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Brachytherapy Optimization Abstract

Ansrnecr

Optimization of interstitial brachytherapy implants has recently turned to non-

detenninistic optimization techniques, such as simulated annealing (SA) and genetic

algorithms (GA). However, the current SA and GA approaches have three major

limitations: (i) they are computationally expensive, with the fastest being reported at 3

minutes of dedicated CPU time for a single solution, (ii) they are limited to evaluating

seed positions at predefined needle positions, and (iii) they can not be used to update plans

during needle insertion. In order to address these shortcomings, a system has been

designed and implemented which uses SA and an artificial neural network (ANN). The

role of the SA is to find optimal source placements within a tumour from which the ANN

can be trained. If the training of the ANN is carried out properly, it is able to generalize the

training daTa, and is capable of computing optimized brachytherapy cancer treatments in

milliseconds.

The system developed in this thesis is the fìrst step towards an ANN-based

optimization technique for interstitial brachytherapy. The SA is designed to optimize

source placement within 2D tumour shapes and produces results that rneet the

requirements identified by a suitable cost function. The ANN component is designed to

generate relative-dose distributions for 2D square tumour shapes using constant source

strengths. Through experimentation, it has been determined that the most appropriate

structure for the single hidden layer ANN has 12 interior nodes for tumours up to 3 cm in

cross sectional size. Using this network layout, the ANN is able to achieve a root mean

square (RMS) error of 2.03% of the relative dose on the final pass through the training

data, an RMS error of ß37% on a test set, an average positional error of 1.07 mm and a

maximum of 3 mm in positional error, compared to the results created by the SA.

-lv-
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Brachytherapy Optimization Chapter I: Introduction

CHnprnn I
INrRooucrroN

"Humanily needs praclical men, who get the mosl out of their work, and, wilhout
forgetting the general good, safeguard their own interests. But humanity also
needs dreamers, for whom lhe disinterested developmenl of an enterprise is so
captivating that il becomes impossible for them lo devote their care to their own
malerial profit. A well-organized society should assure to such workers the
efficient means of accomplishing their lask, in a life freed from material care and
freely consecraled lo reseørch."

- Marie Curie (1867-1934)
- Physicist, Chemist, Discoverer of Radium, 2 Nobel Prizes

1.1 Motivation

The motivation for this research is to improve the quality of life for cancer patients

treated with brachytherapy. The use of brachytherapy to treat cancer patients is on the

increase, primarily due to advances in technology as well as the ability to treat relatively

new treatment sites, such as the prostate gland. Optimizing a brachytherapy cancer

treatment increases the probability of killing the cancerous cells and decreases the harmful

side effects of radiation fo¡ the patient, thus improving the qualify of life.

The rate of cancer is increasing and the risks of developing cancer at some point in

one's life is approximately 4lVo for men and 38o/o for women [NCICO2]. In Canada,

approximately 129,300 new cases of cancer and 63,400 deaths were expected to occur in

2002 [NCICO2]. With numbers like these, cancer may soon overtake heart disease as the

number one cause of death in Canada. Currently only 3o/o of Manitoba's cancer patients
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are treated with brachytherapy [JeKo00], but that number will climb drastically when the

large number of eligible prostate brachytherapy patients begin treatment using the newly

developed program at CancerCare Manitoba.

It is necessary to continue research aimed at the improvement of cancer treatment

methods until we achieve a perfect record of cancer control. Until the day comes that

humankind finds a cure for cancer, it is necessary to continue to treat the disease to the

highest abilities using the most advanced methods available. The greatest chance of killing

the disease comes from treatments that deliver large amounts of radiation to the site of the

disease and as little as possible to the surrounding normal tissue. To this end, treatments

must be designed specific to each patient [YuSc96]. Developing an automated procedure

is the goal ofthis research project.

1.2 Thesis Objectives and Scope

The goal of this thesis is to identifli a procedure for using Arlificial Neural

Networks (ANNs) in the optimization of interstitial brachytherapy implants. One of the

difficulties associated with brachytherapy is that we do not know exactly where to place

the radioactive sources in the patient. The placement of the sources is crucial, as it

dictates where the radiation is deposited within the patient. Plan optimization involves

identifying an alrangement of the sou¡ces that deliver a large dose of radiation to the

disease and as little as possible to the surrounding normal tissue. If we optimize the

placement of the sources, we have a better chance at killing the disease, and sparing the
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healthy surrounding tissue. The focus of this thesis is on a specific form of brachytherapy

referred to as interstitial brachytherapy. In interstitial brachytherapy the sources are placed

inside the patient, using needles to create channels through which the sources can travel.

The needles are inserted into the patient and through the disease. Since the needles are

hollow, the radioactive sources (in the form of "seeds") are slid down the needle into the

patient until they rest at the site of the disease. Therefore, the positions of the needles

dictate the possible positions for the sources and it is crucial to acknowledge and

understand that there is a correspondence between them.

Current methods of optimizing interstitial brachytherapy optimize the placement

of the needles, restricting their positioning to predefined template positions [LaBZ0O]

[PTR96b] [Slob92] [YRPZ98] [YuSc96]. However, this limits ones ability to achieve the

optimal treatment plan. Also, as reported by [EJMR98], the needles deviate from the

planned positions even when they are inserted into the patient using a template. Ideally

then, the positions of the remaining needles should be adjusted in real-time to account for

the placement errors of those inserted previously. Currently, there is no research in this

area as the standard optimization techniques require far too much time to generate ouþuts.

Using the current techniques, [LaBZOO] [PTR96b] [Slob92] [YRPZ98] [YuSc96], such

real-time optimization would require a minimum of 60 extra minutes in the operating

room (OR). Therefore, this thesis is to take brachytherapy optimization research in a new

direction, using the speed and generalization abilities of ANNs to produce fast optimized

source/needle positions within a tumour. The physical templates are replaced with
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computer graphic representations of them, thereby giving complete freedom to the

optimization procedure to place the needles in the most appropriate positions.

This thesis discuses the use of an ANN to optimize the placement of radioactive

sources in a tumour. The main research questions include: (i) what to use as input for the

ANN, (ii) what to use as ouþut from the ANN, (iii) to ensure that the ANN can actually

learn to perform optimization, and (iv) identifying the most appropriate ANN architecture

for the optimizatìon problem. Since a three-dimensional (3D) srudy of thesis issues is too

time consuming, this thesis limits the shape of the tumours to squares in two dimensions

(2D), but with varying size of up to a maximum of 3 cm per side. Since the tumour

representation is 2D, the source positions can be interpreted as the perpendicular

applicator positions intersecting that specific 2D plane in the tumour, and therefore the

terms source and applicator can be used interchangeably.

Since an ANN must learn from training data, we use simulated annealing (SA) to

generate the data. The first step is the generation of optimized source positions within 2D

square tumours, using SA. The second step is to decide upon the problem representation

for the ANN as well as the structure of the ANN. The final step is to evaluate the

effectiveness of the ANN design. The ouþut from the ANN is reported using computer

graphics to display the predicted source positions. The sources that the ANN can learn to

place are of equal strength, as is typical for permanent implants such as prostate

brachytherapy.
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1.3 Overview of Chapters

Chapter 2 covers the background information required for the thesis. Topics such

as the history of brachytherapy optimizaÍion, SA, and ANNs are included.

Chapter 3 covers the software design and discusses the high-level details of the

software requirements. The technology mapping and inpulouþut mapping is also

addressed.

Chapter 4 deals with the software implementation details, and includes instructions

on how to use the developed software.

Chapter 5 discusses the experimental design, and contains an evaluation of the

results. Within this chapter, the results of various experiments that guided the design of

the software are covered.

The last chapter presents conclusions on the research and makes some

recommendations for future work. The limitations of the software are discussed and the

contributions that this thesis makes are also highlighted.
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CHeprnR II
BacrcRouND

"Not to know what has been lransacted informer limes is to be always a child. If
no use is made of the labors of past ages, lhe world must remain always in the
infancy of knowledge."

- Marcus Tullius Cicero (106-43 BC)
- Roman statesman, orator, philosopher

2.1 Brachytherapy

2.1.1 Definition

The word brachytherapy is Greek in origin, and literally translates to close-

dislance-therapy. In brachytherapy, radioactive sources are placed either near, or within a

cancerous tumour using various types of source holders called applicators. For example,

to place radioactive sources in the lungs, one would feed a long flexible plastic tube into

the nasal canal and down into the lungs. The plastic tube then serves as a channel to

transport the radioactive sources to the site of the disease. This form of brach¡herapy is

referred to as intracavitary brachytherapy, as it uses a naturally occurring orifice in the

body as an insertion channel. In the case of a tumour that does not have a naturally

occurring orifice passing near or through it, artificial channels are made by inserting

hollow needles through the patient and the tumour. The radioactive sources are positioned

either within the needles themselves or the needles are replaced with flexible plastic
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catheters (which feed through the hollow needles) which then serve as the applicators.

This form of brachytherapy is referred to as inlerslitial.

In most instances the radioactive sources are removed after some carefully

predetermined period of time. Such a treatment is referred to as a temporary implant.

Treatments can also be classified as permanent. In these instances, the applicators are

removed leaving the radioactive sources behind in the patient. Clearly, whether an implant

is temporary or perrnanent depends on the characteristics of the radioactive sources and, in

particular, the rate at which they deposit radiation in the patient.

Brachytherapy treatments are also categorized as either high dose rate or low dose

rate depending on the strength of the radioactive sources. Low dose rate (LDR) procedures

make use of weak radioactive sources that must remain in the patient for days or months in

order to deliver enough radiation to destroy the disease. LDR treatments can be either

temporary or pennanent. As the source strengths are low, these sources can be handled

manually by staff without subjecting them to unacceptable levels or radiation. Treatments

which use a very strong radioactive source are refer¡ed to as high dose rate (HDR)

procedures. As the sources are so strong, ¡adiation is deposited in the patient very quickly

and treatments last only of the order of minutes. Consequently, multiple sources are not

required and a single source can emulate many positions by changing its positions during

the treatment. HDR treatments are always temporary and, because of the very strong

source utilized they, must be administered via a computer control to ensure that the dose to

staff remains below an acceptable level (in remote afterloading, as it is referred,
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applicators are positioned manually in the patient and then connected to a shielded safe;

the source is then transferred via a computer control from the safe to the applicators once

the staff have left the treatment room.

2.1.2 History

Brachytherapy is the oldest form of cancer treatment. It began within three years

of the discovery of radium by Marie Curie (whose inspirational words are quoted at the

beginning of Chapter 1 of this thesis) in 1898. When Pierre Curie (Marie's husband)

attributed the erythema on Henri Becquerel's skin to the vile of radium salt he carried in

his pocket, he correctly conjectured that it was the biological effects of radiation on tissue.

As a result, Pierre suggested that a small tube filled with radium salt be used to treat a

patient's tumour [Godd88].

The first interstitial and intracavitary applications occurred between 1905-1915, at

a numbe¡ of institutions in Europe and North America. Initially, glass tubes of radium salt

were used, along with flat applicators coated with radium and sealed with varnish.

Unfortunately, the clinical experience with these sources revealed that the intense beta (B)

radiation emitted simultaneously with the gamma (y) rays responsible for the treatment of

the disease caused tissue necrosis (the localized death of living cells). It was not until

1920 that researchers were able to filter the B-rays successfully by placing radon in small

gold tubes. Over time it was realized that a correlation between the biological effects and

amount of radiation utilized had to be found. To this end, tables of dose values were
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created for various combinations of equal strength linear sources. This was the common

practice until the 1970s and early 1980s when computers became involved in the process

of dose calculations.

Brachytherapy is growing in popularity as it has become less of an art and more of

a science due to advances in technology, such as the remote afterloading of HDR

brachytherapy sources (as described in Section 2.1.4). There is also an increase in

brach¡herapy use due to the recent inclusion of once difficult treatment sites, such as the

prostate gland. Accurate brachytherapy treatments of the prostate can now be performed

as an out-patient procedure using a procedure in which LDR source carrying needles are

inserted into the prostate through the perinium under ultrasound or MR guidance. Once

the needles are properly positioned, they are removed leaving the seeds behind in the

gland. This permanent procedure has proven to be just as successful as radical

prostatectomy, with less morbidity for early stage disease.

2.1.3 Typical LDR Procedure

In the LDR brachytherapy, multiple sources of equal strength are placed inside an

applicator which serves to hold the sources in a fixed position within the patient. The

distribution of radiation within the patient is determined by the geometric arrangement of

the sources and, therefore, can be customized for each patient by adjusting the location of

the applicators as well as the position of the sources within the applicators.
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In a typical procedure, the patient'ù/ould be imaged prior to the insertion, in order

to determine where the applicators should be placed. The act of determining where the

radioactive sources should be placed is called treatment planning. The insertion of the

applicators would then take place after this initial planning in the OR. As reported in other

works [EMJR98], the applicators may deviate from the planned positions to the detriment

of the desired distribution of radiation within the patient.

2.1.4 Typical HDR Procedure

In the HDR brachytherapy, a single radioactive source is used to simulate multiple

sources. This single source is under computer control and enters the applicators in the

patient sequentially. The source is able to be left at a location (referred to as a dwell

position) for any length of time (referred to as dwell time). By letting it sit at a specific

location for a longer period of time, it emulates a stronger source at that location. Since the

distribution of the radiation within the patient is dependent on the combination of dwell

position and dwell time, the radiation distribution can be customized for each patient by

adjusting those two parameters. In fact, dwell time can be adjusted to compensate for the

errors associated with applicator placement to some degree. This additional parameter of

dwell time complicates the optimization problem significantly, and thus this thesis focuses

on the second form of brachytherapy, LDR because of it relative simplicity.
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2.1.5 Advantages of Brachytherapy

Brachytherapy has a number of advantages over the more common external beam

treatments (with the source of radiation located external to the patient). The goal of

radiation therapy is to deliver as much radiation as possible to the disease and as little as

possible to the surrounding healthy tissue. If not, the treatment will be associated with

unacceptable morbidity. External beam treatments are fundamentally at odds with this

goal as the radiation must first travel through normal tissue to reach the underlying

disease. This necessarily results in radiation being deposited in healthy tissue and in fact,

due to the nature of radiation interactions, more than the disease itself. On the other hand,

brachytherapy places the radiation source in the tumour and, therefore, does not suffer

from this shortcoming. In addition, brachytherapy makes use of the inverse square law

principle whereby the radiation decreases inversely with the distance squared from the

source, as shown in Fig. 2.1.

In extemal beam therapy the patient is relatively far from the source, and the

falloff in radiation with distance travelled through the patient is described by this portion

of the curve to the far right of Fig. 2. I . Therefore, the amount of ¡adiation deposited at the

entrance of the patient is comparable to the amount of radiation deposited at the site of

tumour as well as at the site that it leaves the patient. External beam treatments must

deliver radiation with beams (beams entering the patient at different locations) in order to

increase the radiation at the tumou¡ relative to that deposited in the healthy tissue. In

brachytherapy however, the source is either extremely close to or inside the tumour, and
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the radiation in the tumour is considerably higher than the radiation being deposited in the

surrounding structures, as illustrated be the portion of curve on the far left of Fig.2.l.

Therefore, using brachytherapy there is a bette¡ chance of sparing the healthy surrounding

tissue and isolating the radiation to the affected area (tumour).
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Fig. 2.1 Radiation as a function of distance.

2.1.6 Disadvantages of Brachytherapy

Unforlunately brachytherapy has a number of disadvantages, making the choice of

using brachytherapy much more difficult. First of all and most obviously is the fact that

brachytherapy is invasive, as applicators are inserted into the patient: either into naturally

occurring cavities, or those made by inserting needles through tissues. Secondly, it can be

very time consuming due to several factors, including: (i) the time required in the OR to

insert the applicators, (ii) the fact that most brachytherapy patients must stay in the
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hospital during their treatment, and (iii) that it often takes an entire day to plan the location

of the applicators and sources once the patient has been imaged. Due to the inverse square

law, delivering adequate radiation to all aspects of most diseases sites requires that many

sources be positioned throughout the treatment volume. Determining the optimal position

of these sources is tedious, especially considering the fact that altering any of the sources

by a few millimeters can have a dramatic effect on where the radiation is delivered due to

the inverse square law.

2.2 Common Optimization Techniques

This section will summarize various optimization techniques. The reason that they

are covered at this specific point in the thesis is that the section following will take a

detailed look at the optimization techniques applied to brachytherapy past and present.

The specifics of these techniques are not crucial for the reader, but some basic

understanding of the theory is required to fully appreciate the review.

The dictionary definition of optimization is "the procedure or procedures used to

make a system or design as effective or functional as possible, especially the mathematical

techniques involved" [Dict0O]. In mathematical problems, optimization is typically the

process of finding the best possible solution to the problem. There are two main methods

of optimizing mathematical problems, deterministic and non-deterministic. Deterministic

solutions "describe a system whose time evolution can be predicted exactly" [DictO0],

whereas non-deterministic methods would not be predictable exactly. There are a number
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of both types of optimization techniques but only the major methods will be described in

this review.

2.2.1 D eterministic Optimization Techniques

Examples of deterministic optimization are the steepest descent (gradient descent

or least squares optimization, LSO) and the greedy algorithm. In both techniques, the

algorithm always proceeds in the direction that improves the solution the most. For

example, optimization of the function F(x) of Fig. 2.2,with a starting point A, returns B as

the solution. However, the best solution is at C. Thus, deterministic techniques are very

susceptible to their starting point and tend to get stuck at a local minimum, rather than

findìng the global minimum, as illustrated in the above example [Padb99].

2.2.1.1 Gradient Descent

Gradient descent optimization is a technique that uses the gradient (slope) of a

function to f,ind the minimum value [Padb99]. If we have the function y: F(x) as shown

in Fig. 2.2 and we start at point A, we can calculate the slope around A using dy/dx. Once

the slope has been calculated, the optimization algorithm travels in the negative slope

direction towards the minimum. The starting value of the gradient descent technique

completely dictates the minimum that is found as the algorithm only locates local minima.

There is no way to find the global minimum at C of the function without modifications to

the algorithm.
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2.2.1.2 Greedy Algorithm

The greedy algorithm is an algorithm in which we always make a change that has

the best immediate outcome. So if y1 : f(x+dx) andy2: f(x-dx) with y1 < y2 then the

greedy algorithm chooses !1 as the next solution to the problem. If we start at point A in

Fig. 2.2 and call the greedy algorithm recursively, it finds the local minimum B

eventually. Again, as with gradient descent, the algorithm has no simple way to find the

global minimum at C.

Fig.2.2 Sample error space for optimizatron.

2.2.1.3 Least Square Optimization (LSO)

LSO is an optimization technique based on minimizing the squared difference

between the result obtained and the ideal case. It is used in situations in which we are

trying to approximate a complex function with a more simple equation (typically it is
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reduced to a line). The LSO is useful when trying to chose between a number of different

possible solutions to a problem as it identifies the solution that is closest to the ideal case.

2.2.2 N on-Deterministic Optimization Tech niques

Non-deterministic optimization techniques are equipped with schemes of escaping

local minima in search of the global minimum. The two most common non-deterministic

optimization techniques are the genetic algorithm (GA) and simulated annealing (SA).

2.2.2.1 Genetic Algorithm (GA)

In the GA the problem being solved is mapped into chromosomes, such as those

found in DNA. The chromosomes are evaluated using a fitness function and reproduce

with other chromosomes based on their fitness. At certain points in the algorithm, the

chromosomes may have random mutations that may improve or deteriorate the f,itness of

the chromosome. The analogy stems from Darwin's theory of evolution and the survival

of the fittest. Since the GA is very slow, it is not used in this thesis.

2.2.2.2 Simulated Annealing (SA)

As SA is used for a major portion of this thesis, it will be explained in detail in

Section 2.4. Both SA and GA are based on the evaluation of a cost function (fitness

function). Therefore, the cost function is an integral component of these non-deterministic

optimization techniques. It should be noted that the cost function is problem dependent.
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2.2.3 Other Optimization Techniques

There are other classes of optimization techniques, which cannot be clearly

classified into deterministic or non-deterministic methods. For example, a specific form

of ANN called the Hopfield ANN can also be used to optimize functions, and is covered in

Section 2.5.6.

2.3 Past Brachytherapy Optimization Approaches

The literature shows a clear division in optimization techniques, primarily due to

technological advances in computing. The inaugural papers of the early 1980s focus on

2D solutions. This is because the computing power necessary to solve the considerably

more complex 3D cases (second category) was not available, and because they were new

concepts that had to be first proven. The literature makes reference to these two distinct

eras as the distance and volume implant methodologies. In a distance implant "dose

points" are placed at prescribed positions around the implant area. The computer

algorithms then finds a set of dwell positions (and times for HDR) that would yield equal

amounts of radiation at those points. No consideration was made for the dose between the

dwell positions or the dose to the actual patient anatomy, as the computer systems would

have been sufficiently burdened with these few points. In the early 1990s however, the

methods of brachytherapy optimization changed to 3D volumes with the goal to achieve a

homogeneous dose throughout the tumour, not just at the discrete dose points (as is the
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case in distance implants). The optimization methods from both approaches will be

reviewed, with the primary focus on the newer volume techniques.

Distance brachytherapy optimization is primarily concerned with the dose

contribution from M sources to N dose points. The problem stated in this form clearly

lends itself to some form of numerical optimization technique. In these techniques every

possible position for a source (M) is considered and a dwell time is calculated for each

position M. The biggest challenge of these techniques is to find algorithms that do not

return negative values for time at some of the positions M. A number of different LSO

algorithms have been proposed [RWCA9l], [WaAn97], and [BSSL88]. Pistorius and

Groenewald [PiGrSa] utilized a combination of Gaussian elimination and LSO to find the

dwell time for a single stepping source remote afterloading system. Any negative values

for time were suppressed to 0, and the algorithm was run again until no negative values

were obtained. The results of the study were very good, and this technique was able to

obtain a radiation distribution which only differed by only 5% from the prescribed isodose

curve (or ideal radiation distribution) within the treatment site. Another technique

[VaDe9O] utilized singular value decomposition (SVD), and suppressed the large

fluctuation in adjacent dwell positions. Again, by running the algorithm a number of

times, negative values were eliminated. Unforlunately, these techniques do not lend

themselves too readily to the much more difficult problems in 3D and thus different

approaches were required.
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In the early 1990s new methods began to emerge for volume implants with two

techniques: geometric optimization (GO), and simulated annealing (SA) being the early

favorites. The GO was introduced in 1990 by Edmundson [Edmu9O] [ERTB93]

[EdYM95]. In the GO technique, a source's strength is determined by its proximity to

other source positions. Clearly, the GO technique is very much like the techniques of the

earlier 1980s in that is still relies on deterministic methods of optimization. Although the

technique exhibited "unexpectedly good behavior" over the previous optimization

methods for 3D implants [AEAA97] [KVDN94], the technique never seemed to flourish

as it was based on deterministic optimizatíon techniques.

It was the arrival of the non-deterministic approaches that overtook the 3D volume

optimization of brachytherapy by storm. The first repof of a non-deterministic approach

for brachytherapy was in 1992by Sloboda [Slob92]. Sloboda used SA to optimize dwell

positions for a set of specified dose points. His initial approach was very similar to the

approach used in the 1980s in that it was 2D and required the user to input coordinates of

dose points. However, his initial paper had a profound effect on the brachytherapy

optimization community as it was the first to use SA for volume implants. Since this

paper, there have been several others who have published work on using SA and GA for

volume implants.

The first SA approach that used patient specific anatomy data in its optimization

was introduced by Pouliot et. al.lPTR96al [PTR96b] [PTRV97]. The focus of this work

is the optimization of prostate brach¡herapy LDR implants. Prior to the actual insertion
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(usually a couple of weeks), an optimized plan is developed based on the patient anatomy

even though patient anatomy changes between the planning and the actual insertion.

Pouliot's cost function employed has three factors: (i) a prescribed dose to accomplish; (ii)

a uniform dose within the prostate; and (iii) a limited dose to the urethra (which happens

to pass through the center of the prostate making for a difficult optimization problem). As

it is common practice in prostate brachytherapy to use a template to guide the applicators,

Pouliot used the holes in the template as the possible applicator locations. This of course

has the added benefit of reducing the extreme complexity of unconstrained brachytherapy

optimization. Since the decision by Pouliot, to restrict the applicators to the template

positions, all other research has followed suit. Pouliot obtained satisfactory results in his

early work achieving optimized implants in 15 minutes on a SLIN SPARC 5 workstation.

The prostate was the only treatment site to use these advanced optimization techniques

until late 1999 when Lahanas et. al.lLaBZ99f applied it to the breast and lung.

The first application of the GA to brachytherapy \'/as Yu et. al. in 1996 [YuSc96].

In his introductory paper, Yu mapped the brachytherapy problem into a GA solution

space, again to generate a pre-plan for the OR. The fitness function that he used is a

combination of the dose coverage, the conformity of the dose to the target volume and the

number of needles used. The GA that Yu implemented took 30 minutes on average on a

SLIN SPARC 5 workstation to produce output. When analyzing the results, Yu found a

dosimetric improvement in the minimum farget dose as compared to non GA optimized

treatments, suggesting a better tumour cell kill rate.
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Two years after the initial GA paper, a new approach was proposedby Yang et. al.

[YRPZ98]. They evaluated the effectiveness of utilizing a different representation of the

GA to increase the speed of the optimization. Three paradigms were evaluated, the sGA

(small GA), the sureGA (small-uniform-restart-elitist GA), and the securGA (small-elitist-

creeping-uniform-restart GA). Essentially, these paradigms are ways of avoiding

premature convergence on the near-optimal region. They stem from research using very

small population sizes in the GA, for problems with alarge number of parameters. Using

small population sizes and restarting the GA in very few generations (typically 5 - l0),

while keeping the overall best solution, produces a faster convergence. Yang's f,rtness

function involves maximizing the minimum peripheral dose, maximizing the uniformity

of the dose within the tumour, and minimizing the dose to the critical structures (urethra).

The securGA was very effective and was able to produce acceptable results in 5 minutes

on an HP735 workstation. However, this approach was still only used to create a pre-plan

to be carried out in the OR and was not used iteratively during the insertion.

In the late 1990s, Lahanas et. al. plblished a paper in which they manipulated the

GA to improve the performance and int¡oduced the concept of multiobjective GAs to

brachytherapy optimization fLaBZ99l. One of the major problems with the fitness and

cost functions of the previous techniques is their reliance on user selected scale factors to

combine the various terms in the cost function. These factors have a profound effect on the

results of the optimization. In multiobjective GA, the algorithm also finds the best scale

factors. For more information on multiobjective GA, see the work of Kupinski et. al.
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[KuAn99]. In the implementation by Lahanas et. al. the algorithm returns a number of

optimized functions. It returns the absolute best solution based on the Euclidean distance

from the goal fitness function, and the solution that best satisfies each of the optimization

objectives. In this manner, the oncologist and medical physicist can choose the best

solution for the specific case in question. The authors do not report any data for the

execution time, which may be quite lengthy considering the nature of the technique. The

authors state "thanks to the rapid development of computer hardware this approach will

someday be a viable approach."

In the late 1999, a paper was published by Messing et. al. that combined advanced

visualization methods and the GA to optimize prostate implants [MZRB99]. The implant

volume is visualized using a combination of virtual reality (VR) and ultrasound (US). The

implant is optimized using the GA techniques in Yu's work [YuSc96] and the

multiobjective GA techniques previously discussed. The fitness function that is used is a

combination of the minimum peripheral dose, uniformity, number of needles, and the

maximum dose to critical structures. The optimization of the sources is actually carried

out in the OR at the time of the implant. This is the first paper reporting such a result. The

average amount of time required by the GA optimization on a trial of 10 patients was 4.2

minutes. The plans optimized in the OR had no dosimetric inferiorities to plans that were

optimized ahead of time using more conventional approaches, thus indicating that this

approach, and subsequently other methods like it are feasible.
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Over the last decade, there have also been some unique approaches to the

optimization of brachytherapy implants. These approaches typically use methods

borrowed from other areas of study, such as imaging. In 1991, Holmes et. al. atlempted to

optimize implants by applying a deconvolution with a kernel IHMSR9l] to the ideal dose

distribution. In this manner they were able to obtain a weight distribution corresponding

to the total energy per unit mass in the treatment region (activity distribution). Similar

problems to those using the LSO arise using this technique, as negative times occur and

additional manipulations are necessary. No further work using this technique has appeared

in the literature. One final technique using a unique approach ìs the work of Alfredo et. al.

in 1997 [ASEF97]. Alfredo used a backprojection algorithm to find the optimal source

distribution. However, the results were fairly poor, and since the initial paper, no further

work has been attempted using this method.

2.3.1 Critique of Past Brachytherapy Optimization Techniques

Although some of the recent papers on optimization in brachytherapy have

presented very good results, they all have one coÍrmon pitfall: they all assume the use of

templates for the insertion of the needles and sources. By constraining the needles and

sources to specific predetermined locations, it reduces the complexity of the optimization

considerably, and ultimately the time to achieve a solution. The optimization problem

becomes much larger with each possible needles or source location. Research results

reported in [BOCS9O] confirm that customized templates improve the dose distributions
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within the tumour. Therefore, the ideal procedure must make use of both custom templates

(allowing the needles and sources to be placed anywhere) and computer optimization.

2.3.2 Derived Requirements for Brachytherapy Optimization in This Thesis

In reviewing the literature, we can see that the optimization of brachytherapy can

have a number of requirements, each represented as a term in a cost function. The

requirements for optimization are primarily based on clinical experiences (and common

sense to some degree). The main focus is always on the homogeneity of the radiation

within the tumour. The next most common requirement in the literature is limiting the

amount of dose external to the tumour. The most recent papers also attempt to limit the

dose to critical structures in the region of the tumour (such as the urethra in prostate

treatments). Some of the papers also acknowledge the need to minimize the number of

applicators used in the treatment to avoid extra damage to the treatment area.

Vicini's work [VJHE98] showed that the future of brachytherapy optimization will

indeed utilize advanced imaging techniques. We have also demonstrated in other research

conducted at CancerCare Manitoba [MBBM98] [MJBK99], that VR and computer

graphics have a future in brachytherapy. It is most likely that the future will include

customized computer graphics templates that will change in real time dynamically, based

on what has already occurred in the insertion of the preceding needles. All of the current

optimization techniques require far too much time for real-time applications. For

instance, in a typical prostate insertion, there are in the order of 20 needles and the fastest
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reported time for a prostate optimization is 3 minutes [MZRB99]. Therefore it would

require 60 minutes to optimize the treatment after each applicator is inserted in the

operating room (OR) (20 needles times 3 minutes each). This is far too much time spent in

the OR waiting for computer optimization ouþut. Thus, all of the past techniques fall

short, and a new approach must be found. All of these requirements will be included in the

process of optimization developed in this thesis.

2.4 Simulated Annealing

The physical act of annealing has been around for centuries, and stems from the

shaping of metals into usable forms. For example a blacksmith making a sword would

heat solid metal into a liquid state, having a very high internal energy. The liquid metal

would then be poured into a cast. In order to give the sword strength, the blacksmith

would cool the metal very slowly, allowing the molecules within the metal to align into a

crystal structure, the strongest molecular arrangement. It should be mentioned that if the

metal is cooled too quickly, quenching occurs (where molecules are trapped in a highly

irregular arrangement), and the metal becomes brittle. This process was mapped to a

computer optimization technique in the early 1980s by Kirþatrick et. al. [KiGV82] and

independently by Cerny [Cern85]. They proposed the following model for optimizing

diff,icult problems using computers [AaKo89].

First, the problem is mapped into a minimization problem (as opposed to

maximization problem). In other words, a single function must be created such that

a

a
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smaller resultant corresponds to a better solution to the problem. This function is most

commonly referred to as the cost funclion. It should be noted that the problem may easily

be mapped into a maximization problem, but the classical form of SA involves

minimization. The next necessary element is the ability to morph the current solution to

the problem into another solution using random decisions. In other words, given the

curent solution to a problem T¡ we must be able to randomly generate a new solution

T;*1 which is either be a better solution than T¡ or worse. In the case that T¡-,,1 is better

than Ti, then T¡*1 becomes the new current solution to the problem. However, in the case

that T¡*1 is worse than T¡, then T¡a1 is kept with a certain probability, which is based on

the current temperature in the simulation. The probability that the new solution is kept is

given by

p(T¡+,) : 
"*p( ktt

(c(T¡) - c(T¡* t)) (2.r)

where c(T) is the cost of the previous solution, c(T¡+) is the cost of the current solution, I

is the current temperature in the simulation, and k6 is the Boltzman constant, although

other constants may be used with the effect of changing the probability distribution

function.

A software flowchart of the SA algorithm is shown in Fig.2.3 and,Fig.2.4. An

initial solution to the problem is generated. Next, a new solution is generated based on the

initial solution. If the new solution is better than the previous solution, it is kept as the

solution to the problem. If the new solution is not better than the previous solution, it is
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kept with a certain probability based on the curent temperature of the simulation. This

process is continued until the stopping conditions are met.

f-lt",t-l
I

Y
Calculate lnitial
Temperature

Fig.2.4

Fig. 2.3 Flowchart of the SA algorithm - part 1.

Generate New Solution
Based on Current Solution

Find Cost (Tn)

ls Tn < Ti?
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.Since the temperature in Eq.2.l is what ultimately determines the probability that

([)¡_
\_-/ No

Fig.2.3

Fig.2.4 Flowchart of the SA algorithm - part2.

an inferior solution is kept, it is critical that the temperature is calculated correctly. First of

all, an initial temperature must be found that is sufficiently hot that most inferior solutions

Calculate
Probability (P)

of Keeping Tn at
this Temperature

(r)

Keep Tn as
Solution
(T¡ = Tn)

Throw away Tn,

Keep T¡ as solution
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will be kept (typically we aim for 95o/o of inferior solutions being kept). Secondly, it is

imperative that the cooling of the temperature be carried out in a controlled manner to

ensure that quenching does not occur, and to increase the likelihood of achieving the

global minimum. The most common cooling schedule for SA is shown in Fig. 2.5 and is

the profile used in this thesis.

1.2

s
o
o
(5

c
o
o
E
o
É,

1

0.8

0.6

0.4

0.2

0
CÐ t- r tO Or CÐ t- r

NNNCDCO-f,
Iteration [x10,000]

Fig.2.5 Temperature cooling profile for SA.

Typically, we work in the order of thousands of iterations, and thus each tick in

Fig. 2.5 can be viewed as 10,000 iterations. The cooling profile of Fig. 2.5 is highly

effective, due to the three distinct phases of the function. Initially, the temperature is

cooled very slowly to allow the optimization algorithm a chance to sample a wide range of

solution across the solution space. In the intermediate stage, it is assumed that the

algorithm has found a very good region to continue searching, thus the temperature
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decreases more quickly, encouraging the algorithm to climb down towards the minimum

of the region. In the final stage, the temperature is once again cooled slowly to allow the

algorithm to shuffle in the current solution region and find the absolute global minimum

of the region

Perhaps the reader may still wonder why we would want to use SA and not a

simpler approach, such as the steepest decent or some other non-deterministic algorithm.

