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ABSTRACT

Various job-schedullng algorithms based upon
round-robin scbéduling with a variable time-slice are
studied by simulation under various conditions of system
utility. System uvbility is varied by varying thé inter-
arrival time of jobs-and by varying the quantity of main
storage available to jobs. A measure of performance is
bésed upon curves which represent the cost of delay to
jobs. This measure of performance is very similar to a
performance criterion previously used.

- An empirical equation. is developed which relates
performance to the utilities of the central processor and
main storage by means of a variable coefficient. For
simulated conditions of utility less than 0.60 the empirical
equation 1= found to agree fairl& well with the simulated
performance wilth a constant coefficient value which depends
on the number of priority classes. For simulated conditions
of higher utility, variability inlthe coefficient is required
to fit the empirical equation to the simulated performance.
As utility is incrsased beyond 0.80, simulated performance
" becomes a function of the job-scheduling algoritbhm and when
utility rsaches unity, simulated performance becomes a
function of the number of jobs in the job stream as well.

Those algorithms which tend to select the shorter
jobs from the waiting qusue for processing during the

simulation produce a somewhat better performance.
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CHAPTER I

IHTRODUCTION

1.1 Purpose of the Research

In this study use is made of the computer system
simulation model which bas been used by Chal to investigate
some of the effects of a particular tims-slicing job- |
scheduling algorithm (1)1. This model 1is the first stage
of a more comprehensive computer sjstem simuiation model
which will include the operations of logging-in, loading
into core, scheduling and outputting of the results. This
first stage may be considered as a model of a hypothetical
computer system which incurs no overheads to load jobs into
core, and which processes to completion jobs which require
no input or output during their execution. In the study
conducted by Chai (1) it was assumed that the physical size
of the main store Was large enough to accomodate any three
jobs. However, no attempt was made to consider the possibil-
ity that this same main store may be able to accomodate more
or fewer than three jobs during certain periods of time.

The purpose of this research is to examine the

service to computer users as the number of units of main

1 Notation (n) refers to the n'® entry in the list of
references.



storage available changes for a variéty of different job-
scheduling algorithms. A job-scheduling algorithm may be
separated into two sections, the first is tbe logic which
determines which of the walting jobs is to be accepted

next (queus selection algoritbm) and the second 1is the logic
which determines how a job is serviced once it is accepted
(quantum allocation routine). More specifically, the
purpose of this reseérch is to examine various queue select-

ion algorithms under conditions of varying storage.

1.2 Methods and Scope of the Research

A small modification of the model used by Chai,
in order to keep account of how many units of main storage
are occupied and how many units are free, makes the model
sultable for the study of queueiselection algoritbms. The
main memory is attributed with a size and each job within
- the job stream requests a particular amount of this main
storage. Providing there is sufficient storage avallable
for a particular job, the job can be accepted for execution.
No account is taken of the spatial arrangement of jobs with-
in the main stofage and therefore the organization within
the maln memory ié taken to be either non-contiguous, that
is, the main storage 1s split Into units of an arbltrary
size, but jobs need not occupy these units in a contlguous
manner, or alternatively, contiguous organization with

negligible tims of relocation of jobs within the main storage.



The basis of a measure of computer system per-
formance has been suggested by Greenberger (2). This
measure of performance involves the summation of the cost
of delay to each job requiring service by the system. The
measure of performance used in this study and in the pre-
vious study by Chail is based upon Greenberger‘s suggestion
with a modification which makes it quite similar to a
measure of performance used by Fife (10). Fife considered
that the relative response, that 1s, the ratio of tbe
response time to the amount of processing time required, was
a quantity more fundamental than the actual response time
to the measurement of performance.

The study of the performance of computer systems
for a constant job stream and varlous job-scheduling algorithms
can lead to the choice of a Job-scheduling algorithm for a
particular computer system and for the job stream considered.
However, once selectlion of a computer system, or configuration,
and a Jjob-scheduling algorithm have bsen made, the job load
generally grows rapidly until the system becomeé heavily
loaded, It is therefore often wise to select a job-scheduling
algorithm which functions well under heavy loading, and it is
an advantage to Study the performance of an algorithm over a
range of different job loads.

Many modern computers are modular in the sense that
more main storage can be attached upon request, providing some

upper 1limit is not exceeded. The size of maln storage can be



considered as a variable within a computer system to be

selected according to some economic criterion, gensrally.

It is reasonable to suppose that, if'a computer
user is paying to receive a certain maximum relative
response elther direotly, or indirectly by offering a
certain proportion of a monthly computing capacity, for
exgmple, and tﬁat if this maximum relatlve response 1s
exceeded, a discount amounting to a cost of delay to the
user will be given. In this way the measure of performance
would be related to the earning power of the computer
system.

The decision whether or not td acqulre more
main storage in order to improve service can be related to
economics by studying the improvement in performance as main

storage is added to a computer system and balancing this

 improvement with the extra cost of acquiring the main

storage. In this study no assumptions are made concerning

the latter cost and the measure of performance is not related

specifically to economics, but the effect upon system perform-

ance as the size of the main storage is varied 1s examined.

1.3 Previous Work in the Area of-This Research

Most of the published research concerning the

performance of time sharing systems has dealt with the perform-

ance of scheduling algorithms, and in particular, with the



‘logic used for allocating executlon times to jobs for which
\ sufficienﬁ Storage is already available. This logic is
known as a time-slicing algorithm, or quantum allocation
routine.

The primary reference for this study 1s the thesils
‘of Chai (1) in which the computer system simulation model used
in this study is introduced and described, in which a
variable time-slice quantum allocation routine is presented,
and in which the dynamic job penalty is used as a means of
wmeasuring user service. The Monte-Carlo techniques for job
stréam construction used in this study were also used in the
previous study of Chai. In his study both central processor
time requesis and interarrival times were assumed to be
normally distributéﬁ, while in this study arrival times are
assumed to follow a Poisson distribution. |

Kleinrock (3) presents an analytical study of time-
shared computer systems in which facilities are treated as
stochastic queulng sysﬁems under priority service disciplines.
The performance meaéurement of these systems in taken to be the
'response time expecﬁed by the job under éonéideration. 'The
results presented are for an ideal system. The Priority
Processor-shared system analysed includes several priority
classes with Poisson arrivals and exponentially distributed
service requirements, with a known mean service requirement
for jobs of each priority class. For this system Kleinrock
states and proves a theorem which relates expected response
time to mean central processor utilization in a fashlon very

similar to the empirical relation developed in the studiles



reported here. Other job scheduling algorithms are analysed,
with theorems relating performance to utilization being stated
and proved, by classical queulng theory, fof each algorithm.

’Schrage (4) presents an analytical study of the
queuing and servicing discipline M/G/1 with feedback. This
is a round-robin type of discipline. His performance measure-
ment is the expected response time of the job under consider-
ation. Arrival times are taken to be Poisson and executlon
times are taken to be exponentially distributed. Analytical
reiatiohsbips are given for the expected'respOnse time as a
function of job arrival rate and job processing time. A graph
is presented showing expected response time as a function
of central processor utilization for various job processing
times. For certain values of the job processing time, the
- graph is similar to some grapbs presented by Kleinrock (3).

Penny (8) studies the effects of time-shared and
non-time-shared computer facilities. He discusses improvements
to be made in work load processing times that can be made by
time and space sharing. The analy31s produces a range of
improvements as a functlon of processor utilization. Results
obtained by simulation are shown to be in the range predicted,
for the time sharing of two, three and four jobs.

Huesmenn and Goldberg (6) present a survey artilcle
describing research in time-slicing algorithms with part-
jcular emphasis on Scherr's work (13) and the LOMUSS system
(5,6) at Lockheed Corporation (Lockheed Multipurpose Simula-
tion System). Huesmann and Goldberg make several very

interesting statements. They suggest, for a successful



simulation, that the details of the job-stream must be
specified formally, that the constraints of the operation
must be specified formally, snd that the characteriatics for
judging system performance must be clearly defined. This
is ail in complete accord with the philosophy‘used by Chal
and continued in this research. Further, Huesmann stresses
the need for 'parameterization' of input to a simulation run-
and suggests that the simulation approach to time sharing
system analysis is pcopular because there 1is lack of a
viable élternative.

Some detaills of the.LOMUSS system presented by
” Huesmann and Goldberg are important to this study. The
LOMUSS system permits simulation of varying computer systems,
or configurations with varying job streams.

For each simulation run two types of output are
produced: the state of each resource at different points
in time, and what 1s called an overall profile of each job,
from which response-times, processor idle time, memory
utilization, throughput, and queue behavior mey be determined.
~ The specific nature of the scheduling algorithms used is not
known, and no attempt has been made to relate user service
'vto resource utilization - at least none has been published.

Nielsen (7) describes simulation studies made of
an IBM 360/67 time sharing computer. He suggests that analytic
studies (9, 13) are relativély inflexible and simulation
studies allow more scope. The model described by Nielsen

is responsive to changes in configuration, to changes in the



scheduling and memory allocation algoritbms, and to changes
in the job stream. Memory is allocated by Nielsen in inter-
changeable sections rather than contiguously. Nlelsen
measures performance of his simulation model in terms of job
response by priority and type and in terms of centrelvprocessor
utilization and equipment activity - in princilple very
simclarly to the methods used in this research. He
considers paging, that 1is, the rolling in and out of sectlons
of jobs as required (17). Consideration wae given to reserving
storage for emergency, or heavily loaded operational conditions
and found that any benefits to users ‘were absorbed by the
resultant increased idle time. Nielsen concluded that
reducing the amount of paging, or rolling jobs in and out
was the way to reduce overheads and 1lmprove user service.
This conclusion may not be pertinent to these studies since
paging is not used, but the intention of the statement - to
reduce supervisor overheads~is one which 1is considered in
this research.

Fife (10) examined the optimization of user
- service by using Markov model techniques in his study of the
time slicing algorithm (quantum allocation routine.) The
model be used included ‘ the complete rolling
of jobs into and out of storage as required to have'ohly the
job being processed jnstantaneously in core. Three queuss
were used: the flrst with jobs awaiting their first quantum
of execution time; the second, with jobs awaiting their

second quantum; and the third, with jobs ayaiting their third



and/or subsequent quanta. The scheduling algoritbm used
determines quantum sizes and the sequence for servicing
the three queues. The criterion used to assess service
to the computer user, relative fesponse times, is similar
to the criterion used in this study. The objective 1s toO
minimize the average response time welghted in relation
to the processing time. |

Recent technical literature thus contalns reports
of analytic and simulation studles whbich are relevant to the
objeotiVes of this research. The model used here has been
introduced and described (1). In some ways the model used
pere is similar to other models (5, 6, 13, 7). The criterion
of performance used here 1s similar to one previously used
(10). Relationships between psrformance and computer utiliz-
ation have been studied analytically (3, 4, 8). In the
studies reported here performance is related to storage and
central processor utilities in an empirical fashion for vary-
ing job interarrival times, for varying quantities of main

storage, and for different queue selection algorithms.



