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Abstract

In this thesis, we present a number of developments regarding the Hahn and Levi-Civita

fields (F and R respectively). After reviewing the algebraic and order structures of the field

F , we introduce different vector topologies on F that are induced by families of semi-norms

and all of which are weaker than the order or valuation topology. We compare those vector

topologies and we identify the weakest one which we denote by τw and whose properties

are similar to those of the weak topology on the Levi-Civita field [1]. In particular, we

state and prove a convergence criterion for power series in (F , τw) that is similar to that for

power series on the Levi-Civita field in its weak topology [2]. We also state three conjectures

regarding so-called simple regions and prove a version of Weierstrass’ Preparation Theorem

in their support. Moreover we show how these conjectures can be used to extend the two-

dimensional integration theory [3] to higher dimensions. We prove a version of Leibniz’

Rule for integration on F and show how it determines the necessary boundary conditions

for Green’s Functions derived from the non-Archimedian delta function [3]. We also include

corrected and extended examples of the use of Green’s Functions for solving linear ordinary

differential equations. Finally we investigate some of the computational applications of the

Levi-Civita field. We replicate the results of [4] regarding the computation of derivatives of

real-valued functions representable on a computer and we show how a similar method can be

employed to compute real numerical sequences using their generating functions. We discuss

a number of methods of numerical integration that are viable on the field R and we compare

their performance to conventional methods as well as to commercial mathematical software.
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Chapter 1

Preliminaries

1.1 Motivation

Traditionally, physicists have used three fields to describe the universe, the rational numbers

(denoted by Q), the real numbers (denoted by R), and the complex numbers (denoted by

C). These fields are Archimedean fields because they satisfy the so-called Archimedean

property. Simply put, the Archimedean property states that if we are given two distinct

distances within our field then if the shorter distance is added to itself sufficiently many

times the sum will eventually exceed the size of the greater distance. The dominance of

the Archimedean fields within physics is easily understood since the Archimedean property

agrees with our intuitive understanding of distance. Unfortunately, phenomena such as the

Heisenberg uncertainty principle and the Planck scale seem to prevent us from probing the

fine structure of our universe. A good discussion of this topic can be found in [5]. From a

philosophical perspective it makes sense to investigate non-Archimedean models of physics

simply because we have no a priori reason to conclude the universe is Archimedean. One

might say the goal of the mathematical physicist is to locate among all possible mathematical

structures that one which most closely resembles a given physical system; in this light, it

makes little sense to limit the scope of the search to include only Archimedean mathematical
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structures. Another exciting opportunity allowed by non-Archimedean fields is the possibility

of finding rigorous representations for functions that are improper over the real numbers;

a good example of this is the Dirac delta function which is fundamental to quantum field

theory but has no proper Archimedean representation. As we shall see in Chapter 4, there is

a smooth, integrable non-Archimedean delta function which retains the useful properties of

the real Dirac delta function. Of course a rigorous treatment of the Dirac delta function can

be done in R using the theory of distributions but at the cost of the intuitive interpretation;

this is particularly problematic for the purposes of teaching, where the delta function is often

described as something like ‘an infinitely thin, infinitely tall spike.’ It would be beneficial

from a pedagogical perspective to have a mathematical framework capable of matching that

description. Taking for granted that non-Archimedean physics is worthy of study it remains

to ask which non-Archimedean field should be employed in the project. The choice is a

difficult one because there are infinitely many non-Archimedean fields and some have wildly

different properties to others, an excellent review of the available fields and their respective

properties can be found in [6]. To date, most work in non-Archimedean mathematical physics

has focused on the so-called p-adic numbers and their complex analog (denoted by Qp and

Cp respectively). Such work has been ongoing since at least 1984 [7] and has resulted in a

number of interesting applications since then [8]. In this dissertation our goal is to develop

new mathematical tools on the Hahn field (denoted by F) and its proper subfield the Levi-

Civita field (denoted by R) as viable alternatives to Qp for use in physics. There are a

number of important differences between Qp and F , perhaps the most immediate difference

is that F contains both the real numbers and the rational numbers as proper subfields while

Qp only has the rational numbers as a subfield. Additionally F is totally ordered whereas Qp

is not and R can be implemented on a computer whereas Qp is too large for that purpose.

A good illustration of the effects these differences can have on physical theories is suggested

by work done regarding a p-adic theory of quantum mechanics: in [9] there are proposed two

potential formulations for state functions; in particular we can either consider functions from
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Qp (resp. Cp) to R (resp. C) or we can consider functions from Qp (resp. Cp) to itself. In the

case of F and R this distinction is inconsequential because R (resp. C) is a proper subfield

of F (resp. F + iF), so there is no need to consider two separate formulations because

the functions from F to R form a proper subset of the functions from F to F . Finally an

advantage R has over the other non-Archimedean fields is its suitability for implementation

on a computer, this is especially useful for studying the asymptotic behaviour of real-valued

functions. As we shall see in Chapter 5, the implementation ofR numbers on a computer can

be used in effectively calculating derivatives and integrals of real-valued functions. Although

this document includes a number of advancements related to F and R it is by no means

exhaustive. Progress on the topic of quantum mechanics in this context currently suffers

from the lack of a theory of Fourier analysis and until a theory of manifolds and differential

geometry is developed investigations into general relativity will remain impossible.

1.2 Outline

In the remainder of this chapter we will review the definition of the Hahn and Levi-Civita

fields and we will summarize the preexisting work on measure theory and integration. In

Chapter 2 we investigate a variety of topologies on the Hahn field, all weaker than the

order topology, and we show that under the weakest of such topologies power-series on the

Hahn field satisfy a similar convergence criterion as for those on the Levi-Civita field. The

results from this chapter have been accepted for publication in Indagationes Mathematicae

and at the time of writing are in print (see [10]). In Chapter 3 we begin by proposing three

conjectures and we discuss certain related results from real analysis. We then prove a version

of the Weierstrass Preparation Theorem for the Hahn field which is key to the inductive step

required to prove the aforementioned conjectures. Finally, by accepting the conjectures, we

show how integration can be defined in higher dimensions using induction on the dimension.

The results regarding integration from this chapter are a generalization of the work published
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in [11]. In Chapter 4 we return to the rigorous treatment of the Dirac Delta function (see

[3]) where we show what boundary conditions are necessary for a usable Green’s function.

We also include expanded examples and some corrections to previous results. The results

from this chapter have been published in [12]. In Chapter 5 we discuss the Levi-Civita

field as it relates to numerical computation and we present an implementation of it as a

static library in the C++ programming language. We replicate the results of [4] regarding

a method of numerical differentiation and we show how the same method can be used to

compute the terms of real infinite sequences using their generating functions. Finally, we

investigate related methods of numerical integration and compare them to more conventional

methods of numerical integration. At the time of writing, these results are being prepared

for publication. We include the code of the static library as an appendix for the reader’s

reference. Ideally this code will be made publicly available, however, it is not at this time

clear how or where that might happen.

1.3 The Hahn and Levi-Civita Fields

As stated in the outline, the goal for the remainder of this chapter is to summarize the

fundamental results regarding the Hahn and Levi-Civita fields. The most exhaustive study

of these results is found in [13] and where not otherwise stated the reader may understand this

to be the relevant reference throughout this chapter. We begin with a number of definitions.

Definition 1.3.1 (Well-ordered subset of Q). Let A ⊂ Q. Then we say that A is a well-

ordered subset of Q if every non-empty subset of A has a minimum element.

Definition 1.3.2 (Left-finite subset of Q). Let A ⊂ Q . Then we say that A is left-finite

if, for any q ∈ Q, the set

A<q := {a ∈ A|a < q}

is finite.
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Since every finite set of the rational numbers has a minimum element it follows that every

left-finite set is also a well-ordered set.

Definition 1.3.3 (The support of a function from Q to R). Let f : Q → R. Then the

support of f is denoted by supp(f) and is defined by

supp(f) := {q ∈ Q|f(q) 6= 0} .

Definition 1.3.4 (The sets F and R). We define

F := {f : Q→ R|supp(f) is well-ordered}

and

R := {f : Q→ R|supp(f) is left-finite} .

The close relationship between these two fields implies that many definitions and propo-

sitions hold equally for both. To avoid needless repetition we will let K denote either of F

or R. Elements of F and R are functions from Q to R and in the course of this dissertation

we will sometimes discuss these functions evaluated at specific points in their domain, and

some other times, we will consider functions on F and R. To avoid confusion we reintroduce

the following notations.

Remark 1.3.5 (Notation regarding elements versus functions). We employ the convention

that square brackets (i.e. ‘[’ and ‘]’) denote an element of either F or R evaluated at some

point in Q whereas curved brackets (i.e. ‘(’ and ‘)’) denote a function on F or R evaluated

at a point in one of those sets. So for example if we have x ∈ K, q ∈ Q, and f : K → K,

then

� x[q] ∈ R denotes an element x of K evaluated at a point q in Q.

� f(x) ∈ K denotes a function f evaluated at an element x in K.
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� f(x)[q] ∈ R denotes a function evaluated at a point in K and the result of that evalua-

tion (itself an element of K) evaluated at a point in Q.

We also define the following notion to aid in our discussion of these sets.

Definition 1.3.6. Let x ∈ K. Then we define

λ(x) :=


min supp(x) if x 6= 0

∞ if x = 0

Notice in the above definition the minimum is guaranteed to exist by the well-orderedness

of the support of a non-zero element of K. For x ∈ K, λ(x) corresponds to the “order of

magnitude” of x, we make this notion more rigorous below after we have defined the order

on F and R in Definition 1.3.8.

Definition 1.3.7 (Addition and multiplication on F and R). Let x, y ∈ K be given. Then

we define for every q ∈ Q

� (x+ y)[q] = x[q] + y[q]

� (x · y)[q] =
∑

q1∈supp(x)
q2∈supp(y)
q1+q2=q

x[q1] · y[q2]

If A,B are well-ordered sets and r ∈ A + B then by [14, Theorem 1.3] there are only

finitely many pairs (a, b) ∈ A×B such that a+ b = r. This fact ensures that multiplication

on F and R is well defined since the sum in the definition will only ever have finitely many

terms and thus will always converge. Under these definitions of addition and multiplication

(K,+, ·) is a field [15], and in fact we can isomorphically embed the real numbers into K as

a subfield using the map Π : R→ K defined by

Π(x)[q] :=


x if q = 0

0 if q 6= 0

.
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Definition 1.3.8. (Order on F and R) Let x, y ∈ K be distinct. We say x > y if and only

if (x− y)[λ(x− y)] > 0. We say x < y if y > x and we say x ≥ y if either x = y or x > y.

Under this order relation, (K,≥) is a totally ordered field. Moreover, the embedding of

R into this field via the map Π defined above is order preserving [15]. The next definition

introduces some convenient notations for comparing elements of F andR; it will also allow us

to say more regarding λ, the notion of infinite and infinitesimal elements, and their relation

to each other. The map | · |u : F → R (resp. R → R), given by

|x|u =

 e−λ(x) if x 6= 0

0 if x = 0,

is an “ultrametric” (or “non-Archimedean”) valuation, which is to say that it satisfies the

strong triangle inequality [6]. This ultrametric valuation induces on K the same topology as

the order relation [4, 6]; we will denote this topology by τv hereafter and refer to it as either

the order topology, the valuation topology, or the strong topology. The fields F and

R are complete with respect to τv [6].

Definition 1.3.9 (�, �, ∼, ≈, and =q). Let x, y ∈ K be non-negative. We say that x is

infinitely larger than y and write x � y if for every n ∈ N, x > ny; we say x is infinitely

smaller than y and write x � y if for every n ∈ N, y > nx. We say that x is infinitely

large if x � 1 and we say it is infinitely small or infinitesimal if x � 1. Suppose that

λ(x) = λ(y) = λ0 then we write x ∼ y. If in addition we have that x[λ0] = y[λ0], we write

x ≈ y. We say x =q y if x[q′] = y[q′] for all q′ ≤ q.

Notice in the above definition that x � y if and only if λ(x) < λ(y); moreover, since

λ(1) = 0, x is infinitely large if and only if λ(x) < 0 and x is infinitesimal if and only if

λ(x) > 0. The non-zero real numbers satisfy λ(x) = 0 as does the sum of a real number and

an infinitesimal number. We define λ(0) = ∞ so that for every x ∈ K with x 6= 0 we have

λ(x) < λ(0).
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Definition 1.3.10 (The number d). We define the element d ∈ K as follows: for every

q ∈ Q,

d[q] :=


1 if q = 1

0 if q 6= 1

.

Under this definition d > 0 and it is infinitesimal (λ(d) = 1); moreover, following from

the definition of multiplication, we have that for any r ∈ Q,

dr[q] :=


1 if q = r

0 if q 6= r

.

In particular we have that

d−1[q] :=


1 if q = −1

0 if q 6= −1

.

Since λ(d−1) = −1, d−1 is infinitely large. This is consistent with d being infinitesimal and

in fact it allows the statement of an interesting inequality, namely

0 < d < z < d−1,

for all z ∈ R+. So in the Hahn and Levi-Civita fields the set of positive real numbers is

bounded both above and below.

1.4 Power-Series and Analytic Functions

Functions on non-Archimedean fields often display properties that appear very different from

those of real-valued functions on the real field R. In particular it is possible to construct

continuous functions that are not bounded on a closed and bounded interval, continuous and

bounded functions that attain neither a maximum nor a minimum value on closed intervals,
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and continuous and differentiable functions with a derivative equal to zero everywhere on an

interval which are nevertheless non-constant on that interval [4]. These unusual properties

are a result of the total disconnectedness of these structures in the order topology [16, 4].

Much work has been done in showing that power series and analytic functions on the Levi-

Civita field have the same smoothness properties as real power series and real analytic

functions [2]. The effort to extend these properties to as large a class of functions as possible

has been aided considerably by the introduction of the so-called weak topology on the Levi-

Civita field which is strictly weaker than the order topology and thus allows for more power

series to converge than the order topology. In Chapter 2 we will show how a similar weak

topology may be induced on the Hahn field and we derive convergence criteria for sequences

and power series in this new topology. Here we briefly review the properties of power-series

and analytic functions on the Levi-Civita field, a detailed discusion can be found in [17, 16].

Definition 1.4.1. Let (sn)n∈N be a sequence in R. Suppose that

⋃
n∈N

supp(sn)

is a left finite set. Then we say that (sn)n∈N is a regular sequence.

Definition 1.4.2. We say that a sequence in R converges strongly if it converges with

respect to the order topology.

The “weak topology” mentioned above is constructed using the family of semi-norms

defined below:

Definition 1.4.3 (A Family of Semi-Norms on R). For every q ∈ Q define the map ‖·‖(w,q) :

R → R by

‖x‖(w,q) := sup {|x[r]||r ∈ supp (x) ∩ (−∞, q]} .

Since every x ∈ R has a left-finite support, the supremum in the above definition is a

maximum, it being the supremum of a finite set. This is not the case for x ∈ F where
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the support of an element need only be well-ordered, which allows the support to have

accumulation points and so for some x ∈ F , {|x[r]||r ∈ supp (x) ∩ (−∞, q]} may have a

divergent subsequence and thus the supremum may be +∞.

Definition 1.4.4. Let (sn)n∈N be a sequence in R. Then we say that this sequence con-

verges weakly or is weakly convergent if there is an s ∈ R such that for every ε > 0 in

R there is a N ∈ N such that for every n ≥ N ,

‖sn − s‖(w, 1ε ) < ε.

Proposition 1.4.5 (Weak convergence criterion for sequences in R [16]). Let (sn)∞n=0 be a

weakly convergent sequence in R. Then, for every q ∈ Q, the sequence (sn[q]) converges in

R in the standard topology. Conversely, if (sn) is a regular sequence and if, for every q ∈ Q,

(sn[q]) converges in R in the standard topology then (sn) converges weakly in R.

Definition 1.4.6 (Power series on the Levi-Civita field). A power series is any formal

expression of the form

S(x) =
∞∑
n=0

an(x− x0)n

where (an)n∈N is a sequence in R, x0 is fixed in R, and x is an independent variable. We

say that a power series converges weakly in R for some x ∈ R if the sequence of partial

sums

Sm(x) =
m∑
n=0

an(x− x0)n

converges weakly in R.

We can now state a criteria that is sufficient for power series to converge both in the

order topology and in the weak topology.

Proposition 1.4.7 (Strong convergence criterion for power series on the Levi-Civita field
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[16]). Let (an)∞n=0 be a regular sequence in R such that

lim sup
n→∞

(
−λ(an)

n

)
= λ0 ∈ R ∪ {−∞,∞} .

Let x0 ∈ R be fixed and suppose x ∈ R is given. The power series

∞∑
n=0

an(x− x0)n

converges strongly if λ0 < λ(x−x0) and diverges strongly if λ0 > λ(x−x0) or if λ0 = λ(x−x0)

and −λ(an)
n

> λ0 for infinitely many n ∈ N.

As the example below illustrates many power series representations of common analytic

functions fail to converge in the order topology outside an infinitesimally small neighbour-

hood. This difficulty motivates the introduction of the weak topology.

Example 1.4.8. The power series representation of the exponential function about x = 0 is

given by (see [17])

exp(x) =
∞∑
n=0

xn

n!
.

We wish to determine for which values of x ∈ R the above sum converges. Recall that in the

order topology if (an)n∈N ∈ R is an infinite sequence then the sum
∞∑
n=0

an converges if and only

if limn→∞ an = 0, in our case this means that the above representation of exp(x) converges

if and only if limn→∞
xn

n!
= 0 [14]. This condition is met if and only if limn→∞ x

n = 0

or equivalently if and only if limn→∞ nλ(x) = ∞ and the last condition is met if and only

if λ(x) > 0. Thus we see that the series representation of exp is convergent in the order

topology only on the infinitesimal neighbourhood about 0.

As the following proposition makes clear, the weak topology has a more convenient con-

vergence criterion for power series which allows us to avoid the difficulty illustrated above.

Proposition 1.4.9 (Weak convergence criterion for power series on the Levi-Civita field
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[16]). Let (an)∞n=0 be a sequence in R and suppose that

lim sup
n→∞

(
−λ(an)

n

)
= λ0.

Let x0 ∈ R be fixed and suppose x ∈ R is such that λ(x − x0) = λ0. Finally, suppose that

(and
nλ0)∞n=0 is a regular sequence. Then

∞∑
n=0

an(x− x0)n

converges weakly if |(x− x0)[λ0]| < r and diverges weakly if |(x− x0)[λ0]| > r where

r :=
1

sup

{
lim sup
n→∞

|(andnλ0)[q]|
1
n : q ∈

⋃
n∈N

supp(andnλ0)

} .

Definition 1.4.10 (Analytic function on the Levi-Civita field). Let a < b in R be given and

let f : [a, b]→ R. Then we say that f is analytic on [a, b] if for all x ∈ [a, b] there exists a

positive η(x) ∼ b−a in R, and there exists a regular sequence (an(x)) in R such that, under

weak convergence, f(y) =
∑∞

n=0 an(x)(y − x)n for all y ∈ (x− η(x), x+ η(x)) ∩ [a, b].

Fortunately, analytic functions on R behave similarly to their counterparts on R. For

example, if f, g : I ⊂ R → R are two analytic functions on an interval I and if α ∈ R is a

constant then f · g and f + αg are analytic on I [15]. Additionally it has been shown that

the composition of analytic functions are analytic and if f is analytic on a closed interval

[a, b] ⊂ R, then f must be bounded on [a, b] [17]. Finally, analytic functions on an interval

[a, b] satisfy a mean value theorem, an inverse function theorem, and an intermediate value

theorem [18, 19]. We also note that in [17] it is shown that if a < b in R and f : [a, b]→ R

is analytic on [a, b], then there exists a rational number called the index of f defined by

i(f) = min{λ(f(x)) : x ∈ [a, b]}.
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Moreover, it is shown that λ(f(x)) = i(f) almost everywhere on {x ∈ R : x ∈ [a, b], supp(x−

a) = {λ(b−a)}} and for any such x the same is true for every element y in the neighbourhood

of x satisfying λ(y−x) > λ(b−a). One convenient consequence of the above is that we may

assume without loss of generality that analytic functions have an index equal to zero, this is

so since scaling the function by d−l does not affect the property of being analytic.

1.5 Measure Theory and Integration

For a subset A of the real numbers the Lebesgue outer measure is defined as

µ∗ (A)

:= inf

{
∞∑
n=0

(bn − an)

∣∣∣∣∣(an, bn)n∈N are mutually disjoint, open intervals, and A ⊂
∞⋃
n=0

(an, bn)

}
.

In the Levi-Civita field this infimum need not exist [15] and so it is not possible to define the

measure in exactly the same way we do the Lebesgue measure in real analysis. Instead we

use the definition below to construct a Lebesgue-like measure (and eventually a Lebesgue-

like integral). Note that for a < b in R I(a, b) denotes any one of the intervals (a, b), (a, b],

[a, b), or [a, b] and l(I(a, b)) = b− a.

Definition 1.5.1 (Measurable set). Let A ⊂ R be given. We say that A is measurable

if for every ε > 0 in R there exist two countable sequences of mutually disjoint intervals

(In)∞n=1 and (Jn)∞n=1 such that
∞⋃
n=1

In ⊂ A ⊂
∞⋃
n=1

Jn,

∞∑
n=1

l(In) and
∞∑
n=1

l(Jn) both converge, and

∞∑
n=1

l(Jn)−
∞∑
n=1

l(In) < ε.
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If A ⊂ R is a measurable set then for every k ∈ N there exist two countable sequences

of mutually disjoint intervals (Ikn)∞n=1 and (Jkn)∞n=1 such that

∞⋃
n=1

Ikn ⊂
∞⋃
n=1

Ik+1
n ⊂ A ⊂

∞⋃
n=1

Jk+1
n ⊂

∞⋃
n=1

Jkn ,

∞∑
n=1

l(Ikn) and
∞∑
n=1

l(Jkn) both converge, and
∞∑
n=1

l(Jkn)−
∞∑
n=1

l(Ikn) < dk. It is shown in [20] that

lim
k→∞

∞∑
n=1

l(Ikn) and lim
k→∞

∞∑
n=1

l(Jkn) both exist and are equal. Furthermore, the measure of A is

denoted by m(A) and is given by

m(A) = lim
k→∞

∞∑
n=1

l(Ikn) = lim
k→∞

∞∑
n=1

l(Jkn).

Every analytic function defined on an open interval can be extended to the end points of that

interval and every analytic function has a unique (up to a constant) analytic anti-derivative

[20]. These facts allow for the following definition of the integral of an analytic function over

an interval.

Definition 1.5.2 (Integral of an analytic function over an interval). Let a < b in R and let

f : I(a, b)→ R be an analytic function on I(a, b). Let F be an analytic anti-derivative of f

on I(a, b), then we define the integral of f over I(a, b) as follows:

∫
x∈I(a,b)

f(x) = lim
x→b

F (x)− lim
x→a

F (x).

The next definition is motivated by the desire to extend the theory of integration to as

large a class of functions as possible.

Definition 1.5.3 (Measurable function). Let A ⊂ R be a measurable set and let f : A→ R

be a bounded function on A. Then we call f a measurable function if for every ε > 0 in R

there exists a sequence of mutually disjoint intervals (In)∞n=1 such that
∞⋃
n=1

In ⊂ A,
∞∑
n=1

l (In)

converges, m(A)−
∞∑
n=1

l (In) < ε, and for every n ∈ N f is analytic on In.
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With these definitions in place it is possible to define the integral of a measurable function

over a measurable set.

Definition 1.5.4 (Integral of a measurable function over a measurable set). Let A ⊂ R be

a measurable set and let f : A→ R be a measurable function on A. Then, for every k ∈ N,

there exists a sequence of mutually disjoint intervals (Ikn)∞n=1 such that
∞⋃
n=1

Ikn ⊂ A,
∞∑
n=1

l(Ikn)

converges, m(A)−
∞∑
n=1

l(Ikn) < dk, and for every n ∈ N f is analytic on Ikn. It can be shown

[20] that for every k ∈ N,
∞∑
n=1

∫
x∈Ikn

f converges. The resulting sequence

(
∞∑
n=1

∫
x∈Ikn

f

)∞
k=1

is

Cauchy and hence it converges [20]. The integral of f over A is then defined by

∫
x∈A

f = lim
k→∞

∞∑
n=1

∫
x∈Ikn

f

It is shown in [20] that the above integral behaves in much the same way as the Lebesgue

integral of real analysis. For example integration is linear, the sum of the integrals of a

function over two measurable sets is equal to the sum of the integrals over their union

and intersection, and if f : A → R and M ∈ R satisfy |f | ≤ M everywhere on A then

|
∫
A
f | ≤ Mm(A). Another theorem that will be of particular importance to us is [13,

Theorem 3.9] which we state below.

Theorem 1.5.5 (Uniform Convergence Theorem for the Levi-Civita Field). Let A ⊂ R be

a measurable set and for every k ∈ N let fk : A→ R be measurable on A. Suppose that the

sequence (fk)k∈N converges uniformly to f : A → R. Then f is measurable on A, lim
k→∞

∫
A

fk

exists, and

lim
k→∞

∫
A

fk =

∫
A

f.

The integration theory discussed above can be extended to higher dimensions. In fact

this task is not as easy as it might seem due to the unique convergence properties in the

order topology. The natural way to extend our measure theory to two-dimensions would be
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to follow the same steps we took in one dimension using rectangles in place of intervals and

areas in place of lengths, unfortunately; we define our (one-dimensional) measure in terms of

sums of the lengths of intervals that converge in the order topology. Infinite sums converge

in the order topology only if the terms in the sum form a null sequence and this entails that

only finitely many of those terms can contribute to the leading term in the sum. This is not

an issue in one dimension but in two-dimensions (or higher) it severely restricts which sets

are measurable. We illustrate this with an example:

Example 1.5.6. Suppose T ⊂ R × R is a triangle with finite area and suppose we have

extended our theory of integration to two dimensions using rectangles in place of inter-

vals. Assume T is measurable. Then, there are sequences of mutually disjoint rectangles

(Rn)n∈N, (Sn)n∈N ∈ R×R such that

∪∞n=0Rn ⊂ T ⊂ ∪∞n=0Sn, (1.1)

∞∑
n=0

area(Rn) and
∞∑
n=0

area(Sn) converge, and

∞∑
n=0

area(Sn)−
∞∑
n=0

area(Rn) < d.

However, since the sums of the areas of the rectangles both converge in the order topology we

have that limn→∞ area(Sn) = limn→∞ area(Rn) = 0 so there are only finitely many n such

that λ(area(Sn)) = 0 and the same is true for λ(area(Rn)) = 0. Of course there is no way

to arrange a finite number of rectangles into a triangle and so
∞∑
n=0

area(Rn) must be less than

the area of T by a finite amount and
∞∑
n=0

area(Sn) must be greater by a finite amount too;

∞∑
n=0

area(Sn)−
∞∑
n=0

area(Rn) > d.

This contradicts Equation 1.1 above; thus, triangles are not measurable.
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Obviously we want all common geometric shapes to be measurable if we want our measure

to be useful in physics so we must find a more general way of extending our one-dimensional

measure theory into higher dimensions, this fact motivates the definition of simple regions

below. A detailed discussion of the topic of integration in two-dimensions can be found in

[3] and [11] from which we get these results.

Definition 1.5.7 (Simple Region). Suppose that G ⊂ R2. Then, we call G a simple region

if there exist constants a, b ∈ R, a ≤ b and analytic functions g1, g2 : I(a, b)→ R, g1 < g2 on

I(a, b) such that

G = {(x, y) ∈ R2 : y ∈ I(g1(x), g2(x)), x ∈ I(a, b)}

or

G = {(x, y) ∈ R2 : x ∈ I(g1(y), g2(y)), y ∈ I(a, b)}.

In order to use simple regions to construct a two-dimensional integration theory we need

to be able to find their area. Fortunately, this can be done inductively using the already

existing one-dimensional theory of integration.

Definition 1.5.8 (Area of a Simple Region). Suppose G ⊂ R2 is a simple region given by

G = {(x, y) ∈ R2 : y ∈ I(g1(x), g2(x)), x ∈ I(a, b)}. Then we denote the area of G with

a(G) and we define it as

a(G) =

∫
x∈I(a,b)

[g2(x)− g1(x)]

We now use the simple regions defined above to construct a measure and to define mea-

surable sets on R2. The proofs of the following propositions can be found in [3, 11].

Definition 1.5.9 (Measurable Set). Let A ⊂ R2. We say A is measurable if for every

ε > 0 there are a sequence of mutually disjoint simple regions (Gn)∞n=1 and another sequence

of simple regions (Hn)∞n=1 such that

∞⋃
n=1

Gn ⊂ A ⊂
∞⋃
n=1

Hn,
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∞∑
n=1

a(Gn) and
∞∑
n=1

a(Hn) both converge, and

∞∑
n=1

a(Hn)−
∞∑
n=1

a(Gn) < ε.

Definition 1.5.10 (The Measure of a Measurable Set). Let A ⊂ R2 be a measurable set.

Then, for every k ∈ N there are two sequences of mutually disjoint simple regions (Gk
n)∞n=1 ∈

R2 and (Hk
n)∞n=1 ∈ R2 such that

∞⋃
n=1

Gk
n ⊂ A ⊂

∞⋃
n=1

Hk
n,

∞∑
n=1

Gk
n and

∞∑
n=1

Hk
n both converge, and

∞∑
n=1

a(Hk
n)−

∞∑
n=1

a(Gk
n) < dk.

In fact (
∞∑
n=1

a(Gk
n))∞k=1 and (

∞∑
n=1

a(Hk
n))∞k=1 are both Cauchy sequences. Since R is Cauchy

complete [6] it follows that

lim
k→∞

∞∑
n=1

a(Gk
n)

and

lim
k→∞

∞∑
n=1

a(Hk
n)

both exist. Moreover the above two limits must be equal [11] and we define

m(A) = lim
k→∞

∞∑
n=1

a(Gk
n) = lim

k→∞

∞∑
n=1

a(Hk
n)

and we call this the measure of A.

The next proposition shows that measurable sets have the expected properties.

Proposition 1.5.11. Let A,B ⊂ R2.
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� If A and B are measurable with A ⊂ B, then m(A) ≤ m(B).

� If B is measurable with m(B) = 0 and if A ⊂ B, then A is measurable and m(A) = 0.

� If A is countable then A is measurable and m(A) = 0.

� If A and B are measurable, then A ∪ B and A ∩ B are measurable and m(A ∪ B) =

m(A) +m(B)−m(A ∩B).

Definition 1.5.12 (Order of Magnitude of a Simple Region in R2). Let A ⊂ R2 be a simple

region. Without loss of generality we assume

A = {(x, y) ∈ R2 : y ∈ I(h1(x), h2(x)), x ∈ I(a, b)}

where a ≤ b, h1, h2 : I(a, b)→ R are analytic functions, and h1 < h2. We define

λx(A) = λ(b− a)

and

λy(A) = i(h2(x)− h1(x))

where i(h2(x) − h1(x)) is the index of the analytic function on I(a, b), we call these A’s

orders of magnitude in x and y respectively.

With the above definition we are able to define analytic functions in R2.

Definition 1.5.13 (Analytic Functions on R2). Suppose A ⊂ R2 is a simple region. Then,

f : A → R is an analytic function if for every (x0, y0) ∈ A, there are a simple region

A0 containing (x0, y0) that satisfies λx(A0) = λx(A), λy(A0) = λy(A) and a regular sequence

(aij)
∞
i,j=0 such that for every s, t ∈ R, if (x0 + s, y0 + t) ∈ A ∩ A0, then

f(x0 + s, y0 + t) =
∞∑

i,j=0

aijs
itj = f(x0, y0) +

∞∑
i,j=0
i+j 6=0

aijs
itj,
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where the power series converges in the weak topology [16]. In this case we say that f is

given locally by a power series.

The family of analytic functions on R2 is closed under addition, multiplication, and

composition; each member of the family is bounded on closed simple regions and has an

index analogous to that of their one-dimensional counterparts. We are therefore able to

define integration in two-dimensions using the already existing theory of one-dimensional

integration.

Definition 1.5.14 (Integration of Analytic Functions on Simple Regions). Suppose H ⊂ R2

is a simple region and f : H → R is an analytic function. Without loss of generality we

assume H = {(x, y) ∈ R2 : y ∈ I(h1(x), h2(x)), x ∈ I(a, b)}, where a, b ∈ R, a ≤ b, and

h1, h2 : I(a, b) → R are analytic with h1 < h2. We note that since the composition and

anti-derivative of analytic functions are also analytic, the integral
∫

y∈I(h1(x),h2(x))

f(x, y) will

always yield an analytic function F (x) on I(a, b) [3]. We define

∫∫
(x,y)∈H

f(x, y) =

∫
x∈I(a,b)

 ∫
y∈I(h1(x),h2(x))

f(x, y)

 =

∫
x∈I(a,b)

F (x)

and call this the integral of f over H.

Proposition 1.5.15 (Properties of two-dimensional integration of analytic functions over

simple regions [11]). Let G ⊂ R2 be a simple region, let α ∈ R be an arbitrary constant, and

let f, g : G→ R be analytic functions. Then:

�

∫∫
(x,y)∈G

α = αa(G).

�

∫∫
(x,y)∈G

(f + αg)(x, y) =
∫∫

(x,y)∈G
f(x, y) + α

∫∫
(x,y)∈G

g(x, y).

� Suppose f ≤ g on G. Then
∫∫

(x,y)∈G
f(x, y) ≤

∫∫
(x,y)∈G

g(x, y).

� Suppose f is non-positive on G. Then
∫∫

(x,y)∈G
f(x, y) ≤ 0.
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� Suppose M is an upper bound of |f | on G. Then |
∫∫

(x,y)∈G
f(x, y)| ≤Ma(G).

Definition 1.5.16 (Measurable function). Suppose A ⊂ R2 is a measurable set and let

f : A → R be bounded. Then we say that f is measurable on A if for every ε > 0 there

exists a sequence of mutually disjoint simple regions (Gn)∞n=1 such that

∞⋃
n=0

Gn ⊂ A,

∞∑
n=1

a(Gn) converges,

m(A)−
∞∑
n=1

a(Gn) < ε,

and for all n ∈ N f is analytic on Gn.

The following proposition collects together several results which are stated and proven

independently in [3] and [11].

Proposition 1.5.17. Suppose A,B ⊂ R2 are measurable sets, let f : A ∪ B → R be a

measurable function on both A and B and let g : A→ R also be measurable. Then we have

that

� g is given locally by a power series almost everywhere on A

� f is measurable on both A ∩B and A ∪B

� For any α ∈ R, f + αg and f · g are measurable on A

� If f and g are differentiable (see [2]) on A with respect to both x and y and if ∂
∂y
f(x, y) =

∂
∂y
g(x, y) and ∂

∂x
f(x, y) = ∂

∂x
g(x, y) everywhere on A then f and g are different by at

most a constant on A.

Definition 1.5.18 (The Integral of a Measurable Function over a Measurable Set). Let

A ⊂ R2 be a measurable set and let f : A → R be a measurable function. Since f is
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measurable then, by Definition 1.5.16, for every k ∈ N there exists a sequence of mutually

disjoint simple regions (Gk
n)∞n=1 such that for every n ∈ N, f is analytic on Gk

n,

∞⋃
n=1

Gk
n ⊂ A,

∞∑
n=1

a(Gk
n) converges, and

m(A)−
∞∑
n=1

a(Gk
n) ≤ dk.

It is shown in [11] that for every k ∈ N

∞∑
n=1

∫∫
(x,y)∈Gkn

f(x, y)

converges and moreover  ∞∑
n=1

∫∫
(x,y)∈Gkn

f(x, y)


∞

k=1

is a Cauchy sequence and thus converges in R. We call the limit of this Cauchy sequence

the integral of f over A and we denote it
∫∫

(x,y)∈A
f(x, y).

The results listed in the following proposition are a consequence of Propositions 1.5.15

and 1.5.17, their proofs can be found in [3] and [11].

Proposition 1.5.19 (Properties of two-dimensional integration of measurable functions over

measurable sets [11]). Suppose H,G ⊂ R2 are measurable sets, let α ∈ R be an arbitrary

constant and let f, g : H ∪G→ R be measurable functions.

� If h : G→ R is defined by h(x, y) = α, then h is a measurable function and

∫∫
(x,y)∈G

h(x, y) =

∫∫
(x,y)∈G

α = αm(G).
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� ∫∫
(x,y)∈G

(f + αg)(x, y) =

∫∫
(x,y)∈G

f(x, y) + α

∫∫
(x,y)∈G

g(x, y).

� If f ≤ g everywhere on G, then
∫∫

(x,y)∈G
f(x, y) ≤

∫∫
(x,y)∈G

g(x, y).

� If f is non-positive on G, then
∫∫

(x,y)∈A
f(x, y) ≤ 0.

� If M is an upper bound for |f | on G, then |
∫∫

(x,y)∈A
f(x, y)| 6Mm(A).

� ∫∫
(x,y)∈H∪G

f(x, y) =

∫∫
(x,y)∈H

f(x, y) +

∫∫
(x,y)∈G

f(x, y)−
∫∫

(x,y)∈H∩G

f(x, y).

� If there is a sequence of measurable functions hk : G → R such that the sequence

(hk)
∞
k=1 converges uniformly to h, then

lim
k→∞

∫∫
(x,y)∈G

hk(x, y)

exists; moreover if h is measurable then

lim
k→∞

∫∫
(x,y)∈A

hk(x, y) =

∫∫
(x,y)∈A

h(x, y).
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Chapter 2

Topologies on the Hahn Field

2.1 Semi-Norms

Since every x ∈ R has left-finite support, the supremum in the family of semi-norms that

induce the weak topology is a maximum, it being the supremum of a finite set. This is not the

case for x ∈ F where the support of an element need only be well-ordered, which allows the

support to have accumulation points and so for some x ∈ F , {|x[r]| : r ∈ suppx ∩ (−∞, q]}

may have a divergent subsequence and thus the supremum may be +∞. In this chapter

we propose two different ways to overcome this difficulty and we show how they may be

employed to induce a variety of topologies that are weaker than the order topology. Then

we show how these topologies are related to each other, and finally we show what conditions

must be satisfied to ensure that the induced topology has the same convergence criterion

as the weak topology on the Levi-Civita field [1, 2]. One straightforward way to overcome

the issue described above is simply to allow a semi-norm to be equal to +∞ in addition to

values in R. This idea is made clear in the following definition which we believe to be novel.

Definition 2.1.1 (Semi-Norms on F). For every r ∈ Q define a map ‖·‖(u,r) : F → R∪{∞}

by

‖x‖(u,r) := sup{|x[q]| : q ≤ r}
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The family of semi-norms from definition 2.1.1 has the advantage that it reduces to 1.4.3

when restricted to the Levi-Civita field. However, as we shall see, the topology induced on

the Hahn field by this family is somewhat stronger than the weak topology on the Levi-Civita

field. The following new definitions will allow us to construct a similar family of semi-norms

which, as we will see, has more useful properties.

Definition 2.1.2 (Well-Bounded Sets). Let (S,≤) be a totally ordered set such that every

nonempty subset A ⊂ S has a maximum element. Then we say that S is well-bounded.

Definition 2.1.3 (Well-Bounded Partition of Q). Let Γ = {γ1, . . . , γi, . . .} be a countable

collection of mutually disjoint well-bounded subsets of Q such that

∞⋃
i=1

γi = Q.

Then we say that Γ is a well-bounded partition of Q. If in addition to the above we have

that for every i ∈ N, γi is finite then we call Γ a finite well-bounded partition of Q. For

convenience we will use the notation

Γn :=
n⋃
i=1

γi.

Example 2.1.4 (A well-bounded partition of Q). For every n ∈ N define

γn :=

{
x

y
∈ Q : x and y are relatively prime, |x|+ |y| = n

}
,

then Γ = {γi}i∈N is a well-bounded partition of Q. Clearly we have

∞⋃
i=1

γi = Q

since for any q ∈ Q it is possible to find unique x, y ∈ Z such that x and y are relatively

prime and x
y

= q. We then have by definition that q ∈ γ|x|+|y|. Moreover, since every rational
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number has a unique reduced form, it follows that for any i 6= j in N , we have that γi∩γj = ∅.

Finally, each γi has only finitely many elements since

γi ⊆
{
i− 1

1
,
i− 2

2
, . . . ,

1

i− 1
,− 1

i− 1
, . . . ,−i− 1

1

}
.

Thus, the γi’s must be well-bounded. Therefore there is at least one well-bounded partition

of Q.

Figure 2.1: The rational numbers
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The bold face numbers are the elements of γ5.

Definition 2.1.5 (The semi-norms on F induced by a well-bounded partition of Q). Let Γ

be any well-bounded partition of Q and for every n ∈ N define the map ‖·‖(Γ,n) : F → R by

‖x‖(Γ,n) := max {|x[q]| : q ∈ Γn} .

Note that, because the support of x is well-ordered and Γn is well-bounded the set

{‖x[q]‖ : q ∈ Γn} in the definition above contains only finitely many non-zero elements and

hence the maximum does exist. We have not yet shown that either definition 2.1.1 or 2.1.5

actually define semi-norms. To avoid unnecessary repetition we include only the proof of

this for the latter definition; the proof for the former follows similarly.

Proposition 2.1.6. Let Γ be any well-bounded partition of Q and let n ∈ N. Then, ‖·‖(Γ,n)

is a semi-norm.

Proof. We need to show that, for every x, y ∈ F and for every a ∈ R, we have that
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� ‖x‖(Γ,n) ≥ 0

� ‖ax‖(Γ,n) = |a| ‖x‖(Γ,n)

� ‖x+ y‖(Γ,n) ≤ ‖x‖(Γ,n) + ‖y‖(Γ,n).

The first property follows trivially from the definition. Now let a ∈ R and x ∈ F be given.

Then

‖ax‖(Γ,n) = max {|ax[q]| : q ∈ Γn}

= max {|a| |x[q]| : q ∈ Γn}

= |a|max {|x[q]| : q ∈ Γn}

= |a| ‖x‖(Γ,n) ,

Finally, let x, y ∈ F be given. Then

‖x+ y‖(Γ,n) = max {|(x+ y)[q]| : q ∈ Γn}

≤ max {|x[q]|+ |y[q]| : q ∈ Γn}

≤ max {|x[q]| : q ∈ Γn}+ max {|y[q]| : q ∈ Γn}

= ‖x‖(Γ,n) + ‖y‖(Γ,n) .

2.2 Vector Topologies

Having defined the semi-norms we will be working with, we proceed to show that both

families can be used to induce vector topologies on F that are consistent with a translation-

invariant metric. Naturally the proofs are very similar in both cases so we will present them

each once making notes where there are significant differences or modifications that must be
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accounted for. Note that, unless otherwise stated, Γ will denote any arbitrary well-bounded

partition of Q and ‖·‖(Γ,n∈N) : F → R will denote the corresponding family of semi-norms.

Remark 2.2.1. Note that, if r1 < r2, then {|x[q]| |q ≤ r1} ⊂ {|x[q]| |q ≤ r2} for all x ∈ F .

It follows immediately that

‖x‖(u,r1) ≤ ‖x‖(u,r2) .

Similarly if n,m ∈ N with n < m, then Γn ⊂ Γm and hence for any x ∈ F

‖x‖(Γ,n) ≤ ‖x‖(Γ,m) .

The following definition is similar to that used in [1] but is modified to adapt to the

newly defined semi-norms.

Definition 2.2.2 (Pseudo-Ball). Let x ∈ F , and let r > 0 in R be given (resp. let q > 0 in

Q be given). Then we define

PBΓ (x, r) :=
{
y ∈ F : ‖x− y‖(Γ,µ(r)) < r

}

where

µ(r) :=

⌈
1

r

⌉
is the smallest natural number n such that 1

n
< r. We say that PBΓ(x, r) is the “pseudo-

ball” at x with radius r. Respectively we define

PBu (x, q) := {y ∈ F| ‖y − x‖(u,1/q) < q}

and we call this a “pseudo-ball” at x with radius q.

Proposition 2.2.3. Let x ∈ F and let 0 < r1 < r2 ∈ R be given (resp. let 0 < r1 < r2 ∈ Q
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be given). Define r := min{r1, r2 − r1}, then for all y ∈ PBu (x, r) we have that

PBΓ (y, r1) ⊂ PBΓ (x, r2) ;

in particular we have that

PBΓ (x, r1) ⊂ PBΓ (x, r2) .

Respectively, we have that

PBu (y, r1) ⊂ PBu (x, r2) ;

and hence

PBu (x, r1) ⊂ PBu (x, r2) .

Proof. Let y ∈ PBΓ (x, r) be given and let z ∈ PBΓ (y, r1). Then, by definition, we have that

‖y − z‖(Γ,µ(r1)) < r1.

Since r1 < r2, it follows that µ(r1) ≥ µ(r2), and hence

‖x− z‖(Γ,µ(r2)) ≤ ‖x− z‖(Γ,µ(r1)) .

It follows that

‖x− z‖(Γ,µ(r1)) ≤ ‖y − z‖(Γ,µ(r1)) + ‖x− y‖(Γ,µ(r1))

< r1 + ‖x− y‖(Γ,µ(r1)) .

Recall that r = min{r1, r2 − r1} ≤ r1, and hence

‖x− y‖(Γ,µ(r1)) ≤ ‖x− y‖(Γ,µ(r)) .
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Since y ∈ PBΓ (x, r), we have that

‖x− y‖(Γ,µ(r)) < r ≤ r2 − r1.

Altogether, it follows that

‖x− z‖(Γ,µ(r2)) < r1 + ‖x− y‖(Γ,µ(r1))

≤ r1 + ‖x− y‖(Γ,µ(r))

< r1 + (r2 − r1)

= r2;

and hence z ∈ PBΓ (x, r2). This argument holds for any z ∈ PBΓ (y, r1), and hence

PBΓ (y, r1) ⊂ PBΓ (x, r2) .

In particular, letting y = x in PBΓ (x, r), we have that

PBΓ (x, r1) ⊂ PBΓ (x, r2) .

We can now define the topologies induced by these families of semi-norms by letting a

set S be open if every point in S is contained in a pseudo-ball which is itself contained in S.

