ENHANCING TCP PERFORMANCE IN WIDE-AREA
WIRELESS NETWORKS USING END-TO-END
BANDWIDTH ESTIMATION

BY

KHANDOKER NADIM PARVEZ

A Thesis submitted to
the Faculty of Graduate Studies
In Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba

© Khandoker Nadim Parvez, January 2004

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES
TRFARk

COPYRIGHT PERMISSION

Enhancing TCP Performance in Wide-Area Wireless Networks Using End-to-End
Bandwidth Estimation
BY

Khandoker Nadim Parvez

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University of
Manitoba in partial fulfillment of the requirement of the degree

Of

MASTER OF SCIENCE

Khandoker Nadim Parvez © 2004

Permission has been granted to the Library of the University of Manitoba to lend or sell copies of
this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or sell
copies of the film, and to University Microfilms Inc. to publish an abstract of this thesis/practicum.

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and
copied as permitted by copyright laws or with express written authorization from the copyright
owner.

ii

Supervisor: Prof. Ekram Hossain

ABSTRACT

A comprehensive study on the performances of the basic TCP (Transmission Con-
trol Protocol) variants (e.g., TCP Tahoe, TCP Reno, TCP NewReno, SACK TCP,
FACK TCP) in wide-area cellular wireless networks is presented. Impacts of varia-
tions in wireless channel error characteristics, number of concurrent TCP flows and
wireless link bandwidth on the average TCP throughput and fairness performances
are investigated. To this end, a new TCP variant, namely, TCP Prairie, based on dy-
namic bandwidth estimation and sender-only modification is proposed for wide-area
wireless networks. Two novel mechanisms are incorporated in TCP Prairie - one to
obtain bandwidth sample under bursty environment and the other to estimate the
available bandwidth using the bandwidth samples. The key idea of the protocol is
to control the transmission rate at the TCP sender based on bandwidth measured
from the rate of returning acknowledgements. An in-depth analysis of the system be-
havior is presented and compared with another TCP variant (TCP Westwood) which
also uses a congestion control mechanism based on bandwidth estimation. Simula-
tion results obtained using ns-2 show that TCP Prairie offers superior performance
compared to TCP Westwood.

Examiners:

Prof. Ekram Hossain, Supervisor, Dept. of Electrical & Computer Engineering

Prof. R. D. Mcleod, Member, Dept. of Electrical & Computer Engineering

Prof. Jelena Misic, External Examiner, Dept. of Computer Science

iii

iv

Table of Contents

Abstract ii
Table of Contents iv
List of Figures viii
List of Tables xi
Acknowledgement xii
Dedication xiii
1 Introduction 1
1.1 TCP (Transmission Control Protocol) 1
1.2 TCP in Wide-Area Cellular Wireless Networks 3
1.3 Objective of the Work 5
1.4 Thesis Outline 6

2 Performance of Basic TCP Variants in Wide-Area Wireless Net-
works 7
2.1 Related Work 7
2.2 Basic TCP Variants 8
221 TCP Tahoe 8
222 TCPReno 8
223 TCPNew-Reno 9
224 SACKTCP. 9
225 FACKTCP. 10
226 TCP Vegas oo v i 11

2.2.7 Comparison Among the Basic TCP Variants 12

2.3 Analysis of System Dynamics and Performance Evaluation 14
2.3.1 Simulation Model and Performance Measures 14
2.3.2 Simulation Results and Analysis 16

2.3.2.1 Single TCP flow with unifrom Wireless Loss (Scenario
L) 16

2.3.2.2 Multiple Flow with Uniform Wireless Loss (Scenario 2) 20
2.3.2.3 Single Flow with Uniform Wireless Loss (High band-

wdith bottleneck)(Scenario3) 20
2.3.24 Single New-Reno Flow with Correlated Error(Scenario
4) 22
2.3.25 Single Flow with Correlated Error(Scenario 5) . .. 25
2.4 Maximum Achievable TCP Throughput Under Window-Based End-
to-End Transmission Control 29
2.5 Summary and Outlook 30
TCP Enhancements for Wireless Networks 33
3.1 TCP Solutions for Wireless Networks 33
3.2 Transport Level Modifications to the Basic TCP Variants for Wireless
Networks 35
3.2.1 Sender-Only Modifications 35
3.2.2 Receiver-Only Modifications 40
3.2.3 Modifications at the Sender and the Receiver 41
3.24 Modifications at Base Station: Non-End-to-End Transport
Level Approaches 43
3.3 Summary and Outlook 47
Analysis of TCP Westwood 49
4.1 Introduction 49
42 TCP Westwood, 50
4.3 Accuracy of the Bandwidth Estimation Mechanism in TCP Westwood 51
4.3.1 Scenario 1: Bandwidth Estimation Under No Loss 52
4.3.2 Scenario 2: Bandwidth Estimation Under Wireless Loss . . . 54

4.3.3 Scenario 3: Bandwidth Estimation Under Congestion Loss . . 54

vi

434 Scenario 4: Bandwidth Estimation Under Both Congestion

Loss and Wireless Loss 56

4.3.5 Summary of Observations 58

4.4 Impact of Aggressive Bandwidth Estimation 58
4.4.1 Variations in Congestion Window 58
4.4.2 Variations in Bottleneck Queue Length 58
4.4.3 Variations in Throughput 59
4.4.4 Friendliness of TCP Westwood to Other TCP Flows 61

4.5 Summary 62

TCP Prairiee A New TCP Variant Based on Adaptive Bandwidth

Estimation 63
5.1 Imtroduction 63
5.2 Motivation and Contribution 64
5.3 End-to-End Bandwidth Estimation in T'CP Prairie 66
5.3.1 Calculation of Bandwidth Sample 66
5.3.2 Bandwidth Estimation 70
5.4 TCP Prairie Congestion Control Mechanism 71
5.5 Performance Evaluation 72
5.5.1 Accuracy of Bandwidth Estimation. 73
5.5.1.1 Bandwidth Estimation Under UDP Traffic 73

9.5.1.2 Bandwidth Estimation Under Competing TCP Flows
(No Loss Scenario) 74

9.5.1.3 Bandwidth Estimation Under Competing TCP Flows
(with 0.1% Wireless Loss) 75

5.5.1.4 Bandwidth Estimation Under Competing TCP Flows
(with Congestion Loss) 76

9.5.1.5 Bandwidth Estimation Under Competing TCP Flows
(with Congestion Loss and Wireless Loss) 7

5.5.2 Throughput, Fairness and Friendliness Performances of TCP
Prairie 78
5.5.2.1 Fairness and Friendliness 78

5.5.2.2 Imteraction with RED 80

5.5.2.3 Throughput Under Congestion Loss
5.5.2.4 Throughput Under Wireless Loss

5.6 Summary

6 Conclusion

6.1 Contributions.

6.2 Directions for Future Research

Bibliography

vii

81
82
84

86
86
88

89

viii

List of Figures

Figure 2.1 Simulation topology for wide-area cellular wireless network. . . 15
Figure 2.2 Throughput performances of different TCP variants (scenario 1). 18
Figure 2.3 Energy consumption for the different TCP variants (scenario 1). 20
Figure 2.4 Throughput performances of different TCP variants (scenario 2). 21
Figure 2.5 Energy consumption for the different TCP variants (scenario 2). 21
Figure 2.6 Throughput fairness for the different TCP variants (scenario 2). 22
Figure 2.7 Throughput performances of different TCP variants (scenario 3). 23
Figure 2.8 Throughput performance of TCP New-Reno (scenario 4). . . . 23
Figure 2.9 Throughput performances for the different TCP variants (sce-

nario 5)., 27
Figure 2.10 Energy consumption for the different TCP variants (scenario 5). 28
Figure 2.11 Throughput performances for SACK TCP, TCP New-Reno,

FACK TCP and IE?-TCP under random packet error in the wireless

link. 30
Figure 2.12 Throughput performances for SACK TCP, TCP New-Reno,

FACK TCP and I E2-TCP under correlated packet error in the wireless

link (for mobile velocity of 3 km/hr). 31

Figure 3.1 Taxonomy of TCP solutions (based on transport-level approaches)

for wireless networks. L L 34
Figure 4.1 Simulation scenario.. 52
Figure 4.2 Variation in BE for flowl (scenario 1). 53
Figure 4.3 Variation in BE for flow15 (scenario 1). 53

Figure 4.4 Variation in aggregate of estimated bandwidth for all flows (sce-
nario 1). L 54
Figure 4.5 Variation in BE for flowl (scenario 2). 55

Figure 4.6 Variations in the aggregate of estimated bandwidth for all lows
(scemario 2)
Figure 4.7 Variation in aggregate of the estimated bandwidth for all flows
(scenario 3).
Figure 4.8 Variation in BE for flowl (scenario 4).
Figure 4.9 Variation in aggregate of the estimated bandwidth for all flows
(scemario 4). L
Figure 4.10 Variations in congestion window size for TCP Westwood and
TCP New-Reno (under congestionl loss only).
Figure 4.11 Variations in bottleneck link queue size for TCP Westwood and
TCP New-Reno (under congestionl loss only).
Figure 4.12 Variations in throughput for TCP Westwood and TCP New-
Reno (under congestion lossonly)..
Figure 4.13 Friendliness of TCP Westwood compared to TCP New-Reno

(under congestionl loss only).

Figure 5.1 Different parts of an RTT period.
Figure 5.2 Network topology.
Figure 5.3 Bandwidth estimation under UDP traffic.
Figure 5.4 Bandwidth estimation under TCP traffic (no loss scenario). . .
Figure 5.5 Bandwidth estimation under TCP traffic (with wireless loss). .
Figure 5.6 Bandwidth estimation under TCP traffic (with congestion loss).
Figure 5.7 Bandwidth estimation under TCP traffic (with congestion loss
and wirelessloss). L
Figure 5.8 Friendliness of TCP Prairie towards TCP New-Reno.
Figure 5.9 Friendliness of TCP Westwood towards TCP New-Reno.
Figure 5.10 Typical variations in RED queue with TCP New-Reno and TCP
Prairie flows.
Figure 5.11 Typical variations in RED queue with TCP New-Reno and TCP
Westwood flows.
Figure 5.12 Typical variations in TCP throughput with packet loss rate.
Figure 5.13 Typical variations in TCP throughput with bottleneck link ca-
pacity.

ix

78
79
80

81

82
83

Figure 5.14 Typical variations in TCP throughput with RT'T.

List of Tables

Table 2.1 Differences among the basic TCP variants.
Table 2.2 Fast retransmit/recovery analysis under random error loss (for
1000 second simulationrun)
Table 2.3 Fast retransmit/fast recovery analysis of New-Reno under cor-
related error loss (for 1000 secondrun)
Table2.4 Fast retransmit/fast recovery analysis under correlated error (Er-
ror rate 1%, 3% and 10% and Run time 1000 second)

Table 3.1 Comparison among the transport-level TCP modifications. . . .

xi

Acknowledgement

I would like to express my heartiest appreciation to my supervisor Professor Ekram
Hossain for his continuous support and active guidance during this research work. His
supervisions and experiences were vital to shape my ideas into this dessertation. I
would like to acknowledge with gratitude the support from TR Labs, Winnipeg, during
the course of my graduate studies at University of Manitoba.

I'am very grateful to Professor R. D. Mcleod and Professor Jelena Misic for serving
on my examination committee.

Last but not the least, I would like to extend my sincere thanks to all of my

colleagues and friends here in Winnipeg for their friendship and cooperation.

xiii
Dedication

'To my parents and brother who are the inspirations of all my efforts.

Chapter 1

Introduction

TCP is the transport layer protocol used along with the unreliable network layer pro-
tocol TP (Internet Protocol) in todays Internet for non-real-time applications. Since
TCP/IP is the standard network protocol stack on the Internet, its use over the
next-generation wireless mobile networks is a certainty. The use of TCP/IP as the
network protocol stack in the future generation wireless networks will leverage the
rapidly evolving Internet technology in the wireless domain and enable to provide
seamless wide-area Internet service to mobile users [1]. Efforts in developing IP-
centric wireless networks are ongoing and architectures and protocols for supporting
multimedia traffic are evolving ([1]-[6]).

Transport protocol segments are transmitted in a wireless network as radio link
level frames over the air-interface. In case of transmission to a mobile from a fixed host
in the Internet, LLC (Link Level Control) protocol divides TCP segments into radio
frames for transmission over the wireless link. Therefore, the performance of TCP will
depend on the performance and service provided by the underlying radio link layer.
In this thesis, however, we deal with the end-to-end (or transport-level) approaches
while investigating the performance of TCP in a wide-area wireless network. High
utilization of wireless link bandwidth and at the same time fairness towards competing

TCP traffic are required in a wireless packet data network.

1.1 TCP (Transmission Control Protocol)

Transport layer protocol such as TCP operates on an end-to-end basis and it’s per-
formance is one of the most critical issues in data networking over wireless links. A

transport layer protocol is responsible for managing end-to-end flow and congestion

control, providing reliability, security and QoS (Quality of Service) [7]. In OSI model,
application protocol data unit (APDU) is passed down to the transport layer which
is then called the transport service data unit (TSDU). A transport protocol header
is added to this TSDU to form a transport protocol data unit (TPDU) and then it is
passed to the network layer as a network service data unit (NSDU)!.

TCP is a connection-oriented reliable transport protocol consisting of three phases
of operations: connection setup, data transfer, and connection termination. The
connection set up procedure uses a three-way handshake where the connection is
established after both ends of the connection inform each other of the set up process.
The connection termination procedure uses a four-way handshake where both the
active and the passive terminators send their own set of two-way handshake messages.
Again, TCP is a bi-directional transport protocol that can transmit and receive at the
same time (i.e., within the same connection set up). TCP is a byte-oriented transport
protocol since it passes data to its peer in a byte by byte manner. For error control,
TCP uses sequence number, cumulative positive acknowledgements with piggyback
option for successfully transmitted packets and retransmission-based end-to-end error
recovery.

"TCP uses a congestion control mechanism (to ensure network stability and prevent
congestion collapse) which is interwined with a window-based flow control mechanism.
The TCP sender detects a packet-loss either by the arrival of several duplicate cumu-
lative ACKs (Acknowledgements) or by the absence of an acknowledgement during a
timeout interval and it attributes the packet loss to network congestion. Upon detec-
tion of a packet loss at the TCP sender, the congestion control/avoidance mechanism
is triggered which reduces the transmission window size multiplicatively and/or in-
creases the retransmission timer exponentially, and consequently, the throughput is
reduced.

The implementation of the TCP flow/congestion control mechanism is based on
two sender-side state variables, namely, congestion window (cwnd), W(t) and the
slow-start threshold (ssthresh), Wiy (t) ([8]-[11]). During connection set up, the re-

ceiver advertises a maximum window size W,,,, and the TCP sender is not allowed

'In the Internet community, both NPDU and TPDU are known as packet even though in OSI
terminology a segment is referred to as a TPDU. The terms ‘packet’ and ‘segment’ are used inter-
changeably in this thesis.

to have more than min (Wp..., W(t)) unacknowledged data packets outstanding at
any given time ¢. For a new connection, W () is generally initialized to 1. The basic
window adaptation mechanism (which is triggered by ACKs) in all currently available

TCP implementations is as follows:

i If W(t) < Win(t) each ACK causes W (t) to be incremented by 1. This is the
slow-start phase.

i. If W(t) > W (t) each ACK causes W (t) to be incremented by —(m This

is the congestion avoidance phase.

In case of timeout, TCP source updates W (t) and Wy, (t) as follows: Wy, (t+) =
f—vygﬂ] and W (t+) = 1 and then starts retransmitting from the first lost packet. How-
ever, when the TCP source receives a cumulative acknowledgement from the TCP
sink acknowledging the already transmitted packets, it immediately starts transmis-
sion after the highest ACKed packet. After a timeout the sender also updates the
RTO (Retransmission Time Out) value using exponential backoff. The backoff con-
tinues until an ACK is received for a packet transmitted exactly once.

TCP sinks can accept packets out of order but deliver them only in sequence to
the user and they generate immediate ACKs. If a sink receives a packet out of order,
it issues an ACK immediately for the last in order packet that was received. If a
packet is lost (after a stream of correctly received packets), then the receiver keeps
sending ACKs (called duplicate ACKs) with the sequence number of the first lost
packet even if packets transmitted after the lost packet are correctly received.

1.2 TCP in Wide-Area Cellular Wireless Networks

While the “traditional” TCP has been tuned for the last two decades to optimize its
performance in wired networks where congestion is the main cause of any packet loss,

it performs poorly in wireless environments due to the following factors:

e Transmission losses on wireless link: While in the wired transmission media
the bit error rates are of O(107%) — O(1078), wireless media suffer significantly
higher bit error rates such as O(107%) — O(10™!) [12]. Therefore, the packet loss

rate in a wireless link is an order of magnitude higher than that in a wired link.

In a typical wireless scenario packet loss rate can be as high as 10% depending
on channel fading and interference conditions and user mobility.

When a packet is lost, TCP performs end-to-end recovery by retransmitting
the lost packet and frequent end-to-end retransmissions may reduce end-to-end
throughput significantly. Again, any packet loss in the wireless link is misinter-
preted by the TCP sender as a congestion loss and it triggers the congestion
control mechanism which reduces the sender’s transmission window size re-
sulting in reduced end-to-end throughput. Therefore, in a wired-cum-wireless
environment, random packet losses in the wireless link cause the TCP sender
to underestimate the available network bandwidth and thereby reduces the ap-
plication layer performance.

Also, the location and time-dependent channel errors may impact the achieved
throughput fairness among multiple concurrent TCP flows? and this would pre-
sumably be different for the different TCP variants. Again, frequent channel
errors and subsequent retransmissions may result in inefficient use of the limited

battery power in the mobile devices.

o Wireless link delays: Presence of limited bandwidth wireless links in an end-
to-end path generally results in increased end-to-end transmission delays (and
hence longer round-trip times (RTTs)). Although 2.5G and 3G cellular wireless
networks (e.g., EGPRS, UMTS, IMT-2000) will have increased bandwidth, fac-
tors such as link asymmetry due to different uplink and downlink bandwidsh,
bandwidth oscillation due to dynamic resource allocation, stronger FEC (For-
ward Error Correction) coding, interleaving, radio link level recovery will result
in large BDP (Bandwidth-Delay Product)® wide-area cellular wireless networks
[13].

Since the rate of increase in the congestion window size at the TCP sender is
proportional to the rate of incmoing ACKs, the congestion window may increase
at a much lower rate in the presence of wireless links and thus reduce the end-to-
end throughput. In fact, the throughput of a TCP connection has been shown

to vary as the inverse of the connections RTT. Given a packet loss rate p, the

2The terms ‘flow’ and ‘connection’ are used interchangeably.
3The bandwidth-delay product for a TCP connnection refers to the product of the round trip

delay (T') for the connection and the capacity of the bottleneck link (1) in its path.

maximum sending rate for a TCP sender is y bytes/sec, for v < 1'—5’%@5 where

B is the packet size and T is the round trip time [14]. The inherent TCP bias
against flows with longer RTT results in throughput unfairness among flows
traversing the same number of hops but having different number of wireless

links in the end-to-end path.

e User mobility: During a TCP session when a mobile user in a wireless cellular
network moves from one cell to another, all necessary information must be
transferred from the previous base station (BS) to the new base station which
might cause a short duration of disconnection (typically of the order of several
hunderds of milliseconds) during which no transmission takes place. Similar to
that in the case of link errors, delays and packet losses during this “handoff”
scenario trigger TCP congestion control mechanisms which results in reduced
end-to-end throughput [15].

e Short-lived TCP flows: Data services which are more transactional than stream-
ing in nature (e.g., web browsing on a smart phone, email) usually involve
transmission of a rather small amount of data, and therefore, tend to require
short TCP connection duration. It is possible that the entire transmission is
completed while the TCP sender is in the slow-start phase and thus resulting

in the under utilization of the network capacity.

