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ABSTRACT

The problem of slot-type radiators including the cavity-backed slots is analyzed.

A general formulation is givcn for the electric field in an arbitrary shaped aperrure in a con-

ducting screen and specialized to the case of a narrow slot. The elecuic field in the slot

aperture satisfies Pocklington's equation for which a novel numerical æchnique based on

the method of moments and Fourier transform is presented. Once the voltage distriburion

along the slot apernrre is known one may easily obtain the radiation and circuit parameters

of the antenna including the input impedance, resonance frequency and bandwidth.

The electromagnetic fields produced by sources in a bounded rcgion, as well as the

appropriate electric and magnetic-type dyadic Green's functions are derived and the results

are used in formulating the general problem of an apernrre backed by a conducting enclo-

sure of arbitrary shape. A system of coupled integro-differential equarions is obtained for

the electric field along the apernrre. The special case of a rectangular cavity-backed slot is

examined in detaii for which the Galerkin method with piecewise sinusoidal basis and test-

ing functions is used to numerically solve for the voltage distribution along the siot. The

effect of various parameters on the circuit quantities of the antenna are discussed and the

case of probe-fed excitation of the cavity is also investigated.

It is shown that it is possible to obtain a Gaussian fietd distriburion in tÏre slot apemrre

by using a cavity of proper shape. To this end, the fields in the cavity are expressed as a

superposition of plane waves and the beam-wave condition is applied to write approximate

expressions for the fields that decay exponentially off the axial direction. The field ampli-

tudes are then expanded in terms of Gauss-Hermitc functions and thc appropriate boundary

condition is used to obtain the equation for the shape of the cavity back-wall. The structure

is excited by a currcnt source connected to lhe slot cdges and an intcgral equation is derived

for the voltage distribution along the slot which is solved numcrically by using cntire-

domain basis and testing funcrions of rhc Gauss-Hcrmite type.
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CHAPTER 1

INTRODUCTION

The puqpose of this thesis is to investigate the properties of slot-type radiators of elec-

tromagnetic waves. These include open slots in a conducting screen and slots backed by

cavity resonators of various shapes for which two important types namely, rectangular and

Gaussian geometries are analyzed in detail. In the foltowing, we first present a survey of the

liærature relevant to the subjects covered in the work and then explain the contributions and

organization of the thesis.

The problem of interaction between electromagnetic fields and an aperrure in a con-

ducting screen has attracted the auention of many workers ever since it was smted by Lord

Rayleigh [1] some 90 years ago. A substantial part of the research in this a¡ea has been

devoted to the diffraction of plane waves by apernrres and a review paper which includes

an extensive bibliography of the works prior to 1954 is given by Bouwkamp l2l. A review

of the present status of the subject can be found in [3] and [4, pp. 117-172]. It should be

pointed out that except for the case of circular apertures no analytical soludon is available

for this simplest of apernrre problems [5]. Assuming D to be the largest dimension of the

apeÉure, there exist asymproric and approximate methods in the high (D > l,) and low

(D< À,) frequency limits [6-16]. However, in the resonance region where D= ]", which is

incidentally of the grcatest importance to microwave applications, all other approaches seem

to break down and one usually has to resort to numerical methods.

Wilton and Dunaway [17] derived a sct of inægral equations for the magnetic currenr

in an apernrrc of arbitrary shape and applicd thc method of moments to casr rhe integral

equation to a matrix equation. Hanington and Mauu [18] introduced a generalizcd network

formulation for apcrnrre problems and in anothcr papcr [19], thcy obtained an operaror

equation for thc magnctic current in the apenurc and used the moments method to solve tiis

equation for a rectangular apernrre. It should bc pointcd out, that, in the above numerical
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methods the matrix size and computer time for evaluating the matrix elements increase with

the size of the aperture. At present this can cause severe computational limitations if both

dimensions of the apern¡re a¡e of the order of the wavelength I or larger. Fom-rnately in

antenna appiications aperfures are usually in the form of slots with one dimension much

less than I and therefore one should be able to apply the available numerical methods.

For the slot problem, Suzuki [20] considered the case of an incident plane wave and

used the variational method to calculate the transmission coefficienl Butler [21] formulated

the same problem and derived an integral equation for the electric field in the slot. The case

of a slot antenna has often been treated in the literature Í22) as the complemenøry of a strip

dipole by applying Babiner's principle as generalized by Booker [23].

An open slot antenna, i.e. a slot in a conducting screen which is free to radiate from

both sides, has limited applications. A pracrical altemative is the so-called cavity-backed

slot (CBS) antenna where the slot is cut in the wall of a conducting enclosure in the form

of a cavity resonator. These types of radiators satisfy the requirements of flush mounting as

well as small size and light weight at lower operating frequencies (through dielectric load-

ing) and therefore arc most useful in airbome applications. On the orher hand, CBS when

used in an array configuration, produces small murual effects and is thus a suitable element

for large antenna systems such as phased anays.

In one of the earliest treatments of CBS, Cohen [24] considered a square waveguide

shoned at one end and radiating into half space at the other end. He assumed a single

waveguide mode in the cavity and a TE 19 mode for the tangential electric field in the aper-

ture. The cavity was rreated as a tm.nsmission linc with terminals at the apeÉure whose

adminance is known for the mode excited in the waveguide. He used rhe oscillation condi-

tion of the cavity to calculate the complex frequency from which the quaiity factor of tlte

¿ th mode was defined. Galejs [25] obtained a variational expression for the admittance of

a rcctangular CBS wherc t-he slot was cxcited at thc center by a delt¿ current source. This

expression is in terms of the unknown voltage distribution along the slot and is stationary

with respect to small variations of the voltage distribution which was assumed to be
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sinusoidal. It is possible in general to expand the unknown field in terms of a set of suitable

functions and use the starionarity property of the admittance to obtain a system of nonlinear

equations for the expansion coefficients. However, only two terms of such an expansion

were considered by Galejs and the calcuiations were only for the ratio of ttreir coefñcients.

In a later paper, Adams [26] derived a variational expression for the apeffure admit-

tance of a loaded semi-infinite rectangular waveguide radiator and used rhe result in calcu-

lating the apernrre adminance for the case of an aperture plane iris. The computalions were

performed for the waveguide dominant mode and thus a sinusoidal aperture field was

assumed. The results were then applied to a shorted waveguide excited by a coaxial probe.

An equivalent circuit was presented and used to calculate para.meters such as resonance fre-

quency, bandwidth and efñciency. The possibitity of tuning the ferrite loaded cavity by

applying a dc magnetic field was aiso shown experimentally. ln this work the emphasis was

on loading the cavity by dielecuic and fenite material which can significantly reduce the

size of the antenna for a given frequency at the expense of reduction in bandwidth.

The calculation of the input adminance of a rectangular CBS is also the subject of a

paper by Cock¡ell 1271. He applied the complex Poynting theorem to the small volume

formed by the slot with a current source across its center and obtained the admittance for

vanishing screen thickness with the assumption of a single propagating mode in ttre cavity

and a sinusoidai field distribution in the slot Extensive experimental measurements of the

input impedance of a rectangular CBS were performed by Long t281. In these experiments

the slot was fed by a coaxial cable connected to the center of the slot and the cavity cross

section was chosen such that only the dominant mode could propagare. The cases of dielec-

tric filled cavity and a waveguide with inductive post to replace the shorting plate were also

considered. ln another papcr [29] bascd on the experimental data in [28], Long derived a

formula for the admittance of CBS as a function of frequency and cavity depth for a

specific cavity cross section and slot size and within a certain range of frcqucncics.

In some applications such as radar and tracking, it is very important to supprcss the

side lobes in the radiation pattem of the antenna. This can be achievcd in principlc by
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producing a Gaussian ficld distribution in the radiating slot apeÉurc which in rum can be

obtained by using a cavity of proper shape to back the slot. Such a so-called Gaussian cav-

ity resonator operating at microwave frequencics should support fields that decay exponen-

tially in a certain direction and in this respect it resembles the laser at optical frequencies.

The appropriate field solulion which is usually known as a wave beam because of its locat-

ized and directional narure, was first introduced by Goubau and Schwering for the circularly

symmeuic case [30]. These authors expressed the field as a set of elementary wave beams

which were characterized by Laguerre polynomials and pointed out rhe possibility of

reiterating and guiding the waves by reconstiruting the cross-sectional phase distribution at

certain intervals to construct a beam waveguide which is an open structure and does not

need the metallic side wails to confine the fieids. Experimental results based on this theory

were subsequently reported by Christian and Goubau for low-loss transmission of millimeter

waves [31]. Further development of beam waveguides for optical ftequencies can be found

in [32-3a].

The wave beam of rectangular symmetry was studied by Schwering [35] and he

expressed the fields in terms of Hermite polynomials. To construct a Gaussian resonator one

needs only to short circuit two appropriate constant phase surfaces of a beam waveguide by

metallic reflectors. This resonator is essentially open from all sides; however, for beams of

rectangular syrnmetry one may use two parallel conducting plates to restrict the size of the

resonator in one direction. Brauer [36] used this type of resonator to make a line source

antenna by cutting a row of closely spaced small holes in the front wall. For the electric

field in the apernrre, he used the magnetic dipolc moment of the holes and aszumed a delta

function dependence for the tranwerse variable. The rcsults reported in t36l indicated very

low side-lobe levels in the radiation pattem and the possibility of obtaining apernrre field

dist¡ibution in the form of a Gaussian and the derivative of a Gaussian.

In Chaptcr 2 we obtain general equations for the tangcntial electric field in an aperture

of arbitrary shape locatcd in a planar conducting scrcen. Thc rcsults arc then reduced to an

integro-diffcrcntial equation for the special case of a narow slot. A method based on a
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combination of moments method and Fourier transform is proposed for efficient numerical

solution of this equation [37]. A knowlcdge of rhe corect voltage distribution along the

slot is necessary for accurate prediction of the antenna performance both as an electromag-

netic radiator and as a circuit element. The latter aspecr is emphasized by investigaring rhe

effect of various parameters zuch as slot length, slot width and feed point location on the

slot voltage disuibution, input impedance, resonance frequency and bandwidth.

The fields produced by elecric and magnetic sources in an enclosure with conducting

walls which contain radiating apertures are derived in Chapter 3. The fields are expanded

in terms of irrotational and solenoidal eigenvectors and the resul[s are written in the form of

volume and surface integrals over the sources and boundaries respectively. General expres-

sions for the elecric and magnetic-type dyadic Green's functions of a bounded region are

also obtained and specialized to the case of a rectangular cavity resonator. Most of the

results and developments in this Chapter are reported elsewhere [38] and are extensively

used in the rest of the thesis.

Regarding the problem of cavity-backed slot radiators, in spite of the rather large

number of papen on this subject, no general and satisfactory treatnent of the problem is

available. For example in atl the references mentioned earlier, the cavity has been con-

sidered as a shorted waveguide and no attempt is made to independently formulate the prob-

lem for the general case. Also a sinusoidal field disuibution is assumed in the slot which

corresponds to the presence of a single propagating mode in the cavity and is not correct in

general. Furthermore, all the previous works fail to include the effect of one or more of the

various paËrmeters such as the cavity and slot dimensions, location of the excitation source,

characteristics of the material in the cavity, etc. on the slot field distriburion. In Chapter 4

we therefore dcrivc gcneral equations for the clectric fìcld in the apcrture of a cavity-backcd

aperrure radiator of arbitrary shape and spccializc the rcsults to the case of a narrow slot

backed by a rcctangular cavity. The structure is excitcd by a currcnt source connectcd to t-he

slot edges and hence the cavity can be considcrcd as a load. Thc mcrhod of momcnts with

piecewise sinusoidal basis and testing functions is used to numcrically solve the integral
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equation for the field in the slot. Subsequently, the effect of various parameters on the vol-

tage distribution along the slot and impedance of the antenna as well as the resonance fre-

quency and bandwidth are examined. The case where the cavity is excited by a coaxial-line

probe and the slot acts as a load is investigated in Chapter 5. The caicularion of the inpur

impedance for this problem is rather involved and an approximate method based on the

Poynting theorem is used for this purpose.

As far as the problem of Gaussian CBS is concemed, no rigorous solution for the

electric field in the slot apeffure could be found in the literature and therefore the subject

has been treated in detail in Chapter 6. A general solution of the source free Maxwell's

equations applied to the region between two conducting parallel plates is presented in terms

of a continuous spectrum of elementary plane waves. Next, the wave beam condition is

used to obtain an approximate solu[ion for waves which are confined to a small solid angle

about the principal axis of the system. A cavity resonator is formed by placing reflecting

surfaces on Ft¡/o suitable constant-phase planes. The fields in the cavity are then expanded in

terms of Gauss-Hermite functions whose orthogonality property is used to obtain the expan-

sion coefficients. A radiating slot is cut in the front wall of the cavity and the structure is

excited by a current source on the slot apernrre. An integrat equation is derived for the

tangential electric field in the slot and entire-domain basis and testing functions are utilized

in its numerical evaluation. The restrictions imposed on the cavity dimensions by the wave

beam assumption are also discussed and the equation for the surface of the cavity back-wail

is obrained and solved numerically.
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CHAPTER 2

APERTURES IN A PLANAR CONDUCTINC SCREEN

In this Chapter we first present a general formulation for the problem of diffraction by

an arbitrary shape apernrre in a perfectly conducting screen and then speciaiize the resuls to

the case of a narrow slot. The resulting equation for the electric field in the slot aperrure is

in the form of an integro-differential equation and a technique based on the moments

method and Fou¡ier t¡ansform is proposed for its efficient numerical evaluation. The slot is

excited by either a cunent source on the apeÉure or an incident plane wave which

correspond to the radiation and diffraction problems, respectively. Once the electric field,

and hence the voltage disuibution, in the slot apemrre is known it is easy to calculate the

radiation and circuit pammeters of the antenna. Booker's extension of Babinet's principle

and its iimitations are also discussed. Finally, typical numerical results for the voltage distri-

bution, input impedance, resonance frequency and bandwidth are given.

2.1 - Formulation of the problem

The geometry of the fundamentai problem to be considered in rhis section is shown in

Fig.2.1. The arbitrary shaped apeffure is excited by specilìed impressed sourccs Ì, ñi @,

incident fields d, F'; i., region (l) as well as a surface cunent density * on the apemrre.

The screen is pcrfcctly conducting, vanishingly thin and of infinite extent and is located in

the x-y plane. Regions (1) and (2) are homogcneous with paftrmcr.ers (pr, er) and

(Vz, eù respectively. Thc loss in thc medium can be accounted for through rcplacing e by

, - i 1. All source and field quantities are assumcd to vary harmonically wirh rime as
(Ð

e/d which facror is supprcsscd throughout.

The fìelds in rcgions (l) and (2) should saf.isfy thc following boundary condirions:
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)

planar conducting ground scrcen (a) and its

ili
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t) ft, x È = 0 on the surface of the ground screen,

ii) continuity of â1 x d in trr. aperrure,

iíi) a discontinuity of â1 * F in the apernue equal to f.
V/e apply the surface equivalence principle [39] to replace the apernrre and obtain a

simple s[n¡cture in each region. For convenience in the pictorial representations, we wili

assume in the following that the impressed current on the aperture,r] is zero; but it wi[ be

included in the final results. Considering for the moment only the fields in region (1) i.e.

z> 0, it is clear from the equivalence principle that we can replace the entire ground screen,

the apernrre, and the half-space z < 0 by an imaginary surface in the x - y plane on which

the equivalent surface current densities 7"{t) = È * h1 and ¡7s(1) = âr x È | o flow

without affecting the fields in the half-space z > 0. Here A is the apernrre area and quanti-

ties in the z> 0 region are denoted by the superscript (i). Note that the boundary condition

i implies that À7"(U is non-zero only over that portion of the x- y plane originaily occu-

pied by the apernrre.

The application of the surface equivalence principle causes zero fields to exist in

region (2), i.e. the half-space z< 0. Therefore as far as the fields in region (1) are con-

cemed, it does not matter what material exiss in region (2). Consequently we may ñll this

region by a perfect electric conductor immediately behind the surface cunents in the x - y
plane. This eliminates the contribution of the electric surface cunent density {l) to tfr.

fields in region (1), as may be easily seen from considering the image of /s(1) due to the

infinite ground screen. The above developments are represented in Figs. 2.2a and 2.2b. By

funher application of the image thcorem, the original problem takes a simple form which is

valid only for z> 0 as shown in Fig. 2.2c. Using the same proccdurcs as explained above

one obtains an equivalent magnetic surface currenr density ñ:" = hrxÈ I ¿ for the

equivalent system of region (2) which is shown in Fig. 2.3. Application of the boundary

condition ii along with the fact that unit normal vcctors arc oppositely dirccted for the rwo

half-spaccs, leads to thc conclusion that ñ, =ùr(') --ñr") wirh d" --î xÈ" and

È" it thc clcctric ficld in rhe apcmrre.
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The quantities I an¿ ùí in Figs. 2.7 to 2.3 represent independenr sources of the

electromagnetic fields. The total fields f,l) anc ¿7(l) in region (l) are composed of incident

fietds .* and Ft due to the independcnt, sources which would exisr in free space (i.e. in

the absence of the screen) plus fields t nd.d' reflected from the infinite non-perforated

ground screen, and scattered fields F(1) an¿ Ps(l) radiated by the equivalent surface

current ,ü"{tl 
" 

the presence of the shorted screen. The sum of the incident field and the

reflected field may be considered as a short-circuit field, wrinen as

t" =È +t
È'" =Èi +È'

(2.ra)

(2.1b)

(2.2)

dyadic

In region (2) the total fields B2) ano ÈQ) *" simply the scanered fields d"(2) ano

Èt<z¡ radiated by the equivalent magnetic surface cunent density ñr"' n the presence of

the shorted ground screen. The fact ttrat À7"(t) = - ñsQ) implies rhat we need onty solve

for ù". From the above considerations, the equivalent systems obtained for regions (1) and

(2) satisfy the boundary conditions í and ii. The remaining condition (iii ) will be used to

determine the actual distribution of the equivalent cunent ñ, h the aperflrre. In order to

enforce this condirion we musr find the fields Pr(l) ano F"(2) produced by ù, which is

the subject of the next section.

2.1.1- Calculation of the magnetic fields

The magnetic field due to a magnetic surface current density 4 tr given by

ÈØ = - ry Iere lÒ ñ,rú a,'
471 S

whcre the integration is over rhe magnctic currenr surface anO 8g(P | Ð ir r¡.
Green's function of an unbounded region given by [40]

E¡a lÐ= r?.ivv)coelÐ
In this equarion ? = # + ff +# is t¡re unit dyadic and

(2.3)
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È = co(!re)lÆGo(? I Ð =
e-jR

F(r)-¡7s(1) +È'"

È(2) - È'(2)

The condition iíi on the tangential magnetic fields on the apernrre requires that

R
(2.4)

(2.6)

(2.7)

with

R =[(x -x)z +(y -y')2+r211t2 (2.s)

and the primed quantities are those of the source points.

In the equivalent system of Fig. 2.2c @ig. 2.3c) we employed the image rheorem,

removed the infinite ground screen and replaced its effect in region z > 0 by an image mag-

netic surface current density idenrical to the original and located an infinitesimatly small dis-

tance away. This leaves, in effect, a magnetic zurface cunent distribution ZñrOl çor ZñrQ)

if z < 0) which is non-zero only over the zurface ,S, which resides in f¡ee space, and which

together with the incident fields and their images yield the correct fields for z > 0 and zero

fields for z< 0.

With the above development, an expression for P" ir easily obtained in each region

by using (2.2) with the appropriate cunent density. The toral fretds are then

lim îxÈQ)- lim t*ÈØ=t (2.8)
z+0* z+t

where .f; it tft. specified impressed cunent distribution on the aperrure. On the surface of

the electric conductor the condition î x (F'- F' ) = 0 must be satisfied and therefore

from (2.Ib) we obtain

1xÈ'" =zîxÊi (2.e)

Expansion of (2.6) to (2.9) yields the following system of equations for the unknown mag-

netic surface current density ù, on the aperture

HxQ)-HJt)=-Jí, z+0 (2.10a)
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where

H,G)çx , v)=uHi- ffilr.(x', v'> rr? *L)G s+Mr(x' , v'r#o otor' (2.ra)

HrQ)çx, y)=ZHi- ffi ¡:*,(x', y'r{o;o **, (x', y'> ft ? *L)Goló' (2.r rb)

and

H,Q)çx,Ð= ffi ftr,rr',yi &1 * #roo+ Mr(x',r') LGol¿r' (z.t2a)

Hr@)çx , ,r= ffi [w,rr', r') LG 
o + Mr(x', y) &î * #ro ot*' (z.tzb>

From the above results and for the case where both regions are free space, i.e.

