
Single-Query Robot Motion Planning using Rapidly
Exploring Random Trees (RRTs)

by

Jonathan Bagot

A thesis submitted to

The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements

of the degree of

Master of Science

Department of Computer Science

The University of Manitoba

Winnipeg, Manitoba, Canada

August 2014

© Copyright 2014 by Jonathan Bagot

Thesis advisor Author

Jacky Baltes Jonathan Bagot

Single-Query Robot Motion Planning using Rapidly

Exploring Random Trees (RRTs)

Abstract

Robots moving about in complex environments must be capable of determining

and performing difficult motion sequences to accomplish tasks. As the tasks become

more complicated, robots with greater dexterity are required. An increase in the

number of degrees of freedom and a desire for autonomy in uncertain environments

with real-time requirements leaves much room for improvement in the current pop-

ular robot motion planning algorithms. In this thesis, state of the art robot motion

planning techniques are surveyed. A solution to the general movers problem in the

context of motion planning for robots is presented. The proposed robot motion plan-

ner solves the general movers problem using a sample-based tree planner combined

with an incremental simulator. The robot motion planner is demonstrated both in

simulation and the real world. Experiments are conducted and the results analyzed.

Based on the results, methods for tuning the robot motion planner to improve the

performance are proposed.

ii

Contents

Abstract . ii
Table of Contents . vi
List of Figures . vii
List of Tables . x
List of Algorithms . xii
Acknowledgments . xiii
Dedication . xiv

1 Introduction 1
1.1 How hard is the robot motion planning problem? 3
1.2 Why is it important to solve the robot motion planning problem? . . 4
1.3 How can the robot motion planning problem be solved? 5
1.4 Summary of Contributions . 8
1.5 Thesis Organization . 9
1.6 Terminology . 10

2 Background 12
2.1 Configuration Space (CSPACE) . 13
2.2 Task Space (TSPACE) . 14
2.3 Cartesian Coordinates . 15

2.3.1 Left Hand Rule . 16
2.3.2 Right Hand Rule . 17

2.4 Homogeneous Coordinates . 17
2.5 Representing Orientation by Angles 18

2.5.1 Euler . 18
2.5.2 Quaternions . 21

2.6 Transformation Matrices . 22

iii

iv Contents

2.6.1 Notation . 22
2.6.2 Rotation Matrices . 23

2.6.2.1 Combining Rotation Matrices 24
2.6.2.2 Extracting Euler Angles from Rotation Matrix . . . 26

2.6.3 Translation Matrices . 27
2.7 Frames . 28
2.8 Kinematics . 30

2.8.1 Denavit Hartenberg (D-H) Parameters 32
2.8.2 Forward Kinematics (FK) . 35
2.8.3 Inverse Kinematics (IK) . 35

2.8.3.1 Jacobian Matrix . 37
2.8.3.2 Calculating the Jacobian Matrix 38
2.8.3.3 Jacobian Transpose 39
2.8.3.4 Jacobian Pseudo Inverse 40

2.9 Polygon of Support (POS) and Zero Moment Point (ZMP)/Center of
Pressure (COP) . 42

2.10 Inverted Pendulum . 46
2.11 Proportional-Integral-Derivative (PID) 46
2.12 Nearest Neighbor (NN) . 48
2.13 Voronoi Diagram . 49
2.14 Graph Theory . 50

2.14.1 Shortest Path Problem . 52
2.14.1.1 Dijkstra’s Algorithm 52
2.14.1.2 A* Algorithm . 53

2.14.2 Trees . 53
2.15 Incremental Simulator . 55
2.16 Collision Detection . 55
2.17 Summary . 60

3 Related Work 61
3.1 Randomized Potential Fields . 61
3.2 Probabilistic Road Map (PRM) . 63
3.3 Ariadne’s Clew Algorithm . 64
3.4 Flexible Binary Space Partitioning (BSP) 66
3.5 Summary . 67

Contents v

4 Rapidly Exploring Random Tree (RRT) 68
4.1 Sample Bias . 74
4.2 Nearest Neighbor (NN) . 76
4.3 Distance Metric . 77
4.4 Collision Detection . 81
4.5 Related Work . 81

4.5.1 RRT-Goal Bias . 81
4.5.2 RRT-Goal Zoom . 82
4.5.3 RRT-EXTEND . 82
4.5.4 RRT-CONNECT . 86
4.5.5 RRT-Bi-directional . 86
4.5.6 Jacobian Transpose RRT (JT-RRT) 87
4.5.7 Multipartite RRT (MP-RRT) 88
4.5.8 RRT-Blossom . 88
4.5.9 RRT* . 89
4.5.10 Obstacle-Based RRT (OB-RRT) 90
4.5.11 Task Space RRT (TSPACE-RRT) 92
4.5.12 Closed-Loop RRT (CL-RRT) 92
4.5.13 Particle RRT (pRRT) . 93
4.5.14 Heuristically-guided RRT (hRRT) 93
4.5.15 Exploring/Exploiting Tree (EET) 94

4.6 Other Applications . 95
4.7 Summary . 95

5 Implementation 96
5.1 Real World . 97

5.1.1 Humanoid Robot . 97
5.1.2 High Level Logic . 107
5.1.3 Vision . 109
5.1.4 Localization and Mapping . 110
5.1.5 Trajectory Planning . 111
5.1.6 Balancing . 112
5.1.7 Firmware . 119

5.2 Simulation . 121
5.2.1 Computer . 122
5.2.2 Motion Simulator . 122
5.2.3 Third Party Software . 124

5.2.3.1 Open Dynamics Engine (ODE) 124

vi Contents

5.2.3.2 Boost . 127
5.2.3.3 Approximate Nearest Neighbor (ANN) 128
5.2.3.4 Graphviz . 129
5.2.3.5 Voro++ . 129
5.2.3.6 Open Graphics Library (OpenGL) 129

5.2.4 Robot Models . 130
5.2.4.1 Sphere Robot . 132
5.2.4.2 Humanoid Robot . 135
5.2.4.3 Motor Adapter . 139
5.2.4.4 Motor Controller . 142

5.2.5 World Models . 142
5.3 Motion Planner with RRT and Incremental Simulator 153

5.3.1 Random Number Generation 157
5.3.2 Random Configuration Generation 164

5.4 Summary . 165

6 Evaluation 167
6.1 Overview . 167
6.2 Experiment Purpose . 167
6.3 Experiment Setup . 168
6.4 Experiment Criteria . 170
6.5 Results, Analysis and Observations 174
6.6 Modifications and Optimizations . 224
6.7 Summary . 230

7 Conclusion 231
7.1 Future Work . 233

A Acronyms 236

B Glossary 243

C Scilab Functions 244

Bibliography 259

List of Figures

2.1 2D Cartesian Coordinates . 15
2.2 Left Hand Rule . 16
2.3 Right Hand Rule . 17
2.4 Euler Angles - Rx, Ry, Rz . 20
2.5 4 link kinematic model of humanoid robot. 32
2.6 4 link kinematic model of humanoid robot with coordinate frames

attached. 35
2.7 First half of gait cycle . 44
2.8 Double support POS . 45
2.9 Single support POS . 46
2.10 Voronoi Diagram in 3D . 50
2.11 Example Directed Weighted Graph 52
2.12 Tree . 54
2.13 Bounding Spheres Example in 2D . 57
2.14 Bounding Spheres . 58
2.15 Bounding Multi-Spheres . 58
2.16 Bounding Boxes . 59
2.17 Bounding Polygons . 59

4.1 Rapidly Exploring Random Tree (RRT) 69

5.1 Humanoid Robot - Blitz . 98
5.2 Cardinal Planes . 100
5.3 Blitz Joints with Servo ID . 101
5.4 AX-12 valid angle range (from Dynamixel AX-12 Manual Robotis

[2006]) . 104
5.5 Nokia N5500 . 105

vii

viii List of Figures

5.6 Motion Editor . 106
5.7 Blitz Functional Block Diagram (FBD) 107
5.8 State Machine Diagram for Soccer Player Penalty Kick 109
5.9 Sinusoid . 112
5.10 Accelerometer Data for each Cardinal Plane with ESP 116
5.11 Accelerometer Data for each Cardinal Plane with DESP 117
5.12 Accelerometer Data for each Cardinal Plane with Rate of Change . . 118
5.13 Sphere Model . 133
5.14 Blitz Robot Model vs. Blitz . 136
5.15 Humanoid Model . 137
5.16 Motor Control . 141
5.17 World 0 . 143
5.18 World 1 . 144
5.19 World 1-2 . 145
5.20 World 2 . 146
5.21 World 3 . 147
5.22 World 4 . 147
5.23 Real World 5 . 149
5.24 Model World 5 . 150
5.25 World 5 Tool Trajectory Collision . 151
5.26 World 5 Tool Trajectory . 152
5.27 Pseudo Random Number Generator (RNG) Incremental Sample Range,

Single Radius . 159
5.28 Pseudo RNG Incremental Sample Range, Single Radius Increment . . 160
5.29 Pseudo RNG Incremental Sample Range, Dual Radius 161
5.30 Pseudo RNG in Sphere . 163

6.1 Colour Coding . 177
6.2 Best CONNECT Result for World 0 - Goal Bias 40 178
6.3 Best EXTEND Result for World 0 - Goal Bias 40 179
6.4 Bias Probability vs. Number of Configurations - World 0 180
6.5 Bias Probability vs. STD Number of Configurations - World 0 181
6.6 Bias Probability vs. Total Execution Time - World 0 182
6.7 Best CONNECT Result for World 1 - Goal Bias 1 189
6.8 Best EXTEND Result for World 1 - Goal Bias 50 190
6.9 Bias Probability vs. Number of Configurations - World 1 191
6.10 Bias Probability vs. STD Number of Configurations - World 1 192
6.11 Bias Probability vs. Total Execution Time - World 1 193

List of Figures ix

6.12 Best CONNECT Result for World 2 - Goal Bias 1 197
6.13 Best EXTEND Result for World 2 - Goal Bias 40 198
6.14 Bias Probability vs. Number of Configurations - World 2 199
6.15 Bias Probability vs. STD Number of Configurations - World 2 200
6.16 Bias Probability vs. Total Execution Time - World 2 201
6.17 Best CONNECT Result for World 3 - Goal Bias 1 205
6.18 Best EXTEND Result for World 3 - Goal Bias 10 206
6.19 Bias Probability vs. Number of Configurations - World 3 207
6.20 Bias Probability vs. STD Number of Configurations - World 3 208
6.21 Bias Probability vs. Total Execution Time - World 3 209
6.22 Best CONNECT Result for World 4 - Goal Bias 60 213
6.23 Best EXTEND Result for World 4 - Goal Bias 20 214
6.24 Bias Probability vs. Number of Configurations - World 4 215
6.25 Bias Probability vs. STD Number of Configurations - World 4 216
6.26 Bias Probability vs. Total Execution Time - World 4 217
6.27 Bias Probability vs. Number of Configurations - World 5 220
6.28 Bias Probability vs. Total Execution Time - World 5 221
6.29 Best Result for World 5 . 222
6.30 2D RRT k-Nearest Example . 228
6.31 2D RRT k-Nearest Example . 229

List of Tables

5.1 Blitz Joints . 102
5.1 Blitz Joints . 103

6.1 Summary of Evaluation Criteria . 173
6.2 Qualitative Inspection Ranking . 174
6.3 Result Matrix World 0 . 175
6.3 Result Matrix World 0 . 176
6.4 Result Matrix World 1 . 187
6.4 Result Matrix World 1 . 188
6.5 Result Matrix World 2 . 195
6.5 Result Matrix World 2 . 196
6.6 Result Matrix World 3 . 203
6.6 Result Matrix World 3 . 204
6.7 Result Matrix World 4 . 211
6.7 Result Matrix World 4 . 212
6.8 Result Matrix World 5 . 219

x

List of Algorithms

1 Jacobian . 40

2 Using Jacobian Transpose with Incremental Simulator 41

3 PID . 47

4 PID with Integral Limit . 48

5 Classic RRT [Lavalle, 1998] . 73

6 3D Euclidean Fast Approximation [Ritter, 1990] 79

7 2D Euclidean Fast Approximation [Ritter, 1990] 80

8 RRT-EXTEND 8 [Kuffner Jr. and Lavalle, 2000; Lavalle and Kuffner

Jr., 2000] . 83

9 EXTEND 8 [Kuffner Jr. and Lavalle, 2000; Lavalle and Kuffner Jr.,

2000] . 84

10 RRT-CONNECT 8 [Kuffner Jr. and Lavalle, 2000; Lavalle and Kuffner

Jr., 2000] . 85

11 CONNECT 8 [Kuffner Jr. and Lavalle, 2000; Lavalle and Kuffner Jr.,

2000] . 85

xi

xii List of Algorithms

12 Pseudo Random Number Generator 160

13 Pseudo Random Number Generator in Sphere 162

14 Random Configuration . 164

15 Random Sphere Configuration . 165

16 Random Humanoid Configuration . 165

17 k-Nearest Move . 227

Acknowledgments

I would like to thank my advisor and examining committee member Dr. Jacky

Baltes for your friendship, support, and advice over the years from undergraduate

to present time. I would also like to thank my advisory and examining committee

member Dr. John Anderson for your feedback, insight, and attention to detail which

has proven to be invaluable. Another thank you to my advisory committee member

Dr. James Young. Finally a special thanks goes out to my parents and family for

encouraging me to further my education.

xiii

This thesis is dedicated to my parents.

None of my accomplishments could have been achieved without you.

xiv

Chapter 1

Introduction

Motion planning is done by humans every day and typically without much thought.

Imagine a simple task you perform every morning such as making a cup of coffee.

Making a cup of coffee requires many motion plans. For example consider the first

task to get a cup from the cupboard. You must first walk over to the cupboard

and position your body such that the distance from your shoulder to the cupboard

handle is less than your arm length. The required sequence of motions for your body

to achieve this position from your initial position can be called a motion plan. A

good motion plan would be quick, require little effort, and avoid any part of your

body bumping into obstacles in the kitchen. For each subsequent movement a mo-

tion plan is required. In order to complete the task you would determine a motion

plan to move your hand to grasp the cupboard handle, move your hand to open the

cupboard door, move your hand to grasp the cup, and so forth. You may even decide

1

2 Chapter 1: Introduction

to use both hands; one to open and close the cupboard door and the other to grasp

the cup. For humans this can be called a simple task, but in reality there are many

complex systems at work. The human body has a significant number of possible

joint movements (Degrees of Freedom (DOF)), and many ways that the same end

goal can be achieved through different combinations of joint movements. Determin-

ing motion plans is a extremely difficult problem for an autonomous robot despite

the use of modern technology because current hardware does not provide equivalent

sensory and movement capabilities to a human. There is still much improvement to

be made in both the hardware and software to develop and execute motion plans as

effectively as humans.

In robotics, motion planning refers to the organization of robot motions in a

specific sequence to achieve a goal. A robot motion in the simplest sense can be

thought of as a translation or rotation. The actual execution of a robot motion is

much more complicated because the dynamics and differential constraints of the robot

must be considered. When considering dynamics in robot motion planning, the effect

of external forces on the robot motion play a role in the motion plans chosen. On the

other hand, when considering differential constraints in robot motion planning, the

velocities of the robot at any given moment play a role in the motion plans chosen.

Motion planners typically ignore the dynamics and differential constraints of the

robot assuming that a secondary planner called a trajectory planner can solve for each

transition between motion steps during the execution of the motion plan [LaValle,

Chapter 1: Introduction 3

2006].

Robot motion planning is a cross-disciplinary problem because it involves both

hardware and software components. The Mechanical Engineering, Electrical Engi-

neering, and Computer Science fields all must contribute in order to make advance-

ments in solving the robot motion planning. As new sensor and servo technologies

emerge, software algorithms must adapt to make use of different feedback.

1.1 How hard is the robot motion planning prob-

lem?

The complexity class that the robot motion planning problem falls into is as

follows:

The motion planning problem for robots is a form of the general mover’s prob-

lem an extension of the classical mover’s problem also known as the piano mover’s

problem. The piano mover’s problem is to determine how to move a piano from one

point to another without collision. The general mover’s problem replaces the piano

with a generic object where the moving “object may have multiple polyhedra freely

linked together at various distinguished vertices” [Reif, 1979]. A robot would have

many masses linked together by joints. A DOF for a robot is a controllable joint

that defines the configuration of the robot. The number of DOF defines the dimen-

sion of the moving object. The general movers problem was shown to be Polynomial

4 Chapter 1: Introduction

Space (PSPACE)-hard by Reif [1979]. A problem that is PSPACE-hard can be solved

with a Turing machine with a polynomial amount of memory and unlimited time.

As the number of DOF increases the runtime follows for deterministic solutions.

In addition to solving the general mover’s problem, the concept of Kinodynamic

Motion Planning introduced by Donald et al. [1993] considers both kinematic and

dynamic constraints as well. Kinodynamic motion planning has been shown to be

Non-deterministic Polynomial-time (NP)-hard in three dimensions. A problem that

is NP-hard is at least as hard as any NP-problem, it may be even harder.

1.2 Why is it important to solve the robot motion

planning problem?

The increasing complexity of robots has brought on a whole new set of challenges

for robotics research. The cost of building small scale robots has decreased consid-

erably, which facilitates active research in robotics. An increase in the number of

DOF and a desire for autonomy in uncertain environments with real-time require-

ments leaves much room for improvement in the current popular motion planning

algorithms.

Efficient robot motion planning is one significant piece of the puzzle in making

robots useful and allowing them to operate in the same environment as humans.

Having robots that can operate in the same environment as humans along side hu-

Chapter 1: Introduction 5

mans is the ideal situation since it eliminates the need for specialized environments

that allow the robots to work. These specialized environments can be expensive and

require large amounts of space to isolate them from humans to prevent injury.

The motion planner must use information from other complex systems such as

vision, localization, mapping systems but it is just as important as any other part of

the puzzle. All of these complex systems combined together make robots useful.

1.3 How can the robot motion planning problem be

solved?

Since the motion planning problem for robots is PSPACE-hard [Reif, 1979], find-

ing paths quickly for robots with large DOF in uncertain environments requires

sacrificing planner optimality for query response time [Kavraki et al., 1995; Kuffner

et al., 2002]. A path that is good enough but not optimal allows for fast think

and react cycle time. Reducing the think and react cycle time is a critical task

for robots that interact with the real world. Deterministic complete planners are

well defined but are known to be intractable for robots with large DOF and real-

time requirements in even simple domains. Sample-based probabilistically complete

planners (will find solution if one exists but cannot determine if one does not exist)

have showed promise returning sub-optimal results in reasonable time. Sample-based

planners can be classified in two general groups: roadmap and tree [Tsianos et al.,

6 Chapter 1: Introduction

2007]. The main difference between roadmap and tree planners is the underlying data

structure. A roadmap planner typically stores the map in a graph and requires two

phases to return an answer [Hsu et al., 2007]. The first learning phase builds the map

and the second query phase determines the plan with a graph search algorithm such

as Dijkstra’s algorithm which is described in Section 2.14.1.1. The learning phase is

an expensive operation but in a static environment the roadmap can be used for all

queries, therefore the cost of the learning phase is only incurred once. In a dynamic

environment the cost of the learning phase would be too large to react to changes

in the environment since the roadmap must be rebuilt before each query [Jaillet and

Simeon, 2004]. Roadmap planners are discussed in more detail in Chapter 3. A tree

planner stores only the necessary data to find a solution to the query in a tree. The

root of the tree represents the start state and the tree is built incrementally until

the end state is reached. The answer to the query is simply a branch of the tree

from the root (start) to a leaf (end) node, therefore the answer is found in a single

query [Sucan and Kavraki, 2012]. Building the tree is not an expensive operation

which makes tree planners ideal for dynamic environments where plans may become

invalid quickly. Tree planners are discussed in more detail in Chapter 4. The focus

of the research to be conducted is on sample-based tree planners because the goal

is to solve the motion planning problem in dynamic environments with real-time

requirements.

A RRT is a data structure for planning problems where the nodes of the tree

Chapter 1: Introduction 7

are generated randomly and typically biased towards un-explored areas [Lavalle,

1998]. From the name, it is clear that the RRT can be categorized as a sample-based

tree. There are many elements of a RRT that can be implemented in various ways.

Different implementations behave and perform better or worse for specific problems.

The RRT is the basis of the motion planner presented in this thesis. Instead of

using a single implementation of a RRT many combinations of different element

implementations are explored in order to analyze how each behaves and performs

for specific types of problems. The key elements of a RRT are sample bias, nearest

neighbor, distance metric, and collision detection. These key elements are discussed

in detail in Chapter 4. Each element effects the performance of the RRT in different

ways. For example the sample bias method has a direct impact on how well the

tree covers the environment while the nearest neighbor method only limits how fast

random configurations can be connected to the tree.

Motion planning algorithms determine continuous collision free paths from an

initial position to goal position. The motion plan is constrained by the physical

characteristics of the robot and the environment. Robots with many DOF, redun-

dant manipulators, and real-time requirements increase the difficulty of the motion

planning problem. The goal of my thesis is to develop a planner able to consider

kinodynamic constraints, find or approximate the IKs solution, and perform collision

detection quickly and reliably in order to generate feasible motions plans.

Simple robots such as a wheeled robots on an even terrain are dynamically stable

8 Chapter 1: Introduction

in every possible configuration. Complex robots such as humanoid robots are not

dynamically stable in every possible configuration, and therefore they can fall over.

This is, of course, undesirable. A solution strategy is presented to determine for

complex robots if a configuration will be dynamically stable.

1.4 Summary of Contributions

The thesis presented makes many contributions to the motion planning problem

for robots. These include current techniques to solving the robot motion planning

problem, using a sample-based tree algorithm combined with an incremental simula-

tor, and an extensive analysis of the different elements that constitute a sample-based

tree algorithm; namely the Rapidly Exploring Random Tree (RRT). My motion

planner was also tested in both simulation and the real world, which demonstrates

that the simulated robot and world models can be translated and applied to the real

world.

By combining a sample-based tree algorithm with an incremental simulator, the

motion planner not only generates a plan but tests the feasibility of each step in

real-time as it is generated using a model of the robot and world. The plan can then

be executed on a real robot with greater confidence that the plan is valid.

Many other solutions to the motion planning problem for robots have been pro-

posed but have only been demonstrated in simulation. For example variations of

sample-based tree planners were proposed in Lavalle [1998]; Lavalle and Kuffner Jr.

Chapter 1: Introduction 9

[2000]; Kuffner Jr. and Lavalle [2000]; Lindemann and LaValle [2004]; Zucker et al.

[2007] but were only evaluated in simulation with models that are always dynam-

ically stable (cannot fall over) and fictitious environments. My thesis research is

demonstrated in both simulation and the real world. Not all solutions translate well

from simulation to the real world, therefore demonstrating applicability to the real

world is also a significant contribution.

1.5 Thesis Organization

The thesis is organized and presented in the following chapters:

Background

The purpose of the Background chapter is to provide sufficient information to

the reader on robotics and motion planning since the problem at hand requires a

breadth of knowledge. A wide array of concepts are presented with examples. It is

not necessary to immediately read this chapter. If you are familiar with robotics and

motion planning, you could skip to the Related Work chapter. If you are unfamiliar

with robotics and motion planning, then it is a good place to start. The Background

chapter is back referenced in later chapters when the concepts are related and should

be understood. If the reader wants more information on the topic at hand, they can

always come back to this chapter.

Related Work

A survey of the current popular robot motion planning techniques are presented

10 Chapter 1: Introduction

to provide a broad picture of the evolution of solution strategies and how they are

applicable to specific problems.

Rapidly Exploring Random Tree (RRT)

The concept of the RRT is presented and related work to date is discussed.

Implementation

The specific details of the implementation of my solution strategy are given. In

particular the implementation for a real humanoid robot and its equivalent simulated

model, other simulated robot models, simulated and real environments, and the

motion planner.

Evaluation

My approach is evaluated through experimentation. This chapter describes the

experiment purpose, setup, and criteria. The results of the experiment are presented

with analysis and observations. Finally, modifications and optimizations to my ap-

proach are suggested.

Conclusion

Final thoughts, future work and discussion.

1.6 Terminology

The terminology used in this thesis is described as required and background

information is given in a orderly manner throughout. All acronyms used are defined

in Appendix A. All terms that may require additional explanation are defined in

Chapter 1: Introduction 11

Appendix B. All concepts used are defined in Chapter 2.

Chapter 2

Background

In order to solve the motion planning problem for robots it is necessary to be

familiar with a wide array of topics in robotics. Before proceeding to the following

chapters it is recommended that the reader understand the topics in this chapter.

This chapter aims to provide sufficient background information to readers with little

to no robotics knowledge.

The chapter is organized as follows: first the state space representation that is

commonly used in robot motion planning is introduced. Next coordinate systems,

angle representations, and transformations are described in order to aid the reader

in understanding how robotics kinematics problems are solved. In contrast to the

kinematics, dynamics are introduced with the concept of the inverted pendulum

and Polygon of Support (POS) in relation to balancing. The remainder of this

chapter covers various topics such as Proportional-Integral-Derivative (PID), Near-

12

Chapter 2: Background 13

est Neighbor (NN), Voronoi diagrams, graph theory, incremental simulations, and

collision detection are covered because they are necessary to understand the solution

strategy I propose in the remainder of this thesis.

2.1 Configuration Space (CSPACE)

An essential ingredient to solving planning problems is a unique understanding

of the state space. The state space consists of every possible combination of inputs

and the respective outputs. For a large number of inputs the size of the state space

yields a combinatorial explosion of states [LaValle, 2006]. For example, a Selective

Compliance Articulated Robot Arm (SCARA) has a fixed base and 4 DOF, it can

reach any 3D coordinate in its workspace. SCARA are a commonly for assembly

robots. The CSPACE for this type of manipulator would consist of all possible arm

configurations and the respective 3D coordinates of the tool. Imagine each of the 4

joints has a range of [0.0,180.0] in 0.1 degree increments. This yields a state space

of 18004 for a relatively simple robot. Finding the optimal solution would require

searching through the state space for a set of states which arrive at the goal state

from the initial state and maximize the heuristic function. For example if a robot

has a limited power supply, the heuristic function might rank solutions that use less

power higher. In general searching through the entire state space is infeasible for

large state spaces especially if a solution must be found in real-time. A solution

might be considered acceptable if the power consumption does not exceed a fixed

14 Chapter 2: Background

threshold although it may not be the optimal solution.

The most commonly used state space representation for robot motion planning

is known as a Configuration Space (CSPACE) introduced by Lozano-Perez [1980]. A

robot in CSPACE is reduced to a single n-dimensional point (configuration) moving

through space, where n is the number of DOF. The CSPACE represents the set

of all transformations that can be applied to the robot. The Configuration Free

(CFREE) set denotes the set of all robot configurations that are not in collision with

obstacles. The Configuration Obstacle (COBS) set is the compliment of the CFREE

set, therefore the COBS set denotes the set of all robot configurations that are in

collision with obstacles. A valid path from a robot’s initial configuration to goal

configuration would consist of configurations which all belong to the CFREE set.

2.2 Task Space (TSPACE)

The Task Space (TSPACE) set is a subset of the CSPACE [Liegeois, 1977]. In-

stead of considering all possible robot configurations, some joints are fixed using some

information about the desired goal configuration. For example if the goal configura-

tion requires the tool of a robotic manipulator to be in a specific orientation, a few

joints can be fixed to provide the desired orientation then the TSPACE set consists

of all possible combinations of the remaining joints. The TSPACE set is typically

used in feedback control systems and is usually called Task Space Control in related

literature [Shkolnik and Tedrake, 2009].

Chapter 2: Background 15

2.3 Cartesian Coordinates

Cartesian coordinates are a method of specifying points in space. Each point

is given numerical coordinates that specify the location of the point on a set of

planes that are perpendicular to one another [Wright et al., 2007]. Where the planes

intersect is called the origin. Most people are familiar with 2D coordinates. In

robotics coordinates are specified in 3D.

A 2D coordinate system has two perpendicular planes with axes typically labelled

x, y as shown in Figure 2.1. A 2D coordinate has the numerical form (x, y).

A 3D coordinate system has three perpendicular planes with axes typically la-

belled x, y, z. A 3D coordinate has the numerical form (x, y, z).

x+

y+

(0, 0)

Figure 2.1: 2D Cartesian Coordinates

There are a few useful rules for two common 3D coordinate systems. There is

no standard for 3D coordinate systems in robotics. The coordinate system chosen

16 Chapter 2: Background

is a matter of opinion and there is no advantage to any except for commonality.

The following rules use your thumb, index finger, and middle finger to remember

the relationship between axes and their direction [Corral, 2008]. The thumb is pos-

itive X, the index finger is positive Y , and the middle finger is positive Z. When

pointing these fingers, one can also visually understand the affect of rotations on the

coordinate system by turning their hand by the appropriate rotation.

2.3.1 Left Hand Rule

To use the Left Hand Rule one would, using their left hand, position their thumb,

index finger, and middle finger to point in the direction as shown in Figure 2.2 [Corral,

2008]. The default coordinate system of DirectX uses the left hand rule, but can be

configured to use other coordinate systems if desired.

x+

y+

z+

Figure 2.2: Left Hand Rule

Chapter 2: Background 17

2.3.2 Right Hand Rule

To use the Right Hand Rule one would using their right hand position their

thumb, index finger, and middle finger to point in the direction as shown in Fig-

ure 2.3 [Corral, 2008]. The default coordinate system of OpenGL and XNA uses the

right hand rule, but can be configured to use other coordinate systems if desired.

The coordinate system used in this thesis uses the right hand rule.

x+

y+

z+

Figure 2.3: Right Hand Rule

2.4 Homogeneous Coordinates

Homogeneous coordinates is another method of specifying points in space. When

using Cartesian coordinates, each point has one unique definition, while using homo-

18 Chapter 2: Background

geneous coordinates, each point has infinite definitions. Recall that 3D coordinates

have the numerical form (x, y, z). Given a real number not equal to zero w, homo-

geneous coordinates have the numerical form (xw, yw, zw,w). For example if w = 1

then Cartesian coordinates (x, y, z) is (x, y, z, 1) in homogeneous coordinates.

