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Brachytherapy Optimization Abstract

ABSTRACT

Optimization of interstitial brachytherapy implants has recently turned to non-
deterministic optimization techniques, such as simulated annealing (SA) and genetic
algorithms (GA). However, the current SA and GA approaches have three major
limitations: (i) they are computationally expensive, with the fastest being reported at 3
minutes of dedicated CPU time for a single solution, (ii) they are limited to evaluating
seed positions at predefined needle positions, and (iii) they can not be used to update plans
during needle insertion. In order to address these shortcomings, a system has been
designed and implemented which uses SA and an artificial neural network (ANN). The
role of the SA 1is to find optimal source placements within a tumour from which the ANN
can be trained. If the training of the ANN is carried out properly, it is able to generalize the
training data, and is capable of computing optimized brachytherapy cancer treatments in
milliseconds.

The system developed in this thesis is the first step towards an ANN-based
optimization technique for interstitial brachytherapy. The SA is designed to optimize
source placement within 2D tumour shapes and produces results that meet the
requirements identified by a suitable cost function. The ANN component is designed to
generate relative-dose distributions for 2D square tumour shapes using constant source
strengths. Through experimentation, it has been determined that the most appropriate
structure for the single hidden layer ANN has 12 interior nodes for tumours up to 3 ¢cm in
cross sectional size. Using this network layout, the ANN is able to achieve a root mean
square (RMS) error of 2.03% of the relative dose on the final pass through the training
data, an RMS error of 13.37% on a test set, an average positional error of 1.07 mm and a

maximum of 3 mm in positional error, compared to the results created by the SA.
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CHAPTER 1

INTRODUCTION

“Humanity needs practical men, who get the most out of their work, and, without
forgetting the general good, safeguard their own interests. But humanity also
needs dreamers, for whom the disinterested development of an enterprise is so
captivating that it becomes impossible for them to devote their care to their own
material profit. A well-organized society should assure to such workers the
efficient means of accomplishing their task, in a life freed from material care and
freely consecrated to research.”

- Marie Curie (1867-1934)

- Physicist, Chemist, Discoverer of Radium, 2 Nobel Prizes

1.1 Motivation

The motivation for this research is to improve the quality of life for cancer patients
treated with brachytherapy. The use of brachytherapy to treat cancer patients is on the
increase, primarily due to advances in technology as well as the ability to treat relatively
new treatment sites, such as the prostate gland. Optimizing a brachytherapy cancer
treatment increases the probability of killing the cancerous cells and decreases the harmful
side effects of radiation for the patient, thus improving the quality of life.

The rate of cancer is increasing and the risks of developing cancer at some point in
one’s life is approximately 41% for men and 38% for women [NCIC02]. In Canada,
approximately 129,300 new cases of cancer and 63,400 deaths were expected to occur in
2002 [NCIC02]. With numbers like these, cancer may soon overtake heart disease as the

number one cause of death in Canada. Currently only 3% of Manitoba’s cancer patients
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are treated with brachytherapy [JeKo00], but that number will climb drastically when the
large number of eligible prostate brachytherapy patients begin treatment using the newly
developed program at CancerCare Manitoba.

It is necessary to continue research aimed at the improvement of cancer treatment
methods until we achieve a perfect record of cancer control. Until the day comes that
humankind finds a cure for cancer, it is necessary to continue to treat the disease to the
highest abilities using the most advanced methods available. The greatest chance of killing
the disease comes from treatments that deliver large amounts of radiation to the site of the
disease and as little as possible to the surrounding normal tissue. To this end, treatments
must be designed specific to each patient [YuSc96]. Developing an automated procedure

1s the goal of this research project.

1.2 Thesis Objectives and Scope

The goal of this thesis is to identify a procedure for using Artificial Neural
Networks (ANNs) in the optimization of interstitial brachytherapy implants. One of the
difficulties associated with brachytherapy is that we do not know exactly where to place
the radioactive sources in the patient. The placement of the sources is crucial, as it
dictates where the radiation is deposited within the patient. Plan optimization involves
identifying an arrangement of the sources that deliver a large dose of radiation to the
disease and as little as possible to the surrounding normal tissue. If we optimize the

placement of the sources, we have a better chance at killing the disease, and sparing the
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healthy surrounding tissue. The focus of this thesis is on a specific form of brachytherapy
referred to as interstitial brachytherapy. In interstitial brachytherapy the sources are placed
inside the patient, using needles to create channels through which the sources can travel.
The needles are inserted into the patient and through the disease. Since the needles are
hollow, the radioactive sources (in the form of “seeds™) are slid down the needle into the
patient until they rest at the site of the disease. Therefore, the positions of the needles
dictate the possible positions for the sources and it is crucial to acknowledge and
understand that there is a correspondence between them.

Current methods of optimizing interstitial brachytherapy optimize the placement
of the needles, restricting their positioning to predefined template positions [LaBZ00]
[PTRO6b] [Slob92] [YRPZ98] [YuSc96]. However, this limits ones ability to achieve the
optimal treatment plan. Also, as reported by [EJMR98], the needles deviate from the
planned positions even when they are inserted into the patient using a template. Ideally
then, the positions of the remaining needles should be adjusted in real-time to account for
the placement errors of those inserted previously. Currently, there is no research in this
area as the standard optimization techniques require far too much time to generate outputs.
Using the current techniques, [LaBZ00] [PTR96b] [Slob92] [YRPZ98] [YuSc96], such
real-time optimization would require a minimum of 60 extra minutes in the operating
room (OR). Therefore, this thesis is to take brachytherapy optimization research in a new
direction, using the speed and generalization abilities of ANNs to produce fast optimized

source/needle positions within a tumour. The physical templates are replaced with
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computer graphic representations of them, thereby giving complete freedom to the
optimization procedure to place the needles in the most appropriate positions.

This thesis discuses the use of an ANN to optimize the placement of radioactive
sources in a tumour. The main research questions include: (i) what to use as input for the
ANN, (i1) what to use as output from the ANN, (iii) to ensure that the ANN can actually
learn to perform optimization, and (iv) identifying the most appropriate ANN architecture
for the optimization problem. Since a three-dimensional (3D) study of thesis issues is too
time consuming, this thesis limits the shape of the tumours to squares in two dimensions
(2D), but with varying size of up to a maximum of 3 cm per side. Since the tumour
representation is 2D, the source positions can be interpreted as the perpendicular
applicator positions intersecting that specific 2D plane in the tumour, and therefore the
terms source and applicator can be used interchangeably.

Since an ANN must learn from training data, we use simulated annealing (SA) to
generate the data. The first step is the generation of optimized source positions within 2D
square tumours, using SA. The second step is to decide upon the problem representation
for the ANN as well as the structure of the ANN. The final step is to evaluate the
effectiveness of the ANN design. The output from the ANN is reported using computer
graphics to display the predicted source positions. The sources that the ANN can learn to
place are of equal strength, as is typical for permanent implants such as prostate

brachytherapy.
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1.3 Overview of Chapters

Chapter 2 covers the background information required for the thesis. Topics such
as the history of brachytherapy optimization, SA, and ANNSs are included.

Chapter 3 covers the software design and discusses the high-level details of the
software requirements. The technology mapping and input/output mapping is also
addressed.

Chapter 4 deals with the software implementation details, and includes instructions
on how to use the developed software.

Chapter 5 discusses the experimental design, and contains an evaluation of the
results. Within this chapter, the results of various experiments that guided the design of
the software are covered.

The last chapter presents conclusions on the research and makes some
recommendations for future work. The limitations of the software are discussed and the

contributions that this thesis makes are also highlighted.
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CHAPTER 11
BACKGROUND

“Not to know what has been transacted in former times is to be always a child. If
no use is made of the labors of past ages, the world must remain always in the
infancy of knowledge.”

- Marcus Tullius Cicero (106-43 BC)

- Roman statesman, orator, philosopher

2.1 Brachytherapy
2.1.1 Definition

The word brachytherapy is Greek in origin, and literally translates to close-
distance-therapy. In brachytherapy, radioactive sources are placed either near, or within a
cancerous tumour using various types of source holders called applicators. For example,
to place radioactive sources in the lungs, one would feed a long flexible plastic tube into
the nasal canal and down into the lungs. The plastic tube then serves as a channel to
transport the radioactive sources to the site of the disease. This form of brachytherapy is
referred to as intracavitary brachytherapy, as it uses a naturally occurring orifice in the
body as an insertion channel. In the case of a tumour that does not have a naturally
occurring orifice passing near or through it, artificial channels are made by inserting
hollow needles through the patient and the tumour. The radioactive sources are positioned

either within the needles themselves or the needles are replaced with flexible plastic
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catheters (which feed through the hollow needles) which then serve as the applicators.
This form of brachytherapy is referred to as interstitial.

In most instances the radioactive sources are removed after some carefully
predetermined period of time. Such a treatment is referred to as a temporary implant.
Treatments can also be classified as permanent. In these instances, the applicators are
removed leaving the radioactive sources behind in the patient. Clearly, whether an implant
1s temporary or permanent depends on the characteristics of the radioactive sources and, in
particular, the rate at which they deposit radiation in the patient.

Brachytherapy treatments are also categorized as either high dose rate or low dose
rate depending on the strength of the radioactive sources. Low dose rate (LDR) procedures
make use of weak radioactive sources that must remain in the patient for days or months in
order to deliver enough radiation to destroy the disease. LDR treatments can be either
temporary or permanent. As the source strengths are low, these sources can be handled
manually by staff without subjecting them to unacceptable levels or radiation. Treatments
which use a very strong radioactive source are referred to as high dose rate (HDR)
procedures. As the sources are so strong, radiation is deposited in the patient very quickly
and treatments last only of the order of minutes. Consequently, multiple sources are not
required and a single source can emulate many positions by changing its positions during
the treatment. HDR treatments are always temporary and, because of the very strong
source utilized they, must be administered via a computer control to ensure that the dose to

staff remains below an acceptable level (in remote afterloading, as it is referred,
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applicators are positioned manually in the patient and then connected to a shielded safe;
the source is then transferred via a computer control from the safe to the applicators once

the staff have left the treatment room.

2.1.2 History

Brachytherapy is the oldest form of cancer treatment. It began within three years
of the discovery of radium by Marie Curie (whose inspirational words are quoted at the
beginning of Chapter 1 of this thesis) in 1898. When Pierre Curie (Marie's husband)
attributed the erythema on Henri Becquerel's skin to the vile of radium salt he carried in
his pocket, he correctly conjectured that it was the biological effects of radiation on tissue.
As a result, Pierre suggested that a small tube filled with radium salt be used to treat a
patient's tumour [Godd88].

The first interstitial and intracavitary applications occurred between 1905-1915, at
a number of institutions in Europe and North America. Initially, glass tubes of radium salt
were used, along with flat applicators coated with radium and sealed with varnish.
Unfortunately, the clinical experience with these sources revealed that the intense beta (B)
radiation emitted simultaneously with the gamma (y) rays responsible for the treatment of
the disease caused tissue necrosis (the localized death of living cells). It was not until
1920 that researchers were able to filter the B-rays successfully by placing radon in small
gold tubes. Over time it was realized that a correlation between the biological effects and

amount of radiation utilized had to be found. To this end, tables of dose values were
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created for various combinations of equal strength linear sources. This was the common
practice until the 1970s and early 1980s when computers became involved in the process
of dose calculations.

Brachytherapy is growing in popularity as it has become less of an art and more of
a science due to advances in technology, such as the remote afterloading of HDR
brachytherapy sources (as described in Section 2.1.4). There is also an increase in
brachytherapy use due to the recent inclusion of once difficult treatment sites, such as the
prostate gland. Accurate brachytherapy treatments of the prostate can now be performed
as an out-patient procedure using a procedure in which LDR source carrying needles are
inserted into the prostate through the perinium under ultrasound or MR guidance. Once
the needles are properly positioned, they are removed leaving the seeds behind in the
gland. This permanent procedure has proven to be just as successful as radical

prostatectomy, with less morbidity for early stage disease.

2.1.3 Typical LDR Procedure

In the LDR brachytherapy, multiple sources of equal strength are placed inside an
applicator which serves to hold the sources in a fixed position within the patient. The
distribution of radiation within the patient is determined by the geometric arrangement of
the sources and, therefore, can be customized for each patient by adjusting the location of

the applicators as well as the position of the sources within the applicators.
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In a typical procedure, the patient would be imaged prior to the insertion, in order
to determine where the applicators should be placed. The act of determining where the
radioactive sources should be placed is called treatment planning. The insertion of the
applicators would then take place after this initial planning in the OR. As reported in other
works [EMJR98], the applicators may deviate from the planned positions to the detriment

of the desired distribution of radiation within the patient.

2.1.4 Typical HDR Procedure

In the HDR brachytherapy, a single radioactive source is used to simulate multiple
sources. This single source is under computer control and enters the applicators in the
patient sequentially. The source is able to be left at a location (referred to as a dwell
position) for any length of time (referred to as dwell time). By letting it sit at a specific
location for a longer period of time, it emulates a stronger source at that location. Since the
distribution of the radiation within the patient is dependent on the combination of dwell
position and dwell time, the radiation distribution can be customized for each patient by
adjusting those two parameters. In fact, dwell time can be adjusted to compensate for the
errors associated with applicator placement to some degree. This additional parameter of
dwell time complicates the optimization problem significantly, and thus this thesis focuses

on the second form of brachytherapy, LDR because of it relative simplicity.

-10-
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2.1.5 Advantages of Brachytherapy

Brachytherapy has a number of advantages over the more common external beam
treatments (with the source of radiation located external to the patient). The goal of
radiation therapy is to deliver as much radiation as possible to the disease and as little as
possible to the surrounding healthy tissue. If not, the treatment will be associated with
unacceptable morbidity. External beam treatments are fundamentally at odds with this
goal as the radiation must first travel through normal tissue to reach the underlying
disease. This necessarily results in radiation being deposited in healthy tissue and in fact,
due to the nature of radiation interactions, more than the disease itself. On the other hand,
brachytherapy places the radiation source in the tumour and, therefore, does not suffer
from this shortcoming. In addition, brachytherapy makes use of the inverse square law
principle whereby the radiation decreases inversely with the distance squared from the
source, as shown in Fig. 2.1,

In external beam therapy the patient is relatively far from the source, and the
falloff in radiation with distance travelled through the patient is described by this portion
of the curve to the far right of Fig. 2.1. Therefore, the amount of radiation deposited at the
entrance of the patient is comparable to the amount of radiation deposited at the site of
tumour as well as at the site that it leaves the patient. External beam treatments must
deliver radiation with beams (beams entering the patient at different locations) in order to
increase the radiation at the tumour relative to that deposited in the healthy tissue. In

brachytherapy however, the source is either extremely close to or inside the tumour, and

-11-
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the radiation in the tumour is considerably higher than the radiation being deposited in the
surrounding structures, as illustrated be the portion of curve on the far left of Fig. 2.1.
Therefore, using brachytherapy there is a better chance of sparing the healthy surrounding

tissue and isolating the radiation to the affected area (tumour).

120 -
100 -
80 -

60 -

Radiation [%]

40 -

20 -

0 -
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Fig. 2.1 Radiation as a function of distance.

2.1.6 Disadvantages of Brachytherapy

Unfortunately brachytherapy has a number of disadvantages, making the choice of
using brachytherapy much more difficult. First of all and most obviously is the fact that
brachytherapy is invasive, as applicators are inserted into the patient: either into naturally
occurring cavities, or those made by inserting needles through tissues. Secondly, it can be
very time consuming due to several factors, including: (i) the time required in the OR to

insert the applicators, (ii) the fact that most brachytherapy patients must stay in the

-12-
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hospital during their treatment, and (iii) that it often takes an entire day to plan the location
of the applicators and sources once the patient has been imaged. Due to the inverse square
law, delivering adequate radiation to all aspects of most diseases sites requires that many
sources be positioned throughout the treatment volume. Determining the optimal position
of these sources is tedious, especially considering the fact that altering any of the sources
by a few millimeters can have a dramatic effect on where the radiation is delivered due to

the inverse square law.

2.2 Common Optimization Techniques

This section will summarize various optimization techniques. The reason that they
are covered at this specific point in the thesis is that the section following will take a
detailed look at the optimization techniques applied to brachytherapy past and present.
The specifics of these techniques are not crucial for the reader, but some basic
understanding of the theory is required to fully appreciate the review.

The dictionary definition of optimization is “the procedure or procedures used to
make a system or design as effective or functional as possible, especially the mathematical
techniques involved” [Dict00]. In mathematical problems, optimization is typically the
process of finding the best possible solution to the problem. There are two main methods
of optimizing mathematical problems, deterministic and non-deterministic. Deterministic
solutions “describe a system whose time evolution can be predicted exactly” [Dict00],

whereas non-deterministic methods would not be predictable exactly. There are a number
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of both types of optimization techniques but only the major methods will be described in

this review.

2.2.1 Deterministic Optimization Techniques

Examples of deterministic optimization are the steepest descent (gradient descent
or least squares optimization, LSO) and the greedy algorithm. In both techniques, the
algorithm always proceeds in the direction that improves the solution the most. For
example, optimization of the function F(x) of Fig. 2.2, with a starting point A, returns B as
the solution. However, the best solution is at C. Thus, deterministic techniques are very
susceptible to their starting point and tend to get stuck at a local minimum, rather than

finding the global minimum, as illustrated in the above example [Padb99].

2.2.1.1 Gradient Descent

Gradient descent optimization is a technique that uses the gradient (slope) of a
function to find the minimum value [Padb99]. If we have the function y = F(x) as shown
in Fig. 2.2 and we start at point A, we can calculate the slope around A using dy/dx. Once
the slope has been calculated, the optimization algorithm travels in the negative slope
direction towards the minimum. The starting value of the gradient descent technique
completely dictates the minimum that is found as the algorithm only locates local minima.
There is no way to find the global minimum at C of the function without modifications to

the algorithm.
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2.2.1.2 Greedy Algorithm

The greedy algorithm is an algorithm in which we always make a change that has
the best immediate outcome. So if y; = f(x+dx) and y, = f(x-dx) with y; < y, then the
greedy algorithm chooses y; as the next solution to the problem. If we start at point A in
Fig. 2.2 and call the greedy algorithm recursively, it finds the local minimum B
eventually. Again, as with gradient descent, the algorithm has no simple way to find the

global minimum at C.

% 1600 A
1400 -
1200 -
1000

800 -
600 -
400 -
200 -

0

Fig. 2.2 Sample error space for optimization.

2.2.1.3 Least Square Optimization (L.SO)
LSO is an optimization technique based on minimizing the squared difference
between the result obtained and the ideal case. It is used in situations in which we are

trying to approximate a complex function with a more simple equation (typically it is
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reduced to a line). The LSO is useful when trying to chose between a number of different

possible solutions to a problem as it identifies the solution that is closest to the ideal case.

2.2.2 Non-Deterministic Optimization Techniques
Non-deterministic optimization techniques are equipped with schemes of escaping
local minima in search of the global minimum. The two most common non-deterministic

optimization techniques are the genetic algorithm (GA) and simulated annealing (SA).

2.2.2.1 Genetic Algorithm (GA)

In the GA the problem being solved is mapped into chromosomes, such as those
found in DNA. The chromosomes are evaluated using a fitness function and reproduce
with other chromosomes based on their fitness. At certain points in the algorithm, the
chromosomes may have random mutations that may improve or deteriorate the fitness of
the chromosome. The analogy stems from Darwin's theory of evolution and the survival

of the fittest. Since the GA is very slow, it is not used in this thesis.

2.2.2.2 Simulated Annealing (SA)

As SA is used for a major portion of this thesis, it will be explained in detail in
Section 2.4. Both SA and GA are based on the evaluation of a cost function (fitness
function). Therefore, the cost function is an integral component of these non-deterministic

optimization techniques. It should be noted that the cost function is problem dependent.
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2.2.3 Other Optimization Techniques

There are other classes of optimization techniques, which cannot be clearly
classified into deterministic or non-deterministic methods. For example, a specific form
of ANN called the Hopfield ANN can also be used to optimize functions, and is covered in

Section 2.5.6.

2.3 Past Brachytherapy Optimization Approaches

The literature shows a clear division in optimization techniques, primarily due to
technological advances in computing. The inaugural papers of the early 1980s focus on
2D solutions. This is because the computing power necessary to solve the considerably
more complex 3D cases (second category) was not available, and because they were new
concepts that had to be first proven. The literature makes reference to these two distinct
eras as the distance and volume implant methodologies. In a distance implant “dose
points” are placed at prescribed positions around the implant area. The computer
algorithms then finds a set of dwell positions (and times for HDR) that would yield equal
amounts of radiation at those points. No consideration was made for the dose between the
dwell positions or the dose to the actual patient anatomy, as the computer systems would
have been sufficiently burdened with these few points. In the early 1990s however, the
methods of brachytherapy optimization changed to 3D volumes with the goal to achieve a

homogeneous dose throughout the tumour, not just at the discrete dose points (as is the
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case in distance implants). The optimization methods from both approaches will be
reviewed, with the primary focus on the newer volume techniques.

Distance brachytherapy optimization is primarily concerned with the dose
contribution from M sources to N dose points. The problem stated in this form clearly
lends itself to some form of numerical optimization technique. In these techniques every
possible position for a source (M) is considered and a dwell time is calculated for each
position M. The biggest challenge of these techniques is to find algorithms that do not
return negative values for time at some of the positions M. A number of different LSO
algorithms have been proposed [RWCA91], [WaAn97], and [BSSL88]. Pistorius and
Groenewald [Pi1Gr84] utilized a combination of Gaussian elimination and LSO to find the
dwell time for a single stepping source remote afterloading system. Any negative values
for time were suppressed to 0, and the algorithm was run again until no negative values
were obtained. The results of the study were very good, and this technique was able to
obtain a radiation distribution which only differed by only 5% from the prescribed isodose
curve (or ideal radiation distribution) within the treatment site. Another technique
[VaDe90] utilized singular value decomposition (SVD), and suppressed the large
fluctuation in adjacent dwell positions. Again, by running the algorithm a number of
times, negative values were eliminated. Unfortunately, these techniques do not lend
themselves too readily to the much more difficult problems in 3D and thus different

approaches were required.
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In the early 1990s new methods began to emerge for volume implants with two
techniques: geometric optimization (GO), and simulated annealing (SA) being the early
favorites. The GO was introduced in 1990 by Edmundson [Edmu90] [ERTB93]
[EAYMO5]. In the GO technique, a source’s strength is determined by its proximity to
other source positions. Clearly, the GO technique is very much like the techniques of the
earlier 1980s in that is still relies on deterministic methods of optimization. Although the
technique exhibited “unexpectedly good behavior” over the previous optimization
methods for 3D implants [AEAA97] [KVDN94], the technique never seemed to flourish
as it was based on deterministic optimization techniques.

It was the arrival of the non-deterministic approaches that overtook the 3D volume
optimization of brachytherapy by storm. The first report of a non-deterministic approach
for brachytherapy was in 1992 by Sloboda [Slob92]. Sloboda used SA to optimize dwell
positions for a set of specified dose points. His initial approach was very similar to the
approach used in the 1980s in that it was 2D and required the user to input coordinates of
dose points. However, his initial paper had a profound effect on the brachytherapy
optimization community as it was the first to use SA for volume implants. Since this
paper, there have been several others who have published work on using SA and GA for
volume implants.

The first SA approach that used patient specific anatomy data in its optimization
was introduced by Pouliot er. al. [PTR96a] [PTR96b] [PTRV97]. The focus of this work

is the optimization of prostate brachytherapy LDR implants. Prior to the actual insertion
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(usually a couple of weeks), an optimized plan is developed based on the patient anatomy
even though patient anatomy changes between the planning and the actual insertion.
Pouliot’s cost function employed has three factors: (i) a prescribed dose to accomplish; (ii)
a uniform dose within the prostate; and (iii) a limited dose to the urethra (which happens
to pass through the center of the prostate making for a difficult optimization problem). As
1t is common practice in prostate brachytherapy to use a template to guide the applicators,
Pouliot used the holes in the template as the possible applicator locations. This of course
has the added benefit of reducing the extreme complexity of unconstrained brachytherapy
optimization. Since the decision by Pouliot, to restrict the applicators to the template
positions, all other research has followed suit. Pouliot obtained satisfactory results in his
early work achieving optimized implants in 15 minutes on a SUN SPARC 5 workstation.
The prostate was the only treatment site to use these advanced optimization techniques
until late 1999 when Lahanas et. al. [LaBZ99] applied it to the breast and lung.

The first application of the GA to brachytherapy was Yu et. al. in 1996 [YuSc96].
In his introductory paper, Yu mapped the brachytherapy problem into a GA solution
space, again to generate a pre-plan for the OR. The fitness function that he used is a
combination of the dose coverage, the conformity of the dose to the target volume and the
number of needles used. The GA that Yu implemented took 30 minutes on average on a
SUN SPARC 5 workstation to produce output. When analyzing the results, Yu found a
dosimetric improvement in the minimum target dose as compared to non GA optimized

treatments, suggesting a better tumour cell kill rate.
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Two years after the initial GA paper, a new approach was proposed by Yang et. al.
[YRPZ98]. They evaluated the effectiveness of utilizing a different representation of the
GA to increase the speed of the optimization. Three paradigms were evaluated, the sGA
(small GA), the sureGA (small-uniform-restart-elitist GA), and the securGA (small-elitist-
creeping-uniform-restart GA). Essentially, these paradigms are ways of avoiding
premature convergence on the near-optimal region. They stem from research using very
small population sizes in the GA, for problems with a large number of parameters. Using
small population sizes and restarting the GA in very few generations (typically 5 - 10),
while keeping the overall best solution, produces a faster convergence. Yang’s fitness
function involves maximizing the minimum peripheral dose, maximizing the uniformity
of the dose within the tumour, and minimizing the dose to the critical structures (urethra).
The securGA was very effective and was able to produce acceptable results in 5 minutes
on an HP735 workstation. However, this approach was still only used to create a pre-plan
to be carried out in the OR and was not used iteratively during the insertion.

In the late 1990s, Lahanas et. al. published a paper in which they manipulated the
GA to improve the performance and introduced the concept of multiobjective GAs to
brachytherapy optimization [LaBZ99]. One of the major problems with the fitness and
cost functions of the previous techniques is their reliance on user selected scale factors to
combine the various terms in the cost function. These factors have a profound effect on the
results of the optimization. In multiobjective GA, the algorithm also finds the best scale

factors. For more information on multiobjective GA, see the work of Kupinski et. al.
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[KuAn99]. In the implementation by Lahanas ef. al. the algorithm returns a number of
optimized functions. It returns the absolute best solution based on the Euclidean distance
from the goal fitness function, and the solution that best satisfies each of the optimization
objectives. In this manner, the oncologist and medical physicist can choose the best
solution for the specific case in question. The authors do not report any data for the
execution time, which may be quite lengthy considering the nature of the technique. The
authors state “thanks to the rapid development of computer hardware this approach will
someday be a viable approach.”

In the late 1999, a paper was published by Messing ez. al. that combined advanced
visualization methods and the GA to optimize prostate implants [MZRB99]. The implant
volume is visualized using a combination of virtual reality (VR) and ultrasound (US). The
implant is optimized using the GA techniques in Yu’s work [YuSc96] and the
multiobjective GA techniques previously discussed. The fitness function that is used is a
combination of the minimum peripheral dose, uniformity, number of needles, and the
maximum dose to critical structures. The optimization of the sources is actually carried
out in the OR at the time of the implant. This is the first paper reporting such a result. The
average amount of time required by the GA optimization on a trial of 10 patients was 4.2
minutes. The plans optimized in the OR had no dosimetric inferiorities to plans that were
optimized ahead of time using more conventional approaches, thus indicating that this

approach, and subsequently other methods like it are feasible.
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Over the last decade, there have also been some unique approaches to the
optimization of brachytherapy implants. These approaches typically use methods
borrowed from other areas of study, such as imaging. In 1991, Holmes et. al. attempted to
optimize implants by applying a deconvolution with a kernel [HMSR91] to the ideal dose
distribution. In this manner they were able to obtain a weight distribution corresponding
to the total energy per unit mass in the treatment region (activity distribution). Similar
problems to those using the LSO arise using this technique, as negative times occur and
additional manipulations are necessary. No further work using this technique has appeared
in the literature. One final technique using a unique approach is the work of Alfredo et. al.
in 1997 [ASEF97]. Alfredo used a backprojection algorithm to find the optimal source
distribution. However, the results were fairly poor, and since the initial paper, no further

work has been attempted using this method.

2.3.1 Critique of Past Brachytherapy Optimization Techniques

Although some of the recent papers on optimization in brachytherapy have
presented very good results, they all have one common pitfall: they all assume the use of
templates for the insertion of the needles and sources. By constraining the needles and
sources to specific predetermined locations, it reduces the complexity of the optimization
considerably, and ultimately the time to achieve a solution. The optimization problem
becomes much larger with each possible needles or source location. Research results

reported in [BOCS90] confirm that customized templates improve the dose distributions
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within the tumour. Therefore, the ideal procedure must make use of both custom templates

(allowing the needles and sources to be placed anywhere) and computer optimization.

2.3.2 Derived Requirements for Brachytherapy Optimization in This Thesis

In reviewing the literature, we can see that the optimization of brachytherapy can
have a number of requirements, each represented as a term in a cost function. The
requirements for optimization are primarily based on clinical experiences (and common
sense to some degree). The main focus is always on the homogeneity of the radiation
within the tumour. The next most common requirement in the literature is limiting the
amount of dose external to the tumour. The most recent papers also attempt to limit the
dose to critical structures in the region of the tumour (such as the urethra in prostate
treatments). Some of the papers also acknowledge the need to minimize the number of
applicators used in the treatment to avoid extra damage to the treatment area.

Vicini’s work [VIJHE98] showed that the future of brachytherapy optimization will
indeed utilize advanced imaging techniques. We have also demonstrated in other research
conducted at CancerCare Manitoba [MBBM98] [MJBK99], that VR and computer
graphics have a future in brachytherapy. It is most likely that the future will include
customized computer graphics templates that will change in real time dynamically, based
on what has already occurred in the insertion of the preceding needles. All of the current
optimization techniques require far too much time for real-time applications. For

instance, in a typical prostate insertion, there are in the order of 20 needles and the fastest
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reported time for a prostate optimization is 3 minutes [MZRB99]. Therefore it would
require 60 minutes to optimize the treatment after each applicator is inserted in the
operating room (OR) (20 needles times 3 minutes each). This is far too much time spent in
the OR waiting for computer optimization output. Thus, all of the past techniques fall
short, and a new approach must be found. All of these requirements will be included in the

process of optimization developed in this thesis.

2.4 Simulated Annealing

The physical act of annealing has been around for centuries, and stems from the
shaping of metals into usable forms. For example a blacksmith making a sword would
heat solid metal into a liquid state, having a very high internal energy. The liquid metal
would then be poured into a cast. In order to give the sword strength, the blacksmith
would cool the metal very slowly, allowing the molecules within the metal to align into a
crystal structure, the strongest molecular arrangement. It should be mentioned that if the
metal is cooled too quickly, quenching occurs (where molecules are trapped in a highly
irregular arrangement), and the metal becomes brittle. This process was mapped to a
computer optimization technique in the early 1980s by Kirkpatrick ez. al. [KiGV82] and
independently by Cemny [Cermn85]. They proposed the following model for optimizing
difficult problems using computers [AaKo089].

First, the problem is mapped into a minimization problem (as opposed to a

maximization problem). In other words, a single function must be created such that a
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smaller resultant corresponds to a better solution to the problem. This function is most
commonly referred to as the cost function. It should be noted that the problem may easily
be mapped into a maximization problem, but the classical form of SA involves
minimization. The next necessary element is the ability to morph the current solution to
the problem into another solution using random decisions. In other words, given the
current solution to a problem T;, we must be able to randomly generate a new solution
T;4+; which is either be a better solution than T; or worse. In the case that T,;; is better
than Ti, then T, becomes the new current solution to the problem. However, in the case
that T, is worse than T;, then T, is kept with a certain probability, which is based on
the current temperature in the simulation. The probability that the new solution is kept is

given by

(c(Ti)—c(Ti+1)))

o @2.1)

P(T,) = exof

where ¢(T;) is the cost of the previous solution, ¢(7;,) is the cost of the current solution, ¢
is the current temperature in the simulation, and &, is the Boltzman constant, although
other constants may be used with the effect of changing the probability distribution
function.

A software flowchart of the SA algorithm is shown in Fig. 2.3 and Fig. 2.4. An
initial solution to the problem is generated. Next, a new solution is generated based on the
initial solution. If the new solution is better than the previous solution, it is kept as the

solution to the problem. If the new solution is not better than the previous solution, it is
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kept with a certain probability based on the current temperature of the simulation. This

process is continued until the stopping conditions are met.

