Distributed Databases: A Review of Problems and Solutions

by

Paul M. Burega

A thesis
presented to the University of Manitoba
in partial fulfillment of the
requirements for the degree of
Master of Computer Science
in
Computer Science

Winnipeg, Manitoba

® Paul M. Burega, 1984




DISTRIBUTED DATABASES: A REVIEW
OF PROBLEMS AND SOLUTIONS

BY

PAUL M. BUREGA

A thesis submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirements

of the degree of

MASTER OF SCIENCE

© 1984

Permission has been granted to the LIBRARY OF THE UNIVER-
SITY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfilm this
thesis and to lend or sell copies of the film, and UNIVERSITY
MICROFILMS to publish an abstract of this thesis.

The author reserves other publication rights, and neither the
thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author’s written permission.




1 hereby declare that I am the sole author of this thesis.

1 authorize the University of Manitoba to lend this thesis to other
institutions or individuals for the purpose of scholarly research.

Paul M. Burega

1 further authorize the University of Manitoba to reproduce this thesis
by photocopying or by other means, in total or in part, at the request
of other institutions or individuals for the purpose of scholarly
research.

Paul M. Burega

- i1 -




ABSTRACT

The manipulation of large quantities of data is an increasingly
important topic as more and more applications are computerized.  The
technigues used to manage a distributed database are crucial to the
success of most scientific and business applications. In this thesis,
we examine the techniques used to manipulate data that are distributed

among or between several computers.

The problems incurred by connecting together geographically dispersed
computers are examined and some solutions given. Problems such as data
integrity and security over the transmission medium are discussed. A
look is taken at a general network model, the International Standards
Organization Open System Interconnect model, along with a look at some

commercial networks.

There are many problems with distributed databases, some of which
occur because of the distributed environment. Conflicts arise between
concurrently executing transactions. If the conflicts are not handled
correctly, they can offset any performance gains made by the distributed
environment. The two main methods for controlling concurrent execution,
locking and timestamping, are compared and contrasted, along with some

new hybrid techniques.

We also examine some current distributed database systems in detail.
Major emphasis is placed on the methods used for concurrency control, as

this is a major problem in a distributed database management system.
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Chapter I

INTRODUCTION

The manipulation of large quantities of data 1is an increasingly

important topic as more and more applications are computerized. The
techniques used to store, retrieve, and modify data are crucial to the
success of most scientific and business applications. In this thesis,
we examine the techniques used to manipulate data that are distributed

among or between several computers.

The most important reason for distributing computing power 1is the
relative price of computing power versus the price of communications
facilities (cheaper memory, faster processing) [Marti7?9b]. The price of
computing power has fallen drastically within the last decade, due
partly to the introduction of the micro-computer. This means that it is
often more economical for a company to put a computer at a remote
location, rather than pay the cost for high speed communication lines to
support terminals. 1t is cheaper to process or analyze the data at the
place it is generated, and only send occasional summaries to the main
computer centre. This reduces communications cost, which now represents
a much larger percentage of the total cost than it used to. By using a
remote computer, it is possible to use communications lines during off-

peak hours to realize further savings.

There are two methods of storing collections of related data on

computers. The simplest of these is to store data 1in standard files.
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rhis technique is adequate if only a few programs access the data, and
there is no restriction on the length of time needed to process a query.
These programs must be concerned about the physical layout of the data.
1f the record format changes, then all the programs must be re-compiled.
Furthermore, each program can see every part of all records. This is
not desireable. As the number of users with access to a given set of
data increases, so does the need to restrict access to certain fields to
specified users. To eliminate these and other problems, a database
system should be used. This allows application programmers to access
data logically and independently from the physical format of the data.
A database system also provides the required integrity and security for

the data [Atre80, Carde79, Date83, Marti77].

Once a database is in use, new problems arise as more users reguire
access to the data. The increasing numbers of accesses require more
processing. If these users are online, their reguests should be
completed in a brief period of time, e.g. five seconds. To accommodate
this time requirement, a fast computer must be used; however, such a
computer is not always available. Therefore several computers may be

required to share the processing to meet the access requirements.

With an increasing number of users accessing a database, it 1is
inevitable that some of these will not be situated near the computer
complex. They may be across the street, at the opposite end of the
city, or continent, and in extreme cases, on the other side of the
world. If terminals are placed at remote locations, it 1is usually

necessary to have one communication line per terminal. As the number of

terminals in one location increases, so does the cost of the




communication lines. Communication lines delay data transfer and
increase the apparent response time to the end user [MartiB1al. To
improve performance and 1lower the cost, a computer system may be
installed at the remote site to handle the terminal queries. This
decreases response time, increases availability due to  fewer
communication lines, and allows data to be stored near where they are
used. As an example, take the case of a firm with offices downtown and
a warehouse on the outskirts of town. If an inventory system is run on
a computer in the warehouse instead of on the computer in the business
office, then not only do the warehouse terminals get better response,
but so does the downtown office computer, since it no longer needs to
process the inventory program. But what if a wuser on one computer

system requires data from the other?

In order to share data between or among computers, the computers must
be linked together. If the two computers are physically close, it is
possible to have a high-bandwidth channel connecting the two computers.
This method of connection allows a transfer rate in excess of one
megabyte per second and each computer looks like an input/output device
to the other computer. With this method, both computers need not be
general purpose computers. One of the computers could be a dedicated
database processor specially designed to perform database operations.
The other computer would then be the hosf to which terminals would be
connected. The host would perform general computing and pass special
database requests to the database processor. This offloads expensive
database transactions from the host and allows a more suitable machine

to do the transactions. There may be large transfers of data between



the two computers, and hence a need for a high-bandwidth communications

channel.

Wwhere the two computers are separated by a larger distance, for
example in different buildings or across town, then communication lines
must be wused. Typically, the greater the distance, the lower the
bandwidth available for reliable communications [Marti79b].  When both
computers reside on the same property, it is possible to run wires
between the two machines. If, however, the computers are on separate
pieces of property, then common carrier transmission lines must be used
(telephone company lines). These lines may be specially designed to
give lower error rates and higher bandwidth than normal telephone lines,
but the maximum bandwidth would typically be around fifty thousand bits
per second (higher rates are available, but may be beyond economic reach
of many companies [Pooch83]). The telephone company may also use micro-
wave and satellites to complete part of the communications link

[Marti78].

As soon as there 1is any distance between the two computers, the
maximum bandwidth available economically drops drastically and the error
rate increases. In order for distributed databases to function, there
must be network hardware and software to compensate for the problems
created by distance. This implies sending as little data as possible
and employing error detection and correction mechanisms to make the

communications facilities useable but transparent to the end user.

It also makes sense to store the data where they are required. Data

frequently used at one location may rarely be needed at another, but



they must remain accessible. To transmit all of these data to another
computer may be unnecessarily complex and expensive. The justification
for local data is that everything works much more smoothly when the
accuracy, privacy, and security of the data are a local responsibility
[Marti79al. This also increases reliability. I1f one computer is not

functioning and the others are, at least some work may still be done.

In other cases, there is no natural distribution to the data, but the
organization or user may want to keep important data at two or more
sites for increased safety and reliability. For example, a bank whose
head office is located in an earthquake zone or floodplain may want to
keep a duplicate of its database in a distant city. In some
applications such as the military, even short periods of data
unavailability due to hardware failures are completely intolerable;

hence the need for redundancy.

Yet another reason for distributing data is sheer size. It is not
feasible to attach an arbitrary number of disk drives to a computer.
Beyond some finite limit, multiple machines are needed to handle the
large amounts of storage. To allow incremental growth, it is better to
have a collection of smaller systems than one huge one. With a single
central system, it is possible to reach a point where adding oﬁe more
disk drive is impossible because of the finite number of devices that

can be connected to one computer.

A related reason for having multiple computers is the need for a high
transaction rate. With present computing technology, a throughput of a

few hundred transactions per second per central processing unit (cpu) is




considered excellent [Marti79]. To achieve a better rate, additional

cpUs are needed. However, if all the disks are attached to one CPU, at

some point the interrupt load will saturate that CPU. This upper limit

on the load will force the database to be distributed among the other

CPU'S.

A distributed database may have many different forms. There is no

need for all the computers which process the database to be the same,

nor for the database program to be the same. Each computer may have

unique data or, for efficiency and reliability, it is possible for

multiple computers to have copies of the same data. Thus the two
extreme types of distributed databases are: fully partitioned and fully
replicated. A fully partitioned distributed database is one where each
unique data item is stored at exactly one location, whereas a fully
replicated distributed database is one where each unique data item is
stored at all locations. Typically, a compromise between the two is
chosen, as a replicated database is faster to access, but more
complicated to update. Thus, if updates are rare, then replication is
very attractive. As updates become more freguent, replication quickly
loses this attractiveness. Replication gives faster response for

queries, and if one computer malfunctions, then the other will still

have current copies of the data.

While a distributed database solves some problems, it can create
several new ones. The problems of integrity and security become much
more difficult. Maintaining the integrity of the database is a problem
because the database is distributed over several computers, some of

which may contain identical copies of the same data. The difficulty




arises in keeping those copies identical, even though a computer may
pecome disconnected from the others because of problems. Security also
pecomes more of a problem, because a network as a whole is more
vulnerable to attack. To enable computers to communicate with each
other, there must be a network connecting the computers. This
connection could be via phone lines, microwave, satellite, or some
combination of the three.  Once unauthorized access is gained at any
point, access is allowed to the whole network without much further
difficulty. A further problem with distributed database is the need to
allow different machines which may have data in different formats, to
talk to on another. The rules, conventions, and procedures which permit
computers to communicate with each other are referred to as
communication protocols. The definition and implementation of these
protocols has a fundamental impact on the speed of communication as well

as on the integrity and security of the data being passed from one

computer to another.

Supporting the parallel processing of requests is also a problem in a
distributed database system. It is normal for queries to be initiated
from multiple hosts simultaneously. Consequently, multiple queries may
attempt to read, or even WOrse, update the same data item at the same
time. Allowing unrestricted concurrent access is intolerable because it
can lead to undetected semantic errors in the database. Take as an
example, a banking database in which two transactions are both about to
update the same account record. One transaction will deposit $100.00 to
the account, and the other transaction will debit $100.00 from the

account. 1f both transactions are run concurrently, then both




transactions will read the same initial balance. One of the
transactions will complete before the other, and install 1its updated
palance first. When the other transaction completes, it will write over
the results of the first one. Since neither transaction saw the effects
of the other, the final balance is clearly incorrect. The balance
should have remained the same as the deposit and debit should cancel
each other. This is what would happen if the transactions had not run

concurrently.

While allowing unrestricted concurrent access is 1intolerable,
allowing only a single transaction to run at a time eliminates the
concurrency errors but at the price of greatly reducing the performance
of the system.  Most transactions do not interfere with one another and

could be run concurrently without danger.

An important research issue is the design of concurrency control
algorithms which maximize the amount of parallel activity, while
maintaining the semantic integrity or correctness of the database. This
problem is greatly amplified in a distributed environment where multiple
copies of data exist. It is possible for two transactions to
simultaneously update two copies of a data item. This problem occurs
because there is a noticeable time delay through the network for update
information to pass from one host to another. The distributed database

system must be able to cope with this situation.

Another problem which is crucial in a distributed database system is

crash recovery. Although modern computers are reasonably reliable,

failures or crashes do occur. The more components there are in a




computer system or network, the greater the chance that one or more
components will fail at some time. In addition, machines must be taken
offline for preventive maintenance, making backups, or other purposes.
In many networks, users expect the database system to continue to
operate even though a few hosts are down. Furthermore, when a missing
host comes back online, it must be able to resynchronize itself by
applying all new update transactions, without causing deadlock or
consistency errors. (Deadlock is a situation in which two or more
transactions are in a simultaneous wait state, each waiting for one of

the others to release a lock before it can proceed.)

Distributed databases are most useful when the data are collected in
widely separated places, when the database 1is large, or when the
transaction rate is high. Distributed databases have some additional
complications not found in a centralized database. Among these problems
are where to put the data (and how many copies to make), where to do the
guery processing, how to perform concurrent accesses and multiple-copy
updates efficiently and without deadlock, and how to keep multiple
copies of the database in synchronization in the face of system crashes.
In the remainder of this thesis, we examine the problem of manipulating
databases that are distributed over multiple computer systems and

indicate how current and proposed distributed database systems handle

the problems involved in distributed databases.




Chapter II

DISTRIBUTED DATABASE ENVIRONMENT

In this chapter, we will discuss computer systems in general and show
. a growth path from a single computer to a distributed environment. This
distributed environment will then be discussed in some detail, with a
look at the general hardware and software needed to support a

distributed environment.

Given a distributed environment, the services provided by a
communications network and the impact they have on a distributed
database system are examined. A need is shown for text compression and
encryption in a distributed environment, and a closer look is taken at
how these two options can increase the speed and security of a

distributed database management system.

Finally, a look is taken at some of the existing commercial networks.
As well, an indepth look is taken at RelNet, a network designed
especially for distributed databases. RelNet is able to offload some of
the problems of operating in a distributed environment from the
distributed database management system by providing a more reliable

network communications system than a typical commercial network.



2.1  COMPUTER SYSTEMS

until the mid-1970's, most computing was carried out by (third-
generation) systems employing a large, centralized computer. The CPU
had a diverse collection of relatively simple machines connected to it,
some of them connected via telecommunications links. These simple
machines consisted of card readers and printers, as well as ‘dumb’
terminals. By ‘dumb’, we mean that the terminals could only display
text, and did not have any fancy functions, such as block transmission,
field validation, etc. They would even have problems if the data
arrived too fast. For certain applications, networks were built into
the computer system allowing large numbers of simple terminals to be
connected to this central computer system. In some installations, there
were even two processors for reasons of reliability, but the processing

of each transaction was done by one large computer [Marti79b].

The 1970's were the era of first the minicomputer, and later the
microcomputer. With large scale integration (LSI) circuits, the cost of
building a processor dropped steadily until it became clear that one
computer system could be made up of many processors if this were useful.
There was a concomitant change in the perception of how computers should
be used. The concept of an isolated, factorylike machine room
processing batches of data for many users gave way to users wanting
their own terminals and processing capability. In some cases, the
users' local processing machines were connected to a distant, larger
machine which maintained a database and provided extra processing power

if needed.
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By the mid-1970's, requirements for a new type of system architecture
had become clear. This new (fourth-generation) architecture must
provide a stable foundation for on-line, transaction—driven database
applications. Unlike the architecture designed for batch processing, it
must be highly reliable because on-line users become very frustrated if
their systems have frequent periods of failure. This architecture must
meet a diverse range of processing requirements and, as technology is
changing very rapidly, the architecture must facilitate the introduction
of new technology without a major system disruption. Large-scale

integration has given way to very large-scale integration (VLSI).

Figure 2.1 1illustrates a common configuration of a computing
installation from the 1970's. Economies of scale in computing lead to

centralization and all work is funnelled into centralized, factorylike,

data-processing shops. The computer is capable of running multiple
programs concurrently. These programs are usually refered to as
processes or tasks. Each process has a specific function, such as a

database management system or interactive terminal editor. Now, micro

and mini-computers have the power of these mainframe computers.

The reason for the growth of microcomputers is the wuse of VLSI
circuits which are mass-produced. Not only can small machines be mass-
produced, but also their development cycle is much shorter than that of
large machines. Therefore, they tend to use later technology which is
cheaper because the technology is dropping in cost. Costs can only drop
so far, and then instead of the cost decreasing further, the product
becomes smaller and faster. The price/performance ratio on all

computers will continue to drop, but it will drop much more rapidly on

- 12 -
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disks printer
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CPU terminal L
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Computer Centre remote terminals

Figure 2.1: A typical centralized Computer Organization

tiny, mass-produced machines than on machines costing hundreds of
thousands of dollars. It will thus be much more economical to have
thousands of small computers than one large computer, with the combined

computing power of the small computers much larger than that of the

fastest large computer.

However, there will still be a need for large computers. To meet the
requirements of the vast computing resources needed to serve large
numbers of people, computer systems will interconnect many processors,
both large and small. The computers will often be interconnected over
large distances with computer networks. The term distributed processing
implies multiple processors, usually interconnected by a

telecommunications system (figure 2.2).



CPU | disks
CPU | disks DBMS |terminals CPU | disks
DBMS |terminals distributed DBMS |terminals
oo software cevns
distributed distributed
software software
network

Figure 2.2: A Distributed Computer System

While many computers can be connected together over large distances,
a user will typically just interact with the computer to which his
terminal is connected. When the user enters a transaction, he does not
care if the data are found on, and the computations carried out on, his
local machine or on a remote computer in the network. The user of a
distributed system should not be aware that there are multiple

processors; the system should appear as one large, virtual processor to

the user.

There are essentially two reasons why a transaction is sent to a
remote machine as opposed to processing it on the local machine
[Marti79b]. The first is that the local machine has insufficient power.
Typically the local machines will be small, while the central processor
will have large number-crunching power. The second is that the

transaction needs data which are stored elsewhere. Most transactions do
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not need much computer power, and hence these transactions could be
processed on an ‘intelligent’ terminal or on the controller to which

dumb terminals are connected.

Formerly the term teleprocessing was used to imply the use of
telecommunications facilities for accessing processing power. Now
calculators and minicomputers are cheap and what was originally done by
terminals connected by telecommunications facilities to remote machines
can be done on a local machine. The local machine may itself be
connected by telecommunications -links to other machines, and a
transaction may then be processed either on the local machine or on a
remote one. The main reason for teleprocessing then becomes to obtain

data, not to obtain processing power.

While teleprocessing allows for the access of remote data, the speed
of access is orders of magnitude slower than that of a computer's own
local data. For infrequently accessed data, this performance
degradation is hardly noticable, and is much better than not being able
to access the data at all. For frequently accessed data, the slow speed
of telecommunications degrades performance  of the computer
significantly. The computer performs almost no computation, but instead

waits for data transmission from remote computers.

1f many of the computers are awaiting data transmission of remote
data, then some computers will be under-utilized while others may have
processing backlogs. Full use is not being made of the computing
resources in the network. The computers have been distributed by the

network, but the processing loads have not.
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To distribute the processing loads among the computers, it is usually

pecessary to distribute copies of the data among the distributed
computers. The location and design of this data are particularly
important in a distributed system. Data placed in the wrong spot can
cause performance degradation and unbalanced processing loads, while

data placed correctly causes balanced processing loads which thereby

increases system performance.

When data are used at multiple locations, it is often desirable to
access the data by a database management system (DBMS). The DBMS
manages local data, and provides security and integrity for the local
computer user. Data should not be arbitrarily distributed, as the
economies of scale in storage systems are different from those in
processors. The cost per bit stored on very large storage units is
orders of magnitude lower than on small storage units [Marti79a]. While
it is more cost effective to have many small computers than one large

one, it is not cost effective for each of these small computers to have

large data storage units.

When data are stored in multiple locations, each copy may have
different changes made to it by its computer. Multiple copies of data
are only useful if they remain consistent. If each copy has different
changes applied to it, then the copies are no longer true copies, and
become inconsistent with one another. To keep consistency, changes made

to one copy of the data must eventually be reflected in the other copies

of the data.
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To co-ordinate these changes, a reliable telecommunications facility

nust be used. The facility must be reliable at all costs. For data to
pe consistent, and hence of value, update messages from one computer to
another must arrive without being lost or garbled beyond recognition,
gven a small change in the update message will cause a loss of
consistency, defeating the purpose of having replicated data. Any
performance enhancement must ensure reliable results. If the results
are questionable, then performance has been lost, not gained. A
facility which allows reliable telecommunications between computers is

called a network.

2,2 COMPUTER NETWORKS

A network consists of the hardware and software that supervise the
transmission of data between two or more computers. Depending on the
type of network, the hardware for interconnection can range from a
passive cable to a collection of special purpose computers whose job is

to route the data from the sender to the receiver,

Once computers are connected together electrically, there must exist
a standard set of software protocols to allow the computers on the
network to converse with each other. These protocols are necessary to
ensure reliable communications (no lost or damaged data), as well as to
enable one computer to interpret the data it receives from another. If
the computers use different codes for transmission, then neither will
understand the data they have received. These network protocols must
also be able to detect a failed computer, and report this status to
other computers in order that they no longer send messages to, or await
replies from, that failed computer.

- 17 -



once reliable communications are established, precautions may also be

necessary to safeguard the security of data transmission. The

transmission cables are often public, such as telephone lines and

cables, and it is possible for an unauthorized computer system to tap in

and extract confidential data. Not only must data be safequarded

against passive intruders (intruders who just listen to the data

transmissions), but they must be safequarded from active intruders who

are trying to pass themselves off as an authorized network computer.
These problems must be overcome to establish and maintain an

environment suitable for a distributed database management system. In

this section, various general solutions to these problems are given.

Later sections of this thesis will detail specific examples of systems

using these solutions.

2,2.1 Components

In any network there exists a collection of machines intended for

running user oOr application programs. One of the first major networks

was ARPANET, and much network terminology comes from this network. The

collections of machines were called hosts, and they are connected by the

communications subnet, or subnet for short. The job of the subnet is to

carry messages from host to host. By separating the pure communications

aspects of the network (the subnet) from the application aspects (the

hosts), the complete network design is greatly simplified (figure 2.3).

In order to communicate, the two computers must have rules for data

transfer. There are three possibilities: data can travel in one
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must notify the receiver, and after a suitable time delay, transmission
in the opposite direction can occur. Note that a receiver must wait
antil a sender notifies him that he can now send. Urgent messages

cannot leave until all incoming transmissions are completed.

