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Abstract
In recent decades, longevity risk has become a common risk in life insurance

industry. Longevity-linked securities are created to hedge such risk and traded

over the counter. This thesis mainly focuses on evaluating the counterparty credit

risk of longevity securities, using the newly proposed K-forward for example. In-

stead of only considering the counterparty credit risk from the hedger’s perspec-

tive, we adopt bilateral credit value adjustment to evaluate the counterparty credit

risk. The modelling consists of two significant parts. The first one is risk expo-

sure estimated by locally linear Cairns–Blake–Dowd mortality model. The second

part is joint default probability. We use a reduced-form default model to obtain

the marginal risk-neutral term structure of default probability for the hedger and

the hedge provider, and then employ the one-factor Gauss copula to describe the

default correlation between the two parties. This work provides a framework to

measure bilateral counterparty credit risk of longevity-linked securities.

Key words: BCVA, K-forward, LLCBD model, Longevity risk, Nelson–Siegel

yield rate function, One-factor Gauss copula
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Chapter 1

Introduction

As a result of advances in medical technology, healthy life style and stable so-

ciety, the mortality rate has declined in the recent years (Hari et al., 2008). This

kind of change influences the life insurance industry, especially pension funds and

life annuity providers. They have to face longevity risk which is caused by the

increasing life expectancy of the policy holders. The longer the life expectancy of

the policy holders, the higher payout levels for the policy providers. The longevity

risk not only comes from the reduction in mortality but also arises from the uncer-

tain change rate of the mortality trend. Gallop (2006) finds the empirical evidence

for mortality improvement pattern in the United Kindom male during the previ-

ous decades. He points out that the average rate of mortality improvement is not

constant and the improvement is quite rapid at the older age. Moreover, such mor-

tality improvement trend also happens in other developed countries, such as Japan

(Vaupel, 1997). To hedge the longevity risk and decrease the possible loss for the

pension and life annuity providers, some mortality-linked and longevity-linked

1



2 Chapter 1: Introduction

securities, such as longevity bonds, q-forwards and K-forwards, are designed. This

kind of financial derivatives is designed to reimburse the higher-than-expected

payout via modelling and forecasting the future mortality rates with a stochastic

mortality model. If there is a lower-than expected mortality rate, security holders

will get cash inflows by participating in hedge process.

An emerging market, life market, has started to provide a platform for the

transaction of longevity-linked securities (Blake et al., 2013). However, it is not

a mature market and the issue of longevity-linked securities still faces some prob-

lems, such as inadequate demand and counterparty credit risk. In the previous

years, the public ignored the counterparty credit risk for the over-the-counter fi-

nancial derivative, as the defaults are small probability events especially for large

financial institutions. Thus, it is not necessary to evaluate such risk. It was not

until 2008 financial crisis that the public were aware of the importance of incorpo-

rating the evaluation of counterparty credit risk into the financial derivatives pric-

ing process. The market realized that even financial magnates, such as Lehman

Brothers, have the possibility of bankruptcy. In the Basel II, the explicit definition

of the counterparty credit risk is given as the risk that the counterparty could de-

fault before the maturity of the transaction. To regulate financial market, Basel III

also provides detail stipulation on the counterparty credit risk calculation. Credit

valuation adjustment (CVA) is one of the most popular method to obtain the mar-

ket value of the counterparty credit risk. It is suggested to include the value of

the counterparties credit risk, such as CVA, into the price of the over-the-counter

securities.
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CVA is usually regarded as unilateral credit valuation adjustment (UCVA),

which just considers the default of the counterparty, while assumes that the insti-

tution own is default free. Bielecki and Rutkowski (2001) give a detail discussion

and examples of UCVA. The general formula for the UCVA is expressed as

UCVA = (1− R) E
[

D(τ) · EE(τ) · 1(τ≤T)

]
, (1.1)

where τ is the default time of the counterparty, 1−R is the loss given default which

measures the percentage of the risk exposure lost when the counterparty defaults,

D(τ) is the discount factor at time τ which is implied from risk-free interest rates,

EE(τ) = E[E(τ)] with E(τ) the risk exposure of the financial derivative at time

τ, and 1(A) denotes the indicator function of an event A. Note that since (1.1)

is a pricing formula, the expectations in (1.1) should all be under a risk-neutral

measure.

Although, UCVA is quite popular in recent years, Basel II realizes that instead

of the default of only one particular party, both transaction participants are ex-

posed to default risk. In this case, the counterparty risk possesses the bilateral

nature. Actually, in real financial markets and with the experience of financial cri-

sis, the bilateral assumption is more realistic (Brigo et al., 2011). It is not credible to

assume the existence of a “default-free” organization.

In contrast to UCVA, bilateral credit value adjustment (BCVA) evaluates the

defaults from both sides under the assumption that both the institution and the

counterparty may default before the final settlement. Considering the different

default risks, Duffie and Huang (1996) use a switching discount rate to calculate
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the present value of a financial derivative’s cash outflow. Later work analyzes

BCVA in more detail. For example, Brigo and Capponi (2008) point out that BCVA

consists of two parts: CVA and debit valuation adjustment (DVA). The CVA part

comes from the default of the counterparty, while the DVA part is due to the in-

stitution’s own default. Thus, BCVA is the difference between CVA and DVA. The

general formula of BCVA is

BCVA = (1− RHP) E
[

D(τHP) · EE+(τHP) · 1(τHP≤T,τH>T)

]
−(1− RH) E

[
D(τH) · EE−(τH) · 1(τH≤T,τHP>T)

]
, (1.2)

where HP and H respectively represent the counterparty (or the hedge provider)

and the institution (or the hedger), 1− R• is loss given default, τ• is default time,

EE+(t) = E[max(E(t), 0)], and EE−(t) = −E[min(E(t), 0)]. As in (1.1), all ex-

pectations in formula (1.2) should be under a risk-neutral measure. However, in

this thesis we assume that mortality indexes are independent of financial mar-

ket. As Cox and Pedersen (2000) explained for catastrophe risks, if a future cash

flow depends only on mortality related variables, which are assumed independent

of financial risk variables, then the cash flow’s expectation under the risk-neutral

measure coincides with that under the real-world measure. So we can calculate

the expected risk exposures in (1.2) under the real-world measure.

We want to give more explanations to formula (1.2). The first part of the gen-

eral BCVA formula is similar to the CVA calculation given in (1.1), but it is the

joint probability density instead of the default probability of one specific counter-

party. It is reasonable, because we consider the default of two participants and the
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financial derivatives will terminate when the first default happens. Thus, we need

to use the joint default probability which contains the default information of the

two sides to calculate the first-to-default probability. In this part, we obtain the

valuation of the counterparty credit risk based on the assumption that the hedge

provider defaults while the hedge holder survives by the maturity. The second

part of the general BCVA formula is the mirror image of the CVA, which is the

DVA. Unlike the first part, it measures the possible “gains” when the hedge holder

defaults. Therefore, there is a negative risk exposure instead of the positive one,

because the default of hedge holder results in a loss to the hedge provider which

may reduce the valuation of counterparty credit risk. Similarity, we use the joint

default probability density to obtain the first-to-default probability based on the

assumption that the hedge holder defaults while the hedge provider survives by

the maturity. In this general formula, we include the correlation of the default

events of the two parties. In other words, the defaults of two organizations are not

only governed by company specific factor, but also governed by common factor.