Calculate Initial
Temperature

¢

Generate Initial
Solution
Find Cost (T;)

¢

Generate New Solution
Based on Current Solution
Find Cost (T,

Fig. 2.3 Flowchart of the SA algorithm - part 1.
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.Since the temperature in Eq. 2.1 is what ultimately determines the probability that

'

Get Random
Number (R)

'

Calculate
Probability (P)
of Keeping T, at
this Temperature

Mm

®
'

Keep T, as
Solution
(Ti=Ty) ves

v I

Throw away T,
@<—~No— ' Keep T; as solution
Fig. 2.3
Yes
Return T, as
Solution
to Problem
End

Fig. 2.4 Flowchart of the SA algorithm - part 2.

an inferior solution is kept, it is critical that the temperature is calculated correctly. First of

all, an initial temperature must be found that is sufficiently hot that most inferior solutions
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will be kept (typically we aim for 95% of inferior solutions being kept). Secondly, it is
imperative that the cooling of the temperature be carried out in a controlled manner to
ensure that quenching does not occur, and to increase the likelihood of achieving the
global minimum. The most common cooling schedule for SA is shown in Fig. 2.5 and is

the profile used in this thesis.
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Fig. 2.5 Temperature cooling profile for SA.

Typically, we work in the order of thousands of iterations, and thus each tick in
Fig. 2.5 can be viewed as 10,000 iterations. The cooling profile of Fig. 2.5 is highly
effective, due to the three distinct phases of the function. Initially, the temperature is
cooled very slowly to allow the optimization algorithm a chance to sample a wide range of
solution across the solution space. In the intermediate stage, it is assumed that the

algorithm has found a very good region to continue searching, thus the temperature
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decreases more quickly, encouraging the algorithm to climb down towards the minimum
of the region. In the final stage, the temperature is once again cooled slowly to allow the
algorithm to shuffle in the current solution region and find the absolute global minimum
of the region

Perhaps the reader may still wonder why we would want to use SA and not a
simpler approach, such as the steepest decent or some other non-deterministic algorithm.
The answer lies in the randomness of the algorithm. Because the SA algorithm is allowed
to search the entire solution space of an optimization problem randomly, it is possible to
escape local minima in search for the global minimum. In many of the deterministic
optimization approaches, the starting point of the algorithm completely dictates what the
final solution will be. For further information on SA, consult the book by Aarts and Korst
[AaKo089] and Section 2.2
2.5 Artificial Neural Networks (ANN5s)

Note that the information contained in this section was extracted from the
following sources [ChMu98] [Gins97] [Kasa96] [Mast93] [McRu88] [MeMR97]
[RaRa95] [RuMc88] and [WeUS88]. Specific research cited is supported by specific
references.

Artificial neural networks are computational models based loosely on biological
neural processing that occurs in the brain. It is important to note that although ANNs have
similarities to the human brain, they are not intended to model it directly, rather they are

an attempt at solving problems in a “human like” manner. An ANN has two main
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components: (i) neurons that perform processing, and (ii) connections between the
neurons that have associated weights (synaptic gaps). Signals pass from neuron to neuron
along the connections, being multiplied by the connection strengths (weights) which can
be either positive or negative. At the neurons, all of the input signals are summed and

modified by a function (activation function) to calculate the output from that neuron.

2.5.1 History of ANNS
2.5.1.1 Initial Concept

The first mathematical model of a neuron is credited to McCulloch and Pitts in
1943. It was a very simplistic model with binary input and output, and a fixed activation
level. However, this humble beginning lead to a rich research area that progressed at a
steady pace. It took no time at all to discover that this new model was able to implement
many arithmetic and logical operations. In 1949, Hebb made one of the most significant
contributions when he demonstrated that a network of neurons could exhibit learning
behavior when a learning law and repeated activation by other neurons were used. In
1954, Gabor introduced the learning law, which used gradient descent (as discussed in
Section 2.2) to obtain “optimal” weights. These optimal weights minimized the mean
squared error between the observed output signal generated and a desired signal. A
crucial development occurred in 1961 when Rosenblatt proposed the initial
backpropagation (BP) model (which is covered in detail in Section 2.5.7), which had a

flaw of using non-differentiable activation functions (and was also a single layer model).
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2.5.1.2 Near Demise

In 1969 a fatal blow was dealt to the research on ANNs in a book by Minsky and
Papert [MiPa69]. It identified the incapability of the single layer networks in use at that
time to solve many simple problems (in particular the XOR function). This finding
demonstrated that ANNs were non computationally universal, resulting in a drastic and

immediate reduction in research (and funding for research).

2.5.1.3 Rebirth

Fortunately, due to the perseverance of a few researchers, the topic of ANNs was
resurrected after a near two decade drought. There were a number of workarounds
identified by these researchers to address the shortcomings of the early ANNS, including:
(1) adding more than a single layer of neurons; (ii) using learning laws other than gradient
descent (which is not always successful in finding a solution) such as Boltzman machines
and other stochastic methods. Theoretical methods of determining the capabilities of
networks were developed and finally, hybrid systems were developed. These ANN

techniques were introduced during the 1980s, and the 1990s produced many useful results.

2.5.2 Overview of Biological Neural Processing
It is estimated that there are approximately 10! neurons in the human brain, with
10! connections between them. The processing rate of the human brain is quite slow

with only 10% operations per second (kHz) as compared to the latest desktop processing of
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10° operations per second (GHz). However, the extremely parallel structure of the brain
makes up for this lack of speed [MeMR97].

A typical representation of the neural process in the brain is shown in Fig. 2.6
[MeMR97]. The neurons in the brain are what perform the actual processing. The
dendrites carry the signal into the neuron, and the axons carry the signal away from the
neuron. These axons have many branches that connect to the dendrite of other neurons.
The synaptic gap is situated between the axon and dendrite. For the signal to pass from
the axon to the dendrite, the algebraic sum of the signals received must surpass a threshold
value. If this is the case, a signal is generated on the dendrite and carried on to the cell

body.

Dendrites
.

A~ napses ;

rons Synapses
(to other neurons) {from other neurons)

Dendrites
{of other neurons)

Fig. 2.6 Neural processing in biological brain.

Two of the major operations of the brain are learning (storing knowledge) and

recall (using stored knowledge). When a brain “learns”, it stores the information by
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changing the chemicals in the synaptic gaps. During recall, the synaptic gaps fire based
on these chemicals. Thus the brain is able to produce an output for a new situation by
generalizing what has already been learned. It is this property of the brain that we wish to

model with ANNs.

2.5.3 Overview of ANN Processing
In ANNSs, we emulate the function of the biological neuron as nodes and the
synaptic gaps as weights on the connections between the nodes. A simple illustration of a

node is shown in Fig. 2.7.

o W, Neuron j

Fig. 2.7 Components of an artificial neuron.

Each neuron j has » inputs ¢, each passed to the neuron through a connection has a
connection strength (weight) w; associated with it, which modifies the signal from the
originating source. If the weight is positive, it is said to be an excitatory signal, whereas if
a weight 1s negative, we say that it is inhibitory. In order to find the output from a neuron,
the » inputs to the node (¢;) are multiplied by their connection weights (w;), and then

summed (referred to as the Net input) according to
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Yy = Z ow; (2.2)
i=0

where 7y is the dependent variable in the function (referred to as the activation function)
used to generate the output value for the node. Numerous activation functions may be
used in a neural network (such as the linear, threshold, Gaussian, and sigmoid functions).
However, the sigmoid activation function (which has an activation level closest to that of
the biological neuron) is the most common and will be used in this thesis. The sigmoid

activation function () also called the squashing function is calculated according to

1

1+e

C=F(py = (2.3)

Y

The form of the sigma curve is shown in Fig. 2.8.

Fig. 2.8 Sigmoid activation function.
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We can put a number of nodes together to create a network having far greater
processing power than a single node. An example of a simple ANN is shown in Fig. 2.9,

which has an input layer, a single hidden layer, and an output layer.

Input Layer Hidden Layer Output Layer

Fig. 2.9 Simple ANN.

The input connections have a weight of +1 (thus they do not affect the input signals, and
the input nodes simply pass the signal they receive straight through without processing.
Similarly, the output connections also have a weight of +1 so the signal generated by a
neuron in the output layer is the output. It should be noted that ANNs are much smaller

than the real neural process and are a simplification of the biological neural process.

2.5.4 Processing with ANNs

Similar to the biological process of acquiring knowledge, ANNs have two modes
of operation: training (learning) and recall (applying what has been learnt). Although in
most ANNSs these are separate serial processes, there are some models that continue to
learn while they are being used. The training process is quite straightforward for simple

ANNs and can become as complex as the designer feels necessary for the larger, more
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complex ANNs. In the typical training process, the designer presents the network with
sample data for which we have a known desired output. The ANN will generate an output
that can be compared to the desired output. If the two do not match, then we can change
the weights of the interconnections so that the actual output is closer to the desired output.
How we change the weights depends on the learning rule that we are using. The most
common learning rule is backpropagation (BP), which is a form of gradient descent
optimization of the weights. The error between the desired and actual output is
propagated back through the network, assigning blame to interconnections based on their
contribution to the output, and adjusting the weights accordingly (as explained further in
Section 2.5.9). In this manner, the ANN acts as a memory, which internalizes all of the
data it is presented with during the training process, so that it can generate output during
the recall process.

When the ANN is used for recall, it is presented with the pattern for the desired
output, and generates an output for it. The correctness of the output depends on many

factors, the most important of which is how well the network was trained.

2.5.5 Why Use an ANN?

The question may arise that since there are many methods of optimizing problems,
some of which have been identified in this thesis (Section 2.2), why would one want to use
an ANN to optimize brachytherapy treatments? For difficult problems (computationally

expensive) we must resort to non-deterministic methods of optimization such as the GA or
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SA. The major drawback with these methods is the excessive length of time required to
generate an output. Therefore, some would argue that we turn to the ANN simply for the
speed with which it can generate an output (due to its massively parallel structure).
However, most researchers who understand ANNs know that this is not the only appeal of
ANNSs: they have the ability to generalize and create correct answers for inputs which

have never been seen before.

2.5.6 Types of ANNs

There are many different types of ANNSs, and they can be classified according to
the way they are organized (the activation function of the nodes and way the nodes are
connected). Different training techniques can also distinguish one type of ANN from
another, but typically the organization is the distinguishing feature. For example, a
classical Hopfield ANN [MeMR97] is a fully connected network, with every node being
connected to one another. The inputs of the Hopfield network are used to excite the
network, by giving the nodes an initial state. The Hopfield network then cycles until it
settles on an output. It is very much like a non-deterministic optimization algorithm
searching the solution space for a minimum. Clearly this ANN is extremely different from
the BP ANN, yet they are both considered ANNs.

Some ANNSs are combinations of two or more types of ANNs and are called
hetero-associative networks. Perhaps the most common hetero-associative network is the

counter-propagation (CP) network. It is composed of two layers: the Kohonen and the
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Grossberg layers. The Kohonen layer finds the nearest neighbour (closest match in its
memory bank) of the input pattern, which is then used to select the set of weights for the
Grossberg layer (which is very similar to a BP ANN).

The radial basis function (RBF) ANNs use two different learning rules during
training. This enables a RBF ANN to learn local features yet still be able to interpolate
outputs for new unfamiliar inputs (to a limited extent). The RBF ANN is similar to the BP
ANN except that the BP learns global features, enabling it to generalize better than the
RBF ANN, without the need for two training phases.

There is an infinite number of ANNs, as we can come up with an infinite number
of combinations of connection schemes, activation functions, and learning rules. The
focus of this thesis is to identify a scheme of optimizing brachytherapy treatments with an
ANN. The ANN model used in this thesis is the BP ANN as it is the ANN model with the
most extensive background. It should be kept in mind that perhaps some of the best ANN
designs are yet to come and there may be an ANN perfectly suited to the brachytherapy

optimization problem that has yet to be found.

2.5.7 BP ANNs

BP is the most common form of ANN used to date. It was initially introduced by
Rosenblatt in 1961 but had the fatal flaw of not using a differentiable activation function,
thus limiting what it was able to learn. Better learning algorithms became available as

early as 1962 (Dreyfus), 1969 (Bryson and Ho), and 1974 (Werbos). But it was not until
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the work of McClelland and Rumelhart (1986) that the BP algorithm, as we know it,

became popular.

2.5.8 BP Organization

Although the BP ANN has a very well defined form, there are some variations
from the standard form of the BP ANN but these will not be covered in this thesis. This
thesis uses the classical form of the BP ANN. The BP ANN is a feed-forward network
(information flows from the inputs to the outputs). It has an input layer, one or more
hidden layers, and an output layer. Processing proceeds sequentially from the input nodes,
through the hidden layers, and on to the output nodes. Every layer is fully connected to
the next layer. Thus the output from a node in layer j is connected to the input of every
node in layer k. Although there can be many layers, typically only three layers are used
because the additional layers drastically increase complexity (in terms of analyzing the
functioning of the inner layers, as well as the time required to train the network, which is

exponentially tied to the number of inner layers) with little performance gain.

2.5.9 BP Training

The purpose of training an ANN is to adjust the internal weights so that when
specific inputs are applied, specific outputs are generated. In order to train the BP ANN,
we need to have a set of training data consisting of input vectors with their corresponding

desired output vectors. This input and desired output vector set is called a training pair.
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Typically we need a number of training pairs called a training set. The number of training
pairs included in a training set is problem specific.

To adjust the weights in the ANN using the training set, requires a training
algorithm. The BP ANN gets its name from its training algorithm, although a more
accurate name is error backpropagation not just backpropagation. Error is back projected
from the output nodes back through the hidden layers towards the input nodes. The
activation function of the nodes is sigmoidal (and therefore differentiable everywhere, a
necessity for the BP algorithm as it uses the derivative during training). However, the
sigmoid activation function also has the added benefit of gain control, meaning that large
signals do not saturate the network. Before we start the training process, we initialize the
weights in the network to small random numbers to prevent saturation (large weight
values). By doing this, we also prevent finding the same local minimum (which occurs
with constant static initial values), and paralysis (a state in which training has no effect on
the network because the small weight change is negligible with respect to the large
weights).

The training process uses the following five steps:

1) Select a training pair (X,T) from the training set and apply the input vector X;

2) Calculate the output vector Y;

3) Calculate the error between Y and the desired output T (from training pair);

4) Adjust the weights in the network in order to minimize the calculated error; and

5) Repeat Steps 1 to 4 until a desired error level is achieved.
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Note that when the BP ANN is used for recall, only Steps 1 and 2 are used.

Although it is not apparent, the identified steps are actually performed in two
passes. Steps 1 and 2 are part of the forward pass, whereas steps 3 and 4 are part of the
backward pass.

The forward pass begins with the application of the input vector X in which the
vector is multiplied by the weights between the input layer and the first layer. At each
node in the first layer we sum these products and use the resultant in the activation
function to produce an output. Once this is repeated for each node in the layer, the
processing continues to the next layer. This process is repeated until we arrive at the
output layer, which simply produces the output vector Y as the summed inputs from the
previous layer (Y) passed through the activation function (Y = {(y)).

The backward pass is used to change the weights in the network, to bring the
outputs closer to the desired value. Adjusting the weights for the output layer is
straightforward, as we can calculate the error at the output based on the difference
between the produced output vector Y and the target output vector T (provided in the
training pair). The amount required to change the weight between the output node and the

hidden layer before it, is calculated according to

5= (7- Y)dii;cw) 2.4)

where dig(}/) is the derivative of the sigmoid activation function ({) which can be
x

simplified as

-42 -



Brachytherapy Optimization Chapter II: Background

d e —
&M = Ya-n (2.5)

and thus Eq. 2.4 reduces to Eq. 2.6
6 = (T-Y)(Y(1-Y)) (2.6)

Next, we multiply Eq. 2.6 by the learning rate () which is a value that is used to control
how much of an effect the error will have on the weight chance, and the output from the
node in the hidden layer (Y}) to this particular node in the output layer, which is an

attempt to “assign the blame” for the error as shown in Eq. 2.7.

Aw = 18, @2.7)

The new weight between the nodes is then calculated according to

wrn+1) = wn)+Aw (2.8)

This entire process is a version of a gradient descent optimization on the weights which is
why we use the derivative of { in the weight change.

Changing the weights for the inner layers (also called hidden layers because they
have no associated target vector) is more difficult than in the output layer. Thankfully the
work of Rumelhart ez. al. [RuMc88] provides a solution that involves propagating the
error backwards using the weights that were used to generate the output. Equations 2.7
and 2.8 are used to change the weights in all of the layers, however, the value of & is
different for the hidden layers. The & is known for the output layer (using Y and T), but it

must be found for the hidden layers without the benefit of having a corresponding target
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vector (T). The solution to this problem is to construct a special & value for the hidden
nodes by back propagating the § values from all of the nodes in the following layer. The &
values from the following layer are weighted using the weights that were applied to the
output from the current layer, thus assigning more blame to connections that have larger

weight and & values. The process is shown in Fig. 2.10.

Fig. 2.10 Training a weight (w) in a hidden layer.

The equation used for the calculation of & for internal layers assuming a sigmoid
activation function is shown in Eq. 2.9. §; is the & value of the /# node in the following
layer and w; is the weight connecting the node in question with the i node in the

following layer.

& =t —g)(zsiw,.) 2.9)
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In order to update the weights for a layer, the & values from the following layer must be
known first. Therefore, we start at the output layer and progress towards the input layer,
hence the name backward propagation.

There are two techniques of updating the weight changes in an ANN. They are
referred to as on-line or batch (off-line). In on-line training changes in the weights are
applied immediately after they are calculated, thus using the newly calculated weights on
the next training pair. In batch training the weight changes are accumulated through the
entire training epoch (complete set of training pairs) and only applied as an accumulated
weight change at the end of the epoch. There are valid arguments for both methods of
training, the main points being that batch training tends to be faster but requires additional
storage space. Due to the large sized ANN developed for this thesis, it was decided to use
an on-line approach to minimize additional storage space.

A bias term can be included in the neuron that serves as a shift of the origin of the
activation function along the horizontal axis. This has a similar effect to adjusting the
threshold of the neuron, thereby permitting a more rapid convergence of the training
process. The effect of a bias is shown in Fig. 2.11. It was decided not to include a bias in
this thesis work as the same resultant ANN will be achieved if the training is performed
without the shift, albeit much slower.

Another scheme of improving the training time is to use a momentum term that
combines the previous weight change with the new weight change. Thus, a weight change

in the same direction becomes larger whereas a weight change in a different direction will
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be dampened, thus preventing oscillation of the weight around the actual minimum. The
same resultant ANN will be achieved without momentum, but more slowly. No
momentum term was used in this thesis as the same resultant ANN is achieved without

shifting sigma, albeit possibly slower.

1.2

Sigma y

Sigma(x)
o
(o))

Fig. 2.11 Effect on activation function when adding a bias.

2.5.9.1 Additive Noise in the Training Data

In order to increase the robustness of the performance of an ANN we can introduce
small random values (noise) into the training data. The noise is injected into the desired
output vectors of the training data [WaPr99][Kasa96]. This has two effects: (i) to improve
the ability of the network to generalize, and (ii) to increase the speed of training and its

ability to escape local minimum. Additive noise was used in this thesis, as the amount of
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training data was small; and adding noise to the desired output vectors is in some ways

equivalent to adding more training sets.

2.5.9.2 Cooling 1 During Training

In a manner similar to SA, 1} can be cooled during the training process to achieve a
better ANN. The purpose for cooling m is identical to the cooling of the temperature in
SA. It allows the training algorithm an opportunity to search the solution space in an effort
to find the global minimum. In the initial phase of training, a large 1 value causes large
and drastic weight changes in the ANN, thus allowing it to jump around the solution
space. As the training process continues, 1} decreases and eventually the weight changes
become very small as the ANN settles into a minimum (hopefully the global minimum).
The software developed in this thesis employs this technique during the training of the

ANN.

2.5.10 ANN Verification and Validation

When the training of the network is finished, an associated final error rate on the
training data is obtained. This error rate is referred to as the apparent error rate.
However we would really like to know the frue error rate of the network on an arbitrary
data set, not just the training data. Unfortunately, for most problems there are many (if not
an infinite number of) patterns that may be presented to the network, therefore making it is
impossible to test them all. Thus a technique for assessing the true error rate is necessary.

This process is referred to as verification or validation.
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There is a number of techniques of validating a network. Usually the deciding
factor in choosing a techniques is the number of training patterns. The method used in this
thesis is called holdout processing, and involves separating the training data into two sets.
The network is trained using one set, and then verified using the second set. Other
schemes such as k-fold cross validation involve dividing the training data into k partitions,
using all of the partitions but one to train the network, and then verifying the network with
the partition that was held back. This process is then repeated k times holding back a
different partition, and the true error rate is reported as the average of all of the true error
rates. Certainly k-fold cross validation is a more robust verification method, but we have

too few training data to employ it in this thesis.

2.5.11 Choosing the Best ANN

Although the design of an ANN is a scientific process, it also has heuristic
components. The scientific process involves defining what features the network should
learn, deciding on a learning strategy, and preparing the data for training. The more
heuristic process (although still science) is defining the ANN architecture and its structure.
This is a fundamental step in the development of an ANN and requires experience and
knowledge in order to make correct choices. A portion of the experimental results and
discussion of this thesis involve finding the best ANN architecture for the brachytherapy

optimization problem.
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2.6 Chapter Summary

All of the background information required for the concepts utilized in this thesis
were presented in this chapter. The focus was on brachytherapy, SA, and ANNSs. Using the
information from this chapter, we designed a system to optimize brachytherapy implants.

The design of the system is presented in the next chapter.
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CHAPTER III
SOFTWARE REQUIREMENTS

“I must create a system, or be enslaved by another man's.”
- William Blake (1757-1827)
- British poet, artist, The Marriage of Heaven and Hell

“The principal goal of education is to create men who are capable of doing new
things, not simply of repeating what other generations have done - men who are
creative, inventive and discoverers.”

- Jean Piaget (1896-1980)

- Swiss child psychologist, noted for cognitive development in children

3.1 Software Overview

The software system developed in this thesis is used to find optimal source
positions within 2D square tumours using an ANN, with the goal to prove that ANNs can
be used to optimize brachytherapy implants. However, before software can be developed
a design is required, which must be based on the requirements that the software must
meet. This chapter will identify the software requirements. The brachytherapy
optimization problem is broken into three separate steps: (i) the development of data to
train the ANN with, (ii) the actual training of the ANN, and (iii) using the ANN. The

following sections will identify the requirements for each of these three steps.

3.2 Requirements for Software Used to Create Training Data
The training data is created using the SA process as described in Section 2.4. A

program is developed and given the name simulated annealing for brachytherapy (SAB).

-50 -



Brachytherapy Optimization Chapter I1I: Software Requirements

The SAB software must be able to load a tumour shape from a file and use SA to find
optimal source positions within tumour. The software must be able to report the output to
the user in a meaningful and useful manner. The software also must be controllable by the
user in order to adjust the functioning of the SA. For instance, the software must have an
option to allow sources to be placed anywhere in 2D space, or to be confined only to the
tumour. There must be an option to enable or disable the use of variable dwell times for
the sources. There must also be a set of parameters that can be used to control the SA
algorithm, including a maximum number of iterations at each temperature value, an initial
acceptance ratio and a cooling schedule. The ratio (or resolution) of the input tumour in
terms of pixels per millimeter to the SAB software is a parameter that is required as input.
The input to the SAB software and the output it produces will be used as a training pair to
train an ANN. The requirements for the software used to train the ANN are covered in the

following section.

3.3 Requirements for Software Used to Train an ANN

The training pairs developed with the SAB software (Section 3.2) are used to train
the ANN. The software that is developed for this purpose is a malleable ANN (MANN)
that can use any form of input and desired output to adjust the weights in the layers of the
ANN using the BP algorithm. The MANN software should be very flexible in order to
accommodate any form of input and output investigated. In other words, the size of the

input and output layers of the ANN can change dynamically The number of hidden nodes
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in a single hidden layer (by design the ANN developed will only use a single hidden layer)
must also be variable. The MANN software must treat the stopping conditions and the rate
of training as input variables, so that different training methods may be investigated.
Finally, MANN must be able to start training from a previously trained set of weights, or
from a new set of random weights, based on the user’s preference. The requirements for
the software that will use the ANN developed with MANN will be covered in the

following section.

3.4 Requirements for Software that Uses an ANN for Optimization

The software used must be able to load tumour shapes from files and allow a user
to create sample tumour shapes. The program must use an ANN to find optimal source
positions in the tumour shapes and be interactive, to allow the placement of sources by a
user to simulate sources being inserted in the patient. Finally, the software must provide
tools for the user to evaluate the optimized plans (such as isodosé distributions in 2D and
3D) and provide statistics on the current source configuration. A software program will be
developed and given the name Brachytherapy Optimization With Artificial Neural

Networks (BowANN).

3.5 Chapter Summary

The SAB software will be used to create training pairs to train an ANN. The

MANN software will be used to train an ANN. Finally the BowANN software will be
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used to interface the brachytherapy optimization ANN to a user. In the following chapter,

the requirements for each of the three programs is used to implement the software.
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CHAPTER 1V

SOFTWARE IMPLEMENTATION

“Try not! Do, or do not. There is no try.”
- Jedi Master Yoda

4.1 Introduction

In Chapter 3 the requirements for the software that are used in this thesis were
covered. These requirements are used to map the software to hardware. Once the hardware
is mapped, the software is designed and implemented. This chapter covers the mapping of

the software to hardware and the implementation details for the software.

4.2 Technology Mapping

Before the software is implemented, the hardware system for which it is targeted
must be decided. As this research does not have equipment funding, only existing
hardware can be utilized. A number of considerations where made in deciding which

hardware should be used for which software.

4.2.1 Simulated Annealing for Brachytherapy (SAB)

The first component to be developed is the SA aspect of the overall system. As the
execution time for SA can be lengthy, the target hardware should have as fast a processor
(CPU) as possible. Another consideration is the ability to run the software on a number of

different machines at the same time (a form of parallel computing), which obviously
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would increase throughput. As the University of Manitoba (UM) has a number of open-
area computing facilities with Sun SPARC and ULTRA workstations running the Solaris
Operating System (OS), it was decided that SA would be implemented to take advantage
of these resources. The fastest computer at the time of development that was available at
CancerCare Manitoba (CCMB) was a Silicon Graphics (SGI) O2 with a MIPS R10000
CPU running the IRIX OS. For these reasons, the SA component was implemented for
the UNIX platform, as IRIX and Solaris are both based on the POSIX OS. This means
software developed for POSIX can run on all of the open area machines at UM and on the
SGI at CCMB.

The next consideration for SA was the computer language to be utilized. As the
hardware was to utilize the SGI O2 as well as the Sun SPARCs and ULTRASs, which run
IRIX and Solaris respectively, the code had to be able to be compiled for both OSs. The
only compilers in common between the two OSs where FORTRAN and C. C was chosen

as it is most familiar.

4.2.2 Malleable Artificial Neural Network (MANN)

An ANN can be developed in software or in hardware. In hardware problem
specific hardware can be developed or reconfigurable hardware that will allow for the
experimentation of the ANN layout can be used. However, due to budgetary constraints
on this thesis a software approach was taken. When the time came to develop the ANN

software, a new computer had been purchased at CCMB for another project. The
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computer is an Intergraph TDZ2000 GX1 workstation, which has 512 MB of RAM, an
Intel PIIT 500 MHz Xeon CPU, and has the Microsoft Windows NT OS. This machine has
a lot of power (in the CPU speed) and memory, both of which are useful for the learning
and recall components of the ANN. As the Intergraph workstation is running the
Windows NT OS, the ANN development had to take place for the Windows platform. It
was decided to keep the code portable to Windows 95 and 98, so the development was not
to use any Windows NT specific function calls. The available language choices were vast
on the PC platform, but the structure of ANNS is very object oriented (OO) in nature, and
thus a language capable of OO development was desirable. The language that was chosen
was Microsoft Visual C++, which is the standard for Windows development and has the

OO capabilities that were required for MANN.

4.2.3 Brachytherapy Optimization with Artificial Neural Networks (BowANN)

The final stage of development is the creation of the program that uses the ANN
trained in MANN to optimize source positions in the 2D tumours. A similar logic to that ‘
used for the hardware mapping of MANN was utilized in choosing the Intergraph
TDZ2000 GX1 workstation, as well as Microsoft Visual C++ for the development of

BowANN.
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4.3 Software Implementation
Now that the software has been overviewed (Chapter 3) and the hardware that is

used to create it has also been specified (Section 4.2), the implementation details of each

of the three programs, SAB, MANN, and BowANN is covered.

4.3.1 SAB

The form of the SA algorithm for this thesis is as shown in the flow diagram of
Fig. 4.1. The addition and deletion of sources has a very dramatic effect on the cost
function and therefore must be done in a controlled fashion. It was decided that SAB
would use the cost function and SA to find the best solution for a given number of sources.
Then, another source would be added and the SA would run again on this new number of
sources. This process continues until a solution is found that satisfies the cost function
exactly or a maximum number of sources has been added. SAB stores the best solution
encountered over all of the different number of source counts, and this is reported as the
final result. The reason for this is that by continually adding sources better solutions are
not necessarily being generated. Therefo:e? the final output from the SA should not be just
the last simulation that was carried out, rather it should be the best solution obtained over

all of the source counts.
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Fig. 4.1 Software flowchart for simulated annealing.
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4.3.1.1 SAB Input

As identified in Section 4.2.1, the SA software is designed for UNIX, using C as
the programming language. As tools to facilitate the creation of a graphical user interface
(GUI) for UNIX were not available, it was decided that a text-based approach would be
used for the user interface (UI). The input to the SA algorithm is a tumour shape to be
optimized and a configuration file that sets the default and initial parameters for the
simulation.

The form of the tumour file is of the pgm standard, which is a text-based digital
image format (as opposed to a binary based format). A text based format was used to
simplify the modification and reading of the file. There is a header which identifies the file
as a pgm file (version 2), a comment line to insert identification remarks, the x and y size
of the image, a number which indicates the number of color levels in the image, and
finally, the individual pixel values expressed as integers (17 on each line). Fig. 4.2 shows
the composition of a typical pgm file.

For this thesis four gray scale values are used to differentiate the elements in an

image as shown in Table 4.1 and Fig. 4.3

Table 4.1: Grey scale values for pgm file representation.

Grey Scale Value Element
0 Tumour
40 Periphery
175 Point Source
255 External
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In future work the addition of critical structures will be implemented and will

require an additional gray scale value. The graphical representation of the tumour pgm

file of Fig. 4.2 is shown in Fig. 4.3 with the gray scale values identified.
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Fig. 4.3 Typical pgm file used in SAB.
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4.3.1.2 SAB Configuration Parameters

There are many parameters that can be specified in the configuration file, however
some are much more important than others. The information in the configuration file is
used to meet the requirements identified in Section 3.2. The most important parameters
are discussed first.

The trial number is an integer that identifies the current trial run and is used to
store output information in files. For example to create the cooling profile output for trial
“10” the output file would be called cooling-10.dat. If a unique number is not specified,
past output will be overwritten.

The maximum iterations is another crucial parameter which specifies the number
of iterations at each temperature in the SA process. Once the maximum iterations is
reached, the temperature is cooled according to the cooling profile. Experimentation is
required for each specific tumour size and shape to determine what works the best. It is
not necessary to experiment if time is not an issue as a very large number will ensure the
optimal result is found. If the algorithm has a sufficient number of iterations to minimize
the cost at a particular temperature, the optimal solution will be found. Unfortunately,
time is almost always an issue, and in order to reduce the amount of time spent by the SA
process, the number of iteration at each temperature should be restricted and this must be
done without compromising the quality of the solution.

The next parameter of importance is the scale or ratio of the input tumour file.

This value informs the SA algorithm how to interpret the input file dimensions. It is an
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integer value that represents how many pixels in the image are equivalent one physical
millimeter. For example a ratio of 3 would indicate that a 30 pixel dimension of a tumour
is 10 mm or 1 c¢m in physical measurement.

The last group of parameters with significant importance are a number of flags that
control the flow of the algorithm. The first flag sets up the algorithm to move sources
either exclusively without altering the number of sources, or to add and delete sources
automatically. It was decided that the addition and deletion of sources was too profound
on the cost function and therefore, the flag is set to just move sources, however, future
work could involve modifying the algorithm to be more dynamic. Next is a flag that would
allow there to be no sources as a solution. This flag is set to false for the work presented in
this thesis bust can be used in combination with the flag that allows the automatic addition
and deletion of sources. Next is a flag that controls the location of the sources, by keeping
them within the tumour, or allowing them to be placed anywhere. For the present research,
this flag is set to restrict sources within the tumour volume. A flag is also specified to
account for variable dwell time. If this flag is true, sources can occupy identical locations
which in essence is identical to allowing the sources to possess different strengths or
different treatment times. For the present research this flag is disabled thus restricting
sources to be of equal dwell time (equal strength). Finally, a flag is specified which
controls whether or not a heuristic will control the addition and deletion of sources. If this

flag is true, sources are added until the hyperdose sleeves surrounding all sources are at
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most 1 cm? (as explained in Section 4.3.1.5). The work in this thesis set the heuristic flag

to true.