Again we include a definition that is substantially similar to one in [1] but which is modified

to incorporate the new semi-norms.

Definition 2.2.4 (The topologies induced by families of semi-norms). We define

τΓ := {O ⊂ F : ∀x ∈ O, ∃r > 0 in R such that PBΓ (x, r) ⊂ O} ,
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and

τu := {O ⊂ F : ∀x ∈ O, ∃r > 0 in R such that PBu (x, r) ⊂ O} .

We call these the topology induced by Γ and the locally uniform support topology

respectively. The name of the latter topology will be justified when we discuss the convergence

criterion in this topology.

Proposition 2.2.5. τΓ is a topology on F (resp. τu is a topology on F).

Proof. We need to show that τΓ is closed under arbitrary unions and finite intersections, and

that ∅,F ∈ τΓ. Let {Oα}α∈A be an arbitrary collection of elements of τΓ; and let x ∈
⋃
α∈A

Oα

be given. Then there is an α0 ∈ A such that x ∈ Oα0 . But Oα0 ∈ τΓ so by definition there is

a r > 0 in R such that PBΓ (x, r) ⊂ Oα0 . It follows immediately that PBΓ (x, r) ⊂
⋃
α∈A

Oα.

Thus,
⋃
α∈A

Oα is open, and hence τΓ is closed under arbitrary unions.

Now let O1, O2 ∈ τΓ and let x ∈ O1 ∩ O2 be given. Since x ∈ O1, there exists r1 > 0 in

R such that PBΓ (x, r1) ⊂ O1. Similarly there exists r2 > 0 in R such that PBΓ (x, r2) ⊂ O2.

Let r = min {r1, r2}. Then we have that PBΓ (x, r) ⊂ PBΓ (x, r1) ⊂ O1 and PBΓ (x, r) ⊂

PBΓ (x, r2) ⊂ O2; and hence PBΓ (x, r) ⊂ O1 ∩ O2. This shows that τΓ is closed under

the intersection of two of its elements; and by induction it is therefore closed under finite

intersections.

Finally, that ∅ and F are in τΓ follows from that the fact that they both trivially satisfy

the defining property of τΓ.

Proposition 2.2.6. (F , τΓ) (resp. (F , τu)) is a topological vector space over R.

Proof. To show that (F , τΓ) is a topological vector space, we will prove the following.

� Every singleton is closed with respect to τΓ.

� Vector addition is continuous with respect to τΓ.

� Scalar multiplication is continuous with respect to τΓ.
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Let x ∈ F be given. We will show that {x} is closed in τΓ by showing that its complement

is open. So, let y ∈ F \ {x} be given, let q = λ(x − y), and let r0 := |(x− y)[q]|. Choose

N ∈ N large enough so that q ∈ ΓN , then let r = min
{

1
N
, r0

2

}
. We will show that PBΓ (y, r) ⊂

F \ {x} by showing that x /∈ PBΓ (y, r). Note that

‖x− y‖(Γ,µ(r)) ≥ ‖x− y‖(Γ,N)

= max {|(x− y)[q]| : q ∈ ΓN}

≥ r0

> r.

Thus, x /∈ PBΓ (y, r), and hence F \ {x} is open.

Next, we show that + : F × F → F is a continuous operation on (F , τΓ) × (F , τΓ).

Let O ⊂ F be any open set with respect to τΓ, let A ⊂ F × F be the inverse image of O

under addition. We will show that A is open in (F , τΓ) × (F , τΓ). Fix (x1, x2) ∈ A, then

x1 + x2 ∈ O. O is open so there exists a r > 0 in R such that PBΓ (x1 + x2, r) ⊂ O. Let

y ∈ PBΓ

(
x1,

r
2

)
, z ∈ PBΓ

(
x2,

r
2

)
. Then,

‖y + z − x1 − x2‖(Γ,µ(r)) ≤ ‖y − x1‖(Γ,µ(r)) + ‖z − x2‖(Γ,µ(r))

≤ ‖y − x1‖(Γ,µ( r2)) + ‖z − x2‖(Γ,µ( r2))

<
r

2
+
r

2
= r.

Thus, y+z ∈ O and hence (y, z) ∈ A. Therefore, A is open in (F , τΓ)×(F , τΓ), and addition

is continuous.

Finally we show that · : R × F → F is continuous with respect to τΓ. So, let O ⊂ F

be open with respect to τΓ and let S ⊂ R × F be the inverse image of O under scalar

multiplication. Let (α, x) ∈ S, then αx ∈ O and since O is open there is a r > 0 in R such

that PBΓ (αx, r) ⊂ O. Now we have two cases; either α = 0 or α 6= 0. We deal with these
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cases separately.

Assume that α = 0. Then we have two possibilities: either ‖x‖(Γ,µ(r)) = 0 or ‖x‖(Γ,µ(r)) 6=

0. Consider first the subcase ‖x‖(Γ,µ(r)) = 0; we show that (−1, 1) × PBΓ (x, r) ⊂ S. Let

β ∈ (−1, 1) and y ∈ PBΓ (x, r) be given, then

‖βy‖(Γ,µ(r)) = |β| ‖y‖(Γ,µ(r))

< ‖y‖(Γ,µ(r))

≤ ‖y − x‖(Γ,µ(r)) + ‖x‖(Γ,µ(r))

= ‖y − x‖(Γ,µ(r)) < r.

Thus, βy ∈ PBΓ (0, r) ⊂ O and hence (β, y) ∈ S. Next we consider ‖x‖(Γ,µ(r)) 6= 0; let

r1 = min

{
1

2
,

r

2 ‖x‖(Γ,µ(r))

}
.

Then r1 ∈ R and r1 > 0; and we will show that (−r1, r1)×PBΓ (x, r) ⊂ S. So let β ∈ (−r1, r1)

and y ∈ PBΓ (x, r) be given. Then

‖βy‖(Γ,µ(r)) ≤ ‖β(y − x)‖(Γ,µ(r)) + ‖βx‖(Γ,µ(r))

≤ |β| ‖y − x‖(Γ,µ(r)) + |β| ‖x‖(Γ,µ(r))

< r1r + r1 ‖x‖(Γ,µ(r))

≤ r

2
+

r

2 ‖x‖(Γ,µ(r))

‖x‖(Γ,µ(r))

= r.

Thus, βy ∈ O and hence (β, y) ∈ S.

Now we consider the case α 6= 0. Let

r1 = min

{
r

2
,
r

2 |α|

}
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and

ν :=


1
2

if ‖x‖(Γ,µ(r)) = 0

min
{

1
2
, r

4‖x‖(Γ,µ(r))

}
if ‖x‖(Γ,µ(r)) 6= 0

.

We will show that (α−ν, α+ν)×PBΓ (x, r1) ⊂ S. So let β ∈ (α−ν, α+ν) and y ∈ PBΓ (x, r1)

be given. Then

‖βy − αx‖(Γ,µ(r)) = ‖(β − α)(y − x) + (β − α)x+ α(y − x)‖(Γ,µ(r))

≤ |β − α| ‖y − x‖(Γ,µ(r)) + |β − α| ‖x‖(Γ,µ(r)) + |α| ‖y − x‖(Γ,µ(r)) .

However, r1 ≤ r
2
< r and hence

‖y − x‖(Γ,µ(r)) ≤ ‖y − x‖(Γ,µ(r1)) < r1 ≤
r

2 |α|
.

Thus,

|α| ‖y − x‖(Γ,µ(r)) <
r

2
.

Moreover,

|β − α| ‖y − x‖(Γ,µ(r)) < |β − α| r1 < νr1 ≤
r

4
.

And finally,

|β − α| ‖x‖(Γ,µ(r)) < ν ‖x‖(Γ,µ(r)) ≤
r

4
.

Thus, altogether, we obtain that

‖βy − αx‖(Γ,µ(r)) ≤ |β − α| ‖y − x‖(Γ,µ(r)) + |β − α| ‖x‖(Γ,µ(r)) + |α| ‖y − x‖(Γ,µ(r))

<
r

4
+
r

4
+
r

2
= r.

So βy ∈ O and hence (β, y) ∈ S. Therefore we conclude that (F , τΓ) is a topological vector

space.
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Proposition 2.2.7. The family of pseudo-balls {PBu (0, q) : q ∈ Q+} (resp. the family of

pseudo-balls {PBΓ (0, q) : q ∈ Q+}) is a countable local base for τu (resp. τΓ) at 0.

Proof. Let O ∈ τu be any open set in F containing 0. Then there exists r > 0 in R such

that PBu (0, r) ⊂ O. Let q ∈ Q be such that 0 < q < r; then PBu (0, q) ⊂ PBΓ (0, r) ⊂ O.

Thus, for any open set containing 0, there is a q ∈ Q such that 0 ∈ PBu (0, q) ⊂ O and hence

{PBu (0, q) : q ∈ Q+} is a countable local base for τu at 0.

Corollary 2.2.8. For any x ∈ F , the family of pseudo-balls {PBu (x, q) : q ∈ Q+} (resp.

{PBΓ (x, q) : q ∈ Q+}) is a countable local base for τu (resp. τΓ) at x.

2.3 Relations Between Topologies

Now that we have established that τΓ and τu are vector topologies, we will investigate their

relationship to each other and to τv. We begin by recalling the definition of a compact set.

Definition 2.3.1. Suppose τ is a topology on F and let A ⊂ F . Then we say that A is

compact in (F , τ) if every open cover of A in (F , τ) admits a finite subcover.

Proposition 2.3.2. Let τ be any topology on F satisfying τ ( τv. Suppose A ⊂ F is

compact in (F , τv), then A is also compact in (F , τ).

Proof. Let A ⊂ F , a compact set in (F , τv), be given. Let T ⊂ τ be any open cover of A in

τ . Then, since τ ( τv and T ⊂ τ , we have that T ⊂ τv. Thus T is an open cover of A in τv,

however by choice A is compact in (F , τv) so T must admit a finite subcover T ′ ⊂ T . But

T ′ ⊂ T ⊂ τ so T ′ is also a finite subcover in (F , τ). This argument holds for any choice of

A ⊂ F compact in (F , τv); thus, if A is compact in (F , τv) it is also compact in (F , τ).

Proposition 2.3.3. τΓ ( τv (resp. τu ( τv).

Proof. Let G ⊂ F be open with respect to τΓ and fix x ∈ G. Then there exists r > 0

in R such that PBΓ (x, r) ⊂ G. Let n > max{Γµ(r)} which is possible because Γµ(r) is the
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finite union of well-bounded sets and hence it is itself well-bounded. We will show that

B(x, dn) ⊂ G. Let y ∈ B(x, dn) be given. So |y − x| < dn and hence, for any q < n in Q, we

have (x − y)[q] = 0. However, by our choice of n, we have that for every q ∈ Γµ(r), q < n.

Therefore, for every q ∈ Γµ(r), (y − x)[q] = 0 < r. It follows that y ∈ PBΓ (x, r). This holds

for any y ∈ B(x, dn). It follows that

B(x, dn) ⊂ PBΓ (x, r) ⊂ G.

We have just shown that τΓ ⊂ τv; so it remains to show that there exists an O ∈ τv such

that O /∈ τΓ. Choose n > max{Γ1} = q, then

(−dn, dn) = B(0, dn) ∈ τv.

Now fix r > 0 in R and let x = r
2
dq. Then clearly x /∈ (−dn, dn) since by choice dq � dn.

However

‖0− x‖(Γ,µ(r)) =
∥∥∥r

2
dq
∥∥∥

(Γ,µ(r))
≤ r

2
< r

so x ∈ PBΓ (0, r). Since our choice of r was arbitrary we conclude that for every r > 0 in R,

r
2
dq ∈ PBΓ (0, r) but r

2
dq /∈ (−dn, dn). It follows that for every r > 0 in R,

PBΓ (0, r) 6⊂ (−dn, dn) .

Thus, (−dn, dn) /∈ τΓ and hence τv 6⊂ τΓ.

Corollary 2.3.4. Suppose A ⊂ F is compact in (F , τv). Then A is also compact in (F , τu)

and (F , τΓ).

Proposition 2.3.5. There exist translation invariant metrics ∆Γ and ∆w that induce the

topologies τΓ and τu, respectively, on F .

Proof. This follows from the fact that both (F , τΓ) and (F , τu) are topological vector spaces
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with countable local bases, for details see Theorem 1.24 in [21].

Example 2.3.6. Let

∆Γ (x, y) :=
∞∑
k=1

2−k
‖x− y‖(Γ,k)

1 + ‖x− y‖(Γ,k)

and let

∆u (x, y) :=
∞∑
k=1

2−k
‖y − x‖(u,k)

1 + ‖y − x‖(u,k)

.

Then ∆Γ and ∆u are translation invariant metrics on F that induce topologies equivalent to

τΓ and τu, respectively; see the proofs of Theorem 3.32 and Theorem 3.33 in [1]. We note

that, in both infinite sums above, the 2−k factor could be replaced with c−k where c is any

real number greater than 1 and we would still obtain translation invariant metrics.

Proposition 2.3.7. τΓ ⊂ τu.

Proof. Let O ∈ τΓ be given and fix x ∈ O. Then there exists r > 0 in R such that

PBΓ (x, r) ⊂ O. Let q0 = max{Γµ(r)}, which exists by the well-boundedness of Γµ(r). Pick

q1 > max{q0,
1
r
}; we claim that

PBu

(
x,

1

q1

)
⊂ PBΓ (x, r) .

So fix y ∈ PBu

(
x, 1

q1

)
, then ‖y − x‖(u,q1) <

1
q1

< r. Thus for every q ≤ q1, we have

that (y − x)[q] < r. However, by selection, we have that q1 > q0 = max{Γµ(r)}; thus, for

every q ∈ Γµ(r) we have that q ≤ q0 < q1 and hence, for every q ∈ Γµ(r), we have that

(y − x)[q] < r. It follows that ‖y − x‖(Γ,µ(r)) < r and hence y ∈ PBΓ (x, r). Therefore, as

claimed, PBu

(
x, 1

q1

)
⊂ PBΓ (x, r) ⊂ O. Thus, O ∈ τu and hence τΓ ⊆ τu.

Proposition 2.3.8. Let Γ and Ω be a finite well-bounded partition and an infinite well-

bounded partition of Q, respectively. Then τΓ ( τΩ.

Proof. First we show that τΓ ⊂ τΩ. So let O ∈ τΓ and fix x ∈ O. Then there exists ε > 0 in R

such that PBΓ (x, ε) ⊆ O. Since Γ is a finite partition, we know that Γµ(ε) is a finite set and
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thus there exists N0 ∈ N such that Γµ(ε) ⊂ ΩN0 . Let N1 ∈ N be large enough so that 1
N1

< ε;

and let N = max {N0, N1}. We claim that PBΩ

(
x, 1

N

)
⊂ PBΓ (x, ε). Let y ∈ PBΩ

(
x, 1

N

)
be

given. By definition, we have that

‖y − x‖(Ω,N) <
1

N
≤ 1

N1

< ε.

So for every q ∈ ΩN , we have that |(y − x)[q]| < ε. Since Γµ(ε) ⊂ ΩN0 ⊂ ΩN , it follows that,

for every q ∈ Γµ(ε), we have that

|(y − x)[q]| < ε.

Thus,

‖y − x‖(Γ,µ(ε)) < ε

and hence y ∈ PBΓ (x, ε). Hence PBΩ

(
x, 1

N

)
⊂ PBΓ (x, ε) ⊆ O. Thus, we have shown that,

for every x ∈ O, there exists N ∈ N such that

PBΩ

(
x,

1

N

)
⊆ O.

This proves that τΓ ⊂ τΩ. To prove that the two topologies are not equal, we observe that

since Ω is non-finite there exists N ∈ N such that for all n ≥ N , Ωn has infinitely many

elements. Consider the pseudo-ball PBΩ

(
0, 1

N

)
∈ τΩ. We will show that PBΩ

(
0, 1

N

)
6∈ τΓ.

Since we have already shown that the family of pseudo-balls {PBΓ (0, q) | |q ∈ Q+} is a

countable local basis for τΓ at 0, it is enough to prove that for every q ∈ Q+, PBΓ (0, q) 6⊂

PBΩ

(
0, 1

N

)
. So fix a q ∈ Q+. Since Γµ(q) is a finite set and ΩN is not, there must be

q0 ∈ ΩN \ Γµ(q); let x0 = 2
N
dq0 . We have that

‖x0‖(Γ,µ(q)) = sup
{
|x0[q′]| : q′ ∈ Γµ(q)

}
= 0 < q
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because x0[q′] = 0 for all q′ ∈ Γµ(q). However, we also have that

‖x0‖(Ω,N) = sup {|x0[q′]| : q′ ∈ ΩN} =
2

N
>

1

N
.

Thus, for every q ∈ Q+, there is x0 ∈ F such that x0 ∈ PBΓ (0, q) but x0 6∈ PBΩ

(
0, 1

N

)
. It

follows that τΩ 6⊂ τΓ and hence τΓ ( τΩ.

Lemma 2.3.9. For every q ∈ Q+ and for every n ∈ N there exists q′ ∈ (0, q] ∩Q such that

q′ 6∈ Γn.

Proof. Suppose otherwise. Then there exist q ∈ Q and n ∈ N such that for every q′ ∈

(0, q] ∩ Q, q′ ∈ Γn. As an immediate consequence we have that (0, q] ∩ Q ⊂ Γn, which

contradicts the fact that intervals in Q are not well-bounded. Thus, no such q and n can

exist.

Proposition 2.3.10. τu 6⊂ τΓ.

Proof. Fix q ∈ Q+ and consider the pseudo-ball PBu

(
0, 1

q

)
∈ τu. We claim that for every

r ∈ Q+, PBΓ (0, r) 6⊂ PBu

(
0, 1

q

)
. Since {PBΓ (0, r) : r ∈ Q+} forms a local base for τΓ at 0,

proving our claim will be sufficient to establish that PBu

(
0, 1

q

)
6∈ τΓ. To prove our claim,

let r ∈ Q+. Then

PBΓ (0, r) =
{
x ∈ F : ‖x‖(Γ,µ(r)) < r

}
=
{
x ∈ F | | sup

{
|x[q]| : q ∈ Γµ(r)

}
< r
}
.

By lemma 2.3.9, we have that (−∞, q] ∩ (Q \ Γµ(r)) 6= ∅; so pick q′ ∈ (−∞, q] ∩ (Q \ Γµ(r))

and let x = 2
q
dq
′
. We see that

x ∈ PBΓ (0, r)
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since x[q] = 0 for all q ∈ Γµ(r), but

x 6∈ PBu

(
0,

1

q

)

because q′ ∈ (−∞, q] ∩ Q and |x[q′]| = 2
q
> 1

q
. Thus the claim (and hence the proposition)

is proved.

Combining the results of Proposition 2.3.7 and Proposition 2.3.10, we readily obtain the

following corollary.

Corollary 2.3.11. τΓ ( τu.

Proposition 2.3.12. Let Γ and Ω be distinct finite well-bounded partitions of Q. Then

τΓ = τΩ.

Proof. Let O ∈ τΩ and fix x ∈ O. Then there exists ε > 0 in R such that

PBΩ (x, ε) ⊆ O.

Ω is a finite partition so Ωµ(ε) contains only a finite number of elements. Moreover, since Γ

is also a partition of Q, for each q ∈ Ωµ(ε) there exists Nq ∈ N such that q ∈ ΓNq . Let

N = max
{
Nq : q ∈ Ωµ(ε)

}
.

Then Ωµ(ε) ⊂ ΓN because for every q ∈ Ωµ(ε), we have that q ∈ ΓNq ⊆ ΓN . Now let

δ = min
{

1
N
, ε
}

. We claim that

PBΓ (x, δ) ⊆ PBΩ (x, ε) .

Let y ∈ PBΓ (x, δ) be given. Then we have that ‖y − x‖(Γ,µ(δ)) < δ, and hence, for every

q ∈ Γµ(δ), we have that |(y − x)[q]| < δ. But δ ≤ 1
N

so µ(δ) ≥ N , and hence ΓN ⊆ Γµ(δ).
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We have already shown that Ωµ(ε) ⊆ ΓN ⊆ Γµ(δ). So for every q ∈ Ωµ(ε), we have that

|(y − x)[q]| < δ ≤ ε. It follows that

‖y − x‖(Ω,µ(ε)) < ε,

and hence y ∈ PBΩ (x, ε). The above argument holds for any y ∈ PBΓ (x, δ); it follows that

PBΓ (x, δ) ⊂ PBΩ (x, ε) ⊂ O. Thus, we have shown that for any x ∈ O there exists δ > 0 in

R such that PBΓ (x, δ) ⊂ O, and hence O ∈ τΓ. Since O is an arbitrary element of τΩ, we

infer that τΩ ⊆ τΓ. A symmetric argument shows that τΓ ⊆ τΩ, and hence τΓ = τΩ.

Corollary 2.3.13. All finite well-bounded partitions of Q induce the same topology on F .

Definition 2.3.14. We call the topology induced by finite well-bounded partitions of Q the

weak topology and denote it by τw. In a later section we will justify this choice of name by

showing that τw share the same convergence criterion as the weak topology on the Levi-Civita

field. A detailed study of the weak topology on the Levi-Civita field R can be found in [16, 1].

2.4 Convergence of Sequences

In this section we will study convergence in τu, τΓ, and in particular in τw. We start with

the following definition.

Definition 2.4.1. Let τ be any topology on F induced by a countable family of semi-norms

(which we will denote by ‖·‖(τ,n)) and let (sn)n∈N be a sequence in F . We say that (sn)n∈N

converges in τ if there exists s ∈ F such that for every ε > 0 in R there exists N ∈ N such

that if n ≥ N then ‖sn − s‖(τ,µ(ε)) < ε.

We would like to find necessary conditions for a sequence to converge as defined above

but first we introduce the following useful notion of regularity which originates from [15].
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Definition 2.4.2 (Regular sequence (Hahn field)). Let (sn)n∈N be a sequence in F . If

∞⋃
n=1

supp (sn)

is well-ordered then we say that (sn)n∈N is a regular sequence.

For comparison, regularity of a sequence in the Levi-Civita field is defined in Definition

1.4.1. We are now ready to state necessary conditions for a sequence in F to converge in

each of τw and τu.

Proposition 2.4.3. Let (sn)n∈N be a convergent sequence in (F , τw). Then for every q ∈ Q,

the real sequence (sn[q])n∈N converges in R in the standard topology. Conversely, if (sn) is

regular and if for every q ∈ Q, (sn[q]) converges in R in the standard topology then (sn)

converges in (F , τw).

Proof. First suppose that (sn) converges in (F , τw). We may assume without loss of gener-

ality that sn → 0 because if sn → s 6= 0 then we can define the new sequence s′n = sn − s

and for any q ∈ Q, (s′n[q]) will converge to 0 as a real sequence if and only if (sn[q]) con-

verges to s[q] in R. Thus, for any ε > 0 in R, there exists N ∈ N such that if n ≥ N then

‖sn‖(τw,µ(ε)) < ε.

Now let q0 ∈ Q be given. We will show that sn[q0] → 0 in R. So let ε > 0 in R be

given and let n0 ∈ N be large enough so that q0 ∈ Γn0 where Γ is any finite well-bounded

partition of Q. Let ε0 = min
{
ε, 1

n0

}
. Since sn → 0 in (F , τw = τΓ), there exists N ∈ N such

that if n ≥ N then ‖sn‖(Γ,µ(ε0)) < ε0. Recall that ‖sn‖(Γ,µ(ε0)) = max
{
|sn[q]| : q ∈ Γµ(ε0)

}
and

q0 ∈ Γn0 ⊆ Γµ(ε0). It follows that if n ≥ N then |sn[q0]| < ε0 ≤ ε. Thus, we have shown

that for any ε > 0 in R there is a N ∈ N such that if n ≥ N then |sn[q0]| < ε, and hence

sn[q0]→ 0 in R. Since the argument holds for an arbitrary q0 ∈ Q, it follows that, for every

q ∈ Q, (sn[q]) converges in R.

Now suppose we have a regular sequence (sn)n∈N in F such that for every q ∈ Q, sn[q]→ 0

in R. We will show that sn → 0 in (F , τw). So let ε > 0 in R and let Γ be any finite well-
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bounded partition of Q (recall that τΓ = τw). We know that, for every q ∈ Γµ(ε) ⊂ Q, there

exists Nq ∈ N such that if n ≥ Nq then |sn[q]| < ε. Let

N = max
{
Nq : q ∈ Γµ(ε)

}
which must exist because Γ is a finite partition. We now observe that if n ≥ N then, for

every q ∈ Γµ(ε), we have that |sn[q]| < ε which implies that ‖sn‖(Γ,µ(ε)) < ε. This holds for

any ε > 0 in R and hence sn → 0 in (F , τΓ = τw).

The following proposition justifies our choice to refer to τu as the “locally uniform support

topology”. As we will see, for a sequence to converge in this topology it is not sufficient that

the sequence of values at each support point converges as a real sequence but rather the

convergence must be locally uniform. That is, how quickly the sequence of values at one

support point converges tells us something about how quickly the sequence of values at other

nearby support points converge.

Proposition 2.4.4. Let (sn)n∈N be a sequence in F that converges weakly to s. Then for

every ε > 0 in R and for every q ∈ Q there exist Nq ∈ N and δq ∈ Q such that if n ≥ Nq and

|q′ − q| < δq then |(sn − s)[q′]| < ε. Conversely, if (sn)n∈N is a regular sequence in F and if

there exists s ∈ F such that for every ε > 0 in R and for every q ∈ Q there exist Nq ∈ N

and δq ∈ Q such that if n ≥ Nq and |q′ − q| < δq then |(sn − s)[q′]| < ε, then (sn) converges

to weakly s in F .

Proof. First we suppose that (sn)n∈N converges in (F , τu). As in previous proofs, we may

assume without loss of generality that the sequence converges to 0. So let q ∈ Q and ε > 0

in R be given. Let

ε0 = min

{
ε,

1

|q|+ 1

}
.
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Since (sn) converges in (F , τu), there exists N0 ∈ N such that for every n ≥ N0, we have that

‖sn‖(u, 1
ε0

) < ε0.

By our choice of ε0, it follows that

{q′ ∈ Q : |q′ − q| < 1} ⊆
{
q′ ∈ Q : q′ <

1

ε0

}
.

Thus if |q′ − q| < 1 then for all n ≥ N ,

|sn[q′]| < ε0 ≤ ε.

Now suppose that for every ε > 0 in R and for every q ∈ Q there exist Nq ∈ N and

δq ∈ Q such that if n ≥ N and |q′ − q| < δq then |(sn)[q′]| < ε. We wish to show that (sn)n∈N

converges to 0 in (F , τu). Thus, for every q ∈ Q let Iq = (q − δq, q + δq). Since (sn) is a

regular sequence

qmin := min

{
∞⋃
i=0

supp (sn)

}

exists. So for any q ∈ Q \
[
qmin,

1
ε

]
either sn[q] = 0 for all n ∈ N (if q < qmin) or ‖·‖(u, 1ε ) is

not dependent on the value of sn[q] (if q > 1
ε
). Clearly

{
Iq : q ∈

[
qmin,

1
ε

]}
is an open cover

of
[
qmin,

1
ε

]
and since every closed bounded subset of Q is compact there must be a finite

collection of rational numbers {qj}j∈{1,...,J} ∈ [qmin, 1/ε] such that

[
qmin,

1

ε

]
⊂

J⋃
j=1

Iqj .

Let N := max
{
Nqj : j ∈ {1, . . . , J}

}
. Then, for every q ∈

[
qmin,

1
ε

]
, if n ≥ N then ‖sn[q]‖ <

ε. But

‖sn‖(u, 1ε ) = sup

{
|sn[q]| : q ∈

[
qmin,

1

ε

]}
.
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It follows that if n ≥ N then ‖sn‖(u, 1ε ) < ε. This argument holds for any ε > 0 in R and

hence (sn) converges to 0 in (F , τu).

We conclude this section with the following proposition which offers some insight into

the relation between weak topologies and convergence in the Hahn field and the analogous

concepts on the Levi-Civita field.

Proposition 2.4.5. τw|R ( τu|R.

Proof. First we show that τw|R ⊂ τu|R. So let O ∈ τw|R be given and let Γ be any finite

well-bounded partition of Q. Let x ∈ O be given. Then there exists r ∈ Q such that

PBΓ (x, r) ∩ R ⊂ O. Since Γ is well-bounded Γµ(r) must have a maximal element which we

will denote by qmax. Let

ε =

 min
{
r, 1
|qmax|

}
if qmax 6= 0

r if qmax = 0.
(2.1)

Then ε > 0 in R. We claim that PBu (x, ε) ∩R ⊂ PBΓ (x, r) ∩R.

To prove the claim, it is sufficient to show that PBu (x, ε) ⊂ PBΓ (x, r). So let y ∈

PBu (x, ε). Then we have that ‖y − x‖(u, 1ε ) < ε, that is,

sup

{
|(y − x)[q]| : q ∈

(
−∞, 1

ε

]
∩Q

}
< ε.

Using Equation (2.1), we have that 1
ε
≥ |qmax| ≥ qmax, so Γµ(r) ⊂ (−∞, 1

ε
] ∩Q and hence

sup
{
|(y − x)[q]| : q ∈ Γµ(r)

}
< ε ≤ r.

But the left hand side is, by definition, ‖y − x‖(Γ,µ(r)). Thus, ‖y − x‖(Γ,µ(r)) < r, and hence

y ∈ PBΓ (x, r). This is true for any y ∈ PBu (x, ε). Thus, PBu (x, ε) ⊂ PBΓ (x, r) and hence

PBu (x, ε) ∩ R ⊂ PBΓ (x, r) ∩ R ⊂ O, as claimed. It follows that O ∈ τu|R and hence

τw|R ⊂ τu|R.
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It remains to show that τu|R 6⊂ τw|R. We already know that {PBΓ (0, q) : q ∈ Q+} is

a local base of τw at 0 so it is enough to show that for every q ∈ Q+ there exists x ∈

PBΓ (0, q)∩R such that x 6∈ PBu (0, 1). So let q ∈ Q+ be given. Since Γ is a finite partition

of Q, we have that (−∞, 1]∩(Q\Γµ(q)) 6= ∅ and hence we can select s ∈ (−∞, 1]∩(Q\Γµ(q)).

Let x ∈ R be given by x = 2ds. Then

‖x− 0‖(Γ,µ(q)) = 0 < q

and hence x ∈ PBΓ (0, q) ∩R; but

‖x− 0‖(u,1) ≥ 2 > 1

and hence x 6∈ PBu (0, 1) ∩ R. Since our choice of q ∈ Q+ was arbitrary, it follows that

PBu (0, 1) |R 6∈ τw|R and hence τu|R 6⊂ τw|R.

2.5 Convergence of Power-Series

In this final section of the chapter we will show that for power series over the Hahn field we

have the same convergence criterion in the weak topology as for those over the Levi-Civita

field [16, 1]. We begin by recalling what we mean by convergence of a power series.

Definition 2.5.1. Let (an)n∈N be a sequence in F , and let x0 be a fixed point and x a given

arbitrary point in F . Then we say that the power series

∞∑
n=0

an(x− x0)n

converges weakly in F if the sequence of partial sums

Sm(x) :=
m∑
n=0

an(x− x0)n
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converges in (F , τw).

The following theorem provides a criterion for convergence of power series in (F , τw).

Theorem 2.5.2. Let (an)n∈N be a regular sequence in F , let S =
∞⋃
n=0

supp(an), and assume

that

− lim inf
n→∞

(
λ(an)

n

)
= lim sup

n→∞

(
−λ(an)

n

)
= 0.

Let

r =
1

sup

{
lim sup
n→∞

|an[q]|
1
n : q ∈ S

}
and let x ∈ F be such that λ(x) ≥ 0. Then the power series

∞∑
n=0

anx
n

converges absolutely in (F , τw) if |x[0]| < r and diverges in (F , τw) if |x[0]| > r.

Proof. If λ(x) > 0 then
∞∑
n=0

|anxn| converges in (F , τv) and hence in (F , τw) [14, Theorem

2.13]; so it remains to consider the case where λ(x) = 0. First assume that |x[0]| < r; we

will show that, for every q ∈ S, the real power series

∞∑
n=0

|an[q](x[0])n| (2.2)

converges in R. So let q0 ∈ S be given. Since |x[0]| < r we have that

|x[0]| < 1

sup

{
lim sup
n→∞

|an[q]|
1
n : q ∈ S

} ≤ 1

lim sup
n→∞

|an[q0]|
1
n

.

It follows that lim sup
n→∞

|an[q0](x[0])n|
1
n < 1. Let c ∈ R be such that

lim sup
n→∞

|an[q0](x[0])n|
1
n < c < 1.
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Then
∞∑
n=0

cn converges to 1/(1−c) in R. Since lim sup
n→∞

|an[q0](x[0])n|
1
n < c, there exists N ∈ N

such that

|an[q0](x[0])n|
1
n < c

for all n ≥ N . Thus, using the comparison test, it follows that
∞∑
n=0

|an[q0](x[0])n| converges

in R. Since our choice of q0 ∈ S was arbitrary, we conclude that the power series in Equation

(2.2) converges in R for every q ∈ S.

Next we claim that for all q ∈ S,

∞∑
n=0

|an[q]xn|

converges in (F , τw). So let q0 ∈ S be given and consider the sequence of partial sums

(Sm)m∈N, where for each m ∈ N, Sm =
m∑
n=0

|an[q0]xn|. We know already that (Sm) is a

regular sequence because λ(x) = 0 [14, Theorem 2.3, Corollary 2.12.1], so it remains to show

that for any t ∈ Q, the real sequence (Sm[t]) converges in R. So let t ∈ Q and ε > 0 in R be

given. We will show that there exists N ∈ N such that if m2 > m1 > N then

|Sm2 [t]− Sm1 [t]| =
m2∑

n=m1

|an[q0]xn[t]| < ε,

thus showing that (Sm[t]) is a Cauchy sequence and hence convergent in R.

Let h = x− x[0] and let N ′ ∈ N be such that N ′λ(h) > t. We have, for any n ∈ N, that

((x[0] + h)n) [t] =

(
n∑
l=0

n!

(n− l)!l!
hl(x[0])n−l

)
[t]

=

min{N ′,n}∑
l=0

n!

(n− l)!l!
hl[t](x[0])n−l.
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It follows that, for m2 > m1 > N ′, we have that

m2∑
n=m1

|an[q0]xn[t]| =
m2∑

n=m1

|an[q0](x[0] + h)n[t]|

=

m2∑
n=m1

|an[q0]|

∣∣∣∣∣
N ′∑
l=0

n!

(n− l)!l!
hl[t]x[0]n−l

∣∣∣∣∣
≤

m2∑
n=m1

N ′∑
l=0

|an[q0]|
∣∣h[t]l

∣∣ |x[0]|n−l n!

(n− l)!l!

≤

(
N ′∑
l=0

∣∣h[t]l
∣∣ |x[0]|N

′−l

l!

)(
m2∑

n=m1

|an[q0]|nN ′ |x[0]|n−N
′

)
.

The first term in the final expression above is independent of m1 and m2; moreover, since

|x[0]| < r ≤ 1

lim sup
n→∞

{
|an[q0]|

1
n

} =
1

lim sup
n→∞

{
|an[q0]nN ′|

1
n

} ,
the real series

∞∑
n=0

|an[q0]|nN ′ |x[0]|n−N
′

must converge in R. Thus, there exists N ′′ ∈ N such that if m2 > m1 > N ′′ then

m2∑
n=m1

|an[q0]|nN ′ |x[0]|n−N
′
<

ε
N ′∑
l=0

|h[t]l||x[0]|N′−l

l!

.

It follows that if m2 > m1 > max {N ′, N ′′} then

m2∑
n=m1

|an[q0](x[0] + h)n[t]| ≤

(
N ′∑
l=0

∣∣h[t]l
∣∣ |x[0]|N

′−l

l!

)(
m2∑

n=m1

|an[q0]|nN ′ |x[0]|n−N
′

)

< ε.

Since q0 ∈ Q was arbitrary, it follows that
∞∑
n=0

|an[q]xn| converges in (F , τw), for every q ∈ Q.

Finally we show that
∞∑
n=0

|anxn| converges in (F , τw). We have already shown that, for
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every q ∈ Q,
∞∑
n=0

|an[q]xn| converges in (F , τw). Moreover, λ(
∞∑
n=0

an[q]xn) ≥ 0 and hence

∑
q∈S

dq
∞∑
n=0

|an[q]xn|

has a well ordered support. Let t ∈ Q be given. Then

(∑
q∈S

dq
∞∑
n=0

|an[q]xn|

)
[t] =

∑
q∈S

(
dq

∞∑
n=0

|an[q]xn|

)
[t]

=
∑
q∈S

( ∑
t1+t2=t

dq[t1]

(
∞∑
n=0

|an[q]xn|

)
[t2]

)

=
∑
q∈S

dq[q]

(
∞∑
n=0

|an[q]xn|

)
[t− q]

=
∑
q∈S

∞∑
n=0

|an[q]| |xn| [t− q].

Now, let S0 ⊂ S be the set of all q ∈ S such that t − q ∈
∞⋃
n=0

supp(xn). Since S and

∞⋃
n=0

supp(xn) are both well-ordered, it follows that S0 is finite [14, Theorem 1.3]. It follows

that

(∑
q∈S

dq
∞∑
n=0

|an[q]xn|

)
[t] =

∑
q∈S

∞∑
n=0

|an[q]| |xn| [t− q]

=
∑
q∈S0

(
∞∑
n=0

|an[q]xn|

)
[t− q]

is finite. Thus,
∑
q∈S

dq
∞∑
n=0

|an[q]xn| converges in (F , τw). Moreover, we have that
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(∑
q∈S

dq
∞∑
n=0

|an[q]xn|

)
[t] =

∑
q∈S0

dq[q]
∞∑
n=0

|an[q]| |xn| [t− q]

=
∞∑
n=0

∑
q∈S0

dq[q] |an[q]| |xn| [t− q] =
∞∑
n=0

∑
q∈S

dq[q] |an[q]| |xn| [t− q]

=
∞∑
n=0

∑
q∈S

|an[q]|
∑

t1+t2=t

dq[t1] |xn| [t2] =

(
∞∑
n=0

∑
q∈S

|an[q]|dq|xn|

)
[t]

=

(
∞∑
n=0

(∑
q∈S

|an[q]|dq
)
|xn|

)
[t] ≥

(
∞∑
n=0

∣∣∣∣∣∑
q∈S

an[q]dq

∣∣∣∣∣ |xn|
)

[t]

=

(
∞∑
n=0

|anxn|

)
[t].

So for every t ∈ Q,

(
(
m∑
n=0

|anxn|)[t]
)
m∈N

converges as a real sequence and, moreover,(
m∑
n=0

|anxn|
)
m∈N

is a regular sequence because (an)n∈N is regular and λ(x) ≥ 0. Hence

m∑
n=0

|anxn| converges in (F , τw).

Now let x ∈ F be such |x[0]| > r; we will show that
∞∑
n=0

anx
n diverges in (F , τw). Assume

to the contrary that
∞∑
n=0

anx
n converges in (F , τw). Let h = x − x[0]. Then, since

∞∑
n=0

anx
n

converges in (F , τw), we have that

∞∑
n=0

anx
n =

∞∑
n=0

an(x[0] + h)n =
∞∑
n=0

an

(
n∑
k=0

n!

k!(n− k)!
x[0]n−khk

)

=
∞∑
k=0

∞∑
n=k

an
n!

k!(n− k)!
x[0]n−khk =

∞∑
k=0

(
∞∑
n=k

ann!
(n−k)!

x[0]n
)

k!
hk

=
∞∑
n=0

anx[0]n +
∞∑
k=1

(
∞∑
n=k

ann!
(n−k)!

x[0]n
)

k!
hk.
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Observe that, for every k ∈ N,

lim sup
n→∞

{∣∣∣∣ n!

(n− k)!

∣∣∣∣ 1
n

}
= 1.

Thus, for every k ∈ N and q ∈ Q, we have that

lim sup
n→∞

{∣∣∣∣an[q]
n!

(n− k)!

∣∣∣∣ 1
n

}
= lim sup

n→∞

{
|an[q]|

1
n

}
.

It follows that, for every q ∈ Q,
∞∑
n=k

an[q]n!

(n− k)!
x[0]n

diverges in R only when
∞∑
n=k

an[q]x[0]n

diverges in R. Since |x[0]| > r, we have by definition of r that

1

|x[0]|
< sup

{
lim sup
n→∞

|an[q]|
1
n : q ∈ S

}
.

Therefore there is at least one q ∈ S such that

1

|x[0]|
< lim sup

n→∞
|an[q]|

1
n

and hence

|x[0]| > 1

lim sup
n→∞

|an[q]|
1
n

.

Thus, by the root test, we have that
∞∑
n=0

an[q]xn[0] diverges in R. Let q0 ∈ S be the smallest

such element (which exists since S is well-ordered) and let q1 = λ(h). Then, for any k ≥ 1,
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the smallest q ∈ Q such that


(
∞∑
n=k

ann!
(n−k)!

x[0]n
)

k!
hk

 [q]

diverges is q = q0 + kq1. Since kq1 > 0 we therefore have that

 ∞∑
k=1

(
∞∑
n=k

ann!
(n−k)!

x[0]n
)

k!
hk

 [q0]

must converge. However,
∞∑
n=0

an[q0]xn[0] diverges in R and

(
∞∑
n=0

anx
n

)
[q0] =

∞∑
n=0

an[q0]xn[0] +

 ∞∑
k=1

(
∞∑
n=k

ann!
(n−k)!

x[0]n
)

k!
hk

 [q0].

It follows that

(
∞∑
n=0

anx
n

)
[q0] diverges in R. This contradicts the assumption that

∞∑
n=0

anx
n

converges in (F , τw). Hence
∞∑
n=0

anx
n diverges in (F , τw).

Corollary 2.5.3. Let (an)n∈N be a sequence in F and assume that

− lim inf
n→∞

(
λ(an)

n

)
= lim sup

n→∞

(
−λ(an)

n

)
= λ0.

Let

r =
1

sup

{
lim sup
n→∞

|(andnλ0)[q]|
1
n : q ∈

⋃
n∈N

supp(andnλ0)

} ,
let x0 ∈ F be fixed, and let x ∈ F be such that λ(x − x0) ≥ λ0. Finally, assume that

(and
nλ0)n∈N is a regular sequence. Then

∞∑
n=0

an(x − x0)n converges absolutely in (F , τw) if

|(x− x0)[λ0]| < r and diverges in (F , τw) if |(x− x0)[λ0]| > r.

62



Proof. For every n ∈ N let bn = and
nλ0 ; and let y = d−λ0(x− x0). Then

lim sup
n→∞

(
−λ(bn)

n

)
= lim sup

n→∞

(
−λ(and

nλ0)

n

)
= lim sup

n→∞

(
−λ(an)

n
− nλ0

n

)
= lim sup

n→∞

(
−λ(an)

n

)
− λ0 = λ0 − λ0 = 0.

Moreover, for every n ∈ N, we have that

bny
n = and

nλ0
(
d−λ0(x− x0)

)n
= an(x− x0)n,

and hence
∞∑
n=0

an(x− x0)n =
∞∑
n=0

bny
n. Finally note that

1

r
= sup

{
lim sup
n→∞

∣∣(andnλ0)[q]
∣∣ 1
n : q ∈

⋃
n∈N

supp(and
nλ0)

}

= sup

{
lim sup
n→∞

|bn[q]|
1
n : q ∈

⋃
n∈N

supp(bn)

}
.

Since (bn)n∈N is a regular sequence in F with

− lim inf
n→∞

(
λ(bn)

n

)
= lim sup

n→∞

(
−λ(bn)

n

)
= 0

and since λ(y) = −λ0 + λ(x − x0) ≥ 0, it follows immediately from Theorem 2.5.2 that
∞∑
n=0

an(x − x0)n =
∞∑
n=0

bny
n converges absolutely in (F , τw) if |y[0]| < r and diverges in

(F , τw) if |y[0]| > r. However, |y[0]| < r if and only if |(x− x0)[λ0]| < r and |y[0]| > r if and

only if |(x− x0)[λ0]| > r. Thus, the corollary is proved.
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Chapter 3

Measure Theory and Integration in

ν-Dimensions

3.1 Simple Regions in ν-Dimensions

The notion of simple regions is critical to our success in constructing a theory of 2-dimensional

integration and this remains true in higher dimensions; unfortunately in higher dimensions

it is more difficult to prove that simple regions have the necessary properties with respect

to unions, intersections, and set differences. We begin this chapter by outlining the difficul-

ties involved and stating three conjectures that seem necessary for constructing a measure

theory in an arbitrary number of dimensions. Then we will prove a version of Weierstrass’

Preparation Theorem for the Hahn field making some progress towards resolving the issue.

In the later chapters we will assume that the aforementioned conjectures hold and we will

show how they can be used to inductively construct a theory of measures and integration

on the Hahn fields in an arbitrary number of dimensions. We begin with the definition of

a ν-dimensional simple region; notice that the definition relies on there already existing a

definition for an (ν − 1)-dimensional simple region. There is, as we have seen in Chapter 1,

a definition for 2-dimensional simple regions and so by induction the definition below holds
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for an arbitrary ν ∈ N.

Definition 3.1.1 (ν-Simple region). Let ν ∈ N satisfy ν > 2 and let S ⊂ Kν. Then we say

S is a ν-dimensional simple region or equivalently a ν-simple region in Kν if there

exists a (ν − 1)-simple region A ⊂ Kν−1, two analytic functions h1, h2 : A → K such that

h1 < h2 everywhere on A, and a permutation σ : Zν → Zν such that

S = {(xσ(1), . . . , xσ(ν)) ∈ Kν : x1 ∈ I(h1(x2, . . . , xν), h2(x2, . . . , xν)), (x2, . . . , xν) ∈ A}.

Note that the reason for the inclusion of σ in the definition is to account for different ori-

entations (e.g. the possibility that h1 and h2 are functions of (x1, x3, . . . , xν) rather than

(x2, . . . , xν).