Full-duplex allows simultaneous reception and transmission on one
cable. The one draw-back is that the sum of the send and receive data
rates must be less than the bandwidth of the cable. I1f the bandwidth of
the cable is greater than twice the send or receive rate, then no
problems occur. However, if the bandwidth of the cable is low, then the
send and or receive data rates must be low (it is not necessary for both
rates to be the same). If a higher bandwidth is needed, it is best to

use two simplex cables.

While a network allows the physical connection of multiple computers,
this does not necessarily allow the computers to understand one another.
Consider the example of an English speaking person on the phone to a
French speaking person. Even though there is a physical means of
communication between the two, they are unable to understand one
another. To enable the increasing variety of computers to communicate
with one another, there must be a set of rigorously defined protocols.
Along with the definition of a protocol, the formats of the control
messages and the headers and trailers of the data message must likewise

be rigorously defined.

The protocol must also determine how many logical channels the
connection corresponds to, and what their priorities are. Descriptions

of data and of the relationships between data are of two forms: logical
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or physical.  Physical descriptions refer to the manner in which data
are recorded physically on the hardware. Logical descriptions refer to
the manner in which data are presented to the user of the data. Many
networks provide at least two logical channels per connection, one for

normal data, and one for urgent data.

When numerous networks have been previously set up, it is often
useful to allow two or more networks to communicate with one another.
Interconnection of two networks is not a simple task. Different
networks may have different packet, addressing, interface, protocol,
error-control, protection, resource management, accounting, and other
structures and algorithms. To connect two nonsimilar networks,
translation at one or more levels is required to effect interconnection.
The collection of hardware interfaces, software interfaces, and services
necessary to effect network interconnection, is called a gateway. The
gateway appears to each network as a normal node of that network. The
gateway takes the data in the format of one network and converts it to
the format expected by the other network. This allows non-similar

network architectures to be connected transparently, at least in theory.

Networks can be interconnected at any level where equivalent services
exist within each network. However, equivalent services may not always
exist. To achieve equivalent services at the gateway interface, the
services of one or both networks to be interconnected may be augmented
by a layer of functions within the gateway or within gateways and hosts
[Benha83, Hinde83]. Problems occur with finding matching sets of
services at all levels, the main problem being that there could be an
enormous number of services when all layers of the network are
considered. They must all be mimicked for network interconnection.
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2.2.2 Communications Subnets

In nearly all networks, the subnet consists of two basic components:
switching elements and transmission lines. The switching elements are
generally specialized computers called IMPs (Interface Message
processors) or nodes. Transmission lines are often called circuits or
channels. Each host in the network is connected to the subnet via one
or more IMPs, and all traffic to or from a host goes via 1its IMP.

gseveral hosts may share one IMP.

There are two main types of communications in computer computer

subnets: packet-switching and circuit-switching [Tanen8lal.

A packet-switching subnet divides the data traffic into blocks,
called packets, which have a given minimum and maximum length. Each
packet of user data travels in a data ‘envelope’ which includes the
destination address of the packet plus some control information. Each
node in the subnet reads the packet, examines the address, and by using
knowledge about network conditions, sends the packet on its way to
another node. The packet eventually reaches its destination, at which
point the control information is removed and the original message is

assembled from the packets.

A circuit-switching subnet establishes a physical circuit between two
machines. The circuit is rapidly set up and disconnected for each burst
of data. Thus each message has exclusive use of a circuit for the time
needed to transmit the message. When the message has been transmitted,
then the circuit is released so that it may be used by another message.

This is analogous to a copper wire, directly connected for brief periods
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ime;between the communicating machines. In fact the path is not a
‘?15 circuit because time-division switching is wused in which many
eams of bits flow through an electronic switch, all interleaved with

ne another.

_ Computer networks are usually packet switched, but occasionally are

circuit switched [Tanen8ial. With packet-switching, no one user can
monopolize.the transmission line for more than a small fraction of a
cecond (the time needed to transmit the largest size packet). This
~bécket can be sent on its way as soon as it arrives at an IMP, thereby
uhburdening the IMP, and improving network throughput. With circuit-
switching, it is possible for one user to tie up a line for a relatively

long time. While this line is in use, no other data can get in or out

of the IMPs in the path. This can lead to delays, which decreases

network throughput.

There are basically two types of designs for communications subnets:
point-to-point channels and broadcast channels [Tanen8ial. In a point-
to-point subnet, the network contains numerous cables or leased
telephone lines, each one connecting a pair of IMPs. If two IMPs that
do not share a cable wish to communicate, they must do so via other
IMPs., When a message is sent from one IMP to another via one or more
intermediate IMPs, the message is received at each intermediate IMP in
its entirety, stored there until the required output line is free, and
then forwarded. Thus a point-to-point subnet is sometimes referred to
as a store-and-forward subnet. The number of times a packet is stored

and forwarded is directly proportional to the length of time needed to

deliver the packet.
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_The second type of communications subnet uses broadcasting. Iin a
roadcast subnet, there is a single communications channel shared by all

Mps. A message sent by one IMP is broadcasted to all other IMPs on the
§mmunications cable. In order for the message to reach its intended
_gestination, something in the message must specify for which host the
 message is intended. After receiving a message not intended for itself,
_an IMP discards it. A broadcast subnet is more efficient for sending
packets that must go to all hosts. Only one packet need be sent, and
511 the hosts receive it. With a point-to-point subnet, one packet must

be explicitly addressed to each intended recipient.

The layout or topology of a broadcast subnet is usually either a bus

or a ring. A bus topology is one in which there is one cable, and it is

connected to each host once.

In a bus topology, only one machine can transmit at any one time
instant. This machine is called the bus master. Since all other
machines are required to refrain from sending data when the bus master
is sending, there must be some arbitration mechanism on the bus to
resolve conflicts when two or more IMPs wish to transmit simultaneously.

This arbitration mechanism may be centralized or distributed.

Another possibility for a bus topology is to use a satellite or
ground radio system. Each IMP then has an antenna through which it can

send and receive data. All IMPs can hear the output from the satellite.

The second broadcast topology is a circular topology: that of a ring
or loop. A ring is basically a bus, with the two ends joined together.

Each bit propagates around the ring on its own. The bit does not wait
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for the rest of the message to which it belongs. As an IMP receives a
pit, it immediately sends it back out. Each bit will typically
circumnavigate the entire ring within a few bit times, often before the

message has been completely transmitted.

In a loop, each message is not retransmitted by the next IMP until
the entire message has been received, as in store-and-forward. In a
loop, each line might have a different message on it, whereas in a ring

this situation is unlikely unless the messages are extremely short.

Broadcast subnets are also subdivided into type types depending on
how the channel is allocated. The two types are static and dynamic. A
static allocation algorithm divides time into discrete intervals. Each
IMP can broadcast only when 1its specific time interval comes up.
Channel capacity is wasted when an IMP has nothing to say during its
allocated slot. To improve performance, some systems attempt to

allocate the channel dynamically, on demand.

Dynamic allocation methods are either centralized or decentralized
[Tanen81a]. In a centralized channel allocation method, there 1is a
single entity which determines who goes next. This might be done by
accepting requests and making a decision according to some algorithm.
In the decentralized allocation method, there is no central entity; each

IMP must decide for itself whether to transmit or not.

User machines connected to a packet-switching network must observe a
rigorous set of rules for communicating with the network.  Because of
this, there is a high degree of international agreement on the protocols

for public packet-switching networks, centering around recommendation

_25_




x.25 of the Comité Consultatif International de Telégraphique et

pé1éphonigue (CCITT).

%.25 defines the interface between the host (computer or remote
terminal), called a DTE (data terminal equipment) by CCITT, and the
carrier's equipment (modem), called a DCE (Data Circuit-terminating
Equipment) by CCITT (figure 2.4). An Interface Message Processor (1MP)
or node is known as a DSE (Data Switching Exchange). This CCITT
terminology is in widespread use in public network circles. X.25
defines the format and meaning of the information exchanged across the
DTE-DCE interface. Since this interface separates the carrier's
equipment (the DCE) from the user's equipment (the DTE), it is important

that the interface be very carefully defined.

communications
terminal controller
CPU
T modem modem
DTE DCE DCE DTE
User DTE/DCE Computer DTE/DCE

Figure 2.4: Relationship of DTE/DCE

The X.25 standard defines three layers (levels) of communication: the
physical layer, the frame layer, and the packet layer. The physical
layer deals with how zeros and ones are represented, how contact is

established with the network, timing aspects, etc. The frame layer
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_ensures reliable communication between DTE's and DCE's, even though they
may be connected by a noisy telephone line. The third, or packet layer
is concerned with the format and meaning of the data field contained
¢ithin each frame. The packet layer provides for routing and ‘virtual
circuit’ management. These three layers defined in the X.25 model are

essentially the same as the bottom three layers of the IS0 model which

is described later in this chapter.

Under X.25, when a DTE wants to communicate with another DTE, it must
first set up a virtual circuit between them. To do this, the DTE builds
a CALL REQUEST packet and passes it to its DCE. The communications
subnetwork then delivers the packet to the destination DCE, which then
gives it to the destination DTE. I1f the destination DTE wishes to
accept the call, it sends a CALL ACCEPTED packet back. When the
originating DTE receives the CALL ACCEPTED packet, the virtual circuit
is established. AT this point both DTEs may use the full-duplex virtual
circuit to exchange data packets. When either side has sent or acquired
the necessary data, it sends a CLEAR REQUEST packet to the other side,

which then sends a CLEAR CONFIRMATION packet back as an acknowledgement.

The originating DTE may choose any idle virtual circuit number for
the conversation. 1f this wvirtual circuit number is in use at the
destination DTE, the destination DCE must replace it by an idle one
before delivering the packet. Thus the choice of circuit number on
butgoing calls is determined by the DTE, and on incoming calls by the
DCE. It could happen that both simultaneously choose the same one,
leading to a call collision. X.25 specifies that, in the event of a
call collision, the outgoing call is put through and the incoming call
is put through shortly thereafter using a different virtual circuit.
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1n addition to these virtual calls, X.25 also provides for permanent
¢irtual circuits. These are analogous to leased lines in that they

always connect two fixed DTEs and do not need to be set up.

2.2,3 Layered Protocols

Most networks are organized as a series of layers or levels, to
reduce their complexity. In this manner, each layer builds upon its
predecessor. The number of layers, and the name and function of each
layer differ in different networks. In all such networks, the purpose
of each layer is to offer certain services to the higher layers. At the
same time each layer is shielded from the details of how the offered
services are actually implemented in the layers below it. If any
changes are made to the hardware or software of a layer, no or

relatively few effects should be felt in any of the other layers.

For two machines to converse, layer ‘N’ on the first machine carries
on a conversation with layer ‘N’ on the second machine. The entities
comprising the corresponding layers on different machines are called
peer processes. No data are actually transfered from layer N on one
machine to layer N on another machine, except below the lowest level.
Instead, each layer passes data and control information to the layer
immediately below it. This continues for each layer, until the lowest
layer is reached. Below the lowest layer there is direct physical
communication with another machine, as opposed to the virtual

communication used between the higher layers (figure 2.5).
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Figure 2.5: Process Communication Between Layers

Since the physical communications circuits are never perfect, there
is a great need for error control. Many error-detecting and error-
correcting codes are known [Tanen8ia, Marti8ibl, but both ends of the
connection must agree on which one is being used. There must also be
communication between the receiver and the sender to inform the sender
whether or not the messages are arriving correctly, or with errors. If

there was an uncorrectable error, then the message must be resent.
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Not all communication channels preserve the ordering of messages sent

over them. It is possible for messages to arrive out of order, and the
protocol must make explicit provision for the receiver to allow the

pieces to be put back together in the order the sender intended them.

gince Qifferent computers may be connected to a network, and
different networks connected together, a problem occurs with the
inability of all processes to accept arbitrarily long messages. This
problem leads to the necessity for mechanisms for disassembling,
transmitting, and then reassembling messages. On the other hand, if
messages are very short, then it may be more efficient to gather several
short messages together, and put them 1in a single large message. The
large message could then be split up into its original small messages at
the receiver. This optimization only works if the combined messages had

peen destined for the same receiver.

When it is inconvenient or expensive to set up a separate connection
for each pair of communication processes, the underlying layer may
decide to use the same connection for multiple, unrelated conversations.,
As long as this multiplexing and demultiplexing is done transparently,
it can be used by any layer. Multiplexing is needed at the lowest level
when all the traffic for all connections has to be sent over only one,

or two physical circuits.

2,2.4 Open System Interconnection Model

A model of network architecture which is widely known 1is the

International Standards Organization (ISO) Open Systems Interconnection
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(0s1) reference model [Tanen81a, Tanen81b]. This model logically groups
the functions and protocols necessary to establish and conduct
conmunications between two or more parties into seven layers (figure
2.6). An IMP contains only the bottom three layers, while a host

contains all seven layers (figure 2.5).

7 application layer » performs appropriate service
| for applications

6 presentation layer » provides code conversion and
1 data reformatting

5 session layer m co—ordinates interaction between
I end—application processes

4 transport layer » provides end-to—end data integrity
| and quality of service

3 network layer ® switches and routes information
I

2 data link layer » transfers units of information to

| the other end of the physical link

1 physical layer ® transmits bit stream to medium and
to the other host

Figure 2.6: 1S0/0SI Model of Network Organization

The bottom or lowest level layer 1is the physical layer. This layer
relates to the setting up of a physical circuit so that bits can be
moved over it. This layer is concerned with the physical, electrical,
functional, and procedural characteristics to establish, maintain, and

disconnect the physical link. This layer consists of hardware to attach

- 31 -




to @ communications cable. This cable links up the physical layers of

yarious nodes.

The function of the second lowest layer, the data link layer, 1is to
take the raw bit transmission facility offered by the physical layer and
use it to create a communications line that appears free of transmission
errors to the network layer. To do this, the input data is broken down
into data frames, the frames are transmitted seqguentially, and
acknowledgement frames sent back by the receiver are processed. Since
layer one merely accepts and transmits a stream of bits without any
regard to meaning or structure, it is up to the data link layer to
create and recognize frame boundaries. This can be done by attaching
special bit patterns to the beginning and end of each frame. However
these bit patterns may also occur in the data, and care must be taken so

that the frame boundaries can be found.

A burst of noise on the communications line can destroy a frame
completely. When data is lost, the data link layer software on the
source machine must retransmit the frame. However, if multiple
transmissions of the same frame occur, then it is possible for duplicate
frames to arrive at the destination. This happens if the
acknowledgement frame from the receiver back to the sender is destroyed.
The data link layer must solve the problems caused by damaged, lost, and
duplicate ffames, so that the network layer can assume it is working

with an error-free (virtual) line.

Besides lost and duplicate frames, another problem which arises at

layer 2 and higher is how to keep a fast transmitter from saturating a
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slow receiver with data. The solution to this problem is wusually
integrated with the error handling for lost and damaged packets. One
solution is for the received packets to be discarded, and eventually the
sender will retransmit them because no acknowledgement was received from

 the receiver. This, however, is very wasteful of the communications

bandwidth, and of the network in general.

The network layer is sometimes called the communications subnet
layer. The function of this layer is to coﬁtrol the operation of the
subnet, and to shape the characteristics of the IMP-host interface. The
network layer also determines how packets, the units of information
exchange in the network layer, are routed within the subnet. This layer
accepts messages from the source host, converts them to packets, and

insures that the packets get directed toward the destination.

A key design issue for a network 1is how the route is determined; it
could be based on static tables which are hardcoded into the network and
rarely changed, or it could be determined at the start of each
conversation, or it could even be highly dynamic and determined anew for

each packet according to the current network load.

When too many packets are present in the subnet at the same time,
they will get into one anothers' way, causing bottlenecks. Hence, the
network layer is responsible for the control of such congestion and is
also responsible for generating accounting information to bill the users
of the network. This level must at least keep track of how many
packets, characters, or bits are sent by each customer in order to

produce billing information. This information can also be useful for
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tuning. BY analyzing which traffic routes are highly used, and for what
reason, duplicate copies of data can be installed to reduce the

communications load.

The transport layer is known as the host-host layer. This layer is
present only in the hosts, and is not present in the IMPs. The function
of the transport layer is to accept data from the session layer, and
split the data up into smaller units if need be, before passing them to
the network layer. The network layer must also ensure that the pieces
arrive at the other end. This must be done efficiently, and in such a

way that the transport layer is isolated from the session layer.

The transport layer usually creates a distinct network connection for
gach transport connection required by the session layer. If the
transport connection requires a high throughput, the transport layer
might create multiple network connections, dividing the data among the
network connections to improve throughput. This is only useful if
multiple physical paths exist out of the host, or 1if different routes
will be used for each connection. But, if creating or maintaining a
network connection 1is expensive, the transport layer might multiplex
several transport connections onto the same network connection to reduce
costs., In all of these cases, the transport layer must ensure that its
multiplexing or multiple connections are transparent to the session

layer.

The transport layer also determines what type of service to provide
the session layer. The most popular type of transport connection is an

error-free (virtual) point-to-point channel that delivers messages in
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_the order in which they were sent [Tanen81al. However, other possible
_kinds of transport service are the transport of isolated messages with
_no guarantee about the order of delivery and the broadcasting of
 messages to multiple destinations. This first type of service is called
a virtual circuit, while the second is called a datagram. The type of

service is determined when the connection is established and a network

will usually support only one of the two types of service.

The session layer is the user's interface to the network. Using this
layer, the user must negotiate to establish a connection with a process

on another machine. The session layer can manage the conversation

petween the two hosts in an orderly manner once this connection 1is

established,

A connection between two user processes is usually called a session.
A session might allow a user to log into a remote time-sharing system or

to transfer a data file between two machines.

The session layer manages the session once it has been set up. If
the transport connections are unreliable, then the session layer may be
required to attempt to recover (transparently) from broken transport
connections. In a database management system, it 1is crucial that
transactions against the database never be aborted halfway, as doing so
would leave the database in an inconsistent state. The session layer
often provides a facility by which a group of messages can either all be
delivered, or none will be delivered if there were problems.  This
mechanism ensures that a hardware or software failure within the subnet

will not cause a transaction to be aborted halfway through. If the
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transport layer does not order messages, then the session layer can do

this.

The presentation layer's role is to handle the representation of
information which applications wish to exchange or manipulate. The
presentation layer performs functions that are requested sufficiently
often to warrant finding a general solution for them, rather than
letting each user sblve the problems. A typical example of a
transformation service that can be performed is text compression. The
presentation layer could be designed to accept character strings as
input and produce compressed bit patterns as output. As well, other

services are encryption for security, and conversion between data types

used on different computers.

The application layer is the layer user applications interface to. A
DBMS would communicate to the network using the application layer. This
would guarantee the DBMS that all of its messages would be received at

the intended host, and the DBMS would be notified of any host that is

unable to accept its messages.

2.2,5 Network Types

Networks can be classified into two types based on the area covered
by the network. Networks which cover a small area are called local area

networks, and are characterized by a relatively high bandwidth for data

transmission.

Networks which cover a large area are called long haul networks.

Long haul networks are characterized by their ability to span cities,
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countries, and even continents. In this section, we will discuss the

penefits and drawbacks of each of these two network types.

’ 2.2.5.1 Loﬁg Haul Networks

At the present time, many nations of the world have public packet-
switching networks which span large geographical distances. These
networks are often connected into multi-national networks so that
packets can travel around the world. Canada has the Telecom Canada
network called Datapac, while the United States has Tymnet and Telenet
[Marti8ib]. Most network users are linked to the network by common
carrier lines going directly to a switching node or else to a
concentrator (a concentrator allows several communication lines to share
one physical line by multiplexing the data over that one line, then
reconstructing the individual lines at the other end). This usually
restricts their maximum data rate to that of a telephone lines 9600
bits per second (bps). Some users can have higher-speed digital links

into their premises if they are willing to pay the price.

An example of a long-haul network 1is Datapac. Datapac is Telecom
Canada's public, Canada-wide, packet-switched network. The network
began in 1977 and has 19 nodes interconnected via 56 Kbps (56,000 bps)
digital transmission facilities and provides service to 60 Datapac

serving areas across Canada. [Unsoi81].

Long-haul networks permit computers which are separated by long
distances to share data and processing capabilities. While throughput

rates are not very high, they are sufficient to allow computers on the
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network to exchange sizeable amounts of data. However, if care is not
taken to minimize the amount of data transfered over the network, then
long delays will occur while the data are transferred. Communications
bandwidth is a precious resource in a long-haul network, and it must be

conserved to achieve performance.

2,2.5.2 Local Area Networks

Networks which span large distances can have poor performance due to
low data rates and large amounts of congestion. Performance does not
need to be sacrificed if the need arises to connect several computers in
the same or adjacent buildings. This network could then be entirely
controlled by its users, and could have better performance than a
public, long-haul network. This type of private, small network is

called a local area network.

A local area network (LAN) is a specialized type of network which has
three distinct features. The first of these is that a LAN has a
diameter of not more than a few kilometers. Hence, a LAN cannot span
the globe or a continent, but at most a few large buildings. Secondly,
the data rate of a LAN exceeds 1 million bits per second. Thirdly, a
LAN is owned by a single organization, and is thus a private network

[Tanen81a].

One reason for using a LAN is to tie together multiple machines in
the same or adjacent buildings. This allows all of the machines to
communicate with one another, but may also allow each of them to access

a remote host or another network via a gateway. A second reason to use
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a LAN 1is to exploit the advantages of functionally distributed
computing. This approach involves machines dedicated to certain tasks,

such as file storage or database management.

