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Abstract

A system described as ‘re-entrant’ displays sequential magnetic phase tran-
sitions with a paramagnetic to ferromagnetic transition followed by a fer-
romagnetic to spin glass transition at lower temperatures. The zero field
susceptibility for such a sample characteristically displays a sharp rise in the
susceptibility as the paramagnetic to ferromagnetic transition is approached
from above, which is followed by a plateau as the temperature is decreased,
and finally a sharp drop in the susceptibility, which is often taken as marking
the re-entrant phase boundary. As part of a detailed study of the ‘re-entrant’
amorphous alloys (Fe;—,Mn,)75P16BsAls with z = 0.235, 0.26, 0.30, 0.32 and
0.41, the power law predictions of the scaling theory were used to analyze
the field and temperature dependent a.c. susceptibility in the vicinity of the
paramagnetic to ferromagnetic transition; critical temperatures were deter-
mined, along with the critical exponents §, v and the cross-over exponent,
v + B, which were found to have values consistent with the Heisenberg mod-
el predictions, with the influence of bond disorder evident away from the
critical point. The lower candidate transition was investigated using both
non-linear analysis (based on a mean field Ising model prediction that the
coefficient of the leading field-dependent contribution to the susceptibility,
a3(T), should diverge as the freezing temperature, T}, is approached from
below) and the interpretation of the low temperature features in terms of the

Gabay-Toulouse (GT) and d’Almeida-Thouless (AT) lines predicted by the

il



mean field vector model. Both procedures failed to confirm the presence of
a lower phase transition for the z = 0.235 and 0.26 samples, implying that
the features observed in the zero field susceptibility must be a manifesta-
tion of other mechanisms, possibly thermally activated blocking processes.
Likewise, the GT and AT analysis was unable to confirm the existence of a
low temperature phase transition for the z = 0.30 and 0.32 samples; how-
ever, non-linear analysis, which is believed to be a more powerful technique
at this time, revealed a distinct, but clearly non-divergent anomaly in the
az(T') versus temperature plots for the latter two concentrations, providing
strong evidence, when considered along with previous neutron depolarization
studies, that these two samples are indeed re-entrant. A modified magnetic

phase diagram will be presented incorporating these new results.

i1
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Chapter 1

Introduction

The study of critical phenomena has provided insight into the behaviour of
many physical systems in the vicinity of their phase transitions. Theories
describing the properties of materials as they change from one equilibrium
state to another have been developed to include liquid-gas, superconductor-
normal, ferroelectric and magnetic transitions, amongst a host of others.

Of specific interest here are magnetic transitions, where the term ‘critical
phenomena’ is applied to the thermodynamic behaviour of a system near its
critical temperature undergoing a second order phase transition, or in some
instances, a first order phase transition !. The study of critical phenomena

has developed along two distinct branches, the first of which attempts to

In Ehrenfest’s classification scheme, the presence of a phase transition is characterized
by a discontinuity in the n** derivative of the Gibbs function, G where the order of the
transition is taken to equal the smallest value of n for which the discontinuity appears.
The transition from the paramagnetic to the ferromagnetic state represents a second order
phase transition, in this sense, whereas the transition from the ferromagnetic to the antifer-
romagnetic state as in, for example, the rare earth intermetallic compound Ce(Fey_M.)
(Al et al, 1992), where M is a transition metal substituted for Fe, represents a first order
phase transition. ’



develop models describing in detail the interactions between magnetic mo-

ments. Using this approach, critical exponents describing the behaviour of

thermodynamic properties of the system near its phase transition can be
calculated. The appeal of using these critical exponents lies in the strik-
ing similarities that often exist between them for many physical systems,
be they fluid, superconducting or magnetic, even though the systems may
have interaction mechanisms/ranges or critical temperatures which are quite
different.

This universality is investigated by a concept introduced in the mid
1960’s, known as the static scaling hypothesis, which encompasses the sec-
ond branch of the study of critical phenomena by exploring the relationship
between the critical exponents rather than the exponents themselves. Since
this aspect of the theory is model independent, its results can be applied to
magnetic and non-magnetic systems alike. Furthermore, this hypothesis, also
referred to as the homogeneous function approach provides valuable insights
into possible forms for the magnetic equation of state.

In recent years, systems displaying ‘re-entrant’ behaviour, i.e., having se-
quential phase transitions, have received considerable attention. This type
of behaviour occurs in a sample, which over some composition range is para- .
magnetic (PM) at high temperatures, becomes ferromagnetic (FM) at T, as
the temperature is lowered (obeying the well established scaling relations

described in Section 2.4), and then ‘re-enters’ a (transverse) spin glass (SG)



phase at a freezing temperature, T}, as the temperature continues to be de-
creased. The magnetic disorder in such systems, which is responsible for
this type of behaviour, is characterized by the ratio, 5, between the first and
second moments of the exchange bond distribution, i.e. the mean, J, and
width, J, which is used to model site disorder, thus n = jo/j According to
the Sherrington-Kirkpatrick (SK) model, sequential phase transitions such
as those just described occur for 1 < 5 < 1.5, pure spin glass behaviour oc-
curs for 7 < 1, and a single pafamagnetic to ferromagnetic (PM-FM) phase
transition takes place for n > 1.5. For alloys, 7 is often correlated to the
magnetic impurity concentration.

The PM-FM transition is well understood; however, the nature of the
potential FM-SG transition is the subject of on-going experimental and the-
oretical investigation and debate, as no universally agreed upon theory de-
scribing the characteristics of these interesting and unusual materials and the
nature of their ground states has yet been found, although a number of the-
ories have been proposed. An extension of the Sherrington and Kirkpatrick
model (Sherrington et al, 1975), namely the vector spin models discussed
in Chapter 2, suggest that the lower transition involves a transverse spin
glass phase coexisting with longitudinal ferromagnetic order at a tempera-
ture, Tor (Gabay et al, 1981), followed by a cross-over from weak to strong
irreversibility at an even lower temperature, T4r (de Almeida et al, 1978).

This type of behaviour was first proposed for AuFe (Coles et al, 1978),



probably first confirmed in PdFeMn (II Kunkel et al, 1988; Verbeck et al,
1978) and also observed in amorphous systems such as FeZr (Ma et al, 1991;
Ryan et al, 1987; Kaul, 1987; Rhyne et al, 1988). Re-entrant behaviour is
also believed to occur in systems with competing ferromagnetic and antifer-
romagnetic interactions (Mirebeau et al, 1990; Manheimer et al, 1983), such
as those in (Fe;—;Mn,)75P16BsAls (henceforth referred to as EMn). There is
a great deal of motivation for considering the amorphous form of FeMn with
some of the major reasons beiﬁg as follows: (Salamon et al, 1980; Yeshurun
et al, 1981)

(1) Amorphous systems are not subject to the compositional inhomo-
geneities, due to metallurgical constraints, often occurring in crystalline ma-
terials which can result in a magnetic response that ‘mimics’ that observed in
true re-entrants systems, eg. NiMn (Kunkel et al, 1991). By manufacturing
the samples using the melt spinning technique, which will be discussed in
Chapter 4, the liquid state of the material is quenched in, thus preventing
clustering or crystallization.

(i1) The samples can be prepared for any value of z without deviating
from the amorphous phase in which the alloy exists.

(iii) Crystal-field and magnetocrystalline anisotropy effects are random
in amorphous materials, and lattice imperfections or grain boundaries along
which magnetic ions can precipitate, or domain wall pinning could occur, are

absent.



(iv) Furthermore, it is believed by some researchers (Salamon et al, 1980;
Yeshurun et al, 1981) that FeMn provides a physical realization of the bond-
random model for a quenched magnetic system since the local moments of
Fe and Mn have nearly the same spin.

The first three points listed above apply to any amorphous system, where-
as (iv) may or may not be true for other materials, depending upon their
composition.

Some discrepancies exist afnong the results published in the literature
on the FeMn system, especially concerning the details of the supposed ‘re-
entrant’ spin glass phase. It is the purpose of this work to examine, in greater
detail than has been done before, the nature of the ferromagnetic-spin glass
‘transition’, and attempt to determine whether or not FeMn is re-entrant
over some composition range or whether the behaviour observed is due to
other mechanisms, such as a temperature dependent magnetic coercivity.

The next chapter will include a summary of relevant background material,
which will be followed by a review of previous experimental results in Chapter
3. Chapter 4 will provide a description of the experimental apparatus, as
well as details about the different types of measurements performed. The
data and analysis is presented in Chapter 5, along with a discussion and a.
comparison to the previous results reviewed in Chapter 3. Chapter 6 states
the conclusions that can be made based on the present work on the FeMn

system and the discussion presented in Chapter 5.



Chapter 2

Background

2.1 Magnetic Ordering

2.1.1 Ferro- and Antiferromagnetic Systems

The magnetic moments in materials, when not aligned/ordered in any reg-
ular fashion are said to exhibit paramagnetic behaviour, with the simplest
theories of paramagnetism neglecting any interactions between the magnetic
moments. However, there exist also substances exhibiting long range order,
such as ferromagnets and antiferromagnets; the models describing the latter
behaviour must take into account the coupling between moments to correctly
describe the properties of these materials.

Ferromagnets are characterized by a ground state in which the electron-
ic moments are aligned parallel to each other below a certain critical tem-
perature, T, whereas in antiferromagnets the moments are arranged in an
antiparallel fashion, resulting in zero net magnetization. Above their critical

temperatures, thermal agitation causes these materials to assume a disor-



dered (paramagnetic) state, with the ordered state reappearing when the

temperature drops below T, again.

{b)
(3) Ferromagnet Paramagnet
<M.>:%Z<mi>¢ 0 ':"‘j’: 0 ,.‘"‘k’=° <M>= 0
<m>7 0 <m>¥0 il -~ { ‘)
g oy Lsendeg T G :
<pMl>z ﬁ_;‘"‘i’ ¥0 <=0 <M’>=y
i (.
NE =)
-~ "Nt
(¢} Spin Glass
<M>z 0
\<mj>zo
5 K <m0
]
<M'>% 0
<ml>$ 0
T

Figure 2.1: An illustration of the difference between (a) a ferromagnet below
T. (b) a paramagnet and (c) a spin glass below Ty,; the choice of the order
parameter ¢ =< M? > for the latter is made apparent. (Williams, 1991)

2.1.2 Spin Glass Systems

In the early 1970’s, a totally new type of ordering, unlike any other encoun-
tered before was discovered by Cannella and Mydosh (Cannella et al, 1972)
in polycrystalline AuFe (in which a fraction of the (non-magnetic) Au sites
are replaced substitutionally by moment bearing Fe atoms, so that the ‘spins’

(i-e. Fe atoms) in the system are distributed at random over the lattice sites).



The long range order present in ferromagnets and antiferromagnets is absent
in these systems; however, they display a ‘freezing transition’ from a param-
agnetic state in which the spins (moments) are randomly oriented and free
to change their direction to one where the spins are randomly arranged but

frozen, as illustrated in Figure 2.1(c).

Although the debate as to whether this magnetic structure represents a
genuinely new phase or simply consists of a non-equilibrium state has not
yet been completely resolved, fhere exists strong experimental evidence in
some systems to support the case for a phase transition. This includes the
divergence of the non-linear field dependent susceptibility at a temperature
T,q, in addition to the observation of a sharp peak (cusp) in the zero field ac
susceptibility. This is the main point of contention in this area of magnetism,
and if a phase transition indeed exists, additional questions then arise as to
the nature of the order parameter. This topic, and the related theories will

be further discussed in Section 2.3.4

2.2 Critical-Point Exponents

Before examining the various theories that attempt to describe the detailed
behaviour of materials in the vicinity of a phase transition, it would be useful -
to first examine the so-called critical-point exponents which characterize the
functional (power-law) behaviour of quantities such as the magnetization

and susceptibility in the critical region. This requires selecting a quantity,



known as the order parameter, which is non-zero only in the ordered state
of the material. For ferromagnetic systems, this requirement is fulfilled by
the magnetization, M which is a measure of the degree of alignment of the

magnetic moments in a sample.

2.2.1 Critical-Point Exponent Definition .

In order to understand more clearly the behaviour of the various quantities in
question, it would be useful to depict the relationship between the magnetic
field, H, the magnetization, M and the temperature, T. The diagrams in
Figure 2.2 are analogous to the familiar PpT diagrams describing the liquid-
gas transition, with H being equivalent to pressure, and M to density. (As
H increases in a ferromagnetic material, the magnetization increases, just
like the density of a gas rises as the pressure is increased.)

The relationships in Figure 2.2 may be combined into one three-dimensional
diagram as illustrated in Figure 2.3, displaying simultaneously the connection
between the magnetic field, the magnetization, and the temperature.

To understand the principles behind critical exponents, consider firstly a

general function,

f(z) = Az*(1 + Bzb 4 -..) (2.1)

representing a state function such as the magnetization or the susceptibility
near the transition point, where z is taken to be the appropriate state pa-

rameter. These include H, the applied field and ¢, the reduced temperature,



No stable
(a) states in
this region

M
/T<TC
My(T) T=T,
(b) K T,

~M(T)

PHr -7
© H=0 = \‘,
sl 7

Figure 2.2: (a) Projection of the HMT surface onto the MT plane. (b)
Isothermal cross-sections of the HMT surface. (c) Projection of the HMT
surface onto the HT plane. (Stanley, 1971) .
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Figure 2.3: Surface representing the equation of state for a magnetic system
undergoing a second-order phase transition at zero field (H = 0). The surface
is symmetric under the reversal M — —M, the lower half is not shown.
(Huang, 1987)
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given by

T-T,

= (2.2)

t=

For convenience, x = ¢t will be used for the ensuing discussion, although the
following comments are equally valid for z = H.

The critical-point exponents, ‘A’ are then defined according to

/\.-—':limlif—(—t-2

t—0t Int ’

(2.3)

providing f(t) is positive and continuous in the vicinity of small t. In the

'limit t — 0, f(t) simplifies to
ft) = At® - (24)
which yields, following (2.3) that
A=a. (2.5)

It is important to realize at this point that the critical exponent for ¢ > 0
may not necessarily equal the critical exponent for ¢ < 0, which will be
henceforth denoted as A’. However, according to many models the primed
and unprimed exponents are equal, and are therefore often written in the
unprimed form. In the event that A = 0, the behaviour of f(t) is not uniquely
characterized, and may possess a logarithmic divergence as can be seen when
considering
iy

. In(lnt) . g7 .. _
tl—l.lg}f Int _tllgl : —tl—lfgl Int =0. (26




However, f(t) with A = 0 may equally well vary continuously through T, or
represent a finite discontinuity or cusp (eg. f(¢) ~ A — Bt?) at the critical

temperature.

2.2.2 Critical-Point Exponents, o, 3,7 and 6

Referring to the above equations and Figures 2.2 and 2.3, the exponents
describing the static behaviour of a magnetic system can now be defined.
There exist a great number of these describing the various aspects of critical
behaviour; however, only the four most common exponents will be considered

here.

Zero-Field Magnetization Exponent,

The first of these is the zero-field magnetization exponent, 3, which describes

the spontaneous magnetization of the system, namely
Mo(T)/Mo(0) = B(=t)°(1 +--+), (2.7)

where M,(T') represents the magnetization of a single-domain ferromagnet
in zero applied field near the transition temperature. M,(0) is incorporated
into the above equation so that the proportionality constant B changes only
‘slightly between systems. The zero-field magnetization, or order parameter

exponent, § can then be expressed as

8= lim In M

=0~ In(—1)’ (28)
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Zero-Field Isothermal Susceptibility Exponents v and v’

Similarly, by studying Figure 2.2 (b) it can be deduced that the susceptibility

at constant temperature,

can be expressed as

C(=t)™"(1 +--) [T <T., H =0

R T>T. H=0 (210)

with x% denoting the susceptibility of a paramagnetic system (i.e. non -
interacting moments). Furthermore, it is important to note that even though
x diverges in the limit ' — T, the critical-point exponents describing the
transition approached from below or above, 4’ and v respectively, are not
necessarily the same. (The minus sign in front of the latter two exponents

in (2.10) insures that both 4" and v > 0.)
Critical Isotherm Exponent, §
Referring to Figure 2.2 (b) once again, a third critical-point exponent can be

defined according to
5

H . |My(T=T)
=P MT=0) @11

where H? = kT./m, with m, representing the magnetic moment per spin.

As can be seen, § characterizes the curvature of the critical isotherm.
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Constant-Field Specific Heat Exponents, o and o

For magnetic systems, the expression for the specific heat is very similar to

that for the susceptibility, and is given by

_[ A0+ [T<T, H=0]
Cn = { At'—a(l + - .) [T > Tc, H= 0] (212)

The behaviour predicted by simple models for the specific heat is often un-
physical even though f, v and § may be approximately correct. Thus the
comparison between the experimental and predicted values for the two expo-
nents in (2.12) plays a particularly significant role in determining the validity

of a new theory.

Overview

For temperatures sufficiently close to T, the correction terms in the above
equations become negligible, giving the set of expressions listed in Table 2.1.
At this point it would not be unjustified to ask why so much effort has
been put into finding relationships that characterize the behaviour of a sub-
stance only near a phase transition instead of trying to find general formulae
that describe the material’s properties at all temperatures. There are sev-
eral reasons for this, the first of which is that near a transition point, the
first term in a power series expansion in field or temperature of a function
describing say the magnetization, susceptibility or other response function
would be dominant. The corresponding exponent is relatively easy to com-

pute, as will be shown below, and therefore at least some information about
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the functional form of the quantity in question can be deduced. Furthermore,
the value of the critical-point exponents will provide insight into the nature
of the magnetic order of the system.

Secondly, relationships arising from fundamental thermodynamic and
statistical mechanical concepts exist between the critical exponents that are
independent of the system being considered, be it magnetic; fluid or other-
wise. Finally, striking similarities often exist between the critical exponents
for many physical systems, be tiley fluid, superconducting or magnetic, even
though the systems may have interaction mechanisms/ranges or critical tem-
peratures which are quite different.

Some of the more common inequalities between the critical-point expo-
nents introduced above are listed in Table 2.2. The inequalities often appear
as equalities, thereby being consistent with the predictions of scaling theory
(as will be shown in Section 2.4); however rigorous proofs exist only for the

inequalities (Stanley, 1971, Chapter 4).

2.3 Theories of Magnetic Ordering

Within the last century many models have been proposed, attempting to un-
derstand the behaviour of magnetic materials. The main difference between
the various theories lies in how they describe the interactions between the

magnetic moments.
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Table 2.1: Critical-point exponent definitions for magnetic systems

Exponent Definition

Conditions

Quantity

M ~ (—t)P H =0, M #0 | zero-field magnetization
xr ~t H=0, M#0 zero-field isothermal
susceptibility
xr ~t7 H=0, M=0 zero-field isothermal
susceptibility
M ~ H'/® H#0, M#0 critical isotherm
Cu ~ (=)~ H =0, M =0 | specific heat at constant
magnetic field
Cy~t™ H =0, M =0 | specific heat at constant

magnetic field
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Table 2.2: Exponent Inequalities

Rushbrooke o +28+4" 22
Griffiths o +B(6+1) > 2
Griffiths | 4(6+1) > (2= ¢&/)(6 - 1)
Widom v 2 B(6-1)

Fisher 2=7)v >~
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2.3.1 Classical Mean Field Theory

The classical mean field or Weiss theory (Weiss, 1907) successfully accounts
for such properties of ferromagnetism as the field and temperature depen-
dent spontaneous magnetization and magnetic susceptibility. However, it
provides little insight into the details of the interactions between the mag-
netic moments. The fundamental hypothesis of this model states that these
interactions generate an effective internal molecular field, Hy,, proportional

to the average magnetization, namely
H, =M, (2.13)

with the proportionality constant, A being referred to as the molecular field
constant. Statistically, this is equivalent to assuming that each of the mo-
ments (spins) responds to the field independently (White, 1970). Neglecting
the dipole-dipole and demagnetization fields, which are usually much smaller

than the molecular field, the effective field is of the form
Hep=H, + \M(T,H), (2.14)

where H, is the applied field.
To obtain an estimate of the magnitude of H,,, assume a not untypical
Curie temperature on the order of 10° K (7.(iron) = 1043 K). In this case

atoms with a dipole moment of one Bohr magneton would have an internal

magnetic field of approximately
upH, =~ kT,
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H, =~ 1070e.

This is much larger than the majority of fields capable of being generated in
the laboratory, thereby giving an indication of the strength of the coupling
between moments in a ferromagnet. |
The Hamiltonian for an N atom system in the mean field theory is then
given by
N
H=—gup ) J; -Heyy. (2.15)

=1

where J; is the total angular momentum of the i** atom, and
J, H=m;H (mi=-J,-J+1,...,0,...,J = 1,J). (2.16)
Using the above equation, the partition function, Z, defined to be
Z = Z e~ Ei/kT (2.17)
is related to the Gibbs free energy by
G(T,H)=-kTIn Z. (2.18)

Using the following thermodynamic relationship

oG
M(T,H)=- (-5]7>T, (2.19) |
the magnetization can be expressed as
O0lnZ
M(T,H) = NkTaHejf (2.20)
= M,By|(gusJ/KT)(H + \M(T, H))l,  (2.21)
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where M, represents the maximum magnetization,
M, =M(T=0,H=0)=NJgup (2.22)

and Bj(z) is the Brillouin function, defined as

_2J+1 2J +1 1 1
B;(z) = 57 coth ( 57 x) ~ 57 coth (2—jm) (2.23)
with
z=gupHess/kT. (2.24)

Due to the appearance of M = M(T, H) on both sides of (2.21), computer
or graphical techniques are required to determine the spontaneous magneti-

zation at a given temperature.

T>T, T=T, kT
T ¢ ) NAg2up?J?
M(T) / / T<T:
M©)
1 —BJ(x)
P
8] —

Figure 2.4: Illustration of a graphical method for the determination of the
spontaneous (H = 0) magnetization at a temperature T. (Morrish, 1965)
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In the above diagram T, represents the ferromagnetic Curie temperature.
Notice that M = 0 is the only solution above T, whereas for T < T, M # 0
is also permitted, indicating that below the critical temperature spontaneous
magnetization exists in a ferromagnet. Obviously, during the transition to
the paramagnetic state, occurring at T' = T, the magnetization disappears.