4.3.1.3 Initial Temperature Calculation in SAB

There is also a set of parameters in the configuration file that affect how the initial
temperature is calculated every time a source is added. There are three parameters that
control the process, the first being the maximum number of iterations at each temperature.
After the maximum number of iterations is reached, the temperature is increased by the
temperature increase factor. Each time the temperature is increased, the number of
sources being simulated are repeatedly added randomly. A calculation is used to
determined how many times the new random solution is kept according to the cost
function. The number of times the new random solution is kept is divided by the
maximum number of iterations and defined as the acceptance ratio. This processes is
repeated until an acceptance ration greater than the initial acceptance ratio is obtained.
The pseudo code to calculate the initial temperature is as shown in Fig. 4.4. Essentially,
the temperature is increased until the desired initial acceptance ratio is achieved. The
temperature is initially low and a number of solutions are randomly generated. Then
number of solutions accepted (according to our cost function) at that temperature are
recorded. If the number is at least as large as the initial acceptance ratio, the temperature is
returned as the starting temperature, otherwise the process is repeated with an increased

temperature. This is an iterative process that is repeated until the desired acceptance level
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is met. The temperature found with this process is then used as the initial temperature for

the SA.

Costl = InitialConfiguration

Cost2 = NewConfiguration

Delta = InitialConfiguration - NewConfiguration
CurTemp = StopTemp

done =0
while (!done)
{
for MaxInitTemplterations
{
InsertSources()
if (Delta > 0)
MIl++
if (rand() < e”(Delta/CurTemp))
M2++
}
if (M1 + M2)/MaxInitTemplterations) > InitialS)
done =1
else

CurTemp *= TemplncreaseFactor

Fig. 4.4 Pseudo code for initial temperature calculation.

4.3.1.4 Other SAB Configuration Parameters

There are other parameters for SAB in the configuration file which are of less
importance and thus not covered in as great depth as the previous parameters. This
includes the number of sources with which the simulation should start. The SAB
algorithm is monotonically increasing with respect to the number of sources. The SA will

optimize using the starting number of sources, increase the number of source and then re-
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optimize. Typically, the starting number of sources is set to one so that SAB does not miss
a situation in which the optimal solution has less sources than the starting number. Next is
the default dwell time of the point sources. Although this thesis presents findings on static
source times, the software is also capable of using variable dwell times, which is
accomplished using this parameter. Finally, a filename can be specified in the
configuration file that contains sources that can not be moved (static sources would
represent a source that is already inserted in the patient and obviously can no longer be
moved). Static sources were not used in the work presented in this thesis.

The form of the configuration file for the SAB is demonstrated in Fig. 4.5 (it
should be noted that if these parameters are not specified, the algorithm will use the hard

programmed defaults, identified in brackets).

4.3.1.5 SAB Cost Function Development

In order to evaluate the quality of a given solution a cost function must be utilized
as identified in Section 2.4. The development of the cost function is crucial as it is the only
means of assessing a given solution. In order to compare different solutions we evaluate
dose as a percentage of the prescribed dose. To accomplish this, the solution is normalized
to the minimum dose on the periphery (also known as the minimum peripheral dose and
denoted by mpp) of the tumour. By normalizing to this point all points on the periphery of
the tumour receive at least 100% of the dose. This thesis will make the assumption that

tumours are homogeneous for the sake of simplicity.
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,, configi3.dat - Notepad '

1 /77 NUMBER_OF _SOURCES (1)
1.8 /7 DWELL_TIME (1.9)
1.8 // PRESCRIBED_DOSE (1.8)
1.8 /7 INTERNAL_WEIGHT (1.8)
8.8 /# EXTERNAL_WEIGHT (1.0)
8.081 // EXTERNAL_FACTOR (8.25)
8.9 /7 TEWP_REDUCTION_FACTOR (8.9)
588 /7 WAX_ITERATIONS (200)
2800 // STOP_COUNT (208)
8.825 /7 WITHIN_FACTOR (8.925)
189 /7 TRIAL (1)
100 /7 MAX_INIT_TEMP_ITERATIONS (188)
8.95 /7 INITIAL_ACCEPT_RATIO (8.95)
0.68001 // STOP_TEMPERATURE {8.00061)
1.5 // TENP_INCREASE_FACTOR {1.5)
8.98 // MOVE_PERCENT (8.98)
8.91 /7 ADD_PERCENT (8.681)
8.61 // DELETE_PERCENT (8.01)
1 /¢ RATIO 1)

1 /7 JUST_HOUE 1)

1 /77 ALLOY 8 SOURCES (9)

8 /7 RLLOYW_SOURCES_OUTSIDE (9

8 /7 TIME_FACTOR (8}

1 // USE_HEURISTIC kv
static.dat // HELD SOURCES FILENAME

Fig. 4.5 Configuration file for SAB.

For brachytherapy there are a number of issues to consider in the development of
the cost function. The most significant is minimization of the size of hyperdose sleeves
(areas receiving more than 200% of the dose), which from clinical experience should be
restricted to cross sections less than 1 cm?. If the hyperdose sleeve is larger, unacceptable
tissue necrosis can occur. The hyperdose sleeve will increase as the distance between
sources increases. A function that when minimized will ensure that hyperdose sleeves are

kept within the constraints can be calculated according to
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4.1)

i =

(@) —h
mPD max

where h, are the hyperdose check points (points located 0.5 cm around every source in
each orthogonal direction; the area contained between the four check points associated
with any source will be 1 cm?), mpp, is the minimum peripheral dose, (hep/mpp) bar is the
average dose at the hg, points normalized to the mpp, hp,y is defined as 2 which
corresponds to 200%, and the bars around the right side of the equation indicate the
absolute value. As we are comparing the normalized dose at the check points to 4,,,,, i
will be a minimum when the hyperdose sleeves are less than 200%.

Another consideration during optimization is the attempt to maintain a
homogeneous dose within the tumour. Areas receiving more dose stand a better chance at
being killed, but risk tissue necrosis, whereas areas receiving less dose have less of a
chance of being killed. However, it is impossible to obtain a homogenous dose
distribution due to the significance of the non linear nature of the inverse square
component of the dose calculation. Using a concept such as standard deviation to quantify
the variation of dose in the tumour will report extremely poor results and is of limited use.
As the dose is normalized to the mpp, and since Eq. 4.1 ensures that the dose is not too
high, it should be verified that there are no points in the tumour that are too cold (receiving
less than 100% of the dose). The point in the tumour with the minimum dose (minimum

tumour dose mrp) is normalized to the mpp and compared to 100% of the dose. A
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function that when minimized will ensure that all points within the tumour are receiving at

least 100% can be calculated according to

j=d -2 (4.2)

where d,;, is defined as 1 which represents 100%, myp is the minimum tumour dose and
mpp, is the minimum peripheral dose.

Finally, it is critical to try and constrain the dose to the tumour, minimizing the
dose to external structures, as radiation is destructive it is clearly desirable to avoid
exposing healthy cells. It must be verified that the maximum dose on the periphery
(maximum periphery dose Mpp) is not too high as that would indicate a large dose
external to the tumour and possibly local critical structures. It was arbitrarily decided for
this thesis that a dose of more than 105% on the periphery of the tumour would constitute
too much dose. A function that when minimized will ensure that this condition is not

violated is calculated according to

M
k=-E2_p (4.3)
Mpp

- where Mpp is the maximum periphery dose, mpp, is the minimum periphery dose and p,,
is defined as 1.05 which represents 105%.

There are a number of ways in which these functions (Eq. 4.1, Eq. 4.2, and Eq. 4.3)
can be calculated and combined as demonstrated in research using similar cost functions

[Slob92][YRPZ98][YuSc96]. However, for this thesis, it was decided to give the most
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importance to the size of the hyperdose sleeves, thus primarily using Eq. 4.1 as the cost
function. The hyperdose sleeves help identify if the correct number of sources are being
used. If the hyperdose sleeves are too big (indicated by h¢, being very large), more sources
are needed. If the hyperdose sleeves are too small, too many sources are being used. Thus,
if the addition of sources is controlled in SA and sources are only added once a good
solution is found (using the current number of sources), the optimal number of sources
will be found, as well as the optimal configuration of those sources. However, other
factors in the cost function are required to monitor the other requirements for an optimized
brachytherapy treatment. Thus, we include Equations 4.2 and 4.3, if they are evaluated to
be positive, which may be viewed as penalty factors. If they are evaluated to be negative,
this indicates that the requirement is met by the current solution. The final cost function is

a combination of Eq. 4.1, Eq. 4.2, and Eq. 4.3 and is given by

o - {H— j+k if (7>0),(k>0) @)

i otherwise
4.3.1.6 Source Movement in SAB
As was discussed in Section 4.3.1, sources are added in a controlled fashion.
Sources are moved around within the tumour until the SA process reaches a termination
condition, at which point (if all of the requirements are met) the SA terminates, otherwise,
another source is added. The addition of the next source is actually like starting the SA

process over again. There is no guarantee that the optimal solution for #+/ sources is at
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all related to the configuration of » sources. Therefore, the sources are replaced randomly
within the tumour and an initial temperature is recalculated and the SA process is then
repeated.

Typically there is a single stopping condition for SA, however due to the
complexity of this specific problem, it was decided to include a variety of dynamic
stopping conditions related to the temperature and number of iterations. The first stopping
condition occurs once the temperature drops below a value specified in the configuration
file (absolute minimum). This is to prevent the algorithm from running if the probability
of accepting a worse solution is close to 0. The second stopping condition occurs if a
number of successive iterations have a cost value that is very similar. This is to prevent
the SA from running for a long time, while there are no marked improvements occurring
over long periods of simulating. This condition occurs not just at the global minimum but
also if a local minimum is obtained and the temperature is not sufficiently high enough for
the algorithm to escape. Finally, the SA will stop if the number of sources reaches an
upper bound. This measure was taken for a number of reasons, the first being that it is not
clinically viable to have an extremely large number of sources, and secondly, the
algorithm has a hard time moving sources to free spaces if most of the spaces in the
tumour are already occupied by other sources.

The movement of sources has three methods of operation depending on the
parameters specified in the configuration file. The first consideration is how the source

moves in general. The source movement is random with the possibility of movement in
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both the x and y direction. The pseudo code for the source movement algorithm is shown
in Fig. 4.6.

The second condition that is considered in source movement is whether or not
sources can be placed external to the tumour. If sources are allowed to be placed external
to the tumour then no verification is necessary, otherwise, if a source gets moved external
to the tumour the move is undone. The work in this thesis did not allow sources external
to the tumour volume. The final condition that is checked when moving sources is whether
or not dwell times are being considered. If dwell times are considered, then the sources
are allowed to overlap, simulating a single source with an increased dwell time. The

experiments presented in this thesis did not allow source overlap.

//x move
R1 = rand();
R2 =rand();

if (R1<0.33)

X += movedistance
else if (R1 < 0.66)

x -= movedistance
else

X=X
/ly move
if (R2<0.33)

y += movedistance
else if (R2 < 0.66)

y -= movedistance
else

y=y

Fig. 4.6 Source movement algorithm in pseudo code.
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4.3.1.7 SAB Output

SAB generates a number of outputs for analysis, and all of the outputs are stored to
various files. First of all, SAB creates an actual visual picture of the solution achieved at
every source number in the form of a pgm file. The pgm file is the tumour input to the
SAB software with the optimized source positions superimposed on it. Another output
that is reported is the cooling plot generated by SAB. The cooling plot should be a
generally decreasing function and this provides a very simple and quick means of
evaluating whether the SA algorithm is functioning properly. There are other output files
that provide text-based feedback and report such things as the final source positions (the x
and y coordinates), the execution time remaining in the current simulation, and special

case stopping conditions among others.

4.3.1.8 SAB Random Number Generator

SA is a very long process requiring a large number of iterations in order to arrive at
a solution. Each iteration uses a random number to determine the actions that the SA
algorithm will take. Therefore, it is important that a good random number generator
(RNG) be used. Typically a RNG is considered good if it can generate a long sequence of
independent numbers. However, because a computer is a finite state machine, all RNGs
implemented in software will be periodic. Some software RNGs are better than others. A
thorough analysis of a few RNGs was recently conducted [DeniO1]. The findings of

[Deni01] are that the drand48 RNG (which has a period of 2*8 - much larger than the
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number of iterations we anticipate doing in SAB) passes spectral tests. However, it was
also found that the drand48 RNG failed the statistical test 2. This short coming of the
drand48 RNG is overcome by ensuring that we only use the most significant 16 bits in the
48 bit value, as suggested by [Deni01]. The drand48 RNG will be used for SAB in spite of
its lengthy execution time. The source code for the SAB software can be found in

Appendix C.

4.3.2 MANN

The goal of the MANN software is to create an ANN with the ability to optimize
source positions very quickly for brachytherapy cancer treatments. The MANN software
must allow for a dynamic ANN structure as it is uncertain what the form of the ANN or its

inputs and outputs will take. These will be determined through experimentation using the

MANN software and by evaluating how well the ANN trained with MANN performs.

4.3.2.1 MANN Input
As stated in the background section on ANNs (Section 2.5) there are two methods
of operation for an ANN, training and recall. Both stages have different input

requirements. The following two sections will cover the differences in the inputs.

4.3.2.1.1 MANN Training Input
The ANN developed in this thesis will use the output from the SAB program

(Section 3.2) as training data, and will use the BP method covered in Section 2.5.9 to train
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the ANN. The data for training must be formatted as textual input in a file. The first set of
data in the file is an input vector to apply at the inputs of the ANN and the second set of
data in the file is a desired output vector used to update the weights of the ANN. This
training pair is the first of many that are stored in the file. There is a limit on the number of
training pairs that MANN can handle (the maximum file size in Windows NT). This limit
did not hinder the development of an ANN in this thesis. Once training is finished, the size
of the layers and the weights that are found during training are stored to another text file.
This file represents the knowledge that the ANN has acquired, and is used to load the

ANN into the BowANN software.

4.3.2.1.2 MANN Recall Input

Recall in the BP network is similar to training however there is no BP of the error
through the network. Therefore, the size of the layers and the interconnection weights can
be loaded from the file created during training and used to generate output based on
provided input. The input for recall could come from a file and the output generated can
also be written to a file. The weights and layer sizes can be loaded into other software to
incorporate the ANN into other programs such as BowANN. The ANN incorporated in
BowANN can then use data from the current brachytherapy insertion simulation (RAM

data) as input as opposed to using input from a file.
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4.3.2.2 MANN Configuration Parameters

There are a number of parameters that must be specified before the MANN
software before can be initiated. These parameters affect the structure of the ANN, as
well as how the ANN is trained. The parameters are entered into a Windows dialog box
when the MANN software is first invoked. Prior to the creation of MANN it was decided
that only three layers would be used in the ANN, as adding additional layers increases the
complexity. Therefore, it would be more advantageous to use a different ANN structure
than BP to increase the complexity (most likely the probabilistic neural network (PNN)).

The first set of parameters that must be specified for MANN are related to the error
in the system and the learning parameter 1. First of all an error limit is specified, below
which the system will cease training. This value is used to prevent the ANN from
continuing to train if the weights achieved are already producing very good results. Next,
the initial 1 must be specified, as well as the final 1} value. MANN will continue to train
until this final 1 value is reached (or the error limit is reached). At each 1 value a number
of iterations are used to train the ANN, which must be specified to MANN. After the
number of iterations is reached, 1) is reduced using a cooling schedule until it reaches the
stopping 1 value.

The second set of parameters that must be specified is the structure of the ANN to
be created. These are specified by providing three integer values to the MANN software,
which represent the number of nodes in each of the three layers. Although this thesis is

focusing on an ANN that can handle square tumours up to 3 cm in size, the MANN
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software was designed to be able to create any size of ANN. The number of input and
output nodes will be dependent on what is used as the input and output to the ANN. The
first experiment for the ANN will be to determine what the input and output should be.
The second experimental component for the ANN will be to determine the number of
interior nodes producing the best output.

Finally, the training mode of MANN must be specified. There are three training
modes. The first training mode (0) is used to test the ANN that has been created, therefore
the weights are loaded from a file and are not adjusted at all. In this mode the network
simply generates output for the test data (recall mode). The second training mode (1) starts
the weights at small random numbers and uses the training data to update the weights. The
final training method (2) loads the weights from a previous training session and continues
to modify them. A screen shot of the configuration dialog box for MANN is shown in Fig.

4.7.

4.3.2.3 MANN Output

The most important output from the MANN program are the weights that are
found with the BP algorithm. These weights are stored in a file, which can be loaded by
BowANN as the representation of the trained ANN. The weights are not available until
the ANN has completed training. Therefore, some real-time output was created to help
assess the training process. A 2D graphics plot is displayed showing the current RMS

error in the training process. This plot can be used for verification that the ANN is
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learning, as it should be a generally decreasing function. MANN also displays a number
of current values in the system, such as the current 1}, the current iteration, and the numeric

value of the current RMS error in the system, as shown in Fig. 4.8.

' Configuration Input

Fig. 4.8 MANN interface.
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Once the ANN is created, it is tested. The quality of the ANN is characterized by
the error in the output and this will be assessed at two stages. The first will be the
difference in the optimal energy function calculated by the ANN compared to the energy
function calculated by SA, and the second will be the final source positions as derived
from the ANN energy function compared to the source positions of the SA. The source
code for the MANN software can be found in Appendix D. It should be noted that some of
the software code used was from Rao and Rao [RaRa95]. However, it was modified in the
following ways. First, during an analysis of the software from [RaRa95] a memory leak
problem was found and fixed. Second, a Windows wrapper was created around the

[RaRa95] code so that it could be incorporated into Windows.

4.3.3 BowANN

The BowANN software provides a Windows based GUI to interface with the ANN
trained in MANN for brachytherapy optimization. The program is able to optimize source
positions within a tumour shape, which can either be loaded into the program as a pgm file
or via the software interface. Next, the ratio (same as the ratio used in SAB and MANN)
of the tumour can be specified (and normalized to the maximum value of 3 cm).
BowANN is a Microsoft Windows based program for evaluating the effectiveness of the
trained ANN and the optimal source positions that it yields.

BowANN uses the ANN trained in MANN to perform optimization. The user has

a standard Windows 95/98/NT GUI with which to manipulate the environment. The user
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has the ability to add additional sources (other than the ANN generated source positions)
using the mouse or by entering the actual physical coordinates into a dialog box. Energy
functions calculated based on the sources in the environment can be displayed using
OpenGL and 3D computer graphics. The energy functions can be rotated in order to be
assessed from any angle. Finally, the user can also view statistics on the current source
configuration in a dialog box that reports values associated with the cost function (Section

4.3.1.5) from SAB as shown in Fig. 4.9.

Fig. 4.9 BowANN statistics report dialog box.

The BowANN software is typically used as follows. A tumour is loaded from a
pgm file. The user then instructs the software to find the optimal source positions for the
tumour, and displays them as probability distributions. The peak of the distribution

represents the best location for the source, as shown in Fig. 4.10.
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The user can then simulate a brachytherapy insertion procedure by placing a source at a
point in the tumour, which would represent an inserted source, and then instruct the
software to re-calculate the optimal positions of additional sources (given that a source has
been inserted in the tumour). BowANN will then generate new output based on the new

input as shown in Fig. 4.11

Fig. 4.10 Predicted source positions in BowANN.

In this manner a brachytherapy insertion is simulated, and BowANN is used to
view what the ANN would generate as the desired positions for all sources yet to be
inserted. At anytime, the user can also plot the current dose distribution in the tumour with
a simple command to the BowANN software. This dose is normalized to the minimum

dose on the periphery of the tumour which is indicated as red on the display. The output
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from the isodose plot can be viewed in 2D as shown in Fig. 4.12, or in 3D as shown in Fig

4.13. The source code for the BowANN software can be found in Appendix E.

Eot ve W

Fig. 4.12 2D 125% isodose plot in BowANN.
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Fig. 4.13 3D isodose plot in BowANN.

4.4 Chapter Summary

This Chapter identified the breakdown of the overall brachytherapy optimization
problem into three components, SAB, MANN, and BowANN. The available hardware
technolégy was mapped to each of the components based on their requirements. All of the
inputs and outputs of the software programs and parameters used to control them were
identified. The following Chapter designs and conducts experiments that answer the three
main questions of this thesis. These questions are: What should be used as input to an
ANN for brachytherapy optimization?; What should be used as output?; and what is the

best form of a BP ANN to optimize brachytherapy treatments?
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CHAPTER V
EXPERIMENTAL RESULTS AND DISCUSSION

“Nothing stops the man who desires to achieve. Every obstacle is simply a course
to develop his achievement muscle. It's a strengthening of his powers of
accomplishment.”

- Eric Butterworth, inspirational speaker

5.1 Introduction

The purpose of performing experiments is to verify that the concepts as well as the
methods used to solve a problem are correct. For this thesis we wish to prove that ANNs
can be used to optimize brachytherapy treatments. In order to prove this we must ensure
that the software design and implementation work and meet the requirements identified.
For the SA aspect of the thesis we want to ensure that SAB meets the requirements of
Section 3.2 and is finding correct training data for the ANN. For the ANN aspect of the
thesis we want to ensure that it meets the requirements identified in Sections 3.3 and 3.4.
Experiments will also be used to answer the three main questions of thesis in regards to
ANN:S: (1) Can an ANN be used for brachytherapy optimization? (ii) What should be used
as input and output to the ANN? and (iii) What is the best structure of an ANN for
brachytherapy optimization? The following sections will describe the design of the

experiments used and present results.

-83-



Brachytherapy Optimization Chapter V: Experimental Results and Discussion

5.2 Experimental Design for SA

The results from the SAB software are used to train an ANN for brachytherapy
optimization. In order to prove that an ANN can be used for brachytherapy optimization,
it must be trained using realistic training data. Therefore, it is important to ensure that the
SAB software generates correct output. In order to verify this, a number of different
tumour sizes will be used as input to the SAB software and the output is evaluated. As this
thesis is limited to square tumours up to 3 cm in size we will experiment with inputs
ranging from 0.5 cm to 3.0 cm in 0.5 cm increments. It should be mentioned that square
tumours are more difficult to optimize than the more realistic elliptical tumours are the
corners represent singularity. The input to the SAB software is the tumour shapes (to
optimize) as well as a configuration file (to control the flow of the SAB software). The

output for each of the tumour sizes is collected and evaluated to ensure that it is correct.

5.3 Experimental Results and Discussion for SA

The following tumour sizes are used as input to the SAB software: 0.5 cm, 1.0cm,
1.5 em, 2.0 cm, 2.5 cm and 3.0 cm. The following sections will cover the results for these
sizes. Additional sizes were also used, however a detailed discussion will only be
conducted on the aforementioned sizes. To view the results from the additional
experiments, consult Appendix A. During initial testing of the SAB software it was
determined that a ratio of 3 seemed to work the best. This means that 3 pixels are used to

represent 1 mm. Since this standard has been identified it will be used for all input sizes. It
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was also found that a cooling schedule that uses approximately 10,000 iterations at each

temperature works best, when combined with the cooling profile shown in Fig. 2.5.

5.3.1 Square Tumour 0.5 cm in Width

The 0.5 cm tumour shown in Fig. 5.1 was used as input to the SAB software. The
configuration file shown in Fig. 5.2 was used to control the flow of the SAB software as
discussed in Section 4.3.1.2. This trial produced a cost iteration plot as shown in Fig. 5.3.
The cooling profile shown in Fig. 5.4 was utilized. The output from the SAB software is as
shown in Fig. 5.5. The hyperdose sleeve for the solution shown in Fig. 5.5, is shown in
Fig. 5.6. Since the cost function for SAB is essentially comprised of two factors, the
homogeneity of the dose in a tumour and the size of the hyperdose sleeves, it is easy to
predict the output for a small tumour (0.5 cm). The results shown in Fig. 5.5 are exactly as
expected. Since the tumour size is smaller than the maximum hyperdose sleeve size, a
single source could be placed anywhere in the tumour and meet that requirement in the SA
cosf function. However, because of the second component of the SA cost function a
homogeneous dose in the tumour is more desirable. As the SAB software attempts to find
the best solution with the minimum number of sources possible, a single source at the
center is exactly as expected. The output from the SAB algorithm for a tumour size of 0.5
cm is therefore shown to be correct. The final cost function value for this source

distribution was 3.035926.
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Fig. 5.1 0.5 cm tumour to be optimized with SAB.
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o 77
1 /7

NUMBER_OF_SOURCES
DVELL_TIHNE
PRESCRIBED_DOSE
INTERNAL_WEIGHT
EXTERNAL_WEIGHT
EXTERNAL_FACTOR
TEMP_REDUCTION_FACTOR
MAX_ITERATIONS
STOP_COUNT
WITHIN_FACTOR
TRIAL
MAX_INIT TEMP_ITERATIONS
INITIAL_ACCEPT RATIO

// STOP_TEMPERATURE
TEMP_INCREASE_FACTOR
HOVE_PERCENT
ADD_PERCENT
DELETE_PERCENT
RATIO

JUST_HOVE
ALLOU_0_SOURCES
ALLOW_SOURCES_OUTSIDE
TINE_FACTOR

USE_HEURISTIC

static.dat // HELD SOURCES FILENAME

Fig. 5.2 Configuration file for 0.5 cm tumour.
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Fig. 5.3 Cost plot for 0.5 cm tumour.
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Fig. 5.4 Cooling profile for 0.5 cm tumour.

Fig. 5.5 Optimized source positions for 0.5 cm tumour.
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Fig. 5.6 Hyperdose sleeve for 0.5 cm solution.

5.3.2 Square Tumour 1.0 cm in Width

The 1.0 cm tumour shown in Fig. 5.7 was used as input to the SAB software. The
configuration file shown in Fig. 5.8 was used to control the flow of the SAB software.
This trial produced a cost iteration plot as shown in Fig. 5.9. The number of iterations for
the optimization of the 1.0 cm tumour is considerable less then for the 0.5 cm tumour as
the SAB software finds a perfect solution. With a 1.0 cm tumour the cost function can be
satisfied exactly with one source at the center. If the SAB software ever reaches a point in
which 2000 iterations (as specified in the configuration file of Fig. 5.8) in a row occur

without a change in the cost occurs it will stop and return the result as the answer. A
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cooling profile shown in Fig. 5.10 was utilized Which has less iterations than the cooling
profile of Fig. 5.4 because the stopping conditions of 2000 iterations without change was
met. The output from the SAB software is as shown in Fig. 5.11. The hyperdose sleeve for
the solution shown in Fig. 5.11, is shown in Fig. 5.12. The optimal source distribution for
a 1.0 cm square is easy to predict as it should contain only a single source, using a logic
similar to that in the previous section. A final cost value of 1.245919 was obtained by

SAB for the 1.0 cm square tumour.

Fig. 5.7 1.0 cm tumour to be optimized with SAB.
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// NUMBER_OF_SOURCES
// DVELL_TIME

// PRESCRIBED DOSE
// INTERNAL_WEIGHT
// EXTERNAL_VEIGHT
-001 // EXTERNAL_FACTOR
0.9 // TEMP_REDUCTION FACTOR
2500 // MAX_ITERATIONS

2000 // STOP_COUNT

0.025 // WITHIN FACTOR

200 // TRIAL

100 // MAX INIT TEMP ITERATIONS
0.95 // INITIAL_ACCEPT RATIO
0.00001 // STOP_TEMPERATURE
1.5 // TEMP_INCREASE FACTOR
0.98 // MOVE_PERCENT

0.01 // ADD_PERCENT

0.01 // DELETE_ PERCENT

3 // RATIO

1 // JUST_MOVE

1 // ALLOW_0_SOURCES

o // ALLOV_SOURCES_OUTSIDE

0 // TIME_FACTOR

1 // USE_HEURISTIC

static.dat // HELD SOURCES FILENAMNE

Fig. 5.8 Configuration file for 1.0 cm tumour.
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Fig. 5.9 Cost plot for 1.0 cm tumour.
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Fig. 5.10 Cooling profile for 1.0 cm tumour.
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Fig. 5.11 Optimized source positions for 1.0 cm tumour.
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Fig. 5.12 Hyperdose sleeve for 1.0 cm solution.

5.3.3 Square Tumour 1.5 cm in Width

The 1.5 cm tumour shown in Fig. 5.13 was used as input to the SAB software. The
configuration file shown in Fig. 5.14 was used to control the flow of the SAB software.
This trial produced a cost iteration plot as shown in Fig. 5.15. The plot shown in Fig. 5.15
is unique compared to the previous plots presented in this thesis as there are four distinct
sections with increased cost. Each of these pulses correspond to an additional source being
added to the simulation. Similarly the plot shown in Fig. 5.16 has four distinct cooling
phases. Sourceé are added in a controlled fashion in order to minimize the number of

sources (or needles) used. Thus the number of sources is not included in the cost function
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but it is minimized by adding sources in a controlled fashion. The actual progression of
point sources being added is shown for the 3.0 cm tumour in an upcoming section (Section
5.3.6). A cooling profile shown in Fig. 5.16 was utilized. The output from the SAB
software is as shown in Fig. 5.17. The hyperdose sleeve for the solution shown in Fig.
5.17, is shown in Fig. 5.18. These hyperdose sleeves only have a cross sectional size of
6.3333 mm, well within the 1.0 cm limit. The output obtained is what is expected, a
homogeneous distribution of sources, hyperdose sleeves smaller than 1.0 cm and a final

cost function value of 1.613671.

Fig. 5.13 1.5 cm tumour to be optimized with SAB.
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h // NUHBER_OF_SOURCES
1.0 // DWELL_TINE

1.0 // PRESCRIBED_DOSE
1.0 // INTERNAL_VEIGHT
6.0 // EXTERNAL WEIGHT
0.001 // EXTERNAL FACTOR
0.9 // TEHP_REDUCTION FACTOR
2500 // MAX_ITERATIONS

2000 // STOP_COUNT

0.025 // WITHIN_FACTOR

300 // TRIAL

100 // MAX INIT TEMP_ITERATIONS
0.95 // INITIAL_ACCEPT_RATIO
0.00001 // STOP_TEMPERATURE
1.5 // TEHP_INCREASE FACTOR
0.98 // MOVE_PERCENT

0.01 // ADD_PERCENT

8.01 // DELETE_PERCENT

// RATIO

/4 JUST_HOVE

// ALLOW_O_SOURCES

// ALLOU_SOURCES_OUTSIDE

// TIHE_FACTOR

// USE_HEURISTIC
static.dat // HELD SOURCES FILENANE

O QR W

Fig. 5.14 Configuration file for 1.5 cm tumour.
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Fig. 5.15 Cost plot for 1.5 cm tumour.
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Fig. 5.16 Cooling profile for 1.5 cm tumour.
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Fig. 5.17 Optimized source positions for 1.5 cm tumour.
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Fig. 5.18 Hyperdose sleeve for 1.5 cm solution.

