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ABSTRACT

A method is established which gives fiefd solutions inside tl/¡o

radia.l waveguides coupl-ed by an array of annuJ-ar slots on the conunon bound-

axy. The cases of electromagnetic penetration ínto half space as lrell as

cyl-indrical cavity regions are also treated. For the half space problem,

the thickness of one of the waveguide regions is aÌlowed to approach in-

finity. lihereas. for the cytindrical cavity case, the radiaf waveguide

is terminated at an appropriate place by a cylindrical short circuit.

Since thê analysis is based on the response ol the system to azimuthal

current rings, the appropriate creen's functions for electric current

rings are obtained in a similar manner as those of magnetic type. There-

fore, the method can be extended to the geometries involving annular or

cylindrical type conducting bodies as well as aperture-type geometrical

discontinuities .

The solution is obtained by constructing the impulse response

of the system and expressing the induced current distribution over the

sl-ots and the conducting bodies in terms of a suitable set of basis

functíons with complex coefficients. These constants are then obtained

by an application of the boundary conditions on the discontinuity surfaces.

The method is applied to three different geometries, namely, t\4¡o radial

waveguides coupled by an array of annular slots on the corrunon boundaxy,

an annular slot array antenna fed by a radial waveguide and the cavity

backed annular slot antenna. Graphical results for selected cases are

presented to substantiate the applicability of the models in the design

of microwave filtering devices as well as highly directive antenna sys-

tems.
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It is a-[so shown that¡ in general, higher order modes excited

by the discontinuities can have significant effect on the solution and

for a precise evaluation of the fields in the respective regions. their

contribution must also be included. A method of generating the desired

incident mode or modes is suggested which uses simple vertically orj-ented

arrays of thin probes.
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CI{APTER

I NTRODUCT ION

Teleconmunication technology has reached the state of maturj-ty

which allows reliable contact between terrestrial points to be

estöbilj-shed within seconds. As a prime contributor to this achieve-

ment, co[ununication satellites have been used for a large nunber of div-

erse serv.ices. The early rècognition of their potential use in world-wíde

comnunicat.ion prompted a rapid. growth of international and military sat-

ellite communication systems/ an industry which is barely ten years o1d.

One of the significant elements underlying this growth was the

prospect of achieving band-widths exceeding those previously available

for intercontinental connunications. The exploitation of the wide band-

widths now easily availab-Le in the use of satellites and. the ever increas-

ing demand for higher frequencies requires solution to a series of tech-

nical problems in the corununication links. As an inherent part of these

links, earth station and spacecraft antennas must also conform to the

specific needs as they arise. This is why satellite antennas have de-

veloped from low-gain. omnidirectional antennas to multifrequency nulti-

funct.ion antenna systems now in use [1,2],

Still highex frequencies are under active consideration, not

only because of spectrum crowding at the lower frequency bandsf but be-

cause of the desire to accorunodate higher data rates than are now

being sent cormercially. So farf. there have been a number of different

design approaches conforming to . satellite stabilízation considerations

which have been tesLed for thei:r performance in actual missions [l-91 .
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cenerally speaking, the optimum 9oa1 in designing any satellite antenna

is to attain a pre-specified high gain radiation pattern by using a low

profile antenna vrith the least complex feed system, with low weight and

vofume occupied by the antenna assenbly, ease of fabrication and, most

iIlÞortant of all, lower manufacturing cost factor. The last two goals

are becoming more ímportant as the frequency spectrun is broadened con-

stantly and satellite conmunication is exploited conmercially.

The purpose of the present work is to study a new class of 1ow

profile radiating element for use in high frequency telecolrununication

systems. The structure maybe used as the basic block in formation of high

frequency filtering devices as well as 1ow profile antenna systems for

applications in aircrafts, spacecrafts and low cost earth stations. Due

to the structural simplicity of the radiating element it looks quite

promising for use at high frequencies and the production cost seems to be

much lo\,rer than conventional types presently in use.

The basic element is essentially a slotted radial waveguide.

It is formed by an arrây of co-centered electrically narrow annular slots

etched on one side of a dielectr.ic substrate which is sandwiched by two

ground planes. figure l. For apptications as an antenna, depending on

the excitation of the slots ¡ the structure is capable of producing rad-

iation patterns with the main lobe in the direction of the z-axis (end

fire) or a doughnut type radiation field with a nu11 in that directíon

(broad-side). Terminology is borro\a'ed from conventional arrays by view-

ing the antenna as a compressed version of a stack of circular loop rad-

iators .

An important consid.eration for antenna systems covering large

angular regions lies in thej-r polarization state over the coverage zone,



ARRAY OF ANNULAR SLOTS

CONDUCTING PLANES

Figure 1.1: Basic radiating element.

DIELECTRIC SUBSTRATE



4

For certain applications. namelyf frequency reuse conìmunication links¡

this parameter is of prine importance. The ísolation degree between the

olthogonal channefs must stay below a certain level over the coverage zone

in order to minimize interference problems. The polarization state of an

annular slot antenna is basically determined by the exciting feed assemlf,Iy

located in the central region o.f the waveguide or cavity. A combination

of vertical probes, which are merely the extended center conductors of a

set of coaxial cables in different configurations. may be used for produc-

ing the required excitation mode or modes and the desired type of polariz-

ation within a certain angular region. However. as it v¡ill be shown later

for single mode excitation the cross polarizalion component of this type

of antenna may not meet the specifíc requirements for certain applications.

For these cases multimode operation lnay prove successful.

The simplicity of the structure is promising for high the frequency

range where small details of the element become an appreciable fraction

of the wavelength and consequently any imperfection in the fabrication

results in distortion of the elect-rical characteristics of the structure.

In this regard, the designed patiern of annular slots can be tailored

on a grounded dielectric substrate to a high degree of accuracy by r,icro-

wave integrated circuit fabrication techniques. Furthermore, the low

profile of the system makes it suitable for use as a printed-circuit stríp-

line filtering device or as a flush-mounted antenna on high speed space

vehícles. This will ensure meeting the requirements of re-entry vehicles.

such as least disturbance to the flight dynamics and to the air frame

structure. For satell"ite communications, depending on the method of

stabifization. the annular sfot antenna may be used in different modes of

operation []01 , that is, either as a despun antenna system or a high gain
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directive radiator for use in body stabilized satellites. Since the an-

tenna assemlcly is integrated onto satellite, it is less susceptible to

accidental damage in the launch pl:ocess. Furthermore, due to the fact

that the slots are fed successively by a radial waveguide or a cylindrical

cavity, one feed connection suffices. Therefore, space that is critically

needed for other pÌtrposes is saved.

Forapplicationssucllasfii':eringdevicesandcoupl-ers'twoormore

cou¡lled radial waveguides may be used. The coupling is achieved by arrays

of annular sl-ots on the common boundary of the waveguides. BY a proper

arrangement of the apertures, the power injected by the source in a guíd-

ing region can be coupled out efficiently over a desired fïequency band.

îhe result is a band-pass, band-stop filtering characteristic which is

cantrolled by the electrical dirnensions of the structure and the consti-

tutive parameters of the guj-ding regions. In the next chapter. in addition

to a literature survey on the subject matter' an outline of the v.tork to

follow is gíven,



CHAPTER II

STATEMENT OF TI]E PROBLEM AND LITERATURE SURVEY

2,I Introduct ion

From the design objectives stated in chapter I, it is clear that

the main concern is to find a soLution to the problem of electromagnetic

coupling between two radial waveguides through annular slots on the common

boundary. The problem of the annular slot array antenna can be viewed as

a special case in which the thickness of one guide approaches infinity.

seeking an exact analytical solution to electromagnetic bound-

ary value problems involving exterior and interior regions to boundaries

of a discontinuous nature is a formidable task. Exact analytical tech-

nj-ques availaL¡Ie are generally restricted to a small group of objects with

simple geometrical shapes. The subject of electromagnetic penetration of

a time harmonic plane incident \nrave through an aperture in an infinite

plane, which is the simplest problem in this category. has been investi-

gated extensively in the literature. Neverthelessr the problem remains a

rather complicated subject with available analytical results for only a

few aperture geometries. For this reason¡ attempts have been made to de-

velop approximate techniqües which could provide useful solutions to a

variety of problems¿ subject to certain limiting conditions. A fairly

exlensive literature review of aperture theory can be found in a recenl:

publication [ll] with an emphasis on techniques

The problem of electromagnetic diffraction by circular apertures

has long been the focus of attention, primarily due to its amenability

to analytical approaches. As is well known, the rigorous anall¡tical approach
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aims at a solution to a set of vector differential equations subject to

some constraints. However, this approach has rarely proven to be fruit-

fu1. The Kirchoff approximation I12l is an attempt to gain some qualit-

ative- insight into the diffraction phenomenon. This approach was refined

later by including charge distributions on the rim of the screen [13].

In contrast to Kirchoffrs method which yíelds reasonable results

at high frequencies, the RayleÍgh approximation II4l-t161 is vãlid for

low frequency operations for which the aperture field distribution can be

obtained by treating the problem as a static case, A more refined and

rigorous method was reported later by ínclusion of an edge condítion which

is valid over a broad.er frequency range [I7]-[18],. yet the convergence of

the solution in terms of spheroidal functions creates computational dif-

ficulties at high frequencies.

A more general approach for the formulation of the diffraction

problem of an incident \,rave by an aperture in a perfectly conducting screen

is found in [f9]-[20]. Expressions for the field vectors in both regions

are derived in terms of the tangential components of either electric or

magnetic field on the common boundary using tensor (dyadic) creen's func-

tíons. The final formulation is then modified to obtain stationary form-

ulas suitable for applying variational principles. As an example, the

problem of scattering by an open-ended coaxial waveguide in an infinite

conducting bafíle is considered and only the principle mode of operation

is treated (no azimuthal variation). However, the method like other

variational formulations is dependent on trial functions.

An alternative approach to the solution of díffraction by a

circular hole or slit and the complementary problem (disc or ribbon) is

to uÈilize hypergeometric polynomials as the expansion functions Í2Il- t221 .
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However, the convergence of the infinite series obtained is sfor^/ for

structures with large characteristic dimensions, Diffraction by sma11

circular apertures has also been studied extensively. Among approximate

techniques, the use of an integral equation approach suitable for nu¡¡ter-

ical solutions are recently reported t231 tl24l. For large aperture dim-

ensions, the techniques based on the geometrical theory of diffraction [25]

have successfully been applied to numerous geometries. Attempts to over-

come the shortcomings of the theory related to the shadow boundaries and

caustics are made and the results are presented ín 1261 ,t271.

The problem of an annular slot on an infinite ground plane back-

ed by a cavity has also been studied by a number of authors. Examples are

the study of radiatíon conductance of an annular slot backed by a hemi-

spherical cavity of finite conductivity for applicatíons at low frequen-.

Çies I28l and the case of cylindrical cavity [29] which emplcys variation-

al methods, The limiting assumptions are a highly idealízed excitation

by a uniform (no Q variations) radia y d.irected current sheet in the

s1ot plane and the solution breaks down for deep cavities.

As a possible flush-mounted antenna for use on the skin of mis-

siles, the problem of a coaxj-al opening in a ground plane has been consid-

ered in the literature and typicat examples to be cited here are [30]-t331 ,

In the fírst two, the principle of duality is employed to obtain the elect-

ronagnetic field components for the case of azimuthal syrnmetry. The basic

assumption is to take the unperturbed coaxial TEM node as the only exist-

ing mode whích irnplies ígnoring hígher order modes created in the vicin-

ity of the annular aperture. In the third reference, the slot field

distribution is expressed in terms of TEM and the first five TMon modes.

The last work, however, accounts for the hj-gher order modes for an
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electxically thin s lot,

Design procedure and performance of the annular planar array of

linear slots in generatíng pencil beams and monopulse tracking rays j-s

reported for a gieometry consisting of a radial waveguide coupled to free

space through groups of small linear stots [34], The theory of linear

arrays is employed and the slot field distribution is assuned to be the

dominant TE mode of the unperturbed guide. The coupling bet\,¡een the slots

is totally disregarded..

Among the earliest works in the area of radial waveguide fed

antennas for possible use in conmunication satellites, are those presented

in [36], [37]. The first reference is an extension to an earlier work [35],

with the purpose of a qualitative analysis of the problem. The approach,

however, is mostly experímental and a TEM excitation is assumed. The use

of circular slots and rings as resonant structures in microstrip trans-

mission lines has also been reported t38l-1401 . A rather qualitatíve ap-

proach is employed and the effects of the fringe field at the edge of the

resonant element and the radiation from the rim are ignored.

For circular apertures in finite ground planes of circular and

rectang'ì-rlar shapes, a method has been suggested which utilizes the geo-

metrical theory of diffraction [38]. The expression for the field pat-

tern is obtained by superposition of infinite ground plane solution, the

first-order diffracted field solution and the axial caustic terms in their

respective regions of valÍdity. Agaj-n the slot field is assumed to be

the unperturbed field of a TEM excited coaxial waveguide, hence, the fields

are independent of the azimuth angle 0. Experimental results are also

obtained and are compared against those computed. It is shown that over

a wide angular region in the front direction. the result obtained assuming
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an infiniÈe ground plane closely matches the actual field, provided. the

slots are far from the xim. The difference between the experimental and

computed results are attributed to higher order modes created by the slot

d.iscontinuity. However, the back scattered field, wttích the infinite plane

solution fails to account for, can be computed. rn¡ith reasonable accuracy

by this method.

2.2 Outline of the Subject under Investigation

The preceding literature review points out that in spite of num-

erous research v/orks done in the area of electromagnetic coupling through

annular apertures, the subject matter remains to be a challenging one.

Most of the existing approaches to the problem are based on overly simp-

lified and. idealized models. Majority of the methods lie on the assump-

tion that the aperture field distribution can be approxi-mated by the un-

perturbed field. of the feeding guide. In other words' the effect of a1l

higher order nodes that are excited in the vicinity of slot díscontinuit-

ies and is proven to be significant [32] is disregarded. Furthemore,

only the special cases of azimuthal slznunetry (no O variation) aïe con-

s.idered in order to further simplify the formulation of the problem. One

important cons.ideratj-on lies in the fact that an efficient radiator is

generally formed by more than a single slot. That is, the nunlcer of slots

and their relative locatíons are expected to be the key parameters for

pattern shaping or optimization of the electxical characteristics , There-

fore, any solution to the problem must take into account the mutual ef-

fects of the slots on one another.

So far. no attempt has been nade to investigate the degree of

coupling betv¡een the annular slots, The radiation and filtering charact-

eristics of the radial wavegr-ride fed or cavity backed annular slot arrays
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have not been investigated and. there is no information available for the

geometries excited by a forcing function of a general nature. Therefore.

the objective of the present work is to study the electrical characterist-

ics of rad.ial waveguide fed, or cavity backed annular slot structures.

A boundary value treatment is employed to derive field expressions for a

general case, that isf the electromagnetic field set up by the system is

composed of both TE and TM modes (transverse to z-axis). With this form-

ulation, the assumption of azimuthal s)¡rnmetry is no longer necessary and

the exciting field may be assumed to be quite general. This in turn aI-

lows for the use of dual feed systems to create orthogonal as well as

circularly polarized fields.

Chapter III is intended to d.erive a field. solution for radial

waveguides in the presence of annular or cylindrical type discontinuities.

The solution is obtained by first constructing the response of the system

to a current ring of arbitrary excitation a¡d location, Section 3.2. The

final Tesult is then expressed in terms of the appropriate creen's functions

integrated over the source distïibution. Both electric and magnetic cur-

rent distributions are treated, The inclusion of the fictitious nagnetic

source distribution ênables one to formulate the problem of coupling be-

tween two regions by circular slots. This is covered in section 3,3

\^/here the filtering characteristics of two coupled radial waveguides in

conjunction with a study of slots admittances and the aperture field

behaviour is ínvestigated. The coupling is achieved by an array of con-

centric annular slots on the conmon boundary of the h'aveguide regions.

The effects of higher order modes on both equivalent admittance of each

slot and the aperture fields are pointed ouÈ, Alternately, the expressions

for the total power injected by the source, the powêr coupled out of the



I2

quide and the remaining ¡rower transmitted through the waveguide region

are derived.

In chapter TVr a field solution for annular slot array antennas

fed by radia] waveguides is developed. The appropriate Green's functions

for the seni-infinite region is obtained for a magnetic current ring

characterized by a general forcing function. Using the principle of dual-

ity, a simifar result for an electric current ring is also obtained. The

final formulation is achíeved by integrating the spacial inüpulse resr)onse ovex

the aperture field distribution, section 4.4. Evaluation of the infinite

integrals associated with the semi-infinj-te region is discussed in Section

4.5 and the expressions describing the radiation fields and the radiated

power are presented in Section 4.6. Tlre effects of the lìigher order modes

of the feeding guide on the slots admittances and the aperture fields

expfained in section 4.7. The field variation of slots as a function of

their radii is also investigated and the applicability of the annular slot

array antennas for use as a pencif beam launcher as well as uniform rad-

iation fietds in the azimuth plaire (no $ varíation) is shown, Sections

4.8 and 4.9,

chapter V deals with a cavity backed-annular slot array, that

is, the radial waveguide is terminated in a short cj-rcuit, A suitable

set of creen's functions for the cavity region is obtained and a símilar

method as that of Chapters llf and IV is employed to derive the final formula-

tion. Source considerations for exciting particular mode or modes of

radial- vraveguides is introduced in Section 5,5. Possible feed config-

urations using vertically directed thin probes for generating TM modes of

the guide is discussed and a method for obtaíning orthogonal and circular

polarized radiation \4rithin a linÌited angular region is suggested. The
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effects of a finite ground plane on the radi4tion pattern is qualitatively

studied and a method toward a quantitative analysis is proposed, Section

5.6.

- An Ðq)erimental prototype model of a cavity-backed annular slot

array is made and the measured radiation patterns in both principal

planes are compared against the computed values, Section 5.7.

The present work is concluded in Chapter VI by a general dis-

cussion of the results and possible extensj-ons of the subject studied

in related problems.



CHAPTER III

FIELD SOLUTION FOR RADIAL T{AVEGUIDES IN THE PRESENCE

OF ANNULAB OR CYLINDRICAL TYPE GEOMETRICAL D]SCONTINUITIES

3,1 I ntroduct ion

Two dimensional arrangements of slots or conducting plates to

form resonant arrays are of practical interest for applications as band-

pass or band-stop filters. I.Iithin a certain frequency band' the trans-

mission coefficient of the array can vary from unity to zero and its re-

s onant , frequency and bandr.vidth may be controlled by varying the charact-

eristic dimensions of the array 1,421- t441 .

For waveguide applications, similar geometrical discontinuities

have been used in fabricating low-pass and high-pass printed-circuit strip-

line filters [45]. They are usually formed by two sheets of low-loss

dÍelectric material, with a photo-etched copper-foil sandwiched in between,

and with netal plates on the outer surfaces of the d.ielectric pieces

forming the waveguide structure.. The great advantages of this type of

filter are its extremely low cost, ease and accuracy of fabrication. The

latter one is quite important at higher frequency bands of operation,

r,,/here srnaLl details of the geometry become äppreciable fractions of the

operating wavelength.

So far, the subject matter has been investigated extensively for the

cases where the basic array element ís of rectangular, circular or cxoss-

geonetries. However, little information is availaÌ¡Ie for the case where

the electromagnetic scattering bodiès are of either annular or cylindrical

shape,
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In this chapter, using a boundary value treatment, a method of

solution is established which gives the interior field of a radial r,,tave-

guide in the presence of annular and cylindrical discontinuities in the

guide region. These geometrical interruptions are either on the surfaces

of the conducting walls of the waveguide (for the case of slots) or ín-

side the dielectric region (metal1ic ptates) . A solution for the case

in which both types of d.iscontinuity are present can simply be obtained

by superposing the two sets of solutions. The common factors between

these two sets, as it will be shown later, are a set of complex óoeffic-

ients. The application of the last bound.ary condition over the apertures

and the conducting bodies for determining these constant coefficients,

then ensures the electromagnetic coupling between the tvro sets of sol-

utions.

The exciting source lrhich is placed in Èhe central region of

the radial waveguide is assumed to be of a general nature. The slots and

plates are assumed to be electrically thin enough to suppress radially

dj-rected induced currents (magnetic in case of slots) over the surfaces

of the scatterers. Thus, the induced surface currents of the array ele-

ments are in the azimuthal direction.

We develop the solution by first construcÈing the appropriate

creen's functions describing the impulse response to the magnetic (or

electric) current ring of strength I, focated at a radius p = p',

figure 3.1. The final formulation of the problen is then obtained by

integrating the impulse response over the induced source distributions.

Depending on the electrical dimensions of the array élements, the induced

current may be expressed in terms of a finiÈe sum of a suitable set of

basis functions with unknown complex coefficients. These constants are
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Figure 3.-L: Current ríng in a radial waveguide (impulse response)
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then obtained by an application of the boundary condition over the sur-

faces of the scattering bodies. In fact, depending on the widths of the

elements and the required degree of accuracy of the solution, suitable

expressions describing the induced source distribution can be substituted

into the formulation to obl:ain simplified versions of the solution with

acceptable accuracies.

The most approximate, yet simplest set of basis functions is

a series of pulses with equal widths but different strengths, character-

izing the induced current distributions. The totaL number of pulses per

element is directly related to its electrical width- For thin slots or

plates, the cuxrent distribution may be assumed to be constant with re-

spect to the radial varia-ble p. Thus, using the constant fj-eld. approx-

imation, each element of the array is characterized by a single complex

constant representj-ng the strength of the element which is yet to be

determined by an application of the last boundary condition. ln fact,

tr{ait and Hill [46] tl47l by considering the prob]em of TEM couplíng by a

circumferential slot on a coated coaxial cable, have shown that differen-

ces betvreen the results of the higher order approximations for the aper-

ture field distríbution and the constant field model are inconsequential.

For a waveguide fed. slot array in which apertures are fed suc-

cessively by a travelling wave, the effect of the mutual coupling between

the slots cannot be generally ignored. In the methods based on the

waveguide transmission line concept, the coupling between the array

elenents usual-ly accounts for only the dominant propagating mode, that

is, totally ignoring the effects of the higher order modes created in

the vicinity of the slots d.iscontinuities. Furthermore. the coupling

due to the external fíeld is generally overlooked. However, as it will
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be sholrn 1ater, depending on the arrangement of the slots and their elect-

rical dimensions ¡ the external coupling can become so strong as to re-

couple part of the radiated po!ùer by a number of the slots back into the

waveguide containing the exciting source. An equivalent transmission line

representation then gives a negative radiation conductance for the re-

spective meÍìber (or menbers) of the array'

The contribution of the higher order modes can also become ap-

preciable as to turn a resonant slot ïadiatíng by itself, into a reactive

element when being used as an array member, The same argiument also ap-

plies to the case .^¡hen scattering bodies are in the form of metallic plates

locaLed inside a waveguide region. A distinct advantage of the present

approach is the fact that aII mutual coupling effects and the higher or-

der modes are incorporated automatically into the solution' This is

achieved by the Sjrultaneous evaluation of the field unknown coefficients

through the application of the boundary condition.