Pi = [tZ = FO , tl = €Z = €¡ and thus ,t t= kZ= kO , we obtain, after re-arr¿nging terms,

two coupled integro-differential equations for the components of ñ, given by

Qc& + #rr,* # Fy =-/7ropo pni-tp, z=0 (2.13)

G& + 
rrrLr 

r, * # F, = -/7rop0 çznj + tfl , z=0 (2.r4)

where

HyQ)-Hr1)=Jl , z+0 (2.10b)

(2.15a)

(2. tsb)

It is possible, in principle, to transform a system of coupled intcgral cquations to a

systcm of simultaneous algcbraic equations and computc the rcsulting matrix clcmenus by

available numerical methods. However, because of the differential operators in Eqs. (2.13)

F,Ø = I ,,il co¿ ln a"
A

FrØ = I ,re) co(" ln at'
Ä
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and (2.14) this direct approach will result in considerable numerical difficulties. In an

attempt to solve this problem one may use the two dimensional Fourier transform defined

by the rclation:

F {.f (x, y)} =.f (o , p) = f (x, y) e-i@x + Ft) ¿* ¿t (2.16)

Application of this transform and using its well-known properties to (2.13) and (2.14), the

differential operators reduce to algebraic quantities in the spectrai domain where a numerical

procedure such as the method of moments can be used efficiently. The details of this

approach are given in the next section for the special case of a narrow slot.

22- Special case of a narrow slot

Equations (2.L3) and (2.ß) are very general and can be applied to any arbiuary aper-

ture shape and impressed sources. However, in antenna applications we are more interested

in apernrres in the form of nanow slots. The slot shown in Fig. 2.4 is of length 21, width

2w and is excited by sources either outside the apernrre to construct a diffraction problem,

or by a cunent source on the apeffure itself with the slot acting as a radiator. Assuming a

n¿urow slot, i.e. w 4 L, w 4 L and for the type of excitations to be considered here, the

axial component of the unknown electric field in the slot is negligible, i.e. E?@,y) = 0

and the transverse component of the electric field can be written in the separable form

Ef(x,t)=X(x)Y(y) (2.17)

with

Y(y) = (2.18)

where y" is the ordinate of the slot center. This choice for the I' function is based on the

knowledge of thc field in a narrow slot of inlìnitc length and inco¡porates the proper field

behavior at the cdges [21].The unknown function X(x) satisfìcs the following intcgral

equaúon with diffcrcntial operator in the integrand,

II

- (y - y")2
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È

.r)

Fig.2.4- Narrow slot excited by a current source and an incident plane wave.
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x(x')(k2+#rG@-x)dx = g(x,yr) (2.19)

G(€) =
e-ik[Ez + (wsino)2 ]ra

t å2 + (wsin0)2 112

forcing funcrion to be

(2.20)

where g (x, !r) is the

wavenumber.

discussed in Sec. 2.4 and k = ko is the

23- Numerical solution of the integral equation

Equation in (2.19) is similar to the so-called Pocklington's equation for the currenr

distribution along a wire in the theory of linear antennas and scatterers. This equarion,

which is in the form of a Fredholm integral equation of the ftrst kind, is basicaüy an

integro-differential equation and due to the presence of derivatives in the integrand as well

as the singular nature of the kemel its numerical evaluation requires a special treatment.

In the past the method of moments has been used to solve Pocklington's equation and

several approaches a¡e introduced to eliminate the differential operator and these may be

categorized as follows:

1) writing the integro-differential equation in the form of a harmonic differential equation

whose solution is used to form a simple integral equarion of Hallen's type which is

then solved for the unknown function;

applying piecewise linear or sinusoids for basis and/or testing functions in the

moments mcthod and using integration by parts twice to climinate the second deriva-

tive resuhing in a difference equation;

replacing the sccond derivaÈivc in the equation by a linite difference approximation

and thus obtain an integro-differcnce equation.

In particular the last ¡.wo mcthods arc cquivalcnt to Hallcn's equation with point matching

as shown clscwhcrc [411.

rv2

+J da

2)

3)
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While all the above approaches are aimed at removing the differenrial operator from

Pocklinglon's equation, very little analytical work has been done to treat the singularity of

the integral which can result in serious difficuities in numerical compurations. A popular

solution to this problem is to use the well known reduced kemel approximation which is

valid only for very thin wires and narrow slots. ln yet another approach, the integrand is

made smooth by isolating the singularity of the kemel and inægrating the singular part

separately [4, pp. 3-55]. However, the operations arc rather invoived and numerically

inefficient as they include a number of double integrations.

We apply the method of momenß to the problem and use the Fourier transform to

obtain simple and numerically efñcient expressions for the matrix elements without resort-

ing to any of the above mentioned methods or approximations. This approach eliminates the

differential operator in Pocklington's equation witlout imposing any restriction on the

choice of basis and testing funcúons, thus making it possible to use the simple pulse expan-

sion and point matching. Furthermore, the singular kemel in the space domain turr¡s to a

smooth function in the Fourier domain and no additional effort is required to handle the

singularity. Finaily, the matrix elements are expressed in terms of a single integral in com-

parison with a double integral for the case of exact kemel in orher methods.

V/e consider a solurion of (2.19) in the form

X(x) = x"(x) (2.21)

are unknown consta.nt coefficients. Thuswhere X"(x) are known basis functions and V^

F"(x)= g(x,yr) (2.22)

where

N

>v"
n=l

/V

2v"
n=l

and

F^(x) = (k2* j1l An.x)
òx"

(2.23)
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xc+ L

An(x) = [ X^@') G(x- ¡') dx'
xr- L

(2.24)

Since the tangential elecrric field vanishes on the conducting screen, we can extend the lim-

its of the integral in (2.29 to infinity and write

To obtain a system of N linear equations for the N unknowns in (2.22), we form the inner

producs of both sides with a testing ñ¡nction W^* (x) where * denotes complex conjugate.

The result may be written in matrix form

lar*l lV"l = [b^] (2.26)

where

+æ

A,(x) = ) X^(x') G(x- x') dx'
-æ

d,r* = [-*^* (r) Fo @) dr

+æ

bm - _l-r^* @) g (x, y") dx

1 r -*a,,- = i: J W^(a) F^(a) da
¿78

whcre c¿ is the Fouricr transform variable and - denotcs the

(2.2s)

(2.27)

(2.28)

(2.2e)

Fourier domain quantities.

From (2.20), (2.23), (2.25) and (2.27), it is seen that the mat¡ix elemenrs ar, contain triple

integrals with differential operator in the integrand and a singuiar kemel which makes the

computations even more prohibitive. In the next section we present a method that removes

tlre derivarive and gives a,r N only a single integral with a well behaved integrand.

23.1- Calculation of the matrix elements

Using Parseval's identity, the integral in (2.27) can be wrinen in the Fourier domain
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Since the integral in (2.25) is in the form of a convolution integral, the convolution rheorem

and the well-known properties of the Fourier transform lead to

Q.3r¡

and K6 is the modified Bessel function of the second kind and zero order. Thus, the matrix

elements become

õ (s) - 2 J o(iî',tu'?4'z , rc otî ',{dL k, )

r+î
a,r^ = + J^n- a\ Xnço,¡ fr)qu¡ Jo(jî",lur- tz ) xorî{ú- t, > ¿" (2.32)

F" tol = (k2- ú) X^(cr) õ (a)

where from (2.20) (see Appendix A)

At this point it is appropriate to

approximation on the calcularions in the

nel given n (2.20) reduces ro

G(E)= "-i*^tPi 
øú

^lEt * @ tif
and its transform becomes

c(o) =z Ko(î^|"'4')

(2.3O)

investigate the effect of using the reduced kemel

Fourier domain. Wittr this approximation, the ker-

(2.33)

(2.34)

to the reduced kemel approximation. Thus the

(2.3s)

where the ba¡ indicates quantities related

matrix elements arc givcn by

I
'm

7E -l-(* 
- u.\&rol W)t"> K o(î{o-'- t' > ¿"

It is interesting to note that this approximation signilìcantly increascs rhe convcrgence rare

of the intcgral, as can be obscrved by comparing the asymptotic behaviorof /6(x)K6(;r) in

(2.32) and K6(x ) in (2.35) wirh x = +^l a'- k'z for c¿ > È , namely þ2, p. 378)
2
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/ok)Ko(x) =L@o-+.3*3*...) (2.36)

which decreases as the inverse power of x, while

Ko(x) =+@o++-+.+....) (2.37)txxx.xt

decreases exponentially with x.

23.2- The basis and testing functions

For the basis and testing functions, one may choose any of the commonly used sub-

domain ñ.rnctions shown in Fig. 2.5. These are

a) rectangular pulse or piecewise constant function

I¡1, for lr-rnl =*f ^(Ð = 1rn\'-/ 
lo, for lr-*nlrî

i sin($cr) I
l^@)=rs-rx"u I -"1- IL z" l

b) triangular pulse or piecewise linear function

I I x-x-l
] t- --T=-, for xr_r S x S xn*1

¡"rt)= 
|. o, otherwise

r ,. . ^. o-i,^o [ ""râ"i 
-Jt

Ín(q=T" "-LA4c[j

(2.38a)

(2.38b)

(2.39a)

(2.3eb)
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^l-

-t 
^ 

þ- ÍY xc+ L

(a)

r¡¿-r x¡¡ xc+ L

(b)

f¡U-t Í,¡¡ x"+ L

Fig.2.5- Sub-domain functions commonly used as basis and testing functions: a) rectangu-

lar pulse, b) riangular pulse, c) sinusoidal pulse.



c) sinusoidai pulse

I
/,(t) = 

I
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or piecewise sinusoid function

sin[È(Â- lr-r"l)]
sin(,tA)
0,

, for r¿_lSxSxr*1
otherwise

7 . , 2ke-l'^o
I "lcf) = ,i,(¿Ð

W^(x) = ð(¡- x^)

Wi"r"> - ,i'^a

cos(kÂ) - cos(As) IT]

Q.a0a)

(2.40b)

Q.ata)

(2.4rb)

In these equations Xn =Xc- L+ nL, n= 1,2,.' . , N and Â =2Ll(N+l); while Xn_L=

xn- L and .rrr*1 = xn+ L . For point matching at points x^ = x"- L+ mL , m= l, 2,

''', N the testing funcrion is

We may use any of the above functions n (2.32) or (2-35) to calculate the matrix elemenrs.

Frcm these equations it is clear that when both the basis and tesring functions are the same,

i.e. Galerkin's method, the convergence of the integral is faster than point matching, as can

be seen from the potvr/er of cr in the denominator. For the same reason, sinusoidal or tri-

angular pulses result in faster convergence than the rectangular pulse. In atl the cases, the

integral in the matrix elements has a well behaved inægrand over the entire range of

integration and can. be performed numerically without difficulty. As an example we choose

the rectangular pulse as basis function along with point matching. Substirution from (2.38b)

and (2.41b) into (2.35) yields the mauix elemenrs as

drr* =

Note that the matrix elcments depend on I ^- n I and rherefore rhe moments matrix is of

the Toepliu typc [43]. Hcnce, we only nccd to compute the clcments of one row (column)

and the other elemcnts are just rcpctition of these valucs. This propcrty significantly rcduccs

the filling time of tlrc momcnt matrix. To evaluatc the matrix clcmcnts in Q.a\, duc ro the

branch point at a = k we split the intcgral and write

oI
îco
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um¡t - (2_43)

where ht@) and h2(a) constitute the integrand, of (2.a1 for cr <,t and s,> k, respec-

tively. The finiæ integral in (2.aÐ can be easily compuæd by numerical inægration. To

perform the infinite integral, we write it in the form

lr æ -l

+ L{o',t 
da+ I nx"> a" 

)

I
J hz@)ds.=lt+Ir-I.t
k

M

I t= I h2@) da
k

æ

rz= I h@) da
0

M

rt= [ h@) da
0

Here h (a) is the approximation of hz@) for cr >> k , i.e.

h(a) = - " 
*o(îa) cosl(¡n- n )Âq] sin(]a¡

Q.a4a)

(2.44b)

Q.aac)

(2.44d)

(2.4s)

and M is a number chosen such that h(M) = hz(M) which is normally rrue for M>10k.

The integrals 11 and 13 are finite and a 20 point Gaussian quadrarure is used for their

numerical evaluation, while the infinite integral I2 can be calculated analyticalty by using

Eq. 6.691 in [44], i.e.

nb
)

-J 

,
0

Ko@x) sin(å¡) dx ( a2 + bz )-3t2
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2.4- Calculation of the source vector elements

For the general case where the slot is excited by an incidenr plane wave with its mag-

netic field El' as well as a known surface cunenr distribution t = Ií(xú on the slot

aperh¡re, the forcing function g(x,J") in (2.19) may be writren in the form

Q.46)

where o¡ is the radian frequency and p is the permeability of the medium. In the following

we will obtain the source vector elements b^ for each type of excitation separately.

2.4.1- Current source excitation

For this case the forcing function in Q.aÐ reduces ro

g(x)=inorpJf(x) (2.47)

Practical examples of such a source are coaxial or two-wire lines connected to the slot

edges. Due to the fact that v¿ < 1", the current distribution over the feed line in the slot is

essentially uniform. On the other hand, to avoid blocking the radiation it is desirable to

keep the width (or radius) of the feed line in the slot to a minimum. Thus one can assume

the slot to be excited by a delta current source of amplirude ^Ig applied at the point x = xr.

We model the delta function by a pulse of width Â and unit area. Hence, the current distri-

bution of the excitation source on the slot apernrre is given by

s(x, !") - jæo¡p lr;O, - z n:6, ,") ] , z= o

Jf(x) =
, for lx-.,rrl

for lx-x, I

and from (2.28) the source vector elements become

<^-2
'̂){t

l<a
2

ẑ

. Io
¡roFT,

0, for

for I ,^- ,,

l*^-xrl

(2.48)

b^= (2.4e)
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2.4.2- Plane wave excitation

For excitation of the slot by an incident plane wave (È , Èt ), the forcing funcrion in

(2.46) reduces to

g(x, !") - -jZntol Hi@, yc) , z= O (2.s0)

In general, for a uniform plane wave incident in a direction specified by the angles 0i and

0i, th" x component of the magnetic field is given by

HjG, !, z) = frø Eb, - k, Eby)"*p [-l (k,x+ krt+ n,r)f (2.s1)

where kr= ksin0tcosQi, ky= ksin0isinQi and kr= &cosQi. For normal incidence i.e.

0i= 0, from (2.50) and (2.51) the source vector elements b^ wmour ro be independent of

the parameter rn and we obtain

b^ = j2nk E's, (2.s2)

25- Circuit quantities of the slot radiator

From the circuit point of view an antenna can be characterized by quantities such as

input impedance, resonance frequency and bandwidth. With the slot excited by a source

with uniform current distribution of a total cuffent 16, the input impedance is defined as

7Lin -

V (x,)

Io
(2.s3)

where V (x, ) is the voltage across the feed point. The voltage distribution along the slot is

given by

J'* w

v(x)=- I tíe,y)dy
Jc- ttt

From (2.17), (2.18) and (2.21) it is easy to show that

(2.s4)
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V(x)=
/V

¿=1

Vn Xn(x) (2.ss)

where for pulse expansion the basis functions X^(x) are defined by (2.38a). Thus rhe com-

plex values of Vn obtained ftom (2.26) give the acfual amptirude and phase of the voltage

at the matching points xm, m= l, 2, . . . , N. This data can then be used ¡o find the vol-

tage at other points of the slot by interpolation.

The resonance frequency "f, is defined as the frequency at which the imaginary part of

the input impedance vanishes, i.e. X (f ,) = 0. The useful bandwidth of an anrenna is that

range of frequencies over which the antenna satisfies certain requirements of impedance,

radiation paftem and directivity or polarization characteristics. Since these requirements vary

according to each particular application, there is no unique definition for the bandwidth of

any antenna. Here we define the bandwidth æ the frequency range over which the I¿SI{¡R

remains below a specified value, namely 2:1. With the input impedance of the antenna as a

function of frequency given, one can easily find the VSIVR versus frequency and from

there determine the bandwidth. For this purpose and to provide a reference point we assume

that the antenna is perfectly matched to the generator at the resonance frequency.

2.6- Booker's extension of Babinet's principle

Booker [23] generalized Babinet's principle of optics to take inro accounr rhe vecror

nature of the electromagnetic fieids. This extension which has often been applied to the

case of a slot antenna shows that the impedance Z of any planar antenna and the impedance

Z' of its complement i.e. the antenna for which the area of the conducting scrcen and that

of the aperture are reverscd, satisfy the relation Z Z' = (Zo /Ð2 where Zg is the charac-

teristic impedance of the surrounding medium. Howeveç there are a number of basic

assumptions that must be made before Babinet's principle can strictly be applicable: namely,

the screen must be pcrfectly conducting, flat and infinitc in size, and vanishingly thin. Of

course some results obtaincd from Babinet's principle may be approximarely correct for a

practical case wherc the scrccn is oniy highly conducting and large and thin compared to
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the wavelength. In addition, it is possible to take into account the effect of finite thickness

of the screen from a conformal mapping solution of the static case. The region outside the

slot can be mapped to that outside an infinitesimaily thin one by the Schwartz-Chrisroffet

transformation [45] with the resuit reducing to complete ellipric integrais of the firsr and

second kind [a2]. Application of this method shows that the effecúve width of the slot is

less than the acrual size [28]. One can also consider the small change in t]re effecrive lengttr

of the slot due to the finite thickness of the screen.

The validity of ttre Booker's assumptions to obtain the impedance of a slot antenna

from those of a linear dipole were examined experimentally by Long t281. In these experi-

ments a slot of one-half the desired width was cut in the edge of a ground plane and

mounted on a higNy conducting imaging plane. With this a¡rangement one is able to place

the feed system and measuring equipment behind the image plane and thus allow the slot to

radiate freely on both sides of the screen.

2.7- Numerical results

A knowledge of the voltage distribution aiong the slot is necessary for determining the

circuit and radiation properties of the antenna. To confirm the validity of the approach

presented in this Ctrapter for solving Pocklington's equation and thus the voltage distribu-

tion in the slot, we compare our results with those based on available methods. In Figs.

2.64.7 we have used the abbreviation FD I PP to indicate the calculation of rhe marrix

elements in Fourier domain with pulse expansion and point matching. Similarly, SD / GS is

used to identify the solution in space domain using Galerkin method with sinusoidal func-

tions for basis and testing which is based on method 3 mentioned in Sec. 2.3. Unless orher-

wise stated, the ratio of the slot width to slot length is 0.04 and the antcnna is operating at

f = 3 GHz in atl the examples. The slot is excited either by a delta curenr source of

amplitude Io=l mA located at úe pointx = jrs or by a normally incident plane wave

with Ei, = I V lm. Fig. 2.6a shows thc amplitude and phasc of the volrage disrribution

along a slot of length Ìv/2 and s= L whilc in Fig. 2.6b rhe slot lengrh is l" and s= Ll2.
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Fig. 2.6b- Comparison of the computed results for voltage disuibution along a slot of
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Fig.2-7b- Comparison of tl¡e computcd results for the induced voltage distribution along a

slot of length 2L= )," illuminatcd by a normally incident plane wave.
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In these figures the dashed line is used to denote the phase variation. For the case where

the slot is illuminated by a plane wave, the amplitude and phase of the induced volrage are

shown in Figs. 2.7a and 2.7b for 2L= \J2 and I, respectively. From the above resulrs it is

seen that the agreement between the two methods is very good. The feed-point location s

has significant effect on the voløge distribution along the slot and thus the input impedance.

This point is demonstrated in Fig. 2.8 for a slot of length 0.6 I and s lL= 0.2 (1.0) 0.2.

The corresponding impedanc€s are also given in Table 2.1.

