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ABSTRACT

A comprehensive study on the performances of the basic TCP (Tbansmission Con-

trol Protocol) variants (e.g., TCP Tahoe, TCP Reno, TCP NewReno, SACK TCp,
FACK TCP) in wide-area cellular wireless networks is presented. Impacts of varia-
tions in wireless channel error characteristics, number of concurrent TCP flows and

wireless link bandwidth on the average TCP throughput and fairness performances

are investigated. To this end, a ne\¡/ TCP variant, namely, TCP Prai,r,ie, based on dy-
namic bandwidth estimation and sender-only modification is proposed for wide-area

wireless networks. Two novel mechanisms are incorporated in TCP Prai,ri,e - one to
obtain bandwidth sample under bursty environment and the other to estimate the
available bandwidth using the bandwidth samples. The key idea of the protocol is

to control the transmission rate at the TCP sender based on bandwidth measured

from the rate of returning acknowledgements. An in-depth analysis of the system be-

havior is presented and compared with another TCP variant gCP Westwood) which
also uses a congestion control mechanism based on bandwidth estimation. Simula-

tion results obtained using ns-T show that TCP Prairze offers superior performance

compared to TCP Westwood.
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Chapter 1

fntroduction

TCP is the transport layer protocol used along with the unreliable network layer pro-

tocol IP (Internet Protocol) in todays Internet for non-real-time applications. Since

TCP/IP is the standa¡d network protocol stack on the Internet, its use over the
next-generation wireless mobile networks is a certainty. The use of TCP/P as the
network protocol stack in the future generation wireless networks will leverage the
rapidly evolving Internet technology in the wireless domain and enable to provide
seamless wide-area Internet service to mobile users [1]. Efforts in developing IP-
centric wireless networks are ongoing and architectures and protocols for supporting
multimedia traffic are evolving (t1]-t6]).

Tlansport protocol segments are transmitted in a wireless network as radio link
level frames over the air-interface. In case of transmission to a mobile from a fixed host
in the Internet, LLC (Link Level Control) protocol divides TCP segments into radio
frames for transmission over the wireless link. Therefore, the performance of TCP wilt
depend on the performance and service provided by the underlying radio link layer.
In this thesis, however, we deal with the end-to-end (or transport-level) approaches

while investigating the performance of TCP in a wide-area wireless network. High
utilization of wireless link bandwidth and at the same time fairness towards competing
TCP traffic are required in a wireless packet data network.

1.1 TCP (Transmission Control Protocol)

Tlansport layer protocol such as TCP operates on an end-to-end basis and it's per-
formance is one of the most critical issues in data networking over wireless links. A
transport layer protocol is responsible for managing end-to-end flow and congestion
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control, providing reiiability, security and QoS (Quality of Service) [7]. In OSI model,

application protocol data unit (APDU) is passed down to the transport layer which
is then called the transport service data unit (TSDU). A transport protocol header

is added to this TSDU to form a transport protocol data unit (TPDU) and then it is

passed to the network layer as a network service data unit (NSDU)1.

TCP is a connection-oriented reliable transport protocol consisting of three phases

of operations: connection setup, data transfer, and connection termination. The
connection set up procedure uses a three-way handshake where the connection is

established after both ends of the connection inform each other of the set up process.

The connection termination procedure uses a four-way handshake where both the
active and the passive terminators send their own set of two-way handshake messages.

Again, TCP is a bi-directional transport protocol that can transmit and receive at the
same time (i.e., within the same connection set up). TCP is a byte-oriented transport
protocol since it passes data to its peer in a byte by byte manner. For error control,
TCP uses sequence number, cumulative positive acknowledgements with piggyback

option for successfully transmitted packets and retransmission-based end-to-end error
recovery.

TCP uses a congestion control mechanism (to ensure network stability and prevent

congestion collapse) which is interwined wiih a window-based flow control mechanism.
The TCP sender detects a packet-loss either by the arrival of several duplicate cumu-
lative ACKs (Acknowledgements) or by the absence of an acknowledgement during a
timeout interval and it attributes the packet loss to network congestion. Upon detec-

tion of a packet loss at the TCP sender, the congestion control/avoidance mechanism
is triggered which reduces the transmission window size multiplicatively and/or in-
creases the retransmission timer exponentially, and consequently, the throughput is

reduced.

The implementation of the TCP flow/congestion control mechanism is based on
two sender-side state variables, namely, congestion wi,ndow (cwnd), I4z(ú) and the
slow-start threshold (ssthresh), wrn(t) (t8]-t11]). During connection set up, the re-

ceiver advertises a maximum window size Wn o, and the TCP sender is not allowed
rln the Internet community, both NPDU and TPDU are k¡owu as pøcket even though in OSI

terminology a segment is referred to as a TPDU. The terms'packet'and'segment'are used inter-
changeably in this thesis.



3

to have more than mi,n(W,,o,,W(t)) unacknowledged data packets outstanding at
any given time ú. For a new connection, W(t) is generally initialized to 1. The basic

window adaptation mechanism (which is triggered by ACKs) in all currently available
TCP implementations is as follows:

i. HW(t) <Wrn(t) each ACK causes W(t) to be incremented by 1. This is the
slow-start phase.

1i. rf w(t) > wrn(t) each ACK causes w(t) to be incremented by ø#ø. rnit
is the congestion auoidance phase.

In case of timeout, TCP source updates w(t) andWn(t) as follows: w¿¡,(t¡) :
lVPl and, W (t+): 1 and then starts retransmitting from the first lost packet. How-
ever, when the TCP source receives a cumulative acknowledgement from the TCP
sink acknowledging the already transmitted packets, it immediately starts transmis-
sion after the highest ACKed packet. After a timeout the sender also updates the
RTO (Retransmission Time Out) value using exponential backoff. The backoff con-

tinues until an ACK is received for a packet transmitted exactly once.

TCP sinks can accept packets out of order but deliver them only in sequence to
the user and they generate immediate ACKs. If a sink receives a packet out of order,
it issues an ACK immediately for the last in order packet that was received. If a

packet is lost (after a stream of correctly received packets), then the receiver keeps

sending ACKs (called duplicate ACKs) with the sequence number of the first lost
packet even if packets transmitted after the lost packet are correctly received.

L.2 TCP in \Mide-Area cellular.wireless Networks

While the "traditional" TCP has been tuned for the last two decades to optimize its
performance in wired networks where congestion is the main cause of any packet loss,

it performs poorly in wireless environments due to the following factors:

o Transm'iss'ion losses on w'ireless li,nk: White in the wired transmission media
the bit error rates are of 0(10-6) - O(10-8), wireless media suffer significantly
higher bit error rates such as 0(10-3)-O(tO-t¡ [12]. Therefore, the packet loss

rate in a wireless link is an order of magnitude higher than that in a wired link.
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In a typical wireless scenario packet loss rate can be as high as 70% depending

on channel fading and interference conditions and user mobility.
When a packet is lost, TCP performs end-to-end recovery by retransmitting
the lost packet and frequent end-to-end retransmissions may reduce end-to-end

throughput significantly. Again, any packet loss in the wireless iink is misinter-
preted by the TCP sender as a congestion loss and it triggers the congestion

control mechanism which reduces the sender's transmission window size re-

sulting in reduced end-to-end throughput. Therefore, in a wired-cum-wireless

environment, random packet losses in the wireless link cause the TCP sender

to underestimate the available network bandwidth and thereby reduces the ap-

plication layer performance.

Also, the location and time-dependent channel errors may impact the achieved

throughput fairness among multiple concurrent TCP flows2 and this would pre-

sumably be different for the different TCP variants. Again, frequent channel

errors and subsequent retransmissions may result in inefficient use of the limited
battery power in the mobile devices.

o Wi'reless linlc delays: Presence of limited bandwidth wireless links in an end-

to-end path generally results in increased end-to-end transmission delays (and

hence longer round-trip times (RTTs)). Although 2.5G and 3G cellular wireless

networks (e.g., EGPRS, UMTS, IMT-2000) will have increased bandwidth, fac-

tors such as link asymmetry due to different uplink and downlink bandwidth,
bandwidth oscillation due to dynamic resource allocation, stronger FEC (For-

ward Error Correction) coding, interleaving, radio link level recovery will result
in large BDP (Bandwidth-Delay Product)3 wide-area ceilular wireless networks

[13]

Since the rate of increase in the congestion window size at the TCP sender is
proportional to the rate of incmoing ACKs, the congestion window may increase

at a much lower rate in the presence of wireless links and thus reduce the end-to-
end throughput. In fact, the throughput of a TCP connection has been shown

to vary as the inverse of the connections RIT. Given a packet loss rate p, the
2The ter-" ,flow' and ,connection' a¡e used interchangeably.
3The bandwidth-delay product for a TCP connnection refers to the product of the round trip

delay (1l) for the connection and the capacity of the bottleneck link (¡z) in its path.



maximum sending rate for a TCP sender is 1 bytes/sec,for, 
= 

*# where

B is the packet size and 7 is the round trip time l1 ]. The inherent TCP bias
against flows with longer RTT results in throughput unfairness among flows

traversing the same number of hops but having different number of wireless

links in the end-to-end path.

o User mobi'Ii'ty: During a TCP session when a mobile user in a wireless cellular
network moves from one cell to another, all necessary information must be

transferred from the previous base station (BS) to the new base station which
might cause a short duration of disconnection (typically of the order of several

hunderds of milliseconds) during which no transmission takes place. Simiiar to
that in the case of link errors, delays and packet losses during this "handoff"
scenario trigger TCP congestion control mechanisms which results in reduced

end-to-end throughput [15].

o Short-li'ued' TCP flous: Data services which are more transactional than stream-
ing in nature (e.g., web browsing on a smart phone, email) usually involve

transmission of a rather small amount of data, and therefore, tend to require
short TCP connection duration. It is possible that the entire transmission is

completed while the TCP sender is in the slow-start phase and thus resulting
in the under utilization of the network capacity.

1.3 Objective of the Work

The objectives of the work presented in this thesis are as follows:

o Investigate the effectiveness of the different end-to-end TCP strategies in a wide-
area wireless networks under different wireless link conditions (e.g., random
error, correlated error).

o Develop efficient end-to-end TCP for wired-wireless networks.

The motivation behind this is the fact that when IPSEC (IP Security) or other
security mechanisms are employed to encrypt IP payloads, true end-to-end tech-
niques based on transport level modifications of TCP would be required for
wide-area wireless networks. Also, when the data and the ACKs traverse dif-
ferent paths (e.g., in satellite networks), non-end-to-end solutions may cause



serious problems, while end-to-end solutions are applicable over any type of
networks and links.

L.4 Thesis Outline

Subsequent chapters of this thesis are organized as follows:

o Chapter 2 provides a unified study of different transport layer protocol ap-
proaches to TCP design for wide-area wireless networks. Performances of the
different basic TCP variants inciuding the newer va¡iants such as TCP SACK
(Seiective Acknowledgment), TCP Vegas, TCp FACK (Forward Acknowledge-
ment) are evaluated in a wide-area cellular network in terms of TCP throughput
and fairness (in the case of multiple competing TCp flows).

o Chapter 3 summarizes the different transport level approaches for TCP en-

hancements. Both the end-to-end and non-end-to-end (mainty base station
centric) approaches are considered.

r Chapter 4 analyzes the behavior of TCP Westwood which is a recently pro-
posed TCP variant based on end-to-end bandwidth estimation. In particu-
lar, the deficiency of the bandwidth estimation technique in TCP Westwood,

is revealed, and the impact of the erroneous bandwidth estimation on the the
throughput and friendliness behavior of rcp westwood are analyzed.

o In Chapter 5, \Me propose a ne\¡/ TCP variant, namely, TCp prai,rie that
solves the problem of erroneous bandwidth estimation in TCP Westwood, by
using a novei bandwidth estimation technique. The efficacy of the bandwidth
estimation technique in TCP Prairi,e is revealed and the throughput, fairness,

friendliness performances are analyzed.

o Chapter 6 summarizes the contributions of the thesis and discusses a few
directions for possible future research.



Chapter 2

Performance of Basic TCP
Variants in .Wide-Area .Wireless

Ir[etworks

A comprehensive study on the performances of the basic TCP variants (e.g., TCP
Tahoe, TCP Reno, TCP New-Reno, SACK TCp, FACK TCp) in wide-area cellular
wireless networks is presented. Average throughput and fairness performances of
TCP are investigated under varying channel error rate and wireless link bandwidth.
The maximum achievable throughput under window-based end-to-end transmission
control is also evaluated.

2.L Related Work

Prior research closest to this work is that reported in 116], where the throughput
performances of TCP Tahoe, OldTahoe, Reno and New-Reno in a locaiized wireless
network were investigated under random packet losses using a stochastic model. The
effects of coarse TCP timeout and the number of duplicate acknowledgements on TCp
throughput performance \¡/ere particularly emphasized. More general findings \¡vere

reported in 117], where performance of TCP was investigated for a wide-area wireless
network, particularly, for a network with high bandwidth-delay product and random
packet losses. It was observed that random loss could lead to significant throughput
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degradation when the product of the packet loss (p) probability and the square of the
bandwidth-delay product (i.e., (p,T)2, ¡.r is the bandwidth and ? is the delay) is larger

than one. AIso, TCP's unfairness towards connections with higher round trip delays

was reported. A packet level performance comparison among TCP Tahoe, Reno,

New-Reno and SACK in a wide area wired-Internet environment was presented in

[18] considering scenarios where the number of packet drops in a transmission window
varies from one to four.

2.2 Basic TCP Variants

2.2.L TCP Tahoe

TCP Tahoe uses slow-start,, congesti,on auo'idanceand and fast retransmi,tmechanisms

[9]. During slow-størt, the congestion window increases exponentially (by one for
each acknowledgement received) until it reaches the slow-start threshold (ssthresh),

and during congest'ion auo'idance the congestion window increases linearly by one per

round trip time (RTT). The TCP sender goes into the fast retransm'it mode when it
receives tcp-rermt-thresh (which is usually set to 3) number of duplicate acknowledge-

ments. During fast retransmi,t, the sender retransmits the lost segment and enters

into the slow-start phase by setting the congestion window to 1 and ssthreså. to the
half of congestion window. In addition, it forgets all outstanding data transmitted
earlier [18]. When the loss is due to sporadic channel error, switching to slow-start
mode causes the throughput to fall.

2.2.2 TCP Reno

TCP Reno [10] is similar to TCP Tahoe except that in addition to fast retransm,it, it
also includes the fast recoueryr mechanism for a single segment loss. \Ä/hen the TCP
sender receives tcp-rermt-threså, number of duplicate acknowledgements, instead of
switching to slow-start after føst retransmi,t, TCP Reno enters into fast recouery.

During fast recouery, the sender sets ssúhreså to the half of the congestion window
and the new congestion window to the new ssthresh plus the number of duplicate
acknowledgements received. TCP Reno remains in fast recoaery until the lost segment
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which triggered the fast retransmi,thas been acknowledged. When the sender receives
new acknowledgement(s), it exits /asú recouerA and resets the congestion window to
ssthresh and thereby moves into congestion avoidance.

In case of congestion loss, the fast recouerA mechanism keeps the average conges-
tion window size high resulting in better throughput performance compared to TCp
Tahoe. During fast recouery, each new duplicate acknowledgement increases the con-
gestion window size by one. Although TCP Reno works fine for single loss, in case of
multiple losses from the same transmission window the performance suffers since it
exits /øsú recouerA and enters into it again in a repeated fashion or goes to timeout.

2.2.3 TCP New-Reno

TCP New-Reno uses an augmented fast recouerA mechanism where, unlike TCp Reno,

fast recouergr continues until all the segments which were outstanding during the start
of the fast recouery, have been acknowledged [19]. This strategy helps to combat
muitiple losses without entering into fast recoaerA multiple times or causing timeout.
In this case' a parti'al aclmowledgernen* is considered as an indication that the seg-

ment following the acknowledged one has been dropped from the same transmission
window (or flight), and therefore, TCP New-Reno immediately retransmits the other
lost segment indicated by the parti,al aclcnowled,gement and remains in fast recouerA.
It takes one round trip time to detect each lost segment and to retransmit it.

2.2.4 SACK TCP

in SACK TCP, the receiver sends acknowledgements with SACK (Selective Acknowl-
edgement) option when it receives out of order segments due to loss or out of order
delivery [20]. The SACK option field contains a number of SACK blocks, where each
SACK block reports a non-contiguous set of data that has been received and queued.
The first block in SACK option reports the most recently received block.

The SACK TCP sender is an intelligent extension of that in TCP Reno. It only
modifies the fast recouerA mechanism of TCP Reno keeping the other mechanisms

lThis refers to a new acknowledgement received during fast recoaery which acknowledges some
but not all of the packets that were outstanding at the sta¡t of. the fast recoaery phase.
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unchanged. Similar to New-Reno, it can handle multiple packet losses from the
same flight. It has a better estimation capability for the number of outstanding
segments. The acknowledgement with SACK option enables the sender to determine
explicitly which segments have been received or have been iost. To keep track of
the acknowledged and lost segments, it maintains a data structure called scoreboard,.