3.2 P rob l em-Formul a"c ion and Solutíon

3.2.I construction of the Appropriate Green's Functions, Magnetic

Ring

In deriving the appropr.iate Greenrs functions for the problen

depicted in figure 3.1, we essentially follow a similar approach to that taken

by Col1in [48] in which the field radiated by a current filament .in a cy1-

indrical- waveguide is derived. for tìe case when propagation is takj¡E pl¿s6

in a cylindrical tube, The basic principle is to expand the radiated

field in terms of a suitable set of waveguide modes with constant coef-

ficients. These complex coefficients a.re then determined by an application of

the Lorentz Reciprocity Theorem.
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Consider the geometry shown in figure 3,1¿ formed by a radial

waveguide of thickness a, The constitutlve parameters of the medium be-

tween the perfectly conducting planes forming the wavequide walls are

e and U. We assÌme the guide region is of infinite extent in the p

direction, resulting in a zero reflection coefficient in region II . In

practice, a matched load (absorber) may símulate this cond.ition. The

source is a magnetic filament of strength Im(þr) characterized by

(3.r)

where Im(O') is a piece-wise continuous function of the azimuthal angle

O' and p' , þ' , z' are the source coord.inates. ô' is a unit vector

tangent to the current source and representing the direction of the cur-

rent f1ow, A time variation of exp(jot) is assumed and suppressed

throughout. The source function may be expanded in a Fourier series of

the following form

r (ö')
m

= t (a cos nþ' + b- sin nQr) 0 < 0' < 2Tr (3,2a)
^nn

where

cos nQ' dþ'

sin nô' dó' (3.2b)

The source singularity at p = pt, z = z' suggests dividing the medium

between the conductors into two distinct regions separated by cylindrical

surface ?', namely, region I foï p < p' and region TI for

O > O'. An arbitrary electromagnetic field in a homogeneous cylindrical

¿ t2"il+ lrto'lzt J,., m

¿ 12']
-n I r to'l2Tlm

1 n= 0

2 nlo
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region can be expressed as the sum of the TM (e waves) and TE (H waves) fields

to the z-direction [49]. The total electriq and magnetic fields can

then be calculated from

Ê = -V* (âVh) ** vx Vx (âVe)
' lot

-' -^ e- 1 - ^ hÉ = vx (2v") *fi vx vY (zú")

(3.3a)

1-\ ê
where ú" and rr' are solutions of the wave equation. The set of equ-

ations (3.3a) in cylindrical coordinates are represented by

. ^a ê ^ h
o = 

r d-1, + dllJ q"ö jc¡eo ôóãz ðP "0
ai],le t ð 

2 rl;h (3.3b)

a ^2E = =L t!__- + k2) ir* H =z lue dz- z

âp joup ð0âz

r ^2.L t5 + t2 ) ir"
I {rJU ò z'

The next step is to expand the wave functions ' ,lrt arld rfh , in terms

of the appropriate mode functions with unknown coeffícients' Utilizing

the boundary conditions at the source surface and also using the

Lorentz Reciprocity Theorem¿yields the desj-red. constants. However, before

proceeding further, a careful study of the set of equations (3.3b) and

physical aspects of the problem provide us with usefut priori informatíon

to reduce the mathematicat labor invol-ved in the formal determination of

the coefficients. To satisfy the finiteness condition of the field due

to the magnetic current ring in region I and the radiation Çondition in

region IT, Bessel and Hankel functions of second kind are chosen to rep-

resent the radial dependent parts of the node functions, respectively,

Since E, and H. components of the field must be continuous across the00
source surface Sr and also as an anticipation for relating the field

components to their source In(O'), we choose the functional form of the
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Q dependence of the mode functions to be

Oe(O) = an cos nO + bn sín nQ

, doe (o)
. ontó) = !'ndQ

where a and b are given by (3.2b).nn
The final results for the wave functions which also satisfy tlìe

boundary conditions on tlle conducting walls of the xadial waveguide are

= ; i ,ur, "o" r0 + b' sin nQ)

J (k o) o < o'npm

u(2) (r o) o > o'npm

(3. sa)

U"
rnn

M?I

a
U'

mn

= t X n(b
nn=o m=o

cos nþ - a. sín n0)

J (k o) o < o'npm

ri(2) (x o) o > o'npm

,mTSln-j¿
a

Uhnn

h
U

mn

k
pm

k

= rk2 - t\t"f/z

= u/eu

(3.5b)

(3.5c)

For a region v containing sources and bounded by a closed surface S,

the formal statement of the Reciprocíty Theorem is as follows

f*->->l-+-à-+->->+
O (E x H - Ë x H ).nds = | (H . J - E . J - H . J + E . J)dvjaaJmaâèma
sv

where the subscript a represents a set of auxiliary fields generated

by the respective sources and â is the inr,rard unit normal of the bound-

ary S, we take the vol-ume v to be the region enclosed by the conducting
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walls and two arbitrarily located cylindrical surfaces 51 and Sz in

regions f and II¡ respectively. As for the auxiliary fields, we are free

to select their forlll in a manner to facilitate the derivation of the sol-

ution as Long as they satisfy the Ma)<well¡s equations. we, therefore,

choose two separate sets of modes. where each set consists of two sing3-e

modes of TE and TM types which are the solutions of the source free wave

equations in volume V (J__ = J_ = 0) and have the following forms

.e
'a

h

.e

.e

(aUcosl,Q + blsinl,Q)

g (blcosl,Q - a'sin.!,O)

(aUcos.0S + b&sin.Có)

.[ (b'cosQ - aUsin90)

p1I
cos * z.J-(J( O)aLpp'

. pll
srn * z.J^ (K O)ay,pp

"or 
fl ,.sJ2) (t olaJ¿pp

tir, fl ,.nj2) (r p)
a x, fjp

(3.7a)

(3,7b)

Taking the auxiliary wave functions represented by (3,74) and noting that

there is no electric current source for the problem under consideration in

volume V, one obtains lAppendix A]

Similarly, substituting (3.7b) leads to

- ?T(¡CU E¡2- h . . -.-ri cos fl z'lk"'p,t - u "p[ - - 2ki;; '"" " 
o 

'opp"

. rrf2) txooo' I t

(3. Ba)

nj2) tr. o') - [2 ,PrL pp loua

(3 .8b)

Two other equations ín terms of the four constant coefficients are need-

ed to uniquely specify the field components inside the waveguide. To this



end, we utilize the boundaxy conditions imposed on the axial companents

of the electric and the magnetic fields (E* Hz) across the source

surface s'. The continuity condítion of the magnetic field is ensured

by having

I TIH -Hzz
t_

- _ l. ).
i ûJu- n=o IlFo

o<0<21r

O1z1a

n(b' cos nó - an sin nó) tO'* "in S t

. tuh s(2)(k o') -uh ¡ (k p')r = o¡nn n pm mn n fJm

which upon using the orthogonality property of sin 4 z over the range

O<z<a ar¡d sin nQ over the rangie 0<Ó<2T is reduced to

4u "1" (kppp') - {r r¿ {tono'r = o

The axial compoûent of the electric fietd is discontinuous across the

surface S' by an amount equal to the magnetic current density. that is

nr - err = r (ö') 6(z-z')zzm

p = p'

0_<0<21r

o<z: a

which upon usrng the property of the delta function and the orthogonality

relations for sinusoidal functions yields

-e (2) ..,p[ r[ (Kppp') - uil. "l tr.ono', = Ë.- en cos E z'
vrr (3 . tI)

Equations (3.8). (3,10) and (3.11) can be solved for the constant coef-

ficíents. The final result after utilizing the Wronskian relationship

(3.9)

(3.10)



for the Bessel function are

ue = ,n!tP' e qe5 !1 .r t'Íur 2k a m a n
Pm

(k p')
pm

h
ÍÌn -.' 

t" 
" ^^- 

*T o-j tE;.)r em cos - z' rr., (ko*P')

Î{daôr mlT (2\ |
E cos - z' H'-' (k 0')2R a m A n fhpm

-, Udþ, .* "o" 
4 '' H(2){to*P')

e
tmn

Ìr

rnn

(3.12)

(3.13)

The above coefficients in conjunction vrith (3.2), (3.3) and (3.5) uniquely

define the electromagnetic f.ield set up by a magnetic current filament

of strength I*(0') located at a point, p = p'. z = z'.

3.2.2 Electric Ring

The mathematical routine for deriving the appropriate creenrs

functions for the case of an electric current radiating in a radial wave-

guide is similar to that of the magnetic case, For the sake of brevity

only the main differences together with the final result will be present-

ed here, Aside from subscript m, the defining equations for the current

density and its Fourier expansion are the same as equations (3.1) and

(3.2). Equations defined by (3.4) are replaced by

_hA (ó) = a cosnn
h

do- (ó)
v (O) = --------i-
ndQ

n0 + bn sin nô

hence, the requíred wave funct.ions are given by
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The Reciprocíty relation for this case is stated as

l--++*f*-tôra xH-ÉxÉ).âds = lÉ.ia"taata) ¿v

,lr: = l, (bU cos.Q,S - aU sin.Q,o) "o" 
4 

= nf; ) 
trc'nO I

{,: = (au cos.{,s + b[ sin.q,o) sin 4 z Hf2) tr.onol

Using these relations one finds:
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eu- J (k p) o < o'_mnnpm
mllsan nQ) cos 
- 

z
- ue n(') (o- p) o > o,mn n fJIn

(3.14a)

h_u r (k- p) o < o'nÌì n pm. mïrsr-n n9) sl.n 
- 

z
o ¡ ()\u-- H'-'(k o) o > o'mn n pm'

(3.14b)

.hrp = L L (a cosnQ+bnnn=o m=o

The auxiliary wave functions are also changed accordíngly, that is

,lr: = .0 (bn cos.[Q - aU sinlQ) cos Ú z JU (k'np)

(3.16a)

,t: = (a, cos.Cþ + b& sin.q,O) sír, fl , Jl (kppp)

(3.15)

(3.16b)

(3.17b)

1ÏûJeUe p _.- Pt -,,,_1k.= sln -- z' tkppri (kppP')
frp

IIûJCUE . pr --(2) k p,),_fa; srn - z'tKppHl 
r.rppp

* l'ffi nu(2) {tong')l

* l' fffu rr(kppp')l

(3,17a)

Novr, in contrast to the magnetic case, the axj-al component of the electric
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but the magrìeticfield E is continuous across the source surface

field is discontinuous by an amount equal to

uï - srr = r(O') 6k - 2,)zz

lo = p'
I

lo<0<zirl-
lo<r<u.

(3.18)

An approach similar to that of the magnetic case yields the following re-

sults for the constant coefficients

e
mn

2_
i --''-iJ-I-.- ¿ 

"1rl 
4lL ,' ¡- (k- p')- 2(kpma)- m a n pm

h 1fûJUOu = _ __c sin az' J' (k- 0')mnJ(amanfJm
pm

(3. 19)

e 'lt2* m1T -- (2')
lt = I -::---ì- e sin - z' H '-' (k 0' )mn - z(i(pma)' m a n fJm

l_rh = - 
lri¡up' e sin4 z, H(2)' k o')mnk-amanPm

pm

Equations (3.19) together with (3.1), (3.2), (3.3) and (3.14) uniquely

define the electromagnetic field set up by an electric current filament

of strength I($r) located at a point, p = p', z = z'.

It is interesting to note that as z' approaches zero ot a

(the conducting boundaries), the fietd due to an electric current fila-

ment vanisLles. It can be shown by reciprocity that an electric current

just in front of an electric current conductor and parallel to its sur-

face produces a nult field [49], This can be explained by thinking of

the conductor as shorting out the current. In contrast to this case, the

field produced by a magnetic current filament does not vanish as it ap-

proaches the conducting planes. This is expected, since a fictitious
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magnetic current filament is equivalent to an infj-nitely thin stot (slit)

and as will be shown later it can effectively couple appreciable amount of

electromagnetic energy into the waveguide region,

Annlication to the Problem of Two-Cou led Radia.l Wave-

guides

The field set up by a combination of sources of electric and

magnetic types may be looked upon as a superposition problem. Based on

the Èheory presented earlier, thj,s section is devoted to demonstrate the

application of the previous results to problems involving annular slots

of finite width as geometrical discontinuities in radial waveguides. To

show the general feature of the theory, the problem of coupling betvreen

two radial waveguídes by concentric annular apertures on the corunon bound-

ary is consi-dered, figure 3,2, The exciting source is placed in the cen-

tral region of the lower waveguíde.

Solution to the problems lnvolving annular or cylindrical con-

ducting plates as the scatterers of electromagnetic field inside a rad-

ial waveguide can be obtained in a similar manner. That is, usíng the

appropriate Green's functions of electric type developed earlier, the sol-

ution can be found by integrating the impulse response of the s]¡stem over

the induced current distributed over the surfaces of the conducting plates.

The unknown coefficients representing the induced source strenqith are

then determined by an application of the condition of vanishing tangen-

tial electric field over the plates.

These geometïies may have applications as band-pass printed.-

circuit strip-line filters. They can also be used for the des.ign of feed

sysLems suitable for launching a particular mode or modes for use in
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An annular slot on the conducting wall of a radial waveguide, as

far as the .internal field is concerned, may be viewed as an annular dis-

Lïibution of magnetic surface current with a density given by

radial waveguides ,

3.3.1 I'ormulatíon of the Problem of Two Coupled Radial l^Ia

-)- -+
J = E X NImt

I aperture
(3 -20)

where â is the inward unj-t normal to the aperture plane. Noting the

fact that E, component of the electric field must vanish at the edges
v

of the s1ot, it is expected that for electrically narrow s1ots. the con-

tribution from E. to the hotal scattered field is ne91i9ib1e. Hence, we
a

nay assume the aperture electric field to be mainly in the radial direc-

tion. That is,

E (ôx â)mp (3.2r)

\À¡here ô is the radial unit vector, Expandíng the radial component of

the aperture electric field into a Fourier series of the azimuthal var-

iable 0 leads to

E (0" Ö') = x R (o')(a cos nó + b sin nÓ)onnn' n=.)
(3.22)

where Rn(p') is the nth mode's radial dependent part of the aperture

electric field and ar,, bn are the Fourier coefficients. Now, the con-

tribution from the slot to the total field can be obtained by integrating

the product of R(p') and the creen's functions (3.5) over the aperture

radial coordinate p' .

The above steps are essentially an application of the equivat-

ent principle to the slot problem, which replaces slots by an equivalent
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maginetic current sheet over a perfectly conducting surface expressed by

(3,20). According to Uniqueness Theorem [49], a field in a region is

uniquely specified by the sources withín the region plus the tangential

conpo.nent of the electric field (or magnetic field) over the boundary

enclosing the region. Therefore, as far as the field inside the \a/ave-

guide is concerned. the total field in the waveguide region is the sum

of the contribution from the magnetic surface current and the sources

inside the díelectric region. Both types of sources are radiating in the

presence of an uninterrupted radial waveguide. In the case of the geo-

metry shown in figure 3.2, LL,e incident field launched by the exciting

source in the lower guide must be added to the field set up by the mag-

netic surface current (contribution from the external region). However,

the total field in the upper guide is entirely determined by the aperture

field.

To be more specific. let us assume a general TM q mode of the

radial waveguide [49] to be incident in the lower waveguide. This mode

is characterized. by

The wave functions d.ue to the magnetic surface current over the coupling

aperture in the two waveguides are specified by

. "inc ÐÎflJ) = cos ':- z cos Õd)
' pqr

k = tk3 - (P.') lt/ tppr- r b

H(2) (r -o)g ppl

J' (L ^o' )n pmz
p'R"-- (p' ) dp '' J¿n ()\

H.-, , (k ^o')n pm.z

kr = Ærr.

m

k- ^pm¿
(a cos nó + b sin nó) .o" 4 

=nna

(3.23)

.e
r)2

'ttoe , L
x

m=0
x

n=0
+

fou

I

Juu

¡r 
(2) (i. ^o)n pmz

J (k ^o)n omz

(3.24a\
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It should be noted that the change of the sign in the two sets of wave

functions (3.24) | (3.25) is due to opposite directions for the respective

inward normals of the two radial waveguides. As it is evident, (3.24)

and (3.25) are merely obtained by integrating the creen's functions de-

veloped earliêr on the aperture source distríbution. Note also that the

continuity condition for the tangential component of the electric field

over the apertures is already implemented in the formulation by insert-

ion of equal apertu.re field distributions into the hrave functions sets,

The coefficients an and. bn entirely depend on the function-

al form of the azimuthal dependent part of the incident field. An exam-

ination of the total tangential magnetic field over the coupling apertures

and utilizing the orthogonality property of the sinusoidal functions over

the range of 0 < 0 < 2T reveal that for our particular choice of the

i-ncident mode (3.23), \^/e must have

=o
0

I

for all n

nl q

n=q

(3 .27 )

This ellminates the infinite sunmation over n in equations (3.24) and

(3.25), For most practical cases, the feed system and the guide dimen-

sion are selected ín such a manner as to support either a single mode or

a finite combination of the first few modes of the radj"al waveguide.

Therefore, the surrunation on n, generally, is a finite one.

The radial dependent part R[r](pr) of the tangential aperture

electric field. is generally not a known function. However, depending on

tlìe electrical widths of the slots/ the aperture field distribution may

be expressed in terms of a finite sr]m of a particular set of basis fu¡c-

tions with unknor,¿n coefficients. These coefficients are then obtained by



an application of the boundary condition on the tangential magnetic field

over the apertures, The choice of the set of basis functions and the tot-

al nunber of the elements of the set for each slot depends on the efect-

rical dimensions of Lhe sloLs and the required degree of accurêcy of the

sol-ution thus obtained. In fact, depending on the widths of the apertures.

suitable expressions describing the aperture source distribution can be

substituted into the formulation to obtain simplified versions of the

s o-Lution with acceptable accuracies.

The sir,plest , but the crudest se'ù of basis functions/ j"s

a series of pulses of .equal wj"dth but different strength . located side

by side, characterizing Lhe aperture field distribution. Since over each

pulse we assìme the field is constant wíth respect to p variations. the

width of each pulse should be selected electrically snall enough to phys-

ica1ly substantiate such an assumption. Therefore, the nurìlcer of pul-ses

(unit cells) per - siot and hence , the total nurnber of field strength

coefficients is directly related to the aperture sj-ze. Evaluation of

these complex constants can be performed. using the continuity condition

of either H, or H . The extra boundary condition appearing here, isQP
the result of our previous assumption made on the tangential electric

field. E, component of this field was assumed to be negligible compareda-
to E. for slots of electrically narrow widths. Ìn fact, it seems quitep-
possible to construct an extra set of wave functions describing the con-

tribution from a p directed magnetic current distribution over the

apertures. Then, following the same r.outine as that of the 0 directed

magnetic current / we can expand Eö over the slots in terms of a finite

sum of the basis functions with a new set of complex constant coefficients.

fhe two continuity condítions can then be employed to determine the two
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sets of coefficíents simultaneously. However. since ttre primary object-

ive for the present study ís to investigate scattering bodies of small

widths, \¡¡e assume the geometrical díscontinuities are electrícally thin

enough to produce mainly. 0 directed surface currents over the scat-

terinq bodies. Hence, we may take 
"O 

component of tl,e total magnetic

field in each region to be matched on the aperture openings. îhis is

done by equating the values of HO over each slot or each cell (in case

the slot width is divided into more than one unit cell) for the two reg-

ions in an average sense. If the cells are thin enough, this is a good

approximation to the true value of HO over the cells. That is, since

Q cornponent of the nagnetj"c field 1s tangent to the edges, it has a fin-

ite value over the entire surface of each individual slot, To this end,

!¡e start by expressing the aperture function R](g') in teïms of a fin-

ite number of pulses with different amplitud.es E.n. At this point, we

make the following convention for mrnbering the cells forming the entire

coupling åperture. The cells are characterized by their central radii

and the numbering starts from the cell with smallest radius of the smal-

Iest slot and ends by the cell wíth largest radius of the last slot.

Therefore, the aperture function is represented. by

'f t1

R (o') = I E. P. (o'n-rn.a t

where, P- is the ith pulse and
I

- o'. )
' l'

has the following property

(3.28a)

(3.28b)

ô. ô., -t: p'-pt .É
P. (lp' - o'.1).t"

0 elsewhere

and IC is the total nunìber of cells of the entire aperture,
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Su-bstituting (3.28) in (3.25) and noting (3.27) one obtains the followinq

expressions for thê azimuthal component of the magnetic field in the re-

spective regions

7I{rJg - IC
H. = t L L Fr E. cos cró cos 4 z-'ó2 2a - "in m a' .I=1 m=L)

¡r(2), (r -o)q pml'

J' (kpmlp)

n(2), (a ^p)qpm¿_2- -3 2 -LC æ -Ej. m-e
1l -q- an m m?T- tõË5 .r_ ,- kr_ cos qQ cos 

-zo a= -L m=u 0m2
J (k ^o)q fimz

'+ H 
(2) 0. _o)loi 'rn (ko*zP' ) n t)m¿l*' I dp' . (3,2sa\

l_r.\
Jpi. H''' (ko^2p') Jq (kpm2p)

lö Jt (k^ .p')
rC-laqfrml
I x ¡.e cos qO.o= $" I p' dp'. rn m - 

" Ir=-L m=0 
., u' "i2) ' txo*to'l

tð, rå (kpm2p')

I o' dp'

.J¡, 
" 
(') ' ruo*ro' )

1lûJE

_1"0r - 2b

'tt " ar'
2pub r

a)

Ic - E. m2eln m mllL L -='ó- cOS "-- z
i=l m=o ßó*z b

u (2) o. -o)q pmr

dp' .

) J (k- _o)q pma

"(2),t 
o)q pp'

t-
lo, J.' (komr p')

I

Jo, n 
(') ioo*r'

k - cos <¡ó cos !- zppl - .b
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ltrow, we equate HOI and

average sense. That is.