Note that when ¢ < 1, i.e. when the magnetization is smeﬂ], the Brillouin

function becomes

J+1$_J+l-2J2+2J+1 3

By(z) =
s(2) = =53 37 3002 © ’

(2.25)

and in the limit 2 — 0, the slope of the Brillouin function approaches (J +
1)/(3J). Comparing the latter to the slope of the straight line, kT /N Ag?u% J*
evaluated at T' = T, provides a connection between the Curie temperature

and the molecular field constant, namely,

_ Ny (J+1)
3k

T. A=C), (2.26)

where C' is known as the Curie constant. From the above expression it can be
seen that as the molecular field constant approaches zero, T, also decreases,
which is reasonable since A = 0 represents a (non-interacting) paramagnetic
system that does not have a critical temperature. Conversely, increasing A .
increases the Curie temperature, since a larger value for the molecular field
constant indicates stronger ferromagnetic coupling, which requires greater

thermal agitation to destroy.
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Mean Field Theory Critical Exponents

The critical point exponents predicted by this model can be found relatively
easily using the derived expression for the magnetization, (2.21), as will now
be demonstrated. |
Magnetization Ezponent,

Since the region of interest is at temperatures near the critical tempera-
ture where the magnetization approaches zero, the small argument expansion
of the Brillouin function (2.25) can be used. Taking H, = 0, and inserting

the latter into the expression for the magnetization (2.21) yields

_ J+1 2J2+2J4+1 , J+1>
M= (Mge) - S (M)
J+1 3J2+(J+1)? J+1 1\
(M" 37 ”’)'Iﬁ (J + 1)2M?2 (M" 37 “’) +ooo (227)

where z = (gupJ/kT)(AM), and combining with (2.26) gives upon solving

for M/M, )
M [0 (J+12 1*/T o
E - [3‘ J? + (J+ 1)2] (i) (_t) / ) (2'28)

where t = % In comparing this result to the expected power law depen-
dence of the magnetization, M ~ (—t)?, it can clearly be seen that g=1/2.
Susceptibility Fzponent, v

In order to find the susceptibility exponent, consider the expression for the
magnetization given above, (2.27) retaining only the first term and inserting
z = 2848 (H, + AM). The resulting expression is

_ NgppJ(J+1)
M= 3kT

(H, + \M), (2.29)
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which becomes

M=

T (2.30)

upon incorporating (2.26). Now differentiating with respect to H, yields

| aM) C ¢1 |
X7 = = = . (2.31)
(3Ha ; T-T. X

In comparing this result to the expected power law dependence, y7 ~ ™7,
it is obvious that ¥ = 1 in the mean field theory.
Critical Isotherm Ezponent, 6

The critical isotherm exponent can be readily determined by evaluating

z at T, namely

_ NgupJ(J +1)

_ Jous :
z(T.) = iT (Ho+ M) ; T, 3% A
1 3J H,
() (5, 23
and substituting into (2.27)
H, 3J2+(J+1)2( H.\?
M~(M+7)—ETﬂZE@-M+jQ. (2.33)
For small applied fields
2 2
A A e RV YV (2.34)

10 (J +1)°M?
and from the expected power law dependence, M ~ H'/? it is apparent that

6=3.
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Mean Field Theory: Advantages and Limitations

The beauty and elegance of the mean field theory lies in its simplicity — a
closed form solution exists and can be found without wading through pages
of laborious calculations. Furthermore, it fulfils the most fundamental re-
quirement for a proposed theory of magnetic ordering, namely, it predicts a
phase transition. Despite the fact that its predictions are not in quantitative
agreement with experimentally observed phase transitions, qualitatively the
mean field theory describes almost all available results, in particular when
a mean field solution of the Sherrington-Kirkpatrick model (Section 2.3.4)
is used to incorporate the effects of magnetic site disorder into calculations.
In any event, the latter also provides a convenient starting point for more
realistic, if not improved descriptions of magnetic systems.

However, the MFT fails to incorporate several important features that be-
come especially crucial in the vicinity of a phase transition. Near the critical
point, the MFT assumes that the only significant configuration is one of uni-
form spin density, which may be true at other temperatures, but is certainly
invalid near T,, where experimental evidence indicates that fluctuations in
the spin density become prevalent.

Naturally, omitting such important aspects of the physical system results
in incorrect values for the asymptotic critical point exponents, i.e. exponent
values close to T., where critical fluctuations are largest. (See Table 2.3) The

MFT predicts Mpyrr ~ t1/2 | whereas experimental measurements, such as
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those for PdFe (1.4 at.% Fe in Pd, Wang et al, 1992; Kaul, 1985) indicate
that M ~ 193 in the limit T — T;. Similarly, this theory suggests that
XMFT ~ t71, but the susceptibility of this PdFe alloy obeys x ~ t7139 as
T— T,

The difference between the experimental and theoretical values for 3, 6
and « is perhaps surprisingly small, and it is only in the case of o (the
specific heat exponent) that the agreement between the MFT predictions
and the qualitative behaviour .of actual physical systems is not found. It
can be shown that according to the MFT, the magnetic contribution to the
specific heat in zero field disappears above the Curie temperature; this clearly
contradicts experimental results which indicate the presence of a residual
specific heat above T.. More precisely, Cy ~ In|T — T.| when T' — T, in
contrast to the behaviour illustrated in Figure 2.5.

The discrepancy concerning the specific heat is a direct consequence of
the fact that the MFT disregards the short-range correlation between the
spins, which are present in the majority of physical systems. The next set of
models to be considered incorporate this short range coupling and are able
account for the origin of the ‘unknown’ molecular field proposed by Weiss,
but are considerably more difficult to work with than the mean field theory. -

Nevertheless, despite its limitations, Weiss’ theory (including the con-
cept of domains) is still perhaps the most important theory for a practical

discussion of most types of magnetic behaviour.
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P

7T, 1-0

Figure 2.5: Dependence of Cy for H = 0 upon reduced temperature, T'/T.
Notice that although there is a simple jump discontinuity for all values of J
(i.e. @ = ¢ = 0), the magnitude of the discontinuity depends weakly upon
J. (Stanley, 1971)

2.3.2 Ising and Heisenberg Models

The mean field theory predicts numerical values of the critical-point expo-
nents, but does not provide any understanding about the nature of the molec-
ular field constant, A. Two other prominent models, namely the Heisenberg
and Ising models, which were introduced after the development of quantum
mechanics, attempt to provide a more realistic description of magnetic sys-
tems and also examine the nature of the aforementioned interaction. Both "
of these models propose that the magnetic moments are ‘attached’ to the
lattice and interact via an exchange field whose strength is determined by an

‘exchange coupling constant’, denoted by J;;. (Morrish, 1965)
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The most general Hamiltonian for such a system may be expressed as
(Stanley, 1971)
HD = -5 ;8 . sP) (2.35)
£,
where 8P) is the D-dimensional spin operator, with components obeying
Zf=1 ? =1, where (S, Sia, .. ., Sip) are the Cartesian coordinates of S,(-D).
D =1,2,3 and oo have been studied in detail, but only the two most common
cases, D = 1 and D = 3 will be considered here. The exchange coupling
constant in the above equation is electrostatic in origin and is a consequence
of the necessity that the electrons in an atom be indistinguishable. It is
important to note at this point that J;; is positive for a ferromagnet (parallel
spin arrangement), and negative for antiferromagnets (antiparallel spins).
The exchange coupling constant can also take on a variety of forms to
account for the range of interactions present in materials. Most calculations
within the framework of this model consider only nearest neighbour interac-
tions in order to simplify the situation. However, this is a rather unphysical
assumption and led to the development of the Sherrington-Kirkpatrick model

in which J;; has a Gaussian distribution, as will be discussed in more detail

in Section 2.3.4.

Ising Model

The above named model was proposed by E. Ising in 1925 as part of his Ph.D.

thesis; Ising considered a linear chain (one-dimensional lattice), taking only
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isotropic nearest-neighbor interactions into account, with no external applied
field. The Hamiltonian for such a system takes into consideration only the
z—component of the spin and is given by
H=-JY 5.5, (2.36)
(4,4)
where J couples the spins located at sites 7 and j, and the notation (s, )
indicates that the summation is to be carried out only over the nearest neigh-
bours of atom 3. From the above expression it can be seen that the magnetic
moments in this model can be taken to be classical ‘vectors’ with only two
possible alignments, namely up or down. Moreover, the above equation also
demonstrates that the interactions in this model are short-ranged, in con-
trast to the mean field theory. It is interesting to note that computations,
assuming an isotropic exchange coupling constant extended over all atoms in
the system, reduce to the mean field theory case, as expected (Stanley, 1971,
Sec. 6.5).

Ising’s solution for a one-dimensional system gave no indication of the
phase transition observed in physical systems at any finite temperature. Fur-
thermore, in its ground state at absolute zero all the spins in such a system
would be aligned, but at any non-zero temperature this ordering would be
destroyed and the system would assume a paramagnetic state. In 1952, On-
sager and Yang published the solution to the two-dimensional Ising model
in zero field, perhaps one the greatest triumphs in the theoretical study o_f

critical phenomena. This result accurately predicts a logarithmic divergence
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in the specific heat at T, in contrast to the mean field theory result, but
the critical exponents it yields do not agree with experimental values. No
exact solution has been found for the three-dimensional Ising model, and is

believed by some not to exist.

Heisenberg Model

In the Heisenberg model, the Hamiltonian is taken to equal the scalar product
of the three-dimensional spin operators, multiplied by the exchange coupling
constant. Since this model does not restrict the spins to the (25 + 1) discrete
orientations permitted by quantum mechanics, it is said to be the S — oo, or
classical limit of the quantum-mechanical Heisenberg model. The Heisenberg
Hamiltonian for a lattice of spins is then usually expressed as

H=-J.Y S S; (2.37)

(i.4)

where the exchange coupling constant is taken to be isotropic and non-zero
only for nearest neighbors. Note that for only the products of the spin
operators to be present, it is necessary to assume that the magnetic ions
be sufficiently distant from each other that the electronic overlap be quite
modest. Furthermore, if the magnetic ions have a non-negligible orbital
angular momentum in addition to a spin component, the Hamiltonian may
be a function of both the absolute and relative spin orientations. Whether or
not these, and other additional requirements (Ashcroft et al, 1976, Chapter

32) are satisfied, depends upon the characteristics of the individual substance.
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Approximation Techniques

Technically, a solution of the three-dimensional Heisenberg model Hamiltoni-
an should constitute a superior theory of ferromagnetism, but unfortunately
along with the (3D) Ising model Hamiltonian, none has yet been derived.
Naturally, it would be desirable to find an alternative form of this Hamil-
tonian that can be solved exactly, but efforts to this end have not yet been
successful either. This necessitates the use of approximation techniques to
ascertain the properties of an Ising- or Heisenberg-like system near its phase
transition, including its critical-point exponents and transition temperature.
One prominent scientist states that such attempts have been so effective that
‘one often forgets that they are only approximations’. Moreover, when com-
pared with experimental outcomes, the error in the calculated numbers are
often less than the experimental errors (Stanley, 1971).

However, in order to obtain these results, a tedious and complicated ap-
proach must be taken, known as the series expansion method. The latter
expresses the thermodynamic function in question (eg. the Gibbs function)
in increasing powers of either T' (‘low temperature expansion’) or 1/T (‘high
temperature expansion’). These expansions are not performed about T, but
rather about the zero value of T or 1/T, and since knowledge of their asymp-
totic behaviour is required to achieve the desired results, the calculation of
sufficient terms becomes so laborious that it can only be achieved using graph

theory or computers. Although no rigorous proofs exist that these series are
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in fact convergent, series expansions performed on solvable models (such as
the two-dimensional Ising model) yield results agreeing with the exact values

to within better that 0.01 %.

Ising and Heisenberg Model Limitations

Despite the precise critical exponent values generated by the D = 3 Ising
and Heisenberg Hamiltonians (Table 2.3), these two models are by no means
‘ideal’, and are subject to a variety of restrictions.

Consider firstly the Ising model. Even though the 2— and y—components
of the spin are neglected, it has found practical applications for systems such
as one-component fluids and binary alloys. However, it is important to keep
the aforementioned simplification in mind when evaluating the predictions of
this theory. Moreover, the Ising model is invalid at low temperatures where
the energy of the system depends upon the z— and y— spin components. In
other words, the presence of spin waves is not permitted since the only way
to introduce disorder into the system is to induce an actual spin flip.

In the case of the Heisenberg model, it must be said at this point that in
spite of the more realistic description of a physical system it provides when
compared to the mean field theory, or even the Ising model, it is still not ap- .
plicable to many real materials. This is a consequence of the rather stringent
restrictions this model places on the system, including well-localized spins

and a complete uniformity (isotropy) of the interaction, as well as a variety
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of other constraints ! (Ashcroft et al, 1976, Chapter 32; Morrish, 1965, Sec.
6-3). Moreover, this model also requires the spins to be spatially ordered,
which is certainly not the situation for the amorphous magnetic alloys of
interest in this thesis. Despite these apparent limitations, the Heisenberg
Hamiltonian has proven to be extremely useful in explaining the asymptotic
experimental results obtained near T,. It appears to be tha,t' in this limit of
a diverging correlation length the observed behaviour is quite insensitive to
the aforementioned restrictions..

The greatest deficiency of the Ising and Heisenberg models, more specifi-
cally their three-dimensional representations, is however that they cannot be
solved exactly and the approximation techniques developed are very tedious
and complicated. This provides sufficient justification for the formulation
of a different approach, namely the Landau theory, which is not only easier
to deal with than the latter two models, but also incorporates important

physical effects not accounted for in the models discussed up to now.

2.3.3 Landau Theory

With his theory, Landau attempted to provide a more realistic equation of
state for a magnetic system than suggested by the ‘classical theories’ available
at the time, which included the mean field theory discussed above. Landau’s

theory utilizes similar concepts to the aforementioned theory and derives the

10ther details neglected in both the Ising and Heisenberg model include crystalline
anisotropy terms which are of course present in any real material.
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same critical exponents, but it also incorporates the concept of ‘fluctuations’,
which strongly influences the behaviour of thermodynamic functions in the
vicinity of a phase transition. Thus, the Landau theory has great heuristic
usefulness even though it is quantitatively incorrect.

In essence, this theory suggests that the Helmholtz free energy, F ‘of a

magnetic system can be represented by the Taylor series, (Stanley, 1971)
F(T,M)= F,(T)+ F(T)M? + F(T)M* + ... (2.38)

near the transition temperature, as here the magnetization, M, is small.
Moreover, the temperature dependent coefficients in the above equation can

also be expanded in power series, namely,
FiT) =3 (T —T)" = fio+ fn(T =Ty +---. (2.39)
k=0

Note that there are no odd terms in the expression for F(T, M), as the free
energy must remain unaffected if the sign of M is reversed.

Recalling that the magnetic field, H can be written as

H= (%)T (2.40)

yields

H(M,T) = Y jF,(T)M = 2F5,()M + 4Fu(T)MP+ -, (241)

the Landau theory equation of state, from which the critical-point exponents

can be determined.
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Landau Theory Critical-Point Exponents

Magnetization Ezponent, 3
The magnetization exponent, 3 can easily be found from the equation of

state, (2.41) by setting H = 0, and taking M to be small, which gives
0={fa(T-T)+ -} +2M{fao+ fun(T—-T)+---}+---. (242)

Solving for M yields

fa \"?
M= (%) (T. — T)'?, (2.43)

which upon comparing to M ~ (—t)? indicates that 8 = 1/2.
Isothermal Susceptibility Ezponents, v and +'

From the definition of the susceptibility, x, = (0M/0H)r and the ex-
pression for the field, H(M,T) it can be seen that in this theory the inverse

isothermal susceptibility,

OH PF
put U Sbdl =
XT = <8M>T (8M2)T (2.44)

can be written as

K T M) = 35 = V) Fy(T)MI™? = 2Fy(T) + 12F5(T)M? + ---. (2.45)

i=2

At this point it is useful to recall that since the zero-field susceptibility is -

expected to diverge in the limit 7' — T, x7' given by
X7 (T,0) = 2FR(T)
= 2{fao+ (T -T.)+ f(T-T.)* +---}  (246)
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is required to approach zero, which in turn requires that fzo = 0. Also when
T > T., the material is in the paramagnetic phase, and M = 0 when H = 0,

so that x7'(7,0) becomes
x7'(T,0) = 2/ (T — T.). (2.47)

In the magnetically ordered region at temperatures below Tey M # 0 for
H = 0. Returning to (2.45), the inverse zero-field susceptibility can now be

written as
Xt (T, M) = 2{fn(T = To) + -} + 12M*{fao + fua(T = T.) + - -} (2.48)

which becomes

x7 (T, M) = 4fu(T. - T) (2.49)

in combination with (2.43). Comparing the above to equations to yr ~ ¢t
and x7 ~ (—t)™" respectively, it can be seen that in the Landau theory,
v = 4" = 1. However, x7' increases twice as quickly for T < T. than for
T > T, meaning that C' = 2C (Section 2.2.2).
Critical Isotherm Ezponent, §

In order to ascertain the curvature of the critical isotherm, return to the

expression for H(M,T),

H(M,T) = 2F,(T)M + 4Fy(T)M? + - -.
= 2H{fo+ T -T)+ - }M
+4{foo+ faa(T =Ty +-- - }M3 + ... (2.50)
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and let T' = T,. Recalling that fy; = 0 then leads to
H(M,T,) = 4fsoM> + - (2.51)

from which it can be seen, upon comparison with H ~ M? that § = 3.

Landau Theory Limitations

Similar to the mean field theory, the Landau theory provides a simple, solv-
able description of the properties of magnetic materials near their phase
transition. Unfortunately, this theory also predicts the same incorrect criti-
cal point exponents that Weiss’ molecular field theory does, so the discussion
given above concerning the critical indices can also be applied here. In this
case, the fault lies with the initial assumption that the Helmholtz function
can be expanded as a power series about T, - it has since been established
that such a series diverges.

However, the one very important concept that the Landau theory incorpo-
rates, not accounted for in the mean field theory or the Ising and Heisenberg
models is the presence of fluctuations from the equilibrium value in the or-
der parameter, M near the phase transition. Since the discussion presented
here concerns itself only with equilibrium situations (i.e. dynamical effects
are not considered), it would be easy to assume that fluctuations in M be
of little importance. This is indeed the case for temperatures far from T,
but when approaching the critical temperature these fluctuations become so

pronounced that they must be taken into consideration.
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Detailed calculations exist showing how this concept is incorporated by
the Landau theory (Patterson, 1971), which basically amounts to the study

of the behaviour of fluctuations expressed as
M:(r) — (M:(r)), (2.52)

and how the deviation of M, from its average, (M.(r)), at one location
in the material is related to analogous fluctuations in neighbouring regions

(Kadanoff et al, 1967). Mathematically, this behaviour is described by a

correlation function given by

g(r,r') = ({M.(r) — (M(r)) {M.(r') — (M.("))}) (2.53)
which can be evaluated using the free energy of the system.

2.3.4 Spin Glass Theory
Edwards-Anderson Model

As stated in section 2.1.2 of this chapter, evidence for the existence of the
spin glass state was first observed in the dilute alloys of the AuFe system
(Cannella et al, 1972). Shortly thereafter a theory was proposed by Edwards
and Anderson (EA model) (Edwards et al, 1975) to account for the cusp-like
peak in the susceptibility of the latter dilute magnetic alloys. It was suggested
that in such a system the exchange interaction, J., is not constant, but is
instead represented by some distribution. Edwards and Anderson chose a

Gaussian distribution centered at zero, concluding that since the sign of
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Table 2.3: Critical-point exponent values

T<T, T=T. T>T.
Critical Exponents | :
al ﬂl 7/ 6 o ,y
Landau/MFT 0 0.5 1 3 0 1
2-D Ising 0 0.125 1.75 15 0 1.75
3-D Ising 0.66 0.326 1.31 4.78 0.106  1.238
3-D Heisenberg - 0.367 - 4.78 -.121 1.388
Experiment 002 0204 1.01.2] 36 |-03-0.3 1.3-1.4

the interaction (i.e.

sign of J;;) oscillates with the distance between the

interacting spins s; and s; (RKKY interaction — Appendix 1), a ground state

will exist with the spins pointing in well defined, but apparently random

directions, as illustrated in Figure 2.1(c). Upon inspecting any portion of

the material, the ground state therefore results in the local magnetization

(s;) = 0, which means that no ferromagnetic ordering is present, although

the order parameter for a spin glass state is non-zero, as will be discussed

below.
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In introducing the EA model, an analogy is often presented which com-
pares the formation of a spin glass phase to gelation in polymer science. As
the density of long molecules increases in a mixture, a point is eventually
reached where they become so entangled that they can no longer move. Al-
though their positions are random, like the moments in a spin glass, below
its critical temperature they do not change with time and remain at the same
random orientations.

Applying the above situatioﬁ to spin glasses, a logical choice for the order

parameter describing the paramagnetic to spin glass transition is given by
g = (si(ty) - s:(t))  t>1, (2.54)

where si(t,) is the spin at site 7 at time ¢,, and s;(¢) is the same spin at some
later time. At T = 0, ¢ = 1, since at this temperature the spins are frozen in
place with minimal thermal agitation. The order parameter decreases with
increasing temperature until it reaches zero at T' = Ty, the spin glass ordering
temperature. (Recall that the order parameter for a ferromagnetic system
was chosen to be the average magnetization M ~ (s;), which is nonzero only
below T.)

The EA model goes on to hypothesize that upon cooling a spin glass, the
thermal agitation becomes sufficiently reduced below Ty that the presence of
the RKKY coupling between the magnetic ion spins manifests a cusp in the
susceptibility, an indication of spin glass ordering. Application of an external

field suppresses this peak to a broad maximum.
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Sherrington-Kirkpatrick Model

An alternate, more sophisticated theory than that proposed by Edwards and
Anderson was introduced by Sherrington and Kirkpatrick (Sherrington et al,
1975). Assuming that the site disorder, such as that observed in anﬁorphous
alloys can be represented by an exchange bond disorder, they hypothesized
that the Ising model Hamiltonian for such a quenched bond disordered system
is

H= —%;Jijs,-sj ;s =%l (2.55)
with the exchange coupling constant having a Gaussian probability density
given by
(2.56)

1 —(Ji; — Jo)?
p(Ji;) = J\/Q—Wexp[ 972 ]

J, and J, the first and second moments (mean and width) of the above
distribution are scaled according to J, = jo/N and J = J / V/N, so that J,
and J are intensive parameters, independent of the size of the system.

It can be shown (Stanley, 1971) that in the thermodynamic limit (N, the
number of magnetic ions — o), the mean field theory is equivalent to an infi-
nite range interaction model if a site independent exchange coupling constant
(Ji; = J for all i and j) is assumed. The SK model extends this problem to
apply to disordered systems and considers the aforementioned ‘infinite-range’
calculations to arrive at a solution with the EA order parameter (2.54), de-
scribing a spin-glass in the appropriate temperature and composition range.

After a detailed calculation, an expression for the free energy was derived
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along with the following two coupled equations:

1 / A
g=1-— \—/-i--_ﬂ:/e""z/zsech2 [(ka) z4 i;f} dz (2.57)

1 .2 j\/(} Jom
_ 1 [ o-2p IV (.
m \/2_7‘_/6 tanh[(k )z+k ]dz (2.58)

representing the physical quantities,

m = ({si)r)s (2.59)

g = {(s:)&)y (2.60)

~which are independent of : (i.e. site), and are valid for both finite and
infinite-ranged interactions. The notation, ( ); represents an average over
the exchange distribution, and ( )7 denotes a thermal average.

Referring back to Figure 2.1, m and ¢ are evidently analogous to (M) and
(M?) respectively. It is then clear that m = g = 0 represents a completely
disordered system, whereas m # 0, ¢ # 0 indicates that the system is ordered
(with a ferromagnetic component). This leaves the m = 0, ¢ # 0 combination
(m # 0, ¢ = 0 is inconsistent) to describe a spin glass. From Figure 2.1
(c), this can be seen to be an eminently reasonable result, since the random
orientation of the spins dictates that the net magnetization be zero; however,
their ‘frozen’ orientations leads to ¢ # 0, meaning that magnetic ‘order’.
exists. This supports the EA claim of ¢ as the order parameter for the spin
glass phase.

Examination of the two coupled equations relating m and ¢, (2.57) and

(2.58) respectively, suggests that as k7T falls below the greater of J, or J,
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magnetic ordering is established. More specifically, if = %‘2 > 1 then
q # 0, m # 0, and the system displays ferromagnetic behaviour. For 5 < 1,
m = 0 and ¢ # 0, and a spin glass state is established. A phase diagram as
illustrated in Figure 2.6 can be drawn, which clearly illustrates that the two
quantities of interest characterizing the magnetic behaviour in the SK model
are the dimensionless parameters kT'/ J and 7.

