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ABSTRACT

The problem of slot-type radiators including the cavity-backed slots is analyzed.
A general formulation is given for the electric field in an arbitrary shaped aperture in a con-
ducting screen and specialized to the case of a narrow slot. The electric field in the slot
aperture satisfies Pocklington’s equation for which a novel numerical technique based on
the method of moments and Fourier transform is presented. Once the voltage distribution
along the slot aperture is known one may easily obtain the radiation and circuit parameters

of the antenna including the input impedance, resonance frequency and bandwidth.

The electromagnetic fields produced by sources in a bounded region, as well as the
appropriate electric and magnetic-type dyadic Green’s functions are derived and the results
are used in formulating the general problem of an aperture backed by a conducting enclo-
sure of arbitrary shape. A system of coupled integro-differential equations is obtained for
the electric field along the aperture. The special case of a rectangular cavity-backed slot is
examined in detail for which the Galerkin method with piecewise sinusoidal basis and test-
ing functions is used to numerically solve for the voltage distribution along the slot. The
effect of various parameters on the circuit quantities of the antenna are discussed and the

case of probe-fed excitation of the cavity is also investigated.

It is shown that it is possible to obtain a Gaussian field distribution in the slot aperture
by using a cavity of proper shape. To this end, the fields in the cavity are expressed as a
superposition of plane waves and the beam-wave condition is applied to write approximate
expressions for the fields that decay exponentially off the axial direction. The field ampli-
tudes are then expanded in terms of Gauss-Hermite functions and the appropriate boundary
condition is used to obtain the equation for the shape of the cavity back-wall. The structure
is excited by a current source connected to the slot edges and an integral equation is derived
for the voltage distribution along the slot which is solved numerically by using entirc-

domain basis and testing functions of the Gauss-Hermite type.
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CHAPTER 1

INTRODUCTION

The purpose of this thesis is to investigate the properties of slot-type radiators of elec-
tromagnetic waves. These include open slots in a conducting screen and slots backed by
cavity resonators of various shapes for which two important types namely, rectangular and
Gaussian geometries are analyzed in detail. In the following, we first present a survey of the
literature relevant to the subjects covered in the work and then explain the contributions and

organization of the thesis.

The problem of interaction between electromagnetic fields and an aperture in a con-
ducting screen has attracted the attention of many workers ever since it was stated by Lord
Rayleigh [1] some 90 years ago. A substantial part of the research in this area has been
devoted to the diffraction of plane waves by apertures and a review paper which includes
an extensive bibliography of the works prior to 1954 is given by Bouwkamp [2]. A review
of the present status of the subject can be found in [3] and [4, pp. 117-172]. It should be
pointed out that except for the case of circular apertures no analytical solution is available
for this simplest of aperture problems [5]. Assuming D to be the largest dimension of the
aperture, there exist asymptotic and approximate methods in the high (D> A) and low
(D <« \) frequency limits [6-16]. However, in the resonance region where D= A, which is
incidentally of the greatest importanéé to microwave applications, all other approaches seem

to break down and one usually has to resort to numerical methods.

Wilton and Dunaway [17] derived a sct of integral equations for the magnetic current
in an aperture of arbitrary shape and applicd thc method of moments to cast the integral
equation to a matrix equation. Harrington and Mautz [18] introduced a generalized network
formulation for aperture problems and in another paper [19], they obtained an operator
equation for the magnetic current in the aperturc and used the moments method to solve this

equation for a rectangular aperture. It should bc pointed out that in the above numerical
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methods the matrix size and computer time for evaluating the matrix elements increase with
the size of the aperture. At present this can cause severe computational limitations if both
dimensions of the aperture are of the order of the wavelength A or larger. Fortunately in
antenna applications apertures are usually in the form of slots with one dimension much

less than A and therefore one should be able to apply the available numerical methods.

For the slot problem, Suzuki [20] considered the case of an incident plane wave and
used the variational method to calculate the transmission coefficient. Butler {21] formulated
the same problem and derived an integral equation for the electric field in the slot. The case
of a slot antenna has often been treated in the literature [22] as the complementary of a strip
dipole by applying Babinet’s principle as generalized by Booker [23].

An open slot antenna, i.e. a slot in a conducting screen which is free to radiate from
both sides, has limited applications. A practical alternative is the so-called cavity-backed
slot (CBS) antenna where the slot is cut in the wall of a conducting enclosure in the form
of a cavity resonator. These types of radiators satisfy the requirements of flush mounting as
well as small size and light weight at lower operating frequencies (through dielectric load-
ing) and therefore are most useful in airbome applications. On the other hand, CBS when
used in an array configuration, produces small mutual effects and is thus a suitable element

for large antenna systems such as phased arrays.

In one of the earliest treatments of CBS, Cohen [24] considered a square waveguide
shorted at one end and radiating into half space at the other end. He assumed a single
waveguide mode in the cavity and a TE 1 mode for the tangential electric field in the aper-
ture. The cavity was treated as a transmission linc with terminals at the aperture whose
admittance is known for the mode excited in the waveguide. He used the oscillation condi-
tion of the cavity to calculate the complex frequency from which the quality factor of the
nth mode was defined. Galejs (25] obtained a variational expression for the admittance of
a rectangular CBS where the slot was excited at the center by a delta current source. This
expression is in terms of the unknown voltage distribution along the slot and is stationary

with respect to small variations of the voltage distribution which was assumed to be
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sinusoidal. It is possible in general to expand the unknown field in terms of a set of suitable
functions and use the stationarity property of the admittance to obtain a system of nonlinear
equations for the expansion coefficients. However, only two terms of such an expansion

were considered by Galejs and the calculations were only for the ratio of their coefficients.

In a later paper, Adams [26] derived a variational expression for the aperture admit-
tance of a loaded semi-infinite rectangular waveguide radiator and used the result in calcu-
lating the aperture admittance for the case of an aperture plane iris. The computations were
performed for the waveguide dominant mode and thus a sinusoidal aperture field was
assumed. The results were then applied to a shorted waveguide excited by a coaxial probe.
An equivalent circuit was presented and used to calculate parameters such as resonance fre-
quency, bandwidth and efficiency. The possibility of tuning the ferrite loaded cavity by
applying a dc magnetic field was also shown experimentally. In this work the emphasis was
on loading the cavity by dielectric and ferrite material which can significantly reduce the

size of the antenna for a given frequency at the expense of reduction in bandwidth.

The calculation of the input admittance of a rectangular CBS is also the subject of a
paper by Cockrell [27]. He applied the complex Poynting theorem to the small volume
formed by the slot with a current source across its center and obtained the admittance for
vanishing screen thickness with the assumption of a single propagating mode in the cavity
and a sinusoidal field distribution in the slot. Extensive experimental measurements of the
input impedance of a rectangular CBS were performed by Long [28]. In these experiments
the slot was fed by a coaxial cable connected to the center of the slot and the cavity cross
section was chosen such that only the dominant mode could propagate. The cases of dielec-
tric filled cavity and a waveguide with inductive post to replace the shorting plate were also
considered. In another paper [29] bascd on the cxperimental data in [28], Long derived a
formula for the admittance of CBS as a function of frequency and cavity depth for a

specific cavity cross section and slot size and within a certain range of frequencies.

In some applications such as radar and tracking, it is very important to suppress the

side lobes in the radiation pattern of the antenna. This can be achieved in principle by
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producing a Gaussian ficld distribution in the radiating slot aperture which in tumn can be
obtained by using a cavity of proper shape to back the slot. Such a so-called Gaussian cav-
ity resonator operating at microwave frequencics should support fields that decay exponen-
tially in a certain direction and in this respect it resembles the laser at optical frequencies.
The appropriate field solution which is usually known as a wave beam because of its local-
ized and directional nature, was first introduced by Goubau and Schwering for the circularly
symmetric case [30]. These authors expressed the field as a set of elementary wave beams
which were characterized by Laguerre polynomials and pointed out the possibility of
reiterating and guiding the waves by reconstituting the cross-sectional phase distribution at
certain intervals to construct a beam waveguide which is an open structure and does not
need the metallic side walls to confine the fields. Experimental results based on this theory
were subsequently reported by Christian and Goubau for low-loss transmission of millimeter
waves [31]. Further development of beam waveguides for optical frequencies can be found
in [32-34].

The wave beam of rectangular symmetry was studied by Schwering [35] and he
expressed the fields in terms of Hermite polynomials. To construct a Gaussian resonator one
needs only to short circuit two appropriate constant phase surfaces of a beam waveguide by
metallic reflectors. This resonator is essentially open from all sides; however, for beams of
rectangular symmetry one may use two parallel conducting plates to restrict the size of the
resonator in one direction. Brauer [36] used this type of resonator t0 make a line source
antenna by cutting a row of closely spaced small holes in the front wall. For the electric
field in the aperture, he used the magnetic dipole moment of the holes and assumed a delta
function dependence for the transverse variable. The results reported in [36] indicated very
low side-lobe levels in the radiation pattern and the possibility of obtaining aperture field

distribution in the form of a Gaussian and the derivative of a Gaussian.

In Chapter 2 we obtain general equations for the tangential electric field in an aperture
of arbitrary shape located in a planaf conducting screen. The results are then reduced to an

integro-differential equation for the special case of a narrow slot. A method based on a
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combination of moments method and Fourier transform is proposed for efficient numerical
solution of this equation [37]. A knowledge of the correct voltage distribution along the
slot is necessary for accurate prediction of the antenna performance both as an electromag-
netic radiator and as a circuit element. The latter aspect is emphasized by investigating the
effect of various parameters such as slot length, slot width and feed point location on the

slot voltage distribution, input impedance, resonance frequency and bandwidth.

The fields produced by electric and magnetic sources in an enclosure with conducting
walls which contain radiating apertures are derived in Chapter 3. The fields are expanded
in terms of irrotational and solenoidal eigenvectors and the results are written in the form of
volume and surface integrals over the sources and boundaries respectively. General expres-
sions for the electric and magnetic-type dyadic Green’s functions of a bounded region are
also obtained and specialized to the case of a rectangular cavity resonator. Most of the
results and developments in this Chapter are reported elsewhere [38] and are extensively

used in the rest of the thesis.

Regarding the problem of cavity-backed slot radiators, in spite of the rather large
number of papers on this subject, no general and satisfactory treatment of the problem is
available. For example in all the references mentioned earlier, the cavity has been con-
sidered as a shorted waveguide and no attempt is made to independently formulate the prob-
lem for the general case. Also a sinusoidal field distribution is assumed in the slot which
corresponds to the presence of a single propagating mode in the cavity and is not correct in
general. Furthermore, all the previous works fail to include the effect of one or more of the
various parameters such as the cavity and slot dimensions, location of the excitation source,
characteristics of the material in the cavity, etc. on the slot field distribution. In Chapter 4
we therefore derive general equations for the clectric field in the aperture of a cavity-backed
aperture radiator of arbitrary shape and specialize the results to the case of a narrow slot
backed by a rectangular cavity. The structure is excited by a current source connected to the
slot edges and hence the cavity can be considcred as a load. The method of moments with

piecewise sinusoidal basis and testing functions is used to numerically solve the integral
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equation for the field in the slot. Subsequently, the effect of various parameters on the vol-
tage distribution along the slot and impedance of the antenna as well as the resonance fre-
quency and bandwidth are examined. The case where the cavity is excited by a coaxial-line
probe and the slot acts as a load is investigated in Chapter 5. The calculation of the input
impedance for this problem is rather involved and an approximate method based on the

Poynting theorem is used for this purpose.

As far as the problem of Gaussian CBS is concemed, no rigorous solution for the
electric field in the slot aperture could be found in the literature and therefore the subject
has been treated in detail in Chapter 6. A general solution of the source free Maxwell’s
equations applied to the region between two conducting parallel plates is presented in terms
of a continuous spectrum of elementary plane waves. Next, the wave beam condition is
used to obtain an approximate solution for waves which are confined to a small solid angle
about the principal axis of the system. A cavity resonator is formed by placing reflecting
surfaces on two suitable constant-phase planes. The fields in the cavity are then expanded in
terms of Gauss-Hermite functions whose orthogonality property is used to obtain the expan-
sion coefficients. A radiating slot is cut in the front wall of the cavity and the structure is
excited by a current source on the slot aperture. An integral equation is derived for the
tangential electric field in the slot and entire-domain basis and testing functions are utilized
in its numerical evaluation. The restrictions imposed on the cavity dimensions by the wave
beam assumption are also discussed and the equation for the surface of the cavity back-wall

is obtained and solved numerically.



CHAPTER 2

APERTURES IN A PLANAR CONDUCTING SCREEN

In this Chapter we first present a general formulation for the problem of diffraction by
an arbitrary shape aperture in a perfectly conducting screen and then specialize the results to
the case of a narrow slot. The resulting equation for the electric field in the slot aperture is
in the form of an integro-differential equation and a technique based on the moments
method and Fourier transform is proposed for its efficient numerical evaluation. The slot is
excited by either a current source on the aperture or an incident plane wave which
correspond to the radiation and diffraction problems, respectively. Once the electric field,
and hence the voltage distribution, in the slot aperture is known it is easy to calculate the
radiation and circuit parameters of the antenna. Booker’s extension of Babinet’s principle
and its limitations are also discussed. Finally, typical numerical results for the voltage distri-

bution, input impedance, resonance frequency and bandwidth are given.

2.1 - Formulation of the problem

The geometry of the fundamental problem to be considercd in this section is shown in
Fig. 2.1. The arbitrary shaped aperture is excited by specified impressed sources T , M (or
incident fields £ , H i) in region (1) as well as a surface current density Tsh on the aperture.
The screen is perfectly conducting, vanishingly thin and of infinite extent and is located in
the x—y plane. Regions (1) and (2) are homogencous with paramcters (Ky, €;) and

(M2, €p) respectively. The loss in the medium can be accounted for through replacing € by
eE—]J %. All source and ficld quantities are assumed to vary harmonically with time as

e/ ® which factor is suppressed throughout.

The fields in regions (1) and (2) should satisfy the following boundary conditions:
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Fig. 2.1- An arbitrary shaped aperturc in a planar conducting ground screen (a) and its

cross-sectional view (b).
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iy & 1 X E=0 on the surface of the ground screen,
ii) continuity of #; x E in the aperture,
iii) a discontinuity of A] x H in the aperture equal to 72,

We apply the surface equivalence principle [39] to replace the aperture and obtain a
simple structure in each region. For convenience in the pictorial representations, we will
assume in the following that the impressed current on the aperture 7:’ is zero; but it will be
included in the final results. Considering for the moment only the fields in region (1) i.e.
z> 0, it is clear from the equivalence principle that we can replace the entire ground screen,
the aperture, and the half-space z< O by an imaginary surface in the x— y plane on which
the equivalent surface current densities 7:.(1) =H x R, and ﬁsa) = Ay x E | 4 flow
without affecting the fields in the half-space z> 0. Here A is the aperture area and quanti-
ties in the z> O region are denoted by the superscript (1). Note that the boundary condition
i implies that Ms(l) is non-zero only over that portion of the x— y plane originally occu-
pied by the aperture.

The application of the surface equivalence principle causes zero fields to exist in
region (2), i.e. the half-space z< 0. Therefore as far as the fields in region (1) are con-
cemned, it does not matter what material exists in region (2). Consequently we may fill this
region by a perfect electric conductor immediately behind the surface currents in the x— y
plane. This eliminates the contribution of the electric surface current density 7;(1) to the
fields in region (1), as may be easily seen from considering the image of 75(1) due to the
infinite ground screen. The above developments are represented in Figs. 2.2a and 2.2b. By
further application of the image thcorem, the original problem takes a simple form which is
valid only for z> 0 as shown in Fig. 2.2c. Using the same procedures as explained above
one obtains an equivalent magnetic surface current density /Ws(z) = f, X E | 4 for the
equivalent system of region (2) which is shown in Fig. 2.3. Application of the boundary
condition i along with the fact that unit normal vectors arc oppositely dirccted for the two
half-spaces, leads to the conclusion that M, = M, = - M® with M, = -~ £ x E* and

E” is the clectric field in the aperture.



- 10 -

b $ $
T f T
l>>§ 77N l
zero fields :g zero fields AN Vo
X 7/
X =(1 7 by |
& T 0/ Ao, l
I o !
lé o images \OIO
Q 1 1 olle)
SM®» < QHL» — g Oio Mo
I2 / s alle]
|X plane vacated
Ig .7;(1) shorted screen by screen \:
X
X
(TR X (s €y O =oo 1y, &) My, &) i 1y, &)
-—é‘«-ﬁé z>0 -8 — z>0 -8 1 z>0
(@) ®) (c)
Fig. 2.2- Equivalent system of the problem, valid for z> 0.
9 $ 9
gl shorted screen plane vacated |
§} by screen i
2
7@ g((l \
X
X
%l i
@ él o ) oo .
M, S| — MP8 — M )gigﬁs() image
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Fig. 2.3- Equivalent system of the problem, valid for z< O.
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The quantities 7 and M’ in Figs. 2.1 to 2.3 represent independent sources of the
electromagnetic fields. The total fields b—m) and 1-7 @ in region (1) are composed of incident
fields E' and H' due to the independent sources which would exist in free space (i.e. in
the absence of the screen) plus fields E" and " reflected from the infinite non-perforated
ground screen, and scattered fields E*D and H*O radiated by the equivalent surface
current 173(1) in the presence of the shorted screen. The sum of the incident field and the

reflected field may be considered as a short-circuit field, written as
EX =E +E" (2.1a)
H* =7 +H" (2.1b)

In region (2) the total fields E® and H® are simply the scattered fields E*D and
H*P radiated by the equivalent magnetic surface current density M S(2) in the presence of
the shorted ground screen. The fact that M s(l) =-M 3(2) implies that we need only solve
for M s- From the above considerations, the equivalent systems obtained for regions (1) and
(2) satisfy the boundary conditions i and #i. The remaining condition (iii ) will be used to
determine the actual distribution of the equivalent current IWS in the aperture. In order to
enforce this condition we must find the fields Z°V and F*® produced by MS which is

the subject of the next section.

2.1.1- Calculation of the magnetic fields

The magnetic field due to a magnetic surface current density M ¢ 1S given by

Be) =- L2 (8, |» - H,¢) das’ 2.2)

47ts

where the integration is over the magnctic current surface and 50(7’ IT’) is the dyadic

Green’s function of an unbounded region given by [40]
Go® P =(T+ % V V)G | P) (2.3)

In this equation T = £ + §§ + 2% is the unit dyadic and
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, kR
G I =Sor k=0 @4)

with
R=[(x —x)2+ @ -y)+z32 (2.5)

and the primed quantities are those of the source points.

In the equivalent system of Fig. 2.2c¢ (Fig. 2.3c) we employed the image theorem,
removed the infinite ground screen and replaced its effect in region z> O by an image mag-
netic surface current density identical to the original and located an infinitesimally small dis-
tance away. This leaves, in effect, a magnetic surface current distribution oM S(l) (or ZIWS(Z)
if z< 0) which is non-zero only over the surface S, which resides in free space, and which
together with the incident fields and their images yield the correct fields for z> 0 and zero
fields for z< O.

