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Abstract

In semi-competing risks data, interest lies in the estimation of the survival

function of a non-terminal event time, which is subject to dependent censor-

ing by a terminal event. This problem has been extensively studied in the

literature, but mostly focusing on unconditional settings. In this thesis, we

propose two versions of conditional copula-graphic estimator: one allows for

covariate adjustment only in the marginal survival functions of non-terminal

and terminal events, and the other allows for covariate adjustment in both the

marginal survival functions and the dependence structure of non-terminal and

terminal event times.

The proposed estimators are semiparametric. In both, the conditional copula

is assumed to belong to a one-parameter Archimedean copula family, but the

copula parameter is estimated parametrically in the first version and nonpara-

metrically in the second one. Both versions employ Beran’s estimator in the

estimation of the conditional marginal survival functions. The performance

of the conditional copula-graphic estimators is assessed using a simulation

study and is compared to that of the unconditional copula-graphic estimator

to investigate the cost of ignoring covariate effects.

Our findings suggest that, in the presence of covariates, the conditional copula-

graphic estimators are more efficient and less biased than the unconditional



copula-graphic estimator. If interest centres on the estimation of the marginal

survival function of the non-terminal event, both versions of the conditional

copula-graphic estimator perform similarly. However, if the estimation of the

conditional dependence structure is also of interest, the second version more

accurately captures the underlying dependence structure. The performance of

the conditional copula-graphic estimators deteriorates with the increase in the

censoring rate of the non-terminal event. A real data example on breast cancer

recurrence is provided to illustrate the proposed approach in comparison to

the unconditional copula-graphic estimator.
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Ŝ1(.) at different quantiles under Model 2. . . . . . . . . . . . . . 38

3.6 Integrated squared bias (IBias2), integrated variance (IVAR)

and integrated mean square error (IMSE) (multiplied by 100) of

the Kendall’s tau estimates under Model 2. . . . . . . . . . . . 39

3.7 Mean, integrated squared bias (IBias2), integrated variance (IVAR)

and integrated mean square error (IMSE) (multiplied by 100) of the
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Chapter 1

Introduction

Survival analysis is a statistical technique where the outcome variable is the

time until an event (e.g., death, disease recurrence) occurs. In survival analysis,

complete data may not be observed as some subjects do not experience the

event during the study period due to drop-out or death. In such cases, the event

time is called censored. Depending on the type of events and their underlying

censoring mechanisms, different approaches are taken in survival analysis (e.g.,

Lawless, 2011; Klein and Moeschberger, 2006; Crowder, 2012). This thesis

focuses on semi-competing risks.

Semi-competing risks refer to a situation where a subject may experience

a terminal event (e.g., death) before the occurrence of a non-terminal event

(e.g., cancer recurrence) and where both events are subject to independent

(administrative) censoring. Since the censoring of the non-terminal event by

the terminal event is informative, the dependence between these two event

1



2 CHAPTER 1. INTRODUCTION

times needs to be taken into account when estimating the marginal survival

function of the non-terminal event time.

The motivating example in this thesis comes from the German Breast Cancer

Study (GBCS), where interest lies in the recurrence time of breast cancer. The

original dataset consists of 720 patients with primary node positive breast

cancer between July 1984 and December 1989 (Schmoor et al., 1996). The

available subset consists of 686 observations with times to cancer recurrence

and times to death, indicators of their censoring statuses and continuous covari-

ates, such as age, tumour size, number of positive lymph nodes, progesterone

receptor level and estrogen receptor level, and categorical covariates, such as

menopausal status, tumour grade and hormone treatment. In the study, all

patients had breast cancer history along with covariate information but were

cancer-free prior to the study start. Recurrence times of breast cancer are likely

to be associated with lifetimes as both events are subject to some common risk

factors such as genetic background, immune system and patient’s lifestyle. The

recurrence time can be censored by either death or the end of study period

(administrative censoring), and death may be censored as well by the end of

study period. The administrative censoring is assumed to be independent of the

two events. Since 171 patients were alive at the end of the study period, this

dataset defines an example of semi-competing risks. If the terminal event were

observed for all study subjects, the data structure would fall under dependent

right-censoring.
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In the case of dependent right-censored data the copula-graphic estimator

(Zheng and Klein, 1995) is commonly used to estimate the marginal survival

function of the event of interest. This estimator has a closed-form expression

when the copula of the non-terminal and terminal event times is Archimedean

(Rivest and Wells, 2001). For semi-competing risks data, where there is addi-

tional independent censoring, Lakhal et al. (2008) proposed a copula-graphic

estimator using one parameter Archimedean copulas, which was extended to

multi-parameter Archimedean copulas by Heuchenne et al. (2014) using a

pseudo-maximum likelihood approach. The large sample properties of the

copula-graphic estimator were studied in Laurent (2013) and (Rivest and Wells,

2001).

While semi-competing risks data have been extensively studied in the literature,

only few works have addressed the incorporation of covariates in the modelling

strategy. While most research efforts in this domain focused on regression

analysis of marginal survival functions, some addressed potential covariate

effects on the dependence structure for some special cases, such as discrete

covariates (e.g., Hsieh et al., 2008; Chen, 2012) and time-varying dependence

parameters (e.g., Peng and Fine, 2007; Hsieh and Huang, 2012). Peng and

Fine (2007) proposed regression analysis based on a parametric copula model

and developed nonparametric estimator using non-linear estimating equation.

Hsieh and Huang (2012) specified the dependence structure of non-terminal

and terminal events via a conditional copula models and the covariate effects
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on margins via regression models. They proposed a conditional likelihood

approach for estimating the covariate effects on the margins. In some other

work, the dependence structure is specified using a frailty model (e.g., Ghosh,

2006; Xu et al., 2010). Ghosh (2006) proposed a gamma frailty model for

analyzing semi-competing risks data conditional on covariates and showed in a

data application of leukaemia that the strength of dependence between times

to disease recurrence and death differs for different types of leukaemia. Xu

et al. (2010) proposed an illness-death model with gamma frailty for covariate

adjusted analysis of semi-competing risks data. They applied their method

to Nasopharyngeal cancer data and found a significant effect of the tumour

size and nodal status on the dependence structure of cancer relapse and death

times. Some recent work also considered quantile regression (e.g., Li and Peng,

2015; Yang and Peng, 2016) for analyzing conditional semi-competing risks data.

In this thesis, we develop an extension of the copula-graphic estimator of

Braekers and Veraverbeke (2005) for dependent right-censored data to the

semi-competing risks setting. We propose two versions of conditional copula-

graphic estimator that allows for covariate adjustment, (i) on the marginal

survival functions and (ii) on both the margins and the dependence structure

of non-terminal and terminal event times. The performances of the proposed

estimators are evaluated in a simulation study under different rates of censoring

and for different dependence structures. A comparison of conditional and

unconditional copula-graphic estimators is also provided to investigate the cost



1.1. BACKGROUND ON COPULAS 5

of ignoring covariate effects.

In the following sections, we provide an overview of copulas and survival

analysis methods relevant to this thesis.

1.1 Background on Copulas

Copulas are joint distribution functions of random variables having standard

uniform marginal distributions. Copula models have gained popularity in many

applied fields such as finance (e.g., Uyttendaele and Mazo, 2016; Krupskii

and Joe, 2015, 2013), actuarial science (e.g., Embrechts, 2009; Frees and

Valdez, 1998) and health sciences (e.g., Geerdens et al., 2017; Li and Cheng,

2016; Heuchenne et al., 2014). They offer a strategy to study dependence

relationships in multivariate data, define scale-free measures of dependence,

and construct multivariate distributions.

Suppose Y = (Y1, Y2) be a random vector with the joint distribution function

H and marginal distribution functions Fi for i = 1, 2. Using Sklar’s Theorem

(Sklar, 1959), the joint distribution function can be written as

H(y1, y2) = C(F1(y1), F2(y2)). (1.1)

Here C is the copula of Y1 and Y2 linking their dependence.

A large number of parametric copula families has been proposed, with the most
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popular families being elliptical copulas (e.g. Gaussian and Student t-copulas)

and Archimedean copulas (e.g., Clayton, Gumbel and Frank copulas). In this

research, Archimedean copulas are considered as they lead to a closed form

expression for the copula-graphic estimator. In addition, Archimedean copulas

describe very different dependence structures including lower and upper tail

dependence.

Archimedean copulas are constructed explicitly via a generator function ψ

and take the form

Cψ(u1, u2) = ψ[−1]{ψ(u1) + ψ(u2)},

where ψ : (0, 1]→ R+ is a continuous function satisfying ψ(1) = 0, ψ′(t) < 0

(strictly decreasing), ψ′′(t) > 0 (convex), for all t ∈ (0, 1] and ψ[−1] is the

pseudo-inverse of ψ such that ψ−1 : (0,∞]→ (0, 1] and

ψ[−1](t) =

{
ψ−1(t), 0 ≤ t ≤ ψ(0)

0 ψ(0) ≤ t ≤ ∞ .

The Pearson’s correlation coefficient is not an appropriate dependence measure

for the Archimedean family of copulas. Even joint elliptical distributions, there

are situations where linear correlation is not appropriate. If the model come

from a heavy-tailed distribution linear correlation coefficient can not be defined

because of infinite second moments (Embrechts et al., 2001). Kendall’s tau is
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commonly used to quantify the strength of dependence in copulas. Kendall’s

tau for the bivariate random vector (y1, y2)T is defined as

τ(y1, y2) = P{(y1 − ỹ1)(y2 − ỹ2) > 0} − P{(y1 − ỹ1)(y2 − ỹ2) < 0},

where (ỹ1, ỹ2)T is an independent copy of (y1, y2)T . In other words Kendall’s

tau for (y1, y2)
T is the probability of concordance minus the probability of

discordance. For an Archimedean copula with parameter θ, Kendall’s tau can

be written in terms of the generator function as

τ = 4

∫ 1

0

ψθ(u)

ψ′θ(u)
du+ 1.

Below we describe the Archimedean copulas used in this thesis, along with their

contour and the conversions between their parameter and Kendall’s tau. We

also provide the generator functions, as well as their inverses and derivatives,

as these are need for likelihood construction in Chapter 2.

Frank Copula: The Frank copula is given by

Cθ(u1, u2) = −1

θ
ln

{
1 +

(e−θu1 − 1)(e−θu2 − 1)

e−θ − 1

}
, θ ∈ R \ {0}.