Table 2.1

slL R (O) x(c¿)

0.2

0.4

0.6

0.8

1.0

14.9

41.8

7t.5

94.5

t03.2

t09.2

88.4

31.0

- 25.5

- 48.7

The resistance R and reactance X of a center-fed slot of lengttr 25 cm and width

1 crn versus frequency a¡e calculated from the moments method and compared in Fig. 2.9

with the results obtained from application of Babinet's principle as well as the experimental

measurement [28]. ln this and the following figures the dashed lines represent the reactance

or susceptance. It is observed that the sinusoidal current distribution which was assumed

on the complementary center-fed dipole in using the Babinet's principle [46] results in sub-

stantial error in the impedance valucs at frcquencics highcr than the resonance frequency as

expected. The difference betwecn thc moments mcthod solution results and those obtained

from measurcment data can be anributcd to thc fact that in the analytical solution we have

assumed a perfectly conducting screcn of infìnitc cxtent and vanishingly thin, while in the

experiment the slot is cut in a screen of fìnitc conductivity, sizc and rJrickness.
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Moments Method (MM), experimental measurcmens (ÐG) and Babincr's Princi-

ple CBP) for a cenrer-fed slo¡ of lengrh 2L= 25 cm and width 2w= L cm.
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The effect of the feed-point location on the slot impedance is shown in Fig. 2.10 for

various slot lengths. This figure suggests a convenient way for matching the antenna to the

generator by choosing the proper location for connecting the feed line. The admittance of

the slot versus 2Llluis shown in Fig.2.11 for wlL= 0.02,0.04 and 0.06 while Fig.2.12

presents the impedance as a function of frrequency for slot lengths 2L= 4,5 and 6 cm.

Fig. 2.L3 shows the resonant length 2L, namely the slot length at which resonance occurs,

for a center-fed slot. The slot width has no appreciable effect on the resonance frequency

which is mainly determined by the slot length. The radiation resistance R,' N a function of

tlre slot resonant width 2wrlî, is shown in Fig. 2.I4. T\e computed results indicate that for

a given slot width the value of R,, is essentially independent of the slot length. Fig. 2.15

shows the bandwidth versus ?L llv for various slot widths. It is observed that in general a

shorter and wider siot has a wider bandwidth and lower radiation resistance.
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CHAPTER 3

ELECTROMAGNETIC FIELDS IN BOI.JNDED RECIONS

The open slot radiator discussed in the previous Chapter is free to radiate from both

sides. However, in most applications the radiation should be restricted to one side only,

which may be achieved by using a conducting enclosure to back the slot. ln the problem of

cavity-backed apernrres to be analyzed in Chapter 4 we need the fields produced by volume

or surface current distributions in a closed region of space. This problem is solved here by

expanding the fields in terms of the irrotational and solenoidal eigenvectors. Although the

method of field expansion is not new and has been used in different ways by many authors

[47-50], the developments made in this Chapter were not found in the literature and seem to

be new. First we obtain the solution in the form of volume integrals over the sources and

surface integrals over the boundaries. Next, by re-arranging the terms in the integrals and

writing them in the convenient dyadic form, general expressions for the dyadic Green's

functions of an aröitrary closed region are extracted. Thc reduced form of these expressions

for the important case of rectangular cavitics is also derived and those pertinent to a

cylindrical cavity can be found in [38]. Finally, the subject of resonant modes is discussed

in detail.

3.1- Derivation of the fields and dyadic Green's functions

The expansion of the fields in terms of onhogonal eigenvectors (or normal modes) is

based on the mathematical statement of the Helmholtz theorcm [51]. According to t]ris

theorem an arbitrary continuous vector field with conúnuous derivativcs in a rcgion of space

V and boundary S can be cxprcssed in terms of gradient of a scalar function and curl of a

vector function. Thus thc fìeld can be expandcd in a serics of irrotational (zcro curl) and

solenoidal (zcro divcrgence) cigenvcctors.



In these equations, ./ anO ñ un the electric and magneric source currenr disuiburions,

while the ei'' hatmonic time dependence is assumed and suppressed throughout. We con-

sider the solution
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From Maxwell's equations the fields must satisfy

Vx vx È - tc2 È = -j@ rt 7 - yx ù
Vx Vx È - tcz È =yxÌ - ja e ù

È(ò -ZAi 4Ø+>Bi ff ø +Zci ÈY çn
vvv

ÈØ = > AX È"Ø + Z B(, ÈTt ø + Z cX 4 ø
vvv

v2þí+(ki)20í=o , inv

0í=0, (orñ'4=0, âx?"=6¡ ons

È"=Y þ!

v2þ!+(k()20j=o , ínv

(3. 1 a)

(3. lb)

(3.2a)

(3.2b)

G.aa)

(3.4b)

(3.s)

(3.6a)

(3.6b)

where A, B , and C are unknown exparsion coefficients and v stands for a set of triple

indices (m, n , p). In the above equations, 4 nd È, *" the irrotational elecuic and mag-

netic eigenvectors, respectively, defined by

dr=Y þÍ (3.3)

with

and

with

$=0, (or h'Èu=g¡ onS

where â is r¡c outward normal to the boundary.
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For the case ,t$ = 0 in (3.4a), the funcdon Qf sarisfies Laplace's equarion Vr0,rr= 0

and can thus be considered as an electrostatic potential with 3u representing the electrostatic

field. This case coresponds to a region which consists of two or more separate bounda¡ies,

as for example the space between two concentric spheres. On the other hand, &f = 0 in

(3.6a) corresponds to tfie case of a muttiply connected region, i.e. regions in which there are

contours that cannot be shn¡nk away to nothing. An example of such a region is the space

between two coaxial cylinders closed at both ends. ln this case Êu .orr.rponds to the mag-

netic field produced by the dc current flowing through the circuit which consists of the

center conductor, the shorted ends and the outer conductor.

The quantiti 
"t 4E n¿ lY in (3.2a) are the solenoidal electric-field eigenvecrors

and are the two independent and murually orthogonat solutions of the following homogene-

ous vector wave eçation

It is easy to show rhat tlte above solutions a¡e of the form

4E = v* (vlE Ð

VxVxÈ"-t3 d"=0, tnv

âxd"=g onS, V.B"=O inV

(3.7a)

(3.7b)

(3.8)

(3.e)

and the generating funcrions VIE -d VTM u"

(3.10)

ÉTM Vx Vx 1VTM Ò

where d is an arbitrary constant vector,

solutions of the scalar wave equation

V'W +,tu2 ry, = g

1=-
KTM

with appropriate boundary conditions derived from (3.7b). Similarly flE ana È( i"
(3.2b) are the solenoidal magnetic-field cigenvectors and are rhe independent and mutually

orthogonal solutions of

VxVxÈr-tr'È,=0, inV (3.1 la)
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âxVxÈu=0 and h È,=0onS, V.4=O inV

These solutions are given by

7/TE IF\o = # ," v' (vlE Ð

ÈI* = v* WTM e)

(3.1 1b)

(3.r2)

(3.13)

(3.14d)

It should be pointed out that in all the above equations, as yet, the superscripts IE and TM

have no specific meaning and a¡e merely used to denoæ two independent quantities. How-

ever, we will show later that with a proper choice of the constant vector d, these super-

scrips actually represent the tra¡xverse electric and transverse magnetic components of the

fields, respectively.

From t}te physical point of view, the boundary conditions defined for the irrotational

and solenoidal eigenvectors colrespond to the boundary conditions of an enclosure bounded

by perfectly conducting walls. Therefore, it is appropriate to call these eigenvectors the

short-circuit modes. The following orthogonality relations exist for these modes [49]:

ptv (3.14a)

(3.14b)

(3. lac)

Furthermore

p+v

7p,v

{çz}-lrxl

úhÌ {å},"=o

ilîÌ {e}0,=o

t{î} {å},,=o

In rhe above retarions, 
{F} 

tr either

iltr\ W"|dv=0, Y¡,,v

and thc following relations cxist. between thc solcnoidal clcctric and magnetic eigcnvccrors:
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(3.15a)

(3.1sb)

For the fields defined in (3.2) to be actual solutions of (3.1), they must satisfy the specific

boundary conditions dictared by the problem at hand as well as Maxwell's equations, i.e.

'"{ff'l=kT'{tr'l
,"{X"l=or lffil

yxÈ =-jo¡ frÈ -ñ
JJYxH=joreE+f

av - [vx
v

(3.1 6a)

(3.16b)

(3. I 7a)

(3.17b)

We use these equations to obtain the unknown coefficients in (3.2) in terms of the sources
âJ

-/" and M in volume V, and atso the tangential electric field on the boundary surface S.

However, it should be noted t¡at because the specified boundary conditions are, in general,

different from those of the short-circuit modes, the fields in (3.2) arc nor uniformly conver-

gent at the boundary and thus the derivatives of the fields are not the zum of the derivatives

of the short-circuit modes. In other words, one cannot directly use Maxwell's equations to

solve for the unknown coefficients. One way of circumventing this problem is through

inægration of the vector identity

v.dx.d=Vx î.È -vx Ê.î
over the volume V. Application of this relation to various combinations of the fietds and

eigenvectors yields

l,*
{',;l -

[¡*
t4[v È*{í;} dv = rvx d {i;}

f {*} "n ¿, =r"" {5;} "
¿u -lvxF.

v

In these equations, Èu ana r?u ntu" eittrer TE or TM superscrips. Thus, we obtain six

equations for determination of the cxpansion cocfficients in (3.2). Subsrirurion of rìc lartcr

equations in (3.17) and using (3.14) to (3.16) along with the fact that
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Yxèu-0, VxËu=0 ínV

also

h*{
L

after solr

Al=

Bl=

yields

¿re )

"*f" | = o and hxèu=o on Strp )

ing the system of linear equations the following results:

-)"r.4dv
v

(3.1 8a)

/'Êf l4lz ¿,
v

¡ ,pli . fE av +r{E [ ù Èçt a, +r{E [ @ x È> ilf ¿,
vvs

(3.18b)

A!=

Îk2 - ç¡çf,t)'?r f | 4' lt ¿u
v

jil.È"ar*[rh" È> .Èu ùvs
(3.1 8c)

B(=

-/@fr IlÈ"lz ¿,
v

¡ ri,elù . flEa, -r[EIi flE¿v +¡orcJ(â* È¡ È!Ea,
vvs

(3. l 8d)

ttz - urT|)tr f | flE 12 a,
v

The equations for Cl and C( nay be obtained from those for Bf, nd Bl, respectively,

through a change of superscript from TE to 1nM. Substituting the above resulrs in (3.2) and

re-arranging the terms wc obtain the following equations for the fìelds:

ÈØ =-jor ufiel E"(il Ò du' - I ùd) . v'x E"e | Ò dr'
VV

- I ¡, Èr¡> .v'x E"e | Ò ar' (3.re)
s
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where E"(t I Ð ir the elecrric-type dyadic Green's function defined by

" k2Ï I 41 2¿r' v 
Í&TE )z - *ll I 4E I zar'

+)

v

ÈYd>ÈYø
u 

tçoç"' - t 2ll l ly I2¿r'
V

Y'x E"e | ð =, t'Tt 4t e> 4'tn * > 4' il," e> il' ø
' v 

KkIMf -ûllÈyl2¿,'

The integral expression for the magnetic field is obtained as

ÈØ = Ife> .y'x E^e I n dv' -/o e I ñre> . E^e | ð dr'vv

-./cùe In"Èe>.e^dlna" G.zr)
s

where E^e I Ð ir the magnetic-rype dyadic Green's function defined by

E^il Ò=z-Ê,v)È'Ø *2 4te> ÈTtø

" ú[ IÈ,1zau' v 
KtTE)z - t\l I ÈTt Iz¿u'

' tçnçtr, - t II l4E lz¿,

lYe> lYø
'z-r-
" turT,r lz - trlll Èy lz¿r'

V

v'x E^e I Ò = y t'T'E {'E r¡> ÈT rn * > kT' ÈY el f,Y ø
u 

tçn1tr, - r\[ l4E lt¿u' " ttnç*r, - trl[lÈT, l2¿r'
VV

(3.20)

(3.22)
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3.2- Dyadic Green's functions for a rectangular cavity

In this section we specialize the general results obtained in (3.20) nd (3.22) for rhe

case of a rectangular cavity with dimensions ¿ , b and c. The previously defined scalar

potentiais for this problem are given by

0f = sin(,t-x) sin(k"y) sin (Èoz)

0J = - cos(k^x) cos(kny) cos (koz)

VIE = cos (k^x) cos (kny ) sin (ko z )

\tTM = sin(Çx) sín(k^y) cos (&oz)

where m, n andp Ne inægers and

,- ñÍ - n1t .. _ pît
-=-rtun=-rn'-m a D 'P- 

c

(3.23a)

(3.23b)

(3.23c)

(3.23d)

(3.24)

(3.25a)

(3.2sb)

Since there is no preferred axis in the rectangular cavity, the constant vector d in the

transverse eigenvectors defined in Sec. 3.1 can be any of the unit vectors -f , f or â. wit¡

the choice of d = â, the irrotational and the two independent solenoidal electric-fieid eigen-

vectors are given by

du = k^ cos(k^x) sin(koy) sin (krl î

+ kn sin(k^x) cos(k^y) sin (krz) !
+ k, sín(k^x) sin(k^y) cos (ko) î

4E= - kn cos(k^x) sin(kny) sin (koz) î

+ k^ sin(k^x) cos(k^y) sin (ko) f

ly = 
þ l- o^ k, cos(k^x) sin(kny) sin (,toz) I

- kn kp sin(k-x ) cos (kny ) sin (ko z ) f

+ kk sin(k -r) sin(kny) cos (,to ù î f (3.25c)
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Similarly the inotational and the two independent soienoidal magnetic-field eigenvectors are

given by

È, = k^ sin(k-x) cos(kny) cos (koz) î

+ kn cos (k^x) sin(kny) cos (ko) f
+ ko cos(k^x) cos(koy) sin (ko) î

ÈI'= kn sín(k^x) cos(kny) cos (ko) î

- k^ cos(k^x) sin(kny) cos (ko) f
ìrElf,-- = -7 l_- O^ ko sín(k^x) cos(koy) cos (ko) î--v 

kT

- kn kp cos(k^x) sin(kny) cos (koz) f

+ kk cos (k^x) cos (kny) sin (,to t) î f
ln these equations

k|t = kT,, = ku = ( kk + t i )ro

kk=tc]+tc]

The squares of normalization factors of the above functions are obtained as

I l*12 d, =
v

I lÈ,lz d, =
v

where t¿, i = m, n, p,is

I Èul2 a, _ abc k3

emEnep

= 
abc kh
emeneP

I È,12 ¿,

(3.26a)

(3.26b\

(3.26c)

(3.27)

(3.28)

(3.29a)

(TE or TM) (3.29b)

I
v

f
v

the

0
0

Neumann number defìned by

(3.30)

Substicution of the above eigcnvectors along with their normalization factors into (3.20) and

(3.22) yields the elcctric and magnetic-type dyadic Grcen's functions for a rectangular

^ -f ,, i=
"r- l.2, i>
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cavity in terms of an infinite triple series over the indices m, n and p , i.e.

E"rí t Ò = +V,ål* Vy rE + È î* Èy) Art ^l (3 31)

E-E-t- l. , r ,,^- 
-t

E-e lÐ = >,u^EnEP | 1 la'y ÈIt* È'ï" È*) tck -' * I\rm* t 'I ) - !æ læ Lä;- t1;-+ H ;"' ul"')- nwo" o"l (3'32)

which are the same as those obtained from the Ohm-Rayleigh merhod [52].

For computational purposes it is desirable to reduce the triple series in (3.31) and

(3.32) into a double zummation if possible. Fornrnaæly in the cases of rectangular and

cylindrical caviúes, the summation over the index p calrr be writæn in closed form and

therefore the reduction is possible. First, we consider the electric-type dyadic Green's func-

tion. In an atrempt o single out the z dependence in the electric-field eigenvectors (3.25) in

order to simplify the process of reducing the triple series, we define the following auxiiiary

vector functions:

ú*(r, y) = k^ cos(k^x) sin(kny ) ,0 + kn sin(k^x) cos (k^y) ! (3.33a)

f," (*, y) = sin(k-;r) sin(k^y) î (3.33b)

#,*,(r, y) = - ko cos(k^x) sin(koy) î + k^ sin(k^x) cos(k^y) f (3.33c)

Thus, the electric-field eigenvectors may be written as

4 = f sin (,to z) + k, v* cos (kpt)

Èf=#sin(kpz)

ÈY = þ l- o, f sin (krz) + kk f cos {eoz¡ ]

G3aa)

(3.34b)

G3ac)

where the subscript mn of the auxiliary vcctor functions is omitted for convenicnce. Substi-

tution of the above quantitics into (3.31) yiclds
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A , I K2- 6 sintÈ-e"e | ð = -+ Z e^ r^ 1 ì" f +- sin (koz')sin-(krz)
' abck¿ ,f,n t 

kfl p?r tî - rck

k, sin (krz') cos (koz) _ ."

tî-xk

+i" f

fi
P=l

P=l

ko cos (koz ) sín (koz)

rl-xk
kl cos (krz') cos (krz)t-_

I t' >,
I o=o -rck

l

rl
(erlZ)cos (koz ) cos (krz)

tî-xk

,t2æ
. ¿e -.e lt q+ww)

t2 Lt
Kmn P= |

sn (krz ) sn (koz)

Ç-rck

where

K3.=t"-t'k (3.36)

and the primed vector fi.¡nctions are defined with respect to the primed variables x , y . The

infinite summations over the index p can be written in closed form by using the contour

integration method explained in Appendix B and the results are summarized here

ð2g,*,

(3.3s)

(3.37a)

(3.37b)

(3.37c)

(3.37d)

i
P=I

€ (eol2) cos (Èoz') cos (kpz) _'-L¿ t-2 ,rz = - A^n Srnn(2, z )
p=O Kp - ^^n

å ko cos (kpz') sin (krz) , ðg,,,n
L - -z 

=nmn à,p=\ kro - Krnn

ë ko sin (kpz') cos (,to t) _ ^ 
Af ,^

L - Z -nmn ò,p=l kO'- Ko

= A* f ,rn!, z')
Ç-rc*"

sin (koz ) sin (kpz)

ò22
(3.37e)
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=- A'^mn

kl sin (krz') sin (krz)

Ç-rck
azf ,-,

dz"

'-tntt z K,r* sin (K_rc)

(

f ,,*(z , z ) = '{ 
sin [K'-' (c'- z )] sin (K"*z) 

'- | sin (K,*z') sin [K.,, (c- z)] ,

(

8,*,(2, z ) = '{ 
cos [K'*'(c'- z )] cos (K'*'z) 

'- | cos (K,,-z') cos lKo @- z)f ,

In calculating the second derivative of g,*, in (3.37e)

B^n\z , z ) is continuous at z= z , its derivative

ðg,nn _ t J -.o, [K,*,(c-z')] sin (K,*,2) , z< z
ðt 

: \m't 
I cos (K,"rz') sin [K,*r(c- z)] , z) z

has a discontinuity equal to K-, sin (K,r c) at z= z . Thus

ð'g,r- --.
= - K:, g,,-(2, z ) + K-, sin (Krr-c) õ(z- z')

ð22

-¡'e =-e Af ^" ¿'e s ògr* ,,) -,- È" * Ë_i" f Ë_kkì" f s,nn

1--=ô(P-ðtrk'

where we have used the following rclations to simplify the singular tcrm

¡CÊ- ¡) = ô(x- n) ô0- y') õ(z- z')

Applying the series (3.37a4) in (3.35) and after some manipulations we obtain the reduced

form of the electric-rype dyadic Green's function for a rectangular cavity as

+€r ¡w )Lr

z<z
z>z

z<z
z>z

one should

(3.37Ð

(3.38)

(3.3e)

(3.40)

note that although

(3.41)

(3.42)

(3.43)



Following a similar procedure we can reduce the triple series of the magnetic-type

dyadic Green's function in (3.32). To this end we defrne the following auxiiiary vecror

functions:

#,-,fr,)) = k^ sin(k^x) cos(kny) -f + kn cos(k^x) sín(k,y) !

