u€G.
Using the derivation identity for D again, we obtain

D(8zagu-1)(uz™") = (D(02)  Ougu-1)(wz™") + (0 - D(0ugu-1))(uz")

= D(8:) (202 ") + D(dugu-1) (1) = (Gugz-1 - D(3:))(€) + D(dzpu-1) (1)

= D(8(zy=1)2)(€) = (D(0zp2-1) - 0:)(€) + D(Gpgu-1)(u)

= D(0x)(€) = D(0z02-1)(2) + D(0zgu—1) (1) = =D(0ag2-1)(2) + D(0agu-1)(w),
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1

since D(d,,)(e) = 0, as zo and e commute. So, (4.36) holds for all z = zxyz~' and

y € G. The proof is complete. m

Proof of Theorem 4.15. Given a continuous derivation D : *(G,w) — (*(G,1/w),

our goal is to find a function f on G such that

D(0:)(y) = fzy) — flyz), =,y €.

Due to Lemma 4.17, it is enough to show that the conditions listed in the theorem
imply that D(d,)(y) = 0 for all commuting elements x,y € G. Suppose to the
contrary that zy = yx and D(d,)(y) = ¢ # 0. Then, by induction,

D(0pn)(yx'™) =cn, neN. (4.37)

Indeed, the base for n = 1 is just the definition of ¢. Now assume that (4.37) holds

for some n € N. Then

= D(0,)(z"yz™™) + D (0, ) (yz'™") = D(6,)(y) +en=c+cen=c(n+1).

It follows that

D o0 w D 5:3” o] w
D= sup I llextGase) 5 gy 1Ol (G1je)
ren@Gw  Iflle@w neN |0l @)
\D(éltvL)(ggl;")l eln "
Z sup _wwr ) sup Z Sup
neN w(xn) neN w((yx)x—”)w(x”) neN w(yx)w(x—n)w(xn)

] n
= sup —————— =0
w(yz) nen w(z™)w(z")

by our assumption on w, and because |c| # 0. This contradicts the fact that D is a

bounded derivation, and thus completes the proof of the theorem. O



Chapter 5

Weak amenability of Beurling
algebras on quotient groups and

subgroups

We start this chapter by relating weak amenability of L'(G,w) to weak amenability
of LY(G/H,&), where H is a closed normal subgroup of G, and the weight @ on G/ H
is defined by

ole]) = inf w(z) (2] € G/H),

2€[z]
where [z] stands for the coset of  in G/H. According to the theory established
in [35],
LNG/H,0) = L)(G,w)/J.(G, H),

where J,(G, H) is a closed ideal in L'(G,w). We show that J (G, H) is comple-
mented in L'(G,w) as a Banach subspace, which allows us to obtain a sufficient
condition under which weak amenability of L'(G,w) implies that of L'(G/H,®).
We also consider a special case when G = G X Gy, H = G5, and w = w; X wy, where
w; is a bounded away from zero weight on G;, i = 1,2. We then prove that weak
amenability of L'(G,w) = L*(G1,w1)®L (G, wy) implies weak amenability of both
LY (Gy,wy) and LY Gy, ws).

In Section 5.2 we consider Beurling algebras on subgroups of Abelian groups. We

67
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show that if a group G is a direct product of locally compact Abelian groups GG; and
G5 both admitting a non-trivial continuous group homomorphism to R, then there
exists a weight w on G such that L'(G,w) is weakly amenable, but L'(G1,wlg,) is
not weakly amenable. This result generalizes Example 3.12. On the other hand, we
prove that if H is an open normal subgroup of an Abelian group G such that G/H
is compact, then weak amenability of L!(G,w) always implies weak amenability of
LY(H,w|g).

Finally, in Section 5.3 we present a locally compact group G, a closed normal
subgroup H of G, and a weight w on G such that both L'(G/H,®) and L'(H,w|x)

are weakly amenable, but L'(G,w) is not weakly amenable.

5.1 Weak amenability of Beurling algebras on quo-
tient groups

Let GG be a locally compact group, H be its closed normal subgroup, and w be a
weight on G. As we mentioned earlier, our goal in this section is to relate weak
amenability of L'(G,w) and weak amenability of L*(G/H, ).

We will always assume in this chapter that the weight w is bounded away from
zero. As we noted in Remark 2.5, this assumption holds automatically if the group G
is amenable. First, we formally prove that w defined by w([z]) = inf{w(z) : z € [z]},
[x] € G/H, is a weight on G/H. Because w is bounded away from zero, we have that
w > 0. We also have that @ is measurable, since the function

w(z) =w([z]) = gg’[w(hx), z e q,
is a pointwise infimum of continuous functions wy(z) = w(hz), v € G, h € H, and,

hence, is measurable by Lemma 2.6. Finally, for every x,y € G and arbitrary z( € [z]
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we have

o) ) = dley) = inf w(z) < inf wlwo)ulay's) = o) - inf wlz;'s)

= wlm) - it w(r"2) = w(ro)a(ly)

Because x( € [z] is arbitrary, it follows that

@([z] - [y]) < inf w(zo)w([y]) = @([z])w([y)),

zo €[]

which proves that  is a weight on G/H.

Note that the following result is an immediate corollary of Theorem 4.3.

Proposition 5.1. Let G be an [IN] group, H be a closed normal subgroup of G such
that G/H is Abelian, and w be a bounded away from zero weight on G. Then weak
amenability of L'(G,w) implies that of L'(G/H,®).

Proof. Suppose, to the contrary, that L'(G/H,®) is not weakly amenable. In this
case, according to Theorem 1.12, there exists a continuous non-trivial group homo-

morphism ® : G/H — C such that

w120

o=l _
vty ol =%

Then the natural extension ® of ® to G defined by ®(z) = ®([z]) (z € G) is a
non-trivial continuous group homomorphism from G to C and

()] @([2])
P WD) = ety S()o( )

since w([z]) = infrepw(zh) < w(z) (r € G). By Theorem 4.3 this implies that

L'(G,w) is not weakly amenable contradicting our assumptions. ]

We now obtain a sufficient condition under which weak amenability of L'(G,w)

implies that of L'(G/H,®) for a general group G.
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According to [35], there is a standard construction of a continuous algebra-

homomorphism 7 : L'(G,w) — LY(G/H,®):

(TF)(a)) = / fah)dh,  feL'(Gw), zeG,

The kernel of T is denoted by J,(G, H). It is proved in [35, Theorem 3.7.13] that,
as Banach algebras,

LYG/H,&) = LN G,w)/J,(G, H),

and the homomorphism 7' is an isometric isomorphism from L'(G,w)/J,(G, H) to
LY (G/H,®).

For the sake of completeness, we verify that T is an algebra-homomorphism,
which also automatically implies that J,(G, H) is a two-sided ideal in L'(G,w). For
this we need the following Weil’s formula (see, for example, [35, Theorem 3.4.6(iii)]).

Theorem 5.2 (Weil’s formula). Let H be a closed normal subgroup of a locally
compact group G and f € L*(G). Then

/f(x)dx:/ /f(xh)dh dfz), (5.1)
G

G/H \H

provided that the Haar measures dz, dh, and d[x] are canonically related, i.e., dh d[x] =
dx meaning that the relation (5.1) is satisfied for every continuous function f on G

that has a compact support.
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For arbitrary functions f, ¢ € L'(G,w) and z € G we have
T(f # g)((a)) = /(f g)(wh) dh = //f oy xh) dy b

/f ) [ ot tan) dhdy—/f( ) T(g)(1y~"2]) dy

H

Flyt) T(g)l(yt) " a] dt | dly]
Weil’s formula / /

G/H

_ / T(g)(ly ) / f(ytydt | dly

teH =[(yt)~1al=[y~a]
G/H H

= / T(9)(ly =D T(N)([y) dly] = (T(f) = T(g)) ([=]).

G/H

This shows that T is an algebra homomorphism.
Since L'(G/H,®) = LY (G,w)/J.,(G, H) and J,(G, H) is a closed two-sided ideal

in L'(G,w), we are in the situation considered in the following well-known result.

Proposition 5.3. [7, Proposition 2.8.66(iv)] Let A be a Banach algebra and I be a
closed ideal in A. Suppose that A is weakly amenable and I has the trace extension

property. Then A/I is weakly amenable.
The trace extension property is defined as follows.

Definition 5.4. Let I be a closed ideal in a Banach algebra A. Then [ has the trace
extension property if for every functional A € I'* satisfying a- A= \-a, a € A, there
is a continuous functional 7 € A* such that 7|; = X and 7(ab) = 7(ba), a,b € A

(linear functional 7 satisfying the second condition is called a trace).

So, to relate weak amenability of L'(G,w) to weak amenability of L'(G/H,®), it
is natural to investigate when J,(G, H) has the trace extension property in L'(G,w).
We start from proving that J,,(G, H) is always complemented in L'(G, w) as a Banach

subspace.
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Theorem 5.5. Let G be a locally compact group, H be a closed normal subgroup of
G, and w be a bounded away from zero weight on G. Then there exists a continuous

projection P : LY(G,w) — L'(G,w) whose kernel is J,(G, H).
To prove Theorem 5.5, we need two lemmas. The first one is a result from [35].

Lemma 5.6. [35, Proposition 8.1.16] Let H be a closed subgroup of a locally compact
group G, and U be a non-empty open set in G with compact closure. Then there is
a subset Y of G such that the family {UyH },ey covers G and is locally finite, i.e.,
every point of G has a neighborhood intersecting at most finitely many members of

the family.

The second lemma we need guarantees the existence of the function g that gener-
alizes the Bruhat function studied in Section 8.1 of [35], which is used in the theory

of quasi-invariant measures on quotient groups.