Now we will define the volume of an ν-simple region; as before, we proceed by induction

using as our base case the definition of the area of a 2-simple region from Chapter 1.

Definition 3.1.2 (Volume of an ν-simple region). Let ν ∈ N satisfy ν > 2 and let S ⊂ Kν

be a simple region with A, h1 and h2 as in Definition 3.1.1. Then, we denote the volume of

S with v(S) and define it to be

v(S) =

∫
(x2,...,xν)∈A

[h2(x2, . . . , xν)− h1(x2, . . . , xν)].

As alluded to above, we will now state three conjectures regarding ν-simple regions which

to date have only been proven for the case of ν = 2 and K = R, the proofs in that case can

be found in [3].

Conjecture 3.1.3. Let ν ∈ N satisfy ν > 2 and let A,B ⊂ Kν be two ν-simple regions.

Then there exists a finite collection of mutually disjoint n-simple regions (Fk)
K
k=0 such that

K⋃
k=0

Fk = A ∩B
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Conjecture 3.1.4. Let ν ∈ N satisfy ν > 2 and let A,B ⊂ Kν be two n-simple regions.

Then there exists a finite collection of mutually disjoint n-simple regions (Fk)
K
k=0 such that

K⋃
k=0

Fk = A\B

Conjecture 3.1.5. Let ν ∈ N satisfy ν > 2 and let A,B ⊂ Kν be two n-simple regions.

Then there exists a finite collection of mutually disjoint n-simple regions (Fk)
K
k=0 such that

K⋃
k=0

Fk = A ∪B

The proofs of these conjectures in two dimensions rely on the fact that (as in the real

numbers) a power series in one dimension may have only finitely many roots on a closed

interval. Similar statements made in higher dimensions are significantly more complex and

proving them (even in the real case) requires extensive use of the notions of semi- and

sub-analytic sets (defined below) as well as differential manifolds. None of theses concepts

have been developed yet on either the Hahn or Levi-Civita fields thus making completely

rigorous proofs in these fields impossible at this time. Nevertheless we would like to give

some justification for our use of these conjectures in the remainder of this chapter and to

that end we now present some results from real analysis which are relevant to how simple

regions might be described in that context. A summary of the relevant results from real

analysis can be found in [22] and [23] contains a more detailed discussion which includes

proofs.

Definition 3.1.6 ([22, Definition 5.4.7]). Let M be a real analytic manifold.

� Let U be an open coordinate neighbourhood of M . An analytic subset of U is a set

of the form

U
⋂
{(x1, . . . , xn) : F (x1, . . . , xn) = 0}

where F is a real analytic function on U .
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� Let U be an open coordinate neighbourhood of M . The family of semianalytic sub-

sets of U is the smallest family containing the analytic subsets of U that is closed

under finite intersection, finite union, and complement. [A subset of U is said to be

semianalytic if it belongs to the family of semianalytic subsets of U .]

� A subset S of M is semianalytic if each point p ∈ S has an open coordinate neigh-

bourhood U such that S
⋂
U is a semianalytic subset of U .

� A subset S of M is subanalytic if each point p ∈ S has an open coordinate neighbour-

hood U such that S
⋂
U is the projection of a relatively compact semianalytic subset of

Rn+m = Rn × Rm.

It should be clear that every ν-simple region is a semianalytic subset of Rν ; however,

not every semianalytic subset of Rν is a ν-simple region. This is because simple regions

have the additional requirement that when projected along a particular vector (which vector

specifically depends on the simple region’s orientation) into Rν−1, its footprint there is a

(ν − 1)-simple region. Although we do not attempt to give a complete description of simple

regions in terms of semi- and subanalytic sets we note that the following theorem gives us

the requirement that closed semianalytic subsets of real manifolds are locally the finite union

of analytic sets.

Theorem 3.1.7 ([22, Theorem 5.4.12]). Let S be a semianalytic subset of the real analytic

manifold M . Then:

� Every connected component of S is semianalytic.

� The family of connected components of S is locally finite.

� S is locally connected.

� The closure and interior of S are semianalytic.
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� Let U be a semianalytic subset of M with U ⊂ S which is open relative to S. Then U

is locally a finite union of sets of the form

S
⋂
{x ∈M : f1(x) > 0, . . . , fk(x) > 0} ,

where f1, . . . , fk are real analytic functions.

� If S is closed, then S is locally the finite union of sets of the form

{x ∈M : f1(x) ≥ 0, . . . , fk(x) ≥ 0} ,

where f1, . . . , fk are real analytic functions.

The two following propositions make use of Conjectures 3.1.3 and 3.1.4 to establish crucial

properties of ν-simple regions.

Proposition 3.1.8. Suppose (Hi)
∞
i=1 and (Gj)

∞
j=1 are sequences of mutually disjoint ν-simple

regions in Kν such that
∞∑
i=1

v(Hi) and
∞∑
j=1

v(Gj) both strongly converge. Then, there exists a

sequence of mutually disjoint ν-simple regions (Tk)
∞
k=1 such that

∞⋃
i=1

Hi ∩
∞⋃
j=1

Gj =
∞⋃
k=1

Tk and

∞∑
k=1

v(Tk) strongly converges.

Proof. From Conjecture 3.1.3 we know that for every i, j ∈ N, there is a finite collection of

mutually disjoint simple regions (T i,jk )
li,j
k=1 such that Hi ∩ Gj =

li,j⋃
k=1

T i,jk . We assert that the

collection

(((T i,jk )
li,j
k=1)∞i=1)∞j=1

is mutually disjoint; so consider i1, j1, k1 ∈ N and i2, j2, k2 ∈ N such that either i1 6= i2,

j1 6= j2 or k1 6= k2. Of course if i1 = i2 and j1 = j2 then T i1,j1k1
and T i2,j2k2

are both contained

in (T i1,j1k )
li,j
k=1 which is known to be mutually disjoint. If j1 6= j2 then T i1,j1k1

⊂ Hi1 ∩Gj1 ⊂ Gj1

and T i2,j2k2
⊂ Hi2 ∩Gj2 ⊂ Gj2 ; since Gj1 and Gj2 are disjoint, it follows that T i1,j1k1

and T i2,j2k2

must be disjoint. The same argument can be made in the case that i1 6= i2, so the assertion
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is correct. Since (((T i,jk )
li,j
k=1)∞i=1)∞j=1 is a countable collection it may be rewritten as (Tk)

∞
k=1.

Thus, (Tk)
∞
k=1 is a collection of mutually disjoint simple regions such that

∞⋃
i=1

Hi ∩
∞⋃
j=1

Gj =
∞⋃
k=1

Tk.

Since
∞⋃
k=1

Tk ⊂
∞⋃
i=1

Hi,

∞∑
i=1

v(Hi) converges in the order topology, and (Tk)
∞
k=1 is a collection of mutually disjoint

simple regions,
∞∑
k=1

v(Tk) must also converge in the order topology.

Proposition 3.1.9. Suppose that for every i ∈ N, (Gi
n)∞n=1 is a countable sequence of mu-

tually disjoint simple regions such that

∞∑
i=1

∞∑
n=1

v(Gi
n)

converges in the order topology. Then there exists a collection of mutually disjoint simple

regions (Hj)
∞
j=1 such that

∞⋃
j=1

Hj =
∞⋃
i=1

∞⋃
n=1

Gi
n

and
∞∑
j=1

v(Hj) converges in the order topology.

Proof. First we note that ((Gi
n)∞n=1)∞i=1 is a countable collection of simple regions and so may

be rewritten as (Gn)∞n=1. To create the sequence (Hj)
∞
j=1 we begin by defining H1 = G1.

Next we observe that by Conjecture 3.1.4, for every n1, n2 ∈ N, Gn1\Gn2 is given by a finite

number of mutually disjoint simple regions (F n1,n2

l )
tn1,n2
l=1 . So, for every n0 ∈ N,

Gn0\
n0−1⋃
n=1

Gn =

n0−1⋂
n=1

(Gn0\Gn) =

n0−1⋂
n=1

tn0,n⋃
l=1

F n0,n
l

However, using the same argument as in the proof of Proposition 3.1.8, we deduce that for
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every n0 ∈ N,
n0−1⋂
n=1

tn0,n⋃
l=1

F n0,n
l

can be expressed as the union of a finite number of mutually disjoint simple regions (F n0
l )

tn0
l=1.

We define

H2 = F 2
1 , . . . , Ht2+1 = F 2

t2

H2+t2 = F 3
1 , . . . , H1+t2+t3 = F 3

t3

H2+t2+t3 = F 4
1 , . . . , H1+t2+t3+t4 = F 4

t4

...

H
2+

n0∑
n=2

tn
= F n0+1

1 , . . . , H
1+

n0+1∑
n=2

tn

= F n0+1
tn0+1

...

We see that by construction the Hj’s are mutually disjoint and
∞⋃
j=1

Hj =
∞⋃
i=1

∞⋃
n=1

Gi
n, so

0 ≤
∞∑
j=0

v(Hj) ≤
∞∑
i=1

∞∑
n=1

v(Gi
n). By our premise,

∞∑
i=1

∞∑
n=1

v(Gi
n) converges in the order topology

and so
∞∑
j=0

v(Hj) must converge in the order topology as claimed.

3.2 Weierstrass’ Preparation Theorem for the Hahn

Field

Although the language from real analysis needed to prove the real counterparts of 3.1.3,

3.1.4, and 3.1.5 remains undeveloped on the Hahn field at this time, it is nevertheless pos-

sible to prove for the Hahn field the basic theorem required in the real case, namely Weier-

strass’ Preparation Theorem which “allows one to establish properties of analytic varieties

by inducting on dimension” [22]. Below we include a proof of that theorem which has the

additional benefit of illustrating how convenient the Hahn field can make arguments related
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to convergence.

Remark 3.2.1. We introduce the following notation, borrowed from [24], to simplify our

arguments

� α = α0, . . . , αν−1

� |α| = |α0|+ · · ·+ |αν−1|

� x = x0, . . . , xν−1

� xα = xα0
0 · · ·x

αν−1

ν−1

The definition below follows the example of [24] which “Let[s] K{x} = k{x1, . . . , xν}

denote the ring of all power series
∑
cαx

α which converge for |x| < δ, where δ > 0, but may

depend on the series in question.” There “K” is either the real or complex field.

Definition 3.2.2 (K{x}). Let K{x} = K{x1, . . . , xν} denote the set of all power series for

which there is a ρ > 0 in K such that the power series in question converges for |x| < ρ.

For convenience we also define the following subsets of K{x}.

Definition 3.2.3. Let r1, . . . , rν ∈ K be positive. We define

Lr = Lr1,...,rν

:=

{
f ∈ K{x}

∣∣∣∣∣f(x) =
∑
α∈Nn

cαx
α,
∑
α∈Nν
|cα| rα1

1 · · · rανν converges in the order topology.

}
.

Lemma 3.2.4. Fix ν ∈ N and let r1, . . . , rν ∈ K be positive and satisfy λ(ri) > q for all

1 ≤ i ≤ ν. Every f ∈ Lr can be given by

f(x) =
∑
α∈Nν

cαx
α.

If we define ‖·‖r by

‖f‖r =
∑
α∈Nν
|cα| rα,
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then (Lr, ‖·‖) is a Banach space.

Proof. Clearly ‖·‖r is a norm. We show that that every Cauchy sequence in Lr must converge

to a point also in Lr. So let (fi)i∈N be a Cauchy sequence; and for every i ∈ N let

fi(x) =
∑
α∈Nν

ci,αx
α.

We claim that for every α ∈ Nν , (|ci,α|)i∈N is a Cauchy sequence in K. To see this, fix

α0 ∈ Nν , ε > 0, and define ε0 = εrα0 . Since (fi)i∈N is a Cauchy sequence there must exist a

N ∈ N such that for all i, j > N

‖fi − fj‖r < ε0.

But

‖fi − fj‖r =
∑
α∈Nn

|ci,α − cj,α| rα

≥ |ci,α0 − cj,α0| rα0 .

Thus,

|ci,α0 − cj,α0| δα0 < ε0 = εrα0

and hence |ci,α0 − cj,α0| < ε which proves the claim. Since the Hahn field is complete we may

define for every α ∈ Nν

cα := lim
i→∞

ci,α

and we let

f(x) =
∑
α∈Nν

cαx
α.

Clearly our choice of cα’s ensures that

lim
i→∞

fi = f
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so it remains to show that f ∈ Lr. Suppose otherwise, then we must have that
∑
α∈Nν
|cα| rα

diverges in the order topology. Notice that

∑
α∈Nν
|cα| rα =

∞∑
m=0

∑
|α|=m

|cα| rα (3.1)

and for every i ∈ N ∑
α∈Nν
|ci,α| rα =

∞∑
m=0

∑
|α|=m

|ci,α| rα. (3.2)

In the order topology sums converge if and only if their terms form a null sequence so we

must have that

lim
m→∞

∑
|α|=m

|cα| rα 6= 0 (3.3)

so that the sum in Equation 3.1 diverges and of course for every i ∈ N,

lim
m→∞

∑
|α|=m

|ci,α| rα = 0 (3.4)

so that the sum in Equation 3.2 converges. By equation (3.3) there must exist a h > 0 in K

such that for all m ∈ N there is a n > m such that

∑
|α|=n

|cα| rα > h.

Choose N ∈ N to be large enough that for any i, j > N

‖fi − fj‖r <
h

3
.

Fix i > N . Then, since the series in equation (3.4) converges, (
∑
|α|=m

|ci,α| rα)m∈N) must be a

null sequence. So we may choose M ∈ N large enough that for every m > M ,

∑
|α|=m

|ci,α| rα <
h

3
.
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Thus we have that for every j ∈ N with j > i,

∑
|α|=m

|cj,α| rα =
∑
|α|=m

|ci,α + cj,α − ci,α| rα

≤
∑
|α|=m

|ci,α| rα +
∑
|α|=m

|cj,α − ci,α| rα

≤
∑
|α|=m

|ci,α| rα + ‖fj − fi‖r

≤ h

3
+
h

3
=

2h

3
.

However this contradicts the fact that for every α ∈ Nn,

lim
i→∞

ci,α = cα

and so the lemma is proven.

Lemma 3.2.5. Let r1, . . . , rν ∈ K be positive and suppose that A : Lr1,...,rν → Lr1,...,rν is a

linear operator satisfying ‖A‖r ≤ s where λ(s) > 0. Then, if I denotes the identity operator,

I − A is invertible.

Proof. We have by the Triangle Inequality that

∥∥∥∥∥
∞∑
n=0

An

∥∥∥∥∥
r

≤
∞∑
n=0

‖An‖r .

However, ‖An‖r ≤ ‖A‖
n
r ≤ sn and lim

n→∞
sn = 0 so the sum on the right above must converge

in the order topology. Thus
∞∑
n=0

An is a well-defined linear operator on Lr. Moreover, notice
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that

(I − A)
∞∑
n=0

An = lim
N→∞

(I − A)
N∑
n=0

An

= lim
N→∞

N∑
n=0

(An − An+1)

= lim
N→∞

(I − AN).

But lim
N→∞

AN → 0 because ‖A‖r < s so we have that

(I − A)
∞∑
n=0

An = I.

This proves that
∞∑
n=0

An = (I − A)−1

and hence that I − A is invertible.

Corollary 3.2.6. Let r1, . . . , rν ∈ K be positive and suppose that A : Lr1,...,rν → Lr1,...,rν is a

linear operator satisfying ‖I − A‖r ≤ s where I denotes the identity operator and λ(s) ≥ 0.

Then A is invertible.

Proof. This follows immediately from the previous lemma by making the change, A →

I − A′.

Theorem 3.2.7 (Weierstrass’ Preparation Theorem). Let f ∈ K{x1, . . . , xν} and suppose

f(0, . . . , 0, xν) ∈ K{xn} is not identical to zero and has a root of multiplicity p ≥ 1 at the

origin. Then we have that for any φ ∈ K{x1, . . . , xν} there is an a ∈ K{x1, . . . , xν} and

b1, . . . , bp ∈ K{x1, . . . , xν−1} such that

φ = a · f +

p∑
i=1

bi · xp−iν .
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Proof. First we notice that we may write

f(x1, . . . , xν) =
∞∑
i=0

fi(x1, . . . , xν−1)xiν

and by our premise we must have fi(0, . . . , 0) = 0 for i < p and fp(0) 6= 0, moreover without

loss of generality we may assume that fp = 1 since we can always change f to f̂ = f
fp

and

the only effect this will have on our theorem is to change a to â = afp. Since f ∈ K{x}

there is a ρ ∈ K such that if f(x) =
∑
α∈Nν

aαx
α then

∑
α∈Nn

|aα| ρ|α| converges. Let q = λ(ρ)

and let r1, . . . , rν ∈ K be positive with λ(ri) > q for all i ∈ {1, . . . , ν}. Clearly we have that

f ∈ Lr1,...,rν and for any φ ∈ Lr1,...,rν we may write

φ = a(φ)xpν + b(φ)

where a, b ∈ Lr1,...,rν and b is a polynomial of degree less than p in xν . We define a linear

operator A : Lr → Lr by

Aφ := a(φ)f + b(φ).

Notice that

‖Aφ− φ‖r = ‖a(φ)(f − xpν)‖r ≤ ‖a(φ)‖r ‖f − x
p
ν‖r .

We may, by carefully choosing r1, . . . , rν ∈ K, ensure that

‖f − xpν‖r =

∥∥∥∥∥
∞∑
i=0

fi(x1, . . . , xν−1)xiν − fp(x1, . . . , xν−1)xpν

∥∥∥∥∥
≤

∥∥∥∥∥
p−1∑
i=0

fi(x1, . . . , xν−1)xiν

∥∥∥∥∥+

∥∥∥∥∥
∞∑

i=p+1

fi(x1, . . . , xν−1)xiν

∥∥∥∥∥
≤ drpν .

This will ensure that

‖Aφ− φ‖r ≤ d ‖a(φ)‖r r
p
ν ≤ d ‖φ‖r .
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So, if I : Lr → Lr is the identity operator, we have that ‖A− I‖r ≤ d and so by Corollary

3.2.6 A is invertible and hence surjective. Thus for any φ ∈ Lr there must be a ψ ∈ Lr such

that

φ = Aψ = a(ψ)f + b(ψ),

which finishes the proof of the theorem.

3.3 Measure Theory in ν-Dimensions

Having argued for Conjectures 3.1.3, 3.1.4, and 3.1.5 to the best of our current ability we

now take them for granted and proceed to construct a theory of measures, functions, and

integration on Kν . We begin by defining measurable sets in ν dimensions and proving certain

related propositions. The definitions and results in this and the remaining sections of this

chapter are closely related to those in [3] and [11] but generalize them to an arbitrary number

of dimensions.

Definition 3.3.1 (Measurable Set). Let S ⊂ Kν. Then we say that S is a measurable set

if for every ε > 0 there exist two sequences of mutually disjoint simple regions, (Gn)∞n=1 and

(Hn)∞n=1, such that
∞⋃
n=1

Gn ⊂ S ⊂
∞⋃
n=1

Hn,

∞∑
n=1

v(Gn) and
∞∑
n=1

v(Hn) converge, and

∞∑
n=1

v(Hn)−
∞∑
n=1

v(Gn) < ε.

Definition 3.3.2 (Measure of a Measurable Set). Suppose S ⊂ Kν is a measurable set. By

definition we have that for every k ∈ N, there exist two sequences of mutually disjoint simple
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regions, (Gk
n)∞n=1 and (Hk

n)∞n=1, such that

∞⋃
n=1

Gk
n ⊂ S ⊂

∞⋃
n=1

Hk
n,

∞∑
n=1

v(Gk
n) and

∞∑
n=1

v(Hk
n) converge, and

∞∑
n=1

v(Hk
n)−

∞∑
n=1

v(Gk
n) < dk.

We note that that since for every k ∈ N, (Gk
n)∞n=1 and (Hk

n)∞n=1 are mutually disjoint we can

arrange them so that

∞⋃
n=1

Gk
n ⊂

∞⋃
n=1

Gk+1
n ⊂ S ⊂

∞⋃
n=1

Hk+1
n ⊂

∞⋃
n=1

Hk
n.

We claim that (
∞∑
n=1

v(Gk
n))∞k=1 is a Cauchy sequence. To prove this we fix ε > 0 in K and

let k0 ∈ N be large enough so that dk0 < ε. Now, for every l > k0,

∞⋃
n=1

Gl
n ⊂ S ⊂

∞⋃
n=1

Hk0
n ,

so
∞∑
n=1

v(Gl
n) ≤

∞∑
n=1

v(Hk0
n ).

Thus,

0 6
∞∑
n=1

v(Gl
n)−

∞∑
n=1

v(Gk0
n ) ≤

∞∑
n=1

v(Hk0
n )−

∞∑
n=1

v(Gk0
n ) < dk0 < ε.

Therefore the claim is proven, and a similar argument shows that the sequence (
∞∑
n=1

v(Hk
n))∞k=1

is Cauchy. Since K is Cauchy complete

lim
k→∞

∞∑
n=1

v(Gk
n)
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and

lim
k→∞

∞∑
n=1

v(Hk
n)

both exist, and hence

lim
k→∞

∞∑
n=1

(v(Hk
n)− v(Gk

n))

exists and

lim
k→∞

∞∑
n=1

(v(Hk
n)− v(Gk

n)) = lim
k→∞

∞∑
n=1

v(Hk
n)− lim

k→∞

∞∑
n=1

v(Gk
n).

Furthermore, for every k ∈ N,

0 ≤
∞∑
n=1

v(Hk
n)−

∞∑
n=1

v(Gk
n) < dk,

so

0 ≤ lim
k→∞

(
∞∑
n=1

v(Hk
n)−

∞∑
n=1

v(Gk
n)

)
≤ 0.

We conclude that

lim
k→∞

(
∞∑
n=1

v(Gk
n)−

∞∑
n=1

v(Hk
n)

)
= 0

and hence

lim
k→∞

∞∑
n=1

v(Gk
n) = lim

k→∞

∞∑
n=1

v(Hk
n).

We call this limit the measure of S and we denote it by m(S).
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Proposition 3.3.3. Suppose S ⊂ Kν is a measurable set. Then

m(S) = inf

{
∞∑
n=1

v(Hn) : Hn’s are mutually disjoint simple regions,

S ⊂
∞⋃
n=1

Hn, and
∞∑
n=1

v(Hn) converges

}

= sup

{
∞∑
n=1

v(Gn) : Gn’s are mutually disjoint simple regions,

∞⋃
n=1

Gn ⊂ S, and
∞∑
n=1

v(Gn) converges

}
.

Proof. First we show that the infimum exists and is equal to m(S). Since S is a measurable

set we know that for every k ∈ N, there exist two sequences of mutually disjoint simple

regions (Gk
n)∞n=1 and (Hk

n)∞n=1 such that

∞⋃
n=1

Gk
n ⊂

∞⋃
n=1

Gk+1
n ⊂ S ⊂

∞⋃
n=1

Hk+1
n ⊂

∞⋃
n=1

Hk
n,

∞∑
n=1

v(Gk
n) and

∞∑
n=1

v(Hk
n) both converge, and

∞∑
n=1

v(Hk
n)−

∞∑
n=1

v(Gk
n) < dk.

By definition

m(S) = lim
k→∞

∞∑
n=1

v(Gk
n) = lim

k→∞

∞∑
n=1

v(Hk
n)

and, for every k ∈ N,
∞∑
n=1

v(Gk
n) ≤ m(S) ≤

∞∑
n=1

v(Hk
n).

It remains to be shown that if (Hn)∞n=1 is a sequence of mutually disjoint simple regions such
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that S ⊂
∞⋃
n=1

Hn and
∞∑
n=1

v(Hn) converges, then

∞∑
n=1

v(Hn) ≥ lim
k→∞

∞∑
n=1

v(Hk
n) = m(S).

Suppose not. Then, there exists a sequence of mutually disjoint simple regions (Hn)∞n=1 such

that
∞∑
n=1

v(Hn) converges, S ⊂
∞⋃
n=1

Hn, and

∞∑
n=1

v(Hn) < lim
k→∞

∞∑
n=1

v(Hk
n) = m(S).

Let

η = m(S)−
∞∑
n=1

v(Hn),

then
∞∑
n=1

v(Hn) = m(S)− η.

However

m(S) = lim
k→∞

∞∑
n=1

v(Gk
n),

thus there exists a k0 ∈ N such that

m(S)−
∞∑
n=1

v(Gk0
n ) < η.

Therefore,
∞∑
n=1

v(Gk0
n ) > m(S)− η =

∞∑
n=1

v(Hn),
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but this contradicts the fact that
∞⋃
n=1

Gk0
n ⊂ S ⊂

∞⋃
n=1

Hn. It follows that

m(S) = lim
k→∞

∞∑
n=1

v(Hk
n)

= inf

{
∞∑
n=1

v(Hn) : Hn’s are mutually disjoint, S ⊂
∞⋃
n=1

Hn,
∞∑
n=1

v(Hn) converges

}
.

A similar argument shows that

m(S) = sup

{
∞∑
n=1

v(Gn) : Gn’s are mutually disjoint,
∞⋃
n=1

Gn ⊂ S,
∞∑
n=1

v(Gn) converges

}
.

Proposition 3.3.4. Fix J ∈ N, let S ⊂ Kν be an arbitrary set and let A,B, (Ai)i∈N , {Bj}j∈(1,...,J) ∈

Kν be measurable sets. Then we have the following.

1. If A ⊂ B then m(A) ≤ m(B).

2. If S ⊂ A and m(A) = 0 then S is measurable and m(S) = 0

3. If S is a countable set then S is measurable and m(S) = 0

4. If lim
i→∞

m(Ai) = 0 then
∞⋃
i=1

Ai is measurable and

m

(
∞⋃
i=1

Ai

)
≤

∞∑
i=1

m(Ai).

Moreover, if the sets (Ai)
∞
i=1 are mutually disjoint then

m

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

m(Ai).

5.
J⋂
j=1

Bj is measurable and m

(
J⋂
j=1

Bj

)
≤ min{m(Bj) : j ∈ {1, . . . , J}}
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6. m(A ∪B) = m(A) +m(B)−m(A ∩B)

Proof. 1. Suppose not, then A ⊂ B but m(A) > m(B). Let m(A) − m(B) = η. Since

A is measurable there is a sequence of mutually disjoint simple regions (Gn)∞n=1 such that
∞⋃
n=1

Gn ⊂ A,
∞∑
n=1

v(Gn) converges, and

m(A)−
∞∑
n=1

v(Gn) <
η

4
.

Since B is measurable there is a sequence of mutually disjoint simple regions (Hn)∞n=1 such

that B ⊂
∞⋃
n=1

Hn,
∞∑
n=1

v(Hn) converges, and

∞∑
n=1

v(Hn)−m(B) <
η

4
.

So we see that
∞∑
n=1

v(Hn) < m(B) +
η

4
< m(A)− η

4
<
∞∑
n=1

v(Gn),

thus
∞∑
n=1

v(Hn) <
∞∑
n=1

v(Gn).

However,
∞⋃
n=1

Gn ⊂ A ⊂ B ⊂
∞⋃
n=1

Hn,

so
∞⋃
n=1

Gn ⊂
∞⋃
n=1

Hn

and thus we have reached a contradiction.

2. Fix ε > 0 in R. Since A is measurable and m(A) = 0, for every k ∈ N there exists

a sequence of mutually disjoint simple regions (Hk
n)∞n=1 such that A ⊂

∞⋃
n=1

Hk
n,

∞∑
n=1

v(Hk
n)

converges, and
∞∑
n=1

v(Hk
n)−m(A) =

∞∑
n=1

v(Hk
n) < dk.
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For every n ∈ N, let Gn = ∅ which is a simple region. Let k0 ∈ N be large enough that

dk0 < ε. Then,
∞⋃
n=1

Gn ⊂ S ⊂
∞⋃
n=1

Hk0
n

and
∞∑
n=1

v(Hk0
n )−

∞∑
n=1

v(Gn) =
∞∑
n=1

v(Hk0
n ) < dk0 < ε.

Hence S is measurable. Since for every k ∈ N, S ⊂
∞⋃
n=1

Hk
n it follows thatm(S) ≤

∞∑
n=1

v(Hk
n) <

dk, by letting k →∞ we see that m(S) = 0.

3. Since S is a countable set there is a sequence of points ((x1,i, . . . , xn,i))
∞
i=1 such that

S =
∞⋃
i=1

(x1,i, . . . , xn,i). Fix ε > 0. For every i ∈ N define

Hi =

{
(x1, . . . , xn) ∈ Kn : For every m ∈ {1, . . . , n} xm ∈

(
xm,i −

1

2
(diε)

1
n , xm,i +

1

2
(diε)

1
n

)}
.

Note that for every i ∈ N, Hi is a simple region with v(Hi) = diε. So,

lim
i→∞

v(Hi) = lim
i→∞

diε = 0,

thus
∞∑
i=1

v(Hi) converges in the order topology. For every j ∈ N, let Gj = ∅. Then,

∞⋃
j=1

Gj ⊂ A ⊂
∞⋃
i=1

Hi,

where
∞∑
j=1

v(Gj) and
∞∑
i=1

v(Hi) both strongly converge, and

∞∑
i=1

v(Hi)−
∞∑
j=1

v(Gj) =
∞∑
i=1

v(Hi) ≤
∞∑
i=1

diε =
dε

1− d
< ε,

which proves that A is measurable. Furthermore, since A ⊂
∞⋃
i=1

Hi, m(A) ≤
∞∑
i=1

v(Hi) < ε.
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Taking the limit as ε→ 0 shows that m(A) = 0.

4. Note that since lim
i→∞

m(Ai) = 0,
∞∑
i=1

m(Ai) converges in the order topology. Fix ε > 0.

Since each Ai is measurable we see that for every i ∈ N there are two sequences of mutually

disjoint simple regions (Gi
n)∞n=1 and (H i

n)∞n=1 such that

∞⋃
n=1

Gi
n ⊂ Ai ⊂

∞⋃
n=1

H i
n,

∞∑
n=1

v(Gi
n) and

∞∑
n=1

v(H i
n) both converge, and

∞∑
n=1

v(H i
n)−

∞∑
n=1

v(Gi
n) < diε.

Since lim
i→∞

m(Ai) = 0 and

∞∑
n=1

v(Gi
n) ≤

∞∑
n=1

v(H i
n) < m(Ai) + diε,

we arrive at the conclusion that

lim
i→∞

∞∑
n=1

v(Gi
n) = lim

i→∞

∞∑
n=1

v(H i
n) = 0.

Thus,
∞∑
i=1

∞∑
n=1

v(Gi
n) and

∞∑
i=1

∞∑
n=1

v(H i
n) both converge. From the proof of Proposition 3.1.9

we know there exist two sequences of mutually disjoint simple regions (Gn)∞n=1 and (Hn)∞n=1

such that
∞⋃
n=1

Gn =
∞⋃
i=1

∞⋃
n=1

Gi
n

and
∞⋃
n=1

Hn =
∞⋃
i=1

∞⋃
n=1

H i
n.
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Therefore,
∞⋃
n=1

Hn\
∞⋃
n=1

Gn =
∞⋃
i=1

∞⋃
n=1

H i
n\
∞⋃
i=1

∞⋃
n=1

Gi
n

Now, for every i ∈ N we have that

∞⋃
n=1

Gi
n ⊂

∞⋃
n=1

H i
n,

so
∞⋃
i=1

∞⋃
n=1

H i
n\
∞⋃
i=1

∞⋃
n=1

Gi
n =

∞⋃
i=1

(
∞⋃
n=1

H i
n\

∞⋃
n=1

Gi
n)

Moreover, since for every i ∈ N, the sequences (Gn)∞n=1 and (Hn)∞n=1 are both mutually

disjoint we can arrange them in such a way that for every n ∈ N, Gi
n ⊂ H i

n. Thus, for every

i ∈ N,
∞⋃
n=1

H i
n\

∞⋃
n=1

Gi
n =

∞⋃
n=1

(H i
n\Gi

n).

So we conclude that
∞⋃
n=1

Hn\
∞⋃
n=1

Gn =
∞⋃
i=1

∞⋃
n=1

(H i
n\Gi

n).

Therefore,

m

(
∞⋃
n=1

Hn\
∞⋃
n=1

Gn

)
= m

(
∞⋃
i=1

∞⋃
n=1

(H i
n\Gi

n)

)

≤
∞∑
i=1

m

(
∞⋃
n=1

(H i
n\Gi

n)

)

=
∞∑
i=1

∞∑
n=1

m(H i
n\Gi

n)

=
∞∑
i=1

∞∑
n=1

(v(Hk
n)− v(Gk

n))

=
∞∑
i=1

(
∞∑
n=1

v(H i
n)−

∞∑
n=1

v(Gi
n)

)
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But,

m

(
∞⋃
n=1

Hn\
∞⋃
n=1

Gn

)
=
∞∑
n=1

v(Hn)−
∞∑
n=1

v(Gn)

and from above we know that for every i ∈ N,

∞∑
n=1

v(H i
n)−

∞∑
n=1

v(Gi
n) ≤ diε.

Therefore,
∞∑
n=1

v(Hn)−
∞∑
n=1

v(Gn) ≤
∞∑
i=1

diε =
d

1− d
ε < ε

which proves that
∞⋃
i=1

Ai is measurable. Since

∞⋃
k=1

Ak ⊂
∞⋃
k=1

∞⋃
n=1

Hk
n

we have that

m

(
∞⋃
i=1

Ai

)
≤ m

(
∞⋃
i=1

∞⋃
n=1

H i
n

)

≤
∞∑
i=1

∞∑
n=1

v(H i
n)

≤
∞∑
i=1

(m(A) + diε)

<

∞∑
i=1

m(A) + ε.

The above holds for any ε > 0 so we obtain

m

(
∞⋃
i=1

Ai

)
≤

∞∑
i=1

m(Ai).

Now, assume that the Ai’s are mutually disjoint, and let ε > 0 in R be given. There exists a

I ∈ N such that
∑
i>I

m(Ai) <
ε
2
. Since

∞⋃
i=1

Ai is measurable there exists a sequence of mutually
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disjoint simple regions (Hn)∞n=1 such that

∞⋃
i=1

Ai ⊂
∞⋃
n=1

Hn,

∞∑
n=1

v(Hn) converges, and

∞∑
n=1

v(Hn)−m

(
∞⋃
i=1

Ai

)
<
ε

2
.

Because the Ai’s and the Hn’s are mutually disjoint, and because

∞⋃
i=1

Ai ⊂
∞⋃
n=1

Hn,

we can find for every i ∈ {1, . . . , I} a sequence of mutually disjoint simple regions (H i
n)∞n=1

such that
∞∑
n=1

v(H i
n) converges,

Ai ⊂
∞⋃
n=1

H i
n ⊂

∞⋃
n=1

Hn,

and
∞⋃
n=1

H1
n,
∞⋃
n=1

H2
n, . . . ,

∞⋃
n=1

HI
n are mutually disjoint. Thus,

I∑
i=1

m(Ai) ≤
I∑
i=1

m

(
∞⋃
n=1

H i
n

)

=
I∑
i=1

∞∑
n=1

v(H i
n)

≤
∞∑
n=1

v(Hn)

< m

(
∞⋃
i=1

Ai

)
+
ε

2
.
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So,

∞∑
i=1

m(Ai) =
I∑
i=1

m(Ai) +
∑
i>I

m(Ai)

< m(
∞⋃
i=1

Ai) +
ε

2
+
ε

2

= m(
∞⋃
i=1

AI) + ε.

Taking the limit as ε→ 0 reveals that

∞∑
i=1

m(Ai) ≤ m

(
∞⋃
i=1

Ai

)
.

This with the above result that

m

(
∞⋃
i=1

Ai

)
≤

∞∑
i=1

m(Ai)

allows the conclusion that

m

(
∞⋃
k=1

Ak

)
=
∞∑
k=1

m(A).

5. It is sufficient to show that the statement holds for the case of two measurable sets A

and B since the rest follows easily by induction. So suppose that A and B are measurable

sets in Kn and fix ε > 0 in K. By the definition of measurability, there exist four sequences

of mutually disjoint simple regions (GA
n )∞n=1, (GB

n )∞n=1, (HA
n )∞n=1, and (HB

n )∞n=1 such that

∞⋃
n=1

GA
n ⊂ A ⊂

∞⋃
n=1

HA
n ,

∞⋃
n=1

GB
n ⊂ B ⊂

∞⋃
n=1

HB
n ;
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∞∑
n=1

v(GA
n ),

∞∑
n=1

v(GB
n ),

∞∑
n=1

v(HA
n ), and

∞∑
n=1

v(HB
n ) all converge; and finally

∞∑
n=1

v(HA
n )−

∞∑
n=1

v(GA
n ) ≤ ε

2
,

∞∑
n=1

v(HB
n )−

∞∑
n=1

v(GB
n ) ≤ ε

2
.

From Proposition 3.1.8 we know that there exist two sequences of mutually disjoint simple

regions (Hn)∞n=1 and (Gn)∞n=1 such that

∞⋃
n=1

Hn =
∞⋃
n=1

HA
n ∩

∞⋃
n=1

HB
n ,

∞⋃
n=1

Gn =
∞⋃
n=1

GA
n ∩

∞⋃
n=1

GB
n ;

and
∞∑
n=1

v(Hn) and
∞∑
n=1

v(Gn) both converge. Obviously

∞⋃
n=1

Gn ⊂ A ∩B ⊂
∞⋃
n=1

Hn.

Since
∞⋃
n=1

Gn ⊂
∞⋃
n=1

GA
n

and
∞⋃
n=1

Hn ⊂
∞⋃
n=1

HA
n ,

and since all four sequences of simple regions are mutually disjoint simple regions, we have

that

∞∑
n=1

v(Hn)−
∞∑
n=1

v(Gn) ≤

(
∞∑
n=1

v(HA
n )−

∞∑
n=1

v(GA
n )

)
+

(
∞∑
n=1

v(HB
n )−

∞∑
n=1

v(GB
n )

)

≤ ε

2
+
ε

2
= ε

90



which proves that A ∩ B is measurable. Since A ∩ B ⊂ A, m(A ∩ B) ≤ m(A) and since

A ∩B ⊂ B, m(A ∩B) ≤ m(B). So, m(A ∩B) ≤ min{m(A),m(B)}.

6. Fix ε > 0. First we note that by previous parts of this same proposition A ∪ B and

A∩B are measurable. Since A∪B is measurable there exists a collection of mutually disjoint

simple regions (Hn)∞n=1 such that

A ∪B ⊂
∞⋃
n=1

Hn,

∞∑
n=1

v(Hn) converges and

∞∑
n=1

v(Hn)−m(A ∪B) <
ε

2
.

Now, A\(A∩B), B\(A∩B), and A∩B are all mutually disjoint subsets of A∪B, so there

exist three subsequences of (Hn)∞n=1 denoted by (H1
n)∞n=1, (H2

n)∞n=1, and (H3
n)∞n=1 such that

A\(A ∩B) ⊂
∞⋃
n=1

H1
n,

B\(A ∩B) ⊂
∞⋃
n=1

H2
n,

and

(A ∩B) ⊂
∞⋃
n=1

H3
n.

Note that
∞⋃
n=1

H1
n ∪

∞⋃
n=1

H2
n ∪

∞⋃
n=1

H3
n =

∞⋃
n=1

Hn.

Since A = A\(A ∩B) ∪ (A ∩B) we see that

A ⊂
∞⋃
n=1

H1
n ∪

∞⋃
n=1

H3
n,
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so

m(A) ≤
∞∑
n=1

v(H1
n) +

∞∑
n=1

v(H3
n).

Since B = B\(A ∩B) ∪ (A ∩B) we see that

B ⊂
∞⋃
n=1

H2
n ∪

∞⋃
n=1

H3
n,

so

m(B) ≤
∞∑
n=1

v(H2
n) +

∞∑
n=1

v(H3
n).

Thus,

m(A) +m(B) ≤
∞∑
n=1

v(H1
n) +

∞∑
n=1

v(H3
n) +

∞∑
n=1

v(H2
n) +

∞∑
n=1

v(H3
n)

=
∞∑
n=1

v(Hn) +
∞∑
n=1

v(H3
n)

We have from above that
∞∑
n=1

v(Hn) ≤ m(A ∪B) +
ε

2
,

we also know that
∞∑
n=1

v(H3
n) ≤ m(A ∩B) +

ε

2

since otherwise
∞∑
n=1

v(Hn) would be greater than m(A∪B) + ε
2
. Therefore, m(A) +m(B) ≤

m(A ∪ B) + m(A ∩ B) + ε, this holds for any ε > 0 so we obtain that m(A) + m(B) ≤

m(A ∪B) +m(A ∩B).

Now we prove the other inequality. By the measurability of A and B there exist two

sequences of mutually disjoint simple regions (HA
n )∞n=1 and (HB

n )∞n=1 such that

A ⊂
∞⋃
n=1

HA
n ,
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B ⊂
∞⋃
n=1

HB
n ;

∞∑
n=1

v(HA
n ) and

∞∑
n=1

v(HB
n ) both converge; and

∞∑
n=1

v(HA
n ) < m(A) +

ε

2

and
∞∑
n=1

v(HB
n ) < m(B) +

ε

2
.

B is the disjoint union of B\(A ∩ B) and A ∩ B. Thus (HB
n )∞n=1 can be split into two

subsequences (HB,1
n )∞n=1 and (HB,2

n )∞n=1 where

B\(A ∩B) ⊂
∞⋃
n=1

HB,1
n

and

A ∩B ⊂
∞⋃
n=1

HB,2
n .

So,

A ∪B = A ∪ (B\(A ∩B)) ⊂
∞⋃
n=1

HA
n ∪

∞⋃
n=1

HB,1
n ,

and thus

m(A ∪B) ≤
∞∑
n=1

v(HA
n ) +

∞∑
n=1

v(HB,1
n ) ≤ m(A) +

ε

2
+
∞∑
n=1

v(HB,1
n ).
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Since A ∩B ⊂
∞⋃
n=1

HB,2
n , it is clear that m(A ∩B) ≤

∞∑
n=1

v(HB,2
n ). So we obtain

m(A ∪B) +m(A ∩B) ≤ m(A) +
ε

2
+
∞∑
n=1

v(HB,1
n ) +

∞∑
n=1

v(HB,2
n )

≤ m(A) +
ε

2
+
∑
n=1

v(HB
n )

≤ m(A) +m(B) + ε

The above inequality holds for any ε > 0 so we find that m(A∪B)+m(A∩B) ≤ m(A)+m(B).

This with our previous result gives the equality m(A) + m(B) = m(A ∩ B) + m(A ∪ B) or

m(A ∪B) = m(A) +m(B)−m(A ∩B).

3.4 Properties of Analytic Functions in ν-Dimensions

Continuing with our effort to develop a theory of integration in ν dimensions we now move

on to a discussion of functions in ν dimensions. The primary goal of this section is to define

analytic and measurable functions in ν dimensions as well as to prove a result related to the

composition of analytic functions which will be used in the following section.

Definition 3.4.1 (Finite Simple Region and Order of Magnitude). Let S be a simple region

given by

S = {(x1, . . . , xν) ∈ Kν : x1 ∈ I(h1(x2, . . . , xν), h2(x2, . . . , xν)), (x2, . . . , xν) ∈ A}

For i ∈ {2, . . . , ν} we inductively define λxi(S) = λxi(A) and we define λx1(S) = i(h2(x2, . . . , xν)−

h1(x2, . . . , xν)), the index of the analytic function h2−h1 on A; we call these the orders of

magnitude of S in the xi direction and we call S a finite region if λx1(S) = · · · =

λxν (S) = 0.

Definition 3.4.2 (Analytic Function in Kν). Suppose S ⊂ Kν is a simple region and let f :
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S → K. Then we call f an analytic function on S if for every point p = (p1, . . . , pν) ∈ S,

there exists a simple region A ⊂ Kν containing p and a regular sequence

(ai1,...,iν )
∞
i1,...,iν=0

in K such that for every i ∈ {1, . . . , ν}, λxi(A) = λxi(S) and if (x1 + δ1, . . . , xν + δν) ∈ S ∩A

then

f(x1 + δ1, . . . , xν + δν) =
∞∑

i1,...,iν=0

ai1,...,iνδ
i1
1 . . . δ

iν
ν ,

where the power series converges in the weak topology. As in two dimensions we say that f

is given locally by a power series.

Lemma 3.4.3. Suppose S ⊂ Kν is a ν-simple region and let f : S → K be an analytic

function. Then there exist linear transformations L1, . . . , Lν : [0, 1] → K and an analytic

function F : [0, 1]ν → K such that

F (x1, . . . , xν) = f(L1(x1), . . . , Lν(xν)).

Proof. The lemma has already been proven for the cases of ν = 1, 2 (see the proof of [17,

Lemma 4.7 ] for the former and the proof of [3, Proposition 2.20] for the latter) so we assume

that the lemma holds for the (ν − 1) case and show that it must hold for the ν case as well.

Since S is an ν-simple region there must exist an (ν − 1)-simple region A and two analytic

functions h1, h2 : A→ K such that

S = {(x1, . . . , xν) ∈ Kν : xν ∈ [h1(x1, . . . , xν−1), h2(x1, . . . , xν−1)], (x1, . . . , xν−1) ∈ A}.

By our inductive hypothesis there exist linear transformations L1
1, . . . , L

1
ν−1 : [0, 1]→ K and

L2
1, . . . , L

2
ν−1 : [0, 1]→ K as well as analytic functions H1, H2 : [0, 1]ν−1 → K such that

H1(x1, . . . , xν−1) = h1(L1
1(x1), . . . , L1

ν−1(xν−1)),
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and

H2(x1, . . . , xν−1) = h2(L2
1(x1), . . . , L2

ν−1(xν−1)).

In fact since all these transformations do is map the set [0, 1]ν−1 to a (ν − 1)-simple region

we may assume without loss of generality that for every i ∈ {1, . . . , ν − 1}, L1
i = L2

i := Li.

We define

F (x1, . . . , xν) = f(L1(x1), . . . , Lν−1(xν−1), (H2(x1, . . . , xν−1)−H1(x1, . . . , xν−1))xν+H1(x1, . . . , xν−1))

and the lemma is proven.