Moreover, in the general BCVA function, the indicator function is for the event that

one party defaults before the maturity while the other survives until the maturity.

The reason for this expression is that we need to include close-out risk. The pay-

off of the K-forward depends on the mortality indexes at maturity. Although one

party defaults before the maturity, the other party may default between the first

default time and maturity. Thus, the default of the other party could influence the

settlement as the payoff is relied on the assumption that both parties should sur-

vive until the maturity. Based on this situation, we need to conduct adjustments
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on the risk exposure to include the close-out risk.

In this paper, we take a simple longevity-linked security, K-forward, as an ex-

ample to calculate and analyze the BCVA. K-forward is a zero-coupon swap first

considered by Chan et al. (2014) and Tan et al. (2014). At the maturity date, the

longevity risk hedger pays a predetermined proportion of floating (realized) mor-

tality index, while the longevity risk hedge provider pays a predetermined pro-

portion of the fixed mortality index. Thus, the actual settlement amount is the

difference between the realized mortality index and the fixed mortality index. Fig-

ure 1.1 provides a brief relationship of the K-forward traders.
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Figure 1.1: The transaction between two parties of a K-forward

The longevity-risk hedge mechanism of K-forward is derived from such difference

between fixed mortality index and realized mortality index. For example, when

the mortality index decreases and then results in a lower-than-expected mortality

rate, the hedgers may face the longevity risk but they could obtain the reimburse-

ment from the hedge providers. The positive payment from the hedge provider

can cover the loss from the longevity risk. There are several advantages on the

K-forward. The most important one is that the final payoff is derived from time-

varying mortality index. Therefore, it is unnecessary to set a certain hedging age

during the calculation, which could simplify the computation. Moreover, the im-

plementation of K-forward is easier and more conductive (Chan et al. 2014), which

will increase the liquidity. As a result of the introduction of K-forward, the di-
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versification for the financial market will increase, which is a good signal for the

market.

The rest of the thesis is organized as follows. In Chapter 2, we mainly discuss

the mortality models with Canadian male population. We will compare the origi-

nal two factor Cairns–Blake–Dowd (CBD) mortality model with the locally linear

Cairns–Blake–Dowd (LLCBD) mortality model, and figure out the most suitable

mortality model. With the chosen mortality model, we could forecast the future

mortality indexes. In Chapter 3, we will use the bonds’ market price to calibrate

the reduced-form default model, Nelson-Siegel function, and get the marginal risk-

neutral default probability. Then, it is possible to calculate the joint probability for

two traders by combining marginal default probability with copula. With the mor-

tality model and default model obtained in Chapters 2 and 3, we could calculate

the BCVA in K-forwards in Chapter 4. Finally, Chapter 5 will give some conclu-

sions and illustrate improvements could be done in the future research.



Chapter 2

Mortality Indexes

As mentioned in the previous part, the longevity-linked security, K-forward,

could be used to hedge longevity risk. This kind of securities is traded over the

counter. BCVA is used to evaluate the credit risk. There are two significant ele-

ments of the calculation of BCVA. One is the risk exposure, while the other is the

default probability. In this chapter, we mainly focus on the risk exposure which

can be obtained by mortality indexes with a certain CBD mortality model.

With the basic introduction on K-forward in Chapter 1, we could find that the

payoff of the K-forward heavily depends on two different kinds of mortality in-

dexes, the forward mortality indexes κ̃
(i)
T and the realized mortality indexes κ

(i)
T .

Specifically, stand at the point view of a fixed rate receiver, the settlement of the

contract equals to an amount proportional to the difference between the fixed mor-

tality indexes κ̃
(i)
T and the realized mortality indexes κ

(i)
T for a reference population

8
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in a future reference year T. The formula can be shown in the following:

Y ·
(

κ̃
(i)
T − κ

(i)
T

)
, i ∈ {1, 2}, (2.1)

where Y is the notional amount which is usually set as 1 dollar. In this paper, the

payoff of K-forward could be considered as the risk exposure of BCVA.

Based on the above information, it is important to find out a proper CBD mor-

tality model to obtain the realized and fixed mortality indexes. In this thesis,

we mainly focus on comparison between two-factor CBD model and its extended

model, LLCBD model. In the following sections, we give details of model selection

and then conduct backtesting to confirm the selection.

2.1 Mortality data

The mortality data in this paper comes from Human Mortality Database (2017).

We choose Canadian male aged from 50 to 89 as the reference population. The sam-

ple period is from 1941 to 2011 (71 years in total). Liu and Li (2016) show that there

are three main reasons why it it reasonable to choose the age period [50,89]. First

of all, the age period [50,89] is one of the most popular choices in the life insur-

ance industry. This period is usually selected to fit the stochastic mortality models

and applied to pension and annuity calculation. Thus, using this age range makes

the estimation results more comparable and applicable. Secondly, it is found that,

based on the Human mortality database guideline, the Canadian raw population

counts are only reliable before age 89. In other words, raw population counts af-
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ter age 89 are just estimations, instead of real population counts. Thus, when we

fit a stochastic model, the population counts after age 89 may not be an authentic

sample. Finally, beginning at age 50 removes the accident hump at the young ages

for which the CBD/LLCBD mortality model can not fit such age effect structure.

Moreover, with the age period after age 50, we could exclude the influence from

the mortality improvement dynamics at the young ages.

2.2 Two-factor CBD model

In the previous literatures, some stochastic mortality models were raised. Most

of these models have one or more time-varying parameters after being fitted to

historical data. Based on the estimated mortality indexes, it is possible to fore-

cast the future mortality rates of the reference population mortality. Chan et al.

(2014) points out three important criteria when choosing a proper stochastic mor-

tality model. First, instead of only showing the mortality improvement at overall

level, mortality indexes should also demonstrate different age patterns of mortal-

ity changes. Secondly, mortality indexes should be straightforward. Thus, it is

easy to transfer the contents to the public. Finally, mortality indexes should have

new-data-invariant property. It means that historical values of κ
(i)
t will not change

even when new mortality data is included and the mortality model is updated

accordingly.