:: :-_toij = nþzj

,þ, over the cells forming the slots in an

ô.
lp-p-l .*)-¿

0<0<2'If

where the bar stands for the average value of the field components. In

view of equations (3.29)f we define the average value of the magnetic

field for the jtt! slot to be

Q]

h,.
1.1

where

I
¿ h..la

+
fp.tirl

=- I H.. do
^laoô. t-
I j p-

J

(3.3ra)

(3.31b)il)

where H.a is the contribution of the ith slot to the magnêtic field atLç

the jth slot. For i = j term that can be viewed as the contribution

of the jth cell to the average value of HO associated with the jth

slot, such a definition as (3.31b) creates some unnecessary mathernatical

complications in evaluating integrals involving products of Bessel func.

ions of both different argument and order. However I due to the electric-

ally thin dimension of each ce1l, these problems can be avoided by taking

the average value as the mean of three sampled points over each cell_, n¡me-

ly the two edges and the center of the cell. Note that HO is tangent

to the edges of the slots and, therefore, according to the edge condition

[56], is bound.ed even on the ed.ges of the aperture. Hence, choosing the

sampling points on the edges should not create any numerical comptication.



We/ therefore, have

h.. = =tH,(0.) +H,(0.) +H,(ò.)lrr I v a v r (P .1

vrith

)

and

I
0.
)

/.\ r /.\
ls''' (k- -p.) - u''' (k- -p.)lq ppr I q rJpf l

lwi\'*-.
om

m= LJ Pm2 l

'Í"ot - t¡'
20.uar - k' -Ô. nì'I o m=9 pm2 3

Toei co P,

2b'1,2Â'-
ln=O --Om]- j

(3.31c)

It should be mentioned that even though the integrafs as defined by (3,31b)

can be evaluated exactly, simpler results with no significant loss of ac-

curacy can be obtained by nêglecting the variations of terms líke p and
'l

i in the integrands and replacing them by their mean value over each cell.p-

Note ¿hat the same approxÍmation may not be effecLed for the Bessel func-

tions due to 1,.he existence of k in the arguments which becomes farge for
pn

higher order modes.

In the light of the above arguments¡ one obtains a set of simul-

taneous linear equations in terms of the aperture field coefficients in

the form

[",'] [",-] = ["î"']
(3.32a)

(3,32b)

-lr
ilJ l

l-"n o.o*rorl -l - [ "

[";'' 
,oo*,0r, 

] ["

= '^t,
2,a

["fri rorrl 
. ' [.:;i ,n,,-l 

*

L- l- L - l-

. ]-"n(uo,''ror) 

-l . 
. |_-i''(oo*'or)l 

*

[-;'',uo.,or, _] 
- f "n,oo*,0,, ]

(2\ ."(K ^f.).q fJmz l

(k ^p. )q fJmz l



* 'uq'.^ i -¿-, ["".Tr0.,1*.l-."'Yro r--l * G.32c)' zojuob' 
^lo 

oå*rôj "m f"+nr'"i'I - f"qmr"'j'-l -

where the top rows are for j > i and the first superscripts represent the

appropriate Bessel function ín the definition of cqrn(p), which is pre-

sented later. The diagonal elenents are of different form and are given

by

y' = ?. -i^ *.-' "å(oo*, 
FrÌ . ["j'' too*,orr] I

n=0 pm2

* "'l''(ko*2 öi) f .n,oo^, er) ] : + rå(kp*2pi) ' ["j''(uo*ror)]j.-r
(2\ F" ,o -0., lot - .n'o" , ; -aa t+ Hn '(ko^2pi)' 

f q u*, r 1- o[riþor, m=o 
kpm2 m

- 1-.u ,0.,1***(2)¡.- å.1 .l-"" ro.ll*nn(oo^, ol) ' f q^, -L l- q pmr .r L qm¿ r l-

I_ - -1' r.\ l- - -10l* 
"áup*ror) ' L"ä*, 

tot) 
_lå,- 

+ H ''' (kpm2pil ' [c*z rotl _l-'
n"1. i :- e r,(k õr f-,.tzr,, ^.'l+- 6b ' 

-t^ k- " m q pmr r L'q 
(op*rpi!-

m=U pml

* r(2), ro- - Ë , llrzl ,u- -0.,1* + r'(k- -o.l l-"(', ro -0.,1*q pmr r Lq pm_L rl- q fJmr r L s u*r rJpi

* "j''' (kpdpi) 
f"n,*o*ror,]:t . ffi j, 

- 
t

- r"n,to.r--l,. * "(2)(* - å.1 . 1"" _,o.,1*"n(oorl 
pi) 

L-s*r'ui'l- "s *^pml r Lsru r -1-

* rq(kp*rpr) ' 
["furtorr ];, . "j''(kp.rpi) ' ["i-r(pr) ]:'

(3.32d)

wirere [50]
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N
- r^ en Bzr, (kp*P) /ko* o < q = 2t'¡+1

rQ n=0
c (p) = I B (k^ p') dptqmJqpn

p>0 
" nlo "r(x+¡.1) +t (kp*p) l/kp* 0tq=2u

(3,32e)

Note that for the case s = 0 (0 syr,metry), the field is TM to z and is

solely determined from tJ;e,

Superscripts J and H denote to Bessel and Hankel functions,

respectively, and B_(z) reprêsents any cylindrical functj-on. The infin-q

ite series in (3.32e) which appear for the cases when the incident field

is an even mode of the radial waveguj,de is a fast converging series and

can be truncated after the first few terms.

once the aperture field coefficients 
"rn "t. determined from

the matrix equation (3,32a), the field components in the two regions away

from the slots can be obtained frorn the following relations and (3.3b).

l-,ro {ro.ror) I +

.e rrûre2 rc i Pi m' I Itr-'2 '^ i=t Jo oét, Íq m t I t)\ I

u(2) (r.- ^o) 
LH;-' &em2ei) 

-l -
q pm¿

J (k ^p)q pmz



1nc(p_
pq1

tICÎi-
- I 

-z 
L L ;:T¿ E:^

r=l m=U pm¿

" 
(2) 

1¡s^ ^a)q pmz

r (k^ ^p)q Pm¿

mTL Sln cfu san 
- 

zm'a
l-^¡,"
L'*qz

-1 -(ei) I _

1IüJC,e I
Yl -2b

rc*o.
mT1' ¿' :-t- E, U COS qQ COS --- Z .

i=r m=o kOmr rq m " -L)

H 
(2) 

{r.o*ro)

J (k- -p)q fjm-r

.o= f , "o" rO "j2) 
{r.onrol

f"n(uo*, 

orr 
I 

-

L{'',uo^, or,_l -

.,.h 'Í2 l" i r'o , ^ m'ì9t = )Ãr., " _ k?': uio t*"ttqqsrn;_z'
f=J- m=U PmI

" 
(2) (r- -p)q fJmr

J (k^ -p)q 
'JMI

l-""'l to rl *
L mql 1l-

(3.33)
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3.3.2 Expressions for the Total, Transmitted and the Coupled

Power

The power-transfer characteristic ís generally the most inport-

ant pararneter for structures used as filtering devices. The band-widtl'!

efficiency and frequency sensitivity of the filters are mainly determined

by a study of thej-r power transfer functions. For the problen under in-

vestigation, there is another feature to the po\,rer flow characteristíc.

Since the conservation of energy is not utilized êxplicitely in deriving

the aperture field coefficients, this principle can be used as a check on

the accuracy of the numerical results. That ís, the difference between the

total power injected by the source and the sum of the powers coupled to

the upper waveguide and transmitted through the lower guide is an indic-

ation of the accuracy of the solution thus obtained. Throughout all the

numerical examples presented in the thesis. this property is utilized and

difference values smaller than O.01 per-cent of the total power are ob-

tainêd-

The power transfer across a surface S is defined as,

¡rp = Rêl(ÉxÉ*).âds
J

s

(3.34)

Í¡here Re stands for the real paït of a complex quantity, â is the unit

normal to S in the direction of power flow and asterisk is due to comp-

lex conjugate operation. To calculate the total power \re take the surface

S to be forrned by an arbitrarily located cylindrical surface, with a

radius px smaller than the first stãt, and the conducting h'alls. Since

S encloses the feed system in the lower waveguj"de r an application of

(3.34) to the volume bounded by S yields the porver leaving this region

and hence equal to the total po\rer ínjected by the source system located
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at the central region of the lower waveguide. For pïactícal considerations,

the guides thicknesses are generally selected to be smaller than one-half

of Lhe intrinsic wavelength I. Therefore, all the higher order modes

\4tith -m>0 have a complex kpm1, equation (3.5c), and do not contribute

to power-transfer, In this regard, expressions for the power components

are only derived for the propagating mode.

The coupled power can be obtained by taking S to be the surf-

ace of an arbitrarily }ocated cylinder in the upper waveguid.e lvith a rad-

ius greater than the last slot" By a similar approach, one can obtain the

transmitted. power through the lorver waveguide by selecting the cylindrical

surface in this region. In fact, power coupled by individuat slots to the

upper guide can also be calculated by taking the respective slotrs aper-

ture as the surface S and an application of equation (3,34) to the slot's

field components.

Using the theory presented in thís section and the expressions

derived for the wave functíons in the earlier sections, (3.33), the total,

coupled ând transmitted power for two coupled radial waveguides. figure

3.2, axe formulated lAppendix B] and the final results are as follows

Total

Coupled

(a2 + b2) rc

Ë 
{+ao n kor * 2, .rL. 

,1, 
kopi *.Iko

1 l.

- (a2+ bz)r(E ^)'/' rc rc
- q 9 tzt^ -ffi-.I_ X- kop. 'kopn'R. (ko"io"

q=u go L=I m=I

- 1¿2 + b2) (c -13/2 tc rcP = x --9.-.-9- { sorkob*,#*uo t
Transmitted q=o tn o a--r m=l

'kP' Re(kE. )tJ (k-P.)l+om orq nq q t1
rc

+ u: /{ I k p= Re(k E. ).tJ (k-0.)ì+Jr_L . a o a o ig - q'l'i,---
1=l

x
q=0

r1ì
EiqHq' ' (kror) 1_Ì

(3.354)

*+
) tr (k_0.)lmq q zt

(3.35b)

OF MÂNIfOBA
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Note that for single mode operation the infiníte surunation on q is elim-

inated.

4.3 Equivalent Admittance of an Annular Sl-ot

As an equivalentf principal-mode circuit representation ' it is

often desired to associate an admittance with each slot on the conductinq

boundaries, For this reason. we must define tvro quantities representing

the slot current and voltage r., V., As a measure of the slot current,

we define

I. = 2nO.¡t,(ô ,0.)r r-Q o r (3.36a)

where o, is the average radius of the slot and ó is a reference value

which for single mode operations can be taken as the an91e for whÍch 
"ó

is maximum. For voltage V. we take

+
fo; *v. = l-E(o'.0o).pap'L J_
pi

The admi-ttance characterizing the ith slot is then defined by

(3.36b)

I.__a-i v.
a

(3,36c)

In the next sectíon, the equivalent admittance of a single slot

as a function of its radius is computed with the aid of the above defini-

tions. The effects of the higher order modes on the admittance value and

the field distribution of the slot are also investigated.

3.4.1 Effects of the Higher Order Modes on the Admittance and

Fie1d of the SIot

Based on the theory presented in the earlier sections, the admit-

tance of an annular slot. coupling two radj-al waveguides, is computed as a

function of the radius of its leading edge. The thicknesses of the
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waveguides are smaller than half the intrinsic wavelength, therefore, only

the d.ominant mode propagates, The conductance and the susceptance terns

are depicted in figures 3.3a, 3.3b, respectively, The ratio of the radii

of the slot edges is kept constant and equal to 2.36 (aTMOO excítation is

assumed). In order to study the effects of the higher order modes excited

by the slot discontinuity on the equivalent admittance, the results obtain-

ed by takinq only the propagating mode are also shown, the dotted lj-nes.

l^thereas, the solid lines are due to the inclusion of the first ten modes

which was observed to be sufficient to yield a convergent solution for

a1I the examples presented in this thesis, These results indicate that for

most. applications, the dominant mode representation, such as that in the

transmission line theory, adequately describes the slot admj-ttance. How-

ever, the accuracy of the results, particularly for central slots where

kp is small, is not satisfactory. As a further check on the dominant mode

approximation, the field distribution over the slot is also calculated and

is shown in figures 3,4a. 3.4b. The slot is located at a radi.al distance

kp = 2.OO which corresponds to the last plotted point of figure 3.3, For

this calculation, due to the large electrical width of the slot, the aper-

ture is divided into 13 cells (annular rings) of equal h/idth. The tan-

gential electrical field over each cell, lrhi ch for theTMOO excitation is

equal to E^, is then computed by applying the continuity of the tangen-
p

tial magnetic field in an average sense. Comparing the results, one notes

that the dominant mode theory yields reasonable results for the field mag-

nitude, except in the vicinity of the slot's leading edge. On the other

hand, ít faits io describe t¡e phase of the field accurately. The actual

phase of the slot field which is calculated by inc-Luding higher order modes

excited by the slot d.iscontinuity is virtually constant across the aperture.
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l,iher:eas, the result due to the dominant mode alone oscillates between 0

and 180 degrees for adjacent matching points, These calculations also

show that the field distribution of an annuLar slot is sinilar to the cur-

rent distribution on a conducting strip ílluminated by a plane wave [51].

It should also be noted that even though the dominant mode approximation

gives inaccurate phase distribution, it yields a reasonably accurate result

for the equivalent slot voltage defined by equation (3,3b). This is due

to the fact that the voltage depends on the integral of the slot field

and the phase oscillation compensates for inaccuracies Ín the slot field

amplitude. As a result, the s1oÈ adaittance calculated by the dominant

mode alone has a reasonable accuracy,

Filtering Characteristics of Two Coupled Radia"I lVave-

gui des

Two dimensional arrangement of annular slots to form resonant

arrays are of practical .interest for applications as band-pass or band-

stop filters. The filtering characteristic cân be controlled by varying

the dimensions of the s1ots, their relative locations, the waveguide

thickness and the constitutive parameters of the two coupled regions.

Tn the methods based on the waveguide transmission line concept ¿ the coup-

ling due to the external field (upper waveguide region) is generally over-

looked. However, as it is shown in table 3.I, dependj-ng on the arrangement

of the slots and their electrj-cal dimensions, the external coupling can be-

come so strong as to cause part of the radíated power to be recoupled back

into thewaveguide containing the exciting source. The geometry is formed

by five annular slots of widths koô = 0.20r separated by a distance

k x = 2.OO located on the corunon boundary. Since the slots are electric-
cJ

a1l-y thin, the calculaÈions are carr.ied out by representing each slot by



Slot No.
Power Coupled by Each

Slot (Percentage of Total Power)

1 + 8,49

2

-23 -32

4

5 +52 - OO

Total Coupled
Power +36. 51

Table 3.1: Contribution of each slor to the total pow-
er coupled into the waveguide nu¡lcer t\47o,
TM^^ exciting mode.

UU

N=5

TL =

e - = 1.00r2
k ô = 0.20
o

k 0" = 4'uo
OI

k x = 2.00
o

k a = 0.25o
k b = 0.49o
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a single cell, That is, each slot is characterj-zed by a constant complex

field E. which is found by matching the average of the magnetic fieldI

over its surface. The results for the coupled power by individual slots

shov/ that the external coupling is quite strong and causes a portíon of

the already coupled po\,¿er to be returned back into the exciting waveguide

through the slots 3 and 4. An equivalent transmission line representation

is then a negative slot conductance (a source) associated. with the res-

pective elements.

Figures 3.5 - 3.7 are intended to show the application of annul-

ar arrays as band-pass filters, The filtering characteristics of a single

slot excited by aTM^^ radial mode is shown in figure 3.5. It is interest--00

ing to note that by a pToper select.ion of the geometry, a single narrow

slot can effectively coupl,e a major part of the totaf power to the upper

waveguide over a wide frequency band \,rith a sharp cut-off characteristic.

More selective filÈering response catn be obtained by increasing

the nu¡nber of s1ots. Figure 3.6 illustrates the transfer function of a

filter havinq' four slots as its coupling elements for the TMOo excitation

mode. All the dimensions given are at the frequency fo and ko is the

free space propagation constant. The response of the same geometry to the

ttol exciting moàe is depicted in fÍgure 3.7. The resonance peak is

slightly shifted toward the higher frequencies and the bandwidth is decreas-

ed compaxed to the TM^^ mode of operation. To demonstrate the sensitivity-u
of the filtering characteristic to the slot spacing. ko* is increased

by an amount equal to four per-cent of its value foï the solid. Iine and

the result is indicated bv the dotted curvê.

In conclusion, the woïk of this chapter establishes a method of

solution for the electromagnetic field inside a radial \araveguide in the
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presence of annular and cylindrical type discontinuities in the waveguide

region. The forcing function may be of a general nature, hov¡ever, the

geometrical interruptions are assumed to be electricaUy thin enough as to

only support azimuthal directed current distributions (electric or magnet-

ic) on the surface of the scattering bodies, The inclusion of the fict-

itious magTtetíc current distribution in the general formulation proves to

be useful for treating problems involving coupled waveguides by annular

shaped apertures on the conmon boundary. One possible application àf tn"

method is in the design and fabrication of microwave printed-circuit

strip-line filters with band-pass characteristic s.

Another. possible application is in the design of annular slot

array antennas for producing pencil beam radiation patterns, However, treat-

ing these types of geometries requires solution to the field excited by

an annular slot of a fiilite width on a conducting plane radiating into a

semi-infinite region, - The next chapter is devoted to the development and

formulation of problems of this nature.
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CHAPTER IV

FIELD SOLUTION FOR ANNULAR SLOT ARRAYS FED BY

RADIAL \4IAVEGUIDES

4,I Introduction

Slot arrays in conducting surfaces have drawn considera-ble inter-

est for applications as flush-mounted antennas for use in aircrafts and

spacecrafts. With the exception of structuïes using isolàted feed assenb-

ly for individual slots [52] ¡ such antennas are formed by cutting slots on

one side of a waveguide which is also used as the feeding system for the

slot arïay. The array elements are successively fed by a travelling v¡ave

inside the waveguide. This form of excitation eliminates the aperture

blockage problems usually faced in the design process of reflecting type

aperture antennas.

' tunong slotted structures, annular type apertures have also been

of interest for applications as low profi-le antennas. Howeverf due to

mathematical complexity generally associated with problems involving aper-

ture coupling, existing design techniques are mostly based. on overly simp-

lified models. This in tuïn irnposes a number of restïicting conditions

which limit the range of applicability of these techniques in provídíng

acceptable results.

Earlier investigations of the problems of annular type apertures

were generally based on assuming a fíeld distribution over the aperture

and. then solving for the radiated fleld in the exteÏnal region 1531 . How-

ever, for waveguide fed arrays where the strong coupling bethreen the array

members is the determining factor for aperture field distribution, this

approach does not yield the required information for d.esign purposes. The

55
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mutual coupling in these cases can become so strong as to turn a resonant

slot, when ísofated. into a pïedominantly reactive one when placed in an

array of slots,

As it was rnentioned earlier, a procedure corunonly used for treat-

ing waveguide fed slot arrays is an extension of transmission line theory

to waveguide structures" However ¡ this method is unable to account for

higher order modes excited by the slot d.is contínuities . Furthermore, the

coupling effects of the external region are totally disregarded in this

manner-

Earlier hrorks d.ealing lrith cavity or waveguide fed annular type

aper.ture antennas in which attention is pai-d to higher order modes excit-

ed by the geometrical interruptions are based on assuming a uniform forc-

ing function (no 0 variation) giving rise to a TM field in the two reg-

ions. Furthermore, the problems of mutual coupling are avoided by consid-

ering single slot structures.

In the pïesent v¡ork, a new type of slot antenna is considered,

figure 4.1. Concentric annular slots are arrayed on one side of a radial

waveguide. The cond.ucting wal1s of the guide may be supported by a diel-

ectric substrate (with or without loss), The slots are of finite widths

ô_ Jocated at radii p = O . The excitinq source is placed at the centralmm
region of the guide a¡d its field Inay be of a general nature. Again, the

slots are assumed to be electrically thín enough as to suppress radially

d.irected induced currents (magnetic) over their surfaces.

we develop the fornulation for the field in the semi-infinite

region by first constructing the appropriate creen's functions, These

functions describe the impulse response to a magnetic current ring (annular

slit) on the conmon bound.ary of the interior and the exterior regions.
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Figure 4.1: Typical radial waveguide fed annular
slot array antenna of infinite extent.
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Then, the final formulation is achieved by integrating the impulse response

over the aperture field distribution in a similar manner as was described

in the previous chapter.

_ In the next section, the appropriate Green's functions for the

exterior region (semi-infinite space) is constructed and the externat field

will be formulated in terms of these functions. The expressions for the

field components in the feeding guide are obtained in Chapter III and are

used for the problem under consideration,

Even though the present study is mainly oriented toward a sol-

ution to annular slot arrây antennas I for the sake of completeness the

appropriate creen's functions of electric type are also derived by a simp-

le application of the concept of duality [491. This would enable one to

formulate problems dealing with annular or cylindrical type sources or

scattering bodies in free space.

4.2 Problem Formulation and SolÌrtion

4.2,1 Construction of the Appropriate creenrs Functions/ Magnetic

Ring

fn deriving the appropriate creen's functions for the problem

d.epicted in fígure 4.2, \¡te utilize the properties of a set of Hankel

Transforns of order n [55]. The basic principle is to transform the wave equ-

ation ínto its spacial frequency domain counterpart. The creen's funct.ions

are then constructed by imposing the constraints on the field components.

The result is then transformed to the spacial domain, using the Hankel

Transform. Evaluation of the infinite integrals is discussed in the sub-

sequent sections.

Consider the geometry shown j-n figuxe 4.2a, An annular slot on

a cond.ucting plane of infinite extent may be viewed as an annular distribution
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of magnetic surface current given by

J = E Xñms a oerture

where fi is the unit normal of the aperture. For an infinitely

(slit) , the magnetic current filament can be characterized by

(4.r)

Lhin slot

(4.2)

(4.3b)

j = -v(o') ôtp-p'rô'
ms

where V(0)is a piece-wise cantinuous function of the azimuthal angle þ',

representing the equivalent voltage across the infinitesimal gap and p' ,

O' are the source coorclinates. ô' is a unit vector tangent to the cur-

rent ring and represents the direction of the current fLow. I'¡e expand the

source strength V(0') in terms of Fourier series as

V(ö') = I (a- cos n$'+ r- sin nrÞ') O Í 0' . 2tt (4.34)rrn
m=o

where

n

b=
n

n

t ¡2Ifnl
2rl

nl
^l¿T1¿o

1

2

v (0' ) cos n0' d0'

v(Q') sin n0' d0'

n= 0

r\l o

Now, an a:rbitrary electromagnetic field in a homogeneous cylindrical region

can be expressed as the sum of the T¡4 (E waves) and the TE (H waves) fields

to the z-d.irection, equations (3.3). The proper forms for the wave functíons

^]i|r' and !r" can be determincd L,y an application of thc Hanke-L Transforms.

