
oistributed Databases: À Review of Problems and solutions

Paul M. Burega

presenred to tt'"ÀulÏ:l:ity or Manitoba
in partial fulfillment of the
requirements for the degree of

Master of ComPuter Science
IN

Computer Science

Winnipeg, Manitoba

Paul M. Burega' 1984

by

DISTRIBUTED DATABASES: A REVIEI.T

OF PROBLEMS AND SOLUTIONS

PAUL M. BUREGA

A thesis submitted to the Faculty of Graduate Studies of

the University of Ma¡ritoba in partial fulfillment of the requirenrents

of the degree of

MASTER OF SCIENCE

@ 1984

Permissio¡r has bee¡r grarrted to the LIBRARY OF THE UNMR-
SITY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilnr this

thesis and to lend or sell copies of the film, and UNIVERSITY

IvIICROFILMS to publish an abstract of this thesis.

The author reseryes other publication ríghts, a¡rd neitlter the

thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author's writte¡t permissiott.

I hereby declare that I am the sole author of this thesis.

i authorize the University of Manitoba to lend this thesis to other
institutions or individuals for the purpose of scholarly research.

Paul M. Burega

I further authorize the University of Manitoba to reproduce this thesis
by photocopying or by other means, in total or in part, at the request
of other institutions or individuals for the purpose of scholarly
research.

Paul M. Burega

- 11 -

Themanipulationoflargequantitiesofdataisanincreasing}y

importanttopicasnoreandmoreapplicationsarecomputerized.The

techniques used to manage a distributed database are crucial to the

success of most scientific and business applications' In this thesis'

we examine the techniques used to manipulate data that are distributed

among or between several computers'

The problems incurred by connecting together geographically dispersed

computersareexaminedandsomesolutionsgiven.Problemssuchasdata

integrity and security over the transmission mediun are discussed' A

Iook is taken at a general network model, the Internationat standards

Organizalion Open System Interconnect model, along with a look at some

commercial networks.

There are many problems with distributed databases' some of which

occur because of the distributed environment' conflicts arise between

concurrently executing transactions. If the conflicts are not handled

correctly, they can offset any performance gains made by the distributed

environment. The two main methods for controlling concurrent execution'

Iocking and timestamping, are compared and contrasted' along with some

new hybrid techniques.

Fie also examine some current distributed database systems

Major emphasis is placed on the methods used for concurrency

this is a major problem in a distributed database management

in detail.

control, as

system.

- IV -

ÀCKNOIIIEDGE}IENTS

I would like to thank Dr. À. N. Arnason and Dr. D. H. Scuse who

helped motivate this thesis, and who provided guidance and direction

when it v¡as most needed. I would also like to thank Dr. w. J. Davidson

for his rnany welcomed contributions towards the content of this thesis.

Special thanks to Dr. C. M. Laucht for his many suggestions on polishing

this thesis.

Finally, I would like to acknowtedge the support given to this work

by the University of Manitoba and the National Sciences and Engineering

Research Council of Canada.

-v-

CONTENTS

aa

IV
ABSTRACT

ÀCKNOÍII,EDGEMENTS

ChaPter

I. INTRODUCTION

Daqe

II. DISTRIBUTED DATÀBÀSE EITVIRONI'ÍENT

Computer SYstems
Computer Networks

Components
Commun icat ions Subnets
Layered Protocols
Open System Interconnection Model
Network TyPes

Long HauI Networks . .

Local Àrea Networks
Network Performance Criteria
Enhancements to Basic Network Services

Text ComPresslon
Data SecuritY and PrivacY

Existing ComPuter Networks
Systems Network Àrchitecture . .

DECnet
RelNet . .

Di stributed Dat,abases
Data Dictionary
Recovery

Distributed QuerY Processing .

Concurrency Control .

Locking . .

Timestamps . . .

OptimisLic ConcurrencY
Combination Techniques

Cont rol

Global Deadlock . .

False Deadlocks

IV. DISTRIBUTED DÀTÀBASE T.ÍANÀGEIIIENT SYSTEI.ÍS . .

IBM's Mu1tiple Systems Coupling ' '
Distributed-INGRES

-vi-

1

10

11

17
18
22

40
43

28
30
36
37
38

44
46
57
58
64
67
72
86
90
95

98

99
106
115
116
120
121
126

128

129
132

SDD-1
ConcurrencY Control .

v. coNctusloNs

LIST OF REFERENCES

LIST OF DEFINITIONS

13s
, 142

. 148

. 152

159

160

- vll -

F i qure

2,1 ,

2,2.

2,3,

2,4 .

2.5.

2.6,

2.7 .

2,9,

2,9 ,

3.1.

3,2.

3.3.

3.4.

LIST OF FIGITRES

A typical centralized Computer 0rganization

À Distributed Computer System

A Typical Point-to-Point Long

Relationship of DTE/DCE

Process Conmunication Between tayers

ISO/OSI Model of Network Organization

Data Stored In a Table

Horizontal Partitioning

Haul Network

Daqe

'13

19

26

29

31

77

7',|

Vertical Partitioning o .

DDBMS System Àrchitecture

A Wait-For Graph Showing a Cyc1e

Wait-For Graph in a Centralized System

t^tait-For Graph SpIit into 3 Pieces

77

104

110

122

123

- vl11 -

Chapler I

INTRODUCTION

The manipulation of Iarge quantities of data is an increasingly

important topic as more and more applications are computerized. The

techniques used to store, retrieve, and modify data are crucial to the

success of most scientific and business applications. In this thesis,

we examine the techniques used to manipulate data that are distributed

among or between severa] computers.

The most important reason for distributing computing power is the

relative price of computing power versus the price of communications

facilities (cheaper nemory, faster processing) [t'tarti79b]. The price of

computing power has fallen drastically within the Iast decade, due

partly to the introduction of the micro-computer. This n¡eans that it is

often nore economical for a company to put a computer at a remote

location, rather than pay the cost for high speed communication lines to

support terminals. It is cheaper to process or analyze the data at the

place it is generated, and only send occasional summaries to the main

computer centre. This reduces communications cost, which norv represents

a much larger percentage of the total cost than it used to. By using a

remote computer, it is possible to use communications lines during off-

peak hours to realize further savings.

There are two methods

computers. The simplest

storing collections of related data on

these is to store data in standard files.

of

of

-l

This technique is adequate if only a few programs access the data, and

there is no restriction on the length of time needed to process a query.

These programs must be concerned about the physical layout of the data.

if the record format changes, then all the programs must be re-compiled.

Furthermore, each program can see every part of all records. This is

not desireable. Às the number of users with access to a given set of

data increases, so does the need to restrict access to certain fields to

specified users. To eliminate these and other problems, a database

systen should be used. This allows application programmers to access

data logically and independently from the physical format of the data.

À database systen also provides the required integrity and security for

the data IAtre80, Carde79, Date83, MartiTT],

Once a database is in use, net+ problems arise as more users require

access to the data. The increasing numbers of accesses require more

processing. If these users are online, their requests should be

completed in a brief period of time, e.9. five seconds. To accommodate

this tine requirement, a fast computer must be used; however, such a

computer is not always available. Therefore several computers may be

required to share the processing tó meet the access requirements.

With an increasing number of users accessing a database, it is

inevitable that some of these will not be situated near the computer

complex. They may be across the street, at the opposite end of the

city, or continent, and in extreme casesr orl the other side of the

world. If ternrinals are placed at remote locations, it is usually

necessary to have one communication line per terminal. Às the number of

terminals ín one location increases, So does the cost of the

-2-

communication lines. Communication lines delay data transfer and

increase the apparent response time to the end user lMarti81a]. To

improve performance and lower the cost, a computer system may be

installed at the remote site to handle the terminal queries. Thi s

decreases response time, increases availability due to fewer

communication lines, and allows data to be stored near where they are

used. As an example, take the case of a firm with offices downtown and

a warehouse on the outskirts of town. If an inventory system is run on

a computer in the warehouse instead of on the computer in the business

office, then not only do the warehouse terminals get better response,

but so does the downtown office computer, since it no longer needs to

process the inventory program. But what if a user on one computer

systen requires data from the other?

In order to share data between or among computers, the conputers must

be linked together. If the two computers are physically close, it is

possible to have a high-bandr+idth channel connecting the two conputers.

This method of connection allows a transfer rate in excess of one

megabyte per second and each conputer looks like an input/output device

to the other computer. With this method, both computers need not be

general purpose computers. One of the computers could be a dedicated

database processor specially designed to perforn database operations.

The other computer would then be the host to which terminals would be

connected. The host would perform general computing and pass special

database requests to t.he database processor. This offloads expensive

database transactions from the host and aIlows a nore suitable machine

to do the transactions. There may be large lransfers of data between

-3-

i::l

ì
ìì:.ì.

a1ì'

,:i

the tr,lo comPuters'

channel.

and hence a need for a high-bandh'idth communications

Where the two computers are separated by a larger distance, for

example in different buildings or across town, then communication lines

must be used. Typically, the greater the distance, the lower the

bandwidth available for reliable communications IMarti79b]. When both

computers reside on the Same property, it is possible to run wires

betiieen the two machines. If, however, the computers are on separate

pieces of property, then common carrier transmission lines nust be used

(teJ.ephone company lines) These lines may be specially designed to

give lower error rates and higher bandwidth than normal telephone Iines,

but the maximum bandwidth would typically be around fifty thousand bits

per second (higher rates are available, but may be beyond economic reach

of many companies IPooch83]). The telephone company may also use micro-

r{ave and satellites to complete part of the communications link

luartiTSl.

Às soon as there is any distance between the two computers, the

maximum bandwidth available economicalJ-y drops drastically and the error

rate increases. In order for distributed databases to function, there

must be network hardware and software to compensate for the problems

created by distance. This implies sending as little data as possible

and employing error detection and correction mechanisms to make the

communications facitities useable but transparent to the end user.

It also makes sense to store the data where they are required. Data

frequently used at one location may rarely be needed at another, but

4-

theY must

comPuter

for local

accuracy,

remain accessible. To lransmit alt of these data to another

may be unnecessarily complex and expensive. The justification

data is that everything works much more smoothly when the

privacy, and security of the data are a local responsibility

IMarti79a]. This also increases reliability. If one conputer is nol

functioning and the others are, at least some work may still- be done'

In other cases, there is no natural distribution to the data, but the

organization or user may want to keep important data at two or more

sites for increased safety and rel-iability. For example, a bank whose

head office is located in an earthquake zone or floodplain may want to

keep a duplicate of its database in a distant city. In some

applications such as the militarY, even short periods of data

unavailability due to hardware failures are completely intolerable;

hence the need for redundancY.

Yet another reason for distributing data is sheer size. It is not

feasible to attach an arbitrary number of disk drives to a computer.

Beyond some finite limit, multiple nachines are needed to handle the

Iarge amounts of storage. To aIlow incremental growth, it is better to

have a collection of smaller systems than one huge one. With a single

central system, it is possibte to reach a point where adding one more

disk drive is impossible because of the finite number of devices that

can be connected to one comPuter.

À relat.ed reason for having rnultiple computers is the need for a high

transaction rate. With present computing technology, a throughput of a

few hundred transactions per second per central processing unit (CpU) is

-5-

:ìfi

::l

:ai:

:::i

considered excellent IMarti79b]' To achieve a better rate' additional

CpUs are needed. However, if aII the disks are attached to one CPU' at

some point Lhe interrupt load wiIl saturate that cPU' This upper limit

on the 10ad will force the database to be distributed among the other

CPU' s.

Adistributeddatabasemayhavemanydifferentforms.Thereisno

need for all the computers which process the database to be the same,

norforthedatabaseprogramtobethesame.Eachcomputermayhave

uniquedataoFlforefficiencyandreliability,itispossiblefor
multipte conputers to have copies of the same data' Thus the tg¡o

extreme types of distributed databases are: fuIIy partitioned and fuIIy

replicated. A fully partitioned distributed database is one where each

unique data item is stored at exactly one location' whereas a fully

replicated distributed database is one where each unique data item is

stored at arl rocations. Typicarly, a compromise between the two is

chosen, âS a replicated database is faster to access, but more

complicated to update. Thus, if updates are rare, then replication is

very attractive. AS updates become more frequent' replication quickly

Loses this attractiveness. Reptication gives faster response for

queries,andifonecomputermalfunctions,thentheotherwillstill
have current coPies of the data'

Whileadistributeddatabasesolvessomeproblems,itcancreate

several nel'¡ ones. The problenrs of integrity and security become much

more difficult. Maintaining the integrity of the database is a problem

because the database is distributed over several computers' some of

which may conLain identical copies of the same data' The difficulty

-6-
,:jli

r,a::r

arises in keeping those copies identical, even though a computer may

become disconnected from the others because of problems' security also

becomes more of a problem, because a network as a whole is more

vulnerable to attack. To enable computers to communicate with each

other, there nust be a network connecting the computers' This

connection could be via phone Iines, microwave, satelrite, or some

combination of the three. Once unauthorized access is gained at any

point, access is allowed to the whole network without much further

difficulty. À further problen trith distributed database is the need to

allow different machines which may have data in different formats' to

talk to on another. The rules, conventions, and procedures which permit

computers to conmunicate with each other are referred to as

communication protocols. The definition and implementation of these

protocols has a fundamental impact on the speed of communication as well

as on the integrity and security of the data being passed from one

computer to another.

supporting the parallel processing of requests is also a problem in a

distributed database system. It is normal for queries to be initiated

from multiple hosts simultaneously. consequently, rnultiple gueries may

attempt to read, of even worse, update the same data item at the same

time. ÀIlowing unrestricted concurrent access is intolerable because it

can]ead to undetected semantic errors in the database' Take as an

example, a banking database in which two transactions are both about to

update the sane account record. One transaction will deposit $100'00 to

the account, and the other transaction wi1l debit $100'00 from lhe

bot,h transactions are run concurrentlY, then both

-7-

If

,..,t:ì..
t,ìt:.

:l:la..

,i:
'i1>¡---

account.

balance first'

the results of

transactions wiII read the same initial balance' One of the

transactions will complete before the other, and install its updated

When the other transaction completes, it l¡i11 write over

the first one. since neither transaction saw the effects

should have

each other.

concurrentlY.

of the other, the finat balance is clearly incorrect' The balance

remained the same as the deposit and debit should cancel

This is what would happen if the transactions had not run

vlhile allowing unrestricted concurrent access is intolerable'

allowing only a single transaction to run at a time eliminates the

concurrency errors but at the price of greatJ-y reducing the performance

of the system. Most transactions do not interfere with one another and

could be run concurrently without danger'

An important research issue is the design of concurrency control

algorithms which maximize the amount of paralle)- activity, while

maintaining the senantic integrity or correctness of the database' This

problem is greatly amplified in a distributed environment where multiple

copies of data exist. It is possible for two transactions to

simultaneously update two copies of a data item. This problem occurs

because there is a noticeable time delay through the network for update

information to pass from one host to another. The distributed database

system must be able to cope with this situation'

Another Problem which is crucial

crash recoverY. AILhough modern

failures or crashes do occur.

in a distributed database system is

computers are reasonably reliable,

The nrore comPonents there are in a

-8-

cornputer systefn or network, the greater the chance that one or more

conponents will fail at some time. In addition, machines must be taken

offline for preventive maintenance, making backups, oÍ other purposes'

In many networks, users expect the database system to continue to

operate even though a few hosts are down. Furthermore, when a missing

host cones back online, it must be able to resynchronize itself by

applying aLl new update transactions, vrithout causing deadlock or

consistencY errors. (Deadlock is a situation in which two or more

transactions are in a simultaneous wait state, each waiting for one of

the others to release a lock before it can proceed')

Distributed databases are most useful when the data are collected in

widely separated places, when the database is large, or when the

transaction rate is hi9h. Distributed databases have some additional

complications not found in a centralized database' Among these problems

are where to put the data (and how many copies to make), where to do the

query processing, how to perform concurrent accesses and multiple-copy

updates efficiently and 1{ithout deadlock, and how lo keep multiple

copies of the database in synchronization in the face of system crashes'

In the remainder of this thesis, we examine the probJ'em of manipulating

databases that are distributed over multiple computer systems and

indicate how current and proposed distributed database systems handle

the problems involved in distributed databases'

-9-

ChaPler II

DISTRIBUTED DATÀBÀSE ENVIRONMENT

In this chapter, we will discuss conputer systems in general and show

a growth path from a single computer to a distributed environment. This

distributed environment wiIl then be

look at the general hardware and

distributed environment.

Given a distributed environment,

discussed in some detail, with a

software needed to support a

communications network and the impact they have on

database system are examined. À need is shown for text

encryption in a distributed environnent, and a closer

hoç lhese two options can increase the speed and

distributed database management system.

the services provided by a

a distributed

compression and

Iook is taken at

security of a

Final_Iy, a look is taken at some of the existing commercial networks.

Às weIl, an indepth]ook is taken at ReINet, a network designed

especially for dislributed databases. ReINet is able to offload some of

the problems of operating in a disÈributed environment fron the

distributed database management system by providing a more reliable

network comnunications system than a typical commercial net'work'

- 10 -

2,1 col.{PUTER SYSTEMS

Until the rnid-1970's, most computing was carried out by (tirird-

generation) systems employing a large, centralized computer' The CPU

had a diverse collection of relatively simple machines connected to it,

some of them connected via telecommunications Iinks. These simple

machines consisted of card readers and printers, âS well as 'dumb'

terminals. By 'dumb" vte mean that the terminals could only display

text, and did not have any fancy functions, such as block transmission,

field validaLion, etc. They would even have problems if the data

arrived too fast. For certain applications, networks were built into

the computer systen allowing large numbers of simple terminals to be

connected to this central computer system. In some installations, there

rlere even tv¡o processors for reasons of reliability, but the processing

of each transaction was done by one large computer [Marti?9b].

The 1970's were the era of first the minicomputer, and later the

microcomputer. With large scale integration (fSt) circuits, the cost of

building a processor dropped steadily until it became clear that one

computer system could be made up of many processors if Lhis v¡ere useful.

There vras a concomitant, change in the perception of how computers should

be used. The concept of an isolated, factoryJ.ike machine room

processing batches of data for many users gave way to users wanting

their own terminals and processing capability. In some cases, the

users' local processing machineS rvere connected lo a distant, larger

machine which maintained a database and provided extra processing power

if needed.

,,,.t,.]

,,::'l

ì,:ìrì.
rl.il
..-i¡:t:

i..r'!
r_Ì

ri

- 11

By the mid-l970's, requirements for a new type of systern architecture

had become clear This nee¡ (fourth-generation) architecture must

provide a stable foundation for on-line, transaction-driven database

applications. UnIike the architecture designed for batch processing, it

must be highly reliable because on-line users become very frustrated if

their systems have frequent periods of failure. This architecture must

meet a diverse range of processing requirements and, as technology is

changing very rapidly, the architecture must facilitate the introduction

of new technology without a major system disruption. Large-sca1e

integration has given way to very large-scaIe integration (VfSl) .

Figure 2.1 illustrates a comnon configuration of a computing

installation from the 1970's. Economies of scale in computing lead to

centralization and all work is funnelled into centralized, factorylike,

data-processing shops. The computer is capable of running multiple

programs concurrently. these programs are usually refered to as

processes or tasks. Each process has a specific function, such as a

database management system or interactive terminal editor. Now, micro

and mini-computers have the pov¡er of these mainframe conputers.

The reason for the growth of microcomputers is the use of VtSI

circuits which are nass-produced. Not only can small machines be mass-

produced, but aLso their development cycle is much shorter than that of

large machines. Therefore, they Lend to use later technology which is

cheaper because the technology is dropping in cost. Costs can only drop

So far, and then instead of the cost decreasing further, the product

becones smaller and faster. The price/performance ratio on all

computers will continue to drop, but it will drop much more rapidly on

-12-

disks printer

CPU terminal
c on t rol Ier

Computer Centre remote terminals

Figure 2.'1: À typical centralized computer organization

tiny, nass-produced machines than on machines costing hundreds of

thousands of dollars. It will thus be much more economical to have

thousands of small computers than one large computer, with the combined

computing power of the small computers much larger than that of the

fastest large comPuter.

However, there will still be a need for large computers. To meet the

requirements of the vast conputing resources needed to serve large

numbers of people, computer systems will interconnect many processors,

both]arge and smaII. The computers will often be interconnected over

large distances with computer networks. The term distributed processing

impl ies mult iple processors, usually i nterconnected by a

telecommunications system (figure 2.2).

rr'iilìÊ-

- t5 -

CPU

DBMS

distributed
sof twa re

disks

CPU

DBMS

di str ibuted
sof tware

di sksterminalsCPU

DBMS

distributed
software

di sks

ternrinalsterminals

networ k

Figure 2.2: A Distributed Computer System

While many computers can be connected togeLher over large distances,

a user will typically just interact with the computer to which his

terminal is connected. When the user enters a transaction, he does not

care if the data are found on, and the computations carried out on, his

local machine or on a remote computer in the network. The user of a

distributed system should not be avrare that there are multiple

processors; the system should appear as one large, virtual processor to

the user.

There are essentially two reasons why a transaction is sent to a

remote machine as opposed to processing it on the local machine

[Marti79b]. The first is that the local machine has insufficient power.

Typicatly the local machines will be small, while the central processor

will have large number-crunching power. The second is that the

transaction needs data which are stored elsewhere. Most transactions do

';:
:ìlÉ

-14-

not need much computer poÌrer, and hence these transactions could be

processed on an 'intelligent' terminal or on the controller to which

dumb terminals are connected.

Formerly the term teleprocessing v¡as used to imply the

telecommunications facilities for accessing processing poþrer

calculators and minicomputers are cheap and what was original-ly

terminals connected by telecommunications facilities to remote

can be done on a local machine. The local machine maY i

connected by telecommunications links to other machines,

transaction rnay then be processed either on the local machine

remote one. The main reason for teleprocessing then becomes

data, not to obtain processing power.

use of

Now

done by

machi nes

tself be

and a

or ona

to obtain

¡¡,

ìì.

..ì:

:.
.

While teleprocessing a1lows for the access of remote data, the speed

of access is orders of magnitude slower than that of a computer's olvn

Iocal data. For infrequently accessed data, this performance

degradation is hardly noticable, and is much better than not being able

to access the data at all. For frequently accessed data, the slow speed

of telecommunicat ions degrades performance of the computer

significantly. The computer performs almost no conputation, but instead

waits for data transmission from remote computers.

If many of the computers are ar+aiting data transmission of remote

data, then some computers will be under-utilized while others may have

processing backlogs. Full use is not being made of Lhe computing

resources in the network. The computers have been distributed by the

network, but the processing loads have not.

- 15 -

To distribute the processing loads among the computers,

necessary to distribute copies of lhe data among the

it is usually

di str i buted

particularly

used at multiple locations, it is often desirable to

by a database management system (¡sMs). The DBMS

, and provides security and integrity for

Data should not be arbitrarily distributed

scale in storage systems are different from

conputers ' The location and design of this data are

important in a distributed system. Data placed in the wronq spot can

cause performance degradation and unbalanced processing loads, while

data placed correctly causes balanced processing loads which thereby

increases System Performance.

When data are

access the data

manages local data

computer user

economies of

orders of magnitude lower than on

it is more cost effective to have

the local

, as the

those in

units isprocessors. The cost per bit stored on very large storage

one, it is not cost effective for

large dala storage units.

small storage units IMarti79a] . I.thile

many small computers than one large

each of these smaIl computers to have

When data are stored in multiple locations, each copy may have

different changes made to it by its computer. Multip1e copies of data

are only useful if they remain consistent. if each copy has different

changes applied to it, then the copies are no longer true copies, and

become inconsistent with one another. To keep consistency, changes made

to one copy of the data must eventually be reflected in the other copies

of the data.

arì,

:-::i

:,i

-16-

To co-ordinate these changes,

must be used. The facilitY nrust

be conSiStent, and hence of value, update messages frOm one computer to

another must arrive without being lost or garbled beyond recognition.

Even a small change in the update message will cause a loss of

consistency, defeating the purpose of having replicated data. Àny

performance enhancement must ensure rel-iabIe results. If the results

are questionable, then performance has been lost, not gained. À

facility which allows reliable telecommunications between computers is

caIled a network.

2,2 COMPI'TER NETWORKS

À network consists of the hardware and software that supervise the

transmission of data between two or more computers. Depending on the

type of network, the hardware for interconnection can range from a

passive cable to a coLlection of special purpose computers whose job is

to route the data fronr the sender to the receiver.

Once computers are connected together electricall-y, there must exist

a standard set of software protocols to a1low the computers on the

network to converse with each other. These protocols are necessary to

ensure reliable communications (no lost or danaged data), as well as to

enable one co¡nputer to interpret the data it receives from another. If

the computers use different codes for transnission, then neither will

understand the data they have received. These network protocols nust

also be able to detect a failed computer, and reporl this status to

other computers in order that they no longer send messages to, oÍ await

replies from, that failed computer.

a

be

reliable telecommunications facility

reliable at all costs. For data to

ì.:'
.:ì'

i:.:.,ìi¡
.,:.:

ìL,-..

-17-

Oncere].iab}ecommunicationsareestabtished,precautionsmayalsobe

necessarytosafeguardthesecurityofdatatransmission.The
transnrissioncablesareoftenpublic,suchastelephonelinesand
cables, and it is possible for an unauthorized computer syslen to tap in

and extract confidential data' Not only rnust data be safeguarded

against passive intruders (intruders who jusl listen to the data

transmissions), but they must be safeguarded frorn active intruders who

aretryingtopassthemselvesoffaSanauthorizednetworkcomputer.

These Problems must

environment suitable for

this section, various

Later sections of this

using these solutions'

be overcome to establish and maintain an

adistributeddatabasemanagementsystem.ln

general solutions to these problems are given'

thesis will detail specific examples of systems

2.2,1 ConPonenÈs

Inanynetworkthereexistsacollectionofmachinesintendedfor

runninguserorapplicationprograms.Oneofthefirstmajornetworks

wasARPANET,andmuchnetworkterminologycomesfromthisnetwork.The

collectionsofmachineswerecalledhosts,andtheyareconnectedbythe

communications subnet, or subnet for short. The job of the subnet is to

carrymessagesfromhosttohost.Byseparatingthepurecommunications

aspects of the network (the subnet) from the application aspects (the

hosts),thecompletenetworkdesignisgreatlysimp}ified(figure2.3).