The latter two parameters can be rescaled as follows to represent physi-

cally relevant quantities,
kT/J — T

Jo

—= — T
where z represents the impurity concentration. If the amorphous alloy being
studied contains only one magnetic element, such as (Fe;_.Ni;)7sP16BsAls
(where the magnetic moment of Ni is suppressed by the phosphorous and
boron (Geohegan et al, 1981)), J and J, would be related to the magnetic
ion concentration. However in the case of (Fe;_.Mn;)75P16BgAls, both Fe
and Mn possess magnetic moments; thus it should not automatically be
assumed that the rescaling relationship is linear.

It is useful to note that the phase diagram can be broken down into three
principal regions, namely 7 < 1, which represents a spin glass ground state, |
an intermediate region 1.0 < 7 < 1.25, representing a double transition
region, and n > 1.25, which has a ferromagnetic ground state. A further

discussion concerning magnetization versus temperature curves in different
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Figure 2.6: Sherrington-Kirkpatrick phase diagram (Sherrington et al, 1975)

applied fields, as well as the corresponding critical exponent values will be
presented in Chapter 3, where they will be compared to experimental results
on amorphous alloys.

A qualitative interpretation of the SK phase diagram as applied to mag-
netic ions randomly dispersed throughout a non-magnetic host material is
useful for providing further insight into this theory (Geohegan et al, 1981).
For small concentrations of the magnetic ions, the separations are large and .
the ions interact through an indirect exchange interaction (Appendix 1), that
oscillates in sign with ion separation. Depending upon the location of a par-

ticular magnetic atom with respect to the other moment bearing impurities,
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it will be acted on by a collection of fields, which will not necessarily align
its moment with any one of the other surrounding moments. Thus, each spin
will be oriented randomly, resulting in zero net magnetization.

With increasing (magnetic) impurity concentration, some magnetic ions
will be sufficiently close to each other that they can interact directly, thereby
forming clusters in which the moments are aligned. An indirect interaction
occurs between the clusters however, resulting in zero net sample magneti-
zation. |

Beyond a certain critical concentration, ., the clusters become suffi-
ciently large to link together, thereby forming an ‘infinite’ cluster reaching
to the sample boundaries. There still exist finite clusters, not connected to
the ‘infinite’ cluster, which freeze with fields in random direction when the
temperature is decreased. This affects the alignment of the moments within
the ‘infinite’ cluster by reducing its net magnetization. Since higher tem-
peratures are required to disorder larger clusters, T, (PM to FM transition
temperature) increases as x becomes larger. Similarly, it is clear that T; (FM
to SG transition temperature) is greatest at z; (coinciding with J, / J=1.0
in Figure 2.6), since lower temperatures are needed to ‘freeze’ the spins which
are trying to align ferromagnetically, as « is increased. Thus it can be seen
that T, ~ J, and Ty ~ J (I Kunkel et al, 1988).

As the concentration of the magnetic ions is further increased, the ‘infi-

nite’ cluster will eventually engulf the finite clusters, until the entire piece
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of material is ferromagnetic. This behaviour provides an explanation for the
PM-FM transition line, and the raising of T, with increasing magnetic ion
concentration, as well as the disappearance of the reentrant phase beyond a

certain concentration. -

Effective Field Approach

An alternate calculation employs an effective field approach to an Ising

Hamiltonian instead of the ‘replicé trick’ incorporated by Sherrington and

Kirkpatrick. A detailed study was carried out for s = 1 /2 (Southern, 1976),

where it was demonstrated that for a Gaussian distribution of exchange bond-

s, this technique yields the same phase diagram as that predicted by the SK

model.

Subsequent analysis for arbitrary s using the following Hamiltonian
H==> Jijsis; — By si 3 —s<s;<s (2.61)
i<j i
where k' represents an applied field, yields the following set of equations

(Roshko et al, 1985)

m = _\/—12=7r /_o:o sB[(kT) 's(Jom + Ja\/q + h')]e_%ida (2.62)

¢ = 7;__ [ SBAGT)  s(om + Jan/g + K)eFda (263)
T J=0

It can be shown that the above expressions reduces to (2.57) and (2.58) for

s=1/2and b =0.
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2.3.5 Vector-Spin Model

Having discussed the nature of spin glasses, it would now be useful to examine
the behaviour at the ‘re-entrant’ ferromagnetic-spin glass transition, and its
manifestation in terms of physical quantities.

In AuFe, the system in which spin-glass behaviour was first observed, the
susceptibility increases rapidly as the paramagnetic-ferromagnetic transition
is approached from above, displays a plateau as the temperature is decreased
further until the ferromagnetic-spin glass transition is approached, and at
this point the susceptibility rapidly drops, thereby denoting the ‘re-entrant’
phase transition in this system.

The paramagnetic-ferromagnetic transition is well understood and can
be analyzed in light of the discussion presented in the previous sections.
However, a rigorous quantitative analysis for the ferromagnetic-spin glass
transition has not yet been developed, although a number of theories exist.

Using the SK model, it has been shown (Kornick et al, 1989; IT Kunkel
et al, 1988) that the nature of this phase transition can also be studied by
examining the behaviour of the non-linear component of the susceptibility.
It has been suggested that a peak in the non-linear component of the suscep-
tibility, occurring in the low temperature edge of the zero-field susceptibility

plateau (i.e. at the proposed critical temperature, Ty) is indicative of a phase

transition.
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Consider the expression,
X = Xo— aaH? 4 aH' .., (2.64)

where the odd terms have not been included, in accordance with the sym-
metry of x under a field reversal. To ensure the convergence of the above
power series, the terms decrease in magnitude and alternate in sign. For

small applied fields, the susceptibility can be approximated by
X & xo — asH?, (2.65)

where the coefficient a; may be found experimentally by plotting the suscep-
tibility at constant temperature versus H?. For sufficiently small values of
H?, the curve can be approximated by a straight line with a slope of a,. It
has been found in some samples (FeZr, Ma et al, 1991; PdFeMn, II Kunkel
et al, 1988) that the slope becomes larger as the susceptibility shoulder is
approached from above and below, whereas the range over which the curves
can be approximated by a straight line decreases. The resulting behaviour is
a peak in the a2(T') versus temperature graph.

The difficulty with this approach is that it is based upon an Ising mean-
field model, which does not account for the 3D (Heisenberg-like nature of
most real systems (Gabay et al, 1981). The predicted temperature depen-
dence a3(T) ~ (Tsg — T)~* for T < T,, therefore is not expected to describe
experimental behaviour. Measurements on potentially re-entrant systems

display a peak in ao(T) that is substantially smaller than expected, which
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may also be due to dynamical constraints. This model, does however, pre-
dict both the double peaked structure, as well as the peak behaviour in an
applied field (lower peak being larger than upper peak in high fields, and
lower peaks moving down in temperature with increasing field while upper
peaks increase in temperature as the field is increased) observed in several
physical systems, including the samples studied in this work.-

As stated above, the analysis based on the SK model is theoretically in-
complete at low temperatures even though it correctly predicts the observed
field and temperature dependence of the susceptibility. To take into account
the Heisenberg-like (three dimensional) nature of the spins, an extended theo-
ry was proposed using vector spins S;, with m components, S;,(¢ = 1,...,m),

and the following Hamiltonian

H=— E J,'j Z S,'#Sju —H Z Si (2.66)

where J;; is the same as that used for the SK model.

This constitutes one of the most prominent theories describing the ferro-
magnetic-spin glass transition, and is known as the vector mean-field model
(Gabay et al, 1981; Dubiel et al, 1987). It suggests that longitudinal ferro-
magnetic order is established below the paramagnetic-ferromagnetic tran- .
sition, and transverse spin-glass order (associated with replica symmetry

breaking), along with weak irreversibility ? occurs at Ty. The line anal-

ZRecall, for a ferromagnet ((m.)r); # 0, ({my)r); = 0 and ((mi)T)J = 0, whereas
((mz)p); #£0, {(m1)p), = 0and ((m} >T>J # 0, for a transverse spin glass.
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ogous to the paramagnetic-ferromagnetic cross-over line is known as the
Gabay-Toulouse, or GT line. At even lower temperatures, the possibility
of a cross-over from weak to strong irreversibility is suggested, delineated
by the d’Almeida—Thoul_ess, or AT line. Unfortunately, the theory predicts
nothing about how the above two features are physically manifested, but
suggestions have been made that identify them with low terﬁperature peaks
sometimes appearing in the field dependent susceptibility data. More will be
said concerning this possibility in Chapter 5.

To perform a detailed analysis to determine whether or not the suscepti-
bility displays GT behaviour, the temperature at which the first peak below
the ferromagnetic-paramagnetic transition occurs must be compared with
the following equation. The peak temperature is predicted to vary with field
according to (Dubiel et al, 1987)

Tor(0) — Tor(H.,) guB
tor = =v2—2"2__¢H,, 2.67
or Ter(0) kBTGT(O)C (267)
where
m2+4m + 2
= Amir (2:68)

Ter(0) is the spin glass ‘critical temperature’ in zero field, and m is the spin
dimensionality, taken here to be 3.

The low temperature AT feature is expected to behave according to

Tar(0) — Tar(H,) ~ HZ, (2.69)
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Figure 2.7: Phase diagram of the infinite-range model for classical vector
spins. Line (a) corresponds to the freezing of the transverse degrees of free-

dom, line (b) to the d’Almeida-Thouless line (Gabay et al, 1981).
where n & 2/3 is predicted. Use of this relationship allows T47(0) and n to
be determined.

The phase diagram corresponding to the vector spin model is illustrated
in Figure 2.7.

There exist questions as to where exactly replica symmetry breaking oc-
curs (at the GT or AT line), and whether or not an AT line even exists
(Cragg et al, 1982). Later research has resulted in claims that physical sys-
tems with two lower transitions have been found (Dubiel et al, 1987), and
the appropriate analysis for the samples studied here will be presented in

Chapter 5.
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2.4 Scaling Theory

The complications encountered in trying to develop a reasonable and solvable
model describing the behaviour of magnetic systems near their phase transi-
tions have motivated scientists to examine a revolutionary new proposal, now
known as scaling theory, or the homogeneous function approach. Starting in
the mid 1960’s, suggestions were made that relationships exist between the
critical-point exponents that allow all of them to be expressed as a function
of two unspecified parameters. Thus, scaling theory does not actually predict
numerical values for the critical-point exponents, but rather relates them to
each other, and leads to the inequalities listed in Table 2.2 being replaced
by equalities. Furthermore, this approach to critical phenomena provides
insights into possible forms for the equation of state of a magnetic system.
Although the scaling approach is based on the unproven hypothesis that
certain thermodynamic state functions can be expressed as homogeneous
functions, it has provided considerable understanding of critical phenome-
na. Moreover, its predictions have been confirmed by various experimental

evidence, which supports their validity.

2.4.1 Static Scaling Hypothesis

According to the static scaling hypothesis, the Gibbs potential G(T', H),
which can alternatively can be written as G(¢, H) where t is the reduced

temperature, can be expressed as a generalized homogeneous function, de-
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fined as follows

G\t \*F H) = \G(t, H). (2.70)

If a function is homogeneous and if a; and ay are known at some point, say
t, and H,, then its value at any other location can be determined by a simple

scale change, which is mathematically expressed as follows
F(A%t,, N*F H,) = Af(t,, H,). (2.71)

This statement embodies the entire concept behind the homogeneous func-
tion approach, namely, that if the scale of the system is changed, in other
words, if the parameters that the Hamiltonian depends on, (i.e. H and t)
are varied, the form of the Hamiltonian remains unaffected. This indicates
that for any number A, the two indices referred to in the introduction of
this section, a; and ay, can be found, from which all of the critical expo-
nents may then be detérmined. Note that all of the other thermodynamic
state functions, F(¢, M), U(S,M), and E(S,H) are also potential candi-
dates for finding the critical indices; however G(¢, H) is the most convenient
for exploring the quantities of interest, particularly the magnetization, the

susceptibility and the specific heat.

2.4.2 Scaling Theory: Critical Point Exponents

Applying M(t,H) = — (%)t to the Gibbs scaling relation (2.70) yields the

following result,

A% M(A%t, A°F H) = AM(t, H) (2.72)
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which is sometimes referred to as the magnetic equation of state. Clearly

this expression is also a generalized homogeneous function.

Magnetization Exponent, 8

In order to find the magnetization exponent, 3, recall that H = 0, giving
M(t,0) = XD (222, 0). (2.73)

Since the above expression holds for all values of A, select A% (—t) = 1 or

A= (—l)lla‘ so that (2.73) becomes

t

M(2,0) = (=) 7*#/% M (=1,0) ~ (—t)0 7)o, (2.74)

where the minus sign is required to make the argument in (2.74) positive
since T' < T.. Recalling the power law dependence of the magnetization in

the limit t —» 07, M ~ (—t)?, and comparing the latter to (2.74) yields

_l-—ay

A= . (2.75)

a;

Susceptibility Exponents, v and +’

The susceptibility exponents, ¥ and 7', may be determined using (2.70) in

conjunction with the following thermodynamic relationship,

oM 9*G
= (5), =~ (5), (210
which gives,
A2 (A%, \*E H) = dy,(t, H). (2.77)
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For temperatures below T, setting H = 0 and choosing A = (—t)~1/% gives
Xt(t,0) = (=)~ Cer=Nlety, (—1,0) ~ (—t)~(Zer1)ac, (2.78)

When ¢t — 07, x; ~ (—t)~"". Comparing this to the above equation indicates

that

y =2l | (2.79)

a;

Similarly to find +, which applies to temperatures T > T, take A = t~1/%

from which it can be shown that

g 2o =1 (2.80)

a

This demonstrates one of the properties of scaling theory, namely that the
primed and unprimed critical-point exponents it predicts are equal. Con-
sequently, the divergence on both sides of the critical temperature will be

symmetric.

Critical Isotherm Exponent, §

The critical isotherm exponent, § can be found by returning to (2.72) and

letting ¢ = 0, which gives
M(0,H) = X*#~1M (0, \*¥ H). (2.81)
Choosing A = H~'/*# and inserting this quantity into (2.81), one obtains

M0, H) = HO~e8)/en M0, 1) ~ HO-e8) ox (2.82)
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By comparing this to the power law dependence for the critical isotherm,

valid in the limit H — 0, namely M ~ H/%_it can be seen that

b= (2.83)

Specific Heat Exponents, o and o/

The fourth set of critical exponents, o and o', which describe the behaviour
of the specific heat in a constant magnetic field, can be calculated using the

expression relating Cy to the Gibbs function,

8°G
Ch=-T (—-—> . (2.84)
8T ) ,,

Applying the latter equation to (2.70) yields
A4 Cy(A*t, ¥ H) = ACy(t, H). (2.85)

Inserting H = 0 and A = (—t)~%/* into this equation, and then comparing

the latter to the power law form of the specific heat, Cy ~ (—t)~*" gives

1
=92 —, 2.86
of =2 - (286)
Using similar techniques to find e, it is elementary to demonstrate that

a=d (2.87)

as required by scaling theory.
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2.4.3 Exponent Equalities

It has thus been confirmed through the above derivation that in the scaling
approach all of the critical exponents can be expressed in terms of only the
two parameters, a; and ay. Using this property, the inequalities 'listed in
Table 2.2 can be replaced by equalities. It is important to realize that this is
a direct result of the scaling assumption, since the only two variables, H and ¢
involved in the Gibbs potential enter without any relationship between them
being specified, aside from the homogeneity of the Gibbs function. Thus,
the connection between the exponent values does not depend on the system
being studied; however, the actual values of the critical indices vary from

model to model (Wang, 1990).

2.4.4 Scaling Law Equation of State

Besides predicting the relationship between the critical point exponents,
scaling theory also provides insights into the functional form of the mag-
netic equation of state, which have been verified by experimental results.
Returning to the scaling law equation of state (2.72), which can be rewritten

as

M(t, H) = X5 1M (A%, A H), (2.88) °

and taking A = t~1/%, gives

M(t, H) = tU-2s) e pf (1 " ) (2.89)

> tan/a
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The above expression may be simplified by recalling the definition of 8 and §
in terms of ay and a;, and incorporating the Widom equality, v = (6 — 1);

the equation of state may then be written as follows

- H H H
— P8 — 8 — 4B
Mt H)=1t"M (1,tﬁ5) ="M (1,%[,) =1 F(tw). (2.90)

From the latter equation it can be clearly seen that scaling theory says noth-
ing about the functional form of F, indicating only the nature of its argument.
However, this expression provides the basis for deriving the asymptotic power
law dependencies, valid in the limit ¢ — 0 and used earlier (Table 2.1).

The scaling expression for the isothermal susceptibility may be found by

simply differentiating (2.90) with respect to H, giving

(8, H) = (%) = (F%) (2.91)

where F'(H/t"*7) represents the derivative of F(H/t"+#) with respect to its

argument, H/t"+#. This can be rewritten as (Williams, 1991)

1 \75 H — / H \7%5 H
x(tH) = <m‘> F’(w)ﬂ’*“’ (w) F'(m)

H
(1/8)-1
H G(tﬁﬁ) (2.92)
using
G(z) == F(z) ; o= (2 2.93)
(2) == F() § 2= (75)- (293)

Alternatively, the last line in (2.92) can be much more simply derived by

letting A = H~Y/4# in (2.77), so that the latter becomes
x(t, H) = HU-2emleny (g-oleny 1), (2.94)
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Substituting in for 8, v and 6, and designating x(H~%/°#¢,1) as K (W‘,Tﬂ;)
gives

i
1/6-1
x(t,H)=H K (—Hl/(ww)) , (2.95)

which has the same H—dependence as (2.92).
One particularly interesting feature of the susceptibility versus tempera-
ture behaviour is the shift of the susceptibility peak with increasing field as

seen in Figure 2.8.

and

X(h,t)

g

Figure 2.8: The susceptibility x(k,?) in various fixed fields &; the dotted line
represents the cross-over line. (Williams, 1991)
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This feature of the susceptibility is incorporated in (2.92) or (2.95) as can
be seen when differentiating these expressions with respect to temperature,
and then setting the result equal to zero. Using (2.92), the following is

obtained

Ox _ gam-1(y+B)H ,( H ) _

Obviously, the above expression will hold only if G'(H /t;"'ﬁ ) = 0, where t,
represents the reduced temperature at which the susceptibility peaks. This
requires that the scaling function G(H/t"*#) at ¢, in a fixed field be a con-

stant, requiring in turn that

H
tg'*'ﬁ

= const. (2.97)

Thus, the temperature at which the maximum occurs (along the so-called

‘cross-over’ line) increases as H increases according to

T, - T,

=t HY/(Or+h) (2.98)

where v + (3 is known as the ‘cross-over’ exponent. Moreover, because

G(H/[t)**#) is a constant, it can be seen from (2.92) that
x(H,t,) oc H/0)-1 (2.99) -

which indicates that the height of the maximum is solely field-dependant and
decreases with increasing H (6 > 1), thereby reproducing the experimentally

observed behaviour of the susceptibility in the vicinity of T,. The advantage
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of using (2.99) instead of (2.11) to find § is that the former expression is
independent of the critical temperature, whereas any analysis involving the
latter equation requires previous knowledge of T.. In order to find the cross-
over exponent, T, must, however, be determined.

Although scaling theory has been a great success, its postulates have
not been proven, and hence there remain scientists who stiil consider it to
be an ‘ad hoc assumption, entirely devoid of physical rationale’. Attempts
to resolve this situation have prompted the development of yet another ap-
proach, namely the Renormalization Group theory (Huang, 1987; Fisher,
1983), whose most fundamental purpose is to provide a rationale for scaling
and justify the universality observed between the behaviour of apparently
unrelated physical systems. This theory also provides methods for calcu-
lating actual numerical values for the critical-point exponents (not just the
relationships between them), as well as providing insight into the nature of

scaling functions.
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Chapter 3

Review of Previous Results

Fe;_;Mn, ! samples with varying composition have been investigated using
a variety of experimental techniques, some of the more important and inter-
esting of which will now be considered as part of a general review of previous
experimental results. More specifically, existing magnetization and suscep-
tibility data will be presented, along with analysis techniques which yield
critical exponent values and critical temperatures characterizing the vari-
ous phase transitions. Finally, a brief summary of neutron scattering and
Mossbauer experiments will be presented to give insight into other methods

used to investigate amorphous alloys.

3.1 FeMn Phase Diagram

Materials with competing exchange interactions, such as amorphous FeMn

(elemental Fe is ferromagnetic, whereas Mn is antiferromagnetic), generally

1t is important to note that the alloys studied actually have a chemical composition
(Fe1-zMn;)75P16BsAls even though they are generally referred to as Fe;_,Mn,.
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become spin glasses over some composition range. Evidence has been pub-
lished that would indicate that the spins in FeMn ‘freeze’ from a paramag-
netic state to form a spin glass for Mn concentrations (i.e. z) between 0.35
and 0.47 (Mirebeau et al, 1990).

In the event that the mean of the exchange coupling constant distfibution
(J,) becomes comparable to its width (J), which according to Mirebeau et al,
1990, 2 occurs for 0.22 < z < 0.35, theoretical models such as the SK mod-
el predict more complex behaviour. The sample is paramagnetic at higher
temperatures, and becomes ferromagnetic with decreasing temperature be-
fore finally entering a spin glass phase as the temperature is lowered further.
This type of behaviour is the qualifying feature for a reentrant system.

At lower Mn concentrations (z < 0.22, Mirebeau et al, 1990), the sam-
ple enters a ferromagnetic ground state, but apparently displays no lower
temperature transition. This behaviour results in a FM-PM transition line
intersecting a line bounding the spin glass phase at a multicritical point,
as illustrated in the phase diagram in Figure 3.1. In accordance with the
latter, three ‘critical’ temperatures can be defined, namely T, representing
the usual FM-PM transition temperature, T, defining the PM-SG line, and
T 't denoting the FM-SG critical temperature. Upon comparing the proposed
FeMn phase diagram shown in Figure 3.1 to that predicted by Sherring- |

ton and Kirkpatrick (Figure 2.6), a striking similarity would seem apparent,

2This is based on magnetization measurements, where Ty was found following the
technique used by Manheimer et al, 1982 discussed in Section 3.2.2.
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Figure 3.1: FeMn phase diagram. (Mirebeau et al, 1990)

with the main difference between the two diagrams being that the PM-SG
line in Figure 3.1 does not extend to z = 1, as suggested by the SK model.
However this similarity is only qualitative and is based on a phase diagram
constructed using magnetization measurements, the interpretation of which
can sometimes be misleading.

It is the objective of this work to re-examine the above conclusiohs based
on a detailed linear and non-linear field and temperature dependent suscep-
tibility study, combined with existing microscopic investigations of the FeMn

system.
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Figure 3.2: Model predictions for magnetization versus temperature with
various reduced fields (h = pB,/J) for n = J,/J = 1.04. (Geohegan et al,
1981)

3.2 Magnetic Behaviour of FeMn

3.2.1 Theoretical Predictions

Returning to the effective field approach (Section 2.3.4), magnetization and
susceptibility curves can be generated by solving the coupled equations (2.62)
and (2.63). This was done for various J,/J values and a number of applied
fields in order to provide a complete representation of the predicted magneti-
zation and susceptibility for the different regions of the phase diagram. The
results displayed in Figures 3.2 and 3.3 have excellent qualitative agreement ‘
with the experimental measurements presented below, indicating that amor-
phous alloys such as FeMn display several features which are generally well
described by the SK model.