With the above development, an expression for H is easily obtained in each region

by using (2.2) with the appropriate current density. The total fields are then
HV = g0 4 g (2.6)
H® = 5@ Q.7)

The condition iii on the tangential magnetic fields on the aperture requires that

lim £ x AV - lim 2 x H® =77 (2.8)

z—> 0" 20

where T}’ is the specified impressed current distribution on the aperture. On the surface of
the electric conductor the condition £ X (17 .y ¢ ") = 0 must be satisfied and therefore

from (2.1b) we obtain
SxH* =28 xH' (2.9)

Expansion of (2.6) to (2.9) yields the following system of equations for the unknown mag-

netic surface current density M ¢ on the aperture

Hx(Z) - me =~ Jya L z—=0 (2.10a)
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Golds’

H® -HOD =72, 20
where
A az 3 3 az
1 — i
HY(x, y)=2H;- +o G0, (L Y )5
HWOx, y)=2Hi~ -J—EDELI[M ', y)—=GC +M, o, y) (k? +———)G 1ds”
y » Y y ‘Itkle x > Y a a 0 Yy 1 ay 0.
and
J W€y .. 2
HOx,y)= 2o [, 3y 3 + 236 + M, (o y) 555
Ky A 8
2
HO(x, y)= I[ Mo 3) 5

G0+M x,y) (k + —)Go]ds
dy?

Golds

(2.10b)

(2.11a)

(2.11b)

(2.122)

(2.12b)

From the above results and for the case where both regions are free space, i.e.

Wi =My =Ho, & =€ =&y and thus k; = ky = ky , we obtain, after re-arranging terms,

two coupled integro-differential equations for the components of M, s given by

2 . 0? 9°

(kg +—ax—)F . P F, =—j7t03u0(2H‘—Ja)
2, 0? 0* . ;

(k() +5y—2—') Fy+—a_—y—é—;F - J T, (2Hy‘+\]xa),

where

F.P) = M. PGP | P as”
A

F, = M,®) GoP | P ds”
A

z=0

z=0

(2.13)

(2.14)

(2.1523)

(2.15b)

It is possible, in principle, to transform a system of coupled integral equations to a

systcm of simultaneous algebraic equations and compute the resulting matrix clements by

available numerical methods. However, because of the differential operators in Egs. (2.13)
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and (2.14) this direct approach will result in considerable numerical difficulties. In an
attempt to solve this problem one may use the two dimensional Fourier transform defined
by the relation:

4+ 00 4 oo

Fife,y=F@, =1 [ fe.y) ed@+m g gy 2.16)

-— 08 == 0O

Application of this transform and using its well-known properties to (2.13) and (2.14), the
differential operators reduce to algebraic quantities in the spectral domain where a numerical
procedure such as the method of moments can be used efficiently. The details of this

approach are given in the next section for the special case of a narrow slot.

2.2- Special case of a narrow slot

Equations (2.13) and (2.14) are very general and can be applied to any arbitrary aper-
ture shape and impressed sources. However, in antenna applications we are more interested
in apertures in the form of narrow slots. The slot shown in Fig. 2.4 is of length 2L, width
2w and is excited by sources either outside the aperture to construct a diffraction problem,
or by a current source on the aperture itself with the slot acting as a radiator. Assuming a
narrow slot, i.e. w A, w< L and for the type of excitations to be considered here, the
axial component of the unknown electric field in the slot is negligible, i.e. E(x,y) = 0

and the transverse component of the electric field can be written in the separable form
Ejx,y)=Xx)Y() 217
with

1/

YO) = ————=
W2_ (y—))c)z

where y,. is the ordinate of the slot center. This choice for the Y function is based on the

(2.18)

knowledge of the field in a narrow slot of infinite length and incorporates the proper field
behavior at the cdges [21]. The unknown function X (x) satisfics the following integral

equinion with differential operator in the integrand,
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=

Fig. 2.4- Narrow slot excited by a current source and an incident plane wave.
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x.+ L az
[ &)@+ 25 Ga-x)dx = gx,y,) 2.19)
x-L ox
w2 . 2 A2 12
—~jk[ &* + (wsinB)? ]
GEe =2 [ 2 (2.20)

L | &,2 + (wsin@)? 1172

where g (x, y;) is the forcing function to be discussed in Sec. 2.4 and k = kg is the

wavenumber.

2.3- Numerical solution of the integral equation

Equation in (2.19) is similar to the so-called Pocklington’s equation for the current
distribution along a wire in the theory of linear antennas and scatterers. This equation,
which is in the form of a Fredholm integral equation of the first kind, is basically an
integro-differential equation and due to the presence of derivatives in the integrand as well

as the singular nature of the kemnel its numerical evaluation requires a special treatment.

In the past the method of moments has been used to solve Pocklington’s equation and
several approaches are introduced to eliminate the differential operator and these may be
categorized as follows:

1)  writing the integro-differential equation in the form of a harmonic differential equation
whose solution is used to form a simple integral equation of Hallen’s type which is

then solved for the unknown function;

2) applying piecewise linear or sinusoids for basis and/or testing functions in the
moments mcthod and using integration by parts twice to climinate the second deriva-

tive resulting in a difference equation;

3) replacing the second derivative in the equation by a finite difference approximation

and thus obtain an integro-difference equation.

In particular the last two methods arc cquivalent to Hallen’s equation with point matching

as shown eclscwherc [41].
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While all the above approaches are aimed at removing the differential operator from
Pocklington’s equation, very little analytical work has been done to treat the singularity of
the integral which can result in serious difficulties in numerical computations. A popular
solution to this problem is to use the well known reduced kernel approximation which is
valid only for very thin wires and narrow slots. In yet another approach, the integrand is
made smooth by isolating the singularity of the kemel and integrating the singular part
separately [4, pp. 3-55]. However, the operations are rather involved and numerically

inefficient as they include a number of double integrations.

We apply the method of moments to the problem and use the Fourier transform to
obtain simple and numerically efficient expressions for the matrix elements without resort-
ing to any of the above mentioned methods or approximations. This approach eliminates the
differential operator in Pocklington’s equation without imposing any restriction on the
choice of basis and testing functions, thus making it possible to use the simple pulse expan-
sion and point matching. Furthermore, the singular kemnel in the space domain tums to a
smooth function in the Fourier domain and no additional effort is required to handle the
singularity. Finally, the matrix clements are expressed in terms of a single integral in com-

parison with a double integral for the case of exact kemel in other methods.
We consider a solution of (2.19) in the form
N
Xx)y=3Y V, X,,(x) (2.21)
n=1

where X, (x) are known basis functions and V,, are unknown constant coefficients. Thus

N
3V, F,(x)=g(x, ) (2.22)
n=1
where
82
Fox) = (k> + —5) A, (x) (2.23)
ox

and
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x.+ L

A= | X,)Ga-x)ax (2.24)
x.— L

Since the tangental electric field vanishes on the conducting screen, we can extend the lim-
its of the integral in (2.24) to infinity and write

A )= | X,)Ga-x) ax 2.25)

To obtain a system of N linear equations for the N unknowns in (2.22), we form the inner
products of both sides with a testing function W, * (x) where * denotes complex conjugate.

The result may be written in matrix form

(@] [V,]1= [b),] (2.26)
where
+ oo
G = | W, " (0) F(x) dx @27
+ oo
by = J W,"(x)gx,y,) dx (2.28)

From (2.20), (2.23), (2.25) and (2.27), it is seen that the matrix elements a,,, contain triple
integrals with differential operator in the integrand and a singular kemel which makes the
computations even more prohibitive. In the next section we present a method that removes

the derivative and gives a,,, as only a single integral with a well behaved integrand.

2.3.1- Calculation of the matrix elements

Using Parseval’s identity, the integral in (2.27) can be written in the Fourier domain

+ oo
a4, = [ Wi F, () do (2.29)
2n

- 0o

where o is the Fourier transform variable and ~ denotes the Fourier domain quantities.
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Since the integral in (2.25) is in the form of a convolution integral, the convolution theorem

and the well-known properties of the Fourier transform lead to

Fo@) =k~ o® X, (o) G (o) (2.30)

where from (2.20) (see Appendix A)
G =2 JO(/—”ZHaZ— k2) KO(—”zl Vo2- £2) @2.31)

and K is the modified Bessel function of the second kind and zero order. Thus, the matrix

elements become

=;1t—f(k"' a® X, () W, (a)Joo—Va2 )K(—-Vaz k2)do  (2.32)

At this point it is appropriate to investigate the effect of using the reduced kemnel
approximation on the calculations in the Fourier domain. With this approximation, the ker-

nel given in (2.20) reduces to

oI VEE+ (wi2)?

G©® = (2.33)
\/gz + (wi2)?
and its transform becomes
G =2 KO(%V&— k2) (2.34)

where the bar indicates quantities related to the reduced kernel approximation. Thus the

matrix elements are given by

B % J k2 - o) X (o) W, (00) Ko(—-.*la k?)da (2.35)

oo

It is interesting to note that this approximation significantly increases the convergence rate

of the integral, as can be observed by comparing the asymptotic behavior of 7 5(x )X olx) in

(2.32) and K o(x) in (2.35) with x= —g’—\locz— k* for o > k, namely [42, p. 378]



1 a; a, as
To(x) Kolx) = < (@g+ — +

— +t—=+ ) (2.36)
x* X3
which decreases as the inverse power of x, while
e by by b3
Kox) = bo+ —+—+—=+ --- .

decreases exponentially with x.

2.3.2- The basis and testing functions

For the basis and testing functions, one may choose any of the commonly used sub-
domain functions shown in Fig. 2.5. These are

a)

rectangular pulse or piecewise constant function

1, for |x—x,,| S—g—
fax)= A (2.38a)
0, for |x—x,,| > —
2
| sinG
Fal@) =A% — (2.38b)
?oc
triangular pulse or piecewise linear function
| x- X, |
N for x,.1<x <x,4
fale) = 0, otherwise (2.399)
2
A sin(—ﬁ—oc)
fal@=Ze?* | —— (2.39b)
2. A o
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—~ A
x—-L x; x, -~ A XN x,+L
(a)

XC-L X1 X9 XN-1 XN XC+L
®)

x—L x1 X XN-1 XN X+ L
(c)

Fig. 2.5- Sub-domain functions commonly used as basis and testing functions; a) rectangu-

lar pulse, b) triangular pulse, ¢) sinusoidal pulse.
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¢)  sinusoidal pulse or piecewise sinusoid function

sin[k (A — ]x—x,, B

_ sin(k A)
fnlx)= 0, otherwise

, for x, 1 <x <x,,4
(2.40a)

—JjXp 0L - -
= oy o 2ke { cos(kA) — cos(An) } (2.40b)

a? — k?
In these equations X, =Xx.~L+nA,n=1,2, -, N and A = 2L/(N+1); while x,,_; =
X,— A and x,,; = x,+ A . For point matching at points x,, =x,— L+ mA , m= 1, 2,

, N the testing function is
W, (x)=3dx-x,) (2.41a)
W (o) = e (2.41b)

We may use any of the above functions in (2.32) or (2.35) to calculate the matrix elements.
From these equations it is clear that when both the basis and testing functions are the same,
i.e. Galerkin’s method, the convergence of the integral is faster than point matching, as can
be seen from the power of o in the denominator. For the same reason, sinusoidal or tri-
angular pulses result in faster convergence than the rectangular pulse. In all the cases, the
integral in the matrix elements has a well behaved integrand over the entire range of
integration and can be performed numerically without difficulty. As an example we choose
the rectangular pul;e as basis function along with point matching. Substitution from (2.38b)

and (2.41b) into (2.35) yields the matrix elements as
= 2
= % f (k* “) K (——V — k%) cos[(m— n)Aa] sm(——a) da  (2.42)
0

Note that the matrix elements depend on | m—n | and therefore the moments matrix is of
the Toeplitz type [43]. Hence, we only need to compute the elements of one row (column)
and the other elements arc just repetition of these values. This property significantly reduces
the filling time of thc moment matrix. To evaluate the matrix clements in (2.42), due to the

branch point at &t = & we split the intcgral and write
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k o
Z. =% [y da+ [ hyo) do 2.43)
0 k

where A ,(0t) and s,(Q) constitute the integrand of (2.42) for ¢ < k and o > k, respec-
tively. The finite integral in (2.43) can be easily computed by numerical integration. To

perform the infinite integral, we write it in the form

[ hywyda=1,+1,-1, (2.44a)
k
where

M

Iy= [ hy(e) do (2.44b)
k

I=| h(®) da (2.44¢)
0
M

Iy= [ h(o) do (2.44d)
0

Here h (@) is the approximation of A,(a) for o > k, i.e.
w . A
h() =-a KO(—Z-(X) cos{(m— n)Aca] sm(?oc) (2.45)

and M is a number chosen such that A (M) = h,(M) which is normally true for M>10k.
The integrals 7, and /5 are finite and a 20 point Gaussian quadrature is used for their
numerical evaluation, while the infinite integral /, can be calculated analytically by using

Eq. 6.691 in [44], i.c.

fx K g(ax) sin(bx) dx = %l.’. (a?+p2)3n
O .
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2.4- Calculation of the source vector elements

For the general case where the slot is excited by an incident plane wave with its mag-
netic field ' as well as a known surface current distribution f:’ = Jy“(x )$ on the slot

aperture, the forcing function g (x, y.) in (2.19) may be written in the form

gx,y.)=jnwu [Jy“(x) -2 Hix,.) :| , z=0 (2.46)

where @ is the radian frequency and U is the permeability of the medium. In the following

we will obtain the source vector elements b,, for each type of excitation separately.

2.4.1- Current source excitation

For this case the forcing function in (2.46) reduces to
g (x) = jmop Jix) (2.47)

Practical examples of such a source are coaxial or two-wire lines connected to the slot
edges. Due to the fact that w<< A, the current distribution over the feed line in the slot is
essentially uniform. On the other hand, to avoid blocking the radiation it is desirable to
keep the width (or radius) of the feed line in the slot to a minimum. Thus one can assume
the slot to be excited by a delta current source of amplitude /, applied at the point x = x,.
We model the delta function by a pulse of width A and unit area. Hence, the current distri-

bution of the excitation source on the slot aperture is given by

I
XO’ for lx—xs| S%
Jy"(x) = A (2.48)
0, for !x—xsl > =
2
and from (2.28) the source vector elements become
!
chcouXO , for Ixm—xs | < %
b, = A 2.49)
0, for Ix,,,—xsl > —

2
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2.4.2- Plane wave excitation

For excitation of the slot by an incident plane wave (l?i , H i), the forcing function in

(2.46) reduces to
g(x,y,) =—j2ron Hi(x, y,.) , z=0 (2.50)

In general, for a uniform plane wave incident in a direction specified by the angles 8 and

¢i, the x component of the magnetic field is given by
. 1 . . )
Hix,y,z)= ?D—L-L—(ky Eb, =k, E{)y) exp [—j(kxx+ kyy+ kzz)] .51

where k,= ksin®’ coso’, ky= k sin6’sing’ and k,= kcos®. For normal incidence i.e.
8‘= 0, from (2.50) and (2.51) the source vector elements b, turn out to be independent of

the parameter m and we obtain

b, = j2nk Ef, (2.52)

2.5- Circuit quantities of the slot radiator

From the circuit point of view an antenna can be characterized by quantities such as
input impedance, resonance frequency and bandwidth. With the slot excited by a source

with uniform current distribution of a total current / , the input impedance is defined as

Vix,)
in = 10

(2.53)

where V (x;) is the voltage across the feed point. The voltage distribution along the slot is

given by

Y+ W

Ve == | Efte,y)dy 2.54)

Y= W

From (2.17), (2.18) and (2.21) it is easy to show that
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N
V)= 3 V, X, (x) (2.55)

n=1

where for pulse expansion the basis functions X, (x) are defined by (2.38a). Thus the com-
plex values of V, obtained from (2.26) give the actual amplitude and phase of the voltage
at the matching points x,,, m=1, 2, - - -, N. This data can then be used to find the vol-

tage at other points of the slot by interpolation.

The resonance frequency f, is defined as the frequency at which the imaginary part of
the input impedance vanishes, i.e. X (f,) = 0. The useful bandwidth of an antenna is that
range of frequencies over which the antenna satisfies certain requirements of impedance,
radiation pattern and directivity or polarization characteristics. Since these requirements vary
according to each particular application, there is no unique definition for the bandwidth of
any antenna. Here we define the bandwidth as the frequency range over which the VSWR
remains below a specified value, namely 2:1. With the input impedance of the antenna as a
function of frequency given, one can easily find the VSWR versus frequency and from
there determine the bandwidth. For this purpose and to provide a reference point we assume

that the antenna is perfectly matched to the generator at the resonance frequency.

2.6- Booker’s extension of Babinet’s principle

Booker [23] generalized Babinet’s principle of optics to take into account the vector
nature of the electromagnetic fields. This extension which has often been applied to the
case of a slot antenna shows that the impedance Z of any planar antenna and the impedance
Z of its complement i.e. the antenna for which the area of the conducting screen and that
of the aperture are reversed, satisfy the relation Z Z = (Z /2)? where Z is the charac-
teristic impedance of the surrounding medium. However, there are a number of basic
assumptions that must be made before Babinet’s principle can strictly be applicable; namely,
the screen must be perfectly conducting, flat and infinitc in size, and vanishingly thin. Of
course some results obtaincd from Babinet’s principle may be approximately correct for a

practical case wherce the screen is only highly conducting and large and thin compared to
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the wavelength. In addition, it is possible to take into account the effect of finite thickness
of the screen from a conformal mapping solution of the static case. The region outside the
slot can be mapped to that outside an infinitesimally thin one by the Schwartz-Christoffel
transformation [45] with the result reducing to complete elliptic integrals of the first and
second kind [42]. Application of this method shows that the effective width of the slot is
less than the actual size [28]. One can also consider the small change in the effective length

of the slot due to the finite thickness of the screen.

The validity of the Booker’s assumptions to obtain the impedance of a slot antenna
from those of a linear dipole were examined experimentally by Long [28]. In these experi-
ments a slot of one-half the desired width was cut in the edge of a ground plane and
mounted on a highly conducting imaging plane. With this arrangement one is able to place
the feed system and measuring equipment behind the image plane and thus allow the slot to

radiate freely on both sides of the screen.

2.7- Numerical results

A knowledge of the voltage distribution along the slot is necessary for determining the
circuit and radiation properties of the antenna. To confirm the validity of the approach
presented in this Chapter for solving Pocklington’s equation and thus the voltage distribu-
tion in the slot, we compare our results with those based on available methods. In Figs.
2.6—2.7 we have used the abbreviation FD/ PP to indicate the calculation of the matrix
elements in Fourier domain with pulse expansion and point matching. Similarly, SD/ GS is
used to identify the solution in space domain using Galerkin method with sinusoidal func-
tions for basis and testing which is based on method 3 mentioned in Sec. 2.3. Unless other-
wise stated, the ratio of the slot width to slot length is 0.04 and the antcnna is operating at
f =3 GHz in all the examples. The slot is excited either by a delta current source of
amplitude /o = 1 mA located at the point x = x, or by a normally incident plane wave
with £ f)y =1V/m. Fig. 2.6a shows thc amplitude and phase of the voltage distribution

along a slot of length A/2 and s= L while in Fig. 2.6b the slot lengthis A and s= L/ 2.
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Fig. 2.6a- Comparison of the computed results for the voltage distribution along a slot of

length 2L = A/2 and current source excitation at s= L.
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Fig. 2.7a- Comparison of the computed results for the induced voltage distribution along a
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Fig. 2.7b- Comparison of the computed results for the induced voltage distribution along a

slot of length 2L = A illuminated by a normally incident plane wave.



