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Abstract

A system described as 're-entrant' displays sequential magnetic phase tran-

sitions with a paramagnetic to ferromagnetic transition followed by a fer-

romagnetic to spin glass transition at lower temperatures. The zero field

susceptibility for such a sample characteristically displays a sharp rise in the

susceptibility as the paramagnetic to ferromagnetic transition is approached

from above, which is followed by a plateau as the temperature is decreased,

and finally a sharp drop in the susceptibility, which is often taken as marking

the re-entrant phase boundary. As part of a detailed study of the 're-entrant'

amorphous alloys (Fe1-"Mn")zsProBoAIe with r :0.235,0.26, 0.30, 0.32 and

0.41, the power law predictions of the scaling theory were used to analyze

the field and temperature dependent a.c. susceptibility in the vicinity of the

paramagnetic to ferromagnetic transition; critical temperatures were deter-

mined, along with the critical exponents ó, 7 and the cross-over exponent,

'l + P, which were found to have values consistent with the Heisenberg mod-

el predictions, with the influence of bond disorder evident away from the

critical point. The lower candidate transition was investigated using both

non-linear analysis (based on a mean field Ising model prediction that the

coefficient of the leading field-dependent contribution to the susceptibility,

az(T), should diverge as the freezing temperature, T¡, is approached from

below) and the interpretation of the low temperature features in terms of the

Gabay-Toulouse (GT) and d'Almeida-Thouless (AT) lines predicted by the



mean field vector model. Both procedures failed to confirm the presence of

a lower phase transition for the x : 0.235 and 0.26 samples, implying that

the features observed in the zero field susceptibility must be a manifesta-

tion of other mechanisms, possibly thermally activated blocking processes.

Likewise, the GT and AT analysis was unable to confirm the existence of a

low temperature phase transition for the ø : 0.30 and 0.32 samples; how-

ever, non-linear analysis, which is believed to be a more powerful technique

at this time, revealed a distinct, but clearly non-divergent anomaly in the

az(T) versus temperature plots for the latter two concentrations, providing

strong evidence, when considered along with previous neutron depolarization

studies, that these two samples are indeed re-entrant. A modified magnetic

phase diagram will be presented incorporating these new results.

Iil
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Chapter 1

fntroduction

The study of critical phenomena has provided insight into the behaviour of

many physical systems in the vicinity of their phase transitions. Theories

describing the properties of materials as they change from one equilibrium

state to another have been developed to include liquid-gas, superconductor-

normal, ferroelectric and magnetic transitions, amongst a host of others.

Of specific interest here are magnetic transitions, where the term 'critical

phenomena' is applied to the thermodynamic behaviour of a system near its

critical temperature undergoing a second order phase transition, or in some

instances, a first order phase transition t. The study of critical phenomena

has developed along two distinct branches, the first of which attempts to
lln Eh¡enfest's cln.qsification scheme, the presence of a phase transition is characterized

by a discontinuity in the ¿tà derivative of the Gibhs function, G where the order of the
transition is taken to equal the smallest value of ¿ for which the discontinuity appea.rs.
The transition from the paramagnetic to the ferromagnetic state represents a second order
phase transition, in this sense, whereas ¡þs ¡¡¡nsition from the ferromagnetic to the antifer-
romagnetic state as in, for example, the ra¡e earth intermetallic compound Ce(Fe2-"M")
(Ali et al, 1992), whe¡e M is a transition metal substituted for Fe, represents a first order
phase transition.



develop models describing in detail the interactions between magnetic mo-

ments. Using this approach, critical exponents describing the behaviour of

thermodynamic properties of the system near its phase transition can be

calculated. The appea! of using these critical exponents lies in the strik-

ing similarities that often exist between them for many physical systems,

be they fluid, superconducting or magnetic, even though the systems may

have interaction mechanisms/ranges or critical temperatures which are quite

different.

This universality is investigated by a concept introduced in the mid

1960's, known as the static scaling hypothesis, which encompasses the sec-

ond branch of the study of critical phenomena by exploring the relationship

between the critical exponents rather than the exponents themselves. Since

this aspect of the theory is model independent, its results can be applied to

magnetic and non-magnetic systems alike. Furthe¡more, this hypothesis, also

referred to as the homogeneous function approach provides valuable insights

into possible forms for the magnetic equation of state.

In recent years, systems displaying're-entrant'behaviour, i.e., having se-

quential phase transitions, have received considerable attention. This type

of behaviour occurs in a sample, which over some composition range is para-

magnetic (PM) at high temperatures, becomes ferromagnetic (FM) at T" as

the temperature is lowered (obeying the well established scaling relations

described in Section 2.4), and then're-enters'a (transverse) spin glass (SG)



phase at afreezing temperature, T¡, as the temperature continues to be de-

creased. The magnetic disorde¡ in such systems, which is responsible for

this type of behaviour, is characterizedby the ratio, 4, between the first and

second moments of the exchange bond distribution, i.e. the mean, å and

width, j, which is used to model site disorder, thus q - i.lj. According to

the Sherrington-Kirkpatrick (SK) model, sequential phase transitions such

as those just described occur for 1 ( r¡ < 1.5, pure spin glass behaviour oc-

curs for r¡ < l, and a single paramagnetic to ferromagnetic (PM-FM) phase

transition takes place for 4 > 1.5. For alloys, 7 is often correlated to the

magnetic impurity concentration.

The PM-FM transition is well understood; however, the nature of the

potential FM-SG transition is the subject of on-going experimental and the-

oretical investigation and debate, as no universally agreed upon theory de-

scribing the characteristics of these interesting and unusual materials and the

nature of their ground states has yet been found, although a number of the-

ories have been proposed. An extension of the Sherrington and Kirkpatrick

model (Sherrington et al, 1975), namely the vector spin models discussed

in Chapter 2, suggest that the lower transition involves a transverse spin

glass phase coexisting wiih longitudinal ferromagnetic order at a tempera-

ttre, T67 (Gabay et al, 1981), followed by a cross-over from weak to strong

irreversibility at an even lower temperature,T¡7 (de Almeida et al, 1978).

This type of behaviour tvas first proposed for AuFe (Coles et al, 1978),



probably first confirmed in PdFeMn (II Kunkel et al, 1988; Verbeck et al,

1978) and also observed in amorphous systems such as FeZr (Ma et al, 1991;

Ryan et al, 1987; Kaul, 1987; Rhyne et al, 1988). Re-entrant behaviour is

also believed to occur in systems with competing ferromagnetic and antifer-

romagnetic interactions (Mirebeau et al, 1990; Manheimer et al, 1983), such

as those in (Fe1-,Mn")75P1586413 (henceforth referred to as FeMn). There is

a great deal of motivation for considering the amorphous form of FeMn with

some of the major reasons being as follows: (Salamon et al, 1980; Yeshurun

et al, 1981)

(i) Amorphous systems are not subject to the compositional inhomo-

geneities, due to metallurgical constraints, often occurring in crystalline ma-

terials which can result in a magnetic response that 'mimics'that observed in

true re-entrants systems, eg. NiMn (Kunkel et al, 1991). By manufacturing

the samples using the melt spinning technique, which will be discussed in

Chapter 4, the liquid state of the material is quenched in, thus preventing

clustering or crystallization.

(ii) The samples can be prepared for any value of ø without deviating

from the amorphous phase in which the alloy exists.

(iii) Crystal-field and magnetocrystalline anisotropy effects are random

in amorphous materials, and lattice imperfections or grain boundaries along

which magnetic ions can precipitate, or domain wall pinning could occur, are

absent.



(iv) Furthermore, it is believed by some researchers (Salamon et al, 1980;

Yeshurun et al, 1981) that FeMn provides a physical realization of the bond-

random model for a quenched magnetic system since the local moments of

Fe and Mn have nearly the same spin.

The first three points listed above apply to any amorphous system, where-

as (iv) may or may not be true for other materials, depending upon their

composition.

Some discrepancies exist among the results published in the literature

on the FeMn system, especially concerning the details of the supposed 're-

entrant' spin glass phase. It is the purpose of this work to examine, in greater

detail than has been done before, the nature of the ferromagnetic-spin glass

'transition', and attempt to determine whether or not FeMn is re-entrant

over some composition range or whether the behaviour observed is due to

other mechanisms, such as a temperature dependent magnetic coercivity.

The next chapter will include a summary of relevant background material,

which will be followed by a review of previous experimental results in Chapter

3. Chapter 4 will provide a description of the experimental apparatus, as

well as details about the different types of measurements performed. The

data and analysis is presented in Chapter 5, along with a discussion and a.

comparison to the previous results reviewed in Chapter 3. Chapter 6 states

the conclusions that can be made based on the present work on the FeMn

system and the discussion presented in Chapter 5.



Chapter 2

Background

Magnetic Ordering2.I
2.L.1 Ferro- and Antiferromagnetic Systems

The magnetic moments in materials, when not aligned/ordered in any reg-

ular fashion are said to exhibit paramagnetic behaviour, with the simplest

theories of paramagnetism neglecting any interactions between the magnetic

moments. However, there exist also substances exhibiting long range order,

such as ferromagnets and antiferromagnets; the models describing the latter

behaviour must take into account the coupling between moments to correctly

describe the properties of these materials.

Ferromagnets are characte¡ized by a ground state in which the electron-

ic moments are aligned parallel to each other below a certain critical tem-

perature, ?", whereas in antiferromagnets the moments are arranged in an

antiparallel fashion, resulting in zero net magnetization. Above their critical

temperatures, thermal agitation causes these materials to assume a disor-



dered (paramagnetic) state, with the

temperature drops below I again.

fðl fsr¡e¡1¿9¡s1

<r> = i,ã'," o

I

.Hr>=i|',tto

ordered state reappearing when the

(öl p.....nn.t

<1.1 >= 0

<r4l>= o

lcl Spin 6lass

<l.l >= 0

.l.l'tt o

Figure 2.1: An illustration of the difference between (a) a ferromagnet below
?i (b) a paramagnet and (c) a spin glass below T"n; the choice of the order
parameter q --< M2 > fo¡ the latter is made apparent. (Williams, 1991)

2.L.2 Spin Glass Systems

In the early 1970's, a totally neril type of ordering, unlike any other encoun-

tered before was discovered by Cannella and Mydosh (Cannella et a1,,7972)

in polycrystalline A"Fe (in which a fraction of the (non-magnetic) Au sites

are replaced substitutionally by moment bearing Fe atoms, so that the 'spins'

(i.e. Fe atoms) in the system are distributed at random over the lattice sites).

tl'mktt o
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The long range order present in ferromagnets and antiferromagnets is absent

in these systems; however, they display a'freezing transition'from a param-

agnetic state in which the spins (moments) are randomly oriented and free

to change their direction to one where the spins are randomly arranged but

frozen. as illustrated in Figure 2.1(c).

Although the debate as to whether this magnetic structure represents a

genuinely new phase or simply consists of a non-equilibrium state has not

yet been completely resolved, there exists strong experimental evidence in

some systems to support the case for a phase transition. This includes the

divergence of the non-linear field dependent susceptibility at a temperature

?"n, in addition to the observation of a sharp peak (cusp) in the zero field ac

susceptibility. This is the main point of contention in this area of magnetism,

and if a phase transition indeed exists, additional questions then arise as to

the nature of the order parameter. This topic, and the related theories will

be further discussed in Section 2.3.4

2.2 Critical-Point Exponents

Before examining the various theories that attempt to describe the detailed

behaviour of materials in the vicinity of a phase transition, it would be useful

to first examine the so-called critical-point exponents which characterize the

functional (power-law) behaviour of quantities such as the magnetization

and susceptibility in the critical region. This requires selecting a quantity,



known as the order parameter, which is non-zero only in the ordered state

of the material. For ferromagnetic systems, this requirement is fulfitled by

the magnetization, M which is a measure of the degree of alignment of the

magnetic moments in a sample.

2.2.t Critical-Point Exponent Definition

In order to understand more clearly the behaviour of the various quantities in

question, it would be useful to depict the relationship between the magnetic

field, .É/, the magnetization, M and the temperature, ?. The diagrams in

Figure 2.2 are analogous to the familiar P pT diagrams describing the liquid-

gas transition, with .F/ being equivalent to pressure, and M to density. (As

I/ increases in a ferromagnetic material, the magnetization increases, just

like the density of a gas rises as the pressure is increased.)

The relationships in Figure 2.2 may be combined into one three-dimensional

diagram as illustrated in Figure2.3, displaying simultaneously the connection

between the magnetic field, the magnetization, and the temperature.

To understand the principles behind critical exponents, consider firstly a

general function,

f (r) : Ax"(l * Bsb + "') (2.1)

representing a state function such as the magnetization or the susceptibility

near the transition point, where c is taken to be the appropriate state pa-

rameter. These include f/, the applied field and f, the reduced temperature,



(a)

(c)

Figure 2.2: (a) Projection of the H MT surface onto the MT plane. (b)
Isothermal cross-sections of the H MT surface. (c) projection of the H MT
surface onto the HT plane. (Stanley, lg7l)

(b)

ì\o stable
st¿tes in

T. T.

T' T.
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Figure 2.3: Surface representing the equation of state for a magnetic system
undergoing a second-order phase transition at zero field (If - 0). The surface
is symmetric under the reversal M - -M, the lower half is not shown.
(Huang, 1987)
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given by

t- T -7" (2.2)

For convenience, t = t will be used for the ensuing discussion, although the

following comments are equally valid for x : H.

The critical-point exponents, 'À' are then defined according to

T"

(2.3)

providing /(t) is positive and continuous in the vicinity of small ú. In the

Iimit I -r 0, /(l) simplifies to

À=limryA
t+0* ìn f

f (t) - At"

which yields, following (2.3) that

À: a.

(2.4)

(2.5)

It is important to realize at this point that the critical exponent for t > 0

may not necessarily equal the critical exponent for ú < 0, which will be

henceforth denoted as À'. However, according to many models the primed

and unprimed exponents are equal, and are therefore often written in the

unprimed form. In the event that À : 0, the behaviour of /(t) is not uniquely

characterized, and may possess a logarithmic divergence as can be seen when

considering

ln(lnú)
hm --#=t+0* In ú

11
tlim rFt = lim ir+o* i t*o+ ln ú

t2

- 0. (2.6)



However, /(t) with À - 0 may equally well vary continuously through 7", or

represent a finite discontinuity or cusp (eg. f þ) - A - Bt") at the critical

temperature.

2.2.2 Critical-Point Exponents, a, 8.,7 and, 6

Referring to the above equations and Figures 2.2 and 2.3, the exponents

describing the static behaviour of a magnetic system can now be defined.

There exist a great number of these describing the various aspects of critical

behaviour; however, only the four most common exponents will be considered

here.

Zero-Field Magnetization Exponent, B

The firsi of these is the zero-field magnetization exponent, B, which describes

the spontaneous magnetization of the system, namely

M,(T)lM"(0) : B(-ùP1 +'..),

where M.(T) represents the magnetization of a single-domain ferromagnet

in zero applied field near the transition temperature. M"(0) is incorporated

into the above equation so that the proportionality constant B changes only

slightly between systems. The zero-field magnetization, or order parameter

exponent, B can then be expressed as

(2.7)

É=,[pffi

13
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Zero-Field Isothermal Susceptibility Exponents 7 and 7,

Similarly, by studying Figure 2.2 (b) it can be deduced that the susceptibility

at constant temperature,

/ au\xr7\æ), (2.e)

can be expressed as

w lwo _ [ c'1-t¡-','(t +...) lT <T.,.F/:0]
^rt /\r I c(¿)--Y(l +:..) IT > 7", t/ : 0]

(2.10)

with ¡i denoting the susceptibility of a paramagnetic system (i.e. non -

interacting moments). Furthermore, it is important to note that even though

¡ diverges in the limit ? - T", the critical-point exponents describing the

transition approached from below or above, 7' and 7 respectively, are not

necessarily the same. (The minus sign in front of the latter two exponents

in (2.10) insures that both 7'and ? > 0.)

Critical Isotherm Exponent, ó

Referring to Figure 2.2 (b) once again, a third critical-point exponent can be

defined according to

(2.1i )

where Ho : kT"f mo with rno representing the magnetic moment per spin.

As can be seen, ó characterizes the curvature of the critical isotherm.

14



Constant-Field Specific Heat Exponents, c and c'

For magnetic systems, the expression for the specific heat is very similar to

that for the susceptibility, and is given by

(2.\2)

The behaviour predicted by simple models for the specific heat is often un-

physical even though P,7 and 6 may be approximately correct. Thus the

comparison between the experimental and predicted values for the two expo-

nents in (2.12) plays a particularly significant role in determining the validity

of a new theory.

Overview

For temperatures sufficiently close to ?i the correction terms in the above

equations become negligible, giving the set of expressions listed in Table 2.1.

At this point it would not be unjustified to ask why so much effort has

been put into finding relationships that characterize the behaviour of a sub-

stance only near a phase transition instead of trying to find general formulae

that describe the material's properties at all temperatures. There are sev-

eral reasons for this, the first of which is that near a transition point, the

first term in a power series expansion in field or temperature of a function

describing say the magnetization, susceptibility or other response function

would be dominant. The corresponding exponent is ¡elatively easy to com-

pute, as will be shown below, and therefore at least some information rboni

r1.. _ Í aeÐ-"'(l + ...) lT < 7", H : olvlt - \ ,lt-"1t + ...) ÍT > 7,, Í/ : 0].

15



the functional form of the quantity in question can be deduced. Furthermore,

the value of the critical-point exponents will provide iusight into the nature

of the magnetic order of the system.

Secondly, relationships arising from fundamental thermodynamic and

statistical mechanical concepts exist between the critical exponents that are

independent of the system being considered, be it magnetic, fluid or other-

wise. Finally, striking similarities often exist between the critical exponents

for many physical systems, be they fluid, superconducting or magnetic, even

though the systems may have interaction mechanisms/ranges or critical tem-

peratures which are quite different.

Some of the more common inequalities between the critical-point expo-

nents introduced above are listed in Table 2.2. The inequalities often appear

as equalities, thereby being consistent with the predictions of scaling theory

(as will be shown in Section 2.4); however rigorous proofs exist only for the

inequalities (Stanley, 1971, Chapter 4).

2.3 Theories of Magnetic Ordering

Within the last century many models have been proposed, attempting to un-

derstand the behaviour of magnetic materials. The main difference between

the various theories lies in how they describe the interactions between the

magnetic moments.

16



Table 2.1: Critical-point exponent definitions for magnetic systems

Exponent Definition Conditions Quantity

M - (-t)Þ ¿-r0-, H--0, M+0 zero-fi eld magnetization

XT - t-1' ¿-r0+, H=0, M+0 zero-field isothermal
susceptibility

Xr-t1 ú-r0-, H=0, M:0 zero-field isothermal
susceptibility

M - ¡¡t¡d f=0, H#0, M+0 critical isotherm

Cu - (-t)-'' ú+0-,, H:0, M-0 specific heat at constant
magnetic field

CH - t-o ú-*0*, H=0, M:0 specific heat at constant
magnetic field

77



Table 2.2: Bxponent Inequalities

Rushbrooke a'*2þ*l)2

Griffiths a'*þ(6+1)>2

Griffiths l(6 + 1) > (2 - a')(ó - 1)

Widom t') ß(6 - l\' _, \ '

Fisher (2-q)r>'l

18



2.3.L Classical Mean Field Theory

The classical mean field or Weiss theory (Weiss, 1907) successfully accounts

for such properties of ferromagnetism as the field and temperature depen-

dent spontaneous magnetization and magnetic susceptibility. However, it

provides little insight into the details of the interactions between the mag-

netic moments. The fundamental hypothesis of this model states that these

interactions generate an effective internal molecular field, f/*, proportional

to the average magnetization, namely

H^ - 
^M,,

(2.13)

with the proportionality constant, À being referred to as the molecular field

constant. Statistically, this is equivalent to assuming that each of the mo-

ments (spins) responds to the field independently (White, 1970). Neglecting

the dipole-dipole and demagnetization fields, which are usually much smaller

than the molecular field, the effective field is of the form

H"!!: H"+ 
^M(T,H),

(2.14)

where I/. is the applied fieÌd.

To obtain an estimate of the magnitude of H^, assume a not untypical

Curie temperature on the order of 103 K ([(iron) = 1043 K). In this case

atoms with a dipole moment of one Bohr magneton would have an internal

magnetic field of approximately

psH^ È kT"

19



H* ry 107 Oe.

This is much larger than the majority of fields capable of being generated in

the laboratory, thereby giving an indication of the strength of the coupling

between moments in a ferromagnet.

The Hamiltonian for an N atom system in the mean field theory is then

given by 
N

'll : -7tta Ð ¡, .H"Ít. (2.1b)
i=1

where J¿ is the total angular momentum of lhe ith atom, and

J;.H :m;H (*r: -J,-J * 1,...,0,.. .,J -7,J). (2.16)

Using the above equation, the partition function, Z, defrned to be

Z:D"-Ei/kr
i

is ¡elated to the Gibbs free energy by

(2.17)

G(7, H) : -kTln Z. (2. i 8)

Using the following thermodynamic relationship

M(r,H): - (#),, (2.1e)

the magnetization can be expressed as

M(r,H) : NkrW; e.2o)

_ M"B¡lþpBJlkT)(H"+ 
^M(T,¡/))1, 

(2.21)



where Mo represents the maximum magnetization,

Mo 3 M(T - 0, f/ : 0) : NJgFa (2.22)

and By(ø) is the Brillouin function, defined as

B¡(,)='-#*th(?#,) - **rh (#") tz zri

with

E : 7pail"y lkT. (2.24)

Due to the appearance of M - M(T,I/) on both sides of (2.21), computer

or graphical techniques are required to determine the spontaneous magneti-

zalion at a given temperature.

Figure 2.4: Illustration of a graphical method for the determination of the
spontaneous (I/ = 0) magpetization at a temperature ?. (Morrish, 1965)

1
M(T)w
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In the above diagram fl represents the ferromagnetic Curie temperature.

Notice lhat M : 0 is the only solution above 1", whereas for 7 < T" M + 0

is also permitted, indicating that below the critical temperature spontaneous

magnetization exists in a ferromagnet. Obviously, during the transition to

the paramagnetic state, occurring at T :4, the magnetization disappears.

