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Abstract

Cognitive radio (CR) is a promising technique to improve spectrum efficiency

for wireless communications. This thesis focuses on the resource allocation in

two kinds of CR networks (CRNs), traditional CRNs (TCRNs) and cooperative

CRNs (CCRNs). In TCRNs, CR sources and destinations communicate directly.

By exploring the heterogeneity among CRs, a prioritized CSMA/CA is proposed

for demand-matching spectrum allocation. A distributed game is formulated and

no-regret learning is adopted to solve the game. Simulation results indicate in-

crease on the number of satisfied CRs. In CCRNs, some nodes are selected as

relays to assist the communication. A two-layer auction game is proposed with

the first layer performing spectrum allocation and relay formation, and the second

layer performing relay allocation. These two layers interact and jointly solve the

resource allocation problem. Simulation results show that, compared to counter-

parts, both the network throughput and convergence time can be improved.
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1 Introduction

1.1 General Background

Limited spectrum results in the bottleneck for the development of wireless com-

munications and for a long time it is a key issue in telecommunications research.

However, in 2002 the common belief of spectrum scarcity was challenged by a

report [1] from the Federal Communications Commission (FCC) that less than 10

percent of available spectrum is utilized at a given time and location. Even for li-

censed spectrum, the utilization portions are between 15 to 85 percent with a high

variance in time [2]. The report also claimed that rather than spectrum scarcity,

spectrum access is a more significant problem due to the legacy command-and-

control regulation. The target to exploit these underutilized spectrum resources

motivates the need for Cognitive Radio (CR), a technique that is capable of dy-

namically accessing spectrum through learning the environment and avoiding dis-

ruptions to Primary Users (PUs), i.e., the licensed users who own the spectrum.

An example of the PUs is the analog TV broadcast stations.

The concept of CR was first presented by Mitola in 1998 in a seminar and later

published in 1999 [3], as a novel approach in wireless communications to detect

users’ communication demands, to analyze the communication environment, and

to adjust users’ communication parameters in response to environment and user

demands. It was proposed as an ideal goal for software-defined radio (SDR) plat-

form to evolve. However, after FCC’s report, CR is more preferred to be defined

as a technique for radios which is capable to access spectrum opportunistically. It
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is expected to be a powerful technique to further improve the spectrum efficiency

for the next generation wireless communication networks [2]. Today, it has been

adopted by the IEEE 802.22 working group in developing standards for wireless

regional area networks (WRANs) [4].

As secondary users to the spectrum, CRs are expected to be transparent to PUs.

The key issue in CR networks is to provide suitable bandwidth to CR users with-

out harming PUs through efficient resource allocation. In a CR network (CRN),

a CR needs to sense a wide range of frequency band to find spectrum holes [5],

the bands that have not been occupied by PUs, and selects an idle channel from

these spectrum holes to transmit [6]. However, the channel selection problem is

challenging as the channel availability dynamically changes over time and loca-

tions [7] [8]. Also, CRs competing on the same channels should be coordinated

as to improve the network performance, e.g., the number of satisfied CRs in the

network. In this thesis, we define it as the resource allocation problem in tradi-

tional CRNs (TCRNs). The TCRN denotes the scenarios that the CR transmitter

communicates directly with the CR receiver or base station (BS).

Recently, there is a trend to introduce another important technology in wireless

communications, called cooperative communication, which can offer significant

benefits in capacity improvement [9], energy efficiency [10], outage probability

deduction [11] and coverage range extension [12]. With the integration of coop-

erative communication, the cooperative cognitive radio networks (CCRNs) can

further improve the network performance, while inducing new challenges to the

resource allocation [13]. For example, in CCRNs, the resource allocation may

not only address the traditional spectrum sharing problems in TCRNs, but also
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conduct relay formulation and relay allocation to communication pairs.

Our research motivation is to design efficient resource allocation algorithms

for both TCRNs and CCRNs to improve the spectrum utilization and network

performance in terms of satisfied traffic demands. Considering the properties of

both kinds of CRNs, distinct objectives have been settled with the consideration

of specific challenges, which in turn contribute to the algorithms design. Both

algorithms should provide demand-matching resource allocation, network perfor-

mance maximization and short convergence time.