-32 -

200 315
160 - L 270
Vo
>
E 120 - 225
S’
4
(4D)
e
=
= 80 L 180
-
<
40 \ [ 135
0= T T 30
0.0 0.2 0.4 0.6 0.8 1.0

Fig..2.8- Amplitude and phase (dashed lines) of the voltage distribution for a slot with
2L /A = 0.6, w/L = 0.04 and feed-point locations s/L = 0.2 (1.0) 0.2.
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In these figures the dashed line is used to denote the phase variation. For the case where
the slot is illuminated by a plane wave, the amplitude and phase of the induced voltage are
shown in Figs. 2.7a and 2.7b for 2L = A/2 and A, respectively. From the above results it is
seen that the agreement between the two methods is very good. The feed-point location s
has significant effect on the voltage distribution along the slot and thus the input impedance.
This point is demonstrated in Fig. 2.8 for a slot of length 0.6 A and s/L= 0.2 (1.0) 0.2.

The corresponding impedances are also given in Table 2.1.

Table 2.1

s/L R(Q) X ()

0.2 14.9 109.2

04 41.8 88.4
0.6 71.5 31.0
0.8 94.5 - 255
1.0 103.2 - 48.7

The resistance R and reactance X of a center-fed slot of length 25 ¢cm and width
1 cm versus frequency are calculated from the moments method and compared in Fig. 2.9
with the results obtained from application of Babinet's principle as well as the experimental
measurement [28]. In this and the following figures the dashed lines represent the reactance
or susceptance. It is observed that the sinusoidal current distribution which was assumed
on the complementary center-fed dipole in using the Babinct’s principle [46] results in sub-
stantial error in the impedance values at frequencics higher than the resonance frequency as
expected. The difference between the moments mcthod solution results and those obtained
from measurement data can be attributed to the fact that in the analytical solution we have
assumed a perfectly conducting screen of infinite extent and vanishingly thin, while in the

experiment the slot is cut in a screen of finite conductivity, size and thickness.
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Fig. 2.9- Comparison of the resistance R and reactance X versus frequency, obtained from

Moments Method (MM), experimental measurcments (EXP) and Babinet’s Princi-

ple (BP) for a center-fed slot of length 2L = 25 ¢cm and width 2w= 1 cm.
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The effect of the feed-point location on the slot impedance is shown in Fig. 2.10 for
various slot lengths. This figure suggests a convenient way for matching the antenna to the
generator by choosing the proper location for connecting the feed line. The admittance of
the slot versus 2L /A is shown in Fig. 2.11 for w/L = 0.02, 0.04 and 0.06 while Fig. 2.12
presents the impedance as a function of frequency for slot lengths 2L=4, 5 and 6 cm.
Fig. 2.13 shows the resonant length 2L, namely the slot length at which resonance occurs,
for a center-fed slot. The slot width has no appreciable effect on the resonance frequency
which is mainly determined by the slot length. The radiation resistance R, as a function of
the slot resonant width 2w, /A is shown in Fig. 2.14. The computed results indicate that for
a given slot width the value of R, is essentially independent of the slot length. Fig. 2.15
shows the bandwidth versus 2L /A for various slot widths. It is observed that in general a

shorter and wider slot has a wider bandwidth and lower radiation resistance.
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Fig. 2.10- Resistance R and reactance X (dashed lines) versus feed-point locations s /2L

for a slot of width w/L= 0.04 and lengths 2L /A = 0.4, 0.5 and 0.6.
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Fig. 2.11- Conductance G and susceptance B (dashed lines) versus slot length 2L /A for
normalized slot widths w/L = 0.02, 0.04 and 0.06.
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slot with w/L = 0.04 and lengths 2L =4, 5 and 6 cm.
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Fig. 2.14- Radiation Resistance R, versus resonant slot width 2w, /A for a center-fed slot

of length 2L = AJ2.
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w/L=0.02, 0.04 and 0.06.
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CHAPTER 3

ELECTROMAGNETIC FIELDS IN BOUNDED REGIONS

The open slot radiator discussed in the previous Chapter is free to radiate from both
sides. However, in most applications the radiation should be restricted to one side only,
which may be achieved by using a conducting enclosure to back the slot. In the problem of
cavity-backed apertures to be analyzed in Chapter 4 we need the fields produced by volume
or surface current distributions in a closed region of space. This problem is solved here by
expanding the fields in terms of the irrotational and solenoidal eigenvectors. Although the
method of field expansion is not new and has been used in different ways by many authors
[47-50], the developments made in this Chapter were not found in the literature and seem to
be new. First we obtain the solution in the form of volume integrals over the sources and
surface integrals over the boundaries. Next, by re-arranging the terms in the integrals and
writing them in the convenient dyadic form, general expressions for the dyadic Green’s
functions of an arbitrary closed region are extracted. The reduced form of these expressions
for the important case of rectangular cavitics is also derived and those pertinent to a
cylindrical cavity can be found in [38]. Finally, the subject of resonant modes is discussed

in detail.

3.1- Derivation of the fields and dyadic Green’s functions

The expansion of the fields in terms of orthogonal eigenvectors (or normal modes) is
based on the mathematical statement of the Helmholtz theorem [S1]. According to this
theorem an arbitrary continuous vector field with continuous derivatives in a region of space
V and boundary S can be expressed in terms of gradient of a scalar function and curl of a
vector function. Thus the field can be expanded in a serics of irrotational (zero curl) and

solenoidal (zero divergence) cigenvectors.
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From Maxwell’s equations the fields must satisfy

Vxfo—k2§=—jwu7—Vxﬁ (3.13)
VxVxH -k2H=VxT-joechM (3.1b)
In these equations, 7 and M are the electric and magnetic source current distributions,

while the e/® harmonic time dependence is assumed and suppressed throughout. We con-

sider the solution

EM=Y A, 2M+X B EFP+XCs EMP (3.22)
HP =Y At B+ B HE@ + 3 ct B ) (3.2b)

where A, B, and C are unknown expansion coefficients and v stands for a set of triple
indices (m, n, p). In the above equations, &, and }—zi, are the irrotational electric and mag-

netic eigenvectors, respectively, defined by

2, =Voy (3.3)
with

VIS +k$)Po5=0, inV (3.42)

6E=0, (or R -2,=0, Ax2,=0) onS (3.4b)
and

Ky =V ok (3.5)
with

V2ol + (kY 0l=0, invV (3.6a)

a;f =0, (or A-F,=0) onS$ (3.6b)

where £ is the outward normal to the boundary.
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For the case k{ =0 in (3.4a), the function ¢¢ satisfies Laplace’s equation Vipe= 0
and can thus be considered as an electrostatic potential with &, representing the electrostatic
field. This case corresponds to a region which consists of two or mofe separate boundaries,
as for example the space between two concentric spheres. On the other hand, kc= 0 in
(3.62) corresponds to the case of a multiply connected region, i.e. regions in which there are
contours that cannot be shrunk away to nothing. An example of such a region is the space
between two coaxial cylinders closed at both ends. In this case Fv corresponds to the mag-
netic field produced by the dc current flowing through the circuit which consists of the
center conductor, the shorted ends and the outer conductor.

The quantities E’ZE and E%‘M in (3.2a) are the solenoidal electric-field eigenvectors
and are the two independent and mutually orthogonal solutions of the following homogene-

ous vector wave equation

VX VxE,-k2E,=0, inV (3.72)

AxE,=0 onS, V-E,=0 inV (3.7b)

It is easy to show that the above solutions are of the form

ETF =Vx ylE o) (3.8)
1
EM = 7 VX VM ) (3.9)

v
where ¢ is an arbitra i i TE ™
ry constant vector, and the generating functions W, “ and y," are
solutions of the scalar wave equation

Viy, +kZ vy, =0 (3.10)

with appropriate boundary conditions derived from (3.7b). Similarly 1?55 and 17\1,'M in
(3.2b) are the solenoidal magnetic-field cigenvectors and are the independent and mutually

orthogonal solutions of

VxVxH, -k2H, =0, inV | (3.11a)

\4
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AxVxH,=0 and R -H,=0onS, V-H =0 inV (3.11b)

These solutions are given by

1
HF = az Vv Wt ) (3.12)
HM = vx (yIM o) | (3.13)

It should be pointed out that in all the above equations, as yet, the superscripts TE and TM
have no specific meaning and are merely used to denote two independent quantities. How-
ever, we will show later that with a proper choice of the constant vector €, these super-
scripts actually represent the transverse electric and transverse magnetic components of the

fields, respectively.

From the physical point of view, the boundary conditions defined for the irrotational
and solenoidal eigenvectors correspond to the boundary conditions of an enclosure bounded
by perfectly conducting walls. Therefore, it is appropriate to call these eigenvectors the

short-circuit modes. The following orthogonality relations exist for these modes [49]:

J E“ : E, dv =0 #V (3.14a)
14 1711 H, o F o
| {;}} {z}}d\, =0, p=v (3.14b)
v u v

24 E,
‘-[{h—};}{ﬁv}dv :O, Vu,v (314C)

M

E
In the above relations, {g} is either {ETTE } or {gTTM } Furthermore

f ?ﬁE ET™
YAt dv=0, Vu,v (3.14d)

and the following relations exist between the solenoidal clectric and magnetic eigenvectors:
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E TE

Vx {?,‘;E} = kIE {ZQ\{’E} (3.15a)
M M

Vx {f;gM} = k1M {FE}%M} (3.15b)

For the fields defined in (3.2) to be actual solutions of (3.1), they must satisfy the specific

boundary conditions dictated by the problem at hand as well as Maxwell’s equations, i.c.
VxE=-jopH -M (3.162)
VxH=jweE+7T (3.16b)

We use these equations to obtain the unknown coefficients in (3.2) in terms of the sources
7 and M in volume V, and also the tangential electric field on the boundary surface S.
However, it should be noted that because the specified boundary conditions are, in general,
different from those of the short-circuit modes, the fields in (3.2) are not uniformly conver-
gent at the boundary and thus the derivatives of the fields are not the sum of the derivatives
of the short-circuit modes. In other words, one cannot directly use Maxwell’s equations to
solve for the unknown coefficients. One way of circumventing this problem is through

integration of the vector identity

= -

V-AxB =VxA-B -VxB-A

over the volume V. Application of this relation to various combinations of the fields and
eigenvectors yields

fV-Ex {i”}m: Vx?-{lzu}dv—fo {Iz“}-idv (3.17a)
14 h 14 hy 1 h

it B

‘j/v {Z:}xﬁ dv =£Vx {g:} “H dv —‘J;Vx H- {?} dv (3.17b)

u

In these equations, E p and H u have cither TE or TM superscripts. Thus, we obtain six
equations for determination of the expansion coefficients in (3.2). Substitution of the latter

equations in (3.17) and using (3.14) to (3.16) along with the fact that
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Vx?u=0, Vxhu=0 inV

also
ETE
QX{E#M =0 and ﬁx?u=0 on S
n

yields after solving the system of linear equations the following results:

- I T e, dv
ag=—"
jcoef 2,12 av
|4
jou7- ETav-+kTE[i1- BT av+kTE[(Ax By - H ds
B¢ = v v s
e =
k2 - GTEY] [ ETE |2 gy
|4
[ Bav+JAx B - F, as
AC - v S
—jou [ 1B, 1% ay
|4
joe[il- BT dv-kTE[T- ETEay +j wef(Ax E) - BTCds
Bh = v 4 s
=

(k% - kT [ | HTE | 2 gy
\

(3.18a)

(3.18b)

(3.18¢)

(3.18d)

The equations for C¢ and C% may be obtained from those for B¢ and B”, respectively,

through a change of superscript from TE to TM . Substituting the above results in (3.2) and

re-arranging the terms we obtain the following equations for the fields:

EP =-joul 7@ - EF I mav - [ @) V% EF| P av
1% Vv

- JAx E@) - V' .7 »as
s .

3.19)
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where ﬁ; (7"" | 7) is the electric-type dyadic Green’s function defined by

, -2, 2, E @) EF
ﬁe(?lf’)=z y(™) (7’)+Z @) @)
Yl Y [wIE? - k) | BTE | 20y
14 1%
EM@P)EM®
+y (3.20)

YOI - k2 | ET™ [ 24y
\4

and

: , KIE HE(P)EVE KM BM P EM
Ve P =3 RLrl B &) E™ @

v . v .
[(TEY2 - k21f | ETE | 2ay [(TM Y2 - k[ | ET | 23y
1 14
The integral expression for the magnetic field is obtained as

Hey =70 - VxE,F | mav - joe [ 8,7 | P av
|4 |4

-joe J‘h‘xE’(F")-(?m(F’W P) ds’ 3.21)
S
where @m (“F” ' 7) is the magnetic-type dyadic Green’s function defined by
-RERO 5 HE®) HE @)

IR a7 (@B - k2 | BT | 2av
v |4

Gl P=Y%

v

M oy M
s HM@) HM P .

Yoy - e | BT | 20y
14

and

, : KTE ELE(P) B KM EM Y BT
Px 8.0 =y IO - ) BM )

VORTE = k[ L HTE |20y Y [IMY2 = k2 | BT | 2ay
14 1%
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3.2- Dyadic Green’s functions for a rectangular cavity

In this section we specialize the general results obtained in (3.20) and (3.22) for the
case of a rectangular cavity with dimensions @, b and ¢. The previously defined scalar

potentials for this problem are given by

oy = sin(k,,x) sin (k,y) sin (k,z) (3.232)
¢\',' = — cos (k,x) cos (k,y) cos (kp Z) (3.23b)
WIE = cos (kx) cos (k,y) sin (k,2) (3.23¢)
woM = sin(k,x) sin (k,y) cos (k,z) (3.23d)

where m, n and p are integers and

_ L _ nw _pn
km = T , kn —-b— , kp = -—E— (3.24)

Since there is no preferred axis in the rectangular cavity, the constant vector T in the
transverse eigenvectors defined in Sec. 3.1 can be any of the unit vectors £, ﬁ or 2. With
the choice of @ = £, the irrotational and the two independent solenoidal electric-field eigen-

vectors are given by
&, = ky, cos (ky,x) sin(k,y) sin (k,z) £
+ ky sin(k,,x) cos (k,y) sin (k,z) §
+ k, sin(k,x) sin(k,y) cos (k,z) ¢ (3.252)
EvF ==k, cos(kpx) sin(k,y) sin (k,z) $

+ ky sin(k,x) cos(k,y) sin (k,z) $ (3.25b)

ET™ - k;M [— km kp cos (kyx) sin(k,y) sin (k,z) £
v

= ky k, sink,x) cos(k,y) sin (k,z) 9

+ ki Sink,,x) sin(k,y) cos (k,z) £ ] (3.25¢)
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Similarly the irrotational and the two independent solenoidal magnetic-ficld eigenvectors are
given by
Ry =k sin(kyx) cos (k,y) cos (k,z) £
+k, cos (kpx) sin(k,y) cos (k,z) §
+k, cos (k,x) cos(k,y) sin (k,z) £ (3.26a)
H™= p sin(k,x) cos (k,y) cos (k,z) £

= ky, cos (kyx) sin(k,y) cos (k,z) $ (3.26b)

HE= k;E [ = ky, K, sink,x) cos(k,y) cos (k,z) 2
v

~ ky k, cos(kyx) sin(k,y) cos (k,z) §
+ k2, cos (k,x) cos(k,y) sin (ky2) £ ] (3.26¢)
In these equations
KIE = kM = ky = (2, +£2)12 (3.27)
K2 = k24 k2 (3.28)

The squares of normalization factors of the above functions are obtained as

abc k}?
f1202av = 1B, |2av = 2% (3.292)
v v Em€npy
abc k2
JIB 12w = [ 1B, 1200 = "™ (TE or TM) (3.29b)
|4 v m<n®p
where €;, i=m, n, p, is the Neumann number defined by
g = {é :.:8 (3.30)

Substitution of the above eigenvectors along with their normalization factors into (3.20) and

(3.22) yields the electric and magnetic-type dyadic Green’s functions for a rectangular
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cavity in terms of an infinite triple series over the indices m, n and p, i.e.

En€nEp kZ .
@7 = Z k2 y {?TEETE+ETMETM] > kz?\, 2, (331
v
k2,
E,71m= }: HIERE, gMpgM|_ ™ 22l 332
bk2 k2 ~k? { ] 2

which are the same as those obtained from the Ohm-Rayleigh method [52].

For computational purposes it is desirable to reduce the triple series in (3.31) and
(3.32) into a double summation if possible. Fortunately in the cases of rectangular and
cylindrical cavities, the summation over the index p can be written in closed form and
therefore the reduction is possible. First, we consider the electric-type dyadic Green’s func-
tion. In an attempt to single out the z dependence in the electric-field eigenvectors (3.25) in
order to simplify the process of reducing the triple series, we define the following auxiliary

vector functions:

Tpp (X, ¥) = ky, cos(kpx) sin(k,y) £ + k, sin(k,x) cos(k,y)$  (3.332)
VX, ¥) = sin(k, x) sin(k,y) £ (3.33b)

Won (X, ¥) ==k, cos (k,x) sin(k,y) £ + k,, sin(k,,x) cos(k,y) § (3.33¢c)

Thus, the electric-field eigenvectors may be written as

2, = @’ sin (kyz) + k, v cos (ky2) (3.342)

EVE = #° sin (k,2) (3.34b)

E‘?M - /;M [— k, 7° sin (kpz) + k2, V¢ cos (ky2) :] (3.34¢)
A\

where the subscript mn of the auxiliary vector functions is omitted for convenience. Substi-

tution of the above quantitics into (3.31) yiclds
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abck? o,
_?’e 7 i kp sin (kpZ’) cos (/sz) _
p=1 kpz—K”%n
cye e | g2 i (€, /2)cos (k,z) cos (k,z) = K2

— kZ___K2
p=0 D mn

ae kz oo

+ W w Pl 3

mn p=1

where
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K2 = sin (kyz)sin (k,2)

kn p=1

Ve Y

k- K2

=k, cos (k,z ) sin (k,2)

p=1

k- K2,

cos (k,z’) cos (k,z)

KL =k?-k2

p=1

kt - K2,

sin (k,z ) sin (k,z)

k- K2,

(3.35)

(3.36)

and the primed vector functons are defined with respect to the primed variables x, y . The

infinite summations over the index p can be written in closed form by using the contour

integration method explained in Appendix B and the results are summarized here

e Sin (kpz') sin (kpz) .
=Apn Fn(2,2)
p§1 kP2 - Krr%n e
= (g,/2) cos (kpz') cos (kpz) .
=—A (z,z)
p§0 Z-KZ mn 8mn
i k, cos (kpz’) sin (k, z) _ 08¢ mn
p=1 kpz - Kn%n m aZ
i k, sin (k,z°) cos (k,z) _ Of un
p=1 k- Kz ™ 9z
oo kp2 cos (k,z") cos (k,z) 4 0%g,.n
z k2 - K2 IR YT
p=1 P mn

| (3.37a)

(3.37b)

(3.370)

(3.37d)

(3.37¢)
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= k2 sin (k,z) sin (k,z) 0%f mn

Z £ zp_ 2 £ == Amn ) (3.379H

p=1 kp Kmn az

where
_ c

A = 5 K, sin (K, ¢) 339
. sin [K,,,(c— z)] sin (K,,,z), z<z’

Frn2,2) = { sin (K,,,2) sin [K,, (c— 2)] , z>2 (3:39)
. cos [Km,,(c—z‘)] cos (K,,z), z< z

&mn (2,2 ) = {cos Kz ) €08 [K,, (c=2)], z>2 (3.40)

In calculating the second derivative of g,,, in (3.37¢) one should note that although

8mn (2, 2 ) is continuous at z= z , its derivative

08 mn B - cos [K,,, (c~z)] sin Kpnz), z<2z
0z ™ | cos (Kp,z)sin [K,,(c-2)] , z>z

has a discontinuity equal to K, sin (K,,,c) at z= z . Thus

0%
0z2

=-K2 gm,,(z,z’)+Km,, sin (K, ) 8(z—z) (3.41)