In order to communicate,

transfer. There are three

- 18 -

lhe two comPuters must

possibilities: data

have rules for data

can travel in one

ì,É

Boundary

iMP

Host

Te rmi nal

a

tr
tr

Fiqure 2.3: À Typicat Point-to-Point Long Haul Network- - 2-- - (räairied from lMarti81b])

direction; data can travel in both directions, but not simultaneously;

or data can travel in both directions simultaneously. The first of

these possibilities is cal1ed simplex communication, while the other two

methods are called half-duplex and full-duplex respectively'

Simplex communication requires two transmission cablesi one for

incoming data and one for outgoing data. Each cable may be fully

utilized whenever needed. HaIf-duplex communication requires only one

cable (which is cheaper), but the cable transmits in only one direction

at once (either send or receive)' To reverse directions' the sender

- 19 -
:,ì.ì.

;ì

il."l-
_'

\--ì!ìi:Ì$ìiì:ìi,i:'

lìi.,:ili..: ,

must notify the receiver, and after a suitable time delay' transmission

in the opposite direction can occur' Note that a receiver must wait

until a sender notifies hin that he can now send' Urgent messages

cannot leave until all incoming transmissions are completed'

Fu]I-duplex allows simultaneous reception and transmission on one

cable. The one draw-back is that the sum of the send and receive data

rates must be 1ess than the bandwidth of the cable. If the bandwidth of

the cable is greater than twice the send or receive rate, then no

problems occur. However, if the bandwidth of the cable is low, then the

send and or receive data rates must be low (it is not necessary for both

rates to be the same). If a higher bandwidth is needed, it is best to

use two simPlex cabLes.

I,thiIe a network allows the physical connection of multiple computers,

this does not necessarily allow the computers. to understand one another'

consider the example of an English speaking person on the phone to a

French speaking person. Even though there is a physical means of

communication between the two, they are unable to understand one

another. To enable the increasing variety of computers to communicate

with one another, there nust be a set of rigorously defined protocols'

Along with the definition of a protocol, the formats of the control

messages and the headers and trailers of the data message must likewise

be rigorously defined.

The protocol must also determine how many logical channels the

connection corresponds to, and what their priorities are' Descriptions

of data and of lhe relationships between data are of two forms: logical

-20-

or physical. Physical descriptions refer to the manner in which data

are recorded physicalty on the hardware. Logical descriptions refer to

the manner in which data are presented to the user of the data. Many

networks provide at least two logical channels per connection, one for

normal data, and one for urgent data'

When numerous networks have been previously set up,

useful to allow tvro or more networks to conmunicate with

Interconnection of two networks is not a simple task. Different

networks may have different packet, addressing, interface, protocol,

errgr-cOntrOl, prOtectiOn, reSOurCe management, accounting, and Other

structures and algorithms. To connecL two nonsimilar networks,

translation at one or nore levels is required to effect interconnection.

The collection of hardware interfaces, software int,erfaces, and services

necessary to effect network interconnection, is called a gateway' The

gateway appears to each network as a normal node of that network' The

gateway takes the data in the format of one network and converts it to

the other network. This allows non-similar

be connected transparently, at least in theory'

Networks can be interconnecLed at any level where equivalent services

exist within each network. However, equivalent services may not always

exist. To achieve equivalent services at the gateway interface, the

services of one or both networks to be interconnected may be augmented

by a 1ayer of functions within the gateway or within gateways and hosts

IBenhag3, Hinde83J. prob]ems occur with finding matching sets of

services at all ÌeveIs, the main problem being that there could be an

enormous number of services when all layers of the network are

considered. They must all be mimicked for network interconnection.

it is often

one another.

the format exPected

network architectures

by

to

-21

2,2,2 Con¡nunícations Subnets

In nearly all networks, the subnet consists of two basic components:

switching elements and transmission lines' The switching elements are

generally specialized computers called IMPs (Interface Message

processors) or nodes. Transmission lines are often called circuits or

channels. Each host in the network is connected to the subnet via one

or more IMPs, and all traffic to or fron a hosL goes via its I¡¡p'

Several hosts maY share one IMP.

There are two main types of communications in computer conputer

subnets: packet-switching and circuit-switching IfanenS'1a].

À packet-switching subnet divides the data traffic into blocks,

called packets, which have a given minimun and maximum length' Each

packet of user data travels in a data 'envelope' which includes the

destination address of the packet plus some control information. Each

node in the subnet reads the packet, examines the address, and by using

knowledge about network conditions, sends the packet on its way to

another node. The packet eventuall'y reaches its destination, at which

point the control information is renoved and the original message is

assembled from the Packets.

À circuit-switching subnet establishes a physical circuit between two

nachines. The circuit is rapidly set up and disconnected for each burst

of data. Thus each message has exclusive use of a circuit for the time

needed to transmit the message. When the message has been lransmitted,

then the circuit is released so that it may be used by another message.

This is analogous Lo a copper wire, directly connected for brief periods

-22-

ç time
lljl

ìmp1e c
.i,.,',

ireams

Àe, anot

]ì:
:

l',

the communicating nachines. In fact the path is not a

because time-division switching is used in which many

flow through an electronic switch, all interleaved with

Computernetworksareusuallypacketswitched,butoccasionallyare

iircuit switched Itanen81a]. With packet-switchingf no one user can

nonopolize the transmission line for nore than a small fraction of a

second (lhe time needed to transmit the }argest size packet)' This

packet can be sent on its way as soon as it arrives at an IMP, thereby

unburdening the IMP, and improving network throughput. I{ith circuit-

swítching, it is possible for one user to tie up a line for a relatively

Iong time. While this line is in use, no other data can get in or out

of the IMps in the path. This can lead to delays, which decreases

network throughPut.

There are basically two types of designs for communications subnets:

point-to-point channels and broadcast channels Ilanen81a]. In a point-

to-point subnet, the network contains numerous cables or leased

telephone lines, each one connecting a pair of IMPs. If two IMPs that

do not share a cable wish to communicate, they must do so via other

IMps. When a message is sent from one IMP to another via one or more

intermediate IMPs, the message is received at each intermediate IMP in

its entirety, stored there until the required output line is free, and

then forwarded. Thus a point-to-point subnet is sometimes referred to

as a store-and-forward subnet. The number of times a packet is stored

and forwarded is directly proportional to the length of time needed to

deliver the Packet.

betwee

ircuit

of bit

her .

-23-

....-, fi,. second type of comnunications subnet uses broadcasting' In a

úroudrurt subnet, there is a single communications channel shared by all

IMPs.AnessagesentbyonelMPisbroadcastedtoaltotherlMPsonthe

corununications cable. In order for the message to reach its intended

destination, something in the message must specify for which host the

nessage is intended. Àfter receiving a message not intended for itself '

an IMp discards it. À broadcast subnet is more efficient for sending

packets that must go to all hosts. only one packet need be sent, and

a1l the hosts receive it. I.iith a point-to-point subnet, one packet nust

be explicitly addressed to each intended recipient.

In a bus topology, only one machine can transmit at any one time

instant. This machine is called the bus master. Since all other

machines are required to refrain from sending data when the bus master

is sending, there must be some arbitration mechanism on the bus to

resolve conflicts when two or rnore IMPs wish to transmit simultaneously'

This arbitration mechanism may be centralized or distributed'

The laYout or topologY of

or a ring. A bus toPologY is

connected to each host once.

Another PossibilitY for

ground radio system. Each

send and receive data. ÀI1

a broadcast subnet is usually either a bus

one in which there is one cable, and it is

a bus topology is to use a satellite or

iMP then has an antenna through which it can

IMPs can hear the output fron the satellite'

The second broadcast topology is a circular topology: that of a ring

or loop. À ring is basically a bus, with the two ends joined together'

Each bit propagates around the ring on its own. The bit does not wait

-24-

for the rest of the message to which it beLongs. As an IMP receives a

bit, it imrnediately sends it back out. Each bit will typically

circumnavigate the entire ring within a few bit times, often before the

message has been completely transmitted'

In a loop, each message is not retransmitted by the next IMP until

the entire message has been received, as in store-and-forward' In a

1oop, each line might have a different message on it, whereas in a ring

this situation is unlikely unless the messages are extremely short'

Broadcast subnets are also subdivided into type types depending on

hot, the channel is allocated. The two types are static and dynamic' A

static allocation algorithm divides time into discrete intervals. Each

IMP can broadcast only when its specific time interval comes up'

Channel capacity is wasted when an IMP has nothing to say during its

allocated slot. To improve performance, some systems attempt to

allocate the channel dynamically, on demand.

Dynamic allocation methods are either centralized or decentralized

Itaneng1a]. In a centralized channel allocation method, there is a

single entity which determines who goes next. This might be done by

accepting requests and making a decision according to some algorithm'

In the decentralized allocation method, there is no central entity; each

IMP must decide for itself whether to transmit or not.

User machines connected to a packet-switching network must observe a

rigorous set of rules for communicating with the network. Because of

this, t.here is a high degree of international agreement on the protocols

for public packet-switching networks, centering around recommendation

-25-

Equipment) bY CCITT (figure 2.4).

or node is known as a DSE (Data

terminologY is in widesPread use

defines the format and meaning of

DTE-DCE interface. Since this

equipment (the nCn) from the user's

that the interface be very carefully defined'

x.25 of the Comité Consultatif

réléphonique (cclrt) '

Y,.25 def ines the interface

terninal), called a DTE (data

carrier's equiPment (modem),

User Drn/oCn

The X.25 standard

physical layer, the

layer deals with how

established with the

International de Té1égraphique et

between the host (computer or remote

terminal equipment) by ccITT, and the

called a DCE (oata Circuit-terrninating

Àn Interface Message Processor (Iup)

Switching Exchange). This CCITT

in public network circles, x',25

bhe information exchanged across the

interface separates the carrier's

equipment (the otn), it is important

Computer DTE/DCE

Figure 2.4: Relationship of ÐTE/DCE

defines three layers (levels) of communication: the

frame layer, and the packet layer. The physical

zeros and ones are represented, how contact is

network, timing aspects, etc. The frame J'ayer
i¡¡l
llì:
1ì.::

:ì
È:]

¡l:

lì
*
i
1ì,i

c ommun i cat i on s

controller

-26-

ensures retiable communication between DTE's and DCE's' even though they

may be connected by a noisy telephone line. The third, or packet layer

is concerned with the format and meaning of the data field contained

within each frame. The packet layer provides for routing and 'virtual

circuit' managenent. These three layers defined in the X.25 model are

essentially the same aS the bottom three layers of the ISO model which

is described later in this chapter'

Under x,25, when a DTE wants to communicate with another DTE, it rnust

first set up a virtual circuit between thenr. To do this, the DTE builds

a CALL REQUEST packet and passes it to its DCE' The communications

subnetwork then delivers the packet to the destination DCE, which then

gives it to the destination DTE. If the destination DTE wishes to

accept the call, it sends a CÀLL ÀCCEPTED packet back. When the

originating DTE receives the CÀtt ÀCCEPTED packet, the virtual circuit

is established. ÀT this point both DTEs may use the fuIl-duplex virtual

circuit to exchange data packets. When either side has sent or acquired

the necessary data, it sends a GLEÀR REQUEST packet to the other side,

which then sends a CLEÀR CONFIRMATION packet back as an acknowledgement.

The originating DTE may choose any idle virtual circuit number

the conversation. If this virtual circuit number is in use at

destination DTE, the destination DCE must replace it by an idle

before delivering the packet. Thus the choice of circuit number

outgoing calls is determined by the DTE, and on incoming calls by

DCE. It could happen that both simultaneously choose the same

leading to a call collision. X.25 specifies that, in the event

call collision, the outgoing call is put through and the incoming

is put through shortly thereafter using a different virtual circuit.

for

the

one

on

!he

one,

ofa

call

iì
tì
¡lii:

ùr

-27-

in addition to these virtual calls, X.25 also provides for permanent

virtual circuits. These are analogous to leased lines in that they

always connect two fixed DTEs and do not need to be set up.

2,2,3 t avered Protocols

Most net!¡orks are organized aS a series of layers or leve]s, to

reduce their complexity. In this manner, each tayer buitds upon its

predecessor. The number of layers, and the name and function of each

layer differ

of each laYer

same time each layer is shielded from the details of how the offered

services are actually implemented in lhe layers below it' If any

changes are made to the hardware or software of a layer, Do or

relatively few effects should be felt in any of the other layers'

For two machines to converse, layer 'N' on the first nachine carries

on a conversation with Iayer 'N' on the second nachine. The entities

conprising the corresponding layers on different machines are called

peer processes. No data are actually transfered from layer N on one

machine t,o layer N on another machine, except below the lowest level.

Instead, each layer passes data and control information to the layer

immediately below it. This continues for each layer, until the lowest

layer is reached. Below the lowest layer lhere is direct physicaÌ

communication with another machine, â5 opposed to the virtual

communication used between the higher layers (figure 2.5).

IN

15

different networks. In all such networks, the purpose

to offer certain services to the higher layers' Àt the

-28-

-_--->

___-->

host host

- - virlual communication between layers

-
physical communication between layers

IMP IMP IMP

Communications Subnet

Figure 2.5: Process Communication Between Layers

Since the physical communications circuits are never perfect' there

is a great need for error control. Many error-detecting and error-

correcting codes are known ITanen81a, MarliSlb], but both ends of the

connection must agree on which one is being used' There must also be

communication between the receiver and the sender to inform the sender

whether or not the messages are arriving correctly, or with errors' if

there ¡¡as an uncorrectable error, then the message nust be reSent'

-29-

Not all cornmunication channels preserve

over them. 1t is possible for messages to

protocol must make explicit provision for

pieces to be put back together in the order

the ordering of messages sent

arrive out of order, and the

the receiver to allow the

the sender intended them.

Since different computers may be connected to a network, and

different networks connected together, a problem occurS with the

inability of aIt processes to accept arbitrarily long messages' This

problen leads to the necessity for mechanisms for di sassembL ing,

transmitting, and then reassembling messages' On the other hand, if

messages are very short, then it may be more efficient to gather several

short messages together, and put them in a single targe message' The

large message coutd then be split up into its original small messages at

the receiver. This optimizaLíon only works if the combined messages had

been destined for the same receiver.

When it is inconvenient or expensive to Set up a separate connection

for each pair of communication processes, the underlying layer may

decide to use the same connection for multiple, unrelated conversations.

Às long as this nultiplexing and demultiplexing is done transparently'

it can be used by any layer. Multiplexing is needed at the lowest leve1

when a}l the traffic for all connections has to be sent over only one,

or tvlo physical circuits.

2,2.4 Open Svsten Interconnection Moile1

À model of network architecture which is widety known is the

International Standards grganization (lSO) Open Systems Interconnection

(osl) reference model ITanen81a, TanenSlb]. This model Iogically

the funcLions and protocols necessary to establish and

communications between two or more parties into seven layers

Z,ü, An IMP contains onLy the bottom three layers, while

contains a1I seven layers (figure 2'5) '

groups

conduct

(figure

a host

application layer

presentation laYer

session J.ayer

transport laYer

network layer

data link layer

physical layer

performs appropriate service
for applications

provides code conversion and
data reformatting

co-ordinates interaction between
end-application Processes

provides end-to-end data integrity
and quality of service

switches and routes information

transfers units of infornration to
the other end of the PhYsica1 link

transmits bit stream to medium and
to the other host

Figure 2.6: iso/OSI ModeI of Network organization

The botton or lowest level layer is the physical layer' This layer

relates to the setting up of a physical circuit so that bits can be

moved over it. This layer is concerned $rith the physical, electrical,

functional, and procedural characteristics to establish, maintain, and

disconnect the physicat link. This layer consists of hardware to attach

- 31

The function of the second lowest Iayer, the data link layer, is to

take the raw bit transmission facility offered by the physical layer and

use it to create a communications line that appears free of transmission

errors to the network layer. To do this, the input data is broken down

into data frames, the frames are transmitted sequentially, and

acknowledgement frames sent back by the receiver are processed. Since

Iayer one merely accepts and transmits a stream of bits wilhout any

regard to meaning or structure, it is up to the data link layer to

create and recognize frame boundaries. This can be done by attaching

speciat bit patterns to the beginning and end of each frame. However

these bit patterns may also occur in the data, and care must be taken so

that the frame boundaries can be found.

to a communications cable'

various nodes'

A burst of noise on the communications

completely. When data is lost, the data

source machine must retransmit the frame.

This cable links up the physical Layers of

line can destroy a frame

Iink layer software on the

However, i f multiPle

transmissions of the same frame occur, then it is possible for duplicate

frames to arrive at the destination. This happens if the

acknowledgement frame from the receiver back to the sender is destroyed.

The data link layer must solve the problems caused by damaged' lost, and

duplicate frames, so that the network layer can assume il is working

with an error-free (virtual) line.

Besides 1ost and duplicate frames, another problem which arises at

Iayer 2 and higher is how to keep a fast transmitter fron saturating a

slolf receiver þ¡ith dala. The solution to this problem is usually

integrated with the error handling for lost and damaged packets' one

solution is for the received packets to be discarded, and eventually the

sender wiII retransmit them because no acknowledgement was received from

the receiver. This, however, is very wasteful of the communications

bandwidth, and of the network in general'

The network layer is sometines caIled the conmunications subnet

layer. The function of this layer is to control the operation of the

subnet, and to shape the characteristics of the IMP-host interface' The

network layer also deLermines how packets, the units of information

exchange in the network layer, are routed within the subnet' This layer

accepts messages from the source host, converts them t'o packets' and

insures that the packets get directed toward the destination'

À key design issue for a network is how the route is determined; it

could be based on static tables which are hardcoded into the network and

rarely changed, or it could be determined at the start of each

conversation, or it could even be hi9h1y dynanric and determined anew for

each packet according to the current network load'

When too many packets are present in the subnet at the sane time,

they will get into one anothers' way, causing bottlenecks. Hence, the

network layer is responsible for the control of such congestion and is

also responsible for generating accounting inforrnation to biIl the users

of the network. This level must at least keep track of how many

packets, characters, or bits are sent by each customer in order to

produce billing information. This information can also be useful for

- 33 -

tuning. By analyzing which traffic routes are highly used, and for what

reason, duplicate copies of data can be installed to reduce the

conmunications Ioad.

The transport layer is known as the host-host layer. This layer is

present only in the hosts, and is not present in the IMPs. The function

of the transport layer is to accept data from the session layer, and

split the data up into smaller units if need be, before passing them to

the network layer. The network layer must also ensure that the pieces

arrive at the other end. This must be done efficiently, and in such a

way that the transport layer is isolated from the session layer.

The transport layer usually creates a distinct network connection for

each transporL connection required by the session layer. If the

transport connection requires a high throughput, the transport layer

might create multiple network connections, dividing the data among the

network connections to improve throughput. This is only useful if

multiple physical paths exist out of the host, o! if different roules

will be used for each connection. But, if creating or maintaining a

network connection is expensive, the transport layer might multiplex

several transport connections onto the same network connection to reduce

costs. In aII of these cases, the transport layer must ensure that its

multipLexing or multiple connections are transparent to the session

layer.

The transport layer also determines what Èype of service to provide

lhe session layer. The most popular type of transport connection is an

error-free (virtual) point-to-point channel that delivers messages in

-34-

¡he order in which they were sent Itanen81a]. However, other possible

kinds of !ransport service are the transport of isolated messages with

no guarantee about the order of delivery and the broadcasting of

messages to multiple destinations. This first type of service is calIed

a virtual circuit, while the second is cal]ed a datagram' The type of

service is determined when the connection is established and a network

will usually support only one of the two types of service'

The session layer is the user's interface to the network' Using this

Iayer, the user must negotiate to establish a connection with a process

on another machine. The session layer can manage the conversation

between the lwo hosts in an orderly manner once this connection is

establ i shed,

A connection between two user processes is usuaLly called a session'

À session might allow a user to log into a remote time-sharing system or

to transfer a data file between two machines'

The session layer manages the session once it has been set up' if

the transport connections are unreliable, then the session layer may be

required to attempt to recover (transparently) from broken transport

connections. In a database management system, it is crucial that

transactions against the database never be aborted halfway, ôs doing so

would leave the database in an inconsistent state' The session }ayer

often provides a facility by which a group of messages can either all be

delivered, of none will be delivered if there were problems' This

mechanism ensures that a hardware or software failure within the subnet

v¡iIl not cause a transaction to be aborted halfway through' If the

-35-

Thepresentationlayer'sroleistohand}etherepresentationof

information which applications wish to exchange or manipulate' The

presentation layer performs functions that are requested sufficiently

often to warrant finding a general solution for them, rather than

letting each user solve the problems. A typical example of a

transformation service that can be performed is text compression' The

presentation layer could be designed to accept character strings as

inpul and produce compressed bit patterns as output. As weII, other

services are encryption for security, and conversion between data types

used on different comPuters'

The application layer is the layer user applications interface to' À

DBMS would communicate to the network using the apptication layer' This

would guarantee the DBMS that all of its messages would be received at

the intended host, and the DBMS would be notified of any host that is

unable to accePt its messages'

2,2.5 Network TYPes

transport layer does not order nessages'

thi s.

Networks can

by the network.

networks, and

transmi ss i on .

then the session laYer can do

are called long haul networks'

by their abititY to span cities,

be classified into two types based on the area covered

Networks which cover a small area are called lOcal area

arecharacterizedbyarelativelyhighbandwidthfordata

Networks which cover

Long haul nelworks are

a large area

charac ter i zed

-36-

countries, and even continents. in this section, wê will discuss the

benefits and drawbacks of each of these tvro network types'

2,2,5,1 f,ong HauI Netrorks

At the present time, many nations of the world have public packet-

switching networks which span large geographical distances' These

networks are often connected into multi-national networks so that

packets can travel around the world. Canada has the Telecom Canada

network called Datapac, while the united states has Tymnet and Telenet

[Marti8lb]. Most network users are linked to the network by common

carrier lines going directLy to a switching node or else to a

concentrator (a concentrator alIowS severaL communication Iines to share

one physical line by multiplexing the data over that one line, then

reconstructing the individuaL lines at the other end). This usually

restricts their maximum data rate to that of a telephone line: 9600

bits per second (bps). some users can have higher-speed digital links

into their premises if they are vritling to pay the price.

Àn example of a long-haul network is Datapac. Datapac is Telecom

Canada's public, Canada-wide, packet-switched network' The network

began in 1977 and has 19 nodes interconnected via 56 Kbps (56,000 bps)

digital transmission facilities and provides service to 60 Datapac

serving areas across Canada. Iunsoi81].

tong-haul networks permit computers which are separated by long

distances to share data and processing capabilities. $Ihile throughput

rates are not very high, they are sufficient to allow conputers on the

-37-

netþ¡ork to exchange sizeable amounts of data. However, if care is not

taken to minimize the amount of data transfered over the network, then

Iong delays wilI occur while the data are transferred' Communications

bandwidth is a precious resource in a long-hau] network, and it must be

conserved to achieve performance.

2.2,5.2 Local Àrea Networks

Networks which span targe distances can have poor performance due to

low data rates and large amounts of congestion. Performance does not

need to be sacrificed if the need arises to connect several computers in

the same or adjacent buildings. This network could then be entirely

controlled by its userS, and could have better performance than a

pubtic, long-haul net,work. This type of private, small network is

called a local area network.

À local area network (mH) is a specialized type of network which has

three distinct features. The first of these is that a LAN has a

diameter of not more than a few kilometers. Hence, a LÀN cannot span

the globe or a continent, but at most a few large buildings. secondly,

the data rate of a LÀN exceeds 1 million bits per second' Third1y, a

LAN is owned by a single organization, and is thus a private network

Itanen81a].

One reason for using a tAN is to tie together multiple machines in

the same or adjacent buildings. This allows all of the nachines to

communicate with one another, but may also allow each of them to access

a remote hOSt or another netwOrk via a gateway. A Second reason tO uSe

-38-

a ËAN is

comPut i ng '

such as fi

to exploit the advantages of functionally disLributed

This approach involves machines dedicated to certain tasks,

1e storage or database management.

tANs differ from long-hau1 networks in several ways. The big

difference is that long-hau1 networks are forced to use the public

facilities provided by the common carrier network (for economic or legal

reasons). In contrast, nothing prevents the designers of a LÀN from

stringing their own high-bandwidth cables. This means that in a LAN,

bandwidth is no longer as precious a resource as it is in the long-haul

case.

While a }ong-hau1 network uses IMPs as an interface from the host to

the network, the host in a LÀN has it.s own interface to tap into the

physical medium. Several hosts can use one IMP in a long-haul network,

and the IMps are provided throughout the network to give the network

intelligence to perform such duties as routing of messages. In a LÀN,

each host is connected to all the other hosts via a host interface, and

the conmunications medium is totally passive. Thus, each message in a

tAN is broadcast to all other active hosts. The store-and-forward

techniques offered by IMPs only occur in point-to-point networks, and

not in the broadcast LAN. Instead, one host on a LAN channel grabs

control of the channel when no other host is transmitting, and transmits

a packeL (broadcast subnet). Every other host listening on that channel

examines the packet to see if it is the intended recipient; if not, it

discards the rest of the packet. if a host has a packet ready to be

Sent, and there is a packet currently on the channel, then lhe host

holds off until the channel is free, and then transmits it. Collisions

-39-

óf , tt{o or nore
'.'.

iypes of LANs

handled in different ways in different

networkritdoesnotmatterthatonlyonehostcanbeactiveatany
instant. As weIl, the error rates in a tÀN are relatively low as

conpared to a long-haul network. LANS can also be connected together by

having each LAN have a gateway to a long-haul network Ischne83]'

2,2,6 Network Perfornance Críteria

transnissions are

Itanen81a].