1.2 Contribution of This Thesis

The contribution of this thesis consists of two aspects: 1) for TCRNs, a demand-

matching spectrum sharing algorithm has been proposed. The heterogeneity among

users, i.e., difference in user demands, spectrum availability, and spectrum quality,

is explored. A distributed cooperative game is formulated with classified players.

Prioritized CSMA/CA is adopted as the spectrum sharing technique, and CRs

select channels and their priority to access channel based on their satisfaction his-

tory, a public signal for CRs to collaborate with others to achieve the Correlated

Equilibrium (C.E.), a strategic solution of the game. A no-regret learning algo-

rithm is adopted to learn the C.E. Simulation results show that the classified game

can achieve up to 40% better performance compared to the unclassified game.

This work has contributed to a conference paper which was accepted by the 6th

International ICST Wireless Internet Conference (WICON); 2) A two-layer auc-

tion based resource allocation algorithm for CCRNs is proposed. Starting from
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a homogeneous network without predefined relays, CRs allocated with abundant

resources become amateur relays to provide connectivity for those allocated with

insufficient resources to the BS. Resource allocation to these relays is based on

their channel connectivity to the BS, their own traffic demands, their channel con-

nectivity to neighboring nodes, and the neighboring nodes’ traffic demands. A

modified time division multiple access (TDMA) scheme is adopted as the sharing

technique. Prices charged by the BS for licensed channels and by the relays for

assisting communications are used to leverage the resource allocation. A fast con-

verging suboptimal algorithm is provided for the single level multi-buyer multi-

seller multi-slot auction, and a modified two level auction algorithm is adopted to

accelerate the convergence. Compared with the CRN without relay and the CRN

with predefined relays, simulation results show that our algorithm can increase

the network throughput significantly. This work is aimed to contribute to another

conference paper, which will be submitted to IEEE ICC 2012.

1.3 Outline of This Thesis

The rest of the thesis is organized as follows. Chapter 2 introduces the background

information and the related works. Motivated by the limits of existing spectrum

sharing algorithms in TCRNs, a new demand matching spectrum sharing algo-

rithm, called C.E. based classified game (CECG), has been proposed in Chapter

3. In Chapter 4, a two-layer auction game (TLAG) based resource allocation al-

gorithm has been proposed by integrating demand matching, spectrum sharing

and relay selection. Finally, Chapter 5 concludes the thesis with a discussion of
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possible extension and future research works in this area.
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2 Background and Related Works

In this Chapter, background knowledge and related works on resource allocation

in cognitive radio networks (CRNs) are introduced as the foundation for future

reference. First, an overview of CRNs is presented with the introduction to the

evolution and properties of CRNs and spectrum management in CRNs. After

that, a description on resource allocation in traditional CRNs (TCRNs) is pro-

vided, where the objectives and the classification of resource allocation in TCRNs

are briefly discussed. As the game theory has been widely applied in resource

allocation modeling in CRNs, an overview of game theory is also presented. Fi-

nally, to illustrate the new arising concept of cooperative CRNs (CCRNs), we will

briefly introduce the cooperative communication, and then the motivations and

ideas of some recent research works on CCRNs are discussed.

2.1 Overview of Cognitive Radio Networks

2.1.1 The Evolution of Cognitive Radio Networks

Defined by Mitola [14], software defined radios (SDRs) is a radio frequency (RF)

front end with a software-controlled tuner which is reconfigurable for the modula-

tion scheme. In Mitola’s dissertation [15], he extended the idea of SDR further to

the concept of cognitive radio (CR). CR essentially strengthens SDR with artificial

intelligence, so that it is capable of sensing the demands and the communication

environment, and reacting accordingly. Mitola’s definition of CR paid much at-

tention on CRs’ capacity in learning and adjusting to the environment.
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Variant from Mitola’s definition, the Federal Communications Commission

(FCC) later proposed another more widely accepted definition of CR [1]. Accord-

ing to FCC, CRs are radios which could use licensed bands, provided they check

the intense interfere with existing primary users (PUs). Rather than allowing CRs

only to access channels not occupied by PUs (called CR overlay networks), FCC

also proposed the interference temperature model [16], which allows CRs to ac-

cess channels as long as the interference they introduced to PUs is less than a

certain limit. This is called CR underlay networks.