Applying the series (3.37a—d) in (3.35) and after some manipulations we obtain the reduced

form of the electric-type dyadic Green’s function for a rectangular cavity as

EFln=—L 35 5 —r= {1<K,3nﬁ"en’e+k2#ewe>fm

abk? /=0 neo Kmnsin(K,,c) k"%n

. 9 . 08 mn )
- 7V J;’;"‘ -V —--gz -/c,,f,,v)evﬂgm,,J
- Lsrom 0 (3.42)
k2

where we have used the following relations to simplify the singular term

§(P-P)=8(x—-x) 8~y dz-z) (3.43)
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dx—x) = %— Y sin(k,,x) sin(k,,,x') (3.44a)

50~y = 2 5 sin () sin(k,y) (3.44b)

Following a similar procedure we can reduce the triple series of the magnetic-type
dyadic Green’s function in (3.32). To this end we define the following auxiliary vector

functions:

o, y) =k, sink,, x) cos (k,y) £ + k, cos (k,x) sin(k,y) $ (3.452a)
Va6, ¥) = cos (kpx) cos (k,y) & (3.45b)

W,f‘m(x, y) =k, sin(k,, x) cos (k,y) £ - k,, cos(knx) sin(k,y) $ (3.45¢)

Thus the irrotational and solenoidal magnetic-field eigenvectors can be written in the form

i—z)v =" cos (kpz) + kp v sin (kpz) (3.46a)

17\T,E = k;E [— kp 7" cos (kpz) + k,,f,l 7 sin (kpz) } (3.46b)
v

HM = %" cos (k,2) (3.46¢)

where again the subscript mn of the vector functions is omitted. Substitution of these into
(3.32) and using relations (3.37) for the series over the index p, yields the following

reduced form for the magnetic-type dyadic Green’s function

G, Fl =" 3 5§ —n {—;%—(K,,%ﬂ""w“+k2w7‘wh>gm

abk2 m=0n=90 KmnSin (Kmnc)

mn

. 0 . 0
_ gt Lo g Y
0z z

5 +k,,%,,v*"‘v*"f,,m]

- -121-2- 57— 7) % (3.47)
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3.3- Discussion of the resonant modes

From the field expansion coefficients in (3.18) it is seen that the tenns.associated with
the solenoidal eigenvectors have resonant behavior. In other words, as the wavenumber
k= 2m/\ approaches either the eigenvalues kz,'E or k{M , the amplitude of the correspond-
ing mode and thus the fields inside the cavity tend to infinity. However, in the physical
reality there always exist losses, whatever small, that limit the field amplitude. For this rea-
son, the effect of losses cannot be ignored for the resonant modes and will be taken into

account in the following calculations.
To calculate the amplitude of the resonant modes we assume that when k-)k{E or
kM | the corresponding mode is dominant. Thus, in the general case where k2Z and kIM

are different, for example in a cylindrical cavity, one can write

E(P) =BS E\F(P) (3.482)

H@ =Bt HE@ (3.48b)
for k —kTE and

E@=Ce EM@P) (3.492)

H@)=ch A™M ) (3.49b)

for k—kI™  In these equations (Ffv JH v) are the solenoidal eigenvectors of the TE or

TM modes and the coefficients B,, and C, are given by (3.18).

In calculating the fields from (3.2), we single out the dominant resonant mode v, and
obtain the contribution of all the other modes by performing the summation over v # v,.. In
terms of the integral expressions for the fields in (3.19) and (3.21), the above procedure is
equivalent to isolating the terms where k= k,, (TE or TM) in the summations of the
appropriate dyadic Green's functions. Next, the relations in (3.48) or (3.49) can be used to
obtain the amplitude of the appropriate resonant mode and thus its contribution to the total
field. In the following we calculate the amplitude BC of the magnetic field due to the

resonant TE mode. Other cocfficients may be obtained in a similar fashion.
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LetS =8y + A where S is the boundary surface of the closed region in the form of
a cavity, A is the area of a possible opening (aperture) in the cavity wall and S o denotes
the metallic surface of the wall which has a finite conductivity. The electric field at the

points of the non-perfectly conducting wall is given by [53]
Els,=-2, AxHlg, (3.50)

where £ is the unit normal pointing outwards and Z; is the surface impedance of the wall

,‘/C‘)“O .
Zs= —2—0_—(1+j)

From (3.18d) we have

B =74}T Q+jmesjox%xé’(r>’)-ﬁ3’f(?’)¢s' (3.51)
where
Q=joe ‘IIM’(?') HE@y av” — kTE ‘f/f’(?’) ETE@Fy av’
+j® e{ Ax E@) - BTE®) ds” (3.52)
and
A, =[k2 - ((TEYY ‘f/ | HTE |2 gy’ (3.53)

From (3.50) and with the assumption that at resonance (i.e. k-—)k{E ) H= Bc 1_—1‘3E’ the

integral over S in (3.51) can be written as

[AxE®) -BE@) ds =Bz, [ | Ax HTE |2 a5’
So

So

Thus
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-1
Bh=Q | A;-joez | |AxHE |24 (3.54)
56

At resonance, A ;—0 and assuming M=0in (3.52), we have

~TE[T0) - ETE(Phav +jwefAx E®) - HTE #)ds’
Bh =V A (3.55)

-joez, [ 1 AxHTE | 245
So

This is the amplitude of the resonant TE mode contributing to the magnetic field in the
cavity and shows the significance of the finite surface impedance of the cavity wall.

In the special case where kIF = kIM = k., for example in a rectangular cavity, there
are two resonant terms in the field expressions. These terms which correspond to the TE

and TM modes are both dominant at the same frequency and cannot be treated separately

in the way discussed above. For this case as k —k,,, one may write the resonant field as

E=Bt EE +ce EM (3.56a)
H =Bk HTE + ct F™ (3.56b)

In the following we present the calculation of BC and C {,’ An expression for B% is

given in (3.51). A similar expression may be written for C K, namely
ch = Zl— M+ joe | AXEP) - B™MP) ds” (3.57)
2 So
where

M=joe AP BN av - k™ [ PF) - EM &) av”
14 14

+joe | AxE@) - B™M P as” (3.58)
A

and
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Ay =k IMy2 [ | HTM |2 g (3.59)
|4

For this case the integrals over S in (3.51) and (3.57) are given by

Sf AxE@) -HE®)ds =@Bh [,+Ch Iz, (3.60)

Sj AXE®) -HM@PYds =@ 1 +Ch 1)z, (3.61)
where

I =Sf Ax HE @y - hx H™ ) ds” (3.62)

I =Sf | Ax BTE@Y |2 a5 (3.63)

12=sf | Ax BTM Y| 2 g5 (3.64)

Substituting (3.60) and (3.61) into (3.51) and (3.57) and solving the resulting system of

equations for B% and C % yvields

Q + jweZ ICh
Al - jOJEZSII

B,

JOEZIQ+ (A; - jae Z, [) TT
A A= OEZ (A of 1+A [ )+ E?Z, (171 |1 )

3

As k—k,, we have A ;—0 and A ,—0 and thus the above relations reduce to

B =T (1,Q-1T1) (3.65)
Ch=-T(rQ-1,11) (3.66)

where
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F=-j [me([z—lllz)zs] (3.67)

Substituting these coefficients in (3.56b) and using the expressions for Q and IT, one may
obtain a relation similar to (3.21) for the contribution of the resonant modes to the magnetic

field in the cavity. For M= 0, we have

B=[7@ vx&F| »a
14

-joe [ AxE®) - 8@ | P as’ (3.68)
A

where ﬁ,; (7‘” | 7) is the magnetic-type dyadic Green’s function for the resonant modes in

the cavity given by
Er=r [(117’35 -LHMA™ g7’ ™ _ 1,71 173’5} (3.69)
and

Vx & =Tk, [(IE'” JE_NEMPE™M L qE™ _ [ E'TE 175’5] (3.70)
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CHAPTER 4

CAVITY-BACKED APERTURE RADIATORS

In practical applications of the slot antennas, the slot is normally backed by a conduct-
ing enclosure (cavity) forcing it to radiate into a half-space. The resulting cavity-backed slot
(CBS) radiator, which has the capability of dielectric and ferrite loading, may be flush
mounted and therefore is suitable for airbomne and missile applications. Furthermore, if used
in an array, the CBS produces small mutual effects which make it desirable as an element

of large antenna array systems.

In this Chapter the general problem of a cavity-backed aperture radiator is formulated
for the tangential electric field in the aperture. The result is used to obtain an integro-
differential equation for the special case of a narrow slot backed by a rectangular cavity
resonator. This equation is then solved numerically by the method of moments with the
proper choice of piecewise sinusoidal basis and testing functions to remove the differential
operator in the integrand. The method based on the Fourier transform presented in Chapter
2 is not applicable to this problem due to the fact that elements of the moment matrix are

not in the form of convolution integral as will be shown later.

4.1- General formulation

The general problem of cavity-backed aperture is shown in Fig. 4.1 where an aperture
in a perfectly conducting screen located in the x— y plane is backed by a conducting cavity
of arbitrary shape. The two regions separated by the aperture are homogencous and may
have different characteristic parameters. It is assumed that the structure is excited in general
by known volume electric and magnetic current densities 7 and M inside the cavity and
possible electric surface current density .7;1 on the aperture. The cases where the aperture is
cxcited by an incident plane wave or by current sources outside the cavity can be handled

in a similar fashion and are not considered here.
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- 7
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Fig. 4.1- Geometry of the general cavity-backed aperture problem.
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Fig. 4.2- Equivalents of the original problem; a) valid for region (2) i.e. z< 0, b) valid for

region (1) i.e. z> 0.
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It is convenient to use the equivalence principle [39] to substitute the original problem
with two equivalent problems. The procedure is similar to the one given in Chapter 2 for an
open slot and results in the equivalent configurations shown in Fig. 4.2. In region (1) the
fields are produced by the sources T and M plus the equivalent magnetic surface current
density IWS(I)= /1\1 x E® | A over the aperture surface with the aperture covered by an
electric conductor and EW is the electric field in region (1). In region (2) the fields E®
and H® are produced by the equivalent magnetic surface current density
ﬂs(2)= Ry x E®]| A over the aperture surface with the aperture covered by an electric
conductor. Since in the original problem there is no magnetic surface current density in the
aperture, the electric field in regions (1) and (2) are continuous in the aperture and thus
R 1 X [E(l)- 5’(2)] 4= 0. On the other hand the unit vectors normal to the aperture are in
opposite directions in regions (1) and (2). Hence A, X ED | A=~ Ry x E?| 4 and in
terms of the equivalent magnetic currents previously defined we have 173(2)= - Ms(l). The
remaining boundary condition to be satisfied is that of the tangential component of the mag-
netic field across the aperture given by £; x [F@- H®] , = T Thus for R, =-%2and

the aperture in the z= 0 plane we have

lim £ x HY@) - 1im 8 x HP@) = 7%@) 4.1)

z 0" 720"

where 7:’ is a known electric surface current on the aperture. This equation can be written

in the component form:
Hy(z) - Hy(l) =JZ, z->0 (4.2a)
2 1) _
Hx( ) - Hx( ) =~ ]ya , 70 (4.2b)
In the following we will use the above equations to obtain a system of integral equations
for the unknown tangential electric field in the aperture.

The fields in region (2), i.e. the half space z< O can be obtained from the equivalent
problem shown in Fig. 4.2a. This problem has been worked out in detail in Chapter 2 and

the magnetic field is given by
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@ . . .
HO®@) = - —1—2—;—2- [P - 8o | ds 4.3)
A

where the integration is over the aperture area and 5‘0(7“’ | 7) is the dyadic Green'’s func-
tion of free space defined in (2.3). Also M P= £, x E® with A, = # and E? is the elec-
tric field in the aperture.

In deriving the fields in region (2) we were able to use the image theorem and thus
treat M 3(2) and its image as if they were in an open space. Unfortunately no such
simplification can be made for the fields in region (1) where the sources reside in an arbi-
trarily shaped closed region. We solved this problem in Chapter 3 by expanding the fields
in terms of orthogonal eigenvectors. From (3.21) the magnetic field in region (1) with a
volume current density 7 and a magnetic surface current ﬂs(l)= /1\1 x E® on the shorted

aperture is given by
HYP) = [7¢) - Vx E,F | P av- joe, [ Ax E*0) - B, | D ds” @
1 A

where (?,,, (?" | 7) is the magnetic-type dyadic Green’s function of the closed region and
R 1=— 2. Substituting the appropriate components of (4.3) and (4.4) in (4.2), we obtain a
coupled system of integral equations for the transverse components of the electric field in

the aperture EZ and EJ, i.e.

[ Fe -E2F ) ds =f@x,y), 2z=0 @)
A
[EgFy ~EfF)ds =gx,y), 2=0 (4.6)
A
where
92
Fu=CyGg +Cqki+ —5)Gy (4.72)
ox
92

ny =C1 Gx'yn‘i'Cz 'é‘;g;cg (4.7b)



az
Fyx =C1 Gy'; +C2 'aTa}'GO 4.7¢)
m 2 aZ
Fyy = Cl ny + C2 (kZ + EY—Z—)GO {4.7d)
] 47tk12 2 _
In these equations z=z=0,C,; = ,Coy= and Gz, G, etc. are components

rl Hr2

of the magnetic-type dyadic Green'’s function of the cavity. For the general case where both
a volume current J () in the cavity and a surface current f:’ (x,y) on the aperture are

present, the forcing functions in (4.5) and (4.6) are given by

, . . . .r aGn . . . Gr G
Fa,y)=—jamong [0,y 2) (2 - 22y + 0,65y, 2) (== - 22y 4
v dy 0z 0z 0x
. .. Gm aem L
+J,x,y,2)(—— - ) dv + janop JJx,y), z=0  (4.38)
ox dy
. . . 3Gm  aGn . . . Gm  aGr
g, y) = —jamon [[ 'y, 2) (=2 - =2y + 4,y 2) (=2 - 22y 4
v ay oz 0z ox

dGyy 0G5 .
= — =) dv - jdmopy Jix,y), z=0 4.9)
ox ay

+J,(x, Y, 2)(

The results obtained so far are quite general and before proceeding further with the calcula-
tions we need to specify some geometry of practical importance for the aperture as well as
the cavity. To this end we consider a narrow slot backed by a rectangular cavity and solve

the integral equation for the electric field in the slot.

4.2- Narrow slot backed by a rectangular cavity

The geometry of this problem is shown schematically in Fig. 4.3a. The narrow slot in
the x— y plane is of length 2L, width 2w (w<< L, w<< A) and is backed by a conducting
rectangular cavity. Herc we assume the structurc is excited by a surface current density
Za (x, y) over the slot aperture and therefore the cavity can be considered as a load. The

case where the excitation is through the cavity will be investigated in Chapter 5.
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Fig. 4.3- Rectangular cavity-backed slot (CBS) antenna (a) and its equivalent circuit (b).
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The components of the tangential electric field in the aperture (E and E}) are the
unknowns of the problem. However, for the type of excitation to be considered here the
longitudinal component is negligible, i.e. EZ(x, y) = 0 and the coupled integral equations

in (4.5) and (4.6) reduce to a single equation for the only unknown Ey“(x, y), namely
JEf, y) Py lx, y) as = F(x, y) @.10)
A

where F,, is given by (4.7a) and
fx,y) = janouy Jy(x, y) 4.11)
In the following we assume €, = &), ly = Uy, & = €,&y, U = U, Mg, along with a change

of notation [,y = W,, k; =k and k5 = kg . Also to facilitate the computations, as will be

evident shortly, we write the expression for G5 of the rectangular cavity in the form

1
47k

GZ =

aZ
k?* + ax—Z)G" 4.12)

where for z= z = 0 (see Appendix C)

€, ) ,
ZZ K, tan( 2C) sin(k,x) cos(kyy") sin(k,x) cos (kyy) — (4.13)

with
= (k% — k7 =k ) k=25, g=4C (4.14)

and

_<¢1, p=0
& = { 2, ¢ 0 “4.15)
Thus (4.7a) can be written as

az

Fo=—— (2 + 200G, +2 (k3 + ———)GO, 2=0 @.16)
ox? ox?

r

With this equation as the kemel, we proceed to solve the integral cquation in (4.10) by

assuming a scparable solution of the form
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EJx,y)=Xx)Y(y) 4.17)

where X (x) is an unknown function, while ¥ (y) is given by

1/

YO) = ———= (4.18)
Wz—'(y—}’c)z

which is justified by the narrow slot assumption and incorporates the proper field behavior

at the edges [21]. Next we expand X (x) in terms of suitable basis functions X, (x), ie.
N
X(x)=3 V, X,(x) 4.19)
n=1

where V,, are unknown constants to be determined. Substituting (4.19) into (4.10) we have

N » ’ ” , ’ ’
SV, [ X YO Fo,y lay)de dy = £ (x, y) (4.20)
n=1 A

The inner product of this equation with a testing function W,, (x, y) yields a system of N

linear equations that can be solved for the unknowns V,,,

N
Vo (——a,, +2b,)=c,, m=1,2, ---,N @21)

n=1 r

where

r) - 2 ” ” , rd
e =] [ W, (0, )X, &) YO) k2 £3->Gx(x ylxy)didyde dy  422)
AA
- ’ 2 * rl ” r
b = | [ W06, 9) X, 2) Y ) (k2+ f;;)co(x Yl y) didyde dy 423
AA
and

Cm=me(x,y)f(x,y)dx dy (4.24)
A

Since variation of the aperture ficld along the y axis is known, no testing is required

in this direction and thus one may choose a testing function in the form
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W,x,y)=5,x)00 -y,) (4.25)

where § is the Dirac delta function and S, (x) is a function to be chosen properly. From

3°G, %G,
(4.13) it is clear that > = > and therefore (4.22) can be written as
ox ox
x.+ L
. 9?2 . .
e = | X, (k7 + —5)An(x) dx (4.26)
x.— L ox
where
x.+ L Yot W
4,0 = [ S0 | [ Yo) 66y lx,y) " | ax @27)
x.~ L Ye— W

similarly (4.23) is written in the form

X+ L 82
bon = | SuG) k¢ + 2B, (x) dx (4.28)
x.~L ox
where
x.+ L Yo+ w
B,o= | x,6) | [ vo)Gor\y Ix,y)ay | ax (4.29)
x.—L Ye— W

Numerical computation of the integrals in (4.26) and (4.28) is hindered by the pres-
ence of derivatives in the integrands. However, choosing piecewise sinusoidal functions for
X, ) and S,»(x) and integrating by parts twice, it is possible to remove the differential

operators. For this purpose we choose the basis and testing functions as

sinfk(A - x=x, )]

sin(k A) )
0, for |x—x,,l>A

, for |x-x, <A

X, (x)= (4.30)

and
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infko(A - | x—
sinfko(d - | x % 1] for |x—xmlSA

sin(kgA) ’
Sm () = 0, for |x- X, Is A (4.31)
Thus (4.26) becomes
k
Anp = Sin(k A) [ Ap (X)) =2 cos (kD) A, (x,) + A (Xpiy) ] (4.32)

where A,, (x,) are calculated from (4.27) and are given by (4.37). Also Xp_1= X, — A,
Xpe1 =X+ A, X, =x,—L+nA,n=1,2, ---,N and A = 2L/ (N+1). Similarly

(4.28) becomes

ko
brn = S (koA [B" (Xm-1) = 2 cos (kod) B, (%) + By, (Xpn11) ] (4.33)

where B, (x,,) are calculated from (4.29) and are given by (4.41) with x,,_;= X, — A,

Xpol S X+ A, X, =x,—L+mAandm=1,2, ---,N.