Using homogeneous coordinates can be thought of as defining 3D coordinates as

three axes and the origin. The uses of homogeneous coordinates becomes apparent

in later sections when defining reference frames and using matrix multiplication to

perform translation and rotation.

2.5 Representing Orientation by Angles

In robotics applications it is often necessary to represent orientation by angles.

For example specifying joint angles, frame orientations, and the end effector or tool

orientation. The following section describes conventions for defining angles of 3D

objects or reference frames.

2.5.1 Euler

Euler angles are the most common method of representing orientation for indus-

trial robots [Ang and Tourassis, 1987]. They also have many other applications such

as specifying orientation of aircraft, gyroscopes, and computer graphics to name a

few. Any orientation can be defined by combining three rotations in a specific or-

der. The three rotations can be thought of as the rotation about each axis X, Y, Z

Chapter 2: Background 19

typically denoted Rx, Ry, Rz. They are also sometimes referred to as roll, pitch, and

yaw due to their application to aircraft. The order of the rotations matter: applying

the rotations roll-pitch-yaw and yaw-pitch-roll will produce different results. This

can be visualized using the Right Hand Rule: apply the same rotations in different

order and watch what it does to your coordinate system. There is no standard for

the order in which to apply the rotations in robotics. The order chosen is a matter

of opinion and there is no advantage to any except for commonality [Schneider and

Eberly, 2002; Eberly, 2014]. An example of Euler rotations is shown in Figure 2.4.

In the example, the figure depicts how a 90◦ Rx, Ry, and Rz rotation affects the

Cartesian coordinate system.

20 Chapter 2: Background

z+

x+

y+

(a) Rx = 0
◦, Ry = 0

◦, Rz = 0
◦

x+

y+

z+

(b) Rx = 90
◦, Ry = 0

◦, Rz = 0
◦

x+

y+

z+

(c) Rx = 0
◦, Ry = 90

◦, Rz = 0
◦

x+

y+

z+

(d) Rx = 0
◦, Ry = 0

◦, Rz = 90
◦

Figure 2.4: Euler Angles - Rx, Ry, Rz

Chapter 2: Background 21

One of the main advantages of using Euler angles is that they are simple to

comprehend. The main disadvantage is the potential for ambiguity, since order

matters, and the possibility of gimbal lock sometimes referred to as a singularity. A

gimbal is a pivoted support that allows rotation about a single axis [Grassia, 1998].

Imagine that Rx, Ry, and Rz each correspond to a gimbal, if two of the gimbals are

parallel then a DOF is lost. Similarly one case where this is apparent is when Ry = 0

since cos(0) = 1 and sin(0) = 0 then the rotation matrix for Ry becomes the identity

matrix thus losing a DOF because the identity matrix has no affect on rotation.

2.5.2 Quaternions

Quaternions is a different method of representing angles that are widely used in

computer graphic applications [Shoemake, 1985]. Quaternions work on the principle

of Euler’s rotation theorem, i.e. that any rotation or sequence of rotations can be

represented by a single rotation about a Euler axis. The Euler axis is denoted by a

3D vector such as (xi, yj, zk) and the rotation by an angle θ. The general form of a

rotation quaternion is given in Equation 2.1

Unlike Euler angles, Quaternions are not ambiguous and cannot suffer from gim-

bal lock [Grassia, 1998]. However, they are not simple to comprehend for humans.

q = [xi sin θ/2, yj sin θ/2, zk sin θ/2, cos θ/2] (2.1)

22 Chapter 2: Background

2.6 Transformation Matrices

Transformation matrices are used extensively in computer graphics for moving

objects (position and orientation), rendering scenes, changing the camera field of

view (FOV), 3D projection, and animation to just name a few uses [Bloomenthal

and Rokne, 1994]. They are also used frequently in robotics [Murray et al., 1994].

For example in computer graphics they can be used to animate an articulated stick

figure in order to depict movement of the limbs in a realistic manner. The same

concepts could be applied to a robot with similar links and joints as the articulated

stick figure. The focus of this section is on transformation matrix topics that apply

to robotics only, topics such as scaling that only apply to computer graphics will not

be discussed.

2.6.1 Notation

In this section, matrix entries are labelled mik where i is the row and k is the

column as shown in Equation 2.2. θx, θy, and θz represent rotations about the

associated axis.





















m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44





















(2.2)

Chapter 2: Background 23

2.6.2 Rotation Matrices

It is not obvious why 4x4 matrices are used, but if you recall homogeneous co-

ordinates as described in Section 2.4, points are represented in the form (x, y, z, w).

In our case the homogeneous coordinate w is always 1 for the transformation matri-

ces. By doing this it allows us to combine translation transformations together with

rotation transformations.

One rotation matrix is specified for each of the Euler angles. The rotation ma-

trices for Rx, Ry, and Rz are given in Equations 2.3, 2.4, 2.5 respectively [Selig,

1992; Bajd, 2010]. It is possible to combine the three rotation matrices with simple

matrix multiplication. There are six possible permutations, and the order matters.

Two common permutations (yaw-pitch-roll and roll-pitch-yaw) are discussed in the

following section.

Rx(θx) =





















1 0 0 0

0 cos θx − sin θx 0

0 sin θx cos θx 0

0 0 0 0





















(2.3)

24 Chapter 2: Background

Ry(θy) =





















cos θy 0 sin θy 0

0 1 0 0

− sin θy 0 cos θy 0

0 0 0 0





















(2.4)

Rz(θz) =





















cos θz − sin θz 0 0

sin θz cos θz 0 0

0 0 1 0

0 0 0 0





















(2.5)

2.6.2.1 Combining Rotation Matrices

In order to achieve a single rotation matrix for yaw, pitch, and roll the matrices

given in Equations 2.3, 2.4, 2.5 can be combined by performing simple matrix mul-

tiplication. The combination of yaw and pitch obtained by matrix multiplication is

given in Equation 2.6 and the combination of yaw, pitch, and roll obtained by matrix

multiplication is given in Equation 2.7 [Schneider and Eberly, 2002; Eberly, 2014].

Rx(θx)Ry(θy) =





















cos θy 0 sin θy 0

sin θx sin θy cos θx − sin θx cos θy 0

cos θx − sin θy sin θx cos θx cos θy 0

0 0 0 0





















(2.6)

Chapter 2: Background 25

Rx(θx)Ry(θy)Rz(θz) =





















cos θy cos θz cos θy − sin θz sin θy 0

sin θx sin θy cos θz + cos θx sin θz sin θx sin θy − sin θz + cos θx cos θz − sin θx cos θy 0

cos θx − sin θy cos θz + sin θx sin θz cos θx sin θy sin θz + sin θx cos θz cos θx cos θy 0

0 0 0 0





















(2.7)

Likewise, for roll, pitch, and yaw, they are combined by performing simple matrix

multiplication. The combination of roll and pitch obtained by matrix multiplication

is given in Equation 2.8 and the combination of roll, pitch, and yaw obtained by

matrix multiplication is given in Equation 2.9 [Schneider and Eberly, 2002; Eberly,

2014]. As stated in Section 2.5, the order of Euler angle rotations matter. This is

apparent once again if the matrices in Equation 2.7 and 2.9 are compared since they

are clearly different.

Rz(θz)Ry(θy) =





















cos θz cos θy − sin θz cos θz sin θy 0

sin θz cos θy cos θz sin θz sin θy 0

− sin θy 0 cos θy 0

0 0 0 0





















(2.8)

Rz(θz)Ry(θy)Rx(θx) =





















cos θz cos θy − sin θz cos θx + cos θz sin θy sin θx sin θz sin θx + cos θz sin θy cos θx 0

sin θz cos θy cos θz cos θx + sin θz sin θy sin θx cos θz − sin θx + sin θz sin θy cos θx 0

− sin θy cos θy sin θx cos θy cos θx 0

0 0 0 0





















(2.9)

26 Chapter 2: Background

2.6.2.2 Extracting Euler Angles from Rotation Matrix

The Euler angles can be extracted from the rotation matrix [Groover, Weiss, and

Nagel, 1986]. To extract the Euler angles from Equation 2.9, the Equations 2.10, 2.11,

and 2.12 can be used. To extract the Euler angles from Equation 2.7, the Equa-

tions 2.13, 2.14, and 2.15 can be used.

Rz(θz) = arctan
m21

m11
(2.10)

Ry(θy) = arctan
−m31

m11 cos θz +m21 sin θz
(2.11)

Rx(θx) = arctan
m13 sin θz −m23 cos θz
m22 cos θz −m12 sin θz

(2.12)

Rx(θx) = arctan
m23

m33
(2.13)

Ry(θy) = arcsin−m13 (2.14)

Rz(θz) = arctan
m12

m11
(2.15)

For example we can extract the Euler angles from the rotation matrix if we

plug in Rx = 20◦, Ry = 35◦, Rz = 90◦ into Equation 2.9 then we can extract the

Chapter 2: Background 27

Euler angles using Equations (2.12, 2.11, 2.10) as demonstrated below in Equa-

tions (2.16, 2.17, 2.18, 2.19).

Rz(θz)Ry(θy)Rx(θx)) =





















0 −0.94 0.34 0

0.82 0.20 0.54 0

−0.57 0.28 0.77 0

0 0 0 0





















(2.16)

Rz(θz) = arctan
0

0.82
(2.17)

Ry(θy) = arctan
0 cos θz + 0.82 sin θz

0.57
(2.18)

Rx(θx) = arctan
0.20 cos θz + 0.94 sin θz
0.34 sin θz − 0.54 cos θz

(2.19)

2.6.3 Translation Matrices

Suppose you wish to translate (x, y, z) by (dx, dy, dz). All that must be done is

add the individual components (x + dx, y + dy, z + dz). This can be expressed as a

28 Chapter 2: Background

translation matrix as shown in Equation 2.20 Bajd [2010].





















x
′

y
′

z
′

1





















=





















1 0 0 dx

0 1 0 dy

0 0 1 dz

0 0 0 1









































x

y

z

1





















(2.20)

2.7 Frames

Frames are local Cartesian coordinate systems that can be attached to arbitrary

points [Cheng, 2010]. Frame are useful when you wish to specify the coordinates of a

point relative to another point instead of in the global Cartesian coordinate system.

Given three points we can calculate a frame. The calculated frame is a Cartesian

coordinate with an orientation specified in Euler angles.

Given three robot points Origin, X, and Y . We take the Cartesian coordinates

x, y, z of each. All rotations on the three points are completely ignored.

o = [Ox, Oy, Oz]

x = [Xx, Xy, Xz]

y = [Yx, Yy, Yz]

We then calculate the signed relative distance along each axis. Depending on

which side the X and Y points are on in comparison to the Origin it will change

what positive X and Y are for the frame, in other words the handedness of the

coordinate system is affected by how the X and Y points are chosen.

Chapter 2: Background 29

a = x− o

b = y − o

We then need to find three mutually orthogonal Euclidean vectors with our Ori-

gin that pass through X and Y . In layman’s terms this gives us three directed

line segments (X+, Y+, Z+) starting from the origin that are perpendicular to one

another. This can be done by calculating the cross product as shown below.

i = ||a||

k = i x b

k = k/||k||

j = k x i

An orthogonal matrix can be created by taking mutually orthogonal Euclidean

vectors and using them as the rows of the matrix as shown in Equation 2.21. This

homogeneous transformation matrix can be used to transform a frame point or local

Cartesian coordinates, i.e. (0, 0, 1) into global Cartesian coordinates with simple

matrix multiplication.





















ix jx kx 0

iy jy ky 0

iz jz kz 0

0 0 0 1





















(2.21)

We can also express the transformation matrix or frame as a point with an ori-

entation. From Section 2.6.2, we can extract the Euler angles out of the orthognal

30 Chapter 2: Background

matrix given in Equation 2.21. The frame Cartesian coordinates (x, y, z) would just

be the coordinates of the origin point.

2.8 Kinematics

The kinematics of a humanoid robot allow us to determine how it will move

without considering individual masses and the external forces acting on them [Spong

et al., 2005]. In my work we are concerned with two kinematic problems in particular:

Forward Kinematics (FK) and Inverse Kinematics (IK). As the names imply, the

respective problems are the opposites of one another. Each problem is useful in its

own unique way. Solving a FK problem is easier than solving an IK problem for a

number of reasons, as we will see in Sections 2.8.2 and 2.8.3.

A humanoid robot can be modelled as a set of joints connected by links [Spong

et al., 2005]. There are many different types of joints, but we will only consider

revolute joints. This is without loss of generality because it is not difficult to model

other joints in a similar manner. Revolute joints rotate on a single axis, therefore

each revolute joint represents a single DOF. Each link has an associated length and

is connected by two joints, which means there is always one more link than there are

joints. Joints are labelled from (1, ..., n) and links from (0, ..., n). If joint i moves

link i moves and so forth. Generally the n-th joint is connected to what is called

the end-effector or tool and link 0 is fixed and does not move when any of the joints

move.

Chapter 2: Background 31

For the purposes of introducing kinematics, we will consider a 4 link model of a

humanoid robot to contrast with Spong et al. [2005] examples of robot manipulators.

The kinematic model’s joints and links are (j1, j2, j3) and (l0, l1, l2, l3) respectively.

Once again, all joints are revolute and the lengths of each link are as shown in

Figure 2.5. The end-effector is the foot of our humanoid robot, so we can see how

the foot will move irrespective of individual masses and the external forces acting on

them. We will also only consider two dimensional coordinates for simplicity.

A simple robot model consists of links connected by joints as depicted in Fig-

ure 2.5. In order to solve the FK problem, a coordinate frame must be attached

to each link as depicted in Figure 2.6. Coordinate frame oixiyizi will be attached

to link i and the coordinate frame of l0 is the base frame. There is also a homo-

geneous transformation matrix T i
j which represents the position and orientation of

frame j relative to frame i. Although it is possible to attach the coordinate frames

arbitrarily and still find the correct solution, it is better to have a standard con-

vention of selecting coordinate frames that allows for comparison of results between

colleagues working on the same problem. The Denavit Hartenberg (D-H) convention

is a commonly used method for selecting frames of reference [Spong et al., 2005]. In

this method, coordinate frames are selected using two rules. The first rule states

that the x-axis xi is perpendicular to the z-axis zi−1; the second rule states that

the x-axis xi intersects z-axis zi−1. Spong et al. [2005] show that four parameters

(link length ai, link twist αi, link offset di, and joint angle θi) are enough to rep-

32 Chapter 2: Background

Figure 2.5: 4 link kinematic model of humanoid robot.

resent the homogeneous transformation matrix when these rules are satisfied. Once

each homogeneous transformation matrix is known, it is possible to calculate the

position and orientation of coordinate frame i relative to the base frame by right

multiplying homogeneous transformation matrices (T0, ..., Ti−1) where Ti is defined

by Equations 2.22 and 2.23 [Spong et al., 2005].

2.8.1 Denavit Hartenberg (D-H) Parameters

D-H convention [Denavit and Hartenberg, 1955] represents each homogeneous

transformation matrix as a product of four other transformations given four param-

eters [Spong et al., 2005]. The four parameters are:

• Link length: ai The length of the connecting structure between two joints. In

the cases where a joint is connected to the end effector it may be the length of

the tool.

Chapter 2: Background 33

• Link twist: αi The mounting orientation of the joint. For example the joint

could be mounted at angle.

• Link offset: di The mounting offset of the joint. For example the joint’s axis

of rotation may not be exactly where the two links are connected.

• Joint angle: θi The angle of the joint.

The only two relevant parameters for my work are link length and joint angle,

since I am only concerned about revolute joints. Spong et al. [2005] give us Equa-

tion 2.22 and 2.23. I have simplified these equations based on the example kinematic

model of the humanoid robot given in Figure 2.5. This kinematic model only has rev-

olute joints and is given in two dimensional coordinates, therefore my homogeneous

transformation matrix can be simplified because αi and di are equal to zero. After

multiplying Equation 2.22 we obtain the simplified Equation 2.24. The last column

of transformation matrix Ti are the coordinates for coordinate frame i relative to the

base frame - or simply put, the coordinates of the end effector.

34 Chapter 2: Background

Rotz,θiTransz,diTransx,aiRotx,αi
= Ti =





















cos θi − sin θi 0 0

sin θi cos θi 0 0

0 0 1 0

0 0 0 0









































1 0 0 0

0 1 0 0

0 0 1 di

0 0 0 1









































1 0 0 ai

0 1 0 0

0 0 1 0

0 0 0 1









































1 0 0 0

0 cosαi − sinαi 0

0 sinαi cosαi 0

0 0 0 1





















(2.22)

Ti =





















cos θi − sin θi cosαi sin θi sinαi ai cos θi

sin θi cos θi cosαi − cos θi sinαi ai sin θi

0 sinαi cosαi di

0 0 0 1





















(2.23)

Ti =















cos θi − sin θi ai cos θi

sin θi cos θi ai sin θi

0 0 1















(2.24)

In Figure 2.6, the coordinate frames are attached using D-H convention. Now

that each homogeneous transformation matrix is known it is possible to calculate the

position and orientation for coordinate frame i relative to the base frame by right

multiplying homogeneous transformation matrices (T0, ..., Ti−1). The last column of

the transformation matrix Ti are the coordinates for coordinate frame i relative to

the base frame.

Chapter 2: Background 35

Figure 2.6: 4 link kinematic model of humanoid robot with coordinate frames at-

tached.

2.8.2 Forward Kinematics (FK)

Given Equation 2.24 the FK is solved by right multiplying homogeneous trans-

formation matrices as shown in Equation 2.25. Using a simplified model of a robot,

the only parameters necessary to solve the FK are link lengths and joint angles.

Ti = T0T1T2...Ti−1 (2.25)

2.8.3 Inverse Kinematics (IK)

The Inverse Kinematics (IK) problem for a robot manipulator is to find the joint

angles given the goal position and orientation of the end effector. There is no general

closed form solution to the IK problem for robot manipulators with greater than 6

DOF [Spong et al., 2005], therefore numerical solutions or hill climbing methods

are used in such situations [Selig, 1992]. Finding a solution to the IK problem

36 Chapter 2: Background

requires solving many non-linear equations simultaneously, which is a difficult task

in mathematics. Unlike the FK problem, the IK problem may not always have a

solution, or a unique solution. Even if a solution exists, it may be hard to obtain.

In fact, manipulators are often designed with simplification of the IK problem in

mind so that techniques such as kinematic decoupling can be used [Ali et al., 2010].

Kinematic decoupling allows the position and orientation of the end effector to be

solved separately. Kinematic decoupling is only possible if the design of the kinematic

chain supports position and orientation separation. An example of such a design is

a robot manipulator with a spherical wrist.

Physical systems fall into two groups: holonomic and non-holonomic. In a holo-

nomic system, the controllable DOF are equal to the total DOF. In a non-holonomic

system, the controllable DOF are less than the total DOF. For a non-holonomic

robot, the goal configuration of the end effector depends on the trajectory from the

initial configuration, unlike a holonomic robot, where the trajectory is irrelevant.

Redundant manipulators have more DOF than the dimension of the work space po-

sition vector, but can be either be holonomic or non-holonomic. Having a redundant

manipulator can present more challenges when solving the IK problem because of

singularities, which are caused my multiple configurations that produce the same end

effector configuration.

Chapter 2: Background 37

2.8.3.1 Jacobian Matrix

One method of numerically solving the IK problem is by using a Jacobian ma-

trix [Buss, 2004]. A Jacobian matrix consists of entries that are first-order partial

derivatives. A partial derivative of a multi-variable function represents how chang-

ing a single variable affects the function when the other variables are kept constant.

The Jacobian matrix is a linear approximation of the multi-variable function. For

a robotic manipulator, the partial derivatives represent how each DOF affects the

end effector position and orientation. The multi-variable function represents the FK,

therefore the Jacobian matrix is an approximation of the FK. In most literature,

the notation for the Jacobian matrix is J . Since J approximates the FK, it follows

that J−1 is an approximation for the IK. An example of a Jacobian matrix is given

in Equation 2.26 for a 3 DOF robotic manipulator. Each column represents a joint

and each row a component of the tool position (x, y, z) and orientation (Rx, Ry, Rz).

J =
∂t

∂θi
=





































∂tx
∂θ0

∂tx
∂θ1

∂tx
∂θ2

∂ty

∂θ0

∂ty

∂θ1

∂ty

∂θ2

∂tz
∂θ0

∂tz
∂θ1

∂tz
∂θ2

∂trx
∂θ0

∂trx
∂θ1

∂trx
∂θ2

∂try

∂θ0

∂try

∂θ1

∂try

∂θ2

∂trz
∂θ0

∂trz
∂θ1

∂trz
∂θ2





































(2.26)

In order to solve the IK problem with the Jacobian matrix two things must

38 Chapter 2: Background

be done: first the Jacobian matrix must be calculated, and second the Jacobian

matrix must be inverted. Inverting the Jacobian matrix is problematic because

not all matrices are invertible. Calculation of the Jacobian matrix is discussed in

Section 2.8.3.2 and alternatives to inverting the Jacobian matrix are discussed in

Sections 2.8.3.3 and 2.8.3.4.

2.8.3.2 Calculating the Jacobian Matrix

The Jacobian matrix can be determined analytically or numerically. Buss [2004]

give us Equation 2.27 to analytically determine each entry of the Jacobian matrix

for a revolute joint. In the equation, θj represents the angle of joint j, ti is the tool

position of tool i, vj is the unit vector point along the axis of rotation of joint j, and

pj is the position of joint j.

∂ti
∂θj

= vj × (ti − pj) (2.27)

The entries of the Jacobian matrix can be numerically determined if the FK can

be solved using the transformation matrices as described in Section 2.8.2. Given the

current state of the robotic manipulator (joint angles), the FK is solved and saved

for reference. Each joint can then be changed in turn by a small amount ∆θi and the

FK solved again. The difference in position and orientation from the before and after

FK solutions yields the entries for the Jacobian matrix as shown in Equation 2.28.

Pseudocode for numerically determining the Jacobian matrix is given in Algorithm 1.

Chapter 2: Background 39

∂t

∂θi
approximately =

∆t

∆θi
=





































∆tx
∆θ0

∆tx
∆θ1

∆tx
∆θ2

∆ty

∆θ0

∆ty

∆θ1

∆ty

∆θ2

∆tz
∆θ0

∆tz
∆θ1

∆tz
∆θ2

∆trx
∆θ0

∆trx
∆θ1

∆trx
∆θ2

∆try

∆θ0

∆try

∆θ1

∆try

∆θ2

∆trz
∆θ0

∆trz
∆θ1

∆trz
∆θ2





































(2.28)

2.8.3.3 Jacobian Transpose

Since all matrices are not invertible, an alternative is to use the transpose instead

of the inverse as shown in Equation 2.29 [Buss, 2004]. In the equation, α is a scalar

and e is a vector that represents the error in the desired tool position and orientation.

The transpose JT is obviously not equal to J−1, however Buss [2004] provide a proof

that for a sufficient small α the error vector e is reduced. By iteratively using

Equation 2.29 with a small α value the error vector e will eventually be reduced to

zero. Pseudocode for using the Jacobian transpose with an incremental simulator to

solve the IK problem is given in Algorithm 2.

∆θ = αJT e (2.29)

40 Chapter 2: Background

Algorithm 1 Jacobian
1: procedure Jacobian

2: prevTool ← Tool ⊲ Save the current position and orientation of the tool.

Uses FK to determine tool position and orientation.

3: for i← 0, n do ⊲ Where n is the number of joints.

4: joint[i]← joint[i] + ǫ ⊲ Change joint angle by small amount

5: epsilon.

6: curTool ← Tool ⊲ Retrieve the current position and orientation of the

tool. Uses FK to determine tool position and orientation.

7: deltaTool ← (curTool − prevTool)/ǫ ⊲ Calculate change in tool position

and orientation caused by change to joint[i].

8: J [i]← deltaTool ⊲ Save Jacobian entry for joint[i], how changing joint[i]

affects x, y, z, rx, ry, rz of tool position and orientation.

9: joint[i]← joint[i]− ǫ ⊲ Restore joint angle.

10: end for

11: return J

12: end procedure

2.8.3.4 Jacobian Pseudo Inverse

Another alternative to inverting the Jacobian is using the pseudo inverse, also

known as the Moore-Penrose inverse [Buss, 2004]. Unlike the inverse, the pseudo

inverse can be determined for any matrix. The equation for the Jacobian pseudo

Chapter 2: Background 41

Algorithm 2 Using Jacobian Transpose with Incremental Simulator
1: procedure Move(targetTool)

2: curTool ← Tool ⊲ Retrieve the current position and orientation of the tool.

Uses FK to determine tool position and orientation.

3: errorTool ← targetTool − curTool ⊲ Calculate the error in tool position

and orientation.

4: errorTool ← Clamp(errorTool,max) ⊲ Limit magnitude of error for time

step.

5: while errorTool > ǫ do

6: JT ← JacobianTranspose() ⊲ Calculate Jacobian Transpose.

7: for i← 0, n do Where n is the number of joints.

8: deltaJoint[i]← (JT [i] ∗ errorTool) ∗ α ⊲ Where

9: alpha is significantly small to prevent overshoot.

10: joint[i]← joint[i] + deltaJoint[i] ⊲ Set desired joint[i] angle.

11: end for

12: IncrementalStep() ⊲ Perform incremental simulator step.

13: curTool ← Tool ⊲ Retrieve the current position and orientation of the

tool. Uses FK to determine tool position and orientation.

14: errorTool ← targetTool − curTool ⊲ Calculate the error in tool position

and orientation.

15: errorTool ← Clamp(errorTool,max) ⊲ Limit magnitude of error for

time step.

16: end while

17: return targetReached

18: end procedure

42 Chapter 2: Background

inverse is given in Equation 2.30 [Meredith and Maddock, 2004]. The Jacobian

pseudo inverse can be used similarly to the transpose as shown in Equation 2.31. In

the equation, e is a vector that represents the error in the desired tool position and

orientation.

J† = (JTJ)−1JT (2.30)

∆θ = J†e (2.31)

2.9 Polygon of Support (POS) and Zero Moment

Point (ZMP)/Center of Pressure (COP)

For mobile robots, motion planning is restricted to movements that can be re-

alized with a particular robot’s physical attributes. Wheeled robots have had con-

siderable attention because of their inherent dynamic stability during movement.

Although dynamic stability is desirable, wheeled robots sacrifice mobility on uneven

terrain such as stairs [Fujiwara et al., 2004]. Humanoid robots are much more suit-

able to navigate environments such as stairs that are designed for humans. However,

humanoid robots, unlike wheeled robots, can fall over. The fact that humanoid

robots can fall over further complicates the motion planning problem because the

motion plan must be validated to ensure all steps will be dynamically stable. This

Chapter 2: Background 43

validation in itself is a difficult problem.

A common task that a humanoid robot might perform during a motion plan

is walking. It is quite easy for a humanoid robot to fall over while walking on

uneven terrain such as stairs. In much of the literature, walking is referred to as

biped locomotion for humanoid robots. Biped locomotion is a periodic gait cycle

composed of two periods, stance and swing repeated continuously [Ayyappa, 1997].

The gait cycle of humanoid robot must change under different circumstances. For

example when moving from concrete to grass or from a level surface to an incline, the

gait cycle must change. A humanoid robot is in the stance period for approximately

62 percent of a gait cycle [Ayyappa, 1997]. If you assume that the gait cycle begins

in the stance period and both feet are touching the ground (double support) with

the left foot in front of the right foot, the first half of the gait cycle will end in

double support with the right foot in front of the left foot, as depicted in Figure 2.7.

A humanoid robot is in the swing period for approximately 38 percent of a gait

cycle [Ayyappa, 1997]. During the swing period only one foot is touching the ground

(single support) and the other is above the ground “swinging" forward. The front

foot of the preceding double support phase becomes the single support of the swing

period. The second half of the gait cycle will continue from the double support phase

of the first half of the gait cycle, and swing the opposite foot ending in the original

double support configuration (right foot in front of the left foot). As the velocity of

biped locomotion increases from walking to running, the time spent in the double

44 Chapter 2: Background

support phase decreases to zero. Two feet never touch the ground at the same time

while running, only alternating single support (left/right).

Figure 2.7: First half of gait cycle

The following concepts are presented to understand a method that guarantees

that a humanoid robot’s biped locomotion is dynamically stable throughput the gait

cycle:

The Polygon of Support (POS) is the convex hull of all contact points with the

ground [Vukobratovic et al., 2006] . The Zero Moment Point (ZMP) Vukobratovic

et al. [2006], also known as the Center of Pressure (COP) Pratt [2000a] is the point

where the sum of all moments are equal to zero or the distance-weighted average

location of individual pressures on the foot. Although these two terms are used

synonymously, there is in fact a subtle difference. The COP exists as long as the

foot is in contact with the ground, and the ZMP does not exist if it lies outside

of the POS. If the ZMP is within the POS for a given phase of a gait cycle, the

phase is balanced. In Figures 2.8 and 2.9, the bottom of a humanoid robot’s feet

Chapter 2: Background 45

are depicted from the top down (black). The convex hull (blue) of all contact points

(red) is also depicted. The feet are the only contact points with the ground during

biped locomotion. It is clear from Figures 2.8 and 2.9 that the POS of the double

support phase is larger than the single support phase. The double support phase of

a gait cycle is intuitively easier to balance than single support phase due to this size

advantage. A larger POS makes it easier to ensure the ZMP lies within it.

Controlling the ZMP - that is, ensuring it lies within the POS - is sufficient to

achieve balanced biped locomotion on a humanoid robot [Bagheri et al., 2006; Ha

et al., 2007; Tang et al., 2003].