In practice, started from 2004, the IEEE 802.22 standardization on Wireless

Regional Area Networks (WRAN) is the first worldwide effort to define a stan-

dardized air interface based on CR techniques [17]. It aims at using CR tech-

niques to allow broadband access to geographically unused spectrum allocated to

the Television Broadcast Service on a non-interfering basis in rural areas. IEEE

802.22.1 Standard for the Enhanced Interference Protection of the Licensed De-

vices was published as an official IEEE standard on November 1, 2010 [18].

2.1.2 Properties of Cognitive Radio Networks

Although the CR networks (CRNs) share some similarities with traditional net-

works, certain properties make them unique [19]. For example, CRNs should be

transparent to primary user, i.e., as in overlay CRNs, when primary users are using

the spectrum, CRN should not access the same one, or as in underlay CRNs, the

interference introduced by all CRs should be less than the interference tempera-

ture at the PUs. Thus, PUs’ activity, i.e., switching between on/off and mobility,

may severely impact the operation of CR networks in three aspects: 1) Spectrum
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availability of CRs may vary due to primary users’ activity. This issue is called

spectrum variability; 2) For a CRN under several different PUs, because each PU’s

activity may differ from each other, spectrum available to CR nodes in different

locations may differ, which is called the spectrum heterogeneity. Such spectrum

heterogeneity could become more severe if the CRN operates under several dif-

ferent PU networks. 3) PUs may also introduce interference to the CRNs in the

underlay scenario.

2.1.3 Spectrum Management in Cognitive Radio Networks

The key issue in CRNs is to provide enough bandwidth to CR users without harm-

ing PUs via dynamic spectrum access. To achieve dynamic spectrum access, the

CRN needs to realize following spectrum management functions [20] [21] [22]:

• sense spectrum holes, i.e., determine which portions of the spectrum are

available. It provides the spectrum availability information to other spectrum

management functions as well as upper layer, e.g., routing protocols. A detailed

description of this function can be found in [23] [24] [25].

• make spectrum decision, i.e., select the best available spectrum holes. In the

spectrum hole selection, it is important to characterize the spectrum band in terms

of both radio environment and the statistical behaviors of the PUs. Because of the

spectrum variability property, a prediction of PU activity should be conducted to

incorporate dynamic spectrum characteristics in the decision making.

• divide the spectrum holes into channels and perform spectrum sharing, or to

coordinate access to these channels with other users as well as to conduct resource

allocation. As multiple CRs may compete to access the same spectrum, their
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transmissions should be coordinated to prevent collisions and at the same time to

limit the interference to PUs. In the underlay CRNs, resource allocation may re-

fer to the power allocation. The game theoretical approaches are commonly used

to reach an equilibrium with low complexity, high output, and good fairness [26].

Furthermore, the spectrum sharing function necessitates a CR medium access con-

trol (MAC) protocol, which facilitates the sensing control to distribute the sensing

task among the coordinating nodes as well as spectrum access to determine the

scheduling for transmission.

• switch to another channel when a PU needs to use the current one. This

procedure is named as spectrum mobility. If a PU is detected in the portion of the

spectrum in use, CRs should vacate the spectrum immediately and try to find an-

other vacant portion of the spectrum to continue their communications. For this,

either a new spectrum must be chosen or the affected links may be circumvented

entirely. Thus, spectrum mobility necessitates a spectrum handoff scheme to de-

tect the link failure and to switch the current transmission to a new route or a new

spectrum band with minimum quality degradation. This requires collaboration

with spectrum sensing, neighbor discovery in a link layer, and routing protocols.

Furthermore, this functionality needs a connection management scheme to sustain

the performance of upper layer protocols by mitigating the influence of spectrum

switching.

A summary of the interaction among the aforementioned functions can be

found in Fig. 1 [21].
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Figure 1: Cognitive Radio cycle

2.2 Resource allocation in Traditional Cognitive Radio Net-

works

Since TCRNs are the basic form of CRNs and the problems in TCRNs will also

be encountered in other forms of CRNs, we adopt CRNs other than TCRNs in

follows without ambiguities. In CRNs, the resource refers to the available spec-

trum and power. The resource allocation could be viewed as a combination of

spectrum decision and spectrum sharing. In the resource allocation procedures,

CRs must obey certain interference constraints so that their transmission will not

interfere the communication of PUs. Moreover, communication in CRNs should

be coordinated so as to improve the performance, e.g., network throughput. In

this way, they are envisioned to be aware of the physical environment and capable

to adjust their transmission to the environment, which are the basic requirements
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for spectrum sharing techniques.