Although the theoretical curves in Figure 3.2 and 3.3 are somewhat more
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Figure 3.3: Effective field model predictions for susceptibility versus temper-
ature with different reduced fields (h = H,pn/Ty)or = J,/J = 1.1. The
arrow indicates the location of Ty. (Kornik, 1990)

symmetric than those obtained experimentally (Figure 3.4 and Figure 3.7 re-
spectively), the resemblance between the diagrams is still truly remarkable.
As can be seen for the magnetization data, applying a field causes the peak
temperature to move down in temperature, as well as generating a nonzero
magnetization in the temperature ranges T' < Ty and T > T,. Furthermore,
if Happ is large enough, M remains at its peak value below T}, instead of
dropping to zero, presumably eliminating the low temperature transition. As '
for the susceptibility measurements; a double peaked structure is observed

~as well as the correct field dependent behaviour, i.e. the lower temperature

peaks move down in temperature with increasing field, and the high temper-
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Figure 3.4: Magnetization versus temperature for z = 0.32 in various applied

fields. (Yeshurun et al, 1980)

ature peaks move up in temperature with increasing field. Referring back to
Figure 2.9, which shows effective field model predictions for the susceptibility
when 7 = 2.0, a single peak and the corresponding field dependence is ob-
served in agreement with the behaviour of the well-understood paramagnetic

to ferromagnetic transition.

3.2.2 Experimental Results
Paramagnetic-Ferromagnetic Transition

Magnetization versus temperature curves are among the most often used
measurements for determining critical exponents and temperatures. In the
vicinity of T, the magnetization should obey the usual ferromagnetic-para-

magnetic transition power laws listed in Table 2.1 with the critical exponents
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tabulated in Table 2.3. Originally, the latter were found by means of Arrott
plots, namely by plotting M'/# versus (H/M)'/", and adjusting the expo-
nents until a best straight line is obtained. A sample graph is shown in
Figure 3.5 consisting of a collection of isotherms above and below the criti-
cal temperature from which it is estimated that v = 1.6 and 8 = 0.4. The
third critical exponent can then easily be found via the (scaling) relationship
v = B(6 — 1). The isotherms are almost straight parallel lines, and suggest
a critical température (the straightest line, which extrapolates to the origin
represents the critical isotherm) in the vicinity of 100 K. This technique is
not particularly reliable though since several different exponent combinations
may yield straight line fits.

Scaling theory avoids this problem by providing an alternate, improved

method for finding the critical exponents. Recalling the expression

M(H,t) =t°F (tﬁﬁ) =t°F (gg) (3.1)

from Section 2.4.4 and defining y = (¢/|t])(H/|t|P®) allows the magneti.za.tion
to be expressed as
M(H,t) =t*F(y) - (3.2)
for convenience.
The behaviour of the scaling function F(y) can then be divided into two
parts, namely Fy(y) for T > T, and F_(y) for T < T,. If the correct expo-
nents and critical temperature can be chosen, all of the data will collapse onto

two curves in a plot of log(M/t?) versus log(h/t?®), ~ one for T > T., and
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Figure 3.5:  Arrott plot for isotherms near T for z = 0.32 alloy (Yeshurun
et al, 1981)

another for T' < T,. Note that M/t? versus H/t?® would serve the same pur-
pose, but taking the logarithm of each of these quantities facilitates detection
of deviations from the ‘universal’ curves when T, or the critical exponents
are varied. A sample plot is shown in Figure 3.6, the two branches repre-
sent the best fits possible using reasonable exponent values, i.e. restricting
possible exponent values to 2 < § £ 6, 0.03 < 8 < 0.50 and allowing T,
to vary as much as 10%. The exponents thus determined are unique, with
an assigned error denoting the variation permitted before a deviation from
the ‘best curve’ fit becomes discernable. The values found using this method

are listed in Table 3.1 along with the corresponding critical temperatures
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Figure 3.6: Scaled magnetic data for the PM-FM transition. (Yeshurun et
al, 1981)
for the various Mn concentrations. Notice how the values found by different
researchers vary, suggesting that this technique, although superior to Arrott
plots, is still not definitive. This could be due to variations in composition,
although the samples appear to have been prepared in the same laboratory
(Chen et al, 1976). Note also that the sample composition for Yeshurun et
al, 1981 were rechecked using microprobe analysis; the z values were found
to be somewhat lower than the nominal values. |

Some a.c. susceptibility measurements (Geohegan et al, 1981; Salamon
et al, 1980) have also been performed and used to generate a set of critical
exponents. Although the measurements included samples with a greater

composition range than will be examined here, the data collected was neither
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Table 3.1: Critical Values from Magnetization Measurements (Yeshurun et
al, 1981 (top); Manheimer et al, 1983 (bottom))

z T, A 8 [4] Ty (Teg) B 8 [4]

0.20 293+4 040 +0.03 51 +03[1.64* 14+2

0.30 1072 040 +0.04 50+03[1.60) 31+2 04003 4.5=+0.3][1.4]
0.32 100 +2 040+ 0.03 53+03[1.72] 38+2 04 +0.03 4.5+ 0.03[1.4]
036 42+2 040 +0.05 2.5+ 0.5 [0.60]

020 280 0.41 [1.45] 28
0.30 112 047 [1.42] 29 0.4 1.4
0.35 101 0.30 [1.55] 65 0.3 2

* Calculated /4 values using Widom equality (for comparison to
Manheimer values)
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over as large a field or temperature range as that presented here, nor was
the analysis as complete. Only the critical exponent §(6) was found, and
the supposed FM-SG critical temperature (Ty) was simply estimated from
the position of the lower temperature feature of the double peaked structure
observed in an applied field. There was, furthermore, no mention of a third
peak at very low temperatures for samples in the concentrétion range 0.23
< z < 0.26, as will be presented in Chapter 5.

In order to determine the critical exponents the sample susceptibility
was measured in the presence of several applied fields, after which scaling
relationships similar to those in the Section 2.4.4 were used to extract the
desired information.

In the presence of an applied field a double peaked structure illustrated
in Figure 3.7 was observed. Clearly the high temperature peaks move to
higher temperatures as the field is increased, in agreement with the SK model
predictions, as well as scaling (Figure 3.3).

The critical exponents found using this technique are listed in Table 3.2
(Geohegan et al, 1981). The uncertainty in é as well as the low values for the
compositions z = 0.20 and 0.30, is a consequence of the curvature observed
in the log(xpesk) versus log(H) plots (Figure 3.8), making it impossible to.
determine a unique slope. The low values are likely an average value ob-
tained in fitting the data. An improved value could have been obtained by

calculating the low field asymptotic slope.
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Figure 3.7: A.C. susceptibility temperature dependence of z = 0.35 alloy in
several applied fields (Geohegan et al, 1981)
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1981)
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Table 3.2: Critical Values from Susceptibility Measurements (Geohegan,
1981) |

z T.(K) Ty (K) Ty, (K) 6 é
0.10 > Troom

0.15 > Troom <5

0.20 280 34 ~ 3.5
0.30 114 54 ~ 4
0.35 104 63 50 4.4
0.36 42.0

0.40 42

0.44 29.5t

0.45 29*

0.47 28.61

0.50 Q7%

0.53 27.3

0.55 26.5*

0.59 24 .91

0.60 26*

*(Salamon et al, 1980)  ¥(Yeshurun et al, 1981)
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Ferromagnetic-Spin Glass Transition

The drop in magnetization illustrated in Figure 3.4 indicates that for z = 0.32
the ferromagnetic state may not be stable as the temperature is decreased:
the material undergoes a potential phase change to enter a new state with
reduced M, either a spin glass or anti-ferromagnetic state. . Alternatively,
the system may simply undergo a canting (asperomagnetic) or cluster glass
(non-critical) transition. A ferromagnetic to spin glass transition is similar
to the paramagnetic to ferromagnetic transition, at least to the extent that
both the paramagnetic and spin glass phases have zero net magnetization.
Some researchers (Yeshurun et al, 1980; Yeshurun et al, 1981; Salamon

et al, 1981) also believe that the relationships

¢
MO, T) ~ (% - 1) (3.3)
and
M(H,T;) ~ H/? (3.4)

are valid in the vicinity of Ty suggesting that a critical transition also occurs
along the FM-SG line; general consensus concerning the validity of the above
two equations has not been reached though. More will be said about this
behaviour below.

A scaling plot for this proposed transition, obtained by adjusting T,
B and &, then yields a graph like the one illustrated in Figure 3.9. The

latter plot is very similar to Figure 3.6, however with the temperature axis
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Figure 3.9: Scaled magnetic data for the FG transition (Yeshurun et al, 1981)

reversed; consequently, the two branches are interchanged, with the isotherms
in the ferromagnetic regime always constituting the upper branch. Critical
exponents and Ty extracted from the data are listed in Table 3.1 for the
different Mn concentrations. When looking at the latter values though, it
is important to realize that it has not yet been established whether or not
the linear magnetic properties for this transition are expected to conform to
scaling lav;I predictions or not.

In fact, it is still debated whether or not the material undergoes a phase
transition, or the spins just gradually freeze when going from a ferromag-
netic to perhaps a cluster glass state. Further evidence suggesting that the
behaviour is indeed critical was found by (Yeshurun et al, 1980; 0.2 < z <

0.36) and (Geohegan et al, 1981; 0.15 < z < 0.35) where it is documented
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Figure 3.10: Temperature dependence of the coercivity, A (Geohegan et al,
1981)

that the magnetic susceptibility along the FM-SG line also obeys the scaling
hypothesis.

As with the magnetization, the temperature axis for the FM-SG transition
is ‘reversed’ with respect to that of the PM-FM transition. A manifestation
of this can be seen in Figure 3.7, the low temperature field dependant peaks
occur at a lower temperature than the zero field peak. The following argu-
ment can be used to explain this phenomena; for this transition M decreases
with decreasing temperature, but since M(Ty) > M(Tpeat), the susceptibili-
ty maximum must occur below the FM-SG critical temperature. Hence the

location of x(Tpmk) provides an lower limit for T¥.
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A plot of log(xpear) versus log(H,) can then be used to find &, as illus-
trated in Figure 3.8, and the exponent values found using this method are
listed in Table 3.2. As with the magnetization, the Hopkinson maximum
is not expected to interfere with the analysis since it is predicted to have
a negligible contribution below T;. Furthermore, hysteresis effects, which
would complicate the situation are insignificant in the température region of
interest (Figure 3.10).

The & plot shown in Figure 3.8 is virtually identical to the § plot in the
same diagram, except that the entire line is shifted up a little. This type of
agreement, namely the accuracy with which scaling behaviour is reproduced,

suggests that this transition is indeed critical.

Paramagnetic-Spin Glass Transition

Zero field susceptibility versus temperature measurements are useful for iden-
tifying spin glasses since their susceptibility is usually substantially smaller
than that of a system with a ferromagnetic phase, as can be seen when con-
sidering Figure 3.11.

As stated in Section 2.3.4, this transition is identified by a sharp cusp in
the zero field susceptibility, agreeing with the SK prediction for this region -
of the phase diagram. Examples of this type of behaviour are illustrated in
Figures 3.8 and 3.12. The peak positions, used to determine Ty, are listed in

Table 3.2.
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Figure 3.11: A.C. susceptibility versus temperature. Note that the z = 0.40
data has been multiplied by 800. Also, the composition z = 0.40 is a spin
glass, whereas ¢ = 0.35 has a ferromagnetic phase. (Geohegan et al, 1981)
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Figure 3.12: A.C. susceptibility versus temperature (Salamon et al, 1980)
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The peak height in Figure 3.12 is expected to increase with decreasing z
as the multicritical point is approached along the PM-SG line (Salamon et
al, 1981) because the susceptibility diverges in the vicinity of the ferromag-
netic phase boundaries. No concensus has yet been reached as to whether
or not the ‘PM-SG’ transition in FeMn is critical; however, attempt-;s have

been made to describe this phase change using the following scaling equation

(Salamon et al, 1981; Yeshurun et al, 1981)

X(T, =) = Nx(Au(T, =), Xg(T, 2)), (35)

where the scaling fields, u and g depend upon the shape of the phase diagram
and the location of the multicritical point, taken to be situated at zmcp =
0.36 and Tmcp = 41 K on the phase diagram. Choosing the MCP to coincide
with the origin of the scaling axes, i.e. g = g =0, the g = 0 axis is taken to
be an extension of the FM-SG line, and the g = 0 axis is chosen to lie along

the PM-FM line. Taicing A¢g =1 then gives

x(T,z) = g7"%x (;li,g) (36)

which displays a cusp at u/g'/® = const., thereby defining the FM-SG line.

The cross-over exponent, ¢ may be found by plotting log(x) versus iog(g),
using the peak temperatures in Figure 3.12 to generate a graph with a slope
of 1/¢. Having done this, x/g~"/¢ (where 7, is the tricritical susceptibility
exponent) can be plotted versus the scaling variable u/g'/?, as illustrated in

Figure 3.13. Values of 1/¢ = 1.36 £ 0.1 and ; = 1.1 £ 0.1 were found using
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Figure 3.13: Scaled susceptibility along the PM-SG line (Yeshurun et al,
1981)
the above technique.

The success of the above procedure by no means resolves the uncertainty
as to whether or not the ‘PM-SG’ transition is actually a true phase transi-
tion. Only further theoretical analysis and experimental measurements could

confirm if the above analysis and its results are indeed valid.

3.2.3 Overview

When comparing the results in Tables 3.1 and 3.2, it can be seen that sizable
discrepancies exist between some of the critical temperatures and exponents.
Considering in particular the values fOI;.Tf, those obtained from magnetiza-
tion measurements are much lower than those determined from susceptibility

temperature sweeps. It is important to realize though that there is no physi-
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cal feature unambiguously agreed upon as identifying the FG-SG critical tem-
perature, so the latter must be determined, along with the other adjustable
variables solely from the scaling plot.

The differences in Ty would affect the location of the FM-SG line in the
phase diagram, and also the points at which it intersects the PM-SG and PM-
FM lines, which in turn would cause variations in the critical concentration
and temperature. It is this ambiguity that has been in part, motivation
for this detailed study of the FeMn system, using not only linear, but also

non-linear susceptibility measurements.

3.3 Neutron Scattering Results

Another type of probe which is sensitive to the microscopic, as opposed to
macroscopic properties of the sample, is neutron diffraction. Although this
technique can be used to study the distribution, orientation and ordering
of magnetic moments, the discussion here will concentrate on the magnet-
ic ordering, and how neutron diffraction can be used to investigate phase

transitions.

Using neutrons, basically two techniques, involving either scattering or
polarization analysis, can be used to study magnetic materials. Consider- .
ing first scattering techniques; in paramagnetic (disordered) substances, the
atomic moments have random orientations causing the neutrons, which have

a dipole moment even though they are electrically neutral, to be scattered
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incoherently. On the other hand, in ferromagnetic (and other ordered) sub-
stances, the atomic moments are parallel (or antiparallel in the case of an
antiferromagnetic sample) resulting in coherent scattering, and therefore a
diffraction pattern.

Using polarization analysis, a beam of polarized neutrons becomes de-
polarized after passing through a ferromagnetic sample with several large
domains (as opposed to many small ones). It is interesting to note that in
the more common scattering experiments mentioned above, the microscopic
neutron-spin interaction is probed, whereas polarization analysis measures
the neutron spin precession over the much larger mean domain size. In para-
magnets and spin glasses, where disorder occurs at microscopic levels, the
neutrons pass through the sample without becoming depolarized.

This can be understood by recalling that the neutron’s spin undergoes
Larmor precession in a field, such as that within a ferromagnetic sample,
thus causing depolarization of the beam. In a paramagnet and spin glass,
however, B(t) fluctuates much more rapidly than the time required for one
Larmor precession; thus the neutrons remain polarized.

The latter technique was used to investigate the properties of FeMn (Mire-
beau, 1990), for concentrations in the range 0.07 < z < 0.41, a range that
includes non-frustrated ferromagnets, weakly frustrated alloys, samples dis-
playing reentrant behaviour, and pure spin glasses. The results are illustrated

in Figure 3.14.
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Figure 3.14: Polarization, P as a function of temperature for Fe;_-Mn,,
where the arrows indicate the Curie temperature. A neutron wavelength
of A = 5 Angstroms was used, along with an applied field of 5 Oe. Not
shown are the results for the z = 0.07 sample, which display strong neutron
depolarization over the whole temperature range. (Mirebeau et al, 1990)
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Figure 3.15: Polarization versus temperature for Fe;_;Mn,, z = 0.235, where
the first, second and third arrows represent the AT, GT and Curie temper-
atures respectively. The FC curve represents the field cooled polarization,
and the ZFC curve is the zero field cooled data. (Mirebeau et al, 1990)
Depolarization measurements performed on the z = 0.235 sample at low-
er temperatures were used to make predictions concerning a low temperature
phase transition. Examining Figure 3.15, it can be seen that the depolar-
ization for field cooled and zero field cooled measurements deviates below
about 90 K. This onset of irreversibility is interpreted as delineating the GT
transition, whereas the sharp decrease in the ZFC depolarization indicates
the presence of strong irreversibility, and thus the AT transition.
Conclusions were also drawn by studying the average domain size at dif-

ferent temperatures and concentrations. The latter quantity was determined

by analyzing the wavelength dependence of the depolarization (decreased
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dependence was interpreted as being a manifestation of larger domains, be-
cause then the field, and thus the Larmor precession axis changed less often
within the sample). As expected, the average domain size decreases as the
disorder (increasing z) increases. Most importantly, for the weakly frustrat-
ed Fe;_.Mn, alloys with 0.22 < z < 0.26, large domains were found that
persist into the supposed reentrant spin-glass phase. This was found not to

be the case for larger = values.

3.4 Mossbauer effect

Another technique which can be used to study the magnetic properties of ma-
terials involves the Mdssbauer effect. Mossbauer spectra found for Fe;_Mn,
(z = 0.35) at different temperatures are illustrated in Figure 3.16. It was
determined that quadrupole splitting and the isomer shift were the predom-
inant effects responsible for the structure observed; the actual data was fit

using the function
P(H) =Y ag[cos(nmH/H,) — (-1)"], (3.7

where H,, is the cut-off field, chosen to be between 150 kOe and 500 kOe,
depending upon the temperature.
A plot of P(H) versus H is shown in Figure 3.17. From the behaviour of

the peaks in this plot, critical exponents and temperatures were found using

AH = H,, — H, (3.8)
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Figure 3.16: Mossbauer spectra for Fe;_.Mn, (z = 0.35). (Keller et al, 1981)
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1981)

in conjunction with

AH = AH,(1 = T/T))P, (3.9)

where H,, and H,, are the average and (lower) peak field, and the subscript ¢ f?
denotes the paramagnetic to ferromagnetic transition parameters. A similar
expression was used for the ferromagnetic to spin glass transition. The results
were found to be fy = 0.42 £ 0.14,7y = 100 £ 2K for the paramagnetic-
ferromagnetic transition and f, = 0.52 £ 0.19,7, = 50.2 + 1.4 K for the

ferromagnetic-spin glass transition.
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Chapter 4

Experimental Methods

4.1 Sample Description

4.1.1 Introduction

The samples used for this investigation, (Fe;_;Mn;)7sP16B ¢Als where z =
0.235, 0.26, 0.30, 0.32, 0.41, were prepared by Bigot and Peynot (Centre
d’ Etudes de Chimie-Metallurgie, Vitry sur Seine) using the melt spinning
technique to produce a thin foil, which was encased with masking tape for
protection because of its extreme fragility, and then cut into narrow strips
using a sharp knife. The sample length and width were measured with a trav-
elling microscope (Precision Tool & Instrument Co. Ltd.), and the thickness
was calculated, based on the measured mass (found using a Mettler microbal-
ance) and estimated density of each sample.

Several attempts were made to experimentally ascertain the density using
a displacement method (Pratten, 1981). Unfortunately the amount of sample

available was so small (~ 10 mg) in all but perhaps one case that even the
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Mettler microbalance was not sufficiently sensitive (£3 pg) to carry out such
measurements. Extreme care must also be taken as the samples were so
fragile that they would usually break into many fragments before the entire
procedure could be completed.

Despite these difficulties, a density measurement for the z = 0.26 spec-
imen was completed, although the error is estimated to be as high as 10%.
The procedure was as follows:

(i) The sample was first weighed in air, s,; (buoyancy effect of air is negli-
gible).

(ii) The sample mass was then determined in toluene ! by using a small
copper V-shaped holder suspended by a gold plated tungsten (to reduce sur-
face tension effects) wire (diameter = 50 pm). The empty holder, h;y and
then the holder containing the sample, (h + s);1 Was weighed in toluene, the

difference between the two measurements giving the sample weight in toluene
Stol = (h + S)tal - htol-

(i) The buoyancy ‘force’, which is equal to the mass of toluene displaced
was calculated using

masSipl = Sair — Stol-

(iv) The sample volume could then be determined from

prot_ 0.8669g/cm’
massi,)  Massg

INote that toluene is a volatile and hazardous solvent. Inhalation and contact must be
avoided. This measurement was conducted with the apparatus in a fume hood.
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(v) Finally, the sample density could be found

Sair

Psample =
vol

Using this procedure Po.26 = 5.94 g/cm? was found. Unfortunately, attempts
to find the densities of the other samples were unsuccessful.

After an extensive literature search failed to yield the density of
(Fe1—zMn;)75P16B 6Als for any other values of z, it was decided to estimate

the densities using a weighted average over the individual densities,
Psampte = 0.75{pre(1 — z) + panz} +0.25{0.16pp + 0.06p5 + 0.03p4:}. (4.1)

This approach is based on the general result that for metal-metalloid amor-
phous alloys the density usually varies linearly with metalloid concentration
(Konczos et al, 1985). As a check, the calculation was applied to sever-
al other amorphous materials for which the density is known (Krebs et al,
1985; Cargil, 1975). The discrepancies between the calculated and measured
values were usually quite small, and never more than 10%. The densities de-
termined using this method are listed in Table 4.1. Note that our measured
density for the z = 0.26 sample agrees with the calculated density to within
the experimental error. Given the relatively large error in the measurement
and good agreement generally obtained by the calculation, it was decided to
use the calculated values exclusively in the analysis.