Lemma 5.7. Let G, H, and w be as in Theorem 5.5. Then there exists a continuous
function g > 0 on G and a constant ¢ > 0 such that the following two conditions are

satisfied:

/g(xh) dh=1, ze€G, and (5.2)
/g(mh)w(xh) dh < co(z]), [z] € G/H. (5.3)

H

Proof. We start from constructing a continuous function g; on G such that

0< /gl(ach) dh < oo, z€G, and suppg C{r e G :w(x)<cw(z])} (5.4)

for some constant ¢ > 0, which we will determine later. Let f > 0 be a non-trivial
continuous function on G with compact support. Denote U = {x € G : f(z) > 0}.
Then U is an open set with a compact closure, and so by Lemma 5.6 there exists
a set Y C G such that the family {UyH} ey covers G, and every point of G has
a neighborhood intersecting at most finitely many sets from the family. For every

y € Y we build a continuous function ¢, , on G vanishing outside Uy H and satisfying
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the conditions in (5.4) for z € UyH. Since w is continuous and the set U has compact
closure, there exists a constant ¢ such that w(u),w(u™') < ¢ for every u € U.
According to the definition of @, there exists yo € [y] such that w(yy) < 2w([y]).
Consider the set Uyy. Using the choice of yy and the weight inequality for w, we

obtain for every u € U

w(uyo) < wluw(yo) < ¢-20([y]) =2¢w([y]), and

(fuyo]) = inf w(uyoh) > mf 20N _ @) - o)
0 heH 0 = heH w u—l) w(u*l) =Tz

Therefore,

w(uyo) < 260([y]) < 26 - 0 [uyo]) = 28 & (uyo))-

So, if we put ¢ = 2¢? (which does not depend on y), we will have that
Uyo C{zr € G:w(x) < cw([z])}. (5.5)

We claim that then the function g, ,(z) = f(zy, '), * € G, satisfies all our require-

ments. It is easy to see that g, is a continuous function,

{z:g14(x) #0} ={z: f(x) >0} - yo=Uyo C UyH,

and the second condition in (5.4) is satisfied because of (5.5). It remains to verify
that
0< /gl,y(azh) dh < oo, x€UyH. (5.6)
H

Because ¢1,(z) = f(zyy'), € G, and f is a continuous function with compact
support, it is obvious that the integral above is finite. Now we show that it is strictly
positive. Let z = uyt, v € U, t € H. From the definition of U it follows that
f(u) > 0, and since f is continuous, there exists € > 0 and an open neighborhood
V of u such that f(x) > e for every z € V. Because f is non-negative, it follows

that f > ex,,, where x, denotes the characteristic function of the set V. Therefore,
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Gy = Xy, and we obtain

/gl,y(xh) dh > 5/vao (uy(th)) dh = E/vao (uyh) dh = epg(H N (uy) Vi),
H H H

where ppy stands for the Haar measure on H. Since V' is open in G, so is the set
(uy)~1Vyo, which implies that H N (uy)~'Vy, is open in H. Hence, to prove that
H N (uy) 'Vyo has non-zero measure, it is enough to show that it is non-empty.

Indeed, y~'yo € H, because y € [y], and

y o = vy u fuye = (uy) tuyo € (uy) V.

Thus, ¥y 'yo € H N (uy) ' Vyo, and (5.6) is verified.

We now show that the function

g1 = Z Jiy
yey
satisfies the conditions (5.4). First, we note that since {z : ¢;,(z) # 0} C UyH,
y € Y, and the family {UyH },ey is locally finite, the sum in the definition of
g1 is finite in a neighborhood of every point. This implies that ¢; is well-defined
and continuous. Also, because the family {UyH },cy is locally finite and covers the

whole G, it follows from (5.6) that

O</gl(xh)dh<oo, x € Q.

H

Finally, the second condition in (5.4) is satisfied for ¢g; because it is satisfied for
every giy, Yy € Y.
We then define the function g by

g(x):M reG.

[ g1(zh)dh’

H
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It is easy to see that g is a continuous non-negative function satisfying

o1 (xh) }{ g1(xh) dh

T or(ch) dh To@hydn 0 " G
H H

/ g(zh) dh =

H H

It remains to prove that
/g(azh)w(:vh) dh <c-w([z]), [z] € G/H.
H

But this follows directly from the second condition in (5.4) and (5.2):

H H

The proof is complete. O]

Proof of Theorem 5.5. We construct a continuous projection P : L'(G,w) — L'(G, w)
with ker P = J,(G, H). Let g be a function constructed in Lemma 5.7. We claim
that the operator P defined by

(Pf)@) = (Tf)(=z) glx), z€G, feL(Gw)

is a projection satisfying our requirement. Obviously, ker P = ker T' = J,(G, H).
Hence, we only need to prove that P is a continuous projection. We first show that

P ranges in L'(G,w). In fact, for every f € L*(G,w) the function P(f) is measurable
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and
/ (PP w)dr = / [ 1P ah)otah) dhala]
G/H H
— [ [1@n@istenysteh) dhdis) = [ 1(T5)(1) /( h)eo(ah) dhd]s]
G/H H G/H
< [ AT el calla)) dis) = T s < el < .
(5'3)G/H

So, P(f) € L'(G,w). Moreover, from the inequality above it also follows that P :
LYG,w) — LY(G,w) is a bounded operator with ||P|| < ¢. Finally, we verify that P

is a projection, i.e., P? = P:
(P?f)(x) = (P(Pf))(x) = (T(Pf))([x]) g(x) = /(Pf)(«’lfh) dh - g(x)

= g(7) /(Tf)([zh])g(xh) dh fahl=la]

H H

= (@TNH((]) g(z) = (Pf)(x), =eC.

(5.2)

The next lemma provides a sufficient condition for a complemented ideal to have

the trace extension property.

Lemma 5.8. Let A be a Banach algebra and I be a closed complemented ideal in A,
i.e., there exists a Banach subspace X of A such that A =1® X as a Banach space.
Suppose also that

xzy —yxr € X, whenever x,y € X.

Then I has the trace extension property.

Remark 5.9. The lemma was proved in [23, Lemma 2.3] in the case when X is a

subalgebra of A.
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Proof of Lemma 5.8. Let A € I* satisfy A- f = f -\, f € A. We need to show that
there exists an extension 7 € A* of A such that 7(fg) = 7(gf) for every f,g € A.
Since A = I & X, we have that A* = I & X*. We claim that 7 = A & 0 will satisfy
our requirements. Obviously, 7 is a continuous linear functional on A and 7|; = A,
so 7, indeed, extends \. Now let f,g € A. There exist fi,q1 € I, f2,92 € X such
that f = fi + fo and g = g1 + ¢». Since [ is an ideal and the condition for A can be
rewritten as A(kh) = \(hk) for all k € I, h € A, we have

T(f9) = 7((fi + f2)(91 + 92)) = 7(f191 + f192 + fa91) + T(f292) (5.7)

~
belongs to I

= Mfig1 + frg2 + fogr) + 7(fag2) = M frg1) + A(f192) + A(f291) + 7(f292)
AMgifi) + Mgafi) + Mg fz2) + 7(f292) = Agifi + g2 /1 + g1f2) + 7(f292)

T(g1fi + g2/1 + 91f2) + 7(fag2) + (7(92f2) — 7(92/2))
7((g1 + 92)(fi + f2)) + 7(fag92) — 7(92f2) = 7(9f) + (7(f292) — T(g2f2))-

Hence, to prove that 7(fg) = 7(gf), it suffices to show that 7(fog2) = 7(g2f2) for all
f2,92 € X. But by our assumption, fags — ¢g2fe € X, and so 7(fag2 — gaf2) = 0 by
the definition of 7. This completes the proof. O

Combining Theorem 5.5 with Proposition 5.3 and Lemma 5.8, we obtain the

following result.

Proposition 5.10. Let G be a locally compact group, H be a closed normal subgroup
of G, and w be a bounded away from zero weight on G. Suppose that X is a Banach
space complement of J,(G, H) in L'(G,w), and

xy —yxr € X, whenever z,y € X.

Then weak amenability of L*(G,w) implies weak amenability of L'(G/H,®).

We consider the special case when G = G X Ga, H = G, and w = w1 X wo,

where w; is a bounded away from zero weight on the locally compact group Gj,
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i =1,2. In this case G/H = G4,

W(xq) = wy(1) muelg2 wo(x2) = const - wy (1),

and the operator T : L*(G,w) — LY(G/H,®) is precisely given by

T(f)(x1) = - f(x1,@2) dxs, 21 € G

It is easy to see that if h > 0 is a continuous function on Gy with compact support
and

/h(mg) dry =1,

G2

then the function g(z1, x2) = h(z2) will satisfy the conditions of Lemma 5.7. Indeed,

/9(3317552) dry Z/ h(xy)dry =1, 2z € Gy, and

Gz G'2

/g($1»$2)w($1yﬂ72) d$2=/h($2)wl($1)w2(372) dxz:wl(xl)/h(xz)wﬂb) dy

G2 G2 G2

= const - &(x1),

since h has a compact support and ws is continuous. Because J, (G, H) = ker(T)

and L'(G,w) = LY(G1,w;)®L(Gs, wsy), we have that
Jo (G, H) = LY Gy, w))®, and X = L'(Gy,w;)®(Ch),

where I, = {f € L' (Gy,wo) : f(z2) dzy = 0} is the augmentation ideal of the

Go
Beurling algebra L'(Ga, ws).
We claim that in this case J,(G, H) always has the trace extension property

implying the following.

Proposition 5.11. Let G, Gy be locally compact groups and w; be a bounded away
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from zero weight on Gy, i = 1,2. Suppose that L'(G; X Go,w; X wo) is weakly

amenable. Then both L'(G1,w1) and L'(Ga,ws) are also weakly amenable.