Note that when ø ( 1, i.e. when the magnetization is small, the Brillouin

function becomes

Bt(*):#.-# 2J2 +2J +1 a

-r" 

--L

30J2 ù ¡ "'t (2.25)

and in the limit r -- 0, the slope of the Brillouin function approaches ("/ *
l) l(3J). Comparing the latter to the slope of the straight line, kT f N Àg2 ¡frJ2

evaluated al T : [, provides a connection between the Curie temperature

and the molecular field constant, namely,

(2.26)

where C is known as the Curie constant. From the above expression it can be

seen that as the molecular field constant approaches zero, f also decreases,

which is reasonable since À : 0 represents a (non-interacting) paramagnetic

system that does not have a critical temperature. Conversely, increasing À

increases the Curie temperature, since a larger value for the molecular field

constant indicates stronger ferromagnetic coupling, which requires greater

thermal agitation to destroy.

22



Mean Field Theory Critical Exponents

The critical point exponents predicted by this model can be found relatively

easily using the derived expression for the magnetization, (2.27), as will now

be demonstrated.

Magnetization Exponent, B

Since the region of interest is at temperatures near the critical tempera-

ture where the magnetization approaches zero, the small argument expansion

of the Brillouin function (2.25) can be used. Taking H": 0, and inserting

the latter into the expression for the magnetization (2.21) yields

M: (¡t^J+1rl_21_+2J+1 ./_.J+r \
\ "T-') - soJ, *' \'' JJ ') + "'

= (yJ+1 \ 3J2+(J+t)2(¡t^!_*t,,"\'t"i,)- *ffi\*. u,) +... (2.27)

where , : (gpeJlkf)QM), and combining with (2.26) gives upon solving

for Mf M"

'= : [* .^ 
({,1tì',.= ]''' (!\ (-t\t/2, (2.28)

^r"- LTF¡;1ryl \r"/ \-¿r

where t : T. In comparing this result to the expected power law depen-

dence of the magnetization, M - (-t)P, it can clearly be seen that B :112.

Susceptibility Exponent, 1

In order to find the susceptibility exponent, consider the expression for the

magnetization given above, (2.27) retaining only the first term and inserting

a : ff-çH" + 
^M). 

The resulting expression is

u - Nf p'zt-? +t) (H,+ 
^M),

(2.2e)



which becomes

¡4:% (2.30)T-T"
upon incorporating (2.26). Now differentiating with respect to Ho yields

xr:(#),:f r:+ (2.31)

In comparing this result to the expected po\rver law dependence, XT - t-a,

it is obvious that 1 :7 in the mean field theory.

Criticøl Isotherm Exponent, 6

The critical isotherm exponent can be readily determined by evaluating

x at T",, namely

*(r"): 

æ.r.ËJr^(: .'+l ,-Ng2p2'!Jr+1)^ e.rz)

and substituting into (2.27)

ru = (nr.+) -!ffi#(* *+)' (2BB)

For small applied fields

Ho:*ffi^*" (2.84)

and from the expected power law dependence, M - ¡y¡a, it is apparent that

6: 3.
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Mean Field Theory: Advantages and Limitations

The beauty and elegance of the mean field theory lies in its simplicity - a

closed form solution exists and can be found without wading through pages

of laborious calculations. Furthermore, it fulfils the most fundamental re-

quirement for a proposed theory of magnetic ordering, namely, it predicts a

phase transition. Despite the fact that its predictions are not in quantitative

agreement with experimentally observed phase transitions, qualitatively the

mean field theory describes almost all available results, in particular when

a mean field solution of the Sherrington-Kirkpatrick model (Section 2.3.4)

is used to incorporate the effects of magnetic site disorder into calculations.

In any event, the latter also provides a convenient starting point for more

realistic, if not improved descriptions of magnetic systems.

However, the MFT fails to incorporate several important features that be-

come especially crucial in the vicinity of a phase transition. Near the critical

point, the MFT assumes that the only significant configuration is one of uni-

form spin density, which may be true at other temperatures, but is certainly

invalid near 7}, where experimental evidence indicates that fluctuations in

the spin density become prevalent.

Naturally, omitting such important aspects of the physical system results

in incorrect values for the asymptotic critical point exponents, i.e. exponent

values close to [, where critica] fluctuations are largest. (See Table 2.3) The

MFT predicts Murr x ¡t/2, whereas experimental measurements, such as
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those for PdFe (1.  at.% Fe in Pd, Wang et al, 1992; Kaul, 1985) indicate

that M - ¿0'365 in the limit ? - TJ. similarly, this theory suggests that

Xupr - t-7, but the susceptibility of this PdFe alloy obeys X - ¿-1'3s ut

T + T!.

The difference between the experimentaì and theoretical values for B, 6

and 7 is perhaps surprisingly small, and it is only in the case of o (the

specific heat exponent) that the agreement between the MFT predictions

and the qualitative behaviour of actual physical systems is not found. It

can be shown that according to the MFT, the magnetic contribution to the

specific heat in zero field disappears above the Curie temperature; this clearly

contradicts experimental results which indicate the presence of a residual

specific heat above ?". More precisely, CH - lnl? - [l when T -> T!, in
contrast to the behaviour illustrated in Figure 2.5.

The discrepancy concerning the specific heat is a direct consequence of

the fact that the MFT disregards the short-range correlation between the

spins, which are present in the majority of physical systems. The next set of

models to be considered incorporate this short range coupling and are able

account for the origin of the 'unknown' molecular field proposed by Weiss,

but are considerably more difficult to work with than the mean field theory.

Nevertheless, despite its limitations, Weiss' theory (including the con-

cept of domains) is still perhaps the most important theory for a practical

discussion of most types of magnetic behaviour.
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M

Figure 2.5: Dependence of. Ca for H:0 upon reduced temperature,TfT".
Notice that although there is a simple j,rmp discontinuity for all values of J
(i.e. a : e' :0), the magnitude of the discontinuity depends weakly upon
J. (Stanley, 1971)

2.3.2 Ising and Heisenberg Models

The mean field theory predicts numerical values of the critical-point expo-

nents, but does not provide any understanding about the nature of the molec-

ular field constant, ). Two other prominent models, namely the Heisenberg

and Isiug models, which were introduced after the development of quantum

mechanics, attempt to provide a more realistic description of magnetic sys-

tems and also examine the nature of the aforementioned interaction. Both

of these models propose that the magnetic moments are 'attached' to the

lattice and interact via an exchange field whose strength is determined by an

'exchange coupling constant', denoted by J;¡. (Morrish, 1965)

rlr.
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The most general Hamiltonian for such a system may be expressed as

(Stanley, 1971)

n@): -Ð¿¡sÍr, .rjo, (2.35)
lrJ

where s(D) is the D-dimensional spin operator, with components obeying

Ð?=, S?^: 1, where (S;r, S;2,..., S,o) are the Cartesian coordinates of S{D).

D :7,2,3 and oo have been studied in detail, but only the two most common

cases, D : 1 and D : 3 will be considered here. The exchange coupling

constant in the above equation is electrostatic in origin and is a consequence

of the necessity that the electrons in an atom be indistinguishable. It is

important to note at this point that J;¡ is positive for a ferromagnet (parallel

spin arrangement), and negative for antiferromagnets (antiparallel spins).

The exchange coupling constant can also take on a variety of forms to

account for the range of interactions present in materials. Most calculations

within the framework of this model consider only nearest neighbour interac-

tions in orde¡ to simplify the situation. However, this is a rather unphysical

assumption and led to the development of the Sherrington-Kirkpatrick model

in which J¿¡ has a Gaussian distribution, as will be discussed in more detail

in Section 2.3.4.

Ising Model

The above named model v¡as proposed by E. Ising in 1925 as part of his Ph.D.

thesis; Ising considered a linear chain (one-dimensional lattice), taking onl.i



isotropic nearest-neighbor interactions into account, with no external applied

field. The Hamiltonian for such a system takes into consideration only the

z-component of the spin and is given by

'll: -J Ð S"rS"¡ (2.36)
(i,i)

where J couples the spins located at sites i and j, and the notation (i,j)

indicates that the summation is to be carried out only over the nearest neigh-

bours of atom i. From the above expression it can be seen that the magnetic

moments in this model can be taken to be classical 'vectors' with only two

possible alignments, namely up or down. Moreover, the above equation also

demonstrates that the interactions in this model are sho¡t-ranged, in con-

trast to the mean field theory. It is interesting to note that computations,

assuming an isotropic exchange coupling constant extended over all atoms in

the system, reduce to the mean field theory case, as expected (Stanley, 1971,

Sec. 6.5).

Ising's solution for a one-dimensional system gave no indication of the

phase transition observed in physical systems at any finite temperature. Fur-

thermore, in its ground state at absolute zero all the spins in such a system

would be aligned, but at any non-zero temperature this ordering would be

destroyed and the system would assume a paramagnetic state. In 1952, On-

sager and Yang published the solution to the two-dimensional Ising model

in zero field, perhaps one the greatest triumphs in the theoretical study of

critical phenomena. This result accurately predicts a logarithmic divergence
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in the specific heat at 4 in contrast to the mean field theory result, but

the critical exponents it yields do not agree with experimental values. No

exact solution has been found for the three-dimensional Ising model, and is

believed by some not to exist.

Heisenberg Model

In the Heisenberg model, the Hamiltonian is taken to equal the scalar product

of the three-dimensional spin operators, multiplied by the exchange coupling

constant. Since this model does not restrict the spins to the (25 + 1) discrete

orientations permitted by quantum mechanics, it is said to be the ,9 + oo, or

classical limit of the quantum-mechanical Heisenberg modet. The Heisenberg

Hamiltonian for a lattice of spins is then usually expressed as

Tt=-J"Ðsr.sl
(i,i)

(2.37)

where the exchange coupling constant is taken to be isotropic and non-zero

only for nearest neighbors. Note that for only the products of the spin

operators to be present, it is necessary to assume that the magnetic ions

be sufficiently distant from each other that the electronic overlap be quite

modest. Furthermore, if the magnetic ions have a non-negligible orbital

angular momentum in addition to a spin component, the Hamiltonian may

be a function of both the absolute and relative spin orientations. Whether or

not these, and other additional requirements (Ashcroft et al, 1976, Chapter

32) are satisfied, depends upon the characteristics ofthe individual substance.
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Approximation Techniques

Technically, a solution of the three-dimensional Heisenberg model Hamiltoni-

an should constitute a superior theory of ferromagnetism, but unfortunately

along with the (3D) Ising model Hamiltonian, none has yet been derived.

Naturally, it would be desirable to find an alternative form of this Hamil-

tonian that can be solved exactly, but efforts to this end have not yet been

successful either. This necessitates the use of approximation techniques to

ascertain the properties of an Ising- or Heisenberg-like system near its phase

transition, including its critical-point exponents and transition temperature.

One prominent scientist states that such attempts have been so effective that

'one often forgets that they are only approximations'. Moreover, when com-

pared with experimental outcomes, the error in the calculated numbers are

often less than the experimental errors (Stanley, 1971).

However, in order to obtain these results, a tedious and complicated ap-

proach must be taken, known as the series expansion method. The latter

expresses the thermodynamic function in question (eg. the Gibbs function)

in increasing powers of either ? ('low temperature expansion') or 1/? ('high

temperature expansion'). These expansions are not performed about 7}, but

rather about the zero value of ? or I f T, and since knowledge of their asymp-

totic behaviour is required to achieve the desired results, the calculation of

sufficient terms becomes so laborious that it can only be achieved using graph

theory or computers. Although no rigorous proofs exist that these series arê
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in fact convergent, series expansions performed on solvable models (such as

the two-dimensional Ising model) yield results agreeing with the exact values

to within better that 0.01 %.

Ising and Heisenberg Model Limitations

Despite the precise critical exponent values generated by the D : 3 Ising

and Heisenberg Hamiltonians (Table 2.3), these two models are by no means

tideal', and are subject to a variety of restrictions.

Consider firstly the Ising model. Bven though the ø- and g-components

of the spin are neglected, it has found practical applications for systems such

as one-component fluids and binary alloys. However, it is important to keep

the aforementioned simplification in mind when evaluating the predictions of

this theory. Moreover, the Ising model is invalid at low temperatures where

the energy of the system depends upon the ø- and g- spin components. In

other words, the presence of spin waves is not permitted since the only way

to introduce disorder into the system is to induce an actual spin flip.

In the case of the Heisenberg model, it must be said at this point that in

spite of the more realistic description of a physical system it provides when

compared to the mean field theory, or even the Ising model, it is still not ap-

plicable to many real materials. This is a consequence of the rather stringent

restrictions this model places on the system, including well-localized spins

and a complete uniformity (isotropy) of the interaction, as well as a variety
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of other constraints I (Ashcroft et al, 1976, Chapter 32; Morrish, 1965, Sec.

6-3). Moreover, this model also requires the spins to be spatially ordered,

which is certainly not the situation for the amorphous magnetic alloys of

interest in this thesis. Despite these apparent limitations, the Heisenberg

Hamiltonian has proven to be extremely useful in explaining the asymptotic

experimental results obtained near ?". It appears to be that in this limit of

a diverging correlation length the observed behaviour is quite insensitive to

the aforementioned restrictions.

The greatest deficiency of the Ising and Heisenberg models, more specifi-

cally their three-dimensional representations, is however that they cannot be

solved exactly and the approximation techniques developed are very tedious

and complicated. This provides sufficient justification for the formulation

of a different approach, namely the Landau theory, which is not only easier

to deal with than the latter two models, but also incorporates important

physical effects not accounted for in the models discussed up to now.

2.3.3 Landau Theory

With his theory, Landau attempted to provide a more realistic equation of

state for a magnetic system than suggested by the 'classical theories' available

at the time, which included the mean field theory discussed above. Landau's

theory utilizes similar concepts to the afo¡ementioned theory and derives the

lOther details neglected in both the Ising and Eeisenberg model include crystalline
anisotropy terms which are of course present in any real material.

33



same critical exponents, but it also incorporates the concept of 'ffuctuations',

which strongly influences the behaviour of thermodynamic functions in the

vicinity of a phase transition. Thus, the Landau theory has great heuristic

usefulness even though it is quantitatively incorrect.

In essence, this theory suggests that the Helmholtz free energ y, F of a

magnetic system can be represented by the Taylor series, (Stanley, 1971)

F(7, M) : F"(T) + F2(T)M' + rnlr¡tvtn + . . . (2.38)

near the transition temperature, as here the magnetization,, M,, is small.

Moreover, the temperature dependent coefficients in the above equation can

also be expanded in power series, namely,

F¡(T): Ë l1(T -T")k: fio* f¡r(r -T")+.... (2.g9)
È=0

Note that there are no odd terms in the expression for F(?, M),, as the f¡ee

energy must remain unaffected if the sign of M is reversed.

Recalling that the magnetic field, 11 can be written as

,:(#), (2.40)

yields

æ

H(M,") : Ð iFjQ)Mi-l :2Fz(T)M +4F4(T)M3 +..., (2.41)
j=1

the Landau theory equation of state, from which the critical-point exponents

can be determined.



Landau Theory Critical-Point Exponents

Møgnetization Eaponent, B

The magnetization exponent, B can easily be found from the equation of

state, (2.41) by setting H :0, and taking M to be small, which gives

0 : {rzr(T - T") + . . .} * 2M2 {¡no * far(T - T") + . . .} + . . . . (2.42)

Solving for M yields

, : (#) "'(* - r)'/", (2.4r)
\2lao I

which upon comparing to M - (-t)9 indicates that B:712.
Isothermal Susceptibility Erponents, 1 and 1'

From the definition of the susceptibility, Xr = (AMIAH)7 and the ex-

pression for the freld, H (M, f ) it can be seen that in this theory the inverse

isothermal susceptibility,

xil :(#),:(#), e44)

can be written as

co

xi' (7, M) :D¡t¡ - 1)4(?) Mi-2 - 2Fz(T) + 12F4(T)M2 + ... . (2.45)
i=2

At this point it is useful to recall that since the zero-field susceptibility is

expected to diverge in the limit ? - T:, ¡!1 given by

xr'(T,o)_ 2F2(T)

= 2{Íro * fzt(T - T") * fzz(T - T")'+ ...} (2.46)
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is required to approach zero, which in turn requires lhat f2s: 0. Also when

f ) 7", the material is in the paramagnetic phase, and. M : 0 when H : 0,

so that Xrt(7,0) becomes

xrt (T,o) = 2f21(T - 7"). (2.47)

In the magnetically ordered region at temperatures below 7", M l0 for

H :0. Returning to (2.45), the inverse zero-field susceptibility can now be

written as

xrl(T,M) =2{fzr(T -T") +...} +nM2{r4ot fe{T -7") +...} (2.48)

which becomes

xit(T,M)=4121(7"-T) (2.4e)

in combination with (2.43). Comparing the above to equations to ¡7 - t-1

and ¡7 - (-t)-t' respectively, it can be seen that in the Landau theory,

'l : 'l' : I. However, ¡!1 increases twice as quickly for T < ?i than for

f > 7", meaning that C' :2C (Section2.2.2).

Critical Isotherm Exponent, 6

In order to ascertain the curvature of the critical isotherm, return to the

expression for H(M,T),

H(M,T) _ 2F2(T)M +4F4(T)Mt+...

- 2{lro * fn(T - T") + ....}M

r4{fno * fa{T - T") + ...}M3 + -.. (2.50)
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and let T : T". Recalling that f2s: 0 then leads to

H(M,T"):4feoMz *... (2.51)

from which it can be seen, upon comparison with I/ - M6 that ó - 3.

Landau Theory Limitations

Similar to the mean field theory, the Landau theory provides a simple, solv-

able description of the properties of magnetic materials near their phase

transition. Unfortunately, this theory also predicts the same incorrect criti-

cal point exponents that Weiss' molecular field theory does, so the discussion

given above concerning the critical indices can also be applied here. In this

case, the fault lies with the initial assumption that the Helmholtz function

can be expanded as a power series about T" - it has since been established

that such a series diverges.

However, the one very important concept that the Landau theory incorpo-

rates, not accounted for in the mean field theory or the Ising and Heisenberg

models is the presence of fluctuations from the equilibrium value in the or-

der parameter, M near the phase transition. Since the discussion presented

here concerns itself only with equilibrium situations (i.e. dynamical effects

are not considered), it would be easy to assume that fluctuations in M be

of little importance. This is indeed the case for temperatures far from [,
but when approaching the critical temperature these fluctuations become so

pronounced that they must be taken into consideration.
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Detailed calculations exist showing how this concept is incorporated by

the Landau theory (Patterson, 1971), which basically amounts to the study

of the behaviour of fluctuations expressed as

M"(r) - (M"(r)),, (2.52)

and how the deviation of M" from its average, (M"(r)), at one location

in the material is related to analogous fluctuations in neighbouring regions

(Kadanoff et al, 1967). Mathematically, this behaviour is described by a

correlation function given by

s(r,r'): ({M"(r) - (M"(r))}{M,(r') - (M"(r'))}) (2.b3)

which can be evaluated using the free energy of the system.

2.3.4 Spin Glass Theory

Edwards-Anderson Model

As stated in section 2.1.2 of this chapter, evidence for the existence of the

spin glass state was first observed in the dilute alloys of the AuFe system

(Cannella et al, 1972). Shortly thereafter a theory was proposed by Edwards

and Anderson (EA model) (Edwards et al, 1975) to account for the cusp-like

peak in the susceptibility of the latter dilute magnetic alloys. It was suggested

that in such a system the exchange interaction, J", is not constant, but is

instead represented by some distribution. Edwards and Anderson chose a

Gaussian distribution centered at zero, concluding that since the sign of

38



Table 2.3: Critical-point exponent values
a

Critical Exponents
T 17"

Q, B' 'I'

T :7"

6

TlT"

'l

Landau/MFT 0 0.5 I 3 0 I

2-D Ising 0 0.125 1.75 15 0 1.75

3-D Ising 0.66 0.326 1.31 4.78 0.106 1.238

3-D Heisenberg - 0.367 4.78 -.727 i.388

Experiment 0-0.2 0.2-0.4 1.0-1.2 3-6 -0.3-0.3 1.3-1.4

the interaction (i.e. sign of J,3) oscillates with the distance between the

interacting spins s; and sr' (RKKY interaction - Appendix 1), a ground state

will exist with the spins pointing in well defined, but apparently random

directions, as illustrated in Figure 2.1(c). Upon inspecting any portion of

the material, the ground state therefore results in the local magnetization

("r) - 0, which means that no ferromagnetic ordering is present, although

the order parameter for a spin glass state is non-zero, as will be discussed

below.
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In introducing the EA model, an analogy is often presented which com-

pares the formation of a spin glass phase to gelation in polymer science. As

the density of long molecules increases in a mixture, a point is eventually

reached where they become so entangled that they can no longer move. Al-

though their positions are random, like the moments in a spin glass, below

its critical temperature they do not change with time and remain at the same

random orientations.

Applying the above situation to spin glasses, a logical choice for the order

parameter describing the paramagnetic to spin glass transition is given by

q - (s¡(ú,) .r;(¿)) tÞto (2.54)

where 
"¿(ú,) 

is the spin at site i at time lo, and s¡(ú) is the same spin at some

later time. At 7 : 0, g:1, since at this temperature the spins are frozen in

place with minimal thermal agitation. The order parameter decreases with

increasing temperature until it reaches zero at T : Tl, the spin glass ordering

temperature. (Recall that the order parameter for a ferromagnetic system

was chosen to be the average magnetization M - (s;), which is nonzero only

below [.)
The EA model goes on to hypothesize that upon cooling a spin glass, the

thermaÌ agitation becomes sufficiently reduced below T¡ that the presence of

the RKKY coupling between the magnetic ion spins manifests a cusp in the

susceptibility, an indication of spin glass ordering. Application of an external

field suppresses this peak to a broad maximum.
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Sherrington-Kirkpatrick Model

An alternate, more sophisticated theory than that proposed by Edwards and

Anderson was introduced by Sherrington and Kirkpatrick (Sherrington et al,

1975). Assuming that the site disorder, such as that observed in amorphous

alloys can be represented by an exchange bond disorder, they hypothesized

that the Ising model Hamiltonian for such a quenched bond disordered system

is

H: -rÐJ,ir,", i s; : *1 (2.55)

with the exchange coupling constant having a Gaussian probability density

given by

p(J;¡):fg"rrlO#1 (2.56)

J, and J, the first and second moments (mean and width) of the above

distribution are scaled according to Jo - i"l¡V and J - il\Æ, so that i,

and i are intensive parameters, independent of the size of the system.

It can be shown (Stanley, 1971) that in the thermodynamic limit (N, the

number of magnetic ions t -), the mean field theory is equivalent to an infi-

nite range interaction model if a site independent exchange coupling constant

(Jr¡ : J for all i and j) is assumed. The SK model extends this problem to

apply to disordered systems and considers the aforementioned'infinite-range'

calculations to arrive at a solution with the EA order parameter (2.54), de-

scribing a spin-glass in the appropriate temperature and composition range.