CHAPTER TI
DESCRIPTION OF THE SIMULATICN MODEL

2.1 Introduction

The simulation model used by Cbal (1) was

designed to simulate a job-scheduling algorithm which
could simultaneously schedule up to three'jobs. It is a
model of a hypothetical computer which incurs no overhead
to load jobs into storage and which processes to completion
jobs which require no input or output during their execution.
This basic simulation model 1s modified to include &
different kind of ,oompetitioﬁ for finite, non- cont-
iguous storage resources. The main storage in
attributed with a size in arbitrary units and each job is
the job stream requests a certain amount of maln storagé in
these units. No account is taken of the spatial arrangement
of jobs within the maln storage and therefore either a
non-contiguous storage or a contliguous storage with very
rapid relocation of jobs 1s simulated.

A complete description of the gsimulation model used
by Chal 1s not given bhere. Rather a generél description of
the model operétion with emphasis on those operations per-

tinent to the studies of this research is presented in the

- 10 -



following three sectlons:
1. Job generatibn'~ which produces a series
of jobs, each job being an entity of work
that the user wishes the computer to perform.
This series of Jobs, or job stream, is
produced by Monte-Carlo techniques using
job-mix parameters specified at the

 beginning of each simulation run;

2. model operation - in which the generated
series of jobs, or job stream, is processed
according to algorithms determlned by
operational parameters also specified at

the beginning of each simulation run; and

3. performance measurement, which describes the
output from each simulation run by which

model performence is measured and evaluated.

The job-mix parameters which determine the details
of the job stream and the operatlonal parameters which determ-
ine the algorithm by which jobs are processed constitute the

input to eaqh simulation model run.

2.2 The Job Stream

This section describes the nature and structure of
the job stream. The job stream consists of the N individual

entitles of computer work, these entities being called jobs,
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processed during each simulation. The processing algorithms

require the following information about each job j in

the job stream:

1. The execution or central processor (cru)

time request, denoted tj;

2. the priority number of the job,
Ij, which is the priority

class = T .of the job;

3. the time of arrival of the Jjob, denoted

A vhere I = I;;

jI’ J
4. +the main storage requirement, an integer

value denoted Rj; and

5. the assumed device time of the job, denoted

dj.

Although two different jobs may require the same
execution time and the same main storage, they may not be
equally important; VA system of‘priorities, by which tbe}

relative importance of jobs may be specified, is used (1).

The}number of priority levels, or classes, 1s

I, ..  Each job belongs to one of these priority classes.
If job 3 belongs to priority class I, that
job 1is sald to bhave priority I; where Ij =1. The

jobs of greatest importance, or highest priority belong

to priority class one (T = 1), and those of the least
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importance, to the last priority class (I =1). Thus for
any two jobs, for instance, job j and job k , 1f I,
is smaller than Iy, Job j 1is said to be the mors
important Job and has a higber priority. In certain studies
conducted three priority clésses were considered (L = 3).

A property of the job streams considered fbr three
priority classes is that!

n, =lnp , (2.2,_1)

np, = kns , (2.2.2)

where ny is the mean nurber of jobs with priority number

I, and k is defined as the priority constant.
Since in total the job stream consists of N jobs,
or |
N = (k2 + k + 1) D3, (2.2.4)
and _
—_— 12 N .
= X ’ (2.2.5)
k2 +k+1
n, = . k N , (2.2.6)
k- +k+1
N3 = N . (2.2.7)

¥ +k+1

The mean number of jobs in each of the three priority
classes is thus determined from the total number of jobs to

be considered, N , and the priority cohstant, k.
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This may be generalized. For L priority classes and
with nI being the mean number of Jjobs 1in the Ith priority
class, nI is given by: |
n = p (L - 1)y . (2.2.8)
| Loa-)

2.k

i=1
In Simulatiobs with L equal to three, k equal to six,
and wilth N equal to 1500, the mean number of jobs

generated for priority classes one,two and three are 1257,
208, and 35 respectively. |

A further broperty of the job streams considered
is that the mean interarrival times and the mean central
processor (cpu) time requests of jobs of different priority

classes are also related by the priority constant ki

I’2 = krl ’ (2'2'9)

ry = kro (2.210)
and ' |

my, = lm (2.2.11)

my =l (2.2.12)
where k is the priority constant and Ty and mr

are the mean interarrival time and mean cpu time request,

respectively, for jobs of priority class I.
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In general, then;

ry o= krpy ' (2.2.13)

me = kmgg o, o (2.2.14)

The actual central processor times requested by

jobs of priority class T are assumed to be normally

distributed about the mean value my and the sﬁandard
eviation is taken to be my/4.

| The actual interarrival timss of jobs of

priority class I are assumed to follow an exponéntial
distribution with mean value rr.

The normel and Polsson generating functlons used
are described in appendix A. The mean central processor
time and interarrival time fon jobs of priority class one
are specified along with the priorilty constant at the
beginning of each simulation model run. The two generating
functions use these parameters to produce the interarrival
times and central processor time request for every job in
the job stream. The central processor time request const-
itutes the value tj for esach job 'j 1ndicated at
the beginning of this section. |

_ Arrival times are determined from the interarrival
times. The arrival time of the jth - job of priority
élass I, denoted Ajr , 1s determined from that of
| the last job of ﬁhe same priority class given ny, A'-l,I s

J
and the actual interarrival time of the job Js a31-
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The latter is determined from the mean interarrival time
for the priority class, rI, with the Poisson generating
function:.

Aygp = .Aj_l’I + 8y - (2.2.15)

For the first job of each priority class I, the

aprival time of the first job is arbitrarily::

A (2.2.16)

€

1T - %

2
Thus the arrival time of every job in the job stream is
determined.

The assumed device time for job j , denoted

dj, is used to represent time spent 1n physically transfering
the job into a waiting area within the computer system.
Transfer from this waiting area to either the walting dqueue
.or ﬁo storage is assumed instantaneous. This device time
1g simulated after the job arrival time,<AjI , but befofe‘

the job is loaded into storagel Thus the earliest time when

the job'may be loaded into storage and when execution may begin

is AjI , given by
A.. = A, + ds. (2.2.17)

The mean storage requirement, M, is consideréd
to be a function of the central processor time requested by
a job j, tj, and hence: ,

| M M(t3). (2.2.18)
Since the mean central processor tlmes are related to the

vpriority classes, the mean storage fequirement may be thought
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of as being implicitly related to priority. There is,
however, no explicit relationship between mean storage
requirement of a job and the priority of a job. It is
thus possible to determine the mean, M, of the distribut-
ion from which the storage requiremeﬁt Rj is selected,
as soon as the centrél processor time request has been
generated.

| Tt is assumed that the distribution of the storage
requirements, with M as'tbe mean, is normal and that
the standard devidgtion is  M/2.

Data obtained from the University of Manchester

(12) concerning storage requirements with their Atlas system
indicates that the mean storage request for a job j with
central processor time request tj, denoted M,, can

2

be obtained from an equation.of the form:

"btj) .

M = B(1 --¢ (2.2.19)

The general shape of this curve 1ls shown in Figure
2.1. The parameter B determines the maximum mean storage
requirement of all jobs, and the parameter Db determines
- how rapidly the requirement rises to B with the central

processor time request t The same normal generating

-
function used for central processor request 1s employed here,
and is described in appendix A. The value generated for the
storage request, denoted Rj for job Jj is in
fractional form.

The main storage of gsome computers is broken



Mean Storage Requirement (M)
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FIGURE 2.1 Sketch Showing Variation of Mean Storage Request With
Job Central Processor Time Request.
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down into manageable séctions, such as pages (17) and
these sectlons afe indivisible when storage area is assigned.
FQr this reason, the fractional storage request, Rj,
generafed'by the method described above, 1is converted to
the smallest integer not less than Rj before use in
the model. Since every job is assumed to require some
storage, Rj is a positive, non zero, integer.

In order that ibe assumed device time is proport-
ional to the size of the job, the assumed device time.is

calculated from
d: = R: 4 . (2.2.20)

Where Rj is the integer value of storége
requirement abd d is an input parameter known as the
device time number.

To recapitulate, the job-mix parameters input at

the beginning of each simulation run are:

s the total number of jobs in the job stream;

the number of priority classes ;

w Bo=

, the priority constant;
the mean interarrival time for priority class
one jobs ; |
m , the mean cpu. time request for priority
one jobs;
da,  tbe device time number;
B , the maximum mean storage request;

b , the rate ‘at which mean storage requirements
increase with central processor time.
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From these job mix parameters, the arrival times, Ajp,

the central processor time requests, t the. priority

3

the assumed device time, dj; and the
are determined for each job

number Ij’

storage requirements, Rj,
j in priority class T in the job stream. The jobs
in each priority class I constitute a segment of the
job stream, and have a mean central processor time request

of i “and a mean interarrival time of ry .

2.3 The Job Stream Generator

The job stream generator is that portion of the
simulation model which uses the job-mix parameters and the
normal and Poissoh generating functions to generate the jobs
and to make them available to the other portions of the
simulation model as the simulation run proceeds.

Jobs are generated as' job sequences or streams
by priority class. A generatlon list is defined with one
entry or slot for each priority class, which contains the
next availlable job .within the priority class referenced.
When the simulated time of the model reaches the arrival
time of one of the jobs in the generetion list, the job
concerned 1s taken out of the generation list and is referenced
elsewhere in the model, leaving a slot free in the generation
lisﬁ. The job-stream generator is then invoked to fill the
empty slot with the next job of the priority class concerned,
following the methods outlined previously.

A flow chart of the job-stream generator operations
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is shown in Figure 2.2.

After the Nth job has been generated, and

placed in a slot in the generatlon 1ist (the e

job

could be'of any priority class), no further jobs are genera-
'ted, ensuring that only the N jobs generated are processed
by the simulation model.

A sample jd strésmils given in Appendix B.

o I Measurement of Performance - General Discussion

The criterion of performance used in these studies
is based upon the principle'of cost curves (2) and is very
similar to the criterion used by Fife (10). It is the
arithmetic mean value of functilons of the relative response
of each job passing through the simulator. Relative response,
here, is the ratio of elapsed time since the beginning of a.
job, to the sum ofAthe device time and central processor time
devoted to the job. The function of relative response used
in the measure of performance 1is a qharacteristic of the
priority class of a job and it can be used to represent the

cost of delays to jobs from each priority class.

