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ABSTRACT

A method is established which gives field solutions inside two
radial waveguides coupled by an array of annular slots on the common bound-
ary. The cases of electromagnetic penetration into half space as well as
cylindrical cavity regions are also treated. For the half space problem,
the thickness of one of the waveguide regions i1s allowed to approach in-
finity. Whereas, for the cylindrical cavity case, the radial waveguide
is terminated at an appropriate place by a cylindrical short circﬁit.
Since the analysis is based on the response of the system to azimuthal
. current rings, the appropriate Green's functions for electric current
rings are obtained in a similar manner as those of magnetic type. There-
fore, the method can be extended to the geometries iﬁVolving annular or
cylindrical type conaucting bodies as well as aperture-type geometrical
discontinuities.

The solutioﬁ is obtained by constructing the impulse response
of the system and expressing the induced current distribution over the
slots and the conducting bodies‘in terms of a suitable set of basis
functions with complex coefficients. These constaﬁts are then obtained
by an application of the boundary conditiong on the discontinuity surfaces.
The method is applied to three different geometries, namely, two radial
waveguides coupled by an array of annular slots on the common boundary,
an annular slot array antenna fed by a radial waveguide and the cavity‘
backed annular slot antenna. Graphical results for selected cases are
presented to substantiate the applicability of the models in the design
of microwave filtering devices as well as highly directive antenna sys-

tems.



It is also shown that, in general, higher order modes excited
by the discontinuities can have significant effect on the solution and
for a precise evaluation of the fields in the respective regions, their
contribution must also be included. A method of generating the desired

incident mode or modes is suggested which uses simple vertically oriented

arrays of thin probes.
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CHAPTER I

INTRODUCTION

Telecommunication technology has reached the state of maturity
which allows reliable contact between terrestrial points +to be
estasbilisnhed within seconds. As a prime contributor to this achieve-
ment, communication satellites have been used for a large number of div-
erse services. The early recognition of thelr potential use in world-wide
communication prompted a rapid growth of international and military sat-
ellite communication systems, an industry which is barely ten years old.

One of the significant elements underlying this growth was the
prospect of achievingiband—widths exceeding those previously available
for intercontinental communications. The exploitation of the wide band—.
widths now easily available in the use of satellites and the ever increas-—
ing demand for higher frequencies requires solution to a series of tech-
nical problems in the qommunication links. As an inherent part of these
links, earth station and spacecraft antennas must also conform to the
specific needs as they arise. This is why satellite antennas have de-
veloped from low-gain, omnidirectional antennas to multifrequency multi-
function antenna systems now in use [1,2].

Still higher frequencies are under active consideration, not
only because of spectrum crowding at the lower frequencyrbands, but be-
cause of the desire to accommodate higher data rates than are now
being sent commercially. So far, there have been a number of different
design approaches conforming to satellite stabilization considerations

which have been tested for their performance in actual missions [1-9].




Generally speaking, the optimum goal in designing any satellite antenna
is to attain a pre-specified high gain radiation pattern by using a low
profile antenna with the least complex feed system, with low weight and
volume occupied by the antenna assembly, ease of fabrication and, most
important of all, lower manufacturing cost factor. The last two goals
are becoming more important as the frequency spectrum is broadened con-
stantly and satelliﬁe commﬁnication is exploited commercially.

The purpose of the present work is to study a new class of low
profile radiating element for use in high frequency telecommunication
systems. The structure maybe used as the basic block in formation of high
frequency filtering devices as well as low profile antenna systems for
applications in aircrafts, spacecrafts and low cost earth stations. Due
to the structural simplicity of the radiating element it looks quite
promising for use at high frequencies and the production cost seems to be
much lower than conventional types presently in use.

The basic element is essentially a slotted radial waveguide.

It is formed by an array of co-centered electrically narrow annular slots
etched on one side of a dielectric substrate which is sandwiched by two
ground planes, figure 1. For applications as an antenna, depending on
the excitation of the slots, the structure is capable of producing rad-
iation patterns with the main lobe in the direction of the z-axis (end
fire) or a doughnut type radiation field with a null in that direction
(broad-side). Terminology is borrowed from conventional arrays by view-
ing the antenna as a compressed version of a stack of circular loop rad-
iators.

An important consideration for antenna systems covering large

angular regions lies in their polarization state over the coverage =zone,



ARRAY OF ANNULAR SLOTS

CONDUCTING PLANES DIELECTRIC SUBSTRATE

Figure 1.1: Basic radiating element.



For certain applications, namely, frequency reuse communication links,

this parameter is of prime importance. The isolation degree between the
orthogonal channels must stay below a certain level over the coverage zone
in order to minimize interference problems. The polarization state of an
annular slot antenna is basically determined by the exciting feed assembly
located in the central region of the waveguide or cavity. A combination
of vertical probes, which are merelyvthe extended center conductors of a
set of coaxial cables in different configurations, may be used for produc-
ing the required excitation mode or modes and the desired type of polariz-
ation within a certain angular region. However,bas it will be shown later
for single mode excitation the cross polarization component of this type
of antenna may not meet the specific requirements for certain applications.
For these cases multimode operation may prove successful.

The simplicity of the structure is promising for high the frequency
range where small details of the element become an appreciable fraction
of the wavelength and consequently any imperfection in the fabrication
results in distortion of the electrical characteristics of the structure.
In this regard, the designed pat{ern of annular slots can be tailored
on a grounded dielectric substrate to a high degree of accuracy by micro-
wave integrated circuit fabrication technigues. Furthermore, the low
profile of the system makes it suitable for use as a printed-circuit strip-
linevfiltering device or as a flush-mounted antenna on high speed space
vehicles. This will ensure meeting the requi;ements of re-entry vehicles,
such as least disturbance to the flight dynamics and to the air frame
structure. Fox satellite communications, depending on the method of
stabilization, the annular slot antenna may be used in different modes of

operation [10], that is, either as a despun antenna system or a high gain




directive radiator for use in body stabilized satellites. Since the an-
tenna assembly is integrated onto satellite, it 1s less susceptible to
accidental damage in the launch process. Furthermore, due to the fact
that the slots are fed successively by a radial waveguide or a cylindrical
cavity, one feed connection suffices. Therefore, space that is critically
needed for other purposes is saved.

For applications such as filtering devices and couplers, two or more
coupled radial waveguides may be used. The coupling is achieved by arrays
of annular slots on the common boundary of the wéveguides. By a proper
arrangement of the apertures, the power injected by the source in a guid-
ing region can be coupled out efficiently over a desired frequency band.
The result is a band-pass, band-stop filtering characteristic which is
controlled by the electrical dimensions of the structure and the consti-
tutive parameters of the guiding regions. In the next chapter, in addition
to a literature survey on the subject matter, an outline of the work to

follow is given.




CHAPTER II

STATEMENT OF THE PROBLEM AND LITERATURE SURVEY

2.1 Introduction

From the design objectives stated in Chapter I, it is clear that
the main concern is to find.a solution to the problem of electromagnetic
coupling between two radial waveguides through annular slots on the commoh
boundary. The problem of the annular slot array antenna can be viewed as
a special case in which the thickness of one guide approaches infinity.

Seeking an exact analytical solution to electromagnetic bound-
ary value problems involving exterior and interior regions to bbundaries
of a discontinuous nature is a formidable task. Exact analytical tech-
niques available are generally restricted to a small group of objects with
simple geometrical shapes. The subject of electromagnetic penetration of
a time harmonic plane incident wave through an aperture in an infinite
plane, which is the simplest problem in this category, has been investi-
gated extensively in the literatﬁre. Nevertheless, the problem remains a
rather complicated subject with available analytical results for only a
few aperture geometries. For this reason, attempts have been made‘to de-
velop approximate techniques which could provide useful solutions to a
variety of problems, subject to certain limiting conditions. A fairly
extensive literature review of aperture theory can be found in a recent
publication [11] with an emphasis on techniques.

The problem of electromagnetic diffraction by circular apertures

has long been the focus of attention, primarily due to its amenability

to analytical approaches. As is well known, the rigorous analytical approach



aims at a solution to a set of vector differential equations subject to
some constraints. However, this approach has rarely proven to be fruit-
ful. The Kirchoff approximation [12] is an attempt to gain some qualit-
ative_insight into the diffraction phenomenon. This approach was refined
later by including charge distributions on the rim of the screen [13].

In contrast to Kirchoff's method which yields reasonable results
at high frequencies, the Rayleigh approximation [14]-[16] is valid for
low frequency operations for which the aperture field distribution can be
obtained by treating the problem as a static case. A more refined and
rigorous method was reported later by inclusion of an edge condition which
is valid over a broader frequency range [17]1-[18], yet the convergence of
the solution in terms of spheroidal functions creates computational dif-
ficulties at high frequencies.

A more general approach for the formulation of the diffraction
problem of an incident wave by an aperture in a perfectly conducting screen
is founa in [191-[201. Expressions for the field vectors in both regions
are derived in terms of the tangential components of either electric or
magnetic field on the common boundary using tensor (dyadic) Green's func-
tions. The final formulation is then modified to obtain stationary form-
ulas suitable for applying variational principles. As an example, the
problem of scattering by an open-ended coaxial waveguide in an infinite
conducting baffle is considered and only the principle mode of operation
is treated (no azimuthal variation). However, the method like other
variational formulations is dependent on trial functions.

An alternative approach to the solution of diffraction by a
circular hole or slit and the complementary problem (disc or ribbon) is

to utilize hypergeometric polynomials as the expansion functions [211-[22].




However, the convergence of the infinite series obtained is slow for
structures with large characteristic dimensions, Diffraction by small
circular apertures has also been studied extensively. Among approximate
techniques, the use of an integral equation approach suitable for numer-
ical solutions are recently reported [23],[24]. For large aperture dim-
ensions, the techniques based on the geometrical theory of diffraction [25]
have successfully been applied to numerous geometries. ~Attempts to over-
come the shortcomings of the theory related to the shadow boundaries and
caustics are made and the results are presented in [26],[27].

The problem of an annular slot on an infinite ground plane back-
ed by a cavity has also been studied by a number of authors. Examples are
the study of radiation conductance of an annular slot backed by a hemi-
spherical cavity of finite conductivity for applications at low frequen-—
cies [28] and the case of cylindrical cavity [29] which employs variation-
al methods. The limiting assumptions are a highly idealized excitation
by a uniform (no ¢ variations) radially directed current sheet in the
slot plane and the solution breaks down for deep cavities.

As a possible flush-mounted antenna for use on the skin of mis-
siles, the problem of a coaxial opening in a ground plane has been consid-
ered in the literature and typical examples to be cited here are [30]-[33].
In the first two, the principle of duality is employed to obtain the elect-
romagnetic field components for the case of azimuthal symmetry, The basic
assumption is to take the unperturbed coaxial TEM mode as the only exist-
ing mode which implies ignoring higher order modes created in the vicin-
ity of the annular aperture. 1In the third reference, the slot field‘
distribution is expressed in terms of TEM and the first five TMOn modes.

The last work, however, accounts for the higher order modes for an




electrically thin slot.

Design procedure and performance of the annular planar array of
linear slpté in generating pencil beams and monopulse tracking rays is
reported for a geometry consisting of a radial waveguide coupled to free
space through groups of small linear slots [34]. The theory of linear
arrays is employed and the slot field distribution is assumed to be the
dominant TE mode of the unperturbed guide. The coupling between the slots
is totally disregarded.

Among the earliest works in the area of radial waveguide fed
antennas for possible use in communication satellites, are those presented
in [361,[37]. The first reference is an extension to an earlier work [35],
with the purpose of a gualitative analysis of the problem. The approach,
however, is mostly experimental and a TEM excitation is assumed. The use
of circular slots and rings as resonant structures in microstrip trans-
mission lines has also been reported [38]-[40]. A rather qualitative ap-
proach is employed and the effects of the fringe field at the edge of the
resonant element and the radiation from the rim are ignored.

For circular apertures in finite ground planes of circular and
rectangular shapes, a method has been suggested which utilizes the geo-
metrical theory of diffraction [38]. The expression for the field pat-
tern is obtained by superposition of infinite ground plane solution, the
first-order diffracted field solution and the axial caustic terms in their
 respective regions of validity. Again the slot field is assumed to be
the unperturbed field of a TEM excited coaxial waveguide, hence, the fields
are independent of the azimuth angle ¢. Experimental results are also
obtained and are compared against those computed. It is shown that over

a wide angular region in the front direction, the result obtained assuming
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an infinite ground plane closely matches the actual field, provided the
slots are far from the rim. The difference between the experimental and
computed results are attributed to higher order modes created by the slot
discontinuity. However, the back scattered field, which the infinite plane
solution fails to account for, can be computed with reasonable accuracy

by this method.

2.2 Outline of the Subject under Investigation

The preceding literature review points out that in spite of num-
erous research works done in the area of electromagnetic coupling through
annular apertures, the subject matter remains to be a challenging one.
Most of the existing approaches to the problem are based on overly simp-
lified and idealized models. Majority of the methods lie on the assump-
tion that the aperture field distribution can be approximated by the un-
perturbed field of the feeding guide. In other words, the effect of all
higher order modes that are excited in the vicinity of slot discontinuit-
ies and is proven to be significant [32] is disregarded. Furthermore,
only the spedial cases of azimuthal symmetry (no ¢ variation) are con-
sidered in order to further simplify the formulation of the problem. One
important consideration lies in the fact that an efficient radiator is
generally formed by more than a single slot. That is, the number of slots
and their relative locations are expected to be the key parameters for
pattern shaping or optimization of the electrical characteristics, There-
fore, any solution to the problem must take into account the mutual ef-
fects of the slots on one another.

So far, no attempt has been made to investigate the degree of
coupling between the annular slots, The radiation and filtering charact-

eristics of the radial waveguide fed or cavity backed annular slot arrays
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have not been investigated and there is no information available for the
geometries excited by a forcing function of a general nature. Therefore,
the objective of the present work is to study the electrical characterist-
ics of radial waveguide fed, or cavity backed annular slot structures.

A boundary value treatment is employed to derive field expressions for a
general case, that is, the electromagnetic field set up by the system is
composed of both TE and TM modes (transverse to z-axis). With this form-
ulation, the assumption of azimuthal symmetry is no longer necessary and
the exciting field may be assumed to be quite general. This in turn al-~-
lows for the use of dual feed systems to create orthogonal as well as
circularly polarized fields.

Chapter III is intended to derive a field solution for radial
waveguides in the presence of annular or cylindrical type discontinuities.
The solution is obtained by first constructing the response of the system
to a current ring of arbitrary excitation and location, Section 3.2. The
final result is then expressed in terms of the appropriate Green's functions
integrated over the source distribution. Both electric and magnetic cur-
rent distributions are treated, The inclusion of the fictitious magnetic
source distribution enables one to formulate the problem of coupling be-
tween two regions by circular slots. This is covered in Section 3.3
where the filtering characteristics of two coupled radial waveguides in
conjunction with a study of slots admittances and the aperture field
behaviour is investigated. The coupling is achievea by an array‘of con-
centric annular slots on the common boundary of the waveguide regions.

The effects of higher order modes on both equivalent admittance of each
slot and the aperture fields are pointed out. Alternately, the expressions

for the total power injected by the source, the power coupled out of the
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guide and the remaining power transmitted through the waveguide region
are derived.

In Chapter IV, a field solution for annular slot array antennas
fed by radial waveguides is developed. The appropriate Green's functions
for the semi-infinite region is obtained for a magnetic current ring
characterized by a general forcing function. Using the principle of dual-
ity, a similar result for an electric current ring is also obtained. The
final formulation is achieved by integrating the spacial impulse res?onse over
the aperture field distribution, Section 4.4. Evaluation of the infinite
integrals associated with the semi~infinite region is discussed in Section
4.5 and the expreésions describing the radiation fields and the radiated
power are presented in Section 4,6. .Thé effects of the higher order modes
of the feeding guide on the slots admittances and the aperture fields
explained in Section 4.7. The field variation of slots as a function of
tﬁeir radii is also investigated and the applicability of the annular slot
array antennas for use as a pencil beam launcher as well as uniform rad-
iation fields in the azimuth plane (no ¢ variation) is shown, Sections
4.8 and 4.9.

Chapter V deals with a cavity backed-annular slot array, that
is, the radial waveguide is terminated in a short circuit, A suitable
set of Green's functions for the cavity region is‘obtained and a similar
method as that of Chapters III and IV is employed to derive the final formula-
tion. Source considerations for exciting particular mode or modes of
radial waveguides is introduced in Section 5.5. Poésible feed config-
urations using vertically directed thin probes for generating TM modes of
the guide is discussed and a method for obtaining orthogonal and circular

‘polarized radiation within a limited angular region is suggested. The
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effects of a finite ground plane on the radiation pattern is qualitatively
studied and a methcd toward a quantitative analysis is proposed, Section
5.6.

An experimental prototype model of a cavity-backed annular slot
array is made and the measured radiation patterns in both principal
planes are compared against the computed values, Section 5.7.

The present work is concluded in Chapter VI by a general dis-—
cussion of the results and possible extensions of the subject studied

in related problems.




CHAPTER III

FIELD SOLUTION FOR RADIAL WAVEGUIDES IN THE PRESENCE
OF ANNULAR OR CYLINDRICAL TYPE GEOMETRICAL DISCONTINUITIES

3.1 Introduction

Two dimensional arrangements of slots or conducting plates to
form resonant arrays are of practical interest for applications as band-
pass or band-stop filters. Within a certain frequency band, the trans-
mission coefficient of the array can vary from unity to zero and its re-
sonant :frequency and bandwidth may be controlled by varying the charact-
eristic dimensions of the array [42]-[44].

For waveguide applications, similar geometrical discontinuities
have been used in fabricating low-pass and high-pass printed-circuit strip-
line filters [45]. They are usually formed by two sheets of low-loss
dielectric material, with a photo-etched copper-foil sandwiched in between,
and with metal plates on the outer surfaces of the dielectric pieces
forming the waveguide structuret' The great advantages of this type of
filter are its extremely low cost, ease and accuracy of fabrication. The
latter one is quite important at higher frequency bands of operation,
where small details of the geometry become appreciable fractions of the
operating wavelength.

So far, the subject matter has been investigated extensively for the
cases where the basic array element is of rectangular, circular or cross-—
geometries. However, little information is available for the case where
the electromagnetic scattering‘bodies are of either annular or cylindrical

shape,

14
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In this chapter, using a boundary value treatment, a method of
solution is established which gives the interior field of a radial wave-
guide in the presence of annular and cylindrical discontinuities in the
guide region. These geometrical interruptions are either on the surfaces
of the conducting walls of the waveguide (for the case of slots) or in-
side the dielectric region (metallic plates). A solution for the case
in which both types of discontinuity are present can simply be obtained
by superposing the two sets of solutions. The common factors between
these two sets, as it will be shown later, are a set of complex coeffic-
ients. fThe application of the last boundary condition over the apertures
and the conducting bodies for determining these constant coefficients,
then ensures the electromagnetic coupling between the two sets of sol-
utions.

The exciting source which is placed in the central region of
the radial waveguide is assumed to be of a general nature. The slots and
plates are assumed to be electrically thin enough to suppress radially
directed induced currents (magnetic in case of slots) over the surfaces
of the scatterers. Thus, the induced surface currents of the array ele-
ments are in the azimuthal direction.

We develop the solution by first constructing the appropriate
Gfeen's functions describing the impulse response to the magnetic (or
electric) current ring of strength I, located at a radius p = p',
figure 3.1. The final formulation of the problem is then obtained by
integrating the impulse response over the induced source distributions.
Depending on the electrical dimensions of the array elements, the induced
current may be expressed in terms of a finite sum of a suitable set of

basis functions with unknown complex coefficients. These constants are
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Figure 3.l: Current ring in a radial waveguide (impulse response)



17

then obtained by an application of the boundary condition over the sur-
faces of the scattering bodies. In fact, depending on the‘widths of the
elements and the required degree of accuracy of the solution, suitable
expressions describing the induced source distributién can be substituted
into the formulation to obtain simplified versions of the solﬁtion with
acceptable accuracies.

The most approximate, yet simplest set of basis functions is
a series of pulses with equal widths but different strengths, character-
izing the induced current distributions. The total number of pulses per
element is directly related to its electrical width. For thin slots or
plates, the current distribution may be assumed to be constant with re-
_spect to the radial variable p. Thus, using the constant field approx-
imation, each element of the array is characterized by a single complex
constant representing the strength of the element which is yet to be
determined by an application of the last boundary condition. In fact,
Wailt and Hill [461,[47]1 by considering the problem of TEM coupling by a
circumferential slot on a coated coaxial cable, have shown that differen-
ces between the results of the higher order approximations for the aper-
ture field distribution and the constant field model are inconsequential.

For a waveguide fed slot array in which apertures are fed suc-
cessively by a travelling wave, the effect of the mutual coupling between
the slots cannot be generally ignored. In the methods based on the
waveguide transmission line concept, the coupling between the array
elements usually accounts for.only the dominant propagating mode, that
is, totally ignoring the effects of the higher order modes created in
the vicinity of the slots discontinuities. Furthermore, the coupling

due to the external field is generally overlooked. However, as it will
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be shown later, depending on the arrangement of the slots and their elect-
rical dimensions, the external coupling can become so strong as to re-
couple part of the radiated power by a number of the slots back into the
waveguide containing the exciting source, An equivalent transmission line
representation then gives a negative radiation conductance for the re-
spective member (or members) of the array.