After a detailed calculation, an expression for the free energy was derived
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along with the following two coupled equations:

Q : t _ # | e-,, /zse*,|(#), * #lr,
* : # ! "-", 

r,to*l(#), * #lr"
representing the physical quantities,

(2.57)

(2.58)

(2.5e)

(2.60)

rn : (("r)r)t

q - (("')?),

which are independent of i (i.e. site), and are valid for both finite and

infinite-ranged interactions. The notation, ( ).r r"presents an average over

the exchange distribution, and ( )r denotes a thermal average.

Referring back to Figure 2.1, m and q are evidently analogous to (M) and

(M2) respectively. It is then clear that m = g: 0 represents a completely

disordered system, whereas m # 0, q + 0 indicates that the system is ordered

(with a ferromagnetic component). This leaves the m = 0, g f 0 combination

(* # 0, g : 0 is inconsistent) to describe a spin glass. From Figure 2.1

(c), this can be seen to be an eminently reasonable result, since the random

orientation of the spins dictates that the net magnetization be zero; however,

their 'frozen' orientations leads to g f 0, meaning that magnetic 'order'

exists. This supports the EA claim of g as the order parameter for the spin

glass phase.

Examination of the two coupled equations relating rn and q, (2.57) and

(2.58) respectively, suggests that as kT falls below the greater of. io o, j,
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magnetic ordering is established. Mo¡e specifically, if ,l - + > 1 then

q + 0, m * 0, and the system displays ferromagnetic behaviour. For T 17,
m : 0 and g f 0, and a spin glass state is established. A phase diagram as

illustrated in Figure 2.6 can be drawn, which clearly illustrates that the two

quantities of interest characterizing the magnetic behaviour in the SK model

are the dimensionless parameterc kTli and 7.

The latte¡ two parameters can be rescaled as follows to represent physi-

cally relevant quantities,

kTli -' T

i"
j-)r

where r represents the impurity concentration. If the amorphous alloy being

studied contains only one magnetic element, such as (Fe1-,Ni")zsProBoAla

(where the magnetic moment of Ni is suppressed by the phosphorous and

boron (Geohegan et al, 1981)), i and i" would be related to the magnetic

ion concentration. However in the case of (Fe1-,Mn")zsProBoAI3, both Fe

and Mn possess magnetic moments; thus it should not automatically be

assumed that the rescaling relationship is linear.

It is useful to note that the phase diagram can be broken down into three

principal regions, namely q 57, which represents a spin glass ground state,

an intermediate region 1.0 < q < 7.25, representing a double transition

region, and 4 > 7.25, which has a ferromagnetic ground state. A further

discussion concerning magnetization versus temperature curves in different

43



t.25

krtî
1.00

o.75

0.50

o.25

0.0

iotî

Figure 2.6: Sherrington-Kirkpatrick phase diagram (Sherrington et al, 1975)

applied fields, as well as the corresponding critical exponent values will be

presented in Chapter 3, where they will be compared to experimental results

on amorphous alloys.

A qualitative interpretation of the SK phase diagram as applied to mag-

netic ions randomly dispersed throughout a non-magnetic host material is

useful for providing further insight into this theory (Geohegan et al, 1981).

For small concentrations of the magnetic ions, the separations are large and

the ions interact through an indirect exchange interaction (Appendix 1), that

oscillates in sign with ion separation. Depending upon the location of a par-

ticular magnetic atom with respect to the other moment bearing impurities,
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it will be acted on by a collection of fields, which will not necessarily align

its moment with any one of the other surrounding mornents. Thus, each spin

will be oriented randomly, resulting in zero net magnetization.

With increasing (magnetic) impurity concentration, some magnetic ions

will be sufficiently close to each other that they can interact directly, thereby

forming clusters in which the moments are aligned. An indirect interaction

occurs between the clusters however, resulting in zero net sample magneti-

zation.

Beyond a certain critical concentration, t",;¿, the clusters become suffi-

ciently large to link together, thereby forming an 'infinite' cluster reaching

to the sample boundaries. There still exist finite clusters, not connected to

the 'infinite' cluster, which freeze with fields in random direction when the

temperature is decreased. This affects the alignment of the moments within

the 'infinite' cluster by reducing its net magnetization. Since higher tem-

peratures are required to disorder larger clusters, ?: (PM to FM transition

temperature) increases as ø becomes larger. Similarly, it is clear that 7¡ (FM

to SG transition temperature) is greatest at 2",;1 (coinciding with i"li - t.0

in Figure 2.6), since lower temperatures are needed lo'freeze'the spins which

are trying to align ferromagnetically, as ø is increased. Thus it can be seen

that ?i - io anð. T¡ - i (I Kunkel et al, 1988).

As the concentration of the magnetic ions is further increased, the 'infi-

nite' cluster will eventually engulf the finite clusters, until the entire piece
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of material is ferromagnetic. This behaviour provides an explanation for the

PM-FM transition line, and the raising of ?" with increasing magnetic ion

concentration, as well as the disappearance of the reentrant phase beyond a

certain concentration.

Effective Field Approach

An alternate calculation employs an effective field approach to an Ising

Hamiltonian instead of the 'replica trick' incorporated by Sherrington and

Kirkpatrick. A detailed study was carried out for s : 1/2 (Southern, l9T6),

where it was demonstrated that for a Gaussian distribution of exchange bond-

s, this technique yields the same phase diagram as that predicted by the SK

model.

Subsequent analysis for arbitrary s using the following Hamiltonian

7l - -lJ;¡s¡s¡- ä'Ð"r ; -s ( s¿ ( g (2.61)
;<i

where /a' represents an applied field,

(Roshko et al, 1985)

a

yields the following set of equations

rr¿ _ 
ã |:sB"[(kT)-ts(i"rn + ia,/Q + h,)]e-* d,a (2.62)

q - ã l:s'B!l@\-'\s(i.m, + ia,/Q + h')le-* aa (2.63)

It can be shown that the above expressions reduces to (z.sl) and (2.5g) for

s: L/2 and l¿' :0.
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2.3.5 Vector-Spin Model

Having discussed the nature of spin glasses, it would now be useful to examine

the behaviour at the 're-entrant'ferromagnetic-spin glass transition, and its

manifestation in terms of physical quantities.

In duFe, the system in which spin-glass behaviour was firçt observed, the

susceptibility increases rapidly as the paramagnetic-ferromagnetic transition

is approached from above, displays a plateau as the temperature is decreased

further until the ferromagnetic-spin glass transition is approached, and at

this point the susceptibility rapidly drops, thereby denoting the 're-entrant'

phase transition in this system.

The paramagnetic-ferromagnetic transition is well understood and can

be analyzed in light of the discussion presented in the previous sections.

However, a rigorous quantitative analysis for the ferromagnetic-spin glass

transition has not yet been developed, although a number of theories exist.

Using the SK model, it has been shown (Kornick et al, 1989; II Kunkel

et al, 1988) that the nature of this phase transition can also be studied by

examining the behaviour of the non-linear component of the susceptibility.

It has been suggested that a peak in the non-linear component of the suscep-

tibility, occurring in the low temperature edge of the zero-field susceptibility

plateau (i.e. at the proposed critical temperature, T¡) is indicative of a phase

transition.
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Consider the expression,

X: Xo - azH2 + oaVa . .., (2.64)

where the odd terms have not been included, in accordance with the sym-

metry of X under a field reversal. To ensure the convergence of the above

po\ryer series, the terms decrease in magnitude and alternate in sign. For

small applied fields, the susceptibility can be approximated by

XNXo-azã2, (2.65)

where the coefficient a2 may be found experimentally by plotting the suscep-

tibility at constant temperature versut H?. For sufficiently small values of

H2, the curve can be approximated by a straight line with a slope of. ø2. lt
has been found in somesamples (&zr, Maet al, 1991; PdFeMn, II Kunkel

et al, 1988) that the slope becomes larger as the susceptibility shoulder is

approached from above and below, whereas the range over which the curves

can be approximated by a straight line decreases. The resulting behaviour is

a peak in the 
"r(T) 

versus temperature graph.

The difficulty with this approach is that it is based upon an Ising mean-

field model, which does not account for the 3D (Heisenberg-like nature of

most real systems (Gabay et al, 1981). The predicted temperature depen-

dence øz(T) - (T"s - T)-n for ? S Ton therefore is not expected to describe

experimental behaviour. Measurements on potentially re-entrant systems

display a peak in ø2(T) that is substantially smaller than expected, which
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may also be due to dynamical constraints. This model, does however, pre-

dict both the double peaked structure, as well as the peak behaviour in an

applied field (lower peak being larger than upper peak in high fields, and

lower peaks moving down in temperature with increasing field while upper

peaks increase in temperature as the field is increased) observed in several

physical systems, including the samples studied in this work.

As stated above, the analysis based on the SK model is theoretically in-

complete at low temperatures even though it correctly predicts the observed

field and temperature dependence of the susceptibility. To take into account

the Heisenberg-like (three dimensional) nature of the spins, an extended theo-

ry was proposed using vector spins S¡, with rn components, S¿uQt : 7,...rm),

and the following Hamiltonian

'Ì1 - -Ð J,tÐ S,uS¡u- H I S,r (2.66)

where J,¡ is the same as that used for the SK model.

This constitutes one of the most prominent theories describing the ferro-

magnetic-spin glass transition, and is known as the vector mean-field model

(Gabay et al, 1981; Dubiel et al, 1987). It suggests that longitudinal ferro-

magnetic order is established below the paramagnetic-ferromagnetic tran-

sition, and transverse spin-glass order (associated with replica symmetry

breaking), along with weak irreversibility 2 occurs at T¡. The line anal-

zRecall, fo¡ a ferromagnet ((m,)àt * 0, ((tnr)r)¡ = 0 and ((*"1), = 0, whe¡eas

(@,)òt *0, ((*ùr), = 0 and ((ml)r), +O,for a t¡ansverse spin glass.
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ogous to the paramagnetic-ferromagnetic cross-over line is known as the

Gabay-Toulouse, or GT line. At even lower temperatures, the possibitity

of a cross-over from weak to strong irreversibility is suggested, delineated

by the d'Almeida-Thouless, or AT line. Unfortunately, the theory predicts

nothing about how the above two features are physically manifested, but

suggestions have been made that identify them with low temperature peaks

sometimes appearing in the field dependent susceptibility data. More will be

said concerning this possibility in Chapter 5.

To perform a detailed analysis to determine whether or not the suscepti-

bility displays GT behaviour, the temperature at which the first peak below

the ferromagnetic-paramagnetic transition occurs must be compared with

the following equation. The peak temperature is predicted to vary with field

according to (Dubiel et al, 1987)

tcr: ?cr(0) - Tcr(H")
(2.67)

Tcr(o)

where

m2+4m*2
(2.68)

:{2rffi"H",

(--
a(m+2)2 '

Tcr(0) is the spin glass 'critical temperature' in zero field, and m is the spin

dimensionality, taken here to be 3.

The low temperature AT feature is expected to behave according to

T,qr(0) -Tn(H") - Hl, (2.6e)
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Figure 2.7: Phase diagram of the infinite-range model for classical vector

spins. Line (a) corresponds to the freezing of the transverse degrees of free-

dom, line (b) to the d'Almeida-Thouless line (Gabay et al, 1981).

where n x 213 is predicted. Use of this relationship allows T1r(0) and ¿ to

be determined.

The phase diagram corresponding to the vector spin model is illustrated

in Figure 2.7.

There exist questions as to where exactly replica symmetry breaking oc-

curs (at the GT or AT line), and whether or not an AT line even exists

(Cragg et al, 1982). Later research has resulted in claims that physical sys-

tems with two lower transitions have been found (Dubiel et al, 1987), and

the appropriate analysis for the samples studied here will be presented in

Chapter 5.
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2.4 Scaling Theory

The complications encountered in trying to develop a reasonable and solvable

model describing the behaviour of magnetic systems near their phase transi-

tions have motivated scientists to examine a revolutionary new proposal, now

known as scaling theory, or the homogeneous function approach. Starting in

the mid 1960's, suggestions r,ilere made that relationships exist between the

critical-point exponents that allow all of them to be expressed as a function

of two unspecified parameters. Thus, scaling theory does not actually predict

nume¡ical values for the critical-point exponents, but rather relates them to

each other, and leads to the inequalities listed in Table 2.2 being replaced

by equalities. Furthermore, this approach to critical phenomena provides

insights into possible forms for the equation of state of a magnetic system.

Although the scaling approach is based on the unproven hypothesis that

certain thermodynamic state functions can be expressed as homogeneous

functions, it has provided considerable understanding of critical phenome-

na. Moreover, its predictions have been confirmed by various experimental

evidence, which supports their validity.

2.4.L Static Scaling Hypothesis

According to tbe static scaling hypothesis, the Gibbs potential G(T,H),

which can alternatively can be written as G(f , fi) where ú is the reduced

temperature, can be expressed as a generalized homogeneous function, de-
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fined as follows

G(^"'t,^", H) - ÀG(t,H). (2.70)

If a function is homogeneous and if ø¿ and aH aÍe known at some point, say

úo and .l/r, then its value at any other location can be determined by a simple

scale change, which is mathematically expressed as follows

f (À'to, 
^", 

Ho) : Àf (t", H.). (2.71)

This statement embodies the entire concept behind the homogeneous func-

tion approach, namely, that if the scale of the system is changed, in other

words, if the parameters that the Hamiltonian depends on, (i.e. Il and f)

are varied, the form of the Hamiltonian remains unaffected. This indicates

that for any number À, the two indices referred to in the introduction of

this sectior, ø¿ arìd o,H) can be found, from which all of the critical expo-

nents may then be determined. Note that all of the other thermodynamic

state functions, F(t,M), U(S,M), and E(^9,I/) are also potential candi-

dates for finding the critical indices; however G(t, H) is the most convenient

for exploring the quantities of interest, particularly the magnetization, the

susceptibility and the specific heat.

2.4,2 Scaling Theory: Critical Point Exponents

Applying M(t,H): - (ffi)rto the Gibbs scaling relation (2.70) yields the

following result,

^"H 
M(^"'t,,À", H) - 

^M(t, 
H) (2.72)



which is sometimes referred to as the magnetic equation of state. Clearly

this expression is also a generalized homogeneous function.

Magnetization Exponent, B

In order to find the magnetization exponent, B,rccall that I/:0, giving

M (t,0) - ¡(an-t) ¡4 (À.'¿, 0). (2.73)

Since the above expression holds for all values of ), select À',(-¿) : I or

À : (-+)t/o' ,o that (2.73) becomes

M(t,0): (-t¡(t-'n)/"' ¡4ç-1,0) - (-t)Q-"n)/",, (2.74)

where the minus sign is required to make the argument in (2.74) positive

since ? 1 7". Recalling the power law dependence of the magnetization in

the limit ¿ -r 0-, M - (-t)P, and comparing the latter to (2.7$ yields

a-l-aat):- (tr¿ Q.75)

Susceptibility Exponents, 1 and. I

The susceptibility exponents, 7 and 7', may be determined using (2.70) in

conjunction with the following thermodynamic relationship,

/ aM\ / azc\
x' = (aa ),: - \W), Q'76)

which gives,

^2", 
xt(^",t,^"H H) - Àxt(t, H). (2.77)



For temperatures below [, setting H :0 and choosing À - (-ú)-1l', gives

xr(¿,0) : (-t)-(z'n-t)/"t*rç-1,0) - (-t)-Q"n-t)/"'. (2.78)

When ú -i 0- ,t Xt - (-t)-'r' . Comparing this to the above equation indicates

that
, 2an -l

O,1

(2.7s)

Similarly to find 7, which applies to temperatures ? > [, take À : f-llot,

from which it can be shown that

2au -l (2.80)'Y-

This demonstrates one of the properties of scaling theory, namely that the

primed and unprimed critical-point exponents it predicts are equal. Con-

sequently, the divergence on both sides of the critical temperature will be

symmetric.

Critical Isotherm Exponent, ó

The critical isotherm exponent, ó can be found b¡r returning to (2.72) anà

letting ú : 0, which gives

M(0, H) : 
^ea-t 

M(0, À'¡r¡/). (2.81)

Choosing À- l!-l/aä and inserting this quantity into (2.S1), one obtains

M(0, H) = ¡11-oa)lon M (0,1) - ¡1(7-"a)/"n.
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By comparing this to the power law dependence for the critical isotherm,

valid in the limit , -+ 0, namely M - ¡{r¡d, it can be seen that

The fourth set of critical exponents, a and a', which describe the behaviour

of the specific heat in a constant magnetic field, can be calculated using the

expression relating C¡1 to the Gibbs function,

.ç- øH
- 1-aH'

Specific Heat Exponents, o and o'

ca:_(#),
Applying the latter equation to (2.70) yields

e' :2- 1.
A¿

as required by scaling theory.

(2.83)

(2.84)

^2"'CH(^"'t, 
Àu H) : 

^CH(t, 
H). (2.85)

Inserting H : 0 and À - (-¿¡-rto' into this equation, and then comparing

the latter to the po\ryer law form of the specific heat, C¡1- (-ú)-"'gives

Using similar techniques to find a, it is elementary to demonstrate that

Q,: Q,

(2.86)

(2.87)
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2.4.3 Exponent Equalities

It has thus been confirmed through the above derivation that in the scaling

approach all of the critical exponents can be expressed in terms of only the

two parameters, a¿ and a¡¡. Using this property, the inequalities listed in

Table 2.2 can be replaced by equalities. It is important to realize that this is

a direct result of the scaling assumption, since the only two variables, .I/ and f

involved in the Gibbs potential enter without any relationship between them

being specified, aside from the homogeneity of the Gibbs function. Thus,

the connection between the exponent values does not depend on the system

being studied; however, the actual values of the critical indices vary from

model to model (Wang, 1990).

2.4.4 Scaling Law Equation of State

Besides predicting the relationship between the critical point exponents,

scaling theory also provides insights into the functional form of the mag-

netic equation of state, which have been verified by experimental results.

Returning to the scaling law equation of state (2.72), which can be rewritten

as

M(t, H) -. 
^aH-7 

M()"'ú, À"'H),

and taking ¡ - ¿-ll"r, gives

(2.88)

M(t,H) - ¿(1-øÐ/e,* (r,#)
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The above expression may be simplified by recalling the definition of B and 6

in terms of ap and ø¿, and incorporating the Widom equality, 1 - p(6 - 1);

the equation of state may then be written as follows

M(t,H) : tþM (r,!*) : rM (t,#) : r F (#). (2.e0)

From the latter equation it can be clearly seen that scaling theory says noth-

ing about the functional form of F, indicating only the nature of its argument.

However, this expression provides the basis for deriving the asymptotic power

law dependencies, valid in the limitl -i 0 and used earlier (Table 2.1).

The scaling expression for the isothermal susceptibility may be found by

simply differentiating (2.90) with respect to H, giving

(2.e1)

(2.e3)

Alternatively, the last line in (2.92) can be much more simply derived by

letting À - 1¡-r¡"" in (2.77), so that the latter becomes

xþ,H): (#) = raF'(#) ,

where F'(H¡tt+p) represents the derivative of F(Hltt+p¡ with respect to its

argument, H f tt+p. This can be rew¡itten as (Williams, 1991)

x(t,H) = (#)# r,(*"-):H#(**)# r,(#)
= ¡¡(t/t)-tç (#) (2.s2)

using

G(æ) - r#F'þ) ; ï: (#)

(2.e4)X$,, H) -, ¡¡(L-2"¡¡)/"" X(H-"'/",t,1).



Substituting in for 8,1 and.ó, and designatin EX(H-",1"rt,1)* /f (¡¡/fo7¡)

gives

x(t,H)- H1/6-1K(#), (2.e5)

which has the same .Iy'-dependence as (2.92).

One particularly interesting feature of the susceptibility versus tempera-

ture behaviour is the shift of the susceptibility peak with increasing field as

seen in Figure 2.8.

Figure 2.8: The susceptibility ¡(å,1) in various fixed fields ä; the dotted line
represents the cross-over line. (Williams, 1991)
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This feature of the susceptibility is incorporated in (2.92) or (2.95) as can

be seen when differentiating these expressions with respect to temperature,

and then setting the result equal to zero. Using (2.92), the following is

obtained

(#) 
Hj=tp- 

¡¡./Ð'ffi"' (#),=," = 0. (2.e6)

Obviously, the above expression will hold only if G'(Hltl+þ):0, where úo

represents the reduced temperature at which the susceptibility peaks. This

requires that the scaling function G(H ¡tt+p¡ at to in a fixed field be a con-

stant, requiring in turn that

H
r- : const.

tl*u
(2.s7)

Thus, the temperature at which the maximum occurs (along the so-called

'cross-over'line) increases as I/ increases according to

T _T.p-.c _bxHt/(t+p) (2.9S)T" -'

where 1 + P is known as the 'cross-over' exponent. Moreover, because

G(H ltl+P) is a constant, it can be seen from (2.92) that

x(H,t) q ¡¡(t/o)-t (2.ee)

which indicates that the height of the maximum is solely field-dependant and

decreases with increasing H (6 > 1), thereby reproducing the experimentally

observed behaviour of the susceptibility in the vicinity of.7". The advantage



of using (2.99) instead of (2.11) to find ó is that the former expression is

independent of the critical temperature, whereas any analysis involving the

latter equation requires previous knowledge of. T". In order to find the cross-

over exponent, T" must, however, be determined.

Although scaling theory has been a great success, its postulates have

not been proven, and hence there remain scientists who still consider it to

be an 'ad hoc assumption, entirely devoid of physical rationale'. Attempts

to resolve this situation have prompted the development of yet another ap-

proach, namely the Renormalization Group theory (Huang, 1987; Fisher,

1983), whose most fundamental purpose is to provide a rationale for scaling

and justify the unive¡sality observed between the behaviour of apparently

unrelated physical systems. This theory also provides methods for calcu-

lating actual numerical values for the critical-point exponents (not just the

relationships between them), as well as providing insight into the nature of

scaling functions.
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Chapter 3

Review of Previous Results

Fe1-,Mn, I samples with varying composition have been investigated using

a variety of experimental techniques, some of the more important and inter-

esting of which will now be considered as part of a general review of previous

experimental results. More specifically, existing magnetization and suscep-

tibility data will be presented, along with analysis techniques which yield

critical exponent values and critical temperatures characterizing the vari-

ous phase transitions. Finally, a brief summary of neutron scattering and

Mössbauer experiments will be presented to give insight into other methods

used to investigate amorphous alloys.