The answer lies in the randomness of the algorithm. Because the SA algorithm is allowed

to search the entire solution space of an optimization problem randomly, it is possible to

escape local minima in search for the global minimum. In many of the deterministic

optimization approaches, the starting point of the algorithm completely dictates what the

final solution will be. For further information on SA, consult the book by Aarts and Korst

[AaKo89] and Section 2.2

2.5 Artificial Neural Networks (ANNs)

Note that the information contained in this section was extracted from the

following sources [Ctrlvfu98] [Gins97] [Kasa96] [Mast93] [McRu88] [MeMR97]

[RaRa95] [RuMc88] and [WeUS88]. Specific research cited is supported by specific

references.

Artif,rcial neural networks are computational models based loosely on biological

neural processing that occurs in the brain. It is important to note that although ANNs have

similarities to the human brain, they are not intended to model it directly, rather they are

an attempt at solving problems in a "human like" manner. An ANN has two main
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components: (i) neurons that perform processing, and (ii) connections between the

neurons that have associated weights (synaptic gaps). Signals pass from neuron to neuron

along the connections, being multiplied by the connection strengths (weights) which can

be either positive or negative. At the neurons, all of the input signals are summed and

modified by a function (activation function) to calculate the ouþut from that neuron.

2.5.1 History of ANNS

2.5.1.1 Initial Concept

The first mathematical model of a neuron is credited to McCulloch and Pitts in

1943. It was a very simplistic model with binary input and ouþut, and a fixed activation

level. However, this humble beginning lead to a rich research area that progressed at a

steady pace. It took no time at all to discover that this new model was able to implement

many arithmetic and logical operations. In 1949, Hebb made one of the most significant

contributions when he demonstrated that a network of neurons could exhibit learning

behavior when a learning law and repeated activation by other neurons were used. In

1954, Gabor introduced the leaming law, which used gradient descent (as discussed in

Section 2.2) to obtain "optimal" weights. These optimal weights minimized the mean

squared error between the observed ouþut signal generated and a desired signal. A

crucial development occurred in 196l when Rosenblatt proposed the initial

bacþropagation (BP) model (which is covered in detail in Section 2.5.7), which had a

flaw of using non-differentiable activation functions (and was also a single layer model).
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2.5.1.2 Near Demise

In 1969 a fatal blow was dealt to the research on ANNs in a book by Minsky and

Papert [MiPa69]. It identified the incapability of the single layer networks in use at that

time to solve many simple problems (in particular the XOR function). This finding

demonstrated that ANNs were non computationally universal, resulting in a drastic and

immediate reduction in research (and funding for research).

2.5.1.3 Rebirth

Forfunately, due to the perseverance of a few researchers, the topic of ANNs was

resurrected af\er a near two decade drought. There were a number of workarounds

identified by these researchers to address the shortcomings of the early ANNs, including:

(i) adding more than a single layer of neurons; (ii) using learning laws other than gradient

descent (which is not always successful in finding a solution) such as Boltzman machines

and other stochastic methods. Theoretical methods of determining the capabilities of

networks were developed and finally, hybrid systems were developed. These ANN

techniques were introduced during the 1980s, and the 1990s produced many useful results.

2.5.2 Overview of Biological Neural Processing

It is estimated that there are approximately 10ll ,ren.on, in the human brain, with

1015 connections between them. The processing rate of the human brain is quite slow

with only l0a operations per second (kHz) as compared to the latest desktop processing of
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109 operations per second (GHz). However, the extremelyparallel structure of the brain

makes up for this lack of speed [MeMR97].

A typical representation of the neural process in the brain is shown in Fig. 2.6

[MeMR97]. The neurons in the brain are what perform the actual processing. The

dendrites carry the signal into the neuron, and the axons carry the signal away from the

neuron. These axons have many branches that connect to the dendrite ofother neurons.

The synaptic gap is situated between the axon and dendrite. For the signal to pass from

the axon to the dendrite, the algebraic sum of the signals received must surpass a threshold

value. If this is the case, a signal is generated on the dendrite and carried on to the cell

body.

Dendrites

Nuclet¡s'

Synapses
(to other neurons)

Dendrites
(ot other neurons)

Fig.2.6 Neural processing in

Two of the major operations of the brain

recall (using stored knowledge). When a brain

biological brain.

are learning (storing knowledge) and

"learns", it stores the information by
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changing the chemicals in the synaptic gaps. During recall, the synaptic gaps fire based

on these chemicals. Thus the brain is able to produce an ouþut for a new situation by

generalizing what has already been learned. It is this properly of the brain that we wish to

model with ANNs.

2.5.3 Overview of ANN Processing

In ANNs, we emulate the function of the biological neuron as nodes and the

synaptic gaps as weights on the connections between the nodes. A simple illustration of a

node is shown inFig.2.7.

c[1

d.2

o

o
o

dn

Fig.2.7 Components of an artificial neuron.

Each neuron j has z inputs dr, each passed to the neuron through a con¡ection has a

connection strength (weight) w¡ associated with it, which modifies the signal from the

originating source. If the weight is positive, it is said to be an excitatory signal, whereas if

a weight is negative, \¡/e say that it is inhibitory. In order to find the ouþut from a neuron,

the n inputs to the node (a¡) are multiplied by their connection weights (w;), and then

summed (referred to as the Net input) according to
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v: (2.2)

where y is the dependent variable in the function (referred to as the activation function)

used to generate the output value for the node. Numerous activation functions may be

used in a neural nefwork (such as the linear, threshold, Gaussian, and sigmoid functions).

However, the sigmoid activation function (which has an activation level closest to that of

the biological neuron) is the most common and will be used in this thesis. The sigmoid

activation function (() also called the squashing function is calculated according to

i o,-,
¡:0

Ç: P(v): -+l*e'

The form of the sigma curve is shown in Fig. 2.8.

(2.3)

Fig. 2.8 Sigmoid activation function.
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We can put a number of nodes together to create a network having far greater

processing power than a single node. An example of a simple ANN is shown inFig. 2.9,

which has an input layer, a single hidden layer, and an ouþut layer.

lnput Layer Hidden Layer Output Layer

Fig.2.9 Simple ANN.

The input connections have a weight of +l (thus they do not affect the input signals, and

the input nodes simply pass the sigrral they receive straight through without processing.

Similarly, the ouþut connections also have a weight of *l 5s the signal generated by a

neuron in the output layer is the ouþut. It should be noted that ANNs are much smaller

than the real neural process and are a simplification of the biological neural process.

2.5.4 Processing with AllNs

Similar to the biological process of acquiring knowledge, ANNs have two modes

of operation: training (learning) and recall (applying what has been learnt). Although in

most ANNs these are separate serial processes, there are some models that continue to

learn while they are being used. The training process is quite straightforward for simple

ANNs and can become as complex as the designer feels necessary for the larger, more
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complex ANNs. In the typical training process, the designer presents the network with

sample data for which we have a known desired output. The ANN will generate an ouþut

that can be compared to the desired output. If the two do not match, then we can change

the weights of the interconnections so that the actual output is closer to the desired ouþut.

How we change the weights depends on the learning rule that we are using. The most

common learning rule is backpropagation (BP), which is a form of gradient descent

optimization of the weights. The error between the desired and actual output is

propagated back through the network, assigning blame to interconnections based on their

contribution to the ouþut, and adjusting the weights accordingly (as explained further in

Section 2.5.9). In this manner, the ANN acts as a memory, which internalizes all of the

data it is presented with during the training process, so that it can generate ouþut during

the recall process.

When the ANN is used for recall, it is presented with the pattern for the desired

ouþut, and generates an ouþut for it. The correctness of the ouþut depends on many

factors, the most important of which is how well the network was trained.

2.5.5 Why Use an AI\N?

The question may arise that since there are many methods of optimizing problems,

some of which have been identified in this thesis (Section2.2), why would one want to use

an ANN to optimize brachytherapy treatments? For difficult problems (computationally

expensive) we must resort to non-deterministic methods of optimization such as the GA or
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SA. The major drawback with these methods is the excessive length of time required to

generate an output. Therefore, some would argue that we turn to the ANN simply for the

speed with which it can generate an output (due to its massively parallel structure).

However, most researchers who understand ANNs know that this is not the only appeal of

ANNs: they have the ability to generalize and create correct answers for inputs which

have never been seen before.

2.5.6 Types of ANNs

There are many different types of ANNs, and they can be classified according to

the way they are organized (the activation function of the nodes and way the nodes are

connected). Different training techniques can also distinguish one type of ANN from

another, but typically the organization is the distinguishing feature. For example, a

classical Hopfield ANN [MeMR97] is a fully connected network, with every node being

connected to one another. The inputs of the Hopfield network are used to excite the

network, by giving the nodes an initial state. The Hopfield network then cycles until it

settles on an output. It is very much like a non-deterministic optimization algorithm

searching the solution space for a minimum. Clearly this ANN is extremely different from

the BP ANN, yet they are both considered ANNs.

Some ANNs are combinations of two or more types of ANNs and are called

hetero-associative networks. Perhaps the most common hetero-associative network is the

counter-propagation (CP) network. It is composed of two layers: the Kohonen and the
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Grossberg layers. The Kohonen layer finds the nearest neighbour (closest match in its

memory bank) of the input pattern, which is then used to select the set of weights for the

Grossberg layer (which is very similar to a BP ANIND.

The radial basis function (RBF) ANNs use two different learning rules during

training. This enables a RBF ANN to learn local features yet still be able to interpolate

outputs for new unfamiliar inputs (to a limited extent). The RBF ANN is similar to the BP

ANN except that the BP learns global features, enabling it to generalize better than the

RBF ANN, without the need for two training phases.

There is an infinite number of ANNs, as we can come up with an infinite number

of combinations of connection schemes, activation functions, and learning rules. The

focus of this thesis is to identifu a scheme of optimizing brachytherapy treatments with an

ANN. The ANN model used in this thesis is the BP ANN as it is the ANN model with the

most extensive background. It should be kept in mind that perhaps some of the best ANN

designs are yet to come and there may be an ANN perfectly suited to the brachytherapy

optimization problem that has yet to be found.

2.5.7 BP ANNs

BP is the most common form of ANN used to date. It was initially introduced by

Rosenblatt in 1961 but had the fatal flaw of not using a differentiable activation function,

thus limiting what it was able to learn. Better learning algorithms became available as

early as 1962 (Dreyfus), 1969 (Bryson and Ho), and 1974 (Werbos). But it was not until
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the work of McClelland and Rumelhart (1986) that the BP algorithm, as we know it,

became popular.

2.5.8 BP Organization

Although the BP ANN has a very well defined form, there are some variations

from the standard form of the BP ANN but these will not be covered in this thesis. This

thesis uses the classical form of the BP ANN. The BP ANN is a feed-forward network

(information flows from the inputs to the ouþuts). It has an input layer, one or more

hidden layers, and an output layer. Processingproceeds sequentially from the inputnodes,

through the hidden layers, and on to the ouþut nodes. Every layer is fully connected to

the next layer. Thus the ouþut from a node in layer j is connected to the input of every

node in layer k. Although there can be many layers, typically only three layers are used

because the additional layers drastically increase complexity (in terms of analyzing the

functioning of the inner layers, as well as the time required to train the network, which is

exponentially tied to the number of inner layers) with little performance gain.

2.5.9 BP Training

The purpose of training an ANN is to adjust the internal weights so that when

specific inputs are applied, specific ouþuts are generated. In order to train the BP ANN,

we need to have a set of training data consisting of input vectors with their corresponding

desired ouþut vectors. This input and desired output vector set is called a training pair.

-40-



Brachytherapy Optimization Chapter II: Background

Typically we need a number of training pairs called a training set. The number of training

pairs included in a haining set is problem specific.

To adjust the weights in the ANN using the training set, requires a training

algorithm. The BP ANN gets its name from its training algorithm, although a more

accurate name is error backpropagalion not just backpropagalion. Enor is back projected

from the output nodes back through the hidden layers towards the input nodes. The

activation function of the nodes is sigmoidal (and therefore differentiable ever¡rwhere, a

necessity for the BP algorithm as it uses the derivative during training). However, the

sigmoid activation function also has the added benefit of gain control, meaning that large

signals do not saturate the network. Before we start the training process, we initialize the

weights in the network to small random numbers to prevent saturation (large weight

values). By doing this, we also prevent finding the same local minimum (which occurs

with constant static initial values), and paralysis (a state in which training has no effect on

the network because the small weight change is negligible with respect to the large

weights).

The training process uses the following five steps:

1) Select a training pair (X,T) from the training set and apply the input vector X;

2) Calculate the ouþut vector Y;

3) Calculate the error between Y and the desired ouþut T (from training pair);

4) Adjust the weights in the netwo¡k in order to minimize the calculated error; and

5) Repeat Steps 1 to 4 until a desired error level is achieved.

-41-



Brachytherapy Optimization Chapter II: Background

Note that when the BP ANN is used for recall, only Steps I and2 are used.

Although it is not apparent, the identified steps are actually performed in fwo

passes. Steps I and 2 are part of the forward pass, whereas steps 3 and 4 are part of the

backward pass.

The forward pass begins with the application of the input vector X in which the

vector is multiplied by the weights between the input layer and the fi¡st layer. At each

node in the first layer we sum these products and use the resultant in the activation

function to produce an output. Once this is repeated for each node in the layer, the

processing continues to the next layer. This process is repeated until we ar¡ive at the

ouþut layer, which simply produces the output vector Y as the summed inputs from the

previous layer (y) passed through the activation function (V: ((y)).

The backward pass is used to change the weights in the network, to bring the

ouþuts closer to the desired value. Adjusting the weights for the ouþut layer is

straightforward, as we can calculate the error at the ouþut based on the difference

between the produced ouþut vector Y and the target ouþut vector T þrovided in the

training pair). The amount required to change the weight between the ouþut node and the

hidden layer before it, is calculated according to

(2.4)

where 
*alf ø is the derivative of the sigmoid activation function (() which can be

simplified as

ô : (r- nftt"rr>
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ô : (?"- nv] - Y)) (2.6)

Next, we multiply F,q.2.6 by the learning mte (I) which is a value that is used to control

how much of an effect the error will have on the weight chance, and the output from the

node in the hidden layer (Y¡) to this particular node in the ouþut layer, which is an

attempt to "assign the blame" for the error as shown inBq.2.7.

9çrrl : Yl-n
dY

and thus F,q.2.4 reduces toBq.2.6

Lw : t1õY,

The new weight between the nodes is then calculated according to

w(n+l): w(n)+A,w

(2.s)

(2.7)

(2.8)

This entire process is a version of a gradient descent optimization on the weights which is

why we use the derivative of ( in the weight change.

Changing the weights for the inner layers (also called hidden layers because they

have no associated target vector) is more difficult than in the ouþut layer. Thankfully the

work of Rumelhart el. al. [RuMc88] provides a solution that involves propagating the

error backwards using the weights that were used to generate the ouþut. Equations 2.7

and 2.8 are used to change the weights in all of the layers, however, the value of ô is

different for the hidden layers. The ô is known for the ouþut layer (using Y and T), but it

must be found for the hidden layers without the benefit of having a conesponding target
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vector (T). The solution to this problem is to construct a special ô value for the hidden

nodes by back propagating the õ values from all of the nodes in the following layer. The ô

values from the following layer are weighted using the weights that were applied to the

output from the current layer, thus assigning more blame to connections that have larger

weight and ô values. The process is shown in Fig. 2.10.

Fig. 2.10 Training a weight (w) in a hidden layer.

The equation used for the calculation of õ for internal layers assuming a sigmoid

activation function is shown in Eq. 2.9. õi is the ô value of the ith node in the following

layer and w¡ is the weight connecting the node in question with the ith node in the

following layer.

õ:((r (2.e)-el(s0,.,)
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In order to update the weights for a layer, the ô values from the following layer must be

known first. Therefote, we start at the ouþut layer and progress towards the input layer,

hence the name bachuard propagation.

There are two techniques of updating the weight changes in an ANN. They are

referred to as on-line or batch (off-line). In on-line training changes in the weights are

applied immediately after they are calculated, thus using the newly calculated weights on

the next training pair. In batch training the weight changes are accumulated through the

entire training epoch (complete set of training pairs) and only applied as an accumulated

weight change at the end of the epoch. There are valid arguments for both methods of

training, the main points being that batch training tends to be faster but requires additional

storage space. Due to the large sized ANN developed for this thesis, it was decided to use

an on-line approach to minimize additional storage space.

A bias term can be included in the neuron that serves as a shift of the origin of the

activation function along the horizontal axis. This has a similar effect to adjusting the

th¡eshold of the neuron, thereby permitting a more rapid convergence of the haining

process. The effect of a bias is shown in Fig. 2.11. h was decided not to include a bias in

this thesis work as the same resultant ANN will be achieved if the training is performed

without the shift, albeit much slower.

Another scheme of improving the training time is to use a momentum term that

combines the previous weight change with the new weight change. Thus, a weight change

in the same direction becomes larger whereas a weight change in a diffe¡ent direction will

-45 -



Brachytherapy Optimization Chapter II: Background

be dampened, thus preventing oscillation of the 'ù/eight around the actual minimum. The

same resultant ANN will be achieved without momentum, but more slowly. No

momentum term was used in this thesis as the same resultant ANN is achieved without

shifting sigma, albeit possibly slower.

I
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o.4
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Fig. 2.11 Effect on activation function when adding a bias.

2.5.9.1 Additive Noise in the Training Data

In order to increase the robustness of the performance of an ANN we can introduce

small random values (noise) into the training data. The noise is injected into the desired

ouþut vectors of the training data [WaPr99][Kasa96]. This has two effects: (i) to improve

the ability of the network to generalize, and (ii) to increase the speed of training and its

ability to escape local minimum. Additive noise was used in this thesis, as the amount of

x
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training data was small; and adding noise to the desired output vectors is in some ways

equivalent to adding more training sets.

2.5.9.2 Cooling q During Training

In a manner similar to SA, q can be cooled during the training process to achieve a

better ANN. The purpose for cooling n is identical to the cooling of the temperature in

SA. It allows the training algorithm an opporrunity to search the solution space in an effort

to find the global minimum. In the initial phase of training, a large q value causes large

and drastic weight changes in the ANN, thus allowing it to jump around the solution

space. As the training process continues, q decreases and eventually the weight changes

become very small as the ANN settles into a minimum (hopefully the global minimum).

The software developed in this thesis employs this technique during the training of the

ANN.

2.5.10 ANN Verification and Validation

When the training of the network is finished, an associated final error rate on the

training data is obtained. This error rate is referred to as the opparent error rate.

However we would really like to know the lrue error rate of the network on an arbitrary

data set, not just the training data. Unfortunately, for most problems there are many (if not

an infinite number of) patterns that may be presented to the network, therefore making it is

impossible to test them all. Thus a technique for assessing the true error rate is necessary.

This process is referred to as verification or validation.
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There is a number of techniques of validating a network. Usually the deciding

factor in choosing a techniques is the number of training pattems. The method used in this

thesis is called holdout processing, and involves separating the training data into two sets.

The network is trained using one set, and then verified using the second set. Other

schemes such as k-fold cross validation involve dividing the training data into k partitions,

using all of the partitions but one to train the network, and then verifliing the network with

the partition that was held back. This process is then repeated k times holding back a

different partition, and the true erro¡ rate is reported as the average of all of the true error

rates. Certainly k-fold cross validation is a more robust verification method, but we have

too few training data to employ it in this thesis.

2.5.11 Choosing the Best ANN

Although the design of an ANN is a scientific process, it also has heuristic

components. The scientific process involves defining what features the network should

learn, deciding on a learning strategy, and preparing the data for training. The more

heuristic process (although still science) is defining the ANN architecture and its structure.

This is a fundamental step in the development of an ANN and requires experience and

knowledge in order to make correct choices. A portion of the experimental results and

discussion of this thesis involve finding the best ANN architecture for the brachytherapy

optimization problem.
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2.6 Chapter Summary

All of the background information required for the concepts utilized in this thesis

\¡/ere presented in this chapter. The focus was on brachytherapy, SA, and ANNs. Using the

information from this chapter, we designed a system to optimize brachytherapy implants.

The design of the system is presented in the next chapter.
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CrnprrR III
SorrweRn REeUTREMENTS

"I musl create a system, or be enslaved by another man's."
- William Blake (1757-1827)
- British poet, artist, The Marriage of Heaven and Hell

"The principal goal of education is lo create men who are capable of doíng new
thíngs, nol simply of repealing what olher generations have done - men who are
creative, inventive and discoverers. "

- Jean Piaget (1896-1980)
- Swiss child psychologist, noted for cognitive development in children

3.1 Software Overvie\ry

The software system developed in this thesis is used to find optimal source

positions within 2D square tumours using an ANN, with the goal to prove that ANNs can

be used to optimize brachytherapy implants. However, before software can be developed

a design is required, which must be based on the requirements that the software must

meet. This chapter will identiff the software requirements. The brachytherapy

optimization problem is broken into three separate steps: (i) the development of data to

train the ANN with, (ii) the actual training of the ANN, and (iii) using the ANN. The

following sections will identiff the requirements for each of these three steps.

3.2 Requirements for Software Used to Create Training Data

The training data is created using the SA process as described in Section 2.4. Ã

program is developed and given the name simulated annealing for brachytherapy (SAB).
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The SAB softì¡/are must be able to load a tumour shape from a file and use SA to find

optimal source positions within fumour. The software must be able to report the ouþut to

the user in a meaningful and useful manner. The software also must be controllable by the

user in order to adjust the functioning of the SA. For instance, the software must have an

option to allow sources to be placed anywhere in 2D space, or to be confined only to the

tumour. There must be an option to enable or disable the use of variable dwell times for

the sources. There must also be a set of parameters that can be used to control the SA

algorithm, including a maximum number of iterations at each temperature value, an initial

acceptance ratio and a cooling schedule. The ratio (or resolution) of the input tumour in

terms of pixels per millimeter to the SAB software is a parameter that is required as input.

The input to the SAB software and the ouþut it produces will be used as a training pair to

train an ANN. The requirements for the software used to train the ANN are covered in the

following section.

3.3 Requirements for Software Used to Train an ANN

The training pairs developed with the SAB software (Section 3.2) are used to train

the ANN. The software that is developed for this purpose is a malleable ANN (MAN¡Ð

that can use any form of input and desired ouþut to adjust the weights in the layers of the

ANN using the BP algorithm. The MANN software should be very flexible in order to

accommodate any form of input and ouþut investigated. In other words, the size of the

input and ouþut layers of the ANN can change dynamically The number of hidden nodes
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in a single hidden layer (by design the ANN developed will only use a single hidden layer)

must also be variable. The MANN software must treat the stopping conditions and the rate

of training as input variables, so that different training methods may be investigated.

Finally, MANN must be able to start training from a previously trained set of weights, or

from a new set of random weights, based on the user's preference. The requirements for

the software that will use the ANN developed with MANN will be covered in the

following section.

3.4 Requirements for Software that Uses an ANN for Optimization

The software used must be able to load tumour shapes from files and allow a user

to create sample tumour shapes. The program must use an ANN to find optimal source

positions in the tumour shapes and be interactive, to allow the placement of sources by a

user to simulate sources being inserted in the patient. Finally, the software must provide

tools for the user to evaluate the optimized plans (such as isodose distributions in 2D and

3D) and provide statistics on the current source configuration. A software program will be

developed and given the name Brachytherapy Optimization With Artificial Neural

Networks (BowANN).

3.5 Chapter Summary

The SAB software will be used to create training pairs to train an ANN. The

MANN software will be used to train an ANN. Finally the BowANN software will be

-52-



Brachytherapy Optimization Chapter III: Softrvare Requirements

used to interface the brachytherapy optimization ANN to a user. In the following chapter,

the requirements for each of the three programs is used to implement the software.
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CnaprnR IV
SorrwaRn IMPLEMENTATToN

"Try nol! Do, or do nol. There is no \ry.
- Jedi Master Yoda

4.1 Introduction

In Chapter 3 the requirements for the software that are used in this thesis were

covered. These requirements are used to map the software to hardware. Once the hardware

is mapped, the software is designed and implemented. This chapter covers the mapping of

the software to hardware and the implementation details for the software.

4.2 Technology Mapping

Before the software is implemented, the hardware system for which it is targeted

must be decided. As this research does not have equipment funding, only existing

hardware can be utilized. A number of considerations where made in deciding which

hardware should be used for which software.

4.2.1 Simulated Annealing for Brachytherapy (SAB)

The first component to be developed is the SA aspect of the overall system. As the

execution time for SA can be lengthy, the target hardware should have as fast a processor

(CPU) as possible. Anothe¡ consideration is the ability to run the software on a number of

different machines at the same time (a form of parallel computing), which obviously
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would increase throughput. As the University of Manitoba (UM) has a number of open-

area computing facilities with Sun SPARC and ULTRA workstations running the Solaris

Operating System (OS), it was decided that SA would be implemented to take advantage

of these resources. The fastest computer at the time of development that was available at

CancerCare Manitoba (CCMB) v/as a Silicon Graphics (SGI) 02 with a MIPS RI0000

CPU running the IRIX OS. For these reasons, the SA component was implemented for

the UNIX platform, as IRIX and Solaris are both based on the POSIX OS. This means

software developed for POSIX can run on all of the open area machines at UM and on the

SGI at CCMB.

The next consideration for SA was the computer language to be utilized. As the

hardware was to utilize the SGI 02 as well as the Sun SPARCs and ULTRAs, which run

IRIX and Solaris respectively, the code had to be able to be compiled for both OSs. The

only compilers in coÍrmon between the two OSs where FORTRAN and C. C was chosen

as it is most familiar.

4.2.2 Malleable Artificial Neural Network (MANN)

An ANN can be developed in software or in hardware. In hardware problem

specific hardware can be developed or reconfigurable hardware that will allow for the

experimentation of the ANN layout can be used. However, due to budgetary constraints

on this thesis a software approach was taken. When the time came to develop the ANN

software, a new computer had been purchased at CCMB for another project. The
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computer is an IntergraphTDZ2000 GXl workstation, which has 512 MB of RAM, an

Intel PIII500 MHz Xeon CPU, and has the Microsoft Windows NT OS. This machine has

a lot of power (in the CPU speed) and memory, both of which are useful for the learning

and recall components of the ANN. As the Intergraph workstation is running the

Windows NT OS, the ANN development had to take place for the Windows platform. It

was decided to keep the code portable to Windows 95 and 98, so the development was not

to use any Windows NT specific function calls. The available language choices were vast

on the PC platform, but the structure of ANNs is very object oriented (OO) in nature, and

thus a language capable of OO development was desirable. The language that was chosen

was Microsoft Visual C#, which is the standard for Windows development and has the

OO capabilities that were required for MANN.

4.2.3 Brachytherapy Optimization with Artificial Neural Networks (BowANN)

The final stage of development is the creation of the program that uses the ANN

t¡ained in MANN to optimize source positions in the 2D tumours. A similar logic to that

used for the hardware mapping of MANN was utilized in choosing the Intergraph

TDZ2000 GXI workstation, as well as Microsoft Visual C++ for the development of

BowANN.
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4.3 Software Implementation

Now that the software has been overviewed (Chapter 3) and the hardware that is

used to create it has also been specified (Section 4.2),the implementation details of each

of the three programs, SAB, MANN, and BowANN is covered.

4.3.1 S^B

The form of the SA algorithm for this thesis is as shown in the flow diagram of

Fig. 4.1. The addition and deletion of sources has a very dramatic effect on the cost

function and therefore must be done in a controlled fashion. It was decided that SAB

would use the cost function and SA to find the best solution for a given number of sources.

Then, another source would be added and the SA would run again on this new number of

sources. This process continues until a solution is found that satisfies the cost function

exactly or a maximum number of sources has been added. SAB stores the best solution

encountered over all of the different number of source counts, and this is reported as the

final result. The reason for this is that by continually adding sources better solutions are

not necessarily being generated. Therefore, the final ouþut from the SA should not be just

the last simulation that was carried out, rather it should be the best solution obtained over

all ofthe source counts.
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FOR MaxSAlterations
{
CurrSolution, cost = E
NewSolution, cost = E+1
¡f (E+1 < E)

keep it
else if
(Sim Prob(CurrTemp, E, E+ 1 )<

keep it
)

with
NoChange?

Fig.4.1 Software flowchart for simulated annealing.
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4.3.1.1 SAB Input

As identif,red in Section 4.2.1, The SA software is designed for UNIX, using C as

the programming language. As tools to facilitate the creation of a graphical user interface

(GUI) for UNIX were not available, it was decided that a text-based approach would be

used for the user interface (UI). The input to the SA algorithm is a tumour shape to be

optimized and a configuration file that sets the default and initial parameters for the

simulation.

The form of the tumour file is of the pgm standard, which is a text-based digital

image format (as opposed to a binary based format). A text based format was used to

simplifu the modification and reading of the f,rle. There is a header which identifies the file

as a pgm file (version 2), a comment line to insert identification remarks, the x and y size

of the image, a number which indicates the number of color levels in the image, and

f,rnally, the individual pixel values expressed as integers (17 on each line). Fig.4.2 shows

the composition of a typical pgm f:Je.

For this thesis four gray scale values are used to differentiate the elements in an

image as shown in Table 4.1 and Fig.4.3

Table 4.1: Grey scale values for pgm file representation.

Grey Scale Value Element

0 Tumour

40 Periphery

17s Point Source

255 Extemal
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In

require an

file of Fig.

future work the addition of critical structures will be implemented and will

additional gray scale value. The graphical representation of the tumour pgm

4.2 is shown in Fig. 4.3 with the gray scale values identified.

Fig.4.2 Format of PGM files for SAB.

Periphery

Fig. 4.3 Typical pgm file used in SAB.
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4.3.1.2 SÄB Configuration Parameters

There are many parameters that can be specified in the configuration file, however

some are much more important than others. The information in the configuration file is

used to meet the requirements identif,ied in Section 3.2.The most important parameters

are discussed first.

The trial number is an integer that identifies the current trial run and is used to

store ouþut information in files. For example to create the cooling profile ouþut for trial

"10" the ouþut file would be called cooling-10.dat. If a unique number is not specified,

past output will be overwritten.

The maximum iterations is another crucial parameter which specifies the number

of iterations at each temperature in the SA process. Once the maximum iterations is

reached, the temperature is cooled according to the cooling profile. Experimentation is

required for each specifìc tumour size and shape to determine what works the best. It is

not necessary to experiment if time is not an issue as a very large number will ensure the

optimal result is found. If the algorithm has a sufficient number of iterations to minimize

the cost at a particular temperature, the optimal solution will be found. Unforfunately,

time is almost always an issue, and in order to reduce the amount of time spent by the SA

process, the number of iteration at each temperature should be restricted and this must be

done without compromising the quality of the solution.

The next parameter of importance is the scale or ratio of the input tumour file.

This value informs the SA algorithm how to interpret the input file dimensions. It is an
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integer value that represents how many pixels in the image are equivalent one physicai

millimeter. For example a ratio of 3 would indicate that a 30 pixel dimension of a tumour

is l0 mm or 1 cm in physical measurement.

The last group of parameters with significant importance are a number of flags that

control the flow of the algorithm. The first flag sets up the algorithm to move sources

either exclusively without altering the number of sources, or to add and delete sources

automatically. It was decided that the addition and deletion of sources was too profound

on the cost function and therefore, the flag is set to just move sources, however, future

work could involve modifying the algorithm to be more dynamic. Next is a flag that would

allow there to be no sources as a solution. This flag is set to false for the work presented in

this thesis bust can be used in combination with the flag that allows the automatic addition

and deletion of sources. Next is a flag that controls the location of the sources, by keeping

them within the tumour, or allowing them to be placed anywhere. For the present research,

this flag is set to restrict sources within the tumour volume. A flag is also specified to

account for variable dwell time. If this flag is true, sources can occupy identical locations

which in essence is identical to allowing the sources to possess different strengths or

different treatment times. For the present research this flag is disabled thus restricting

sources to be of equal dwell time (equal strength). Finally, a fTag is specif,red which

controls whether or not a heuristic will control the addition and deletion of sources. If this

flag is true, sources are added until the hyperdose sleeves surrounding all sources are at
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most I cm2 (as explained in Section 4.3.1.5). The work in this thesis set the heuristic flag

to true.

4.3.1.3 Initial Temperature Calculation in SAB

There is also a set of parameters in the configuration file that affect how the initial

temperature is calculated every time a source is added. There are th¡ee parameters that

conhol the process, the first being the maximum number of iterations at each temperature.

After the maximum number of iterations is reached, the temperature is increased by the

temperalure increase faclor. Each time the temperature is increased, the number of

sources being simulated are repeatedly added randomly. A calculation is used to

determined how many times the new random solution is kept according to the cost

function. The number of times the new random solution is kept is divided by the

maximum number of iterations and defined as the accepÍance ratio. This processes is

repeated until an acceptance ration greater than the initial acceptance ralio is obtained.

The pseudo code to calculate the initial temperature is as shown in Fig. 4.4. Essentially,

the temperature is increased until the desired initial acceptance ratio is achieved. The

temperature is initially low and a number of solutions are randomly generated. Then

number of solutions accepted (according to our cost function) at that temperature are

recorded. If the number is at least as large as the initial acceptance ratio, the temperature is

returned as the starting temperature, otherwise the process is repeated with an increased

temperature. This is an iterative process that is repeated until the desired acceptance level
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is met. The temperature found with this process is then used as the initial temperature for

the SA.

Costl : InitialConf,iguration
Cost2 : NewConfiguration
Delta : InitialConf,iguration - NewConfi guration
CurTemp: StopTemp
done:0
while (!done)
ÍI

for MaxlnitTemplterations

{
InsertSources0
if (Delta > 0)

Ml++
if (rand0 < e^(Delta/CurTemp))

l¡y4'2++

)
if ((Ml + M2)/MaxlnitTemplterations) > InitialS)

done: I
else

CurTemp *: TemplncreaseFactor

)

Fig. 4.4 Pseudo code for initial temperature calculation.

4.3.1.4 Other SAB Configuration Parameters

There are other parameters for SAB in the configuration file which are of less

importance and thus not covered in as great depth as the previous parameters. This

includes the number of sources with which the simulation should start. The SAB

algorithm is monotonically increasing with respect to the number of sources. The SA will

optimize using the starting number of sources, increase the number of source and then re-

-64-



Brachytherapy Optimization Chapter IV: Software Implementation

optimize. Typically, the starting number of sources is set to one so that SAB does not miss

a situation in which the optimal solution has less sources than the starting number. Next is

the default dwell time of the point sources. Although this thesis presents findings on static

source times, the software is also capable of using variable dwell times, which is

accomplished using this parameter. Finally, a f,rlename can be specified in the

conf,rguration flle that contains sources that can not be moved (static sources would

represent a source that is already inserted in the patient and obviously can no longer be

moved). Static sources were not used in the work presented in this thesis.