1.3 Objective of the Work

The objectives of the work presented in this thesis are as follows:

e Investigate the effectiveness of the different end-to-end TCP strategies in a wide-
area wireless networks under different wireless link conditions (e.g., random
error, correlated error).

e Develop efficient end-to-end TCP for wired-wireless networks.

The motivation behind this is the fact that when IPSEC (IP Security) or other
security mechanisms are employed to encrypt IP payloads, true end-to-end tech-
niques based on transport level modifications of TCP would be required for
wide-area wireless networks. Also, when the data and the ACKs traverse dif-

ferent paths (e.g., in satellite networks), non-end-to-end solutions may cause

serious problems, while end-to-end solutions are applicable over any type of

networks and links.

1.4 Thesis Outline

Subsequent chapters of this thesis are organized as follows:

Chapter 2 provides a unified study of different transport layer protocol ap-
proaches to TCP design for wide-area wireless networks. Performances of the
different basic TCP variants including the newer variants such as TCP SACK
(Selective Acknowledgment), TCP Vegas, TCP FACK (Forward Acknowledge-
ment) are evaluated in a wide-area cellular network in terms of TCP throughput
and fairness (in the case of multiple competing TCP flows).

Chapter 3 summarizes the different transport level approaches for TCP en-
hancements. Both the end-to-end and non-end-to-end (mainly base station

centric) approaches are considered.

Chapter 4 analyzes the behavior of TCP Westwood which is a recently pro-
posed TCP variant based on end-to-end bandwidth estimation. In particu-
lar, the deficiency of the bandwidth estimation technique in TCP Westwood
is revealed, and the impact of the erroneous bandwidth estimation on the the

throughput and friendliness behavior of TCP Westwood are analyzed.

In Chapter 5, we propose a new TCP variant, namely, TCP Prairie that
solves the problem of erroneous bandwidth estimation in TCP Westwood by
using a novel bandwidth estimation technique. The efficacy of the bandwidth
estimation technique in T'CP Prairie is revealed and the throughput, fairness,

friendliness performances are analyzed.

Chapter 6 summarizes the contributions of the thesis and discusses a few
directions for possible future research.

Chapter 2

Performance of Basic TCP
Variants in Wide-Area Wireless
Networks

A comprehensive study on the performances of the basic TCP variants (e.g., TCP
Tahoe, TCP Reno, TCP New-Reno, SACK TCP, FACK TCP) in wide-area cellular
wireless networks is presented. Average throughput and fairness performances of
TCP are investigated under varying channel error rate and wireless link bandwidth.
The maximum achievable throughput under window-based end-to-end transmission

control is also evaluated.

2.1 Related Work

Prior research closest to this work is that reported in [16], where the throughput
performances of TCP Tahoe, OldTahoe, Reno and New-Reno in 3 localized wireless
network were investigated under random packet losses using a stochastic model. The
effects of coarse TCP timeout and the number of duplicate acknowledgements on TCP
throughput performance were particularly emphasized. More general findings were
reported in [17], where performance of TCP was investigated for a wide-area wireless
network, particularly, for a network with high bandwidth-delay product and random
packet losses. It was observed that random loss could lead to significant throughput

degradation when the product of the packet loss (p) probability and the square of the
bandwidth-delay product (i.e., (uT)?, p is the bandwidth and T is the delay) is larger
than one. Also, TCP’s unfairness towards connections with higher round trip delays
was reported. A packet level performance comparison among TCP Tahoe, Reno,
New-Reno and SACK in a wide area wired-Internet environment was presented in
[18] considering scenarios where the number of packet drops in a transmission window

varies from one to four.

2.2 Basic TCP Variants

2.2.1 TCP Tahoe

TCP Tahoe uses slow-start, congestion avoidance and and fast retransmit mechanisms
[9]. During slow-start, the congestion window increases exponentially (by one for
each acknowledgement received) until it reaches the slow-start threshold (ssthresh),
and during congestion avoidance the congestion window increases linearly by one per
round trip time (RTT). The TCP sender goes into the fast retransmit mode when it
receives tcp_rezmt_thresh (which is usually set to 3) number of duplicate acknowledge-
ments. During fast retransmit, the sender retransmits the lost segment and enters
into the slow-start phase by setting the congestion window to 1 and ssthresh to the
half of congestion window. In addition, it forgets all outstanding data transmitted
earlier [18]. When the loss is due to sporadic channel error, switching to slow-start
mode causes the throughput to fall.

2.2.2 TCP Reno

TCP Reno [10] is similar to TCP Tahoe except that in addition to fast retransmit, it
also includes the fast recovery mechanism for a single segment loss. When the TCP
sender receives {cp_rexmt_thresh number of duplicate acknowledgements, instead of
switching to slow-start after fast retransmit, TCP Reno enters into fast TECOVETY.
During fast recovery, the sender sets ssthresh to the half of the congestion window
and the new congestion window to the new ssthresh plus the number of duplicate

acknowledgements received. TCP Reno remains in fast recovery until the lost segment

which triggered the fast retransmit has been acknowledged. When the sender receives
new acknowledgement(s), it exits fast recovery and resets the congestion window to
ssthresh and thereby moves into congestion avoidance.

In case of congestion loss, the fast recovery mechanism keeps the average conges-
tion window size high resulting in better throughput performance compared to TCP
Tahoe. During fast recovery, each new duplicate acknowledgement increases the con-
gestion window size by one. Although TCP Reno works fine for single loss, in case of
multiple losses from the same transmission window the performance suffers since it

exits fast recovery and enters into it again in a repeated fashion or goes to timeout.

2.2.3 TCP New-Reno

TCP New-Reno uses an augmented fast recovery mechanism where, unlike TCP Reno,
fast recovery continues until all the segments which were outstanding during the start
of the fast recovery, have been acknowledged [19]. This strategy helps to combat
multiple losses without entering into fast recovery multiple times or causing timeout.
In this case, a partial acknowledgement® is considered as an indication that the seg-
ment following the acknowledged one has been dropped from the same transmission
window (or flight), and therefore, TCP New-Reno immediately retransmits the other
lost segment indicated by the partial acknowledgement and remains in fast recovery.

It takes one round trip time to detect each lost segment and to retransmit it.

2.2.4 SACK TCP

In SACK TCP, the receiver sends acknowledgements with SACK (Selective Acknowl-
edgement) option when it receives out of order segments due to loss or out of order
delivery [20]. The SACK option field contains a number of SACK blocks, where each
SACK block reports a non-contiguous set of data that has been received and queued.
The first block in SACK option reports the most recently received block.

The SACK TCP sender is an intelligent extension of that in TCP Reno. It only
modifies the fast recovery mechanism of TCP Reno keeping the other mechanisms

1This refers to a new acknowledgement received during fast recovery which acknowledges some
but not all of the packets that were outstanding at the start of the fast recovery phase.

10

unchanged. Similar to New-Reno, it can handle multiple packet losses from the
same flight. It has a better estimation capability for the number of outstanding
segments. The acknowledgement with SACK option enables the sender to determine
explicitly which segments have been received or have been lost. To keep track of
the acknowledged and lost segments, it maintains a data structure called scoreboard.
Whenever the sender is allowed to transmit based on the congestion window size
and the number of outstanding segments, it consults the scoreboard and transmits
the missing segments. If there is no missing segment to retransmit, it transmits new
segments. When a retransmitted segment is dropped, the sender detects it by a
retransmit timeout. In case of timeout it retransmits the segment and enters into the
slow-start phase.

SACK TCP maintains a variable called pipe to keep track of the number of out-
standing segments. For each retransmission or new transmission, the sender increases
pipe by one and for each received acknowledgement, it decreases pipe by one. For each
received partial acknowledgement, pipe is decreased by two with the assumption that
the original packet and the retransmitted packet have left the network. Since pipe
represents the amount of outstanding data, the sender transmits only when pipe is

less than the congestion window.

2.2.5 FACK TCP

FACK (Forward Acknowledgement) TCP is a variant of SACK TCP with a modified
fast recovery mechanism [21]. It uses a better technique for estimating the number
of outstanding segments. For this, it introduces two new variables snd.fack and
retran-data, where snd.fack represents the forward most data held by the receiver and
retran_data represents the size of the retransmitted data outstanding in the network.
In non-recovery states snd.fack is updated using the acknowledgement number in
the TCP header and is equivalent to snd.una [8]. But when a SACK block is received
during error reocovery, it is updated to the highest sequence number received by the
receiver plus one regardless of the number of the intermediate dropped segments.
Therefore, the outstanding data is estimated as (snd.nzt - snd. fack) + retran_data.
For each retransmission, the size of the retran_data is incremented by the corre-

sponding segment size. When retransmitted segment leaves the network it is decreased

11

by the same size. FACK TCP compares it’s estimate for outstanding data against
the congestion window size and decides on the number of transmissions. A timeout
is forced in the case of loss of a retransmitted segment on the assumption that the
congestion is persistent. It enters into the fast recovery mode when the sender re-
ceives ¢cp_rezmi_thresh number of duplicate acknowledgements or (snd.fack - snd.una
> tep_rexmi_thresh * M SS)?. In the case that several segments are lost but fewer than
tep_rezmt_thresh number of duplicate acknowledements have been received, the latter
condition triggers the fast recovery phase sooner. Similar to New-Reno and SACK,
FACK TCP terminates it’s recovery phase upon receiving acknowledgement for all

the segments that were outstanding during transition to fast recovery.

2.2.6 TCP Vegas

TCP Vegas [22] comes with a proactive congestion control mechanism in which net-
work congestion is predicted based on the estimated ezpected throughput and the ac-
tual throughput. Expected throughput is estimated as WindowSize/BaseRTT, where
BaseRTT is the minimum of all the measured RT'Ts and WindowSize is the size of the
current congestion window. The actual throughput is calculated from the RTT for a
tagged segment and the number of segments transmitted within that RTT. TCP Ve-
gas compares the difference between the expected and the actual throughput against
two thresholds « and § (where o < 8) and adjusts the transmission window accord-
ingly. If the difference is smaller than «, the congestion window is increased linearly
(by one per RTT) under the assumption that there is unutilized bandwidth available
in the network. On the other hand, if the difference is larger than B, the conges-
tion window is decreased, while if the difference lies between a and 3 the congestion
window remains unchanged.

TCP Vegas has a fine grained timer expiry calculation mechanism to support early
switching to fast retransmit. For this, the sender reads and records the system clock
each time a segment is transmitted. When an acknowledgement arrives, it reads the
clock again and calculates the fine grained RT'T. TCP Vegas uses this fine-grained
RTT estimate to calculate RTO. For each duplicate acknowledgement received, the

2MSS refers to the Mazimum Segment Size.

12

Table 2.1. Differences among the basic TCP variants.

TCP Variant Sender mechanism(s)
Tahoe No fast recovery
Reno Uses fast recovery to recover

from single packet drops

New-Reno Uses fast recovery to recover

from multiple packet drops

SACK Uses fast recovery to recover
from multiple packet drops, better
outstanding data estimation mechanism
and larger retransmission pool
FACK Similar to SACK, but uses a better

outstanding data estimation mechanism

and switches to fast recovery faster

Vegas Uses proactive mechanism to control
congestion window, switches to fast retransmit

faster due to the fine-grained timer

sender checks the Vegas ezpiry® and if Vegas expiry occurs, the sender switches to fast
retransmit. Similar to the other TCP variants, it switches to fast retransmit when
1t receives tcp_rexmi_thresh number of duplicate acknowledgements. Also, the sender

switches to slow-start whenever the usual timeout occurs.

2.2.7 Comparison Among the Basic TCP Variants

Although the TCP senders for all the basic TCP variants rely on using binary pos-
itive acknowledgement, similar RT'O estimation and timeout mechanisms, they use
different congestion avoidance mechanisms. The major differences among the basic
TCP variants are shown in Table 2.1.

The main difference between TCP Tahoe and TCP Reno is that the latter uses
the fast recovery mechanism while the former does not. Although TCP Reno can

3Timeout caused by this fine-grained timer is referred to as ‘Vegas expiry’.

13

handle single drop in a flight efficiently, it cannot handle multiple packet drops in a
single flight very well. Tahoe does not memorize outstanding data when it switches to
slow-start (due to multiple duplicate ACKs), but Reno does. Both TCP New-Reno
and SACK TCP can handle multiple losses in a single flight more efficiently.

SACK TCP is different from TCP New-Reno in that SACK TCP can retransmit
selectively. While TCP New-Reno retransmits starting from the segment correspond-
ing to the duplicate acknowledgement or partial acknowledgement, SACK TCP re-
transmits this segment along with other missing segments from it’s scoreboard. That
is, the retransmission pool for a New-Reno sender can have at most one segment re-
gardless of the number of packet drops. Therefore, it takes one RTT to recover each
packet loss. On the other hand, since the retransmission pool for a SACK sender can
have many lost segments, the recovery process becomes faster. Also, due to the pipe
variable, SACK TCP has a better estimation of the number of outstanding segments.

'The main advantage of FACK TCP over SACK TCP is that, by using retran_data
and snd.fack the former performs a better estimation of the number of outstanding
segments than the latter. Generally, the pipe estimation for FACK TCP becomes
smaller compared to that for SACK TCP which allows the former to transmit more
segments. Also, using the information from SACK block, sometimes it switches to
fast recovery before receiving tcp_rezmt_thresh number of duplicate acknowledgements
which is helpful when the transmission window size is small or the number of duplicate
acknowledgements is too few to trigger fast retransmit.

By using expected throughput, actual throughput and the threshold parameters «,
B, TCP Vegas can have a better estimation of the available bandwidth compared
to the other TCP variants. Due to its own fine-grained timer management, TCP
Vegas can switch to fast retransmit earlier which contributes to it’s performance
improvement. Also, since it reduces the congestion window to 3/4 instead of 1/2
during fast retransmit (when the segment that triggered fast retransmit has not been
transmitted more than once), it helps to combat losses due to the sporadic wireless

channel errors more efficiently.

14

2.3 Analysis of System Dynamics and Performance

Evaluation

2.3.1 Simulation Model and Performance Measures

System dynamics under the different basic TCP variants, namely, TCP Tahoe, Reno,
New-Reno, SACK, FACK and Vegas are investigated using ns-2 [23] under varying
wireless channel bandwidth, round trip delay, number of concurrent TCP connections
and different wireless channel error characteristics in a wired-cum-wireless scenario
where the mobile nodes act as TCP sinks. Also, two variants of New-Reno — one with
TCP-aware link level retransmission (TLLR) and the other with delayed acknowl-
edgement (DACK)-capable TCP sink, are considered.

It is assumed that the slowly varying shadow and path losses in a wireless link
are perfectly compensated and that the channel quality variations due to multipath
fading remain uncompensated. For a broad range of parameters, the packet error
process in a mobile radio channel, where the multipath fading is considered to fol-
low a Rayleigh distribution, can be modeled using a two-state Markov chain with
p 1l-p

l-q¢ ¢
the probabilities that the jth packet transmission is successful, given that the (+1)th

transition probability matrix M, [24]: M, = [} where p and 1-¢q are

packet transmission was successful or unsuccessful, respectively.

Also, the fading envelope is assumed to not change significantly during transmis-
sion of a TCP packet (which is of duration, say, ticp). The channel variation for each
of the mobiles is assumed to be independent and determined by the two parameters
p and ¢ which, in turn, are determined by fst., %, the normalized Doppler band-
width and Pg, the average packet error probability. Py describes the channel quality
in terms of fading margin F °. Different values of Pp and faticp result in different
degree of correlation in the fading process. When fatiep is small, the fading process
is highly correlated; on the other hand, for large values of faticp, the fading process

is almost independent. For a certain value of the average packet error rate Pg, the

“Here, f; = v/\ = mobile speed/carrier wavelength. The value of ticp determines the minimum

fade duration.
5Tt refers to the maximum fading attenuation which still allows correct reception of a packet.

15

BS

FH Internet cloud Z

Figure 2.1. Simulation topology for wide-area cellular wireless network.

error burst-length increases as user mobility (and hence fit;.,) decreases.

The network topology used in the simulation is shown in Fig. 2.1 (FH = Fixed host,
MH = mobile host, BS = base station/wireless router). The wirless link is considered
as bottleneck link and its delay is considered negligible. The round trip time is 60ms.
TCP segment size is 1KB. The different performance measures are: average per-flow
throughput (v) (i.e., average amount of data successfully transmitted to a TCP sink
per unit time), energy consumption (e) (average amount of energy dissipated in a
TCP sink for successful reception of 1 M B of data) and throughput fairness (f). For

n concurrent TCP flows, the fairness index f is calculated as followsS:

(Chi)?
f=——=r 2.1
'To calculate the energy consumption at the mobile nodes (primarily due to trans-
mission of acknowledgements and reception of TCP packets), the ratio of transmisson
power and receive power wattage is assumed to be 3 for all the simulation scenarios

described in this chapter.

SThis is similar to the fairness function used in [25] to quantify the fairness in a shared resource

n 2
system with n users: F = %—%‘m'—x)z (where z; is the ith user’s throughput).
i=1"1

16

2.3.2 Simulation Results and Analysis
2.3.2.1 Single TCP flow with unifrom Wireless Loss (Scenario 1)

The wireless link bandwidth is assumed to be 2 Mbps. In this scenario, for the delayed
acknowledgemnt case, the interval for delaying the acknowledgement is assumed to
be 10 ms. The simulation run time is taken to be 1000 seconds.

Under random error conditions, TCP New-Reno and SACK TCP provide remark-
able performance improvement over TCP Tahoe and TCP Reno (Fig. 2.2). Although
TCP Tahoe and TCP Reno exhibit similar performance, TCP Reno performs slightly
better than TCP Tahoe when the error rate is smaller than 1.5%.

Analysis of the system events such as the total number of timeouts (TO), to-
tal number of fast retransmit/fast recovery (FR), number of fast retransmits due
to multiple packet drop in a transmission window (MD), number of segments newly
transmitted during fast recovery (SND), and average of the transmission window sizes
measured at the epoches of transitions to fast retransmit (FLT) reveal that under ran-
dom error conditions the system dynamics for both TCP New-Reno and TCP SACK
are more or less similar (Table 2.2), and therefore, their long-term performances are
observed to be fairly close. FACK TCP is observed to perform better than each of
TCP New-Reno and SACK TCP. TCP Vegas shows significant performance improve-
ment over FACK TCP. However, the throughput performance of each of the above
basic TCP variants is inferior to the performance of TCP New-Reno with TLLR
(Fig. 2.2).