Calculation of 4, (x")

Equation (4.27) may be written in the form

x.+L

A, )= | S, 0)PG, %) ax (4.34)
x.— L

where by using (4.13) and (4.18), P (x B x) is defined by

. - €,€,coS (k, ¥, .
P(x,x)=a—:zz €205 %gc) R(q) sin(k,x") sin (k,x) (4.35)
p

~ Kpgtan(Kyqc)

in which

2T cos (qu')

R(q)= e
Ye— W W2‘()’ -yc )2

Substituting (4.31) and (4.35) into (4.34) and performing the integration we obtain

dy = J o(k,w) cos (k, ) (4.36)



-70 -

2
.. —41 €,€,cos°(k,y.) ) .
Aplx) = Jolkaw) T, k 4.37
&)=— %% K, an (K, ) olkgw) T, (p) sin(k,x) (437
where
dkg sin(k,x,,) A A
T,(p)= z ko = k)= ko +k,)— 4.38
) i hsinteoy KT sk k)T 638

Calculation of B,, (x)

Equation (4.29) may be written in the form

x.+ L

B,)= | X,a)0@-x)ax (4.39)
x.—L
where
Yt W
Q= | YO)YGox\y |x.y) ay (4.40)
Ye— W

Substituting X, (x ’) from (4.30) and with a change of variable Xx= X,+ t, we have

+4
R SN _ —A —
Bulim) = s _IA sin(k(A =1 ¢ )] Q[(m=n)A — 1] dr (4.41)

where from (4.40), (4.18) and (2.4)

M2 —jkol & + (wsing)? ]2 —jko[ B2 + (w/2)? |12
2 e e

3 0 = 442
°O=7 o [ &2+ (wsin6)? 112 [E2 + (w/2)2 12 (4.42)

In the computations, the integral in (4.41) is evaluated numerically by using a 20 points

Gaussian quadrature.,

4.3- Excitation of the slot

The system of N linear equations in (4.21) may be written in the matrix form

[V 1LVa1=0cp ] | 4.43)
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Up to this point we have obtained expressions from which the matrix elements y,,, can be
evaluated. However, to solve for the unknowns V, and thus the field distribution in the
slot, we need the source vector elements ¢,, as well. From (4.24) and (4.25) these elements
are given by

X.+ L

Cm = f Sn(x) fx,y.)dx (4.44)
x.— L

In thé following we calculate ¢,, for the case where the excitation source can be modeled
by a uniform current distribution of amplitude / given by JJ(x) = Iy 8(x— x;) on the slot
aperture. Practical examples of such a model include feeding the slot by a two-wire
transmission line or a coaxial cable. It is assumed that the feed extends across the slot and
thus the current distribution can be considered uniform along that portion of the line which
lies in the slot. The position of the feed-point along the slot X, is arbitrary and provides a
convenient means for matching the antenna to the source as will be shown later. For the

above current distribution and with f (x, y.) = j4nmp, Jy"(x). we have from (4.44)

JArouel o
sin (kod)

€m = 0, for |x,-x,|>A

sin koA = | x;—x,, )], for | x,—x, <A
(4.45)

In exciting the slot by a strip-line, one may include the finite width 2d of the line by taking

a step function model for the current distribution, namely

Iy
7 for Ix-xs l<d
Jyk) = 0, for |lx-x1>d (4.46)

which for d —0 reduces to the d function model. However, a wide strip-line would perturb
the radiated ficld and for actual excitations the width should be kept to a minimum. The
above model may also be used for the case of feeding by a probe to take into account its

finite radius r by substituting d=2 ry .
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4.4- Voltage distribution and input impedance

The voltage distribution along the slot is given by

Yot w

Ve == | Efx,y) dy 4.47)

Ye— W

From (4.17)-(4.19) it is easy to show that
N
Vix)= Y V, X, (x) (4.48)
n=1
where X, (x) are given by (4.30) and for which a typical set is shown in Fig. 2.5c. The
value of £ in (4.30) does not affect the behavior of X, (x) and only changes its slope. It is
important to note that the voltage distribution in (4.48) has riples in the intervals (x;, X;,;),
i=1,2,--+,N-1 and does not represent the correct value of the voltage at the points in
these intervals. However, at the points Xj,J=1,2, - -+, N which correspond to the max-
ima of X;(x), only one of the two overlapping basis functions contributes to the value of
the voltage. Thus the complex values of V,, obtained from (4.43) give the actual amplitude
and phase of the voltage at points X;. This data can then be used to find the voltage at other

points along the slot by interpolation.

In calculating the voltage distribution along the slot we assumed the excitation was
through a uniform current distribution of a total current / set up by the generator. To study
the circuit parameters, one may replace the antenna structure by an equivalent impedance
given by Z =V (x,) / Iy where V(x) is the voltage across the feed point (see Fig. 4.3b).
Thus for Iy = 1 Amp, the value of V (x,) in volts directly determines the input impedance

of the antenna in Ohms.

4.5- Bandwidth

For a CBS antcnna the bandwidth is rather limited in general due to the resonant
behavior of its structure. However, for the case of rectangular CBS a number of parameters

such as cavity width and depth, slot width and material in the cavity have considerable
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effect on the bandwidth as will be shown in Sec. 4.7 and therefore it is possible to maxim-

ize the bandwidth while maintaining an acceptable radiation resistance and efficiency.

To achieve a wide bandwidth, in addition to the proper choice of physical dimensions,
there are special feed configurations that have proven useful. One such method is exciting
the cavity by a T-bar feed. In an experimental parametric study by Newman and Thiele
[54], T-bars of cylindrical and thin rectangular cross section were used as the feed leading
to noticeable improvement in the bandwidth of the antenna. In another experimental study
Crews and Thiele [5S5] optimized the shape, size and position of a flat T-bar and achieved a
VSWR less than 2:1 over the frequency range 500-2000 MHz, although at some frequen-
cies they had to use tuning stubs to maintain the gain. Figures 4.4 and 4.5 show the T-bar
feed of cylindrical cross-section and optimized shape of the flat T-bar feed, respectively.
For the case where the CBS is excited by a microstrip line, attachment of a monopole to the
strip-line at the point where it crosses the slot is another method that has been used to
obtain a broad-band operation [56]. The concept in developing this configuration, which is
shown in Fig. 4.6, has been to combine on the same feed line two radiating structures with
impedances which have dual properties when normalized to the feed-line impedance. While
the above techniques are applicable to single antenna elements, it is always possible to
obtain a wider bandwidth by using the narrow-band elements in a log-periodic array.
Roederer [57] has tested such an array and reported VSWR below 2.5:1 over the 2.8-5.9

GHz frequency range.

4.6- Resonant modes

In the preceding calculations we implicitly assumed that frequency of the excitation
source is different from the natural resonance frequencies of the cavity and thus & #k,,, with

k. for the rectangular cavity given by

17
k, = [ (pria) + (qmb)* + (In/c)? } (4.49)

From (4.13) it is clear that when &= k,, the dyadic Green’s function and thercfore the ficld
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Fig. 44- CBS antenna fed by a T-bar of cylindrical cross-section.

Fig. 4.5- The optimized shape of the flat T-bar feed.
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amplitude tend to infinity. However, in the physical reality the field amplitude is limited due
to the losses in the structure and thus for such a case one cannot ignore the finite conduc-

tivity of the cavity walls, whatever small it might be.

It is well-known that for a rectangular cavity the eigenvalues of the TE and TM
modes are equal and hence the resonance of these modes occurs concurrently at the same
frequency. To calculate the contribution of these resonant modes to the total field, we
assumed in Sec. 3.3 that the resonant modes are dominant and derived the corresponding
magnetic-type dyadic Green’s function at resonance 5,:, which is given by (3.69). Of
course the contribution from the non-resonant modes can be calculated in the usual way
after removing the resonant term from (4.13). The magnetic field in the cavity region due to
the resonant modes can be obtained in general from (4.4) by replacing 8,,, with the
appropriate dyadic Green’s function at resonance. In the following calculations we will need

only the xx component of this function which from (3.69) and for z=z = 0 is given by

GZ =C, sin(k,x) cos(kyy") sin(k,x) cos (k,y) (4.50)
where
c - I kg kF+21 kokykoky + 15 k2 k) wsd
a wek2 Z (I2=1,1,) '
and

k:pn k=ﬂ, klz_llt., p,qg, =12, -+
b C

In (4.51) Z; is the surface impedance of the cavity wall given by

z, ="\ %‘i 1+ ) (4.52)

and the quantitics [, /; and /, are defined by (3.62) to (3.64). For the rectangular CBS

problem considered in this Chapter we have
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ky kg ki
I= (b—a)c + 4BL~ Aw) } (4.53)
2 ky
1
=55 [kp%, ki ab + (gt k7 k) be + (b+ k2 k) ac -
v
- 2k} kP L—A)w+B) -2 k2 k? (L+ A)(w— B) ] (4.54)
1 1 1
Iy = Skigab + —k'bc + Skiac = kHL+A)w= B) — kXL~ A)w+B) (455
where
2 12 2
kg = kp + kg (4.56)
A= 571;,' sin(2k, L) cos(2k, x,) @.57)
= i sin(2k, w) cos(2k,,) @.58)

Now we can calculate the contribution from the resonant modes to the electric field in the

slot by solving the integral equation (4.10) with the kemnel given by

32

2
ATE” Gm 4o (k2+ )Gy (4.59)
ox

r

Fxx(x”y’lxv)’)z'

Doing so, the result for b,,, in (4.33) still holds and, with no volume current source inside
the cavity, i.e. 7=0in (4.8), the source vector elements c,, do not change either. However

for the resonant modes we have
G = 4Tk2C, T, (ko) T, (k) J ok, w) cos?(k,y,) (4.60)

where T, (k) is the same as T,, (p ) in (4.38) and T, (k) is defined similarly.

4.7- Numerical results

Before presenting the numerical results, it is worthwhile to mention a number of com-
putational notes. The admittance matrix [ y,,, ] in (4.43) is composcd of two parts, namely

[ a,, 1 due to the cavity rcgion and [ b,, ] duc to the half space, as indicated in (4.21).
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The elements a,, =a(m,n) have the properties a(m,n)=a(m-1, n—-1) for
m,n=2,3, -++,N and also a(m,n)=a(n,m). Thus, for [a,, ] we need to
evaluate only N elements of one row or column and the other entries of the matrix are just
repetitions of these values. On the other hand the matrix [ b, ] can be written as the sum
of two matrices with elements b,,, and b,,,, where b, have properties similar to Qpnn
while for b,,;, we have b (m,n)= b“(m—l, n+l), m=2,3, --- N and
n=1,2, ---,N-1. Hence to find N? entries of [ b, 1 we only need to evaluate N
elements of [ b,,;,l ] and 2N -1 elements of [ b,,; 1. The above considerations reduce the
computation time for evaluating the matrix elements by a factor of N%/(3N—1). To ensure
the convergence of the moment solution in the numerical computations, the slot is divided
into 50 equal segments, although in many cases fewer segments were sufficient for this pur-
pose. Also we have used 100 terms in each of the series in (4.37) while in most cases as

low as 50 terms proved to give two digits of accuracy.

In a slot radiator, the voltage distribution along the slot is the most important quantity
that is essential in determining both the radiation properties and circuit parameters of the
antenna. The moment method used is able to provide an accurate solution to the integral
equation for the voltage distribution. Obviously any of the numerous parameters of the CBS
problem such as the cavity dimensions (@, b, and c), slot dimensions (2L and 2w), posi-
tions of the slot center (x. and y.) and the feed point (x; or 5), material in the cavity (i,
and €,), etc. may affect the voltage distribution and therefore change the radiation pattern
and more significantly Lt;e circuit quantities such as input impedance, resonance frequency
and bandwidth of the antenna. However, we have to be selective in presenting the results
and only those that seem to be more useful from the practical design point of view are
given here. A typical rectangular CBS radiator excited by a delta current source with
a/kh=0.7, b/A =02, ¢c/A =03, 2L/A = 0.5, w/L=0.04, x.=al2, y.=b/2, s=L
and operating at f=3 GHz is used in most cases, while alterations to these values are

mentioned explicitly.
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Fig. 4.7 shows the amplitude and phase of the voltage distribution along a slot of
length 2L/A =0.6 for feed point locations s/L=0.2 (1.0) 0.2. The corresponding
impedance values for each case are also given in Table 4.1. These results which should be
compared with Fig. 2.8 and Table 2.1 for an open slot in Chapter 2, clearly show the
important role of the parameter s on the slot voltage and input impedance. Fig. 4.8 com-
pares the voitage distribution along slots of lengths 2L/A = 0.5, 0.6 and 0.7 and shows
that the field is maximum for 2L = A/2, as expected. In these figures the dashed lines

represent the phase variation along the slot.

Table 4.1
s/L R(Q) X(Q)
0.2 26.5 773
0.4 77.0 15.8
0.6 134.0 - 82.4
0.8 179.0 - 168.0
1.0 195.0 - 202.0

The methods available in the literature for analysis of the rectangular CBS antenna,
namely the variational method [25] and the method using the complex Poynting theorem
[27], are basically applied in calculating the input admittance. However, the assumption of
sinusoidal voltage distribution in these methods is not accurate, especially at the excitation
point where voltage detcrmines the input admittance. Furthermore, a2 number of important
parameters such as positions of the slot center and feed point do not appear in those formu-
lations. With these points in mind, Fig. 4.9 compares the resistance R and reactance X
versus frequency, obtained from various methods as well as experimental data [28] for a
CBS with a=35cm, b=10cm, ¢=17.86 cm, 2L=25 cm, w/L=0.04, x.= a/2,-

¥.=b/2 and s= L. This figure indicates that the results obtained from the moment method
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Fig. 4.7- Amplitude and phase (dashed lines) of voltage distribution along the slot of a

CBS antenna with 2L /A = 0.6 and feed-point locations s/L = 0.2 (1.0) 0.2.



.81 -

1000 240

- 210

ta
o

Amplitude (mV)
o
O

Phase (Degrees)

120

Fig. 4.8- Amplitude and phase (dashed lines) of voltage distribution along the slot of a
CBS antenna with slot lengths 2L /A = 0.5, 0.6 and 0.7.
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Fig. 4.9- Comparison of the resistance R and reactance X (dashed lines) versus frequency
obtained from Moments Method (MM), Poynting Theorem Method (PTM), Varia-

tional Method (VM) and cxperimental measurements (EXP) for a CBS antenna.
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are closer to experiment while the other two methods suffer a considerable shift in the reso-
nance frequency defined by X(f,) = 0. The discrepancy between our results and the
experimental data is mainly due to the fact that in the experiments, the slot was cut in a
finite conducting plane with a noticeable thickness of 1/4 and with finite conductivity,
while in our formulation the slot is located in an infinite perfectly conducting ground plane

of vanishing thickness.

Fig. 4.10 shows the resistance and reactance versus cavity depth for a CBS with
a/h=0.7,b/A =02, w/L=0.04, x.= a/2, y,= b/2, s= L and slot lengths 2L /A = 0.5,
0.6, 0.7. In this and the rest of the figures, a dashed line is used to denote the reactance.
The effect of cavity width on the impedance is shown in Fig. 4.11 which indicates that a
larger b corresponds to a smaller resonant depth ¢, defined as the cavity depth at which
resonance occurs. Fig. 4.12 gives the impedance as a function of frequency for various
cavity depths and shows that one should expect a wider bandwidth for a shallower cavity.
In Fig. 4.13 we present the effect of the feed-point location on the values of resistance and
reactance. This data is very useful for the purpose of matching the antenna to a generator
and in this respect it corresponds to Fig. 2.10 for the case of an open slot. However, in
comparing the results of this Chapter with those of Chapter 2, one should remember that in
a CBS the number of physical dimensions that affect the circuit and radiation parameters of
the antenna are far more than those of an open slot. Therefore any comparison between
these two radiators (with similar excitation and slot size) has only a qualitative value to

show the effect of the cavity backing on the open slot.

The slot position has some effects on the impedance which become more marked as
the slot length increases. This is shown in Fig. 4.14 for a slot length 2L = 0.7A and vari-
ous vertical positions y.= w, b/4 and b/2. Fig. 4.15 shows the voltage standing wave
ratio as a function of frequency for different cavity depths. Such data may be used to obtain

the bandwidth, defined as the range of frequencies over which the VSWR remains below

- 21
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Tables 4.2 to 4.4 present typical numerical results for the resonance frequency f ,o
bandwidth Af as defined above, radiation resistance R, and radiation quality factor
Q,=f,/ Af . From Table 4.2 and Figs. 4.16 and 4.17 it is seen that for a fixed cavity
width b, a smaller cavity depth results in higher resonance frequency and bandwidth but a
lower R, and Q,. On the other hand for a fixed cavity depth it is possible to obtain higher
fr and Af by decreasing b provided that the cavity depth is less than a certain value as
shown in the figures. Table 4.3 contains data from an investigation of the effect of the slot
width on the circuit parameters of the antenna. From this table and Fig. 4.19 it is observed
that in general a wider slot results in a higher bandwidth especially for smaller cavity
depths. However, the trade off is a lower radiation efficiency as evident from the values of
R, and Q,. The slot width can have appreciable effect on the resonance frequency for very
shallow cavities as shown in Fig. 4.18. From Table 4.4, the location of the feed-point
appears to have little effect on the resonance frequency and bandwidth but can drastically
change the radiation resistance. It is also seen that a change in the slot length may have
noticeable effect on f, but has a small effect on Af; facts which held true for the

corresponding case of an open slot as were shown in Figs. 2.13 and 2.15, respectively.

Finally for the case where the cavity is loaded by a dielectric material, the resistance
and reactance versus frequency are shown in Fig. 4.20 for various dielectric constants
€,= 2, 3, 4 and compared with the unloaded case. The resonance frequency, bandwidth and
radiation resistance for each case are also given in Table 4.5. It is seen that dielectric load-
ing in general has the effect of increasing the electrical dimensions of the unloaded antenna
resulting in a lower resonance frequency. On the other hand the radiation resistance (and
thus efficiency) is considerably enhanced by dielectric loading. These properties can be used
to advantage to reduce the physical size of the antenna at lower frequency ranges or in
applications where a high efficiency is required. However, these are achieved only at the

expense of an immense drop in bandwidth.
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Table 4.2
c(em) | f,(MHz) | Af(MHz) | R.(Q) 0,
1 3822 490 557 7.8
< 2 3267 320 739 102
Q
<l\|! 3 3042 248 837 12.3
)
4 2900 195 911 14.9
5 2794 152 974 18.4
1 3465 383 665 9.0
< 2 3110 292 808 10.6
Q
“ 3 2963 246 880 12.0
=)
4 2867 208 933 13.8
5 2791 174 978 16.0
1 3267 322 739 10.1
< 2 3020 270 853 112
<
N 3 2914 237 909 12.3
-0
4 2843 210 950 13.5
5 2785 181 985 15.4

a=Tcm,2L=5cm,w/L=0.04,s=L and b=2, 3,4 cm
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Fig. 4.16- Resonant depth ¢, for a CBS antenna with cavity widths b= 2, 3 and 4 cm.
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Table 4.3

c(cm) f,(MHz) Af (MHz) R, (Q) o,

1 3647 350 629 104

8 2 3213 252 786 12.7
S

I 3 3032 204 868 149
=

2 4 2914 166 931 17.5

5 2821 132 984 214

1 3822 490 557 7.8

3 2 3267 320 739 10.2
S

[ 3 3042 248 837 12.3
~

2 4 2900 195 911 14.9

5 2794 152 974 18.4

1 4019 661 475 6.1

2 2 3324 390 692 8.5
=

g 3 3055 285 806 10.7

R 4 2894 218 889 13.3

5 2778 167 956 16.6

a=7cm,b=2cm,2L=5cm,s=L and w/L=0.02, 0.04, 0.06
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Table 4.4
sIL | f,MHz) | AFMHD) | RQ | O
0.4 3177 312 276 102
£
S| os 3128 299 546 10.5
1}
3 | o8 3114 294 738 10.6
1.0 3110 292 808 106
0.4 2835 289 211 038
S5 | o6 2755 288 490 9.6
O
L1 o8 2739 282 670 9.7
(o]
1.0 2734 281 738 9.7
0.4 2623 301 146 8.7
< |
S| o6 2552 293 425 8.7
é’l 0.8 2529 283 607 8.9
1.0 2524 281 673 9.0

a=Tcem,b=3cm,c=2cm, w/L=0.04, and 2L= 15, 6, 7 cm
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Table 4.5

e, | f,(MHz) | Af(MHz) | R.(Q) | O,

1 3042 248 837 12.3
2 2436 98 1264 249
3 2088 50 1692 41.8
4 1855 30 2120 61.8

a=7cm,b=2cm,c=3cm,2L=5cm,w/L=0.04,s=L
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CHAPTER 5

PROBE EXCITATION OF RECTANGULAR CAVITY-BACKED SLOTS

In formulating the cavity-backed aperture problem in Chapter 4 we presented a general
expression for the forcing function which included both a surface current distribution on the
aperture and a volume current distribution in the cavity. This expression was then special-
ized to the case of a rectangular cavity-backed slot radiator fed by a current source on the
slot aperture. In this Chapter we investigate the case of excitation by a coaxial-line probe
inside the cavity. The voltage distribution along the narrow slot is obtained and used in cal-
culating the input impedance of the antenna. The procedure for calculating the impedance is
based on the Poynting theorem and requires that the effect of diffraction from the slot aper-

ture be taken into account.