Proof. Because of the symmetry, it is enough to show that L'(Gi,w;) is weakly
amenable. Taking into account the discussion preceding the statement of Propo-
sition 5.11, by Proposition 5.3, we only need to prove that J,(G; x Gy, Go) =
LY(G1,w)®1; has the trace extension property in L'(G; x Go,w; X wy). So, let
A € (J,(Gy x Go, Go))* satisfy A« f = f- )\, f € LY(G X Go,w; X wsy). It follows that
for every f = f1® fo, f; € LY Gy w;), i = 1,2, and every g = g, ®Ja, g1 € LY(G1,w1),

jo € Iy, we have

0=Mg*f—Ffxg9)= (g1 ®j2) % (/1@ fo) = (L ® fa) * (91 @ J2))
=AM(g1 % [1) ® (Jax fo) = (frx g1) @ (f2 % j2)).

Recall that L'(Gs,ws) has a bounded approximate identity, say {fs,}. We replace
fo with fo. and then take the limit with respect to 7. Using the continuity of X, we

obtain

Mg fr = fixg) ®42) =0, fi,q1 € L'(Gr,w1), ja € L. (5.8)

Our goal is to find 7 € (L*(G X G2, w1 X ws))* such that 7|, (¢ xGace) = A and 7- f =
f -7 for every f € L'(G x Go,w; X wy). According to Theorem 5.5, J,(G1 x Gy, Go)

is complemented in L'(G x Go,w; X wy). As we have already observed,
LG x Ga,wi X ws) = Ju(Gy x Ga, Go) & (L' (G, w1)®(Ch)),
where h > 0 is a continuous function on Gy with compact support satisfying

/h(xg) dxe = 1.

G2

We claim that 7 = A & 0 will meet our requirements. Obviously, 7 is a continu-
ous linear functional. Hence, we only need to show that 7 - f = f -7 for every

fe LY G x Gy,wy Xws), ie., T(gxf—fxg)=0forall f,g € L' (G x Gy, w; X wy).
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As we have seen in (5.7), it is, in fact, enough to prove that 7(g* f — f*xg) =0
for all f,g € X. Since the elementary tensors span a dense subset of X, and 7 is a
continuous linear functional, we only need to show that for all fi, g; € L'(G1,w;) we

have

0=7((r®@h)*(fi®h)—(fi®h)x(g@h)) =7((g1 % fi — fixq) ® (hxh)). (5.9)

For every fi, g1 € L' (G, w;) we can write the element a = (g, x f1 — fixg1) ® (h*h)

of LY (G x Gy, w; X wo) uniquely as a = ay + ay, where
aj= (g1 % fi — fixq) ®J2 € Ju(G1 X G2,G3), jo €1, and

ap = ((91*f1—f1*91)®ch) eX, ceC.

Hence, by definition of 7 and (5.8), 7(a) = A(ay) = 0. This means that (5.9) is

verified, and the proof is complete. m

5.2 Weak amenability of Beurling algebras on sub-
groups of Abelian groups

Let G, G5 be Abelian locally compact groups and G = G; x G5. Suppose that
there exist continuous non-zero group homomorphisms ®; : G; — R, ¢ = 1,2. Given

a, 8 > 0 we define the function w on G as follows:
w(gr, g2) = (14 [@1(g0)])* (1 + |[®1(g0) + Pa(g2)))”, g1 € Gi, i =1,2.  (5.10)
It is readily seen that w is a weight on G; X G5, and
wi(gr) = wlgr,e2) = 1+ [@1(g) )Y, g1 € Gy,

where ey denotes the identity of Gs.

Proposition 5.12. Let Gy and Gy be Abelian locally compact groups and G =



Chapter 5. WA of Beurling algebras on quotient groups and subgroups 81

G1 X Gy. Suppose that ®; : G; — R, i = 1,2, is a non-trivial continuous group
homomorphism, and w is a weight on G defined by (5.10). If 0 < «a, f < 1/2
and o+ > 1/2, then L'(G,w) is weakly amenable, but L'(Gy,w;) is not weakly

amenable.

Proof. Using Theorem 1.12, it is easy to see that L'(G},w;) is not weakly amenable
if « + 8 > 1/2. Indeed, ®; is a non-trivial continuous group homomorphism from

G1 to R, and

[®1(g1)] |®1(g1)]

sup ———————— = sup
nec wi(g)wi(grh)  gec (1+|®1(g1)])2ts)

< 00.

We now show that L'(G,w) is weakly amenable. According to Theorem 1.12, it
suffices to prove that

sup _120)] =00 (5.11)

gec w(gw(g™)
for every non-trivial continuous group homomorphism ® : G — R. Fix such a
homomorphism ®. Since (g1, 92) = (g1, €2)(e1, g2), where e; is the identity of G,
gi € G;, 1 =1,2, we have

D(g)| |D(g1,e2) + P(e1, g2)]

|
Sup —————— = sup = .
g W(@w(g™")  gec, pecs (14 |@1(91)D2 (14 |P1(g1) + @2(92)‘)25

We first consider the case when there is no constant ¢ € R such that ®(g;,e2) =
c®1(gy) for all g; € Gy. Since @, is non-trivial, we can choose gp, € G2 such that

®y(ga,) # 0. Then for every g1 € G there exists an n(g;) € Z such that

[@1(90) + @2 (5) | = 1@1(00) + n90)alg)| < [92(g2). (5.12)
and so o o
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From this we obtain the following:

supM = (g1, €2) + P(e1, g2)|
LA |0 (g1) + Dag2)])*

sup
gec W(@w(g™")  gecr, e (14 |01(q1)])
. |<I><gl,e2>+<1><el,g;§9”>|
28
meriy? PEG (L @y (g0 (14 [@a(or) + 22 (957)])

|<D<gla€2)+n(gl) (61a920)|
(612 e (14 |®1(g1))* (1 + |Pa(ga,]))*”

— ap ‘<®(91,€2) @21(211))@(617920)) + (le((giz)) + n(gl)) ®(e1, g2,)
nEG (L+[@1(g1)])* (L + [@2(g2, )"
@91, e2) — G281 (90)| — (1, )|
> sup 7
613) seG (14 ]@1(g)])* (14 [Pa(g2]))

Because (Igez"(h; ) is a constant, and we assumed that there is no constant ¢ such
2192
that ®(gq,e2) ZOC(I>1(gl) for all g; € Gy, there exists g;, € G for which ®(g,,e2) —
(e, ga,)
—=" 0. Th
(1)2( ) ( 10) 7é €n
P(eq,
N (g1, €2) = St (g1)| — [@(ex, g20)]
neG (14 ]@1(g1)))*" (14 |@a(ga, 1)
B(g e2) — o2 1 (g7)| — |@(er, g2,

> sup o
g1=g7; meN (1+121(g)) ™ (1 + |@2(ga, )

d(e
m |91y, €2) = G D1 (g1,)| — [@(e1, g20)]
= Sup =

meN (1+m|®1(910)|) (1+ |(I)2(920|))2B

So, in this case (5.11) holds.

Now let ®(gq,e2) = cP1(g1) for some constant ¢ and all g; € G;. Assume, in

addition, that ®(eq, g2) is non-trivial as a function of gs, i.e., there exists go, € Go
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such that ®(eq,go,) # 0. Then

sup |D(g)| _ [c®1(g1) + P(e1, 92)
9eG W(Ow(™")  gier, mec (14 |P1(g)))™ (14 |P1(g1) + Pa(ga))*
> sup |q)(elaggo>| = sup n|q)(€17g20)’ = 00,

gi=er.ga=g5, neN (14 |P2(g5)[)*  nen (14 71|P2(g2)])*

since f < 1/2. So (5.11) holds in this case too.

Finally, let ®(g1, e5) = ¢®1(g1) for all g; € G and some constant ¢, and ®(eq, g2) =
0 as a function of go. Then, since ® and ®, are non-trivial, there exist g1, € G
and ¢y, € Go such that ®(gi,,e2) # 0 and Py(go,) # 0. Using the same argu-
ments as in the very first case, for every ¢g; € G; we can find n(g;) € Z such that

|P1(g1) + <I>2(g;’0(gl))] < |®2(g2,)|- Thus we obtain

gl 1 (g0)
p —1\ sup 2a 28
9eG W(Gw(g™)  gecr e (14 [@1(g))™ (1 +[®1(g1) + Pa(g2)])
> swp || |®1(g1)]
gomgpor mreCr (1 [a(g0)[)?(1+ |P2(g2)])*
> sup m|c| |®1(g1,)| ~ oo,

gi=gyy, meN (L +m[Py(g1,)])>* (1 + [Pa(g2,)])*

since av < 1/2. So, we have shown that (5.11) holds for each non-trivial continuous

group homomorphism ® : G — R, and the proof is complete. [

Remark 5.13. In particular, the result of Proposition 5.12 holds for G = Gy = 7
OTGlzGQZR and@lzq)g:id.

Remark 5.14. Proposition 5.12 implies that, in general, it is not true, even for
Abelian groups G, that weak amenability of the Beurling algebra L'(G,w) implies
weak amenability of L*(H,w|y), where H is a subgroup of G and wy is the restriction

of wto H.
However, the implication is true for certain open subgroups.

Proposition 5.15. Let G be a locally compact Abelian group and H be its open
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subgroup such that G/H is compact. Then for any weight w on G weak amenability
of LY(G,w) implies weak amenability of L'(H,w|g).

To prove this proposition we need a technical lemma:

Lemma 5.16. Let G be a locally compact Abelian group, and H be an open subgroup
of G. Then any continuous group homomorphism ® : H — C can be extended to a

continuous group homomorphism ® : G — C.