Dowd et al. (2010) compares six widely used mortality models and stated

briefly that the original two-factor CBD mortality model (Cairns et al., 2006) is a rel-

atively simple model with only two time-varying parameters κ
(1)
t and κ

(2)
t , and it
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possesses new-data-invariant property without adding any extra constraint. With

two-factor CBD mortality model, one could obtain both the ex ante and ex post

forecast. The original two-factor CBD model is demonstrated in the following:

yx,t := ln
(

qx,t

1− qx,t

)
= κ

(1)
t + κ

(2)
t (x− x) + εx,t, (2.2)

where qx,t is the crude probability that an individual at age x dies between time

t− 1 and time t, x is the average of the ages within the sample age range, εx,t
i.i.d.∼

N(0, σ2
ε ) are sampling errors, and κ

(1)
t and κ

(2)
t are time-varying parameters that

reflect the varying age effects on the mortality improvement. In particular, κ
(1)
t

demonstrates the level of the logit-transformed mortality curve. In other words,

when there is a decreasing trend in κ
(1)
t , it means that there is a mortality improve-

ment at overall level. Whereas, κ
(2)
t represents the slope of the logit-transformed

mortality curve, which implicates the age effects. For example, if κ
(2)
t is positive,

the improvement in mortality is larger at young age than that at the old age given

the same condition.

After choosing the CBD model (2.2), we use the least squares method to esti-

mate the historical values of κ
(1)
t and κ

(2)
t . The results are shown in Figure 2.1. It is

clearly seen in Figure 2.1 that the movements of indexes κ
(1)
t and κ

(2)
t are random.

In particular, from 1941 to 2011, κ
(1)
t always fluctuates around a downward trend

while κ
(2)
t first gradually moves downward for the first 40 years then increases in

the next 15 years before a sharp drop.
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1940 1950 1960 1970 1980 1990 2000 2010
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Figure 2.1: Historical values of κ
(1)
t (upper panel) and κ

(2)
t (lower panel) for Canada

male population aged from 50 to 89, 1941–2011

Here we want to point out that the CBD mortality indexes have a unique fea-

ture called new-data-invariant property. In other words, after new mortality data

is available and the CBD model (2.2) is updated accordingly, historical values of
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κ
(i)
t , i = 1, 2, will not change. Based on this property, the concept of K-forward was

proposed. See Chan et al. (2014) for more details.

2.3 The LLCBD model

In the original two-factor CBD mortality model, we assume that the bivariate

random walk has constant drifts. If this assumption is reasonable, the estimated

∆κ
(i)
t = κ

(i)
t − κ

(i)
t−1 should fluctuate around the sample means. The results of ∆κ

(i)
t

are demonstrated in Figure 2.2. According to Figure 2.2, it seems that ∆κ
(1)
t does

not fluctuate around the sample means. Instead, it has a decreasing trend. There-

fore, we consider the following more general assumptions on stochastic κ
(1)
t and

κ
(2)
t . Supposed that κ

(i)
t , for i = 1, 2, are random walks with drift C(i)

t , for i = 1, 2,

which have stochastic nature. Then the equations can be expressed as:


∆κ

(i)
t = C(i)

t−1 + ξ
(i)
t ,

C(i)
t = C(i)

t−1 + υ
(i)
t ,

i = 1, 2, (2.3)

where t = t0 + 1, t0 + 2, ..., t1. Here, t0 is the beginning of sample period and t1

is the ending of sample period. In the above formula, ξ
(1)
t , ξ

(2)
t , υ

(1)
t and υ

(2)
t are

innovations which measure the uncertainty on mortality indexes. Suppose that, for

each i = 1, 2, ξ
(i)
t

i.i.d.∼ N
(

0, σ2
ξ(i)

)
and υ

(i)
t

i.i.d.∼ N
(

0, σ2
υ(i)

)
. Moreover, we assume

that ξ
(i)
t and υ

(j)
t , i, j ∈ {1, 2}, are mutually independent.
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Figure 2.2: Historical values of ∆κ
(1)
t (upper panel) and ∆κ

(2)
t (lower panel) for

Canada male population aged from 50 to 89, 1941–2011. The horizontal lines rep-
resent the sample means for ∆κ

(1)
t and ∆κ

(2)
t , respectively.
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2.3.1 Hypothesis test on drift randomness

To check stochastic nature of drifts, Liu and Li (2016) use a test called the locally

most powerful invariant (LMPI) test, which was first proposed by Nyblom and

Mäkeläinen (1983). In this statistical test, H0 : σ2
υ(i)

/σ2
ξ(i)

= 0 and H1 : σ2
υ(i)

/σ2
ξ(i)

> 0.

If the statistic is greater than critical value, we will accept alternative hypothesis

which means that συ(i) is not equal to 0 and thus the the drift is not constant. Given

the function provided by Liu and Li (2016), the null hypothesis statistic in LMPI

test for i = 1, 2 is expressed as following:

L(i) =
∑ti

t=t0+1

(
∑ti

s=t(∆κ(i)(s)− Ĉ(i))
)2

∑ti
t=t0+1(∆κ(i) − Ĉ(i))2

, (2.4)

where Ĉ(i) is the sample mean. To obtain the final statistic, L(i) should be divided

by t1− t0− 1. We could evaluate the stochastic nature of drifts via the comparison

of statistics L(i)/(t1 − t0 − 1) and the rejection regions. After obtaining statistics,

we need to calculate the reject regions. Nyblom and Mäkeläinen (1983) point out

that L(i) has the same distribution as:

∑t1−t0−1
k=1 λk,t1−t0(1 + λk,t1−t0σ2

υ/σξ2)u2
k

∑t1−t0−1
k=1 (1 + λk,t1−t0σ2

υ/σξ2)u2
k

, (2.5)

where λ−1
k,t1−t0

= 2(1 − cos(πk/(t1 − t0))), k = 1, 2, ..., (t1 − t0 − 1), and uk
i.i.d.∼

N(0, 1). Thus, u2
k is a quadratic normal variable.

Considering (2.5), we could express the critical value cα at significance level α
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as

α = P

(
L(i)

t1 − t0 − 1
> cα

)
= P

(
t1−t0−1

∑
k=1

(
λk,t1−t0

t1 − t0 − 1
− cα

)
u2

k > 0

)
. (2.6)

We need the value of cα to decide whether C(1)
t is constant or not. Imhof (1961)

showed that inverting the characteristic function could produce a general formula

to obtain the quadratic forms for normal distribution. Accordingly, the probability

in (2.6) can be written as

P(V > 0) =
1
2
+

1
π

∫ ∞

0

sin θ(y)
yρ(y)

dy, (2.7)

with θ(y) and ρ(y) given as

θ(y) =
1
2

t1−t0−1

∑
k=1

tan−1(λky) (2.8)

and

ρ(y) =
t1−t0−1

∏
k=1

(1 + λ2
ky2)1/4, (2.9)

where V = ∑t1−t0−1
k=1 λku2

k and λk =
λk,t1−t0
t1−t0−1 − cα, k = 1, 2, . . . , t1 − t0 − 1.