5.3.4 Square Tumour 2.0 cm in Width

The 2.0 cm tumour shown in Fig. 5.19 was used as input to the SAB software. The
configuration file shown in Fig. 5.20 was used to control the flow of the SAB software.
This trial produced a cost iteration plot as shown in Fig. 5.21. Similar to the discussion in
the previous section, four distinct phases are seen in 5.21 corresponding to each of the four
sources in the final solution being added. To see the progression of a solution completely
see Section 5.3.6. A cooling profile shown in Fig. 5.22 was utilized. The output from the
SAB software is as shown in Fig. 5.23. The hyperdose sleeve for the solution shown in

Fig. 5.11, is shown in Fig. 5.12. Unfortunately the results for a 2.0 cm square tumour leave
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a little bit to be desired. However, upon careful inspection, and further experimentation, it
was found that the results found by SAB seem to be the optimal source positions even
though the resulting hyperdose sleeves are too big. There are a couple of possible
explanations for why this occurs. The first is that perhaps there is no such thing as a
perfect placement of equal strength sources in a 2.0 cm tumour. The second possible
explanation is that perhaps if sources were able to be placed external to the tumour a better
hyperdose sleeve could be achieved. When the SAB software continued adding source, it
reached the maximum number of sources allowed in a simulation (currently 15) and was
unable to find a suitable answer. The solutions with more than four sources had cost
functions with cost values higher than the final cost function value for four sources. The
best result found is the one presented here. This imperfect result shows the complexity of
trying to optimize brachytherapy implants. The final cost function value for four sources
in a 2.0 cm tumour is 1.759948. It should be noted that a plot of the 218% dose yields an
isodose line that corresponds to the maximum acceptable size for the hyperdose sleeves,

so this solution is approximately 18% off what we require.
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Fig. 5.19 2.0 cm tumour to be optimized with SAB.
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b // NUMBER_OF_SOURCES

1.0 // DVELL_TIME

1.0 // PRESCRIBED_DOSE

1.0 // INTERNAL_WEIGHT

0.0 // EXTERNAL_WEIGHT

0.001 // EXTERNAL_FACTOR

0.9  // TEMP_REDUCTION_FACTOR
2500 // MAX ITERATIONS

2000 // STOP_COUNT

0.025 // WITHIN_FACTOR

400 // TRIAL

100 // MAX_INIT_TEHP_ITERATIONS
0.95 // INITIAL_ACCEPT_RATIO
0.00001 // STOP_TEMPERATURE
1.5 // TEMP_INCREASE FACTOR
0.98 // HOVE_PERCENT

0.01 // RDD_PERCENT

6.01 // DELETE_PERCENT

3 // RATIO

1 /7 JUST_MOVE

1 // ALLOW_O_SOURCES

o // ALLOW_SOURCES OUTSIDE
o // TIME_FACTOR

1 // USE_HEURISTIC
static.dat // HELD SOURCES FILENAME

Fig. 5.20 Configuration file for 2.0 cm tumour.
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Fig. 5.21 Cost plot for 2.0 cm tumour.
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Fig. 5.22 Cooling profile for 2.0 cm tumour.
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Fig. 5.23 Optimized source positions for 2.0 cm tumour.
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Fig. 5.24 Hyperdose sleeve for 2.0 cm solution.

5.3.5 Square Tumour 2.5 cm in Width

The tumour shown in Fig. 5.25 was used as input to the SAB software. The
configuration file shown in Fig. 5.26 was used to control the flow of the SAB software.
This trial produced a cost iteration plot as shown in Fig. 5.27. Similar to the discussion in
the previous section, four distinct phases are seen in 5.27 corresponding to each of the four
sources in the final solution being added. To see the progression of a solution completely
see Section 5.3.6. A cooling profile shown in Fig. 5.28 was utilized. The output from the

SAB software is as shown in Fig. 5.29. The hyperdose sleeve for the solution in Fig. 5.29,
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is shown in Fig. 5.30. The hyperdose sleeves in Fig. 5.30 have exactly a 1.0 cm diameter
which is the maximum acceptable size according to our cost function. The final cost

function value is 1.098585.

Fig. 5.25 2.5 cm tumour to be optimized with SAB.
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il // NUMBER_OF_SOURCES
1.0 // DWELL_TIME

1.0 // PRESCRIBED_DOSE
1.0 // INTERNAL_WEIGHT
0.0 // EXTERNAL_VEIGHT
0.001 // EXTERNAL_FACTOR
0.9  // TEMP_REDUCTION_FACTOR
2500 // MAX_ITERATIONS

2000 // STOP_COUNT

0.025 // WITHIN_FACTOR

500 // TRIAL

100  // MAX_INIT TEMP_ITERATIONS
0.95 // INITIAL_ACCEPT RATIO
6.00001 // STOP_TEMPERATURE
1.5 // TEHP_INCREASE_ FACTOR
0.98 // MOVE_PERCENT

0.01 // ADD_PERCENT

0.01 // DELETE_PERCENT

3 // RATIO

1 // JUST_HOVE

1 // ALLOW_O_SOURCES

0 // RLLOW_SOURCES_OUTSIDE

0 // TIHE_FACTOR

1 // USE_HEURISTIC

static.dat // HELD SOURCES FILENAME

Fig. 5.26 Configuration file for 2.5 cm tumour.
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Fig. 5.27 Cost plot for 2.5 cm tumour.
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Fig. 5.28 Cooling profile for 2.5 cm tumour.
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Fig. 5.29 Optimized source positions for 2.5 cm tumour.
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Fig. 5.30 Hyperdose sleeve for 2.5 cm solution.
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5.3.6 Square Tumour 3.0 cm in Width

The 3.0 cm tumour shown in Fig. 5.31 was used as input to the SAB software. The
configuration file shown in Fig. 5.32 was used to control the flow of the SAB software.
This trial produced a cost iteration plot as shown in Fig. 5.33. As specified in previous
sections, the cost temperature plot has eight distinct pulses corresponding to the 8 sources
being added. A cooling profile shown in Fig. 5.34 was utilized.

In order to illustrate the progression of sources added by the SAB software, and the
solutions that it generates, all of the source configurations generated by SAB for the 3.0

cm square tumour are presented.

5.3.6.1 One Source in 3.0 cm Tumour

The first source configuration is the optimal solution for a single source which as
shown in Fig. 5.35 has a single source at the center of the tumour. A single source at the
center is what we would expect since it would produce the most homogeneous dose in the
tumour. However, the hyperdose sleeve for a single source is much to large as shown in

Fig. 5.36 where the hyperdose sleeve is as wide as the tumour, 3 cm in diameter.

5.3.6.2 Two Sources in 3.0 cm Tumour

Next SAB will optimize two sources and generates the solution shown in Fig. 5.37.
The results are what we would expect to see, a very symmetric distribution of the two
sources, maintaining as homogeneous a dose as possible with only two sources, but again

a hyperdose sleeve too large, over 3 cm, as shown in Fig. 5.38.
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5.3.6.3 Three Sources in 3.0 cm Tumour
Next we add another source into the simulation, and achieve the source placements
shown in Fig. 5.39. However, the hyperdose sleeves for three sources is also too large as

shown in Fig. 5.40.

5.3.6.4 Four Sources in 3.0 cm Tumour

Next we add another source into the simulation bringing the total number of
sources to four. As we can see in Fig. 5.41, a symmetric geometry again is achieved.
Unlike the final solutions for the 1.5 cm, 2.0 cm and 2.5 cm square tumours, four sources
in a 3.0 cm square tumour is not sufficient as the hyperdose sleeves are too large as shown
in Fig. 5.42. Although the hyperdose sleeves shown in Fig. 5.42 seem to be sufficiently
small, they are actually 1.1333 cm in diameter (the maximum acceptable being 1.0 cm).
This increase in size actually corresponds to an area that is 28.4% larger than the
maximum hyperdose sleeve area. Thus the SAB software will continue looking for a

better solution by adding another source bringing the total count up to five.

5.3.6.5 Five Sources in 3.0 cm Tumour

The SAB software produces the output shown in Fig. 5.43 for five sources. When
the hyperdose sleeve for the distribution shown in Fig. 5.43 is evaluated, it encompasses
the majority of the tumour. The previous four SAB solutions continued to make the
hyperdose sleeves smaller. Now, we have a situation in which the hyperdose sleeve is

getting larger. Although this may appear the be a problem, it is actually a perfect example
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of why SA is so useful. We are in the process of escaping a local minimum on the search
for the global minimum. Five sources can not produce an acceptable dose distribution for
a 3.0 cm square tumours as shown by the large hyperdose sleeves in Fig. 5.44, so the SAB

software must continue to search by adding another source.

5.3.6.6 Six Sources in 3.0 cm Tumour

Upon inspecting the output for six sources an interesting trend is starting to
emerge. It would seem that the solution for five sources is the solution for a single source
encompassed within the solution for four sources. This trend continues with the solution
for six sources being a rotated solution for two sources encompassed within the solution
for four sources as shown in Fig. 5.46. Unfortunately the hyperdose sleeves still
encompasses much of the tumour with six sources as shown in Fig. 5.46, and SAB will

continue to execute trying seven sources.

5.3.6.7 Seven Soufces in 3.0 cm Tumour

The trend continues with seven sources having an optimized source arrangement
'simi_lar to the optimized output of three sources, encompassed within the optimized
solution of four sources. Again this source arrangement produces hyperdose sleeves much

too large as shown in Fig. 5.48.
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5.3.6.8 Eight Sources in 3.0 em Tumour

The SAB software continues one last time with eight sources, producing the output
shown in Fig. 5.49. The hyperdose sleeve for the solution shown in Fig. 5.49, is shown in
Fig. 5.50. As is seen in Fig. 5.50 there are a few points at which the hyperdose sleeves
touch, thus making the total area of that hyperdose sleeve too large. However, there are a
few explanations for why this is still an optimal solution. The first is that most of the
hyperdose sleeves is considerably less than the maximum area, so if it isn’t for those few
points at which one hyperdose sleeve touches another, this would be a very good solution.
The second fact is that the points at which the sleeves join is very small and if it isn’t for
the quantization of the solution space into pixels, they may not even join. The final cost

function value for this solution was 1.052885.

- 115 -



Brachytherapy Optimization Chapter 5: Experimental Results and Discussion

Fig. 5.31 3.0 cm tumour to be optimized with SAB.
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1 // NUNBER OF SOURCES

// DWELL_TINE

// PRESCRIBED_DOSE

/7 INTERNAL WEIGHT

/7 EXTERNAL_WEIGHT

.001 // EXTERNAL_FACTOR

0.9 // TEMP_REDUCTION_FACTOR

2500 // MAX ITERATIONS

2000 // STOP_COUNT

0.025 // WITHIN FACTOR

600  // TRIAL

100 /7 MAY_INIT_TENP_ITERATIONS
.95 // INITIAL_ACCEPT RATIO
.00001 /7 STOP_TEMPERATURE
.5 // TEMP_INCREASE_FACTOR
.98 // MOVE_PERCENT
.01 // ADD_PERCENT

DELETE_PERCENT

// RATIO

// 3UST_MOVE

// ALLOV_ O SOURCES

// ALLOW_SOURCES_OUTSIDE

// TIME_FACTOR
// USE_HEURISTIC
static.dat // HELD SOURCES FILENANE

HOOFRFHFQOODO+HOO
o
=
~
~

Fig. 5.32 Configuration file for 3.0 cm tumour.
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Fig. 5.33 Cost plot for 3.0 cm tumour.
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Fig. 5.34 Cooling profile for 3.0 cm tumour.
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Fig. 5.35 Single source position in a 3.0 cm square tumour.

-119 -



scussion

i

HURY

T
oy

Chapter 5: Experimental Results and D

Ve
e

s
o

S
,///M/

S 7

N . . .
.
.

-120 -

ion

t

imiza

Brachytherapy Opt

Fig. 5.36 Hyperdose sleeve for single source in 3.0 cm tumour.




Brachytherapy Optimization Chapter 5: Experimental Results and Discussion

Fig. 5.37 Optimized solution of two sources in a 3.0 cm square tumour.
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st

Fig. 5.38 Hyperdose sleeve for two sources in a 3.0 cm square tumour.
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Fig. 5.39 Optimized solution of three sources in a 3.0 cm square tumour.
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Fig. 5.40 Hyperdose sleeve of three sources in a 3.0 cm square tumour.
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Fig. 5.41 Optimized solution of four sources in a 3.0 cm square tumour.
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Fig. 5.42 Hyperdose sleeve for four sources in a 3.0 cm square tumour.
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Fig. 5.43 Optimized solution of five sources in a 3.0 cm square tumour.
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Fig. 5.44 Hyperdose sleeve of five sources in a 3.0 cm square tumour.
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Fig. 5.45 Optimized solution of six sources in a 3.0 cm square tumour.
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Fig. 5.46 Hyperdose sleeve of six sources in a 3.0 cm square tumour.
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Fig. 5.47 Optimized solution of seven sources in a 3.0 cm square tumour.
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Fig. 5.48 Hyperdose sleeve of seven sources in a 3.0 cm square tumour.
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Fig. 5.49 Optimized source positions for 3.0 cm tumour.
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Fig. 5.50 Hyperdose sleeve for 3.0 cm solution.

5.4 Conclusions for SA

The results for the different tumour shapes presented in the proceeding section
indicate that we have implemented a SA algorithm and software program (SAB) that can
optimize source positions in square tumours. Additional results for other tumour sizes are
presented in Appendix A. The following section will now take the results from SAB and
use them to train an ANN to optimize brachytherapy source placement in 2D square

tumours.
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5.5 Experimental Design for ANN

The goal of this thesis is to develop an ANN for brachytherapy optimization. In
order to develop the ANN it is required to determine what inputs and outputs to use to
optimize brachytherapy implants as well as, the best structure of the ANN, and in doing
so, prove that ANNs can be used for brachytherapy optimization. Section 5.6 presents the
experimental results with different forms of input to an ANN and determines which form
is the best. The data gathered with SAB as presented in previous sections is used as input
data. The training data producing the ANN that performs best on the test data will be

considered the best form of input.

5.6 Experimental Results and Discussion for ANN

The first set of experiments will be used to determine what SAB output to use to
train an ANN to optimize brachytherapy implants (covered in Section 5.6.1). Once the
training data has been determined, the best form of ANN (number of input, internal and

output nodes) will be determined as presented in Section 5.6.2.

5.6.1 Training data for ANN optimization

In order to simplify the design of the training data, all of the outputs from SAB are
normalized so that they are the same size in terms of pixels. For example the 1.0 cm
tumour would be expanded to be the same pixel size as the 3.0 cm tumour. The 1.0 cm

tumour then has three times the number of pixels per mm than the 3.0 cm tumour.

-135-



Brachytherapy Optimization Chapter 5: Experimental Results and Discussion

5.6.1.1 Training with source positions

Once the tumours were normalized to a common size, the first form of input
investigated was to simply use the positions of the point sources and a measure of the size
of the tumour. For instance the 1.0 cm square tumour in Section 5.3.2 would have an input
of 18,18,0.33333 corresponding to x and y coordinates for the single point source of 18
and 18 respectively, and a size of 3 pixels per mm. The 3.0 cm tumour from Section 5.3.6
would have the following input 7,7,8,9,8,30,19,8,19,28,30,8,28,19,30,30,1.0
corresponding to the x and y coordinates of all 8 sources respectively, followed by the size
parameter (ratio) of 1.0 signifying a 1 pixel per mm ratio. As some tumours have more
point sources than others, the ANN will be designed to have enough input and output
nodes to accommodate the tumour with the most point sources - a 3.0 cm square. Tumours
with less point sources will have nodes that do not get input. A value of -1 will be used to
signify that a node has no input. The 1.0 cm, 2.0 cm and 3.0 cm square tumours are used
as input, and the other tumours are used as test data. A summary of the input used is

shown in Table 5.1, Table 5.2,and Table 5.3.

Table 5.1: ANN input using coordinates for 1.0 cm square tumour.

Node Input g?lstl;fl(tl
1(xy) -lorl8 18
2(yy) -lorl8 18
3 (%) -1 -1
4(y2) -1 -1
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Table 5.1: ANN input using coordinates for 1.0 cm square tumour.

Node Input ]())‘:lstl;i(:

5 (X3) -1 -1

6 (¥3) -1 1

7 (X4) -1 -1

8 (v4) -1 1

9 (x5) -1 -1

10 (y5) -1 -1

11 (x¢) -1 -1

12 (v¢) -1 -1

13 (x7) -1 -1

14 (y7) -1 -1

15 (xg) -1 -1

16 (yg) -1 -1
17 0.333333 NONE

Table 5.2: ANN input using coordinates for 2.0 cm square tumour.

Node Input 1())?18:;3(:
1(x9) -lor9 9
2(yy) -lor9 9
3 (x2) -lor9 9
4 (y,) -1 or 28 28
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Table 5.2: ANN input using coordinates for 2.0 cm square tumour.

Node Input ]())istl;f::

5(x3) -1 or28 28

6 (v3) -lor9 9

7 (X4) -1 or28 28

8 (va) -1 or 28 28

9 (x5) -1 -1

10 (y5) 1 1

11 (x¢) -1 -1

12 (6) 1 1

13 (x7) -1 -1

14 (y7) -1 -1

15 (xg) -1 -1

16 (yg) -1 -1
17 0.666666 NONE

Table 5.3: ANN input using coordinates for 3.0 cm square tumour.

Node Input l())ftl;z‘ti
1 (xy) -lor7 7
2 (yy) -l or7 7
3(xp) -lor8 8
4 (y,) -lor19 19
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Table 5.3: ANN input using coordinates for 3.0 cm square tumour.

Node Input l();;stl;i(:

5(x3) -lor7 7

6 (y3) -1 or30 30

7 (X4) -lor19 19

8 (y4) -lor8 8

9 (xs) -lor19 19

10 (ys) -1 or 28 28

11 (xg) -1 or 30 30

12 (yg) -lor8 8

13 (x7) -1 or28 28

14 (y7) -lor19 19

15 (xg) -1 0r30 30

16 (yg) -1 or30 30
17 0.666666 NONE
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When a BP ANN with 17 input nodes, 4 hidden layer nodes, and 16 output nodes
is trained with the training data in Table 5.1, Table 5.2, and Table 5.3 it achieves an RMS
error on the training data of only 0.445589. However, on a test set of other tumour shapes
it produces an RMS error of 2.797090 from the desired outputs. When the output is
inspected visually, a number of problems are identified. For example too many sources
being used for smaller tumour sizes. Another issue that became apparent with more
experimentation is that the output was very dependent on the training data. In other words,
the network was not able to generalize. For instance, if a source in the input data was
shifted by a single pixel value (i.e. from an x value of 10 mm to an x value of 11 mm) the
output would have a source at both pixel locations or many extra sources in the tumour.
From the results obtained with this network configuration, it was decided that a different

form of input with more information was required.

5.6.1.2 Training with tumour images from SAB

The next form of input that was used to create training data for an ANN was the
tumour images obtained from SAB. For instance the tumour shown in Fig. 5.49, was used
as input to an ANN. The inputs were the pixel values in the tumour (as described in Table
4.1) without the sources. The desired outputs were the pixel values in the tumour with the
sources. This form of training vector was an attempt at training an ANN to literally learn
the positions of the sources. Similar results as those obtained with the training vectors in

the previous section, were achieved. The major problem again with this form of training
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data was the inability of the network to generalize if a source was shifted slightly from a

position that the network was trained to recognize.

5.6.1.3 Training with energy distribution

After the initial attempts at designing an ANN to optimize brachytherapy cancer
treatments, it was realized that an input that is continuous is better than an input that is
discrete. If the sources in the tumour are used to calculate the dose at each point in the
tumour we can achieve a nearly continuous form of input. The dose at each point in the
tumour is considered to be the energy distribution in the tumour and due to this nearly
continuous nature would make a good form of training data for an ANN. For example, the
input could be the current energy distribution in the tumour (based on the sources present),
and the output could be the desired energy distribution (based on the optimal source
locations found with SAB). The only discontinuity in the energy distribution are at the
exact point source locations (where the dose is essentially infinite). However, if the energy
distribution is modified such that they are continuous at these points as well, then there is
a continuous form of input and output to use. Another advantage to this form of input and
output is that small shifts in the point sources should not affect the output as much. In the
previous forms of input, their discrete nature had an adverse effect because a source was
either present or absent (a binary 0 or 1 scenario), making it very hard for the ANN to
generalize. If the energy distribution is used as input, a source shifted slightly will still

have significantly elevated energy in the region, and the scenario is no longer binary.
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In order to use the energy distribution as input and output, a large number of input
and output nodes are required. As the tumours are normalized to be thirty pixels by thirty
pixels, it requires nine hundred input and output nodes (30 x 30). An additional input will
also be required to specify the ratio of the input. Thus a total of 901 input nodes and 900
output nodes are required.

In preparing the training data, a few modifications have to be made to the output
from the SAB program. In addition to normalization of the tumour size (discussed at the
beginning of this Section) the energy distribution is also normalized. As covered in
Section 2.5.9, weights in a BP ANN are adjusted during training, according to Eq. 2.7. If
the difference between the desired weight (7) and achieved output () is large, then the
weight change value will become large. In theory this is not a problem. However, when
actually implementing these formulas in software, the values of the variables must be
stored in RAM. Thus, if the numbers become too large, round off errors and overflow
errors occur on the variables. In order to reduce the possibility of this occurring, the
training data will be modified to normalize the energy distribution to values between 0.0
and 1.0 by dividing all of the values by the maximum. A sample form of training data
input for the SAB solution shown in Fig. 5.49, is shown in Fig. 5.51. The output from an
ANN trained with the energy distribution will be the optimal energy distribution in the
input tumour. As it is the source placement within the tumour that is of importance, a
threshold function is used to find the peaks in the output energy distribution. The peaks

will be representative of where a source should be placed. It is important to note that the
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error calculated during the training and testing is the RMS error on the energy function,
not on the actual source placement. Therefore, a large RMS error may not have a drastic
effect on the actual source location. This is because if every point in the energy
distribution is incorrect by a small amount the peaks will still be nearly correctly placed
thus the derived source positions will still be correct, but the difference between the
desired energy distribution and the predicted energy (the RMS error) will be potentially

large.

Fig. 5.51 Sample of energy distribution input to ANN for training.

Additive noise was also used on the training data as discussed in Section 2.5.9.1.

The source configurations described in Table 5.4 were used to create the training data.
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Table 5.4: Input used for energy distribution training data.

Additive
Tumour Source Noise Number
Size Ratio Locations Max of
(pixels - x, y) Distance Samples
(pixels)

1.0 cm 0.333333 NONE 3 10
1.0 cm 0.333333 18,18 3 10
2.0cm 0.666666 NONE 4 10
2.0cm 0.666666 9.9 4 10
2.0 cm 0.666666 9,28 4 10
20cm 0.666666 28,9 4 10
2.0 cm 0.666666 28,28 4 10
2.0cm 0.666666 9,9 4 10

9,28

28,9

28,28
3.0cm 1.0 NONE 5 10
3.0cm 1.0 7,7 5 10
3.0cm 1.0 8,19 5 10
3.0cm 1.0 8,30 5 10
3.0cm 1.0 19,8 5 10
3.0cm 1.0 19,28 5 10
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Table 5.4: Input used for energy distribution training data.

Additive
Tumour Source Noise Number
Size Ratio Locations Max of
(pixels - x,y) Distance Samples
(pixels)
3.0cm 1.0 30,8 5 10
3.0cm 1.0 28,19 5 10
3.0cm 1.0 30,30 5 10
3.0cm 1.0 7,7 5 10
8,19
8,30
19,8
19,28
30,8
28,19
30,30

A sample input to the MANN software is shown in Fig. 5.52, with the

corresponding output from the MANN software shown in Fig. 5.53.
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Fig. 5.53 Results of training ANN using MANN for 12 internal nodes.
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Additional results from the MANN software for different numbers of internal nodes can
be found in Appendix B. The following section will cover the validation of the ANN
developed with the energy function as input, as well as determine the optimal number of

internal nodes.

5.6.2 Finding the Best Form of BP ANN for Brachytherapy Optimization

In order to validate the ANN trained with the energy distribution the techniques
discussed in Section 2.5.10 will be used. All of the data obtained with SAB will be
separated into two sets, a training set and a test set. The training set will be used to train
the ANN and the test set will be used to see how well the ANN can perform on data that it

has not been trained on. The training and test set will be divided as shown in Table 5.5.

Table 5.5: Division of SAB data into training and test sets.

Tumour Size | Allocated Set
0.5cm Test
0.8 cm Test
1.0 cm Training
1.2 cm - Test
1.5cm Test
1.8 cm Test
20cm Training
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Table 5.5: Division of SAB data into training and test sets.

Tumour Size | Allocated Set
22 cm Test
2.5cm Test
2.8 cm Test
3.0 cm Training

In order to determine the optimal number of interior nodes to use for

brachytherapy optimization, a cost function will be used. The cost function is

¢, = a(w)+b( En ) 5.1)

nmax emax

where a and b are weights that assign the level of importance of the two terms, #; is the
number of internal nodes, 7n,,,, is the maximum number of internal nodes we will allow
and 1s defined as 20, n,,;, is defined as 2 because a BP ANN must have at least two
internal nodes, ¢, is the error on the test set, and e,,,, is the maximum error which we get
with only 2 internal nodes and is defined as 30. It was decided that a will be 0.25 and b
will be 0.75, indicating that we are more concerned with the error achieved on the test set,
rather than the number of internal nodes. The ANN that has the smallest value for c,,,
(Eq. 5.1) will be considered the best ANN for brachytherapy optimization as it is a

measure of generalization versus memorization. Using the results from SAB and Eq. 5.1,

the results for the various ANN’s is shown in Table 5.6.
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Table 5.6: Results of tests for different number of internal nodes.

Number of Predicted
Internal RMS Error Cann Maximum
on Test Set (Eq. 5.1) Positional
Nodes -
Error (mm)
6 27.74 0.74 8.32
8 20.29 0.58 6.0
10 15.75 0.49 4.73
12 13.37 0.46 4.01
14 12.99 0.48 3.90
16 12.96 0.50 3.89
13 12.87 0.52 3.86

Based on the results in Table 5.6, an ANN with 12 internal nodes will be best for
optimizing brachytherapy treatments when using the energy distribution in the tumour as

the input and output from the ANN

5.6.3 Evaluation of ANN with 12 Internal Nodes

Now that the number of internal nodes has been chosen, the output from that ANN
will be evaluated to see how well it does on the training data. As shown in Table 5.6, the
ANN with 12 internal nodes has an RMS error of 13.37 on the test set, but it is required to

evaluate were this error is incurred. Therefore, all of the test sets identified in Table 5.5
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will be evaluated to see how well the ANN performs. In the following sections, all of the

tumour positions will be indicated in their transformed positions with their ratio specified.

5.6.3.1 0.5 cm Tumour Predicted Position

A 0.5 cm tumour has a ratio of 0.166666 and a SAB optimized source position of
20,20 for x and y respectively. The output from the ANN produced 19,20 for x and y
respectively corresponding to a Euclidian distance of 1 pixel. 1 pixel at this ratio

corresponds to 0.16 mm of positional error. The output from the ANN is as expected.

5.6.3.2 0.8 cm Tumour Predicted Position
A 0.8 cm tumour has a ratio of 0.266666 and a SAB optimized source position of
20,20 for x and y respectively. The output from the ANN produced 20,20 for x and y

respectively, thus there is no error for this tumour size.

5.6.3.3 1.2 cm Tumour Predicted Position

Al1l2cm tumour has a ratio of 0.4 and a SAB optimized source position of 20,20
for x and y respectively. The output from the ANN produced 19,20 for x and y
respectively corresponding to a Euclidian distance of 1 pixel. 1 pixel at this ratio

corresponds to 0.4 mm of positional error. The output from the ANN is as expected.
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5.6.3.4 1.5 cm Tumour Predicted Position

A 1.5 cm tumour has a ratio of 0.5 and a SAB optimized source position as shown

in Table 5.7.

Table 5.7: Predicted source positions for 1.5 cm tumour.

Desired Actual Euclidian
.. .l . Error
Positions Positions Distance (mm)
(pixels) (x, y) | (pixels) (x,y) (pixels)
12,12 10,11 224 1.12
12,29 10,30 2.24 1.12
29,12 29,11 1.00 0.50
29,29 30,30 1.41 0.71

Thus the maximum error for a 1.5 cm tumour is 1.12 mm. This is still very little error and

considered acceptable.

5.6.3.5 1.8 cm Tumour Predicted Position
A 1.8 cm tumour has a ratio of 0.6 and a SAB optimized source position as shown

in Table 5.8.

Table 5.8: Predicted source positions for 1.8 cm tumour.

Desired Actual Euclidian Error
Positions Positions Distance (mm)
(pixels) (x, y) | (pixels) (x, y) (pixels)
12,12 11,11 1.41 0.85
12,29 10,30 2.24 1.34
29,12 29,10 2.00 1.20
29,29 30,29 1.41 0.60
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Thus the maximum error for a 1.8 cm tumour is 1.34 mm. This is still very little

error and considered acceptable.

5.6.3.6 2.2 cm Tumour Predicted Position
A 2.2 cm tumour has a ratio of 0.733333 and a SAB optimized source position as

shown in Table 5.9.

Table 5.9: Predicted source positions for 2.2 cm tumour.

Desired Actual Euclidian Error
Positions Positions Distance (mm)
(pixels) (x,y) | (pixels) (x,y) (pixels)
12,12 10,10 2.83 2.08
12,29 10,29 2.00 1.47
29,12 29,10 2.00 1.47
29,29 30,30 1.41 1.03

Thus the maximum error for a 2.2 ¢cm tumour is 2.08 mm.

5.6.3.7 2.5 cm Tumour Predicted Position

A 2.5 cm tumour has a ratio of 0.833333 and a SAB optimized source positions as
shown in Table 5.10 and Fig. 5.29. However, when the output from the ANN is inspected,
it has 8 sources present in the solution as shown in Fig. 5.54. Initially it seemed that there
was a flaw in the ANN and that it was producing false positives. However, after further
investigating, it was realized that as indicated in Section 5.3.5, the hyperdose sleeve for

the SAB optimized source positions are exactly 1.0 cm. Therefore any movement in the
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source positions would cause the hyperdose sleeves to be too large and thus the source
positions would no longer be the optimized positions. Recall that at the beginning of the
discussion for the development of the ANN it was indicated that the input to the ANN
would be the output from SAB scaled down to be a 30 mm by 30 mm square.
Unfortunately at this reduced resolution the source positions are shifted enough that the
hyperdose sleeves that were once exactly 1.0 cm in diameter become 1.1 ¢cm in diameter.
Thus four sources is not a good solution at this reduced resolution. This is perhaps one of
the best indications that the ANN is in fact truly optimizing source positions, as it knew
that four sources was insufficient and thus predicted that eight sources were necessary.
When the hyperdose sleeve size for the eight source solution are checked, they are only
0.7 cm in diameter which is better than the 1.1 cm diameter that four sources cause.
Therefore, although the results do not match what is expected, they are the correct results

for this resolution of a 2.5 cm square tumour.

Table 5.10: SAB optimized source positions for 2.5 cm tumour.

Desired
Positions

12,12
12,30
30,21
30,30
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Fig. 5.54 Predicted source positions for 2.5 cm tumour.

154 -



Brachytherapy Optimization Chapter 5: Experimental Results and Discussion

5.6.3.8 2.8 cm Tumour Predicted Position

A 2.8 cm tumour has a ratio of 0.933333 and a SAB optimized source position as

shown in Table 5.11.

Table 5.11: Predicted source positions for 2.8 cm tumour.

Desired Actual Euclidian
.y .. . Error
Positions Positions Distance (mm)
(pixels) (x, y) | (pixels) (x,y) (pixels)
10,10 9,8 2.24 2.09
12,21 9,20 3.16 2.95
10,31 9,31 1.00 0.93
21,12 21,9 3.00 2.80
21,30 21,29 1.00 0.93
31,10 31,10 0.00 0.00
30,21 30,20 1.00 0.93
31,31 31,31 0.00 0.00

Thus the maximum error for a 2.8 cm tumour is 2.95 mm. This is the most error
encountered in the output and is considered the worst case error the of the designed
brachytherapy optimization ANN. The resulting hyperdose sleeves for the calculated
positions have more that 200% of the dose leaving the tumour whereas the desired
positions do not have this level of dose leaving the tumour. All of the output generated
with the ANN takes in the order of 100 msec to generate thus it is an extremely fast

process.
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5.7 Ceonclusions for ANN

It has been found that an ANN can be used to optimize brachytherapy implants. A
few different forms of input were tried in an attempt to find the best form of input for
training the ANN. It was found that when the energy function is used for input and output
that an ANN with 901 input nodes, 12 internal nodes, and 900 output nodes can achieve an
RMS error of 2.03% on a training set and an RMS error of 13.37% on a test set, which
corresponds to a maximum source position error of 4 mm. The 4 mm of positional error
was calculated assuming that the full 13.37% RMS error results in a shift of the source.
However, when the true positions of the predicted sources from the ANN output are
checked, they only produce a maximum error of 3 mm. Although a 3 mm error seems
large it was generated on the 2.8 cm tumour which has a very large ratio of pixels to mm
(the ratio is 0.9333). If a larger ANN is created with more input nodes the ratio could be
increased and the error of the 2.8 cm tumour would decrease. Also this was the largest
error that was encountered, the average positional error on all of the test sets was only 1.07

mm.

5.8 Chapter Summary

Upon evaluating the output from the various programs developed for this thesis
they have been shown to be correct. The SAB software is able to optimize source positions
in 2D square tumours up to 3 cm in diameter. The output from the SAB software is then

used to train an ANN. Through experimentation and with the use of a cost function it is
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shown that a BP ANN that uses 901 input nodes, 12 internal nodes, and 900 output nodes
1s also able to optimize 2D square tumours up to 3 cm in diameter with a worst case error
of 3 mm and an average error of 1.07 mm. However, the output from the ANN takes
considerably less time to generate, and is measured to take approximately 100 msec as
compared to the hours required to generate the SAB output. When the results of this thesis
are compared with some of the other work in this area, the benefits that an ANN can offer
to this research area are very apparent. The ANN was shown to generate optimized source
positions, and it did so 1800 times faster than the work presented in [YuSc96], 900 times
faster than [PTR96a], 300 times faster than [YRPZ98], and 180 times faster than the
fastest time reported in the literature [MZRB99]. Although this thesis is only the first step
in the use of ANNSs for brachytherapy optimization it is without a doubt a feasible and

logical progression.
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

“The art of drawing conclusions from experiments and observations consists of
evaluating probabilities and in estimating whether they are sufficiently great or
numerous enough to constitute proofs. This kind of calculation is more
complicated and more difficult than it is commonly thought to be...”