Proof. By Zorn’s Lemma, it is enough to show that for every g € G we can extend ¢
to the open subgroup H, = |J ¢"H = {¢"h: h € H, n € Z} of G. We first consider
the case when there exists n;LZ € N such that ¢ € H. Let mg be the smallest
such number. Then we denote o = miofb(gmo) and define ®(¢g"h) = na + ®(h) for
h € H,n € Z. 1t is easy to see that ® is a group homomorphism on H,. In fact,
the only non-obvious thing to check is that the extension is well-defined, that is if
9" hy = g"hy then nja + ®(hy) = noa + ®(hy). In this case g™ ™ = hghfl € H,
and so ny — ny = kmyg for some k € Z. Because ® is a group homomorphism on H,

we have that
O(hy) — O(hy) = q)(hghfl) =®(g" ") = kP(9™) = kmoar = (ng — ny)a,

which implies the desired equality nja + ®(hy) = noav + ®(hy). We will now show
that ® is continuous on H,. Consider a net {t, = ¢"h,},cr C H, that converges
to some t = g"h € H,. Our goal is to prove that ®(t,) converges to ®(t). Since
9" hy — g"h, we have that ¢""~"h, — h, and because H is open, this implies that

g™~ e H for v > 79, 70 € I'. Then from the continuity of ® on H it follows that
B(g" " hy) = D(g™"hy) = B(h) = B(h),
and using the fact that ® is a group homomorphism, we finally obtain that

O(t,) = D(g"hy) = B(g™ "hy) + D(g") — D(h) + D(g") = D(g"h) = D(t).

Now assume that ¢" ¢ H for any n € N. Then we put ®(g"h) = ®(h) for
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h € H,n € Z. Obviously, P is a group homomorphism on H,, and we just need
to prove that it is continuous. Let g"vh, — g¢"h, ny,n € Z, h,,h € H. Then, as
above, g™~ "h, — h and because H is open, this implies that ¢g"'™" € H for v > .
But our condition on g implies that n, = n for v > 7, and so h, — h. Then we
have that ®(g" h,) = ®(h,) — ®(h) = &(g"h) since ® is continuous on H. So & is

continuous, and the proof is complete. O

Proof of Proposition 5.15. Suppose to the contrary that L' (G, w) is weakly amenable,
but L'(H,wl|x) is not. Since H C G is Abelian, we can apply Theorem 1.12 to find
a non-trivial continuous group homomorphism ® : H — R such that
sup —|(I)(h)| < 00
hen w(h)w(h=1)
Since H C G is open, we can apply Lemma 5.16 to extend ® to a continuous group
homomorphism ® : G — R. Another consequence of the openness of H in G is
that the quotient group G/H is discrete, and so its compactness implies that G/H
is finite. Therefore, we can choose {z;}?_; C G so that each coset from G/H has its
representative among {x;}"_,. It follows that for every g € G there is an i € 1,n
such that z;'g € H. Also, since w is a weight, we have that w(z;h) > w(h)/w(x; ")
and w((z;h)7') = w(h ™tz ) > w(h™) /w(z;). Using all of the above, we obtain
2(9)) | (:h)]
Sup ————~—~ = sup —
gec W(Gw(g™)  hem i<icn w(zih)w((z:h)™1)
O(R)| + |®(;
. (1) + 9(r0)
ne m,1<i<n (w(h)/w(z; ")) - (W(h™")/w(z:))
~1

|P(R)] + sup <<y, |(i)($z)|
< su == - sup w(x;)w(r; ") < oo,
o heg w(h)w(h=1) 1§i£n (zwle)

since sup Lh”l
ner w(h)w(h=1)
Abelian, last inequality contradicts weak amenability of L!'(G,w) by Theorem 1.12.

Therefore, L'(H,w|y) must be weakly amenable if so is L'(G,w). O

< 00, and both supremums in ¢ are also finite. Since G is



Chapter 5. WA of Beurling algebras on quotient groups and subgroups 86

5.3 Weak amenability of L'(H,w|y) and L}Y(G/H, &)
does not imply that of L!(G,w)

Given a closed normal subgroup H of a locally compact group G, it is well-known that
LY(@) is amenable if and only if both L'(H) and L*(G/H) are amenable. Returning
to our weak amenability problem for weighted group algebras, Proposition 5.10 pro-
vides conditions under which weak amenability of L'(G,w) implies weak amenability
of LY(G/H,®). We also note that Example 3.12 shows that L'(H,w|y) may not be
weakly amenable even when L!(G,w) is. In view of the above, it is natural to consider

the following problem.

Question 5.17. Let H be a closed normal subgroup of a locally compact group G and
w be a weight on G. Assume that both Beurling algebras L'(H,w|y) and L*(G/H,®)

are weakly amenable. Does this imply weak amenability of L*(G,w)?

It turns out that the answer to this question is negative in general. Below we will
construct a counterexample using the (ax 4+ b) group equipped with the discrete
topology. Recall, that each element of (ax + b) is identified with a pair (a,b) €

R* x R, and the group operations are defined as follows:

1 —b
(a,b)(c,d) = (ac,ad +b), (a,b)"' = (—, —) , a,c>0,bdeR.
a a
It is easy to see that
H={(1,b):beR} (5.14)

is a closed normal subgroup of (ax 4+ b), and (ax + b)/H = (R*,-) through the
map [(a,b)] — a. Before giving the desired example, we prove the following general

result.

Proposition 5.18. Let w be a weight on (ax + b) that is bounded on H. Then
*((ax + b),w) is weakly amenable if and only if w is diagonally bounded.

Proof. The sufficiency is trivial due to Proposition 1.10.
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For the necessity, we assume that w is not diagonally bounded. We show that
in this case ¢!((ax + b),w) is not weakly amenable. First observe that if & is the

weight on (ax 4+ b)/H defined by the formula w[z] = gggw(zh), then @ defined by
w(a,b) = w([(a,0)])(= w(a)), a>0,beR,

is a weight on (ax 4+ b). Moreover, because w is bounded on H, @ is equivalent to

w. Indeed,

w(a,b) = w((a,b)(1,0)) > iggw((a, b)(1,t)) = ©(a,b) > inf EL

w(a,b) 1 .
= = ,b . - 7b )
supw(1, —t) w(a.b) sup w(h) ew(a,b)
teR heH
where ¢ = ———— > 0 is a constant. Hence, cw < @ < w, which precisely means
supw(h)

heH
that w and @ are equivalent.

According to Corollary 4.6, to show that ¢*((ax + b),w) is not weakly amenable
it is enough to find a function ¢ : (ax + b) — R, a conjugacy class {yzoy™" : y €
(ax + b)}, 29 € (ax + b), and a constant ¢ > 0 such that w is bounded away from

zero on {yzoy~' 1y € (ax + b)},

[W(zy) —Y(y2)| < cw(y)w(z), v,z € (ax+b), and (5.15)

sup M = 00. (5.16)

ye(ax+b) w(yxoyt)
We take xy = (1,1) and claim that its conjugacy class in (ax + b) coincides with

the set B = {(1,b) : b > 0}. Indeed, if y = (a,b) € (ax + b), then

yroy~t = (a,b)(1, 1) (1,_—b> — (a,a+b) (1,_—b> — (1),

a a a a

and since a > 0 was arbitrary, the claim is proved. Since B C H, H is a subgroup

of (ax 4+ b), and the weight w is bounded on H, we have that w is bounded away
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from zero on B:

- o wie) w(e)
> = .
érelgw(h) - i%glt:l w(h=t)  supw(h1) >0
heH

We now aim to show that the function ¢ : (ax + b) — R defined by

bt — In(@O)eO®Y), if a=1,b>0,

0, otherwise.

satisfies the conditions (5.15) and (5.16). By definition, ¢ vanishes outside the con-
jugacy class B. So, since zy and yz always belong to the same conjugacy class, in
order to show that [(zy) — ¥(yz)| < cw(y)w(z) for all y,z € (ax + b), we only
need to ensure that this inequality is valid in the case zy,yz € B. Let yz = (1,b),
and z = (k,1), b,k > 0, | € R. Then

y=(yz)z"t = (1, b)(llC ;l) (%#) and so

2y = (k1) (11€ _Zzbk) — (1,bk).

Using the same arguments as for obtaining (4.25) and (4.27) in the proof of Propo-

sition 4.12, we get

[W(2y) — ¥ (y2)| = [(1,0k) — ¥(1,0)] = | In(&(bk)w((bk) ™)) — In(@ (D) ((0)7))]
|y SOR)OR) T !
=11 RORCE) < In(w(k)o(k™ (k) (5.17)

for some constant ¢ > 0. On the other hand, since w(t) > w([t]) for every t €
(ax + b), we have

slho(s) = (1 T Ytk 2@ (7 ) @b (5.1)

Combining (5.17) and (5.18), we obtain that |¢(zy) — ¥(yz)| < cw(y)w(z), and so
the first condition for ¢ is verified.
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We now check the second condition for ©. Recall that w(a) = ©(a,b) > ¢w(a,b)
for all (a,b) € (ax + b). Then

-1 1,b In(w(b)w (bt
wp O WD @)
y€(ax+b) w(ywoy*) b>0 w(Lb) b>0 w(Lb)
sup  |In(w(2)w(z™Y))| — |Iné?|
> z€(ax+b) ~
- sup w(h) ’
heH

since w is not diagonally bounded on G, but is bounded on H. So, the second
condition for ¢ is also true. Due to Corollary 4.6, ¢*((ax + b),w) is not weakly

amenable. 0
We are now ready to give a counter-example to answer Question 5.17.

Example 5.19. Let H be the normal subgroup of (ax + b) defined by (5.14). Sup-
pose W is a weight on (RT,-) that is not diagonally bounded, but is such that
CH(RY, W) is weakly amenable. We define a weight w on (az + b) by w(a,b) = W(a),
a > 0. With this weight both (*(H,w|g) and (*((az + b)/H, &) are weakly amenable,
but *((ax + b),w) is not weakly amenable.