For both TCP Tahoe and TCP Reno, the number of timeouts increases with
increasing error rate, and the difference in the number of timeouts for these two
cases during a certain observation interval is observed to be small. As the error rate
increases, Reno suffers due to multiple packet drops in the same flight and also the
number of timeouts increases compared to the number of fast retransmits. This offsets
Reno’s gain due to fast recovery and makes the performance closer to that of Tahoe.

As is observable from Table 2.2, at 1% error rate, for SACK TCP there are 115
events of fast recovery due to multiple packet drops (within a transmission window)
among the total of 1252 fast recovery events, while for TCP New-Reno, among the
total of 1237 fast recovery events 129 fast recovery events are due to multiple packet
drops. Therefore, the ratio of multiple drop fast recovery to total fast recovery is

17

Table 2.2. Fast retransmit/recovery analysis under random error loss (for 1000 sec-

ond simulation run)

TCP TO| FR |MD |SND | FLT
variant
Error rate = 1%
Tahoe 53 | 1056
Reno 100 | 1181 | 110 | 1909 | 11.59
New-Reno | 27 | 1237 | 129 | 2013 | 11.92
SACK 25 | 1252 | 115 | 2435 | 11.88
FACK 17 | 1365 | 137 | 6668 | 12.27
TLLR 0 14 1 2 | 15.00
Vegas 22 | 1552 13.04
1072E
Error rate = 10%
Tahoe 691 | 295
Reno 692 | 277 65 | 359 | 5.55
New-Reno | 705 | 315 88 | 442 | 5.55
SACK |685| 298 83 | 341 | 5.51
FACK |630| 392 | 125 | 426 | 5.28
TLLR 20 95 58 | 134 | 13.94
Vegas 546 | 550 5.89
334E

18

250

<o+ SACK

f \\ ~— New Reno
2004\ * o
—#— Tahoe
-~ Reno
-6~ TLLR
=& DACK

100

Average per-flow throughput (Kbps), y

50

Error rate (%)

Figure 2.2. Throughput performances of different TCP variants (scenario 1).

smaller for SACK TCP. This observation holds for other error rates as well. In
this case, SACK TCP cannot exploit the advantage of selective retransmission more
effectively (compared to TCP New-Reno).

Again, under random error conditions, SACK TCP may not be able to exploit the
advantage of better pipe estimation. Referring to Table 2.2, for 1% error rate SACK
TCP transmits on the average 1.94 (= 2435/1252) new segments during fast recovery,
while TCP New-Reno transmits on the average 1.63 (= 2013/1237) new segments.
"This small difference may not result in significant performance improvement for SACK
TCP as compared to TCP New-Reno. As the error rate increases, the difference may
become even smaller.

The delayed acknowledgement (DACK) variant of TCP New-Reno is observed to
perform the worst, which is primarily due to its slow response to transmission failure.

Due to the better estimation of the number of outstanding segments, FACK TCP
performs better than SACK TCP under all error conditions. At 1% and 10% error
rate, for FACK TCP the number of new segments transmitted during fast recovery is
observed to be 6668 and 426, respectively, while for TCP SACK, the numbers are 2435
and 341 (Table 2.2). With increasing error rate, as the effect of timeout becomes more

dominant, the number of new segments transmitted during fast recovery decreases.

19

The performance improvement in TCP Vegas is mainly due to its two unique
features — Vegas expiry and congestion window reduction by a factor of 3/4. The
Vegas expiry mechanism causes it to react very fast to segment loss. As can be
observed in Table 2.2, for 1% error rate, during 1000 second of simulation Vegas
experiences 1552 fast retransmits among which 1072 were detected early by the Vegas
fine-grained expiry mechanism (in Table 2.2, ‘E’ refers to fast retransmit detected by
Vegas expiry). The Vegas ezpiry mechanism also reduces the number of timeouts and
it is observed that among all the TCP variants it experiences the smallest number of
timeouts.

The TCP New-Reno with TCP-aware link level retransmission (TLLR) scheme
(e.g., snoop protocol [26]) offers the best performance (Fig. 2.2) due to the fact that
the ‘snoop agent’ at the link level eliminates most of the fast retransmits and timeouts.
For example, with TLLR, for 10% error rate, the number of fast retransmits and the
number of timeouts are 20, and 95, respectively, while for New-Reno they are 705 and
315, respectively. As a result, the average flight size is always very high (e.g., 13.94
for 10% error rate) which is close to the assumed maximum transmission window size
of 15, and consequently, better throughput performance is achieved.

Regarding energy consumption for transmission of a fixed amount of data (1 M B)
to a mobile node using the different TCP variants, it is observed that TCP Vegas
requires the highest amount of energy (Fig. 2.3). This is due to the fact that, TCP
Vegas results in the highest number of fast retransmits. For TCP New-Reno with
the DACK option, the energy consumption is observed to be the lowest, which is due
to it’s conservative acknowledgement transmission policy. But as the error rate in-
creases, energy consumption due to reception of the retransmitted segments becomes
more dominant compared to that due to transmission of acknowledgements, and con-
sequently, energy consumption for TCP New-Reno with DACK tends to be similar
to that for the other TCP variants (Fig. 2.3).

In fact, in the high error rate regime none of the end-to-end TCP mechanisms
performs well in a wide-area cellular wireless environment. For example, with 10%
error rate, the achieved thoroughput is about 10 Kbps compared to 217 Kbps in the
ideal case. This is due to the inability of TCP to differentiate between wireless loss

and congestion loss.

20

0.98 T T

< SACK I
— New Reno ’
— ~- Vegas 7
0.96} - FACK 4 <
—*— Tahoe 4
-6~ Reno PEs
o~ TLLR .

-4 DACK 4

0.94

Energy consumption per 1 MB (Joule), e

Error rate (%)

Figure 2.3. Energy consumption for the different TCP variants (scenario 1).

2.3.2.2 Multiple Flow with Uniform Wireless Loss (Scenario 2)

The wireless link bandwidth is assumed to be 10 Mbps and there are 5 concurrent
flows. Throughput and energy consumption per flow under multiple concurrent TCP
connections are similar to those in case of a single connection (Figs. 2.4-2.5). But
the average per-flow throughput is observed to be slightly higher than the single flow
case (scenario 1) when the error rate is not too high (e.g., < 5%).

In this case, we also observe the achieved throughput fairness among the different
competing TCP connections. All of the TCP variants provide good long-term fairness
and it is observed that even for error rate as large as 9%, the fairness index lies above
0.99. For error rate larger than 14%, the fairness index reduces to 0.98 (Fig. 2.6).
Therefore, it can be concluded that the random wireless channel errors do not impact
the TCP throughput fairness for the different TCP variants remarkably.

2.3.2.3 Single Flow with Uniform Wireless Loss (High bandwdith bottle-
neck) (Scenario 3)

The wireless link bandwidth is assumed to be 10 Mbps in this case. This scenario is

considered to compare the throughput performance in the case of multiple concurrent

250

Average per~flow throughput (Kbps), y

— New Reno
- - Vegas
FACK
=%~ Tahoe
-6— Reno
- DACK

Figure 2.4. Throughput performances of different TCP variants (scenario 2).

Error rate (%)

0.23

022

0.21

02

0.19

Energy consumption per 1 MB (Joule), e

0.184

— New Reno
— — Vegas

- FACK
—%— Tahoa
—0- Reno
~&— DACK

0.17

Figure 2.5. Energy consumption for the different TCP variants (scenario 2).

Error rate (%)

21

22

1.005

-+ SACK
— New Reno
— - Vegas

+ FACK

0.995

—— Tahoe
-~ Reno
~&~ DACK

Fairness index, f

0.985

0.98 .

Error rate (%)

Figure 2.6. Throughput fairness for the different TCP variants (scenario 2).

TCP flows with that in the case of a single TCP flow occupying the entire bandwidth.
The average throughput of this case (which is expected to be five times that for a
flow in scenario 2) becomes close to the per-flow throughput in scenario 2 as the error
rate increases beyond 1% (Fig. 2.7). The performance gain due to the high wireless
link bandwidth is observable only for very small error rates (e.g., 0%-0.05%).

2.3.2.4 Single New-Reno Flow with Correlated Error(Scenario 4)

The wireless link bandwidth is assumed to be 2 Mbps. In this scenario, we choose
to investigate only the performance of TCP New-Reno (which is regarded as the de
facto standard in the present Internet) under correlated channel error. For a particular
average packet error rate, the channel error correlation (as manifested in the lengths of
the error bursts) varies as the mobile speed varies [24]. For example, for the assumed
wireless channel bandwidth and maximum segment size, with 10% error rate, mobile
speed of 1 km/hr, 3 km/hr, 5 km/hr, 10 km/hr and 100 km/hr correspond to
burst-error size of 11.41, 3.85, 2.37, 1.42 and 1.11 segments, respectively. For 1%
average error rate, the corresponding burst-error sizes are 3.41, 1.39, 1.14, 1.04 and
1.01 segments, respectively.

The average throughput decreases with increased channel error correlation (Fig. 2.8).

1400

120

1000}

Average per-flow throughput (Kbps),y

T

— New Reno
- - Vegas
FACK
-#~ Tahoe
—0— Reno
-4~ TLLR
-0~ DACK

Figure 2.7. Throughput performances of different TCP variants (scenario 8).

Error rate (%)

<o 1 knvhr
— 3kmvhr
= = Skmhr
-6 10 km/hr
-9~ 100 kmvhr

250

200
=
5
Q
Ee)
<

2 sof -

(=]
g
£
3
8
I

g toof
-]
(=3
I
g
<

50

0
0

Figure 2.8. Throughput performance of TCP New-Reno

Error rate (%)

(scenario 4).

23

24

Table 2.3. Fast retransmit/fast recovery analysis of New-Reno under correlated error

loss (for 1000 second run)
Mobile | TO | FR | MD | SND | FLT

speed

Error rate = 3%
1 km/hr 83 | 11 11 8 14.82
3km/hr | 230|234 | 231 | 164 | 13.93
5km/hr |259|328 319 | 172 | 13.64
10 km/hr | 301 | 399 | 380 | 204 | 13.41

100 km/hr | 300 | 404 | 384 | 191 | 13.45

Error rate = 5%
l1km/hr [105 1 1 1 13.00
3km/hr | 189 | 16 | 14 20 |11.62
5km/hr 321 75 | 71 137 | 11.45
10 km/hr | 451 | 172 | 161 | 294 | 11.59

100 km/hr | 479 | 187 | 175 | 251 | 11.50

Error rate = 10%
1km/hr | 76 | 0 | 0
3km/hr | 140| 0 0
5km/hr [208| 0 | 0
10km/hr | 532] 0 | 0

100 km/hr | 507 | 0 | 0

25

In the presence of highly correlated error, the acknowledgements from the mobile TCP
sinks do not reach the TCP senders and the TCP error recovery is triggered primarily
by timeouts. For example, with 10% error rate, it is observed that there is no fast
retransmit at all (Table 2.3).

One interesting observation is that, although the number of timeouts decreases /increases
with decreasing/increasing mobile speed, the average throughput decreases /increases.
This is because, as user speed decreases, the channel error correlation increases, as a
consequence of which the value of RT'O backoff factor generally becomes high. With
an increase in the value of RTO backoff factor, the end-to-end error recovery after a
timeout becomes more sluggish, and consequently, the throughput deteriorates.

The amount of energy consumption is observed to increase with increasing channel

error correlation.

2.3.2.5 Single Flow with Correlated Error(Scenario 5)

The wireless link bandwidth is assumed to be 2 M bps. We assume mobile speed of
3 km/hr at which the burst-error size is 3.85 and 1.39 for error rate of 10% and 1%,
respectively. The performance trends (Fig. 2.9)in this scenario are observed to be
radically different from those in the random error case . Throughput performance of
TCP Vegas reduces by about 80% (compared to the uniform error case) when the
error rate is 2%. SACK TCP now performs better than TCP New-Reno over a range
of error rates from 0% to 5%.

Since the system dynamics is now characterized by a large number of timeouts,
high ratio of the number of multiple (three or more) packet drops to the number of
single packet drops in a single window and loss of a large number of acknowledgements,
performance of TCP Tahoe becomes comparable to the performance of SACK TCP.
Also, we observe that the performance of TCP New-Reno with TCP-aware link level
retransmission deteriorates considerably compared to that in the uniform error case.

TCP Reno is observed to perform the worst in this correlated error scenario.
Although the number of fast retransmits is fewer than that in the uniform error case,
most of the fast retransmits are due to multiple packet drops (three or more) in a
single window. For example, with 1% error rate, there are 402 fast retransmits, among
which 375 are due to multiple drops (Table 2.4). Again, 327 of the 375 packet drops

26

Table 2.4. Fast retransmit/fast recovery analysis under correlated error (Error rate
1%, 3% and 10% and Run time 1000 second)
TCP TO | FR | MD | SND | FLT

variant

Error rate = 1%
Tahoe 8 539 | 538 0 14.98
Reno 431 | 402 | 375 | 226 | 13.01

New-Reno 7 544 | 541 1 14.99

SACK 4 | 553 | 547 | 1205 | 14.97
DACK 12 | 530 | 484 | 260 | 14.42
FACK 0 | 548 | 546 | 3284 | 14.93
TLLR 0 0 0

Vegas 157 | 445 14.20

Error rate = 3%
Tahoe 195 (214 | 210 | 59 | 14.42
Reno 346 | 95 | 93 25 | 12.80

New-Rreno | 230 [234 | 231 | 164 | 13.93
SACK 330 | 251 | 246 | 870 | 14.02
DACK 254 | 215|210 | 103 | 11.82
FACK 159 | 349 | 348 | 1941 | 14.51

TLLR 0 0 0 0 0
Vegas 381 | 164 10.82
175E

Error rate = 10%
Tahoe 140 0 0

Reno 140 | 0O 0
New-Reno | 140 0 0
SACK 140 0 0
DACK 145 0 0
FACK 140 0 0
TLLR 68 0 0
Vegas 248 0

0E

27

~— New Reno
- ~ Vegas

« FACK
—»~ Tahoe
—6— Reno
-©- TLLR
—&— DACK

Average per-flow throughput (Kbps),

A h — e —ae
& & . A b Y O S

10 15

Error rate (%)

Figure 2.9. Throughput performances for the different TCP variants (scenario 5).

are due to three or more packet drops in a single window. Most of these multiple
(more than three) drop cases are observed to be followed by timeouts. In fact, when
three or more packets are dropped from a window of data, the Reno sender is forced
to wait for a timeout most of the time.

TCP Tahoe is observed to perform significantly better than Reno under correlated
error scenarios. Since after switching to slow-start, Tahoe forgets all outstanding data
that were transmitted earlier and increases its congestion window upon receipt of
each acknowledgement, it results in multiple transmission attempts for same packets
(some of which have presumably been lost already), and consequently, the throughput
improves for the multiple drop cases.

Since the number of packet drops per transmission window increases in the cor-
related error case, SACK TCP performs better than New-Reno. TCP New-Reno
requires n X RTT to recover from n packet drops in a single window whereas SACK
recovers much faster. This is mainly due to its better pipe estimation method and
usage of a larger retransmission pool. For the same reason FACK TCP performs even
better than SACK TCP.

Since a large number of acknowledgements are lost due to correlated channel error,

sluggishness in transmitting acknowledgements in the case of TCP New-Reno with

28

0.96

-+ SACK
— New Reno $
— - Vegas

. FACK -
0.94f |—¢ Tahoe
-6 Reno
~o- TLLR
- DACK

Energy consumption per 1 MB (Joule), &

Error rate (%)

Figure 2.10. Energy consumption for the different TCP variants (scenario 5).

DACK option does not significantly impact the throughput performance. For the
same reason, sharp response to packet losses in the case of TCP Vegas is not very
conducive to improving TCP throughput performance in the correlated error case.
Under different channel error rates and channel error correlation, the fixed values
of a and § do not work well. Also, TCP Vegas experiences the highest number of
timeouts.

For error rate greater than 7%, the energy consumption is observed to be more
or less same for all the TCP variants (except for Vegas and New-Reno with TLLR)
(Fig. 2.10). This is due to the fact that for a large error rate all of the TCP variants
experience almost the same number of timeouts and there may be no fast retransmit
at all.

29

2.4 Maximum Achievable TCP Throughput Un-
der Window-Based End-to-End Transmission

Control

In this section, we obtain the upper bound on the TCP througput performance under
window-based end-to-end transmission control (i.e., throughput of ideal end-to-end
TCP (IE*-TCP)) and compare it against the throughput performances of TCP New-
Reno, SACK TCP and FACK TCP. For any window-based transmission control,
the timeout mechanism is a must. Note that, all of the basic TCP variants use
similar timeout mechanism along with exponential RTO backoff. Also, they use the
fast retransmit mechanism (i.e., immediate retransmission of lost segment detected
by tcp-rexmit_thresh number of duplicate ACKs). However, the basic end-to-end
TCP variants mainly differ in the implementation of the fast recovery mechanism.
Note that, for the maximum possible throughput performance in a wired-cum-wireless
scenario, E2-TCP should be aggressive enough in retransmission and in measuring
the outstanding data segments. The upper bound on the throughput performance
under wireless loss (achievable by the IE2-TCP) can be obtained using the simulation

model described before based on the following assumptions:

e IE>-TCP uses the timeout mechanism along with exponential RTO backoff and
it uses fast retransmit mechanism to retransmit a lost segment after reception
of tep_rexmit_thresh number of duplicate ACKs.

e [E?-TCP retransmits a lost segment after receiving partial duplicate ACKs.

e Rather than using a go-back-N type of retransmission, JE2-TCP uses selective
acknowledgement (SACK)-based retransmission.

e JFE2-TCP uses the information in the SACK acknowledgement to estimate out-
standing data.

e]E2-TCP maintains the transmission window size equal to the receiver-advertized

window size all the time.

Figs. 2.11-2.12 show some typical results on the long-term average throughput
performance of IE2-TCP when compared to those of SACK TCP, TCP New-Reno
and FACK TCP under both random error and correlated error conditions. As is

30

250 T T T T

e SACK
New Reno
FACK

_a- IE%-TCP

20014

180

100

Average per-flow throughput (Kbps), y

501

I I L 2 s
0 0.02 0.04 0.06 0.08 (A 0.12 0.14 0.16

Packet error rate (%)

Figure 2.11. Throughput performances for SACK TCP, TCP New-Reno, FACK
TCP and IE*-TCP under random packet error in the wireless link.

evident from Fig. 2.11, under random packet error in the wireless link JE2-TCP can
achieve a throughput which is higher by as much as 200% (e.g., for packet error rate
of 4%) than that due to SACK TCP and FACK TCP. Improvement in throughput
performance can be even higher under correlated error scenarios (e.g., 250% improve-
ment for packet error rate of 4% with average error burst length of 3.85) (Fig. 2.12).
Therefore, it can be concluded that the basic TCP variants perform significantly poor
compared to the ideal TCP (i.e., [E*-TCP) in a wired-cum-wireless scenario. Since
the throughput performance of IE2-TCP characterizes the envelope of the maximum
possible throughput under a TCP-like window-based end-to-end transmission con-
trol, the TCP modifications based on end-to-end approaches should use this as the

benchmark performance.