- Antoine Laurent Lavoisier (1743-94)

- French chemist, founder of modern chemistry

6.1 Conclusions

This thesis presents the development of a brachytherapy optimization system using
an ANN. It is the first attempt at such an optimization scheme for brachytherapy and a
number of issues had to be resolved. The thesis consists of three major tasks: the creation
of training data using SA, the development of an ANN from the training data, and finally
testing the developed ANN to ensure that it is functioning correctly. Three software
programs were created for each of the three steps (SAB, MANN, and BowANN) and the
design and implementation of these programs is presented.

Training data for the ANN was created using SAB. By evaluating the output from
SAB it can be seen that SAB is producing optimized brachytherapy treatments. The
output from SAB takes a significant amount of time to generate, demonstrating the need
for a faster approach. The output from SAB is then used to train an ANN.

The training of the ANN is accomplished using the MANN software. The MANN

software uses the training data created with SAB to develop a single layer BP ANN. We
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used the MANN software to answer the four questions from Chapter 1. First of all, after
trying various forms of input, it was found that the current energy distribution in the
tumour is the best form of input for training an ANN. Secondly, it was found that using the
desired energy distribution in the tumour as output was the most successful. Thirdly, using
an empirical formula it was found that an ANN with 901 inputs, 12 interior nodes, and 900
outputs should perform the best for 3.0 cm square tumours. And finally, this ANN
configuration yields an RMS error of 2.03% difference between the correct dose
distribution and the predicted dose distribution for the training data indicating that an
ANN can learn to optimize brachytherapy implants with relatively little error. The 2.03%
difference in dose distribution results in a positional error of 0 mm for the sources on the
training data. The ANN was validated using MANN test data, which consists of inputs the
ANN has not seen during the training process. Using this data, the ANN achieved an
RMS error of 13.37% for the dose distribution prediction, and a maximum positional error
of 3 mm which is high for brachytherapy insertions. However, recommendations are made
on how to decrease this error in Section 6.2. The average positional error on the test set is
only 1.07 mm which is more in the range of what would be considered acceptable for
brachytherapy insertions.

When the system developed in this thesis is compared to other work in the field it
is apparent that significant improvement was achieved. The speed of the ANN approach
is more than 180 times faster than the next fasted method presented in the literature

[MZRBY9]. Although the ANN is currently limited to 2D tumours, extending the concept
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to handle 3D would not decrease the output speed too drastically, and therefore it is clear
that this new method is far superior to the other methods in terms of speed. The second
major improvement that results from this new approach is the ability of the ANN to place
sources anywhere within the implant volume. All of the current literature restricts the
sources to regular array geometries [PTR96b][S1ob92][YRPZ98][YuSc96].

The system developed in this thesis produces very good results for the cases for
which it was designed. However, there are limitations. First of all, the input is limited to
2D square tumours up to 3 cm in width. Clearly the system has to be expanded to handle
any shape of tumour and operate in 3D before it would be clinically viable. In the current
design, the ANN can also produce false positives, which are misleading. These false
positives occur when the ANN is used to produce output for very extreme inputs (in which
sources have been placed at unexpected locations). All of the limitations identified
however can be resolved with additional research and development of the technique.

It can be deduced from this research that there is a very large area to be
investigated in the use of ANNs for brachytherapy optimization. Hopefully as a result of
this thesis a new path has been created in the optimization of brachytherapy that will see
many other researchers investigating the possibilities. One can foresee a day in which all
cancer patients treated with brachytherapy will have custom treatments created and
updated as the procedure is carried out resulting in a tremendous increase in the quality of

life for those patients.
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6.2 Recommendations

In order to over come the limitations of the research which have been identified the
following recommendations are suggested for further research on this topic:

1) In order to decrease the maximum error achieved in the results of this thesis,
there are two possible approaches. First of all, the size of the ANN could be
increased. The positional error of sources increases as the ratio of the tumour
decreases. Therefore, if we had in the order of three times as many input and
output nodes, it should result in maximum positional errors for the larger tumour
sizes similar to the positional errors currently found at smaller sizes
(approximately 1.0 mm). Secondly, we could approach the problem using a
different ANN structure that is more capable of complex problems, and able to
learn new cases as they appear. The Probabilistic Neural Network (PNN) is a very
likely candidate. For information on the PNN, consult [Mast93].

2) Larger training sets for the ANN, consisting of tumours of all shapes and sizes.
will increase the possibility of this technique being used clinically. This will result
in the creation of an ANN which can produce output for a wider range of inputs.
3) Once the ANN is able to produce correct results for most common shapes and
sizes of tumours, it should be extended to handle 3D input. This would then make
this process on par with the current optimization techniques which use SA and GA
for optimization. However, with the speed advantage of ANNs it would be more

advantages than the current techniques.
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4) Finally, the most difficult issue in optimizing brachytherapy treatments can be
introduced, variable source dwell times which will improve the results even
further. This would still be accomplished by training the ANN with SA data,

however the SA would now have variable strength sources in the results.

6.3 Contributions

This thesis has made the following contributions:

1) Identifies a method for applying advanced artificial intelligence techniques to
brachytherapy which has not been done before. The work done in this thesis
identifies that by using the current energy distribution in the tumour it is possible
to train an ANN for brachytherapy optimization. It the work was extended to
include a representation of the tumour (as opposed to using a ratio) it is possible
that this technique would be clinically viable;

2) Applies ANNs to an new area which has never been tried before. The more wide
the range of applications that ANNs are applied to, the more we learn of their
abilities. It also adds to the general knowledge base of applications for which
ANN s are a viable option; and

3) Has produced optimized brachytherapy treatments 180 times faster than current
best technique. Even once the work is expanded to include variable tumour shapes
and sizes, the reduction in speed is not going to be significant. Thus this technique

will still be considerable faster than any of the non-deterministic approaches.
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APPENDIX A
ADDITIONAL SAB RESULTS

A.1 Square Tumour 0.8 cm in Width

The 0.8 cm tumour shown in Fig. A.1 was used as input to the SAB software. The
configuration file shown in Fig. A.2 was used to control the flow of the SAB software as
discussed in Section 4.3.1.2. This trial produced a cost iteration plot as shown in Fig. A.3.
A cooling profile shown in Fig. A.4 was utilized. The output from the SAB software is as
shown in Fig. A.5. The hyperdose sleeve for the solution shown in Fig. A.5, is shown in
Fig. A.6. Since the cost function for SAB is essentially comprised of two factors, the
homogeneity of the dose in a tumour and the size of the hyperdose sleeves, it is easy to
predict the output for a small tumour (0.8 cm). The results shown in Fig. A.5 are exactly as
expected. Since the tumour size is smaller than the maximum hyperdose sleeve size, a
single source could be placed anywhere in the tumour and meet that requirement in the SA
cost function. However, because of the second component of the SA cost function we
would expect that a homogeneous dose in the tumour would be mére desirable. As the
SAB software attempts to find the best solution with the minimum number of sources
possible, a single source at the center is exactly what we expect. The output from the SAB
algorithm for a tumour size of 0.8 cm is therefore shown to be correct. The final cost

function value for this source distribution was 2.290165.
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Fig. A.1 0.8 cm tumour to be optimized with SAB.
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1 // NUMBER_OF_SOURCES
1.0 // DWELL_TINE

1.0 // PRESCRIBED_DOSE
1.0 // INTERNAL_WEIGHT
8.0 // EXTERNAL VEIGHT
0.001 // EXTERNAL FACTOR
0.9 // TEHP_REDUCTION_FACTOR
2500 // MRX_ITERATIONS

2000 // STOP_COUNT

0.025 // WITHIN FACTOR

150  // TRIAL

100 // HMAX INIT TEMP_ITERATIONS
0.95 // INITIAL_ ACCEPT_RATIO
0.00001 // STOP_TEMPERATURE
1.5 // TEMP_INCREASE FACTOR
0.98 // MOVE_PERCENT

0.01 // ADD_PERCENT

0.01 // DELETE_PERCENT

3 // RATIO

1 // JUST_HMOVE

1 // ALLOU_Q_SOURCES

0 // ALLOU_SOURCES_OUTSIDE
o // TIME_FACTOR

// USE_HEURISTIC
static.dat // HELD SOURCES FILENAME

Fig. A.2 Configuration file for 0.8 cm tumour.

Csa(lteration)

. \Y A -~
A TV TE b LG TE AT i STV T 1T A TF L1V U1 2 AT ETR O To B R z RS R e T

O O O O 0O O O O O O O 0O O O O O
O O O O O 0 O O O O QO O O © O O O
0 O W O v O W O W O Wnw O W O N O w
N O I 10 N O M~ ID NN O M~ 1D N O N~ 10
n o < O ¢ 0 M O M M~ N N N © - ©
v N N O O I g 0 0 0w © M~ M~

Iteration [count]

Fig. A.3 Cost plot for 0.8 cm tumour.
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4500
4000 . .

3500 \\
3000

2500 \\

Temperature [dimensionless]

2000 \
1500 \
1000 \
500
O 0O O 9 O O 9O 9 O O O 0O O © O O O
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Iteration [count]

Fig. A.4 Cooling profile for 0.8 cm tumour.

Fig. A.5 Optimized source position for 0.8 cm tumour.
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Fig. A.6 Hyperdose sleeve for 0.8 cm solution.
A.2 Square Tumour 1.2 cm in Width

The 1.2 cm tumour shown in Fig. A.7 was used as input to the SAB software. The
configuration file shown in Fig. A.8 was used to control the flow of the SAB software as
discussed in Section 4.3.1.2. This trial produced a cost iteration plot as shown in Fig. A.9.
A cooling profile shown in Fig. A.10 was utilized. The output from the SAB software is as
shown in Fig. A.11. The hyperdose sleeve for the solution shown in Fig. A.11, is shown in
Fig. A.12. The size of the hyperdose sleeve is obviously larger than the desired threshold
of 1.0 cm (since it spans the entire tumour which is 1.2 ¢cm) however, the SAB software
ran until the maximum number of sources was reached and this was the best solution that

was obtained. Since the solution for 1.5 cm has four sources we would expect that there
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should be no more than four sources for the 1.2 cm tumour. When we inspect the output
from two, three and four sources, the sources are all bunched at the middle (not a
homogeneous distribution). This is due to the fact that entirely too much dose is leaving
the tumour. Since we are looking for the minimum number of sources that produce an
acceptable output, the solution for one source is better than the others. One source has a

cost of 2.365548.

Fig. A.7 1.2 cm tumour to be optimized with SAB.
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1 // NUMBER_OF_SOURCES
1.0 // DVELL_TIME

1.0 // PRESCRIBED_DOSE
1.0 // INTERNAL_UEIGHT
0.0 // EXTERNAL WEIGHT
0.001 // EXTERNAL FACTOR
0.9 // TEHMP_REDUCTION_FACTOR
2500 // MAX_ITERATIONS

2000 // STOP_COUNT

0.025 // WITHIN FACTOR

256 // TRIAL

100 // BAX_INIT_TEMP_ITERATIONS
0.95 // INITIAL_ACCEPT RATIO
0.00001 // STOP_TEMPERATURE
1.5 // TEMP_INCREASE_FACTOR
0.98 // MOVE_PERCENT

0.01 // ADD_PERCENT

0.01 // DELETE_PERCENT

3 // RATIO

1 // 3UST_MOVE

1 // ALLOU_O0_SOURCES

o // ALLOU_SOURCES_ OUTSIDE

0 // TIME_FACTOR

1 // USE_HEURISTIC

static.dat // HELD SOURCES FILENAHE

Fig. A.8 Configuration file for 1.2 cm tumour.
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Fig. A.9 Cost plot for 1.2 cm tumour.
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Fig. A.10 Cooling profile for 1.2 cm tumour.

M%ﬁ% & :

Fig. A.11 Optimized source positions for 1.2 cm tumour.
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Fig. A.12 Hyperdose sleeve for 1.2 cm solution.
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A.3 Square Tumour 1.8 cm in Width

The 1.8 cm tumour shown in Fig. A.13 was used as input to the SAB software. The
configuration file shown in Fig. A.14 was used to control the flow of the SAB software as
discussed in Section 4.3.1.2. This trial produced a cost iteration plot as shown in Fig.
A.15. A cooling profile shown in Fig. A.16 was utilized. The output from the SAB
software is as shown in Fig. A.17. The hyperdose sleeve for the solution shown in Fig.
A.17, 1s shown in Fig. A.18. The hyperdose sleeves are measured to be 0.8 cm well within
our maximum allowed of 1.0 cm. The four sources are also evenly distributed within the
tumour meeting the other requirements of the SAB cost function. The output from the
SAB algorithm for a tumour size of 1.8 cm is therefore shown to be correct. The final cost

function value for this source distribution was 1.363699.
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Fig. A.13 1.8 cm tumour to be optimized with SAB.
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h 7
1.0 //
1.0 /7
1.0 //
0.0 /7
0.001 //
0.8 //
2500 //
2000 //
0.025 //
350 //
wo //
0.85 //
0.00001
1.5 //
0.98 //
0.01 //
8.01 //
3 7/
1 /7
1 7/
[a} 7/
o 7/
1 7/

NUMBER_OF_SOURCES
DUELL_TIHE
PRESCRIBED_DOSE
INTERNAL_VEIGHT
EXTERNAL_WEIGHT
EXTERNAL_FACTOR
TEMP_REDUCTION FACTOR
MAX_ITERATIONS
STOP_COUNT
YITHIN FACTOR
TRIAL
MAX_INIT TEMP_ITERATIONS
INITIAL_ACCEPT_RATIO
// STOP_TEMPERATURE
TENP_INCREASE FACTOR
MOVE_PERCENT
ADD_PERCENT
DELETE_PERCENT
RATIO

JUST_MOVE
ALLOW_O_SOURCES
ALLOW_SOURCES_OUTSIDE
TIME_FACTOR

USE_HEURISTIC

static.dat // HELD SOURCES FILENAME

Fig. A.14 Configuration file for 1.8 cm tumour.
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Fig. A.15 Cost plot for 1.8 cm tumour.
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Fig. A.16 Cooling profile for 1.8 cm tumour.

s

Fig. A.17 Optimized source positions for 1.8 cm tumour.
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Fig. A.18 Hyperdose sleeve for 1.8 cm solution.
A.4 Square Tumour 2.2 cm in Width

The 2.2 cm tumour shown in Fig. A.19 was used as input to the SAB software. The
configuration file shown in Fig. A.20 was used to control the flow of the SAB software as
discussed in Section 4.3.1.2. This trial produced a cost iteration plot as shown in Fig.
A.21. A cooling profile shown in Fig. A.22 was utilized. The output from the SAB
software is as shown in Fig. A.23. The hyperdose sleeve for the solution shown in Fig.
A.23, is shown in Fig. A.24. Although the hyperdose sleeves touch, they are actually very
close to the desired size. When measured, they are found to be 1.066 cm. If we plot the
205% 1sodose curve, then the hyperdose sleeves no longer touch indicating we are very

close to the 200% requirement. The final cost function value for this source distribution
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was 1.103910 however, if we allow the number of sources to increase, the SAB output for
five sources has a final cost value of 1.153827 larger than that of 4 sources. The output

from the SAB algorithm for a tumour size of 2.2 cm is therefore shown to be correct.

Fig. A.19 2.2 cm tumour to be optimized with SAB.
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// NUMBER OF SOURCES
0 // DWELL_TIME

.0 // PRESCRIBED_DOSE
0 // INTERNAL_UEIGHT
0  // EXTERNAL_WEIGHT
.001 // EXTERNAL_FACTOR
0.8 // TEMP_REDUCTION_ FACTOR
2500 // MAX_ITERATIONS

2000 // STOP_COUNT

0.025 // WITHIN_FACTOR

450 // TRIAL

100 // MAX_INIT_TEMP_ITERATIONS
0.95 // INITIAL_ACCEPT_RATIO
0.00001 // STOP_TEMPERATURE
1.5 // TEHP_INCREASE_FACTOR
0.98 // HOVE_PERCENT

0.01 // ADD_PERCENT

0.01 // DELETE_PERCENT

3 // RATIO

1 // JUST_MOVE

1 // BLLOU_O_SOURCES

] // ALLOW_SOURCES_OUTSIDE

s // TIHE_FACTOR

1 // USE_HEURISTIC

static.dat // HELD SOURCES FILENAME

Fig. A.20 Configuration file for 2.2 cm tumour.
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Fig. A.21 Cost plot for 2.2 cm tumour.
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Fig. A.22 Cooling profile for 2.2 cm tumour.

Fig. A.23 Optimized source positions for 2.2 cm tumour.
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Fig. A.24 Hyperdose sleeve for 2.2 cm solution.
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A.5 Square Tumour 2.8 cm in Width

The 2.8 cm tumour shown in Fig. A.25 was used as input to the SAB software. The
configuration file shown in Fig. A.26 was used to control the flow of the SAB software as
discussed in Section 4.3.1.2. This trial produced a cost iteration plot as shown in Fig.
A.27. A cooling profile shown in Fig. A.28 was utilized. The output from the SAB
software is as shown in Fig. A.29. The hyperdose sleeve for the solution shown in Fig.
A.29, is shown in Fig. A.30. The results shown in Fig. A.30 have hyperdose sleeves that
measure 1.066 cm. The hyperdose sleeves are larger than the desired 1.0 cm. However,
when we inspect the other output generated by SAB for larger source counts, none of them
have isodose sleeves as small as this solution. Therefore, SAB has generated the correct

solution. The final cost function value for this source distribution was 1.034577.
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Fig. A.25 2.8 cm tumour to be optimized with SAB.
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It 17
1.0 /7
1.0 //
1.0 /7
0.0 //
0.001 //
0.8 //
2500 //
2000 //
0.025 //
550 /7
100 /7
8.85 //
0.08001
1.5 /7
c.98 //
c.01r //
0.01 //
3 7/
1 //
1 /7
[a] /7
o] /7
1 7/

e
NUHBER_OF_SOURCES
DVELL_TIME
PRESCRIBED_DOSE
INTERNAL_WEIGHT
EXTERNAL_VEIGHT
EXTERNAL_FACTOR
TEMP_REDUCTION_FACTOR
MAX_TTERATIONS
STOP_COUNT
GITHIN FACTOR
TRIAL
MAX INIT_TEMP_ITERATIONS
INITIAL_ACCEPT RATIO

// STOP_TEMPERATURE
TEHP_INCREASE_FACTOR
MOVE_PERCENT
ADD_PERCENT
DELETE_PERCENT
RATIO

JUST_MOVE
ALLOU_O_SOURCES
ALLOW_SOURCES_OUTSIDE
TIHE_FACTOR

USE_HEURISTIC

static.dat // HELD SOURCES FILENAHE

Fig. A.26 Conﬁguratibn file for 2.8 cm tumour.
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Fig. A.27 Cost plot for 2.8 cm tumour.
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Fig. A.28 Cooling profile for 2.8 cm tumour.

SR

Fig. A.29 Optimized source positions for 2.8 cm tumour.
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S

Fig. A.30 Hyperdose sleeve for 2.8 cm solution.
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APPENDIX B
ADDITIONAL MANN RESULTS

B.1 ANN VWith 6 Internal Nodes
When the MANN software is used to train an ANN with 901 input nodes, 6

internal nodes and 900 output nodes, the results of the training are shown in Fig. B.1.

Fig. B.1 Results of training ANN using MANN for 6 internal nodes.
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B.2 ANN With 8 Internal Nodes
When the MANN software is used to train an ANN with 901 input nodes, 8

internal nodes and 900 output nodes, the results of the training are shown in Fig. B.1.

b

Fig. B.2 Results of training ANN using MANN for 8 internal nodes.
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B.3 ANN With 10 Internal Nodes
When the MANN software is used to train an ANN with 901 input nodes, 10

internal nodes and 900 output nodes, the results of the training are shown in Fig. B.2.

Fig. B.3 Results of training ANN using MANN for 10 internal nodes.
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B.4 ANN With 14 Internal Nodes
When the MANN software is used to train an ANN with 901 input nodes, 14

internal nodes and 900 output nodes, the results of the training are shown in Fig. B.4.

:clal Neural Network

Fig. B.4 Results of training ANN using MANN for 14 internal nodes.
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B.5 ANN With 16 Internal Nodes
When the MANN software is used to train an ANN with 901 input nodes, 16

internal nodes and 900 output nodes, the results of the training are shown in Fig. B.5.

Fig. B.5 Results of training ANN using MANN for 16 internal nodes.
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B.6 ANN With 18 Internal Nodes
When the MANN software is used to train an ANN with 901 input nodes, 18

internal nodes and 900 output nodes, the results of the training are shown in Fig. B.6.

f - Artificial Neural Netwotk . i B B B2

Fig. B.6 Results of training ANN using MANN for 18 internal nodes.
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APPENDIX C
SAB SOURCE FILES

C.1 Cost.c

/*************************:*

FILENAME: cost.c
PROJECT: SAB - Simulated Annealing for Brachytherapy
AUTHOR : S. Miller
DESCRIPTION: Implements functions to calculate the cost

of a specific treatment in a tumour
ASSUMPTIONS: none

DATE WRITTEN: Summer 1998 - Summer 2002
MODIFICATION HISTORY:Version 1.0

*/

#include «<stdio.h>
tiinclude <«stdlib.h>
#include <math.h>
#include "globals.h"

JERFEK KK E R F AR AR AR AR Ak ko kA ARk ko ok kk

FUNCTION NAME:CheckAreaRecursive

PURPOSE:

INPUT:

OUTPUT:

To recursively go through a tumour and treatment map

and figure out the area of the hyperdose (dose>200%)
The address of the treatment map, the x, and y coordinates
and the address of the count of the area (in pixels)

None

FUNCTIONS CALLED:CheckAreaRecursive
ASSUMPTIONS:The treatment map has already been converted into a binary representation,
where 1 means dose is greater than 200%, and 0 means dose is less than

NOTE:

*/

void CheckAreaRecursive (DoseArea * Array,int x,int y,int * count)

200%.

if ((Array +x*xSize + y)->Dose > 0.0f)

//set it to 0.0f because we have included it now

(Array + x*xSize + y)-»>Dose = 0.0f;

//increase the count of the area
{*count)++;

//£ind the rest of the 1.0s in the area

if
if
if
if

}//end

(x>0)

This is a recursive function - watch stack usage!

CheckAreaRecursive (Array,x-1,y,count) ;

(y>0)

CheckAreaRecursive (Array,x,y-1,count) ;

(x<xSize-1)

CheckAreaRecursive (Array,x+1,y, count) ;

(y<ySize-1}

CheckAreaRecursive (Array,x,y+1, count) ;

if dose>0

}//end function CheckAreaRecursive

VAR AR R R e T s

FUNCTION NAME:CheckHyperDoseSleavelIntegration

PURPOSE:

Checks if all of the hyperdose sleaves are within spec - i.e.

are only lcm squared
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INPUT: The address of the current treatment solution - point source list
OUTPUT: 1 if hyperdose sleaves are OK, else 0.
FUNCTIONS CALLED:CheckAreaRecursive
ASSUMPTIONS:The treatment map has already been converted into a binary representation,
where 1 means dose is greater than 200%, and 0 means dose is less than
200%.
*/
int CheckHyperDoseSleaveIntegration(PS *ThePS)
{
int i=0,j=0;// for loop variables
float Dose=0.f;// dose at each point in the tumour map
PS *TempPS = NULL;// temporary point source solution list
PS *TempStaticPS=NULL;// temp to hold static point sources
float Min=9999999.f;// the minimum dose in the tumour
DoseArea *TempArea=NULL;/* This is the 2D arxay of the tumour area */
int count=0;// count of area size
float mmSize=0.f;// holds the milli meter area size
float maxSize=0.f;//holds the maximum allowed area size

/*Go through the whole "Area" and calculate the dose*/
for (i=0;i<x8ize;i++)
{

for (j=0;j<ySize;j++)

// Run though Dynamic list of Sources
Dose = 0.0f;
TempPS = ThePS;
while (TempPS)

if ({(TempPS -> x == i) && {(TempPS -> == 3j))
Dose += TempPS -»> DwellTime*sqgr (RATIO) ;
else
Dose += ((TempPS -> DwellTime)*sqr (RATIO))/sqr(distance(i,j,TempPS->x, TempPS-
>y));
TempPS = TempPS -> NextPS;
}// end while

// Run through Static list of Sources
TempStaticPS = FirstStaticPS;
while (TempStaticPs)

if {(TempStaticPS -> x == i) && (TempStaticPS -> y == j))
Dose += TempStaticPS -> DwellTime * sqgr (RATIO);
else
Dose += ((TempStaticPS -> DwellTime) *sqr (RATIO)) /sqr(distance (i, j, TempStaticPS-
>x, TempStaticPS~>y)};

TempStaticPS = TempStaticPS -> NextPS;
}// end while

// Store the Dose to the "Area" array
(Area + ySize*i + j) -> Dose = Dose;

// might as well store the wminimum to the periphery at the same time
if (((Area + ySize*i + j) -> Type == PERIPHERY) &&(Dose<Min)}
Min = Dose;
}//end for j
}//end for i

// 5 steps to check hyperdoses
//1. Make new area as exact copy of old area and set any point receiving
// too much dose (200% or more) to 1, and set the rest to 0

TempArea = {DoseArea *)malloc(xSize*ySize*sizeof (DoseArea));
for (i=0;i<xS8ize;i++)
{

for (j=0;j<ySize;j++)

if ({(Area+i*ySize+j)->Dose/(float)Min) > 2.0f)
{(TempArea+i*ySize+j)->Dose = 1.0f;
else
(TempArea+i*ySize+j)->Dose = 0.0f;
(TempArea+i*ySize+j)}->Type = (Area+i*ySize+j)->Type;
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}

//2. Use recursive algorithm to find sizes of hyperdose sleaves using map
// created in step 1

fprintf (stderr, "There are %d sources\n",NumPS(ThePS));

for (i=0;i<xSize;i++)

for (j=0;j<ySize;j++)

count=0;
CheckAreaRecursive (TempArea, i, j, &count) ;

//3. turn count into mm*mm

mmSize = {float)count/(float) (RATIO*RATIO) ;

maxSize = (float)78.53981634; //5*5*PI (PI * r sqrd, in mm)

if (count>0)
fprintf (stderr, " (%4, %d) mmSize is: %f max size is %f\n",i,j,mmSize,maxSize);

//4. return(l) if bad
if (mmSize>maxSize)

{
fprintf (stderr, "Did not reach the end of checkhyperdosesleaveintegration, hyperdose
sleave too big.\n\n");
return(l);//the hyperdose area is too big
}//end if hyperdose size is too big
}//end for j
}//end for i

//5. Else return{0) good
fprintf (stderr, "All GoOoD in CheckHyperDoseSleavelntegration\n\n");
return{0);

}//end function CheckHyperDoseSleavelIntegration

VA R R R R e

FUNCTION NAME:CheckHyperDoseSleave

PURPOSE: Checks if all of the hyperdose sleaves are within spec - i.e.

are only lcm squared
INPUT: The address of the current treatment solution - point source list
OUTPUT: 1 if hyperdose sleaves are NOT OK, else 0 if OK

FUNCTIONS CALLED:CheckHyperDoseSleavelntegration
ASSUMPTIONS :None

*/

int CheckHyperDoseSleave (PS *ThePS)

int i; // for loop index

int j; // for loop index

float Dose=0.0f;// holds the dose at a point

PS *TempPS=NULL;// temp list of point sources

PS *TempStaticPS=NULL;// temp list of static point sources
float Min=9999999.f;// minimum dose in tumour so far

/*Go through the whole "Area® and calculate the dose*/
for (i=0;i<xSize;i++)
{
for (j=0;j<ySize;j++)
{
// Run though Dynamic list of Sources
Dose = 0.0f;
TempPS = ThePS;
while (TempPS)
{
if ((TempPS -> X == i) && {TempPS -> y == j
Dose += TempPS -»> DwellTime*sqr (RATIO) ;
else
Dose += ((TempPS -> DwellTime)*sqr (RATIO))/sqr(distance(i,j, TempPS->x,TempPS->y));
TempPS = TempPS -> NextPS;
}// end while

// Run through Static list of Sources
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TempStaticPS = FirstStaticPs;
while (TempStaticPS)
{
if ((TempStaticPS -> x == i) && (TempStaticPS -> y == j))
Dose += TempStaticPS -> DwellTime * sqgr (RATIO);
else
Dose += ((TempStaticPS -> DwellTime)*sqr (RATIO))/sqgr(distance(i,j, TempStaticPS-
>x, TempStaticPS->y)};

TempStaticPS = TempStaticPS -> NextPS;
}// end while

// Store the Dose to the "Area" array
(Area + ySize*i + j) -> Dose = Dose;

// might as well store the minimum to the periphery at the same time
if ({((Area + ySize*i + j) -»> Type == PERIPHERY)&&(Dose<Min))
Min = Dose;
}//end for j
}//end for i

//check that the hyperdose sleave is small enough for Dynamic Sources
TempPS = ThePS§;
while (TempPS)
{
i = TempPS -> y;
i = TempPS -> x;
/* west */
if (§>S*RATIO)

{
Dose = (({(Area + ySize*i + (j-5*RATIO))->Dose)/Min);
if (Doses>2.f)
return(1);
else //3=0

Dose = (((Area + ySize*i}->Dose)/Min};
if (Dose>2.f)
return(l);

/* north */
if (i>5*RATIO)

{
Dose = (((Area + ySize*(i-5*RATIO) + j)->Dose)/Min);
if (Dose>2.f)
return{l);
}
else //i=0
Dose = (((Area + j)->Dose)/Min);
if (Dose>2.f)
return(l);
}

/* east */
if (j+5*RATIO<ySize)

Dose = (((Area + ySize*i + (j+S*RATIO))->Dose)/Min);
if (Dose>2.f)
return(l);

else //j=ySize-1
{

Dose = (({Area + ySize*i + (ySize-1))->Dose)/Min);
if (Dose>2.f)
return(l);
}
/* south */
if (i+5*RATIO<xSize)

Dose = (({Area + ySize*(i+5*RATIO) + j)->Dose)/Min);
if (Dose>2.f)
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return(1);

}
else // i = xSize-1
Dose = ((({Area + ySize*(xSize-1} + j)->Dose)/Min);
if (Dose»2.f)
return(l);

}
TempPS = TempPS -> NextPS;
}/* end while */

//check that the hyperdose sleave is small enough for Static Sources
TempPS = FirstStaticPS;
while (TempPS)

3 TempPS -~> y;
i TempPS -> x;
/* west */

if (j>5*RATIO)

Dose = (((Area + ySize*i + (j-5*RATIO))->Dose)/Min);
if (Dose>2.f)
return(l);

}
else //j=0
{
Dose = (((Area + ySize*i)->Dose)/Min);
if (Dose>2.f)
return(l);
}

/* north */
if (i>5*RATIO)

{
Dose = (((Area + ySize*{i-5*RATIO)} + j)->Dose)/Min);
if (Dose>2.f)
return(i);
else //i=0
{
Dose = (((Area + j)->Dose)/Min);
if (Dose>2.f)
return(l);
}

/* east */
if (j+5*RATIO<ySize)

Dose = (((Area + ySize*i + (j+5*RATIO))->Dose)/Min);
if (Dose>2.f)
return(l);

}

else //j=ySize-1
{

Dose = (((Area + ySize*i + (ySize—l))->Dosé)/Min);
if (Dose>2.f)
return(l);

/* south */
if (i+5*RATIO<xSize)

Dose = (({{Area + ySize*(i+5*RATIO) + j)->Dose)/Min);
if (Dose>2.f)
return{l);

else // i = xSize-1

Dose = (({Area + ySize*(xSize-1) + j)->Dose}/Min);
if (Dose>2.f)
return{l);

}

TempPS = TempPS -> NextPS;
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}/* end while */

/*

//check that the hyperdose sleave is BIG enough

TempPS = ThePS;
while (TempPS)

j = TempPS -> y;
i = TempPS -> x;

// west
if (j>4)
{
Dose = ({(Area +

if (Dose<=2.f)
return(-1);

}
else //j=0
Dose = (((Area +
if (Dose<=2.f)
return(-1);
}
// north
if (i>4)
{
Dose = (({(Area +
if (Dose<=2.f)
return({-1);
else //i=0
Dose = (({Area +
if {(Dose<=2.f)
return(-1);
}
// east
if (j+4<ySize)
{
Dose = (((Area +
if (Dose<=2.f)
return(-1);
}

else //j=ySize-1

Dose = (((Area +
if (Dose<=2.f)
return{-1};

// south
if (i+4<xSize)
{
Dose = ({(Area +

if (Dose<=2.f)
return(-1);

else // i = xSize-1

Dose = ({(Area +
if (Dose<=2.f)
return(-1);

}

ySize*i + (j-4))->Dose)/Min);

ySize*i)->Dose) /Min);

ySize* (i-4) + j}->Dose)/Min);

j)->Dose) /Min) ;

ySize*i + (j+4))->Dose)/Min);

ySize*i + (ySize-1)})->Dose)/Min);

ySize* (i+4) + j)->Dose)/Min);

ySize*(xSize-1) + j)->Dose)/Min);

TempPS = TempPS -> NextPS;

}// end while
*/

// if nothing else has a problem, return that all is well (0)

return{0});

)//end function CheckHyperDoseSleave
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VA A R L s TR T T ey

FUNCTION NAME:CalculateCost

PURPOSE: Calcualtes the cost of the current solution - this is the COST FUNCTION
for SAB!