5.1- Voltage distribution in the slot aperture

The geometry of the rectangular cavity-backed slot fed by a coaxial-line probe is
shown in Fig. 5.1a. The coaxial-line of outer radius 7 is terminated at the x ~ z plane. The
inner conductor (probe) of radius 7o <« A with its center at the point (x , z) is parallel to
the y axis and extends a distance d into the cavity. The integral equation for the voltage
distribution along the slot in this problem is similar to the one derived in Sec. 4.2 except
for the forcing function which is different. Thus in solving this equation by the method of
moments, the matrix elements remain unchanged and only the source vector elements
should be calculated accordingly.

The current distribution on a thin probe may be assumed to flow in the axial direction,

namely T @ = Jy () §. Thus the forcing function in (4.8) reduces to

. . . dGZ JGZ Lo
f(x,y)=—j47twuony(x,y,z)( — - ——)dxdydz, =0 (5.1)
14

0z ox
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Fig. 5.1- Geometry of the probe-fed cavity-backed slot antenna (a) and the probe position

in polar coordinates (b).
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where with the assumption of a filamentary sinusoidal current distribution, Jy is given by

Iy )
Sln(kd) sin [k(d— }’)] S(X"'XO) 5(2— Zo) , 0 Sys d

jy @, y,2) = 0, otherwise (5-2)

The quantities Gz and G,; are components of the magnetic-type dyadic Green’s function

8,,, (z< z) and are given for a rectangular cavity by the expressions (see Appendix C)

Gh =13 Cpq (kpz— k?) sink, x ‘coskq y ‘sinkp xcosk,ycosK,, (c— z YeosK, pqZ (5.3a)
p.q

Gr=—-2C 2q kp K, cosk,x 'coskq y 'sinkpx coskq ysink, pg(C—2 YcoskK pqZ (5.3b)
P.q

with

C

pg = &

. ) -12
p€q | abk K, sin(Kpc) 5.4

Substituting (5.2) and (5.3) into (5.1) yields,

3 jlomkopyly = = eqsin(kpxo) sin[qu(c— zg)]

ab sin(kd) p§1 EO (k} - k?) sin(K,, ¢)

fox,y)

sin[(kq -k )g-] sin[(kq +k )ﬁzi—] sin(kpx) cos(kq y) (5.5)

On the other hand, from (4.44) the source vector elements are given by

x.+ L

Cp = / Sp(x) fx,y.)dx (5.6)
x.—L

where (x,, y.) is the coordinate of the slot center and S, (x) are the piecewise sinusoidal
testing functions defined by (4.31). Thus
cmn =Co 2 G() sink,x,) (5.7a)
p=1

where
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16471:0)}.10[0]( ko

Co= b sinod)sintd) (5.70)
GP)=AQ@) q;io g, B(q) o Sip&f;; )Z o] (5.7¢)
AQp)= %ﬁ%‘% sinl(k,~ ko) 5] sinllk, + ko) 5] (5.70)
B(g) = -c(%}(% sinl(ky~ k)] sin (kg + )51 (5.7¢)
K,y = [k* =k} - k12 (5.76)

Upon calculating the source vector elements in (5.7), the voltage distribution along the slot

can be obtained from (4.48) and (4.43).

5.2- Electric field in the cavity

The electric field produced by electric and magnetic current sources in a bounded
region of arbitrary shape was derived in Chapter 3 and given by (3.19). From this equation

and for M= 0, we have
Ex,y,2)=—jon [ 7@ - E,F 1P av'- [ A xE*@) -V x 8.7 | P as” 5.8
14 A

where J (7) is the excitation source in the form of a volume electric current density and ﬁe
is the electric-type dyadic Green’s function of an enclosure with perfectly conducting walls
given by (3.42). The volume integral in (5.8) is due to the field in the cavity with no aper-
tures, while the surface integral can be considered as the contribution of the field diffracted
by the apertures in the cavity wall.

For the specified orientation of the feeding probe, the longitudinal component of the
electric field in the slot EJ(x, y) is negligible in comparison with the transverse component
Eya(x, ¥ ). On the other hand, in calculating the input impedance we only need the y com-

ponent of the electric field in the cavity as will be shown in the next section. Thus from
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(5.8) we have,

E,x,y,2)=—jon [ J,(P) GLF | P av’
14

. . 3G 3G o
-ny“(x,y)( - = —), =g dx dy (5.9)
A ay 0z

where G, and G, are components of 88 (z> z") given by (see Appendix C)

Gyey ==y Cpq (qu—- k?) sink, x 'coskq y 'sinkpx coskq ysinK vq? “sink’ pg(€—2) (5.10a)
p.q

Gy =-3 Cp k,K,q sink,x 'sinkq y ‘sinkpxcoskq ycosK,,, z 'sinqu (c-2) (5.10b)
P.q

Substituting (5.2) and (5.10) into (5.9), we obtain the y component of the electric field in

the cavity as the sum of two terms, namely
E,(P) = Eg(P) + EJ(P) (5.11)

where Eyc is the field in the closed cavity with no apertures and Eyd is the field diffracted by

the slot aperture. The expressions for these fields are given by

J4oul, = = §g;sin(k,xg)

ESx,y,2) = ———— :
Y& Y2 = ) p‘::l E‘O K,qsin(K,qc)

in [k, - )27 sin[(k, + £)2] sink k) h

sin[( = )—2—] sin[( 7t )—2-] sin( Px) cos ( qy) pq(z, Zg) (5.12)
where

_ Jsin[Kpyg(c—zg)l sin Kpg2), 2z <zg
hpq(z, 29) = sin (K,qz0) sin[Kpo(c—-2)1, z >z

(5.13)
and
2 = = & I1p)
Ed s Vo = - BN J k
y&, Y 2) ab p§1 q§0 sin (Kpqc) olkgw)
cos(quc) sin(kpx) cos (qu) sin [qu (c— 2z)] (5.14)

where



- 105 -

x.+L

I@)= [ X&) sintk,x) dx’ (5.15)
x.~ L

In deriving (5.14) we have used the usual expression for the electric field in the slot aper-
ture given by (4.17) and (4.18) with

N
X(X) = Z Vl XI(X) (516)
=1

where the expansion coefficients V; should be obtained from Sec. 5.1 by using the piece-
wise sinusoidal functions for X;(x). Note that due to the piecewise nature of these func-
tions, the values of X (x) in (5.16) are correct only at the points xj,j=1,2, +--,N and
one should resort to interpolation to obtain values of the function at other points before
attempting the numerical evaluation of the integral in (5.15). However, an altemative and
simple approximation is to assume that the function is constant in each interval as it would

be for the case of a rectangular pulse expansion, i.e.

1, for lx—xl | < %
X,(x) = A (5.17)
0, for lx—xl | > EY

Thus, the integral in (5.15) reduces to

@)= E sin( ”_5) 2:1 1 sin(k, x;) (5.18)
where x;=x,— L+ [A,[=1,2, ---,N and A = 2L/ (N+1).

5.3- Calculation of the input impedance

For the case where the slot is fed by a curment source on the aperture, the input
impedance can be obtained directly from a knowledge of the voltage distribution along the
slot aperture as was discussed in Chapter 4. However, when the structure is excited by a
probe inside the cavity, though still rcquiring the voltage distribution in the slot, the calcula-

tion of the input impedance is much more involved. For a small coaxial-linc opening, one
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may to a first approximation assume that the higher-order coaxial-line modes are negligible.
The fields in the opening will then be those associated with the incident and reflected TEM
modes in the coaxial line. If both the total voltage V and the total probe current at the
aperture plane [, were known, there would be no difficulty in determining the input

impedance and the fields in the feed opening are given by

14 —10 A
io— ry p, ﬁ()“ 2nr 0

However, assuming [ is given, the total voltage wave V is in general unknown. It is possi-
ble to use the equivalence principle and consider the effect of the coaxial-line by means of
an equivalent electric current density on the feed opening. This current which is related to
the electric field in the cavity through an integral relation can then be taken as the primary
source of the fields. The induced electric current on the conducting probe as well as the
voltage distribution along the narrow slot are the unknown quantities for which one can
obtain two coupled integral equations by satisfying the appropriate boundary conditions,
namely zero tangential electric field on the probe and continuity of the tangential magnetic
field in the slot aperture. To simplify the calculations, we assume a known sinusoidal
current distribution on the probe. Note that the assumption of an infinitesimally thin probe
which was used to calculate the aperture field in Sec. 5.1 results in an infinite value for the
input reactance and therefore one should take into account the finite thickness of the probe

in the impedance calculation.

We use the Poynting theorem to calculate the input impedance. The opening of the
coaxial-line probe provides the power flow into the cavity region such that integration of the

complex Poynting vector over the opening area yields

P==2Z, I} (5.19)

1
2

which is equal to



- 107 -
P=P, +2joo(W,-W,)

In this equation P is the radiated power from the slot aperture (assuming no metal and
dielectric losses) and the imaginary part is the time-average net reactive energy in the cav-

ity. On the other hand, with the assumption of small coaxial-line opening, we have
P=__;‘_j§(?).j?(;>)ds (5.20)
S

where E (P) is the electric field in the cavity produced by the filamentary current distribu-
tion in (5.2) and 72’ = J§’(y) # is the assumed current distribution on the probe surface S

with its component

Ty sin[k(d- y)]

JP = 5.21
yO) 2nrg sin(kd) (5:21)
From (5.19) to (5.21), the input impedance of the antenna may be written as
— -1 J. P
Zy, = 173 E,(P) J{(y) ds (5.22)
0 S

where E}, (7) is given by (5.11) and the integral is over the probe surface.

The expression for E, () in (5.11) shows that the input impedance is composed of
two parts. The part corresponding to the stored energy in the closed cavity Zf, is reactive in
the absence of ohmic losses, while the part corresponding to the radiation from the slot

aperture, i.e. Z3,, has a resistive component due to the radiation loss.

To perform the integration in (5.22), we use polar coordinates for the probe shown in

Fig. 5.1b where x=xg + rg cos ¢ and z= zg + ry sin ¢. The results are
= ggsin(k,xp)

Z&=C, S :
" : p§1 q§0 KPq Sm(KP‘?C)

B@)R(@,q) (5.24)

where



- 108 -

~ Jj4wu

C, = ——J20 5.25
' rabsin’(kd) 2
= 1 d . d
5@ = Gy = 3] sl + 7] (526)
2n
R(®,q)= [ sint,x) hy(z, 20) do (5.27)
0

= 7 sin(k, x o) [sin Kpqzo) sin[K,,(c— 29— ro)l
+ sin[Kpy (c— zg)] sin[Kpq(zg — ro)]]
and

z=c, 5 ¥ 2 )T, 0 (528)
m =R L A s ) 5. '

where I (p) and B (q) are defined by (5.18) and (5.7¢), respectively, and

-
" mabl gsin(kd) 529

2
T, q)= | sintk,x) sin[K,, (c-2)] do (5.30)

0

= 27 sin(k, x¢) sin[Kpq(c— 29 — ro)]

Note that in (5.27) and (5.30) with the assumption of ro K X, ro X zg and ro K ¢ 2z,

the integrands are essentially independent of ¢ and we have chosen ¢ = % (377‘: for

T £ ¢ < 2w in (5.27)) to obtain the approximate expressions. It is important to retain the
finite value of r( in these expressions to guarantee the exponential convergence of the
scries in (5.24) and (5.28). This can be verified by noting that as the parameters p and g
increase, the quantity K, = k? - kp2 - qu)m becomes imaginary and the resulting hyper-

bolic functions have exponential asymptotic behavior.
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5.4- Numerical results

We have performed computations for a typical probe-fed CBS radiator which, unless
otherwise stated, operates at f =3 GHz with cavity dimensions a/A = 0.7, b/A = 0.3,
and c¢/A = 0.3; slot dimensions 2L /A = 0.5 and w/L= 0.04 with slot center at x,= a/2
and y.= b/2; probe location at xo = a/2 and zy = ¢/2 with its length d/A = 0.25, radius
ro /A = 0.01 and input current [ = 1 mA. Also in the figures, we have used dashed lines

to denote either of the phase function or reactance.

The amplitude and phase of the voltage distribution along the slot is shown in Fig. 5.2
for slot lengths 2L /A = 0.5, 0.6 and 0.7. Fig. 5.3 shows the effect of probe location on the
voltage amplitude at the slot center | V. | . The data shown in Fig. 5.4 for the input
impedance of the antenna indicates that as the probe is moved closer to the wall containing
the slot, the value of R increases as expected. The effect of the probe length on l V. | is
shown in Fig. 5.5 for various cavity depths ¢/A = 0.2, 0.3 and 0.4. From this figure it is
seen that a longer probe induces a larger voltage in the slot. Similar behavior can be
observed from Fig. 5.6 for the input impedance of an antenna with ¢/A = 0.3. The reac-
tance X, of the closed cavity (without slot) is also shown in this figure for comparison. In a
closed cavity, the reactance is capacitive for small probe lengths and, as the length is
increased, resonance occurs at a certain point, i.e. X.= 0. Further increase in probe length
results in inductive reactance as can be seen from the figure. This property suggests a con-
venient means for adjusting the input impedance by varying the probe length. The cavity

depth may also affect the input impedance for which a typical example is shown in Fig. 5.7.

To investigate the input impedance as a function of frequency, we have used an
antenna with a=7 cm, b=c=3 cm, 2L=5 cm, w/L = (.04 fed by a probe of length
d=12.5cm and radius rog=1mm located at xg =a/2, zg=1cm. The impedance
characteristic of the antenna as well as the reactance of the closed cavity versus frequency
arc shown in Fig. 5.8. In general, the resonance frequencies of the open slot and the closed
cavity are different and the value of X, which is mainly determined by the probe length,

can significantly affect the resonance behavior of the antenna as a whole. Figs. 5.9 and 5.10
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show the resistance and reactance of the antenna versus frequency for various cavity depths
and slot lengths, respectively. It is observed that a deeper cavity results in a higher radiation
resistance and narrower bandwidth as well as lower resonance frequency. On the other
hand, the slot length has major role in determining the resonance frequency of the antenna
and an increase in length beyond A/2 results in a decrease in the radiation resistance as
expected. The numerical results presented in this Chapter could not be compared due to the

lack of experimental data or other theoretical methods in the literature.
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Fig. 5.2- Amplitude and phase (dashed lines) of voltage distribution along the slot of a

probe-fed CBS antenna with slot lengths 2L /A = 0.5, 0.6 and 0.7.
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Fig. 5.3- Amplitude of voltage at the slot center versus normalized probe location zq /c for

slot lengths 2L /A = 0.5, 0.6 and 0.7.
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Fig. 5.5- Amplitude of voltage at the slot center versus probe length d/A for cavity depths
c¢/A=0.2,0.3 and 0.4.
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probe-fed CBS antenna with cavity depths ¢= 2, 3 and 4 cm.
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CHAPTER 6

GAUSSIAN CAVITY-BACKED SLOT RADIATORS

To extend the scope of the slot radiator applications to specialized fields such as
monopulse radar and tracking, it is essential to minimize or if possible suppress the side-
lobes in the radiation pattern of the antenna. This can be achieved in principle if the voltage
distribution along the slot aperture is in the form of a Gaussian function which in tum can
be realized by introducing a cavity of suitable shape to back the slot. The so-called Gaus-
sian cavity should support electromagnetic fields that decay exponentially in a certain direc-
tion and is constructed from a Gaussian beam-waveguide by placing reflecting surfaces at
two suitable constant-phase planes. The dyadic Green’s functions of such a cavity are not
known beforehand and therefore to obtain the fields inside the cavity, one cannot directly

use the field expressions derived in Chapter 3.

In this Chapter we first present a general solution for the fields between two parallel
conducting plates in terms of a continuous spectrum of elementary plane waves. The wave
beam condition is then used to obtain an approximate solution for the waves which are
confined to a small solid angle about the principal axis of the antenna. The equation for the
surface of the cavity back-wall is obtained and solved numerically. The restrictions imposed
on the cavity dimensions by the wave beam assumption are also discussed. The fields in the
cavity are expanded in terms of Gauss-Hermite functions whose orthogonality property is
used to obtain the expansion coefficients. The slot cut in the front wall of the cavity is ex-
cited by a current source on the aperture and an integral equation is derived for the tangen-
tial electric field in the slot. The moments method with entire-domain basis and testing
functons is used in the numerical solution of the integral equation for the voltage distribu-

tion along the slot aperture.
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6.1- Electromagnetic fields between two conducting parallel plates

In this section we present the appropriate solution of Maxwell’s equations for the
fields between two conducting parallel plates located at y=* b. In a source free region of
space the electromagnetic fields can be expressed in terms of two scalar potentials # and v

as follows [51]

E’:VxVx(u?)—jka(v?) 6.1)
ﬁ=‘/_e_/ﬂ[jka(uE’)+VxVx(vz")} (6.2)

where © is an arbitrary constant vector and the potential functions satisfy the scalar

Helmholtz equation,
Viy +k2y =0 (6.3)

An elementary solution of (6.3) in rectangular coordinates which is suitable for our problem

is given by
Vi (065 7, 2) = F (k) hikyy) e & +5D (64)

where f (k,) is an arbitrary analytic function, (k,y) is a harmonic function and &, &,

and k, are separation parameters which satisfy the relation
kx2 + ky2 + k22 = k2 6.5)

From this equation it is clear that only two of these parameters, say k, and ky, can be
specified independently. For the geometry in question which extends to infinity in the x
direction, the corresponding parameter £, forms a continuous spectrum of eigenvalues while
in the y direction the structure is finite and therefore the eigenvalues ky are discrete quanti-
ties to be determined from the appropriate boundary conditions. Thus the general solution of
(6.3) which is obtained by superimposing the elementary solutions over the independent

eigenvalues, can be written in the form

Y.y, 2) = 3 hkyy) | £ ) e % 5D gk, 6.6)
k ke
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where the summation is over the discrete eigenvalues ky and the integration is performed

over the continuous values of &, .