Proposition 3.4.4. Let

S = {(x1, . . . , xν) ∈ Kν : xν ∈ [h1(x1, . . . , xν−1), h2(x1, . . . , xν−1)], (x1, . . . , xν−1) ∈ A}

be an ν-simple region in Kν, and let f : S → K be an analytic function on S. Then, f is

bounded on S.

Proof. By Lemma 3.4.3 there exist linear transformations L1, . . . , Lν : [0, 1] → K and an

analytic function F : [0, 1]ν → K such that

F (x1, . . . , xν) = f(L1(x1), . . . , lν(xν)).

Clearly f is bounded on A if and only if F is bounded on [0, 1]ν . For every (y1, . . . , yν) ∈ Kν

let

N((y1, . . . , yν), η) = {(x1, . . . , xν) ∈ N :
√

(x1 − y1)2 + . . .+ (xν − yν)2 < η}.

By the definition of analytic functions, for every (y1, . . . , yν) ∈ [0, 1]ν ∩ Rν , there exists a

finite η(y1, . . . , yν) > 0 and a regular sequence (ai1,...,iν (y1, . . . , yν))
∞
i1,...,iν=0 such that for every
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(x1, . . . , xν) ∈ N((y1, . . . , yν), η(y1, . . . , yν)) ∩ [0, 1]ν ,

F (x1, . . . , xν) =
∞∑

i1,...,iν=0

ai1,...,iν (y1, . . . , yν)(x1 − y1)i1 · · · (xν − yν)iν .

The set {N((y1, . . . , yν),
η(y1,...,yν)

2
) ∩ Rν : (y1, . . . , yν) ∈ [0, 1]ν ∩ Rν} is an open cover of

[0, 1]ν ∩ Rν which is a compact set of the Euclidean space Rν , so there exists a finite set of

points {(yk,1, . . . , yk,ν)}mk=1 contained in [0, 1]ν ∩ Rν such that

[0, 1]ν ∩ Rν ⊂
m⋃
k=1

N

(
(yk,1, . . . , yk,ν),

η(yk,1, . . . , yk,ν)

2

)
∩ Rν .

From this we have that [0, 1]ν ⊂
m⋃
k=1

N((yk,1, . . . , yk,ν), η(yk,1, . . . , yk,ν)). Let

l = min
1≤k≤m

{
min

{
∞⋃

i1,...,iν=0

supp(ai1,...,iν (yk,1, . . . , yk,ν))

}}
,

which exists by the regularity of the sequence (ai1,...,iν (yk,1, . . . , yk,ν)) for each k. It follows

from the above that |F (x1, . . . , xν)| < dl−1 for every (x1, . . . , xν) ∈ [0, 1]ν . Thus F is bounded

on [0, 1]ν and hence f is bounded on A.

Proposition 3.4.5. Let {(yk,1, . . . , yk,ν)}mk=1, l, F (x1, . . . , xν), and η(y1, . . . , yν) be as in

Proposition 3.4.4 and the proof thereof. Then, l is independent of our choice of {(yk,1, . . . , yk,ν)}mk=1.

Proof. Assume not, then there exists a set of points {(zk,1, . . . , zk,ν)}m0
k=1 such that

{N((zk,1, . . . , zk,ν), η(zk,1, . . . , zk,ν)) : k ∈ {1, . . . ,m0}}

is a finite open cover of [0, 1]ν ,

l0 = min
1≤k≤m0

{
min

{ ⋃
i1,...,iν

supp(ai1,...,iν (zk,1, . . . , zk,ν))

}}
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and

l0 6= l.

We assume without loss of generality that l < l0, in particular, l < ∞. Define FR : [0, 1]ν ∩

Rν → R, by

FR(x1, . . . , xν) = (F (x1, . . . , xν)) [l].

For (x1, . . . , xν) ∈ N((zk,1, . . . , zk,n), η((zk,1, . . . , zk,n))) ∩ [0, 1]ν ∩ Rν ,

FR(x1, . . . , xν) =

(
∞∑

i1,...,iν=0

ai1,...,iν (zk,1, . . . , zk,n)(x1 − zk,1)i1 · · · (xν − zk,n)iν

)
[l]

=
∞∑

i1,...,iν=0

(ai1,...,iν (zk,1, . . . , zk,n)) [l](x1 − zk,1)i1 · · · (xν − zk,n)iν

So, FR(x1, . . . , xν) is an Rν-analytic function. Furthermore, FR(x1, . . . , xν) = 0 everywhere

in

N((zk,1, . . . , zk,n), η((zk,1, . . . , zk,n))) ∩ [0, 1]ν ∩ Rν ,

so by the identity theorem for real analytic functions FR = 0 everywhere on [0, 1]ν ∩ Rν .

Then, for every i1, . . . , iν ∈ N ∪ {0} and for every k ∈ {1, . . . ,m},

(ai1,...,iν (yk,1, . . . , yk,ν)) [l] = 0,

which contradicts the definition of l.

Proposition 3.4.6. Let A, f , F , {(yk,1, . . . , yk,n)}mk=1, η(y1, . . . , yν)), and l be as in Propo-

sition 3.4.4 and the subsequent proof. Then, λ(f(x1, . . . , xν)) = l almost everywhere on

{(x1, . . . , xν) ∈ A : for every i ∈ {1, . . . , n}, supp(xi) = {λxi(A)}}

and for any point (x1, . . . , xν) in the above set where λ(f(x1, . . . , xν)) = l, the same is true

for points (z1, . . . , zν) satisfying λ(xi − zi) > λxi(A) for every i ∈ {1, . . . , ν}.
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Proof. First note that λ(f(x1, . . . , xν)) = l almost everywhere on

{(x1, . . . , xν) ∈ A : for every i ∈ {1, . . . , ν}, supp(xi) = {λxi(A)}}

if and only if λ(F (x1, . . . , xν)) = l almost everywhere on [0, 1]ν ∩ Rν . Fix (x0,1, . . . , x0,ν) ∈

[0, 1]ν ∩ Rν . Then there is a k ∈ {1, . . . ,m} such that

(x0,1, . . . , x0,ν) ∈ N((yk,1, . . . , yk,ν), η(yk,1, . . . , yk,ν)),

hence

F (x0,1, . . . , x0,ν) =
∞∑

i1,...,iν=0

ai1,...,iν (yk,1, . . . , yk,ν)(x0,1 − yk,1)i1 · · · (x0,ν − yk,ν)iν .

Since λ(ai1,...,iν (yk,1, . . . , yk,ν)) ≥ l, and since for every j ∈ {1, . . . , ν}, λ(x0,i − yk,i) ≥ 0, we

must have that λ(F (x0,1, . . . , x0,ν)) ≥ l. Moreover, the real non-zero analytic function

FR(x0,1, . . . , x0,ν) =

(
∞∑

i1,...,iν=0

ai1,...,iν (yk,1, . . . , yk,ν)(x0,1 − yk,1)i1 · · · (x0,ν − xk,ν)iν
)

[l]

must be non-zero almost everywhere on [0, 1]ν ∩ Rν , and if FR(x0,1, . . . , x0,ν) 6= 0 then

λ(F (x0,1, . . . , x0,ν)) = l so λ(F (x0,1, . . . , x0,ν)) = l almost everywhere on [0, 1]ν ∩ Rν . Fi-

nally, suppose that the point (x1, . . . , xν) ∈ [0, 1]ν ∩Rν is such that λ(F (x1, . . . , xν)) = l and

let (z1, . . . , zν) ∈ [0, 1]ν satisfy
√

(x1 − z1)2 + · · ·+ (xν − zν)2 � 1. Then,

F (z1, . . . , zν) = F (x1, . . . , xν) +
∞∑

i1,...,iν=0
i1+···+iν 6=0

ai1,...,iν (x1, . . . , xν)(x1 − z1)i1 · · · (xν − zν)iν
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but for every j ∈ {1, . . . , ν}, λ((xj − zj)ij) > 0 and λ(ai1,...,iν (z1, . . . , zν)) ≥ l. Thus,

λ

 ∞∑
i1,...,iν=0
i1+···+iν 6=0

ai1,...,iν (x1, . . . , xν)(x1 − z1)i1 · · · (xν − zν)iν

 > l

and hence

λ(F (z1, . . . , zν)) = λ(F (x1, . . . , xν)) = l.

Definition 3.4.7 (Index of an Analytic Function on Kν). Let A and f be as in Proposition

3.4.4 and let l be as in the subsequent proof. Then we call l the index of f on A and we

denote it by i(f).

Proposition 3.4.8. Suppose A ⊂ Kν is a finite simple region and let f, g : A → K be two

analytic functions on A. Let α ∈ K be an arbitrary constant, then f + αg and f · g are

analytic functions on A.

Proof. Fix p = (p1, . . . , pν) ∈ A. Since f and g are analytic there exist two finite constants

η1, η2 > 0 such that for every x1, . . . , xν ∈ K satisfying x2
1 + · · ·+x2

ν < η1, if (p1 +x1, . . . , pν +

xν) ∈ A then

f(p1 + x1, . . . , pν + xν) =
∞∑

i1,...,iν=0

ai1,...,iνx
i1
1 . . . x

iν
ν

and for every x1, . . . , xν ∈ K satisfying x2
1 + · · ·+ x2

ν < η2, if (p1 + x1, . . . , pν + xν) ∈ A then

g(p1 + x1, . . . , pν + xν) =
∞∑

i1,...,iν=0

bi1,...,iνx
i1
1 . . . x

iν
ν .

Let η = min{η1, η2}. Thus, for every x1, . . . , xν ∈ K satisfying x2
1 + · · · + x2

ν < η, if (p1 +
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x1, . . . , pν + xν) ∈ A then

(f + αg)(p1 + x1, . . . , pn + xν) =
∞∑

i1,...,iν=0

ai1,...,iνx
i1
1 . . . x

iν
ν + α

∞∑
i1,...,iν=0

bi1,...,iνx
i1
1 . . . x

iν
ν

=
∞∑

i1,...,iν=0

(ai1,...,iν + αbi1,...,iν )x
iν
1 . . . x

iν
ν ,

so f+αg is analytic on A. Furthermore, for every x1, . . . , xν ∈ K satisfying x2
1 + · · ·+x2

ν < η,

if (p1 + x1, . . . , pν + xν) ∈ A then

(f · g))(p1 + x1, . . . , pν + xν) = (
∞∑

i1,...,iν=0

ai1,...,iνx
i1
1 . . . x

iν
ν )(

∞∑
j1,...,jν=0

bj1,...,jνx
j1
1 . . . x

jν
ν )

=
∞∑
k1=0

. . .
∞∑

kν=0

∑
i1+j1=k1

. . .
∑

iν+jν=kν

ai1,...,iνbj1,...,jνx
k1
1 . . . xkνν

=
∞∑
k1=0

. . .
∞∑

kn=0

ck1,...,knx
k1
1 . . . xknν .

We infer that the Cauchy product converges in Kν from the fact that Cauchy products

converge in K. So f · g is an analytic function.

Corollary 3.4.9. Suppose A ⊂ Kν is a simple region and let f, g : A → K be two analytic

functions on A. Let α ∈ K be an arbitrary constant. Then f + αg and f · g are analytic

functions on A.

Proposition 3.4.10. Suppose A ⊂ Kν is a finite simple region and let f : A→ K be an ana-

lytic function on A. Let B ⊂ Kν−1 be a finite simple region and let g : B → K be an analytic

function on B such that for every (x1, . . . , xν−1) ∈ B, (x1, . . . , xν−1, g(x1, . . . , xν−1)) ∈ A.

Then, f(x1, . . . , xν−1, g(x1, . . . , xν−1)) is an analytic function on B.

Proof. Since A and B are finite simple regions and since for every (x1, . . . , xν−1) ∈ B we

have by our premise that (x1, . . . , xν−1, g(x1, . . . , xν−1)) ∈ A, we may assume without loss

of generality that the index of g is zero. Fix (x1, . . . , xν−1) ∈ B, since f and g are analytic

functions there exist η1, η2 > 0 such that η1, η2 ∼ 1 and for every δ1, . . . , δν−1 ∈ K satisfying
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δ2
1 + · · ·+ δ2

ν−1 < η2
1, if (x1 + δ1, . . . , xν−1 + δν−1) ∈ B, then

g(x1 + δ1, . . . , xν−1 + δν−1) = g(x1, . . . , xν−1) +
∞∑

i1,...,iν−1=0
i1+···+iν−1 6=0

ai1...iν−1δ
i1
1 · · · δ

iν−1

ν−1 ,

and, for every µ1, . . . , µν ∈ K satisfying µ2
1 + · · ·+ µ2

ν < η2
2, if

(x1 + µ1, . . . , xν−1 + µn−1, g(x1, . . . , xν−1) + µν) ∈ A,

then

f(x1 + µ1, . . . , xν−1 + µn−1, g(x1, . . . , xν−1) + µν) = f(x1, . . . , xν−1, g(x1, . . . , xν−1))

+
∞∑

j1,...,jν=0
j1···+jν 6=0

bj1...jνµ
j1
1 · · ·µjνν .

Define H : Rν−1 → R by

H(y1, . . . , yν−1) =

y2
1 + · · · y2

ν−1 +

 ∑
k1...kν−1=0
k1+···kν−1 6=0

ak1...kν−1y
k1
1 . . . y

kν−1

ν−1


2 [0],

clearly H is a continuous real function with H(0, . . . , 0) = 0 so there exists a η ∈ (0, η1] ∩R

such that if y2
1 + · · · + y2

ν−1 < η2 then H(y1, . . . , yν−1) < η2
2. Now, if δ1, . . . , δν−1 ∈ K with
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δ2
1 + · · ·+ δ2

ν−1 < η2 and (x1 + δ1, . . . xν−1 + δν−1) ∈ B then

∣∣∣∣∣∣∣∣δ
2
1 + · · ·+ δ2

ν−1 +

 ∞∑
i1,...,iν−1=0
i1+···+iν−1 6=0

ai1...iν−1δ
i1
1 · · · δ

iν−1

ν−1


2

−

(δ1[0])2 + . . .+ (δν−1[0])2 +

 ∞∑
i1,...,iν−1=0

i1+···+in−1+6=0

ai1...iν−1(δ1[0])i1 · · · (δν−1[0])iν−1


2

[0]


∣∣∣∣∣∣∣∣

� 1

since δ1 =0 δ1[0], . . . , δν−1 =0 δν−1[0], then

∞∑
i1,...,iν−1=0
i1+···+iν−1 6=0

ai1...iν−1δ
i1
1 · · · δ

iν−1

ν−1 =0

 ∞∑
i1,...,iν−1=0
i1+···+iν−1 6=0

ai1...iν−1δ1[0]i1 · · · δν−1[0]iν−1

 [0].

So if H(δ1[0], . . . , δν−1[0]) < η2
2 then

δ2
1 + · · ·+ δ2

ν−1 +

 ∑
i1,...,iν−1=0
i1+···+iν−1 6=0

ai1...iν−1δ
i1
1 · · · δ

iν−1

ν−1


2

< η2
2.

So we have that for every δ1, . . . , δν−1 ∈ K satisfying δ2
1 + · · · + δ2

ν−1 < η2, if (x1 +
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δ1, . . . , xν−1 + δν−1) ∈ B then

f(x1 + δ1, . . . , xν−1 + δν−1, g(x1 + δ1, . . . , xν−1 + δν−1))

= f

x1 + δ1, . . . , xν−1 + δν−1, g(x1, . . . , xν−1) +
∞∑

i1,...,iν−1=0
i1+···iν−1 6=0

ai1...iν−1δ
i1
1 · · · δ

iν−1

ν−1


= f(x1, . . . , xν−1, g(x1, . . . , xν−1))

+
∞∑

j1,...,jν=0
j1+···+jν 6=0

bj1···jνδ
j1
1 · · · δ

jν−1

ν−1

 ∞∑
i1,...,iν−1=0
i1+···+iν−1 6=0

ai1...iν−1δ
i1
1 · · · δ

iν−1

ν−1


jν

.

However, we can rewrite

bj1...jνδ
j1
1 · · · δ

jν−1

ν−1

 ∞∑
i1,...,iν−1=0
i1+···+iν−1 6=0

ai1...iν−1δ
i1
1 · · · δ

iν−1

ν−1


jν

as the convergent series
∞∑

l1,...,lν
l1+···+lν 6=0

cj1...jν l1...lνδ
l1
1 · · · δ

lν−1

ν−1 .

We may also change the order of summation so that

f(x1 + δ1, . . . , xν−1 + δν−1, g(x1 + δ1, . . . , xν−1 + δν−1))

= f(x1, . . . , xν−1, g(x1, . . . , xν−1)) +
∞∑

j1,...,jν=0
j1···+jν 6=0

∞∑
l1,...,lν

l1+···+lν 6=0

cj1...jν l1...lνδ
l1
1 · · · δ

lν−1

ν−1

= f(x1, . . . , xν−1, g(x1, . . . , xν−1)) +
∞∑

l1,...,lν
l1+···+lν 6=0

∞∑
j1,...,jν=0
j1+···+jν 6=0

cj1...jν l1...lνδ
l1
1 · · · δ

lν−1

ν−1 .
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Finally, letting el1,...,lν =
∞∑

j1,...,jν=0
j1···+jν 6=0

cj1...jν l1...lν we find that

f(x1 + δ1, . . . , xν−1 + δν−1, g(x1 + δ1, . . . , xν−1 + δν−1))

= f(x1, . . . , xν−1, g(x1, . . . , xν−1)) +
∞∑

l1,...,lν
l1+···+lν 6=0

el1,...,lνδ
i1
1 · · · δ

iν−1

ν−1

Thus f(x1, . . . , xν−1, g(x1, . . . , xν−1)) is analytic on B.

Corollary 3.4.11. Suppose A ⊂ Kν is a simple region and let f : A → K be an analytic

function on A. Let B ⊂ Kν−1 be a simple region and let g : B → K be an analytic function

on B such that for every (x1, . . . , xν−1) ∈ B, (x1, . . . , xν−1, g(x1, . . . , xν−1)) ∈ A. Then,

f(x1, . . . , xν−1, g(x1, . . . , xν−1)) is an analytic function on B.

Definition 3.4.12 (Measurable Function). Let S ⊂ Kν be a measurable set and let f : S →

K be bounded on S. Then we say that f is measurable on S if for every ε > 0, there exists

a sequence of mutually disjoint simple regions (Gn)∞n=1 such that

∞⋃
n=1

Gn ⊂ S,

∞∑
n=1

v(Gn) converges,

m(S)−
∞∑
n=1

v(Gn) < ε,

and f is analytic on Gn for every n ∈ N.

Proposition 3.4.13. Let S ⊂ Kν be a measurable set and let f : S → K be a measurable

function. Then, f is given locally by a power series almost everywhere on S.

Proof. Let S0 = {(x1, . . . , xν) ∈ S : f is not given locally by a power series about (x1, . . . , xν)}.

We will show that S0 is measurable and m(S0) = 0. So let ε > 0 be given in K. Since f is

measurable on S there exists a sequence of mutually disjoint open simple regions (Gn)∞n=1
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such that
∞⋃
n=1

Gn ⊂ S,
∞∑
n=1

v(Gn) converges,

m(A)−
∞∑
n=1

v(Gn) ≤ ε

2
,

and f is analytic on Gn for all n. By the measurability of S there must exist a sequence of

mutually disjoint simple regions (Hn)∞n=1 such that S ⊂
⋃
n=1

Hn,
∞∑
n=1

v(Hn) converges, and

∞∑
n=1

v(Hn)−m(A) ≤ ε

2
.

Since f is given locally by a power series about every point in
∞⋃
n=1

Gn and since S0 ⊂ S, we

know that

S0 ⊂ S\
∞⋃
n=1

Gn.

Furthermore, since S ⊂
∞⋃
n=1

Hn we can conclude that

S0 ⊂
∞⋃
n=1

Hn\
∞⋃
n=1

Gn.

Because both (Gn)∞n=1 and (Hn)∞n=1 are mutually disjoint sequences we can arrange them so

that for every n ∈ N, Gn ⊂ Hn. It follows that

∞⋃
n=1

Hn\
∞⋃
n=1

Gn =
∞⋃
n=1

(Hn\Gn).

The Hn\Gn’s are mutually disjoint; and by Conjecture 3.1.4, for every n ∈ N, Hn\Gn may

be expressed as the union of a finite number of mutually disjoint simple regions. So we see

that
∞⋃
n=1

Hn\
∞⋃
n=1

Gn

may be rewritten as the union of countably many mutually disjoint simple regions (H0
n)∞n=1.
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For every n ∈ N, let G0
n = ∅. Then, we have

∞⋃
n=1

G0
n ⊂ S0 ⊂

∞⋃
n=1

H0
n.

Furthermore we see that

∞∑
n=1

v(H0
n)−

∞∑
n=1

v(G0
n) =

∞∑
n=1

v(H0
n)

=
∞∑
n=1

v(Hn)−
∞∑
n=1

v(Gn)

=

(
∞∑
n=1

v(Hn)−m(S)

)
+

(
m(S)−

∞∑
n=1

v(Gn)

)

≤ ε

2
+
ε

2

= ε

So S0 is measurable. Since S0 ⊂
∞⋃
n=1

H0
n we have that

m(S0) ≤
∞∑
n=1

v(H0
n) 6 ε,

and hence by taking the limit as ε→ 0, it follows that m(S) = 0.

Proposition 3.4.14. Let S ⊂ Kν be a measurable set and let f : S → K be a function on S.

Let there be a sequence of measurable functions fk : S → K such that the sequence (fk)
∞
k=1

converges uniformly to f .Then

lim
k→∞

∫
(x1,...,xν)∈S

fk(x1, . . . , xν)
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exists; moreover, if f is measurable on S then

lim
k→∞

∫
(x1,...,xν)∈S

fk(x1, . . . , xν) =

∫
(x1,...,xν)∈S

f(x1, . . . , xν).

Proof. Let ε > 0 in K be given and let

ε0 =


ε

m(S)
if m(S) 6= 0

ε if m(S) = 0

.

Since the sequence (fk)
∞
k=1 converges uniformly, the sequence is uniformly Cauchy. Thus,

there exists a k0 ∈ N such that for every i, j ≥ k0,

|fi(x1, . . . , xν)− fj(x1, . . . , xν)| ≤ ε0

for every (x1, . . . , xν) ∈ S. Thus,

∣∣∣∣∣∣∣
∫

(x1,...,xν)∈S

fi(x1, . . . , xν)−
∫

((x1,...,xν)∈S

fj((x1, . . . , xν)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

(x1,...,xν)∈S

(fi(x1, . . . , xν)− fj(x1, . . . , xν))

∣∣∣∣∣∣∣
≤

∫
(x1,...,xν)∈S

|fi(x1, . . . , xν)− fj(x1, . . . , xν)|

≤ ε0m(S) ≤ ε.

It follows that  ∫
(x1,...,xν)∈S

fk(x1, . . . , xν)


∞

k=1
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is a Cauchy sequence in K; since K is Cauchy complete

lim
k→∞

∫
(x1,...,xν)∈A

fk(x1, . . . , xν)

exists.

Now assume that f is measurable, let ε > 0 in K be given and let ε0 be as above. Then

since (fk)
∞
k=1 converges uniformly to f , there exists a k0 ∈ N such that for every i ≥ k0,

|fi(x1, . . . , xν)− f(x1, . . . , xν)| ≤ ε0

for every (x1, . . . , xν) ∈ S. Therefore,

∣∣∣∣∣∣∣
∫

(x1,...,xν)∈S

fi(x1, . . . , xν)−
∫

(x1,...,xν)∈S

f(x1, . . . , xν)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

(x1,...,xν)∈S

(fi(x1, . . . , xν)− f(x1, . . . , xν))

∣∣∣∣∣∣∣
≤

∫
(x1,...,xν)∈S

|fi(x1, . . . , xν)− f(x1, . . . , xν)| ≤ ε0m(S) ≤ ε,

and hence

lim
k→∞

∫
(x1,...,xν)∈S

fk(x1, . . . , xν) =

∫
(x1,...,xν)∈S

f(x1, . . . , xν).

3.5 Integration in ν-Dimensions

We conclude this chapter with the definition of the integral of an analytic function over a

ν dimensional simple region and the integral of a measurable function over a ν dimensional

measurable set. Note the inductive nature of the first definition which assumes that inte-
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gration has already been defined for an analytic function over a ν − 1 dimensional simple

region, this is possible because this definition exists for the case of 2 dimensions (see [3] and

[11]).

Definition 3.5.1 (Integral of an Analytic Function Over a Simple Region inKν). Let S ⊂ Kν

be a simple region, and let f : S → K be an analytic function on S. Since S is a simple

region, we may assume without loss of generality that

S = {(x1, . . . , xn) ∈ Kn : x1 ∈ I(h1(x2, . . . , xn), h2(x2, . . . , xn)), (x2, . . . , xn) ∈ A}.

We define

∫
(x1,...,xn)∈S

f(x1, . . . , xn) =

∫
(x2,...,xn)∈A

 ∫
x1∈I(h1(x2,...,xn),h2(x2,...,xn))

f(x1, . . . , xn)


and we call this the integral of f over S. Note that for fixed (x2, . . . , xn) ∈ A, f(x1, . . . , xn)

is an analytic function on the interval I(h1(x2, . . . , xn), h2(x2, . . . , xn)). It follows that

F (x2, . . . , xn) :=

∫
z∈I(h1(x2,...,xn),h2(x2,...,xn))

f(x1, . . . , xn)

is well-defined and is an analytic function on A, and hence the integral is well-defined by

induction.

We include the following four propositions and corollaries without proofs as those proofs

are virtually identical to the one and two dimensional cases which may be found in [20], [3],

and [11].

Proposition 3.5.2. Let S ⊂ Kν be a simple region and let M ∈ K be constant. Then

∫
(x1,...,xn)∈S

M = Mv(S).
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Proposition 3.5.3. Let S ⊂ Kν be a simple region and let f : S → K be a non-positive

analytic function. Then ∫
(x1,...,xn)∈S

f(x1, . . . , xn) ≤ 0.

Corollary 3.5.4. Let S ⊂ Kν be a simple region and let f, g : S → K be analytic functions

such that f ≤ g everywhere on S. Then

∫
(x1,...,xn)∈S

f(x1, . . . , xn) ≤
∫

(x1,...,xn))∈S

g(x1, . . . , xn).

Corollary 3.5.5. Let S ⊂ Kν be a simple region and let f : S → K be an analytic function

bounded by M ∈ K on S. Then

∣∣∣∣∣∣∣
∫

(x1,...,xn)∈S

f(x1, . . . , xn)

∣∣∣∣∣∣∣ ≤Mv(S).

Definition 3.5.6 (Integration of a Measurable Function Over a measurable Set). Let S ⊂ Kν

be a measurable set and let f : S → K be a measurable function such that |f | is bounded by

M ∈ K everywhere on S. We have that for every k ∈ N, there exists a sequence of mutually

disjoint simple regions (Gk
l )
∞
l=1 such that

∞⋃
l=1

Gk
l ⊂ S,

∞∑
l=1

v(Gk
l ) converges,

m(S)−
∞∑
l=1

v(Gk
l ) < dk,
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and for every l ∈ N, f is analytic on Gk
l . It follows that for every k, l ∈ N,

∣∣∣∣∣∣∣
∫

(x1,...,xn)∈Gkl

(x1, . . . , xn)

∣∣∣∣∣∣∣ ≤
∫

(x1,...,xn)∈Gkl

M = Mv(Gk
l ),

by Corollary 3.5.5. However,
∞∑
l=1

v(Gk
l ) converges in the order topology, and hence lim

l→∞
Mv(Gk

l ) =

0. Therefore,

lim
l→∞

∫
(x1,...,xn)∈Gkl

f(x1, . . . , xn) = 0

and hence
∞∑
l=1

∫
(x1,...,xn)∈Gkl

f(x1, . . . , xn)

also converges in the order topology. We claim that

 ∞∑
l=1

∫
(x1,...,xn)∈Gkl

f(x1, . . . , xn)


∞

k=1

is a Cauchy sequence. So fix ε > 0 and let k0 ∈ N be such that Mdk0 < ε. Fix i 6= j ∈ N so

that i > j ≥ k0. Because for every k ∈ N, (Gk
l )
∞
l=1 is a sequence of mutually disjoint simple

regions, we may arrange them so that for every l ∈ N, Gj
l ⊂ Gi

l. Thus,

∣∣∣∣∣∣∣
∞∑
l=1

∫
(x1,...,xn)∈Gil

f(x1, . . . , xn)−
∞∑
l=1

∫
(x1,...,xn)∈Gjl

f(x1, . . . , xn)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∞∑
l=1

 ∫
(x1,...,xn)∈Gil

f(x1, . . . , xn)−
∫

(x1,...,xn)∈Gjl

f(x1, . . . , xn)


∣∣∣∣∣∣∣

≤
∞∑
l=1

∣∣∣∣∣∣∣
∫

(x1,...,xn)∈Gil

f(x1, . . . , xn)−
∫

(x1,...,xn)∈Gjl

f(x1, . . . , xn)

∣∣∣∣∣∣∣ .
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Now, we have that for every l ∈ N,

∣∣∣∣∣∣∣
∫

(x1,...,xn)∈Gil

f(x1, . . . , xn)−
∫

(x1,...,xn)∈Gjl

f(x1, . . . , xn)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
∫

(x1,...,xn)∈Gil\G
j
l

f(x1, . . . , xn)

∣∣∣∣∣∣∣
≤

∫
(x1,...,xn)∈Gil\G

j
l

|f(x1, . . . , xn)|

≤M(v(Gi
l)− v(Gj

l )).

Finally, we obtain that

∣∣∣∣∣∣∣
∞∑
l=1

∫
(x1,...,xn)∈Gil

f(x1, . . . , xn) −
∞∑
l=1

∫
(x1,...,xn)∈Gjl

f(x1, . . . , xn)

∣∣∣∣∣∣∣
≤M

∞∑
l=1

(v(Gi
l)− v(Gj

l ))

= M

(
∞∑
l=1

v(Gi
l)−

∞∑
l=1

v(Gj
l )

)

< M(m(S)−
∞∑
l=1

v(Gj
l ))

< Mdj

≤Mdk0

< ε.

Thus, the sequence

(
∞∑
l=1

∫
(x1,...,xn)∈Gkl

f(x1, . . . , xn)

)∞
k=1

is Cauchy. Since K is Cauchy complete

we have that

lim
k→∞

∞∑
l=1

∫
(x1,...,xn)∈Gkl

f(x1, . . . , xn)
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exists. We define

∫
(x1,...,xn)∈S

f(x1, . . . , xn) = lim
k→∞

∞∑
l=1

∫
(x1,...,xn)∈Gkl

f(x1, . . . , xn)

and we call this the integral of f over S.

Again we include three propositions and corollaries without proofs, as above the detailed

proofs may be found in [20], [3], and [11].

Proposition 3.5.7. Let S ⊂ Kν be a measurable set and let M ∈ K be given. Then

∫
(x1,...,xn)∈S

M = Mm(S).

Proposition 3.5.8. Let S ⊂ Kν be a measurable set and let f, g : S → K be measurable

functions. Furthermore, suppose that f ≤ g everywhere on S. Then

∫
(x1,...,xn)∈S

f(x1, . . . , xn) ≤
∫

(x1,...,xn)∈S

g(x1, . . . , xn).

Corollary 3.5.9. Let S ⊂ Kν be a measurable set and let f : S → K be a measurable

function bounded by M on S. Then

∣∣∣∣∣∣∣
∫

(x1,...,xn)∈S

f(x1, . . . , xn)

∣∣∣∣∣∣∣ ≤
∫

(x1,...,xn)∈S

|f(x1, . . . , xn)| ≤Mm(S).
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Chapter 4

An Explicit Dirac Delta Function on

the Hahn Field

4.1 The Delta Function in One Dimension

One of the most exciting aspects of the Levi-Civita and Hahn fields is the possibility of having

representations of functions which are improper over the real numbers. In particular it has

been shown that Dirac’s delta function has a representation and that this non-Archimedean

version of the delta function satisfies many of the properties of its conventional counterpart

[12]. Below we give one possible representation of the function and state a number of

propositions regarding it.

Definition 4.1.1. Let δ : K → K be given by

δ(x) =


3
4
d−3(d2 − x2) if |x| < d

0 if |x| ≥ d

.
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Proposition 4.1.2. Let I ⊂ K be an interval. If (−d, d) ⊂ I then

∫
x∈I

δ(x) = 1.

Moreover, if (−d, d) ∩ I = ∅ then ∫
x∈I

δ(x) = 0.

Proof. Note that δ(x) is measurable on I [20]. If (−d, d) ⊂ I then

∫
x∈I

δ(x) =

∫
x∈(−d,d)

δ(x)

=

∫
x∈(−d,d)

3

4
d−3(d2 − x2)

=
3

4
d−3

([
d2x
]d
−d −

[
1

3
x3

]d
−d

)

=
3

4
d−3

(
2d3 − 2

3
d3

)
= 1.

If (−d, d) ∩ I = ∅ then δ(x) = 0 for all x ∈ I; and hence

∫
x∈I

δ(x) =

∫
x∈I

0 = 0.

Proposition 4.1.3. Let I ⊂ K be an interval containing (−d, d). Then δ(x) has a measur-

able anti-derivative on I that is equal to the Heaviside function on I ∩ R.

Proof. Let H : I → K be given by

H(x) =


0 if x ≤ −d

3
4
d−3(d2x− 1

3
x3) + 1

2
if − d < x < d

1 if x ≥ d

.

116



Then H(x) is measurable and differentiable on I with H ′(x) = δ(x) on I. Moreover,

H(x)|R =


0 if x < 0

1/2 if x = 0

1 if x > 0

,

which is the so-called Heaviside function.

Proposition 4.1.4. Let α ∈ K \ {0} be given, and let I ⊂ K be any interval satisfying(
− d
|α| ,

d
|α|

)
⊂ I. Then ∫

x∈I
δ(αx) =

1

|α|
.

Proof. Note that, by definition of the delta function, we have that

δ(αx) =


3
4
d−3 (d2 − (αx)2) if |αx| < d

0 if |αx| ≥ d

=


3
4
d−3 (d2 − (αx)2) if |x| < d

|α|

0 if |x| ≥ d
|α|

It follows that

∫
x∈I

δ(αx) =

∫
x∈(− d

|α| ,
d
|α|)

3

4
d−3(d2 − (αx)2) =

[
3

4
d−1

(
x− d−2α

2x3

3

)] ∣∣∣∣ d|α|
− d
|α|

=
1

|α|
.

The most useful property of the conventional delta function is how it behaves with other

functions under integration. In particular, integrating the product of conventional delta func-

tion and some other function results in the value of the second function at the point where the

delta function has its peak. Below we see that this property holds for the non-Archimedean
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delta function in the sense that when integrated with finite analytic or piecewise-analytic

function the result is equal in its real part to the real part of the second function at the point

where the delta function has its peak. To prove this statement however, we first prove the

following two preliminary results.

Lemma 4.1.5. Suppose f : I(0, 1) → K is an analytic function with i(f) = 0. Then for

every x ∈ I(0, 1) and for every n ∈ N, we have that λ(f (n)(x)) ≥ 0.

Proof. Let x ∈ I(0, 1) and let q < 0 in Q be given. Since f is analytic over the finite interval

I(0, 1), there must exist δ > 0 in R such that for all y ∈ (x− δ, x+ δ) ∩ I(0, 1),

f(y) =
∞∑
n=0

f (n)(x)

n!
(y − x)n.

Since i(f) = 0 it follows that for almost every h ∈ (0, δ) ∩ R, we have λ(f(x + h)) = 0. In

other words for almost every h ∈ (0, 1)∩R we have that for all q < 0, f(x+ h)[q] = 0. But,

f(x+ h)[q] =

(
∞∑
n=0

f (n)(x)

n!
hn

)
[q]

=
∞∑
n=0

f (n)(x)[q]

n!
(h[0])n

=
∞∑
n=0

f (n)(x)[q]

n!
hn.

So for almost every h ∈ (0, δ) ∩ R we have

∞∑
n=0

f (n)(x)[q]

n!
hn = 0.

Since the above is a real power series, this is possible only if f (n)(x)[q] = 0 for all n ∈ N.

Therefore for any n ∈ N and x ∈ (0, 1), we have that λ(f (n)(x)) ≥ 0.

Theorem 4.1.6. Let a < b in K be given and let f : I(a, b)→ K be analytic on I(a, b) with
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i(f) = 0. Then for any x ∈ I(a, b) and for any n ∈ N we have that

λ(f (n)(x)) ≥ −nλ(b− a).

Proof. Define F : I(0, 1)→ K by

F (x) := f((b− a)x+ a).

Then F is analytic on I(0, 1) and i(F ) = i(f) = 0 so by the Lemma 4.1.5, for all x ∈ I(0, 1)

and n ∈ N,

λ
(
F (n)(x)

)
≥ 0.

Notice that, for all x ∈ I(0, 1) and n ∈ N, we have that

F (n)(x) = (b− a)nf (n)((b− a)x+ a);

it follows that

0 ≤ λ(F (n)(x)) = λ((b− a)nf (n)((b− a)x+ a))

= λ(((b− a)n) + λ(f (n)((b− a)x+ a))

= nλ(b− a) + λ(f (n)((b− a)x+ a));

and hence

λ(f (n)((b− a)x+ a)) ≥ −nλ(b− a).

Therefore, for all x ∈ I(a, b), λ(f (n)(x) ≥ −nλ(b− a).

Proposition 4.1.7. Let a < b in K be such that λ(b − a) < 1 and let f : [a, b] → K be
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analytic on [a, b] with i(f) = 0. Then for any x0 ∈ [a+ d, b− d], we have that

∫
x∈[a,b]

f(x)δ(x− x0) =0 f(x0).

Proof. Fix x0 ∈ [a + d, b − d]. Since f is a finite analytic function, there exists a η > 0 in

K with λ(η) = λ(b − a) such that, for any x ∈ I(a, b) satisfying |x − x0| < η, we have that

f(x) =
∞∑
k=0

f (k)(x0)
k!

(x− x0)k. Therefore,

∫
x∈I(a,b)

f(x)δ(x− x0) =

∫
x∈(x0−d,x0+d)

f(x)δ(x− x0)

=

∫
x∈(x0−d,x0+d)

∞∑
k=0

f (k)(x0)

k!
(x− x0)kδ(x− x0)

=

∫
x∈(x0−d,x0+d)

f(x0)δ(x− x0)

+

∫
x∈(x0−d,x0+d)

∞∑
k=1

f (k)(x0)

k!
(x− x0)kδ(x− x0)

= f(x0) +

∫
x∈(x0−d,x0+d)

∞∑
k=1

f (k)(x0)

k!
(x− x0)kδ(x− x0).

Now, for any x ∈ (x0 − d, x0 + d), we have that |x− x0| < d, and hence

∣∣∣∣∣∣∣
∫

x∈(x0−d,x0+d)

∞∑
k=1

f (k)(x0)

k!
(x− x0)kδ(x− x0)

∣∣∣∣∣∣∣ 6
∫

x∈[x0−d,x0+d]

∞∑
k=1

|f (k)(x0)|
k!

dkδ(x− x0)

It follows that ∣∣∣∣∣∣∣
∫

x∈(x0−d,x0+d)

∞∑
k=1

f (k)(x0)

k!
(x− x0)kδ(x− x0)

∣∣∣∣∣∣∣ 6
∞∑
k=1

|f (k)(x0)|
k!

dk
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Thus

λ

 ∫
x∈(x0−d,x0+d)

∞∑
k=1

f (k)(x0)

k!
(x− x0)kδ(x− x0)

 > λ

(
∞∑
k=1

|f (k)(x0)|
k!

dk

)
.

However, since i(f) = 0 we can apply Theorem 4.1.6 to establish that for all k ∈ N,

λ(f (k)(x0)) > −k and hence λ

(
∞∑
k=1

|f (k)(x0)|
k!

dk
)
> 0. Thus,

λ

 ∫
x∈(x0−d,x0+d)

∞∑
k=1

f (k)(x0)

k!
(x− x0)kδ(x− x0)

 > 0.

Therefore, ∫
x∈(x0−d,x0+d)

∞∑
k=1

f (k)(x0)

k!
(x− x0)kδ(x− x0) =0 0.

It follows that ∫
x∈I(a,b)

f(x)δ(x− x0) =0 f(x0).

Proposition 4.1.8. Let a < b < c in K be such λ(b−a) < 1 and λ(c−b) < 1; let g : [a, b]→

K and h : [b, c]→ K be analytic functions satisfying g(b) = h(b) and i(h) = i(g) = 0; and let

f : [a, c]→ K be given by

f(x) =


g(x) if x ∈ [a, b)

h(x) if x ∈ [b, c]

.

Then for any x0 ∈ [a+ d, c− d], we have that

∫
x∈[a,c]

f(x)δ(x− x0) =0 f(x0).

Proof. Without loss of generality, we may assume that b = 0. Fix x0 ∈ [a + d, c − d]. If
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|x0| ≥ d then by Proposition 4.1.7 we are done; so without loss of generality we may assume

that |x0| < d. Thus, we have that

∫
x∈[a,c]

f(x)δ(x− x0) =

∫
x∈[x0−d,0]

g(x)δ(x− x0) +

∫
x∈[0,x0+d]

h(x)δ(x− x0).

Both g and h are analytic functions defined on [a, 0] and [0, c] respectively; and hence they

both can be expanded as power series centered at 0. Thus,

g(x) =
∞∑
k=0

αkx
k

and

h(x) =
∞∑
k=0

βkx
k,

where

αk =
g(k)(0)

k!
and βk =

h(k)(0)

k!
for k = 0, 1, 2, . . . .

Since λ(b− a) = λ(−a) = λ(a) < 1 and λ(c− b) = λ(c) < 1 both power series will have radii

of convergence infinitely larger than d, and hence they will converge everywhere on [x0−d, 0]

and [0, x0 + d], respectively. Thus,

∫
x∈[x0−d,0]

g(x)δ(x− x0) =

∫
x∈[x0−d,0]

∞∑
k=0

αkx
kδ(x− x0)

and ∫
x∈[0,x0+d]

h(x)δ(x− x0) =

∫
x∈[0,x0+d]

∞∑
k=0

βkx
kδ(x− x0).
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Therefore,

∫
x∈[a,c]

f(x)δ(x− x0) =

∫
x∈[x0−d,0]

∞∑
k=0

αkx
kδ(x− x0) +

∫
x∈[0,x0+d]

∞∑
k=0

βkx
kδ(x− x0)

= α0

∫
x∈[x0−d,0]

δ(x− x0) + β0

∫
x∈[0,x0+d]

δ(x− x0)

+

∫
x∈[x0−d,0]

∞∑
k=1

αkx
kδ(x− x0)

+

∫
x∈[0,x0+d]

∞∑
k=1

βkx
kδ(x− x0).

However, α0 = g(0) = f(0) = h(0) = β0, and hence

α0

∫
x∈[x0−d,0]

δ(x− x0) + β0

∫
x∈[0,x0+d]

δ(x− x0) = f(0)

∫
x∈[x0−d,x0+d]

δ(x− x0) = f(0).

Thus,

∫
x∈[a,c]

f(x)δ(x− x0) = f(0) +

∫
x∈[x0−d,0]

∞∑
k=1

αkx
kδ(x− x0) +

∫
x∈[0,x0+d]

∞∑
k=1

βkx
kδ(x− x0).

But

λ

 ∫
x∈[x0−d,0]

∞∑
k=1

αkx
kδ(x− x0) +

∫
x∈[0,x0+d]

∞∑
k=1

βkx
kδ(x− x0)


> λ

 ∞∑
k=1

|αk| (2d)k
∫

x∈[x0−d,0]

δ(x− x0) +
∞∑
k=1

|βk| (2d)k
∫

x∈[0,x0+d]

δ(x− x0)

 > 0

as in the proof of Proposition 4.1.7. Thus,

∫
x∈[x0−d,0]

∞∑
k=1

αkx
kδ(x− x0) +

∫
x∈[0,x0+d]

∞∑
k=1

βkx
kδ(x− x0) =0 0,
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and hence
∫

x∈[a,c]

f(x)δ(x− x0) =0 f(0). However, f(0) =0 f(x0) [15]; therefore

∫
x∈[a,c]

f(x)δ(x− x0) =0 f(x0).

4.2 A Version of Leibniz’ Rule

We would like to use the delta function to solve differential equations via the method of

Green’s functions, this method involves passing a differential operator under an integral. To

establish the legitimacy of this operation we now prove a version of Leibniz’ Rule for the

field K. As we shall see in a later section, Leibniz’ Rule gives us certain boundary conditions

that the Green’s functions must satisfy if they are to produce a valid solution. We begin by

introducing the notion of uniform differentiability which is defined on an interval of K

the same way it is defined on R.

Definition 4.2.1 (Uniform differentiability on an interval of K). Let a, b ∈ K be given with

a < b and let f : I(a, b) → K be differentiable with derivative f ′ on I(a, b). Then we say

that f is uniformly differentiable on I(a, b) if for every ε > 0 in K there is a δ > 0 in K

such that for all x, y ∈ I(a, b),

0 < |y − x| < δ =⇒
∣∣∣∣f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣ < ε.

Lemma 4.2.2. Suppose f : I(0, 1) → K is analytic with i(f) = 0. Then f is uniformly

differentiable on I(a, b).

Proof. First note that by Theorem 4.1.6, λ(f (n)(x)) ≥ 0 for all n ∈ N and x ∈ I(a, b). Now

let ε > 0 in K and let

δ := min
{
d4ε, d

}
.
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Then for any x, y ∈ I(a, b) satisfying 0 < |y − x| < δ, we have that

f(y) = f(x) + f ′(x)(y − x) +
∞∑
n=2

f (n)(x)

n!
(y − x)n,

where the power series converges in the order topology since λ(f (n)(x)) ≥ 0 for all n ∈ N

and since 0 < |y − x| < δ � 1 so that

lim
n→∞

f (n)(x)

n!
(y − x)n = 0.