INPUT: The address of the current treatment solution - point source list

OUTPUT : The cost of the current solution

FUNCTIONS CALLED:None
ASSUMPTIONS:None

*/

float CalculateCost (PS *ThePS)

int i; // for loop index

int j; // £or loop index

float Dose=0.0f;// holds dose of current point in tumour

PS *TempPS=NULL;// temp list of Point Sources

PS *TempStaticPS=NULL;// temp list of static point sources

float MinTumour=9999999.f;// minimum dose in tumour

float MinPer = 9999999.f;// minimum peripheral dose

float MaxPer = 0.f;// maximum peripheral dose

float TotalDoseToHyperCheckPoints=0;// holds dose to all hyperdose checkpoints
int Count=0;// counts number of check points > 200% to calculate average
float A=0.f,B=0.£,C=0.£f;// 3 elements of cost function

float TempFloat=0.0f;// temp to hold output from function (cost)

float SumDif=0.f;// holds the actual dose at the check points

/*Go through the whole "Area" and calculate the dose*/
for (i=0;i<xSize;i++)
{

foxr (j=0;j<ySize;j++)

// dose is initially ©
Dose = 0.0f;

// Run through Dynamic list of Sources
TempPS = ThePS;
while (TempPS}
{
if ((TempPS -> x == i) && (TempPS -»> y == 3j))
Dose += TempPS -> DwellTime * sqr (RATIO);
else
Dose += ({TempPS -> DwellTime)*sqr (RATIO))/sqr(distance(i,j, TempPS->x, TempPS->y));

TempPS = TempPS -> NextPS;
}//end while for dynamic sources

// Run through Static list of Sources
TempStaticPS = FirstStaticPS;
while (TempStaticPs)

if ((TempStaticPS -> x == i) && (TempStaticPS -> y == j))
Dose += TempStaticPS -> DwellTime * sqgr(RATIO);
else
Dose += ((TempStaticPS -> DwellTime) *sqr (RATIO))/sqr(distance(i,j, TempStaticPS-

>X, TempStaticPS->y));

TempStaticPS = TempStaticPS -> NextPS;
}// end while dynamic sources

// Store the Dose to the "Area" array
(Area + ySize*i + j) -> Dose = Dose;

/*might as well store the minimum to the tumour at the same time...*/

if (((Area + ySize*i + j) -> Type == TUMOUR)&&(Dose<MinTumour)
MinTumour = Dose;

else if (((Area + ySize*i + j) -> Type == PERIPHERY)&&(Dose<MinPer))
MinPer = Dose;

else if (((Area + ySize*i + j) -> Type == PERIPHERY)&& (Doses>MaxPer))

MaxPer = Dose;
}//end for j
}//end for i
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/* We have the minimum to the tumour and all of the doses calculated */
/* Now, we must find the hyper dose sleave in 4 dir'ns for ===DYNAMIC===*

TempPS = ThePS;
while (TempPS)

{

3 = TempPS -> y;
i = TempPS -> Xx;
/* west */

if (j>5*RATIO}

Dose = {(({Area + ySize*i + (j-S5*RATIO))->Dose)/MinPer);
TotalDoseToHyperCheckPoints+=Dose;

SumDif += fabs(Dose-2.0);

Count++;

else //j=0

Dose = (((Area + ySize*i}->Dose)/MinPer);
TotalDoseToHyperCheckPoints+=Dose;
SumDif += fabs(Dose-2.0};
Count++;
}
/* noxth */
if (i>5*RATIO)
{
Dose = (((Area + ySize*(i-5*RATIO) + j)->Dose)/MinPer);
TotalDoseToHyperCheckPoints+=Dose;
Sumbif += fabs(Dose-2.0);
Count++; }
else //i=0

Dose = (((Area + j)-»>Dose)/MinPer);
SumDif += fabs(Dose-2.0};
TotalDoseToHyperCheckPoints+=Dose;
Count++;

/* east */
if (j+5*RATIO<ySize)

{
Dose = (((Area + ySize*i + (j+5*RATIO))->Dose)/MinPer);
TotalDoseToHyperCheckPoints+=Dose;
SumDif += fabs(Dose-2.0);
Count++;
}

else //j=ySize-1

Dose = (((Area + ySize*i + (ySize-1))->Dose)/MinPer)};
TotalDoseToHyperCheckPoints+=Dose;
SumDif += fabs(Dose-2.0);
Count++;}
/* south */
if (i+5*RATIO<xSize)

Dose = {({Area + ySize*(i+5*RATIO) + j)->Dose)/MinPer);
TotalDoseToHyperCheckPoints+=Dose;
SumDif += fabs(Dose-2.0);
Count++; }
else // i = xSize-1

Dose = (((Area + ySize*(xSize-1) + j)->Dose)/MinPer);
TotalDoseToHypexrCheckPoints+=Dose;

SumDif += fabs(Dose-2.0);

Count++;

}

TempPS = TempPS ~> NextPS;

}// end while dynamic sources

/* We have the minimum to the tumour and all of the doses calculated */

/* Now, we must find the hyper dose sleave in 4 dir'ns for ===STATIC===*
TempPS = FirstStaticPS;
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while (TempPS)

j = TempPS -> y;
i = TempPS -»> x;
/* west */

if (j>5*RATIO)

Dose = {({Area + ySize*i + (j-5*RATIO))->Dose)/MinPer);
TotalDoseToHyperCheckPoints+=Dose;

sumDif += fabs(Dose-2.0);

Count++;

else //j=0

Dose = {((Area + ySize*i)->Dose)/MinPer};
TotalDoseToHyperCheckPoints+=Dose;
Sumbif += fabs(Dose-2.0);
Count++; }
/* north */
if (i>5*RATIO)

Dose = (((Area + ySize* (i-5*RATIO) + j)->Dose)/MinPer);
TotalDoseToHyperCheckPoints+=Dose;
SumDif += fabs (Dose-2.0);
Count++; }
else //i=0
{
Dose = (({{Area + j)->Dose)/MinPer);
TotalDoseToHyperCheckPoints+=Dose;
SumDif += fabs(Dose-2.0);
Count++; }
/* east */
if (j+5*RATIO<ySize)
{
Dose = {((Area + ySize*i + (j+5*RATIO))->Dose}/MinPer);
TotalDoseToHyperCheckPoints+=Dose;
SumDif += fabs(Dose-2.0);
Count++;

else //j=ySize-1

Dose = (((Area + ySize*i + (ySize-1))->Dose)/MinPer);
TotalDoseToHyperCheckPoints+=Dose;
SumDif += fabs{(Dose-2.0);
Count++; }
/* south */
if (i+5*RATIO<xSize)
{
Dose = ({(Area + ySize* (i+5*RATIO) + j)->Dose)/MinPer);
TotalDoseToHypexrCheckPoints+=Dose;
SumDif += fabs{Dose-2.0);
Count++; }
else // i = xSize-1

{
Dose = (({Area + ySize*{xSize-1) + j)->Dose)/MinPer);
TotalDoseToHyperCheckPoints+=Dose;
SumbDif += fabs(Dose-2.0);
Count++;
}

TempPS = TempPS -> NextPS;
}///end while static sources

// BAverage hyperdose value

// A = {{float)TotalDoseToHyperCheckPoints/ (float)Count)-2.f;
A = (float) Sumbif/(float) (Count-1};

// Min to the tumour

B = 1.f - MinTumour/MinPer;

// Max to periphery

C = MaxPer/MinPer - 1.05f;

if (B>0.f)
fprintf (stdexr, "8 bigger...\n");
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if (B > 0.f)//min in the tumour is too cold

if (C > 0.f)//too much dose leaving the tumour
TempFloat = A+B+C;
else //correct dose leaving tumour
TempFloat = (A+B);
}// end if
else// wmin in tumour OK

if (C > 0.f)//too much dose leaving the tumour
TempFloat = (A+C);
else //correct dose leaving tumour
TempFloat = (A);
}// end else

if (TempFloat < 0.0f)

fprintf (stderr,"Cost -ve: A:%f B:%f C:%f Cost:%f\n",A,B,C,TempFloat);
if (B>0.f)

fprintf (stderxr,"--- B Big ---\n");

return{TempFloat) ;
}//end of function CalculateCost

C.2 DRand48.c

/* @(#)drand4a8.c2.2*/
/*LINTLIBRARY*/
/*

*

drand48, etc. pseudo-random number generator

This implementation assumes unsigned short integers of at least

16 bits, long integers of at least 32 bits, and ignores

overflows on adding or multiplying two unsigned integers.
Two's-complement representation is assumed in a few places.

Some extra masking is done if unsigneds are exactly 16 bits

or longs are exactly 32 bits, but so what?

An assembly-language implementation would run significantly faster.

B I S S

/

//#include <stdlib.h>
#include "rand48.h®

/ srgm26feb02 addd
#include <time.h>

//srgm26f£eb02 added
#define DRIVER 1

ifndef HAVEFP
f#idefine HAVEFP 1
#endif
#define N16
#idefine MASK( (unsigned) (1 << (N - 1}) + (1 << (N - 1}) - 1)
f#idefine LOW({x) ((unsigned) (x) & MASK)
#idefine HIGH(x)LOW((x) »>> N)
#define MUL(x, y, z){ long 1 = {(long){x) * {(long) (y}; \
(z)} [0] = LOW(1l); (=z)[1] = HIGH(1);
#define CARRY (x, y) ({long) (x) + (long) (y) > MASK)
#define ADDEQU(x, y, z)({z = CARRY({(x, (y)), x = LOW(x + (y)))
#define X00x330E
#define X10xABCD
#define X20x1234
f#idefine AOOXE66D
#define A1O0xDEEC
fidefine A20x5
#define COxB
#define SET3(x, x0, x1, x2}{{(x)[0] = (x0), (x)I[1] = (x1), (x)(2] = (x2))
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f#idefine SETLOW(x, y, n) SET3{(x, LOW((y}Inl), LOW((y) [{n)+1])}, LOW({y) [(n)+21))
f#idefine SEED({x0, x1, x2} (SET3(x, x0, x1, x2), SET3(a, A0, Al, A2), ¢ = C)
#define REST{v)for (i = 0; i < 3; i++) { xsubifil = x[i); x[i] = temp[il; } \
return (v);
#idefine NEST(TYPE, £, F)TYPE f(xsubi) register unsigned short int *xsubi; { \
register int i; register TYPE v; unsigned temp([3}; \
for (i = 0; i < 3; i++) { templil = x[il; x[i] = LOW(xsubili]); } \
v = F(); REST(v); }
#define HI_BIT(1L << (2 * N - 1)

static void next( void );

static unsigned x[3] = { X0, X1, X2 }, al3] = { A0, A1, A2 }, c = C;
static unsigned short lastx([3];

#if HAVEFP
double drand48( void };

double
drand48( void )

#if pdpll
static double twolém; /* old pdpll cc can't compile an expression */
twolém = 1.0 / (1L << N); /* in "double® initializer! */

ttelse
static double twolém = 1.0 / (1L << N};

#endif

next () ;
return (twolém * (twolém * (twolém * x[0] + x[1]) + x[2])};

}

//NEST (double, erand48, drand48);
#else
long irand48( register unsigned short );

long

irand48( register unsigned short m )

/* Treat x{i) as a 48-bit fraction, and multiply it by the 16-bit
* multiplier m. Return integer part as result.

*/

{

unsigned r{4], pl2], carryo = 0;

next () ;
MUL(m, x[0], &rl0));
MUL(m, x[2], &r[2]);
MUL(m, x([1), p);
if (CARRY(r[1], pl0l})
ADDEQU (r {2}, 1, carry0);
return (r{3] + carry0 + CARRY(r([2], pi11}));

}

long
krand48{ register unsigned short *xsubi, unsigned short m )
/* same as irand48, except user provides storage in xsubilf] */
{
register int i;
register long iv;
unsigned temp(3];

for (i = 0; i < 3; i++) {
temp[i] = x[i);
x[i} = xsubilil;

iv = irand48(m);
REST(iv);

}

#endif
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long int
lrand48( void )

next () ;
return (({long)x{2] << (N - 1)) + (x{1] »>> 1));
}
long int
mrand48{ void )
{
register long 1;
next () ;
/* sign-extend in case length of a long > 32 bits
(as on Honeywell) */
return ({1 = ((long)x[2] << N) + x{1]) & BI_BIT ? 1 | -HI_BIT : 1);
}

static void
next ( void )

{

unsigned pl2], ql2}, r{2], carry0, carxryl;

MUL(alfo0}, x[0), p);

ADDEQU(p (0], ¢, carry0);

ADDEQU(p[1], carry0, carryl);

MUL(al0], x[1}, a);

ADDEQU(p (1], ql0], carryo);

MUL(al1]l, x[0], ©);

x[2] = LOW{carry0 + carryl + CARRY(p{1], rl0l) + ql1l + r{i1] +
al0] * x[2] + all]l * x{1] + a[2] * x{0});

x[1] = LoW(p([1} + r[0l);

x[0] = LOW(pl0l);

}

void
srand48(long int seedval)

SEED (X0, LOW(seedval), HIGH(seedval));

}

unsigned short int *
seed48 (unsigned short seedlév(3])

SETLOW (lastx, x, 0);
SEED (LOW (seed16v[0]), LOW(seed1év[1]), LOW(seedlév[2]));
return (lastx);

}

void
lcong48 (unsigned short int param[7])

SETLOW{x, param, O0);
SETLOW({a, param, 3);
c = LOW(param[6])};

}

//NEST (long, nrand48, lrand48);
//NEST {long, jrand48, mrand48);

#ifdef DRIVER
/*
This should print the sequences of integers in Tables 2
and 1 of the TM:
1623, 3442, 1447, 1829, 1305,
657EB7255101, D72A0C966378, 5A743C062A23,
*/

#include <stdio.h>

// srgm09mar02 commented out to include into SA program directly now that it is checked out.
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//srgm26feb02 changed from main()
/*void main(void)

{
int i;
// srgm26feb02 was: srand48(10);
unsigned long int randSeed;
time((long int*)&randSeed);
srand48 (randSeed) ;
for (i = 0; i < 80; i++) {
//srgm09mar02 tryin to get 0-1 intexrval was: printf("%4d ", (int) (4096 * drand48({)));
printf("%1.6£f ", (float) (drand48()});
//printf ("% .4X%.4X%.4X\n", x[2), x[1}, x[0l);
// srgm09mar02 - note that x[2] IS the drand48 result! so I can just call drand!
printf ('$f\n", (float)x[2]/6553%5);
}
}

*/ [/ srgm09mar02 end of comment out block

endif

C.3 Globals.h

[RHEA IR IR I KKK RA KA I IR AR KRR AR IR AR AR AT AR [

/* */
/* This header file contains definitions and */

/* variables needed in main.c for Simulated */

/* Annealing. */

/* */
/************************************************/

/* */
/* */
/* CREATED: 26/08/98 - present*/

/* AUTHOR : STEVEN MILLER */

/* Programmed for M.Sc. Thesis*/

/* Version: 2.6.3.a */

/* */

/************************************************/

#ifndef _GLOBALS_H
#define _GLOBALS_H 1

// conditional compile flag to use rand48 or default RNG
#define USE_RNG48 1

#define TEMP_REDUCTION SIMPLE 0

#define MAX TEMP REDUCTIONS 110

#include <time.h>

// Define functions
#idefine sqgr{x) ((x)*(x))

// Define stored values which represent different elements

#define TUMOUR 0/* the grey scale value for pgm files */

#define PERIPHERY 40/* the grey level for the periphery of the tumour */

#define POINT_ SOURCE 175/* the grey scale of a point source for the pgm files */
#define EXTERNAL 255/* the grey scale value for pgm files */

// Define Debug Variables for debug compilation

#define DEBUG_MOVE_SOURCES 0/* to debug the MoveSource Alg. */

#define DEBUG_CREATE AREA 1/* to debug CreateAreaMap fnct */

#define DEBUG_INSERT_SOURCES 0/* to debug the insert source algorithm */
#define DEBUG_CHECK_COST 0/* to debug the check cost fnct. */

#define DEBUG_INIT_TEMP 0/* to debug the initial temp. fnct */

#define DEBUG_SIM_ANN 1/* to debug the main simulated annealing loop */
#idefine DEBUG_COST 0/* to debug the cost function */

#define DEBUG_PLOT DOSE 0/* to debug the 3-D dose plotting function */
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#idefine

// Defa
f#idefine
#idefine
#define
#define
#idefine
#define
tumour*
#define
#define
#define
#define
fidefine
#define
fidefine
#define
#define
fidefine
#define
#define
#define

#idefine
f#define
#idefine
#define
#define
method

// Defi
/* this
typedef

DEBUG_CHECKHYPERDOSE 0/* to debug the checkhyperdose function */

ult values for Simulated Annealing

DEFAULT_NUMBER_OF SOURCES 1/* the default number of sources to imnsert into the simulation */
DEFAULT_DWELL_TIME 1.0/* the default amount of time a source dwells for */

DEFAULT_PRESCRIBED DOSE 1.0/* the default dose for the simulation */

DEFAULT INTERNAL WEIGHT 1.0/* used to weight the contribution from internal dose */

DEFAULT EXTERNAIL WEIGHT 1.0/* used to weight the contribution from external dose */

DEFAULT EXTERNAL FACTOR 0.25/* this is the percentage of prescribed dose that can be outside the
/

DEFAULT _TEMP_REDUCTION_ FACTOR 0.9/* used to reduce the temperature of the simulation */
DEFAULT_MAX_ ITERATIONS 200/* the number of iterations for each temperature value */
DEFAULT_STOP_COUNT 200/* this is the number of iterations that must have temp. within WITHIN */
DEFAULT_WITHIN_FACTOR 0.025/* the percentage that the cost can differ */

DEFAULT_TRIAL_NUMBER 1/* if no trial is provided this will be the defalut */

DEFAULT MAX_INIT_TEMP_ITERATIONS 100/* the number of iterations to get the initial temp */
DEFUALT INITIAL ACCEPT RATIO 0.95/* the acceptance ratio to start off with */
DEFAULT_STOP_TEMPERATURE 0.00001/* the default temperature for the simulation */
DEFAULT»TEMP_INCREASE_FACTOR 1.5/* used to increase the temperature in the InitTemp function */
DEFAULT MOVE_PERCENT 0.98/* the probability to move a source */

DEFAULT_ADD_PERCENT 0.01/* the probability to add a source */
DEFAULT_DELETE_PERCENT 0.01/* the probability to delete a source */
DEFAULT_RATIO 1/* this is the ration 1 sq. == 1 mm */

DEFAULT_JUST_MOVE 1/* this is 1 if there is only move alowed, i.e. no insertions or deletions*/
DEFAULT_ALLOW_0_SOURCES 0/* if this is 1 then it is OK to have 0 sources */

DEFAULT ALLOW_SOURCES_OUTSIDE 0/* if this is 1 then sources are not confined to the tumour */
DEFAULT TIME_FACTOR 0/* if this is 1 then there can be more than one source at a location */
DEFAULT_USE_HEURISTIC 1/* usually this is set to 1 as well as JUST MOVE so that the heuristic
is used*/

ne Data Structures
is the structure which loads in the tumour file */
struct _DoseAreaf{

float Dose;/* dose at that area point */

int
}po

/* this
typedef
int
int

Type;/* type of point (TUMOUR<EXTERNAL, etc. */
seArea;
is a structuure for the point sources */

struct PointSource({
x; [/* x position of point source */
y; /* y poistion of point source */

float DwellTime;/* dwell time of point source */
struct PointSource *NextPS;/* pointer to next point source in the linked list */

}ps;

// Glob
extern
extern
extern
extern

extern
extern
extern
tumour*
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

al Variables in: "main.c"

DoseArea * Area;/* This is the 2D array of structures */

PS * FirstPS;/* This is the linked list created in InsertSources */

PS * FirstNewPS;/* This is the linked list created from FirstPS in MoveSources */

PS * FirstStaticPS;/* This is the linked list of static point sources loaded from a file */

float INTERNAL_WEIGHT;/* used to weight the contribution from internal dose */
float EXTERNAL WEIGHT;/* used to weight the contribution from external dose */
float EXTERNAL FACTOR;/* this is the percentage of prescribed dose that can be outside the
/

int xSize;/* This is read in from the tumour input file */

int ySize;/* This is read in from the tumour input file */

int TRIAL;

int NUMBER_OF_SOURCES;/* This is the number of sources in the simulation */

float DWELL TIME;/* global var. for dwell_time */

float PRESCRIBED_DOSE;/* the prescribed dose... */

float TEMP_REDUCTION_FACTOR;/* the amount to decrease temp after MAX_ITERATIONS */
int MAX_ITERATIONS;/* the max iterations in the sim. ann. b/f temp is reduced+*/
int STOP_COUNT;/* if this many within WITHIN FACTOR then stop */

float WITHIN FACTOR;/* this is the % of iterations that have to be within */

int GlobalTumourCount;/* this is to count the number of tumour spots */
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extern
extern
extern
extern

extern
extern
extern
extern
extern
extern

extern
extern
extern
extern
extern
extern

int

HyperDose;/* This is the global variable to set if the dose is too high */

FILE * GlobalOutputFile; /* This is where all of the output to stderr will be redirected */

int

MAX INIT_TEMP_ITERATIONS;/* this is the user entered number of temp. init. iterations */

float INITIAL ACCEPT RATIO;/* this is the number of accepted trials required to accept init.
temp. value */

float STOP_TEMPERATURE;/* this is the smallest that the temperature gets in a simulation */
float TEMP_INCREASE_FACTOR;

float MOVE_PERCENT;

float ADD_PERCENT;

float DELETE_PERCENT;

int

int
int
int
int
int

RATIO;

JUST_MOVE;
ALLOW_0_SOURCES;
ALLOW_SOURCES_OUTSIDE;
TIME_FACTOR;
USE_HEURISTIC;

char GlobalStaticFileName[128];/* For the held source filename */

/* FUNCTION PROTOTYPES, main.c*/

int round{float x);

float distance(int x1,int yl,int x2,int y2);

void FillContoursRecursive(DoseArea *Array,int x,int y,int x dim, int y_dim);
int PlotOutputDose(int Trial, PS **PSList);

int MakeOutputPGM(int Trial);

int CreateAreaMap {char Name [128]);

int SeedRandom(void);

int CheckCostFnct (void);

int main(int argc,char *argv{l);

/* TFUNCTION PROTOTYPES, PS.c */

void InsertSources(int NumSources);

int MoveSources (float InitialTemp,float CurTemp);

void FreePS(PS **list);

void SwapPS(PS **one, PS **two);

void CopyPS(PS **one, PS *two);

void PrintPS(PS *list);

void AddPS(PS *original_ PS,PS **list);

void DeletePS(int WhichSource,PS *original_PS,PS *+*list);
void MakePS(PS **TempPS) ;

int MovePS{int WhichSource,PS *original_list,PS **new_list);
int NumPS(PS *TheList);

int AddStaticPS{char FileName[128]);

/* FUNCTION PROTOTYPES, cost.c*/

void CheckAreaRecursive (DoseArea * Array,int x,int y,int * count);
int CheckHyperDoseSleavelntegration(PS *ThePS);

int CheckHyperDoseSleave (PS *ThePS) ;

float CalculateCost (PS *TempPS);

/* FUNCTION PROTOTYPES, sa.c*/

float GetInitialTemp(int NumSources);

int ConfigSimulatedAnnealing({char Name[128]);

float CoolingProfile{int x);

int SimulatedAnnealing(float InitialTemp, int Trial, int NumSources);

/* FUNCTION PROTOTYPES, MyTime.c*/
void TotalTime {float Time);

void StartTime(time_t *1t);

void StopTime(time_t 1t);

#endif

C.4 Main.c

/**********i***************t****t****************/

/*

*/
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/* This is the third draft of the Simulated */

/* Annealing algorithm. It has dynamic number of*/
/* sources and can have dwell times (using con-*/

/* servation of energy. Most parameters are */

/* set at the command line. The purpose of this */
/* version is to change the cost function so */

/* that it depends on hyper dose sleaves*/

/* and the min in the tumour.*/

* *
;***********i**********i—*************************/ /
/* */
/* */
/* CREATED: 12/07/1999 - present*/

/* AUTHOR : STEVEN MILLER */

/* Programmed for M.Sc. Thesis*/

/* Vexsion: 3.0.0 */

/* */

/*****-k********t*********************************/

#include <stdio.h>
f#iinclude <time.h>
#include <math.h>
#include <stdlib.h>
#include "globals.h"
ffinclude "rand48.h"

int NUMBER_OF_SOURCES = DEFAULT NUMBER_OF_SOURCES;/* variable for the number of sources */

float DWELL_TIME = DEFAULT_DWELL TIME;/* global var. for dwell time */

float PRESCRIBED_DOSE = DEFAULT_PRESCRIBED_DOSE;/* the prescrlbed dose... */

float INTERNAL WEIGHT = DEFAULT_INTERNAL_WEIGHT;/* used to weight the contrlbutlon from internal dose

float EXTERNAL _WEIGHT = DEFAULT_ EXTERNAIL WEIGHT;/* used to weight the contribution from external dose

float EXTERNAL_FACTOR = DEFAULT_EXTERNAL_FACTOR;/* this is the percentage of prescribed dose that can be
outside the tumour*/

£loat TEMP_REDUCTION_FACTOR = DEFAULT_TEMP_REDUCTION_FACTOR;/* this is the factor by which to decrease
the temperature */

int MAX_ ITERATIONS = DEFAULT_MAX_ ITERATIONS;/* the number of iterations at each temperature */

int STOP_COUNT = DEFAULT STOP_COUNT;/* if this many within WITHIN FACTOR then stop */

float WITHIN_FACTOR = DEFAULT WITHIN FACTOR;/* this is the % of iterations that have to be within */
int TRIAL = DEFAULT_ TRIAL_ NUMBER; /*trlal numbexr */

int MAX_INIT_TEMP_ITERATIONS = DEFAULT | MAX INIT_TEMP_ITERATIONS;

float INITIAL_ACCEPT_RATIO = DEFUALT_ INITIAL _ACCEPT_RATIO;

float STOP_TEMPERATURE = DEFAULT_ STOP_TEMPERATURE;

float TEMP_INCREASE_FACTOR = DEFAULT_TEMP_INCREASE_FACTOR;

float MOVE_PERCENT = DEFAULT_MOVE_PERCENT;

float ADD_PERCENT = DEFAULT_ADD_ PERCENT;

float DELETE_PERCENT = DEFAULT_DELETE_ PERCENT;

int RATIO = DEFAULT_RATIO;

int JUST _MOVE = DEFAULT JUST_MOVE;

int ALLOW_O_SOURCES = DEFAULT_ALLOW_0_SOURCES;

int ALLOW_. SOURCES OUTSIDE = DEFAULT_ALLOW_SOQURCES_OUTSIDE;
int TIME_FACTOR = DEFAULT_ TIME_FACTOR;

int USE_HEURISTIC = DEFAULT USE_HEURISTIC;

/* these are the global variables */

DoseArea *Area=NULL;/* This is the 2D array of structures */

int xSize=0;/* This is read in from the tumour input file */

int ySize=0;/* This is read in from the tumour input file */

PS * FirstPS=NULL;/* This is the linked list created in InsertSources */

PS * FirstNewPS=NULL;/* This is the linked list created from FirstPS in MoveSources */

PS * FirstStaticPS=NULL;/* This is the linked list of static point sources loaded from a file */
int GlobalTumouxrCount = 0;/* this is to count the number of locations that the sources can go */
int HyperDose = 0;/* This is the global variable to set if there is too much dose */

int TempGlobal = 0;

FILE *GlobalOutputFile=NULL;

char GlobalStaticFileName [128];/* For the held source filename */

/*************************i*********************************i************/
/* Function: Round*/
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/* */

/* Purpose: To round floats into integers*/
/* Input: Any float */

/* Output: An integer */

/* */

/********-A-***********************************t***************************/

int round(float x)

return{{int)floor (x+0.5));// srgmllfeb02 changed from ffloor
}/*end function round+*/

/**********************************1(i'*i(*******************************‘k**/
/* Function: distance*/
/* */
/* Purpose : To calculate the distance between 2 2D points*/
/* Input : The two points (X1,Y1l) and (X2,Y2) for which the dist.*/
/* between them is required.*/
/* Output : The distance as a float.*/
/* */
/************************************************************************/
float distance{int x1,int yl,int x2,int y2)

if ((x1-x2==0) && (yl-y2==0})

return{0.0) ;
else

return( (float) sqrt (sqr{x1-x2}+sqr{yl-y2)));

}/*end of distance function*/

/**************i****************************i'****************************/
/* Function FillContoursRecursive*/

/* */

/* PURPOSE: This function uses recursion to "flood" a closed area in*/

/* a certain slice of the 3D array with a given value.*/

/* INPUTS: The current position in the array, the array*/

/* and the dimensions of the array are all inputs to the function*/

/* OUTPUTS: None */

/* */
/************************************************************************/

void FillContoursRecursive(DoseArea *Array,int x,int y,int x dim, int y_dim)

if ({Array +x*(x_dim) + y) -> Type == EXTERNAL) /* if the position is currently "EXTERNAL" (ie:
'2551') */

(Array +x*(x dim) + y) -> Type = TUMOUR; /* £ill the current position with the value */

/* £ill the area to the left, top, right, & bottom */
if (x » 0) FillContoursRecursive (Array,x-1,y,x_dim,y dim);
if (y » 0} FillContoursRecursive(Array,x,y-1,x_dim,y_dim);
1f (x < x dim-1) FillContoursRecursive(Array,x+1,y,x_dim,y dim);
if (y < y_dim-1) FillContoursRecursive (Array,x,y+1,x_dim,y_dim);
}
return;
}/*end of FillContoursRecursive*/

/**************************i'*************************i***********t*******/
/* Function: PlotOutputDose*/

/> */

/* Purpose: This function will makd a PGM file using the */

/* source locations and tumour locations to find the dose */

/* distribution. */

/* 1Inputs: Trial Number for output filename, linked list of sources*/

/* Outputs: 1 if there is an error in the function*/
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/* else 0. */
/* */
/************************************************************************/

int PlotOutputDose {int Trial, PS **PSList)

int i=0,3j=0;/* for the for loops */

PS *TempPS=NULL; /* Temp to run through the linked list */
char *FileName=NULL;/* The output filename */

FILE *OutputFile=NULL;/* the output file handle*/

float Dose=0.0f;

float Min=0.f;

#if DEBUG_PLOT_DOSE
fprintf (GlobalOutputFile,"In the PlotOutputDose function\n");
#endif

FileName = (char *)malloc(sizeof ("OUTPUT/Outputbose "))

sprintf (FileName, "OUTPUT/OutputDose%d.dat"”,Trial) ;

OutputFile = fopen{FileName, "w") ;

if (!OutputFile)

{
fprintf (GlobalOutputFile, "Cannot open file %s for output, exiting PlotOutputDose\n",FileName) ;
return{l);

}

free (FileName) ;

Min = 99999.9f;
for (i=0;i<xSize;i++)
{

for (j=0;j<ySize;j++)

TempPS = *PSList;
while (TempPS)

if ((TempPS -> x == i) && (TempPS -> y == j))
Dose += TempPS -> DwellTime * sgr (RATIO);
else
Dose += (TempPS -> DwellTime * sqr{RATIO))/sqr(distance(i,j, TempPS->x,TempPS->y));