The contribution of the higher order modes can also become ap-
preciable as to turn a resonant slot radiating by itself, into a reactive
element when being used as an array member. The same argument also ap-
plies to the case when scattering bodies are in the form of metallic plates
located inside a waveguide region. A distinct advantagé of the present
approach is the fact that all mutual coupling effects and the higher or-
der modes are incorporated automatically into the solution. This is
achieved by the simultaneous evaluation of the field unknown coefficients

through the application of the boundary condition.

3.2 Problem-Formulation and Solution

3.2.1 Construction of the Appropriate Green's Functions, Magnetic

Ring
In deriving the appropriate Green's functions for the problem
depicted in figure 3.1, we essentially follow a similar approach to that taken
by Collin [48] in which the field radiated by a current filament in a cyl-
indrical waveguide is derived for the case when propagation is taking place
in a cylindrical tube. The basic principle is to expand the radiated
field in terms of a suitable set of waveguide modes with constant coef-

ficients. These complex coefficients are then determined by an application of

the Lorentz Reciprocity Theorem.
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Consider the geometry shown in figure 3.1, formed by a radial
waveguide of thickness a. The constitutive parameters of the medium be-
tween the perfectly conducting planes forming the waveguide walls are
€ and U. We assume the guide region is of infinite extent in the p
direction, resulting in a zero reflection coefficient in region II. In
practice, a matched loadA(absorber) may simulate this condition. The

source 1s a magnetic filament of strength Im(¢') characterized by

F (¢ = I_(4") 8(p - p") Sz - 2 (3.1)

m

where Im(¢')iseapiece—wisecontinuous function of the azimuthal angle

AN
¢' and p', ¢', z' are the source coordinates. ¢' 1is a unit vector
tangent to the current source and representing the direction of the cur-
rent flow, A time variation of exp(jwt) is assumed and suppressed

throughout. The source function may be expanded in a Fourier series of

the following form

[e o]
Im(¢') = b (an cos n¢' + bn sin n¢') 0 < o' < 2w (3.2a)
n=0
where
€, 2T
a, = - JO Im(¢ ) cos n¢' do
€, 21
bn = o0 JO Im(¢ ) sin no' d¢! (3.2b)
1 n =20
En =
2 n#o0

The source singularity at p = p', z = z' suggests dividing the medium
between the conductors into two distinct regions separated by cylindrical

surface S', namely, region I for p < p' and region II for

P> An arbitrary electromagnetic field in a homogeneous cylindrical
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region can be expressed as the sum of the ™ (E waves) and TE (H waves) fields
to the z-direction [49]. The total electric and magnetic fields can

then be calculated from

> ~h 1 N e
E——Vx(ngJ)+jw€V><V><(zw)
(3.3a)
= ~ e 1 ~ h
H = X 4+ — ¥ X X
v (zy™) S v (zy™)

h e . .
where and Y are solutions of the wave equation. The set of equ-

ations (3.3a) in cylindrical coordinates are represented by

h
S N A AU - B LV
0 jwe 3pdz o 3¢ P 0 3¢ = 3wy 3pdz
0 € h e o h
Eo= b, o, o--2 L 9 (3.3b)
¢ Jwep 9¢oz ap o} ap jwup 0¢oz
z jwe oz? v 'z jwu 9z?

The next step is to expand the wave functions, we and wh, in terms

of the appropriate mode functions with unknown coefficients. Utilizing
the boundary conditions at the source surface S' and also using the
Lorentz Reciprocity Theorem,yields the dgsired constants. However, before
proceeding further, a careful study of the set of equations (3.3b) and
physical aspects of the problem provide us with gsefﬁl priori information
to reduce the mathematical labor involved in the formal detexmination of
the coefficients. To satisfy the finiteness condition of the field due
to the magnetic current ring in region I and the fadiation condition in
region II, Bessel and Hankel functions of second kind are chosen to rep—.
resent the radial dependent parts of the mode fuﬁctions, respectively.
Since E¢ and H¢ components of the field must be continuous across the

source surface S' and also as an anticipation for relating the field

components to their source Im(¢'), we choose the functional form of the
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¢ dependence of the mode functions to be

e B .
@n(¢) = a cos nd + bn sin no
e (3.4)
d@n(¢)
ao

It

h
2 (¢)
n
where a, and bn are given by (3.2b).

The final results for the wave functions which also satisfy the

boundary conditions on the conducting walls of the radial waveguide are

[*%} © Urin Jn '(kpmp) o< Q'
we = I I (an cos n¢ + bn sin n¢) cos %§>z
n=0 m=o0 e (2) v
Umn H (kpmp) o>
(3.5a)
© o Uﬁn T o) 0 < 0!
wh = X b} n(bn cos n¢ - a_ sin n¢) sin %? Z
n=0 m=0 h (2) .
Umn Hn (kpmp) p>p
(3.5b)
where
2
ko= k2o (&2
pm a
T (3.5¢)
k = w/el

For a region V containing sources and bounded by a closed surface S,

the formal statement of the Reciprocity Theorem is as follows

[ >
(8_ X%
[ !

oy

> - ~ - > - > - > -
~ E X H )ends = J (H - J ~EeJ -H J +E_ = J)dv
a ma a a m a
(3.6a)
where the subscript a represents a set of auxiliary fields generated

by the respective sources and i is the inward unit normal of the bound-

ary S. We take the volume V to be the region enclosed by the conducting
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walls and two arbitrarily located cylihdrical surfaces Sl and S2 in
regions I and II, respectively. As for the auxiliary fields, we are free
to select their form in a manner to facilitate the derivation of the sol-
ution as long as they satisfy the Maxwell's equations. We, therefore,

choose two separate sets of modes, where each set consists of two single

modes of TE and TM types which are the solutions of the source free wave

egquations in volume V (Jma = Ja = 0) and have the following forms
€ —_—_\ 1 xﬂ °
v, (azcosﬁ¢ + bQ51§Q¢) cos -z Jg(kppp)
(3.7a)
h _ _ . . pm o
v, = R(bgcosz¢ a251n2¢) sin <= 2z Jl(kppp)
e‘ = 1 —pﬂ o <2)
wa (azcosl¢ + b151n2¢) cos -z le (kppp)
(3,7b)
e _ _ . ._pm . (2)
wa &(bgcos¢ a£51n£¢) sin ==z HR (kppp)

Taking the auxiliary wave functions represented by (3.7a) and noting that
there is no electric current source for the problem under consideration in

volume V, one obtains [Appendix A]

TWEUE

2. h - e . P pm _, v ' ' - 2 _El_.. 1
L2%e Up,Q U Up% = LZkép N cos S Z [kppp J%(kppp ) 2 SwnA Jg(kppp )]
(3.82a)
Similarly, substituting (3.7b) leads to
TWEUE
2 h - e = - P BT ' (2) ¥ _ 02 _pm
Lee up% u up% = 5~E§;;~cos o ? [kppp HQ (kppp ) 2 T
(2)
e H k ! (3.8b)
0 ( ppp )1

Two other equationsvin terms of the four constant coefficients are need-

ed to uniquely specify the field components inside the waveguide. To this




23

end, we utilize the boundary conditions imposed on the axial components

of the electric and the magnetic fields (EZ, HZ) across the source

surface S'. The continuity condition of the magnetic field is ensured
by having
I II 1 o7
. . il
H - H = — Y n(b cos nd - a sin no) k% sin L
z zZ JWuU n n pm a
n=0 m=0
p = p'
0 < ¢ < 2m
- h (2) h
° H k Ty o J k 1 =O
[Umn N (pmp) W n(pmp)]

(3.9)
. . . . Ul
which upon using the orthogonality property of sin %; z over the range

0 <z <a and sin ng over the range 0 < ¢ < 27 is reduced to

h H(2) h

U k p'y -Uu, J, (k
pL L (ppp) pl 2(0

' = 0 3,10
pp ) ( )

The axial component of the electric field is discontinuous across the

surface S' by an amount equal to the magnetic current density, that is

E - E = I (¢') 8(z - z")

z Z m

0 < ¢ <2rm

O<z<a

which upon using the property of the delta function and the orthogonality

relations for sinusoidal functions yields

e (2) e Jwe heiiy
U, H k ') - J " o= = EL oo
ot T ( ppp ) Upi Q (kppp ) képa Ep cos -z

(3.11)
Equations (3.8), (3.10) and (3.11) can be solved for the constant coef-

ficients. The final result after utilizing the Wronskian relationship
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for the Bessel function are

e Twep!

T
U = —— € cCos il z' J' (k_ p")
mn 2k a m a n Om
Pm
Uh = - mm £ cCcos il z''J (k_p")
mn Ik @ tm a n opm
Om
(3.12)
1] 'IT 1
ue = —TWER ¢ cos =2 H(z) k_pPY)
mn 2 k a m a n Om
pm
h . T°m mr . (2) )
= = ——— — H
Ymn J 2(kpm‘a)2 €n S 5 2 M, (kpmp )

The above coefficients in conjunction with (3.2), (3.3) and (3.5) uniquely
define the electromagnetic field set up by a magnetic current filament

of strength Im(¢') located at a point, p = p', z = z

3.2.2 Electric Ring

The mathematical routine for deriving the appropriate Green's
functions for the case of an electric current radiating in a radial wave-
. guide is similar to that of the magnetic case, For the sake of brevity
only the main differences together with the final result will be present-
ed here. Aside from subscript m, the defining equations for the current
density and its Fourier expansion are the same as equations (3.1) and

(3.2). Equations defined by (3.4) are replaced by

®E(¢) = a cos nd + bn sin n¢
(3.13)
. aa” (¢)
Q) ((b) - _n
n do

hence, the required wave functions are given by
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e
J < pt
®©  ® - “mn n (kpmp) P .
we = z X n(bn cos nd - a, sin nd) cos 2
n=o m=0 e (2)
> L
Umn H (kpmp) p P
(3.14a)
uh J (k. p) < p!
h > > mT moon Om ° i
Y= X Y (a cos nd +b sin nd) sin — =z
n=0 m=0 n o a h (2)
> 1
Umn H (kpmp) Y o
(3.14b)
The Reciprocity relation for this case is stated as
> > > > " > -
§ (E. XH~-EXH) ° nds = J E ° J dv (3.15)
a a v @

S

The auxiliary wave functions are also changed accordingly, that is

e s pm
wa = l(bl cosld ag sinf®) cos S 2 9 (kppp)
(3.16a)
h . . . pT
wa = (aﬁ cosid + b% sinf¢) sin Tz Iy (kppp)
e _ g _ . P (2)
¢a S&(b2 coso a, sinf¢) cos 2 2 Hy (kppp)
(3.16b)
h _ . . pm (2)
wa (az coslo + bQ sinf¢) sin S 2 H% (kppp)
Using these relations one finds:
h , e ﬂweuep o on
- [ TS S LI ' ' 2 BP0 '
EUP2 % UUpQ 5 két>a sin 7= z [kppJQ (kppp ) + 2 Sweo A Jﬁ(kppp Y1
i (3.17a)
TWEUE
- 2 e - P : i v (2) v
Eup% 2 uupﬁ E*Eg;g—'Sln 2 zZ [kaHQ (kppp )
o _pT (2) , (3.17b)
. jwep'a ) (kppp )]

Now, in contrast to the magnetic case, the axial component of the electric
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field EZ is continuous across the source surface S', but the magnetic

field is discontinuous by an amount equal to

gt - m T = (9 S8(z - 2)
A Z
o = p (3.18)
0 <¢ <o2m
0< 2z < a

An approach similar to that of the magnetic case yieldé the following re-
sults for the constant coefficients

e . 1T2m mT

— e : il ' '

Umn 3 ETEfvETT_ o sin 2 z Jn (kpmp )
Pm

Uh — _.Trw_up___g Sinﬂzl Jl (k pl)

mn k a m a n Pm

om
(3.19)

2

e . T m ,omm,(2) .

= e —_—

u_ % 97 n sin =~ z Hn (kpmp )
pm

uh = - EQHQ—-E sin EI-z' H(z) (k _p")

mn kpma m a n pm

Equations (3.19) together with (3.1), (3.2), (3.3) and (3.14) uniquely
define the electromagnetic field set up by an electric current filament
of strength I(¢') located at a point, p = p', z = z'.

| It is interesting to note that as z' approaches zero or a
(the conducting boundaries), the field due to an electric current fila-
ment vanishes. It can be shown by reciprocity that an electric current
just in front of an electric current conductor and parallel to its sur-
face produces a null field [49]. This can be explained by thinking of
the conductor as shorting out the current. In contrast to this case, the
field produced by a magnetic current filament does not vanish as it ap-

proaches the conducting planes. This is expected, since a fictitious
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magnetic current filament is equivalent to an infinitely thin slot (slit)
and as will be shown later it can effectively couple appreciable amount of

electromagnetic energy into the waveguide region.

3.3 Application to the Problem of Two-Coupled Radial Wave-

guides

The field set up by a combination of sources of electric énd
magnetic types may be looked upon as a superposition problem. Based on
the theory presented earlier, this section is devoted to demonstrate the
application of the previous results to problems involving annular slots
of finite width as geometrical discontinuities in radial waveguides. To
show the general feature of the theory, the problem of coupling between
two radial waveguides by concentric annular apertures on the common bound-
ary is considered, figure 3,2. The exciting source is placed in the cen-
tral region of the lower waveguide.

Solution to the problems involving annular or cylindrical con-
ducting plates as the scatterers of electromagnetic field inside a rad-
ial waveguide can be obtained in a similar manner. That is, using the
appropriate Green's functions of electric type developed earlier, the sol-
ution can be found by integrating the impulse response of the system over
the induced current distributed over the surfaces of the conducting plates.
The unknown coefficients representing the induced source strength are
then determined by an application of the condition of vanishing tangen-
tial eleétric field over the plates.

These geometries may have applications as‘band~pass printed-
circuit strip—liﬁe filters. They can also be used for the design of feed

systems suitable for launching a particular mode or modes for use in
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Figure 3.2: Typical two coupled radial waveguides
' of infinite extent

28
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radial waveguides,

3.3.1 FPormulation of the Problem of Two Coupled Radial Waveguides

An annular slot on the conducting wall of a radial waveguide, as
far as the internal field is concerned, may be viewed as an annular dis-
tribution of magnetic surface current with a density given by

E?m = Ex%h (3.20)

apertupe
~where f is the inward unit normal to the aperture plane. Noting the
fact that E¢ component of the electric field must vanish at the edges
of the slot, it is expected that for electrically narrow slots, the con-
tribution from E¢ to the total scattered field is négligible. Hence, we
may assume the aperture electric field to be mainly in tﬁe radial direc-

tion. That is,

- ) : '
I = E_ (DX 1) (3.21)

where 6 is the radial unit vector. Expanding the radial component of
the aperture electric field into a Fourier series of the azimuthal var-

iable ¢ 1leads to

[ee]
E Yy ! = ! i .
0 'y ¢") % Rn(p )(an cos nd + b sin nd) (3.22)
n=o
where Rn(p') is the nth mode's radial dependent part of the aperture

electric field and an, bn are the Fourigr coefficients. Now, the con-
tribution from the slot to the total field can be obtained by integrating
- the product of R(p') and the Green's functions (3.5) over the aperture
radial coordinate p°'.

The above steps are essentially an application of the equival-

ent principle to the slot problem, which replaces slots by an eguivalent
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magnetic current sheet over a perfectly conducting surface expressed by
(3.20). According to Uniqueness Theorem [49], a field in a region is
uniquely specified by the sources within the region plus the tangential
component of the electric field (or magnetic field) over the boundary
enclosing the region. Therefore, as far as the field inside the wave-
guide is concerned, the total field in the waveguide region is the sum
of the contribution from the magnetic surface current and the sources
inside the dielectric region. Both types of sources are radiating in the
presence of an uninterrupted radial waveguide. In the case of the geo-
metry shown in figure 3.2, the incident field launched by the exciting
source in the lower guide must be added to the field set up by the mag-
netic surface current (contribution from the external region). However,
the total field in the upper guide is entirely determined by the aperture
field.

To be more specific, let us assume a general TMpq mode of the
radial waveguide [49] to be incident in the lower waveguide. This mode
is characterized by

e

inc _ pT (2)
wpql = cos L Z cos qd Hq (kpplp)
) (3.23)
- 2 _ (pm,.1/2 - Je o
Kopr = kg - G kp T Ve

The wave functions due to the magnetic surface current over the coupling

aperture in the two waveguides are specified by

Twe L o0 © €

w; = - 2a2 z X z (a cos nd + b sin n¢) cos Rl z
2=1 m=0 n=0 QOm2 & a
5
(2) 2 ' '
Hn (kpm2p) Jn (kpmzp )
. p'Rﬁn(p‘) dp' (3.24a)

= (2)1 1
Jn (kpm2p) ) Hn (kmep )
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2 L © © £ men

wg = 3 gli' n X z —gf—v—(b cos n¢ - a, sin nd) sin %; z
87 9=1 m=0 n=0 “pm2
(2) -55& '
Hn (kpmzp) Jn (kpm2p )
° R/Q (o") dp' (3.24b)
" (2) .
Jn (kpm2p) 52 Hn (kpmzp )
'ﬂ'UJEl L o <o €m o
wi = 5 T X b} k (a cos nd + b sin nd) cos 3 2
2=1 m=0 n=0 ~pml "
5
(2) L ' '
Hn (kpmlp) Jn (kpmlp )
‘ p'Rzn(p ) o) dp (3.25a)
Jn (kpmlp) 0 Hn (kpmlp )
%
2 L o0 © £ m°n
w? = -3 g%?' L oz n; (b_ cos np - a  sin nd) sin %? z
2=1 m=0 n=0 ~pml "
5
(2) i .
| Hn (kpmlp) JI1 (kpmlp )
° R%n(p‘) ) dap' (3.25b)
Jn (kpmlp) 5 Hn l(kpmlp )
2 .

where L 1is the total number of slots, and Rﬁn(p') 'is the nth mode's
radial dependent part of the tangential electric field over the 2th
aperture. Furthermore, depending on the relative position of the obser-
vation and the source points (p > p' or p < p') the top or the bot-

+
tom row of the Bessel functions must be selected, The symbols Py and

pz stand for
§
EO &
bp = By * 30
$ (3.26)

Il

(QQ' - =)
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It should be noted that the change of the sign in the two sets of wave
functions (3.24), (3.25) is due to opposite directions for the respective
inward normals of the two radial waveguides. As it is evident, (3.24)
and (3.25) are merely obtained by integrating the Green's functions de-
veloped earlier on the aperture source distribution. Note also that the
continuity condition for the tangential component of the electric field
over the apertures is already implemented in the formulation by insert-
ion of equal aperture field distributions into the wave functions sets.
The coefficients a and bn entirely depend on the function-
al form of the azimuthal dependent part of the incident field. An exam-
ination of the total tangential magnetic field over the coupling apertures
and utilizing the orthogonality property of the sinusoidal functions over
the range of 0 < ¢ < 2m reveal that for our particular choice of the

incident mode (3.23), we must have

b = 0 for all n
n
0 n # ¢ (3.27)
a =
oo 1 n = q

This eliminates the infinite summation over n in equations (3.24) and
(3.25). For most practical cases, the feed system and the guide dimen-
sion are selected in such a manner as to support either a single mode or
a finite combination of the first few modes of the radial waveguide.
Therefore, the summation on n, generally, is a finite one.

The radial dependent part Rﬁn(p’) of the tangential aperture
electric field is generally not a known function. However, depending on
the electrical widths of the slots, the aperture field distribution may
be expressed in terms of a finite sum of a particular set of basis func-

tions with unknown coefficients. These coefficients are then obtained by
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an application of the boundary condition on the tangential magnetic field
over the apertures, The choice of the set of basis functions and the tot-
al number of the elements of the set for each slot depends’on the elect-
rical dimensions of the Slots‘and the required degree of accuracy of the
solution thus obtained. 1In fact, depending on the widths of the apertures,
suiltable expressions describing the aperture source distribution can be
substituted into the formulation to obtain simplified versions of the
solution with acceptable accuracies.

The " simplest , but the crudest set. of basis functions, is
a series of pulses of equal width but different strength , locafed side
by side, charactérizing the aperture field distribution. _Since over each
pulse we assume the field is constant with respect to p variations, the
width of each pulse should be selected electrically small enough to phys-
ically substantiate such an assumption. Therefore, the number of pulses
(unit cells) per - siot and hence , the total number of field strength
coefficients is directly related to the aperture size. Evaluation of
'these complex constants can be performed using the continuity condition
of either H¢ or Hp' The extra boundary condition appearing here, is
the result of our previous assumption made on the tangential electric
field. E¢ component of this field was assumed to be negligible compared
to Ep for slots of electrically narrow widths. In fact, it seems quite
possible to construct an extra set of wave functions describing the con-
tribution from a p directed magnetic current distribution over the
apertures. Then, following the same routine as that of the ¢ directed
magnetic current, we can expand E¢ over the slots in terms of a finite

sum of the basis functions with a new set of complex constant coefficients.