The Frank copula has no tail dependence. The contour plots of the Frank

copula at different τ values are given in Figure (1.1) with standard normal

margins.
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Figure 1.1: Contour plots of the Frank copula when τ = 0.2 (left panel), 0.5
(middle panel) and 0.8 (right panel).

The conversion of the parameter to Kendall’s tau is given by

τ = 1 +
4

θ
[D1(θ)− 1],

where D1(θ) = 1
θ

∫ θ
0

t
exp(t)−1

dt is the Debye function.

The generator function of the Frank copula along with its first derivative,

inverse and the first two derivatives of the inverse functions are given by

ψθ(z) = − ln

{
e−θz − 1

e−θ − 1

}
,

ψ′θ(z) =
θe−θz

e−θz − 1
,

ψ−1
θ (z) = −1

θ
ln{e−z(e−θ − 1) + 1},
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ψ−1
θ (z)′ =

1

θ

e−z(e−θ − 1)

e−z(e−θ − 1) + 1
,

ψ−1
θ (z)′′ = −1

θ

e−z(e−θ−1)

{e−z(e−θ − 1) + 1}2
.

Gumbel Copula: The Gumbel copula is given by

Cθ(u1, u2) = e−{(− lnu1)θ+(− lnu2)θ}
1
θ , θ ∈ [1,∞).

The Gumbel copula has upper tail dependence. The contour plots of Gumbel

copula at different τ values are given in Figure (1.2) with standard normal

margins.

Figure 1.2: Contour plots of the Gumbel copula with standard normal margins
when τ = 0.2 (left panel), 0.5 (middle panel) and 0.8 (right panel).



10 CHAPTER 1. INTRODUCTION

The conversion of the parameter to Kendall’s tau is given by

τ = 1− 1

θ
.

The generator function of the Gumbel copula along with its first derivative,

inverse and the first two derivatives of the inverse functions are given by

ψθ(z) = (− ln z)θ,

ψ′θ(z) = −θ
z

(− ln z)θ−1,

ψ−1
θ (z) = e−z

1
θ ,

ψ−1
θ (z)′ = −1

θ
z

1
θ
−1e−z

1
θ ,

ψ−1
θ (z)′′ =

1

θ2
z

1
θ
−2e−z

1
θ (z

1
θ − 1 + θ).

Clayton Copula: The Clayton copula is given by

Cθ(u1, u2) = (u−θ1 + u−θ2 − 1)−
1
θ , θ ∈ (0,∞).

The Clayton copula has lower tail dependence. The contour plots of Clayton

copula at different τ values are given in Figure (1.3) with standard normal

margins.
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Figure 1.3: Contour plots of the Clayton copula with standard normal margins
when τ = 0.2 (left panel), 0.5 (middle panel) and 0.8 (right panel).

The conversion of the parameter to Kendall’s tau is given by

τ =
θ

θ + 2
.

The generator function of the Clayton copula along with its first derivative,

inverse and the first two derivatives of the inverse functions are given by

ψθ(z) =
1

θ
(z−θ − 1),

ψ′θ(z) = −z−(θ+1),

ψ−1
θ (z) = (θz + 1)−

1
θ ,

ψ−1
θ (z)′ = −(θz + 1)−( 1

θ
+1),

ψ−1
θ (z)′′ = (θ + 1)(θz + 1)−( 1

θ
+2).
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1.2 Background on Survival Analysis

This section provides a brief overview of the survival analysis tools used in this

thesis.

Kaplan-Meier Estimator: When the event time and censoring time are

independent, the marginal survival function of the event time is often estimated

using the Kaplan-Meier estimator. Let Y be the event time, Z be the censoring

time. The observed random variables are T = min{Y, Z} and ∆ = 1{Y ≤ Z}.

Given that the observed data is {(Ti,∆i), i = 1, · · · , n}, the Kaplan-Meier

estimator (Kaplan and Meier, 1958) is defined as

Γ̂(t) =
∏
i:Ti≤t

(
1− di

ni

)
, (1.2)

where ni be the number of subjects at risk at Ti, di be the number of events

that happened at time ti. Asymptotic properties of the Kaplan-Meier estimator

are verified in many literature (e.g., Gonzalez-Manteiga and Cadarso-Suarez,

1994; Cai, 1998).

Copula-Graphic Estimator for Dependent Censoring: In case of depen-

dent censoring, Zheng and Klein (1995) proposed a copula-graphic estimator

where the dependence between the event time and censoring time is described by

a known copula. This estimator is consistent and reduces to the Kaplan-Meier

estimator when event and censoring times are independent (Rivest and Wells,
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2001). Using previous notations when Y 6⊥ C, the copula-graphic estimator of

the marginal survival function is defined as

Ŝ(t) = ψ−1
θ

[
−

∑
Ti≤t,∆i=1

ψθ(π̂(Ti))− ψθ(π̂(Ti)− 1/n)

]
, (1.3)

where π̂(t) =
∑n

i=1 1{Ti ≥ t}/n, is the estimate of the survival function of

T = min{Y, Z} with the censoring indicator ∆1.

Copula-Graphic Estimator for Semi-competing Risks: Consider a semi-

competing risks setting with Y1, Y2, the non-terminal and terminal event

times which are dependent on each other. Let Z be the censoring time.

The observed random variables are T1 = min{Y1, Y2, Z}, T2 = min{Y2, Z},

∆1 = 1{Y1 ≤ Y2, Y1 ≤ Z} and ∆2 = 1{Y2 ≤ Z}. For analyzing such data,

Lakhal et al. (2008) proposed an extension of copula-graphic estimator is given

by

Ŝ1(t) = ψ−1
θ

(
−

∑
T1i≤t,∆i=1

(
ψθ(Γ̂(T−1i ))− ψθ(Γ̂(T1i))

))
, (1.4)

where Γ̂(.) is the survival function estimator of T ∗ = min{Y1, Y2}, obtained us-

ing the Kaplan-Meier estimator with the censoring indicator ∆3 = 1{min(Y1, Y2) <

Z} = min(1,∆1 + ∆2) and T−1 is the time just before T1.
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1.3 Dependent versus Independent Censoring:

A Simulation Study

In this section, we perform a small-scale simulation study to compare the

Kaplan-Meier estimator and the copula-graphic estimator at dependence levels

τ = 0, 0.2, 0.5 and 0.8, and censoring rates 0%, 25% and 50%. We generated

samples of size, n = 100 under the Frank family (see details in Section 3.1)

and obtained the Kaplan-Meier and copula graphic-estimators for M=100

Monte-Carlo replicates.

Figure (1.4) displays the bias and mean squared error of these estimators

for Q10, Q50 and Q90 across different censoring rates and at different depen-

dence levels. When τ = 0, the event time and censoring times are independent.

Here the Kaplan-Meier (KM) estimator coincides with the copula-graphic

estimator having equal bias and mean squared error (MSE) for all quantiles.

As τ and/or censoring rate increase, the bias and the mean squared error of

the Kaplan-Meier estimator deviate from those of the copula-graphic estimator

for the 10th and 50th percentiles. Since bias > 0, the Kaplan-Meier estimator

overestimates the survival probability for increasing τ and/or censoring rate.

This simulation study indicates that ignoring the dependent censoring leads to

biased and less efficient estimates.
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Figure 1.4: Bias and Mean squared error of the Kaplan-Meier (solid line) and
copula-graphic (dashed line) estimates, calculated over 100 Monte Carlo samples, at
p = 0.1 (red), 0.5 (green), 0.9 (blue) under the Frank copula with τ = 0.0, 0.2, 0.5
and 0.8 (left to right columns).
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1.4 Thesis Outline

This thesis is organized as follows. Chapter 2 describes the model and the

proposed estimation procedure for both the conditional marginal survival

functions and the conditional copula. This chapter also outlines an iterative

algorithm for conditional copula-graphic estimators. Chapter 3 presents the

simulation results to evaluate the performance of the conditional copula-graphic
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estimators in comparison to that of the unconditional version. Chapter 4

contains the analysis of German Breast Cancer data where we asses the effect

of age on both the time to cancer relapse and the dependence between the

relapse and death times. Chapter 5 summarizes our main findings and outlines

future direction.



Chapter 2

Conditional Copula-Graphic

Estimator

This chapter contains the methodological contributions of the thesis. After

introducing the notation in Section 2.1, we describe the conditional copula

model for the conditional joint survival function in Section 2.2. Two versions

of the conditional-copula graphic estimator are introduced in Section 2.3 along

with the estimation procedure. Finally, in Section 2.4, we outline an iterative

algorithm for the estimation of the conditional copula parameter and of the

conditional survival function.

2.1 Notation

Let us consider a semi-competing risks setting where Y1 is the non-terminal event

time, Y2 is the terminal event time and Z is the censoring time. The observed

random variables are T1 = min{Y1, Y2, Z}, T2 = min{Y2, Z}, ∆1 = 1{Y1 ≤

17
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Y2, Y1 ≤ Z} and ∆2 = 1{Y2 ≤ Z}. When ∆1 = ∆2 = 1, both Y1 and Y2 are

observed, when ∆1 = 1, Y1 and the minimum of (Y2, Z) are observed and when

∆2 = 1, Y2 is observed. The situation where either non-terminal or terminal or

both events occur is defined using the indicator ∆3 = 1{min(Y1, Y2) < Z} =

min(1,∆1 + ∆2) for T ∗ = min{Y1, Y2}. Suppose X is a continuous covariate

that affects both the marginal survival functions and the dependence structure

of Y1 and Y2. The observed data is {(T1i, T2i,∆1i,∆2i, Xi), i = 1, · · · , n}.

2.2 Model

For the setting described in Section 2.1, the conditional joint survival function

of Y1 and Y2 given X = x can be represented as

HX(t1, t2 | x) = CX{S1|X(t1 | x), S2|X(t2 | x) | x},

where Sj|X(tj | x) = P (Yj > tj | X = x) is the conditional marginal survival

function of Yj given X = x for j = 1, 2, and CX is the conditional copula.

We assume that CX belongs to the same Archimedean copula family with the

generator function ψ : (0, 1]→ R for each x in the range of the covariate. Let

us consider two forms of joint survival function.

Constant conditional copula model:

CX{S1|X(t1 | x), S2|X(t2 | x) | x} = ψ−1
θ

(
ψθ(S1|X(t1 | x)) + ψθ(S2|X(t2 | x))

)
,

(2.1)
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where θ is the copula parameter and ψ : (0, 1] ∈ R+ is the Archimedean

generator.