LANs differ from long-haul networks in several ways. The big
difference is that long-haul networks are forced to use the public
facilities provided by the common carrier network (for economic or legal
reasons). In contrast, nothing prevents the designers of a LAN from
stringing their own high-bandwidth cables. This means that in a LAN,

bandwidth is no longer as precious a resource as it is in the long-haul

case.

While a long-haul network uses IMPs as an interface from the host to
the network, the host in a LAN has its own interface to tap into the
physical medium. Several hosts can use one IMP in a long-haul network,
and the IMPs are provided throughout the network to give the network
intelligence to perform such duties as routing of messages. In a LAN,
each host is connected to all the other hosts via a host interface, and
the communications medium is totally passive. Thus, each message in a
LAN is broadcast to all other active hosts. The store-and-forward
techniques offered by IMPs only occur in point-to-point networks, and
not in the broadcast LAN. Instead, one host on a LAN channel grabs
control of the channel when no other host is transmitting, and transmits
a packet (broadcast subnet). Every other host listening on that channel
examines the packet to see if it is the intended recipient; if not, it
discards the rest of the packet. If a host has a packet ready to be
sent, and there 1is a packet currently on the channel, then the host

holds off until the channel is free, and then transmits it. Collisions
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of two or more transmissions are handled in different ways in different

types of LANS [Tanen81a].

As the bandwidth of the LAN is high compared to that of a long-haul
network, it does not matter that only one host can be active at any
iﬁstant. As well, the error rates in a LAN are relatively low as

compared to 2 long-haul network. LANs can also be connected together by

‘having each LAN have a gateway to a long-haul network [Schne83].

2.2,6 Network Performance Criteria

Both long-haul networks and local area networks must meet several
criteria if they are to perform well. Five major performance criteria

for networks are: throughput, delay, availability/accessibility,

reliability, and accuracy/error.

In packet switched networks, a packet 1is the standard unit of
information transfer [Marti8ib], and the efficiency of the resource
utilization is usually expressed in terms of packet throughput. This
number is highly variable according to the packet length, amount of
piggybacking of acknowledgements,  error and retransmission rates,
priority control, network overhead, number of logical channels, and
various flow control mechanisms. Network overhead encompasses header
and trailer bits for packets, called setup packets, as well as network

activity and congestion statistics passed around by the nodes in the

network.

Network overhead causes delays in the delivery of packets. There are

two types of delay in all networks: component delays and network
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,’transmit delays. Component delays are caused by the node hardware.
pach node must fully receive a packet before it can be retransmitted.
As well, there is some processing time involved before this turnaround
can occur.  Then, outgoing packets are gqueued for transmission and may
pe held up due to higher priority packets, scheduling policies, errors
or trunk protocol. Network transit delay is defined as the elapsed time
petween the correct receipt of the last bit of a packet at the source
line processor and the correct delivery of the last bit of the same
packet to a transmit queue of a local link at the destination line
processor. Datapac attempts to keep this delay below one second for 90%

of the packets. Overall, Datapac attempts to keep the node-to-node

communication path operational 99.85% of the time [Unsoi81].

Due to errors and lost packets, there 1is a certain amount of packet
retransmission. Thus, the network attempts to increase the accuracy of
packet communication by detecting transmission  errors, and
retransmitting the packet. However, no error detection scheme is
perfect, and some errors are passed on. Datapac's objective 1is an
undetected packet error rate of less than one error in 10'° packets

[Uunsoi81].

Errors are usually caused by physical processes such as lightning,
surges on power lines, and electromechanical devices at older switching
offices. Whenever two cables carrying signals are in close proximity,
they can cause interference with one another. Errors tend to come in
bursts rather than singly. Error detection is accomplished by adding
some number of check bits to the end of each packet. If the packet is
received and the check bits are correct for the received data, then it
is assumed that the packet was transmitted without error.
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A method in widespread use for error detection is a polynomial code

(also known as a cyclic redundancy code or CRC code) [Tanen81al]. The
pasic idea is to append a checksum to the end of the message in such a
way that the polynomial represented by the checksummed message 1is
divisible by some generator polynomial G(x). When the receiver gets the
checksummed message, it tries dividing the message by G(x). 1If there is

a remainder, there has been a transmission error.

The transformation performed on the input data is parameterized by a
polynomial of degree k. The exact transformation process is described
by Tanenbaum in [Tanen8tal. The cost of performing this transformation
is proportional to k. A large k will detect a large percentage of
errors, but at the same time increase the size of every packet by k
bits. The amount of computation required also increases with k.  These
two arguments support using a polynomial with a small degree. There is
a trade off between undetected errors and the costs of computation. A
16-bit checksum in common use is CRC-CCITT:

CRC-CCITT = x'8+x'2+x5+1

This generator polynomial creates a 16-bit checksum, catching all
single and double bit errors, all errors involving an odd number of
bits, all burst errors of length 16 or less, 99,997% of 17-bit error
bursts, and 99.998% of 18-bit and longer bursts [Tanen81al. There is
thus a slight possibility for a packet with transmission errors in it to
arrive with the errors undetected. Because of the millions of packets
that travel through a network daily, it is possible for undetected
errors to occur once every day or longer, depending on the polynomial

used. It is left to the higher levels of software to detect when these
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_grrors occur. This could be done by applying another different checksum

in the user's software, oOr assuming that the packet will be so badly

damaged, that the software will reject the packet.

The performance evaluation of an operating network can be

accomplished by the use of several techniques, two of these being
analytical and simulation models. Most of the technigues require
performance measurement data collected from the network. Datapac's
nodes continuously generate performance statistics about their

components' behaviour and these statistics are reported to the Network

control Centre every 15 minutes. Also, network component failures and

recoveries are signalled by transmission of alarm records to the network

control centre. Thus the network generates feedback about changing

network conditions. This allows the network ¢to change routing

parameters dynamically to avoid congested and failed areas. Note,

however, that all the performance information is sent over the network

via packets, thus adding to congestion, and slowing response.

2.2.7 Enhancements to Basic Network Services

When several computers are connected to a network, they have the
facilities for potentially robust, reliable communications between each
other. An application such as a DBMS transaction may make substantial
use of the network to transfer data between the various computers. The

network may even be the bottleneck which slows down the response time

for transactions.
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while the network guarantees to deliver your data; it does not care
now the data are represented. The DBMS (or any other application) may
ﬁhoose to compress its data before transmitting, and expand 1its data
ypon receiving. Doing so means fewer bits are transmitted through the
network. This has two benefits. First, less data means fewer and
shorter packets, and this means the network can deliver the packets in
less time with less chance of congestion occuring. Secondly, since
users are typically charged for the data volume transmitted, fewer and
shorter packets mean lower cost. The major advantage is that of speed.
Wwith the delivery time of data being the slowest part in transaction

processing, lessening the amount of data traffic directly decreases the

real time needed for processing.

A side benefit of data compression is that the data are now
unintelligible to all that do not know what methods were used for
compression. This is not a very secure method for keeping data secret,

but it means that the intruder must take some effort to expand the data.

A more secure method is needed for data security; a way to encrypt
data so that an unauthorized individual will never be able to decode the
original information. In this section, we will examine some methods
used for data compression, to reduce data traffic, and data encryption,

to keep data secure from unauthorized users.

2,2,7.1 Text Compression

In many applications, messages sent through a network consist of just

numbers, or just alphabetic characters. I1f a data item can hold a
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' nﬁmber with twelve digits, and a two digit number is stored in that

field, it is possible to just transmit the two digits, ignoring the
leading zeroes. As most fields are defined to hold worst case values, a
great data transmission savings can be had by not transmitting redundant

information.

1f the field were alphabetic, and the field size were 100 characters,
a savings could be had by not transmitting leading and/or trailing
blanks. A count of the number of blanks could be sent instead. In many
applications, a good part of the data consists of blanks or zeroes. As
long as some indication of what was compressed out is implied or sent
with the data, then the data can be faithfully reconstructed at the

receiving end.

The data sent over a transport connection can be viewed as a sequence
of symbols. These symbols are drawn from some (possibly infinite) set
of symbols. Text compression may be done in three general ways based on

[TanenBial:

1. the finiteness of the set of symbols
2. the relative frequencies with which the symbols are used

3. the context in which a symbol appears

If all alphabetic data stored are in upper case, then it is possible
to achieve a savings by not transmitting all the bits used to represent
every character. Usually alphabetic data are transmitted in 8 bits (1
byte ASCII). However, it is possible to express all upper case letters,
numbers, and some special symbols with just 6 bits (64 different
characters). If only upper case letters are needed, then 5 bits (32
different characters) can be used.
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while each field of data can be compressed via individual algorithms,

the resulting data wusually still have some global pattern 1in it. For
example, in English text, certain letters occur more frequently than
others. For example, each of the vowels occur more often in this thesis
than the letter ‘z’. It should then be possible to achieve a savings in
space by representing frequently used characters with a small number of

bits, and infrequently used characters with a larger number of bits.

A code compression technique which does this type of compression is
called Huffman coding [Tanen8tal. Huffman codes express the most
frequent symbol by using only one bit. The second most frequent symbol
would be expressed in two bits. The less frequent the symbol, the
longer the bit étring needed to transmit the symbol. Huffman codes can
usually result in a saving of over thirty percent of the total number of

bits required to transmit a message.

Larger saving can be made by first removing leading and trailing
blanks and zeroes, and then huffman encoding the result. While the data
transmission savings are large, a price is paid in the expense of doing
the compression and expansion. With the decreasing costs of VLSI, it
should be possible to do compression and expansion in external hardware,

rather than using the computing power of the host.

2,2.7.2 Data Security and Privacy

Data compression can provide some security for the transmitted data
as long as the compression algorithm is kept secret. This is not really

feasible, as there are only a few good techniques for data compression,
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and it would not take long for someone to try all possible expansion

algorithms until the data became intelligible.

In the days before distributed processing, achieving security was
quite easy. ASs long as only authorized personnel were allowed access to
the computer, no breach of security could occur without the full
knowledge of someone. However, when remote terminals were added to
computer systems, security became more difficult. No longer was a gquard
sufficient to enforce who was allowed access to the computer.  Anyone
who could gain access to a remote terminal could attempt to wreck havoc

with the computer system.

With distributed processing and networking, the situation becomes
worse. The millions of bits which flow through a network cannot be
policed by anyone. They are vulnerable at many points. No longer must
someone break into a computer to steal information. Anyone with a
satellite or microwave antenna can pick up these transmission, which are
commonly used for long-haul networks [Voydo83]. Telephone company

cables can be easily tapped on the user's premises.

With so much data available with such easy access, computer break-ins
are probably much more frequent than reported, as most places fear to
admit to computer security lapses or the ease with which security can be
violated [Parke84, Perry84]. The best and only safe way to protect
telecommunications from wiretapping is to wuse some type of encryption
(also called encipherment) to ensure that the data are unintelligible to

all but the intended recipient.
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The enciphering and deciphering of messages is called cryptography,
art of breaking ciphers ({encrypted text) is called
The messages to be encrypted are known as plaintext. To
encrypt the plaintext, it must be transformed by some function that is
parameterized by a key. This key can usually take on a very large

number of possibilities, making it almost impossible to guess.

The data to be transmitted through the network are the output of the

encryption process. This output is known as cipher text or a

cryptogram.

There are only a few known excellent methods of encryption. Because
of the small number, one can normally assume that the cryptanalyst knows
the general algorithm used to encrypt the text he wishes decrypted. It
is usually impractical to keep the algorithm secret because of the vast

amounts of effort needed to invent, test, and install a new algorithm.

Instead, it is much easier to keep secret a key. Only the sender and
the receiver need know the key. The correct recipient of the

transmission can decrypt the data through the use of this correct key.

Without knowing the correct key, an intruder can still intercept and
record the encrypted transmission. With some effort, he may eventually
be able to guess the proper key, at which point all the messages he

recorded can be decrypted with ease.

Some intruders may only wish to listen to the network communications,
while others may wish to play back older messages, insert new messages,

or modify legitimate message before they arrive at the intended
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recipient. The first type of intruder is a passive intruder, and his
konly goal is to obtain information. The second type of intruder, an
active intruder, has many goals. By modifying and inserting his own
messages, he 1is able to obtain data which may not normally be

transmitted over the network.

The encryption technigues must prevent all of these security
preaches.  The general algorithm ﬁsed for encryption must be stable and
secure. This 1is to prevent someone from discovering an easy way to
decrypt the cipher. 1f this occurs, then important data which were

thought to be secure are no longer.

1f the algorithm is stable, then it must be parameterized by an
easily changed key. This would allow a new key to be chosen any time
security was thought to be breached. The key may be changed as often as
required, whereas it is not practical to frequently change the general
encryption algorithm.  Just as there are many different keys to fit a
few different designs of locks, there are many possible keys for the few

encryption algorithms.

There are two main requirements of encryption algorithms. First,
only the intended recipient should be able to decrypt the transmission
successfully. Secondly, only the rightful sender should be able to
encrypt the transmission so that the receiver can decrypt the data.
This is to prevent some other sender, other than the rightful one, from
creating or altering messages. This may seem unimportant at first, but

it prevents someone from creating or altering encrypted messages.
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Several criteria are needed for encryption to work. There needs to
pe a high degree of secrecy. For example, 1in a system which employs a
key that is used only once, absolute theoretical secrecy is possible.
1f the key is guessed, it can only be used to decrypt a small portion of
the message. In order to do this however, the key size must match the
data size. This 1is impractical for large volumes of data. The main

problem is how to generate, store, and transport this large key.

To maintain secrecy, the key needs to be changed fairly often. To do
this, both the sender and receiver are required to change their keys

simultaneously. This requirement requires that the key be small.

For encryption to be useable, the encryption/decryption process needs
to be fast; it should neither delay the transmission nor consume an
excessive amount of computing resources. At the same time, the size of
the message should not be increased. Some algorithms increase the size
of a message in order to invalidate the use of statistical technigues in
deciphering. When data volumes are large to begin with, the encryption

process should not make them larger.

Unfortunately, these criteria do not work well with each other. A
balance must be found between the various criteria. With the decreased
computing-costs in using VLSI, it is now possible to put an encryption
algorithm on a chip. This decreases the load on the main system, but
since the algorithm is now in hardware, it is more difficult to change.

As well, a chip can easily be purchased or duplicated.

Encryption has been used since the days of Julius Caesar. In those

days, the military used encryption for battle plans. One of the
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jest types of ciphers used was one in which every letter is replaced
h:a gifferent letter. This cipher can easily be broken if one knows

3 $

jve frequencies of the letters. For instance, the letter ‘e

- relat
_the most common letter in the English language, hence the most common

the encrypted text probably represents an

3

i in e’ (assuming the
A space is also very common in any kind of text,

text is in English).

and spaces often occur in multiples, such as in paragraph indentation
14

and for Separating fields in columns.
while these early simple encryption technigques worked well for

centuries, these ciphers were easily broken with the advent of the high-

:speed computer. What took hours or days to decipher by hand, can now be

done in seconds. Modern cryptography uses the same basic ideas as

,traditional cryptography, except that the emphasis is different. The

object now is to make the encryption algorithm so complex and

convoluted, that a2 cryptanalyst will never be able to make sense out of

it (never is assumed to be a length of time far greater than the length

of the time the encrypted data are useful, which could be two weeks or
hundreds of years).

Even with an excellent encryption algorithm, there is a problem in

that the keys are chosen by the end users. People tend to choose a key

which is small and easy to remember, such as ‘SALLY’ or ‘FIDO’ This

makes it much easier for the cryptanalyst to break the cipher since he

may try many possible keys until one works. He may try various names
14

pet names, and street names trying to guess the correct key. Hackers

with persistence and ingenuity can usually find a way to break an

uncrackable code.
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The solution to this problem is to have long keys. With long keys,
_there can be a selection from many different possible keys. Another
golution is to intersperse nonsense data among the real data. This is a
’waste of bandwidth, but produces a code which is difficult to break

pecause the position of the real characters and messages is a carefully

guarded secret and is changed whenever the key is changed.

Encryption may be done at any level in the network hierarchy, using
hardware at each end of the communications lines to encrypt/decrypt the
data, to encryption done at the highest layer, by software, or special
hardware [Kak83]. This second method is not transparent to the

software, as the software must then process encrypted data.

These two methods of data encryption differ in several aspects. When
encryption is done at the lowest level, the 1installation management
chooses the encryption method. If encryption is done at a higher level,
no user is forced to live with an algorithm he feels is too weak. When
done at a high level, a user can also change his encryption technigque
whenever he likes, and can thwart attempts to decipher his data.
Another problem with encryption done at the lowest level is that, if a
hardware error causes a message to go to a wrong destination, it will
arrive decrypted. If someone gains access to one node, he may use that
node to decrypt transmissions with very little effort. However, if each
user is using a different encryption algorithm, then the misdirected

information will be received garbled and no harm is done.

In the 1SO-OSI environment, encryption can be done between points in

the subnet, at entry/exit to the subnet, or at the presentation level.
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of course, MOre than one of these can be present at the same time

{DaVi881 ] .

1f carried out in the right way, encipherment at the bit level could

conceal whether or not traffic is passing over the line. Encipherment

that is part of the OSI link layer does not reveal network sources and

destinations, but it reveals the traffic level and the sizes of the

frames, which might be useful information to an enemy in exceptional

circumstances.

Within the switches, multiplexers, or concentrators, the information

is not encrypted, so data security depends on the physical security of

these functions, on the trustworthiness of their operators, and on the

accuracy and degree of protection of the software. This might be

acceptable for a private network in which the interests of the users and

the subnet operator coincide, but it would not be acceptable when a

public data network is being used.

In a network employing distributed processing, layer one OI two

encipherment would not give efficient security. It does have a use as a

method of concealing traffic flow, which would be a useful service

feature provided to all users of a public network.

End-to-end encipherment can be incorporated at any layer above the

network layer: transport, session, OI presentation. The closer the

encipherment is to the end user, the more it 1is under his control,

providing the most security for the data being carried. At the same

time, it tends to reveal to a line-tapper how much data is carried and

how it 1is being used. Thus, since traffic information can best be
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_concealed at the lowest level, but data are more secure being encrypted

at a higher level, a combination of encryption at both levels is best.

Node-to-node encipherment employs a different key for each line
entering and leaving a node. The packet headers, in which routing
decisions are made, are transmitted in unenciphered form. Using this
information, the switching node can make its routing decision. The
packet data are then deciphered and re-enciphered in a physically
protected security module that contains a key for each physical line

into a node. Thus, each path a packet takes enciphers the packet

differently.

In a private network where complete trust exists between users of a
subnet and the operator of the subnet, encryption at any level is
possible. When a public data communications network is used, some form
of end-to-end encipherment is needed for the user's safety, and at the
Same time, the network could well provide encipherment at layers one or
two, particularly over such vulnerable 1links as microwave radio or
satellite transmission paths. Encipherment at layers one, two, four,

and six are being considered for international standardization

[Davie81].

One way of encrypting data is to use the Data EBEncryption Standard
(DES) [FIPS77]. This method uses a 56 bit key, but has the problem that
it requires the receiver of a message to use the same key for decrypting
the message as the sender used for encrypting the message. Many believe
this key is too small, and DES in its present form will be obsolete by

1990 [Davie81], as VLSI will allow cracking DES encrypted data 1in a
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short period of time (within a day or less) [Diffi77]. There is also a
problem in distributing the key securely. Traditionally, keys were
_generated at a central source and distributed by courier. For many
receivers, this method is cumbersome and unsatisfactory, especially if
security requirements dictate changing the keys daily. It would be much
more convenient to distribute the keys over the network; but to do so
would mean that the keys themselves require encryption to prevent

unauthorized access to them.

A more secure method for encryption, though more costly in terms of
processing power required to encrypt/decrypt, is public-key cryptography
[Diffi76]. Cryptographers generally assumed that both the encryption
and decryption keys had to be kept secret. Public-key cryptography uses
an encryption algorithm ‘E’ and a decryption algorithm ‘D’ with ‘D’ and
‘B’ chosen in such a way that deriving ‘D’ given a complete description
of ‘E’ would be effectively impossible. Therefore, °‘E’ can be made
public.  Any person or organization wanting to receive secret messages
first devises two algorithms, ‘E’ and ‘D’. The encryption algorithm or
key is then made public, and hence the name public-key cryptography.
While the key for public-key cryptography is larger than a DES key, the
key is still small compared to the amount of data in one paragraph of

text.

The only problem with public-key cryptography is the need for
algorithms that satisfy all the requirements. One method developed at
M.I.T. by Rivest et al. [Rives78al, uses two prime numbers, each greater
than 100 digits long. The product of the two numbers is found and it is

made public. The security of the method is based on the difficulty of
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factoring large numbers and the ease of finding large (100 digit) primes
o multiply together. Factoring a 200 digit number requires 4 billion
‘years of computer time.' Rivest in [Rives78b] comments on the difficulty
_ of attacking the M.I.T. public-key cryptosystem, and ends up saying that

it is almost a waste of time, as the chances of success are extremely

small (1/10%9),

Other methods exist for public-key cryptography. One such method is
described by Merkle and Hellmen in [Merkl781, in which trapdoor
knapsacks are used. The knapsack problem is believed to be extremely
dgifficult to solve in the general case, belonging to a class of problems
that are thought not to be solveable in polynomial time on any
deterministic computer. Shamir and Zippel 1in [shami80] comment on the
resistance to cryptanalytic attack of this method, and they give some

enhancements to the method to make it even more secure.