Whenever the sender is allowed to transmit based on the congestion window size

and the number of outstanding segments, it consults the scoreboard and, transmits
the missing segments. If there is no missing segment to retransmit, it transmits new
segments. When a retransmitted segment is dropped, the sender detects it by a
retransmit timeout. In case of timeout it retransmits the segment and enters into the
slow-start phase.

SACK TCP maintains a variable called pipe to keep track of the number of out-
standing segments. For each retransmission or new transmission, the sender increases

pi'peby one and for each received acknowledgement, it decreases pi,peby one. For each

received partial acknowledgement, pi,peis decreased by two with the assumption that
the original packet and the retransmitted packet have left the network. Since pi,pe

represents the amount of outstanding data, the sender transmits only when pi,pe is

less than the congestion window.

2.2.5 FACK TCP

FACK (Forward Acknowledgement) TCP is a variant of SACK TCP with a modified

fast recouery mechanism 121]. It uses a better technique for estimating the number
of outstanding segments. For this, it introduces two new variables snd,.fack and
retran-data, where snd.faclr represents the forward most data held by the receiver and
retran-data represents the size of the retransmitted data outstanding in the network.

In non-recovery states snd.faclc is updated using the acknowledgement number in
the TCP header and is equivalent to snd.una [8]. But when a SACK block is received

during error reocovery, it is updated to the highest sequence number received by the
receiver plus one regardless of the number of the intermediate dropped segments.

Therefore, the outstanding data is estimated as (snd.nxt - snd.faclc) + retran-d,ata.
For each retransmission, the size of the retrøn-data is incremented by the corre-

sponding segment size. When retransmitted segment ieaves the network it is decreased
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by the same size. FACK TCP compares it's estimate for outstanding data against
the congestion window size and decides on the number of transmissions. A timeout
is forced in the case of loss of a retransmitted segment on the assumption that the
congestion is persistent. It enters into the fast recouery mode when the sender re-

ceives tcp-rermt-threshnumber of duplicate acknowledgements or (snd.fack - snd.una
) tcp-rermt-thresh *M S S)2. In the case that several segments are iost but fewer than
tcp-rermt-thresh number of duplicate acknowledements have been received, the latter
condition triggers the fast recouer7 phase sooner. Similar to New-Reno and SACK,
FACK TCP terminates it's recovery phase upon receiving acknowledgement for all
the segments that were outstanding during transition to fast recouera.

2.2.6 TCP Vegas

TCP Vegas [22] comes with a proactive congestion control mechanism in which net-
work congestion is predicted based on the estimated erpected throughput and the øc-

tual throughput. Expected throughput is estimated as Wi,ndowSi,ze/BaseLTT, where
BaseRTT is the minimum of all the measured RITs and Wi,nd,owS,izeis the size of the
current congestion window. The actual throughput is calculated from the RTT for a
tagged segment and the number of segments transmitted within that RTT. TCP Ve-
gas compares the difference between the expected and the actual throughput against
two thresholds a and B (where o < þ) and adjusts the transmission window accord-
ingly. If the difference is smaller than a, the congestion window is increased linearly
(by one per RIIT) under the assumption that there is unutilized bandwidth avaiiable
in the network. On the other hand, if the difference is larger f,han p, the conges-

tion window is decreased, while if the difference lies between a and B the congestion
window remains unchanged.

TCP Vegas has a fine grained timer expiry calculation mechanism to support early
switching to fast retransm'it. For this, the sender reads and records the system clock
each time a segment is transmitted. When an acknowledgement arrives, it reads the
clock again and calculates the fine grained RTT. TCP Vegas uses this fine-grained
HfT estimate to calculate RTO. For each duplicate acknowledgement received, the

zMSS refers to the Moni,mum Segment S,ize.
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Table 2.1 D'ifferences am,ong the basic TCP uari,ants.

TCP Variant Sender mechanism(s)

Tahoe No /asú recouerA

Reno Uses /øsú recouerA to recover

from single packet drops

New-Reno Uses /asú recouerA to recover

from multiple packet drops

SACK Uses /øsú recouerA to recover

from multiple packet drops, better

outstanding data estimation mechanism

and larger retransmission pool

FACK Similar to SACK, but uses a better

outstanding data estimation mechanism

and switches to fast recoaerA faster

Vegas Uses proactive mechanism to control

congestion window, switches to fast retransm'it

faster due to the fine-grained timer

sender checks the Vegas erpi.rf and if Vegas expiry occurs, the sender switches to fast
retransm'it. Similar to the other TCP variants, it switches to fast retransm'it when

it receives tcp-rermt-thresä number of duplicate acknowledgements. Also, the sender

switches to slow-stará whenever the usual timeout occtus.

2.2.7 Comparison Among the Basic TCP Variants

Although the TCP senders for all the basic TCP variants rely on using binary pos-

itive acknowledgement, similar HfO estimation and timeout mechanisms, they use

different congestion avoidance mechanisms. The major differences among the basic

TCP variants are shown in Table 2.1.

The main difference between TCP Tahoe and TCP Reno is that the latter uses

the fast recouery mechanism while the former does not. Although TCP Reno can

3Timeout caused by this fine-grained timer is referred to as ,Vegas expiry'.
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handle single drop in a flight efficiently, it cannot handle multiple packet drops in a
single flight very well. Tahoe does not memorize outstanding data when it switches to
slow-start (due to multiple duplicate ACKs), but Reno does. Both TCP New-Reno
and SACK TCP can handle multiple losses in a single flight more efficiently.

SACK TCP is different from TCP New-Reno in that SACK TCP can retransmit
selectively. While TCP New-Reno retransmits starting from the segment correspond-
ing to the duplicate acknowledgement or partial acknowledgement, SACK TCP re-

transmits this segment along with other missing segments from it's scoreboard,. That
is, the retransmission pool for a New-Reno sender can have at most one segment re-
gardless of the number of packet drops. Therefore, it takes one HIT to recover each

packet loss. On the other hand, since the retransmission pool for a SACK send.er can
have many lost segments, the recovery process becomes faster. Also, due to the pi,pe

variable, SACK TCP has a better estimation of the number of outstanding segments.

The main advantage of FACK TCP over SACK TCP is that, by using retrøn-d,ata

and snd.faclc the former performs a better estimation of the number of outstanding
segments than the latter. Generally, the pi,pe estimation for FACK TCP becomes

smaller compared to that for SACK TCP which allows the former to transmit more
segments. Also, using the information from SACK block, sometimes it switches to

fast recouery before receiving tcp-rermt-threså number of duplicate acknowledgements
which is helpful when the transmission window size is small or the number of duplicate
acknowledgements is too few to trigger fast retransmi,t.

By using erpected throughput, actual throughput and the threshold parameters a,

P, TCP Vegas can have a better estimation of the available bandwidth compared
to the other TCP variants. Due to its own fine-grained timer management, TCP
Vegas can switch to fast retransm'it earlier which contributes to it's performance
improvement. Also, since it reduces the congestion window to 314 instead of Il2
during fast retransmit (when the segment that triggered fast retransmithas not been
transmitted more than once), it helps to combat losses due to the sporadic wireless
channel errors more efficiently.
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Analysis of System Dynamics and Performance
Evaluation

2.3,L Simulation Model and Performance Measures

System dynamics under the different basic TCP variants, namely, TCP Tahoe, Reno,

New-Reno, SACK, FACK and Vegas are investigated using ns-T 123] under varying
wireless channel bandwidth, round trip delay, number of concurrent TCP connections

and different wireless channel error characteristics in a wired-cum-wireless scenario

where the mobile nodes act as TCP sinks. Also, two variants of New-Reno - one with
TCP-aware li'nk leuel retransm'isszorz (TLLR) and the other with delayed acknowl-

edgement (DACK)-capable TCP sink, are considered.

It is assumed that the slowly varying shadow and path losses in a wireless link
are perfectiy compensated and that the channel quality variations due to multipath
fading remain uncompensated. For a broad ïange of parameters, the packet error
process in a mobile radio channel, where the multipath fading is considered to fol-
Iow a Rayleigh distribution, can be modeled using a two-state Markov chain with

transitionprobabilitymatrix M"124]: lW.:| -o 
L-eI 

wherepand I-qare- Lt-q q l
the probabilities that the 7th packet transmission is successful, given that the (¡l)th
packet transmission rvr/as successful or unsuccessful, respectively.

Also, the fading envelope is assumed to not change significantly during transmis-
sion of a TCP packet (which is of duration, say, ú¿*). The channel variation for each

of the mobiles is assumed to be independent and determined by the two parameters
p and q which, in turn, are determined by f¿tr"p a, the normalized Doppler band-
width and PB, the average packet error probability. P¿ describes the channel quality
in terms of. fadi,ng margi,n F 5. Different values of. PB and f ¿t1.o result in different
degree of correlation in the fading process. \Mhen f¿t¿"o is small, the fading process

is highly correlated; on the other hand, for large values of. f ¿t¿.o, the fading process

is almost independent. For a certain value of the average packet error rate PB, the
4Here, f¿:u/\: mobile speed/carrier wavelength. The value of ú¿.o determines the minimum

fade duration.
5It refers to the maximum fading attenuation which stilt allows co¡rect reception of a packet.
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Figure 2.1. Si,mulation topology for wide-area cellular w'ireless netuorlc.

error burst-length increases as user mobility (and hence f¿t*r) decreases.

The network topology used in the simulation is shown in Fig. 2.1 (FH : Fixed host,
MH : mobile host, BS : base station/wireless router). The wirless link is considered

as bottleneck link and its delay is considered negligible. The round trip time is 60ms.

TCP segment size is 1KB. The different performance measures ale: o,aerage per-fl,ow

throughput (l) (i."., average amount of data successfully transmitted to a TCP sink
per unit time), energa consumpt'ion (e) (average amount of energy dissipated in a

TCP sink for successful reception of 1 MB of data) and throughput fairness (f ). For
n concurrent TCP flows, the fairness index / is calculated as follows6:

" (DT:tt)2¡:-' n xÐT:t^Ê'

To calculate the energy consumption at the mobile nodes (primarily due to trans-
mission of acknowledgements and reception of TCP packets), the ratio of transmisson
power and receive power wattage is assumed to be 3 for all the simulation scenarios

described in this chapter.

6This is similar to the fairness function used in [25] to quantify the fairness in a sha¡ed. resource

system with n users: -F : ft$ (where ø¿ is the ith user,s throughput).

\
@

(2.1)
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2.3.2 Simulation Results and Analysis

2.3.2.L single TCP flow with unifrom'wireless Loss (scenario L)

The wireless link bandwidth is assumed to be 2 Mbps. In this scenario, for the d,elayed,

acknowledgernnt case, the interval for delaying the acknowledgement is assumed to
be 10 rns. The simulation run time is taken to be 1000 second,s.

Under random error conditions, TCP New-Reno and SACK TCP provide remark-
able performance improvement over TCP Tahoe and TCP Reno (Fig. 2.2). Although
TCP Tahoe and TCP Reno exhibit similar performance, TCP Reno performs slightly
better than TCP Tahoe when the error rate is smailer than r.5%.

Analysis of the system events such as the total number of timeouts (TO), to-
tal number of fast retransmi,t/fast recouery (FR), number of. fast retransm,its due
to multiple packet drop in a transmission window (MD), number of segments newly
transmitted during fast recouery (SND), and average of the transmission window sizes
measured at the epoches of transitions to /øsú retransmit (FLT) reveal that under ran-
dom error conditions the system dynamics for both TCP New-Reno and TCp SACK
are more or less similar (Tabie 2.2), and therefore, their long-term performances are
observed to be fairly close. FACK TCP is observed to perform better than each of
TCP New-Reno and SACK TCP. TCP Vegas shows significant performance improve-
ment over FACK TCP. However, the throughput performance of each of the above
basic TCP variants is inferior to the performance of TCP New-Reno with TLLR
(Fig. 2.2).

For both TCP Tahoe and TCP Reno, the number of timeouts increases with
increasing ertor rate, and the difference in the number of timeouts for these two
cases during a certain observation interval is observed to be small. As the error rate
increases, Reno suffers due to multiple packet drops in the same flight and also the
number of timeouts increases compared to the number of fast retransm,iß. This offsets
Reno's gain due to fast recouerA and makes the performance closer to that of Tahoe.

As is observable from Table 2.2., at lVo enor rate, for SACK TCP there are 115
events of fast recouerA due to multiple packet drops (within a transmission window)
among the total of. L252 fast recouergr events, while for Tep New_Reno, among the
total of 7237 fast recoaerA events 729 fast recoaerA events are due to multiple packet
drops. Therefore, the ratio of. multiple d,rop fast recouera to total fast recouery is
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Table 2.2. Fast retransrni,t/recouerA ønalysi,s under random error loss (for 1000 sec-

ond simulat'ion run

TCP

variant

TO FR MD SND FLT

Error rate:7To
Tahoe 53 i056

Reno 100 1181 110 1909 11.59

New-Reno 27 7237 129 2013 17.92

SACK 25 1252 115 2435 1i.88

FACK L7 1365 1 Ð'aIt)I 6668 12.27

TLLR 0 T4 I 2 15.00

Vegas 22 r552

TO72E

13.04

Error rate: 10%

Tahoe 691 295

Reno 692 277 65 359 5.55

New-Reno 705 315 88 442 5.55

SACK 685 298 83 34L 5.51

FACK 630 392 t25 426 5.28

TLLR 20 95 58 734 73.94

Vegas 546 550

3348

5.89
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Figure 2.2. Throughput performances of di,fferent TCP uari.ants (scenari,o 1).

smaller for SACK TCP. This observation holds for other error rates as well. In
this case, SACK TCP cannot exploit the advantage of selective retransmission more

effectively (compared to TCP New-Reno).

Again, under random error conditions, SACK TCP may not be able to exploit the
advantage of better pipe estimation. Referring to Table 2.2, for ITo error rate SACK
TCP transmits on the average 1.94 (: 243511252) new segments during fast recouery,

while TCP New-Reno transmits on the average 1.63 (: 20IJlI2BZ) new segments.

This small difference may not result in significant performance improvement for SACK
TCP as compared to TCP New-Reno. As the error rate increases, the difference may
become even smaller.

The delayed aclcnowledgement (DACK) variant of TCP New-Reno is observed to
perform the worst, which is primarily due to its slow ïesponse to transmission failure.

Due to the better estimation of the number of outstanding segments, FACK TCP
performs better than SACK TCP under all error conditions. AI I% and 10% e¡ror
rate, for FACK TCP the number of new segments transmitted during fast recouery is

observed to be 6668 and 426, respectively, while for TCP SACK, the numbers are 243b

and 341 (Table 2.2). With increasing error rate, as the effect of timeout becomes more
dominant, the number of new segments transmitted during fast recoaery decreases.

Eíor ratê (%)
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The performance improvement in TCP Vegas is mainly due to its two unique

features - Vegas expiry and congestion window reduction by a factor of 314. The
Vegas expiry mechanism causes it to react very fast to segment loss. As can be

observed in Table 2.2, for I% error rate, during 1000 second of simulation Vegas

experiences 1552 fast retransm'iß among which 1072 were detected early by the Vegas

fine-grained expiry mechanism (in Table 2.2,'E'refers to fast retransmit detected by
Vegas expiry). The Vegas erpi,ry mechanism also reduces the number of timeouts and

it is observed that among all the TCP variants it experiences the smallest number of
timeouts.

The TCP New-Reno with TCP-aware link level retransmission (TLLR) scheme

(e.g., snoop protocol [26]) offers the best performance (Fig. 2.2) due to the fact that
the 'snoop agent' at the link level eliminates most of the fast retransmits and timeouts.
For example, with TLLR, for t0% error rate, the number of fast retransmits and the
number of timeouts are 20, and 95, respectivel¡ while for New-Reno they are 705 and
315, respectively. As a result, the average flight size is always very high (e.g., 18.g4

for I0% error rate) which is close to the assumed maximum transmission window size

of 15, and consequently, better throughput performance is achieved.

Regarding energy consumption for transmission of a fixed amount of data (L M B)
to a mobile node using the different TCP variants, it is observed that TCP Vegas

requires the highest amount of energy (Fig. 2.3). This is due to the fact that, TCP
Vegas results in the highest number of. fast retransm'iß. For TCP New-Reno with
the DACK option, the energy consumption is observed to be the lowest, which is due

to it's conservative acknowledgement transmission policy. But as the error rate in-
creases' energy consumption due to reception of the retransmitted segments becomes

more dominant compared to that due to transmission of acknowledgements, and con-

sequently, energy consumption for TCP New-Reno with DACK tends to be similar
to that for the other TCP variants (Fig. 2.8).

In fact, in the high error rate regime none of the end-to-end TCP mechanisms

performs well in a wide-area cellular wireless environment. For example, with 10%

error rate, the achieved thoroughput is about 10 Kbps compared to 217 Kbps in the
ideal case. This is due to the inability of TCP to differentiate between wireless loss

and congestion loss.
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Figure 2.3. EnergA consurnpti,on for the different TCP uariants (scenari,o 1).

2.3.2.2 Multiple Flow with uniform wireless Loss (scenario 2)

The wireless link bandwidth is assumed to be 10 Mbps and there are 5 concurrent
flows. Throughput and energy consumption per flow under multiple concurrent TCP
connections are similar to those in case of a single connection (Figs. 2.4-2.5). But
the average per-flow throughput is observed to be slightly higher than the single flow
case (scena.rio 1) when the error rate is not too high (e.g., <5%).