TempPS = TempPS -> NextPS;

if (((Area + ySize*i + j) =-> Type == TUMOUR) && (Dose<Min))
Min = Dose; ‘

if ({(Area + ySize*i + j) -> Type == TUMOUR))
fprintf (OutputFile, "$f ",Dose);
Dose = 0.0f;
}/*end for*/
fprintf (OutputFile, "\n");
}/*end forx*/
fclose (OutputFile) ;

/*now store the minimum in a file so that we can use it in the plotiso file*/
FileName = (char *)malloc(sizeof ("OUTPUT/MinDose "}y,

sprintf {(FileName, "OUTPUT/MinDose%d.dat", Trial);

OutputFile = fopen(FileName, "w");

if (iOutputFile)

fprintf (GlobalOutputFile, "Cannot open file %s for output, exiting PlotOutputDose\n",FileName);
return{l};

free (FileName) ;
fprintf (OutputFile, "%f\n",Min) ;
fclose (OutputFile);
return(0);
}/*end function PlotOutputDose*/

/***********************i’************************************************/
/* Function: MakeOutputPGM*/
/* */

/* Purpose: This function will make a PGM file using the */
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/* source locations and tumour locations */

/* 1Inputs: None */

/* Outputs: 1 if there is an error in the function*/
/* else O. */

/* */

/**************************************‘k*********************************/

int MakeOutputPGM({int Trial)

FILE *OutputFile=NULL;
PS *TempPS=NULL;

int i=0,3=0;

char *FileName=NULL;
DoseArea *TempAreasNULL;

FileName = (char *)malloc(sizeof ("OUTPUT/SourceConfig "y);
sprintf (FileName, "OUTPUT/SourceConfig%d.pgm", Trial);

OutputFile = fopen{(FileName, "w");

if (!OutputFile)

fprintf (GlobalOutputFile, "Cannot open f£ile %s for output, exiting MakeOutputPGM\n",FileName);
return{l};

}

free (FileName) ;

// Make the area to draw:
if (!Area)

fprintf (GlobalOQutputFile, "There is no area to draw in MakeOutputPGM, exiting!\n");
return{l);

}

TempArea = (DoseArea *)malloc(xSize*ySize*sizeof(DoseArea));
for (i=0;i<xSize;i++)

for (j=0;j<ySize;j++)

(TempArea+i*ySize+]j)->Dose = (Area+i*ySize+j)->Dose;
(TempArea+i*ySize+j) ->Type = (Area+i*ySize+j)->Type;

}

// Put in Dynamic the point sources:
TempPS = FirstPS;
if (!TempPS && 0)
fprintf (GlobalOutputFile, "There are no Dynamic point sources to draw in MakeOutputPGM\n") ;

while (TempPS)

(TempArea +(TempPS -> x) * ySize + TempPS -> y) -> Type = POINT SOURCE;
TempPS = TempPS -> NextPS;

// Put in Static the point sources:
TempPS = FirstStaticPS;
if (!TempPS && 0)
fprintf (GlobalOutputFile, "There are no Static point sources to draw in MakeOutputPGM\n") ;

while (TempPS)

(TempArea +(TempPS -> x) * ySize + TempPS -> y) -»> Type = POINT SOURCE;
TempPS = TempPS -> NextPS;

fprintf (OutputFile, "P2\n");/* print file headers to the .pgm file */
fprintf (OutputFile, *# CREATOR: XV Version 3.00 Rev: 3/30/93\n");
fprintf (OutputFile, "$d %d\n",xSize,ySize);

fprintf (OutputFile, "255\n") ;

for (i = 0; i < xSize*ySize;i++)

{

if ((i % 17) == 0)/* we must print 18 points per line, hence the mod 17 */
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fprintf (QutputFile, "\n%3d", (TempArea+i) ->Type); /*start a new line*/

else

{

fprintf (QutputFile, "$44d", (TempArea+i) ->Type) ;

}

fclose (OutputFile) ;
free (TempArea) ;
return(0) ;
}/*end of function MakeOutputPGM*/

/************************************************************************/
/* Function: CreatAreaMap*/
/* */
/* Purpose: This function will load and £ill the tumour from file */
/* The return value is 1 if there was an error during the */
/* processing otherwise it is 0 */
/* 1Inputs: None */
/* */
/************************************************************************/
int CreateAreaMap (char Name [128])
{
FILE *InputFile=NULL;/*Input file pointer*/
char name[128];/*For reading in from the input filex*/
int i=0; /*To parse input from file*/
int j=0; /*To parse input from file*/
int value=0;/*Input from the file*/

#if DEBUG_CREATE_AREA
fprintf (GlobalOutputFile, "In CreateAreaMap\n'");
#endif
fprintf (GlobalOutputFile, "\n\n\tOpening file %s for input....\n",Name);
if (InputFile)
fclose (InputFile) ;
if ((InputFile = fopen(Name,"r")) == NULL)

fprintf (GlobalOutputFile, "\tInput file not found exiting\n\n");
return(i) ;

}

else
fprintf (GlobalOutputFile, "\tFile found, opened for input.\n\n®");

/* Now parse input file to load in the tumour */

fgets (name, 128, InputFile);/* P2 */

fgets (name, 128, InputFile);/* # CREATOR: XV Version 3.01 Rev: 3/30/93 */
/* now get the x and y dimensions of the file */

f£scanf (InputFile, "$d %d\n", &xSize, &ySize);

fgets {name, 128, InputFile) ; /* 255 %/

/*malloc the size of the array for the input*/
Area = (DoseArea *)malloc(xSize*ySize*sizeof (DoseArea));

/* now get all of the input */
GlobalTumourCount=0;
for (i=0;i<xSize;i++)

for (j=0;j<ySize;j++)

fscanf (InputFile, "%d", &value) ;
if (ALLOW_SOURCES_OUTSIDE)
GlobalTumourCount++;
if (value==EXTERNAL)/*save as external location*/
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(Area + i*ySize + j) -> Dose = 0.0f;
(Area + i*ySize + j) -»> Type = EXTERNAL;

else if (value == PERIPHERY)

(Area + i*ySize + j) -» Dose = 0.0f;
(Area + i*ySize + j) -> Type = PERIPHERY;
if (!ALLOW_SOURCES_OUTSIDE)
GlobalTumourCount++;
}
else/* it is a tumour point */
{
if (!ALLOW_SOURCBS_OUTSIDE)
GlobalTumourCount++;
(Area + i*ySize + j) -> Dose = 0.0f;
(Area + i*ySize + j) -»> Type = TUMOUR;
GlobalTumourCount++;

}/*end for j*/
}/*end for ix/

/* Close the input file */
fclose{InputFile);

#if DEBUG_CREATE_AREA
InputFile = fopen("CreateAreaMap.pgm", "w");
fprintf {InputFile, "P2\n") ;
fprintf (InputFile,"# CREATOR: XV Version 3.01 Rev: 3/30/93\n");
fprintf (InputFile,"%$i %i\n",xSize,ySize);
fprintf (InputFile, "255\n") ;
for (i=0;i<xSize;i++)
{
for (j=0;j<ySize;j++)

{

fprintf (InputFile, *%d ", (Area + i*ySize + j) -> Type);
fprintf (InputFile, "\n");

fclose (InputFile) ;
fprintf (GlobalOutputFile, "Done CreateAreaMap\n");
#endif
fprintf (GlobalOutputFile, "Done CreateAreaMap\n");
fflush{GlobalOutputFile) ;
return(0);
}/*end of CreateAreaMap*/

/*********************t****************t*********************************/
/* Function: SeedRandom({)*/

/* */

/* Purpose: This function will seed the C randon number generator */

/* IT MUST ONLY BE CALLED ONCE DURING A SINGLE TIME STEP */

/* The return value is 1 if there is an exror else, it is */

/* 0. */
/* Input: None. */

/* Output: None. */

/* */

/*********************************************************t**************/

int SeedRandom()

#if USE_RNG48
unsigned long int randSeed;// holds initial seed value

// get a seed from the current clock time, this will always cause a differnt starting seed value
time((long int*)&randSeed) ;
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// now seed the rand48 RNG

srand48 (randSeed) ;

return(0);// no errors
fielse

long ltime=0;

int stime=0;

/* get current calender time */
ltime = time (NULL);
stime = {unsigned)} ltime/2;
srand{stime) ;
return{0);

f#endif

}/*end of SeedRandom*/

/************************************************************************/

/* */
/* Function : CheckCostFnct*/

/* Purpose: This is a function that can be called to "see"

/* how the cost function is working. The return */
/* value is 1 if there was a problem, otherwise */
/* it is O */
/* Input : None */

/* Output : int if no problems occured, and generates a file cost.dat*/

/* */

/**************t*********************************t***********************/

int CheckCostFnct ()

{
FILE *CostFile=NULL;
int i=0;
int j=0;
float cost=0.0f;
float MinCost=32000.0f;
int MinX=0,MinY=0;

CostFile = fopen("cost.dat", "w");

#if DEBUG_CHECK_COST
fprintf (GlobalOutputFile, "In CheckCostFnct\n");
#fendif

for (i=0;i<xSize;i++)
{

for (j=0;j<ySize;j++)

/* if ((Area+i*ySize + j) -> Type == EXTERNAL)

fprintf (CostFile,"0.0 ") ;
continue;

*/

FirstPS = (PS *)malloc(sizeof{PS));
FirstPS -> x = i;

FirstPS -> y = j;

FirstPS -> DwellTime = DEFAULT_DWELL_TIME;
FirstPS -> NextPS = NULL;

cost = CalculateCost (FirstPS);
#if DEBUG_CHECK COST
if {cost<MinCost)

MinCost = cost;

MinX = i;
MinY = j;
}
#endif
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fprintf (CostFile, "%f ",cost);
FreePS (&FirstPS) ;

fprintf (CostFile, "\n"};
#if DEBUG_CHECK COST
fprintf (GlobalOutputFile, *%i\n",1i);
f#endif

fclose (CostFile) ;
#if DEBUG_CHECK_COST

fprintf (GlobalOutputFile, "Done CheckCostFnct Min of %f at x=%d and y=%d\n",MinCost,MinX,MinY);
#endif

return(0) ;
}/*end of function CheckCostFnct*/

/**********************i’*****************/
/* MAIN LINE PROGRAM */
/*i**************************************/
int main{int argc,char *argvi])
{ time_t 1t;

struct tm *ptr=NULL;

char * FileName = NULL;

/* setup this run */
fprintf (stderr, "Opening file: %s for input data\n",argv([2]);
if (ConfigSimulatedAnnealing(axgv([2]))

{
fprintf (stderr, "Error in ConfigSimulatedAnnealing, exiting.\n");
exit (0);
}
/*Open Outfile for GlobalOutputFile recording */
FileName = (char *)malloc{sizeof ("OUTPUT/Output "});/* leave space for {i# and .dat */

sprintf (FileName, "OUTPUT/Output%d.dat", TRIAL) ;

fprintf (stdexr, "Opening file for recording stderr, filename:\t%s.\n\n",FileName);
GlobalOutputFile = fopen{FileName, "w") ;

free (FileName) ;

fprintf (GlobalOutputFile, "\n\nThis is a program for optimizing point sources using Simulated Anneal-
ing.\n"};

fprintf (GlobalOutputFile, "Sample input is: *‘SimAnn.exe 0' 'filename.pgm 1' ‘#sources 2*' 'dwell time
3'\n 'prescribed dose 4' ‘'internal weight 5' 'external weight 6'\n ‘percentage of prescribed to external
7' ‘reduction factor 8' 'iterations 9' 'stop iterations 10' ‘with in %% 11' ‘trial # 12'\n\n");

fflush(GlobalOutputFile) ;

AddStaticPS (GlobalStaticFileName) ;

/* loads in the tumour file(s) _and_ f£ills them */
if (CreateAreaMap (argv([1])})

fprintf (GlobalOutputFile, "Error in CreateAreaMap, exiting.\n");
exit (0);

}

/* Seeds the C random number generator ONLY DO THIS ONCE */

if (SeedRandom())

{
fprintf (GlobalOutputFile, "Exror in SeedRandom exiting.\n");
exit (0);

}

#if DEBUG_CHECK COST
/* generate 3D map of cost function */
if (CheckCostFnct{))

fprintf (GlobalOutputFile, "Error in CheckCostFnct exiting.\n");
exit (0);
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#endif

1t = time (NULL) ;

ptr = localtime (&lt);

fprintf (GlobalOutputFile, "Starting SimAnn time is: %s\n\n",asctime(ptr));

fprintf (GlobalOutputFile, "Input file name: %s, configuration file: %s\n",argvil),argv(2]);
fflush(GlobalOutputFile) ;

if (SimulatedAnnealing(GetInitialTemp (NUMBER OF SOURCES), TRIAL,NUMBER_OF_ SOURCES))
{

fprintf (GlobalOutputFile, "Error in SimulatedAnnealing exiting.\n");

exit (0);

}

1t = time (NULL);
ptr = localtime(&lt);
fprintf (GlobalOutputFile, "Done SimAnn time: %s\n\n",asctime (ptr));

if (MakeOutputPGM(TRIAL))

{
fprintf (GlobalOutputFile, "Exrror in MakeOutputPGM exiting.\mn");
exit (0);

if (PlotOutputDose {TRIAL,&FirstPS))

fprintf (GlobalOutputFile, "Error in PlotOutputDose exiting.\n");
exit (0);

}

/*Free global memory that was malloced*/
free(Area) ;

FreePS (&FirstPS);

FreePS (&FirstNewPS) ;
FreePS(&FirstStaticPs);

fclose (GlobalOutputFile);

}/*end of main line*/

C.5 MyTime.c

JRIEIA R R kX I A AR Ik AR IR AR KK TR ARk kR kh kA kkkh Ak kR AR kA [/

/*

*/

/* This is a utility to calculate elapsed time*/
/* by a program.

* *
;*********i*************!************************/
/* */

/* */

/* CREATED: 26/08/98 - present*/
/* AUTHOR : STEVEN MILLER*/

/* Programmed for M.Sc. Thesis*/
/* Version: 2.6.3.a*/

/* */

JER AR AR R IR AR KRR R IR AR A RA R IR R AR IR R IR A AR R R AT AN ]

#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include "globals.h"

typedef struct tm TM;

JREE ke kk ko ko k kA k kAR AR R XA Rk Ak K kKKK XA hhk

FUNCTION NAME:TotalTime
PURPOSE : Format the time it took for the simulation
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into days, hours, etc.
INPUT: The time it took the simulation
OUTPUT : None
FUNCTIONS CALLED:fprintf
ASSUMPTIONS:None
*/
void TotalTime (float Time)

int Days=0,Hours=0,Mins=0,Secs=0;
if (Time > (60*60*24))

Days = {int)Time/(60%*60*24);
Time -= Days*60*60%24;

if (Time > (60*60))
Hours = (int)Time/(60%60) ;

Time -= Hours*60*60;

if (Time > 60)

Mins = (int)Time/60;
Time -= Mins*60;
Secs = {int)Time;

fprintf (GlobalOutputFile, "Time passed is: %d-Days, %d-Hours, %d-Minutes and %d-Sec-
onds\n",Days,Hours,Mins, Secs) ;
}/*end function TotalTime */

JRERIE KA A AR I IR KA AR KKK KA AR KA AR AT K R AT I AR A K

FUNCTION NAME:StartTime

PURPOSE: Store the current time as the start of the simulation
INPUT: Address of the variable to hold the start time
OUTPUT : None

FUNCTIONS CALLED:time

localtime
ASSUMPTIONS:None
*/

void StartTime(time_t *1t)
TM *MyTime=NULL;

*1lt = time(NULL);

MyTime = localtime(1lt);

//fprintf (GlobalOutputFile, "Start time is: %s\n",asctime(MyTime));
}//end function StartTime

JRIRE IR I A I I I ARk kR A kAR AR ARk ARk Ak ke hhk K

FUNCTION NAME:StopTime

PURPOSE: Store the current time as the stop time of
the simulation, and then calculates the total time
INPUT: The start time
OUTPUT: None
FUNCTIONS CALLED:fprintf
TotalTime
localtime
time

ASSUMPTIONS:None
*/
void StopTime (time_t 1t)

time_t 1t1;
float SecondsPassed=0.f;
TM *MyTime=NULL;

1tl = time(NULL);
MyTime = localtime(&ltl);
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SecondsPassed = difftime(ltl,lt);

fprintf (GlobalOutputFile, "Stop time is: $s\n",asctime (MyTime));

TotalTime (SecondsPassed) ;

fprintf (GlobalOutputFile, "Actual processor time: %u seconds.\n",clock()/CLOCKS_PER_SEC) ;
}//end function StopTime

C.6 Ps.c

#include <stdlib.h>
#include <stdio.h>
#include "globals.h"
#include "rand48.h"

AR e e Y
FUNCTION NAME:InsertSources

PURPOSE: This function will insert the number of sources that

are used in a single solution. The sources are inserted randomly
INPUT: The number of sources to create
QUTPUT: None

FUNCTIONS CALLED:fprintf
ASSUMPTIONS:That the global variable exists for the point sources.
*/
void InsertSources(int num_sources)
{
int i=0;// for loop index
PS *TempPS=NULL;// the pointer to point sources
PS *CurPS=NULL;// the current point source we are creating

#if DEBUG_INSERT SOURCES
fprintf (GlobalOutputFile, "Starting InsertSources\n") ;
#endif

/* check to make sure that there are not too many sources to insert*/
if (num_sources >= GlobalTumourCount)

{
fprintf (GlobalOutputFile, "There are too many sources. I have to quit there is a problem.\n");
exit (0);

}//end if

// make the required number of sources
for (i=0;i<num_sources;i++)

#if DEBUG_INSERT SOURCES
fprintf (GlobalOutputFile, "insert source: %i\n",i);
#endif

// call the PS function to make a point source
MakePS (&TempPS) ;
if (!FirstPS)
FirstPS = TempPS;
else
CurPS -> NextPS = TempPS;
CurPS = TempPS;
}//end for

#if DEBUG_INSERT_ SOURCES

TempPS = FirstPS;

fprintf (GlobalOutputFile, "In InsertSources\n");

while (TempPS)

{
fprintf (GlobalOutputFile, "Pointsource x: %i y: %i\n",TempPS -> x,TempPS -> y);
TempPS = TempPS -> NextPS;

}//end while

fprintf (GlobalOutputFile, "Done insert point sources\n");
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#endif
}/*end of function InsertSources*/

JREE I A AR T kA Ak ko hk ko h ko k ok ko kKA KAk

FUNCTION NAME:MoveSourcess

PURPOSE: This function will move sources based on the current temperature
INPUT: The initial temperature and the current temperature
OUTPUT : 1 if there is a problem, else 0

FUNCTIONS CALLED:fprintf
ASSUMPTIONS:None
*/
int MoveSources(flcocat InitialTemp, float CurTemp)
{
float TempRand=0.0f;/* To hold the random number generated */
int WhichSource=0;/* which source is going to move */
int i=0;/* for loop counter*/
int NumSources=0;

// srgmllfeb02 removed for windows, does not like it...

//if (((float) ((£loat)MOVE_PERCENT + (float)ADD_PERCENT + (float)DELETE PERCENT) < 1.0f) ||
((float) ( (float)MOVE_PERCENT + (float)ADD PERCENT + (float)DELETE_PERCENT) > 1.0f})

/7

// fprintf (GlobalOutputFile, *In MoveSources and the percentages do not add up, exiting\n");

// return(l);

//}

// to get rid of the global variables for number of sources:
NumSources = NumPS (FirstPS);

/* this is for deciding wether to move or add */
#if USE_RNG48

TempRand = (float)drand48();
ffelse

TempRand = {float)rand()/RAND_MAX;
#endif

if (TempRand < MOVE_PERCENT)/* this is the code for moving sources */

WhichSource=0;
#if USE_RNG48

TempRand = (float)drand48();
#else

TempRand = (float)rand{)/RAND MAX;
#endif

for (i=0;i<NumSources;i++)

if ({((float) (i} /NumSources) < TempRand) && (TempRand < (float) (i+1)/NumSources})
WhichSource = i;

#if DEBUG_MOVE_SOURCES
fprintf (GlobalOutputFile, "\nMoving %d\n",NumSources) ;
if (!FirstPs)

fprintf (GlobalOutputFile, "b/f move %p\n\a",FirstPS);exit(0);

PrintPS(FirstPS);
#endif
if (NumSources && {(NumSources < GlobalTumourCount))
MovePS {WhichSource, FirstPS, &FirstNewPS) ;
#if DEBUG_MOVE SOURCES
fprintf (GlobalOutputFile, "New points are: %p\n",FirstNewPS);
PrintPS(FirstNewPS) ;
fprintf (GlobalOutputFile, "\n");
#endif
}/* end if move */
else if (TempRand < MOVE_PERCENT + ADD_PERCENT)

#if DEBUG_MOVE_SOURCES
fprintf (GlobalOutputFile, "\nAdding %d\n",NumSources) ;
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if (!FirstPS)

{
fprintf (GlobalOutputFile, "b/f add %p\n\a", FirstPs);
exit (0);

PrintPS (FirstPs) ;
#endif

if (JUST_MOVE)
{
/* to find the lucky source to be moved */
WhichSource=0;
#if USE_RNG48
TempRand = (float)drand48();
#else
TempRand = (float)rand()/RAND_MAX;
H#endif
for (i=0;i<NumSources;i++)

{

if ({{(flecat) (i) /NumSources) < TempRand) && (TempRand < (float) (i+1l)/NumSources))
WhichSource = i;

MovePS (WhichSource, FirstPS, &FirstNewPS) ;
}//else if just move
else if (NumSources < GlobalTumourCount)
AddPS (FirstPS, &FirstNewPS) ; /* attach to the end of the list */

#if DEBUG_MOVE_SOURCES
fprintf (GlobalOutputFile, "New points are: %p\n",FirstNewPS);
PrintPS (FirstNewPS) ;
fprintf (GlobalOutputFile, "\n");

#endif

}/* end else add */
else/* delete a source */

/* to f£ind the lucky source to be deleted */
WhichSource=0;
#if USE RNG48
TempRand = (float)drand48(};
#else
TempRand = (float)rand()/RAND_MAX;
#endif
for (i=0;i<NumSources;i++)

if ((((float) (i) /NumSources) < TempRand) && (TempRand < (float) (i+1)/NumSources))
WhichSouxce = i;
}//end for

//make sure there are enough sources to delete
if (JUST_MOVE)

if (NumSources<GlobalTumourCount)
MovePS (WhichSource, FirstPS, &FirstNewPS) ;
}//end just move
else

if (!ALLOW_O_SOURCES)
if (NumSources>1)
DeletePS (WhichSource, FirstPS, &FirstNewPS) ; /*delete specified source */
else
DeletePS (WhichSource, FirstPS, &FirstNewPS) ; /*delete specified source */
}//end else not just move
}/* end of else delete*/

#if DEBUG_MOVE_SOURCES
fprintf (GlobalOutputFile, "New Points are:\n");
PrintPS (FirstNewPS);
fprintf (GlobalOutputFile, "---\n");
#endif
return(0};
}/*end of function move sources*/
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FUNCTION NAME:FreePS

PURPOSE: To free a linked list of Point Sources
INPUT: address of the first pointex
QUTPUT: None

FUNCTIONS CALLED:none

ASSUMPTIONS:None that there was memory allocated for the list
*/

void FreePS(PS **1list)

PS *temp;

temp = *1list;

while (temp)}

{
*list = temp;
temp = temp -> NextPS;
free(*list);
*1list = NULL;

}//end while

}/*end of function freePS*/

JEEE IR KRR R KRR KR F KT KKK ERT R E KA Nk Kk

FUNCTION NAME:SwapPS

PURPOSE: This function will swap the memory of 2 INTO 1
INPUT: The address of 2 PS linked lists
QUTPUT: None

FUNCTIONS CALLED:None

ASSUMPTIONS:That memory has been allocated for the 2 linked lists
*/

void SwapPS(PS **one, PS **two)

{

PS *temp=NULL;

temp = *one;
*one = *two;
*two = temp;

/* free what used to be one but is now two */
FreePS (two) ;
}/*end of function swap*/

VAR AL E R e e e R e e e e i e e

FUNCTION NAME:CopybS

PURPOSE: This function will copy the memory of 2 INTO 1
INPUT: The address of 2 PS linked lists
QUTPUT: None

FUNCTIONS CALLED:None
ASSUMPTIONS:That memory has been allocated for the 2 linked lists
*/
void CopyPS(PS **one, PS *two)
{
PS *CurPS=NULL;
PS *CurNewPS=NULL;
PS *NewPS=NULL;

CurPS = two;
while (CurPs)

{

NewPS = (PS*)malloc(sizeof (PS));

NewPS -»> x = CurPS -> x;

NewPS -> y = CurPS -> y;

NewPS -> DwellTime = CurPS -> DwellTime;
NewPS -> NextPS = NULL;
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if (!*one)
*one = NewPS;
else
CurNewPS -> NextPS = NewPS;

CurNewPS = NewPS;
CurPS = CurPS -»> NextPS; /* go to next source */
}//end while
}/*end of function swap*/

VAR AR AR AR L R e e R R e

FUNCTION NAME:PrintP$

PURPOSE: This function will print out a linked list of PSs
INPUT: The address of the point source list
OUTPUT: None

FUNCTIONS CALLED:fprintf
ASSUMPTIONS:None

*/

void PrintPS(PS *list)

PS *temp=NULL;
int element=0;

fprintf (GlobalOutputFile, "There are %d PS in the list\n",NumPS(list));
temp = list;
while (temp)

{

//fprintf (GlobalOutputFile, "Structure-%d x:%d and y:%d\n", element, temp->x, temp->y);
fprintf {GlobalOutputFile, "$d %d\n", temp->x, temp->y);
element++;
temp = temp -> NextPS;
}//end while
}/*end of function PrintPS§*/
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FUNCTION NAME:AddPS

PURPOSE: This function will add a point source to a list
INPUT: The address of 2 PS linked lists
OUTPUT: None

FUNCTIONS CALLED:None

ASSUMPTIONS:That memory has been allocated for the first linked list
*/

void AddPS(PS *original_ list,PS **new_list)

PS *CurPS=NULL;
PS *CurNewPS=NULL;
PS *NewPS=NULL;

#if DEBUG_ADDPS
fprintf (GlobalOutputFile, "In AddPS\n");
#endif

//need to get to the end of the list
CurPS = original_list;
while (CurPS)

NewPS = (PS*)malloc(sizeof(PS));

NewPS -> x = CurPS -»> Xx;
NewPS -> y = CurPS -> y;
NewPS -> DwellTime = CurPS -> DwellTime;
NewPS -~-> NextPS = NULL;

if (!*new_list)
*new_list = NewPS;
else
CurNewPS -»> NextPS = NewPS§;
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CurNewPS = NewPS;

CurPS = CurPS -»> NextPS; /* go to next source */

}//end while

// now add one to the end of the list

MakePS (&NewPS) ;

// just in case there are none in the list maybe try to add it to the start

if (l*new_list)
*new_list = NewPS;
else

CurNewPS -> NextPS = NewPS;

// store the new one
CurNewPS = NewPS;
}/*end of function AddPS*/
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FUNCTION NAME:DeletePS

PURPOSE: This function will delete a source from a list of sources
and the index to the source to delete

INPUT: The address of 2 PS linked lists,

OUTPUT: None
FUNCTIONS CALLED:fprintf

ASSUMPTIONS:That the source to delete exists...

*/

void DeletePS(int index,PS *original_list,PS **new_list)

PS *CurPS=NULL;

PS *CurNewPS=NULL;
PS *NewPS=NULL;

int source_count=0;

//fprintf (GlobalOutputFile, "look at me delete\n");

CurPS = original_list;
source_count=0;
while (CurPS)

if {source count == index) //delete this one

CurPS - CurPS -> NextPS; /* go to next source */

if (!CurPs)
break;

NewPS = (PS*)malloc(sizeof (PS));

NewPS -»> x = CurPS -»> x;
NewPS -> y = CurPS -» y;

NewPS -> DwellTime = CurPS -> DwellTime;

NewPS -> NextPS = NULL;

if (!*new_list)
*new_list = NewPS;
else
CurNewPS -»> NextPS =

CurNewPS = NewPS;

CurPS = CurPS -»> NextPS; /* go to next source */

source_count++;
}//end while
}/*end of function DeletePS*/
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FUNCTION NAME:MakePS

NewPS;

PURPOSE: This function will make a Point Source
INPUT: The address of the PS to make
OUTPUT: None

FUNCTIONS CALLED:None

ASSUMPTIONS:That memory has been allocated for the 2 linked lists

*/
void MakePS(PS **TempPS}

int done=0;
int position_OK=1;
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int time_OK=1;
PS *CheckListPS=NULL;

(*TempPS) = (PS *)malloc(sizeof (PS));
while (!done)

$if USE_RNG48
(*TempPS) -> x = (round(((float)drand48())*(xSize-1}));
(*TempPS) -> y = (round({(float)drand48())*(ySize-1)));
jfelse
(*TempPS) -> x = (round({(float)rand()/RAND_ MAX)*(xSize-1))});
(*TempPS) -> y = (round({(float)rand()/RAND MAX)*(ySize-1)));
#endif

position OK = 1;
if (!ALLOW_SOURCES_OUTSIDE)
// if position is external it is no good
if ((Area + ((*TempPS) -> x)*ySize + (*TempPS) -> y)->Type == EXTERNAL)
position_OK = 0;

time_OK = 1;// assume all is well
if (ITIME_FACTOR && position OK) /* make sure that there are no other sources at this location*/

/* run through dynamic linked list of sources and check them all */
CheckListPS = FirstPS;//run throught dynamic list
while (CheckListPS)}

]
n

if ((CheckListPS-»>x == (*TempPS)->x) && (CheckListPS->y

(*TempPS) ->y)} )
{
time OK = 0;
break;
}
CheckListPS = CheckListPS->NextPS;
}// end while
/* run through static linked list of sources and check them all */
if (time_OK)

CheckListPS = FirstStaticPS;//run through static linked list
while (CheckListPS)

if ((CheckListPS->x == (*TempPS)->x) && (CheckListPS->y == (*TempPS)}->y)}
{

time OK = 0;

break;

}
CheckListPS = CheckListPS->NextPS;
}// end while
}//end if time_OK
}//end if ITIME_FACTOR

done = position_OK&&time OK;//if position and time are OK then we are done
}/*end while !done*/

(*TempPS) -> DwellTime = DWELL TIME;
(*TempPS) -> NextPS = NULL;
}//end of MakePs
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FUNCTION NAME:MovePS

PURPOSE: This function will move a point source
INPUT: The address of 2 PS linked lists, the index of which source to move
OUTPUT: None

FUNCTIONS CALLED:None
ASSUMPTIONS:That memory has been allocated for the 2 linked lists
*/

int MovePS(int WhichSource,PS *original_list,PS **new_list)

int SourceCounter=0;/* source to move */
int done=0;/* set to 1 if the souxrce location is within the tumour */

-231-



Brachytherapy Optimization Appendix C: SAB Source Files

PS *TempPS=NULL;/* For NewPS linked list */

PS *NewPS=NULL;/* For NewPS linked list */

PS *CurNewPS=NULL;/* For NewPS linked list */

PS *CheckListPS=NULL;/* for the check that the source has a unique location */

float TempRand=0.0f;/* To hold the random number generated */

int MultFactor=0;/* How far to move */

int missed_counter=0;/* this is how many times we have not been able to move the desired source */

TempPS = original_ list;// start at the begining of the list

MultFactor=1;
missed counter = 0;
SourceCounter = 0;
while (TempPS)

{
NewPS = (PS *)malloc(sizeof (PS)};
if (SourceCounter == WhichSource)
done = 0;

while (!done)

/* MOVE IN X DIRECTION */
#if USE_RNG48
TempRand = (float)drand48{);
#else
TempRand = (float)rand()/RAND_MAX;
ftendif
if ((TempRand < 0.333333f) && (TempPS -> x > MultFactor)}
NewPS -> x = TempPS -> x - MultFactor;
else if ((TempRand < 0.666666f) && (TempPS -> X < (xSize-1-MultFactor))
NewPS -> x = TempPS -> x + MultFactor;
else
NewPS -> x = TempPS -> x;/*TempPS -> x does not change*/

/* MOVE IN Y DIRECTION */
#if USE_RNG48
TempRand = (float)drand48{);
#else
TempRand = (float)rand()/RAND MAX;
#endif

if ((TempRand < 0.333333f) && (TempPS -> y > MultFactor))
NewPS -> y = TempPS -> y - MultFactor;

else if ((TempRand < 0.666666f) && (TempPS -> y < (ySize-1l-MultFactor)))
NewPS -> y = TempPS -> y + MultFactor;

else
NewPS -> y = TempPS -»> y;/*TempPS -»> y does not change*/

/* CHECK IF WE ARE DONE MOVING */
if - (ALLOW_SOURCES_OUTSIDE) // then no matter where we moved it is good
done = 1;
else// make sure that it is tumour of periphery that we moved to

if (((Area + ((NewPS) -»> x)*ySize + (NewPS) -> y)->Type == TUMOUR)
[} ((Area + ((NewPS) -> x)*ySize + (NewPS) -> y)->Type == PERIPHERY})
done = 1;
else
{
missed_counter++;
done = 0;