Muller-Schloer gives the details for a hybrid system which uses both
the quick DES method with the more secure public-key method in
[Mulle83]. To start a transmission, the sender generates a random DES
key, and uses the public-key method to securely send it to the
recipient. The rest of the message is encrypted with the DES method
using this random key. DES is used for the bulk of the work because it
is fast, inexpensive, and easy to use. DES chips are available on the
marketplace, the only problem in using them being that all receivers

need to know the correct key to decrypt incoming messages. To keep DES

' Assuming the best known algorithm and a 1 micro-second instruction
time. Increasing the speed of computers by several orders of
magnitude will not make much difference, for even an increase in speed
of a billion times will still require 4 years, at which point larger
numbers could be used.

- 56 -



isecure, the key must be changed frequently. The only easy way to do
_this is to place the DES key in the transmission, but to protect it, it
nmust be encrypted; hence the choice for public-key cryptosystems for
_this job. This hybrid system combines the best of both cryptosystems,

’while eliminating some of the drawbacks of each.

1t should be obvious that even if computers become much faster, data
will remain secure for a long period. However, no one has yet proven
the absence or presence of a method that would allow the cipher to be
broken quickly. No matter how good the encryption, the security of the
data are still at risk through human carelessness or desire [Rushb83].
some people search through garbage cans for computer printouts looking
for passwords and encryption keys. Others can find out passwords by
looking over someone's shoulder, or by tricking them into revealing the
key. Ciphers, of whatever kind, do not produce absolute security. In
each case they require a secret key. Therefore, security always depends
on the physical integrity of a device as well as on correct system

design and software.

2,3 EXISTING COMPUTER NETWORKS

In this section, we examine several of the popular systems for
linking distributed machines. These networks are the backbone of the

distributed database systems discussed in the following chapters.

One of the earliest networks to be designed was SNA. I1BM developed
SNA before any standards existed for networks. DECnet was developed

later, but was designed for DEC computers.

- 57 -



- A network designed especially for distributed database management
systems is RelNet. RelNet is not a full network, but instead fits on
top of an existing network and provides some ancillary functions vital

to the successful operation of a distributed database system.

2.3,1 Systems Network Architecture

A network which has been in use since 1974 is 1IBM's Systems Network
Architecture (SNA). SNA is itself a packet switched network and runs in
cénjunction with the Terminal Control Access Method (TCAM) or with
Qirtual Terminal Access Method (VTAM) in the IBM-compatible host and the
Network Control Program (NCP) in the 3705 communications controller

[Susse78], [Sunds80].

An SNA network 1is made up of nodes connected by data links. Each
node contains a path control element for routing, as many data link
control (DLC) elements (to schedule transmission) as there are link
connections to adjacent nodes, and a Physical Unit (PU) to activate and
control the links, There are a variable number of Logical Units (LU)
which act as ports into the network for end users. Communications
controller nodes perform useful network routing and control functions

without necessarily containing LUs, but most SNA nodes contain one or

more LUs.

An SNA network may optionally implement a Systems Services Control
Point (SSCP). These control points provide two kinds of services to the

network. First, they connect the network operator(s) to the PUs in the

network. The connection between a control point and a PU is called a




g5cp-to-PU session. This session allows activation, deactivation, and
status monitoring of the resources of the network from network operator
,Sites. Secondly, the control points co-ordinate the creation of
sessions between LUs. Two of the services provided are: the resolution
of LU names (used in login requests from network users) to LU addresses
(so that the network users are not sensitive to changes in network
configuration) and allocation of access to LUs that are serially
reusable [SchulB81]. (Serially reusable refers to a resource that cannot
be shared concurrently, but can be reused by another process when the

first process has finished with the resource.)

When multiple computer systems are connected into SNA networks,
processing can be distributed in several ways. When the system contains
two or more Job Entry Subsystem 2 (JES2) components, a network job entry
application is available to the remote job entry (RJE)  work station.
This allows jobs to be submitted at a system with JES2 for execution at

any JESZ2 system.

A transaction from a terminal on one system can be processed on
another system, or the data required for that transaction can be passed
to the originating system. Thus, the SNA architecture permits
transaction routing and access to remote data, but it also allows
arbitrarily distributed computations. By dividing an application into
two or more pieces that run attached to separate LUs, the ability to run

the application on two or more separate processors is created.

SNA supports multiple links operating concurrently between the same

two adjacent communications controller nodes. These parallel links
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ow increased bandwidth whenever it is required and provide increased

ilability and reliability through redundancy. SNA allows parallel

ks to be logically grouped, and provides a transmission group

rotocol; which automatically distributes traffic across the links of a

roup. ~ This protocol compensates for degradation resulting from errors

n any of the links 1in a transmission group; sessions using a

ansmission group are disrupted only if the last remaining link in the

roup fails. The receiving transmission group component reorders
raffic that may have arrived out of order because of messages having

ifferent lengths, or as a consequence of retransmissions due to errors.

 'Another reason for additional links is tariff considerations which
make multiple slower-speed links less expensive than a single high-speed
link or because the highest available speed of a single link does not

provide sufficient bandwidth. With multiple links, a single link

failure is not disruptive to sessions using the transmission group.

Session traffic is automatically routed over the remaining links in the

transmission group.

Network availability can also be increased by providing multiple

routes between the same two points, so that disrupted sessions can be

reconnected and traffic rerouted to avoid failing intermediate nodes as

vell as failing links. Multiple routes can also be useful for traffic

load-leveling. SNA wuses a form of routing called explicit routing,
which when activated in a session, is assigned to a particular route.
Explicit routing allows the user to have control over the selection of
the physical path used for session traffic between nodes. For example,

low-delay routes can be chosen for better response and secure routes for



gensitive data (because of tariffs, the shortest route is not
necessarily the cheapest). Vancouver to Toronto may be cheaper by using
an American network with connections to a Canadian network in Vancouver
and Toronto (this may not be legal). If both networks operate at the
same speed, the American route is slower, but in most cases the cost
advantage will outweigh the speed degradation. Routing schemes that
allow routing decisions on individual messages, based solely on

congestion conditions, do not provide the same measure of control.

Transmission groups are used to move data between adjacent nodes;
explicit routes provide routing between two, not necessarily adjacent,

nodes. In both instances, traffic is handled in first-in, first-out

(FIFO) order.

Any network has a maximum throughput limit, which cannot be exceeded
even if the network traffic is unbounded. Due to cost considerations,
commercial networks are normally designed so that peak network traffic
loads occasionally exceed storage, cycle, and bandwidth capabilities of
nodes and links within the network. SNA seeks to prevent significant
network throughput degradation and to prevent  network deadlock

conditions as network load increases through the use of flow control

mechanisms [Schul81].

To maintain network throughput as network load 1increases, SNA
provides global and local flow control mechanisms. Global flow control
is accomplished through the use of virtual-route pacing. This means
that independent sessions have traffic within the network contending for

the same storage, cycle, and bandwidth resources. When the virtual
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route is prevented from sending by its pacing algorithm, it queues
gession traffic until a virtual-route pacing response arrives indicating
that adequate resources are available within the network to transport
traffic across the virtual routes. The queuing for entry to the transit

network ensures that it will not become overloaded.

Session pacing has characteristics similar to route pacing, but the
purpose of session pacing is to prevent a fast sender from swamping the

receiving session,

Session traffic flows through the network at one of three
transmission priority levels. Traffic at a higher priority is queued
ahead of any lower-priority traffic at each transmission-group send-
queue.  Within each priority level, traffic is queued FIFO for delivery
to an adjacent node. The FIFO queues are aged to ensure that lower-
priority traffic 1is not completely stopped. The old, low-priority
packets have their priority increased proportionally to the amount of
time they sit in the queue. Eventually, a low-priority message has its
priority raised to be higher than all the other packets in the queue;
the packet is then transmitted through the network. Because virtual-
route pacing responses are so critical to network performance, they are
transmitted at a fourth priority - ahead of all other virtual-route
traffic, thus ensuring that heavy traffic in one direction will not
interfere with the flow of virtual-route pacing responses in the other
direction; 1if such interference were allowed, it would decrease network

throughput under heavy loads.
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pransmission priority is useful for ensuring continued good response
time to favoured applications during periods of network overload. And,
since the network will displace low-priority traffic with higher-
priority traffic, bulk data-transfer applications can be run
continuously instead of being scheduled for specific slack periods.

These applications utilize spare network capacity when it is not needed.

Distribution of data in a network requires the transportation of data
from sources to destinations. In an SNA network, the method of
transportation of data between nodes can be tailored to the needs of an
application. Link data rates can run from 600 bps to 230.4 Kbps on SDLC
lines, or channels can be used as links. These channels operate at peak
data rates from 10 kilobytes per second for a small controller up to
hundreds of kilobytes per second for the IBM 3705 communications

controllers.

A service available to SNA sessions is that of encryption of all user
data or of selected packets of user data. Security for the session can
also be enhanced by selection of a class of service that causes the
session to be assigned to physically secure routes. For instance, the
nodes might be in secure locations while the lines along the secure
routes might employ transmission level cryptographic techniques.  SNA

uses an 8-byte key and follows the DES encryption standard.

SNA allows the use of start-stop terminals by running the Network
‘Terminal Option (NTO) along with NCP in the 370S. These terminals

appear to the rest of the network as SNA peripheral nodes.
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2.3,2 DECnet

pigital Equipment Corporation's (DEC) Digital Network Architecture
(DNA) 1is the standard structure for DECnet network products, which
support the flexible interconnection of Digital's families of computers
ghile providing an easy-to-use interface. DNA defines the interfaces,
structures, and protocols that comprise the design of the network

intercomputer communication mechanism.

DNA was designed to create a communications mechanism supporting a
wide range of user applications, host computer systems, and interconnect
technologies. DNA architecture supports communication between hosts,
independent of the physical structure of the underlying data transport
network. The overall operation of the network is not adversely affected
by the failure of a topologically noncritical node and/or channel.
Critical functions such as message  routing, communications

establishment, and network maintenance should use distributed algorithms

[Green82].

The communication mechanism of DNA creates a sequential, full-duplex,
error-free, message-oriented communications path connecting processes in
the network. This path is independent of the underlying network

topology and characteristics of the individual communication channels.

To initiate communications between two processes, Oné process
requests that a logical link be created between 1itself and a remote
ﬁrocess. The network requests communication with the remote process
and, assuming no conflicts and an acceptance by the remote process, the
logical link is created. The two processes are then free to send and

receive messages sequentially over the link.
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Flow control functions allow the data receiver to control the rate of
transfer over the link to match buffer availability. Data may be sent
in either short segments (part of a message) or longer message blocks.
The network divides these longer message blocks into smaller segments

for transmission, reassembling them at the destination.

In addition to the normal logical link data path, there is an
interrupt data path over which short, high-priority messages may be sent
to notify the remote process of special conditions and events occuring
within the application. This interrupt data bypasses the normal data
flow control mechanism and, 1in some implementations, actually causes a
program interrupt to the receiving process. When communication is

complete, either process may disconnect and terminate the logical link.

An important component of logical link operation is the addressing of
the communicating processes within the network. Objects are referenced
via two-component addresses. The first part is the address of the
system within which the object resides, the node address; the second
part is the address of the object within that system, the object
address. Although DECnet does not provide for global addressing of
objects without knowing their node address, this function can be easily
added by creating a global network directory and resource manager which
would be accessed to map global name references to specific ‘node,

object’ pairs.

Since DNA was designed prior to the IS0 OSI standard, DNA is divided
up into six functional layers: physical link layer, data link layer,

transport layer, network services layer, session control layer and
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application layer. However, DNA structure corresponds very closely to
the IS0 architectural model but differs in the names and, functions of
some of the layers. The DNA transport layer corresponds most closely to
the IS0 network layer, and the DNA network services layer corresponds to

the ISO transport layer.

The transport layer of DNA creates a network pathway among the nodes
of the network via a routing function. By using the data link layer for
transmission of message blocks over individual channels, the transport
layer routes messages among the network channels, connecting them into a
path between a source and destination node. The path is not maintained
on a per user pathway basis, as in circuit-switched systems, but on a
node-addressed basis by having the transport layer at each intermediate
node examine the transport header of the routed message and determine
the outgoing channel that forms the best path to the destination node
based on its routing table. Each message given to the transport layer
is treated individually. The routing algorithm and table determine
whether all messages to a given destination follow the same route or
whether that route changes based on the occurrence of specified events,

such as operator demand, channel failures, or queue delays.

The transport layer makes an effort to deliver all messages presented
to it, but it does not guarantee delivery, seguential delivery, or
destruction (deletion) of messages in a bounded amount of time. This
service requires higher levels of the architecture to use a message

numbering, acknowledgement, and retransmission mechanism to recover from

lost messages, and to be concerned with old duplicates caused by their

own retransmissions.



The distributed routing algorithm used by DNA is based on the premise
that the best total path from a source node to a destination node,
calculated in a distributed fashion, is the sum or concatenation of the
many individual node-to-node best paths. Each node individually
paintains a list of its best next hop (outgoing channel) to each
destination. Messages to be routed are transmitted via that best next
hop. The next node does the same, thus building a total best path from
the source node to the destination node. This determination of best
path is based on a cost function. Bach outgoing channel from a node is
assigned a cost to route a message through éhat node over that outgoing
channel. The better the route, the lower the cost. Cost is usually
based on line quality characteristics such as delay, throughput, or
error rate, but may also include characteristics of the switching node
such as buffer resource availability and processing capacity. These
cost values are assigned by an offline algorithm and can be changed by
an operator or program. 1f the costs of all channels are set to the
same value, the path chosen will be the one with the minimum number of

hops.

2,3,3 RelNet

The Reliable Network (RelNet) consists of a set of facilities
intended to ensure reliable communication and co-ordination among
related processes operating at sites connected by means of a
communications network. In a distributed system, a function will in
general be realized by means of a number of processes, executing in
parallel at distinct sites of a network. As these processes execute,

they will find occasion to communicate and synchronize with each other.
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individual sites and processes can fail at any time, and each site must
pe prepared to recognize and react to the failures of its cohorts; the
sites with which it co-operates and interacts. One approach would be to
embed this responsibility in the application logic and code of each
cohort. A better approach would be to factor out this logic and code
and thereby provide the application program with a view of the
environment which exhibits a degree of reliability that simplifies the
program. This is the approach implemented by RelNet.  RelNet provides
each process running in the system with a set of facilities for reliable
communication and interaction with other processes; these facilities can
be utilized by invoking a set of procedure calls. RelNet is used
instead of whatever communications facilities are provided by the actual
communications network connecting the sites in the distributed system.
Thus RelNet functions on top of the real network, and enhances its

operation.

The basic function of any network is to allow for inter-site
communication. RelNet can be thought of as a virtual network that
provides several additional capabilities. The network contains a single
global clock that any site can access. This clock's function 1is to
impose a uniform and consistent ordering on events occuring at

different sites in a distributed system.

Every network site is at any one time in one of two states, UP or
DOWN. The UP state is characterized by correct operation and by timely
response to messages sent it by other sites; a site in the DOWN state is
not operational. Transiiions between these two states occur

instantaneously with respect to the global clock.  Any process has the
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ability to ascertain the correct status of any site in the network, and

to request that it be informed when that site changes its state.

The reliable communications service offered by RelNet makes two
guarantees [Hamme80]. The first is that messages sent from one site to
another are received in the same order as they are sent. The second is
that a message can be sent to a site that is DOWN, by regquesting
guaranteed delivery. RelNet will then guarantee that the message will be
received by that site upon its recovery. Receipt takes place even if

the sending site is DOWN at the time the destination site recovers.

Consider the situation which occurs when a sender sends a message to
a site that is DOWN. 1f the message is not marked for guaranteed
delivery, then it is discarded. If the message is marked for guaranteed
delivery, then the message will be delivered some time after the DOWN
site comes UP. If a second message is sent to this site from the same
originating site after the crashed site recovers, then it is possible in
general, for this second message to arrive before the first guaranteed
message. In RelNet however, the first guaranteed message will arrive
before the second message. However, RelNet cannot guarantee that any
message, including one marked for guaranteed delivery, 1is certain to be

received, since the destination may never recover from a failure.

Guaranteed delivery of messages is accomplished with a mechanism
called a reliable buffer. There is one such buffer for each destination
site in the network. Mességes destined for a DOWN site are routed to
the site's reliable buffer instead (which is at an UP site). When the
site recovers, it requests RelNet to provide it with all the messages in

the reliable buffer.
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For purposes of robustness, the reliable buffer is replicated at a
number of different sites, each replication being called a spooler.
Multiple sites are necessary as one site might fail, thus cancelling out
the backup mechanism of the spooler. RelNet assumes that when a
destination is DOWN, at least one of its spoolers is UP. If not, then a

RelNet catastrophe occurs.

1f a sender wishes to buffer a message reliably, RelNet will send a
copy of that message to all spoolers associated with the destination
site. When all of the spoolers have acknowledged receipt, the messages
are considered reliably buffered. When the recipient recovers, it
issues a request to any one of its -spoolers to obtain its buffered

messages.

If a spooler should crash while it is being emptied, then the
recovering receiver should switch to a new spooler. To prevent
duplicate messages, an acknowledgement-vector is maintained by the
receiver. This array indicates, for every sender site, the timestamp of
the last message from that site that the receiver has received and

acknowledged.

If a spooler should crash while the receiver is DOWN, and remains
DOWN until the receiver has recovered and emptied some other spooler, no
problems can arise. However, if a spooler does crash and subsequently
recovers while the receiver is still DOWN, that spooler's message gueue
will reflect a gap during which it received no messages. To signify
that messages may be missing, upon recovery the spooler marks the gap in

its queue during which it was DOWN, and lets the receiver fill the gap
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from messages held in other spoolers. Thus as long as one spooler was

UP at any time period, it is possible to recover all lost messages by

getting some from each spooler.

RelNet also provides a facility fof distributed transaction control.
This allows a process running at one site to co-ordinate the activities
of a number of distributed processes which are seeking to realize a
global activity. The main feature of this facility is a global
abort/commit capability, which enables a controlling process to cancel a
transaction at any point instantaneously or to signal its successful

completion and cause the results to take effect uniformly at all

involved sites.

Since a network is constructed out of many discrete components -
sites and communicationé lines - each of which is subject to failure,
reliable communications must still occur in the presence of some
failures. RelNet is designed to be resilient to the failure of some of
its parts, and to function correctly as long as enough of the components
behave correctly. 1f too many failures occur, then a catastrophe
results. Under catastrophe situations, RelNet is not guaranteed to work
correctly; either some services will not work at all, or they may
operate in unanticipated and unpredictable ways [Hamme80]. Some
catastrophe situations can be automatically detected by RelNet, but
others can only be observed from outside the system. In either case,

manual intervention by a system administrator is necessary to rectify

the situation.




With the design of RelNet, it is possible to make a catastrophe

arbitrarily unlikely by the increased replication of reliability

pechanisms. The price to be paid for increased reliability is increased

overhead.

RelNet assumes that the basic communications network will look after
the communications link between two sites and will employ others to send
messages between them if one fails. RelNet also assumes that the
network remains connected at all times, and no part of the network
disconnects itself from the rest of the network, thus leaving two
functioning entities. Should this assumption be violated, the result is

a catastrophe.

RelNet thus provides a base for a DDBMS in which some of the DDBMS
problems are reduced or solved by the network. RelNet fits between the
real network and the network user. Thus there is no need for the DDBMS

to ensure that the communications are reliable.

2,4 DISTRIBUTED DATABASES

Given a network, it is possible to install a distributed database
over the network. According to Date [Date83], a distributed database is
“3 database that is not stored in its entirety at a single location, but
rather is spread across a network of locations that are geographically
dispersed and connected via communications links”. A distributed
database management system (DDBMS) consists of a collection of sites or
nodes, connected together into a network. Each site has its own

database management system, which may or may not be the same as the
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database management systemsbin the other nodes. Distribution does not
affect the user's view of the database, known as the logical view; but
it does however affect concurrency control, recovery, and physical
database design. The major advantages of distributing rather than

centralizing a database are many:

o potential for improved performance and economics
e increased reliability

® casier incremental growth

Performance may improve because of reduced communications volumes,
smaller transmission delays and less congestion. By having the database
spread over several computers, reliability may be increased because the
entire database is not rendered inaccessible when one of the networked
computers fails. Incremental growth may be easier because a new node
can be added without incurring excessive down times. In a centralized
system, it is often Qdifficult to upgrade without major service
disruption and conversion costs. A distributed database is particularly
useful to applications that involve extensive processing in different

locations.

In this section, we will discuss some of the capabilities of a
distributed database management system. We will also look at some of
the techniques used to provide these capabilities and some of the

problems and benefits which these techniques produce.

There are five basic capabilities which a distributed database system

must provide [Allen82]:
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1, co-ordination of the DDBMS with the data transmission network
such that reliable delivery of messages can be ensured;

2. decomposition of transactions into atomic parts, selection of
nodes to execute those parts, and control of any movement of data
between sites necessary to process transactions;

3. synchronization of logically related updates and retrievals that
are processed at different nodes;

4, detection and resolution of conditions where a part of the
database becomes inaccessible due to node or line failure;

5. management of metadata describing the distributed database and

environment.

One of the capabilities of a DDBMS 1is that the data can be

distributed redundantly among the nodes of the network. Freely
distributed data are needed in many circumstances: when a highly
distributed user community exists: when there is a need for high
availability - the data must remain available when one or more copies
are inaccessable; when there is a need for survivability - the data must
remain available after destruction of multiple system nodes; when there
is a need for fast response - access to local data are faster than
access to distant, highly shared data. At times, there is a need for
data to be moved to different nodes as usage patterns change; data
heavily used in one geographic region can be stored in that region.
When traffic volumes are too high for a single storage system, the only
way to increase performance is to have multiple machines each with its

own copy of the data (especially with very large storage systems).
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Another reason for redundant data is that it permits more flexibility
in increasing database capacity to support very large databases.
portions of the database which are frequently accessed can be stored at
many small sites using relatively fast secondary storage. Other
portions of the database that are needed only occasionally could be
stored at an archival site on tertiary storage which 1is slow but
inexpensive. Moreover the redundant approach allows additional database
sites to be added to accommodate increases in database activity, whereas
in a non-redundant system, increases in activity against a selected
subset of a large database could require an upgrade of the site at which

that subset was stored.