In this case' we also observe the achieved throughput fairness among the different
competing TCP connections. All of the TCP variants provide good long-term fairness

and it is observed that even for error rate as large as 9Vo, the fairness index lies above

0.99. For error rate larger than L4%, the fairness index reduces to 0.98 (Fig. 2.6).
Therefore, it can be concluded that the random wireless channel errors do not impact
the TCP throughput fairness for the different TCp variants remarkably.

2.3-2.3 Single Flow with Uniform Wireless Loss (High bandwdith bottle-
neck)(Scenario B)

The wireless link bandwidth is assumed to be 10 Mbps in this case. This scenario is
considered to compare the throughput performance in the case of multiple concurrent

Error rate (%)
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Figure 2.4. Throughput performances of di,fferent TCP uari,ants (scenari,o p).
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Figure 2.5. Energa consurnpti,on for the di,fferent TCp uariants (scenari,o p).
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Figure 2.6. Throughput fai,rness for the d'ifferent TCP uari,ants (scenari.o P).

TCP flows with that in the case of a single TCP flow occupying the entire bandwidth.
The average throughput of this case (which is expected to be five times that for a
flow in scenario 2) becomes close to the per-flow throughput in scenario 2 as the error
rate increases beyond 1% (Fig. 2.7). The performance gain due to the high wireless

link bandwidth is observabie only for very small error rates (e.g., 0%-0.05%).

2.3.2.4 single New-Reno Flow with correlated Error(scenario 4)

The wireless link bandwidth is assumed to be 2 Mbps. In this scenario, we choose

to investigate only the performance of TCP New-Reno (which is regarded as the de

facto standard in the present Internet) under correlated channel error. For aparticular
average packet error tate, the channel error correlation (as manifested in the lengths of
the error bursts) varies as the mobile speed varies [2a]. For example, for the assumed
wireless channel bandwidth and maximum segment size, with 10% error rate, mobile
speed of 1 km/hr, 3 kmf hr, 5 kmf hr, r0 kmf hr and r00 kmlhr correspond to
bu¡st-error size of L1.4L,3.85, 2.37, r.42 and 1.11 segments, respectively. For rVo

average error rate, the corresponding burst-error sizes are 9.41, 1.39, I.I4, I.04 and,

1.01 segments, respectively.

The average throughput decreases with increased channel error correlation (Fig. 2.8).

Error rate (%)



23

Figure 2.7. Throughput performances of d'ifferent TCP uariants (scenari,o s).
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Figure 2.8. Throughput performance of TCP New-Reno (scenari,o l).

Eror rate (%)
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Table 2.3. Fast retransmi,t/fast recouery analys'i,s of New-Reno under correlated, error
Ioss (for 1000 second run)

Mobile

speed

TO FR MD SND FLT

Error rate:3To
1 km/hr 83 11 11 8 74.82

3 km/hr 230 234 237 764 13.93

5 km/hr 259 328 319 172 13.64

10 km/hr 301 399 380 204 1.3.4r

100 km/hr 300 404 384 191 13.45

Error rate:5To
I km/hr 105 i 1 i 13.00

3 km/hr 189 16 14 20 TL.62

5 km/hr 327 75 7T L37 71.45

10 km/hr 451 772 161 294 i1.59

100 km/hr 479 r87 175 251 1i.50

Error rate: I0To

1 km/hr io 0 0

3 km/hr r40 0 0

5 km/hr 298 0 0

10 km/hr 532 0 0

100 km/hr 507 0 0
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In the presence of highly correlated error, the acknowledgements from the mobile TCP
sinks do not reach the TCP senders and the TCP error recovery is triggered primarily
by timeouts. For example, with 10% error rate, it is observed that there is no fast
retransm'it at all (Table 2.3).

One interesting observation is that, although the number of timeouts decreases/increases

with decreasing/increasing mobile speed, the average throughput decreases/increases.

This is because, as user speed decreases, the channel error correlation increases, as a

consequence of which the value of RjIO backoff factor generally becomes high. \Mith
an increase in the value of RIO backoff factor, the end-to-end error recovery after a
timeout becomes more sluggish, and consequently, the throughput deteriorates.

The amount of energy consumption is observed to increase with increasing channel
error correiation.

2.3.2.5 Single Flow with Correlated Error(Scenario 5)

The wireless link bandwidth is assumed to be 2 Mbps. \Me assume mobile speed of
3 kmlhr at which the burst-error size is 3.85 and 1.39 for error rate of 707o and,ITo,

respectively. The performance trends (Fig. 2.9)in this scenario are observed to be

radically different from those in the random error case . Throughput performance of
TCP Vegas reduces by about 80% (compared to the uniform error case) when the
error rate is 2%. SACK TCP now performs better than TCP New-Reno over a range
of error rates from 0% to 5%.

Since the system dynamics is now characterized by a large number of timeouts,
high ratio of the number of multiple (three or more) packet drops to the number of
single packet drops in a single window and loss of a large number of acknowledgements,
performance of TCP Tahoe becomes comparable to the performance of SACK TCP.
Also, we observe that the performance of TCP New-Reno with TCP-aware link level
retransmission deteriorates considerably compared to that in the uniform error case.

TCP Reno is observed to perform the worst in this correlated error scenario.

Alihough the number of fast retransmits is fewer than that in the uniform error case,

most of the fast retransmits are due to multiple packet drops (three or more) in a
single window. For example, with 1% error rate, there are 402 fast retransmits, among
which 375 are due to multiple drops (Tabte 2.4). Again,327 of the 375 packet drops
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Table 2.4- Fast retransmi,t/fast recouery analysi,s under correlated, ercor (Error rate
1%, 3% and 10% and Run ti,me 1000 second )

TCP

variant

TO FR MD SND FLT

Error rate:|Vo
Tahoe 8 539 538 0 14.98

Reno 43r 402 t¡7rùrrJ 226 13.01

New-Reno I 544 541 1 t4.99

SACK 4 553 547 r205 L4.97

DACK 12 530 484 260 14.42

FACK 0 548 546 3284 14.93

TLLR 0 0 0

Vegas L57 445 14.20

Error rate:3To
Tahoe 195 2L4 2r0 59 14.42

Reno 346 95 93 25 12.80

New-Rreno 230 234 23L 764 13.93

SACK 330 257 246 870 14.02

DACK 254 275 2I0 103 71.82

FACK 159 349 348 1947 1.4.51

TLLR 0 0 0 0 0

Vegas 381

i75E

t64 10.82

Error rate: I0To

Tahoe r40 0 0

Reno 140 0 0

New-Reno 140 0 0

SACK 740 0 0

DACK L45 0 0

FACK L40 0 0

TLLR 68 0 0

Vegas 248

OE

0
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Figure 2.9. Throughput performances for the di,fferent TCP uariants (scenari,o 5).

are due to three or more packet drops in a single window. Most of these multiple
(more than three) drop cases are observed to be followed by timeouts. In fact, when
three or more packets are dropped from a window of data, the Reno sender is forced
to wait for a timeout most of the time.

TCP Tahoe is observed to perform significantly better than Reno under correlated
error scenarios. Since after switching to slow-start, Tahoe forgets all outstanding data
that were transmitted earlier and increases its congestion window upon receipt of
each acknowledgement, it results in multiple transmission attempts for same packets
(some of which have presumably been lost already), and consequently, the throughput
improves for the multiple drop cases.

Since the number of packet drops per transmission window increases in the cor-
related error case, SACK TCP performs better than New-Reno. TCP New-Reno
requires n x RTT to recover from n packet drops in a single window whereas SACK
recovers much faster. This is mainly due to its better pipe estimation method and
usage of a larger retransmission pool. For the same reason FACK TCP perfoïms even

better than SACK TCP.

Since a large number of acknowledgements a¡e lost due to correlated channel error,
sluggishness in transmitting acknowledgements in the case of TCP New-Reno with
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Figure z.LO. Energy consumpti,on for the di.fferent TCP uari,ants (scenari,o 5).

DACK option does not significantly impact the throughput performance. For the
same reason, sharp response to packet losses in the case of TCP Vegas is not very
conducive to improving TCP throughput performance in the correlated. error case.

Under different channel error rates and channel error correlation, the fixed values
of a and B do not work well. Also, TCP Vegas experiences the highest number of
timeouts.

For error rate greater than 7To, the energy consumption is observed to be more
or less same for all the TCP variants (except for Vegas and New-Reno with TLLR)
(Fig. 2.10). This is due to the fact that for a iarge error rate all of the TCP variants
experience almost the same number of timeouts and there may be no fast retransmit
at all.

Etot ßla (%)



2.4 Maximum Achievable TCP Throughput Un-
der'Window-Based End-to-End Transmission

Control

In this section, we obtain the upper bound on the TCP througput performance under
window-based end-to-end transmission control (i.e., throughput of. i,deal end-to-end,

TCP (IE2-TCP)) and compare it against the throughput performances of TCP New-

Reno, SACK TCP and FACK TCP. For any window-based transmission control,
the timeout mechanism is a must. Note that, all of the basic TCP variants use

similar timeout mechanism along with exponential RIO backoff. Also, they use the

fast retransmit mechanism (i.e., immediate retransmission of lost segment detected
by tcp-rermi,t-thresh number of duplicate ACKs). However, the basic end-to-end
TCP variants mainly differ in the implementation of the fast recouery mechanism.

Note that, for the maximum possible throughput performance in a wired-cum-wireless

scenatio, I E2-TCP should be aggressive enough in retransmission and in measuring
the outstanding data segments. The upper bound on the throughput performance

under wireless loss (achievable by the I E2-TCP) can be obtained using the simulation
model described before based on the following assumptions:

. IE2-TCP uses the timeout mechanism along with exponential RTO backoff and
it uses fast retransm'it mechanism to retransmit a lost segment after reception
of tcptermi,t-thresh number of duplicate ACKs.

. I E2-TCP retransmits a lost segment after receiving partial duplicate ACKs.

o Rather than using a go-back-N type of retransmission, .I-E2-TCP uses selective

acknowledgement (SACK)-based retransmission.

. I E2-TCP uses the information in the SACK acknowledgement to estimate out-
standing data.

. I E2-TCP maintains the transmission window size equal to the receiver-advertized

window size all the time.

Figs. 2.11-2.12 show some typical results on the long-term aveïage throughput
performance or. IE2-TCP when compared to those of SACK TCp, TCp New-Reno
and FACK TCP under both random error and correlated error cond.itions. As is



30

Y

ì
I

g

0.06 0.08 0.1

Packet eÍor rate (%)

Figure z.tL. Throughput performances for íACK TCp, TCp New-Reno, FACK
TCP and, I E2-TCP under random packet errorin the wi,reless l,ink.

evident from Fig. 2.11, under random packet error in the wireless link IE2-TCP can
achieve a throughput which is higher by as much as 200% (e.g., for packet error rate
of a%) than that due to SACK TCP and FACK TCP. Improvement in throughput
performance can be even higher under correlated error scenarios (e.g., 250% improve-
ment for packet error rate of 4% with average error burst length of 3.85) (Fig. 2.12).

Therefore, it can be concluded that the basic TCP variants perform significantly poor
compared to the i'deal TCP (i.e., I E2-TCP) in a wired-cum-wireless scena,rio. Since

the throughput performance of I E2-TCP characterizes the envelope of the maximum
possible throughput under a TCP-like window-based end-to-end transmission con-

trol, the TCP modifications based on end-to-end approaches should use this as the
benchmark performance.

2.5 Summary and Outlook

Throughput, fairness and energy performances of the different basic TCP variants
have been investigated in a wide-area cellular wireless environment for both uniform
and correlated wireless channel errors. The following provides a summary of the key
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observations:

SACK TCP, TCP New-Reno, FACK

errorin the wireless I'ink (for mobile

o Implications of the fast retransmit and timeout events on the TCP performance

largely depend on the wireless channel error characteristics (e.g., error rate and
degree of channel error correlation). For example, in the case of rCp vegas,

sharp response of the sender due to its fine-grained expiry mechanism works well
under uniform error case while the same strategy results in poor performance

under correlated error scenarios. Therefore, although coarse timeout is undesir-
able under random losses, the ineffectiveness of the 'Vegas expiry' mechanism
under correlated error cases suggests that very sharp timeouts may also not be
desirable under such error conditions.

o A method which provides better estimation for the number of outstanding seg-

ments is always conducive to the TCP throughput performance under both
random and correlated error scenarios. Due to this reason, FACK TCP is ob-
served to be consistentÌy better than SACK TCp and TCp New-Reno under
both random and correlated error scenarios.

0.08 0.1

Packet €ror rate (%)
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c Since the impact of timeout becomes more dominant, the throughput perfor-
mances of all of the basic end-to-end TCP variants (which primarily differ in
the fast recoaery mechanism) suffer under correlated error scenarios. Again,
end-to-end protocols with link level retransmissions (e.g., snoop protocol) also

suffer serious performance degradation in case of correlated channel errors.

o Lower degree of wireless channel error correlation is more conducive to energy
saving at the mobile TCP sinks.

o In a wide-area wireless scena.rio, TCP connections with high bandwidth-delay
product may not get their fair share. Spliiting a single TCp flow (with a

high bandwidth-deiay product) to multiple flows (say, ø flows) increases the
throughput approximately r times for a certain range of low error rates.

o TCP performance in a wired-cum-wireless environment can be improved signif-
icantly by using some transport level mechanism to differentiate between the
congestion loss and wireless channel loss and then adjusting the window adap-
tation mechanism accordingly.

¡ The transmission window size at the TCP sender should be adapted differently
depending on the degree of correlation in the wireless link errors. In addition,
timer granularity may be adapted dynamically based on error correlation.

o The throughput performance of an end-to-end TCP designed for a wide-area cel-
lular environment based on transport level modifications should be compared
against the maximum achievable throughput envelope. This envelope, which
can be characterized empirically based on simulation results, defines the max-
imum throughput achieveable under any TCP-like window-based end-to-end
transmission control mechanism.
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Chapter 3

TCP Enhancements for'Wireless
Ir{etworks

In this chapter, a brief overview of the different approaches for enhancing TCP perfor-
mance (based on transport level modifications) along with a qualitative performance

comparison are presented.

3.1 TCP Solutions for \Mireless Networks

There has been a flurry of recent works ([26]-[53]) on improving TCP performance

over wireless networks. A taxonomy of the different proposed mechanisms to improve
TCP performance in wireless networks is shown in Fig. 3.1. Proposed modifications
can be primarily classified according to the protocol level they operate on.

In addition to the basic TCP variants, Iink level and transport level approaches

to improve TCP performance have been proposed in the literature. Link level ap-
proaches mainly try to make the radio link robust against wireless errors by using
local retransmission mechanisms. A link layer scheme to improve TCP performance

may or may not use transport layer knowledge. Next, tranport level modifications are
mainly of two types - end-to-end and non-end-to-end. End-to-end solutions depend

on the modification on either at the TCP source or at the TCP sink. Non-end-to-end
modifications are mainly done at the base station/access point.

For wide-area cellular wireless networks, end-to-end TCP soiutions based on transport-
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level modifications which use some intermediary (such as a base station) may not
maintain true end-to-end semantics (e.g., I-TCP [a2]) and the intermediary may be-

come a bottleneck due to the overhead involved in processing traffic associated with
each connection and handing over the 'state' of each connection to the new interme-
diary during handoff.

Link-level TCP solutions such as those which use TCP-aware smarts in the base

station (e.g., snoop protocol [28]) have scalability problems and may even degrade the
performance of TCP in a wide-area cellular environment when the latency over the
wireless link dominates the round trip time [37]. In addition, such a solution requires
the base station to maintain significant state and is often tuned to specific flavor of
TCP (e.g., snoop protocol does not work well with TCp Vegas).

3.2 Tlansport Level Modifications to the Basic TCp
Variants for 'Wireless Networks

3.2.L Sender-Only Modifications

o K-SACK 130]: lf-SACK is an efficient SACK-TCP variant of TCP New-Reno
that requires modification at the TCP sender only. The novelty of this proto-
col is that it differentiates between wireless losses and congestion losses from
anticipated loss pattern and behaves accordingly. During fast recoaergr, in case

of wireless loss, it does not halve the congestion window instead it stalls the
growth of the window. The fast recoaer7 phase is partitioned into two phases:

halt growth phase and K-recoaery phase. During K-recovery phase, the sender

apprehends congestion only if it anticipates 1( Ioolcahead,-loss within a loss win-
dow of size lwnd,, where K and lwnd are appropriately chosen parameters for
the protocol.

The parameter lwnd, can be chosen to be equal to the number of outstanding
packets. The parameter lookahead-loss estimates the number of losses in the
outstanding packets. For each such loss the sender has received either (i) at
Ieast maæ-dupøcfr number of duplicate acknowledgements, or (ii) mar-dupsack
number of selective acknowledgements with higher sequence numbers. For
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lookahead-loss below K (".g., K : 2), the sender assumes loss due to chan-

nel error.

Upon entering into the fast recouery phase, if lookahead-loss is less than K, the
sender enters into the halt growthphase, otherwise to the K-recouery phase and
transition between these phases occrus depending on the value of the lookahead-

loss.