It follows that

|f(y)− f(x)− f ′(x)(y − x)| =

∣∣∣∣∣
∞∑
n=2

f (n)(x)

n!
(y − x)n

∣∣∣∣∣ <
∞∑
n=2

d−1

n!
dn−2(y − x)2;

and hence

∣∣∣∣f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣ < ∞∑
n=0

dn−3

n!
|y − x|

<

(
∞∑
n=0

dn−3

n!

)
d4ε

=

(
∞∑
n=0

dn

n!

)
dε

=
d

1− d
ε < ε.

Theorem 4.2.3. Let a < b in K be given and let f : I(a, b) → K be an analytic function.

Then f is uniformly differentiable on I(a, b).

Proof. Let F : I(0, 1)→ K be given by

F (x) = d−i(f)f(a+ (b− a)x).
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Then F is analytic on I(0, 1) with i(F ) = 0; and hence, by Lemma 4.2.2, F is uniformly

differentiable on I(0, 1). Now fix ε > 0 in K. Since F is uniformly differentiable on I(0, 1),

there is a δ > 0 in K such that if x, y ∈ I(0, 1) and |x− y| < δ
b−a then

|F (x)− F (y)− F ′(x)(x− y)| < d−i(f)ε.

However,

|F (x)− F (y)− F ′(x)(x− y)|

= |d−i(f)f(a+ (b− a)x)− d−i(f)f(a− (b− a)y)− d−i(f)f ′(a+ (b− a)x)(b− a)(x− y)|

= d−i(f)|f(a+ (b− a)x)− f(a+ (b− a)y)− f ′(a+ (b− a)x)(b− a)(x− y)|.

Thus, if x, y ∈ I(0, 1) and |x− y| < δ
b−a then we have that

|f(a+ (b− a)x)− f(a+ (b− a)y)− f ′(a+ (b− a)x)(b− a)(x− y)| < ε.

Now let u, v ∈ I(a, b) be such that |u− v| < δ; and let

x =
u− a
b− a

and y =
v − a
b− a

.

Then u = a+ (b− a)x, v = a+ (b− a)y, x, y ∈ I(0, 1) and |x− y| < δ
b−a . It follows that

|f(u)− f(v)− f ′(u)(u− v)|

= |f(a+ (b− a)x)− f(a+ (b− a)y)− f ′(a+ (b− a)x)(b− a)(x− y)|

< ε.

Thus, f is uniformly differentiable on (a, b).

Remark 4.2.4. In the following, and to avoid confusion with the number d, we will use Dx
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to denote the differential operator d
dx

, moreover we will use Dn
x to denote dn

dxn
.

Proposition 4.2.5. Let x0, a < b, and ε > 0 in K be given; and let f : [x0−ε, x0+ε]×[a, b]→

K be a (2-variable) power series. Then

Dx

∫
y∈[a,b]

f(x, y) =

∫
y∈[a,b]

∂

∂x
f(x, y).

Proof. Let N ∈ N be such that dN < ε. By Theorem 4.2.3 above we have that f is uniformly

differentiable with respect to x and hence

lim
k→∞

f(x+ dN+k, y)− f(x, y)

dN+k
=

∂

∂x
f(x, y) (uniformly).

Moreover, by definition

Dx

∫
y∈[a,b]

f(x, y) = lim
k→∞

∫
y∈[a,b]

f(x+ dN+k, y)− f(x, y)

dN+k
.

However, by Theorem 3.9 in [13] we have that

lim
k→∞

∫
y∈[a,b]

f(x+ dN+k, y)− f(x, y)

dN+k
=

∫
y∈[a,b]

lim
k→∞

f(x+ dN+k, y)− f(x, y)

dN+k

=

∫
y∈[a,b]

∂

∂x
f(x, y).

This completes the proof of the proposition.

Corollary 4.2.6. Let x0, a < b, and ε > 0 in K be given; and let f : [x0−ε, x0+ε]×[a, b]→ K

be analytic on : [x0 − ε, x0 + ε]× [a, b]. Then

Dx

∫
y∈[a,b]

f(x, y) =

∫
y∈[a,b]

∂

∂x
f(x, y).

127



Proof. This follows immediately from the fact that analytic functions are given locally by

power series [11].

Proposition 4.2.7 (Leibniz’s Rule). Fix x0 ∈ K and let ε > 0 in K be given. Let α, β :

[x0− ε, x0 + ε]→ K be analytic functions with α(x) ≤ β(x) for all x ∈ [x0− ε, x0 + ε]. Let S

be the simple region given by

S = {(x, y) ∈ K2|x ∈ [x0 − ε, x0 + ε], y ∈ [α(x), β(x)]}

and let f : S → K be analytic. Then

Dx

∫
y∈[α(x),β(x)]

f(x, y) = f(x, β(x))β′(x)− f(x, α(x))α′(x) +

∫
y∈[α(x),β(x)]

∂

∂x
f(x, y).

Proposition 4.2.8. Let x0, a < b, and ε > 0 in K be given and let µ : [x0 − ε, x0 + ε] →

[a, b] be a non-constant analytic function. Let g : [x0 − ε, x0 + ε] × [a, µ(x)] → K and

h : [x0 − ε, x0 + ε]× [µ(x), b]→ K be analytic and let f : [x0 − ε, x0 + ε]× [a, b] be given by

f(x, y) =


g(x, y) if y ≤ µ(x)

h(x, y) if y > µ(x)

.

Then

Dx

∫
y∈[a,b]

f(x, y) =

∫
y∈[a,b]

∂

∂x
f(x, y)

if and only if f(x, y) is continuous.

Proof. Observe that

Dx

∫
y∈[a,b]

f(x, y) = Dx

∫
y∈[a,µ(x)]

g(x, y) +Dx

∫
y∈[µ(x),b]

h(x, y).
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But by Proposition 4.2.7 we have that

Dx

∫
y∈[a,µ(x)]

g(x, y) = g(x, µ(x))µ′(x) +

∫
y∈[a,µ(x)]

∂

∂x
g(x, y)

and

Dx

∫
y∈[µ(x),b]

h(x, y) =

∫
y∈[µ(x),b]

∂

∂x
h(x, y)− h(x, µ(x))µ′(x).

So

Dx

∫
y∈[a,b]

f(x, y) = g(x, µ(x))µ′(x) +

∫
y∈[a,µ(x)]

∂

∂x
g(x, y)

+

∫
y∈[µ(x),b]

∂

∂x
h(x, y)− h(x, µ(x))µ′(x)

=

∫
y∈[a,b]

∂

∂x
f(x, y) + [g(x, µ(x))− h(x, µ(x))]µ′(x).

Since µ is a non-constant analytic function we know that µ′ 6= 0; and it follows that the

above expression equals
∫
y∈[a,b]

∂
∂x
f(x, y) if and only if g(x, µ(x)) = h(x, µ(x)) for all x ∈

[x0− ε, x0 + ε], that is if and only if f is continuous at y = µ(x) and hence everywhere (since

g and h are analytic).

4.3 Examples in One Dimension

In this section, we present two simple examples in which we illustrate the applications of the

delta function defined on K above.

Example 4.3.1. [Solving Poisson’s Equation in One Dimension] Suppose that we wish to

find the solution to the real differential equation ẍ(t) = f(t) on the interval [0,+∞) and

subject to the initial conditions x(0) = 0, ẋ(0) = 0. To begin, we observe that the piecewise
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analytic solution to ∂2

∂t2
G(t, s) = δ(t− s) is

G(t, s) =


A1(t− s) +B1 s ≤ t− d

A2(t− s) +B2 + 3
8
d−3(d2(t− s)2 − 1

6
(t− s)4) t− d < s < t+ d

A3(t− s) +B3 s ≥ t+ d

,

where A1, A2, A3, B1, B2 and B3 are constants to be determined. To ensure that our solution

satisfies the given initial conditions we must have that the real parts of G(0, s) and ∂G
∂t

(0, s)

equal zero everywhere on the interval of interest; and to accomplish that, it is enough to set

G(r, s) = 0 and ∂G
∂t

(r, s) = 0 where r ∈ K is any number that is infinitely small in absolute

value. We will use r = −d since that ensures that for every s ∈ [0,∞), s ≥ r + d and so

this requirement only affects A3 and B3. If in contrast we chose r = 0 that would dictate the

values of A2 and B2 as well and it would not be possible to change them in order to ensure

continuity of G and its derivative in t. In order to apply Proposition 4.2.8 we require that

G be continuous (so that Dt

∫
s
G(t, s) =

∫
s
∂
∂t
G(t, s)) and that ∂G

∂t
(t.s) be continuous (so that

Dt

∫
s
∂
∂t
G(t, s) =

∫
s
∂2

∂t2
G(t, s)). The requirement of continuity of G(t, s) and its derivative at

s = t± d allows us to work backwards from the (now known) values of A3, and B3 to solve

for A1, B1, A2, B2. The result is

G(t, s) =


t− s s ≤ t− d

1
2
(t− s) + 13

16
d+ 3

8
d−3(d2(t− s)2 − 1

6
(t− s)4) t− d < s < t+ d

0 s ≥ t+ d

.

Note that when restricted to real points, the real part of G(t, s) reduces to the classical Green’s
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function for D2
t . Applying Proposition 4.2.8, we obtain that

D2
t

∫
s∈[0,d−

1
2 ]

G(t, s)f(s) =

∫
s∈[0,d−

1
2 ]

∂2

∂t2
G(t, s)f(s)

=

∫
s∈[0,d−

1
2 ]

δ(t− s)f(s)

=0 f(t).

It follows that

 ∫
s∈[0,d−

1
2 ]

G(t, s)f(s)

 [0] is a (real) solution to the equation

ü(t) = f(t)

with the initial conditions ∫
s∈[0,d−

1
2 ]

G(0, s)f(s)

 [0] =

 ∫
s∈[0,d−

1
2 ]

∂G

∂t
(0, s)f(s)

 [0] = 0;

and hence we must have that

x(t) =

 ∫
s∈[0,d−

1
2 ]

G(t, s)f(s)

 [0].

Now, if we set f(t) = t then we see that

∫
s∈[0,d−

1
2 ]

G(t, s)f(s) =

∫
s∈[0,t+d]

G(t, s)f(s)

=

∫
s∈[0,t−d]

(t− s)s+

∫
s∈[t−d,t+d]

(
1

2
(t− s) +

3

16
d+

3

8
d−3

(
d2(t− s)2 − 1

6
(t− s)4

))
s.
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But, ∫
s∈[0,t−d]

(t− s)s =
t3

6
− t

2
d2 +

1

3
d3

and

∫
s∈[t−d,t+d]

(
1

2
(t− s) +

3

16
d+

3

8
d−3

(
d2(t− s)2 − 1

6
(t− s)4

))
s =

9

40
td2 − 1

3
d3

Thus,

∫
s∈[0,d−

1
2 ]

G(t, s)f(s) =
t3

6
− 1

2
td2 +

1

3
d3 +

9

40
td2 − 1

3
d3 =

t3

6
− 11

40
td2 =0

1

6
t3

and hence the real solution is x(t) = 1
6
t3. One benefit of solving differential equations with

the method of Green’s functions is that the same Green’s function will work for every analytic

source function. Suppose we now wish to find the same equation as above but with f(t) =

sin(t). Then we have that

∫
s∈[0,d−

1
2 ]

G(t, s)f(s) =

∫
s∈[0,t+d]

G(t, s)f(s)

=

∫
s∈[0,t−d]

(t− s) sin(s) +

∫
s∈[t−d,t+d]

(
1

2
(t− s) +

3

16
d+

3

8
d−3

(
d2(t− s)2 − 1

6
(t− s)4

))
sin(s)

= t+ sin(d− t)− cos(d− t)d+ cos(d)
(
cos(t)d+ sin(t) + 3 sin(t)d−2

)
+

1

8
sin(d)

(
−8 cos(t)− 24 sin(t)d−3 + 5 sin(t)d

)
.

Taylor expanding in powers of d and taking the first term (i.e. the real part) yields

x(t) =

 ∫
s∈[0,d−

1
2 ]

G(t, s)f(s)

 [0] = t− sin(t).

132



Example 4.3.2 (Damped Driven Harmonic Oscillator). Consider now an underdamped,

driven harmonic oscillator with mass m, viscous damping constant c, spring constant k, and

driving force f(t). Let x(t) be the position of the oscillator at time t with x(0) = 0 and

ẋ(0) = 0. The oscillator’s equation of motion is

ẍ(t) +
c

m
ẋ(t) +

k

m
x(t) =

f(t)

m
. (4.1)

With the following change of variables

γ =
c

2
√
mk

and ω0 =

√
k

m
,

Equation (4.1) takes the form

ẍ(t) + 2γω0ẋ(t) + ω2
0x(t) =

f(t)

m
.

Since the oscillator is underdamped we have that γ2ω2
0−ω2

0 < 0 which is equivalent to γ < 1.

To solve the equation of motion we first find the Green’s function for the differential operator

(D2
t + 2γω0Dt + ω2

0); that is, we find a solution for the differential equation

(
∂2

∂t2
+ 2γω0

∂

∂t
+ ω2

0

)
G(t, s) = δ(t− s).

First we observe that the analytic solution to the homogeneous partial differential equation

(
∂2

∂t2
+ 2γω0

∂

∂t
+ ω2

0

)
Ghom(t, s) = 0

is

Ghom(t, s) = e−γω0(t−s) (A sin(ω(t− s)) +B cos(ω(t− s)))

where ω =
√

1− γ2ω0 and where A and B are arbitrary constants. One particular solution
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to the inhomogeneous partial differential equation

(
∂2

∂t2
+ 2γω0

∂

∂t
+ ω2

0

)
Ginhom(t, s) =

3

4
d−3(d2 − (t− s)2)

is given by

Ginhom(t, s) =
3

ω2
0

d−3

(
d2 − (t− s)2

4
+
γ(t− s)
ω0

+
1− 4γ2

2ω2
0

)
.

Since

δ(t) =


0 if t ≤ −d

3
4
d−3(d2 − t2) if − d < t < d

0 if d ≤ t

,

we must have

G(t, s) =



e−γω0(t−s) (A1 sin (ω(t− s)) +B1 cos (ω(t− s))) if s ≤ t− d

e−γω0(t−s) (A2 sin (ω(t− s)) +B2 cos (ω(t− s)))

+ 3
ω2

0
d−3

(
d2−(t−s)2

4
+ γ(t−s)

ω0
+ 1−4γ2

2ω2
0

) if t− d < s < t+ d

e−γω0(t−s) (A3 sin (ω(t− s)) +B3 cos (ω(t− s))) if s ≥ t+ d

where A1, A2, A3, B1, B2, B3 are constants to be determined by the initial conditions. As

in the previous example the real part of our Green’s function must satisfy the same initial

conditions as the desired solution. To this end we require that for all s ∈ [0,∞)

G(−d, s) = 0 and
∂G

∂t
(−d, s) = 0.

Solving for the relevant constants yields

A3 = 0 and B3 = 0.
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Again, as in the previous example, requiring continuity of G and ∂G/∂t gives us the remain-

ing 4 constants:

A1 =
3

2d3ω4
0ω
e−dγω

((
4γ3ω0 + 2dγ2ω2

0 − 3γω0 − dω2
0

)
cos(dω)−

(
4γ2ω + 2dγω0ω − ω

)
sin(dω)

)
+

3

2d3ω4
0ω
edγω0

((
−4γ3ω0 + 2dγ2ω2

0 + 3γω0 − dω2
0

)
cos(dω)−

(
4γ2ω − 2dγω0ω − ω

)
sin(dω)

)
B1 =

3

2d3ω4
0ω
e−dγω0

(
ω
(
2dγω0 + 4γ2 − 1

)
+ ω0

(
2dγ2ω0 − dω0 + 4γ3 − 3γ

)
sin(dω)

)
− 3

2d3ω4
0ω
edγω0

(
ω
(
−2dγω0 + 4γ2 − 1

)
+ ω0

(
2dγ2ω0 − dω0 − 4γ3 + 3γ

)
sin(dω)

)
A2 =

3

2ω4
0ωd

3
e−dγω0

(
ω
(
−2dγω0 − 4γ2 + 1

)
sin(dω) + ω0

(
2dγ2ω0 − dω0 + 4γ3 − 3γ

)
cos(dω)

)
B2 =

3

2ω4
0ωd

3
e−dγω0 cos(dω)

(
ω
(
2dγω0 + 4γ2 − 1

)
+ ω0

(
2dγ2ω0 − dω0 + 4γ3 − 3γ

)
tan(dω)

)
While at first glance these constants seem too cumbersome, we have that

A1 =0
1

ω
and B1 =0 0;

and hence

G(t, s)|R =0


1
ω
e−γω0(t−s) sin(ω(t− s)) if s < t

0 if s ≥ t

which is the classical Green’s function for this problem. Now, suppose that the driving force

is given by

f(t) = me−γω0t.

Then the equation of motion becomes

ẍ(t) + 2γω0ẋ(t) + ω2
0x(t) = e−γω0t.

135



Thus, as in the previous example, we can obtain the real solution as the real part of

∫
s∈[0,d−

1
2 ]

G(t, s)
f(s)

m
.

Therefore,

x(t) =0

∫
s∈[0,d−

1
2 ]

G(t, s)
f(s)

m
.

But G(t, s) = 0 for s > t+ d, and hence

∫
s∈[0,d−

1
2 ]

G(t, s)
f(s)

m
=

∫
s∈[0,t+d]

G(t, s)e−γω0s.

Thus,

x(t) =0

∫
s∈[0,t+d]

G(t, s)e−γω0s

= e−γω0t

∫
s∈[t−d,t+d]

(A2 sin(ω(t− s)) +B2 cos(ω(t− s)))

+ e−γω0t

∫
s∈[t−d,t+d]

3

ω2
0d

3

(
d2 − (t− s)2

4
+
γ(t− s)
ω0

+
1− 4γ2

2ω2
0

)

+ e−γω0t

∫
s∈[0,t−d]

(A1 sin(ω(t− s)) +B1 cos(ω(t− s)))

= e−γω0t

[
2A2 sin(ωd)

ω
+ A1

sin(ωt)− sin(ωd)

ω
+B1

cos(ωt)− cos(ωd)

ω

− 3

ω2
0

d−3

(
2

4γ3ω3
0

+
1 + 4γ2

2γω3
0

)
(eγω0d − e−γω0d) +

3

ω2
0

(
d

2γ2ω2
0

+
d

ω2
0

)
(eγω0d + e−γω0d)

]
=0 e

−γω0t
cos(ωt)− 1

ω2
,

which agrees with the classical solution. In the above example we have chosen the driving

force carefully so as to simplify the subsequent calculations, this is useful for explanation and
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necessary where the calculations are to be preformed by hand but with the use of mathematical

software (Mathematica in our case) it is possible to solve more interesting problems. Define

h : [0,∞) ∩ K → K by

h(t) =



t
1−d if t ≤ 1− d

(t− 1)2
(

1+2d(1−d)
d2(1−d)

t+ 3− 2
d
− 1

d2

)
if 1− d < t ≤ 1

0 if t > 1

,

in fact h|R is a single saw-tooth wave and the constants have been chosen so that h(t) is

continuous and has a continuous derivative; this would not be possible if h was a real analytic

function. We may now solve the real differential equation

ẍ(t) + 2γω0ẋ(t) + ω2
0x(t) = h|R(t)

subject to the boundary conditions x(0) = 0, and ẋ(0) = 0. We have that for t ∈ R+,

x(t) =

(∫
s∈[0,d−

1
2 )

G(t, s)h(s)

)
[0].
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To begin, suppose that t < 1 then

∫
s∈[0,d−

1
2 )

G(t, s)h(s) =

∫
s∈[0,t−d]

e−γω0(t−s) (A1 sin (ω(t− s)) +B1 cos (ω(t− s))) s

1− d∫
s∈[t−d,t+d]

(
e−γω0(t−s) (A2 sin (ω(t− s)) +B2 cos (ω(t− s)))

+
3

ω2
0

d−3

(
d2 − (t− s)2

4
+
γ(t− s)
ω0

+
1− 4γ2

2ω2
0

))
s

1− d

=0

(2γ2−1)e−γω0t sin(ωt)√
1−γ2

+ 2γe−γω0t cos (ωt)− 2γ + ω0t

ω3
0

− 2 (4γ4ω2
0t− 5γ2ω2

0t+ 4γ2ω2t+ ω2
0t− ω2t)

ω4
0

=

(2γ2−1)e−γω0t sin(ωt)√
1−γ2

+ 2γe−γω0t cos (ωt)− 2γ + ω0t

ω3
0

Now let t > 1. Then we have that

∫
s∈[0,d−

1
2 )

G(t, s)h(s) =

∫
s∈[0,1−d]

e−γω0(t−s) (A1 sin (ω(t− s)) +B1 cos (ω(t− s))) s

1− d

+

∫
s∈[1−d,1]

e−γω0(t−s) (A1 sin (ω(t− s)) +B1 cos (ω(t− s)))

×
(

(t− 1)2

(
1 + 2d(1− d)

d2(1− d)
t+ 3− 2

d
− 1

d2

))
=0

e−γω0t

ωω2
0

(
−2γ2eγω0 sin (ω(t− 1)) + 2γ2 sin (ωt) + γω0e

γω0 sin (ω(t− 1))
)

+
eγω0

ωω2
0

(
sin (ω(t− 1))− sin (ωt)

+ 2
√

1− γ2γ cos (ωt)−
√

1− γ2eγω(2γ − ω0) cos (ω(t− 1))
)

138



Thus the real solution is given by

x(t) =
e−γω0t

ωω2
0

(
−2γ2eγω0 sin (ω(t− 1)) + 2γ2 sin (ωt) + γω0e

γω0 sin (ω(t− 1))
)

+
eγω0

ωω2
0

(
sin (ω(t− 1))− sin (ωt)

+ 2
√

1− γ2γ cos (ωt)−
√

1− γ2eγω(2γ − ω0) cos (ω(t− 1))
)
.

4.4 The Delta Function in n-Dimensions

Capitalizing on the results of Chapter 3 we are able, in this section, to show that the non-

Archimedean delta function behaves as expected in an arbitrary number of dimensions.

Definition 4.4.1. Let δn : Kn → K be given by

δn(x1, . . . , xn) =
n∏
i=1

δ(xi).

Proposition 4.4.2. Let S ⊂ Kn be measurable. If
n∏
i=1

(−d, d) ⊂ S then

∫
S

δn(x1, . . . , xn) = 1.

If
n∏
i=1

(−d, d) ∩ S = ∅ then ∫
S

δn(x1, . . . , xn) = 0.

Proof. The proposition has already been proven for n = 1 and n = 2; so let n > 2 and
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suppose the proposition holds for the n− 1 case. If
n∏
i=1

(−d, d) ⊂ S then

∫
S

δn(x1, . . . , xn) =

∫
(x1,...,xn))∈

n∏
i=1

(−d,d)

δn(x1, . . . , xn)

=

∫
(x1,...,xn−1)∈

n−1∏
i=1

(−d,d)

δn−1(x1, . . . , xn−1)

∫
xn∈(−d,d)

δ(xn)


=

∫
(x1,...,xn−1)∈

n−1∏
i=1

(−d,d)

δn−1(x1, . . . , xn−1) = 1

If
n∏
i=1

(−d, d) ∩ S = ∅, then δn(x1, . . . , xn) = 0 everywhere on S; and hence

∫
S

δn(x1, . . . , xn) =

∫
S

0 = 0.

Therefore, using induction, it follows that the statement of the proposition holds for all

n ∈ N.

Proposition 4.4.3. Let S ⊂ Kn be a simple region with λxi(S) < 1 for all i ∈ {1, . . . , n},

and let f : S → K be an analytic function on S with i(f) = 0 on S. Then, for any

(x1,0, . . . , xn,0) ∈ S that satisfies

n∏
i=1

(xi,0 − a, xi,0 + a) ⊂ S

for some positive a� d in K, we have that

∫
(x1,...,xn)∈S

f(x1, . . . , xn)δn(x1 − x1,0, . . . , xn − xn,0) =0 f(x1,0, . . . , xn,0).

Proof. First we note this proposition has already been proven for the cases of n = 1 and n =
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2, so we let n > 2 and assume the proposition holds in the n− 1 case. By definition we have

that δn(x1−x1,0, . . . , xn−xn,0) = 0 everywhere except on the simple region
n∏
i=1

(xi,0−d, xi,0+d).

Thus,

∫
(x1,...,xn)∈S

f(x1, . . . , xn)δn(x1 − x1,0, . . . , xn − xn,0)

=

∫
(x1,...,xn)∈

n∏
i=1

(xi,0−d,xi,0+d)

f(x1, . . . , xn)δn(x1 − x1,0, . . . , xn − xn,0)

=

∫
(x1,...,xn−1)∈

n−1∏
i=1

(xi,0−d,xi,0+d)

δn−1(x1 − x1,0, . . . , xn−1 − xn−1,0)

∫
xn∈(xn,0−d,xn,0+d)

f(x1, . . . , xn)δ(xn − xn,0)

 .

Now, for a fixed (x1, . . . , xn−1) ∈
n−1∏
i=1

(xi,0 − d, xi,0 + d), h(xn) := f(x1, . . . , xn) is an analytic

function on the interval (xn,0 − a, xn,0 + a) which contains (xn,0 − d, xn,0 + d); and hence, by

Proposition 4.1.7, we have that

∫
xn∈(xn,0−d,xn,0+d)

h(xn)δ(xn − xn,0) =0 h(xn,0) = f(x1, . . . , xn−1, xn,0).

Furthermore, g(x1, . . . , xn−1) := f(x1, . . . , xn−1, xn,0) is analytic on the simple region Sx1,...xn−1 :=
n−1∏
i=1

(xi,0−a, xi,0 +a) containing
n−1∏
i=1

(xi,0−d, xi,0 +d); and hence, by our inductive hypothesis,

we have that

∫
(x1,...,xn−1)∈

n−1∏
i=1

(xi,0−d,xi,0+d)

g(x1, . . . , xn−1)δn−1(x1 − x1,0, . . . , xn−1 − xn−1,0)

=0 g(x1,0, . . . , xn−1,0) = f(x1,0, . . . , xn,0).
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Thus,

∫
(x1,...,xn)∈S

f(x1, . . . , xn)δn(x1 − x1,0, . . . , xn − xn,0)

=

∫
(x1,...,xn−1)∈

n−1∏
i=1

(xi,0−d,xi,0+d)

δn−1(x1 − x1,0, . . . , xn−1 − xn−1,0)

∫
xn∈(xn,0−d,xn,0+d)

f(x1, . . . , xn)δ(xn − xn,0)


=0

∫
(x1,...,xn−1)∈

n−1∏
i=1

(xi,0−d,xi,0+d)

δn−1(x1 − x1,0, . . . , xn−1 − xn−1,0)f(x1, . . . , xn−1, xn,0)

=0 f(x1,0, . . . , xn,0).

4.5 The Spherical Delta Function

In this section we investigate the possibility of employing the non-Archimedean delta function

in spherical coordinates. The arguments used are somewhat less rigorous than we would like

due to the lack of development on the subject of curvilinear coordinate systems. Fortunately,

the mathematical theory needed here is closely related to that needed for the proof of the

three conjectures from Chapter 3 and so research into either problem is research into both

problems.

Remark 4.5.1. Note that in the following discussion of the delta function in spherical

coordinates we assume that the spherical volume element is the same as in the real case,

that is to say ∫∫∫
r′∈K3

1 =

∫
r′∈K+

∫
φ′∈[0,2π]

∫
θ′∈[0,π]

r′2 sin θ′.
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In fact proving this statement requires framework that has not yet been established and so

is outside the scope of this discussion, for now we will take it for granted so that we may

proceed.

As in the classical case it is also possible to define the delta function in spherical coordi-

nates, in particular we have that

δsph(r− r′) = F (r, φ, θ)δ(r − r′, φ− φ′, θ − θ′)

where of course r is the point (r, φ, θ) and r′ is the point (r′, φ′, θ′) and F is some as yet

unknown function. Naturally we must have that

∫∫∫
r′∈K3

δsph(r− r′) = 1,

from which it follows that

∫
r′∈K+

∫
φ′∈[0,2π]

∫
θ′∈[0,π]

F (r′, φ′, θ′)δ(r − r′, φ− φ′, θ − θ′)r′2 sin θ′ = 1.

However, we already know that

∫
r′∈K+

∫
φ′∈[0,2π]

∫
θ′∈[0,π]

δ(r − r′, φ− φ′, θ − θ′) = 1

since δ(r − r′, φ− φ′, θ − θ′) is normalized by definition, so we obtain

∫
r′∈K+

∫
φ′∈[0,2π]

∫
θ′∈[0,π]

δ(r−r′, φ−φ′, θ−θ′) =

∫
r′∈K+

∫
φ′∈[0,2π]

∫
θ′∈[0,π]

F (r′, φ′, θ′)δ(r−r′, φ−φ′, θ−θ′)r′2 sin θ′

and hence

F (r′, φ′, θ′) =
1

r′2 sin θ′
.
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Definition 4.5.2. We define δsph : R3 → R by

δsph(r− r′) =
δ(r − r′, φ− φ′, θ − θ′)

r2 sin θ
.

Note that as in the classical case, if a problem has spherical symmetry then the delta

function takes the form

δsph(r− r′) = F (r′)δ(r − r′)

and since ∫
φ′∈[0,2π]

∫
θ′∈[0,π]

r′2 sin(θ′) = 4πr′2

it follows that

F (r′) =
1

4πr′2

and hence

δsph(r− r′) =
δ(r − r′)

4πr′2
.

Example 4.5.3 (Electric Field of a thick spherical shell). Suppose we wish to find the electric

field of a thick spherical shell centred at the origin with inner radius R1, outer radius R2 and

a uniform charge density ρ0. One way to accomplish this is to solve the differential equation

implied by Gauss’s law:

∇ ·D(r) = ρ(r)

where D(r) is the electric displacement field at the point r and ρ(r) is given by

ρ(r) =


0 if r < R1

ρ0 if R1 ≤ r ≤ R2

0 if r > R2

.

As in previous examples we can solve this differential equation by finding the Green’s function
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G(r, r′) = Grer +Gφeφ +Gθeθ corresponding to the operator ∇·, in particular G(r, r′) must

satisfy

∇ ·G(r, r′) = δsph(r− r′). (4.2)

However our system is spherically symmetric about the origin so we may infer that

Gφ = Gθ = 0

and

δsph(r− r′) =
δ(r − r′)

4πr2
.

Thus, Equation (4.2) reduces to

1

r2

∂

∂r

(
r2Gr(r, r

′)
)

=
δ(r − r′)

4πr2
.

Solving this differential equation yields

Gr(r, r
′) =



c1
r2 if r′ ≤ r − d

1
4πr2

3
4
d−3

(
d2(r − r′)− 1

3
(r − r′)3

)
+ c2

r2 if r − d < r′ < r + d

c3
r2 if r′ ≥ r + d

where c1, c2, and c3 are constants of integration. We know that D(r) = 0 for r < R1 since

there is no charge inside the shell. To ensure our solution satisfies this initial condition

we must have Gr(0, r
′) =0 0 and as in previous examples we accomplish this by setting

Gr(−d, r′) = 0. Using this initial condition as well as the continuity of Gr, we are able to
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solve for the constants in Gr(r, r
′); in fact we find that

Gr(r, r
′) =



1
4πr2 if r′ 6 r − d

1
4πr2

3
4
d−3

(
d2(r − r′)− 1

3
(r − r′)3

)
+ 1

8πr2 if r − d < r′ < r + d

0 if r′ ≥ r + d

Now that we know the Green’s function of the operator ∇· and have made it satisfy the

relevant boundary conditions we can solve for the (real) electric displacement field of the

spherical shell by recalling that

D(r) =0

∫
r′∈K+

∫
φ′∈[0,2π)

∫
θ′∈[0,π]

Gr(r, r
′)ρ(r′)r′2 sin θ′er = 4π

∫
r′∈K+

Gr(r, r
′)ρ(r′)r′2er = Dr(r)er.

If r < R1 then we have

Dr(r) =0 0,

if R1 ≤ r ≤ R2 then the integral reduces to

Dr(r) =0 4π

 ∫
r′∈[R1,r−d]

ρ0r
′2

4πr2
+

∫
r′∈[r−d,r+d]

(
1

4πr2

3

4
d−3

(
d2(r − r′)− 1

3
(r − r′)3

)
+

1

8πr2

)
ρ0r
′2


=0

ρ0

3r2

(
r3 −R3

1

)
,

and finally if r > R2 then we get

Dr(r) =0 4π

∫
r′∈[R1,R2]

ρ0r
′2

4πr2
=

ρ0

3r2

(
R3

2 −R3
1

)
.
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Hence the electric displacement field of a uniformly charged thick spherical shell is given by

Dr(r) =


0 if r < R1

ρ0

3r2 (r3 −R3
1) if R1 ≤ r ≤ R2

ρ0

3r2 (R3
2 −R3

1) if r > R2

.

While the examples given in this chapter are admittedly simple they serve to illustrate

how to use the newly defined delta functions. In the future we hope to engage in a more

detailed study of the delta functions in two and three dimensions as well as in constructing

more complex and challenging examples.
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Chapter 5

Computational Applications of the

Levi-Civita Field

5.1 Computation and the Levi-Civita Field

Non-Archimedean valued fields have applications in computing the limits and asymptotic

behaviour of analytic functions; the seminal work seems to be that of Lightstone and Robin-

son who for example are able to compute the incomplete factorial function to a high degree

of precision by summing a finite number of terms of a divergent series [25]. Another value

of the Levi-Civita field from the perspective of computational applications is that it allows

one to compute limits of real valued functions directly rather than by approximation. For

example given a differentiable function f : I ⊂ R → R, the derivative of f at some point

x0 ∈ I is given by

f ′(x0) = lim
h→0

f(x0)− f(x0 − h)

h
.

To compute this conventionally one would either use symbolic manipulation to reduce the

fraction on the right in a way that makes all terms with h in the denominator vanish or

one would choose h to be small enough that the error caused by its inclusion is less than

some predetermined tolerance. The first possibility, while it produces accurate results, is un-
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satisfactory firstly because symbolic manipulation is computationally slower than numerical

calculations and secondly because it is not always clear what manipulations are necessary to

produce the desired result. The second approach retains the speed of numerical computa-

tion but suffers from the issue that it is often difficult to determine how small h must be to

ensure the result is sufficiently precise. Moreover the numerical method is highly susceptible

to rounding errors. It has been shown [4] that by employing the Levi-Civita field all of

these issues can be addressed; we will discuss this further in Section 5.3. Our purpose in

this chapter is to investigate new computational applications of the Levi-Civita field; in the

course of our investigation, we will also have the opportunity to compare our results with

those from [4].

5.2 The Tulliotools Software

To be able to use the Levi-Civita field in computational applications we will first construct

a code that will allow a computer to operate on these numbers. The code that has been

used in previous papers on this topic (COSY ININITY) [4] is not easily accessible and so

we construct our own software for this purpose. Our code forms a static library in the

C++ programming language and we tentatively name it Tulliotools in honour of the Italian

mathematician Tullio Levi-Civita who first discovered the field that bears his name [26].

Tulliotools was created using Microsoft Visual Studio 2015 Community Edition and

was compiled using default setting. The Tulliotools library defines how a computer can store

an element of the Levi-Civita field (up to some specific depth) and defines the operations

of addition, multiplication, and inversion. Subtraction and division are defined by addition

of the negative and multiplication with the inverse, respectively. Tulliotools also includes

the basic trigonometric and inverse trigonometric functions, the hyperbolic trigonometric

functions, the exponential function, the natural logarithm, and the nth root for an arbitrary

integer n. Addition and multiplication are easily defined in accordance with Definition 1.3.7;
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however, calculating the inverse of an element is more difficult and we explain the process

we use in the following remark.

Remark 5.2.1 (Process for calculating the inverse of an element). Suppose x ∈ R\{0} and

suppose we wish to find the element x−1. Let λ0 = λ(x) and suppose that x[λ0] = a, then we

can write x = adλ0(1 + s) where s ∈ R with |s| � 1. Clearly we have that

1

x
=

1

adλ0(1 + s)
=

1

a
d−λ0

1

1 + s
.

The factor of 1
a
d−λ0 can be computed directly and we have that

1

1 + s
=
∞∑
n=0

(−1)nsn

which converges in the order topology. Thus,

1

x
=

1

a
d−λ0

∞∑
n=0

(−1)nsn.

Of course we cannot compute all infinitely many terms of the sum; however, if we let λ1 =

λ(s) and if we store elements of R up to a depth q ∈ Q then, because we know that λ1 > 0,

we have that

1

1 + s
=q

d q
λ1
e∑

n=0

(−1)nsn.

This yields a finite expression

1

x
=q

1

a
d−λ0

d q
λ1
e∑

n=0

(−1)nsn

which defines the process of inversion used in Tulliotools.

When computing elementary functions we wish to employ the language’s built-in func-

tions as much as possible both for the sake of speed and accuracy. For clarity in our expla-
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nation below, we use the convention that for some real analytic function f , flc : R → R is

the non-Archimedean continuation of the function, fr : R→ R is the real (built-in) function,

and ft : R → R is the Taylor expansion (up to whatever depth is required) of the function

which we use to compute the infinitesimal part.

Remark 5.2.2 (Methods for computing elementary functions). Let x ∈ R be such that

λ(x) ≥ 0 and let xr = x[0] and xi = x− x[0]. Then we have

� sinlc(x) = sinlc(xr + xi) = sinr(xr) cost(xi) + cosr(xr) sint(xi)

� coslc(x) = cosr(xr) cost(xi)− sinr(xr) sint(xi)

� tanlc(x) = sinlc(x)
coslc(x)

� sinhlc(x) = sinhr(xr) cosht(xi) + coshr(xr) sinht(xi)

� coshlc(x) = coshr(xr) cosht(xi) + sinhr(xr) sinht(xi)

� tanhlc(x) = sinhlc(x)
coshlc(x)

� explc(x) = expr(xr) expt(xi)

� lnlc(x) = lnr(xr) + lnt(1 + xi
xr

)

In the following, we will make use of the exponential function and natural logarithm to

compute the nth root of a positive element of R.

Remark 5.2.3 (Process for computing arbitrary roots). Let x ∈ R with x > 0, let n ∈ N

and suppose we wish to find x
1
n . To begin, let λ0 = λ(x) then we have that x = dλ0s where

s ∈ R with s > 0 and λ(s) = 0. It follows that x
1
n = d

λ0
n s

1
n ; thus we have reduced the

problem to finding a y ∈ R such that yn = s. Taking the natural logarithm of both sides

yields

ln(yn) = ln(s);
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from which we obtain that

ln(y) =
ln(s)

n
.

Thus, we have that

y = exp(ln(y)) = exp

(
ln(s)

n

)
and hence we arrive at our desired equation

x
1
n = d

λ0
n e

ln(s)
n .

Computing the inverse trigonometric functions is more difficult than their trigonometric

counterparts because they lack convenient additive angle formulas. Instead we make use of

integration (which we discuss in a later section) and the fact that the derivatives of these

functions are well known.

Remark 5.2.4 (Method for computing the inverse trigonometric functions). Let x ∈ (−1, 1) ⊂

R and let y ∈ R satisfy λ(y) ≥ 0; let xr = x[0] and yr = y[0]; and let xi = x − xr and

yi = y − yr. Then we have that

�
d
dx

arcsin(x) = 1√
1−x2 and it follows that if xi ≥ 0 then

arcsinlc(x) =

∫
t∈(0,x)

1√
1− t2

=

∫
t∈(0,xr)

1√
1− t2

+

∫
t∈(xr,xr+xi)

1√
1− t2

= arcsinr(xr) +

∫
t∈(xr,xr+xi)

1√
1− t2
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and if xi < 0 then

arcsinlc(x) =

∫
t∈(0,x)

1√
1− t2

=

∫
t∈(0,xr)

1√
1− t2

−
∫

t∈(xr+xi,xr)

1√
1− t2

= arcsinr(xr)−
∫

t∈(xr+xi,xr)

1√
1− t2

�
d
dx

arccos(x) = − 1√
1−x2 and it follows that if xi ≥ 0 then

arccoslc(x) =

∫
t∈(x,1)

1√
1− t2

=

∫
t∈(xr,1)

1√
1− t2

−
∫

t∈(xr,xr+xi)

1√
1− t2

= arccosr(xr)−
∫

t∈(xr,xr+xi)

1√
1− t2

and if xi < 0 then

arccoslc(x) =

∫
t∈(x,1)

1√
1− t2

=

∫
t∈(xr,1)

1√
1− t2

+

∫
t∈(xr+xi,xr)

1√
1− t2

= arccosr(xr) +

∫
t∈(xr+xi,xr)

1√
1− t2
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�
d
dy

arctan(y) = 1
y2+1

and it follows that if yi ≥ 0 then

arctanlc(y) =

∫
t∈(0,y)

1

t2 + 1

=

∫
t∈(0,yr)

1

t2 + 1
+

∫
t∈(yr,yr+yi)

1

t2 + 1

= arctanr(yr) +

∫
t∈(yr,yr+yi)

1

t2 + 1

and if yi < 0 then

arctanlc(y) =

∫
t∈(0,y)

1

t2 + 1

=

∫
t∈(0,yr)

1

t2 + 1
−

∫
t∈(yr+yi,yr)

1

t2 + 1

= arctanr(yr)−
∫

t∈(yr+yi,yr)

1

t2 + 1

Notice that the only integrals that we actually need to compute are all over an infinitesimal

interval, this allows us to compute them exactly (up to a given depth) by integrating the

Taylor series of the integrand. We discuss this more thoroughly in a later section.

5.3 Numerical Computation of Derivatives

The first thing we would like to do with our newly developed library is to explore the

applications to the numerical computation of derivatives developed in [4] and [27]. We

begin by restating a number of definitions in our own notation and reviewing the underlying

mathematical theory.

Definition 5.3.1 (Computer Function). Let I be the set of all functions intrinsic to the C++

programming language as well as their inverse functions and the step function s : R → R
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defined by

s(x) :=


0 if x ≤ 0

1 if x > 0

.

We define a computer function to be any function that can be obtained preforming a finite

number of arithmetic operations and compositions using functions in I.

Because the functions intrinsic to C++ as well as the step function are real valued it

follows that all computer functions must be real valued. It is possible to extend computer

functions to R using the extensions of power series with purely real coefficients; the step

function, x
1
n , and 1

x
defined below [27].

Definition 5.3.2 (Continuation of certain real valued functions to R). x
1
n and 1

x
can be

continued to R by the existence of roots and multiplicative inverses of non-zero elements in

R. We define the continuation of s to x ∈ R by

s̄(x) :=


0 if x ≤ 0

1 if x > 0

.

Let
∞∑
n=0

anX
n be a real power series (i.e. X ∈ R and for all n ∈ N, an ∈ R) with classical

radius of convergence η > 0. Then for x ∈ R with x < η and x[0] 6= η the series

∞∑
n=0

anx
n

must converge in the weak topology ([27]) and we define this to be the continuation of the

real power series to R.

Definition 5.3.3 (Extendable computer function). Let f ∈ I, let x0 ∈ R be in the domain

of f , and let x ∈ R. Then we say that f is extendable to x0 + x ∈ R if x0 + x is in the

domain of the extension of f to R obtained via the above definition. Let f1, f2 ∈ I, let x0 ∈ R
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be in the domain of both f1 and f2, and let x ∈ R. Then we say that f1 + f2 and f1 · f2

are extendable to x0 + x if x0 + x is in the domain of both the continuation of f1 and the

continuation of f2, and we say that f2 ◦ f1 is extendable to x0 + x if x0 + x is in the domain

of the continuation of f1 and f1(x0 +x) is in the domain of the continuation of f2. Since all

computer functions are obtained through finite combinations of functions in I we may define

extendability for general computer functions inductively.

Definition 5.3.4 (Continuation of computer functions to R). It is shown in [27] that if f

is a real computer function, x0 is in the domain of f , and f is extendable to x0 ± d then

there is a η > 0 in R such that for x ∈ R with 0 < x < η

f(x0 ± x) =
∞∑
i=0

a±i x
i +

j±∑
j=1

xq
±
j R±j (x) (5.1)

where for all j ∈ {1, . . . , j±}, R±j is a power series with R±j (0) 6= 0 and with a radius of

convergence at least as large as η, and q±j are nonzero rational numbers that are not positive

integers. Since the right hand side of Equation 5.1 contains only roots, negative integer

powers, and power series (for which we have already defined a continuation to R) we may

define the continuation of f to x0 + x ∈ R such that 0 < x < η and x[0] 6= η by

f̄(x0 ± x) :=
∞∑
i=0

a±i x
i +

j±∑
j=1

xq
±
j R̄±j (x)

where R̄±j is the continuation of R±j to R.

Now suppose that f is a Real computer function defined at x0 ∈ R and extendable to

x0 ± d. Then we have that

f̄(x0 ± d) =
∞∑
i=0

a±i d
i +

j±∑
j=1

dq
±
j R̄±j (d).
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The equation above entails that for any n ∈ N

(f̄(x0 ± d))[n] =

(
∞∑
i=0

a±i d
i +

i±∑
j=1

dq
±
j R̄±j (d)

)
[n]

However if it happens that for some m ∈ N, f is m times differentiable at x0, then we must

have that q±j > m and for every j ∈ {1, . . . , j±}, a+
i = (−1)ia−i = f (i)(x0)

i!
[27]. Hence we have

that

f̄(x0 + d) =m

m∑
i=0

a+
i d

i

and

f̄(x0 − d) =m

m∑
i=0

a−i d
i

with a−i = (−1)ia+
i in which case we have that for any i ∈ {1, . . . ,m}

i!a+
i = i!f̄(x0 + d)[i] = f (i)(x0) = (−1)ii!f̄(x0 − d)[i] = (−1)ii!a−i .

In fact it is possible to make an argument similar to the above but in the opposite direction

which allows for the following theorem from [27].