From (6.1) and (6.2) and for © = 2, the field components are given by

E, = aazzgx - Jk % (6.7a)
E, = aa;g‘y + jk g-;- (6.75)
E, =~ —g% - % (6.7¢)
H, =Ve/n f aazza"x + jk —%‘- 4 (6.82)
H, =Veiw | a‘i"y - jk —‘3—% , (6.8b)

where u and v satisfy expressions similar to (6.6).

To determine the proper form of the harmonic functions and their eigenvalues, we use
the boundary condition which requires that the tangential electric field vanish on the con-

ducting surfaces at y = * b. Thus

+4- oo
- . qn T -
u(x,y,z2)=Y A, sm(qu) [ Fite) eitex+kD gt (6.9)
q - 00
T j
vix,y,2)=3¥ B, cos(gb—y) [ Falky) e+ k) g (6.10)
q — oo
where the discrete cigenvalues k, = qn/b, ¢=0, 1,2, --- are substituted. In these

equations ]71 (k.) and fz(kx), i.e. the amplitude spectrum of the elemcntary waves are arbi-
trary functions with the only restriction being that the integrands and their first and second
dcrivatives with respect to x, y, and z must bc integrable for all field points. From (6.7) to

(6.10), the ficld components are given by
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+ oo
E, =T A, sinyy) [ [~ keko f (ko) + Jhey f ok )] e/ 5T B g
q oo

+ oo
Ey =2 By cos(kyy) NS Jhyk f 1) + ko f ok )) e 5 R
q - oo
Ez = ZAq Sin(ky}’) J. (kx2+ kyz)fl(kx) e"j(kxx+ ka)dkx
q — oo
re .
H, =VelL 3 B, costkyy) | Ukl f 10k,) = ke, f o)) €745+ B2
q - oo
e .
Hy = Vel 3 A, sintyy) [ [= kef 106) + jly ke f o)) €™/ &5 4,
q —-c0

<4 co
H, =VelL 3 B, costkyy) | (62 + kD) folk,) e ®x kg
q

— o0
where

L = { (k2 - kx2 - ky2)1/2 , k2 (kxz + 2)1/2
z __j (kx2 + kyz _ k2)1/2 , k< (kxz + kyZ)l/Z

(6.11a)

(6.11b)

(6.11¢)

(6.122)

(6.12b)

(6.12¢)

(6.13)

Thus the above fields, which constitute an exact solution of Maxwell’s equations in the

specified region, are the superposition of propagating and evanescent plane waves.

6.2- Wave beams

To obtain the wave beams, i.e. waves whose direction of propagation lie within a

small solid angle about the z axis, we require that k£, < k, and k,< k,. With these

assumptions and from (6.13), one can use a first order approximation £, = & for the ampli-

tude terms and a second order approximation k, = k— (kx2 + kyz) / 2k for the phase terms

of the components in (6.11) and (6.12). This results in the following approximate fields
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‘ JZk? + . j2k?
Ec=k e $ 4, ¢ % sintk,y) | flk) e e’ % gk, (6.142)
q — OO
.2 2 4- oo .2 2
. ] ; Jks
E,=k e ¥ B, o % costkyy) | gk,) e e % gk, (6.14b)
q - o0

: 2 4,2 + oo .2 .2
. stk . . ik Tk
E, =k e® ¥ A, ¢ % sintyy) [ (= kef (e Yk, g tedle ™ e 2% gk, (6.14c)
q -0

.2 2 + oo . 2 2
. =Tk - ks
H,=-kVelne ™ ¥ B, e % cos(kyy) j gk) e e 2 gp (6.15a)
q — O
. JEk? re N 0 2
Hy=kVene/™ ¥ A ¢ % sin(kyy) | flk,) e o e %7 g (6.15b)
q — O

.z + o0 .z,
H,= k‘/e/_ue‘j"zz qujﬂkyzcos(kyy) j [—jky f (e Yk, g (K, )]e"jk"xejﬁkx dk, (6.15¢)
q - oo
Note that according to the wave beam assumption, we should have k, < £ and therefore
the integrations over &, should actually be limited to | k, | < K, with K, <« k. However,
if the amplitude functions f (k,) and g (k,) rapidly tend to zero outside this range, the
integration can be carried out over the entire k, values without significant error. We will
shortly elaborate on this point which greatly facilitates the analytical calculations. Also note
that the approximation used for the phase terms is valid only in a restricted range of z

values such that
[KZ+ (qn/b)? ]z /2k <2n (6.16)

The implications of the above conditions are further developed in Sec. 6.5.

Examination of (6.14) and (6.15) reveals that the transverse field components may be

written as

E,=Fed*z H =VepE, (6.17)

where
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ikt i e Ik
F=k XA, &% sinty) | flke) e e % g, (6.18)
q — O
and
E,=Ge*?, H =-VeluE, (6.19)
where
okt e ity Sk
G=kYB,e 2k cos(k,y) f gk,) e /T % dk, (6.20)
q -_—0

Thus, the wave beam approximation results in simple relations between the transverse elec-
tric and magnetic fields which are similar to those of a TEM wave. The z components of

the fields can be obtained from the transverse components through Maxwell’s equations.

To comply with the requirements on behavior of the amplitude function as mentioned

above, we expand f(k.) and g(k,) in terms of Gauss-Hermite functions in the form
exp [~ —i—(kx P4 He, (k. /p). Here p is a parameter which determines the energy concen-
tration in the wave beam to be discussed in the next section and Hep is the Hermite poly-
nomial of degree p defined by the Rodrigues’ formula,
22 47 _n
He,(x) = (-1)? ¥’ —e 6.21)
dx?

These are even functions for even p, odd functions for odd p and satisfy the following
recurrence formula [42]:

Hep+ 1) =x Hep x)—-p Hep_ 1(0)
with Hey(x) = 1 and He(x) = x. Hermite polynomial defined in (6.21) is orthogonal in

the interval — oo < x < + oo with respect to the weighting function exp(— %xz) such that

1.2

MP g
[ ¢ 2 He,(x) He,(x) dx = @02 p! §,, (6.22)

where
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1, p=
8, = {0, Dar (6.23)

Upon expanding the amplitude functions, (6.18) and (6.20) may be written in the form

L qM 2 2
J (=Yt . T
F=kY Ay e * % H,(x,2)sin(Lxy) (6.24)
pP.q
j qm .2 2
5 2% T
G =k Bye ° *H,lx,2) cos(Lry) (6.25)
p.q
where
+ oo 1 2 ;2 12
- S (&/p) ik I3T
Hyx,2)= [ e * He,(klp) e e % dk, (6.26)

o

The integral in (6.26) can be performed analytically (see Appendix D) resulting in

_1_12

Hy(x,2)=(=))PA(z)e ¢ He,(t)e i% (6:272)
where
-1

A)=2np (1+02) * (6.27b)
2

¢ = ZIFC’_ ; (6.27¢)
2px

;= (6.27d)

Vit g2
o, = S L p+1) tan~1{ (6.27¢)
Py 2 '

From orthogonality of the Hermite polynomial in (6.22), it is easy to show that the func-

tions H, (x, z) also satisfy the orthogonality property expressed by

-+ oo
[ H, H @x =@ pp!3, (6.28)

— oo

where * denotes the complex conjugate.
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The electric field components E, and E, can be written in the form

Ex= % Apg fplx,2) e ™0 sin(%y) (6.29)
p.q

Ey, = 3 By fpr,2) 7D cos(LTy) (6.30)
pP.q

where
__1_12
fox,2)=(=)Pk A) e * He,(r) (6.31)
- groz L 2 1 -1
9pq(x, Z)=kz - (—b-) E + Z c - -5- (2p+1) tan c 6.32)

These are the transverse components of the fields that comprise the propagating wave
beams between the parallel plates. From (6.31) it is seen that the amplitude of the wave

beam modes has a Gaussian variation along the x axis.

6.3- Discussion of the energy concentration in the beam

The power transmitted by a single mode through an area —xg <x < xg,
— Yo £y <ygis given by

X0 Yo

1
Py @ === Vel | ] £, 2) cos®(LLy) ax ay (6.33)
~Xg ~Yo

4
0 ltz

which is proportional to J- e ? Hepz(t) dt, where
0

to = 2p%0 (6.34)

N1+ ¢?
Equation (6.33) shows that the transmitted power, and therefore the encergy density at each
cross section, changes with z. Fixing the parameter y , one can find a relation between x
and z such that as z varics, the power transmitted through the specified cross section
remains constant. This requires 7 be constant and thcrefofe (6.34) gives the appropriatc

relation between x and z which may be written in the form
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2 o o 202 .,
Xy = (‘ib-) 1+ (T z) (6.35)

This equation is independent of the mode numbers and hence the following discussion

applies to all the beam modes.

Since the power transmitted through each cross section is assumed to be constant, a
minimum value of x in (6.35) corresponds t0 a maximum power density. This equation

can be written in the normalized form
£2 = 1/C + C n? (6.36)

where & =x¢/ &y and M = z/zy with

29
& ="\ EPRL (6.37)

and

C =2p% = (6.38)

Equation (6.36) is plotted in Fig. 6.1 for various values of C along with its envelope
€= W From this figure it is seen that for a given C, the highest energy concentra-
tion in the modes (which corresponds to minimum xg or &) occurs at the z= 0 plane and
continuously falls as one moves towards the z= £ z planes (i.e. | = 1) which locate the
phase correcting devices in a beam waveguide. It is easy to show that at the z= =% z
planes, the minimum value of & or x which corresponds to the maximum energy density is

achieved when C= 1, resulting in

k
Po = A /.2.2..6. (6.39)
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Fig. 6.1- Plot of £2 = 1/C + C m? for various values of parameter C.
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6.4- Structure of the Gaussian-cavity resonator

The Gaussian-cavity resonator is constructed from a beam waveguide by placing short
circuits along the two constant-phase surfaces that are separated by Im, [=0, 1,2, - - -
radians of phase shift. From (6.32) it is seen that at z= (, the phase function qu vanishes
and therefore the z= 0 plane is a surface of constant phase. This surface is chosen here as
the front wall of the cavity which contains the radiating slot (see Fig. 6.2). The back wall
of the cavity must lie along a constant-phase surface which satisfies 8,, (x, z) = [T at the

operating frequency. Thus the equation of the back-wall surface is given by

2p%x2z

S(x,z)=kz —(—‘l[;"—)2 Ez/?+ p
Y U2
k(1 + B2

_2p+1

-1 2p2
2 fan (TZ)—INT-O, =0,1,2, --- (6.40)

Substituting the value of p given by (6.39) yields

qm o Z k x?z 2p+1 1, Z
kz — (——)"— + - tan~ ' (—) = It =0 (6.41)
b~ 2k 20z8+z% 2 Zo
If we define z as the cavity depth at x= 0, then from (6.41)

L _ 05@+ 4i+ 05)mk
O 2 (gn b)?

(6.42)

The contour of the surface in (6.40) is plotted in Fig. 6.3 for various values of the parame-
ter p including p = py . In this figure for each value of the independent variable x, the
corresponding value of z is obtained by using a numerical routine for finding the real zeros

of a real function. It is observed that the cavity depth z is almost independent of p.

6.5- Restrictions on cavity dimensions

As mentioned carlier, from the wave bcam condition one should have | k, | < k.
Thus it is necessary for the amplitude function in the integrand of (6.26) to decrease rapidly

outside this range in order to make it possible to perform the integration over &, from — oo
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o +oo. Let | k. < K, where K, <« k is a constant. The amplitude of the integrand
decreases exponentially with the inverse of —pz. In this section we calculate the upper limit

on the value of p which results in a reasonably small amplitude at k.= k. For this ampli-

tude to be proportional to ¢ with v an arbitrary real number, one should have (-i%)z =v

and therefore a value p < -2-‘1—5—-—— serves the purpose. This inequality can be expressed in
\Y

terms of the cavity depth z; by using the condition of maximum energy concentration in

the beam given by (6.39) which results in
202 — A (6.43)
T

Thus to obtain the maximum energy concentration in the beam at z= * z; and yet maintain
the validity of the calculations, the cavity depth at a given frequency should be larger than a
certain value implied by (6.43). On the other hand, from (6.16) one should have

20 < 8®2 [ K2+ (qmb)> 171/ A (6.44)

These requirements put a restriction on the allowable mode numbers p, ¢ and [ as obvious
from (6.42). For example when the values of p and g are determined from the type of
excitation and transverse dimension of the cavity, the parameter / should be chosen such

that the conditions on z are satisfied.

The wave beam approximation used in deriving the fields also requires that
gn/b < k. For a finite value of b this condition can only be satisfied for a limited number
of g values. However, one may choose a small value for b such that the fields become
essentially independent of the y variable which corresponds to the g= 0 modes. On the
other hand, although in theory the cavity length extends to infinity along the x axis, we note
that the fields inside the cavity are negligible at points sufficiently far from x= 0 plane.
Thus in practice it is possible to construct an antenna of finite length with no appreciable

reflection from the open ends.
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6.6- Formulation of the integral equation for the electric field in the slot

In the non-radiating cavity resonator, the waveguide fields in the * z directions com-
bine to form a standing wave which has a sinusoidal z dependence to satisfy the boundary
condition at the z= 0 plane. However, when the cavity is radiating through a slot, one
'should consider the addition of the individual propagating waves in a more general sense.

For example, the y component of the electric field at every point in the cavity would be
= g+ -
E, = EJ + E, (6.45)

where

? j6p(x, n
Ef=Y BE f,(x,z)e /%" COS(ib——y) (6.46)
p.q

At z= 0 i.e. in the aperture plane, we have 8,,= 0 and thus the electric field becomes

2

Hep (2px) cos( qb_ﬂ:y ) (6.47)

1
- < (2px)
Efx,y)=2nkp ¥ B,, (=j)Pe *
p.q
From this equation it is seen that for each mode, the x variation of the field amplitude is
proportional to e~ P’ Thus with the value of p given by (6.39) for maximum energy con-

centration in the beam, the field amplitude decreases exponentially with (x/zg)(x/A) along

the x axis in the transverse plane. Multiplying both sides of (6.47) by

1
- —(2px)?
e ¢ He, (2px) cos(—s—bzt—y)

and integrating from — e t0 + oo over X and from — b to + b over y yields,

+ b + oo 1 2
0N? -7 qn
UL A— e .4
qu kb o —fb _J; e Ey x,y) Hep (2px) cos( 5 y) dxdy (6.48)

where we have used the orthogonality of the Hermite polynomial and the cosine function. It

1 .
. is observed that the mode amplitudes vary as ;—'— and therefore the higher order modes

have little effect on the fields.
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From (6.19), (6.47) and (6.48), the corresponding component of the magnetic field in

the aperture can be written in the form

-2/ V2t p

i H e ) = B, ) G’y oy |
Jim HOG, ) = == £ @ )Gy lx, )y ax'dy” (649

where

.. 1 . . i
G.(x,y ] x,y)=3, ;'— e pAx% x7) Hep (2px )Hep (2px) cos(k),y )cos (kyy) (6.50)
p.q ¥

and the integration is performed over the aperture area due to the fact that outside the slot,

E}f‘(x , ¥) is zero on the conducting screen.

The magnetic field in region (2) i.e. z< 0 can be expressed in terms of an integral
over the tangential electric field in the aperture. The x component of this field EZ2(x, y) is

assumed to be negligible for the type of excitation to be considered here. Hence,

.. 2 .. ..
[ Ege, v w3+ sa;pc;ooc ey dedy” (65D

lim H®(x, y) = —L
Jim Hy x,y) 2mOL |

where G g is the free space Green'’s function given by

- o Hkollx = x P+ (y =y VI
Gox,y lx,y)= - v (6.52)
0 [x —x)+ @ -y)a”

We assume the structure to be excited by a current distribution Jy“(x , y) over the slot.

Thus, the continuity of the tangential magnetic field in the aperture requires that

lim H m(x y)— hm H(l)(x y)=-Jj&,y) (6.53)

z— 0"

This condition is used to obtain an integral equation for the electric field in the aperture

EJ(x, y), namely
[ES, yYKG,y Tx,y) d'dy == J8x, y) (6.54)
A

where the kemnel X is given by
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’ ’ rd rd 2 r'd ,
K@,y lx,y)=C, G.(x',y | x,y)+ C, (kE+ —;—)—Z)Ge(x,y lx,y) (6.55)
X

V2/Ir p iC J

with C,= Ve b and Cp= mon

To solve the integral equation in (6.54) for the electric field in the aperture, we

assume a separable solution in the form
EJx,y)=Xx) Y () (6.56)
where X (x) is an unknown function and Y (y) is given by,

1/

Y@o)= m 6.57)

This choice of the function Y is in accordance with the narrow slot assumption and
accounts for the proper field behavior at the slot edges {21]. The unknown function X (x)

may be expanded in terms of suitable known basis functions as
N
X)=3Y VvV, X, (x) (6.58)
n=1

Substituting (6.56) and (6.58) into (6.54) yields

N . . .. .o
YV, [ X YO KRG,y 2, y) de'dy =~ J5Gx, y) (6.59)
A

n=1

To obtain a system of N linear equations for the unknowns V,, we multiply the above
equation by a suitable weighting function W,,(x, y) and integrate over the slot aperture.

The result may be written in the matrix form

Dpmnl V] =[] (6.60)

where in the expression for matrix elements i.e. y,,, = C; a,,, + Cy b,,,, we have
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[ W e, )X, ) YOG,y | x,y)ydedy'de dy  (6.61)
AA

. . 92 . .o
b = [ I Wt ) X, ) Y0 kG+ 5 7Gx,y |x,y) dx’dy’dx dy (6.62)
AA x
and the source vector elements are given by

| W(x,y) Jjkx, y) dx dy (6.63)
A

For the case of a finite slot, one may choose the piecewise basis and testing functions
similar to those introduced in Chapter 4 and proceed with the solution for V), in (6.60).
However, in a slot of finite length the waves reflect from the two shorted ends and consti-
tute a standing wave pattern along the slot which obscures the desired features produced by
the Gaussian cavity. To preserve the favorite Gaussian behavior of the electric field in the
aperture, it is necessary that the slot length extend along the x axis as shown in Fig. 6.2.
Thus, at least in the ideal case of an infinitely long cavity, there is no reflection from the

two ends to disturb the Gaussian field distribution in the slot.

Unlike the sub-domain basis and testing functions which are very useful in the
moments method solution of a finite slot, the infinitely long slot in the present problem calls
for the use of entire-domain functions. The best choice would be a function which is closely
related to the actual field distribution in the aperture, and in this case a Gauss-Hermite func-
tion in the form e~ pz"zHen (2px). This choice is especially useful as it allows the ortho-

gonality property in (6.22) to be applied to the expression for a,,, in (6.61) resulting in,

(m-=-D! (n-1)!
p!

s
a,, = P
™~ ZPzp,q

qmn
8(m—l)p 6(n—l)p JO("“b__W)

T(m-1! qT _
2p2 ZJ( w), m=n

= 0, m#n (6.64)

where we have used the relations
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X,x)=e P’ He (2px), n=1,2, ---,N (6.65)

W,(x,y)=e P* He, 2px)8(y), m=1,2, ---,N (6.66)

The numerical computation of b,,, in (6.62) is more demanding in the sense that it

involves a triple integral two of which have infinite limits, namely

+ co
.2 , , .
bun = | ¢ % He,_ 1(2p%) 0, (x)) dx 6.67)
where

4 oo
0, Y= | e P He, _ ,(2px) P(x,x) dx (6.68)

and

o~ Jo [~ x Yo y i

) 2 o
P, x)=W¢+—)] Y . ,2 6.69
x.x) = ¢ + ) [ 109 P (6.69)

Applying the so-called reduced kernel approximation, the integral in (6.69) reduces to [21]

L gikaR
Gx,x)= (6.70)
R
where
R =[(x=x)?+ (wi2)})\? (6.71)
Thus upon performing the differentiation, (6.69) becomes
) . o koR
P(x,x)= |:(x— x V(= kER*+3+3 jkoR )~ (- kR *+1+ jkoR) R? } =3 (6.72)

The procedure of numerical integration of the above integrals is explained in Sec. 6.7.