Then, we could conduct the LMPI test on Canada male population mortality

data. Using (2.6)–(2.9), we get the critical value cα = 0.4686 when the significant

level α = 0.05. Meanwhile, with (2.4) we get the statistic values L(i)/(t1 − t0 − 1)

for ∆κ
(i)
t , i = 1, 2, respectively as 2.1446 and 0.3509. According to such results, we

conclude that for Canadian male population drift C(1)
t is not a constant while drift

C(2) is a constant.



Chapter 2: Mortality Indexes 17

2.3.2 Estimation

To facilitate the estimation process, let us first write the LLCBD model as a

linear Gaussian state-space model. Denote by ~yt = (yx0,t, yx0+1,t, . . . , yx1,t)′ the

vector of observations at time t. Then we can rewrite models (2.2) and (2.3) as

follows. 
~yt =Z~αt +~εt,

~αt =B~αt−1 +~ηt,
(2.10)

where

Z =



1 x0 − x̄ 0 0

1 x0 + 1− x̄ 0 0
...

...
...

...

1 x1 − x̄ 0 0


, B =



1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


,

yx,t is approximated by mx,t/(1 + 0.5 mx,t),~αt = (κ
(1)
t , κ

(2)
t , C(1)

t , C(2)
t )′, the vector

of hidden states at time t, ~εt = (εx0,t, . . . , εx1,t)′ ∼ N(~0, σ2
ε Ix1−x0+1) and ~ηt =

(ξ
(1)
t , ξ

(2)
t , υ

(1)
t , υ

(2)
t )′ ∼ N(~0, Q).

Depending on~αt, the log-likelihood function can be written as

ln(L) = − 1
2σ2

ε

t1

∑
t=t0

(~yt − Z~αt)
′(~yt − Z~αt)−

(t1 − t0 + 1)(x1 − x0 + 1)
2

ln(σ2
ε )

−1
2

t1

∑
t=t0+1

(~αt − B~αt−1)
′Q−1(~αt − B~αt−1)−

1
2

t1

∑
t=t0+1

ln |Q|+ cl. (2.11)

Then Expectation-Maximization (EM) algorithm can be used to acquire the max-

imum likelihood estimations for σε and the parameters in Q. See, for instance,

Holmes (2013).



18 Chapter 2: Mortality Indexes

Based on the LMPI test result, only C(1)
t follows a random walk. There are total

6 parameters and 3 hidden states. The LLCBD model can be simplified as:


~yt =Z~α∗t +~εt,

~α∗t =B~α∗t−1 + ~u +~η∗t ,
(2.12)

where

Z =



1 x0 − x̄ 0

1 x0 + 1− x̄ 0
...

...
...

1 x1 − x̄ 0


, B =


1 0 1

0 1 0

0 0 1

 ,

~α∗t = (κ
(1)
t , κ

(2)
t , C(1)

t )′, the vector of hidden states at time t, ~εt = (εx0,t, . . . , εx1,t)′

∼ N(~0, σ2
ε Ix1−x0+1), ~u = (0, C(2), 0)′ and ~η∗t = (ξ

(1)
t , ξ

(2)
t , υ

(1)
t )′ ∼ N(~0, Q∗).

Moreover, we could also obtain the original CBD model by setting~η∗∗t = (ξ
(1)
t , ξ

(2)
t )′ ∼

N(~0, Q∗∗). In the original CBD model, there are 2 hidden state space and 6 param-

eters.

We use the mortality data of Canadian males aged 50 to 89 from 1941 to 2011

to fit the original CBD and the LLCBD model. The estimation results for unknown

parameters are shown in Tables 2.1 and 2.2, respectively.

It is shown that the estimation and standard error for σ2
ε are almost the same

in two models. The main difference appears in the covariance matrix Q. We found

that there is an obvious reduction in the variance of κ
(1)
t , while there is a relatively

small decrease in the variance of κ
(2)
t . The reason is that some volatilities of ∆κ

(1)
t

are captured by C(1)
t .
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Parameter Estimate Standard error
σ2

ε 2.31e−3 6.48e−4

C(1) −1.33e−2 1.51e−3

C(2) 1.32e−4 NA
Q∗∗1,1 2.02e−4 1.47e−3

Q∗∗2,1 1.83e−8 NA
Q∗∗2,2 6.19e−7 9.59e−5

AIC = -8938.12 Log-likelihood = 4475.06

Table 2.1: The estimate value and standard error for σ2
ε and Q∗∗ in the original CBD

Parameter Estimate Standard error
σ2

ε 2.31e−3 6.50e−4

C(2) 1.29e−4 1.05e−4

Q∗1,1 6.27e−5 1.65e−3

Q∗2,1 2.99e−6 2.65e−4

Q∗2,2 6.50e−7 1.14e−4

Q∗3,3 5.08e−6 9.51e−4

AIC = -8956.843 Log-likelihood = 4484.422

Table 2.2: The estimate value and standard error for σ2
ε and Q∗ in the LLCBD

Comparing the AIC and log-likelihood in two different CBD model, we found

that LLCBD has a lower AIC and higher Log-likelihood which indicates a better

fitting results. Thus, LLCBD model is better than the original CBD model when

we fit the Canadian male mortality model.

2.3.3 Backtesting

After fitting the mortality model, it is necessary to evaluate the accuracy of

the forecasts within a certain time horizon. Dowd et al. (2010) raise a backtesting

framework which could be applied to multiperiod-ahead forecast of the stochastic

mortality models. They conducted the backtests for CBD models (M1–M7) to eval-
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uate the out-of-sample forecasting performance. In the following parts, we first use

the Canadian male mortality data from 1941 to 1991 to fit the original CBD model

and the LLCBD model. Then, we use the estimated parameters to conduct the

simulation and obtain the confidence interval and median value for the forecasted

κ
(1)
t and κ

(2)
t from 1992 to 2011 in both mortality models. Finally, we evaluate the

consistence of the actual κt and forecasted results. The backtesting results of the

original CBD model are shown in the figure 2.3, while the results of the LLCBD are

demonstrated in figure 2.4.

Comparing figure 2.3 and figure 2.4, we found that these two models produce

the same forecasting performance in κ
(2)
t . Only a small part of the actual κ

(2)
t out of

the range. In contrast, the forecasting performance is different in κ
(1)
t for these two

models. In the LLCBD model, the actual κ
(1)
t lies within the confidence interval

in all predicting period, while in the original model most parts of the actual κ
(1)
t

are outside of the confidence interval. The actual κ
(1)
t lies beyond the lower bound

of the confidence interval in the original CBD model, which may result in lower

risk exposure. According to the backtesting results, it is indicated that the LLCBD

model performs better in the forecasting process. The calculation of BCVA could

be significantly affected by the prediction of the future mortality indexes. Thus, in

the rest of the paper, we choose the LLCBD model to calculate the risk exposures.
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Figure 2.3: The 95% confidence interval and median line of the forecasting κ
(1)
t

(upper panel) and κ
(2)
t (lower panel) for 1992-2011 with the original CBD model.