Varying conditional copula model:

CX{S1|X(t1 | x), S2|X(t2 | x) | x} = ψ−1
θ(x)

(
ψθ(x)(S1|X(t1 | x)) + ψθ(x)(S2|X(t2 | x))

)
,

(2.2)

where θ(x) is the copula parameter and ψ : (0, 1] ∈ R+ is the Archimedean

generator. The generator functions as well as their inverses and derivatives for

the commonly used Archimedean copulas can be found in Section 1.1.

2.3 Estimation of the Conditional Marginal

Survival Functions

Given the observed data, {(T1i, T2i,∆1i,∆2i, Xi), i = 1, . . . , n} one needs to

estimate S1|X(t1 | x), S2|X(t2 | x) and θ(·) to fit the model in (2.1). As the

terminal event time is independent of the censoring time, S2|X(· | x) can be

estimated using Beran’s estimator (Beran, 1981). In survival analysis, event

(recurrence of any disease) or censoring (death) times often accompanied by

some characteristics (e.g., age, sex). For these type of situation, Beran (1981)

proposed a nonparametric estimator on conditional margins, which takes the

form
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Ŝ2|X(t|x) =
∏

T2i≤t,∆2i=1

(
1− wni(x, h)

1−
∑i−1

j=1wni(x, h)

)
, (2.3)

with the weights wni(x, h) = Kh(Xi − x)/
∑n

j=1Kh(Xj − x), where Kh(·) =

K(· | h)/h, with K the kernel function and h the bandwidth parameter.

The choice of bandwidth h plays an important role in Beran’s estimator of

marginal survival function. We select the bandwidth value that minimizes the

leave-one-out cross validated criterion

B̂(h) = argmin
h

n∑
i=1

n∑
j=1

∆∗ji(1{T2i ≤ T2j} − F̂ (−i)
2|X (T2j | Xi))

2, (2.4)

where F̂
(−i)
2|X (· | Xi) = 1 − Ŝ

(−i)
2|X (· | Xi) is the estimator of the conditional

marginal distribution obtained from the Beran’s estimator using the data

{(T1i, T2i,∆1i,∆2i, Xi), i = 1, . . . , n} with j = 1, · · · , i− 1, i+ 1, · · · , n. Here,

following Geerdens et al. (2017), we use the indicator ∆∗ji = 1 for a useful

pair of observed times and ∆∗ji = 0 for all other pairs. A pair of observed

times, (T2i, T2j) is useful if one of the following holds: (i) (∆2i,∆2j) = (1, 1);

(ii) (∆2i,∆2j) = (1, 0) and T2i ≤ T2j ; (iii) (∆2i,∆2j) = (0, 1) and T2i ≥ T2j ; or

(iv) i = j with i, j = 1, · · · , n.

However, the estimation of S1|X(· | x) is more involved due to dependent

censoring. Suppose the conditional copula CX is known. Then, one can utilize
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the dependence between Ŝ1|X(· | x) and Ŝ2|X(· | x) to estimate θ(·). Hence, the

conditional copula-graphic estimator takes a form similar to the copula-graphic

estimator,

Ŝ1|X(t|x) = ψ−1
θ

(
−

∑
T1i≤t,∆1i=1

(
ψθ(Γ̂(T−1i |x))− ψθ(Γ̂(T1i|x))

))
, (2.5)

where Γ̂(.) is the conditional survival function estimator of T ∗ = min{Y1, Y2},

obtained using Beran’s estimator in equation (2.3) with the censoring indicator

∆3. Bandwidth selection mechanism for the conditional copula graphic estima-

tor is similar as the Beran’s bandwidth selection given in equation (2.4). Since

the conditional copula CX(·, · | x) is unknown in practice, one needs to fit the

conditional copula model, which we discuss next.

2.4 Estimation of the Conditional Copula Pa-

rameter

Based on the two models introduced in Section 2.2 , we propose two versions

of conditional copula-graphic estimator (CCGE).

Case I: Covariate only affects the marginal survival functions and the copula

parameter is a constant.

Case II: Covariate affects both the margins and the dependent structure,

copula parameter is a function of covariate.
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2.4.1 Estimation of θ

Given the estimates of the conditional marginal survival functions, the copula

parameter θ is estimated maximizing the pseudo copula log-likelihood function,

which is similar to the unconditional setting in Heuchenne et al. (2014). The

pseudo copula log-likelihood function is given by

n∑
i=1

`(θ, Ŝ1|X(t1i | x), Ŝ2|X(t2i | x); ∆1i,∆2i),

where `(·) is the pseudo copula log-likelihood function and Ŝ1|X(t1 | x) is the

conditional copula-graphic estimator referred to as CCGE. For one observation,

Heuchenne et al. (2014) defines the likelihood as

L(θ, Ŝ1|X , Ŝ2|X | ·) = [ψ′θ(Ŝ1|X)]∆1 [ψ′θ(Ŝ2|X)]∆2×(ψ−1
θ )(∆1+∆2)

(
ψθ(Ŝ1|X) + ψθ(Ŝ2|X)

)
.

(2.6)

2.4.2 Estimation of θ(X)

Given the estimates of the conditional marginal survival functions, the copula

parameter θ(x) is estimated using the approach in Geerdens et al. (2017) for

bivariate right-censored data. The estimation is achieved by maximizing the

local pseudo copula log-likelihood function

n∑
i=1

`(θ(Xi), Ŝ1|X(t1i | x), Ŝ2|X(t2i | x); ∆1i,∆2i) KhC (Xi − x), (2.7)
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where `(·) is the local pseudo copula log-likelihood function.

Due to the restricted parameter range of some copula families, θ(X) are

re-parametrized as θ(x) = g−1(η(x)), where η(.) is called the calibration func-

tion and g−1 : R → Θ is a inverse-link function with Θ being the parameter

space of a given copula family Acar et al. (2011). For different Archimedean

copula families θ is re-parametrized as θ(x) = η(x) for the Frank copula,

θ(x) = exp(η) + 1 for the Gumbel copula and θ(x) = exp(η) for the Clayton

copula.

In semi-competing risks setting, it is difficult to capture the effect of co-

variate on the dependence structure. In the literature, it is advised to employ

nonparametric strategies for determining the impact of covariate on the depen-

dence strength (Acar et al., 2011). Suppose γ(.) is sufficiently smooth with

(p + 1)th derivative at the point x, then, for a given covariate value Xi, in a

neighbourhood of x, γ(Xi) can be approximated by Taylor expansion of order

p :

γ(Xi) ≈ γ(x) + γ(1)(x)(Xi − x) + · · ·+ γ(p)(x)

p!
(Xi − x)p.

Letting p = 1, i.e. ignoring the higher order derivatives, θ(Xi) can be approxi-

mated as,

θ(Xi) = g−1(γ0x + γ1x(Xi − x)).
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The estimate of γ0x gives the copula parameter estimate at x, i.e. θ̂(x) = γ̂0x.

In this case, the conditional copula-graphic estimator, Ŝ1|X(t1 | x) is referred

to as CCGE*. The bandwidth value, hC of equation (2.7) is determined by

maximizing the leave-one-out cross-validated local log-likelihood function (Acar

et al., 2011).

2.5 Iterative Algorithm

As discussed in Section 2.3, Ŝ1|X is needed to estimate the copula parameter,

θ̂(X) and θ̂(X) is needed to estimate, Ŝ1|X . Therefore we define an iterative

algorithm for estimating copula parameter and marginal survival function of

the non-terminal event simultaneously using equation (2.5) and equation (2.6).

The steps of the iterative algorithm are provided in Algorithm 1.
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Algorithm 1: Iterative algorithm for estimation of the conditional survival

time and conditional dependence parameter in semi-competing risks.

Step 1. Given data, use leave-one-out cross validation technique for selecting

bandwidth value and obtain Ŝ2|X(t2i|xi) using the Beran’s estimator.

For m = 1, 2, ..

Step 2. Select bandwidth value using leave-one-out cross validation technique

and given θ̂(m−1)(xi), obtain Ŝ
(m)
1|X (t1i|xi) for i = 1, . . . , n using the

conditional copula-graphic estimator.

Step 3. Given {Ŝ(m)
1|X (t1i|xi), Ŝ2|X(t2i|xi); i = 1, . . . , n} obtain bandwidth value

hC of the likelihood function and estimate θ̂(m)(xi) for i = 1, . . . , n

using local pseudo log-likelihood function.

Step 4. Bandwidth values can be fixed or updated in each iteration. Repeat

step 2-3 until convergence in θ̂(xi) or Ŝ1|X(t1i|xi) is achieved.



Chapter 3

Simulation Study

This chapter presents the results of our simulation study, where we investigate

the performances of the proposed conditional copula-graphic estimators in

comparison to the unconditional version. We describe the simulation setting in

Section 3.1, and the evaluation criterion in Section 3.2. The estimation results

under various data generating models are provided in Sections 3.3 – 3.5. The

copula-graphic estimators, including the iterative algorithm are implemented

in R using own codes. For data generation and likelihood calculations, we used

the R-copula (Hofert et al., 2014) and R-VineCopula (Schepsmeier et al., 2012)

packages.

3.1 Simulation Setting

We compare the performance of our proposed conditional copula-graphic es-

timators (CCGE, CCGE*) with the unconditional copula-graphic estimator

26



3.1. SIMULATION SETTING 27

(CGE). For the conditional survival function, we consider the exponential

model,

Sj|X(Yji) = exp(−λjYji exp(βjXi)),

where λj is a constant and βj is the coefficient of covariate, for j = 1, 2. We

consider the following models for the covariate effects.

• Model 1: β1 = β2 = 0 and τ = 0.5

• Model 2: β1 = β2 = 1 and τ = 0.5

• Model 3: β1 = β2 = 1 and τ = 2(x− 0.5)2 + 0.3 with τ ∈ (0.30, 0.80)

• Model 4: β1 = β2 = 1 and τ = −2(x− 0.5)2 + 0.8 with τ ∈ (0.30, 0.80)

• Model 5: β1 = β2 = 1 and τ = 3.5(x−0.5)3−0.003 with τ ∈ (−0.41, 0.43)

These models describe the situations where (1) covariate has no effect on the

marginal survival functions or dependence (Model 1), (2) covariate affects

only the marginal survival functions (Model 2), and (3) covariate affects both

the marginal survival functions and the dependence (Model 3, 4 and 5). The

models are specified in terms of Kendall’s tau from which the copula parameter,

θ is obtained using the conversions in Section 1.1.