Both 1on9-hau1 networks and

criteria if theY are to Perform

for networks are: throughPut,

reliabilitY, and accuracY/errot '

Network overhead

two types of de1aY

local area networks must meet several

well. Five major performance criteria

delay, availability/accessibility,

In packet switched networks r a packet is the standard unit of

information transfer IMarti8lb], and the efficiency of the resource

utilization is usually expressed in terms of packet throughput' This

number is highly variable according to the packet Iength, amount of

piggybacking of acknowledgements, error and retransmission rates,

priority control, network overhead, number of 1o9ical channels, and

various flow control mechanisms. Network overhead encompasses header

and trailer bits for packets, called setup packets, ê5 well as network

activity and congestion statistics passed around by the nodes in the

network.

causes delays in lhe delivery of packets' There are

inallnetworks:componentdetaysandneLwork

-40-

transmit deIaYs ' Component delays are caused by the node hardlvare '

Each node nrust fuIly receive a packet before it can be retransmitted'

As welI, there is some processing time involved before this turnaround

can occur. Then, outgoing packets are queued for transmission and may

be held up due to higher priority packets, scheduling policies, errors

or trunk protocol. Network transit delay is defined as the elapsed time

between the correct receipt of the last bit of a packet at the source

line processor and the correct delivery of the last bit of the same

packet to a transmit queue of a local tink at the destination line

processor. Datapac attempts to keep this delay below one second for 90e"

of the packets. overall, Datapac attenpts to keep the node-to-node

communication path operational 99.85e" of the time IUnsoiS'1]'

Due to errors and lost packets, there is a certain amount of packet

retransmission. Thus, the network attempts to increase the accuracy of

packeÈ communication by detecting transmission errors, and

retransmitting the Packet. However, Do error detection scheme is

perfect, and some errors are passed on. Datapac's objective is an

undetected packet error rate of less than one error in 1010 packets

lunsoiE'11.

Errors are usually caused by physical processes such as lightning,

surges on povrer lines, and electromechanical devices at older switching

offices. whenever two cables carrying signals are in close proximity,

they can cause interference with one another. Errors tend to come in

bursts rather than singly. Error detection is accomplished by adding

some number of check bits to the end of each packet. If the packet is

received and the check bits are correct for the received data, then it

is assumed that the packet was transmitted without error.

-41

À method in widespread use for error detection is a polynomial code

(also known as a cyclic redundancy code or CRC code) [tanen81a]. The

basic idea is to append a checksum to the end of the message in such a

,,ay that the poLynomial represented by the checksummed message is

divisible by some generator polynomial G(x). When the receiver gets the

checksummed message, it tries dividing the message by G(x). if there is

a remainder, there has been a transmission error'

The transformation performed on the input data is parameterized by a

polynomial of degree k. The exact transformation process is described

by Tanenbaum in Itanen81a].

is proportional to k. À

The cost of performing this transformation

Iarge k will detect a l-arge percentage of

errors, but at the same time increase the size of every packet by k

bits. The amount of computation required aLso increases with k. These

two arguments support using a polynomial with a small degree. There is

a trade off between undetected errors and the costs of computation. À

16-bit checksum in common use is CRC-CCITT:

CRC-CC1TT = ¡1 6+x1 2+x5+1

This generator polynomial creates a '15-bit checksum, catching all

single and double bit errors, all errors involving an odd number of

bits, all burst errors of length 16 or less, 99,997e" of 17-bit error

bursts, and 99.998c" of 18-bit and longer bursts Itanen81a]. There is

thus a slight possibility for a packet with transmission errors in it to

arrive with the errors undetected. Because of the millions of packets

that travel through a network daiIy, it is possible for undetected

errors to occur once every day or longer, depending on the polynomial

used. It is left to the higher levels of software to detect when these

-42-

errors occur. This could be done by applying another different checksum

intheuser,ssoftware,orassuningthatthepacketwillbesobad}y
damaged, that the software will reject the packet'

Theperformanceevaluationofanoperatingnetworkcanbe

accomplishedbytheuseofseveraltechniques,twoofthesebeinq
analytical and simulation models. Most of the techniques require

performance measurement data collected f rom Lhe network ' Datapac' s

nodes continuously generate performance statistics about their

components' behaviour and these statistics are reported to the Network

control Centre every 15 minutes. ÀISo, network component failures and

recoveries are signalled by transmission of alarm records to the network

control centre. Thus the network generates feedback about changing

network conditions. This allows the network to change routing

parametersdynamicallytoavoidcongestedandfailedareas.Note'

however, that aI] the performance information is sent over the network

via packets, thus adding to congestion' and slowing response'

2,2,'Ì Enhancenents lo Basic Network Services

Whensevera]computersareconnectedtoanetwork,theyhavethe

facilities for potentially robust, reliable comnunications between each

other. Àn application such as a DBMS transaction may make substantial

use of the netv¡ork to transfer data between the various computers' The

network may even be the bottleneck which slows down the response time

for transactions.

-43-

While the network guarantees to deliver your data; it does not care

how the data are represented. The DBMS (or any other application) may

choose to compress its data before transmitting, and expand its data

upon receiving. Doing so neans fewer bits are transmitted through the

network. This has two benefits. First, less data means fewer and

shorter packets, and this means Lhe network can deliver the packets in

less time with less chance of congestion occuring. secondly, since

users are typically charged for the data volume transmitted, fewer and

shorter packets mean lower cost. The major advantage is that of speed'

With the delivery time of data being the slowest part in transaction

processing, lessening the amount of data traffic directly decreases the

real time needed for Processing.

A side benef it of data compression is that the data are nolr

unintelligible to all that do not know what methods were used for

compression. This is not a very secure method for keeping data Secret'

but it means that the intruder must take some effort to expand the data.

A more secure nethod is needed for data security; a way to encrypt

data so that an unauthorized individual wiII never be able to decode the

original information. In this section, we wiIl examine some methods

used for daLa compression, to reduce data traffic, and data encryption'

to keep data secure from unauthorized users'

2,2.7.1 Text ConPression

In many applications, messages sent through a network consist of just

numbers, oE just alphabetic characters. If a data item can hold a

-44-

number with twelve digits, and a two digit number is stored in that

field, it is possible to just transmit the two digits, ignoring the

leading zeroes. Às most fields are defined to hold worst case values, a

grea1 data transmission savings can be had by not transmitting redundant

information.

If the field were alphabetic, and the field size were 100 characters,

a savings could be had by not transmitting leading and/or trailing

blanks. A count of the number of blanks could be sent instead. In many

applications, a good part of the data consists of blanks or zeroes' As

long as some indication of what was compressed out is implied or sent

with the data, then the data can be faithfuLly reconstructed at the

receiving end.

The data sent over a transport connection can be viewed aS a sequence

of symbols. These symbols are drawn from some (possib).y infinite) set

of symbols. Text compression may be done in three general ways based on

ITanen81a]:

the finiteness of the set of symbols

Lhe relative frequencies with which the symbols are used

the context in which a symbol appears

If all alphabetic data stored are in upper case, then it is possible

to achieve a savings by not transmitting all the bits used to represent

every character. usually alphabetic data are transmitted in I bits (1

byte ASCIi). However, it is possible to express all upper case letters'

numbers, and sone special symbols with just 6 bits (ø+ different

characters). If only upper case letters are needed, then 5 bits (32

different characters) can be used.

t.

2.

J.

-45-

While each field of data can be compressed via individual algorithms,

the resulting data usuaLly stilt have some globa] pattern in it' For

example, in English Lext, certain letters occur more frequently than

others. For example, each of the vowels occur more often in this thesis

than the letter 'z'. It should then be possible to achieve a savings in

space by representing frequently used characters with a small number of

bits, and infrequentty used characters with a larger number of bits'

A code compression technique which does this type of compression is

calted Huffman coding Itanen81a]. Huffman codes express the most

frequent symbo] by using only one bit. The second most frequent symbol

would be expressed in two bits. The less frequent the symbol, the

longer the bit string needed to transmit the symbol. Huffnan codes can

usually result in a saving of over thirty percent of the total number of

bits required Lo transmit a message.

Larger saving can be made by first removing leading and trailing

blanks and zeroes, and then huffman encoding the result. While the data

transmission savings are large, â PÍice is paíd in the expense of doing

the compression and expansion. With the decreasing costs of VLSI, it

should be possible to do compression and expansion in external hardware,

rather than using the computing power of the host.

2.2,7,2 Data Security and PrivacY

Data compression can provide some security for the transmitted data

as long as the compression algorithn is kept secret. This is not really

feasibler âs there are only a few good techniques for data compression,

-46-

and it would not take long for someone to try a}l possible expansion

algorithms until the data became intelligibte'

In the days before disLributed processing, achieving security was

quite easy. As long as only authorized personnel were allowed access to

the computer, flo breach of security could occur without the full

knowledge of Someone. However, when remote terminals were added to

computer systems, Security became more difficult. No longer was a guard

sufficient to enforce who was allowed access to the computer' Ànyone

who could gain access to a remote terminal could attempt to wreck havoc

with the comPuter system.

With distributed processing and networking, the situation becomes

worse. The millions of bits which flow through a network cannot be

policed by anyone. They are vulnerable at many points. No longer must

Someone break into a computer to steal information. Anyone with a

satellite or microwave antenna can pick up these transmission, which are

commonly used for long-haul networks [Voydo83] . Telephone company

cables can be easily tapped on the user's prenises'

With so much data available with such easy access, computer break-ins

are probably much nore frequent than reported, as most places fear to

admit to computer security lapses or the ease with which security can be

violated [Parke84, PerryE4]. The best and only safe way to protect

Lelecommunications from wiretapping is to use some type of encryption

(atso caLled encipherment) to ensure that the data are unintelligible to

all bul the intended reciPient.

-47-

' ,n, enciphering and deciphering of messages is called cryptography'

and the art of breaking ciphers (encrypted text) is calIed

cryptanalysis. The messages to be encrypted are known as plaintext' To

encrypt the plaintext, it must be transformed by some function that is

parameterized by a key. This key can usually take on a very large

number of possibilities, making it almost impossible to guess'

The data to be transmitted through the network are the output of the

encryptionprocess.Thisoutputisknownasciphertextora
crypt ogran.

There are only a few known exceLlent methods of encryption' Because

of the sma11 number, one can normally assume that the cryptanalyst knows

the general algorithm used to encrypt the text he wishes decrypted' It

is usually inrpractical to keep the algorithm secret because of the vast

amounts of effort needed to invent, Lest, and install a nevr algorithm.

Instead, it is much easier to keep secret a key. only the sender and

the receiver need know the key. The correct recipient of the

transmission can decrypt the data through the use of this correct key'

I,tithout knowing the correct keyr âD intruder can still intercept and

record the encrypted transmission. I¡tith some effort, he may eventually

be able to guess the proper key, at vrhich point all the messages he

recorded can be decrypted with ease'

some intruders may only wish to listen to the network communications'

lthile others may wish to play back older messages, insert nel{ messages,

or rnodify legitimate nessage before they arrive at the intended

-48-

reciPient ' The

only goal is to

active intruder '

messages, he

transmitted over

first type of intruder is a passive intruder, and his

obtain information. The second type of intruder' ôD

has many goals. By modifying and inserting his ovln

is able to obtain data which may not normally be

the network.

The encrYPtion techniques must

breaches. The general algorithm used

secure. This is to Prevent someone

decrypt the cipher. If this occurs'

thought to be secure are no longer '

prevent all of these securitY

for encryPtion must be stable and

from discovering an easY waY to

then imPortant data which were

If the algorithm is stable, then it must be parameterized by an

easily changed key. This would allow a nevr key to be chosen any time

security was thought to be breached. The key nay be changed as often as

required, whereas it is not practicat to frequently change the general

encryption algorithm. Just as there are many different keys to fit a

few different designs of locks, there are many possible keys for the few

encryption algorithms.

There are two main requirements of encryption algorithms' First,

only the intended recipient should be able to decrypt the transmission

successfully. Second1y, only the rightful sender should be able to

encrypt the transmission so that the receiver can decrypt the data'

This is to prevent some oLher sender, other than the rightful one' from

creating or altering messages. This may seem unimportant at first, but

it prevents someone from creating or altering encrypted messages'

-49-

Several criteria are needed for encryption to work. There needs to

be a high degree of secrecy. For example, in a system which employs a

key that is used only once, absolute theoretical secrecy is possible.

if the key is guessed, it can only be used to decrypt a snall portion of

lhe message. In order to do this however, the key size must match the

data size. This is impractical for large volumes of data. The main

problem is how to generate, store, and transport this large key.

To maintain secrecy, the key needs Lo be changed fairly often. To do

this, both the sender and receiver are required to change their keys

simultaneousJ.y. This requirement requires that the key be sma11.

For encryption to be useable, the encryptionr/decryption process needs

to be fast; it should neither delay the transmission nor consune an

excessive amount of computing resources. Àt the sane time, the size of

the message should not be increased. Some algorithms increase the size

of a message in order to invalidate the use of statistical techniques in

deciphering. When data volumes are large to begin with, the encryption

process should not make them larger.

Unfortunately, these criteria do not work well with each other. A

balance must be found between the various criteria. I.iith the decreased

computing costs in using VLSI, it is now possible to put an encryption

algorithm on a chip. This decreases the load on the main system, but

since the algorithm is nov¡ in hardware, it is more difficult to change.

As well, a chip can easily be purchased or duplicated.

Encryption has been used since the days of Julius Caesar. In those

days, the military used encryption for battle plans. One of the

-50-

i.lìJ:.Ltr.r.

*j;j'trrt tvpes or ciPhers used was one in which every letter is replaced

This cipher can easity be broken if one knows

of the letters. For instance, the letter 'e'

in the English language, hence the most common

text probably represents an 'e' (assuming the

; t different letrer'

relative frequencles

i**t i, in English)' A space is also very common in any kind of text'

and spaces often occur in multiples, such as in paragraph indentation,

and for separating fields in columns'

.Whiletheseear}ysimpleencryptiontechniquesworkedwellfor

centuries, these ciphers were easily broken with the advent of the high-

speed computer. What took hours or days to decipher by handr Côrl now be

done in seconds' Modern cryptography uses the same basic ideas as

traditiona}cryptography,exceptthattheemphasisisdifferent.The

object no'{ is to make the encryption algorithm so complex and

convoluted, that a cryptanalyst will never be ab]e to make Sense out of

it (never is assumed to be a length of time far greater than the length

of the time the encrypted data are useful' which could be two weeks or

hundreds of Years) '

Even with an excerlent encryption argorithm, there is a problem in

that the keys are chosen by the end users. People tend to choose a key

which is small and easy to remember, such as'sÀtLY'or'FIDO" This

makes it much easier for the cryptanalyst to break the cipher since he

may try many possible keys until one works. He may try various names,

pet names, and street names trying to guess the correct key' Hackers

with persistence and ingenuity can usually find a vray to break an

uncrackable code'

-51

the solution to this problem is to have long keys. with Ìon9 keys,

there can be a selection from many different possible keys' Another

solution is to intersperse nonsense data among the real data' This is a

v¡aste of bandwidth, but produces a code which is difficult to break

because the position of the real characters and messages is a carefully

guarded secret and is changed whenever the key is changed.

Encryption may be done at any level in the network hierarchy, using

hardware at each end of the communications Iines to encrypt,/decrypt the

data, to encryption done at the highest layer, by software, or special

hardware IKakgg]. This second method is not transparent to the

software, as the software must then process encrypted data.

These two methods of data encryption differ in several aspects' When

encryption is done at the lowest level, the installation management

chooses the encryption method. If encryption is done at a higber levef'

no user is forced to live with an algorithm he feels is too weak' When

done at a high level, a user can also change his encryption technique

whenever he likes, and can thwart attempts to decipher his data'

Another problem with encryption done at the lowest level is that, if a

hardware error causes a message to 9o to a wrong destination, it rvill

arrive decrypted. If someone gains access to one node, he may use that

node to decrypt transmissions with very Iittle effort' However, if each

user is using a different encryption algorithm, then the misdirected

information will be received garbl-ed and no harm is done.

in lhe Iso-osI environment, encryption can be done between points in

the subnet, al enúy/exit to the subnet, or at the presentation level'

-52-

Of course, more than one of

loavieE'1 l '

Ifcarriedoutintherightway,enciphermentatthebitlevelcould

concealwhetherornottrafficispassingovertheline.Encipherment

thatispartoftheOsllinklayerdoesnotrevealnetworksourcesand

destinations,butitrevealsthetrafficlevelandthesizesofthe
frames, which might be useful information to an enemy in exceptional

c i rcumstanc es '

I.Tithin the switches, nultiplexers, or concentrators' the information

isnotencrypted,Sodatasecuritydependsonthephysicalsecurityof

these functions, on the truslworthiness of their operators, and on the

accuracyanddegreeofprotectionofthesoftware.Thismightbe
acceptableforaprivatenetworkinwhichtheinterestsoftheusersand

the subnet operator coincide, but it would not be acceptable when a

public data network is being used'

In a network employing distributed processing, layer one or tvro

enciphernrentwouldnotgiveefficientsecurity.ItdoeshaveauseaSa

methodofconcealingtrafficflow,whichwouldbeausefulservice

feature provided to alt users of a public network'

End-to_endenciphermentcanbeincorporatedatanylayerabovethe

networklayer:transport,session'orpresentation'Thecloserthe

enciphermentistotheenduser,themoreitisunderhiscontrol'
providingthemostsecurityforthedatabeingcarried.Àtthesame

time,ittendstorevea]toaline_tapperhowmuchdataiscarriedand

howitisbeingused.Thus,sincetrafficinformationcanbestbe

these can be Present at the sane time

-53-

É;

I

l

tì.al

tlì
:.

:llìì

,iìl
r:ì.

concealed at the lowest level' but

at a higher level, a combination of

data are more secure being encrypted

encryption at both levels is best'

Node-to-node encipherment employs a different key for each Iine

entering and leaving a node. The packet headers, in which routing

decisions are made, are transmitted in unenciphered form' using this

information, the switching node can nrake its routing decision' The

packet data are then deciphered and re-enciphered in a physically

prolected security module that contains a key for each physical Iine

into a node. Thus, each path a packet takes enciphers the packet

di f ferentIY.

In a private network where complete trust exists between users of a

subnet and the operator of the subnet, encryption at any level is

possible. when a public data conmunications network is used, some form

of end-to-end encipherment is needed for the user's safety, and at the

same time, the network could well provide encipherment at layers one or

two, particularly over such vulnerable Links as microwave radio or

satellite transmission paths. Encipherment at layers one, two' four'

and six are being considered for international standardization

lDavíe81 l.

One way of encrypting data is to use the Dati Encryption Standard

(ons) [nipszf]. This method uses a 56 bit key' but has the problem that

it requires the receiver of a message to use the sane key for decrypting

the message as the sender used for encrypting the message. Many believe

this key is too sma]I, and DES in its present form will be obsolete by

1990 [Davie81], as VLSI will allow cracking DES encrypted data in a

-54-

short period of time (within a day or less) [Oif't'î77]' There is also a

problem in distributing the key securely. Traditionally, keys were

generated at a central source and distributed by courier. For many

receivers, this method is cunbersome and unsatisfactory, especially if

security requirements dictate changing the keys daily. It would be much

more convenient to distribute the keys over the network; but to do so

would mean that the keys themselves require encryption to prevent

unauthorized access to them.

À more secure method for encryption, though more costly in terms of

processing power required to encrypt/decrypt, is public-key cryptography

IOitti76]. Cryptographers generally assumed that both the encryption

and decryption keys had to be kept secret. Public-key cryptography uses

an encryption algorithm'E' and a decryption algorithm'D' with'D' and

'E' chosen in such a way that deriving 'D' given a complete description

of ,8, would be effectively impossible. Therefore, 'E' can be made

public. Àny perSon or organization wanting to receive secret messages

first devises two algorithms, 'E' and 'D'. The encryption algorithm or

key is then made public, and hence the name public-key cryptography'

while the key for public-key cryptography is larger than a DES key, the

key is still small compared to the amount of data in one paragraph of

text .

Theonlyproblemwithpublic-keycryptographyistheneedfor
algorithrns that satisfy aII the requirements. One method developed at

M.I.T. by Rivest et aI. [nives78a], uses two prime numbers, each greater

than 100 digits long. The product of the two numbers is found and it is

made public. The security of the method is based on the difficulty of

-55-

f.acLoring large numbers and the ease of finding large (100 digit) primes

to multiply together. Factoring a 200 digit number requires 4 billion

years of computer time.1 Rivest in IRives78b] comments on the difficulty

of attacking the M.i.T. public-key cryptosystem, and ends up saying that

it is almost a waste of time, âS the chances of success are extremely

small (/1oso),

other methods exist for public-key cryptography. one such method is

described by MerkIe and Hellmen in IUerkt78], in which trapdoor

knapsacks are used. The knapsack problem is believed to be extremely

difficult to solve in the general case, beJ-onging to a class of problems

that are thought not to be solveable in polynomial tine on any

deterministic computer. Shamir and Zippel in IShami80] comnent on the

resistance to cryptanalytic attack of this method, and they give some

enhancements to the method to make it even more secure.

Muller-Sch1oer gives the details for a hybrid system which uses both

the quick DES method with the more secure public-key method in

luutteg¡]. To starl a transnission, the sender generates a random DES

key, and uses the public-key method to securely send it to the

recipient. The rest of the message is encrypted v¡ith the DES method

using this randon key. DES is used for the bulk of the work because it

is fast, inexpensive, and easy to use. DES chips are available on the

marketplace, the only problem in using them being that all receivers

need to know the correct key to decrypt incoming messages' To keep DES

1 Àssuming the best known
Eime. I ncreasing the

algorithm and a 1 micro-second instruction
spãed of computers by several orders of

mucÎl di f f erence, f or even an increase in speed

still require 4 years, ât which point largermagnitude will not make
of a billion times will
numbers could be used.

-s6-

secure, the key must be changed frequently. The only easy way to do

this is to place the DES key in the transmission, but to protect it, it

nust be encrypted; hence the choice for public-key cryptosystems for

this job. This hybrid system combines the best of both cryptosystems,

while eliminating some of the drawbacks of each'

It should be obvious that even if computers become much faster, data

will remain Secure for a J-ong period. However, Do one has yet proven

the absence or presence of a method that would allow the cipher to be

broken quickly. No matter how good the encryption, the security of the

data are still aL risk through human carelessness or desire Inushb83].

Some people search through garbage cans for computer printouts looking

for passwords and encryption keys. Others can find out passwords by

looking over Soneone's shoulder, oF by tricking them into revealing the

key. Ciphers, of whatever kind, do not produce absolute security. In

each case they require a secret key. Therefore' Security always depends

on the physical integrity of a device as well as on correct system

design and software.

2,3 EXISTING CO}.IPT'TER NET}TORKS

In this section, we examine Several of the popuJ.ar systems

linking distributed machines. These networks are the backbone of

distributed database systems discussed in the following chapters.

for

the

One of the earliest networks to be designed was SNÀ'

sNÀ before any standards existed for networks. DECnet

later, but was designed for DEC computers.

IBM

vla s

developed

developed

-57-

, A network designed especially for distributed database management

systerns is ReINet. ReINet is not a full network, but instead fits on

top of an existing network and provides some ancillary functions vital

to the successful operation of a distributed database system.

2,3.1 Svslens Netrork ArchitecLure

À network which has been in use since 1974 is IBM's Systems Network

Architecture (sH¡). SNA is itself a packet switched network and runs in

conjunction with the Terminal Control Àccess Method (tC¡u) or with

Virtual Terminal Access Method (vr¡u) in the IBM-conpatible host and the

Network Control Program (HCp) in the 3705 conmunications controller

Isusse78], Isunds80].

An SNA network is made up of nodes connected by data links. Each

node contains a path control element for routing, as many data link

control (nrC) elements (to schedule transmission) as there are Iink

connections to adjacent nodes, and a Physical Unit (pU) to activate and

control the links. There are a variable number of Logical Units (r,U)

which act as ports into the network for end users. Communications

controller nodes perform useful network routing and controL functions

without necessarily containing tUs, but most SNA nodes contain one or

more LUs.

Àn SNÀ network may optionally implement a Systens Services Control

Point (SSCp). These control points provide two kinds of services to the

network. First, they connect the network operator(s) to the PUs in the

neti¡ork. The connection between a control point and a PU is called a

-s8-

iSCp-to-pU session. This session aIlows activation, deactivation, and

status monitoring of the resources of the network from network operator

sites. Secondly, the control points co-ordinate the creation of

sessions betrveen LUs. Two of the services provided are: the resolution

of tU names (used in login requests from network users) to LU addresses

(so that the netv¡ork users are not sensitive to changes in network

configuration) and allocation of access to LUs that are serially

reusable ISctrulgl]. (Serially reusable refers to a resource that cannot

be shared concurrently, but can be reused by another process when the

first process has finished with the resource.)

When multiple computer systems are connected into SNÀ networks,

processing can be distributed in several ways. When the system contains

two or more Job Entry Subsysten 2 (JES2) cornponents, a network job entry

application is available to the remote job entry (nJe) work station.

This allows jobs to be submitted at a systen with JES2 for execution at

any JES2 system.

A transaction from a terminal on one system can be processed on

anolher system, or the data required for that transaction can be passed

to the originating system. Thus, the SNÀ architecture permits

transaction routing and access to remote data, but it also allows

arbitrarily distributed computations. By dividing an application into

two or more pieces that run attached to separate tus, the abil-ity to run

the application on t,wo or more separate processors is created.

SNA supports multiple links operating concurrently between the same

two adjacent communications controller nodes. These parallel links

-59-

ow increased bandwidth whenever it is required and provide increased

$iaiiauitiry and retiability through redundancy. sNÀ allows paralrel

Lìì;*r to be logically grouped, and provides a transmission group

$¡iroro.ot,
which automatically distributes traffic across the Iinks of a

$li.;irrn. This protocol compensates for degradation resulting from errors
l::.:''r

iì:òn uny of the links in a transmission group; sessions uslng a

iìirunr*irsion group are disrupted only if the last remaining link in the

çroup faiIs. The receiving transmission group component reorders

traff.ic that may have arrived out of order because of messages having

different lengths, or as a consequence of retransmissions due to errorS'

., Ànother reason for additional links is tariff considerations which

make multiple slower-speed Iinks less expensive than a single high-speed

Iink or because the highest available speed of a single link does nol

provide sufficient bandwidth. I¡iith multiple links, a single link

failure is not disruptive to sessions using the transnission group'

Session traffic is automatically routed over the remaining links in the

transmission group.