The model is fitted with the Canadian male mortality data from 1941 to 1991. The
blue dashed line is the lower and upper bounds of the confidence interval, the blue
solid line represents the median line, and the black solid line is the real outcomes
of the mortality indexes.
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Figure 2.4: The 95% confidence interval and median line of the forecasting κ
(1)
t

(upper panel) and κ
(2)
t (lower panel) for 1992-2011 with the LLCBD model. The

model is fitted with the Canadian male mortality data from 1941 to 1991. The blue
dashed line is the lower and upper bounds of the confidence interval, the blue
solid line represents the median line, and the black solid line is the real outcomes
of the mortality indexes.



Chapter 3

Default probability

In the last chapter, we have already discussed the selection of the mortality

model and chosen LLCBD model to forecast the mortality indexes. In this section,

we mainly focus on the risk-neutral default probability which is another important

issue of the BCVA calculation. There are two main methods to model the default

probability, the structural approach and the reduced-form approach. The struc-

tural form model is first introduced by Merton (1974). In the structural model,

the default is modelled as the default-triggering process. For example, the default

happens when the firm’s value modelled by a stochastic process first drops below

the low boundary (Hao et al., 2013). In 1995, Jarrow and Turnbull first used the

reduced-form model to price the financial derivatives with default risks. Unlike

the default in the structural approach, the default in the reduced-form model is

considered as an unexpected process. And the intensity process is used to mod-

eling the default probability. Compared with structural approach, this method

simplify the whole valuation process. Given the definition, the structural model

23
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relies on the accounting reports, but in reality there exists noise in the account-

ing information which may cause valuation errors. Compared with the structural

model, the reduced-form model are consistent with asymmetric equilibrium prices

(Jarrow, 2011). Therefore, in this part, we use the reduced-form model to obtain the

default probability for hedger and hedge provider. The survival probability is ex-

pressed as:

S(t) = exp
(
−
∫ t

0
h(s)ds

)
, (3.1)

where h(s) is the hazard rate.

3.1 Marginal term structure of default probability

It is often assumed that hazard rate is constant or piece-wise constant over time,

which simplifies the calculation. However, this assumption may result in model

errors. Instead of a piece-wise constant hazard rate, Nelson-Siegel model has a

time-varying intensity h(t). It is more sophisticated, because the intensity includes

the structure effects (Bluhm at al., 2010). The Nelson-Siegel model is first intro-

duced by Nelson and Siegel (1987) to price long-term Treasury bonds, because this

model could successfully fit different shapes of the yield curve. Additionally, this

model could also efficiently smooth the parameters, which implies that with fewer

parameters one could obtain the intensity without material deterioration in the

prediction accuracy. The Nelson-Siegel hazard rate, h(t), is given by:
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h(t; β) = β0 + β1e−t/β3 + β2e−t/β3t/β3. (3.2)

Based on the h(t; β), the cumulative hazard rate is expressed as:

H(t; β) =
1
t

∫ t

0
h(s; β)ds = β0 + (β1 + β2)(1− e−t/β3)β3/t− β2e−t/β3 . (3.3)

For equations (3.2) and (3.3), t > 0, because time t must be positive, and

β = (β0, β1, β2, β3)
T ∈ R4. As Nelson-Siegel model is a parsimonious model,

every parameter of β has economic meaning. For example, β0 represents the long-

term converging value of the default intensity. In other words, when time t goes

infinitely the default intensity approaches β0. Moreover, as the default intensity

should always be positive when the bonds are defaultable, β0 should be lager than

0. Additionally, β1 is the short-term effect on the default intensity which describes

the short-term deviation from the mean. It could be positive or negative, when

β1 > 0, there is a downward sloping term structure. On the contrary, if β1 < 0, the

default intensity is upward sloping. As for β2, it is the medium-term effects on the

default intensity and captures the humps when it does not equal 0. As for the last

parameter, β3, it is the time scalar parameter.

Using (3.1)–(3.3), we could get the survival probability as:

S(t; β) = exp (−tH(t; β)) , t ≥ 0. (3.4)

Considering that S(t; β) is the survival probability of the hedger and hedge providers,

it must meet some criteria. First of all, S(t; β) should be a monotone decreasing
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function which means that S′(t; β) < 0 for all t ≥ 0. Specifically, at time 0, given β,

S(t; β) = 1, while as time goes infinitely, limt→∞ S(t; β) = 0. To meet these proper-

ties, there are additional constraints on the parameters (β) which are demonstrated

in the following:

(C1) β0 > 0;

(C2) β0 + β1 > 0;

(C3) β2 > βl with βl uniquely satisfying βl < β1 and β0 + βl exp (β1/βl − 1) = 0.

See Hao et al. (2017) for more details.

3.2 Calibration process

Having decided on the default probability model, we could estimate the pa-

rameters from the bonds’ market information. In this thesis, without considering

the call policy, we only collect the non-callable bonds market prices from the sec-

ondary market. In the secondary market, the bonds’ market price is also called

”dirty price” which consists of ”clean price” and accrued interest. Not only does

it reflect the issuers’ credit quality but also the interest accruing. In this section,

we match the ”dirty price”, which is derived from the reduced-form model, with

its corresponding market price. To obtain the ”dirty price”, we need to collect a

set of bonds’ market information, including maturity, principal, coupon rate and

so on, on the same date. For each hedger or hedge provider, we collect more than

five non-callable bonds to ensure the accuracy of calibration results. Considering

that ”dirty price” is the present value of the future cash flows, it is also necessary
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to obtain discount factor derived from the risk-free rate. We choose the US Trea-

sury continuously zero yield rate on the same date as the risk-free rate, because

the bonds used in this thesis are all measured in US dollars and we want to make

a consistency. Based on the financial market information, the ”dirty price” for a

specific bond is expressed as:

n

∑
j=1

DF(sj) · c∆j · S(sj) + V ·DF(sn) · S(sn) + V · R ·
∫ sn

0
DF(s)F(ds). (3.5)

Formula (3.5) is the summation of the discounted future coupon and principal

payments with the consideration of credit risk. In this formula, sj, j = 1, . . . , n, are

the coupon payment moments and sn is the maturity, c is the bond coupon rate, ∆j

is the fraction of years between sj−1 and sj, V is the par value (usually $100), R is

the recovery rate, DF(·) is the risk-free discount factor, S(·) = S(·; β) for simplicity,

and F(·) = 1− S(·). Note that formula (3.5) is derived under the conditions that, at

the default time, recovery amount is a percentage of the par value and the recovery

rate is constant at 37% over time. The idea of constant recovery rate comes from the

Chapter 24 of Hull (2014). Hull provides a table containing average recovery rate

for bonds in different credit classes. In this paper, most of the bonds come from

senior unsecured class. Thus, the corresponding average recovery rate is 37%. To

simplify the calculation, we set the recovery rate to be 37%, a constant.