The two continuity conditions can then be employed to determine the two
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sets of coefficients simultaneously. However, since the primary object-
ive for the present study is to investigate scattering bodies of small
widths, we assume the geometrical discontinuities are electrically thin
enough to produce mainly, ¢ directed surface currents over the scat-
tering bodies. Hence, we may take H¢ component of the total magnetic
field in each region to be matched on the aperture openings. This is
done by equating the values of H¢ over each slot or each cell (in case
the slot width is divided into more than one unit cell) for the two reg-
ions in an average sense. If the cells are’thin enough, this is a good
approximation to the true value of H¢ over the cells. That is, since
¢ component df the magnetic field is tangent to the edges, it has a fin-
ite value over the entire surface of each individual slot. To this end,
we stért by expressing the aperture function Rn(p') in terms of a fin-
ite number of pulses with different amplitudes Ein' At this point, we
make the following convention for numbering the cells forming the entire
coupling aperture. The cells are characterized by their central radii
and the numbering starts from the cell with smallest radius of the smal-
lest slot and ends by the cell with largest radius of the last slot.

Therefore, the aperture function is represented by

Ic

Rn(p') = i Ein Pi (p" - p'i) (3.28a)

where, Pi is the 1ith pulse and has the following property

<Si Si
. T2 TP Ty _
P, (Jo' = o i]) = (3.28b)
0 elsewhere

and IC is the total number of cells of the entire aperture.
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Substituting (3.28) in (3.25) and noting (3.27) one obtains the following
expressions for the azimuthal component of the magnetic field in the re-

spective regions

mwe, IC o . tooa pm2
H¢2 = 52 i§l mEO Eingm cos gd cos <z p ap
T - (2), .
N Hq (kpmzp )
H(2), (kpmzp)
E TT3 s IC o E, m2€ T
« -3 (23 X ~523——E~ cos g cos <
. PRE™ i=1 m=0 pm2
q (kpmzp)
+ , (2)
Qi q (kpmzp ) HC1 ( pm2p)
o | dap' . (3,29a)
- (2) .
Dl Hq (kmeQ ) Jq (kpmzp)
+
Jl 1
Twe_ IC pi 4 (kpmlp !
1 mTm
= - b ) — ! '
Hy, » oL E, € cos q¢ cos 5 2 0 dp
- - A (2)1 T
oy Hq (kpmlp )
(2)
H "' (k__.0)
4 pml s 2 IC ® E, m’e
. L z X 0 os o z
3 2
20007 501 me0 Kpm2 b
q (kpmlp)
r+
1 e} pmlp Hq (kp ]_p)
° dp' Py
- (2)
. H k
Jpl g ( meO ) Jq (kpmlp)

_ P (2)
kppl cos gb cos oz Hq (kppp) (3.29b)
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Now, we equate H¢l and H¢2 over the cells forming the slots in an

average sense. That is,

H,.. = H,_.
$ij $2j

5,
lp—pjtf—zl j =1, 2,.... IC (3.30)

0 < ¢ <2m

where the bar stands for the average value of the field components. 1In
view of equations (3.29), we define the average value of the magnetic

field for the Jjth slot to be

H,. = I h.. (3.31a)
¢3 -1 Ji
where E
J
= 1
. = - i j 3.31
hji - i Hi¢ dap i#3 ( b)
joJe.
J
where H, is the contribution of the ith slot to the magnetic field at

i

the Jjth slét. For 1 = j term that can be viewed as the contribution
of the Jth cell to the average value of H¢ associated with the jth
slot, such a definition as (3.31b) creates some unnecessary mathematical
complications in evaluating integrals involving products of Bessel func-
ions of both different argument and order. However, due to the electric-
ally thin dimension of each cell, these problems can be avoided by taking
the average value as the mean of three sampled points over each gell, name-

ly the two edges and the center of the cell. Note that H is tangent

¢
to the edges of the slots and, therefore, according to the edge condition

[56], is bounded even on the edges of the aperture. Hence, choosing the

sampling points on the edges should not create any numerical complication.
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We, therefore, have

— _ -]: — +-
hii = 3 [H¢(Oi) + H¢(Di) + H¢(Oi)] (3.31c)

It should be mentioned that even though the integrals as defined by (3.31b)
can be evaluated exactly, simpler results with’no significant loss of ac-
curacy can be obtained by neglecting the variations of terms like 0 and
%' in the integrands and replacing them by their mean’value over each cell.
Note that the same approximation may not be effected for the Bessel func-
tions due to the existence of k 1in the arguments which becomes large for
m
higher order modes. ’

In the light of the above arguments, one obtains a set of simul-

taneous linear equations in terms of the aperture field coefficients in

the form
inc
.. B, = . (3.32a)
[%1] [Jq] [XJ ]
with
1 (2) + (2) =
. = - — [H k L) - S (k . 3.32b
Y] 5j g ( pplpj) g ( pplpj)] ( )
and
= - (2) -
. J (k )]+ H D]+
’ TWE 5 co pl d pm2 pl q ( pm2 p]
Y51 7 T2a ) § K2 5. ‘m )
1] m=0 pm2 ] (2)
L e L g ¥omaPy” -

3 2 ® 2 — + +
T g mn J,H H,J
- = L 5% € c (p.) * C (p.)
3 2
2ij§ =0 kpm26j m {— gm2 i :} _ {: gm?2 3 _

B 7 (@) 7]
P.) + H " (k,  p.) | +
Twe o o, g pml 1 q Pml j
IR ‘
=0 “oml 3 (2)
__H2 LR Jq(kpmlpj) -
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TTqu @ m2 . n
TRt L 1z 5 Cn :l {: qml :} ~ (3.320)

30 m=0 pml j
where the top rows are for j > i and the first superscripts represent the
appropriate Bessel function in the definition of Cqm(p)' which is pre-

sented later. The diagonal elements are of different form and are given

by
TWE Sy 0.
- +
yii = 6a2 « 7 1 Em ° Jé(kme pi) e [:H(Z)(kpmzpi):] _
n=0 " pPm2 - : k!
(2), o + . (2) +
T q ( pm2 pl) {:J (k 2 pl):} + Ik 2 ) Hq meQl :]D

TWE o 0
TN R oq+
ob =0 oml m g pml i q Ooml 1
(2), 00, L@ + ] (2) +
+ Hq ( oml p,) Elq ( pmlpl):I +J (kp 15! [ g ( oml l]p
Fi
P 3.2 o 2
(2) g m
+ H T p.) - [:J (k__.0, {] T I 3
4 pml 1 q pml 601“0 m=0 " pml
P H + (2) + ., 1] +
Jq(kle pi) [cqml(pi> ]_ + Hq (kpml pi) [Cqml(pi) :l~
I (k y o LA oo 1T s e® IR RCENCR 1
g pmlPi a1 i’ o, T g X om1Pi qmt P’ |-
(3.324)

where [50]
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— < =
. io en B2n(kpmp)/kpm 0 < g 2N+1
C = B (k 'y dpt' =
qm(p) J q( pmp ) ap .
p >0 2[nio B2 (1) +1 (kpmp)]/kpm 0 < g = 2N
(3.32e)

Note that for the case g = 0 (¢ symmetry), the field is ™M to =z and is
solely determined from ve.

Superscripts J and H denote to Bessel and Hankel functions,
respectively, and Bq(z) represents any cylindrical function. The infin-
ite series in (3.32e) which appear for the cases when the incident field
is an even mode of the radial waveguide is a fast converging series and
can be truncated after the first few terms.

Once the aperture field coefficients Eiq are determined from
the matrix equation (3.32a), the field components in the two regions away

from the slots can be obtained from the following relations and (3.3b).

J (k__.p.) +
e TWe, IC 2 py T T
Yo = - L L —5—E, € cos g cos —z *
2 2a i=1 m=0 ~pm2 qom a (2)
H WGk 500 |
(2) EE
g (kpmzp)
J (k o)

pm2
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U, o= -3 =% X X > E. € sin g¢ sin——z'l:c' (D.)]_
2 2a i=1 m=0 “pm2 ig m a mg2 i
(2)
Hq (kpmzp)
q(kpm2p)
J (k P.) +
- Pml i
o ﬂwel IC pi mT 4
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Hq (kpml P.) -
(2)
Hq (kpmlp)
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3.3.2 Expressions for the Total, Transmitted and the Coupled

Power

The power-transfer characteristic is generally the most import-
ant parameter for gtructures used as filtering devices. The band-width
efficiency and frequency sensitivity of the filters are mainly determined
by a study of their power transfer functions. For the problem under in-
vestigation, there is another feature to the power flow characteristic.
Since the conservation of energy is not utilized explicitely in deriving
the aperture field coefficients, this principle can be used as a check on
the accuracy of the numerical results. That is, the difference between the
total power injected by the source and the sum of the powers coupled to
the upper waveguide and transmitted through the lower guide is an indic-
ation of the accuracy of the solution thus obtained. Throughout all the
numerical examples presented in the thesis, this property is utilized and
difference values smaller than 0.01 per-cent of the total power are ob-
tained.

The power transfer across a surface S is defined as,

> > ~
P = Re j (E X H*)e n ds (3.34)
S

where Re stands for the real part of a complex quantity, 7 is the unit
normal tc S in the direction of power flow and asterisk is due to comp-—
lex conjugate operation. To calculate the total power we take the surface
S to be formed by an arbitrarily located cylindrical surface, with a
radius P smaller than the first slbt, and the conducting walls. Since
S encloses the feed system in the lower waveguide, an application of
(3.34) to the volume bounded by S vyields the power leaving this region

and hence equal to the total power injected by the source system located
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at the central region of the lower waveguide. For pfaotical considerations,
the guides thicknesses are generally selected to be smaller than one-half
of the intrinsic wavelength A. Therefore, all the higher order modes

with m>0 have a complex k equation (3.5c¢), and do not contribute

oml’
to power-transfer. In this regard, expressions for the power components
are only derived for the propagating mode.

The coupled power can be obtained by taking S to be the surf-
ace of an arbitrarily located cylinder in the upper waveguide with a rad-
ius greater than the last slot, By a similar approach, one can obtain the
transmitted power through the lower waveguide by selecting the cylindrical
surface in this region. In fact, power coupled by individual slots to the
upper guide can also be calculated by taking the respective slot's aper-
ture as the surface S and an application of equation (3.34) to the slot's
field components.

Using the theory presented in this section and the expressions
derived for the wave functions in the earlier sections, (3.33), the total,

coupled and transmitted power for two coupled radial waveguides, figure

3.2, are formulated [Appendix B] and the final results are as follows
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P = 3 qlzor — L I kP, ckp Re(kE, E_)IJ_(k0,)]
Coupled g=0 g o i=lm=1 %+t OO0 © 4 4 B
(3.35b)
®  (a° + p’) (8r1)3/2 Ic IC
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Note that for single mode operation the infinite summation on g is elim-

inated.

4.3 Equivalent Admittance of an Annular Slot

ﬁ As an equivalent, principal-mode circuit representation, it is
often desired to associate an admittance with each slot on the conducting
boundaries. For this reason, we must define two quantities representing
the slot current and voltage Ii’ Vi. As a measure of the slot current,
we define

Ii = 2ﬂpiH¢(¢o,pi) (3.36a)

where Py is the average radius of the slot and ¢O is a reference value
which for single mode operations can be taken as the angle for which H¢
is maximum. For voltage Vi we take

+
pi > ~
v, = E(p',9 ) c pdp! (3.36b)
i _ o
Pi
The admittance characterizing the ith slot is then defined by

Ii
Yi = g; (3.36cC)

In the next section, the equivalent admittance of a single slot
as a function of its radius is computed with the aid of the above defini-
tions. The effects of the higher order modes on the admittance value and
the field distribution of the slot are also investigated.

3.4.1 Effects of the Higher Order Modes on the Admittance and

Field of the Slot

Based on the theory presented in the earlier sections, the admit-
tance of an annular slot, coupling two radial waveguides, is computed as a

function of the radius of its leading edge. The thicknesses of the
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waveguides are smaller than half the intrinsic wavelength, therefore, only
the dominant mode propagates, The conductance and the susceptance terms
are depicted in figures 3.3a, 3.3b, respectively. The ratio of the radii
of thg slot edges is kept constant and equal to 2.36 (aim%x)excitation is
assumed). In order to study the effects of the higher order modes excited
by the slot discontinuity on the equivalent admittance, the results obtain-
ed by taking only the propagating mode are also shown, the dotted lines.
Whereas, the solid lines are due to the inclusion of the first ten modes
which was observed to be sufficient to yield a convergent golution for

all the examples presented in this thesis. These results indicate that for
most applications, the dominant mode representation, such as that in the
transmission line theory, adequately describes the slot admittance. How-
ever, the accuracy of the results, particularly for central slots where

kp 1is small, is not satisfactory. As a further check on the dominant mode
approximation, the field distribution over the slot is also calculated and
is shown in figures 3.4a, 3.4b. The slot is located at a radial distance
k0 = 2.00 which corresponds to the last plotted point of figure 3.3, For
this calculation, due to the large electrical width of the slot, the aper-
ture is divided into 13 cells (annular rings) of equal width. The tan-
gential electrical field over each cell, which for theTMOOexcitation is
equal to Ep' is then computed by applying the continuity of the tangen-
tial magnetic field in an average sense. Comparing the results, one notes
that the dominant mode theory yields reasonable results for the field mag-
nitude, except in the vicinity of the slot's leading edge. On the other
hand, it fails to describe the phase of the field accurately. The actual
phase of the siot field which is calculated by including higher order modes

excited by the slot discontinuity is virtually constant across the aperture.
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Whereas, the result dué to the dominant mode alone oscillates between O
and 180 degrees for adjacent matching points, These calculations also
show that the field distribution of an annular slot is similar to the cur-
rent distribution on a conducting strip illuminated by a plane wave [51].
It should also be noted that even though the dominant mode approximation
gives inaccurate phase distribution, it yields a reasonably accurate result
for the equivalent slot voltage defined by eguation (3.3b). This is due

to the fact‘that the voltage depends on the integral of the slot field

and the phase oscillation compensates for inaccuracies in the slot field
amplitude. As a result, the slot admittance calculated by the dominantv

mode alone has a reasonable accuracy,

3.5 Filtering Characteristics of Two Coupled Radial Wave-

guides

Two dimensional arrangement of annular slots to form resonant
arrays are of practical interest for applications as band-pass or band-
stop filters. The filtering characteristic can be controlled by‘varying
the dimensions of the slots, their relative locations, the waveguide
thickness and the constitutive parameters of the two coupled regions.
In the methods based on the waveguide transmission line concept, the coup-
ling due to the external field (upper waveguide region) is generally over-
looked. However, as it is shown in table 3.1, depending on the arrangement
of the slots and their electrical dimensions, the external coupling can be-
come so strong as to cause part of the radiated power to be recoupled back
into thewaveguide containing the exciting source. The geometry is formed
by.five annular slots of widths kOG = 0.20, éeparated by a distance
kox = 2.00 located on the common boundary. Since the slots are electric-

ally thin, the calculations are carried out by representing each slot by
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Slot No. SlotP?EZECEEEE;ZdO?YTiiZ? Power)
1 + 8.49
2 + 2.11
3 -23.32
4 - 2.77
5 +52.00
iﬁ:ﬁ Coupled +36.51

Table 3.1: Contribution of each slot to the total pow-
er coupled into the waveguide number two,
™ exciting mode.

00
N=25
Erl _ 2.55
€r2 = 1.00
k § = 0.20
k pl = 4,00
k x = 2.00
k a = 0.25
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a single cell, That is, each slot is characterized by a constant complex
field Ei which is found by matching the average of the magnetic field
over its surface. The results for the coupled power by individual slots
show that the external coupling is quite strong and causes a portion of
the already coupled power to be returned back into the exciting waveguide
through the slots 3 and 4. An equivalent transmission line representation
is then a negative slot conductance (a source) associated with the res-
pective elements.

Figures 3.5 -~ 3.7 are intended to show the application of annul-
ar arrays as band-pass filters, The filtering characteristics of a single

slot excited by aTM_ _ radial mode is shown in figure 3.5. It is interest-

Qo
ing to note that by a proper selection of the geometry, a single narrow
slot can effectively couple a major part of the total power to the upper
waveguide over a wide frequency band with a sharp cut-off characteristic.
More selective filtering response can be obtained by increasing
the number of slots. Figure 3.6 illustrates the transfer function of a
filter having four slots as its coupling elements for theﬂ%%x)excitation
mode. All the dimensions given are at the frequency fo and ko is the

free space propagation constant. The response of the same geometry to the

TMOl exciting mode is depicted in figure 3.7. The resonance peak is

slightly shifted toward the higher frequencies and the bandwidth is decreas-

ed compared to the TM_  _ mode of operation. To demonstrate the sensitivity

00
of the filtering characteristic to the slot spacing, kox is increased
by an amount equal to four per-cent of its value for the solid line and
the result is indicated by the dotted curve.

In conclusion, the work of this chapter establishes a method of

solution for the electromagnetic field inside a radial waveguide in the
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presence of annular and cylindrical type discontinuities in the waveguide
region. The forcing function may be of a general nature, however, the
geometrical interruptions are assumed to be electrically thin enough as to
only support azimuthal directed current distributions (electric or magnet-
ic) on the surface of the scattering bodies, The inclusion of the fict-
itious magnetic current distribution in the general formulation proves to
be useful for Ereating problems involving coupled waveguides by annular
shaped apertures on the common boundary. One possible application 6f the
method is in the design and fabrication of microwave printed—circuit
strip-line filters with band-pass characteristics.

Another possible application is in the design of annular slot
array antennas for producing pencil beam radiation patterns, However, treat-
ing these types of geometries requires solution to the field excited by
an annular slot of a finite width on a conducting plane radiating into a
semi-infinite region., The next chapter is devoted to the development and

formulation of problems of this nature.
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CHAPTER IV

FIELD SOLUTION FOR ANNULAR SLOT ARRAYS FED BY
RADIAL WAVEGUIDES

4.1 Introduction

Slot arrays in conducting surfaces have drawn considerable inter-
est for applications as flush-mounted antennas for use in aircrafts and
spacecrafts. With the exception of structures using isolated feed assemb-
ly for individual slots [52], such antennas are formed by cutting slots on
one side of a waveguide which is also used as the feeding system for the
slot array. The array elements are successively fed by a travelling wave
inside the waveguide. This form of excitation eliminates the aperture
blockage problems usually faced in the design process of reflecting type
aperture antennas.

Among slotted structures, annular type apertures have also been
of interest for applications as low profile antennas. However, due to
mathematical bomplexity generally associated with problems involving aper—
ture coupling, existing design technigues are mostly based on overly simp-
lified models, This in turn imposes a number of restricting conditions
which 1imit the range of applicability of these techniques in providing
acceptable results.

Earlier investigations of the problems of annular type apertures
were generally based on assuming a field distribution over the aperture
and then solving for the radiated field in the external region [53]. How-
ever, for waveguide fed arrays where the strong coupling between the array
members is the determining factor for aperture field distribution, this

approach does not yield the required information for design purposes. - The
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mutual coupling in these cases can become so strong as to turn a resonant
slot, when isolated, into a predominantly reactive one when placed in an
array of slots.

As it was mentioned earlier, a procedure commonly used for treat-
ing waveguide fed slot arrays is an extension of transmission line theory
to waveguide structures, However, this method is unable to account for
higher order modes excited by the slot discontinuities. Furthermore, the
coupling effects of the external region are totally disregarded in this
manner.

Earlier works dealing with cavity or waveguide fed annular type
aperture antennas in which attention is paid to higher order modes excit-
ed by the geometrical interruptions are based on assuming a uniform forc-
ing funcfion (no ¢ wvariation) giving rise to a‘TM field in the two reg-
ions. Furthermore; the problems of mutual coupling are avoided by consid-
ering single slot structufes.

In the present work, a new type of slot antenna is considered,
figure 4.1. Concentric annular slots are arrayed on one side of a radial
waveguide. The conducting walls of the guide may be supported by a diel-
ectric substrate (with or without loss). The slots are of finite widths
6m located at radii p = pm. The exciting source is placed at the central
region of the guide and its field may be of a general nature. Again, the
slots are assumed to be electriéally thin enough as to suppress radially
directed induced currents (magnetic) over their surfaces.

We develop the formulation for the field in the semi-infinite
region by first constructing the appropriate Green's functions. These
functions describe the impulse response to a magnetic current ring (annular

slit) on the common boundary of the interior and the exterior regions.




Figure 4.1: Typical radial waveguide fed annular
slot array antenna of infinite extent.
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Then, the final formulation is achieved by integrating the impulse response
over the aperture field distribution in a similar manner as was described
in the previous chapter.

In the next section, the appropriate Green's functions for the
exterior region (semi-infinite space) is constructed and the external field
will be formulated in terms of these functions. The expressions for the
field components in the feeding guide are obtained in Chapter III and are
used for the problem under consideration,

Even though the present study is mainly oriented toward a sol-
ution to annular slot array antennas, for the sake of completeness the
appropriate Green's functions of electric type are also derived by a simp-
le application of the concept of duality [49]. This would enable one to
formulate problems dealing with annular or ;ylindrical type sources or

scattering bodies in free space.