During the halt growthphase, congestion window remains frozen and the sender

remains in this phase until the lookahead-loss becomes at least K. When the
sender enters into the /{-recovery phase for the first time, ssthresh is set to
mar(cwndf 2,2 x MSS) and cwnd is set to ssthresh. upon re-entry, ssthresh
remians unchanged, but congestion window is set to mar(cundf 2,r x MSS).
This may cause the congestion window to change multiple times during the
same fast recouera period. As a result, upon exiting fast recouery, depending

on the value of ssthresh and cwnd, K-SACK TCP may find itself in lhe slow

súørú phase instead of the congestion auo'i,dance phase.

K-SACK performs a better pi,pe (i.e., number of packets in the link) estimation
by measuring the p'ipe as the number of unacknowledged segments which are not
marked lost or marked lost and retransmitted. This improved pipe estimation
results in faster error recovery.

The main advantage of K-SACK is that it detects packet loss due to wireless

channel error without explicit notification and it can be used seamlessly in wired
or wired-cum-wireless environment without separate tuning. It was observed to
perform very well under high i.i.d. error condition. Simulation results showed

that, at 5% i.i.d. error rate the throughput was almost twice of that due to
SACK-TCP over New Reno.

Although /I-SACK performs well under random packet errors in the wireless

channel, the performance of this scheme will suffer under correlated error con-
ditions. This is due to the fact that, a moderate degree of correlated error will
increase lookahead-loss to K and thus push K-SACK into K-recovery phase.

Therefore, during fast recouery the sender may spend significant amount of time
in K-recouery phase compared to that in the halt growth phase.

To combat the situation due to correlated packet loss in the wireless channel,
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higher value of K can be chosen. However, it will increase the chance of con-

gestion collapse in the wired Internet. Since in a real Internet scenario, only a

small percentage of packet losses (e.g., 75% [3i]) is recovered by fast recouera,

enhancement only in the fast recouery mechanism as in I{-SACK is not likely to
improve the TCP performance significantly compared to the other TCP vari-
ants in a wide-area wireless Internet. In additon, under pathological scenarios

K-SACK would suffer from oscillation between the K-recouery and the ha,lt

growth phase which would reduce cwnd to small values, and consequently, the
performance may fall below that of SACK TCP.

o TCP Westwood (TCPW) [32]: TCPW uses a sender-side modification of TCP
congestion window adaptation algorithm which is based on estimation of the
bandwidth used by the TCP connection via monitoring the rate of returning
ACKs' The bandwidth estimate (BWE) is used to set the congestion window
and and the slow-start threshold after a congestion episode (i.e., after three
duplicate acknowledgements or after a timeout), and thereby, TCpw achieves

a "fastet" error recovery. The basic congestion window dynamics during slotl-
start and congest'i,on auo'idance are unchanged. However, TCP Westwood does

not use any method to determine the cause of packet loss, i.e., whether a packet

loss is due to errors in the wireless link or due to congestion in a router. We

will provide more details about TCP Westwood on next chapter 4.

As an end-to-end solution to error and congestion control in mixed wired and

wireless networks, TCP\ / was observed to provide significant throughput gain

over TCP Reno and SACK TCP for both random and correlated error condi-
tions in the wireless link. Also, the observed throughput fairness among TCPW
fl.ows across different round trip times was better compared to that for TCP
Reno flows. This was due to the fact that, under TCP\M long connections
suffered less reduction in cwnd and ssthresh.

As the round trip time increases, the time for the feedback information to
reach the TCP sender also increases which reduces the effectiveness of TCPW.
Also, TCPW performs poorly when random packet loss rate exceeds a small
threshold. During long correlated error burst, TCP timeouts occur which affect
TCP\M performance severely.
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. TCP Santa Cruz 133]: TCP Santa Cruz (SC) uses new congestion control and

error recovery strategies which are designed to work with path asymmetries,

networks with lossy links, limited bandwidth, variable delay and out-of-order
packet delivery. Since congestion losses are preceded by an increase in the
network bottleneck gueue (which may not be true for random iosses in the

wireiess link), TCP-SC monitors the queue developing over a bottleneck link
and determines whether congestion is incipient in the network and responds by

increasing or decreasing the congestion window accordingly. The goals are to
perform timely and efficient early retransmission of any lost packet, eliminate
unnecessary retransmissions for correctly received packets when multiple losses

occur within a window of data, and provide RIT estimates during periods of
congestion and retransmission.

The congestion control algorithm in TCP-SC is based upon the measurement of
relati'ue delay that packets experience with respect to each other as packets are

transmitted through the network. For each transmitted packet, TCP-SC sender

maintains information about the transmission time of the packet, the arrival
time of an ACK for that packet and arrival time of the data packet at the receiver

(which is reported by the receiver in its ACK). Then for any two data packets

¿ and j, the relatiue forward delag D{, can be calculated as Df, : Rj,¿ - S¡,t,

where Df represents the additional forward delay experienced by packet j wiih
respect to packet 'i, S¡,t is the time interval between the transmission of the
packets, and R¡¡ is the interarrival time of data packets at the receiver. Based

upon the values of Dl, over time, the change in the states of the queues (and

specially the bottleneck queue) are determined. For example, if the sum of
relative delays over an interval is 0, it implies that no additional congestion or
queueing is present in the network at the end of the interval with respect to the
beginning.

If n is the operating point of the congestion control algorithm (i.e., n is the
desired number of packets in the bottleneck queue which is assumed to be

one packet more than the BDP of the network), it attempts to maintain the
total number of packets queued at the bottleneck link from the beginning of
the connection until t¿ (Nr) to zz, where -fy'¿, : ffn_, * Mwn_r, with Mwn_,
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being the additional amount of queueing introduced over the previous window
W¿-t, and Àtr¿, - Mwo. Now Mwn_, can be calculated based on the relative

delay measurements as follows: Mwn-, :4# where lo¡¡ isthe average packet
"pEz

service time and k is the number of packet pairs within window W¿¿. Note
that, the average packet service time can be calculated based on the timestamps
returned by the ¡eceiver.

TCP-SC adjusts the congestion windo\M once for each interval equal to the
amount of time it takes to transmit one window of data. Over this interval,
Mw*, is calculated and at the end of the interval it is added to l/¿n_r. If
Nro ( n - 6 (õ is some fraction of a packet), the congestion window is increased

linearly, while if Nru ) n*õ, the congestion window is decreased linearly during
the next interval, otherwise the congestion window is maintained at its current
size. In this way, since adjustment of the congestion window does not depend

on the arrival of ACKs, the congestion control algorithm becomes robust to
ACK loss.

TCP-SC sender receives precise information on each packet correctly received

and it uses a tighter estimate of the RTT per packet. TCP-SC recovers losses

quickly without necessarily waiting for three duplicate acknowledgements from
the receiver. Let packet z initially transmitted at time ú¿ is lost and marked as a

hole in the ACK window. Packet i is retransmitted as soon as an ACK arrives

for any packet transmitted at time ú, such that t, ) ú¿, and tarrunt-t¿ ) RTT",
where t"o,,.nt is the current time and RTT. is the estimated round trip time of
the connection.

TCP-SC was observed to provide high throughput and iow end-to-end delay

and delay variance over networks with a simple bottleneck link, networks with
congestion in the reverse path of the connection, and networks which exhibit
path asymmetry. TCP-SC can be implemented as a TCP option by utilizing
the extra 40 bytes available in the options field of the TCp header.

TCP-SC does not differentiate between packet loss due to congestion and packet

loss due to wireless link error. In fact, effectiveness of the proposed relative
delay-based approach under correlated wireless channel losses is unclear.

Selectiue Slow Start (SSS) [34]: Under this scheme, TCP attempts to distinguish
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between packet loss due to congestion and packet loss due to handoff based on
the pattern of losses. For this, afier a timeout the TCP sender counts the
number of lost segments in the last ,S attempts including the current one and

compares it with a pre-calculated LIMIT. If the number of lost segments is

higher than LIMIT, the sender assumes that these losses are due to network
congestion and initiates slow start, otherwise it continues to transmit at its
current rate using the same timer values assuming that the losses are due to
handoff. The value of the parameter LIMIT is set in a 'ffay that it can account

for all segment losses during a handoff. For example, LIMIT can be set as

LIMIT: E #, where C is the senders transmission rate (in äps), ?¡ is the
average handoff duration (in seconds), S"g is the average segment size and K
is a safety factor.

Although the 
^9^9^9 

scheme was shown to perform better than standard TCP in
wireless ATM environment for high handoff rate (e.g., 0.2f second.), the main
limitation of this scheme is that for rate adaptation at the TCP sender it does

not take wireless link conditions into account. Also, using a high value of LIMIT
may cause congestion collapse in the wired Internet.

3.2.2 Receiver-Only Modifications

c Freeze-TCP l35l: This is a proactive mechanism in which the receiver notifies
the sender of any impending 'biackout' situation (e.g., due to wireless channel
fading or handoff) by 'zero window advertisement (ZWA)' and prevents the
sender from entering into congestion avoidance phase. Upon receiving ZWA,
the sender enters into the 'zero window probes (ZWP)'mode and freezes cor-
responding timers. While in ZWP mode, the sender transmits zero window
probes and the interval between successive probes grows exponentially until it
reaches 1 minute, where it remains constant. When the 'blackout' period is

over, the receiver sends TR-ACKs (Tlipticate Reconnection ACKs) for the last
data segment successfully received to enable fast retransmi,tat the TCP sender.

Ideally, the 'warning period' prior to disconnection (i.e., how much in advance

should the receiver start ZWA) should be long enough to ensure that exactly
one ZWA gets across the sender. If the warning period is longer than this, the
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sender wiil be forced into ZWP mode prematurely resulting in idle time prior
to disconnection. If the warning period is too small, the receiver might not
have enough time to send out a ZWA which will cause the sender's congestion

window to drop.

One drawback of this approach is that, the receiver needs to predict the im-
pending disconnections. For this, some cross-layer information exchanges may

be necessary.

o ACK-Fragmentati,on Protocol136]: If the mobile host, after sending three dupli-
cate acknowledgements, receives a nevr retransmitted packet from the sender,

it sends I/ equally spaced cumulative acknowledgements for this new packet

within one round-trip time. If for this received packet the sequence number of
the first octet is ,S and last octet is -F, the ith cumulative acknowledgement

will acknowledge upto octet ,9 + i,(F - S) /N . The value of N can be computed

from the random packet loss probability in the wireless link, the link capacity,

round-trip time and buffer size at the bottleneck link [86].
The effectiveness of this protocol comes from the fact that increased number

of acknowledgements within same round-trip time expedites the resumption of
normal transmission window at the TCP sender. Moreover, it increases the
chance that the sender receives at least one acknowledgement.

3.2.3 Modifications at the Sender and the Receiver

o Wireless fCP (WTCP) l37l: WTCP is an end-to-end reliable transport layer
protocol for wired-cum-wireless networks which ases rate-bøsed transmission

control instead of window-based transmission control and the rate adaptation
computations are performed by the receiver. Since the receiver performs the rate
computations, the effects of delays variations and losses in the ACK path are

eliminated. The goal of WTCP is to decrease the transmission rate aggressively

in case of congestion (so that the congestion alleviates quickly) and decrease

less aggressively in the case of incipient congestion to improve efficiency.

To distinguish between congestion-related and non-congestion-related packet
loss, the WTCP receiver, using a history of packet losses, computes the mean
and mean deviation in the number of packet losses when the network is pre-
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dicted to be uncongested. If the loss is predicted to be due to congestion, the
transmission rate is decreased aggressively by 50%. For non-congestion related
packet ioss WTCP uses the ratio of the average interpacket delay observed at
the receiver to the interpacket delay at the sender (rather than using packet loss

and retransmission timeouts) to control transmission rate. The WTCP receiver

maintains two state variables laug-rat'io and saugtati,o for the long-term and

short-term running averages of the ratio of the observed sending rate at the re-

ceiver to the actual sending rate at the sender. At any time, the receiver can be

in one of the three states-'increase (when laug-ratio ) aa and saug-rati,o > þ*),
decrease (when laug-rati,o ) a- and saugtatio> P_), mai,ntai,n.

WTCP uses SACK and no retransmission timer for loss recovery. The sender

tunes the desired rate for ACK transmission by the receiver so that it receives

at least one ACK in a threshold period of time and can react to the new trans-
mission rate.

In summary, wTCP is significantly different from TCp and tuning of ihe dif-
ferent parameters would be required to optimize the performance of wTCp.
Expli,ci.t congesti,on Noti,fication (ECN) TCP lJ8]: This proposal is based on
the TCP with explicit congestion notification [39] mechanism where the routers
should inform the TCP sender of incipient congestion so that the TCP senders

can lower the transmission rate. For example, if RED (Random Early Detection)
mechanism is used, a router signals incipient congestion to TCp by setting the
Congestion Ðxperienced (CE) bit in the IP header of the data packet when the
average queue size lies between two thresholds mi,n¿¡ and mar¿¡r. In response,

the receiver sets the 'ECN-Echo (ECE)' bit in the ACKs and when the sender

receives an ACK packet with ECE bit set, it invokes the congestion control
mechanism. In case of packet loss in the wireless channel, the receiver sends

ACK packets without CE bit set and on receiving three duplicate ACKs without
CE bit set the sender deduces that the packet loss is due to errors in the wireless

channel. In this case, the sender does not invoke the congestion auoi,d,ance

algorithm.

In case of long outage in the wireless channel, this scheme may not work well.
Again, this can be used only for ECN-capable TCp.
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o Eife| Algorithm [40]: A large number of timeouts and fast retransmissions that
occtu at a TCP sender have been observed to be spuri,ous. That is, the ACKs
received at the sender after a timeout or fast retransmit are actually the ACKs
for the original packets and not for the retransmitted packets. Spurious fast re-

transmits result when the packet reordering in the Internet results in a reorder-

ing length more than the duplicate ACK threshold. Due to spurious timeouts
and spurious retransmissions, the TCP sender unnecessarily reduces the trans-
mission rate and enters into a go-back-N type of retransmission mode. When
the sender enters into the retransmission mode, it causes the receiver to send

duplicate ACKs which may result in fast retransm,it after a timeout resulting
in further reduction in transmission rate. The Eifet algorithm was proposed to
eliminate the problems caused by spuri,ous ti,meouts and spuri,ous fast retrans-

mi,ts in TCP.

The Eifel algorithm uses the TCP timestamp option. Each packet t¡ansmitted
by the sender is timestamped and the values of ssthreshand cwndare also stored.

The receiver returns the timestamp value of the packet in the corresponding

ACK. Afier a timeout or a fast retransmit, the values of. ssthresh and. cwnd,

are updated according to the usual algorithms and the packet is retransmiited.
After receiving the ACK, if the sender finds that it is for the original packet, it
restores the values of ssthresh and cwnd.

This algorithm does not take packet loss due to wireless channei error into
account, and therefore, does not solve the problems of TCP in a wired-cum-
wireless network.

3.2.4 Modifications at Base station: Non-End-to-End rbans-
port Level Approaches

o Indi,rect-fcP (I-TCP) [a2]: I-TCP splits a transport layer connection between

the MH and the FH into two separate connections - one over the wireless link
between the MH and its mobile support router (MSR) at the base station and
the other between the MSR and the FH over the fixed network. After receiving
the data packets destined to the MH, the MSR sends ACKs to the FH and
forwards the packets to the MH using a separate transport protocol designed
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for better performance over wireless links. Such a transport protocol for the

wireless link can support notification of events such as disconnections to the

lin-k-aware and mobility-aware applications. In this case, the mobile hosts can

run simple wireless access protocol to communicate with the MSR and the MSR

manages the communication overheads for communicating with the FHs. For

example, when an MH wants to communicate with a FH, it sends a request

to its current MSR, and the MSR then establishes a TCP connection with the

FH. Whenever an MH moves to another cell, the entire connection needs to be

moved to the new MSR which should be completely transparent to the fixed

network.

Performance of I-TCP was observed to be better than regular TCP in wide-area

wireless networks. However, end-to-end TCP semantics are not maintained in
this protocol and applications running on the mobile host have to be relinked

with the I-TCP library. AIso, I-TCP is not suitable for cases where the wireless

link is not the last part of a connection path, because in such a case a par-

ticular connection may need to be split several times resulting in performance

degradation.

o Usi,ng ICMP Control Messageslaa]: A scheme for improving TCP performance

in wireless networks using ICMP control messages was proposed in [44]. In this
scheme, the BS transmits an ICMP-DEFER message to the FH when it fails in
its first attempt to transmit the packet to the MH over the wireless link. On

receiving the ICMP-DEFER message for a particular packet, the sender resets

the corresponding timer. When all local retransmissions fail, the BS notifies the

sender using ICMP-RETRANSMIT message so that the sender can retransmit

the packet.

o Using Multi.ple Acknowledgements [a5]: The scheme proposed in [a5] maintains

end-to-end semantics and uses two types of ACKs, namely, parti,al ACK (ACKI)
and complete ACK (ACK.) to distinguish losses due to congestion from losses

due to wireless link error. The sender uses the regular TCP mechanism with
slow-start, congest'ion auo'idance, fast retransmi,t and fast recouerg. The com-

plete acknowledgement ACK" is sent by the receiver and the partial acknowl-

edgement ACKe is sent by the BS. ACKp with sequence number ÀIo informs the
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sender that packet(s) with sequence numbers up to À/, - t have been received by
the BS, and the BS is facing problems in forwarding the packets with sequence

numbers from ACK" up to No-1(i.e., it has not received the ACK from the
wireless host even after waiting for the maximum possible delay time between

the transmission of a packet from BS and reception of the ACK from the mobile

host). Then the sender marks the corresponding packets and updates RIO to
give the BS more time to perform retransmission. If timeout occurs, and the
packets are still marked, the sender will backoff the timer only without invoking
any congestion control method. On receipt of. ACK., the sender works similar
to a normal TCP sender.