Network availabilitY can also be increased by providing multiPle

routes between the same two points, So that disrupted sessions can be

reconnected and traffic rerouted to avoid failing intermediate nodes as

well as failing links. MuItiple routes can also be useful for traffic

Ioad-leve]ing. SNA uses a form of rouLing called explicit routing'

r¡hich when activated in a session, is assigned to a particular route'

ExpLicit routing alIows the user to have control over the selection of

the physical path used for session traffic between nodes. For example,

low-delay routes can be chosen for better response and secure routes for

-60-

sensitive data (because of tariffs, the shortest route is not

necessarily the cheapest). vancouver to loronto may be cheaper by using

an American network with connections to a canadian network in vancouver

and Toronto (tiris may not be lega1). If both networks operate at the

same speed, the Àmerican route is slower, but in most cases the cost

advantage wiIl outweigh the speed degradation. Routing schemes that

allow routing decisions on individual messages, based solely on

congestion conditions, do not provide the same measure of control'

Transmission groups are used to nove data between adjacent nodes;

explicit routes provide routing between two, not necessarily adjacent'

nodes. In both instances, traffic is handled in first-in, first-out

(rtno) order.

Àny network has a maximum throughput limit, which cannot be exceeded

even if the network traffic is unbounded. Due to cost considerations'

commercial networks are normally designed so that peak network traffic

loads occasionally exceed storage, cycle, and bandwidth capabilities of

nodes and links within the network. sNA seeks to prevent significant

network throughput degradation and to prevent network deadlock

conditions as network load increases through the

mechanisms ISchul81].

use of flow conlrol

To maintain network throughput as network load increases, sNÀ

provides global and local flow control mechanisms. GIObat flors control

is accomplished through the use of virtual-rouLe pacing' This means

that independent sessions have traffic within the network contending for

the same storage, cycle, and bandwidth resources. when the virtual

-61

route is prevented from sending by its pacing algorithm, it queues

session traffic untiL a virtual-route pacing response arrives indicating

that adequaLe resources are available within the network to transport

fiaf.f.ic across the virtual routes. The queuing for entry to the transit

network ensures that it will not become overloaded.

Session pacing has characteristics similar to route pacing, but the

purpose of session pacing is to prevent a fast sender from swamping the

receiving session.

session traffic flows through the network at one of three

transmission priority levels. Traffic at a higher priority is queued

ahead of any lower-priority traffic at each transmission-group send-

queue. t{ithin each priority level, traffic is queued FIFO for delivery

Lo an adjacent node. The FIFO queues are aged to ensure that lower-

priority traffic is not completery stopped. The oId, low-priority

packets have their priority increased proportionally to lhe amount of

time they sit in the queue. Eventually, a low-priority message has its
priority raised to be higher than all the other packets in the queuei

the packet is then transmitted through the network. Because virtual-
route pacing responses are so critical to network performance, they are

transmitted at a fourth priority - ahead of all other virtual-route

traffic, thus ensuring that heavy traffic in one direction will not

interfere lrith the flow of virtual-roule pacing responses in the other

direction; if such interference were allowed, it would decrease network

throughput under heavy loads.

-62-

Transmission priority is useful for ensuring continued good response

tine to favoured applications during periods of network overload' And'

since the network will displace Iow-priority traffic with higher-

priority traffic, bulk data-transfer appJ.ications can be run

continuously instead of being scheduled for specific slack periods'

These applications utilize spare network capacity when it is not needed'

Distribution of data in a network requires the transportation of data

from sources to destinations. In an SNÀ network' the method of

transportation of data between nodes can be tailored to the needs of an

application. Link data rates can run from 600 bps to 230,4 Kbps on sDLC

Iines, or channels can be used as links. These channels operate at peak

data rates from 10 kilobytes per second for a small controller up to

hundreds of kilobytes per second for the IBM 3705 communications

controllers.

A service available to SNA sessions is that of encryption of all user

data or of selected packets of user data. Security for the session can

also be enhanced by selection of a class of service that causes the

session to be assigned to physically secure routes. For instance' the

nodes night be in secure locations while the lines along the secure

routes might employ transmission level cryptographic techniques. sNÀ

uses an 8-byte key and follows the DES encryption standard.

SNÀ allows the use

Terminal Option (Hto)

appear to the rest of

of st,art-stop terminals by running the Network

along l¡ith NcP in the 3705. These terminals

the network as SNÀ peripheral nodes.

-63-

2,3,2 DECnet

Oigital Equipment Corporation's (OnC) Oigital Network Àrchitecture

(pH¡) is the standard structure for DECnet network products, which

support the flexible interconnection of Digital's families of computers

while providing an easy-to-use interface. DNÀ defines the interfaces'

structures, and protocols that comprise the design of the network

intercomputer communication mechanisn'

DNA was designed to create a communications mechanism supporting a

wide range of user applications, host computer systems, and interconnect

technologies. DNA architecture supports communication between hosts'

independent of the physical structure of the underlying data transport

network. The overall operation of the netv¡ork is not adversely affected

by the failure of a topologically noncritical node and/or channel'

critical functions such as nessage routing, conmunications

establishment, and network maintenance should use distributed algorithms

IGreen82] .

The communication nrechanism of DNÀ creates a sequential, ful1-dupft*'

error-free, message-oriented communications path connecting processeS in

the network. This path is independent of the underlying network

topology and characteristics of the individuaf communication channels'

To initiate comnunications between two processes ' one process

requests that a logical link be created between itself and a remote

process. The network requests conmunication with the remote procesS

and, assuming no conflicts and an acceptance by the remote process' the

logical link is created. The two processes are then free to send and

receive nessages sequentially over the link'

-64-

Flow control functions allow the data receiver to control the rate of

transfer over the link to match buffer availability. Data may be sent

in either short segments (part of a message) or longer nessage blocks'

The network divides these longer message blocks into smaller segments

for transmission, reassembling them at the destination.

In addition to the normal logicat link data path, there is an

interrupt data path over which short, high-priority messages may be sent

to notify the remole process of speciat conditions and events occuring

within the aPPlication. This interrupt data bypasses the normal data

flow control mechanism and, in some implemenLations, actua)-ly causes a

program interrupt to the receiving process. When communication is

complete, either process may disconnect and terminate the logical Iink'

Àn important component of logical Iink operation is the addressing of

the communicating processes within the network. Objects are referenced

via two-component addresses. The first part is the address of the

system within which the object resides, the node address; the second

part is the address of the object within that system, the object

address. Although DECnet does not provide for global addressing of

objects without knowing their node address, this function can be easily

added by creating a globa1 network directory and resource manager which

would be accessed to nap global name references to spec i f ic 'node,

object' pairs.

' Since DNÀ was designed prior to the ISO OSI standard' DNA is divided

up into six functional layers: physical Link layer, dat'a link layer,

transport layer, network services layer, session control layer and

-65-

,:t

:!r:iir:

application 1ayer. However, DNA structure corresponds very closely to

the iS0 architectural model but differs in the names and, functions of

some of the layers. The DNÀ transport layer corresponds most closely to

the IS0 network layer, and the DNÀ network services layer corresponds to

the IS0 transport layer.

The transport layer of DNA creates a network pathway among the nodes

of the network via a routing function. By using the data link layer for

transmission of message blocks over individual channels, the transport

Iayer routes messages among the network channels, connecting them into a

path between a source and destination node. The path is not maintained

on a per user pathway basis, as in circuit-switched systens, but on a

node-addressed basis by having the transport layer at each intermediate

node examine the transport header of the routed message and determine

the outgoing channel that forms the best path lo the destination node

based on its routing table. Each message given to the transporl layer

is treated individually. The routing algorithm and table determine

whether all messages to a given destination follow the same route or

whether that route changes based on the occurrence of specified events,

such as operator demand, channel failures, or queue delays.

The transport layer makes an effort to deliver all messages presented

to it, but it does not guarantee deJ.ivery, sequential deliveryr or

destruction (deletion) of messages in a bounded amount of time. This

service requires higher levels of the architecture to use a message

numbering, acknowledgenent, and retransmission mechanism to recover from

Iost messages, and to be concerned 9¡ith old duplicates caused by their

own retransmissions.

-66-

The dist.ributed routing algorithm used by DNÀ is based on the premlse

that lhe best total path from a source node to a destination node,

calculated in a distríbuted fashion, is the sum or concatenation of the

many individual node-to-node best paths. Each node individually

naintains a list of its best next hop (outgoing channel) to each

destination. Messages to be routed are transmitted via that best next

hop. The next node does the same, thus building a total best path from

the source node to the destination node. This determination of best

path is based on a cost function. Each outgoing channel from a node is

assigned a cost to route a message through ihut nodt over that outgoing

channel. The better the route, the lower the cost' cost is usually

based on Iine quality characteristics such as delay, throughput, or

error rate, but may also include characteristics of the switching node

such as buffer resource availability and processing capacity' These

cost values are assigned by an offline algorithm and can be changed by

an operator or program. If the costs of all channels are set to the

same value, the paLh chosen will be the one with the minimum number of

hops.

2.3,3 ReINet

The ReIiable Network (nel¡let) consists of a set of facilities

intended to ensure reliable communication and co-ordination among

related processes operating at sites connected by means of a

communications network. in a distributed system' a function wiIl in

general be realized by means of a number of processes, executing in

parallel at distinct sites of a network. Às these processes execute'

they will find occasion to communicate and synchronize with each other'

-6'l-

Individual sites and processes can fail at any time, and each site must

be prepared to recognize and react !o the failures of its cohorts; the

sites with which it co-operates and interacts. One approach would be to

ernbed this responsibility in the application logic and code of each

cohort. A better approach would be to factor out this logic and code

and thereby provide the application program with a view of the

environment which exhibits a degree of reliability that simplifies the

prografn. This is the approach implernented by RelNet. RelNet provides

each process running in the system with a seL of facilities for rel-iable

communication and interaction with other processes; these facilities can

be utilized by invoking a set of procedure catls. ReINet is used

instead of whatever communications facilities are provided by the actual

communications network connecting the siLes in the distributed syStem'

Thus ReINet functions on top of the real network, and enhances its

operat i on .

The basic function of any network is to allow for inter-site

communication. RelNet can be thought of as a virtual network that

provides several additional capabilities. The network contains a single

globaI clock that any site can access. This cl-ock's function is to

impose a uniform and consistent ordering on events occuring at

different sites in a distribuLed system.

Every network site is at any one time in one of two States, UP or

DOWN. The UP state is characterized by correct operation and by Limely

response to nessages sent it by other sites; a site in the DOWN state is

not operalional. Transitions between these two states occur

instantaneously with respect to the gtobal clock. Àny process has the

-68-

abilitY to ascertain

to request that it be

the correct status of any site in the network, and

informed when that site changes its state'

The reliable comnunications service offered by ReINet makes two

guarantees [Hamme8o]. The first is that messages sent from one site to

another are received in the sane order as they are sent. The second is

that a message can be sent to a site that is DOWN, by requesting

guaranteed delivery. ReINet will then guarantee that the message will be

received by that site upon its recovery. Receipt takes place even if

the sending site is DOWN at the time the destination site recovers.

Consider the situation which occurs when a sender sends a message to

a site that is DOWN. If the message is not marked for guaranteed

delivery, then it is discarded. If the message is marked for guaranteed

delivery, then the message will be delivered some time after the DQWN

site comes uP. If a second message is sent to this site from the same

originating site after the crashed site recovers, then it is possible in

general, for this second message to arrive before the first guaranteed

nessage. In RelNet however, the first guaranteed message will arrive

before the second message. Hgwever, RelNet cannot guarantee that any

message, including one marked for guaranteed delivery, is certain to be

received, since the destination may never recover from a failure'

Guaranteed delivery of messages is accomplished with a mechanism

called a reliable buffer. There is one such buffer for each destination

site in the network. Messages destined for a DOWN site are rouLed to

the site's reliable buffer instead (which is at an uP site). when the

site recovers, it requests RelNet to provide it with all the messages in

the reliable buffer.

-69-

For purposes of robustness, the reliabte buffer is replicated at a

number of different sites, each replication being called a spooler.

Multiple sites are necessary as one site might fai1, thus cancelling out

the backup mechanism of the spooler. RelNet assumes that when a

destination is DOWN, at least one of its spoolers is UP' If not, then a

ReINet catastrophe occurs.

If a sender wishes to buffer a message reliably, RelNet will send a

copy of that nessage to all spoolers associated with the destination

site. When all of the spooJ.ers have acknowledged receipt, the messages

are considered reliably buffered. ,When the recipient recovers, it

issues a request to any one of its spoolers to obtain its buffered

messa9es.

If a spooler should crash while it is being emptied, then the

recovering receiver should switch to a new spooler. To prevent

duplicate messages r ôf, acknowledgement-vector is maintained by the

receiver. This array indicates, for every sender site, the timesLamp of

the 1ast message from that site that the receiver has received and

acknowledged.

If a spooler should crash while the receiver is DOWN, and remains

DOWN untit the receiver has recovered and emptied sone other spooler, no

problems can arise. However, if a spooler does crash and subsequently

recovers while the receiver is still DOWN, that spooler's message gueue

will reflect a gap during which it received no messages. To signify

that messages tnay be missing, upon recovery the spooler narks the gap in

its queue during which it was DOI^¡N, and lets the receiver fill the gap

-70-

:-,.¡<¡- . t

from messages hetd in other spoolers'

UP at anY time Period, it is Possible

getting some fron each sPooler'

Thus as long as one sPooler was

to recover all lost messages bY

ReINet also provides a facility for distributed transaction control'

This allows a process running at one site to co-ordinate the activities

of a number of distributed processes which are seeking to reaLize a

global acLivity. The main feature of this facility is a globaI

abort/commit capability, which enabLes a controlling process to cancel a

transaction at any point inslantaneously or to signaI its successful

completion and cause the results to take effect uniformly at all

involved sites.

Since a network is constructed out of many discrete components -

sites and communications lines - each of which is subject to failure'

reliable communications must still occur in the presence of some

failures. ReINet is designed to be resilient to the failure of some of

its parts, and to function correctly as long as enough Of the components

behave correctly. If too many faiLures occur, then a catastrophe

results. Under catastrophe situations, ReINet is not guaranteed to work

correctly; either some services witl not work at aII, or they may

operate in unanticipated and unpredictable ways IUamme8o] ' Some

catastrophe situations can be automatically detected by RelNet' but

others can only be observed from outside the system' In either case'

manual intervention by a system administrator is necessary to rectify

the situation.

- 71

I¡lith the design of ReINet, it is possible to make a catastrophe

arbitrarily unlikely by the increased replication of reliability

mechanisms. The price to be paid for increased reliability is increased

overhead.

ReINet assumes that the basic comnunications network wiII look after

the communications link between tr+o sites and will employ oLhers to send

messages between them if one faits. RelNet also assurnes that the

network remains connected at all times, and no part of the network

disconnects itself from the rest of the network, thus leaving two

functioning entities. Should this assumption be violated, the result is

a catastroPhe.

ReINet thus provides a base for a DDBMS in which some of the DDBMS

problems are reduced or solved by the neLwork. ReINet fits between the

real network and the network user. Thus there is no need for the DDBMS

to ensure that the communications are reliable.

2,4 DISTRIBT'TED DATÀBÀSES

Given a network, it is possible to install a distributed database

over the network. According to Date Ioate83], a distributed dalabase is

,,a database that is not stored in its entirety at a single location, but

rather is spread across a network of locations that are geographically

dispersed and connected via communications 1inks". A distributed

database management system (¡O¡l¡S) consists of a collection of sites or

nodes, connected together inlo a network. Each site has its ovln

database management sysLem, which may or may not be the same as the

-72-

database management systems in the other nodes. Distribution does not

affect the user's view of the database, known as the logical view; but

it does however affect concurrency control, recovery, and physical

database design. The major advantages of distributing rather than

centralizing a database are many:

potential for improved perfornance and economics

increased reliability

easier incremental growth

performance may improve because of reduced conmunications volumes,

smaller transmission delays and less congestion. By having the database

spread over several computers, reliability may be increased because the

entire database is not rendered inaccessible when one of the networked

computers fails. Incremental growth may be easier because a new node

can be added tvithout incurring excessive down times. In a centralized

system, it is often difficult to upgrade v¡ithout major service

disruption and conversion costs. À distributed database is particuJ-arly

useful to applications that involve extensive processing in different

locations.

In this section, we will discuss some of the capabilities of a

distributed database management system. We will also look at some of

the techniques used to provide these capabilities and some of the

problems and benefits which these techniques produce.

There are five basic capabilities which a distributed database system

must provide [¡Iten82]:

.ì.:

'.ll:

-73-

co-ordination of the DDBMS with the dala transmission network

such that reliable delivery of messages can be ensured;

decomposition of transactions into atonric parts, selection of

nodes to execute those parts, and control of any movement of data

between sites necessary to process transactions;

synchronization of logically rel-ated updates and retrievals that

are processed at different nodes;

detection and resolution of conditions where a part of the

database becomes inaccessible due to node or line failure;

management of metadata describing the distributed database and

env i ronment .

One of the capabilities of a DDBMS is that the data can be

distributed redundantly among the nodes of the network. Freely

distributed data are needed in many circumstances: when a highly

distributed user community exists; when there is a need for high

availability - the data must remain available when one or more copies

are inaccessable; when there is a need for survivability - the data must

remain available after destruction of multiple system nodes; when there

is a need for fast response - access to loca1 data are faster than

access to distant, highly shared data. Àt times, there is a need for

data to be moved to different nodes as usage patterns change; data

heavily used in one geographic region can be stored in that region.

When traffic volumes are too high for a single storage systen, the only

way to increase performance is to have multiple machines each with its

own copy of the data (especially with very large storage systems).

1.

¿.

?

4.

5.

- 74 -

Ànother reason for redundant data is that it permits more flexibility

in increasing database capac ity to support very large databases.

portions of the database which are frequently accessed can be stored at

many small siLes using relatively fast secondary storage. Other

portions of the database that are needed only occasionally could be

stored at an archival site on tertiary storage which is slow but

inexpensive. Moreover the redundant approach allows addit'ional database

sites to be added to accommodate increases in database activity, whereas

in a non-redundant system, increases in activity against a selected

subset of a large database could require an upgrade of the site at which

that subset was stored.

Without redundant data, the reliability goals of distributed data

management can only be partially met. Without redundant data, the

failure of a particular database site must cause the failure of all

appl-ications that require data stored there. Even though many other

nodes are stiIl working, these nodes are of no value to applications

requiring data from the failed component. Thus, from the point of view

of these applications, the DDBMS wilI have suffered a total failure from

the failure of a single comPonent.

Another capability of a DDBMS is the ability to exploit the parallel

processing capabilities of the network. This means that instead of a

transaction being executed on onLy one computer ' parts of that

transaction can be executing concurrently on several different computers

in the network. Theoretically, if three computers are used to process

one transaction instead of just one computer, then the transaction

should complete in one-third of the tine. This usually cannot be

-75-

achieved, as the computers must gather data from the other hosts in the

network, and then transmit their results back to where the result is

needed. This extra data transmission can increase the time needed for

the transaction to complete. If there is only one copy of the data that

all three computers need, then they may cause some network congestion as

the network attempts to deliver that data.

To increase parallelism in a DDBMS, multiple copies of data can be

used. There are two methods for storing data in a database [Marti77,

Carde79l. The first method is to store the data in a hierarchy or tree

structure. ThiS was the first method to be developed, and is used in

systems such as IMS. The second method of storing data is to use a two-

dimensional tab1e. The tab1e, âs in figure 2,7, is referred to as a

relation. À database constructed using relations is called a relaLional

database. All of the databases developed recently are relational (see

INGRES and SDD-1 which are discussed later in this thesis). Relational

databases are prefered over hierarchical as in a relational database,

all operations may be described through mathematical rules. Queries may

be expressed in terms of either a relational algebra or calculus,

whereas in the case of a hierarchicat database, queries may only be

expressed in terns of a tree search.

À distributed database can be allocated among the nodes of a network

according to various criteria. There are trvo methods for disLributing a

daLabase: a replicated database consists of overlapping subsets

(replication); and a partitioned database consists of nonoverlapping

subsets.

- 76 -

prov name a9e sa larY s1n

0nt
0nt
0nt
l'lan
Man

Jones
smi th
Kane
Bones
CIar k

27
54
35
22
59

12324
349s 3

27548
9000

234567

375
057
245
893
002

Figure 2.7: Data Stored In a Table

Replication may enhance the availability and

database, but it requires the DDBMS to provide

eoncurrency and recovery procedures. Each machine

from different data. For example, sites 1, 3,

fragments for employee data, while sites '1 , 2,

fragments for inventorY data.

prov name age salary sin

Ont
0nt
Ont

Jones
Smi th
Kane

27
54
35

12324
34953
27548

375
057
245

Site 1

prov name age salary sin

Site 2

Figure 2.8: Horizontal
Partitioning

Man
Man

Bones
CIark

22
59

9000
23456'7

893
002

locality of the

more sophi st icated

may have fragments

and 5 could have

and 4 could have

sin salary prov sin age nane

375 I 12324lont
0571 34953lont
2451 27548 lOnt
893 I 9000 lMan
00212345671Man

375lr27 I Jones
057l54lSmittr
245l35lKane
893 122 I Bones
002l59lC1ark

Site 1 Site 2

Figure 2.9: Vertical
Partitioning

-77 -

Distributed data may be partitioned in several ways: horizontal and

vertical. With horizontal partitioning, each site has only a subset of

all lhe records; but all the information in each record is at the one

site. For example, if data were stored about people working in

different provinces, the site in each province would contain the records

pertaining to the employees in that province (figure 2.8).

With vertical partitioning, only parts of each record are stored at

any one site; but each site contains all the records. Figure 2.9 shows

data which has been sptit into two vertical partitions. Each site has

records for all employees, but not all information about each employee'

Vertical partitioning occurs when only certain fields are useful at one

site, while other information about the same items is useful at another

site.

While data could be distributed horizontally or vertically, it is

more common to see a mix of both, perhaps with some overlap of the

partitions. This distribution of fragments of a database nay lead to

faster processing, but it can also decrease processing speed depending

on how the data are organized, and what type of retrieval is needed' In

order to find the data for a retrieval or update, a sophisticated data

diclionary or directory is needed in order for the DBMS to find the

data. The requirements of the distributed data dictionary are examined

later in this chaPter.

It is much simpler to retrieve and search a fragmented table than a

fragmented tree. The only way to find a particular teaf in a tree is to

traverse the entire tree. If the tree is arbitrarily fragmented, then

-78-

each path through the tree may involve an arbitrary number of nodes to

search. Each switch to a different node can only be done by

communication through the network. This may involve large amounts of

communication which will drastically increase the retrieval speed.

Hierarchical database systems usually do not permit fragmentation

because of the difficultly of retrieval.

Relational tables pose no such problems, and may be arbitrarily

partitioned and replicated. Several commercial systems will be

discussed in chapter 4. One of these systems is hierarchical and all-ows

no fragmentation, and two of these systens are relational and they allow

varying degrees of fragmentation.

The major problems in the development of good techniques for managing

a distributed daLabase are due to communication volumes and delays.

While a disLributed system is designed. to exploit paralle1 processing,

in reality it may severely hamper it instead. Communication

requirements may cause some centralized database managers to be

inefficient in a distributed environment. For example, the traditional

use of locks (discussed later in this section) by a centralized DBMS may

cause excessive delays in the distributed environment due to the

transmission of lock nessages throughout the network. Parallel

processing has the potential. to increase throughput, but requires

complex controls to synchronize concurrent reading and writing

activities at dispersed sites. The DDBMS must ensure that operations

execuLed in parallel. have lhe same net effect on the database as an

equivalent set of serially executing transactions.

::i'r i:

lì::::'

-79-

There are two design approaches for multipJ-e copies of data:

centralized and decentralized. The normal and nost easily-controlled

approach is to have a single, secure master copy of the data' The other

replicated copies are regarded as secondary to the master copy' The

system is designed so that if the master copy is destroyed, it can

easily be reconstructed. Different data each have a single master coPY'

and these coul_d be stored in different locations.

The other approach is for data to be stored in multiple nodes, no one

of which is of higher status than the others. All updates 90 to every

copy of the data. Often they cannot be updated simultaneously, so the

protocols are designed so that the system converges to a state in which

every copy is the same. No one copy is designated as the master copy'

This latter, horizontal approach needs elaborate, carefulty lhought

out protocols to deal with the various failures, update interference'

and deadlock conditions that can occur'

When a naster coPY of data

real time. Two aPProaches are

is used, it may or may not be updated in

practical:

1.

2.

ALI transactions immediately update the master ' The master

issues new copies of changed records to the other processors

periodically.

Transactions update a non-master fiIe. À1I transactions are

saved for periodic updating of the master, and when the naster is

updaLedr rì€tr copies of changed records are sent to other

processors which use them.

-80-

However, when a READ is done, depending on whether the master copy or

another copy of the data is read, different values can be obtained'

Normally, a local copy wiJ.l be read to reduce transmiSsion cost and

improve speed, but there is no guarantee that this local copy is up to

date.

After a failure of part of the system, resynchronization is achieved

by issuing ner{ copies of any changed records in the master to the

processors which keep them. If the naster itself fails, then copies of

the transactions must be kept until the master is recovered so that the

master copy can be updated, and then in turn issue copies of the changed

records to other processors which store the redundant data'

There are two operations which apply to the data in the database:

REÀD and WRITE. With replicated data, a REÀD operation is simpler than

a WRiTE operation. The REÀD operation can read any copy of the data'

while the WRITE must update all copies of the data it refers to' À

trade-off must be made between a large amount of replication to support

READ operations, and a small amount of replication for IIRITE operations'

In practice, it is more reasonable to keep two copies rather than many

copies of data which are frequently updated. This approach is commonly

used on hierarchical database management systems'

The distributed system must maintain consistency of all copies of the

data. It must organize recovery after a copy of the data has been down

for a period of time. Furthermore, it must prevent one update operation

from interfering with another. To do this with a high updaLe rate and

no| incur excessive system overhead requires tight and rather complex

protocols.