To find the optimal default intensity function, we need to find a set of optimal

parameters under constraints C1 to C3, producing a minimum absolute difference

between dirty price and corresponding market price. Such parameters β are ex-
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pressed as:

β∗ = arg min
β

1
K

K

∑
k=1

∣∣dirty pricek −market pricek

∣∣ , (3.6)

where dirty prices are derived from (3.5) and market prices are collected from

Bloomberg. According to the calibration process, we are able to obtain a set of

parameters β∗ which produces a best match between ”dirty price” and market

price.

In the process of calibration, JP Morgan is chosen as the hedge provider, and

New York Life and Prudential Financial are selected as two different the hedgers.

These three institutions have already participated in the longevity-linked securities

in the past years. So they are the potential traders of K-forward. We collect a set

of bonds information, containing maturity, par value, coupon, coupon payment

frequency and market value, for the hedger and hedge providers from Bloomberg

database on November 7, 2016. There are 6 bonds for JP Morgan, 7 bonds for

New York Life and 7 bonds for Prudential Financial. The detailed information is

illustrated in Tables 3.1 - 3.3:

Combining (3.5) and (3.6), we find that the parameters appear in the exponent.

Therefore, we need to implement nonlinear optimization instead of linear opti-

mization. The calibration is conducted in R 3.3.1 with NLopt package.
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Table 3.1: Six bonds of JP Morgan on November 7, 2016

Maturity Par Coupon Frequency Last price Currency Type
1.216 100.000 1.800 semiannually 100.470 USD Senior secured
2.956 100.000 2.200 semiannually 101.394 USD Senior secured
4.773 100.000 4.350 semiannually 109.394 USD Senior secured
5.879 100.000 3.250 semiannually 104.158 USD Senior secured

21.532 100.000 6.400 semiannually 134.465 USD Senior secured
24.701 100.000 5.600 semiannually 124.505 USD Senior secured

Table 3.2: Seven bonds of New York Life on November 7, 2016

Maturity Par Coupon Frequency Last price Currency Type
0.518 100.000 1.650 semiannually 100.365 USD Senior secured
1.469 100.000 1.300 semiannually 101.068 USD Senior secured
2.611 100.000 2.150 semiannually 101.865 USD Senior secured
3.263 100.000 1.950 semiannually 100.796 USD Senior secured
9.688 100.000 2.350 semiannually 97.603 USD Senior secured

16.523 100.000 5.875 semiannually 120.264 USD Senior secured
23.036 100.000 6.75 semiannually 137.872 USD Senior secured

Table 3.3: Seven bonds of Prudential Financial on November 7, 2016

Maturity Par Coupon Frequency Last price Currency Type
1.770 100.000 2.300 semiannually 101.353 USD Senior secured
4.025 100.000 4.500 semiannually 109.314 USD Senior secured
7.523 100.000 3.500 semiannually 105.067 USD Senior secured

12.945 100.000 3.850 semiannually 99.928 USD Senior secured
16.696 100.000 5.750 semiannually 118.454 USD Senior secured
20.115 100.000 5.700 semiannually 119.738 USD Senior secured
25.041 100.000 6.800 semiannually 121.649 USD Senior secured

The calibration results are shown in Figures 3.1–3.3. The blue bars in each fig-

ure represent the selected bonds’ market prices, while the red bars show the corre-
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sponding ”dirty price” derived from (3.5).

The comparison of market prices and calibrated prices for JP Morgan is demon-

strated in Figure 3.1. The mean absolute error is 0.27277 for six JP Morgan bonds.

The optimal parameters are β∗JPM = (1.86956e−6, 0.00054, 0.05903, 5.90509)T. The

absolute percentage error ranges from 1.423e−6 to 0.024. It means that the largest

discrepancy between ”dirty price” and market price is no more than 2.4% of the

market price for six selected JP Morgan bonds.
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Figure 3.1: Calibration results for JP Morgan. The blue bars represent bonds’
market prices and the red bars represent bonds’ dirty prices with β∗JPM =

(1.86956e−6, 0.00054, 0.05903, 5.90509)T. The mean absolute error is 0.27277.



Chapter 3: Default probability 31

For New York Life, the comparison of the market prices and ”dirty prices” is

illustrated in Figure 3.2. The mean absolute error is 1.27 with the optimal parame-

ters β∗NYL = (1.0e−8, 0.00395, 0.05200, 7.18440)T. The scope of absolute percentage

error is [1.738e−8, 0.033]. For all seven bonds, the difference between ”dirty price”

and ”market price” is no more than the 3.3% of the corresponding market price.
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Figure 3.2: Calibration results for New York Life. The blue bars represent
bonds’ market prices and the red bars represent bonds’ dirty prices with β∗NYL =
(1.0e−8, 0.00395, 0.05200, 7.18440)T. The mean absolute error is 1.26997.

According to the calibration process, the mean absolute error for seven Pruden-

tial Financial bonds is 0.448 and comparison result is shown in Figure 3.3. The opti-

mal parameters in this condition are β∗PF = (6.08092e−8, 0.00970, 0.05731, 6.48221)T.
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The scope of absolute percentage error is from 6.121e−14 to 0.021. It indicates that,

for all seven bonds, the difference between ”dirty price” and ”market price” is no

more than the 2.1% of the corresponding market price.
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Figure 3.3: Calibration results for Prudential Financial. The blue bars represent
bonds’ market prices and the red bars represent bonds’ dirty prices with β∗PF =
(6.08092e−8, 0.00970, 0.05731, 6.48221)T. The mean absolute error is 0.44800.

Knowing the optimized parameters β∗ for three potential traders, we could also

obtained the credit spread curves. In this thesis, the credit spread can be simplified

as:

CS = (1− R)H(t; β), (3.7)
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where R is the recovery rate for the potential traders, H(t; β) is the cumulative

hazard rate in (3.3). Based on this general formula for credit spread and calibra-

tion results, we plot the credit spread curves for JP Morgan, New York Life and

Prudential Financial. The figures are shown in the following:
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Figure 3.4: Credit spread curve for JP Morgan.
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Figure 3.5: Credit spread curve for New York Life.
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Figure 3.6: Credit spread curve for Prudential Financial.

From Figures 3.4–3.6, we find that the credit spread curves for three traders

are all hump shaped, which is the general B-rating credit spread curve (Lando

and Mortensen, 2005). All of them first increase to the highest point and then

start decreasing gradually. Although they have the same shapes, there are still

some differences. For example the highest points for three traders are different.

The credit spread of JP peaks around 120 bps, while that of New York Life and of

Prudential Financial is close to 110 bps and 140 bps, respectively. In addition, for

JP Morgan, it reaches the highest credit spread around 10 years. But for New York

Life and Prudential Financial, the first one arrives the peak after 10 years, while the

other before 10 years. These slight differences may come from the different credit

rating. In Moody’s, all bonds of JP Morgan and New York Life come from A-rating,

while the bonds of Prudential Financial are in the position of B-rating. However,

on the whole, all risk neutral credit spread curves perform like B-rating curves
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and there is no huge discrepancy between two different credit rating levels. This

phenomenon reflects the risk aversion nature of the financial market, especially

when the market evaluates the credit risk.