Under Models 1 - 4, we generated data {(U1i, U2i | Xi) : i = 1, 2, . . . , n}

of size n = 100 from the Clayton, Frank and Gumbel families. We use the fixed

design for the covariate X, with values equally spaced between 0 and 1. Under
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Model 5, where τ(X) takes negative values, we consider only the Frank family.

Then, we apply the inverse-cdf method to obtain the event times Y1i = S−1
1|X(U1i)

and Y2i = S−1
2|X(U2i) from the copula data using the exponential model. We

set λ1 = 1 and determine λ2 value so that the non-terminal event has no

(approximately 0%), low (approximately 25%) and moderate (approximately

50%) censoring rate. The censoring variable Z has Uniform(0, b) distribution

with P (Y2 > Z) = 0.20. The observed data are the minimum of the events

time and censoring times with indicator variables as discussed in Section 2.1.

3.2 Evaluation Criteria for Estimators

After data generation, we estimated survival probabilities using CGE, CCGE,

CCGE* and copula parameters θ or θ(X). Let α̂ stands for the estimator

Ŝ1 or τ̂ . Under each setting, we replicate the experiment M=1000 times and

evaluated estimation performance through the integrated squared bias (IBias2),

integrated mean squared Error (IMSE) and integrated variance (IVAR) given

by

IBias2(α̂) =

∫
X

[E[α̂(x)]− α(x)]2dx,

IVAR(α̂) =

∫
X

E[{α̂(x)− E[α̂(x)]}2]dx,

IMSE(α̂) =

∫
X

E[{α̂(x)− α̂(x)}2]dx = IBias2(α̂) + IVAR(α̂).
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Under each model, we first display the estimation results of Ŝ1|X (or Ŝ1) and

the summarize the results of τ̂(X) or (τ̂).

3.3 Simulation Results under Model 1

When there is no covariate effect, the copula-graphic estimator (CGE) is ex-

pected to fit best among the three estimators. The estimation results of Ŝ1

under the Frank, Gumbel and Clayton families with τ = 0.5 are summarized

in Table 3.1 at three different quantiles p = (0.1, 0.5, 0.9).

From Table 3.1, we notice that CCGE and CCGE* estimates have very small

integrated bias and comparatively small integrated mean square error. This

indicates that incorporating covariate effect even when it is not significant does

not have a significant negative impact on the estimation performance. We also

notice that the estimation performance deteriorates at higher censoring rates

of the non-terminal event. Similar conclusions are reached under three copula

families and across three quantiles in this setting.

The results of the Kendall’s tau estimates for the data generated under Model

1 are summarized in Table 3.2. When there is no covariate effect, all three

estimators (CGE, CCGE and CCGE*) have very small integrated bias. We also

notice that, for no and low censoring rates, the integrated bias is comparatively

higher for Clayton family and for moderate censoring rate the integrated bias

is comparatively higher for Gumbel family. The integrated variance and inte-
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grated mean squared errors for CCGE* are the highest in all cases. Note that

the copula parameter is estimated nonparametrically in this estimator, hence

we expect more variability in CCGE* than CCGE. An increase in censoring

rate reduces the efficiency of all three estimators as can be concluded from the

increasing mean square errors.

A graphical representation of the Kendall’s tau estimates of CCGE* at different

censoring rates under each copula family with τ = 0.5 is given in Figure (3.1).

As can be seen, the Kendall’s tau estimates coincide with the true parameter

value; the pattern is similar for the three copula families.

The results above are for moderate dependence (τ = 0.5). To address the

impact of the strength of dependence, we focus on the Frank copula and con-

sider τ = 0.2, 0.5 and 0.8. The results of the conditional marginal survival

function estimates are given in Table 3.3, and the summary of Kendall’s tau

estimates is provided in Table 3.4. From Table 3.3, we see that the estimation

performance of the three estimators do not change with the τ values. While all

three estimators produce low bias in the Kendall’s tau estimates, the integrated

mean squared errors and variances are smaller for larger τ values, as can be

seen in Table 3.4.



3.3.
S
IM

U
L
A
T
IO

N
R
E
S
U
L
T
S
U
N
D
E
R

M
O
D
E
L
1

31

Table 3.1: Mean, integrated squared bias (IBias2), integrated variance (IVAR) and integrated mean square error
(IMSE) (multiplied by 100) of the Ŝ1(.) at different quantiles under Model 1.

Copula Family p
Censoring CGE CCGE CCGE*

Rate E(Ŝ1(·)) IBias2 IVAR IMSE E(Ŝ1|X(·)) IBias2 IVAR IMSE E(Ŝ1|X(·)) IBias2 IVAR IMSE

Frank

0.1
0% 0.102 0.000 0.089 0.089 0.102 0.000 0.131 0.131 0.102 0.000 0.131 0.131
25% 0.102 0.000 0.118 0.118 0.103 0.001 0.209 0.210 0.102 0.000 0.168 0.168
50% 0.099 0.000 0.310 0.310 0.084 0.026 0.691 0.717 0.084 0.025 0.723 0.747

0.5
0% 0.496 0.001 0.252 0.253 0.496 0.002 0.427 0.428 0.496 0.002 0.426 0.428
25% 0.497 0.000 0.292 0.292 0.497 0.001 0.483 0.484 0.497 0.001 0.455 0.456
50% 0.497 0.001 0.360 0.361 0.495 0.002 0.553 0.556 0.495 0.004 0.593 0.597

0.9
0% 0.900 0.000 0.085 0.085 0.900 0.000 0.130 0.130 0.900 0.000 0.130 0.130
25% 0.900 0.000 0.090 0.090 0.900 0.000 0.130 0.130 0.900 0.000 0.145 0.145
50% 0.900 0.000 0.102 0.102 0.900 0.000 0.157 0.157 0.898 0.000 0.164 0.165

Gumbel

0.1
0% 0.102 0.000 0.088 0.089 0.102 0.000 0.130 0.131 0.102 0.000 0.130 0.131
25% 0.102 0.000 0.128 0.129 0.102 0.001 0.218 0.219 0.102 0.000 0.175 0.175
50% 0.100 0.000 0.347 0.347 0.084 0.024 0.719 0.743 0.085 0.022 0.749 0.771

0.5
0% 0.496 0.001 0.251 0.253 0.496 0.002 0.424 0.426 0.496 0.002 0.424 0.426
25% 0.496 0.001 0.274 0.275 0.496 0.002 0.456 0.458 0.496 0.002 0.440 0.441
50% 0.493 0.005 0.339 0.344 0.489 0.012 0.523 0.536 0.489 0.012 0.555 0.567

0.9
0% 0.900 0.000 0.085 0.085 0.900 0.000 0.129 0.130 0.900 0.000 0.129 0.130
25% 0.900 0.000 0.083 0.083 0.900 0.000 0.132 0.132 0.900 0.000 0.130 0.131
50% 0.900 0.000 0.086 0.086 0.899 0.000 0.137 0.137 0.899 0.000 0.143 0.143

Clayton

0.1
0% 0.102 0.000 0.089 0.089 0.102 0.000 0.131 0.131 0.102 0.001 0.194 0.194
25% 0.103 0.001 0.121 0.122 0.104 0.001 0.192 0.194 0.103 0.001 0.181 0.182
50% 0.109 0.007 0.252 0.260 0.109 0.008 0.386 0.394 0.118 0.032 0.994 1.026

0.5
0% 0.496 0.001 0.252 0.254 0.496 0.002 0.426 0.427 0.497 0.001 0.445 0.446
25% 0.500 0.000 0.333 0.333 0.500 0.000 0.520 0.521 0.498 0.001 0.481 0.482
50% 0.498 0.000 0.446 0.446 0.497 0.001 0.626 0.627 0.500 0.001 0.796 0.797

0.9
0% 0.900 0.000 0.085 0.086 0.900 0.000 0.130 0.130 0.900 0.000 0.130 0.130
25% 0.900 0.000 0.090 0.090 0.900 0.000 0.142 0.142 0.900 0.000 0.136 0.136
50% 0.900 0.000 0.098 0.098 0.899 0.000 0.146 0.146 0.899 0.000 0.158 0.158



32 CHAPTER 3. SIMULATION STUDY

Table 3.2: Integrated squared bias (IBias2), integrated variance (IVAR) and
integrated mean square error (IMSE) (multiplied by 100) of the Kendall’s tau
estimates under Model 1.

Copula Family
Censoring CGE CCGE CCGE*

Rate IBias2 IVAR IMSE IBias2 IVAR IMSE IBias2 IVAR IMSE

Frank
0% 0.004 0.242 0.246 0.003 0.281 0.284 0.002 0.793 0.796
25% 0.000 0.309 0.310 0.000 0.373 0.373 0.004 0.957 0.962
50% 0.005 0.491 0.496 0.020 0.614 0.634 0.038 1.905 1.943

Gumbel
0% 0.000 0.295 0.295 0.004 0.299 0.303 0.009 0.755 0.763
25% 0.003 0.339 0.342 0.019 0.371 0.390 0.010 0.870 0.880
50% 0.046 0.512 0.559 0.140 0.600 0.740 0.127 1.764 1.891

Clayton
0% 0.031 0.300 0.331 0.036 0.381 0.417 0.024 0.890 0.914
25% 0.029 0.375 0.404 0.038 0.495 0.533 0.041 1.153 1.193
50% 0.001 0.518 0.519 0.001 0.665 0.665 0.023 2.355 2.378



3.3. SIMULATION RESULTS UNDER MODEL 1 33

Figure 3.1: Mean, 5th and 95th quantiles of Kendall’s tau estimates with no
(left column), low (middle column) and moderate (right column) censoring
rates for Frank (top), Gumbel (middle) and Clayton (bottom) families. Dashed,
dotted and solid line represent the mean Kendall’s tau estimates, quantiles and
the true Kendall’s tau, respectively.
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Table 3.3: Mean, integrated squared bias (IBias2), integrated variance (IVAR) and integrated mean square error
(IMSE) (multiplied by 100) of the Ŝ1(.) at different quantiles with Frank copula and τ = 0.2, 0.5 and 0.8 under
Model 1.