Proof. From the definition of w it follows that w|y = W(1) = const. So (*(H,w|y)
is isomorphic to ¢'(H) and, hence, is weakly amenable. It is easy to see that
w([(a,b)]) = w(a) = W(a). Since w is, obviously, bounded on H, Proposition 5.18
asserts that ¢!((ax + b),w) is weakly amenable only if w is diagonally bounded.
This is equivalent to W being diagonally bounded as a weight on (R*,-). Since W
was chosen not to be diagonally bounded, ¢!((ax + b),w) is not weakly amenable.
However, ¢*((ax + b)/H,&) ~ (Y(RT,w), which is weakly amenable as assumed.

The proof is complete. ]

Remark 5.20. A natural choice of the function W in Ezample 5.19 is W(a) =
(14 |lna)* 0<a<1/2.

Remark 5.21. The arguments from Remark 3.6 can also be used in the proof of

Example 5.19 to produce a separable counter-example to Question 5.17.



Chapter 6

Weak amenability of centres of

Beurling algebras

In this chapter we deal with the algebras ZL!'(G,w), where G is a locally compact
group and w is a weight on G. Recall, that ZL'(G,w) is non-empty if and only
if G is an [IN] group, and ZL'(G,w) has a bounded approximate identity if and
only if G is an [SIN] group ([30]). We will also consider several other classes of
locally compact groups, such as [FC], [FD], and [FIA] groups. Before defining these
classes of groups, let us recall the definition of the topology on the group Aut(G) of

topological automorphisms of G.

Definition 6.1. [18, Definition 26.3] Let G be a topological group and Aut(G) be
the set of all continuous algebraic automorphisms of G. For a compact subset F' of
G and a neighborhood U of identity e in G, let B(F, U) be the set of all 7 € Aut(G)
such that 7(z) € Uz and 77 !(z) € Ux for all x € F.

Proposition 6.2. [18, Theorem 26.5] Let G be a locally compact group. The family of
sets { BT}, where B runs through {B(F,U) : F is compact, U is a neighborhood of e}
and T runs through Aut(G), is an open subbasis for a topology on Aut(G) under which

it 18 a topological group.

In the sequel, for a locally compact group G, we always equip Aut(G) with the
topology ensured in Proposition 6.2. Now we can define [FC], [FD], and [FIA] groups.

90
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Definition 6.3. Let G be a locally compact group.

1. G is an [FC] group if all conjugacy classes {gzg'}seq, @ € G, have compact

closure in G,

2. G is an [FD] group if the closure of the commutator subgroup G’ of G is
compact in G (the commutator subgroup of G is the group generated by all

elements of the form zyz~ly~!, 2,y € G);

3. G is an [FIA] group if the closure of the set of all inner automorphisms 7(G)
of G is compact in Aut(G).

One can find a brief overview of the history of these notions in [15]. We just men-
tion almost obvious inclusion of the class of [FD] groups in the class of [FC| groups,
and a deeper result that the class of [FIA] groups coincides with the intersection of

the classes of [SIN] groups and [FC] groups. Also, every [FC] group is an [IN] group.

6.1 Weak amenability of ZL'(G,w) on a connected
[SIN] group G

It is well-known (see, for example, [33, Theorem 1.10.11]) that the group algebra
L'(Gy x Gs) on a direct product of locally compact groups Gy, G is isometrically
isomorphic to a projective tensor product of group algebras L'(Gy) and L'(Gy). We
start this section by proving the corresponding result for centres ZL'(G; x G3),
ZL'Gy), and ZL'(G,) for [FTA] groups Gy, Gs.

Proposition 6.4. Let Gy and Gy be locally compact [F1A] groups. Then
ZLl(Gl X GQ) = ZL1<G1)®ZL1(G2)

Proof. Tt is known that for every [FIA] group G the map P : LY (G) — ZL'(G)
defined by
(P = [ $571)d3 (61)

(@)
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is a norm one projection onto ZL'(G) (see, for example, [31, Proposition 1.5]). Here
I(G) is the closure of I(G) in Aut(G), which is compact since G is an [F'IA] group.

We consider the following diagram:

LY Gy x Go) =  LYG)RLYG,)
\LP \LP1®P2 9

ZLMGy x G) <& ZLMG)@ZLNGy)
where by P, P;, and P, we mean the projections defined by (6.1) for G being G X G,
G4, and G5 respectively, T is the standard isomorphism that sends f; ® fo to fifo
(that is T(f1 @ fo)(x1,22) = fi(z1)fa(z2), fi € LNG)), = € Giy i = 1,2), and
T is the restriction of T to ZL'(G1)®ZL'(G,). It is easy to see that T ranges
in ZL'Y(G1 x Gs). So if its range is dense in ZL'(G; x G3), the desired isomorphism
of ZLY(G1)®Z L (Gs) and ZL'(G1 x G5) will be established by means of T'. Since T

is an isomorphism, the set {T'(f1 ® f2)}ser1(cy) is dense in L'(Gy x G3). Moreover,

because P is a norm one projection, the set {(P o T)(fi ® f2)}reri(a,) is dense in
ZL'(Gy x G3). Therefore, it suffices to prove that the diagram above is commutative
on the elementary tensors fi ® fa, i.e., that (PoT)(fi® f2) = (T o (PL® Py))(f1® f»)
for all f; € LY(G;), i = 1,2. Recalling the definitions of the projections P, P;, and

P,, we see that it only remains to prove the following:

| e e wamas= [ At [ ) s

I(G1xG2) I1(G1) I1(G2)

This is obvious if we show that I(G7 x Gy) = I(G1) x I(G5). First, I(Gy x Gy) =~
I(G1) x I(G3) holds in a natural way. So it will be enough for us to prove that
I(Gy x Gy) C Aut(Gy)x Aut(Gy), and that the restriction of the topology of Aut(Gx
Gs) to Aut(G1) x Aut(Gs) coincides with the original topology of Aut(Gy) x Aut(Gs).

First, we show that I(Gy x G3) C Aut(Gy) x Aut(G,), ie., for every g €
I(G; x Gs) there exist §; € Aut(G;) such that (zy, 22) = (B1(21), Ba(22)), z; € G,
1 = 1,2. We start by proving that for every fixed x; € G; there exists a y; € G such
that if the first coordinate of z € G x GG is equal to 1, then the first coordinate of
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f(x) equals y;. Assume, to the contrary, that there exist 1 € Gy and 3, Ty € Gy
such that 5(z1,22) = (y1,y2) and B(x1,Z2) = (91,72), where y; # §;. Then there
exists an open neighborhood U; of the identity in G that does not contain y,7; .
Since Gy is an [FIA] group, it must be also a [SIN] group, and so we can choose
an open symmetric neighborhood V; of the identity in G; such that V; is invari-
ant under I(G1), V', is compact, and 712 C U;. We can also choose a compact set
K5 C (G5 so that both x5 and Z, belong to K5. Since [ € m, there exists
an « € I(Gy x Gy) such that (a™'B)z € (Vi x Gy)x for every z € (Viz1) X Ko.
Note that, in particular, both (z1,x2) and (z1,Z2) belong to (lel) x Ky, Let o
be represented by (g1, 92) € Gy X Ga. Then the first coordinate of (a™'3)(zy, x2)
is equal to giy19; ', and the first coordinate of (a~'3)(x1,Z2) equals 1719, ' Both

these first coordinates must belong to Vi, implying that

gundy 9t = (g N gingr ) € Vi (Vimy) Tt = ViV = V2

and so 17, € g;'Vi2g1 = V2 since V; is invariant under inner automorphisms.
Hence, y13j;* € V;2 € U by our choice of V;, and we obtain a contradiction. So,
we have proved that for every x; € Gy and every x5, T2 € G the first coordinates
of B(x1,2z2) and fB(x1,Z2) coincide. This allows us to define 8; € Aut(Gy) by B1(z1)
to be the first coordinate of B(x1,z5). In the same manner, one can prove that
Po € Aut(G) can be defined by fa(2) to be the second coordinate of f(xy, z5). We
then get that 8(x1,z2) = (B1(21), Ba(z2)).

Finally, since every open neighborhood U of the identity in G; x G5 contains a
neighborhood of the form U; x Uy, where U; is a neighborhood of the identity in G,
and also every compact set K in G; X G is included in K; x K5, where K; C G; is
compact, i = 1,2, one can easily see that the restriction of the topology of Aut(G; x
Gs) to Aut(G1) x Aut(Gs) coincides with the original topology of Aut(G1) x Aut(Gs).
This completes the proof. m

To extend this proposition to the weighted case, we will need the following tech-

nical result.
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Lemma 6.5. Let G be an [FIA] group and w > 1 be a weight on G such that
w(grg™) < cw(z) for some constant ¢ > 0 and all x,g € G. Then there exists a
continuous projection from L'(G,w) onto ZL'(G,w).