2.5 Service to the Computer User

The duration of any job J 1s taken to be the
total time elapsed between job arrival, AjI and job
completion Tj and is given by:

AT; = Tj - A (2.5.1)
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The time during which the job is in storage and 1is

being executed is given by

T. - A. , (2.5.2)

where, with dj being the assumed device time, and with no
time spent by the job in the waiting queue,

F 3

Asr = Ajp + ‘dj . (2.5.3)

The minimum time which the job will be in storage will be

its execution time, tj. Thus, for minimum processing time:

T, ~A. = t. (2.5.4)

or

*dy, (2.5.5)

[ns!

i
[}
ety —
Cut

—

J |
assuming no time spent in the queue (Ajé =.Aj£), and:
. — . - e . 4 - ..
ATy .= Tj-Ajr=1j+d; (2.5.6)
The time devoted to the job j, denoted 'Dj ’

is defined at job completion as the sum of the assumed device

and the central processor time given, tj

Thus ‘
Z\J. = tj + dj * (2-5-7)

The lack of attention of job - j at job completion,
defined by = |
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*
p; = .__é’Tj . (2.5.8)
C3 _
‘ 'he minimum lack of attention at job completion
is ¢
. *
Pi min = LLinin_ =ty 45 =1 (2.5.9)
. ) j | ——— et
.+ des
tJ dJ
The lack of attention of a job j may be’
computed prior to job completion. At time le - during
execution of job Js
*® 1 ’
Ast < T < T o (2.5.10)»
the lack of attention is given by :
P, = Tit - Aj (2511)
. R J JI . « e

dj + cpu time given to job ]

Immediately after loading job 'j and before any cpu time

is given to job Js that is ?j = d the lack of

jJ
: 1
attention is (with A ﬁ = A1)
¥*
Py=%i ~Air= 9
4 -
. j

1.  (2.5.12)

|

Thus lack of attention has a lower limlt of one. Figure 2.3
shovws diagrammatically the relationships presented here.

" In the study of Chai (1) the penalty of a job ]
was taken to be a.function of its lack of attention, pj’

and its priority, Ij. © The penalty function- P was then:



FIGURE 2.3  Processing Times Diagram
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For minimum duration time, AT; :
min.

. . _ . CC
the time in queue = 0, i.e., AjI AjI’
the time in storage = 13;

‘and the duration time, AT, = d,. + tj.

min
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Dy = P (uj, Ij)s (2.5.13)

The penalty function chosen in these studies is identically
equal to the lack of attention. Thus job
penalty has a lower limit of unity. The mean lack of

attention (system penalty) is then :

X r“l

] o AT

N N
. (2.5.14)
J:—

(&N

and also has a lower limit.of unity. This 1limit 1s reached
when every job is processed immediately to completion with-
out interruptioh and represents optimal service to the user.
Higher system penalties reflect poorer service to the group

of users and hence a higher cost of delay.

2.6 Utilization of the System

In this research the utilization of the central
processor and main}storage are examined. The utility of
each of these two resources 1s defined as the ratio of
demand to supply for use of the resource. A utility of one
(or one hundred percent) implies ccmplete utilizatlon of the
resource, for demand less than or equal to supply.

'From another point of view, utillty of a resource
may be thought of as the percentage of time durlng which

the resource is actually being used by jobs in the job stream.
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It is shown that under certain conditions the two approaches
to utility produce the same value (appendix D).

~ To the computer manager a resource is bhardware,
and to the hardware he attaches a cost dr value. Figure
2.4 shows a hypothetical curve relating cost of resources to
number of resources. However, if the manager must gilve
a discount for a cost of delay, or penalty to users when
service is poor,wfhis cost of delay will increase as the
number of resources is reduced wiﬁh a constant job stream.
- Figure 2.5 shows a curve expressing this relation and Figure
2.6 shows a superposition of these two cost curves, implying
that a certain number of resources may be chosen to achieve
minimum costs for a constant job stream. No attempt is
made in this study to deal with specific examples of these,
however. Of greater interest is the variation of cost of
delay(penalty) with the number of resources.

The utility of a resource is inversely felated to
the number of resources for a constant job stream. Hence the
utility can be used in place of the number of resources, for
a constant job stream. Further, some propérties of the cost
of delay (penalty) as a function of utility can be predicted.
For +this reason utllity, as defined, plays a large role
in the investigation. |

The utility of the central processor, denoted U,
13 defined as the ratio of time demand on the central processor
to'time supply‘of the centrai processor. These quantities can

be determined from the job-mix parameters.
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FIGURE 2.4 ~ Sketch Showing Variation of Cost of Resources with
Number of resources.

cost of resources

number of resources



FIGURE 2.5

cost of delay (penalty)

Sketch Showing Variation of Cost of Delay
With Number of Resources ’

constant job stream

numbher of resources
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FIGURE 2.6 Sketch Showing Variation of Costs of Delay
: and Resources With Number of Resources.
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The demand on the central processor is for
execution time. At any time during the simulation run, the

mean demand may be shown to be:
D, =m L, (2.6.1)

where Dy 1s the demand for execution time per second;
ml, ry are the mean central processor time request and
mean interarrival time for jobs of priority class one and
L is the number of priority classes.

The amount of time which the central processor
can allocate to jobs during one second is a time of one
second less overheads incurred by the supervisor. If the
overhead per second 1s much less than one second, the supply

is approximately one.

Then &
1
1 F"L . (2.6.2)
1
It is to be noted that the cpu utility, U, reaches
‘unity when
r{ = mL, (2.6.3)
and is less than unity when
ry > oL . | (2.6.4)
If saturation can be sald to occur when Ug becomes

unity, the last relationship is the necessary condition to

avoid saturation.
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The utility of main storage, denoted Uy,
is}defined as the ratio of demand on, to the supply of,
main storage, with dimension [units.tima].

For a job stream of N jobs (j =1...N) each with

execution time t. and main storage requirement R,

J J’
the  demand, . -Dy, is:
: (2.6.5)
D. = t.R., | 2.0.
1 Z JJ 2
J=1
If the time required to process these N jobs
is - T - and the availlable units of main storage is
Wl, the supply, Sl’ is
S, = TW, . (2.6.6)

1 1
The utility of mailn storage, then, is:
Dy N
Uy = 5 = 1 TRy - (2.6.7)
1 Twl j:[ . . ‘
As in the case of central processor utility, the
condition required to prevent saturation (or wery heavy

loading) of the main storage is that

W, > 27 tR.. (2.6.8)

In appendix D an equivalent relation for

storage utility is derived, namely:.



U, = 7y Ry

1
rl Wl

, | (2.6.9)

where §M is the sufm, over the number of priority
classes, of the mean storage requirement of jobs of sach
priority class (eppendix D).

Another quantity related to storage utility is
used in this research. Tbis quantity is called storage
océupancy, 07, and represents the percentage of time when
storage 1s unavailable to other jobs. For example, a Jjob
réquesting two seconds of executioﬁ‘time and three sections
of storage will have a contribution to utility of six.

If this same job resides in storage for ten seconds before
it is completed, the utility will remain the same, but the
occupancy will be ten multiplied by three, or thirty,
representing the resource time monopolized by the job.

*

If the time of arrival in storage of job j is AjI

,and the completion time is Tj, the storage occupancy is

defined by
N #
e ’:Zf (T3 - 250 85 (2.6.10)
Wl T
In addition to the cpq'ﬁtility Ugs the
storage utility, Uy, the storage occupancy, O0Oj,

and the system penalty py described, other data are
produced at the end of each simulation.
The standard deviation of the final job penalties

is determined from
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A Ch ) (2.6.11)
N-1 |
and is output.
The simulated time for the simulation, T,V

is output as well.

2.7 Operation of the Simulation Model

A structured but variable Job-stream as defined

in Seotion 2.2, 1s run through the simulation model. This
section describes the operation of the simulation model,
the handling of jobs and the proceséing of the results of
the simulation run.

o The generation list, defined in Section 2.3 is
a 1ist'§f'the next jobs to arrive, by priority class. When
the simulated time reaches the arrival time 6f‘one of the
jobs in the generation list, that job ié transferred from
the generation 1ist‘to one of two other lists. The execution
1list, with W, slots, contains those jobs which are being
executed and are belng allocated central processor time.
Jobs in the execution list have been assigned resources which
remain assigned until the accumilated central processor time
allocated equals the central processor time requested for the
job. When job Js which occuples one slot in the
execution list has received its requested cpu time

tj’ the slot is made available to another job, as is storage
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Rj . Contributions of job j to system penalty and the
utilities and occupancies are stored for procéSsing at the
conclusion of the simulétiOn run. Only those jobs occupying
slots in the execution list recelve central processor time,
tie up resourceé, and can be processed to completion.

The other list to be defined is called the walting
queué, and has Q slots. If a job which has just |
become availlable for execution (at time.Ajil) cannot
immediaﬁely be placed in the executlion list because no slot
in the execution 1list is free or because insufficient storage
is available, 1t 1s placed in the walting queue for process-
Cing at some later time. As jobs in the execution list are
completed, slots in the execution list are freed and resources
are released. At such times the walting queue is scanned
for jobs which can be then accomodated. If such jobs are
found they are transferred from the walting queue to the
- exscution list, freeing slots in the queue and filling slots
in the execution list. These operations continue until all
the N jobs in the job-mix are completed. |

The transfer of a job from one list to another,
that is from the generation list to the execution list, from
the generation list to the wailting queue, ffom the waiting
queue to the_execution list, and removal upon completion,
of jobs from the execution list, is é simple and straight-
forward operation. Appendix C 1lists the data kept for each
job in each 1list.
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Of more intérest are the algorithms used fof select-
ing jobs to be transferred from the walting queue to the
execution list, and for allocating central processor time to
those jobs in the execution list. In thls research four
algorithms were studied for the former opsration and’ a
round robin variable time slicing algorithm similar to the
one used by Chai (1) is used for allocation of central
processor time. | o

A general flow diagram of the model used by Chail
is shown in Figure 27. As seen in the.diagram; operation of
the model may be considered in terms of the following routines:
- a switching wroutine is used to determine whether the
quantumn allocation routine or'the search routine is to be
executed and selection is made depending upon which of the
two was executed last and which of the three paths was taken
on the previous cycle. The switch table 1s presented in
Table 2.1. Vacant entries occur because only certain combina-
tions of last routines and last path-numbers occur during
ekecution of the simulator (1) |
- the quantum~allocation routine, which allocates central
processor time to the jobs currently in the execution list; .
- the event control routine, which selects arriving Jobs
from the generation list, places them into either the
executlon list or waiting qQueue, selects jobs from the waitimg
- queus for transfer to the execution list, and which includes
supervisor overhead time, representing the time spent by the
computer system handling the job-stream, allocating, accumulat-

ing and so on;
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CTABLE 2.1

SWITCH“TABLE CONTAINING THE DESCRIPTION

- OF THE NEXT CYCLES

Path Number for the
Previous Cycle
Last Primary Routine
Executed 1 2 3
- Search Quantum = - Search
Allocation
Quantum-Allocation Search : L - -

38
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~ the ssarch routine, which determines the hext job in the
execution list to be serviced in the round robin cycle;

- the service routine, which administers the the central
processor time allocated tc the job found by the search
routine; | |

- the update routine, wbich updates the accumulated central
processor time received by the job serviced; and

- the removal routine, which removes a job from the execut-
lon list when its central processor requirements have been
met and calculates the job contributions to system penalty

and the utilities and occupancies.