Figure 2.8: Double support POS

46 Chapter 2: Background

Figure 2.9: Single support POS

2.10 Inverted Pendulum

The inverted pendulum is a well known dynamics problem [Pratt, 2000b]. An

inverted pendulum consists of a mass m above a base with a pivot point attached to

a rod with length l. If the mass is to the left of the pivot point, the mass accelerates

backward. If the mass is to the right of the pivot point, the mass accelerates for-

ward. The problem requires the control to maintain the mass in a upright position.

Solutions to the inverted pendulum and many variations of the problem are well

defined. Pratt [2000b] has shown that the inverted pendulum model can be adapted

to model the dynamics of a humanoid robot.

2.11 Proportional-Integral-Derivative (PID)

A PID controller is a well known algorithm in control theory. It is estimated that

a PID controller is used to solve 90 to 95 percent of all control problems [Ledin]. It

can be used in systems where the set point error can be directly related to the output

of the controller. The are three gains that are used to tune the controller. The first

is called the proportional gain, and as the name suggests it is a constant multiplier

Chapter 2: Background 47

that provides a response proportional to the error. The second is called the integral

gain, it is a constant multiplier used on the sum of the error. The last gain is called

the derivative gain, once again as the name suggests it is a constant multiplier used

on the change in error. The PID controller algorithm is given in Algorithm 3.

The integral gain is applied to the sum of error accumulated at every iteration

of the PID controller. If there is continuous error, a phenomenon called integral

wind-up can occur. The accumulation of continuous error can result in overshooting

the set point. This is an undesired behavior of the PID controller. This can happen

if the system is blocked, for example if the PID controller is controlling the speed

of a toy car and it is up against a wall. Typically to prevent integral wind-up the

integral part is limited, as shown in Algorithm 4.

Algorithm 3 PID
1: procedure PID

2: errori ← target− current

3: deltaErrori ← errori − errori−1

4: sumErrori ←
∑n

i=0
errori

5: outputi = (KP ∗ errori) + (KI ∗ sumErrori) + (KD ∗ deltaErrori)

6: return outputi

7: end procedure

48 Chapter 2: Background

Algorithm 4 PID with Integral Limit
1: procedure PID

2: errori ← target− current

3: deltaErrori ← errori − errori−1

4: sumErrori ←
∑n

i=0
errori

5: if sumErrori > LIMIT then

6: sumErrori ← LIMIT

7: end if

8: outputi = (KP ∗ errori) + (KI ∗ sumErrori) + (KD ∗ deltaErrori)

9: return outputi

10: end procedure

2.12 Nearest Neighbor (NN)

The Nearest Neighbor (NN) search problem in CSPACE is defined as follows:

given a set S of configurations and a specific configuration p in the set, the nearest

neighbor problem is to determine the closest configuration q to p [Muja and Lowe,

2009]. NN search methods typically use space partitioning algorithms as opposed

to the naive approach. The naive approach calculates the distance between every

configuration in the set, therefore it has a worst case complexity of O(n) where n is

the number of configurations. For a large set of configurations this is not feasible if the

NN must be computed in real-time [Nene and Nayar, 1997]. There are some known

space partitioning approaches that can execute in logarithmic time. For example,

Chapter 2: Background 49

space partitioning algorithms such as those that use a k-dimensional (k-d) tree data

structure [Zhou et al., 2008] have an average complexity of O(log2n) [Nene and

Nayar, 1997]. Although it may seem that there is no point in comparing the naive

approach to a space partitioning algorithm, the naive approach uses less memory

because no complex data structure is required. The naive approach can outperform

space partitioning algorithms as the number of dimensions increases [Weber et al.,

1998].

An effective NN search algorithm is critical for both roadmap and tree based

planners. The most popular NN search methods use k-d trees to solve the problem,

which usually perform better than other search methods in euclidean space [Yershova

and LaValle, 2007]. For roadmap planners, connecting vertices requires an NN search

method, while tree planners must similarly connect a random configuration to the

nearest configuration in the tree. The NN search is used many times during a planner

execution, therefore the NN search method must be efficient.

2.13 Voronoi Diagram

The Voronoi diagram is a fundamental data structure in computational geometry

[Aurenhammer, 1991]. A Voronoi diagram can be constructed using a NN method.

Given n seed sites in a plane, the Voronoi diagram is constructed by partitioning the

plane into regions that are convex polygons that contain every point that is closer

to a specific seed site than any of the other seed sites. The NN method is used to

50 Chapter 2: Background

determine which seed site the points are the closest to. An example of a Voronoi

diagram in 3D is given in Figure 2.10.

Figure 2.10: Voronoi Diagram in 3D

2.14 Graph Theory

The solution strategy that I propose in the remainder of this thesis generates a

data structure that contains the solution. Methods to extract the solution from the

data structure are well defined in the graph theory domain and are not the focus

of this research. However, in order to understand the data structure discussed in

Chapter 4 and how to extract the motion plan from the data structure, this section

Chapter 2: Background 51

discusses basic concepts in graph theory.

A graph is a set of vertices connected by edges. The edges can be bi-directional or

uni-directional and have an associated weight (cost) for traversing the edge [Brassard

and Bratley, 1996].

A common problem once a graph is defined is finding the shortest (or lowest

cost) path through it, given a start and end vertex. Two algorithms for solving the

shortest path problem are given in Section 2.14.1

In the graph shown in Figure 2.11, there are four vertices (v0, v1, v2, v3) and

five uni-directional edges (e0, e1, e2, e3, e4) with associated weights (5, 3, 2, 5, 1) re-

spectively. If the start vertex is v0 and the desired end vertex is v3, then there are

a number of possible paths with associated costs (v0, v1, v3) = 7, (v0, v2, v3) = 8,

(v0, v2, v1, v3) = 6. The cost is the sum of weights for each edge traversed. As you

can see even though a path must visit more vertices, it can have a lower cost.

52 Chapter 2: Background

v0

v1

v2

v3

e0 - 5

e1 - 3

e2 - 2

e3 - 5

e4 - 1

Figure 2.11: Example Directed Weighted Graph

2.14.1 Shortest Path Problem

2.14.1.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is a greedy algorithm for solving the shortest path problem

for a weighted graph [Brassard and Bratley, 1996]. The time complexity of Dijkstra’s

algorithm is O(|V |2), but can be improved by using specialized data structures. The

algorithm maintains two sets of vertices, S and C. S contains all the vertices that

Chapter 2: Background 53

have already been inspected in the graph. C contains all other vertices in the graph.

An array D is also maintained that holds the length of the shortest path to each

vertex in the graph. Initially the starting vertex is removed from C and added to S.

D is updated as each vertex is inspected. Each vertex is removed from C greedily

(smaller weight first), inspected, and added to S in turn. Vertices are inspected by

checking if its neighbors (vertices connected by an edge) have a smaller weight, and

if it does D is updated to reflect the shorter path between the two vertices. When

the algorithm completes C is an empty set and S contains all vertices in the graph.

The shortest path from the start to end vertex can then be easily extracted from D.

2.14.1.2 A* Algorithm

The A* algorithm, like Dijkstra’s algorithm, is also greedy. It is for the most part

the same as Dijktra’s algorithm except for the addition of a heuristic function that is

considered in addition to the cost. If a heuristic function can be tailored for a specific

graph layout, then A* algorithm can perform better than Dijkstra’s algorithm.

2.14.2 Trees

A tree is a common data structure used that gets its name from the manner it

which it looks as well as the way it is built [Mehlhorn and Sanders, 2007]. Every tree

has a root node which is the topmost node. The tree is built by adding branches from

the root node to other nodes. A node without any branches is considered a leaf node.

54 Chapter 2: Background

An example of a tree is shown in Figure 2.12. There are numerous variants of the tree

data structure that attempt to optimize searching or space by incorporating rules

to guide the insertion of nodes: for example binary and red-black trees Mehlhorn

and Sanders [2007]. The variant of the tree used mostly depends on the application,

since there are advantages and disadvantages to all variants. A tree can be thought

of as a specialized graph as well, where nodes are vertices and branches are edges.

Figure 2.12: Tree

Trees can searched with breadth-first or depth-first search algorithms [Mehlhorn

and Sanders, 2007]. RRTs do not even require searching to extract the path. Given

the leaf node or goal configuration, all parent nodes including the root or initial

configuration make up the path, because of the way the tree is constructed the

parents are simply to determine. The time complexity of breadth-first search is

O(|V |+ |E|). The time complexity of depth-first search if used to traverse the entire

the tree is O(|E|).

Chapter 2: Background 55

2.15 Incremental Simulator

In the solution strategy presented in my thesis, the motion planner is coupled

with an incremental simulator as described in Section 5.3.

An incremental simulator computes the current state after a set of inputs has been

applied over a period of time. Given state x(t) a function is defined which solves

x(t + δt). Recently Sucan et al. [2008] have successfully combined sample-based

tree planners with a physics engine. The physics engine was used as an incremental

simulator to handle kinodynamic constraints and compute state x(t+ δt).

2.16 Collision Detection

In this thesis, collision detection is used to determine if a particular robot con-

figuration lies completely within the CFREE set (no collision) or if it partly lies in

the COBS set (collision).

Collision detection checks if two or more objects have collided with one another.

Beyond detecting the fact that a collision has occurred, the algorithm should also

detect the precise points at which contact was made.

One method of performing collision detection is by using bounding objects. This

method of collision detection uses a simpler object that bounds the actual object.

The simpler object is chosen such that it is easier to check for collision. Some

examples of bounding objects are spheres [Kavan and Žára, 2005], boxes [Koziara

56 Chapter 2: Background

and Bicanic, 2007], and polygons [Basch et al., 2004].

The advantage of using bounding spheres as shown in Figure 2.14 is that they are

very fast. All that must be done is to compute the radius of a sphere that bounds

the object, but this only needs to be done once per object. When using bounding

spheres there is a collision between two objects if the distance from one bounding

sphere’s origin to the other is less than the sum of the two bounding spheres’ radii.

What this means is that the two object’s bounding regions overlap, therefore it is

considered a collision. An example of bounding spheres in 2D is given in Figure 2.13.

In the example, d = 4 is greater than r1 + r2 = 3, therefore there is no collision.

One major disadvantage of using bounding spheres is that spheres do not bound all

object shapes with minimal empty volume. Undesired empty volume creates false

positives. A potential solution to the empty volume problem is to reduce the empty

volume by generating many small spheres, as shown in Figure 2.15, instead of one

big sphere.

One advantage of using bounding boxes as shown in Figure 2.16 is that they

bound some objects with less empty volume than spheres, but this is also true for

spheres for certain objects. Using bounding boxes is also slower the bounding spheres

because bounding boxes must be calculated at every iteration since the orientation

of object changes the bounding box.

Finally, bounding polygons, as shown in Figure 2.17, define bounds on objects

with minimal empty volume. If you wish to add margin to the polygon so that near

Chapter 2: Background 57

r1 = 2 r2 = 1

d = 4

Figure 2.13: Bounding Spheres Example in 2D

collisions are detected early, the margin can be controlled precisely. For example, a

50mm margin around the entire robot can be specified. The major disadvantages

of using bounding polygons is that it is very slow since intersections between many

triangles must be calculated at every iteration.

58 Chapter 2: Background

(a) Bounding Spheres, No Collision (b) Bounding Spheres, Collision

Figure 2.14: Bounding Spheres

(a) Bounding Multi-Spheres, No Collision (b) Bounding Multi-Spheres, Collision

Figure 2.15: Bounding Multi-Spheres

Chapter 2: Background 59

(a) Bounding Boxes, No Collision (b) Bounding Boxes, Collision

Figure 2.16: Bounding Boxes

(a) Bounding Polygons, No Collision (b) Bounding Polygons, Collision

Figure 2.17: Bounding Polygons

60 Chapter 2: Background

2.17 Summary

A wide array of topics in robotics were covered in this chapter in order to provide

sufficient background information to readers with little to no robotics knowledge.

These topics are referenced throughout the remainder of this thesis when they are

applicable. Now that the basics have been covered, a survey of the current popular

robot motion planning techniques are presented. The survey aims to provide a broad

picture of the evolution of solution strategies and how they are applicable to specific

problems.

Chapter 3

Related Work

There have been various attempts to solve the robot motion planning problem.

The following is an account of the most notable techniques developed thus far. This

chapter provides insight into the methodologies attempted to solve the robot motion

planning problem thus far. The advantages and disadvantages of each methodology

are discussed in addition to how they relate to my thesis work.

3.1 Randomized Potential Fields

Potential fields use the metaphor of magnetic field or gas spreading [Vaščák, 2007].

Potential fields have been used to solve many types of problems such as obstacle

avoidance and path planning in the past. Khatib [1986] first applied potential fields

to real-time robotic manipulator collision avoidance. The idea behind potential fields

61

62 Chapter 3: Related Work

is that obstacles repel and the goal/open space attract thus pulling the robot toward

the goal. The robot avoids collisions with obstacles by a repulsive force between

them. This repulsive force is the negative gradient of the potential field [Hwang and

Ahuja, 1992]. One of the biggest problems with using potential fields is that it is

very easy to get trapped in local minima [Ge and Cui, 2000]. For example, the robot

can be attracted to an area initially because the potential is high. If this area does

not contain the goal, the robot can become trapped if no surrounding areas have a

higher potential. Another problem is that definition of the potential function can

be difficult and domain specific. The potential function defines the repulsive forces

of obstacles and the attractive forces of the goal/open space. The relation between

potential fields and my thesis work is the need for a real-time collision avoidance

methodology.

Randomized Potential Fields have been applied to robot motion planning [LaValle,

2006]. The randomized potential field planner attempts to overcome the local minima

problem of standard potential fields by performing random walks when it appears to

be trapped. This begins to allude to a probabilistic approach for solving the robot

motion planning problem, as used in my solution strategy. There remains one major

problem with randomized potential fields that cannot be ignored. As with standard

potential fields, the assignment of potential requires many heuristic functions and

cannot be easily adapted to different robots without tweaking all of the heuristic

functions. The goal of my research is to design a motion planner that is applicable

Chapter 3: Related Work 63

to many different robots without the need for tedious customization for each robot.

3.2 Probabilistic Road Map (PRM)

Sample-based roadmap planners, such as the Probabilistic Road Map (PRM) in-

troduced by Kavraki et al. [1996], must first build a map (learning phase) then search

for a solution (query phase). The learning phase creates the PRM by randomly

generating configurations in CFREE which are then connected to nearby configura-

tions. There are many different ways to generate random configurations and connect

them. Geraerts and Overmars [2002] present an in-depth analysis of the different

techniques used in variants of the PRM. The learning phase does not consider the

initial or goal configuration. A map for the entire CSPACE is created. This is a

waste of time if a specific task must be accomplished, as opposed to navigating the

entire environment. The map also becomes invalid if the environment changes. For

this reason, roadmap planners work best for holonomic robots in static environments

where the map can be queried multiple times once generated because of the cost

incurred by the learning phase [Lavalle, 1998; Lavalle and Kuffner Jr., 2000]. The

PRM is a multi-query planner whereas the solution strategy presented in my thesis is

a single-query planner that does not require a learning phase. My solution strategy,

on the other hand, only considers the portions of the environment necessary to find

a suitable motion plan.

The underlying data structure of a PRM is an undirected graph where nodes

64 Chapter 3: Related Work

represent configurations and edges represent paths. The initial and goal configuration

are inputs to the query phase. The graph can be efficiently traversed using already

well defined methods in graph theory such as the Dijkstra or A* search algorithm

described in Section 2.14.1. The underlying data structure of my solution strategy

is a tree instead of a graph. The tree also does not require a complex algorithm to

extract the motion plan once it is generated.

One advantage of using PRMs is that there are very few parameters and heuristics

required for implementation [Kavraki et al., 1996]. This makes them a better choice

than randomized potential field planners. A major disadvantage of using PRMs

is the number of connections that must be made between configurations which is

not a simple task [Lavalle, 1998]. My solution strategy does not require as many

connections between configurations which reduces the time to find a suitable motion

plan. For a large CSPACE the learning phase is an expensive operation because of

the logic required to make connections. In an uncertain environment with real-time

requirements, the learning phase (think) does not allow sufficient time to react and

the map cannot be reused if the environment changes rapidly.

3.3 Ariadne’s Clew Algorithm

Ariadne’s Clew algorithm [Mazer et al., 1996] is a similar algorithm to the PRM

algorithm, but it does not explore the CSPACE. Instead it explores the trajectory

space. The trajectory space is different than the CSPACE and the TSPACE discussed

Chapter 3: Related Work 65

in Sections 2.1 and 2.2. The trajectory space represents the whole path of the robot

with a single point. The point coordinates are all of the sequential movements for the

robot [Mazer et al., 1996]. For example, instead of a 3D point (x, y, z) in Cartesian

coordinates, a trajectory space point’s coordinates might be (forward, left, forward,

right). To find a path, a single point in the trajectory space must be found.

The Ariadne’s Clew algorithm, like the PRM, uses two steps: search (query phase)

and explore (learning phase). The explore step collects information about the free

space with increasing resolution. In the explore step, landmarks are placed in the

search space that have a known path from the initial configuration. Exploration

attempts to uniformly place the landmarks in the search space by placing them as

far as possible from one another. The explore step is essentially map building, similar

to that done in a PRM.

The search step checks if the goal can be reached. This is the same as the query

phase in the PRM. However, the search step is executed multiple times in parallel

with the explore step. This means that the Ariadne’s Clew algorithm can find a path

before the entire map is generated. This can lead to a slight performance increase

over the PRM since the PRM requires the entire map to be built. Another benefit of

being able to execute the search step in parallel with the explore step is that it lends

to parallel computing [Mazer et al., 1996]. Use of parallel computing techniques can

achieve further performance gains. The design of robot motion planning algorithms

for parallel computing is an interesting topic. My thesis work, however, does not

66 Chapter 3: Related Work

attempt to address parallel computing implementations.

3.4 Flexible Binary Space Partitioning (BSP)

Cell decomposition methods such as Binary Space Partitioning (BSP) break down

the CSPACE into free and blocked cells recursively starting with one large cell that

is considered to be mixed, free, and blocked space. The CSPACE can be broken

down using different space partitioning methods, such as quad-tree, oct-tree, and

binary spacing partitioning. The main difference between these spacing partitioning

methods is the number of partitions created. The quad-tree creates four, oct-tree

eight, and binary two. As you can imagine, the partitions could be made simply by

slicing one cell into n equal pieces. Although this may be efficient, it does not use

useful information that could be beneficial for path planning. Entropy can be used to

intelligently select partition points that generate better partitions and smaller trees

than standard partitioning methods [Baltes and Anderson, 2003]. The information

gain is determined by the relative proportion of free and blocked areas. Once the

free cells are known, a planner can use the tree output from the flexible BSP algo-

rithm to generate a collision-free path. A major disadvantage of BSP is that it does

not directly facilitate the CSPACE representation. In order to generate CFREE,

configurations would have to be generated that lie within the free cells. For this

reason, this approach would not be suitable for robots with large DOF and real-time

requirements. My thesis work, like flexible BSP, attempts to make use of information

Chapter 3: Related Work 67

about the world to make better decisions during the motion planning process.

3.5 Summary

Various methodologies that attempt to solve the robot motion planning prob-

lem have been presented in this chapter. One major advancement in robot motion

planning has not yet been discussed. The Rapidly Exploring Random Tree (RRT)

and variants thereof are discussed in the next chapter in much more detail than the

related work presented above, since the RRT is the basis of the my solution strategy.

Chapter 4

Rapidly Exploring Random

Tree (RRT)

Lavalle [1998] introduced the Rapidly Exploring Random Tree (RRT), a data

structure for planning problems with non-holonomic and differential constraints. A

RRT is a tree composed of quasi uniformly distributed random configurations rooted

at the initial configuration of the robot. The random configurations in the tree

are only seemingly uniformly distributed because they are typically generated with

pseudo Random Number Generators (RNGs). Use of a real RNG would make the

random configurations truly uniformly distributed. An example of a RRT and its

evolution is shown in Figure 4.1. In the example, the initial configuration (blue), goal

configuration (green), random configurations (red), and configurations on a path from

the initial to goal configuration (yellow) are depicted. In a tree, every node except the

68

Chapter 4: Rapidly Exploring Random Tree (RRT) 69

Figure 4.1: Rapidly Exploring Random Tree (RRT)

root has exactly one parent node (see Section 2.14.2 for more details). The random

configurations in a RRT are connected in this fashion. Each random configuration

or node in the RRT belongs to the CFREE set. Every edge between nodes in a RRT

represents a path which also belongs to the CFREE set. The goal is to generate a

leaf node which is the goal configuration.

The RRT data structure itself can be used as an algorithm for motion planning

70 Chapter 4: Rapidly Exploring Random Tree (RRT)

because the data structure translates directly to the CSPACE state space represen-

tation. A path in the tree from the root (initial configuration) to leaf (goal configura-

tion) is a motion plan. The RRT algorithm terminates once the goal configuration is

achieved, therefore no unnecessary work is done. A RRT does not require a learning

phase like the PRM described in Section 3.2. Only a single phase or query is required

to determine a motion plan. This makes the RRT data structure a viable option for

robot motion planning in dynamic environments with real-time requirements.

Variants of the RRT data structure as a motion planner, such as RRT-CONNECT

has been shown to be probabilistically complete [Lavalle and Kuffner Jr., 2000].

However Karaman and Frazzoli [2011] proved that the probability of the classic RRT

construction algorithm converging to an optimal solution is in fact zero. When a

problem has a solution, a probabilistically complete algorithm’s probability of finding

a solution goes to one as the runtime approaches infinity [Berenson and Srinivasa,

2010]. In other words, the algorithm will eventually converge to a solution. In this

thesis, the goal is not necessarily to find the optimal solution in terms of a heuristic

function. The main concern is finding a sub-optimal solution that is good enough as

quickly as possible. Karaman et al. [2011] suggest another variant of the RRT which

is discussed in Section 4.5.9 that guarantees the optimal solution will be found if a

solution exists.

Constructing a RRT requires a few fundamental components. At each iteration of

the construction algorithm a random configuration is generated that can potentially

Chapter 4: Rapidly Exploring Random Tree (RRT) 71

be used as a step in the motion plan. It is important that the RRT explore un-

explored areas. To do this there must be a method to bias random configurations

towards the unexplored areas (sample bias method). Each random configuration is

connected to the existing tree by selecting the nearest configuration in the tree (NN

method). To do this a distance metric d such as Euclidean distance must be defined

to measure the distance between configurations (distance metric method). It is also

important that the path between two configurations lies completely in CFREE or in

order words is collision free (collision detection method). Pseudocode with comments

for a RRT in the context of a CSPACE is given in Algorithm 5 [Lavalle, 1998].

In Algorithm 5, the first step of building the RRT is to set the root of the tree.

The root of the tree is the robot’s initial configuration. This is the simplest step in

constructing the RRT. The next step is to start adding random configurations to

the tree. This step could be repeated until the goal configuration is connected to

the tree, however this could potentially cause the algorithm to never terminate if no

solution exists. A solution to infinite execution time is to only repeat the add random

configuration step n times. Care must be taken in selecting n to prevent premature

termination of the algorithm when a solution does exist. You could choose n based

on the maximum time you wish the RRT construction to take. Adding random

configurations to the tree is done in a few steps: first the random configuration is

generated. If the random configuration should be biased, then a configuration that is

biased is returned. The sample bias method is discussed in more detail in Section 4.1.

72 Chapter 4: Rapidly Exploring Random Tree (RRT)

Generation of the random configuration is robot dependent. For example, if a robot

has 3 DOF then a configuration consists of the joint angles for each of the three joints.

To generate a random configuration for this robot a random joint angle within the

angle limits is selected for each joint. Once the random configuration is generated,

the NN in current tree is found using the NN and distance metric method. The NN

method is discussed in more detail in Section 4.2 and the distance metric method in

Section 4.3. For the first random configuration, the NN is obviously the robot’s initial

configuration since this is the only other configuration in the tree at the time. After

the NN is found, a move is attempted from the NN to the random configuration. One

of three things may occur during the attempted move between the two configurations.

Either the move is blocked by an obstacle, which is determined by using the collision

detection method, or the move is not physically possible with the robot, or the move

can be performed by the robot. The collision detection method is discussed in more

detail in Section 4.4. If the move can be performed by the robot then the random

configuration is simply added to the tree by connecting it to the NN. If the move is

not possible then a new configuration that was generated by the movement up until

it could no longer get any closer to the random configuration is added to the tree by

connecting it to the NN.

RRTs share many of the same benefits as PRMs, such as being easy to implement,

but also have many notable advantages of their own. For example, expansion of the

RRT is biased towards unexplored regions of state space and with no sample bias

Chapter 4: Rapidly Exploring Random Tree (RRT) 73

Algorithm 5 Classic RRT [Lavalle, 1998]

1: procedure Build(initc, n, δt)

2: initc ← RRT.init() ⊲ Robot initial configuration.

3: for i← 0, n do

4: randc ← RandomConfiguration() ⊲ Uses sample bias method.

5: nearc ← NearestNeighbor(randc, RRT) ⊲ Uses kd-tree.

6: motion←Move(randc, nearc) ⊲ Motion that minimizes distance

between two configurations.

7: newc ← NewConfiguration(nearc,motion, δt) ⊲ Configuration

generated by motion from nearc.

8: RRT.addConfiguration(newc) ⊲ Adds configuration to the tree.

9: RRT.addEdge(nearc, newc,motion) ⊲ Path between two configurations

when motion is performed.

10: end for

11: return RRT

12: end procedure

method the distribution of nodes is consistently close to a uniform sampling distri-

bution which leads to consistent behaviour. With a uniform sampling distribution,

the probability of selecting any particular configuration is the same. The RRT is

always connected and has minimal edges because a configuration is only added to

the tree if it can be connected to an existing configuration in the tree. An RRT is

74 Chapter 4: Rapidly Exploring Random Tree (RRT)

not a map. A good map requires all valid paths to be defined in the map. Since

the RRT does not contain all valid paths, one of the most notable advantages of

the RRT is the fact that it does not require connections between all configuration

pairs. Making connections between configuration pairs is an expensive operation in

building a PRM [Lavalle, 1998].

4.1 Sample Bias

The sampling method of an RRT generates a random configuration in the CSPACE.

Sampling refers to selection of a subset of configurations from all possible configura-

tions (population). With no sample bias in the sampling method, the classic RRT

with uniform sampling has an inherent Voronoi bias [Lavalle and Kuffner Jr., 2000;

Lindemann and LaValle, 2004]. The concept of Voronoi diagrams was introduced in

Section 2.13, recall that a Voronoi cell contains every point in which that distance

from the center of the cell is less than any other cell. To understand why the clas-

sic implementation of an RRT has a Voronoi sample bias, consider how the RRT is

expanded: when a random configuration is generated it is connected to the tree by

selecting the NN. The NN selected can be considered the center of a Voronoi cell.

Larger Voronoi cells occur on the “frontier" of the tree, and so larger cells are more

likely to be selected for expansion. In a RRT configurations with larger Voronoi

regions are more likely to be chosen. While a Voronoi bias is good for exploration

of the CSPACE it does not help the RRT converge to the goal configuration quickly

Chapter 4: Rapidly Exploring Random Tree (RRT) 75

while still allowing the RRT to branch to unexplored regions.

In order to help the RRT converge to the goal configuration faster, a bias to

the sampling method can be introduced. The sample bias method is applied to the

sampling method with probability n and is so called the bias probability. The bias

probability chosen can affect the performance of the RRT construction algorithm.

For example by creating cases where the RRT construction algorithm gets trapped in

local minima. As stated in Section 4.5.1 one type of sample bias could be to choose

the goal configuration based on the bias probability.

A near goal sample bias method could be employed that selects a configuration

near the with probability n. A radius can be used for the randomly chosen biased

configurations such that they are constrained within a sphere as described in Sec-

tion 5.3.1.

A sort of counter-intuitive sample bias method is to select a configuration in

COBS based on the bias probability as stated in Section 4.5.10. It would seem

common sense to always pick configurations in CFREE, but exploration around

obstacles can enable the motion planner to find paths when a robot must travel close

to the obstacles in order to reach the goal configuration.

Another method to bias the samples is to use k-NN instead of just the NN. A

move would be attempted from each of the k-NN to the random configuration and

the new configuration with the best quality would be selected [Urmson and Simmons,

2003]. This type of sample bias method requires another heuristic to determine which

76 Chapter 4: Rapidly Exploring Random Tree (RRT)

new configuration is the best. The sample bias is no longer completely Voronoi-like

since a specific configuration is not continuously selected for expansion. Instead a

region or k configurations can be selected for expansion.

The type of sample bias chosen may be domain specific. Different sample bias

methods may perform better than others for specific problems. If your motion plan-

ner can be tailored for a specific domain and does not need to handle a wide variety

of problems, then domain specific knowledge can be used in the sample bias method.

4.2 Nearest Neighbor (NN)

The NN method for finding the nearest configuration in the RRT to random

configurations that are generated is as described in Section 2.12. The NN method

is tightly coupled to the distance metric discussed in Section 4.3. Careful choice

of a distance metric method is critical in how effective and fast the NN method

is. For example a distance metric method that is computationally expensive will

drastically impact the performance of the NN method since the distance metric

method is executed many times throughout a NN query. Information about the

configuration for the specific state space could be used to filter what data is relevant

to the distance metric.

Chapter 4: Rapidly Exploring Random Tree (RRT) 77

4.3 Distance Metric

The Distance Metric is used to determine which configurations are close to one

another. How the “closeness" of configurations is defined can vary for different robots

and domains. For example, it could be defined as how far the tool positions are from

one another, or how much each of the joint angles differ, or how much power it

takes to move from one configuration to another, etc. The distance metric used can

be tailored for the robot and domain. All that matters is that the distance metric

equates to a measurable quantitative value.