økt,)) = kn sin(k^x) cos(kny) î - k^ cos(k^x) sin(k^y)f (3.a5c)

Thus the irrotational and solenoidal magnetic-field eigenvectors can be written in the form

'54 -

.,)
õ(x- x ) = I ) sin(È-x) sin(k-.r')o.-m

õ(y- y') = î | sín (k^y) sin(k^y')

f,*,t , )) = cos(k^x) cos(k^y) î

Ê" = f cos (&o z) + ko f sin (krz)

Èit = # l- or l .os (koz) + kk f sin (koz) ]

ÈT' = ûå cos (kpz)

G.aaa)

(3.44b)

(3.a5a)

(3.4sb)

Q.a6a)

(3.46b)

G.a6c)

where again the subscript mn of the vector functions is omitted. Substitution of these into

(3.32) and using relations (3.37) for the series over the index p, yields the following

reduced form for the magnetic-type dyadic Green's function

E^e I Ð= 1=

abk'

¿'h -!t ògrr
-uV--

dz
-ì'hf++kkihff*f
-+ õe-òtr

k'
(3.47)
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3J- Discussion of the resonant modes

From the field expansion coefficients in (3.18) it is seen that the terns associated with

the solenoidal eigenvectors have resonant behavior. In other words, as the wavenumber

k=2ttt)" approaches either the eigenvalues È$E or k{M, the amplirude of rhe correspond-

ing mode and thus the fields inside the cavity tend to infiniry. Howeveç in the physical

realiry there always exist losses, whatever small, that limit the field amplitude. For this rea-

son, the effect of losses cannot be ignoæd for the resonant modes and will be taken into

account in the following calculations.

To calculaæ the amptitude of the resonant modes we assume that when k +k{E or

k{M , tJne corresponding mode is dominant Thus, in the general case where k!,8 nd kf,M

are different, for example in a cylindrical cavity, one can write

ÈØ=ni4Ern

Èø = B( il,' (ð

for k+k{E and,

È(Ò = ci ÈY rn

ÈØ=c( 4"ø

(3.a8a)

(3.48b)

Q.a9a)

(3.49b)

for k+k[M. h these equations (Èu,Èì are the solenoidal eigenvecrors of the TE or

TM modes and the coefficients 8,, and Cu are given by (3.18).

In calculating the fields from (3.2), we single out the dominant resonant mode v, and

obtain the contribution of all the other modes by performing the summation over v * v,. In

terms of the integral expressions for the fields in (3.19) and (3.2i), the above procedure is

equivalent to isolating the ærms where k= ku (TE or TM) in the summations of the

appropriate dyadic Green's functions. Next, the relations in (3.a8) or (3.49) can be uscd to

obtain the amplirude of the appropriate resonant mode and thus is contribution to the total

field. In the following we calculate the amplitude B f of the magnetic field due m rhe

resonant ÎE mode. Other coefñcienrs may be obtained in a similar fæhion.
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Let S = Sg + A where S is the boundary surface of the closed region in the form of

a cavity, A is the area of a possibte opening (apernrre) in rhe cavity wall and S9 denotes

the merellic surface of the wall which has a finite conductivity. The elecuic field ar the

poinrs of the non-perfectly conducting wall is given by t53l

dls, --zs â xFl5o (3.s0)

where â is me unit normal pointing outwards and Z, is the surface impedance of the wall

ía
z" =!ff rr*rl

From (3.18d) we have

,(=*
[".r"J. 

hxÈço> Èr-"]
where

A1= lkz - @lE)21 I t n, 12 ¿,
v

From (3.50) and with the assumprion that at

integral over Ss in (3.51) can be wrinen as

! n" Èçt) - il,E e) ds' = B!,
.l¡

c)=joef ùft> Èf (?)dv'-kTE |lrr> 4r(?)dvvv

+icoe In"È().il,ïe)ds'
A

resonance (i.e. k-+kT,E) È= B!

(3.sr)

(3.s2)

(3.s3)

flg, *"

Z,T
Ss

Thus

I n" 4t 12 ¿s
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l- l-1
B(=o l¿t- jaez, I ln"1t12¿"'l rr.rol

Iso]
At resonance, A 1->0 and assumin g ù = 0 in (3.52), we have

-tTEIÌe> .il,'F>¿r'+¡¡oe|,âx Èe) 4t e)ds'
B(, = (3.ss)

- ja u t, Iol n" ly 12 a"'

This is the amplitude of the resonant TE mode contributing to the magnetic field in the

cavity and shows the significance of the finite surface impedance of the cavity wall.

In the special case where kIE = kT' = &u, for example in a rectangular cavity, there

aÍe two resonant terms in the field expressions. These ærms which correspond to the TE

and TM modes are both dominant at the same frequency and cannot be ueated separately

in the way discussed above. For this case ¿ìs k ->ku, one may write the resonant ñetd as

Ê = 83 lf; + ci Èy (3.56a)

È = B(, f,E + c(, il," (3.56b)

In the following we present the calculation of Bf and Cf . An expression for 8f is

given in (3.51). A similar expression may be wri$en for C!r, namely

I
cI = lln./oe I hxÈre> flye) ds' I-u-Ç 

| so 
o\r)'Hi"l7)ds 

.J 
(3.s7)

where

rr=jolel ñr¡> lye)¿u'-kT,, ITel ly(?)dv'
vv

+ j0)u jh"Èt¡l lYe>¿"'
A

and

(3.s8)
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A2= fkz - QrTM)zt t I ly 12 ¿r'
v

For this case the integrals over Ss in (3.51) and (3.57) are given by

rt= [ I hxËf;F)lz ¿s'
So

J ¡" Èe> ÈIt F> ¿s' = @! r, + c( r7 z,
Ss

(3.60)

I n"Èe> ly fí> ¿t' = @! r + c! rz) z, (3.61)
so

where

r = I h" il,t c¿l . â* lY rí> a"' G.6z)
Sq

(3.se)

(3.63)

r z = l l n" È"ru (i) 12 ¿r' G.64)
so

Substituting (3.60) and (3.61) into (3.51) and (3.57) and solving the resulring sysæm of

equations for Bf anO Cf yields

{2 + j øú,lC!B!=

nh-

Ar-jarZ,I,

jcx.Z,l{2 + (Ar -/ol€ Z, Iùn
A rA2-j øeZ,(A2t r+A rI ryazezZrzçtz-t rt ¡

As k->,t.,r, we have A,+0 and A2+0 and thus the above relations reduce ro

B(,=f(lzl)-1ll) (3.6s)

rh - r-uv:-r (/Q-/rlI) (3.66)

wherc
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f =-, Ir e(rz-rtrz)r,7-'

Substituting these coefficiens in (3.56b) and using the expressions for C) and JJ, one may

obtain a relation similar to (3.21) for the cont¡ibution of the resonant modes to the magneric

field in the cavity. For ù= 0, we have

(3.67)

(3.68)

È, = IÌe) .v'x ELe | ò ar'
v

- jco e I n" Èr¡> t:,r; I n ¿"
A

where e;e | Ð is the magnetic-type dyadic Green's function for the resonanr modes in

the cavity given by

0'^ = r luÈ'ie - I,È'l\ È! + aÈ'î" - trÈ'î\ Èfl (3.6e)

and

v'x Ei,- r È,, ldit - r rlî\ Èî, * aÈ'î" - t rÈ'î\ Èît] (3:70)
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CHAPTER 4

CAVTTY.BACKED APERTURE RADIATORS

In practical applications of the slot antennas, the slot is normally backed by a conduct-

ing enclozure (cavity) forcing it to radiate into a half-space. The resulting cavity-backed slot

(CBS) radiator, which has the capability of dielectric and ferrite loading, may be flush

mounted and therefore is suitable for airbome and missile applications. Furthermore, if used

in an array, the CBS produces smail mutual effects which make it desirable as an element

of large antenna array systems.

In this Ctrapter the general problem of a cavity-backed aperfure radiator is formulated

for the tangential electric field in the apernue. The result is used to obtain an integro-

differential equation for the special case of a narrow slot backed by a rectangular cavity

resonator. This equation is then solved numerically by the method of moments with the

prcper choice of piecewise sinusoidal basis and testing functions to remove the differentiai

operator in the integrand. The method based on the Fourier tmnsform presented in Chapter

2 is not applicable to this problem due to the fact that elements of the moment matrix are

not in the form of convolution integral as wiil be shown later.

4.1- General formulation

The general problem of cavity-backed apern:re is shown in Fig. 4.1 whcre an aperrure

in a perfectly conducting screen located in the ¡- y plane is backed by a conducting cavity

of arbitrary shape. The two regions separated by the apemrre are homogeneous and may

have different characteristic parameters. It is assumed that the stn¡cture is excited in general

by known volume electric and magnetic cunent densities 7 an¿ À7 insi¿e the cavity and

possible electric surface current density /] on the apernrre. The cases where the apernrre is

cxcited by an incident plane wave or by current sources outside the caviry can be handled

in a similar fashion and are not considered here.
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region (2)

Qh, ez)

aperture -+ region (1)
(pr , er)

scteen

Fig.4.1- Geomerry of rhe general cavity-backed apernrre problem.

I
I

region (2)
(vz, eù

ù,(')

shorted aperture

scrcen

+hl

zero fields

-î* -î* z>0

(a)

Fig.a.2- Equivalents of the original problem; a) valid for region (2) i.e. z<0, b) valid for

region (l) i.e. z> O.

(ö)

I
I

ñ,ot

region (l)
([rr , er)
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It is convenient to use the equivalence principle [39] ro subsrirute the original problem

with two equivalent problems. The procedure is similar to the one given in Chapær 2 for an

open slot and results in the equivalent configurations shown in Fig. 4.2. In region (1) the

fields a¡e produced by the sources / ano ü ptus the equivalent magneric surface currenr

density ùrlt)= âr x Bl) l¿ over the aperture surface with the aperture covered by an

electric conductor an¿ f,l) is the electric fietd in region (1). In region (2) the fietos ñ2)

and ÈØ ¿ìre produced by the equivalent magnetic surface cunenr density

ùr(')- h2xflz) l¿ over the apernrre zurface with the aperrure covered by an electric

conductor. Since in the original problem there is no magnetic surface current density in the

apeÉure, the electric field in regions (1) and (2) a¡e conrinuous in the apeffure and thus

â'1 x ¡d1)-dtl o=0. on the otherhand the unit vectors normal to the apernrre are in

opposite directions in regions (1) and (2). Hence â1 x fl) l¿= - h2xflz) l¿ and in

terms of the equivalent magnetic currents previously defined we have ñrr')= - rü"ttl. *"
remaining boundary condition to be satisfied is that of the tangential componenr of the mag-

ümâ x P(t)g) - tim î * Ê(2)Ø=.ryCð
z+O' z+V

HxQ)-Hr(t)=-Jí, z+0

(4.2a)

(4.2b)

netic field across the apernrre given by h 1 x ¡frQ)- P(t\ e= t.Thus for âr = - â and

tlte apernrre in the z = 0 plane we have

(4.1)

where f it . known electric surface current on the aperture. This equation can be written

in the component form:

HyQ)-HrQ)=JÍ, z->0

I¡r the following we will use the above equations to obtain a system of integrai equations

for the unknown tangential electric field in the apernrre.

The fìelds in region (2), i.e. the half space z< 0 can be obrained from the equivalcnt

problem shown in Fig. 4.2a. This problem has bcen worked out in dctail in Chapter 2 and

the magnetic fìeld is given by
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È(z)(Ò = - i?? 
[ ù:r,et EoF lÒ d,2æA

where tlre integration is over the apernrre area and ?o(i lÐ ir the dyadic Green's func-

tion of free space deñned in (2.3). Alsoð7"(2)= h2xÊ" with â2= â and dt ir theelec-

tric field in the aperture.

ln deriving the fields in region (2) we were able to use the image theorem and rhus

tnæ ùr(2) and its image as if they were in an open space. Unfom¡nately no such

simplification can be made for the fields in region (1) where the sources reside in an arbi-

trarily shaped closed region. V/e solved this problem in Chapter 3 by expanding the fields

in terms of orthogonal eigenvectors. From (3.21) the magnetic field in region (1) with a

volume cunent density / anO a magnetic surface current d"{r)= fty x È" on the shorted

aperrure is given by

È(L)ç1 = I7e> .y'x 0^e lÒ dv'- jioel f â," È"ó E^e lÒ ds' (4.4)
VA

where E^e | Ð it the magnetic-type dyadic Green's frurction of rlre closed region and

ftr=- â. Substituting the appropriate components of (4.3) and (4.4) n(4.2), we obrain a

coupled system of integral equations for the transverse components of the electric field in

the apernre Ef and Ef , i.e.

-EiFy*)ds -f (x,y), z=0I rrí r*
A

(4.3)

(4.s)

(4.6)

(4.7a)

(43b)

where

t.
J (Eí Fxy - Ei Fyy) ds = g(x,y) , z= 0

=ctG#+c2Q]+*roo
dx'

=ctG#,*cr co' oxoy

FE

Fxv
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Fy,=Crcfr+crftco G.7c)

Fyy =crcfr + cr@|+ #ro, (4.7d)

In these equations z= z'=0, Cr = 
oT!? 

, Cr= ? and Gfr, G$, etc.are componenrs^ Pr I llr2

of the magnetic-type dyadic Green's function of the cavity. For ttre general case where both

a volume culrent /fÐ i" the cavity and a surface current *(r, y ) on rhe aperûrre are

present, the forcing functions in (4.5) and (a.6) are given by

+J,(x,r ,z) (ry- 5r, dv'+ j4no¡txJf(x,t), z=0 (4.8)
dx dy

s(x,y¡---j4napo ftl, (x',y',2'¡ çU- -Yr+Jn(x,! ,z) ¿li -'!i r*v òy òz à2. àx"

. aci, acx+J"(x,! ,z)(# - Ér, 
dv'-i4æap,nJl6,y), z=0 (4.9)

The resuits obtained so far are quite general and before proceeding further with the calcula-

tions we need to specify some geometry of practical importance for the apem¡re as well as

the cavity. To this end we consider a nanow slot backed by a rectangular cavity and solve

the integral equation for the electric field in the slot.

4.2- Narrow slot backed by a rectangular cavity

The geometry of this problem is shown schcmatically in Fig. 4.3a. The n¿urow slot in

the ¡ - y plane is of length 2L , width 2w (w < L , w < l"; ano is backed by a conducting

rectangular cavity. Herc we assume thc structurc is excited by a surfacc currcnt density

t6 , y ) ovcr thc slot aperture and thcrcforc rJlc cavity can bc considcrcd as a load. The

case where the excitation is through the cavity will be investigatcd in Chapter 5.
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Fig.4.3- Rcctangular cavity-backed slot (CBS) antenna (a) and its equivalent circuit @).
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The components of ttre tangential electric field in the apernrre (Ef and, EÍ) are the

unknowns of the problem. However,.for the type of excita[ion to be considered here the

longirudinal component is negtigibte, i.e. Ef(x, y) = 0 and the coupled integrat equarions

in (4.5) and (4.6) reduce to a single equation for the only unknown Ef (x , y ), namely

L

J EíG', !') Fo(x', y' I r, y) ds' - Í (x, y)
A

where F= is given by (4.7a) and

r @, y) = j 4Tctopo Jf(x,l)

(4.10)

(4.11)

In the following we assume €2 = fo, P2 = [h, t1 = t¡tg, Ft = Fr¡t¡, along with a change

of notation P¡t = IL. kt = È and kZ= kO. Also to facilitate the computations, as will be

evident shortly, we write the expression for Gfi of the rectangularcavity in the form

G#=#@z+#'r-

where for z= z'= O (see Appendix C)

4æ
L¡r-= - 

-
*ab

wirh

(4.r2)

ÊpEq
sin(krx') cos(kqy') sin(krx) cos(kol) (4.13)

Krotan(Kpqc)

Kpq = (k2 - t] - t f )rn, ko= T, kr= #

>E
pq

(4.14)

(
. - j 1, P=oer=lz, 'p*0 (4'ls)

Thus (4.7a) can be written as

F==*rn'**lc,+2@l*$loo, z=o (4.16)
*r dX- dX-

With thiS equation as the kemel, we proceed to solve the intcgral cquation in (a.10) by

assuming a separablc solution of the form
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which is justified by the narrow slot aszumpúon and incorporates the proper ñeld behavior

at the edges [21 ]. Next we expand X (x ) in terms of suitable basis functions X,, (x ), i.e.
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Ef(x,t)=X(¡)f0)

whereX(x) is an unknown funcrion, while l(y) is given by

where

d,, = j I *^@, y) xo@ ) y(1t') (k2+
AA

b,, = I I *^@, y) xn¡') v e') gfi+
AA

and

(4.17)

(4.1e)

(4.20)

(4.2r)

(4.24)

where V, are unknown constants to be determined. Substituting (4.19) into (4.10) we have

N
X(x)=2V"X^(x)

n=l

N

> V^ J X^(r') Y (y') F=(x', y' I x, y) dx' dy' = f (x , y)
n=l A

Nl
Errn, i o^"+2b*r)= c^, m=1,2, "',N

The innerproduct of rhis equarion with a æsting function W^(x, y) yields a sysæm of N

linear equaúons that can be solved for the unknowns Vr'

* 
" 16-&'. v' I t - y) dr'dy'dx dy (4.22)

Ar2/vx\ 
tI t*t

#rorO',y'l x,y) dx'dy'dt dy (4.23)

c^ = I w^@, y) f (x, y) dr dy
A

Since variation of the aperture ficld along the y axis is known, no tesring is rcquircd

in this dircction and thus one may choose a testing function in thc form

wz-o -t)2
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W^(x, y) = S-(¡) õ(y - y")

'lx,y")dy

(4.2s)

(4.26)

(4.27)

(4.28)

where õ is the Dirac delta function and S- (x ) is a funcrion to be chosen properly. From

(4.13) it is clea¡ 
^urð'G' 

ð2G'

æ= æ 
and therefore (4.22) can be wrinen as

xr+ L

d,,* - 
,"! r"^(x') 

(kz * 
þ>o^(x') dr'

x,+L l r"**
A^(x')= f s-(r) I I yO')G,(x',y

x"_ L 
L ,"_,

similarly (4.23) is writren in the form

x"+ L

b,,- = ,"irt^(Ð && * #rr,(x) dr

]-

(4.2e)

Numerical computation of the integrals n (4.26) and (a.28) is hindered by the pres-

ence of derivatives in the integrands. However, choosing piecewise sinusoidal functions for

Xn(x') and S-(x) and integrating by parts twice, it is possible to remove thc differenrial

operators. For this purpose we choose the basis and testing functions as

x"+L l r"*n
Bn(x)= I x^(r'> I I yO')Go(x',y'lx,y,)dy

x"- L 
L t"-.

and

(4.30)
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'-G) 
= 

{

sin[È6(Â-lr-t- l)]
sin(ksA)

0,

epeq cos çkrlr)

, for lx- x^lsn
lr-r- Itl (4.31)

Thus (4.26) becomes

d,,- = *fu; lo^rr^-rr-2 cos(k$) A^(x,,) + A^(xn*t)] Co.rrl

-kofb,r = ,r.d-r^) lB"(x^-r) - 2

where A^(x) are calculated from @.27) nd are given by @.37). Also r,r_r= xn- L,

r¿+1 = xn+ L, xn = x"- L+ nL,, n= I,2,''',N and Â =2L/ (N+1). Simiiarly

(4.28) becomes

where Bn(x^) are calculated from (4.29) and are given by

Xm+l = xm+ L,Í^ = x"- L+ mL,and m= 1,2,' . .,N.

Calculation of A^(x')

Equation (4.27) may be written in the form

x"+ L
.t

A^(x, = 
,.1 ,s^(r) 

P (x , x) dx

where by using (4.13) and (4.18), P (x', x) is defined by

(4.33)

(4.41) with x-_1- x^- L,

(4.34)

R (q) sin(kpx ) sin(kox) (4.3s)

cos (,toA) Bo(x^) + BnG-.r) ]

. -4p(x,x)= 
oø ìl Kou tan (Kpq c )

in which

''*l* cos (krl )R(q) =
,"! * ^,[rû<ylyJ

dy'= n J o(kqw) cos (kqyr)

Substiruting (4.31) and (a.35) into (4.34) and pcrforming the integration we obtain

(4.36)
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A^(x'r= -;T 
ìrffi ro4qw)r^(p) sin(kpx') (4.37)

where

r^(p) = m sinf(ks- oo>Tlsin [(Ès + r'r>fl (4.38)

Calculation of B" (x )

Equation (4.29) may be written in the form

ort
Bn(x) = J X^(x ) Q@ - x) dx (4.39)

x"- L

where

J"* w

Q(x',x)= I VO')Go(x',y'lx,!")ú (4.4o)
!c- w

Substituting Xn(x') from (4.30) and with a change of variable x = xn+ /, we have

+Â
B,(x^) = *þ, f sint¿(A - | t l)l eL(m-n)L - t) dt (4.41)

where from (4.40), (4.18) and (2.4)

., *? o-iko'-e2+(wsino)2lt¿,-lko[N2 +çwr2)2]tn

QG)=:r " ,= d0=" = (4.42)n L tE, + (wsino)2 lro 
*" - 

ae - @nf l*
ln the computations, the integral in (4.41) is evaluated numerically by using a 20 points

Gaussian quadrature.