When the BS receives an in-sequence packet, or an out of sequence packet which
is not in its buffer, the packet is buffered and transmitted to the mobile host.

The BS starts a timer with the timeout value equal to the maximum time which
can elapse between the reception of a packet at the BS and its acknowledgement

from the mobile host. If the BS receives an out of sequence packet which is

present in the buffer, it sends an AC Ko to the sender. If the local timer at the
BS expires before receiving an acknowledgement from the mobile host, the BS

retransmits the packets and sends an AC Ko to the sender.

Mobile-End Tlansport Protocol (METP) la6): METP hides the wireless link
from the rest of the Internet in a wired-cum-wireless network by terminating the
TCP connection at the BS on behalf of mobile host. TCP/Ip between the BS

and a mobile host is replaced by a low overhead protocol. All TCP connections

are handled by METP at the BS which negotiates with another host in the
Internet to open or close a TCP connection, and keeps the connection state
and sending and receiving buffers. For data transfer from a mobile host to an
Internet host through a TCP connection, the mobile host sends the data to the
BS, and METP sends them out as TCP segments to the destination. When a
TCP/P packet destined to the mobile host arrives at the BS, METP sends an

ACK and puts it in the receiving buffer from where a separate process transmits
it to the mobile host. In case of temporary link failure, since METP at the BS

continues to receive data from the fixed host, it sends out ACK with smaller
advertised window. The advertized window is retained to its original level when
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the wireless link becomes good again.

METP uses link layer retransmissions and acknowledgements for reliabie data
delivery over the wireless link. If no acknowledgement is received immediately
after a data frame transmission, the frame is retransmitted after a rand.om

backoff interval. To avoid buffer overflow, flow control is achieved by the METP
at the receiver through periodically sending out a feedback packet to inform the
sender of the available buffer space.

METP uses a header size of only 12 bytes for packets exchanged between the
mobile host and the BS. The header size can be further reduced by using the
idea of header compression. In case of handoff the old BS opens a separate TCP
connection with the new BS and sends all data and state information.
The merits of this protocol are that by using small header it incurs less overhead

for wireless transmission and it avoids activation of the TCP congestion control
mechanisms in case of packet loss in the wireless channel. METP was observed

to provide better throughput performance than split-connection TCP and split-
connection TCP with selective ACK under varying handoff interval and BS

buffer size. However, METP does not maintain the strict end-to-end semantics

and suffers from the scalability and reliability problems (due to failure of the
BS).

o WTCP [47]: WTCP uses a modified flow and error control protocol between
the BS and the mobile host. After receiving a TCP/P packet from a fixed host,
\ /TCP at the BS buffers it (if this is the next packet expected from the fixed
host or if the packet has a larger sequence number than expected) along with
its arrival time. WTCP then transmits the buffered packet to the mobile host
and when a packet is transmitted to the mobile host, the BS schedules a new
timeout if there is no other timeout pending. Upon receiving the ACK from the
mobile host, WTCP frees the corresponding buffer and sends the ACK to the
fixed host. WTCP performs local error recovery based on duplicate acknowl-
edgements or timeout. In case of timeout, WTCP reduces the transmission
window size to one assuming subsequent bad channel condition. As soon as the
BS receives an ACK, the transmission window size is set again to the receiver
advertized window size. Also, upon reception of a duplicate ACK, wTCp opens
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the transmission window in full.

Another feature of WTCP is, it attempts to hide the time spent by the BS

for local error recovery by adding that time to the timestamp value of the
corresponding segment so that the TCP's round trip time estimation at the
source is not affected. In this wa¡ the TCP source's ability to effectiveiy detect

congestion in the wired network is not impacted.

Due to its aggressiveness in window adaptation, WTCP was observed to pro-

vide better/equal throughput performance compared to I-TCP and snoop TCP.

However, a more optimized flow and congestion control scheme along with
header compression (as in METP) can be used under similar scenario to provide

even better performance.

A qualitative comparison among the different end-to-end TCP modifications is
provided in Table 3.1.

3.3 Summary and Outlook

A brief overview of the different proposed TCP mechanisms (based on transport level

modifications) along with their advantages and disadvantages have been presented.

Among all these mechanisms, our focus is on the approaches that estimate bandwidth
and use that estimate to control transmission rate. TCP Westwood fails in this
category. We have a detailed analysis of TCP Westwood on next chapter 4. Flom all
the TCP apporaches studied in this chapter, we can conclude that future research in
end-to-end rCP design for wired-cum-wireless networks should address

o how to distinguish among packet losses due to wireless channel error and conges-

tion error (".g., by using some estimation/filtering mechanisms) and comparison

among the different (estimation/filtering) mechanisms

o how to exploit the above information for adjusting the transmission rate at the
sender in the case of packet loss to design end-to-end TCP based on modifica-
tions at the sender only

o fairness, energy-efficiency and TCP-friendliness of an end-to-end TCP cus-

tomized for wired-cum-wireless networks.
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Table 3.1. Comparison o.mong tÅ, t onrport-leuel TCP mod,i,ficati,ons.

TCP

Variant

Maintains

end-to-end

semantics

Can handle

end-to-end

encryption

Requires

intermediaries'

support

Can handle

random packet

loss

Can handle

burst errors

efficiently

K-SACK Yes Yes No Yes No

Westwood Yes Yes No Yes No

Santa Cruz Yes Yes No Yes

SSS Yes Yes No Yes No

Fleeze-TCP Yes Yes No Yes Yes

ACK-

fragmentation

Yes Yes No Yes No

WTCP
(rate-based)

Yes Yes No Yes Yes

ECN Yes No Yes Yes No

Eifel Yes Yes No No No

I-TCP No No Yes Yes No

Using

ICMP

No No Yes Yes Yes

Multiple-

ACK
Yes No Yes Yes Yes

METP No No Yes Yes Yes

WTCP

(window-based)

Yes No Yes Yes Yes
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Chap 4

Analysi of TCP 'W.estwood

In this chapter we investigate the bandwidth estimation mechanism of TCP Westwood

[32] and its consequent impact on the throughput and friendliness performances of
TCP Westwood. We also investigate the interaction of TCP Westwood wiih a RED
(Random Early Detection) [56] queue in the network router.

4.L Introduction

An important way of transport-level TCP modification is to exploit an end-to-end

bandwidth estimation. In such a case, the fair share of the bottleneck bandwidth
for each flow is estimated at the TCP sender and the transmission rate is adjusted
accordingly(e.g., in TCP Westwood). This approach to provide enhanced transport
over heterogeneous networks requires only slight moifications at the sender side while
it maintains the end-to-end semantics and requires no support from the lower layers

andf or any network component.

TCP Westwood is a recently proposed end-to-end modification of TCP in which
the transmission rate for a flow at the sender is controlled based on the estimated
available bandwidth for that flow in the end-to-end path. Here, we analyzethe behav-

ior of the bandwidth estimation mechanism in TCP Westwood,by using simulations
based on ns-2. Simulation results reveal that the proposed technique results in erro-
neous bandwidth estimation under different scenarios with multiple concurrent TCP
Westuood flows.



50

4.2 TCP 'Westwood

TCP Westwood sender monitors the rate at which acknowledgements arrive at the
sender and from this it estimates the bandwidth available for this connection. When-
ever the sender perceives a packet loss (i.e., when a timeout occurs or three duplicate
acknowledgements are received), the sender uses the bandwidth estimate to properly
set the congestion window (cwnd) and the slow-start threshold (ssthresh). By adjust-
ing the cwnd and the ssthresh values based on the estimated available bandwidth,
TCP Westwood tries to avoid overly conservative reductions in cwnd and ssthresh

(and hence transmission rate) and as well as ensuïe faster recovery from packet loss.

TCP Westwood ases a discrete time iow pass filter with variable gain to estimate
the available bandwidth in the end-to-end path as follows [32]:

where ö¡ is the filtered estimate of the available bandwidth at time [, : tn, ep :
(2" - L¡)lQr -¡ Ar), A¡ : tn - tn-t and |fr is the cutoff frequency of the filter.
Since an acknowledgement ACKn received at the TCP sender at time ú¿ implies that
upto byte BYf ENO(ACKk) have been received by the TCP receiver, a sample of
the estimated bandwidth is:

6n: ,,nîn-r + (1 - or) (t#*)

^ _ (BvrENO(AC Kk) - BYr ENO(AC Kh-L))
Tk - t,*,

(4.1)

(4.2)

where ú¡-1 is the time when the previous acknowledgement (i.e., ACK7,-1) was re-

ceived.

When the inter-arrival time A¡ increases, the filter gain a¿ decreases, and con-

sequently, the last estimate û¡-1 receives less significance and the past two recent

samples have higher significance. The bandwidth estimate (BE) ö¿ is used to set

ssthresh and cwnd during timeout or fast recovery as follows:

/* algorithm for course tineout expiration x/
if (course timeout expires)

ssthresh = (BE x RTTnin)/segnent_size;
if (ssthresh <2 ) {

ssthesh = 2;
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)
crmd = 1;

endif

/* algorithn for n dupacks x/
if (n dupacks are received)

ssthresh = (BE x RTTmin)/segment_size;

if (cwnd > ssthresh) {
cwnd = ssthesh

]
endif

Since the estimated bandwidth is considered to be the currently available band-

width, TCP Westwood sets both ssthresh and cwnd eqttal to BE x RTTmi,n and
then the standard New-Reno fast retransmit and fast recovery follow. During time-
out, slow-start threshold is set equal to BE and the cwnd is set equal to one. As

timeout is an indication of severe congestion and/or high wireless loss, it is reason-

able to set congestion window to one. At the same time setting of ssthresh equal to
BE ensures speedy recovery.

4.3 Accuracy of the Bandwidth Estimation Mech-
anism in TCP Westwood

Fig.4.i shows the network topology used to analyze the behavior of the bandwidth
estimation procedure. In Fig. 4.1, the bottleneck link is used by n TCp flows, S¿

and -R¿ represent the ¿th TCP source and sink, respectively. For each TCP flow, the
acknowledgements and the data packets pass through the same path. The bottleneck
link capacity is 20 Mbps and all the packets are assumed to be of size 1000 bytes.
Each TCP flow is assumed to have identical propagation deiay. Ten TCP flows (flow1

- flow1O) are started initially and another ten flows (flow11 - flow2O) are started at
30 seconds. All flows continue to the end of simulation (60 seconds). Each flow has

infinite backlogged traffic.
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Figure 4.1". Simulation scenario.

4.3.I Scenario 1: Bandïvidth Estimation Under No Loss

In this scenario, rve assume no loss (either due to congestion or wireless error). To

avoid congestion loss, sufficient buffer is used in the bottleneck link.
Figs. 4.2 and 4.3 show typical variations in bandwidth estimaie (BE) with time

for flow1 and flowl5, respectively. Similar variations in bandwidth estimation are

observed for other flows (in flowl - flow1O and flowl1 - flow2O). As is evident from
Fig. 4.2, after initial rise up, the available bandwidth is estimated to be about 11

Mbps during the fi¡st 30 seconds although actual fare share in this case is only 2

Mbps (bottleneck capacity of 20 Mfus shared among 10 flows). For second half of
the simulation time (where number of flows is doubled), the available bandwidth
is estimated to be about 6.5 Mfus for all flows (flow1 - flow2O) although the fare

share during that period is 1 Mbps. Therefore, the estimation error is about 450%

during the first 30 seconds and about 550% during the last 30 seconds. Note that the
estimated bandwidth (and hence the estimation error) is quite stable.

Typical variations in the aggregate of the bandwidth estimate (ABE) for all flows

with time is shown in Fig. 4.4. The aggregate bandwidth estimate is observed to
be about L20 Mbps and 140 Mbps during the first half and the second half of the
simulation period, respectively although the bottleneck link bandwidth is only 20

Mbps for all periods. Therefore, the bandwidth estimation method used in TCP
Westwood is erroneous. Error in bandwidth estimation increases as the number of
flows increases.
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Figure 4.4. Vo,ri,ati,on i,n aggregate of est'imated bandwi.dth for all fl,ows (scenario 1).

4.3.2 Scenario 2: Bandwidth Estimation Under'Wireless Loss

In this scenario, the TCP sinks (fii - Rzo) are assumed to be connected to the bottle-
neck router through wireless a link of bandwidth22 Mbps (e.g., 802.11b WaveLAN).

Packet ioss is assumed to be only due to errors in the wireless Iink (i.e., no conges-

tion loss) and packet error rate in the wireless link is assumed to be |Vo. Typical
variations in the bandwidth estimate for each flow and the aggregate bandwidth for
all flows are shown in Figs. 4.5, 4.6, repectively. Unlike scenario 1 the variations in
the instantaneous bandwidth estimates for all the flows may not be same in this case.

The aggregate bandwidth estimate for all flows is in the presence of wireless loss still
very high (i.e., 100 Mbps during the first 30 seconds and 150 Mbps during the last

30 seconds).

4.3.3 Scenario 3: Bandwidth Estimation Under Congestion
Loss

In this scenario, packet loss is assumed to be only due to congestion in the bottleneck
router. The amount of buffer at the bottleneck router is assumed to be equal to
the bandwidth-delay product of the network (185 packets). Similar to scenario 2,
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estimated bandwidth for each flow has been observed to be high compared to the
corresponding fair share (Fig. 4.7). The aggregate of the estimated bandwidth for
all flows is about four times and seven times the ideal estimated bandwidth during
the first 30 seconds and the last 30 seconds of the simulation run, respectively. This
erroneous bandwidth estimation may lead to congestion collapse.

ïm€, s

Figure 4.7. Variat'i,on i,n aggregate of the est'imated band,wi,dth for att fi"ows (scenari,o

3).

4.3.4 scenario 4: Bandwidth Estimation lJnder Both con-
gestion Loss and W'ireless Loss

In this scenario, the bottleneck buffer is set to 185 packets. Packet loss rate in the
wireless link is assumed to be 7%. Fig. 4.8 depicts bandwidth estimation of flowl
as representative of first 10 flows. Although there are occasional degradations in the
estimated bandwidth, it remains near I0 Mbps most of the time. Variations in the
aggregate of the estimated bandwidth are similar to those in scenario 3.
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4.3.5 Summary of Observations

The bandwidth estimation mechanism in TCP Westwood always over estimates the

available bandwidth for each flow (compared to its fair share). In the presence of errors

(congestion and/or wireless) the inaccuracy in the bandwidth estimation increases

with increasing number of flows. This erroneous bandwidth estimation causes each

TCP Westood flow to transmit at a rate which is much higher compared to its fair
share. This may cause TCP Weswood to become unfriendly to other TCP variants

and may also lead to congestion collapse (and hence drastic reduction in througput).

4.4 Impact of Aggressive Bandwidth Estimation

To demonstrate the impact of erroneous bandwidth estimation of. TCP Westwood on

its performance, 'ffe observe the variations in congestion window for a TCP Westwood

sender, queue length in the bottleneck buffer and throughput compared to those for

a TCP New-Reno flow.

4.4.L Variations in Congestion Window

Slnce TCP Westwood sets ssúå.resh and cwndbased on current estimated bandwidth
(which is much higher than the actual available bandwidth), the congestion window

is observed to be very high (above 100 segments in this case). In the ideal case, the

congestion window size should be around 18 (æ 2 Mbps x 74 msf 8000) segments.

For a New-Reno flow, variation in the congestion window size is closer to that of the

ideal case (Fig. 4.10). Therefore, a TCP Westwoodsender will transmit more packets

resulting in much higher level of congestion in a bottleneck router.

4.4.2 Variations in Bottleneck Queue Length

A RED queue is assumed at the bottleneck router for which values of. marthresñ, and

mi'nthresh are 150 and 100, respectively. After the first 30 seconds of simulation run,

l0 TCP Westwood flows are added on top of the 10 TCP New-Reno flows. During
the first half of the simulation the variation of the queue length is observed to be

quite stable and the maximum queue length is observed to be about i20 (Fig. 4.17).
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Figure A.Lo. Vari,ati,ons 'in congest'ion uindnw si,ze for TCP Westwood and TCP
New-Reno (under congestionl loss only).

However, addition of the TCP Westwoodflows causes the queue dynamics to become

more unstable and queue length is observed to vary between 0 to 185 (the maximum

limit). The aggressive bandwidth estimation mechanism of TCP Westwood causes

the queue length to exceed the limit and hence packet-drop for all the flows.

4.4.3 Variations in Throughput

The throughput performance of. TCP Westwood is compared to that of TCP New-

Reno when they run separately under conditions similar to scenario B.