- 81

Aprocessor'processingatransaction,canretrievethedatait

requires from more than one place. The different copies of data should

therefore alt be up to date; when an update is niade, it should be

applied immediately to all copies of that data. It is not practical to

update alI copies exactly simultaneously. The system should be designed

so that all copies converge quickly to a consistent state' If one copy

is inaccessible for a period due to a failure, then a recovery action

shou}dfol]ow,bringingituptodateasquicklyaspossible.À5
previously discussed, two transactions attempting to update the same

data at the same time can interfere with one another and write invalid

data. similarly, a READ could occur while data are in the process of

being updated and could give invalid results. one method commonly used

in centralized database systems, and in distributed systems' to ensure

database consistency, is to require that aIl transactions observe a

Iocking protocol: a set of rules that require transactions to lock data

they access or modify. This ensures that another transaction cannot see

or nrodify data that the rock-hol-ding transaction is manipurating'

tocking protocols involve some system overhead. It is necessary for

thelockmanagerofthedatabasesystemLoseeifthelockcanbe
granted and then either grant the lock request or put the requesting

.transaction in a queue. To minimize this overhead, it is possible to

associate a relatively large subset of the data with each Lock' But' if

transactions lock data they do not use, then concurrency may be reduced'

This means it is better to associate a 10ck with a small subset of the

data, as the finer the locking granularity, the greater the concurrencyi

the coarser, the fewer locks lo be set and tested and the l-ower the

overhead IcraY75].

-82-

aÈlìaiis

{¡ì-!-ì'.,:].

In a distributed database system with a high level of updates,

locking the data can cause substantial performance degradation. The

node processing a transaction is often distant from the node containing

the data. The data have to be locked for the time taken to transmit the

data to the processing node, prepare the update, transmit the data back

to the data node, and write the new data. Because transmission times

are lengthy, data are locked for a much longer time than with a

centralized syste¡n at one location. To compound the problem' the

distributed system may have several (perhaps many) copies of the data in

different nodes. Each has to be locked during the updating process.

A variety of locking schemes have been devised for distributed

database systems IBerns81b]. Some of these schemes are discussed in the

next chapter. Some require a primary site for updating while others

avoid requiring that one site have primary authority. All involve

substantial transmission overhead if all data being updated have to be

locked and there is a high update rate. The best way to reduce the

overhead is to structure the updating protocols to avoid time-consurning

locks whenever possible. A technique which does this is used in SDD-I

(System for Distributed Databases), which will be discussed later.

While redundant data has many advantages, there are some problens to

be overcome in order to realize the advantages. The multipLe computers

in the DBMS are attached to a network. Certain data items may be

contained in each computer, and each computer is required to update its

Iocal data. This is a conplex situation which can be handled with

conplex distributed storage protocols. Most commercial software is not

designed to operate in a free-for-all distributed data environmenl.

-83-

Instead, one machine must tightly contro] each type of daLa. To achieve

data integrity, one machine must control the updating of the others'

even though the data reside, and the requests to change these data

originate, in multiPle machines.

When there is nore than one copy of data, and sometimes with only one

copy of distributed data, inconsistent information can be obtained when

reading the data due to time delays introduced through the network'

fhis problem can be overcome with appropriate locks or protocols' These

locking mechanisms wiIl be discussed in chapter 3'

When locks are used in a distributed environment to prevent update

interference, it is possible for deadlock to occur. Deadlock is a state

where two or nore transactions are in a wait state, each transaction

waiting for the other to compl-ete. Deadtock is discussed in more detail

in chapter 3. To circumvent deadlock, fairly complex protocols must be

used. Unfortunately, unless the protocols are carefully thought out'

the protocols to prevent invalid updates, inconsistent reads' and

deadlock can cause excessive overhead' especially when there are

muttiply-replicated copies of the data in the network' The protocols to

prevent invalid updates and inconsistent reads as well as the problems

caused by these protocols are discussed in detail in chapter 3"

Ànother problem which arises with distributed data is interference

between updating transactions. Two transactions may be updating the

same data item on a remote storage unit and they can interfere with one

another causing lhe stored data to be incorrect (concurrent update

problem). This problem can also be prevented by appropriate locks or

protocols.

-84-

Difficulties in supporting paralleL processing are complicated by'

but not solely due to, the existance of multiple copies in the

distributed system. À similar problem can occur in a single computer

when tv¡o executing programs both attempt to update the same area in

memory. on large nachines , a small cache or high-speed buffer is

inserted between the fast central- processor and the relatively slower

large main memory. The hardware attempts to keep the appropriate memory

Iocations in the cache to increase the speed of memory accesses' If a

value is read and then changed, the change will be reflected in the

cache, but wiIl not necessarity be immediately reflected in main-memory.

Thís is fine for processor-on1y accesses to memory, since the processor

,sees' the cache contents thinking it is main-memory contents. However,

if an additionar processor, such as an I'lo processor' reads the same

memory locations, then the unchanged value will be given to it. Thus'

there may be probLems with multiple copies of data even when controlled

by hardware in very close proximity.

There are systems in which the same data are stored in many locations

and the updates originate in many locations. It is difficult and

complex to control the correctness of the updating unless the updates

are applied to a single copy of the data. However, a single copy

implies lack of redundancy' which is one of the reasons for using a

DDBMS.

-85-

:r:ì:ltì--.!$

.:::tìi.:i:iì

,:''¡¡'ç

....::il::ì:.-:

.rì.r:r:.

2,4,1 Data Dictionarv

A system whose data are scattered geographically must have some means

of determining where any piece of data is stored. Às with other aspects

of distributed databases, location of data can vary from very simple to

extremelY comP1ex.

À simple method is for the user to specify the location of data when

he makes a reguest to use them. His transaction may then be transmitted

to a computer at the location of the data, or alternatively the data may

be transnitted to a location where they can be processed, possibly the

location where the transaction originated. Note that this is not very

practical, for the user must know where all the data he wishes to access

are, and he must be notified whenever his data moves.

A slightly more complicated approach is for the user to specify

information about the data from which their location can be simply

determined; e.g. À bank account number, which has the branch specified

by the first digits.

Locating the data becomes more complex when the user does not know

where the data are located in a distributed database wilh horizontal

distribution. The system must contain some form of catalog or

directory, which permits the data to be found. The directory may exist

in one particular computer in the network, the request for data being

passed to this computer and the location of the data established.

Àlternatively, every computer in the network may have a complete

directory, listing each data field and indicating ils physical location.

-86-

An important characteristic of nodern database management systems is

that they employ a directory or data dictionary to define the database

being managed. This frees the user or application program fron the need

to supply this information and it simplifies many types of database

structural changes. À directory typically contains 4 types of

inf ormation [411en82, l'Latl-i79a] ¡

1. Iogical structure definition

2, physical structure definition

3. file statistics

4, accounting data

For a distributed database, there must

information: the location of each piece of

be an additional

the database in

categorY of

the network.

The DDBMS must

requests, choose

resources used.

have access to this information in order to parse user

and execute an accessing strategy, and account for the

The problem then is where to store the directory'

There are several solutions to this problem, varying with the

database and the particular accessing pattern. Not all of the data in

the directory are accessed as frequently as others. In practice, there

are two basic categories of directory management schemes' First, each

directory entry is stored in only one location (non-redundant schemes).

Second]y, each directory entry nay appear in several places (redundant

schemes). Thus, for non-redundant schemes, the following alternatives

exist InothnZl] :

centralization - The complete directory is stored at one specific

site. This requires access to the directory site for every

retrieval or updaLe to the directory.

distribution - Each site has the directory entries for the data

stored at that site. Completely local access can proceed using the

Iocat directory. Any request requiring access to remote data must

be broadcast so that other sites can deternine whether or not they

have relevant data.

r combinations - Àn intermediate approach

network, and enrploy a centralized directory

IS

1n

to partition the

each part.

The redundant approaches have various alternatives:

centralization - À redundant but centralized approach with a

combination of the central ized and di str ibuted non-redundant

alternatives. Each site has the entries for its loca1 data but a

central site has the complete directory. In this way, non-local

references can query a single site to determine the location of the

remote data.

distribution - Each site has the complete directory stored Iocally.

ÀII user transactions can be executed without a renote directory

reference, but alt directory updates must be posted to every site.

combinations - Each site is allowed to have an arbitrary subset of

the directory. This permits a great deal of flexibility but it

requires a more compl-icated 'directory directory'to tell the

system where the various pieces of the directory are stored.

,::,:
:l
'j..,4

-88-

Some disadvantages to having a directory in each computer are the

storage space required for such directories and the work of keeping them

up-to-date. 1n addition, small local computers may not be well equipped

for searching the directories as rapidly as a specialized or larger

comPuter.

In many systems, most of the transactions received by a local

computer relate to the data kept at that location, whereas a few

lransactions are for data in other locations. In this situation, each

computer could have a directory of its own data only, and pass other

requests to another computer if it relates to data it does not have.

The directory problem is a distributed data problem scaled down' For

efficiency the data in the directories should be replicated, but to what

extent? The problem is then to update the replicated copies and

naintain them in a consistent state.

The directory can be treated just like any other data by the system

or it may be specially treated for improved efficiency and safety' if

the directory is treated like any other data, then there is no special

problem with fragnentation and replication.

However, the system must always know where the directory itself is

stored, otherwise it wilt not be able to find any datar â5 the system

cannot look up the location of the directory in the directory, unless it

knows where the directory, of fragments of it are stored. The

information about the directory must be at every node.

I.thenever a request is processed by a computer which does not have

data it requires, there are two possibilities: to move the data to

the

lhe

-89-

processing computer;

data are.

or move the transaction and process it where the

Which method is used is affected by many parameters: by the machines

in use and their software, and by what would have to be transnitted and

how frequently. It is expensive to move large amounts of data too

often, and it is slow. It is usually cheaper and faster to move the

transaction to the site where the data is, than to nove the data to the

site where the transaction is.

Às with all distributed data, a high frequency of read access

encourages local, redundant directories. Since every user transaction

requires a directory retrieval, direcLory redundancy is virtually

essential. If there is a high update rate to the directory, this

discourages redundancy as each copy must then be updated. However, high

reliability requires redundancy and distribution.

2,4.2 Recoverv

One of the key motivations for distributed database systems is a

requirement for high database availability; that is, a need to ensure

that a database is nearly always accessible. Distributed database

systens seem to offer this characteristic since availability is not

l-imited by the reliability of any single component but rather by the

reliability of combinations of conponents (processing nodes and

communicalion links in the network). These combinations can be

configured to achieve arbitrarily high availability. In order to

achieve this availability potential, it is necessary that the

-90-

distributed sYstem be

components and continue

i ndiv idual

The central problem in reliable operation of a distributed database

system is maintaining database consistency in the presence of failures

during update transactions. Such failures threaten to destroy the

,atomicness' (indivisibility) of these transactions by causing the

update to be only partially accomplished in the database' consider an

example in which transaction T1 updateS portions of a database stored at

nodesNlandNz.ifafai]ureoccursduringtheexecutionofTrwhich
prevents the update from being recorded at Nz then the database has been

made inconsistent. À later transaction which reads the results of Tr

wilI see an anonalous database with unpredictable results' The system

updating algorithms must therefore be av'are of the possibility of

component failure and avoid these partial results'

Recovery after a failure needs to be controlled so that updates are

not accidently lost or double-processed. suppose v¡e consider a

transaction which withdraws money from one bank account and transfers it

to another account. I f a failure occurs before the transaction

completes, and the transaction is redone at a later time, there is a

possibi).ity for twice as much money to be withdrawn as vras deposited, or

for twice as much to be transfered'

when mult.iple copies of data exist, they may be in different states

of update after a period of failure. They must all be brought back to

the same state, but problems may arise as real-time transactions are

being processed during the recovery period. For example, consider a

able to cope with the failures of

operation.

-91

situation where one copy of a data item has not yet been updated because

its host was down. If a user attempts to update that same field again,

the update must not be applied until after the data item is updated from

the previous updates which are still pending.

The avoidance of database

objective of failure-handling

other considerations which

algor i thms .

inconsistencies of this type is the major

mechanisms but it is clear that there are

are important to the design of these

The most important consideration is that of efficiency. Peopte

desire good responsiveness and throughput of the system during normal

operation and in the presence of failure. This is important because it
precludes using a very simple algorithn which preserves consistency but.

introduces intolerable delay when faced with a failure. The simple

algorithm just ¡+aits indefinitely until the failed node recovers. while

this does indeed guarantee consistency, it can lead to indefinite

delays, which is unacceptable. An effective DDBMS nust employ a

different type of nechanism, one which attempts to execute to completion

any transaction which can proceed without a resource which is

exclusively available at the fail-ed node.

This problem of failed sites can be partitioned into several

subproblems: reliable broadcast, operation with missing or inoperable

nodes, restarting and re-integrating a node, failure detection, and

partitioning.

Reliable broadcas! refers to the fact that if a transaction T is

updating fragments of a database stored on nodes Nz, Ns, and Na, then it

-92-

is possible for a message to be sent lo Nz to complete the update' and

then for a failure to occur before a message has been sent to N¿. If

this occurs, then reliable broadcast has not been achieved' This is

handled in various ways in different systems. some systems attempt to

send out alt the messages at once, thus lessening the possibility a

failure will occur between the messages. SDD-.I tries to ensure that

reriable broadcast is achieved by requiring that the first few

recipients of the message send it on to the other recipients' This

requires that aII recipients be capable of rejecting duplicate messages'

In addition, each node is warned when a reliable broadcast is about to

be sent and any node which does not receive the message in a reasonable

period will ask the other addresses if they have received it' Thus in

SDD-1, the]ikelihood of a breakdown in the reliable broadcast is

considerabLY reduced.

A second subproblem in failure handling is continuing operation when

one or more nodes in the network are known to be inoperable' The

objective is to avoid having the absence of these nodes cause

transactions to be delayed until the missing nodes are recovered' ÀI1

existing system designs try to accomplish this by acting (alrnost) as if

the missing nodes never existed since non-existent nodes of course

cannot cause any de1ay. A serious problem arises if unique data are

stored on the failed node(s). À1I transactions requiring this data must

either wait for the node to recover, or abort themselves' If the node

is inoperable for a 1on9 time, it would be best lo abort the transaction

to avoid tieing up resources. This problem is more severe if the failed

node contains unique data required for the DDBMS to operate, such as a

system directory. In this case, the entire DDBMS ceases to operate'

-93-

The third sub-problem is re-integrating a node into the system after

the cause of a node's failure has been corrected. Since the fragment of

the database stored at the node may be out of date, it is necessary for

the node to f ind out what happened during its absence prior to

continuing its active participation in the system. The solution to this

relies on persistent communication: guaranteeing the delivery of a

message to a node even if the addressee is down when the message is sent

and even if the sender is down when the addressee recovers. This

recovery method is very clean, as the restarting node simply acts on its

old messages in almost the same way it does in normal operation.

For a system to function with missing nodes, and to restart nodes,

there must be some way of knowing when a node has failed. The most

common method of detecting that a node is dead is a time-honoured

technique called time-out. Under this scheme, a node which is suspected

of having failed is probed with a message to which an active node will

respond. If the response does not arrive within some prescribed time

period the probed site is assumed to have failed.

The final sub-problenr is a serious one for which no adequate solution

has yet been devised. This probtem arises when communication failures

break all connections between two or more active segments of the network

partitioning them into separate pieces. When this occurs each piece of

the network continues its operation, including processing updates, but

there is no way for the separate pieces to co-ordinate t.heir activities.

Hence the fragments of the database in the separate pieces will become

inconsistent. When reconnected, it may be impossible to carry out all

of the updates because some of the transactions may not be correcÈ in

the context of the whole network.

-94-

2.5 DrsrRIBtnED oUERY PRoCESSING

Accessing data that are stored at separate conputers in a distributed

system differs in two important ways from accessing data from a

centralized comPuter. First, necessary movement of data over

comrnunications lines introduces substantial time detays. Secondly' the

distributed system has the ability to process and move data in parallel

at separate points in the network. The DDBMS must determine a strategy

for processing queries that takes into account these two facts. Rothnie

and Goodman InothnZZ] have shown great variations in communications

costs among feasibl-e distributed query processing strategies.

In a relational database, the data are stored in a set of tables

(called relations) and are manipulated by means of high-leveI

operations. There has been much work in optimizing queries in a non-

distributed system, and sagiv Isagiv81] discusses many approaches

outlining their benefits and problems

Single relation queries can be processed very easily on a DDBMS.

llhen the relation is geographically distributed, the query can be sent

to a node that has a copy of the relation and be processed there' The

results after processing are sent back to the originating node'

Communications needed to transmit the results is much less than the

communications needed to transmit the entire relation lWangt].

The processing of a multi-relation query

multiple relations are accessed by the same

have to reside at a common location before

Substantial communication overhead may be

is more complicated. When

query, the relations usuaIIY

the query can be Processed.

involved if these relations

:,r:'
:::.'ì

ìì.l

.'.:.,:].l

,..ì,.ìì

:

.,:ì

-95-

are geographically distributed and a

transferred to a conmon location.

decompose the query into sub-queries

single relation. This technique is

SDD-1 .

copy of each relation has to be

I t is therefore necessary to

so that each sub-query accesses a

used in Distributed-iNGRES and in

The technique consists of two steps. The first step is to select a

site with the minimum amount of data novements before the query can be

processed. This is used as a starting point for the second step of the

algorithm which determines the seguence of moves that results in the

minimun cost.

The distributed query problem is one of transforming a distributed

query into a local query by means of a combination of local processing

and data movements. Local processing reduces Lhe size of relations,

which then decreases the cost of moving the relation. Data movement

brings the data together to allow local processing. The final data

movement must move the data to the result node for final processing.

In determining the most effective access strategy, it usually can be

assumed that local processing costs are insignificant in comparison with

data movement costs. Thus, before any data are moved, processing should

be done to reduce the total amount of data needed to be moved. Hevner

and Yao [Hevne78] show that minimizing the cost of data movement is

equivalent to minimizing the amounl of data moved. In SDD-'I, Bernstein

et aI. IBerns81b] assume network bandwidth to be the system bottleneck,

and SDD-1 seeks to minimize use of this resource.

-96-

Using the data dictionary, the query processor locates the data

fragments required, and then deternines a good set of moves and

computations to give the desired result. In many cases, it is possible

to overlap data movement and processing, and have concurrent processing

at multiple sites. By using the resources of the network, it is

possibJ.e to obtain better performance from a DDBMS than from a DBMS.

However, if the query processor chooses a bad move, it is possible for

the DDBMS to be orders of magnitude slower than a centralized DBMS'

ChapLer III

CONFTICT NIÀLYSIS

in this chapter, we will examine some of the conflicts which arise in

a DDBMS and discuss some methods of eliminating these conflicts. These

conflicts occur during concurrent execution of different transactions.

One major contlict is the synchronization of update transactions.

Transactions which read data may conflict with transactions wishing to

update the same data. I t i s necessary to control concurrent

transactions in order that database consistency is preserved while

excessive overhead in propagating control information among the nodes of

the DDBMS is avoided.

Since data items may be stored redundantly at multiple database

sites, whatever update synchronization nethodology is used by the DDBMS

must also ensure that all redundant copies of data are updated correctly

and consistently. This methodology is termed concurrency control, and

much research has been done in this area.2

}{hile there are solutions to

of these solutions themselves

deadlock. Ttro or more hosts

other have locked. Some host

the update synchronization problem, sone

cause nevl problems: that of global

in the network are waiting for data the

or hosts in the network must be able to

[¡aiUagl, Bada178, Badal?9, Bada180, Berns78a, Berns78b, Berns80a,
Àerns80b, Berns80c, Berns80d, Berns81b, Berns83, Garci79, GarciS2'
Korthg0, Kung81, Lim79, Meras78, Milen78, Minou79, Ries79, Rosen78,
SchIaSl , Stone79l.

-98-

detect this problem and resolve it in an orderly manner.

When global deadlock occurs, it is not really possible to tell if the

deadlock is real, or rvas a false deadlock caused by the delays in the

communications network. In order to check the validity of the deadlock,

it is necessary for some host to confirm the nessages which were sent

out. If they are stilL valid, then a deadlock occurs, but if the

transactions have completed processing, then a false deadlock occured,

and there is no need to act upon it. Deadlock is usually solved by

aborting or restarting one of the effecting transactions.

3.1 CONCI'RRENCY CONTROT

Concurrency control is the activity of co-ordinating concurrent

accesses to a database in a multiuser DBMS. Concurrency control permits

users to access a database in a multiprogrammed fashion while preserving

the illusion that each user is executing alone on a dedicated system.

The main difficulty in attaining this goal is to prevent database

updates performed by one user from interfering with database retrievals

and updates performed by another. The concurrency control problem is

greater in a distributed DBMS than in a DBMS because in a DDBMS a

transaction can access data stored in many different computers, and a

concurrency control mechanism at one computer cannot instantly know

about interact ions at other computers. The primary purpose of

concurrency controL is to exploit parallel execution facilities while

preserving database integrity. An example of a loss in integrity would

be trvo airline clerks simultaneously discovering that one seat remains

free on a flight and then both selling that same seat.

-99-

t
,n, purpose of the concurrency conponent of a database system is then

to interleave the steps of transactions in such a way that the order of

Steps within a transaction are preserved and that each transaction sees

a consistent database. If a transaction must violate consistency

constraints, these violations should be hidden from other transactions'

In centralized systems, locking is the primary mechanism used for

concurrency control. In a distributed system, an extension of locking

techniques could be extremely costly, especially if there are replicated

data, for then all copies would have to be locked whenever one of the

copies is updated IRies79]. Setting remote locks in a network is

several orders of magnitude more expensive than setting locks Iocally

because of the conmunication delays, lost messages' and site failures'

In order to permit concurrency control, there is a need for reliable

communication in the network'

Given a correct state of the database as input, âD individually

correct transaclion will produce a correct state of the database as

output if executed in isolation. Read-only transactions do not change

the database, hence the state does not change. With multiple copies of

data, a REÀD can obtain any copy of the data, while a WRITE must update

all copies. it is not necessary for all copies to be written at the

exact same instant; instead all copies nust converge to the sane value'

Even if aI] transactions are individually correct in this sense, it

is possible in a mul!iuser system for transactions that execute

concurrently to interfere with one another in such a way as to produce

an overall result that is not correct. One problem is the lost-update

problem:

- 100 -

When B completes, À's update has become 'lost'. If either of these

transactions ran individually, the final value would be correct.

However, B overwrites À's update without even seeing it. In a multiuser

environment some sort of concurrency control mechanism is needed in

order to avoid this type of problem.

Transaction f,
read X

write x+1

Another problem is one

transaction which transfers

transaction is computing the

Transaction Q
read X
write x-1000

read Y

write y+1 000

Transaction !

read X

write x+2

of inconsistent retrievals.

funds between two accounts,

sun of both accounts:

TransacLion !

read Y

read X

print X+Y

Consider a

while another

In this case, C writes the correct value into the database, however D

has printed out an inconsistent result which is short $'1,000.00. Some

sort of concurrency control is also needed to prevent this type of

interference.

In the first example, the problem is that À and B are both updaling X

on the basis of lhe initial value of that field - that is, neither one

is seeing the output of the other. To prevent this situation, there are

three basic things a concurrency control mechanism might do Ioate83].

First, it can prevent B from accessing X on the grounds that À already

- 101

has it and may be going to

update on lhe grounds that

update. Thirdly, it could

updaLed X and therefore B's

update it. Secondly, it could prevent À's

B has already gotten a copy of X before the

prevent B's update on the grounds that À has

update is based on a now obsolete value.

:.ììl'::

':l:;.ì

The first two solutions can be handled by a concurrency control

technique known as locking, the last solution by a technique known as

timestamping. 0f these two techniques, locking is nore commonly used in

centralized DBMS, while timestamping is more commonly used in DDBMS

loateBg I .

One must understand how a concurrency control algorithm fits into an

overall DDBMS before one can understand how a concurrency control

algorithm works. A simplified view, as adopted by Inerns81b], of a

DDBMS that permits analysis of concurrency control algorithms will now

be presented. À DDBMS is a collection of sites interconnected by a

network; each site is a computer running one or both of the following

software nodules: a transaction manager (ru) or a data manager (ot'l).

TMs supervise interactions between users and the DDBMS while DMs manage

the actual database. The network is assumed to be a reliable

comn¡unications system. If a message is sent from one site to another,

the receiving site is guaranteed to receive the message rvithout error.

À database consists of a collection of logical data items, denoted

Y, 7,, À logical data item may be stored at any DM in the system

redundantly at several DMs.

x,

or

To access the data, users interact

transactions. Transactions are either

with the DDBMS by executing

queries from terminalsr or

-102-

application programs. The concurrency control algorithms presented in

later sections pay no attention to the computations performed by the

transactions. instead, these concurrency control algorithms make all of

their decisions on the basis of the data items a transaction reads and

writes. À transaction is assumed to be an entity which takes as input a

database, and some data, and modifies the database according to the

input data the transaction received. When the transaction completes,

the database will have changed, but the database should still be

consistent. The readset of a transaction is the seL of logical data

items the transaction reads, while the writeset is the stored data items

that a transaction writes.

Whether a concurrency control algorithm works correctly is based on a

user's expectations about a transaction. Users expect their

transactions to be executed within a reasonable time frame. They also

expect their transactions to work consistentlyr rìo matter what other

transactions are concurrently being processed. Concurrency control

tries to meet these two expectations.

A DDBMS contains four components: transactions, TMs, DMs, and data

(f igure 3.1). Transactions communicate with tt'ts, TMs commu-nicate with

DMs, and DMs manage the data.

TMs supervise transaclions, and each transaction executed in a DDBMS

is supervised by a single TM. The TM manages any distributed

computation that is needed to execute the transaction.

Two operations are possible

operation returns the value

the transaction-TM interface. À READ

a logical data item in the current

at

of

- 103 -

:
;i:ì:

ri:.:

transact i on
a

a

a

transaction

transaction
a

o

a

transac t i on

Figure 3.1: DDBMS System Architecture

Iogical database. À I.¡RITE operation creates a new logical database

where sone data iLem has a specified new vafue'

DMs manage the stored database, functioning as database processors.

In response to commands from tranSactions, TMS issue commands to Dl'lS

specifying stored data items to be read or written. The TM communicates

this to a ÐM, and the DM transfers the appropriate data to the TM' In a

centralized system, there is only one TM and one DM, and they

communicate through memory. In a distributed system, there are many TMs

and DMs, and the movement of data between a TM and a DM can be very

expensive. To reduce this cost, nany DDBMSs employ query optimization

which regulates, and if possible reduces, the flow of data between

sites.