τ p
Censoring CGE CCGE CCGE*

Rate E(Ŝ1(·)) IBias2 IVAR IMSE E(Ŝ1|X(·)) IBias2 IVAR IMSE E(Ŝ1|X(·)) IBias2 IVAR IMSE

0.2

0.1
0% 0.102 0.000 0.089 0.089 0.102 0.000 0.132 0.133 0.102 0.000 0.132 0.133
25% 0.102 0.000 0.132 0.132 0.102 0.000 0.211 0.211 0.103 0.001 0.212 0.213
50% 0.087 0.016 0.580 0.596 0.072 0.081 0.782 0.863 0.061 0.149 0.889 1.038

0.5
0% 0.496 0.001 0.253 0.254 0.496 0.002 0.428 0.430 0.496 0.002 0.428 0.430
25% 0.496 0.001 0.292 0.294 0.496 0.002 0.486 0.488 0.496 0.001 0.481 0.482
50% 0.496 0.001 0.430 0.431 0.494 0.004 0.639 0.643 0.492 0.006 0.757 0.763

0.9
0% 0.900 0.000 0.085 0.085 0.900 0.000 0.130 0.130 0.900 0.000 0.130 0.130
25% 0.900 0.000 0.087 0.087 0.900 0.000 0.139 0.139 0.900 0.000 0.137 0.137
50% 0.899 0.000 0.094 0.094 0.899 0.000 0.146 0.146 0.898 0.001 0.156 0.157

0.5

0.1
0% 0.102 0.000 0.089 0.089 0.102 0.000 0.131 0.131 0.102 0.000 0.131 0.131
25% 0.102 0.000 0.118 0.118 0.103 0.001 0.209 0.210 0.102 0.000 0.168 0.168
50% 0.099 0.000 0.310 0.310 0.084 0.026 0.691 0.717 0.084 0.025 0.723 0.747

0.5
0% 0.496 0.001 0.252 0.253 0.496 0.002 0.427 0.428 0.496 0.002 0.426 0.428
25% 0.497 0.000 0.292 0.292 0.497 0.001 0.483 0.484 0.497 0.001 0.455 0.456
50% 0.497 0.001 0.360 0.361 0.495 0.002 0.553 0.556 0.495 0.004 0.593 0.597

0.9
0% 0.900 0.000 0.085 0.085 0.900 0.000 0.130 0.130 0.900 0.000 0.130 0.130
25% 0.900 0.000 0.090 0.090 0.900 0.000 0.130 0.130 0.900 0.000 0.145 0.145
50% 0.900 0.000 0.102 0.102 0.900 0.000 0.157 0.157 0.898 0.000 0.164 0.165

0.8

0.1
0% 0.102 0.000 0.088 0.089 0.102 0.000 0.130 0.131 0.102 0.000 0.130 0.131
25% 0.102 0.001 0.128 0.128 0.102 0.000 0.227 0.227 0.102 0.000 0.156 0.157
50% 0.104 0.001 0.183 0.185 0.103 0.001 0.486 0.487 0.103 0.001 0.491 0.493

0.5
0% 0.496 0.001 0.251 0.253 0.496 0.001 0.425 0.426 0.496 0.002 0.424 0.426
25% 0.497 0.001 0.273 0.273 0.497 0.001 0.455 0.456 0.496 0.002 0.425 0.427
50% 0.498 0.001 0.301 0.301 0.498 0.000 0.465 0.466 0.499 0.000 0.479 0.479

0.9
0% 0.900 0.000 0.085 0.085 0.900 0.000 0.130 0.130 0.900 0.000 0.130 0.130
25% 0.901 0.000 0.099 0.099 0.902 0.000 0.151 0.151 0.900 0.000 0.133 0.133
50% 0.900 0.000 0.111 0.111 0.902 0.000 0.156 0.156 0.901 0.000 0.157 0.157
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Table 3.4: Integrated squared bias (IBias2), integrated variance (IVAR) and
integrated mean square error (IMSE) (multiplied by 100) of the Kendall’s tau
estimates with Frank copula and τ = 0.2, 0.5 and 0.8 under Model 1.

τ
Censoring CGE CCGE CCGE*

Rate IBias2 IVAR IMSE IBias2 IVAR IMSE IBias2 IVAR IMSE

0.2
0% 0.001 0.423 0.424 0.001 0.482 0.483 0.004 1.468 1.473
25% 0.000 0.569 0.569 0.000 0.638 0.638 0.004 1.937 1.942
50% 0.000 0.971 0.971 0.011 1.100 1.111 0.025 3.770 3.795

0.5
0% 0.004 0.242 0.246 0.003 0.281 0.284 0.002 0.793 0.796
25% 0.000 0.309 0.310 0.000 0.373 0.373 0.004 0.957 0.962
50% 0.005 0.491 0.496 0.020 0.614 0.634 0.038 1.905 1.943

0.8
0% 0.010 0.046 0.056 0.029 0.081 0.110 0.029 0.195 0.224
25% 0.003 0.058 0.061 0.014 0.103 0.116 0.026 0.203 0.229
50% 0.005 0.087 0.092 0.000 0.169 0.169 0.007 0.403 0.411
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3.4 Simulation Results under Model 2

When there is a covariate effect on only margins, we expect the conditional

copula-graphic estimator (CCGE) to have the best performance among the

three estimators. The unconditional copula-graphic estimator (CGE) is ex-

pected to perform the worst in this setting because of ignoring covariate effect.

The estimation result of the conditional and unconditional copula-graphic

estimators calculated at different quantiles are given in Table 3.5. In this

setting, both CCGE and CCGE* estimates are similar with low integrated

bias and integrated mean squared error. This suggests that considering covari-

ate effect on dependence, when it is not necessary, does not deteriorate the

estimation of survival function. However, when unconditional copula-graphic

estimator (CGE) is used, estimates have considerably high integrated bias and

integrated mean squared error. Overall, the variances and mean squared error

are highest at the 50th quantile and at higher censoring rates.

The Kendall’s tau estimates of the three estimators for data generated under

Model 2 are summarized in Table 3.6. While all three estimators produce low

bias, CCGE* yields comparatively higher variance and mean squared error in

this setting. Under the Gumbel family, all three estimators produce slightly

higher bias for moderate censoring case than other cases. When censoring rate

is higher, estimates have more variability under all families.



3.4. SIMULATION RESULTS UNDER MODEL 2 37

Figure (3.2) represent the Kendall’s tau estimates at different censoring rates

under the three copula families with τ = 0.5 when the covariate affects only

the margins, but not the dependence structure. From Figure (3.2) we see that

the Kendall’s tau estimates coincide with the true value. The Frank family has

comparatively wider confidence intervals for τ in comparison to other families

and the confidence intervals get wider with the increase in censoring rates.

To see the effect of the strength of dependence under this setting, we consider

τ = 0.2, 0.5 and 0.8 under Frank family as before. From Table 3.7 we found that

the value of Kendall’s tau does not seem to affect the estimation performance

of the three estimators of the survival function. The Kendall’s tau estimates for

the data generated under Model 2 are summarized in Table 3.8. As Kendall’s

tau increases, integrated mean squared error of the estimated Kendall’s tau

decreases for all three estimators.
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Table 3.5: Mean, integrated squared bias (IBias2), integrated variance (IVAR) and integrated mean square error
(IMSE) (multiplied by 100) of the Ŝ1(.) at different quantiles under Model 2.

Copula Family p
Censoring CGE CCGE CCGE*

Rate E(Ŝ1(·)) IBias2 IVAR IMSE E(Ŝ1|X(·)) IBias2 IVAR IMSE E(Ŝ1|X(·)) IBias2 IVAR IMSE

Frank

0.1
0% 0.124 0.467 0.096 0.564 0.108 0.053 0.202 0.255 0.108 0.053 0.202 0.255
25% 0.125 0.473 0.130 0.603 0.110 0.065 0.258 0.323 0.109 0.059 0.232 0.291
50% 0.125 0.538 0.288 0.826 0.109 0.150 0.473 0.623 0.109 0.164 0.503 0.667

0.5
0% 0.490 0.924 0.234 1.158 0.495 0.099 0.580 0.678 0.495 0.098 0.580 0.679
25% 0.490 0.912 0.269 1.180 0.496 0.111 0.632 0.742 0.496 0.104 0.611 0.716
50% 0.491 0.899 0.347 1.246 0.494 0.152 0.708 0.860 0.494 0.162 0.738 0.900

0.9
0% 0.893 0.091 0.088 0.180 0.898 0.008 0.177 0.184 0.898 0.008 0.177 0.185
25% 0.893 0.091 0.098 0.190 0.898 0.008 0.194 0.202 0.898 0.008 0.189 0.196
50% 0.893 0.093 0.109 0.202 0.897 0.011 0.203 0.214 0.896 0.013 0.209 0.222

Gumbel

0.1
0% 0.123 0.473 0.100 0.572 0.108 0.053 0.201 0.254 0.108 0.053 0.201 0.254
25% 0.124 0.479 0.139 0.619 0.110 0.064 0.273 0.337 0.109 0.058 0.240 0.297
50% 0.122 0.513 0.301 0.814 0.107 0.126 0.518 0.644 0.108 0.131 0.546 0.677

0.5
0% 0.493 0.927 0.240 1.167 0.495 0.098 0.580 0.678 0.495 0.098 0.580 0.678
25% 0.493 0.915 0.263 1.178 0.494 0.110 0.604 0.714 0.495 0.106 0.600 0.707
50% 0.491 0.906 0.337 1.243 0.488 0.154 0.664 0.818 0.489 0.163 0.718 0.882

0.9
0% 0.894 0.085 0.091 0.176 0.898 0.008 0.177 0.184 0.898 0.008 0.177 0.184
25% 0.894 0.086 0.093 0.179 0.898 0.008 0.178 0.186 0.898 0.008 0.178 0.187
50% 0.893 0.092 0.104 0.197 0.897 0.111 0.180 0.191 0.897 0.012 0.191 0.203

Clayton

0.1
0% 0.123 0.473 0.100 0.572 0.108 0.053 0.202 0.255 0.108 0.053 0.202 0.255
25% 0.123 0.474 0.125 0.600 0.110 0.069 0.250 0.319 0.109 0.063 0.230 0.293
50% 0.126 0.505 0.245 0.750 0.118 0.122 0.379 0.501 0.126 0.174 0.715 0.889

0.5
0% 0.493 0.927 0.241 1.168 0.495 0.099 0.579 0.678 0.495 0.098 0.579 0.677
25% 0.495 0.925 0.297 1.222 0.498 0.113 0.685 0.798 0.497 0.100 0.632 0.733
50% 0.497 0.909 0.399 1.308 0.498 0.155 0.794 0.950 0.501 0.148 0.896 1.045

0.9
0% 0.894 0.085 0.091 0.176 0.898 0.008 0.177 0.184 0.898 0.008 0.177 0.184
25% 0.894 0.084 0.097 0.181 0.898 0.008 0.187 0.196 0.898 0.008 0.182 0.190
50% 0.894 0.087 0.108 0.195 0.898 0.011 0.189 0.205 0.898 0.013 0.195 0.208
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Table 3.6: Integrated squared bias (IBias2), integrated variance (IVAR) and
integrated mean square error (IMSE) (multiplied by 100) of the Kendall’s tau
estimates under Model 2.