Proof. We already know that the map P : L'(G) — ZL'(G) defined by

~ [ s

1(G)

is a norm one projection from L'(G) onto ZL'(G). Since w > 1, we have that
LYG,w) € LYG), and so P can be restricted to L'(G,w). Therefore, it will be
enough to prove that the restricted projection P ranges in ZL'(G,w) and that
it is bounded as an operator from L'(G,w) to ZL'(G,w). Since ZLY(G,w) =
LYG,w) N ZLYG), we only need to show that the restricted P ranges in L'(G,w)
and is bounded as an operator from L'(G,w) to L*(G,w). So, let f € LYG,w).
Then

1Pl = [ | [ 7670 as|wte)de < [ [ 175 0) ap o) do

G 1(G) G 1(G)

~ [ [ op@ads = [ [1r@k) s,

1G) ¢ 1G) ¢

where the last equality holds due to the fact that G is an [FIA] group. Indeed, an

[FIA] group G is, in particular, an [IN] group, hence, it is unimodular, which implies

that the Haar measure is invariant under each 8 € I(G). Using that w(gzg™!) <
cw(z), x,g € G, we obtain

1Pl < [ [ ards=c [ [ 1@ deds

1G) ¢ 1@ ¢

ZC/WMmeSWWaWMWW

1(G)
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where p is a Haar measure on the compact group I(G). The last inequality ensures
both that Pf € L'(G,w) and that P is bounded as an operator from L'(G,w)
to LG, w). O

Corollary 6.6. Let G1 and Gy be [FIA] groups, and w; > 1 be a weight on G; invari-

ant under 1(G;), i = 1,2. Then ZLY Gy x Ga, w1 X wg) =2 ZLY(G1,w)®RZ LY Gy, w,).
The proof of this corollary follows exactly the same way as the one of Proposi-
tion 6.4. Note that the projection is asserted by Lemma 6.5.
Our next goal is to characterize weak amenability of ZL!'(G,w) in the case when

G is a connected [SIN] group. For this we need one more lemma.

Lemma 6.7. Let G = V X K be a direct product of an Abelian group V' and a compact
group K. Further let w > 1 be a weight on G. Then ZL'(G,w) is topologically
isomorphic to LY(V,0)®ZLY(K), where &(v) = w(v,ex), and ek is the identity of
K.

Proof. First, we note that w is, obviously, a weight on V. Secondly, we show that the
weight w on G = V x K is equivalent to the weight @ on G defined by w(v, k) = w(v),
v eV, ke K. Since K is compact, so is the subset {ey } x K of G, where e} denotes
the identity of V. Because w is assumed continuous, this implies the existence of a
constant M > 0 such that sup,.x w(eyv,k) = M < co. Moreover, we can make the

following estimates for all (v, k) € G-
O(v, k) = 00) =w(v,ex) =wv-ey, k- k) <w(v, k)wley, k™) < Mw(v, k) and

wv, k) =w-ey,ex - k) Sw(v,ex)w(ey, k) =o(v, k)wley, k) < Mo(v, k).

Therefore,

This proves the equivalence of w and @. Hence, we have that ZL'(G,w) = ZL' (G, ©).
Note that @(v, k) = @(v) can be regarded as the product of the weight w on V" and the

constant weight on K. Since V' is Abelian, all inner automorphisms of V' are trivial
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which makes @ invariant under I(V'). The constant weight on K is also invariant

under I(K). So, by Corollary 6.6, ZL'(V x K,&) & ZL'(V,0)®ZL'(K). Since
G =V x K, ZL'(G,w) is topologically isomorphic to ZL'(G,®), and V is Abelian,
we finally obtain that Z L'(G, w) is topologically isomorphic to ZL'(V,0)®Z LY (K) =
LYV,0)®ZL'(K). The lemma is proved. O

According to [16, Theorem 4.3], if G is a connected [SIN] group, then G can be
written as a direct product of a vector group V' and a compact group K. So, we can

use Lemma 6.7 to prove the following result.

Theorem 6.8. Let G be a connected [SIN]| group, and w be a weight on G. Then
ZLY(G,w) is weakly amenable if and only if there is no non-trivial continuous group

homomorphism ® : G — C such that

sup _1®)l < 0. (6.2)

e w(g)w(g™")
Proof. As noted above, we can write G in the form G = V x K for some vector
group V' and compact group K. Then, in particular, G is amenable, and we can
apply Remark 2.5 to assume without loss of generality that w > 1, because replacing
the weight w with the quotient w/¢ for any continuous positive character ¢ : G —
(RT, x) does not change the product w(g)w(g™'), g € G. Since any vector group is,
obviously, Abelian, we can apply Lemma 6.7 to get that

ZLNG, w) ~ LNV, 0)®ZLY(K),

where ©(v) = w(v, ex), and ey is the identity of K. Because all algebras ZL'(G, w),
LYV,&), and ZL'(K) are Abelian, ZL'(G,w) is weakly amenable if both L*(V,®)
and ZL'(K) are weakly amenable due to [13, Proposition 2.6]. As was proved in [1]
and [41], ZL'(K) is weakly amenable for any compact group K. Hence, ZL'(G,w)

is weakly amenable if L'(V,®) is weakly amenable. Conversely, the operator T :
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LY(V,&)&ZL'(K) — L}V, ) defined by

T(f ®g) =/ g(e)de f, feINV.o).g € ZLV(K),

K

is a Banach algebra epimorphism between Abelian algebras L'(V,@)®ZLY(K) ~
ZL'G,w) and L' (V,®). Therefore, by [7, Proposition 2.8.64(iii)], L*(V,®) is weakly
amenable if so is ZL'(G,w). So we have that ZL'(G,w) is weakly amenable if and
only if L'(V,®) is weakly amenable. Since V' is Abelian, we know from Theorem 1.12
that L'(V, &) is weakly amenable if and only if there is no non-trivial continuous

group homomorphism d : V — C such that

b
120

sup w(v)d()(vl) < 0. (6.3)

So, the only thing left is to prove the equivalence of the existence of a non-trivial
continuous group homomorphism @ : V — C such that (6.3) holds and the existence

of a non-trivial continuous group homomorphism ¢ : G — C such that

o
sup —| (9) < 0.

geG w(g)W(g_l)
For this, we note that every group homomorphism d : V — C can be extended
to ® : G — C by ®(v, k) = ®(v), and vice versa — every group homomorphism
® : G — C has the form ®(v, k) = ®(v) for some group homomorphism & : V — C
since K is compact. Also, as we have proved in Lemma 6.7, the weight @ (v, k) = ©(v)

on (G is equivalent to w. These facts immediately lead to the desired equivalence. [

6.2 Weak amenability of ZL!(G,w) for [FD] group G

We start by proving the following almost obvious characterization of [FD] groups.

Lemma 6.9. Let G be a locally compact group. Then G is an [FD] group if and
only if there exists a compact normal subgroup K of G such that the quotient G/ K

15 Abelian.
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Proof. Suppose first that G is an [FD] group. Then, by definition, its commutator
subgroup G’ has a compact closure G’ in G. Since G’ is a normal subgroup of G,
and the quotient group G/G’ is Abelian, we can take K = G’. Conversely, let K be
a compact normal subgroup of G such that the quotient G/K is Abelian. Then by
the fundamental property of a commutator subgroup, G’ must be contained in K.
Since K is compact in G, we automatically obtain that G’ C K is also compact, and

so G is an [FD] group. O

We will also make use of the following structural result.

Lemma 6.10. [32, Lemma 1 (applied for B = I(G))] Suppose a locally compact
group G contains a compact normal subgroup K such that the quotient group G /K
is Abelian. Let w > 1 be a weight function on G satisfying lim,, e (w(x™))Y/™ = 1
for all x € G, and & be the induced weight on G /K defined by w([x]) = infiey w(t),
r € G. Then ZL'(G,w) may be written as the closure of the linear span of a family of
complemented ideals, each of which is isomorphic to a Beurling algebra L'(S/K,®),

where S O K is an open normal subgroup of G.

Remark 6.11. As follows from Lemma 6.9, Lemma 6.10 holds precisely for [FD]
groups G.

It is well-known that if an Abelian Banach algebra can be written as a closed span
of closed subalgebras each of which is weakly amenable, then the algebra itself must

be weakly amenable. We include a proof of this fact here for the sake of completeness.

Lemma 6.12. Let A be a commutative Banach algebra, and {A,},er be a family of
closed subalgebras of A such that A = E{Av}veF and each A, is weakly amenable.

Then A is also weakly amenable.

Proof. Let D : A — A* be a bounded derivation. We prove that D must be trivial.
Since the span of {A, }.er is dense in A, and D is a continuous operator, it is enough
to show that D equals zero on each A,. Consider the restriction D|4,. Obviously, it is
a bounded derivation from A, to A*. Because A, is Abelian and weakly amenable,
and A* is a symmetric Banach A,-bimodule, we obtain that D], must be zero

according to Definition 1.8. This completes the proof. [
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Since Z L'(G,w) and all algebras L'(S/K,®) in Lemma 6.10 are Abelian, we can
use the last two lemmas together with Theorem 1.12 to study weak amenability of
ZL'(G,w) in the case when G is an [FD] group. We need one more simple technical

lemma.

Lemma 6.13. Let w > 1 be a weight on a locally compact group G, K be a compact
normal subgroup of G, and &([z]) = infrex w(zk) be the induced weight on G/K.

Then there exist constants ¢y, ca > 0 such that cyw(z) < @([z]) < cow(x), x € G.

Proof. In fact,

w([z]) = ég}f{ w(zk) < w(z) ég}f{w(k) and  @([z]) = klg}f( w(zk) > w(z) éél}f(ﬁ

So we can take

“a= Iiglf( w(kl_l) B supkeKll w(k) and ;= klglf(w(k)
O
Now we are ready to prove the following.
Theorem 6.14. Let G be an [FD] group, and w > 1 be a weight on G satisfying
sup 1 =00, x€G. (6.4)

neN w(z™)w(z~")
Then ZL'(G,w) is weakly amenable.

Proof. First we show that (6.4) implies that lim,, ;. (w(2™))Y™ = 1 for every = € G.

Since w > 1, it is enough to prove that

limsup(w(z"))Y/" <1, z€G.

n—o0

Fix z € G and let € > 0 be arbitrary. Because lim,_,., n'/" = 1, there exists N, € N
such that n'/" < (1 + ¢) for every n > N.. Using the assumption (6.4) and the
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inequality w > 1, we can find n. > N, such that

w(z™) <w(z™)w(x™) < n. = (ni/nf)"6 < (1+¢).

Consider any m € N. There exist k € NU{0} and 0 <[ < n. such that m = kn.+1.