Two operations conflict if they operate on t.he same data item and one

of the operations is a write. The order in which operations execute is

computationatly significant if and only if the operations conflict. If

one of the operations is a read, and the other is a write, then the

conflict situation is known as read-write (rw) conflict. If both

- 104 -

operations are writes,

!¡rite (ww) conflict.

then the conflict situation is known as a write-

When a TM executes a transaction, iL never knows whether it will ever

complete. At any time the transaction may be backed out due to a

conflict or even canceled due !o a faiLure. Furthermore, it may be a

very long time before the transaction actually completes because some

nodes where the transaction has to perform actions may be inaccessible'

It is desirable if at some point in time the transaction could know if

it was going to complete. This point, calted the commit point, occurs

when the transaction can guarantee that it will never be backed out or

cancelled. The commit point is sometimes defined as the time when the

values produced by a transaction first become available to other

transactions IGarci82] .

Bernstein and Goodman IBerns81b] state that, after studying a large

number of concurrency control algorithms, they find that alI the

algorithms are compositions of only a few subalgorithms. Bernstein and

Goodman go on to state that "the subalgorithms used by all practical

DDBMS concurrency control algorithms are variations of just two basic

techniques: two-phase locking and timestamp ordering".

These two practicat techniques are examined in this section, along

with a theoretical technique, optimisLic concurrency conÈro1' As well'

some conbination techniques are described; techniques which use both

tocking and timestamPs.

- 105 -

3,1.1 Lockino

The simplest method for synchronizing distributed updates is to lock

those portions of the database being read or written by an active

transaction. Locking is the usual mechanism ernptoyed for update

synchronization in conventional, non-distributed DBMSS. However, in a

distributed database environnent¡ êD appreciable and often intolerable

delay is introduced as locking information is propagated to the many

éomputers in the database network.

Consider a locking algorithm with the following steps:

1. send out a lock request message

2, a lock grant message is returned

3. the update is transmitted

4. the update acknowledgement is returned

5. a lock release message is sent

If there are N copies of data, then 5N messages must pass through the

network. Given that the network delay could be up to one second per

message, the total delay in a distributed DBMS is 2 to 3 orders of

magnitude greater than of a delay typically encountered when setting

locks in a centralized sYstem.

For this reason, the straightforward locking approach is inadequate

for a general purpose distributed DBMS and other methods must be sought.

There are several solutions to this problem. Many methods try to reduce

the number of messages sent from 5N to about 2N [Rothn77 , l4i'1en81]. One

method piggybacks the update message with the lock requesl and the lock

- 106 -

grant message with the update acknowledgement. This only reduces

communications volume if the update transmission messages are short or

if most lock requests are granted. I^thile the savings of these methods

are substantial, in many instances they still require a large amount of

inter-computer communication in order to perform updates. Such methods

will not perform satisfactorily in networks containing Iarge numbers of

sites and high transaction volumes.

The amount of overhead message traffic does not, by itself, determine

the ef fects of concurrency control or Lhe overall performance.

processing loads, network loads, and the types and sizes of transactions

aIl affect Performance as well.

Locking is

objects, such

on a record by issuing a request to a system component called the Lock

Manager. If transaction T holds a lock for a record R, then T will be

guaranteed that no concurrenL transaction wiIl be able to update R until

T releases its lock. The lock is released by means of another request

to the Lock Manager. The exact nature of the guarantee depends on the

lock type. The most common type of lock is the exclusive lock. If a

transaction T holds an exclusive lock on some object, then no other

transaction can acquire a lock of any type on that object until T

releases its Iock.

If a1I update requests incorporate an exclusive lock on the initial

read, then lost updates can be avoided. If some transaction already has

an exclusive lock on the data item, then the current request waits for

a

AS

technique for regulating concurrent access to shared

records in a database. A transaction can obtain a lock

- '107 -

the first lock to be released. The transaction wiIl eventually come out

of the wait state, unless the transaction caused deadlock, which will be

discussed later. A simpJ.e technique to ensure that transactions wiIl

eventually come out of the wait state is to service all lock requests

for a given object in first-come/first-served order. If the system does

not provide such a guarantee, then it is possible for a transaction to

wait forever for some lock. This condition is called livelock.

À given interleaved execution of some set of transactions is said to

be serializable if and only if it produces the same result as a serial

execution of those same transactions.

Serialized transactions still execute concurrently, but Some

concurrency control mechanism is used to synchronize the transactions as

necessary. Serializability is widely accepted as a formal criterion for

correctness. A given interleaved execution sequence will be considered

correct if and only if it is serializable.

While the exclusive locking protocol can be used to solve the lost

update problem, it can also create worse problems. One of these

problems is deadlock. Ðeadlock is a situation in which two or more

transactions are in simultaneous waitstate, each waiting for one of the

others to release a lock before it can proceed.

Transaction !
lock Xr

lock Xz
wait

Transaction !
lock Xz

lock X1

wait

rìì::l
: ,:a:...

- 108 -

The problem of deadlock is not just confined to databases. Various

deadlock avoidance protocols have been defined ICarde?9]. One scheme is

to impose a Lotal ordering on all lockable objects, and then refuse a

Iock request for an object Y if the requesting transaction already holds

a lock for any object Z that appears later than Y in that ordering'

Such deadlock-avoidance protocols are generally inapplicable in a

database environment. One reason is the set of lockable objects is very

large and highly dynamic. These objects are not addressed by name but

by content, so it cannot be determined until execution time whether or

not two distinct requests are for the same object. Finally, the precise

locking scope for a given transaction is usually determined dynamically;

that iS, one record's contents may cause another record also to be

loc ked.

A system must be prepared to detect the occurrence of deadlocks and

to resolve them when they occur. Detecting deadlock is basically a

matter of detecting a cycle in a wait-for graph; that is, a graph of who

is waiting for whom. In this graph, the nodes represent executing

transactions, and the edges represent waits. Àn edge is drawn from node

Ti to node Tj when transaction Ti requires a lock on an object that is

held by Tj, and erases that edge when Tj releases its lock. Thus, if

there are edges from Tr to Tz, T2 to Ts, and T¡ to Tl, then the

transactions Tr, Tz, and Ts arê deadlocked (figure 3'2)'

Checking for deadlock can be done at two times: whenever a lock

request causes a wai!; or on some periodic time basis. Checking on

every wait a}Iows deadlocks to be detected as soon as they occur, but

- 109 -

Figure 3.2: A Wait-For Graph Showing a Cycle

may impose too much overhead as most checks will not find deadlock.

Checking less often reduces overhead but may mean that some deadlocks

are not detected as soon as they occur. The system may detect deadlock

by using a timeout mechanism, and simply assume deadlock if no work is

done in a given time period.

Breaking a deadlock involves choosing a victim, one of the deadlocked

transactions, and rolling it back (undoing it). The victim is not

necessarily the transaction that actually caused the deadlock; it may be

the one most recently started, or the one holding the fewest locks. The

rollback process involves not only terminating the transaction and

undoing all its updates, but also releasing ar1 its locksr so that the

resources can nor+ be allocated to other transactions.

This backing out of deadlock can be clumsy and complex in a

distributed environment. It is better to prevent this occuring by

timestarnping the transactions and ensuring that the data operations are

performed in timestamp sequence. A nethod that prevents many deadlock

situations is to force the transaction to issue aIt locks at once and

not permit the transaction lo proceed if all locks cannot be satisfied.

À transaclion may need to keep data locked even if it is not updating

that data item. For example, if the sum of several records is being

- 1'10 -

added then Lhat sunr will be inconsistent

updated midway through. Using an exclusive

but at the same time reduces concurrency

arises for a shared lock, one in which

obtain shared status, but not exclusive'

if one of the records is

tock would solve lhe Problem

unnecessarilY. Thus a need

other transactions maY also

In many transactions, it is not known if an update will occur until

the data used by the transaction are read from the database' The need

arises for an update lock, a lock which indicates an update may occur'

This lock can then be upgraded to an exclusive tock if need be'

Date Ioate83] gives the following theorem:

If aII Lransactions obey the following rules:

a)beforeoperatingonanyobjectthetransactionfirst
acquires ã I'ock on that object; and

b) afËer releasing a lock the transaction never acqulres
any more locks;

then all interleaved executions of
serializable.

those transactions are

À transaction that obeys rules (a) and (b) are said to be 'two-

phase, , or to satisfy the two-phase locking protocol (zpr) ' The two

phases are a growing phase, where locks are acquired, and a shrinking

phase,duringwhichtheyarereleased'Thus'thetheoremmaybe

restated as: if all transactions are two-phase, then all executions are

serializable. The condition that all lransactions be two-phase 1s

sufficient but not necessary Lo guarantee serializability' But zPL

provides guidelines for safe transactions. Àn implementation ot' ZPL

requires building a 2PL scheduler, a software module that receives lock

requests and lock releases and processes them according to the zPL

- 1'11

specification. The basic way to implement 2Pt ín a dislributed database

is to distribute the 2PL schedul-ers along the with database, placing the

scheduler for data item x at the DM where x is stored. If a transaction

requests a lock, and the lock cannot be granted, the request is placed

on a waiting queue. This can produce deadlock'

À transaction may read any copy of redundant data and need only

obtain a readlock on the copy read. However, an update transaction must

obtain writelocks on every copy of the data item'

There are several methods used to implement 2PL: primary copy 2PL,

voting 2PL, and centralized zPL lBernsSlbl. In primary copy 2Pt, one

copy of each logical data item is designated the primary copy; before

accessing any copy of the logical data itenr, the appropriate lock must

be obtained on the primary copy Istone79]. This technique is used in

Distributed-INGRES, which is discussed in the next chapter' Voting 2PL

also exploits data redundancy. The TM asks all the DMs containing x if

it can lock x. If a majority of the DMs respond positively, then the

lock is granted. Otherwise, the TM must try again. À detraction from

this method is the concomitanL high communication cost and delay'

Instead of distributing the zPL schedulers, it is possible to

centralize the scheduler at one site. Before accessing data at any

site, appropriate locks must be obtained from the central 2PL scheduler.

This method also requires a l-arge amount of intersite conmunications and

is prone lo failure of the central site.

Centralized systems tend to allow deadlocks to occur rather than

avoiding then as avoiding deadlock is generatly more costly than it is

-112-

worth. There are four techniques used Lo avoid deadlock: transaction

scheduling, request rejection, transaction retry, and timestamping.

Transaction scheduling involves scheduling transacLions for execut,ion

in such a way that two transactions whose data requirements conflict are

not run concurrently. Às this requires that each transaction's data

requirements be known prior to execution time, this method tends to be

rather pessimistic. In many cases, it is not known what data will be

used until some of the data are examined.

Request rejection is the second method to prevent deadlock. Àny

request that would immediately cause deadlock is simpty rejected, and

the transaction can either wait and retry, or tidy up and abort.

Deadlock only occurs when the last edge is installed in Lhe wait-for

graph, causing a cycle.

Transaction retry nas proposed by Rosenkrantz et aI. [nosenT8]; it
was designed for distributed systens, whereas all the other methods had

been originally designed for centralized systems. The technique has two

versions; 'wait-die'and'wound-wait'. The basic idea is to avoid the

creation of cycles by a suitabre protocor that makes such cycles

impossible. There is no need to construct a graph, it is only necessary

to be abLe lo tell whether a given record is locked and by which

bransact ion . Each transaction is given a unique timestamp. When

transaction À requests a lock on a record held by transaction B, one of

two things can happen. in wait-die, À waits if it is older than B,

otherwise A is rolled back and effectively dies. In wound-wait, A waits

if it is younger than B, otherwise B is rolled back and automatically
:i::

- 113 -

retried; thus B is wounded. In all cases, a transaction retains its

original tirnestamp. There is no possible way for a cycle to occur'

Rosenkrantz et aI. prove that every transaction is guaranteed to

lerminate (livelock cannot occur), and that transactions can only be

rolled back and retried a finite number of times.

The problem of concurrency control is less complex in a centralized

syslem because the one site has all the knowledge about the transaction.

In a distributed system, all the sites must communicate r+ith one another

in order to have the same amount of information available as in the

centralized case. Locking generates a large amount of message traffic

in a distributed environment. The communication deJ-ays can cause the

time taken to perform an update to easity be several orders of magnitude

greater than in a centralized system. À centralized lock manager is one

solution. À11 locks would.be granted through that one site. However, it

is probable that this site will become a system bottleneck and if this

site fails, the entire system also fails. Even local transactions

(transactions that just access data at their originating site) must send

lock requests to the primary site. This adds an unnecessary delay to

the local transactions, of which there are probably many.

Garcia-Mo1ina lGarci79] recommends a centralized locking controller

for each replicated fragment of data as a centralized control strategy

is superior to a distributed one. A better approach is to have a

primary copy of each data item. The l-ock manager at the site containing

the primary copy of x will handle all lock requests on x. Typically,

the primary copies of different objects will be at different sites.

This meLhod overcomes the drawbacks of the single locking site scheme

-114-

but it can lead

lock manager.

t irnestarnpi ng i s

to global deadlock which

Hence, locking is always

not.

is not possible in the single

susceptible to deadlock, while

3,1 .2 Tinestamps

Timestamping techniques are all
transactions can be assigned a unique

of as the transaction's start time.

is given a unique identifier, and

concat,enating the local time with the

based on the premise that

identifier, whích can be thought

in a disLributed system, each node

a timestamp is then generated by

local identifier.

The main distinction between timestamping and Locking techniques is
that locking synchronizes the interleaved execution of a set of

transactions in such a lvay that it is equivarent to some serial
execution of those transactions, while timestamping synchronizes that
interleaved execution in such a way that is equivalent to a specific
serial execution, the execution defined by the chronological order of

timestamps.

By definition, there are no locks availabLe to disallow a transaction

from reading unconrmited changes. It is necessary to defer all physical

updates to commit time. If any physical update cannot be performed for
a transaction, then none of that transaction's physicar updates are

performed. The transaction is assigned a ne!¡ timestamp and is
restarted.

À conflict occurs if a transaction

updated by a younger transaction or if a

attempts to access a record

transaction altempts to update

-'1'15 -

a record that already has been accessed or updated by a younger

transacLion. Conflicts are resolved by restarting the requesting

transaction. Às physical updates are not written until commit time,

transaction restart never requires any physical rollback. Thus

timestamping is deadlock free, but the advantage is gained by restarting

transactions instead of letting them wait. Restart tends to be more

costly, as all operations performed on the database must be undone.

I,tith conservative timestamping, no database operation is ever

performed until that operation can be guaranteed not to cause a conflict

at some time in the future [gerns80c]. When a request for a database

operation is received, that request is delayed until the system knows

that no transaction with a smaller timestamp can arrive. if a site is
not sending out any transactions, then the delayed transaction could

wait for a long time. Each site is required to send null transactions

so that the site's latest timestamp is known at other sites.

Disadvantages to this are that this requires a lot of inlersite
communication. If there are N sites, then N(N-1) messages are needed to

inform every site of the status of every other site. This is infeasible

in large net,works. This method is very conservative and it eliminates

conflicts by actually serializing all operations at each site, not just

those that would otherwise conflict.

3.1.3 Optinistic Concurrencv Control

In section 3.1,1, Iocking was discussed as a method of concurrency

control. Locking imposes extra overhead on most transactions. For

- 1'16 -

example '

cur rent IY

is true

number of

if the number of records is large compared to the number of

executing transactions, few conflicts will result. The same

if the number of read transactions is large compared to the

update transactions.

While locking allows multiple transactions to execute concurrently

while preserving database integrity, it can Iead to deadlock. Research

directed at finding deadlock-free locking protocols usually attempts to

lower the expense of concurrency control by permitting less concurrency'

By processing operations without concurrency control overhead' a

transaction is not delayed during its execution ISctrtagl].

Distributed concurrency control methods based on the assumption that

conflicts are rare are called optimistic (in the sense that they rely on

the hope that conflicts beLween transactions wiIl not occur) ' Àn

optimistic method discussed by Kung and Robinson in IKung81] eliminates

locking from concurrency controls. Since locks are not used, this

nrethod is deadlock free, however care must be taken Lo prevent

starvation. (Starvation is a case where a transaction continues to be

restarted, never being allowed to complete, because some of the

resources it requires are in use.)

The idea behind the optimistic approach is quite simple. Instead of

suspending or rejecting conflicting operations, âs in two-phase-locking

and timestamPing, a transaction is always executed to completion'

However, the write operations issued by transactions are performed on

Iocal copies of the data. OnIy at the end of the transaction, if a

validation test is passed by the transaction, are the writes applied to

-117-

lhe database. If the validation test is not passed, the transaction is

restarted. The validation test verifies if the execution of the

transaction is serializable. In order to perform the test, some

information about the execution of the transaction must be retained

until the validation is performed.

Any Lransaction consists of three phases: a read phase, a validation

phase, and a write phase ICeri8¿]. During the read phase, a transaction

reads data items from the database, performs conputations, and

determines neþr values for the data items of its write-set. These values

are not written into the database at this point. During the validation

phase a test is perforned to see whether the application of the updates

to the database which have been computed by the transaction would cause

a loss of consistency or not. During the write phase, the updates are

appl-ied to the database if the validation phase returned a positive

result. If validation fails, the transaction is backed up and started

over again as a ner+ transaction. The write phase is needed for a read

transaction that displays its read results on a terminal to ensure that

the results are consistent.

Starvation occurs when the same transaction is continually started

over again as a new transaction. it is prevented by keeping a count of

the number of times a transaction is started over, and once this count

reaches a threshold, by locking out the entire database so the

transaction can finally complete.

During the read phase, all the updates for the transaction, (if any),

are wriLten into an update list. The validation phase consists of

checking that the updates can be applied at all sites.

- 118 -

During the validation phase, the update list is sent to every site.

Voting by each sit.e as to whether or not an update list is valid occurs

as follows. Each site votes on whether the update list is valid and

sends its vote back to the site of origin. If there is a majority of

yes votes, then the transaction is committed, otherwise the update list

is discarded and the transaction is restarted. in both cases, the

result is communicated back to all sites.

Each site compares the timestamp of each data itern of the read-set of

the update list to be validated with the corresponding timestamp of the

data items which are stored in its local database. If they are equal,

the site votes yes; otherwise, it votes no as some conflicting update

has occured.

In a locking approach, transactions are controlled by having them

wait at certain points, while in an optimistic approach, transactions

are controlled by backing them up. Since reading a value can never

cause a loss of integrity, reads need not be run with concurrency

control overhead. However, if the result of a REÀD is to be displayed

at a terminal., then it is subject to validation just as a WRITE is. If

lhe READ were not subject to validation, then update transactions may

have caused inconsistent values Lo be read. These inconsistent values

would then be displayed on the terminal. Kung and Robinson IKung81]

believe the optimistic approach is superior to locking nethods in

systems where transaction conflict is high).y unlikely, such as in query-

dominant systems. The optimistic method avoids locking overhead and can

better use the parallel processing of a distributed system.

- 119 -

3.1.4 Conbination Techniques

The concurrency control techniques of locking and timestamping each

have their own problems. tocking iS prone to creating deadlock, while

timestamping can be overly conservative. It is possible to combine the

two techniques to create a better concurrency control algorithm.

The major difficuLtty in constructing methods that con¡bine two-phase

Iocking and timestamping lies in developing an interface between the two

techniques. The problem is to ensure a consistent serialization order

between the locking and the timestamping IBerns81b].

The serialization order induced by two-phase locking is determined by

the locking points of the transactions that have been synchronized. The

serialization order induced by timestamping is determined by the

Limestamps of the synchronized transactions. To combine both two-phase

locking and timestamping, it is necessary to use locked points to induce

timestamps Iserns80d].

Àssociated with each data item is a lock timestamp, L-ts(x). when a

transaction T sets a lock of x, it simultaneously retrieves L-ts(x).

llhen T reaches its locked point it is assigned a timestamp, ts(T),

greater than any t-ts it retrieved. When T releases its lock on x, it

updates t-ts(x) to be max(L-ts(x), ts(f)). Timestarnps generated in this

r¡ay are consistent with the serialization order induced by zPL

lsernsSlbl.

One advantage of using a combination technique is that restarts are

needed only to prevent or break deadlocks caused by write-write

-120-

synchronization; read-tvrite conflicts never cause restarts. This

property cannot be attained by a pure two-phase locking method. It can

be attained by pure timestamp ordering methods, but only if conservative

timestamping is used; in many cases conservative timestamping introduces

excessive delay or is otherwise infeasibl-e.

I.iith a combination technique, queries set no writelocks, and the

timestamp generation rule does not apply to them. Hence the system is

free to assign any timestamp it wishes to a query. It may assign a

srnall timestamp, in which case the query will read ord data but is

unlikely to be delayed by transactions requesting writes; or it rnay

assign a large timestamp, in which case the query wiIl read current data

but is more IikeLy to be delayed. No matter which timestamp is

selected, a query can never cause an update to be rejected. This

property cannot be easily attained by any pure two-phase locking or

timestamp ordering meLhod.

3.2 GLOBÀI DEADIOCK

While concurrency control techniques solve the problems of

conflicting transactions, they create a brand new problen; that of

gJ.obaÌ deadlock. A global deadlock occurs when there is a deadlock

between two or more sites. rhis occurs when transactions at two sites

each require data locked by the other. Since the lock managers are

loca1r rìo apparent cycle in the local wait-for graph appears to exist.

The detection of a distributed deadlock is a distributed task, which

requires the exchange of information between different sites. The cycle

will appear if the two (or more) wait-for graphs are joined together.

- 121

Global deadlock detection incurs further communication overhead because

of this need to join the local graphs. Figure 3.3 shows a wait-for
graph in a centralized system with obvious cycles. Figure 3.4 shows one

way in which the transactions could be split into three distributed

sites. Each individual wait-for graph shows no apparent cycles, yet if
the three graphs are connected together, then they wil] show the same

cycles as the graph for a centralized system.

I l--e-i-9+11
A-p-C-e

Cycles: c+d->c
b-+e->f +b
þ-+s+g->f-+þ

Figure 3.3: tiait-For Graph in a Centralized System

Deadlock may be detected either through a centralized controller, or

through a distributed controller. }lith a centralized controller, one

site is chosen at which the centralized deadlock detector is run. The

centralized deadlock detector has the responsibility of building the

distributed wait-for graph and of discovering cycles in it. In order to

do this, the deadlock detector must received information from all sites.
The global deadlock detector collects these messages, builds a

distributed wait-for graph, checks for cycles, and seLects transactions

to be aborted. This operation can be perforned either periodically or

every time Èhere is a change in the siluation of potential deadlock

-122-

a-->b-J+e
v
t_+c

Site 1

Site 2

Figure 3.4:

Site 3

wait-For Graph SpIit into 3 Pieces

cycles. There is a trade-off between the cost of the deLection process

and the cost of determining deadlocks late.

Centralized deadlock detection is simple, but it has two main

drawbacks. First, it is vulnerable to failures of the site where the

centralized detector runs. Secondly, it may require large communication

costs, because the centralized detector may be located very far from

some other site in the network.

Much theoretical work has been done with the problems of deadlock in

both centralized and distributed systems. RecentIy, Àgrawal et al.

[egraw83J, have devised what they determine to be a 'cheap' deadlock

detection algorithm. By cheap, they mean an algorithm that does not

involve an excessive amount of overhead for each transacLion.

The basic idea of their algorithm is that whenever a transaction Ti

requests a lock owned by another transaction, Tj, one nust test !o see

-123-

if Tj is waiting for Ti. Since all the locking information is stored in

a wait-for graph, this test is performed by taking a directed walk

starting from Tj to the root of the tree. A deadlock occurs only if the

root corresponds to Ti.

while a tree search is expensive for large trees, Àgrawal et al. say

that the probability of a transaction deadlocked in a cycle of length

more than two is very small. Hence, by assunring smaì.l cycles, they give

a tree traversal algorithm which has a space complexity of 0(N).

To improve the performance of their deadlock detection algorithm,

Agrawal et al. go on to suggest that the check need not be done

continuously. Instead of checking for a cycre before adding an edge to

the wait-for graph, the edges are added to the graph without any test

and the graph is only periodically examined for cycles. The exact

al-gorithm is given in Iagraw83J.

Since this technique is a centralized deadlock detection algorithm,

it suffers from the problems of vulnerability and the high connunication

overhead. Às well, a centralized system cannot utilize the fuII
processing power of the networkr âs all systems must wait for the one

centralized system to inform them as to whether they can proceed or

abort.

One of the main features of a

from the failure of a few sites.

centralized algorithm, such as

algorithm. If the site running

the enLire distributed system

distributed system is its resiliency

This effect is nullified by using a

a centralized deadlock detection

the centralized algorithm fails, then

is unable to function, so it has

-124-

effectively failed. Instead of having a centralized deadlock detector,

it is possible to use a distributed deadlock detector.

In a distributed deadlock detection mechanism, each site has

responsibility for detecting deadlock. Sites exchange information about

waiting transactions in order to determine global deadlocks.

One such method is described by Obermarck. Obermarck IOberm82]

presents a distributed algorithm for deadlock detection which works by

introducing a special node EX into the graph, representing all agents at

all other sites. A global deadlock polentially exists whenever a path

exists from EX through various nodes to another EX. On observation of

this, one site will transrnit a copy of the graph to the site for which

it is waiting. This site can then add this additional information to

its wait-for graph, and check for cycles in the expanded graph.

Obermarck proves that if global deadlock really does exist, then his

procedure will cause a cycle to appear at some site, at which time the

deadlock can be detected and broken.

The main difference between distributed and centralized deadlock

detection is that in centralized deadlock detection all potential

deadlock cycles are sent to one designated site, while in distributed

deadlock detection there is no such site. Therefore, in distributed

deadlock detection, the local deadlock deLectors need a rule for

determining to which site potential deadlock cycles are transnitted.

This rule must assure lhat global deadlocks are eventualJ.y detected and

must attempt to mininize the amounÈ of transmitled information.

-125-

3.3 FÀLSE DEADTOCKS

There is a delay associated with the transmission of nessages through

the network which transfer information for deadlock detection. This

delay can cause the detection of false deadlocks. For exanple, Suppose

that the deadlock detector receives information that a transaction Ti is

waiting for transact,ion Tj After some time, Tj releases the resource

which vras requested by Ti and requests a resource held by Ti. Before

receiving the information that Ti is not blocked by Tj any more, if the

deadlock detector received the information that Tj requests a resource

held by Ti, a false deadlock cycle of length 2 is detected.