4.2 Problem Formulation and Solution

4.2,1 Construction of the Appropriate Green's Functions, Magnetic

Ring

In deriving the appropriate Green's functions for the problem
depicted in figure 4.2, we uﬁilize the properties of a set of Hankel
Transforms of order n [55]. The basic principle is to transform the wave equ-
ation into 1its spacial frequency domain counterpart. The Green's functions
are then constructed by imposing the constraints on the field components.
The result is then transformed to the spacial domain, using the Hankel
Transform. Evaluation of the infinite integrals is discussed in the sub-
sequent sections.

Consider the geometry shown in figure 4.2a, An annular slot on

a conducting plane of infinite extent may be viewed as an annular distribution
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Figure 4.2: A delta-function generated annular slit

on an infinite ground plane and the equi
valent problem. '
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of magnetic surface current given by

AN

5
J = X n (4-1)

ms aperture

B

where 10 is the unit normal of the aperture. For an infinitely thin slot

(slit), the magnetic current filament can be characterized by

= = V(") S(p - p")od! (4.2)

Gy

ms
where V() is a piece-wise continuous function of the azimuthal angle o,
representing the eguivalent voltage across the infinitesimal gap and 0',
¢' are the source coordinates. &' is a unit vector tangent to the cur-
rent ring and represents the direction of the current flow. We expand the

source strength V(¢') in terms of Fourier series as

(o0}
V(") = X (an cos nd' + bn sin nf') 0 < ¢' <2m (4.3a)
=0
where
€, 2m :
= —— 1 l ]
a o J V(') cos ndp' d¢
o .
€. 27
—- ' : { 1 . )
bn o J V(¢') sin n¢' d¢ (4.3b)
o -
1 n =20
8 =
n 2 n#o

Now, an arbitrary electromagnetic field in a homogeneous cylindrical region
can be expressed as the sum of the TM (E waves) and the TE (H waves) fields

to the z-direction, equations (3.3). The proper forms for the wave functions
e

h ) . . .
Y and Y can be determined by an application of the Hankel Transforms.

The transform pairs of order n of a function Y(p, ¢, z) are defined as

Y (@, ¢, z) = J Yip, ¢, 2) g (ep)p dp (4.4a)
o] . .
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Y(p, ¢, z) = J b, ¢, 2) J, (@p)ada (4.4Db)
@]

In view of the periodic nature of the geometry in the azimuthal direction,

the wave equation in cylindrical coordinates is expressed as [49]

Y 13 n? %W o _

E AR T A P S (4-5a)
where

k = w/e U (4.5b)

O o O

Taking the Hankel transform of (4.5a) by using (4.4b) and expressions avail-

able for the derivatives of a function as [55]

® 4%f  1df n? .
Joo(dpz + o ap " 5§~f) Jn(up)dp = —Q°f (4.6a)
one obtains
52 -
Pyl 2y ¥ (o, ¢, z) = O (4,6b)
where
Y o= (o? - k(";)l/2 (4.6¢)

Y so defined is a double valued function, therefore, a unique value re-
quires defining a specific branch by invoking the physical constraints of
the problem. This will be done in a later section; however, at this point,
it is assumed that the appropriate branch has been selected and it suffices

to say that <y may have a complex value of the following form
’Y = le + jY" »Yl, ’Y” > O for all o (4.6d)

Hence, we proceed to express the wave functions of e and h types in
terms of suitable sets of mode functions with unknown coefficients. To
this end, as an anticipation for relating the field components to their

source V(¢) and in view of equation (4.6b) we take




1%, ¢, z) = . (a cos nd + b sin nd) [Ue(Oé)e—YZ + ue(@)eyz]
n n n n
n=0 (4,7a)
@h(d, ¢, z) = L (b cos nd - a, sin n¢) {Uh(a)e—YZ + ui(d)eyz]
n=0 " " (4.7Db)

Since Y(p, ¢, z) must behave according to the radiation condition at

large distances, considering (4.6d), the appropriate forms for we and

h e e . . . e h .
Y in the semi-infinite region are obtained by setting u and u in

equation (4.7) equal to zero which leads to

7% (o, b, z) = L (a_ cos n¢ + bn sin no) Ui(a) e—Yz (4.8a)
' n=0 n
__h ® v h "'YZ
Vo, b, z) = Z n(b cos nd -~ a sin nd) U (@) e (4.8Db)
n=0 n n n

From the boundary conditions, E¢ component of the field must

vanish over the conducting plane, including the edges of the slit (edge

condition) [56], that is
E = 0 0 <p< o (4.9a)

However, Ep component of the field is singular at the edges, hence, we

. may represent it by

0 <o <2r
Ep = V() S{(p - p")- ‘ C§p<w (4.9Db)
z = 0
Therefore, using (4.9), (4.8), (4.4b) and recalling the relations for E

¢

and Ep in terms of the e and h type wave functions, equations (3.3b),

one finds
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(e} (o]
1 . 2 oy e
- Sie X (an cos nd + bn sin no) J Yo Jn(ap) Un(a)du
o) = 0 o
1 e 2 . * h
+ = X n“(a cos nd + b sin nd) -° aJ {ap) U ()yda = V() §(o - p")
p n n n n
11=0 o
(4.10a)
1 > . e
T X n(bn cos nd - a sin no) J Yan(ap) Un(a)da
o n=0 o
. [e0)
+ X n(b cos nd - a sin nod) ‘J a?J! (ap) Uh(u)da = 0 (4.10b)
=0 n n o n n

where. V(¢) 1is given by equation (4.3a). Using the orthogonality relations
for sinusoidal functions over the range O < ¢ < 2T, the above set of

equations can be reduced to

(oo} 2 o0
h
T Sue J Yang(up) Ui(a)du + 9—-I ad (ap) U (a)do = §(p - p")
o o P Jo (4.11a)
© b .
- e 21 -
jwe_p j Yod, (0p) U (a)da + n J a3’ (ap) U (a)do 0 (4.11b)
o o o
An addition of the above two equations leads to
© [ee]
p— a?J (ap) Ue(oc)doc + n alJ (o) Uh(@)da = §(p - p")
jweo o ¥ n-1 0 n o n-1 P n = P P
(4,12a)
and their subtraction yields
jwe, YotJ L, (ep) U (a)da + n Jo a’J ., (@p) U (w)da = &(p - p")
(4.12b)

where a use has been made of the available relations for the derivatives

of Bessel functions in the form [50]

\ _ .o
Iz = I (2) - T3 (2)




64

: - n - ‘
Jn(z) = Jn(z) Jn+l(2) (4.12¢c)

Now, taking the Hankel Transform of order (n - 1) and (n + 1) of equa-
tions (4.12a) and (4.12b) respectively, and utilizing the properties of
delta functions, one obtains a set of equations which after solving for the

coefficients result in

. 3! (@p')
— = | .
Un(oc) = jweop Yo (4.13a)
h Jn(ap')
Un(u) = o2 (4.13b)

The above coefficients in conjunction with equations (3.3), (4.3), (4.4b)
and (4.7) uniquely define the electromagnetic field set up by an annular
slit of strength V(9) over an infinite conducting plane, The evaluation
of the generated infinite integrals for obtaining the field components in
the space domain iswdescribed later.

Note that by substituting (4.13) and (4.11), one obtains ident-

ities in the form

[}

t t H 1] 1 o
o} jo Jn(up) Jn(ap Ydo + p Jo Jn(ap) Jn(ap )do 0 (4.14a)
! OOJ'(OL)J'( ")od +n—2—w£J( ) J (apB)da = S{p - p")
0 n (@0) I lapHada + =7 g Jplop) I (apfida = S(p - p
© © (4.14Db)

Proof of the above identities which ensures satisfaction of the boundary

condition over the surface of the conducting plane is given in Appencix C.

4.2.2 Electric Ring

The field generated by an annular slit cut on a conducting plane
of infinite extent was derived in the previous section. According to

equivalence principle [49], as far as the field in the semi~infinite region
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defined by =z > 0 is concerned, the problem is equivalent to a magnetic
current ring placed in front of an infinite ground plane and characterized

by
k4 — i 6 ' (S Av
I, = Im(dJ ) 0(p = p") 6(z)¢ (4.15)

where, Im(¢') = -V(¢') and the source is radiating in presence of the
infinite ground plane. Using the Image Theory [49], the result is also
valid for a geometry as illustrated in figure 4.2b, whére, the strength
of the source is now given by -2V ($') and is radiating in free space.
The field components for this source can be derived from equations (3.3)

by substituting the following results developed in the earlier section for

v®  ana Yo

co 0
P = -jwe o' I (a cos nd + b_ sin nbd) [ L@ g ©p) e'% ao

o n n Y n n
n=0 o)
(4.16a)
h > 1
= - i — ' “YZ 4

Y nio n(bn cos no an sin no) jo o Jn(up ) Jn(ap) e dao (4.16b)

Using the concept of duality for electromagnetic fields [49], it
is straight forward to derive the field set up by an electric current fil-

ament characterized by
. ~
J = I(@") S(p-p") &(z=)d (4.17)

This can be done by replacing E » -H, H->E and € T U in equations
3.3a. These transformations modify the set of vectorial equations to

L
Jwe

E -V x (-2 J3 + VxV x(; wh)
(4.18)

Y
H

Il

~ h 1 ~ e
V x(z + —— V x V x(-2
v+ 5 v®)
Comparing (4.18) against (3.3a), one concludes that the solution for the

electric current filament can simply be obtained by replacing wh by




66

h . . . .
—we, we by U and exchanging %3 and Uo in the respective relations

derived for the magnetic ring. The final result is of the following form

0 oo}
U = %- 2 n(b cos n - a_ sin ng) J é-Jn(ap‘) I, (@) e "% au  (4.19a)
n=0 °
0 fes})
wh = %’ngf' §o (a  cos n$ + b sin nd) Jo %—Jn'(qp) 3_(ap) el
) (4.19b)

where an and bn are the Fourier coefficients obtained by expanding
I(¢') over the range O < ¢! < 2m. The appearance of the factor %- in
equations (4.19) is related to the way that a, and bn are defined in
the two cases.

Equations (4.19) together with (3.3b) and (4.17) uniquely define
the field set up by an electric current ring of strength I(¢') located

at a point p = 0', z = 0. The coefficients an and bn are defined by

similar relations as eguations (3.2b).

4.3 A Note on the Branch Cuts of the Function

B 1/2
Yy = (a® - k2)

As it was discussed earlier, Y so defined is a double-valued
function in the complex O-plane. Therefore, it is necessary to specify
the branch of Y function in order to uniquely define the representation
given in (4.6c¢). This is done by invoking the radiation condition, which
specifies, either an outgoing or evanescent wave for large r = /p2 + z".
The details of the principle involved can be found in [56], [57] (with

-jwt . . . :
e time convention), and is briefly discussed here.

The Green's functions for half space are proportional to inte-

grals of the types
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J (ap') I (ap) e '° do (4,20a)
n n

Q-

[e0]
T =
l 4}’
(o]

— ® 1—_ 1 ' ~Yz
I = Jo ” Jn(up ) Jn(up) e do (4.20Db)

Using the relation expressing the Bessel function is terms of the Hankel

functions of the first and second kind [50]

1 (2)
Jn(ap) = [Hn

(1)
5 (ap) + Hn (ap) ] (4.21)

and noting the fact that both integrands are odd functions of @, the

above infinite integrals can be transformed to

{ve]
1 (2) Yz
= — ! 1 4.22
Il 5 J_m Jn(ap ) H (ap) e do, ( a)
1 (7 1 (@) ~yz
= = - 4.22b
I, > J_m » Jn(up ) H (ap) e da ( )
where a use has been made of a change of variable, o - uejﬂ, in the inte-

(

. . 1 . . .
grand involving Hn )(ap) and the expressions available for analytic con-

(2)

. . - . Co -Yz
tinuation of Bessel functions are utilized [50]. The term Hn (ap) e Y
is recognized as that of a two-dimensional plane wave. Therefore, the rest
of the integrand may be interpreted as the amplitude of a spectral plane

wave with wave numbers o and -Jjy. The radiation condition will be sat-

isfied if I and 12 vanish for ¥ - o, This will be satisfied if the

1
ey

integrands in (4.22) vanish for either p > © or gz =+ ©,  For 5

(ap),
the convergence of the integrands is assured by taking the integration path

in regions for which the imaginary part of « is smaller or equal to zero.

In order to ensure the convergence as 2z = ©, we must redquire,

\%
(@)

Re(Y)

(4.23)
I, >0
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To avoid unnecessary mathematical complications, it is generally as-
sumed that the mediumrunder consideration is lossy, that is,
k! > 0
ko= k! - 3kD ‘ (4.24)
k>0
The lossless case, then, can be viewed as the limiting case when kg ap-
proaches zero. The conditions specified by (4,23) uniquely determine the
location of the branch cut shown in figure 4.3. These lines correspond to
the intersection of the two sheeted O plane. In each sheet Y 1is a
single-valued analytic function of . For the limiting case (lossless
medium) as far as our analysis i1s concerned, the transition of 7Y from a
purely imaginary value (a < ko) to a positive real value (O > ko) is

then uniquely defined as,

L2 2.172-
](ko %)

<
1l

. (4.25)
@2 - k)2 o > Kk

il

¥y

Based on the theory presented earlier, the next section is de-
voted to demonstrate the applicatioh of the previous results to the problem

of annular slot arrays of finite widths fed by radial waveguides,

4.4 Formulation of the Problem of a Waveguide-Fed Annular

Slot Array Antenna

Employing a similar approach as Section 3.3.1, an annular slot
on a conducting plane can be viewed as an annular distribution of magnetic
surfaqe current. The aperture field can be expanded into a Fourier series,
equation (3.22), and the wave functions for the semi-infinite space can be
obtained by integrating the product of R (p') and the Green's functions,

equations (4.19), over the aperture radial coordinate p'. To be more
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174

Figure 4.3: Branch cuts for vy = (O
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specific, TMPq mode of the radial waveguide can be assumed to be incident,

figure 4.1, This mode is characterized by
e
inc pT (2)
= cos — 2z cos H (k )
qu a a g ppp
(4.26)
ko= k2 - (Ely2yl/2 x = VEu
Pp a @)

The wave functions due to the magnetic surface current over the coupling

aperture for the semi-infinite region are specified by

p

o L &g Yz
w2 = -jwe Lz (an cos no + bn sin n¢) J p' Jl(ap’) Jn(&p)
%=1 n=o + o
Py,
Rz (p'ydp'do (4.27a)
n
+
h L o pz o ~Yz
v, = X 2 n(_ cos nd - a_ sin nod) J J (ap') J_(ap)
2 9= _ n n = n n
=1 m=0 0] (]
2
Rzn(pi)dp'da (4.27b)

where 1L represents the total number of slots and RQn(p') is the nth
mode's radial dependent part of the electric field over the fth aperture.
The wave functions due to the slot for the waveguide region are similar to
those derived earlier (Section 3.3.1) and for the present geometry can be

expressed as

L © c €
il
wi = 7%5— M % P EEL-(a cos n¢ + b sin nd) cos o z
2=1 m=0 n=0 pm n n a
+
(2) 0
H k ! !
N ( pmp) L Jn(kpmp )
® 1 T 1
0 Rln(p ) dp (4.28a)

= (2)
Jn(kpmp) Py H '(kpmp')
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2 I (o] (o]

h il € mn
v, = -5 ¥ L L m _ . o
1 2a 0=1 m=0 n=0 K2 (bn cos no a  sin nd) sin Pl
om
+
(2) 0 .
Hn (kpmp) L Jn(kpmp )
? _ RQn(p ) ) ap (4.28b)
T 0P o, T k0t
where depending on the observation point (p > p' or p < p') the top

or the bottom row of the Bessel functions must be selected. Again, the con-
tinuity condition for the tangential electric field over the apertures is
implemented in the formulation by insertion of equal aperture field dis-
tributions in the two sets of wave fﬁnctions.

As before, the coefficients a and bn entirely depend on the
functional form of the azimuthal dependent part of the incident field. For
the particular choice of incident mode, equation (4.26), these coefficients
are given by (3.27) which eliminates the infinite summation over n in
equations (4.27) and (4,28).

Using a similar method as in Section 3,3.1 for determining the
aperture electric field, Rzn(p') can be expressed by equations (3.28).
The field strength Eins as;ociated with the cells are obtained by match-
ing the average values of the azimuthal component of the total magnetic

fields of the two regions over each cell. Using equations (3.3b) in con-

junction with (4.27) and (4.28), one obtains
_!._

P.
IC o -YZ
= 3 tT1t t ' i
H¢2 jwe iil Eiq cos q ¢ | _ J o] Jq(ap )Jq(ap) adp 'da
p. 7o
i
+
, IC Py L vz
. YL E, cos¢ j J (O(,p')J (OLD) — e dp'dOL
JMUOD i=1 1ig 5' o d q o

i
(4.29a)
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Twe mT i q m
H = - — 1 L E, € cos gb cos — z p! dp!
o1 2a ] gy Y4 M a - (2)
1= a pl H 1 (k pl)
Pm
(2)
H ' '(k_ P) o 2
q Pfm ﬂng IC Eiqm e -
. L L L ——=5—— cos g cos 2
o i=1 m=0 pm
J'(k__P)
g pmp
(2)
. k ! H 0
pl q( pmp ) 4 (kpm') & pr (2) )
dp' . - k cos cos = z H 'k
. H k ! J (k
o q ( pmp ) q( me)
(4.29b)

In order to equate H¢l and H¢2 over the cells in an average sense, we

use a similar approach as Section 3.3.1, that is, for region 2 we detine

H,.. = I h_.,. (4.30a)
27 i=1 251
z =0
Gj
. - <
where for Ip pj[ <3
0 < ¢ <o2nm
+
Py i = 1,...1C
= 1
29i 8. ) Hi¢2 dp (4731b)
J p:] J = l,..- IC

and Hi¢ is the contribution of the ith slot to the magnetic field of
the jth slot. ©Note that for this region, a separate definition for terms
i =3 1is not needed, however, for the radial waveguide region, we use the
respective equations given in Section 3.3.1. Evaluation of the integrals

defined by (4.31b) is simplified by ignoring the variation of the terms o]

1 . . . .
and 5' in the integrands over the electrically thin cells. DNote that due
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to the presence of ¢ in the arguments of the Bessel functions, the same

approximation cannot be effected for these functions.

The final result of the above argument is a set of

linear equations in terms of the aperture field coefficients.

simultaneous

The elements

of the equivalent matrix equation, (3.32a) and (3.32b), are given by

p.

. . L ” + + da
in = (]w€o) 65 Jo [Jq(dpi)]_ [J (@Q )1 oy
i#]
g’ ” + + Y
N~ o . ° . e —d
+ Gou )p.s. JO [Cq(dpl)]_ [Cq(uoj)]_ 5 do
+ (2)
TWE P o em Jq(kpmpi) Hq (kpmpj)
T2 5. mio ém . (2) .
H k . J (k
q ( pmpl) _ q( Dmpj)
TT3G2 e m? J,H + H,J +
+ 3 7€ [C_(0)]_ <« [C_(p.)]_ (4.32a)
20 uoa 6] =0 Xom m o qm i gm i
O3 17 + + do
— Y ° 1 °
Yii = (JwEO) 5 J [Jq(@pi)]_ [J (@D )1 oy
J°0
+ —-—3E————ifb[c @)1+ e )1« L an
(Juu e 8. J o Tg AT g Ti'7- o«
TWE P, ® €
i m (2) + (2) +
- I — {J'(k p)‘[H (k01 +H""'"(k_p.)
6a =0 kpm q pm q pm i" - a om™ i
. (2) + ; . (2) + (2),
{Hq (kpmpi)]_ + Jq(kpmpi) [Hq (kpmpi)] . + Hq (kpmpi)
0. 3.2 co 2 _
A e B B o C USRI R U I
pom 1 6pjuoa =0 kpm m g pm i dm i7" =

(2)

+ J + H +
+H (kpmpi) [cqm(pi)}_ + Jq(kpmpi) [cqm(pi)]p

d

a J pi
€ (030171

(2)
+ Hq (kpmpi)

(4.32b)
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where [50]

N

0 - L € B, (op)/a 0 < g= 2N+1
i n 2n
[ n=0
C (ap) = J B (aph)ap' =
d d -
Z o ol 0 < = 2N
20 & B2(N+n)+l( PY1/ a
n=0
(4.32¢)
J,H . .
and Cqm (p) is given by (3.32e). Note that for the case g = 0 (¢
symmetry), the field is ™ to =z and is solely determined from we. Ev-

aluation of the infinite integrals is described in the next section.