The transform pairs of order n of a functj-on ,þ(p, þ, zJ are defined as

_r-
ù (a, þ, z\ = I q/ (p, 0, z) rn (0.p)p do

ro
(4. 4a)
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þ(p, þ, zl = I 'r(cr.,0,Jo

z) Jn (dP ) sdo.

6t

(4. 4b)

In view of the periodic nature of the geometry in the azimuthal direction,

the v/-ave equation in cylindrical coordinates is expressed as [49]

-.I.-t (4 .6a)

â2dl r âú n2 à2u:--r+-;= - --õ-'rl/ + ;-; + k-Ìl] = 0d0' 0 dP O' ðz' o
(4.5a)

where

r = oÆ u- (4.sb)o oo

Taking the Hankel transform of (4.5a) by using (4.4b) and expressions avail-

able for the derivatives of a function as [55]

r@ -z- 2l^,qr,rqr_lã.f)J(dp)do
Jot*ao''pdp n '

one obtains

^2tþ-tzl ,!ø,A,"1 = o

where

y = <o'-ot)'/'

(4.6b)

(4. 6c)

1 so defined Ís a double valued function, therefore, a uni-que value re-

quires defining a specific branch by invoking the physical constraints of

the problem. This r.vi11 be done in a later section¡ however, at this point,

it is assumed that the appropriate branch has been selected and ít suffices

to say that y may have a complex value of the following form

(4.6d)

Hencer we proceed to express the wave functions of e and h types in

terms of suitat¡1e sets of mode functions with unknown coefficients. To

this end, as an antÍcipation for relating the fietd. components to their

source V(Q) and in view of equation (4.6b) \^¡e take

Y = Y'+ jY" Y"Y">0 for a1l 0
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+ u" (0,) er-ln (4 .'r u\
f;ie 1a, þ, z)

:hU (a, Q. z)

-n

-n

cos nQ + bn sin n0)

cos nS - ar., sin n0) - h -yz h. yz
LU (0)e + u (û)e ln n Ø.ib)

Since tl(p, Ô, z) must behave according to the radiation condition at

large distances, consídering (4,6d), the appropriate forms for t.lrt and

,/lh in the semi-infinite regíon are obtained by setting uê and q in

equation (4.7) equal to zero which leads to

[,"(o, o. r) = ; (a cos ns + b sin nö) u"(a) .-Y'' - n n n-n=u

,/rh(o, 0, rl = i ",o" cos nrþ - a,., sin nö) un,o, .-"'
n=O n

(4.8a)

(4.8b)

From the boundary conditions, uO component of the field must

vanish over the conductíng plane, inctuding the edges of the slit (edge

condition) [56] , that is

"ó=o

E^ = v(0) 6(p - p')
p

Therefore, using (4.9), (4.8). (4.4b)

and E in terms of the e and hp

ône tl nds

(4. 9b)

z=0

and recalling the relations for EO

type vrave functions, squations (3.3b) ,

0<O<27

o<p<-

However, 
"p 

component of the field is singular at the edges, hence. we

may represent it by

o:0Í2il

o<p<-



- -+ î t- cos nQ + b- sin nô) [* ro'"' (dp) ue(o.) dcxlato n = 0 n t't Jo n n'

*! i ,r'(a. cos n0 + b,., sin n0) . [- r"" (op) uh(o)oo = v(O) ó(p - p,l
P n=O n n )o n I

(4. 10a )

l-- ::.^--.^- ¿ n (.b cos nQ - a sin n0) I fcur tclpl uu (a)do,lr"oP rr=o n n Jn n n

-r
+ I n(b cos nö - a sin n0) . I o,2J'(oo) un(a)ao, = o^nntnnIt=LJ r ('r

ù J" Yo'2r'(0P)
h

n(crp) u-(a)dcr = 6(o - p')
(4.lla)

- =+= f vs¡ tool u"(o)¿o * ,, f a2,r,(op) uh(cr)¿o = o-lûJE O ¡ ' n n / n ' n'- o ¿a

(4.10t,)

where V(Ö) Ís given by equation (4.3a). Using the orthogonality relations

for sinusoidal functions over the range O < þ < 2T, the above set of

equations can be reduced to

,> 16
u"ta)ao+ L I dJnot ' Jo

(4 . rlb)

An addition of the above two equations leads to

rf*-h- .--:- I vc2J (fto) u=(o)do + n J o2,r_ ., (op) u"(o)do = ô(p - p')loeo Jo ' n-_L ' n. Jo n_r.--' 
(4,I2a)

and their subtraction yields

rff^h. I yo.'J -(oo)U"(o)dcl+nI d'J _ (o,o) U"(d)do = ô(p-p')J"o Jo ntr t Jo n+J 
Ø.L2b)

where a use has been made of the available relations for the derivatives

of Bessel functions in the form [50]

t!(z) = J - (z) -\t (z)n n-I z tt
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(4 -I2ct

Nowf taking the Hankel Transfom of order (n - 1) and (n + 1) of equa-

Èj-ons- (4.12a) and (4.12b) respectively¿ and utilizing the properties of

delta functions r one obtains a set of equations which after solving for the

coefficients result in

J'(z) = a¡ (z) -J.-(z)t\7nn+ L

J' (o,p' )

ue(cr) = -j{DÊop' -i. (4.13a)

(4.13b)

The above coefficients in conjunction with equations (3,3), (4,3), (4,4b1

and (4.?) uniquely define the electromagnetic field set up by an annular

slit of strength V(Ó) over an infinite conducting p1ane, The evaluation

of the generated infinite integrals for obtainj-ng the field components in

the space domain ís described later.

Note that by substituting (4.13) ancl (4.11) 
' one obtains ident-

ities in the form

Jn(crp')dcr = 0 (4.14a)

Jn(op')d0 = 6(p-p')
(4.r4b)

Proof of the above identities which ensures satisfaction of the boundary

condítion over the surface of the coriducting plane is given in Àppencix C.

4.2-2 Electric Ring

The field generated by an annular slit cut on a conducting plane

of infinite extent was derived in the previous section. According to

equivalence principle [49], as far as the field in the semi-infinite region

e' J"

''I

r-J (o,o) J' (c[0' ) d0 + o I J' (do)nnln

,f@

J'(ao) J'tao')aacr + 4l !,r (oo)n n o jo o t
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defined by " ì 0 is concernedr the problem is eguivalent to a magnetíc

current ring ptaced .in front of an infinite ground plane and characterized

by

r = r (Q') ô(0-p') 6(z)ó,mm (4.15)

where, Im(O') = -v(0') and the source is radiating in presence of the

infinite ground plane. Using the fmage Theory 1491 , the result is also

valíd for a geometry as illustrated in figure 4.2b. where, the strength

of the source is now given by -2v(0') and is radiating in free space,

The field components for this source can be derived from equations (3.3)

by substituting the following results developed in the earlier section for

,lr" ana ilh

rl.rt = -ioe p' I (u-o-n
n=u

cos nó + b sin nó)
rt

-YtJ (0P) e '" d0.n

(4 "I6a)

e '' d0, (4.16b)

I 3 "' top'rJo Y n

ph = i^ ,,6r, cos n0 - an sin nO) f- | ",.,,o0,, "rr,oo,n=u

3 = r(0') ô(p - p') ô(z)O

Using the concept of duality for electromagnetic fields [49] ¿ it

is straight forward to derive the field set up by an electric current fil-

ament characterized by

(4 .!7 )

This can be done by replacing E+-H¡ H+E and E¿U in equations

3.34. These tr¿nsformations modify the set of vectorial equations to

-+ ^ã1 ^LE = -Vx (-l ,l¡)* l;.V x V x(z rl")
(4.18)

-+^hi
H = V x(z V'^) + 

];¡V * V x(_z V")

Comparing (4.18) against (3.3a), one concludes that the solution for the

electric current filament can símply be obtained by replacj-ng rlh by
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1a

-!J", V" ¡y ú" and exchangíng eô and l-1,, in the respective relations

deríved for the magnetic ring. The final result is of the following form

n (br., cos rQ - .., (0p' ) J (o,p) .-Yt ds (4. t9a)n

.h X (a cosn$+b
-nn n ' (ctp ) Jn (0p ) "-Y= d.o

(4 . 19b)

where a and b are the Fourier coefficients obtained by expandingnn
I(O') over the range o: O' < 2îï. The apþearance of the factor I irt

equations (4.19) is related to the way that an and bn are defined in

the two cases.

Equations (4.19) together with (3.3b) and (4.17) uniquely d.efine

the field set up by an electric current ring of strength I(0') located

at a point O = Pt I z = O. The coefficients u., and bn are defined by

similar relations as equations (3.2b).

4.3 A Nole on the Bra"nch Cuts of the Function

ça2 - 112¡I/2

"" 
ta *4" 

"tra"==- 
earlier, Y so defined is a double-valued

function in the complex o,-p1ane. Therefore, it is necessary to specify

the branch of ] function in order to uniquely define the representation

given in (4.6c). This is done by invoking the radiation condition, which

specifies, either an outgoíng or evanescent wave for large t = /p--z-;-7.

The details of the principle involved can be found in [56], [57] (with

-iûJt tíme convention), and is briefly discussed here.

The creents functions for half space are proportional to inte-

grals of the types



r = I I 
" 

(0,o') J (o,o) .-Y' dcr, jo o n

r = I ! r'rop,) Jn(dp) u-Y' do2lYr

Using the relation expressing the Bessel function

functions of the fírst and second kind [50]

rn (o¿p) = å ,"rl'' ¡ap¡ + u(r) ¡op) l

67

(4,20a)

(4.20b)

is terms of the Hankel

and noting the fact that both integrands are odd functions of o',

above infinite integrals can be transformed to

r - 1l 
'-,{oo,l Hj2) tapl "-Y' do*1 z )_*",

t2 = å L 
!.ritao,) ¡r(2)(crp) "-\" d.o

where a use has been made of a change of variable, o * oajn, in the inte-
¿t ìgrand involvins Hì-'(o'p) and the expressions available for analytic con-
n

tinuation of Bessel functions are utilized [50]. The term uj2) {op¡ "-Y'
is recognized as that of a two-dimensional plane wave. Therefore. the rest

of the integrand may be interpreted as the amplitude of a spectral plane

h¡ave with r{ave nulnlcers ct' and -jy. The rad.iation condition will be sat-

isfied if I- and I- vanish for r + co. This wilt be satisfied i-f theL2
integïands in (4.22) vanish for either p + - or z -+ .'. ¡'or ¡ll2) (ap),

n

the convergence of the integrands is assured by taking the integration path

in regions for which the imaginary part of o is smaller or equal to zeyo.

In order to ensure the converqence as z è @t we must require,

(4.2r1

the

(4.22a)

(4.22b',,

Re (y)

rm (y)

>o

>0 (4 -23)
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To avoid unnecessary mathematicaf complications / it is generally as-

sumed that the medium under consideration is lossy, that is,

ôo'o

k' ì 0

k">0

(4.24')

The lossless case, then/ can be viewed as the limiting case when k" ap-

proaches zero. The conditions specified by (4,23) uniquely determine the

location of the branch cut shown in figure 4.3, Thêse línes correspond to

the intersection of the tv,/o sheeted cL plane. In each sheet Y is a

single-valued analytic function of c[. For the limiting case (lossless

medium) as far as our analysis is concerned, the transition of Y from a

purely imaginary value (c < ko) to a positive real value (0, > ko) is

then uniquely delined as,

Y = i&2 - a27r/2 0 < koo
(4.2s)

y - 1¿2 - y21r/2 0. > koo

Based on the theory presented earlier, the next section is de-

voted to demonstrate the appfication of the previous results to the problem

of annular slot arrays of finite widths fed by radial waveguides,

4.4 Formulâtion of the Problem of a lvav uide-Fed Annufar

Slot Array Ant enna"

Employing a similar approach as Section 3.3.I, an annufar slot

on a conducting plane can be viewed as an annular distribution of magnetic

surface current- The aperture field can be expanded into a Fourier series,

equation (3.22\, and the wave functions for the semi-infinite space can be

obtained by integrating the product of R (p') and the creen's functions,

equations (4.19). over the aperture radial coordinate p'" To be more



c

. r/2
Fignrre 4.3: Branch cuts for y = (e2 - k2to
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specific¿ TM-- _ mode of the radial r¡raveguide can be assumed to be incident¡pq

figure 4.1. This mode is characterized by

,l' lflc
tpq , "o, oi, tt 

(2) (k o)- q pp'
olf

=cosL a

k, = [k2 - fir ¡zrl/2upa

LÓ
ú:=-ioeXI(a'z - o 

,Q,=t a,=o n

expressed as

, e ll(,ùe

I¿A

lpr r_ ^_\zcos ns + or, "t" "ô, l* Jo o' ";,"0 ', .r' lco) f-
'pa.

k=lê%
(4.26,

(4 .27 a)

(4 -27b)

The wave functions due to the magnetíc surface current over the coupling

aperture for the semi-infinite reg'ion are specified by

-Yze'
g

I".Q. .-I lr
JõuJ"

.huz=

Rln(p')dp'dcr

L@
X X n(b cos n$ - a sin nþ)

[=1 m=O n n

Rln (p' ) dp 'd0

(0.0') J ((x0)nn

where L represents the total nunlcer of slots and Rln(p') is the nth

mode's radial dependent part of the electric field over the .Cth aperture.

The wave functions due to the slot for the waveguide region are similar to

those derived earlier (Section 3,3.1) and for the present geometry can be

LcoxxI
!,=t m=O n=0

+tt (k o) lor,pm. 
I

t_(ko*o) Jpy

H(
n

J
n

:-[ t" cos nó + b sin nó) "o. 
4 

"op*nna

J'(k o,)npm
p 'Rr.,., (Qr ) dp' (4.2aa)

lt 
(2) , 0. o')n pm'
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loo.h 1T-
\P,--J^.

.{,= 1 m= O

tt('' tt o) fPn pm..I
:l

t-J (k o) lon fjm

- E mnLm
N=U ñ

pñt
cosnö-a'n

' mîTsrn nQ) sr-n 
- 

z

u " ,o p')npm
Ro- (p') d0'

( )\
I H;_, (kpmp, )

@.24b)

where depending on the observation point (p > p' or p < p') the top

or the bottom row of the Bessel functíons must be selected. Again. the con-

tinuity condition for the tangential electric field over the apertures is

ímplemented in the formulation by insertion of equal aperture field dis-

tribuhions in the two sets of wave functions.

As before, the coefficients "r, and bn entirely depend on the

functional form of the azimuthal dependent part of the incident field, For

the particular choice of incident mode, equation (4.261 , these coefficients

are given by (3.27) which eliminates the infinite sunmation over n in

equations (4.27) arld (4 ,2A) ,

Using a similar method as in Section 3,3.1 for determiníng the

aperture electric field, RUr.r(p') can be expressed by equations (3.28).

The field strengeh E: s associated with the cells are obtained by match-'.In

ing the averagre values of the azinuthal conponent of the total nagnetic

fields of the two regions over each cel1. Using equations (3,3b) in con-

junction witl. (4.271 and (4.28), one obtains

Q2

+
tO.l1-tu I f*ji¡e- X E- cos q ó I I o'J'(oo')J'(oo)- o i=r rq Jõ l"

-"v z

- 
odo ' dn

+
, rc l9i

- #; .x_ "io.o=ôl_ | .r-tco')¡^(ap) I e-YZ dp'do
Ju.rso p i=1

(4.29a)
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OI

IC
ÎûJe
za acf

e cos oó.o.4"
a

J' (i< o' )q fJrn

"(2)'rt o')q pm'

tO.ll

I p'
Jô'

H'-'' (k o)q 'Om 
-tz IC - E. *2e. 1I-q- iq m mT* t¡¡-¡ ."- L^ k2 cos qQ cos 

-z
J,(k O) o r=l m=u Pm
q fJm

z=O
6..']

I P-p. I - ^J-z
oÍ0<2rr

; = I Tñ

i:lr.!

dp'

(4. 30a )

(4.3rb)

ro. 'r (r o')lrqf.)m
l

J; ,(2\ ro o,r'.1 q pm'

"(2) 
m o)qpm

dp' . - uon "o" qQ .o" 4 r n(2),{xonp)
J (k p)qpm

(4.29b)

In order to eguate Hg1 and Hq2 over the ce.Lls j,n an average sense, we

use a similar approach as Section 3,3.1, that is, for regioñ 2 we derine

;:r;
tÐ21 2-11a=l

where for

+

Ip:
I*:'|"2)i ô. I "t4, uo. 
J6,

and H., is the contribution of the ith slot to the magnetic field ofrcl

the jth slot. Note that for this ïegion, a separate definition for terms

i = j is not needed. however, for the radial waveguide region, we use the

respective equations given in Section 3,3.1. Evaluatj-on of the integïals

defined by (4.31b) is simplified by ígnoring the variation of the terms p

land : in the integrands over the electrically thin cells. Note that duep
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to the presence of q in the argurnents of the Bessel functions, the same

approximation cannot be effected for these functions.

The final result of the above argument is a set of simultaneous

Ìinear equations in terms of the apetture fie-Ld coefficients. The elements

of the equivalent matrix equation, (3.32a) and (3.32b), are given by

oi f' .-+ .-+ do,¿.1,,'-1.--iltij = (luuo) ' ôl l_ Irq(dpi)l ' trq(opj) 1- 
"y'l ro

L7f

^2 f-I tc too.)ì+ . tc (co.)r+ . r ao' ( i t¡.lu )o ô r o t r '- o **'- o I I 'o

_ -+ - 11\ -+nr. pi. î .,n. 
| "n(no,ptr I . l"'''(up*" 

) 
I'-z"-ô:'_,04i'l(2) I I Ia m=u pm 

lnt'/ tr.o*orr __l- f"n,oo*or, l

* ttq'"" ; 4r rc"'Tp.lr*. t""'lo.lr*' Zp,.1.t_a3ô. -,-^ t<! "m '-qm'-i"- 'qm'-i"-
lolm=ul-Jm

Pj I

"ii = (jideo) . f J^ 
t"o,oo.l r] . r;nro.orl r] ffiJ'o

I- ,*54E.Jo lcq(o'pi)t] ' tcnt'ro rr] ' $ a"

noe pi æ t.
- -u" -r^ *_ i'¿o.o*õi) t"j'' (kp*pi) rl * "j') ' roo,nËil

. m=O pm

. I"(') {oo*orl t+ + .ri(kornpil t"('' (ko*Qr)r*. * n('),(oo*pr)

. tr-(k^ p.)lpí] + --r:c'z i *' 
" {,r rk Ã, . fcÏ ro.)l*'"q'^pmvi"- ' 6pjiioa, *lo oo* "n L"q'^pmPi/ "-qm -i"-

* 
"(') {uo*Ër) r"f torl ¡+ + ,rn(ko*gi)

- o.
' Icu (0. ) l' tÌgm .r

r.furorrtj * "j') roo*oir

(4.32a\

(4.32b1



rn'here [ 50]

I
cq (c¿p) = 

.J 
en toO' I aO'

¡I
- I c B^ (o.p)/c¿ 0 <n¿n

2l L 
^ 

B2(N+n)+l (0.p) l/0 o <

and clH (p) is g.iven by (3,32e) . Note that for the case q

symmetry), the field is TM to z and is solely determined from tpe. Ev-

aluatlon of the infinite integrals is described in the next section.

once the aperture field coefficíents urn .t. determined from

the matrix equation (3.32a) , the field components in region 1, for points

away from the slots, can be obtained from equations (3.3b) and the follow-

ing relations for the respective wave functions

(k o.)q pmf

(2) k o.)q oma

IC oo ô.
fi(rlc -! _ mll

- 
L ¿ :--;-- ij, C CoS c{O cos 

- 
z 'za ^ ^R¿ rgm ' a

H'-'(k o)qpm

J (k o)qpm

inc Þ]f (2\
il, -"- = cos 4 z cos qó H'-'(k o)'pqa*'qpp

4.5 Evaluation of the Infinite Inte

,ri

q = 2N+l

(a .32c)

0(o

(4.33)

The radiation field which is the quantity of most interest in the open-

region probl-ems is dealt with in a later section.

rals

As was seen in the earlier section,

determined by matching the average values of

the field coefficients are

the azimuthal- component of
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the total rBagnetic field across the coupli¡g apertures. lthis, in turn,

generates two types of infinite integrafs rvhich. are yet to be evaluated,

nanely

^tI" = | J (crx)J (ay)
imm-- )õ

htr-- = I J (crx) J (rxv)
lmn-ro

a {a' - xf,)t/2

92 - yz ¡L/2
---ã5- ds

(4,34t

(4.35)

we assume the smallest of x, y is large enough to allow for rep-Lacing

the Bessel functions by their aslanptotic forms over the range o ì ko.

This is a practical assumptíon, since, as a measure for minimizing the

interaction between the slots and the feed assenbly, generally the first

slot is placed far enough from the central region of the feeding guide.