2.5 Summary and Outlook

Throughput, fairness and energy performances of the different basic TCP variants
have been investigated in a wide-area cellular wireless environment for both uniform

and correlated wireless channel errors. The following provides a summary of the key

31

250

e SACK
New Reno
5 FACK

_A- IE2-TCP

Average perflow throughput (Kbps), v

Packet error rate (%)

Figure 2.12. Throughput performances for SACK TCP, TCP New-Reno, FACK
TCP and IE*-TCP under correlated packet error in the wireless link (for mobile
velocity of 3 km/hr).

observations:

e Implications of the fast retransmit and timeout events on the TCP performance
largely depend on the wireless channel error characteristics (e.g., error rate and
degree of channel error correlation). For example, in the case of TCP Vegas,
sharp response of the sender due to its fine-grained expiry mechanism works well
under uniform error case while the same strategy results in poor performance
under correlated error scenarios. Therefore, although coarse timeout is undesir-
able under random losses, the ineffectiveness of the ‘Vegas expiry’ mechanism
under correlated error cases suggests that very sharp timeouts may also not be

desirable under such error conditions.

e A method which provides better estimation for the number of outstanding seg-
ments is always conducive to the TCP throughput performance under both
random and correlated error scenarios. Due to this reason, FACK TCP is ob-
served to be consistently better than SACK TCP and TCP New-Reno under

both random and correlated error scenarios.

32

Since the impact of timeout becomes more dominant, the throughput perfor-
mances of all of the basic end-to-end TCP variants (which primarily differ in
the fast recovery mechanism) suffer under correlated error scenarios. Again,
end-to-end protocols with link level retransmissions (e.g., snoop protocol) also

suffer serious performance degradation in case of correlated channel errors.

Lower degree of wireless channel error correlation is more conducive to energy

saving at the mobile TCP sinks.

In a wide-area wireless scenario, TCP connections with high bandwidth-delay
product may not get their fair share. Splitting a single TCP flow (with a
high bandwidth-delay product) to multiple flows (say, z flows) increases the

throughput approximately « times for a certain range of low error rates.

TCP performance in a wired-cum-wireless environment can be improved signif-
icantly by using some transport level mechanism to differentiate between the
congestion loss and wireless channel loss and then adjusting the window adap-

tation mechanism accordingly.

The transmission window size at the TCP sender should be adapted differently
depending on the degree of correlation in the wireless link errors. In addition,

timer granularity may be adapted dynamically based on error correlation.

The throughput performance of an end-to-end TCP designed for a wide-area cel-
lular environment based on transport level modifications should be compared
against the maximum achievable throughput envelope. This envelope, which
can be characterized empirically based on simulation results, defines the max-
imum throughput achieveable under any TCP-like window-based end-to-end

transmission control mechanism.

33

Chapter 3

TCP Enhancements for Wireless
Networks

In this chapter, a brief overview of the different approaches for enhancing TCP perfor-
mance (based on transport level modifications) along with a qualitative performance

comparison are presented.

3.1 TCP Solutions for Wireless Networks

There has been a flurry of recent works ([26]-[53]) on improving TCP performance
over wireless networks. A taxonomy of the different proposed mechanisms to improve
TCP performance in wireless networks is shown in Fig. 3.1. Proposed modifications
can be primarily classified according to the protocol level they operate on.

In addition to the basic TCP variants, link level and transport level approaches
to improve TCP performance have been proposed in the literature. Link level ap-
proaches mainly try to make the radio link robust against wireless errors by using
local retransmission mechanisms. A link layer scheme to improve TCP performance
may or may not use transport layer knowledge. Next, tranport level modifications are
mainly of two types — end-to-end and non-end-to-end. End-to-end solutions depend
on the modification on either at the TCP source or at the TCP sink. Non-end-to-end
modifications are mainly done at the base station/access point.

For wide-area cellular wireless networks, end-to-end TCP solutions based on transport-

‘SYLOMIIU §S3]ILUN

10f (sayovouddn Jans)-puodsuny uo pasvg) suOUNIOS JNIL fo fiwouozrny -1'g 2anSig

Wireless TCP

L

Basic Variants
(e.g., Tahoe, Reno,

New-Reno, SACK)

Sender-only modifications
(e.g., K-SACK, SSS)

TCP modifications:
link-level approaches
(e.g., snoop, TULIP)

End-to-end
TCP

Receiver-only modifications
(e.g., FREEZE-TCP,
ACK-fragmentation)

TCP modifications:

transport-level
approaches

Sender and receiver-only
modifications (e.g., ECN)

Split-connection TCP
(e.g., -TCP, M-TCP)

Non-end-to-end
TCP

Using extra control messages
(e.g., using multiple ACKs,
ICMP messages)

Using wireless-specific
transport protocol over the
wireless link (e.g., METP)

ve

35

level modifications which use some intermediary (such as a base station) may not
maintain true end-to-end semantics (e.g., I'-TCP [42]) and the intermediary may be-
come a bottleneck due to the overhead involved in processing traffic associated with
each connection and handing over the ‘state’ of each connection to the new interme-
diary during handoff.

Link-level TCP solutions such as those which use TCP-aware smarts in the base
station (e.g., snoop protocol [28]) have scalability problems and may even degrade the
performance of TCP in a wide-area cellular environment when the latency over the
wireless link dominates the round trip time [37]. In addition, such a solution requires
the base station to maintain significant state and is often tuned to specific flavor of
TCP (e.g., snoop protocol does not work well with TCP Vegas).

3.2 Transport Level Modifications to the Basic TCP

Variants for Wireless Networks

3.2.1 Sender-Only Modifications

e K-SACK [30]: K-SACK is an efficient SACK-TCP variant of TCP New-Reno
that requires modification at the TCP sender only. The novelty of this proto-
col is that it differentiates between wireless losses and congestion losses from
anticipated loss pattern and behaves accordingly. During fast recovery, in case
of wireless loss, it does not halve the congestion window instead it stalls the
growth of the window. The fast recovery phase is partitioned into two phases:
halt growth phase and K-recovery phase. During K-recovery phase, the sender
apprehends congestion only if it anticipates K lookahead-loss within a loss win-
dow of size lwnd, where K and lwnd are appropriately chosen parameters for
the protocol.

The parameter lwnd can be chosen to be equal to the number of outstanding
packets. The parameter lookahead-loss estimates the number of losses in the
outstanding packets. For each such loss the sender has received either (i) at
least maz_dupack number of duplicate acknowledgements, or (i) maz_dupsack

number of selective acknowledgements with higher sequence numbers. For

36

lookahead-loss below K (e.g., K = 2), the sender assumes loss due to chan-
nel error.

Upon entering into the fast recovery phase, if lookahead-loss is less than K, the
sender enters into the halt growth phase, otherwise to the K-recovery phase and
transition between these phases occurs depending on the value of the lookahead-
loss.

During the halt growth phase, congestion window remains frozen and the sender
remains in this phase until the lookahead-loss becomes at least K. When the
sender enters into the K-recovery phase for the first time, ssthresh is set to
maz(cwnd/2,2 x MSS) and cwnd is set to ssthresh. Upon re-entry, ssthresh
remians unchanged, but congestion window is set to maz(cwnd/2,1 x MSS).
This may cause the congestion window to change multiple times during the
same fast recovery period. As a result, upon exiting fast recovery, depending
on the value of ssthresh and cwnd, K-SACK TCP may find itself in the slow
start phase instead of the congestion avoidance phase.

K-SACK performs a better pipe (i.e., number of packets in the link) estimation
by measuring the pipe as the number of unacknowledged segments which are not
marked lost or marked lost and retransmitted. This improved pipe estimation
results in faster error recovery.

The main advantage of K-SACK is that it detects packet loss due to wireless
channel error without explicit notification and it can be used seamlessly in wired
or wired-cum-wireless environment without separate tuning. It was observed to
perform very well under high i.7.d. error condition. Simulation results showed
that, at 5% i.i.d. error rate the throughput was almost twice of that due to
SACK-TCP over New Reno.

Although K-SACK performs well under random packet errors in the wireless
channel, the performance of this scheme will suffer under correlated error con-
ditions. This is due to the fact that, a moderate degree of correlated error will
increase lookahead-loss to K and thus push K-SACK into K-recovery phase.
Therefore, during fast recovery the sender may spend significant amount of time
in K-recovery phase compared to that in the halt growth phase.

'To combat the situation due to correlated packet loss in the wireless channel,

37

higher value of K can be chosen. However, it will increase the chance of con-
gestion collapse in the wired Internet. Since in a real Internet scenario, only a
small percentage of packet losses (e.g., 15% [31]) is recovered by fast recovery,
enhancement only in the fast recovery mechanism as in K-SACK is not likely to
improve the TCP performance significantly compared to the other TCP vari-
ants in a wide-area wireless Internet. In additon, under pathological scenarios
K-SACK would suffer from oscillation between the K-recovery and the halt
growth phase which would reduce cwnd to small values, and consequently, the
performance may fall below that of SACK TCP.

TCP Westwood (TCPW) [32]: TCPW uses a sender-side modification of TCP
congestion window adaptation algorithm which is based on estimation of the
bandwidth used by the TCP connection via monitoring the rate of returning
ACKs. The bandwidth estimate (BWE) is used to set the congestion window
and and the slow-start threshold after a congestion episode (i.e., after three
duplicate acknowledgements or after a timeout), and thereby, TCPW achieves
a “faster” error recovery. The basic congestion window dynamics during slow-
start and congestion avoidance are unchanged. However, TCP Westwood does
not use any method to determine the cause of packet loss, i.e., whether a packet
loss is due to errors in the wireless link or due to congestion in a router. We
will provide more details about TCP Westwood on next chapter 4.

As an end-to-end solution to error and congestion control in mixed wired and
wireless networks, TCPW was observed to provide significant throughput gain
over TCP Reno and SACK TCP for both random and correlated error condi-
tions in the wireless link. Also, the observed throughput fairness among TCPW
flows across different round trip times was better compared to that for TCP
Reno flows. This was due to the fact that, under TCPW long connections
suffered less reduction in cwnd and ssthresh.

As the round trip time increases, the time for the feedback information to
reach the TCP sender also increases which reduces the effectiveness of TCPW.
Also, TCPW performs poorly when random packet loss rate exceeds a small
threshold. During long correlated error burst, TCP timeouts occur which affect
TCPW performance severely.

38

e TCP Santa Cruz [33]: TCP Santa Cruz (SC) uses new congestion control and
error recovery strategies which are designed to work with path asymmetries,
networks with lossy links, limited bandwidth, variable delay and out-of-order
packet delivery. Since congestion losses are preceded by an increase in the
network bottleneck queue (which may not be true for random losses in the
wireless link), TCP-SC monitors the queue developing over a bottleneck link
and determines whether congestion is incipient in the network and responds by
increasing or decreasing the congestion window accordingly. The goals are to
perform timely and efficient early retransmission of any lost packet, eliminate
unnecessary retransmissions for correctly received packets when multiple losses
occur within a window of data, and provide RTT estimates during periods of
congestion and retransmission.

The congestion control algorithm in TCP-SC is based upon the measurement of
relative delay that packets experience with respect to each other as packets are
transmitted through the network. For each transmitted packet, TCP-SC sender
maintains information about the transmission time of the packet, the arrival
time of an ACK for that packet and arrival time of the data packet at the receiver
(which is reported by the receiver in its ACK). Then for any two data packets
i and j, the relative forward delay D{; can be calculated as DF; = R;; — Sy,
where DJI-T ; represents the additional forward delay experienced by packet j with
respect to packet 7, S;; is the time interval between the transmission of the
packets, and R;; is the interarrival time of data packets at the receiver. Based
upon the values of Df ; over time, the change in the states of the queues (and
specially the bottleneck queue) are determined. For example, if the sum of
relative delays over an interval is 0, it implies that no additional congestion or
queueing is present in the network at the end of the interval with respect to the
beginning.

If n is the operating point of the congestion control algorithm (i.e., n is the
desired number of packets in the bottleneck queue which is assumed to be
one packet more than the BDP of the network), it attempts to maintain the
total number of packets queued at the bottleneck link from the beginning of
the connection until ¢; (V) to n, where Ny, = N;,_, + My,_,, with My,_,

39

being the additional amount of queueing introduced over the previous window
W;_1, and N;; = My,. Now My, , can be calculated based on the relative
delay measurements as follows: My, , = Zt—:p—f;- where %, is the average packet
service time and k is the number of packet pairs within window W;_;. Note
that, the average packet service time can be calculated based on the timestamps
returned by the receiver.

TCP-SC adjusts the congestion window once for each interval equal to the
amount of time it takes to transmit one window of data. Over this interval,
Myw,_, is calculated and at the end of the interval it is added to Ny . If
Ny, < n—4§ (9 is some fraction of a packet), the congestion window is increased
linearly, while if N;, > n+-4, the congestion window is decreased linearly during
the next interval, otherwise the congestion window is maintained at its current
size. In this way, since adjustment of the congestion window does not depend
on the arrival of ACKs, the congestion control algorithm becomes robust to
ACK loss.

TCP-SC sender receives precise information on each packet correctly received
and it uses a tighter estimate of the RTT per packet. TCP-SC recovers losses
quickly without necessarily waiting for three duplicate acknowledgements from
the receiver. Let packet ¢ initially transmitted at time ¢; is lost and marked as a
hole in the ACK window. Packet 7 is retransmitted as soon as an ACK arrives
for any packet transmitted at time ¢, such that ¢, > #;, and teyprens —t; > RTTS,
where teyrrens is the current time and RT'T, is the estimated round trip time of
the connection.

TCP-SC was observed to provide high throughput and low end-to-end delay
and delay variance over networks with a simple bottleneck link, networks with
congestion in the reverse path of the connection, and networks which exhibit
path asymmetry. TCP-SC can be implemented as a TCP option by utilizing
the extra 40 bytes available in the options field of the TCP header.

TCP-SC does not differentiate between packet loss due to congestion and packet
loss due to wireless link error. In fact, effectiveness of the proposed relative

delay-based approach under correlated wireless channel losses is unclear.

o Selective Slow Start (S55) [34]: Under this scheme, TCP attempts to distinguish

40

between packet loss due to congestion and packet loss due to handoff based on
the pattern of losses. For this, after a timeout the TCP sender counts the
number of lost segments in the last S attempts including the current one and
compares it with a pre-calculated LIMIT. If the number of lost segments is
higher than LIMIT, the sender assumes that these losses are due to network
congestion and initiates slow start, otherwise it continues to transmit at its
current rate using the same timer values assuming that the losses are due to
handoff. The value of the parameter LIMIT is set in a way that it can account
for all segment losses during a handoff. For example, LIMIT can be set as
LIMIT = 59(53—;%, where C' is the senders transmission rate (in bps), T}, is the
average handoff duration (in seconds), Seg is the average segment size and K
is a safety factor.

Although the SSS scheme was shown to perform better than standard TCP in
wireless ATM environment for high handoff rate (e.g., 0.2/second), the main
limitation of this scheme is that for rate adaptation at the TCP sender it does
not take wireless link conditions into account. Also, using a high value of LIMIT

may cause congestion collapse in the wired Internet.

3.2.2 Receiver-Only Modifications

o Freeze-TCP [35]: This is a proactive mechanism in which the receiver notifies
the sender of any impending ‘blackout’ situation (e.g., due to wireless channel
fading or handoff) by ‘zero window advertisement (ZWA)’ and prevents the
sender from entering into congestion avoidance phase. Upon receiving ZWA,
the sender enters into the ‘zero window probes (ZWP)’ mode and freezes cor-
responding timers. While in ZWP mode, the sender transmits zero window
probes and the interval between successive probes grows exponentially until it
reaches 1 minute, where it remains constant. When the ‘blackout’ period is
over, the receiver sends TR-ACKs (Triplicate Reconnection ACKs) for the last
data segment successfully received to enable fast retransmit at the TCP sender.
Ideally, the ‘warning period’ prior to disconnection (i.e., how much in advance
should the receiver start ZWA) should be long enough to ensure that exactly

one ZWA gets across the sender. If the warning period is longer than this, the

41

sender will be forced into ZWP mode prematurely resulting in idle time prior
to disconnection. If the warning period is too small, the receiver might not
have enough time to send out a ZWA which will cause the sender’s congestion
window to drop.

One drawback of this approach is that, the receiver needs to predict the im-
pending disconnections. For this, some cross-layer information exchanges may

be necessary.

ACK-Fragmentation Protocol [36]: If the mobile host, after sending three dupli-
cate acknowledgements, receives a new retransmitted packet from the sender,
it sends N equally spaced cumulative acknowledgements for this new packet
within one round-trip time. If for this received packet the sequence number of
the first octet is S and last octet is F', the ith cumulative acknowledgement
will acknowledge upto octet S+ 4(F — S)/N. The value of N can be computed
from the random packet loss probability in the wireless link, the link capacity,
round-trip time and buffer size at the bottleneck link [36).

The effectiveness of this protocol comes from the fact that increased number
of acknowledgements within same round-trip time expedites the resumption of
normal transmission window at the TCP sender. Moreover, it increases the

chance that the sender receives at least one acknowledgement.

3.2.3 Modifications at the Sender and the Receiver

e Wireless TCP (WTCP) [37]: WTCP is an end-to-end reliable transport layer
protocol for wired-cum-wireless networks which uses rate-based transmission
control instead of window-based transmission control and the rate adaptation
computations are performed by the receiver. Since the receiver performs the rate
computations, the effects of delays variations and losses in the ACK path are
eliminated. The goal of WTCP is to decrease the transmission rate aggressively
in case of congestion (so that the congestion alleviates quickly) and decrease
less aggressively in the case of incipient congestion to improve efficiency.

To distinguish between congestion-related and non-congestion-related packet
loss, the WTCP receiver, using a history of packet losses, computes the mean

and mean deviation in the number of packet losses when the network is pre-

42

dicted to be uncongested. If the loss is predicted to be due to congestion, the
transmission rate is decreased aggressively by 50%. For non-congestion related
packet loss WTCP uses the ratio of the average interpacket delay observed at
the receiver to the interpacket delay at the sender (rather than using packet loss
and retransmission timeouts) to control transmission rate. The WTCP receiver
maintains two state variables lavg_ratio and savg.ratio for the long-term and
short-term running averages of the ratio of the observed sending rate at the re-
ceiver to the actual sending rate at the sender. At any time, the receiver can be
in one of the three states—increase (when lavg.ratio > oy and savg.ratio >),
decrease (when lavg_ratio > a_ and savg_ratio > f3_), maintain.

WTCP uses SACK and no retransmission timer for loss recovery. The sender
tunes the desired rate for ACK transmission by the receiver so that it receives
at least one ACK in a threshold period of time and can react to the new trans-
mission rate.

In summary, WTCP is significantly different from TCP and tuning of the dif-
ferent parameters would be required to optimize the performance of WTCP.