Of these routines, the event control routine is of
greatest interest. A flow chart of the event control routine
used by Chal is shown in Figure 2.8. This diagram shows
generally the logical operationé required in handling arriving
Jobs, the waiting queue, and shows the inclusion of an over-
- head time for supervisor operatlions. It was considered by
Chai that a time of 0.01 seconds for a supervisor cycle,'
répresenting about three thousand instructions on an IBM 360/65
computer was realistic. This same time is used in this
research, and the parameter for supsrvisor cycle time is

denoted . T,

2.8 Allocation of Central Processor Tims

~ The Variable Time Slics

Central processor time is allocated to jobs in the
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execubion list on a round robin basis. A round robin time
of Tr 1is defined such that each job‘in the execution
1ist receives some executlon time every TR seconds,
approximately. Interruptions occurring from time to time
during a job's time-slice cause the supervisor to incur
overhead, resulting in the cycle tims being slightly greater
than TR. Also, a job could be completed during its
time slice, resulting in a slight decrease in the cycle
time. No account is taken of the fact that a job 1s
closs to completion when the job's tims slice is belng
calculated. | |

glots in the execution list are considered as
resources. Each job requires one slot in the execution 1list,
of which W, are initially available.

The variable time slice algoritihm used allocates a

~ time slice to job Js TRj according to the equation
. =g: T '
Trj = &j 'R fop TRy > Teym (2.8.1)
5
2. 8
1=1
and
- < “RM
> &
oAt
where 8 is the number of Jjobs belng simulbaneously

processed (occupying slots in the execution 1ist).
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The quantity ‘TRM is called the minimum time
slice .and represents the value of a time slice below .
- which overhead beoomés crucial. In this research TRM
is taken to be 0.01 Ty (1).

The gquantity 83 is an augmented lack of attention,

defined by °*

= ATy T3y =Py ot g, (283
G R

Since dj is proportional to the size of the job,
the algorithm favors larger jobs by glving them larger time
slices than jobs with smaller storage requirements, all

other things being equal.

2.9 Resource Handing in the Simulatlion Model

At the beginning of each simulation the parameter
Wl, representing the number of'storage sectlons avallable,
is input. During the simulation'run a secondary quantity,
‘ Wt is maintained which represents the number of storage
sections available at any time t during the run.
When some job ] 1s to be tested to see if 1t
can be loaded, into cord, two conditlons must be satisfied.

A slot in the execution list must bs free, le:

W, - s 21 (2.9.1)

Wy 2 Ry . - (2.9.2)
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If these conditions are satisfied, the job 1is considered as a
possibility for acceptance into the execution list. The

final selection of one job from the list of possibilities

is made by applyving the loglic of the gueue sslection
= O O

algovrithm. Upon acceptance of a job J, s is
incremented by one and Rj is subtracted from 'Wt.
When some executing job J has received 1its

full central processor time, 1t 1s removed from the executlion
list, s 1is decremented by‘one,‘ana Rj is added to
Wy. Thus a slot is now avallable for another job and
Rj more storage sections are available as well.

Upon job completion the contributlons to storage

utility'ind occupancy are stored - the products ti:Rs: and

3
(T,

- AjI) Rj respectively.

2,10 Algorithms for Selection of Jobs from the Waiting Queue

Jobs which arrive and cannot be immediately
accomodated are placed in tbe.waiting queue as described in
Ssction 2.7. When the wailting queue is full and a job is
acheduled to arrive, the arriving job is left in the generat-
ion list until a slot in the waiting queue is free, at which
time that job is placed in the waiting queue. For this
study, the queue length was set at twenty. The queue was

found to fill up only as the utilities approached unity,



that 1s, as

r = m L (2.10.1)

or as

N
Ty > Z tRs (2.10.2)
32!

Tor utilities less than 0.60, the number of waiting jobs
did not exceed fifteen. | |

Tf there is only one job 1n the walting queue
which can be accomodated in the execution‘list and by the
currently available resources, the task of selection 1s
trivial. If, however, there are two or more jobs which

could be accomodated, some algorithm must exist to decide

44

which one is to be transferred from the walting qusue to the

execution 1list, as mentloned in Section 2.9.
The four queus selectlon algorithms included in
thé model are:

1. Pirst - come - first - served:

.~ selection of Job 1 such that
* *
LT < AjIj 5 (2.10.3)

for j equal to each member of the walting list

which can be accomodated 3

o, First - Come - first - served - by - priority - class:

selection of job i such that

I, < I

i (2.10.4)

j >
for j equal to each member of the walting
list except 1; ' '
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' and
% ‘ #
Ayr, S AjIj , (2.10.5)
for all j with I, =T, ;
J 1
3. ‘Highest -~ penalty - first :
< selection of job 1 such that
P; 2 Py | (2.10.6)

for j equal to each member of the

valting list which can be accomodated except 1ij

4. Shortest - job - with - highest - storage -
requirenents - first:

selection of job 1 such that

l

1 > 1 , (2.10.7)
ti(wt-R ;1) t3(We-R j+1)

for all j  1in the waiting list which can be

- accomodated except 1.

For any of the four queue selection algorithms,
only those jobs in the walting list which are known to be
possibilities for acceptance are tested. In the event that
two jobs both satisfy the logic of the qusue selectlon algor-
ithm, the job tested first is aqcepted from the walting queuse.

An input parameter, AS, 1s set to the number

of the queue selection algorithm to be used in the simulation.
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For instance, if Jjobs are to be selected by queue selection
algorithm three, highest-priority-first, Ag 1is set to

three.

2.11 Summary

This chapter baé described the job étream, the
operations of the simulation.model, and the output statistics
from the model.

The output statistics are:

— N * N %
system psnalty p% =1 57 pi= 1 2{; (Vi)
| N 13 N 1a
cpu  utllity Ug = m
o Lo
™
stora tility U 1 N R
orage utility = 1 :
| 1WthRix“f“L#
_ N
storage occupancy 0 = i 2{: (Ti*AiI) Ry
| Wy 31
The Jjob-mix parameters are:
number of jobs N
number of priority classes
priority constant : k
- mean interarrival time, priority one r1
mean cpu time, priority one o ml
maximum mean storage constant : B

storage time constant

device time number . d
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Simulation model oOperational Parameters:

number of slots in executlon 1list W
number of slots in walting queue Q
round robin cycle time Tr
minimum time slice TRM
supervisor Cycle Time Tse
storage Resource &vallable | ' Wy

queue selection algorithm to be used Ag = 1,2,3 or h

These listed parameters are input at the beginning
of each simulatién. A job stream developed from the job-mix
parameters is run through the simulation model, whose opsra-

tions are a result of the opsrational parameters, and the
| indicated results are produoed‘ét the conclusion of the

simulation run.



CHAPTER III

A STUDY TO DETERMINE A RELATIONSHIP BETWEEN
TACK OF ATTENTION AND UTILITY

3.1 Introduction

Each simulétion run produces a system penalty,
a centrsl procéssor (cpu) utility and a storage utility.
'If a series of simulation runs is mede with a constant
Job stream and diminishing storage, it might be expected
‘that the system penalty Would increase, since the same
jobs are being processed by a computer which is contin-
ually growing smaller. Or if a series of simulation runs
1s made with the interarrival times of the jobs monotonically
decreasing, the system penalty might be expected to increase,
since the same computer would have to process more and more
- jobs per unit of time.

From the definition of cpu and'Storage utilities,

"
UO = "1 1 ,
T1
1 N = :
Up iy 2 bRy oF V1= M By ponginp),
‘ i-1 . Ty wl
1t 1s clear that both U, and Uy will increase with
decreasing interarrival time r1, and that U, will
increase with decreasing available storage, Wy

~ 48 -
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Tt can then be suggested at this point, without

roof, that system enalty increases with utility.
2 o

3.2 An Empirlcal Relation Between Lack of Attention'

and Utility

The penalty functlon pi =i is used
throughout these studies. In this case the system penalty
p§ becomes the méan lack of attentlon, ﬂ&r In this
section the mean lack of attention 1s related to the
utilities in an empirical manner. The purpose OF deriving
and testing an empirical relationship between mean lack of
attention, Jy and the utilities Ug and Uy is to
try to establish the characteristics of the variation in
a manner which 1s independent of the job~scbeduling algorithm
being used. 1t 1is thought thatkthe observed variations of
Pu with 'UO and 'Ul, for various job-scheduling
algorithms, might be explained more simply by reference to
the deviations from the derived empirioal'relationship.

Both central processor (cpu) and storage utilities,
Uy and. Uq respectively, are defined as a ratio of mean
demand to supply in the competition concerned. For the
derivation of an empirilcal relationship, it 1s aésumed that
the mean lack of attention, EM. results from such compet-
itions as those for central processor time and for storage.
Two stipulations on each competition are made: | |

1. As the démand approaches 28ro oOr the Supply.

becomes infinite in any competition, the
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‘contributlion made by that competition to

the mean lack of attention approaches zero;
2. As the supply approacbes the demand, or vice

versa, 1n any competition, the contrlbution

made by that competition to the mean lack

of attention approaches infinity.
These two stipulations are satisfied by a form:

1

-1

35.2.1
g b () )
D

for each competition, where S is the supply and D

is the demand. Since utility is defined as:

- D
U= 3 (3.2.2)
+the form becomes
1 _
T““‘:Mi . (3.2.5)
7]

This form (ses Figure 3.1) is similar to one by Klelnrock (3).
Tt is assumed that the contributions made by the
competitions for the different resources to the mean lack of
attention are additive. An additive relationship is just-
ified on the grounds that it 1s the simplest relationship
allowing contributions from different competiticns to be
independent. Since lack of attention has a lower limit of

one, the following equation may be written:



function of utility f{U)

FIGURE -3.1

10

Graph Showing the Function of Utility,
Used in the Empirical Relation.

rd
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K
P = 1+ Co s 7T

= (3.2.4)

dih’

for K competitions. The coefficlent CO is

- included to sccount in an empirical manner for contributions
to the mean lack of attention, Py, made by parameters
and effects not explicitly included in the definition of

the utilities. In the parbiculér study of this research
two oompetitiohs, for cpu time and for storage, represented

by utilities Uo and Uy respectively, are considered:

1

pM‘ = 1 + Co (7 “t”; + 1 )
U

. (3.2.5)
o) Ul

The assumptions and conditions governing the use
of this relationship must be stated. A utility of one, or
one hundred percent, represents the real SLtuauWOD in which
- jobs are demanding, on the average, everything within the
particular competition. The lack of attention for some
'jobs may be very high, but the mean lack of'attention will
- probebly not be infinite. For a utility greater than unlty,
the walting queue will build up without 1imit and the mean
lack of attention will become very high. The relation
predicts infinite lack of attention at utility identically
equal to one. The mean lack of attention will rise toward
infinity when U3 = 1+ €, for any competition
i, whefe € = zero, ‘The empirical relation 1is

quite good,in this reglon.