4.3- Excitation of the slot

The system of N linear cquations in Ø.21) may be writtcn in t}re matrix form

ly,,*l|V"l=l,cml 9.43)
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Up to this point we have obtained expressions from which the mauix elements y,-, can be

evaluated. However, to solve for the unknowns Vn and, thus the field distribution in the

slot, we need the source vecûor elements cm as well. From (4.24) and (4.25) these elements

are given by

S- (¡) f (x , y") dr (4.44)

In the following we calculate c^ for the case where the excitation source can be modeled

by a uniform current distribution of amplitude Is given by Jf(x) = 1o ô(x- x") on the slot

aperrure. Practical examples of zuch a model include feeding the slot by a two-wire

transmission line or a coaxial cable. It is assumed that the feed extends across the slot and

thus the current distribution can be considered uniform along ttrat portion of the line which

lies in the slot. The position of the feed-point along the slot l" is arbitrary and provides a

convenient means for matching the anænna to the source as will be shown later. For the

above currenr disuiburion and with f (x , y") = j4ropo Jf(x), we have from (4.44)

x"+ L

I
xr- L

,.={ ffisin[k6(Â-lt"-t. I )], for lx"-x- I <Â

0, for lx"-r- l>Â (4.4s)

ln exciting the slot by a stripJine, one may include the finite widrh 2d of the line by taking

a step function model for the curent distribution, namely

Jf(x) =

Io
tor2d'

0, for

lr-rrl<a
lx-x, l>d (4.46)

which for d+0 rcduces to the ô function model. However, a wide strip-Iine would perturb

the radiated fìeld and for acrual excitations the width should be kept to a minimum. The

above modcl may also bc uscd for ttre casc of feeding by a probe to take into account its

lìnitc radius rg by substituting d= 2 ro .
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4.4- Voltage distribution and input impedance

The voltage distribution along the slot is given by

V(x)=- Ef(x, y) dy

From (4.17)-(4.19) it is easy to show that

N
V (x) = > Vn Xn@)

n=I

lrt w

I
Jr- \9

(4.47)

(4.48)

where X"(x) are given by (a.30) and for which a typical set is shown in Fig. 2.5c. The

value of È in (a.30) does not affect the behaviorof X"(¡) and only changes its slope. It is

important to note that the voltage distribution in (4.48) has riples in the intervals (x¡, x¡..1),

í= I,2,' ' ' , N-l and does not represent the correct value of the voltage at the points in

these intervals. However, at the points x¡, j= 1,2, . . , N which correspond to the max-

ima of X¡(x), only one of the two overlapping basis functions contributes to the value of

the voltage. Thus the complex values of V' obtained from (4.43) give the actual amplirude

and phase of the voltage at points -r¡. This data can then be used to find the voltage at other

points along the slot by interpolation.

In calculating the voltage distribution along the slot we assumed the excitation was

through a uniform cunent distribution of a total current /g set up by the generator. To study

the circuit parameters, one may replace the antenna structure by an equivalent impedance

given by Z = V (xs) / /s where V (xr) is the voltage across the feed point (see Fig. a.3b).

Thus for /o = 1 Amp, the value of V(xr) in volts directly determines the input impedance

of the antenna in Ohms.

45- Bandrvidth

For a CBS antenna the bandwidth is rather limitcd in general due to rhe rcsonanr

behavior of its structurc. However, for the case of rcctangular CBS a numbcr of parameters

such as cavity width and depth, slot width and matcrial in the cavity havc considerable
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effect on the bandwidth as will be shown in Sec. 4.7 and therefore it is possible to maxim-

ize the bandwidth while maintaining an acceptable radiation resisrance and efficiency.

To achieve a wide bandwidth, in addition to the proper choice of physical dimensions,

there are special feed configurations that have proven useful. One such method is exciting

the cavity by a T-bar feed. ln an experimental parameric srudy by Newman and Thiele

[54], T-bars of cylindrical and thin rectangular cross section were used as rhe feed leading

to noticeable improvement in the bandwidth of the antenna. In another experimental study

Crews and Thiele [55] optimized the shape, size and position of a flat T-bar and achieved a

VSWR less than 2:1 over the frequency range 500-2000 MHz, aithough at some frequen-

cies they had ¡o use tuning stubs to maintain the gain Figures 4.4 and,4.5 show the T-bar

feed of cylindrical cross-section and optimized shape of the flat T-bar feed, respectively.

For the case where the CBS is excited by a microstrip line, attachment of a monopole to the

strip-line at the point where it crosses the slot is another method that has been used to

obtain a broad-band operation [56]. The concept in developing this configurarion, which is

shown in Fig. 4.6, has been to combine on the same feed line two radiating structures with

impedances which have dual properties when normalized to the feed-line impedance. While

the above techniques are applicable to single antenna elemenß, it is always possible to

obtain a wider bandwidth by using the narrow-band elemenrs in a log-periodic array.

Roederer [57] has tested such an ¿uray and reported ySl4/R below 2.5:1 over the 2.8-5.9

GHz frequency range.

4.6- Resonant modes

ln the preceding calculations we implicitly assumed that frequency of the excitation

source is different from the natural resonance frequencies of the caviry and thus k *t,r, with

k' for the rectangular cavity given by

f^^1tn-,tu= L @r/a)z+(qflb)z+entc)z ) (4.49)

From(4.13)itisclearthatwhen k=ku thedyadicGrcen'sfunctionandthcrcforerheficld
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Fig.4.4- CBS antenna fed by a T-ba¡ of cylindrical cross-section.

Fig. 4.5- The optimized shape of the flat T-bar fced.
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monopole

coax-to-microstrip
transducer

(pon 1)

ground plane

coax-to-microstrip
transducer
(pon 2)

feed microstrip

Fig. 4.6- Feed configurarion for increasing thc bandwidth of a cBS antenna.
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amplitude tend to infinity. However, in the physical reality rhe field amplitude is limited due

to the losses in the structure and thus for such a case one cannot ignore the finite conduc-

tivity of the cavity walls, whatever small it might be.

It is well-known that for a recungular cavity the eigenvalues of the TE and TM

modes are equal and hence the resonance of these modes occurs concurrently at the same

frequency. To calculate the contribution of these resonant modes to the total field, we

assumed in Sec. 3.3 that the resonant modes a¡e dominant and derived the corresponding

magnetic-type dyadic Green's function at resonanc " e'^ which is given by (3.69). of

course the contribution from the non-resonant modes can be calculated in the usual way

after removing the resonant term from (4.13). The magnetic field in the cavity region due to

the resonant modes can be obtained in general from (4.4) by replacin g e^ with the

appropriaæ dyadic Green's function at resonance. In the foilowing calculations we will need

only the x.r component of this function which from (3.69) and for z-- z = 0 is given by

where

and

(4.s0)

(4.s1)

,--PÍ"o-7,
qT,

b

In (4.51) Z" is the surface impedance of the cavity wail given by

(4.s2)

and t-lre quantitics /, /1 and [2 are defìned by (3.62) to (3.64). For the rcctangular CBS

problcm considcrcd in tltis Chapter we have

a =aÆ(l +i)

G#' = C, sin(kpx') cos(koti sín(kox) cos(kqy)

cr= i(l t k"2 k; +2 I k"kpkqkt + Izk; kt2)

aeklzr(12-ItIz)

kq=
.lnkt= ì , P, q, I= 1,2,
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r = 
ko=klþ 

[ ø- a)c + 4(BL-o., I2ku

,r= 
*lo;o 

o,'ab + (koao+ kî t,,) bc + @fi+ tcf tc,z¡ ac -

- z k; k,2 (L- A)(w+ B) - 2 kî tr,, (L+ Al{r- a > ]

,r= *kloau + |Çø, * !Çac - t/{L+ A)(w- n¡ - Çlt- A)(w+ B)

where

ki'=t/+tl

^_ I/r = .:- sin(ZkrL) cos(2kox")
2k,

t = + sin(2kow¡ cos(Zkot")
-,.q

Now we can calculate the contribution from the resonant modes to the electric field

slot by solving the integral equation (4.10) with the kemel given by

F=(x', Y'I x, Y) = Y G#' + 2 @fi+ #r",

a,r = 4nk2c, T^(ks) T^(k) J s(krw¡ cosz(kolr)

where T^(ko) is the same æ T^(p ) in (4.38) and Tn(& ) is defincd similarly.

Doing so, the result for b^, in (4.33) still holds and, with no volume current source inside

the cavity, i.e. È 0 in (4.8), the source vector elements c^ do not change either. However

for the resonant modes we have

(4.s3)

(4.s4)

(4.ss)

(4.56)

(4.s7)

(4.s8)

in the

(4.s9)

(4.60)

4.7- Numerical results

Bcfore prcsenting the numerical results, it is wonhwhilc to mcnlion a number of com-

putational notes. The admittance matrix I y^ ) in Ø.aÐ is composcd of two parts, namcly

I a,,- ) due to the cavity rcgion and f b^n ] due to the half spacc, as indicated in Ø.21).
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The elements a,r- = a(m, n) have the properties a(m, n) = a(m-|, n-I) for

m,n=2,3, "',N and also a(m,n)=a(n,m). Thus, for la,r*) we need to

evaluate only N elements of one row or column and the other entries of the matrix are just

repetitions of these values. On the other hand the matrix t b,r* I can be written as the sum

of two matrices with elemenß b; and bfi, where b,*, nave properties similar to arur

while for b; we have b"(m, n) = b"(m-l, z+1), m=2,3, . . . , N and

n= 1,2, ' ' ' , N-1. Hence to find N2 entries of I b^n ] we onty need to evaluate N

elements of tbi I and 2N-1 elements of lb,,- ].The above considerations reduce rhe

computation time for evaluating the matrix elements by a factor of N2l(3N -1). To ensure

the convergence of the moment solution in the numerical computations, the slot is divided

into 50 equal segments, although in many cases fewer segments were sufficient for this pur-

pose. Also we have used 100 terms in each of the series in (4.37) while in most c¿ìses as

low as 50 ærms proved to give two digits of accuracy.

In a slot radiator, the voltage dist¡ibution along the slot is the most importanr quantity

that is essential in determining both the radiation properties and circuit parameters of the

anterina. The moment method used is able to provide an accurate solution to the integrai

equation for the voltage distribution. Obviously any of the numerous parameters of the CBS

problem zuch as the cavity dimensions (a, b, and c), slot dimensions (2L and 2w), posi-

tions of the slot center (x" and )c) and the feed point (x" or s), material in the cavity (p,

and Êr), etc. may voltage disuibution and therefore change the radiation pattem

and more significantly the circuit quantities such as input impedance, resonance frequency

and bandwidth of the antenna. However, we have to be selective in presenting the results

and only those that seem to be more useful from the practical design point of view are

given here. A typical rectangular CBS radiator excited by a delu current source wirh

allu=0.7, bt)"=0.2, cllu=0.3,2L1),"=0.5, wlL= 0.04, x"= al|, y"=blZ, s=L

and operating at / = 3 GHz is uscd in most cases, while alterations to these values are

mcntioned explicitly.



Fig. 4.7 shows

tength 2L l)," = 0.6

the

for

-79-

amplitude and phase of the voltage distriburion along a slot of

feed point locations s lL= 0.2 (1.0) 0.2. The corresponding

impedance values for each case arc also given in Table 4.1. These results which should be

compared with Fig. 2.8 and Table 2.1 for an open slot in Chapter 2, cleafly show rhe

imponant role of the parameter s on the slot voltage and input impedance. Fig. 4.8 com-

pares the voltage distribution along slots of lengfhs 2Lllu = 0.5, 0.6 and 0.7 and shows

that tlre fieid is maximum for ?I= )rJZ, as expected. In these figures the dashed lines

represent the phase variation along the slot.

Table 4.1

slL R (c¿) x(o)

0.2

0.4

0.6

0.8

1.0

26.5

77.0

134.0

t79.0

195.0

77.3

15.8

- 82.4

- 168.0

- 202.0

The methods available in the literature for analysis of the rectangular CBS antenna,

namely the variational method [25] and the method using the complex Poynting theorem

[27], are basicaily applied in calculating the input admimance. However, rhe assumption of

sinusoidal voltage distribution in these methods is not accurate, especially at the excitation

point where voltage determines the input admittance. Furthermore, a number of important

parameters such as positions of the slot center and feed point do not appear in those formu-

lations. With these points in mind, Fig. 4.9 compares the resistance R and reacrance X

versus frequency, obtained from various methods as wcll as expcrimental dara [28] for a

CBS with a=35 cm, b= L0 cm, c= 17.86 cm, 2L=25 cm, wlL= 0.04, xc= a12,.

!"= b12 and s= L. This figure indicates that the results obtaincd from the momcnr mcthod
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Fig.4.7- Amplitude and phase (dashed lines) of voltage distribution along tlre slot of a

CBS antenna with 2L llu = 0.6 and feed-point locations s lL= 0.2 (1.0) 0.2.
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0.0 o.2 0.8

Fig.4.8- Amplitude and phase (dashed lines) of voltage distribution along the slor of a

CBS antenna wirh slot lengths 2L t)" = 0.5, 0.6 and 0.7.
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are closer to experiment while the other two methods suffer a considerable shift in the reso-

nance frequency defined by X (f ,) = 0. The discrepancy between our results and the

experimental data is mainly due to the fact that in the experiments, the slot was cut in a

finite conducting plane with a noticeable thickness of ll4" and with finiæ conductiviry,

while in ou¡ formulation the slot is located in an infinite perfectly conducting ground plane

of vanishing thickness.

Fig. 4.10 shows the resistance and reactance versus cavity depth for a CBS with

allu = 0.7, b llu -- 0.2, w lL= o.04, x"- a/2, y"- b 12, s= .L and slot lengths 2Lrlu = 0.5,

0.6, 0.7. ln this and the rest of the figures, a dashed line is used to denote the reactance.

The effect of cavity width on the impedance is shown in Fig.4.11 which indicates that a

larger á corresponds o a smaller resonant depth c, defined as the cavity depth at which

resonanc€ occurs. Fig. 4.12 gives the impedance as a function of frequency for va¡ious

cavity depths and shows that one should expect a wider bandwidth for a shallower cavity.

In Fig. 4.13 we present, the effect of the feed-point location on rhe values of resistance and

reactance. This data is very useful for the purpose of matching the antenna to a generator

and in this respect it corresponds to Fig. 2.10 for the case of an open slot. However, in

comparing the results of this Ctrapter with those of Chapær 2, one should remember that in

a CBS the number of physical dimensions tlrat affect the circuit and radiation parameters of

the antenna are fa¡ more than those of an open slot. Therefore any comparison between

these two radiators (with similar excitation and slot size) has only a qualitative value to

show the effect of the cavity backing on the open slot.

The slot position has some effects on the impedance which become more ma¡ked as

the slot length increases. This is shown in Fig. 4.14 for a slot length 2L=0.7)' and vari-

ous vertical positions !c= w, bl4 and b/2. Fig. 4.15 shows the voltage Standing wave

ratio as a function of frequency for different cavity depths. Such dara may be used ro obtain

the bandwidth, defined as the range of frcquencies over which the VSWR remains below

2:1.
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Fig.4.10- Rcsistance R and reactånce X (dashed lines) versus caviry depth cA for a CBS

antenna witi slot lengths 2L llv = 0.5, 0.6 and 0-7 -
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Fig.4.11- Resistancc R and reactance X (dashed lines) versus cavity depth c/1, for a CBS

antenna with cavity widths b /), = 0.2,0.3 and 0.4.
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Fig.4.13- Resistance R and reactance X (dashed lines) versus feed-point locations s/21

for a CBS antenna with cavity depths c 17,. = 0.2,0.3 and 0.4.
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Fig.4.14- Resistance R and reactanccX (dashed lines) versus cavity depths c llv for a CBS

antenna with 2L llu = 0.7 and slot locarions !"= w , b /4 and b 12.
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Fig.4.15- VSWR vs frequency for a CBS antenna with cavity depths c= 2,3 and 4 cm.



-90-

Tables 4.2 to 4.4 present typical numerical results for the resonance frequency /r,
bandwidth A,f as defined above, radiation resistance R, and radiation quatity factor

Qr= f rlA,f . From Table 4.2 and Figs. 4.16 and 4.17 it is seen that for a fixed caviry

widrh å, a smaller cavity depth resuls in higher resonance frequency and bandwidth bur a

lower R, and Qr.On the other hand for a fixed cavity deprh it is possible to obtain higher

Í, nd Lf by decreasing å provided that the cavity depth is less than a certain value as

shown in the figures. Table 4.3 contains data from an investigation of the effect of the slot

width on the circuit parameters of the antenna. From this table and Fig. 4.19 it is observed

that in general a wider slot results in a higher bandwidth especially for smaller cavity

depths. However, the trade off is a lower radiation efficiency as evident from the values of

R, and 8r. fr" slot width can have appreciable effect on the resonance frequency for very

shallow cavities as shown in Fig. 4.18. From Table 4.4, the location of the feed-point

appears to have lifle effect on the resonance fteçency and bandwidth but can drastically

change the radiation resistance. It is also seen ttrat a change in the slot length may have

noticeable effect on /, but has a small effect on Â,f ; facts which held true for the

corresponding case of an open slot as were shown in Figs. 2.13 and 2.15, respectively.

Finally for the case where the cavity is loaded by a dielectric material, the resistance

and reactance versus frequency are shown in Fig. 4.20 for various dielectric constants

Er= 2, 3, 4 and compared with the unloaded case. The resonance frequency, bandwidth and

radiation resistance for each case are also given in Table 4.5.It is seen that dielecuic load-

ing in general has the effect of increasing the elecuical dimeruions of ttre unloaded antenna

resuiting in a lower resonance frequency. On the other hand the radiation resistance (and

thus efficiency) is considerably enhanced by dielectric loading. These properties can be used

to advantage to reduce the physical size of the antenna at lower frequency ranges or in

applications where a high efficiency is required. However, these are achieved only at the

expense of an immense drop in bandwidth.



-91 -

Table 4.2

c (cm) f ,(MHz) Lf (MHz) R, (O) Q,

(J

N
ils

1

)

J

4

5

3822

3267

3M2

29tO

2794

490

320

248

195

t52

557

739

837

911

974

't.8

to.2

t2.3

t4.9

18.4

g
c?t

ll
-a

I

2

J

4

5

3465

31 10

2963

2867

2791

383

292

246

208

174

665

808

880

933

978

9.0

10.6

t2.o

13.8

16.0

a
s
il

-a

I

2

J

4

5

3267

3020

2914

2843

2785

322

270

237

210

i81

739

853

909

950

985

10.1

11.2

12.3

13.5

t5.4

a=7 cm,2L=5cm,wlL= 0.04,s=L and b=2,3,4cm
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Fig. 4.16- Resonant depth c, for a CBS antenna with cavity widths b= 2, 3 and 4 cm.
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Table 4.3

c (cm) f ,(MHz) Lf (MHz) R, (O) Q,

(\ìq
O
il
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5

I

2

J

4

5

3647

32t3

3032

2914

282r

350

252

2M
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868

93t

984
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t2.t

1.4.9
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2794

490

320

248

195

r52

557

739

837
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974
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4019
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390
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9s6

6.1

8.5
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13.3
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a= 7 cm, b= 2 Cm, )l = 5 cm, S= l, and w lL= 0.02, 0.04, 0.06
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Fig. 4.18- Resonant depth c, for a CBS with slot widths w /L= 0.02, 0.04 and 0.06.