Without redundant data, the reliability goals of distributed data
management can only be partially met. Without redundant data, the
failure of a particular database site must cause the failure of all
applications that require data stored there. Even though many other
nodes are still working, these nodes are of no value to applications
requiring data from the failed component. Thus, from the point of view
of these applications, the DDBMS will have suffered a total failure from

the failure of a single component.

Another capability of a DDBMS is the ability to exploit the parallel
processing capabilities of the network. This means that instead of a
transaction being executed on only one computer, parts of that
transaction can be executing concurrently on several different computers
in the network. Theoretically, 1if three computers are used to process
one transaction instead of just one computer, then the transaction
should complete in one-third of the time. This wusually cannot be

s
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achieved, as the computers must gather data from the other hosts in the
network, and then transmit their results back to where the result is
needed. This extra data transmission can increase the time needed for
the transaction to complete. If there is only one copy of the data that
all three computers need, then they may cause some network congestion as

the network attempts to deliver that data.

To increase parallelism in a DDBMS, multiple copies of data can be
used. There are two methods for storing data in a database [Marti77,
carde79]. The first method is to store the data in a hierarchy or tree
structure. This was the first method to be developed, and is used in
systems such as IMS. The second method of storing data is to use a two-
dimensional table. The table, as in figure 2.7, 1is referred to as a
relation. A database constructed using relations is called a relational
database. All of the databases developed recently are relational (see
INGRES and SDD-1 which are discussed later in this thesis). Relational
databases are prefered over hierarchical as in a relational database,
all operations may be described through mathematical rules. Queries may
be expressed in terms of either a relational algebra or calculus,
whereas in the case of a hierarchical database, gqueries may only be

expressed in terms of a tree search.

A distributed database can be allocated among the nodes of a network
according to various criteria. There are two methods for distributing a
database: a replicated database consists of overlapping subsets
(replication); and a partitioned database consists of nonoverlapping

subsets.
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prov|name jage|salary|sin

Ont |Jones! 27| 12324|375
Ont |Smith| 54| 34953|057
Ont |Kane 35! 27548245
Man |Bones| 22 9000893
Man |Clark| 59234567002

Figure 2.7: Data Stored In a Table

Replication may enhance the availability and locality of the

database, but it requires the DDBMS to provide more sophisticated
concurrency and recovery procedures. Each machine may have fragments
from different data. For example, sites 1, 3, and 5 could have
fragments for employee data, while sites 1, 2, and 4 could have

fragments for inventory data.

prov name age salary sin

sin salary prov sin age name

Ont [Jones| 27| 123241375

Ont |Smith| 54! 34953|057 375 12324|0nt| |375{27|Jones

Ont {Kane 35| 27548245 057! 34953 |0Ont 0571541Smith
245| 27548|0nt| |245(35|Kane

Site 1 893| 9000|Man| |893|22|Bones
002]234567 |Man| |{002|59|Clark

prov name age salary sin

Site 1 Site 2
Man {Bones| 22 9000|893
Man!Clark| 591234567002

Figure 2.9: Vertical
Site 2 Partitioning

Figure 2.8: Horizontal
Partitioning




Distributed data may be partitioned 1in several ways: horizontal and
vertical. With horizontal partitioning, each site has only a subset of
all the records; but all the information in each record is at the one
site. For example, if data were stored about people working in
different provinces, the site in each province would contain the records

pertaining to the employees in that province (figure 2.8).

With vertical partitioning, only parts of each record are stored at
any one site; but each site contains all the records. Figure 2.9 shows
data which has been split into two vertical partitions. Bach site has
records for all employees, but not all information about each employee.
Vertical partitioning occurs when only certain fields are useful at one
site, while other information about the same items is useful at another

site.

While data could be distributed horizontally or vertically, it is
more common to see a mix of both, perhaps with some overlap of the
partitions. This distribution of fragments of a database may lead to
faster processing, but it can also decrease processing speed depending
on how the data are organized, and what type of retrieval is needed. 1In
order to find the data for a retrieval or update, a sophisticated data
dictionary or directory is needed in order for the DBMS to find the
data. The requirements of the distributed data dictionary are examined

later in this chapter.

It is much simpler to retrieve and search a fragmented table than a
fragmented tree. The only way to find a particular leaf in a tree is to

traverse the entire tree. 1f the tree is arbitrarily fragmented, then
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each path through the tree may involve an arbitrary number of nodes to
search. BEach switch to a different node can only be done by
communication through the network. This may involve large amounts of
communication which will drastically increase the retrieval speed.
Hierarchical database systems wusually do not permit fragmentation

because of the difficultly of retrieval.

Relational tables pose no such problems, and may be arbitrarily
partitioned and replicated. Several —commercial systems will be
discussed in chapter 4. One of these systems is hierarchical and allows
no fragmentation, and two of these systems are relational and they allow

varying degrees of fragmentation.

The major problems in the development of good techniques for managing
a distributed database are due to communication volumes and delays.
While a distributed system is designed to exploit parallel processing,
in reality it may severely Thamper it instead. Communication
requirements may cause some centralized database managers to be
inefficient in a distributed environment. For example, the traditional
use of locks (discussed later in this section) by a centralized DBMS may
cause excessive delays in the distributed environment due to the
transmission of lock messages throughout the network. Parallel
processing has the potential to increase throughput, but requires
complex controls to synchronize concurrent reading and writing
activities at dispersed sites. The DDBMS must ensure that operations
executed in parallel have the same net effect on the database as an

equivalent set of serially executing transactions.
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There are two design approaches for multiple copies of data:
centralized and decentralized. The normal and most easily-controlled
approach is to have a single, secure master copy of the data. The other
replicated copies are regarded as secondary to the master copy. The
system is designed so that if the master copy is destroyed, it can
easily be reconstructed. Different data each have a single master copy,

and these could be stored in different locations.

The other approach is for data to be stored in multiple nodes, no one
of which is of higher status than the others. All updates go to every
copy of the data. Often they cannot be updated simultaneously, so the
protocols are designed so that the system converges to a state in which

every copy is the same. No one copy is designated as the master copy.

This latter, horizontal approach needs elaborate, carefully thought
out protocols to deal with the various failures, update interference,

and deadlock conditions that can occur.

When a master copy of data is used, it may or may not be updated in

real time. Two approaches are practicals

1. All transactions immediately update the master. The master
issues new copies of changed records to the other processors
periodically.

2. Transactions update a non-master file. All transactions are
saved for periodic updating of the master, and when the master is
updated, new copies of changed records are sent to other

processors which use them.
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However, when a READ is done, depending on whether the master copy or
another copy of the data 1is read, different values can be obtained.
Normally, a local copy will be read to reduce transmission cost and
improve speed, but there is no guarantee that this local copy is up to

date.

After a failure of part of the system, resynchronizétion is achieved
by issuing new copies of any changed records in the master to the
processors which keep them. If the master itself fails, then copies of
the transactions must be kept until the master is recovered so that the
master copy can be updated, and then in turn issue copies of the changed

records to other processors which store the redundant data.

There are two operations which apply to the data in the database:
READ and WRITE. With replicated data, a READ operation is simpler than
a WRITE operation. The READ operation can read any cOpy of the data,
while the WRITE must update all copies of the data it refers to. A
trade-off must be made between a large amount of replication to support
READ operations, and a small amount of replication for WRITE operations.
In practice, it is more reasonable to keep two copies rather than many
copies of data which are frequently updated. This approach is commonly

used on hierarchical database management systems.

The distributed system must maintain consistency of all copies of the
data. It must organize recovery after a copy of the data has been down
for a period of time. Furthermore, it must prevent one update operation
from interfering with another. To do this with a high update rate and
not incur excessive system overhead requires tight and rather complex

protocols.
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A processor, processing a transaction, can retrieve the data it
requires from more than one place. The different copies of data should
therefore all be up to date; when an update is made, it should be
applied immediately to all copies of that data. It is not practical to
update all copies exactly simultaneously. The system should be designed
so that all copies converge quickly to a consistent state. If one copy
is inaccessible for a period due to a failure, then a recovery action
should follow, bringing it wup to date as quickly as possible. As
previously discussed,  two transactions attempting to update the same
data at the same time can interfere with one another and write invalid
data. Similarly, a READ could occur while data are in the process of
being updated and could give invalid results. One method commonly used
in centralized database systems, and in distributed systems, to ensure
database consistency, is to require that all transactions observe a
locking protocol: a set of rules that require transactions to lock data
they access or modify. This ensures that another transaction cannot see

or modify data that the lock-holding transaction is manipulating.

Locking protocols involve some system overhead. It is necessary for
the lock manager of the database system to see if the lock can be
granted and then either grant the lock request or put the requesting
. transaction in a queue. To minimize this overhead, it is possible to
associate a relatively large subset of the data with each lock. But, if
transactions lock data they do not use, then concurrency may be reduced.
This means it is better to associate a iock with a small subset of the
data, as the finer the locking granularity, the greater the concurrency;
the coarser, the fewer locks to be set and tested and the lower the

overhead [Gray75].
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In a distributed database system with a high level of updates,

locking the data can cause substantial performance degradation. The
node processing a transaction is often distant from the node containing
the data. The data have to be locked for the time taken to transmit the
data to the processing node, prepare the update, transmit the data back
to the data node, and write the new data. Because transmission times
are lengthy, data are locked for a much longer time than with a
centralized system at one location, To compound the problem, the
distributed system may have several (perhaps many) copies of the data in

different nodes. Each has to be locked during the updating process.

A variety of locking schemes have been devised for distributed
database systems [Berns81b]. Some of these schemes are discussed in the
next chapter. Some require a primary site for updating while others
avoid requiring that one site have primary authority. All involve
substantial transmission overhead if all data being updated have to be
locked and there is a high update rate. The best way to reduce the
overhead is to structure the updating protocols to avoid time-consuming
locks whenever possible. A technigue which does this is used in SDD-1

(System for Distributed Databases), which will be discussed later.

While redundant data has many advantages, there are some problems to
be overcome in order to realize the advantages. The multiple computers
in the DBMS are attached to a network. Certain data items may be
contained in each computer, and each computer is required to update its
local data. This is a complex situation which can be handled with
complex distributed storage protocols. Most commercial software is not

designed to operate in a free-for-all distributed data environment.
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Instead, one machine must tightly control each type of data. To achieve
data integrity, one machine must control the updating of the others,
even though the data reside, and the requests to change these data

originate, in multiple machines.

When there is more than one copy of data, and sometimes with only one
copy of distributed data, inconsistent information can be obtained when
reading the data due to time delays introduced through the network.
This problem can be overcome with appropriate locks or protocols. These

locking mechanisms will be discussed in chapter 3.

When locks are used in a distributed environment to prevent update
interference, it is possible for deadlock to occur. Deadlock is a state
where two or more transactions are in a wait state, each transaction
waiting for the other to complete. Deadlock is discussed in more detail
in chapter 3. To circumvent deadlock, fairly complex protocols must be
used. Unfortunately, unless the protocols are carefully thought out,
the protocols to prevent invalid updates, inconsistent reads, and
deadlock can cause excessive overhead, especially when there are
multiply-replicated copies of the aata in the network. The protocols to
prevent invalid updates and inconsistent reads as well as the problems

caused by these protocols are discussed in detail in chapter 3.

Another problem which arises with distributed data is interference
between updating transactions. Two transactions may be updating the
same data item on a remote storage unit and they can interfere with one
another causing the stored data to be incorrect (concurrent update
problem). This problem can also be prevented by appropriate locks or

protocols.
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Difficulties in supporting parallel processing are complicated by,
put not solely due to, the existance of multiple copies 1in the
distributed system. A similar problem can occur in a single computer
vhen two executing programs both attempt to update the same area in
memory. On large machines, a small cache or high-speed buffer is
inserted between the fast central processor and the relatively slower
large main memory. The hardware attempts to keep the appropriate memory
locations in the cache to increase the speed of memory accesses. 1f a
value is read and then changed, the change will be reflected in the
cache, but will not necessarily be immediately reflected in main-memory.
Thisvis fine for processor-only accesses to memory, since the processor
‘sees’ the cache contents thinking it is main-memory contents. However,
if an additional processor, such as an 1/0 processor, reads the same
memory locations, then the unchanged value will be given to it. Thus,
there may be problems with multiple copies of data even when controlled

by hardware in very close proximity.

There are systems in which the same data are stored in many locations
and the updates originate in many locations. It is difficult and
complex to control the correctness of the updating unless the updates
are applied to a single copy of the data. However, a single copy
implies lack of redundancy, which is one of the reasons for using a

DDBMS.
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2.4,1 Data Dictionary

A system whose data are scattered geographically must have some means
of determining where any piece of data is stored. As with other aspects
of distributed databases, location of data can vary from very simple to

extremely complex.

A simple method is for the user to specify the location of data when
he makes a request to use them. His transaction may then be transmitted
to a computer at the location of the data, or alternatively the data may
be transmitted to a location where they can be processed, possibly the
location where the transaction originated. Note that this is not very
practical, for the user must know where all the data he wishes to access

are, and he must be notified whenever his data moves.

A slightly more complicated approach is for the user to specify
information about the data from which their location can be simply
determined; e.g. A bank account number, which has the branch specified

by the first digits.

Locating the data becomes more complex when the user does not know
where the data are located in a distributed database with horizontal
distribution. The system must contain some form of catalog or
directory, which permitsithe data to be found. The directory may exist
in one particular computer in the network, the request for data being
passed to this computer and the location of the data established.
Alternatively, every computer in the network may have a complete

directory, listing each data field and indicating its physical location.
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An important characteristic of modern database management systems is
that they employ a directory or -data dictionary to define the database
being managed. This frees the user or application program from the need
to supply this information and it simplifies many types of database
structural changes. A directory typically contains 4 types of

information [Allen82, Marti79al:

1, logical structure definition
2. physical structure definition
3, file statistics

4, accounting data

For a distributed database, there must be an additional category of

information: the location of each piece of the database in the network.

The DDBMS must have access to this information in order to parse user
requests, choose and execute an accessing strategy, and account for the

resources used. The problem then is where to store the directory.

There are several solutions to this problem, varying with the
database and the particular accessing pattern. Not all of the data in
the directory are accessed as frequently as others. In practice, there
are two basic categories of directory management schemes. First, each
directory entry is stored in only one location (non-redundant schemes).
Secondly, each directory entry may appear in several places (redundant
schemes). Thus, for non-redundant schemes, the following alternatives

exist [Rothn77]:
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o centralization - The complete directory is stored at one specific
site. This requires access to the directory site for every
retrieval or update to the directory.

e distribution - Each site has the directory entries for the data
stored at that site. Completely local access can proceed using the
local directory. Any request requiring access to remote data must
be broadcast so that other sites can determine whether or not they
have relevant data.

e combinations - An intermediate approach 1is to partition the

network, and employ a centralized directory in each part.
The redundant approaches have various alternatives:

® centralization - A redundant but centralized approach with a
combination of the centralized and distributed non-redundant
alternatives. Each site has the entries for its local data but a
central site has the complete directory. In this way, non-local
references can query a single site to determine the location of the
remote data.

e distribution - Each site has the complete directéry stored locally.
All user transactions can be executed without a remote directory
reference, but all directory updates must be posted to every site.

e combinations - Each site is allowed to have an arbitrary subset of
the directory. This permits a great deal of flexibility but it
requires a more complicated ‘directory directory’ to tell the

system where the various pieces of the directory are stored.
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some disadvantages to having a directory in each computer are the
storage space required for such directories and the work of keeping them
up-to—date. In addition, small local computers may not be well equipped
for searching the directories as rapidly as a specialized or larger

computer.

In many systems, most of the transactions received by a local
computer relate to the data kept at that location, whereas a few
transactions are for data in other locations. In this situation, each
computer could have a directory of its own data only, and pass other
requests to another computer if it relates to data it does not have.
The directory problem is a distributed data problem scaled down. For
efficiency the data in the directories should be replicated, but to what
extent? The problem is then to wupdate the replicated copies and

maintain them in a consistent state.

The directory can be treated just like any other data by the system
or it may be specially treated for improved efficiency and safety. If
the directory is treated like any other data, then there is no special

problem with fragmentation and replication.

However, the system must always know where the directory itself is
stored, otherwise it will not be able to find any data, as the system
cannot look up the location of the directory in the directory, unless it
knows where the directory, or fragments of it are stored. The

information about the directory must be at every node.

Whenever a request is processed by a computer which does not have the

data it requires, there are two possibilities: to move the data to the
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processing computer; or move the transaction and process it where the

data are.

which method is used is affected by many parameters: by the machines
in use and their software, and by what would have to be transmitted and
how frequently. It is expensive to move large amounts of data too
often, and it is slow. It is usually cheaper and faster to move the
transaction to the site where the data is, than to move the data to the

site where the transaction is.

As with all distributed data, a high frequency of read access
encourages local, redundant directories. Since every user transaction
requires a directory retrieval, directory redundancy 1is virtually
essential. 1If there is a high update rate to the directory, this
discourages redundancy as each copy must then be updated. However, high

reliability requires redundancy and distribution.

2,4,2 Recovery

One of the key motivations for distributed database systems is a
requirement for high database availability; that is, a need to ensure
that a database is nearly always accessible. Distributed database
systems seem to offer this characteristic since availability is not
limited by the reliability of any single component but rather by the
reliability of combinations of components (processing nodes and
communication links in the network). These combinations can be
configured to achieve arbitrarily high availability. In order to

achieve this availability potential, it 1is necessary that the
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distributed system be able to cope with the failures of individual

components and continue operation.

The central problem in reliable operation of a distributed database
system is maintaining database consistency in the presence of failures
during update transactions. Such failures threaten to destroy the
<atomicness’ (indivisibility) of these transactions by causing the
update to be only partially accomplished in the database. Consider an
example in which transaction Ty updates portions of a database stored at
nodes Ny and N». 1f a failure occurs during the execution of Ty which
prevents the update from being recorded at N, then the database has been
made inconsistent. A later transaction which reads the results of Ty
will see an anomalous database with unpredictable results. The system
updating algorithms must therefore be aware of the possibility of

component failure and avoid these partial results.

Recovery after a failure needs to be controlled so that updates are
not accidently lost or double-processed. Suppose we consider a
transaction which withdraws money from one bank account and transfers it
to another account. 1f a failure occurs before the transaction
completes, and the transaction is redone at a later time, there is a
possibility for twice as much money to be withdrawn as was deposited, or

for twice as much to be transfered.

When multiple copies of data exist, they may be in different states
of update after a period of failure. They must all be brought back to
the same state, but problems may arise as real-time transactions are

being processed during the recovery period. For example, consider a
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situation where one copy of a data item has not yet been updated because
its host was down. If a user attempts to update that same field again,
the update must not be applied until after the data item is updated from

the previous updates which are still pending.

The avoidance of database inconsistencies of this type is the major
objective of failure-handling mechanisms but it 1is clear that there are
other considerations which are important to the design of these

algorithms.

The most important consideration is that of efficiency. People
desire good responsiveness and throughput of the system during normal
operation and in the presence of failure. This is important because it
precludes using a very simple algorithm which preserves consistency but
introduces intolerable delay when faced with a failure. The simple
algorithm just waits indefinitely until the failed node recovers. While
this does indeed guarantee consistency, it can 1lead to indefinite
delays, which is unacceptable. An effective DDBMS must employ a
different type of mechanism, one which attempts to execute to completion
any transaction which can proceed without a resource which is

exclusively available at the failed node.

This problem of failed sites can be partitioned into several
subproblems: reliable broadcast, operation with missing or inoperable
nodes, restarting and re-integrating a node, failure detection, and

partitioning.

Reliable broadcast refers to the fact that if a transaction T is

updating fragments of a database stored on nodes N,, N3, and N4, then it
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is possible for a message to be sent to N, to complete the update, and
then for a failure to occur before a message has been sent to Ny. 1f
this occurs, then reliable broadcast has not been achieved. This is
nandled in various ways in different systems. Some systems attempt to
send out all the messages at once, thus lessening the possibility a
failure will occur between the messages. SspD-1 tries to ensure that
reliable broadcast is achieved by requiring that the first few
recipients of the message send it on to the other recipients. This
requires that all recipients be capable of rejecting duplicate messages.
In addition, each node is warned when a reliable broadcast is about to
be sent and any node which does not receive the message in a reasonable
period will ask the other addresses if they have received it. Thus in

SDD-1, the likelihood of a breakdown in the reliable broadcast 1is

considerably reduced.

A second subproblem in failure handling is continuing operation when
one or more nodes in the network are known to be inoperable. The
objective is to avoid having the absence of these nodes cause
transactions to be delayed until the missing nodes are recovered. All
existing system designs try to accomplish this by acting (almost) as if
the missing nodes never existed since non-existent nodes of course
cannot cause any delay. A serious problem arises if unique data are
stored on the failed node(s). All transactions requiring this data must
either wait for the node to recover, OrT abort themselves. I1f the node
is inoperable for a long time, it would be best to abort the transaction
to avoid tieing up resources. This problem is more severe if the failed
node contains unique data required for the DDBMS to operate, such as a

system directory. In this case, the entire DDBMS ceases to operate.