The form of the configuration file for the SAB is demonstrated in Fig. 4.5 (it

should be noted that if these parameters are not specified, the algorithm will use the hard

programmed defaults, identified in brackets).

4.3.1.5 SAB Cost Function Development

In order to evaluate the quality of a given solution a cost function must be utilized

as identified in Section 2.4.The development of the cost function is crucial as it is the only

means of assessing a given solution. In order to compare different solutions we evaluate

dose as a percentage of the prescribed dose. To accomplish this, the solution is normalized

to the minimum dose on the periphery (also known as the minimum peripheral dose and

denoted by mpo) of the tumour. By normalizingto this point all points on the periphery of

the tumour receive at least 100% of the dose. This thesis will make the assumption that

tumours are homogeneous for the sake of simplicity.
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// NU]IBEB_OF_SOURCES
- O // DI'ELL-T I ]4E

-f' // PRESCßIBED-DOSE
.O // INTEßNâL.NEIGHT
-O // EXTERHÊL_!'EIGHT

O.OO1 // EXTERHAL-FÊCTOB
0.9 II TE¡IP REDUCTION FACTOR

(1)
(r.0)
(1-0)
(1-0)
(1 -0)
( 0-25)
( 0-e)
(200)
{2 00)
(0.025)
(1)
(180)
( 0_e5)
( 0.00001 )
(1 -5)
( 0-e8)
(0-01)
(0_01)
(1)
(1)
(0)
(0)
(0)
ktl

// !IÊX-ITEBÊTIONS
// STOP_COUNT
// t'IITHIN-FÊDTOR
// IRIAL
// HâX_IHI T_TE}IP-I TEBATI ONS

// IHITIAL-ACCEPT-BATIO
// STOP-TEl4PERRTURE
// TEI'IP-INCBEßSE-FECTOR
// IIOUE_PEBCENT
// ADD PERCENT

// DELETE-PERCE¡TI
// BÊTIO
// JUST l,l0UE
// ALLOI,'-O-SOUBGES
// ALL0!LS0UBCES_0UTSI DE

// TI}IE-FÊTTOR
// USE-HEURISTIC

C.dAT fI HELD SOUBCES FILEHÊ]'IE

Fig. 4.5 Configuration file for SAB.

For brachytherapy there are a number of issues to consider in the development of

the cost function. The most significant is minimization of the size of hyperdose sleeves

(areas receiving more than 200% of the dose), which from clinical experience should be

restricted to cross sections less than I cm2. If the hyperdose sleeve is larger, unacceptable

tissue necrosis can occur. The hyperdose sleeve will increase as the distance between

sources increases. A function that when minimized will ensure that hyperdose sleeves are

kept within the constraints can be calculated according to
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(4.1),:l-H-h,.".1

where h.o are the hyperdose check points (points located 0.5 cm around every source in

each orthogonal direction; the area contained between the four check points associated

with any source will be I cm2), mp¡ is the minimum peripheral dose, (h.o/mpp) bar is the

average dose at the h.o points normalized to the mpp, hn'u* is defined as 2 which

corresponds to 200%o, and the bars around the right side of the equation indicate the

absolute value. As we are comparing the normalized dose at the check points fo h**, i

will be a minimum when the hyperdose sleeves are less than200o/o.

Another consideration during optimization is the attempt to maintain a

homogeneous dose within the tumour. Areas receiving more dose stand a better chance at

being killed, but risk tissue necrosis, whereas areas receiving less dose have less of a

chance of being killed. However, it is impossible to obtain a homogenous dose

distribution due to the significance of the non linear nature of the inverse square

component of the dose calculation. Using a concept such as standard deviation to quantify

the variation of dose in the tumour will report extremely poor results and is of limited use.

As the dose is normalized to the mpp, and since Eq. 4.1 ensures that the dose is not too

high, it should be verified that there are no points in the tumour that are too cold (receiving

less than 100% of the dose). The point in the tumour with the minimum dose (minimum

tumour dose m1¡) is normalized to the mp¡ and compared to l00o/o of the dose. A
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function that when minimized will ensure that all points within the tumour are receiving at

least 100% can be calculated according to

where dn.,in is defined as I which represents l00o/o, m1¡ is the minimum tumour dose and

mpp is the minimum peripheral dose.

Finally, it is critical to try and constrain the dose to the tumour, minimizing the

dose to external structures, as radiation is destructive it is clearly desirable to avoid

exposing healthy cells. It must be verified that the maximum dose on the periphery

(maximum periphery dose Mpp) is not too high as that would indicate a large dose

external to the tumour and possibly local critical structures. It was arbitrarily decided for

this thesis that a dose of more than l05o/o on the periphery of the tumour would constitute

too much dose. A function that when minimized will ensure that this condition is not

violated is calculated according to

j : d-¡r-mTD
mPD

r : **r-P,no,

(4.2)

(4.3)

where Mp¡ is the maximum periphery dose, mpp is the minimum periphery dose and p-*

is defined as 1.05 which represents 105%.

There are a number of ways in which these functions (Eq. 4.1, Eq. 4.2, andEq. 4.3)

can be calculated and combined as demonstrated in research using similar cost frmctions

[Slob92][YRPZ98][YuSc96]. However, for this thesis, it was decided to give the most
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importance to the size of the hyperdose sleeves, thus primarily using Eq. 4.1 as the cost

function. The hyperdose sleeves help identify if the correct number of sources are being

used. If the hyperdose sleeves are too big (indicated by h.o being very large), more sources

are needed. If the hyperdose sleeves are too small, too many sources are being used. Thus,

if the addition of sources is controlled in SA and sources are only added once a good

solution is found (using the cur¡ent number of sources), the optimal number of sources

will be found, as well as the optimal configuration of those sources. However, other

factors in the cost function are required to monitor the other requirements for an optimized

brachytherapy treatment. Thus, we include Equations 4.2 and 4.3, if they are evaluated to

be positive, which may be viewed as penalty factors.If they are evaluated to be negative,

this indicates that the requirement is met by the current solution. The final cost function is

a combination of Eq.  .l,Eq. 4.2, andBq.4.3 and is given by

It+¡+t'
"SA ìLt

4.3.1.6 Source Movement in SAB

if (i>0),(k>0)

otherwise
(4.4)

As was discussed in Section 4.3.1, sources are added in a controlled fashion.

Sources are moved around within the tumour until the SA process reaches a termination

condition, at which point (if all of the requirements are met) the SA terminates, otherwise,

another source is added. The addition of the next source is actually like starting the SA

process over again. There is no guarantee that the optimal solution for n*l sources is at
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all related to the conf,rguration of n sources. Therefore, the sources are replaced randomly

within the tumour and an initial temperature is recalculated and the SA process is then

repeated.

Typically there is a single stopping condition for SA, however due to the

complexity of this specific problem, it was decided to include a variety of dynamic

stopping conditions related to the temperature and number of iterations. The first stopping

condition occurs once the temperature drops below a value specified in the configuration

file (absolute minimum). This is to prevent the algorithm from running if the probability

of accepting a worse solution is close to 0. The second stopping condition occurs if a

number of successive iterations have a cost value that is very similar. This is to prevent

the SA from running for a long time, while there are no marked improvements occurring

over long periods of simulating. This condition occurs not just at the global minimum but

also if a local minimum is obtained and the temperature is not sufficiently high enough for

the algorithm to escape. Finally, the SA will stop if the number of sources reaches an

upper bound. This measure was taken for a number of reasons, the first being that it is not

clinically viable to have an extremely large numbe¡ of sources, and secondly, the

algorithm has a hard time moving sources to free spaces if most of the spaces in the

tumour are already occupied by other sources.

The movement of sources has three methods of operation depending on the

parameters specified in the configuration file. The first consideration is how the source

moves in general. The source movement is random with the possibility of movement in
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both the x and y direction. The pseudo code for the source movement algorithm is shown

in Fig.4.6.

The second condition that is considered in source movement is whether or not

sources can be placed external to the tumour. If sources are allowed to be placed extemal

to the tumour then no verification is necessary, otherwise, if a source gets moved extemal

to the tumour the move is undone. The work in this thesis did not allow sources external

to the tumour volume. The final condition that is checked when moving sources is whether

or not dwell times are being considered. If dwell times are considered, then the sources

are allowed to overlap, simulating a single source with an increased dwell time. The

experiments presented in this thesis did not allow source overlap.

//x move
Rl : rand0;
R2: rand0;
if (Rl < 0.33)

x *: movedistance
else if (Rl < 0.66)

x -: movedistance
else

X:X
//y move
if (R2 < 0.33)

Y *: movedistance
else if (R2 < 0.66)

y -: movedistance
else

v:v

Fig. 4.6 Source movement algorithm in pseudo code.
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4.3.1.7 SAB Output

SAB generates a number of outputs for analysis, and all of the ouþuts are stored to

various files. First of all, SAB creates an actual visual picture of the solution achieved at

every source number in the form of a pgm file. The pgm file is the tumour input to the

SAB software with the optimized source positions superimposed on it. Another ouþut

that is reported is the cooling plot generated by SAB. The cooling plot should be a

generally decreasing function and this provides a very simple and quick means of

evaluating whether the SA algorithm is functioning properly. There are other ouþut files

that provide text-based feedback and report such things as the final source positions (the x

and y coordinates), the execution time remaining in the current simulation, and special

case stopping conditions among others.

4.3.1.8 SAB Random Number Generator

SA is a very long process requiring a large number of iterations in order to arrive at

a solution. Each iteration uses a random number to determine the actions that the SA

algorithm will take. Therefore, it is important that a good random number generator

(RNG) be used. Typically a RNG is considered good if it can generate a long sequence of

independent numbers. Horvever, because a computer is a finite state machine, all RNGs

implemented in software will be periodic. Some software RNGs are better than others. A

thorough analysis of a few RNGs was recently conducted [Deni0l]. The fìndings of

[Deni0l] are that the drand4S RNG (which has a period of 248 - much larger than the
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number of iterations we anticipate doing in SAB) passes spectral tests. However, it was

also found that the drand4S RNG failed the statistical test X2. This short coming of the

drand48 RNG is overcome by ensuring that we only use the most signif,rcant l6 bits in the

48 bit value, as suggested by [Deni01]. The drand4S RNG will be used for SAB in spite of

its lengthy execution time. The source code for the SAB software can be found in

Appendix C.

4.3.2 MANN

The goal of the MANN soffware is to create an ANN with the ability to optimize

source positions very quickly for brachytherapy cancer treatments. The MANN software

must allow for a dynamic ANN structure as it is uncertain what the form of the ANN or its

inputs and ouþuts will take. These will be determined through experimentation using the

MANN software and by evaluating how well the ANN trained with MANN performs.

4.3.2.1 MANN Input

As stated in the background section on ANNs (Section 2.5) there are two methods

of operation for an ANN, training and recall. Both stages have different input

requirements. The following two sections will cover the differences in the inputs.

4.3.2.1.1 MANN Training Input

The ANN developed in this thesis will use the ouþut from the SAB program

(Section 3.2) as training data, and will use the BP method covered in Section 2.5.9 to train
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the ANN. The data for training must be formatted as textual input in a f,ile. The first set of

data in the file is an input vector to apply at the inputs of the ANN and the second set of

data in the file is a desired ouþut vector used to update the weights of the ANN. This

training pair is the first of many that are stored in the file. There is a limit on the number of

training pairs that MANN can handle (the maximum file size in Windows NT). This limit

did not hinder the development of an ANN in this thesis. Once training is finished, the size

of the layers and the weights that are found during training are stored to another text file.

This file represents the knowledge that the ANN has acquired, and is used to load the

ANN into the BowANN software.

4.3.2.1.2 MANN Recall Input

Recall in the BP network is similar to training however there is no BP of the error

through the network. Therefore, the size of the layers and the interconnection weights can

be loaded from the f,rle created during training and used to generate ouþut based on

provided input. The input for recall could come from a file and the ouþut generated can

also be written to a file. The weights and layer sizes can be loaded into other software to

incorporate the ANN into other programs such as BowANN. The ANN incorporated in

BowANN can then use data from the current brachytherapy insertion simulation (RAM

data) as input as opposed to using input from a fìle.
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4.3.2.2 MA¡ÍN Confi guration Parameters

There are a number of parameters that must be specified before the MANN

soft\t/are before can be initiated. These parameters affect the structure of the ANN, as

well as how the ANN is trained. The parameters are entered into a Windows dialog box

when the MANN software is first invoked. Prior to the creation of MANN it was decided

that only three layers would be used in the ANN, as adding additional layers increases the

complexity. Therefore, it would be more advantageous to use a different ANN structure

than BP to increase the complexity (most likely the probabilistic neural network (PI.IN).

The first set of parameters that must be specified for MANN are related to the error

in the system and the learning parameter 11. First of all an error limit is specif,red, below

which the system will cease training. This value is used to prevent the ANN from

continuing to train if the weights achieved are already producing very good results. Next,

the initial T'l must be specifÏed, as well as the f,rnal q value. MANN will continue to train

until this final q value is reached (or the er¡or limit is reached). At each q value a number

of iterations are used to train the ANN, which must be specified to MANN. After the

number of iterations is reached, r1 is reduced using a cooling schedule until it reaches the

stopping q value.

The second set of parameters that must be specified is the structure of the ANN to

be created. These are specified by providing three integer values to the MANN software,

which represent the number of nodes in each of the three layers. Although this thesis is

focusing on an ANN that can handle square tumours up to 3 cm in size, the MANN
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software 'ù/as designed to be able to create any size of ANN. The number of input and

output nodes will be dependent on what is used as the input and ouþut to the ANN. The

first experiment for the ANN will be to determine what the input and ouþut should be.

The second experimental component for the ANN will be to determine the number of

interior nodes producing the best ouþut.

Finally, the training mode of MANN must be specified. There are three training

modes. The first training mode (0) is used to test the ANN that has been created, therefore

the weights are loaded from a file and are not adjusted at all. In this mode the network

simply generates ouþut for the test data (recall mode). The second training mode (1) starts

the weights at small random numbers and uses the training data to update the weights. The

final training method (2) loads the weights from a previous training session and continues

to modifu them. A screen shot of the configuration dialog box for MANN is shown in Fig.

4.7.

4.3.2.3 MANN Ouþut

The most important output from the MANN program are the weights that are

found with the BP algorithm. These weights are stored in a fìle, which can be loaded by

BowANN as the representation of the trained ANN. The weights are not available until

the ANN has completed training. Therefore, some real-time ouþut was created to help

assess the training process. A 2D graphics plot is displayed showing the current RMS

er¡or in the training process. This plot can be used for verification that the ANN is
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learning, as it should be a generally decreasing function. MANN also displays a number

of cunent values in the system, such as the current 11, the current iteration, and the numeric

value of the current RMS error in the system, as shown in Fig. 4.8.

Fig.4.7 Configuration dialog box for MANN.

Fig. 4.8 MANN interface.
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Once the ANN is created, it is tested. The quality of the ANN is characterized by

the error in the output and this will be assessed at two stages. The f,irst will be the

difference in the optimal energy function calculated by the ANN compared to the energy

function calculated by SA, and the second will be the final source positions as derived

from the ANN energy function compared to the source positions of the SA. The source

code for the MANN software can be found in Appendix D. It should be noted that some of

the software code used was from Rao and Rao [RaRa95]. However, it was modif,ied in the

following ways. First, during an analysis of the software from [RaRa95] a memory leak

problem was found and fixed. Second, a Windows wrapper was created around the

[RaRa95] code so that it could be incorporated into Windows.

4.3.3 BowANN

Tfte BowANN software provides a Windows based GUI to interface with the ANN

trained in MANN for brachytherapy optimization. The program is able to optimize source

positions within a tumour shape, which can either be loaded into the program as a pgm file

or via the software interface. Next, the ratio (same as the ratio used in SAB and MANN)

of the fumour can be specified (and normalized to the maximum value of 3 cm).

BowANN is a Microsoft Windows based program for evaluating the effectiveness of the

trained ANN and the optimal source positions that it yields.

BowANN uses the ANN trained in MANN to perform optimization. The user has

a standard Windows 95/98/IIT GUI with which to manipulate the environment. The user
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has the ability to add additional sources (other than the ANN generated source positions)

using the mouse or by entering the actual physical coordinates into a dialog box. Energy

functions calculated based on the sources in the environment can be dìsplayed using

OpenGL and 3D computer graphics. The energy functions can be rotated in order to be

assessed from any angle. Finally, the user can also view statistics on the current source

configuration in a dialog box that reports values associated with the cost function (Section

4.3.1.5) from SAB as shown in Fig.4.9.

Fig.4.9 BowANN statistics report dialog box.

The BowANN software is typically used as follows. A tumour is loaded from a

pgm f,tle. The user then instructs the software to find the optimal source positions for the

tumour, and displays them as probability distributions. The peak of the distribution

represents the best location for the source, as shown in Fig. 4.10.
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The user can then simulate a brachytherapy insertion procedure by placing a source at a

point in the tumour, which would represent an inserted source, and then instruct the

software to re-calculate the optimal positions of additional sources (given that a source has

been inserted in the tumour). BowANN will then generate new ouþut based on the new

input as shown in Fig. 4.11

Fig.4.10 Predicted source positions in BowANN.

In this manner a brachytherapy insertion is simulated, and BowANN is used to

view what the ANN would generate as the desired positions for all sources yet to be

inserted. At anytime, the user can also plot the current dose distribution in the tumour with

a simple command to the BowANN software. This dose is normalized to the minimum

dose on the periphery of the tumour which is indicated as red on the display. The ouþut
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from the isodose plot can be viewed in 2D as shown in Fig. 4.12, or in 3D as shown in Fig.

4.13. The source code for the BowANN software can be found in Appendix E.

Fig.4.11 Updated predicted source positions in BowANN.

Fig.4.l2 2D 125% isodose plot in BowANN.
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F'ig.4.13 3D isodose plot in BowANN.

4.4 Chapter Summary

This Chapter identified the breakdown of the overall brach¡herapy optimization

problem into three components, SAB, MANN, and BowANN. The available hardware

technology was mapped to each of the components based on their requirements. All of the

inputs and ouþuts of the software programs and parameters used to control them were

identified. The following Chapter designs and conducts experiments that answer the three

main questions of this thesis. These questions are: What should be used as input to an

ANN for brachytherapy optimization?; What should be used as ouþut?; and what is the

best form of a BP ANN to optimize brachytherapy treatments?
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CnaprnR V

ExpnnrMENTAL Rnsur,rs AND DrscussroN

"Nothíng stops the man who desires to achíeve. Every obstacle is símply a course
to develop his achievement muscle. It's a strenglhening of his powers of
accomplishment. "

- Eric Butterworth, inspirational speaker

5.1 Introduction

The purpose of performing experiments is to verify that the concepts as well as the

methods used to solve a problem are correct. For this thesis we wish to prove that ANNs

can be used to optimize brachytherapy treatments. In order to prove this we must ensure

that the software design and implementation work and meet the requirements identified.

For the SA aspect of the thesis we want to ensure that SAB meets the requirements of

Section 3.2 and is finding correct training data for the ANN. For the ANN aspect of the

thesis we want to ensure that it meets the requirements identified in Sections 3.3 and 3.4.

Experiments will also be used to answer the three main questions of thesis in regards to

ANNs: (i) Can an ANN be used for brachytherapy optimization? (ii) What should be used

as input and output to the ANN? and (iii) What is the best structure of an ANN for

brachytherapy optimization? The following sections will describe the design of the

experiments used and present results.
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5.2 Experimental Design for SA

The results from the SAB software are used to train an ANN for brachytherapy

optimization. In order to prove that an ANN can be used for brachytherapy optimization,

it must be trained using realistic training data. Therefore, it is important to ensure that the

SAB software generates correct output. In order to verifo this, a number of different

tumour sizes will be used as input to the SAB software and the ouþut is evaluated. As this

thesis is limited to square tumours up to 3 cm in size we will experiment with inputs

ranging from 0.5 cm to 3.0 cm in 0.5 cm increments. It should be mentioned that square

tumours are more difficult to optimize than the more realistic elliptical tumours are the

corners represent singularity. The input to the SAB software is the tumour shapes (to

optimize) as well as a configuration f,rle (to control the flow of the SAB software). The

ouþut for each of the tumour sizes is collected and evaluated to ensure that it is correct.

5.3 Experimental Results and Discussion for SA

The following tumour sizes are used as input to the SAB software: 0.5 cm, 1.Ocm,

1.5 cm, 2.0 cm,2.5 cm and 3.0 cm. The following sections will cover the results for these

sizes. Additional sizes were also used, however a detailed discussion witl only be

conducted on the aforementioned sizes. To view the results from the additional

experiments, consult Appendix A. During initial testing of the SAB software it was

determined that a ratio of 3 seemed to work the best. This means that 3 pixels are used to

represent 1 mm. Since this standard has been identified it will be used for all input sizes. It
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was also found that a cooling schedule that uses approximately 10,000 iterations at each

temperature works best, when combined with the cooling profile shown in Fig. 2.5.

5.3.1 Square Tumour 0.5 cm in Width

The 0.5 cm tumour shown in Fig. 5.1 was used as input to the SAB software. The

conf,rguration file shown in Fig. 5.2 was used to control the flow of the SAB software as

discussed in Section 4.3.1.2. This trial produced a cost iteration plot as shown in Fig. 5.3.

The cooling profile shown in Fig. 5.4 was utilized. The ouþut from the SAB software is as

shown in Fig. 5.5. The hyperdose sleeve for the solution shown in Fig. 5.5, is shown in

Fig. 5.6. Since the cost function for SAB is essentially comprised of ¡¡¡o factors, the

homogeneity of the dose in a tumour and the size of the hyperdose sleeves, it is easy to

predict the ouþut for a small tumour (0.5 cm). The results shown in Fig. 5.5 are exactly as

expected. Since the tumour size is smaller than the maximum hyperdose sleeve size, a

single source could be placed anywhere in the tumour and meet that requirement in the SA

cost function. However, because of the second component of the SA cost function a

homogeneous dose in the tumour is more desirable. As the SAB software attempts to find

the best solution with the minimum number of sources possible, a single source at the

center is exactly as expected. The ouþut from the SAB algorithm for a tumour size of 0.5

cm is therefore shown to be correct. The final cost function value for this source

distribution was 3.035926.
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Fig. 5.1 0.5 cm tumour to be optimized with SAB.
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lll;iiflílli,)it:i
',:ìl;i;J;i./:j:;lr.;! j

lL / / NUr{BER_oF_souRcES
1. O // DÌÌÌELL_TIIE
1.D // PRESCRIBED_Do5E
1.0 .// INTERNÀL IJEIGHT
O.O // EXTERNÀL_TEIçHT
O.OOI / I EXTERNÀL-FÀCTOR
0,9 // TEHP-REDUCTION-FÀCTOR
25TT lI I{AX-ITERÀTIONs
2000 // sToP_couNT
O.O25 // IÙITHIN-FÀCTOR
1OO .// TRIÀL
1OO // UÀX_INIT_TE¡TP-ITERÀTIONS
O.95 // INITIÀL_ÀCCEPT-RÀTIO
o.o0oo1 .// 5ToP_TEÌ{PERÀTURE
1.5 // TEIP_TTUCREÀsE-FÀCTOR
o.9e // t{ovE_PERcEl¡T
O.OI /I ÀDD-PERCENT
O.OI // DELETE-PERCENT
3 // RÀTIO
7 // JU5T_Ì{OVE
7 / / ÀLLOû_O_SOURCES
O // ÀLLOII-SOURCES_OUTSIDE
O / / TII{E-FÀCTOR
L / / USE-IIEURI5TTC
gEAIiC.dAL // HELD SOURCES FILENÀHE

Fig.5.2 Configuration file for 0.5 cm tumour.
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Fig. 5.4 Cooling profile for 0.5 cm tumour.

Fig. 5.5 Optimized soruce positions for 0.5 cm tumour.
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Fig. 5.6 Hyperdose sleeve for 0.5 cm solution.

5.3.2 Square Tumour 1.0 cm in Width

The 1.0 cm tumour shown in Fig. 5.7 was used as input to the SAB software. The

configuration f,tle shown in Fig. 5.8 was used to control the flow of the SAB software.

This trial produced a cost iteration plot as shown in Fìg. 5.9. The number of iteratìons for

the optimization of the 1.0 cm tumour is considerable less then for the 0.5 cm tumou¡ as

the SAB software finds a perfect solution. With a 1.0 cm tumour the cost function can be

satisfied exactly with one source at the center. If the SAB software ever reaches a point in

which 2000 iterations (as specified in the configuration file of Fig. 5.8) in a row occur

without a change in the cost occurs it will stop and return the result as the answer. A
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cooling profile shown in Fig. 5.10 was utilized Which has less iterations than the cooling

profile of Fig. 5.4 because the stopping conditions of 2000 iterations without change was

met. The output from the SAB software is as shown in Fig. 5.1 1. The hyperdose sleeve for

the solution shown in Fig. 5.11, is shown in Fig. 5.12. The optimal source distribution for

a 1.0 cm square is easy to predict as it should contain only a single source, using a logic

similar to that in the previous section. A final cost value of 1.245919 was obtained by

SAB for the 1.0 cm square tumour.

Fig. 5.7 1.0 cm tumour to be optimized with SAB.
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L / / NUIIBER-OF-SOURCES
1, O .// DUELL-TII{E
1.O // PRESCRIBED DOSE

1 .0 // rnr¡nN¡1,_r¡¡-rcnr
O,0 /./ EXTERNÀL_IÌIEIGITT
T.OO1. // EXTERNÀL_FÀCTOR
0.9 // 1'EI{P_REDUCTION_FÀCTOR
25OO // I{ÀX ITERÀTIONS
zÛoo // sToP_corrNT
O.OZS // I¡IITHIN FÀCTOR
zOO // TRIÀI
1OO // ¡IÀX INIT TEITP ITERATIONS
D.ss // r¡¡rirl1_lccrpl n.lrro
0.00001 .// sTOP_TEUPERÀTURE
1.5,// TEI{P-INCREÀ5E_FÀCTOR
O.9A // EOVE-PERCENT
O.O7 // À}D_PERCENT
O.OT // DELETE_PERCENT
3 // RÀTIO
L / / JUsr_ilOVE
| / / ÀLLOI¡I_O_SOURCES
O / / ÀLLOT'_SOTIRCES-OUTSIDE
O // TII{E_FÀCTOR
7 // USE-HEURISTIC
s¿a¿is.dac // flELD SOURCES FILENÀ}IE

F'ig. 5.8 Configuration file for 1.0 cm tumour.

Fig. 5.9 Cost plot for 1.0 cm tumour.
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Fig.5.11 Optimized source positions for 1.0 cm tumour.
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Fig.5.12 Hyperdose sleeve for 1.0 cm solution.

5.3.3 Square Tumour 1.5 cm in Width

The 1.5 cm tumour shown in Fig. 5.13 was used as input to the SAB software. The

configuration file shown in Fig. 5.14 was used to control the flow of the SAB software.

This trial produced a cost iteration plot as shown in Fig. 5.15. The plot shown in Fig. 5.15

is unique compared to the previous plots presented in this thesis as there are four distinct

sections with increased cost. Each of these pulses correspond to an additional source being

added to the simulation. Similarly the plot shown in Fig. 5.16 has four distinct cooling

phases. Sources are added in a controlled fashion in order to minimize the number of

sources (or needles) used. Thus the number of sources is not included in the cost function
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but it is minimized by adding sources in a controlled fashion. The actual progression of

point sources being added is shown for the 3.0 cm tumour in an upcoming section (Section

5.3.6). A cooling profile shown in Fig. 5.16 was utilized. The output from the SAB

software is as shown in Fig. 5.17. The hyperdose sleeve for the solution shown in Fig.

5.17, is shown in Fig. 5.18. These hyperdose sleeves onlyhave a cross sectional size of

6.3333 mm, well within the 1.0 cm limit. The ouþut obtained is what is expected, a

homogeneous distribution of sources, hyperdose sleeves smaller than L0 cm and a final

cost function value of 1.613671.

Fig. 5.13 1.5 cm tumour to be optimized with SAB.
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f // NUr{BER_oF_souRcES
1.0 .// DUELL-TII{E
1.0 .// PRESCRIBED-DOsE
1. O /./ INTER}¡ÀL-[IEIGIIT
O.O /./ EXTERNÀL-¡'ETGIIT
g.OÛ7 / I EXTERNÀL-FÀCTOR
Û.9 // TEHP-REDUCTION_FÀCTOR
25DO / / I{ÀX-ITERÀTIONS
2000 // sToP_coltNT
O,O25 / / ÙITTHIN-FÀCTOR
3ÛO // TRÍ\L
1OO /./ UÀX_INIT-TEHP-ITERÀTIONS
O.95 / I INITIÀL-ÀCCEPT-RÀTIO
O.OOOO1 // STOP-TE¡IPERÀTURE
1.5 // TEHP-INCREÀSE_FÀCTOR
O.9B // I{OVE-PERCENT
O.OL // ÀDD-PERCENT
O.OL // DELETE-PERCENT
3 /,/ RÀTIO
r / / irusT_uovE
L // ÀLLOû_O_SOURCES
o // ÀLLOL_5oüRCES_OUTSTDE
O // TII{E-FÀCTOR
I // UsE-HEÛRISTIC
gtaÈic.daE // HELD SOURCES FILENÀ}IE

Fig. 5.14 Configuration file for 1.5 cm tumour.
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Fig. 5.17 Optimized source positions for 1.5 cm tumour.
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Fig.5.18 Hyperdose sleeve for 1.5 cm solution.

5.3.4 Square Tumour 2.0 cm in Width

The 2.0 cm fumour shown in Fig. 5.19 was used as input to the SAB software. The

configuration file shown in Fig.5.20 was used to control the flow of the SAB software.

This trial produced a cost iteration plot as shown in Fig. 5.21. Similar to the discussion in

the previous section, four distinct phases are seen in 5.21corresponding to each of the four

sources in the final solution being added. To see the progression of a solution completely

see Section 5.3.6. A cooling prof,rle shown in Fig. 5.22 was utilized. The ouþut from the

SAB software is as shown in Fig. 5.23.The hyperdose sleeve for the solution shown in

Fig. 5.11, is shown in Fig. 5.12. Unforlunately the results for a2.0 cm square tumour leave

r00 -
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a little bit to be desired. However, upon careful inspection, and further experimentation, it

was found that the results found by SAB seem to be the optimal source positions even

though the resulting hyperdose sleeves are too big. There are a couple of possible

explanations for why this occurs. The first is that perhaps there is no such thing as a

perfect placement of equal strength sources tn a 2.0 cm tumour. The second possible

explanation is that perhaps if sources were able to be placed external to the tumour a better

hyperdose sleeve could be achieved. When the SAB software continued adding source, it

reached the maximum number of sources allowed in a simulation (currently 15) and was

unable to find a suitable answer. The solutions with more than four sources had cost

functions with cost values higher than the final cost function value for four sources. The

best result found is the one presented here. This imperfect result shows the complexity of

trying to optimize brachytherapy implants. The f,rnal cost function value for four sources

in a 2.0 cm tumour is 1.759948. It should be noted that a plot of the 218% dose yields an

isodose line that corresponds to the maximum acceptable size for the hyperdose sleeves,

so this solution is approximately l8o/o off what we require.
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Fig. 5.19 2.0 cm tumour to be optimized with SAB.
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lt / / NUITBER_oF_souRcEs
1.0 .// DUELL_TI}fE
1.0 .// PRESCRIBED-DOsE
1.0 .// INTERNÀL-I'EIGHT
0.0,// EXTERNÀL_UEIGHT
o.oo7 / / EXTERNÀL-FÀCToR
0.9,// TEHP_REDUCTTON_FÀCTOR
2SOO // I{ÀX_rTERÀTTONS
2000 // sToP_corrNT
O,O25 / / IJTTHIN-FÀCTOR
400 // TRI.IL
1OO // I{ÀX-INIT-TEUP-ITERÀTION5
O,95 // INITIÀL-ÀCCEPT-RÀTIO
o.o0o01,// SToP_TEI{PERÀTURE
1.5 // TEI{P-INCREÀSE-FÀCTOR
O,9A // HOVE_PERCENT

O.O7 // ÀDD-PERCENT
O.O7 // DELETE-PERCENT
3 // RÀTIO
7 // Jusr_t{ovE
7 / / ÀLLOI¡I_B_SOURCES
O / / ÀLLOII_SOIIRCES_OUTSIDE
O // TIIIE_FÀCTOR
7 /1 IJSE-EEURI5TIC
StaEic.da¿ II HELD SOURCES FILENÀI{E

Fig. 5.20 Configuration file for 2.0 cm tumour.
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Fig. 5.23 Optimized source positions for 2.0 cm tumour.
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Fig.5.24 Hyperdose sleeve fo¡ 2.0 cm solution.

5.3.5 Square Tumour 2.5 cm in Width

The tumour shown in Fig. 5.25 was used as input to the SAB software. The

configuration file shown in Fig. 5.26 was used to control the flow of the SAB software.

This trial produced a cost iteration plot as shown in Fig. 5.27. Similar to the discussion in

the previous section, four distinct phases are seen in 5 .27 corresponding to each of the four

sources in the final solution being added. To see the progression of a solution completely

see Section 5.3.6. A cooling profile shown in Fig. 5.28 was utilized. The output from the

SAB software is as shown in Fig. 5.29.The hyperdose sleeve for the solution inFig. 5.29,
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is shown in Fig. 5.30. The hyperdose sleeves in Fig. 5.30 have exactly a 1.0 cm diameter

which is the maximum acceptable size according to our cost function. The final cost

function value is 1.098585.

Fig.5.25 2.5 cm tumour to be optimized with SAB.
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It t t Nur{BER_oF_sorJRcEs
1.0 // DUELL-TI}ÍE
1.O // PRESCRIBED_DOSE
1.0 // INTERNÀI-UEIGHT
O,O // EXTERNÀI-IJEIGHT
O.OOI / / EXTERNIL_FÀCTOR
O,9 // TEHP_REDUCTION-FÀCTOR
25OO // HÀX-TTERÀTIONS
2600 / / sToP_corJNT
o.o2s / / I¡ITHIN_rÀCTOR
5OO // TRIÀT
1OO // UÀX-INIT-TEIIP-TTERÀTION5
D.9S / / INITIÀL-ÀCCEPT_RÀTIO
O,OOOOI // STOP-TEHPERÀTURE
1.5 // TEIP-INCREÀ5E-F.I.CTOR
B.9A // Ì{OVE_PERCENT
E.T1 // ÀDD-PERCENT
B.O7 // DELETE-PERCENT
3 .// RATIO
| / / Jusr_l.rovE
L / / ÀLLOú'_O_5oURCE5
o // ÀLLOû_SOITRCES_OUTSTDE
O / / TII{E-FÀCTOR
L / / UsE-HEI]RISTIC
static.da! // E-ILD SOURCES FILENÀÌIE

Fig. 5.26 Configuration file lor 2.5 cm tumour,
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Fig. 5.29 Optimized source positions for 2.5 cm tumour.
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i
:4,.ãÍt¡&&:wt_ätj#l{t&l:tiãt4.y.t':: jt::

Fig. 5.30 Hyperdose sleeve for 2.5 cm solution.
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5.3.6 Square Tumour 3.0 cm in Width

The 3.0 cm tumour shown in Fig. 5.31 was used as input to the SAB software. The

configuration file shown in Fig. 5.32was used to control the flow of the SAB software.