Once the aperture field coefficients Eiq are determined from
the matrix equation (3.32a), the field components in region 1, for points
away from the slots, can be obtained from equations (3.3b) and the follow-

ing relations for the respective wave functions

J (k _p.) *
q pm i
e TWE ;F ® Py mi
Vi = a PP g Bygfp ©0s @b cos Tz
i=1l m=0 pm (2)
Hq (kpmpi)
(2)
H k )
q ( Dmp
J (k
q(pmp)
(4,33)
®inc P (2)
= Ccos = z cos H (k )
qu a a9 g DPp

‘The radiation field which is the quantity of most interest in the open-

region problems is dealt with in a later section.

4.5 Evaluation of the Infinite Integrals

As was seen in the earlier section, the field coefficients are

determined by matching the average values of the azimuthal component of
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the total magnetic field across the coupling apertures. This, in turn,

generates two types of infinite integrals which are yet to be evaluated,

namely
co
e do
I = j J_(ax) J_(ay) (4,34)
- Jo T " a(e? - kcz))l/2
1/2
b o (@ - k2) 4
I = [ J (ax) J_(oy) ———5— do (4.35)
o M n o

We assume the smallest of x, v is large enough to allow for replacing

- the Bessel functions by their asymptotic forms over the range o 2> ko.
This is a practical assumption, since, as a measure for minimizing the
interaction between the slots and the feed assembly, generally the first
slot is placed far encugh from the central region of the feeding guide.
In fact, Irzinski [33], when considering the problem of TEM excitation of
an annular slot by a coaxial waveguide, has shown that satisfactory results
can be obtained even for radii as small as one radian. Therefore, using
the above mentioned scheme and separating the integrals into their real

and imaginary parts, one obtains

e 1 ~172 7 _2mtl _ 2mtl
Re(I7) ~ X T (Loxkoy) j cos (kOxB 2 ™) cos(koyB n )
o} 1
ap
(4.36a)
' 1
(82 - 1)t/?
. 0 dB
e ] ]
Im(I") = - -~J J (k xB) J (x ¥B) (4.36Db)
ko o m o m B(1 - 82)1/2




~1/2 (oo

h 1 2m+1

Re (I') E;E‘(kox koy) JO cos(koxB -T2 ™) cos(kOyB -
1/2
. (B% - 1)
_.__BT___ ag
1/2

h it (1 - 8?)

Im(I )y = - E;‘ [O Jm(kOXB) Jn(koyB) —*“‘z;;’——"— dag

where the following change of variable is affected
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2n+1
4

)

(4,37a)

(4.37b)

(4.38a)

and Bessel function is replaced by its principal asymptotic. form [50]

2 2V+1
Jv(z) ~ /’E; cos (z 2 )

z large

(4.38b)

The imaginary parts which are over a finite range of f are carried out

numerically. However, the real parts of 1€ and Ih,
for products of cosines and also noting that (m* n)
can be transformed to
_1/2 (oo}
1 d
Re (I%) ~ = (k x k_y) 8
0 o}

o {J (cos{kO(X~y)B]
[e} 1

- as
- sinlk (x+y)B] }
J1 © B2 (82 - 1)%/2
m-n
-1/2 — (® 2
h, ~ 1 2
Re(I) E—E»(kox koy) {t-1) j cos[ko(X~Y)B] (&
o 1
0 2 _ 1/2
4 (op)mmtl sin[k_(x+y)B] iﬁ*——zil——— ap}
1 © B

B2 (g2 - 1)%/?

using the formula

is an even integer,

(4.40)
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Equation (4.39) can be shown (Appendix D) to be given by

12 k_|x-y]
l .
Re (I%) ~ EE;-(kOx k_¥) Ik lx-v| 1 ) N, (z)dz - Nl(kle—yl)]
ko(x+v) I (2) |
-k (xty) [1 - L — az1} (4.41)

b4 Jl(t) 4 ®
J T dt = Z v o(p+ 1) J2(p+l)(z) | (4.42a)
o p=0
) N (t)dt = zN_(z) + T—TE-[|HI (z) N (z) - |H|, (2) N_(2)] (4.42Db)
o 0 0 2 0 1 1 0 .
a @ J22+1(Z) 2 © Ty,
[Blo=) = § 2 o0 [Blpter = g -3+ 2 X g5y
(4.42c)

Evaluation of the real part of Ih, however, is done by expanding

(g - »?

into a Binomial series and retaining the first two terms. The

infinite integrals in (4.40) are then approximated by

1/2 .
~ _ ®* -1 . 1 1 ,
chos[ko(x v) B1 D as Jl cos[ko(x—y)B) (63 - 5p% dB  (4.43a)
oo 2 1/2 loe]

o (8% - 1) . . 11
) 51n{AO(x v) Bl T ag Jl 51n[ko(x+y)8] (83 Egg) ag (4.43b)

The right hand side of egquations (4.43) are known integrals [50] and can be

shown (Appendix E) to have a final result of the following form
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-1/2 —
1 /

h _ 2 2 o 2
Re(I ) = T (k_x koy) {(-1). [(z] + 18) cos z, zl(zl +

22) sin 2, + 22(22 + 24) Ci(z))] + (-1ymntl

1 2

22) cos z_. + (z2 + 18) sin z_. + zé

2 .
5 5 5 (22 + 24) Sl(z2)]}

(4.44a)

where

N
il

1 ko !x - yl
(4.44Db)

N
il

ko [x + y]

and Si(z), Ci(z) are the Sine and Cosine integrals and can be expressed
in terms of a fast converging series [50]. In the next section, the rad-

lation field of a waveguide fed annular slot antenna is derived.

4.6 Radiation Field

The far field which is. the quantity of most interest in the open-
region problems is generally obtained by asymptotic integration techniques.
However, for the present problem an equivalent approach which does not re-
quire contour integration is employed. That is, instead of evaluating asymp-~
totic behaviour of the field expressions obtained earlier, the equivalence
principle and the image theory are utilized. 1In order to obtain the solu-
tion, the apertures in the ground plane are replaced by an equivalent array
of magnetic current distribution radiating in free space. Therefore, the

electric field is expressed as [59]

-jk R
> > 1 s > e °
E(xr) = - —VX J 2J  (x") ds' (4.45)
4Tj ms R
aperture
> -> ~ -> - .
where, JmS = Ea Xn and R = !r - r'|. Following the standard procedure

for approximating the free space Green's function at large distances from
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the source, that is

-jk R . .
e J ) Jjk ~jkor N
Vs - ro e exp(jko%-r')f (4.46)
one obtains
> > jko —jkor - - ~ A
E(x) ~ " S e J S(r') X r exp(jkor cr')ds' (4.47)
kor+m T aperture

Assuming constant electric field over the unit cells of the strength Ein

and expressing the vectors in terms of their spherical components, it fol-

lows
-jk ¢ +
N jke O IC Pi
~ - Z ¥ . 1
E, By .Z E.n J (an cos n¢' + bn sin nd"')
o i=1 n=0 o |-
O3

[sin(d - ¢‘)cos@$ + cos (¢ - ¢')§] ° exp[jkop' sinf cos[d - ¢')1]

e p'dp'de’ (4.48)

Since the integration on ¢" represents the contributien from all points
over an angular range equal to 27T, we are free to select the starting

point in the integration on ¢' to be ¢ - . This and a change of vari-

able in the form ¢' - ¢ = u leads to

—jkor +
N ik e Ic o« Py m

Y —— ] 1 . .
Ek oo G .Z % E. p'dp J [an cos n(p+u) + bn sin n(¢+u)]
fo) i=1 n=0 5 ~Tr
i
* [cos ub - cosf sin ud] exp(jkop' sin@ cos u)du (4.49)

Using the addition formulas for sinusoidal functions, the integral part
of (4.49) on u can be shown (Appendix F) to be given by

~ i
U = (an cos no + bn sin n$)06 { j [cos (n-1)u + cos{(n+l)ul exp(jkop' sind
o

~ ™
cos u)du} + cosb ° (bn cos nd - a, sin nd)¢ { J [cos(n-1)u + cos (n+l)ul
o




80

. exp(jkop' sinf cos u)dul (4.50)

The integrals of (4.50) are of the type [50]

m .
J e]BCOS.t cos nt dt = jnﬂJn(B) (4.51)
o

This reduces (4.49) to

R +
Ik eI ¢ o Py

Y —— ¥ I E + i ! '
Ek p— ' in pi [an cos no bn sin no¢) Jn (kop
o} i=1 n=0 =

-

n cosH

k p.sind n(kop sinB)¢ 1dp’
o"i

sin@)@ + (bn cos nd - a, sin n¢) °

(4.52)

where a use has been made of recurrence relations for the Bessel functions
and the variation of p' over each cell is ignored,

Next, noting equations (4.32c), the integration on p' is car-

ried out with the final result

-jk ¥

5
Py

N jk_ e °© Ic o E. 0 5
Ek roco ”“——;E?—“—~ .Z z E——gzgé‘{(an cos n¢ + bn sin n¢)[Jn(k0pSlne)]_
o . i=1 n=0 "o
+
+ (b cos - a sin n¢) » 2289 (T sine]pi$} (4.53)
n ng 0 nn 0, n kP - .
i

For single mode operation, the infinite summation on n is eliminated.

For instance, the radiation fields for a 'I‘MOl and TMOO modes of operation,

which are the only modes considered in the examples given in this thesis,

are
—jkor
ik e IC E. op. ~ J (k psinB) ~
e O in i o .
E ~ i ————
™ P ‘Z X sind [Jl(ko sinB) cos ¢0 + cos6 K 5. 5inb sing¢]
0l i=1l "o o'l

(4.54)
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-jk r
Jk_ e °  1Ic E, 0.
—_—— L = inb
™™ Tr . k sinf [Jo <kopSl]rl )]

00 i=1l "o P,
i

+
O.

ol (4.55)

-
E

It should be noted that the electric field in © = 0 direction for TM

01

case is x polarized and can be evaluated by letting 6 - O before per-
forming the integration on p'. The corresponding relations are
-jk ¥
N jk e © IC
O A
E (6=0) ~ 2 k 8.k p.E,X
. oio01ii

TMOl 2kor i=1

(4,56)

E (6=0) = 0
TMOO

In the next section an expression for the radiated power by an annular slot

array will be obtained.

4.6.1 Expression for the Radiated Power

An application of equation (3.39) to a semi-spherical surface of
a large radius (kor > ®) on top of the slotted structure yields the de-
sired relation for the radiated power. To this end, we express (3.34) in

terms of the field components in spherical coordinates, that is

2 21
P = Re ( J (E6 . H$ - E

. Hé)rz sinBd6d¢ (4.57)
JO O

¢

The magnetic field components H and H are easily obtainable from Ee

o} 6

and E¢ by noting that at large distances from the source system, the
fields are locally TEM. The electric and the magnetic fieids are related
by

> 1 »~ > _

H = — 1 xE (4.58a)

"o
where
g 1/2
n = (=) = 120T (4.58b)
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An application of (4.58) to (4.53) yields

-jk r +
N jwe e ° ICc «© E, p, o, ~
H = —2> % y A2 {(a_ cos n¢ + b sin nd) [T (k_psinBl~" ¢

Tr .k sin® n n n' o 0,

i=1l n=0 "o i

5
. ncosf : if

--(bn cos n¢ - a_ sin no) pi [Cn(k0031n6)]pi 0} (4.59)

By substituting (4.53) and (4.59) in (4.57), it can readily be shown that

the radiated power has the following form

IC IC © (a? + b?) 1 .
P = — L I % —n-—e——n—Remin © Bx ) {00, J [3_(k_p.B)Y_
o i=1 j=1 n=0 n Jn Iis oo

: + daB ! +

* [T _(k 0.8)] +J [C_(k p,.B)]
n o j - B(1 - 32)1/2 o n o i -

< x 0.1 (—l———6-)—d8} (4.60)
n o 3 - B8

where Cn(pa) is given by (4.32c) and (4.60) is obtained by affecting a
change of variable in the form

B ; sinb (4.61)
Note that the integrals in (4.60) have the same form as the finite inte-

grals computed for determining the field strength coefficients Ein'

4.7 Effects of the Higher Order Modes on the Admittance and

the Field of a Waveguide Fed Annular Slot Antenna

Based on the theory presented in the earlier sections, the as-
sociated admittance of a radial waveguide fed annular slot antenna is comp—
uted as a function of the radius of its leading edge. The thickness of the
feeding guide is smaller than half the intrinsic wavelength of the region,
therefore, only the dominant mode propagates in the radial waveguide. The

admittance is defined as before, Section 3,4, and the conductance and the
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susceptance terms are depicted in figures 4.4aand 4.4b. The ratio of the

radii of the slot edges is kept constant for each curve and expressed by
T = (p+ %)/(p - %) (4.62)

A TMoé excitation is assumed and the results are compared against the

theoretical results as well as the experimental ones obtained earlier [20].

The latter results are due to aTM_ . excited annular slot fed by a coaxial

00

waveguide of the same cross-section. The admittance values are normal-

ized by the characteristic admittance of a coaxial waveguide given by [20]

Y= f;r (4.63)
no n
and no is defined by (4.58b). Figures 4.4a and 4.4b indicate that for

electrically narrow slots, the admittance of the slot approaches that of
an infinitely thin antenna driven by a delta function generator [32].
That is, the admittance is chiefly determined by the external region and
the interior medium has a small effect on the admittance. Since for both
geometries (radial and coaxial waveguide fed slots), the exterior region
is the same, the corresponding admittances are expected to approach a
common value for thin slots. However, as is clear from figures 4.4, the
conductance and the susceptance terms of the radial waveguide fed antenna,
for wider slots and with the exception of the peak values of the conduct-
ance, are generally smaller than those of the coaxial one. It might be
of interest to mention that the result obtained for T = 2.36, at
ko(p - g& = 2.00, which shows a resonance case also corresponds.to the
maximum radiated power. This power was observed to be about 90 per-
cent of the total power injected by the source.

Figures 4.5a and 4.5b illustrate the effects of the higher order

modes of the feeding guide on the admittance of the same geometry. The
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dotted lines represent the results obtained by taking only the propagating
mode, whereas the solid lines are due to the inclusion of the first ten
modes which was observed to be sufficient to yield a convergent solution
for all examples presented in this work. These results suggest a similar
conclusion as for the case of two coupled radial waveguides, that is, forxr
most applications,the dominant mode representation adequately describes
the equivalent admittance of the slot. However, the accuracy of the re-
sults, particularly the susceptance part for this case, can be substan-
tially improved by including the higher order modes excited by the slot
discontinuities. The field distribution over the slot is also calcul-
ated for the geometry corresponding to the last plotted point in figqures
4.5. The results presented in figures 4.6aand 4.6b show that the dominant
mode approximation yields reasonable results for both amplitude and phase
of the electric field over the aperture. This is in contrast to the re-
sults obtained for two coupled waveguides, figures 3,4. However, it should
be pointed out that since the field representation of the external region
is in terms of infinite integrals over the entire range of the continuous
spectrum (o < g < «), they include both the visible and invisible ranges
of the spectral representation. Hence, omission of the beyond cut-off
modes of the feeding guide alone does not affect the accuracy of the
solution to the degree that was observed in the case of two coupled wave-
guides. It should be mentioned that due to large electrical width of

the slot, the aperture for the geometry of figures 4.6 is divided into

13 cells (annular rings) of equal widths. Then the tangential eiectric

field over each cell, which for TM excitation assumed is equal to Ep’

00

is computed by applying the continuity of H across the coupling aper-

¢

ture.
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4.8 Amplitude and Phase Variation of an Isolated Annular

Slot as a Function of its Average Radius

For a waveguide fed slot array, the field strength of individual
slots, and their relative phases are of prime importance in the antenna
design problems. Generally, the information available for an isclated
slot is not sufficient for representing the same slot when placed in an
array structure. The mutual coupling effects among the members may change
the characteristics of the slot appreciably. To study the amplitude and
phase variation of both single elements as well as the array groups, a
number of cases are considered. Electrically narrow slots are selected,
therefore, each slot is characterized by a single cell of the field
strength Ei. Figure 4.7 depicts the phase variation of the slot field
as a function of its average radius (TMOl excitation). The two sets of
curves are due to two different dielectric constants of the waveguide re-
gion. These results indicate that the nonlinear phase variation has a
periodicity of one A (the intrinsic wavelength of the guide). It is also
interesting to0 note that the phases of 0 and 180° correspond to radii,
which have electrical dimensions (k0) approximately equal to zeros of
Ji(z). In view of the assumed incident field, the incident magnetic field
is proportional to —H{Z)'(kp). Therefore, the slot phase lags the in-
cident magnetic field at the respective points by 90 degrees.

The amplitude variation of the slot field as a function of
its average radius is studied in figure 4.8. The total power delivered
by the source is kept constant for all the slot locations. This is
accomplished by introducing a constant factor for the incident field,
which is adjusted for each slot location to yield the same value for the

total power as the slot radius is increased. The results of figure 4.7
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are first normalized by the field strength EI of the slot at the first
. . . 1/2
computed location (p = pI) and then are weighted by the ratio S = (p/pI) .
The radii are measured from the center of the slot at the respective rad-
ius. These results show that the so normalized slot field has an asymp-
totic value of unity and the actual result oscillates about this level
with a maximum deviation of six per-cent. It is also found that the pow-
er radiated by the slot has a similar trend as this factor. Assuming
that the radiation conductance of the glot at each location is proportion-
al to its area, the similarity can be explained by noting that the fact-
or so defined is proportional to the sguare root of the power ratio. An
increase in the dielectric constant of the guide region yields similar re-
sults but has a more damped oscillatory behaviour.

The above observation suggests that knowing an initial value
for the field strength of a single slot located at p_, the respective

i

field amplitudes of siots of different radii can be anticipated, within

1l

few per-cent error, by using the factor S

B
I

4.8.1 Amplitude and Phase Variations of Two Coupled Slots

To study the effects of mutual coupling between two slots, the
phase and amplitude variation of two slots separated by:a fixed -distance
equal to XA= O.ZSAO (free spaée wavelength) are obtained as a function
of their radial locations, figures 4.9 and 4.10. It is interesting to note
that the phase variation for the leading slot is quite similar to the re-
sult obtained for the isolated case, figure 4.8 (solid line), and the
points corresponding to 0 and 180° occur at similar radii. However,
the results for the second slot are affected by a somewhat constant phase
lag. This may be attributed to a complex equivalent transmission coef-

ficient at the leading slot which changes the phase of the exciting field
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for the second slot. The phase variation still shows a periodicity of one
wavelength, however, the nonlinear phase variation is tapering to its as-
ymptote (linear phase variation for the propagating mode) as a result of
mutual coupling.

The weighted field variation S’éi[ for both slots are shown

I
in figure 4.10. The initial field strength and radius are taken to be
those of the leading slot at a radius pI = l.OSKO. The small oscillat-
ions still occur about two constant levels for fhe tﬁo slots., The result
for the second slot, however, is relatively lower than that of the lead-
ing slot and its level (67%) may be considered as an indication of the
magniﬁude of the total equivalent transmission coefficient at the location
of the leading slot. The maximum deviation of the normalized field is
again within six per-cent of the constant levels.

It is also found that the relative position of the constant lev-
els is more sensitive to the feeding waveguide thickness. That is, dep-
ending on the other parameters of the geometry under consideration, a crit~
ical depth may be found such that it will create a small transmission coef-
ficient after the first few members of an annular slot array. This results
in a sharp drop in the field strengths of the other slots relative to the
first few members. In other words, the system experiences a large input
impedance after the first few resonant slots which consequently radiate
most of the power into the external region. However, for slot arrays with
a large number of elements, it is often desired to distribute the power
among the elements of the array more evenly as to produce more directive
radiation patterns. For these cases, the dimensions which produce large
differences between the constant levels must be avoided when consideripg
arrays with a large number of elements. It is observed that a useful and

effective way of pre-selecting an initial value for the thickness is to
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analyze the radiation characteristics of a sub-array formed by the first
few members of the array under consideration, Even though the field dis-
tributions of these slots are not the same as those in a larger array,
nevertheless, the information obtained in this manner provides the design-
er with useful a priori knowledge as to the selection of the initial val-

ues for the parameters of the antenna problem,

4.9 Radiation Characteristics of Annular Slot Array Antennas

Based on the theory presented earlier, the radiation patterns
of radial waveguide fed annular slot array are studied and the results
are presented in figures 4.11-4.14. The radiation pattern depicted by
4.11 is due to an array of four elements excited by a TMOO radial mode.
For this particular mode of operation, the slot field is independent of
¢ and the pattern resembles that of a vertical dipole as far as the re-
gion =z > 0 is concerned. It is interesting to note that even with four
electrically narrow slots (slot width ~O.02AO) 99% of the total power
is coupled out and a small fraction is transmitted through the waveguide
region. Figu£e 4.12a illustrates the E and H plane radiation pat-

terns of an array of eight elements, excited by a TM mode over an angu-

0l
lar region equal to 20 degrees. AS a measure to reduce the first side
lope level, the spacing between the sixth and seventh elements is doubled
with respect to the other slots. The aperture efficiency compared to a
circular aperture of the same diameter as the last slot and having uni-
form phase and amplitude distribution is about 70%. The gain of the an-
tenna system with respect to an isotropic radiator is 29 dB. The half
power beam width is lower than seven degrees and the first side lobe lev-

el is seven dB down the maximum value. The overall aperture diameter

is about llko. Figure 4.12b is the cross-polarized component of the
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Figure 4.11: Radiation pattern of an annular slot array, TMOO
excitation.
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same antenna at ¢ = 45° cut-plane.