3.3 Copula model

In this thesis, we focus on BCVA which considers default risk from two par-

ticipants and includes joint default probability instead of marginal default proba-

bility. These two traders are all in financial industry and they are not completely

independent of each other. Usually, we use copula to construct joint distribution,

because copula not only describes the marginal behaviour of individual risk but

also demonstrates the dependence structure of all participants.

We assume that the dependence between the default times of the hedger and

the hedge provider is governed by a one-factor Gauss copula. The assumption is

that:

Xi =
√

ρiV +
√

1− ρiζi, (3.8)

where i ∈ {H, HP}, ρi ∈ (0, 1), and V and ζi are iid standard normal random

variables and independent of each other. Specifically, V is a common factor which

affects all companies in the transaction, while ζi is a factor which only affect com-

pany i. When ρH = ρHP = 0, the defaults of the hedger and the hedge provider

are completely independent and are only controlled by ζH and ζHP, respectively.

On the contrary, when ρH = ρHP = 1, the defaults are completely dependent and

controlled by common factor V. It is obvious that X = (XH, XHP)
′ ∼ N2(0, P),
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where

P =

 1
√

ρHρHP

√
ρHρHP 1

 .

If we denote Ui = Φ(Xi) for i ∈ {H, HP}, then U = (UH, UHP) ∼ CGa
P . If the

probability that company i will survive by time T is Si(T; β), under the Gauss

copula model, company i survives by time T once Φ(Xi) 6 Si(T; β) or Xi 6

Φ−1(Si(T; β)). Considering (3.8), we could obtain that:

ζi 6
Φ−1(Si(T; β))−√ρiV√

1− ρi
. (3.9)

Thus, conditional on the value of V, the survival probability can be expressed as:

F̄τi|V(T|v) = P

(
ζi 6

Φ−1(Si(T; β))−√ρiV√
1− ρi

∣∣∣∣∣V = v

)
. (3.10)

When we use one-factor Gauss copula model to price the credit risk, it is usually

assumed that ρi equals ρ for all companies. Thus, in this thesis, we apply the

exchangeable Gauss copula model with ρi = ρ.
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BCVA of K-forward

In this section, we mainly focus on calculating BCVA of K-forwards. We as-

sume that a K-forward is written on the Canadian population aged from 50 to 89.

There are two groups of potential traders: JP Morgan and New York Life, and JP

Morgan and Prudential Financial. Gregory (2012) provides a general formula for

BCVA based on the assumption that the default of the institution and the coun-

terparty are independent and that the defaults can’t happen at the same time for

both parties. In this thesis, we will consider the correlation between two parties

and use one-factor Gauss copula mentioned in the previous chapter. Then formula

(1.2) becomes

BCVA = (1− RHP) E

[
F̄τH|V(T|v)

∫ T

0
D(t) · EE+(t) · fτHP|V(t|v)dt

]
−(1− RH) E

[
F̄τHP|V(T|v)

∫ T

0
D(t) · EE−(t) · fτH|V(t|v)dt

]
. (4.1)

37



38 Chapter 4: BCVA of K-forward

From (3.10) we know that for i ∈ {H, HP},

F̄τi|V(t|v) = Φ

(
Φ−1(Si(t; β))−√ρv√

1− ρ

)
,

and thus

fτi|V(t|v) = −φ

(
Φ−1(Si(t; β))−√ρv√

1− ρ

)
S′i(t; β)√

1− ρ φ(Φ−1((Si(t; β)))
(4.2)

where Φ(·) and φ(·) are the cdf and pdf of the standard normal distribution and

Si(·; β) is the survival probability for company i.

4.1 Expected risk exposures EE+ and EE−

In this section, we give the closed-form formulas for EE+(t) and EE−(t). From

the LLCBD model (2.3), we have

κT = κt + ∆κt+1 + ∆κt+2 + · · ·+ ∆κT

= κt + (Ct + ξt+1) + (Ct+1 + ξt+2) + · · ·+ (CT−1 + ξT)

= κt + (Ct + Ct+1 + · · ·+ CT−1) + (ξt+1 + ξt+2 + · · ·+ ξT)

= κt + (T − t)Ct + υt+1 + (υt+1 + υt+2) + · · ·+ (υt+1 + υt+2 + · · ·+ υT−1)

+(ξt+1 + ξt+2 + · · ·+ ξT).
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So

E(t) = E [κ̃T − κT|κt, Ct] = κ̃T −E [κT|κt, Ct] = κ̃T − κt − (T − t)Ct

= −
t

∑
j=1

[
(T − j)υj + ξ j

]
∼ N

(
0, σ2

t

)
,

where σ2
t = tσ2

ξ + σ2
υ [(T − 1)T(2T − 1)− (T − t− 1)(T − t)(2T − 2t− 1)] /6 and

we use the fact that κ̃T = κ0 + T · C0. So E[E(t)] = 0, which implies EE+(t) =

E[max(E(t), 0)] = −E[min(E(t), 0)] = EE−(t). Also,

EE+(t) =
∫ ∞

0

x
σt
√

2π
exp

{
− x2

2σ2
t

}
dx =

σt√
2π

. (4.3)

4.2 Numeric Results

The detailed simulation procedure is shown in the following:

Step 1: Set the correlation ρ.

Step 2: Simulate 1,000,000 v′s from N(0, 1).

Step 3: Calculate BCVA in (4.1) for each simulated v in Step 2 and calculate the

average.

Step 4: Change the value of ρ, repeat Steps 1-3 to obtain the average BCVA for

different ρ.

The numeric results of BCVA on K-forward is illustrated in Tables 4.1-4.3. In

this case, we assume that ρ = 0, 0.5, 0.95 respectively and all results are measured

in basis points (bpts):
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Table 4.1: BCVA (in bpts) of K-forwards when R = 0.37 and ρ = 0

T = 15 T = 20 T = 25

K1 K2 K1 K2 K1 K2

JPM-NYL -0.23 -0.01 -12.28 -0.22 -18.46 -0.34
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

JPM-PF -15.31 -0.22 -25.67 -0.41 -30.40 -0.50
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 4.2: BCVA (in bpts) of K-forwards when R = 0.37 and ρ = 0.5

T = 15 T = 20 T = 25

K1 K2 K1 K2 K1 K2

JPM-NYL -0.28 -0.01 -11.00 -0.20 -16.57 -0.30
(4.62e−8) (1.11e−9) (1.32e−6) (2.38e−8) (1.95e−6) (3.61e−8)

JPM-PF -15.60 -0.23 -24.43 -0.39 -28.43 -0.47
(2.28e−6) (3.20e−8) (2.86e−6) (4.50e−8) (3.21e−6) (5.35e−8)