Ezplicit Congestion Notification (ECN) TCP [38]: This proposal is based on
the TCP with explicit congestion notification [39] mechanism where the routers
should inform the TCP sender of incipient congestion so that the TCP senders
can lower the transmission rate. For example, if RED (Random Early Detection)
mechanism is used, a router signals incipient congestion to TCP by setting the
Congestion Experienced (CE) bit in the IP header of the data packet when the
average queue size lies between two thresholds min, and mazg,. In response,
the receiver sets the ‘ECN-Echo (ECE)’ bit in the ACKs and when the sender
receives an ACK packet with ECE bit set, it invokes the congestion control
mechanism. In case of packet loss in the wireless channel, the receiver sends
ACK packets without CE bit set and on receiving three duplicate ACKs without
CE bit set the sender deduces that the packet loss is due to errors in the wireless
channel. In this case, the sender does not invoke the congestion avoidance
algorithm.

In case of long outage in the wireless channel, this scheme may not work well.
Again, this can be used only for ECN-capable TCP.

43

o FEifel Algorithm [40]: A large number of timeouts and fast retransmissions that
occur at a TCP sender have been observed to be spurious. That is, the ACKs
received at the sender after a timeout or fast retransmit are actually the ACKs
for the original packets and not for the retransmitted packets. Spurious fast re-
transmits result when the packet reordering in the Internet results in a reorder-
ing length more than the duplicate ACK threshold. Due to spurious timeouts
and spurious retransmissions, the TCP sender unnecessarily reduces the trans-
mission rate and enters into a go-back-N type of retransmission mode. When
the sender enters into the retransmission mode, it causes the receiver to send
duplicate ACKs which may result in fast retransmit after a timeout resulting
in further reduction in transmission rate. The Eifel algorithm was proposed to
eliminate the problems caused by spurious timeouts and spurious fast retrans-
mits in TCP.

The Eifel algorithm uses the TCP timestamp option. Each packet transmitted
by the sender is timestamped and the values of ssthresh and cwnd are also stored.
The receiver returns the timestamp value of the packet in the corresponding
ACK. After a timeout or a fast retransmit, the values of ssthresh and cwnd
are updated according to the usual algorithms and the packet is retransmitted.
After receiving the ACK, if the sender finds that it is for the original packet, it
restores the values of ssthresh and cwnd.

This algorithm does not take packet loss due to wireless channel error into
account, and therefore, does not solve the problems of TCP in a wired-cum-

wireless network.

3.2.4 Modifications at Base Station: Non-End-to-End Trans-
port Level Approaches

e Indirect-TCP (I-TCP) [42]: I-TCP splits a transport layer connection between
the MH and the FH into two separate connections — one over the wireless link
between the MH and its mobile support router (MSR) at the base station and
the other between the MSR and the FH over the fixed network. After receiving
the data packets destined to the MH, the MSR sends ACKs to the FH and

forwards the packets to the MH using a separate transport protocol designed

44

for better performance over wireless links. Such a transport protocol for the
wireless link can support notification of events such as disconnections to the
link-aware and mobility-aware applications. In this case, the mobile hosts can
run simple wireless access protocol to communicate with the MSR and the MSR
manages the communication overheads for communicating with the FHs. For
example, when an MH wants to communicate with a FH, it sends a request
to its current MSR, and the MSR then establishes a TCP connection with the
FH. Whenever an MH moves to another cell, the entire connection needs to be
moved to the new MSR which should be completely transparent to the fixed
network.

Performance of I-TCP was observed to be better than regular TCP in wide-area
wireless networks. However, end-to-end TCP semantics are not maintained in
this protocol and applications running on the mobile host have to be relinked
with the I-TCP library. Also, I-TCP is not suitable for cases where the wireless
link is not the last part of a connection path, because in such a case a par-
ticular connection may need to be split several times resulting in performance

degradation.

Using ICMP Control Messages [44]: A scheme for improving TCP performance
in wireless networks using ICMP control messages was proposed in [44]. In this
scheme, the BS transmits an ICMP-DEFER message to the FH when it fails in
its first attempt to transmit the packet to the MH over the wireless link. On
receiving the ICMP-DEFER message for a particular packet, the sender resets
the corresponding timer. When all local retransmissions fail, the BS notifies the
sender using ICMP-RETRANSMIT message so that the sender can retransmit
the packet.

Using Multiple Acknowledgements [45]: The scheme proposed in [45] maintains
end-to-end semantics and uses two types of ACKs, namely, partial ACK (ACK,)
and complete ACK (ACK,) to distinguish losses due to congestion from losses
due to wireless link error. The sender uses the regular TCP mechanism with
slow-start, congestion avoidance, fast retransmit and fast recovery. The com-
plete acknowledgement ACK, is sent by the receiver and the partial acknowl-
edgement ACKj, is sent by the BS. ACK,, with sequence number N, informs the

45

sender that packet(s) with sequence numbers up to N, —1 have been received by
the BS, and the BS is facing problems in forwarding the packets with sequence
numbers from ACK, up to N, — 1 (i.e., it has not received the ACK from the
wireless host even after waiting for the maximum possible delay time between
the transmission of a packet from BS and reception of the ACK from the mobile
host). Then the sender marks the corresponding packets and updates RTO to
give the BS more time to perform retransmission. If timeout occurs, and the
packets are still marked, the sender will backoff the timer only without invoking
any congestion control method. On receipt of ACK,, the sender works similar
to a normal T'CP sender.

When the BS receives an in-sequence packet, or an out of sequence packet which
is not in its buffer, the packet is buffered and transmitted to the mobile host.
The BS starts a timer with the timeout value equal to the maximum time which
can elapse between the reception of a packet at the BS and its acknowledgement
from the mobile host. If the BS receives an out of sequence packet which is
present in the buffer, it sends an ACK,, to the sender. If the local timer at the
BS expires before receiving an acknowledgement from the mobile host, the BS

retransmits the packets and sends an ACK,, to the sender.

Mobile-End Transport Protocol (METP) [46]: METP hides the wireless link
from the rest of the Internet in a wired-cum-wireless network by terminating the
TCP connection at the BS on behalf of mobile host. TCP/IP between the BS
and a mobile host is replaced by a low overhead protocol. All TCP connections
are handled by METP at the BS which negotiates with another host in the
Internet to open or close a TCP connection, and keeps the connection state
and sending and receiving buffers. For data transfer from a mobile host to an
Internet host through a TCP connection, the mobile host sends the data to the
BS, and METP sends them out as TCP segments to the destination. When a
TCP/IP packet destined to the mobile host arrives at the BS, METP sends an
ACK and puts it in the receiving buffer from where a separate process transmits
it to the mobile host. In case of temporary link failure, since METP at the BS
continues to receive data from the fixed host, it sends out ACK with smaller

advertised window. The advertized window is retained to its original level when

46

the wireless link becomes good again.

METP uses link layer retransmissions and acknowledgements for reliable data
delivery over the wireless link. If no acknowledgement is received immediately
after a data frame transmission, the frame is retransmitted after a random
backoff interval. To avoid buffer overflow, flow control is achieved by the METP
at the receiver through periodically sending out a feedback packet to inform the
sender of the available buffer space.

METP uses a header size of only 12 bytes for packets exchanged between the
mobile host and the BS. The header size can be further reduced by using the
idea of header compression. In case of handoff the old BS opens a separate TCP
connection with the new BS and sends all data and state information.

The merits of this protocol are that by using small header it incurs less overhead
for wireless transmission and it avoids activation of the TCP congestion control
mechanisms in case of packet loss in the wireless channel. METP was observed
to provide better throughput performance than split-connection TCP and split-
connection TCP with selective ACK under varying handoff interval and BS
buffer size. However, METP does not maintain the strict end-to-end semantics
and suffers from the scalability and reliability problems (due to failure of the
BS).

WTCP [47): WTCP uses a modified flow and error control protocol between
the BS and the mobile host. After receiving a TCP/IP packet from a fixed host,
WTCP at the BS buffers it (if this is the next packet expected from the fixed
host or if the packet has a larger sequence number than expected) along with
its arrival time. WTCP then transmits the buffered packet to the mobile host
and when a packet is transmitted to the mobile host, the BS schedules a new
timeout if there is no other timeout pending. Upon receiving the ACK from the
mobile host, WTCP frees the corresponding buffer and sends the ACK to the
fixed host. WTCP performs local error recovery based on duplicate acknowl-
edgements or timeout. In case of timeout, WTCP reduces the transmission
window size to one assuming subsequent bad channel condition. As soon as the
BS receives an ACK, the transmission window size is set again to the receiver

advertized window size. Also, upon reception of a duplicate ACK, WTCP opens

47

the transmission window in full.

Another feature of WTCP is, it attempts to hide the time spent by the BS
for local error recovery by adding that time to the timestamp value of the
corresponding segment so that the TCP’s round trip time estimation at the
source is not affected. In this way, the TCP source’s ability to effectively detect
congestion in the wired network is not impacted.

Due to its aggressiveness in window adaptation, WTCP was observed to pro-
vide better/equal throughput performance compared to I-TCP and snoop TCP.
However, a more optimized flow and congestion control scheme along with
header compression (as in METP) can be used under similar scenario to provide

even better performance.

A qualitative comparison among the different end-to-end TCP modifications is
provided in Table 3.1.

3.3 Summary and Outlook

A brief overview of the different proposed TCP mechanisms (based on transport level
modifications) along with their advantages and disadvantages have been presented.
Among all these mechanisms, our focus is on the approaches that estimate bandwidth
and use that estimate to control transmission rate. TCP Westwood falls in this
category. We have a detailed analysis of TCP Westwood on next chapter 4. From all
the TCP apporaches studied in this chapter, we can conclude that future research in

end-to-end TCP design for wired-cum-wireless networks should address

e how to distinguish among packet losses due to wireless channel error and conges-
tion error (e.g., by using some estimation/filtering mechanisms) and comparison
among the different (estimation/filtering) mechanisms

e how to exploit the above information for adjusting the transmission rate at the
sender in the case of packet loss to design end-to-end TCP based on modifica-
tions at the sender only

e fairness, energy-efficiency and TCP-friendliness of an end-to-end TCP cus-

tomized for wired-cum-wireless networks.

Table 3.1. Comparison among ti_ie transport-level TCP modifications.

48

TCP Maintains | Can handle Requires Can handle Can handle
Variant end-to-end | end-to-end | intermediaries’ | random packet | burst errors
semantics | encryption support loss efficiently
K-SACK Yes Yes No Yes No
Westwood Yes Yes No Yes No
Santa Cruz Yes Yes No Yes -
SSS Yes Yes No Yes No
Freeze-TCP Yes Yes No Yes Yes
ACK- Yes Yes No Yes No
fragmentation
WTCP Yes Yes No Yes Yes
(rate-based)
ECN Yes No Yes Yes No
Eifel Yes Yes No No No
I-TCP No No Yes Yes No
Using No No Yes Yes Yes
ICMP
Multiple- Yes No Yes Yes Yes
ACK
METP No No Yes Yes Yes
WTCP Yes No Yes Yes Yes

(window-based)

49

Chap 4

Analysi of TCP Westwood

In this chapter we investigate the bandwidth estimation mechanism of TCP Westwood
[32] and its consequent impact on the throughput and friendliness performances of
TCP Westwood. We also investigate the interaction of TCP Westwood with a RED

(Random Early Detection) [56] queue in the network router.

4.1 Introduction

An important way of transport-level TCP modification is to exploit an end-to-end
bandwidth estimation. In such a case, the fair share of the bottleneck bandwidth
for each flow is estimated at the TCP sender and the transmission rate is adjusted
accordingly(e.g., in TCP Westwood). This approach to provide enhanced transport
over heterogeneous networks requires only slight moifications at the sender side while
it maintains the end-to-end semantics and requires no support from the lower layers
and/or any network component.

TCP Westwood is a recently proposed end-to-end modification of TCP in which
the transmission rate for a flow at the sender is controlled based on the estimated
available bandwidth for that flow in the end-to-end path. Here, we analyze the behav-
ior of the bandwidth estimation mechanism in TCP Westwood by using simulations
based on ns-2. Simulation results reveal that the proposed technique results in erro-
neous bandwidth estimation under different scenarios with multiple concurrent T'CP

Westwood flows.

50

4.2 TCP Westwood

TCP Westwood sender monitors the rate at which acknowledgements arrive at the
sender and from this it estimates the bandwidth available for this connection. When-
ever the sender perceives a packet loss (i.e., when a timeout occurs or three duplicate
acknowledgements are received), the sender uses the bandwidth estimate to properly
set the congestion window (cwnd) and the slow-start threshold (ssthresh). By adjust-
ing the cwnd and the ssthresh values based on the estimated available bandwidth,
TCP Westwood tries to avoid overly conservative reductions in cwnd and ssthresh
(and hence transmission rate) and as well as ensure faster recovery from packet loss.

TCP Westwood uses a discrete time low pass filter with variable gain to estimate
the available bandwidth in the end-to-end path as follows [32]:

b + bk—1>

5 (4.1)

E)k = akék—l -+ (1 — Ozk) (
where Bk is the filtered estimate of the available bandwidth at time ¢ = t, o =
(27 — Ap)/(27 + Ag), Ag = tg — ty—1 and 1/7 is the cutoff frequency of the filter.
Since an acknowledgement AC K}, received at the TCP sender at time #;, implies that
upto byte BYTENO(ACKj,) have been received by the TCP receiver, a sample of
the estimated bandwidth is:

(BYTENO(ACKy) — BYTENO(ACK;_+1))
Tk — tg—1

b = (4.2)

where #;_; is the time when the previous acknowledgement (i.e., ACK}_1) was re-
ceived.

When the inter-arrival time Ay increases, the filter gain o) decreases, and con-
sequently, the last estimate by_; receives less significance and the past two recent
samples have higher significance. The bandwidth estimate (BE) b is used to set

ssthresh and cwnd during timeout or fast recovery as follows:

/* algorithm for course timeout expiration */
if (course timeout expires)
ssthresh = (BE * RTTmin)/segment_size;
if (ssthresh <2) {
ssthesh = 2;

51

}
cwnd = 1;

endif

/* algorithm for n dupacks */
if (n dupacks are received)
ssthresh = (BE * RTTmin)/segment_size;
if (cwnd > ssthresh) {
cwnd = ssthesh
}

endif

Since the estimated bandwidth is considered to be the currently available band-
width, TCP Westwood sets both ssthresh and cwnd equal to BE x RTTmin and
then the standard New-Reno fast retransmit and fast recovery follow. During time-
out, slow-start threshold is set equal to BE and the cwnd is set equal to one. As
timeout is an indication of severe congestion and/or high wireless loss, it is reason-
able to set congestion window to one. At the same time setting of ssthresh equal to

BE ensures speedy recovery.

4.3 Accuracy of the Bandwidth Estimation Mech-
anism in TCP Westwood

Fig. 4.1 shows the network topology used to analyze the behavior of the bandwidth
estimation procedure. In Fig. 4.1, the bottleneck link is used by n TCP flows, S;
and R; represent the ith TCP source and sink, respectively. For each TCP flow, the
acknowledgements and the data packets pass through the same path. The bottleneck
link capacity is 20 Mbps and all the packets are assumed to be of size 1000 bytes.
Each TCP flow is assumed to have identical propagation delay. Ten TCP fows (flowl
- flow10) are started initially and another ten flows (flow11 - flow20) are started at
30 seconds. All flows continue to the end of simulation (60 seconds). Each flow has
infinite backlogged traffic.

52

Buffer .
S 1ms Ry (Mobile node)
1 1ms W

(Fixed host)

Router BS

Bottleneck fink <
20 Mbps, 35 ms
S I ms 1ms

(Fixed host}

Ry (Mobile node)

Figure 4.1. Simulation scenario.

4.3.1 Scenario 1: Bandwidth Estimation Under No Loss

In this scenario, we assume no loss (either due to congestion or wireless error). To
avoid congestion loss, sufficient buffer is used in the bottleneck link.

Figs. 4.2 and 4.3 show typical variations in bandwidth estimate (BE) with time
for flowl and flowl5, respectively. Similar variations in bandwidth estimation are
observed for other flows (in flowl - flow10 and flow11 - flow20). As is evident from
Fig. 4.2, after initial rise up, the available bandwidth is estimated to be about 11
Mbps during the first 30 seconds although actual fare share in this case is only 2
Mbps (bottleneck capacity of 20 Mbps shared among 10 flows). For second half of
the simulation time (where number of flows is doubled), the available bandwidth
is estimated to be about 6.5 Mbps for all flows (Howl - flow20) although the fare
share during that period is 1 Mbps. Therefore, the estimation error is about 450%
during the first 30 seconds and about 550% during the last 30 seconds. Note that the
estimated bandwidth (and hence the estimation error) is quite stable.

Typical variations in the aggregate of the bandwidth estimate (ABE) for all flows
with time is shown in Fig. 4.4. The aggregate bandwidth estimate is observed to
be about 120 Mbps and 140 Mbps during the first half and the second half of the
simulation period, respectively although the bottleneck link bandwidth is only 20
Mbps for all periods. Therefore, the bandwidth estimation method used in TCP
Westwood is erroneous. Error in bandwidth estimation increases as the number of

flows increases.

53

12 T T T T T
101 !
2 s8I 4
o
£
£ -+++ TCP Westwood BE
g — Fairshare | heereeveeeeiis RN
=]
& 6 4
=
ke
&2
©
.E M
© :
w 4_:. -
2- \; |
0 1 1 1 1 1

0 10 20 30 40 50 60

Time, s

Figure 4.2. Variation in BE for flow! (scenario 1).

9 T T T T T
8r m
7F .
£
= 6r :]
£ :
=] :
E sk : J
g : -+~ TCP Westwood BE
o : —— Fair share
=y :
2 R
5 af : q
£
k7
if]
3r -
2k E
it :
0 1 1 /: J. 1
0 10 20 30 40 50 60

Time, s

Figure 4.3. Variation in BE for flowl5 (scenario 1).

54

200
180+

160 Y g

120 : 1

100F

Estimated bandwidth, Mbps

60
40 4

20}

Time, s

Figure 4.4. Variation in aggregate of estimated bandwidth for all flows (scenario 1).

4.3.2 Scenario 2: Bandwidth Estimation Under Wireless Loss

In this scenario, the TCP sinks (R; — Rgg) are assumed to be connected to the bottle-
neck router through wireless a link of bandwidth 22 Mbps (e.g., 802.11b WaveLAN).
Packet loss is assumed to be only due to errors in the wireless link (i.e., no conges-
tion loss) and packet error rate in the wireless link is assumed to be 1%. Typical
variations in the bandwidth estimate for each flow and the aggregate bandwidth for
all flows are shown in Figs. 4.5, 4.6, repectively. Unlike scenario 1 the variations in
the instantaneous bandwidth estimates for all the lows may not be same in this case.
The aggregate bandwidth estimate for all flows is in the presence of wireless loss still
very high (i.e., 100 Mbps during the first 30 seconds and 150 Mbps during the last
30 seconds).

4.3.3 Scenario 3: Bandwidth Estimation Under Congestion
Loss
In this scenario, packet loss is assumed to be only due to congestion in the bottleneck

router. The amount of buffer at the bottleneck router is assumed to be equal to
the bandwidth-delay product of the network (185 packets). Similar to scenario 2,

Estimated bandwidth, Mbps

Estimated bandwidth, Mbps

30

Time, s

40

50

60

Figure 4.5. Variation in BE for flowl (scenario 2).