}//end if allow_source_outside

if (!TIME _FACTOR && done)/* then so far it is a valid location, but, lets make sure that
there are no other sources at this location*/

/* run through linked list of sources and check them all */
CheckListPS = original_list;
while (CheckListPS && done)

if ((CheckListPS->x == NewPS->x) && (CheckListPS->y == NewPS->y}}
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done = 0;
missed_counter++;
break;

CheckListPS = CheckListPS->NextPS;
}//end while
/* if there was no dynamic sources there, check static ones */
if (done)
{
/* run through linked list of sources and check them all */
CheckListPS = FirstStaticPS;
while (CheckListPS && done)

if ((CheckListPS-»>x == NewPS->x} && (CheckListPS->y == NewPS->y)}

done = 0;
missed_counter++;
break;

}

CheckListPS = CheckListPS->NextPS;
}//end while

}//end time_factor check

/* because only one source gets moved check to make sure that it did infact move*/
if (done && (NewPS -> x == TempPS -> x) && (NewPS -> y == TempPS -> y))
{

done = 0;

missed_counter++;

if ((missed_counter == 25) && (!done))//then set it back to where it was and forget
about moving it

NewPS -> x = TempPS -> X;
NewPS -> y = TempPS -> y;
done = 1;

}/* end while not done */

//set other parameters for point source
NewPS -> DwellTime = DWELL_TIME;
NewPS -> NextPS = NULL;
}/*end if SourceCounter == WhichSource*/
else
{
NewPS -> x = TempPS -> x;
NewPS -> y = TempPS -> y;
NewPS -> DwellTime = TempPS -> DwellTime;
NewPS -> NextPS = NULL;
}/* end else if sourcecounter == whichsource */

if (i{(*new_list))
(*new_list) = NewPS;
else
CurNewPS -> NextPS = NewPS;

CurNewPS = NewPS;
SourceCounter++;/* go to next source */
TempPS = TempPS -> NextPS; /* go to next source */
}/* end while TempPS */
return{0);
}//end function MOvePS
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FUNCTION NAME:NumPS

PURPOSE: This function return how many point sources are in the list
INPUT: The address of a PS linked lists
OUTPUT: The number of point source in the list
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FUNCTIONS CALLED:None
ASSUMPTIONS:None

*/

int NumPS (PS *TheList)

int counter=0;// counter to return
PS *TempPS=NULL;// pointer to list of point sources

TempPS = TheList;
while (TempPS)

{

counter++;
TempPS = TempPS -> NextPS;

return{counter) ;
}// end function NumPS
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FUNCTION NAME:AddStaticPs

PURPOSE: This function will add NON movable sources to a list from a file
INPUT: Filename that has the static sources in it
QUTPUT: None

FUNCTIONS CALLED:None
ASSUMPTIONS:That the file exists
*/

int AddStaticPS(char FileName [128]}

FILE * m_File;
int m_NumSources;
int i,x,y,dt;

PS *NewPS;

PS *CurNewPS;
char blah[128];

m_File = fopen(FileName,"r");

if (im_File)

{
fprintf (GlobalOutputFile, "There is no file to open for Static souxces\n") ;
return(l);

}

// read file
fscanf (m_File, "%d", &m_NumSources) ;

// £ile format: x y dt

for (i=0;i<m_NumSources;i++)

{
fscanf (m_File,"%d %d %d", &x, &y, &dt);
fgets(blah,128,m File);

NewPS = (PS*)malloc (sizeof (PS));

NewPS -> X = X;

NewPS -> y = y;

NewPS -> DwellTime = dt;

NewPS -> NextPS = NULL;

if (!FirstStaticPS)
FirstStaticPS = NewPS;

else
CurNewPS -> NextPS = NewPS;

CurNewPS = NewPS;
}//end for

return{0) ;
}//end function AddStaticPsS
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C.7 Rand48.h

// rand4s8.h
#ifndef _rand48_h
#define _rand48_h

/ srgm26febo02added for stand alone program
// srgm09mar02 removing for inclusion into main SA program
//void main({void);

doubledrand48 (void);

doubleerand48 (unsigned short int _ xsubi[3]);

long intlrand48 {void);

long intnrand48 (unsigned short int __xsubil[3]);

long intmrand48 (void);

long intjrand48 (unsigned short int _ xsubi{3]};

voidsrand48 (long int __ seedval);

unsigned short int *seed48 (unsigned short int __ seedlév(3]);
voidlcong48 (unsigned short int __param{7]);

#endif

C.8 Sa.c

#include <stdio.h>
#include <time.h>
#include <math.h>
#include <stdlib.h>
#include "globals.h"
#include “rand48.h"

f#idefine ECHO 0// this is to echo the config data to the screen

/************************************************************************/
/* Function: ConfigSimulatedAnnealing*/

/* */

/* Purpose : This function will initialize simulated annealing*/

/* based on the values in the file, else the defaults.*/

/* Inputs : FileName. */
/* Outputs : Integer, 0 if all is good else 1.*/
/* */

/************************************************************************/

int ConfigSimulatedAnnealing(char Name[128])

FILE *InputFile=NULL;/* Input file pointer */

char name [128];/* For reading in from the input file */
int Def = 0;

int TempInt=0;

int CharCount=0;

float TempFloat=0.f;

if ({(InputFile = fopen(Name,"r")) == NULL)
Def = 1;

if (Def)//set them all to the defaults

NUMBER_OF_SOURCES = DEFAULT_ NUMBER_OF_SOURCES;
DWELL_TIME = DEFAULT DWELL_TIME;

PRESCRIBED DOSE = DEFAULT PRESCRIBED_DOSE;

INTERNAL WEIGHT - DEFAULT INTERNAL_WEIGHT;
EXTERNAL_WEIGHT - DEFAULT_EXTERNAL_WEIGHT;
EXTERNAL_FACTOR = DEFAULT_EXTERNAL FACTOR;
TEMP_REDUCTION_FACTOR = DEFAULT_TEMP_REDUCTION FACTOR;
MAX_ITERATIONS = DEFAULT MAX_ITERATIONS;

STOP_COUNT = DEFAULT STOP_COUNT;
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WITHIN FACTOR = DEFAULT WITHIN_FACTOR;

TRIAL = DEFAULT TRIAL_NUMBER;

MAX_INIT TEMP_ITERATIONS = DEFAULT MAX_INIT TEMP_ITERATIONS;
INITIAL_ACCEPT_RATIO = DEFUALT_INITIAL_ACCEPT_RATIO;
STOP_TEMPERATURE = DEFAULT STOP_TEMPERATURE;
TEMP_INCREASE_FACTOR = DEFAULT_TEMP_INCREASE_FACTOR;
MOVE_PERCENT = DEFAULT MOVE_PERCENT;

ADD_PERCENT = DEFAULT_ADD_PERCENT;

DELETE_PERCENT = DEFAULT DELETE_PERCENT;

RATIO = DEFAULT_RATIO;

JUST_MOVE = DEFAULT_JUST_MOVE;

ALLOW_0_SOURCES = DEFAULT_ALLOW_O_SOURCES;
ALLOW_SOURCES_OUTSIDE = DEFAULT ALLOW_SOURCES_OUTSIDE;
TIME_FACTOR = DEFAULT TIME_FACTOR;

USE_HEURISTIC = DEFAULT_USE_ HEURISTIC;

else//set them to data from config. file

fscanf (InputFile, "%d\n", &TempInt) ;
NUMBER_OF_SOURCES = Templnt;
fgets(name, 128, InputFile) ;

fscanf (InputFile, "$£\n", &TempFloat}) ;
DWELL_TIME = TempFloat;
fgets(name, 128, InputFile);

fscanf (InputFile, "$£f\n", &TempFloat) ;
PRESCRIBED_DOSE = TempFloat;
fgets{name, 128, InputFile);

fscanf (InputFile, "$£f\n", &TempFloat) ;
INTERNAL_WEIGHT = TempFloat;
fgets (name, 128, InputFile) ;

fscanf (InputFile, "$£\n", &TempFloat) ;
EXTERNAL WEIGHT = TempFloat;
fgets (name, 128, InputFile) ;

fscanf (InputFile, "$£f\n", &TempFloat) ;
EXTERNAL_FACTOR = TempFloat;
fgets {name, 128, InputFile);

fscanf (InputFile, "$£\n", &TempFloat) ;
TEMP_REDUCTION_FACTOR = TempFloat;
fgets {name, 128, InputFile) ;

fscanf (InputFile, "$d\n", &TempInt) ;
MAX_ITERATIONS = TemplInt;
fgets {name, 128, InputFile);

fscanf (InputFile, "$d\n", &TempInt) ;
STOP_COUNT = TemplInt;
fgets (name, 128, InputFile) ;

fscanf (InputFile, "$£f\n", &TempFloat) ;
WITHIN_FACTOR = TempFloat;
fgets({name, 128, InputFile);

fscanf (InputFile, "%d\n", &TempInt) ;
TRIAL = TempInt;
fgets (name, 128, InputFile) ;

fscanf (InputFile, "$d\n", &TempInt) ;
MAX INIT_TEMP_ITERATIONS = TempInt;
fgets (name, 128, InputFile) ;

fscanf (InputFile, "$£f\n", &TempFloat) ;
INITIAL ACCEPT_RATIO = TempFloat;
fgets (name, 128, InputFile);

fscanf (InputFile, "3£f\n", &TempFloat) ;
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STOP_TEMPERATURE = TempFloat;
fgets(name, 128, InputFile) ;

fscanf (InputFile, "$f\n", &TempFloat) ;
TEMP_INCREASE_FACTOR = TempFloat ;
fgets (name, 128, InputFile);

fscanf (InputFile, "$f\n", &TempFloat) ;
MOVE_PERCENT = TempFloat;
fgets (name, 128, InputFile) ;

fscanf {InputFile, "$f\n", &TempFloat) ;
ADD_PERCENT = TempFloat;
fgets (name, 128, InputFile);

fscanf (InputFile, "$f\n", &TempFloat) ;
DELETE_PERCENT = TempFloat;
fgets (name, 128, InputFile) ;

fscanf (InputFile, "$d\n", &TempInt) ;
RATIO = TempInt;
fgets (name, 128, InputFile) ;

fscanf (InputFile, "$d\n", &Tempint) ;
JUST_MOVE = TempInt;
fgets (name, 128, InputFile) ;

fscanf (InputFile, "$d\n", &TempInt} ;
ALLOW_0_SOURCES = TempInt;
fgets (name, 128, InputFile) ;

fscanf (InputFile, "%d\n", &TempInt) ;
ALLOW_SOURCES_OUTSIDE = TempInt;
fgets (name, 128, InputFile) ;

fscanf (InputFile, "$%d\n", &TempInt) ;
TIME_FACTOR = TemplInt;
fgets (name, 128, InputFile) ;

fscanf (InputFile, "$d\n", &TemplInt} ;
USE_HEURISTIC = TempInt;
fgets (name, 128, InputFile);

fscanf (InputFile, "$s\n",GlobalStaticFileName) ;
fgets(name, 128, InputFile) ;

fclose (InputFile);
if {ECHO) //send values to the screen

fprintf (stderr, "$¥d\n",NUMBER_OF_SOURCES) ;
fprintf (stderr, "$£f\n",DWELL_TIME) ;

fprintf (stderr, "$£f\n", PRESCRIBED_ DOSE);
fprintf (stderr, "$£\n", INTERNAL_WEIGHT) ;
fprintf (stderr, "$£\n", EXTERNAL_WEIGHT) ;
fprintf (stdexrr, "$£\n", EXTERNAL_FACTOR) ;
fprintf (stderr, "$£\n", TEMP_REDUCTION_FACTOR) ;
fprintf (stderr, "$d\n",MAX ITERATIONS);
fprintf (stderr, "$d\n", STOP_COUNT) ;

fprintf (stderr, "$£\n",WITHIN_FACTOR) ;

fprintf {stderr, "$d\n", TRIAL) ;

fprintf {stderr, "$d\n",MAX_INIT_TEMP_ITERATIONS);
fprintf (stderr, "%f\n", INITIAL ACCEPT_RATIO);
fprintf (stderr, "$£\n", STOP_TEMPERATURE) ;
fprintf (stderr, "$£\n", TEMP_INCREASE_FACTOR) ;
fprintf (stderr, "$£\n",MOVE_PERCENT) ;

fprintf (stderr, "$£\n",ADD_PERCENT) ;

fprintf (stderr, "$£f\n",DELETE_PERCENT) ;
fprintf (stderr, "$d\n",RATIO) ;

fprintf (stderr, "$d\n",JUST_MOVE) ;
fprintf (stderr, "$d\n",ALLOW_0_SOURCES) ;
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fprintf (stderr, "$d\n", ALLOW_SOURCES_OQUTSIDE) ;
fprintf (stderr, *$d\n",TIME FACTOR) ;
fprintf (stdery, "$d\n",USE_BEURISTIC);

return(0) ;
}//end function ConfigSimulatedAnnealing

/*********t*********t**************t*************************************/

/* Function: CoolingProfile*/

/* */

/* Purpose : This function will return the temperature reduction factor for the current
iteration - based on the maximum of temperature reductions

/* 1Inputs : The current temperature reduction count.*/

/* Outputs : Float which is the temperature reduction factor.*/

/* */

/************************************************************************/

float CoolingProfile(int x}

{
float y=0.f;// this will hold the reduction factore while we build it
// this will force the cooling profile to the sigmoid upto the max reductions,
y = 2.0f - (1.0£/(1.0f + exp( 12.0£*(((float)MAX_ TEMP_REDUCTIONS - (float)x)/
{float)MAX_ TEMP_REDUCTIONS) - 5.0£))};

// this will slide the temperature further down!
//if (x < MAX_TEMP_REDUCTIONS)
if (x > MAX_TEMP_REDUCTIONS)// srgm3lmar02 changed

//y *= 0.9f;

y *= TEMP_REDUCTION_FACTOR;// srgm3lmar02 changed from magic number to user specified value
}
return y;

}//end function CoolingProfile

/*******t**************************‘k*************************************/
/* Function: GetInitialTemp*/

/* */

/* Purpose : This function will return the starting temperature*/

/* for the specific case of simulated annealing in question.*/

/* Inputs : None. */
/* oOutputs : Float which is the initial temperature.*/
/* */

/*****Q***t*****************************************i********************/
float GetInitialTemp{int NumSources)
{

float Cost=0.0f;

float 0ldCost=0.0f;

float CuxrTemp=0.0f;

float DeltaE = 0.0f;

int M1=0;

int M2=0;

int i=0;

int PrettyOutput=0;

/* Run through a number of random seed placements and calculate the M1 M2 DeltaF values*/
/* From these values, calculate a value for InitialTemperature*/

#if DEBUG_INIT TEMP
fprintf (GlobalOutputFile, "GetInitTemp starting\n"};
#endif
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FreePS (&FirstPS) ;

/*Get an initial OldCost*/

InsertSources (NumSources) ;/* Insert N sources into the simulation */
0ldCost = CalculateCost (FirstPS);/* Calculate Cost for 0ld cost */
FreePS (&FirstPS) ;

CurTemp = STOP_TEMPERATURE;/* Set the default temperature */

Mi=0;
M2=0;

#if DEBUG_INIT TEMP
fprintf (GlobalOutputFile, "In GetInitTemp, going into main loop\n");
f#endif

fprintf (GlobalOutputFile, "Heating up temperature!\n");
while (1)
{
for (i=0;i<MAX_INIT_TEMP_ITERATIONS;i++)
{
InsertSources (NumSources) ; /*Insert N sources into the simulation*/
Cost = CalculateCost (FirstPS);/*Calculate the cost*/
DeltaE = Cost - 0ldCost;/*Find the difference*/

if (DeltaE <= 0.0f)/+*If DeltaE is negative, new cost is better so keep it*/

0ldCost = Cost;
Ml++;
}/*end if*/
#if USE_RNG48
else if (((float)drand48()) < (exp((-Deltak)/CurTemp)))/*else keep it with some prob.*/
f#ielse
else if (((float)rand()/RAND MAX) < (exp((-DeltaE)/CurTemp)))/*else keep it with some prob.*/
#endif

0ldCost = Cost;
M24+4;
}/*end else ifx*/

FreePS(&FirstPS); /*remove the point sources */
}/*end for loop*/

if ({{float) (M1+M2)/MAX INIT TEMP_ITERATIONS) < INITIAL ACCEPT_RATIO)
CurTemp *= TEMP_INCREASE_FACTOR;
else
{
fprintf (GlobalOutputFile, " .\n");
fprintf (GlobalOutputFile, "Done GetInitialTemp\n");
£flush (GlobalOutputFile) ;
return (CuxrTemp) ;

}
Ml = 0;
M2 = 0;

if (PrettyOutput/19)

{
fprintf (GlobalOutputFile,”.\n");
fflush(GlobalOutputFile) ;
PrettyOutput=0;

}

else

{
fprintf (GlobalOutputFile,". ");
fflush{GlobalOutputFile);
PrettyOutput++;

}
}/*end whilex/
}/*end of function GetInitialTemp*/
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/*{1iitt:i*i*t***t*i**ii*i*i*i****itttii*ii***iii**titi*iiii**ti*it*i****/

/= Function : SimulatedAnnealing*/
/t */

/* Purpose : This function will start coocl the temperature it is */
output sourcet/

/* passed until it is sufficiently low that the
/* configuration is near optimal*/

/* Inputs : Float InitialTemp - starting temperature for the */

/* algorithm *f
/* Outputs : None £/
/* */

/*******t*t*f*ti*f*tttt*ti*ittti&iiiii**ikit****i***&if*tt***i&*t&**tti*t/

int SimulatedAnnealing{flcat InitialTemp, inf Trial,

{

int iteration=0;/* Number of possible solutions to generate */

int done=0;/* To stop simulation */

float CurTemp=0.0f;/* The current temperature in the simulation L7

fleat PerCheck=0.0f;/* this is the five percent value for stopping */

float Cost=0.0f;/* The cost returned from the calculate cost fnet */

float 0ldCost=0.0f;/* The cost of the previous solution */

float Stored0ldCost=0.0f;/* this is the stored value for stop conditions */
float DeltaB=0.0f;/* The difference b/w cost and oldcost */

int ml=0,m2=0;/* temp for gathering stats on acceptance */

int StopCount=0;/* once this count gets high enough, done is true */

int IsStored=0;/* this is the flag to store the first 0ldCost */

long int Teotaliteration=0;/* for file output of cost vesus interation */
char *FileName=NULL;/* Filename with iteration numbexr of debug files #/
FILE *CostTempFile=NULL;/* this is the cost at each temp file */

FILE *StatsFile=NULL; /* this is a file that keeps statistics on the run */
float MaxIterations=0.f;// for estimate of number of iterations max

float AverageTime=0.f;// time calculations

time_t starttime,curtime,prevtime;// for time calculations

int Test=0;// return value from hyperdosecheck
int CurNumPS=0;// counter
PS5 *StoredPS=NULL;// stored for heuristic

PS *BestPSSoFar=NULL;// for stopping after resonable number of sources

£loat KeptCost=0.0f;
int TempReductionCount=0;// srgml7mar02 acdded

//int WhichScurce=0,i=0;// temp ints

/* this is to calculate the number of iterations max */

#if TEMP_REDUCTION_SIMPLE//srgm3lmar02 added conditicnal compile and #else clause
(float)InitialTemp);
MaxIterations = MaxIterations/(fleat)log(TEMP_REDUCTION_FACTOR) ;

MaxIterations = log{{flcat)STOP_TEMPERATURE/

HaxIterations = MAX ITERATIONS * MaxIterations;

#elsef/ srgm3imar02 added else clause
MaxIterations = log{{float)STOP_TEMPERATURE/
file(MAX_TEMP_REDUCTIONS)));

MaxIterations = MaxIterations/{float}log(TEMP_REDUCTION FACTOR-.13);//srgm3lmar02 added in -.13 to

account for sigmoid reductioa not straight
#endif

/* report the info to output display?*/

fprintf (GlobaloutputFile, *\n\nStarting SimulatedAnnealing, trial %d with:\n\tinitial temperature:
¢f\n\tMax stopping temperature: %f\n",Trial,InitialTemp, STOP_TEMPERATURE]) ;

fprintf (GlobaloutputFile, "\tThe temperature is being reduced by: %f\n",TEHP REDUCTION_FACTOR);
fprintf (GlobalOutputFile, "\tNumber cf iterations %d, within 2£\n", STOP_COUNT,WITHIN_ FACTOR) ;
fprintf (GlobalOutputFile, "\tNumber of sources: %d\n\tDwell times: %f\n\tPrescribed dose: %f\n"*,Num-

Sources,DWELL_TIME, PRESCRIBED_DOSE]) ;

fprintf (GlobalOutputFile, "\t%d interations at each temperature\n",MAX ITERATIONS);

fprintf {GlobalOutputFile, "\tWeights, internal: %f external %£f\n", INTERNAL WEIGHT, EXTERMAL WEIGHT);
fprintf {(GlobalOutputFile, "\tExternal factor: %f\n",EXTERNAL FACTCR);
fprintf(GlobalOutputFile, "\tTotal iterations {max):%f\n" MaxIterations);

IsStored = 9;

done=0;

StopCount=0;

CurTemp = InitiaiTemp;

/*generate initial random solution in Firstps*/

{float) {InitialTemp*CoolingPro-
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InsertSources (NumSources) ;

/*find cost of initial solution*/
0ldCost = CalculateCost (FirstPS);
KeptCost = OldCost;// should not be _that_ good so keep it as a starting value

#if DEBUG_SIM_ANN

/*Open file for 2D plot of cost and temp*/

FileName = (char *)malloc(sizeof ("OUTPUT/CostTemp "))
sprintf (FileName, "OUTPUT/CostTemp%d.dat",Trial);

fprintf (GlobalOutputFile,"In SimAnn and opening output file

Name) ;

CostTempFile = fopen(FileName, "w");
free (FileName) ;

/* Open file for time projection and statistics */

FileName = (char *)malloc(sizeof ("OUTPUT/Stats "yyil/*
sprintf (FileName, "OUTPUT/Stats%d.dat",Trial};

fprintf (GlobalOutputFile,"In SimAnn and opening output file

Name) ;

StatsFile = fopen(FileName, "w"};
free (FileName) ;

;/* leave space for ## and .dat */

:\n\n\t%s \n\nfor output.\n\n",File-

leave space for ## and .dat */

:\n\n\t%s \n\nfor output.\n\n",File-

fprintf {StatsFile,"Total Iterations (Max):%f\n", MaxIterations);

fflush(StatsFile};
StartTime (&starttime) ;
StartTime (&prevtime) ;

#endif

while {!done)

{

mi=0;
m2=0;

for (iteration=0;iteration<MAX_ ITERATIONS;iteration++)

{
/* Generate solution in FirstNewPS */
if (MoveSources {InitialTemp, CurTemp))

{

fprintf (GlobalOutputFile, "Error in move sources exiting SimulatedAnnealing\n");

return(1l);

}

/* Calculate cost */

Cost = CalculateCost (FirstNewPS) ;
/* Find energy change*/

DeltaE = Cost - OldCost;

/*CASE 1*/
/* If cost is better or equale than current keep it */
if (DeltaE <= 0.000001f)

#if DEBUG_SIM_ANN && 0O
PrintPS(FirstNewPS) ;

fprintf (GlobalOutputFile, "Case 1 0ldCost: %f > Cost %f\n",0ldCost, Cost) ;

#endif
OldCost = Cost;
SwapPS (&FirstPS, &FirstNewPS) ;
ml++;

}

/*CASE 2%/
/* else keep it with some probability */

#if USE_RNG48
else if ({((float)drand48()) < (exp{(-Deltak)/CurTemp)))/*else keep it with some prob.*/

felse

else if ({(float)rand()/RAND_MAX) < (exp{{-DeltaE)/CurTemp)))/*else keep it with some prob.*/

#endif

#if DEBUG_SIM ANN && 0
fprintf (GlobalOutputFile, "Case 2 OldCost: %f > Cost %f\n",0ldCost,Cost};

f#fendif

0ldCost = Cost;
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SwapPS (&FirstPS, &FirstNewPSs) ;
#if DEBUG_SIM ANN && 0
fprintf (GlobalOutputFile, "Rand: %f <« Prob %f | at Temp: %f\n",Rand,Prob,CurTemp) ;

#endif
m2++;
}
/*CASE 3*/

/* else do nothing */
else

#if DEBUG_SIM ANN && 0
fprintf (GlobalOutputFile,"Case 3 0ldCost: %f < Cost: %f\n",0ldCost,Cost):
#endif
FreePS (&FirstNewPS) ;
}
Totallteration++;
}/*end of for iterations...*/

//fprintf (GlobalOutputFile, "Iterations left: $f\n",MaxIterations- (float)TotallIteration);
/****************************************/

/* */
/* Calculate New Temp.*/
/* */

/********!(*******************************/

#if DEBUG_SIM_ANN
/*Output data to a file to plot cooling schedulex*/
fprintf (CostTempFile,*%1i %f\n", TotalIteration,OldCost);
fflush (CostTempFile) ;

/*Output stats to a file*/

curtime = time (NULL);

AverageTime = difftime(curtime,prevtime)/{(float)MAX ITERATIONS;

StartTime (&prevtime) ;
#if TEMP_REDUCTION_SIMPLE

fprintf (StatsFile, " (%d) Iterations left: %f Average per iteration %f, projected time remaining:
%f.\n", NumPS (FirstPS) ,MaxIterations- (float)Totallteration, AverageTime, (MaxIterations-TotalItera-
tion)*AverageTime) ;
felse

//fprintf (StatsFile," (%d) Iterations left: %f Average per iteration %f, projected time remaining:

$£.\n", NS (FirstPs) ,MiX TEVP REDUCTIONS- (flost) TenpReduct-ionCount:, AveregeTime, (VAX TEMP REDUCTTONS-TempRedctienCoune) *AverageTimeMAX. TTERKTIONS) ;

// srgm3lmar02 was this adding in straight cooling time

fprintf (StatsFile, " (%d) Iterations left: %f Average per iteration %f, projected time remaining:
%£.\n",NumPS (FirstPS), (MAX_TEMP_REDUCTIONS+MaxIterations)-{float)TempReductionCount, AverageT-
ime,((MAX_TEMP_REDUCTIONS+MaxIterations)—TempReductionCount)*AverageTime*MAX_ITERATIONS);
#endif

fflush(StatsFile);
#endif

/*calculate new temperaturex/
#if TEMP_REDUCTION_SIMPLE// srgml7mar02 modifying
CurTemp *= TEMP_ REDUCTION FACTOR;

#else
TempReductionCount++;
CurTemp = InitialTemp * CoolingProfile (TempReductionCount);
fprintf (GlobalOutputFile, "CurTemp: %f\n",CurTemp);

#endif

#if DEBUG_SIM ANN && 0
fprintf (GlobalOutputFile, "The temp. is now $f and prob. of accept. is typically: %f\n",Cur-
Temp, (£loat) (ml+m2) /MAX ITERATIONS) ;
#endif

/**************************t**********i**/

/* */
/* Check for stop conditions*/
/* */

/**********************t***t*************/

if (!IsStored)
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IsStored = 1;
StoredOldCost = OldCost;

PerCheck = Stored01dCost*WITHIN_FACTOR;
if (({{0ldCost-PerCheck)<«Stored0ldCost) && (Stored0ldCostc< (0ldCost+PerCheck)})

StopCount++;
else
{
StopCount=0;
Stored0ldCost = 0OldCost;
}
if (StopCount>STOP_COUNT)
{

fprintf (GlobalOutputFile, "\nFinished because stopcount reached, StopCount was: %d\n",Stop-
Count) ;

fprintf (GlobalOutputFile, "Current Cost: %f\n",Cost);
done = 1;

//#if TEMP_REDUCTION_SIMPLE//srgml7mar02 added
else if (CuxTemp < STOP_TEMPERATURE}

{
fprintf (GlobalOutputFile, "\nFinished because CurTemp (%f)<STOP_TEMPERATURE (%f)\n", Cur-
Temp, STOP_TEMPERATURE) ;

fprintf (GlobalOutputFile, "Current Cost: %f\n",Cost};
done = 1;

//#else // srgml7mar02 added

// else if (TempReductionCount>=MAX TEMP_REDUCTIONS)

/7 {

// fprintf (GlobalOutputFile, "\nFinished because TempReduction-

Count (%d) >=MAX_TEMP_REDUCTIONS (%d) \n", TempReductionCount,MAX_TEMP_REDUCTIONS) ;

// fprintf (GlobalOutputFile, *Current Cost: %f, CuxTemp: %f\n",Cost,CurTemp);
/7 done = 1;

/7 TempReductionCount = 0;

// }

//#endif

// Setup BestPSSoFar
if (1.15*Cost<KeptCost)//best so far, therefore keep it

if (DEBUG_SIM_ANN)
fprintf (GlobalOutputFile, "Keep new config as best so far, it is better %f than
%f\n", Cost,KeptCost) ;
KeptCost = Cost;
FreePS (&BestPSSoFar) ;
CopyPS (&BestPSSoFar, FirstPS) ;
MakeOutputPGM (666} ;

}
// Check if there are too many sources to keep going
if (NumPS{FirstPS) == 15)// too many sources, SO quit
{
// set output to best so far
FreePS (&FirstPS) ;
CopyPS (&FirstPS, BestPSSoFar) ;
fprintf (GlobalOutputFile, "Reached limit of number of sources (15), terminating with best so
far.\n");
break;
}
/****************************************/
/* */
/* USE HEURISTIC*/
/* */

/****************************************/
if (USE_HEURISTIC && done})

{

// print out the current config so that we can see how it did
MakeOutputPGM(Trial++) ;

// first time through store FirstPS right away so that it can be used if all is OK
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if (!StoredPS)
CopyPS {&StoxredPS, FirstPS} ;

Test = CheckHyperDoseSleave (FirstPS);
CheckHyperDoseSleaveIntegration (FirstPS);

if

{

{Test == 1)//too much dose at check points SO ADD

CurNumPS = NumPS{FirstPS);
if (CurNumPS < GlobalTumourCount)

{

fprintf (GlobalOutputFile, "Hyperdose sleave is too big so adding (from %d --> 3%d)\n",Cur-
NumPS, CurNumPS+1) ;

// store the current config in case it is better

FreePS (&StoredPS);//In case there is already a StoredPS

SwapPsS (&StoredPS, &FirstPS) ;
// init code for SA
IsStored = 0;
done=0;
StopCount=0;
Totallteration=0;
TempReductionCount=0;// srgm06apr02 added
CurTemp = GetInitialTemp {CurNumPS++);
/* this is to calculate the number of iterations max */

#if TEMP_REDUCTION_SIMPLE// srgm3lmar02 adding in else clause
MaxIterations = log((float)STOP_TEMPERATURE/ (float)CurTemp) ;
MaxIterations = MaxIterations/({(float)log(TEMP_REDUCTION_FACTOR) ;

MaxIlterations = MAX_ITERATIONS * MaxlIterations;

f#lelse// srgm3lmar02 added else clause
MaxIterations = log((float)STOP_TEMPERATURE/ (flocat} (InitialTemp*CoolingPro-

file (MAX_TEMP_REDUCTIONS)));
MaxIterations = MaxIterations/{(float)log(TEMP_REDUCTION_FACTOR-.13);//srgm3lmar02 added

in -.13 to account for sigmoid reduction not straight

#endif

}

/*generate initial random solution in FirstPS*/
InsertSources (CurNumPS++) ;

/*find cost of initial solution¥*/
0ldCost = CalculateCost {FirstPS);

else

{

fprintf (GlobalOutputFile, "There are too many sources, yet I NEED more!\n");

exit (0);

else if (Test == -1) // not enough dose

}

fprintf (GlobalOutputFile, "Hyperdose too small going with previous as answer\n"};

// restore the previous answer;
FreePS (&FirstPS);// in case there is already a FirstPS
SwapPS (&FirstPS, &StoredPS) ;

else

{

fprintf (GlobalOutputFile, "Exactly correct dose configuration, done SimAnn\n"};

}// end if use_heuristic && done

fflush(GlobalOutputFile) ;
}/*end of while*/

#if DEBUG_SIM_ANN
fclose (CostTempFile) ;
fclose (StatsFile);
StopTime (starttime) ;

#endif

fprintf (GlobalOutputFile, "After SimulatedAnnealing Source Locations are:\n");
PrintPS (FirstPSs) ;

return(0);

}/*end of function SimulatedAnnealing*/
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