The observed throughput for a TCP Westwood flow is highly variable over time
compared to that for a TCP New-Reno flow (Fig. A.LZ). This is due to the fact that a

typical TCP Westoodflow pushes much more traffic in the network than expected and

hence causes more packet losses. Flom the simulation traces we have observed that
during the 60 seconds of simulation run the tagged TCP Westwood flow experienced

38 timeouts while TCP NewReno experienced only 3 timeouts. The number of packet

drops for TCP Westwood has been five times more than that for TCP NewReno. As

a result, the throughput for TCP New-Reno is observed to be much higher (250
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Figure 4.L3. Fri,endli,ness of TCP Westwood compared to TCP New-Reno (under

congest'ionl loss only).

KB/sec - t30 KB/sec) compared to that for TCP Westwood (70 KB/sec - 60 KB/sec)
(Fig. 4.12).

4.4.4 Fliendliness of TCP 'Westwood to Other TCP Flows

To determine the friendliness behavior of TCP Westwood compared to that of TCP
New-Reno, we observe the variations in throughput for a tagged flow (flow1 in this

case) in two cases-when the tagged flow co-exists with all TCP New-Reno flows and

when it co-exists with TCP Westwood flows. For these two cases 10 new TCP New-

Reno flows and 10 new TCP Westwood, flows are added, respectivel¡ on top of the

10 TCP New-Reno flows.

Introduction of TCP Westwood flows causes more fluctuation in the throughput

of the tagged flow (Fig. 4.13). With the introduction of TCP New-Reno flows, the

throughput of the tagged flow stabilizes to about 130 KB/sec while for the TCP West-

woodcase the average is around 60 KB/sec. Therefore, TCP Westwood is unfriendly
towards the tagged flow and at the same time it wastes network bandwidth (since it
does not utilize the bandwidth to increase its own throughput).
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4.5 Summary

We have observed that the bandwidth estimation mechanism in TCP Westwood aI-

ways overestimates the available bandwidth for a flow in the end-to-end network
path. This causes TCP Westwood flows to become severely unfair to the other type

of TCP flows and may also cause congestion collapse. Therefore, the results reported

in [32] on the performance of TCP Westwood is somewhat fallacious. The cause of
Westwood's overestimation and performance degradation has been addressed in next

chapter 5. Moreover, we have provided alternative solution for bandwidth estimation

that does not overestimate.
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Chapter 5

TCP Pra'i,rie: A New TCP Variant
Based on Adaptive Bandwidth
Estimation

This chapter presents a new TCP variant called TCP Prai,rze which is a sender-only

TCP modification based on dynamic bandwidth estimation in wide-area wireless net-

works. The protocol addresses the burstiness pattern of ACK arrival and estimates

the bandwidth from the ACK stream. The estimate is then used to control the tran-
mission rate. The protocol provides significant throughput improvement compared

to TCP Westwood and TCP New-Reno and satisfactory fairness and friendliness per-

formances.

5.l- Introduction

The original bandwidth estimation mechanism in TCP Westwood was observed to
be erroneous (in chapter 4) which could make TCP Westwood unfriendly towards

other TCP variants (due to over estimation of the "fair sha¡e" of the bottleneck

bandwidth for the corresponding TCP flow). To alleviate this problem, enhanced

estimation methods (e.g., CRB (Combined Rate and Bandwidth) estimation method

[54], ABSE (Adaptive Bandwidth Share Estimation) method [55]) were proposed.

In this chapter, we propose a sender-only TCP modification (TCP Prai,ri.e) which



64

is based on a novel dynamic bandwidth estimation mechanism for TCP flows in
a wired-cum-wireless network. \Me explore the efficacy of the proposed bandwidth

estimation mechanism in TCP Prai,rie and evaluate the resulting throughput and

friendliness performances of TCP Pra'iri,e. Comparative performance among TCP

Prai,ri,e, TCP Westwood and TCP New-Reno is thoroughly investigated.

5.2 Motivation and Contribution

TCP Westwood is the representative of the TCP modifications based on dynamic

bandwidth estimation for improving TCP performance in wired-cum-wireless net-

works. We observe that TCP Westwood meastres available network bandwidth for a
TCP flow from the rate of the returning ACKs. It calculates bandwidth sample by

simply dividing the number of acknowledged bytes by the corresponding inter-arrival

time. When the majority of the network traffic is TCP flows, due to the bursty be-

havior of the TCP senders and the traffic management mechanisms at the routers,

this does not provide an accurate estimate of the available network bandwidth for a
flow.

TCP's inherent congestion control mechanism results in a bursty transmission

pattern by the TCP sender. During the slow-start phase, due to the immediate

increase of congestion window by one, the TCP sender transmits two packets on

reception of each ACK. Starting with an initial congestion window, repetition of this
process in each round-trip time results in a transmission of a packet burst followed

by an off period. Also, during the congestion avoidance phase, since the congestion

window increases immediately after receiving ACKs for a full transmission window,

the bursty pattern is retained. Again, the first-in-first-out queueing policy at a router

results in a bursty service pattern for packets.

The cumulative effect of the above two phenomenon is the bursty ACK arrival
process at the TCP sender. In a burst, ACKs are closely spaced and the bandwidth
estimation based on the inter-arrival time of these ACKs at the sender does not reflect

the real bandwidth available for the TCP sender. Therefore, in cases of multiple fl.ows,

the calculated sample bandwidth becomes very high, and consequently, the sender

overestimates the available network bandwidth. This results in an aggressive packet
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transmission by the TCP sender into the network.

Our proposed new TCP variant called TCP Prai,rie is an augmented version of
TCP New-Reno as majority of TCP implementations are TCP New-Reno these days

[59). fCP Prai,rie is a sender-only TCP modification and is based on dynamic band-

width estimation in a wide-area wireless network. We present novel mechanisms for

bandwidth sample calculation and bandwidth estimation by monitoring the acknowl-

edgement stream and the RTT values at the sender. Based on the R.fT values, TCP

Prairi,e determines the degree of congestion in the network.

Armed with the information on the degree of congestion, TCP Prairi,e spreads the

acknowledgement burst over the off period (i.e., the interval between the arrival of
two successive bursts) and obtains the bandwidth sample value. This gives a more

accurate and safe bandwidth sample. The bandwidth estimate is obtained from the

bandwidth sample using a discrete time EWMA (Exponentially Weighted Moving

Average) filter whose gain varies with the change of available bandwidth. The more

the change of bandwidth, the more is the gain of the EWMA filter and hence the

more is the weight given to current sample.

The congestion control mechanism of TCP Prai,ri,eis similar to that of TCP West-

wood or BA-TCP [57]. Whenever the sender perceives a packet loss (i.e., through three

duplicate acknowledgements or a timeout) it uses the estimated bandwidth to prop-

erly set the congestion window (cwnd) and the slow-start threshold (ssthresh). By
setting the cwnd and ssthreså values which are based on an accurate estimate of the

available bandwidth, TCP Pra'iri,e avoids reduction in congestion window and slow-

start threshold which is neither excessive nor insufficient. Therefore, TCP Prai,ri,e

achieves both faster recovery and effective congestion avoidance.

TCP Prai,rie is observed to be a very effective transport protocol in handling both
wireless loss and congestion loss in a wide-area wireless network. Experimental stud-
ies reveal that TCP Pra'iri,eoffers better throughputperformance compared to TCP

Westwood and TCP New-Reno. TCP Prai,r¿e is observed to provide better fairness

compared to TCP Westwood. Also, compared to TCP Westwood, it is observed to
be more friendly towards TCP New-Reno flows. This is due to the fact that the
bandwidth estimation in TCP Pra'iri,e is much more accurate compared to that in
TCP Westwood.
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End-to-End Bandwidth Estimation in TCP Prairi,e

The TCP Prai,ri,e sender monitors the acknowledgement stream and the HfT values

corresponding to a TCP flow to estimate the available bandwidth for that flow. The

available bandwidth for a flow is the amount of the share of the bottleneck bandwidth
that a flow can claim without hurting other flows passing through the same bottle-
neck link (i.e., fair share of the bottleneck bandwidth). For ¡/ TCP flows sharing a

bottleneck bandwidth with capacity C, the available bandwidth for a flow is defined

in the following way:

o If there is only congestion loss, fair share for each flow is CIN regardless of the

TCP mix.

o If all the TCP flows are of type TCP Prairie, in case of wireless loss, fair share

is C lN.
o If there àro'tL1 TCP New-Reno and nz TCP Prai,ri,e flows (where n1* nz: N),

in case of wireless loss, each of the TCP New-Reno flows will use a bandwidth

share less than C lN. In this case each TCP Prairi,e flow can use a bandwidth
share more than CIN without affecting the TCP New-Reno flows. Therefore,

the fair share for each TCP Pra'irie flow is greater thanClN. Note that, ?CP

Prai,rie can provide better throughput by using this increased bandwidth share.

The mechanisms for calculating the bandwidth sample and estimating the avail-

able bandwidth are described below.

5.3.1 Calculation of Bandwidth Sample

To calculate the bandwidth sample, 'we assume a bursty environment where the sender

transmits packets in a bursty manner and also the routers forward packets correspond-

ing to a flow in a bursty fashion. This resuits in a bursty ACK arrival process at the

TCP sender. Later, we will show that the derived formula also holds for non-bursty

environment.

Let us assume that an ACK arriving at the sender at time ú¡ notifies that d¡

bytes corresponding to that flow have been received at the receiver. Intuitively,

ffi : * should be considered as the bandwidth sampie for the flow. However,
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Figure 5.I". Di,fferent parts of an RTT peri,od.

due to the burstiness in the ACK arrival process, Aú¡ is much smaller for most cases.

Therefore, ffi *ut not reflect the fair share of bandwidth for the corresponding TCP
flow.

As explained earlier, a TCP sender always transmits packets in a bursty fashion.

Fbom transmission perspective, a TCP source sends a burst of packets followed by

an off period during which there is no transmission. Similarly, from reception point

of view, a TCP sender receives a burst of ACKs followed by an of period. A burst

period of transmission overlaps with the burst period of reception. Therefore, it can

be said that the lifetime of a TCP flow is a collection of. burst periods (during when

it receives ACKs and transmits TCP segments and off period (during when there is

no ACK reception and no transmission).

For simplicity, let us assume that there is a single burst period during each HfT
period (actually multiple burst can be converted into a single burst period) and ihe
first segment of the burst period is tagged for RIT. Fig. 5.1 shows the different parts

in an HfT period, where mi,nRTT is the minimum HfT seen by the flow throughout

its lifetime , and currRTT is the measured value of the RTT from previous HfT period

and the current HfT period is in progress. Since the first segment of the burst is
tagged for HfT, the time difference between two consecutive burst is equal to RIT.
Here, (1 I acwnd) is the number of segments that are acknowledged as a single burst

in the current RTT period, diffRTT is the difference between mi,nRTT and currRTT
(i.e., di,ffRTT : currRTT - mi,nï?fl. Now, we divide the off peri,od (i.e., the interval
between two burst periods) into two parts - diffRTT and gap peri,od. Therefore, an

RTT period is an aggregate of di,ffRTT, burst period and gap peri,od.

During a burst period from ú¿ to t¡,ao.,n¿, the TCP sender receives (7 + acwnd)

acknowledgements for data ranging from d¡ to d,¡ao.-n¿. \Me can say that, the service

time in the bottleneck router for the data acknowledged during the burst period is

orRTT arol RTT psiod (in progl$)
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equal to the duration of the burst period. Here, the more the service time at the

bottieneck routet, the more will be the duration of the burst period. Therefore, the

seruice bandwidth for the flow can be calculated as

BW"
data bu¡st ACKed during burst period

burst period

: dh+o*'n¿ - dk
!!Lk+acund - LIc

(5.1)

Let us assume that all segments are of identical size and there is neither missing

ACK nor delayed ACK. We also assume that all the ACK inter-arrival times are

equal. Therefore,

dk+o.-nd, - dnBW" :
tlr+o.-nd, - th
(dx+t-d,¡)xacwnd,
(ú¡+t-t¡r)xacwnd
Ldn
Ltn' (5.2)

This service bandwidth â* is exactly similar to our intuitive bandwdith sample. It
is much higher and almost equal to the highest service rate of the bottleneck link
(under the assumption that all traffic through the bottleneck link are due to TCP
flows).

The same burst suffers di,ffRTT additional delay before being served at the bot-
tleneck router and the total time experienced by the burst in the bottleneck router is
(burst peri,od + diffRTT). Therefore, we define the enperi,enced bandwi,dthof the flow

as follows:

data burst ACKed during burst periodBW" :
burst period + diffRlTT

dn*t - dn

(tn*, - t) + ùif f RTT f acwnd'
(5.3)

This experienced bandwidth BW" is still much higher than fair sha¡e of bandwidth
when there is congestion in the network.

Now, we define the parameter o (0 < o < 1) which determines the degree of
congestion. The more the congestion in the network, the more is the delay in the
bottleneck router and the more is the value of RfT. \Me define a to be equal to mi,n(L,
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"/ x diÍ Í RTT lmi,nRTT), where 7 is a scaling factor for the normalized di,ffRTT with
respect to minRTT. For all of our simulations, we set the value of 7 to be equal to 1.5.

Note that, the value of o approaches one as the congestion in the network increases.

In case of fully congested situation, the rate of ACK reception per HfT period

(which is a measure of throughput) can be rega.rded as the fair share of bandwidth.

In a fully congested situation, fair share cannot be higher than achieved throughput
as it will hurt other flows. But for partial congestion or no congestion, the fair share

is certainly higher than the achieved throughput. Considering that the portion of the

gap period contributing to the total time is ax gap peri,od, the approximate fair share

of bandwidth for the flow (BW") can be defined as follows:

BWo
data burst ACKed during burst period

burst period+ dif f RTT + o x gap period
dn+t - dn

(5.4)
(tn+, - tk) + dif IRTTf acwnd * o x gap period f acwnd'

In presence of congestion (i.e., when a is large), BWo is close to the fair share

of the bandwidth for the flow. But in case of wireless loss, the value of a becomes

small and BWo goes far away from the fair share of bandwidth. When wireless loss

dominates, congestion does not develop and the value of di,ffRTT and hence a becomes

very small.

There are cases when multiple flows pass through the bottleneck link, but sufficient

congestion does not develop at the router (due to small receiver window and/or packet

loss due to wireless link error). In these cases, diffRTT and a become very small.

Consequently, BWo becomes too high and almost similar to the service bandwidth
BW". To alleviate this problem, we modify (5.a) by introducing a new term (1 -a)xu
in the denominator. The parameter u should increase with increasing number of flows

through bottleneck link.

Finding the exact value of o is itself a research issue. We set ,u to be equal to
the measured variance of inter-arrival time (which increases with increasing number

of flows). FYom the simulation results we have observed that this setting works quite

well. Therefore, the actual fair share of bandwidth is calculated as

BWÍ: dn+t - dn

(tr*t - tk) + dif f RTT f acwnd* c x gap period f acwnd+ (i - a) x u'
(5.5)
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Now, if we allow delayed ACKs or missing ACKs, then consecutive acknowledge-

ments may acknowledge more than one segment. Defining W: c (where. > 1),

the formula for the fair share of bandwidth can be written as

BWÍ: dn+t - d*
(tr*, - t¡") + c x dif f RTT f acwnd* o x c x gap peúodf acwnd, + (t - a) x c x u

(5.6)

In case of equi-spaced (or non-bursty) ACKs, ACKs are distributed evenly over

the gap peri'od and the gap peri,odvanishes. For the same reason, all inter-arrival times

become almost same and u also vanishes, however, the term cx dif f RTT f acwnd does

not vanish which helps us to obtain a conservative sample when the bottleneck router
is congested.

By using (5.6), we obtain a reasonably accurate estimate of the available band-

width for a flow in both bursty and non-bursty situations. Experimental results in
Section "Accuracy of Bandwidth Estimation" validate this claim.

5.3.2 Bandwidth Estimation

To estimate the available bandwidth from the bandwidth sample, we use an EWMA
filter whose gain varies with the change in the bottleneck link capacity. Note that,
a constant gain exponential filter is not suitable in such a scenario since its response

time is high when the available network bandwidth changes. Also, we do not consider

the filter used in TCP Westwood dtrc to the following two reasons:

o Being a low pass filter, it provides more weight to the sample which has higher

Aú¡. Consider the case when bottleneck bandwidth increases due to reduction
of non-TCP traffic (e.g., CBR traffic). In this case Aú¿ decreases and the fiIter
provides lower weight to the sample, though the better strategy would be to
provide more weight to this sample to obtain a faster response.

o We have observed through simulations that most larger inter-arrival times of
ACKs are accompanied by larger inter-transmission time of the corresponding

segments. Providing more weight to samples with larger Aú¡ without consider-
ing inter-transmission time is questionable.
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Ioad:

the following EWMA filter whose gain is adaptive to the

: (7 - K._l)P¿-r + (ô tlpreuRTT - currilTr\16
: mi,nRTT 16

: nl@* R)
: (I - Kùbi^-t * K¿b¿.

7L

network

(5.7)

In (5.7) K¿ is the gain of the filter at step z, ô is the minimum ACK inter-a¡rival time,
preuRTT is the RTT measured before currRTT,4 is the estimate of the change of
bottleneck load at step i, ft is the round-trip pipe size (i.e., the network bandwidth-
delay product in packets), ó¿ is the bandwidth sample at step i, and I is tne filtered
estimate of bandwidth at step z.