In order to have constant phase distribution over the entire ar-
ray, using the result obtained earlier, the slot spacing for figure 4,13a
is selected to be about 1A (intrinsié wavelength of the guide region).
To reduce the first side lobe level, the spacing between the slots was
selected to be slightly more than 1) (1.02)). The waveguide thickness
is about 0.16) and a TMOl excitation is assumed. <The side lobe level
is down to ~16 dB at the expense of wider H—planekxxﬂnwidth and lower
gain and efficiency values. The radiated power is 95% of the total in-
jected power by the source and the overall aperture diameter is about lOAO-
Figure 4.13b represents the cross-polarized field at ¢ = 45° cut-plane.

Figure 4.14 demonstrates the feasibility of designing annular
slot arrays producing narrow beams with a high gain and efficiency with a
total aperture size pot exceeding lOko. The efficiency figure is about
90 per-cent and the géin is 29 dB. The half power beamwidth is about
seven degrees and the first side lobe level is lower than 10 dB. For
this array the radiated power is observed to be about 80 per-cent of the
total power delivered by the source.

In conclusion, the theory presented in this chapter establishes
a method of solution for the electromagnetic field set up by an array of
conqentricvannular slots of finite width on a ground plane. The slots are
assﬁmed to be electricaily thin enough as to suppress the azimuthal dir-—
ected aperture electric field component. The field strength of the slots
can be a general function of the azimuthal variable ¢. One possible ap-
plication of the method is in the design of annular slot array antennas
capable of producing pencil beam radiaéion patterns of high efficiency and

gain factors, The feeding assembly for the radiating slot array can be

formed by either a radial waveguide or a cylindrical cavity which are also
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used as the supporting structure for the array system, The forcing function
generator is mounted in the central region of the radial waveguide or the
cylindrical cavity. The part of radial wavecguide annular slot arrays was
discussed in Chapter III and IV. The cavity backed slot antenna which is
closely related to the first case but is a more practical one is discussed
in Chapter V.

In the previous sections, even though the analysis was presented
for a general forcing function, the examples were all obtained by assuming
single mode operation (TMOO or TMOl). A part of the next chapter is dev-
oted to possible ways of generating these modes of radial waveguides.
Another practical aspect of the problem which is not yet discussed is the

effect of ‘finiteness of the conducting baffle and the radial waveguide on

the radiation field. This matter is also discussed in the next chapter.
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CROSS POLARIZATIONMN

Figure 4.12b: Cross-polarized pattern at ¢ = 45° cut-plane
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Figure 4.13b: Cross-polarized pattern at ¢ = 45° cut-plane,
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CROSS POLARIZATION

Figure 4.14b: Cross-polarized pattern at ¢ = 45° cut-plane,



CHAPTER V

FIELD SOLUTION FOR CAVITY BACKED ANNULAR SLOT ARRAYS

5.1 ° Introduction

For certain applications of waveguide fed slotted structures
it is of interest to terminate the waveguide by placing a short circuit
somewhere along the guiding region. Examples are airborne antennas where
in addition to the size and weight restrictions, it is often desired to
electrically isolate the antenna system from the electronic gear of the
aircraft or the spacecraft. This is simply achieved by replacing the
feeding waveguide by a cavity as the electromagnetic shielding device.
Another advantage is the added mechanical rigidity produced by the con-
ducting wall acting as the short circuit. The price to pay, however,
is generally a reduction-in bandwidth which in turn makes the antenna
system more susceptible to the changes of the environment.

In the next section, the field solution for a cavity backed
annular slotlarray antenna which is closely related to the waveguide fed
case is derived. The geometry of the problem is cbtained by introducing
a cylindrical conducting surface at a radius p = ¢ in figure 4.1. The
resulting structure is depicted in figure 5.1. Since the external re-
gion is not modified, the theory presented in Chapter IV related to the
external region still applies., However, the field solution for the inter-
ior region needs the appropriate modifications, Here, we must impose
fhe condition of vanishing tangential electric field on the conducting
cylindrical wall at p = c.

Similar to Chapter IV, the solution is obtained by first con-

structing the appropriate Green's functions describing the impulse
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’ array antenna.
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response to a current filament of a general nature and then the final
formulation is simply the integral of the impulse function over the ap-
erture source distribution. However, as it will be described later, the
impulse response exhibits a set of natural frequencies associated with
the back-up cavity. The field coefficients are obtained in a similaxr
mannexr as the two previous chapters by an application of the boundary
condition on the magnetic field across the aperture. As before, the
Green's functions due to an electric ring which is closely related to
the former case are also derived. This would enable one to formulate
the problems invol&ing annular or cylindrical shaped scattering bodies

in the cavity region in addition to the slots on the conducting walls.

5.2 Problem Formulation and Solution

5.2.1 Construction of the Appropfiate Green's Functions, Mag-

neti¢ Ring

Consider the geometry shown in figure 5.2, formed by a cylin-
drical cavity of thickness a and radius c. The constitutive paramet-
ers of the medium are ¢ and M- The source is a magnetic filament of
strength Im(¢') Characterized by equations (3.1,3.2). This problem is
similar to the case of a radial waveguide which was treated in Chapter
III, however, the existance of the conducting cylindrical wall at p = ¢
imposes the following conditions on the tangential electric field on the

surface of the cylinder,

p=c
EZ=E¢)=O 0<z<a (5.1)
0 <¢ <2m

Noting equations (3.3,3.4), the wave functions which satisfy the bound-

ary conditions on the conducting planes at z = -a, 0, can be
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Figure 5.2: Current ring in a cylindrical cavity (impulse
response) .
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expressed as

[e'e] [ee]
m
we = % Y (a cos n¢ + b sin nd) cos .
n a
n=0 m=0
wC I (k. 0) p<p
mn n Pm
e e -
[Umrl Jn(kpmp) + an Nn(kpmp)] p>p" (5.2a)
[es] (o]
wh = X ¥ n(M cos nd - a_ sin nd) sin %g' z
n=0 m=0
h
< ]
umn Jn(kme) o O
o) 7 ko) + VN (k0] > o (5.2a)
mn n  Em mn n pmp 0 ' '

where kpm is given by (3.5¢c). WNote that due to the finiteness of the
cavity, the most general form of the solution for the radial dependent
part in regiqn II has been selected. In order to determine the six un-
known coefficients, we utilize the boundary conditions across the source
surface as well as the cylindrical conducting wall, equation (5.1). The
continuity of the tangential magnetic field across the surface p = p°'

is ensured by satisfying the following relations

o (o]
I IT "
H - H = - L z L n(b_ cos np - a_ sin no) k2 sin =% g
z b4 Jwu n n pm a
o m=0 n=0
= p'
< < 2 h h
Sezem SLUD - W) 3 G ') + VRN (k001 = 0
a<z<0 mn n o) mn nopP

(5.3a)
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[ee] (o]
Hi - Hil = fzr£~jg~ ) z mnz(an cos n¢ + bn sin n¢) cos %} z
' J uop m=0 n=0
h h h
= 1 - 1 N 1
o [(Umn umn) Jn(kpmo ) + Vin Jn(kpmp )1
< ¢ < 2T
- - o oo T
-~a <z <0 + % X (a_ cos nd + b_ sin np)k__ cos LU
- - n n pm a
m=0 n=0
e _ e . N4 ye . . _
[(Umn umn) Jn(kpmp ) Von Nn(kpmp )] 0

(5.3b)
Which upon utilizing the orthogonality property of sinusoidal functions

over the range =-a <z <0 and 0 < ¢ < 2T are reduced to

h h , h
— ' = A
(Umn umn) Jn(kpmp ) + an Nn(kpmp ) 0 (5.4a)
e e . _, . e ‘
- + N' = L4
(Umn umn) Jn(kpmp ) Vo n(kpmp ) 0 (5.4b)
The continuity of E¢ can be stated as
I II 2
E¢ - E¢ = TEE?‘:; b) X mn(bn cos np - a sin n¢) sin %}—z
IWETE a0 n=0
=P [ ~w®) g (xk o) +VvS N (k_p"]
mn mn’ n pm mn n Em
< <2
-a <z <0 oo} [} —_—
- - - X L n(b_ cos np - a_ sin np)k sin — z
n n Pm a
m=0 n=0
[? - ) ar o)+ VD Nk o) = 0
mn mn’ n o pm m n  pm
(5.5a)

however, the axial component of the electric field is discontinuous ac-

ross S' by an amount equal to the magnetic current density, that is

EE - E = I (" S(z - z") (5.5b)
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. . . . I IT ,
Substituting the respective relations for EZ and EZ and using the

properties of delta functions, the equations (5.5) yield

jw € €
e e . e . m i)
- + = — — — z' .
(Umn umn) Jn(kpmp ) an Nn(kpmp ) k2 a cos 2 (5.6a)
pm
h h h
- k 'Yy + V N ! = .
(Umn umn) Jn( pmp ) mn n(kpmp ) 0 (5.60)
The presence of the conducting wall at p = ¢ reqguires,
gtk o) VR N'(k o) = 0 (5.7a)
mn n  pm mn n Pm
e (k_¢) +V. N (k_c) = 0 (5.7b)
mn no pm mn n pm

where a use has been made of the condition (5.1) and the resulting rel-
ations are reduced by applying the orthogonality of sinusoidal functions.
The set of equations (5.4), (5.6) and (5.7) can be solved for the coef-

ficients and the final results are

FTWED Nn (k)

e e pm m 1 ] ]
Umn 2k a Jd (k c) €m ces 3 z Jn(kpm 0
pm~ n pm
e _ _JTwep' LTI '
an 2kpma €m cos — Z Jn (kpm ")

m™m N' (k<)
n

hoo_ om nm \
Umn 2(k a)2z J'(k c) € ©O° a z Jn(kpm 0"
pm n o pm
(5.8)
h _ T’m mT .
Vo T Z2(k_a)? tm 9% g 7 Jn(kpm ")
pm
e ﬁmoep' mm Nn (kp <)
— I RAA A5 20 ] ' ' LI o S t 1
Yon 2k a m % T ® [Nn(kpm e~ 3 (k<) Jn(kpm 011
pm n Qom
2 N' (k c)
m T m mm n pm
u = ————— ¢ cos — z'[N_(k p'") - 4 J (k__p")]
mn 2(kpma) m a n pm Jn(kpm c) n Om
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Note that in (5.8), for kpm ¢ equal to zeras of Jn(Z) and Jé(z),
there is no steady-state solution to the problem. These values are as-
sociated with the TM and TE natural frequencies of the cavity, hence,
existence of a source of the same frequency as any of the resonant fre-
quencies of the cavity results in an unstable solution.

In view of equations (5.2) and (5.8), the Green's functions

of a magnetic current filament characterized by (3.1,3.2) are as follows

: , ®© €
we = - JTWEP o T =2 (a cos nd + b_ sin n¢) cos LN cos I,
2a k n n a a
m=0 n=0 pm
J (k_c¢) N'(k ! -~ N (k ¢y J'(k ")
n( om ) n( pmp ) n( om ) n pmp 5 G o o< o
J (k c) npm
R n' pnm
J (k _¢) N (k _p)-N((k_ c)J (k )
n( Oom ) n( Oom ) n( Oom n pmp J (k. o') 0> o
J (k¢ n  om
n  pm
(5.9a)
<o [ee] £ mn
h 2 mT mT
| - L - : 20 o sy il
U] 532 X X %2 (bn cos no a_ sin nd) cos 5 Z' sin — =z
m=0 n=0 om

J'(k _c) N (k ') - N'(k_c) T (k !
n Tpm n pmp ) n( pm ) n( pmp ) 3 (ko) 0 < o'
J'(k _¢) n  pm
n pm
J! - N'
n(kpmc) Nn(kpmp) Nn(kpmc) Jn(kpmp) 5k o) o
J'(k__¢) n  pm P e
n'pm
(5.9b)

5.2.2 Electric Ring

The derivation method for this case is similar to the previous
case and the main differences together with the final results are pre-

sented here, Aside from the subscript m, the defining equations for
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the current ring and its Fourier expansion are given by (3.1) and (3.2).
The azimuthal dependence of the e and h modes are expressed by (3.13)

which result in the following form for the required Green's functions

€ ]
© o umn Jn(kpmp) p<p
we = X L n(b cos nd - a_ sin n¢) cos LI,
n a
m=0 n=0 N
[U Jn(kpmp) + v Nn(kpmp)]
p>p'
h
< ]
o o Yhn n(kpmp) P 0
we = L L (a cosnd + b sin nd) sin %} z
m=0 n=0 n

h h o
[0 Tn (RogP) + Vo N ) 0)]

p>p!

(5.9b)
Now, in contrast to the previous case, the axial component of the elect-
ric field Ez is continuous across S' but the magnetic field is dis-

continuous by an amount equal to

H - H = I(d') (z - z")

p=p'
(5.10)

0 < ¢ 2m

IA

-a <z <0

A similar approach as that of the magnetic case yields

m2m N'(k <)
n pm

= oo T '
Umn 2k _a)2 J'(k_c) Ep S0 a ? Jn(kpmp )
pm n pm
v® = - ——lﬁii-— e sin T zr g (k ")
mn 2(kpma)2 m a n pmp
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3 1
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(5.11)
Note that as z' approaches =-a and zero (conducting boundaries) the
field vanishes. This is similar to the result obtained in Section (3.2)
and the same argument applies here.
In view of the above set of equations and (5.9), the Green's

functions of an .electric current filament are as follows
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5.3 Formulation of the Problem of a Cavity-Backed Annular

Slot Array Antenna

Employing a similar approach as for the case of a radial wave-
guide.fed annular slot antenna (Chapter IV), it is an easy matter to form-
ulate the present problem, that is, the aperture field is expressed in
terms of a finite sum of pulse functions with unknown coefficients. Then
an application of the continuity condition of the azimuthal component of
the total magnetic field across the coupling aperture determines the slots
field coefficients Ei' Therefore, recalling equations (3.30), (3.31)
and (3.2a,b) and the corresponding relations for the external reéion cov-
ered in Chapter IV, one obtains
+ do

R +
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2
9

Y
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J,N

+ -
where, C (P) 1is given by (3.32e) and (+,~) corresponds to (P, P),

respectively, The incident field is assumed to be a TMpq mode and its

particulars are discussed later. For i = j case, we have
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MNote that the case of g = 0 (¢ symmetry) gives rise to a TM field and
the field components are solely determined from we,

The incident field due to the feeding assembly placed in the
central region of the cavity must also have E;nc = Elnc = 0 on the cyl-

¢

indrical conducting wall., Therefore, a suitable repreéentation for the
_ incident mode of a TMpq type which satisfies the boundary conditions as
well as the singularity of the source in the cavity region is as follows

. Jd (k N (k - N (k J (k
e1nc P _g‘ ppc) q( Dpp) 0( Qpé) q( Opp)

2 T (k<o)
Pd a4 op

(5,14)

Hence, recalling (3.32a), we have
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(5.15)

Once the aperture field coefficients are determined from the
matrix equation (3.32a) with elements given by (5.13) and (5.15), the

other parameters of interest can easily be computed.

5.3.1 Expression for the Total Power

An examination of the physical nature of the problem reveals
that there is no power transfer through the cavity region after the
last slot. Therefore, the total power injected by the source system is
coupled into the free space by means of the slot array. An application

of equation (3.34) to an arbitrary cylindrical surface with a radius
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smaller than the first slot results in an expression for the total pow-
er delivered by the source, As before, we assume the thickness of the

cavity is smaller than MA/2, hence, only the TMOl modes contribute

to the power transfer. The wave functions are expressed by
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As before, the coefficients a and bn entirely depend on the incid-
ent field. It can be shown that (Appendix G) the total power due to a

general source of'TMpq type (combination of TMpq modes) is given by
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where. aq and bq are the respective Fourier coefficients for the source

function,

5.4 Radiation Characteristics of Cavity-Backed Annular

Slot Arrays

Based on the theory presented in the earlier sections, the
aperture field distribution and the radiation patterns of the cavity-
backed annular slot arrays are studied for a number of cases. Figures
5.3 and 5.4 illustrate the amplitude and phase distributions among the
elements of four arrays, Aside from the total number of elements form-
ing the arrays (N), the antenna systems are identical. The slot spac-
ing is selected about one ) to have constant phase distribution among
the elements. It is interesting to note that as new slots are introduced
to the initial array of four elements the amplitudes and phases of the
previous slots are not affected appreciably, excluding the case of
N = 10. The slot phases are almost constant and the amplitude distrib-
utions are similar to cosp(p) distribution. The above results indicate
that the mutual coupling between the slots is not strong for these cases.
However, for N = 10, the system exhibits a resonant effect and the ap-
erture fields of the first few slots are changed drastically. A higher
order lobe is created at the center and the excitation levels of the
slots with larger diameters are raised and the effective aperture dia-
meter seems to be larger than that of the last slot. However, the decay-

ing factor associated with the amplitude variation, with the exception
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of the first three slots, is similar to the previous cases,
Tt is generally desired to relate the antenna gain to its beam
width by an approximate relation [52],[68]1,[69]. A formula based on ex-

perimental results is [527.

G = AJ/(SE ° GH) AJ = 27,000 (5.18)

where OE and 6§ are the half-power beam widths corresponding to the
two principal planes. The above formula is obtained for antennas with
65% aperture efficiency. In Table 5.1, the half-power beam width, gain
and efficiency values for the cavity-backed annular slot arrays discus-
sed earlier are tabulated. For these antenna systems AJ factor is
calculated and the results are included in Table 5.1. The average value
of the factor for cavity-backed antennas is observed to be Aaverage =
39,536. It is interesting to note that the ratio of the half-power beam
widths remains fairly constant as the number of slots increases. Note
that the efficiency values obtained are with respect to a circular aper-
ture of constant phase and amplitude distribution and having a diameter
equal to the iargest slot. However, as it is clear from figure 5.3,
the effective aperture of the cavity-backed annular slot array is lar-
ger than the radius of the last slot. This is due to the fact that the
amplitude of the last slot has a non-zero value. Therefore, an efficiency
value larger than 100 per-cent for the case which has a fairly constant
phase distribution (N = 4) may be attributed to the respective ampli-
tude distribution.

Table{5.2 compares the approximate formulas suggested by the
references cited earlier. The predicted gain values by the first and
the third approximate formulas, which are basically the same, ‘agree well

with the computed gain figures. However, the second formula [69] fails
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Gain Efficiency
] o = o o © e

N 6 6H GH/GE aB . A= 0 6 G
a | 8.0 14.0 | 1.75 | 25,33 103 37,321
6 5.8 10.4 1.79 28.27 96 40,567
8 4.6 8.3 1.80 30.33 89 40,794
10 3.5 6.2 1.77 32.59 98 39,463

A = 39,536

average

(eH/eE)average =1.78

Table 5.1: Beam width, gain and efficiency variation of cavity-backed
annular slot arrays.



N GdB = 104 g(é%gﬁé%fg) GdB ~ lOQog[322n(§;gigég;§7] GdB o lOQog(é%Lﬁ%%g;) GdB (computed)
E H H H E H

4 25,48 20,14 25,66 ' 25.33

6 28.16 20.89 28.35 28.27

8 30.15 21,37 30.34 30.33

10 32.60 21.92 32.79 32.59

Table 5.2: Approximate formulas for the gain of the antenna in terms of the half-power beam widths
in the two principal planes.
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to yield results with reasonable accuraclies for the present antenna model.
Figure 5.5 depicts the E and H plane patterns of a cavity-
‘backed annular slot array with eight elements (N = 8). The thick line
represents the cross-polarized component at ¢ = 45° cut plane. The
first side lobe level is lower than 10 dB from the maximum value. The
patterns are similar to those of radial waveguide fed annﬁlar slot arrays.
However, for the present case,all the power injected by the source is

coupled out due to the cavity wall.

5.5 Excitation of Radial Waveguides

5.5.1 Introduction

In any electromagnetic wave guiding system, the field must be
generated by a suitable source. Throughout the analyses presented so far,
a particular waveguide mode has always been assumed as the forcing func-
tion without mentioning the physical means of exciting such a mode. 1In
this section atténtion is paid to a method for generating TMOO and TMOl
which have been used throughout this work. These two modes are capable
of producing radiation patterns with the main lobe in the direction of
the =z axis (TMOl) or a null in that direction (TMOO). Multi-mode op-
eration which is generally aimed at reducing the cross-polarized compon-
ent [61] for applications in Frequency-Reuse antenna systems [62]-[64]
is presently under investigation by the author.

The polarization state of the antenna is determined basically
by the feed assempbly. For a small angular region about the antenna axis,
linear, orthogonal and circular polarized radiation fields can be obtain-
ed. As it will be discussed later, a single feed located in the central

region of the radial waveguide or cavity, gives rise to a linearly polar-

ized field. However, a feed assembly formed by two orthogonally located
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feeds with respect to the azimuthal angle ¢ and operated with the same
carrier frequency would produce orthogonal polarization. This mode of
operation is particularly suited for frequency-reause satellite communi-
cation systems. Such a system uses a given up-link and down-link freg-
uency band twice, hence increasing the communication capacity of a sin-
gle beam by a factor of two. However, single mode operation generates
cross-polarization levels which for the off-axis region may create inter-
ference problems. For applications when a circularly polarized field is
of interest, the annular slot array provides such polarization by oper-

ating the feeds in equal amplitude but in phase quadrature.