3.1 FeMn Phase Diagram

Materials with competing exchange interactions, such as amorphous FeMn

(elemental Fe is ferromagnetic, whereas Mn is antiferromagnetic), generally

lIt is important to note that the alloys studied actually have a chemical composition
(Fe1-"Mn")75P1686413 even though they are generally referred to as Fe1-"Mn".
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become spin glasses over some composition range. Evidence has been pub-

lished that would indicate that the spins in FeMn 'freeze'from a paramag-

netic state to form a spin glass for Mn concentrations (i.e. ø) between 0.35

and 0.47 (Mirebeau et al, 1990).

ln the event that the mean of the exchauge coupling constant distribution

(i,) becomes comparable to its width (i), wnicU according to Mirebeau et al,

1990, 2 occurs f.or 0.22 1 x 10.35, theoretical models such as the SK mod-

el predict more complex behaviour. The sample is paramagnetic at higher

temperatures, and becomes ferromagnetic with decreasing temperature be-

fore finally entering a spin glass phase as the temperature is lowered further.

This type of behaviour is the qualifying feature for a reentrant system.

At lower Mn concentrations (x. < 0.22, Mirebeau et al, 1990), the sam-

ple enters a ferromagnetic ground state, but apparently displays no lower

temperature transition. This behaviour results in a FM-PM transition line

intersecting a line bounding the spin glass phase at a multicritical point,

as illustrated in the phase diagram in Figure 3.1. In accordance with the

latter, three 'critical' temperatures can be defined, namely I representing

the usual FM-PM transition temperature, ?"n defining the PM-SG line, and

?1 denoting the FM-SG critical temperature. Upon comparing the proposed

FeMn phase diagram shown in Figure 3.1 to that predicted by Sherring-

ton and Kirkpatrick (Figure 2.6), a striking similarity would seem apparent,

2Tbis is based on magnetization meÍrsurements, where 11 was found following the
technique used by Manheimer et al, 1982 discussed in Section 3.2.2.
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Figure 3.1: FeMn phase diagram. (Mirebeau et al, 1990)

with the main difference between the two diagrams being that the PM-SG

line in Figure 3.1 does not extend to s :1, as suggested by the SK model.

However this similarity is only qualitative and is based on a phase diagram

constructed using magnetization measurements, the interpretation of which

can sometimes be misleading.

It is the objective of this work to re-examine the above conclusions based

on a detailed linear and non-linear field and temperature dependent suscep-

tibility study, combined with existing microscopic investigations of the FeMn

system.
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Figure 3.2: Model predictions for magnetization versus temperature with
various reduced fields (h - p,B"li\ to, T - i"li: 1.04. (Geohegan et al,
1e81)

3.2 Magnetic Behaviour of FeMn

3.2.L Theoretical Predictrons

Returning to the effective field approach (Section 2.3.4), magnetization and

susceptibility curves can be generated by solving the coupled equations (2.62)

and (2.63). This was done for various i.f i valves and a number of applied

fields in order to provide a complete representation of the predicted magneti-

zation and susceptibility for the different regions of the phase diagram. The

results displayed in Figures 3.2 and 3.3 have excellent qualitative agreement

with the experimental measurernents presented below, indicating that amor-

phous alloys such as FeMn display several features which are generally well

described by the SK model.

Although the theoretical curves in Figure 3.2 and 3.3 are somewhat more
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Figure 3.3: Effective field model predictions for susceptibility versus temper-
ature lvith different reduced fields (h: Hooo¡lT¡)for q: J.lJ: 1.1. The
arrow indicates the location of. T¡. (Kornik, 1990)

symmetric than those obtained experimentally (Figure 3.4 and Figure 3.7 re-

spectively), the resemblance between the diagrams is still truly remarkable.

As can be seen for the magnetization data, applying a field causes the peak

temperature to move down in temperature, as well as generating a nonzero

magnetization in the temperature ranges T < T and ? ) T". Furthermore,

if. Hopr¿ is large enough, M remains at its peak value below ?¡, instead of

dropping to zero, presumably eliminating the low temperature transition. As

for the susceptibility measurements; a double peaked structure is observed

as well as the correct field dependent behaviour, i.e. the lower temperature

peaks move down in temperature with increasing field, and the high temper-
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Figure 3.4: Magnetization versus temperature for x :0.32 in various applied
fields. (Yeshurun et al, 1980)

ature peaks move up in temperature with increasing field. Referring back to

Figure 2.9, which shows efective field model predictions for the susceptibility

when q : 2.0, a single peak and the corresponding field dependence is ob-

served in agreement with the behaviour of the well-understood paramagnetic

to ferromagnetic transition.

3.2.2 Experimental Results

Paramagnetic-Ferromagnetic Tlansition

Magnetization versus temperature curves are arnong the most often used

measurements for determining critical exponents and temperatures. In the

vicinity of ?i the magnetization should obey the usual ferromagnetic-para-

magnetic transition power laws listed in Table 2.1 with the critical exponents
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tabulated in Table 2.3. Originally, the latter were found by means of Arrott

plots, namely by plottinE MLlP versus (HlU¡ttr, and adjusting the expo-

nents until a best straight line is obtained. A sample graph is shown in

Figure 3.5 consisting of a collection of isotherms above and below the criti-

cal temperature from which it is estimated that 7 : 1.6 and B : 0.4. The

third critical exponent can then easily be found via the (scaling) relationship

1: P@ - 1). The isotherms are almost straight parallel lines, and suggest

a critical temperature (the straightest line, which extrapolates to the origin

represents the critical isotherm) in the vicinity of 100 K. This technique is

not particularly reliable though since several different exponent combinations

may yield straight line fits.

Scaling theory avoids this problem by providing an alternate, improved

method for finding the critical exponents. Recalling the expression

M(H.t\:tgFl¿l _,rFfgl\,, yt+p):tn'r\¡ø) (3'1)

from Secti on2.4.4 and defining A: Q/ltl)(H/lt1oa¡ ailows the magnetization

to be expressed as

M(H,Ð : tP F@) (3-2)

for convenience.

The behaviour of the scaling function F(y) can then be divided into two

parts, namely F+(y) for ? 27., and F-(y) f.orT 17". If the correct expo-

nents and critical temperature can be chosen, all of the data will collapse onto

two curves in a plot of Iog(MltP) versus log(hlt96), - one for ? ) [, and
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Figure 3.5: Arrott plot for isotherms near ?} for ø : 0.32 alloy (Yeshurun
et al, 1981)

another for ? < T.. Note that M ltq versus H /tqd would serve the same pur-

pose, but taking the logarithm of each of these quantities facilitates detection

of deviations from the 'universal' curves when T. or the critical exponents

are varied. A sample plot is shown in Figure 3.6, the two branches repre-

sent the best fits possible using reasonable exponent values, i.e. restricting

possible exponent values to 2 1 ó ( 6, 0.03 < P < 0.50 and allowing ?:

to vary as much as 10%. The exponents thus determined are unique, with

an assigned error denoting the variation permitted before a deviation from

the'best curve'fit becomes discernable. The values found using this method

are listed in Table 3.1 along with the corresponding critical temperatures
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al, 1981)

for the various Mn concentrations. Notice how the values found by different

researchers vary, suggesting that this technique, although superior to Arrott

plots, is still not definitive. This could be due to variations in composition,

although the samples appear to have been prepared in the same laboratory

(Chen et al, 1976). Note also that the sample composition for Yeshurun et

al, 1981 were rechecked using microprobe analysis; the ø values were found

to be somewhat lower than the nominal values.

Some a.c. susceptibility measurements (Geohegan et al, 1981; Salamon

et al, 1980) have also been performed and used to generate a set of critical

exponents. Although the measurements included samples with a greater

composition range than will be examined here, the data collected was neither
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Table 3.1: Critical Values from Magnetization Measurements (Yeshurun et
al, 1981 (top); Manheimer et al, 1983 (bottom))

* Calculated lli values using Widom equality (for comparison to
Manheimer values)

t r" p 6[r] \(r,ò p 6til

0.20 293 I4 0.40 r 0.03 5.1 t 0.3 [1.64 'r 14 +2
0.30 107 r 2 0.40 * 0.04 5.0 t 0.3 [1.60
0.32 100 * 2 0.40 + 0.03 5.3 * 0.3 [1.72
0.36 42 t. 2 0.40 + 0.05 2.5 t 0.5 [0.60

3r +2 0.4 + 0.03 4.5 + 0.3 [1.4]
38 + 2 0.4 + 0.03 4.5 + 0.03 [1.4]

0.20 280 0.41 [1.45] 28

0.30 rr2 0.47 Í1.421 29 0.4 t.4
0.35 101 0.30 [1.55] 65 0.3 2
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over as large a field or temperature range as that presented here, nor was

the analysis as complete. Only the critical exponent 6(ã) was found, and

the supposed FM-SG critical temperaturc (T¡) was simply estimated from

the position of the lower temperature feature of the double peaked structure

observed in an applied field. There was, furthermore, no mention of a third

peak at very low temperatures for samples in the concentration range 0.23

< r < 0.26, as will be presented in Chapter 5.

In order to determine the critical exponents the sample susceptibility

tilas measured in the presence of several applied fields, after which scaling

relationships similar to those in the Section 2.4.4 were used to extract the

desired information.

In the presence of an applied field a double peaked structure illustrated

in Figure 3.7 was observed. Clearly the high temperature peaks move to

higher temperatures as the field is increased, in agreement with the SK model

predictions, as well as scaling (Figure 3.3).

The critical exponents found using this technique are listed in Table 3.2

(Geohegan et al, 1981). The uncertainty in ó as well as the low values for the

compositions c : 0.20 and 0.30, is a consequence of the curvature observed

in the log(¡p..r) versus log(ã) plots (Figure 3.8), making it impossible to

determine a unique slope. The low values are likely an average value ob-

tained in fitting the data. An improved value could have been obtained by

calculating the low field asymptotic slope.
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Table 3.2: Critical Values from Susceptibility Measurements (Geohegan,
1e81)

?. (K) T (K) Tss (K)

0.10 ) T,oo*
0.15 ) T,oo*
0.20 280
0.30 174
0.35 104

0.36
0.40

0.44

0.45
0.47
0.50
0.53

0.55

0.59

0.60

æ 8.5
pAñï
5.0

42.0t
42

29.5t
29*

29.6t
27*

27 3t
26.5*
24.9t
26*

<5
34

54

63 4.4

*(Salamon et al, 1980) t(Yeshurun et al, 1981)
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Ferromagnetic-Spin Glass Ilansition

The drop in magnetization illustrated in Figure 3.4 indicates that for u : 0.32

the ferromagnetic state may not be stable as the temperature is decreased:

the material undergoes a potential phase change to enter a new state with

reduced M, either a spin glass or anti-ferromagnetic state. Alternatively,

the system may simply undergo a canting (asperomagnetic) or cluster glass

(non-critical) transition. A ferromagnetic to spin glass transition is similar

to the paramagnetic to ferromagnetic transition, at least to the extent that

both the paramagnetic and spin glass phases have zero net magnetization.

Some researchers (Yeshurun et al, 1980; Yeshurun et al, 1981; Salamon

et al, l98i) also believe that the relationships

M(o,T) - (3.3)

and

M(H,T¡) - ¡1r/a

(i-,)'

(3.4)

are valid in the vicinity of Q suggesting that a critical transition also occurs

along the FM-SG line; general consensus concerning the validity of the above

two equations has not been reached though. More will be said about this

behaviour below.

A scaling plot for this proposed transition, obtained by adjusting ?1,

þ and ã, th"o yields a graph like the one illustrated in Figure 3.9. The

latter plot is very similar to Figure 3.6, however with the temperature axis
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Figure 3.9: Scaled magnetic data for the FG transition (Yeshurun et al, 1981)

reversed; consequently, the two branches are interchanged, with the isotherms

in the ferromagnetic regime always constituting the upper branch. Critical

exponents and ?¡ extracted from the data are listed in Table 3.1 for the

different Mn concentrations. When looking at tbe latter values though, it

is important to realize that it has not yet been established whether or not

the linear magnetic properties for this transition are expected to conform to

scaling law predictions or not.

In fact, it is still debated whether or not the material undergoes a phase

transition, or the spins just gradually freeze when going from a ferromag-

netic to perhaps a cluster glass state. Further evidence suggesting that the

behaviour is indeed critical was found by (Yeshurun et al, 1980; 0.2 < t <

0.36) and (Geohegan et al, 1981; 0.15 < r < 0.35) where it is documented
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Figure 3.10: Temperature dependence of the coercivity, A (Geohegan et al,

le81)

that the magnetic susceptibility along the FM-SG line also obeys the scaling

hypothesis.

As with the magnetization, the temperature axis for the FM-SG transition

is 'reversed' with respect to that of the PM-FM transition. A manifestation

of this can be seen in Figure 3.7, the low temperature field dependant peaks

occur at a lower temperature than the zero field peak. The following argu-

ment can be used to explain this phenomena;for this transition M decreases

with decreasing temperature, but since M(T¡) > M(io"o*), the susceptibili-

ty maximum must occur below the FM-SG critical temperature. Hence the

location of X(To."r) provides an lower limit for ?¡.
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A plot of log(¡0""r) versus log(¡/") can then be used to find 6, as illus-

trated in Figure 3.8, and the exponent values found using this method are

listed in Table 3.2. As with the magnetization, the Hopkinson maximum

is not expected to interfere with the analysis since it is predicted to have

a negligible contribution below Q. Furthermore, hysteresis effects, which

would complicate the situation are insignificant in the temperature region of

interest (Figure 3.10).

The ã plot shown in Figure 3.8 is virtually identical to the 6 plot in the

same diagram, except that the entire line is shifted up a little. This type of

agreement, namely the accuracy with which scaling behaviour is reproduced,

suggests that this transition is indeed critical.

Paramagnetic-Spin Glass Tlansition

Zero field susceptibility versus temperature measurements are useful for iden-

tifying spin glasses since their susceptibility is usually substantially smaller

than that of a system with a ferromagnetic phase, as can be seen when con-

sidering Figure 3.11.

As stated in Section 2.3.4, this transition is identified by a sharp cusp in

the zero field susceptibility, agreeing with the SK prediction for this region

of the phase diagram. Examples of this type of behaviour are illustrated in

Figures 3.8 and 3.12. The peak positions, used to determineTrn are listed in

Table 3.2.
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The peak height in Figure 3.12 is expected to increase with decreasing ø

as the multicritic¿l point is approached along the PM-SG line (Salamon et

al, 1981) because the susceptibility diverges in the vicinity of the ferromag-

netic phase boundaries. No concensus has yet been reached as to whether

or not the 'PM-SG' transition in FeMn is critical; however, attempts have

been made to describe this phase change using the following scaling equation

(Salamon et al, 1981; Yeshurun et al, 1981)

x(T,") : À'x(Àp(T,r),Àó9(1, o)),

where the scaling fields, ¡r and g depend upon the shape of the phase diagram

and the location of the multicritical point, taken to be situated at ø¡4çp :

0.36 and ?r*,rcp : 41 K on the phase diagram. Choosing the MCP to coincide

withtheoriginof thescalinga:ces, i.e. g: p =0, theg:0 arcis is taken to

be an extension of tbe FM-SG line, and tLLe p = 0 axis is chosen to lie along

the PM-FM line. TakinE \óg: I then gives

(3.5)

(3.6)X(T,r): g-lóX(*)

which displays a cusp at p,f gtló : ootlSt.¡ thereby defining the FM-SG line.

The cross-over exponent, ,f may be found by plotting log(p) versus log(g),

using the peak temperatures in Figure 3.12 to generate a graph with a slope

of. Ll$. Having done this, *f nttló (where ,y¿ is the tricritical susceptibility

ocponent) can be plotted versus the scaling variable plg'ló, as illustrated in

Figure 3.13. Values of.llþ: 1.36 t 0.1 and 7 = l.l t 0.1 were found using
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the above technique.

The success of the above procedure by no means resolves the uncertainty

as to whether or not the'PM-SG' transition is actually a true phase transi-

tion. Only further theoretical analysis and experimental measurements could

confirm if the above analysis and its results are indeed valid.

3.2.3 Overview

When comparing the results in Tables 3.1 and 3.2, it can be seen that sizable

discrepancies exist between some of the critical temperatures and exponents.

Considering in particular the values Lor T¡,those obtained from magnetiza-

tion measurements are much lower than those determined from susceptibility

temperature sweeps. It is important to rcalizethough that there is no physi-
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cal feature unambiguously agreed upon as identifying the FG-SG critical tem-

perature, so the latter must be determined, along with the other adjustable

variables solely f¡om the scaling plot.

The differences in ?¡ would affect the location of the FM-SG line in the

phase diagram, and also the points at which it intersects the PM-SG and PM-

FM lines, which in tu¡n would cause variations in the critical concentration

aud temperature. It is this ambiguity that has been in part, motivation

for this detailed study of the FeMn system, using not only linear, but also

non-linear susceptibility measurements.

3.3 Neutron Scattering Results

Another type of probe which is sensitive to the microscopic, as opposed to

macroscopic properties of the sample, is neutron diffraction. Although this

technique can be used to study the distributiou, orientation and ordering

of magnetic moments, the discussion here will concentrate on the magnet-

ic ordering, and how neutron diffraction can be used to investigate phase

transitions.

Using neutrons, basicatly two techniguer involviug either scattering or

polarization analysis, can be used to study magnetic materials. Consider-

ing first scattering techniques; in paramagnetic (disordered) substances, the

atomic moments have random orientations causing the neutrons, which have

a dipole moment even though they are electrically neutral, to be scattered
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incoherently. On the other hand, in fer¡omagnetic (and other ordered) sub-

stances, the atomic moments are parallel (or antiparallel in the case of an

antiferromagnetic sample) resulting in coherent scattering, and therefore a

diffraction pattern.

Using polarization analysis, a beam of polarized neutrons becomes de-

polarized after passing through a ferromagnetic sample with several large

domains (as opposed to many small ones). It is interesting to note that in

the more common scattering experiments mentioned above, the microscopic

neutron-spin interaction is probed, whereas polarization analysis measures

the neutron spin precession over the much larger mean domain size. In para-

magnets and spin glasses, where disorder occurs at microscopic levels, the

neutrons pass through the sample without becoming depolarized.

This can be understood by recalling that the neutron's spin undergoes

Larmor precession in a field, such as that within a ferromagnetic sample,

thus causing depolarization of the beam. In a paramagnet and spin glass,

however, B(ú) fluctuates much more rapidly than the time required for one

Larmor precession; thus the neutrons remain polarized.

The latter technique was used to investigate the properties of FeMn (Mire-

beau, 1990), for concentrations in the range 0.07 < a < 0.41, a range that

includes non-frustrated ferromagnets, weakly frustrated alloys, samples dis-

playing reentrant behaviour, and pure spin glasses. The results are illustrated

in Figure 3.14.
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Figure 3.14: Polarization, P as a function of temperature for Fe1-'Mn",
where the arrows indicate the Curie temperature. A neutron wavelength

of À : 5 Angstroms \ivas used, along with an applied field of 5 Oe. Not
shown are the results for the a:0.07 sample, which display strong neutron

depolarization over the whole temperature range. (Mirebeau et al, 1990)
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atures respectively. The FC curve represents the field cooled polarization,
and the ZFC curve is the zero field cooled data. (Mirebeau et al, 1990)

Depolarization measurements performed on the c : 0.235 sample at low-

er temperatures were used to make predictions concerning a low temperature

phase transition. Examining Figure 3.15, it can be seen that the depolar-

ization for field cooled and zero field cooled measurements deviates below

about 90 K. This onset of irreversibility is interpreted as delineating the GT

transition, whereas the sharp decrease in the ZFC depolarization indicates

the presence of strong irreversibilit¡ and thus the AT transition.

Conclusions were also drawn by studying the average domain size at dif-

ferent temperatures and concentrations. The latter quantity was determined

by analyzing the wavelength dependence of the depolarization (decreased
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dependence \ryas interpreted as being a manifestation of larger domains, be-

cause then the field, and thus the Larmor precession axis changed less often

within the sample). Ar expected, the average domain size decreases as the

disorder (increasing ø) increases. Most importantly, for the weakly frustrat-

ed Fe1-,Mn" alloys with 0.22 < r < 0.26, large domains were found that

persist into the supposed reentrant spin-glass phase. This was found not to

be the case for larger ¡r values.

3.4 Mössbauer effect

Another technique which can be used to study the magnetic properties of ma-

terials involves the Mössbauer effect. Mössbauer spectra found for Fe1-"Mn,

(z:0.35) at diferent temperatures are illustrated in Figure 3.16. It was

determined that quadrupole splitting and the isomer shift were the predom-

inant effects responsible for the structure observed; the actual data was fit

using the function

P(H): Ð a,,"lcos(ntrH lH*) - (-1)"1, (3.7)

where H^ is the cut-of field, chosen to be between 150 kOe and 500 kOe,

depending upon the temperature.

A plot of P(l/) versus f/ is shown in Figure 3.17. From the behaviour of

the peaks in this plot, critical exponents and temperatures were found using

AH-Hoo-H,
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in conjunction with

A,H - AH¡"(r - TlTt)tu , (3.e)

where I/o, and H, are the average and (lower) peak field, and the subscript ..¡l'

denotes the paramagnetic to ferromagnetic transition parameters. A similar

expression was used for the ferromagnetic to spin glass transition. The results

were found to be þ¡ :0.42*0.I4,T¡ = 100 +.2K for the paramagnetic-

ferromagnetic transition and þ, : 0.52 * 0.19, T" = 50.2 *.1.4 K for the

ferromagnetic-spin glass transition.
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Chapter 4

Experimental Methods

4.L Sample Description

4.L.1 Introduction

The samples used for this investigation, (Fe1-"Mn")75P168 6A13 where ø :

0.235,0.26, 0.30, 0.32, 0.4i, \ryere prepared by Bigot and Peynot (Centre

d' Etudes de Chimie-Metallurgie, Vitry sur Seine) using the melt spinning

technique to produce a thin foil, which was encased with masking tape for

protection because of its extreme fragility, and then cut into narro\ry strips

using a sharp knife. The sample length and width were measured with a trav-

elling microscope (Precision Tool & Instrument Co. Ltd.), and the thickness

was calculated, based on the measured mass (found using a Mettler microbal-

ance) and estimated density of each sample.

Several attempts were made to experimentally ascertain the density using

a displacement method (Pratten, 1981). Unfortunately the amount of sample

available was so small (- 10 mg) in all but perhaps one case that even the



Mettler microbalance \4'as not sufficiently sensitive (*3 pE) to carry out such

measurements. Extreme care must also be taken as the samples were so

fragile that they would usually break into many fragments before the entire

procedure could be completed.

Despite these difficulties, a density measurement for the ø : 0.26 spec-

imen was completed, although the error is estimated to be as high as 10%.