In fact, Irzinski 1331 . when considering the problem of îEM excitation of

an annular slot by a coaxial waveguide, has shown that satisfactory results

can be obtained. even for radii as small as one radian. Therefore, usinq

the above mentioned scheme and separating the integrals into their real

and j"maginary parts, one obtains

ô | -t t'> l* ?m+r
Re (r-) - ;i; (k,xk y) t/2 | cos (k,xB - -'z+! r) cos (k yß - '*it n)

K O Oo )1 o4 o-4

dß

g" (ø' - t)r/2

rm(re) = -+l"toxß)r(kvßl-iÊ *ko Jo m' o ' m'o- ' 
BÃ _ B"lL/2

[4. 36a)

(4.36b)
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h .l -'l /) ,@

ne(r") - ¡1-(r-* t.y) I cos (k^xß - t^)' n, cos(koyß -Af A*oTOO-ioo4

L/2
to2 - tt

' \'r '1' dß @,37a)
ß+

h .' lL ,, - o"rI/'r_(r") = - ? I r_.(k^xß) r._ (k yß) ]#aß G,37b)m Ko Jo r o n o- lJ"

where the followíng change of variable is affected

¿-clþ -- - (4. 38a)
o

and Bessel" function is replaced by its principal asy.mptotic. foïm [SO]

- ,2 2u+lJv(z) - r'f; cos(z - f n) (4.3sb)
z 1^vd^

The inaginary parts which are over a finite range of B are carried out

numerically. However, Lhe rea-L païts of fe and Ih, using the formula

for products of cosines and also noting that (m1 n) is an even integer,

can be transformed to

ô r -r/2 Í*
Re(re) -=!tt*t y¡ { | (.o=tk (x-v)ßl

KlT o O-o -J1' g'(ßt - DI/2

- J, "t',uot"*vrßl u*,Tlt',) (+.¡s)

-f /2 AP r* ¡ p2 , ., ,L/2Re(rh) - ;f {xo* rov) {t-rl ' J, "o=t*o,"-vlßl ffaß

+ (-1)*+'+t Il ".",u.r**"lsl 
É1;jìaus] (4.40)



Equation (4.39) can be shown (Appendix D) to be given by

. -L/2 ,ro l^-v I

ne 1re¡ - ¡f {no* oovt 1t"l*-vl tl Notr)dz - Nl rr.ol"-vll t
o " Jo

k (x+v)
¡--o "' r' J- (z)

- t tx+v) tr - I -r- azlÌo-lz

where the integrals in the above equation are knowrt and given by t58l

(4. 4L)

(4 -42a)
¡z J,(t) a -
I -_ 

dt =; x^ (p+ r) r2(p+r) (')
)o p=u

rz
I n^(t)¿t = zN^(z) *T lln| otz) N.tzr - lnlr(z) No(z)7 @.a2b)
Jo u u

o * J r^r.., (r) t - Jrñ\z)
lHlo(z) = ; t^ -#, lttlr{zr = î t, - roþ) * r :,,tr - tp=o P=r ''

(4.42c)

gvaluation of the real part of Ih, however, is done by expanding

(ß2 - 1)'/' irrto a Binomial series and retaining the first trvoterms. The

infinite integrals in (4.40) are then approximated by

1 /t

I cos tr^ (x-vr 3, (ß2 :-r) ' 
"ß 

- | cos lko (x-y) ß) (å - #U uu @.43a)
Jl o Þ- Ja o -

" r/2

I sintk^(x-y)ßl (g' 
;;r) dß - I sinlk^(x+y)ßt (å - -trur, uu (4.43b)

JL o - Þ+ JI o -

The right hand side of equations (4.43) are known integrals t50l and can be

shown (Append.ix E) to have a final result of the following form



Re (rh) #r (ko* ko
o

22) sín z, +

22) cos 22 +

m-n

y) { r-r). " t(zf + ra) cos 21 - zrkl+

"lt"l + 24) ci (zr) I + (-1)ln+t+1 Þrel +

tzl + rct sín 22 + "lt"', + 24) si (z) lj
' l tt Ln^\

=L

,2

o

o

l" - vl

l" * vl
(4. 44b)

14.45',t

and si-(z), Cí(z) are the Sine ând Cosine integrals and can be expressed

in terms of a fast converging series [50]. fn the next section, the rad-

iation field of a waveguide fed annular slot antenna is derived.

4.6 Radiation Field

The far field which is the quantity of most interest in thè open-

region problems is generally obtained by asymptotic integration techniques.

However, for ihe present problem an equivalent approach wrrich does not re-

quire contour integration is empfoyed. That is, instead of evaluating asymp-

totic behaviour of the field expressions obtained earlier, the equivalence

principle and the image theory are utilized, In oïdeï to obtain the solu-

tion, the apertures in tbe ground plane are replaced by an equivalent array

of magnetic current distrÍbution radiating in free space. Therefore, the

electric field is expressed as [59]

-ik R'<)
(r') :-- - - dsrmsR

Following ttte stândard procedure

function at large distances from

-> -+ l (ntit = _:v'l 234li 
'' aperture

where, i*"=Ë"xÂ and n= lì-ï'1.
for approximating the free space creen's



the source, that is
-ik R-o

v --==-
l(

one obtaíns

ik -ik r
Io e 

- o exp(jk,rî';')î (4 - 46\

(4,49)

ìk --ik r rJ--o -l J2Tr I ms'aperture

-ik r +
ikeotc-fPi

Êo 
'-u-- 

--o 

^, ., x-ui' I p'dp'
o r=-L n=u Jõ.

E (r)
k r'æ

o

tÌ'l " î exp ( j k,,â ' i' ) o" ' \4.+7)

Assuming constant electríc field over the unit cells of the strength E.n

and expressing the vectors in terms of their spherical components ' it fol-

lows
--ik r +

ikê o rc o r |'Pi
Ê - '''o î x E. I I-r" cosnö,+b sin ne,)-ko* 2tr i=r n=o i" iQ, J; n n

Pi

lT
I tu.- cos n (O+u) + b- sin n (O+u) l¡nn) -Tl

tsin(Q - Ô')cos0Q + cos (0 - Ö'10: ' expljkop' sinO cos[0 - Ô')]

r p'dp'do' t4.44)

Sjnce the integration on O' represents the contribution from all points

over an anqular ranqe equal to 2T, rve are free to serect the starting

point ín the integration on Q' to be (Þ - Tr. This and a change of vari-

abfe in the form 0' - 0 = u leads to

. [gos u0 - cos0 sin uQ1 exe(ik o' srn0 cos u)du

Usíng the addition formulas for sinusoidal functions ' the integral part

of (4,4g) on u can be shown (Appendix F) to be given by

^fTu = ( ar., cos ró + b., sin n$)0 { J t""" (n-l)u + cos(n+l)ul exP(jkop' sino
ro

^lTcos u)duÌ + coso ' (bn cos nÔ - an sin nS)Q i I t.o. (n-])u + cos(n+l)ul
)ç



. exptjkoP' sin0 cos u)duÌ

The integrals of (4.50) are of the type [50]

. fn 'ißcost
I eJpuus L cos nt dt = Jnn,r,., (ß)

BO

(4.50)

(4.sr)

I ar., cos n0 + bn sin n0) Jn'(kop'

This reduces (4.49') to

. 'ìk u-jkot ,c - lË,
É --o x t E o Ik r>@ 'ÎT - in'i Io r=t n=U ,õ,

sln0lê + (b' cos n0 - a' sin n0) ' ,t "o?0^ J (k o'' K Ô.Sl-nv n ooa
sino )Q I dp '

(4.52)

where a use has been made of recurrence relations for the Bessel functions

and the variation of p¡ over each cell is ignored,

l{ext, noting equations (4.32c), the integration on p, is car-

ried out with the final result
-ìk r.- " otjr e - -LC .o E. o.

Ëo r-r- - *, - t. x^ ilÈo"' { {a' cos nO + bn sin nS) [Jr.,
o I=1 n=U o

+

+ (bn cos nQ - an sin nQ). ï= tcr(kopsin0lpiô].r- pi

+
o.

(k^psino ) I '0
o.'a

(4.53)

For sing-Le mode operation, the infinite surnmatíon on n is eliminated.

For instance, the radiation fields for a TMOI and TMOO modes of operation,

which are the only modes considered in the examples given in this thesis,

--ik r
-+

- jk^ e - Ic E- O. ^ J^ (k_psin0) ^ Ö.
Éttol ttx i]r lo o-i pi

(4.54)
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(4. s5)

-ik r.- - o

-ik r.. ', r)-tK e

-ttor'- "' 2kor

I I/2
l---:ì = t )1,r'oÊ

o

IC E. p.
r -l+ tJ (k osino) l_KSl_ngoo

It should be noted that the electric field ln 0 = 0 direction for TMOI

case is x polarized and can be evaluated by -Letting 0 + o before per-

forming the integration on The corresponding refations are

IC
¿ k Ò.!r p.E,x

o.1 0I l-

(4,56\

- /A ^\ -0"'00

Tn the next section an expression for the radiated po\^rer by an annular slot

array will be obtained,

4.6.L Expression for the Radiated Power

An application of equation (3,39) to a semi-spherical surface of

a large r.adius (kor * -¡ on top of the slotted structure y.ields the de-

sired relation for the radiated po!'/er. To this end, we express (3,34) in

terms of the field. components in spherical coord.inates, that is

. n$) 12 sin0d0dS (4-57)

The magnetic field cornponents 
"O 

and ¡fe are easily obtainable from Ee

and EO by noting that at large distances from the source system, the

fields are locally TEM. The electric and the nagnetic fields are related

by

rxE:à1
no

(4.s8a)

(4.58b)

where



An application of (4,58) to (4,53) yields
-jk ro+

* lot^ e IC co E. P. p.^
ú = "tt r r J|1-l" O { (an cos n0 + b,., sin n0) lrn (kopsine] 

õa O

r-=1 n=0 o i

+
^ o. ^. ncoso tc (k osino)l:r o]PinoPi- (b' cos r0 - a' sin nQ¡

- rc rc * (a2 +.b2)
_P = - 
I tr L 

-:- 
Re(E. . El )n'¡e i=1 i=1 n=6 "r, ln ln

By su-bstituting (4.53) and (4.59) in (a.57), iÈ can readily be shown that

the radiated pov,¡er fias the following form

(4 .59)

(4.60)

rL
tp.p. I tr (ko,ß)t'

rl Ì n ol

tr (k p.ß)l+ * [t t. (k p.ß)]+n ol ß(r _ g")t/t Jo n or

' rr -a2rtc (k p.ß)l' '- ;" ' dgÌn ol - Þ

where cn(po) is given by (4.32cì, and (4.60) .is obtained by affecting a

change of varia-ble in the form

ß = sinO @.6r)

Note that the integrals in (4.60) have the same form as the finite inte*

grals computed for dêtermíning the field strength coefficient" 
"irr.

4,7 Effects of the Higher Order Modes on the Admittance and

th.e Field of a Waveguidé Fed Annufar Slot Antenna

Based on the theory presented in the earlier sections, the as-

sociated. admittance of a radiat waveguide fed annular slot antenna is comp-

uted as a function of the radius of its leading edge. The thickness of the

feedrng guide is smaller than half the intrinsic wavelength of the region.

therefore, only the dominant mode propagates in the radial waveguide. The

admittance is defined as before, Section 3,4, and the conductance and the
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susceptance terms are depicted in figures 4,4aand 4.4b. Theratioofthe

radii of the slot edges is kept constant for each curve and expressed by

(4 .62)

A TMoO excitation is assumed and the results are compared against the

theoretical results as well as the expeïimental ones obtained earlier [201.

The latter results ãre due to aTMOO excited annular slot fedbyacoaxial

waveguide of the same cross-section. The admittance values are normal-

ized by the characteristic admittance of a coaxial waveguide given by [20]

r = 1o*|rzro-ùy'

-- 2T
o n¿{ T'on

(4.63)

and no is defined. by (a.58b) , Fígures 4.4a and 4.4b indicate that for

electrically narror,/ slots, the admittance of the slot approaches that of

an infinitely thin antenna driven by a delta function generator [32].

That is, the admittance is chiefly determined by the external region and

the interior medium has a small effect on the admittance. Sirce for both

geometries (radial and coaxial waveguide fed slots), the exterior region

is the same, the correspondlng admittances are expected to approach a

common value for thin slot.s. However, as is clear from figures 4.4t the

conductance and the susceptance terms of the radial waveguid.e fed antenna¿

for wider slots and h/ith the exception of the peak values of the conduct-

ance¿ are generally smaller than those of the coaxial one. It might be

of interest to mention that the result obtained for r = 2.36, at
Ako(p - ? = 2.OOt which shows a resonance case also corresponds to the

maxlmum radiated power. This power was observed to be about 90 per-

cent of the total power injected by the source,

Figures 4.5a and 4.5b ilfustrate the effects of the higher order

modes of the feeding guide on the admittance of the safle geometry. The
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dotted lines represent the results obtained by taking only the propagating

node¿ whereas the solid lines are due to the inclusion of the first ten

rnodes which was observed to be sufficient to yield a convergent solution

for atrI examples presented in this work, These results suggest a similar

conclusion as for the case of two coupled radial waveguides, that is, for

most appl ications, the dominant mode representatj-on adequately describes

the equivalent admittance of the slot. HovJever, the accuracy of the re-

sults. particularly the susceptance part for this case, can be substan-

tially improved by including tbe hígher order modes exciÈed by the slot

discontinuit.ies. The field distribution over the slot is also calcul-

ated for the geometry corresponding to the last plotted point in fig.ures

4.5. The r.esults presented in figures 4.6aand 4.6b show that the dominant

mode approximation yields reasonable results for both amplitude and phase

of the electric field over the aperture. This is in contrast to the re-

su-Lts obtained for two coupled waveguj-des, figures 3.4. However, it should

be pointed out that since the field Tepresentation of the external region

is in terms of infinite integrals over the entiïe range of the continuous

spectrum (o < g < *), they include both the visible and invisíble ranges

of the spectral representatj-on. Hence, omíssion of the beyond cut-off

modes of the feeding $ride alone does not affect the accuracv of the

solution to the degree that vras observed in the case of two coupled wave-

guides. It should be mentioned that due to large electrical width of

the slot, the aperture for the geometry of figures 4.6 is dívj-ded into

13 cetls (annular rings) of equal widths. Then the tangentia-L electric

field over each ceJ-l, which for TMOO excrtation assumed is equal to Ep,

is computed by applying the continuity of HO across the coupling aper,

ture.
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1.8 Amplitude and Phase Variation of an Isolated Annular

Slot as a Function of its Average Ra"dius

For a '*aveguide fêd slot array, the field strength of i-ndividual

slots,. and their relative phases are of prime ímportance in the antema

design problems. Generally, the information availal:le for an isolated

slot is not sufficient for representing the same slot when placed in an

array structure. îÌre mutual coupling effects among the menlcers may change

the characteristics of the slot appreciably. To study the amplitude and

phase variation of both síng1e elements as well as the array groups, a

nulrìber of cases are considered. Electrically narrow slots are selected¡

therefore, each slot is characterized by a single cell of the field

strength E.. Figure 4.7 depicts the phase variation of the slot field
.l-

as a function of its average radius (TMOI excitation), The two sets of

curves are due to thro diffexent dielectric constants of the wavequide re-

gion. These results indicate that the nonlinear phase variation has a

periodicity of one I (the intrinsic wavelength of the guide). It is afso

interesting to note that the phases of 0 and 180o correspond to radii,

\Àrhich have electrical dimensions (kp) approximately egual to zeros of

Jier. In view of the assumed j-ncident field. the incident magnetic field
' (21is proportional to -Hì-' ' (kp). Therefore, the slot phase lags the in-

cident magnetic field at the respective poínts by 90 degrees.

The amplitude variation of the slot field as a function of

its average rad.ius is studied in figure 4.8. The total power delivered

by the source is kept constant for all the slot locatíons. This is

accomplished by introducing a constant factor for the incident field,

which is adjusted for each slot location to yield the same value for the

total power as the slot radius is increased. The results of figure 4.7
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are first normatized by the fie-Ld strength EI of the slot at the first

conputed location (p = gf) and then are weighted by the ratio , = (A/Aì

The radii are measure¿l from the center of the slot at the respective rad-

ius. These results show that the so normalized slot field has an asyr0p-

totic value of unity and the actual result oscillates about this level

with a maximum deviation of six per-cent. ft is arso found that the pow-

er radiai-ed by the slot has a similar Erend as this factor, Assu.ming

that the radiation conductance of the slot at eaclì location is proportion-

aI to its axea, the simi-Larity can be explained by noting Èhat the fact-

or so defined Ìs proportional to the square root of the power ratio, Än

increase in the dielectric constant of the guide region yields similar re-

sults but has a more damped oscillatory behaviour.

The above observation suggests that knowing an inilial value

for the field strength of a single slot located at Pf, the respective

fiefd amplitudes of sJ-ots of different radii can be anticipated, within
.E,

f e\,t¡ per-cent error, by using the factor S lil .

I

4.A.I Ampfitude and Phase Variations of Two Coupled Slots

To study the effects of mutual coupling between t\,ro slots. the

phase and amplitude variation of two slots separated by,a iixed distance

equal Lo x = 0.251^ (free space wavelcngth) are obtained as a function-o
of their radial locations, figures 4,9 and 4.10. It is interesting to note

that the phase variation for the leading slot is quite similar to the re-

sult obtained for the isolated case, figure 4.8 (solid llne). and the

points corresponding Lo 0 and lB0" occur at simi]ar radii. Ho\À7ever,

the resu-lts for the seÇond slot are affected by a somewhat constant phase

fag. This may be attributed to a complex equivaient transmission coef-

ficient at the Leading slot which changes the phase of the exciting field

r/2
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for the second sfot. The phase variation sti-Ll shows a periodicity of one

wavefength, ho\,rever, the nonlinear phase variation is tapering to its as-

l.mptote (linear phase variation for the propagating mode) as a result of

mutual coupfing -

' The weighted field variation sl+l for both sfots are shown
"t

in fiqure 4.10. The initial field strength and radius are taken to be

those of thc leading slot at a radius pI = 1.05À0. The small oscillat-

ions stitl occur about two constant levels for the two s-Lots. The resuLt

for the second slot/ however, is relatively lower than that of the lead-

ing slot and its -Level (672). rnay be considered as an indication of the

magnitude of the total equivalent transmission coefficient at the location

of the J-eading s1ot. The maximum deviation of the normafized field is

again within six per-cent of the constant levels-

It is also found that the relative position of the constant lev-

els is more sensitive to the feeding waveguide thickness. That is, dep-

ending on the othe.r parameters of the geometry under consideration, a crit-

ical depth nay be found such that .it wf]l create a small transmission coef-

ficient after the first few members of an annular slot array. This results

in a sharp drop in the field strengths of the other slots relative to the

first few memt)ers. In other r¡rords, the system experiences a laïge input

impedance after the first fev/ resonant slots which consequently radiate

most of the power into the externa-l ïegion. However / for slot arrays \,¡ith

a large nu¡ober of eJ-ements, it is ofLen desired to dtstribute the polver

among the elements of the array more evenly as to produce more directive

radiation patterns. For these cases, the dimensions v¡hich produce large

differences between the constant levefs must be avoided when considering

arrays with a large number of elements. It is observed that a useful and

effective way of pre-selecting an initiaf value for the thickness is to
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analyze the radiation characteristics of a sub-array formed by the first

few menbers of the array under consideration, Even though the field dis-

tributions of these slots are not the same as those in a larger array¿

nevertheless, the information obtained. in this rnanner provides the design-

er with useful ø pTior¿ knov¡Ledge as to the selection of the initial va1-

ues for the paraneters of the antenna problem.

4.9 Radiation Cha.racterist i cs of Annular Slot Array Antennas

Based on the theory presented earlÍer, the radiation patterns

of radial waveguide fed annular slot array are studied and the results

are presented in figures 4.Il-4.L4. The radiation pattern .depicted by

4.11 is due to an array of four elements excited by a TMOO radial mode.

For this particular mode of operation, the slot field is independent of

0 and the pattern resembles that of a vertical dipole as far as the re-

gion z > 0 is concerned. It is interesting to note that even with four

electrically narro\,¿ slots (slot width -0.02Ào) 99% of the total power

is coupled out and a slnal1 fraction is transmitted through the waveguide

region. Figure 4.12a illustrates the E and. H plane radiation pat-

terns of an array of eight elements, excited by a TMO1 mode over an angu-

lar region egual to 20 degrees. ,As a measure to reduce the first side

lobe levef, the spacing bet\,reen the sixth and seventh elernents is doubled

lvith respect to the other slots. The aperture efficiency compared to a

circular aperture of the same diameteï as the last slot and having uni-

form phase and amplitucle distribution is about 7Oz. The gain of the an-

tenna system with respect to an isotropic radiator is 29 dB. The half

power beam width is lower than seven degrees and the first side lobe lev-

el is seven dB down the maximum value. The overall aDerture diameter

is about lltr Fiqure 4.12b is the cross-polarized component of thea)-
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same anienna at Q = 45" cut=pfaner

fn order to have constant phase distribution over the entire ar-

ray, using the result obtained earlierf the slot spacing for figure 4,13a

is seÌected to be about fÀ (intrinsic wavelength of the guide rêgion) .

To reduce the first side lobe _Level, the spacing between the slots was

seiected to be slightly more than ltr (1,02À), The waveguide thickness

is about 0-16À and a TMnl excitation is assumed, the side lobe leve_L

is down to -16 dB at the expense of wider H-plane beamwidth and lower

gain and efficiency values. Ihe radiated power is gSZ of the total in-

jected po\,rer by the source and the overall aperture diameter is about loÀo.

Figure 4.13b represents the cross-polarized field at 4 = +S. cut-plane.

Figure 4.f4 demonstrates the feasibility of designing annular

sfot arrays producing narrow beams with a high gain arld efficiency with a

total aperture size not exceeding 10Ào. The efficiency figure is about

90 per-cent and the gain is 2() dB- The half po\rer beam width is about

seven degrees and the fir.st stde lobe leve1 is lower than lO dB. For

this array the radiated power is observed to be about gO per-cent of the

total po\,rer delivered by the source.

fn conclusion, the theory presented in this chapter establishes

a method of solution for the electromagnetic field set up b]¡ an array of

concentric annular slots of finite width on a ground plane. The slots are

assumed to be electrically thin enough as to suppress the azinuthal dir-

ected aperture efectric fietd component. The field strength of the s-Lots

can be a general function of the azimuthal variable ô. One possible ap-

pl.ication of the method is in the design of annular slot array antennas

capable of producing pencit beam radiation pat.terns of high efficiency and

gain factors, The feeding asser,bly for the radiating slot array can be

formed by either a radíal waveguide or a cylindrical cavity which are also
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rlsed as the supporting structure for the array system' The forcing function

generator is mounted in the central region of the radial waveguide or the

cylind.rical cavity. The part of radj'al \taveguide annular slot arrays \^/as

discussed in chapter rrl and tV' The cavity backed slot antenna whích is

closely related to the first case but is a more practical one is discussed

in chapter V'

Ïn the previous sections, even though the analysis was presentêd

for a general forcing function, the examples were all obtained by assurning

single mode operation (TMoo or TMol) ' A part of the next chapter is dev-

oted to possibfe !'tays of generating these modes of radial waveguides '

Another practical aspect of the problen which is not )zet discussed is the

effect of finiteness of the conductíng baffle and the radial waveguide on

the radiation field- Thís nÌatteÏ is also discussed in the next chapter '



€r =2'55
Koo =O.49

KoP =3'so
Ko8 =O.30
Kox = 3.93

o
â
z
t--o
J
o_

É.
ul

=o
o_

E-PLANE PATTERN H-PLANE PATTERN

15" lo " 5" o" 50

0
Figure 4.I2a: RadiatÍon patterns of an annular slot array' TMol

exciting mode '



CROSS POLARIZATIO!'I

00

F,i.rrrrê 4-t2b: Cïoss-polarized pattern at 0 = 45o cut-plane.



I

cr¡
o

E- PLANE H-PLANE

20 00

Figure 4.13a: Radiation patterns of an annular slot array, TMol excitíng
mode. Gaifi = 23.22, Efficiency = 408. Number of Slots = 8.
ex = 2.55t koa = 0.63, kopl = 4.28' koô = 0.20, þx = 4.01.