5.5.2 Method of Excitation of a TMOO Radial Mode

Among the simplest methods of excitation for waveguide struct-
ures, are the feed systems which employ posts, loops or small apertures
[48]. However, for our purposes, a simple basic feeding element is con-
sidered, figure 5.6. It consists of a small coaxial line terminated at the
center of the radial waveguide or a cavity with its center conductor ex-
tending a distance d in the guide region and its outer conductor con-
nected to the lower plate of the waveguide. The height of the probe can
be used as a matching parameter between the two waveguides for maximum
power transfer. Note that in the analysis which follows we assume the
radial structure is uninterrputed. Therefore, for an electrically thin
coaxial line the problem is essentially that of a thin vertical current
element in a radial waveguide or a cavity. However, the higher order
modes created at the slot discontinuities are automatically taken care
of in view of the solution developed earlier.

The method for finding the field inside a radial structure is

generally based on integration of the appropriate dyadic Green's function
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VAW

Figure 5.6: Coaxial line probe at the center
of a radial waveguide.
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corresponding to the electric field radiated by a unit dyadic source over
the true source distribution [48], This is the combination of the equi-
valent electric and magnetic currents associated with the probe and the
small coaxial aperture. An exact solution is guite difficult, however;
it has been shown that for a thin coaxial waveguide the effect of the
aperture field on the input impedance of the probe is negligible [70].
Therefore, the current is mainly z-directed and its field can be obtain-
ed by using the Green's function of a vertically directed current source.
The basic principle and the approximate methods for obtaining the input
impedance is covered in the literature [48],[70]. However, for our pur-
poses it suffices to say that the field generated by a z-directed elect-
rically thin probe placed at the center of the radial waveguide, due to
the ¢ symmetry of the structure,is T™M to z and can be expressed as
[49]

e o

Sy A cos M, 5@ g (5.18)
m a o pom

m=0
where, kpm is given by (3.5c) and Am can be obtained from a knowledge
of the strength of the socurce. As was stated before, a practical value
for a is generally less than A/2, therefore, if the slots are suffic-
iently far from the probe, all the modes with m > O are evanesceﬁt and
do not contribute to the travelling wave. However, these modes may have
appreciable effects on the input impedance of the probe, Away from the

source region, (5.18) can be approximated by -

inc (2)
Yoy = AL HT (kp) (5.19)
00
which is the required TMOO mode of the radial waveguide. For a cavity-

backed annular slot antenna,using a similar approach and noting the fact




that EZ must vanish at the cylindrical conducting wall placed at

P = c, leads to
e, J (k)N (kp) - N_(kc)JT (kp)
inc 0 ) @] o)
1] ~ A (5.20)
™ o J (kc)
00 o

The radiation field of a TMOU excited annular slot array is 0O directed,

equation (4.55).

5.5.,3 Method of Excitation of a TMOl Radial Mode

For this mode of operation, the symmetry of the system with
respect to the azimuth coordinate must be perturbed. To this end we
consider the geometry shown in figure 5.7. Two identical probes are loc-
ated symmetrically at a radius 0 = ps. The probe currents are in op-
posite directions arranged by feeding the second probe through a 180° phase
shifter. The groundplane is common with the outer conductors of the
coaxial lines. The field inside the radial waveguide can be obtained

from the following relation

=) oo - o
inc Tt (2) > > il
= A —_ - - A —
wTM % . COs 2 Hy [kpm1p psl]] b L Cos -z
=0 =0
(2) >
H_ ,[kpm] o, . (5.21)
= -
where 551 and Pgy are radial positional vectors of the sources and

(5.21) merely represents the superposition of the fields contributed by
the two sources. The minus sign is due to 180° phase shift and the
coefficients are taken to be equal since identical sources are assumed.
Note that any mutual interaction between the probes is assumed to be ac-
counted for in Am' Utilizing the addition theorem for Hankel functions,

[49]1, we have




131

—
£

180

Figure 5.7: Two symmetrically oriented identical
probes with a 180° phase difference.
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o in - ¢
(2) s <
mi‘o Hn (kpmps) Jn(kpmp) e P <oy
(2) > > _
Hy (kpmlp - psi) B .
Y J (k_0 ) H (k_P) e p>p
=00 n Ppm s n Om s
(5.22a)
(5.22b)
substituting (5.22a) in (5.21) and noting ¢s2 =T + ¢sl' one obtains
e, © @ n(d-¢ )
P s T D oA cos™a ik 0) Bk _0) e st
™ n a n Pm s n Om
m=0 n=-»
jn(¢-¢ _-m)
- e sty (5.23)
For even values of n, the term in the bracket vanishes, therefore,
ing¢ m
Yo = 21z Y A cos o % Cos n(¢—¢sl) Jn(kpmps) H (kpmp)
m=0 n odd
>
p ps
(5.24a)
where a use has been made of [58]
n
B (z) = (-1)7 B (=) (5,24b)
-n n

and Bn(z) is any cylindrical function. Note that if the probes‘are
orthogonally located (¢S2 = T/2 + ¢Sl), odd modes will be eliminated.
A consideration of the behaviour of the Bessel functions reveals that
for arguments smaller than n, the wave impedances associated with the
radial modes become predominantly reactive [49]. Therefore, if Py is
selected in such a way that 1 < kps < 3, the modes with n > 1 are
attenuated and the main propagating mode is due to n = 1. Furthermore,

if the guide thickness is smaller than A/2, the propagating mode
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is given by

e. .
inc (2)
~ - H .25
U 2 Jl(kps) cos (¢ ¢sl) 1 (kp) (5.25)
01 .
Taking $sl = 0 the above relation is, within a multiplicative constant,

the desired T™M mode.

The radiation pattern for such a feed configuration, depending
on the aperture phase distribution, may have a main lobe in the z-direc-
tion. As it is evident from equation (4.56), the electric field is x-
directed for 6 = 0. Therefore, as far as the receiving antenna is con-
cefned and for a small angular region about the 2z axis, the field may
be assumed to be linearly polarized. Note that a 90 degrees rotation
of the feed system in either direction about the 2z axis results in a
y-polarized field in the front direction.

For communicatiqn links where circular polarized field is of
interest, the above configuration does generate such a field by merely
bperating the two sets of orthogohally located probes in time-phase quad-
rature. Departure from ideél circuiaf polarization is controlled by
the differential phase and the relative magnitude of the excitation cur-
rents in the two sets of probes. It should be noted that the polariza-

tion is only pure for 6 = 0 direction.

5.6 Effects of a Finite Ground Plane on the Radiation Field

In problems associated with radiation from finite slotted struc-—
tures, the configuration of slot antenna is such that an exact theorct-
ical treatment, if not impossible, is quite complicated. A useful simp=-
lifying method is generally based on assuming the slotted front of the

radiating antenna to be of infinite extend. ‘“his approach, for most
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cases, provides results which closely match the measured values in the
front direction provided that the edges of the finite ground plane are
far from the slot array. However, for the back scattered field, the cur-
rent induced on the rim of the baffle has the most contribution to the
field in this region. Therefore, for geometries having substantial rad-
iation in the plane of the conducting baffle, the excitation of the rim
might be strong and the radiation pattern obtained for the infinite ground
plane should be modified accordingly. A method for treating these cases
is to superpose the infinite ground plane solution, the first order dif-
fracted field and the axial caustic solution in their respective regions
of validity by employing the gecmetrical theory of diffraction, [41].
Excellent results have been obtained and are compared against the measur-
ed radiation patterns, The differencesbetween the computed and the
measured values are attributed to the fact that aperture field distrib-
ution used for pattern computation is assumed to be the unperturbed field
of the coaxial feeding guide.

Another method of treatment, which is closely related to the
first approach and is presently under investigation by the author, is
to replace the finite baffle by an equivalent current sheet. This cur-
rent which is distributed over the finite plane is assumed to be given
by the tangential magnetic field obtained for the infinite case. To
take care of the geometrical discontinuity at the edge of the ground
plane, a current filament of strength Ie is placed at this location
which accounts for the difference between the assumed and the true cur-
rents of the rim [65]1~[671. The aperture fields are alsoc affected by
truncating the ground plane., The total effect on the radiation pattern

can be lumped into a multiplicative complex constant associated with the
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electric current distribution over the plane and the aperture. Now, if
the aperture were in an infinite ground plane, the equivalent magnetic
current associated with the aperture would produce the same radiation
fieldAas the equivalent electric current on the aperture and the induced
current on the infinite ground plane, This results from the fact that
the far field can be obtained from the tangential components of the fields
over the plane =z = 0. However, according to the equivalence principle
and image theory, the radiated field is also equivalent to the one pro-
duced by an equivalent magnetic current Jm = 2 Ea x g over the aperture.
Therefore, it would appear to be a good approximation to assume that the
two sets of sources, for the case of finite ground plane, produce the same
field (at least in the direction of the maximum field). This results in
an equation in terms of the two newly introduced complex coefficients,

We need one more equality to determine the radiation field. This is done
by utilizing the principle of the conservation of power. Note that for

a finite baffle, the total radiated power is obtained by integrating the
poynting vector over a spherical surface enclosing the antenna system.

In the above analysis, it is assumed that, for the case of radial wave-
guide fed antenna, the guide is terminated by a matched load (absorber)
and the effects of the current induced on the back side of the antenné
assembly on the radiation pattern are considered to be negligible. A

quantitative study of the above theory is presently under investigation.

5.7 Experimental Results

In order to verify the validity of the theory- presented earlier
and investigate the effects of a finite ground plane on the radiation pat-

terns, a small model of a cavity-backed annular slot array with four



136

elements is fabricatéd, figures 5.8-5,11., The designed pattern of slots

is cut on one side of a two-sided copper-clad dielectric sheet (POLYGUIDE).
The short circuit termination is achieved by using silver conducting

paint on the rim of the structure. The feed system is designed to sup-

port T™ of the cylindrical cavity region. The center conductors of two

0l
SMA connectors are used as the thin vertical probes by drilling two holes
symmetrically about the center of the structure and separated by a dis-
tance equal to 13 mm. The tips of the probes are soldered to the copper-
clad of the opposite face forming the annular slot array. To achieve 180°
phase shift between the probes, a rectangular waveguide section is used.
Two SMA terminals are mounted Ag/2 apart on the broad wall of the wave-
guide section. The guide is match terminated on one}side and the crystal
detector is placed at the other end for pattern measurements in the receiving
mode, figure 5.9. Two identical high frequency coaxial lines are used
for connecting the antenna terminals and the phase shifting device. A
separate annular flange having an inner diameter equal to the aperture
diameter of the annular slot array is also fabricated from aluminum. ‘he
ratio of the outer and inner diameters is selected to be equal to 2. The
thickness of the aluminum sheet is equal to that of the two-sided copper-
clad sheet to produce a smooth aperture surface. The latter conducting
annular sheet is used to investigate the effects of the finite ground plane
on the radiation pattern. The antenna assembly with the conducting flange
is shown in figure 5.11.

The experimental investigation on both unflanged and flanged
cavity backed annular slot array antenna is performed in the anechoic
chamber of the Antenna Laboratory of the University of Manitoba, figure

5.12. Due to the interference levels of the antenna mount assembly and
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the chamber itself, the receiving pattern measurements are carried out
over an angular region =100° < 6 < 100°. Patterns are measured at
f = 10.11 GHz, and the incident wave was launched by a horn antenna.

Figure 5.13 illustrates the E and H plane radiation pat-
terns of the unflanged antenna. The computed patterns for the infinite
ground plane are also included. As it is evident, the E-plane patterns
have the same number of lobes and the main lobes have the same beam width.
The first side lobe levels,which in addition to the main lobe,carry the
major part of the radiated power are close to each other, However, the
off-axis lobes of the finite antenna have larger values compared to the
infinite case. This is expected, since,due to a sudden geometrical inter-
ruption at the rim location edge diffraction, which increases the off-
axis side lobe levels, occurs, The H-plane patterns also have the same
general trend. ©Note that at 6 = 27° the computed pattern shows the
generation of a new side lobe which corresponds to the first side lobe
level of the measured pattern. For 0 greater than 32 degrees, the side
lobe levels of the computed patterns are smaller than -40 dB and are
not shown.

In order to investigate the effects of a finite ground plane
on the radiation patterns, the aluminum annular flange was added to the
aperture surface of the antenna assembly. Hence, the aperture diameter
for this case is increased by a factor of two compared to the previous
case and the aperture current distribution is expected to have a more
tapered behaviour. The measured E and H plane receiving patferns for
this case are depicted in figure 5,14. The beam width of the patterns
are not altered. However, the off-axis side lobe levels are slightly

decreased, due to a smoother edge transition, at the expense of a lower
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efficiency factor.

The gain of the finite cavity-backed antenna was also measur—
ed. As a measure to broaden the operating frequency band of the feed
system, the feed assembly shown in figure 5.15 was used. The 180 deg-
rees phase shifting device for this case was formed by a Magic-T, havi-
ng its symmetry arm match terminated ( port 3 ). A standard pyramidal
horn was used as a reference aperture antenna for gain measurements. The
loss components associated with the‘feed assembly are tabulated in Table
5.3. The gain of the standard horn, the measured relative gain and the
computed gain ( infinite ground plane ) are also included. The differe-
nce value of 0.6 dB between the theoretical and measured gains accounts
for the effects of a finite ground plane, mismatch loss and the measur-
ement errors.

The reflection coefficient at the feeding arm of the magic-T
was also measured byAa Network Analyzer. ‘The result over the X-Band is
presented in figure 5.16. The oberating point for gain and radiation
pattern measurements is also shown ( f = 10.11 GHZ ). Figure 5.17 shows
the effects of a slide-screw tuner on the reflection cofficient of the
feed and antenﬂa systems. The results obtained for a short as well as
a matched termination are also included.

It is,therefore concluded that the infinite ground plane solu-
tion yields reasonably accurate results for the radiation field of a
finite aperture antenna. The edge scattered field which raises the
off-axis side lobe levels can be reduced by introduction of an annular

conducting rim.



Fig. 5.8: Cavity-backed annular slot array antenna and the feed sys-

’ temn, TMOl excitation.
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5.11: Assembled annular slot array antenna with the conducting
flange.
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Table 5.3: petails of Gain Measurements
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Loss Components

dB

Gain of Standard
Horn at £ = 10.11

GHZ dB

Measured rela-
tive Gain dB

( w.r.t. Horn )

Annular
Slot Aper-

ture Gain dB

Coaxial Cable
2 x 2.7

Waveguide—-  SMA
Transition

2 x 0.2

Male-Type EMA
Connector

2 x 0.1

Magic T
0.9

Total = 6.9

22.3

24.7

Computed Aperture Gain ( infinite case ) =

Measured Aperture Gain ( finite case ) =

Difference = 25 »

- 24.7 = 0.6

25.2 dB

22.3

dB

- 4.5 + 6.9 =

24.7

dB
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CHAPTER VI

DISCUSSION AND CONCLUSION

The problem of electromagnetic scattering by concentric arrays of
annular type geometrical discontinuities inside or on the common boundaries
of radial waveguides was studied throughout this thesis, The cases of
electromagnetic penetration into half-space as well as cylindrical cavity
regions are also treated. The method employed for obtaining field solut-
ions in the respective regions utilized a boundary value treatment. The
appropriate Green's functions of e and h types represenﬁing the res-
ponse of the system to a ¢ directed current ring of arbitrary excitation
were obtained. Both electric and magnetic current distributions were as-
sumed in order to extend the range of applicability of the analyses to ap-
eérture coupling problems. The final formulation was carried out by an in-
tegration of the impulse response over the induced current distribution on
the surface of the geometrical discontinuities. The induced source function
was then expanded into a finite series of basis functions with complex
coefficients (for the examples provided in this thesis, pulse functions
were assumed). These constants were later obtained by an application of
the boundary conditions over the discontinuity surfaces. The analysis was
mainly oriented toward investigating the scattering characteristics of
arrays of electrically thin elements. Therefore, the contribution from
the second component of the induced surface current with respect to the
azimuthal directed one was assumed to be negligible. However, for prob-
lems where this contribution is expected to be appreciable, a similar method
can be utilized to find another set of equations describing the contribu-

tion of the second component to the total field. The electromagnetic

146



coupling between these two sets of fields is then ensured by a simultaneous

evaluation of the constant coefficients of the two sets, using the approp-

riate boundary conditions on the surfaces of the scattering bodies.

The method was then applied to three different geometries, namely,
a) Two radial waveguides coupled by an array of concentric annular slots

of finite width on the common boundaries for applications as band-pass,
band-stop filtering devices.

b) Radial waveguide fed annular slot array antenna for applications as
highly directive antenna systems of low profile and low cost for use
in high frequenqy communication links.

c) Cylindrical cavity-backed annular slot array antenna for applications
as flush-mounted antenna systems of high gain, for use in communication
satellites and aircrafts.

For a source placed at the central region of the feeding wave-
guide, expressions for the total power, power coupled out through the slot
array and the transmitted part through the waveguide region were obtained
for each case, As a check on the accuracy of the numerical results the
balance of power between the supplied, coupled and transmitted powers was
examined for all cases and excellent results were obtained. The radiation
field of an annular slot array was also obtained for a generai excitation
by an application of equivalence theorem and the image theory. The special
case of TMOO as well as TMOl exciting mode were chosen for numerical
examples. The thickness of the guides were selected smaller than half a
wavelength to suppress the propagation of modes other than the dominant
mode.

As an equivalent principal mode circuit representation, an ad-

mittance expression associated with each slot was defined. For the case
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of two coupled radial waveguides it was Qbserved that for most applications
the dominant mode representation, such as that in the transmission 1ine
theory for waveguide applications, adequately describes the slot admittance.
However, the accuracy of the results, especially for slots where kp 1is
swmall, is not satisfactory. Asva further check on the dominant mode ap-
proximation, the field distribution over the slot was also calculated.

The result indicated that the higher order modes excited by the slot dis-
continuities have significant ¢Ontribution to the slot field amplitude only
in the vicinity of the slot edges. Their.coﬁtribution to the slot field
decreases as the distance from the edges increases.. On the other hand, the
dominant mode theory failed to describe the phase of the aperture field.
The actual phase of the slot field which was calculated by including high-
er order modes was observed to be virtually constant over the slot. Where-
as, the result due to the dominant mode showed an oscillatory behaviour.

For the case of a radial waveguide fed annular slot antenna, a sim-
ilar trend was generally observed. However, the phase distribution over
the slot obtained by dominant mode approximation closely resembled that
of the actual field. The dominant mode result, however, was obtained by
only suppressing the higher order modes of the wéveguide region. Whereas,
the continuous spectrum of the modes associated with the semi-infinite re-
gion was included in the numerical results computed for the admittance and
aperture field.

The admittance variation of the annular slot antenna as a function
of its radius was compared against the available theoretical as well as ex-—
perimental data for a coaxial radiator of the same aperture size. It was
observed that for electrically thin slots, the admittance of the slot ap-

proaches that of an infinitely thin annular slot driven by a delta-function
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generator. This indicates that the admittance for this case is mainly de-
termined by the external region. However, for wider slots, the admittance
values of a radial waveguide fed annular slot antenna are generally smal-

ler than those of the coaxial fed slot.

In order to study the degree of coupling between two radial
waveguides, the coupled power contributed by each slot was computed for an
array of annular slots on the common boundary of the two regions. It was
observed that depending on the arrangement of the slots and the other para-
meters involved, fhe coupling could be so strong as to redirect back part
of the power coupled by a number of slots; to the region including the ex-
citing source system. An equivalent transmission line representation for
this case would then be a negative slot conductance (a source) associated
with the respective slots.

In application of the previous geometry for the design of micro-
wave filtering devices with band—paés characteristics suitable for printed
éircuit strip-line fabrication techniques, a number of cases were consid-
ered. It was observed that by a proper arrangement of the array structure,
wide band was well as highly selective filtering responses with sharp cut-
off characteristics are realizable. That is, over the frequency band, the
array of slots effectively coupled a major part of the total power to the.
external region.

The phase and amplitude variation of slots (isolated as well as
coupled case) were studied for the purpose of array antenna designs. The
results obtained for the case of annular slot antenna indicated that, for
thin slots, the determining factor for the phase of the aperture field is
normally the waveguide region. The nonlinear phase variation as a function

of slot radius, showed a periodicity of one A (intrinsic wavelength
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of the guide region). The field magnitude was observed to decay as the
radius increased, however, the decaying factor (asymptotic value) obtained
for several cases seemed to be proportional to the square root of the slot
radius. These results suggested that, knowing an initial value for the
slot field at a certain radius, the field magnitude for the slot of dif-
ferent radii can be predicted, within a few percent error, by noting that
]E] ° /5. oscillates about a constant level. For two coupled slots, the
same conclusion holds and the relative position of the two constant levels
associated with each slot is an indication of the magnitude of the trans-
mission coefficient at the first slot location. For the case of coupled
slots, the phase variation had a similar behaviour as the isolated case,
however, the second slot was observed to experience a phase shift related
to the slot spacing. The array field distribution for a cavity backed
slot antenna alsoc exhibited a periodicity of one A. However, for a part-
icular arrangement of the slots, the system showed a resonant effect, fig-
ures 5.3 and 5.4. So far, a satisfactory explanation of the result has
not been found.