The empirical relation, Equation (3.2.5) is
probably dependent on the job-scheduling algorithm for
heavily loaded simulations, that 1s with any utiiity
approaching one, and 1s probably independent of the job
scheduling algorithm for lightly loaded simulations,
ﬁbere all the utilities are much less than unity. Variation
in the coefficient, Co, may be used to account for any
algorithm dependence and therefore CO will not vary until
high values of utility '( Uj — 1, any j) are reached.

When any utility is eqgual to unity, the waiting
Queue will build up very quickly. With a finite number of
jobs, the mean lack of attention will not become infinite,
but will, in fact be related to the number of jobs in the
simulation, since the series of job penaltieé, p? becomes
time dependent as either the central processor utllity,
UO,’ or the storage utility, Ul’ reaches a value of
unity. When any utility is equal to unity, mean lack
of attentlon becomss a function of the number of jobs being

processed.

3.3 Experimentation to Test the Derived Empirical Relation.

The relationship between msan lack of attentlon
Py end the utilities, U, and U, developed in the
previous section, Equation (3.2f5), is of an empirical nature
and its validity can be tested by comparison with simulated

results.
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The coefficient, C may be dstermined for

Q2
each simulation run from the values of My, Ug,, Uy,
the mean lack of attention, the cpu and storage utilities

respectively. Equation (3.2.5) way be rewritten:

Py -1
CO o= .
U + Uy , (3.3.1)
to show the calculation. From these values of CO

it is possible to test the validity of Equation (3.2.5)
over a range of utllities.

It is desirable to use the same set of jobs 1n
each simulation run for each study wherever possible. In
the case where a job's storage request, Rj, exceeds that
initially available, Wi, the storage request 1is

J
storage while it is being processed.

reduced from R to 'Wl. The job will then monopolize

The empirical relation 1is tested in three ways in
this research. In the first investigation the interarrival
times of jobs in the job stream are systematlcally varied,
while everything else 1s held constant. In the second invest-
igation, the number of units of available storage is system-
atically varied while the opsrational and the job sﬁream

parameters are held constant. In the third investigation
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only the queue selectioh algorithmé are varied,.

| The system penalty 1s the arithmetic mean bf the
»final job penalties of the fifteeh hﬁndred jobs processed
in each run and in these investigations is the same as the
mean lack of attention. The reprodudibility of this mean
value is dependent upon the distribution of the final job
penalties of the jobs processed. The range around the system
penalty, P; within which the population mean lies with
05 percent probability (for normally distributed_final job

penalty values) is approximately (11):

+ 2 0y
T NYZ
where 1s the standard deviatlon of N final job

penalty values.
Because of certain amount of autocorrelation exists
in the final job penalty values, a deviation from thils
normal situation occurs. This deviation has been found to
be a function of the number of jobs, N, but for values
of N greater than 50, the observed range around the
system penalty within which the population mean lies has been
found (11) not to exceed:
+ -EZ“EEL_
- M-z
Figure 3.2 shows the reproducibility limit for wvarious ratios
of standard deviation to system pesnalty.
When the standard deviation in system penalty equals

the system penalty, the range of confidence in the system
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confidence range as a percentage of- the observed p§ value
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FIGURE 3.2 Confidence Range of System Penalty as a
Function of the Ratio of the Standard
Deviation in the System Penalty to the
System Penalty with N = 1500
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. + ‘
penalty is - 13.5 percent. of the observed system penalty.

3.4 The Validity of the Empirical Equation As Interarrival

Time is Varied.

This section describes and discusses two simulation
studies conducted in each of which’nothing'but the inter-
arrival time of arriving jobs in the Job stream is varied
between test runs. |

For each test run a value of Co is calculated

from

o Dy - 1
o~ _Ua + _U3 (3.3.1)

1 -Uy 101

Thus the empirical equation gives the value of [y
actually obsered. A constant value of G indicates
that the empirical equation fits the simulated results exactly

throughout the whole variation of U and Uy. It is to

0
be noted that system penalty and mean lack of attention can be
used interchangeable because of the penalty function used

' In the first of the studies described (3.4 - 1)

in this sectlon one priority class 1s considered. Job-mix

and cperational parameters held constant between simulation

- runs are listed in Table 3.1. The results obtained and the coeff-

icient CO calculated for each simulation run as the mean
interarrival time for priority one jobs 1s varied from 100.0

to 1.0 seconds are glven in Table 3.2. ( See Appendix E. ).



TABIE 3.1

SIMULATICN MODEI, PARAMETERS HEID

CONSTANT FOR STUDY 3.4-1

JOB-MILX PARAMETERS:

Priority Constant
Number of Jobs

Mean C.P.U. time, priority one

Mean Interarrival time, pfiority

one
Number of Priority Classes
Resource Request Size Constant

Resource Request Rate Constant

OYERATTONAL PARAMETERS:

Length of Execution List
Length of Walting Queue
Round Rcbin Cycle Time
Mininum Time Slice
Supefvisor CYcle Time
Device Time

Queue Selection Algorithm

Storage Avallsble

k
N

my (seconds)

ry (seconds)
L
B
b

S

Q .

Tr (seconds)
"Try (seconds)
Tosc (seconds)

4 (seconds)

As

Wy

6.0

11500

1.0

varied
1
6.0
0.46

10
20
6.0

0.06

0.01
1.0
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TABIE 3.2

RESULTS OF STUDY 3.4-1

System Standard

C.P.U. Storage Storage Calculated

Interarrival' “Simulated -
time Run Penalty deviation, Utility Utility Occupancy Coefficient
ry (seconds) Time " System
: ( seconds) Py penalty U,x100  Uyx100 0,%100 Co
100.0 141755.50 1.02 0.19 1.0 0.33 0.34 J
8.0 11343.61 1.09, 0.29 12.5 4,12 464 0.4
2.0  2840.20 1.48 0.69 50.0 16.14 27.13 0.40
1.8 2556.80 1.57 0.76 55.5  18.26 %2.07 0.39
1.6 227%.40 1.68 0.82  62.5  20.55  39.68 0.34
1.4 1991.31 1.89 0.93 71.5  25.4k 51.08 0.72
1.2 1709.95 2.55 1.36 8%.4  27.30  TL.h0  0.30
1.1 1575.15 5.12 3.21 91.0 29.64 93.17 0.79
1 21.99 11.85 100.0 30.24 0.00

.0 - 1543.75

¥ See Appendix E.

o7 .34

6S
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In the séoond study (3.4-2), two priority classes
are considered. Table 3.3 lists the invariate job-mix and |
operational paramebers, and.Téble 3.4 lists the results
obtained and the coefficient Co calculated for each
value of mean interarrival time(for jobs of priority class
‘ one)as that time is -varied from 100.0 to 2.0 seconds.

In both studies the first-come-first-served queue
selection algorithm is used (Aé =1).

. - Figure 3.3 shous the coefficilents Co determimed in
these studies (3.4-1 and 3.4-2 respsctively) as functions
of the cpu utility,'UO,wﬁﬂ)a.range determined from the
standard deviation (Sectioh 3.4). Tt is seen that for both

studies, the coefficients Cd are approximately constant

for :
UO < 0.60 .
An approximate value of C, for study 3.4-1 valid in the
region indicated, would be:
C, = 0.0,
and for study 3.4-2 :
C. = 0.80.

o

Figures 3.4 and 3.5 show the mean lack of attention
measured as a function of cpu utility and that predicted by

the analytic relation for studies 3.4-1 and 3.4-2, with



TABLE 3.3

STMULATION MODEL PARAMETERS HELD

CONSTANT FOR STUDY 3.4-2

JOB-MIX PARAMETERS:

Priority Constant
Number of Jobs

Mean C.P.U. time, priority one

k
N

T, (seconds)

Mean Interarrival Time, priority

one
Number of Priority Classes
Resource Request Size Constant

Resource Request Rate Constant

OPERATIONAL PARAMETERS:

Length of Execution List
 Length of Waiting Queus
Round Robin Cycle Time
Minimum Time Slice
| Supervisor Cycle Time
Device Time
Queue Selection Algorithm
Storage Avallable

ry ( seconds)
L
B
b

S

Q .

Tr (seconds)
Try (seconds)
Tac (seconds)

3 ( seconds)

b

W1

6.0
1500
1.0

varled
2
6.0
0.46

10

20
6.0
0.06
0.01

- 1.0

25

61



TABLE 3.4

RESULTS OF STUDY 3.4-2

Interarrival Simulated System Standard C.P.U. Storage Storage Calculatéd
time Run Penalty deviation, Utility Utllity Occupancy Coefficient
ry ( seconds) Time s System
(seconds) ooy penalty U _x100  U,x100 07x100 Co
100.0 121840.88 1.04 0.26 2.0 0.38 0.39 T
8.0 9758.57 1.33 10.99 25.0 .66 6.77 0.84
4.0 4912.38 1.92 1.29 50.0 8.95 14.41 0.82
3.0 3669.96 2.50 1.5 66.7  11.98  35.76 0.71
. 2.8 3429 .56 2.68 1.68 71.5 12.82 11.58 0.63
2.6 3189.52 2.95 1.73 77.0 13.87 50.00 0.56
2.4 2060 .66 3 .47 1.81 83.5 14.85 62.16 0.48
2.2 2752.96 4.63 2.48 91.0 15.98 76.79 0.35
2..0 5.72 100.0 - 17.02 97.06 0.00

2583 .24 9.54

¥ See Appendix E.