Copula Family
Censoring CGE CCGE CCGE*

Rate IBias2 IVAR IMSE IBias2 IVAR IMSE IBias2 IVAR IMSE

Frank
0% 0.005 0.237 0.242 0.003 0.259 0.262 0.006 0.741 0.747
25% 0.015 0.305 0.320 0.000 0.323 0.324 0.005 0.895 0.901
50% 0.040 0.471 0.511 0.030 0.536 0.566 0.055 1.773 1.828

Gumbel
0% 0.026 0.284 0.309 0.013 0.293 0.306 0.016 0.827 0.843
25% 0.045 0.329 0.374 0.036 0.353 0.389 0.021 0.878 0.899
50% 0.139 0.506 0.645 0.183 0.550 0.733 0.196 1.628 1.824

Clayton
0% 0.006 0.285 0.291 0.056 0.375 0.431 0.080 0.893 0.973
25% 0.002 0.370 0.372 0.056 0.423 0.478 0.085 1.080 1.165
50% 0.008 0.502 0.510 0.006 0.595 0.601 0.017 2.169 2.186
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Figure 3.2: Mean, 5th and 95th quantiles of Kendall’s tau estimates with no
(left column), low (middle column) and moderate (right column) censoring
rates for Frank (top), Gumbel (middle) and Clayton (bottom) families. Dashed,
dotted and solid line represent the mean Kendall’s tau estimates, quantiles and
the true Kendall’s tau, respectively.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

τ̂
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
τ̂

X

τ̂
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0 0.2 0.4 0.6 0.8 1.0
X

0.0 0.2 0.4 0.6 0.8 1.0



3.4.
S
IM

U
L
A
T
IO

N
R
E
S
U
L
T
S
U
N
D
E
R

M
O
D
E
L
2

41

Table 3.7: Mean, integrated squared bias (IBias2), integrated variance (IVAR) and integrated mean square error
(IMSE) (multiplied by 100) of the Ŝ1(.) at different quantiles with Frank copula and τ = 0.2, 0.5 and 0.8 under
Model 2.

τ p
Censoring CGE CCGE CCGE*

Rate E(Ŝ1(·)) IBias2 IVAR IMSE E(Ŝ1|X(·)) IBias2 IVAR IMSE E(Ŝ1|X(·)) IBias2 IVAR IMSE

0.2

0.1
0% 0.124 0.468 0.097 0.565 0.108 0.054 0.203 0.257 0.109 0.060 0.200 0.260
25% 0.127 0.483 0.188 0.671 0.110 0.065 0.284 0.349 0.111 0.068 0.290 0.357
50% 0.120 0.594 0.461 1.055 0.106 0.186 0.661 0.848 0.102 0.190 0.761 0.951

0.5
0% 0.490 0.925 0.234 1.159 0.495 0.099 0.580 0.679 0.494 0.110 0.578 0.688
25% 0.489 0.912 0.298 1.210 0.495 0.104 0.656 0.760 0.495 0.106 0.656 0.762
50% 0.490 0.884 0.409 1.293 0.493 0.141 0.799 0.940 0.497 0.105 0.818 0.923

0.9
0% 0.893 0.091 0.088 0.180 0.898 0.008 0.176 0.184 0.898 0.008 0.178 0.187
25% 0.893 0.093 0.096 0.189 0.898 0.008 0.184 0.192 0.898 0.008 0.186 0.194
50% 0.892 0.095 0.104 0.199 0.897 0.010 0.194 0.204 0.897 0.009 0.200 0.209

0.5

0.1
0% 0.124 0.467 0.096 0.564 0.108 0.053 0.202 0.255 0.108 0.053 0.202 0.255
25% 0.125 0.473 0.130 0.603 0.110 0.065 0.258 0.323 0.109 0.059 0.232 0.291
50% 0.125 0.538 0.288 0.826 0.109 0.150 0.473 0.623 0.109 0.164 0.503 0.667

0.5
0% 0.490 0.924 0.234 1.158 0.495 0.099 0.580 0.678 0.495 0.098 0.580 0.679
25% 0.490 0.912 0.269 1.180 0.496 0.111 0.632 0.742 0.496 0.104 0.611 0.716
50% 0.491 0.899 0.347 1.246 0.494 0.152 0.708 0.860 0.494 0.162 0.738 0.900

0.9
0% 0.893 0.091 0.088 0.180 0.898 0.008 0.177 0.184 0.898 0.008 0.177 0.185
25% 0.893 0.091 0.098 0.190 0.898 0.008 0.194 0.202 0.898 0.008 0.189 0.196
50% 0.893 0.093 0.109 0.202 0.897 0.011 0.203 0.214 0.896 0.013 0.209 0.222

0.8

0.1
0% 0.124 0.468 0.097 0.564 0.108 0.052 0.203 0.255 0.108 0.052 0.202 0.255
25% 0.124 0.465 0.116 0.581 0.109 0.061 0.272 0.333 0.108 0.054 0.221 0.275
50% 0.126 0.492 0.191 0.682 0.113 0.107 0.356 0.463 0.113 0.106 0.362 0.468

0.5
0% 0.490 0.924 0.233 1.157 0.495 0.098 0.582 0.679 0.495 0.098 0.582 0.679
25% 0.491 0.921 0.246 1.167 0.496 0.106 0.614 0.720 0.495 0.102 0.588 0.690
50% 0.492 0.918 0.276 1.194 0.498 0.147 0.612 0.759 0.498 0.141 0.619 0.761

0.9
0% 0.893 0.091 0.088 0.179 0.898 0.008 0.178 0.185 0.898 0.008 0.178 0.185
25% 0.894 0.091 0.097 0.188 0.900 0.007 0.207 0.215 0.899 0.007 0.186 0.194
50% 0.894 0.089 0.112 0.200 0.900 0.009 0.208 0.217 0.900 0.008 0.207 0.215
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Table 3.8: Integrated squared bias (IBias2), integrated variance (IVAR) and
integrated mean square error (IMSE) (multiplied by 100) of the Kendall’s tau
estimates with Frank copula and τ = 0.2, 0.5 and 0.8 under Model 2.

τ
Censoring CGE CCGE CCGE*

Rate IBias2 IVAR IMSE IBias2 IVAR IMSE IBias2 IVAR IMSE

0.2
0% 0.059 0.421 0.481 0.000 0.480 0.480 0.001 1.430 1.431
25% 0.079 0.627 0.706 0.005 0.604 0.609 0.014 1.852 1.866
50% 0.080 0.930 1.010 0.034 1.069 1.103 0.086 3.483 3.570

0.5
0% 0.005 0.237 0.242 0.003 0.259 0.262 0.006 0.741 0.747
25% 0.015 0.305 0.320 0.000 0.323 0.324 0.005 0.895 0.901
50% 0.040 0.471 0.511 0.030 0.536 0.566 0.055 1.773 1.828

0.8
0% 0.007 0.047 0.053 0.037 0.071 0.108 0.044 0.186 0.230
25% 0.004 0.049 0.053 0.016 0.089 0.105 0.040 0.195 0.235
50% 0.003 0.077 0.080 0.002 0.159 0.161 0.013 0.356 0.368
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3.5 Simulation Results under Model 3 – 5

When there is a covariate effect on both margins and dependence, we expect

the second version of conditional copula-graphic estimator (CCGE*) to perform

the best among the three estimators.

Table 3.9, Table 3.10 and Table 3.11 provide the summary of survival function

estimates of these estimators under Model 3 (convex), Model 4 (concave) and

Model 5 (zero centred), respectively. The results in Table 3.9, Table 3.10 and

Table 3.11 are very similar and can be summarized by the following key points.

When the covariate affects both margins and dependence, CGE produces high

integrated bias and integrated mean squared error in the survival function esti-

mates in comparison to CCGE and CCGE*. On other hand, CCGE and CCGE*

have comparatively higher variance than CGE in this setting. For Model 3 and

Model 4, we do not see much difference in the performance of the estimators

under the three copula families. An increase in the censoring rate results in

an increase in variance and mean squared error for each family. We also ob-

serve that at 10th quantile, all estimators overestimate the survival probability,

whereas at 50th and 90th quantiles the survival probabilities are underestimated.

The Kendall’s tau estimates for the data generated under Model 3, Model 4 and

Model 5 are summarized in Table 3.12, Table 3.13 and Table 3.14, respectively.

From Table 3.12, Table 3.13 and Table 3.14 we see that both CGE and CCGE

produce high integrated bias under all copula families because of ignoring the
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covariance effect on dependence.

The graphical representations of the Kendall’s tau estimates at different cen-

soring rates under the three copula families with τ = 0.5 under Model 3,

Model 4 and Model 5 are given in Figure (3.3), Figure (3.4) and Figure (3.5),

respectively. From Figure (3.3), Figure (3.4) and Figure (3.5) we see that the

Kendall’s tau estimates coincide with the truth in all cases, and have wider

confidence intervals at higher censoring rates for all three families under each

model.
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Table 3.9: Mean, integrated squared bias (IBias2), integrated variance (IVAR) and integrated mean square error
(IMSE) (multiplied by 100) of the Ŝ1(.) at different quantiles under Model 3.