This trial produced a cost iteration plot as shown in Fig. 5.33. As specified in previous

sections, the cost temperature plot has eight distinct pulses corresponding to the 8 sources

being added. A cooling profrle shown in Fig. 5.34 was utilized.

In order to illustrate the progression of sources added by the SAB software, and the

solutions that it generates, all of the source configurations generated by SAB for the 3.0

cm square tumour are presented.

5.3.6.1 One Source in 3.0 cm Tumour

The first source conf,rguration is the optimal solution for a single source which as

shown in Fig. 5.35 has a single source at the center of the tumour. A single source at the

center is what we would expect since it would produce the most homogeneous dose in the

tumour. However, the hyperdose sleeve for a single source is much to large as shown in

Fig. 5.36 where the hyperdose sleeve is as wide as the tumour, 3 cm in diameter.

5.3.6.2 Two Sources in 3.0 cm Tumour

Next SAB will optimize two sources and generates the solution shown in Fig. 5.37.

The results are what we would expect to see, a very symmetric distribution of the two

sources, maintaining as homogeneous a dose as possible with only two sources, but again

a hyperdose sleeve too large, over 3 cm, as shown in Fig. 5.38.
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5.3.6.3 Three Sources in 3.0 cm Tumour

Next we add another source into the simulation, and achieve the source placements

shown in Fig. 5.39. However, the hyperdose sleeves for three sources is also too large as

shown in Fig. 5.40.

5.3.6.4 Four Sources in 3.0 cm Tumour

Next we add another source into the simulation bringing the total number of

sonrces to four. As we can see in Fig. 5.41, a symmetric geometry again is achieved.

Unlike the final solutions for the 1.5 cm, 2.0 cm and2.5 cm square tumours, four sources

in a 3.0 cm square tumour is not sufficient as the hyperdose sleeves are too large as shown

in Fig. 5.42. Although the hyperdose sleeves shown in Fig. 5.42 seem to be sufficiently

small, they are actually 1.1333 cm in diameter (the maximum acceptable being 1.0 cm).

This increase in size acfually corresponds to an area that is 28.4% larger than the

maximum hyperdose sleeve area. Thus the SAB software will continue looking for a

better solution by adding another source bringing the total count up to five.

5.3.6.5 Five Sources in 3.0 cm Tumour

The SAB software produces the ouþut shown in Fig. 5.43 for five sources. When

the hyperdose sleeve for the distribution shown in Fig. 5.43 is evaluated, it encompasses

the majority of the tumour. The previous four SAB solutions continued to make the

hyperdose sleeves smaller. Now, we have a situation in which the hyperdose sleeve is

getting larger. Although this may appear the be a problem, it is actually a perfect example
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of why SA is so useful. We are in the process of escaping a local minimum on the search

for the global minimum. Five sources can not produce an acceptable dose distribution for

a 3.0 cm square tumours as shown by the large hyperdose sleeves in Fig. 5.44, so the SAB

software must continue to search by adding another source.

5.3.6.6 Six Sources in 3.0 cm Tumour

Upon inspecting the ouþut for six sources an interesting trend is starting to

emerge. It would seem that the solution for five sources is the solution for a single source

encompassed within the solution for four sources. This trend continues with the solution

for six sources being a rotated solution for two sources encompassed within the solution

for four sources as shown in Fig. 5.46. Unfortunately the hyperdose sleeves still

encompasses much of the tumour with six sources as shown in Fig. 5.46, and SAB will

continue to execute trying seven sources.

5.3.6.7 Seven Sources in 3.0 cm Tumour

The trend continues with seven sources having an optimized source arrangement

similar to the optimized ouþut of three sources, encompassed within the optimized

solution of four sources. Again this source arrangement produces hyperdose sleeves much

too large as shown in Fig. 5.48.
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5.3.6.8 Eight Sources in 3.0 cm Tumour

The SAB software continues one last time with eight sources, producing the output

shown in Fig. 5.49. The hyperdose sleeve for the solution shown in Fig. 5.49, is shown in

Fig. 5.50. As is seen in Fig. 5.50 there are a few points at which the hyperdose sleeves

touch, thus making the total area of that hyperdose sleeve too large. However, there are a

few explanations for why this is still an optimal solution. The first is that most of the

hyperdose sleeves is considerably less than the maximum area, so if it isn't for those few

points at which one hyperdose sleeve touches another, this would be a very good solution.

The second fact is that the points at which the sleeves join is very small and if it isn't for

the quantization of the solution space into pixels, they may not even join. The final cost

function value for this solution was 1.052885.
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Fig.5.31 3.0 cm tumour to be optimized with SAB.
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11, / / Nnl{BER_oF_souRcEs
1. O // DUELL-TII'E
1.O .// PRESCRIBED DOSE
1. o ,¿/ ¡¡¡rrn¡.tl_uircnt
O,O // EXTERNÀI_!'EIGHT
O.OO7 / / EXTERNÀL-FÀCTOR
0.9 /./ TEI{P_REDUCTION-FÀCTOR
2SOO // Ì{ÀX_rTERÀTTONS
ztoo // SToP_corINT
o.o25 / / ÍTITIiIN_FÀCTOR
600 // "lRrrL
1OO /./ I{ÀX INIT TEI{P ITERÀTIONS
o.ss // ¡urîr¡l ïccrpî n.lrro
o.ooool // sîop_reuF¡n¡rune
1,5 .// TEHP-INCREÀSE_FÀCTOR
o,ga // ¡{oVE_PERCENT
O.TI // ÀDD-PERCENT
O.O7 // DELETE_PERCENT
3 // RÀTIO
L / / JUST_LOVE
L / / À¡,LOû_O_SOURCES
O / / ÀLLOII-SOTIRCES-OUTSIDE
O / / TII{E-FACTOR
r / / ÛSE-IIEIJRI5TIC
sta¿ic.dat, // HELD SOURCES FILENÀÌ{E

Fig. 5.32 Configuration file for 3.0 cm tumour.
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Fig. 5.35 Single source position in a 3.0 cm square tumour.
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Fig. 5.36 Hyperdose sleeve for single source in 3.0 cm fumour.
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Fig. 5.37 Optimized solution of two sources in a 3.0 cm square tumour.

- 121



Brachytherapy Optimization Chapter 5: Experimental Results and Discussion

Fig. 5.38 Hyperdose sleeve for two sources in a 3.0 cm square tumour.
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Fig.5.39 Optimized solution of three sources in a 3.0 cm square tumour.
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Fig. 5.40 Hyperdose sleeve of three sources in a 3.0 cm square tumour.
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Fig. 5.41 Optimized solution of four sources in a 3.0 cm square tumour.
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Fig.5.42 Hyperdose sleeve for four sources in a 3.0 cm square tumour.
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Fig. 5.43 Optimized solution of five sources in a 3.0 cm square tumour.
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Fig.5.44 Hyperdose sleeve of five sources in a 3.0 cm square tumour.
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Fig. 5.45 Optimized solution of six sources in a 3.0 cm square tumour.
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Fig.5.46 Hyperdose sleeve of six sources in a 3.0 cm square tumour.
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Fig.5.47 Optimized solution of seven sources in a 3.0 cm square tumour.
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Fig.5.48 Hyperdose sleeve of seven sources in a 3.0 cm square tumour.
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Fig. 5.49 Optimized source positions for 3.0 cm tumour.
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Fig. 5.50 Hyperdose sleeve for 3.0 cm solution.

5.4 Conclusions for SA

The results for the different tumour shapes presented in the proceeding section

indicate that we have implemented a SA algorithm and software program (SAB) that can

optimize source positions in square tumours. Additional results for other tumour sizes are

presented in Appendix A. The following section will now take the results from SAB and

use them to train an ANN to optimize brachytherapy source placement in 2D square

tumours.
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5.5 Experimental Design for ANN

The goal of this thesis is to develop an ANN for brachytherapy optimization. In

order to develop the ANN it is required to determine what inputs and ouþuts to use to

optimize brachytherapy implants as well as, the best structure of the ANN, and in doing

so, prove that ANNs can be used for brachytherapy optimization. Section 5.6 presents the

experimental results with different forms of input to an ANN and determines which form

is the best. The data gathered with SAB as presented in previous sections is used as input

data. The training data producing the ANN that performs best on the test data will be

considered the best form of input.

5.6 Experimental Results and Discussion for ANN

The first set of experiments will be used to determine what SAB ouþut to use to

train an ANN to optimize brachytherapy implants (covered in Section 5.6.1). Once the

training data has been determined, the best form of ANN (number of input, internal and

ouþut nodes) will be determined as presented in Section 5.6.2.

5.6.1 Training data for ANN optimization

In order to simplify the design of the training data, all of the ouþuts from SAB are

normalized so that they are the same size in terms of pixels. For example the 1.0 cm

tumour would be expanded to be the same pixel size as the 3.0 cm tumour. The 1.0 cm

tumou¡ then has three times the number of pixels per mm than the 3.0 cm tumour.
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5.6.1.1 Training with source positions

Once the tumours were norrnalized to a common size, the first form of input

investigated was to simply use the positions of the point sources and a measure of the size

of the tumour. For instance the 1.0 cm square tumour in Section 5.3.2 would have an input

of 18,18,0.33333 corresponding to x and y coordinates for the single point source of l8

and 18 respectively, and a size of 3 pixels per mm. The 3.0 cm tumour from Section 5.3.6

would have the following input 7,J,8,9,8,30,19,8,19,28,30,8,28,19,30,30,1.0

corresponding to the x and y coordinates of all 8 sources respectively, followed by the size

parameter (ratio) of 1.0 signifying a I pixel per mm ratio. As some tumours have more

point sources than others, the ANN will be designed to have enough input and ouþut

nodes to accommodate the tumour with the most point sources - a 3.0 cm square. Tumours

with less point sources will have nodes that do not get input. A value of - I will be used to

signiff that a node has no input. The 1.0 cm, 2.0 cm and 3.0 cm square tumours are used

as input, and the other tumours are used as test data. A sunmary of the input used is

shown in Table 5.1, Table 5.2,and Table 5.3.

Table 5.1: ANN input using coordinates for 1.0 cm square tumour.

Node Input Desired
Output

I (xr) -1 or 18 l8

2 (yù lor18 l8

3 (xz) I I

4 (yz) -l I
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Table 5.1: ANN input using coordinates fo¡ l 0 cm square tumour.

Node Input Desired
Output

5 (x¡) -1 -1

6 (y¡) -1 -l

7 (x¿) -l I

8 (y¿) -1 I

9 (xs) -1 -1

10 (ys) I -l

I I (x6) I -l

t2 (ya) -1 I

13 (x7) -1 -t

t4 (yù I -1

15 (xs) -l I

16 (ys) -l -l

l7 0.333333 NONE

Table 5.2: ANN input using coordinates for 2.0 cm square tumour.

Node Input Desired
Output

I (xr) -l or9 9

2 (yù -l or9 9

3 (xz) -1 or9 9

4 (yz) I or28 28
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Table 5.2: ANN input using coordinates for 2.0 cm square tumour.

Node Input Desired
Output

5 (x¡) -1 or 28 28

6 (y¡) I or9 9

7 (xq) I or28 28

8 (y¿) -1 or 28 28

9 (xs) -I I

1o (ys) -l I

11 (x6) I -1

t2 (ya) I -t

13 (x7) -l -l

t4 (vù -1

15 (xs) -l

l6 (ys) -t I

T7 0.666666 NONE

Table 5.3: ANN input using coordinates for 3.0 cm square tumour.

Node Input Desired
Ouþut

I (xr) I or7 7

2 (y) lorT 7

3 (xz) -1 or8 8

4 (yz) -l or 19 t9
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Table 5.3: ANN input using coordinates for 3.0 cm square tumour.

Node Input Desired
Output

5 (x:) 1or7 7

6 (ys) I or30 30

7 (xq) -l or 19 l9

8 (y¿) -1 or8 8

9 (xs) -1 or t9 l9

10 (vs) I or28 28

I I (x6) I or30 30

t2 (ya) I or8 8

13 (x7) I or28 28

t4 (yù lor19 r9

15 (xs) -1 or 30 30

l6 (ys) -l or 30 30

l7 0.666666 NONE
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V/hen a BP ANN with 17 input nodes, 4 hidden layer nodes, and 16 output nodes

is trained with the training data in Table 5.1, Table 5.2, and Table 5.3 it achieves an RMS

error on the training data of only 0.445589 . However, on a test set of other tumour shapes

it produces an RMS error of 2.797090 from the desired ouþuts. When the ouþut is

inspected visually, a number of problems are identified. For example too many sources

being used for smaller tumour sizes. Another issue that became apparent with more

experimentation is that the ouþut was very dependent on the training data. In other words,

the network was not able to generalize. For instance, if a source in the input data was

shifted by a single pixel value (i.e. from an x value of l0 mm to an x value of 11 mm) the

ouþut would have a source at both pixel locations or many extra sources in the tumour.

From the results obtained with this network conf,rguration, it was decided that a different

form of input with more information was required.

5.6.1.2 Training with tumour images from SAB

The next form of input that was used to create training data for an ANN was the

tumour images obtained from SAB. For instance the tumour shown in Fig. 5.49, was used

as input to an ANN. The inputs were the pixel values in the tumour (as described in Table

4.1) without the sources. The desired ouþuts were the pixel values in the tumour with the

sources. This form of training vector was an attempt at training an ANN to literally learn

the positions of the sources. Similar ¡esults as those obtained with the training vectors in

the previous section, were achieved. The major problem again with this form of training
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data was the inability of the network to generalize if a source was shifted slightly from a

position that the network was trained to recognize.

5.6.1.3 Training with energy distribution

After the initial attempts at designing an ANN to optimize brachytherapy cancer

treatments, it was realized that an input that is continuous is better than an input that is

discrete. If the sources in the tumour are used to calculate the dose at each point in the

tumour we can achieve a nearly continuous form of input. The dose at each point in the

tumour is considered to be the energy distribution in the tumour and due to this nearly

continuous nature would make a good form of training data for an ANN. For example, the

input could be the current energy distribution in the tumour (based on the sources present),

and the ouþut could be the desired energy distribution (based on the optimal source

locations found with SAB). The only discontinuity in the energy distribution are at the

exact point source locations (where the dose is essentially infinite). However, if the energy

distribution is modified such that they are continuous at these points as well, then there is

a continuous form of input and ouþut to use. Another advantage to this form of input and

ouþut is that small shifts in the point sources should not affect the ouþut as much. In the

previous forms of input, their discrete nature had an adverse effect because a source was

either present or absent (a binary 0 or I scenario), making it very hard for the ANN to

generalize. If the energy distribution is used as input, a source shifted slightly will still

have significantly elevated energy in the region, and the scenario is no longer binary.
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In order to use the energy distribution as input and output, alarge number of input

and ouÞut nodes are required. As the tumouß are norrnalized to be thirry pixels by thirry

pixels, it requires nine hundred input and output nodes (30 x 30). An additional input will

also be required to specify the ratio of the input. Thus a total of 901 input nodes and 900

ouþut nodes are required.

In preparing the training data, a few modifications have to be made to the ouþut

from the SAB program. In addition to normalization of the tumour size (discussed at the

beginning of this Section) the energy distribution is also normalized. As covered in

Section 2.5.9,weights in a BP ANN are adjusted during training, according to Eq. 2.7.If

the difference between the desired weight (I) and achieved ouþut (IJ is large, then the

weight change value will become large. In theory this is not a problem. However, when

actually implementing these formulas in software, the values of the variables must be

stored in RAM. Thus, if the numbers become too large, round off errors and overflow

errors occur on the variables. In order to reduce the possibility of this occurring, the

training data will be modified to normalize the energy distribution to values between 0.0

and 1.0 by dividing all of the values by the maximum. A sample form of training data

input for the SAB solution shown in Fig. 5.49, is shown in Fig. 5.51. The ouþut from an

ANN trained with the energy distribution will be the optimal energy distribution in the

input tumour. As it is the source placement within the tumour that is of importance, a

threshold function is used to find the peaks in the output energy distribution. The peaks

will be representative of where a source should be placed. It is important to note that the
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error calculated during the training and testing is the RMS error on the energy function,

not on the actual source placement. Therefore, a large RMS error may not have a drastic

effect on the actual source location. This is because if every point in the energy

distribution is incorrect by a small amount the peaks will still be nearly correctly placed

thus the derived source positions will still be correct, but the difference between the

desired energy distribution and the predicted energy (the RMS error) will be potentially

large.

0.8

0.6

0.4

0.2

0

s27

s14
(o r ñR

Fig. 5.51 Sample of energy distribution input to ANN for training.

Additive noise was also used on the training data as discussed in Section 2.5.9.1.

The source configurations described in Table 5.4 were used to create the training data.

(o
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Table 5.4: Input used for energy distribution training data.

Tumour
Size

Ratio
Source

Locations
(pixels - x, y)

Additive
Noise
Max

Distance
(pixels)

Number
of

Samples

1.0 cm 0.333333 NONE J l0

1.0 cm 0.333333 18,18 J t0

2.0 cm 0.666666 NONE 4 10

2.0 cm 0.666666 9,9 4 l0

2.0 cm 0.666666 9,28 4 l0

2.0 cm 0.666666 28,9 4 l0

2.0 cm 0.666666 28,28 4 l0

2.O cm 0.666666 9,9
9,28
28,9

28,28

4 l0

3.0 cm 1.0 NONE 5 10

3.0 cm 1.0 7,7 5 t0

3.0 cm 1.0 8,19 5 l0

3.0 cm 1.0 8,30 5 10

3.0 cm 1.0 19,8 5 l0

3.0 cm 1.0 19,28 5 l0
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Table 5.4: Input used for energy distribution training data.

Tumour
Size

Ratio
Source

Locations
(pixels - x, y)

Additive
Noise
Max

Distance
(pixels)

Number
of

Samples

3.0 cm 1.0 30,9 5 l0

3.0 cm 1.0 28,19 5 t0

3.0 cm 1.0 30,30 5 10

3.0 cm 1.0 7,7
8,19
8,30
lg,g

19,28

30,8
28,19
30,30

5 10

A sample input to the MANN software is shown in Fig. 5.52, with the

corresponding output from the MANN software shown in Fig. 5.53.
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Fig. 5.52Input for MANN software with 12 internal nodes.

Fig. 5.53 Results of training ANN using MANN for 12 internal nodes.
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Additional results from the MANN software for different numbers of internal nodes can

be found in Appendix B. The following section will cover the validation of the ANN

developed with the energy function as input, as well as determine the optimal number of

internal nodes.

5.6.2 Finding the Best Form of BP ANN for Brachytherapy Optimization

In order to validate the ANN trained with the energy distribution the techniques

discussed in Section 2.5.10 will be used. All of the data obtained with SAB will be

separated into two sets, a training set and a test set. The training set will be used to train

the ANN and the test set will be used to see how well the ANN can perform on data that it

has not been trained on. The training and test set will be divided as shown in Table 5.5.

Table 5.5: Division of SAB data into training and test sets.

Tumour Size Allocated Set

0.5 cm Test

0.8 cm Test

1.0 cm Training

1.2 cm Test

1.5 cm Test

1.8 cm Test

2.0 cm Training
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Table 5.5: Division of SAB data into training and test sets.

Tumour Size Allocated Set

2.2 cm Test

2.5 cm Test

2.8 cm Test

3.0 cm Training

In order to determine the optimal number of interior nodes to use for

brachytherapy optimization, a cost function will be used. The cost function is

(s.1)

where a and b are weights that assign the level of importance of the two terms, n¡ is the

number of internal nodes, n** is the maximum number of internal nodes we will allow

and is defined as 20, n*¡, ts defined as 2 because a BP ANN must have at least two

internal nodes, en is the elTor on the test set, and e*oris the maximum error which we get

with only 2 internal nodes and is defined as 30. It was decided that a will be 0.25 and, b

will be 0.75, indicating that we are more concerned with the error achieved on the test set,

rather than the number of intemal nodes. The ANN that has the smallest value for con,

(Eq. 5.1) will be considered the best ANN for brachytherapy optimization as it is a

measure of generalization versus memorization. Using the results from SAB and Eq. 5.1,

the results for the various ANN's is shown in Table 5.6.
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Table 5.6: Results of tests for different number of internal nodes.

Number of
Internal
Nodes

RMS Error
on Test Set

cantt

(Eq. s.1)

Predicted
Maximum
Positional

Error (mm)

6 27.74 0.74 8.32

8 20.29 0.58 6.09

l0 15.7s 0.49 4.73

t2 13.37 0.46 4.01

l4 12.99 0.48 3.90

l6 12.96 0.s0 3.89

18 12.87 0.52 3.86

Based on the results in Table 5.6, an ANN with 12 intemal nodes will be best for

optimizing brachytherapy treatments when using the energy distribution in the tumour as

the input and ouþut from the ANN.

5.6.3 Evaluation of ANN with 12 Internal Nodes

Now that the number of internal nodes has been chosen, the ouþut from that ANN

will be evaluated to see how well it does on the training data. As shown in Table 5.6, the

ANN with 12 internal nodes has an RMS er¡or of 13.37 on the test set, but it is required to

evaluate were this error is incurred. Therefore, all of the test sets identified in Table 5.5
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will be evaluated to see how well the ANN performs. In the following sections, all of the

tltmour positions will be indicated in their transformed positions with their ratio specified.

5.6.3.1 0.5 cm Tumour Predicted Position

A 0.5 cm tumour has a ratio of 0.166666 and a SAB optimized source position of

20,20 for x and y respectively. The ouþut from the ANN produced 19,20 for x and y

respectively corresponding to a Euclidian distance of I pixel. 1 pixel at this ratio

corresponds to 0.16 mm of positional error. The ouþut from the ANN is as expected.

5.6.3.2 0.8 cm Tumour Predicted Position

A 0.8 cm tumour has a ratio of 0.266666 and a SAB optimized source position of

20,20 for x and y respectively. The ouþut from the ANN produced 20,20 for x and y

respectively, thus there is no error for this tumour size.

5.6.3.3 1.2 cm Tumour Predicted Position

A 1.2 cm tumour has a ratio of 0.4 and a SAB optimized source position of 20,20

for x and y respectively. The output from the ANN produced 19,20 for x and y

respectively corresponding to a Euclidian distance of I pixel. I pixel at this ratio

corresponds to 0.4 mm of positional error. The ouþut from the ANN is as expected.
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5.6.3.4 1.5 cm Tumour Predicted Position

A 1.5 cm tumour has a ratio of 0.5 and a SAB optimized source position as shown

in Table 5.7.

Table 5.7: Predicted source positions for 1.5 cm tumour.

Desired
Positions

(pixels) (x, y)

ActuaI
Positions

(pixels) (x, y)

Euclidian
Distance
(pixels)

Error
(mm)

12,12 l0,l I 2.24 l.t2

12,29 10,30 2.24 1_t2

29,12 29,11 1.00 0.s0

29,29 30,30 t.4l o.7l

Thus the maximum error for a 1.5 cm tumour is 1.12 mm. This is still very little error and

considered acceptable.

5.6.3.5 1.8 cm Tumour Predicted Position

A 1.8 cm tumour has a ratio of 0.6 and a SAB optimized source position as shown

in Table 5.8.

Table 5.8: Predicted source positions for 1.8 cm tumour.

Desired
Positions

(pixels) (x, y)

Actual
Positions

(pixels) (x, y)

Euclidian
I)istance
(pixels)

Error
(mm)

12,12 I l,l I l.4t 0.8s

12,29 10,30 2.24 t.34

29,12 29,10 2.00 1.20

29,29 30,29 1.41 0.60
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Thus the maximum error for a 1.8 cm tumou¡ is 1.34 mm. This is still very little

error and considered acceptable.

5.6.3.6 2.2 cm Tumour Predicted Position

A 2.2 cm tumour has a ratio of 0.733333 and a SAB optimized source position as

shown in Table 5.9.

Table 5.9: Predicted source positions for 2.2 cm firmour.

Desired
Positions

(pixels) (x, y)

Actual
Positions

(pixels) (x, y)

Euclidian
Distance
(pixets)

Error
(mm)

12,12 10,10 2.83 2.08

12,29 10,29 2.00 1.47

29,12 29,10 2.00 1.47

29,29 30,30 t.4t r.03

Thus the maximum error for a2.2 cmtumour is 2.08 mm.

5.6.3.7 2.5 cm Tumour Predicted Position

A 2.5 cm tumour has a ratio of 0.833333 and a SAB optimized sou¡ce positions as

shown in Table 5.10 and Fig.5.29. However, when the ouþut from the ANN is inspected,

it has 8 sources present in the solution as shown in Fig. 5.54. Initially it seemed that there

was a flaw in the ANN and that it was producing false positives. However, after fuither

investigating, it was realized that as indicated in Section 5.3.5, the hyperdose sleeve for

the SAB optimized source positions are exactly 1.0 cm. Therefore any movement in the
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source positions would cause the hyperdose sleeves to be too large and thus the source

positions would no longer be the optimized positions. Recall that at the beginning of the

discussion for the development of the ANN it was indicated that the input to the ANN

would be the ouþut from sAB scaled down to be a 30 mm by 30 mm square.

Unfortunately at this reduced resolution the source positions are shifted enough that the

hyperdose sleeves that were once exactly 1.0 cm in diameter become 1.1 cm in diameter.

Thus four sources is not a good solution at this reduced resolution. This is perhaps one of

the best indications that the ANN is in fact truly optimizing source positions, as it knew

that four sources was insufficient and thus predicted that eight sources were necessary.

When the hyperdose sleeve size for the eight source solution are checked, they are only

0.7 cm in diameter which is better than the 1.1 cm diameter that four sources cause.

Therefore, although the results do not match what is expected, they are the correct results

for this ¡esolution of a2.5 cm square tumour.

Table 5.10: SAB optimized source positions for 2.5 cm tumour.

Desired
Positions

12,12

12,30

30,21

30,30
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VT¡iIfÌ{.tl!#r!HíÅ*i!!ËËÍ,Ë#ffirÅWW

Fig. 5.54 Predicted source positions for 2.5 cm tumour.
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5.6.3.8 2.8 cm Tumour Predicted Position

A 2.8 cm tumour has a ratio of 0.933333 and a SAB optimized source position as

shown in Table 5.11.

Table 5.11: Predicted source positions for 2.8 cm tumour.

Desired
Positions

(pixels) (x, y)

Actual
Positions

(pixels) (x, y)

Euclidian
Distance
(pixels)

Error
(mm)

10,10 9,8 2.24 2.09

72,21 9,20 3.16 2.95

10,31 9,31 1.00 0.93

21,12 21,9 3.00 2.80

21,30 21,29 1.00 0.93

3 1,10 3 1,10 0.00 0.00

30,21 30,20 1.00 0.93

31,31 31,31 0.00 0.00

Thus the maximum error for a 2.8 cm tumour is 2.95 mm. This is the most error

encountered in the ouþut and is considered the worst case error the of the designed

brachytherapy optimization ANN. The resulting hyperdose sleeves for the calculated

positions have more that 200o/o of the dose leaving the tumour whereas the desired

positions do not have this level of dose leaving the tumour. All of the ouþut generated

with the ANN takes in the order of 100 msec to generate thus it is an extremely fast

process.
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5.7 Conclusions for ANN

It has been found that an ANN can be used to optimize brachytherapy implants. A

few different forms of input were tried in an attempt to f,rnd the best form of input for

training the ANN. It was found that when the energy function is used for input and ouþut

that an ANN with 901 input nodes, 12 intemal nodes, and 900 ouþut nodes can achieve an

RMS error of 2.03%o on a training set and an RMS error of 13.37% on a test set, which

corresponds to a maximum source position error of 4 mm. The 4 mm of positional error

was calculated assuming that the full 13.37% RMS errorresults in a shift of the source.

However, when the true positions of the predicted sources from the ANN ouþut are

checked, they only produce a maximum error of 3 mm. Although a 3 mm error seems

large it was generated on the 2.8 cm tumour which has a very large ratio of pixels to mm

(the ratio is 0.9333). If a larger ANN is created with more input nodes the ratio could be

increased and the error of the 2.8 cm tumour would decrease. Also this was the largest

error that was encountered, the average positional error on all of the test sets was only 1.07

mm-

5.8 Chapter Summary

Upon evaluating the ouþut from the various programs developed for this thesis

they have been shown to be correct. The SAB software is able to optimize source positions

in 2D square tumours up to 3 cm in diameter. The ouþut from the SAB software is then

used to train an ANN. Through experimentation and with the use of a cost function it is
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shown that a BP ANN that uses 901 input nodes,12 internal nodes, and 900 output nodes

is also able to optimize 2D square tumours up to 3 cm in diameter with a wo¡st case error

of 3 mm and an average error of 1.07 mm. However, the ouþut from the ANN takes

considerably less time to generate, and is measured to take approximately 100 msec as

compared to the hours required to generate the SAB ouþut. When the results of this thesis

are compared with some of the othe¡ work in this area, the benefits that an ANN can offer

to this research area are very apparent. The ANN was shown to generate optimized source

positions, and it did so 1800 times faster than the work presented in [YuSc96], 900 times

faster than [PTR96a], 300 times faster than [YRPZ98], and 180 times faster than the

fastest time reported in the literature [MZRB99]. Although this thesis is only the first step

in the use of ANNs for brachytherapy optimization it is without a doubt a feasible and

logical progression.
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CneprnR VI
Coucr,usloNs AND RnconnMENDATIoNS

"The art of drawíng conclusions from experiments and observalions consists of
evaluating probabilities and in estimating whether they are sfficiently great or
numerous enough to constilute proofs- This kind of calculalion is more
complicated and more dfficult than it is commonly thought to be..."

- Antoine Laurent Lavoisier (1743-94)
- French chemist, founder of modern chemistry

6.L Conclusions

This thesis presents the development of a brachytherapy optimization system using

an ANN. It is the first attempt at such an optimization scheme for brachytherapy and a

number of issues had to be resolved. The thesis consists of th¡ee major tasks: the creation

of training data using SA, the development of an ANN from the training data, and finally

testing the developed ANN to ensure that it is functioning correctly. Three soffware

programs were created for each of the three steps (SAB, MANN, and BowANN) and the

design and implementation of these programs is presented.

Training data for the ANN was created using SAB. By evaluating the ouþut from

SAB it can be seen that SAB is producing optimized brachytherapy treatments. The

ouþut from SAB takes a significant amount of time to generate, demonstrating the need

fo¡ a faster approach. The output from SAB is then used to train an ANN.

The training of the ANN is accomplished using the MANN software. The MANN

software uses the training data c¡eated with SAB to develop a single layer BP ANN. We
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used the MANN software to answer the four questions from Chapter 1. First of all, after

trying various forms of input, it was found that the current energy distribution in the

tumour is the best form of input for training an ANN. Secondly, it was found that using the

desired energy distribution in the tumour as output was the most successful. Thirdly, using

an empirical formula it was found that an ANN with 901 inputs, 12 interior nodes, and 900

outputs should perform the best for 3.0 cm square tumours. And f,rnally, this ANN

configuration yields an RMS error of 2.03% difference between the correct dose

distribution and the predicted dose distribution for the training data indicating that an

ANN can learn to optimize brachytherapy implants with relatively little error. The 2.03%

difference in dose distribution results in a positional error of 0 mm for the sources on the

training data. The ANN was validated using MANN test data, which consists of inputs the

ANN has not seen during the training process. Using this data, the ANN achieved an

RMS error of 13.37%o for the dose distribution prediction, and a maximum positional error

of 3 mm which is high for brachytherapy insertions. However, recommendations are made

on how to decrease this error in Section 6.2.The average positional error on the test set is

only 1.07 mm which is more in the range of what would be considered acceptable for

brachytherapy insertions.

When the system developed in this thesis is compared to other work in the field it

is apparent that significant improvement was achieved. The speed of the ANN approach

is more than 180 times faster than the next fasted method presented in the literature

[MZRB99]. Although the ANN is currently limited to 2D tumours, extending the concept
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to handle 3D would not decrease the ouþut speed too drastically, and therefore it is clear

that this new method is far superior to the other methods in terms of speed. The second

major improvement that results from this new approach is the ability of the ANN to place

sources anywhere within the implant volume. All of the current literature restricts the

sources to regular array geometries [PTR96b] [S1ob92] IYRPZ9 8] [YuSc96].

The system developed in this thesis produces very good results for the cases for

which it was designed. However, there are limitations. First of all, the input is limited to

2D square tumours up to 3 cm in width. Clearly the system has to be expanded to handle

any shape of tumour and operate in 3D before it would be clinically viable. In the current

design, the ANN can also produce false positives, which are misleading. These false

positives occur when the ANN is used to produce ouþut for very extreme inputs (in which

sources have been placed at unexpected locations). All of the limitations identified

however can be resolved with additional research and development of the technique.

It can be deduced from this research that there is a very large area to be

investigated in the use of ANNs for brachytherapy optimization. Hopefully as a result of

this thesis a new path has been created in the optimization of brachytherapy that will see

many other researchers investigating the possibilities. One can foresee a day in which all

cancer patients treated with brachytherapy will have custom treatments created and

updated as the procedure is carried out resulting in a tremendous increase in the quality of

life for those patients.
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6.2 Recommendations

In order to over come the limitations of the research which have been identified the

following recommendations are suggested for further research on this topic:

1) In order to decrease the maximum error achieved in the results of this thesis,

there are two possible approaches. First of all, the size of the ANN could be

increased. The positional error of sources increases as the ratio of the tumour

decreases. Therefore, if we had in the order of three times as many input and

ouþut nodes, it should result in maximum positional errors for the larger tumour

sizes similar to the positional errors currently found at smaller sizes

(approximately 1.0 mm). Secondly, we could approach the problem using a

different ANN structure that is more capable of complex problems, and able to

learn new cases as they appear. The Probabilistic Neural Network (PI.IN) is a very

likely candidate. For information on the PNN, consult [Mast93].

2) Larger training sets for the ANN, consisting of tumours of all shapes and sizes.

will increase the possibility of this technique being used clinically. This will result

in the creation of an ANN which can produce ouþut for a wider range of inputs.

3) Once the ANN is able to produce correct results for most common shapes and

sizes of tumours, it should be extended to handle 3D input. This would then make

this process on par with the current optimization techniques which use SA and GA

for optimization. However, with the speed advantage of ANNs it would be more

advantages than the current techniques.
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4) Finally, the most difficult issue in optimizing brachytherapy treatments can be

introduced, variable source dwell times which will improve the results even

further. This would still be accomplished by training the ANN with SA data,

however the SA would now have variable strength sources in the results.