-96-

Nr
Þ ¿nn¡ vv

\1l_

700

550

250

2.0 3.0

c (.-)
Fig.4.19- Bandwidth A,f versus cavity depth c for a CBS antenna with normalized slor

widths w/L= 0.02, 0.04 and 0.06.

w /L:0.02
w /L-0.04
w /r-0.06



-97 -

Table 4-4

a=7 Cm,b=3cm,C=2Cm, w/L=0.04, ag¡ld2L=5,6,7 Cm

SIL f ,(MHz) Lf (MHz) R,. (C¿) Q,

õ
rô
il
{N

0.4

0.6

0.8

1.0

3r77

3128

3114

3110

3t2

299

294

292

276

546

738

808

1,0.2

10.5

10.6

10.6

(.¡

\o
il{(\ì

0.4

0.6

0.8

1.0

2835

2755

2739

2734

289

288
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28t

2t1
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738

9.8

9.6

9.7

9.7

(J

r-
il{

c\¡

0.4

0.6

0.8

1.0

2623

2552

2529

2524

301

293

283

281
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425

607
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8.7

8.7

8.9

9.0
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Tabie 4.5

er f ,(MHz) Ll (MHz) R, (O) Q,

1

2

J

4

3M2

2436

2088

1855

248

98

50

30

837

1264

t692

2t20

t2.3

24.9

41.8

61.8

a= 7 Cm, b= 2 Cm, C= 3 cm,2L= 5 CIn, w lL= 0.04, S= L
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CHAPTER 5

PROBE EXCITATION OF RECTANGULAR CAVITY-BACKED SLOTS

In formulating the cavity-backed aperture problem in Chapter 4 we presenæd a general

expression for the forcing funcrion which included both a surface crurent distribution on the

apem¡re and a volume current dist¡ibution in the cavity. This expression was then special-

ized to the case of a rectangular cavity-backed slot radiator fed by a current source on the

slot apernrre. In this Ctrapter we investigate the case of excitation by a coaxial-line probe

inside the cavity. The voltage distribution along the nÍurow slot is obtained and used in cal-

culating the input impedance of the antenna. The procedure for calculating the impedance is

based on the Poynting theorem and requires that the effect of diffracrion from the slot aper-

rure be taken into account.

5.1- Voltage distribution in the slot aperture

The geometry of the rectangular cavity-backed slot fed by a coaxial-line probe is

shown in Fig. 5.1a. The coaxialline of outer radius 11 is terminated at the ¡- z plane. The

innerconductor (probe) of radius ro < À with is centerat the point (xo, zo) is parallel to

the y axis and extends a distance d into the cavity. The inægral equation for the voltage

distribution along the slot in this problem is similar to the one derived in Sec. 4.2 except

for the forcing function which is different. Thus in solving this equation by the method of

moments, the mauix elements remain unchanged and only the source vector elements

should be calculated accordingly.

The current dist¡ibution on a thin probe may be assumed to flow in the axial direction,

namely 7Ø = JrØ f . rnus the forcing function in (a.8) reduces ro

r . aGT acr
f (x,y)=-j4no¡rn )Jr@,!,2)r:i - ::)dx'dy'dz" z=0

vðzàx
(s.1)
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Fig.5.1- Geometry of the probe-fed cavity-backed slot antenna (a) and the probe position

in polar coordinates (b).
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where with the assumption of a filamentary sinusoidal current distribution, -/, is given by

II I^
) ñ sín[k(d- y)] ô(x-.16) õ(z - zo) , 0 < y< d

Jr(x, y, z) = I 
ttt 

o , otherwise 6.2)
L

The quantities GP nd Gfr are components of the magnetic-type dyadic Green's function

E^ (t< z') and are given for a rectangularcavity by the expressions (see Appendix C)

G# = ZCoo(k;- k') sinkox cosko!'sinkoxcosknlcosÇ q(c- z')cosÇo z (5.3a)
P,q

G# = -Ð C*koKoncoskox'coskr!'sin&o.rcosÈo ysinKoo?- z')cosKrrz (5.3b)
P,q

with

r 1-u2
Crn = ErEo latÊrcoosin(Kooù) (s.4)

Substituting (5.2) and (5.3) into (5.1) yields,

r /- ..., _ 116æ,tory6/s : å eosin(kox6) sínlKru?- zùl
i \* ' J ' - ob ti"(kd) r!, Êo

sin[(ko- ortt sin[(&o+ Ð+] sin(Èox; cos(ko]) (s.s)

On the other hand, from (4.44) the source vector elements are given by

x"+ L
I<.m- t S^(x)f(x,f,)ù (5.6)

xr- L

where (x",!c) is the coordinate of the slot center and S-(x) are the piecewise sinusoidal

testing frrnctions defined by (4.31). Thus

^ -/- 
ó

c^=Lo 2 G(p)sin(krx^) (5.7a)
p=l

whcre
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rv0 -

j64noo¡4lok ko

ab sin(,to,A)sin(kd)

G(p)=A(pl Ë ro B(q)
q=0

sinlKroG- zo)l

sinÇo c )

(s.7b)

(5.7c)

(s.7d)

(5.7e)

(s.7Ð

A(p) = 
ffisin[(Èo 

- t'aTlsin[(Èo+ t'r>Tl

B(q) = ffi sin[(Èo- Ð+) sínf(ko+ Ð+]

KPq=lkz-kî-klln

Upon calculating the souræ vector elements in (5.7), the voltage distribution along the slot

can be obtained from (4.48) and (a.43).

5.2- Electric field in the cavity

The elecuic field produced by electric and magnetic current sources in a bounded

region of arbitrary shape was derived in Chapter 3 and given by (3.19). From rhis equation

and for ù= 0, we have

ÈG,y, z) = -jo¡r¡ [Ìi1¡> . 8"(i lð dr'- I n xÊ"r*>. v'x 8,(i lÒ û'(s.8)
VA

where ñÐ it the excitation source in the form of a volume electric current density and t"
is the electric-type dyadic Green's function of an enclosure with perfectly conducting walls

given by (3.42). The volume integral in (5.8) is due to the field in the cavity with no aper-

tures, while the surface ìnægral can be considered as the contribution of the freld diffracred

by the aperrures in the cavity wall.

For the specified orientation of the feeding probe, the longirudinal componenr of tlre

electric field in the slot EÍ(r, y) is negligible in comparison with the transverse componenr

Ef(x, )). On the othcr hand, in calculating the input impedance we only need the y com-

ponent of the electric fìeld in the cavity as will be shown in the next section. Thus from
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(5.8) we have,

Er(x, y, z) = -io)p [ 4V) cír7 lð dv'
v

- It;o',r'r r'1, - Yrr=où' ú (5e)

where Gf, arrrd, Gf, are componenrs of 8" çz> z') given by (see Appendix C)

Gl, = -ÐC*&3- k') sinkox'cos,toy sinto.rcoskotsinKoo/sinKro?- z) (5.i0a)
P,q

Gf, = -Z C*koKoo sinkrx'snk¿'sin&o-rcoskolcosKrnz'sinKro?- z) (5.10b)
P'q

Substituting (5.2) and (5.10) into (5.9), we obtain the y componenr of the elecrric field in

the cavity as the sum of Ëwo terms, namely

ErØ = EíØ + rlØ (s.11)

where Ec is the field in the closed cavity with no aperftres nA El is the field diffracæd by

the slot aperture. The expressions for these fields are given by

iAopls ë å eosin(ko.r6)E!ry--.r-z\= I \''' abksin(tcd) Ët ão Kpqsin(Kooc)

where

sinl(ko- Ð+l sin[(Èo+ Ð+] sin(tox ¡ cos(kot) houe, zç) (s.tz)

(s.13)
, , fsir[Krr(c- zo)] sin (Konz) , z 1 zs
hon?, zo) = 

{ri" ir* zs) sinlKro|: z)) , z ) z0

øl@,y, z) = *È, å ## IsG,w)

whcre

cos(ko),) sin(krx) cos(kot) sín[Krr(c- z)] (5.14)
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xc+ L
Ir

I (p) = J x Ø') sin(kox') dx'
x"- L

(s.1s)

ln deriving (5.14) we have used the usual expression for the electric field in the slor aper-

rure given by (a.17) and (a.18) with

N
X(:r)= 2VtXtG)

l=l

where the expansion coefficients y¡ should be obtained from Sec. 5.1 by using the piece-

wise sinusoidal ñ¡nctions for Xt@). Note that due to the piecewise narure of these func-

tions, the values of x(x) in (5.16) are correcr only at tTre points x¡, j= 1,2, . . . , N and

one should resort to interpolation to obtain values of the function at other points before

anempting the numerical evaluation of the integral in (5.15). However, an altemative and

simple approximation is to Írssume that the function is constant in each inærval as it would

be for the case of a rectangrrlar pulse expansion, i.e.

v ,--\ !'' for l'- *¡ | = îX¡(.r) = I"t\'Y / 
fo, 

for I ,- *¡ l, î
(5.17)

(5.16)

(s.18)

Thus, the integral in (5.15) reduces to

r (p) = ! sin(kr*, Ë v¡ sin(kox¡)Kp I=1

where xt=xc- L+ lL,,l= 1,2, .. . , N and Â =2L/(N+1).

53- Calculation of the input impedance

For the case where the slot is fed by a current source on the aperture, the input

impedance can be obtained directly from a knowledge of the voltage distribution aiong the

slot apernrre as was discussed in Chapter 4. However, when the sm"rcture is excited by a

probe inside the cavity, though still rcquiring the voltage distribution in rhe slot, the calcula-

tion of the input impedance is much more involved. For a small coaxial-linc opcning, one
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may to a first approximation assume that the higher-order coaxial-line modes are negligible.

The fields in the opening will then be those æsociated with the incident and reflectedTEM

modes in the coaxial line. If both the total voltage V and the total probe current at the

apernlre plane 19 were known, there would be no difficulty in determining the input

impedance and the fields in the feed opening are given by

;âVEo= 

- 

þ, Èo==& Oty - ¿ICr
rln-

rg

However, assuming ^Ig is given, the total voltage waveV is in general unknown. It is possi-

ble to use the equivalence principle and consider the effect of the coaxial-line by means of

an equivalent elecüic current densiry on the feed opening. This curent which is related to

the electric field in the cavity through an integral relation can then be taken as the primary

source of the fields. The induced electric cunent on the conducting probe as well as the

voltage dist¡ibution along the narrow slot a¡e the unknown quantities for which one can

obtain two coupled integral equations by satisfying the appropriate boundary conditions,

namely zerc tangentiai electric field on the probe and continuity of the tangential magneric

field in the slot aperture. To simplify the calculations, we assume a known sinusoidal

current disuibution on the probe. Note that the assumption of an infinitesimally thin probe

which was used to calculate the apernrre field in Sec. 5.1 results in an infiniæ value for the

input reactance and therefore one should take into account the finite thickness of the probe

in the impedance calculation.

We use the Poynting theorem to calculate the input impedance. The opening of the

coaxial-line probe provides the power flow into the cavity region such that, integration of rhe

complex Poynúng vector over the opening area yields

r&r =!z^

which is equal to

(s.19)



-107 -

P = P, + 2j@ (W^- Wr)

In this equation P, is the radiaæd power from the slot aperture (assuming no metal and

dielectric losses) and the imaginary part is the time-average net reactive energy in the cav-

ity. On the other hand, with the assumption of small coaxial-line opening, we have

(s.20)

where BCÐ is the elecuic ñeld in the cavity produced by the ñlamentary currenr disuibu-

tion in (5.2) and t = 4(y) f is tfre assumed cunent distribution on the probe surface ,S

with its component

$0) =
Znr6

(s.21)

From (5.19) to (5.21), the input impedance of the antenna may be wriüen as

p =-i[t..tøa"

zk - + {8,Ø 
qo) ds

I6

(s.22)

where ErØ is given by (5.11) and the integral is over the probe surface.

The expression for Ey(ð in (5.11) shows that the input impedance is composed of

two pafis. The part corresponding to ttre stored energy in the closed cavity Zf^ is reactive in

the absence of ohmic losses, while the part corresponding to the radiation from the slot

apeffure, i.e. Zs¡, has a resistive component due to the radiation loss.

To perform the integration in (5.22), we use polar coordinaæs for the probe shown in

Fig.5.1b where X= XO * rg cos 0 and z= z0 + 16 sin 0.The results are

Zin=Zrc"+Zsn (s.23)

(s.24)

sin(¿d)

whcre
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r- - i4to1
"'- nobrin\kd)

Btø = fu;ur, sin2¡1Èo- o'*'sin2¡1Èo+ o't'

2n

R(p, ql = I sin(Èo.r) hro(2, zù dþ
0

= æ sin(krxs) [sin{çozs) sínlKro@- zo- ro)]

+ sin[KroG- zs)] sinlKroQo- ro)l]

(s.2s)

(s.26)

(s.27)

(s.28)

(s.2e)

(s.30)

and

Zfn = Cz
P=L q=0 WI@)B(q)r(p,q)

where I (p) nd B (q) arc defined by (5.18) and (5.7e), respectively, and

Cz= -2k
nabl çsin(kd)

tur,

T(e, ql = I sin(,to-r ) sinlKroG- z)l dO
0

- Zn sin(ko.rs) sin lKooG- zo - ro)l

Note that n (5.27) and (5.30) with the assumption of rs < xs, rg ( zg and tg 4 c- zg,

the integrands are essentially indcpendent of Q and we have chosen 0 = * tT fo,' 2'2
r S Q < 2n in (5.?7)) to obtain the approximate expressions. It is important to retain the

finite value of rg in these expressions to guarantee the exponential convergence of tire

scries in (5.24) and (5.28). This can be verifìed by noting that as the parameters p and q

incrcase, the quantity Kpq= (k' - k; - kf¡rtz bccomes imaginary and the resulting hyper-

bolic functions havc exponential asymptotic behavior.
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5.4- Numerical results

We have performed computations for a typical probe-fed CBS radiator which, unless

otherwise stated, operates at f =3 GHz with cavity dimensions aÀu=0.7, btlu=0.3,

and c/ì" = 0.3; slot dimensions 2Lllu = 0.5 and wlL= 0.04 with slot center at x"- alT

andlc=b12; probe location atrs = a/2 and zs = c/2 with its length dllu= 0.25, radius

rg lL = 0.01 and input current /o = I mA. Also in the figures, we have used dashed lines

to denote either of the phase function or reactance.

The amplitude and phase of the voltage disuibution along the slot is shown in Fig. 5.2

for slot lengths ?L llt -- 0.5, 0.6 and 0.7. Fig. 5.3 shows the effect of prcbe location on the

voltage amplitude at the slot center I V" I . The data shown in Fig. 5.4 for the input

impedance of the antenna indicates that as the probe is moved closer to the wall containing

the slot, the value of R increases as expected. The effect of the probe lenglh on I V" I is

shown in Fig. 5.5 for various cavity depths c l?," = 0.2,0.3 and 0.4. From this figure it is

seen that a longer probe induces a larger voltage in the slot. Similar behavior can be

observed from Fig. 5.6 for the input impedance of an antenna with c lÌ," = 0.3. The reac-

tance X" of the closed cavity (without slot) is also shown in this figure for comparison. In a

closed cavity, the reactance is capacitive for smail probe lengths and, as the length is

increased, resonance occurs at a certain point, i.e. Xr= 0. Further increase in probe length

resuits in inductive reactance as can be seen from the figure. This property suggests a con-

venient means for adjusting the input impedance by varying the probe length. The cavity

depth may also affect the input impedance for which a typical example is shown in Fig. 5.7.

To investigate the input impedance Í¡s a function of frequency, we have used an

antenna with ¿= 7 cm, b= c= 3 cm, 2L= 5 cm, wlL = 0.04 fed by a probe of length

d=2.5 cm and radius r0=lmm located ât rg= dlZ, zg=Lcm. The impedance

characteristic of the antenna as well as thc reactance of the closed cavity versus frequency

are shown in Fig. 5.8. In general, the rcsonance frcquencies of the open slot and the closed

cav.ity are differcnt and the value of X., which is mainly determined by the probe length,

can significantly affect the resonancc bchaviorof the antcnna ¿s a whole. Figs.5.9 and 5.10
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show the resistance and reactance of the antenna versus frequency for various cavity depths

and slot lengths, respecúvely. It is observed that a deeper cavity results in a higher radiation

resistance and narrower bandwidth as well as lower resonance frequency. On the other

hand, the slot length has major role in determining the resonance frequency of the antenna

and an increase in length beyond l/2 resuls in a decrease in the radiation resistance as

expected. The numerical results presented in this Chapter could not be compared due to the

lack of experimental data or other theoretical methods in the literature.
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Fig.5.2- Amplitudc and phase (dashed lines) of voltage distribution along the slot of a

probe-fcd CBS antenna with slot lcngths 2L Dr = 0.5, 0.6 and 0.7.
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Fig.5.3- Amplitude of voltage at the slot center versus normalized probe location zo lc for

slot lengths 2L /)" = 0.5, 0.6 and 0.7.
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Fig.5.4- Resistance .R and reactance X (dashed lines) versus normalized probe location
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Fig. 5.6- Resistance R and reactance X (dashed lines) of probe-fed CBS antenna and reac-

tance of closed cavityX" versrs probe length d/À.
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Û)

Eco
30x

0.J 0.4 0.5 0.6
c/^

Fig. 5.7- Resistance R and reactance X (dashed line) verzus cavity depth c t), for a probe-

fed CBS.
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Fig. 5.9- Resistance R and reactance X (dashed lines) as a function of frequency for a

probe-fed CBS antenna with cavity dcpttrs c= 2,3 and 4 cm.
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Fig. 5.10- Resistance R and rcactance X (dashed lines) as a function of frequency for a

probe-fed CBS antenna with slot lengths 2L= 5,6 and 7 cm.
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CHAPTER 6

GAUSSIAN CAVITY.BACKED SLOT RADIATORS

To extend the scope of the slot radiaor applications to specialized fields such as

monopuise radar and tracking, it is essential to minimizn or if possible suppress the side-

lobes in the radiation patem of the antenna. This can be achieved in principle if the voltage

distribution along the slot apernrre is in the form of a Gaussian function which in tum can

be realized by introducing a cavity of suitable shape to back the slot. The so-called Gaus-

sian caviry should support electromagnetic fields that decay exponentially in a certain direc-

tion and is constructed from a Gaussian beam-waveguide by placing reflecting surfaces at

two suitable constant-phase planes. The dyadic Green's functions of such a cavity arc not

known beforehand and therefore to obtain the fields inside the cavity, one cannot directly

use the field expressions derived in Chapær 3.

In this Ctrapter we first present a general solution for tlre fields between two parallei

conducting plates in terms of a continuous spectrum of elementary plane waves. The wave

beam condition is then used o obtain an approximate solution for the waves which are

confined to a small solid angle about the principal axis of the antenna. The equation for the

surface of the caviSr back-wall is obtained and solved numerically. The restrictions imposed

on the cavity dimensions by the wave beam assumption are also discussed. The fìelds in the

cavity are expanded in terms of Gauss-Hermite functions whose orthogonality properry is

used to obtain the expansion coefficients. The slot cut in the front wall of the cavity is ex-

cited by a curent source on the apeffure and an integral equation is derived for the tangen-

tiai electric field in the slot. The moments method with entire-domain basis and testing

functions is used in the numerical solution of ttle integral equation for the voltage distribu-

tion aiong the slot aperture.
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6.1- Electromagnetic fields betrveen two conducting parallel plates

ln this section we present the appropriate solution of Maxwell's equations for the

fields between two conducting parallel plates located at y - + b . In a source free region of

space the electromagnetic fields can be expressed in terms of two scala¡ potentials u and v

as follows [51]

È=YxVx(ue)-jkVx(vÐ

eigcnvalues, can be written in the form

v(¡,y,2)=>h(kyy> I ¡(kr¡ e-iø'*tç') dk,
It k"

(6.1)

(6.2)

(6.s)

r'l
FÍ ='lap lit v x(u d)+ v x v x (v e) 

J

where d is an arbitrary constant vector and the potential functions satisfy the scalar

Heimholø equation,

VtV* k''1,=0 (6.3)

An elementary solution of (6.3) in rectangular coordinates which is suitable for our problem

is given by

Ya4a(x, !, z) = f (k,) h(\y¡ r-lQ*x + r'z)
(6.4)

harmonic function and k*, k,where f (kr) is an arbitrary analytic function, h(kyy ) is a

and k, are separation parameters which satisfy the relation

t?*Ç+k]=¡çz

From this equation it is clear that only two of these parameters, say t, and &r, can be

specified independently. For the geometry in question which extends to infinity in the x

direction, the corresponding parameter kx forms a continuous spcctrum of eigenvalues while

in the y dircction the structure is finite and therefore the eigenvalues ,t, are discrete quanti-

ties to be dcærmined from ttre appropriate boundary conditions. Thus the general solution of

(6.3) which is obtaincd by superimposing the elementary solutions over the independcnt

(6.6)
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where the summation is over the discrete eigenvalues ,t, and the integration is performed

over the continuous values of Èr.