Table 4.2 lists the various sample properties, with the significance of the

demagnetizing and calibration factors listed in Table 4.3 being discussed in
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Table 4.1: Calculated Density

Concentration (z) | Density (g/cm?)
23.5 6.33
26.0 6.32
30.0 6.31
32.0 6.30

Sections 5.1.3 and 4.2.5 respectively. The calibration and demagnetizing
factors for the various samples are a weighted average, based on the mass
and dimensions of the individual pieces comprising the sample. In other

words, the composite calibration factor is given by

2icim; :
Csample = Em (42)

where ¢; is the individual calibration factor (see Section 4.2.5) determined
by the dimensions of each individual piece. The composite demagnetizing

factor may be found in a similar fashion.
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Table 4.2: Sample Specifications

Piece # | Length (mm) | Width (mm) | Mass(g)
23.5-1 15.74 0.77 0.0020
23.5-2 17.09 1.62 0.0044
23.5-3 17.50 1.67 0.0048

26-1 12.54 0.55 0.0011
26-2 15.60 1.12 0.0037
26-3 17.30 1.20 0.0044
26-4 17.20 1.45 0.0053
30-1 17.05 1.33 0.0032
30-2 17.01 1.54 0.0037
30-3 17.10 1.05 0.0025
30-4 16.30 1.43 0.0033
30-5 17.24 1.39 0.0034
30-6 16.68 1.69 0.0040
30-7 16.58 1.83 0.0043
30-8 16.15 1.28 0.0029
321 16.55 1.48 0.0038
322 16.95 1.34 0.0035
32-3 16.93 1.21 0.0032
32-4 17.05 1.19 0.0031
32-5 16.60 1.14 0.0029
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Table 4.3: Calibration and Demagnetizing Factors

Sample | Pieces | Mass (g) | Cal. Factor (emu/g-Oe) | Demag. Factor (cm?)
23.5-1 1 0.0020 7.10 x 10™* 0.0213
23511 | 2-3 0.0092 7.36x1074 0.0255
26-1 1 0.0011 6.49x10~* 0.0449
26-11 2-4 0.0134 7.28x10™* 0.0496
30-1 1-8 0.0273 7.27x107* 0.0276
30-11 7-8 0.0072 7.21x10~* 0.0301
| 321 | 1-5 | 0.0165 ] 7.28x10~* ] 0.0258

4.1.2 Preparation of Metallic Glasses

Although the samples were kindly provided in foil form by Bigot and Peynot
(Centre d’ Etudes de Chimie-Metallurgie, Vitry sur Seine), a brief overview
of the two most common techniques for preparing amorphous samples will

now be presented for completeness. (Zallen, 1983) (Glintherodt et al, 1981)

Splat Quenching

Making metallic glasses in film form essentially involves rapidly quenching a
liquid droplet, or jet onto a good heat conducting metal to produce ‘splats’
or ribbons, using the procedures described below. The most important re-
quirement for producing these films is that the melt cools to a sufficiently

low temperature rapidly enough that it does not have the opportunity to
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Figure 4.1: Melt Spinning (Zallen, 1983)

crystallize. Forming an ordered solid requires time, since nucleation must
occur for crystal growth to take place. Thus, the liquid must be cooled to
below the glass transition temperature, T, without being allowed to become
ordered at the freezing temperature, Ty (T, < Ty).
Melt Spinning

This technique, which was employed to make the samples studied in this
thesis, uses a rapidly spinning wheel (tangential speed ~ 2 km/min.) to
conduct heat away from a molten jet of alloy, as can be seen in Figure 4.1.
The rotor must possess excellent thermal conductivity, and is therefore often
made of copper, which is maintained at room temperature with water cooling.
The ‘ribbon’ manufactured in this way can have a thickness ranging from 20
to 60 gm. Since the film is extremely thin and makes good thermal contact

with an excellent heat sink, it cools rapidly (~ 10° K/s) before it solidifies.
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Figure 4.2: Splat cooling (Zallen, 1983)

Depending upon whether or not the alloy oxidizes easily, the ‘ribbon’ may
be made in air or in a vacuum/inert atmosphere such as argon.
Splat Cooling

Splat-cooling, which is a variation of the melt spinning tephnique, was
developed especially for the purpose of making metallic glasses, and consists
of letting a molten droplet of the material fall between an anvil and a hammer,
as illustrated in Figure 4.2. There it is flattened into a 15 to 30 mm diameter
‘splat’ with a thickness ranging from 20 to 80 um. This method cools the
liquid metal from both sides, and exhibits cooling rates in the range 10° K/s

to 108 K/s.
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Figure 4.3: Vapor condesation (Zallen, 1983)
Vapor Condensation

Vapor condensation, a technique which employs an entirely different ap-
proach than the one discussed above can also be used to form amorphous
solids. (Zallen, 1983) This method bypasses the liquid state of the material
entirely, and essentially constructs the amorphous solid one atom at a time,
therefore possessing the highest effective quenching rate obtainable.

There exist a variety of vapor condensation techniques, the simplest of
which is illustrated in Figure 4.3, and involves heating the desired material
until a vapor is formed, which can then condense on the cold substrate. The
material forming on the substrate will be amorphous, providing the thermal
energy of the vapor atoms is removed before they reconfigure into a crystalline

form. Another approach involves using an electron or ion beam to bombard
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the source material (sputtering). Vapor condensation is useful in forming

thin films with a thickness of 5 - 50 um.

4.2 Experimental Apparatus

The data collected for this thesis involved measuring the a.c. susceptibility of
a series of FeMn samples over a wide range of temperatures and static biasing
fields. To accomplish this goal requires the development of three separate
experimental systems; the cryostat system, the susceptometer (susceptibility
measuring device) and the data collection system, all of which will now be

described in some detail.

4.2.1 Cryostat System

Although the name suggests that this equipment is solely related to temper-
ature control, in actual fact, the cryostat system also includes the sample
probe, static biasing field solenoids, and the sensing/pickup coils connected
to the susceptometer. The arrangement of this equipment is illustrated in
Figure 4.4, and the function of the individual components will be described
in the ensuing sections.

As can be seen in the diagram, the cryostat consists of two double-walled,
concentric chambers (dewars). The outer dewar surrounds the various coils
and always contains liquid nitrogen; it is insulated from the outside by means

of a vacuum space between its double walls. The inner dewar in which the
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sample is placed, is appropriately named the sample space, and can be filled
with liquid helium or liquid nitrogen for constant temperature measurements

at 4.2 or 77 K, respectively.

4.2.2 Sample Probe

The construction of the sample probe itself involves a machined OFHC
(oxygen-free, high thermal conductivity) copper block around which an in-
sulated nichrome heater is wound and to which a large bundle of 32 gauge
copper wires (braid) was soft-soldered, into which the sample to be measured
could be inserted. The purpose of the copper bundle is to provide a means
by which the temperature of the sample (having good thermal contact to the
bundle) can be varied, and yet allow the a.c. driving field generated by the
susceptometer to easily penetrate to the sample; the skin depth of copper is
much greater than the diameter of the wires. Before placing the sample into
the copper braid, it was wrapped in masking tape to electrically insulate it
from the latter, but still maintain good thermal contact to the heater.
Before proceeding with a measurement it was necessary to correctly po-
sition the sample with respect to the pickup coils. This was accomplished
by initially placing the centre of the sample ~ 8.0 cm below the bottom
of the copper block within the Cu bundle. After cooling the sample to a
temperature at which it had a non-zero a.c. susceptibility, the sample po-
sition was fine-tuned by means of an adjustment screw at the top of the

thin-walled stainless steel tube supporting the copper block. The screw is
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Figure 4.4: Cut away view of the lower portion of the cryostat system, in-
cluding the sample probe and the various coils providing the sensing and

D.C. biasing-field. (Ma, 1990)
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threaded onto a plate at the top of the cryostat system, and provides a con-
venient means for moving the sample. Stainless steel is used since it is a
relatively poor thermal conductor, thus limiting the heat transfer into the
cryostat from outside. The entire sample probe was thereby moved up or
down with respect to the sensing coils until a maximum signal was obtained

on the susceptometer output.

4.2.3 Static Biasing Field

Zero Field Measurements

When doing either temperature or field sweeps, the sample was initially
cooled from well above T, (~ 1.2T;) to the desired temperature in ‘zero’
field; i.e., the local 0.52 Gauss vertical component of the Earth’s field was
backed off. This was done by passing the appropriate current (2.43 mA) from
a constant current source through the biasing solenoid (215 Oe/amp) within
which the sample was located (Figure 4.4). The purpose of this procedure
was to ensure that each run was always started with the sample in the same
magnetic ground state. In other words, any history dependent effects i.e. hys-
teresis, which could affect the reproducibility of the results, were removed.
It should be noted that no measures were taken to compensate for the local
horizontal component of the Earth’s field, which is approximately 0.24 Oe.
Although this is inconsequential when doing high field measurements, it had

to be considered when doing experiments at smaller fields.
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Temperature Sweeps

When performing temperature sweeps, the sample was subjected to a se-
ries of static biasing fields (applied along its largest dimensien) ranging from
~ 0.5 Oe to 1000 Oe. For fields less than about 500 Oe, the 215 Oe/amp
solenoid was used, whereas for higher fields an additional solenoid producing
186 Oe/amp was connected in series with the first solenoid, giving a total of
401 Oe/amp. The two coaxial solenoids were both constructed by winding
22 gauge enamelled copper wire on a brass former, and were maintained at
a constant temperature of 77 K during any experiment by immersing them
in liquid nitrogen. This serves to reduce the coil resistance, important be-
cause large currents will cause considerable Joule heating, and maintaining
the coils at a constant temperature helps to stabilize the current. The cur-
rent passing through the solenoid(s) was generated by a Lambda LK344A
FM Model current regulated power supply and monitored for stability by

measuring voltage across a standard resistor with a DANA multimeter.

4.2.4 Temperature Control

For all experiments performed it was imperative to constantly monitor the
temperature. For the temperature sweeps, this quantity was recorded at reg-
ular intervals using a computer controlled data acquisition system, as will be
described below; and for the field sweeps, it was necessary to ensure that the

the temperature remained sufficiently constant throughout the run.
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The sample temperature was determined by means of a calibrated Chromel
P-Au + 0.03 at.% Fe thermocouple with one junction immersed in an ice
bath, and the other placed as near the sample as possible, i.e. at the top
of the wire bundle, ~ 5 cm above the sample. It was not possible to place
the junction at the site of the sample because AuFe at this concentration
is weakly magnetic; the thermocouple itself could contribufe to the signal
detected by the sensing coils. Temperature gradients between the sample
and the thermocouple junction were minimal due to the good thermal con-
ductivity of the copper braid, provided the heating rate (for temperature
sweeps) was kept sufficiently low. The thermocouple emf was displayed on a
Racal-Dana 5001 DVM and could be converted to a temperature in Kelvin
using the appropriate calibration data.

Since most of the experiments were carried out at temperatures much
lower than room temperature, it was necessary to cool the sample using
liquid helium and/or liquid nitrogen. For T > 77 K the nitrogen dewar was
filled until the biasing field and pickup coils were completely immersed. In
order to facilitate more rapid cooling of the sample, the vacuum space of
the inner/helium dewar could be softened to provide better thermal contact
with the sample space. (Thermal contact between the nitrogen and helium
dewar was controlled, in general, by changing the vacuum in the helium
dewar jacket.) For data collected at 77 K, nitrogen was poured into the

‘helium’ dewar (sample space) to provide an stable temperature environment.
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Between 4.2 K and 77 K the nitrogen dewar was completely filled to provide
maximum thermal isolation of the helium dewar, which was then cooled with
cold helium gas obtained from a liquid helium storage dewar through a liquid
helium transfer tube. For constant temperature experiments at 4.2 K, a small
amount of liquid helium was transferred into the sample space.

To warm the sample to the desired temperature after cooling (it was
impossible to cool to exactly the required temperature with the exception
of 4.2 K or 77 K ), an electric (nichrome) heater was used. The latter was
constructed by wrapping about 10 turns of 0.010” diameter heater wire (13.2
/1t 50 Q total resistance at room temperature) around the copper block, as
illustrated in Figure 4.4. By adjusting the heater current, various warming
rates could be achieved, depending upon the experiment being performed. At
‘very high’ temperatures, near room temperature, the warming rate could be
increased without resorting to very high heater currents by pumping on the
inner dewar vacuum space through a nitrogen-filled cold trap with a diffusion

pump to decrease the thermal contact with the nitrogen dewar.

4.2.5 The Susceptometer
Principle of Operation

The susceptibility measurements were carried out using a phase locked 2.4
kHz susceptometer (Maartense, 1970, 1982). Essentially, this consists of two

LC R resonators, configured as shown in Figure 4.5, with natural frequencies
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w; = 71%0'1" and w;, = 7;2—02- respectively. The first resonator is part of an
oscillator, which is connected so that both circuits have an initial driving
frequency, w; = w;. When a piece of magnetic material is inserted into L,

the self-inductance of the latter changes to Ly + ALy, which in turn causes

wp = w' = ——2L—— " as well as affecting the phase, ¢, associated with
LV (L2+AL2)02 g p .

wy. The quantity ¢, which represents the phase by which the emf leads the
current, is given by

¢__wL——:}5__w2LC’—l _
- R ~ WwRC !

W =W, Wwsy. (43)

Thus, changing the inductance, capacitance or resistance of any of the ele-
ments comprising the two circuits affects their respective phase angles. The
output of the two circuits is fed into a phase detector, monitoring the phase,
but not the amplitude difference between the two signals. The phase detector
generates a D.C. voltage change proportional to A¢ = ¢(L,) — ¢(Ls + AL,),
which is passed via a feedback loop to a voltage dependent reactance ele-
ment that attempts to compensate for AL, and re-establish the condition
A¢ = ¢(Ly) — ¢(L2). The susceptibility of the sample can then be deter-
mined since it is proportional to the voltage generated by the phase detector,

which is In turn related to AL,.

Specifications

The two inductors, or sensing coils used in the susceptometer are comprised

of 4000 turns of 35 gauge enamelled copper wire counter-wound on nylon coil
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Figure 4.5: Block diagram of the susceptometer (Ma, 1990)
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formers, with inductances measured to be 205 and 202 mH (Roshko, 1979).
The arrangement of the coils with respect to the sample position can be seen
in Figure 4.4; the coils were always immersed in liquid nitrogen during oper-
ation of the susceptometer to reduce their resistance and increase the @ of
the LCR circuits, thus feducing the noise factor resulting from changes in
sensitivity due to temperature drift.

A driving frequency of 2.4 kHz was employed, with a driving field strength
of 30 mOe used for most of the measurements. A driving field of 50 mOe was
required for a few trials in order to improve the signal to noise ratio. A smaller
field strength is naturally preferred, since the purpose of the measurements
was to find the a.c. susceptibility, which involves the differential slope on an
M versus H curve. However, the finite resistance of the sensing coils (even
at 77 K) limits the possible driving field levels available, as the oscillations
would get damped out below a certain threshold.

It is important to note that the copper braid containing the sample passed
through both counter-wound sensing coils in order to balance out the dia-
magnetic signal from the Cu braid itself. Differences between the component
values of the two circuits, which of course are not necessarily equal as in the
ideal case, cause a non-zero voltage output even in the absence of a sam-
ple. This is taken into account when making measurements, as described in

Section 4.3.1.
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Calibration

As previously mentioned, the susceptometer generates an output reading in
volts; in order to obtain absolute susceptibility measurements in emu/g-Oe, a
calibration factor is necessary. The susceptibility may be calculated directly
from the AL (change in inductance) introduced by the presence of the sample
using the following expression (Maartense, 1970)

AL
Ax = 4mnp (T)

(4.4)
where 7 is the ‘effective volume filling fraction’ of the sample inserted into Ly,
and p is its density. However, since 7 is very difficult to determine, the suscep-
tometer was instead calibrated using a 99.999% pure Gd;O3 powder which
has a theoretically well understood magnetic behaviour. This sesquioxyde

of gadolinium is paramagnetic at 77 K, and exhibits a large susceptibility

displaying excellent agreement with the Curie-Weiss law,

Ny Ng2 2 J(J +1
y = ff — g Up ( ), (45)
3ka(T — 0)  3kg(T — 0)

where the paramagnetic Curie point, 6, equals -13 K for Gd;03 (Schinkel et

al, 1973). The powder was placed in a series of glass tubes with different
dimensions, and the susceptibilities were then measured at 77 K (fresh liquid
nitrogen).

Inserting presy = (7.70 £ 0.04‘);13 into (4.5) gives the calculated suscepti-

bility, which in conjunction with the expression

CXU
= 4.6
X=—= (4.6)
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Figure 4.6: Susceptibility of an antiferromagnet above its Neel point; Ty is
the Neel temperature and 6 is the paramagnetic Curie point. (Jiles, 1991)

where m is the sample mass, and x, is the measured susceptibility in volts,
yields the calibration factor, c. It is important to mention that in order to
make the final results independent of the size of the FeMn specimen used, all
susceptibility measurements will be expressed in emu/g-Oe. This requires an
expression which incorporates the sample mass, as has been done in (4.6).
To within experimental error, the diameter of the sample did not affect
the calibration factor, whereas a difference in length resulted in the following

relationship (Wang, 1994)
¢ = (0.20 emu/V-Oe-mm )(sample length)+ 5.56 emu/V-Oe.

The above value is only valid to within £5% due to inherent limitations on
the sensitivity of the susceptometer. This is not a major concern, however,
since the relative (which can measured to better than 1 part in 10%), as

opposed to the absolute susceptibility is usually the quantity of interest.
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4.2.6 Data Collection System

Throughout all of the experiments, the data was collected and stored using a
data acquisition system controlled by RALPH 2, while simultaneously being
recorded on a Philips PM 8143 XY recorder, if desired. RALPH coﬁ]d be set
to collect susceptibility versus current (field) or temperature data, depending
upon the particular experiment in progress, as will now be discussed. It
should be noted that all data was read in volts from two Hewlett-Packard
| 34401A multimeters and could be converted to the desired units (Kelvin, Oe,

etc.) by means of appropriate conversion tables and analysis routines.

4.3 A.C. Susceptibility Measurement Pro-
cedure

4.3.1 Temperature Sweeps

In order to collect temperature sweep data it was necessary to vary the sample
temperature within the range 4.2 to 300 K while keeping the D. C. biasing
field constant. The steps involved in this procedure were as follows:

(1) The sample was first warmed to well above its critical temperature
(~ 1.2T;), see Section 4.2.3 and subsequently cooled in ‘zero’ field.

(i1) Depending upon the temperature range of interest, the sample was

cooled with nitrogen, or nitrogen and helium (Section 4.2.4).

2 A program designed to run on a personal computer, written by J. Schachter, University
of Manitoba, 1991.
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(iii) After reaching the desired temperature and disconnecting the zero-
field constant current supply (backing off the Earth’s field), the Lambda
LK344A FM current supply was connected to the appropriate solenoid com-
bination (215 or 401 Oe/amp) and adjusted to generate the desired applied
field. |

(iv) Having completed all of the above preliminary steps, RALPH was
initiated and a ‘zero’ reading was taken (see (v)). The data collection sys-
tem was set to read the suscéptibility (in volts) and the temperature (in uV)
every 1 to 5 4V in temperature. The heater current was then slowly increased
so that the warming rate remained approximately constant. The latter was
monitored by RALPH and maintained at about 5-7 s/uV (1-2 min/K) -
heating at a faster rate may introduce a temperature gradient between the
sample and the thermocouple junction. It should be noted that higher tem-
peratures required greater heating currents to achieve the same warming rate;
for example, near 4.2 K, a 10-30 mA heater current was required, whereas at
77 K, 130-150 mA was used. For all samples except Fess sMnys s, the heater
current was kept below 210 mA at even the highest temperatures. However,
in this one case, temperatures as high as 300 K were required, which made
heater currents as high as 350 mA necessary. To ensure consistency between
the temperature sweeps at various fixed fields, care was taken to keep the

heater current approximately the same at a given temperature.
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(v) Additional ‘zeros’ were taken at regular intervals to correct for any
drift in the ‘zero-susceptibility’ readings 3. These readings were obtained by
using the support rod (Section 4.2.2) to extract the sample from the upper
sensing coil until a minimum in the susceptibility was observed on the XY
recorder/DVM, and then prompting RALPH to record a ‘zero-susceptibility’
reading. The sample was then reinserted to allow data collection to resume.

(vi) After acquiring data in the temperature region of interest, the sample
was again warmed above T, and the entire procedure could be repeated at a

different field.

4.3.2 Field Sweeps

The field sweeps were conducted with a procedure that was, in some ways,
similar to the temperature sweeps, except that here the temperature is kept
constant and the field is varied. To some degree, these runs required greater
care to complete than the temperature sweeps as temperature stability was
quite difficult to maintain, especially between 4.2 K and 77 K. However, as
each individual field sweep could be completed within a few minutes (not
including warming and cooling times), this difficulty could be reduced to an
aéceptable level by monitoring the temperature during the field sweep and
introducing small heater current adjustments if necessary.

(1) As with the temperature sweeps, the sample was first warmed to well

above its critical temperature and then cooled to the required temperature in

3The zero corrections will be discussed in detail in Section 5.1.
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‘zero’ field, to ensure that each measurement was carried out along a ‘virgin
magnetization curve’.

(ii) Using a low heater current, a temperature stability from 1 xV to %
4 pV (£ 70 mK to £300 mK) was achieved, depending upon the temperature
at which the measurement was performed. |

(iii) The current supply for the field sweeps consisted of a 6824A Hewlett -
Packard DC Power Supply-Amplifier, driven by a Stanford Research Systems
Model DS335 Synthesized Function Generator. The supply was adjusted to
give an initial output of 2.43 mA through the 215 Oe/amp solenoid in order
to begin the sweep from true zero field.

(iv) After starting RALPH and taking a zero, the field sweep was begun
by setting the function generator ramp time to a value much slower than
either the susceptometer time constant or the magnetization relaxation time,
typically (5 — 25)x10~° Hz. The data acquisition system was set to read the
susceptibility (in volts) and applied current (in volts — measured across a 1 )
standard resistor) at appropriate intervals to collect enough data points for
analysis.

(v) Once the desired maximum field was reached another zero was taken;
then the back-off field was reset, and the sample was warmed in preparation

for the next measurement.
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4.3.3 ‘Butterfly’ Loops

Butterfly loops, so named due to their shape (Figures 5.56 and 5.57) are
actually ‘complete’ field sweeps, with the applied field being swept, using a
saw-toothed waveform from negative to positive, and then back to negative
again. These measurements determine the magnetic ‘hardness’ or coercivity
of the sample, and evaluate the importance of hysteretic effects at different
temperatures. These measurements were by far the least time-consuming
since it was not necessary to warm the sample above T, before each run.
However, it was even more difficult to control the temperature than with
field sweeps, as each individual run took longer to complete, and therefore

required the temperature to remain stable for a greater period of time.

(i) For this type of experiment, it was not necessary to cool in zero field, as
mentioned above. Instead, once the temperature was stabilized, the current
passing through the 215 Oe/amp solenoid was swept through a preliminary
closed loop between £ 1 A before the actual measurement. The coercivity
was then measured by sweeping the sample through the same hysteresis loop.

(31) RALPH was set up in the same manner as for field sweeps, except
that the field range over which data was collected now included both bositive
and negative fields.

(ii1) The next butterfly loop could be recorded as soon as the next tem-

perature of interest was established.
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Chapter 5

Data Analysis and Discussion

5.1 Data Correction

Before any results can be extracted from these raw data, three separate cor-
rection factors must be incorporated. The zero and background adjustments
are required because of the non-ideal characteristics of the sample probe, and
the demagnetization correction results from the finite size/geometrical shape

of the samples used. Each of these aspects will now be discussed in detail.

5.1.1 Zero Correction

As described in the ‘Experimental Methods’ chapter of this thesis, ‘zero read-
ings’ were taken regularly when performing any susceptibility measurements.
The reason this is necessary was to monitor that pbrtion of the signal which
is not due to the sample, but is rather a contribution from the sample probe.

Even though the sensing coils in the susceptometer are counter wound, eddy

currents induced in the copper block (Figure 4.4) will affect the inductance
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of each sensing coil to a different extent. Withdrawing the sample from L,
(Figure 4.5), yields a residual signal which is generated only by the presence
of the copper block. The error introduced by this effect can then be account-
ed for by subtracting these residual ‘zero-susceptibility’ readings from the
‘sample-susceptibility’ measurements.