Copula Family
p

Censoring CGE CCGE CCGE*

Rate E(Ŝ1(·)) IBias2 IVAR IMSE E(Ŝ1|X(·)) IBias2 IVAR IMSE E(Ŝ1|X(·)) IBias2 IVAR IMSE

Frank

0.1
0% 0.124 0.467 0.096 0.563 0.108 0.053 0.202 0.255 0.108 0.052 0.202 0.254
25% 0.123 0.445 0.132 0.577 0.107 0.054 0.259 0.313 0.108 0.051 0.231 0.282
50% 0.126 0.515 0.300 0.815 0.106 0.117 0.475 0.592 0.107 0.083 0.432 0.515

0.5
0% 0.490 0.925 0.234 1.159 0.495 0.098 0.579 0.677 0.495 0.098 0.579 0.677
25% 0.485 0.938 0.271 1.209 0.490 0.115 0.640 0.755 0.491 0.107 0.620 0.727
50% 0.487 0.920 0.348 1.269 0.488 0.172 0.697 0.869 0.483 0.175 0.715 0.891

0.9
0% 0.893 0.091 0.088 0.180 0.898 0.008 0.177 0.184 0.898 0.008 0.177 0.184
25% 0.893 0.092 0.098 0.190 0.898 0.009 0.193 0.202 0.897 0.009 0.192 0.201
50% 0.894 0.091 0.108 0.199 0.897 0.013 0.197 0.211 0.895 0.016 0.215 0.231

Gumbel

0.1
0% 0.123 0.473 0.100 0.572 0.108 0.053 0.201 0.254 0.108 0.053 0.201 0.254
25% 0.121 0.449 0.135 0.584 0.107 0.052 0.277 0.330 0.107 0.051 0.240 0.291
50% 0.122 0.502 0.314 0.816 0.105 0.103 0.526 0.630 0.104 0.091 0.540 0.630

0.5
0% 0.493 0.927 0.240 1.167 0.495 0.098 0.580 0.678 0.495 0.098 0.580 0.678
25% 0.488 0.929 0.266 1.196 0.489 0.118 0.614 0.732 0.492 0.111 0.603 0.715
50% 0.489 0.912 0.341 1.252 0.484 0.166 0.684 0.851 0.482 0.188 0.753 0.941

0.9
0% 0.894 0.085 0.091 0.176 0.898 0.008 0.177 0.184 0.898 0.008 0.177 0.184
25% 0.893 0.090 0.094 0.185 0.897 0.010 0.181 0.191 0.897 0.010 0.182 0.192
50% 0.892 0.095 0.105 0.200 0.895 0.014 0.181 0.196 0.894 0.019 0.200 0.219

Clayton

0.1
0% 0.123 0.472 0.100 0.572 0.108 0.052 0.202 0.254 0.109 0.055 0.263 0.318
25% 0.121 0.447 0.125 0.572 0.108 0.057 0.255 0.311 0.109 0.054 0.228 0.282
50% 0.122 0.465 0.240 0.705 0.113 0.092 0.455 0.547 0.114 0.078 0.468 0.547

0.5
0% 0.493 0.928 0.242 1.169 0.495 0.098 0.581 0.679 0.495 0.099 0.598 0.697
25% 0.492 0.954 0.302 1.256 0.493 0.117 0.704 0.821 0.494 0.102 0.650 0.752
50% 0.495 0.945 0.409 1.353 0.494 0.176 0.818 0.995 0.488 0.148 0.827 0.975

0.9
0% 0.894 0.085 0.091 0.176 0.898 0.008 0.177 0.184 0.898 0.008 0.177 0.185
25% 0.895 0.083 0.097 0.180 0.898 0.009 0.187 0.196 0.898 0.009 0.186 0.195
50% 0.896 0.083 0.105 0.188 0.898 0.013 0.183 0.196 0.896 0.014 0.194 0.209
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Table 3.10: Mean, integrated squared bias (IBias2), integrated variance (IVAR) and integrated mean square error
(IMSE) (multiplied by 100) of the Ŝ1(.) at different quantiles under Model 4.

Copula Family
p

Censoring CGE CCGE CCGE*

Rate E(Ŝ1(·)) IBias2 IVAR IMSE E(Ŝ1|X(·)) IBias2 IVAR IMSE E(Ŝ1|X(·)) IBias2 IVAR IMSE

Frank

0.1
0% 0.123 0.472 0.100 0.572 0.108 0.053 0.203 0.256 0.108 0.053 0.203 0.256
25% 0.121 0.452 0.120 0.572 0.107 0.056 0.237 0.293 0.108 0.059 0.227 0.285
50% 0.121 0.505 0.220 0.726 0.111 0.142 0.404 0.546 0.114 0.199 0.521 0.720

0.5
0% 0.493 0.927 0.240 1.167 0.495 0.098 0.581 0.679 0.495 0.098 0.581 0.679
25% 0.488 0.937 0.263 1.199 0.491 0.117 0.613 0.730 0.494 0.112 0.602 0.714
50% 0.489 0.928 0.311 1.239 0.494 0.155 0.682 0.837 0.499 0.160 0.767 0.927

0.9
0% 0.894 0.085 0.091 0.176 0.898 0.008 0.177 0.185 0.898 0.008 0.177 0.185
25% 0.894 0.087 0.104 0.191 0.900 0.007 0.194 0.201 0.899 0.007 0.188 0.195
50% 0.894 0.089 0.123 0.212 0.900 0.009 0.211 0.219 0.899 0.008 0.221 0.228

Gumbel

0.1
0% 0.123 0.473 0.100 0.572 0.108 0.052 0.202 0.254 0.108 0.052 0.202 0.254
25% 0.121 0.458 0.126 0.584 0.107 0.059 0.245 0.304 0.108 0.059 0.229 0.288
50% 0.122 0.499 0.253 0.752 0.112 0.121 0.443 0.564 0.114 0.161 0.505 0.666

0.5
0% 0.493 0.927 0.240 1.168 0.495 0.098 0.580 0.677 0.495 0.098 0.580 0.678
25% 0.489 0.928 0.257 1.185 0.491 0.114 0.591 0.705 0.494 0.111 0.594 0.706
50% 0.490 0.903 0.309 1.212 0.491 0.144 0.671 0.816 0.495 0.150 0.729 0.879

0.9
0% 0.894 0.085 0.091 0.176 0.898 0.008 0.177 0.184 0.898 0.008 0.177 0.184
25% 0.893 0.090 0.094 0.183 0.897 0.009 0.176 0.186 0.898 0.009 0.177 0.186
50% 0.892 0.095 0.103 0.197 0.899 0.009 0.188 0.196 0.900 0.010 0.195 0.204

Clayton

0.1
0% 0.122 0.472 0.100 0.572 0.108 0.053 0.203 0.255 0.108 0.053 0.203 0.255
25% 0.120 0.448 0.119 0.567 0.108 0.060 0.242 0.301 0.108 0.060 0.232 0.292
50% 0.119 0.460 0.183 0.644 0.113 0.113 0.368 0.481 0.119 0.164 0.498 0.662

0.5
0% 0.493 0.927 0.240 1.168 0.495 0.098 0.579 0.677 0.495 0.098 0.579 0.677
25% 0.492 0.961 0.281 1.242 0.495 0.123 0.656 0.779 0.495 0.112 0.628 0.740
50% 0.496 0.960 0.361 1.321 0.503 0.174 0.816 0.990 0.508 0.158 0.887 1.045

0.9
0% 0.894 0.085 0.091 0.176 0.898 0.008 0.177 0.185 0.898 0.008 0.178 0.185
25% 0.895 0.082 0.100 0.182 0.900 0.007 0.188 0.195 0.899 0.007 0.186 0.192
50% 0.895 0.082 0.112 0.194 0.901 0.008 0.196 0.204 0.901 0.007 0.202 0.209
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Table 3.11: Mean, integrated squared bias (IBias2), integrated variance (IVAR) and
integrated mean square error (IMSE) (multiplied by 100) of the Ŝ1(.) at different
quantiles under Model 5 (Frank copula).

p
Censoring CGE CCGE CCGE*

Rate E(Ŝ1(·)) IBias2 IVAR IMSE E(Ŝ1|X(·)) IBias2 IVAR IMSE E(Ŝ1|X(·)) IBias2 IVAR IMSE

0.1
0% 0.122 0.472 0.101 0.573 0.108 0.056 0.203 0.259 0.108 0.054 0.203 0.258
25% 0.111 0.460 0.245 0.705 0.102 0.151 0.428 0.579 0.105 0.072 0.355 0.427
50% 0.093 0.589 0.557 1.146 0.086 0.375 0.775 1.150 0.079 0.259 0.831 1.091

0.5
0% 0.493 0.928 0.241 1.169 0.495 0.102 0.578 0.680 0.495 0.100 0.579 0.679
25% 0.492 0.967 0.316 1.282 0.490 0.246 0.665 0.911 0.493 0.126 0.629 0.755
50% 0.494 0.972 0.459 1.432 0.489 0.392 0.813 1.205 0.490 0.102 0.958 1.060

0.9
0% 0.894 0.085 0.091 0.176 0.898 0.008 0.176 0.184 0.898 0.008 0.176 0.184
25% 0.895 0.083 0.095 0.178 0.898 0.013 0.175 0.187 0.897 0.012 0.172 0.184
50% 0.895 0.082 0.099 0.181 0.898 0.016 0.174 0.190 0.897 0.012 0.187 0.199

Table 3.12: Integrated squared bias (IBias2), integrated variance (IVAR) and
integrated mean square error (IMSE) (multiplied by 100) of the Kendall’s tau
estimates under Model 3.

Copula Family Censoring CGE CCGE CCGE*
Rate IBias2 IVAR IMSE IBias2 IVAR IMSE IBias2 IVAR IMSE

Frank
0% 2.224 0.276 2.500 2.238 0.299 2.538 0.281 0.914 1.195
25% 2.247 0.340 2.587 2.228 0.377 2.604 0.332 1.080 1.412
50% 2.256 0.565 2.821 2.253 0.619 2.872 0.580 1.907 2.487

Gumbel
0% 2.233 0.328 2.561 2.225 0.327 2.552 0.262 1.216 1.477
25% 2.292 0.376 2.668 2.268 0.398 2.666 0.294 1.629 1.922
50% 2.358 0.597 2.955 2.397 0.636 3.034 0.789 1.858 2.647

Clayton
0% 2.268 0.321 2.589 2.348 0.413 2.761 0.272 1.394 1.665
25% 2.234 0.404 2.638 2.283 0.531 2.814 0.340 1.328 1.667
50% 2.225 0.560 2.786 2.230 0.708 2.939 0.562 1.969 2.531
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Table 3.13: Integrated squared bias (IBias2), integrated variance (IVAR) and
integrated mean square error (IMSE) (multiplied by 100) of the Kendall’s tau
estimates under Model 4.