Z9
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FIGURE 3.3 Variation of the Coefficient CO with C.P.U, Utility U

I

0

for Studies 3.4-1 and 3.4-2

O

l 3.4-é ]

3.4-1

10

20 320 40 50 60 70 80 90 100

C.P.U, Utility UO X 100 o



Mean Lack of Attention (uy)
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FIGURE 3.4 Variation of the Lack of Attention with C.P.U. Utility
ifor Study 3.4-1 :

o o o : observed values

: empirical equation, CO = 0.40
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Mean Lack of Attention (uM)

FIGURE 3.5 Variation of the Mean Lack of Attention with C.P.U. Utility
for Study 3.4-2
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——— : empirical equation, C0 = 0.80
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C 0.40 and 0.80, respectively. From these curves

o=
it is seen that the analytic relation holds well for

U, < 0.60, and there is a strong indication that in
this range of cpu utility, performance characteristics

of the simulation model are determinable from the utilities.

The cpu utility is given from the input paramesters Y1, M,

and L

il

.and the storage utility, using the equivalent definition

(appendix D), is given by :

W
Il I.l

The -value ﬁﬁ may be determined from:

L L b
— — y - I
Ry = 2. B = > B(1L-e ),
€=1 I:l
and W, 1s the number of units of storage available.

Thus the utilities and therefors the mean lack of attention
are determinable from input parameter values for the range
of cpu utility indicated.

Figures 3.6 and 3.7 show mean lack of
attention UM related to the storage utility, Uy, for
these two studies, with Cq equal to -0.40 and 0.80

respectively.



Mean Lack of Attention (uM)

FIGURE 3.6 Variation of the Mean“Lack of Attention with Storage
Utility for Study 3.4-1

o o : observed values

———— : empirical equation, C0 = 0.40
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Mean Lack of Attention (uM)
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FIGURE 3.7 Variation of the Mean Lack of Attention with Storage
CUtility for Study 3.4-2

o o : observed values

: empirical equation, Co = (.80

5 10 15 20

Storage Utility U] x 100

- 89



69

For cpu utility greater than 0.60 a variasble
coeffiéient CO is required if the empirical equation
is to fit the observed results. This suggests that the
eguation, and hence the coefficlen® CO become functions
of the job-scheduling algorithm as any of the utilities

exceeds 0.60.

3.5 yglidity of the Empirical Equation as Storage

Size is Varied

This section describes and discusses two simulat-
ion studies conducted in each of which nothing but the slze
of the availlable storage (Wl) is varied between test runs.

As in the studies described in Section 3.4, a
value of the»coefficient Covis calculated for each test run
to make the empirical Equation (3.2.5) fit the obsefved
results.

The only difference between the two studies of
this section, labelled studiles %3.5-1 and 3.5-2 respectively,
is in the sﬁorage requests of each job in the job stream.

In study %.5-1, storage requests are determined from the
input parameters B and b and from the cpu time
request of each job Js in the manner describedvin
section 2.2. In study 5.5—2 the storage request of every
job in the job stream is identically one unit éf storage.

The job-mix and operational parameters held

constant during both studies %.5-1 and 3.5-2 are given in
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Table 3.5. The first-come-first-served queue selectlon

algoritbm is used  (Ag ~1). | |
The results obtained and the coefficient Cj

calculated for each value of W, as. W is

1 1
varied from 09 to 1 are shown for studies 3.5-1
and 3.5-2 in Tables 3.6 and 3.7 respectively. The rangs
of confidence in the observed system penalty (mean lack
of attention) varies from T g percent to : 20
percent in both studies %.5-1 and 3.5-2, with the higher
value occurring in both when W = 1.

Figure 3.8 shows the coefficient C, as a
function of 'Wl for studies %.5-1 and 3.5-2. Two features
of the curves shown are of interest, the extremely high
value of CO at Wl — 1 and the différence in slope of the
curves in the ranges of Wy from 6 to 15. InSection
3.4 it was stated that fhe coefficient Co could include
the contributions to mean lack of attention of all parameters
and effects th explicitly included in the definition of the
utilities. The two effects which may explain the curves of
figure 3.8 are supervisor overhead and long-job-loading,
neither of which appear explicitly in the utilities.

With each job in the job stream requiring all of

the storage availabls (See page 54), that is:

R4 =:Wl, all jobs 1,

and with the first-come-first-served algorithm, from time

to time a priority class three job will monopolize the
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TABLE 2.5

STMULATION MODEL PARAVMETERS HELD

CONSTANT FOR STUDY 3.5-1 and (3.5-2)

JOB-MIX PARAMETERS:

Priority Constant
Number of Jobs

Mean C.P.U. time, priority one

k 6.0
N 1500
my (seconds) 1.0

Mesn Interarrival time, priority

one
Number of Priority Classes
Resource Request Size Constant

Resource Request Rate Constant

OPERATIONAL PARAMETERS:

Length of Execution Lilst
Length of Waiting Queus
Round Robin Cycle Time
Minimum Time Slice
Supervisor Cycle Time
Device Time |

Queue Selection Algorithm
Storage Available

Tsc (seconds)

rq (seconds) 6.0

L 3

B 6.0 (0.0)
b 0.46 (0.0)
S 10

Q 20

TR (séconds) 6
Try (seconds)  0.06
0.01

d (seconds) 1

Ag o
Wq ' varied



TABIE 3.6

RESULTS OF 3TUDY 3.5-1

Availlable Simulated System Standard C.P.U. Storage Storage Calculated
Storage ' Run Penalty deviation, Utillty Utility Occupancy Coefficlent
Wy Time % System

( seconds) Dy penalty  Ugxl00 U1x100 01x100 Co

99 Thh2.3) 2.05 1.57 50.0 2.87 6.95 1.00

50 | Thi2.31 2.06 1.37 50.0 5.68 13.77 1.00

25 T4h2 .31 2.15 1.79 50.0 11.757 25.28 1.00

20 Thh2 .31 2.17 1.87 50.0 14.21 29.43 1.01

15 Thh2 31 2.21 2.733 50.0 18.904 %% .66 1.06

10 CT7hh2.31 2.58 2.83 50.0 28.06 28.83 1.14

8 Thl2 31 3.01 3.75 50.0 33537 41.49 1.355

7 7442 .31 3.25 4,29 50.0 36.26 43,09 1.4k

6 Thi2 .31 3.13 3.83 50.0 39.38 bk 78 1.30

1 Thh2 31 5.25 9.43 50.0 53 .60 54.49 1.95

L



Avallable

RESULTS OF STUDY 3.5-2

TABIE 3.7

‘s

Simulated System standard C.P.U. Storage Storage Calculated
Storage Run Penalty deviation, Utility Utillty Occupancy coefficient
Wl Time % Systenm .

( seconds) Dy penalty Ugxl00 U,x100 0,%100 C,
09 7641 .01 1.92 1.20 50.0 0.52 1.1 0.92
50 7641.01 1.92 1.20 50.0 1.02 2.25 0.91
25 7641.01 1.92 1.20 50.0 2.05 4,51 0.90
20 7641 .01 1.02 1.20 50.0 2.56 5.63 0.20
15 7641 .01 1.92 1.20 50.0 3.1 7.51 0.39
10 7641.01 1.92 1.20 50.0 5.12 11.27 - 0.87
8 T641.01 1.92 1.21 50.0 6.39 14.09 0.86
7 7641.01 1.92 1.20 50.0 7.51 16.10 0.85
6 7641.01 1.91 1.19 50.0 8.53 18.60 0.83 .
L 7641 .01 4,78 7.09 50.0 .51.16 52.01 1.89

€L
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computer, holding up shorter jobs of higher priority

(1oﬁer priority class number). This will result in a
higher mean lack of attention and hence higher coefficlents
Cs- For/”study 3.5-1 , where the mean storage

demand of all jobs (mean Ri) can be shown to be about

five units or section;i' the effect will persist until

Wy is equal to at least five, perbaps ten. The coeffic~
jent C, :calculated for lower values of Wl in study 3.5-1
will be highef‘tban one might.otherwise expect. It

is not unreasonable o suggeét that the effect will fall off
not abrubtly, but gently with Wp. The observed effect does
not disappear until Wq is approximately 15 (see Figure
%.8) that is, three times the mean storage request.

In the case of sﬁudy 3.5-2, with the mean storége
requirement equal to one, and by the argument above, the
valus of the coefficient at Wy =1 should be the same
as that for study 3.5-1 _ and the effect of long-job-
loading should disappear at fhree times the mean storage
request, or at Wp = %, From the curve for stuﬂy‘3.5—2

' inFigure 3.8, it is seen that the cosfficients at = Wy =1
- are very close for the two studies and that for study 3.5-2
the coefficient falls of f very rapidly and reaches a minimum
in the neighborhood of Wl _ 5. This does not Justify the
preceeding argument, but does help to support it.

Supervisor overhead 1s almost directly proporticnal

to the number of jobs being simultaneously processed (1). It

* the mean storage requirement 1s approximately given by
Mean Ry _ %. Ez: ny . B (1 -8 -me)

I- 1
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is preasonable to suggest that higher overheads will cause
the system penalty to increase, and as a result, the
coeffibiemts Cos TO increase, since overhead reduces the
amount of cpu time available for the fulfilment of requests
by Jobs fér cpu time. Very simply, then, the more jobs in
storage beling exscuted simultaneously, the higher the
coefficient C,, all other things being equal. With R4
equal to one for all jobs i, the number of jobs that
can be simultaneously exccubed is related directly to the
number of units or sections of storage, Wy. This may
account for the positive slope in the curve for study 3.5-2
from Wy =6 to W= 10.

Occupancy (Bguation ©.6.10) may be used to show
some effects of space sharing in study 3.5-2, where
T = 7641.01 (Table 3.7) and Rj = 1 for all jobs. The total
time spent in storage by jobs 1s then glven by the product
(7641.01 0q W) for each run. With Wy =1, the product
is aboﬁt %,980 seconds, representing serial processing. With
Wj_;a 7, the product is constant at about 8,600 seconds
(see Table 3.7), implying a maximization of space sharing
benefits for this study. Therefore, at most seven jobs are
processed simultaneously, with a mean of about two (86/39.8)
when Wy > 7.

From Tebles 3.6 and 3.7, and from Figure 3.8,
tbe constant values of the cosfficient C, may be taken as
1500 for study 3.5-1 and 0.90 for study %.5-2. The rangse
of confidence in these values is at least 8 percent (Tables
3.6 and 3.7, with Section 3.4). Thus a coefficient of 0.95

may be used for both studies, since 1t lies within the range
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of confidencé for both. Figure 3.9 shows systemvpenalty
(mean lack of attentlon, Pu) as a function of storage
utility, Ul, vith Cy = 0.95, witb the observed data
from studies 3.5-1 and 3.5-2. For the storage utility less
than 0.40 the empirical equation is seen to hold reasonably
well. |

| Divergence of the observed mean lack of attention
from that given by the empirical equation for storage utilify
larger than 0.40 has been attributed to the effect of long-
job-loading. At a storage utility of approximately 0.50,
for both studies 3.5-1 and 3.5-2 (Tables 3.6, 3.7 ) the
processing becomes serial with jobs being processed in thelr
arrival sequence. For the first-come-first-served queue
seleotion algorithm and for the parﬁicular job stream studied,
the acquisition of sufficient storage to permit time and
space sharing produces a clear improvement in simulation model

performance .