Since in general, the magnitude of eddy currents depends upon the resis-
tivity of the materials in which they are induced, the above contribution will
be more pronounced at lower temperatures where the resistivity of the cop-
per block will be lower. Furthermore, larger driving fields will also introduce

a greater ‘zero-susceptibility’ signal.
5.1.2 Background Correction

The copper bundle (braid) containing the sample also affects the suscepti-
bility readings even though, ideally, the effect of the braid, which links both
sensing coils, should cancel. However, due to inhomogeneities in the bun-
dle, a diamagnetic contribution of about —0.045 V at 4.2 K results, which
decreases in magnitude with increasing temperature and can be measured
upon removal of the sample from the probe.

For the present measurements, this effect is most significant at low tem-
peratures, where the magnitude of the susceptibility approaches that of the
background correction. A complete temperature sweep in the absence of a
sample in the probe will determine the temperature dependence of the back-

ground susceptibility, which can then be subtracted from the measured signal
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along with the zero correction to obtain the ‘true’ measured susceptibility.

5.1.3 Demagnetizing Correction

The susceptibility obtained by incorporating the background effects is still
not the true susceptibiiity of the sample, because of the finite size of the
FeMn specimen. A magnetized sample possesses uncompensated poles at
its surface, with a distribution depending upon the geometry of the sample.
Taking the specimen to be uniformly magnetized, as is the case for an ellipsoid

(Morrish,1965), results in a uniform internal magnetic field given by
H=H,-H;=H,—NM (5.1)

where H, and H; are the applied and demagnetizing fields respectively, and N
is the shape-dependent demagnetization factor. ! H; < H, for all magnetic
materials except diamagnets, which have a negative susceptibility and are
therefore magnetized in a direction opposite to that of the applied field. The
demagnetization correction is usually negligible in dia- and paramagnets;
however, in the case of ferro- and ferrimagnets, it must be considered.
Although the FeMn pieces used in the present study have a rectangular
shape (Table 4.1), they were approximated by ellipsoids with the principal

axes equalling the sample dimensions, since this is the only shape for which

!For an ‘infinitely’ thin, needle-like sample aligned along the direction of the applied
field, N — 0, whereas for a flat disc with its surface perpendicular to the field direction,
N = 4x. The FeMn specimen studied here are long flat strips, with their longest dimension
parallel to the field direction, and therefore have a very small demagnetization factor (Table
4.1).
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the demagnetization factor can be exactly calculated. Evaluating the appro-
priate elliptic integral (Osborn, 1945), the demagnetization factor for each
sample was calculated.

Once the demagnetization factor is known, the actual, or ‘true’ suscepti-

bility of the sample,

oM
Xt = E—E’ (5.2)
as compared to the measured susceptibility,
oM
Xm = SH. (5.3)

can be calculated. By combining the above two expressions using (5.1), it is

trivial to show that

Xm
A — 4
Xt 1 NXm (5 )

From the above expressi.on it can be seen that the measured susceptibility is

limited to

1
<= .

where X, = -]—{7, or 1 — Nx,, = 0 represents the demagnetization limit at
which the true sample susceptibility diverges (x; — 00).

A final requirement before we can proceed to analyze the data will be to
establish a procedure for evaluating the internal field, H;, given an applied
field, H,. Referring to (5.1) it can be seen that it will be necessary to

determine the magnetization, which can be obtained by integrating (5.2)
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yielding
H;
M(T) = /0 x:(T) - dH:. (5.6)

It follows trivially from (5.2) and (5.3) that this is equivalent to the more

useful expression
Ha
M(T) = [ xa(T) - dH,, (5:7)

which can be approximated numerically using
= 1 :
MJ' = Xmy * Hal + Z(Haku - Hak) : '2'(X7nk+1 +ka) ; 1<7<n-1 (5'8)
k=1
which is simply the trapezoidal rule, where n is the number of data points

collected and j is the data point label. By using the above equation in

conjunction with (5.1), the internal field may be written as
H;; = H,; — NM;. (5.9)

The trapezoidal approximation given by (5.8) results in an overestimation
of the magnetization, but the error becomes negligible if sufficient number of

data points are collected.
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5.2 Zero Field Susceptibility

Before examining the susceptibility versus temperature curves in various ap-
plied fields, it would be interesting to consider the behaviour of the zero
field (I, = 2.43 mA to back off the vertical component of the Earth’s field)
susceptibility for the various samples. It is apparent that the susceptibili-
ty increases sharply with decreasing temperature for all of the samples, as
can be seen in Figure 5.1, thus denoting the paramagnetic to ferromagnetic
phase transition. The nature of the decrease in susceptibility at lower tem-
peratures is not as well understood, and is believed to be either indicative of
another phase transition, or simply due to an increase in coercivity, as will
be discussed in more detail below.

The broad maximum in the intermediate region of the temperature sweeps,
referred to as the Hopkinson peak, or principal maximum is not the result of
critical behaviour, but rather due to ‘technical processes’ (Williams, 1991)
such as domain wall motion. As the temperature decreases, thermal effects
diminish, allowing the relative strength of the spin-orbit coupling to increase,
which in turn may result in greater anisotropy. This would result in the
gradual decrease in susceptibility below the paramagnetic to ferromagnetic
transition, as is observed in the £ = 0.235 and 0.26 samples.

Note that none of the zero field runs reach the demagnetization limit,

unlike some of the previous results published (Salamon et al, 1980). To
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Zero Field Susceptibility (emu/g-Oe)

0.235

0.26

Temperature (K)

Figure 5.1: The zero field a.c. susceptibility, x(H,T) (in emu/g-Oe), correct-
ed for background and demagnetising effects, plotted against temperature (in
K) for the z= 0.235, 0.26, 0.30 and 0.32 samples.
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understand this, recall the equation
H,=H,—-NM,

which can be used to show that

Xi=—Xn
t 1—=Nxnm

with the limitation, y,, < % In other words, at the demagnetization limit:
Xm = -]lg, H; = 0 and H, = NM. For this to be the case in an oscillating
driving field (such as the one used to measure the a.c. susceptibility), the
magnetization must also oscillate with a magnitude specified by AM = -A—]]Viﬂ.
Clearly, the larger the demagnetization factor, N, the smaller the oscillations
that are required. The accurate determination of N is difficult for the long,
thin samples used in this study, but since this quantity is quite small under
these circumstances, an accurate determination is not important. If N is
small, however, a greater amount of coherent rotation and domain wall mo-
tion is needed to satisfy AM = %{%‘1. Therefore, anisotropy effects become
more prevelant, and the demagnetization limit is not as easily reached as it

would be in a sample with large N (Williams, 1991).

5.3 Upper Transition

As described in the experimental section, temperature sweeps were carried
out in various static external biasing fields. The results of these measure-

ments for the different concentrations are shown in Figures 5.2 to 5.5; the
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suppression of the Hopkinson peak amplitude, and reduction in peak tem-
perature in a sufficiently strong magnetic field reveals a set of critical, or
secondary peaks 2. Whereas the Hopkinson peak decreases in amplitude and
temperature as H, is increased, the critical peaks also decrease in height
(although not nearly as quickly as the Hopkinson peak), but move upwards
in temperature (T, > T¢), as illustrated in Figures 5.2, 5.4 and 5.5. The de-
tailed behaviour of the critical peaks are shown in Figures 5.6 to 5.9, which
also show a cross-over line (dashed line - recall Figure 2.8) below which the
behaviour of the susceptibility is field dominated, and above which it is con-
trolled by thermal fluctuations.

The latter can be understood, at least qualitatively, in terms of the fluc-
tuation dissipation theorem (III Kunkel et al, 1988) using the expression

X(H,T) ~ ((S2)? = (7). (5.10)

Considering the high temperature limit (¢ >> k), (S;) — 0 and (S2) —
S(S + 1) in non-zero applied field, giving x(H,T) ~ % (which is simply
Curie’s law, Section 2.3.1), and thus (%Zf) < 0. To understand the behaviour
when A >> t, i.e., in the field dominated regime, consider the approach
to T, from above in finite field, H,. In this situation the magnetization
approaches saturation as the critical temperature is approached, meaning

that the fluctuations, and thus x decreases as T' — T, giving (%%) > 0.

2It should be noted that it is assumed that any contribution to the susceptibility from
the tail of the Hopkinson maximum, i.e. regular contribution is negligible. It is expected
that this assumption is valid for all but the lowest fields.
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Figure 5.2: The a.c. susceptibility, x(H,T) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted versus temperature (in K) for

the z = 0.235 sample. The numbers beside each curve represent the static
biasing field (in Oe).
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X (emu/g-Oe)

Temperature (K)

Figure 5.3: The a.c. susceptibility, x(H,T) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted versus temperature (in K) for
the z = 0.26 sample. The numbers beside each curve represent the static

biasing field (in Oe).
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Figure 5.4: The a.c. susceptibility, x(H,T) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted versus temperature (in K) for
the £ = 0.30 sample. The numbers beside each curve represent the static

biasing field (in Oe).
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Figure 5.5: The a.c. susceptibility, x(H,T) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted versus temperature (in K) for

the z = 0.32 sample. The numbers beside each curve represent the static
biasing field (in Oe).
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Figure 5.6: Critical peak structure for the z = 0.235 sample. The numbers
beside each curve represent the static biasing field (in Oe), and the dotted
line represents the cross-over line, illustrating the relationship, x, ~ .
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Figure 5.7: Critical peak structure for the z = 0.26 sample. The numbers
beside each curve represent the static biasing field (in Oe), and the dotted
line represents the cross-over line, illustrating the relationship, Xp ~ ;7.
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Figure 5.8: Critical peak structure for the z = 0.30 sample. The numbers
beside each curve represent the static biasing field (in Oe), and the dotted
line represents the cross-over line, illustrating the relationship, x, ~ t;7.
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Figure 5.9: Critical peak structure for the z = 0.32 sample. The numbers
beside each curve represent the static biasing field (in Oe), and the dotted
line represents the cross-over line, illustrating the relationship, x, ~ ¢;7.

131




Thus a peak must exist for T’ > T, between the two limiting constraints.

Recalling the discussion in Section 2.4.4; the functional form of the ex-
pression relating the singular component of the susceptibility to the internal
field, H; and the reduced temperature, t = (T'—T,)/T, is given by the scaling
relation

e Hi N 75 H;\

Several relationships derived from the above equation describing the be-
haviour of the critical peaks will now be considered in light of the exper-
imental data collected.

Firstly, from (5.11) the critical isotherm exponent, § can be determined
by plotting x(H;,T,) against H; on a double logarithmic scale to obtain a

straight line with a slope of } — 1 in accordance with the equation
x(Hi, Tp) o« H*Y, (5.12)

where H; is the internal field, T, is the peak temperature, and x(H;,T,) is
the peak susceptibility for a particular field.

The combination v 4+ 8 can be found in a similar manner by plotting ¢,
against H; on a double logarithmic scale, with the justification for this choice

coming from the scaling prediction

_I.-T,
T

t, =

o H;/0+8) (5.13)

c

where T is the critical temperature. (Recall the discussion for (2.98), Section

2.4.4.) However, the above expression contains two unknowns, namely 7T, and
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the combination 4 + 8. To determine the critical temperature, T, is plotted
versus v/ H; (i.e. assume ?—%E = 0.5), and T, is initially estimated from the

intercept of the best-fit line, given by
T, ~ c¢(H;)* +T., (5.14)

where c is some constant. Inserting this 7, into (5.13), a neﬁ value of ;Y:_—ﬂ is
found and used in (5.14) to replace the original estimate of 0.5, which in turn
permits an ‘improved’ T, to be calculated. Adjusting the critical temperature
slightly with each iteration, this procedure is repeated until the two graphs
yield consistent values for T, and ;_—3;—5

A method of finding v by itself, using temperature sweep data involves
combining (5.12) and (5.13), and then using the Widom equality, v = 8(6—1)
to give

Xp(H, 1) ox t,77. (5.15)

Thus, when the logarithm of the peak susceptibility is plotted versus the
logarithm of the reduced peak temperature, the result should be a straight
line with a slope of —+.

Finally, the effective susceptibility exponent, 4*(¢) can be found by plot-
ting the zero field susceptibility versus reduced temperature, (T' > T..) on a
double-logarithmic scale, and then finding the slope of the curve. 4*(¢), also

known as the Kouvel-Fisher susceptibility exponent, is thus defined as:

"(t) = ——————d[lzggim (5.16)
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and represents the point to point, or instantaneous slope of the x(0,T") versus
t plot. Further discussion concerning the ‘expected behaviour’ of the resulting
v*(t) versus t curve will follow below.

The ferromagnetic to paramagnetic transition for the various samples and

the exponents found will now be presented.

5.3.1 Fe;_ Mn, (z =0.235)

The procedure described above was used to find é for the z = 0.235 sample, as
illustrated in Figure 5.10. The best fit line was found using a well established
procedure (Bevington, 1969) and included all of the data points (10 Oe <
H; < 600 Oe) to yield a value for 6 of 3.84 + 0.03. Comparing the exponent
value found experimentally to the 3-dimensional Heisenberg model, it can be
seen that the experimental value does not agree particularly well with the
‘expected’ value of 4.78.

A double logarithmic plot of ¢, versus H;, fit over the range 10 Oe <
H; < 300 Oe (points 1 to 13), along with a plot of T}, versus HYOR) gy
over the same range, gives v + # = 1.7(6) £ 0.1(0) and T, = 260.17 £+ 0.09
K in accordance with (5.13). Note that the points at higher fields were
not included due to the pronounced downward curvature, caused by the
bond disorder present in the sample. The 3D Heisenberg value for v + § is
1.388 + 0.367 = 1.755, which agrees very well with the experimental result.
The plots and corresponding best fit lines are shown in Figures 5.11 and 5.12

respectively.
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Figure 5.10: The critical peak amplitude, x(H,T,) (in emu/g-Oe) plotted
against internal field (in Oe) on a double logarithmic plot for the z = 0.235
sample. The solid line represents the best fit line using all of the data points,
the slope of which gives § = 3.84 + 0.03.
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Figure 5.11: The reduced temperature versus the internal field (in Oe), plot-
ted on a double logarithmic plot for the z = 0.235 sample. The points are
shown with their corresponding errors, which reflect the uncertainty in the
peak temperatures. The solid line represents the best fit line, found over the
field range 10 Oe < H; < 300 Oe, and gives a value for y+ 3 of 1.7(6)40.1(0).
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Figure 5.12: The peak temperature (in K) versus H}/"*? for the z = 0.235
sample, where v 4§ = 1.76 £ 0.10 from the previous figure. The best fit line,
found over the field range 10 Oe < H; < 300 Oe, has an intercept (critical
temperature) of 260.17 £ 0.09 K.
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Comparing Figures 5.10 and 5.11, it is apparent that a unique § value
exists over the entire field range, 10 Oe < H; < 600 Oe, whereas the cross-
over exponent, v + [ was found between 10 Oe and 300 Oe. It is unusual
not to observe a corresponding curvature in the § plot, i.e. have a decreasing
6*(H) with increasing field (Berndt et al, 1995). However, the v + 3 value
of 1.76 £ 0.10 agrees extremely well with the 3D Heisenberg model value of
1.755.

The v exponent, itself, can be found using (5.15), as illustrated in Figure
5.13. The fit is not nearly as good as for the previous figures and yields
values of 1.24 + 0.02 and 1.29 & 0.01 when fields 10 Oe < H; < 300 Oe (as
in the v + @ plot) and 10 Oe < H; < 600 Oe (8 plot range) respectively
are used. Both values are somewhat lower than the 3D Heisenberg value of
1.388. A small reduction of T, (within error) is unable to improve these fits
appreciably.

Returning to the zero field temperature sweep, the temperature depen-
dence of v, i.e. v*(t) can now be determined. A plot of log(x) versus log(¢)
is shown in Figure 5.14 with a ‘high temperature’ (0.093 < ¢t < 0.124) slope
of —1.03 £ 0.39, and a ‘peak’ (0.020 < t < 0.060), or maximum.slope of
—1.80 + 0.03. At high temperatures, the susceptibility is expected to agree
with the Mean Field Theory prediction of 4 = 1, as is indeed the case for
this sample.

The derivative, or local slope of the corresponding In(x) versus In(t) plot
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Figure 5.13: The peak susceptibility (in emu/g-Oe) versus t, = (T, — T¢)/T:
for the £ = 0.235 sample, shown on a double logarithmic plot. The solid line
represents the best fit line over all of the data points (i.e. § plot range) and
gives v = 1.29 & 0.01, whereas the dashed line is the best fit line over 10 Oe
< H; < 300 Oe (v + B plot range) and gives v = 1.24 & 0.02.
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Figure 5.14: The z = 0.235 zero field susceptibility (in emu/g-Oe) plotted
against reduced temperature for T > T, on a double logarithmic plot. The
dotted line at the high temperature end of the graph is the best fit line,
found over the temperature range, 0.093 < t < 0.124, and has a slope of
—1.03 £ 0.39.
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(identical graph to Figure 5.14, different scale) is illustrated in Figure 5.15,
where 7*(t) rises rapidly between 0 < ¢ < 0.03, reaching a maximum of 1.94
at t = 0.031 and then decreases again at higher temperatures, asymptotically
approaching the Mean Field Theory value of 1. The ‘peak’ v value determined
from Figure 5.15 is in fairly good agreement with that determined from
Figure 5.14, the difference being explained by the fact that‘in Figure 5.14,
v = 1.80 £ 0.03 was an average over a number of points (and is therefore
lower), whereas v*(t = tpeqx) = 1.94 is found from the local slope. Notice that
v*(t) approaches zero at small reduced temperatures rather than approaching
the 3D Heisenberg value of 1.388 as ¢t — 0. This is an inevitable consequence
of the zero field susceptibility failing to reach the demagnetization limit, as
previously discussed.

It is also interesting to confirm whether or not the Widom equality, v =

B(6 — 1) is obeyed. This is most easily done by rearranging the latter to get

y= (7+ﬂ25(5_1). (5.17)

The above expression uses the values found for v+ 4 and 8, namely 1.7(6) 4+
0.1(0) and 3.8440.03 respectively, to ‘predict’ a value for v, which can then be
compared to the results obtained using (5.15) and the 4*(¢) plot. It can easily
be shown that (5.17) yields a value of 1.30 £ 0.07, which nearly encompasses
the 3D Heisenberg value, but more importantly, agrees to within error with
the v values found by plotting x, versus ¢, (Figure 5.13). This suggests that

the Widom inequality can be expressed as an equality.

141



1.6 |-
;_ -
1.2
.8 [} | [ | 1 { 1 | 1 } i ) ]
0.00 .02 .04 .06 .08 .10 12

(T-T)T,

Figure 5.15: The effective Kouvel-Fisher susceptibility exponent, y*(z) (5.16)
for z = 0.235 plotted versus temperature.
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5.3.2 Fe;_;Mn, (z =0.26)

Carrying out similar calculations on the data collected for the z = 0.26
sample yields the following results. From the data shown in Figure 5.16 a
value for & of 4.69 £ 0.01 can be found when all of the data points (6 Oe
< H; < 1000 Oe) are used to find the best-fit line. This agrees quite well
with the 3D Heisenberg value of 4.78. As with the z = 0.235 sample, no
curvature is apparent over the field range of the measurements.

The combination v+ 3, along with T, were found, as illustrated in Figures
5.17 and 5.18 to be 1.7(5) £ 0.1(7) and 196.6 £ 0.1 K respectively, using the
field range 8 Oe < H; < 82 Oe (points 2 to 16). The first point was not
used in the calculation as it is substantially lower than the best-fit line. A
possible reason for this is that at low fields, a large regular contribution will
affect the position of the critical peak. The latter two figures display even
more pronounced downward curvature than the corresponding plots for the
z = 0.235 sample, although measurements taken for the z = 0.26 sample
extend to higher fields.

Using the alternate method to find an asymptotic 7 gives values of 1.386+
0.003 and 1.477 % 0.001 when the field ranges 8 Oe < H; < 82 Qe (v +
plot range) and 6 Oe < H; < 1000 Oe (as in the é plot), respectively are |
used. Both of these slopes, along with the data used, are shown in Figure
5.19. These values are in much better agreement with the 3D Heisenberg

value than those found for the x = 0.235 sample, one of them being slightly
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Figure 5.16: The critical peak amplitude, x(H,T,) (in emu/g-Oe) plotted
against internal field (in Oe) on a double logarithmic plot for the z = 0.26
sample. The solid line represents the best fit line using all of the data points,
the slope of which gives é§ = 4.69 £+ 0.01.
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Figure 5.17: The reduced temperature versus the internal field (in Oe), plot-
ted on a double logarithmic plot for the z = 0.26 sample. The points are
shown with their corresponding errors, which reflect the uncertainty in the
peak temperatures. The solid line represents the best fit line, found over the
field range 8 Oe < H; < 82 Oe, and gives a value for 7+ 8 of 1.7(5) £ 0.1(7).

145




T, )

220

215

210 -

205 -

200 -

H.”(YJ'B)

1

Figure 5.18: The peak temperature (in K) versus H}'*#) for the z = 0.26
sample, where 7 + f = 1.75 &+ 0.17 from the previous figure. The best fit
line, found over the field range 8 Oe < H; < 82 Oe, has an intercept (critical
temperature) of 196.6 £ 0.1 K.

146



lower, and the other being somewhat higher.

The effective susceptibility exponent for z = 0.26 can also be found as
before, with the susceptibility versus reduced temperature plot being shown
in Figure 5.20. At higher temperatures, the data does not curve upwards to
approach the Mean Field behaviour as was the case for z = 0.235, suggesting
that data should have been collected to even higher temperétures. In order
to do so however, a larger sample would have been required to increase the
signal to noise ratio to an acceptable level. Otherwise the data would simply
decrease to the ‘background’ level, and not accurately reflect the response of
the sample. Notice also that a high temperature value of v ~ 1 was found for
the z = 0.235 sample, using reduced temperatures in the range 0.093 < ¢ <
0.124, which is much lower than 0.221, the highest reduced temperature in
Figure 5.20. This implies that the temperature at which the short range order
is destroyed, in other words, that at which the Mean Field Theory becomes
valid, depends upon the concentration, . A ‘maximum’ slope can still be
calculated however, and was found to be —1.69+0.05, using the temperature
range, 0.031 <t < 0.079.

Using (5.16), the curve illustrated in Figure 5.21 was obtained, represent-
ing the temperature dependence of 4. The latter achieves a maximum of 1.77
at £ = 0.12, which agrees quite well with the ‘average’ value found above.

Checking the Widom equality using (5.17) yields a value of 1.3(8)+0.1(3)

for 7, which not only agrees very well with the 3D Heisenberg value, but is
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Figure 5.19: The peak susceptibility (in emu/g-Oe) versus t, = (T, — T.)/T
for the £ = 0.26 sample, shown on a double logarithmic plot. The solid line
represents the best fit line over all of the data points (i.e. § plot range) and
gives v = 1.477 £ 0.001, whereas the dashed line is the best fit line over 8 Oe

< H; < 82 Oe (v + B plot range) and gives v = 1.386 & 0.003.
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Figure 5.20: The z = 0.26 zero field susceptibility (in emu/g-Oe) plotted
against reduced temperature for T > T, on a double logarithmic plot.
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Figure 5.21: The effective Kouvel-Fisher susceptibility exponent, y*(t) (5.16)
for z = 0.26, plotted versus temperature.
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also consistent with the value obtained from the v plot, using (5.15). Thus

the Widom inequality can again be expressed as an equality.
5.3.3 Fe;_.Mn, (z =0.30)

Following the same procédures as outlined above, the values for the various
z = 0.30 critical exponents can be found. Using all of the data points (12
Oe < H; < 1000 Oe) shown in Figure 5.22, § was found to be 4.86 =+ 0.02.
This agrees quite well with the 3D Heisenberg value of 4.78, and as with the
previous samples, no curvature is visible, even at the highest fields.