2.2.1 Objectives

Resource allocation algorithms coordinate CRs to access available channels. Main

objectives of resource allocation are [27]:

• interference protection. As CRs are secondary users to the spectrum, their

interference to PUs should be limited.

• efficiency, i.e., to maximize the performance (e.g., throughput) of the CRNs.

• fairness. CRs should share equal rights to utilize the spectrum. Besides, the

pay and return of each user should be balanced.

2.2.2 Challenges and Requirements

Because of the aforementioned properties of CRNs, there are many challenges and

new requirements for the realization of efficient and seamless resource allocation.

For example, how to encourage PUs to share their spectrum to CRs is an important

issue for the implementation of CR. Many trading models have been built for this

problem. In [28], CRs need to pay PUs for their access to licensed spectrum to

stimulate PUs. Another challenge is on exchanging control information between

CRs. In order to coordinate communications in the CRN, each CR’s state infor-

mation, e.g., channel availability and decision information (i.e., which channel it

will select) should be exchanged with other CRs. It could be performed via a com-

mon control channel (CCC) which covers the whole network. However, a CCC
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may not be available to all CRs since non-neighboring CR users may have differ-

ent views of spectrum availability as the result of spectrum heterogeneity. Even a

CCC is available to all CRs, it could become a bottleneck as the control informa-

tion exchanging is limited by the bandwidth of this CCC [29]. Since such CCC

is very precious and the control information exchanging may introduce high over-

head, distributed algorithms which based on local information only are preferred.

Moreover, because of the spectrum variability, resource allocation algorithms are

expected to be adaptive to the dynamic environment.

2.2.3 Algorithm Classifications

Numerous algorithms have been proposed to solve the resource allocation prob-

lem. In general, they can be classified based on three aspects: the architecture, the

spectrum access technique and the spectrum allocation behavior.

Based on the architecture, algorithms can be classified to be centralized or

distributed:

• Centralized algorithms: Spectrum allocation and access focus on infrastructure-

based networks, in which a centralized coordinator or base station manages

the spectrum allocation and sharing among the CR users [30]. The CRs,

however, may participate in the spectrum sensing and provide channel in-

formation to the central controller.

• Distributed algorithms: Spectrum allocation and access are based on local

information and local policies performed by each node distributively [31].

The introduction of distributed algorithms is mainly due to the ad hoc man-
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ner of the scenarios and the limitation of CCC.

According to the access technologies applied, the algorithms can be classified to

be overlay and underlay :

• Overlay algorithms: CRs access the network by using a portion of the spec-

trum that is not used by PUs [32]. This minimizes interference to the pri-

mary network.

• Underlay algorithms: The spread spectrum techniques are commonly ex-

ploited so that the transmission of a CR is regarded as noise by PUs [33].

The power allocation among channels should be carefully performed so as

to optimize the network performance as well as to guarantee that the inter-

ference to PUs is below the interference limits. Besides, the power limit

of CR transceiver and the multi-user interference among CRs introduce

constraints to this optimization problem. In [34], a modified water-filling

algorithm in CDMA-OFDM underlay CRNs is proposed to maximize the

network throughput. Although underlay techniques can utilize higher band-

width, since it is not easy to acquire the interference limits (e.g. interfer-

ence temperature) at every CR for every PU, the application of underlay

algorithms is limited.

Based on the access behavior, the resource allocation algorithms can be classified

to be cooperative or non-cooperative:

• Cooperative algorithms: Cooperative algorithms consider the effect of one

CR’s communication on other nodes and aim to maximize the performance
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of the whole network other than each individual CR. Note that here the “co-

operative” refers to the type of algorithms, while in CCRNs, the “cooper-

ative” refers to the cooperative communication. The interference measure-

ments of each CR are shared with other CRs and are adopted by the spec-

trum allocation algorithms. In fact, all the centralized algorithms are belong

to this category as the central controller maximizes the whole network per-

formance [35]. There are also some distributed cooperative algorithms. For

example, in [36], a distributed pricing algorithm was proposed to maximize

the total profit of the CRNs, and cooperation exists among primary service

providers.