Using the weight inequality for w, we can make the following estimates:

(1 + e)™w(at)

w(a™) = w(xknEH) < (w(z™)) w(ml) < (1+5)kn5w($l) = (1+¢)

< e (14e)™,

where
Cc. = su w(xl)
* T i, (Tt o)

is a constant that does not depend on m. The last inequality implies that

lim sup(w(z™))Y™ < limsup(c.(1 4+ &))" =1 +¢.
n—s00 n—00
Since ¢ > 0 was arbitrary, we obtain that limsup, . (w(z")"/" < 1, x € G, as
desired.

According to Lemma 6.9, there exists a compact normal subgroup K of G such
that the quotient G/K is Abelian. So, the conditions of Lemma 6.10 are satisfied,
which means that there exists a family of complemented ideals {J,} of ZL'(G,w)
such that the span of {.J,} is dense in ZL'(G,w) and for each v there exists an
open subgroup S, D K of G for which .J, = L'(S,/K,®). Fix any . Since G/K is
Abelian, S, /K is also Abelian. For any non-trivial continuous group homomorphism

¢:5,/K —Clett, €S,/K besuch that ®(t,) # 0. Then

Let z., € S, be a representative of ¢, € S,/K. By Lemma 6.13, we have that

w(ty) < cow(zl) and  w(t)") < cow(x)™),
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thus

S

n

SUp —7—————~ 2 — SUp ——————— = 0.

neN W)W (t") — 2 pen w(@l)w(z™)
This shows that

I
tes. /k W(t)w(t=1)

for each non-trivial continuous group homomorphism ¢ : S,/K — C. Then J, =
LY(S,/K,®) is weakly amenable by Theorem 1.12, and so ZL'(G,w) is weakly

amenable by Lemma 6.12. ]

Let G be a compactly generated group. Then there is an open symmetric neigh-
borhood of identity U in G with compact closure such that G = [J>7, U". Follow-
ing [32], we consider the length function | - | : G — N defined by

|z =min{n e N: 2z € U"}, =z €G.

It is readily checked that the corresponding polynomial weight w,(z) = (1 + |z])*,
a >0, z € G, is indeed a continuous weight on G. If, in addition, G is an [FC]

group, we can obtain the following corollary from Theorem 6.14.

Corollary 6.15. Let G be a compactly generated [FC| group and w, be the weight
on G defined as above. Then ZL'(G,w,) is weakly amenable if 0 < o < 1/2.

Proof. According to [16, Theorem 3.20], a compactly generated [FC] group is an
[FD] group. So, if we verify (6.4) for w, in the case 0 < o < 1/2, the result will
follow immediately from Theorem 6.14. By the definition of | - |, it is obvious that

|#~7! = |x] and |2"| < n|z| for every x € G, n € N. Therefore,
n n n
et a(Twa(e™)  nen W@z  nen (L4 (L o)
n
Z R el — % 7€C
since o < 1/2. The proof is completed. ]

It is easy to see that the condition (6.4) in Theorem 6.14 and in the corollaries
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above is, in general, stronger than the condition (6.2) in Theorem 6.8 (see, for ex-
ample, [41, Corollary 3.6]). But as is shown in [41], these conditions are equivalent

for the group R and, similarly, for Z.

Proposition 6.16. [41, Corollary 3.7] Let w be a weight on R. Then the following
statements are equivalent:

(1) the Beurling algebra L'(R,w) is weakly amenable.

t
(2) sup Lﬂl = oo for every continuous nonzero group homomorphism
ter w(t)w(t™1)
¢o: R—C.
n
3) sup ————— =0 for allt € R.
B2 s~

This leads to the following corollary from Theorem 6.14.

Corollary 6.17. Let G be a locally compact group and K be a compact normal
subgroup of G such that G/K =R or G/K = 7. Suppose that w > 1 is a weight on
G such that there is no non-trivial continuous group homomorphism ® : G — C for
which
[©(2)]
sup ————— < 00. 6.5
2R (i) (0

Then ZLY(G,w) is weakly amenable.

Proof. We first show that the condition that there is no non-trivial continuous group
homomorphism ® : G — C for which (6.5) holds is equivalent to weak amenability of
LYG/K,®). From Proposition 6.16 we know that L'(G/K,®) is weakly amenable
if and only if there is no non-trivial continuous group homomorphism ¢ : G/K — C
for which

< 0. (6.6)

We note the following relation between continuous group homomorphisms ® : G — C
and ¢ : G/K — C: every ® can be written in the form ® = ¢oq, where ¢ : G — G/K
is the quotient map, and, conversely, for every ¢ the map ¢ o g is a continuous group
homomorphism from G to C. This follows easily from the compactness of K and

the continuity of the quotient map ¢q. We also note that the weights w and @ are
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equivalent due to Lemma 6.13. All these immediately lead to the equivalence of (6.5)
and (6.6).
Since G/K =R or G/K = Z, it follows from Proposition 6.16 that (6.6) implies

S

sup ———— =00, teG/K.

R ()t /
By Lemma 6.13, the last condition leads to

sup n =00, x€d(.

neN w(x™)w(x™™)
Then, applying Theorem 6.14, we conclude that ZL'(G,w) is weakly amenable. [
The proof of Theorem 6.14 leads to the following.

Proposition 6.18. Let G be an [FD] group and w > 1 be a weight on G satisfying
lim,, 00 (w(2™)Y™ =1 for every x € G. Then ZL'(G,w) is weakly amenable if and

only if each ideal J, ensured in Lemma 6.10 is weakly amenable.

Proof. Let K be a compact normal subgroup of G such that G/K is Abelian. The
sufficiency follows directly from Lemma 6.12. Suppose, conversely, that ZL'(G,w)
is weakly amenable. Since each J, is a closed ideal in ZL'(G,w), according to
[7, Theorem 2.8.69], J, is weakly amenable if and only if it is essential, i.e., J_§ =
J,. But this immediately follows from the facts that J, & L'(S,/K,&) and that
L'(S,/K, &) has a bounded approximate identity. ]

6.3 A necessary condition for weak amenability of
ZL'(G,w) on [FC] groups

According to [27, Proposition 3.1], if G is an [FC] group, then it is also an [IN] group.
So the centre algebra ZL'(G, w) is non-trivial. We reveal a property of [FC| groups

that we will use later.
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Lemma 6.19. Let G € [FCJ. Then for every x € G there exists a compact set
K, C G invariant under inner automorphisms of G, and such that x belongs to the

interior of K,.

Proof. Let x € G be fixed. Since G is an [FC] group, the set C, = {gzg~': g € G}
is compact as the closure of a conjugacy class. Also, C, is, obviously, invariant
under inner automorphisms. Because G is an [IN] group, there exists a compact
invariant neighborhood U of identity. We claim that the set K, = C, - U satisfies
all our requirements. Indeed, K, is compact as a product of two compact sets, and
xU C K,, which means that x belongs to the interior of K,. Finally, K, is invariant
under inner automorphisms. To see this, let ¢ € G and y € K,. Then y = cu, where

c€ C, and v € U, and so

gyg "t = gleu)g™ = (geg ) (gug™") € C,U = K,,

since both C,, and U are invariant under inner automorphisms. This proves that K,

is invariant under inner automorphisms. The proof is complete. ]

We now can give a necessary condition for weak amenability of the centre algebra
ZL'(G,w) in the case when G is an [FC| group.

Proposition 6.20. Let G be a locally compact [FC] group and w be a weight on G.
Suppose that there exists a non-trivial continuous group homomorphism ® : G — C
such that

e w(t)w(t™)

Then ZL'(G,w) is not weakly amenable.

Proof. We note that the Banach algebra ZL'(G,w) is commutative and
ZL*(G,1jw) ={f € L™(G,1jw): foB = f, B€I(G)}

is a symmetric ZL'(G,w)-bimodule. So, according to the Definition 1.8, to prove that

ZL'(G,w) is not weakly amenable, it suffices to construct a non-trivial continuous
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derivation D : ZLY(G,w) — ZL*(G, 1/w). Since ® is non-trivial, there exists x € G
such that ®(z) # 0. We now apply Lemma 6.19 to get a compact set K, invariant
under inner automorphisms and whose interior contains the point z. Because of the
continuity of ®, there exists a neighborhood U, of z contained in K, and such that

® is bounded away from zero on U,. We then define D as follows:
D(h)(t) = / B OM(E ) dE, tEeG, he ZLNGw).
e

First we note that D is non-trivial. Indeed, we can use the argument from [41,
Remark 3.2] and take he = D - Xk, Where x, is a characteristic function of K.
Then hg belongs to Z LY(G,w) since ® is a homomorphism, and K, is invariant under

inner automorphisms. Moreover,

D(ha)(t) = / () ho(t7€) dé = / B(16)[2 de = / (6P de.

K, K.NtK, 1K, NK,

From the formula above we see that D(hg)(t) > 0 for ¢ in a neighborhood of identity,
since @ is bounded away from zero on U, C K,. Hence, D is non-trivial. The same
argument as in the proof of Theorem 4.3 shows that D is a bounded derivation
from ZL'(G,w) to L>(G,1/w). So to complete the proof we only need to show
that D ranges in ZL>(G,1/w), or, equivalently, that D(h) is invariant under inner
automorphisms of G for each h € ZL'(G,w). Fix any g € G. Using the facts that
K, is invariant under inner automorphisms and that G is unimodular (since it is an

[IN] group), we obtain

Dih(atg™) = [ @lot g enlgr g ) de (6.7)
= / (gt~ (g7'€9)g (gt (g " €g)g™ ") dE
K. ¢

Z/@(gtlé“gl)h(gtlcgl)d(, teaq.

Ky
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Because ® is a homomorphism, ®(gt~'¢g™!) = ®(t71¢). Also, since h € ZL'(G,w),
we have that h(gzg~') = h(z) for almost all z € G. Taking these observations into
account, we finally get the following from (6.7):

D(h)(gtg™) = / (gt ¢ hlg(tC)g ") de = / (O ho(71C) dC = D(R)(1).