The procedure was as follows:

(i) The sample was fi¡st weighed in air, so¡' (buoyancy effect of air is negli-

sible).

(ii) The sample mass \ryas then determined in toluene I by using a small

copper V-shaped holder suspended by a gold plated tungsten (to reduce sur-

face tension efects) wire (diameter : 50 pm). The empty holder, /z¿o¡ and

then the holder containing the sample, (å + s)tor was weighed in toluene, the

difference between the two measurements giving the sample weight in toluene

s¿ot:(ä+s)r,¿-hrot.

(iii) The buoyancy 'force', which is equal to the mass of toluene displaced

was calculated using

lfÙQES¿s¡=Scir-Súol.

(iv) The sample volume could then be determined from

Ptor - 
0.86698/cm3

Ðaol 
- fTl,O,SS¿s¡ ITL&SS¡1¡

tNote that toluene is a volatile and hazardous solvent. Inhalation and contact must be

avoided. This measurement was conducted with the apparatus in a fume hood.
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(v) Finally, the sample density could be found

PeamPIe: "oit '
Svol

Using this procedure p0.26 : 5.94 glr t was found. Unfortunately, attempts

to find the densities of the other samples were unsuccessful.

After an extensive literature search failed to yield the density of

(Fe1-'Mn')zsPreB 6A13 for any other values of ø, it was decided to estimate

the densities using a weighted average over the individual densities,

psampre: 0.75{pr"(1 - r) * pu*a} + 0.25{0.16 pe *0.06pn *0.03p¡,}. (¿.t)

This approach is based on the general result that for metal-metatloid amor-

phous alloys the density usually varies linearly with metalloid concentration

(Konczos et al, 1985). As a check, the calculation was applied to sever-

al other amorphous materials for which the density is known (Krebs et al,

1985; Cargil, 1975). The discrepancies betrveen the calculated and measured

values were usually quite small, and never more than 10%. The densities de-

termined using this method are listed in Table 4.1. Note that our measured

density for the x :0.26 sample agrees with the calculated density to within

the experimental error. Given the relatively large error in the measurement

and good agreement generally obtained by the calculation, it was decided to

use the calculated values exclusively in the analysis.

Table 4.2 lists the various sample properties, with the significance of the

demagnetizing and calibration factors listed in Table 4.3 being discussed in
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Table 4.1: Calculated Density

Concentration (z) Density (e/.-t)

23.5 6.33

26.0 6.32

30.0 6.31

32.0 6.30

Sections 5.1.3 and 4.2.5 respectively. The calibration and demagnetizing

factors for the various samples are a weighted average, based on the mass

and dimensions of the individual pieces comprising the sample. In other

words, the composite calibration factor is given by

csatnpre - D,c;m¿ 
Ø.2)D;m;

where q is the individual calibration factor (see Section a.2.5) determined

by the dimensions of each individual piece. The composite demagnetizing

factor may be found in a similar fashion.
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Table 4.2: Sample Specifications

Piece f Length (rn-) Width (**) Mass(g)

23.5-1 15.74 0.77 0.0020
23.5-2 17.09 1.62 0.0044
23.5-3 17.50 1.67 0.0048

26-t 12.54 0.55 0.0011

26-2 15.60 r.72 0.0037
26-3 17.30 1.20 0.0044
26-4 17.20 1.45 0.0053

30-1 17.05 1.33 0.0032
30-2 17.01 1.54 0.0037
30-3 17.10 1.05 0.0025
30-4 16.30 1.43 0.0033
30-5 77.24 1.39 0.0034
30-6 16.68 1.69 0.0040
30-7 16.58 1.83 0.0043

30-8 16.1 5 1.28 0.0029

32-1 16.55 1.48 0.0038

32-2 16.95 1.34 0.0035

32-3 16.93 1.21 0.0032

32-4 17.05 1.19 0.0031

32-5 16.60 1.14 0.0029
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Table 4.3: Calibration and Demagnetizing Factors

4.L.2 Preparation of Metallic Glasses

Although the samples were kindly provided in foil form by Bigot and Peynot

(Centre d' Etudes de Chimie-Metallurgie, Vitry sur Seine), a brief overview

of the two most common techniques for preparing amorphous samples will

now be presented for completeness. (Zallen,1983) (Güntherodt et al, 1981)

Splat Quenching

Making metallic glasses in film form essentially involves rapidly quenching a

liquid droplet, or jet onto a good heat conducting metal to produce 'splats'

or ribbons, using the procedures described below. The most important re-

quirement for producing these films is that the melt cools to a sufficiently

low temperature rapidly enough that it does not have the opportunity to

Sample Pieces Mass (g) Cal. Factor (emu/g-Oe) Demag. Factor (.*t)

23.5-I I 0.0020 7.10 x 10-a 0.02i 3

23.5-II 2-3 0.0092 7.36x10-a 0.0255

26-r 1 0.0011 6.49x10-a 0.0449
26-lI 2-4 0.0134 7.28x70-" 0.0496

30-I 1-8 0.0273 7.27x10-a 0.0276
3O-II 7-8 0.0072 7.2lx70-a 0.0301

32-l 1-5 0.0165 7.28x70-a 0.0258



Figure 4.1: Melt Spinning (Zallen,1983)

crystallize. Forming an ordered solid requires time, since nucleation must

occur for crystal growth to take place. Thus, the liquid must be cooled to

below the glass transition temperature,Ts, without being allowed to become

ordered at the freezing temperature,T¡ (Tn <T¡).

Melt Spinning

This technique, which was employed to make the samples studied in this

thesis, uses a rapidly spinning wheel (tangential speed - 2 km/min.) to

conduct heat away from a molten jet of alloy, as can be seen in Figure 4.1.

The rotor must possess excellent thermal conductivity, and is therefore often

made of copper, which is maintained at room temperature with water cooling.

The'ribbon'manufactured in this ïvay can have a thickness ranging from 20

to 60 ¡rm. Since the film is extremely thin and makes good thermal contact

with an excellent heat siuk, it cools rapidly (- 106 K/s) before it solidifies.
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Figure 4.2: Splat cooling (Zallen,lgSg)

Depending upon whether or not the alloy oxidizes easily, the 'ribbon' may

be made iu air or in a vacuum/inert atmosphere such as argon.

Splat Cooling

Splat-cooling, which is a variation of the melt spinning technique, was

developed especiaily for the purpose of makiug metallic glasses, and consists

of letting a molten droplet of the material fall between an anvil and a hammer,

as illustrated in Figurc 4.2. There it is flattened into a 15 to 30 mm diameter

'splat' with a thickness ranging from 20 to 80 pm. This method cools the

tiquid metal from both sides, and exhibits cooling rates in the range 105 K/s

to 108 K/s.
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Figure 4.3: Vapor condesation (Zallen, 1983)

Vapor Condensation

Vapor condensation, a technique which employs an entirely different ap-

proach than the one discussed above c¿n also be used to form amorphous

solids. (Zallen,1983) This method bypasses the liquid state of the material

entirely, and essentially constructs the amorphous solid one atom at a time

therefore possessing the highest effective quenching rate obtainable.

There exist a variety of vapor condensation techniques, the simplest of

which is illustrated in Figure 4.3, and involves heating the desired material

u¡til a vapor is formed, which can then condense on the cold substrate. The

material forming on the substrate will be amorphous, providing the thermal

energy of the vapor atoms is removed before they reconfigure into a crystalline

form. Another approach involves using an electron or ion beam to bombard
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the source material (sputtering). Vapor condensation is useful in forming

thin films with a thickness of 5 - 50 ¡^rm.

4.2 Experimental Apparatus

The data collected for this thesis involved measuring the a.c. susceptibility of

a series of FeMn samples over a wide range of temperatures and static biasing

fields. To accomplish this goal requires the development of three separate

experimental systems; the cryostat system, the susceptometer (susceptibility

measuring device) and the data collection system, all of which will now be

described in some detail.

4.2.L Cryostat System

Although the name suggests that this equipment is solely related to temper-

ature control, in actual fact, the cryostat system also includes the sample

probe, static biasing field solenoids, and the sensing/pickup coils connected

to the susceptometer. The arrangement of this equipment is illustrated in

Figure 4.4, and the function of the individual components will be described

in the ensuing sections.

As can be seen in the diagram, the cryostat consists of two double-walled,

concentric chambers (dewars). The outer dewar surrounds the various coils

and always contains liquid nitrogen; it is insulated from the outside by means

of a vacuum space between its double walls. The inner dewar in which the
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sample is placed, is appropriately named the sample space, and can be filled

with liquid helium or liquid nitrogen for constant temperature measurements

al 4.2 or 77 K, respectively.

4.2.2 Sample Probe

The construction of the sample probe itself involves a machined OFHC

(oxygen-free, high thermal conductivity) copper block around which an in-

sulated nichrome heater is wound and to which a large bundle of 32 gauge

copper wires (braid) was soft-soldered, into which the sample to be measured

could be inserted. The purpose of the copper bundle is to provide a means

by which the temperature of the sample (having good thermal contact to the

bundle) can be varied, and yet allow the a.c. driving field generated by the

susceptometer to easily penetrate to the sample; the skin depth of copper is

much greater than the diameter of the wires. Before placing the sample into

the copper braid, it was wrapped in masking tape to electrically insulate it

from the latter, but still maintain good thermal contact to the heater.

Before proceeding with a measurement it u'as necessary to correctly po-

sition the sample with respect to the pickup coils. This was accomplished

by initially placing the centre of the sample - 8.0 cm below the bottom

of the copper block within the Cu bundle. After cooling the sample to a

temperature at which it had a non-zero a.c. susceptibility, the sample po-

sition was fine-tuned by means of an adjustment screw at the top of the

thin-walled stainless steel tube supporting the copper block. The screw is
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Figure 4.4: Cut away vie\ry of the lower portion of the cryostat system, in-
cluding the sample probe and the various coils providing the sensing and
D.C. biasing-field. (Ma, 1990)
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threaded onto a plate at the top of the cryostat system, and provides a con-

venient means for moving the sample. Stainless steel is used since it is a

relatively poor thermal conductor, thus limiting the heat transfer into the

cryostat from outside. The entire sample probe was thereby moved up or

down with respect to the sensing coils until a maximum signal was obtained

on the susceptometer output.

4.2.3 Static Biasing Field

Zero Field Measurements

When doing eithe¡ temperature or field sweeps, the sample was initially

cooled from well above T" (- 1.27") to the desired temperature in 'zero'

field; i.e., the local 0.52 Gauss vertical component of the Earth's field was

backed off. This was done by passing the appropriate current (2.43 mA)from

a constant current source through the biasing solenoid (215 Oelamp) within

which the sample was located (Figure a.a). The purpose of this procedure

was to ensure that each run was always started with the sample in the same

magnetic ground state. In other words, any history dependent effects i.e. hys-

teresis, which could affect the reproducibility of the results, were removed.

It should be noted that no measures were taken to compensate for the local

horizontal component of the Earth's field, which is approximately 0.24 Oe.

Alihough this is inconsequential when doing high field measurements, it had

to be considered when doing experiments at smaller fields.
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Temperature Sweeps

When performing temperature sweeps, the sample was subjected to a ðe-

ries of static biasing fields (applied along its largest dimension) ranging from

- 0.5 Oe to 1000 Oe. For fields less than about 500 Oe, the 215 Oe/amp

solenoid was used, whereas for higher fields an addiiional solenoid producing

186 Oe/amp was connected in series with the first solenoid, giving a total of

401 Oe/amp. The two coaxial solenoids were both constructed by winding

22 gauge enamelled copper wire on a brass former, and were maintained at

a constant temperature of 77 K during any experiment by immersing them

in liquid nitrogen. This serves to reduce the coil resistance, important be-

cause large currents will cause considerable Joule heating, and maintaining

the coils at a constant temperature helps to stabilize the current. The cur-

rent passing through the solenoid(s) was generated by a Lambda LK344A

FM Model current regulated power supply and monitored for stability by

measuring voltage across a standard resistor with a DANA multimeter.

4.2.4 Temperature Control

For all experiments performed it was imperative to constantly monitor the

temperature. For the temperature sweeps, this quantity was recorded at reg-

ular intervals using a computer controlled data acquisition system, as will be

described below; and for tbe field sweeps, it was necessary to ensure that the

the temperature remained sufficiently constant throughout the run.
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The sample temperature was determined by means of a calibrated Chromel

P-Au + 0.03 at.% Fe thermocouple with one junction immersed in an ice

bath, and the other placed as near the sample as possible, i.e. at the top

of the wire bundle, - 5 cm above the sample. It was not possible to place

the junction at the site of the sample because AuFe at this concentration

is weakly magnetic; the thermocouple itself could contribute to the signal

detected by the sensing coils. Temperature gradients between the sample

and the thermocouple junction were minimal due to the good thermal con-

ductivity of the copper braid, provided the heating rate (for temperature

sweeps) was kept sufficiently low. The thermocouple emf was displayed on a

Racal-Dana 5001 DVM and could be converted to a temperature in Kelvin

using the appropriate calibration data.

Since most of the experiments were carried out at temperatures much

lower than room temperature, it lryas necessary to cool the sample using

liquid helium and/or liquid nitrogen. For 7 > 77 K the nitrogen dewar was

filled until the biasing field and pickup coils were completely immersed. In

order to facilitate more rapid cooling of the sample, the vacuum space of

the inner/helium dewar could be softened to provide better thermal contact

with the sample space. (Thermal contact between the nitrogen and helium

dewar was controlled, in general, by changing the vacuum in the helium

dewar jacket.) For data collected at 77 K, nitrogen \¡/as poured into the

'helium'dewar (sample space) to provide an stable temperature environment.
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Between 4.2K and 77 K the nitrogen dewar was completely filled to provide

maximum thermal isolation of the helium dewar, which was then cooled with

cold helium gas obtained from a liquid helium storage dewar through a liquid

helium transfer tube. For constant temperature experiments at 4.2K, a small

amount of liquid helium was transferred into the sample space.

To warm the sample to the desired temperature after cooling (it was

impossible to cool to exactly the required temperature with the exception

of 4.2 K or 77 K ), an electric (nichrome) heater was used. The latter was

constructed by wrapping about 10 turns of 0.010'/ diameter heater wire (i3.2

O/ft, 50 O total resistance at room temperature) around the copper block, as

illustrated in Figure 4.4. By adjusting the heater current, various warming

rates could be achieved, depending upon the experiment being performed. At

'very hight temperatures, near room temperature, the warming rate could be

increased without resorting to very high heater currents by pumping on the

inner dewar vacuum space through a nitrogen-filled cold trap with a diffusion

pump to decrease the thermal contact with the nitrogen dewar.

4.2,5 The Susceptometer

Principle of Operation

The susceptibility measurements were carried out using a phase locked 2.4

kHz susceptometer (Maartense, 1970, 1982). Essentially, this consists of two

LCR resonators, configured as shown in Figure 4.5, with natural frequencies
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q : t, and ,, = ù respectively. The first resonator is part of an

oscillator, which is connected so that both circuits have an initial driving

frequency, Lút : tÐ2. When a piece of magnetic material is inserted into L2

the self-inductance of the latte¡ changes to L2+ LL2, which in turn causes

U2+t¿,-ft=,aswellasaffectingthephase,/,associatedwith- \/(Lz*ALz)Cz7 -- "

u2. The quantity /, which represents the phase by which the emf leads the

current, is given by

, uL-1 u2LC-lt 
- 

-!!!_

Y_ R ,RC ; Q:U)t,,U)2. (4.3)

Thus, changing the inductance, capacitance or resistance of any of the ele-

ments comprising the two circuits affects their respective phase angles. The

output of the two circuits is fed into a phase detector, monitoring the phase,

but not the amplitude diference between the two signals. The phase detector

generates a D.C. voltage change proportional to A/ : ó(Lt) - ó(Lr+ LL2),

which is passed via a feedback loop to a voltage dependent reactance ele-

ment that attempts to compensate for A,L2 and re-establish the condition

Ló : ó(Lr) - ó(Lr). The susceptibility of the sample can then be deter-

mined since it is proportional to the voltage generated by the phase detector,

which is in turn related to A.Lz.

Specifications

The two inductors, or sensing coils used in the susceptometer are comprised

of 4000 turns of 35 gauge enamelled copper wire counter-wound on nylon coil
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Figure 4.5: Block diagram of the susceptometer (Ma, 1990)
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formers, with inductances measured to be 205 and 202 mH (Roshko, 1979).

The arrangement of the coils with respect to the sample position can be seen

in Figure 4.4; the coils were always immersed in liquid nitrogen during oper-

ation of the susceptometer to reduce their resistance and increase the Q of

the LC R circuits, thus reducing the noise factor resulting from changes in

sensitivity due to temperature drift.

A driving frequency of 2.4 kHz was employed, with a driving field strength

of 30 mOe used for most of the measurements. A driving field of 50 mOe was

required for a few trials in order to improve the signal to noise ratio. A smaller

field strength is naturally preferred, since the purpose of the measurements

was to find the a.c. susceptibility, which involves the differential slope on an

M versus I/ curve. However, the finite resistance of the sensing coils (even

at 77 K) limits the possible driving field levels available, as the oscillations

would get damped out below a certain threshold.

It is important to note that the copper braid containing the sample passed

through both counter-wound sensing coils in order to balance out tbe dia-

magnetic signal from the Cu braid itself. Differences between the component

values of the two circuits, which of course are not necessarily equal as in the

ideal case, cause a non-zero voltage output even in the absence of a sam-

ple. This is taken into account when making measurements, as described in

Section 4.3.1.
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Calibration

As previously mentioned, the susceptometer generates an output reading in

volts; in order to obtain absolute susceptibility measurements in emu/g-Oe, a

calibration factor is necessary. The susceptibility may be calculated directly

from the Â.[ (change in inductance) introduced by the presence of the sample

using the following expression (Maartense, 1970)

(4.4)

where 7 is the 'effective volume filling fraction' of the sample inserted into .L1,

and p is its density. However, since r¡ is very difficult to determine, the suscep-

tometer was instead calibrated using a 99.999% pure Gd2O3 powder which

has a theoretically well understood magnetic behaviour. This sesquioxyde

of gadolinium is paramagnetic at 77 K, and exhibits a large susceptibility

displaying excellent agreement with the Curie-Weiss law,

/ LL\AX:n"ro\ t )

Nþ2"¡t Ns2pþJ(J +t)r'-.é/\ \kB(T - o) \kB(T - o) )

cXux: -,rn
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where the paramagnetic Curie point, d, equals -13 K for Gd2O3 (Schinkel et

al, 1973). The powder lvas placed in a series of glass tubes with different

dimensions, and the susceptibilities were then measured at 77 K (fresh liquid

nitrogen).

Inserting þ"Í! : (7.70 + 0.0$¡4 into (4.5) gives the calculated suscepti-

bility, which in conjunction with the expression

(4.5)

(4.6)



-0 orN
Figure 4.6: Susceptibility of an antiferromagnet above its Neel point; ?lv is
the Neel temperature and d is the paramagnetic Curie point. (Jiles, l99l)

where n is the sample mass, and ¡, is the measured susceptibility in volts,

yields the calibration factor, c. It is important to mention that in order to

make the final results independent of the sizæ, of. the FeMn specimen used, ali

susceptibility measurements will be expressed in emu/g-Oe- This requires an

expression which incorporates the sample mass, as has been done in (a.6).

To within experimental error, the diameter of the sample did not affect

the c¿libration factor, whereas a difference in length resulted in the following

relationship (Wang, 1994)

c - (0.20 emu/V-Oemm )(sample length)+ 5.50 emu/V-Oe.

The above value is only valid to within f5% due to inherent limitations on

the sensitivity of the susceptometer. This is not a major concern, however,

since the relative (which can measured to better than I part in lOa), as

opposed to the absolute susceptibility is usually the quantity of interest.
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4.2.6 Data Collection System

Throughout all of the experiments, the data was collected and stored using a

data acquisition system controlled by RALPH 2, while simultaneously being

recorded on a Philips PM 8143 XY recorder, if desired. RALPH could be set

to collect susceptibility versus current (field) or temperature data, depending

upon the particular experiment in progress, as will now be discussed. It

should be noted that all data was read in volts from two Hewlett-Packard

344014 multimeters and could be converted to the desired units (Kelvin, Oe,

etc.) by means of appropriate conversion tables and analysis routines.

4.3 A.C. Susceptibility Measurement Pro-
cedure

4.3.L Temperature Sweeps

In order to collect temperature sweep data it was necessary to vary the sample

temperature within the range 4.2 to 300 K while keeping the D. C. biasing

field constant. The steps involved in this procedure were as follows:

(i) The sample was first warmed to well above its critical temperature

(- I.27"), see Section 4.2.3 and subsequently cooled in 'zero'field.

(ii) Depending upon the temperature range of interest, the sample was

cooled with nitrogen, or nitrogen and helium (Section 4.2.4).

2A program designed ¿o run on a personal computer, w¡itten by J. Schachter, University
of Manitoba, 1991.
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(iii) After reaching the desired temperature and disconnecting the zero-

field constant current supply (backing off the Earth's field), the Lambda

LK344A FM current supply was connected to the appropriate solenoid com-

bination (215 or 401 Oe/amp) and adjusted to generate the desired applied

field.

(iv) Having completed all of the above preliminary steps, RALPH was

initiated and a 'zero'reading was taken (see (v)). The data collection sys-

tem was set to read the susceptibility (in volts) and the temperature (in ¡rV)

every 1 to 5 ¡rV in temperature. The heater current was then slowly increased

so that the warming rate remained approximately constant. The latter was

monitored by RALPH and maintained at about 5-7 slp.Y (l-2 min/K) -
heating at a faster rate may introduce a temperature gradient between the

sample and the thermocouple junction. It should be noted that higher tem-

peratures required greater heating currents to achieve the same warming rate;

for example, near 4.2K, a 10-30 mA heater current was required, whereas at

77 K,130-150 mA was used. For all samples except Fe76.5Mn6.5, the heater

current was kept below 210 mA at even the highest temperatures. However,

in this one case, temperatures as high as 300 K were required, which made

heater currents as high as 350 mA necessary. To ensure consistency between

the temperature sweeps at various fixed fields, care was taken to keep the

heater current approximately the same at a given temperature.
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(v) Additional 'zeros' were taken at regular intervals to correct for any

d¡ift in the 'zero-susceptibility'readings 3. These readings were obtained by

using the support rod (Section 4.2.2) to extract the sample from the upper

sensing coil until a minimum in the susceptibility was observed on the XY

recorder/DVM, and then prompting RALPH to record a'zero-susceptibility'

reading. The sample was then reinserted to allow data collection to resume.

(vi) After acquiring data in the temperature region of interest, the sample

was again warmed above 7i and the entire procedure could be repeated at a

different field.