Note that, in the expression for fl,l(preu&TT-curRTT)/ôl represents the change

of bottleneck load during an HIT period. Also, note that, K¿ increases with increasing

fl. The rationale behind such formulation of K¿ is that the more the change in the
bottleneck buffer, the more the change in bandwidth should be and hence the more

the value of y'l¿ should be.

5.4 TCP Prairie Congestion Control Mechanism

In this Section we describe how the estimated available bandwidth (EB) is used for
congestion control at a TCP Prairi,e sender. Firstly, in TCP Prai,ri,e the congestion

window updating mechanisms during slow-start and congestion avoidance phase are

the same as those in TCP New-Reno. That is, the congestion window increases ex-

ponentially and linearly, respectivel¡ during the slow-start and congestion avoidance
phases.

As in TCP Westwood, the estimated bandwidth (EB) is used to set the slow-start
threshold and to tune congestion window after a slowdown event (i.e., after three

duplicate ACKs are received or after a timeout occurs). In the case of reception of
three duplicate ACKs, TCP Prai,rie sets cwnd and ssthreså as follows:

if (three DUPACKs are received)
ssthresh = EB x minRTT/seg_size;

P¿

R"

K¿

O¿
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if(cwnd ) ssthresh)

cr¡-¡.d = ssthresh;
endif

endif

The standard fast retransmitf fast recouery then follows. During congestion avoid-

ance phase TCP sender probes for available bandwidth by continually increasing the

congestion window in a linear fashion. If it receives three duplicate ACKs, it implies

that TCP has hit the bottleneck capacity or wireless loss has damaged one or more

packets. In either case, the estimated bandwidth is regarded as available bandwidth

for the flow. Hence, it sets ssthresh equal to EB x mi,nRTT. The rationale behind

using mi,nRTT is that this setting allows the bottleneck queue to be drained after a

congestion episode.

If a packet loss is indicated by the occurence of a timeout, cwnd and ssthresh arc

set as follows:

if (coarse timeout expires)
ssthresh = EB x minRTT/seg-size;

if(ssthresh < 2)

ssthresh = 2;

endif
cwnd = 1'

endif

That is, after a timeout ssthresh is set equal to EB and cwnd is set equal to one.

This behaviour is justified because a timeout indicates a more severe congestion loss

and/or wireless loss. Therefore, the basic TCP New-Reno behavior is retained while

a reasonably speedy recovery is ensured by setting ssthresh to the value of EB.

5.5 Performance Evaluation

The network topology used for performance evaluation is shown in Fig. 5.2, where

the fixed hosts act as TCP sources and the mobile nodes (connected to the base

station/access point through wireless iinks) act as TCP sinks. A single bottleneck
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link is shared by the TCP flows and the flows have identical propagation delay and

infinitely backlogged sources. The bottleneck router uses a first-come-first-served

scheduling policy.

I 
""o*ti (Mobile aode)

Bottletrcck liDli

Ro (Mobile oode)

Figure 5.2. Network topology.

5.5.1 Accuracy of Bandwidth Estimation

Accurate bandwidth estimation is of prime importance since as it has direct impact

on congestion window settings and hence on congestion control. In this Section, we

compare the effectiveness of the proposed bandwidth estimation algorithm with that

of TCP Westwood. All the results are obtained using ns-2 [23]. For this purpose,

we consider five different scenarios - one case under UDP (User Datagram Proto-

col) traffic and fou¡ cases in presence of competing TCP flows. The throughput

and friendliness performances of TCP Pra'iri,e and results on the interaction of TCP

Prai,rie with RED queue are also presented.

5.5.1.1 Bandwidth Estimation Under UDP Traffic

The configuration simulated here has a bottleneck link capacity of 72 Mbps. One

TCP flow QCP Prairi,ef TCP Westwood) shares the bottleneck link with two UDP

flows. The transmission rate of each UDP flow is 4 Mbps. The first UDP flow is

turned on at 20 second and the second UDP flow is turned on at 40 second. At

time 60 second, first UDP flow is turned off and at time 80 second, the second UDP

flow is turned off. The UDP flows then remain silent until the end of the simulation.

One TCP Prai,ri,ef TCP Westwood flow sends data throughout the entire simulation

period.
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Figure 5.3. Bandwi,dth estimati,on under UDP trffic.

Fig. 5.3 shows the performance of the bandwidth estimation mechanisms for both

TCP Prai,ri,e and TCP Westwood. In this simulation scenario, the available bandwidth

for the TCP flow is L2 Mbps,8 Mbps, 4 Mbps,8 Mbps and 12 Mbps during the in-

terval of 0-20 second,20-40 second,40-60 second,60-80 second and 80-90 second,

respectively. As is evident from Fig. 5.3, TCP Prai,rie estimates the remaining band-

width more accurately than TCP Westwood. Moreover, the bandwidth estimation

mechanism in TCP Prai,ri,e has a faster response time to the changes in the available

bandwidth.

5.5.t.2 Bandwidth Estimation Under Competing TCP Flows (No Loss

Scenario)

The configuration simulated here features a 20 Mbps bottleneck link with one way

propagation time of.37 ms. We assume that the TCP segment size isI KB and all

the segments are of identical size. 10 TCP flows start at 0 second and another 10

flows start at 30 second. All flows remain active until the end of the simulation (at 60

second).In this scenario, we assume that there is neither wireless loss nor congestion

loss. To avoid congestion loss, sufficient buffer is used in the bottleneck link.
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Figure 5.4. Bandwi,dth esti,mat'ion under TCP trffic (no loss scenari,o).

We run TCP Prai,ri,e and TCP Westwood under the above stated scenario. Fig. 5.4

shows the estimated bandwidth for flow 1. The fair share of bandwidth is 2 Mbps

during the frrst 30 seconds and 1 Mbps during the last 30 seconds. As is evident from

Fig. 5.4, TCP Prai,rze's bandwidth estimation for flow 1 matches exactly with the fair

share of the bottleneck bandwidth for this flow. This is due to the fact that TCP

Pra'irie's bandwidth estimation addresses the burstiness in the network properly. The

estimated available bandwidth for TCP Westwood is far from the fair share and the

estimation error is as high as 4507o - 550% in this case.

5.5.L.3 Bandwidth Estimation Under Competing TCP Flows (with 0.1%
'Wireless Loss)

The simulation configuration here is exactly similar to that is Section 5.5.7.2 except

that we introduce wireless loss here. For wireless loss, we consider that TCP sinks

are connected to the bottleneck router through wireless link of 22 Mbps (e.g., 802.11b

WaveLAN). Packet loss is assumed to be only due to errors in wireless link (i.e., there

is no congestion loss) and packet error rate in the wireless link is assumed to be 0.1%.

Fig. 5.5 shows the estimated bandwidth of both TCP Prai,ri,e and TCP Westwood.
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Figure 6.5. Bandwi,dth est'imat'ion under TCP trffic (wi,th wi,reless loss).

As is evident from Fig. 5.5, the bandwidth estimation in TCP Prai,r¿e is close to the

fair share while TCP Westwood overestimates the available bandwidth.

5.5.1.4 Bandwidth Estimation Under Competing TCP Flows (with Con-
gestion Loss)

In this scenario, packet losses are assumed to be only due to congestion in the bot-

tleneck router. The simulation configuration in this case is similar to that in no loss

scenario case. But bottleneck buffer in this case is set equal to the bandwidth delay

product (185 packets) of the network.

Fig. 5.6 shows the results on bandwidth estimation for boíh TCP Pra'iri,e and

TCP Westæood. Similar to the previous results, TCP Prai,rie's bandwidth estimation

is closer to the fair share, bú TCP Westwoodoverestimates the available bandwidth.

Here, the periodic rise and fall in the estimated bandwidth (by TCP Prøirze) is due

to the variations in the bottleneck buffer occupancy.
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Figure 5.6. Bandwi,dth esti,mation under TCP trffic (wi,th congesti,on loss).

5.5.1.5 Bandwidth Estimation Under Competing TCP Flows (with Con-
gestion Loss and'Wireless Loss)

The simulation configuration here is the combined cases of congestion ioss and wireless

Ioss case. The bottleneck buffer is set to 185 packets and the wireless ioss rate is
assumed to be 0.1%. Fig. 5.7 shows typical results on bandwidth estimationby TCP

Prairie and TCP Westwood in this scenario.

In summary, TCP Prai,ri,e addresses the burstiness of ACK arrival process prop-

erl¡ and therefore, it estimates the bandwidth more accurately (compared to TCP

WestwooQ in all cases of loss and traffic types. The bandwidth estimation mechanism

in TCP \Mestwood always overestimates the available bandwidth. The inaccuracy in
bandwidth estimation in TCP Westwood increases with increasing number of flows.

The cause of this over estimation is that TCP \Mestwood does not address the bursti-
ness in the ACK arrival process.
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Figure 6.7. Bandwi,dth est'i,mat'ion under TCP trffic (wi,th congesti,on loss and wi,re-

Iess loss).

5.5.2 Throughput, Fairness and Fbiendliness Performances of
TCP Prairie

In this Section we compare the throughput and the fairness performances of. TCP

Pra'i,r'ie, TCP Westwood and TCP New-Reno. AIso, we compare the friendliness

performances of TCP Prai,ri,e and TCP Westwood towards TCP New-Reno. AII the

results are obtained using ns-T123).

5.5.2.L Fairness and Fliendliness

Fa'irness is a measure for the relative throughput performance of a set of TCP flows

of the same type. Fri,endli,ness is a measure of how the TCP flows corresponding to

the different TCP variants affect the performance of each other when they share the

same bottleneck link.

The simulation confguration here features a single bottleneck link with capacity

20 Mbps and one \¡/ay propagation delay of.37 ms. The buffer size at the bottleneck

router is equal to the pipe size (i.e., the bandwidth delay product of the network).

We assume that the TCP segment size is L K B and all the segments are of identical
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size. The link has no wireless loss except where otherwise stated.

To investigate the fairness performance, 10 simultaneous TCP flows of the same

type are run and the throughput performance for each flow is measured. Based on the

throughput for each flow, fairness index is calculated. In this case, the fairness index

for TCP Prai,rie, TCP Westwood and TCP New-Reno are observed to be 0.9968,

0.9687, and 0.9979, respectively. Therefore, TCP Prai.rie is more fair t}aan TCP

Westwood and its fairness is comparable to that of TCP New-Reno.

=

s

4s6
No. ol competing TCP New-Reno flow

Figure 5.8. Fri,endli,ness of TCP Prai,rie towards TCP New-Reno.

Now we compare the friendliness of TCP Prai,ri,eand TCP Westwoodtowards TCP

New-Reno. We run simulations with total 10 TCP flows of various schemes sharing

a 20 Mbps bottleneck link. In Figs. 5.8-5.9, the horizontal axis shows the number of

competing TCP New-Renoflows, the remaining flows being TCP Prai,rie (in Fig. 5.8)

or TCP Westwood (in Fig. 5.9). The vertical axis shows the average throughput per

flow in Mbps. In Fig. 5.9 we observe that TCP Westwood achieves more throughput

than its fair share of.2 Mbps. Therefore, it is unfriendly towards TCP New-Reno.

The reason is that TCP Westuood over estimates the available bandwidth share as

was observed earlier.

The results in Fig. 5.8 show that the throughput achieved by a TCP Prairi,e flow

is close to its fair share. Herc, TCP Prai,ri,e flow reduces the average throughput of
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Figure 5.9. Friendli,ness of TCP Westwood towards TCP New-Reno.

TCP New-Reno flow only by minimal amount. For practical purpose, \rye can claim

thai TCP Prairie is friendly.

5.5.2.2 Interaction with RED

The purpose of RED queue management is to prevent extreme congestion and "phas-

ing" and to enhance fairness [56]. The simulation topology in this case is similar to

that in Section "Fairness and Fliendliness". First 10 flows a¡e of íype TCP New-Reno

and they start at 0 second. Another 10 flows are of type TCP Prai.ri,ef TCP Westwood

and they start at 30 second. AII the flows remain active till the end of the simulation

(at 60 second). The bottleneck buffer is of type RED and its capacity is equal to the

network bandwidth-delay product (which is equal to 185 packets in this case). For

the RED queue, the mi,n-thresh and mar-thresh are set to 110 and 150, respectively.

During interaction of RED and TCP New-Reno during the first 30 seconds, the

RED router maintains a more stable queue-length, thus reducing the jitter and queu-

ing delay. This trend is also observed during the last 30 seconds with, TCP Prai,ri,e in

Fig. 5.10. Therefore, TCP Prai,rie interoperates positively with RED algorithm and

TCP New-Reno. As is observed in Fig. 5.11, with the introduction of. TCP Westwood

**

ooooo
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Figure 5.10. Typi,cal aari,ations i,n RED queue with TCP New-Reno and TCP

Prairi,e fl,ows.

(at 30 second), the queue-length becomes unstable and it varies quite rapidly. This

type of interaction between the RED router and TCP Westwood may lead to global

network instability [58].

5.5.2.3 Throughput Under Congestion Loss

To evaluate throughput under congestion loss, we consider a20 Mbps bottleneck link

with round-trip delay of 80 rns. In this case, 10 TCP flows of the same type run over

the bottleneck link. The size of the bottleneck buffer is set to 200 packets (which

is equal to the bandwidth delay product of the newtork). We run three different

simulations - one wilh TCP New-Reno, one with TCP Prai,rie ard the one with

TCP Westwood. The average per flow throughput is observed to be L.97 Mbps., 7.97

Mbps and 1.54 Mbps for TCP Prai,ri.e, TCP New-Reno TCP Westwood, respectively.

TCP Westwood saffers performance degradation due to the fact that it suffers more

congestion loss because of its over estimation of the available bandwidth. In fact, it
is critical to measure bandwidth accurately and use it to improve TCP throughput.

TCP Prai,r¿e offers superior performance because of its more accurate bandwidth
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Figure 5.L1. Typi,cal uariat'ions i,n RED queue wi,th TCP New-Reno and TCP West-

wood fl,ows.

estimation.

5.5.2.4 Throughput Under Wireless Loss

We examine a number of different scenarios to compare the performances of TCP

Prai,ri,e and TCP Westwood to the performance of. TCP New-Reno in wired-wireless

environment. The bandwidth of the bottleneck link is assumed to be 20 Mbps. The
propagation time over the wired link is assumed to be 37 ms. The wireless portion

of the link has capacity 22 Mbps with negligible propagation time. The wireless link
connects the base station to a destination mobile terminal.

Fig. 5.12 shows the throughput performance of TCP Prairie, TCP Westwood and

TCP New-Reno rnder varying loss rate from 0To to 5%. TCP Prairie and TCP

Westwood offer higher throughput than TCP Neu-Reno under different loss rates.

Note that, TCP Prai.r¿e does better than TCP Westwood at 0.L% loss rate. The

reason is that TCP Westwood s:ufrers some congestion loss at lower error rate due to
its over estimation. The largest improvement is obtained for 0.07%-l% loss rate. The

performance gain of TCP Pra'iri,e over TCP Westwoodis 77% aI0.07% error rate and
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Figure 5.L2. Typi,cal uz,ri,ations i,n TCP throughput wi.th packet loss rate.

it is 542% over TCP New-Reno at 0.5% error rate.

Simulation results in Fig. 5.13 show that the performance gains for TCP Prai,ri,e

and TCP Westwood (compared to TCP New-Reno) increase with increasing bottle-

neck bandwidth. It is assumed that the error rate here is 0.ITo and one v/ay propa-

gation time is 37 ms. TCP Prairie offers better performance than TCP Westwood.

Therefore, TCP Prai,rie is more effective in utilizing the high capacity Iinks en route

between the fixed host and the mobile host. Note that, when the link bandwidth

is small, all the protocols are equally effective. This is because a small window is

adequate in this case and window optimization is not a significant issue.

Fig. 5.14 shows variations in throughput gain with round trip propagation time.

We run simulations with one way propagation time in the wired portion of the network

varying from 30-180 ms and with wireless link loss rate set to 0.I%. As is evident

from Fig. 5.14, both TCP Prai,ri,e and TCP Westwood perform significantly better

than TCP New-Reno.

In short, TCP Prai,r'de, while achieving friendliness towards TCP New-Reno ín

presence of congestion loss, does not suffer efficiency degradation due to wireless loss.
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Figure 5.L3. Typi,cal uari,ati,ons i,n TCP throughput wi,th bottleneck link capaci,tg.

5.6 Summary

In this chapter, we have proposed a sender-only TCP modification called TCP Prai,ri.e

based on a novel bandwidth estimation mechanism in heterogeneous wired-wireless

network. TCP Prai,ri,e addresses bursty behavior of sender and router to calculate

bandwidth sample. Bandwidth samples are further smoothed through a filter whose

gain is proportional to the change of bottleneck load. By incorporating these two lev-

els of adaptivity TCP Prai,ree provides an accurate estimation of the flow bandwidth

share, which turns out to be a critical factor to obtain efficiency and friendliness to-

wards TCP New-Reno. We have tested proposed TCP Prai,rze protocol in single and

multipie flow scenarios, with congestion loss and wireless loss, and with and without

RED routers. TCP Prai,ri,e provides higher throughput compared to TCP Westwood

(which is another sender-only TCP modifrcation based on adaptive bandwidth esti
mation) while maintaining friendliness towards TCP New-Renoflow. Also, compared

to TCP Westwood, it interacts better with RED routers.