K, Ky
Therefore, D(h) € ZL*(G,1/w), and the proposition is proved. ]

Remark 6.21. We only used the condition that G is an [FC] group to obtain the
invariant compact set K, on which ® is non-trivial. The same idea still works to

prove the following (cf. [41, Remark 3.2]).

Proposition 6.22. Let G be an [IN] group, w be a weight on G, and U be a compact
netghborhood of identity invariant under inner automorphisms of G. Suppose that
there exists a continuous group homomorphism ® : G — C nontrivial on U and such
that

e w(t)w(t)

Then Z LY G,w) is not weakly amenable.



Chapter 7

Derivation problem on Beurling

algebras

In this chapter we consider the following analogue of the derivation problem on

Beurling algebras.

Question 7.1. Let G be a locally compact group and w be a weight on G. Does every
bounded derivation D : L'(G,w) — M(G,w) have to be inner?

Note that in comparison with the original derivation problem, we have an extra
restriction on D, i.e., it is bounded. We remark that in [21] it was proved that
every derivation on L'(G) must be continuous, so the original derivation problem is
actually concerned with continuous derivations.

As we have already mentioned in the Introduction, our goal will be to give an affir-
mative answer to Question 7.1 in the case when the weight w is diagonally bounded.
Following the idea from [3] that gives a simple and elegant solution to the original

derivation problem, we will use the following fixed point theorem.

Theorem 7.2. [3, Theorem A] Let A be a non-empty bounded subset of an L-
embedded Banach space V. Then there is a point in V fixed for every isometry
of V preserving A.

Here an L-embedded Banach space V' is a space such that its bidual V** admits

a decomposition V** =V @,V for some Vy C V** where @ indicates that the norm

107
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on V** is the sum of the norms on V' and Vj. According to [37, I11.2.14], any von
Neumann algebra and, in particular, a dual of any C*-algebra is L-embedded. We
will use Theorem 7.2 for a subset of M(G,w), which is the dual of the C*-algebra
Co(G,1/w), and hence, is L-embedded. The isometric self maps will be actions of
the group G on M (G,w). We also remark here that Theorem 7.2 has been extended
to non-expansive semigroup mappings on L-embedded sets of Banach spaces in [24].

We will need the following technical result.

Lemma 7.3. Let w be a diagonally bounded weight on a locally compact group G.
Then the function ' defined by

W' (z) =supw(gzg™'), g€G,
geG

is a weight on G equivalent to w, and it satisfies the relation
W(grg™) =d'(x), x,9€G. (7.1)

Proof. We first note that since w is diagonally bounded, there is a constant M > 0,
such that w(g)w(g~') < M for every g € G. Therefore,

w(grg™) S w(z)(wlgwlg™)) < Mw(z), z,9€G,

which means that the supremum in the definition of w’ is finite for every x € GG, and
so w' is well-defined. Since, by definition, w’ is a pointwise supremum of the set of
continuous functions {w,}seq defined by wy(z) = w(grg™'), v € G, we can apply
Lemma 2.6 to conclude that w’ is a measurable function. Now we check the weight

inequality for w':

W' (zy) = supw(g(zy)g™") = supw((grg ") (gyg™")) < supw(gzg " )w(gyg ")
geG geG geG

< supw(gzg™") -supw(gyg ") = ' (z)w' ().
geG geG



Chapter 7. Derivation problem on Beurling algebras 109

So, W' is, indeed, a weight on G. We also have that

w(r) = wlexe™) < supw(gzg™) = '(2),
geG
and since we have already shown that w'(z) < Mw(x), we obtain that w’ is equivalent

to w. Finally,

w'(grg™") = sup w((kg)z(kg)™") = sup w(gzg ") =uw'(z), =z,9€G,
keG geG

and the relation (7.1) is proved. O
Now we can prove the following.

Proposition 7.4. Let G be a locally compact group and w > 1 be a diagonally
bounded weight on G. Then every continuous derivation D : L'(G,w) — M(G,w)

18 1nner.

Proof. We start by noting that as in the case w = 1, D must map into L'(G,w).
Indeed, since L!(G,w) has a bounded approximate identity, by Cohen’s Factorization
Theorem (see, for example, [8, Theorem 2.3]) every f € L'(G,w) can be written as

f = fix fa, for some f1, f, € L'(G,w). So,

D(f) = D(f1 % f2) = f1 = D(f2) + D(f1) * f2,

and because L'(G,w) is an ideal in M(G,w), we obtain that D(f) € L' (G, w).
Denote M = sup,cq w(g)w(g™"), and let ' be the weight from Lemma 7.3.
Since ' is equivalent to w, we have that L'(G,w') ~ L'(G,w) and M(G,w') =~
M(G,w), which means that we can view D as a continuous derivation from L'(G,w’)
to M(G,w'). Because on the one hand M (G, w) is a dual of an essential L'(G,w)-
bimodule Cy(G, 1/w), and on the other hand M (G, w) = M(L'(G,w)), we can apply
Proposition 2.2 to extend D to a bounded derivation D : M(G,w') — M(G, '),

which is continuous in SO-w* topology.
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Consider the function b : G — M(G,w’) defined as b(g) = 5((5g) % 0g-1, where
d, € M(G,w') is a point mass at g. We claim that b satisfies the relation

b(xy) = b(x) +x-b(y), =,y €QqG,

with respect to the action z - = §, * p* J,—1 of G on M(G,w’), and the set b(G) =
{b(g) : ¢ € G} is bounded (such functions are called crossed homomorphisms).
Indeed,

b(xy) = D(0uy) * O(ay)—1 = D(5, * Oy) * Oy-1,-1 = (D(6,) * 0y + O * IN?((Sy)) % 01 % Op—1
= D(8,) * Gyr + 0y % (D(8,) % 8,1) % 6,1 = bx) + z - b(y)

and
16(g)]| = 11D(8y) # dy1[| < DI - |8/l - 1531 [lr = 1D - &' (g)e (7).

which is bounded for all ¢ € G since W’ is equivalent to w, and w is diagonally
bounded.

Using b we can define an action of G on M(G,w’) in the following way:

g(u) =g - p+b(g) =0y % pxog-1 +b(g), ge€G, pe MG,

We claim that this action is isometric:

lg(p1) — g(u2)lnrcwy = lg - (1 — p2) |l arewny = /Gw’(a:) d[0g * (11 — pi2) * dg-1|(z)

B / W' (grg ™) dlp — po|(z) = / W'(x) dlpy — po|(z) = |lpx — peollmcw),
G G

because, by (7.1), w'(gzg™!) = /() for all z,g € G.

We will now apply Theorem 7.2 to a bounded set A = b(G) in a Banach space
M(G,w). To this end, we need to check that all the conditions of the theorem are
satisfied. We already know that M (G,w’) is an L-embedded Banach space. Also, by
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the properties of b, we have that b(G) is a non-empty bounded subset of M(G,w’)

invariant under the isometric action of G on M (G, w’) defined above:

9(b(@)) = {g(b(x)) : x € G} = {g-b(x) + bg) : x € G} = {b(gx) : x € G}
=0(G), geaq.

So, all conditions are verified, and hence Theorem 7.2 provides us with a measure
pu € M(G,w') such that g(u) = p for all g € G. It follows that b(g) = g(p) — g - p =
iw—g- i, g € G. Recalling the definition of b, we see that

b(g) = D(0g) % dg—1 =t — g - jt = jt — Og * 1 % g1,

and so, convoluting this equality with d, on the right, we obtain

D(dy) = p*dyg—0g%x 1, ge€Qaq.
Our next goal is to prove that
D(f)=D(f)=p*f—f*p [eL(Gw)

which will automatically mean that D is inner.
Let f € L'(G,w’). Using Lemma 2.3, we can find a net {f,}aca from lin{d, :
g € G}, such that f, =5 f. Then for each f, we know that

ﬁ(foc):,u*fa_fa*,uy

because the formula is true for all d,. So, if we show that 5( fa) = 5( f) and
M*fa—fa*pwu*f—f*u, then we are done.

Take arbitrary h € L'(G,w'). Since D is a derivation, we have that

hs D(fy) = D(h* fa) — D(h) % fa.
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Because f, ﬁ f, we get that h x f, — h x f in the norm topology. Hence,
D(h % f,) = D(h* f) as D is continuous. Also, D(h) = D(h) € L'(G,w'), and so
E(h) * fo — E(h) % f. Because D is a derivation, the above conclusions imply that

hs D(fa) = D(h* fo) — D(h) % fa — D(h* f) — D(h) % f = h* D(f) = h = D(f).

So, we have just proved that ks D(fy) — hx D(f) for every h € L*(G,w'). Similarly,
D(f.) * h — D(f) % h for every h € L*(G,w'), which means that D(f,) =5 D(f).
Now, let us investigate the behavior of u * f, — fo * u. We again take arbitrary

h € LY(G,w') and convolute our expression on the left with it:

hok (o fo = fo p) = hok pos fo = hox fo o p.

Since f, = f, we have that h* f, — h* f in L}(G,w’). Now, because convolution
with p on the right is a continuous operator, we obtain that h x f, * u — h x f x p.
Since L'(G,w’) is an ideal in M(G,w’), we get that h x p € L'(G,w’), and using
again the fact that f, g f, we obtain that h * pu* f, — h* pu* f. It now follows
that

hospis fo—hsfoskp—hspsf—hxfrp=hx(uxf—fxp), hel (G uw).

Similarly, (g * fo — fa*p) xh — (u* f — f*p) = h for every h € L'(G,w’). This
precisely means that px f, — foxpu E) pwx f— fxpu, and the proposition is proved. [
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