20

30

40

POLARIZATION É=45"

FÍgure 4.13b: Cross-polarized pattern at Q = 45ô cut-plane,



E - PLANE

Goin =29.36
Efficiency=$$7"
Number of Slols = B
€r =2.55
koo= O.49
koPr = 3.50
koð = o.3o
kqx = 3.95

H _ PLANE

@o
z
F-oI
(L

(r
UJ

=o
o-

Fj-gure 4,14a¡ Radialion patterns of an annular ¡

exciting mode. 
slot array' TMol



CROSS POLARIZATION

Figure 4"14b: Cross-polarized pattern at O = 45" cut-pl_ane 
"



CHAPTEF"

FIELD SOLUTION FOR CAVITY BACKED ANNULAR SLOT ARRAYS

5.I I ntroduct ion

For certain applications of waveguide fed slotted structures

it is of interest to terminate the waveguide by placing a short circuit

somewhere along the guiding region. Examples are airborne antennas where

in addition to the size and weight restrictions, it is often desired to

electricalfy isolate the artenna system from the electronic gear of the

aírcraft or the spacecraft. This is simply achieved by replacing the

feeding waveguioe by a cavity as the electromagnetic shlelding device..

Another advantage is the added mechanical rigidity produced by the con-

ducting wall acting as the short circuit. The price to pay, however,

is generally a reduction in bandwidth which in turn nakes the antenna

system more susceptible to the changes of the enviTonment.

In the next sectionf the field solution for a cavity backed

annular slot array antenna which is closely related to the \,,¡aveguide fed

case is derived. The geometry of the problem is obrained by introducing

a cylindrical conducting surface at a radius g = c in figure 4.1. The

resulting structur.e is depicted in figure 5.1. Since the external ïe-

gion is not modified, the theory presented in Chapter fV related to the

external region still applies. However, the field solution for the inter-

ior region needs the appropriate modifications. Here. \^re must impose

the condition of vanishing tangential electric field on ttte conducting

cylind.rical \^¡all at p = c.

Similar to Chapter rV. the soluÈion is obtained by first con-

structing the appropriate creen's functions describing the impulse

105



€o'Po

rx i

-! - 

!-

€LLItt o

I
lt l<-

€.ulr I o

Figure 5.1: Typicaf cavity-backed annular slot
array antenna.



to7

response to a current filament of a generaf nature and then the final

formulation is simply the integral of the impufse function over the ap-

erture source distribution. Horvever, as it wi-1l be described later, the

impulse response exhibits a set of natural frequencies associated \rith

the -hracl(-up cavity. The field coeffícients are obtained in a similar

manner as the two previous chapters by an application of the boundary

condition on the magnetic field across the aperture. As before, the

Green's functions due to an electric ring which is closely related to

the former case are also derived. îhis would enable one to formulate

the problems involving annular or cylindrical shaped scattering bodj"es

in the cavity region in addition to the slots on the conductang i^ral-ls.

5.2 Problem Formulation and Solutlon

5.2.I Construction of the Appropriate creen's Functioñs, Mag-

netic Rinq

Consider the geometry sl'to\,,7n j-n f igvre 5.2, formed by a cyJ-in-

dricaf cavity of thickness a and radíus c. The constitutive paramel-

e-rs of the medium are e and Uo. The source is a magnetic filament of

strength Im(0') charactexized by equations .(3.f ,3.2). This problem is

similar to the case of a radial waveguide which was treated in Chapter

lIl, however, the existance of the conducting cylindrrca-I wal_l at 0 = c

imposes the following conditions on the tangential electric field on the

surface of thc cyl inder,

E" = uO = 0

0=c
A<z<a

0 < 0 < 2ï

(s,1)

Noting equations (3.3.3,4), the wave functions which satisfy the bound-

ary conditions on the conducting planes at z = -a, O, can be
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t¡sre kpm is given by (3.5c). Note that due to the finiteness of the

cavity. the most general form of the solution for the radial dependent

part in regj"on 1I has been se-Iected. In order to detemine the six un-

known coêfficients, we utilize the boundary conditions across the source

surface as \,/el-1 as the cylindrical conducting wall, equation (5.1). The

continuity of the tangential magnetic field across the surface p = p'

is ensured by satisfying the followinq relations
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l.lhich upon utilizing the orthogonality property of sinusoidaf functions
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h
(U

Ím -oh)"g. o,) +vh ¡(k o')flmnpmÍütnpm =0

=0(ue - ,." ) ¡'(k o') + ve N'(k o')mnmnnpmmnnom

The continuity of EO ca]] be stated as

tt- o'l - Ïl r r mn(b cosnó-a s mlr

"O - oO = jrep'" 
^10 "lo 

rmr\ln uus 'v - cln srn nQ) srn 
- 

z

I

lp=p' t(ue _ue)J(k o,)+ve ñ(k o,)l
lOaOaZ InÌì mn n Pm mn n 0m'

t-
l-a < z < O

- 
-,-lo "lo 

n (bn cos nÓ - an sin nQ) kp* sin Ú z

t (uh - ,.,h ) "' 
(k o') +./ oo'tL o,) = ornnmnnpmmnnpm

(5.5a)

however, the axial component of the etectric field is discontinuous ac-

ross by an amount equal to the magnetic current density, that is

ut - "tt = r (ó,) 6(2 _ z,)zzm

(5. aa)

(s.4b)

(5.sb)
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properties of delta functions, the equations
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where a use has been made of the condition (5.1) and the resulting rel-

ations are red.uced by ap.plying the orthogonality of sinusoidal functions.

The set of equations (5.4), (5.6) and (5.7) can be solved for the coef-

ficients and the final results are

iTûieo' N (k c)
= ' ---' tt' 0* a cos ú z,J,(k O')2k aJ (k c) m a n 0mPmnPn

- - 
jTUeP' . "o= 

4 z'J '(k o,)21Ka-manorn
pm

t2m l¡' (k c)
=- 

'n'Pm e ccs Sz'J (k o')2(k a)2 J'(k c) -m a n 0m''0m n 0m

J, (k c) + vh N'(k c)npmnnnpm

'IT _m mlln cos 
- 

z J (k o')
2(koma)¿ -m a n Pm

ilTûJeo' mrc* cos - z' [N' (ko* p')
pm

= n"^,o . .o= 4 z'lN (k o')- 2 (koma)' "m '"" a - r-n \"Pm F '

U"
mn

V"
nn

h
U

mn

h
VÍm

eu
lnn

mu
Inr¡

(5'B)

N lk c)
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npm

N'(k c)

*dþ 
rn(kpm P')l
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Note that in (5.8), for Op*. eo.ual to zeros of Jrr(z) and J'(z),
there is no steady-state solution to the pïoblem. These values are as_

sociated rvith the TM and TE natural frequencies of the cavÍtyf hence¡

existence of a source of the same frequency as any of the resonant fïe_
quencies of the cavity results in an unstable solution.

fn view of eq-uations (5.2) and (5,8), the creen's functions
of a magnetic current filament characterized by (3.1,3.2) are as follows

.,,ejïoep'::eU- = - ä x.. ¡q ,"" cos n@ + b^ sin nQ) cos 4 z, .o" {,
m=0 n=o ^p* ¡¡ rr

J,.r (kor") Nå (ko*p' ) - wr, (to*.) .¡; (Lo*p')
Jn (kpmp) p < p,

J- (k^_c) N- (k^ p) - N (k c) J (k o)n Pm n 0m n' Om ' -n'--Orn-'
r. (k-ð ."-.----- q(kpmo') P>p'nom

(5.9a)

u ^2 e m n
'r,rr--iLs.mV = t7 L L -u7-_ (b- cos nþ - a- sin nQ) cos$z,sin4z

m=0 n=0 --pm d è

J,l (ko^") Nr, (ko*p'l - x; (ao*") ,r,., (to*p')
Jr (k c)npm

J,l (ko*") Nr, (ko*p) - i'¡; (ro*.) ,rn (Lo*p)

J'(r c)nom

J (k- o) o < o'n fjm

J (k o') o > olnpm

(5 ' 9b)

5.2.2 Electric Ring

The derivation metfrod for this case is similar to the prev.ious

case and the main differences together with the final results aïe pre_

sented here, Aside from the subscript m, the defining equations for
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the current ring and its Fouriex expansion are given by (3.1) and (3.2).

The azimuthal dependence of the e and h modes are expressed by (3.13)

whlch result in the following form for the requÍred creen's functions

úu = i î ",o. cos nQ - a' sin nþ) "o" 
4,

m=o n=o n

e-mT L L (a COSnQ+b Srn n0) srn-zI m=O n=o n n a

.," .t (k^ p) o < o'rlmn9m

lue J (k o) +ve N (k o)t-IImnPmmnnPm-

p > p'

,rh .l lk o) o<o'nnnpm

luh ¡ (r.^ p) + vh ]i (k- p)lmnnpmrínnom-

Now, in contrast to the previous case.

ric field E is continuous across

continuous by an amount equal to

p > p'

(5.eb)

Ehe axia] component of the elect-

but the magnetic field is dis-

(5, 1o)

tlr - ¡lrr = r(ó'\ (z - z')zz

I o = o'

lo...r,-t--
l-a < z < o

A similar approach as that of the magnetic case yields

n2m N' (k c)
ut = n 0m , e sin![ z, J (k o'l-mn 2(k^_a)2 J.l(k^_c) "n "'" a - 'n\"Omv 'pmnpm

--e 1r2*v = -:-;:----ì-r-e srn4z',¡ (k O')mn 2 (Jroma)- m a n'pm'
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(5.1r)

Note that as z' approaches -a and zero (conducting boundaríes) the

field vanishes. This is similar to the result obtained in Section (3.2)

and the same argìment applies here.

In view of the above set of equations and (5.9), the creen's

functions of an.electric current filament are as follows

,e r' "ma = - =-; L , --ëj (b cosnó-a sin nó) sin4z'.o=4=' za' 
m=o n=o i- 

n n '' a a

m

K
pm

i 1Ïûlu o'fI"o'
þ2a

J'(k c) N (k o') - N'(k c) J (k o')npmnpmnpmnom
J'(k ")n'pm

J'(X c) N (k o) - N'(k c) J (k o)npmnpmnomnom
Jr (k c)n fJm

J (k o)n0m p < p'

,rr, (ko*Q') p > p'

(5 ' t2a)

. cosnó+b sin nö) 
"i,-r 

![ r' =inE,nn'aaxx
m=0 n=0

J (i< c) N'(k o') -N (k c) J'(k o')nomnomnômllôrn
J (K C)npm

J(k c)N(k o)-N(k c)J(k o)nf)mnomnomnnrr'
J (k c)npm

J (k p)
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J'(k or)n Om'

p < p'

p > p'

(5 .12b)
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5.3 Formula.tion of the Problem of a Cavity-Backed Annular

Slot Array Antenna

Employing a similar approach as for the case of a radial wave-

guide. fed annular slot antenna (Chapter IV) , it ís an easy matter to form-

ulate the present problem. that isf the aperture field ís expressed in

terms of a finite sum of pulse functions with unknown coefficients. Then

an application of the continuity condition of the azimuthal component of

the total magnetic field across the coupling apertu.re determines the stots

field coefficients E.. Therefore, recatling equations (3.30), (3,3f)I

and (3,2a,b) and. the corresponding relations for the external region cov-

ered in Chapter IV, one obtains

y,. = (jûJe^) . þ [' ,"n,oorlr] . r,rnroorrl* ffial - o oj Jo

-.2 foo. úruip.6...J- tcntoorrt] tcntoo.rl]' jao

l-w rr<^ o. i1+ F (*^ p. r-J*J(k.llq P*r l_N(k ct ls'Pnj'l
jrûre p. q pm 

IN tr^ o.ll q Pm- l; (k p )l
I m Lq . pm i.r_ r_A'--pm' i,___t _

2a o rn=o oé* Jq(kpmc)

I,r tr o il-lq Pmr I T-g- - m-' 
þ^,o^_0.,-1 

. ,(i¡u")ðFq *lo 4*'**q pm l.--

]"w ,n il* I-r -1'
I qm 'l t lc* to'' Il'

r¿(kpmc)[:". 
,o,l_ 

-'å'oo'"' 
1u1', ,o,J_ [.å- ,rr,l.Lgm lJ_ L:/ñ '-.i.J_ |

r'(k c) I- Iq 'pm-. 
l"i ro.'r l_

(s.l3a)
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h¡here, 
"l*tOl 

is given by (3,32e) and (+,=) corresponds to (ð, p),qnl

respectively, The incident field is assumed to be a t*no 
^oU. and its

partlculars are discussed later. For i = j case, v¡e have

"ii = (juco) .f 
l^ Irq(opi)t+ " t.rotcrorrt] ffJ Jo

^2 I

+ ;- i- J tc-(op. ¡ 1* . ¡c-{crp. ) l+ . I do(louorP.Ö. ,o q r, - q r - d

_ 
j¡r¡e pi î .^ rJq(kønc) 
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6a-k'Jlkc)m=u pm q pm

r 0. c)N' (k å.1 - * (k c)J' (k å. )
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J (k^ c) tN (k^ p.)l+ - N (k- c) tJ (k o.)l+q pm q pmr pì q om q pm a -p..

Jq (kpm. ) -q "'pm'i'

J_ (k-_c) N' (k. p. ) - N (k c) J' lk o. ) p.r q om q om r q pm o pm'-i' ._ ,,_ - ,,'r.,_' Jn(ko*.) '"qt"p*ti''- ',

* r,, nt:' ^ î 4. ,"å(ro*'lt"tåteilll - tori'o*'ltcLtpilll
b(l(¡U .¡O.ar ^Rz m J'lk c)- o .L m=u pm q'--pm

- "å(ko."l 
r¡- tr.^-fi ) - rI' (k^-c) ¡-tt- å.1 ,' rn (ko*õi )

qpm

Jl (k^-c) tcl¡ tp. ) l* - N' (*- "l [cJ (0. ) ]+q pm qm f, p. q pm - qm-'i'-^.
. f ut

rl (k-=t- 'rq (kp*p )
qpln



Jr(k- c) N (k- p.) = Nr(k c) r (k o.)q pm cf ljmf cl urn q fjm r
Jl [k c)qprî

(p.)lpi]
1-

(5 .13b)

Note that the case of q = 0 (0 s)-¡ûnetry) gives rise to a TM field and

the field components are solely determined from qe.

The incident field due to the feeding assembly placed in the

central region of the cavity must also have 
"inc 

- 
"inc 

= O on the cyl--zA-
indrical conducting wall. Therefore, a suitable representation for the

incident mode of a TM type which satisfies the boundary conditions aspq

well as the singularity of the source in the cavity reqion is as follows

e. J (k c) N (k o) - l¡ (k c) J (k o)Inc pTT cf oÞ d oÐ o oD cf ôDVnq = cos._zcosq A' q ppt )

rcJ-sm

Hence. recalling (3.32a), we have

, J (k- c) tr'¡ (k o.)l+ - N (k c) tJ (k o.)l+
_ f q fJp q ppI - q pp q 0pl *

-i ô. J (k c)'Jqpp

(5,14 )

(s.rs)

Once the aperture field. coefficients are determined fron the

matrix equation (3.32a) wiÈh elements given by (5.13) and (5,15), the

other pararÂeters of interest can easily be computed.

5.3,1 Expression for the Total Pol4rer

An examination of the physical nature of the problem reveals

that there is no power transfer through the cavity region after the

last slot. Therefore, the total power injected by the source system is

coupled into the free space by means of the slot array. An application

of equation (3.34) to an arbitrary cylindïical surface \a/ith a radius
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smaller than the first slAt results in an expression for the total pow-.

er delivered by the source. .As before. we assume the thickness of the

cavity is smaller than X/2, hence, only the TMOI modes contribute

fo thl power transfer. The vyave functions are expressed by

m1lcos-z" : _ j 1TûJe

þzu
ft\
-ma

^^-K'anm=u n=u a=I pm ,.r 
cos no + br., sin no )

++
".,(ko*t) 

[Nr,,(ko*01]- - tr, (uo*t) [Jn(kompi)]

nom

J (k- c) N(k O)-N(k c) J (j< o)numnfjmnpmnpm

J (k- p) o < o.nfjma

J (k c)n fJm

u *2 IC e mn
m9 = :---.- L L à 

-(a

2a' m=o n=O i=l *p* n

tJn(kômpi)l: otPi

(5.16a)

otQi

(s. r6b)

rl (k^-c) tcf-tp. ll* - N'(lç^ c) tcr (p.)t+
I¡ Pm nm 1 -- n 0m - nm'i"-

J, (k^ c)n fJm

J'(k^ c) N (k- O) - N'(k c) J (k o)n Om n pm n pm n On'-'
J' (l( c)npm

cos nó + b sjn nó) sin 4 z'n'a

Jn (kpmp ) 0 < p.
a

l.J (0. ) r*nma-

As before, the coefficients -r, and bn entirety depend. on the incid-

ent field. ft can be shown that (Appendix c) the total power due to a

general source of 'TM__ type (combination of îI4_ - modes) is given bypq-pq
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the respective Fourier coefficients fox the souïcewhere- a andq

function .

5.4 Radiation Chara.ct erist i cs of Cavity-Backed Annular

Sfot Arrays

Based on the theory presented in the eartier sections, the

aperture field distribution and the radiation patterns of the cavity_

backed annular slot arrays are studied for a number of cases. Figures

5.3 and 5,4 illustrate the amplitude and phase distributions among the

elements of four arrays¡ Aside from the total m¡mbeï of elements form_

ing the arrays (N), the antenna systems are identical" The slot spac-

ing is selected a.bout one À to have constant phase distribution anong

the elenents. It is j-nteresting to note that as new slots are introduced

to the initial array of four elenents the amplitudes and phases of the

previous slots are not affected appreciably, excluding the case of

N = 10. The slot phases are almost constant and the amplitude distrib_

utions are similar to cosplp¡ distribution. The above ïesults indicate

that the mutual coupling between the slots is not strong for these cases.

Ho\^/ever, for N = t0, the system exhibits a resonant effect and the ap-

erture fields of the first few slots are changed drastically. A higher

order lobe is created at the center and the excitation levels of. the

slots with larger diameters aïe raised and the effective aperture dia_

meter seems to be larger than that of tbe last s1ot. Ho!,¡ever, the decay_

ing factoï associated v¿ith the amplitude variation, \,rith the exception

b
q
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of the first three slots, is similar to the previous cases,

It is generally desired to relate Lhe antenna gain to its beam

width by an approximate relation 1521, t6Bl , t691. A formula based on ex-

perimental results is [52].

G = Ar,/(0;.0å) A.¡ = 2'1 ,OOO (5. r8)

where 0i and Ofi are tfie half-power beam widths coïresponding to the

two principal planes. The above formula is obtained for antennas with

65* aperture efficiency. In Table 5.1, the half-power beam wid.th I gain

and efficiency values for the cavity-backed annular slot arrays discus_

sed earlier are tabulated. For these antenna systems AJ factor ís

calculated and the results are included in Table 5.1. The average value

of the factor for cavity-backed antennas j"s observed to ba ou_r.r"g. =

39,536. It is interesting to note that the ratio of the hatf-power beam

widths remains fairly constant as the number of slots increases, Note

that the efficiency values obtained are vrith ïespect to a ciïculaï aper_

ture of constant phase and amplitude distribution and having a diameter

equal to the largest slot. However, as it is clear from figure 5.3,

the effective aperture of the caviÈy-backed annular slot array is lar_
ger than the radius of the rast s1ot. This is due to the fact that the

amplitude of the last slot has a non-zero value. Therefore, an efficiency
value larger than lO0 pêr-cent for the case r,^rhich has a fairly constant

phase distribution (N = 4) Inay be attributed to the respective ampli_

tude distribution.

Table 5.2 compares the approximate formulas suggested by the

references cited earliex. The predicted gain values by the first and

the third approximate formulas, which are basically the same, agiree hrêl1

with the computed gain figurês. Howevex, the second for¡nula [69] fails



N 0.
E

0å o 

"/o*
Gain

dB
Efficiency A = eo . eo . cEH

4 8.0 14.0 r.7 5 25,33 103 37 ,32I

6 5-u 10. 4 r.7 9 2A .27 96 40 , 567

I 4-6 8.3 1. 80 30, 33 89 40,794

10
^2 t.7 7 32-59 9A 39 ,463

A = 39.536averaqe

rc--/g_) = L.1an !; averaqe

Table 5.1: Beam v¿idth, gain and efficiency variation of cavity-backed
annu_lar slot arrays.
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dB
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l0

25 ,4A

2A , -t()

Table 5,2; Approximate fornulas for the gain of the antenna
in the t\,ro principat planes.

30. 15

cdB = ro¿os 13 zn,tÇffutt t

32.60

20"L4

20.49

2L,37

2L.92

cu" = roloø(ffi)

25 ,66

30.34

GU" (computed)

32.79

in terms of the half-power beam widths

24.27

30. 33

32 .59



I25

to yie-Ld resu-lts with reasonable accuracies for the present antenna model.

Figure 5.5 depicts the E and H plane patterns of a cavity-

backed annular sl-ot array with eight elements (li = B), The thick line

represents the cross-pofarized component aL 0 = a5' cut plane, The

first side lobe -Level is lower than 10 dB from the maximum value. The

patterns are similar to those of radial waveguide fed annular slot arrays.

However, for the present case,all the power injected by the source is

coupled out due to the cavity wall.

5.5 Excita"tion of Radial llaveguides

5-5-l Introduction

In any electronagnetic wave guid.ing system¡ the field must be

generated by a suitable source. Throughout the analyses presented so far,

a particular waveguide mode has always been assumed as the forcing func-

tion without mentioning the physical- means of exciting such a mode. In

this section attention is paid to a method for generating ttOO urd t*Ol

which have Jleen used throughout ¿his work, These two modes are capable

of producing radiation patterns with the main Ìobe in the direction of

the z axis (Ti{01) or a nufl in that direction (TMOO). Multi-mode op-

eratlon which is generally aimed at reducing the cross-pofarized conpon-

ent [61] for appl-ications in Frequency-Reuse antenna systems 162l-1641

is presently under i"nvestigation by the author.