The critical temperature and v+ f were found from Figures 5.23 and 5.24
to equal 118.04+0.2 K and 1.7(5) 4 0.1(3) respectively, where the latter value
agrees excellently with the ‘predicted’ 3D Heisenberg value of 1.755. A field
range, 14 Oe < H; < 85 Oe (points 2 to 12), similar to that of the x = 0.26
sample was used to find the above values; however, the downward curvature
at higher fields is possibly even more pronounced than with the previous two
samples. As before, the first data point was omitted since it deviates visibly
from the best fit line.

Using (5.15) to find ~ gives slopes of —1.31 & 0.02 and —1.53 =+ 0.03 for
the field ranges 12 Oe < H; < 1000 Oe and 14 Oe < H; < 85 Oe respectively.
The first value almost agrees with the theoretical value of 1.388, whereas the
latter number is substantially larger than the 3D Heisenberg value due to
the obvious curvature in the data points, as illustrated in Figure 5.25.

The temperature dependence of the zero field susceptibility on a double
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Figure 5.22: The critical peak amplitude, x(H,T,) (in emu/g-Oe) plotted
against internal field (in Oe) on a double logarithmic plot for the z = 0.30
sample. The solid line represents the best fit line using all of the data points,
the slope of which gives § = 4.86 £ 0.02.
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Figure 5.23: The reduced temperature versus the internal field, plotted on
a double logarithmic plot for the z = 0.30 sample. The points are shown
with their corresponding errors, which reflect the uncertainty in the peak
temperatures. The solid line represents the best fit line, found over the field
range 14 Oe < H; < 85 Oe, and gives a value for v + f of 1.7(5) £ 0.1(3).
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Figure 5.24: The peak temperature (in K) versus H; /O0+8) for the z = 0.30
sample, where v+ 8 = 1.75+0.13 from the previous figure. The best fit line,
found over the field range 14 Oe < H; < 85 Oe, has an intercept (critical
temperature) of 118.0 £ 0.2 K.
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Figure 5.25: The peak susceptibility (in emu/g-Oe) versus t, = (I, — T.)/T.
for the z = 0.30 sample, shown on a double logarithmic plot. The solid line
represents the best fit line over all of the data points (i-e. & plot range) and
gives v = 1.53 £ 0.03, whereas the dashed line is the best fit line over 14 Oe
< H; < 85 Oe (v + B plot range) and gives v = 1.31 =% 0.02.
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logarithmic plot is shown in Figure 5.26. As with the z = 0.26 sample,
the data displays no significant upward curvature, although the slope at
higher temperatures is somewhat less steep than in the range, 0.1 < t < 0.2.
The reasons for this behaviour are the same as before; only additional data
could determine the true high temperature characteristics of the sample. The
maximum slope was found to be —2.74+0.08 using temperatﬁres in the range
0.037 < t < 0.063.

The 4*(t) versus ¢ curve shown in Figure 5.27 peaks at ¢ = 0.043 with
a value of 75, = 3.14. This value is somewhat higher than the maximum
slope found above, as expected.

Applying (5.17) to verify the Widom equality gives v = 1.39 £ 0.10. As
with the other samples, this value is in excellent agreement with the 3D
Heisenberg value, as well as agreeing with the low field gamma found using
(5.15). As before, this implies that the Widom inequality can be written as

an equality.
5.3.4 Fe;_;Mn, (z =0.32)

Finally, analysing the z = 0.32 data, the critical temperature and exponents
for this sample can be determined. From the data illustrated in Figure 5.28,
6 was found to be 6.99 & 0.07 when all of the data points are used ( 90 Oe
< H; <1000 Oe), which is substantially (46%) higher than the 3d Heisenberg
value. The large error bars at high fields are a result of the noise in the signal,

which played a larger role for this sample than with the others because of
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Figure 5.26: The z = 0.30 zero field susceptibility (in emu/g-Oe) plotted
against reduced temperature for T > T, on a double logarithmic plot.
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Figure 5.27: The effective Kouvel-Fisher susceptibility exponent, y*(t) (5.16)
for z = 0.30, plotted versus temperature (in K).
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the small signal size. This could have been avoided had more sample been
available.

Using the field range 90 Oe < H; < 300 Oe (points 1 to 12), similar
to that used for the z = 0.235 sample, the following values were obtained
from Figures 5.29 and 5.30; v + 8 = 1.7(5) £ 0.2(8) and T, = 78.2 £ 0.9 K.
The curvature appearing at high fields is not quite as pronounced as in the
previous two samples, although there seems to much more scatter among the
data points. As before, the result for the v+  combination agrees extremely
well with the ‘theoretical’ value.

Using a x, versus {, plot, as shown in Figure 5.31, v was found to be
1.54 £ 0.02 and 1.58 £ 0.02 for the ranges 90 Oe < H; < 1000 Oe and 90
Oe < H; < 300 Oe respectively. These are both considerably higher than
the 3D Heisenberg value, which can possibly be attributed to the fact that
sufficiently low fields (such as those used for the other samples) were not
used. This is because of the inability to observe critical peaks at lower fields
due to the anisotropy present in this sample.

The temperature dependence for the zero field susceptibility on a double
logarithmic plot is illustrated in Figure 5.32. Considering the behaviour of
the previous two samples, the absence of pronounced upward curvature is
not surprising, enabling only the ‘peak’ susceptibility to be found. Using
temperatures in the range 0.556 < t < 0.666 gives an average ‘peak’ slope of
—2.13 £ 0.02.
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Figure 5.28: The critical peak amplitude, x(H,T,) (in emu/g-Oe) plotted
against internal field (in Oe) on a double logarithmic plot for the z = 0.32
sample. The solid line represents the best fit line using all of the data points,
the slope of which gives § = 6.99 & 0.07.
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Figure 5.29: The reduced temperature versus the internal field (in Oe), plot-
ted on a double logarithmic plot for the z = 0.32 sample. The points are
shown with their corresponding errors, which reflect the uncertainty in the
peak temperatures. The solid line represents the best fit line, found over the
field range 90 Oe < H; < 300 Oe, and gives a value for v+ 8 of 1.7(5)£0.2(8).
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Figure 5.30: The peak temperature (in K) versus H; /040) for the z = 0.32
sample, where v+ f = 1.75 1+ 0.28 from the previous figure. The best fit line,
found over the field range 90 Oe < H; < 300 Oe, has an intercept (critical
temperature) of 78.2 + 0.9 K.
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Figure 5.31: The peak susceptibility (in emu/g-Oe) versus t, = (T, — T..)/T.
for the z = 0.32 sample, shown on a double logarithmic scale. The solid line
represents the best fit line over all of the data points (i.e. § plot range) and
gives v = 1.54 &+ 0.02, whereas the dashed line is the best fit line over 90 Oe
< H; < 300 Oe (-y + S plot range) and gives v = 1.58 &+ 0.02.
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Figure 5.32: The z = 0.32 zero field susceptibility (in emu/g-Oe) plotted
against reduced temperature for ' > T, on a double logarithmic scale.
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The corresponding 4*(t) plot is shown in Figure 5.33 and can be seen to
peak at a value of 2.21 at ¢ = 0.560, which is in good agreement with the
value found above.

Checking whether or not the Widom equality is valid for this sample gives
a - value of 1.50 + 0.24 using (5.17). The large error can be attributed to
the large error in 4 + B, which is due to the scatter in the da.fa points. Even
though the above quantity agrees with the 3D Heisenberg value of 1.388
essentially because of its large error, it is also in reasonably good agreement
with the two v values found from the x, versus ¢, plot (Figure 5.31), which

once again confirms the validity of the Widom equality.
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Figure 5.33: The effective Kouvel-Fisher susceptibility exponent, y*(t) (5.16)
for £ = 0.32, plotted versus temperature (in K).
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5.4 Discussion: Ferromagnetic Transition

Using conventional scaling predictions, the presence of a paramagnetic to
ferromagnetic transition has been confirmed in four of the Fe;_,Mn, alloys
studied here (z = 0.235;0.26, 0.30,0.32). A summary of the critical temper-
atures and exponents found is listed in Table 5.1, and will now be examined
and compared to previous experimental results where available.

Figure 5.34 shows a plot of T, against composition, z, incorporating
both the present data along with previous measurements which use a va-
riety of experimental methods. The slope of the fit to all the available data
is % = —1700 K/at.%. The large scatter in the T, values obtained could
be as a result of compositional variations of as little as 0.1%. Note that
differences in composition for samples with the same nominal values were
reported (Geohegan et al, 1981) to be as large as 0.04%, which is clearly not
negligible, and indicates that one factor causing the scatter could be com-
positional variations. Critical temperatures in Figure 5.34 were determined
using magnetization measurements by Mirebeau et al, 1990, Yeshurun et al,
1981, and Manheimer et al, 1983. The T, values obtained from suscepti-
bility measurements by Geohegan et al, 1981 were simply determined from
the point of maximum slope of the susceptibility versus temperature curve
(inflection point), as opposed to the much more rigorous analysis performed
here.

The critical exponents, 6 and v (Table 5.1) can now be discussed, as well
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Figure 5.34: Critical temperature (in K) versus concentration, z.
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Table 5.1: Critical temperature and exponents summary

Concentration z = 0.235 z =10.26 z =0.30 z =0.32
é 3.84 +0.03 4.69 £+ 0.01 4.86 1 0.02 | 6.99 + 0.07
Range (Oe) |10 < H; < 600 | 6 < H; < 1000 | 12 < H; < 1000 | 95 < H; < 1000
v+ 8 1.7(6) £0.1(0) | 1.7(5)%).1(7) | 1.7(5) £0.1(3) | 1.7(5) £ 0.2(8)
Range (Oe) | 10< H; <300 | 8< H; <82 14 < H; <85 | 95< H; <295
T. (K) 260.17 £ 0.09 196.6 +£ 0.1 118.0 £ 0.2 78.2+0.9
Range (Oe) | 10< H; <300 | 8< H; <82 14 < H; <8 | 95< H; <295
At 1.29 4 0.01 1.477 £ 0.001 1.53 £ 0.03 1.54 £ 0.02
Range (Oe) |10 < H; <600 | 6 < H; < 1000 | 12 < H; < 1000 | 95 < H; < 1000
7t 1.24 £0.02 1.386 + 0.003 1.31 £ 0.02 1.58 4 0.02
Range (Oe) |10 < H; <300 | 8< H; <82 14 < H; <8 | 95< H; <295
~* (tpeak) 1.94 1.77 3.14 2.21
tpeak 0.031 0.119 0.043 0.560

{ From x, versus ¢, plots — Figures 5.13, 5.19, 5.25 and 5.31.
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as compared to the values found by other researchers, which are listed in
Tables 3.1 and 3.2. Considering first the critical isotherm exponent, §; the
present values for z = 0.26 and 0.30 agree very well with the 3D Heisenberg
model prediction (4.78), but the value at £ = 0.32 is considerably higher,
possibly because of the large coercivity present at this concentration - con-
sequently this sample has a large regular contribution whichAis inadequately
suppressed by the applied field, thus resulting in larger values for the critical
peak susceptibility. For z = 0.235, a value of 3.84 was obtained here, which
is also somewhat unusual, noting that this concentration is farthest from the
multicritical point and is only weakly frustrated, and is therefore expected
to be least affected by bond disorder. Comparison with previous results is
somewhat difficult, as no results for this concentration are listed. Examining
the closest concentration, x = 0.20, yields é = 5.1 £ 0.03 (Table 3.1) and 3.5
(Table 3.2), from magnetization and susceptibility measurements respective-
ly. As already discussed in Section 3.2.2, the latter value appears to be an
average over low and high field data, which would account for the fact that
it is much less than the Heisenberg model prediction of 4.78. The data col-
lected here displays no curvature (Figure 5.10), but the value is nevertheless
quite low, being about halfway between the two values listed above.

For the exponent v, the two values found here for z = 0.235, 1.24 +
0.02 (fit over 10 Oe < H; < 300 Oe) and 1.29 £ 0.01 (fit over 10 Oe <

H; < 600 Oe), are both quite different from the z = 0.20 values given in
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Table 3.1, namely, 1.64 (found using the Widom equality) and 1.45. The
latter value (Manheimer et al, 1983) is in somewhat better agreement with
the 3D Heisenberg prediction (1.388) than the value found here, but the
Yeshurun et al value differs considerably. There is clearly considerable scatter
in these values, as was the case for the critical temperature. Unfortunately,
no previous results for the critical exponents exist for z = 0.26; the next
highest concentration for which previous measurements exist is £ = 0.30.
The two v values found here for z = 0.30, 1.53 4 0.03 (fit over 12 Oe < H; <
100 Oe) and 1.3140.02 (fit over 14 Oe < H; < 85 Oe), are quite different from
each other due to the curvature in the 4 plot (Figure 5.25). Magnetization
measurements give v = 1.60 (found using the Widom equality), and 1.42 from
the top and bottom of Table 3.1 respectively. There is again considerable
scatter in the - values, with none of the above values in agreement with any
other. Finally, v for the 2 = 0.32 sample was found to be 1.54 = 0.02 (fit
over 95 Oe < H; < 1000 Oe) and 1.58 & 0.02 (fit over 95 Oe < H; < 295
Oe), which are both lower than the 1.72 (found using the Widom equality)
determined by Yeshurun for z = 0.32, but agree very well with the value of
1.55, found for £ = 0.35 by Manheimer. All of these values are substantially
higher than the 3D Heisenberg value of 1.388.

Note that for the first three of the four concentrations examined in this
study, the low-field v values are either in good agreement with the Heisenberg

value or slightly lower. Only for the z = 0.32 sample do we get a + as large
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as 1.58.; it should be recalled that the coercivity/regular contribution to
the susceptibility is substantially larger for this particular sample, which
could affect these results significantly. All previous measurements of 4 are
substantially higher than the Heisenberg value and likely do not represent
asymptotic values; rather they are (average) values that are all influenced by
the presence of bond disorder to some extent. Figures 5.15, 5.21, 5.27 and
5.33 show the effective Kouvel-Fisher susceptibility exponent 4* as a function
of temperature. Note that the value of 4™ rises as the reduced temperature
vincreases, reaches a maximum value, 7*(fyeqk), at a reduced temperature,
tpeak, and then falls monotonically to the mean field value of one. This initial
rise is dué to the presence of bond disorder (see Section 2.3.4). The effective
exponent does not actually approach the Heisenberg value of 1.388 at small ¢
because the susceptibility is unable to reach the demagnetizing limit because
of the small demagnetizing factor. Kaul (Kaul, 1985) has reported that this
temperature dependence of the Kouvel Fisher effective exponent broadens,
¥*(tpeak) increases and the peak position, tpeqx, shifts up in temperature with
increasing bond disorder. This behaviour was confirmed recently by Wang
for a series of CeFeRu intermetallic compounds (Wang et al, 1995). Here
the agreement is not as clear, since although the bond disorder generally
increases with concentration, z, ¥*({yeak) reaches a maximum at z = 0.30
iand then decreases for £ = 0.32; in addition, ?,..x generally increases with z,

except for a rather low value for z = 0.30.
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5.5 Lower Transition

Previous studies (see Sections 2.3.4 and 2.3.5) suggest the presence of a sec-
ond phase transition below the paramagnetic-ferromagnetic phase trgnsition,
with a critical temperafure, Ty, coinciding with the drop in zero field sus-
ceptibility at T' ~ 28,34,55 and 56 K, respectively, for the concentrations
z = 0.235,0.26,0.30 and 0.32, as illustrated in Figure 5.1. However, to verify
the presence of a true phase transition, a more rigorous analysis must be
undertaken.

In an applied field the susceptibility, for all of the samples measured, dis-
plays at least one additional peak at a temperature below the ferromagnetic-
paramagnetic peak. It has been suggested by some (Geohegan et al, 1981)
that these features indicate re-entrant behaviour, or in other words, the pres-
ence of a ferromagnetic-spin glass transition (identified by the higher of the
two low-temperature peaks, in the case of the z = 0.235 and 0.26 samples),
where the paramagnetic - ferromagnetic phase boundary is now replaced by
a similar line, known as the Gabay-Toulouse, or GT line.

Furthermore, a third peak appears in the presence of sufficiently large ap-
plied fields for £ = 0.235 and 0.26, which can be more clearly seen in Figures
5.35 and 5.49, and may represent the transition from weak to strong irre-
versibility, delineated by the d’Almeida-Thouless, or AT line (de Almeida et
at, 1978). It should be noted that although the vector spin mean field models

do not predict the double peaked structure observed at low temperatures in
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the z = 0.235 and 0.26 sample, it would be worthwhile to investigate if these
two features coincide with the aforementioned transitions.

To study the characteristics of the GT transition in light of the experi-
mental data collected, recall (2.67). From the latter equation, it is evident

that the peak temperature plotted versus H,, represented by the equation,

TGT(Ha) = \/é%cHa -+ TGT(O). (518)
gives a straight line with a slope of %ﬂc = —0.437, where c is a constant

defined in (2.68), and an intercept equal to the Gabay-Toulouse critical tem-
perature, Tgr(0). As an additional check to verify that the data is truly
linear, log(Tar(0) — Ter(H.)) versus log(H,) can be plotted. A slope of 1 for
the resulting graph would verify that Tg7(0) — Ter(H,) ~ H? with n = 1
accurately describes the data. Since the mean field vector model does not
specify the nature of any feature revealing the presence of the ferromagnetic
to spin glass transition, the location of both low temperature peaks and the
resulting intermediate trough (just below the proposed ‘GT peaks’) will be
investigated for GT behaviour in the z = 0.235 and 0.26 samples.

As for the cross-over from weak to strong irreversibility, recall (2.69).
Using a similar technique to that described previously for obtaining T, and
v + B (Section 5.3), both T47(0) and n can be determined.

As discussed in Section 2.3.5, the presence of a phase transition can
also be manifested by a peak (technically a divergence) in the non-linear,

field-dependent component of the susceptibility. Using the technique de-
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scribed there, analysis will be carried out to determine whether or not such

a peak/anomaly occurs for the individual samples studied here.

5.5.1 Fe;_;Mn, (z =0.235)

Recalling the discussion above for the Gabay-Toulouse line, the theory can
now be compared with the data collected. The temperatures at which the

broad peaks illustrated in Figure 5.35 occur (35 K < T < 60 K) were found

and plotted versus applied field, H,, as illustrated in Figure 5.36. The large .
error bars reflect the difficulty in accurately determining the peak positions.
A straight line through the data points gives an intercept of 65.8 + 2.4 K,
thereby identifying T¢7(0), in accordance with (5.18). Performing the cor-
responding check recommended following the latter equation, the resulting
double logarithmic plot in Figure 5.37 yields a slope of 0.95 + 0.30, which
agrees with the value of n = 1 proposed by the theory. However, the large
error in both the temperature and exponent value (caused by the large error
in the data), prevent a conclusive statement from being made about whether
or not the data displays GT behaviour, based solely upon this analysis. Com-
paring the experimental slope of —4000 500 to the theoretical slope of -0.44
indicates there is clearly no agreement, as the two values differ by four orders
of magnitude! This suggests that the peaks are most likely not GT peaks,
and arise due to some other effect.

The behaviour of the peak/trough features seen in the low temperature

region of Figure 5.35, and shown more clearly in Figure 5.39 can also be
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Figure 5.35: The a.c. susceptibility x(H,T) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted versus temperature (in K) for
the z = 0.235 sample. The numbers beside each curve represent the static
biasing field (in Oe).
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Figure 5.36: The proposed GT transition temperature (in K) (from peak)
plotted versus the applied field (in Oe) for the z = 0.235 sample. The

intercept of the best fit line gives Ter(0) = 65.8 + 2.4 K, and the slope is
~4000 + 500.
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Figure 5.37: The logarithm of Tg7(0) — Ter(H,) (in K) for the z = 0.235
sample plotted versus the logarithm of the applied field (in Oe). The slope
of the best fit line gives n = 0.9 £ 0.3.
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analyzed for AT and GT behaviour respectively. Considering first the trough
visible in the temperature range, 11 K < T < 15 K; the Tirougn versus H,
plot illustrated in Figure 5.38 gives a new estimate for Tgr(0) of 15.4 + 0.2
K, and the check procedure gives n = 1.1 £ 0.3. Although the error in this
second estimate of Tg7(0) is reasonable, the large error in n, again prevents
a conclusion from being drawn concerning the applicability of the GT model,
considering only this result. The slope in Figure 5.39 is —450 % 50, which is
still three orders of magnitude larger than the expected value of -0.44, and
suggests that the troughs also do not display GT behaviour.

Since an analysis of the trough structure gives an approximate straight
line (Figure 5.39), this feature will not be reinvestigated for AT behaviour,
for which it is predicted that the corresponding temperature versus field
plot has substantial curvature. The lowest temperature peaks (6 K < T <
14 K) will however by analyzed, and the peak temperatures versus field
are plotted in Figure 5.40. The best fit curve has an intercept of 21 K,
thereby giving T4r(0). A plot of T4r(0) — Tar(H,) versus H, has a slope
of 0.63 £ 0.03 using only the first four data points. This agrees quite well
with the theoretical value of 2/3, which would support the preserice of an
AT transition. However, an AT transition is unlikely if a GT transition was
absent at higher temperatures. Notice also that if all data points are used, a
slope of 0.340 £ 0.003 is found, which is quite different from 2/3.

Finally, the behaviour of the non-linear component of the susceptibility
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Figure 5.38: The a.c. susceptibility x(H,T) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted against temperature (in K)
for the z = 0.235 sample. The numbers beside each curve represent the static

biasing field (in Oe).
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Figure 5.39: The proposed GT transition temperature (in K) (from trough)
plotted versus the applied field (in Oe) for the z = 0.235 sample. The
intercept of the best fit line gives Ter(0) = 15.4 & 0.2 K, and the slope is

—450 % 50.
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Figure 5.40: The proposed AT transition temperature (in K) (from lowest
peak) plotted versus the applied field (in Oe) for the z = 0.235 sample. The
intercept of the best fit curve gives T4r(0) = 21 K.
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Figure 5.41: The logarithm of Ts7(0) — Tar(H,) (in K) for the z = 0.235
sample plotted versus the logarithm of the applied field (in Oe). The slope of
the best fit line is 0.6340.03 when the first four data points are used (dashed
line) and 0.340 £ 0.003 when all of the data points are used (not shown)
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can be examined using the procedure described above. Before continuing
though, it would be useful to consider several typical plots of x(H,t) versus
H?, as illustrated in Figures 5.42 to 5.45. The plot of x(H,t) versus H?
shown in Figure 5.45 is considered to be ‘normal’ with its immediate drop-
off as the field rises from zero; however, as the temperature decreases and the
coercive field * begins to increase (Figure 5.48), a ‘plateau’.appea,rs at low
fields. Examining Figures 5.42 to 5.44 it can be seen that this effect becomes
more pronounced as the temperature decreases, and the coercivity continues
to increase. This creates the problem of selecting the most appropriate linear
fit for the low field data; it was decided to determine a,(T') using the higher
field data beyond that affected by the coercive field, as illustrated in Figures
5.42 to 5.44. Whether or not this is the best technique for determining the
slope is not absolutely certain; however, it does provide an upper limit. The
resulting slopes found from all of the data collected are shown in Figure 5.46.