The following are some potential distance metric functions. As stated already,

the inputs to the functions can vary. The inputs could be Cartesian coordinates,

joint angles, power consumption, etc.:

Euclidean distance, derived from Pythagoras’ formula, is the straight line distance

between two points. Euclidean distance can be used for n-dimensional spaces. The

general formula is as follows [Cha, 2007]:

d(a, b) =

√

√

√

√

n
∑

i=1

(ai − bi)2 (4.1)

Squared Euclidean distance in Equation 4.2 [Deza and Deza, 2009] is the same

as Euclidean distance in Equation 4.1 but the square root is omitted for execution

78 Chapter 4: Rapidly Exploring Random Tree (RRT)

time performance gains.

d(a, b) =
n

∑

i=1

(ai − bi)
2 (4.2)

Manhattan distance, also known as city block or taxicab distance, is the shortest

distance between two points if one could only move in through a grid layout. The

Manhattan distance can also be thought of as the sum of absolute error. Manhattan

distance can be used for n-dimensional spaces. The general formula is as follows [Cha,

2007]:

d(a, b) =
n

∑

i=1

|ai − bi| (4.3)

Implementation of Equation 4.1 for 3D distances on a computer can be done us-

ing an approximation that reduces the execution time. The implementation is called

a fast approximation to 3D Euclidean distance [Ritter, 1990]. The implementation

uses fixed point arithmetic and there are no multiplications or divisions at all. Pseu-

docode for the implementation is given in Algorithm 6. The maximum error of the

approximation from the real Euclidean distance is +/- 13%.

Implementation of Equation 4.1 for 2D distances on a computer can be approxi-

mated on a octagon to reduce the execution time [Ritter, 1990]. Pseudocode for the

implementation is given in Algorithm 7. The approximation is always larger by at

most 12% than the real Euclidean distance, the approximation is never smaller.

Chapter 4: Rapidly Exploring Random Tree (RRT) 79

Algorithm 6 3D Euclidean Fast Approximation [Ritter, 1990]

1: procedure Distance(dx, dy, dz)

⊲ Convert reals to scaled integers

2: maxc← |dx≪ 10|

3: medc← |dy ≪ 10|

4: minc← |dy ≪ 10|

⊲ Sort

5: if maxc < medc then

6: swap(maxc,medc)

7: end if

8: if maxc < minc then

9: swap(maxc,minc)

10: end if

⊲ Compute 1/4 of med & min in 1 step.

11: medc← medc+minc

12: maxc← maxc+ (maxc≫ 2)

13: return (real)(maxc≫ 10)

14: end procedure

80 Chapter 4: Rapidly Exploring Random Tree (RRT)

Algorithm 7 2D Euclidean Fast Approximation [Ritter, 1990]

1: procedure Distance(x1, y1, x2, y2)

2: ix← x1− x2

3: iy ← y1− y2

4: t← 0

5: ix← (ix < 0?− ix : ix) ⊲ Absolute value

6: iy ← (iy < 0?− iy : iy) ⊲ Absolute value

⊲ Swap ix and iy

7: if ix < iy then

8: ix← ixˆiy

9: iy ← iyˆix

10: ix← ixˆiy

11: end if

12: t← iy + (iy ≫ 1);

⊲ (123 * ix + 51 * iy) / 128

13: return (ix− (ix≫ 5)− (ix≫ 7) + (t≫ 2) + (t≫ 6))

14: end procedure

Chapter 4: Rapidly Exploring Random Tree (RRT) 81

4.4 Collision Detection

The collision detection method I employ in my approach is as described in Sec-

tion 2.16. If a motion planner can be tailored for a specific domain and does not

need to handle a wide variety of problems, then domain specific knowledge can be

used to select an appropriate collision detection method. For example if the domain

consists of simple objects then this may influence the type of bounding objects used

by the collision detection method. This will in turn improve the speed of the collision

detection method.

4.5 Related Work

Since the concept of the RRT was introduced there have been many adaptations

of the RRT. In this section a few notable adaptations of the RRT are presented and

discussed.

4.5.1 RRT-Goal Bias

The RRT-Goal Bias adaptation modifies Algorithm 5 above to introduce a dif-

ferent sample bias and thereby changes the inherent Voronoi bias. The sample bias

method is to choose the goal configuration with probability n called the bias prob-

ability. With a small bias probability the RRT converges to the goal configuration

much faster than the classic RRT [Lavalle and Kuffner Jr., 2000]. Too large of a bias

82 Chapter 4: Rapidly Exploring Random Tree (RRT)

probability can lead to the RRT getting trapped in local minima so care must be

taken in selection of the bias probability.

4.5.2 RRT-Goal Zoom

The RRT-Goal Zoom adaptation modifies Algorithm 5 above to introduce a dif-

ferent sample bias method and also modifies the sampling range. Instead of using

the entire CSPACE as the sampling range, a region around goal is used as the sam-

pling range with probability n. The size of the region around the goal is controlled

by the current closest RRT configuration. The number of samples around the goal

increases as the RRT gets closer to the goal [Lavalle and Kuffner Jr., 2000]. This is

similar to the incremental sample range idea proposed in Section 5.3.1. The RRT-

Goal Zoom can suffer from the same local minima problem as the RRT-Goal Bias

and the Randomized Potential Field planner discussed in Section 3.1.

4.5.3 RRT-EXTEND

The RRT-EXTEND algorithm is given in Algorithm 8 [Kuffner Jr. and Lavalle,

2000; Lavalle and Kuffner Jr., 2000]. The EXTEND algorithm differs from the classic

RRT in that the move towards the random configuration from the NN is performed

for n time steps, or until the NN is reached, or an obstacle is blocking the path.

Chapter 4: Rapidly Exploring Random Tree (RRT) 83

Algorithm 8 RRT-EXTEND 8 [Kuffner Jr. and Lavalle, 2000; Lavalle and Kuffner

Jr., 2000]

1: procedure Build(initc, n, δt)

2: initc ← RRT.init() ⊲ Robot initial configuration.

3: for i← 0, n do

4: randc ← RandomConfiguration() ⊲ Uses sample bias method.

5: EXTEND(RRT, randc)

6: end for

7: return RRT

8: end procedure

84 Chapter 4: Rapidly Exploring Random Tree (RRT)

Algorithm 9 EXTEND 8 [Kuffner Jr. and Lavalle, 2000; Lavalle and Kuffner Jr.,

2000]

1: procedure EXTEND(RRT, randc)

2: nearc ← NearestNeighbor(randc, RRT) ⊲ Uses kd-tree.

3: motion←Move(randc, nearc) ⊲ Motion that minimizes distance between

two configurations.

4: newc ← NewConfiguration(nearc,motion, δt) ⊲ Configuration generated

by motion from nearc.

5: if newc 6= nearc then

6: RRT.addConfiguration(newc) ⊲ Adds configuration to the tree.

7: RRT.addEdge(nearc, newc,motion) ⊲ Path between two configurations

when motion is performed.

8: if newc = randc then

9: return REACHED ⊲ If new_c and rand_c are equal then a

movement can be performed between the two configurations.

10: else

11: return ADV ANCED ⊲ If new_c and rand_c are not equal then a

partial movement can be performed between the two configurations.

12: end if

13: else

14: return TRAPPED ⊲ If new_c and near_c are

equal then a movement could not be performed, therefore the path between the

configurations is blocked.

15: end if

16: return RRT

17: end procedure

Chapter 4: Rapidly Exploring Random Tree (RRT) 85

Algorithm 10 RRT-CONNECT 8 [Kuffner Jr. and Lavalle, 2000; Lavalle and

Kuffner Jr., 2000]

1: procedure Build(initc, n, δt)

2: initc ← RRT.init() ⊲ Robot initial configuration.

3: for i← 0, n do

4: randc ← RandomConfiguration() ⊲ Uses sample bias method.

5: CONNECT (RRT, randc)

6: end for

7: return RRT

8: end procedure

Algorithm 11 CONNECT 8 [Kuffner Jr. and Lavalle, 2000; Lavalle and Kuffner

Jr., 2000]

1: procedure CONNECT(RRT, randc)

2: repeat

3: result← EXTEND(RRT, randc)

4: until result 6= ADV ANCED

5: return result

6: end procedure

86 Chapter 4: Rapidly Exploring Random Tree (RRT)

4.5.4 RRT-CONNECT

The RRT-CONNECT algorithm is given in Algorithm 10 [Kuffner Jr. and

Lavalle, 2000; Lavalle and Kuffner Jr., 2000]. The CONNECT algorithm is simi-

lar to the EXTEND algorithm but there is no restriction of n time steps. Without

this restriction the CONNECT algorithm can generate longer paths with fewer calls

to the NN method. CONNECT works best for holonomic planning problems while

EXTEND works best for non-holonomic planning problems.

Many interesting examples in simulation are presented by Kuffner Jr. and Lavalle

[2000] such as a docking maneuver for a fully orientable satellite model, piano moving,

a Programmable Universal Machine for Assembly (PUMA) 6 DOF robotic arm, a

human finding and using a hammer in a virtual world, and playing a game of virtual

chess. No real world examples were presented.

4.5.5 RRT-Bi-directional

The concept behind RRT-Bi-directional, as the name implies is to grow two

trees [Lavalle and Kuffner Jr., 2000]. One tree is rooted at the initial configuration of

the robot and the other from the goal configuration. At every iteration an attempt

is made to join the two trees. If the two trees are joined then the RRT halts since

this means a solution has been found. The RRT-Bi-directional is analogous to a bi-

directional search of a list. Variants of RRT-Bi-directional algorithm based on RRT-

EXTEND and RRT-CONNECT were presented. A version where the two trees can

Chapter 4: Rapidly Exploring Random Tree (RRT) 87

use varying EXTEND/CONNECT methods was also given. An example of where

the RRT-Bi-directional algorithm may be advantageous is when you have a robotic

manipulator where not only are the final position and orientation are important but

the exact arm configuration must be specified for the goal configuration. Starting

a tree from the goal configuration ensures that the part of the plan near the goal

configuration meets the criteria to maintain the specified arm configuration, whereas

if one were to only start from the initial configuration the random configurations

generated near the goal may not meet the criteria of the final arm configuration.

4.5.6 Jacobian Transpose RRT (JT-RRT)

As stated in Section 2.8.3, there is no general closed form solution to the IK

problem for robot manipulators with greater than 6 DOF. Recall from Section 2.8.3.1

that the Jacobian is a matrix of partial derivatives that specify how each joint affect

the tool position and orientation. The algorithm presented by Vandeweghe et al.

[2007] uses the Jacobian Transpose (JT) to bias the tree growth once a random

configuration is within a specified distance of the goal configuration. The time steps

are kept small since the JT represents instantaneous change of the tool. The solution

was demonstrated with a 7 DOF manipulator. As a result of combining the JT with

the RRT, the motion plan generated also produces viable numerical solution to the

IK problem without the need to analytically solve the IK for the manipulator.

88 Chapter 4: Rapidly Exploring Random Tree (RRT)

4.5.7 Multipartite RRT (MP-RRT)

The Multipartite RRT (MP-RRT) introduced by Zucker et al. [2007] is geared

towards environments with dynamic obstacles. Instead of throwing away useful in-

formation and completely re-planning whenever the environment changes, parts of

the previous valid RRT are kept. The MP-RRT maintains a forest of disconnected

sub-trees that all lie in CFREE which are RRTs that became disconnected as the

environment changed since invalid configurations and edges are pruned. These dis-

connected sub-trees are not connected to the initial configuration. When the next

plan is required an RRT is built with a sample bias method that attempts to connect

the root of one of the disconnected sub-trees. By re-using the old disconnected RRTs

that are still mostly valid unless the environment changes drastically, a considerable

amount of time is saved when building a new RRT that is valid for the current state

of the environment.

4.5.8 RRT-Blossom

The RRT-Blossom adaptation is tailored for highly constrained environments

such as those with narrow passages [Kalisiak and van de Panne, 2006]. RRT-Blossom

expands on and improves the RRT-Collision Tendency (CT) variant. The RRT-CT

variant keeps track of failed move attempts (edges) in the tree. This information

is used to prevent redundant failures. It is also used in the sample bias method by

allowing selection of configurations with lower “collision tendency". RRT-Blossom

Chapter 4: Rapidly Exploring Random Tree (RRT) 89

adds a local receding but non-regressing flood fill mechanism into the RRT con-

struction algorithm [Kalisiak and van de Panne, 2006]. What this means is that

expansion can move further (recede) from the goal configuration but prevents explo-

ration of space already explored (regression). The local flood fill part refers to how

individual configurations are expanded to aid in exploration of the space near to the

configuration.

4.5.9 RRT*

Karaman and Frazzoli [2011] proved that although the classic RRT construction

algorithm is probabilistically complete, the probability of classic RRT construction

algorithm converging to an optimal solution is zero. Karaman [Karaman and Fraz-

zoli, 2011; Karaman et al., 2011] proposed a variant RRT* that exhibits asymptotic

optimality and probabilistic completeness. Asymptotic optimality provides almost-

sure convergence to the optimal solution. The RRT* achieves asymptotic optimality

by refining the motion plan during construction of the RRT.

To understand how RRT* differs from the classic RRT construction algorithm

given in Algorithm 5. Consider how the edges in the tree are created. If a move is

possible from the NN to the random configuration, then an edge is added to the RRT

with the NN as the parent of the random configuration. Similarly if a move is not

possible from the NN directly to the random configuration, then an edge is added to

the RRT with the NN as the parent of the configuration generated by the movement.

90 Chapter 4: Rapidly Exploring Random Tree (RRT)

In the RRT*, instead of simply creating this edge a heuristic function is used to pick

the best of the k-NNs to determine the parent. Karaman et al. [2011] use the cost

of the trajectory as the heuristic function. In addition to this, configurations in the

tree that are near to the new configuration added to the tree are evaluated for cost

to determine if their parents should be changed to the new configuration. This is

optimization is called re-wiring by Karaman et al. [2011].

4.5.10 Obstacle-Based RRT (OB-RRT)

Contrary to the RRT-Goal Bias construction algorithm, which introduces a sam-

ple bias method that chooses the goal configuration, Obstacle-Based RRT (OB-RRT)

uses information about the obstacles in the sample bias method [Rodriguez et al.,

2006]. An interesting idea presented by Rodriguez et al. [2006] is the use of a fixed

orientation for the robot when moving through narrow passages. If the movement

through a narrow passage can be completed with a simple sliding motion such as

a translation, then using a fixed orientation greatly simplifies the problem. Vari-

able orientation is only necessary when complex movements are required to navigate

narrow passages. Rodriguez et al. [2006] suggest many different obstacle based and

non-obstacle based sample bias methods as listed below:

• Random robot position and same orientation as the NN.

• Random obstacle position and random orientation.

Chapter 4: Rapidly Exploring Random Tree (RRT) 91

• Random obstacle position and same orientation as the NN.

• Rotation followed by extension. The NN is rotated to align with the random

configuration first, then a translation is performed until the random configura-

tion is reached or a collision occurs.

• Trace obstacle with random orientation. A random configuration is first at-

tempted to be added to the tree with the class RRT construction algorithm. If

an obstacle is hit basic then the NN is extended in the direction of the obstacle

with a random orientation.

• Trace obstacle with same orientation. This is the same as above but the orien-

tation of the NN is used instead of a random orientation.

• Trace CSPACE obstacle. The obstacle boundary is calculated by ray tracing

instead of relying on the collision detection method.

• Medial axis push. The medial axis provides a compact representation of shapes [Dey

and Zhao, 2003]. The medial axis push method is the same as trace obstacle

with random orientation except, after pushing towards the obstacle the config-

uration is pushed back towards the medial axis of the CSPACE. This in affect

moves the configuration away from COBS back closer to CFREE.

92 Chapter 4: Rapidly Exploring Random Tree (RRT)

4.5.11 Task Space RRT (TSPACE-RRT)

The Task Space RRT (TSPACE-RRT), as the name implies, builds the RRT in

the TSPACE instead of CSPACE [Shkolnik and Tedrake, 2009]. For more information

on the TSPACE see Section 2.2. By using the TSPACE, construction of the RRT

occurs in a lower dimensional space since the TSPACE is a subset of the CSPACE.

Performance gains can be realized for high dimensional CSPACEs. For example,

instead of considering the joint angles of the whole robot one may only consider

the hand or arm. Generating random configurations in the CSPACE allows for

probabilistic completeness while sampling in TSPACE allows for faster more direct

exploration.

4.5.12 Closed-Loop RRT (CL-RRT)

The Closed-Loop RRT (CL-RRT) is a variant of RRT that uses a path-tracking

control loop [Luders et al., 2010]. CL-RRT was demonstrated on a vehicle at the

Defense Advanced Research Projects Agency (DARPA) DARPA Urban Challenge

(DUC). The CL-RRT approach maintains two trees. One tree represents the simu-

lated trajectory and the second tree represents the actual trajectory achieved. The

goal of the control loop is try to match the actual trajectory to the simulated tra-

jectory since the vehicle will not always track the path as expected.

Chapter 4: Rapidly Exploring Random Tree (RRT) 93

4.5.13 Particle RRT (pRRT)

Particle RRT (pRRT) attempts to address the problem of planning with uncer-

tainty [Melchior and Simmons, 2007]. Uncertainty can come from many places such

as unreliable sensor feedback or inconsistent robot movements. The pRRT approach

builds on existing work done with particle filters [Arulampalam et al., 2002]. A

particle filter contains many particles, each of which is a weighted estimate of the

agent’s pose. After an action (e.g. a left, right, forward, or backward rotation or

translation) the pose estimate of each particle is updated based on the motion model,

then the weights are updated based on the sensor feedback [Bagot et al., 2008]. The

best particle is the weighted average of all particles.

The pRRT approach is similar to the particle filter in that when adding random

configurations to the tree, multiple likely conditions are simulated. The likelihood of

reaching a configuration can be calculated similar to the best particle as described

above. This likelihood can then be used in the sample bias method to favour paths

that the robot is more likely to achieve.

4.5.14 Heuristically-guided RRT (hRRT)

The classic RRT construction algorithm does not take into account the cost

of the motion plan. Since the cost of the motion plan is not considered, motion

plans extracted from the RRT are typically sub-optimal. The Heuristically-guided

RRT (hRRT) attempts to bridge this gap by introducing a heuristic function based

94 Chapter 4: Rapidly Exploring Random Tree (RRT)

on the quality of the motion plan and the size of the Voronoi region [Urmson and

Simmons, 2003]. The Voronoi bias from the classic RRT construction algorithm is

not completely removed because exploration of the CSPACE is still desirable. Al-

though the heuristically-guided technique worked well in the experiments performed

by Urmson and Simmons [2003], it still suffered from undesirable behaviour caused

by large Voronoi regions in narrow passages. As a solution to this problem, Urm-

son and Simmons [2003] suggested using the k-NNs to allow smaller Voronoi regions

with a better quality motion plan to be expanded instead of the larger Voronoi re-

gion. Urmson and Simmons [2003] also suggests that k can be iteratively increased

until the quality measure of the motion plan meets reaches an acceptable level.

4.5.15 Exploring/Exploiting Tree (EET)

The Exploring/Exploiting Tree (EET) to function like a potential field, exploit-

ing high potential areas in the environment while reaping the benefits of the RRT

for exploration [Rickert et al., 2008]. The potential field like behaviour allows for ex-

ploitation of useful information. By mixing the potential field like behaviour with the

RRT, the motion planner becomes probabilistically complete allowing for exploration

when necessary. Rickert et al. [2008] argue that using some form of exploitation is

the only way to minimize the required exploration of the state space in order to find

a solution.

Chapter 4: Rapidly Exploring Random Tree (RRT) 95

4.6 Other Applications

RRTs have been applied in some other fields unrelated to robot motion planning.

These other applications are not readily apparent. One such example is for insertion

of a flexible steerable needle into biopsy tissue to deliver treatment [Xu et al., 2008].

Given a target (injection site), Xu et al. [2008] are trying to find an entry point and

path to the target. By using the RRT and flexible steerable needle, injection sites

that were previously impossible to use are now achievable.

4.7 Summary

The basic RRT data structure, construction algorithm, and application to robotic

motion planning were presented. The RRT is the basis of my solution strategy for

robot motion planning. The next chapter will describe how my variant of RRT for

robot motion planning is implemented, both in simulation and on a physical robot.

Chapter 5

Implementation

Having described the use of RRTs for robot motion planning, this chapter will

cover the implementation of my approach to robot motion planning. The basis of

my approach is the RRT. To ultimately evaluate the performance of my approach

(Chapter 6), a decision must be made as to whether to use simulation or the real

world. Simulation allows for more trials to be run with many more variations of

robots and testing environments because they can be easily constructed, while a

physical robot in the real world serves to ensure that the simulated model translates

to actual performance. My work will be evaluated in both of these realms, and so

the discussion of the implementation of my work is divided similarly.

96

Chapter 5: Implementation 97

5.1 Real World

The purpose of performing some experiments in the real world is to demonstrate

the accuracy of the world and robot models. Without verifying and validating the

models in the real world, there is no way of knowing if the solution strategy will work

in the real world or whether it only works in simulation.

5.1.1 Humanoid Robot

The humanoid robot I used to embody my work is shown in Figure 5.1. The

humanoid robot is referred to as Blitz throughout the remainder of this thesis. Blitz

is a custom modified robot based on Robotis’ Biolod kit [Robotis, a,b] and has

been used in both previous academic research [Bagot et al., 2008] and in many

competitions, including Federation of International Robot-soccer Association (FIRA)

2007 HuroCup in San Francisco USA, and RoboCup 2007 in Atlanta USA, Euroby

2008 in Linz Austria, FIRA 2008 HuroCup in Qingdao China, and RoboCup 2008

in Suzhou China

98 Chapter 5: Implementation

(a) Blitz View 1 (b) Blitz View 2

(c) Blitz View 3 (d) Blitz View 4

Figure 5.1: Humanoid Robot - Blitz

Chapter 5: Implementation 99

This robot has nineteen DOF (three in each arm, five in each leg, two in the torso,

and one in the neck) as shown in Figure 5.3. When describing the axis of motion [Pla,

2008] affected by a joint in a humanoid robot, it is useful to consider the human body

cut into three planes, called the cardinal planes as shown in Figure 5.2. The first

plane is called the lateral (saggital) plane which divides the body into the left and

right halves. Motion in the lateral plane is forward and backwards. The second plane

is called the frontal (coronal) plane, which divides the body into the front and back

halves. Motion in the frontal plane is left and right. The third plane is called the

traverse (horizontal) plane, which divides the body into the top and bottom halves.

Motion is the traverse plane turns/twists the body. Motion in the planes can be

depicted by rotation of the plane. For Blitz, one DOF in the arm effects motion in

the lateral plane, while the other two effect motion in the frontal plane. Three DOF

in the leg effect motion in the lateral plane and the other two effect motion in the

frontal plane. Both DOF in the torso effect motion in the traverse plane. The DOF

in the neck effects motion in the lateral plane.

100 Chapter 5: Implementation

Frontal

Lateral

Traverse

Figure 5.2: Cardinal Planes

Chapter 5: Implementation 101

Figure 5.3: Blitz Joints with Servo ID

102 Chapter 5: Implementation

Each DOF in Blitz is articulated by a Dynamixel AX-12 servo [Robotis, 2006]

which is capable of producing 15.29kg.cm of torque at 12V. The servos are daisy

chained together using a serial bus. Table 5.1 lists the servos and their respective joint

limits. Although all servos are equivalent, some joint angle limits are different due

to the servo mounting position, orientation, proximity to other servos, and bracket.

The joint angle limits imposed by the physical servo is shown in Figure 5.4. The

servos would be considered under-powered at the present time compared to current

small size humanoid robots that may have up to 101.97kg.cm of torque at 14.8V in

extreme cases (e.g. if using a Robotis Dynamixel EX-106+ servo).

Table 5.1: Blitz Joints

Servo ID Name Min Angle Max Angle

2 Left Shoulder Lateral 0 300

4 Left Shoulder Frontal 0 300

6 Left Elbow Frontal 0 300

1 Right Shoulder Lateral 0 300

3 Right Shoulder Frontal 0 300

5 Right Elbow Frontal 0 300

8 Left Torso Traverse 0 300

7 Right Torso Traverse 0 300

Chapter 5: Implementation 103

Table 5.1: Blitz Joints

Servo ID Name Min Angle Max Angle

12 Left Hip Lateral 0 300

10 Left Hip Frontal 0 300

14 Left Knee Lateral 0 300

16 Left Ankle Lateral 0 300

18 Left Ankle Frontal 0 300

11 Right Hip Lateral 0 300

9 Right Hip Frontal 0 300

13 Right Knee Lateral 0 300

15 Right Ankle Lateral 0 300

17 Right Ankle Frontal 0 300

19 Neck Lateral 0 300

104 Chapter 5: Implementation

Figure 5.4: AX-12 valid angle range

(from Dynamixel AX-12 Manual Robotis [2006])

Blitz is equipped with an on-board ATMEL AVR ATmega128 micro-controller AT-

MEL [2006] and a Nokia 5500 cellular telephone (Figure 5.5), which are interfaced

by a custom-made Infrared Data Association (IrDA) board containing a Microchip

MCP2150 standard protocol stack controller supporting Data Terminal Equipment

(DTE) applications. The on-board micro-controller is predominately used for com-

munication with the servos, including but not limited to tasks such as target position

Chapter 5: Implementation 105

setting, trajectory planning by position interpolation, and servo load checking. The

on-board micro-controller is also used for the storage and playback of static motions

created by the Motion Editor as shown in Figure 5.6. This is all made possible by

custom firmware running on a multi-threaded Real-Time Operating System (RTOS)

code named Freezer OS [Baltes et al., 2011]. The micro-controller is situated in what

Robotis calls the CM-5, which packages the micro-controller with interface items such

as buttons and Light Emitting Diodes (LEDs).

Figure 5.5: Nokia N5500

106 Chapter 5: Implementation

Figure 5.6: Motion Editor

The Nokia 5500 provides a full C++ development environment, robust operat-

ing system (SymbianOS 9.1 series 60 release 3.0), camera, communication mediums

(Bluetooth and IrDA), an ARM 9 235MHz processor, and a three axis accelerometer

(LIS302DL). The Nokia’s processor is used for state generation, image processing,

sensor data smoothing, localization, mapping and other various application pro-

Chapter 5: Implementation 107

grams. Everything is powered by a single lithium-ion polymer battery pack except

the Nokia 5500, which has its own battery.

There are many complex modules working together on Blitz. The following sec-

tions describe how each of these modules work with the motion planner by providing

inputs or performing tasks that the motion planner is not responsible for. Figure 5.7

shows a coarse FBD of the modules and their relation to one another.

Figure 5.7: Blitz FBD

5.1.2 High Level Logic

The high level logic in Blitz is essentially where all the decision making occurs.

The high level logic uses information from lower level modules and makes informed

decisions as for what to do next. For example for a robotic soccer player, if a lower

108 Chapter 5: Implementation

level module such as a vision system detects the soccer ball then the high level logic

may decide to move towards the soccer ball. For the motion planner the high level

logic will specify the goal configuration, such as intercepting the soccer ball.

The high level logic is implemented as a decision making finite state machine

using the concept of the Subsumption Architecture introduced by Brooks [1986].

The states in the finite state machine are organized in hierarchical manner. Parent

states can subsume or suppress child states. Figure 5.8 is an example of the finite

state machine for a soccer player penalty kick application. Perception is the topmost

state, and can subsume or suppress all other states. When the robotic soccer player

cannot find the soccer ball, scanning or random walks are performed. Once the soccer

ball is found, the robotic soccer player is positioned such that the soccer ball is in

reach to kick and oriented towards the target in the goal. Any of the movements

required by the high level logic would be handed off to the motion planner to handle.

Chapter 5: Implementation 109

Figure 5.8: State Machine Diagram for Soccer Player Penalty Kick

5.1.3 Vision

The vision system in Blitz is responsible for detection of objects in the robot’s

line of sight. Object detection provides information about objects such as size,

shape, colour, position, and orientation. The information regarding the objects is

required by the motion planner for determining what is considered CFREE and what

is considered COBS. Unfortunately since the position and orientation information

provided by the vision system is relative to the robot because it is calculated by line

of sight, a higher level above the vision system is required to determine the absolute

position and orientation of the objects in the world. Determining absolute position

110 Chapter 5: Implementation

and orientation of the objects in the world is described in Section 5.1.4.

The Nokia N5500’s camera is used for vision. The algorithm used to detect

objects is a floodfill colour based blob detection. The algorithm is similar to the paint

bucket tool in many popular image editors. A calibration application was written

called SColour that allows for selection of colours that identify objects. For example,

different colours can be calibrated for object types such as spheres and cubes. The

floodfill algorithm uses the calibrated colours to extract objects from images and can

provide feedback such as the 2D coordinates of the centroid of objects, orientation

of the objects, and their bounding regions. The vision system is fairly primitive and

noisy, but there exists other vision systems that can provide much more accurate

feedback such as laser scanners or stereo vision systems.

5.1.4 Localization and Mapping

I developed a novel particle filter for Simultaneous Localization and Mapping

(SLAM) in humanoid robots [Bagot et al., 2008], and this is employed in my imple-

mentation. The particle filter is used to maintain an estimate of the current robot

pose (localization) as the robot moves throughout the world. The robot’s estimated

pose is used to supplement the relative coordinate input from the vision system. Us-

ing the robot’s estimated pose, the relative coordinates are converted into absolute

coordinates (mapping) which provide the position and orientation of the objects in

the world. The motion planner can use the map to determine if the generated ran-

Chapter 5: Implementation 111

dom configurations are in CFREE or COBS and to perform collision detection when

determining if a move is possible between two configurations.

5.1.5 Trajectory Planning

Trajectory planning in Blitz is used to handle the low level details of movements

between two configurations. The motion planner determines what configurations to

transition between in order to achieve the goal configuration. The motion planner

provides input to the trajectory planner. However, it also requires either input from

the trajectory planner or basic knowledge of how the trajectory planner works, in

order to determine if a move between two configurations is feasible.

Movement between two configurations can be specified with three parameters.

The first parameter, delay, specifies how long to remain at the initial configuration

before starting a movement towards the goal configuration. The second parameter,

time, is the desired amount of time that it should take to transition between the

initial and goal configuration. The third parameter, interpolation type, in conjunction

with time specifies how to interpolate between the initial and goal configuration.