6.3 Contributions

This thesis has made the following contributions:

1) Identifies a method for applying advanced artificial intelligence techniques to

brachytherapy which has not been done before. The work done in this thesis

identifies that by using the current energy distribution in the tumour it is possible

to train an ANN for brachytherapy optimization. It the work was extended to

include a representation of the tumour (as opposed to using a ratio) it is possible

that this technique would be clinically viable;

2) Applies ANNs to an new area which has never been tried before. The more wide

the range of applications that ANNs are applied to, the more we learn of their

abilities. It also adds to the general knowledge base of applications for which

ANNs are a viable option; and

3) Has produced optimized brachytherapy treatments 180 times faster than cur¡ent

best technique. Even once the work is expanded to include variable tumour shapes

and sizes, the reduction in speed is not going to be significant. Thus this technique

will still be considerable faster than any of the non-deterministic approaches.
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Appnxnx A

AonrrroNAr, SAB Rnsur,rs

4.1 Square Tumour 0.8 cm in Width

The 0.8 cm tumour shown in Fig. A.l was used as input to the SAB software. The

configuration file shown in Fig. 4.2 was used to control the flow of the SAB software as

discussed in Section 4.3.1.2. This trial produced a cost iteration plot as shown in Fig. 4.3.

A cooling profile shown in Fig. A..4 was utilized. The ouþut from the SAB software is as

shown in Fig. 4.5. The hyperdose sleeve for the solution shown in Fig. 4.5, is shown in

Fig. 4.6. Since the cost function for SAB is essentially comprised of two factors, the

homogeneity of the dose in a tumour and the size of the hyperdose sleeves, it is easy to

predict the ouþut for a small tumour (0.8 cm). The results shown in Fig. 4.5 are exactly as

expected. Since the tumour size is smaller than the maximum hyperdose sleeve size, a

single source could be placed anywhere in the tumour and meet that requirement in the SA

cost function. However, because of the second component of the SA cost function we

would expect that a homogeneous dose in the tumour would be more desirable. As the

SAB software attempts to find the best solution with the minimum number of sources

possible, a single source at the center is exactly what we expect. The ouþut from the SAB

algorithm for a tumour size of 0.8 cm is therefore shown to be correct. The final cost

function value for this source distribution was 2.290165.
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Fig.4.1 0.8 cm tumour to be optimized with SAB.

-t72-



Brachytherapy Optimization Appendix A: Additional SAB Results

L // NUI{BER-OF_5OURCE5
1.O // DUELL_'|IüE
1.0 .// PRESCRIBED-DOSE
1 .0 ,/./ INTERNÀL-IIEIGHT
O. O ,/./ EXTERNÀL-ÌJEIGHT
O,OO7 // EXTERNÀL FÀCTOR
O.9 // TEI{P-REDUCTION-FÀCTOR
25OO // I{ÀX-ITERÀTIONS
2000 // sToP_couNT
o.o25 // UIrHrN_FÀCTOR
150 // TRIÀL
1OO // üÀX_INIT_TEHP_ITERÀTION5
O.95 / / INITIÀL-ÀCCEPT-RÀTIO
O.OOOOI //STOP-TEüPERÀTURE
1.5 // TEI{P-INCREÀ5E_FÀCTOR
O.9B I / ÌfOVE_PERCENT
O.O1 // ÀDD-PERCENT
O.O1 // DELETE-PERCENT
3 // RATIO
| / / .rrjsr_r.rovE
7 // ÀLLOû_O_SOTJRCES
O //¡,LIOÛ-SOURCES-OUTSIDE
o / / TruE_F.þ.cToR
r // UsE-HEURISTIC
gÈaLic.dat' // HELD SOURCES FILENÀ¡IE

Fig.4.2 Configuration file for 0.8 cm tumour.

Fig.A'.3 Cost plot for 0.8 cm tumour.
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Fig.4.4 Cooling profile for 0.8 cm tumou¡.

Fig.4.5 Optimized source position for 0.8 cm tumour.
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Fig.4.6 Hyperdose sleeve for 0.8 cm solution.

4.2 Square Tumour 1.2 cm in Width

The 1.2 cm tumour shown in Fig. 4.7 was used as input to the SAB software. The

configuration file shown in Fig. ,A..8 was used to control the flow of the SAB software as

discussed in Section 4.3.1.2. This trial produced a cost iteration plot as shown in Fig.4.9.

A cooling profile shown in Fig. A.l0 was utilized. The ouþut from the SAB software is as

shown in Fig. A.l l. The hyperdose sleeve for the solution shown in Fig. 4.11, is shown in

Fig. 4.12. The size of the hyperdose sleeve is obviously larger than the desired threshold

of L0 cm (since it spans the entire tumour which is 1.2 cm) however, the SAB software

ran until the maximum number of sources was reached and this was the best solution that

was obtained. Since the solution for 1.5 cm has four sources we would expect that there
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should be no more than four sources for the 1.2 cm tumour. When we inspect the ouþut

from two, three and four sources, the sources are all bunched at the middle (not a

homogeneous distribution). This is due to the fact that entirely too much dose is leaving

the tumour. Since we are looking for the minimum number of sources that produce an

acceptable ouþut, the solution for one source is better than the others. One source has a

cost of2.365548.

Fig.,4..7 1.2 cm tumour to be optimized with SAB.
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,/,/ NUHBER oF soURcES
DI¡IELL_TIllE
PRESCRIBED-DOSE
INTTRNÀL_TJE IGHT
EXTERNÀL IÍEIGHT
EXTERNÀI_F¡,CTOR
TEI{P-REDIJCTI ON-FÀCTOR

1OO // IIÀX INIT TEI{P ITERÀTIONS
o.ss // rNrlrÀL lccrpl nerro
O.OOOOI // 5TOP-TEI.IPERÀTURE
1.5 // TEIIP INCREÀSE FÀCTOR
O.9A // IIoVE_PERCEX\¡T
O.OT // ¡,DD-PERCENT
O.O1, // DELETE PERCENT
3 // RÀTIO
L / / JUST_I'IOVE
7 / I ÀLLOL_O_SOTJRCES
o // ÀLLOTJ_5oURCES_OÌ'TSIDE
O / / TI}fE-FÀCTOR
L // UsE_HEURISTIC
eEasic.da¿ // flELD SOURCES FILENÀÌIE

Fig.,{.8 Configuration file for 1.2 cm tumour.

Fig. 4.9 Cost plot for 1.2 cm tumour.
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Fig.4.12 Hyperdose sleeve for 1.2 cm solution.

-179-



Brachytherapy Optimization Apendix A: Additional SAB Results

4.3 Square Tumour 1.8 cm in Width

The 1.8 cm tumour shown in Fig. A.l3 was used as input to the SAB software. The

configuration file shown in Fig. A.14 was used to control the flow of the SAB software as

discussed in Section 4.3.1.2. This trial produced a cost iteration plot as shown in Fig.

4.15. A cooling profile shown in Fig. 4.16 was utilized. The ouþut from the SAB

software is as shown in Fig. 4.17. The hyperdose sleeve for the solution shown in Fig.

4.17, is shown in Fig. 4.18. The hyperdose sleeves are measured to be 0.8 cm well within

our maximum allowed of 1.0 cm. The four sources are also evenly distributed within the

tumour meeting the other requirements of the SAB cost function. The ouþut from the

SAB algorithm for a tumour size of 1.8 cm is therefore shown to be correct. The final cost

function value for this source distribution was 1.363699.
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Fig. 4.13 1.8 cm tumour to be optimized with SAB.
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lL / / NUHBER_oF_sorJRcEs
1,O // DUELL-TII{E
1.O // PRESCRIBED_DOsE
1. O // INTERNÀL-I¡IEICET
O, O ././ EXTERNÀL-I'EIGIiT
O.OTI / / EXTERNI.L-FÀCTOR
0.9 // TEI{P_REDIJCTION-FÀCTOR
25OO // IßX_ITERÀT]ONs
2000 // sToP_couNT
T.O25 // IIITEIN-FÀCTOR
350 // TRIÀL
10O // HÀX-INIT-TEI{P-ITERÀTIONs
O.95 / / INITIÀL-ÀCCEPT-RÀTIO
O.OOOOI // STOP_TE¡ÍPERÀTITRE
1.5 // TE}IP-INCREÀ58_FÀCTOR
o.9a // ¡fovE_PERcENT
O.01 // ÀDD_PERCENT
B.OI // DELETE-PERCENT
3 ././ RÀTIO
L // iIUST-HOVE
L // ÀLLOû_O SoURCES
o / / ÀLLOII_SOURCES_OUTSIDE
T // TIHE-FÀCTOR
7 / / U5E-HEURI5TIC
S¿acic.daE // HELD SOURCES FILENÀ.I{E

Fig. A.l4 Configuration file for 1.8 cm tumour.

Fig.4.15 Cost plot for L8 cm tumour.
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Fig.4.18 Hyperdose sleeve for 1.8 cm solution.

4.4 Square Tumour 2.2 cm in Width

The2.2 cm tumour shown in Fig. A.l9 was used as input to the SAB software. The

configuration file shown in Fig. 4.20 was used to control the flow of the SAB software as

discussed in Section 4.3.1.2. This trial produced a cost iteration plot as shown in Fig.

4.21. A cooling profile shown in Fig. A.22 was utilized. The ouþut f¡om the SAB

software is as shown in Fig. 4.23. The hyperdose sleeve for the solution shown in Fig.

4.23, is shown in Fig. 4.24. Although the hyperdose sleeves touch, they are actually very

close to the desi¡ed size. When measured, they are found to be 1.066 cm. If we plot the

205% isodose cuwe, then the hyperdose sleeves no longer touch indicating we are very

close to the 200% requirement. The final cost function value for this source distribution
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was 1 .103910 however,

five sources has a final

from the SAB algorithm

if we allow the number of sources to increase, the SAB ouþut for

cost value of 1.153827 larger than that of 4 sources. The output

for a tumour size of 2.2 cm is therefore shown to be correct.

Fig.4.19 2.2 cm tumour to be optimized with SAB.
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I // NUI{BER_OF-5OURCES
1. O // Dr,rÊLL_TIl{E
1,0 // PRESCRIBED-DOsE
1. O ,/,/ INTERNÀI_ûEIGIIT
O.D // EXTERNÀL_TJEIGHT
O.OOL / / EXTERN.I.L-FÀCTOR
O.9 // TET{P-REDUCTION_FÀCTOR
25OO // T{ÀX-ITERÀTIONS
zoolJ // SToP coUNT
o,o25 / / ¡rrrniw_r¡cton
450 / / 'rP.fAL
1OO /,/ I{ÀX-INIT-TE¡IP-ITERÀTIONS
O,95 / / INITIÀI_ÀCCEPT-RÀTIO
O.OOOO1 // STOP-TEHPERÀTURX
1.5 // TEUP_INCREÀsE-FÀCTOR
o.ga // uovE_PERcENT
O.DI // ÀDD-PERCENT
O.OL // DELETE-PERCENT
3 // RÀTIO
7 / I ,IU5T_HOVE
! / I ÀLLOüÍ_O_SOURCES
O // ÀLLOI'-5OURCE5-OUTSIÐE
o // TrlrE_FÀcroR
I // I'SE-ITEURISTIC
stAEig.dAE // fiELD SOIIRCES FILENÀI{E

Fig. 4.20 Configuration file for 2.2 cm tumour.

Fig. 4.21 Cost plot for 2.2 cm tumour.
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Fig. A.22 Cooling profile for 2.2 cm tumour.

Fig.4.23 Optimized source positions for 2.2 cm tumour.
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Fig. A.24 Hyperdose sleeve for 2.2 cm solution.
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4.5 Square Tumour 2.8 cm in Width

The 2.8 cm tumour shown in Fig. 4.25 was used as input to the SAB software. The

configuration f,rle shown in Fig. A.26 was used to control the flow of the SAB software as

discussed in Section 4.3.1.2. This trial produced a cost iteration plot as shown in Fig.

4.27. A cooling profile shown in Fig. 4.28 was utilized. The output from the SAB

software is as shown in Fig. A.29.The hyperdose sleeve for the solution shown in Fig.

A.29,is shown in Fig.4.30. The results shown in Fig.4.30 have hyperdose sleeves that

measure 1.066 cm. The hyperdose sleeves are larger than the desired 1.0 cm. However,

when we inspect the other ouþut generated by SAB for larger source counts, none of them

have isodose sleeves as small as this solution. Therefore, SAB has generated the correct

solution. The final cost function value fo¡ this source distribution was 1.034577 .
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Fig.4.25 2.8 cm tumour to be optimized with SAB.
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o.9B
0,01
o.o1
3
1

1

o
o
1

It / / NUr{BER_oF_souRcEs
1.o // DûELL_Tu{I
1.0 // PRE5CRTBED_DOSE
1.0 // INTERNAT-I'EIGHT
O.O // EXTERNÀL-IIEIGHT
O.OO7 // EXTERNÀL-FÀCTOR
0.9 // TEI{P_REDUCTION-FÀCTOR
2soo // Ì!ÀX_ITERÀTIONS
2000 // SToP_couNT
O,O25 // ÛITHIN_FÀCTOR
sso /l lRf}.L
1OO // ÙÀX_INIT-TEUP_ITERÀTION5
O.95 // INITIÀL-ÀCCEPT-RÀTIO
O.OOOOI // STOP TEI{PERÀTI'RE
1.5 // ÎEIIP INCREÀSE FÀCTOR

Fig.4.26 Configuration file for 2.8 cm tumour.

Fig. A,.27 Cost plot for 2.8 cm tumour.
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Fig.A..28 Cooling profile for 2.8 cm tumour.

Fig.4.29 Optimized source positions for 2.8 cm tumour.
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Fig.4.30 Hyperdose sleeve for 2.8 cm solution.
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Apprlrnrx B

AnnrrroNAI, Maxx Rnsur,rs

8.1 ANN With 6Internal Nodes

When the MANN software is used to train an ANN with 901 input nodes, 6

internal nodes and 900 ouþut nodes, the results of the training are shown in Fig. 8.1.

F'ig.8.1 Results of training ANN using MANN for 6 internal nodes.
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8.2 ANN With S Internal Nodes

When the MANN software is used to train an ANN with 901 input nodes, 8

internal nodes and 900 ouþut nodes, the results of the training are shown in Fig. 8,1.

Fig. 8.2 Results of training ANN using MANN for 8 internal nodes.

-195-



Brachytherapy Optimization Appendix B: Additional Mann Results

8.3 ANN With 10 Internal Nodes

When the MANN software is used to train an ANN with 901 input nodes, 10

internal nodes and 900 ouþut nodes, the results of the training are shown in Fig. 8.2.

Fig.8.3 Results of training ANN using MANN for l0 internal nodes.
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8.4 ANl\l With 14 Internal Nodes

When the MANN software is used to train an ANN with 901 input nodes, 14

internal nodes and 900 ouþut nodes, the results of the training are shown in Fig. 8.4.

Fig. 8.4 Results of training ANN using MANN for 14 internal nodes.
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8.5 ANN With L6 Internal Nodes

When the MANN software is used to train an ANN with 901 input nodes, 16

internal nodes and 900 output nodes, the results of the training are shown in Fig. 8.5.

Fig.8.5 Results of training ANN using MANN for 16 internal nodes.
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8.6 ANN With L8 Internal Nodes

Vy'hen the MANN software is used to train an ANN with 901

internal nodes and 900 output nodes, the results of the training are shown

Fig. 8.6 Results of training ANN using MANN for l8 internal nodes.

input nodes, 18

in Fig.8.6.
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Appnnux C

SAB Souncn Frr,ns

C.l Cost.c

/**r**********
FILENÀME: cost-c
PROJECT: SAB - Simulated À¡nealing for BrachyEherapy
AUTHOR: S. MilÌer
DESCRIPTION: fmplements funct.ions to calculate Èhe cosL

of a specific treatment in a tumour
ASSUMPTIONS: none
DÀTE I'¡RITTEN: Summer 1998 - Sunmer 2002
MODIFICÀTION HISTORY:Version 1. 0

#include <stdio-h>
#include <stdlib.h>
Ìlinclude <math,h>
#incLude "globals.hr

/***************++***************************
FLJNCTION NAME : Check-AreaRecurs ive
PURPOSE: To recursively go through a tumour and treaLmenb map

aad figure oue the area of Ehe hyperdose (dose>2ooå)
INPUT: The address of the treatmenE map, the x, and y coordinates

and the address of the count of the area (in pixels)
OUTPUT: None
FIJNCTIONS CÀ¡LED : CheckÀreaRecurs ive
ÀSSIIMPTIONS¡Îhe treatmenE map has already been converted inÈo a binary representat.ion,

ûhere I means dose is greater than 2OOg, and O means dose is less than
200+.

NOTE: This is a recursive function - watch stack usage!

void CheckÃreaRecursive(DoseÀrea * Àrray,int x,int y,int * count)
{

if ((Àrray +x*xsize + y)->Dose > 0.0f)
{

//Êet. íE Lo 0.0f because we have included it now
(Àrray + x*xsize + y)->Dose = o.of;

//increase Lhe count of lhe area
( *count ) ++ ,'

//fínd Ehe rest of the l.Os in Lhe area
i f (x>0 )

CheckÀreaRecursive (Àrray,x-1,y, cout) ;
if (y>0)

CheckAreaRecurs ive (Àrray, x, y- 1 , count ) ,
if (xcxSize-1)

CheckÀreaRecursive (Array, x+1, y, count ) ;
if (y<ysize-1)

CheckÀreaRecursive (Àrray, x, y+ I , count ) ,-

)//end if dose>o
),//end function CheckÀreaRecursive

/********************************************
FUNCTION NÀME : CheckHyperDoseSleave InEegrat ion
PURPOSE: Checks if all of the hyperdose sLeaves are within spec - i-e.

are only lcm squared
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INPUT: The address of the currenÈ treatment solution - poinE source list
OûIPIIr: 1 if hyperdose sleaves are OK, else 0,
FUNCTIONS CAILED : CheckÀreaRecurs ive
ÀSSUMPTÌONS:The treatnent map has already been converted into a binary representaEion,

where 1 means dose is grreater than 200?, and O means dose is less than
200å.

int CheckHyperDoseSleavelntegration(PS *ThePS)
(

ínt í=o,)=o¡// for Ìoop variables
float Dose=o.f¡// dose at each poinE in the cumour map
PS *TempPS = ñuLL¡// temporary point source soluEion List.
PS *TempSEaticPS=NULL;// temp to hold static point sources
float. Min=9999999.t;// the minimum dose in the tumour
Dosellrea *TempÀrea=NULL;/* This is the 2D array of t.he tumour area */
int. count=o;/,/ count of area size
floaL mmsize=O-f;// }Lolðs Ehe milli meter area size
float. maxsize=O.f;//:nolds the maximum al.Ìoçed area size

/*Go through the whole "Area" and calcufate the dose*/
for (i=0;i<xSíze;i++)
{

for (j=0;j<YSize¡)++l
{

/,/ Ru though Dynamic ]isÈ of sources
Dose = 0,0f;
TenpPS = ThePS;
while (Tempps)

{
if ((TempPs -> x == i) && (TenpPs -> y == j))

Dose += TempPS -> DwellTime*sqr(RÃTIO);
else

Dose += ( (TempPS - > DwellTime) *sqr (RÀTro) ) i/sqr (distance ( i, j, Tempps->x, Tempps-
>v));

TempPS = TempPS -> NextPS;
)// end while

,/,/ nu through SÈaLic list of sources
TempstaticPs = First.StabicPS;
vhile (Tempstat.icPs)
(

if ((TempstaEicps -> x == i) cc (TempstaticPs -> y == j))
Dose += TempstaticPs -> DweLllime * sqr(RÀTIO);

else
Dose += ((TempsEaticPS -> DwellTime)*sqr(RÀTIO)),/sqr(dist.ance(i,j,TempsraticPS-

>x, TempstaticPS->y) ) ;

TempsEaticPS = TenpstaticPS -> Nextps;
]// end while

// SLore the Dose to the ,,Àrea', array
(À¡ea + ysize*i + j) -> Dose = Dose;

// níg}lt- as well slore the mj-nimum to the periphery at the same time
if (((Àrea + ysize*i + j) -t Type == PERIPHERY)&&(Dose<Min))

Min = Dose;
)//end for j

\//end for í

/ / S steps bo check h14>erdoses
//1,- l{ake new area as exac! copy of old area and set any point receiving
// too much dose (2OOå or more) to 1, and set the rest to O

TempArea = (DoseÀrea *)nalloc (xSize*ysize*sizeof (DoseÀrea) ) ;
for (i=0;icxSize;i++)
i

for (j=0;j<YSize;j++)
{

if ( ( (Àrea+i*ySize+j) ->Dose/ (float.)Min) > 2.otl
(TenpÀ¡ea+i*ySize+j ) ->Dose = 1 -0f t

el.se
(TempÀrea+i*ySize+j) ->Dose = 0.0f ;

(TempÀrea+i*ySize+j) ->Type = (Àrea+i*ysize+j ) ->Type;
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)

//2. vse recursive algorithm to find sizes of hyperdose sLeaves using map
/ / cteaLed in step 1
fprinEf (stderr, '¡There are ?d sources\n", Numps (Theps) ) ;
for (i=0;icxSize;i++)
{

for (j=0;j<ysize;i++l
t

count=0;
CheckAreaRecursive (TempÀrea, i, j , &count) ;
/ /2. turn count int.o mm*mm
mmsize = (floaE)cout/(float) (RÀTIO*RÀTIO) ;
naxsize = (fl"oar)78.53981634; //5"s*pI (pI * r sqrd, in nn)

if (counr>0)
fprinLf(stderr,"(?d,åd) mmsize is: ?f max size is ?f\n',,i,j,mmsize,naxsize);

//4. rerurn(1) if bad
if (mnSize>naxSize)
{

fprintf(stderr,'Did not reach the end of checkhlæerdosesleaveintegration, hlæerdose
sleave loo big.\n\n,') ;

return(1);//the hyperdose area is t.oo big
)//enð ít hyperdose size is roo big

lllenð ror j
l//end for ),

//5. EIse ret.urn(O) good
fprinEf (st.derr,'rÀ11 coooD in CheckHyperDosesleavefntegration\n\n" ) ;
reburn(0);

) //end function CheckH¡>erDoseSl.eavelntegration

/********************************************
F.UNCTION NÀ.14E ¡ CheckHyperDoseSleave
PURPOSE: Checks if all of bhe h14>erdose sleaves are within spec - i,e.

are only 1cm squared
INPUT: The address of the current. treatmenE soÌution - poinE source list
OIIIPUT: I if hyperdose sleaves are NOT OK, else O if OK
FUNCTIONS CÀl,LED : CheckH)¡perDoseSleave f nCegration
ÀSSUMPTIONS : None

inb CheckHyperDosesleave (PS *Theps)
{

ínx i; // for Loop index
int j; // for loop index
floar Dose=o.0f;// }lofds the dose aL a poinr
PS *TenpPS=¡,lULt';// tenp list of poinÈ sources
PS *TempStaticPS=NULt;// temp List. of slatic point sources
float Min=9999999-f;// minimum dose in Lumour so far

/*Go through the whole "Àreat' and calculaEe the dose*/
for (i=0;icxSize;i++)
{

for (j=0;j<YSize;j++)
i

// Rw though Dynamic list of Sourqes
Dose = 0.0f;
TempPS = thePs;
shile (Tempps)

{
if ((TempPs -> x == i) && (Tempps -> y == j))

Dose += TempPS -> DwellTime*sqr{R-ATIO);
else

Dose += ((TempPs -> DwellTime)*sqr(RÀTIo)),/sqr(distance(i,j,Tenpps->x,Tenpps->y));
TempPS = lenpPs -> Nextps;

)// end while

// Run through St.atic list of Sources
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Tempstat.icPS = FirststaEicPS;
while (TerpstaticPS)
{

if ((TempstaticPs -> x == i) cc (Tempst.at.icPs -' y == j))
Dose += Tempstaticps -> DwellTime * sqr(RÀTIo);

else
Dose += ( {TempsLatÍcPs -> DwellTime)*sqr(RÀTIo) )/sqr(distance(i,j,TempstaticPS-

>x, Tenpst.aticPS- >y) ) ;

TempstaticPs = TempstaticPs -> NextPS;
Ì/,/ end while

// Store the Dose to the "Àrea" array
(Àrea + ysize*i + j) -> Dose = Dose;

// níg}:,t as well store the minimum Lo the periphery at. the same time
if (((Area + ysize*i + j) -> Type == PÊRfpHERy)s,&(Dose<Min))

Min = Dose;
l//end for t

l//end for i

//check that the hl4rerdose sleave is small enough for Dynamic Sources
TempPS = ThePS;
whiLe (TenpPs)

{
j = TempPS -> y;
i = TempPS -> x;
/* west *1
if (j>5*RÃTIO)
{

Dose = (((Àrea + ySize*i + (j-5*RÀTIo))->Dose),/Min),-
if (Dose>2. f)

return(1) t
)
etse //i=o
{

Dose = (((Area + ySize*i)->Dose)/Min);
if (Dose>2. f)

retsurn(1);
)
/" \orLh. */
if (i>s*RATTO)
{

Dose = (((A¡ea + ysize*(i-s*RÀTIo) + j)->Dose),/Min);
if (Dose>2.f)

reLurn(1);
Ì
else /,/i=0
{

Dose = (((Àrea + j)->Dose)/Min);
if (Dose>2. f)

return (1) ,
)
/* east *¡
if (j+51RÀTIO<ySize)
i

Dose = (((À¡ea +ysize*i + (j+5*RÀTÌO))->Dose)/Min);
if (Dose>2 - f)

return (1) ;
)
else //j=ysíze-t
{

Dose = (((Àrea + ysize*i + (ysize-1))->Dose)/Min);
if (Dose>2. f)

reLurn(1);

souEh */
( i+5*RATIO<XSize)

Dose = (((Area + ysize*(i+5*RÀTIO) + j)->Dose)/Min);
if (Dose>2. f)

]

if
{
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reEurn(l);
)
else//i=xsize-l
i

Dose = (((Àrea + ysize*{xSize-1) + j)->Dose)/Min);
if (Dose>2. f)

ret.urn(t);
I
TempPS = TempPS -> NextPS;

]/* end while */

//c}:,eck that the hyperdose sleave is small" enough for Static sources
TempPS = Firststat.icPs;
while (TempPS)

{
j = TempPS -> y;
i = TempPs -> x;
/* west */
if (j >5*RÀTIO)
{

Dose = (((¡rea * ysize*i + (j-s*RATro))->Dose)i/Min);
if (Dose>2 - f)

return (1) ;
)
else / /j=o
{

Dose = (((Àrea + ySize*i)->oose),/Min);
if (Dose>2. f)

return(1);
i
/* nottl, */
if (i>5*RÄ.TIO)

{
Dose = (((Àrea + ysize*(i-5*RÀT1O) + j)->Dose)/Min);
if (Dose>2. f )

return (1) ;
)
el6e / /í=o
{

Dose = (((Area + j)->Dose)/Min);
if (Dose>2. f)

return(1);
]
/* east *1
if {j+5'RÀlIOcySize)
{

Dose = (((Àrea + ysize*i + (j+5*RÀTIo))->Dose)/Min);
if (Dose>2. f)

ret.urn(I);
)
else //)=ysíze-L
{

Dose = (((Àrea + ysize*i + (ysize-1))->Dose)/Min);
if (Dose>2. f)

ret.urn ( 1) ;
)
/* south *¡
if (i+5*RÀTIO<xSize)
{

Dose = (((Area + ysize*(i+5*RATIO) + j)->Dose)/Min);
if (Dose>2. f)

reEurn (1) ;
i
else//i=xsize-1
{

Dose = (({Area + ysize*(xsize-1) + j)->Dose),/Min);
if (Dose>2 - f)

reÈurn(1);
)
TempPS = TempPS -> Next.PS;
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I /* una while *,/

//check that the hyperdose sleave is BIc enough
TempPS = ThePS;
while (TempPS)

t
j = TempPS -> y;
i = TempPS -> x;
/ / vesE
if (j>4)
{

Dose = (((Àrea + ysize*i + (j-a))->Dose)i/Min);
if (Dose<=2. f)

return(-1);
]
else / /j=o
{

Ðose = ( ( (Àrea + ySize*i) ->Dose) /Min) ;
if {Dose<=2. f)

return(-I);
)
// nortl'
if (i>4)
{

Dose = ( ( (Àrea + ysize* {i-4) + j) ->Dose) /Min) ;
if (Dose<=2. f)

return(-1);
)
else / /í=o
{

Dose = (((Àrea + j)->Dose)/Min);
if (Dose<=2. f)

return(-1);
)
/ / east
if (j+4<ySize)
{

Dose = (((Àrea + ysize*i + (j+4))->Dose),/Min);
if (Dose<=2. f)

return(-1);
)
else //j=ySize-1
{

Dose = (((Area + ysize*i + (ySize-1))->Dose)/Min);
if (Ðose<=2 - f)

return(-1);
)
/,/ south
if (i+4<xSize)
{

Dose = (((Area + ysize*(i+4) + j)->Dose)/Min);
if (Dose<=2-f)

return(-1);
)
else//i=xSi.ze-l
{

Dose = (((Àrea + ysize*(xsize-1) + j)->Dose),/Min);
if (Dose<=2 -f)

return(_1);
)
TempPS = TempPS -> NextPS;

)// end while

// if nothing eLse has a problen, return that all- is well (O)
return (0) ;

) /,/end funcÈion checkHyperDosesleave
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/*r***********
FUNCTION NÀ.14E : Calculat.ecost
PURPOSE: Cal.cualtes the cost of the current solution - this is the COST FUNCTTON

for SÀBt
INPUT: The address of the current treatment solueion - point source list
OUTPUT: The cost of the current soÌuEion
FIINCTIONS CÀI,LED : None
ÀSSUMPTIONS : None

float CalculaÈecost (PS *ThePS)

{
inb i; // for loop index
int j; /,/ for toop index
float Dose=o-0f;// }:¡olds dose of current point in tumour
PS *TempPS=NULL¡// tenp list of Point Sources
PS *TenpShaticPS=NULL;// temp lis! of static point. sources
float. MinTumour=9999999.f;// minimum dose in tunour
float MinPer = 9999999-f¡// minimum peripheral dose
float. MaxPer = o-f¡// naximun peripheral dose
float ToLal.DoseToHypercheckPoitts=Oi// hoLds dose to alL hyperdose checkpoints
int Counb=o;// counts nutrùf,er of check points > 2OO? to calculat.e average
float À=0.f,E}=o-f,C=O.f;// 3 element.s of cosr funcrion
float TempFLoat=O.Of;// temp Lo hold outpuE from function (cost)
float SumDif=o.f;// holds the actual dose ar rhe check points

/*co through the whole "Àrea" and calculate the dose*/
for (i=0;i<xSize;i++)
{

for ( j=0 ; j <YSize,- j++)
i

// dose is init'ially o
Dose = 0-0f;

,/,/ Run through Dynamic list of sources
TempPS = ThePS;
while (Tenpps)
t

if ((TempPS -> x == i) && (Tenpps -' y == j))
Dose += TempPS -> DwellTime * sqr(RÀTIO);

else
Dose += ((lempPs -> DweIlTine)*sqr(RÀTIo))/sqr(distance(i,j,TempPS->x,Tempps->y));

TempPS = TempPS -> NextPS;
)//end while for dynamic sources

// nu through SEat.ic list of Sources
TempstaticPS = Firstst.aEicPS;
whil.e (Tempst.at.icPS)

i j-f ((TempSLaticPS -> x == i) && (Tempsraricps -> y == j))
Dose += TenpstaticPs -> Dwell-Time * sqr(RÀTIO);

eLse
Dose += ((TenpstatsicPs -> DwellTime)*sqr(RÀTIO))/sqr(distance(i,j,TenpstaticPS-

>x, lempstaticPs- >y) ) ;

TenpSÈaLicPS = TempSEat.icPS -> Nextps;
I / / end while dynamic sources

// SEote the Ðose to the ',Àrea,¡ array
(Area + ysize*i + j) -> Dose = Dose;

/*mighc as wel-l sÈore the minimum to Ehe tumour at the same tine.,.*/
if (((À¡ea + ysize*i + j) -t Type == TUÌ4OUR)&&(Dose<MinTumour))

MinÎumour = Dose;
else if (((.Area + ysize*i + j) -> Type == PERIPHERY)&&(Dose<Minper))

MinPer = Dose;
else if (((Ãrea + ysize*i + j) -> Type == pERIpHERy)&&(Dose>Muper))

MaxPer = Dose;
jl/end for j

ìllen(l fo! r
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/* f,Ie have the minimum to Lhe tumour and all of the doses calculated */
/* Now, we must find the hyper dose sleave in 4 dir,ns for ===D\rNAlqIC===*/
TempPS = ThePS;
while (TempPS)

{
j = TempPs -> yi
i = TempPS -> x;
/" west *¡
if (j>S*RÀTIO)
{

Dose = ( ( (Àrea + ySize*i + (j -5*RATIo) ) ->Dose) /Minper) ;
TotalDoseToHypercheckPoints +=Dose ;
SumDif += fabs (Dose-2 - 0) ;
Cout++;

Ì
else //)=o
{

Dose = ( ( (Àrea + ySize*i) ->Ðose) /Minper) ;
TotalDoseToHyperCheckPoint s + =Dose ;
SunDif += fabs (Ðose-2 - 0) ;
Cout++;

)
/* norxh */
if (i>s*RÀTIO)
i

Dose = (((Area + ySize*{i-5*Rì\TIO) + j)->Dose),/Minper);
TotalDoseToHyperCheckPoint s+ =Dose ;
SunDif += fabs(Dose-2.0) ;
Count++; )

else //i=o
i

Dose = (((Area + j)->Dose),/MinPer) ;
SunDif += fabs(Dose-2.0) ;
TobalDoseToHyperCheckPoinLs+ =Dose ;
Cout++;

]
/* east */
if (j +5*R.ATIO<ySize)
{

Dose = (((Àrea + ysize*i + (j+5*RÀTIO))->DoEe)/Minper);
TobalDoseToHyperCheckPoints+ =Dose ;
SunDif += fabs (Dose-2.0) ;
Cout++;

)
else //j=ySíze-I
{

Dose = (((Area + ysize*i + (ysize-1))->Dose)/Minper);
TotalDoseToHyperCheckPoints+ =Dose ;
sumDif += fabs (Dose-2.0) ;
Cout++; ]

/* souÈh *7
if (i+5*RÃ'TIO<XSize)
{

Dose = (((Àrea + ysize*(i+s*RÀTIo) + j)->Dose)/Minper);
TotalDoseToHypercheckPoint.s+=DÕse ;
Su¡nDif += fabs (Dose-2.0) t
CouE++; )

else//i=xsize-l
{

Dose = (((Area + ysize*(xsize-1) + j)->Dose)/Minper);
Tota.lDoseToHyperCheckPoints+=Dose ;
SumDif += fabs(Dose-2.0) ;
Cout++;

)
TempPS = TempPS -> NextPS;

l// enð, while dlnamic sources

,/* I.¡e have the minimun to the tumour and all of the doses calculated */
/* Now, we musE find Lhe h14>er dose sleave in 4 dir'ns for ===STATIC===*/
TempPS = FirststaticPs;
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while (TempPS)

{
j = TempPS -> y;
i = TempPS -> x;
/* west *¡
if (j >5*RÀTIO)
{

Dose = ( ( (Àrea + ysize*i + (j -s*RÀTIO) ) ->Dose) /Minper) ;

TotalDoseToHyperCheckPoint.s+-Dose ;
SumDif += fabs(Dose-2.0) ;
Count++;

Ì
else //j=o
{

Ðose = ( ( (Area + ysize*i) ->Dose) /Minper) ;
lotalDoseToHypercheckPoints+ =Dose ;
SumDif += fabs(Dose-2-0) ;
Count++; )

/* notEh */
if (i>s*RÀrro)
{

Dose = ( ( (Area + ysize* (i-s*RÀTIO) + j) ->Dose) /Minper) ;
TotalDoseToHyperCheckPoints+ =Dose ;
SumDif += fabs (Do6e-2.0) ;
Cout++; )

else / / !=o
{

Dose = (((À¡ea + j)->Dose)/MinPer);
TotaÌDoseToH]4)erCheckPoint s+=Dose ;
SurnDif += fabs (Dose-2.0) ;
couÈ++; )

/* east */
if (j+5*RÀTlo<ySize)
(

Dose = (((Àrea +ysize*i + (j+5*RÀTIO))->Dose),/Minper);
ToCalDoseToHyperCheckPoint.s+ =Dose ;
SumDif += fabs (Dose-2.0) ;
Cout++;

)
else //j=ygize-l
{

Dose = (((Àrea + ySize*i + (ysize-1))->Dose)/Minper);
TotalDoseToHyperCheckPoint.s+=Dose ;
SunDif += fabs (Dose-2 . 0 ) ;
Counb++; )

/* south */
if (i+5*RÄTIO<XSize)
{

Dose = (((Àrea + ysize*(i+5*RÀTIO) + j)->DÒse)/Minper);
TotalDoEeToHyperCheckPoints+=Dose ;
SunDif += fabs (Dose-2. O) t
Cout++; )

else//i=xsize-1
{

Dose = (((Àrea + ysizet(xsize-t) + j)->Dose),/MinPer);
TotalDoseToHyperCheckPoints+=Dose ;
sumDif += fabs(Dose-2.0),.
Cowt++;

)
TempPS = TempPS -> NexbPS;

\ / / /end while static sources

/ / Average hyperdose value
// A = ( (floae)TotalDoseToHypercheckPoints,/ (fLoaE)Counr) -2.f;
A = (floaE) SunDif,/(fl.oat) (Count-1);
/ / '¡4í\ Eo Ehe tumour
B = 1.f - MinTumour/MinPer;
/ / 14ú Eo periphery
C = MaxPer/MinPer - 1.05f;

if (B>0. f)
fprintf (stderr,''B bigger. - . \n") ;
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if (B > o-f)//nía in the tumour is Loo cold
{

if (C > o-fl//Loo much dose leawing the tumour
TempFl-oat = À+B+C;

else //cotrecL dose leaving tumour
TempFloaÈ = (À+B);

l// end ít
else// mín in tumour oK
{

if (c > o-f)//Loo much dose Leaving the tumour
TempFl.oat = (À+C);

efse //eorrecL dose Leaving tumour
TempFloaE = (À) ,-

l// end else

if (TempFloat < 0.0f)
fprinLf (sLderr, I'Cost -ve : À: åf B : ?f C: ?f Cost : ?f\n",À,8, C, TempFloat) ;

if (B>0.f)
fprintf (sEderr, "--- B Big ---\n') ;

return (TempFloat) ;
l//end of function calculatecost

C.2 DRand48.c
/* @(ff)drand48 -c2 -2* /
/ *LTNTLTBRÀRY*/

* drand48, etc- pseudo-randon nunber generator
* This impLement.ation assumes unsigned short incegers of at Least
* t5 bit.s, long integers of at least 32 biEs, and ignores
* overflows on adding or multiplying two unsigned integers.
* Twors-complement. representabion is assumed in a few places.
* Some exEra nasking is done if unsigneds are exaccly 16 biLs
* or Longs are exactly 32 bits, bug so what?
* Àn assembly-language impLement.ation woul.d run significantly faster.