200

180

160

140

120

100

20

gof |
60}

40K

20

30

Time, s

40

50

&0

55

Figure 4.6. Variations in the aggregate of estimated bandwidth for all flows (scenario

2)

56

estimated bandwidth for each flow has been observed to be high compared to the
corresponding fair share (Fig. 4.7). The aggregate of the estimated bandwidth for
all flows is about four times and seven times the ideal estimated bandwidth during
the first 30 seconds and the last 30 seconds of the simulation run, respectively. This

erroneous bandwidth estimation may lead to congestion collapse.

200 T
180+

teof SR]

140

1201

100 e T

Estimated bandwidth, Mbps

] R T 1
sof
a0

20f ¥ -

o] 1 1 1 Il 1]
0 10 20 30 40 50 60

Time, s

Figure 4.7. Variation in aggregate of the estimated bandwidth for all flows (scenario

3).

4.3.4 Scenario 4: Bandwidth Estimation Under Both Con-

gestion Loss and Wireless Loss

In this scenario, the bottleneck buffer is set to 185 packets. Packet loss rate in the
wireless link is assumed to be 1%. Fig. 4.8 depicts bandwidth estimation of flowl
as representative of first 10 flows. Although there are occasional degradations in the
estimated bandwidth, it remains near 10 Mbps most of the time. Variations in the

aggregate of the estimated bandwidth are similar to those in scenario 3.

57

12 T T T T T
wF 25 T X
a8 8 E
Fs)
s
£ :
k<] :
2 :
2 6f: 4
s :
T
o ;
1 :
£ :
£ :
A :
it} ak i
af .
0 1 : ; :)
0 10 20 30 40 50 60

Time, s

Figure 4.8. Variation in BE for flowl (scenario 4).

200 T T T T T
1801
160

120F

8o . -

Estimated bandwidth, Mbps

o .

201 -

o L i 1 1 i
) 10 20 30 40 50 60

Time, s

Figure 4.9. Variation in aggregate of the estimated bandwidth for oll flows (scenario

4)-

58

4.3.5 Summary of Observations

The bandwidth estimation mechanism in TCP Westwood always over estimates the
available bandwidth for each flow (compared to its fair share). In the presence of errors
(congestion and/or wireless) the inaccuracy in the bandwidth estimation increases
with increasing number of flows. This erroneous bandwidth estimation causes each
TCP Westood flow to transmit at a rate which is much higher compared to its fair
share. This may cause TCP Weswood to become unfriendly to other TCP variants

and may also lead to congestion collapse (and hence drastic reduction in througput).

4.4 Impact of Aggressive Bandwidth Estimation

To demonstrate the impact of erroneous bandwidth estimation of TCP Westwood on
its performance, we observe the variations in congestion window for a TCP Westwood
sender, queue length in the bottleneck buffer and throughput compared to those for
a TCP New-Reno flow.

4.4.1 Variations in Congestion Window

Since TCP Westwood sets ssthresh and cwnd based on current estimated bandwidth
(which is much higher than the actual available bandwidth), the congestion window
is observed to be very high (above 100 segments in this case). In the ideal case, the
congestion window size should be around 18 (~ 2 Mbps x 74 ms/8000) segments.
For a New-Reno flow, variation in the congestion window size is closer to that of the
ideal case (Fig. 4.10). Therefore, a TCP Westwood sender will transmit more packets

resulting in much higher level of congestion in a bottleneck router.

4.4.2 Variations in Bottleneck Queue Length

A RED queue is assumed at the bottleneck router for which values of mazthresh and
minthresh are 150 and 100, respectively. After the first 30 seconds of simulation run,
10 TCP Westwood flows are added on top of the 10 TCP New-Reno flows. During
the first half of the simulation the variation of the queue length is observed to be
quite stable and the maximum queue length is observed to be about 120 (Fig. 4.11).

59

160 T T T T

12of i : .

100

: -
a0l : — New-Reno : B

Size of congestion window

60

Figure 4.10. Variations in congestion window size for TCP Westwood and TCP

New-Reno (under congestionl loss only).

However, addition of the TCP Westwood flows causes the queue dynamics to become
more unstable and queue length is observed to vary between 0 to 185 (the maximum
limit). The aggressive bandwidth estimation mechanism of TCP Westwood causes
the queue length to exceed the limit and hence packet-drop for all the flows.

4.4.3 Variations in Throughput

The throughput performance of TCP Westwood is compared to that of TCP New-
Reno when they run separately under conditions similar to scenario 3.

The observed throughput for a TCP Westwood flow is highly variable over time
compared to that for a TCP New-Reno flow (Fig. 4.12). This is due to the fact that a
typical TCP Westood flow pushes much more traffic in the network than expected and
hence causes more packet losses. From the simulation traces we have observed that
during the 60 seconds of simulation run the tagged TCP Westwood flow experienced
38 timeouts while TCP NewReno experienced only 3 timeouts. The number of packet
drops for TCP Westwood has been five times more than that for TCP NewReno. As
a result, the throughput for TCP New-Reno is observed to be much higher (250

60

200 T T T T T

Queue length

Time, s

Figure 4.11. Variations in bottleneck link queue size for TCP Westwood and TCP

New-Reno (under congestionl loss only).

700 T u T T T
6001 E

500+ HE

a00k- i —— New-Reno PR

Throughput, Kbps

Figure 4.12. Variations in throughput for TCP Westwood and TCP New-Reno (un-

der congestion loss only).

61

350

3001

250

2001

--+ New-Reno only
—— New-Reno and Westwood

Throughput, Kbps

150+

1 2 L 1
0 10 20 30 40 50 60

Time, s

Figure 4.13. Friendliness of TCP Westwood compared to TCP New-Reno (under

congestionl loss only).

KB/sec - 130 KB/sec) compared to that for TCP Westwood (70 KB/sec - 60 KB/sec)
(Fig. 4.12).

4.4.4 Friendliness of TCP Westwood to Other TCP Flows

To determine the friendliness behavior of TCP Westwood compared to that of TCP
New-Reno, we observe the variations in throughput for a tagged flow (flowl in this
case) in two cases—when the tagged flow co-exists with all TCP New-Reno flows and
when it co-exists with TCP Westwood flows. For these two cases 10 new TCP New-
Reno flows and 10 new TCP Westwood flows are added, respectively, on top of the
10 TCP New-Reno flows.

Introduction of TCP Westwood flows causes more fluctuation in the throughput
of the tagged flow (Fig. 4.13). With the introduction of TCP New-Reno flows, the
throughput of the tagged flow stabilizes to about 130 KB/sec while for the TCP West-
wood case the average is around 60 KB/sec. Therefore, TCP Westwood is unfriendly
towards the tagged flow and at the same time it wastes network bandwidth (since it

does not utilize the bandwidth to increase its own throughput).

62

4.5 Summary

We have observed that the bandwidth estimation mechanism in TCP Westwood al-
ways overestimates the available bandwidth for a flow in the end-to-end network
path. This causes TCP Westwood flows to become severely unfair to the other type
of TCP flows and may also cause congestion collapse. Therefore, the results reported
in [32] on the performance of TCP Westwood is somewhat fallacious. The cause of
Westwood’s overestimation and performance degradation has been addressed in next
chapter 5. Moreover, we have provided alternative solution for bandwidth estimation

that does not overestimate.

63

Chapter 5

TCP Prairie: A New TCP Variant
Based on Adaptive Bandwidth

Estimation

This chapter presents a new TCP variant called TCP Prairie which is a sender-only
TCP modification based on dynamic bandwidth estimation in wide-area wireless net-
works. The protocol addresses the burstiness pattern of ACK arrival and estimates
the bandwidth from the ACK stream. The estimate is then used to control the tran-
mission rate. The protocol provides significant throughput improvement compared
to TCP Westwood and TCP New-Reno and satisfactory fairness and friendliness per-

formances.

5.1 Introduction

The original bandwidth estimation mechanism in TCP Westwood was observed to
be erroneous (in chapter 4) which could make TCP Westwood unfriendly towards
other TCP variants (due to over estimation of the “fair share” of the bottleneck
bandwidth for the corresponding TCP flow). To alleviate this problem, enhanced
estimation methods (e.g., CRB (Combined Rate and Bandwidth) estimation method
[54], ABSE (Adaptive Bandwidth Share Estimation) method [55]) were proposed.
In this chapter, we propose a sender-only TCP modification (T'CP Prairie) which

64

is based on a novel dynamic bandwidth estimation mechanism for TCP flows in
a wired-cum-wireless network. We explore the efficacy of the proposed bandwidth
estimation mechanism in TCP Prairie and evaluate the resulting throughput and
friendliness performances of TCP Prairie. Comparative performance among TCP
Prairie, TCP Westwood and TCP New-Reno is thoroughly investigated.

5.2 Motivation and Contribution

TCP Westwood is the representative of the TCP modifications based on dynamic
bandwidth estimation for improving TCP performance in wired-cum-wireless net-
works. We observe that TCP Westwood measures available network bandwidth for a
TCP flow from the rate of the returning ACKs. It calculates bandwidth sample by
simply dividing the number of acknowledged bytes by the corresponding inter-arrival
time. When the majority of the network traffic is TCP flows, due to the bursty be-
havior of the TCP senders and the traffic management mechanisms at the routers,
this does not provide an accurate estimate of the available network bandwidth for a
flow.

TCP’s inherent congestion control mechanism results in a bursty transmission
pattern by the TCP sender. During the slow-start phase, due to the immediate
increase of congestion window by one, the TCP sender transmits two packets on
reception of each ACK. Starting with an initial congestion window, repetition of this
process in each round-trip time results in a transmission of a packet burst followed
by an off period. Also, during the congestion avoidance phase, since the congestion
window increases immediately after receiving ACKs for a full transmission window,
the bursty pattern is retained. Again, the first-in-first-out queueing policy at a router
results in a bursty service pattern for packets.

The cumulative effect of the above two phenomenon is the bursty ACK arrival
process at the TCP sender. In a burst, ACKs are closely spaced and the bandwidth
estimation based on the inter-arrival time of these ACKs at the sender does not reflect
the real bandwidth available for the TCP sender. Therefore, in cases of multiple flows,
the calculated sample bandwidth becomes very high, and consequently, the sender

overestimates the available network bandwidth. This results in an aggressive packet

65

transmission by the TCP sender into the network.

Our proposed new TCP variant called TCP Prairie is an augmented version of
TCP New-Reno as majority of TCP implementations are TCP New-Reno these days
[69]. TCP Prairie is a sender-only TCP modification and is based on dynamic band-
width estimation in a wide-area wireless network. We present novel mechanisms for
bandwidth sample calculation and bandwidth estimation by monitoring the acknowl-
edgement stream and the RTT values at the sender. Based on the RT'T values, TCP
Prairie determines the degree of congestion in the network.

Armed with the information on the degree of congestion, TCP Prairie spreads the
acknowledgement burst over the off period (i.e., the interval between the arrival of
two successive bursts) and obtains the bandwidth sample value. This gives a more
accurate and safe bandwidth sample. The bandwidth estimate is obtained from the
bandwidth sample using a discrete time EWMA (Exponentially Weighted Moving
Average) filter whose gain varies with the change of available bandwidth. The more
the change of bandwidth, the more is the gain of the EWMA filter and hence the
more is the weight given to current sample.

The congestion control mechanism of TCP Prairie is similar to that of TCP West-
wood or BA-TCP [57]. Whenever the sender perceives a packet loss (i.e., through three
duplicate acknowledgements or a timeout) it uses the estimated bandwidth to prop-
erly set the congestion window (cwnd) and the slow-start threshold (ssthresh). By
setting the cwnd and ssthresh values which are based on an accurate estimate of the
available bandwidth, TCP Prairie avoids reduction in congestion window and slow-
start threshold which is neither excessive nor insufficient. Therefore, TCP Prairie
achieves both faster recovery and effective congestion avoidance.

TCP Prairie is observed to be a very effective transport protocol in handling both
wireless loss and congestion loss in a wide-area wireless network. Experimental stud-
ies reveal that TCP Prairie offers better throughput performance compéred to TCP
Westwood and TCP New-Reno. TCP Prairie is observed to provide better fairness
compared to TCP Westwood. Also, compared to TCP Westwood, it is observed to
be more friendly towards TCP New-Reno flows. This is due to the fact that the
bandwidth estimation in TCP Prairie is much more accurate compared to that in
TCP Westwood.

66

5.3 End-to-End Bandwidth Estimation in TCP Prairie

The TCP Prairie sender monitors the acknowledgement stream and the RTT values
corresponding to a TCP flow to estimate the available bandwidth for that flow. The
available bandwidth for a flow is the amount of the share of the bottleneck bandwidth
that a flow can claim without hurting other flows passing through the same bottle-
neck link (i.e., fair share of the bottleneck bandwidth). For N TCP flows sharing a
bottleneck bandwidth with capacity C, the available bandwidth for a flow is defined

in the following way:

e If there is only congestion loss, fair share for each flow is C'//N regardless of the
TCP mix.

e If all the TCP flows are of type TCP Prairie, in case of wireless loss, fair share
is C/N.

e If there are ny TCP New-Reno and ny TCP Prairie flows (where n; +ng = N),
in case of wireless loss, each of the TCP New-Reno flows will use a bandwidth
share less than C'/N. In this case each TCP Prairie flow can use a bandwidth
share more than C'/N without affecting the TCP New-Reno flows. Therefore,
the fair share for each TCP Prairie flow is greater than C'/N. Note that, TCP
Prairie can provide better throughput by using this increased bandwidth share.

The mechanisms for calculating the bandwidth sample and estimating the avail-
able bandwidth are described below.

5.3.1 Calculation of Bandwidth Sample

To calculate the bandwidth sample, we assume a bursty environment where the sender
transmits packets in a bursty manner and also the routers forward packets correspond-
ing to a flow in a bursty fashion. This results in a bursty ACK arrival process at the
TCP sender. Later, we will show that the derived formula also holds for non-bursty
environment.

Let us assume that an ACK arriving at the sender at time ?; notifies that dj

bytes corresponding to that flow have been received at the receiver. Intuitively,

dey1—di _ Ady

o1t = Do should be considered as the bandwidth sample for the flow. However,

67

[=— burst period —>'<———' gap period ——>}=- diffRTT->{=— burst period *f‘— gap period —>t<dlﬁ'RTl>1

minRTT

unRTT
fg—o . previous RTT period

e current RTT period (in progress)

Figure 5.1. Different parts of an RTT period.

due to the burstiness in the ACK arrival process, At is much smaller for most cases.
Therefore, %}’f may not reflect the fair share of bandwidth for the corresponding TCP
flow.

As explained earlier, a TCP sender always transmits packets in a bursty fashion.
From transmission perspective, a TCP source sends a burst of packets followed by
an off period during which there is no transmission. Similarly, from reception point
of view, a TCP sender receives a burst of ACKs followed by an off period. A burst
period of transmission overlaps with the burst period of reception. Therefore, it can
be said that the lifetime of a TCP flow is a collection of burst periods (during when
it receives ACKs and transmits TCP segments and off period (during when there is
no ACK reception and no transmission).

For simplicity, let us assume that there is a single burst period during each RTT
period (actually multiple burst can be converted into a single burst period) and the
first segment of the burst period is tagged for RT'T. Fig. 5.1 shows the different parts
in an RTT period, where minRTT is the minimum RTT seen by the flow throughout
its lifetime, and currRTT is the measured value of the RTT from previous RTT period
and the current RT'T period is in progress. Since the first segment of the burst is
tagged for RTT, the time difference between two consecutive burst is equal to RTT.
Here, (1 + acwnd) is the number of segments that are acknowledged as a single burst
in the current RTT period, diff RT'T is the difference between minRTT and currRTT
(ie., diffRTT = currRTT - minRTT). Now, we divide the off period (i.e., the interval
between two burst periods) into two parts — diff RTT and gap period. Therefore, an
RTT period is an aggregate of diffRTT, burst period and gap period.

During a burst period from tg t0 triacwnd, the TCP sender receives (1 + acwnd)
acknowledgements for data ranging from dy t0 diyacwna. We can say that, the service

time in the bottleneck router for the data acknowledged during the burst period is

68

equal to the duration of the burst period. Here, the more the service time at the
bottleneck router, the more will be the duration of the burst period. Therefore, the
service bandwidth for the flow can be calculated as

data burst ACKed during burst period

Ws = A
B burst period

dk+acwnd - dk (5 1)
tk-}-acwnd - tk

Let us assume that all segments are of identical size and there is neither missing
ACK nor delayed ACK. We also assume that all the ACK inter-arrival times are
equal. Therefore,

BWS —_ dk+acwnd - dk
tk+acwnd - tk
(k41 — di) X acwnd
(tx+1 — t) X acwnd
Ady,

= A (5.2)

This service bandwidth %‘%}: is exactly similar to our intuitive bandwdith sample. It
is much higher and almost equal to the highest service rate of the bottleneck link
(under the assumption that all traffic through the bottleneck link are due to TCP
flows).

The same burst suffers diffRTT additional delay before being served at the bot-
tleneck router and the total time experienced by the burst in the bottleneck router is
(burst period + diffRTT). Therefore, we define the experienced bandwidth of the flow

as follows:

data burst ACKed during burst period
burst period + diffRTT
g1 — di

N (tke1 — tg) + dif fRTT /acwnd’ (5.3)

BW, =

This experienced bandwidth BW., is still much higher than fair share of bandwidth
when there is congestion in the network.

Now, we define the parameter o (0 < o < 1) which determines the degree of
congestion. The more the congestion in the network, the more is the delay in the

bottleneck router and the more is the value of RT'T. We define « to be equal to min(1,

69

vx dif fRTT /minRTT), where v is a scaling factor for the normalized diffRTT with
respect to minRT'T. For all of our simulations, we set the value of v to be equal to 1.5.
Note that, the value of o approaches one as the congestion in the network increases.

In case of fully congested situation, the rate of ACK reception per RT'T period
(which is a measure of throughput) can be regarded as the fair share of bandwidth.
In a fully congested situation, fair share cannot be higher than achieved throughput
as it will hurt other flows. But for partial congestion or no congestion, the fair share
is certainly higher than the achieved throughput. Considering that the portion of the
gap period contributing to the total time is ax gap period, the approximate fair share
of bandwidth for the flow (BW,) can be defined as follows:

data burst ACKed during burst period

B a — " s N
W burst period + di f fRTT + « X gap period

_ dyy1 — dy (5.4)
(tp41 — t) + dif fRTT /acwnd + a x gap period/acwnd’ '

In presence of congestion (i.e., when « is large), BW, is close to the fair share

of the bandwidth for the flow. But in case of wireless loss, the value of o becomes
small and BW, goes far away from the fair share of bandwidth. When wireless loss
dominates, congestion does not develop and the value of diffRT'T and hence o becomes
very small.