There are two types of interpolation implemented: simple Linear interpolation and

Sinusoidal interpolation. Interpolation must be performed for each joint in order to

reach configuration two in the desired time. A plot of the Sinusoidal interpolation is

given in Figure 5.9.

112 Chapter 5: Implementation

Figure 5.9: Sinusoid

5.1.6 Balancing

The walking gait of Blitz is a static walking gait, meaning it is a sequence of

static motions. Static walking gaits are susceptible to any variation in the ground

terrain. Variation in the ground terrain can cause the static walking gait to become

unstable. Balancing on Blitz is achieved by sending compensation values during

the static walking gait. The compensation values are determined by forecasting time

series data provided by an accelerometer in the Nokia N5500. In addition to providing

information to calculate the compensation values, the accelerometer is used to detect

falls.

The forecasting technique used is called exponential smoothing. Exponential

smoothing [Nis, 2007] is a form of time-series analysis used extensively in forecasting

Chapter 5: Implementation 113

(also known as prediction). The exponential portion of the name comes from the

method in which data is weighted. As data ages in the time-series, the weight

associated with it decreases exponentially. Types of exponential smoothing include

single, double, and triple where are each is suited for time-series data without any

trends, with trends, and with trends and seasonality, respectively. The equations for

single and double exponential smoothing are given by Equations 5.1 and 5.2. The

original value is y, while s is the smoothed value.

st = αyt−1 + (1− α)st−1 (5.1)

st = αyt + (1− α)(st−1 + bt−1)bt = β(st − st−1) + (1− β)bt−1 (5.2)

st = yt + (yt − yt−1) (5.3)

The reason for using a forecasting technique to predict accelerometer data is

because of the latency incurred during receiving and processing the accelerometer

data. The latency is too large to provide the required reaction time. Exponential

smoothing provides some prediction and helps deal with noisy data, but the smooth-

ing reduces the sensitivity of the balancing because important peaks where motions

are becoming unstable can be remove by the smoothing. A potential solution to this

problem is to accentuate peaks by using the rate of change as given in Equation 5.3.

Although the motion planner can discard configurations that are not dynamically

stable based on POS, as described in Section 2.9, or by the simulated robot model and

114 Chapter 5: Implementation

physics engine, this alone does not guarantee the robot will not fall over. Uncertainty

in the ground plane consistency (uneven, friction, etc.) may cause some motions or

transitions between motions to become unstable even though they were valid given

the world and robot models in simulation. An additional level of optimization to the

motions determined by the motion planner are required that can only be achieved

in an ad-hoc manner such as the compensation values described.

Using the accelerometer data from the N5500, balancing is achieved by detecting

if the robot is becoming unstable and calculating a compensation vector to counter-

act the source of the instability. Since the accelerometer is a 3-axis accelerometer,

the g-force can be determined for each of the cardinal planes. For each plane, the

compensation vector contains offsets for the main joints that effect motion in the

corresponding plane. For example if instability is detected in the lateral plane, then

the compensation vector will contain offsets for the main joints that effect motion in

the lateral plane. The compensation vector changes the target joint angles that the

trajectory planner is working with.

Instability is detected by thresholding the pre-processed accelerometer data. A

PID controller (Section 2.11) is then used to calculate the offsets that are placed in

the compensation vector. Plots of the accelerometer data and forecasting for each

cardinal plane are given in Figure 5.10, 5.11, and 5.12.

There are a number of problems with this method that could easily be improved.

First, since the accelerometer is on the N5500, there is an inherent latency issue

Chapter 5: Implementation 115

since the compensation vector must be calculated on the Nokia phone and then

sent to the CM-5 via infrared, which is slow. This latency issue could easily be

solved by attaching a 3-axis accelerometer to one of the AtMega128 Analog-to-Digital

Converter (ADC) channels and moving the calculation of the compensation vector

onto the CM-5. The latency issue could also be solved by using other forecasting

techniques to predict future accelerometer data which limits the affect of the latency

as opposed to using the raw data. A second problem is that the accelerometer is on

the N5500, which forms the head of the robot and is nowhere near the robot’s Center

of Gravity (COG). The g-force at the head may be quite different from the g-force

at the COG. This placement issue can be solved by placing the accelerometer at the

COG or by the use of multiple accelerometers.

116 Chapter 5: Implementation

(a) Axis 0 (Frontal Plane) (b) Axis 1 (Traverse Plane)

(c) Axis 2 (Lateral Plane)

Figure 5.10: Accelerometer Data for each Cardinal Plane with ESP

Chapter 5: Implementation 117

(a) Axis 0 (Frontal Plane) (b) Axis 1 (Traverse Plane)

(c) Axis 2 (Lateral Plane)

Figure 5.11: Accelerometer Data for each Cardinal Plane with DESP

118 Chapter 5: Implementation

(a) Axis 0 (Frontal Plane) (b) Axis 1 (Traverse Plane)

(c) Axis 2 (Lateral Plane)

Figure 5.12: Accelerometer Data for each Cardinal Plane with Rate of Change

Chapter 5: Implementation 119

5.1.7 Firmware

The AtMega128 on Blitz is using a custom firmware running on a multi-threaded

RTOS code named Freezer OS that performs many functions.

There is no floating point co-processor on the AtMega128, therefore floating point

calculations are slow. All arithmetic calculations are performed in fixed point to

reduce the amount of Central Processing Unit (CPU) resources used. An example

of when fixed point calculations are performed is during interpolation for trajectory

planning, as described in Section 5.1.5.

Commands are sent from the Nokia N5500 phone to the AtMega128 via serial

communication. The command protocol packets have been optimized to reduce the

amount of data required to be transferred. A side effect of this optimization is that

the resolution of the Dynamixel AX-12 servos has been reduced. The Dynamixel AX-

12 servos have a resolution of 210 unique positions. In order to encode the position of

each servo in a single byte, the positions sent to the AtMega128 are divided by four

and converted to an integer then multiplied by four in the firmware to determine the

position. This causes a loss of resolution when the position is not divisible by four.

The loss of resolution is negligible since missing a few pulses does not significantly

change the servo position for these low grade servos.

Typically micro-controller applications are completely interrupt driven which can

be problematic when there are real-time requirements because interrupts can prevent

critical tasks from completing on time if care is not taken in the interrupt priority

120 Chapter 5: Implementation

scheme. Freezer OS allows both interrupts and threads to be used for tasks. Critical

tasks can still use an interrupt at the highest priority if necessary.

In order to allow execution of multiple threads, context switching is achieved

by saving general and special purpose registers on the thread stack during a timer

interrupt. A scheduler determines what the next thread to execute will be and the

thread’s state is restored by loading the general and special purpose registers from

the thread stack. Semaphores for thread synchronization have been implemented

for cases when concurrent access to resources are required by the threads. Sleep

has also been implemented for delaying threads by marking threads as blocked and

performing No Operations (NOOPs) until the time slice is complete.

Interrupt driven context switching for the threads results in time slice based

scheduling. Each thread is scheduled for a time slice and the timer interrupt is

chosen such that it provides sufficient time for common tasks to complete their work.

Time slice scheduling also implements a priority scheme by using a niceness value to

prevent starvation of low priority tasks.

The main tasks or threads executing on the Freezer OS for Blitz are two se-

rial communication receiver/transmitter tasks (one for communication between the

Nokia N5500 phone and AtMega128 and the other for communication between the

AtMega128 and Dynamixel AX-12 servos), a task to parse packets and dispatch com-

mands, and a motion interpolation task to handle any movement requests. Generally

command request is handled on its own thread.

Chapter 5: Implementation 121

The firmware also allows storage of static motions in flash memory that can

be executed on demand. A motion can be defined as a sequence of servo positions

executed in order, with specified delays between each step and interpolation methods

for each step.

The robot state is saved continuously which allows correction vectors to be added

to the robot’s position quickly. This facilitates the balancing algorithm as described

in Section 5.1.6.

5.2 Simulation

My simulated implementation is intended to approximate the physical implemen-

tation of Blitz closely: a plan created with the motion planner in simulation should

be directly transferable to the real robot. In order to make this possible, it is first

necessary for there to be a model of the robot and the world that represent each

accurately. These models are used as inputs to the motion planner. For example,

when specifying the initial, goal, and random configurations the robot model is used

and the obstacles in the environment are represented by the world model. The robot

models are also used to help solve the kinematics since their joints and links ac-

curately model where the end effector or tool will be positioned and oriented. For

example if the joint angles of the robot model are set to the desired values then the

solution to the FK problem can be directly determined by checking the end effector

or tool position in simulation because the physics engine solves by kinematics for you

122 Chapter 5: Implementation

by using the equations as defined in Section 2.8. The robot and world models are

both used for collision detection, since they provide the required bounding objects

to test for collision as described in Section 2.16. If the simulation did not exist the

motion planner could execute offline before attempting to move the robot.

In the subsections that follow, I describe the computer used for simulations,

followed by the simulation, models, and motion planner that are made possible by

the Motion Simulator.

5.2.1 Computer

The computer used to run simulations has the following configuration:

Component Description

CPU AMD Phenom(tm) 9850 Quad-Core

Processor X4 64 bit

GPU GeForce 9500 GT/PCIe/SSE2

Memory 8GB RAM

5.2.2 Motion Simulator

The Motion Simulator is a custom C++ application that uses some third party

libraries and is written specifically for the research conducted in this thesis. The

Chapter 5: Implementation 123

purpose of the Motion Simulator is to provide a framework to evaluate the motion

planner. First and foremost the Motion Simulator provides one important feature:

an incremental simulator that integrates with the motion planner. The incremental

simulator is described in more detail in Section 5.2.3.1. The Motion Simulator can

be used for rapidly prototyping robot and world models. The Motion Simulator

can also be used to visualize the CSPACE and motion planner RRT in either real-

time or faster than real-time as the motion planner executes. The Motion Simulator

simplifies debugging and conducting experimental trials with different motion planner

parameters. The motion planner executes within the Motion Simulator.

The following is a list of features that the Motion Simulator has, in no particular

order:

• Incremental simulation.

• Create, save, and load world models.

• Create, save, and load robot models.

• Robot and world models stored in Extensible Markup Language (XML).

• Define the initial configuration.

• Define the goal configuration.

• Configure motion planner parameters.

• Configure simulation parameters.

124 Chapter 5: Implementation

• Run simulations in batch mode.

• Integration with motor adapter for real world testing.

• Toggle visualization mode on and off.

• Generate and record data relevant for evaluation.

• Generate screenshots and graphs that represent the motion plan.

5.2.3 Third Party Software

Many open source libraries were leveraged in my work that simplify the implemen-

tation of the Motion Simulator. The following section describes each. The language

of choice for the Motion Simulator is C++, therefore all of the third party libraries

are written in C or C++.

The major libraries employed are reviewed in the following subsections.

5.2.3.1 Open Dynamics Engine (ODE)

A means of incremental simulation was required in the Motion Simulator. Recall

that a incremental simulator computes the current state after a set of inputs has

been applied over a period of time, see Section 2.15 for a refresher. There are

many physics engines that can be used as incremental simulators. Different physics

engines were evaluated but Open Dynamics Engine (ODE) was chosen in the end.

In addition to providing incremental simulation, collision detection and the basic

Chapter 5: Implementation 125

primitives necessary to model the robots and worlds is provided. ODE version 0.13

was used which is licensed under GNU Lesser General Public License, BSD license,

or LGPL license.

ODE is an articulated rigid body simulator [Smith, 2006] that is fast, robust,

stable, and highly configurable. ODE allows configuration of parameters that effect

dynamics such as gravity and friction coefficients. Kinodynamic constraints can also

be enforced on joints. At every time step collision detection is performed which

produces a list of contact points. A contact point represents the intersection of

two objects in the world. While ODE provides built in collision detection, custom

collision detection can be integrated into the physics engine. The IK problem is not

solved by ODE, but hill climbing is used to determine if joint configurations meet

the goal configuration while satisfying joint limitations.

With ODE, incremental simulation can be performed at different resolutions. The

size of the time step can be configured. The smaller the time step, the greater the

accuracy of the simulation but the drawback of a small time step is slower simulation.

To understand how the size of the time step decreases the accuracy of the simulation,

consider an object moving at high velocity 1m/s. If the object is 0.25m away from

an obstacle at time t and the simulation is stepped every 500ms, then the object

will have collided with the obstacle 250ms before the next time step t + 1. If some

simulation accuracy can be sacrificed for speed, the simulation can be stepped in

a faster than real-time. For the time step size, a balance must be found between

126 Chapter 5: Implementation

accuracy of the simulation and speed. The time step can typically be made larger

(faster than real-time) if the robot and obstacles are slow moving and the obstacles

are sparse.

In ODE, rigid shapes are represented by what they call geometry objects that

store geometrical properties such as size, shape, position, and orientation. Each ge-

ometry object is attached to a rigid body object that stores dynamic properties such as

velocity, acceleration, forces, and mass. The geometry object and rigid body object

together constitute the simulated object. The simulated objects can be grouped to-

gether in a Space. ODE has three different types of Spaces: Simple, Multi-Resolution

Hash Table, and Quadtree [Smith, 2006]. In order to optimize collision detection,

ODE performs collision culling on the Space which identifies pairs of geometry objects

that may collide instead of performing collision detection between every pair of ge-

ometry objects. The Simple Space does not perform collision culling, which means it

tests every pair and therefore has a time complexity of O(n2). The Multi-Resolution

Hash Table Space tracks simulated object that overlap in cubical cells in a internal

data structure, collision culling is performed which leads to a time complexity of O(n)

in sparse domains. The Quadtree Space time complexity is not given but appears to

perform better dense domains. The Multi-Resolution Hash Table Space is used in

the implementation presented in this thesis. The pairs of geometry objects that are

identified as possibly being in collision are passed to a callback function for further

analysis to determine the exact contact points between the two geometry objects.

Chapter 5: Implementation 127

The callback function used by the collision culling algorithm can be specified which

allows for customization of the callback function. In the implementation presented

in this Thesis the callback function has been customized to allow for enabling a mode

where the contacts points are calculated but not generated. Once the contact points

are generated, the physics engine will apply the appropriate forces to the geometry

objects in collision. In some cases this is not desirable: for example when performing

move tests during RRT construction we only need to know if the configurations are

in COBS and we do not want to apply collision forces to the robot and world model

during this process, since it would use unnecessary resources.

Simulated objects can be constructed in a few different shapes such as spheres,

cylinders, and cubes. These simulated objects can then be connected by a few

different joint types such as ball, hinge, slider, and Angular Motor (AMotor). For

the robots in this thesis, only revolute joints are considered. This accomplished in

ODE by combining a ball joint with an AMotor joint. The AMotor can be configured

to allow rotation on a specific axis which constricts the ball joint that is free to rotate

about any axis.

5.2.3.2 Boost

Boost Graph library is used in the Motion Simulator to provide tree data struc-

tures and search algorithms for the motion planner RRT. The generated trees can

also be output in the DOT language which are used to show the motion planner

128 Chapter 5: Implementation

RRT structure.

Boost provides free peer-reviewed portable C++ source libraries [Boost, 2014].

Boost is a set of peer-reviewed open source libraries that work well with the standard

C++ library. Boost also focuses on providing libraries that can eventually become

part of the new standard C++ library. For a full list of libraries see the Boost

documentation. Boost version 1.55 is used, which is licensed under Boost Software

License.

5.2.3.3 Approximate Nearest Neighbor (ANN)

ANN is used in the Motion Simulator exclusively for the motion planner RRT

constructions. Recall from Chapter 4 that a nearest NN method is required to

construct the RRT. When a random configuration is generated, the NN must be

determined and an attempt made to connect the two configurations. Also recall

from Section 2.12 that k-d trees store configurations in a space partitioning scheme

that can significantly improve the NN query time.

ANN [Mount, 2010] is an open source library that can compute exactly or approx-

imately k-Neareset neighbors for any dimension space. Parameters such as distance

metric and k-Nearest for the NN search algorithm can be easily configured. ANN

version 1.1.2 is used which is licensed under GNU Lesser Public License. ANN is

used extensively in the RRT implementation to determine the NN when building the

RRT.

Chapter 5: Implementation 129

5.2.3.4 Graphviz

Dynamically generated graphs can be hard to visualize since a large list of vertices

and edges cannot be easily comprehended by a human. Graphviz is used in the

Motion Simulator to provide images of the RRTs generated which can provide useful

information for debugging and understanding of how different parameters affect the

creation of an RRT.

Graphviz is an open source library that can generate images of graphs [Graphviz,

2014]. The Boost library can output a graph to the DOT language [Gansner et al.,

2006], then the output can be rendered by the Graphviz library. Graphviz version

2.26.3 which is licensed under Eclipse Public License.

5.2.3.5 Voro++

The standard implementation of an RRT has an inherent Voronoi bias, as dis-

cussed in Chapter 4. Voro++ is used in the Motion Simulator to depict Voronoi bias

in the standard RRT algorithm. Voro++ is an open source library that can compute

and generate images of 3D Voronoi tessellations [Voro, 2014]. Voro++ version 0.4.6

is used, which is licensed under BSD License.

5.2.3.6 Open Graphics Library (OpenGL)

OpenGL is used in the Motion Simulator to render the robot and world models

and the motion planner RRT.

130 Chapter 5: Implementation

OpenGL is an open source Application Programming Interface (API) for render-

ing 2D and 3D graphics [OpenGL, 2014]. OpenGL version 4.3 is used, which does

not require licensing for developers.

5.2.4 Robot Models

Robots can be modelled [Spong et al., 2005] as a set of joints connected by links.

There are many different types of joints, but only revolute joints are used in this

thesis. This is without loss of generality because it is not difficult to model other

joints in a similar manner. Revolute joints rotate on a single axis, therefore each

revolute joint represents a single DOF. Each link has an associated length and

connects two joints, unless a kinematic chain ends with a joint there is always one

more link than there are joints.

The Motion Simulator allows for the links to be created as simple shapes such as

spheres, cubes, and cylinders which are given a name, size, mass, position, orienta-

tion, colour, and texture. An example of two link definitions are given in Listing 5.1.

An algorithm was implemented that can automatically attach joints to the links.

The algorithm requires a few parameters in order to attach the links. The first set of

parameters are the names of the two links to be attached, one link in the case where

the joint will be at the end of a kinematic chain. If a joint is simply attached to the

links then the joint is placed such that it connects the origins of link0 and link1.

Obviously this is not the desirable behaviour in all cases. Another set of parame-

Chapter 5: Implementation 131

ters called dx, dy, and dz to specify the delta from link0’s origin to place the joint

and connect link1’s origin are input into the algorithm. Just as the orientation of a

servo will affect the axis of rotation, the mounting orientation of the joint must be

specified so three additional parameters drx, dry, and drz that rotate the joint are

also input into the algorithm. Finally since revolute joints are only considered, the

axis of rotation must be specified. The axis of rotation is specified to the algorithm

by three boolean values for x, y, and y. An example of a joint definition is given in

Listing 5.2.

There are a few additional parameters for joints that are not used by the algorithm

that attaches them to links. An upper and lower limit can be specified that limits the

joint’s range of motion. When the robot model is for a real robot, two parameters

that are used by the Motor Adapter discussed in Section 5.2.4.3 can be specified

which are a servo identifier and an offset that is used to help translate the simulated

joint angle to the real robot’s joint angle.

132 Chapter 5: Implementation

Listing 5.1: Example XML Link Definition

<Object Name="Le f tAnk leLate ra l " Type="9OdeGlCube" Texture=""

X="−460" Y="630" Z="232.5" Rx="0" Ry="0" Rz="0" lx ="400"

ly ="500" l z ="320" Mass="100" R="0.1" G="0.1" B="0.1"/>

<Object Name="Lef tAnkleLatera lBracket " Type="9OdeGlCube"

Texture="" X="−460" Y="722.5" Z="232.5" Rx="0" Ry="0" Rz

="0" lx ="420" ly ="520" l z ="145" Mass="100" R="1" G="1" B

="1"/>

Listing 5.2: Example XML Joint Definition

<Jo int Name="Le f tAnk l eLate ra l Jo in t " Type="10OdeGlJoint"

Link0="Le f tAnk leLate ra l " Link1="Lef tAnkleLatera lBracket "

Jo int0="Le f tAnk leLate ra l " ServoID="16" ServoOf f s e t ="500"

LowerLimit="−90" UpperLimit="90" Dx="0" Dy="−500" Dz="0"

DRx="0" DRy="0" DRz="0" Sequence="0" Di sab l eJo in t="0"

DisableLink="1" XAxis="1" YAxis="0" ZAxis="0"/>

5.2.4.1 Sphere Robot

The first simple robot model is for proof of concept. A single 3D point with 6

DOF for translational and rotational velocity along each axis. The model is called

the Sphere Model throughout the remainder of this thesis. The Sphere Model is used

Chapter 5: Implementation 133

in worlds with various static obstacles. 6 revolute joints are attached to the Sphere

Model as described in Section 5.2.4. The Sphere Model is shown in Figure 5.13.

Figure 5.13: Sphere Model

The motion planner requires a method to test a move between two configurations

of the Sphere Model in the Motion Simulator. The control of the Sphere Model in

the Motion Simulator can be accomplished in a number of different ways;

A simple control strategy for moving the sphere model from one point to another

is to determine the equation of a line segment between the two points. For example

if the start point A is (1, 0, 1), and the end point B is (10, 0, 5) then the direction

134 Chapter 5: Implementation

vector D is B - A = (9, 0, 4). To calculate a point on the line segment C = tD

+ A where t [0, 1]. t = 0 would generate A, and t = 1 would generate B. We

can incrementally increase t in order to move the sphere model between A and B

performing collision detection at every increment.

Another control strategy would be to rotate one the sphere’s axes to point directly

at the target using one of the three DOF that control rotation. A velocity or torque

could then be added to the axis in order to move the sphere model towards the

target. The velocity or torque could be varied with a PID controller to prevent

overshooting the target. This solution makes use of the incremental simulator. This

control strategy may be slow for determining if moves are feasible since it must be

done inline with the incremental simulator time step.

If we did not need to actually move the sphere, but simply only check if a move

is feasible. A straight line collision check could be performed. A straight line could

be projected from the start point A to the end Point B. The line segment could

then be checked for collisions against all obstacles in the world. To simplify collision

detection a sphere could be used regardless of the object shape as long as the sphere

fully encompasses the object. This method could also be used for other simple robots

such as a wheeled robot.

Chapter 5: Implementation 135

5.2.4.2 Humanoid Robot

The second robot model is of the real robot Blitz described in Section 5.1.1. The

model is referred to as the Humanoid Model throughout the remainder of this thesis.

Robotis has made Computer-aided design (CAD) models and drawings of all of the

joints and links of their robot kit available. Using CAD models and drawings, the

dimensions and masses of all the links and joints were input into the model. Nineteen

revolute joints are attached to the Humanoid Model as described in Section 5.2.4.

Care was taken to ensure all joints rotate at the correct orientation and the desired

point between the links. The Humanoid Model is shown with Blitz for comparison

in Figure 5.14 and an example of the joints moving is given in 5.15.

(a) Blitz Robot Model

(b) Blitz

Figure 5.14: Blitz Robot Model vs. Blitz

(a) Humanoid Model View 1 (b) Humanoid Model View 2

(c) Humanoid Model View 3 (d) Humanoid Model View 4

Figure 5.15: Humanoid Model

138 Chapter 5: Implementation

The motion planner requires a method to test a move between two configurations

of the Humanoid Model in the Motion Simulator. The control of the Humanoid

Model in the Motion Simulator can be accomplished in a number of different ways;

The IK can be solved as described in Section 2.8.3 for each kinematic chain since

the link lengths and joint locations are all known. Alternatively the IK can be solved

by using a Jacobian technique as described in Section 2.8.3.1 while taking advantage

of the incremental simulator. This is accomplished by changing each joint by a

small amount in order to see how it changes the end effector or tool position. The

FK solution for the end effector or tool position can be extracted directly from the

Humanoid Model when the joint angles are changed because simulation maintains

the defined joint constraints for the Humanoid Model. Using this method the partial

derivatives for the Jacobian are calculated. The Jacobian can then be used to solve

the IK.

Chapter 5: Implementation 139

5.2.4.3 Motor Adapter

The plan generated for the Humanoid Model must somehow be translated to a

plan that the physical robot Blitz can use. This is accomplished by what is referred

to as a Motor Adapter throughout the remainder of this thesis. A Motor Adapter

converts the robot model joint angles to servo positions with a function f(θ) where θ

is the angle of the robot model joint. Each servo type would require a different Motor

Adapter because the specification of its position may be unique. For the purpose of

this thesis only one Motor Adapter is required since only one servo type is used; the

Dynamixel AX-12.

Recall from Section 5.2.3.1 that ball joints with AMotors are used to represent

revolute joints. The AMotors are configured for Euler mode in ODE, which means

the angle between the two links that the joint connects are automatically calculated.

This angle is then used as the joint angle θ and passed to the function f(θ) that

gives us the servo position for Blitz. f(θ) for each servo type can be determined by

using the servo documentation. For example, with a Dynamixel AX-12 servo has

210 positions that can be specified where each position maps to an angle between [0,

300]◦, therefore the mapping function is a simple linear equation give in Equation 5.4.

As stated in Section 5.1.7, the resolution of the Dynamixel AX-12 servo was reduced

in order to reduce the packet sizes in the communication protocol which gives us

Equation 5.5. Figure 5.16 is the User Interface (UI) for motor control that can be

used to test the Motor Adapter in the Motion Simulator. The angle is set on the

140 Chapter 5: Implementation

model joint and real robot when connected.

f(θ) = (θ ∗ (210/300)) + offset (5.4)

f(θ) = ((θ ∗ (210/300)) + offset)/4 (5.5)

Chapter 5: Implementation 141

Figure 5.16: Motor Control

142 Chapter 5: Implementation

5.2.4.4 Motor Controller

The Motor Controller contains the logic necessary to move n servos simultane-

ously when servo commands are received. Servo commands provide a high level

interface for servo position specification. The motor controller includes Pulse Width

Modulation (PWM), trajectory control, interpolation, PID control, and serial com-

munication. The output from each motor adapter is sent to the Motor Controller.

5.2.5 World Models

A world model consists of simple objects such as cubes, cylinders, planes, and

spheres combined together to create a complex environment. The forces that act

upon these objects can be simulated using the physics engine; forces such as friction

and gravity. The Motion Simulator UI provides an easy method to create, modify,

and arrange objects in the world. For this thesis six worlds were created to evaluate

the Sphere Model and Humanoid Model. For the Humanoid Model worlds the static

obstacles and goal are replicated in the real world. The six worlds are described and

depicted below in their initial state.

World 0, as shown in Figure 5.17, has the initial configuration of the Sphere

Robot in the center of rectangular walls with a single exit. The goal configuration is

just outside the exit. There is no straight path directly from the initial configuration

to goal configuration.

Chapter 5: Implementation 143

(a) World 0 View 1 (b) World 0 View 2

Figure 5.17: World 0

World 1, as shown in Figure 5.18, has the initial configuration of the Sphere Robot

in the center of rectangular walls with a single exit, but an obstacle is blocking the

straight line path from the initial configuration to the exit. The goal configuration is

along one of the walls. There is no straight path directly from the initial configuration

to goal configuration.

144 Chapter 5: Implementation

(a) World 1 View 1 (b) World 1 View 2

Figure 5.18: World 1

Chapter 5: Implementation 145

Figure 5.19: World 1-2

146 Chapter 5: Implementation

World 2, as shown in Figure 5.20, has the initial configuration of the Sphere Robot

in the center of rectangular walls with a single exit, but an obstacle is just outside

of the exit which presents a narrow path for the robot. The goal configuration is

along one of the walls, but there are two obstacles surrounding the goal. There is no

straight path directly from the initial configuration to goal configuration.

(a) World 2 View 1 (b) World 2 View 2

Figure 5.20: World 2

World 3, as shown in Figure 5.21, has the initial configuration of the Sphere

Robot in the corner of a narrow passage. The goal configuration is in the corner

of an adjacent narrow passage. The robot must navigate a u-shape narrow passage.

There is no straight path directly from the initial configuration to goal configuration.

Chapter 5: Implementation 147

(a) World 3 View 1 (b) World 3 View 2

Figure 5.21: World 3

World 4, as shown in Figure 5.22, has the initial configuration of the Sphere

Robot in the center of randomly scattered obstacles. The goal configuration is placed

randomly behind an obstacle. There is no straight path directly from the initial

configuration to goal configuration.

(a) World 4 View 1 (b) World 4 View 2

Figure 5.22: World 4

148 Chapter 5: Implementation

World 5, as shown in Figure 5.23, has the initial configuration of the Humanoid

Robot with the tool (right hand) positioned close to a box. The goal sits on top

of the box, and must be touched by the tool. There is no straight path directly

from the initial configuration to goal configuration. World 5 is implemented both in

simulation and the real world. The simulated models attempt to replicate the real

world. Ideally, the motion plan that is found in simulation will translate directly to

the real world if the simulated models are accurate.

Although the vision system described in Section 5.1.3 could be used to provide

the coordinates and sizes of the obstacles and goal in the world for the simulation,

the purpose of this thesis is not to exercise the vision system. The coordinates,

orientation, and sizes of the obstacles and goal in the simulation are pre-measured

from the real world and input into the simulation. This is without loss of generality

since vision systems that could provide this feedback exist. The real world is shown

in Figure 5.23, and the model world is shown in 5.24.

If the motion planner were to simply solve the IK problem then allow the tra-

jectory planner to interpolate between the initial configuration and configuration

generated by the IK solution, the tool trajectory would look something like Fig-

ure 5.25. This would be clearly undesirable since the tool comes in contact and

would be blocked by an obstacle.

The trajectory of the tool would ideally look something like that shown in Fig-

ure 5.26: first avoiding the obstacle, then moving towards the goal configuration.