Theorem 5.3.5. Let f be a computer function that is continuous at x0 and extendable to

x0 ± d. Then f is m times differentiable at x0 if and only if

f̄(x0 + d) =m

m∑
i=0

a+
i d

i,

and

f̄(x0 − d) =m

m∑
i=0

a−i d
i

with a−i = (−1)ia+
i . Moreover, in this case

i!a+
i = i!f̄(x0 + d)[i] = f (i)(x0) = (−1)ii!f̄(x0 − d)[i] = (−1)ii!a−i .
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for all i ∈ {1, . . . ,m}.

Theorem 5.3.5 gives us an easy way both to check the differentiability of and numerically

compute the derivatives of real computer functions and it was used to great effect in [4].

Below we replicate the success of that paper using the Tulliotools library and we produce

some additional examples. As in that paper, we compare our results against Wolfram

Mathematica 11.3; we also use the SymbolicC++3 library which is similar to Tulliotools

in its implementation (both are C++ libraries). It is worth noting that, by the nature of the

software, Tulliotools computes all (up to a given depth) derivatives simultaneously whereas

Mathematica computes them each individually. SymbolicC++3 can be made to use either

method and we make it similar to Tulliotools. This difference has no significant effect on

our conclusions, however, because Mathematica takes significantly longer than Tulliotools

to compute higher order derivatives. Even if we generously assume that Mathematica could,

in the time it takes to compute the nth derivative, compute the first (n − 1) derivatives as

well the above method still easily out-performs it. Indeed for the sake of time we aborted

Mathematica’s calculations wherever they lasted for longer than an hour, these cases are

denoted by the word “aborted” in the tables below. We use three functions to test this

method of differentiation and we find the derivatives of each at three different points. The

time to compute the results was found for Mathematica using the built-in Absolutetiming

function and for Tulliotools and SymbolicC++3 using the Chrono libraries high precision

clock function (which automatically uses the highest precision clock available on the given

system). We use the following three functions to test the relative ability of our software to

compute derivatives.

f(x) := ex
2−x+2

g(x) :=
sin (sin (sin (sin (sin (x)))))

cos (cos (cos (cos (cos (x)))))
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h(x) :=

sin (x3 + 2x+ 1) + 3+cos(sin(ln|1+x|))
exp(tanh(sinh(cosh( sin(cos(tan(exp(x))))

cos(sin(exp(tan(x+2))))))))

2 + sin (sinh (cos (arctan (ln (exp x+ x2 + 3)))))

The function f was chosen to be simple enough that the derivatives could (at least in

principle) be verified by hand. A careful examination of the following tables will show that

for such simple functions Mathematica outperforms Tulliotools although both produce the

correct values up to at least the 149th derivative. SymbolicC++ failed to find anything

beyond the 8th derivative and took several orders of magnitude longer than the other two.

Table 5.1: Select derivatives of f as computed by Mathematica

n f (n)(0) Time
(sec.)

f (n)(1) Time
(sec.)

f (n)(2) Time
(sec.)

0 7.38905609893 0.001 7.38905609893 0.0001 54.5981500331 0.0003
1 -7.38905609893 0.001 7.38905609893 0.0002 163.794450099 0.0003
2 22.1671682968 0.0004 22.1671682968 0.0002 600.579650365 0.0002
3 -51.7233926925 0.0005 51.7233926925 0.0003 2456.91675149 0.0002
4 184.726402473 0.0005 184.726402473 0.0002 10974.2281567 0.0002
5 -598.513544013 0.0006 598.513544013 0.0002 52578.0184819 0.0002
6 2445.77756875 0.0007 2445.77756875 0.0002 267476.337012 0.0002
7 -9627.94009691 0.0008 9627.94009691 0.0002 1433365.23282 0.0002
8 43868.8260594 0.0009 43868.8260594 0.0003 8044764.41663 0.0003
9 -197915.867610 0.001 197915.867610 0.0003 47068136.9750 0.0004
10 987554.736678 0.004 987554.736678 0.0003 286010170.424 0.0004
11 -4945872.08888 0.001 4945872.08888 0.0003 1.799393250.77 0.0003
12 26672076.2958 0.006 26672076.2958 0.0003 11690403501.7 0.0003
13 -145373006.429 0.001 145373006.429 0.0003 78256648523.6 0.0003
14 838846990.119 0.001 838846990.119 0.0003 538720436614 0.0003
50 9.74333610738×1041 0.014 9.74333610738×1041 0.001 6.44014243326×1046 0.004
100 1.20037473498×1097 0.014 1.20037473498×1097 0.001 4.85652586772×10103 0.002
149 -2.47164879131×10156 0.034 2.47164879131×10156 0.003 2.23779844382×10164 0.005

159



Table 5.2: Select derivatives of f as computed by Tulliotools

n f (n)(0) f (n)(1) f (n)(2)
0 7.38905609893 7.38905609893 54.5981500331
1 -7.38905609893 7.38905609893 163.794450099
2 22.1671682968 22.1671682968 600.579650365
3 -51.7233926925 51.7233926925 2456.91675149
4 184.726402473 184.726402473 10974.2281567
5 -598.513544013 598.513544013 52578.0184819
6 2445.77756875 2445.77756875 267476.337012
7 -9627.94009691 9627.94009691 1433365.23282
8 43868.8260594 43868.8260594 8044764.41663
9 -197915.86761 197915.86761 47068136.975
10 987554.736678 987554.736678 286010170.424
11 -4945872.08888 4945872.08888 1799393250.77
12 26672076.2958 26672076.2958 11690403501.7
13 -145373006.429 45104788.8251 24340676103.1
14 838846990.119 12306318.9474 8332806653.96
50 9.74333610738×1041 9.74333610738×1041 6.44014243326×1046

100 1.20037473498×1097 1.20037473498×1097 4.85652586772×10103

149 -2.47164879131×10156 2.47164879131×10156 2.23779844382×10164

Time
(sec.)

0.597 0.431 0.437

Table 5.3: Select derivatives of f as computed by SymbolicC++

n f (n)(0) ) f (n)(1) f (n)(2)
0 7.38905609893 7.38905609893 54.5981500331
1 -7.38905609893 7.38905609893 163.794450099
2 22.1671682968 22.1671682968 600.579650365
3 -51.7233926925 51.7233926925 2456.91675149
4 184.726402473 184.726402473 10974.2281567
5 -598.513544013 598.513544013 52578.0184819
6 2445.77756875 2445.77756875 267476.337012
7 -9627.94009691 9627.94009691 1433365.23282
8 43868.8260594 43868.8260594 8044764.416633637
Time
(sec.)

286.142 264.948 265.715

The function g provides us with an intermediate challenge and already we can see Math-

ematica falling behind Tulliotools for higher order derivatives.
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Table 5.4: First 13 derivatives of g as computed by Mathematica

n g(n)(0) Time
(sec.)

g(n)(1) Time
(sec.)

g(n)(2) Time
(sec.)

0 0 0.0002 0.837192955627 0.308 0.888584820075 0.196
1 1.26027064058 0.002 0.407172848084 0.054 -0.317934898588 0.009
2 0 0.003 -0.618746127149 0.014 -0.651895577342 0.014
3 -5.35211351959 0.03 0.0122192107521 0.062 0.416693615024 0.109
4 0 0.112 -4.31613114141 0.171 -1.64786996410 0.178
5 121.167674235 0.329 15.652 0.542463 -19.6728802712 0.838
6 0 0.953 78.5779028176 1.747 -20.2596967220 2.106
7 -5627.09443507 3.0960 -685.282937503 5.835 615.708023511 6.997
8 0 10.691 -1285.70479011 19.589 2622.42370100 21.9916
9 429913.385688 32.896 16481.3309024 57.559 -30298.4169665 61.748
10 0 91.505 227724.788971 153.641 -114129.369772 161.231
11 -49831093.1255 238.66 -257502.130656 397.697 3525304.24927 399.671
12 0 583.886 aborted >1 hour aborted >1 hour
13 8083947834.90 1623.43 aborted >1 hour aborted >1 hour

Table 5.5: First 14 derivatives of g as computed by Tulliotools

n g(n)(0) g(n)(1) g(n)(2)
0 0 0.837192955627 0.888584820075
1 1.26027064058 0.407172848084 -0.317934898588
2 0 -0.618746127149 -0.651895577342
3 -5.35211351959 0.0122192107521 0.416693615024
4 0 -4.31613114141 -1.6478699641
5 121.167674235 15.6517446222 -19.6728802712
6 0 78.5779028176 -20.259696722
7 -5627.09443507 -685.282937503 615.708023511
8 0 -1285.70479011 2622.423701
9 429913.385688 16481.3309024 -30298.4169665
10 0 227724.788971 -114129.369772
11 -49831093.1255 -257502.130656 3525304.24927
12 0 -37912424.234 4688958.30662
13 8083947834.9 -13666350.8705 -495861347.515
14 0 4734886537.81 -152712264.273
Total
(sec.)

0.207 0.193 0.218

Finally we have function h which was obtained from [4]. Here Mathematica is slower than

Tulliotools even for relatively low order derivatives and it was unable to find any derivatives

past the eighth in less than an hour. SymbolicC++ unfortunately is unable to work with

this function at all because it does not have the inverse trigonometric functions implemented
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in it.

Table 5.6: First 8 derivatives of h as computed by Mathematica

n h(n)(0) Time
(sec.)

h(n)(1) Time
(sec.)

h(n)(5) Time
(sec.)

0 1.00484531901 0.16 0.268357844508 0.10 0.283393816437 0.30
1 0.460143808963 0.15 -1.44525348415 0.04 12.1382777290 0.14
2 -5.26609756823 0.30 7.31608659872 0.14 28594.4371105 0.13
3 -52.8216335199 0.70 40.8666551717 0.32 10161444.9755 0.31
4 -108.468284784 1.67 404.249076373 1.13 -32567374548.9 1.59
5 16451.4428641 4.73 -5092.63654924 4.53 -1.29110802579×1014 5.70
6 541334.997022 21.11 -19854.7155232 28.96 -2.98281735849×1017 35.47
7 794864118.936 124.35 1611673.41227 171.20 -4.20384900033×1020 184.15
8 -144969388.210 787.34 -86895133.1031 2426.91 aborted >1 hour

Table 5.7: First 14 derivatives of h as computed by Tulliotools

n h(n)(0) h(n)(1) h(n)(5)
0 1.00484531901 0.268357844508 0.283393816437
1 0.460143808963 -1.44525348415 12.138277729
2 -5.26609756823 7.31608659872 28594.4371105
3 -52.8216335199 40.8666551717 10161444.9755
4 -108.468284784 404.249076373 -32567374548.9
5 16451.4428641 -5092.63654924 -1.29110802579×1014

6 541334.997022 -19854.7155232 -2.98281735849×1017

7 7948641.18936 1611673.41227 -4.20384900033×1020

8 -144969388.21 -86895133.1031 2.78479886876×1023

9 -15395959663 3193445289.11 4.77510276588×1027

10 -618406836695 -90967229524 2.1329279112×1031

11 -1.17903146156×1013 1.74199571026×1012 6.24639715614×1034

12 4.03355397865×1014 1.49155784151×1013 9.55133940595×1037

13 5.51065265978×1016 -3.85982238753×1015 -2.68590144823×1041

14 3.27278740268×1018 2.59042564116×1017 -3.11629245228×1045

Time
(sec.)

0.826 0.505 0.580

5.4 Numerical Computation of Bernoulli Numbers

Evaluating analytic functions with real coefficients at infinitesimal points can do more than

finding the derivatives of the function, it also allows us to calculate sequences of numbers de-

fined by a generating function. Consider for example the following definition of the Bernoulli
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numbers.

Definition 5.4.1 (Bernoulli numbers). The Bernoulli numbers are precisely those num-

bers Bn ∈ R such that for any t ∈ R

t

et − 1
=
∞∑
n=0

Bn

n!
tn.

This is a perfectly rigorous definition but it does not (in the field of real numbers) provide

an obvious way to calculate the value of each term. Typically the Bernoulli numbers are

instead calculated using either the summation formula or the recursive formula.

Bn =
n∑
i=0

i∑
j=0

(−1)j
(
i

j

)
jn

i+ 1

Bn = δn,0 −
n−1∑
i=0

(
n

i

)
Bi

n− i+ 1

Using the Levi-Civita numbers however, we are able to calculate the Bernoulli numbers

directly from the generating function. Notice that

(
d

ed − 1

)
=
∞∑
n=0

Bn

n!
dn

from which we find that

Bn =

(
d

ed − 1

)
[n]n!.

In fact there are a number of different ways we can calculate the Bernoulli numbers along

the same lines. Recall that for t ∈ R with |t| < π
2

we have

tan(t) =
∞∑
n=1

(−1)n−122n(22n − 1)B2n

(2n)!
t2n−1
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this entails that

B2n =
(−1)n−1(2n)!

22n(22n − 1)
(tan(d)) [2n− 1]

Additionally, for t ∈ R with |t| < π
2
, we have that

tanh(t) =
∞∑
n=1

22n(22n − 1)B2n

(2n)!
t2n−1

and hence

B2n =
(2n)!

22n(22n − 1)
(tanh(d)) [2n− 1].

One might object that these equations only allow the calculation of every other Bernoulli

number; however, aside from B1 = −1
2
, every odd Bernoulli number is zero.

Table 5.8: Bernoulli Numbers computed in various ways

n Additive Formula Recursive Formula Generating Function tan Formula tanh Formula Exact (to six decimals)
0 1 1 1 — — 1
1 -0.5 -0.5 -0.5 — — -0.5
2 0.166667 0.166667 0.166667 0.166667 0.166667 0.166667
3 0 0 0 0 0 0
4 -0.0333333 -0.0333333 -0.0333333 -0.0333333 -0.0333333 -0.0333333
5 0 0 0 0 0 0
6 0.0238095 0.0238095 0.0238095 0.0238095 0.0238095 0.0238095
7 2.23517×1008 0 -3.14748×1012 0 0 0
8 0.0757571 0.0757576 0.0757576 0.0757576 0.0757576 0.0757576
9 3.8147×1006 -6.10623×1016 -1.73112×1011 0 0 0
10 -0.252197 -0.253114 -0.253114 -0.253114 -0.253114 -0.253114
11 -0.0078125 1.11022×1015 2.70054×1009 0 0 0
12 1.125 1.16667 1.16667 1.16667 1.16667 1.16667
13 -32 -3.73035×1014 1.84312×1006 0 0 0
14 -256 -7.09216 -7.09216 -7.09216 -7.09216 -7.09216
15 98304 1.42109×1014 -0.000173537 0 0 0
16 -3.93216×1006 54.9712 54.966 54.9712 54.9712 54.9712
17 1.24151×1009 -3.18323×1012 0.0783084 0 0 0
18 7.62357×1010 -529.124 -530.399 -529.124 -529.124 -529.124
19 3.43597×1011 2.09184×1011 -1.38482 0 0 0
20 -3.40849×1014 6192.12 5976.59 6192.12 6192.12 6192.12
21 1.28071×1016 -3.7835×1010 98.5388 0 0 0
22 -1.97258×1018 -86580.3 80473.3 -86580.3 -86580.3 -86580.3
23 -1.29704×1020 4.42378×1009 -3.88571×1006 0 0 0
24 5.27577×1021 1.42552×1006 1.41551×1007 1.42552×1006 1.42552×1006 1.42552×1006

25 1.01531×1023 -7.82311×1008 5.59158×1008 0 0 0
26 -7.20822×1025 -2.72982×1007 1.14962×1010 -2.72982×1007 -2.72982×1007 -2.72982×1007

27 6.50886×1027 1.3113×1006 -3.67793×1011 0 0 0
28 -9.06172×1029 6.01581×1008 6.06192×1012 6.01581×1008 6.01581×1008 6.01581×1008

29 -4.69823×1031 5.72205×1006 -5.40877×1013 0 0 0

Even a cursory glance at Table 5.8 will show that the first three methods displayed
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produce incorrect values for the odd Bernoulli numbers. This is caused by “rounding error”

an artifact of the fact that decimal numbers are only stored in memory up to a specific

number of significant digits. For example in our case each decimal number is stored with 52

significant binary digits (the maximum allowed by Microsoft Visual Studio) which translates

to 15 to 17 significant decimal digits.

Example 5.4.2 (Rounding error). Suppose we wish to sum the numbers 1010.5, −1010.0,

−0.5, clearly the sum is zero. Suppose however that we are using a program which only stores

decimal numbers up to three digits of precision. Then in the computers memory

� 1010.5 is stored as 1.01× 103

� −1010.0 is stored as −1.01× 103

� −0.5 is stored as −5.00× 10−1

so when the program sums these numbers it computes the result to be −0.5 because the trailing

digit in the first term was erased. This effect is called rounding error.

Rounding error is most problematic when summing many different numbers of differing

orders of magnitude, this explains why the summation formula experiences the worst error

of all five methods discussed above. In Tulliotools the greatest source of rounding error is

the Taylor expansion used in the inversion process, this explains the poor performance of

the generating function method when compared with the tan and tanh methods. The tan

and tanh methods have the greatest precision of the five methods showing no discernible

rounding error for the first 29 Bernoulli numbers. The problem of rounding errors can be

overcome entirely with the use of a so-called “arbitrary precision library” and it would be

interesting to compare the computation time of these methods with the use of such a library;

however, no such software is currently available for use with Microsoft Visual Studio and so

further investigation will have to wait.
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5.5 Methods of Numerical Integration

The ability to compute high-order derivatives of analytic functions allows for some interesting

strategies for numerical integration, in particular we have Darboux’s Formula which we

shall see allows us to approximate an integral using our knowledge of the integrand and its

derivatives at the end points of the interval of integration [28].

Proposition 5.5.1 (Darboux’s Formula for the Hahn and Levi-Civita fields). Let a, b ∈ K

satisfy a < b and let f : K → K be an analytic function on the interval [a, b]. Suppose

φ : K → K is a polynomial of degree n, then we have that

n∑
m=0

(−1)m(b− a)m
[
φ(n−m)(1)f (m)(b)− φ(n−m)(0)f (m)(a)

]
= (−1)n(b− a)n+1

∫
t∈[0,1]

φ(t)f (n+1)(a+ t(b− a)).

Proof. As in the conventional case, this identity can be proven by repeated integration by

parts.

In fact Darboux’s formula is more general than the one stated above as it can be extended

to include integration over complex numbers as well, the above however is sufficient for our

purposes. Rearranging the terms in Darboux’s formula yields the relation

φ(n)(1)f(b)− φ(n)(0)f(a) = (−1)n(b− a)n+1

∫
t∈[0,1]

φ(t)f (n+1)(a+ t(b− a))

−
n∑

m=1

(−1)m(b− a)m
[
φ(n−m)(1)f (m)(b)− φ(n−m)(0)f (m)(a)

]
.

However because φ is a polynomial of degree n we have that φ(n)(0) = φ(n)(1) = φ0 so we

have that

φ(n)(1)f(b)− φ(n)(0)f(a) = φ0

∫
t∈[a,b]

f ′(t).
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Thus, by relabelling our functions f (n) → f (n−1), we have that

∫
t∈[a,b]

f(t) =
1

φ0

n∑
m=1

(−1)m+1(b− a)m
[
φ(n−m)(1)f (m−1)(b)− φ(n−m)(0)f (m−1)(a)

]
(5.2)

+
1

φ0

(−1)n(b− a)n+1

∫
t∈[0,1]

φ(t)f (n)(a+ t(b− a)).

So we can integrate f by finding its derivatives as well as the derivatives of φ, the integral term

on the right hand side of Equation 5.2 is in effect our error. Different choices of φ will reduce

Equation 5.2 to different summation formula; for example, if φ is the nth degree Bernoulli

polynomial then Equation 5.2 is equivalent to the Euler-Maclaurin equation. Similarly if φ

is (t − 1)n or tn then Equation 5.2 goes to the Taylor series of the integrand about the left

or right endpoint as n → ∞ [28]. Another polynomial we investigate is
n∏
i=1

(t − i
n+1

) with

the idea that even if the nth derivative of the integrand is large the frequent sign changes

in φ will cause the integral term of Equation 5.2 to be small. Although Darboux’s formula

can be made equivalent to the Taylor expansion of the integrand about an end point, the

same is not possible for arbitrary points in the interval of integration. For this reason we also

experiment with integrating directly by a Taylor series about the central point in the interval

of integration. First we integrate a selection of high order polynomials only evaluating them

in the infinitesimal neighbourhood about the end points (or centre point as the case may be).

For comparison we integrate the same polynomials using the Trapezoidal Rule and Simpsons

Rule in the normal way (i.e. without use of infinitesimals). We also compute the integrals

symbolically using Mathematica and, where it is possible, SymbolicC++. In addition to its

symbolic integration method Mathematica also provides a method of numerical integration;

in fact, this method does not correspond to any single integration technique but instead

selects from a number of different techniques depending on the specific integral in question.

In principle, as long as the degree of the polynomial to be integrated is less than the depth

to which we can find its derivatives (which is to say the depth of calculation minus 1), our
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methods should produce an exact answer. We consider both this case and the case where

the degree of the integrand is greater than our depth of calculation (which happens to be

15 for this experiment). The following two families of polynomials provide us with an ample

supply of integrands to test. Let n ∈ N be given. Then we define

� A polynomial of degree n

Pn(x) :=
n∏
i=1

(x− i

π
)

� The Bernoulli polynomial of degree n, note that Bi is the ith Bernoulli number, given

by the recurrence relation

Qn(x) :=
n∑
i=0

(
n

i

)
Bn−ix

i

Table 5.9: Integral of P9 from 0 to 10

Method of Computation Result Time (sec.)
Central point Taylor series 167338556.792 0.0005
Darboux’s Formula (Bernoulli polynomials) 167338556.792 0.0187
Darboux’s Formula (Frequent sign change polynomial) 167338556.792 0.0025
Simpsons rule (1000 steps) 164684838.888 0.2523
Trapezoidal rule (1000 steps) 165350080.353 0.2744
Mathematica (symbolic) 167338556.792 0.2550
Mathematica (numeric) 167338556.792 0.1268
SymbolicC++ 167338556.792 31.8075

Table 5.10: Integral of P14 from 0 to 10

Method of Computation Result Time (sec.)
Central point Taylor series 879984428861 0.0015
Darboux’s Formula (Bernoulli polynomials) 879984428939 0.0198
Darboux’s Formula (Frequent sign change polynomial) 879882373891 0.0037
Simpsons rule (1000 steps) 856565103943 0.3413
Trapezoidal rule (1000 steps) 862448189383 0.3586
Mathematica (symbolic) 879984428861 0.3345
Mathematica (numeric) 879984428870 0.1463
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Table 5.11: Integral of P19 from 0 to 10

Method of Computation Result Time (sec.)
Central point Taylor series 6.11917660042×1014 0.0015
Darboux’s Formula (Bernoulli polynomials) 1.12283166334×1015 0.0216
Darboux’s Formula (Frequent sign change polynomial) -6.36011035051×1015 0.0044
Simpsons rule (1000 steps) 1.07683615415×1015 0.5900
Trapezoidal rule (1000 steps) 1.08842381018×1015 0.5017
Mathematica (symbolic) 1.12283199608×1015 4.6772
Mathematica (numeric) 1.12283199603×1015 0.1906

As expected due to the low degree of the integrand polynomial our method of integration

found the exact value of the integral of P9 and did so an order of magnitude faster than either

Mathematica’s symbolic or numerical methods and several orders of magnitude faster than

SymbolicC++. For the integrand P14 there is some small error in the result of the integration

due to the degree of the polynomial being exactly equal to the number of its derivatives we

can find; however, the time to calculate the integral remained an order of magnitude less

than that for Mathematica and Mathematica’s numerical method also produced a close but

not exact result. In the case where the integrand was P14 the only one of our methods to

produce a reasonable result was Darboux’s formula with Bernoulli polynomials; the other

two non-Archimedean methods were wildly inaccurate, this again is as expected due to the

high degree of the integrand polynomial relative to our depth of calculation.

Table 5.12: Integral of Q10 from 0 to 10

Method of Computation Result Time (sec.)
Central point Taylor series 4914341925 0.0022
Darboux’s Formula (Bernoulli polynomials) 4914341925 0.0231
Darboux’s Formula (Frequent sign change polynomial) 4914341925 0.0042
Simpsons rule (1000 steps) 4838576835.6 0.7003
Trapezoidal rule (1000 steps) 4857568906.18 0.7625
Mathematica (symbolic) 4914341925.00 0.0005
Mathematica (numeric) 4914341925.00 0.0928
SymbolicC++ 4914341925 2.9619
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Table 5.13: Integral of Q15 from 0 to 10

Method of Computation Result Time (sec.)
Central point Taylor series 2.4632485638×1014 0.0060
Darboux’s Formula (Bernoulli polynomials) 2.46324856386×1014 0.0259
Darboux’s Formula (Frequent sign change polynomial) 2.46317967669×1014 0.0082
Simpsons rule (1000 steps) 2.40806310322×1014 1.6375
Trapezoidal rule (1000 steps) 2.42191551765×1014 1.3542
Mathematica (symbolic) 2.46324856380×1014 0.0005
Mathematica (numeric) 2.46324856380×1014 0.1304

Table 5.14: Integral of Q20 from 0 to 10

Method of Computation Result Time (sec.)
Central point Taylor series 1.32124577735×1019 0.0102
Darboux’s Formula (Bernoulli polynomials) 1.33941318348×1019 0.0289
Darboux’s Formula (Frequent sign change polynomial) 1.20781435476×1019 0.0126
Simpsons rule (1000 steps) 1.3000785144×1019 2.0887
Trapezoidal rule (1000 steps) 1.30996596445×1019 2.3008
Mathematica (symbolic) 1.33941318588×1019 0.0006
Mathematica (numeric) 1.33941318589×1019 0.1778

The results of integrating Bernoulli polynomials largely agree with the results from the

previous family of polynomials; specifically our methods perform well when the degree is

less than the depth of calculation, they perform reasonably well but imperfectly when the

degree of the polynomial is close to the depth of calculation and they become inaccurate

when the degree of the integrand polynomial is greater than the depth of calculation. One

thing to notice is that Mathematica’s symbolic integration method preformed significantly

better for Bernoulli polynomials than for the previous family of test polynomials; we suspect

this is because Mathematica is internally substituting some known identity in place of the

integral thus significantly reducing the complexity of the computation. Since Tulliotools

seems to compare favourably in the above tests we investigate further with the integrands

P6Q4, P10Q5, and P12Q8, the depth of calculation throughout is 25.
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Table 5.15: Integral of P6Q4 from 0 to 10

Method of Computation Result Time (sec.)
Central point Taylor series 3256892681.95 0.0011
Darboux’s Formula (Bernoulli polynomials) 3256892681.95 0.0224
Darboux’s Formula (Frequent sign change polynomial) 3256892681.95 0.0058
Simpsons rule (1000 steps) 3204897511.71 0.2974
Trapezoidal rule (1000 steps) 3217932446.13 0.3816
Mathematica (symbolic) 3256892681.95 4.0018
Mathematica (numeric) 3256892681.95 0.9128
SymbolicC++ 64890102.8482 36.3266

Table 5.16: Integral of P10Q5 from 0 to 10

Method of Computation Result Time (sec.)
Central point Taylor series 5.60845249807×1013 0.0011
Darboux’s Formula (Bernoulli polynomials) 5.60845249842×1013 0.0249
Darboux’s Formula (Frequent sign change polynomial) 5.60845249807×1013 0.0060
Simpsons rule (1000 steps) 5.47069797559×1013 0.6372
Trapezoidal rule (1000 steps) 5.50529044403×1013 0.6114
Mathematica (symbolic) 5.60845249807×1013 4.3917
Mathematica (numeric) 5.60845249807×1013 0.1592

Table 5.17: Integral of P12Q8 from 0 to 10

Method of Computation Result Time (sec.)
Central point Taylor series 1.41666070259×1018 0.0021
Darboux’s Formula (Bernoulli polynomials) 1.41666067675×1018 0.0224
Darboux’s Formula (Frequent sign change polynomial) 1.41666070259×1018 0.0111
Simpsons rule (1000 steps) 1.37030525479×1018 0.8658
Trapezoidal rule (1000 steps) 1.38196505555×1018 1.0181
Mathematica (symbolic) 1.41666070259×1018 6.5037
Mathematica (numeric) 1.41666070259×1018 0.2105

As the tables above show, non-Archimedean methods of integration produced good nu-

merical values for the given integrals and reliably did so an order of magnitude faster than

Mathematica was able to; this would seem to suggest that non-Archimedean methods pro-

vide a real advantage at least when it comes to integrating polynomials. Next we would

like to investigate the performance of non-Archimedean methods when integrating analytic

functions; to that end, we obtained a selection of analytic functions from [29]. In this case

we break the interval of integration into smaller steps so as to ensure that the error terms

involved don’t diverge, the depth of calculation remains 15 throughout. A number of these

functions have integrable singularities at the endpoints of integration so the Trapezoidal
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Rule and Simpsons Rule are inapplicable; in these cases we integrate over the piece of the

interval that contains the singularity using the Taylor expansion of the integrand about some

point where it is actually defined. For comparison, we compute these same integrals using

Mathematica both symbolically and numerically, SymbolicC++ was unable to produce a

result for any of the given integrals. The test functions we used are listed below:

�

f1(x) :=
x2 ln(x)

(x2 − 1)(x4 + 1)

This function has singularities at both x = 0 and x = 1, its integral from 0 to 1 is

conjectured to be π2(2−
√

2)
32

[29].

�

f2(x) :=
x2

sin2(x)

This function has a singularity at x = 0, its integral from 0 to π
4

is conjectured to be

π2

16
+ π ln(2)

4
+G where G is Catalans constant [29].

�

f3(x) :=
x sin(x)

1 + cos2(x)

This function has no singularities, its integral from 0 to π is conjectured to be π2

4
[29].

�

f4(x) := x ln(1 + x)

This function has no singularities for positive arguments, its integral from 0 to 1 is

known to be 1
4

[29].

�

f5(x) := ex cos(x)

This function has no singularities, its integral from 0 to π
2

is known to be e
π
2 −1
2

[29].
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�

f6(x) := ln2(x)

This function has a singularity at x = 0, its integral from 0 to 1 is known to be 2. [29]

�

f7(x) := ln(cos(x))

This function has a singularity at x = π
2
, its integral from 0 to π

2
is known to be −π ln(2)

2

[29].

Table 5.18: Integral of f1 from 0 to 1 with various step sizes

Method of Com-
putation

10 steps
Time
(sec.)

50 steps
Time
(sec.)

100 steps
Time
(sec.)

500 steps
Time
(sec.)

1000 steps
Time
(sec.)

Central point
Taylor series

0.206802333557 0.055 0.185720449275 0.274 0.183183663033 0.593 0.181171761808 2.923 0.180921387493 7.300

Darboux’s For-
mula (Bernoulli
polynomials)

0.180671031514 0.123 0.180671260743 1.012 0.18067126236 1.862 0.180671262589 10.142 0.18067126259 17.610

Darboux’s For-
mula (Frequent
sign change
polynomial)

0.180671018257 0.108 0.180671260637 0.858 0.180671262346 1.581 0.180671262589 6.636 0.18067126259 12.909

Method of Com-
putation

Integral Time (sec.)

Mathematica
(symbolic)

0.180671262591 10.389

Mathematica (nu-
meric)

0.180671262709 0.890

π2(2−
√
2)

32
0.180671262591 n/a

Table 5.19: Integral of f2 from 0 to π
4

with various step sizes

Method of Com-
putation

10 steps
Time
(sec.)

50 steps
Time
(sec.)

100 steps
Time
(sec.)

500 steps
Time
(sec.)

1000 steps
Time
(sec.)

Central point
Taylor series

0.938429184613 0.215 0.862808426244 0.709 0.853180614292 1.280 0.845448903068 5.241 0.844480579999 10.446

Darboux’s For-
mula (Bernoulli
polynomials)

0.843511841685 0.238 0.843511841685 1.706 0.843511841685 4.014 0.843511841685 13.269 0.843511841685 26.723

Darboux’s For-
mula (Frequent
sign change
polynomial)

0.843511841685 0.208 0.843511841685 1.580 0.843511841685 2.317 0.843511841685 11.468 0.843511841685 22.712

Method of Com-
putation

Integral Time (sec.)

Mathematica
(symbolic)

0.843511841685 6.420

Mathematica (nu-
meric)

0.843511841685 0.069

π2

16
+
π ln(2)

4
+G 0.843511841685 n/a
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Table 5.20: Integral of f3 from 0 to π with various step sizes

Method of Com-
putation

10 steps
Time
(sec.)

50 steps
Time
(sec.)

100 steps
Time
(sec.)

500 steps
Time
(sec.)

1000 steps
Time
(sec.)

Central point
Taylor series

2.38333894223 0.212 2.46425705799 1.087 2.46662064711 1.376 2.46737005245 6.856 2.46739334352 13.503

Darboux’s For-
mula (Bernoulli
polynomials)

2.38333890545 0.499 2.46425705799 2.252 2.46662064711 3.323 2.46737005245 16.180 2.46739334352 32.000

Darboux’s For-
mula (Frequent
sign change
polynomial)

2.38333894223 0.403 2.46425705799 1.658 2.46662064711 2.850 2.46737005245 14.118 2.46739334352 28.132

Method of Com-
putation

Integral Time (sec.)

Mathematica
(symbolic)

2.46740110027 12.811

Mathematica (nu-
meric)

2.46740110025 0.250

π2

4
2.46740110027 n/a

Table 5.21: Integral of f4 from 0 to 1 with various step sizes

Method of Com-
putation

10 steps
Time
(sec.)

50 steps
Time
(sec.)

100 steps
Time
(sec.)

500 steps
Time
(sec.)

1000 steps
Time
(sec.)

Central point
Taylor series

0.325403421197 0.011 0.264102569731 0.084 0.256991253957 0.097 0.251388681655 0.535 0.250693743879 1.063

Darboux’s For-
mula (Bernoulli
polynomials)

0.325403421197 0.076 0.264102569731 0.479 0.256991253957 0.850 0.251388681655 4.067 0.250693743879 8.131

Darboux’s For-
mula (Frequent
sign change
polynomial)

0.325403421197 0.037 0.264102569731 0.268 0.256991253957 0.439 0.251388681655 2.001 0.250693743879 4.066

Method of Com-
putation

Integral Time (sec.)

Mathematica
(symbolic)

0.250000000000 5.703

Mathematica (nu-
meric)

0.250000000000 0.2172

1

4 0.25 n/a

Table 5.22: Integral of f5 from 0 to π
2

with various step sizes

Method of Com-
putation

10 steps
Time
(sec.)

50 steps
Time
(sec.)

100 steps
Time
(sec.)

500 steps
Time
(sec.)

1000 steps
Time
(sec.)

Central point
Taylor series

1.83943337875 0.032 1.90281470625 0.200 1.90463898243 0.327 1.90521490197 1.846 1.90523274958 3.560

Darboux’s For-
mula (Bernoulli
polynomials)

1.83943337875 0.262 1.90281470625 0.725 1.90463898243 1.327 1.90521490197 6.581 1.90523274958 13.211

Darboux’s For-
mula (Frequent
sign change
polynomial)

1.83943337875 0.229 1.90281470625 0.495 1.90463898243 0.907 1.90521490197 4.568 1.90523274958 9.106

Method of Com-
putation

Integral Time (sec.)

Mathematica
(symbolic)

1.90523869048 0.556

Mathematica (nu-
meric)

1.90523869048 0.214

e
π
2 − 1

2
1.90523869048 n/a
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Table 5.23: Integral of f6 from 0 to 1 with various step sizes

Method of Com-
putation

10 steps
Time
(sec.)

50 steps
Time
(sec.)

100 steps
Time
(sec.)

500 steps
Time
(sec.)

1000 steps
Time
(sec.)

Central point
Taylor series

1.91297168502 0.017 1.97823314635 0.097 1.98819135915 0.149 1.99720902389 0.785 1.99851209132 1.630

Darboux’s For-
mula (Bernoulli
polynomials)

1.91347701776 0.069 1.97845551707 0.562 1.98831474868 0.863 1.99723896109 4.543 1.99852817956 9.016

Darboux’s For-
mula (Frequent
sign change
polynomial)

1.91261136441 0.068 1.97823043825 0.249 1.98819102284 0.555 1.99720902111 2.504 1.99851209092 5.184

Method of Com-
putation

Integral Time (sec.)

Mathematica
(symbolic)

2.00000000000 0.879

Mathematica (nu-
meric)

2.00000000000 0.102

2 2 n/a

Table 5.24: Integral of f7 from 0 to π
2

with various step sizes

Method of Com-
putation

10 steps
Time
(sec.)

50 steps
Time
(sec.)

100 steps
Time
(sec.)

500 steps
Time
(sec.)

1000 steps
Time
(sec.)

Central point
Taylor series

-1.5213090659 0.207 -1.22581686958 0.728 -1.16819224184 1.321 -1.10972904147 6.797 -1.10034983571 13.390

Darboux’s For-
mula (Bernoulli
polynomials)

-1.07814289959 0.320 -1.08666301604 1.782 -1.0877280306 3.326 -1.08858004224 16.587 -1.0886865437 32.987

Darboux’s For-
mula (Frequent
sign change
polynomial)

-1.07832106916 0.298 -1.08669864995 1.600 -1.08774584755 2.786 -1.08858360563 14.221 -1.08868832539 28.640

Method of Com-
putation

Integral Time (sec.)

Mathematica
(symbolic)

-1.08879304515 12.381

Mathematica (nu-
meric)

-1.08879304515 0.095

−π ln(2)
2

-1.08879304515 n/a

It is not at all clear what conclusions can be drawn from the results of the above test.

On the one hand, it is promising that non-Archimedean methods managed to produce recog-

nizable solutions for the integrals in time periods that were of the same order of magnitude

as Mathematica’s symbolic method. On the other hand, Mathematica’s numeric method

of integration consistently produced more accurate solutions in times that were orders of

magnitude shorter than for any of the other methods. We caution the reader against form-

ing strong conclusions based off this data for a few reasons. Firstly, as we stated above,

Mathematica’s numerical integration method does not employ a single integration technique

but rather chooses among several different ones; so there is no guarantee that the method

used to integrate f1 is the same as that used to integrate f7. Secondly, even when using a

single technique, Mathematica actively adjusts the parameters of integration (e.g. step size

and number) based on information it obtains about the integrand; although mathematically

175



it is possible to do this with non-Archimedean methods as well, the current state of the

TullioTools software does not allow it. Another possibility that might improve the accuracy

and speed of non-Archimedean methods would be to continue using Darboux’s formula but

to change the depth of calculation and the specific polynomial to be used based on the func-

tion to be integrated. This could be as simple as using the frequent sign change polynomial

but changing the location of the roots to improve cancellation. A more sophisticated idea

might be to employ the calculus of variations to make stationary the error term; either way,

there seems to be ample room for improvement in this area. The depth of calculation used

in the non-Archimedean methods had a pronounced effect on the accuracy of the integrals

involving polynomials and so we would like to investigate the effect it has when the integrand

is analytic. To do that we calculate the same integrals as above but this time we vary the

depth of the calculation, the number of steps remains 100 throughout.

Table 5.25: Integral of f1 from 0 to 1 with various depths of calculation

Method of Com-
putation

Depth of 10 Time
(sec.)

Depth of 20 Time
(sec.)

Depth of 30 Time
(sec.)

Depth of 40 Time
(sec.)

Central point
Taylor series

0.183183662351 0.250 0.18318366318 0.958 0.18318366325 2.803 0.183183663266 7.182

Darboux’s For-
mula (Bernoulli
polynomials)

0.180671261668 1.295 0.180671261529 3.605 0.177340121748 9.945 -7.55504318522×1047 19.897

Darboux’s For-
mula (Frequent
sign change
polynomial)

0.180671261665 1.0309 0.180671262493 3.566 0.180671262563 5.554 0.180671262579 12.538

Table 5.26: Integral of f2 from 0 to π
4

with various depths of calculation

Method of Com-
putation

Depth of 10 Time
(sec.)

Depth of 20 Time
(sec.)

Depth of 30 Time
(sec.)

Depth of 40 Time
(sec.)

Central point
Taylor series

0.853180614292 0.627 0.853180614292 3.331 0.853180615957 13.848 0.853181457083 49.891

Darboux’s For-
mula (Bernoulli
polynomials)

0.843511841685 1.356 0.84351184168 7.543 1.3421471305 30.701 -7.05373532399×1064 99.852

Darboux’s For-
mula (Frequent
sign change
polynomial)

0.843511841685 1.215 0.843511841685 6.479 0.84351184335 27.641 0.843512684476 90.993

Table 5.27: Integral of f3 from 0 to π with various depths of calculation

Method of Com-
putation

Depth of 10 Time
(sec.)

Depth of 20 Time
(sec.)

Depth of 30 Time
(sec.)

Depth of 40 Time
(sec.)

Central point
Taylor series

2.46662064711 0.992 2.46662064711 3.473 2.46662064711 14.003 2.46662064711 46.957

Darboux’s For-
mula (Bernoulli
polynomials)

2.46662064711 1.754 2.46662064711 8.292 2.46662064711 32.694 2.46662064711 102.442

Darboux’s For-
mula (Frequent
sign change
polynomial)

2.46662064711 1.175 2.46662064711 7.295 2.46662064711 29.311 2.46662064711 95.222
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Table 5.28: Integral of f4 from 0 to 1 with various depths of calculation

Method of Com-
putation

Depth of 10 Time
(sec.)

Depth of 20 Time
(sec.)

Depth of 30 Time
(sec.)

Depth of 40 Time
(sec.)

Central point
Taylor series

0.256991253957 0.123 0.256991253957 0.145 0.256991253957 0.256 0.256991253957 0.373

Darboux’s For-
mula (Bernoulli
polynomials)

0.256991253957 0.431 0.256991253957 1.657 0.256991253957 4.025 0.256991253957 9.006

Darboux’s For-
mula (Frequent
sign change
polynomial)

0.256991253957 0.240 0.256991253957 0.726 0.256991253957 1.173 0.256991253957 2.011

Table 5.29: Integral of f5 from 0 to π
2

with various depths of calculation

Method of Com-
putation

Depth of 10 Time
(sec.)

Depth of 20 Time
(sec.)

Depth of 30 Time
(sec.)

Depth of 40 Time
(sec.)

Central point
Taylor series

1.90463898243 0.220 1.90463898243 0.586 1.90463898243 1.214 1.90463898243 2.359

Darboux’s For-
mula (Bernoulli
polynomials)

1.90463898243 0.696 1.90463898243 2.602 1.90463898243 5.928 1.90463898243 12.795

Darboux’s For-
mula (Frequent
sign change
polynomial)

1.90463898243 0.594 1.90463898243 1.611 1.90463898243 3.053 1.90463898243 5.822

Table 5.30: Integral of f6 from 0 to 1 with various depths of calculation

Method of Com-
putation

Depth of 10 Time
(sec.)

Depth of 20 Time
(sec.)

Depth of 30 Time
(sec.)

Depth of 40 Time
(sec.)

Central point
Taylor series

1.9831320353 0.096 1.99084742601 0.302 1.9936224532 0.696 1.99507097924 1.580

Darboux’s For-
mula (Bernoulli
polynomials)

1.98314867821 0.401 1.96897925712 1.867 -200559.732157 4.849 1.81223968541×1049 10.717

Darboux’s For-
mula (Frequent
sign change
polynomial)

1.98313186078 0.276 1.99084709016 0.900 1.99362211734 2.096 1.99507064339 4.175

Table 5.31: Integral of f7 from 0 to π
2

with various depths of calculation

Method of Com-
putation

Depth of 10 Time
(sec.)

Depth of 20 Time
(sec.)

Depth of 30 Time
(sec.)

Depth of 40 Time
(sec.)

Central point
Taylor series

-1.16735034886 0.515 -1.16855772081 3.760 -1.16895586425 15.367 -1.16915412109 51.043

Darboux’s For-
mula (Bernoulli
polynomials)

-1.08723860077 1.296 -1.09014091981 8.627 308135.281549 33.606 6.65851559939×1052 104.376

Darboux’s For-
mula (Frequent
sign change
polynomial)

-1.08722226363 1.076 -1.08800764699 8.030 -1.08826944638 30.735 -1.08840034607 98.800

Although we find that increasing the depth of calculation did improve the accuracy of the

result in most cases, in the case of f3, f4, and f5 it had no effect on accuracy at all. Moreover,

increasing the depth of calculation significantly increases the time needed to compute the

result; this does not necessarily mean however that we should always use the smallest depth

of calculation possible. One complicating factor is that increasing the depth of calculation

177



might reduce the number of steps needed to achieve the same accuracy. For example, if

increasing the depth of calculation doubled the time it took to evaluate the integrand at a

given point but allowed us to achieve an equivalent level of accuracy using only a quarter as

many steps it might still be a net gain in performance to use the larger depth of calculation.

To conclude, we would like to determine if there is any class of functions which TullioTools

is better at integrating than Mathematica, and in fact, it seems that there is: Mathematica

has a well-known difficulty integrating highly oscillatory functions [30]. Since TullioTools has

access to not only the value of the integrand but also its derivatives it should be substantially

better at integrating highly oscillatory functions. To test this, we consider the function

g(x) := P5(cos(100x))Q5(cos(100x)).

As may be seen in the table below, when Mathematica numerically integrates this function

under default settings it produces an incorrect answer; TullioTools, on the other hand, is

able to attain the first four digits correctly in approximately half the time Mathematica

takes. When Mathematica attempts to integrate g under default settings it produces two

warnings; the first states that the maximum allowed number of recursive steps was reached

and the second states that the integrand may be highly oscillatory and the working precision

may be too small. The first warning can be addressed by increasing the maximum allowed

number of recursive steps, we set this to 100; note that this does not require Mathematica

to use 100 recursive steps but it prevents it from using more than that. The second issue

can be addressed by increasing the working precision; this was done in increments of 10 until

the warning was no longer present, resulting in a working precision of 40. The depth of

calculation is 5.
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Table 5.32: Integral of g from 0 to 10

Method of Com-
putation

1000 steps
Time
(sec.)

5000 steps
Time
(sec.)

10000 steps
Time
(sec.)