3.6 Validity of the Empirical Equation With Various

Queue Selection Algorithms.

This section describes and discusses four studiles
conducted which differ only in the queue selection algorithms
used. The quantum allocation logic is constant and corres-
ponds to that used previously (Sections 3. b3, 5). The
queue selection algorithms, which are fully described in
Section 2.5, are: one, first-come~first-served; two, first-

come-first-served-by-priority; thres, bighest-penalty~first,
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and four, shortestmjobnwithahighest—main—storage~requirement~
first.  Each study involves varying the interarrival time of
the jobs and observing the change in the system penalty
(mean lack of attention) . |

As in the studies previously described (Sections
34,3, 5) a value of the coefficient Co is calculated for
each test run to make the enmpirical Equatlon (3. 2 5) fit the
observed resulls.

The job-mix and operational parameters held constant
‘during these four studies are listed in Table 3.8. The results
and calculated coefficients are given 1n Tables 3.9, 3.10,
%.11, and 3.12, corresponding, respectively, to studies 3.6-1
(first-come—first~served), % .6-2 (first-come-first-served-by-
priority), 3.6-3 (highest—penalty-first) and %.6-4 (shortest-
jdb—with—largest—storage—requirement—first). Table 3.9 is
a repeat of Table 3. % (Section 3.4). The coefficlents
calculated for these studies are summarily listed in Table 3.15.
| Examination of Tables 3.9,5. 10,%.11, and 3.12 reveals
that for any particular value of interarrival time greater than
2.2 seconds, the results afa largely independent of the queue
selection algorithms. Run time, system penally (mean lack of
attention), standard deviation in the system penalty, the
utilities, storage occupancy and coefficient Cq vafy from algor-
{1thm to algorithm by less than five percent. Since reproducib-
{1ity of results cannot be guaranteed within five percent there
gseems to be no significant dependence of results on the part—

icular queue selectlon algorithm chosen 1n this region of utlllty.
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TABLE 3.8

STMULATION MODEL PARAMETERS HELD CONSTANT
 FOR STUDY 3.6-1, 3.6-2, 3.6-3, %.6-4

JOB-MTX_PARAMETERS:

e S s e 0T

Priority Constant k 6.0
Number of Jobs N 1500

Mean C.P.U. time, priority one My (seconds) 1.0

Mean Interarrival time,

priority one ry (secondé) variled
Number of Prilority Classes | L 2
Resource Request Size Constant B 6.0
Resource Request Rate Constant D 0.46

OPERATIONAL PARAMETERS:

Length of Exécution List S , - 10
Length of Walting Queue Q 20
Round Robin Cycle Time TR (seconds) 6.0
Minimum Time Slice TRM (seconds) 0.06
supervisor Cycle Time Tac (seconds) 0.01
Device Time , d (seconds) 1.0
Queue Selection Algorithm Ag varied

Storage Available Wy 25
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TABIE 3.9

RESULTS WITH QUEUE SELECTION ALGORITHM ONE (%.6-1)
| FTRST ~COME ~-FIRST -SERVED

Interarrival gimulated - System Stendard C.P.U. Storege - Storage Calculated

time Run Penalty deviation, Utility Utility Occupancy Coefficlent
ry (seconds)  Time % Systenm ' |
( seconds) o penalty U x100 U,x100 01x100 Co
100.0 121840.88 1.04 006 2.0  0.38 0.39 .

8.0 9758.57 1.33 0.99 25.0 4 .66 6.77 0.84
4.0 4012.%8 1.92 1.29 50.0 8.95 14,41 0.82
3.0 3669 .96 2.50 1.59 66.7  11.98 %5.76 0.71
2.8 3429.56 .68 1.68 71.5  12.82 41.58 0.63
2.6 3189.52 2.95 1.73 77.0  1%.87 50.0 0.56
2.4 2060.66 3.47 1.81 83.5  14.85 62.16 0.48
2.2 2752.96 4.63 2.48 91.0 15.98 76.79 0.35
2.0 0583 .24 9.54 5.72 100.0  17.02 97 .05 0.00

¥ BSee Appendix E.

18
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TABLE - 3.10

RESULTS WITH QUEUE SELECTION ALGORITHM TWO (3.6-2)
FTRST-COME -FIRST-SERVIED BY PRIORITY CLASS

Interarrival Simulated System Standard C.P.U. Storage Storage Calculated
tims Run Penalty deviatlon, Utility Utility Occupancy Coefficient
rqy ( seconds) Time % System : :
( seconds) Py penalty  U,x100 U4 x100 0,x100 - Cy
100.0 121840.88 1.04 0.26 2.0 0.38 0.39 -
8.0 9758.57 1.33 0.99 25.0 .66 6.77 0.84
5.0 4912.38 1.90 1.29 50.0 8.95 19.41 0.83
3.0 3669;96 2.49 1.58 66.7 11.98 35.82 0.71
2.8 3429 .56 2.64  1.59 71.5 12.82 41,55 0.6%
2.6 3189.52 2.95 1.72 77 .0 13.78 49.08 0.56
2.4 2060.32 336 1.76 83.5  14.85 61.73 0.46
2.2 2752 .64 3,22 2.19  91.0 15.97 76.28 0.31
2.0 2584 .63 6.49 5.82 100.0  0.00

17.01 95.68

* See Appendix E.

Z8



TABIE 3.1l

RESULTS WITH QUEUE SELECTION ALGORTTHM THREE (3.6-3)
HTGHEST PENALTY FIRST

Interarrivél Simulated System tandard C.P.U. Storage Storage Calculated
time .- Run Penalty deviation, Utility Utility Occupancy Coefflcient
rq (seconds) Time % System
(seconds) Py penalty  Upxl00  U;x100 01x100 Cs
,X.
100.0 121840.88 1.03 0.26 2.0 0.38 0.39 -
8.0 9758.57 1.35 0.98 25.0 4 .66 6.78 0.85
4.0 4912.38 1.90 1.26 50.0 - 8.95 19.46 0.84
3.0 3669 .96 247 1.52 66.7 11.98 35.76 - 0.70
2.8 3429.58 2.62 1.54 71.5 12.82 41.54 0.61
2.6 3189.50 2.88 1.61 77.0 13.78 49 .46 0.54
2.4 2060 .66 3.46 1.78 8%.5 14.85 62.16 0.48
2.2 275%.16 4.3 2.12 01.0  15.97 76,41 0.%2
2.0 o584 .35 9.18 5.1%  100.0 17.0L 06.47 0.00

¥ See Appendix E.

£8
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TABLE 3.12

' RESULTS WITH QUEUE SELECTION ALGORITHM FOUR (3.6-4)

SHORTEST JOB, HIGHREST STORACE NEEDS FIRST

Interarrival Simulated System Standard C.P.U. Storage

Storage Calculated
time Run Penalty deviation, Utility Utility Occupancy coefficlent
¥, (scconds) (sggggds)' .oy | 2g§§i%y U_x100 . U,x100 0,%100 C
: 0 1 1 0

100.0  121840.88 1.04  0.26 2.0 0.38 039 -

8.0 9758.57 - 1.32 0.99 25.0 4 .66 6.77 0.84

4.0 4912.38 1.01 1.26 50.0 8.95 19.39 0.84

3.0 3669 .96 2.45 1.53 66.7 11.98 35.64 0.69

2.8 3429.56 2.62 1.64 71.5  12.82 41.28 0.61

2.6  3180.48 2.88 1.76 77.0 13.78 49.57 0.54

2.4 2960 .04 3 .34 1.9k 83.5 14.85 61.69 0.46

0.2 2752.92 %4.18 2.37 91.0 15.97 76.03 0.31

2.0 2584 .79 6.19 5.58 100.0 17.01 0.00

3

See Appendix E.

95.98
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TABLE %.15

SUMMARY DATA FROM THE FCUR
QUEUE SELECTION ALGORITHNS.

Coefficient - Co

cpu | Storage
ubility utility Algoritbm Algorithm Algorithm Algorithm
Uy x 100 U; x 100 one two three four
(study 26-1) (36-2) (36-3) (36-4)
25.0 .66 0.84 0.84 0.85 0.84
50.0 . 8.95 0.8} 0.83 0.84 0.84
66.7 11.98 0.71 0.71 0.70 0.69
TL.5 - 12.82 0.63 0.63 0.61 0.61
77.0 13.78 0.56 0.56 0.54 0.54
83.5 14.85 0.18 0.6 0.18 0.46
91.0 15.97 0.35 0.31 0.32 0.21

100.0 17.01 0.00 - 0.00 0.00 0.00
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Table 3.1% shows the coefficlents CO determined

from the utilities listed. For the range of cpu utility

for which the coefficient C, could be assumed constant
according to the discusslon of chapter three, namely cpu
utility less than aboutl 0.60, the same constant coefficient
Cos 0.80, can be used for all four algoritbms. Figure 3.10
shows mean lack of attention msasured for each algorithm

and calculated with Co equal ©oO 0.80, for cpu utility
values from zero to unity. Figure .11 shows Py versus
storage utility. The measured data is well fitted by the ana-
1ytic curve for cpu utility less than 0.60.

The unusual conclusion that may be drawn from this

chapter is that the performance of the simulation model 1s
ihdependent of the queue selection algorithm for values of
cpu ubility up to 91%. At a cpu utility of 100%, the
measured mean lack of attention for the queus selection
algorithms one to four, are 9.54, 6.49, 9.18, and 6.19
respectively; representing a variation of nearly fifty percent.
Thus the queue selectlon algorithm affects performance only
in extremely heavily loaded or saturated systems, with cpu
utility very close %o unity. Under fhese conditiohs the
algorithms Qhopsing jobs earliest in arrival by priority class
or choosing the shortest job with highest storage requirement
| appear to produce better pérfqrmance than those algorithms
choosing jobs on a Pirst-come~first-served basis or choosing
the job with the bighest penalty. One feature in common with

the two more successful gqueue selectlon algorithms 1s that

they both choose short jobs in preference to long jobs, leaving
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the longer jobs to be processed during periods of time when
shorter jobs are not arriving, in this case, probably just

prior to ccmpletion of the simulation run.

3.7 Conclusions of the Simulation Studies

An empirical equation was suggested to explain the
variation of [y in & manner which 1s independent of the
details of the job stream or the job scheduling algorithm.