,//#include <stdl.ib.h>
#include "rand48.h"

/ sr9m26feb02 addd
Itinclude <t.ime.h>

//sr9m26feb02 added
#define DRIVER 1

ifndef IIÀVEFP
#define ¡IÀVEFP 1

#endif
#define Nl6
#define MÀsK( (usigned) (1 << (N - 1) ) + (r << (N - 1) ) - 1)
ildefine Low(x) ((unsigned) (x) & MASK)
#define HIGH (x) l,ow ( (x) >> N)
#define MUL(x, y, z){ long I = (Iong) (x) * (tong) (y); \

(z) [0] = Lol'¡(1); (z) tll = r¡IGH(1); ]
#define CARRY(x, y) ((long) (x) + (le¡g¡ (y) 

' MÀsK)
#define ÀDDEQU(X, y, zl(z = CÀRRY(X, (y)), x = LoW(x + (y)))
{define X00x330E
#define XtoXÀBCD
#define X2oxL234
lldefine À00xE66D
#define AIoXDEEC
#define À20x5
#define coxB
fdefine SET3(x, x0, xl, x2) ((x) [0] = (x0), (x) [1] = (x1), (x) [2] = (x2))

-209 -



Brachytherapy Optimization Äppendix C: SAB Source Files

#define sETLoer(x, y, n) sET3(x, LOr^r((y) tnl), LOW((y) [(n)+1]), Lo]ù((y) [(n)+2]))
lldefine SEED(x0, x7, x2l (SET3(x, x0, x1, x2), SET3(a,40, À1, À2), c = C)
#define REST(v)for (i = o; i < 3; i++) { xsubilil = xtil; xlil = templil; } \

return (v);
#define NEST(TYPE, f, F)TYPE f(xsubi) register unsigned short inÈ *xsubi; { \

register int i; register TYPE v; unsigned temp[3]; \
for (i = 0; i < 3; i++) { ¡q6p111 = xlil; x[i] = ¡6141*.u¡itil); ] \
v = FO,- nrst(t); )

ildefine HI_BIT(1t << 12 * N - 1))

static void next ( void ) ;

static unsigned x[3] = { Xo, xL, x2 l, at:l = { A0, .A,1, A2 }, c = c;
static unsigned short lastx[3];

#if HÀVEFP
double drand48( void );

double
drand4S( void )

{
#if pdp11

sEatic double twoL6m; ,/* o1d pdpl1 cc can't compile an expression */
two16m = a-o / IIL << N); /* in udoubleu init.ializert */

#else
static double two16m = 1.0 / (1L << N);

flendif

next O ;
return (two16m * (Ewo16m * (Ewo]6m * x[0] + x[1]) + x[2]));

Ì

//NEST(doub1e, erand48, drand4S) ;

#else

long irand4S ( register unsigned short ) ;

long
irand48 ( register unsigned short m )

/* Treat x[i] as a 48-bit fracLion, and mu]Liply it by the 16-biE
* mulEiplier m- Return integer parE as result.

{
unsigned r[4], p[2], carryo = 0;

next();
MUL (m, x [0] , &r [0] ) ;
MUL (m, x [2] , ar [2] ) ;
¡¡UL (m, x [1] , p) ;
if (CÀRRY (r [1] , p t0l ) )

ÀDDEQU(r[2], 1, carryo) ;
reÈun (r[3] + carryO + CÀRRY(r[2], ptll ) );

Ì

long
krand4S( register unsigned short ìxsubi, uEigned short m )

/r same as irand48, except user provides sEorage in xsubi[] */
{

regisLer ints i;
register long iv;
unsigred temp[3);

for(i=0;i<3;i++) {
temp [iJ = x [i] ;
x [i] = ¡subl ¡11 -

)
iv = irand4S(m);
REST ( iv) ;

)
*endi f
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long int
1rand48 ( void )

{
next O ;
return (((long)x[2] << (N - 1)) + (x[1] 

" r));
]

long int
mrand4S( void )

{
register long 1;

next O ;

/* sign-extend in case length of a long > 32 bits
(as on Honeywel-f ) *,/

return ((1 = ((lonS)xt2l << N) + x[1]) & Hr_BrT ? I | -Hr_BlT : l);
Ì

static void
next ( void )

{
unsigned pl.zl, qt2), rt2l, carryo, carryl;

MUt(al0l, x[0], p);
ÀDDEQU(p[0], c, carryo);
.ADDEQU(p[1i , carryo, carryl);
MUL(a[0], x[1], q);
.ADDEQU(pf Il , q[0], carryo);
MUL(a[1], x[0], r);
x[2] = Low(carryo + carryl + CÀRRY(p[1], r[0]) + q[1] + r[1] +

a[0] * x[2] + a[1] * x[1] + a[2] * x[0] );
x[r] = ¡61,{1t¡11 + r[0]);
xl0l = Low(p[0]);

)

void
srand g (l-ong int seedval)
{

SEED(X0, LOf'¡(seedval.), HIGH(seedval) ) ;
)

unsigned short int. *
seed48 (unsigned short seedl6v [3] )

(

SETLoW(lastx, x, 0);
SEED(LOw(seed16v[0] ), LOW(seed16v[1] ), Low(seed15v[2] ) ) ;
return (lastx);

)

void
lcong4S(unsigned short inL param[zJ )

t
SETLOW(x, paran, 0);
SETLOW(a, param,3);
c = Lol.¡ (param [6] ) ;

Ì

//NEST(Iong, nrand48, Irand48) ;

,//NEST{1ong, jrand48, mrand4S) ;

#ifdef DRIVER

This should prinL bhe sequences of integers in Tables 2
and 1 of the TM:

!623,3442, 1447, tA29,1305, ...
6s?E87255701, D72AOC96637A, 5A'I43CO62A23, - - -

#include <stdio.h>

// stgm9gmat12 commented out to include into SÀ program directly now that it is checked out.
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//srgn26feb02 changed fron nain()
/*void nain(void)
{

int i;

// stgm26feb}2 was: srand4S(10);
unsigned long inL randseed;
time ( (long int*) &randseed) ;
srand4S (randSeed) ;

for (i = 0; i < 80; i++) {
//srgm}9mar'2 Eryin to get O-1 inleryat was: printf{'å4d r, (int) (4096 * drandaE{)));
printf (r'å1.6f ', (fIoat) (drand 8O)) ;
//printf("2-4X"6 -AxZ.4X\n", x[2], x[1], x[0]) ;
// sígm}9maî}2 - note that. x[2] IS the drand48 resul.t! so I can just call drand!
printf ("åf\n", (floar)x[2] /6s535) ;

)

Ì+/ // srgmogmaro2 end of comment out. block

endif

C.3 Globals.h
/*************************** *j*r***,/

/* */
/* This header file contains definitions and */
/. variables needed in main.c for Simulated ./
/" Ànnealing. */
/* . //************* ********************* //. */
/* */
/* CREÀTED' 26/08/98 - presenEr/
/* ÀuTHoR : STEVEN MTLLER */
/. Programned for M-Sc. thesis*,/
/* version:2-6-3-a */
/* . /
/****+ì*****************r*** *******/
#ifndef _GLOBÀLS_H
#define _GIroBÀIS_H 1

// conditional compiLe flag to use rand48 or default RNc
lldefine USE_RNG48 1
#def ine TEMP_REDUCTION_SIMPLE o
#def ine MÀX_TEMP_REDUCTIONS 110

#include <time.h>

/ / Defíne functions
#define sqr (x) ( (x) * (x) )

// Def!ûe stored values which repre6ent different elements
#define TI'MOUR 0/* bhe grey scale value for pgm files */
#define PERIPHERY 4O/* Ehe grey Level for the periphery of rhe tumour r/
#define POINT_SOI'RCE L75/* ¿¡u grey scale of a point source for the pgn files */
#define EXTERNAI 255/* L}j¡e grey scale vaLue for pgm files */

// Defíne Debug variabl-es for debug compilation
#define ÐEBUG_MOVE_SOURCES 0/* to debug the Movesource ¡.lg. *¡
#define DEBUG_CREÀTE_ÀRE¿, 1/* Eo debug CreateÀreaMap fnct */
fldefine DEBUG_INSERT_SOURCES 0/* to debug Lhe inserr source algorirhm */
#define DEBUG_CHECK_COST 0/* to debug the check cost fnct- */
ådefine DEBUG_INIT_TEMP 0/* to debug t.he initial temp. fncc */
#define DEBUG_SIM_ÀNN 1/* to debug the nain sinulated anneal-ing loop */
Hdefine DEBUG_CoST 0/* to debug the cosE funcEion */
fldefine DEBUG PLOT DOSE 0,/* Eo debug the 3-D dose plotLing funcrion */
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f,define DEBUG_CHECKHYPERDOSE 0/* to debug t.he checkhyperdose function */

/,/ Default values for simulated ÀÐealing
fldefine DEFÀULT_NI'MBER_OF_SOU-RCES t/* the default number of sources to insert into the simulation */
#define DEFÀUIT_Dú¡EIL_TIME 1.0/* Ehe defauLt amount of time a source dwelLs for */
#define DEFAULT_PRESCRIBED_DOSE 1-0/* the default dose for the simulation r/
fdefine DEFÀULT_INTERNÀL_WEIGHT 1.0/* used to Height Lhe conbribution from inEernal dose */
*ldefine DEFAUI,T_EXTERNÀI_WEIGHT 1-0/* used to weight the contribuEion fron external dose */
#define DEFAULT_EXTERNÀ¡*FÀCToR 0.25/* t.his is Lhe percentage of prescribed dose tha! can be outside the
tumour*/
fdefine DEFAULT_TEMP_REDUCTÌON_FACTOR 0-9/* used bo reduce the temperalure of the sinulation */
#define DEFÀULT_MAX_ITERATIONS 200/* the nunber of iterations for each Lemperature value */
#define DEFÀULT_STOP_COUNT 200/* this is the nurìber of iterations that must have t.emp, within WITHIN */
#define DEFÀULT_WITHIN_FÀCTOR 0.025l* the percentage thaE the cosL can díÍfer */
Ìldefine DEFÀUIT_TRIÀL_IIUMBER 1/* Íf no trial is provided Ehis HiLt be rhe defalur */
ffdefine DEFÀULT_MÀX_INIT_TEMP_ITERATIONS 100/* the number of iterations Eo ge! Lhe initial Eemp */
#define DEFUÀIT_INITIÀ¡_ÀCCEPT_RÀTIO 0-95/* the accepcance ratio to srart off with */
#define DEFAULT_STOP_TEMPERÀTURE 0.00001,/* the default temperature for the simulation */
#defj.ne DEFAUTT_TEMP_INCREÀSE_FACTOR 1.5/* used Lo increase the t.emperature in the InitTemp fucLÍon */
#define DEFÀItLT_MOVE_PERCENT 0.98/* the probability to move a source */
#define DEFAITLT_ADD_PERCENT 0.01/* the probabil.iby to add a source +/
#define DEFÀULT_DELETE_PERCENT 0-01/* Ehe probabiliLy to deÌete a source */
fldefine DEFAULT_RÀTIo 1,/* Ehis is the ration 1 sq- == t mm */

#define DEFÀULT_JUST_MOVE 1/* this is 1 if there is onJ.y mowe alowed, i.e. no insertions or deletions*/
#define DEFÀULT_ÀILO!¡_0_SOURCES 0/+ if this is 1 then it is OK Co have O sources */
#define DEFAULI_ÀLLOW_SOURCES_OUTSaDE O/* if Lhis is L then sources are not. confined to the tumour */
#define DEF.AULT_TIME_FACTOR 0/* if this is 1 then there can be more than one source at a location */
lldefine DEFÀULT_USE_HEURISTIC 1,/* usually this is set to 1 as wel-l as iIUST MOVE so Ehab the heuristic
neEhod is used*/

/ / Defíne DaLa structures
/* Ehis is the slncLure whj-ch foads in the tumour file */
Lypedef struct _DoseArea{

float Dose;/* dose at that area poinE */
int Type;/* Èype of point (TUMOUR<EXTERNÀ¡, eLc. */
) DoseÀrea ;

/* this is a sÈructuure for Ehe point sources */
typedef sEruct Poinbsource{

int x; ,/* x position of point source */
int y; /* y poistion of poinu source */
fLoaL DwellTime;/* dwel1 bine of point source */
sLrucL PoinÈSource *NextPS;/* poirter to next. poinL source in the linked lisb *,/
)ps;

// clobal variables inr "main.c"
extern DoseÀrea * Àrea;/* This iE t'he 2D array of structures */
extem PS * FirstPS,-/* This is the finked lisE created in InserEsources */
exLern PS * FirsENewPS;/* This is the linked lisÈ created from FirstPS j.n Movesources */
exEern PS * FirststaticPs;/* This i5 the tinked tist of staÈic poinÈ sources toaded from a file */

exLern float INTERNAI_WEIGHT;,/* used to weight Ehe contribution fron inEernal dose */
extern float EXTERNÀI_WEIGHT;/i used to weight the contribution from external dose */
extern float EXTERNÀI_FÀCTOR;/* Èhis is Lhe percentage of prescribed dose that can be outside the
tumour*/
exbern int xsíze;/* This is read in from the tumour input file */
extem int ygizeì/* This is read in from the Eunour input fíIe */
exbern int TRIAL,.
ext.ern inE NUMBER_OF_SOURCES;/* This is the number of sources in the simulaeion */
exEern floaÈ DWELL_TIME;/* global var- for dwelL_time *,/
extern float PRESCRIBED_DOSE;/* the prescribed dose..- */
ext.en fÌoat. TEMP_REDUCTION_FÀCTOR;/* the amount Eo decrease temp after MÀX_ITER-ATIONS *,/
extern int MÀX_ITERÀTIONS;/* Lhe md iLerations in che sim. ann, b/f tenp is reduced*/
extem int STOP_COUNT;/* if this many wit.hin WITHIN_FÀCTOR rhen sÈop */
extern float WITHIN_FACTOR;/* this is the ? of ireraÈions Ehat have ro be wiLhin */
extern int clobalTumourcount;/* Ehis is to count Ehe number of tumour spots */
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extem int HyperDose;/* This is the globa1 variable bo set if the dose is too high */
extern FILE * GlobaloutputFíIe, /* This is where all- of the oueput co stderr will be redirected */
exlen int MÀX_INIT_TEMP_ITERÀTIONS;/* this is the user entered nunber of temp. init. iteralions */
extern floaÈ INITIAI,_ACCEPT_RÀTIO;/* this is Lhe number of accept.ed trials required to accept init.
temp. value */
exLern float SToP_TEMPERÀTURE;/* this is the smallese that the temperature gets in a simul"ation */
extern f loat. TEMP_INCREASE_FACTOR;
extern float MOVE_PERCENT;
extern f loat. ÀDD_PERCENT;
exteTn f loaI DETETE-PERCENT;
extem inE RÀTIO;

ext.ern in¿ JUST_MOVE;
extern int ÀILOW*0_SOURCES;
extern int ÀIIOI4_SOURCES_OUTSIDE;
exIeTn inI TIME-FÀCTOR;
exLeTn inL USE_HEURISTIC;
extern char GlobalstaticFileNane[128] ;/* For the held source fiLenane */

/* FUNCTTON PROTOTYPES, main.c*/
int round(float x);
float distance(int xl,int yl,int x2,int y2l;
void FillcontoursRecursive(DoseArea *Àrray,int x,int y,inb x_din, int y_dim);
int PlotouEputDose(int Trial, PS **PSList);
int MakeoutputPcM(int. r¡ial),-
int createÀreaMap (char Nane [128] ) ;
int seedRandom(void);
inL CheckcostFnct (void) ;
int main ( inL argc, char *argq [] ) ;

/* F{JNcrroN PRoTorYPEs, PS.c "/
void Insertsources(int Numsources) ;
inL Movesources (float. fnitiaLTemp,ffoat CurTenp) ;
void FreePS (PS **lisb) ;
void SwapPS(PS **one, PS **two);
void CopyPS(PS **one, PS *two);
void PrinLPS(Ps *list);
void ÀddPS(PS *oríginal_Ps,PS **list),.
void DeletePs(int whichsource,PS *originaL_Ps,PS **Lisr) ;
void MakePS(PS **TempPS) ;
int MovePS (int l.¡hichsource, PS *original_lisb,PS **new_lis¿) ;
int NUmPS(PS *Thelist.) ;
int Àddstat.icPs (char FileName [128] ) ;

/* FUNcrroN PRoToTYPES, cosr-c*/
void CheckÀreaRecursive(DoseArea * Àrray,int. x,int y,int * counE);
inL CheckHyperDosesleavelnt.egraEion (PS *ThePS) ;
int CheckHyperDosesleave (PS *ThePS) ;
float CaLculaLecost (PS *TempPS) ;

/* FIJNCIÌON PROTOÎYPES, 5a.c*/
float. Getlnitial.Temp(int Numsources) ;
int configsinuLated-Arnealing (char Name [128] ) ;
float. Cool"ingProfile (j.nL x) ;
int SimulatedÀnnealing(f1oaÈ fnitiaLTemp, int Trial, int Numsources),-

/. FIJNCTTON PROTOTyPES, MyTine.c*/
void Toballine(float Tine) ;
void StarlTime (t.ine_t *lt) ;
void StopTime(tine_t 1L) ;
#endif

C.4 Main.c
/*r+******************r********************** *+** /
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/* This is t.he third drafr of the Simul-ared */
/* Amealing algorithm. It has dynamic nunber of*/
/* sources and can have duell times (using con-*/
/r servat.ion of energ-y. Most' paraneters are */
/* set at' the command line. The purpose of this *,/
/* version is to change the cost function so */
,/* EhaE it depends on h)4)er dose sleaves*/
/* and t.he min in the tumour.*/

/************* +*r************+**+**/

/* CREÀTED: 12/o'7/7999 - presenr*/
/* AUTHoR : srEvEN MTLLER */
/. Programmed for M.Sc. Thesis*/
/* Version:3.0.0 r/

/************* ****a,*/

#include <stdio.h>
#include <time.h>
dinclude <math.h>
#incÌude <sÈdLib.h>
#include "globals.h"
llinclude "rand4S.h"

inL NUMBER-oF_SoURCES = DEFAULT NIIMBER OF SOURcEs;i/* variabl-e for the number of sources */
floar DwELi_Ti¡'le = o¡r'au¡,r_DwELL_TrME;7* ltol.t r.r. for dwelt_rime */
f]-oaL PRESCRIBED-DOSE = DEFÀULT_PRESCRIBED_DOSE;/* The prescribed dose,.. *,/
float INTERNÀI_WEIGHT = DEFAULT_INTERNÀL_I'JEIGHT;/* used to weight che contribution from internal dose

float EXTERNÀI_I'IEIGHT = DEFAULT_EXTERNÀI_WEIGHT;/* used to weight the contribution from external. dose

float EXTERN¡$_FACToR = DEFÀULT_EXTERNAL_FACTOR;/* bhis is the percenr.age of prescribed dose thar can be
outside the t.unour*/
float TEMP_REDUCTION_FACToR = DEFÀUÌJT_TEMP_REDUCTION_FÀCTOR;/* t.his is the factor by whÍch to decrease
the temperature */
int Ì4ÀX-ITERÀTIoNS = DEFÀWT-MAX-ITERÀTIONS;/+ the number of iterations at each Lemperature */
inb STOP_COUNT = ÐEFÀU1,1_STOP_COUNT;/* if this nany wit.hin WITHIN_FACTOR then stop */
float. WITHIN_FACTOR = DEFÀULT_1,ùITHIN_FÀCTOR;/* this is rhe ? of iterations thaE have to be wiEhin *,/
int TRIÀI! = DEFAULl_TRIÀt_NUMBER;i/*rrial number */
ine MÀX-INIT_TEMP_ITERÀTIONS = DEFAULT M.AX INIT TEMP ITERÀTIONS;
t t oa r rñr trn¡,_eccEpr_RÀT r o = ÐEFUÀr,T_rñr r rÃ¡,_¡cõepr_Rarro ;
f loat STOP_TEMPERÀTURE = DEFAULT_STOP_TEMPERÀTURE ;
f loaT TEMP-INCREÀSE_FÀCTOR = DEFAULT_TEMP_TNCREASE-FÀCTOR ;
f]"oat MOVE_PERCENT = DEFÀULT_MOVE_PERCËNT;
fLoat À.DD_PERCENT = DEFÀULT_ÀDD_PERCENT;
float, DELETE-PERCENT = DEFAULT_DELETE_PERCENT,
inE RÀTIO = DEFÀULT_RÀÎIO;

inL .TUST_MOVE = DEFÀULT-JUST_MOVE;
int. .AILOW_0_SoURCES = DEFAULT_ÀI,LoW_0_SOURCES ;
int ÀI,LOW_SOURCES_OUTS IDE = DEFAIILT_ÀÍ-IOI{_SOURCES_OUTS IDE ;
inL TIME-FÀCTOR = DEFÀULT_TTME_FÀCTOR;
ine USE_HEURISTTC = DEFÀULT_USE_HEIIRISTIC;

/* these are Èhe g1obal variables */
DoseArea *.Area=NULL;/* This is the 2D array of stactures */
int xsÍze=o;/* This is read in from the tunour input file r/
int ysize=o;/* This is read in from the tumour inpuÈ f.íIe */
PS * FirstPS=NULL;/* This is the tinked list created in Insertsources */
PS * FirstNewPS=NULL;/* This is the linked lise creabed from FirstPS in Movesources */
PS * FirslsLaticPs=NULL;/t This is the linked fist of sEa¿ic point sources foaded fron a file */
int GlobalTumourcouL = 0;,/" Lhis is to count the number of locaEÍons that the sources can go */
int HlæerDose = 0;/* This is the global variable ¿o seb if there is Eoo much dose */
int TempclobaL = 0;
FII,E *GlobaloutputsFi le=ÀfuI,t ;
char GlobalsEaEicFileName[12a]ì/+ For the held source filenane */

/**********************r****************** *****************/
Fuction: nound*/
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/* */
/* Purpose: To round floats into integers*/
/* Input: Àny floaE ,/
/* Output: An integer */
/+ */
/."-..-...-"-.*****i*+***+** rr*i**+*******
int round(float x)
{

return( (int)floor(x+0 -s\);// srgml-tfebo2 changed from ffl"oor
)/*end function round*/

/*+*********** **************+*********************r********/

/. Function: distance*//* . /
/* Purpose : To cafcul-at.e t.he distance between 2 2D poinLs*/
/. fnpub : The two points (X1,YI) and (X2,Y2) for which the disr.*/
/* between them is required.*/
/* Output : The distance as a float.*//* */
/*************
float distance(int x1,ine yl,int x2,íi|- y2l
{

if ( (x1-x2==0) && {yI-y2==0) )
return (0.0) ;

eLse
{

return ( (float) sqrt (sqr (xl -x2 ) +sqr (y1-y2) ) ) ;
)

)/*end of distance funclion*/

/*********i***

/. Function FillcontoursRecursive*//* ./
/- PURPoSE: This function uses recursion co "fIood,, a closed area in*/
/" a certain slice of Ehe 3D array with a given value-*/
/* INPUTS: The currenb posiLion in Ehe array, the array*/
/ù and the dimensions of the array are all inputs to the function*/
/* OUTPUTS: None */
/* * /
/*****r******* ****r*+**r*+*******************************i*/
void FilLContoursRecursive(DoseÀrea *Array,int x,inE y,inc x_dim, inL y_dim)
{

if ((Àrray +x*(x_dim) + y) -> Type == EXTERNÀI) /" if the position is currently IEXTERNÀL" (ie.
'2Ss'l */

t
(Array +x*(x_dim) + y) -> Type = TUMOUR; /* filt the current position with che value */

/* fíII rhe area to the Left, top, righÈ, & bottom */
if (x > 0) FillContour6Recursive(Àrray,x-1,y,x_dim,y_dim) ;
if (y > 0) FillContoursRecursive(Àrray,x,y-1,x_dim,y_dim) ;
if (x < x_dim-1 ) Fi.llContoursRecursive (Àrray.x+1, y,x_din, y_dim) ;
if (y < y_dim-1) FillcontoursRecursive(Àrray,x,y+1,x dim,y dim);

)
return;

Ì/*end of FillconÈoursRecursive*/

************** +**r*r***********/
/* Function: PlotoutputDose*//* * /
/* Purpose: This funcbion vill nakd a PcM fil-e using the */
/* source locations and tumour locations bo fi.nd the dose */
/* distribution. * /
/* lnputs: Trj.al Nunber for outpuc filename, linked list. of sources*/
/* outputs: 1 if there is an error in Ehe fuction*/
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/* else o- */
/. +/

/*************
inl PLotoutputDose{int Tria1, PS **PSList)
{

int i=0,j=0;/* for the for loops */
PS *TenpPS=NULL;/+ Temp to run through the linked list *,/
char *FileName=ìùUlt;/* The output filename */
FILE *OutputFile=NULL;,/* the oueput file handle*,/
floaE Dose=o . 0f;
float Min=0 - f;

#if DEBUG_PLOT_DOSE
fprintf (Globafoutput.File, "In the PlotoutputDose function\n") ;

d endi f

FileName = (char *)malIoc(sizeof("OUTPUT/Our.puCDose "));
sprintf ( FileName, trOUTPUTi/OutputDoseåd. dat ", Trial ) ;
OutputFil-e = fopen(FileName, "w") ;
if { !outputFile)
{

fprintf(GlobaloutputFile,t'Cannob open file ås for outpuE, exiting PlotoutputDose\n',,FileNane);
return(1);

)
free (FileName) ;

Min = 99999.9f;
for (i=0;i<xSize;i++)
{

for (j=0;j<YSize;j++)
{

TenpPS = *PSList.;
while (TempPS)

{
if ((TempPS -> x -= i) && (TempPS -> y == j))

Dose += TempPS -> DwellTime * sqr(RÀTIO);
else

Dose += (TempPs -> DwellTine * sqr(R.qTIO))/sqr(distance(i,j,TempPs->x,TempPS->y));

TenpPS = TempPS -> NextPS;
)
if (((Àrea + ysize*i + j) -'Type == TU¡4OUR)&&(Dose<Min))

Min = Dose,.

if (((Àrea + ySize*i + j) -' lype == TIJMoUR))
fprintf (OutputFile, t'åf ',Dose) ;

Dose = 0-0f;
)/*end for*/
f printf (Output.FiLe, ,,\n', ) ;

Ì/*end for*/
fclose (outpuEFile) ;

/*now store Ehe minimum iû a file so that we can use ib in the plotiso file*/
Fil.eName = (char *)mall.oc(sizeof("OUTPUl/MinDose "));
sprint f ( Fi leNane, n OITTPUT/MinDose åd . daE " , TriaL ) ,.