4.3.2 Field Sweeps

The field s\ryeeps were conducted with a procedure that was, in some ways,

similar to the temperature sweeps, except that here the temperature is kept

constant and the field is varied. To some degree, these runs required greater

care to complete than the temperature sweeps as temperature stability was

quite difficult to maintain, especially between 4.2 K and 77 K. However, as

each individual field sweep could be completed within a few minutes (not

including warming and cooling times), this diffculty could be reduced to an

acceptable level by monitoring the temperature during the field sweep and

introducing small heater current adjustments if necessary.

(i) As with the temperature sweeps, the sample was first warmed to well

above its critical temperature and then cooled to the required temperature in

3The zero corrections will be discussed in detail in Section 5.1.
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'zeto'field, to ensure that each measurement was carried out along a'virgin

magnetization curve'.

(ii) Using a low heater current, a temperature stability from *l ¡zv to t
a p,Y (* 70 mK to t300 mK)was achieved, depending upon the temperature

at which the measurement was performed.

(iii) The current supply for the field sweeps consisted of a 68244 Hewlett -

Packard DC Power Supply-Amplifier, driven by a Stanford Research Systems

Model DS335 Synthesized Function Generator. The supply was adjusted to

give an initial output of 2.43 mA through the 215 Oelamp solenoid in order

to begin the sweep from true zero field.

(iv) After starting RALPH and taking a zero) the field sweep was begun

by setting the function generator ramp time to a value much slower than

either the susceptometer time constant or the magnetization relaxation time,

typically (5 - 25)x10-5 Hz. The data acquisition system was set to read the

susceptibility (in volts) and applied current (in volts - measured across a 1 f)

standard resistor) at appropriate intervals to collect enough data points for

analysis.

(v) Once the desired maximum field was reached another zero was taken;

then the back-off field was reset, and the sample rryas warmed in preparation

for the next measurement.
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4.3.3 6Butterfly' Loops

Butterfly loops, so named due to their shape (Figures 5.56 and 5.57) are

actually 'complete'field sweeps, with the applied field being swept, using a

saw-tootbed waveform from negative to positive, and then back to negative

again. These measurements determine the magnetic 'hardness' or coercivity

of the sample, and evaluate the importance of hysteretic effects at diferent

temperatures. These measurements were by far the least time-consuming

since it was not necessary to warm the sample above ?" before each run.

However, it was even more difficult to control the temperature than with

field sweeps, as each individual run took longer to complete, and therefore

required the temperature to remain stable for a greater period of time.

(i) For this type of experiment, it was not necessary to cool in zero field, as

mentioned above. Instead, once the temperature was stabilized, the current

passing through the 215 Oe/amp solenoid was swept through a preliminary

closed loop between * I A before the actual measurement. The coercivity

was then measured by sweeping the sample through the same hysteresis loop.

(ii) RALPH was set up in the same manner as for field sweeps, except

that the field range over which data was collected now included both positive

and negative fields.

(iii) The next butterfly loop could be recorded as soon as the next tem-

perature of interest was established.
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Chapter 5

Data Analysis and Discussion

5.1- Data Correction

Before any results can be extracted from these raw data, three separate cor-

rection factors must be incorporated. The zero and background adjustments

are required because of the non-ideal characteristics of the sample probe, and

the demagnetization correction results from the finite size/geometrical shape

of the samples used. Each of these aspects will now be discussed in detail.

5.1.1 Zero Correction

As described in the 'Experimental Methods' chapter of this thesis, 'zero read-

ings' were taken regularly when performing any susceptibility measurements.

The reason this is necessary was to monitor that portion of the signal which

is not due to the sample, but is rather a contribution from the sample probe.

Even though the sensing coils in the susceptometer are counter wound, eddy

currents induced in the copper block (Figure a.4) will affect the inductance
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of each sensing coil to a different extent. Withdrawing the sample from L2

(Figure 4.5), yields a residual signal which is generated only by the presence

of the copper block. The error introduced by this effect can then be account-

ed for by subtracting these residual 'zero-susceptibility' readings from the

tsample-susceptibility' measurements.

Since in general, the magnitude of eddy currents depends upon the resis-

tivity of the materials in which they are induced, the above contribution will

be more pronounced at lower temperatures where the resistivity of the cop-

per block will be lower. Furthermore, larger driving fields will also introduce

a greater'zero-susceptibility' signal.

5.L.2 Background Correction

The copper bundle (braid) containing the sample also affects the suscepti-

bility readings even though, ideally, the effect of the braid, which links both

sensing coils, should cancel. However, due to inhomogeneities in the bun-

dle, a diamagnetic contribution of about -0.045 Y at 4.2 K results, which

decreases in magnitude with increasing temperature and can be measured

upon removal of the sample from the probe.

For the present measurements, this effect is most significant at low tem-

peratures, where the magnitude of the susceptibility approaches that of the

background correction. A complete temperature sweep in the absence of a

sample in the probe will determine the temperature dependence of the back-

ground susceptibility, which can then be subtracted from the measured signal
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along with the zero correction to obtain the 'true' measured susceptibility.

5.1.3 Demagnetizing Correction

The susceptibility obtained by incorporating the background efects is still

not the true susceptibility of the sample, because of the finite size of the

FeMn specimen. A magnetized sample possesses uncompensated poles at

its surface, with a distribution depending upon the geometry of the sample.

Taking the specimen to be uniformly magnetized, as is the case fo¡ an ellipsoid

(Morrish,l965), results in a uniform internal magnetic field given by

H¡:Ho-H¿-H"-NM (5.1)

where fy'o and H¿ are the applied and demagnetizing fields respectively, and y'ú

is the shape-dependent demagnetizalion factor. 1 H¿ 1 Ho for all magnetic

materials except diamagnets, which have a negative susceptibility and are

therefore magnetized in a direction opposite to that of the applied field. The

demagnetization correction is usually negligible in dia- and paramagnets;

however, in the case of ferro- and ferrimagnets, it must be considered.

Although the FeMn pieces used in the present study have a rectangular

shape (Table 4.1), they were approximated by ellipsoids with the principal

axes equalling the sample dimensions, since this is the only shape for which

lFor an'infinitely'thin, needle.like sample aligned along the direction of the applied
field, lV * 0, whereas for a flat disc with its surface perpendicular to the field direction,
N = 4tr. The FeMn specimen studied here are long flat strips, with thei¡ longest dimension
parallel to the field direction, and therefore have a very small demagnetization factor (Table
4.1).
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the demagnetization factor can be exactly calculated. Evaluating the appro-

priate elliptic integral (Osborn, 1945), the demagnetization factor for each

sample was calculated.

Once the demagnetization factor is known, the actual, or 'true' suscepti-

bility of the sample,

^. _aM_,_ 
a&,

as compared to the measured susceptibility,

(5.2)

(5.3)
AM

n* - aqo'

can be calculated. By combining the above two expressions using (5.1), it is

trivial to show that

X*Xt: r - Nx,,

From the above expression it can be seen that the measured susceptibility is

limited to

x^<!'- ¡y', (5.5)

where Xrn = *, ot 7 - NX^: 0 represents the demagnetization limit at

which the true sample susceptibility diverges (¡¿ -r oo).

A final requirement before we can proceed to analyze the data will be to

establish a procedure for evaluating the internal field, Il, given an applied

field, I/o. Referring to (5.1) it can be seen that it will be necessary to

determine the magnetization, which can be obtained by integrating (5.2)

(5.4)
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yielding
¡H¡

tøQ) : Jo x{r).dH;.

It follows trivially from (5.2) and (5.8) that this is equivalent to

useful expression

M(\ - Io'" x^(T). d,Ho, (5.7)

which can be approximated numerically using

j-r
Mi : x*¡. Ho,+ Ð{A--, - Hor)-f,{**r*,*x^r) ; 1 < j < n-1 (5.g)

rt=1

which is simply the trapezoidal rule, where ¿ is the number of d¿ta points

collected and j is the data point label. By using the above equation in

conjunction with (5.1), the internal field may be written as

H;.:l{a.i-NM¡.

(5.6)

the more

(5.e)

The trapezoidal approximation given by (5.8) results in an overestimation

of the magnetization, but the error becomes negligible if sufrcient number of

data points are collected.
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5.2 Zero Field Susceptibility

Before examining the susceptibility versus temperature curves in various ap-

plied fields, it would be interesting to consider the behaviour of the zero

field (/. : 2.43 mA to back of the vertical component of the Earth's field)

susceptibility for the various samples. It is apparent that the susceptibili-

ty increases sharply with decreasing temperature for all of the samples, as

can be seen in Figure 5.1, thus denoting the paramagnetic to ferromagnetic

phase transition. The nature of the decrease in susceptibility at lower tem-

peratures is not as well understood, and is believed to be either indicative of

another phase transition, or simply due to an increase in coercivity, as will

be discussed in more detail below.

The broad maximum in the intermediate region of the temperature s\ryeeps,

referred to as the Hopkinson peak, or principal maximum is not the result of

critical behaviour, but rather due to 'technical processes' (Williams, 1991)

such as domain wall motion. As the temperature decreases, thermal effects

diminish, allowing the relative strength of the spin-orbit coupling to increase,

which in turn may result in greater anisotropy. This would result in the

gradual decrease in susceptibility below the paramagnetic to ferromagnetic

transition, as is observed in the ø : 0.235 and 0.26 samples.

Note that none of the zero field runs reach the demagnetization limit,

unlike some of the previous results published (Salamon et al, 1980). To
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Figure 5.1: The zero field a.c. susceptibility, X(H,T) (in emu/g-Oe), correct-
ed for background and demagnetising effects, plotted against temperature (in
K) for the ø: 0.235, 0.26, 0.30 and 0.32 samples.
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understand this, recall the equation

H;: Ho - NM,

which can be used to show that

n,--1 _¡¡y*

with the limitation, X^ 1*. In other words, at the demagnetization limit:

Xm: *, Hr: 0 and Ho: NM. For this to be the case in an oscillating

driving field (such as the one used to measure the a.c. susceptibility), the

magnetization must also oscillate with a magnitude specified by AM - +.
Clearly, the larger the demagnetization factor, N, the smaller the oscillations

that are required. The accurate determination of .¡{ is difficult for the long,

thin samples used in this study, but since this quantity is quite small under

these circumstances, an accurate dete¡mination is not important. If I/ is

small, however, a greater amount of coherent rotation and domain wall mo-

tion is needed to satisfy A,M: S. tt"tefore, anisotropy effects become

more prevelant, and the demagnetization limit is not as easily reached as it

would be in a sample with large .Àú (Williams, 1991).

5.3 Upper Tbansition

As described in the experimental section, temperature sweeps were carried

out in various static external biasing fields. The results of these measure-

ments for the different concentrations are shown in Figures 5.2 to 5.5; the
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suppression of the Hopkinson peak amplitude, and reduction in peak tem-

perature in a sufficiently strong magnetic field reveals a set of critical, or

secondary peaks 2. Whereas the Hopkinson peak decreases in amplitude and

temperature as -Élo is increased, the critical peaks also decrease in height

(although not nearly as quickly as the Hopkinson peak), but move upwards

in temperature (Ç ) T.), as illustrated in Figures 5.2, 5.4 and 5.5. The de-

tailed behaviour of the critical peaks are shown in Figures 5.6 to 5.9, which

also show a cross-over line (dashed line - recall Figure 2.8) below which the

behaviour of the susceptibility is field dominated, and above which it is con-

trolled by thermal fluctuations.

The latter can be understood, at least qualitatively, in terms of the fluc-

tuation dissipation theorem (III Kunkel et al, 1988) using the expression

x@,r)-|t{t"Y-(s:)). (5.10)

Considering the high temperature limit (ú >> å), (S,) - 0 and (S,,) *
S(^9 + 1) in non-zero applied field, giving X(H,T) - å (*¡ich is simply

Curie's law, Section 2.3.1), and thus (#) ( 0. To understand the behaviour

when h >> t, i.e., in the field dominated regime, consider the approach

to T" from above in finite field, I/.. In this situation the magnetization

approaches saturation as the critical temperature is approached, meaning

that the fluctuations, and thus ¡ decreases as ? -r ?"+, giving (#) t O.

2It should be noted that it is assumed that any contribution to the susceptibility from
the tail of the Hopkinson maximum, i.e. regular contribution is negligible. It is expected
that this assumption is valid for all but the lowest fields.
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Figure 5.2: The a.c. susceptibility, y(H,") (in emu/g-Oe), corrected for
background and demagnetizing efects, plotted versus temperature (in K) for
the c : 0.235 sample. The numbers beside each curve represent the static
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Figure 5.3: The a.c. susceptibility, y(H,?) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted versus temperature (in K) for
the c = 0.26 sample. The numbers beside each curve represent the static
biasing field (in Oe).
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Figure 5.4: The a.c. susceptibility, ¡(I/, f) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted versus temperature (in K) for

the c : 0.30 sample. The numbers beside each curve represent the static

biasing field (in Oe).
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biasing field (in Oe).
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Figure 5.6: Critical peak structure for the x : 0.2J5 sample. The numbers
beside each curve represent the static biasing field (in Oe), and the dotted
line represents the cross-oïer line, illustrating the relationship, xp - ti1.
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Thus a peak must exist for T ) T" between the two limiting constraints.

Recalling the discussion in Section 2.4.4; the functional form of the ex-

pression relating the singular component of the susceptibility to the internal

field, ff and the reduced temperatute ,t = (T -T") lT", is given by the scaling

relation

x(H¿,t) - t-',F' (#) - ¡7t/6-t, (#). (5.r1)

Several relationships derived from the above equation describing the be-

haviour of the critical peaks will now be considered in light of the exper-

imental data collected.

Firstly, from (5.11) the critical isotherm exponent, á can be determined

by plottinE X(H;,Ç) against H¿ on a double logarithmic scale to obtain a

straight line with a slope of å - 1 in accordance with the equation

X(H¿,7) o ¡7 t/6-t, (5.12)

where 14 is the internal field, Ç is the peak temperature, and X(I/,,4) it

the peak susceptibility for a particular field.

The combination 'y + P can be found in a similar manner by plotting fo

against Iú on a double logarithmic scale, with the justification for this choice

coming from the scaling prediction

T _T,r:'l x H;l/(t+P) (5.13)

where I is the critical temperature. (Recall the discussion for (2.98), Section

2.4.4.) However, the above expression contains two unknolryns, namely I and
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the combination 1 + P. To determine the critical temperature,T, is plotted

versus 1ff; (i.e. assume 1 :0.5), and I is initially estimated from the

intercept of the best-fit line, given by

To=c(H¡)'u*T., (5.14)

where c is some constant. Inserting this ?" into (5.13), a neì¡/ value of ;fo is

found and used in (5.1a) to replace the original estimate of 0.5, which in turn

permits an 'improved'T" to be calculated. Adjusting the critical temperature

slightly with each iteration, this procedure is repeated until the two graphs

yield consistent values for 7i and fp.
A method of finding "y by itself, using temperature sweep data involves

combining (5.12) and (5.13), and then using the Widom equality, -t - P(6-l)
to give

Xp(H,tr) x tr-a (5. i 5)

Thus, when the logarithm of the peak susceptibility is plotted versus the

logarithm of the reduced peak temperature, the result should be a straight

line with a slope of -?.
Finally, the efective susceptibility exponent, 7*(ú) can be found by plot-

ting the zero field susceptibility versus reduced temperature, (? > ?") on a

double-logarithmic scale, and then finding the slope of the curve. 7.(ú), also

known as the Kouvel-Fisher susceptibility exponent, is thus defined as:

t.(t):%#
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and represents the point to point, or instantaneous slope of the ¡(0, ?) versus

I plot. Further discussion concerning the 'expected behaviour' of the resulting

7*(t) versus ú curve will follow below.

The ferromagnetic to paramagnetic transition for the various samples and

the exponents found will now be presented.

5.3.1 Fe1-rMn, (* - 0.235)

The procedure described above was used to find á for the x = 0.235 sample, as

illustrated in Figure 5.10. The best fit line was found using a well established

procedure (Bevington, 1969) and included all of the data points (10 Oe <

ä. < 600 Oe) to yield a value for 6 of 3.84 * 0.03. Comparing the exponent

value found experimentally to the 3-dimensional Heisenberg model, it can be

seen that the experimental value does not agree particularly well with the

'expected' value of 4.78.

A double logarithmic plot of úo versus I{, fit over the range 10 Oe <

H; 1300 Oe (points 1 to 13), along with a plot of Ç versus ,t/(t+p), frt

over the same range, gives 7 + 0 = 1.7(6) + 0.1(0) and 7" : 260.17 + 0.09

K in accordance with (5.13). Note that the points at higher fields were

not included due to the pronounced downward curvature, caused by the

bond disorder present in the sample. The 3D Heisenberg value for 7 * B is

1.388 +0.367 - 7.755, which agrees very well with the experimental result.

The plots and corresponding best fit lines are shown in Figures 5.11 and 5.12

respectively.
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Figure 5.11: The reduced temperature versus the internal field (in Oe), plot-
ted on a double logarithmic plot for the c : 0.235 sample. The points are
shown with their corresponding errors, which reflect the uncertainty in the
peak temperatures. The solid line represents the best fit line, found over the
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Comparing Figures 5.10 and 5.11, it is apparent that a unique ó value

exists over the entire field range, 10 Oe 1 H; 1600 Oe, whereas the cross-

over exponent, 7 f B was found between 10 Oe and 300 Oe. It is unusual

not to observe a corresponding curvature in the ó plot, i.e. have a decreasing

6-(H) with increasing field (Berndt et al, 1995). However, the 7 f B value

of 1.76 +0.10 agrees extremely well with the 3D Heisenberg model value of

1.755.

The 7 exponent, itself, can be found using (5.15), as illustrated in Figure

5.13. The fit is not nearly as good as for the previous figures and yields 7

values of 7.24 *0.02 and 1.29t0.01 when fields 10 Oe 1H¿1300 Oe (as

in the 1 + P plot) and 10 Oe 1 H; < 600 Oe (ó plot range) respectively

are used. Both values are somewhat lower than the 3D Heisenberg value of

1.388. A small reduction of ?" (within error) is unable to improve these fits

appreciably.

Returning to the zero field temperature sweep, the temperature depen-

dence of 7, i.e. 7.(ú) can now be determined. A plot of log(X) versus log(t)

is shown in Figure 5.14 with a 'high temperature' (0.093 < ¿ < 0.124) slope

of -1.03 + 0.39, and a 'peak' (0.020 < ¿ < 0.060), or maximum slope of

-1.80 + 0.03. At high temperatures, the susceptibility is expected to agree

with the Mean Field Theory prediction of ? - 1, as is indeed the case for

this sample.

The derivative, or local slope of the corresponding ln(x) versus ln(ú) plot
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for the r - 0.235 sample, shown on a double logarithmic plot. The solid line
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dotted line at the high temperature end of the graph is the best fit line,
found over the temperature range, 0.093 < ú < 0.124, and has a slope of
-1.03 t 0.39.
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(identical graph to Figure 5.14, different scale) is illustrated in Figure 5.15,

where 7.(ú) rises rapidly between 0 <, < 0.03, reaching a maximum of l.g4

at t :0.031 and then decreases again at higher temperatures, asymptotically

approaching the Mean Field Theory value of 1. The'peak'7 value determined

from Figure 5.15 is in fairly good agreement with that determined from

Figure 5.14, the diference being explained by the fact that in Figure 5.14,

1 : 7.80 t 0.03 was an average over a number of points (and is therefore

lower), whereas j*(t : to"or) : I.94 is found from the local slope. Notice that

7. (ú) approaches zero at small reduced temperatures rather than approaching

the 3D Heisenberg value of 1.388 as f -r 0. This is an inevitable consequence

of the zero field susceptibility failing to reach the demagnetization limit, as

previously discussed.

It is also interesting to confirm whether or not the Widom equality, 7 -
P(6 - 1) is obeyed. This is most easily done by rearranging the latter to get

(r+ÉXó-t)
(5.1 7).f-

The above expression uses the values found for 7* B and ó, namely 1.2(6)t

0.i(0) and 3.84*0.03 respectively, to 'predict' a value for 7, which can then be

compared to the results obtained using (5.15) and the 7.(ú) plot. It can easily

be shown that (5.17) yields a value of 1.30 + 0.07, which nearly encompasses

the 3D Heisenberg value, but more importantly, agrees to within error with

the 7 values found by plotting Xp versus fo (Figure 5.13). This suggests that

the Widom inequality can be expressed as an equality.
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5.3.2 Fe1-"Mn, (, - 0.26)

Carrying out similar calculations on the data collected for the x : 0.26

sample yields the following results. From the data shown in Figure 5.16 a

value for 6 of 4.69 + 0.01 can be found when all of the data points (6 Oe

1 H; 1 1000 Oe) are used to find the best-fit line. This agrees quite well

with the 3D Heisenberg value of 4.78. As with the ø : 0.235 sample, no

curvature is apparent over the field range of the measurements.

The combination 'y+ P, along with 4 were found, as illustrated in Figures

5.17 and 5.18 to be 1.7(5) +0.1(7) and 196.6 +0.1 K respectively, using the

field range 8 Oe < H; 1 82 Oe (points 2 to 16). The first point was not

used in the calculation as it is substantially lower than the best-fit line. A

possible reason for this is that at low fields, a large regular contribution will

affect the position of the critical peak. The latter two figures display even

more pronounced downward curvature than the corresponding plots for the

s : 0.235 sample, although measurements taken for the s : 0.26 sample

extend to higher fields.

Using the alternate method to find an asymptotic 7 gives values of 1.386f

0.003 and 1.477*0.001 when the field ranges 8 Oe < H¡ 182 Oe (l+ þ

plot range) and 6 Oe < H¡ 1 1000 Oe (as in the á plot), respectively are

used. Both of these slopes, along with the data used, are shown in Figure

5.19. These values are in much better agreement with the 3D Heisenberg

value than those found for the x :0.235 sample, one of them being slightly
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Figure 5.16: The critical peak amplitude, X(H,?r) (io emu/g-Oe) plotted
against internal field (in Oe) on a double logarithmic plot for the x -- 0.26
sample. The solid line represents the best fit line using all of the data points,
the slope of which gives 6: 4.69 * 0.01.
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Figure 5.17: The reduced temperature versus the internal field (in Oe), plot-
ted on a double logarithmic plot for the a -- 0.26 sample. The points are
shown with their corresponding errors, which reflect the uncertainty in the
peak temperatures. The solid line represents the best fit line, found over the
field range 8 Oe < H; <82 Oe, and gives avaluefor 7* p of l.7(S)t0.1(Z).
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lower, and the other being somewhat higher.