As can be seen, a(T') increases as the temperature increases, without dis-
playing any anomaly or peak in the vicinity of the shoulder appearing in the
temperature dependent susceptibility data (T" = 28 K). This reinforces the
earlier conclusion that there is no true phase transition here, even though it
would seem otherwise when considering the zero field temperature dependent
data alone.

The question now arises as to the origin of the low temperature peak

3A detailed explanation of how the coercive field was determined is given in Section
5.5.2.

184




X (emu/g-Oe)

0.12

UL L)

0.10

0.08

0.06

0.04

0.02

0.00

H ] | | I 1 ¥ 1 T l 1 ] ] 1 I | | T | I 1 1 i i ' 1 | H 1 I
e

_O 02 1 | 1 1 l L 1 Il i ‘ ] [ 1 K J I i 1 (] l 1 i i A1 l 1 i [l i
0 10 20 30 40 50

H’ (10° Oe®)

Figure 5.42: The a.c. susceptibility x(H,T) (in emu/g-Oe) at T = 4.2 K,
corrected for background and demagnetizing effects, plotted versus H? (in
Oe€?) for the z = 0.235 sample. The dashed line represents the best fit line
for the data above that affected by the coercive field.
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Figure 5.43: The a.c. susceptibility x(H,T) (in emu/g-Oe) at T = 10.0 K,
corrected for background and demagnetizing effects, plotted versus H? (in
Oe?) for the z = 0.235 sample. The dashed line represents the best fit line
for the data above that affected by the coercive field.
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Figure 5.44: The a.c. susceptibility x(H,T) (in emu/g-Oe) at T' = 35.3 K,
corrected for background and demagnetizing effects, plotted versus H? (in
Oe?) for the z = 0.235 sample. The dashed line represents the best fit line
for the data above that affected by the coercive field.
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Figure 5.45: The a.c. susceptibility x(H,T) (in emu/g-Oe) at T = 50.9 K,
corrected for background and demagnetizing effects, plotted versus H? (in
Oe?) for the z = 0.235 sample.
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Figure 5.46: Non-linear coefficient, a5(T) (in emu/g-Oe®) versus temperature
(in K) for the z = 0.235 sample.
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observed in the temperature sweeps. Looking at Figure 5.47 (for more de-
tail, see Figure 5.48), it can be seen that the decrease in coercivity with
increasing temperature is accompanied by an increase in susceptibility. Con-
versely this suggests the possibility that the decrease in a.c. susceptibility
may simply be a consequence of the increasing coercive field, and thus the
increasing difficulty in rotating the spins, moving domain Walls, and other
thermally activated blocking processes. This possibility could be explored,
using for instance frequency dependent measurements. Unfortunately, our
susceptometer operates at only two frequencies, 2400 and 714 Hz, with a

considerably lower signal to noise ratio at 714 Hz.

5.5.2 Fe;_,Mn, (z = 0.26)

The analysis of the £ = 0.26 sample is very similar to that of the previous
sample, due to the same general shape of the respective temperature sweeps,
as illustrated in Figure 5.49. Analyzing the first set of broad peaks ( 35 K
< T < 65 K) appearing below the paramagnetic-ferromagnetic transition,
the resulting plot of Tpe.x versus H,, shown in Figure 5.50, gives a value for
Ter(0) of 65.8 £ 0.4 K and a value for n of 0.9 £ 0.3. Although the error in
Ter(0) is reasonable, the error in 7, due to the scatter of the data points, is
too large to decide if GT behaviour is exhibited. The slope of Figure 5.50
was found to be —2060 £ 50, which is four orders of magnitude larger than
the theoretical value of —0.44, not unlike the 2 = 0.235 result. This suggests

that the peaks observed are not GT peaks.
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Figure 5.47: Coercive field (in Oe) for the z = 0.235 sample plotted versus
temperature (in K) (dashed line), along with the zero field a.c. susceptibility
x(H,T) (in emu/g-Oe) corrected for background and demagnetizing effects
plotted versus temperature (in K) (points).
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Figure 5.48: Coercive field (in Oe) for the z = 0.235 sample plotted ver-
sus temperature (in K). The insert shows the coercive field (in Oe) for the
temperature range 30 K < T < 70 K.

192



%, (emu/g-Oe)

I 29
i 35
4
] 40
3
I - 47
2
i 56
1k 69
i _ 87
- \ 109
] 134
00 . | . 1 . | , 1
0 20 40 60 80

Temperature (K)

Figure 5.49: The a.c. susceptibility x(H,T) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted versus temperature (in K) for

the £ = 0.26 sample. The numbers beside each curve represent the static
biasing field (in Oe).
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Figure 5.50: The proposed GT transition temperature (in K) (from peak)
plotted versus the applied field (in Oe) for the z = 0.26 sample. The intercept
of the best fit line gives Ter(0) = 65.8 £2.4 K, and the slope is —2060 + 50.
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Examining the trough structure in Figure 5.51 and plotting T, trough VETSUS
H, gives the graph shown in Figure 5.52. The latter has an intercept of
20.0 £ 0.3 K and the corresponding check gives an exponent, n = 1.0 £ 0.3.
As before, the error in the calculated value of n is simply too large to make a
conclusive statement without further investigation. The slope of Figure 5.52
is —320 £40. Although this is much smaller than 2060 (from Figure 5.50), it
is still three orders of magnitude larger than -0.44, thus suggesting that the
trough structure is also not a result of the GT transition.

Proceeding to analyze the lowest temperature (6 K < T' < 18 K) peaks
shown in Figure 5.51, the resulting plot of Tpe.x versus H, can be seen in
Figure 5.53. The best-fit curve intersects the T AT-Peak aXis at 28 K, which
will be taken to be T4r(0). Using this value to generate the data in Figure
5.54, the latter plot has a slope of 0.365 & 0.002, when all of the data points
are included. This agrees well with the value of 0.340 found for z = 0.235,
but not with the expected value of 2/3, thereby reinforcing the earlier claim
that the lowest set of peaks is not a manifestation of the AT transition.

Considering the behaviour of the non-linear component of the suscepti-
bility, az(T") was found as described above, and the resulting graph can be
seen in Figure 5.55. As with z = 0.235, there is no anomaly or peak apparent
in the data, other than the one occurring at the PM-FM transition. Along
with the other results for this sample, this would lead to the conclusion that

there is most likely no true FM-SG phase transition.
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Figure 5.51: The a.c. susceptibility x(H,T) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted versus temperature (in K) for
the z = 0.26 sample. The numbers beside each curve represent the static

biasing field (in Oe).
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Figure 5.52: The proposed GT transition temperature (in K) (from trough)
plotted versus the applied field (in Oe) for the z = 0.26 sample. The intercept
of the best fit line gives Ter(0) = 20.0 + 0.3 K, and the slope is —320 + 40.
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Figure 5.53: The proposed AT transition temperature (in K) (from lowest
peak) plotted versus the applied field (in Oe) for the = = 0.26 sample. The
intercept of the best fit curve gives T4r(0) = 28 K.
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Figure 5.54: The logarithm of T4r(0) — Tar(H.) (in K) for the z = 0.26
sample plotted versus the logarithm of the applied field (in Oe). The slope
of the best fit line is 0.365+0.002 when all of the data points are used (dashed
line).
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Figure 5.55: Non-linear coefficient, a2(T") (in emu/g-Oe?) versus temperature
(in K) for the z = 0.26 sample.
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The origin of the low temperature peaks observed in the temperature
sweep data is most likely due to the decrease in coercive field, similar to the
z = 0.235 sample. The coercivity can be found using the ‘butterfly sweeps’
introduced in Section 4.3.3. Two representative butterflies are shown in
Figures 5.56 and 5.57, where the first of the two is a complete butterfly, and
the latter is a partial butterfly, showing only the essential peaks. The reason
why the butterfly sweeps are a measure of the coercivity can be understood
by realizing that the susceptibility versus field measurements represent the
slope of the corresponding M versus H hysteresis loop. The greatest slope
in the hysteresis loop occurs when H = +H, resulting in the two peaks in

the butterfly loop. Thus
H.= %(Field difference between susceptibility peaks) (5.19)

can easily be understood. Although not shown here, the shape of the H,
versus T, plot for the z = 0.26 sample is similar to that for the z = 0.235

sample shown in Figure 5.48.

5.5.3 Fe;_;Mn, (z = 0.30)

The data for the z = 0.30 sample differs from the previous two lower concen-
tration samples in that the additional low temperature peak/trough structure
is absent here (Figure 5.58). In sufficiently strong fields, a broad peak still
appears below the paramagnetic-ferromagnetic transition, which can be an-

alyzed for GT behaviour, using the same procedure as before. The resulting
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Figure 5.56: Complete butterfly loop: susceptibility (in emu/g-Oe) versus
field (in Oe) for the z = 0.26 sample, at 4.2 K.
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Figure 5.57: Partial butterfly loop: susceptibility (in emu/g-Oe) versus field
(in Oe) for the z = 0.26 sample, at 77 K.
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plot, shown in Figure 5.59 gives Tor(0) = 52.6 & 0.7 and an exponent value
of n = 0.9+ 0.3. As with the previous samples, the error is simply too large
to make a conclusive statement, concerning whether or not GT behaviour is
displayed, based only upon the above results. The slope of Figure 5.59 was
found to be —930 £ 90, which is considerably smaller than the value for the
previous two samples, but is still three orders of magnitude larger than the
theoretical result of -0.44.

The behaviour of the non-linear component of the susceptibility was an-
alyzed, and the results can be seen in Figure 5.60. Unlike the z = 0.235 and
0.26 samples, a small shoulder occurs in the vicinity of the low temperature
drop-off in the susceptibility (T z'55 K).

In order to verify that this feature is not simply an artifact of the fitting
procedure, a completely independent analysis was done using the temper-
ature sweeps illustrated in Figure 5.57. By interpolating the temperature
sweeps at various fixed temperatures, susceptibility versus H? curves similar
to those illustrated in Figures 5.42 to 5.46, were obtained, albeit with far
fewer data points. The magnetization, and therefore the internal fields were
found by integrating the interpolated susceptibilities at a given temperature
from zero up to its particular field using the trapezoidal rule (see Section
5.1.3). The initial slopes of these x versus H? plots derived from tempera-
ture sweeps also give the a3(T") coefficients. The temperature dependence of

the ay(T') coefficients obtained in this manner is shown in Figure 5.61 and is
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Figure 5.58: The a.c. susceptibility x(H,T) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted versus temperature (in K) for

the z = 0.30 sample. The numbers beside each curve represent the static
biasing field (in Oe).
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Figure 5.59: The proposed GT transition peak temperature (in K) plotted
versus the applied field (in Oe) for the z = 0.30 sample. The intercept of the
best fit line gives Tg7(0) = 52.6 £ 0.7 K, and the slope is —930 & 90.
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Figure 5.60: Non-linear coefficient, a;(T') (in emu/g-Oe®) versus temperature
(in K) for the z = 0.30 sample (from field sweeps).
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in excellent agreement with the non-linear data obtained from field sweeps.

Finally, considering the coercive field, the drop in coercivity does not
coincide with the zero field low-temperature shoulder (Figure 5.62). The
susceptibility has already dropped before H, begins to rise, suggesting that
the behaviour of the coercive field is not solely responsible for the drop in the
susceptibility. A more detailed plot of the coercive field versus temperature

can be seen in Figure 5.63.
5.5.4 Fe;_ Mn, (z =0.32)

Examination of the temperature sweeps illustrated in Figure 5.64, for the
predicted GT behaviour of the low temperature peaks, yields, when plotting
the peak temperature versus H,, data that displays distinct curvature, as
can be seen in Figure 5.64, and unlike the equivalent plots obtained for the
other compositions. In comparing the latter graph to Figure 5.36 (z = 0.235,
30 Oe < H, < 700 Oe), Figure 5.50 (z = 0.26, 29 Oe < H, < 134 Oe) and
Figure 5.59 (z = 0.30, 25 Oe < H, < 100 Oe), it can be seen that the latter
three figures consist of data taken over a much smaller field range than Figure
5.65. This raises the possibility that perhaps the data for the compositions
z = 0.235,0.26 and 0.30 would also exhibit similar curvature had more data
been collected at higher fields. Should this be the case, it would at the very
least indicate that the quantitative predictions of the behaviour of the GT

line by (Dubiel et al, 1987) are not confirmed by experiment.
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Figure 5.61: Non-linear coefficient, a2(T') (in emu/g-Oe®) versus temperature
(in K) for the £ = 0.30 sample (from temperature sweeps).
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Figure 5.62: Coercive field (in Oe) for the z = 0.30 sample plotted versus
temperature (in K) (points), along with the zero field a.c. susceptibility
x(H,T) (in emu/g-Oe) corrected for background and demagnetizing effects
plotted versus temperature (in K) (solid line).
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Figure 5.63: Coercive field (in Oe) for the z = 0.30 sample plotted versus
temperature (in K).
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Figure 5.64: The a.c. susceptibility x(H,T) (in emu/g-Oe), corrected for

background and demagnetizing effects, plotted versus temperature (in K) for
the z = 0.32 sample. The numbers beside each curve represent the static
biasing field (in Oe). Note that the data has been smoothed for clarity of

presentation.
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Figure 5.64: The proposed GT transition peak temperature (in K) plotted
versus the applied field (in Oe) for the z = 0.32 sample.
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Proceeding to analyze the behaviour of the non-linear component of the
susceptibility, a plot of a»(T’), obtained from field sweeps, versus temperature
is shown in Figure 5.66. For this sample, there is a well defined peak in the
temperature dependence of a2(T') in the vicinity of the low temperature drop-
off of the zero field susceptibility (T ~ 56 K). However, a;(T') does not .show a
peak at T, as is expected and as was the case for all of the pfevious samples.
It was thought at first, that this may simply be due to an error in the
thermometry, i.e. the ‘anomaly’ was simply the ferromagnetic-paramagnetic
peak, shifted down in temperature. However, this would require an error
in the temperature of about 20 K, which is unreasonably large, and highly
unlikely, given our estimated error in the thermometry of +0.3 K. The other
possibility is that the peak at T, is simply much smaller than the peak at T
and is therefore obscured.

An investigation of the az(T') coeflicients from the temperature sweep
data yields a triple peaked structure, as can be seen in Figure 5.67 with the
main peak in good agreement with that obtained from field sweeps. This
result suggests that the peak in a;(T") at T is simply obscured in the field
sweep measurements and the temperature sweep measurements are somewhat
more sensitive. The high temperature peak in Figure 5.67 is at about 76 K,
compared to T, = 78.2 + 0.09 K, also in acceptable agreement. The middle
peak is possibly due to the regular contribution to the susceptibility, which

reaches a maximum at the Hopkinson peak.
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Figure 5.66: Non-linear coefficient, az(T') (in emu/g-Oe?) versus temperature
(in K) for the z = 0.32 sample (from field sweeps).
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Figure 5.67: Non-linear coefficient, a2(T") (in emu/g-Oe®) versus temperature
(in K) for the z = 0.32 sample (from {emperature sweeps).
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As with the £ = 0.30 sample, the coercive field drop does not correlate
with the temperature at which the rise in zero field susceptibility is observed,
which again suggests that the rise in susceptibility is not caused by the drop
in H.. This can be seen in Figure 5.68, and a more detailed plot of the

coercivity can be seen in Figure 5.69.

5.6 Discussion: Re-entrant Transition

There are several factors which would contribute to the lack of success in
confirming the presence of a phase transition of the predictions of the mean
field vector model concerning the GT and AT transitions. Firstly, the model
relies on several assumptions whicH are not necessarily upheld in physical sys-
tems. For instance, infinite-range interactions are assumed for GT behaviour
to occur.

Discrepancies between theoretical predictions and experimental results
have been reported by other researchers, especially in regards to the prefac-
tor, ¢ (2.68), which has often been found to be an order of magnitude larger
than predicted in other systems. It should also be noted that ‘c’ depends
upon the specific system being studied, a factor not incofporated in (2.68).
Furthermore, it must be remembered that considerable ambiguity was found
in the present results, preventing a conclusive statement from being made
concerning possible AT and GT lines. Clearly, improved theories and addi-

tional experimental investigation is required before the ferromagnetic to spin
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Figure 5.68: Coercive field (in Oe) for the £ = 0.32 sample plotted versus
temperature (in K) (points), along with the zero field a.c. susceptibility

x(H,T) (in emu/g-Oe) corrected for background and demagnetizing effects
plotted versus temperature (in K) (solid line).
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Figure 5.69: Coercive field (in Oe) for the z = 0.32 sample plotted versus
temperature (in K).
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glass transition is understood.

Considering the results of the non-linear analysis; although theory pre-
dicts a divergence in a(T') at a re-entrant transition, only a small peak is
observed experimentally for z = 0.30 with a much larger peak for z = 0.32.
The anomaly observed here, however, is clearly weaker than Ising model
predictions, possibly because the transverse spin freezing responsible for the
anomaly may be only weakly coupled to the measured longitudinal response.
It is also possible that finite frequency measurements are insensitive to the full
spectrum of critical fluctuations as the freezing temperature is approached
in particular from below (critical slowing down); the use of finite frequency
measurements would then underestimate this coefficient close to the freezing
temperature. Finally, above the freezing temperature, thermally activated
blocking processes such as domain wall motion may obscure the non-linear
response. Nevertheless, the measured a2(T) data does exhibit a distinct
anomaly near the vicinity of the drop-off in the zero ﬁeld'susceptibility,
and is strong evidence for the existence of a true re-entrant transition for
the z = 0.30 and 0.32 alloys. No anomaly and therefore no evidence for a
re-entrant transition is observed for the £ = 0.23 and 0.26 alloys.

In light of neutron depolarization measurements by Mirebeau et al, 1990,
which indicated that samples in the concentration range, 0.22 < z < 0.26
were weakly frustrated, with a domain size which did not vary with tem-

perature, even at the lowest temperatures, this evidence would suggest the
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absence of a phase transition. On the other hand, the samples z = 0.30
and 0.32 were found to be strongly frustrated, with a decreased domain size,
implying the presence of a new phase. These data are consistent with the
presence of a re-entrant phase transition, thereby supporting the evidence

from the non-linear analysis.

5.7 Spin Glass

Finally, one last sample, with a concentration of z = 0.41 was investigated.
The resulting susceptibility versus temperature plot is illustrated in Figure
5.70, where it can be seen that the susceptibility is now several orders of
magnitude smaller than for any of the previous samples. The sharp cusp at
about 36 K and low susceptibility (Xpeor = 1.9x1073 emu/g-Oe) are the iden-
tifying features for a spin glass, as described in Section 2.3.4, and illustrated
in Figure 3.11 for the z = 0.40 sample. Geohegan (Table 3.2) found that
Tsq = 42 K for the latter concentration, which seems to be consistent with

the value found here, considering the slight differences in composition.
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Figure 5.70: The zero field a.c. susceptibility, x(H,T) (in emu/g-Oe), cor-
rected for background and demagnetising effects, plotted against temperature
(in K) for the z= 0.41 sample.
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Chapter 6

Conclusion

The analysis of detailed measurements of the field and temperature depen-
dent susceptibility of a series of (Fe;—,Mn, )75P16BsAls amorphous alloys con-
firms the occurrence of a paramagrietic to ferromagnetic phase transition with
near Heisenberg model exponents in the vicinity of the critical point for the
concentrations r = 0.235, 0.26, 0.30 and 0.32. The presence of considerable
magnetic disorder becomes apparent away from the critical point. The sam-
ple with composition z = 0.41 displays the classic behaviour of a spin glass,
a susceptibility reduced by several orders of magnitude and a cusp-shaped
peak.

The zero field susceptibility for the compositions z = 0.235 to 0.32 dis-
plays features which are characteristic with re-entrant behaviour; a rapid
increase in the susceptibility with decreasing temperature in the vicinity of
the paramagnetic to ferromagnetic transition followed by a temperature in-

dependent plateau region which is not demagnetizing limited, and finally
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an abrupt decrease in the susceptibility at the proposed re-entrant phase
transition.

However, the low temperature features fail to satisfy the predictions of
mean field vector spin models. The results found from AT and GT analysis
proved inconclusive, likely due to unsatisfied assumptions and other limi-
tations of the theory, in particular, its failure to identify specific physical
features manifesting the AT and GT transitions. A non-linear analysis of
the leading field dependent term in the susceptibility was used to locate the
presence of a re-entrant phase boundary. Although the anomalies observed
for z = 0.30 and 0.32 do not diverge (as predicted by the Ising mean field
model but not unlike those observed in other re-entrant systems), this may
be due to limitations imposed by the finite frequency at which the mea-
surements were carried out and the complications associated with transverse
spin freezing which might couple only weakly to the longitudinal response.
Nevertheless, the anomaly is a quite well defined shoulder for the z = 0.30
sample, and a strong peak for z = 0.32. The behaviour of the non-linear
component of the susceptibility, along with previous neutron depolarization
results, suggest that the z = 0.30 and 0.32 samples are, indeed, re-entrant.

The zero field behaviour of the = 0.235 and 0.26 samples might be
interpreted to indicate that these samples are also re-entrant, but the non-
linear analysis gives no indication of a low-temperature anomaly, at the very

least emphasizing the need for more rigorous analysis techniques in the study
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of the ferromagnetic to spin glass transition, as opposed to simple inspection
of the zero field behaviour. Indeed, on the basis of the behaviour of x(H,T)
alone - specifically the presence of a very small, weakly temperature depen-
dent non-linear susceptibility - would suggest that an explanation for the
behaviour of these weakly frustrated samples be sought in terms of other
processes, possibly thermally activated blocking processes.

Combining the results of all of the present data, a revised phase diagram
shown in Figure 6.1 can be constructed. The phase diagram by Mirebeau
shown in Figure 3.1, is qualitatively quite similar, but differs in the exact
location of the various phase boundaries. The most pronounced difference
lies in the location of the FM-SG line, which goes to zero much more abruptly
in Figure 6.1 than in Figure 3.1 Clearly small changes in concentration can
dramatically alter the magnetic properties of a sample. However, the present
phase diagram (Figure 6.1) lacks considerable detail along certain boundaries
(dashed lines). Further investigation, with a greater number of samples with
appropriate concentrations is needed to complete the phase diagram.

Recalling the variations in the results reported by different investigators,
specifically as related to the critical exponents and temperatures, further
theoretical development and experimental work is clearly required before the
magnetic properties of FeMn are completely understood, especially concern-

ing the low-temperature transition.
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Figure 6.1: Revised FeMn phase diagram.
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Appendix

The RKKY (Rudermann, Kittel, Kondo, Yoshida) model is applicable
for solids consisting of a dilute solution of magnetic ions in a nonmagnetic
host metal. Although the magnetic ions may not be adjacent to each other,
they interact via an indirect exchange interaction which is mediated by the
conduction electrons in the host material. The spatial dependence of the
conduction band polarization near one of the magnetic ions is illustrated

below.
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Figure Al:Polarization of a free electron gas in the neighbourhood of a point
magnetic moment located at the origin r = 0, according to the RKKY theory.
The horizontal axis is 2kpr, where kr is the wave vector on the Fermi sphere.
(Kittel, 1976)
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