Chapter 5: Implementation 149

(a) Real World 5 View 1

(b) Real World 5 View 2 (c) Real World 5 View 3

Figure 5.23: Real World 5

150 Chapter 5: Implementation

(a) Model World 5 View 1

(b) Model World 5 View 2 (c) Model World 5 View 3

Figure 5.24: Model World 5

Chapter 5: Implementation 151

Figure 5.25: World 5 Tool Trajectory Collision

152 Chapter 5: Implementation

Figure 5.26: World 5 Tool Trajectory

Chapter 5: Implementation 153

5.3 Motion Planner with RRT and Incremental Sim-

ulator

My solution strategy for robot motion planning uses a RRT combined with an

incremental simulator. The motion planner is currently a component in the Motion

Simulator. By making the motion planner a component in the Motion Simulator,

the Motion Simulator can both serve to present an environment for simulated exper-

imentation, and for the motion planner itself to predict the outcome of the actions

it is considering. The motion planner component and incremental simulator could

easily be removed from the Motion Simulator and implemented on a computer on-

board a robot in the future. My motion planner can be classified as a single-query

probabilistic sample-based tree algorithm.

The motion planner is classified as a single-query algorithm since it does not

require building a map before a solution can be found, unlike the PRM (as discussed

in Section 3.2). The solution is found by incrementally building a data structure,

which ultimately encompasses the solution. When the solution is found, the motion

planner halts and the solution is readily available with minimal effort required to

extract the solution from the data structure. The motion planner is categorized as

a probabilistic sample-based tree algorithm since the underlying data structure is a

tree and it is built by using random robot configurations.

The motion planner operates in the context of the CSPACE as described in Sec-

154 Chapter 5: Implementation

tion 2.1 and is combined with an incremental simulator. The incremental simulator

is a physics engine described in Section 5.2.3.1 which is used for computing state x(t)

at time t or the state of the robot at any given time, see Section 2.15 for more details.

By using a physics engine it not only provides incremental simulation, but it also

provides facilities to test the feasibility of robot configurations. For example kine-

matic constraints such as joint limitations are considered, kinodynamic constraints

are also considered by performing physics calculations to confirm that a configura-

tion is dynamically stable. The physics engine could also be used to find solutions to

the IK problem using hill climbing techniques - however, I used a Jacobian transpose

method as per Section 2.8.3.3. Finally, the physics engine is used to perform collision

detection to confirm that a configuration belongs to CFREE. A similar approach

in combining the motion planner with an incremental simulator was used by Sucan

et al. [2008], but unlike their work, the sample-based tree planner is a RRT, and

complex robots in many different environments are demonstrated.

The single-query sample-based tree algorithm is a variant of the RRT construc-

tion algorithm as described in Chapter 4. In particular, the motion planner uses two

algorithms from Chapter 4, the EXTEND and CONNECT (Algorithms 8 and 10).

The motion planner builds an RRT while exploring the CSPACE. Nodes in the tree

represent robot configurations. Robot configurations are randomly generated and a

move attempted towards them from the nearest configuration. The configurations

that are subsequently added to the RRT are only used if they meet the following

Chapter 5: Implementation 155

intelligent criteria: they belong to CFREE, the robot configuration is dynamically

stable, and the robot configuration is feasible given realistic joint limitations (no

joints that can exert infinite force). Just as in any standard RRT a few key com-

ponents are required: a sample bias method, NN method, a distance metric, and

a collision detection method. The standard implementation of a RRT has an in-

herent Voronoi bias when using uniform sampling because the probability that a

configuration in the tree is selected is proportional to the volume of its Voronoi re-

gion [Lindemann and LaValle, 2004]. Configurations with larger Voronoi regions are

more likely to be chosen. The convergence of the standard RRT implementation can

be improved with a goal bias [Lavalle and Kuffner Jr., 2000] which simply selects the

goal configuration instead of a random configuration using a predefined probability.

The predefined probability must be chosen with care because a probability that is

too large can potentially lead to local minima traps. The sample bias method used

is a goal bias method. If the goal bias probability is set to zero then the RRT has

the standard Voronoi bias, as discussed in Section 2.13. The NN method uses a third

party library as described in Section 5.2.3.3 that can configured for k-NN and dif-

ferent distance metrics. The distance metrics used are based on Euclidean distance

as described in Section 4.3. The collision detection method is built into the physics

engine, and uses a mesh method similar to the bounding polygon collision detection

method described in Section 2.16.

What is unique about my motion planner is that these algorithms are combined

156 Chapter 5: Implementation

with an incremental simulator. In both EXTEND and CONNECT, the algorithms

require a move between two configurations that generates a motion that minimizes

the distance between the two configurations. This move is where the incremental

simulator is used. What also sets my motion planner apart is that the sample

bias method, distance metric, k-Nearest parameter, collision detection method, and

incremental time step are all configurable, which allows for these parameters to be

changed on the fly for different robots and worlds. To the best of my knowledge after

surveying many RRT papers, the ability to visualize the internal RRT structure is

unique. The ability to visualize the internal RRT structure provides insight into the

performance of the motion planner. The RRT structure can be visualized as a tree

or a Voronoi diagram.

For simulated robot models, a method to control the joints is necessary. The

strategy used to control the joints is by use of a PID controller as described in

Section 2.11. The target angle for the joint is set and the PID controller manages

the low level details of moving the joint to the target angle. This was also the

control strategy of choice since the real robot’s servo motors employ a similar control

strategy.

For the real robot, the motion planner uses a simulated robot model during

planning. In order to translate the motion planner output to the real robot, a method

to convert the simulated robot model joint angles to the real robot is required. This

Motor Adapter discussed in Section 5.2.4.3 was used to perform this translation.

Chapter 5: Implementation 157

5.3.1 Random Number Generation

The motion planner requires a method of generating random configurations for

the RRT. A Random Number Generator (RNG) is used to generate a random

number within a specified range for each DOF. It was desirable to make the results

of the motion planner repeatable so that the same results could be regenerated if the

same settings for parameters were used for the motion planner. Pseudo RNGs use

a seed value to begin the random sequence. If you create two pseudo RNGs with

the same seed value, they will produce the exact same random sequence. Since the

sequence can be repeated it is not a true RNG it is a pseudo RNG. If the seed value

is saved for the RRT it is possible to produce the exact same RRT.The algorithm for

the pseudo RNG is given in Algorithm 12, note that rand() returns pseudo random

number between 0 and RAND_MAX. For experimentation many permutations of

the configurable parameters are executed, and if a particular case must be inspected

later, it can actually be run again given the seed value. Although the motion planner

is probabilistic, we can deterministically reproduce the results. If a seed value is not

provided then the pseudo RNG is seeded using the CPU clock ticks, which generates

a different pseudo random sequence for every instantiation of the pseudo RNG.

Typically RNGs produce random numbers within a specified range called the

sampling range. For an RRT the selection of the sampling range could be a range

that encompasses every possible configuration. This would provide the most coverage

of the state space. However information about the state space could be used to

158 Chapter 5: Implementation

reduce the size of the sampling range which can allow the RRT to converge to a

solution faster. Avoiding sampling the entire state space is also advantageous because

potentially uninteresting regions of world can be ignored. The following are some

options that could be used to reduce the size of the sampling range.

The sampling range can be incrementally increased inside of a bounding object.

For example the sampling range could be bounded by a sphere. This brings into

question how large the initial sampling range should be. A reasonable approach

would be to use the distance from the initial configuration to goal configuration as

the radius of the sampling range when a bounding sphere is used. Figure 5.27 depicts

this type of incremental sampling range in 2D. Figure 5.28 depicts the sampling range

as it is incrementally increased. Another approach for selecting the sampling range

could be to use two radius, one as stated before and the other a radius extended

from the goal configuration. Figure 5.29 depicts this type of incremental sampling

range in 2D. This type of sampling range might be useful for instance if there are

many obstacles surrounding the goal configuration. The algorithm for generating

pseudo RNG in a sphere is given in Algorithm 13. An example of the samples is

given in Figure 5.30. The next thing that comes into question is when should the

sampling range be incremented? There are many possible options, for example if the

goal configuration is not reached within a specified amount of time, if the number of

configurations meets a threshold, or if the dispersion does not meet a threshold.

A pseudo RNG is used for one other task in the motion planner RRT. The sample

Chapter 5: Implementation 159

r

Figure 5.27: Pseudo RNG Incremental Sample Range, Single Radius

bias method is only used based on a defined bias probability. For example if the bias

probability is 10% then the samples should be bias 1 out of 10 times. The pseudo

RNG can be used to achieve the required bias probability by generating a random

sample in the range [1, 100], if the number is less than or equal to 10 in our example

of a 10% bias probability then the sample should be biased.

160 Chapter 5: Implementation

r0

r1

Figure 5.28: Pseudo RNG Incremental Sample Range, Single Radius Increment

Algorithm 12 Pseudo Random Number Generator
1: procedure Random(min,max)

2: r ← rand() / RAND_MAX

3: return min+ r ∗ (max−min)

4: end procedure

Chapter 5: Implementation 161

r1 r2

Figure 5.29: Pseudo RNG Incremental Sample Range, Dual Radius

162 Chapter 5: Implementation

Algorithm 13 Pseudo Random Number Generator in Sphere
1: procedure RandomSphere(radius)

2: l ← Random(0, 2π)

3: h← Random(−π/2, π/2)

4: x← Random(0, radius) ∗ cos(l) ∗ cos(h)

5: y ← Random(0, radius) ∗ sin(h)

6: z ← Random(0, radius) ∗ sin(l) ∗ cos(h)

7: return (x, y, z)

8: end procedure

Chapter 5: Implementation 163

Figure 5.30: Pseudo RNG in Sphere

164 Chapter 5: Implementation

5.3.2 Random Configuration Generation

When generating random configurations for the robot, an naive approach could,

for each joint, select a angle randomly over the entire joint range. However, this

would likely generate many physically impossible configurations. A more sensible

approach would be to consider joint constraints such as angle limits during random

configuration generation. Pseudocode for the random configuration generation that

is implemented is shown in Algorithm 14. Algorithm 14 uses a different approach for

each robot type. The approach used for the Sphere robot is shown in Algorithm 15

and the Humanoid robot in Algorithm 16.

Algorithm 14 Random Configuration
1: procedure RandomConfiguration

2: if SampleBias() then ⊲ Determine if sample should be biased.

3: configuration← Bias()

4: else

5: configuration← RandomRobotConfiguration()

6: end if

7: return configuration

8: end procedure

Chapter 5: Implementation 165

Algorithm 15 Random Sphere Configuration
1: procedure RandomRobotConfiguration

2: configuration[0]← Random(MINX ,MAXX)

3: configuration[1]← Random(MINY ,MAXY)

4: configuration[2]← Random(MINZ ,MAXZ)

5: configuration[3]← Random(MINRX,MAXRX)

6: configuration[4]← Random(MINRY,MAXRY)

7: configuration[5]← Random(MINRZ,MAXRZ)

8: return configuration

9: end procedure

Algorithm 16 Random Humanoid Configuration
1: procedure RandomRobotConfiguration

2: for i← 0, n do Where n is the number of joints.

3: configuration[i]← Random(jiMin, jiMax) ⊲ Where jiMin and jiMax

are the joint limits for joint i.

4: end for

5: return configuration

6: end procedure

5.4 Summary

In this chapter, the implementation of my approach to robot motion planning

was described in detail. Simulation and real world environments were implemented

166 Chapter 5: Implementation

to evaluate my motion planner. In the next chapter, the evaluation of my motion

planner is presented.

Chapter 6

Evaluation

6.1 Overview

In order to evaluate the motion planner presented in my thesis, experiments were

performed. The purpose, setup, criteria, results, analysis, and observations of the

experiments are discussed in this chapter.

6.2 Experiment Purpose

The purpose of my experiments was to evaluate the the performance of the motion

planner presented in my thesis in a systematic way. Specific parameters of the

motion planner were incrementally changed, while others were kept constant. As

the parameters were incrementally changed, the behaviour of the motion planner

167

168 Chapter 6: Evaluation

was observed and relevant data recorded. The data gathering was done in hopes of

discovering by analysis additional optimizations that could be made to my motion

planner, as well as judging its performance.

It is desirable to optimize the motion planner for real-time applications. In par-

ticular this means that the runtime of the motion planner must be reduced. The

RRT construction algorithm can be optimized for real-time applications by only

using methods that can be executed quickly. The methods that have the fastest

execution time were determined empirically by investigating the runtime impact

of different NN methods, sample biasing methods, incremental distance algorithms,

and distance metrics. Using the data gathered, analysis was performed and potential

modifications to the motion planner were identified. The modifications to the motion

planner that were feasible were made and further experiments were conducted.

6.3 Experiment Setup

The first step of the experiment setup was to choose robots and worlds that

were sufficiently complex to evaluate the performance of the motion planner and to

demonstrate that the motion planner is generic enough that it could be applied to

a wide array of different problems. For the robots, increasing the number of DOF

provides sufficient complexity. For the worlds, their measure of difficulty depends in

part on the robot, as a large robot may possibly have trouble with narrow passages

while a small robot may have no trouble whatsoever. The robots and worlds I used

Chapter 6: Evaluation 169

for my experimentation are discussed in detail in Sections (5.2.4.1, 5.1.1, 5.2.4.2,

and 5.2.5). Simulated and real robots were chosen, and for the real robot an equiv-

alent simulated robot model is built which the motion planner uses. Various worlds

with narrow passages, random obstacles, and no direct path to the goal configuration

were chosen.

For each world described in Section 5.2.5, the motion planner was executed for

the robot with the following settings: the first combination of settings (which will

be referred to as Setting 1 throughout the remainder of this thesis) are the EX-

TEND algorithm described in Algorithm 8, Euclidean distance metric described in

Equation 4.1, k=1 NN computed exactly, and a variable goal bias incremented in

10% increments. The second combination of settings (which will be referred to as

Setting 2 throughout the remainder of this thesis) are the CONNECT algorithm de-

scribed in Algorithm 10, Euclidean distance metric described in Equation 4.1, k=1

NN computed exactly, and a variable goal bias incremented in 10% increments.

Each combination of settings was performed three times for the simulated robots

using a different seed value for the RNG. The seed values were saved so that any runs

that appeared to be anomalous could be ran again and inspected if necessary. For

the real robot each combination of settings was performed once due to the amount

of time it takes to execute the plan on the real robot.

The data was gathered as per the criteria set out in the next section during

the experiments, which were conducted using the Motion Simulator described in

170 Chapter 6: Evaluation

Section 5.2.2.

6.4 Experiment Criteria

Once the robots and worlds were chosen for evaluation, the criteria for evaluating

the performance of the motion planner was defined. Since a major concern was

making the solution applicable to real-time applications, one obvious metric is the

Total Execution Time of the motion planner. The total execution time is the time

from the moment the start and goal configuration are chosen and input into the

motion planner to the time that the motion planner returns a path between the start

and goal configuration. Another concern, due to limited resources on mobile robots

such as micro-controllers, is the amount of memory used. In order to provide an idea

of how big the motion planner data structure is, assuming that there is a correlation

between the data structure size and memory usage, the Number of Configurations

was used as a metric. A greater number of configurations can be good and bad. For

example if there are a large number of configurations and they are dispersed, then it

may be a good indication that the motion planner has done a good job at exploring

the world. On the other hand, a large number of configurations that are not dispersed

may be an indication that the motion planner is having a difficult time finding a

solution if one exists. In order to understand how much exploration of the world is

done, Dispersion is another metric used. The measure of dispersion used is simply

the standard deviation between all robot configurations that are considered by the

Chapter 6: Evaluation 171

motion planner throughout the planning process. A similar metric for dispersion was

used by Lindemann and LaValle [2004] as a measurement of how well the CSPACE

is covered by the RRT. Aside from number of configurations it is also interesting to

consider the number of Modified Random Configurations as this is a good indication

of a few things. Firstly the number of modified random configurations can give

you a good indication of how cluttered the world is with obstacles if most of the

generated random configurations are in COBS as opposed to CFREE. Secondly the

number of modified random configurations can provide insight into how good the

motion planner is at selecting configurations, if it is really good then no random

configurations would need to be modified, they could simply be used. Since the

motion planner is composed of many complex modules, it is important to understand

not only the total execution time but also how some of the complex modules affect

the total execution time since these modules may not be the focus of this research.

For example the focus of this research is not solving the IK problem, or trajectory

planning, therefore the Total Move Test Time was tracked. The total move test time

encompasses the time that it takes to determine if the robot can move between two

configurations. If we look at the delta between the total execution time and total

move test time, we remove time that this research is not focusing on optimizing. A

simple Jacobian method as described in Section 2.8.3.1 is used for solving the IK

problem and trajectory planning is done by simple interpolation. Algorithms for

these problems can always be changed, or updated with the current state of the art

172 Chapter 6: Evaluation

but will not be optimized for this thesis. In addition to total move test time, any

time incurred for searching data structures such as NN as described in Section 2.12 or

graph and tree searching as described in Section 2.14 was tracked, since they are also

not the focus of this research. Finally, a Qualitative Inspection Ranking considers

the quality of the motion plan from a qualitative perspective, by manually inspecting

the path. A number of questions are considered: Is the path reasonable, or is there

clearly a better solution? Does the path translate well from simulation compared to

the real world? Can the real robot execute the plan? Does the robot achieve the

goal configuration from the initial configuration collision free?.

A summary of the criteria used for evaluating the motion planner is given in

Table 6.1 and descriptions of the qualitative inspection ranking are given in Table 6.2.

Chapter 6: Evaluation 173

Criteria Description

Total Execution Time The motion planner’s response time to

a plan request.

Number of Configurations The number of configurations in the mo-

tion planner’s data structure.

Modified Random Configurations The number of generated random con-

figurations that had to be modified be-

fore use in the motion planner’s data

structure.

Dispersion A measure of how distributed the con-

figurations are throughout the world

Total Move Test Time The total amount of time to check if a

move between to configurations is pos-

sible.

Total NN Query Time The total amount of time to query the

NN data structure

Qualitative Inspection How good the generated plan is by man-

ual inspection of the output.

Table 6.1: Summary of Evaluation Criteria

Rank Description

Disagree There is a different solution that is

clearly better than the planner selected.

Somewhat Disagree There is a different solution that may be

better than the planner selected.

Somewhat Agree There may be other solutions, but not

much better than the planner selected.

Agree The best solution was selected by the

planner.

Table 6.2: Qualitative Inspection Ranking

6.5 Results, Analysis and Observations

In this section, the results of the experiments are presented with analysis and

observations. Each of the result tables will be discussed in order. Common findings

across all result tables are discussed first.

The data and results gathered from the experiments are summarized for the

Sphere Robot in World 0 in Table 6.3. Each combination of parameters was run

three times with a different seed value.

Table 6.3: Result Matrix World 0

Variant Description NN k NN Epsilon Bias

Probability

%

Number

of

Configurations

Modified

Random

Configurations

Total NN

Query

Time (ms)

Total

Move Test

Time (ms)

Total

Execution

Time (ms)

Dispersion

(STD)

EXTEND - Goal Bias 1 0 1 1337 1334 0 361263 371998 1328.46

959 956 0 271984 279770 1094.49

3057 3054 0 765805 793443 2269.65

EXTEND - Goal Bias 1 0 10 221 218 0 60186 61715 595.215

171 168 0 44857 46108 459.172

212 209 0 51062 52857 501.947

EXTEND - Goal Bias 1 0 20 123 120 0 30537 31469 390.563

100 97 0 23725 24519 347.464

141 138 0 32543 33557 309.794

EXTEND - Goal Bias 1 0 30 68 65 0 17821 18205 263.511

83 80 0 19526 19982 241.752

37 34 0 9309 9434 103.75

EXTEND - Goal Bias 1 0 40 52 49 0 13616 13914 178.372

45 42 0 12213 12443 218.927

37 34 0 9412 9497 111.366

EXTEND - Goal Bias 1 0 50 55 52 0 14715 14959 198.339

70 67 0 17528 17800 225.603

2402 2399 0 486911 504670 1150.72

EXTEND - Goal Bias 1 0 60 43 40 0 12514 12654 157.015

61 58 0 15418 15659 179.228

2982 2979 0 602860 624690 1375.78

EXTEND - Goal Bias 1 0 70 43 40 0 11013 11122 148.897

64 61 0 15019 15231 150.638

2425 2422 0 490852 503946 1178.47

EXTEND - Goal Bias 1 0 80 15247 15244 7 3229033 3775267 2844.56

3538 3535 0 719869 741207 1302.37

6729 6726 1 1350019 1445961 1764.51

CONNECT - Goal Bias 1 0 1 158 45 0 53576 54816 497.019

76 56 0 22226 22818 345.483

258 243 0 54684 56381 297.5

CONNECT - Goal Bias 1 0 10 136 43 0 46167 47312 518.001

17 13 0 4405 4510 108.893

Table 6.3: Result Matrix World 0

Variant Description NN k NN Epsilon Bias

Probability

%

Number

of

Configurations

Modified

Random

Configurations

Total NN

Query

Time (ms)

Total

Move Test

Time (ms)

Total

Execution

Time (ms)

Dispersion

(STD)

257 228 0 56990 59297 528.681

CONNECT - Goal Bias 1 0 20 23 16 0 6906 7041 223.787

103 87 0 26130 26827 451.411

279 228 0 67810 70518 682.761

CONNECT - Goal Bias 1 0 30 23 16 0 7011 7203 223.787

216 165 0 62373 63845 686.359

297 252 0 69497 71394 753.115

CONNECT - Goal Bias 1 0 40 11 8 0 3003 3067 84.2766

45 30 0 14019 14236 322.251

205 192 0 43654 44840 481.7

CONNECT - Goal Bias 1 0 50 25 17 0 7308 7416 202.161

45 38 0 11013 11278 216.768

2183 2106 0 453464 468251 1235.97

CONNECT - Goal Bias 1 0 60 21 15 0 6213 6284 106.07

49 42 0 12416 12640 203.069

1893 1845 0 389112 399435 1090.01

CONNECT - Goal Bias 1 0 70 21 17 0 5406 5443 96.8259

49 44 0 11113 11291 151.783

1264 1234 0 256796 261465 906.407

CONNECT - Goal Bias 1 0 80 483 475 0 103145 104200 493.368

4313 4274 0 884007 916303 1415.79

2028 1998 0 411561 420005 931.356

Chapter 6: Evaluation 177

Legend

Initial configuration

Path configuration

Goal configuration

Random configuration

Move test configuration

Configuration connection

Figure 6.1: Colour Coding

All images in this section are colour coded to show the initial, path, goal, random,

and move test configurations. Colour coding legend is as shown in Figure 6.1.

• Initial Configuration: The initial configuration is the starting state of the robot.

• Path Configuration: A path configuration is a configuration on the path from

the initial configuration to goal configuration.

• Goal Configuration: The goal configuration is the desired end state of the

robot.

• Random Configuration: A random configuration is a configuration that was

randomly generated and added to the RRT.

• Move Test Configuration: A move test configuration is used to test if a move

is valid between two configurations.

• Configuration Connection: A configuration connection shows that a move is

valid between two configurations.

178 Chapter 6: Evaluation

(a) Path

(b) Tree

Figure 6.2: Best CONNECT Result for World 0 - Goal Bias 40

Chapter 6: Evaluation 179

(a) Path

(b) Tree

Figure 6.3: Best EXTEND Result for World 0 - Goal Bias 40

180 Chapter 6: Evaluation

Figure 6.4: Bias Probability vs. Number of Configurations - World 0

Chapter 6: Evaluation 181

Figure 6.5: Bias Probability vs. STD Number of Configurations - World 0

182 Chapter 6: Evaluation

Figure 6.6: Bias Probability vs. Total Execution Time - World 0

Chapter 6: Evaluation 183

For the results of the Sphere Robot in World 0 shown in Table 6.3 there are a few

apparent things to note. The first thing that you will notice from the results is that

the total move test time accounts for the vast majority of the motion planner total

execution time. In fact on average the total move test time is approximately 97% of

the motion planner total execution time. Due to the implementation of the move test

(IK and trajectory planning solutions), determining if the robot can move between

two configurations is slow since the incremental simulator is stepped in real-time.

This could easily be solved by stepping the incremental simulator faster than real-

time, or if the move test could be done with the models alone by using parametric

equations. These improvements will not be considered for this thesis since the IK and

trajectory planning solutions are not the focus of this research. This is a common

finding across all result tables. However, if we look at the delta between the total

execution time and total move test time, then the fastest solution average returned

by the motion planner for a specific combination of settings was given in 0.2 seconds.

For the experiments the visualization of the motion plan provided by the Motion

Simulator was used to view the plan as it was generated in real-time. The visualiza-

tion is implemented in OpenGL as described in Section 5.2.3.6 which can use a lot of

resources when asked to draw a lot of objects. It is expected that if the visualization

was turned off that an improvement in total execution time can be realized.

Secondly, for the results of the Sphere Robot in World 0 shown in Table 6.3

based on the NN Query Time statistic, the NN method is efficient and does not

184 Chapter 6: Evaluation

significantly impact the runtime of the motion planner. The majority of NN queries

returned in sub-millisecond time. The NN method is actually so efficient that there

is no need to optimize its performance since any gains would be negligible. This is

a common finding across all result tables. From these findings it was decided not to

tweak NN epsilon which allows for the NN query algorithm to stop when close enough

instead of calculating the exact NN. It was also decided to not change the Euclidean

distance metric which is used exclusively by the NN method. If the robots used for

the experiments had substantially more DOF, then the NN method might have a

noticeable impact on the runtime of the motion planner. It is expected that the

number of DOF necessary for there to be a noticeable impact on the runtime of the

motion planner is an unrealistic amount for a real robot. Determining the threshold

for the NN method and the number of DOF is not the focus of this research since it

will not be applicable to real robots.

Third, for the results of the Sphere Robot in World 0 shown in Table 6.3 Setting

1 (EXTEND), the majority of the random configurations are modified because of

the way the EXTEND algorithm works which was no surprise. The motion towards

the random configuration from the NN is only performed for n time steps unlike

CONNECT which will complete the motion unless an obstacle is hit or the robot

cannot physically perform the motion. The number of modified configurations for

EXTEND could potentially be reduced by increasing n. This is also a common

finding across all result tables. As n is increased, the EXTEND algorithm will start

Chapter 6: Evaluation 185

to behave more like the CONNECT algorithm.

Fourth, for the results of the Sphere Robot in World 0 shown in Table 6.3 if the

goal bias is too large, the RRT can become trapped since exploration of CFREE

is low. Also if the goal bias is too small then the RRT takes much longer to con-

verge to the goal configuration. These findings are not a surprise and were expected

since Lavalle and Kuffner Jr. [2000] warned of this problem with poor selection of the

goal bias probability. This was a common finding across all result tables. The start

(small goal bias) and tail end (large goal bias) of the charts in Figures 6.4 and 6.6

illustrate these findings.

For the Sphere Robot in World 0, the best result for CONNECT is shown in

Figure 6.2 and the best result for EXTEND is shown in Figure 6.3. The figures show

the path and and the underlying tree data structure for the motion planner. The

CONNECT algorithm out performed the EXTEND algorithm for this relatively sim-

ply case. Since the goal configuration is not very far, adding random configurations

to the RRT that are far away from the goal configuration actually causes a loss of

performance for the CONNECT algorithm. The EXTEND algorithm does not add

random configurations that are very far since motion from NN is only attempted for

n time steps before modifying the random configuration so this is actually advanta-

geous in this case.

The tree images clearly illustrate one of the major difference between the EX-

TEND and CONNECT algorithms. As you can see EXTEND generates longer

branches than CONNECT. For configurations that are far apart, EXTEND must

generate many intermediate configurations between the two configurations where as

if it is possible to move between the two configurations CONNECT does not re-

quire any intermediate configurations. Having the intermediate configurations could

be useful if a trajectory planner could use the additional information to refine the

trajectory, otherwise due to the wasted time generating intermediate configurations

makes CONNECT a better choice than EXTEND.

When the dispersion is low and the number of configurations is also low, then

typically the total execution time is small. In this case a solution was found quickly.

A low dispersion is not necessarily bad since the goal of the motion planner is to

find a solution rather than to do a good job at exploration. If dispersion is low and

the number of configurations is high then this would definitely be bad because this

would mean that the motion planner is trapped and is not doing a sufficient job of

exploring to get out of the local minima. The latter was not observed in any of the

experiments conducted.

The data and results gathered from the experiments are summarized for the

Sphere Robot in World 1 in Table 6.4. Each combination of parameters was run

three times with a different seed value.