For calculating the source vector elements in (6.63), we will consider the excitation by

a current source connectcd to the slot edges. Assuming a uniform current distribution of
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width 2d and flowing in the y direction, we have

Iy
—, for |x—xslSd
y 0, for |x—xsf>d

where x,; denotes the source location. Thus the integral in (6.63) reduces to

-] X+ d
cn=— | e " He _,(px)dx
2d 1,

The voltage distribution along the slot is given by
+w
V)=~ | Eftx,y) ay
-w
From (6.56) to (6.58) and (6.65), it is easy to show that

N , N
V)= 3 V, X,x)=e ?* 3 V. He, ,(2px)

n=1 n=1

(6.73)

(6.74)

(6.75)

(6.76)

With the values of the matrix and source vector elements given by (6.64), (6.67) and (6.74),

one can obtain the expansion coefficients V, from (6.60) and thus the voltage distribution

along the slot from (6.76).

6.7- Numerical results

In this section we first present a number of computational notes regarding the numeri-

cal integration of the integrals encountered in the matrix elements. In spite of the infinite

limits of the integrals in (6.67) and (6.68), the exponential factor in the integrand results in

the fast convergence of the numerical integration process. However, the function P (x, x )

in (6.72) has a weak singularity at x= x and thercfore the integral in (6.68) should be per-

formed with due care. To this end and for the actual numerical computations, the integral is

written in the form



- 140 -

+ oo x+A + oo
0,c)= | Fox,xYax+ | Fe,x)dx + | F e, x)dx 677
—x+A x—-A X+ A
where
F,(x,x)=e P He _.(2px) P(x,x) (6.78)

and A is a small number in the order of 0.001 to be determined by examining the behavior
of F,(x, x) to make sure that the integration is performed accurately in the vicinity of the
x=x point. The interval of the two infinite integrals are divided into sub-intervals much
larger than A, say 100A, as the integrand is fairly smooth in these regions. A 20 point
Gaussian quadrature is then applied for integration over each sub-interval and the results are
added. The upper limits of the infinite integrals.are continuously increased until a certain
number of accurate digits is achieved. Before attempting the numerical integration in (6.67),
it is imperative to know the behavior of Q,,(x ). This function is even for
m=1,3, -+, odd for m=2,4, --- and its amplitude decreases very rapidly as x_
deviates from x = 0, a fact which is shown in Fig. 6.4 by plotting log l QO (x) | for typi-
cal values of p = 1235 m™!, w= 1 mm, k= ko = 62.8 rad/m and m= 1, 2. From this
information, it is not difficult to see that the integrand in (6.67) is well-behaved and the
convergence of integration is very rapid. To further facilitate the computation of b,,,, one

may write the integral in the form

e P He  (20x) U, (x) dx’ 6.79)

b =

S — 8

where

Q)+ Qp(=x), n=odd

U,x) = {Qm(x) —0,.(=x), n=even (6.80)

and then proceed with numerical integration.

The amplitude and phase (dashed lines) of the voltage distribution along the slot arc
shown in Fig. 6.5 for an antenna with zg =2 A, b= 0.2 A, 2w= 0.1 b and operating at

f=73 GHz. The slot is excited by a strip-line of width 2d=0.02 A and /=1 mA
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located at the slot center, i.e. x;= 0. The presence of riples in the voltage amplitude is
expected as they correspond to the number of terms in the expression for the voltage given
by (6.76) which in tum determines the degree of the Hermite polynomial in the expansion.
As the number of terms increases, the riples approach an exponential envelope which
represents the actual voltage distribution along the slot. This point is shown in Fig. 6.6

where the voltage amplitudes corresponding to N=9 and N= 11 in (6.76) are plotted.

The convergence of the solution can be examined from Table 6.1 where the ampli-
tudes of the complex expansion coefficients V, are compared for solutions with various
number of terms in the expression for the voltage distribution. Note that for the symmetric
excitation, the values of V,, with n=2, 4, - -- vanish and are not shown in the Table.
For the case of skew-symmetric excitation, i.e. when two current sources of equal amplitude
and opposite phase are located at * x;, we have V,=0 for n=1,3, --- and there is

always a null in the voltage amplitude at x= 0, as shown in Fig. 6.7.
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Fig. 6.4- Behavior of function Q,, (x ) in Eq. (6.68).

Q.5



- 143 -

120 - - 180
|
| \
l |
100 - l | L 120
| |
[ |
| |
< 80 - /' ! L 60 &
c / ©
~— o
- 7
Q
o N (=}
2 60 - -0
s Q
=3 5
&
< x
40 - —60
20 L -120
0 1 . . , . —180

0
x /N
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Gaussian cavity- backed slot with symmetric excitation at x;= 0.
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Fig. 6.7- Amplitude and phasc (dashed lines) of voltage distribution along the aperture of a

Gaussian cavity-backed slot with skew-symmetric excitation at x;= * A/4.
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Table 6.1
N v, ] | v, ] | vl v, | vyl vy
1 36.11
3 37.11 2091
5 37.17 22.80 6.226
7 37.15 22.95 7.232 1.268
9 37.14 22.78 7.151 1.509 0.186
11 37.16 22.68 6.889 1.372 0.202 0.018
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CHAPTER 7

SUMMARY AND GENERAL CONCLUSIONS

In this thesis a unified view based on the equivalence principle is presented for
analyzing various types of slot radiators. These include the open slot and also slots which
are backed by cavities for the purpose of confining the radiation or to produce a certain
field distribution in the slot aperture. For each case a general formulation of the problem is
given which can be applied to arbitrary shaped apertures or cavities. The results are then
specialized to geometries with practical importance such as radiating elements in the form
of narrow slots. From the computational point of view, the emphasis is on accurately deter-
mining the voltage distribution along the slot. Once this quantity is known, other radiation

and circuit parameters of the antenna may be obtained in a standard fashion.

The voltage distribution along the aperture of a narrow open slot satisfies
Pocklington’s equation. A technique based on the method of moments is utilized for the
numerical evaluation of this integro-differential equation [37]. The elements of the
moments matrix are transformed into the Fourier domain to eliminate the differential opera-
tor and also the singularity of the integrand. The effect of the slot dimensions on the
parameters of interest, namely the input impedance, resonance frequency, and bandwidth are
examined. The results show that the product of the resonance frequency and the slot length
is a constant number. It is also found that in general a shorter and wider slot has a wider
bandwidth while the radiation resistance drops as the slot width increases. The excitation
source location has a significant effect on the voltage distribution along the slot and thus the
radiation pattern and input impedance. This property can be used as a convenient means

for matching the antenna to the source.

In most applications it is nccessary to restrict the radiation from the slot to one half-
space which may be achieved in practice by using a conducting enclosure to back the slot.

An accuratce cvaluation of the aperture field in this problem requires the fields in the cavity
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to be known. These ficlds may be expressed in terms of volume integrals over the sources
in the cavity and a surface integral over the boundary area and include the appropriate
dyadic Green’s functions of the bounded region [38]. A system of coupled integral equa-
tions is obtained for the electric field in the aperture and specialized to the problem of a
narrow slot backed by a rectangular cavity. The method of moments with piecewise
sinusoids for basis and testing functions is applied for numerical evaluation of the voltage
distribution along the slot. A current source in the form of a two-wire or coaxial line con-
nected to the slot edges may be used to excite the structure. Similar to the open slot
antenna, the feed-point location has major effect on the voltage distribution in the slot; a

fact which is useful for the purpose of impedance matching.

The introduction of the cavity to back the slot intensifies the resonance behavior of the
isolated slot, resulting in higher resonance frequencies and lower bandwidths. There are
many physical parameters such as the cavity and slot dimensions, location of the slot center
and excitation source, as well as the material in the cavity that contribute to the behavior of
the antenna as a radiator and more importantly as a circuit element [58]. For example, the
resonance frequency and bandwidth can easily be controlled by varying the cavity depth
through a sliding back-wall. In general, a larger cavity width or slot width results in a
wider bandwidth at the expense of reduced radiation resistance and efficiency. One of the
interesting features of CBS antennas is their loading capability. In fact dielectric loading of
the cavity has the effect of reducing the physical size and thus weight of the antenna which
is desirable in airbome applications, especially at the lower range of operating frequencies.
However, the numerical results show that an increase in the diclectric constant of the
material in the cavity drastically reduces the bandwidth of the antenna while increasing the

radiation resistance.

For the case where the CBS radiator is excited by a coaxial-line probe inside the cav-
ity, one may model the probe by a filamentary current source and find the voltage distribu-
tion along the slot. As the probe is moved towards the cavity wall containing the slot, the

induced voltage in the slot increases. Similar behavior is obscrved when the probe length is
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increased. The assumption of a filamentary source results in an infinite reactance and there-
fore a more realistic model of the probe should be used in the impedance calculation. We
assumed a sinusoidal current distribution flowing in the axial direction on the probe surface
and applied Poynting’s theorem for this purpose. Note that in the absence of ohmic losses,
the impedance of the closed cavity (without slot) is purely reactive and its value is mainly
determined by the probe length. This may be used for adjusting the input impedance by
varying the probe length. As for the resonance frequency, a deeper cavity or a longer slot

results in a lower resonance frequency as expected.

In applications such as radar, it is essential to eliminate or at least minimize the side-
lobes in the radiation pattern of the antenna. On the other hand, it is well-known that the
radiation field is the Fourier transform of the aperture field and since the Fourier transform
of a Gaussian function is also a Gaussian, one concludes that a Gaussian field distribution
in the aperture should in principle produce the desired radiation pattern. In a CBS radiator,
it is possible to obtain the appropriate voltage distribution along the slot by using a cavity
of proper size and shape to back the slot. To this end, the general solution for the elec-
tromagnetic fields between two conducting parallel plates are expressed as a continuous
spectrum of plane waves. The so-called wave-beam conditions are then applied to obtain
approximate solution for the fields that are confined to a small solid angle about the princi-
pal axis of the system. The field amplitudes are expanded in terms of Gauss-Hermite func-

tions whose orthogonality property is used to obtain the expansion coefficients.

To construct a cavity resonator from the beam-waveguide one may short circuit two
suitable constant-phase planes by conducting surfaces. The x— y plane is taken as the
plane of the front wall and the equation for surface of the cavity back-wall is obtained. In
theory the cavity length extends to infinity along the x axis; however, it is shown that the
amplitude of the propagating modes attenuate exponentially off the x=0 plane and therefore
in practice one may use a cavity of finite length without noticeable reflection from the open
ends. A narrow slot is cut in the front wall of the cavity and an integral equation is

obtained for the voltage distribution along the slot. To preserve the favorable Gaussian
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field distribution in the aperture, it is essential that the slot length extend to infinity. Thus,
in the numerical evaluation of the integral equation, we have used the entire-domain basis
and testing functions. The numerical results for the voltage distribution clearly show the
‘Gaussian behavior of the aperture field for both symmetric and skew-symmetric excitations.
It is also observed that for the case of skew-symmetric excitation, there is always a null in

the voltage distribution at the slot center as expected.
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APPENDIX A

FOURIER TRANSFORM OF G (§) IN EQ. (2.20)

The Fourier transform of G (§) is defined by
<+ oo
Gaw= [ G@eTag
Substituting G () from (2.20) and changing the order of integrations yields

)

=~ 4 .

G)=— | Kozsin®) a6
0

where z = wVa? — k2 and we have used the result {59, p. 26]

+ oo ; 2 72
. —jk &+ ¢
J et ge=2k4lc|Vo2-k2)

o [§2+ 62]1/2

It can also be shown that [42, p. 485]
2 T
Ko(zsin®) d8 = & J,(Z) Ko(=
({ o(zsin8) > JoU2) Ko(3)

Thus (A. 2) becomes

Gwy=27, (j—‘z-"—\laz - k2) KO(%Vaz ~k2)
or

2 10(%%(2 —k2) KO(-’ZlVoc2 -k%), a>k

G =
2 Jo(lz‘i\lk2 -a?) KO(/-‘ZY-Vk2 —a?), o<k

where /) is the modified Bessel function of the first kind and zcro order.

(A1)

(A2)

(A.3)

(A4)

(A.5)

(A.6)
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APPENDIX B

CALCULATION OF THE SERIES IN EQS. (3.37)

To calculate a series in the form

S = - cos (bp) 1
Z P ®D

where P (p) is a rational even function of p, we define the function

eﬂ”

T &= e

B.2)

and evaluate the contour integral J- f(z)dz where Cp: |z |=R, Imz2-&and &
Cr

is a fixed real number. If P(z) is of the order R, £ >1 as | z | = R —oo , then from
Jordan’s Lemma [60] we have

lim | fG)dz =0
Ce

R —0o

and therefore from Cauchy’s integral formula, the sum of all the residues of f (z) is equal
to zero, namely
o Jjbp

> 72—;——1;-(;-)— + Y [ residues of f(z) at zeros of P(z)]=0 (B.3)
p=—00

The first term in (B.3), which is in the form of the desired series, is due to infinite simple
poles of (e/?™~1) at z=+ p,p=0,1,2, --- and clearly shows the reason for intro-
ducing this factor in (B.2).

For the special case of P(p) = p% — a?, there are simple poles at z=* g and from

(B.3) we have

= cos(bp)___ 1 ®m cos [(b—- ma]

2 2 2 i (B.4)
p=1 D°—a 2a 2a sin (ma)
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This result can be used in calculating the series

sin (kp F4 ') sin (kp z)

1 kP~ Kz

S1=%
p:.'
with k, = p/c. We first write S, in the following form

1, ¢ > cos (bp) = cos (bp)
R z—-—————z————}
A [P=1 p*-a® .o\ p?-a?

where

b=n@G+z)/c
b_=1r(z'—z)/c

Substitution from ( B.4) yields

S c { sin [K,,, (c— z')] sin (K,,,z), z< z
1:

2K, 8in (Kpp€) | Sin (K2 ) sin [Kpn(c—2)], 2>2
In a similar fashion, for the series

cos (k,z) cos (k,z)

Sy= 2

oo

p=0 kpz—Kn%n
we obtain
S = 1 c cos [K,,, (c— z)] cos Kpnz), z< z
- 2K 2, 2K, 5in (K, ¢) | €08 (Kpnz ) €OS [Kpp(c—=2)], 2>z

(B.5)

(B.6)

B.7)

(B.8)

Other summations in Egs. (3.37) can be obtained by taking the first or second derivatives of

Sl and 52
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APPENDIX C

COMPONENTS OF THE ELECTRIC AND MAGNETIC-TYPE DYADIC
GREEN’S FUNCTIONS OF A RECTANGULAR CAVITY

From Eq. (3.42), the components of the electric-type dyadic Green’s function
83 (P | P) for a rectangular cavity and 7 # 7 are given by:

GE == 3 Counk2=k?) cos(kyx) sin(k,y) cos(kpyx) sin(kyy) frun(z>2)

m,n

GE == X Crnknky cos(kpx ) sin(k,y) sin(kpx) cos (6, y) frnn(z.2)

m,n

Of rmn

GE == 3 Chnky cos(kyx ) sin(k,y) sin(k,x) sin(k,y) -

m,n

Gi == 3 Conknky sin(knx) cos(k,y) cos (kpx) sin (k) frpn(z, 2)

m,n

Gy == 3, Con(k= k) sin(kpx ) cos (kyy) sin(kpx) cos kpy) frnn(z, 2)
m.,n

f mn

Gy, == Y Cpnky sin(kpx) costk,y’) sin(kpx) sin(k,y) -

m,n

- ”, a
Gy ==Y, Cunk, sin(k,x) sin(k,y ) cos (k,x) sin(k,y) —‘Z’;’i

m,n

) ) 08 mn
GE ==Y Conkn sin(kpx) sin(kny) sin (k) cos (k,y) —%;—

m,n

GE ==Y Counk2y sin(l,x) sin(k,y") sin(k,x) sin(k,y) gma(z, 2)

m,n

In these equations a, b, and ¢ are the cavity dimensions and

sin [K (¢ =2 )] sin (Kppz), 2 <2
sin (K2 ) sin [K,,(c —=2)], 2>z

Fon (@, z') = {
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] cos [K,,(c —z)]cos K,,z), z<z
gm(2,2)= ‘ ’

cos (K,,z ) cos [K,,,(c —2)], z>z
KZ =k-k2 , k2 =k2+k2, ky=mn/a, k=nn/b

-1
Con = €m En [abk2 Ky SInK,yC) J

with

Similarly, for the components of the magnetic-type dyadic Green’s function of a rec-
tangular cavity ffm (7'” | 7), from Eq. (3.47) we have

Gh =Y Cunlk2—k? sintk,x") cos(k,y) sin(kpx) cos(k,y) gz, 2

m,n

GG =2 Counknk, sin (knx) cos(k,y") cos (kX ) sin(kpy) 8mn(z, 2)

m,n

98 mn

Gl == 3 Cunk, sintk,x) cos(k,y") cos (kyx) cos (k,y) =

m,n

Gyt =Y, Conkpmky oS (px ) sin(kyy") sin(kpyx) cos ky) gmn(z, 2)

m,n

Gy"y‘ =3 Cu (k,,z— k2 cos (k,x ) sin (k,,y') cos (K, x) sin(k,y) &mn (2, z)

. . 08 mn
Gy == 2 Conky cos(ky,x ) sin(k,y ) cos(k,x) cos(k,y) —g—z

m,n

; . Of mn
G == 2 Cunky coskyx ) cos(k,y ) sin(k,x) cos(k,y) —];;—

m,n
) . of mn
Gy == 2 Cunk, cos(kpx) cos(k,y ) cos (kpx) sin(k,y) =,

G2 =Y Conkon €0S(kpx) cOs (kpy ) €08 (kyx) €OS (kY frpn (2, 2)

m,n
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APPENDIX D

CALCULATION OF THE INTEGRAL IN EQ. (6.26)

From Egs. 7.388—2, 4 in [44] and with appropriate modifications, we have

_2 1 1.,

T oo Y N g1V (2 1Y 2, 2 xy
{e Hegi () sin(Zdr=l2-17x (2= 1) Ze 2 Hegu(3=) @

oo t2 2
s y N 2 20 xy
e He,, (t) cos(=t)dt =Vn/2x(1 —x°)" e He,, ( ) D.2)
o e "ol
Let x2 = — and 2 =p, Thus,
1-—ja X

jl tan"'a

1
x=V2(1+a% 42

2_ _2b% . 2ab?
1+ a? 1+a?

y

Xy _ 2b
Vx2-1 V1442

2__1l+ja = _ pj2un’a
1-ja

1-x

Substituting the above quantities in (D.1) and (D.2) and noting that He,, (¢) is an odd func-
tion for odd m and an even function for even m, the two equations may be combined and

written in the general form

bZ

+ oo _itz ) jifz .l. ——2
[ e * He,t)e™e® ar=20-jy"m(l+ad) *¢ 1a

abz . 1 -1
1+a? ej (m 2 ) a

D.3)

He,_ ( 20 )e—j
" JH—a2

which is valid for even or odd m.
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