OutputFile = fopen(FileName, "w") ,.

if ( loutpuEFil.e)
{

fprint.f(GlobaloutputFile,"cannot open file &s for output, exiting PlotoutputDose\n,,,FileName),-
return(1);

]
free (FileName) ;
fprinEf (OutputFile, 'tf\nr' , Min) ,-

fclose (outputFiLe) ;
ret.urn (0) ;

]/*end funcEion PlotoutputDose*/

/************* ****r********* ********r******r*/

/+ Function: MakeoutputPcM*//* */
/* Purpose: This function will make a PcM file using the */
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/. source locations and tunour locations */
/. rnputs: None * /
/* outpuEs: 1 if there is an error in the function*/
/. eLse o. */
/. */
/************* 

************** ********i********/

int MakeOutpuÈPGM(int TriaL)
{

FILE IOuIputFiIe=NULL ;
PS *TempPS=NULL;

inr. i=0, j =0;
char *FileName=NULL;
DoseArea *TempÀrea=NULL;

FifeNane = (char *)mall.oc(sizeof(,'OUTPLIT,/SourceConfig "));
sprintf ( Fi I eName , " OUTPUT/ Sourceconf igåd . pgm " , Trial ) ;
OutputFile = fopen(FiLeName, "w") ;
if ( !OutputFile)
i

fprintf(GlobaloutputFile,"Cannot. open file ?s for outpuE, exiting MakeoutputpcM\n',,Fi1eName);
ret.urn ( 1) ;

)
free (FileNane) ;

// Vlake the area to draw:
if ( ¡Area)
{

fprintf(GlobaloutputFile,"There is no area to draw in MakeouLput.PcM, exiting!\n");
return(1);

)

TenpÀrea = (DoseÀrea *)malloc (xSize*ysize*sizeof (DoseÀrea) ) ;
for (i=0;i<xSize;i++)
(

for (j=0;j<ySize;j++)
(

(TempÀrea+i*ysize+j ) ->Dose = (Àrea+i*ySize+j) ->Dose;
(TenpÀrea+i*ysize+j ) ->T14>e = (Àrea+i*ysize+j ) ->Type;

)
)

/ / PuE in Dynamic the point sources:
?empPs = FirsÈPS;
if (lTempPs && 0)

fprint.f(GlobaLoutputFile,"There are no Dynamic poin! sources to draw in MakeOuCputPGM\n");

while (TenpPS)

{
(TempÀrea +(TempPS -> x) * ysize + TempPS -> y) -> Type = POINT_SOURCE;
TempPS = TenpPS -> NextPS,-

)

// PtL ín statiò the poinr sources:
TempPS = FirststaticPs;
if (lTenpPS && 0)

fprintf(GJ.obaLoutputFile,"There are no Static poinE sources Eo draw in MakeoutpuÈPcM\n");

while (TempPS)

t
(TempArea +(TenpPS -r x) * ysize + TempPS -> y) -> Type = POINT SOURCE;
TempPS = TempPS -> NextPS;

l

fprintf(OutputFile,iP2\n');/* prínt file headers to the .pgn fíle */
fprinEf (OutputFil.e,',# CREÀTOR: XV Version 3.OO Rev: 3/30/93\n"),-
fprintf (OuEpuLFile, "åd åd\n",xsize,ysize) ;
fprintf (OutputFile, "255\n" ) i

for (i = 0; i < xsize*ysize;i++)
{

if ((i å L7) == ol/* we nust print 18 points per line, hence rhe nod t? */
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t
fprintf (OuLpubFife,'\nå3d", (TempÀrea+i) ->Type) ; /*start a new line*/

Ì
else
{

f printf {OutputFile,', å4d'', (TempÀrea+ i ) - >Type) ;
]

Ì

fclose (Out.purFile) ;
free {TempArea) ;
return (0) ;

Ì/*end of funcÞion MakeoutputPcM*/

****+i***************************************/
/* Function: CreatÀreaMap*//* ./
/. Purpose: This function wilL load and fill the tumour fron file */
/* The return value is 1 if there was an error during the */
/. processing otherwise i¿ is o *./
/* rnputs: None */
/" */
/************* *****************/
int CreateÀreaMap (char Name [128] )

{
FILE *InputFile=NULL;/+Input file pointer*/
char namel.!281;/*For reading in from the input file*,/
int i=0; /*To parse inpuE from fife*/
int j=0; /*To parse input from file*/
int vafue=o;/*fnput from che file*/

#if DEBUG-CREÀTE_ÀREA
fprintf (clobaloutpubFile, "In CreateÀreaMap\n" ) ;

#end i f
fprj-nt.f(c1obaloutputFi1e, "\n\n\topening file ?s for inpub....\n",Name);
if (InputFile)

fclose (Input.Fil.e) ;
if ((InputFil.e = fopen(Nane,"r")) == NULL)
{

fprintf(clobaLoutputFiLe, "\tlnput fil-e nor foud exiting\n\n,') ;
return(1);

)
else

fprintf (clobaLoutputFile, n \EFile found, opened for inpuE. \n\n" ) ;

/* Now parse inpuc file to load in the tumour */
fgets(name, l28,InpucFil.e) ; /* p2 

" /fgets(name,128,InputFiLe);/* f CREÀTOR: XV Version 3-01 Revt 3/3O/93 */
/* now get. the x and y dinensions of the file */
fscanf (InputFile, ¡td Ed\n',, &xSize, &ysize) ;

fgets (name, 128, fnputFile) ¡ /* 255 * /

./*malloc the size of the array for the input*/
Area = (DoseÀrea * ) nalloc (xsize*ysizersizeof (DoseÀ¡ea) ) ;

/* now ge! all. of bhe input. */
GlobalTumourcount = 0 ;
for (i=0;icxSize;i++)
i

for (j=0;j<YSize¡)++)
{

. fscanf (lnputFile, ,'åd,,, &value) ;
i f (Àr,Low_souRcEs_ouTsrDE)

GlobaLTumourcout+ + ;
if (va1ue==EXTERNÀI)/*save as external location*,/
(
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(Àrea + i*ysize * j) -' Dose = 0.0f;
(Àrea + i*ysize + j) -' Type = EXTERNÀL;

)
el.se if (value == PERIPHERY)

{
(Àrea + i'ysiz" * j) -t Dose = o.of;
(Area + i*ysize + j) -' Type = PERIPHERY;
if ( IÀILOW_SOURCES-OUTSIDE)

GlobalTunourCount ++ ;
)
else/* it is a tumour point */
{

if ( IÀ¡LOIq_SOURCES-OUTSIDE)
cl-obalTumourCount ++ ;

(Àrea + i*ysize + j) -> Dose = O.Of;
(Àrea + i*ysize + j) -> Type = TITMoUR;
clobaLTumourCount++;

)
l/*end for j*/

l/*end tor í*/

,/" close the input ¿íLe */
fcl.ose (InputFile) ;

TIif DEBUG-CREATE_ÀREA
InpuUFile = fopen (',CreateÀreaMap.pgnn, rwtr ) '
fprinEf ( InputFile, I'P2\nr' ),-
fprintf(InputFile, "# CREATOR: XV VersÍon 3.01 Rev: 3/30/93\n');
fprintf (tnputFile, "åi åi\n",xSize,ysize) i
fprintf (InputFile, "255\n', ) ;
for (i=0;icxSize;i++)
{

for (j=0;j<YSize;j++)
{

fprintf(InputFile,"?d ", (Area + i*ysize + j) -> Type);
]
fprint.f (InputFile, "\n" ) ;

)
fclose ( InputFile) ;
fprintf (GlobalOuepubFile,'rDone CreateAreaMap\n,') ;

#endif
fprint.f (Global-OutputFil.e,,,Done CreateÀreaMap\n") ;
f f lush (GlobalOutput.File),-
return(0);

]/*end of CreaEeÀreaMap*/

/************************************r*************i****i******+*+*******/
/. Fuction: SeedRandon O *//* */
/* h¡rpose: This fuction will seed the c randon number generaEor +/
/* rT Músr oNr,y BE cÀrLED oNcE DuRrNc À srNcLE TÌME srEp +/
/* The return value is 1 if there is an error else, it is */
/* o. */
/* rnputr None- */
/* outpuL: None. */
/* */
/************************** **************r*****r****i******/
int SeedRandomo
{
#if USE_RNG48

unsigned long int randseed,-// holds initial Eeed value

// gel- a seed from the current. clock time, this Hill always cause a diffemt starting seed val-ue
time ( (long int*) &randseed) ;
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// now seed the rand48 RNG
srandAS (randSeed);
reEurn(0);// no ertors

#el.se
long ltime=0;
int stime=o;

/* geÈ current calender tine *,/
Ltime = tine(NULL);
stime = (usigned) !time/2;
srand (stsime) ;
return (0) ;

Hendi f
]/*end of seedRandom*/

*r************

/* */
/i Function : CheckcosEFnct.+/
/* Purpose: This is a fuction that can be calÌed to ¡see' i/
/* how the cost functioD is working. The return */
/* walue is 1 if there was a problem, otherwise */
,/* iE i6 O */
/* Input : None */
/* Output : inl if no problems occured, and generaLes a file cost,dat*//* * /
/************ **********************+*********/
int CheckcosEFnct o
{

FILE *CostFile=NUl,L;
int i=0;
int j=0;
float cost=0-0f;
f lôaL MÍncosr=32oOO. Of ,-

int MinX=0,MinY=0;

CostFiIe = fopen(,'co5È.daL',, "w") ;

#if DEBUG_CHECK-COST
fprintf (GlobaloutputFile, t'In CheckcostFnct.\n") ;

#endif

for (i=0;icxSize;i++)
{

for (j=0;j<YSize;j++)
{

/" íf I (Area+i*ysize + j) -> lype == EXTERNAI)
{

fprint.f (CostFile, "0.0 ")'
conLinue;

| -t
FirstPS = (PS *) nal1oc (sizeof (pS) ) ;
FirstPS->x=i;
FirstPS->y=j;
FirstPS -> DwellTime = DEFAULT_DWELI_TIME;
FirstPS -> NexLPS = NULI;

cost = Calculatecost(Firstps) t
#if DEBUG-CHECK_COST
if (cost<Mincost)
i

Mincost = cost;
Mir¡X = i;
r¡iny = i ;

Ì
tlendif
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fprinrf (costFi1e, "?f ", cost) ;
FreePS (&FirsLPS) ;

)
fprintf (costFile, "\n") ;

#if DEBUG_CHECK_COST
fprintf (clobalouEputPile, "?i\n", i) ;

#endif
]

fclose (CosEFile) ;
#if DEBUG_CHECK-COST

fprinEf(GlobaloutpubFiLe,''Done CheckcostFncb Min of åf at x=?d and y=åd\n",Mincost,Minx,MinY) i
#endi f

return(0);
)/*end of function CheckcostFnct.*/

/************ ************** /
,/ * MÀIN I,INE PROGRÀM * /
/********i**** 

*************/

int nain{int. argc,char *argv[] )

{
time_t It;
stnct tm *ptr=NULL;
char*FileName=NULL;

/* setup this run */
fprintf (stderr, "opening file: ?s for input data\n",arw[2j ) ;
if (ConfigsimulatedÀlneal,ing (argv [2] ) )

{
fprintf (stderr, "Error in ConfigsimulatedÀnnealing, exiting. \n") ;
exit (0) ;

)

/*open oubfile for GlobaloutputFile recording */
FileName = (char *)nalloc(sizeof("oUTPUT/ouLpuL "));/* Ìeave space for ll# and -dat *,/
sprintf ( Fi leName , 'OUTPUT/OutpuE?d . dat. " , TRIÀI) ;
fprinEf(stderr,"Opening fiLe for recording stderr, filename:\tå8.\n\n",FiteName);
clobaloutputFil-e = fopen (FileName, "w" ) ;
free (FileName) ;

fprintf(GlobaloutputFile,"\n\nThis is a program for optimizing point sources using Simulated Anneal-
ing. \n" ) ;

fprintf(clobaloutputFile,'rSample inputs j.s: 'SinÀnn.exe 0' 'filename.pgm 1' 'ffsources 2' 'dwell tine
3'\n 'prescribed dose 4' 'internal weight 5' 'external. weight 5'\n tpercentage of prescribed to external
7' 'reduction facbor 8r 'iLerations 9' 'stop iterations 10' 'with in t* 11¡ 't.rial # 12,\n\n,');

f f lush (GlobalOutputFile) ;
Àddstat icPS (Gl-obalStaticFileName) ;

/* Loads in Ehe tumour file(s) _and_ fills them */
if (CreateAreaMap(argv[1] ) )

i
fprintf (GlobaloutputFile, "Error in CreateAreaMap, exiting.\n") ;
exit (0) ;

)

/* Seeds the C random number generator ONLY DO THIS ONCE */
if (SeedRandomO )

{
fprintf (clobaloutputFile, "Error in SeedRandom exiting.\n") ;
exit (0) ;

)

#if DEBUG_CHECK_COST

/* generate 3D nap of cost funcEion */
if (CheckcosEFnct O )

{
fprintf (clobal.OutputFile, "Error in Checkcost.FncÈ exibing. \n" ) ;
exiL(0);

)
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#endif

1t = time{Nltl,t);
ptr = localtime(&1t);
fprintf(GlobaloutputFile,"Starting SirìÀln tine is: ås\n\n",asctime(ptr));
fprintf(clobaloutputFile,"InpuE file name: ?s, configuration file: ?s\n",argv[1] ,argvl2ll;
f f fush {clobaloutputFile ) ;

if (SimulatedÀnnealing(GetlnitialTemp(NUMBER_OF_SOI'RCES),TRlÀ¡,NI'MBER_OF_SOI'RCES))
{

f printf (GlobaloutputFÍ1e, I'Error in SimulaEedÀnnealing exi ¿ing. \n" ) ;
exit (0) ;

)

1r = rime(NULL);
ptr = localtime(&lt);
fprintf (clobafoutputFile, "Done SimAnn tine: ?s\n\n", asctine (ptr) ) ;

if (MakeoutputPGM (TRIAI) )

{
fprintf (GÌobaloutputFile, "Error in MakeoutputPGM exiting. \n") ;
exiu(0);

)

if (PlotoutputDose (TRIÀI, &FirstPs) )

{
fprintf (GlobaloutputFile, "Error in PlotoutputDose exiting. \n" ) ,-

exit(0);
Ì

,/*Free global menory that was malloced*/
free (Àrea) ;
FreePS (&FirstPS) ;
FreePS ( &FirsLNewPS) ;
FreePS ( &FirsLSt.aLicPS) ;
f close (GlobaloutputFile) ;

Ì/*end of main line*,/

C.5 MyTime.c
/***r*******r*****i******************************//* */
/* rhis is a utility to calculate elapsed time*/
/* by a program./* */
/************ *********/
/t rl
/. */
/. GREATED: 26/08/98 - presenr*/
/* AUTHOR : STEVEN MILLER*,/
/* Programmed for M.Sc. Thesis*/
/* Version:2.6.3.a*//* . /
/******i***r*****i**r***** **r+***** /

#include <time.h>
#include <stdio.h>
#include <std1ib.h>
#incLude "globa1s.h"

typedef struct tm TM;

/************
FI'NCTI ON NÀl'lE : Tota I Time
PuRPosE: Fomat the time it took for the simulation
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anto days, hours, etsc.
INPUT: The time it took the simulation
OUTPUT: None
FIINCTIONS C.4LLED : f printf
ÀSSUMPTIONS : None

void Tot.alTime (float Time)
{

inE Days=0, Hours=0, Mins=0, Secs=0 ;

if (Time > (60*60*24))
Days = (int)Time/ (60*60*24) ;

Time -= Days*50*60*24;

if (Tine > (60*60))
Hours = (int)Tine/ {60*60) ;

Time -= Hours*50*60;

if (Time > 60)
Mins = (int)Time/60;

Time -= Mins*6o;

secs = {int)Time;

fprintf(GlobaloutputFile,"Time passed is: åd-Ðays, ?d-Hours, &d-MinuLes and åd-Sec-
onds\n¡', Days,Hours, Mins, secs) ;

)/*end funcrion ToEalTime *,/

/***************************
FITNCTION NÀME:StartTime
PURPOSE: Store the current time as the sEarE of the simulation
INPUT: Address of the variable to hold the start time
OUIPUT: None
FT NCTIONS CAI,LED: time

localtime
ÀSSUMPTfoNS : None

void SEarETime(time_t *Lb)

{
TM *MyTine=NUL],;

*1t. = t.ime(NULL);
MyTime = localbine(1t) ;

//fprinÈf (clobalout.putFile, "Start time is : ?6\n", asctime (MyTime) ) ;
],/,/end f unction Start.Time

/************* *****************
FIJNCTION NÀME : StopTime
PURPOSE: Store the current time as the stop time of

the simulation, and bhetr calculates the total time
INPIII: The sEart time
OürPIII: None
FUNCTIONS CÀILED: fprinEf

TotaLTime
focaltime
t.ime

ASSUMPTÌONS : None

void StopTime (time_t It)
{

tine_t lt1;
fLoat SecondsPassed=0. f ;
TM *MyTine=NlrLL;

1t.1 = time(NULL);
MyTime = locaLtime(&1.t1) ;
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SecondsPassed = diffEine(lb1,lt) ;
fprintf (clobalouEputFile, "Stop time is: ås\n",asct.ime (MyTine) ) ;
ToCal.Time ( SecondsPassed) ;
fprintf (Globalout.puLFile, "Actual processor time: ?u seconds. \n',, cIock O ,/clocKs PER SEC) ;

),/,/end function StopTime

C.6 Ps.c

+linclude <std]ib.h>
#incl-ude <stdio.Ìr>
#include'rglobals.h"
#include "rand48.h"

/*************
FIINCTION NÀME : InsertSources
PURPOSE: This function will insert. bhe nunber of sources tha!

are used in a single solution. The sources are inserted randomly
INPUT: The number of sources to creaEe
OTIIPUT: None
FIINCTIONS CÀ¡LED: fprintf
ASSUMPTIONS:ThaE the global- variable exist's for Ehe point sources.

void In€erLsources(int num_sources)
{

ínt i=0;// for loop index
PS *TempPS=NULLi// LlIe pointer to poinb sources
PS *CurPS=NUl,Lì// Lhe current poinb source we are creating

#if DEBUG_INSERT-SOI'RCES
fprinLf (GlobaloutputFile, "SUart.ing InsertSources\n") ;

dendif

/* check to make sure thaE Ehere are not too many sources to inserb*/
if (num_sources >= GlobalTumourcounÈ)
{

fprinÈf(GLobaloutputFil.e,"There are Loo many sources. I have to quit there is a problem.\n',);
exit (0) ;

l/lend if

/ / make the required number of sources
for (i=0; icnun_sources; i++)
{

#if DEBUG_INSERT_SOIIRCES
fprintf (cfobaloutputFile, "insert. source: åi\n., i) ;

Sendif

// calL t.he PS funclion co make a point source
MakePS (&TempPs) ;
if ( !FirstPS)

First.ps = Tempps¡
el.se

CUrPS -> NextPS = TenpPS;
CUrPS = TempPS ,-

l/lend for

f if DEBUG_INSERT_SOURCES
TempPS = FirstPS;
fprintf (clobalouEputFile,',ln fnsertsources\n") ;
while (TempPS)

i
fprintf(clobaloutputFile,"Pointsource x: åi y: ?i\n",TempPS -> x,TemppS -' y);
TempPS = TempPS -> NexEPS;

Ì//end while
fprintf (Gl-obalouepuLFile, "Done inserÈ point sources\n',) ;

-225 -



Brachytherapy Optimization Appendix C: SAB Source Files

fendif
]/*end of function Insertsources*/

/************
FûNCTION NAME :Movesourcess
PIIRPOSE: This function will move sources based on the currenL tenperature
INPUT: The initial temperature and the currenE temperature
oûIPtII: 1 if there is a problem, else 0
FUNCTIONS CALLED: fprintf
ASSUMPTIONS : None

int Movesources (float InitialTemp,ffoat curTemp)
{

fl.oat TempRand=0.0f;/* To hold the random number generat.ed */
i.nt whichsource=o¡/* which source is going to nove */
int i=0;/* for loop couber*/
int Nunsources=0;

// sÍgûIÌfebo2 renoved for windows, does not like it...
//ff (( (float.) ( (floaE)MoVE_PERCENT + (float)ÀDD_PERCENT + (float)DELETE_PERCENT) < 1.of) | |

((float) ((floae)MoVE_PERCENT + (float)ÀDD_PËRCENT + (fl-oaL)ÐEI,ETE_PERCENT) > 1.0f))
//l
// fprintf(clobaloutputFile,"In Movesources and the percentages do not add up, exiting\n");
/ / retwrn(a) ;//l
/ / Eo geE rid of the global variables for number of sources:
Numsources = NUmPS (First.Ps) ;

/* EhiE is for deciding wether to move or add */
flif usE_RNG48

TempRand = (float)drand48 O ;
felse

TenpRand = (float) randO /RÀND ¡aAx;
#endif

if (TenpRand < MoVE_PERCENT)/* this is the code for moving sources */
i

whichSource=0;
#if USE-RNG48

TenpRand = (float) drand48 O ;
#else

lempRand = (floaE) randO /RÀND_ÌaÀx;
#endif

for (i=0; i<Nunsources; i++)
t

if ((((float) (i)/Numsources) < TempRand) && (TenpRand < (floal) (i+1)/Numsources))
whichsource = i;

)
IIif DEBUG-MOVE-SOIJRCES

fprintf (clobaloutpuEFile, "\nMoving ?d\n¡,Nunsources) ;
if ( !FirstPS)
{

fprintf (clobafoutputFile, "b/f move ?p\n\a",First.Ps) ;exiÞ {0) ;
)
PrintPS (FirsLPS) ;

if (Numsources && (Numsources < GlobaLTumourcount) )
MovePS (whichsource, FirstsPS, &Fi.rstNewPS) ;

#if DEBUG_MOVE_SOIJRCES
fprintf (GlobaloutpubFile, "New poinbs are: &p\n", FirsENewPS) ;
PrintPS (FirstNewPs) ;
fprintf (clobaloutputFile, " \n" ) ;

#endif
]/" e.a if move */
else if (TempRand < MOVE PERCENT + ADD PERCENT)

{
#if DEBUG_MOVE_SOT'RCES

fprintf (clobaloutputFile, "\nÀdding ?d\n",NumSources) ;
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if ( ! FirstPS)
{

fprintf (clobaloutputFile, "b/f add åp\n\ar', FirstPS) ;
exit (0) ;

)
PrintPs (FirstPS) ;

#endif

if (JUST_MOVE)

{
/* to find the lucky source t.o be moved */
whichsource=0,

#if USE_RNG48
TempRand = (f1oat) drand48 O ;

#else
TempRand = (float) rand O /R-AND,¡aAX;

#endif
for (i=0; i<NumSources; i++)
{

if { ( ( (float) (i) /NumSources) < TempRand) && (TempRand < (float) (i+1) /Nunsources) )
whichsource = i,.

)
MovePs (whichsource, FirstPs, &FirstNewPS) ;

l//else j.f just move
else if (Numsources < clobalTunourcount)

AddPS(FirstPS,&FirstNewPs);/* atLach to the end of the list *,/

IIif DEBUG_MOVE_SOURCES
fprinEf (GlobaloutpucFile, "Neu poinLs are: åp\n" , FirstNeuPS) ;
Print.PS ( Fi rstNewPS) ;
fprintf (clobaloutputFif e, "\n" ) ;

#endif

)/* end else add */
efse/* delete a source */
{

,/* Eo find Ehe lucky source to be deleted */
l4hichSource=0;

fif USE_RNG48
TempRand = (floau)drand48 () ;

#eIse
TempRand = (float) rand O /RÀND_¡4ÀX;

#endif
for (i=0;icNumsources; i++)
{

if ( ( ( (float) (i)/Numsources) < TempRand) && (TempRand < (floaE) (i+1)/Numsources) )
Whichsource = i;

)//end for

//make sure Lhere are enough sources to del.ete
if (JtIST-MOVE)

i
if (Numsources<clobalîumourcoub)

MovePS (whichsource, Fir6tPs, &FirstNewPs) ;
)//end just. move
eLse
{

if ( !Attor.r_0_soItRcEs)
if (NumSources>1)

DeletePs (Whichsource, FirstPs, &FirstNewPs) ; /*delete specif ied source */
else

DeletePs(whichsource,FirstPs,&FirstNewPs);/*delet.e specified source */
)//end else noL jusc move

)/* end of else delete*/

#if DEBUG_MOVE_SOIJRCES
fprinLf (clobaloutputFile, "New Points are : \n" ) t
PrintPS ( First.NewPS ) ;
fprintf (clobaloutpuEFile, r---\n" ) ;

#endif
return (0) ;

ì/*end ot function move sources*/
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/************* *****************
F('NCTION NA.¡4E:FreePS
PIIRPOSE: To free a linked list of Point Sources
lNPUl: address of the first pointer
OUTPIIT: None
FUNCTIONS CÀf,LED : none
ASSUMPTIONS:None Lha! there was memory allocated for the list

void FreePS(PS **list)
{

PS *temp;

temp = *list'
while (temp)
{

*list = temp;
temp = temp -> NextPS;
free (*list) ;
*list = NULI,;

)//end white
)/*end of functsion freePs*/

/*************+r************
FUNCTION NÀ¡4E:SwapPS
PURPOSE: This funcEion will swap the menory of 2 fNTO I
INPUT: The address of 2 Ps linked lists
OIIIPUT: None
FUNCTIONS CÀLIED:None
ASSUMPTIONS:Thab memory has been allocated for the 2 linked liEts

void SwapPS(PS **one, PS **two)
{

PS *TEMP=NULL;

temp = *one'
*one = *two;
*hwo = Lemp;

/+ free what used to be one but is now lwo */
FreePS ( two) ;

) /*end of f ucbion swap*/

/ + t* *r*+* a +ù *+**********t***
FUNCTION NAME:CopyPS
PURPOSE: This function will copy Ehe nenory of 2 INTO 1

INPUT: The address of 2 PS linked lists
ouIPIfT: None
FUNCTIONS CÀ.LIED :None
ÀSSIIMPTIONS:That memory haE been al.LocaLed for bhe 2 linked lists

void CopyPS(PS **one, PS *two)
{

PS *CurPS=NULL;
PS *CurNewPS=NULL;
PS *NeHPS=NUIL;

CUrPS = two;
while (CurPS)

{
NewPS = (PS*) malloc (sizeof (PS) ) ,-

NewPs -> x = CUrPS -> x;
NewPS -> Y = CUrPS -> Y,'
NewPS -> DwellTime = CUrPS -> Dwe1lTine;
NewPs -> Next.PS = NTILL;
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if ( ! *one)
*one = NewPS;

el.se
CurNewPS -> NextPS = NewPS;

CurNewPS = NewPS;
CurPS = CurPS -> NextPS; /* go Lo nexL source */

)//end while
]/*ena ot function swapi/

/********************************************
FUNCTION NA}IE : PTinLPS
PURPOSE: This function will print out a linked list of PSs
INPUT: The address of the point source lisb
OIIIPUT: None
FUNCTIONS CÀ],LED : f printf
ÀSSUMPTTONS : None

void PrintPS(PS *Iisb)
{

PS *temP=NULL,'
int element=0;

fprintf (clobaLoucputFile, "There are td PS in Ehe lisE\n",NunPS (list) ) ;
temp = list'
while (Eemp)

{
//fp\íntf. (cLobaloutputFile,''struclure-åd x:td and y:&d\n",element,temp->x,temp-'y);
fprintf (clobaloutputFile, '?d ?d\n', temp->x, temp->y) ;
elemenb++;
temp = tenp -> NextPS;

l//end while
)/iend of funcEion PrintPS*/

/*******************************r************
FUNCTION NÀ.1'1E : ÀddPS
PURPOSE: This funcEion will. add a point source !o a lisÈ
INPUT: The address of 2 PS linked lisEs
O(IIPUT: None
FUNCTIONS CA],LED:None
ÀSSIIMPTIoNS:ThaÈ memory has been allocated for the firs! linked list

void ÀddPs (Ps *original_list, Ps **new_list)
{

PS *CurPS=NUtL;
PS *CurNewPS=NUtL,.
PS *NeWPS=NULL;

#if DEBUG-.ADDPS
fprintf (clobaloutputFil.e, "ln AddPS\n") ;

#endif

//Deed Lo get to the end of bhe list
CUrPS = original_IisE;
while (curPs)
{

NewPS = (PS*)malIoc(sizeof(PS) );

NewPS -> x = CUrPS -> x;
NewPS -> y = CUrPS -> y;
NewPS -> DwellTine = CUrPS -> DwellTime;
NewPS -> NextPS = NUI,L;

if ( ! *new_list)
*new_list = NewPS;

else
CurNewPS -> NextPS = NewPS;
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CurNewPS = NewPS;
CurPS = CurPS -> NextPS; /* go to next source +/

Ì//end whil.e

// now aòd one to bhe end of the list
MakePS (&NewPS) ;

// jusr- in case there are none in the list maybe try to add it to the start
if ( ! *new_list)

*new_list - NewPS;
else

CurNewPS -> NextPS = NewPS;

/ / store the new one
CurNevPS = NewPs;

J/*end of function ÀddPs*/

/************* *******+*tt******
FITNCTION NÀME : DelecePs
PURPOSE: This funcLion wi-Il delete a source from a list of sources
]NPUT: The address of 2 Ps linked LisEs, and bhe index to the source to delete
OUTPIIr: None
FIJNCTIONS CÀLIED: fprintf
ASSUMPTIoNS:Thab the source to deLebe exisLs-..

void Delet.ePs(int index,PS *original list,Ps **new list)
{

PS *CurPS=NULL;
PS *CurNewPS=NULL;
PS *NewPS=NUfrIr,.

int source_counc=o;

/ /fpÍíiLf (GlobaloutputFile, "took at me delete\n") ;
CUrPS = original_list;
source_count=0;
while (CurPS)

t
if (source_count =- index) //delete this one

CurPS = CurPS -> NextPS,. /i go Xo nexE source */
if (!CurPS)

break;
NewPS = (PS*)nall-oc (sizeof (PS) ) ;
NewPS -> x = CUrPS -> x;
NewPS -> Y = CUrPS -> Y;
NewPS -> DwellTime = CUrPS -> DwellTine;
NewPS -> NexEPS = NULL;

if ( I*new_list)
*new_list = NewPS;

eLse
CurNewPS -> NextPS = NewPS;

CurNewPS = NewPS;
CurPS = CurPS -> NextPS,. /* go to next source */
source_count++;

)//end çhile
]/*end of function DeletePs*/

/**r**********
FUNCTION NAME:MakePS
PURPOSE: This function will make a Poinc Source
INPUT: the address of the PS to make
OIIIPUT: None
FUNCTIONS CÀI-LED :None
ÀSSUMPTIONS:That nemory has been allocated for the 2 linked lists

void MakePS (PS **TempPs)

{
int done=0;
int position oK=1;
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int time-OK=l;
PS *CheckliSLPS=NULL;

(*TempPS) = (PS *)malloc(sizeof (PS) ) ;
while ( ! done)
t

åif USE_RNG48
(*TempPs) -> x = (round(((float)drand48O)*(xsize-1))) ;
(*TempPs) -> y = (round(((floaL)drand48O)*(ysize-1)) ) ;

llelse
(*TenpPs) -> x = (round( ( (f1oat)randO/RÀND_MÃX)* (xsize-L) ) ) ;
(*Tenpps) -> y = (round( { (floar)randO/RÀND MÀx) * (ysize-1) ) );

#endi f

position_OK = 1;
if ( !Àtlof^¡_souRcEs_oursrDE)

// if posíLíon is external it is no good
if ((Àrea + ((rTenpPS) -> x)*ysize + (*TempPS) -> y)->Type == EXTERNÀL)

position_oK = o;

time_oK = 1;// assume all is çell
if (ITIME_FÀCTOR && position_oK) /* make sure that there are no other sou¡ces at this location*/
t
/* ro through d)namic linked list of sources and check them all *,/

ChecklistPs = FirstPS;//ru throughb dynanic Iist
whil.e (checkT,istPS)
i

if ((checklistPS->x == (*TempPS)->x) && (checkl,istPS->y == (*TempPS)->y))
{

time-OK = 0;
break;

]
ChecklisEPs = ChecklistPs->NextPS;

J// encl whl-Le
/* ru through sbabic linked LisL of sources and check them all */

if (time_OK)
{

ChecklistPs = FirststaLicPS¡//run through sbatic linked lis¿
whiLe (CheckListPS)
i

if ((ChecklistPs->x == (*TempPS)->x) && (ChecklisbPs->y == (+TempPS)->y))
{

tine_OK = 0;
break;

]
checkLisbPS = CheckListPS- >NextPS;

)// end while
l//eld if time_oK

l//etè if lTrME_FÀcroR

¿e¡g = posit.ion_oK&&Eime_oK;/,/if posiÈion and time are oK theD we are done
)/*end while !done*/

(*TempPs) -> DweLLTine = Dg¡ELL_TIME;
(*lempPs) -> NextPS = NUI,L;

)/,/end of MakePS

/****************r***t**+********************
FUNCTION NÀME:MovePS
PIIRPoSE: This funccion will move a poinb source
INPUT: The address of 2 PS linked lists, the index of which source to move
OUIPIII: None
FIINCTIONS CA.ILED :None
ASSIIMPTfONS:ThaE memory has been allocated for the 2 linked Ìists

int MovePs (int l,¡hichsource, PS *originaL_LisE, PS **new_IisL)
{

int Sourcecounlet--Oì/* source to move */
int done=o;/r set ho 1 if Ehe source locaEion is within Lhe Eunour */
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PS *TempPS=NULLì/* Fot NewPS linked list */
PS *NeWPS=NULL;/* ?or NewPS linked list */
PS *CurNewPS=NULL;/* For NewPS linked lis¿ */
Ps *checkListPS=NULL;,/* for Ehe check Ehat the source has a unique location */
float TempRand=O.of;/+ To hold the random nurÌber generated */
int MulEFacEor=O¡/* How far to move */
inE missed_counter=o;/* this is how many times He have noL been able !o move the desired source */

TempPS = original_list¡// s:Lat:L at the begining of the list

MultFactor=1;
missed_counter = 0;
Sourcecounter = 0;
while (TenpPS)
(

NewPS = (PS *)malloc(sizeof (PS) ) ;
if (Sourcecounter == whichsource)
{

done = 0;
Hhile ( ! done)
{
/* ¡Iovs IN X DIRECTIoN */

#if USE_RNG48
TempRand = (float)drand48 O ;

#e1se
TempRand = (f Loar) rand ( ) /RÀND_llAx;

Itendi f
if ((TempRand < 0.333333f) && (TempPs -> x > MuLtFactor))

NewPS -> x = TempPS -> x - MultFactor;
eÌse if ((TempRand < 0.666666f) && (TempPS -> x < (xsize-1-Mul.tFactor)))

NewPs -> x = TenpPS -> x + MultFactor;
else

NewPS -> x = TempPs -> x;/*TempPS -> x does not change*/

/* MOVE IN Y DIRECTION */
llif usE_RNG48

TempRand = (fl.oat) drand48 O ,'

TenpRand = (float) randO /RÀND_¡aAx;
*endif

if ((TempRand < 0.333333f) && (TempPS -> y > MultFactor))
NewPs -> y = TempPS -> y - MultFactor;

else if ((TempRand < 0.666666f) && (TempPs -> y < (ysize-1-Mult.Factor)))
NewPS -> y = TempPS -> y + MultFactsor;

else
NewPS -> y = TempPS -> y;/*TempPS -> y does not. change*/

/* cHEcK rF wE ÀRE DoNE MovrNc */
if (ÀILOW_SoURCES_OUTSÌDE) // E}]ei no maÈter where we moved it is good

done = 1;
else// make sure that it is tunour of periphery that we moved eo
{

if (((Area + ((NewPS) -> x)*ysize + (NewPs) -> y)->lype == TIJMoUR)

ll ttarea + ((NewPs) -> x)*ySize + (NewPs) -' y)-'r'ype == PERIPHERY))
done = 1;

eL se
{

mi ssed_counter++ ;
done = 0;

)
I / / end ff alLow_source_outside

if (ITIME_FÀCTOR && done)/* then so far it is a valid locaLion, buL, leus make sure that
there are no other sources au this locaEion*,/

{
/* ru through linked list of sources and check Lhen all */

Checklist.Ps = original_list,
while (Checklist.PS && done)
{

if ((checkliSEPS->x == NewPs->x) && (checkListPS->y == Newps->y))
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{
done = 0;
mi ssed_counter++ ;
break;

]
checklistPs = checkListPs->NextPs;

)//end while
/* if there was no dlmamic sources there, check static ones */

if (done)
(

/* run Lhrough linked list of sources and check them al] "/
ChecklistPs = FirststaticPs;
vhile (checklistPS && done)
{

if ((ChecklistPS->x == NewPS->x) && (ChecklisbPS->y == NewPs->y))
{

done = 0;
missed counLer++ i
break;

]
checklistPS = CheckLisEPS->NextPS;

Ì//end while
)

],//end eime_factor check

/* because only one source geÈs moved check to make sure tha! it did infact nove*/
if (done && (NewPS -> x == TempPS -> x) && (NewPs -> y == TempPS -> y))
{

done = 0;
missed counber++;

)

if ((missed counter == 25) && (ldone)),//then set it back Lo where it was and forget
about moving it

{
NeUPS -> x = lempPs -> x;
NewPS -> Y = TemPPS -> Y;
done = 1;

)
)/* "t¿ 

while not done */

//set other parameters for poinE 6ource
NewPS -> DwellTine = DwEtL_TrME;
NewPs -> NextPS = NULL;

)/"ena it Sourcecounter == whichsource*/
el se
{

NewPS -> x = TempPS -> x;
NewPS -> Y = TemPPS -> Y;
NewPS -> DwellTime = TenpPS -> DwellTime;
NewPS -> NextPS = NUT,L'

]/*.ra e16e if sourcecoutser == whichsource */

if (t(*new_1ist))
(*new_list) = NewPs;

else
CurNewPS -> NextPS = NewPS;

CurNewPS = NewPS;
Sourcecounter++;/* go to next source */
TempPs = TempPS -> NextPS; /* go Eo nexÈ source */

)/* end while TenpPS */
return (0) ;

)//end function MovePS

/*************
FITNCTION NAME:NumPS
PURPOSE: This function return how many poinÈ source6 are in the list
INPUT: The address of a PS Ìinked lists
oUTPIII: The numlcer of point source in the list
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FUNCTIONS CÀI-LED : None
ASSUMPTIONS : None

int NumPS(PS *Thelist)
{

inÈ counter=o;// counter to recurn
Ps *TemppS-NWL;// poínLer Eo list of point sources