Table 6.4: Result Matrix World 1

Variant Description NN k NN Epsilon Bias

Probability

%

Number

of

Configurations

Modified

Random

Configurations

Total NN

Query

Time (ms)

Total

Move Test

Time (ms)

Total

Execution

Time (ms)

Dispersion

(STD)

EXTEND - Goal Bias 1 0 1 1441 1438 0 386742 401482 1460.63

3591 3588 0 781045 817874 2348.89

2236 2233 0 583494 604415 1585.21

EXTEND - Goal Bias 1 0 10 482 479 0 111344 115097 944.936

543 540 0 125166 129337 1003.02

291 288 0 73501 75682 710.525

EXTEND - Goal Bias 1 0 20 293 290 0 66992 68926 663.742

417 414 0 95712 98873 916.749

266 263 0 62983 64743 688.748

EXTEND - Goal Bias 1 0 30 285 282 0 64988 66679 674.397

424 421 0 90915 93156 888.885

4460 4457 0 874789 920853 2124.57

EXTEND - Goal Bias 1 0 40 496 493 0 108331 110901 1004.36

246 243 0 54068 55433 752.8

271 268 0 59074 60399 782.925

EXTEND - Goal Bias 1 0 50 235 232 0 49959 50902 496.43

376 373 0 76788 78520 701.59

402 399 0 87612 89329 959.242

EXTEND - Goal Bias 1 0 60 793 790 0 168430 171131 1290.05

416 413 0 84807 86340 709.099

658 655 0 138991 141262 1305.12

EXTEND - Goal Bias 1 0 70 896 893 0 191032 194132 1312.63

848 845 0 173516 176175 1117.09

747 744 0 150418 152667 1295.88

EXTEND - Goal Bias 1 0 80 1692 1626 0 332314 338379 1840.68

1488 1485 0 306873 312278 1585.38

1172 1169 0 232723 236185 1078.8

CONNECT - Goal Bias 1 0 1 1317 1016 0 312360 321962 1424.22

211 128 0 60390 62181 639.057

127 61 0 40054 41368 508.147

CONNECT - Goal Bias 1 0 10 136 116 0 29843 30762 464.983

156 116 0 39155 40443 563.782

Table 6.4: Result Matrix World 1

Variant Description NN k NN Epsilon Bias

Probability

%

Number

of

Configurations

Modified

Random

Configurations

Total NN

Query

Time (ms)

Total

Move Test

Time (ms)

Total

Execution

Time (ms)

Dispersion

(STD)

3946 3727 0 803707 842251 1462.42

CONNECT - Goal Bias 1 0 20 232 155 0 62090 64045 644.674

224 188 1 51465 53087 664.944

196 96 0 59985 61948 675.925

CONNECT - Goal Bias 1 0 30 230 170 0 57886 59384 681.036

244 210 0 55065 56730 673.958

311 198 0 87259 89698 939.74

CONNECT - Goal Bias 1 0 40 246 198 0 58397 59892 622.834

153 119 0 36857 37754 670.466

205 176 0 46271 47286 661.358

CONNECT - Goal Bias 1 0 50 1495 1448 0 302583 310522 995.281

343 308 0 74901 76872 782.053

231 180 0 55684 56735 843.262

CONNECT - Goal Bias 1 0 60 301 275 0 61999 62526 602.343

391 354 0 85031 86710 859.166

407 384 0 84017 85503 728.977

CONNECT - Goal Bias 1 0 70 2288 2154 0 480709 492541 1804.97

816 746 0 178350 181470 1192.45

446 415 0 95139 96442 851.054

CONNECT - Goal Bias 1 0 80 591 561 0 125961 127468 899.206

936 890 0 193664 196416 1124.66

872 852 0 177707 180131 731.025

Chapter 6: Evaluation 189

(a) Path

(b) Tree

Figure 6.7: Best CONNECT Result for World 1 - Goal Bias 1

190 Chapter 6: Evaluation

(a) Path

(b) Tree

Figure 6.8: Best EXTEND Result for World 1 - Goal Bias 50

Chapter 6: Evaluation 191

Figure 6.9: Bias Probability vs. Number of Configurations - World 1

192 Chapter 6: Evaluation

Figure 6.10: Bias Probability vs. STD Number of Configurations - World 1

Chapter 6: Evaluation 193

Figure 6.11: Bias Probability vs. Total Execution Time - World 1

For the results of the Sphere Robot in World 1 shown in Table 6.4 if we look

at the delta between the total execution time and total move test time, then the

fastest solution average returned by the motion planner for a specific combination

of settings was given in 1.14 seconds. The best result for CONNECT is shown in

Figure 6.7 and the best result for EXTEND is shown in Figure 6.8. Based on visual

inspection of the motion plan, I somewhat agree that the motion planner selected

the best solution. The motion plan determined is very reasonable although there

might be a shorter path distance wise.

The data and results gathered from the experiments are summarized for the

Sphere Robot in World 2 in Table 6.5. Each combination of parameters was run

three times with a different seed value. For a few setting combinations the motion

planner did not complete in a reasonable time, therefore the run was halted. Runs

that were halted are empty rows in the tables.

Table 6.5: Result Matrix World 2

Variant Description NN k NN Epsilon Bias

Probability

%

Number

of

Configurations

Modified

Random

Configurations

Total NN

Query

Time (ms)

Total

Move Test

Time (ms)

Total

Execution

Time (ms)

Dispersion

(STD)

EXTEND - Goal Bias 1 0 1 1927 1924 0 564599 578310 1640.53

1277 1274 0 353197 365301 1233.96

2690 2687 0 770412 795013 1830.2

EXTEND - Goal Bias 1 0 10 983 980 0 274830 281661 1249.64

3527 3524 0 960830 1000833 2047.39

558 555 0 149972 154704 968.395

EXTEND - Goal Bias 1 0 20 603 600 0 147978 152163 1049.96

3730 3727 0 991025 1031717 2215.76

4616 4612 0 1316280 1374805 2326.62

EXTEND - Goal Bias 1 0 30 8513 8510 0 2282746 2421398 3101.39

513 510 0 110949 113982 853.092

1734 1731 0 405629 419852 1751.97

EXTEND - Goal Bias 1 0 40 316 313 0 69784 71732 612.379

851 848 0 193042 198049 1425.77

422 419 0 103146 105652 992.563

EXTEND - Goal Bias 1 0 50 1343 1340 0 310408 317963 1495.02

1185 1182 0 260120 267266 1580.4

1233 1230 0 304394 310903 1344.27

EXTEND - Goal Bias 1 0 60 1740 1737 0 392122 400867 1689.19

753 750 0 163910 167081 1283.86

7031 7028 0 1686319 1788473 3217.82

EXTEND - Goal Bias 1 0 70 1692 1689 0 370256 377735 1555.84

942 939 0 207646 211133 1509.29

3017 3014 0 592677 611175 2364.81

EXTEND - Goal Bias 1 0 80 1625 1622 0 335216 341344 1918.75

1482 1479 0 316012 321607 1718.19

CONNECT - Goal Bias 1 0 1 158 70 0 67804 69321 539.236

531 232 0 228947 234862 935.784

1701 226 0 941298 962741 1388.98

CONNECT - Goal Bias 1 0 10 804 303 0 357603 365754 1149.65

441 271 0 148428 152371 895.08

Table 6.5: Result Matrix World 2

Variant Description NN k NN Epsilon Bias

Probability

%

Number

of

Configurations

Modified

Random

Configurations

Total NN

Query

Time (ms)

Total

Move Test

Time (ms)

Total

Execution

Time (ms)

Dispersion

(STD)

188 80 0 81335 83108 620.46

CONNECT - Goal Bias 1 0 20 1811 687 0 812347 829796 1633.9

756 650 0 196864 203338 1081.02

196 91 0 83111 84431 669.425

CONNECT - Goal Bias 1 0 30 259 169 0 88839 90852 761.986

556 474 0 139920 141953 964.702

311 188 0 134432 135109 918.609

CONNECT - Goal Bias 1 0 40 960 538 0 367553 374211 1112.78

528 387 0 154766 156437 1155.69

337 206 0 102153 103669 860.911

CONNECT - Goal Bias 1 0 50 205 188 0 49063 50112 350.79

908 749 0 235673 238656 1444.31

1435 917 0 428406 435320 1387.98

CONNECT - Goal Bias 1 0 60 1173 978 0 320872 326572 1652.15

224 212 0 49686 50237 531.481

634 572 0 157615 160494 1092.13

CONNECT - Goal Bias 1 0 70 1675 1408 0 450756 458494 1792.25

2179 1641 0 584481 595264 1688.73

1773 1405 0 513732 522156 1519.47

CONNECT - Goal Bias 1 0 80 1610 1419 0 412989 418934 1405.78

6783 5645 0 1647341 1754905 2295.83

2632 2324 0 663111 676931 2033.76

Chapter 6: Evaluation 197

(a) Path

(b) Tree

Figure 6.12: Best CONNECT Result for World 2 - Goal Bias 1

198 Chapter 6: Evaluation

(a) Path

(b) Tree

Figure 6.13: Best EXTEND Result for World 2 - Goal Bias 40

Chapter 6: Evaluation 199

Figure 6.14: Bias Probability vs. Number of Configurations - World 2

200 Chapter 6: Evaluation

Figure 6.15: Bias Probability vs. STD Number of Configurations - World 2

Chapter 6: Evaluation 201

Figure 6.16: Bias Probability vs. Total Execution Time - World 2

For the results of the Sphere Robot in World 2 shown in Table 6.5 if we look

at the delta between the total execution time and total move test time, then the

fastest solution average returned by the motion planner for a specific combination

of settings was given in 1.57 seconds. The best result for CONNECT is shown in

Figure 6.12 and the best result for EXTEND is shown in Figure 6.13. Based on visual

inspection of the motion plan, I somewhat agree that the motion planner selected

the best solution. The motion plan determined is very reasonable although there is

definitely a shorter path distance wise.

The data and results gathered from the experiments are summarized for the

Sphere Robot in World 3 in Table 6.6. Each combination of parameters was run

three times with a different seed value. For a few setting combinations the motion

planner did not complete in a reasonable time, therefore the run was halted. Runs

that were halted are empty rows in the tables.

Table 6.6: Result Matrix World 3

Variant Description NN k NN Epsilon Bias

Probability

%

Number

of

Configurations

Modified

Random

Configurations

Total NN

Query

Time (ms)

Total

Move Test

Time (ms)

Total

Execution

Time (ms)

Dispersion

(STD)

EXTEND - Goal Bias 1 0 1 4791 4788 0 1393327 1454455 3210.59

4453 4450 0 918780 965864 3189.55

4888 4885 0 1426564 1490332 3239.18

EXTEND - Goal Bias 1 0 10 2240 2237 1 647304 664623 2384.11

1847 1844 0 547246 559420 2108.02

7081 7078 0 1505483 1617548 4243.29

EXTEND - Goal Bias 1 0 20 4306 4303 0 1090347 1127735 3514.03

3362 3359 0 972224 1005263 3167.74

2036 2033 0 421154 437392 2375.21

EXTEND - Goal Bias 1 0 30 3866 3863 0 788237 821961 3440.94

5714 5711 0 1662769 1743867 4302.2

4525 4522 0 1356105 1408841 3736.23

EXTEND - Goal Bias 1 0 40 2814 2811 0 578709 596544 3075.52

4836 4833 0 1429723 1486562 4097.51

4477 4474 3 1314780 1359004 3870.25

EXTEND - Goal Bias 1 0 50 6638 6635 0 1362164 1462168 4864.71

7243 7240 1 2123256 2253969 5189.71

4652 4649 1 986375 1034355 4061.29

EXTEND - Goal Bias 1 0 60 8259 8256 0 1689123 1833903 5590.09

10791 10788 13 3222552 3500271 6490.12

12119 12116 11 2552199 2897153 6743.04

EXTEND - Goal Bias 1 0 70 9285 9282 947 1974268 2155907 6104.2

7240 7237 32 2100898 2217897 5112.17

12141 12138 4358 3495575 3845080 6872.55

EXTEND - Goal Bias 1 0 80 5637 5634 0 1174970 1239016 4498.92

13928 13925 84 4108394 4559232 7123.6

CONNECT - Goal Bias 1 0 1 1441 1415 0 421289 432202 1812.48

605 589 0 150185 155075 1206.86

2683 2620 0 756680 781588 2353.8

CONNECT - Goal Bias 1 0 10 1674 1630 0 513090 524956 2029.33

1508 1479 352 321812 349538 1952.34

Table 6.6: Result Matrix World 3

Variant Description NN k NN Epsilon Bias

Probability

%

Number

of

Configurations

Modified

Random

Configurations

Total NN

Query

Time (ms)

Total

Move Test

Time (ms)

Total

Execution

Time (ms)

Dispersion

(STD)

770 753 0 237270 242153 1507.15

CONNECT - Goal Bias 1 0 20 2527 2483 0 535368 564234 2758.45

1796 1773 0 532416 544710 2304.08

4439 4367 0 1369492 1419076 3534.77

CONNECT - Goal Bias 1 0 30 1941 1908 0 415350 433658 2440.61

3766 3721 0 1142527 1179000 3505.61

2117 2078 0 632405 645988 2602.36

CONNECT - Goal Bias 1 0 40 2095 2067 0 440815 459103 2688.72

3385 3352 0 1021308 1049778 3439.83

2285 2247 146 681814 714964 2803.69

CONNECT - Goal Bias 1 0 50 4583 4543 0 954791 1004239 4064.97

4345 4301 0 1296818 1340262 4054.75

3265 3221 0 972981 998966 3420.71

CONNECT - Goal Bias 1 0 60 4347 4314 0 893586 935857 4074.48

8520 8453 1 2471712 2631438 5803.1

11847 11759 2464 3469693 3789498 6721.8

CONNECT - Goal Bias 1 0 70 8772 8718 3 1833366 1994688 5874

3808 3779 0 906855 945554 3765.42

6298 6260 5 1357805 1436843 4992.4

CONNECT - Goal Bias 1 0 80 5610 5583 8 1154007 1217548 4464.94

6758 6728 252 1407238 1505300 4781.29

7064 7033 0 1517848 1616480 5174.36

Chapter 6: Evaluation 205

(a) Path

(b) Tree

Figure 6.17: Best CONNECT Result for World 3 - Goal Bias 1

206 Chapter 6: Evaluation

(a) Path

(b) Tree

Figure 6.18: Best EXTEND Result for World 3 - Goal Bias 10

Chapter 6: Evaluation 207

Figure 6.19: Bias Probability vs. Number of Configurations - World 3

208 Chapter 6: Evaluation

Figure 6.20: Bias Probability vs. STD Number of Configurations - World 3

Chapter 6: Evaluation 209

Figure 6.21: Bias Probability vs. Total Execution Time - World 3

For the results of the Sphere Robot in World 3 shown in Table 6.6 if we look at

the delta between the total execution time and total move test time, then the fastest

solution average returned by the motion planner for a specific combination of settings

was given in 13.57 seconds. The best result for CONNECT is shown in Figure 6.17

and the best result for EXTEND is shown in Figure 6.18. Based on visual inspection

of the motion plan, I somewhat disagree that the motion planner selected the best

solution. The motion plan uses many intermediate configurations that appear to be

superfluous. The path however, does not seem unreasonable.

Figures 6.5, 6.10, 6.15, 6.20, 6.25 show the variability of the number of configura-

tions with the same settings but a different RNG seed. It is desirable for the motion

planner to return results in approximately the same amount of time when the same

settings are used, while a large variability with the same settings is undesirable. This

may not be completely unavoidable since a motion planner is probabilistic and will

converge to a solution eventually if one exists, but a potential workaround if the mo-

tion planner is taking longer than expected to find a solution is to start the motion

planner again with a different RNG seed value because there is a chance that it will

converge quicker.

The data and results gathered from the experiments are summarized for the

Sphere Robot in World 4 in Table 6.7. Each combination of parameters was run

three times with a different seed value.

Table 6.7: Result Matrix World 4

Variant Description NN k NN Epsilon Bias

Probability

%

Number

of

Configurations

Modified

Random

Configurations

Total NN

Query

Time (ms)

Total

Move Test

Time (ms)

Total

Execution

Time (ms)

Dispersion

(STD)

EXTEND - Goal Bias 1 0 1 3963 3960 0 824697 859393 2088.88

1447 1444 0 409973 423237 1246.48

2302 2299 0 646889 669420 1548.02

EXTEND - Goal Bias 1 0 10 913 910 0 186730 192349 1029.24

1226 1223 0 329085 339941 1182.24

558 555 0 149654 154282 735.654

EXTEND - Goal Bias 1 0 20 382 379 0 77303 79240 638.795

2280 2277 0 607567 626587 1450.88

127 124 0 31937 32974 325.558

EXTEND - Goal Bias 1 0 30 4886 4883 1 988362 1036415 1971.58

580 577 0 145070 148908 870.231

110 107 0 25834 26483 307.235

EXTEND - Goal Bias 1 0 40 2860 2856 0 711878 734884 1464.04

173 170 0 40744 41856 504.849

112 109 0 26636 27292 306.598

EXTEND - Goal Bias 1 0 50 81 78 0 19423 19724 333.142

1198 1195 0 288518 294947 926.153

110 107 0 25031 25483 296.933

EXTEND - Goal Bias 1 0 60 77 74 0 17720 17962 331.317

145 142 0 32536 33139 282.664

558 555 0 128948 131210 659.662

EXTEND - Goal Bias 1 0 70 653 650 0 141954 143724 550.299

254 251 0 56966 57779 451.731

249 246 0 54055 54770 492.452

EXTEND - Goal Bias 1 0 80 1477 1474 0 317346 322587 608.874

4288 4285 0 931800 966986 1066.41

722 719 0 152673 154584 888.461

CONNECT - Goal Bias 1 0 1 373 113 0 126758 129380 758.364

605 198 0 201235 205702 863.154

27 11 0 8017 8166 181.067

CONNECT - Goal Bias 1 0 10 172 91 0 48992 49781 557.471

633 217 0 209138 213275 843.756

Table 6.7: Result Matrix World 4

Variant Description NN k NN Epsilon Bias

Probability

%

Number

of

Configurations

Modified

Random

Configurations

Total NN

Query

Time (ms)

Total

Move Test

Time (ms)

Total

Execution

Time (ms)

Dispersion

(STD)

9 3 0 2404 2428 153.781

CONNECT - Goal Bias 1 0 20 160 123 0 37056 37613 456.416

306 181 0 84150 85627 674.715

7 2 0 1805 1822 124.328

CONNECT - Goal Bias 1 0 30 282 153 0 80151 81721 604.667

825 432 0 239486 243534 1023.47

1056 514 0 315427 321494 882.456

CONNECT - Goal Bias 1 0 40 465 299 0 122317 124038 708.824

290 195 0 74513 75758 630.477

437 253 0 120910 122858 604.921

CONNECT - Goal Bias 1 0 50 100 83 0 21929 22233 416.414

195 148 0 46164 46851 545.295

774 509 0 203112 205861 707.433

CONNECT - Goal Bias 1 0 60 158 145 0 31236 31672 413.368

3294 2283 0 841085 864036 1244.36

568 415 0 139401 141055 817.65

CONNECT - Goal Bias 1 0 70 176 166 0 34440 34769 434.598

3716 2869 0 882556 910428 1281.06

926 720 0 217943 220658 862.998

CONNECT - Goal Bias 1 0 80 478 444 0 97219 98073 374.052

230 216 0 45254 45632 248.334

658 610 0 133464 134785 880.067

Chapter 6: Evaluation 213

(a) Path

(b) Tree

Figure 6.22: Best CONNECT Result for World 4 - Goal Bias 60

214 Chapter 6: Evaluation

(a) Path

(b) Tree

Figure 6.23: Best EXTEND Result for World 4 - Goal Bias 20

Chapter 6: Evaluation 215

Figure 6.24: Bias Probability vs. Number of Configurations - World 4

216 Chapter 6: Evaluation

Figure 6.25: Bias Probability vs. STD Number of Configurations - World 4

Chapter 6: Evaluation 217

Figure 6.26: Bias Probability vs. Total Execution Time - World 4

For the results of the Sphere Robot in World 4 shown in Table 6.7 if we look

at the delta between the total execution time and total move test time, then the

fastest solution average returned by the motion planner for a specific combination

of settings was given in 0.68 seconds. The best result for CONNECT is shown in

Figure 6.22 and the best result for EXTEND is shown in Figure 6.23. Based on visual

inspection of the motion plan, I somewhat agree that the motion planner selected

the best solution. The motion plan determined is very reasonable although there

might be a shorter path distance wise.

The data and results gathered from the experiments are summarized for the

Humanoid Robot in World 5 in Table 6.8. Each combination of parameters was run

once due to the amount of time it takes to execute the plan on the real robot.

Table 6.8: Result Matrix World 5

Variant Description NN k NN Epsilon Bias

Probability

%

Number

of

Configurations

Modified

Random

Configurations

Total NN

Query

Time (ms)

Total

Move Test

Time (ms)

Total

Execution

Time (ms)

Dispersion

(STD)

EXTEND - Goal Bias 1 0 1 1974 1970 0 529837 550030 2001.0631

EXTEND - Goal Bias 1 0 10 744 740 0 171477 177192 1374.1374

EXTEND - Goal Bias 1 0 20 364 360 0 86287 88698 943.58476

EXTEND - Goal Bias 1 0 30 581 577 0 124554 127624 1217.77245

EXTEND - Goal Bias 1 0 40 680 675 0 148413 151934 1375.9732

EXTEND - Goal Bias 1 0 50 551 547 0 87612 122381 1314.16154

EXTEND - Goal Bias 1 0 60 901 897 0 190418 193529 1788.0144

EXTEND - Goal Bias 1 0 70 1228 1223 0 261714 265961 1798.3031

EXTEND - Goal Bias 1 0 80 2039 2034 0 420416 427821 2171.9706

CONNECT - Goal Bias 1 0 1 174 84 0 54874 56674 696.16139

CONNECT - Goal Bias 1 0 10 214 159 0 53642 55407 772.38134

CONNECT - Goal Bias 1 0 20 318 212 0 85063 87742 883.20338

CONNECT - Goal Bias 1 0 30 315 233 0 79304 81356 933.01932

CONNECT - Goal Bias 1 0 40 210 163 0 50494 51723 918.53842

CONNECT - Goal Bias 1 0 50 316 247 0 76287 77727 1155.26894

CONNECT - Goal Bias 1 0 60 536 485 0 116492 118793 1177.05742

CONNECT - Goal Bias 1 0 70 611 569 0 130340 132126 1165.94398

CONNECT - Goal Bias 1 0 80 1282 1219 0 265320 269090 1540.7842

220 Chapter 6: Evaluation

Figure 6.27: Bias Probability vs. Number of Configurations - World 5

Chapter 6: Evaluation 221

Figure 6.28: Bias Probability vs. Total Execution Time - World 5

222 Chapter 6: Evaluation

(a) Model World 5

(b) Real World 5

Figure 6.29: Best Result for World 5

Chapter 6: Evaluation 223

For the results of the Humanoid Robot in World 5 shown in Table 6.8 if we look

at the delta between the total execution time and total move test time, then the

fastest solution returned by the motion planner for a specific combination of settings

was given in 1.23 seconds. The best result in simulation is shown in Figure 6.29a and

the associated execution on the real robot is shown in Figure 6.29b. Based on visual

inspection of the motion plan, I somewhat agree that the motion planner selected

the best solution. The motion plan determined is very reasonable although there

might be a shorter path distance wise.

In any cases, there is no doubt that the Sphere Robot would be able to successfully

execute the motion plan found by the motion planner. For the Humanoid Robot there

is also no doubt that it would be able to execute the motion plan found by the motion

planner.

Based on the results, the motion planner had the greatest difficulty with the

Sphere Robot in World 3. World 3 is the world with narrow passages. One problem

with the motion planner in this case is that the initial configuration and goal config-

uration are in terms of Euclidean distance extremely close to one another. Although

they are close, there is an impassible obstacle between them. Whenever an attempt

is made to connect a configuration to the goal configuration, selecting the nearest

configuration is actually not the right thing to do since there is obviously no path.

The motion planner does not find a solution until a random configuration is gener-

ated that is closer to the goal configuration then the initial configuration which takes

quite a long time. A potential solution to this problem is discussed in Section 6.6.

224 Chapter 6: Evaluation

6.6 Modifications and Optimizations

There are a number of possible optimizations and improvements that could be

performed in my implementation as the basis for experimentation beyond that pre-

sented here. One possibility is to always pick the goal on the first iteration of the

RRT construction algorithm. This handles the simple cases where there is a direct

path to the goal configuration from the initial configuration. My experiments did not

contain any trivial cases, therefore this optimization was not implemented. If trivial

cases are expected, based on the ease of implementation and performance gain for

the trivial case, there is no reason not to implement this optimization.

Another simple improvement that could be implemented is, regardless of bias

probability, choose the goal configuration if the last configuration added to the RRT

is within distance ǫ from the goal configuration. This could potentially be a way

to prevent unnecessary additional exploration when a configuration in the RRT is

already close to the goal configuration with a direct path. Based on the ease of

implementation and performance gain, this optimization should be implemented in

the future.

One problem with my motion planner identified in experiments with the Sphere

Robot in World 3 is when the initial configuration and goal configuration are close

to one another but there is no direct path between the two configurations. A poten-

tial solution to this problem could be to try to connect every configuration added

to the RRT to the goal configuration. Unfortunately, since the current move test

Chapter 6: Evaluation 225

implementation uses the incremental simulator stepped in real-time, move tests are

slow. This optimization would result in a significant increase in total execution time.

If the move test implementation is improved in the future, then this optimization

could be implemented.

A different solution to this problem is to use the k-NNs instead of just the NN.

This was also suggested by Urmson and Simmons [2003] for a different reason as

described in Section 4.5.14. To understand why using k-NNs would be advantageous,

consider the following simple 2D example shown in Figure 6.30. The initial state

of the RRT is shown in Figure 6.30a, the path between the initial configuration

at (5, 0) and goal configuration at (5, 5) is blocked by an obstacle. A random

configuration at (10, 0) is connected to the initial configuration and there exists a

direct path from the random configuration to the goal configuration. If the next

random configuration chosen is the goal configuration, the nearest neighbor is the

initial configuration with a distance of 5 units. The RRT construction algorithm

given in Algorithm 5 will attempt to move from the nearest configuration to the goal

configuration, thus generating the configuration shown at (5, 1.25) in Figure 6.30b

since the obstacle is blocking the path. Using only the NN now requires additional

random configurations to be generated even though there is clearly a path between a

configuration in the RRT to the goal configuration. If k-NNs are used, the connection

between the configuration with a direct path to the goal configuration is made as

shown in Figure 6.30c.

226 Chapter 6: Evaluation

The RRT construction algorithm given in Algorithm 5 can be modified by having

the NearestNeighbor(rand_c, RRT) method return a list of the k-NNs, and the

Move method tests the list of k-NNs until the random configuration is reached or

all k neighbors are tested. The neighbor whose motion minimizes the distance to

the random configuration is returned. Pseudocode for the algorithm is given in

Algorithm 17.

Although there can be an increase in performance when using k-NNs there can

also a decrease in performance. If move tests are an expensive operation and all

of the k-NNs are blocked as shown in Figure 6.31c, the additional move test time

is three times (when k=3) longer even though the result is the same as shown in

Figure 6.31b and 6.31d.

Chapter 6: Evaluation 227

Algorithm 17 k-Nearest Move
1: procedure Move(randc, kNearest, k)

2: nearest_distance←MAX_V ALUE

3: motion← NULL

4: for i← 0, k do ⊲ Test each nearest configuration

5: nearc ← kNearest[i]

6: distance← RobotMoveTest(randc, nearc) ⊲ Check if random

configuration can be reached from nearest configuration

7: if distance < nearest_distance then

8: nearest_distance← distance

9: motion← RobotMove(randc, nearc)

10: if distance == 0 then

11: return motion

12: end if

13: end if

14: end for

15: return motion

16: end procedure

228 Chapter 6: Evaluation

x+

y+

(0, 0) (5, 0)

(5, 5)

(10, 0)

(a) Initial State

x+

y+

(0, 0) (5, 0)

(5, 5)

(10, 0)

(5, 1.25)

(b) Nearest Neighbor k=1

x+

y+

(0, 0) (5, 0)

(5, 5)

(10, 0)

(c) Nearest Neighbor k=2

Figure 6.30: 2D RRT k-Nearest Example

Chapter 6: Evaluation 229

x+

y+

(0, 0) (5, 0)

(5, 5)

(4, 0) (6, 0)

(a) Initial State

x+

y+

(0, 0) (5, 0)

(5, 5)

(4, 0) (6, 0)

(5, 1.25)

(b) Nearest Neighbor k=1

x+

y+

(0, 0) (5, 0)

(5, 5)

(4, 0) (6, 0)

(c) Nearest Neighbor k=3, Move Test

x+

y+

(0, 0) (5, 0)

(5, 5)

(4, 0) (6, 0)

(5, 1.25)

(d) Nearest Neighbor k=3

Figure 6.31: 2D RRT k-Nearest Example

230 Chapter 6: Evaluation

In my motion planner no stopping conditions were implemented. Since my solu-

tion uses a probabilistic approach, there is the possibility that the motion planner can

execute indefinitely when no solution exists or if it becomes trapped in local minima.

For example, a case that clearly has no solution is where the initial configuration is

enclosed in box with the goal configuration outside of the box. Currently my motion

planner will never halt in such a scenario. This could easily be fixed by implement-

ing one of the following stopping conditions: maximum number of configurations

reached, maximum total execution time reached, no configuration within distance

n from the goal configuration after specific time t, or if the random configuration

generator starts to generate many duplicate configurations.

6.7 Summary

In this chapter, experiments with my motion planner were conducted with differ-

ent robots and worlds. The performance of my motion planner was evaluated and

suggestions were made for improvements that could be made to the motion planner.

The results were overall promising, but there is much room for improvement.

Chapter 7

Conclusion

The focus of my research was on solving the motion planning problem for robots.

The motion planning problem for robots is an extremely difficult problem. It is a

form of the general mover’s problem which is PSPACE-hard [Reif, 1979]. In order

to provide a workable solution to the motion planning problem for robots, a wide

array of knowledge in robotics was required. I became proficient in a wide array

of topics in robotics as demonstrated in Chapter 2. In addition to this knowledge,

various problems had to be addressed in parallel with the motion planning problem

for robots, such as: FK, IK, differential constraints, dynamics, trajectory planning,

motor control, NN, and collision detection to name a few. Each of these problems

individually are challenging.

I made many contributions to the motion planning problem for robots. In my

thesis, state of the art robot motion planning techniques were surveyed. A solu-

231

232 Chapter 7: Conclusion

tion to the general movers problem in the context of motion planning for robots

was presented. My robot motion planner solved the general movers problem using

a single-query sample-based tree planner combined with an incremental simulator. I

provided an extensive analysis of the different elements that constitute a single-query

sample-based tree algorithm; namely the Rapidly Exploring Random Tree (RRT).

My motion planner was also tested in both simulation and the real world, which

demonstrates that the simulated robot and world models can be translated and ap-

plied to the real world. Experiments were conducted and the results analyzed. Based

on the results, methods for tuning my motion planner to improve the performance

were proposed.

I developed a framework for rapidly prototyping robot and world models which

was referred to as the Motion Simulator in my thesis. The robot and world models

can be used as inputs to the motion planner. The infinite possibilities of different

models as inputs allows for evaluation of the motion planner under many different

conditions. This framework in itself is a significant contribution because it could

be used by others in the future. Not only could the framework be used to create

different robot and world models, but the motion planner module could be replaced

with a completely different one to evaluate different types of motion planners.