In application of the theory in design of directive beam anten-
nas as well as uniform radiation fields, several cases were presented, Ef-
ficiencies of the order of 100 per-cent and gains of about 32 dB was
shown to be easily obtainable with aperture diameters not exceeding lZXO.
Since the directivity of an antenna is proportional to the electrical
area of the radiating aperture, it seems quite possible to a&hieve pencil
beam radiation patterns by fabricating a fine pattern of slots over a mod-
erately sized aperture. Thus, operating the antenna system at high freqg-
uencies, results in an electrically large aperture capable of launching

beams of very narrow beam widths.
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A method was proposed to realize simple feed systems capable of
producing the desired mode or modes of the feeding waveguide. The feed as-
sembly esseﬂtially consisted of isolated single or double vertical probes
in a particular configuration. In order to verify the validity of the
theory presented and also to investigate the effects of the finite ground
plane on the radiation patterns, an experiment was performed. it was ob-
served that the effects of a finite aperture on the radiation field of the
infihite ground plane case is small and mainly of the edge diffraction form.
Introduction of a conducting flange reduced the edge diffracted lobes at
the expense of a lower efficiency value.

We, therefore, conclude that due to the inherent high frequency
capability of the waveguide structures and the simplicity and ease of fab-
rication of the suggested radiating models, such structures can be utilized
for applications as filtering devices, as well as efficient and highly dir-
ective low profile array antennas for operation in communication links at

high frequency bands.

6.1 Suggestions for Future Research

During the course of the present work) several topics have stemmed
from the practical point of view of the subject matter which requires more
detailed attention. The first and most related problem is to investigate
the possibility of circuit modeling of the slotted structure for synthesis
purposes, The deels must account for the higher order modes excited by
.. the discontinuities. Closed form approximate expressions for the circuit
elements, which closely follow the actual results, should be obtained to
facilitate the design and synthesis process. This requires a thorough
study of the slot's hybrid admittances and their relation to the character—

istic dimensions of the structure. The result would be a simpler routine for
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optimizing the desired electrical characteristic as the needs arise. A
study of ohmic loss of the structure is required to substanciate the pract-
icality of the design as an efficient filtering device or antenna system.

The applicability of annular slot antennas for use as a pen-
cil beam launcher reguires detailed analysis of aperture efficiéncy in con-
junction with‘the beam width and side lobe characteristics. The fact that
side lobe levels and the beamwidth are intimately related to the dependence
of gain on the electrical size of the aperture and its field distribution
makes it necessary to seek for a systeﬁatic way for compromising between
these factors in order to fulfill the design objectives.

A study of the effects of a finite ground plane on the solution
of an infinite one is in order. Even though the finiteness of the conduct-
ing baffle is observed to have a negligible effect in the front direction,
as long as the radiating slots concentrate the energy in that direction, never~
theless,'thekxun&scattered:field<xnloﬁly be accounted for by utilizing the
existing techniqueé such as geometrical theory of diffraction. A method
of solution for this case was qualitatively presented in the last chapter

and a quantitative study is underway.



APPENDIX A

DERIVATION OF EQUATIONS (3.8) USING LORENTZ RECIPROCITY

Noting that the auxiliary wave functions defined by (3.7) are
source free in the volume V, by setting J = 0 in (3.6a), the recip-

rocity relation reduces to

-—>i - - +i ~ - -
(E_LXH=-EXH ) ° nds = - H «J dv (A.1)
a a a m ,
S Y%
where (+) and (-) signs represent (3.7a) and (3,7b), respectively.

>+ > >
Since the tangential components of Ea , Ea and E vanish on the con-

ducting walls, equation (A.l) can be transformed to

T H +E +H -E «H_ -E_ «H)dod
1 (bza 0 ¢ za zZ da da z) 904z
(@] O
T e H * * E H_)doad
P, A (Bza P + E¢ Ho o~ E, H¢a 5 L) dodz

2m QZ a -
= - J j J H = I (¢) S(p-p') S(z-z")pddpdzdp (A.2)
O

The second surface integral in (A.2) vanishes for (+) fields and the
first surface integral vanishes for (-) fields. Using the Wronskian

relation for Bessel functions [50] in the form of

2), (2)

(z) - H (z) Jy(z) = - == (A.3)

(
JR(Z) H s 2 Tz

2
and employing the orthogonality property of the sinusoidal functions,

one obtains the following result for (+) fields

h Tweue J—

o " W = - —— P s %§~z'[kppp' T 0t = 2% B g (k0]

,Q,2€U
030 2k2 a jwpa - £ pp
» Op Jwl

(A.4)
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where a use has been made of the property of the delta function. A

similar mathematical routine for the case of (=) fields leads to
TWELE
h e P pT (2)
/Q’Z - = [ &0 ' ' ' '
eupSZ, pupg %2 a COS [z [kppp HSL (kppp)
op
- ,le pT H(z)

: k ! A.5
Som By kP )] (3.5)




APPENDIX B

DERIVATION OF EQUATIONS (3,35) FOR THE TOTAL, COUPLED AND

TRANSMITTED POWERS

A practical thickness for a radial waveguide is generally
smaller than one-half of the intrinsic wavelength. Therefore, expres-
silons derived here are for cases in which the propagating mode (or modes)
are of woq type. That is, higher order modes for m > 0 have a comp—
lex propagation constant kpm and are attenuated rapidly, hence, these
modes do not contribute to power transfer. Therefore, power expressions
can be obtained only by retaining the propagating mode and an application
of equation (3.34) to respective surfaces (Section 3.3.2). Considering
the coefficients given by equations (3.12) reveals that due to the exist-—
ance of the integer m in the coefficients for h modes, the contrib-
ution from TE modes to the power flow is zero. Therefore, for power flow
calculations, we only take the field components contributed by TMoq modes,

The total power is obtained by an application of (3.34) to a
circular cylindrical surface which surfounds the feeding system in the
lower waveguide and has an arbitrary radius pp smaller than the radius
of the leading edge of the first slot (Section 3.3.2). Eguation (3.34)

for this surface transforms to

2T ro
P = Re . [E, « H* -~ E_ + H*X]dddz (B.1)
°p JO J_b[ o " H T Ep v HGIA
Note that E¢ and Hz are zero for TMOq modes (equations 3.3b). The

other components are
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Ic
. (2) + . (2)
E, = -ip iil o, Eiq cos q<D[Hq (,klpi)k]*_ Jq(klp) Jwl_ cos ad Hq (k,P)
1
€. = IC
: T, 1.2 (2) + o
H(b’ = -0 (=) E pi Eiq cos q@[Hq (klpi)]_ Jq(klp)
o) 1=1
(2),
-k, cos gb By kP (B.2)

The contribution of the first terms of (B.2) to EZ e H$ is purely imag-
inary. This is due to the fact that this product is only determined by
the slot fields. Since the contribution of the slot induced sources to
the total field in the central region of the guides is of standing wave
type, this product is purely imaginary. Upon substituting (B.2) in (B.1),
performing the integration and taking the real part, one obtains

Ic
+
= B9 p+ 2 Ly 5 ReE 58P 0.1 (B.3)
€ o) i ig g

PTotal g gq i=1 1%i -

The transmitted power can be obtained by applying the same
method to a cylindrical surface in the lower waveguide having a radius
pp greater than the last slot. We, therefore, assume pp approaches
infinity, hence,we may use the asymptotic relations for Bessel functions

which facilitate the derivation of the final result. For the field comp-

onents we have,

Ic
_ - + .(2) . (2)
Ez =.-3 5 izl piEiq cos q¢[Jq(klpi)]_ Hq (klp) jwuo cos qg¢ Hq (klp)
1 IC
e =
_ _m 1.2 + (2),
H¢ = b (U ) .§ piEiq cos q¢[Jq(klpi)]_ Hq (klp)
o i=1
- k., cos g¢ H(Z)'(k o) (B.4)
1 q 1 )

Substituting (B.4) in (B.l) and using the principal asymptotic forms of

Bessel functions [50]
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. ._( g.'n'_l)
H('z)() /*2—-ejz 5 2
g B Tz
for =z 1large (B.5)
(2), (2),
H (z) ~ Hq—l (z)
one obtains
Ic .
480 4 +
= — 7 + =T )X R . )
PTransmitted € kob € . pi e(Elq)[Jq(klpl)]—
q q i=1
T ICc 1IC +
t s L L 0, * 0. Re(E.-E* )[J (k.p.)]
lZOquOb -1 §=1 i J 19 jg g 1 i "~
(B.6)

The same method when applied to a similar surface in the upper waveguide

leads to,

Ic + (2)
E, = ] Eg-izl ch Eiq cosq(b[Jq(kzpi)]~ Hq (kzp)
(B.7)
1
e, — IC
_ _.m 2.2 + . (2)
H = — () E 0. E, asq@“q&fﬁ”_l%

"(k,0)
(0] 2a o ;1 1ig 2

The relation for the power is now
2m ra
P = - Re[[ J E_ ¢ H* do¢dz] (B.8)
Py . )" ¢¢>

which upon substituting (B.7) in the above relation leads to

IC 1IcC
™

+
P = Tore oo 2 X p, c 0., Re(E, ¢ E* )T (k.p.)]- (B.9)
Coupled lZOquOa i=1 =1 i J e} jg g 271

Note that the above relations are derived for single mode operation.
However, formulation for a general case is simply obtained by including

an infinite summation on q, that is
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© (a’+p%) Ic (2) N
P = 5 —32—9 {s4gomk b+ 21 I o, RelE, H 2 (k. p.)1"}
Total € o . i iqg g 171" 7=
(B.10)
© (a;+b2) Ic .
P ransmitied ———-—-51—8 {480Trkob. + 4T .Z o, Re (Eiq) [Jq(klpi)]_
g=0 q i=1
. IC 1IC +
+=——— I I p, *p.*Re(E,«E*)[J (k.p.)]1 }
120k b,y o) i TS g 3g T g 1iT-
(B.11)
w  (a? + b;)ﬂ Ic IC .
P = % =19 _ % I p,cp. *Re(B-E* [T (k 0.)1
Coupled q=0 l2O€q koa i=1 §=1 i | ig jg) g T 27i0 T~

(B.12)



APPENDIX C

PROOF OF THE IDENTITIES (4.L14)

In the course of constructing the appropriate Green's func-
tions for describing the field generated by an annular slit of strength
V(¢) on a conducting infinite plane, two types of infinite integrals
involving Bessel functions ana their derivatives were encountered.

These integrals in their present forms are not tabulated in common math-

ematical tables and the proof of the resulting identities requires, showing

0 jo Jv(ap)Jv(up')da + pjo Jv(up) Jv(ap') =0 (C.1)

for all p, Re v > 0

[ © 1 1 v . _\23_ ;_ ] — N At
0 fo Jv(ap)Jv(ap Yoda + 5 jo 3 Jv(ap)Jv(ap Yda. = S{p-p") (C.2)

Derivation of (C.1l) is fairly straightforward. Using the following re-
lation for Bessel functions [50]

J'(z) = J (z) - J (z) ' (C.3)

1
vV V-1 V+1

the identity (C.1) is modified to

[0e) O \)
o} [JO Jv(ap) Jv_l(ap )do, - Jo Jv(ap) Jv+l(ap ydal + p[jo Jv_l(ap) Jv(ap )do

(o]
- JO Jv+l(ap) Jv(ap Jdal = 0 (C.4)

The above four infinite integrals are in the form of discontinuous inte-

grals of Bessel functions represented by [50]

-1
_(_y)U v < x
- X
1
jo JU(XB) JU—l(yg)dB:Z y = X Re U > 0O (C.5)
0 y 2> X
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For p' > p, after replacing the integrals by their respective values

given by (C.5) one obtains

Y V-1
' — -+ — = - 6
p' (0 —T%EET p(Q“T?;‘ 0) 0 (C.e)
p
which is an obvious identity. For p' < p we have
V-1 vV
p'( pV - 0) + p(0 - j%:i? = 0 | (c.7)

and the proof for p' = p istrivial.
Derivation of (C.2) is somewhat more complicated. We start

by forming

Y V
' J! = [=J -J - =3 "y + 3 '
Jv(ap) v(up) [up V(up) V+l(up)][ o0 v(ap ) v_l(up 1]
(C.8)
where a use has been made of (4.12c). Substitution of (C.8) in the first

integrand of (C.2) results in

(o] lo'e]
Vo' [ '
—5—-j0 Jv(ap) Jv_l(ap ydo + vjo Jv+l(ap) Jv(ap yda
- Jo Jv+l(ap) Jv_l(up')uda = S§(p-p") (C.9)
It can be shown that
(oo} CO
! J J t = J J '
p jo v+l(up) v_l(up ) adao, v [O v+l(ap) v(ap ) da

00
+ J J d
JO v(ap) v"l(up ) do

Jv+l(up) Jv+l(ap')adu

00
a J Jv_l(up) Jv_l(@p ) odo] {C.10a)

where a use has been made of




lel

——-Jv(Z) = Jv—l(z) + Jv+l(z) (C.10b)

substituting (C.10a) in (C.9) results in

[oe] [oe]
pr ' At
5 [j J (ap) J (ap")ada + [O Jv_l(ap) Jv_l(@p')&d@] S(p=p")

V+1 v+1
O
(C.11)

According to the definition of delta function in terms of infinite inte-

grals of Bessel function we have [57]

S(r -~ r') = ¢! j JU(BI) Ju(Br')BdB for all (C.12)
o

Finally, an application of (C.12) to (C.11) proves the identity.




APPENDIX D

DERIVATION OF Re(I%)
First we establish the following identity

J.(z) = -229 (L sin (zt)dt
1 - m dz z 1 2 o 1/2
t (£ -~ 1)

1 (D.1)

To this task, we represent the right-hand side by £(z) and take the

derivative of the both sides with respect to =z, that is

co
af 2 4 .1 sin(zt)dt 2 sin(zt)dt
-— = = = |= + = —_—rl o .
dz T dz [z Jl 5 5 1/2} ™ Jl 5 1/2 (D.2)
t (t - 1) (t” - 1)
The first term in (D.2) can be identified as - i-f and the second term
is the integral representation of Jo(z) [50], therefore, one obtains
df
z a;—+ f = -z Jo(z) (D.3)
or equivalently
d(zf) _ a
az = a3 [z Jl(z)] (D.4)

which immediately proves equation (D.1). From (D.1) it follows that

S . . z J_(z'")
{;%~ sin(z't)dt ]z = - I —;—~r-dz' for all =z (D.5)
z 1 2 o 1/27° 0o 2 o Z
t(t - 1)
hence
z 1
1 JOO sin(zt)dt  _ _w J 7 =D s fo at
4 1/2 2 z! 1/2
2, 2
© £ - 1) © Lo w? -
' (D.6)

™
The second term on the right-hand side is a known integral equal to Y

therefore,
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o _ z J.(z')
sin(zt)dt _ 15_[1 _ 1 dz'] (D.7)
1 2 2 1/2 2 o z' v
t(t - 1)
By a similar process, it can be shown that
_ 2z 4 1 - cos (zt)dt
Nl(z) T 7 dz [z jl 5 1/2 ] (D.8)
t (t - 1)
which leads to
co . ®© N, {(z')
P}; cos(z't)dt ]z - T ~£~7——-dz' for all =z
z! 1/2 "o 2 4
1 t2(t2 - 1) °
(D.9)
substituting
N, (z)
1 d
z - NO(Z) T dz Nl(z)
yields
00 'n‘ z
cos(ztldt  _ 2T 1"y (,nyaz - w ()] (D.10)
1 2 9 1/2 2 o 1
5 - 1) ©
where a use has been made of the following relation
[os]
lim N, (z) = - 2 1im J cos (zt)dt (D.11)
Z->0 1 m zZ>0 1 2, 2 1/2
‘ zt (£ - 1)

By supstituting (D.7) and (D.10) in equation (4.39) the desired relation

for Re(Ie), as expressed by (4.41), is obtained.



APPENDIX E

h
DERIVATION OF RE(I)

The infinite integrals on the right-hand side of (4.43a) and

(4.43b) can be evaluated using the following known integrals [50]

n+1 n-1 p+l
cos t (-1) -(=1) (2p + 1)! .
—dt = —— {73 - fcos £ - (2p+l)t sin t]}
jt2n+1 (2n) 1t p=0 t2p+1
+ L ; ci(t) (E.1)
(2n) ! o ’ ’
. n+1 n—-1 p+1
sin t (-1) (-1) (2p) ! .
( =3t = e {3} [t cos t + (2p+l) sin t]}
J t2n+l (2n) 1t p=0 t2p+l
n
+ 2231;' Si () (®.2)

Using a change of variable in the form

t = zB (E.4)
transforms (4.43a) and (4.43b) into suitable forms to be evaluated by
(E.1) and (E.2). The resulting integrals are then evaluated for the
limits gz <t <®, with the aid of limiting forms for Si(®), Ci(w),[50].

The final results are of the following forms

* 1 1 1 | .
Jl cos[ko(x—y)B](é§~— Eég?dﬁ Ty [(zi%—lS)cos z2; =2 (z? + 22) sin zq
2,2 .
+ zl(zl + 24)C1(zl)] (E.5)
sin[k (X+y)B](;L'v 1 Ydg = #L-[z (z2 + 22) cos z_ + (22 + 18) sin z
1 o) B3 2B5 48 2 2 2 2 2
2,2 .
+ 22(22 + 24)51(22)] (E.6)
where
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substituting (E.5) and (E.6) in (4.40) results in (4.44a)
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APPENDIX F

DERIVATION OF THE EQUATION (4,50)

Using the addition formulas for sinusoidal functions, the in-

tegral part of (4.49) on u is transformed to

™
U = J [an cos nd + bn sin n¢) cos nu cos u + (bn cos no

-
~

- a sin n¢) sin nu cos u] ° exp(jkop' sin@ cos u)6 du

™
- sinb j [(an cos nd + bn sin n¢) cos nu sin u
-7
~
+ (bn cos nd - a_ sin n¢) sin nu sin u] exp(jkop' sinf cos u)¢du
(F.1)
A A

The second texrm of © component and the first term of ¢ are odd func-

tions of wu, hence, do not contribute to the integral U. Therefore,

Tr N
U = 2 J [(an cos nd + bn sin nd) cos nu cos u O - sin e(bn cos no
o
- a sin n¢) ° sin nu sin u ¢] exp(jkop' sind® cos u)du (F.2)

A use of the following identities

2 cos nu cos u cos (n-1)u + cos(n+l)u
(F.3)

cos(n-1)u - cos(n+l)u

1l

2 sin nu sin u

in (F.2) results in the desired relation, equation (4.50).
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APPENDIX G

DERIVATION OF EQUATION (5.17) FOR THE TOTAL POWER

The total power is obtained by an application of (3.34) to a
circular cylinder which surrounds the feeding system and has a radius
o] smaller than that of the first slot. For a cavity of a thickness
smaller than %— only TMoq modes contribute to the power transfer. This

leads to

2T ro
— —_ R R ° * .
P pp e[Jo j—a FZ H¢ dddz] (G.1)

Using (3.3b), (5.14) and assuming an incident field of the type

e © o J (k coIN (k_p)-N_(k_c)J (k_ p)
T e cos gb +b_ sin qb) cogPlL , 4 PP " 9 Pp 9 PP g pp
q e a J (k__c)
p=0 g=0 g pOp
(G.2)
leads to
= J_(k c)Nq(k p) - Nq(k c)d, (x p)
E_=-jwd = 3% (a cosqp + b_cosqggp) - =
z o =0 ¢ g Jq(k c)
me, o IC
- DX Z k p. E, (a_ cos q¢ + b_ sin q¢)
2a q=0 i=1 o"i 1q» q q

+ +
Jq(k c) [Nq(kpi)]_ - Nq(k c) [Jq(kpi))_

: T (x o) Iglk 0 (6.3
q
= J ok o)Nl(k o) = N_(k c) J'(k p)
. g 9 9 g9
H = -
o k qzo(aqcosq¢ + bq51nq¢) Jq(k o)

Jm w/e, o IC
- 7 r ok pi E

(a_ cos g¢p + b_ sin g¢)
22 gm0 i-1 4 d

iq

+ +
( -
Jq (k c) [Nq(kpi) 1. Nq(k c) [Jq(kpi) 1_
J (k ¢)
q

Jé(kp) (G.4)
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where EZ and H¢ denote to TMOq modes only. An application of (G.1)

then results in

- 2 2 +_ +
IC (a” +b7) J_(kec) [Nq(kpi)]»— Nq(kc) [Jq(kpi)]_

d g
P = =27 X Y, —————=— p.Re(E. )
Total g=0 i=1 q i ig Jq(kc)

(G.5)
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