There are cases when multiple flows pass through the bottleneck link, but sufficient
congestion does not develop at the router (due to small receiver window and/or packet
loss due to wireless link error). In these cases, diffRTT and o become very small.
Consequently, BW, becomes too high and almost similar to the service bandwidth
BW;. To alleviate this problem, we modify (5.4) by introducing a new term (1—a) X v
in the denominator. The parameter v should increase with increasing number of flows
through bottleneck link.

Finding the exact value of v is itself a research issue. We set v to be equal to
the measured variance of inter-arrival time (which increases with increasing number
of flows). From the simulation results we have observed that this setting works quite
well. Therefore, the actual fair share of bandwidth is calculated as

dpy1 — dy

BW; = .
7 Ctos — tx) + dif fRTT /acwnd + a X gap period/acwnd + (1 — &) x v

(5.5)

70

Now, if we allow delayed ACKs or missing ACKs, then consecutive acknowledge-
ments may acknowledge more than one segment. Defining Gerr—di — (where ¢ > 1),

seg_size

the formula for the fair share of bandwidth can be written as

diy1 — di

(tks1 —tx) + ¢ X dif fRTT /acwnd + o X ¢ x gap period/acwnd + (1 —a) X c X v’
(5.6)

In case of equi-spaced (or non-bursty) ACKs, ACKs are distributed evenly over

BW; =

the gap period and the gap period vanishes. For the same reason, all inter-arrival times
become almost same and v also vanishes, however, the term ¢ x di f f RT'T/ acwnd does
not vanish which helps us to obtain a conservative sample when the bottleneck router
is congested.

By using (5.6), we obtain a reasonably accurate estimate of the available band-
width for a flow in both bursty and non-bursty situations. Experimental results in

Section ” Accuracy of Bandwidth Estimation” validate this claim.

5.3.2 Bandwidth Estimation

'To estimate the available bandwidth from the bandwidth sample, we use an EWMA
filter whose gain varies with the change in the bottleneck link capacity. Note that,
a constant gain exponential filter is not suitable in such a scenario since its response
time is high when the available network bandwidth changes. Also, we do not consider
the filter used in TCP Westwood due to the following two reasons:

e Being a low pass filter, it provides more weight to the sample which has higher
Aty. Consider the case when bottleneck bandwidth increases due to reduction
of non-TCP traffic (e.g., CBR traffic). In this case Aty decreases and the filter
provides lower weight to the sample, though the better strategy would be to

provide more weight to this sample to obtain a faster response.

e We have observed through simulations that most larger inter-arrival times of
ACKSs are accompanied by larger inter-transmission time of the corresponding
segments. Providing more weight to samples with larger At;, without consider-

ing inter-transmission time is questionable.

71

We propose the following EWMA filter whose gain is adaptive to the network
load:

P, = (1-K;_1)Py+ (0+ |prevRTT ~ currRTT|)/é
R, = minRTT/$
K; = B/(P+R;)
b = (1— Ki)biy + Kibi. (5.7)

In (5.7) K; is the gain of the filter at step i, § is the minimum ACK inter-arrival time,
prevRTT is the RTT measured before currRTT, P, is the estimate of the change of
bottleneck load at step ¢, R; is the round-trip pipe size (i.e., the network bandwidth-
delay product in packets), b; is the bandwidth sample at step i, and b; is the filtered
estimate of bandwidth at step 1.

Note that, in the expression for P;, |(prevRTT—cur RTT) /6| represents the change
of bottleneck load during an RTT period. Also, note that, K; increases with increasing
P;. The rationale behind such formulation of K; is that the more the change in the
bottleneck buffer, the more the change in bandwidth should be and hence the more
the value of K; should be.

5.4 TCP Prairie Congestion Control Mechanism

In this Section we describe how the estimated available bandwidth (EB) is used for
congestion control at a T'CP Prairie sender. Firstly, in TCP Prairie the congestion
window updating mechanisms during slow-start and congestion avoidance phase are
the same as those in TCP New-Reno. That is, the congestion window increases ex-
ponentially and linearly, respectively, during the slow-start and congestion avoidance
phases.

As in TCP Westwood, the estimated bandwidth (EB) is used to set the slow-start
threshold and to tune congestion window after a slowdown event (i.e., after three
duplicate ACKs are received or after a timeout occurs). In the case of reception of
three duplicate ACKs, TCP Prairie sets cwnd and ssthresh as follows:

if (three DUPACKs are received)
ssthresh = EB x minRTT/seg_size;

72

if (cwnd > ssthresh)
cwnd = ssthresh;
endif

endif

The standard fast retransmit/ fast recovery then follows. During congestion avoid-
ance phase TCP sender probes for available bandwidth by continually increasing the
congestion window in a linear fashion. If it receives three duplicate ACKs, it implies
that TCP has hit the bottleneck capacity or wireless loss has damaged one or more
packets. In either case, the estimated bandwidth is regarded as available bandwidth
for the flow. Hence, it sets ssthresh equal to EB x minRTT. The rationale behind
using minRTT is that this setting allows the bottleneck queue to be drained after a
congestion episode.

If a packet loss is indicated by the occurence of a timeout, cwnd and ssthresh are

set as follows:

if (coarse timeout expires)
ssthresh = EB x minRTT/seg_size;
if(ssthresh < 2)
ssthresh = 2;
endif
cwnd = 1;

endif

That is, after a timeout ssthresh is set equal to EB and cwnd is set equal to one.
This behaviour is justified because a timeout indicates a more severe congestion loss
and/or wireless loss. Therefore, the basic TCP New-Reno behavior is retained while

a reasonably speedy recovery is ensured by setting ssthresh to the value of EB.

5.5 Performance Evaluation

The network topology used for performance evaluation is shown in Fig. 5.2, where
the fixed hosts act as TCP sources and the mobile nodes (connected to the base
station/access point through wireless links) act as TCP sinks. A single bottleneck

73

link is shared by the TCP flows and the flows have identical propagation delay and
infinitely backlogged sources. The bottleneck router uses a first-come-first-served

scheduling policy.

R; (Mobile node)

Router BS

Bottleneck link <

(Fixesg host) Rm (Mobile node)

Buffer
§i
{Fixed host)

Figure 5.2. Network topology.

5.5.1 Accuracy of Bandwidth Estimation

Accurate bandwidth estimation is of prime importance since as it has direct impact
on congestion window settings and hence on congestion control. In this Section, we
compare the effectiveness of the proposed bandwidth estimation algorithm with that
of TCP Westwood. All the results are obtained using ns-2 [23]. For this purpose,
we consider five different scenarios — one case under UDP (User Datagram Proto-
col) traffic and four cases in presence of competing TCP flows. The throughput
and friendliness performances of TCP Prairie and results on the interaction of T'CP

Prairie with RED queue are also presented.

5.5.1.1 Bandwidth Estimation Under UDP Traffic

The configuration simulated here has a bottleneck link capacity of 12 Mbps. One
TCP flow (TCP Prairie/ TCP Westwood) shares the bottleneck link with two UDP
flows. The transmission rate of each UDP flow is 4 Mbps. The first UDP flow is
turned on at 20 second and the second UDP flow is turned on at 40 second. At
time 60 second, first UDP flow is turned off and at time 80 second, the second UDP
flow is turned off. The UDP flows then remain silent until the end of the simulation.
One TCP Prairie/ TCP Westwood flow sends data throughout the entire simulation

period.

74

-+-- TCP Prairie
— TCP Westwood

Estimated bandwidth (Mbps})

1 ' L
o 10 20 30 40 50 60 70 80 90

Time (sec)

Figure 5.3. Bandwidth estimation under UDP traffic.

Fig. 5.3 shows the performance of the bandwidth estimation mechanisms for both
TCP Prairie and TCP Westwood. In this simulation scenario, the available bandwidth
for the TCP flow is 12 Mbps, 8 Mbps, 4 Mbps, 8 Mbps and 12 Mbps during the in-
terval of 0-20 second, 20-40 second, 40-60 second, 60-80 second and 80-90 second,
respectively. As is evident from Fig. 5.3, TCP Prairie estimates the remaining band-
width more accurately than TCP Westwood. Moreover, the bandwidth estimation
mechanism in T'CP Prairie has a faster response time to the changes in the available
bandwidth.

5.5.1.2 Bandwidth Estimation Under Competing TCP Flows (No Loss

Scenario)

The configuration simulated here features a 20 Mbps bottleneck link with one way
propagation time of 37 ms. We assume that the TCP segment size is 1 KB and all
the segments are of identical size. 10 TCP flows start at 0 second and another 10
flows start at 30 second. All flows remain active until the end of the simulation (at 60
second). In this scenario, we assume that there is neither wireless loss nor congestion

loss. To avoid congestion loss, sufficient buffer is used in the bottleneck link.

75

-+++ TCP Prairie
— TCP Westwood

rYryyyryyyy

Estimated bandwidth (Mbps)
R
T

Time (sec)

Figure 5.4. Bandwidth estimation under TCP traffic (no loss scenario).

We run TCP Prairie and TCP Westwood under the above stated scenario. Fig. 5.4
shows the estimated bandwidth for flow 1. The fair share of bandwidth is 2 Mbps
during the first 30 seconds and 1 Mbps during the last 30 seconds. As is evident from
Fig. 5.4, TCP Prairie’s bandwidth estimation for flow 1 matches exactly with the fair
share of the bottleneck bandwidth for this flow. This is due to the fact that TCP
Prairie’s bandwidth estimation addresses the burstiness in the network properly. The
estimated available bandwidth for TCP Westwood is far from the fair share and the

estimation error is as high as 450% — 550% in this case.

5.5.1.3 Bandwidth Estimation Under Competing TCP Flows (with 0.1%

Wireless Loss)

The simulation configuration here is exactly similar to that is Section 5.5.1.2 except
that we introduce wireless loss here. For wireless loss, we consider that TCP sinks
are connected to the bottleneck router through wireless link of 22 Mbps (e.g., 802.11b
WaveLLAN). Packet loss is assumed to be only due to errors in wireless link (i.e., there
is no congestion loss) and packet error rate in the wireless link is assumed to be 0.1%.

Fig. 5.5 shows the estimated bandwidth of both TCP Prairie and TCP Westwood.

76

10

++-- TCP Prairie
— TCP Westwood

Estimated bandwidth (Mbps)

0 L L 1 | 1
0 10 20 30 40 50 80

Time (sec}

Figure 5.5. Bandwidth estimation under TCP traffic (with wireless loss).

As is evident from Fig. 5.5, the bandwidth estimation in TCP Prairie is close to the

fair share while TCP Westwood overestimates the available bandwidth.

5.5.1.4 Bandwidth Estimation Under Competing TCP Flows (with Con-
gestion Loss)

In this scenario, packet losses are assumed to be only due to congestion in the bot-
tleneck router. The simulation configuration in this case is similar to that in no loss
scenario case. But bottleneck buffer in this case is set equal to the bandwidth delay
product (185 packets) of the network.

Fig. 5.6 shows the results on bandwidth estimation for both TCP Prairie and
TCP Westwood. Similar to the previous results, TCP Prairie’s bandwidth estimation
is closer to the fair share, but TCP Westwood overestimates the available bandwidth.
Here, the periodic rise and fall in the estimated bandwidth (by TCP Prairie) is due
to the variations in the bottleneck buffer occupancy.

7T

---+ TCP Pralrie |
— TCP Westwaod

Estimated bandwidth (Mbps)

Time {sec}

Figure 5.6. Bandwidth estimation under TCP traffic (with congestion loss).

5.5.1.5 Bandwidth Estimation Under Competing TCP Flows (with Con-
gestion Loss and Wireless Loss)

The simulation configuration here is the combined cases of congestion loss and wireless
loss case. The bottleneck buffer is set to 185 packets and the wireless loss rate is
assumed to be 0.1%. Fig. 5.7 shows typical results on bandwidth estimation by T'CP
Prairie and TCP Westwood in this scenario.

In summary, TCP Prairie addresses the burstiness of ACK arrival process prop-
erly, and therefore, it estimates the bandwidth more accurately (compared to T'CP
Westwood) in all cases of loss and traffic types. The bandwidth estimation mechanism
in TCP Westwood always overestimates the available bandwidth. The inaccuracy in
bandwidth estimation in TCP Westwood increases with increasing number of flows.
The cause of this over estimation is that TCP Westwood does not address the bursti-

ness in the ACK arrival process.

78

12} ---+ TCP Prairie .
—— TCP Westwood

Estimated bandwidth {Mbps}

oL , . . , . :
0 10 20 30 40 50 80

Time (sec)

Figure 5.7. Bandwidth estimation under TCP troffic (with congestion loss and wire-

less loss).

5.5.2 Throughput, Fairness and Friendliness Performances of
TCP Prairie

In this Section we compare the throughput and the fairness performances of TCP
Prairie, TCP Westwood and TCP New-Reno. Also, we compare the friendliness
performances of TCP Prairie and TCP Westwood towards TCP New-Reno. All the

results are obtained using ns-2 [23].

5.5.2.1 Fairness and Friendliness

Fairness is a measure for the relative throughput performance of a set of TCP flows
of the same type. Friendliness is a measure of how the TCP flows corresponding to
the different TCP variants affect the performance of each other when they share the
same bottleneck link.

The simulation configuration here features a single bottleneck link with capacity
20 Mbps and one way propagation delay of 37 ms. The buffer size at the bottleneck
router is equal to the pipe size (i.e., the bandwidth delay product of the network).
We assume that the TCP segment size is 1 KB and all the segments are of identical

79

size. The link has no wireless loss except where otherwise stated.

To investigate the fairness performance, 10 simultaneous TCP flows of the same
type are run and the throughput performance for each flow is measured. Based on the
throughput for each flow, fairness index is calculated. In this case, the fairness index
for TCP Prairie, TCP Westwood and TCP New-Reno are observed to be 0.9968,
0.9687, and 0.9979, respectively. Therefore, TCP Prairie is more fair than TCP
Westwood and its fairness is comparable to that of TCP New-Reno.

3 T T T T
2.5}
+ +
- + +
a8 - + +
£
2 o o o
E] o ° o
5] [¢]
g
£ 1.5 b
@ + TCP Prairie
& O TCP New-Reno
2 —— Fair Share
<
ir -
0.5
0) ! 1 L) !)
1 2 3 4 5 6 7 8 9

No. of competing TCP New-Reno flow

Figure 5.8. Friendliness of TCP Prairie towards TCP New-Reno.

Now we compare the friendliness of TCP Prairie and TCP Westwood towards TCP
New-Reno. We run simulations with total 10 TCP flows of various schemes sharing
a 20 Mbps bottleneck link. In Figs. 5.8-5.9, the horizontal axis shows the number of
competing TCP New-Reno flows, the remaining flows being TCP Prairie (in Fig. 5.8)
or TCP Westwood (in Fig. 5.9). The vertical axis shows the average throughput per
flow in Mbps. In Fig. 5.9 we observe that TCP Westwood achieves more throughput
than its fair share of 2 Mbps. Therefore, it is unfriendly towards TCP New-Reno.
The reason is that TCP Westwood over estimates the available bandwidth share as
was observed earlier.

The results in Fig. 5.8 show that the throughput achieved by a TCP Prairie flow

is close to its fair share. Here, TCP Prairie flow reduces the average throughput of

80

5 T T T T
4.5
* TCP Westwood
O TCP New-Reno *
4r —— Fair Share
a5t
[%)
g. *
=
- 3r
3 *
=
4
< 25 »* -1
=
% *
I s
< * D
F »*
1.5F T
[o] [e]
) o ° o o
1k 4
0.5 -
0 1 Il 1 1 1]).
1 2 3 4 5] 7 8 9

No. of competing TCP New-Renao flow

Figure 5.9. Friendliness of TCP Westwood towards TCP New-Reno.

TCP New-Reno flow only by minimal amount. For practical purpose, we can claim
that TCP Prairie is friendly.

5.5.2.2 Interaction with RED

The purpose of RED queue management is to prevent extreme congestion and “phas-
ing” and to enhance fairness [56]. The simulation topology in this case is similar to
that in Section ” Fairness and Friendliness”. First 10 flows are of type TCP New-Reno
and they start at 0 second. Another 10 flows are of type T'CP Prairie/ TCP Westwood
and they start at 30 second. All the flows remain active till the end of the simulation
(at 60 second). The bottleneck buffer is of type RED and its capacity is equal to the
network bandwidth-delay product (which is equal to 185 packets in this case). For
the RED queue, the min_thresh and max_thresh are set to 110 and 150, respectively.

During interaction of RED and TCP New-Reno during the first 30 seconds, the
RED router maintains a more stable queue-length, thus reducing the jitter and queu-
ing delay. This trend is also observed during the last 30 seconds with T'CP Prairie in
Fig. 5.10. Therefore, TCP Prairie interoperates positively with RED algorithm and
TCP New-Reno. As is observed in Fig. 5.11, with the introduction of TCP Westwood

81

200 T T T T

180 1

160 1

140 4

120

Queue size (packets)

80

[
60 7

) L) .
[} 10 20 30 40 50 60
Time (sec)

Figure 5.10. Typical variations in RED queue with TCP New-Reno and TCP

Prairie flows.

(at 30 second), the queue-length becomes unstable and it varies quite rapidly. This
type of interaction between the RED router and TCP Westwood may lead to global
network instability [58].

5.5.2.3 Throughput Under Congestion Loss

To evaluate throughput under congestion loss, we consider a 20 Mbps bottleneck link
with round-trip delay of 80 ms. In this case, 10 TCP flows of the same type run over
the bottleneck link. The size of the bottleneck buffer is set to 200 packets (which
is equal to the bandwidth delay product of the newtork). We run three different
simulations - one with TCP New-Reno, one with TCP Prairie and the one with
TCP Westwood. The average per flow throughput is observed to be 1.97 Mbps, 1.97
Mbps and 1.54 Mbps for TCP Prairie, TCP New-Reno TCP Westwood, respectively.
TCP Westwood suffers performance degradation due to the fact that it suffers more
congestion loss because of its over estimation of the available bandwidth. In fact, it
is critical to measure bandwidth accurately and use it to improve TCP throughput.

TCP Prairie offers superior performance because of its more accurate bandwidth

82

200

180

160

140 i |

120

Queue size (packets)
8

80

60

20
0 1 L !

o 10 20 30 40 50 80

Time (sec)

Figure 5.11. Typical variations in RED queue with TCP New-Reno and TCP West-

wood flows.
estimation.

5.5.2.4 Throughput Under Wireless Loss

We examine a number of different scenarios to compare the performances of TCP
Prairie and TCP Westwood to the performance of TCP New-Reno in wired-wireless
environment. The bandwidth of the bottleneck link is assumed to be 20 Mbps. The
propagation time over the wired link is assumed to be 37 ms. The wireless portion
of the link has capacity 22 Mbps with negligible propagation time. The wireless link
connects the base station to a destination mobile terminal.

Fig. 5.12 shows the throughput performance of TCP Prairie, TCP Westwood and
TCP New-Reno under varying loss rate from 0% to 5%. TCP Prairie and TCP
Westwood offer higher throughput than TCP New-Reno under different loss rates.
Note that, TCP Prairie does better than TCP Westwood at 0.1% loss rate. The
reason is that TCP Westwood suffers some congestion loss at lower error rate due to
its over estimation. The largest improvement is obtained for 0.01%-1% loss rate. The
performance gain of TCP Prairie over TCP Westwood is 17% at 0.01% error rate and

83

Q- Prairie
TN > R -@- Westwood
18- AR : --{ e NewReno

Throughput (Mbps)
3
T

el
¥

IR R
o N 107

Packet Loss Rate (%)

Figure 5.12. Typical variations in TCP throughput with packet loss rate.

it is 542% over TCP New-Reno at 0.5% error rate.