The pÒlarization state of the antenna is determined basically

by the feed assembly. For a smalt- angular region about the antenna axis,

linear, orthogonal and circular polarized radiation fields can be obtain-

ed. As it will be díscussed 1ater, a single feed located in the central

region of the radial waveguide or cavity, g.ives rise to a linearly polar-

ized field. However, a feed assembly formed by two orthogonally located
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feeds vrith respect to the azimuthal angle 0 and operated with the same

carrier frequency would produce orthogonal polarizatíon. Thrs mode of

operation is particularly suj-ted for frequency-reuse sateflite commüni-

cation systems. Such a system uses a given up-link and down-link freq-

uency band twice, hence increasing the conmunication capacity of a sin-

gl-e beam by a faÇtor of two. However' single mode operation generates

cros s-polari zarion feveÌs which for ttre off-axis region rnay creaLe inLer-

ference problems. For applications when a circularly polar.ized field is

of interest, the annular slot array provides such po-Larization by oper-

ating the feeds in equal aÌlplitude but in phase quadrature.

5.5.2 Method of Excitation of a TMOO Radial ¡lode

Among the simp.Iest methods of excitation for waveguide struct-

ures¿ are the feed systems which employ posts' loops or small apertures

1481 . However, for our purposes, a s.imple basic feeding element is con-

sidered. figure 5.6. It consists of a sma1I coaxial line terminated at the

center of the radial waveguide or a cavity with its center conduÇtor ex-

tending a distance d in the guide region and its outer conductor con-

nected to the lower plate of the waveguide. The height of the probe can

be used as a matching parameter between the two waveguides for maximum

power transfer. Note that in the analysis which follows we assume the

radial structure is unÍnterrputed. Therefore, for an erectrically thin

coaxial line the problem is essentially that of a thin vertical current

element in a radial waveguide or a cavity. However, the higher order

modes created at t¡e stot discontinuities are automatically taken care

of in view of the solution developed earlier.

The method for finding the field inside a radial structure is

generally based on inteqration of the appropf,.iate dyadic Greenrs function



Figure 5.6: Coaxial line probe at the center
of a radial waveguide.
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corresponding to the electric field radiated by a unit dyadic source over

the true source distribution I4BJ, This is the com-bination of the equi-

valent electric and magneÈic currents associated \,!'ith the probe and the

smalf- coaxial aperture. An exact sol_ution is quite difficult, ho\^zever;

it has been shown that for a thj-n coaxial waveguide the effect of the

aperture field on the input impedance of the probe is negligible [70].

Therefore. the current is nainly z-directed and its field can be obtain-

ed by using the Green's function of a vertically directed current source.

The basic principle and the approximate methods for obtalning the input

impedance is covered in the literature [48], [70]. Howeveï, for our pur-

poses it suffices to say tlat the field generated. by a z-directed elect-

îically thin probe placed at the center of the radial waveguide, due to

the 0 sjznInetry of the structure, is TM to z and can be excressed as

I4el
e.

{r-:"" = X A cos I[ " H(2) (r o)"-Llvt m=o m a o '--pm-'

,rrffi = oo 
" 

(') 
(up)

(s, r8)

where, k^_ is given by (3.5c) and A- can be obtained from a knowledgepnr m

of the strength of the source. As was stated before, a practical value

for a is generally less than x/2, therefore, if the slots are suffic_

iently far from the probe, all the modes with m > O are evanescent and

do not contri.bute to the travelling hrave. Howeveï, these modes may have

appreciable effects on the .input impedance of the pïobe, Avray from the

source region, (5.18) can be approximated by'

(s. re)

which is the required TMOO rnode of the radial waveguide. For a caviry_

backed annular slot antenna. using ã sijnilar approach and noting the fact



that E must vanish at the cyfinclrical conducting wall p-Laced at'z

P = c, -Leads to

e.
ti., fnc * A'ttoo o

J (kc)N (kp) - N- (kc)J (kP)
oooo

J (f..)
o

(s.20)

The radiation field of a TMOo excited annular slot array ís 0 directed,

equation (4.55).

5-5,3 Method of Excitation of a TM01 Radial Mode

For this mode of operation, the synnetry of the system with

respect to the azimuth coordínate must be perturbed, To this end we

consider the geometry shown in figure 5.7. Two jdenLical probes are loc-

ated syûùnetriÇally at a radius Q = p=. The probe currents are in op-

posite directions arranged by feeding the second probe through a l"BO" phase

shifter. The ground plane is collìmon wiiJì t¡-e outer conductors of the

coaxia-L lines. The field inside the radial vravegurde can be obtained

from the foffowinq relation

e.Ìncvtt mï __ (2) ..L A COS-ZH tK
-mao

l2\, > ,-H tk to - 0 ^o pm s¿'

-ll - x Asl' ^ m

mIT

a
to -o

0m'

(5.21)

where 0 . and O ^ are radiaf positional vectors of the sources and

(5.21J merely represents the superposition of the fields contributed by

the two sources. The ninus sign is due to 180" phase shift and the

coefficients are taken to be equal since identical sources are assumed.

Note that any mutual interaction between the probes is assumed to be ac-

counted for in A*. Utilizing the ad.dition theorem for Hankel functions,
m

[49] , we have



Figure 5.7: Two s)rnmetrically oriented ídentical
pfobes with a lB0" phase difference.
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in (5,21) and notinq Ó ^ = t + 0 -, one obtains' s¿ 'sl'

.o" 4, J (k^ p ) H(2) (k- o) t"jn(Q-o"r'a n pms n pm "-

-lï)
I (s.23)

the term in the bracket vanishes, therefore,

.o" {, cos n(ô-0 -) J (k^ p ) 
"(') 

(i.- p)érS]nVmSnpm

substituting (5. 22a)

e.
,r, anc
YTM XXA

-n

ìn(Ô-ó- s-t-e

For even values of n,

. .ancÙJ:)))À
'TM - ';

m=0 n odd -"

where a use has been nade of [58]

P t Q"

15.24a)

(5,24b)B (z) = (-1)n s (z)-nn

and Brr(z) is any cylindrical function. l¡ote that if the probes are

orthogonally located (ö"r= tr/Z + $sl), odd modes vril1 be eliminated,

A consideration of the behaviour of the Besse]. functions reveals that

for argunents smaller than n, the wave irnpedances associated with the

radial modes become predominantly reactive [49]. Therefore I if ps is

selected in such a way that 1<kps<3, the modes hrith n>l are

attenuated and the main propagating mode is due to n = I. Furthermore,

if the guide thickness is smalleï t::nan x/2, the propagating mode



is given by

anc ()l
Ú*r--- - 24,ì J.r (kp.) cos ($-(r.r) Hi-'(tp).,.01 (5 .251

Taking ,r, = 0 the above relation is, \À¡ithin a mulL.iplicativc consLant¡- sl

the desired TM mode.

The radiation pattern for such a feed configuration, depending

on the aperture phase distrj-bution, may have a main lobe in the z-direc-

tion. As it is evident from equation (4.56), the electric fietd is x-

directed for 0 = 0. Therefore, as far as the receiving antenna is con-

cerned and for a small angufar region about the z axis, the field nay

be assumed to be linearly polarized. Note that a 90 degxees rotation

of the feed system in either direction about the z ax.ts results in a

y-polarized field in the r"ront direction.

For communication links r^'here circular polarized field is of

j,nterest, the above configuration does generate such a field by merely

operating the Lwo sets of orthogonally located probes in time-phase quad-

rature. Departure from ideal circular polarization is controlled by

the dj-fferential phase and the relative magnitude of the excit.ation cur-

rents in the two sets of probes. It shoutd be noted that the polariza-

tíon is only pure for 0 = 0 directÍon.

5.6 Effqcts of a Finite Ground Plane on the R¿rdlation Fíeld
fn problems associated with radiation from finil-e sl_otted struc-

tures' the configuration of slot antenna is such Llì¿ìt àn cxact, Lheoroi---

ical treatment, if not impossible, is quit.e compticatcd. À useful simp-

lifying method is generafly based on assuning the sfotted front of the

radiating antenna to be of infinite exLend. this approach, for most
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cases/ provides results which close]y match the measured values in the

front direction provided that the edges of the fj-nite ground plane are

far from the slot array. Howeverf for the back scattered field¿ the cur-

rent induced on the rim of the baffle has the nost contribution to the

field in this region, Therefore, for geometries having substantial rad.-

iation in the plane of the conducting baffle, the excitation of the rim

might be strong and the radiation pattern obtained for the infinite ground

plane should be nodified accord.ingly. A method for treating these cases

is to superpose the infinite ground plane solution, the first order dif-

fracted field and the axial caustic solution in their respectj-ve regions

of validity by employing the geometrical theoïy of di-ffraction, t4ll .

Excellent results have been obtained and are compared against the measur-

ed. radiation patterns, The d.ifferences between the computed and the

measured values are attxibuted to the fact that aperture fietd distrib-

ution used for pattern computation is assumed to be the unperturbed field

of the coaxial feeding guide.

Another method of treatment, hrhich is closely related to the

first approach and is presently under investigation by the author, is

to replace the finite baffle by an equivalent current sheet. This cur-

rent which is distributed over the finite plane is assumed to be given

by tlle tangential magnetic field obtained for the infinite case. To

take care of the geonetrical discontinuity at the edge of the gïound

p1ane, a current filament of strength f" is placed at this location

which accounts for the difference between the assumed and the true cur*

rents of the rim [65]-t6zl. The aperture fierds are also affected. by

truncating the ground p1ane. The total effect on the radiation pattern

can be lumped into a multipl_icative complex constant associated with the



f35

electric current distribution over the plane and the apeïture. Now, if

ttle aperture were in aïl infinite ground. planer the equivalent magnet.ic

current associated vrith the aperture would produce the same radiation

field. as the equivalent electric current on the apertuïe and the induced

current on the infinite ground plane. îhis results from the fact that

the far field can be obtained from the tangential components of the fields

over the plane z = O. However, according to the êquivalence principle

and image theory, the radiated field is also equivalent to the one pïo-

duced by an equivalent magnetic cuîrent J* = 2 E. x â over the aperture.

Therefore, it would appear to be a good approximation to ass.ume that the

thto sets of sources, for the case of finite ground. p1ane, produce the same

field (at leasÈ j,n rhe direction of the maximum field) , Iiris results in

an equation in terms of the two newly introduced complex coefficients.

We need one more equatity to determine ttte radiation fie1d. This is done

by utilizing the pr.incipLe of the conservation of power. Note that for

a finite baffle, the total ïadiated power is obtained by integrating the

poyntíng vector over a spherical surface enclosing the antenna system,

In the above analysis, it is assumed that. foï the case of radial \arave_

guide fed antenna¿ the guide is terminated by a matched load (absorber)

and the effects of the current ind.uced. on the back side of the antenna

assembly on the rad.j_ation pattern are consid.ered to be negligible. A

quantitative study of the above theory is presently under investigation.

5,7 Experimental Resufts

In order to verify the valídity of the theory. presenÈed earlier

and investigate the effects of a finite ground plane on the radiatì"on pat_

terns, a small model of a cavíty-backed annular sloÈ arrav with four
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elements is fabricated, figures 5-B-5,11. The desiqned pattern of slots

is cut on one side of a two-sided copper-clad ctielectric sheet (pO¡ycUIDE).

The short circuit termination is achieved by using silver conductj-ng

paint on the rim of the structure. fhe feed system is designed to sup-

port TM0f of the cylindrical cavity region, The center conductors of two

SMÀ connectors are used as the thin vertical probes by drilling t!ùo holes

syrnxnetrically about the center of the structu-re and separated by a dis-

tance equal to 13 Íun. The tips of the probes are soldered to the coppeï-

clad of the opposite face forning the annulaï slot axray: To acilieve IBOo

phase shift between the probes. a rectangular waveguide section is used.

Two SN^ terminals are mounted Àg/2 apart on the broad wall of the \,rave-

guide section. The gurde is match terminated on one side and the crystal

detector is placea at the other end .for pattern measurements in the receiving

mode, fiqur:e 5.9, Two ident.ical high frequency coaxial lines are used

for connecting the antenna terminafs and the phase shifting device. ¡\

separate annular flange having an .inner d_iameter equaf to the aperLure

diameter of the annular slot aïray is also fabricated from aluminun. ,the

ratio of the outer and inner diameters is selected to be equal to 2. The

thickness of the aluminum sheet is equal to that of the Lwo-sided copper-

clad sheet to produce a smooth aperture surface. The latter conducting

annular sheet is used to lnvestigate the effects of the finite giror:nd plane

on the radiation pattern, The antenna assenbl.y with the conducting flange

is shown in figure 5.1I.

The experrmental investigation on both unflanged and f-langed

cavity bacl(ed annular slot array antenna is performed in the anechoic

chanber of the Antenna Lab¡oratory of the University of Manitoba. figure

5.I2. Due to the interference levefs of the antennô mount assenùclv and
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the chanber itself, the receivíng pattern measurements are carried out

over an angular region *I00o 5 0 < f00". Patterns are measured at

f = 10.11 GHzr and the incident wave was launched by a horn antenna,

. Figure 5.13 itlustrates the E and H plane radiation pat-

terns of the unflanged antenna. The computed patterns for the infinite

ground plane are also included, As it is evident ¡ the E-plane patterns

trave the sane nuÍìber of lobes and the main lobes have the same beam width.

The first side lobe levels,which in addition to the main lobe, carry the

iïajor part of the radiated power are close to each other, However, the

off-axis lobes of the fj-nite antenna have larger values compared to the

infinite case, This is expecÈed, since, due to a sudden geometrícal inter-

ruptlon at the rim location edge diffraction, which increases the off-

axis side lobe levels, occursr The H-plane patterns also have the same

general trend. Note that at 0 = 27o the computed pattern shows the

generation of a ner,r sid.e lobe which corresponds to the first side lobe

level of the measured pattern. For 0 greater than 32 degrees, the síde

lobe levels of the computed patterns aïe smaller than -40 dB and are

not shown.

In order to investigate the effects of a finite ground plane

on the radiation patterns, the aluminum annular flange was add.ed to the

aperture surface of the antenna assembly. Hence, the apeïture diameter

for this case is increased by a factor of two compared ¿o the previous

case and the aperture current distribution is expected to have a more

tapered behaviour. The measured E and H plane receiving patterns for

this case are depícted in figure 5,14, The beam \,r,idth of the patterns

are not altered. Honever| the off-axis side lobe levefs arê stightly

decreased, due to a smoother edge transj-tion. at the expense of a lower
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efficiency factor.

The gain of the finíte cavity-backed antenna was also measur-

ed, As a measure to broaden the operating frequency band of the feed

systenÌ, the feed assembly shor^m in figure 5,15 was used. The 180 deg-

rees phase shífting device for this case r¿as formed by a Magic-T, havi:

ng íts sy1nmetry arm match terminated ( port 3 ). A standard pyramidal-

horn ¡¿as used as a reference âperture antenna for gain neasurements. The

loss components associaled with the feed assembly are tabulated in Table

5.3. Tl.re gain of the standârd horn, the measured relative gain and the

computed gain ( infinite ground plane ) are also included. The dÍffere-

nce yalue of 0.6 dB be't\n/een the theoreLical and ¡neasured gains accounts

for the effects of a finite ground plane, mismatclì loss anC the measur-

ement errors.

The reflection coefficient at the feedíng arm of the nìagic-T

was also neasured by a Network Analyzer, The r:esult over the X-Band is

presented in figure 5.16. The operaEing poínt for gain and r:adiation

pattern measurements is also shown ( f = 10.11 GltZ ). Figure 5.17 shows

the effects of a slide-scre\,{ tuner on the reflection coffícient of the

feed and antenna systems. The results obtained for a short as well as

a üâtched terminati.on are also included,

It is,therefore concluded that the Ínfínite ground plane solu-

tíon yields reasonably accurate results for the radiatíon field of a

finite aper¿ure antenna. The edge scattered field whích raises lhe

off-axis side lobe levels can be reduced by introduction of an annular

conducling ri¡i.
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tem' TMol excitat.ion.

antenna and the feed sYS-



molched lood

cooxiol co bles

number of slols = 4
€r =2.3?
D =1,5 mm

n =¿ l.ó mm

X =2O.O mm

C- o = 3.9mm

o =1.6 mm

f = lO.ll GHZ

probes se porotion = I

phose shifter cryslol deteclor

irï=å-ilF_E
¿9'

flfl
ilil

UI

Figure 5.9: Geometry of the antenna and the feed



'''mßm
il
il

Figure 5.10: Feed terminals, conducting flange and the mounting fixture.

.'F{r,+rrr|! !r¡'r, 'frT '¡ i f ""'r¡s'll
---tf.,.', ..Í, , , , 1,, , ,, 1,.,.1 L . l. ., ,i l.,.L,.ll



Fig. 5. ll: Assenbled annular
flange.

slot array antenna wath the conducting



s ¡gnol
s ource

snlenno under tesl

Figure 5.12: Experimental set-up for pattern measurements,



Figure 5'13: E and H prane radiatlon pâtterns of a cavity-backed annulaï slot antenna.-O-0-0- calculated.
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Table 5.3: Details of Gain Measurements

Annular

Slot Àper-

ture caln dB

Coaxial CabLe

2 x 2-7'

Waveguide- . SM¡!

Transition

¡lafe-Type S¡r*q

Connector

2 x 0.1

Magic T

0.9

Total = 6.9

Computed ¡\perture Gain ( infinite case ) = 25.2 dB

.Iteasured Àpertu-re Gain ( finite case ) = 22.3 - 4.5 + 6.9 = 24.7

Difference = 25,2 - 24.7 = 0.6 dB

cain of Standard

Horn at f = 10.11

GHZ dB

asured reLa-
hive Gain dB

( w,r. t. Horn )

dB
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CHAPTER V]

DISCUSSION AND CONCLUSIOT\

Thê problem of electïomagnetic scattering by concentric arrays of
annuLar type geometrical discontinuities inside or on the conmon boundaries

of radial wavêguides r,7as studied throughout this thesis. The cases of
electromagnetic penetïation into half-space as well as cylindrical caviÈy

Tegions are also treated. The method employed for obtaining field solut_
ions in the respective regions utilized a boundary value treatment. The

appropriate Green's functions of e and h types representing the res_

ponse of the system to a 0 ¿lirected cuïrent ring of arbitrary excitation
were obtained. Both electric and magnetic current distributions were as_

suned in order to extend the range of applicâbility of the analyses to ap_

erture coupring problems, The final formulation was carried out by an in-
tegration of the impulse response over the induced current distïibution on

the surface of the geometricar discontinuities . Thê induced source function
was then expanded into a finíte seïies of basis functions with complex

coefficients (for the examples provided in this thesis. pulse functions
were assumed). These constants .were later obtained by an application of
the boundary conditions oveï the discontinuity surfaces, The analysis was

mainly oriented tov¡ard investigating the scattering characteristics of
arrays of electrically thin elements. Therefore, the contribution from

the second component of the induced surface current with respect to the

azimuthal directed one v¡as assumed to be neglj-gibLe, Hot/ever, for prob_

lems where this contribution is expected to be appreciabre, a similar method

can be utilized to find another set of equations describing the contribu_

tion of the second compor¡ent to the total field. The electromagnetic

I46
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coupling L¡etween these tvro sets of fields is then ensured by a simultaneous

evaluation of the constant coefficients of the tv/o sets, using the approp-

riate boundary conditions on the surfaces of the scattering bodies.

. The method vras then applied ta three different geometries, namely,

a) lwo radial waveguides coupled by an a-rray of concentric annular slots

of finite \,/idth on the'collunon boundaries for applicatíons as band-pass,

band-stop filtering devices.

b) Radial waveguide fed annular slot array antenna for applications as

highly directive antenna systems of low profile and low cost for use

in high frequency communication 1inks.

c) Cylindrical cavity-backed annular slot array antenna for applicatíons

as flush-mounted antenna systems of high gain, for use in communication

satellites and aircrafts

For a source placed at the central region of the feeding wave-

guide, expressions for the total povúer. power coupled out through the slot

array and the transmitted part thr.ough the waveguide region were obtained

for each case. As a check on the accuracy of the numerical results the

balance of power between the supplied, coupled and transmitted powers was

examined for all cases and excellent results were obtained. The radiation

field of an annular slot array was also obtained for a general exc.itation

by an application of equivalence theorem and the image theory. The special

case of TM^^ as well as TM^- excitinq mode were chosen for numericalou 0l
exanples. The thickness of the guides were selected smaller than half a

wavelenqth to suppress the propagation of modes other than the dominant

mode:

As an equivalent principal mode circuit representation, an ad-

mittance expression assocíated with each slot \4/as defined. For the case
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of two coupred radial waveguides it vùas observed that for most applications

the dominant mode representation ¿ such as that in the transmission line

theory for waveguide applications, adequately describes the slot admittance.

However, the accuracy of the results¡ especially for slotswhere kp is

smal-l , is not satisfactory. As a further check on the dominant mode ap-

proximation, the fie.ld distribution over the slot was also calculal_ed.

The resuft indicated that the higher ordeï nodes excited by the slot dis_

continuities have significant contribution to the slot field amplitude only

in the vicinity of the sl-ot edges. Their contribution to the slot field

decreases as the distance from the edges increases.. On the other hand, the

dominant mode theory failed to describe the phase of the aperture fi.eld.

The actual phase of the slot field which was calculated by includinq high_

er order modes was observed to be viïtually constant ovet: the s1ot. Where_

as, the result due to the dominant mode showed an oscillatory behaviour.

For the case of a radial waveguide fecl annular slot antenna, a sim-

ilar trend was generall-y observed. However, t.ho phase distribution ovcr

the sl,ot obtained by dominant mode apptoximation cfosety reserìbled that

of the actual field. The dominant mode result, however, was obtained by

only suppressing the higher order nodes of tlle waveguide region. !ùhereas,

the continuous spectrum of the nodes associated with the semi-infinite re_

gion was included in the nu¡ûericar resurts computed for the admittance and

aperture fie J-d.

The admittance varÌa1_ion of tl.re annul_ar slot antenna as a function

of its radius was compared against the avaifable theoretical as wefl as ex_

perimental data for a coaxial radiator of the same aperture size, It was

observed that for elccLrjcaLly thin sfots, the admiLtance of Ll.ìe sloL ap_

proaches that of an infinitely thin annular srot driven by a derta-function
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gienerator. This indicates that the admittance for this case is mainl_y de_

termined by the externâl region. However r for wider slots, the admittance

values of a radial waveguide fed annular slot anter¡na are generally smal-

ler than those oi the coaxial_ fed slot.

In order to study thê degree of coupling between two radial

waveguides, the coupled power contributed by each slot was computed for an

array of annular slots on the common boundary of the two regions. It was

observed that depending on the arrangement of the slots and the other para-

neters involved, the coupling could be so strong as to redirect back part

of the power coupled by a nunber of slots; to the region inctuding the ex-

citing source system. An equivalent transmission line representation for

this case would then be a negative slot conductance (a source) associated

with the respectjve slots.

fn application of the previous geometry for the d.esign of micro-

wave filtering devices r^'ith band-pass characteristics suitabte for pïinted

circuit strip-1ine fabrication techniques, a nunber of cases were consid-

ered. It was observed that by a proper arrangement of the array structure,

wide band was well as highly selective filteríng responses with sharp cut_

off characteristics are realizable. That is, over the frequency band, the

array of slots effectively coupled a major part of the total povrer to the

external region.