The effective susceptibility exponent for ø : 0.26 can also be found as

before, with the susceptibility versus reduced temperature plot being shown

in Figure 5.20. At higher temperatures, the data does not curve upwards to

approach the Mean Field behaviour as was the case for ø = 0.235, suggesting

that data should have been collected to even higher temperatures. In order

to do so however, a larger sample would have been required to increase the

signal to noise ratio to an acceptable level. Otherwise the data would simply

decrease to the'background' level, and not accurately reflect the response of

the sample. Notice also that a high temperature value of 1 x 1 was found for

the r :0.235 sample, using reduced temperatures in the range 0.093 < ú <

0.124, which is much lower than 0.22I, the highest reduced temperature in

Figure 5.20. This implies that the temperature at which the short range order

is destroyed, in other words, that at which the Mean Field Theory becomes

valid, depends upon the concentration, ø. A 'maximum'slope can still be

calculated however, and was found to be -1.69t0.05, using the temperature

range,0.03i <¿<0.079.

Using (5.16), the curve illustrated in Figure 5.21 was obtained, represent-

ing the temperature dependence of 7. The latter achieves a maximum of 7.77

at t:0.12, which agrees quite well with the 'average'value found above.

Checking the Widom equality using (5.17) yields a value of 1 .3(8) * 0.1 (3)

for 7, which not only agrees very well with the 3D Heisenberg value, but is
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Figure 5.19: The peak susceptibility (in emu/g-Oe) versus to : (To - T")lT"
for the s :0.26 sample, shown on a double logarithmic plot. The solid line
represents the best fit line over all of the data points (i.e. 6 plot range) and
gives 7 : I.477 t 0.001, whereas the dashed line is the best fit line over 8 Oe
1 H; 182 Oe (l + þ plot range) and gives 7 : 1.386 + 0.003.
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Figure 5.20: The ¿ : 0.26 zero field susceptibility (in emu/g-Oe) plotted
against reduced temperature for T ) T" on a double logarithmic plot.
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Figure 5.21: The effective Kouvel-Fisher susceptibility exponent, ^l+U) (5.16)
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also consistent with the r¡alue obtained from the 7 plot, using (5.15). Thus

the Widom inequality can again be expressed as an equality.

5.3.3 Fe1-"Mn, (* - 0.30)

Following the same procedures as outlined above, the values for the various

c : 0.30 critical exponents can be found. Using all of the data points (12

Oe < ¡/i < 1000 Oe) shown in Figure 5.22, 6 was found to be 4.86 + 0.02.

This agrees quite well with the 3D Heisenberg value of.4.78,, and a.s with the

previous samples, no curvature is visible, even at the highest fields.

The critical temperature and 1+ P were found from Figures 5.23 and 5.24

to equal 118.0 + 0.2 K and 1.?(5) t 0.1(3) respectively, where the latter value

agrees excellently with the'predicted' 3D Heisenberg value of 1.755. A field

range, 14 oe 1 H; 185 Oe (points 2 to l2), similar to that of the c = 0.26

sample was used to find tbe above values; however, the downward curvatu¡e

at higher fields is possibly even more pronounc€d than with the previous two

samples. As before, the first data point was omitted since it deviates visibly

from the best fit line.

Using (5.15) to find 7 gives slopes of -1.31 + 0.02 and -1.53 t 0.03 for

the field ranges 12 Oe 1 H¡ 11000 Oe and 14 Oe < I/¡ < 85 Oe respectively.

The first value almost agrees with the theoretical value of 1.388, whereas the

latter number is substantially larger than the 3D Heisenberg value due to

the obvious curvature in the data points, as illustrated in Figure 5.25.

The temperature dependence of the zero field susceptibility on a double
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Figure 5.22: The critical peak amplitude, X(H,T) (in emu/g-Oe) plotted
against internal field (in Oe) on a double logarithmic plot for the ø : 0.30

sample. The solid line represents the best fit line using all of the data points,
the slope of which gives 6: 4.86 + 0.02.
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Figure 5.23: The reduced temperature versus the internal field, plotted on
a double logarithmic plot for the c = 0.30 sample. The points are shown
with their corresponding errors, which reflect the uncertainty in the peak
temperatures. The solid line represents the best fit line, found over the field
range 14 Oe 1 H; 185 Oe, and gives a value for ? * p of.1.7(5) t 0.1(3).
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Figure 5.24: The peak temperature (in K) versus Htlh+p) for the ø : 0.30
sample, where 1+ P : 1.7510.13 from the previous figure. The best fit line,
found over the field range 14 Oe 1 H¿ ( 85 Oe, has an intercept (critical
temperature) of 118.0 + 0.2 K.
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TiSoI" 5.25: The peak susceptibility (in emu/g-Oe) versus to = (To - T")/T.
for the ¿ - 0.30 sample, shown on a double logarithmic ploi. Tùe solid'úne
represents the best fit line over all of the data points (i.e. ô plot range) and
gives 7 : 1.53 t 0.03, whereas the dashed line is the best fit line o"o í¿ o"
1 H; { 85 Oe (l + þ plot range) and grvo 7 : l.B1 * 0.02.

155



logarithmic plot is shown in Figure 5.26. As with the ø : 0.26 sampìe,

the data displays no significant upward curvature, although the slope at

higher temperatures is somewhat less steep than in the range, 0.1 < t < 0.2.

The reasons for this behaviour are the same as before; only additional data

could determine the true high temperature characteristics of the sample. The

maximum slope was found tobe -2.74+0.08 using temperatures in the range

0.037 <t< 0.063.

The 7.(f ) versus I curve shown in Figure 5.27 peaks at t : 0.043 with

a value of ^li"ot = 3.14. This value is sornewhat higher than the maximum

slope found above, as expected.

Applying (5.17) to verify the Widom equality gives 7 : 1.39 f 0.10. As

with the other samples, this value is in excellent agreement with the 3D

Heisenberg value, as well as agreeing with the low field gamma found using

(5.15). As before, this implies that the Widom inequality can be written as

an equality.

5.3.4 Fe1-"Mn, (r - 0.32)

Finally, analysing the ø :0.32 data, the critical temperature and exponents

for this sample can be determined. From the data illustrated in Figure 5.28,

ó was found to be 6.99 + 0.07 when all of the data points are used ( 90 Oe

1 H; 11000 Oe), which is substantially (a6%) higher than the 3d Heisenberg

value. The large error bars at high fields are a result of the noise in the signal,

which played a larger role for this sample than with the others because of
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Figure 5.26: The c : 0.30 zero field susceptibility (in emu/g-Oe) plotted
against reduced temperature for T ) T" on a double logarithmic plot.
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Figure 5.27: The effective Kouvel-Fisher susceptibility exponent, 7+(ú) (5.16)
for c : 0.30, plotted versus temperature (in K).
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the small signal size. This could have been avoided had more sample been

available.

Using the field range 90 Oe 1 H¿ < 300 Oe (points 1 to 12), similar

to that used for the c : 0.235 sample, the following values were obtained

from Figures 5.29 and 5.30; 1+ P:1.7(5) 10.2(8) and 4 :78.2f 0.9 K.

The curvature appearing at high fields is not quite as pronounced as in the

previous two samples, although there seems to much more scatter among the

data points. As before, the result for the 1+ P combination agrees extremely

well with the 'theoretical'value.

Using a Xp versus úo plot, as shown in Figure 5.31, 7 was found to be

1.54 * 0.02 and 1.58 + 0.02 for the ranges 90 Oe 1 H; < 1000 Oe and g0

Oe ( ¡1i < 300 Oe respectively. These are both considerably higher than

the 3D Heisenberg value, which can possibly be attributed to the fact that

sufrciently low fields (such as those used for the other samples) were not

used. This is because of the inability to observe critical peaks at lower fields

due to the anisotropy present in this sample.

The temperature dependence for the zero field susceptibility on a double

logarithmic plot is illustrated in Figure 5.32. Considering the behaviour of

the previous two samples, the absence of pronounced upward curvature is

not surprising, enabling only the 'peak' susceptibility to be found. Using

temperatures in the range 0.556 < ú < 0.666 gives an average'peak'slope of

-2.73 + 0.02.
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sample. The solid line represents tbe best fit line using all of the data points,
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Figure 5.29: The reduced temperature versus the internal field (in oe), plot-
ted on a double logarithmic plot for the x : 0.32 sample. The points are
shown with their corresponding errors, which reflect the uncertainty in the
peak temperatures. The solid line represents the best fit line, found over the
field range 90 oe 1 H; 1300 oe, and gives a value for l* þ of l.z(5)+0.2(8).
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Figure 5.30: The peak temperature (in K) versus Hllh+p) for the n : 0.32
sample, where 1+ P : 1.75 * 0.28 from the previous figure. The best fit line,
found over the field range 90 Oe 1 H; 1300 Oe, has an intercept (critical
temperature) of 78.2 + 0.9 K.
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Figure 5.31: The peak susceptibility (in emu/g-Oe) versus t, -- (T, - T")lT"
for the x:0.32 sample, shown on a double logarithmic scale. The solid line
represents the best fit line over all of the data points (i.e. 6 plot range) and
gives 7 : 1.54 + 0.02, whereas the dashed line is the best fit line over g0 Oe
1 H; 1300 Oe (l + þ plot range) and grres I -- 1.58 * 0.02.
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Figure 5.32: The c = 0.32 zero field susceptibility (in emu/g-Oe) plotted
against reduced temperature for T ) T" on a double logarithmic scale.
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The corresponding 7.(t) plot is shown in Figure 5.33 and can be seen to

peak at a value of. 2.21 at t : 0.560, which is in good agreement with the

value found above.

Checking whether or not the Widom equality is valid for this sample gives

a 7 value of 1.50 t0.24 using (5.17). The large error can be attributed to

the large error in 1* 0,which is due to the scatter in the data points. Even

though the above quantity agrees with the 3D Heisenberg value of 1.388

essentially because of its large error, it is also in reasonably good agreement

with the two 7 values found from the Xp versus úo plot (Figure 5.31), which

once again confirms the validity of the Widom equality.
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5.4 Discussion: Ferromagnetic Tlansition

Using conventional scaling predictions, the presence of a paramagnetic to

ferromagnetic transition has been confirmed in four of the Fe1-rMn, alloys

studied here (ø - 0.235,0.26,0.30,0.32). A summary of the critical temper-

atures and exponents found is listed in Table 5.1, and will now be examined

and compared to previous experimental results where available.

Figure 5.34 shows a plot of. T" against compositiot, t, incorporating

both the present data along with previous measurements which use a va-

riety of experimental methods. The slope of the fit to all the available data

it # - -1700 KlaL.%. The large scatter in the I values obtained cou]d

be as a result of compositional variations of as little as 0.1%. Note that

differences in composition for samples with the same nominal values were

reported (Geohegan et al, 1981) to be as large as0.04%, which is clearlynot

negligible, and indicates that one factor causing the scatter could be com-

positional variations. Critical temperatures in Figure 5.34 were determined

using magnetization measurements by Mirebeau et al, 1990, Yeshurun et al,

1981, and Manheimer et al, 1983. The ?i values obtained from suscepti-

bility measurements by Geohegan et al, 1981 were simply determined from

the point of maximum slope of the susceptibility versus temperature curve

(inflection point), as opposed to the much more rigorous analysis performed

he¡e.

The critical exponents, ó and 7 (Table 5.1) can now be discussed, as well
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Table 5.1: Critical temperature and exponents summary

t From Xp versus úo plots - Figures 5.13, 5.19, 5.25 and 5.31.

Concentration ø:0.235 æ:0.26 ø :0.30 c :0.32

6

Range (Oe)
3.84 + 0.03

10<//i<600
4.69 f 0.01

6<¡ú<1000
4.86 * 0.02

12 < H; < 1000

6.99 r 0.07
95<¡/i<1000

"r+p
Range (Oe)

1.7(6) + 0.1(0)
10<¡/i<300

r.7(5)+).1(7)
8<//i<92

1.7(5) + 0.1(3)
t4<Hi<85

1.7(5) r 0.2(s)
95 < ¡/d <295

"" 
(K)

Range (Oe)
260.17 t 0.09
10<//i<300

196.6 + 0.1

8 < H; <82
118.0 + 0.2

14</4<8S
78.2 * 0.9

95 < H; <295

i
Range (Oe)

i
Range (Oe)

1.29 * 0.01

10<¡1d<600

1.24 +.0.02
10<¡/j<300

1.477 * 0.001

6<H;<1000

1.386 r 0.003

8<¡/d<92

1.53 r 0.03
12 < H; < 1000

1.31 t 0.02
14<¡/d<95

1.54 + 0.02
95<¡/,<1000

1.58 * 0.02

95 < Hi <295

^l* (tpeok)

tpeak

1.94

0.031

t. t I
0.119

3.14
0.043

2.2t
0.560
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as compared to the values found by other researchers, which are listed in

Tables 3.1 and 3.2. Considering first the critical isotherm exponent, á; the

present values for z :0.26 and 0.30 agree very well with the 3D Heisenberg

model prediction (4.78), but the value at ¡r = 0.32 is considerably higher,

possibly because of the large coercivity present at this concentration - con-

sequently this sample has a large regular contribution which is inadequately

suppressed by the applied field, thus resulting in larger values for the critical

peak susceptibility. For ø - 0.235, a value of 3.84 was obtained here, which

is also somewhat unusual, noting that this concentration is farthest from the

multicritical point and is only weakly frustrated, and is therefore expected

to be least affected by bond disorder. Comparison with previous results is

somewhat difficult, as no results for this concentration are listed. Examining

the closest concentration, z - 0.20, yields á:5.1 + 0.03 (Table 3.1) and 3.5

(Table 3.2), from magnetization and susceptibility measurements respective-

ly. As already discussed in Section 3.2.2, the l¿tter value appears to be an

average over low and high field data, which would account for the fact that

it is much less than the Heisenberg model prediction of 4.78. The data col-

lected here displays no curvature (Figure 5.10), but the value is nevertheless

quite low, being about halfway between the two values listed above.

For the exponent 7, the two values found here for r : 0.235, 1.24 +.

0.02 (fit over 10 Oe ( H¿ 1300 Oe) and 1.29 + 0.01 (fit over 10 Oe <

H¡ 1600 Oe), are both quite diferent from the r : 0.20 values given in
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Table 3.1, namely, 1.64 (found using the Widom equality) and 1.45. The

latter value (Manheimer et al, 19s3) is in somewhat better agreement with

the 3D Heisenberg prediction (1.388) than the value found here, but the

Yeshurun et al value differs considerably. There is clearly considerable scatter

in these values, as was the case for the critical temperature. Unfortunately,

no previous results for the critical exponents exist for x : 0.26; the next

highest concentration for which previous measurements exist is ø : 0.30.

The two 7 values found here for z:0.30, 1.53t0.03 (fit over 12 Oe ( f/¡ (

100 Oe) and 1.31+0.02 (fit over 14 Oe 1 H¿ 185 Oe), are quite diferent from

each other due to the curvature in the 7 plot (Figure 5.25). Magnetization

measurements give 7 : 1.60 (found using the Widom equality), and 1.42 from

the top and bottom of Table 3.1 respectively. There is again considerable

scatter in the 7 values, with none of the above values in agreement with any

other. Finally, 7 for the r = 0.32 sample was found to be 1.54 + 0.02 (fit

over 95 Oe < H;11000 Oe) and 1.58 +.0.02 (fit over 95 Oe < H; <295

Oe), which are both lower than the 1.72 (found using the Widom equality)

determined by Yeshurun for æ = 0.32, but agree very well with the value of

1.55, found for c : 0.35 by Manheimer. All of these values are substantially

higher than the 3D Heisenberg value of 1.388.

Note that for the first three of the four concentrations examined in this

study, the low-field 7 values are either in good agreement with the Heisenberg

value or slightly lower. Only for the ¿ = 0.32 sample do we get a 7 as large
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as 1.58.; it should be recalled that the coercivity/regular contribution to

the susceptibility is substantially larger for this particular sample, which

could affect these results significantly. All previous measurements of 1 are

substantially higher than the Heisenberg value and likely do not represent

asymptotic values; rather they are (average) values that are all influenced by

the presence of bond disorder to some extent. Figures 5.15, 5.21, 5.27 and

5.33 show the effective Kouvel-Fisher susceptibility exponent 7* as a function

of temperature. Note that the value of 7* rises as the reduced temperature

increases, reaches a maximum value, f (tp"o*), at a reduced temperature,

tpeakl ar:d then falls monotonically to the mean field value of one. This initial

rise is due to the presence of bond disorder (see Section 2.3.4). The effective

exponent does not actually approach the Heisenberg value of 1.388 at small ú

because the susceptibility is unable to reach the demagnetizing limit because

of the small demagnetizing factor. Kaul (Kaul, 1985) has reported that this

temperature dependence of the Kouvel Fisher effective exponent broadens,

1*(tp"or) increases and the peak position,, tp"ok,, shifts up in temperature with

increasing bond disorder. This behaviour was confirmed recently by Wang

for a series of CeFeRu intermetallic compounds (Wang et al, 1995). Here

the agreement is not as clear, since although the bond disorder generally

increases with concentration, x, 1*(to"o*) reaches a maximum at c : 0.30

and then decreases for ø -- 0.32; in addition, úpeaÀ g€nerally increases with ø,

except for a rather low value for ø = 0.30.
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5.5 Lower TYansition

Previous studies (see Sections 2.3.4 and 2.3.5) suggest the presence of a sec-

ond phase transition below the paramagnetic-ferromagnetic phase transition,

with a critical temperature, T¡, coinciding with the drop in zero field sus-

ceptibility at T = 28,34,,55 and 56 K, respectively, for the concentrations

x :0.235,0.26,0.30 and 0.32, as illustrated in Figure 5.1. However, to verify

the presence of a true phase transition, a more rigorous analysis must be

undertaken.

In an applied field the susceptibility, for all of the samples measured, dis-

plays at least one additional peak at a temperature below the fe¡romagnetic-

paramagnetic. peak. It has been suggested by some (Geohegan et al, 1981)

that these features indicate re-entrant behaviour, or in other words, the pres-

ence of a ferromagnetic-spin glass transition (identified by the higher of the

two low-temperature peaks, in the case of the ø : 0.235 and 0.26 samples),

where the paramagnetic - ferromagnetic phase boundary is now replaced by

a simila¡ line, known as the Gabay-Toulouse, or GT line.

Furthermore, a third peak appears in the presence of sufficiently large ap-

plied fields for c : 0.235 and 0.26, which can be more clearly seen in Figures

5.35 and 5.49, and may represent the transition from weak to strong irre-

versibility, delineated by the d'Almeida-Thouless, or AT line (de Almeida et

at, 1978). It should be noted that although the vector spin mean field models

do not predict the double peaked structure observed at low temperatures in
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the ø - 0.235 and 0.26 sample, it would be worthwhile to investigate if these

two features coincide with the aforementioned transitions.

To study the characteristics of the GT transition in light of the experi-

mental data collected, recall (2.67). From the latter equation, it is evident

that the peak temperature plotted versus .I/o, represented by the equation,

Tcr(H ") = tÆ#: 
"H " 

* T*(o). (5.18)

gives a straight line with a slope of frlar- -0.437, where c is a constant

defined in (2.68), and an intercept equal to the Gabay-Toulouse critical tem-

perature, Tcr(0). As an additional check to verify that the data is truly

linear, lo9(767(0) -Tcr(H")) versus loe(ä") can be plotted. A slope of 1 for

the resulting graph would verify Lhat Tç7(0) - Tcr(H.) - Hi with n : I

accurately describes the data. Since the mean field vector model does not

specify the nature of any feature revealing the presence of the ferromagnetic

to spin glass transition, the location of both low temperature peaks and the

resulting intermediate trough (just below the proposed 'GT peaks') will be

investigated for GT behaviour in the r :0.235 and 0.26 samples.

As for the cross-over from weak to strong irreversibility, recall (2.69).

Using a similar technique to that described previously for obtaining I and

't + P (Section 5.3), both T,qr(A) and n can be determined.

As discussed in Section 2.3.5, the presence of a phase transition can

also be manifested by a peak (technically a divergence) in the non-linear,

field-dependent component of the susceptibility. Using the technique de-
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scribed there, analysis will be carried out to determine whether or not such

a peak/anomaly occurs for the individual samples studied here.

5.5.1 Fe1-"Mn, (r - 0.235)

Recalling the discussion above for the Gabay-Toulouse line, the theory can

now be compared with the data collected. The temperatures at which the

broad peaks illustrated in Figure 5.35 occur (35 K < 7 < 60 K) were found

and plotted versus applied freld, Ho, as illustrated in Figure 5.36. The large

error bars reflect the difficulty in accurately determining the peak positions.

A straight line through the data points gives an intercept of 65.8 t 2.4 K,

thereby identifying Tcr(0), in accordance with (5.18). Performing the cor-

responding check recommended following the latter equation, the resulting

double logarithmic plot in Figure 5.37 yields a slope of 0.95 t 0.30, which

agrees with the value of. n : 1 proposed by the theory. However, the large

error in both the temperature and exponent value (caused by the large error

in the data), prevent a conclusive statement from being made about whether

or not the data displays GT behaviour, based solely upon this analysis. Com-

paring the experimental slope of -4000 * 500 to the theoretical slope of -0.44

indicates there is clearly no agreement, as the two values differ by four orders

of magnitude! This suggests that the peaks are most likely not GT peaks,

and arise due to some other effect.

The behaviour of the peak/trough features seen in the low temperature

region of Figure 5.35, and shown more clearly in Figure 5.39 can also be
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Figure 5.35: The a.c. susceptibility ¡(/1, f) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted versus temperature (in K) for
the c = 0.235 sample. The numbers beside each curve represent the static
biasing field (in Oe).
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Figure 5.36: The proposed GT transition temperature (in K) (from peak)
plotted versus the applied field (in Oe) for the c : 0.235 sample. The
intercept of the best fit line gives fcr(0) : 65.8 L2.4 K, and the slope is

-4000 + 500.
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Figure 5.37: The logarithm of ?6a(0) - Tcr(H") (in K) for the æ : 0.215
sample plotted versus the logarithm of the applied field (in oe). The slope
of the best fit line gives n : 0.9 + 0.3.
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analyzed for AT and GT behaviour respectively. Considering first the trough

visible in the temperature range, 11 K < ? < 15 K; the Tr,ough versus 1/o

plot illustrated in Figure 5.38 gives a ne\ry estimatefor ?67(0) of 15.4 X0.2

K, and the check procedure gives z : 1.1 + 0.3. Although the error in this

second estimate of 76a(0) is reasonable, the large error in n, again prevents

a conclusion from being drawn concerning the applicability of the GT model,

considering only this result. The slope in Figure 5.39 is -450 + 50, which is

still three orders of magnitude larger than the expected value of -0.44, and

suggests that the troughs also do not display GT behaviour.