To the best of my knowledge after surveying many RRT papers, the ability to

visualize the internal RRT structure is unique. The ability to visualize the internal

RRT structure provides insight into the performance of the motion planner. The

Chapter 7: Conclusion 233

RRT structure can be visualized as a tree or a Voronoi diagram. The benefits of

being able to see the internal RRT structure were apparent in Chapter 6. The vi-

sual representation of the RRT structure clearly illustrated the difference between

the EXTEND and CONNECT algorithms. It was easy to see that the EXTEND

algorithm generates longer branches than the CONNECT algorithm since motion

towards random configurations is only performed for n time steps. For configura-

tions that are far apart, EXTEND must generate many intermediate configurations

between the two configurations where as if it is possible to move between the two

configurations CONNECT does not require any intermediate configurations.

In conclusion, my thesis presented a novel approach to robot motion planning

that can be applied to different types of robots and environments. However, my

approach is not a silver bullet to a difficult problem. Although the results were

promising, there is still much room for improvement in the future.

7.1 Future Work

In Section 6.6, based on the results from the experiments, many modification and

optimizations were suggested. In the future, the affects of the suggested modifications

and optimizations should be proven by additional experimentation.

The motion planner is currently implemented on a desktop computer. For the

real robot, the motion plan is calculated on the desktop computer then sent to the

robot via serial communication in order to determine if the motion plan generated in

234 Chapter 7: Conclusion

simulation is valid. The desktop computer should be eliminated in the future, and

the motion planner should be implemented in a computer on-board the real robot.

The visualization of the motion plan that the Motion Simulator generates in real-

time as the motion plan is created is also not necessary on the real robot. Omitting

the visualization portions will allow for a computer with fewer resources to be used

and also decrease the total execution time of the motion planner.

As stated in Section 5.2.5, the world models for the real world use pre-measured

values for the coordinates, orientation, and sizes of the obstacles and goal in the

environment. The coordinates, orientations, and sizes of the obstacles and goal in

the environment should come from a vision system such as the one described in

Section 5.1.3 and a map generated by a localization and mapping algorithm such

as the one described in Section 5.1.4. Errors in the vision system would provide an

interesting challenge to a motion planner, and such a planner (or added technology)

would have to adapt to such errors.

The total move test time accounts for the majority of the total execution time of

the motion planner as found in Section 6.5. This must be significantly improved in

the future. Currently, due to the implementation of the move test (IK and trajectory

planning solutions), determining if the robot can move between two configurations

is slow since the incremental simulator is stepped in real-time. This could easily be

solved by stepping the incremental simulator faster than real-time, or if the move

test could be done with the models alone by using parametric equations.

Chapter 7: Conclusion 235

The sample bias method of the RRT was designed to be configurable. In this

thesis, a goal bias was explored. Using the Motion Simulator framework to evaluate

other sample bias methods as described in Section 4.1 would be easy to do with little

effort.

The Motion Simulator allows for robot and world models to be created relatively

easily. It would be beneficial to model other real robots and worlds, then evaluate

the motion planner presented in this thesis with these robots and worlds.

Although the humanoid robot Blitz was completely modelled, whole body motion

was not demonstrated in the experiments. In the future whole body motion shall be

evaluated with the motion planner presented in this thesis.

Appendix A

Acronyms

ADC Analog-to-Digital Converter . 115

AMotor Angular Motor . 127

ANN Approximate Nearest Neighbor .vi

API Application Programming Interface . 130

BSP Binary Space Partitioning . iv

236

Appendix A: Acronyms 237

CAD Computer-aided design . 135

CFREE Configuration Free . 14

CL-RRT Closed-Loop RRT. .v

COBS Configuration Obstacle . 14

COG Center of Gravity . 115

COP Center of Pressure . iv

CPU Central Processing Unit .119

CSPACE Configuration Space . iii

CT Collision Tendency . 88

238 Appendix A: Acronyms

D-H Denavit Hartenberg . iv

DARPA Defense Advanced Research Projects Agency . 92

DOF Degrees of Freedom . 2

DTE Data Terminal Equipment . 104

DUC DARPA Urban Challenge . 92

EET Exploring/Exploiting Tree . v

FBD Functional Block Diagram . viii

FIRA Federation of International Robot-soccer Association . 97

FK Forward Kinematics . iv

Appendix A: Acronyms 239

GPU Graphics Processing Unit

hRRT Heuristically-guided RRT . v

IK Inverse Kinematics . iv

IrDA Infrared Data Association . 104

JT Jacobian Transpose. .87

JT-RRT Jacobian Transpose RRT. v

k-d k-dimensional . 49

LED Light Emitting Diode . 105

MP-RRT Multipartite RRT . v

240 Appendix A: Acronyms

NN Nearest Neighbor . iv

NOOP No Operation . 120

NP Non-deterministic Polynomial-time . 4

OB-RRT Obstacle-Based RRT . v

ODE Open Dynamics Engine . v

OpenGL Open Graphics Library . vi

PID Proportional-Integral-Derivative . iv

POS Polygon of Support . iv

PRM Probabilistic Road Map . iv

Appendix A: Acronyms 241

pRRT Particle RRT . v

PSPACE Polynomial Space. .3

PUMA Programmable Universal Machine for Assembly . 86

PWM Pulse Width Modulation . 142

RAM Random Access Memory

RNG Random Number Generator. .viii

RRT Rapidly Exploring Random Tree . i

RTOS Real-Time Operating System . 105

SCARA Selective Compliance Articulated Robot Arm . 13

242 Appendix A: Acronyms

SLAM Simultaneous Localization and Mapping . 110

TSPACE Task Space . iii

TSPACE-RRT Task Space RRT . v

UI User Interface . 139

XML Extensible Markup Language . 123

ZMP Zero Moment Point . iv

Appendix B

Glossary

Glossary

Differential Constraints

Constraints that restrict the allowable velocities at each point. [LaValle, 2006].

2

Dynamics

In physics, dynamics is concerned with the effect of external forces on the state

of motion. [Burns, 2012]. 2

Non-Holonomic

Differential constraints that cannot be fully integrated to remove time deriva-

tives of the state variables. [LaValle, 2006]. 36

243

Appendix C

Scilab Functions

function [x, y, z] = randSphere(radius)

r0 = rand()

l = 0 + r0 * ((2*%pi) - 0)

r1 = rand()

h = -(%pi/2) + r1 * ((%pi/2) - -(%pi/2))

x = rand() * radius * cos(l) * cos(h)

y = rand() * radius * sin(h)

z = rand() * radius * sin(l) * cos(h)

endfunction

x = []

y = []

z = []

244

Appendix C: Scilab Functions 245

for i = 1:10000

[x(i), y(i), z(i)] = randSphere(1)

end

param3d1(x, y, z)

e = gce()

e.mark_mode = ’on’;

e.line_mode = ’off’;

Bibliography

NIST/SEMATECH e-handbook of statistical methods. http://www.itl.nist.gov/

div898/handbook/, November 2007.

Learning modules - medical gross anatomy anatomical orientation. http:

//anatomy.med.umich.edu/modules/anatomical_orientation_module/

Module-AnatOrient.pdf, March 2008.

M. A. Ali, H. A. Park, and C. G. Lee. Closed-form inverse kinematic joint solution

for humanoid robots. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ

International Conference on, pages 704–709. IEEE, 2010.

M. Ang and V. Tourassis. Singularities of euler and roll-pitch-yaw representations.

Aerospace and Electronic Systems, IEEE Transactions on, AES-23(3):317–324,

May 1987. ISSN 0018-9251. doi: 10.1109/TAES.1987.310828.

M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle fil-

ters for online nonlinear/non-gaussian bayesian tracking. Signal Processing, IEEE

Transactions on, 50(2):174–188, 2002.

246

http://www.itl.nist.gov/div898/handbook/
http://www.itl.nist.gov/div898/handbook/
http://anatomy.med.umich.edu/modules/anatomical_orientation_module/Module-AnatOrient.pdf
http://anatomy.med.umich.edu/modules/anatomical_orientation_module/Module-AnatOrient.pdf
http://anatomy.med.umich.edu/modules/anatomical_orientation_module/Module-AnatOrient.pdf

Bibliography 247

ATMEL. 8-bit AVR Microcontroller with 128K Bytes In-System Programmable Flash

(ATmega128, ATmega128L), October 2006.

F. Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric

data structure. ACM Comput. Surv., 23(3):345–405, Sept. 1991. ISSN 0360-

0300. doi: 10.1145/116873.116880. URL http://doi.acm.org/10.1145/116873.

116880.

E. Ayyappa. Normal human locomotion, part 1: Basic concepts and terminology.

Journal of Prosthetics and Orthotics, 9(1):10–17, 1997.

A. Bagheri, F. Najafi, R. Farrokhi, R. Moghaddam, and M. Felezi. Design, dynamic

modification, and adaptive control of a new biped walking robot. International

Journal of Humanoid Robotics, 3(1):105–126, 2006.

J. Bagot, J. Anderson, and J. Baltes. Vision-based multi-agent slam for humanoid

robots. In Proceedings of the 5th International Conference on Computational In-

telligence, Robotics and Autonomous Systems (CIRAS-2008), pages 171–176, June

2008.

M. M. L. J. S. A. M. M. Bajd, T. Robotics, volume VIII. 2010.

J. Baltes and J. Anderson. Flexible binary space partitioning for robotic rescue. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 3144–3149, Las Vegas, October 2003.

http://doi.acm.org/10.1145/116873.116880
http://doi.acm.org/10.1145/116873.116880

248 Bibliography

J. Baltes, C. Iverach-Brereton, C. T. Cheng, and J. Anderson. Threaded c and

freezeros. In Proceedings of FIRA 2011, CCIS 212, pages 170–177, Kaohsiung,

Taiwan, August 2011.

J. Basch, J. Erickson, L. J. Guibas, J. Hershberger, and L. Zhang. Kinetic collision

detection between two simple polygons. Computational Geometry, 27(3):211–235,

2004.

D. Berenson and S. Srinivasa. Probabilistically complete planning with end-effector

pose constraints. In IEEE International Conference on Robotics and Automation

(ICRA ’10), May 2010.

J. Bloomenthal and J. Rokne. Homogeneous coordinates. Vis. Comput., 11(1):15–

26, Jan. 1994. ISSN 0178-2789. doi: 10.1007/BF01900696. URL http://dx.doi.

org/10.1007/BF01900696.

Boost. Boost c++ libraries, 2014. URL http://www.boost.org/doc/.

G. Brassard and P. Bratley. Fundamentals of Algorithmics. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA, 1996. ISBN 0-13-335068-1.

R. Brooks. A robust layered control system for a mobile robot. Robotics and

Automation, IEEE Journal of, 2(1):14–23, Mar 1986. ISSN 0882-4967. doi:

10.1109/JRA.1986.1087032.

http://dx.doi.org/10.1007/BF01900696
http://dx.doi.org/10.1007/BF01900696
http://www.boost.org/doc/

Bibliography 249

L. M. Burns. Modern Physics for Science and Engineering. Physics Curriculum and

Instruction, 2012.

S. R. Buss. Introduction to inverse kinematics with jacobian transpose, pseudoinverse

and damped least squares methods. Technical report, IEEE Journal of Robotics

and Automation, 2004.

S.-H. Cha. Comprehensive survey on distance/similarity measures between proba-

bility density functions. International Journal of Mathematical Models and Meth-

ods in Applied Sciences, 1(4):300–307, 2007. URL http://www.gly.fsu.edu/

~parker/geostats/Cha.pdf.

F. S. Cheng. Advanced techniques of industrial robot programming, advances in

robot manipulators. Technical report, 2010.

M. Corral. Vector Calculus. Schoolcraft College, 2008.

J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair mechanisms

based on matrices. Trans. ASME E, Journal of Applied Mechanics, 22:215–221,

June 1955.

T. K. Dey and W. Zhao. Approximating the medial axis from the voronoi diagram

with a convergence guarantee. Algorithmica, 38(1):179–200, Oct. 2003. ISSN

0178-4617. doi: 10.1007/s00453-003-1049-y. URL http://dx.doi.org/10.1007/

s00453-003-1049-y.

http://www.gly.fsu.edu/~parker/geostats/Cha.pdf
http://www.gly.fsu.edu/~parker/geostats/Cha.pdf
http://dx.doi.org/10.1007/s00453-003-1049-y
http://dx.doi.org/10.1007/s00453-003-1049-y

250 Bibliography

M. M. Deza and E. Deza. Encyclopedia of Distances. Springer Berlin Heidelberg,

2009. doi: 10.1007/978-3-642-00234-2_1.

B. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning, 1993.

D. Eberly. Euler angle formulas. Technical report, 2014.

K. Fujiwara, F. Kanehiro, H. Saito, S. Kajita, K. Harada, and H. Hirukawa. Falling

motion control of a humanoid robot trained by virtual supplementary tests. In

Institute of Electrical and Electronics Engineers (IEEE) Conference on Robotics

and Automation, pages 1077–1082, New Orleans, LA, United States, 2004.

E. Gansner, E. Koutsofios, and S. North. Drawing graphs with dot, January 2006.

S. Ge and Y. Cui. New potential functions for mobile robot path planning. Robotics

and Automation, IEEE Transactions on, 16(5):615–620, Oct 2000. ISSN 1042-

296X. doi: 10.1109/70.880813.

R. Geraerts and M. H. Overmars. A comparative study of probabilistic roadmap

planners. In IN: WORKSHOP ON THE ALGORITHMIC FOUNDATIONS OF

ROBOTICS, pages 43–57, 2002.

Graphviz. Graphviz - graph visualization software, 2014. URL http://www.

graphviz.org/Documentation.php.

F. S. Grassia. Practical parameterization of rotations using the exponential map.

http://www.graphviz.org/Documentation.php
http://www.graphviz.org/Documentation.php

Bibliography 251

J. Graph. Tools, 3(3):29–48, Mar. 1998. ISSN 1086-7651. doi: 10.1080/10867651.

1998.10487493. URL http://dx.doi.org/10.1080/10867651.1998.10487493.

M. P. Groover, M. Weiss, and R. N. Nagel. Industrial Robotics: Technology, Program-

ming and Application. McGraw-Hill Higher Education, 1st edition, 1986. ISBN

007024989X.

S. Ha, Y. Han, and H. Hahn. Adaptive gait pattern generation of biped robot based

on human’s gait pattern analysis. In Proceedings of World Academy of Science,

Engineering and Technology, pages 406–411, 2007.

D. Hsu, J.-C. Latombe, and H. Kurniawati. On the probabilistic foundations

of probabilistic roadmap planning. In S. Thrun, R. Brooks, and H. Durrant-

Whyte, editors, Robotics Research, volume 28 of Springer Tracts in Advanced

Robotics, pages 83–97. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-48110-

2. doi: 10.1007/978-3-540-48113-3_8. URL http://dx.doi.org/10.1007/

978-3-540-48113-3_8.

Y. K. Hwang and N. Ahuja. A potential field approach to path planning. IEEE T.

Robotics and Automation, 8(1):23–32, 1992. URL http://dblp.uni-trier.de/

db/journals/trob/trob8.html#HwangA92.

L. Jaillet and T. Simeon. A prm-based motion planner for dynamically changing

environments. In Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings.

http://dx.doi.org/10.1080/10867651.1998.10487493
http://dx.doi.org/10.1007/978-3-540-48113-3_8
http://dx.doi.org/10.1007/978-3-540-48113-3_8
http://dblp.uni-trier.de/db/journals/trob/trob8.html#HwangA92
http://dblp.uni-trier.de/db/journals/trob/trob8.html#HwangA92

252 Bibliography

2004 IEEE/RSJ International Conference on, volume 2, pages 1606–1611 vol.2,

Sept 2004. doi: 10.1109/IROS.2004.1389625.

M. Kalisiak and M. van de Panne. Rrt-blossom: Rrt with a local flood-fill behavior.

In ICRA, pages 1237–1242. IEEE, 2006. URL http://dblp.uni-trier.de/db/

conf/icra/icra2006.html#KalisiakP06.

S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning.

Int. J. Rob. Res., 30(7):846–894, June 2011. ISSN 0278-3649. doi: 10.1177/

0278364911406761. URL http://dx.doi.org/10.1177/0278364911406761.

S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller. Anytime motion

planning using the rrt*. In Robotics and Automation (ICRA), 2011 IEEE Inter-

national Conference on, pages 1478–1483. IEEE, 2011.

L. Kavan and J. Žára. Fast collision detection for skeletally deformable models. In

Computer Graphics Forum, volume 24, pages 363–372. Wiley Online Library, 2005.

L. E. Kavraki, J. claude Latombe, R. Motwani, and P. Raghavan. Randomized query

processing in robot path planning (extended abstract). In Journal of Computer

and System Sciences, pages 353–362, 1995.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans.

on Robotics and Automation, 12(4):566–580, 1996.

http://dblp.uni-trier.de/db/conf/icra/icra2006.html#KalisiakP06
http://dblp.uni-trier.de/db/conf/icra/icra2006.html#KalisiakP06
http://dx.doi.org/10.1177/0278364911406761

Bibliography 253

O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots.

Int. J. Rob. Res., 5(1):90–98, Apr. 1986. ISSN 0278-3649. doi: 10.1177/

027836498600500106. URL http://dx.doi.org/10.1177/027836498600500106.

T. Koziara and N. Bicanic. Bounding box collision detection. In ACME conference:

University of Sheffield, 2007.

J. J. Kuffner, Jr., S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue. Dynamically-

stable motion planning for humanoid robots. Auton. Robots, 12(1):105–118, Jan.

2002. ISSN 0929-5593. doi: 10.1023/A:1013219111657. URL http://dx.doi.

org/10.1023/A:1013219111657.

J. J. Kuffner Jr. and S. M. Lavalle. Rrt-connect: An efficient approach to single-

query path planning. In Proc. IEEE Intl Conf. on Robotics and Automation, pages

995–1001, 2000.

S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

S. M. Lavalle. Rapidly-exploring random trees: A new tool for path planning. Tech-

nical report, 1998.

S. M. Lavalle and J. J. Kuffner Jr. Rapidly-exploring random trees: Progress and

prospects. In Algorithmic and Computational Robotics: New Directions, pages

293–308, 2000.

http://dx.doi.org/10.1177/027836498600500106
http://dx.doi.org/10.1023/A:1013219111657
http://dx.doi.org/10.1023/A:1013219111657

254 Bibliography

J. Ledin. Embedded control systems in C/C++ an introduction for software devel-

opers using MATLAB. CMP Books, San Francisco, California.

A. Liegeois. Automatic supervisory control of the configuration and behavior of

multibody mechanisms. IEEE Trans. Systems, Man, and Cybernetics, 7(12):842–

868, 1977.

S. R. Lindemann and S. M. LaValle. Incrementally reducing dispersion by increasing

voronoi bias in rrts. In In Proc. IEEE Int. Conf. Robot. Autom. (ICRA), volume 4,

pages 3251–3257, 2004.

T. Lozano-Perez. Spatial planning: A configuration space approach, 1980.

O. Luders, S. Karaman, E. Frazzoli, and J. How. Bounds on tracking error using

closed-loop rapidly-exploring random trees. In in American Control Conference

(ACC, pages 5406–5412, 2010.

E. Mazer, J. M. Ahuactzin, E.-G. Talbi, and P. Bessiere. The ariadne’s clew algo-

rithm, 1996.

K. Mehlhorn and P. Sanders. Algorithms and data structures. 2007.

N. Melchior and R. Simmons. Particle rrt for path planning with uncertainty. In

Robotics and Automation, 2007 IEEE International Conference on, pages 1617–

1624, April 2007. doi: 10.1109/ROBOT.2007.363555.

Bibliography 255

M. Meredith and S. Maddock. Real-time inverse kinematics: The return of the

jacobian. 2004.

D. M. Mount. ANN Programming Manual, 2010.

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algo-

rithm configuration. In In VISAPP International Conference on Computer Vision

Theory and Applications, pages 331–340, 2009.

R. M. Murray, S. S. Sastry, and L. Zexiang. A Mathematical Introduction to Robotic

Manipulation. CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 1994. ISBN

0849379814.

S. A. Nene and S. K. Nayar. A simple algorithm for nearest neighbor search in high

dimensions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19

(9):989–1003, 1997.

OpenGL. Opengl API documentation overview, 2014. URL http://www.opengl.

org/documentation/.

J. E. Pratt. Exploiting Inherent Robustness and Natural Dynamics in the Control

of Bipedal Walking Robots. PhD thesis, Massachusetts Institute of Technology

(MIT), June 2000a.

J. E. Pratt. Exploiting Inherent Robustness and Natural Dynamics in the Control

http://www.opengl.org/documentation/
http://www.opengl.org/documentation/

256 Bibliography

of Bipedal Walking Robots. PhD thesis, Massachusetts Institute of Technology

(MIT), June 2000b.

J. H. Reif. Complexity of the mover’s problem and generalizations. In SFCS ’79:

Proceedings of the 20th Annual Symposium on Foundations of Computer Science,

pages 421–427, Washington, DC, USA, 1979. IEEE Computer Society. doi: http:

//dx.doi.org/10.1109/SFCS.1979.10.

M. Rickert, O. Brock, and A. Knoll. Balancing exploration and exploitation in motion

planning. In Robotics and Automation, 2008. ICRA 2008. IEEE International

Conference on, pages 2812–2817, May 2008. doi: 10.1109/ROBOT.2008.4543636.

J. Ritter. A fast approximation to 3d euclidean distance. In A. S. Glassner, editor,

Graphics Gems, pages 432–433. Academic Press, 1990.

Robotis. Bioloid - User’s Guide, 1.00 edition, a.

Robotis. Bioloid Quick Start - Comprehensive Kit Robot Series, 1.00 edition, b.

Robotis. Dynamixel AX-12, June 2006.

S. Rodriguez, X. Tang, J. ming Lien, and N. M. Amato. An obstacle-based rapidly-

exploring random tree. In in Proc. IEEE International Conference on Robotics

and Automation (ICRA, 2006.

P. J. Schneider and D. Eberly. Geometric Tools for Computer Graphics. Elsevier

Science Inc., New York, NY, USA, 2002. ISBN 1558605940.

Bibliography 257

J. Selig. Introductory Robotics. Prentice hall, 1992.

E. Shkolnik and R. Tedrake. Path planning in 1000+ dimensions using a task-space

voronoi bias. In In IEEE International Conference on Robotics and Automation,

2009.

K. Shoemake. Animating rotation with quaternion curves. SIGGRAPH Comput.

Graph., 19(3):245–254, July 1985. ISSN 0097-8930. doi: 10.1145/325165.325242.

URL http://doi.acm.org/10.1145/325165.325242.

R. Smith. Open Dynamics Engine v0.5 User Guide, February 2006.

M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control,

chapter 3, pages 73–110. Wiley, 2005.

I. A. Sucan and L. E. Kavraki. A sampling-based tree planner for systems with

complex dynamics. IEEE Transactions on Robotics, 28(1):116–131, 2012. ISSN

1552-3098. doi: 10.1109/TRO.2011.2160466. URL http://dx.doi.org/10.1109/

TRO.2011.2160466.

I. A. Sucan, J. F. Kruse, M. Yim, and L. E. Kavraki. Kinodynamic motion planning

with hardware demonstrations. In IROS, pages 1661–1666, 2008.

Z. Tang, C. Zhou, and Z. Sun. Trajectory planning for smooth transition of a biped

robot. In Institute of Electrical and Electronics Engineers (IEEE) International

http://doi.acm.org/10.1145/325165.325242
http://dx.doi.org/10.1109/TRO.2011.2160466
http://dx.doi.org/10.1109/TRO.2011.2160466

258 Bibliography

Conference on Robotics and Automation (ICRA) 2003 Conference Proceedings,

pages 2455–2460, Piscataway, NJ, United States, 2003.

K. I. Tsianos, I. A. Sucan, and L. E. Kavraki. Sampling-based robot motion planning:

Towards realistic applications. Computer Science Review, 1:2–11, August 2007.

doi: 10.1016/j.cosrev.2007.08.002.

C. Urmson and R. Simmons. Approaches for heuristically biasing rrt growth. In

IEEE/RSJ IROS 2003, October 2003.

J. M. Vandeweghe, D. Ferguson , and S. Srinivasa. Randomized path planning for

redundant manipulators without inverse kinematics. In IEEE-RAS International

Conference on Humanoid Robots, November 2007.

J. Vaščák. Navigation of mobile robots using potential fields and computational

intelligence means. Acta Polytechnica Hungarica, 4(1):63–74, 2007. ISSN 1785-

8860.

Voro. Voro++, 2014. URL http://math.lbl.gov/voro++/doc/.

M. Vukobratovic, B. Borovac, and V. Potkonjak. Towards a unified understanding

of basic notions and terms in humanoid robotics. Robotica 2007, 25:87–101, July

2006.

R. Weber, H.-J. Schek, and S. Blott. A quantitative analysis and performance study

for similarity-search methods in high-dimensional spaces. In A. Gupta, O. Shmueli,

http://math.lbl.gov/voro++/doc/

Bibliography 259

and J. Widom, editors, VLDB’98, Proceedings of 24rd International Conference

on Very Large Data Bases, August 24-27, 1998, New York City, New York, USA,

pages 194–205. Morgan Kaufmann, 1998. ISBN 1-55860-566-5.

R. Wright, B. Lipchak, and N. Haemel. Opengl® Superbible: Comprehen-

sive Tutorial and Reference, Fourth Edition. Addison-Wesley Professional, fourth

edition, 2007. ISBN 9780321498823.

J. Xu, V. Duindam, R. Alterovitz, and K. Goldberg. Motion planning for steerable

needles in 3d environments with obstacles using rapidly-exploring random trees

and backchaining. In CASE, pages 41–46. IEEE, 2008. ISBN 978-1-4244-2022-3.

URL http://dblp.uni-trier.de/db/conf/case/case2008.html#XuDAG08.

A. Yershova and S. M. LaValle. Improving motion-planning algorithms by efficient

nearest-neighbor searching. IEEE Transactions on Robotics, 23(1):151–157, 2007.

K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time kd-tree construction on graphics

hardware. In ACM SIGGRAPH Asia 2008 Papers, SIGGRAPH Asia ’08, pages

126:1–126:11, New York, NY, USA, 2008. ACM. ISBN 978-1-4503-1831-0. doi: 10.

1145/1457515.1409079. URL http://doi.acm.org/10.1145/1457515.1409079.

M. Zucker, J. Kuffner, and M. Branicky. Multipartite rrts for rapid replanning

in dynamic environments. Robotics and Automation, 2007 IEEE International

Conference on, pages 1603–1609, April 2007. ISSN 1050-4729. doi: 10.1109/

ROBOT.2007.363553.

http://dblp.uni-trier.de/db/conf/case/case2008.html#XuDAG08
http://doi.acm.org/10.1145/1457515.1409079

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgments
	Dedication
	Introduction
	How hard is the robot motion planning problem?
	Why is it important to solve the robot motion planning problem?
	How can the robot motion planning problem be solved?
	Summary of Contributions
	Thesis Organization
	Terminology

	Background
	Configuration Space (CSPACE)
	Task Space (TSPACE)
	Cartesian Coordinates
	Left Hand Rule
	Right Hand Rule

	Homogeneous Coordinates
	Representing Orientation by Angles
	Euler
	Quaternions

	Transformation Matrices
	Notation
	Rotation Matrices
	Combining Rotation Matrices
	Extracting Euler Angles from Rotation Matrix

	Translation Matrices

	Frames
	Kinematics
	Denavit Hartenberg (D-H) Parameters
	Forward Kinematics (FK)
	Inverse Kinematics (IK)
	Jacobian Matrix
	Calculating the Jacobian Matrix
	Jacobian Transpose
	Jacobian Pseudo Inverse

	Polygon of Support (POS) and Zero Moment Point (ZMP)/Center of Pressure (COP)
	Inverted Pendulum
	Proportional-Integral-Derivative (PID)
	Nearest Neighbor (NN)
	Voronoi Diagram
	Graph Theory
	Shortest Path Problem
	Dijkstra's Algorithm
	A* Algorithm

	Trees

	Incremental Simulator
	Collision Detection
	Summary

	Related Work
	Randomized Potential Fields
	Probabilistic Road Map (PRM)
	Ariadne's Clew Algorithm
	Flexible Binary Space Partitioning (BSP)
	Summary

	Rapidly Exploring Random Tree (RRT)
	Sample Bias
	Nearest Neighbor (NN)
	Distance Metric
	Collision Detection
	Related Work
	RRT-Goal Bias
	RRT-Goal Zoom
	RRT-EXTEND
	RRT-CONNECT
	RRT-Bi-directional
	Jacobian Transpose RRT (JT-RRT)
	Multipartite RRT (MP-RRT)
	RRT-Blossom
	RRT*
	Obstacle-Based RRT (OB-RRT)
	Task Space RRT (TSPACE-RRT)
	Closed-Loop RRT (CL-RRT)
	Particle RRT (pRRT)
	Heuristically-guided RRT (hRRT)
	Exploring/Exploiting Tree (EET)

	Other Applications
	Summary

	Implementation
	Real World
	Humanoid Robot
	High Level Logic
	Vision
	Localization and Mapping
	Trajectory Planning
	Balancing
	Firmware

	Simulation
	Computer
	Motion Simulator
	Third Party Software
	Open Dynamics Engine (ODE)
	Boost
	Approximate Nearest Neighbor (ANN)
	Graphviz
	Voro++
	Open Graphics Library (OpenGL)

	Robot Models
	Sphere Robot
	Humanoid Robot
	Motor Adapter
	Motor Controller

	World Models

	Motion Planner with RRT and Incremental Simulator
	Random Number Generation
	Random Configuration Generation

	Summary

	Evaluation
	Overview
	Experiment Purpose
	Experiment Setup
	Experiment Criteria
	Results, Analysis and Observations
	Modifications and Optimizations
	Summary

	Conclusion
	Future Work

	Acronyms
	Glossary
	Scilab Functions
	Bibliography