The third sub-problem is re-integrating a node into the system after
the cause of a node's failure has been corrected. Since the fragment of
the database stored at the node may be out of date, it is necessary for
the node to find out what happened during its absence prior to
continuing its active participation in the system. The solution to this
relies on persistent communication: guaranteeing the delivery of a
message to a node even if the addressee is down when the message is sent
and even if the sender 1is down when the addressee recovers. This
recovery method is very clean, as the restarting node simply acts on its

0ld messages in almost the same way it does in normal operation.

For a system to function with missing nodes, and to restart nodes,
there must be some way of knowing when a node has failed. The most
common method of detecting that a node is dead is a time-honoured
technique called time-out. Under this scheme, a node which is suspected
of having failed is probed with a message to which an active node will
respond. If the response does not arrive within some prescribed time

period the probed site is assumed to have failed.

The final sub-problem is a serious one for which no adequate solution
has yet been devised. This problem arises when communication failures
break all connections between two or more active segments of the network
partitioning them into separate pieces.  When this occurs each piece of
the network continues its operation, including processing updates, but
there is no way for the separate pieces to co-ordinate their activities.
Hence the fragments of the database in the separate pieces will become
inconsistent. When reconnected, it may be impossible to carry out all
of the updates because some of the transactions may not be correct in
the context of the whole network.
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2.5 DISTRIBUTED QUERY PROCESSING

Accessing data that are stored at separate computers in a distributed
system differs in two important ways from accessing data from a
centralized computer. First, necessary movement of data over
communications lines introduces substantial time delays.  Secondly, the
distributed system has the ability to process and move data in parallel
at separate poin£s in the network. The DDBMS must determine a strategy
for processing queries that takes into account these two facts. Rothnie
and Goodman [Rothn77] have shown great variations in communications

costs among feasible distributed query processing strategies.

In a relational database, the data are stored in a set of tables
(called relations) and are manipulated by means of high-level
operations. There has been much work in optimizing queries in a non-
distributed system, and Sagiv [Sagiv81] discusses many approaches

outlining their benefits and problems.

Single relation gqueries can be processed very easily on a DDBMS.
When the relation is geographically distributed, the query can be sent
to a node that has a copy of the relation and be processed there. The
results after processing are sent back to the originating node.
Communications needed to transmit the results is much less than the

communications needed to transmit the entire relation [wah81].

The processing of a multi-relation query is more complicated. When
multiple relations are accessed by the same query, the relations usually
have to reside at a common location before the query can be processed.

Substantial communication overhead may be involved if these relations
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are geographically distributed and a copy of each relation has to be
transferred to a common location. It 1is therefore necessary to
decompose the query into sub-queries so that each sub-query accesses a
single relation. This technique is used in Distributed-INGRES and in

spp-1.

The technigue consists of two steps. The first step is to select a
site with the minimum amount of data movements before the query can be
processed. This is used as a starting point for the second step of the
algorithm which determines the sequence of moves that results 1in the

minimum cost.

The distributed query problem is one of transforming a distributed
query into a local query by means of a combination of local processing
and data movements. Local processing reduces the size of relations,
which then decreases the cost of moving the relation. Data movement
brings the data together to allow local processing. The final data

movement must move the data to the result node for final processing.

In determining the most effective access strategy, it usually can be
assumed that local processing costs are insignificant in comparison with
data movement costs. Thus, before any data are moved, processing should
be done to reduce the total amount of data needed to be moved. Hevner
and Yao [Hevne78] show that minimizing the cost of data movement is
equivalent to minimizing the amount of data moved. In SDD-1, Bernstein
et al. [Berns81b] assume network bandwidth to be the system bottleneck,

and SDD-1 seeks to minimize use of this resource.
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Using the data dictionary, the query processor locates the data
fragments required, and then determines a good set of moves and
computations to give the desired result. In many cases, it is possible
to overlap data movement and processing, and have concurrent processing
at multiple sites. By using the resources of the network, it is
possible to obtain better performance from a DDBMS than from a DBMS.
However, 1if the query processor chooses a bad move, it is possible for

the DDBMS to be orders of magnitude slower than a centralized DBMS.
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Chapter III

CONFLICT ANALYSIS

In this chapter, we will examine some of the conflicts which arise in
a DDBMS and discuss some methods of eliminating these conflicts. These

conflicts occur during concurrent execution of different transactions.

One major conflict is the synchronization of update transactions.
Transactions which read data may conflict with transactions wishing to
update the same data. It is necessary to control concurrent
transactions in order that database consistency is preserved while
excessive overhead in propagating control information among the nodes of

the DDBMS is avoided.

Since data items may be stored redundantly at multiple database
sites, whatever update synchronization methodology is used by the DDBMS
must also ensure that all redundant copies of data are updated correctly
and consistently. This methodology is termed concurrency control, and

much research has been done in this area.?

While there are solutions to the update synchronization problem, some
of these solutions themselves cause new problems: that of global
deadlock. Two or more hosts in the network are waiting for data the

other have locked. Some host or hosts in the network must be able to

2 [Adiba81, Badal78, Badal79, Badal80, Berns78a, Berns78b, Berns80a,
Berns80b, Berns80c, Berns80d, Berns81b, Berns83, Garci79, GarciB2,
Korth80, Kung81, Lim79, Meras78, Milen78, Minou79, Ries79, Rosen78,
SchlaB1, Stone79].
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detect this problem and resolve it in an orderly manner.

When global deadlock occurs, it is not really possible to tell if the
deadlock is real, or was a false deadlock caused by the delays in the
communications network. In order to check the validity of the deadlock,
it is necessary for some host to confirm the messages which were sent
out. If they are still wvalid, then a deadlock occurs, but 1if the
transactions have completed processing, then a false deadlock occured,
and there is no need to act upon it. Deadlock is usually solved by

aborting or restarting one of the effecting transactions.

3.1 CONCURRENCY CONTROL

Concurrency control 1is the activity of co-ordinating concurrent
accesses to a database in a multiuser DBMS. Concurrency control permits
users to access a database in a multiprogrammed fashion while preserving
the illusion that each user is executing alone on a dedicated system.
The main difficulty 1in attaining this goal 1is to prevent database
updates performed by one user from interfering with database retrievals
and updates performed by another. The concurrency control problem is
greater in a distributed DBMS than in a DBMS because in a DDBMS a
transaction can access data stored in many different computers, and a
concurrency control mechanism at one computer cannot instantly know
about interactions at other computers. The primary purpose of
concurrency control 1is to exploit parallel execution facilities while
preserving database integrity. An example of a loss in integrity would
be two airline clerks simultaneously discovering that one seat remains

free on a flight and then both selling that same seat.
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rhe purpose of the concurrency component of a database system is then
to interleave the steps of transactions in such a way that the order of
‘stepS 4ithin a transaction are preserved and that each transaction sees
, consistent database. I1f a transaction must violate consistency

constraints, these violations should be hidden from other transactions.

In centralized systems, locking is the primary mechanism used for
concurrency control. In a distributed system, an extension of locking
techniques could be extremely costly, especially if there are replicated
data, for then all copies would have to be locked whenever one of the
copies 1is updated [Ries79). Setting remote locks in a network 1is
several orders of magnitude more expensive than setting locks locally
because of the communication delays, lost messages, and site failures.
In order to permit concurrency control, there is a need for reliable

communication in the network.

Given a correct state of the database as input, an individually
correct transaction will produce a correct state of the database as
output if executed in isolation. Read-only transactions do not change
the database, hence the state does not change. With multiple copies of
data, a READ can obtain any copy of the data, while a WRITE must update
all copies. It 1is not necessary for all copies to be written at the

exact same instant; instead all copies must converge to the same value.

Even if all transactions are individually correct in this sense, it
is possible in a multiuser system for transactions that execute
concurrently to interfere with one another in such a way as to produce

an overall result that is not correct. One problem is the lost-update

problem:
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Transaction A Transaction B

read X .

. read X
write X+1 .

. write X+2

When B completes, A's update has become 'lost'. I1f either of these

transactions ran individually, the final value would be correct.
However, B overwrites A's update without even seeing it. In a multiuser
environment some sort of concurrency control mechanism is needed in

order to avoid this type of problem.

Another problem is one of inconsistent retrievals., Consider a
transaction which transfers funds between two accounts, while another

transaction is computing the sum of both accounts:

Transaction C Transaction D
read X .
write X-1000 .

. read Y

. read X
read Y .
write ¥+1000 .

. print X+Y

In this case, C writes the correct value into the database, however D
has printed out an inconsistent result which is short $1,000.00. Some
sort of concurrency control is also needed to prevent this type of

interference.

In the first example, the problem is that A and B are both updating X
on the basis of the initial value of that field - that is, neither one
is seeing the output of the other. To prevent this situation, there are
three basic things a concurrency control mechanism might do [Date83].

First, it can prevent B from accessing X on the grounds that A already
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has it and may be going to update it. Secondly, it could prevent A's
update on the grounds that B has already gotten a copy of X before the
update.  Thirdly, it could prevent B's update on the grounds that A has

updated X and therefore B's update is based on a now obsolete value.

The first two solutions can be handled by a concurrency control
technique known as locking, the last solution by a technique known as
timestamping. Of these two techniques, locking is more commonly used in
centralized DBMS, while timestamping 1is more commonly used in DDBMS

[DateB3].

One must understand how a concurrency control algorithm fits into an
overall DDBMS before one can understand how a concurrency control
algorithm works. A simplified view, as adopted by [Berns81bl, of a
DDBMS that permits analysis of concurrency control algorithms will now
be presented. A DDBMS is a collection of sites interconnected by a
network; each site is a computer running one or both of the following
software modules: a transaction manager (TM) or a data manager (DM).
TMs supervise interactions between users and the DDBMS while DMs manage
the actual database. The network is assumed to be a reliable
communications system. If a message is sent from one site to another,

the receiving site is guaranteed to receive the message without error.

A database consists of a collection of logical data items, denoted X,
Y, Z. A logical data item may be stored at any DM in the system or

redundantly at several DMs.

To access the data, users interact with the DDBMS by executing

transactions. Transactions are either queries from terminals, or
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application programs. The concurrency control algorithms presented in
later sections pay no attention to the computations performed by the
transactions. 1Instead, these concurrency control algorithms make all of
their decisions on the basis of the data items a transaction reads and
writes. A transaction is assumed to be an entity which takes as input a
database, and some data, and modifies the database according to the
input data the transaction received. When the transaction completes,
the database will have changed, but the database should still be
consistent. The readset of a transaction 1is the set of 1logical data
items the transaction reads, while the writeset is the stored data items

that a transaction writes.

Whether a concurrency control algorithm works correctly is based on a
user's expectations about a transaction. Users expect their
transactions to be executed within a reasonable time frame. They also
expect their transactions to work consistently, no matter what other
transactions are concurrently being processed. Concurrency control

tries to meet these two expectations.

A DDBMS contains four components: transactions, TMs, DMs, and data
(figure 3.1). Transactions communicate with TMs, TMs commuhicate with

DMs, and DMs manage the data.

TMs supervise transactions, and each transaction executed in a DDBMS
is supervised by a single TM. The TM manages any distributed

computation that is needed to execute the transaction.

Two operations are possible at the transaction-TM interface. A READ

operation returns the value of a logical data item in the current
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transaction

transaction ]

J ™ DM data

transaction ]

L J ™ DM data
[ ]
transaction
Figure 3.1: DDBMS System Architecture
logical database. A WRITE operation creates a new logical database

where some data item has a specified new value.

DMs manage the stored database, functioning as database processors.
In response to commands from transactions, TMs issue commands to DMs
specifying stored data items to be read or written. The TM communicates
this to a DM, and the DM transfers the appropriate data to the T™M. In a
centralized system, there is only one TM and one DM, and they
communicate through memory. In a distributed system, there are many TMs
and DMs, and the movement of data between a TM and a DM can be very
expensive. To reduce this cost, many DDBMSs employ query optimization
which requlates, and if possible reduces, the £low of data between

sites.

Two operations conflict if they operate on the same data item and one
of the operations is a write. The order in which operations execute is
computationally significant if and only if the operations conflict. If
one of the operations is a read, and the other is a write, then the

conflict situation is known as read-write (rw) conflict. If both
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operations are writes, then the conflict situation is known as a write-

write (ww) conflict.

When a TM executes a transaction, it never knows whether it will ever
complete. At any time the transaction may be backed out due to a
conflict or even canceled due to a failure. Furthermore, it may be a
very long time before the transaction actually completes because some
nodes where the transaction has to perform actions may be inaccessible.
It is desirable if at some point in time the transaction could know if
it was going to complete. This point, called the commit point, occurs
when the transaction can guarantee that it will never be backed out or
cancelled. The commit point is sometimes defined as the time when the
values produced by a transaction first become available to other

transactions [Garci82].

Bernstein and Goodman [Berns81b] state that, after studying a large
number of concurrency control algorithms,  they find that all the
algorithms are compositions of only a few subalgorithms. Bernstein and
Goodman go on to state that “the subalgorithms used by all practical
DDBMS concurrency control algorithms are variations of just two basic

techniques: two-phase locking and timestamp ordering”.

These two practical techniques are examined in this section, along
with a theoretical technique, optimistic concurrency control. As well,
some combination techniques are described; techniques which use both

locking and timestamps.
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3.1,1 Locking

The simplest method for synchronizing distributed updates is to lock
those portions of the database being read or written by an active
transaction. Locking is the usual mechanism employed for update
synchronization in conventional, non-distributed DBMSs. However, in a
distributed database environment, an appreciable and often intolerable
delay is introduced as locking information is propagated to the many

¢omputers in the database network.
Consider a locking algorithm with the following steps:

1. send out a lock request message

2. a lock grant message is returned

3. the update is transmitted

4. the update acknowledgement is returned

5. a lock release message is sent

1f there are N copies of data, then 5N messages must pass through the
network. Given that the network delay could be up to one second per
message, the total delay 1in a distributed DBMS is 2 to 3 orders of
magnitude greater than of a delay typically encountered when setting

locks in a centralized system.

For this reason, the straightforward locking approach is inadequate
for a general purpose distributed DBMS and other methods must be sought.
There are several solutions to this problem. Many methods try to reduce
the number of messages sent from 5N to about 2N [Rothn77, Milen81]. One

method piggybacks the update message with the lock request and the lock
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grant message with the update acknowledgement. This only reduces
communications volume if the update transmission messages are short or
if most lock requests are granted. While the savings of these methods
are substantial, in many instances they still require a large amount of
inter-computer communication in order to perform updates. Such methods
will not perform satisfactorily in networks containing large numbers of

sites and high transaction volumes.

The amount of overhead message traffic does not, by itself, determine
the effects of concurrency control or the overall performance.
Processing loads, network loads, and the types and sizes of transactions

all affect performance as well.

Locking is a technique for regulating concurrent access to shared
objects, such as records in a database. A transaction can obtain a lock
on a record by issuing a request to a system component called the Lock
Manager. 1f transaction T holds a lock for a record R, then T_will be
quaranteed that no concurrent transaction will be able to update R until
T releases its lock. The lock is released by means of another request
to the Lock Manager. The exact nature of the guarantee depends on the
lock type. The most common type of lock is the exclusive lock. If a
transaction T holds an exclusive lock on some object, then no other
transaction can acquire a lock of any type on that object until T

releases its lock.

1f all update requests incorporate an exclusive lock on the initial
read, then lost updates can be avoided. If some transaction already has

an exclusive lock on the data item, then the current request waits for
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the first lock to be released. The transaction will eventually come out
of the wait state, unless the transaction caused deadlock, which will be
discussed later. A simple technique to ensure that transactions will
eventually come out of the wait state is to service all lock requests
for a given object in first-come/first-served order. If the system does
not provide such a guarantee, then it is possible for a transaction to

wait forever for some lock. -This condition is called livelock.

A given interleaved execution of some set of transactions is said to
be serializable if and only if it produces the same result as a serial

execution of those same transactions.

Serialized transactions still execute concurrently, but some
concurrency control mechanism is used to synchronize the transactions as
necessary. Serializability is widely accepted as a formal criterion for
correctness. A given interleaved execution sequence will be considered

correct if and only if it is serializable.

While the exclusive locking protocol can be used to solve the lost
update problem, it can also create worse problems. One of these
problems is deadlock. Deadlock is a situation 1in which two or more
transactions are in simultaneous waitstate, each waiting for one of the

others to release a lock before it can proceed.

Transaction A Transaction B
lock X .
. lock X»
lock X, .
wait .
. lock X4
. wait
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The problem of deadlock is not just confined to databases. Various
deadlock avoidance protocols have been defined [Carde79]. One scheme is
to impose a total ordering on all lockable objects, and then refuse a
lock request for an object Y if the requesting transaction already holds

a lock for any object Z that appears later than ¥ in that ordering.

Such deadlock—avoidance protocols are generally inapplicable in a
database environment. One reason is the set of lockable objects is very
large and highly dynamic. These objects are not addressed by name but
by content, so it cannot be determined until execution time whether or
not two distinct requests are for the same object. Finally, the precise
locking scope for a given transaction is usually determined dynamically;
that is, one record's contents may cause another record also to be

locked.

A system must be prepared to detect the occurrence of deadlocks and
to resolve them when they occur. Detecting deadlock is basically a
matter of detecting a cycle in a wait-for graph; that is, a graph of who
is waiting for whom. In this graph, the nodes represent executing
transactions, and the edges represent waits. An edge is drawn from node
Ti to node Tj when transaction Ti requires a lock on an object that is
held by Tj, and erases that edge when T releases its lock. Thus, if
there are edges from Ty to Ty, T, to T3, and Tz to Ty, then the

transactions T1, T,, and T; are deadlocked (figure 3.2).

Checking for deadlock can be done at two times: whenever a lock
request causes a wait; or on some periodic time basis. Checking on

every wait allows deadlocks to be detected as soon as they occur, but
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Breaking a deadlock involves choosing a victim, one of the deadlocked
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added then that sum will be inconsistent if one of the records is
updated midway through. Using an exclusive lock would solve the problem
put at the same time reduces concurrency unnecessarily. Thus a need
arises for a shared lock, one in which other transactions may also

obtain shared status, but not exclusive.

In many transactions, it is not known if an update will occur until
the data used by the transaction are read from the database. The need
arises for an update lock, a lock which indicates an update may occur.

This lock can then be upgraded to an exclusive lock if need be.

Date [Date83] gives the following theorem:
1f all transactions obey the following rules:
a) before operating on any object the transaction first
acquires a lock on that object; and
b) after releasing a lock the transaction never acquires
any more locks;
then all interleaved executions of those transactions are
serializable.

A transaction that obeys rules (a) and (b) are said to be ‘two-
phase’, or to satisfy the two-phase locking protocol (2PL).  The two
phases are a growing phase, where locks are acquired, and a shrinking
phase, during which they are released. Thus, the theorem may be
restated as: if all transactions are two-phase, then all executions are
serializable. The condition that all transactions be two-phase 1is
sufficient but not necessary to guarantee serializability. But 2PL
provides guidelines for safe transactions. An implementation of 2PL

requires building a 2PL scheduler, a software module that receives lock

requests and lock releases and processes them according to the 2PL
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specification. The basic way to implement 2PL in a distributed database
ig to distribute the 2PL schedulers along the with database, placing the
scheduler for data item x at the DM where x is stored. If a transaction
requests a lock, and the lock cannot be granted, the request is placed

on a waiting queue. This can produce deadlock.

A transaction may read any copy of redundant data and need only
obtain a readlock on the copy read. However, an update transaction must

obtain writelocks on every copy of the data item.

There are several methods used to implement 2PL: primary copy 2PL,
voting 2PL, and centralized 2PL [Berns81bl.  In primary copy 2PL, one
copy of each logical data item is designated the primary copy; before
accessing any copy of the logical data item, the appropriate lock must
be obtained on the primary copy [Stone79].  This technique 1is used in
Distributed-INGRES, which is discussed in the next chapter. Voting 2PL
also exploits data redundancy. The TM asks all the DMs containing x if
it can lock x. If a majority of the DMs respond positively, then the
lock is granted. Otherwise, the TM must try again. A detraction from

this method is the concomitant high communication cost and delay.

Instead of distributing the 2PL schedulers, it is possible to
centralize the scheduler at one site. Before accessing data at any
site, appropriate locks must be obtained from the central 2PL scheduler.
This method also requires a large amount of intersite communications and

is prone to failure of the central site.

Centralized systems tend to allow deadlocks to occur rather than

avoiding them as avoiding deadlock is generally more costly than it is
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worth. There are four techniques used to avoid deadlock: transaction

scheduling, request rejection, transaction retry, and timestamping.

Transaction scheduling involves scheduling transactions for execution
in such a way that two transactions whose data requirements conflict are
not run concurrently. As this requires that each transaction's data
requirements be known prior to execution time, this method tends to be
rather pessimistic., In many cases, it is not known what data will be

used until some of the data are examined.

Request rejection is the second method to prevent deadlock. Any
request that would immediately cause deadlock is simply rejected, and
the transaction can either wait and retry, or tidy up and abort.
Deadlock only occurs when the last edge 1is installed in the wait-for

graph, causing a cycle.