Central point
Taylor series

186.369934703 2.821 186.372340098 14.669 186.372340207 25.436123

Darboux’s For-
mula (Bernoulli
polynomials)

186.389214786 6.433 186.372340097 26.562 186.372340207 52.864

Darboux’s For-
mula (Frequent
sign change
polynomial)

186.365945702 4.663 186.372340097 24.594 186.372340207 46.185

Method of Com-
putation

Integral Time (sec.)

Mathematica
(symbolic)

186.372340189 4324.78

Mathematica (nu-
meric with ad-
justed settings)

186.372340188 66.96

Mathematica
(numeric with
default settings)

182.322 5.964

As can be seen in the table above, TullioTools was able to integrate g with a good de-

gree of precision in less time than Mathematica, the central point Taylor series method in

particular was substantially faster than both Mathematica and the other methods imple-

mented by TullioTools. The results in this section are hardly conclusive; in particular a fair

comparison would require that TullioTools be able to actively adjust how the interval of

integration is partitioned based on the specific integrand. Moreover, a more sophisticated

method of comparison will be necessary to ensure that Mathematica and TullioTools are

always competing to attain the same degree of precision. Nevertheless, we believe that these

results are sufficient to establish that non-Archimedean methods of numerical integration

are highly versatile and have the potential to improve upon conventional methods.
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Chapter 6

Concluding Remarks

In this final chapter, we offer some remarks to conclude this thesis. We will summarize

the primary results presented here and discuss their importance. As the work was highly

collaborative we will clarify the origin of various contributions and endeavour to distinguish

between those results that are entirely new and those that where preexisting. We will also

describe some future possibilities for research. We outline certain mathematical topics that it

will be necessary to investigate going forward. Moreover, we speculate as to how the existing

mathematical framework might be applied to the theory of quantum mechanics. Finally, we

outline a number of improvements that could be made to the Tulliotools software and we

highlight some promising avenues of investigation into computational applications of the

Levi-Civita field.

6.1 Summary of Results

The work presented in this thesis is a continuation of research done by Dr. Shamseddine

as well as the author. We would like to take this opportunity to summarize the aspects

of this work that constitute new results and to give some explanation as to their impor-

tance. In Chapter 2 we study the topological structure of the Hahn field. The key result

is a description of one topology in particular which is similar to the weak topology on the
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Levi-Civita field. Using this newly discovered topology we are able to derive convergence

criteria both for sequences and for series. These convergence criteria are again similar to

those for the weak topology on the Levi-Civita field [16]. This work is of key importance as it

allows many results from the Levi-Civita field to be extended to the Hahn field. In Chapter

3 we address the problem of extending the theory of measures, analysis, and integration

to dimensions greater than two. This begins with the proposal of three conjectures which

appear necessary in order to allow this development. We also begin the effort to prove these

conjectures by proving a version of the Weierstrauss Preparation Theorem for the Hahn field.

The remainder of the chapter goes on to construct a theory of ν dimensional integration,

by assuming the soundness of the three conjectures. These results are of particular impor-

tance in the ongoing effort to develop the mathematical theory necessary for applications in

physics because much of physics involves more than two dimensions. Chapter 4 continues

our investigations into the non-Archimedean delta function; this has been a motivating ex-

ample from the beginning of our research, and much of the work in this chapter was in fact

done for the author’s Master’s degree. The key result which merits this chapter’s inclusion

in the author’s doctoral thesis is a derivation of a version of Leibniz rule for the Hahn field.

Another significant development detailed in this chapter is how the aforementioned Leibniz

rule explains what boundary conditions are sufficient for non-Archimedean Greens functions

to be used to solve real differential equations. In Chapter 5 we turn our attention to the

computational applications of the Levi-Civita field. This work entailed the development of

a static library in the C++ programming language which defines a new class for Levi-Civita

numbers and which implements numerous functions for those numbers including basic arith-

metic and trigonometric operations. The entirety of this library is included as an Appendix.

This newly developed software is used to verify the results of a previous paper in computing

numerical derivatives using the Levi-Civita field [4]. We also show how a similar method can

be used to compute the values of numerical sequences using generating functions. We con-

clude the chapter by investigating a variety of methods for performing numerical integration
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employing the Levi-Civita field and we compare the performance of these methods to other

commercial software.

6.2 Statement of Contributions

The research done throughout my doctoral studies was completed in collaboration with my

adviser, Dr. Shamseddine. Moreover, this research is a continuation of my work done for

my Master’s thesis as well as Dr. Shamseddine’s work over the past couple of decades.

For the sake of clarity, I will endeavour to highlight my own original contributions and

distinguish those which are new results from ones contained in my Master’s thesis. Regarding

Chapter 2 the problem of inducing a weak topology on the Hahn field was originally brought

to my attention by Dr. Shamseddine, however, the proposed solution is my own work.

The subsequent propositions and theorems were done largely independently, although Dr.

Shamseddine did provide key input in some areas to clarify arguments and fix minor mistakes.

Naturally, many of the propositions are closely related to Dr. Shamseddine’s work on the

Levi-Civita field [1], however, substantial modification was often required to adapt to the

newly identified weak topology. Chapter 3 addresses the problem of constructing a theory

of measures, analysis, and integration in higher dimensions. This task began as part of my

Master’s thesis, where Dr. Shamseddine conceived of the notion of a simple region and I was

able to develop that idea into a theory of integration in two and three dimensions. Notably

in this work were a number of unfounded assumptions related to the behaviour of simple

regions in three dimensions. This gap in my Master’s thesis motivated my proposal of three

conjectures and proof of the Weierstrauss Preparation Theorem. The developments related to

this topic are my own work conducted during my Doctoral program and are meant to clarify

the difficulty involved in generalizing the theory to higher dimensions. The definitions and

propositions related to measure theory, analysis, and integration are based on the work done

in three dimensions for my Master’s thesis, however, the generalized versions of the arguments
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are new and my own work. The idea of a non- Archimedean delta function, which is discussed

in Chapter 4 was brought to my attention by Dr. Shamseddine. Much of the related theory

was conducted by myself under his supervision for my Master’s degree. New and original

work, however, include the proof of Leibniz’s rule and the related arguments regarding the

boundary conditions of Green’s functions. The corrected and expanded examples are also

my own original work and are relatively different to the original versions published in my

Master’s thesis. In chapter 5 we discuss the computational applications of the Levi-Civita

field. The idea for how to compute numerical derivatives of functions originated with Dr.

Shamseddine. The C++ static library used to recreate those results was created entirely by

myself as was the specific implementation of this library in the context of the various tests

performed. I was also responsible for the idea of computing numerical sequences using the

generating functions, and for the work related to numerical integration.

6.3 Research Outlook

The results presented in this thesis allow for numerous possibilities for future research. They

can be loosely divided into three branches, those being mathematical, physical, and com-

putational. Mathematically there are a number of interesting ideas to pursue, perhaps the

most obvious is the development of a theory of manifolds. Developing a theory of mani-

folds is important for two reasons, firstly, because it would constitute substantial progress

towards proving the three conjectures put forward in Chapter 3. Secondly, it would also

allow the possibility of investigating general relativity in the context of the Hahn and Levi-

Civita fields. Another possibility for mathematical research is to further investigate the delta

function. In particular, we would like to know if the non-Archimedean delta function allows

us a way to easily compute the real Green’s function of a given differential operator. It

would also be interesting to extend this work to include partial differential equations, and

non-linear differential equations. Additionally, it may be interesting to conduct a survey
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of differential operators with no known Green’s function as the non-Archimedean context

may allow us to find them in cases where conventional techniques fail. The field of p-adic

(non-Archimedean) mathematical physics has largely focused on quantum mechanics and we

believe there is room for progress on this topic. One possibility, briefly discussed in the mo-

tivation section, is to consider wave functions which go from the complex Hahn field to itself.

This idea falls in line with the way that non-Archimedean mechanics has been approached

in the past. One interesting possibility relates to perturbation theory. We suspect that it is

possible to arrange things so that the real part of an equation corresponds to the first order

of approximation, and every subsequent order of magnitude in the equation corresponds to

another term in the approximation. Another approach to quantum mechanics is suggested

by the success of the non-Archimedean delta function and its relation to the Dirac delta

function which is commonly seen as describing the eigenstates of the position operator. In

this approach one would endeavour to find a subset of functions from the complex Hahn field

to itself, which is somehow isomorphic to the conventional family of wave functions. Ideally

this new family of non–Archimedean wave functions could be used in place of conventional

wave functions. It should be chosen to have a more convenient mathematical description,

or more convenient computational properties, or possibly a clear intuitive meaning. Finally,

pending some developments regarding manifolds on the Hahn field it would be interesting

to investigate a non-Archimedean model of general relativity. There are also a number of

ideas to investigate in terms of computational research. On the theoretical side of things,

one might start by determining the computational complexity of various operations on the

Levi-Civita field, and comparing them to their classical counterparts. More practically, the

C++ implementation of the Levi-Civita field could be expanded to allow it to operate in

conjunction with an arbitrary precision library. That would be particularly helpful in the

study of generating functions and numeric sequences, as it would substantially reduce the

effect of rounding errors. Finally, there are many ideas to pursue with regards to numer-

ical integration. We would like to expand the C++ implementation, so that it is capable
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of actively adjusting parameters in response to the various numerical approximations pro-

duced. We are also interested in implementing Monte Carlo methods of integration, as these

might make the best use of the ability to compute high order derivatives of the integrand.

One key mathematical problem related to this topic is finding a way to easily approximate

the radius of convergence of the power series representation of an integrand. Here too, we

hope to benefit from our ability to compute high order derivatives of the integrand. We

hope that the results put forward in this thesis can now be used to apply the Hahn and

Levi-Civita fields to problems in physics in a mathematically rigorous manner. There is

still more mathematical theory to be developed; however, we believe there is now enough in

place to begin investigating descriptions of quantum mechanics that employ the Hahn and

Levi-Civita fields. Now that there exists a C++ library implementing the Levi-Civita field it

should be possible to explore a wide variety of computational applications with relative ease.

One interesting project along these lines would be to incorporate the work done regarding

the non-Archimedean delta function into the work done in computation for the purposes of

solving differential equations.
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Appendix A

Tulliotools

A.1 Documentation

A.1.1 ReadMe.txt

========================================================================

Tul l i oToo l s v1 . 8

========================================================================

Welcome to Tu l l i oToo l s v1 . 8 . This stat ic l i b r a r y (named for the I t a l i a n

mathematician Tu l l i o Levi−Civ i ta ) i n c l ud e s a number o f header and

source f i l e s intended to implement the so c a l l e d Levi−Civ i ta f i e l d

in the C++ language . Al l code and comments were wr i t t en by Darren M.

Flynn−Primrose in pur su i t o f h i s Ph .D in Phys ics at the Un ive r s i ty

o f Manitoba . The code was wr i t t en and compiled with Microso f t Visua l

Stud ios 2015 Community Edit ion .

========================================================================

Header F i l e s
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========================================================================

tu l l i o t o o l s v 1 8 . h : Header f i l e to be inc luded in p r o j e c t s that wish to

use this l i b r a ry , this f i l e automat i ca l l y i n c l ud e s the other headers

in the l i b r a r y

d e f i n i t i o n s . h : De f ines a number o f Macros such as the depth to which

Taylor s e r i e s are c a l c u l a t ed and the number o f s i g n i f i c a n t d i g i t s to

be used changing the d e f i n i t i o n s in this f i l e w i l l cause the va lue s

to change everywhere they appear in the l i b r a r y

r a t i o n a l s . h : De f ines the ” ra t ” class for r a t i o n a l numbers , e lements are

s to r ed as two unsigned i n t e g e r s and a bool .

l e v i c i v i t a . h : De f ine s the ” l c f ” class for e lements o f the Levi−Civ i ta

f i e l d e lements are s to r ed as two vec to r s . The f i r s t vec to r ( a vec to r

o f f l o a t s ) conta in s the value o f the element at each support po int

and the second vec to r ( a vec to r o f r a t s ) conta in s the cor re spond ing

support po in t s themse lves .

f un c t i on s . h : Inc lude s a number o f f unc t i on s for use with the l i b r a r y .

d i f op s . h : Inc lude s ope ra t i on s r e l a t e d to d i f f e r e n t i a t i o n .

i n tops . h Inc lude s ope ra t i on s r e l a t e d to i n t e g r a t i o n .

========================================================================

Source F i l e s
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========================================================================

In most ca s e s each header f i l e has a coresponding source f i l e which

conta in s the d e f i n i t i o n s o f the c l a s s e s / f unc t i on s / e tc . dec l a r ed in

the header ; in this l i b r a r y the re are three exept i ons to this . In

p a r t i c u l a r we have t u l l i o t o o l s v 1 8 . h and d e f i n i t i o n s . h ne i t h e r o f

which has a corre spond ing source f i l e . We a l s o have func t i on s . h

which has three cor respond ing source f i l e s ( p r imar i l y for ease o f

read ing ) ; namely , the re are t r i g f u n c s . cpp which conta in s the

d e f i n i t i o n s for t i g funct i ons , spec funcs . cpp which prov ide s the

d e f i n i t i o n s for a mi s c e l l aneous assortment o f s p e c i a l funct i ons , and

t e s t f u n c s . cpp which d e f i n e s a number o f f un c t i on s used for the

purpose o f t e s t i n g the l i b r a r y and which are not necce s sa ry to i t s

i n t e r n a l workings .

========================================================================

I s s u e s & Bugs

========================================================================

1) The operator templates for the RAT and LCF c l a s s e s a l l assume the

f i r s t argument i s o f the class type and the second argument i s o f an

a rb i t r a r y type . So for example i f x i s an LCF data type and i f y i s

a double then to mult ip ly them we need to wr i t e x*y . I f we wr i t e y*

x then the compi ler s t a t e s that the re i s no operat i on corre spond ing

to those argument types the same i s true for addit ion , subt rac t ion ,

and d i v i s i o n . The obvious th ing to do i s to in c lude a second

template which makes the opo s i t e assumption ( i . e . assume the f i r s t

argument i s a r b i t r a r y and the second i s o f the g iven class type ) but
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this f a i l s in the case that both arguments are o f the g iven class

type . When this happens the compi le r can ’ t dec ide which template to

use i t can ’ t s e e that they are equ iva l en t . This could in p r i n c i p l e

be so lved with yet a th i rd template s p e c i f i c a l l y for this case but

this would near ly t r i p l e the s i z e o f both class d e f i n i t i o n s the re

must be a be t t e r way .

2) The two class d e f i n i t i o n s RAT and LCF use unsigned i n t s and doubles

r e s p e c t i v e l y . I t would be be t t e r to change them so they are class

templates they could then be changed to use any av a i l a b l e data type .

In p a r t i c u l a r the Boost Mu l t i p r e c i s i on l i b r a r y ( which i s not

cu r r en t l y compatible with v i s u a l s tud i o s ) has the f l o a t 1 28 data type

that i t would be i n t e r e s t i n g to try . A l t e r na t i v e l y an a rb i t r a r y

p r e c i s i o n l i b r a r y could be inco rpe ra t ed in this way .

3) The number o f support po in t s inc luded in c a l c u l a t i o n s i s cu r r en t l y

cont ro l ed by the SIG SUPP macro this means that cu r r en t l y a l l

computations have to be done to the same depth and the re i s no way

to change that depth with in the program i t s e l f . I t would be be t t e r

to make this more v e r s a t i l e so we could experiment with c a l c u l a t i o n s

that use vary ing numbers o f support po in t s as we l l as with programs

which a c t i v e l y ad jus t the depth o f c a l c u l a t i o n .

A.2 Headers

A.2.1 definitions.h

#pragma once

#ifndef DEFINITIONS H
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#define DEFINITIONS H

#define USE MATH DEFINES//Al lows us to use the cons tan t s de f ined in

the math . h l i b r a r y

#define SIG DIGS 12//Def ines the number o f s i g n i f i c a n t d i g i t s to use

when conver t ing between type s .

#define SIG SUPP 25//Def ines the number o f suppor t po in t s s t o r ed in

the l c f c l a s s .

#define SIG TERMS 26//Def ines how many terms o f the t a y l o r s e r i e s are

cons idered .

#define STEP NO 1000//Def ines how many s t e p s are used when employing

simpsons ru l e . Must be even .

#define CATS CONST 0.91596559417721901505 //4603514932384110774

Catalan ’ s Constant . We use the f i r s t 21 s i g d i g s b/c t ha t i s the

p r e c i s i on o f the cons tan t s in math . h

// F i r s t 40 Bernou l l i ’ s numbers ( from h t t p ://www. gutenberg . org / ebooks

/2586 by Simon Plou f f e , r e t r i v e d 2019−01−23) . Cast as doub le

#define BERN 0 double (1 )

#define BERN 1 double(−1) / 2

#define BERN 2 double (1 ) / 6

#define BERN 4 double(−1) / 30

#define BERN 6 double (1 ) / 42

#define BERN 8 double(−1) / 30
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#define BERN 10 double (5 ) / 66

#define BERN 12 double(−691) / 2730

#define BERN 14 double (7 ) / 6

#define BERN 16 double(−3617) / 510

#define BERN 18 double (43867) / 798

#define BERN 20 double(−174611) / 330

#define BERN 22 double (854513) / 138

#define BERN 24 double (−236364091) / 2730

#define BERN 26 double (8553103) / 6

#define BERN 28 double (−23749461029) / 870

#define BERN 30 double (8615841276005) / 14322

#define BERN 32 double (−7709321041217) / 510

#define BERN 34 double (2577687858367) / 6

#define BERN 36 double (−26315271553053477373) / 1919190
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#define BERN 38 double (2929993913841559) / 6

#define BERN 40 double (−261082718496449122051) / 13530

#endif

A.2.2 tulliotoolsv18.h

#pragma once

//This header i s f o r i n c l u s i on in new pro j e c t s , i t i n c l u d e s a l l the

o the r s au t oma t i c a l l y

#ifndef TULIOTOOLS 18

#define TULIOTOOLS 18

#include ” d e f i n i t i o n s . h”

#include ” d i f op s . h”

#include ” in tops . h”

#include ” r a t i o n a l . h”

#include ” l e v i c i v i t a . h”

#include ” func t i on s . h”

#endif

A.2.3 rational.h

#pragma once

#ifndef RATIONAL H

#define RATIONAL H

#include ” d e f i n i t i o n s . h”

namespace t u l l i o t o o l s

{
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class ra t //A c l a s s f o r r a t i o n a l numbers

{

bool s i gn ; //TRUE=Negative , FALSE=Pos i t i v e

unsigned int numerator , denominator ;

void s imp l i f y ( ) ;

public :

// Construc tors : These f unc t i on s cons t ruc t an ins tance o f the ra t

c l a s s g i ven some i n i t i a l in format ion

expl ic it ra t ( ) ;

expl ic it ra t (bool , unsigned int , unsigned int ) ;

expl ic it ra t ( const unsigned int&) ;

expl ic it ra t ( const int&) ;

expl ic it ra t ( const double&) ;

// Re t r i e v a l : t h e s e f unc t i on s g i v e us a way to r e t r i e v e the sign ,

numerator , and denominator from ou t s i d e the c l a s s

unsigned int get num ( ) const ;

unsigned int get den ( ) const ;

bool g e t s i g n ( ) const ;
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//Comparison

bool i s g r e a t e r ( const ra t&) const ;

bool i s l e s s ( const ra t&) const ;

bool i s e q u a l ( const ra t&) const ;

//Ari thmat ic Operat ions

ra t rat add ( const ra t&) const ;

r a t rat mult ( const ra t&) const ;

r a t r a t i n v e r t ( ) const ;

r a t ra t dev ( const ra t&) const ;

r a t exp ( const unsigned int ) const ; //Exponent : t h i s has noth ing to

do wi th Eulers number

void operator= ( const int&) ;

void operator= ( const f loat&) ;

//Conversion

expl ic it operator int ( ) ;

expl ic it operator f loat ( ) ;

} ;
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unsigned int gcd (unsigned int , unsigned int ) ; //Find the g r e a t e s t

common denominator

unsigned int lcm (unsigned int , unsigned int ) ; //Find the l e a s t common

mu l t i p l e

//Operators : These r e l a t e each symbol to t h e i r r e s p e c t i v e opperat ion ,

so the compi ler knows f o r example t ha t x+y means x . ra t add ( y )

template <class T>

inl ine ra t operator+ ( const ra t arg1 , const T arg2 )

{

return arg1 . rat add ( ra t ( arg2 ) ) ;

}

template <class T>

inl ine ra t operator− ( const ra t arg1 , const T arg2 )

{

return arg1 . rat add ( ra t ( arg2 )*−1) ;

}

template <class T>

inl ine ra t operator* ( const ra t arg1 , const T arg2 )

{

return arg1 . rat mult ( ra t ( arg2 ) ) ;

}

template <class T>

inl ine ra t operator/ ( const ra t arg1 , const T arg2 )

{
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return arg1 . ra t dev ( ra t ( arg2 ) ) ;

}

template <class T>

inl ine bool operator== ( const ra t arg1 , const T arg2 )

{

i f ( arg1 . i s e q u a l ( ra t ( arg2 ) ) ) return true ;

else return fa l se ;

}

template <class T>

inl ine bool operator< ( const ra t arg1 , const T arg2 )

{

i f ( arg1 . i s l e s s ( ra t ( arg2 ) ) ) return true ;

else return fa l se ;

}

template <class T>

inl ine bool operator> ( const ra t arg1 , const T arg2 )

{

i f ( arg1 . i s g r e a t e r ( ra t ( arg2 ) ) ) return true ;

else return fa l se ;

}

template <class T>

inl ine bool operator<= ( const ra t arg1 , const T arg2 )

{

return ( arg1 . i s l e s s ( ra t ( arg2 ) ) ) | | ( arg1 . i s e q u a l ( ra t ( arg2 ) ) ) ;

}
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template <class T>

inl ine bool operator>= ( const ra t arg1 , const T arg2 )

{

return ( arg1 . i s g r e a t e r ( ra t ( arg2 ) ) ) | | ( arg1 . i s e q u a l ( ra t ( arg2 ) ) ) ;

}

//Some cons tan t s t ha t use f r e q u e n t l y

const ra t rat1 = rat ( false , 1 , 1) ;

const ra t rat0 = rat ( false , 0 , 1) ;

}

#endif

A.2.4 levicivita.h

#pragma once

#ifndef LEVICIVITA H

#define LEVICIVITA H

#include ” r a t i o n a l . h”

#include ” d e f i n i t i o n s . h”

#include <vector>

namespace t u l l i o t o o l s

{

class l c f //Class f o r e lements o f the Levi−Civ i t a f i e l d

{
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std : : vector<double> value ; // Stores the va l u e s at each suppor t po in t

std : : vector<rat> support ; // Stores the suppor t po in t s

void s imp l i f y ( ) ;

public :

//Construc tors : These cons t ruc t an ins tance o f the l c f c l a s s g i v i n

some i n i t i a l in format ion

expl ic it l c f ( ) ;

expl ic it l c f ( std : : vector<double>&, std : : vector<rat>&);

expl ic it l c f ( const double&, const ra t&) ;

template <class T>

expl ic it l c f ( const T &x)

{

this−>support . push back ( rat0 ) ;

this−>value . push back (double ( x ) ) ;

}

//Comparison

bool i s g r e a t e r ( const l c f &) const ;

bool i s l e s s ( const l c f &) const ;

bool i s e q u a l ( const l c f &) const ;

//Operat ions

l c f l c f a dd ( const l c f &) const ;

l c f l c f mu l t ( const l c f &) const ;

l c f l c f i n v e r t (unsigned int n = SIG SUPP ) const ;

l c f exp ( const unsigned int ) const ; //Exponent

l c f abs ( ) const ; //Abso lu te va lue

// Re t r i e v a l
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ra t g e t o rd e r ( ) const ; // ge t minimum suppor t po in t

ra t get depth ( ) const ; // ge t maximum suppor t po in t

double g e t r e a l ( ) const ; // ge t the r e a l par t

std : : vector<double> ge t va lu e ( ) const ; //Returns a vec t o r wi th a l l

the va l u e s

double ge t va lu e ( const ra t&) const ; //Returns the va lue at a

s p e c i f i c suppor t po in t

double ge t va lu e ( const unsigned int&) const ; //Returns the va lue at

the g iven po s i t i o n in the va lue vec to r

std : : vector<rat> ge t suppor t ( ) const ; //Returns a vec t o r wi th a l l

suppor t po in t s

ra t ge t suppor t ( const unsigned int&) const ; //Returns the suppor t

po in t a t the g iven po s i t i o n in the suppor t v e c t o r

template <class T>

void operator= ( const T &arg )

{

this−>support . push back ( ra t (0 ) ) ;

this−>value . push back (double ( arg ) ) ;

}

template <class T>

expl ic it operator T() { return T( this−>ge t va lu e [ ra t ( false , 0 , 1) ] )

} ;

} ;

//Operators : These a s s o c i a t e a symbol wi th the appropr ia t e opera t ion

template <class T>

inl ine l c f operator+ ( const l c f &arg1 , const T &arg2 )
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{

l c f temp = l c f ( arg2 ) ;

return arg1 . l c f a dd ( temp) ;

}

template <class T>

inl ine l c f operator− ( const l c f &arg1 , const T &arg2 )

{

l c f temp = l c f ( arg2 ) ;

return arg1 . l c f a dd ( temp*−1) ;

}

template <class T>

inl ine l c f operator* ( const l c f &arg1 , const T &arg2 )

{

l c f temp = l c f ( arg2 ) ;

return arg1 . l c f mu l t ( temp) ;

}

template <class T>

inl ine l c f operator/ ( const l c f &arg1 , const T &arg2 )

{

l c f temp = l c f ( arg2 ) ;

return arg1 . l c f mu l t ( temp . l c f i n v e r t ( ) ) ;

}

template <class T>

inl ine bool operator< ( const l c f &arg1 , const T &arg2 )

{
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l c f temp = l c f ( arg2 ) ;

return arg1 . i s l e s s ( temp) ;

}

template <class T>

inl ine bool operator<= ( const l c f &arg1 , const T &arg2 )

{

l c f temp = l c f ( arg2 ) ;

return ( arg1 . i s l e s s ( temp) | | ( arg1 . i s e q u a l ( temp) ) ) ;

}

template <class T>

inl ine bool operator> ( const l c f &arg1 , const T &arg2 )

{

l c f temp = l c f ( arg2 ) ;

return arg1 . i s g r e a t e r ( arg2 ) ;

}

template <class T>

inl ine bool operator>= ( const l c f &arg1 , const T &arg2 )

{

l c f temp = l c f ( arg2 ) ;

return ( arg1 . i s g r e a t e r ( arg2 ) ) | | ( arg1 . i s e q u a l ( arg2 ) ) ;

}

template <class T>

inl ine bool operator== ( const l c f &arg1 , const T &arg2 )

{

l c f temp = l c f ( arg2 ) ;
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return arg1 . i s e q u a l ( arg2 ) ;

}

l c f NK sum( std : : vector<l c f> &) ; //Sums a l l e lements in the vec to r

us ing Kahan ’ s summation a l gor i thm .

//Constants

const l c f l c f 0 = l c f (0 ) ;

const l c f l c f 1 = l c f (double (1 ) , ra t0 ) ;

const l c f l c f d = l c f (double (1 ) , ra t1 ) ;

}

#endif

A.2.5 difops.h

// d i f o p s . h

#pragma once

#ifndef DIFF H

#define DIFF H

#include <f unc t i ona l>

#include ” l e v i c i v i t a . h”

#include ” d e f i n i t i o n s . h”

namespace t u l l i o t o o l s

{

std : : vector<double> f a s t d i f ( std : : funct ion< l c f ( l c f )>, double ) ; //

Computes a l l d e r i v a t i v e s up to SIG SUPP −1 and re turns them as a
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vec t o r . Note t ha t t h i s opera t ion only works f o r f unc t i on s t ha t

take r e a l v a l u e s at r e a l po in t s

double nd i f ( std : : funct ion< l c f ( l c f )>, double , unsigned int ) ; //Computes

the r e a l par t o f the nth d e r i v a t i v e , t h i s opera t ion works even

f o r f unc t i on s t ha t take non−r e a l va l u e s at r e a l po in t s .

}

#endif

A.2.6 intops.h

#pragma once

#ifndef i n t H

#define i n t H

#include <f unc t i ona l>

#include ” l e v i c i v i t a . h”

#include ” d e f i n i t i o n s . h”

namespace t u l l i o t o o l s

{

double r e a l t r a p i n t ( std : : funct ion< l c f ( l c f )>, double , double ) ; //

Trapazo ida l r u l e

double r e a l s imp s i n t ( std : : funct ion< l c f ( l c f )>, double , double ) ; //

Simpson ’ s r u l e

double r e a l r i n t ( std : : funct ion< l c f ( l c f )>, double , double ) ; //Taylor

s e r i e s o f the i n t e g r a l to the r i g h t us ing a r e a l l e n g t h
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l c f m ixed r in t ( std : : funct ion< l c f ( l c f )>, double , l c f &) ; //Taylor

s e r i e s o f the i n t e g r a l to the r i g h t us ing a l c f l e n g t h

double r e a l l i n t ( std : : funct ion< l c f ( l c f )>, double , double ) ; //Taylor

s e r i e s o f the i n t e g r a l to the l e f t us ing a r e a l l e n g t h

l c f m i x ed l i n t ( std : : funct ion< l c f ( l c f )>, double , l c f &) ; //Taylor

s e r i e s o f the i n t e g r a l to the l e f t us ing a l c f l e n g t h

double r e a l c i n t ( std : : funct ion< l c f ( l c f )>, double , double , double ) ; //

Taylor s e r i e s o f the i n t e g r a l from a cen t a l po in t us ing r e a l

l e n g t h s

l c f m ixed c in t ( std : : funct ion< l c f ( l c f )>, double , l c f &, l c f &) ; //Taylor

s e r i e s o f the i n t e g r a l from a cen t a l po in t us ing l c f l e n g t h s

double r e a l d a r b i n t ( std : : funct ion< l c f ( l c f )>, s td : : funct ion< l c f ( l c f )>,

double , double ) ; //Darboux i n t e g r a t i o n between r e a l bounds

double r e a l t a y s t e p ( std : : funct ion< l c f ( l c f )>, double , double ) ; //

In t e g r a t e us ing c en t r a l po in t t a y l o r s e r i e s b reak ing the i n t e r v a l

o f i n t e g r a t i o n in t o sma l l e r s t e p s

double r e a l t a y s t e p s i n g ( std : : funct ion< l c f ( l c f )>, double , double ) ; //

Same as above but wi th mod i f i c a t i on s to a l l ow fo r s i n g u l a r i t i e s a t

the end po in t s

double r e a l d a r b s t e p ( std : : funct ion< l c f ( l c f )>, s td : : funct ion< l c f ( l c f )
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>, double , double ) ; // In t e g r a t us ing Darboux ’ s formula break ing the

i n t e r v a l o f i n t e g r a t i o n in to sma l l e r s t e p s

double r e a l d a r b s t e p s i n g ( std : : funct ion< l c f ( l c f )>, s td : : funct ion< l c f

( l c f )>, double , double ) ; //Modi f i ca t ion o f the above which uses

Taylor s e r i e s on the l e f t and r i g h t most s t e p s to a l l ow fo r

s i n g u l a r i t i e s a t the end po in t s

}

#endif

A.2.7 functions.h

#pragma once

#ifndef FUNCS H

#define FUNCS H

//This header d e f i n e s a number o f f unc t i on s f o r i n c l u s i on in the

l i b r a r y .

#include ” t u l l i o t o o l s v 1 8 . h”

#include <vector>

#include <f unc t i ona l>

using namespace std : : p l a c eho l d e r s ;

namespace t u l l i o t o o l s

{

// Spec i a l Functions

l c f b e s s e l a r g (unsigned int , double , l c f &) ;
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double b e s s e l (unsigned int , double ) ;

l c f e r f a r g ( l c f &) ;

l c f e r f ( l c f &) ;

double f a c t o r i a l (unsigned int ) ;

double bico (unsigned int , unsigned int ) ;

s td : : vector<double> b e r n ou l l i (unsigned int ) ;

s td : : vector<double> b e r n o u l l i r e c (unsigned int ) ;

s td : : vector<double> b e r n o u l l i g f (unsigned int ) ;

s td : : vector<double> b e r n ou l l i t a n (unsigned int ) ;

s td : : vector<double> be rnou l l i t anh (unsigned int ) ;

s td : : vector<double> b e r n o u l l i i n i t ( ) ;

l c f nroot ( l c f &, unsigned int ) ;

//Trig Functions

l c f s i n t a y l o r ( l c f &, unsigned int n = SIG TERMS ) ;

l c f s i n ( l c f &) ;
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l c f c o s t a y l o r ( l c f &, unsigned int n = SIG TERMS ) ;

l c f cos ( l c f &) ;

l c f tan ( l c f &) ;

l c f e xp tay l o r ( l c f &, unsigned int n = SIG TERMS ) ;

l c f exp ( l c f &) ;

l c f c o s h t ay l o r ( l c f &, unsigned int n = SIG TERMS ) ;

l c f cosh ( l c f &) ;

l c f s i n h t a y l o r ( l c f &, unsigned int n = SIG TERMS ) ;

l c f s inh ( l c f &) ;

l c f tanh ( l c f &) ;

l c f l n t a y l o r ( l c f &, unsigned int n = SIG TERMS ) ;

l c f ln ( l c f &) ;

l c f a rcarg ( l c f &) ;

l c f a r c s i n ( l c f &) ;
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l c f a r c co s ( l c f &) ;

l c f a rc tanarg ( l c f &) ;

l c f arctan ( l c f &) ;

//Test Functions

l c f examp1( l c f &) ;

l c f examp2( l c f &) ;

l c f examp3( l c f &) ;

l c f conj1 ( l c f &) ; // i n t e g r a l from 0 to 1 con jec tured to be p i ˆ2 *(2−

s q r t (2) ) /32

l c f conj2 ( l c f &) ; // i n t e g r a l from 0 to p i /4 con jec tured to be −p i ˆ2/16

+ pi * l n (2) /4 +G( ca ta l an ’ s cons tant )

l c f conj3 ( l c f &) ; // i n t e g r a l from 0 to p i con j ec tured to be p i ˆ2/4

l c f t e s t f unc0 ( l c f &) ;

l c f t e s t f unc1 ( l c f &) ; // i n t e g r a l from 0 to 1 i s 1/4

l c f t e s t f unc3 ( l c f &) ; // i n t e g r a l from 0 to p i /2 i s ( e ˆ( p i /2)−1)/2

l c f t e s t f unc8 ( l c f &) ; // i n t e g r a l from 0 to 1 i s 2
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l c f t e s t f unc9 ( l c f &) ; // i n t e g r a l from 0 to p i /2 i s −p i * l n (2) /2

l c f t e s t 1 ( l c f &) ;

l c f t e s t 2 ( l c f &) ;

// po lynomia l s ( used f o r Darboux In t e g r a t i on )

l c f b e r n ou l l i p o l y ( l c f &, unsigned int ) ;

l c f b e r n o u l l i p h i ( l c f &) ;

l c f l b t a y l o r p o l y ( l c f &, unsigned int ) ;

l c f ub tay l o r po l y ( l c f &, unsigned int ) ;

l c f exper imenta l po ly ( l c f &, unsigned int ) ;

l c f exper imenta l ph i ( l c f &) ;

l c f t e s t p o l y ( l c f &, unsigned int ) ;

l c f s imp poly ( l c f &) ;

l c f t r ap po ly ( l c f &) ;

}

#endif
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A.3 Source Files

A.3.1 rational.cpp

// r a t i o n a l . cpp

#include ” r a t i o n a l . h”

#include <math . h>

#include <algor ithm>// f l o o r func t i on

using namespace t u l l i o t o o l s ;

unsigned int t u l l i o t o o l s : : gcd (unsigned int x , unsigned int y ) // Euc l i d s

Algorithm

{

unsigned int temp ;

while ( y != 0)

{

temp = y ;

y = x % temp ;

x = temp ;

}

return x ;

}

unsigned int t u l l i o t o o l s : : lcm (unsigned int x , unsigned int y ) // Reca l l

t h a t lcm (x , y )* gcd ( x , y )=x*y

{

return ( x*y ) / gcd (x , y ) ;
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}

void ra t : : operator= ( const int &x)

{

i f ( x < 0)

{

this−>numerator = x*(−1) ;

this−>s i gn = true ;

}

else

{

this−>numerator = x ;

this−>s i gn = fa l se ;

}

this−>denominator = 1 ;

}

void ra t : : operator= ( const f loat &x)

{

i f ( x < 0)

{

this−>s i gn = true ;

this−>numerator = f l o o r (((−1)*x ) *( std : : pow(10 , SIG DIGS ) ) ) ; //Find

the numerator to the appropr ia t e p e r c i s s i on

}

else

{

this−>s i gn = fa l se ;
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this−>numerator = f l o o r ( x*( std : : pow(10 , SIG DIGS ) ) ) ; //Find the

numerator to the appropr ia t e p e r c i s s i on

}

this−>denominator = std : : pow(10 , SIG DIGS ) ; //Find the denominator

to the appropr ia t e p e r c i s s i on

this−>s imp l i f y ( ) ; // s imp l i f y the r e s u l t so i t i s in l owe s t form .

}

ra t : : operator int ( )

{

int r e s u l t = ( this−>numerator / this−>denominator ) ;

i f (2 * ( this−>denominator % this−>numerator ) > this−>denominator ) //

I f t h i s cond i t i on i s s a t i s f i e d then we want to round up .

{

r e s u l t = r e s u l t + 1 ; // rounding up

}

i f ( s i gn == true ) return (−1)* r e s u l t ; //This i n s t r u c t i o n ensures t ha t

the s i gn i s c o r r e c t

else return r e s u l t ;

}

ra t : : operator f loat ( )

{

f loat r e s u l t = f loat ( this−>numerator ) / f loat ( this−>denominator ) ;

i f ( s i gn == true ) return (−1)* r e s u l t ; //Ensure t ha t the s i gn i s

c o r r e c t

else return r e s u l t ;
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}

unsigned int ra t : : get num ( ) const

{

return this−>numerator ;

}

unsigned int ra t : : get den ( ) const

{

return this−>denominator ;

}

bool ra t : : g e t s i g n ( ) const

{

return this−>s i gn ;

}

ra t ra t : : rat add ( const ra t &x) const

{

ra t r e s u l t ;

bool s i gn ;

unsigned int numerator , denominator ;

int temp1 = lcm ( this−>denominator , x . denominator ) ; //Find the lcm of

the denominators

int temp2 = this−>numerator *( temp1 / this−>denominator ) ; // s e t temp2

so t ha t temp2/lcm = th i s−>numerator/ t h i s−>denominator . We do the

samething f o r x in the next l i n e .

int temp3 = x . numerator *( temp1 / x . denominator ) ; //Af ter t h i s s t ep

both ra t ’ s w i l l have the same denominator .
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i f ( this−>s i gn == true ) temp2 = temp2*(−1) ; //Account f o r the s i gn s

i f ( x . s i gn == true ) temp3 = temp3*(−1) ; //Dito

int temp4 = temp2 + temp3 ; // Since both ra t ; ’ s have a common

denominator we may s imply add t h e i r numerators .

i f ( temp4 < 0) s i gn = true , numerator = (unsigned ) ( temp4*(−1) ) ; // Set

the s i gn and numerator i f the numerator i s n e g i t i v e

else s i gn = false , numerator = (unsigned ) temp4 ; // Set the s i gn and

numerator i f the numerator i s p o s s i t i v e

denominator = (unsigned ) temp1 ; //Denominator i s the lcm

r e s u l t = rat ( s ign , numerator , denominator ) ; // crea t the new number

r e s u l t . s imp l i f y ( ) ; // ensure the new number i s in l owe s t form

return r e s u l t ;

}

ra t ra t : : rat mult ( const ra t &x) const

{

ra t r e s u l t ;

bool s i gn = ( ( this−>s i gn ) != (x . s i gn ) ) ;

int temp1 = this−>numerator*x . numerator ;

int temp2 = this−>denominator*x . denominator ;

r e s u l t = rat ( s ign , temp1 , temp2 ) ;

r e s u l t . s imp l i f y ( ) ;

return r e s u l t ;

}
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ra t ra t : : r a t i n v e r t ( ) const

{

ra t r e s u l t = rat ( this−>s ign , this−>denominator , this−>numerator ) ;

r e s u l t . s imp l i f y ( ) ;

return r e s u l t ;

}

ra t ra t : : r a t dev ( const ra t &x) const

{

ra t r e s u l t ;

bool s i gn = ( ( this−>s i gn ) | | ( x . s i gn ) ) ;

r e s u l t = rat ( s ign , ( this−>numerator ) *( x . denominator ) , ( this−>

denominator ) *( x . numerator ) ) ; // Inve r t and mu l t i p l y

r e s u l t . s imp l i f y ( ) ;

return r e s u l t ;

}

ra t ra t : : exp (unsigned int n) const

{

ra t r e s u l t = rat ( false , 1 , 1) ;

for (unsigned int i = 0 ; i < n ; i++)

{

r e s u l t = this−>rat mult ( r e s u l t ) ; //Mu l t i p l y by i t s e l f the r e q u i s i t e

number o f t imes

}

r e s u l t . s imp l i f y ( ) ;

return r e s u l t ;
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}

bool ra t : : i s g r e a t e r ( const ra t &x) const

{

i f ( ( this−>s i gn == true ) && (x . s i gn == fa l se ) ) return fa l se ; // I f t h i s

i s n e g i t i v e and x i s p o s i t i v e then c l e a r l y t h i s i s not g r ea t e r

than x .

else i f ( ( this−>s i gn == fa l se ) && (x . s i gn == true ) ) return true ; //On

the o ther hand , i f t h i s i s p o s i t i v e and x i s n e g i t i v e then t h i s

must be g r ea t e r .

else i f ( ( this−>s i gn == fa l se ) && (x . s i gn == fa l se ) ) // I f both are

p o s i t i v e we compare d i r e c t l y

{

i f ( this−>numerator*x . denominator > x . numerator* this−>denominator )

return true ;

else return fa l se ;

}

else //The only remaining case i s t h a t both are n e g i t i v e

{

i f ( this−>numerator*x . denominator < x . numerator* this−>denominator )

return true ;

else return fa l se ;

}

}

bool ra t : : i s l e s s ( const ra t &x) const// I s l e s s j u s t r e v e r s e s the order

o f the two numbers . o b v i ou s l y i f x>y then y<x .

{

i f ( x . i s g r e a t e r (* this ) ) return true ;
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else return fa l se ;

}

bool ra t : : i s e q u a l ( const ra t &x) const// I f n e i t h e r i s g r ea t e r than the

o ther they must be equa l .

{

i f ( ( this−> i s g r e a t e r ( x ) == fa l se ) && ( this−> i s l e s s ( x ) == fa l se ) )

return true ;

else return fa l se ;

}

ra t : : r a t ( ) = default ; //Constructs a ra t wi th empty va l u e s

ra t : : r a t (bool x , unsigned int y , unsigned int z ) //Constructs a ra t wi th

g iven sign , numerator , and denominator .

{

this−>s i gn = x ;

this−>numerator = y ;

this−>denominator = z ;

}

ra t : : r a t ( const int &x) //Constructs a ra t from a g iven i n t e g e r

{

i f ( x < 0)

{

this−>numerator = x*(−1) ; // Since x i s nega t i v e t h i s w i l l make the

numerator p o s i t i v e

this−>s i gn = true ; // Set the s i gn acco rd ing l y

}
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else

{

this−>numerator = x ; //x i s p o s i t i v e so no change needs to be made

s i gn = fa l se ;

}

this−>denominator = 1 ;

}

ra t : : r a t ( const unsigned int& x)

{

this−>s i gn = fa l se ;

this−>numerator = x ;

this−>denominator = 1 ;

}

ra t : : r a t ( const double &x)

{

i f ( x < 0)

{

this−>s i gn = true ;

this−>numerator = f l o o r (((−1)*x ) *(10 ˆ ( SIG DIGS ) ) ) ;

}

else

{

this−>s i gn = fa l se ;

this−>numerator = f l o o r ( x*(10 ˆ ( SIG DIGS ) ) ) ;

}

this−>denominator = 10 ˆ ( SIG DIGS ) ;
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this−>s imp l i f y ( ) ;

}

void ra t : : s imp l i f y ( ) //Puts t h i s i n t o i t s s imp l i s t terms .

{

unsigned int temp = gcd ( this−>numerator , this−>denominator ) ; // f i nd

the l a r g e s t number t ha t dev i de s both the numerator and the

denominator

this−>numerator = this−>numerator / temp ; // f a c t o r t ha t number out o f

the numerator

this−>denominator = this−>denominator / temp ; //and again out o f the

denominator

}

A.3.2 levicivita.cpp

#include ” l e v i c i v i t a . h”

#include ” r a t i o n a l . h”

using namespace t u l l i o t o o l s ;

using std : : vec to r ;

ra t l c f : : g e t o rd e r ( ) const

{

return this−>support . f r on t ( ) ; //Return the f i r s t e lement in the

suppor t v e c t o r

}
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ra t l c f : : get depth ( ) const

{

return this−>support . back ( ) ; //Return the l a s t e lement in the suppor t

v e c t o r

}

double l c f : : g e t r e a l ( ) const

{

return this−>ge t va lu e ( ra t ( false , 0 , 1) ) ; //Return the va lue o f the

element at the r a t i o n a l po in t zero

}

std : : vector<double> l c f : : g e t va lu e ( ) const

{

return this−>value ;

}

double l c f : : g e t va lu e ( const ra t &x) const

{

unsigned int s i z e = this−>support . s i z e ( ) ;

bool f o und f l a g = fa l se ;

double r e s u l t ;

for (unsigned int i = 0 ; i < s i z e ; i++)// In t h i s loop we search the

suppor t v e c t e r f o r the prov ided suppor t po in t . . .

{

i f ( ( this−>support [ i ] == x) && ( f ound f l a g == fa l se ) )

{

f o und f l a g = true ; // . . . i f we f i nd i t then we end the loop . . .
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r e s u l t = this−>value [ i ] ; // . . . and re turn the va l e at t ha t suppor t

po in t .