The phase and amplitude variation of slots (isolated as well as

coupled case) were studied for the puïpose of array antenna designs. The

results obtained for the case of annuJ-ar slot antenna indicated that, for

thin slots, the determining factor for the phase of the aperture field is
normally the waveguide region. The nonlinear phase vaïiation as a function

of slot radius, shovved a periodicity of one À (intrinsic wavelength
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of the guide region), The field magnitude \4/as observed to decay as the

radius increased, however, the decaying factoï (asymptotic value) obtained

for several cases seemed to be proportional to the squaïe root of the slot
radius. These results suggested that, knowing an initÍal value for the

slot field at a certain radius, the field magnitude for the srot of dif-
ferent radíi can be predicted. within a few percent error, by noting that

l"l '6 oscilrates about a constant 1ever. For two coupled slots, the

same conclusion holds and Èhe relative position of the tv¿o constant levefs

associatêd h¡íth each slot is an indication of thê magnitude of the trans_

mission coefficient at the first slot location. For the case of coupled

slots' the phase variation had a similar behaviour as the isolated case,

hovyever, the second slot was obseïved to experience a phase shift related
to the slot spacing. The array field distïibution for a cavity backed

slot antenna also exhibited a periodicity of one I. However, for a part-

icular arrangement of the slots, the system showed a resonant effect¿ fig_
ures 5.3 and 5.4. so faï, a satisfactory explanation of the result has

not been found.

In application of the theoïy in design of directive beam anten_

nas as well as uniform radiation fields, several cases were presented. Ef_

ficiencies of the order of IOO per-cent and gains of about 32 d.B vras

shown to be easily obtainable with aperture diameters not exceeding I2Ào,

Since the direcÈívity of an antenna is propoïtional to the electrical

area of the ïadiating aperture, it seems quite possible to achieve pencil
beam radiation patterns by fabricating a fine patteïn of slots over a mod_

erately sized aperture. Thus, operating the antenna system at high freq_

uencies, results in an electrj-cally large aperture capable of launching

beams of very narrohr beam v¡idths.
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A method was proposed to realize simple feed systems capable of

producing the desired mode or modes of the feeding vraveguide. The feed as-

s en:rbly esseniially consisted of isolated single or double vertical probes

in a particular configuration. In order to verify the validity of the

theory presented and afso to investigate the effects of the finite ground.

plane on the radiation patterns, an experiment was pcrformed. It was ob-

served that the effects of a finite aperture on the radiation field of the

infinite ground plane case is srnall and mainly of the edge diffraction form.

Introduction of a conducting flange reduced the edge diffracted lobes at

the expense of a lower efficiency vaÌue.

We, therefore. conclude that due to the inherent high frequency

capability of the waveguide structures and the sinplicity and ease of fab-

rication of the suggested radiating models, such structures can be utilized

for applications as fiftering devices, as wefl as efficient and highly dir-

ective low profile array antennas for o_Þeration in communicat.ion finks at

high frequency bands.

6.1 Suggestions for Future Research

During the course of the present work, several topics have sLem¡ned

from the praclical point of view of the subject matter lrhich requires more

detailed attention. The first and most related problem is to i.nvestigate

the possibility of circuit modefing of the slotted structure for synthesis

purposes, The models must account for the higher order modes excited by

the di scon Linuities. closed form approximate expressions for the circuit

elements,which closely follor{ the actual resuÌts, should be obtained to

facilitate the design and synthesis process. .Ihis requires a thorough

study of the slotrs hybrid admÍttances and their reration to the character-

istic dimensions of the structure. 't'he resu.lt would be a simpfer routine for
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optimizing the desired electrical characteristic as the needs arise- A

study of ohmic foss of the structure is required to substanciate the pract-

icality of the design as an efficient fiftering device or antenna system.

The applicability of annu.lar slo-- antenr¡as ior use as a pen-

ciI beam launcher requires detailed analysis of apertuxe efficiency Ín con-

junction with the beam width and side lobe cha racteristics. The fact that

side lobe levels and the beamv/idth are intimately reJ"ated to the dependence

of gain on the electrical size of the aperture and its field distribution

aakes it necessary to seek for a systematic way for compromising between

these factors in order to fulfitl the design objectives.

A study of the effects of a finite ground plane on the solution

of an infinite one is in order. Even though the finiteness of the conduct-

lng baffle is observed to have a negligible effect in the front direction¡

as long as the radiating slots concentrate Lhe ener.gy in that directlon. never-

theless, the bacß-scaLtered fiefd can only be accounted for by utilizinq rhe

existing techniques such as geometrical theory of diffraction, A method

of solution fox this case was qualitatively presented in the last chapter

and a quantitative study is u¡rCerway.



APPEI{D I X

DERIVAÎTON OF EQUATIONS (3.8) USTNG T,ORENTZ RECTPROCITY

Noting that the auxiliary wave functions defined by (3.7) are

source free in the volume V, by setting J = O in (3.6a)¡the ïecip-

rocity relation reduces to

^ l-, *' nds = - I H . J dvjam
V

(A.1)

where (+) and (-) signs represent (3.7a) and (3,7b) | respectively.

since the tangential components of -È* 
, Ë- and È vanish on the con-aa

ducting walls, equation (A.1) can be transformed to

IA PTp. l f r']^.H.+E,.Ht -8.H] -Ei.H)dództ Jn Jn za Q A za z Oa -0a --z'"4-.-

ta t2ÍÍllt+- 0^ I I (E . H. + E. . H' - Et ln ln za O Q za z
. H") dþdz

,n 
(Q) ô (p-p' ) 6 k-z' ) pdQdzdP (A.2)

The second surface integral in (A.2) vanishes for (+) fields and the

first surface integral vanishes for (-) fie1d.s. Using the Wronskian

relation for Bessel functions t5ol in the form of

¡t+l+->++-
O(E XH-EXH)
Jaa

.H- -E-0a 0a

[2n loz l" r= - ./. Jo, J" nó.' t

tu{n n[2),t't - nf,2'\e) rir@) = , # (A.3)

and employing tlìe orthogonality property of the sinusoidal functions,

one obtains the following result for (+) fields

^ r. ^ rroeJc-
Î,'euou - uuil = - ,:----g cos fl z' Ík o' ,rt rk^-p') - g2 -fl!- J,, (¿_ o,)loén" a - PP ['PP- ' jt¡pa -r1."pp"

(A.4)



where a use has been made of the pïopeïty of the delta function. A

similar mathematical routine foï the case of (-) fields leads to

h e lrú)Cua
L2eo" r- u"l¿ = - l# cos 4 z,tL^_p' uj2),

- ppa 
--- a ' '^PPn "9' (kPPP')

r' fï' uf 2) 
ruono'r r



APPENDIX B

DER]VATÏON OF EQUATTONS (3.35) FOR THE TOTAL, COUPLED AND

TRANSMTTTED POI"üERS

A practical thickness for a radial r¡raveguide is generally

smaller than one-half of the intrinsic h¡avelength, Therefore, expres-

sions derived here are foï cases in which the propagating mode (or modes)

are of ì, tvÞe- Thåt is, higher order modes for m ) O have a comp-'oq

lex propagation constant Opa -.U are attenuated rapidly, hence, these

modes do not contTibute to po$rer transfer. Therefore, power expressions

can be obtained only by retaining the propagating mod.e and an application

of equation (3.34) to respective surfaces (Section 3.3-21 . Considering

the coefficients given by equations (3.12) reveals that due to the exist-

ance of the integer m in the coefficients for h modes, the contrib-

ution from TE modes to the power flow is zero. Therefore, for power flow

calculations, we only take the field components contributed by TMoq modes.

The total power is obtained by an apolícation of (3.34) to a

circular cylindrical surface which surrounds the feeding áystem in the

lower waveguide and has an arbitrary radius 0n smaller than the radius

of the leading edge of the first slot (Section 3.3.2). Equation (3.34)

for this surface transforms to

P=ORe'p

Note that E. and H
0

other components are

l2T [o
I I [x,.H*-E . HTjdôdz (B.r)
Jo J_¡ I z z Q

_ are zero for TM modes (equations 3.3b). Thezoq



.TÌt'z - -J 2b

a

z-

"ó

1
11 .-1 2- * (. -)

'o

IC
¿ p, E. cos

I lcf

IC

.1 .ICf

IC
X p-E. cos qö [J- (r- o. ) ]+. - l rq -'- cf l'a'--

I

t%'- 
,1, 

pi"iq "o" q0 trq (krp

q0tn(2) ttro.)l+ Jq(ktp) - j rruo

"or q0Iu(2) (krpi) l: r' (ktp)
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.o" qO nj2) 0.ro)

(8.2'

The contribution of the first terms of (8.2) to Ez . Hö is purely imag-

inary. This is due to the fact that this product is only determined by

the slot fields. Since the contribution of the slot induced souïces to

the total fíeld in the central region of the guides is of standing wave

typef this product is purely imaginary. Upon substituting (8.2) in (B.l),

performi-ng ttre integration and taking the real part, one obtains

- k1 cos q4 n 
(2) 

' {aro)

p = É!q .rk h * 2n . T o, *.,u. ¡r(2) 0.-o.I*-Total rn ""o" ' rn ilr "i ""'"iq"q '^1-i-- (8.3)

The transmitted power can be obtained by applying the same

method to a cylindrical surface in the lower waveguide having a radius

% 
greateï than the last slot. We, therefore, assr¡me 0p approaches

infinity, hence/we may use the asymptotic relations for Bessel functions

which facilitate the derivation of the final ïesult. For the field comp-

onents we have,

II
2b

1I

2b

"(2) 
{tro) - j ûruo cos q4 

"(2) {Lro)

i)l'H;'',(krp)

k, cos qQ 
" 

(') 
' (orpl (8,4)

Substituting (8.4) in (8.1) and using the principal asymptotic forms of
Besse-L functions I50l
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--t2) , I2 -jk - Tr - þnn \z) - " l; "
for z Layge (8.5)

,:2)'þt - n(21'e)q q-l

one obtains

Þ :4!9-' 4 Lc
- Transmitted g ',.^b + aî x p. Re(8. -) IJ-(k"p.,)l+

q t tq i=l I aq q I a --

nrcrc* rrd* x t p. p. Re(E..Eî_) tr_(k,p")l+q^oo i=r j=l 1 I iq js''q'--f i''*
(B.6)

The same method h¡hen applred to a similar surface in the upper waveguide

leads to,

¡_ = : 5 r o. E. cosøQlrn(krp.lt* nj2) tr.rolo to i=r r aq

L 
(8.7)

r '.'z z l"Ho = - *'f:: rl, o, "rn 
coseÖlrn(krgrr]* ni2)'tr'ror

The relation for the power is now

¡2r rap = -o* *"rl I E- . Hl dqdzl (B.B)p Jo jo z q

which upon substitutang (8.7) in the above relation leads to

_ .L\- l\-
Pcoupled = t-.J^ã -:', x p- 'p-.'Re(e. ' Eîq) trq(k2pi)ll (B.e)

qo r=r j=l r I lq

Note that the above relations are derÍved for singte mode operation.
However, fomulation for a general case is simply obtained by including

an infinite sumation on q, that is
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- ç¿2_ + r2_) tc ¡.',,p- , = x q: q,.{¿gotr¡+ zn I o. RelE. H(2)0. o.)l*}Tota-L q=o tq - o i=f '-i -'-iq --q "'1-i"-'
(8. r0)

{a2 +b2¡ rcI q q {¿gona¡+4r X p. Re(E. )tJ (k_o.)l+^Transmitted--^eo.arqorrq=u q r=I

']r fc Ic
. t-Tr .1, .,:, 

pi ' 0j ' Re(E'é Eîq) trq(klpi)1+]
o r=r l=_r

(8. r1)

oo q¿2 + b2)n rc tc
Pcoupred = 

^1" ffi ":., .:,' 
pi 'pj *"(tiq"îsttrq(k2p )l+

q=u q o r=I l=I
(8. 12 )



APPEND I X

PROOF OF THE IDENTTîIES (4.14)

In the course of const.ructing the appropriate Green's func_

tions for describing the field generated by an annular slit of stTenEth

V(0) on a conducting infinite p-tane. two types of infínite integrals

involving Bessei functions anci their deravatives were encotrntered.

These integrals in their present forms are not tabulated in common math-

ematical tables and thê proof of the resulting identities iequires showing

f- ,,2 I
o' J" "i(dp)r;(0p')ooo 

* ï .,l"

r' f" 
tr(op)r'(op')ds + oJ- ;;roor rv(clp,) = o

for aff p,ReV>0

I

; Ju (0.p)Jv (0.p')d0 = .J(p-p'l

Derivation of (C.l) j"s fairty strarghtforward. using the following re_

lati-on for Bessel functions [5Ol

- 
./o "u*t 

(üP) Ju (c,,P' ) ddl = o

The above four infini,te integral-s are in the form of discontinuous inte-
grals of Bessel functions represenred by l5ol

fyl:_: v

rwxlr
I r,, (xß) J,, . (yß)dß _-.. y
Jo P F-r zY

0y

J'(z) = "r_l2) - Ju+rk) (c.3)

the identity (C.1) is modified to

f* rv
o't./o "u(aP) 

rr-, (op')dû - 
.Jo "u(ûpJ 

Jv+l('xp')ddl + olJ" Jv_r (op) rv(o.o')dcr

<x

>x

ReU>0 (C.5)
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For p' > p, after replacing the integrals by their respective values

given by (C.5) one obtains

v v-l
p'(o - -+; +p(P. -o) = o (c.6)

rvf| rv.frp

wnich is an obvious identity. For pr < p we have

^,v-l ^,vp'(*v -o)+p(o-i-J = o (c.7)
pp

and the proof for O' = p istrivial.

Derivation of (C,2) is somewhat more complicated, Ì{e start

by forming

rv(crp) ri(op) = ,# 
"u 

(op) - ru+¡(op)J t-;þ "u,oo', 
+ rv_l (o,p') l

(c.8)

where a use has been made of (4.I2c). Substitution of (C.B) in the first

integrand of (C.2) results in

.,^' f-
î .J. "u(dp) 

Jv-l (ap')do * u.Jo 
"u*, 

(op) rv(op')dcr

fco
- o']" "u*t 

(op) Jv-l (crp')crdct = ð(p-p') (c.9)

It can be shown that

f' r-p' I J,,*., (o0) J,,_., (ap')sdo = v I J.,*., (op) J,,(op')do
J6 vr1 v--L jo vr-r I

.æo
* uo l J (nn) Ju_, (op')dap jo v

I- ï ll rv*r(oo) ru*1 (ao')odo

- 
Jo "u-t toP'' Ju-, (oo''t udol (c'toa)

rarhere a use has been nade of
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(c .10b)4 tuÞl = Jv-r (z) + Jv+l (z)

substituhing (C,lOa) in (C.9) results in

f*
i tJ" 

"u*r 
(üp) rv+1 (op')cxdo * 

.1. "u-r(s0) 
rv-r(op')odo¿l = ô (p-p' )

(c. rr)
According to the definition of delta function in terms of j-nfinite inte-

grals of Bessel function we have [57]

ô(r - r') = r' [ "..,ßr, 
¡,,(ß¡,)ßaß ror all u (c.12)ttlu

Finally, an application of (c.t2) to (C.11) proves the identity.



APPENDTX D

DERTVATION OF RE (IC)

. First l^re establish the follolring identity

- 22 d .1 l- sin(zt)dr ---r-lr 1r dz -z J1 ) , I/2''t-(r- - 1)

To th.is task, we represent the right-hand side by f (zl and take the

derivative of the both sides wíth respect to zt that is

(D. 1)

(D.3)

df = Z d ,! f- sin (zr) dr ., * 2 [ sin tzt) drdz rðz'zJ., 
", 

- t¡zJ- f ), " W \D.2)
't'(t'- r) 't (x' - r,

The first tern in (D.2) can be identifieo as - Lf aIld the second tera

is the integral representation of Jo (z) [50], therefore ¡ one obtains

"ff*t = -z ro(z)

or equivalently

d(zf\ d --ã- = ¿tztr(zt)

vrhich jfimedj-ate1y proves equat.ion

.1 l'* sin (z 't) dt -z'l J., -;-;-- v2ro =
- t- (r- - 1)

(D.4)

. From (D.1) it fotlows that

¡ - (z')
-L----lt- oz' for all z (D.5)

(D.I)

rl',tro

hence

! [- sin(zt)at -_ = - ) {"ttr",', a,, * f* dr,)o.z.z L/t -'t J--". "" - J., " Ln"t'(t"- r) o 'tt (t,-t)
(D.6)

The second term on the ïight-hand side is a known integral equaf to |,
therefore ,
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tz J-(z'\
I sin(zt)d!.- = k t,. - l' "r)1,' 

u", l (D.7)J1 2 2 r/2 2 ' lo z''r-(r- - r)

tsy a similar process¡ it can be shown that

(D. 8)

which feads to

. t f to"(z'h)dt 'z n ¡- Nr(zr)
t- I ----:-- v, t; = ; I * u", for arr z' tt 

a2 rr2 _ !)-' Jo 
(D.9)

substitutrng

t't- (z)l' Ä

" 
= No (z) --: N1 (z)

yields

fr;i-iø=+{:No(z')dz'-Nr(z)r (D'10)
L \L - L,/

where a use has been made of the following relation

l1T *r,,, = - f ,i* I- ^-f=+ (D.r.r)
z->o 

"* 'I ,t2 (t2 _ I, '

By su.bstituting (D.7) and (D.10) ín equation (4.39) the desired xelation

for ne(te), as expressed by (4.41), is obtained.



APPENDIX E

DERTVATTON O¡' RE (1h)

The infinite integrals on the right-hand side of (4.43a) and

(4.43b) can be evaluated using the following known integrafs [50]

["o= t,. _ (-t)t+I ,t]r . (-r)P+l (zp + t)rt__:_ctlr=_| .2n+r (2n)lt 2Þ+1 - lcos t - (2p+l)t sin t]]
P=0 t'

- (-r) n
+ ¿;ñ ci(t) (E.r)

_ .n+1 h-1 ñr'l
I sin r ,* _ (-l)'^'- ,""- (-t)t''(zp) r

I :*r dt = (2n) lt 2o+t L- cos t + (2p+-L) sin tl ]
p=o t'

,..n
+ 1,;jT sí (t) (E.2)

Using a change of variable in the forn

t = z8 (E.4)

transforms (4.43a) and (4.43b) into suitable forms to be evatuated by

(E.f) and (8.2). The resulting integrals aïe then evaluated for the

limits z 1t 1@t h,ith the aid of limiting forms for Si(co), Ci(co), t5ol .

The final results are of the following forms

llrr
J, to"Utol*-")ßr (ß3 - lþlug = fr tt"i+le)cos "r - ,L (22 + 22¡ s:'v¡ 7,

+ zlt"l + 2|)ci(zL)t (E.s)

lìtl

J, "t"tuo,**o)ßl (Ë - ¡fu,us = fr t"r<"1 + 22) eos "z + k'z + rs) sin z2

+ ,lt"l + 24) si (z2r l
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(8.6)



,r = to l" - vl

,2 = r.o lx-vl
substituting (E.5) and (8.6) ln (4.40) resutts ín (4-44a)



APPENDIX F

DERÏVAT]ON OF THE EQUATTON (4,50)

. Using the addition formulas for sinusoidal functions, the in_

tegral part of (4.49) on u is transformed to

lî
U = 

.J 
[a' cos nö + br., sin nö) cos nu cos u + (bn cos n0

- an sin nO) sin nu cos ul ' exp(jkog' sinO cos u)ô au

lT
- sin0 | [(a.- cos nþ + b sin nó) cos nu sin u,nn

-t

+ (b cos n0 - a sin nö) sin nu sin . ^
n n Ll exp(jko9r sinO cos u)0du

(F.1)

The second teïm of ô 
"o*porr"rrt 

and the first term of fi "ru odd func-

t.ions of u, hence, do not contribute to the integral U. Therefore,

tT
u = 

'Jo 
t,", cos nþ + br., sin nQ) cos nu cos u 0 - sin 0 (br., .os nô

- an sin n0) ' sin nu sin u ôl exntjt<oO' sin0 cos u)du (F.2)

A use of the following identities

2 cos nu cos u = cos (n-l)u + cos(n+l)u
(F.3)

2 sin nu sin u = cos(n-l)u - cos(n+1)u

in (F.2) results in the desired relationf equation (4.50),
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APPENDIX G

DER]VATION OF EQUATTON (5.17) FOR TIIE TOTA], PO!.üER

. The total power is obtained by an application of (3,34) to a

circular cylinder which surrounds the feeding system and has a radius

% smaller than that of the first slot. For a cavity of a thickness
1

smaller than i only TMoq modes contribute to the po\,rer transfer. This

leads to
(21:t íop = -p- netf I r- . HA dodzl (c.1)u Io J-a z v

using (3.3b) , (5,L4) and assuming an incident field of the type

,¡,ut" = ; i ,u^ 
"o= 

qg +b- sin qQ¡ cos{, 
Jq (kppt ) tq (*gpQ.) -Nq(kprt)t*(*orp)

p=0 q=0 q - q -' a 
"n(kon.)

(c.2)

Leads to
co J^(k c) rrl (k o) _ N (k c)J (k o)¡- = -jt¡! . I (a cos (ió + b cosqrfi) . Y q q q -'

t t) q=o q -' Jn(k c)

rll * rc
T- ,. ^:. ',x., 

uoot 
"rnt-n "o" qO + bq sin qo)

J-(k c) tl¡-(ko.) l+ - r (k c) IJ lk., ìl+. Y I r - q - q 'r'--; lFãi: rq(k P) (G'3)
q

. Jo(k c)Nå(k p) - N^(k c) Jl(k o)Hó = -* 
n]o,un 

cos qO + bq sin q0) 
ffi

_truq::". _' 2" nlo ,1, 
kopi 

"iq(uq 
cos qQ + bq sj'n qo)

Jq(k c) tNq(kpi) l: - Nq(k c) trs(kpi) ll
;¿r*ot (c.4)
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where Ez and HO denote to TMoq modes on1y. An application of (c.1)

then results in
- T (aå+bå) .ro(kc) tNq(kpi)t]-untr..l trq(kpi)tl

P = -2rr I I a a o I?^/F I Y '
ïotar q=o i=1 q 1 iq' Jq(kc)
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