Transaction retry was proposed by Rosenkrantz et al. [Rosen78]; it
was designed for distributed systems, whereas all the other methods had
been originally designed for centralized systems. The technique has two
versions; ‘wait-die’ and ‘wound-wait’. The basic idea is to avoid the
creation of cycles by a suitable .protocol that makes such cycles
impossible. There is no need to construct a graph, it is only necessary
to be able to tell whether a given record 1is locked and by which
transaction., Bach transaction 1is given a unique timestamp. When
transaction A requests a lock on a record held by transaction B, one of
two things can happen. In wait-die, A waits if it is older than B,
otherwise A is rolled back and effectively dies. In wound-wait, A waits

if it is younger than B, otherwise B is rolled back and automatically
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retried; thus B is wounded. In all cases, a transaction retains its
original timestamp. There is no possible way for a cycle to occur.
Rosenkrantz et al. prove that every transaction is guaranteed to
terminate (livelock cannot occur), and that transactions can only be

rolled back and retried a finite number of times.

The problem of concurrency control is less complex in a centralized
system because the one site has all the knowledge about the transaction.
In a distributed system, all the sites must communicate with one another
in order to have the same amount of information available as in the
centralized case. Locking generates a large amount of message traffic
in a distributed environment. The communication delays can cause the
time taken to perform an update to easily be several orders of magnitude
greater than in a centralized system. A centralized lock manager is one
solution. All locks would be granted through that one site. However, it
is probable that this sifé will become a system bottleneck and if this
site fails, the entire system also fails. Even local transactions
(transactions that just access data at their originating site) must send
lock requests to the primary site. This adds an unnecessary delay to

the local transactions, of which there are probably many.

Garcia-Molina [Garci79] recommends a centralized locking controller
for each replicated fragment of data as a centralized control strategy
is superior to a distributed one. A better approach is to have a
primary copy of each data item. The lock manager at the site containing
the primary copy of x will handle all lock reguests on X. Typically,
the primary copies of different objects will be at different sites.

This method overcomes the drawbacks of the single locking site scheme
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but it can lead to global deadlock which is not possible in the single
lock manager. Hence, locking is always susceptible to deadlock, while

timestamping is not.

3.1.2 Timestamps

Timestamping techniques are all based on the premise that
transactions can be assigned a unique identifier, which can be thought
of as the transaction's start time. In a distributed system, each node
is given a unique identifier, and a timestamp is then generated by

concatenating the local time with the local identifier.

The main distinction between timestamping and locking techniques is
that locking synchronizes the interleaved execution of a set of
transactions in such a way that it 1is equivalent to some serial
execution of those transactions, while timestamping synchronizes that
interleaved execution in such a way that is equivalent to a specific
serial execution, the execution defined by the chronological order of

timestamps.

By definition, there are no locks available to disallow a transaction
from reading uncommited changes. It is necessary to defer all physical
updates to commit time. If any physical update cannot be performed for
a transaction, then none of that transaction's physical updates are
performed. The transaction is assigned a new timestamp and is

restarted.

A conflict occurs if a transaction attempts to access a record

updated by a younger transaction or if a transaction attempts to update
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a record that already has been accessed or updated by a younger
transaction, Conflicts are resolved by restarting the requesting
transaction. As physical updates are not written until commit time,
transaction restart never requires any physical rollback. Thus
timestamping is deadlock free, but the advantage is gained by restarting
transactions instead of letting them wait. Restart tends to be more

costly, as all operations performed on the database must be undone.

With conservative timestamping, no database operation 1is ever
performed until that operation can be guaranteed not to cause a conflict
at some time in the future [Berns80c]. When a request for a database
operation is received, that request is delayed until the system knows
that no transaction with a smaller timestamp can arrive. If a site is
not sending out any transactions, then the delayed transaction could
wait for a long time. Each site 1is required to send null transactions

so that the site's latest timestamp is known at other sites.

Disadvantages to this are that this requires a lot of intersite
communication. If there are N sites, then N(N-1) messages are needed to
inform every site of the status of every other site. This is infeasible
in large networks. This method is very conservative and it eliminates
conflicts by actually serializing all operations at each site, not just

those that would otherwise conflict.

3.1.3 Optimistic Concurrency Control

In section 3.1.1, locking was discussed as a method of concurrency

control. Locking imposes extra overhead on most transactions. For

- 116 -




example, 1f the number of records is large compared to the number of
currently executing transactions, few conflicts will result. The same
is true if the number of read transactions is large compared to the

number of update transactions.

Wwhile locking allows multiple transactions to execute concurrently
while preserving database integrity, it can lead to deadlock. Research
directed at finding deadlock-free locking protocols usually attempts to
lower the expense of concurrency control by permitting less concurrency.
By processing operations without concurrency control overhead, a

transaction is not delayed during its execution [schla81].

Distributed concurrency control methods based on the assumption that
conflicts are rare are called optimistic (in the sense that they rely on
the hope that conflicts between transactions will not occur). An
optimistic method discussed by Kung and Robinson in [Kung81] eliminates
locking from concurrency controls. Since locks are not used, this
method is deadlock free, however care must be taken to prevent
starvation. (Starvation is a case where a transaction continues to be
restarted, never being allowed to complete, because some of the

resources it requires are in use.)

The idea behind the optimistic approach is quite simple. Instead of
suspending or rejecting conflicting operations, as in two-phase-locking
and timestamping, a transaction is always executed to completion.
However, the write operations issued by transactions are performed on
local copies of the data. Only at the end of the transaction, if a

validation test is passed by the transaction, are the writes applied to
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the database. If the validation test is not passed, the transaction is
restarted. The wvalidation test verifies if the execution of the
transaction 1is serializable. In order to perform the test, some
information about the execution of the transaction must be retained

until the validation is performed.

Any transaction consists of three phases: a read phase, a validation
phase, and a write phase [CeriB4]. During the read phase, a transaction
reads data items from the database, performs computations, and
determines new values for the data items of its write-set. These values
are not written into the database at this point. During the validation
phase a test is performed to see whether the application of the updates
to the database which have been computed by the transaction would cause
a loss of consistency or not. During the write phase, the updates are
applied to the database if the validation phase returned a positive
result. If validation fails, the transaction is backed up and started
over again as a new transaction. The write phase is needed for a read
transaction that displays its read results on a terminal to ensure that

the results are consistent.

Starvation occurs when the same transaction is continually started
over again as a new transaction. 1t is prevented by keeping a count of
the number of times a transaction is started over, and once this count
reaches a threshold, by locking out the entire database so the

transaction can finally complete.

During the read phase, all the updates for the transaction, (if any),
are written into an update list. The validation phase consists of

checking that the updates can be applied at all sites.
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During the validation phase, the update 1list is sent to every site.
Voting by each site as to whether or not an update list is valid occurs
as follows. [Each site votes on whether the update list is valid and
sends its vote back to the site of origin. If there is a majority of
yes votes, then the transaction is committed, otherwise the update list
is discarded and the transaction is restarted. In both cases, the

result is communicated back to all sites.

Each site compares the timestamp of each data item of the read-set of
the update list to be validated with the corresponding timestamp of the
data items which are stored in its local database. I1f they are equal,
the site votes yes; otherwise, it votes no as some conflicting update

has occured.

In a locking approach, transactions are controlled by having them
wait at certain points, while 1in an optimistic approach, transactions
are controlled by backing them up. Since reading a value can never
cause a loss of integrity, reads need not be run with concurrency
control overhead. However, if the result of a READ is to be displayed
at a terminal, then it is subject to validation just as a WRITE is. If
the READ were not subject to validation, then update transactions may
have caused inconsistent values to be read. These inconsistent values
would then be displayed on the terminal. Kung and@ Robinson [Kung81]
believe the optimistic approach is superior to locking methods in
systems where transaction conflict is highly unlikely, such as in query-
dominant systems. The optimistic method avoids locking overhead and can

better use the parallel processing of a distributed system.
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3.1.4 Combination Technigues

The concurrency control techniques of locking and timestamping each
have their own problems. Locking is prone to creating deadlock, while
timestamping can be overly conservative. It is possible to combine the

two technigues to create a better concurrency control algorithm.

The major difficultly in constructing methods that combine two-phase
locking and timestamping lies in developing an interface between the two
techniques. The problem is to ensure a consistent serialization order

between the locking and the timestamping [Berns81bl].

The serialization order induced by two-phase locking is determined by
the locking points of the transactions that have been synchronized. The
serialization order induced by timestamping is determined by the
timestamps of the synchronized transactions. To combine both two-phase
locking and timestamping, it is necessary to use locked points to induce

timestamps [Berns80d].

Associated with each data item is a lock timestamp, L-ts(x). When a
transaction T sets a lock of x, it simultaneously retrieves L-ts(x).
When T reaches its locked point it is assigned a timestamp, ts(T),
greater than any L-ts it retrieved. When T releases its lock on x, it
updates L-ts(x) to be max{(L-ts(x), ts(T)). Timestamps generated in this
way are consistent with the serialization order induced by 2PL

[Berns81b].

One advantage of wusing a combination technique is that restarts are

needed only to prevent or break deadlocks caused by write-write
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synchronization; read-write conflicts never cause restarts. This
property cannot be attained by a pure two-phase locking method. It can
be attained by pure timestamp ordering methods, but only if conservative
timestamping is used; in many cases conservative timestamping introduces

excessive delay or is otherwise infeasible.

With a combination technique, queries set no writelocks, and the
timestamp generation rule does not apply‘ to them. Hence the system is
free to assign any timestamp it wishes to a query. It may assign a
small timestamp, in which case the query will read old data but is
unlikely to be delayed by transactions requesting writes; or it may
assign a large timestamp, in which case the query will read current data
but 1is more 1likely to be delayed. No matter which timestamp 1is
selected, a query can never cause an update to be rejected. This
property cannot be easily attained by any pure two-phase locking or

timestamp ordering method.

3.2 GLOBAL DEADLOCK

While concurrency control techniques solve the problems of
conflicting transactions, they create a brand new problem; that of
global deadlock. A global deadlock occurs when there is a deadlock
between two or more sites. This occurs when transactions at two sites
each require data locked by the other. Since the lock managers are
local, no apparent cycle in the local wait-for graph appears to exist.
The detection of a distributed deadlock 1is a distributed task, which
requires the exchange of information between different sites. The cycle

will appear if the two (or more) wait-for graphs are joined together.
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Global deadlock detection incurs further communication overhead because
of this need to join the local graphs. Figure 3.3 shows a wait-for
graph in a centralized system with obvious cycles, Figure 3.4 shows one
way in which the transactions could be split into three distributed
sites. Each individual wait-for graph shows no apparent cycles, yet if
the three graphs are connected together, then they will show the same

cycles as the graph for a centralized system.

Fh —

e g Cycles: c—=>d—>c
1 b—e—>f—b
a b C d b—c—>e—>f—>b

L

Figure 3.3: Wait-For Graph in a Centralized System

Deadlock may be detected either through a centralized controller, or
through a distributed controller. With a centralized controller, one
site is chosen at which the centralized deadlock detector is run. The
centralized deadlock detector has the responsibility of building the
distributed wait-for graph and of discovering cycles in it. In order to
do this, the deadlock detector must received information from all sites.
The global deadlock detector collects these messages, builds a
distributed wait-for graph, checks for cycles, and selects transactions
to be aborted. This operation can be performed either periodically or

every time there is a change in the situation of potential deadlock
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Figure 3.4: Wait-For Graph Split into 3 Pieces

cycles. There is a trade-off between the cost of the detection process

and the cost of determining deadlocks late.

Centralized deadlock detection is simple, but it has two main
drawbacks. First, it is vulnerable to failures of the site where the
centralized detector runs. Secondly, it may require large communication
costs, because the centralized detector may be located very far from

some other site in the network.

Much theoretical work has been done with the problems of deadlock in
both centralized and distributed systems. Recently, Agrawal et al.
[AgrawB83], have devised what they determine to be a ‘cheap’ deadlock
detection algorithm. By cheap, they mean an algorithm that does not

involve an excessive amount of overhead for each transaction.

The basic idea of their algorithm is that whenever a transaction Ti

requests a lock owned by another transaction, Tj, one must test to see
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if Tj is waiting for Ti. Since all the locking information is stored in
a wait-for graph, this test is performed by taking a directed walk
starting from Tj to the root of the tree. A deadlock occurs only if the

root corresponds to Ti.

While a tree search is expensive for large trees, Agrawal et al. say
that the probability of a transaction deadlocked in a cycle of length
more than two is very small. Hence, by assuming small cycles, they give

a tree traversal algorithm which has a space complexity of O(N).

To improve the performance of their deadlock detection algorithm,
Agrawal et al. go on to suggest that the check need not be done
continuously. Instead of checking for a cycle before adding an edge to
the wait-for graph, the edges are added to the graph without any test
and the graph is only periodically examined for cycles. The exact

algorithm is given in [Agraw83].

Since this technique 1is a centralized deadlock detection algorithm,
it suffers from the problems of vulnerability and the high communication
overhead. As well, a centralized system cannot utilize the full
processing power of the network, as all systems must wait for the one
centralized system to inform them as to whether they can proceed or

abort.

One of the main features of a distributed system is 1its resiliency
from the failure of a few sites. This effect is nullified by using a
centralized algorithm, such as a centralized deadlock detection
algorithm. If the site running the centralized algorithm fails, then

the entire distributed system 1is unable to function, so it has
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effectively failed. Instead of having a centralized deadlock detector,

it is possible to use a distributed deadlock detector.

In a distributed deadlock detection mechanism, each site has
responsibility for detecting deadlock. Sites exchange information about

waiting transactions in order to determine global deadlocks.

One such ﬁethod is described by Obermarck. Obermarck [Oberm82]
presents a distributed algorithm for deadlock detection which works by
introducing a special node EX into the graph, representing all agents at
all other sites. A global deadlock potentially exists whenever a path
exists from EX through various nodes to another EX. On observation of
this, one site will transmit a copy of the graph to the site for which
it is waiting. This site can then add this additional information to
its wait-for graph, and check for cycles in the expanded graph.
Obermarck proves that if global deadlock really does exist, then his
procedure will cause a cycle to appear at some site, at which time the

deadlock can be detected and broken.

The main difference between distributed and centralized deadlock
detection is that in centralized deadlock detection all potential
deadlock cycles are sent to one designated site, while in distributed
deadlock detection there 1is no such site. Therefore, 1in distributed
deadlock detection, the local deadlock detectors need a rule for
determining to which site potential deadlock cycles are transmitted.
This rule must assure that global deadlocks are eventually detected and

must attempt to minimize the amount of transmitted information.
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3.3 FALSE DEADLOCKS

There is a delay associated with the transmission of messages thrbugh
the network which transfer information for deadlock detection. This
delay can cause the detection of false deadlocks. For example, suppose
that the deadlock detector receives information that a transaction Ti is
waiting for transaction Tj After some time, Tj releases the resource
which was requested by Ti and requests a resource held by Ti. Before
receiving the information that Ti is not blocked by Tj any more, if the
deadlock detector received the information that Tj requests a resource

held by Ti, a false deadlock cycle of length 2 is detected.

False deadlock can also occur when a transaction Tj, which blocks a
transaction Ti, aborts for some reason not related to deadlock
detection, while at almost the same time Ti requires a resource which
was held by Tj. It is possible that the message informing the deadlock
detector of the latter request arrives earlier than the message
informing it of the abort; thus the deadlock detector would determine a

false deadlock.

Two solutions to false deadlocks exist. First, they can be treated
as real deadlocks. This approach is acceptable if the number of false
deadlocks is low. The second approach 1is to validate the deadlock
cycle. This requires collecting the information on the presumed cycle a
second time, thereby causing more network traffic. If the deadlock were
real, it would still be present and therefore be detected again,
otherwise it would not be detected again. Distributed protocols are

more vulnerable to the occurance of false deadlocks than centralized
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ones, due to the delays added to all the additional messages which must

be carried over the network.
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Chapter IV

DISTRIBUTED DATABASE MANAGEMENT SYSTEMS

In this chapter we will examine some of the currently available
distributed database management systems and discuss some of the services
they provide. There are several basic capabilities for a DDBMS, as have
been discussed earlier in this thesis in section 2.4. These
capabilities have to do with controlling the network environment,
management of data, data replication and fragmentation, and concurrency
control. In this chapter we will give an overview of some of the

available DDBMSs, and then examine them with respect to these points.

The available DDBMSs fall into three basic categories: systems that
allow no data redundancy; systems which allow limited data redundancy;

and systems which are designed to be robust in the wake of multiple

failures.

Systems which fall in the first category are IBM's Multiple Systems
Coupling and Tandem's ENCOMPAS.  These systems were centralized DBMSs
which had been modified and enhanced to support access of remote data.
In this chapter, we will take a look at Multiple Systems Coupling as a

representative system from this area.

Systems which allow limited data redundancy include IBM's R* and
Distributed-INGRES. R* is a research product of IBM's San Jose Research

Labs and is a distributed version of the commercial product SQL/DS.  R¥



uses many state of the art techniques for query optimization and
concurrency control, but does not support fragmentation of data.
Distributed-INGRES is a research system developed at the University of
California at Berkeley. It is a distributed version of the INGRES DBMS.

A look at Distributed-INGRES is taken later in this chapter.

Systems which fall into the third category include SDD-1 and DDM,
both by the Computer Corporation of America. Both systems are designed
to give very high reliability by allowing many replicated copies of data
and a conservative concurrency control technique. SDD-1 allows both
horizontal and vertical fragmentation while DDM allows only horizontal.
As SDD-1 was the first operational system to use some of the technigues
discussed in previous chapters, we will use it as our representative

example in this category.

4.1 IBM'S MULTIPLE SYSTEMS COUPLING

The Multiple Systems Coupling (MSC) feature of IMS allows two or more
IMS systems to be interconnected in such a way that an end-user or
program on one of those systems can invoke a program on another [Gray79,
I1BM]. An end-user can enter an input message to invoke a transaction,
and that message will be placed on the input queue at the site of entry,
exactly as in the nondistributed case. IMS will then examine a local
catalogue to see whether the program to be executed for this transaction
resides at a remote site. If it does, the input message will then be
transmitted to that remote site, where it will be processed just as if
it had originally been entered directly at that site. Any output

messages will be transmitted back to the original site.
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MSC provides location transparency in a limited form. An end-user
does not have to know where data or programs reside, but can invoke a
transaction from any site. Programs can only access local data. While
they do not need to know the precise location of remote data, they do
have to know when data are remote and they do have to know the identity
of the remote programs involved. To this extent knowledge of the data
distribution is built into the application logic. There 1is no
replication transparency; any data replication is user-controlled, not

system controlled.

The MSC feature supports four types of physical links between systems

[1BM]:

1. binary synchronous communication (BSC) line, using BTAM
2. channel-to-channel (CTC) adapter
3. main storage-to-main storage (MTM)

4, synchronous Data Link Control (SDLC), using VTAM and SNA

Only the BSC line, VTAM, and CTC adapter represent actual hardware
links. The MTM link is a software link between IMS systems running in
the same processor, and is intended primarily for backup and testing
purposes. IF BSC is chosen for the physical link, one side must be the

master and the other side must be the slave.

MSC provides a way to extend the throughput of an IMS system beyond
the capacity of a single processor. This is possible if the IMS

applications can be partitioned among systems such that either:
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1. applications execute in more that one system with database
contents split between systems (horizontal partitioning)

2. applications execute in one system with complete database that
they reference attached to that system (vertical partitioning);

the transactions can originate in any system.

Message routing is accomplished by logical destinations. A
destination is either a logical terminal or a transaction code. A
destination is considered a local destination if it resides in the local
system and a remote destination if it resides in a remote system. Each
system knows by way of system definition tables or catalogue all local
destinations and all remote destinations that may be referenced by that

system.

Major design considerations stress defining the environment so that
as many transactions as possible are processed locally and to use
physical links which go directly from local to remote systems with no
intermediate systems and if possible, to use CTC links. The amount of
communication between systems is large, so inter-system communication
must be minimized for performance. The workload should be distributed
in such a way that it avoids excessively high utilization of any one
processor. This is done by distributing the applications and their

associated transactions and terminals between the available processors.

Each system in the network uses the full recovery capabilities of
IMS. These capabilities assure that messages are not lost or duplicated
within the single system as long as no cold start or emergency restart

from an earlier checkpoint is performed and as long as no log records
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are lost. ACF/VTAM provides message integrity for SDLC links in each
IMS system in addition to the MSC control functions., This is
accomplished by logging information about a transaction 1in both the
sending and receiving systems. This information 1is restored during
restart and exchanged between the systems once the link is started. The
sending system can then dequeue a message that was received by the
receiving system but for which the acknowledgement was lost because of a
link or system failure. The sending system can also resend a message
that was sent but not enqueued by the receiving system because of a
failure in the receiving system. If a system in the network fails to

recover, the messages for which it has recovery responsibility are lost.

Multiple Systems Coupling does not really support distributed
transaction processing, instead it supports transaction routing. This
does not create a DDBMS, but instead allows some remote access to data.
No redundancy 1is allowed, and if a host fails, then some data is
unavailable for access. There is no need for concurrency control or
distributed deadlock detection, since multiple copies of data are not

supported.

4,2 DISTRIBUTED-INGRES

Distributed-INGRES was developed at the University of California at
Berkeley as a distributed version of the relational database system
INGRES. Distributed-INGRES was designed to connect machines running the

UNIX operating system using local area networks and/or long-haul

networks.
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Distributed-INGRES was an add-on to INGRES, and as such is not a
full-fledged DDBMS, but supports a distributed environment better than
does a system such as IMS. Distributed-INGRES does not allow data to be
arbitrarily split between nodes, but instead only supports horizontal
fragmentation and duplicate copies of relations. Vertical fragmentation
is not allowed [Stone77]. This simplifies the DDBMS in some ways, as
there is no need to transfer data between nodes during the execution of
a transaction to join several vertical fragments to form one record.
Fragments can be duplicated at various nodes; but if they are, then one
copy is designated a primary copy. This primary copy is used by

transaction management, concurrency control, and reliability algorithms.