Since an analysis of the trough structure gives an approximate straight

line (Figure 5.39), this feature will not be reinvestigated for AT behaviour,

for which it is predicted that the corresponding temperature versus field

plot has substantial curvature. The lowest temperature peaks (6 K < ? <

14 K) will however by analyzed, and the peak temperatures versus field

are plotted in Figure 5.40. The best fit curve has an intercept of 21 K,

thereby giving T,qr(O). A plot of Ta7(0) - T,sr(H") versus I/o has a slope

of 0.63 + 0.03 using only the first four data points. This agrees quite well

with the theoretical value of 213, which would support the presence of an

AT transition. However, an AT transition is unlikely if a GT transition was

absent at higher temperatures. Notice also that if all data points are used, a

slope of 0.340 + 0.003 is found, which is quite different from2f3.

Finally, the behaviour of the non-linear component of the susceptibility
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Figure 5.38: The a.c. susceptibility y(H,?) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted against temperature (in K)
for the x : 0.235 sample. The numbers beside each curve represent the static
biasing field (in Oe).
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Figure 5.39: The proposed GT transition temperature (in K) (from trough)
plotted versus the applied field (in Oe) for the x : 0.235 sample. The
intercept of the best fit line gives ?cr(0) = 15.4 * 0.2 K, and the slope is

-450 + 50.
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Figure 5.40: The proposed AT t¡ansition temperature (in K) (from lowest
peak) plotted versus the applied field (in Oe) for the x = 0.235 sample. The
intercept of the best fit curve gives T¿a(O) = 21 K.
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can be examined using the procedure described above. Before continuing

though, it would be useful to consider several typical plots of X(H,t) versus

H!, as illustrated in Figures 5.42 to 5.45. The plot of y(H,,ú) versus .Ff

shown in Figure 5.45 is considered to be 'normal' with its immediate drop-

of as the field rises from zero; however, as the temperature decreases and the

coercive field 3 begins to increase (Figure 5.48), a 'plateau' appears at low

fields. Examining Figures 5.42 to 5.44 it can be seen that this efect becomes

more pronounced as the temperature decreases, and the coercivity continues

to increase. This creates the problem of selecting the most appropriate linear

fit for the low field data; it was decided to determinea2(T) using the higher

field data beyond that affected by the coercive field, as illustrated in Figures

5.42 to 5.44. Whether or not this is the best technique for determining the

slope is not absolutely certain; however, it does provide an upper limit. The

resulting slopes found frorn all of the data collected are shown in Figure 5.46.

As can be seen, az(T) increases as the temperature increases, without dis-

playing any anomaly or peak in the vicinity of the shoulder appearing in the

temperature dependent susceptibility data (? æ 28 K). This reinforces the

earlier conclusion that there is no true phase transition here, even though it

would seem otherwise when considering the zero field temperature dependent

data alone.

The question now arises as to the origin of the low temperature peak

3A detailed explanation of how the coercive field was determined is given in Section
5.5.2.
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Figure 5.42: The a.c. susceptibility X(H,T) (in emu/g-Oe) at T = 4.2 K,
corrected for background and demagnetizing effects, plotted versus //,1 (in
Oe2) for the ø : 0.235 sample. The dashed line represents the best fit line
for the data above that affected by the coercive field.
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Figure 5.43: The a.c. susceptibility X(H,T) (in emu/g-Oe) at T : 10.0 K,
corrected for background and demagnetizing effects, plotted versus ff (in
Oe2) for the ø : 0.235 sample. The dashed line represents the best fit line
for the data above that affected by the coercive field.
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Figure 5.44: The a.c. susceptibility X(H,T) (in emu/g-Oe) at ? : 35.3 K,
corrected for background and demagnetizing effects, plotted versus H! (in
Oe2) for the ø : 0.235 sample. The dashed line represents the best fit line
for the data above that affected by the coercive field.
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Figure 5.45: The a.c. susceptibility X(H,T) (in emu/g-Oe) at T = 50.9 K,
corrected for background and demagnetizing effects, plotted versus If (in
Oe2) for the o = 0.235 sample.
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observed in the temperature sweeps. Looking at Figure 5.47 (for more de-

tail, see Figure 5.48), it can be seen that the decrease in coercivity with

increasing temperature is accompanied by an increase in susceptibility. Con-

versely this suggests the possibility that the decrease in a.c. susceptibility

may simply be a consequence of the increasing coercive field, and thus the

increasing difficulty in rotating the spins, moving domain walls, and other

thermally activated blocking processes. This possibility could be explored,

using for instance frequency dependent measurements. Unfortunately, our

susceptometer operates at only two frequencies, 2400 and 714 Hz, with a

considerably lower signal to noise ratio at 714 Hz.

5.5.2 Fe1-"Mn, (* - 0.26)

The analysis of the c : 0.26 sample is very similar to that of the previous

sample, due to the same general shape of the respective temperature s\ryeeps,

as illustrated in Figure 5.49. Analyzing the first set of broad peaks ( 35 K

< T < 65 K) appearing below the paramagnetic-ferromagnetic transition,

the resulting plot of Tp"o* versus .I/o, shown in Figure 5.50, gives a value for

Tcr(O) of 65.8 t 0.4 K and a value for n of 0.9 + 0.3. Although the error in

Tcr(0) is reasonable, the error in n, due to the scatter of the data points, is

too large to decide if GT behaviour is exhibited. The slope of Figure 5.50

was found to be -2060 t 50, which is four orders of magnitude larger than

the theoretical value of. -0.M, not unlike the ¿ : 0.235 result. This suggests

that the peaks observed are not GT peaks.
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sus temperature (in K). The insert shows the coercive field (in Oe) for the
temperature range 30 K < T < 70 K.
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Figure 5.49: The a.c. susceptibility ¡(//, ?) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted versus temperature (in K) for
the s -- 0.26 sample. The numbers beside each curve represent the static
biasing field (in Oe).
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Examining the trough structure in Figure 5.51 and plotting Tt,oush versus

f/" gives the graph shown in Figure 5.52. The latter bas an intercept of

20.0 t 0.3 K and the corresponding check gives an exponent, n : 1.0 * 0.3.

As before, the error in the calculated value of n is simply too large to make a

conclusive statement without further investigation. The slope of Figure 5.52

is -320+40. Although this is much smaller than 2060 (from Figure 5.50), it

is still three orders of magnitude larger than -0.44, thus suggesting that the

trough structure is also not a result of the GT transition.

Proceeding to analyze the lowest temperature (6 K < T < 18 K) peaks

shown in Figure 5.51, the resulting plot of 4eaÈ versus .I/o can be seen in

Figure 5.53. The best-fit curve intersects the Ta7-p"oË axis al 28 K, which

will be taken to be T,sr(0). Using this value to generate the data in Figure

5.54, the latter plot has a slope of 0.365 + 0.002, when all of the data points

are included. This agrees well with the value of 0.340 found for ø : 0.235,

but not with the expected value of 2f3, thereby reinforcing the earlier claim

that the lowest set of peaks is not a manifestation of the AT transition.

Considering the behaviour of the non-linear component of the suscepti-

bility, 
"z(T) 

was found as described above, and the resulting graph can be

seen in Figure 5.55. As with c = 0.235, there is no anomaly or peak apparent

in the data, other than the one occurring at the PM-FM transition. Along

with the other results for this sample, this would lead to the conclusion that

there is most likely no true FM-SG phase transition.
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Figure 5.51: The a.c. susceptibility ¡(Il,T) (in emu/g-Oe), corrected for
background and demagnetizing effects, plotted versus temperature (in K) for
the ø = 0.26 sample. The numbers beside each curve represent the static
biasing field (in Oe).
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of the best fit line is 0.365*0.002 when all of the data points are used (dashed
line).

À

,(

/v
)'

L,'
,./

Å

/l
,/

f{

199



20

l.'

50 100 150 200

Temperature (K)

Figure 5.55: Non-linear coeffcient , oz(T) (in emu/g-oe3) versus temperature
(in K) for the x :0.26 sample.

l5

t-¡
q)

o
I

ö0

É10o
c!

Io

F
c\¡cüJ

0

200



The origin of the low temperature peaks observed in the temperature

sweep data is most likely due to the decrease in coercive field, similar to the

x : 0.235 sample. The coe¡civity can be found using the 'butterfly sweeps'

introduced in Section 4.3.3. Two representative butterflies are shown in

Figures 5.56 and 5.57, where the first of the two is a complete butterfly, and

the latter is a partial butterfly, showing only the essential peaks. The reason

why the butterfly sweeps are a measure of the coercivity can be understood

by realizing that the susceptibility versus field measurements represent the

slope of the corresponding M versus I/ hysteresis loop. The greatest slope

in the hysteresis loop occurs when H : tH" resulting in the two peaks in

the butterfly loop. Thus

I
H"= 

5(Field 
difference between susceptibilitg peaks) (5.19)

can easily be understood. Although not shown here, the shape of the fI"

versus 7" plot for the æ : 0.26 sample is similar to that for the x : 0.2J5

sample shown in Figure 5.48.

5.5.3 Fei-,Mn, (* - 0.30)

The data for the c : 0.30 sample differs from the previous two lower concen-

tration samples in that the additional low temperature peak/trough structure

is absent here (Figure 5.58). In sufficiently strong fields, a broad peak still

appears below the paramagnetic-ferromagnetic transition, which can be an-

alyzed for GT behaviour, using the same procedure as before. The resultin"
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Figure 5.56: Complete butterfly loop: susceptibility (in emu/g-Oe) versus
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plot, shown in Figure 5.59 gives 767(0) : 52.6 + 0.7 and an exponent value

of n :0.9 + 0.3. As with the previous samples, the error is simply too large

to make a conclusive statement, concerning whethe¡ or not GT behaviour is

displayed, based only upon the above results. The slope of Figure 5.bg was

found to be -930 t 90, which is considerably smaller than the value for the

previous two samples, but is still three orders of magnitude larger than the

theoretical result of -0.44.

The behaviour of the non-linear component of the susceptibility was an-

alyzed, and the results can be seen in Figure 5.60. Unlikethe ø:0.2s5 and

0.26 samples, a small shoulder occurs in the vicinity of the low temperature

drop-off in the susceptibility (T = 55 K).

In order to verify that this feature is not simply an artifact of the fitting

procedure, a completely independent analysis was done using the temper-

ature sweeps illustrated in Figure 5.57. By interpolating the temperature

sweeps at various fixed temperatures, susceptibility versus ff curves similar

to those illustrated in Figures 5.42 to 5.46, were obtained, albeit with far

fewer data points. The magnetization, and therefore the internal fields were

found by integrating the interpolated susceptibilities at a given temperature

from zero up to its particular field using the trapezoidal rule (see Section

5.1.3). The initial slopes of these X versus If ptots derived from tempera-

ture sweeps also give the 
"r(T) coefficients. The temperature dependence of

the ø2(T) coefficients obtained in this manner is shown in Figure 5.61 and is
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versus the applied field (in Oe) for the ø : 0.30 sample. The intercept of the
best fit line gives ?cr(0) : 52.6 t 0.7 K, and the slope is -930 + 90.
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in excellent agreement with the non-linear data obtained from field sweeps.

Finally, considering the coercive field, the drop in coercivity does not

coincide with the zero field low-temperature shoulder (Figure 5.62). The

susceptibility has already dropped before 11" begins to rise, suggesting that

the behaviour of the coercive field is not solely responsible for the drop in the

susceptibility. A more detailed plot of the coercive field versus temperature

can be seen in Figure 5.63.

5.5.4 Fe1-"Mn, (r - 0.32)

Examination of the temperature sweeps illustrated in Figure 5.64, for the

predicted GT behaviour of the low temperature peaks, yields, when plotting

the peak temperature versus Ho, d.ata that displays distinct curvature, as

can be seen in Figure 5.64, and unlike the equivalent plots obtained for the

other compositions. In comparing the latter graph to Figure 5.36 (ø : 0.235,

30 Oe 1 Ho < 700 Oe), Figure 5.50 (x : 0.26,29 Oe 1 Ho < 134 Oe) and

Figure 5.59 (ø - 0.30, 25 Oe 1 Ho < 100 Oe), it can be seen that the latter

three figures consist of data taken over a much smaller field range than Figure

5.65. This raises the possibility that perhaps the data for the compositions

æ :0.235,0.26 and 0.30 would also exhibit similar curvature had more data

been collected at higher fields. Should this be the case, it would at the very

least indicate that the quantitative predictions of the behaviour of the GT

line by (Dubiel et al, 1987) are not confirmed by experiment.
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Figure 5.61: Non-linear coefficient, or(T) (in emu/g-Oe3) versus temperature
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Proceeding to analyze the behaviour of the non-linear component of the

susceptibility, a plot of a2(T), obtained from field sweeps, versus temperature

is shown in Figure 5.66. For this sample, there is a well defined peak in the

temperature dependence of 
"r(T) in the vicinity of the low tempe¡ature drop-

of of the zero field susceptibility (? = 56 K). Howev er, a2(T)does not show a

peak at I as is expected and as was the case for all of the previous samples.

It was thought at first, that this may simply be due to an error in the

thermometry, i.e. the'anomaly' was simply the fe¡romagnetic-paramagneti c

peak, shifted down in temperature. However, this would require an error

in the temperature of about 20 K, which is unreasonably large, and highly

unlikely, given our estimated error'in the thermometry of t0.3 K. The other

possibility is that the peak at ?" is simply much smaller than the peak at T¡

and is therefore obscured.

An investigation of the or(T) coefficients from the temperature sweep

data yields a triple peaked structure, as can be seen in Figure 5.67 with the

main peak in good agreement with that obtained from field sweeps. This

result suggests that the peak in or(T) at 4 is simply obscured in the field

sweep measurements and the temperature sr¡i,eep measurements are somewhat

more sensitive. The high temperature peak in Figure 5.67 is at about 76 K,

compared to T":78.2 + 0.09 K, also in acceptable agreement. The middle

peak is possibly due to the regular contribution to the susceptibility, which

reaches a maximum at the Hopkinson peak.
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As with the s : 0.30 sample, the coercive field drop does not correlate

with the temperature at which the rise in zero field susceptibility is observed,

which again suggests that the rise in susceptibility is not caused by the drop

in H". This can be seen in Figure 5.68, and a more detailed plot of the

coercivity can be seen in Figure 5.69.

5.6 Discussion: Re-entrant Transition

There are several factors which would contribute to the lack of success in

confirming the presence of a phase transition of the predictions of the mean

field vector model concerning the GT and AT transitions. Firstly, the model

relies on several assumptions which are not necessarily upheld in physical sys-

tems. For instance, infinite-range interactions are assumed for GT behaviour

to occur.

Discrepancies between theoretical predictions and experimental results

have been reported by other researchers, especially in regards to the prefac-

tor, c (2.68), which has often been found to be an order of magnitude larger

than predicted in other systems. It sbould also be noted that 'c' depends

upon the specific system being studied, a factor not incorporated in (2.68).

Furthermore, it must be remembered that considerable ambiguity was found

in the present results, preventing a conclusive statement from being made

concerning possible AT and GT lines. Clearly, improved theories and addi-

tional experimental investigation is required before the ferromagnetic to spin

2r7



!3a-ooaaa-

45 50 55 60 6s 70 75 80

Temperature (K)

Figure 5.68: Coercive field (in Oe) for the c : 0.32 sample plotted versus
temperature (in K) (points), along witb the zero field a.c. susceptibility
X(H,,T) (in emu/g-Oe) corrected for background and demagnetizing effects
plotted versus temperature (in K) (solid line).

20 0.5

0.4

d)

0.3 g
bo\¿
E
(l)\-/

0.0

15

F
0.2 IR

()
o

ii t0
a)

C)
t<
o)o
U

0.1

0

218



20

15

a)o
.ú
þto
f¡.
()
()
Ê
0.)o
U

0

45 50 55

Temperature (K)

Figure 5.69: Coercive field (in Oe) for the x, : 0.32 sample plotted versus

temperature (in K).

0.6

0.4

0.2

0.0

III'rr ,[r i

50 60 70

ï
¡
I

taa

219



glass transition is understood.

Considering the results of the non-linear analysis; although theory pre-

dicts a divergence in ø2(T) at a re-entrant transition, only a small peak is

observed experimentally for ø : 0.30 with a much larger peak for x :0.32.

The anomaly observed here, however, is clearly weaker than Ising model

predictions, possibly because the transverse spin freezing responsible for the

anomaly may be only weakly coupled to the measured longitudinal response.

It is also possible that finite frequency measurements are insensitive to the full

spectrum of critical fluctuations as the freezing temperature is approached

in particular from below (critical slowing down); the use of finite frequency

measurements would then underestimate this coefficient close to the freezing

temperature. Finally, above the freezing temperature, thermally activated

blocking processes such as domain wall motion may obscure the non-linear

response. Nevertheless, the measured "r(T) data does exhibit a distinct

anomaly near the vicinity of the drop-ofi in the zero field susceptibility,

and is strong evidence for the existence of a true re-entrant transition for

the ø : 0.30 and 0.32 alloys. No anomaly and therefore no evidence for a

re-entrant transition is observed for the x :0.23 and 0.26 alloys.

In light of neutron depolarization measurements by Mirebeau et al, 1990,

which indicated that samples in the concentration range, 0.22 < x < 0.26

were weakly frustrated, with a domain size which did not vary with tem-

perature, even at the lowest temperatures, this evidence would suggest the
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absence of a phase transition. On the other hand, the samples c : 0.30

and 0.32 were found to be strongly frustrated, with a decreased domain size,

implying the presence of a new phase. These data are consistent with the

presence of a re-entrant phase transition, thereby supporting the evidence

from the non-linear analysis.

5.7 Spin Glass

Finally, one last sample, with a concentration of r = 0.4I was investigated.

The resulting susceptibility versus temperature plot is illustrated in Figure

5.70, where it can be seen that the susceptibility is no\ry several orders of

magnitude smaller than for any of the previous samples. The sharp cusp at

about 36 K and low susceptibility (Xp"or ry i.9x10-3 emu/g-Oe) are the iden-

tifying features for a spin glass, as described in Section 2.3.4, and illustrated

in Figure 3.11 for the c:0.40 sample. Geohegan (Table 3.2) found that

Tsc : 42 K f.or the latter concentration, which seems to be consistent with

the value found here, considering the slight differences in composition.
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Chapter 6

Conclusion

The analysis of detailed measurements of the field and temperature depen-

dent susceptibility of a series of (Fe1-,Mn")75P1686413 amorphous alloys con-

firms the occurrence of a paramagrietic to ferromagnetic phase transition with

near Heisenberg model exponents in the vicinity of the critical point for the

concentrations ø : 0.235, 0.26, 0.30 and 0.32. The presence of considerable

magnetic disorder becomes apparent away from the critical point. The sam-

ple with composition î :0.41 displays the classic behaviour of a spin glass,

a susceptibility reduced by several orders of magnitude and a cusp-shaped

peak.

The zero field susceptibility for the compositions ø : 0.23b to 0.32 dis-

plays features which are characteristic with re-entrant behaviour; a rapid

increase in the susceptibility with decreasing temperature in the vicinity of

the paramagnetic to ferromagnetic transition followed by a temperature in-

dependent plateau region which is not demagnetizing limited, and finally
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an abrupt decrease in the susceptibility at the proposed re-entrant phase

transition.

However, the low temperature features fail to satisfy the predictions of

mean field vector spin models. The results found from AT and GT analysis

proved inconclusive, likely due to unsatisfied assumptions and other limi-

tations of the theory, in particular, its failure to identify specific physical

features manifesting the AT and GT transitions. A non-linear analysis of

the leading field dependent term in the susceptibility was used to locate the

presence of a re-entrant phase boundary. Although the anomalies observed

for o : 0.30 and 0.32 do not diverge (as predicted by the Ising mean field

model but not unlike those observed in other re-entrant systems), this may

be due to limitations imposed by the finite frequency at which the mea-

surements were carried out and the complications associated with transverse

spin freezing which might couple only weakly to the longitudinal response.

Nevertheless, the anomaly is a quite well defined shoulder for the ø : 0.80

sample, and a strong peak for x : 0.32. The behaviour of the non-linear

component of the susceptibility, along with previous neutron depolari zation

results, suggest that the c : 0.30 and 0.32 samples are, indeed, re-entrant.

The zero field behaviour of the ø : 0.235 and 0.26 samples might be

interpreted to indicate that these samples are also re-entrant, but the non-

linear analysis gives no indication of a low-temperature anomaly, at the very

least emphasizing the need for more rigorous analysis techniques in the study

224



of the ferromagnetic to spin glass transition, as opposed to simple inspection

of the zero field behaviour. Indeed, on the basis of the behaviour of X(H,T)

alone - specifically the presence of a very small, weakly temperature depen-

dent non-linear susceptibility - would suggest that an explanation for the

behaviour of these weakly frustrated samples be sought in terms of other

processes, possibly thermally activated blocking processes.

Combining the results of all of the present data, a revised phase diagram

shown in Figure 6.1 can be constructed. The phase diagram by Mirebeau

shown in Figure 3.1, is qualitatively quite simiìar, but difers in the exact

location of the various phase boundaries. The most pronounced diference

lies in the location of the FM-SG line, which goes to zero much more abruptly

in Figure 6.1 than in Figure 3.1 Clearly small changes in concentration can

dramatically alter the magnetic properties of a sample. However, the present

phase diagram (Figure 6.1) lacks considerable detail along certain boundaries

(dashed lines). Further investigation, with a greater number of samples with

appropriate concentrations is needed to complete the phase diagram.

Recalling the variations in the results reported by different investigators,

specifically as related to the critical exponents and temperatures, further

theoretical development and experimental work is clearly required before the

magnetic properties of FeMn are completely understood, especially concern-

ing the low-temperature transition.
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Appendix

The RKKY (Rudermann, Kittel, Kondo, Yoshida) model is applicable

for solids consisting of a dilute solution of magnetic ions in a nonmagnetic

host metal. Although the magnetic ions may not be adjacent to each other,

they interact via an indirect exchange interaction which is mediated by the

conduction electrons in the host material. The spatial dependence of the

conduction band polarization near one of the magnetic ions is illustrated

below.
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FigureAl:Polarization of a free electron gas in the neighbourhood of a point
magnetic moment located at the origin r : 0, according to the RKKY theory.
The borizontal axis is Zkyr, where lcr is the wave vector on tbe Fermi sphere.
(Kittel, 1976)
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