From (6.1) and (6.2) and for d = t, the field componenrs are given by

H,=@ I P? *roI dz ctx

(6.7a)

(6.7b)

(6.7c)

(6.8a)

(6.8b)

(6.e)

(6.10)

a\)Hy= -jk{t[

ðu:-
dy

ðu..-
òxòzðy

(6.8c)

where u and v satisfy expressions similar to (6.6).

To determine the proper form of the harmonic functions and their eigenvalues, we use

the boundary condition which requires that the tangential electric field vanish on tlre con-

ducting surfaces at)¡ = * å. Thus

u(x, y, z) =2în sin(ffy> Í f r<t,) e-iQç' * t") dk,
q - -æ

+æ

v (x , y , z) = Ð En cos{ffy) 
_l*f z(k.) e-iQ"' * t',') dk,

q

where the discrete eigenvalues 4 = qrlb, q- 0, 1,2, are substituted. In these

equations TJkr) anA f 2(kr), i.e. the amplitude spectrum of the elemcntary waves are arbi-

trary functions with the only restriction being that the intcgrands and their fint and second

dcrivatives with respect to r, y , and z must bc integrable for all lìcld points. From (6.7) to

(6.10), the field components are given by
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E, =Zeo sin(krt) [ [- k,k,fr(k,) + ikkrf 2G)l e-ik"'+ts')d,k, (6.11a)
q -Ø

+æ

Ey =EBo cos(k y) [ ? jbk,Í Jk,) + krf z&)] "-i(k-x+k'z)d.kx (6.11b)
q -æ

E, = Zao sin(Èrr) I (k: + kþ r {k) e-i<&"'+ tsz)dkx 
(6.11c)

q -6

+æ

Hx - €p t Bo cos(þy ) J Ljkkrr r(e") - k,krf 2(k,)f e-i(Ç'+ tq')dk, (6.r2a)
q -6

+æ

q -6

+6

Hz - {tE I, Bo cos(Èry ) J ur} + tc}) f z{tc,) "-lQ*x+ 
¡"')¿k, (6.12c)

q -æ

,. -l &2-k:-tq)'o, k>&:+Ç)'''
"' = 

l. -j&: * Ç - k')'o, k < (k: + t f)1'2
(6.i3)

Thus the above fields, which constitute an exact solution of Maxwell's equations in

specified region, are the superposition of propagating and evanescent plane waves.

6.2- Wave beams

To obtain the wave beams, i.e. waves whose direction of propagation lie within a

small solid angle about the z axis, we require that kr<. k, and kr< kr. Witl¡ these

assumptions and from (6.13), one can use a first order approximation kr= k for the ampli-

tudc terms and a second ordcr approximation k, = k- &: + tcþ I 2k for the phase terms

of tlre components in (6.11) and (6.12). This rcsults in the following approximate fields
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,Z,¡ +æ .2..t-lL- . t-k-
E, = k e-jþ > Ao ,'z 'sin(krr ) J Í (kr) e-ik'x ,' 2*'-' dkx (6.1aa)

q -æ

. Z t2 +æ 2 ..2t_lL- ê .- ,_I
Ey = k "-ib E Bq e u' cos(k¡) ) g &) ¿-ik'x 

"' 
2k'= d,k, (6.14b)

q -@

E, = k e-jto >, Ao ,j+çsin(kry lïr- k,f (k,)+jk, g (k,)le-j*' ,t** oo, (6.r4c)
q -6

;Lpz +æ '2.¡
Hx - - k^te/ll ,-ik Ð Bo ,tEÇ 

"ostÈrr 
) f g &,) ,'ih* ,rEç oo, (6.15a)

q -@

;z þz +ø z.c

Hy = k ^leú "-iþ ÐAo ,tzÇnn(Èr) > [ ¡(kr) e-itq,',túodk, (6.15b)
q -@

H,-- kF¿¡¡¡¿-iby nori*q 
"os(,kly 

ii r-ror, (k,)+k,g(k,¡1¿-ir+'"t*o oo, (6.15c)
q -6

Note that according to the wave beam assumption, we should have ,t, < k and therefore

the integraúons over k, should acrually be limited to I f, I < Ç with Kr< k. However,

if the amplitude ñ¡nctions.f (kr) and g(kr) rapidly tend to zero outside this range, the

integration can be canied out over the entire k, values witÏrout significant error. We will

shortly elaborate on this point which greatly facilitates the analytical calculations. Also nore

that tlte approximation used for the phase terms is valid only in a restricted range of z

values such that

lKl+@ntb)zlt t2k <2n (6.16)

The implications of the above conditions are further developed in Sec. 6.5.

Examination of (6.14) and (6.15) reveals that the transvcrse field components may bc

written as

whcre

Er=F g-ikz, Hr=@.8, (6.17)
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F =k EAq "q

:Z t-ZtE' 
sín(kp)

, z ,¡.. ,_k_-

f (kr) ¿-Jk'x 
"'2k 

' 
dkxI

Thus, the wave beam approximation results in simple relations between the tranwerse elec-

tric and magnetic fields which are similar o those of a TEM wave. The z components of

the fields can be obtained from the transverse components through Maxwell's equations.

To comply with the requirements on behavior of the ampiitude fi¡nction as mentioned

above, we expand Í(kr) and g(¿r) in terms of Gauss-Hermite functions in the form

exp [- !Wr,O>'l Heo&r/Ð. Here p is a parameter which determines the energy concen-

tration in the wave beam to be discussed in the next section and Heo is the Hermiæ poly-

nomial of degree p defined by the Rodrigues' formula,

Ey=G e-ikz, H,'-''lelve,

¡L tz +6

G=kZBqerø*' cos(Çy) J g&,)¿-ihx,
q -æ

Her(x) = (-1) P ,x2r2 4.0:,n"
dxP

+æ 1 ,

) e ' Htr(x) He,(x) dr - (2n)1n pt Ep,

and

where

t** 
oo,

(6.18)

(6.19)

(6.2o)

(6.2r)

These are even functions for even p, odd functions for odd p and satisfy the following

recu¡rence formula [42]:

Heo+ íx) = x Heo(x) - p Hep-L@)

witJr Hes(x) = 1 and Hey@) =¡. Hermite polynomial defined in (6.21) is orthogonal in

the interval - oo ( x 1+ oo with respect to the weighting function exp(- ir', such that

whcrc

(6.22)
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u,, = {å, i=i
Upon expanding the amplirude functions, (6.18) and (6.20) may be wriften in the form

(6.23)

(6.24)

(6.2s)

(6.26)

(6.27a)

(6.27b)

(6.27c)

(6.27d)

(6.27e)

the func-

where

where

The integral in (6.26) can be performed analytically (see Appendix D) resulting in

;(4ß\z z

F =kE A* e" b'u Ho(x,z) sin(fy¡
P' C

.. a'ÍC ,. z
, I -j_ l-_

G=kÐBroe"b'*
p'q

Hr(x, z) cos(ffy)

Ho(x , ,) =* i ,- Ï(r+rol' Heo&¡p) ,- i* ri*n* oo,

_Lp
Ho(x, z) = (-i)P A(z) e o ' HenG) e- iþ'

_1
4A(z)=2GP(r+Ç2)

,-2P2 -\- k "

2ox
f=-!-

!r+ (z

çr=1,'-+Qp+t)t*-l(

From orthogonality of the Hermite polynomial in (6.22), it is easy to show that

tions Ho (x, z) aiso satisfy the orthogonality property expressed by

+æ

[-r, H: dx = ç2n)3tz p pt õp,

where * denoles the complex conjugate.

(6.28)
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The electric field components E, and E, can be written in the form

E, = Ð Aro f o(x, z) r-lon@' t) sinl-4-r¡
P,q b "

_joor(x, r) cos{Æ_r¡

Ío{x, z) = (-i) P k A(z) e Heo(t)

Er=2Borfr(x,z)e
p,q

(6.2e)

(6.30)

(6.31)

(6.32)

(6.33)

(6.34)

where

l.--¡4

These are the tranwerse components of the fields that comprise the propagating wave

beams beween the parallel plates. From (6.31) it is seen that the amplitude of rhe wave

beam modes has a Gaussian variation along the ¡ axis.

63- Discussion of the energy concentration in the beam

The power transmitted by a single mode ttnough an area - iro I x 3 xg,

-yoSy Sloisgivenby

o*(x, z) = k, - (fr'* * l,' - | rrr*t>t--'(

PooG) = - +ø i 'i ¡;o, ù cosz{ffv) dr dv
L 

-¡o -)o

which is proportionur to J "- 
Tu r"'(t) dt,where

0

2pxo
¿0----

1t+ (,

Equation (6.33) shows that the transmitted power, and therefore the encrgy density at each

cross scction, changes with z. Fixing the parametery0, one can fìnd a relation bctwccnxg

utd z such that as z va¡ics, the power tmnsmittcd through thc speciñed cross scction

remains constant. This requires f6 be constant and therefore (6.34) gives thc appropriatc

relation between.rg and z which may be wrinen in the form
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x& =,*r ['. ,#,07 (6.3s)

This equation is independent of the mode numben and hence the foilowing discussion

applies to all the beam modes.

Since the power transmitted through each cross section is assumed to be constant, a

minimum value of .r9 in (6.35) corresponds to a maximum power density. This equation

can be written in the normalized form

42=LtC+Crlz

where € =xo / fu and I = z/zo with

(6.36)

(6.37)

and

c =2p'ï (6.38)

Equarion (6.36) is plotted in Fig. 6.1 for va¡ious values of C along with its envelope

ç = {ãTnT. From this figure it is seen that for a given C, the highest energ'y concenrra-

tion in the modes (which corresponds to minimum rg or () occurs at the z= 0 plane and

continuously falls as one moves towards the z= t z6 planes (i.e.tl - +1) which locate the

phase correcting devices in a beam waveguide. It is easy to show that at the z=X z0

planes, the minimum value of I or xg which concsponds to the maximum energy densiry is

achieved when C= 1, resulting in

Eo=\ff.,0

oo=tffi (6.3e)
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\E=./rrñT

Fig.6.1- Plotof E2=ltc +C t1? forvariousvaluesof parameterC.
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6.4- Structure of the Gaussian-cavity resonator

The Gaussian-cavity resonator is constructed from a beam waveguide by placing short

circuits along the two constant-phase surfaces that are separated by In, I=0, L,2,

radians of phase shift. From (6.32) it is seen that at z= 0, the phase function 0oo vanishes

and therefore the z = 0 plane is a surface of constant phase. This surface is chosen here as

the front wall of the cavity which contains the radiating slot (see Fig. 6.2). The back wall

of the cavity must lie along a constant-phase zurface which satisfies ïru@, z) = /æ at the

operating frequency. Thus the equation of the back-wall surface is given by

S(x,z)=kz -(+)'*+

kz -(8T\2J-+'h'2k

2paxzz

È(1 + !r'>k'

,^tç2t-z) - /r = 0, l= 0, 1,2,_ 2p+l
) (6.40)

(6.41)

(6.42)

Substituting the value of p given by (6.39) yields

kx2z _2p+l
2(zs2+ zz) 2

tan-rq-l-¡ -ln=0
zg

If we define z6 as the cavity depth atr= 0, then from (6.41)

_ _ 0.5(p + 4t+ 0.5)rÈ
"o _ 

Zk, _ (qn tbf

The contour of the zurface in (6.a0) is plotted in Fig. 6.3 for various values of the parame-

ter p including p = po . In this figure for each value of the independent variable x, the

corresponding value of z is obtained by using a numerical routine for flnding the real zeros

of a real function. It is observed that the cavity depth zq is almost independent of p.

65- Restrictions on cavity dimensions

As mentioned earlier, from the wave bcam condition one should have I t ,I <. t .

Thus it is necessary for the amplitude function in the integrand of (6.26) to decrease rapidly

outside this range in order to make it possible to perform the integration over k, from - -
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to + oo. I-et I kr1 3Ç where Kr< k is a constant. The amplitude of the integrand

decreases exponentially with the inverse of -p2. In this section we calculate the upper limit

on the value of p which results in a reasonably small amplitude at kr- &. For this ampli-

tude to be proportional to e-v with v an arbitrary real number, one should trave (å)2 = v- 2p'

and therefore a value P < + serves the purpose. This inequality can be expressed in' 2,lV

terms of the cavity depth zq by using the condition of maximum energy concentration in

the beam given by (6.39) which results in

zo2 (6.43)

Thus to obtain the maximum energy concentration in the beam at z-- ! z o and yet maintain

the validity of the calculations, the cavity depth at a given frequency should be larger than a

certain value implied by (6.43). On the other hand, from (6.16) one should have

zs < ïlf I K? + @ætb)z l-r t t" (6.u¡

These requirements put a restriction on the allowable mode numben p , q and / as obvious

from (6.42). For example when the values of p and q are determined from the type of

excitation and transverse dimension of the cavity, the parameter / should be chosen zuch

that the conditions on Zg a¡e satisfied.

The wave beam approximation used in deriving the fields also requires that

qælb <. k. For a finite value of b this condition can only be satisfied for a limited number

of q values. However, one may choose a small value for å such that the fields become

essentially independent of the y variable which corresponds to the 4 = 0 modes. On the

other hand, although in theory the cavity length extends to infinity along the x axis, we note

that the fields inside the cavity are negligible at points sufficiently far from ¡= 0 plane.

Thus in practice it is possible to construct an antenna of finiæ length with no appreciable

reflection from the open ends.

_L
lE
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6.6- Formulation of the integral equation for the electric fietd in the slot

In the non-radiating caviry rcsonator, the waveguide fields in the * z direcrions com-

bine to form a standing wave which has a sinusoidal z dependence to satisfy the boundary

condirion at the z = 0 plane. However, when the cavity is radiating through a slot, one

shouid consider the addition of the individual propagating waves in a more general sense.

For example, the y component of the elecuic ñeld at every point in the cavity would be

Ev=Ev*+E; (6.4s)

where

At z= 0 i.e. in the aperure plane, we have 1pq= 0 and thus the electric field becomes

Ern = > BP*q f o(x, z¡ ¿? ion@'') cos{Æ-r¡
P'q

"- 
l"o"'

From this equation it is seen that for each mode, the ¡ variation of the field amplitude is

proportional to 
"- 

P\'. Thus with the value of p given by (6.39) for maximum energy con-

cent¡ation in the beam, the field amplitude decreases exponentially with (xlzg)(xlÌ,") along

the ¡ axis in the transverse plane. Multiplying both sides of (6.af by

- Iep,)'
Ef(x, Ð =2G o, 

PoBro 
i Ì)P e 4\LY^' Heo(2px) cos(ffy) 6.¿t)

- Iep,)', o'-''' Her(2px¡ cos(fy)

(6.46)

(6.48)

andintegratingfrom-æto*æoverx andfrom- b to+ å overy yields,

Þ - (i)P
"Pq- r.,{-ztcb pt

where we have used the onhogonality of the Hcrmite polynomial and the cosine function. It

is obscrved that the mode amplitudcs vary as 4 *O therefore thc higher order modcs' pt

have little effect on the ñelds.

Ef(x, y) Hep(Zpx) cos{fft) drdy
+b+-II
-b-ø
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From (6.19), (6.47) and (6.48), the conesponding component of the magnetic field in

the aperture can be written in the form

,*,"Jt,tr, y) = # It;o',!') 
G"(x',y'l r,y) dx'dy' (6.4s)

where

G"(x',y'I x, y) => + e-Pz(¿z+í\ Hep(2px')HeoQpx) cos(kr)')cos(kry) (6.50)

ío Pl

and the integration is performed over the apernrre a¡ea due to the fact that outside the slot,

Ef(x, y) is zero on the conducting screen.

The magnetic field in region (2) i.e. z< 0 can be expressed in ærms of an integral

over the tangential electric field in the apernrre. The x component of this freld Ef (x,, ) ) is

assumed to be negligible for the type of excitation to be considered here. Hence,

;im 
H,Q){x, y) = dñ It;O', 

yi @& + #ro *r', y' I x, y) dx'dy' (6.s1)

where G6 is the free space Green's function given by

Go(x',y'lx,y)= ffi 6.sz)

We assume the structure to be excited by a cunent disuibution Jf(x, y ) over the slot.

Thus, the continuity of the tangential magnetic field in the apernrre requires that

lim-Hr?)(x,y) - lim?/r(l)1¡, y) = - Jf(x,Ð (6.53)
z-+ 0- z-> 0'

This condition is used to obtain an integral equation for the electric field in the apemrrc

Ef(x, y ), namely

I . 't) EíG, y ) K (x', y' l r, v) dt'dv' = - Jf(x, v)
A

where the kemel K is given by

(6.s4)



-136-

K(x',y' l r,)) = co G,(x',y' l r,y)+ ct rr&* 4)Go(x',y' I x,y) (6.55)

wirh c- = F P- and C.= j' 'lpleb " Znro¡t

To solve the integral equation in (6.54) for the electric freid in the aperture, we

assume a separable solution in the form

Ef(x, t) = X (x) r0)

where X (¡) is an unknown fi.nction and f (y) is given by,

(6.56)

(6.s7)

This choice of the function I is in accordancæ with the narrow slot assumption and

accounts for the proper fleld behavior at the slot edges [21]. The unknown function X (¡ )

may be expanded in terms of suitable known basis functions Í¡s

il
X(x) = Ìrr" 

X"(x)

Substituting (6.56) and (6.58) into (6.54) yields

(6.s8)

N.
t vn J XnG) y (y') K (x', y' I x, y) dx'dy' - - Jf(x, t) (6.se)

n=\ A

To obtain a system of N linea¡ equations for the unknowns Vn, we multiply the above

equaúon by a suitable weighting function W^(x, /) and integrate over the slot apernrre.

The result may be written in the matrix form

ú,n l [V"1= lc^J (6.60)

where in the expression for matrix clements i.e.!,*, = Co d,r- + Cb bm, we have



b,,^ = II*^(x,y) 
xn@) Y O) fo&* 4)Go(¡', y' I *, y) dx'dy'dx dy (6.62)

and the source vector eiements are given by

_r37-

d,,- = I Í W^(x, y) X^(x') Y (y') G"(x', y' I *, y) dr'dy'dr dy
AA

cm - - [ r^@, y) Jf(x , y) dr dy
A

(6.61)

(6.63)

For the case of a finite slot, one may choose the piecewise basis and testing functions

similar to those inroduced in Chapter 4 and proceed with the solution for Vn in (6.60).

However, in a slot of finite length the waves reflect f¡om the two shorted ends and consti-

n¡æ a standing wave pattem along the slot which obscures the desired features produced by

the Gaussian caviry. To preserve the favorite Gaussian behavior of the electric field in the

apeÉure, it is necessary that the slot length extend along the ¡ axis as shown in Fig. 6.2.

Thus, at least in the ideal case of an inftnitely long cavity, there is no reflection from the

two ends to disturb the Gaussian field distribution in the slot.

Unlike the sub-domain basis and testing functions which are very useful in the

moments method solution of a finite slot, the infinitely long slot in the present problem calls

for the use of entire-domain functions. The best choice would be a ñ.rnction which is closely

related to the acn¡al field distribution in the aperure, and in this case a Gauss-Hermite func-

tion in the form 
"-P*H"nQpx). 