Table 4.3: BCVA (in bpts) of K-forwards when R = 0.37 and ρ = 0.95

T = 15 T = 20 T = 25

K1 K2 K1 K2 K1 K2

JPM-NYL -0.34 -0.01 -8.78 -0.16 -12.57 -0.23
(1.91e−7) (3.72e−9) (3.84e−6) (6.88e−8) (5.61e−6) (1.05e−7)

JPM-PF -15.86 -0.25 -21.00 -0.35 -22.74 -0.39
(7.2e−6) (1.16e−7) (8.51e−6) (1.44e−7) (9.64e−6) (1.71e−7)

According to results of BCVA in Tables 4.1–4.3, the most important difference

between BCVA and CVA is that the sign in front of the counterparty credit risk

valuation. When we use Canadian male aged from 50 to 89 as our reference pop-

ulation, for both of K1-forward and K2-forward, BCVA is negative for hedgers,

whereas CVA must be non-negative. It indicates that the default risk valuation of
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hedger is larger than the default valuation of hedge provider when they have the

same recovery rate. Thus it is meaningful to calculate the BCVA when investors

want to evaluate the credit risk of financial derivatives.

When we take an insight of the BCVA, we find that the absolute value of BCVA

in K1-forward is obviously larger than the absolute value of BCVA in K2-forward.

For example, in Table 4.2, when maturity is 25 years, the BCVA is −16.57 basis

points for K1-forward, and −0.3 basis points for K2-forward. One reasonable ex-

planation for this situation is that κ(1) contains more influence on the longevity

risk than κ(2) contains. From definition of mortality indexes, κ(1) effects mortality

rate at whole age, while κ(2) is the slope of the logit-transformed mortality curve

and only influence mortality rate at certain ages. Also from Figure 2.1, we could

observe that the fluctuation in κ(1) is larger than the fluctuation in κ(2). Therefore,

κ(1) contains main longevity risk along with time.

Another finding in the BCVA is that hedger’s and hedge provider’s relative

credit rating has significant influence on BCVA. For these three potential partici-

pants of K-forward, both JP Morgan and New York Life lie in the A-rating credit

class, while Prudential Financial is in B-rating credit class. In Table 4.1 - 4.3, given

the same maturity, correlation and type of K-forward, the absolute value of BCVA

is larger for the group of JP Morgan and Prudential Financial than that for the

group of JP Morgan and New York Life. It reflects the fact that investor in lower

credit rating is more likely to default and therefore the value of default risk is also

higher. In this thesis, both of New York Life’s default valuation and Prudential

Financial’s valuation are higher than JP Morgan’s, but Prudential Financial lies in
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a lower credit rating class than New York Life and decrease BCVA further. That

is the reason why BCVA for the group of JP Morgan and Prudential Financial is

lower.

Additionally, in this thesis, we incorporate the correlation of two traders into

the BCVA calculation. According to the sensitive test on ρ, we could find that the

correlation could influence the BCVA value. In short term, the BCVA decreases

as the correlation between two investors increases. However, when it comes to

long term, the rise in the correlation increases the BCVA. For instance, given that

maturity is 25 years and participants are JP Morgan and New York Life, if we

increase ρ from 0 to 0.5, the BCVA increase 10.24% for K1-forward and 11.76%

forK2-forward. Given the same condition, if we increase ρ from 0.5 to 0.95, the

BCVA increase 24.14% for K1-forward and 23.33% for K2-forward. The changes on

BCVA are evident. As a result, it is meaningful to consider the correlation when

we evaluate the counterparty credit risk.
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Concluding remarks and future study

5.1 Thesis summary

In this thesis, we propose a baseline framework to calculate BCVA in K-forward.

We use LLCBD mortality model to obtain the mortality indexes. LLCBD mortal-

ity model provides better estimations than the original two-factor CBD mortality

model. Relying on the mortality model, future risk exposures can be estimated.

Then, we consider the default probability of each potential traders. After com-

paring the structural model and the reduced-form model, we decide to use the

reduced-form model to construct the marginal risk-neutral default probability. The

optimized parameters for hazard rate are calibrated by matching bond’s market

price with its ”dirty price” and minimizing the average absolute error. In the calcu-

lation process of BCVA, there are two participants in the transaction of K-forwards.

In real financial market, the performance of one company may influence that of the

other. To include such effect, we select copula to include the correlation effect into

43
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the general BCVA model. For simplicity, one-factor Gaussian copula is applied to

obtain the joint default probability.

The main contributions of this thesis are summarized as follows.

(1) We propose a general method which to price BCVA for longevity-linked se-

curity. Unlike the UCVA in many literatures, this method reflects the bilateral

nature of the counterparty risk. It makes the valuation more reasonable and

accurate, because it is almost impossible to suppose that hedger will never

bankruptcy. Moreover, according to the empirical results, the value of BCVA

is significantly different from 0 in long term. It indicates that it is meaning-

ful to calculate BCVA for the valuation of counterparty risk, especially for

long-term financial derivatives.

(2) We compare two different mortality models. Considering the reference pop-

ulation, we choose LLCBD model which includes the stochastic nature of the

drift and performs better in the forecasting process. Thus, we are able to

obtain more reliable risk exposures.

(3) We use copula to describe the default correlation between two participants.

This is different from previous literatures which usually assume that there

is no correlation between the defaults of the two traders. However, this as-

sumption is not realistic when we consider the real financial market. After

applying one-factor Gauss copula to BCVA computation, we are able to ob-

serve the default correlation effect on BCVA. This method is more realistic

and applies to more general situations.
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(4) Based on the empirical results, we find that the default correlation, the rela-

tive credit rating, maturity years and type of K-forward do have influence on

the value of BCVA. Knowing the influential factors of BCVA could help us to

precisely evaluate counterparty risk.

5.2 Future Research

In this paper, we set the recovery rate as a constant number. However, in finan-

cial market, the recovery rate is random and could be influenced by the company’s

performance. When we set a constant recovery rate, we ignore the possible recov-

ery risk and reduce the accuracy of BCVA. In the future, we could find another

model which could take into account random recovery risk in the price of coun-

terparty risk. On simple way is to use a piecewise random recovery rate which

depends on default severity. Or it is better to include a continuous random recov-

ery rate. Additionally, in this thesis, we only applied the reduced-form model to

get the default probability. In the next step, we could also calculate the default

probability via a structural model and compare the results. Then, it is possible

to figure out if there exists severe model risk in the methodology of pricing the

counterparty risks.

Another issue which need further study is correlation ρ. Although we consider

the dependency on the defaults of two traders, we set the correlation arbitrarily.

It is necessary to find a proper correlation coefficient to describe the dependency

between two parties of K-forward at time t. One possible solution is to use asset

correlation to replace the default correlation. Or we could try to find a set of first-
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to-default swap which contains the target institutions and use the market price to

deduce ρ for the potential traders.
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