False deadlock can also occur when a transaction Tj, which blocks a

transaction Ti, aborts for some reason not related to deadlock

detecLion, while at almost the same time Ti requires a resource which

was held by Tj. It is possible that the message informing the deadlock

detector of the latter request arrives earlier than the nessage

informing it of the abort; thus the deadlock detector would determine a

false deadlock.

Two solutions to false deadlocks exist. First, they can be treated

as real deadlocks. This approach is acceptable if the number of false

deadlocks is low. The second approach is to validate the deadlock

cycIe. This requires collecting the information on the presumed cycle a

second time, thereby causing more network traffic. If the deadlock were

real, it would sti1l be present and therefore be detected again,

otherwise it would not be detected again. Distributed protocols are

more vulnerable to the occurance of false deadlocks than centralized

-126-

ones, due to the delays added to aII the additional messages which must

be carried over the network.

-127-

ChaPler IV

DISTRIBTNED DÀTÀBÀSE I.ÍANAGEI'IENT SYSTEI'ÍS

In this chapter we will exanine some of the currently available

distributed database management systems and discuss some of the services

they provide. There are several basic capabilities for a DDBMS, as have

been discussed earlier in this thesis in section 2.4, These

capabiLities have to do with controlling the network environnent,

management of data, data replication and fragmentation, and concurrency

control. In this chapter we will give an overview of some of the

available DDBMS5, and then examine them with respect to these points'

The avaitable DDBMSs falI into three basic categories: systems that

allow no data redundancy; systems which allow Iimited data redundancy;

and systems which are designed to be robust in the wake of multiple

fa i lures .

Systems which fall in the first category are IBM's Multiple Systems

Coupling and Tandem's ENCOMPAS. These systems were centralized DBMSs

which had been modified and enhanced to support access of remote data.

In this chapler¡ we will take a look at Multiple Systems Coupling as a

representative system fron this area.

Systems which allow limited data redundancy include IBM's Rx and

Distributed-INGRES. R* is a research product of IBM's San Jose Research

Labs and is a distributed version of t.he commercial product SQL/DS. R*

-128-

uses many state of the art techniques for query optimization and

concurrency control , but does not Support fragmentation of data.

Distributed-INGRES is a research system developed at the University of

California at Berkeley. It is a distributed version of the INGRES DBMS.

À look at Distributed-INGRES is taken later in this chapter.

Systems which fa11 into the third category include SDD-'1 and DDM,

both by the Computer Corporation of America. Both systems are designed

to give very high reliability by allowing rnany replicated copies of data

and a conservative concurrency control technique. SDD-1 allows both

horizontal and vertical fragmentation while DDM aIlows only horizontal.

As SDD-I was the first operational system

discussed in previous chapters, we wiII

example in this category.

use some of the techniques

it as our representative

to

use

4.1 lBt'trS t{UtTIPtE SÏSTEMS COUPLING

The Multiple Systems Coupling (USC) feature of IMS allows two or more

IMS systems to be interconnected in such a way that an end-user or

program on one of those systems can invoke a program on another [Gray?9,

IBM]. An end-user can enter an input message to invoke a transaction,

and that message will be placed on the input queue at the site of entry,

exactly as in the nondistributed case. IMS will then examine a local

catalogue to see whether the program to be,executed for this transaction

resides at a remote site. If it does, the input message will then be

transnitted to that remote site, where it will be processed just as if

it had originally been entered directly at that site. Àny output

messages will be transmilted back to the original site.

-129-

MSC provides location transparency in a limited form. An end-user

does not have to know where data or programs reside' but can invoke a

transaction from any site. Programs can only access local data. While

they do not need to know the precise location of remote data, they do

have to know when data are remote and they do have to know the identity

of the remote programs involved. To this extent knowledge of the data

distribution is built into the applicaLion logic. There is no

replication transparency; any data replication is user-controlled, not

system controlled.

The MSC feature supports four types of physical links between systems

lr nul :

1. binary synchronous communication (¡SC) line, using BTÀM

2. channel-Lo-channel (CtC) adapter

3. main storage-to-main storage (t'lt¡a)

4. synchronous Data Link Control (Sor,C), using VTÀM and SNA

Only the BSC line, VTAM, and CTC adapter represent actual hardware

links. The MTM link is a software link between IMS systems running in

the same processor, and is intended primarily for backup and testing

purposes. IF BSC is chosen for the physical. Iink, one side must be t'he

master and the other side must be the s1ave.

MSC provides a way to extend the throughput of an IMS system beyond

the capacity of a single processor. This is possible if the IMS

applications can be partitioned among systems such that either:

- '130 -

2.

'1. applications execute in more that one system with database

contents split between systems (horizontal partitioning)

applications execute in one system with complete database that

they reference attached to that system (vertical partitioning);

the transactions can originate in any system.

Message routing is accomplished by logical destinations. À

destination is either a logical Lerminal or a transaction code. À

destination is considered a local destination if it resides in the local

system and a remote destination if it resides in a remote system. Each

system knows by way of system definition tables or catalogue all local

destinations and all remote destinations that may be referenced by that

system.

Major design considerations stress defining the environment so lhat

as many transactions aS possible are processed localIy and to use

physical links which go directly from local to remote systems with no

intermediate systems and if possible, to use CTC links. The amount of

communication between systems is large, so inter-systern communication

nust be minimized for performance. The workload should be distributed

in such a way that it avoids excessively high utilization of any one

processor. This is done by distributing the applications and their

associated transactions and terminals between the available processors.

Each system in the network uses the fuIl recovery capabilities of

iMS. These capabilities assure that messages are not lost or duplicated

within the single system as long as no cold start or emergency restart

from an earlier checkpoint is performed and as long as no log records

- 131

are lost. ACF/vTAM provides message inlegrity for SDtC Iinks in each

IMS system in addition lo the MSC control functions. This is

accornplished by logging information about a transaction in both the

sending and receiving systems. This information is restored during

restart and exchanged between the systems once the link is starled. The

sending system can then dequeue a message that was received by the

receiving system but for which the acknowledqement was lost because of a

link or system failure. The sending system can also resend a message

that was sent but not engueued by the receiving system because of a

failure in the receiving system. If a system in the network fails to

recover, the messages for which it has recovery responsibility are lost.

Multiple Systems Coupling does not really support distributed

transaction processing, instead it supports transaction routing' fhis

does not create a DDBMS, but instead a1lows some remote access to data.

No redundancy is alIowed, and if a host fails, then some data is

unavailable for access. There is no need for concurrency control or

distributed deadlock detectíon, since multiple copies of data are not

supported.

4,2 DISTRIBUTED-INGRES

Distributed-INGRES was developed at the

Berkeley as a distributed version of the

INGRES. Distributed-INGRES was designed lo

UNIX operating system using local area

networks.

University of California at

relational database system

connect machines running the

networks and/or long-hauI

-132-

Distributed-INGRES was an add-on to INGRES, and as such is not a

ful1-fledged DDBMS, but supports a distributed environment better than

does a system such as iMS. Distributed-INGRES does not allow data to be

arbitrarily split between nodes, but instead only supports horizontal

fragmentation and duplicate copies of relalions. Vertical fragmentation

is not allowed IstoneTz]. This simprifies the DDBMS in some ways, as

there is no need to transfer data between nodes during the execution of

a transaction to join several vertical fragments to form one record'

Fragments can be duplicated at various nodes; but ii they are' then one

copy is designated a prinrary copy. This primary copy is used by

transaction management' concurrency control, and retiability algorithms'

Query processing in Distributed-INGRES has two optimization

procedures. First, processing is distributed for exploiting

paraIlelism. The more siteS that are involved, the greater the

parallelism, and the less time that is needed to process the query'

This optimization leads to redistributing fragments of relations at the

execution sites of operations, with the purpose of equalizing fragments

(having fragments of about the same size and therefore requiring about

the same processing time) [ceri84]. Equalization is used especially

with tANs, where communication bandwidth is hi9h. Equalization

conflicts with locality of processing, since equalization requires

distributing a relation even when processing would be local.

Secondly, since optimization is done during execution,

intermedÍate results are unexpectedly large, the backtracking of

tactic can be done. Àn additional optimization can then be done

order to change the query processing strategy'

if
a

1n

- 133 -

Catalogues for data on each machine are

non-l-ocal data, .a cache is maintained

fragments and where they are located. If
cache, then the entire network is searched

stored on that machine. For

of the most recently used

the location is not in the

to find the data.

Distributed-INGRES uses two-phase Locking for concurrency control

(section 3.1.1). À11 locks must be granted at once; if not, then aI1

locks must be released and the transaction must try again. Deadlocks

are detected and resolved with a centralized deadlock detector. À11

wait-for information is sent to a single process, caIled snoop

IStone79]. This melhod has the disadvantage of heavy communications and

requires solving the reliability problems of failures and recoveries of

the site where the snoop is located.

Updates are first applied to the primary copy of the data, and then

to the non-primary copies. In the commitment of transactions, each

participant responds 'ready to commit' to the co-ordinator after having

updated the primary copy, and waits for the decision from the co-

ordinator. In the case of successful commitment, each participant

generates a process which co-ordinates several 'copy' agents for

applying the deferred updates to nonprimary copies. This protocol is

not resilient to a failure of participants which occurs after having

performed the local commit but before having generated the ,copy'

agents. Às welI, mutual consistency of different fragments could be

lost when the same update transaction operates on different fragments;

then only part of them would be correctly updated. To make this system

more reliab1e, it is possible to incorporate nonprimary copies in the

two-phase-commitment and queue messages for crashed sites to at least k

- 134 -

other sites (f or having k-resiliency) . Às mentioned in section 3.'1 .'1 ,

the concurrency control method generates a Iarge amount of message

traffic for highly replicated data. This is not a problem in a fast LÀN

environment, but in a slol'¡ long-haul network, delays quickly build up'

If only a few copies of each relation exist, the expense of concurrency

control is low, even with a long-haul network'

4.3 SDD-1

SDD-'1 is a distributed database management system currently being

developed by computer corporation of America Inotnngo]. sDD-'1 manages

databases whose storage is distributed over a network of computers'

Users interact with SDD-1 precisely as if it vrere a nondistributed

database system because sDD-'l handles all issues arising from the

distribution of data such as distributed concurrency control, resiliency

to component failure, and distributed directory management. SDD-1 was

designed to permit a large amount of replication of data. This is

desirable for lessening transmissions by a potentially worldwide system,

and for increasing availability and survivability of t'he information,

especially when under military attack. sDÐ-'1 is designed to use long-

haul networks. No optimization is possible when using a LÀN.

An SDD-1 database consists of logical relations. Each SDD-1 retation

is partitioned into subrelations ca1led logical fragments, which are the

units of data distribution, meaning that each nray be stored at any one

or several sites in the system. Logical fragments are defined and the

assignment of fragments to sites is made when the database is designed.

User transactions are unaware of data distribution or redundancy. They

- 135 -

reference only relations, not fragnents. It is SDD-1's responsibility

to translate from relations to logical fragments, and then to select the

stored fragments to access in processing any given Lransaction.

SDD-'1 uses a local data manager and a separate network data manager.

The local dala manager has the functions of a conventional sin91e-site

DBMS, and does not worry about distribution problens. The network data

manager does not access the data itself, but determines the access

strategy for handling each distributed data operation efficiently. It

requests the local data managers at any site to perform local processing

and/or move portions of the data from one site to another.

SDD-1 is a collection of three types of virtual machines:

Transaction Modules (tus); Data Modules (ous); and a Reliable Network

(nelNet). AIl data managed by SDD-'1 are stored by Data Modules. DMs

respond to commands from Transaction Modules. DMs respond to four types

of commands Inothn80]:

1 . read part of the DM's database into a local workspace at that DM;

2, move part of a local workspace from this DM to another DMi

3. manipulate data in a local workspace at the DM;

q. write part of the local workspace into the permanent database

stored at the DM.

Transaction Modules plan and control the distributed execution of

transactions. Each transaction processed by SDD-1 is supervised by a TM

which performs several tasks. First, the TM translates queries on

relations into queries on logical fragments and decides which instances

of stored fragments to access. The TM then synchronizes the transaction

- 136 -

v¡ith all other active transactions in the system' Next, the TM compiles

the transacLion into a parallel program which can be executed co-

operatively by several Dl,ls. Finally the TM co-ordinates execution of

the compiled access plan, exploiting parallelism whenever possible'

The Reliable Network interconnects TMs and DMs in a robust fashion

and provides four services: guaranteed delivery' transaction control'

site monitoring, and a network clock IHamme80]. Guaranteed delivery

allows messages to be delivered even if the recipient is down at the

time the message is sent, and even if the sender and receiver are never

up simultaneously. Transaction control is a mechanism for posting

updates at multiple Dl'ls, guaranteeing that either all Dl'ls post the

update,ornonedo.Sitemonitoringkeepstrackofwhichsiteshave
failed, and informs sites impacted by failures. A network clock is a

virtual clock kept approximately synchronized at all sites'

The overall SDD-1 design is simplified by having the architecture

divide the DDBMS problem into three pieces: database management'

management of distributed transactions, and DDBMS availability' Each of

these pieces is implemented as a self-contained virtual machine'

There are three problem areas in a distributed DBMS: concurrency

control, distributed query processing, and reliable posting of updates'

sDD-1 has a bhree-phase processing procedure, with each phase handling

one of the three problems of REÀD, EXECUTE, and WRITE' By handling each

of the problems separately, overall complexity is reduced IRothn80]'

The REÀD phase exists to control concurrency'

supervising a transaction T analyzes it to determine

The TM thal is

its read-set, the

-137-

portion of the logical database it reads. In addition, to obtain that

data, the TM decides which stored fragments to access. The TM then

issues READ commands to the DM's that house those fragments, instructing

each DM to set aside a private copy of that fragmenl for use during

subsequent processing phases.

These private copies obtained by the REÀD phase are guaranteed to be

consistent even though the copies reside at distributed sites. Since

the data are consistent when read, and since the copies are private,

subsequent phases can operate freely on these data without fear of

interference from other transactions.

No data are actually Lransferred between sites during the REÀD phase,

the data are set aside in a workspace at the DM. The organization of

data at a DM is in fragments called pages. A page is a unit of logical

storage. Pages are referenced.through a page map' a function which

associates a physical storage location with each page. With this type

of storage organization, it is possible to make a copy of data by just

copying the page map. Thus no physical data are copied. Since pages are

never updated in p1ace, a copy of the page map is a copy of the file.

If a page is to be updated, a new block of secondary storage is

allocated, and the modified page is written there. This scheme has been

used very successfully in the System R DBMS [¡stra76]. 0n1y the

updating transaction can thus reference the ne!¡ page because only its

page map is updated. Other Lransactions are unaffected because their

page maps remain unchanged. When the entire transaction is completed'

then the master page map is updated. In this way, if a transaction is

aborted or fails, there is no need to undo any of its actions on the

data.

- '138 -

The second phase is the EXECUTE phase' This phase imPlements the

distributed query processing. Àt this time, the TM compiles the

transaction T into a distributed program that takes as input the

distributed workspace created by the REÀD phase' The conpiled program

is supervised by the TM to ensure that the commands are sent to the DMs

in the correct order. Às weII, the TM must handle run-time errors which

occur.

The output of this compiled prograrn is a list of data items to be

vrritten into the database (in the case of update transactions) or

displayed to the user (in the case of retrievals). This output list is

produced in a workspace at one DM, and is not yet reflected in the

permanent database. Consequently, problems of concurrency control and

reliable writing are irrelevant during this phase'

The !,¡RITE phase is the final phase in the execution of a transaction.

This phase installs data modified by a transaction T into the permanent

database and/or displays data retrieved by T to the user. For each

entry in the output list, the TM determines which DM(s) contain copies

of that data item. The TM orders the final DM that holds the output

list to send the appropriate entries of the output list to each DM; it

then issues WRITE commands to each of these DMs thereby causing the new

values to be installed into the database. special techniques must be

used during the WRITE phase to ensure that partial results are not

installed even if multiple sites or communication links fail midstream.

SDD-1 attempts to optimize the execution of a query command through

an optimization procedure called access planning. Àccess planning

- 139 -

F
ii::

The simplest way to execute a transaction T is to move aIÌ of T's

read-set to a single DM, and then execute T at that DM. While this

approach produces the correct answer, it has two major drawbacks: T's

read-set might be large, thus moving it between sites would be extrenely

expensive; and Iittle use is made of the parallel processing

capabilities of the network.

minimizes the transaction's intersite

maximizing its parallelism IBerns8la].

communication needs while

eliminating as much

T¡ithout changing T's

reduced read-set is

The effect of this

The access planner overcomes these drawbacks by

data from T's read-set as is economically feasible

ansy¡er. Then, during the final processing, the

moved to some designated DM where T is executed.

execution is to create a temporary file to be written to the database or

to be displayed for the user.

To comptete the transaction processing, the temporary file at the

final DM must be installed in the permanent database. Since the

database is dist.ributed, the temporary file must be split into a set of

tenporary files that list the updates at each DM.

Each of these temporary files must be transferred to the appropriate

DM by a WRITE conmand. The problem which results is to ensure that all

DMs install the updates. There are two types of failures which can

occur¡ failure of a receiving DM, and failure of the sender. The first

is handled by retiable delivery and the second by transaction control.

Reliable delivery is accomplished by the conmunications network where

duplicate messages, missing messages, and damaged messages are detected

and corrected. There exists a problem if both the sender and receiver

are not up simultaneously. To overcome thiS prOblem, ReINet uses the

spooling facility described earlier in section 2.3.3 (n spooler is a

process with access to secondary storage that serves aS a first in,

first out message queue for a faited site. Àny message destined for a

failed DM is delivered to its spooler instead IHamme80]') Each spooler

uses DBMS reliability techniques to guarantee the integrity of its

messages. To protect against spooler failure, multiple spoolers are

used. Às long as one spooler is running, messages can be reliably

stored.

To keep track of all the data, sDD-'1 maintains directories containing

data fragment definitions, Iocations, and usage statistics' Inothn80] '

Efficient and flexible directory management is important to SDD-1 as TMs

use directories for every transaction. SDD-'1 treats the directory as

ordinary user data, hence the directories can be fragmented, distributed

with arbitrary redundancy, and updated from arbitrary DMs.

With this flexibility in directory management comes the possibility

of performance degradation since every directory access incurs general

transaction overhead, and every access to remotely stored directories

incurs communication delays. For exampl'e, it is possible, though

inefficient, for a local object to have its directory entry at a remote

site. This problem is avoided in SDD-1 by caching recently referenced

directory fragments at each TM, discarding them if rendered obsolete by

directory updates. Directories tend to be relatively static' so lhis

does not incur a large performance degradation'

- 141

The second problem is that

directory fragment is stored.

locator, and stores a copy

relatively small and static in

a directory is needed to tell where each

SDD-1 calls this directory a directory

at each DM. The directory locators are

nature.

4.3.1 Concurrencv Conlrol

To obtain maximum transaction concurrency, SDD-1 uses several of the

previously described concurrency control algorithms. Transact,ions are

pre-analyzed to fit into a set of classes. Conflict graphs are used to

determine if two transaction classes wilr conflict at run time.

Timestamps are used on the stored data items to order READs and WRITEs.

This combination of techniques vlas used to avoid the overly conservative

aspects of locking. In a system that uses locking, each transact,ion

locks data before accessing them, so conflicting transactions never run

concurrently (section 3.1 .1) . However, not all conflicts violate

serializability, and sone conflicting transactions can safely be run

concurrently. Greater concurrency can be attained by checking whether

or not a given conflict is troublesome, and only synchronizing Lhose

that are. conflict graph analysis is a technique used by sDD-'l for

doing this IBerns78b,Berns80a1.

The nodes of a conflict graph represent the read-sets and write-sets

of transactions, and the edges represent conflicts among these sets.

Different kinds of edges require different levels of synchronization.

Blocking is a strong synchronization and is only required for edges that

part ic ipate in cycles. I nterclass conflicls that cannot cause

nonserializable behavior do not need to be blocked.

- 142 -

Too much intersite communication would be required to exchange

information about conflicts at run time' Instead' transaction classes'

thatis;namedgroupsofcommonlyexecutedtransactions'aredefinedby

the database administrator at database design time' Each class is

definedbyitsname,aread_set,av¡rite-set,andtheTMatwhichit
runs.Conflictgraphanalysisisperformedonthetransactionclasses,

and not on individual transactions. The output of the analysis is a

table which tells, for each class, which other classes that class

conflicts with, and for each conflict, how much synchronization is

required to ensure serializability Igerns80b] ' classes are exploited by

conservative timestamp ordering schedulers IBerns81b]'

To synchronize two transactions that conflict dangerously' one must

be run first, and the other delayed until it can safely proceed' In

systems which use locking, the execution order is deLermined by the

order in which transactions request conflicting locks. In sDD-1, the

order is determined by a total ordering of transactions induced by

timestamps (section 3.1.2), Each transaction in sDD-1 is assigned a

uniquetimestampbyitsTM.Thevaluesoflocalclocksusedfor
timestampsarekeptsynchronizedbyadvancingtheloca]timeifa

message with a later timestamp is received. The timestamp of each

transaction is sent along with each update message'

When a DM receives

processed all earlier

the specified classes.

a DM-TM communication

a REÀD command, it defers the command until it has

WRITE commands, and no later WRITE commands from

The DM can determine how long to wait because of

called PiPing.

- 143 -

PiPing

timestamP

fûe5sage5

requires that each TM

order. 1n addition '

are received in the order

send its WRITE commands to DMs ln

the ReIiable Network guarantees thaf

sent.

ThuswhenaDl'lreceivesaWRITEfromaTMwithacertaintimestamp'

theDMknowsitreceivedall!{RITEcommandsfromthatTMwithsmal}er

timestamps.ToprocessaREADcommandwithatimestampTsi,theDM

firstprocessesallWRITEcommandsfromthatclass,sTMupto,butnot

beyond,Tsi.IftheDMhasalreadyprocessedaWRiTEcommandwith

timestamp beyond TSi' the READ is rejected'

To avoid excesslve

periodicallY send nuII

can exPlicitlY request

them.

Tocompletetransactionprocessing,thetemporarysiteatthefina}

DM musL be installed in the permanent database and/or displayed to the

user. Since the database is distributed' the temporary file must be

split into files for each DM'

Eachofthetemporaryfilesistransmittedt'otheappropriateDMasa

WRITE command' The problem is to ensure that failures cannot cause some

DMs to install updates while causinq others not to' Failure of a

receivingDMishandledbyreliabledelivery,whilefailureofthe
senderishand}edbytransactioncontrol.

delays in waiting for WRITE commands' idle TMs

timestamped WRITE commands; also an impatient DM

a null WRITE from a TM that is slow in sending

Transaction control addresses failures of

during the WRITE phase' If the final DM

the final DM that occur

fails after sending some

-144-

updates, then the database wiII be inconsistent as some DMs will
the results of the transaction, and some will not. Transaction

ensures that inconsistencies of this type are rectified in a

fashion.

reflect

cont rol

t imely

DM transmits the data for the wRirEs during phase 1, but the receiving
DMs do not instarl them yet. During phase 2, the finar DM sends commit

messages to the DMs, and those DMs install the data. I f some DM has

received its data but not a commit, and the final.DM has failed, this DM

consurts the other DMs involved in the transaction. If one has received
a commit, the DM does the installation; if no DM received a commit, no

DM does the installation, thereby aborting the transaction. l.¡hile this
offers conprete protection against failures of the final DM, this
technique is susceptible to nultisite failures.

The basic technique used for transaction contror is a

phase commit lnothng0], discussed in section 3.1.1. In

Instead of processing WRITE messages

item has a timestamp associated with

timestamp of the last WRITE message that

variant of two-

SDD-1, the final

in timestamp order, each data

it. This timestamp is the

updated it.

item's timestamp is less than

command contains the new value

the WRITE message exceeds the

the new value of the data item

stored data item also with the

Each DM processes wRITEs by only updating a data iÈem if the data

the WRITE message's tinrestamp. The WRiTE

for the data item. If the tinrestamp of

tinestamp of the stored data item, then

in the WRITE message is written ínto the

new timestamp. Otherwise, the update is
not performed on that stored data item.

- 145 -

This is a data item by data

item check, and

update operations,

some data items in the WRITE message may result in

while others maY not'

Thedataitemswhichdonotresultinupdateoperationsarenot

errors. it is simpty the way SDD-1 reorders updates to occur in the

same order that their generating transactions executed' The net effect

istheSameasiftheywereupdatedintimestanporder.Theadvantage

tothisthough,isthataI^tRlTEmessagecanbeprocessedassoonasit

is received, thereby avoiding artificial queuing delays at the DMs.

However,since}aterWRlTEsmaybeprocessedbeforeearlierones,a

database copy may be temporarily inconsistent' concurrency controL

never permits a transaction to read an inconsistent state if this could

Iead to incorrect results'

AIl timestamp-related mechanisms in

unsynchronized clocks, but for reasons

assume that clock values in different

SDD-1 witl oPerate correctlY with

of efficiencY, it is necessarY to

TMs are reasonablY close'

Oneproblemwithtimestampeddataitemsisthecostofstoringthe

timestamps.Ifthetimestampofadataitemisear]ierthanthe
timestampofanytransactionwhoseliRlTEmessageshavenotbeen

processed,thenthedataitem,stimestampiseffectivelyzero.Thusit

isonlynecessarytocachethetimestampsofrecentlyupdateditems,and

afteraperiodoftime,thedataitem'stinestampcanbeassumedt'obe

zero.

The sDD-1 concurrency control mechanism fully distributes the

concurrency control [¡erns8oa]. sthile each transaction is controlled

from a single site, different sites are concurrently supervising lhe

- 146 -

synchronization of many different transactions. No one site is in

charge of any system-wide activity. The main advantage of this ful}

distribution is enhanced reliability. A site failure only effects those

transactions executing and/or using data at that site.

This concurrency control method is generally inefficient for

unpredictable transactions as it requires transactions to preclaim their

resources. Although based on an original theoretical approach'

practical performance of this method for concurrency control is

conditional upon several assumptions whose validity remains to be

demonstrated. The sDD-1 approach works weII if several conditions hold

true. First, transactions can be grouped into disjoint classes'

Secondly, transactions can preclaim their resource requirements'

Thirdty, several transactions belonging to different classes should be

simultaneously available for execution so as to provide a good mix'

This method will not work well if the majority of transactions are in

the same class, as they will conflict. This method works poorly if the

transactions cannot be classed into disjoint classes.