The equation 1is:

. |
e e P + b e
Pu= 1 *C, (77 7 1 .4). (325

Uo U ‘

The value of the coefficlent Cg, which was appro-
priate in the range of utility from O to 0.60, appears to
depend on the number of priorit& classes in the job stream.
With the main storage large enough to psrmlt spaée sharing, the
values of C, ~are 0.40, 0.80 and 0.95 for one, two and three
priority classses, respectivély.

Values of }%ﬂ calculated with a constant coeffic-
ient were found not to fit the observed values of My in
the range of utllity 0.6 to 1.0. The equation appsars to be
dependent on the job scheduling algorithm in this rénge of
utility, with ma:ked differences occuring for utility values
excesding 0.80. Those algorithms which tended to select

shorter jobs from the waiting queue 1n preference to longer

jobs produced up to 50 percent better performance than other
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algorithms studied. These results Indicate that the selection-
of a job-scheduling algorithm is only significant for computer
systems vhich are heavily loaded for at least part of their
operating tims (that is U, or Uy > 0.8).

For'utility values of unity, a coefficient value
of zero was required, since the observed values of [y
remained finite. It was suggested that fy depends on
the numbsr of jobs in the job stream since the series of fihal
job penalties, p? becomes time depsndent at utility
values of unity.

Values of ;%q were found to become dependent
on the main storage size, Wl, as the latter was reduced
toward unlty. This dependence was attributed to loss of the
space sharibg properties of the model as the maln storage silze

was reduced (serial processing at 1= W; = R all j).

12
The space sharing properties of the model could ilso have
been removed by appropriately modifying the quantum-allocation
routine to procesé jobs serially. It 1s quite, therefore,
reasonable to suggest that selection of the quantum allocation
routine is significant in at least the range of utility for
which B was found to be dependent on Wy, ‘that 1is,

the range of utility from 0.20 to 0.50. Further investigation

of this suggested significance might be fruitful.



APPENDIX A

MONTE CARLO TRCHNTIQUES USED

A. 1 Introductlion

In the studies described, the central processor
time requests and storage reguests are assumed to be distrib-
uted normally about given mean values, with given standard
deviations. Arrival times are assumed Polsson, requiring
interarrival times to follow exponential distributions wilth
given mean values (14). The pover residue or multiplicative
congruential method is used to generate random pumbers
following a rectangular distribution and these numbers are
transformed to elther a normal distributicn or an exponential

distribution, depending upon the particular requiremsnt.

A. 2 Power Residue Method

The method begins with a constant Kk, a starting
value ng and a modulus  m. A sequence (pi }— of -
nmon-negative integers, rendomly distributed, with each less

than m, 1is generated by means of the recursive formula
ny 4 q=kng (mod m) , (A.2.1)

= ool

where k = 65539 and m= 27",

Any positive odd integer less than 231'may be used

as the starting value ng. In all of the studies reported,

- 91 -
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a value of 0, is chosen to be 125 .
To cobtain & real number, Vi, randomly distributed
in the interval (0, 1) a further calculation 1s nscessary using

the formula
vy =1/ (22t - 1), (A.2.2)

wvhere ny 1is an integer randomly distributed and is obtained
by equétion (A.2.1). |
Further discussion of the power residue method may

be found in (16).

A.3 Method Used for Generating Normal Random Variates.

The Central Limit Theorem is used 1n the generation
of a normal random variates'xi with a glven mean, m,, and &

standard deviation s, in the following formula:

i
2

o K
x; = sg(12/K) (.}% yi - K/2) + oy, (£.3.1)
1:

whers Yi is a uniformly distributed random number between
-0 and 1, determined by the power residue method described in
Section A.2., and K is the number of new values of y;3 to

be used in the generation of X;. To reduce execution time,

K is chosen as 12. Thus Equation (A.3.1) becomes
12
Xj = Sg (Z yi - 6.0) +m_ . (A.3.2)
. i=r , :
According to the Central Limit Theorem, as X

approaches Infinity, the set of values of X3 - approaches

s true normsl distribution asymptotically (16). -
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A4, Method Used For Gensrating Exponentially

Distributed Variates

Exponentially distributed variates are generated
by taking a uniformly distributed random number  yji
between O and 1, determined by the power residue techniqué
(described in Section A.2) and transforming it to an |
exponentially distributed variable x%; according to the

equation (15):

1 .
X; = m log, ( Yi) ’ (A.4.1)

where mX- is the mean value of the exponentially distributed
variates X, |

The probabillity that y; will occur in-a
particular range of size Ay is equal to the area beneath

the constant probability distribution, and therefore this may

be expressed as  C Ay. All the values of y3  occurring
in this range are transformed to values of Xi and they
will occur in a particular range of size A X, and the

probability density functlon at this range may be rebresented

P(x). It follows that
P(x) ASX = ¢ Ly , (A.4.2)

and therefore

1lim Ay = P(x) _ 4y . (A~4-3)
AN e AN C dx

From equation (A.4.1)

g
|

e mx , (A.4.0)

Q
b
2 |-



94

and since the integal of P (x) over the range (0, o).

must be unity, C ~must assume a value of -~ 1.

Therefore

> - x/ig

Px) == @ : ~ (A.4.5)
| Iy

The exponential distribution expressed in Eguation (A.4.5)
describes the probability of a value of x  less than T

which can be calculated from:

: T o x/my T
P(X<T)% /P(x)dx= ["G Jo

= ] - e . (A.4.6)

The transformation expressed in Equation (A.4.1)
may be used to convert rectangularly distributed variables to

expcnentlally distributed variables.

A.5 Summary

Generation of a normally distributed random variate
with a given mean and standard deviation (a central prbcessor
time or a storage request) is accomplished by applying the
Central Limit Theorem (Section A.3) to twelve uniform random
numbers in the range (0,1) (Section A.2). Generation of an
exponentially distributed variate with a given mean (an
interarrival time) is accomplished by applying the trans-

formation described in Section (A.4) to a uniform random number
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in the renge (0,1) (Section A.2). The starting value for the

random number generation routine 1s 123 throughout.



APPENDIX B
SAMPLE JOB STREAM DATA

The first few jobs generated in each of the three
priority classes for study 3.5-1 are shown. Paramsters
used to generate these Jobs are presented in table 3.5.

Priority Class One Jobs:

Arrival Time CPU Time Reguest . Storage Request

(seconds) , (seconds) { units )
5.885 0.608 2
8;489 0.725 2

10.621 1.042 4
12.137 0.803 2
29.166 1.028 5
3%.290 0.750 >
36. 654 0.662 2
43,890 1.239 3
45,215 0.827 5
46,333 1.093 3
47.113 1.201 L
57.903 0.853 2
53.053 1.254 5
66.211 0.605 1
66.816 0.918 4

. 0 0 o s @ s e
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Priority Class Two Jobs

Arrival Time CPU Time Request Storage Request
( seconds) (seconds) ' units)
4 621 ' 7.11h v9
L .684 6.812 5
100.671 | L 745 5
129.363 5.307 4
149.155 9.086 8
206.949 _ 5.255 5
248.853 7.716 6

Priority Class Three Jobs

| Arrival Time CPU Time Request Storage Reguest
( seconds) (seconds? (units?
1hh 254 39.008 9
223 .692 33.261 10
294,969 35.146 T

510.519 46,566 12
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APPENDIX C

DESCRIPTION OF WAITING-QUEUER
AND EXECUTION-LIST ENTRIES

1tems of description recorded for a job

while it 1s in the waiting queue are the following:

(1)
(2)
(3)
(%)
(5)
(6)

job
job
job
job
job

job

The

identification number

priority class number

central processor tlme reguest
arrival time

device time

storage regquirement

items of description recorded for a job

while it is In the execution list ars those listed above

plus the following:

(7)

central processor time so far allocated

(8) actual time of job entry to the execution list.

. - 98 -



APPENDIX D
AN EQUIVAIENT DEFINITION OF STORAGE UTILITY

Storage utility, Uy, is defined by

1 N
Uy = 32; t5 Ry (D-1)
‘where T is the simulated run time, Wi is the

avallable storege in arbitrary units, tj 1s the
executlon time of each job j and Rj is the
storage request of each job J in the same units.

An equivalent expression may be derived. The
mean cpu time request is the sames for all Jobs of the same

priority class I, - and is m The mean storage

I
requirement of ail Jobs with the same execution timefis
‘the‘same.~ bence to each priority class a mean storage
requirement, ﬁi s may be assigned. The storage time
product for jobs of each priority class is then | D mI-ﬁi
and for the sum, | | |

N
JZf ts R, = Z nI ; By - (D-2)

J

In Section 2.2, an expression for Ny is given

p= N (D-3) |
>k (2.2.8)

- 99 -
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also

(1-1)
Jern

m g =K my o (D-4)

I:

Then, using Equations (D-3) and (D-4)

L’ ——
; DI mI RI
(1.-1) L _ '
k _Mm_ 3T R. - (D-5)
i N (iv-l) T-1 L ' -

5=

g

For a large number of jobs (large N) the time

of the simulation, T, may be approximated by
T ey DI I‘I o' ’ . ’ (D "‘6)
This expression, (D-6), is indepéhdent'of I, since
n_r in kre 4 =n ‘r (D-7)
Dp r'y = y "I-1 *r.1 I-1 17 °

and;then T may be written:
| (L.-1)

k; v %) ry .
>0

i=1

T > npr = (3-8)

Using Equations (D-5) and (D-8), storage utility becomes

L
m R
U= 1 ; o (D-9)
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—

Since By 1s defined by:
Ry = 2. Ry ~(D-10)
it follows that:

1= 1 M (D-11)

ry wl

The basic assuﬁptiom in this derivation was that
T =2 DT, | and for sufficlently large N (1500) this is
found to hold within five percent when miL/?i =< 1, |
Equations (D-1) and (D-11) are very nearly equivalent in

this region.



102

APPENDIX B
THE COEFFICIENT Co AT T,OW UTILITY VALUES

The cosfficient CO is not calculated for
simulation runs made with the paramster rl of 100
seconds in studies %.4-1, 3.4-2, 3.6-1, 3.6-2, 3.6-3
and 3.6-4. This is because the rengs of confidence in

such calculated values of C is vexry large.

o
The numerator of the eguation used for
calculation of the coefficient,_Equation (3.3.1), is
22 Oy - 1. In the simulation runs indicated, the value
of Py -1 verles from 0.02 to 0.04, while the standard
deviationkin the system penalty (or}UM) varies from 0.19
to 0.26 (see Tables 3.2, 3.4, 3.9, 3.10, 3.11 and 3.12).
. The techniques described in Sectlion 3.3 may
be used ﬁo show, for the simulation runs indicated, thét

the confidence range for values of the coefficient calcula-

: + +
ted would vary from - 84.4 percent to - 128.8 percent.
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