Copula Family Censoring CGE CCGE CCGE*
Rate IBias2 IVAR IMSE IBias2 IVAR IMSE IBias2 IVAR IMSE

Frank
0% 2.225 0.156 2.381 2.245 0.183 2.428 0.081 1.023 1.194
25% 2.240 0.165 2.406 2.225 0.181 2.406 0.087 1.226 1.313
50% 2.271 0.293 2.565 2.251 0.325 2.576 0.107 2.366 2.473

Gumbel
0% 2.225 0.194 2.419 2.225 0.218 2.443 0.205 0.825 1.030
25% 2.252 0.190 2.443 2.244 0.206 2.449 0.211 0.939 1.150
50% 2.329 0.324 2.653 2.335 0.344 2.679 0.406 1.644 2.050

Clayton
0% 2.303 0.242 2.544 2.415 0.317 2.733 0.421 1.195 1.616
25% 2.248 0.265 2.513 2.316 0.349 2.664 0.454 1.436 1.890
50% 2.224 0.372 2.596 2.253 0.485 2.738 0.612 2.450 3.062

Table 3.14: Integrated squared bias (IBias2), integrated variance (IVAR) and
integrated mean square error (IMSE) (multiplied by 100) of the Kendall’s tau
estimates under Model 5 (Frank copula).

Censoring CGE CCGE CCGE*
Rate IBias2 IVAR IMSE IBias2 IVAR IMSE IBias2 IVAR IMSE

0% 2.841 0.475 3.316 2.740 0.531 3.271 0.266 1.602 1.868
25% 2.902 0.759 3.661 2.785 0.856 3.642 0.340 2.061 2.401
50% 2.863 1.064 3.927 2.802 1.254 4.056 0.410 3.570 3.980
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Figure 3.3: Mean, 5th and 95th quantiles of Kendall’s tau estimates with no (left
column), low (middle column) and moderate (right column) censoring rates
for Frank (top), Gumbel (middle) and Clayton (bottom) families under Model
3. Dashed, dotted and solid line represent the mean Kendall’s tau estimates,
quantiles and the true Kendall’s tau, respectively.
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Figure 3.4: Mean, 5th and 95th quantiles of Kendall’s tau estimates with no (left
column), low (middle column) and moderate (right column) censoring rates
for Frank (top), Gumbel (middle) and Clayton (bottom) families under Model
4. Dashed, dotted and solid line represent the mean Kendall’s tau estimates,
quantiles and the true Kendall’s tau, respectively.
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Figure 3.5: Mean, 5th and 95th quantiles of Kendall’s tau estimates with no (left
column), low (middle column) and moderate (right column) censoring rates for
Frank family under Model 5. Dashed, dotted and solid line represent the mean
Kendall’s tau estimates, quantiles and the true Kendall’s tau, respectively.
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3.6 Summary

Our key findings of the simulation study are: (1) Even if there is no covariate

effect, CCGE and the CCGE* can be used for estimating the survival probabil-

ities or dependence parameter. (2) When there is covariate effect on margins,

CGE produces biased survival estimates. If the interest is in the dependence

parameter, all three estimators can be used in this scenario. (3) When there

is covariate effect on both margin and dependence, CGE again yields biased

survival estimates. If the interest is in survival estimates, both the CCGE

and CCGE* have similar performance in this setting. However, if the interest

is in the dependence parameter, both CGE and CCGE produces very high

bias as a result of ignoring covariate effect on dependence. (4) Overall the

efficiency of estimators deteriorates with an increase in the censoring rates. (5)

The performance of estimators are usually similar under different Archimedean

families and different strength of dependence.



Chapter 4

Data Example

In this chapter, we introduce German Breast Cancer Data, estimate the de-

pendence parameter and the survival probability with the unconditional and

conditional copula-graphic estimators and briefly discuss our findings.

German Breast Cancer data is retrieved from the University of Massachusetts,

Department of Statistics website where the data is collected from a clinical

trial. The study is conducted between July 1984 and December 1989. There

are 16 variables on n = 686 subjects in the dataset. The variables are described

in Table 4.1.

This dataset was analyzed in Wey et al. (2015), Hess and Levin (2014), Ambler

et al. (2002), which found age at diagnosis and progesterone receptor level to

be significant covariates affecting cancer recurrence. We, therefore, consider

these two covariates in our analysis.

53
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Table 4.1: List of Variables in German Breast Cancer Data.

Variable Name Description Code

id Study ID 1 - 686
diagdate Date of Diagnosis dd-mm-yyyy
recdate Date of Recurrence dd-mm-yyyy
deathdate Date of Death dd-mm-yyyy
age Age at Diagnosis Years
menopause Menopausal Status 1 = Yes, 2 = No
hormone Hormone Therapy 1 = Yes, 2 = No
size Tumor Size mm
grade Tumor Grade 1 - 3
nodes Number of Nodes Involved 1 - 51
prog recp Number of Progesterone Receptors 1 - 2380
estrg recp Number of Estrogen Receptors 1 - 1144
rectime Time to Recurrence Days
censrec Recurrence Censoring 0 = Censored, 1 = Recurrence
survtime Time to Death Days
censdead Death Censoring 0 = Censored, 1 = Death

We first employed the unconditional copula-graphic estimator to analyze

the data under three Archimedean copula families. The dependence parameter

estimates are given in Table 4.2.

Table 4.2: Kendall’s tau estimates and likelihood for different copula families.

Family τ̂ Log-likelihood

Frank 0.735 -93.143
Gumbel 0.589 -93.207
Clayton 0.815 -104.515

Since the Frank copula yielded the highest log-likelihood value, we used

this family in our investigations of the covariate effects.

For the effect of age at diagnosis on the cancer recurrence time, we employed the

conditional copula-graphic estimators and compared the results with those of
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the unconditional copula-graphic estimator. The conditional survival function

estimates are displayed in Figure (4.1) for three age values, 30, 50 and 70 at

the time of diagnosis.

Figure 4.1: CGE (black), CCGE (red) and CCGE* (green) plots against the
recurrence time (years) at three age groups: 30 years (left), 50 years (middle)
and 70 years quantile (right).
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From Figure (4.1) we see that the survival plots of CCGE and CCGE* are

coinciding for different age groups. We also find that CGE overestimates the

survival probability for people with age 30 in comparison to CCGE or CCGE*.

For people with age 50 and 70, CGE overestimates the survival probability

after 5 years of study. Given the difference between the unconditional and

conditional graphic estimators, we can conclude that the age at diagnosis affects

the cancer recurrence time, with lower probability of recurrence at younger ages.

For exploring the effect of progesterone receptor level on the cancer recurrence

time, we consider the first, second and third quantile values of progesterone

receptor level to display the conditional copula-graphic estimators graphically
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in Figure (4.2).

From Figure (4.2), we see that the survival plots at the three quantiles of

the progesterone receptor level are all very similar. While the three estimators

coincide in their survival probability estimates till the first four years, CGE

overestimates the survival probability after four years. Since the discrepancy

between the unconditional and conditional copula-graphic estimates is smaller

for the progesterone receptor level, we conclude that this covariate is not as

important as the age at diagnosis.

Figure 4.2: CGE(black), CCGE (red) and CCGE* (green) plots against the
recurrence time (years) at three Cancer progesterone receptor groups: 1st

quantile (left), 2nd (middle) and 3rd quantile (right).
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To see whether the age at diagnosis and progesterone receptor level affect

the strength of dependence between the cancer recurrence time and the time

to death, we compare the Kendall’s tau estimates of the three estimators in

Figure (4.3). While CGE and CCGE yield similar constant Kendall’s tau
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estimates, there is a slight variation in the Kendall’s tau estimates of CCGE*

across values of each covariate.

Figure 4.3: Kendall’s tau estimates of CGE (black), CCGE (red) and CCGE*
(green) at different age at diagnosis (left) and progesterone receptor levels
(right).
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From Figure (4.3) we see that CGE and CCGE overestimate the dependence

for age groups below 30 and above 65 and underestimate the dependence for

progesterone receptor level between 5000 and 1500. Nevertheless, the differ-

ences are small suggesting that the dependence structure does not drastically

change with these covariates.

The data application suggests that both age at diagnosis and progesterone

receptor level have effects on survival after four years of study period. These

covariates have negligible effects on the dependence structure, except for certain

groups of people.
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Conclusion

In situations of dependent censoring, the copula-graphic estimator is commonly

used to estimate marginal survival function by accounting for the dependence

structure. In this thesis, we proposed two extended versions of the copula-

graphic estimator: CCGE and CCGE* to further for covariate effects. The

performance of our proposed estimators were investigated in a simulation study

and compared to that of the unconditional CGE. We considered different copula

families and dependent parameter models in our evaluations.

First, we considered the unconditional setting and concluded that our proposed

estimators (CCGE, CCGE*) perform well, though with a loss in efficiency,

when there is no covariate effect. Next, we considered the setting where the co-

variate affects only the margins. In this setting, both conditional copula-graphic

estimators (CCGE, CCGE*) showed better performance than the uncondi-

tional version (CGE). Finally, we considered the setting where the covariate

58
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affects both the margins and the dependence. We noticed if interest is the

effect of covariate on the marginal survival function of the non-terminal event,

both versions of the conditional copula-graphic estimator (CCGE, CCGE*)

performed better in comparison to CGE. When interest is the effect of covariate

on dependence, CCGE* accurately captures the underlying effect, while CCGE

and CGE may fail to do so, in cases where the dependence parameter changes

with the covariate.

We also demonstrated the performance of our proposed estimators using a

real data example. We considered the age at diagnosis and the progesterone

receptor level as covariates with potential effects on the cancer recurrence time

and the lifetime of cancer patients. We found that failing to account for the age

at diagnosis would yield overestimation of the survival probability, especially

for younger patients. Ignoring the progesterone receptor level may also result

in overestimation of the survival probability for some groups of patients.

The proposed conditional copula-graphic estimators in this thesis cannot accom-

modate more than one covariate, due to the additional complexity in accounting

for these covariates in Beran’s estimator and in the local likelihood estimation

of the conditional copula parameter. Future research is needed to extend the

proposed estimators to settings involving two or more covariates.
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