ChaPLer V

coNctusloNs

In this Lhesis, r.le have examined the reasons for using a DDBMS' Sone

of these reasons are t.he possibility for increased performance and

reliability through the use of redundant data and multiple parallel

execution units.

A cl0se 100k ldas taken at the hardware and software needed to

interconnect computers. Some general standards t+ere examined for

networks, along with the International Standards 0rganization's open

System Interconnect model for networks. One problem with operating a

DDBMS in a distributed environment is the high cost of transmitting

data, and the lack of security of this transmitted data' Various ways

of compressing data were examined, along with some ways of enciphering

the data to make it more secure. Long-haul netv¡orks were also compared

to local area networks. Several performance criteria were examined, and

a look aL network overhead showed that with proper tuning, a network can

be very efficient. tocal area networks can only Span a small area' but

have a speed advantage over Iong-haul networks'

Several commercial networks were then compared and contrasted. SNÀ

and DECnet were shown to have some deficiencies when operating in a

DDBMS environment. RelNet attempts to overcome those deficiencies by

operating on top of a network, and providing some services which are

beneficial to a DDBMS.

- 148 -

While a distributed database can lead to fasler and more reliable

database operation, the extra hardware and software create new problems'

These problems deal with keeping the multiple copies of data consistenl

through the use of concurrency control methods'

With distributed data, there is also a problem of how to best access

the replicated, fragmented data. An algorithm which decides to move a

large amount of data over the network will take hours instead of seconds

to process a query. To be able to retrieve the dispersed data' each

system must be able to first locate the data. This is done through a

data dictionary, which is a database in its own right'

Various locking techniques were

methods. ManY locking techniques

controller. The centralization of

very rationale for data distribution

availabilitY of the sYstem. Other

discussed as concurrency control

involve some sort of centralized

any function undermines some of the

- reliabilitY, accessibilitY, and

problems include the possibility of

congestion of the central node and unnecessary serialization of all

updates.

Timestamping techniques eliminate the problems of locking, but can be

overly conservative causing transactions to wait needlessly' Hybrid

techniques which use both }ocking and timestamping seem to combine the

best of both techniques, without the drawbacks of either.

to be tested in a real system'

These remain

A major concurrency control side effect is that of globa1 deadlock'

Because of the time delays encountered in the network, false deadlocks

can appear. Àdditional overhead is needed to check if the deadlock is

real, and if so, to cancel the transaction'

- 149 -

In the final chaPter, wê

Multip1e SYstem CouPling was

features of a true DDBMS.

features of a DDBMS. However it does use a centralized deadlock

detector. Distributed-INGRES uses a primary copy two-phase locking

technique. Probtems arise if the updates are not applied to the non-

primary copies or if the primary site fails'

SDD-'1 utilizes the assumption that probability of interference among

concurrent transactions is Iow by preanalyzing transactions in order to

determine which transactions could possibly affect each other'

fferent classes based on their read and

classes do not intersect may be safely

because they cannot pose conflicting

lransactions are scheduled for serial

examined several commercial DDBMS' IBM's

shown to l-ack most of the essential

Distributed-iNGRES supports most of the

Transactions are grouPed into di

write sets. Transactions whose

scheduled for Parallel execution,

resource requests. Conflicting

execution.

Further research is required to determine the benefits of the various

concurrency control algorithms, and to demonstrate the conditions under

which various methods work well and under which they work poorly' No

one has yet devised a way to survive network partitions. It seems that

there is no one best meLhod for concurrency control, but it may be shown

that one of the hybrid techniques is indeed superior to either

timestanPing or locking.

One probten not discussed is

Not enough information is known

that of tuning a distribuled

on what information is needed

database.

to tune a

costs of
system and where the tradeoffs are between the benefits and

multiple copies of data. SLatistics are gathered by both the DBMS, and

the network, but these statistics must be related to one another to get

a true picture of what needs to be tuned. As the use of distribuLed

data grows, there wiIl be more need to solve these problems.

- 151

[Àdiba81] Àdiba, Michel, and Juan Àndrade, "Update Consistency and

paraf íeii5¡- i; DisLributed Databases", Proceedinqs-2nd

BIBIIOGRÀPHY

I nte nal ren Dis
1981' PP' 180-187'

number 3, 1976.

[¡graw83] ngrawal, Rakesh et a1., "Deadlock-Detection is cheap", ÀcM

srcuoi-iecóiál uolume i3, number 2, Januarv 1983, PP' 19-34'

[¡lrgg] ¡tr, Selim G. ..Digital Signatures: À Tutorial Survey'', IEEE

co*puiãrl"'rãúruuiy, Iggg, ío'ume 16, nummber 2, PÞ. 15-24.

[¡]Ien82l ¡llen, Frank W., Mary E'S' Loomis, Michael V' Mannino' "The

intugiuluá oi.tionarv/nirectorv Svstem'l' ÀcM cgTgu!ilo
suruuus,-uoiut. 14, nimber 2, June ' 1982' PP' 245-275'

[Àstra76]¡strahan,M.M.,"SystemR:Àrel-ationalÀpproachtoDatabase
Management", ÀCM Transãctions on Database Svstems, volume 1,

[¡rre8o] Àtre, S. , Data Base: Structured TeçþniqrJeg for Pesiqn ' ^^ ^;;;iå';;;. sons' Inc" 1e8o'

IsadatlE] eadal, o. 2., and G. J. Popek,_"4 Proposal for Distributed
Con.uir"n.y ôonttol f;; Þuiiiårfv Redundant. Distribu!"d l1!ugái" SVsteirs", proceedinqs of thè_TLrird Þerkglçv Cpnfefence
on Disiributed , Auguston Distributed Dat
1978, pp. 273-288.

Isadatzg] gadal, Dusan zdenek,,sem?nt.iç. IFtqqlitv, consiÞtçncv and

cnn",rlrãncv contror' iffi¡ãses, university of
h'D' Thesis, 1979'

[¡adaI80] nadaI, o. 2,,, "Concurrency Control Overhead or a

at gfócking ut. Nonblocking Concurrency. Control.
Closer took

Mechanisns",
L

Ber keley
85-1 04.

Formal Model
Systems",

he Fi
ffid Compute! Ietworks, -tawrenceFebruarY, 1980' PP'

IBenha83] Benhamou, Eric, and Judy Estrínr."MuItilevel Internetworking
Cateways: ¡rchitecture and Applications"',I=EEE Conputer'
uotumãi-i6, number 9, Septembãr 1983' pp' 27-34'

IBernsTSaJ Bernstein, Philip 4., and Ðavid t{' Shipman' "A

of concuri"ncy control Mechanisms for Database
roceedinqs ol the Third Berkelev co Di

ffi computer Networks, Àugust
1 g9-205.

-152-

1978, pp.

ran on sot tvJa r
number 3, May 1978, pp.154-1

IBerns78b] Bernstein, P.A. ' N. Goodman' J'
PaPadimitriou, "The Concurrency
Syãtem for Distributed Databases

IBerns80a] Bernstein, PhiIip À., David
Jr, "ConcurrencY Control in

B. Rothnie, and C. À.
Control Mechanism of SDD-1: A

(the nully Redundant Case)",
inq, volume SE-4'

W. Shipnran
'a System for

Databases (soo-l) ", ÀcM ri
March 1980, volume 5, number '1 1 8-51 .

and James B.
Di str ibuted

Rothn i e ,

lsernsS0bl Bernstein, PhiliP 4.,
of Concurrency Control
Databases (SDD-'1)",
March 1980, volume 5,

IBerns80c] Bernstein, P. À.' and N.
for Concurrency Control

6rh

and David W. ShiPman, "The
Mechanisms in a SYstem for

Cor r ec tness
Di str ibuted

DSt

Goodman, "Timestamp Based Àlgorithms
in Distributed Database Systems",

Ver

Þæ., Oct,ober 1980.

IBerns80d] Bernstein, PhiIip n., Nathan Goodman, and Ming-Yu-Lai' "Too
part prooi Sci,"mä for Database Concurrency Control",

ifrh ribu
*orf s,

-Lawrence-BerkeIeY,1980' PP'71-84'

IBerns81a] Bernstein, PhiIiP À.,
"QuerY Processing in

D. t{. ShiPman, and J. B.
System for Distributed

Rot,hn i e ,
Databases

volume 6,(sDD-1)",
number 4

'
December

IBerns81b]gernstein,PhilipÀ.,andNathanGoodman,..Concurrency
contrói in oistributed Database systems", ACM.Çqmpu!inq

suruevã,-volume 13, number 2, Junã 1981, pp' 185-221'

IBerns83] Bernstein, PhiIip e, and Nathan Goodman, "]'lultiversion
Concurrency Contiol - Theory and Àl9orithms"' @
rransáãiiòns on oatauqge.glstems, volume 8, number 4,
oecember, '1983, PP. 465-a89 '

ICarde79] Cardenas, Àlfonso F., Data B?89-Manaqement Svstems, À1Iyn and

Bacon, Inc., Boston, Mass', 1979'

lceriS4l

loateE¡ l

loavieSl l

Ceri, Stefano, and Guiseppe Pelagatti,
Principles & Sy€le8s, McGraw-Hil1 Book

Distributed Databases
Company, 1 984.

Date, C.J. ' Àn
Àddi son-WesIeY

Davies, Donald W., "CiPhers and the ÀPPIication lo the Data

Encryption Standard", IEE
Hetwõrks, New York, N.Y., 1981 PP.

Transac t r o
Ñmber 1, PÞ. 52-68.

CE

98
Da

1
,1 , pp. 602-625,

t
Publ i shing

- 1s3 -

t

IDeato80] Deaton, G. A. and D. J. Franse, "Analyzing IBM's 3270
Performance Over Satellite links", @,
0ctober, 1 980.

Ioe1ob80l oelobel, c., and w. Litwin (ed.),
North-Ho1land, New York, 1980.

Distributed Databases,

IDiffi76] Diffiê, W., and M. Hellman, "New Directions in Cryptography",
IEEE Transactions on Information Theory, November 1976,
volume IT-22, number 5, Þp. 644-654.

IDiffi77] Diffie, I^lhitfield and Martin E. HelIman, "Exhaustive
Cryptanalysis of the NBS Data Encryption Standard", IEEE
Computer, volume '10, number 6, June 1977 , pp, 74-84.

IripSZZJ "specifications for the Data Encryption Standard", Federal
Information Processinq Standards Publication 46, National
Bureau of Standards, January 15, 1977.

IGarci79] Garcia-Mo1ina, Hector, "A Concurrency Control Mechanism for
Distributed Databases Which Use Centralized Locking
Controllers",
on Distributed Data Manaqement and Computer Networks, Àugust,
1979, pp. 113-124.

IGarci82] Garcia-Molina, Hector, "Reliability Issues for FuIly
Replicated Distributed Databases", IEEE&I!M.!., volume 15,
number 9, September '1 982, pp. 34-42.

IGray751 Cray, J. N., R. À. torie, and G. R. Putzo1u, "Granufarity of
Locks in a Large Shared Data Base", EgSSdl!ú.L
International Conference on Verv Larqe Data Bases, September,
1975.

I GrayT 9 J Gray, J. P.
Networking",
pp. 263-297.

and T. B. McNeil, "SNA Mult iple-system
volume 18, number 2, 1979,IBM Systems Journal,

IGreen82] Green, Paul E., Jr, (nd), Computer Network ArchitecLures and
Protocols, P1enum Press, New York, 1982,

IHamme80] Hammer, Michael, and David Shipman, "ReIiability Mechanisms
for SDD-'1: À System for Distributed Databases", !f{
Transactions on Database Svstems, December, 1980, volume 5,
number 4, pp. 431-466.

[Hevne78] Hevner, Alan R., and S. Bing Yao, "Query Processing on a
DistribuÈed Database", Tutorial: Distributed Database
Manaqement, IEEE Computer Society, 1978, pp. 69-85.

[uinde83] Hinden, Robert, Jack Haverty, and Alan Sheltzer, "The DARPA
Internet: Interconnecting Heterogeneous Computer Networks
with Gateways", IEEE Computer, volume 16, number 9, September
1983, pp.38-48.

::
::

:
.ì
ì
:ì

,¡ñ
ìi\
::¡.*
$
t:¡*

:lì

tl
ì-\
ì.!i:

¡i
rì
::l

n.
ri.l:

jt'

ì
.:J.
ìì.t
È
rl .

,ì
:.:ì

- 154 -

I r ¡t't]

lKakegl

[¡torth80]

lttungS l I

Itamps81] Lampson,

It imzg]

Korth, Henry F., "A
Locking Protocol",
on Distri Mana
tawrence Berkeley Labo
pp. 105-12'1 .

Kung, H. T., and J. T.
Concurrency Control",

ratory, Berkeley, CÀ., FebruarY, 1980,

Robinson, "Optimistic Methods for
ACM Transactions on Database Svstems,

IBM Corporation, IMS,/VS Systen Administration Guide, IBM Form

number SH20-9178.

Kak, Subhask C., "Data Security in Computer Networks"' IEEE

Computer, February 1983, volume '16, number 2, PÞ. 8-10.

Deadlock-Free, Variable Granularity
Proceedinqs of lhe Fifth Berkelev Workshop

volume 6, number 2, June 1981, pp. 213-226,

M. PauI, and H. J. Siegut, Distributed Svstems
n , Springer-Verlag, New York'

1981.

tin, Wen-Te K., "Concurrency Control in a Multiple Copy

Distributed Database System", Proceedinqs of the Fourth
nd

s.

.il.-

.ì.ì

.:¡li

.!ìt

:ì.\ .

iiì:.ì
-ì,i:,

:l:
.s
r:-i .

ì.
::;'
,:1

ä
,:ì

rì
:i.i'

Berkelev Conference on Distributed Data l'1?D?qement and
Computer Networks, Àugust, 1979, pp. 207-220.

IMartiTz] Martin, James, r Data- Prent ice-
Hall, Inc. , Englewood CIiffs,

IMarti78] Martin, James, Communications Satellite Systems, Prentice-
Hall Inc. , Englewood Cliffs, New Jersey , 1978,

IMarti79a] Martin, James, Distributed File and Data Base
and Techniquesr-avant Institute, Àugust, 1979,

lMartiTgbl Martin, James, Distri
and the Challenqe, Savant Institute, Septenber, 1979,

IMarti81a] Martin, James, Desiqn and Strateqv for Distributed Data
processinq, ereniice-Ha11 Inc., Englewood Cliffs, New Jersey,
1981.

IMarti81b] Martin, James,
Prentice-HaI1, Inc., Englewood CIiffs, New Jersey'

IMcleag1] Uctean Jr., Gordon, "Comments on SDD-1 Concurrency Control
MechaniSms;', ÀCM TransactiOns on DatabaSe SyStemS, vo1ume 6,
number 2, June 1981' PP. 347-350.

IMeras78] Merasce, DanieI 4., and Richard R. Muntz, "Locking alq
DeadIociDetectioninDistributedDatabases,',PI.G@t
the Third Berkeley Conference on Distributed Data Manaqement

and Computer Networks, Àugust '1978, pp. 215-234.

SS

iìl

- 155 -

[]4erk178l]terkIe, Ra]ph C., and Martin E. HelInan, "Hiding Inf ornration
and Signatuies in Trapdoor Knapsacks", IEEE Transagtions 9n
informátion Theorv, vólume I'I-24, number 5, September 1978'
pp. 52s-530.

[t'tileng't] Milenkovió, Uilan, Update Synchronization in Multiqççess
systems, IJMI Research Press, Ànn Àrbor, Michagin, 198'1 .

Iuinou79] t"tinoura, Toshimi, "À
Distributed Database

rency Control Àlgorithm for
Proceedinqs of the Fourth

New Concur
Systems",

Il¡utte83] ¡¿ul1er-Schloer, Christian, "A Microprocessor-based
Cryptoprocessor", IEEE Micro, volume 3, number 5, PÞ' 5-15'

IobermE'1] obermarck, R., and c. Beeri, "A Resource class Independent
Deadlock ietection À1gorithm", Proceedinqs 7th. International

Ber keI on Distri Mana

Computer Networks, August, 1979, pp.221-234.

Conference on Verv Larqe Databases, Sept. '1981.

IOberng21 Obermarck, Ron, "Distributed Deadlock Detection Algorithm",
ACM Transactions on Database systems, June, 1982, volume 7,
number 2, PP, 187-208.

IParke84] parker, Donn 8., "The Many Faces of Data Vulnerability"' IEEE

5P.@, MaY, '1984, PP. 46-49.

Iperry84] perry, Tekla S., and PauI_Wa11ich, Àssociate Editors, "Can.

Computer Crime Be Stopped?", IEEE Spectrun, May, 1984, PP'
34-4 5 .

IPooch831 Pooch, Udo W., William H. Greene,
Te s

and Gary G. Moss,
Little, Brown & Company

Inies79]

IRives78a] nivest, R. t., À.
Obtaining Digital

Shamir, and L. Àdleman, "A Method for
Signatures and Public-Key Cryptosystems",

Conmunications of the ÀCU, volumes 21, number 2, February,
1978, pp. 120-126.

InivesTgb] Rivest, RonaId L., "Remarks on a Proposed CryptanalytÍc
Àttack on the M.I.T. PubIic-Key Cryptosystem", Cryptoloqia,
volumes 2, number '1 , January, 1978 ' pp. 62-65,

IRosen78] Rosenkrantz, D. J., R. E. Stearns, and P. M. Lewis, "System
tevel Concurrency Control for Distributed Database Systems",

Ries, D., "The Effects of Concurrency Control on the
Performance of a Distributed Data Management System",
Proceedinqs of the Fourth Berkelev Conference on-Ðistributed
oata t'tanaqerìenÈ and Computer lietworks, Àugust, 1979, PP.
75-112.

ä
.1¡l

iì!â
iî
s
t-\

:'.ìì

i:
s
ii
:l
il
i\
ì¡
tì

I
ro
,Ì¡

il
ìi'

iì
:!i

ì
'

, volume 3, number 2,

lnottrnll l Rothnie, James B.t and NaLhan Goodman
'Distributed Database

"À SurveY of Research
Management", IEEand Development 1n

Tutorial: - !jstËiþ

Inothn80] Rothnie, J. B. Jr., et. al.,...Introduction to a System for

Distributed Databa,u'- is;;-i) "' ¡91'l'Tr?nsactigng-on oatabase

Svstemãl iðfu*. S, numbãr 1, March-980, pp' 1-1'1 '

IRushb83]Rushby,John,andBrianRandeII,..ADistributedSecure
systen", IEEE computel; ;Iñ; i6' number 7' JuIy' 1983' FP'

55-68.

lSasivEl l Sagiv, Yehoshuâ C.'
óátu¡us"s, WI Research Press'

IschlaEl] schtageter, G',' in Distributed

I schneE3]

lsctruta I l

I shami 80]

"Optimistic Methods for q?l::tl:lty Cont rol

, SePt. 1 981

lstoneTTl

Distri
pp.19-36.

Istone?9]

I sundsE0] Sundstron, R. J.
1974-1980" ' gg

NeuhoId, E., "À Distributed Database
roceedi le rk

r Nefvror , t'tay 1977 ,

Local Networks to
volume 16, nunber 9,

and ConsistencY of
INGRES", IEEE

volume SE-s, number 3,

Stonebraker, M. , and
Version of INGRES",

Sussenguth,
Per sPec t í ve "

Schneidewind, Norman, "Interconnecting
iãng-oistance Networks"' IEEE computer'

iepÉemUer, 1983, PP' 15-24'

Schultz, Gary D., "An AnaLomy of SNA"' Computerworld' March

18, 1981, PP. 35-41.

Shamir, Adi, and Richard E' ZippeJ-' "OD the-security of the

Merkte-Hellman ctñ;õ;;phic Sà'heme", IEEE Tlansactions on

Iglormation ri¡eoili';åi;il h-zç' number 3' Mav' 1980' FP'

339-340.

Stonebraker, M., "Concurrency Control
iliti;i; cãii"' or Data i1 oistributed

r 1nq,

cn Computer=-çoEEUnicat i on

1980, PP.5/U-5ö5.

I SusseTE] H., "SYstems Network Àrchitecture:
h InterProceed I nq€--q - Kyoto Japatl ' SePternberIr

26-29, 1978, PP. 353-358.

Tanenbaum, Àndrew
Englewood CIiffs,

S., Computer Nelworks, Prentice-HaII' Inc"
New JerseY, 1981.

Iat i ona I
ñb-or,-rbor, t'ti c h i gan, 1 98 1 .

and G. D. Schultz, "SNA's First Six Years:
Fi national Conle!

Àtlanta, ceorgiÑãtober 27-3Q,

I

Itanen81a]

-157-

Itanen8.1b]

lUnsoiSl l

lvoydo83 J

[]¡airel l

Tanenbaum, Andrew S., "Network Protocols", À!U-.1þ¡PÚg.
9!Æ., volume 13, number 4, December 1981, pp.453-489.

Unsoi, M. S., "Performance Monit.oring and Evaluation of
Datapac Network", SI9, pp. f.6,5/1-5, 1981.

Voydock, Victor L. , and Stephen T. Kent, "security t'techanisms
in High-teve1 NeÈwork Protocols", @,
volumã 15, number 2, June 1983, pp. 135-'171.

Wah, Benjamin W., Data Manaqement on Distribqted Databases,
IIMI Reseárch Press , Ann Arbor , Michi gan , 1 98'1 .

ì
:ì

I
ì
s

ì
ìÌ

- 1s8 -

IIST OF REFERENCES

AdibaEl 98

AgrawS3 123-124
¡ÍIen82 73, 87

AstraT6 1 3g

Atre80 2

Bada178 98

BadatTg 98

BadaIE0 98

BenhaS3 21

BernsTSa 98

BernsTEb 98,142
BernsE0a 98, 142, 146

BernsEob 98,143
BernsSoc 98 '

'116

Berns8od 98, 120

BernsSla . 96, 140

BernsSl b
83, 98, '105, 112, 120, 143

BernsS3

CardeTg 2,76,109
ceri84 118, 133

Dafe83 . 2, 72, 101-102, 11'1

DavieEl 53-54
DiffiT6 55

DiffiTT 54

Mart i 7 9a
MartiT9b
MartiEla
MartiSlb
MerasTS
Merk178
Mi 1en78
Mi len8 1

MinouT9
MuI le8 3

0be rrnB 2

ParkeE4
Per ry84
PoochS3

Ri es79
Ri ves78a
RivesTSb
RosenTE
RothnTT
RothnS0
RushbE3

Sag ivB 1

SchlaB 1

SchneB 3

SchuIS 1

Shami I 0
SLoneTT
StoneT9
SundsS0
SusseT I

4-5,
16,
1'1 ,

87
14

3

40
98

47
47

4

, 29, 37,

56
98

. 106
98
56

, 125

$l
-ìfì
:rì

ì
ln
I

ìì
il
.l

. 98' 100
55
56

113
87,95, 106

. 1 35-1 37, 141 , 1 45
.57

98,

98,
9s

117
40
61

56
133
134

58

FI PS77

Garc i 79
GarciS2
GrayT 5

Gray79
GreenS2

HammeE0
HevneTS
HindeS3

59,

. 98, 112,. 98,

' 98,

aa

. 69, 71, 13'l ,

54

114
105

82
129

64

141
96
21

58

TanenSla . 22-23, 25

29-30 , 34, 38, 40, 42, 45-46
TanenSlb . 30

UnsoiSl 37, 41

IBM.O' 129-'1 30 VoYdoE3 . .

Kak83 . . 52 Wah81 95

47

KorthE0 . . 98

Kung81 . . . 98, 117,119

tim79 98

76
4

- 1s9 -

MartiTT . . 2,
MartiTS

LIST OF DEFINITIONS

bps
BSC

application laYer

aa

CCITT
c i rc ui t-sw i tch
commit point
c onc ent rator
concurrency control.
CPU

CRC code
cTc

tAN
Iayer

application
data link
networ k
physical
presentat
sessl0n
t ran spor t

1 ivelock
lock

exc Ius i ve
shared . .

update
locking
locking protocol
LST
tU

metadata
MSc 129
MrM 1 30

10n

36

37
130

26
22

105
37
99

5
42

130

38

36
32
33

.lr-\li.

:T:

à
r,\l
a{.
.1i,.

:i.t l.)l:

il.

1l
:ì
¡ì:'

t:-ì1.ì:'

31

36
35
34

108

107

data dictionarY
data link layer

87
3¿
35
16
26
72

9

111
111
107

82
11

58
datagram
DBMS

DCE
DDBMS

deadLock
false
globa1

74

58
DEC
DES

distributed Processing
Drc
DM , 102,
DNA .
DOWN

DSE .
DTE .

network 17

local area 38

network layer 33

node , 22

NTO . 63

OSI ..

packet
packet-switching
partitioned database . .

partitioning
horizontal.
vert i cal

peer processes
physical layer
presentation laYer . .

process . .

PU ..
public-key cryPtograPhY . .

readset 103

relation .. ,76
relational database 76

ReLNet 67

replicateddatabase. ...6
RJE.........59

126
121

64
54
13
58

136
64
68
26
26

47

NCP .

enc ipherment

false deadlock

ha1 f-duplex
host aa

frame . .

ful1-duplex..

gateway . .

gIobal deadlock

126
32
'19

30

22
22

6

78
78
28
31
36
12
s8
55

21

121

19
18

IMP . . . , 22,
IS0 . . . '

JES2 0 0

kbps . .

26
30

59

37

- 160

..'.---..-',^.......

rollback
r!;

SDD-1
sDrc
ser ial izable
serially reusable
sessron
session layer
s implex
SNÀ

spooler
sscP

timestamp . .

c onservat i ve
TM , 102,

1'15
116
136

24

layer 34

locking 1 1 1

110
104

83 topology
1 30 transport
1 08 two-phase

35
19
58
70
58

117
18

59
35 UP

12
58
15

virtual circuit.
VLSI
VTÀM

68

35
12
58

109
103
10s

-aì

,:.rì

,ì,S

i\1

iì

:t;
ì,
:l
.t
ìÌ.

sta rvaL i
subnet

on graphwait-for
writeset
tv vJ

task
TCÀM

teleprocessing

- 16i -

zPL see two-Phase locking