TenpPS = Thel,ist;
while (TenpPS)

{
counter++;
TempPS = TempPS -> Nex¿PS;

]
return (counter) ;

| / / enð function NumPS

/************
FI]NCTTON NÀME : AddSIAbiCPS
PURPOSE: This function will add NoN novable sources to a list fron a file
INPUT: Filenane that. has the sbabic sources in it
OUTP(II: None
FIINCTIoNS CAj,LED :None
ASSIMPTfONS:That the file exisEs

int AddstaticPs (char FileName [128] )

{
FILE * m_File;
int m_Numsources;
int i,x,y,dE;
PS *NeePS;
PS *CurNewPS;
char blah[128];

m_File = fopen(FileNane,',r") i
if ( !n_File)
{

fprintf(clobaloubpuÈFile,"There is no file to open for static sources\n");
ret.urn ( 1) ;

)

/ / read fíIe
fscanf (m_FiLe, I'td" , &m_Numsources) ,-

// fíIe format: x y dE
f or ( i=0 ; icm_Numsources ; i++)
{

fscanf (n_File, ¡åd åd ?d", &x, &y, &dL) ;
fgets (blah, 128,m_File) ;

NewPS = (PS*)malloc (sizeof (PS) ) ;

NewPS->x=xi
NewPS->Y=Y;
NewPS -> Dwel.lTime = dt;
NewPS -> NextPS = NULL;
if ( !FirsÈStaEicPS)

FirststabicPS = NeePS;
else

CurNewPS -> NexÈPS = NewPS;

CurNewPS = NewPS;

,//end tor

return(0);
),/,/end funccion Addst.alicPS

-234 -



Brachytherapy Optimization A,ppendix C: SAB Source Files

C.7 Rand48.h

/ / ranò48 -h
#ifndef _rand48_h
#define _rand48_h

/ srgn26febo2added for stand alone program
// srgmo9mar02 removing for inclusion into main SA program
//void main (void) ;

doubLedrand4E (void) ;
doubleerand4S (unsigned short int _x5ubi [3] ) ;
long intlrand4S (void) ;
long intnrand4S (unsigned short int _xsubi[3]);
long intmrand¿8 (void) ;
long intjrand4S (unsigîed short inL _xsubi [3] );
voidsrand S (long int _seedval) ;
unsigned short int *seed48 (unsigned short int _seed16v[3]);
voidlcong4S (unsigned short int _parant71);

#endif

C.8 Sa.c

#include <stdio.h>
#include <time.h>
#include <math-h>
tlinclude <sEdl-ib.h>
#include 'gl-obals.h"
#include "rand48.h"

ifdefine EcHo o// this is to echo bhe config data to the screen

Funcbion : conf igsimulatedÀnnealing* /

Purpose : This function will inihialize simulated annealing*/
based on the val.ues in t.he file, else the defaults.*/
lnputs : FileName. */
ouEpuÈs : Integer, o if all is good else 1.*/

inc Conf igsirolatedÀmealing (char Nane [128] )

i
FII,E *InpuEFile=lùULL;/* Inpur fiLe pointer */
char nanell2al;li For reading in from the inpuL file */
inE Def = 0;
inE Templnt=0,-
int Charcount=o;
float TenpFÌoat.=0-f;

if ((InpuEFile = fopen(Name,"r")) == NULL)
Ðef = 1;

íf lDef\//set them all. to bhe defaults
{

NITMBER_OF_SOIIRCES = DEFAULT-NIJMBER-OF-SOURCES ;
DWELL_IIME = DEFÀULT_DWELL_TIMÊ;
PRESCRIBED_DOSE = DEFAUI,T_PRESCRIBED_DOSE;
INTERNÀL_WE IGHT = DE FÀULT_INTERNÀI,-WEIGITT ;
ÊXTERNÀL_ç'¡ETGHT = DEFÀULT_EXTERNÀL_I'ùETGHT ;
EXTERNÀT_FACTOR = DEFAU],T-EXTERNÀI_FÀCTOR ;
TEMP_REDUCTION_FACTOR = DEFÀUI,T-TEMP-RÊDUCTION_FÀCTOR,'
MÀX-ITERÀTIONS = DEFAULT-MAX_ITERÀTIONS ;
STOP_COT'NT = DEFAULT_STOP_COUNI;
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WITHIN_FÀCTOR = DEFAULT_WITHIN_FACTOR ;
TRIAI = DEFÀULT_TRIÀI_NUMBER;
MÀX_INIT_TEMP_ITERÀTIONS = DEFÀULT_I'jÀX_INIT_TEMP_ITERÀTIONS ;
INITIAI,_ACCEPT_RÀTIO = DEFUALT_INITIÀf--ACCEPT_RÀTIO,.
STOP_TEMPERÀTURE = DEFÀIJLT_STOP_TEMPERÀTURE ;
TEMP_lNCREASE_FACTOR = DEFÀULT_TEMP_INCREÀSE_FÀCTOR,-
MOVE_PERCENT = DEFÀULT_MOVE_PERCENT;
ÀDD_PERCENT = DEFÀULT_À.DD_PERCENT ;
DELETE_PERCENT = DEFÀUI,T-DELETE-PERCENT;
RÀTIO = DEFÀULT_RÀTIO;

.fUST_MOVE = DEFAUTT-JtIST_MOVE;
AI,LOW_0_SOURCES = DEFÀULT_ÀILOW_o_SOURCES ;
ALLOW_SOURCES_OUTSIDE = DEFÀULT_ÀLLow_soURcES_oUTSIDE;
TIME_FÀCTOR = DEFAULT_TIME_FACTOR ;
USE HEURISTIC = DEFAULT USE HEURISTIC;

t-
else//seL them to dat.a from config. file
{

fscanf (InpuLFile, "åd\n", &Temprnt) ;
NI'MBER_OF_SOURCES = TempInE,'
fgeLs (name, 128, rnputFile) ;

fscanf (lnputFi1e, "?f\n", &TempFloat) ;
DWELL-TIME = TempFloat;
fgets (name, 128, Input.File) ;

fscanf (InputFil.e, "?f\n", &TempFloab) ;
PRESCRIBED_DOSE = TenpFloat;
fgets (name, 128, fnpuÈFile) ;

fscanf (InpuEFile, "åf\n", &TempFloat) ;
INTERNÀL_VIEIGHT = TempFloat;
fgets (name,128, InputFile) ;

fscanf (InputFile, "åf\n", &TempFloat) ;
EXTERNÀI_I,¡EIGHT = TempFloat;
fgets (name,128, lnputFile) ;

f scanf (InputFi]e, " *f \n", &TempFloat) ;
EXTERNAI,_FACTOR = TempFloal,'
fgets (name,128, Input.File) ;

fscanf (InputFile, "&f\n¡, &TempFloat) ;
IEMP_REDUCTION_FÀCTOR = lenpFloat;
fgets (name, 128, InputFil-e) ;

fscanf (InputFile, "åd\n", &Templnt) ;
MAX_ITERÀTIONS = TempInE;
fgets (name, 128, InpuEFile) ;

fscanf (InputFile, "td\n", &Templnt) ;
STOP_COUNT = TemplnÈ;
fgets (name,128, InpuÈFiJ.e) ;

fscanf (InputFile, " &f\n", &TempFl.oaE) ;
WITHIN_FÀCTOR = ?empFloae;
fgeEs (name, 128 , InputFile) ;

fscanf (InputFile, "åd\n", &TempInt) ;
TRIÀI = Templnt;
fgets (name, 128, InputFile) ;

fscanf (InputFite, "?d\n", &Templnt) ;
MÀX_INIT_TEMP_ITERÀTIONS = Templnt ;
fgets (Dame, 128, InputFile) ;

fscanf ( InputFile, "?f\n", &lempFloat) ;
INITIÀI_ÀCCEPT_RÀTIO = TenpFloab ;
fgets (name , 1.2 I , InpuLFi le ) ;

fscanf (InputFile, "åf\n", &TenpFloaL) ;
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SToP_TEMPERÀTURE = TempFloaI;
fgets (nane, L28, Input.File) ;

fscanf (InputF l.e, "åf\n", &TempFloat) ;
TEMP_INCREÀSE_FÀCTOR = TempFloa!;
fgets (nane,128, InputFiLe) ;

f scanf ( InputFile, " ?tf \n't, &TempFloat) ;
MOVE_PERCENT = TempFIOAT;
f gets (name, 128, InputFif e) ;

f scanf (InputFile, " åf \n", &TempFloat) ;
ADÐ_PERCENT = TempFIoaE;
fgets (name,128, InputFj-le) ;

fscanf (InpuÈFile, ''åf\n", &TempFloat) ;
DELETE_PERCENT = TempF]oaE;
fgeEs (name, 128, InpurFiIe) ;

fscanf (InputFile, "?d\n", &TempInc) ;
R-ATfO = Templnt;
fgeEs (nane, 128, InputFile) ,-

fscanf (InputFile, "åd\n", &TenpInE) ;
.IUST_I,IOVE = Temptnr ;
fgeLs (name,128, InputFile) ;

fscanf (fnpuLFile, "åd\nr, &TempInt) ;
.AILOW_0_SOITRCES = Templnt;
fgeÈs (name,128, InputFile) ;

fscanf (rnputFile, r'åd\n" / &Temprnb) ;
ÀILOW_SOURCES_OUTSIDE = Templnt;
fgets (name,128, InputFiLe) ;

fscanf (InputFite, "åd\n", &TemPInE) ;
TIME_FÀCTOR = TempIn!;
fgets (name,128, rnputFile) ;

fscanf ( InpubFi i.e, " ¿¿1t" , ot.mplnt ) ;
USE_HEURISTIC = TempInE;
fgets (name,128, InputFi.le) ;

fscanf (InputFile, " ?s\n", GlobalStabicFileNane) ;
fgeLs (nane,128, InputFile) ;

)
fcfose(InpuLFile);

if (EcHo) ,//send vatues to bhe screen
{

fprintf (stderr, "?d\n",NUMBER_oF-SOURCES) ;
fprintf (stderr, "?f\n",DWELL_TIME) ;
fprinEf (sLderr, "?f\n", PRESCRIBED-DOSE) ;
fprintf (stderr, "?f\n", INTERNAT-WEIGHT) ;
fprintf (scderr, ù &f\n' , EXTERNA!_WEIGHT) ,'

fprin¿ f ( sLderr, " åf\n " , EXTERNÀ1,-FACTOR) ;
f printf ( sEderr, " ?f \n', TEMP_REDUCTIoN-FAcToR),-
fprintf (stderr, "&d\n",MAX_IlERÀTIoNs) ;
fprint f ( stderr, r' åd\n r , STOP_CoullT) ;
fprintf (stderr, "+f \n",WITHIN_FACToR) ;
fprintf (sbderr, "?d\n¡, TRIAI) ;
fpli nt f ( stderr, " ?d\n " , I4ÀX_INIT-TEMP_ITERÀTIONS ) ;
f printf ( scderr, " ?f \n", INITIAI_ACCEPT_R-ATIO) ;
fprinEf (stderr, "?f\n", SToP_TEMPERÀTURE) ;
f printf ( stderr, " ?f \nr', TEMP- INCREÀSE_FACToR) ;
fprintf {sbderr, "?f \n",MoVE_PERCENT) ;

fprintsf (stderr, "åf\n",ÀÐD_PERCENT) ;
fprintf (stderr, "åf\n",DELETE_PERCENT) ;
fprintf (stderr, " åd\n" , RATIo) ;

fprintf (stderr, r *d\n", JUST_MOVE) ;
fprintf (stderr, " åd\n', ALLOW_o_SOLIRCES) ;
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f prinEf ( stderr, " ?rd\n ¡', ÀILoW_SoURCES_OUTS IDE ) ;
fprinLf (sÈderr, " åd\n", TIME_FÀCToR) ;
fprintf (stderr, " åd\n", USE_HEÛRISTIC) ;

)

reEurn (0) ,'

)//end function conf igsimulatedÀ¡nealing

/***t*******t, 
*****************/

/* Fuction: coolingProfile*//* */
/* purpose : This funcEion will return t.he temperacure reduction factor fo¡ the current

iteration - based on the maximum of temperature reductions
/* Inputs : The current temperature reduction count.*/
/* Outputs : Float which is the temperature reducEion lacLor.'/
/+ + /
/**********+** ************** **************r**/
fLoaE CoolingProfile(inE x)
{

fLoa' y=o-f;// bhis will hold the reductsion faclore vhile we build it

// L:nís wil"L force tshe cooling profile to the sigmoid upto the max reductions,
y = 1.of - la-of/ (1.0f + exp( 12.0f*(((float)ì4Àx-TEMP-REDUcTroNs - (float)x)/

(floaE)¡4AX_TEMP_REDUCTIoNS) - s.0f) ) ) ;

// Ehís will slide the temperature furLher downl
//if lx < MÀX_TEMP_REDUCTIONS)
if (x > MÀX_TEMP_REDUCTIONS)// srgm31mar02 changed
{

/ lv *= o.gt¡
y *= TEMP_REDUCTION_FÀCTOR;// sr9m3lmaro2 changed from magic nunber to user specified value

]

return y;
),//end function CoolingProf ile

Function : GetlnitialTenp*/

Purpose : This function will return the starting temperature*/
for the specific case of simuLabed annealing in quesEion-*,/

/* rnputs : None. +/
/* outputss : FloaL which is the initial lenperature.+/

loac GelfnitialTenp (inL Numsources)

loat Cost=o.0f;
floab Oldcost.=0.0f;
float curTenp=o.of;
floats Del-taE = 0.0f;
int ML=0;
int. M2=0;
int. i=0;
int Prettyoubput-o;

/* Ru Lhrough a nunber of random seed placements and calculate Ehe M1 M2 DeltaF values*/
/* From the6e values, calculaEe a val-ue for fniEialTemperaLure*/

#if DEBUG_INIT-TEMP
fprintf (GlobaLOutputFiLe, "GeEInitTemp scarting\n" ) ;

#endif
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FreePS (&FirstPS) ;
/*ceL at initiat ofdcost*/
Insertssources(Numsources);/* Inserts N sources into Lhe simulation */
oldcost = CaÌculatecost(FirsEPS);/* calculate cost for Otd cosE */
FreePS (&FirsLPS) ;

curTemp = sToP_TEMPERATURE;/* Set the default temperature */

M1=0;
M2=O;

fif DEBUG_INIT_TEMP
fprintf (clobaloutputFile, "In GetInitTemp, going into main foop\n") ;

+lendif

fprintf (GlobaLoutputFile, "Heating up temperature ! \n" ) ;
while (1)
{

f or ( i =0 ; i<['IÀX_INIT_TEMP_ITERÀTf ONS ; i + + )

{
Insertsources (Numsources) ;/*Insert N sources into Ehe simulation*/
Cost = CaIculatecost (FirstPs),'/*Calculate Ehe cost*/
DeltaE = cos¿ - ofdcost;/"Find the differencei/

if (DeItaE <= o.of)/*If DeIEaE is negati-ve, new cost is better so keep it*/
{

OldCosE = Cost;
M1++;

l/+end if*/
#if USE_RNG48

else if (((float)drand48O) < (exp((-DeltaE)/curTemp)))/*else keep it with sone prob.*,/
#e1se

else if (((floaE)randO/RÃND_MAX) < (exp((-DeIEaE)/curTemp)))/*else keep it with some prob.*/
#endif

{
oldcost = CosE;
M2++;

]/*end else if*/

FreePS(&FirstPs); /*remove che poinE sources */
)/*end for loop*/

if ( ( ( f IOAt ) (M1+M2 ) /MÀX_INIT_TEMP_ITERÀTIONS) < INITIÃT_ÀCCEPT_RÀTIO)
CurTemp *= TEMP_INCREÀSE_FÀCToR;

else
{

fprintf (clobaloutpuEFi Ie, ' . \n' ) ;
f printf (GLobaloutputFile, "Done GetlnitialTemp\ni' ) ;
f f lush (clobaloutputFile) ;
retum (CurTemp) ;

]
M1=0;
M2=Oì

if (PreECyourpur/19)
{

fprinÈf (cl"obaLoutpuÈFil.e, ' - \n') ,'

f f lush (cLobaloutputFile) ;
PretbyouEput.= 0 ,'

)
else
i

fprintf (GlobaloutputFile, ". ") ;
f f lush (clobaloutpuÈFi1e) ;
Prett)¡Output+ + ;

i
)/*end vhile*/
)/*end of function cetlniEialTemp*/
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/**i r******Ì*I***r

/* FunôÈion : siBulare¿lÀ¡¡êâlingr//, */
/* Pulpose : this lunction will sÈa¡E côo] the teFPeÌacu¡ê it is */
/r pâsêed until it i5 sufficiêntly tow that thê ouEPùE Eoulcerl
/' cônfiSrìrraLion i6 near optimal*/
/¡ rnputs : Float t¡iÈialTemp - sta!Èing temPeraturê fo! the r/
/* åÌgôtithñ '/
/¡ outputs : None '//. */
/****r rrrÍ*j*]** r,a*I.alttt**/

int siñulatealÀ¡nealing(f Ìôat rnicialTehp, inÈ Triat, int Nuhsoulces)
{
int itelation=o,/r Nu¡ìlter of possible sôlutions to genetare +/
int done=O;/ì To stôP siñulacion */
float c\!Îemp=O.of;/* The.u!!en! teFPe¡âtu¡e in the Eihulatiôn */
float Pelcheck=o.of,/. this is the five pê¡cent vaìue for ÊÈoPpiñg */
float cost-o.of;/* The cost leiurned frôm the calculatê cost fnc¿ */
float oìdcôsÈ=o.of;/* The co6t of Èhe Pleviou6 solution */
float sto¡êdoldcosl=o.of;/* rhis i.s thê 6tored value fô! sÈoÞ conditions i/
float DeltaE-o.of;/* The diffele¡cê b/e cosÈ and oLdcost r/
inr F1=0,fr2-o;/* ÈemÞ fo! qathe¡ins stal6 on accepÈa¡ce r/
i¡t stopcôunÈ=o;/* once this cost 9êt6 high enough, dônê is tne */
i¡È rssÈoled=o;/* Ehis is the ftag to 6Èore thê fi.6È oldcoEr */
long inÈ Tolallteration-o;/* for file outPul of cosE vesus intelation '/
châ! *FileName=NULL;/' Filenâñê eith itelarion nùhber of debug files '/
FrlE jcoslTenpFilê=NuLL;/* Èhi6 i5 the côsÈ aÈ each Èemp fitê r/
Fr¡,B rsraisFilê=N'uLL; /* rhis ie â fitê ÈhaE keep6 ÊtatisÈics
float ¡ldrte¡âtions=o.tt// fot eÊcimatê of numbe! of ite¡âÈionÊ nax
f1ôât ÀvelageTihe=0,f ;// Èinê câtculations
!inê_È starttihe,cultime.p¡êvtine;// fo! time câlculaÈions
inÈ lest=o;// rel.u¡n vå1ùê froñ ht?eldoEecheck
inl culNumÞs=o, // counter
Ps *storedPs=N¡rlL;// sto¡ed fo! heuriÉtic
Ps *BeEtÞSSoFã¡=llutL;// for stopping aaÈêr resonable nu$be! of sôurces
floaÈ KèpÈcost=o.of;
i¡r lenpReductioncount=0;// s¡9r17úaf02 added

//inÈ lihichsoùrcê-o, i=0; // Èemp i¡t6

/r this is cô ca¡culate the nu¡\be¡ ôf iterâÈions hd */
àif TEMP_REDUCTIoñ_sIHÞIE//s¡qñ3hå!02 added conditionat comÞile ãnd {el5è c1âusê

úaxItelation6 = log( {f 1oâÈ) SToP-TBÌ'IPBRÀT('RE/ (f loaÈ) hihialleFp) ;
tttâxItelation6 = ¡'laxlÈêraÈion6/ (floal) log ( TE¡ lP_RaDUcrloN-FÀcTOR ) ;
¡lax¡Èerations = ltÀx rTERÀTIoNs i Mdrteration6;

del6e// s!sh31ñâ102 added eìEe cLãusè
riraxrrerari0¡6 = 1ô9{ { f toa È ) sToP_ÎEH PERÀTLRE/ {float) (InitialTeFprcÔolingPfo-

f il,e (|¡ÀX_181.¡P_REDUCTIoNS) ) ) ;
!¡dIte¡ations = Àldlte!ation6/(Élôatllog(TEÈIÞ_RBDUCTIoN_FÀCToR-.r3);//6!9131na!02 âdded in -.13 to

account fo! sígrioid reductio¡ ¡ot rÈ¡aighÈ

/* reporÈ the iDfo to ouÈpuc di6Þtày*/
fp!intf (cloÞaloutpuÈFite, "\n\Dsta!Eing simùlâÈe¿!¡¡nealing, t¡iâ1 *d wlth:\n\tiDiÈial tenpe¡aÈù!ê:
*f\n\tl'ld sÈopping teñPeratute: *f\n",T!iâ1,hitiallehp,STOÞ-TBÀIpERÀTnRE);
fp!iDtf (GlobaloutputF le,r\tThe tenpera¿utê i6 being teduced by: i f \n' , TErilP-REDUcTIoN-FÀcToR ) ;
fp!isrf (clobaloutÞutFile, "\ÈNùñ,bêr ôf iÈelatioDE 3d, within *f\n',sfoP-couNl,rlrTHrN-FÀcToR);
fpri¡Èf (clobaloutÞutFile, "\rNùnhêr of soulces: ld\n\ÈDeè11 Èimes: *f\n\E!!eEc!ibed dosê: *f\n",Nus-
Sou!ce s , Dl'lE LL_TI¡lE , PRESCR I BED_DOSE ) ;
fprist! (clobaÌoutputFile, "\t?d inÈelaÈion6 at each È ênPê!â Ltle\n ¡ , ¡l¡t-IÎERÀîloNS ) ;
fp!inÈf {clobåloutputFil,e, i\tNeighÈs, intelna1r ?f external * a \n ¡ , INTERllÀ!-eElcHT, BXTERTÀL t¡BTGHT);
fprintf {clobaloutputFile,'\ÈExÈernal facto!: tf\ni,EXTERNÀ! RÀCTOR) ;
fprintf {clobaloutputFite, '\tTotal ite!aÈiôns {rd):çf\n",¡tdlte¡ãtiôns);

CurTeFP - hitialTemp;
/*genelate initial ¡andôñ solution in Fi!sÈPsi/
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InserESources (NumSources ) ;
/*find cost of initial solution+/
oldcost = calcularecost(FirslPS) ;
Keptcosts = oldcost;// should not be _that_ good so keep ie as a starting vaÌue

#if DEBUG-SIM_ÀNN
/*opeD file for 2D pÌot of cost and temp*/
FileName = (char *)ma]loc(sizeof("OUTPUT/CostTemp "));/* leave space for #ll and.daE */
sprintf ( FileName, 'oUTPUT/CosLTempåd . dat " , Trial ) ;
fprintf(clobaloutpuLFile,"In SimÀm and opening output fil.e:\n\n\t?s \n\nfor output.\n\n",FiLe-

Name ) ;
cost.TempFil-e = fopen (FileName, "w" ) ;
free (FiIeNane) ;

/* open file for time projection and statistics */
FileName = (char *)malloc(sizeof("OUTPUT,/Stats "));/* leave space for fl* and .dat *,/
sprintf ( FileName,'ouTPUT/Statsåd. dat 

" 
Trial ),-

fprint.f(ctobatoutputFile,"In SimAm and opening outpur file:\n\n\t?s \n\nfor output.\n\n",File-
Name ) ;

Stat.sFite = fopen (FifeName, "w") ;
free (FileName) ;
fprintf {StatsFile, "Total. Iterations (Max) : ?f \n", Maxlterations) ;
fflush (srarsFile) ;
StartTime (&starttime) ;
startTime (&prevtime) ;

#end i f

while ( !done)
{

m1=0;
m2=0;

for (iteration=0; iLeratsion<MAX_ITERÀTIONS; iteration++)
{

/" cenerate solution in FirstNewPs */
if (Movesources (rnitialTemp, curTemp) )

{
fprintf (clobatoutputFile, "Error in move sources exiting SimulatedÀnnealing\n" ) ;
return(1);

)

/* Catculate cosb */
cost = Calculatecost. (FirstNewPs) ;

/* Find energy change*/
DeltaE=CosE-Oldcost;

/*cAsE a*/
/* lf cost is beLEer or equaLe than current keep ic *,/

if (DelEaE <= 0.000001f)
{

TIif DEBUG_SIM-ÀNN && O

PriqtPS (FirstNewPs) ;
fprinEf (GlobaLouEputFile, "case 1 oldcosu: &f > cosb åf\n",oldcost,cost),-

# endi f
oldcost = Cost;
SwapPS ( &FirstPS, &FirFtNeePS) ;
ml++;

]

/*ctsB 2*/
/* eÌse keep it wiLh some probability */

#if USE-RNGA8
el-se if (((float)drand48O) < (exp((-DeltaE)/curTemp)))/*else keep ib with some prob-*/

#else
el-se if (((floaE)rand{)/RÀND MÀx) < (exp((-De}EaE)/curTemp))),/*else keep it with some prob.*/

#endif
{

*if DEBUG-SIM_ANN && O

fprintf {GlobaloutputFile, "Case 2 ol.dcost: åf > Cost &f\n",oldcost,Cost} ;
ll end i- f

OIdCosE = Cost;
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SwapPS (&FirstPs, &FirstNewPS) ;

#if DEBUG_STM_ÀNN && O

fprintf(clobaLouEputFite,"Rand: åf < Prob åf I at tenp: åf\n",Rand,Prob,curTemp);
d endi f

ß2++ ì
Ì

/*cAsE 3*/
/" else do nothing */

eLse
{

#if DEBUG-SIM-ÀNN && O

fprintf (GlobaloutputFile, "Case 3 oldcost: åf < Cosc: ?f\n",oldcost,cost) ;
flendif

FreePs (&FirstNewPS) ;
)
Toca I I Eerat ion+ + ,'

)/*end of for iterations.. .*/
/ /fprínLt (clobaloutpuEFile,',Ilerations left: tf\n",Maxlterations- (float)TotallteraLion) ;
/********+**+* ************, //* . /
/* calculate New Temp.*//* . /
/****************************************/

ilif DEBUG SIM ÀNN

/*output data co a file bo ploE cooling schedule*/
fprintsf (costTempFile, "å1i ff\n",Totallteration,oldcost) ;
f f lush (costTempFile) ;

/*ouÈput stats to a file"/
curtime = tine(NU],L);
AverageTime = dif f time ( curt ime, prevtsime ) / ( f loat ) MAX_ITERÀîIoNS ;

StartTime (&prevtime) ;
f if TEMP_REDUCTION_SIMPtE

fprintf(ScaLsFile,"(åd) Iterations left: 3f Average per iEeraEion ?f, projected tj-ne remaining:
?f . \n " , NunPS ( Fi rst.PS ) , Maxltera t ions - ( f loat ) Total Iterat i on, ÀverageTine , (MaxItera b ions - Totallt era-
tion) *AverageTime) ;
#e1se

,//fprinÈf(SEatsFile,"(åd) fterations teft: ?f Àverage per iteration åf, projected time remaining:
?f,.\n',,N¡ES(Ejr*IS),¡,4\:I!¡/P_IGII]::IICÌ€-(fld)1bqRd-Etjq6rir,Àæq4ire, 04X_1F¡e_¡eCUfngrgr[led-Cjø¡¡¡t)*A€4SirEilAX_¡Hrfim€);
/ / srgm3Tmaîo2 was t.hi5 adding in straights cooling time

fprinEf(StatsFite,"(?d) Iterations left: ?f Àverage per iteration åf, projected time remaining:
åf . \n,' , NumPS ( Firs LPS ) , (MÀX_TEMP_REDUCTfONS+Maxlterations ) - ( floaE ) TempReduct ioncount , AverageT-
ime , { (14ÀX_TEMP_REDUCTToNS+Max I Eerat ions ) - TempReduct ioncounb ) *AverageTime*¡'tÀX-ITERÀTIONS ) ;
#endif

ffLush (st.atsFile) ;
#endif

/*calculate new Eemperature*/
#if TEMP_REDUCTION_SIMPLE// srgm17nar02 modifying

CurTemp *= TEMP*REDUCTION_FÀCTOR;
#eI se

TempReductionCounL++ ;
CurTemp = Init.ia1Temp * CoolingProfile(lempReductioncout) ;
fprintf (GLobal.OutputFile, "curTemp: ?f\n", CurTemp) ;

#endi f

#if DEBUG_SIM-ÀNN && O

fprintf(GlobalouÈpubFile,"The temp- is now 3f and prob. of accepE. is typically: åf\n",Cur-
Temp, (f1oab) (m1+m2) /ì4ÀX_ÌTERÀTIONS) ;

#endif

/****************************r***********//* */
/* check for stop conditions*//* */
/*********i*******************t****+*****/

if ( ! IsStored)
{
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IssEored = 1;
Storedoldcost = Oldcost;

)
Percheck = StoredoldcosE*WITHTN_FACTOR;
if ( ( (oldCost-Percheck) <Storedoldcost) && (storedoldcosc< (oldcost+Percheck) ) )

StoPCount++;
else
{

Stopcount=0;
Storedoldcost = oldcosb;

)

if (stopCount>SToP_coUNT)

{
fprintf(GlobaloutputFile,"\nFinished because stopcount reached, Stopcount was: ?d\n",Stop-

Count) ;
fprintf (GlobaloutputFil.e, "Current cost: åf\n", cost) ;
done = 1;

)
//#if TEMP_REDUCTION_SIMPLE,//srgml?maro2 added

else if {CurTemp < SToP-TEMPERÀTIIRE)

{
fprintf(clobaloutputFile,"\nFinished because CurTenp(?f)<STOP_TEMPER.ATURE(åf)\n",Cur-

Temp, SToP-TEMPERÀTURE) ;
fprintf (GlobaloutputFile, "Current cost: ?f\n", cost) ;
done = 1;

Ì
//#eIse // srgm17nar02 added
// else if (TempReductionCount>=MÀX-TEMP-REDUCTIONS)
// {
/ / fprintf (Gl.obaloutputFiLe, "\nFinished because TempReduction-
Count. ( td ) >=MAX_TEMP_REDUCTIONS ( gd) \n " , TempReduct ioncount , MAX_TEMP_REDUCTIONS ) ;
// fprinLf(Gl.obal"outputFile,"currenb Cost: åf, curTemp: åf\n",cosL,curTemp);
// done = 1;
// TempReductioncount. = 0;
// ]
/ /#endíf

// Setup BesbPSSoFar
if (1.15*cost<Keptcost)//best so far, therefore keep it
{

if (DEBUG_SIM*ANN)
fprincf(cÌobaloutputFile,"Keep new config as besb so far, it is betLer tf than

?f\n", Cosb, KepEcost) ,-

KePECost = Cost;
FreePS (&BestPssoFar) ;
CopyPS (&BestPSSoFar, FirstPS) ;
MakeoutputPcM (666) ;

i

/ / c:neck if Ehere are boo many sources ¿o keep going
if (NumPs(FirsbPS) == 15\ // Loo many sources, so quit
{

,// set ouEput Lo best so far
FreePS (&FirstsPs) ;
copyPs ( &FirstPs, BestPSSoFar) ;
fprintf(clobalourputFile,"Reached limiL of number of sources (15), EeminaEing with besÈ 5o

far-\n");
break,.

Ì

/****************************************//* * /
/+ IJSE HET'RISlIC*//* * /
/*****rt****** *************/
if (USE*HEITRISTIC && done)
{

// pri¡t out the current config so that we cæ see how it did
MakeoutputPGM (Trial.++) ;

// flrst tine through store FirsÈPs right away so Ehat it can be used if a1l is OK
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if ( !storedPs)
copyPs (&SÈoredPS, FirstPS) ;

Test = checkHyperDosesleave (FirslPs) ;
CheckHyperDoseSl.eavelntegration ( FÍrsLPS ) ;
if (TesE == l)//Loo nuch dose ats check points SO ÀDD

{
CurNumPS = NUmPS (FirstPS) ;
if (CurNumPS < Global-Tumourcount)
{

fprintf(clobaloutputFil.e,"g)æerdose sleave is too big so adding (from ?d --> åd)\n'¡,cur-
NumPs, curNumPs+1 ) ;

/ / stoÍe the current config in case iE is better
FreePs(&SLoredPS);//h case lhere is already a storedPs
SwapPS {&StoredPs, &FirsEÞS) ;

/ / íniE code for sA
lsstored = 0;
done=0;
SEopcount=0;
TotaÌ Iterat. ion= 0 ;
TempReductionCount=0 ; // srgm06apr02 added
curTemp = Getrnitial.Temp(curNunPs++) ;

/* u¡ls is to caLcuLaEe the nurÌlcer of iteraEions max */
#if TEMP_REDUCTION_SIMPLE// srgm31nar02 adding in else cfause

Maxlterations - log ( (float) SToP_TEMPERÀTURE/ (float) curTemp) ;
Maxf terat.ions = Maxlterations/ (float) log (TEMP_REDUCTION_FACToR) ;
Maxlteracions = M.AX_ITERÀIIONS * Maxlterations;

ielse// sr9m31mar02 added el-se clause
Maxlrerations = log({float)STOp_ÎEMPERÀTIRE/(float}(InitialTemp*CoolingPro-

f ile (MÀX_TEMP_REDUCTIONS) ) ) ;
Maxlterations = Maxlterations/ (floar) Log(TEMP_REDUCTION_FÀCTOR- -13) ;/,/srgn31mar02 added

in -.13 Èo account for sigmoid reducbion not straight
#endi f

/*generate initial random solution in FirsEPS*/
InsertSources ( CurNunPS++ ) ;

,/*find cosÈ of initial solution*/
OldCosE = Calculatecost (FirsEPS) ;

l
else
{

fprintf(Global.OutputFile,"There are too many soulces, yeE I NEED more!\n");
ô-i Þ lôl .

)
)
else if 11ss¡ == -1) ,// not enough dose
{

fprintf(cl.obaloutputFile,'rHyperdose too small going wiEh previous as answer\n");
// testore the previous answeri
FreePS(&FirstPsl;// ín case there is already a FirstPS
SwapPS ( &FirstPS, &SEoredPS) ;

)
else
{

fprintf(clobalouEpuuFile,"Exactl.y correct dose configuraEion, done SinÀm\n');
Ì

l// enð if use_heulistic && done

f f lush (clobaloutputFile) ;
]/*end of while*,/

*if DEBUG_SIM*ANN
f close (costTempFile) ;
fclose (StatsFile) ;
StopTime (sLarttime) ;

#endif

fprintf (GlobaloutputFile, "AfÈer SimuÌated-A¡nealing Source Locations are: \n" ) ;
PrintPS (FirstPs) ;
return(0);
)/*end of function sinuÌatsedÀnnealing*/
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