Query processing in Distributed-INGRES has two optimization
procedures. First, processing 1is distributed for exploiting
parallelism. The more sites that are involved, the greater the
parallelism, and the less time that is needed to process the query.
This optimization leads to redistributing fragments of relations at the
execution sites of operations, with the purpose of equalizing fragments
(having fragments of about the same size and therefore requiring about
the same processing time) [CeriB4]. Equalization is used especially
with LANs, where communication bandwidth is high. Equalization
conflicts with locality of processing, since equalization requires

distributing a relation even when processing would be local.

Secondly, since optimization is done during execution, if
intermediate results are unexpectedly large, the backtracking of a
tactic can be done. An additional optimization can then be done in

order to change the query processing strategy.
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Catalogues for data on each machine are stored on that machine. For
non-local data, .a cache is maintained of the most recently used
fragments and where they are located. If the location is not 1in the

cache, then the entire network is searched to find the data.

Distributed-INGRES uses two-phase locking for concurrency control
(section 3.1.1).  All locks must be granted at once; if not, then all
locks must be released and the transaction must try again. Deadlocks
are detected and resolved with a centralized deadlock detector. All
wait-for information 1is sent to a single process, called snoop
[Stone79]. This method has the disadvantage of heavy communications and
requires solving the reliability problems of failures and recoveries of

the site where the snoop is located.

Updates are first applied to the primary copy of the data, and then
to the non-primary copies. In the commitment of transactions, each
participant responds ‘ready to commit’ to the co-ordinator after having
updated the primary copy, and waits for the decision from the co-
ordinator. In the case of successful commitment, each participant
generates a process which co-ordinates several ‘copy’ agents for
applying the deferred updates to nonprimary copies. This protocol is
not resilient to a failure of participants which occurs after having
performed the local commit but before having generated the ‘copy’
agents. As well, mutual consistency of different fragments could be
lost when the same update transaction operates on different fragments;
then only part of them would be correctly updated. To make this system
more reliable, it 1is possible to incorporate nonprimary copies in the

two-phase-commitment and queue messages for crashed sites to at least k
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other sites (for having k-resiliency). As mentioned in section 3.1.1,
the concurrency control method generates a large amount of message
traffic for highly replicated data. This is not a problem in a fast LAN
environment, but in a slow long-haul network, delays quickly build up.
1f only a few copies of each relation exist, the expense of concurrency

control is low, even with a long-haul network.

4,3 SDD-1

SpD-1 is a distributed database management system currently being
developed by Computer Corporation of America [RothnB0].  SDD-1 manages
databases whose storage is distributed over a network of computers.
Users interact with SDD-1 precisely as if it were a nondistributed
database system because SDD-1 handles all issues arising from the
distribution of data such as distributed concurrency control, resiliency
to component failure, and distributed directory management. SDD-1 was
designed to permit a large amount of replication of data. This is
desirable for lessening transmissions by a potentially worldwide system,
and for increasing availability and survivability of the information,
especially when under military attack. SDD-1 is designed to use long-

haul networks. No optimization is possible when using a LAN.

An SDD-1 databasé consists of logical relations. Bach SDD-1 relation
is partitioned into subrelations called logical fragments, which are the
units df data distribution, meaning that each may be stored at any one
or several sites in the system. Logical fragments are defined and the
assignment of fragments to sites is made when the database is designed.

User transactions are unaware of data distribution or redundancy.  They
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reference only relations, not fragments. It is SDD-1's responsibility
to translate from relations to logical fragments, and then to select the

stored fragments to access in processing any given transaction.

SDD-1 uses a local data manager and a separate network data manager.
The local data manager has the functions of a conventional single-site
DBMS, and does not worry about distribution problems.  The network data
manager does not access the data itself, but determines the access
strategy for handling each distributed data operation efficiently. It
requests the local data managers at any site to perform local processing

and/or move portions of the data from one site to another.

SpD-1 is a collection of three types of virtual machines:
Transaction Modules (TMs); Data Modules (DMs); and a Reliable Network
(RelNet). All data managed by SDD-1 are stored by Data Modules. DMs
respond to commands from Transaction Modules. DMs respond to four types

of commands [Rothn80]:

1. read part of the DM's database into a local workspace at that DM;
2. move part of a local workspace from this DM to another DM;

3. manipulate data in a local workspace at the DM;

4, write part of the local workspace into the permanent database

stored at the DM.

Transaction Modules plan and control the distributed execution of
transactions. Each transaction processed by SDD-1 is supervised by a TM
which performs several tasks. First, the TM translates gqueries on
relations into queries on logical fragments and decides which instances

of stored fragments to access. The TM then synchronizes the transaction
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with all other active transactions in the system. Next, the TM compiles
the transaction into a parallel program which can be executed co-
operatively by several DMs. Finally the ™M co-ordinates execution of

the compiled access plan, exploiting parallelism whenever possible.

The Reliable Network interconnects TMs and DMs in a robust fashion
and provides four services: guaranteed delivery, transaction control,
site monitoring, and a network clock [Hamme80]. Guaranteed delivery
allows messages to be delivered even if the recipient is down at the
time the message is sent, and even if the sender and receiver are never
up simultaneously. Transaction control is a mechanism for posting
updates at multiple DMs, guaranteeing that either all DMs post the
update, or none do. Site monitoring keeps track of which sites have
failed, and informs sites impacted by failures. A network clock is a

virtual clock kept approximately synchronized at all sites.

The overall SDD-1 design is simplified by having the architecture
divide the DDBMS problem into three pieces: database management,
management of distributed transactions, and DDBMS availability. Each of

these pieces is implemented as a self-contained virtual machine.

There are three problem areas 1in a distributed DBMS: concurrency
control, distributed query processing, and reliable posting of updates.
spD-1 has a three-phase processing procedure, with each phase handling
one of the three problems of READ, EXECUTE, and WRITE. By handling each

of the problems separately, overall complexity is reduced [Rothn80].

The READ phase exists to control concurrency. The TM that 1is

supervising a transaction T analyzes it to determine its read-set, the
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portion of the logical database it reads. In addition, to obtain that
data, the TM decides which stored fragments to access. The TM then
issues READ commands to the DM's that house those fragments, instructing
each DM to set aside a private copy of that fragment for wuse during

subsequent processing phases.

These private copies obtained by the READ phase are guaranteed to be
consistent even though the copies reside at distributed sites. Since
the data are consistent when read, and since the copies are private,
subsequent phases can operate freely on these data without fear of

interference from other transactions.

No data are actually transferred between sites during the READ phase,
the data are set aside in a workspace at the DM. The organization of
data at a DM is in fragments called pages. A page is a unit of logical
storage. Pages are referenced through a page map, a function which
associates a physical storage location with each page. With this type
of storage organization, it is possible to make a copy of data by just
copying the page map. Thus no physical data are copied. Since pages are
never updated in place, a copy of the page map is a copy of the file.
If a page is to be updated, a new block of secondary storage is
allocated, and the modified page is written there. This scheme has been
used very successfully in the System R DBMS [Astra76]. Only the
updating transaction can thus reference the new page because only its
page map is updated. Other transactions are unaffected because their
page maps remain unchanged. When the entire transaction is completed,
then the master page map is updated. In this way, if a transaction is
aborted or fails, there is no need to undo any of its actions on the
data.
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The second phase is the EXECUTE phase. This phase implements the
distributed gquery processing. At this time, the TM compiles the
transaction T into a distributed program that takes as input the
distributed workspace created by the READ phase. The compiled program
is supervised by the TM to ensure that the commands are sent to the DMs
in the correct order. As well, the TM must handle run-time errors which

occur.

The output of this compiled program is a list of data items to be
written into the database (in the case of update transactions) or
displayed to the user (in the case of retrievals). This output list is
produced in a workspace at one DM, and is not yet reflected in the
permanent database. Consequently, problems of concurrency control and

reliable writing are irrelevant during this phase.

The WRITE phase is the final phase in the execution of a transaction.
This phase installs data modified by a transaction T into the permanent
database and/or displays data retrieved by T to the user. For each
entry in the output list, the TM determines which DM(s) contain copies
of that data item. The TM orders the final DM that holds the output
1ist to send the appropriate entries of the output list to each DM; it
then issues WRITE commands to each of these DMs thereby causing the new
values to be installed into the database. Special technigues must be
used during the WRITE phase to ensure that partial results are not

installed even if multiple sites or communication links fail midstream.

SDD-1 attempts to optimize the execution of a query command through

an optimization procedure called access planning. Access planning
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minimizes the transaction's intersite communication needs while

maximizing its parallelism [Berns8ial.

The simplest way to execute a transaction T is to move all of T's
read-set to a single DM, and then execute T at that DM. While this
approach produces the correct answer, it has two major drawbacks: T's
read-set might be large, thus moving it between sites would be extremely

expensive; and little use is made of the parallel processing

capabilities of the network.

The access planner overcomes these drawbacks by eliminating as much
data from T's read-set as is economically feasible without changing T's
answer. Then, during the final processing, the reduced read-set is
moved to some designated DM where T is executed. The effect of this

execution is to create a temporary file to be written to the database or

to be displayed for the user.

To complete the transaction processing, the temporary file at the
final DM must be 1installed in the permanent database. Since the
database is distributed, the temporary file must be split into a set of

temporary files that list the updates at each DM.

Each of these temporary files must be transferred to the appropriate
DM by a WRITE command. The problem which results is to ensure that all
DMs install the updates. There are two types of failures which can
occur: failure of a receiving DM, and failure of the sender. The first

is handled by reliable delivery and the second by transaction control.
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Reliable delivery is accomplished by the communications network where
duplicate messages, missing messages, and damaged messages are detected
and corrected. There exists a problem if both the sender and receiver
are not up simultaneously. To overcome this problem, RelNet uses the
spooling facility described earlier in section 2.3.3 (A spooler is a
process with access to secondary storage that serves as a first in,
first out message queue for a failed site. Any message destined for a
failed DM is delivered to its spooler instead [Hamme80].)  Each spooler
uses DBMS reliability technigues to guarantee the integrity of its
messages. To protect against spooler failure, multiple spoolers are
used. As long as one spooler is running, messages can be reliably

stored.

To keep track of all the data, SDD-1 maintains directories containing
data fragment definitions, locations, and usage statistics. [Rothn801].
Efficient and flexible directory management is important to SDD-1 as TMs
use directories for every transaction. SDD-1 treats the directory as
ordinary user data, hence the directories can be fragmented, distributed

with arbitrary redundancy, and updated from arbitrary DMs.

With this flexibility in directory management comes the possibility
of performance degradation since every directory access incurs general
transaction overhead, and every access to remotely stored directories
incurs communication delays. For example, it is possible,  though
inefficient, for a local object to have its directory entry at a remote
site. This problem is avoided in SDD-1 by caching recently referenced
directory fragments at each TM, discarding them if rendered obsolete by
directory updates. Directories tend to be relatively static, so this
does not incur a large performance degradation.
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The second problem is that a directory is needed to tell where each
directory fragment is stored. SDD-1 calls this directory a directory
locator, and stores a copy at each DM. The directory locators are

relatively small and static in nature.

4,3,1 Concurrency Control

To obtain maximum transaction concurrency, SDD-1 uses several of the
previously described concurrency control algorithms. Transactions are
pre-analyzed to fit into a set of classes. Conflict graphs are used to
determine if two transaction classes will conflict at run time.
Timestamps are used on the stored data items to order READs and WRITEs.
This combination of technigues was used to avoid the overly conservative
aspects of locking. In a system that uses locking, each transaction
locks data before accessing them, so conflicting transactions never run
concurrently (section 3.1.1), However, not all conflicts violate
serializability, and some conflicting transactions can safely be run
concurrently. Greater concurrency can be attained by checking whether
or not a given conflict is troublesome, and only synchronizing those
that are. Conflict graph analysis 1is a technique used by SDD-1 for

doing this [Berns78b,Berns80al.

The nodes of a conflict graph represent the read-sets and write-sets
of transactions, and the edges represent conflicts among these sets.
Different kinds of edges require different levels of synchronization.
Blocking is a strong synchronization and is only required for edges that
participate in cycles. Interclass conflicts that cannot cause

nonserializable behavior do not need to be blocked.
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Too much intersite communication would be required to exchange
information about conflicts at run time. Instead, transaction classes,
that is; named groups of commonly executed transactions, are defined by
the database administrator at database design time. Each class 1is
defined by its name, a read-set, a write-set, and the TM at which it
runs. Conflict graph analysis is performed on the transaction classes,
and not on individual transactions. The output of the analysis is a
table which tells, for each class, which other classes that class
conflicts with, and for each conflict, how much synchronization is
required to ensure serializability [Berns80bl. Classes are exploited by

conservative timestamp ordering schedulers [Berns81bl.

To synchronize two transactions that conflict dangerously, one must
be run first, and the other delayed until it can safely proceed. In
systems which use locking, the execution order is determined by the
order in which transactions request conflicting locks. In SDD-1, the
order is determined by a total ordering of transactions induced by
timestamps (section 3.1.2). Each transaction in SDD-1 is assigned a
unique timestamp by its TM. The values of local clocks used for
timestamps are kept synchronized by advancing the local time if a

message with a later timestamp is received. The timestamp of each

transaction is sent along with each update message.

When a DM receives a READ command, it defers the command until it has
processed all earlier WRITE commands, and no later WRITE commands from

the specified classes. The DM can determine how long to wait because of

a DM-TM communication called piping.




commands to DMs in

that

each TM send its WRITE

piping requires that

_pimestamp order. 1n addition, the Reliable Network guarantees

re received in the order sent.

_pessages 3

Thus when a DM receives a WRITE from a ™M with a certain timestamp,
it received all WRITE commands from that TM with smaller

the DM knows
the DM

timestamps. To process & READ command with a timestamp TSi,
first processes all WRITE commands from that class's T up to: but not

1f the DM has already processed 2 WRITE command with

peyond, TSi.

timestamp beyond 76i, the READ is rejected.

To avoid excessive delays in waiting for WRITE commands, idle TMs
periodically send null timestamped WRITE commands; also an impatient DM
can explicitly request a null WRITE from @ ™ that is slow in sending

them.

To complete transaction processing, the temporary site at the final
permanent database and/or displayed to the

DM must be installed in the

Since the database is di

stributed, the temporary file must be

user.

split into files for each DM.

Each of the temporary files is transmitted to the appropriate DM as a
WRITE command. The problem is to ensure that failures cannot cause SOmMe
DMs to install updates while causing others not to. Failure of @
while failure of the

receiving DM 1is handled by reliable delivery,

sender is handled by transaction control.

Transaction control addresses failures of the final DM that occur
during the WRITE phase. 1f the final DM fails after sending some
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updates, then the database will be inconsistent as some DMs will reflect
the results of the transaction, and some will not, Transaction control
ensures that inconsistencies of this type are rectified in a timely

fashion.

The basic technique used for transaction control is a variant of two-
phase commit [Rothn80], discussed in section 3.1.1. 1In SDD-1, the final
DM transmits the data for the WRITEs during phase 1, but the receiving
DMs do not install them yet. During phase 2, the final DM sends commit
messages to the DMs, and those DMs install the data. If some DM has
received its data but not a commit, and the final DM has failed, this DM
consults the other DMs involved in the transaction. If one has received
a commit, the DM does the installation; if no DM received a commit, no
DM does the instéllation, thereby aborting the transaction. While this
offers complete protection against failures of the final DM, this

technique is susceptible to multisite failures.

Instead of processing WRITE messages in timestamp order, each data
item has a timestamp associated with it. This timestamp is the

timestamp of the last WRITE message that updated it.

Each DM processes WRITEs by only updating a data item if the data
item's timestamp is less than the WRITE message's timestamp. The WRITE
command contains the new value for the data item. If the timestamp of
the WRITE message exceeds the timestamp of the stored data item, then
the new value of the data item in the WRITE message is written into the
stored data item also with the new timestamp.  Otherwise, the update is

not performed on that stored data itenm. This is a data item by data
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jtem check, and some data items in the WRITE message may result in

update operations, while others may not.

The data items which do not result in update operations are not
errors. It is simply the way spp-1 reorders updates to occur in the
same order that their generating transactions executed. The net effect
is the same as if they were updated in timestamp order. The advantage
to this though, 1is that a WRITE message can be processed as soon as it
is received, thereby avoiding artificial queuing delays at the DMs.
However, since later WRITEs may be processed before earlier ones, a
database copy may be temporarily inconsistent. Concurrency control
never permits a transaction to read an inconsistent state if this could

lead to incorrect results.

All timestamp-related mechanisms in SDD-1 will operate correctly with
unsynchronized clocks, put for reasons of efficiency, it is necessary to

assume that clock values in different TMs are reasonably close.

One problem with timestamped data items 1is the cost of storing the
timestamps. 1f the timestamp of a data item is earlier than the
timestamp of any transaction whose WRITE messages have not been
processed, then the data item's timestamp ig effectively zero. Thus it
is only necessary to cache the timestamps of recently updated items, and
after a period of time, the data item's timestamp can be assumed to be

Zero.

The SDD-1 concurrency control mechanism fully distributes the
concurrency control [Berns80a]. While each transaction is controlled

from a single site, different sites are concurrently supervising the
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synchronization of many different transactions. No one site is in
charge of any system-wide activity. The main advantage of this full
distribution is enhanced reliability. A site failure only effects those

transactions executing and/or using data at that site.

This concurrency control method is generally inefficient for
unpredictable transactions as it requires transactions to preclaim their
resources. Although based on an original theoretical épproach,
practical performance of this method for concurrency control is
conditional upon several assumptions whose validity remains to be
demonstrated. The SDD-1 approach works well if several conditions hold
true. First, transactions can be grouped into disjoint classes.
Secondly, transactions can preclaim their resource requirements.
Thirdly, several transactions belonging to different classes should be
simultaneously available for execution so as to provide a good mix.
This method will not work well if the majority of transactions are in
the same class, as they will conflict. This method works poorly if the

transactions cannot be classed into disjoint classes.
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Chapter V
CONCLUSIONS

In this thesis, we have examined the reasons for using a DDBMS. Some
of these reasons are the possibility for increased performance and
reliability through the use of redundant data and multiple parallel

execution units.

A close look was taken at the hardware and software needed to
interconnect computers. Some general standards were examined for
networks, along with the International Standards Organization's Open
System Interconnect model for networks. One problem with operating a
DDBMS in a distributed environment is the high cost of transmitting
data, and the lack of security of this transmitted data. Various ways
of compressing data were examined, along with some ways of enciphering
the data to make it more secure. Long-haul networks were also compared
to local area networks. Several performance criteria were examined, and
a look at network overhead showed that with proper tuning, a network can
be very efficient. Local area networks can only span a small area, but

have a speed advantage over long-haul networks.

Several commercial networks were then compared ana contrasted. SNA
and DECnet were shown to have some deficiencies when operating in a
DDBMS environment. RelNet attempts to overcome those deficiencies by
operating on top of a network, and providing some services which-are

beneficial to a DDBMS.
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While a distributed database can lead to faster and more reliable
database operation, the extra hardware and software create new problems.
These problems deal with keeping the multiple copies of data consistent

through the use of concurrency control methods.

With distributed data, there is also a problem of how to best access
the replicated, fragmented data. An algorithm which decides to move a
large amount of data over the network will take hours instead of seconds
to process a query. To be able to retrieve the dispersed data, each
system must be able to first locate the data. This is done through a

data dictionary, which is a database in its own right.

various locking techniques were discussed as concurrency control
methods. Many locking techniqgues involve some sort of centralized
controller. The centralization of any function undermines some of the
very rationale for data distribution - reliability, accessibility, and
availability of the system. Other problems include the possibility of
congestion of the central node and unnecessary serialization of all

updates.

Timestamping techniques eliminate the problems of locking, but can be
overly conservative causing transactions to wait needlessly. Hybrid
techniques which use both locking and timestamping seem to combine the
best of both techniques, without the drawbacks of either. These remain

to be tested in a real system.

A major concurrency control side effect is that of global deadlock.
Because of the time delays encountered in the network, false deadlocks
can appear. Additional overhead is needed to check if the deadlock is
real, and if so, to cancel the transaction.
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In the final chapter, we examined several commercial DDBMS. IBM's
Multiple System Coupling was shown to lack most of the essential
features of a true DDBMS. Distributed-INGRES supports most of the
features of a DDBMS. However it does use a centralized deadlock
detector. Distributed-INGRES uses a primary copy two-phase locking
technique. Problems arise if the updates are not applied to the non-

primary copies or if the primary site fails.

SDD-1 utilizes the assumption that probability of interference among
concurrent transactions is low by preanalyzing transactions in order to
determine which transactions could possibly affect each other.
Transactions are grouped into different classes based on their read and
write sets. Transactions whose classes do not intersect may be safely
scheduled for parallel execution, because they cannot pose conflicting
resource requests. Conflicting transactions are scheduled for serial

execution.

Further research is required to determine the benefits of the various
concurrency control algorithms, and to demonstrate the conditions under
which various methods work well and under which they work poorly. No
one has yet devised a way to survive network partitions. It seems that
there is no one best method for concurrency control, but it may be shown
that one of the hybrid technigues 1is indeed superior to either

timestamping or locking.

One problem not discussed is that of tuning a distributed database.
Not enough information is known on what information is needed to tune a

system and where the tradeoffs are between the benefits and costs of
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multiple copies of data. Statistics are gathered by both the DBMS, and
the network, but these statistics must be related to one another to get
a true picture of what needs to be tuned. As the use of distributed

data grows, there will be more need to solve these problems.
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