}

}

i f ( f ound f l a g == fa l se ) r e s u l t = 0 ; // I f we don ’ t f i nd the argument

in the suppor t v e c t e r then we re turn 0 .

return r e s u l t ;

}

double l c f : : g e t va lu e ( const unsigned int &x) const

{

i f ( x < this−>value . s i z e ( ) ) return this−>value [ x ] ; //Check t ha t the

argument r e f r en c e s a v a l i d v ec t o r entry .

else return 0 ;

}

std : : vector<rat> l c f : : g e t suppor t ( ) const

{

return this−>support ;

}

ra t l c f : : g e t suppor t ( const unsigned int &x) const

{

i f ( x < this−>support . s i z e ( ) ) return this−>support [ x ] ;

else return ra t ( false , 0 , 1) ; // re turns zero i f x i s out o f range . Not

sure t h i s i s the b e s t way to do i t but i t w i l l work f o r now .

}
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bool l c f : : i s g r e a t e r ( const l c f &x ) const

{

bool n u l l f l a g t h i s = false , n u l l f l a g x = fa l se ;

i f ( this−>support . s i z e ( ) == 0) n u l l f l a g t h i s = true ;

i f ( x . support . s i z e ( ) == 0) n u l l f l a g x = true ;

i f ( n u l l f l a g t h i s == true && nu l l f l a g x == true ) return fa l se ; //

Checkes f o r two zero e lements

else i f ( n u l l f l a g t h i s == true | | n u l l f l a g x == true )

{

i f ( n u l l f l a g t h i s == true )

{

i f ( x . va lue [ 0 ] < 0) return true ;

else return fa l se ;

}

else

{

i f ( this−>value [ 0 ] > 0) return true ;

else return fa l se ;

}

}

else

{

unsigned int i = 0 ;

bool r e su l t , f i n i s h e d f l a g = fa l se ;

while ( f i n i s h e d f l a g == fa l se ) // f i n i s h e d f l a g i s changed to TRUE

when we f i nd a suppor t po in t where the e lements take on

d i f f e r e n t va l u e s
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{

i f ( this−>support [ i ] < x . support [ i ] ) //This and the f o l l ow i n g

cond i t i on s e l e v t f o r the e lement wi th the l e s s e r suppor t po in t

{

r e s u l t = true ;

f i n i s h e d f l a g = true ;

}

else i f ( this−>support [ i ] > x . support [ i ] )

{

r e s u l t = fa l se ;

f i n i s h e d f l a g = true ;

}

else // I f t h i s cond i t i on i s reached i t means t ha t both e lements

have the same i t h suppor t point , we proceed by comparing t h e i r

va l u e s at t ha t suppor t po in t

{

i f ( this−>value [ i ] > x . va lue [ i ] )

{

r e s u l t = true ;

f i n i s h e d f l a g = true ;

}

else i f ( this−>value [ i ] < x . va lue [ i ] )

{

r e s u l t = fa l se ;

f i n i s h e d f l a g = true ;

}

else // I f t h i s cond i t i on i s reached i t means t ha t the e lements

the e lements share the same va lue at t h e i r i t h suppor t po in t
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{

i f ( ( i >= this−>support . s i z e ( ) − 1) | | ( i >= x . support . s i z e ( )

− 1) ) // I f we have checked a l l the va l u e s o f one o f the

e lements then we make the d i c i s i o n based on the next non−

zero va lue o f the element wi th more suppor t po ints , i f

both e lements have the same number o f suppor t po in t s and

we have s t i l l a r i v ed here then they must be equa l

{

i f ( this−>support . s i z e ( ) > x . support . s i z e ( ) )

{

i f ( this−>ge t va lu e ( i + 1) > 0) r e s u l t = true ;

else r e s u l t = fa l se ;

}

else i f ( x . support . s i z e ( )>this−>support . s i z e ( ) )

{

i f ( x . g e t va lu e ( i + 1) > 0) r e s u l t = fa l se ;

else r e s u l t = true ;

}

else r e s u l t = fa l se ; // here the two e lements must be e x a c t l y

equa l

f i n i s h e d f l a g = true ;

}

else

{

i++;

}

}

}

224



}

return r e s u l t ;

}

}

bool l c f : : i s e q u a l ( const l c f &x ) const

{

i f ( this−> i s g r e a t e r ( x ) == fa l se && this−> i s l e s s ( x ) == fa l se ) return

true ;

else return fa l se ;

}

bool l c f : : i s l e s s ( const l c f &x ) const

{

return x . i s g r e a t e r (* this ) ;

}

l c f l c f : : l c f a dd ( const l c f &x ) const//Addit ion

{

vector<double> temp val ;

vector<rat>temp supp ;

unsigned int i = 0 , j = 0 , s i z e 1 = this−>support . s i z e ( ) , s i z e 2 = x .

support . s i z e ( ) ;

while ( ( i < s i z e 1 ) && ( j < s i z e 2 ) )

{

i f ( this−>support [ i ] < x . support [ j ] )

{

temp val . push back ( this−>value [ i ] ) ;
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temp supp . push back ( this−>support [ i ] ) ;

i++;

}

else i f ( this−>support [ i ] == x . support [ j ] ) // I f the two suppor t

po in t s are equa l then we add the cor i spond ing va l u e s and inc l ude

t ha t in the new element

{

temp val . push back ( this−>value [ i ] + x . va lue [ j ] ) ;

temp supp . push back ( this−>support [ i ] ) ;

i++;

j++;

}

else

{

temp val . push back (x . va lue [ j ] ) ;

temp supp . push back (x . support [ j ] ) ;

j++;

} ;

} ;

i f ( j < s i z e 2 ) //Add a l l the remaining terms o f the second element i f

t h e r e are any

{

while ( j < s i z e 2 )

{

temp val . push back (x . va lue [ j ] ) ;

temp supp . push back (x . support [ j ] ) ;

j++;

}
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}

i f ( i < s i z e 1 ) //Add a l l the remaining terms o f the f i r s t e lement i f

t h e r e are any

{

while ( i < s i z e 1 )

{

temp val . push back ( this−>value [ i ] ) ;

temp supp . push back ( this−>support [ i ] ) ;

i++;

}

}

return l c f ( temp val , temp supp ) ;

}

l c f l c f : : l c f mu l t ( const l c f &x ) const// Mu l t i p l i c a t i o n

{

l c f r e s u l t ;

vector<double> temp val ;

vector<rat> temp supp ;

for (unsigned int i = 0 ; i < this−>support . s i z e ( ) ; i++)

{

for (unsigned int j = 0 ; j < x . support . s i z e ( ) ; j++)

{

temp val . push back ( this−>value [ i ] * x . va lue [ j ] ) ;

temp supp . push back ( ( this−>support [ i ] ) + (x . support [ j ] ) ) ;

}

}
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r e s u l t = l c f ( temp val , temp supp ) ;

r e s u l t . s imp l i f y ( ) ; //This i s an important s t ep as the above proces s

may inc l ude the same suppor t po in t mu l t i p l e times , as par t o f the

s im p l i f i c a t i o n procedure t h e s e w i l l a l l be c o l l e c t e d t o g e t h e r

return r e s u l t ;

}

l c f l c f : : l c f i n v e r t (unsigned int n) const//Find the inv e r s e o f a g iven

number up to depth n

{

i f ( this−>value . s i z e ( ) == 0) //This in su re s the program dosent crash

i f we t r y to dev i ed by zero , in proper opera t ion t h i s cond i t i on

shou ld never e va l ua t e as t rue

{

return l c f ( ) ;

}

else i f ( this−>value . s i z e ( ) == 1) // I f t h e r e i s on ly one term

inve r s i on i s t r i v i a l

{

vector<double> new value ;

new value . push back (1 / this−>value [ 0 ] ) ;

vector<rat> new support ;

new support . push back ( support [ 0 ] * ra t ( true , 1 , 1) ) ;

return l c f ( new value , new support ) ;

}
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else // a l l l c f numbers can be expres sed as adˆq(1+s ) so inv e r s e i s a

ˆ{−1}dˆ{−q}(1− s+s ˆ2 − . . . )

{

l c f f a c t o r = l c f (double (1 ) / this−>value [ 0 ] , this−>support [ 0 ] * ra t

( true , 1 , 1) ) ;

l c f s ;

l c f t = l c f 1 , t ay l o r = l c f 1 ;

for (unsigned int i = 1 ; i < this−>value . s i z e ( ) ; i++)

{

s . va lue . push back ( this−>value [ i ] / this−>value [ 0 ] ) ;

s . support . push back ( this−>support [ i ] − this−>support [ 0 ] ) ;

}

s = s *(−1) ;

for (unsigned int i = 0 ; i < n ; i++)

{

t = t . l c f mu l t ( s ) ;

t a y l o r = tay l o r . l c f a dd ( t ) ;

}

return f a c t o r . l c f mu l t ( t ay l o r ) ;

}

}

l c f l c f : : exp (unsigned int n) const//Exponents

{

l c f r e s u l t = l c f 1 ;
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for (unsigned int i = 0 ; i < n ; i++)

{

r e s u l t = this−>l c f mu l t ( r e s u l t ) ;

}

return r e s u l t ;

}

l c f l c f : : abs ( ) const

{

l c f r e s u l t ;

i f ( this−> i s l e s s ( l c f 0 ) ) r e s u l t = l c f 1 *(−1) ;

else r e s u l t = l c f 1 ;

return this−>l c f mu l t ( r e s u l t ) ;

}

l c f : : l c f ( ) = default ; // De fau l t cons t ruc t o r

l c f : : l c f ( s td : : vector<double> &x , std : : vector<rat> &y) //mult i−suppor t

po in t cons t ruc t o r

{

this−>value = x ;

this−>support = y ;

this−>s imp l i f y ( ) ;

}

l c f : : l c f ( const double &x , const ra t &y) // s i n g l e suppor t po in t
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cons t ruc t o r .

{

this−>value . push back (x ) ;

this−>support . push back (y ) ;

this−>s imp l i f y ( ) ;

}

void l c f : : s imp l i f y ( ) //This method s im p l i f i e s i t s l c f in s tance in the

sense t ha t i t pu ts the suppor t po in t s in in c r ea s in g order and

ensures t ha t each po in t ocurres on ly once in the suppor t a l l wh i l e

keep ing t rack o f the va lue vec to r to ensure the element remains

unchanged . I t a l s o removes any en t r i e s where the va lue i s zero .

{

vector<unsigned int> po s i t i o n s ;

vector<double> temp val ;

vector<rat> temp supp ;

double va l ;

r a t min ;

while ( support . s i z e ( ) != 0)

{

va l = 0 ;

min = this−>support [ 0 ] ;

for (unsigned int i = 1 ; i < this−>support . s i z e ( ) ; i++)//This loop

f i n d s the minimum suppor t po in t

{

i f ( (min<support [ i ] ) == fa l se )

{

min = this−>support [ i ] ;

}
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}

for (unsigned int i = 0 ; i < this−>support . s i z e ( ) ; i++)// c r ea t e s a

vec t o r wi th the p o s i t i o n s o f a l l e n t r i e s wi th suppor t po in t

equa l to min

{

i f (min == this−>support [ i ] ) p o s i t i o n s . push back ( i ) ;

}

for (unsigned int i = po s i t i o n s . s i z e ( ) ; i > 0 ; i−−)//Adds the

va l u e s at the p o s i t i o n s found above .

{

va l += this−>value [ p o s i t i o n s [ i − 1 ] ] ;

va lue . e r a s e ( va lue . begin ( ) + po s i t i o n s [ i − 1 ] ) ;

support . e r a s e ( support . begin ( ) + po s i t i o n s [ i − 1 ] ) ;

}

i f ( va l != 0) // I f v a l=0 we dont inc l ude i t in the vec t o r

{

temp val . push back ( va l ) ;

temp supp . push back (min ) ;

}

po s i t i o n s . c l e a r ( ) ;

}

i f ( temp val . s i z e ( ) > SIG SUPP ) // I f the r e s u l t i s l onger than the

de s i r ed depth then we t runca t e

{

temp val . e r a s e ( temp val . begin ( ) + ( SIG SUPP ) , temp val . end ( ) ) ;
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temp supp . e r a s e ( temp supp . begin ( ) + ( SIG SUPP ) , temp supp . end ( ) ) ;

}

i f ( temp supp . s i z e ( ) == 0) //This cond i t i on i s inc luded incase our

s im p l i f i c a t i o n procces s reduces the v a r i a b l e to 0 .

{

temp val . c l e a r ( ) ;

temp val . push back (double (0 ) ) ;

temp supp . c l e a r ( ) ;

temp supp . push back ( rat0 ) ;

}

this−>value = temp val ;

this−>support = temp supp ;

}

l c f t u l l i o t o o l s : : NK sum( std : : vector<l c f> &input ) //Employs a modi f ied

ve r s i on o f Kahan ’ s a l g o r i t h in an attempt to l im i t rounding error ,

i t doesnt seem to he l p much

{

double sum , rem , temp ;

ra t order = input [ 0 ] . g e t o rd e r ( ) ;

s td : : vector<rat> supp ;

std : : vector<double> s i g t e rms , sum terms ;

std : : vector<vector<double> > terms ;

for (unsigned int i = 1 ; i < input . s i z e ( ) ; i++)

{

i f ( order > input [ i ] . g e t o rd e r ( ) ) order = input [ i ] . g e t o rd e r ( ) ;
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}

for (unsigned int i = 0 ; i < input . s i z e ( ) ; i++)

{

for ( int j = 0 ; j < SIG SUPP ; j++)

{

s i g t e rms . push back ( input [ i ] . g e t va lu e ( order + j ) ) ;

}

terms . push back ( s i g t e rms ) ;

s i g t e rms . c l e a r ( ) ;

}

for (unsigned int i = 0 ; i < SIG SUPP ; i++)

{

sum = terms [ 0 ] [ i ] ;

rem = 0 ;

for (unsigned int j = 1 ; j < terms . s i z e ( ) ; j++)

{

temp = sum + terms [ j ] [ i ] ;

i f ( abs (sum) > abs ( terms [ j ] [ i ] ) ) rem += sum − temp + terms [ j ] [ i ] ;

else rem += terms [ j ] [ i ] − temp + sum ;

sum = temp ;

}

sum = sum + rem ;

sum terms . push back (sum) ;

supp . push back ( order + i ) ;

}

return l c f ( sum terms , supp ) ;

}

A.3.3 difops.cpp
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#include ” d i f op s . h”

#include ” func t i on s . h”

#include <f unc t i ona l>

using namespace t u l l i o t o o l s ;

s td : : vector<double> t u l l i o t o o l s : : f a s t d i f ( std : : funct ion< l c f ( l c f )> func ,

double x )

{

l c f arg = l c f ( x ) + l c f d ;

l c f temp1 = func ( arg ) ; //Eva luate the g iven func t i on at the g iven

po in t + d

int depth = int ( temp1 . get depth ( ) ) ;

double temp2 ;

std : : vector<double> r e s u l t ;

double f a c t = double (1 ) ;

for ( int i = 0 ; i < depth ; i++)//The c o e f f e c i e n t s o f f ( x+d) are o f

the form f ˆn( x )/n ! in t h i s loop we mu l t i p l y by n ! to ob ta in the

d e r i v a t i v e

{

temp2 = temp1 . g e t va lu e ( ra t ( i ) ) ;

temp2 = temp2 * f a c t ;

r e s u l t . push back ( temp2 ) ;

f a c t = f a c t *( i + 1) ;

}

return r e s u l t ;

}
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double t u l l i o t o o l s : : nd i f ( std : : funct ion< l c f ( l c f )> func , double x ,

unsigned int n)

{

l c f arg = l c f ( x ) , den = l c f d . exp (n) , num = l c f 0 ;

for (unsigned int i = 0 ; i <= n ; i++)

{

num = num + func ( arg ) * bico (n , i ) *pow(−1 , i ) ;

arg = arg − l c f d ;

}

return (num / den ) . g e t r e a l ( ) ;

}

A.3.4 intops.cpp

#include ” in tops . h”

#include ” d e f i n i t i o n s . h”

#include ” func t i on s . h”

#include <algor ithm>// s t d : : min

#include <vector>

using namespace t u l l i o t o o l s ;

double t u l l i o t o o l s : : r e a l t r a p i n t ( std : : funct ion< l c f ( l c f )> func , double

lb , double ub) //The Trapazo ida l r u l e

{

l c f l = l c f ( lb ) , u = l c f (ub) , h = l c f ( ( ub − lb ) / STEP NO ) ;

double r e s u l t = func ( l ) . g e t r e a l ( ) + func (u) . g e t r e a l ( ) ;

for (unsigned int i = 1 ; i < STEP NO − 1 ; i++)

{
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r e s u l t += 2 * func ( l + h* i ) . g e t r e a l ( ) ;

}

return r e s u l t *(ub − lb ) / (2 * STEP NO ) ;

}

double t u l l i o t o o l s : : r e a l s imp s i n t ( std : : funct ion< l c f ( l c f )> func , double

lb , double ub) //Simpson ’ s r u l e

{

l c f l = l c f ( lb ) , u = l c f (ub) , h = l c f ( ( ub − lb ) / STEP NO ) ;

double r e s u l t = func ( l ) . g e t r e a l ( ) + func (u) . g e t r e a l ( ) ;

for (unsigned int i = 1 ; i < STEP NO − 1 ; i++)

{

i f ( i % 2 == 0) r e s u l t += 2 * func ( l + h* i ) . g e t r e a l ( ) ;

i f ( i % 2 == 1) r e s u l t += 4 * func ( l + h* i ) . g e t r e a l ( ) ;

}

return r e s u l t *(ub − lb ) / (3 * STEP NO ) ;

}

double t u l l i o t o o l s : : r e a l r i n t ( std : : funct ion< l c f ( l c f )> func , double x ,

double l )

{

l c f arg = l c f ( x ) + l c f d ;

l c f temp1 = func ( arg ) ;

int depth = int ( temp1 . get depth ( ) ) ;

double temp2 ;

double lpow = l ;

double r e s u l t = 0 ;

for ( int i = 0 ; i <= depth ; i++)

{
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temp2 = temp1 . g e t va lu e ( ra t ( i ) ) ;

temp2 = temp2 / ( i + 1) ;

temp2 = temp2* lpow ;

r e s u l t = r e s u l t + temp2 ;

lpow = lpow* l ;

}

return r e s u l t ;

}

l c f t u l l i o t o o l s : : m ixed r in t ( std : : funct ion< l c f ( l c f )> func , double x ,

l c f& l )

{

l c f arg = l c f ( x ) + l c f d ;

l c f temp1 = func ( arg ) , r e s u l t = l c f 0 , lpow = l , temp2 ;

int depth = int ( temp1 . get depth ( ) ) ;

for ( int i = 0 ; i <= depth ; i++)

{

temp2 = l c f ( temp1 . g e t va lu e ( ra t ( i ) ) ) ;

temp2 = temp2 / ( i + 1) ;

temp2 = temp2* lpow ;

r e s u l t = r e s u l t + temp2 ;

lpow = lpow* l ;

}

return r e s u l t ;

}

double t u l l i o t o o l s : : r e a l l i n t ( std : : funct ion< l c f ( l c f )> func , double x ,

double l )

{
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l c f arg = l c f ( x ) + l c f d ;

l c f temp1 = func ( arg ) ;

int depth = int ( temp1 . get depth ( ) ) ;

double temp2 ;

double lpow = l ;

double r e s u l t = 0 ;

for ( int i = 0 ; i <= depth ; i++)

{

temp2 = temp1 . g e t va lu e ( ra t ( i ) ) ;

temp2 = temp2 / ( i + 1) ;

temp2 = temp2* lpow ;

r e s u l t = r e s u l t + temp2 ;

lpow = lpow*(− l ) ;

}

return r e s u l t ;

}

l c f t u l l i o t o o l s : : m i x ed l i n t ( std : : funct ion< l c f ( l c f )> func , double x ,

l c f& l )

{

l c f arg = l c f ( x ) + l c f d ;

l c f temp1 = func ( arg ) , lpow = l , r e s u l t = l c f 0 , temp2 ;

int depth = int ( temp1 . get depth ( ) ) ;

for ( int i = 0 ; i <= depth ; i++)

{

temp2 = l c f ( temp1 . g e t va lu e ( ra t ( i ) ) ) ;

temp2 = temp2 / ( i + 1) ;

temp2 = temp2* lpow ;

r e s u l t = r e s u l t + temp2 ;
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lpow = lpow *( l *(−1) ) ;

}

return r e s u l t ;

}

double t u l l i o t o o l s : : r e a l c i n t ( std : : funct ion< l c f ( l c f )> func , double x ,

double l l , double r l ) // l / r l= l e f t / r i g h t l e n g t h

{

l c f arg = l c f ( x ) + l c f d ;

l c f temp1 = func ( arg ) ;

int depth = int ( temp1 . get depth ( ) ) ;

double temp2 ;

double l lpow = l l , rlpow = r l ;

double r e s u l t = 0 ;

for ( int i = 0 ; i <= depth ; i++)

{

temp2 = temp1 . g e t va lu e ( ra t ( i ) ) ;

temp2 = temp2 / ( i + 1) ;

temp2 = temp2 * ( l lpow + rlpow ) ;

r e s u l t = r e s u l t + temp2 ;

l lpow = llpow *( l l *(−1) ) ;

rlpow = rlpow* r l ;

}

return r e s u l t ;

}

l c f t u l l i o t o o l s : : m ixed c in t ( std : : funct ion< l c f ( l c f )> func , double x ,

l c f& l l , l c f& r l )

{
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l c f arg = l c f ( x ) + l c f d ;

l c f temp1 = func ( arg ) , l lpow = l l , rlpow = r l , r e s u l t = l c f 0 , temp2 ;

int depth = int ( temp1 . get depth ( ) ) ;

for ( int i = 0 ; i <= depth ; i++)

{

temp2 = l c f ( temp1 . g e t va lu e ( ra t ( i ) ) ) ;

temp2 = temp2 / ( i + 1) ;

temp2 = temp2 *( l lpow + rlpow ) ;

r e s u l t = r e s u l t + temp2 ;

l lpow = llpow *( l l *(−1) ) ;

rlpow = rlpow* r l ;

}

return r e s u l t ;

}

double t u l l i o t o o l s : : r e a l d a r b i n t ( std : : funct ion< l c f ( l c f )> poly , s td : :

funct ion< l c f ( l c f )> func , double lb , double ub)

{

l c f a rg lb = l c f d + lb , argub = l c f d + ub , func lb = func ( arg lb ) ,

funcub = func ( argub ) ;

std : : vector<double> po ly lb = f a s t d i f ( poly , double (0 ) ) , polyub =

f a s t d i f ( poly , double (1 ) ) ;

double sum = double (0 ) , l ength = ub − lb ;

for (unsigned int i = 0 ; i < SIG SUPP − 1 ; i++)

{

sum += pow(−1 , i ) *pow( length , i + 1) * f a c t o r i a l ( i ) *( polyub [

SIG SUPP − 2 − i ] * funcub . g e t va lu e ( ra t ( i ) ) − po ly lb [

SIG SUPP − 2 − i ] * func lb . g e t va lu e ( ra t ( i ) ) ) ;
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}

return sum / polyub [ SIG SUPP − 1 ] ;

}

double t u l l i o t o o l s : : r e a l t a y s t e p ( std : : funct ion< l c f ( l c f )> func , double

lb , double ub)

{

double h = (ub − lb ) / STEP NO , r e s u l t = 0 ;

for (unsigned int i = 0 ; i < STEP NO + 1 ; i++)

{

r e s u l t += r e a l c i n t ( func , lb + i *h + h / 2 , h / 2 , h / 2) ;

}

return r e s u l t ;

}

double t u l l i o t o o l s : : r e a l t a y s t e p s i n g ( std : : funct ion< l c f ( l c f )> func ,

double lb , double ub)

{

double h = (ub − lb ) / STEP NO , r e s u l t = r e a l l i n t ( func , lb + h , h

) + r e a l r i n t ( func , ub − h , h) ;

for (unsigned int i = 1 ; i < STEP NO ; i++)

{

r e s u l t += r e a l c i n t ( func , lb + i *h + h / 2 , h / 2 , h / 2) ;

}

return r e s u l t ;

}

242



double t u l l i o t o o l s : : r e a l d a r b s t e p ( std : : funct ion< l c f ( l c f )> poly , s td : :

funct ion< l c f ( l c f )> func , double lb , double ub)

{

double h = (ub − lb ) / STEP NO , r e s u l t = 0 ;

for (unsigned int i = 0 ; i < STEP NO + 1 ; i++)

{

r e s u l t += r e a l d a r b i n t ( poly , func , lb + i *h , lb + ( i + 1) *h) ;

}

return r e s u l t ;

}

double t u l l i o t o o l s : : r e a l d a r b s t e p s i n g ( std : : funct ion< l c f ( l c f )> poly ,

std : : funct ion< l c f ( l c f )> func , double lb , double ub)

{

double h = (ub − lb ) / STEP NO , r e s u l t = r e a l l i n t ( func , lb + h , h

) + r e a l r i n t ( func , ub − h , h) ;

for (unsigned int i = 1 ; i < STEP NO − 1 ; i++)

{

r e s u l t += r e a l d a r b i n t ( poly , func , lb + i *h , lb + ( i + 1) *h) ;

}

return r e s u l t ;

}

A.3.5 trigfuncs.cpp

#include <math . h>

#include ” func t i on s . h”

#include ” in tops . h”

using namespace t u l l i o t o o l s ;
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l c f t u l l i o t o o l s : : s i n t a y l o r ( l c f& x , unsigned int n)

{

l c f r e s u l t = l c f 0 ;

l c f temp ;

l c f xpowers = x ;

l c f x i n c r e a s e = x . exp (2 ) ;

double f a c t o r i a l = double (1 ) ;

for (unsigned int i = 0 ; i < n + 1 ; i++)

{

temp = xpowers / f a c t o r i a l ;

temp = temp*pow(−1 , i ) ;

r e s u l t = r e s u l t + temp ;

xpowers = xpowers* x in c r e a s e ;

f a c t o r i a l = f a c t o r i a l *(2 * ( i + 1) ) *(2 * ( i + 1) + 1) ;

}

return r e s u l t ;

}

l c f t u l l i o t o o l s : : s i n ( l c f& x )

{

double r e a l p a r t = x . g e t r e a l ( ) ;

l c f i n f p a r t = x − r e a l p a r t ;

l c f term1 , term2 ;

term1 = co s t a y l o r ( i n f p a r t ) * std : : s i n ( r e a l p a r t ) ;

term2 = s i n t a y l o r ( i n f p a r t ) * std : : cos ( r e a l p a r t ) ;
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return term1 + term2 ;

}

l c f t u l l i o t o o l s : : c o s t a y l o r ( l c f& x , unsigned int n)

{

l c f r e s u l t = l c f 0 ;

l c f temp ;

l c f xpowers = l c f 1 ;

l c f x i n c r e a s e = x . exp (2 ) ;

double f a c t o r i a l = double (1 ) ;

for (unsigned int i = 0 ; i < n + 1 ; i++)

{

temp = xpowers / f a c t o r i a l ;

temp = temp*pow(−1 , i ) ;

r e s u l t = r e s u l t + temp ;

xpowers = xpowers* x in c r e a s e ;

f a c t o r i a l = f a c t o r i a l *(2 * i + 1) *(2 * i + 2) ;

}

return r e s u l t ;

}

l c f t u l l i o t o o l s : : cos ( l c f& x )

{

double r e a l p a r t = x . g e t r e a l ( ) ;

l c f i n f p a r t = x − r e a l p a r t ;

l c f term1 , term2 ;

term1 = co s t a y l o r ( i n f p a r t ) * std : : cos ( r e a l p a r t ) ;
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term2 = s i n t a y l o r ( i n f p a r t ) * std : : s i n ( r e a l p a r t ) ;

return term1 − term2 ;

}

l c f t u l l i o t o o l s : : tan ( l c f& x )

{

return s i n (x ) / cos ( x ) ;

}

l c f t u l l i o t o o l s : : e xp tay l o r ( l c f& x , unsigned int n)

{

l c f r e s u l t = l c f 1 ;

l c f temp ;

l c f xpowers = x ;

l c f x i n c r e a s e = x ;

double f a c t o r i a l = double (1 ) ;

for (unsigned int i = 0 ; i < n + 1 ; i++)

{

temp = xpowers / f a c t o r i a l ;

r e s u l t = r e s u l t + temp ;

xpowers = xpowers* x in c r e a s e ;

f a c t o r i a l = f a c t o r i a l *( i + 2) ;

}

return r e s u l t ;

}

l c f t u l l i o t o o l s : : exp ( l c f& x )
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{

double r e a l p a r t = x . g e t r e a l ( ) ;

l c f i n f p a r t = x − r e a l p a r t ;

l c f term ;

term = exp tay l o r ( i n f p a r t ) ;

term = term* std : : exp ( r e a l p a r t ) ;

return term ;

}

l c f t u l l i o t o o l s : : c o s h t ay l o r ( l c f& x , unsigned int n)

{

l c f r e s u l t = l c f 0 ;

l c f temp ;

l c f xpowers = l c f 1 ;

l c f x i n c r e a s e = x . exp (2 ) ;

double f a c t o r i a l = double (1 ) ;

for (unsigned int i = 0 ; i < n + 1 ; i++)

{

temp = xpowers / f a c t o r i a l ;

r e s u l t = r e s u l t + temp ;

xpowers = xpowers* x in c r e a s e ;

f a c t o r i a l = f a c t o r i a l *(2 * i + 1) *(2 * i + 2) ;

}

return r e s u l t ;

}
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l c f t u l l i o t o o l s : : cosh ( l c f& x )

{

double r e a l p a r t = x . g e t r e a l ( ) ;

l c f i n f p a r t = x − r e a l p a r t ;

l c f term1 , term2 ;

term1 = co sh t ay l o r ( i n f p a r t ) * std : : cosh ( r e a l p a r t ) ;

term2 = s i n h t a y l o r ( i n f p a r t ) * std : : s inh ( r e a l p a r t ) ;

return term1 + term2 ;

}

l c f t u l l i o t o o l s : : s i n h t a y l o r ( l c f& x , unsigned int n)

{

l c f r e s u l t = l c f 0 ;

l c f temp ;

l c f xpowers = x ;

l c f x i n c r e a s e = x . exp (2 ) ;

double f a c t o r i a l = double (1 ) ;

for (unsigned int i = 0 ; i < n + 1 ; i++)

{

temp = xpowers / f a c t o r i a l ;

r e s u l t = r e s u l t + temp ;

xpowers = xpowers* x in c r e a s e ;

f a c t o r i a l = f a c t o r i a l *(2 * ( i + 1) ) *(2 * ( i + 1) + 1) ;

}
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return r e s u l t ;

}

l c f t u l l i o t o o l s : : s inh ( l c f& x )

{

double r e a l p a r t = x . g e t r e a l ( ) ;

l c f i n f p a r t = x − r e a l p a r t ;

l c f term1 , term2 ;

term1 = co sh t ay l o r ( i n f p a r t ) * std : : s inh ( r e a l p a r t ) ;

term2 = s i n h t a y l o r ( i n f p a r t ) * std : : cosh ( r e a l p a r t ) ;

return term1 + term2 ;

}

l c f t u l l i o t o o l s : : tanh ( l c f& x )

{

return s inh (x ) / cosh (x ) ;

}

l c f t u l l i o t o o l s : : l n t a y l o r ( l c f& x , unsigned int n)

{

l c f r e s u l t = l c f 0 ;

l c f temp ;

l c f xpowers = x ;

int s i gn = 1 ;

for (unsigned int i = 0 ; i < n + 1 ; i++)

{

temp = xpowers / ( i + 1) ;
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temp = temp* s i gn ;

r e s u l t = r e s u l t + temp ;

xpowers = xpowers*x ;

s i gn = s ign *−1;

}

return r e s u l t ;

}

l c f t u l l i o t o o l s : : ln ( l c f& x )

{

double r e a l p a r t = x . g e t r e a l ( ) ;

l c f i n f p a r t = x − r e a l p a r t ;

l c f term1 , term2 ;

term1 = log ( r e a l p a r t ) ;

term2 = l n t a y l o r ( i n f p a r t / r e a l p a r t ) ;

return term1 + term2 ;

}

l c f t u l l i o t o o l s : : a rcarg ( l c f& x )

{

l c f r e s u l t = l c f 1 − x . exp (2 ) ;

r e s u l t = nroot ( r e su l t , 2) ;

r e s u l t = l c f 1 / r e s u l t ;

return r e s u l t ;

}

l c f t u l l i o t o o l s : : a r c s i n ( l c f& x )
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{

double r e a l x = x . g e t r e a l ( ) ;

l c f l = x − r e a l x ;

return mixed r in t ( arcarg , r e a l x , l ) + as in ( r e a l x ) ;

}

l c f t u l l i o t o o l s : : a r c co s ( l c f& x )

{

double r e a l x = x . g e t r e a l ( ) ;

l c f l = x − r e a l x ;

return mixed r in t ( arcarg , r e a l x , l ) *(−1) + acos ( r e a l x ) ;

}

l c f t u l l i o t o o l s : : a rc tanarg ( l c f& x )

{

l c f term = x . exp (2 ) + l c f 1 ;

return l c f 1 / term ;

}

l c f t u l l i o t o o l s : : arctan ( l c f& x )

{

double r e a l x = x . g e t r e a l ( ) ;

l c f l = x − r e a l x ;

return mixed r in t ( arctanarg , r e a l x , l ) + atan ( r e a l x ) ;

}
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A.3.6 specfuncs.cpp

#include ” func t i on s . h”

#include <algor ithm>// f o r the min func t i on

#include <f unc t i ona l>// f o r bind

#include <math . h>// f o r f l o o r

using t u l l i o t o o l s : : l c f d ;

using t u l l i o t o o l s : : l c f 1 ;

using namespace t u l l i o t o o l s ;

using namespace std : : p l a c eho l d e r s ;

l c f t u l l i o t o o l s : : b e s s e l a r g (unsigned int n , double x , l c f& t )

{

return cos ( t *n − s i n ( t ) *x ) ;

}

double t u l l i o t o o l s : : b e s s e l (unsigned int n , double x )

{

auto temp func = std : : bind ( b e s s e l a r g , n , x , 1 ) ;

return r e a l r i n t ( temp func , 0 , M PI) ;

}

l c f t u l l i o t o o l s : : e r f a r g ( l c f& t )

{

return exp ( t . exp (2 ) *(−1) ) ;

}

l c f t u l l i o t o o l s : : e r f ( l c f& x )
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{

return mixed c in t ( e r f a r g , 0 , x , x ) / sq r t (M PI) ;

}

double t u l l i o t o o l s : : f a c t o r i a l (unsigned int n)

{

return (n == double (0 ) | | n == double (1 ) ) ? 1 : f a c t o r i a l (n − 1) *n ;

}

double t u l l i o t o o l s : : b i co (unsigned int n , unsigned int k )

{

k = std : : min (k , n − k ) ;

double num = double (1 ) , den = double (1 ) ;

i f ( k == 0) return double (1 ) ;

else

{

for (unsigned int i = 1 ; i <= k ; i++)

{

num *= n + 1 − i ;

den *= i ;

}

return num / den ;

}

}

std : : vector<double> t u l l i o t o o l s : : b e r n ou l l i (unsigned int n)

{

std : : vector<double> r e s u l t ;

double sum = 0 ;
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for (unsigned int i = 0 ; i <= n ; i++)

{

sum = 0 ;

for (unsigned int j = 0 ; j <= i ; j++)

{

for (unsigned int k = 0 ; k <= j ; k++)

{

sum += pow(k , i ) * bico ( j , k ) *pow(−1 , k ) / ( j + 1) ;

}

}

r e s u l t . push back (sum) ;

}

return r e s u l t ;

}

std : : vector<double> t u l l i o t o o l s : : b e r n o u l l i r e c (unsigned int n)

{

std : : vector<double> r e s u l t ;

double sum = 0 ;

for (unsigned int i = 0 ; i <= n ; i++)

{

i f ( i == 0) r e s u l t . push back (1 ) ;

else

{

sum = 0 ;

for (unsigned int j = 0 ; j < i ; j++)

{

sum −= bico ( i , j ) * r e s u l t [ j ] / ( i − j + 1) ;
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}

r e s u l t . push back (sum) ;

}

}

return r e s u l t ;

}

std : : vector<double> t u l l i o t o o l s : : b e r n o u l l i g f (unsigned int n)

{

n = int (n) ;

s td : : vector<double> r e s u l t ;

l c f arg = l c fd , temp = arg / ( exp ( arg ) − 1) ;

for ( int i = 0 ; i < n ; i++)

{

r e s u l t . push back ( temp . g e t va lu e ( ra t ( i ) ) * f a c t o r i a l ( i ) ) ;

}

return r e s u l t ;

}

std : : vector<double> t u l l i o t o o l s : : b e r n ou l l i t a n (unsigned int n)

{

n = int (n) ;

s td : : vector<double> r e s u l t ;

l c f arg = l c fd , temp = tan ( arg ) ;

r e s u l t . push back (1 ) ;

r e s u l t . push back (−0.5) ;

for ( int i = 1 ; i < n − 1 ; i++)

{
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r e s u l t . push back ( temp . g e t va lu e ( ra t ( i ) ) * f a c t o r i a l ( i + 1) / (pow(−1 ,

f l o o r ( ( i + 1) / 2) − 1) *pow(2 , i + 1) *(pow(2 , i + 1) − 1) ) ) ;

}

return r e s u l t ;

}

std : : vector<double> t u l l i o t o o l s : : b e r nou l l i t a nh (unsigned int n)

{

n = int (n) ;

s td : : vector<double> r e s u l t ;

l c f arg = l c fd , temp = tanh ( arg ) ;

r e s u l t . push back (1 ) ;

r e s u l t . push back (−0.5) ;

for ( int i = 1 ; i < n − 1 ; i++)

{

r e s u l t . push back ( temp . g e t va lu e ( ra t ( i ) ) * f a c t o r i a l ( i + 1) / (pow(2 ,

i + 1) *(pow(2 , i + 1) − 1) ) ) ;

}

return r e s u l t ;

}

std : : vector<double> t u l l i o t o o l s : : b e r n o u l l i i n i t ( )

{

std : : vector<double> r e s u l t ;

r e s u l t . push back ( BERN 0 ) ;

r e s u l t . push back ( BERN 1 ) ;

r e s u l t . push back ( BERN 2 ) ;

r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 4 ) ;
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r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 6 ) ;

r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 8 ) ;

r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 10 ) ;

r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 12 ) ;

r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 14 ) ;

r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 16 ) ;

r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 18 ) ;

r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 20 ) ;

r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 22 ) ;

r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 24 ) ;

r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 26 ) ;

r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 30 ) ;

r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 32 ) ;

r e s u l t . push back (double (0 ) ) ;

r e s u l t . push back ( BERN 34 ) ;
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return r e s u l t ;

}

l c f t u l l i o t o o l s : : nroot ( l c f& x , unsigned int n) // f i n d s the nth roo t o f x

.

{

l c f r e s u l t ;

i f ( x == l c f 0 )

{

r e s u l t = 0 ;

}

else i f ( x . g e t o rd e r ( )>=0)// I f t h i s cond i t i on i s s a t i s f i e d than x i s

a t most f i n i t e and so we can take i t s na tura l l o g

{

i f ( x > l c f 0 )

{

r e s u l t = ln (x ) / n ;

r e s u l t = exp ( r e s u l t ) ;

}

else i f ( x < l c f 0 )

{

r e s u l t = x*(−1) ;

r e s u l t = ln ( r e s u l t ) / n ;

r e s u l t = exp ( r e s u l t ) ;

r e s u l t = r e s u l t *(−1) ;

}

return r e s u l t ;

}

else // In t h i s case x must be i n f i n i t e l y l a r g e and thus ln ( x ) i s
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undef ined , we f a c t o r out the i n f i n i t e l y l a r g e par t and f i nd the

nth roo t o f the two f a c t o r s independen t l y

{

ra t a rg o rde r = x . g e t o rd e r ( ) , r e s o r d e r = arg o rde r / n ;

l c f d i v i s o r = l c f (double (1 ) , a rg o rde r ) , f a c t o r = l c f (double (1 ) ,

r e s o r d e r ) , temp = x / d i v i s o r ;

r e s u l t = nroot ( temp , n) * f a c t o r ; //temp shou ld now be at most f i n i t e

so wi th t h i s argument the func t i on shou ld execu te the o ther

branch o f the c ond i t i ona l s ta tment .

return r e s u l t ;

}

}

A.3.7 polyfuncs.cpp

#include ” func t i on s . h”

#include <f unc t i ona l>

using namespace t u l l i o t o o l s ;

l c f t u l l i o t o o l s : : b e r n ou l l i p o l y ( l c f& x , unsigned int n)

{

l c f r e s u l t = l c f 0 ;

s td : : vector<double> bern = b e r n o u l l i i n i t ( ) ;

for (unsigned int i = 0 ; i <= n ; i++)

{

r e s u l t = r e s u l t + x . exp ( i ) *bern [ n − i ] * bico (n , i ) ;

}

return r e s u l t ;

}
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l c f t u l l i o t o o l s : : b e r n o u l l i p h i ( l c f& x )

{

return b e r n ou l l i p o l y (x , SIG SUPP −1) ;

}

l c f t u l l i o t o o l s : : l b t a y l o r p o l y ( l c f& x , unsigned int n)

{

return x . exp (n − 1) ;

}

l c f t u l l i o t o o l s : : ub tay l o r po l y ( l c f& x , unsigned int n)

{

return ( x − 1) . exp (n − 1) ;

}

l c f t u l l i o t o o l s : : expe r imenta l po ly ( l c f& x , unsigned int n)

{

l c f r e s u l t = l c f 1 ;

for (unsigned int i = 1 ; i < n ; i++)

{

r e s u l t = r e s u l t *( x − double ( i ) / n) ;

}

return r e s u l t ;

}

l c f t u l l i o t o o l s : : expe r imenta l ph i ( l c f& x )

{

return exper imenta l po ly (x , SIG SUPP ) ;
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}

l c f t u l l i o t o o l s : : t e s t p o l y ( l c f& x , unsigned int n)

{

l c f r e s u l t = l c f 1 ;

for (unsigned int i = 1 ; i < n ; i++)

{

r e s u l t = r e s u l t *( x − double ( i ) / M PI) ;

}

return r e s u l t ;

}

l c f t u l l i o t o o l s : : s imp poly ( l c f& x )

{

return x . exp (3 ) + 1 ;

}

l c f t u l l i o t o o l s : : t r ap po ly ( l c f& x )

{

return x*M PI ;

}

A.3.8 testfuncs.cpp

#include ” func t i on s . h”

#include <math . h>

using namespace t u l l i o t o o l s ;

l c f t u l l i o t o o l s : : examp1( l c f& x )
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{

l c f r e s u l t , num1 , num2 , den1a , den1b , den1 , den2 ;

num1 = s in (x . exp (3 ) + x * 2 + 1) ;

num2 = x + 1 ;

num2 = num2 . abs ( ) ;

num2 = cos ( s i n ( ln (num2) ) ) + 3 ;

den1a = s i n ( cos ( tan ( exp (x ) ) ) ) ;

den1b = cos ( s i n ( exp ( tan (x + 2) ) ) ) ;

den1 = exp ( tanh ( s inh ( cosh ( den1a / den1b ) ) ) ) ;

den2 = s i n ( s inh ( cos ( arctan ( ln ( exp (x ) + x . exp (2 ) + 3) ) ) ) ) + 2 ;

return (num1 + num2 / den1 ) / den2 ;

}

l c f t u l l i o t o o l s : : examp2( l c f& x )

{

l c f term1 , term2 ;

term1 = cos (x ) ;

term1 = exp ( term1 ) ;

term2 = s in (x ) ;

term2 = exp ( term2 ) ;
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return term1 + term2 ;

}

l c f t u l l i o t o o l s : : examp3( l c f& x )

{

l c f term1 , term2 , term3 ;

term1 = x . exp (4 ) ;

term1 = ln ( term1 ) ;

term2 = x . exp (2 ) + x * 3 ;

term2 = cos ( term2 ) ;

term3 = x . exp (3 ) + x . exp (2 ) * 4 ;

term3 = s in ( term3 ) ;

return term1* term2* term3 ;

}

l c f t u l l i o t o o l s : : conj1 ( l c f& x )

{

l c f num, den ;

num = x . exp (2 ) * ln ( x ) ;

den = (x . exp (2 ) − 1) *( x . exp (4 ) + 1) ;

return num / den ;

}

l c f t u l l i o t o o l s : : conj2 ( l c f& x )

{
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l c f num, den ;

num = x . exp (2 ) ;

den = s i n (x ) ;

den = den . exp (2 ) ;

return num / den ;

}

l c f t u l l i o t o o l s : : conj3 ( l c f& x )

{

l c f num, den ;

num = x* s i n (x ) ;

den = cos (x ) ;

den = den . exp (2 ) ;

den = den + 1 ;

return num / den ;

}

l c f t u l l i o t o o l s : : t e s t f unc0 ( l c f& x )

{

l c f arg = x . exp (3 ) + x + 1 ;

arg = arg . abs ( ) ;

return exp ( s i n ( cos ( ln ( arg ) ) ) ) ;

}

l c f t u l l i o t o o l s : : t e s t f unc1 ( l c f& x )

{

return x* ln ( x + 1) ;

}
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l c f t u l l i o t o o l s : : t e s t f unc3 ( l c f& x )

{

return exp (x ) * cos ( x ) ;

}

l c f t u l l i o t o o l s : : t e s t f unc8 ( l c f& x )

{

l c f temp = ln (x ) ;

return temp . exp (2 ) ;

}

l c f t u l l i o t o o l s : : t e s t f unc9 ( l c f& x )

{

return ln ( cos ( x ) ) ;

}

l c f t u l l i o t o o l s : : t e s t 1 ( l c f& x )

{

return exp (x . exp (2 ) − x + 2) ;

}

l c f t u l l i o t o o l s : : t e s t 2 ( l c f& x )

{

return ( s i n ( s i n ( s i n ( s i n ( s i n (x ) ) ) ) ) ) / ( cos ( cos ( cos ( cos ( cos ( x ) ) ) ) ) ) ;

}
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