This choice is especiaily useful as it allows the ortho-

gonaliry property in (6.22) to be applied to the expression lor a^, in (6.61) resulting in,

n _ T''(n-1)! (n-1)!*mn 
zp, lo pt

õ(--r)o õ(r,-r)o ¡ o(T*)

where we have used the rclations

(6-64)
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X^(x)=¿-PlxzHen-{2px), n=1,2, '..,N (6.65)

W^(x,y)= e-P\tHe^-{2px)õ(y) , m=1,2, "',N (6.66)

The numerical computation of b*, in (6.62) is more demanding in the sense that ir

involves a triple integral two of which have infiniæ limits, namely

+øî ¡'2
brr- = ) ,- r= Hen- t(zpx ) 8^@ ) d,x (6.67)

(6.68)

(6.70)

(6.71)

dx' -n [(x-¡12 +y'1l'tz
(6.6e)

Applying the so-called rcduced kemel approximation, the integral in (6.69) reduces to [21]

where

and

R = [(¡ - x)2 + (w t})z)Ln

Thus upon performing the differentiation, (6.69) bccomes

e^@') = I ,- P*' He^- {Zpx) p (x, x') dx

P (x, x') = (koz- årï r r'r'.,'r'Ytu *

' '-ikoRG(x,x)==*

dy

P (x, x) = [rr- xizç k(nzß+3ikoR)- e k&Rz+r+ ¡ksR) Rt ]
,-ik&
;r (6'72)

The procedure of numerical integration of the above integrals is cxplained in Sec. 6.7.

For calculating the source vcctor elcmcnts in (6.63), we will considcr the excitation by

a current source connectcd to thc slot edges. Assuming a uniform currcnt distribution of
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width 2d and flowing in the y direcrion, we have

I+r,ror lx-,,1<a
If(x) = 

131 ror I *- x,l > d

'where .x" denotes the source location. Thus the integral in (6.63) reduces to

-Io ''*or_. = _ [ ,- p4, He^_ {zpx) dx2d x,- d

The voltage disuibution along the slot is given by

+u,

v (x) = - j*tíO, y) dy

From (6.56) to (6.58) and (6.65), it is easy to show that

NN
V(x) = > V^ Xn@) = e'Pz' 2 Vn Hen_ t(2px)

n=l ¿=1

(6.73)

(6.74)

(6.7s)

(6.76)

With the values of the matrix and source vector elements given by (6.64), (6.67) and (6.74),

one can obtain the expansion coefficients yn from (6.60) and thus the voltage distribution

along the slot f¡om (6.76).

6.7- Numerical results

In this section we first present a number of computational notes regarding the numeri-

cai integration of the integrals encountered in the matrix elements. In spite of the infinite

limirs of the integrals in (6.67) and (6.68), the exponential factor in the integrand results in

the fast convergence of the numericai integration process. However, the function P (x, x')

in (6.72) has a weak singularity at x= x' and therefore the integral in (6.68) should be per-

formed with due ca¡e. To this cnd and for the actual numerical computations, the integral is

written in the form



+æ
.f

e^@) = J r^?x, x') d,x

-x+¿

U^(x) =
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¡'+ A
L+ J F,n(x,x)dx

x'- Â

, n= odd
n= even

F^(x,x) dx (6.77)

(6.79)

+l
x'+ L

where

F^(x, x ) = e- P+' He^- {2px) P (x, x') (6.78)

and A is a small number in the srder of 0.001 to be determined by examining the behavior

of F^(x, x') to make sure that the integration is performed accurately in the vicinity of the

¡= x point. The inærval of ttre two infinite integrals a¡e divided into sub-intervals much

larger than A, say 100Â, as the integrand is fairly smooth in these regions. A 20 point

Gaussian quadrature is then applied for integration over each sub-interval and the results are

added. The upper limits of the infinite integrals.are continuously increased until a certain

number of accurate digits is achieved. Before attempting the numerical integration in (6.67),

it is imperative to know the behavior of Q^@). This function is even for

m= 1,3, ' ' ' , odd Rc,r m= 2, 4, and its amplinrde decreases very rapidly as x

deviates fromr =0, a factwhichis shown inFig. 6.4by ploning togl Q^(x)l forrypi-

cal values of p - 12.35 m-1, w= | mm, k= ko = 62.8 radlm and m= L,2. From this

information, it is not difficult to see that the integrand in (6.67) is well-behaved and the

convergence of integration is very rapid. To further faciiitate the computation of b^o, one

may write the integral in the form

€
f ¡.7

b,r = ) ,- r' Hen- 1(2px') U^(x') dx'
0

where

(6.80)

and tlren proceed with numerical integration.

Thc amplitudc and phasc (dashcd lincs) of thc voltage distribution along the slot arc

shown in Fig. 6.5 for an antcnna with z6 =2L, b-- O.z)u,2w= 0.1 å and opcrating at

f = 3 GHz. The slot is excitcd by a strip-line of width 2d= 0.02 ¡" and /s = 1. mA

Ie^rr) + e^Gx)
lQ^{r) - Q^(-¡) ,
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located at the slot center, i.e. x"= Q. The presence of riples in the voltage amplitude is

expected as they conespond to the number of terms in the expression for the voltage given

by (6.76) which in rum determines the degree of the Hermite polynomial in the expansion.

As the number of ærms increases, the riples approach an exponential envelope which

represents the actual voltage distribution along the slor This point is shown in Fig. 6.6

where the voltage amplitudes corresponding !o N= 9 and N= 11 in (6.76) are plotæd.

The convergence of the solution can be examined from Table 6.1 where the ampli-

tudes of the complex expansion coefficiens Vn are compared for solutions with various

number of terms in the expression for the voltage distribution. Note that for the symmetric

excitation, the values of Vn with n= 2, 4, vanish and a¡e not shown in the Table.

For the case of skew-symmeuic excitation, i.e. when two current sources of equal amplitude

and opposite phase a¡e located at *.rs, we have Vn=O for n= I,3, and there is

always a null in the voltage amplitude at r= 0, as shown in Fig. 6.7.
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Fig. 6.4- Behavior of tuncrion Q^6') in Eq. (6.6S).
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0

x/^

Fig. 6.5- Amplitude and phase (dashed line) of voltage disuibution along the apernrre of a

Gaussian cavity- backed slot wirh symmetric exciÞrion at x"- 0.
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0

x/^

Fig. 6.7- Amplitude and phasc (dashed lines) of voltage distribution aiong the apernrre of a

Gaussian cavity-backed slot with skew-symmetric excitation at xs- + 
^J4.
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Table 6.1

N lv, l lvrl lvrl Ivrl lvnl lv,tl

I 36.1 1

J 37.LL 20.9r

5 37.t7 22.80 6.226

7 37.r5 22.95 7.232 t.268

9 37.14 22.78 7.151 1.509 0.r86

11 37.16 22.68 6.889 r.372 0.202 0.018
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CHAPTER 7

SUMMARY AND GENERAL CONCLUSIONS

ln this thesis a unified view based on the equivalence principle is presented for

analyzing various types of slot radiaton. These include the open slot and also slots which

are backed by cavities for the purpose of confining the radiation or to produce a certain

field distribution in the slot apern¡re. For each case a general formulation of the problem is

given which can be applied to aóitrary shaped apemrres or cavities. The results are then

specialized to geometries with practical importance such as radiating elements in the form

of narrow slots. From the computational point of view, the emphasis is on accurately deter-

mining the voltage distribution along the slot. Once this quantity is known, other radiation

and circuit panrmeters of the antenna may be obtained in a standard fashion.

The voltage distriburion aiong the apernue of a namow open slot satisfies

Pocklington's equation. A technique based on the method of moments is utilized for the

numerical evaluation of this inægro-differential equation 1371. The elements of the

moments matrix are transformed ino the Fourier domain to eliminate the differential opera-

tor and also the singulariry of the integrand. The effect of the slot dimensions on the

parameters of interest, namely the input impedance, resonance frequency, and bandwidth are

examined. The results show that the product of the resonance frequency and the slot lengttr

is a constant number. It is also found that in generai a shorter and wider slot has a wider

bandwidttt while the radiation resistance drops as the slot width increases. The excitation

source location has a significant effect on the voltage distribution along the slot and thus the

radiation pattcm and input impedance. This property can be used as a convenient means

for matching the antenna to the source.

In most applications it is ncccssary to restrict the radiation from the slot to one half-

space which may be achieved in practice by using a conducting enclosure to back the slot.

An accuratc cvaluation of the apernlre field in this problem requircs thc fìelds in the cavity
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to be known. These fields may be expressed in terms of volume integrals over the sources

in the cavity and a surface integral over the boundary area and include the appropriate

dyadic Green's functions of the bounded region t381. A system of coupled integral equa-

tions is obtained for the electric field in the apernrre and specialized to the problem of a

narrow slot backed by a rectangular cavity. The method of moments with piecewise

sinusoids for basis and testing functions is applied for numerical evaluation of rhe voltage

distribution along the slot. A current source in the form of a two-wire or coaxial line con-

nected to the slot edges may be used to excite the structure. Similar to the open slot

antenna, the feed-point location has major effect on the voltage distribution in the slot; a

fact which is useful for the purpose of impedance matching.

The introduction of the cavity to back the slot intensifies the resonance behavior of the

isolated slot, resulting in higher resonance frequencies and lower bandwidths. There are

many physical parameters such as the cavity and slot dimensions, location of the slot center

and excitation source, as well as the material in the cavity that contribute to the behavior of

the antenna as a radiator and more imporrantly æ a circuit element [58]. For example, the

resonance frequency and bandwidth can easily be controlled by varying rhe cavity depth

through a sliding back-wall. In general, a larger cavity width or slot width results in a

wider bandwidth at the expense of reduced radiation resistance and efficiency. One of the

inæresting features of CBS antennas is their loading capability. In fact dielectric loading of

the cavity has the effect of reducing the physical size and thus weight of the anrenna which

is desirable in airbome applications, especially at the lower range of operating frequencies.

However, the numerical results show that an increase in the diclcctric constant of the

material in the cavity drasticaily reduccs the bandwidth of ttre antenna while increasing the

radiation resistance.

For the case where the CBS radiator is excited by a coaxial-line probe inside the cav-

ity, one may model the probe by a filamcntary current source and find the voltage distribu-

tion along the slor As the probe is moved towards the cavity wall containing the slot, the

induced voltage in the slot increases. Similar behavior is obscrved when the probe lcngth is
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increased. The assumption of a filamentary source results in an infiniæ reactance and there-

fore a more realistic model of the probe shouid be used in the impedance calculation. We

assumed a sinusoidal cunent distribution flowing in the axial direction on the probe surface

and applied Poynting's theorem for this purpose. Note that in the absence of ohmic losses,

the impedance of the closed cavity (without slot) is purely reactive and its value is mairùy

determined by the probe length. This may be used for adjusting the input impedance by

varying the probe length. As for the resonance frequency, a deeper cavity or a longer slot

results in a lower resonanc€ frequency as expected.

In applications zuch as radar, it is essential to eliminate or at least minimize the side-

lobes in the radiation pattem of the antenna. On the other hand, it is well-known that the

radiation freld is the Fourier transform of the aperture field and since the Fourier transform

of a Gaussian function is also a Gaussian, one concludes that a Gaussian field distribution

in the aperture should in principle produce the desired radiation pattem. In a CBS radiaror,

it is possible to obtain the appropriate voltage distribution along the stot by using a cavity

of proper size and shape to back the slot. To this end, the general solurion for the elec-

tromagnetic fields between two conducting parallel plates are expressed as a continuous

spectrurn of plane waves. The so-called wave-beam conditions are then apptied to obtain

approximate solution for ttre fields that are confined to a small solid angle about the princi-

pai axis of the system. The field amplirudes are expanded in terms of Gauss-Hermite func-

tions whose orthogonality property is used to obtain the expansion coefficients.

To constn¡ct a cavity resonator from the beam-waveguide one may short circuit two

suitable constant-phase planes by conducting surfaces. The x- y plane is taken as the

plane of the front wall and the equation for zurface of the cavity back-wall is obtained. In

theory the cavity lengttr extends to infinity along the x axis; however, it is shown that the

amplirude of the propagating modes attenuate exponentially off the x=0 plane and therefore

in practice one may use a cavity of finite length without noticeable reflection from the open

ends. A narrow slot is cut in the front wall of the cavity and an integral equation is

obtained for the voltage distribution along üre slot. To prcserve the favorable Gaussian
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field distribution in the apernrre, it is essential that the slot length extend to inftnity. Thus,

in the numerical evaluation of the integral equation, we have used the entire-domain bæis

and testing frrnctions. The numerical resulß for the voltage disuibution clearly show the

Gaussian behavior of the apern¡re field for both symmetric and skew-symmetric excitations.

It is also observed that for the case of skew-symmetric excitation, there is always a nr¡ll in

the voltage disuibution at the slot center as expected.
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APPENDIX A

FOURTER TRANSFORM OF G (€) rN EQ. (2.20)

The Fourier transform of G (E) is defined by

+æ
I

õ1a¡ = J c(6) e-iú ¿E (A.t)

Subsdnrting 
" 

Cr;; Q.zl)and changing the order of integrations yields

ßt2

Gçc:¡=! I*oesino)do 6.2)1Í' o

where z - ,,',[¿- ¡rz and we have used the result t59, p. 26]

*i 
"-,o,ï::r.ri::dE=zKo(I" l^t..,-k ) (A.3)

- ó Lç'+ c'1"'

It can also be shown that [42, p. a85]

ßr
I rcoesino) do = T tot¡i> rco(t) (A.4)
0

, 
Thus (4.2) becomes

õ(o) -zJo7+',tú-kz¡rc01\',1"'-*) (A.s)

(

ã,-, ) ,,t 
î^tu'? 

4'z ) Ko(î^[ú - k') , a> k
G(cr) = I- \-/ 

l r t*î^[k'z - -e 

¡ rcoçi^[rr' - * ¡, u. < k

where 16 is the modified Bessel function of the first kind and zcro ordcr.

(A.6)
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APPENDIX B

CALCTTLATTON OF TlrE SERTES rN EQS. (3.37)

To calculate a series in the form

c_: cos(äp)
" - Ê, P@)

where P (p) is a rational even function of p, we define the function

f ('\ - 
ejhr \- t r ç¡çeinz -t¡

(8.3) we have

€ cos (åp) _ | n cos [(å- r)a]
H') . n- _ ctT 2a2 2a sin (na)p=L y

(8.1)

andevaluatethecontourintegral I ¡e)dz whereCp: lz l=R, Imz >-€and €
CR

is a ñxed real number. If P(z) is of the order Re, e >1 as I, | = R->oo , rhen from

Jordan's Lemma [60] we have

lim I¡ft)d,z=oR+- ÛR

and therefore from Cauchy's integral formula, the sum of all the residues of f (z ) is equal

to zero, namely

Ë -tjuool*ffi 
+> t residues of f (z) at zeros of P (z) I = 0 (B.3)

The ftrst term in (8.3), which is in the form of the desired series, is due to infinite simple

poles of ç"iznz-l¡ at z=!p,p=0,1,2, and clearly shows the reason for intro-

ducing this factor in (8.2).

For the speciai case of P(p) = p2 - a2, there a¡e simple poles at z=! a and from

(8.2)

(8.4)
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This result can be used in calculating the series

", å sin (koz') sin (kpz)
^)t= L (8.5)p=r lrl - rck

with ko - prclc. We first write,Sl in the following form

^s, = 1 I c)2 [ ç cos (åP) - ; cos f¿Pl IL a'-' I Lt . ¿' Lt t ., I4 7t Lp=t po-ao 
"=t 

po-a'I

where

o=!K-
E "mn

b=æ(z'+z)/c

-b =tc(z-z)/c

Substitution from ( B.4) yields

(

S, _ c ] sin [Ã',-,(c- z )] sin (K,nnz) , z< z

' 2K,*,ÑÃ | sin 1r,,,2 ) sin [K^ (c] r)l , z> z CB'6)

In a similar fashion, for the series

æ cos (koz) cos (kpz)
Sz = I (8.7)p=o lrl - rck

we obtain

(
c _ I c J cos [K^"(c- z )] cos (K,*,2) , z< z
J2 = - *k - ,K^"ti" (K,,-Ò I "o, frc,*,t') cos [K,*,(c- z)], z> z (B'8)

Other summations in Eqs. (3.37) can be obtained by øking the first or second derivatives of

51 and ^12.
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APPENDTX C

COMPONENTS OF THE ELECTRIC AND MAGNETIC-TYPE DYADIC

GREEN'S FUNCTIONS OF A RECTANGULAR CAVITY

From Eq. (3.42), the components of the electric+ype dyadic Green's function

E"(i | ¿ ror a rectangular cavity and P *i un given by:

G& = - Z C,*,(lr!- t 2) cos (k^x') sín(knyj cos (k^x) sin(kny) f ,,*(2 , z')
tn, n

GÍ, = - Z C^,k^k, cos(k^x') sin(knyj sin(k^x) cos(kny) f ,nn!, z')
m,n

GÍ, =- f, C,,*k^ cos(k^x') sín(koy) sín(k^x) sin(kny) 9+
ñ,ß dz

Gl, =
m,n

Gl, = - Ð C^n(lrÎ- tz) sin(k^x') cos(k^y') sin(k^x) cos(kny) f ,,*(2, z')
m,n

Gf, =' Z C,*,kn sin(k^x ) cos(kny) sin(k^x) sín(k^y) +
û,8 dz

GL =' > C,*,k^ sin(k^x') sin(kny) cos(k^x) sin(kny) þ
m,n dz

Gíy = - Ð C, kn sin(k^x') sin(knyj sin(k^x) cos(knyr 9+
ñ,R dz

Gf, = - Z C^ kf, sin(k^x ) sin(kny) sin(k^x) stn(kny) g,*,(2, z')
m,n

In these equations a , b , and c arc the cavity dimensions and

(
.. ,J sin [K-,, (c - z )] sin (K^nz) , z < z

Jr \z,z)= '\ '
Isin (K,-,2 ) sin lK^nG - z)), z > z
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(

g,nne, z ) =] 
cos lK' G. - z )l cos (K'*"2)' z < z

- 
[ cos (K,r*z') cos [K,nn@ - z)) , z > z

Kk=lr'-tk, kh=kÎ+k], k^=mr/ a,, kn=nrl/ b

f - -l-r
C,r* = €^ En l.*O' K,,* sin(K*r) )

with

(

^ -J 1, m=0cm- l. m+0Lo'

Similarly, for the components of the magnetic-type dyadic Green's function of a rec-

tangular cavity E^e | Ð, mtn Eq. ç.aT we have

G# =>, C,*,(lr3- lcz) sin(k-x') cos(knyj sin(k^x) cos(kny) g,nne, z')
m,n

Gfi =Ð C,r-k^kn sin(k^x') cos(kny) cos(k^x) sin(kny) g,*,(2, z')
m,n

G# = - Ð C^ k^ sin(k^x') cos(kny) cos(k^x) cos(koy) þ-ñ,ß dz

G# =2 C,r k^kn cos(k^x') sin(koy) sin(k^x) cos(kny) g,*r(2, z')
m,n

Gfr => C,,-QrÎ- lrz) cos(k^x') sín(kny) cos(k^x) sin(kny) g,nne, z')
m,n

Gfr = - >, C,, kn cos(k^x') sin(knyj cos(k^x) cos(kny) +-
ñ,8 dz

G* = - >, C,, k^ cos (k^x') cos (kny) sin(k^x) cos (kny) %
m,n dz

Gfi = - 2, C,*rkn cos(k^x') cos(kny) cos(k^x) sin(kny) +-ñ,t oz

GI => C,,.kfl cos(k^x') cos(koy') cos(k^x) cos(kny) f ,,*(2, z')
m,n
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APPENDIX D

CALCULATTON OF TrrE TNTECRAL rN EQ. (6.26)

From Eqs. 7.388-2, 4 in Í441 and with appropriate modifications, we have

ætz11

I, 
o reu*t(t) sin(Z¡)¿¡=''lnneÐ^*çx2- 1¡"*i r- i" ,r^*r(ffi) CD.1)

lr-æ Hev,Q)cos(¿r) ù =ffi,r(1 - x2)n e
ox

-I" r"u(#) @.2)

-12vLet x- = T-.7 an¿ Z = å. Thus,L-Ja x

I .1

x =',811+az¡-7 "tZ'^'o
n 2bz . Zabz

j-=_-:-rJ-__-=l+a' l+a"
xy 2b

--...._

lxz-l ^l!+a?

1 - rz = - 
I + ia - - ojÌtan-taL ^ l-ra--ç-

Substituting the above quantities in (D.1) and (D.2) and noting that He^(r) is an odd func-

tion for odd m and an even function for even m, the wo equations may be combined and

written in the general form

+æ | .z ,tr -z 1 bz

) e o Hr^(t)s-itu.'n ù=Z(-j)n'GQ+az) 4 e t+az

2h-, .-iffi -it^+!) 
w.-oHe^(-ft ^¡- ç

\ I+a¿

which is valid for even or odd rn.

(D.3)
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