Simulation results in Fig. 5.13 show that the performance gains for TCP Prairie
and TCP Westwood (compared to TCP New-Reno) increase with increasing bottle-
neck bandwidth. It is assumed that the error rate here is 0.1% and one way propa-
gation time is 37 ms. TCP Prairie offers better performance than TCP Westwood.
Therefore, TCP Prairie is more effective in utilizing the high capacity links en route
between the fixed host and the mobile host. Note that, when the link bandwidth
is small, all the protocols are equally effective. This is because a small window is
adequate in this case and window optimization is not a significant issue.

Fig. 5.14 shows variations in throughput gain with round trip propagation time.
We run simulations with one way propagation time in the wired portion of the network
varying from 30-180 ms and with wireless link loss rate set to 0.1%. As is evident
from Fig. 5.14, both TCP Prairie and TCP Westwood perform significantly better
than TCP New-Reno.

In short, TCP Prairie, while achieving friendliness towards T'CP New-Reno in

presence of congestion loss, does not suffer efficiency degradation due to wireless loss.

84

1 ! ! ! ! ! T ' '

] I (== "TCP Praie
:| &~ TCP Westwood
‘| — TCP New-Reno

Throughput (Mbps}

2 4 8 8 10 12 14 16 18 20

Bottleneck link capacity (Mbps)

Figure 5.13. Typical variations in TCP throughput with bottleneck link capacity.

5.6 Summary

In this chapter, we have proposed a sender-only TCP modification called TCP Prairie
based on a novel bandwidth estimation mechanism in heterogeneous wired-wireless
network. TCP Prairie addresses bursty behavior of sender and router to calculate
bandwidth sample. Bandwidth samples are further smoothed through a filter whose
gain is proportional to the change of bottleneck load. By incorporating these two lev-
els of adaptivity TCP Prairie provides an accurate estimation of the flow bandwidth
share, which turns out to be a critical factor to obtain efficiency and friendliness to-
wards TCP New-Reno. We have tested proposed T'CP Prairie protocol in single and
multiple flow scenarios, with congestion loss and wireless loss, and with and without
RED routers. T'CP Prairie provides higher throughput compared to TCP Westwood
(which is another sender-only TCP modification based on adaptive bandwidth esti-
mation) while maintaining friendliness towards TCP New-Reno flow. Also, compared
to TCP Westwood, it interacts better with RED routers.

—$— TCP Prairie
-6~ TCP Westwood |
— TCP New-Reno |

Throughput (Mbps)

o ; i i i i i
50 100 150 200 250 300 350 400

RTT (ms)

Figure 5.14. Typical variations in TCP throughput with RTT.

85

86

Chapter 6

Conclusion

In this chapter, we summarize the works presented in this thesis and provide a few

directions for possible future research on the problem of improving TCP performance

in wired-wireless networks.

6.1 Contributions

The major contributions of this thesis are as follows:

e A comparative study on throughput and fairness of basic TCP variants (e.g.,
TCP Tahoe, TCP Reno, TCP NewReno, SACK TCP, FACK TCP) in wireless
network has been carried out. We have explained throughput behavior in terms
of number of timeout, number of total fast recovery, number of multiple drop
fast recovery and number of new segments transmitted during fast recovery.

For uniform error cases, throughput difference comes mainly due to difference in
total number of fast recovery and new segments transmitted during fast recov-
ery. TCP having better outstanding data estimation does more new segment
transmission during fast recovery and has been found to do better. For cor-
related error case, number of timeout and RTO backoff factor has been found
to be the dominating cause. As all TCPs deal timeout in the same manner,
throughput performances of all TCPs are found almost similar in case of corre-

lated wireless channel error.

o TCP Westwood is a TCP variant that employs bandwidth estimation for con-

87

gestion control. We have detected that its bandwidth estimation is faulty, and
therefore, its performance deteriorates in presence of multiple flows. Our anal-
ysis has revealed that, in the presence of multiple concurrent flows, a TCP
Westwood flow overestimates its fair share of available bandwidth (in all the
cases of congestion and/or wireless loss or no loss).

As a result, TCP Westwood becomes much aggressive in pumping packets into
the network which causes significant amount of packet drops at the routers,
and consequently, the throughput deteriorates. Also, TCP Westwood becomes
unfriendly to other TCP variants and causes unfairness among TCP Westwood

flows.

We present a new TCP variant called TCP Prairie which is a sender-only TCP
modification based on dynamic bandwidth estimation in wide-area wireless net-
works. The idea is to continuously measure the bandwidth used by a TCP flow
via monitoring the rate of returning acknowledgements (ACKs) and the round-
trip time values. The estimated bandwidth is then used to set the congestion
window (cwnd) and the slow-start threshold (ssthresh) after a slowdown event
(i.e., after three duplicate ACKs or after a timeout).

The distinguishing feature of TCP Prairie (compared to other TCP variants
such as TCP Westwood) is that it exploits the burstiness pattern of ACK ar-
rivals and estimates the available bandwidth more accurately. For the proposed
bandwidth estimation mechanism, the bandwidth sample is calculated by dis-
tributing a burst of ACKs over an off period based on degree of congestion and
burstiness in the network. The estimation technique is robust against burstiness
of ACK arrival and type of loss (e.g., wireless loss, congestion loss).

Due to a more accurate bandwidth estimation, during congestion control the
TCP Prairie sender sets the slow-start threshold to a value which is consistent
with the available bandwidth for the coorresponding TCP flow. Simulation re-
sults obtained using ns-2 reveal that T'CP Prairie provides significant through-
put performance improvement over TCP New-Reno and TCP Westwood under
congestion and/or wireless loss scenarios. Also, compared to TCP Westwood,
TCP Prairie is observed to be more friendly towards TCP New-Reno.

88

6.2 Directions for Future Research

This work has opened many problems and issues which require futher research. Some

of them are listed below.

e All TCP enhancements including TCP Prairie and TCP Westwood set conges-
tion window to one in the event of timeout. This is to avoid severe congestion
in the network. However, if wireless loss is the main cause of timeout, setting
the congestion window to one is not a good choice.

Instead, the congestion window should be set to some value based on the es-
timated bandwidth or the current congestion window size. Alternatively, a
seperate bandwidth estimation should be run for this purpose and that estima-
tion should be much more conservative. This strategy can be applied only when
we are sure that the timeout is due to wireless loss. Otherwise, this strategy

may cause congestion collapse.

e In some cases of multiple flows with wireless loss, TCP Prairie has been observed
to overestimate the bandwidth. To defend this situation, we have used the term
(1 —a)v in the formula for calculating the sample bandwidth. Although setting
v to be equal to the variance of inter-arrival works pretty well in most cases, v

can be further tuned.

e Performance of the bandwidth estimation mechanism in TCP Prairie needs to

be investigated in case of short-lived flows.

e Performance of TCP Prairie needs to be compared with TCP variants such
as TCP Casablanca [60] which are based on the idea of distinguishing random
wireless losses from congestion losses and make T'CP react appropriately to each
kind of loss.

89

Bibliography

[1] R. Ayala, K. Basu and S. Elliot, “Internet technology based infrastructure for
mobile multimedia services,” in Proc. IEEE WCNC’99, pp. 109-113.

[2] L.-F. Chang, V. Varma and R. Cheng, “Architecture alternatives for PCS-to-
Internet protocol interworking,” in Proc. IEEE WCNC’99, pp. 766-770.

[3] C. Wietfeld and U. Gremmelmaier, “Seamless IP-based service integration across
fixed/mobile and corporate/public networks,” in Proc. IEEE VTC’99 (Spring),
pp. 1930-1934.

[4] T. F. La Porta, L. Salgarelli and G. T. Foster, “Mobile IP and wide area wireless
data,” in Proc. IEEE WCNC’99, pp. 1528-1532.

[5] I. Mahadevan and K. M. Sivalingam, “Quality of service architectures for wire-
less networks: Intserv and diffserv models,” in Proc. International Workshop on
Mobile Computing, ISPAN’99, Perth, Australia, June 1999.

[6] I. Mahadevan and K. M. Sivalingam, “Quality of service in wireless networks using
enhanced differentiated services approach,” in Proc. IEEE ICCCN’99, Boston,
October 1999.

[7] S. Iren and P. D. Amer, “The transport layer: Tutorial and survey,” ACM Com-
puter Surveys, vol. 31, no. 4, pp. 360-405, Dec. 1999.

[8] J. Postel, “Transmission control protocol,” Internet RFC 793, 1981.

[9] V. Jacobson, “Congestion avoidance and control,” ACM SIGCOMM Computer
Communication Review,” vol. 18, no. 4, pp. 314-329, Aug. 1988.

[10] V. Jacobson, “Berkeley TCP evolution from 4.3-Tahoe to 4.3 Reno,” in Proc. of
the 18th Internet Engineering Task Force, University of British Columbia, Van-
couver, BC, Aug. 1990.

[11] M. Allman, V. Paxson, and W. R. Stevens, “T'CP congestion control,” RFC
2581, Apr. 1999.

[12] W.C.Y. Lee (1993). Mobile Communication Design Fundamentals. 2nd Edition,
John Wiley and Sons.

[13] H.Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and F. Khafizov, “TCP over

second (2.5G) and third generation (3G) wireless networks,” Internet draft, May
2002, URL: http://www.ietf.org/internet-drafts /draft-ietf-pilc-2.5g3g-08.

90

[14] S. Floyd, and K. Fall, “Promoting the use of end-to-end congestion control
in the Internet,” IEEE/ACM Transactions on Networking, May 1993, URL:
http://www-nrg.ee.lbl.gov/floyd

[15] R. Céceres and L. Iftode, “Improving the performance of reliable transport pro-
tocols in mobile computing environments,” IEEE Journal on Selected Areas in
Commaunications, vol. 13, no. 5, pp. 850-857, June 1995.

[16] A. Kumar, “Comparative performance analysis of versions of TCP in a local
network with a lossy link,” IEEE/ACM Transactions on Networking, vol. 6, no.
4, pp. 485-498, Aug. 1998.

[17] T. V. Lakshman and U. Madhow, “The performance of TCP/IP for networks
with high bandwidth-delay products and random loss,” IEEE/ACM Transactions
on Networking, vol. 5, no. 3, pp. 336-350, June 1997.

[18] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno, and Sack
TCP,” ACM Computer Communication Review, Jul. 1996.

[19] S. Floyd and T. Henderson, “The New-Reno modification to TCP’s fast recovery
algorithm,” RFC 2582, Apr. 1999. options,” RFC 2018, Apr. 1996.

[20] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “T'CP selective acknowl-
edgement options,” RFC 2018, Apr. 1996.

[21] M. Mathis and J. Mahdavi, “Forward acknowledgement: Refining TCP conges-
tion control,” in Proc. ACM SIGCOMM’96, pp. 281-291, 1996.

[22] L. S. Brakmo and L. L. Peterson, “TCP Vegas: End to end congestion avoidance
on a global Internet,” IEEE Journal on Selected Areas in Communications, 1995.

[23] S. McCanne and S. Floyd, “NS (Network Simulator),” 1995. URL
http:/www.isi.edu/nsnam/ns.

[24] A. Chockalingam, M. Zorzi, L. B. Milstein, and P. Venkataram, “Performance of
a wireless access protocol on correlated Rayleigh fading channels with capture,”
IEEE Transactions on Communications, vol. 46, pp. 644-655, May 1998.

[25] D. Chiu and R. Jain, “Analysis of increase and decrease algorithms for congestion
avoidance in computer networks,” Computer Networks and ISDN Systems, vol. 17,
pp. 1-14, June 1989.

[26] H. Balakrishnan, S. Seshan and R. Katz, “A comparison of mechanisms for
improving TCP performance over wireless links,” IEEE/ACM Transactions on
Networking, vol. 5, pp. 756-769, Dec. 1997.

[27] H. Balakrishnan, S. Seshan and R. H. Katz, “Improving reliable transport and
handoff performance in cellular wireless networks,” ACM/Baltzer Wireless Net-
works, vol. 1, no. 4, pp. 469-481, Dec. 1995.

91

[28] H. Balakrishnan, S. Seshan, E. Amir and R. H. Katz, “Improving TCP /IP per-
formance over wireless networks,” in Proc. ACM MOBICOM’95.

[29] K. Brown and S. Singh, “M-TCP: TCP for mobile cellular networks,” in Proc.
IEEE INFOCOM’96, 1996.

[30] A. Chrungoo, V. Gupta, H. Saran and R. Shorey, “TCP K-SACK: A simple pro-
tocol to improve performance over lossy links,” in Proc. IEEE GLOBECOM’01,
San Antonio, Texas, USA, Nov. 2001.

[31] D. Lin and H. Hung, “TCP fast recovery strategies: Analysis and improvements,”
in Proc. IEEE INFOCOM’98, Apr. 1998.

[32] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, “T'CP West-
wood: End-to-end congestion control for wired/wireless networks,” Wireless Net-
works 8, 467-479, 2002.

[33] C. Parsa and J. J. Garcia-Luna-Aceves, “Improving TCP congestion control over
Internets with heterogeneous transmission media,” in Proc. IEEE Int. Conference

on Network Protocols (ICNP’99), Toronto, Canada, Oct. 31-Nov. 3, 1999.

[34] U. Varshney, “Selective slow start: A simple algorithm for improving TCP perfor-
mance in wireless ATM environment,” in Proc. IEEE MILCOM’97, pp. 465-469.

[35] T. Goff, J. Moronski, D. S. Phatak and V. Gupta, “Freeze-TCP: A true end-
to-end TCP enhancement mechanism for mobile environments,” in Proc. IEEE
INFOCOM’00.

[36] D. N. Banerjee, “Improving wireless-wireline TCP interaction,” submitted to
IEEE/ACM Transactions on Networking.

[37] P. Sinha, N. Venkitaraman, T. Nandagopal, R. Sivakumar and V. Bharghavan,
“WTCP: A reliable transport protocol for wireless wide-area networks,” in Proc.
ACM MOBICOM’99, Seattle, Washington, Aug. 1999.

[38] R. Ramani and A. Karandikar, “Explicit congestion notification (ECN) in TCP
over wireless networks,” in Proc. IEEE Int. Conference on Personal Wireless
Communications (ICPWC’00), pp. 495-499.

[39] S. Floyd, “T'CP and explicit congestion notification,” ACM Computer Commu-
nication Review, vol. 24, no. 5, pp. 10-23, Oct. 1994.

[40] R. Ludwig and R. H. Katz, “The Eifel algorithm: Making TCP robust againt
spurious retransmissions,” ACM Computer Communication Review, vol. 30, no.
1, Jan. 2000.

[41] N. Vaidya, “Overview of work in mobile-computing,”
http://www.cs.tamu.edu/faculty /vaidya/slides.ps.

[42] A. Bakre and B. R. Badrinath, “I-TCP: Indirect TCP for mobile hosts,” in Proc.

92

15th IEEE Int. Conf. Distributed Computing Systems (ICDCS), pp. 136-143, May
1995.

[43] H. Balakrishnan and R. Katz, “Explicit loss notification and wireless web per-
formance,” in Proc. IEEE GLOBECOM’98, Internet Mini Conference, Sydney,
Australia.

[44] S. Goel and D. Sanghi, “Improving TCP performance over wireless links,” in
Proc. of IEEE Region Ten Conference on Global Connectivity in Energy, Com-
puter Communication and Control (TENCON’98), Dec. 1998.

[45] S. Biaz and N. Vaidya, “TCP over wireless networks using multiple acknowledge-
ments,” Texas A&M University, Technical Report 97-001, Jan. 1997.

[46] K.-Y. Wang and S. K. Tripathi, “Mobile-end transport protocol: An alternative
to TCP/IP over wireless links,” in Proc. IEEE INFOCOM’98.

[47] K. Ratnam and 1. Matta, “WTCP: An efficient mechanism for improving TCP
performance over wireless links,” in Proc. Third IEEE Symposium on Computers
and Communications (ISCC’98), Athens, Greece, June 1998.

[48] M. C. Chan and R. Ramjee, “TCP/IP performance over 3G wireless links with
rate and delay variation,” in Proc. ACM MOBICOM’02, Sept. 2002.

[49] A. DeSimone, M. C. Chuah and O. C. Yue, “Throughput performance of
transport-layer protocol over wireless LANs,” in Proc. IEEE GLOBECOM’93,
Dec. 1993.

[60] C. Parsa and J. J. Garcia-Luna-Aceves, “Improving TCP Performance over wire-
less networks at the link layer,” ACM Mobile Networks and Applications, Special
Issue on Mobile Data Networks: Advanced Technologies and Services, vol. 5, no.
1, 2000, pp. 57-71.

[61] N. Vaidya and M. Mehtha, “Delayed duplicate acknowledgements: A TCP-
unaware approach to improve performance of TCP over wireless links,” Texas
A&M University, Technical Report 99-003, Feb. 1999.

[62] C.-F. Chiasserini and M. Meo, “Improving TCP over wireless through adaptive
link layer setting,” in Proc. IEEE GLOBECOM’01, San Antonio, TX, Nov. 2001.

[53] J. W. K. Wong and V. C. M. Leung, “Improving end-to-end performance of
TCP using link-layer retransmissions over mobile internetworks,” in Proc. IEEE
ICC’99, pp. 324-328.

[54] R. Wang, M. Valla, M. Y. Sanadidi, B. Ng and M. Gerla, “Efficiency/friendliness
tradeoffs in TCP Westwood,” in Proc. IEEE Symposium on Computers and Com-
maunications, Taormina, Italy, July 2002.

[65] R. Wang, M. Valla, M. Y. Sanadidi and M. Gerla, “Adaptive bandwidth share

93

estimation in TCP Westwood,” in Proc. IEEE Globecom 2002, Taipei, Taiwan,
R.0.C., Nov. 17-21, 2002.

[56] S. Floyd and V. Jacobson, “Random early detection gateways for congestion
avoidance,” IEEE/ACM Transactions on Networking, vol. 1, no. 4, Aug. 1993,
pp- 397-413.

[67] M. Gerla, W. Weng and R. Cigno, “Bandwidth feedback control of TCP and

real-time sources in the Internet,” in Proc. Globecom’2000, San Francisco, CA,
Nov. 2000.

[58] R. J. La, “Instability of a tandem network and its propagation under RED,” in
Proc. IEEE ICC’03, Anchorage, Alaska, June 2003.

[59] J. Padhye and S. Floyd, “On inferring TCP behaviour,” in Proc. ACM SIG-
COMM’01, Aug. 27-31, 2001, San Diego, California, USA.

[60] S. Biaz and N. Vaidya, “De-randomizing congestion losses to improve TCP per-
formance over wired-wireless networks,” Technical Report CSSE03-10, Nov. 2003.
URL: http://www..cthc.uiuc.edu/wireless/groupPubs.html