10 12 14
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Chapter 6

Conclusion

In this chapter, \rye summarize the works presented in this thesis and provide a few

directions for possible future research on the problem of improving TCP performance

in wired-wireless networks.

6.1 Contributions

The major contributions of this thesis are as follows:

o A comparative study on throughput and fairness of basic TCP variants (e.g.,

TCP Tahoe, TCP Reno, TCP NewReno, SACK TCP, FACK TCP) in wireless

network has been carried out. We have explained throughput behavior in terms

of number of timeout, number of total fast recovery, number of multiple drop

fast recovery and number of new segments transmitted during fast recovery.

For uniform error cases, throughput difference comes mainly due to difference in
total number of fast recovery and new segments transmitted during fast recov-

ery. TCP having better outstanding data estimation does more new segment

transmission during fast recovery and has been found to do better. For cor-

related error case, number of timeout and RIO backoff factor has been found

to be the dominating cause. As all TCPs deal timeout in the same manner,

throughput performances of all TCPs are found almost similar in case of corre-

lated wireless channel error.

o TCP Westwood is a TCP variant that employs bandwidth estimation for con-
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gestion control. We have detected that its bandwidth estimation is faulty, and

therefore, its performance deteriorates in presence of multiple flows. Our anal-

ysis has revealed that, in the presence of multiple concurrent flows, a TCP

Westwood fl.ow overestimates its fair share of available bandwidth (in all the

cases of congestion andf or wireless loss or no loss).

As a result, TCP Westwood becomes much aggressive in pumping packets into

the network which causes significant amount of packet drops at the routers,

and consequently, the throughput deteriorates. AIso, TCP Westwood becomes

unfriendly to other TCP variants and causes unfairness among TCP Westwood

flows.

We present a new TCP variant called TCP Prai,r¿e which is a sender-only TCP

modification based on dynamic bandwidth estimation in wide-area wireless net-

works. The idea is to continuously measure the bandwidth used by a TCP flow

via monitoring the rate of returning acknowledgements (ACKs) and the round-

trip time values. The estimated bandwidih is then used to set the congestion

window (cwnd,) and the slow-start threshold (ssthresh) after a slowdown event

(i.e., afber three duplicate ACKs or after a timeout).

The distinguishing feature of TCP Pra'iri,e (compared to other TCP variants

such as TCP WestwooQ is that it exploits the burstiness pattern of ACK ar-

rivals and estimates the available bandwidth more accurately. For the proposed

bandwidth estimation mechanism, the bandwidth sample is calculated by dis-

tributing a burst of ACKs over an off period based on degree of congestion and

burstiness in the network. The estimation technique is robust against burstiness

of ACK arrival and type of loss (e.g., wireless loss, congestion loss).

Due to a more accurate bandwidth estimation, during congestion control the

TCP Prai,rie sender sets the slow-start threshold to a value which is consistent

with the available bandwidth for the coorresponding TCP flow. Simulation re-

suits obtained using ns-2reveallhat TCP Pra'irie provides significant through-

put performance improvement over TCP New-Reno and TCP Westwood under

congestion and/or wireless loss scenarios. Also, compared to TCP Westwood

TCP Prai,rie is observed to be more friendly towards TCP New-Reno.
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6.2 Directions for F\rture Research

This work has opened many problems and issues which require futher research. Some

of them are listed below.

All TCP enhancements including TCP Prai.ri.e and TCP Westwood set conges-

tion window to one in the event of timeout. This is to avoid severe congestion

in the network. However, if wireless loss is the main cause of timeout, setting

the congestion window to one is not a good choice.

Instead, the congestion window should be set to some value based on the es-

timated bandwidth or the current congestion window size. Alternatively, a

seperate bandwidth estimation should be run for this purpose and that estima-

tion should be much more conservative. This strategy can be applied only when

lve are sure that the timeout is due to wireless loss. Otherwise, this strategy

may cause congestion collapse.

In some cases of multiple flows with wireless loss, TCP Prai,ri,e has been observed

to overestimate the bandwidth. To defend this situation, we have used the term
(L - a)u in the formula for calculating the sample bandwidth. Although setting

u to be equal to the variance of inter-arrival works pretty well in most cases, u

can be further tuned.

Performance of the bandwidth estimation mechanism in TCP Prai,ri,e needs to
be investigated in case of short-lived flows.

Performance of TCP Prairie needs to be compared with TCP variants such

as TCP Casablanca [60] which a¡e based on the idea of distinguishing random

wireless losses from congestion losses and make TCP react appropriately to each

kind of loss.



89

Bibliography

[1] R Ayala, K. Basu and S. Elliot, "Internet technology based infrastructure for
mobile multimedia services," in Proc. IEEE WCNC'?$ pp. 109-113.

[2] L.-F. Chang, V. Varma and R. Cheng, "Architecture alternatives for PCS-to-
Internet protocol interworking," in Proc. IEEE WCNC'??, pp.766-770.

[3] C \Mietfeld and U. Gremmelmaier, "Seamless lP-based service integration â,cross

fixed/mobile and corporate/public networks," in Proc. IEEE VTC'99 (Spri,ng),
pp. 1930-1934.

[4] T. F. La Porta, L. Salgarelli and G. T. Foster, "Mobile IP and wide area wireless
data," in Proc. IEEE WCNC'99, pp. 1528-1532.

[5] I. Mahadevan and K. M. Sivalingam, "Quality of service architectures for wire-
Iess networks: Intserv and diffserv models," in Proc. Internati,onal Worlcshop on
Mobile Computing, ISPAN'?9, Perth, Australia, June 1999.

16] I. Mahadevan and K. M. Sivalingam, "Quality of service in wireless networks using
enhanced differentiated services approach," in Proc. IEEE ICCCN'?/ Boston,
October 1999.

[7] S. Iren and P. D. Amer, "The transport layer: Tutorial and survey," ACM Com-
puter Surueys, vol. 31, no.4, pp. 360-405, Dec. 1999.

[8] J. Postel,"Tlansmission control protocol," Internet RFC 793,1981.

[9] V Jacobson, "Congestion avoidance and control," ACM SIGCOMM Computer
Cornmuni,cati,on Reai,elt)," vol.18, no. 4, pp. 374-329, Aug. 1988.

[10] V. Jacobson, "Berkeley TCP evolution from 4.3-Tahoe to 4.3 Reno," in Proc. of
the 18th Internet Engineering Taslt Force, University of British Columbia, Van-
couver, BC, Aug. 1990.

[11] M. Allman, V. Paxson, and W. R. Stevens, "TCP congestion control," RFC
2581, Apr. 1999.

[12] W.C.Y. Lee (1993). Mobi,le Communi,cati,on Desi,gn Fundamentals.2nd Edition,
John Wiley and Sons.

[13] H. Inamura, G. Montenegro, R. Ludwig, A. Gurtov, and F. Khafizov, "TCP over
second (2.5G) and third generation (3G) wireless networks," Internet draft, May
2002, URL: http://www.ietf.org/internet-drafts/draft-ietf-pilc-2.5g3g-08.



90

[14] S. Floyd, and K. Fall, "Promoting the use of end-to-end congestion control
in the Internet," IEEE/ACM Tþansact'i,ons on Networki,ng, May 1993, URL:
http : //www-nrg. ee.lbl. gov/fl oyd

[15] R. Cáceres and L. Iftode, "Improving the performance of reliable transport pro-
tocols in mobile computing environments," IEEE Journal on Selected Areas 'i,n

Commun'i,cat'ions, vol. 13, no. 5, pp. 850-857, June 1995.

[16] A. Kumar, "Comparative performance analysis of versions of TCP in a local
network with a lossy link," IEEE/ACM Tfansact'ions on Networking, vol. 6, no.
4, pp. 485-498, Aug. 1998.

[17] T. V. Lakshman and U. Madhow, "The performance of TCP/IP for networks
with high bandwidth-delay products and random Ioss," IEEE/ACM T\ansacti,ons

on Network'i,ng, vol.5, no. 3, pp. 336-350, June 1997.

[18] K. Fall and S. Floyd, "Simulation-based comparisons of Tahoe, Reno, and Sack

TCP," ACM Computer Communicati,on Reai,eu, Jul. 1996.

[19] S. Floyd and T. Henderson, "The New-Reno modification to TCP's fast recovery
algorithm," RFC 2582, Apr.1999. options," RFC 2018, Ãpr.1996.

[20] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, "TCP selective acknowl-
edgement options," RFC 2018, Apr. 1996.

[21] M. Mathis and J. Mahdavi, "Forward acknowledgement: Refining TCP conges-

tion control," in Proc. ACM SIGCOMM'96, pþ. 281-29L, L996.

122) L. S. Brakmo and L. L. Peterson, UTCP Vegas: End to end congestion avoidance
on a global Internet," IEEE Journal on Selected Areas i,n Communi,cati,ons,1995.

[23] S. McCanne and S. Floyd, "NS (Network Simulator)," 1995. URL
http : /www. isi. edu/nsnam/ns.

l24l 
^. 

Chockalingam, M. Zorzi, L. B. Milstein, and P. Venkataram, "Performance of
a wireless âccess protocol on correlated Rayleigh fading channels with capture,"
IEEE T\ansacti,ons on Cornmun'ications, vol. 46, pp. 644-655, May 1998.

[25] D. Chiu and R. Jain, "Analysis of increase and decrease algorithms for congestion
avoidance in computer networks," Computer Networlcs and ISDN Sgstems, vol. 17,

pp. 1-14, June 1989.

[26] H. Balakrishnan, S. Seshan and R. Katz, "A compa,rison of mechanisms for
improving TCP performance over wireless links," IEEE/ACM Transact'ions on
Networki.ng, vol. 5, pp. 756-769, Dec. 1997.

Ï271 H. Balakrishnan, S. Seshan and R. H. Katz, "Improving reliable transport and
handoff performance in cellular wireless networks," ACM/Baltzer W'ireless Net-
works, vol. 1, no.4, pp. 469-481, Dec. 1995.



91_

[28] H. Balakrishnan, S. Seshan, E. Amir and R. H. Katz, "Improving TCP/IP per-

formance over wireless networks," in Proc. ACM MOBICOM'?í.

[29] K. Brown and S. Singh, "M-TCP: TCP for mobile cellular networks," in Proc.

IEEE INFOCOM',96, 1996.

[30] A. Chrungoo, V. Gupta, H. Saran and R. Shorey, "TCP K-SACK: A simple pro-
tocol to improve performance over lossy links," in Proc. IEEE GLOBECOM'}I,
San Antonio, Texas, USA, Nov. 2001.

[31] D. Lin and H. Hung, "TCP fast recovery strategies: Analysis and improvements,"
in Proc. IEEE INFOCOM'98, Apr. 1998.

[32] C. Casetti, M. Gerla, S. Mascolo, M.Y. Sanadidi, and R. Wang, "TCP West-

wood: End-to-end congestion control for wired/wireless netwotks," Wi,reless Net-

works 8, 467-479,2002.

[33] C. Parsa and J. J. Garcia-Luna-Aceves, "Improving TCP congestion control over

Internets with heterogeneous transmission media," in Proc. IEEE Int. Conference

on Network Protocols (ICNP'??), Toronto, Canada, Oct. 31-Nov. 3, 1999.

[34] U. Varshney, "selective slow start: A simple algorithm for improving TCP perfor-
mance in wireless ATM environment," in Proc. IEEE MILCOM'97, pp. 465-469.

[35] T. Goff, J. Moronski, D. S. Phatak and V. Gupta, "Fleeze-TCP: A true end-

to-end TCP enhancement mechanism for mobile environments," in Proc. IEEE
INFOCOM'OO.

[36] D. N. Banerjee, "Improving wireless-wireline TCP interaction," submitted to
IEEE / AC M Tfansacti,ons on N etw orlci'ng.

[37] P. Sinha, N. Venkitaraman, T. Nandagopal, R. Sivakumar and V. Bharghavan,

"WTCP: A reliable transport protocol for wireless wide-a¡ea networks," in Proc.

ACM MOBICOM'99, Seattle, Washington, Aug. 1999.

l3S] R. Ramani and A. Karandikar, "Explicit congestion notification (ECN) in TCP
over wireless networks," in Proc. IEEE Int. Conference on Personal Wi,reless

C ornmun'icati,ons ( I C P W C' 0 0 ), pp. 495-499.

[39] S. Floyd, "TCP and explicit congestion notification," ACM Computer Commu-
ni,cation Reu'i,ew, vol. 24, no. 5, pp. 10-23, Oct. 1994.

[40] R. Ludwig and R. H. Katz, "The Eifel algorithm: Making TCP robust againt
spurious retransmissions," ACM Computer Commun'i,cati,on Reui,etl, vol. 30, no.

1, Jan.2000.

[41] N. Vaidya, "Overview of work in mobile-computing,"
http : / /www. cs. tamu. edu/faculty/vaidya/slides. ps.

l42l L. Bakre and B. R. Badrinath, "I-TCP: Indirect TCP for mobile hosts," in Proc.



92

15th IEEE Int. Conf. Di,stri.buted Computi,ng Systems (ICDCS), pp. 136-143, May
1995.

[43] H. Balakrishnan and R. Katz, "Explicit loss notification and wireless web per-

formance," ín Proc. IEEE GLOBECOM'I9, Internet Mi'ni, Conference) Sydney,

Australia.

[44] S. Goel and D. Sanghi, "Improving TCP performânce over wireless links," in
Proc. of IEEE Regi,on Ten Conference on Global Connecti,ui,tE i,n Energg, Com-

puter Communi,cati,on and Control (TENCON'9?), Dec. 1998.

[45] S. Biaz and N. Vaidya, "TCP over wireless networks using multiple acknowledge-

ments," Texas A&M University, Technical Report 97-001, Jan. 1997.

[46] K.-Y. Wang and S. K. Tlipathi, "Mobile-end transport protocol: An alternative
to TCP/P over wireless links," in Proc. IEEE INFOCOM'99.

l47l K. Ratnam and I. Matta, "WTCP: An efficient mechanism for improving TCP
performance over wireless links," in Proc. Third IEEE Symposi'um on Computers

and Commun'icat'ions (ISCC'Ø9), Athens, Greece, June 1998.

[48] M. C. Chan and R. Ramjee, "TCP/IP performance over 3G wireless links with
rate and delay variation," in Proc. ACM MOBICOM'}Z, Sept. 2002.

[49] A. DeSimone, M. C. Chuah and O. C. Yue, "Throughput performance of
transport-layer protocol over wireless LANs," in Proc. IEEE GLOBECOM'93,
Dec. 1993.

[50] C. Parsa and J. J. Garcia-Luna-Aceves, "Improving TCP Performance over wire-
less networks at the link layer," ACM Mobi,le Networks and Appli,cat'ions, Special
Issue on Mobile Data Networks: Advanced Technologies and Services, vol. 5, no.

1, 2000, pp. 57-71.

[51] N. Vaidya and M. Mehtha, "Delayed duplicate acknowledgements: A TCP-
una\¡/are approach to improve performance of TCP over wireless links," Texas

A&M University, Technical Report 99-003, Feb. 1999.

152] C.-F. Chiasserini and M. Meo, "Improving TCP over wireless through adaptive
link layer setting," in Proc. IEEE GLOBECOM'}I, San Antonio, TX, Nov. 2001.

[53] J. W. K. \Mong and V. C. M. Leung, "Improving end-to-end performance of
TCP using link-layer retransmissions over mobile internetwotks," in Proc. IEEE
ICC'99, pp. 324-328.

[54] R. \Mang, M. Valla, M. Y. Sanadidi, B. NS and M. Gerla, "Efficiency/friendliness
tradeoffs in TCP Westwood," in Proc. IEEE Symposi,um on Computers and Com-

muni,cat'ions, Taormina, Italy, July 2002.

[55] R. Wang, M. Valla, M. Y. Sanadidi and M. Gerla, "Adaptive bandwidth share



93

estimation in TCP 'Westwood," in Proc. IEEE Globecom 2002, Taipei, Taiwan,

R.O.C., Nov. 17-21, 2002.

[56] S. Floyd and V. Jacobson, "Random early detection gateways for congestion

avoidance," IEEE/ACM Transacti,ons on NetworHing, vol. 1, no. 4, Aug. 1993,

pp. 397-413.

[57] M. Gerla, W. Weng and R. Cigno, "Bandwidth feedback control of TCP and

real-time sources in the Internet," in Proc. Globecom'2)}1, San Fbancisco, CA,
Nov. 2000.

[58] R. J. La, "Instability of a tandem network and its propagation under RED," in
Proc. IEEE ICC'03, Anchorage, Alaska, June 2003.

[59] J. Padhye and S. Floyd, "On inferring TCP behaviour," in Proc. ACM SIG-

COMM'7L, Aug. 27-31, 2001, San Diego, California, USA.

[60] S. Biaz and N. Vaidya, "De-randomizing congestion losses to improve TCP per-

formance over wired-wireiess networks," Technical Report CSSE03-10, Nov. 2003.

URL : htrp: I I www. . crhc. uiuc.edu/wireless/groupPubs. html