• Non-cooperative algorithms: Contrary to the cooperative solutions, non-

cooperative algorithms are selfish [37]. They are ordinarily performed dis-

tributively and aim to maximize local performance. Non-cooperative algo-

rithms may result in low spectrum utilization. However, on the other hand,

it reduces the communication requirements on exchanging control informa-

tion. In practice, such trade-off should be balanced.

2.3 Game Theory

Game theory studies the behavior of interacting decision-makers, i.e., the play-

ers of the game, and suggests reasonable solutions for these games based on the

players’ preference and interactions. The application of game theory in resource

allocation among multi-users, especially in CRNs where distributed, flexible and

scalable control mechanisms are required, is appealing for its adaptivity to the en-
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vironment, low complexity and distributed manner. As our proposed algorithms

are based on game theory, basic information of game theory, classifications of

games, and some applications in CRN are introduced in this section. More details

can be found in [38].

2.3.1 Basic Elements of A Game

The basic elements of a game consist of the participants of the game (the decision-

makers, or the players), the action (decision) space of these players, the outcomes

corresponding to these actions, and the preference of these players on the out-

comes, i.e., the utility function [39]. The details of each elements are shown as

follows.

(1) Rational Players Each player is assumed to be "rational" as he has clear

preferences on the outcomes of his actions, and chooses his action as a process to

optimize the outcome. But it does not imply that the player is self-interested, as

the outcomes could be defined as the global welfare other than individual profit,

which results in a cooperative game. The concept and properties of cooperative

and non-cooperative game will be discussed in details later.

(2) Action Space The action space is a set of actions from which the player

makes his decision. Considering the interaction among players, the action space

is also constrained by all other players.
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(3) Utility Functions Each player may have different preferences for the out-

come of a game. Utility is the numerical value that represents the preference of the

players. Mathematically, a consequence function g : A→ C associates the action

spaceAwith the corresponding outcome spaceC. The utility functionU : C → R

defines a preference relation�, i.e., x � y if and only if U(x) > U(y). A rational

player chooses an action a∗ ∈ A which solves the problem arg maxa∈A U(g(a)).

(4) Information In the rational decision-making process, the players may need

to learn certain information from the environment and other players, i.e., the utility

corresponding to the action, actions of the other players, and the rationality of the

other players.

2.3.2 Classifications of Games

Games can be classified based on different criterion as follows.

(1) Non-cooperative and Cooperative Games In a game, a player may interact

with other players in making a decision. Two types of game model can be classi-

fied based on the players’ behavior of decision-making: those in which the play-

ers choose action individually are referred as non-cooperative [40], while games

where groups of players may enforce cooperative behavior, i.e., formulating coali-

tions by commitments, and competing among coalitions rather than among indi-

vidual players, are referred as cooperative [41].
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(2) Strategic Games, Extensive Games and Repeated Games In a strategic

game, all players make decisions simultaneously and only for once, so that each

player is not aware of other players’ decisions when it is making decision. In

contrast, in an extensive game, the sequencing of players’ possible decisions are

important. Players may have chance to make their decisions in different time, and

when a player needs to make decision, it may take its previous players’ decisions

into consideration. The repeated game is a special type of extensive game. In

a repeated game, although all players make decisions simultaneously, the same

game is repeated for several times so that players can learn from previous games

and adjust their decisions accordingly.

(3) Games with Complete and Incomplete, Perfect and Imperfect Informa-

tion In a game, if each player is aware of all players’ utility functions, such

game is referred as a game with complete information; otherwise, it is a game

with incomplete information. In an extensive game with complete information,

when a player needs to make decision, it may be fully informed about others’ pre-

vious decisions, this game is called a game with perfect information; otherwise, it

is a game with imperfect information.

2.3.3 Nash Equilibrium

Nash Equilibrium (N.E.) is a list of actions where no player can further improve its

utility by only changing his own strategy, given all other players not changing their

actions. In other words, it is a list of the best response to other players’ actions.

The formal definition of N.E. in a strategic game is constructed as follows [38]:
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For a strategic game (N, (Ai), (�i)), where N stands for the set of players,

Ai stands for the action space of player i ∈ N , and �i stands for the preference

relation of player i. Let ai ∈ Ai be an action profile of player i and a−i be an

action profile of all players except for player i. A N.E. of this game is an action

profile a∗ = {a∗i ∈ Ai, i = 1, 2, ..., N} with the property that for every player

i ∈ N ,

(a∗−i, a
∗
i ) � (a∗−i, ai)

for all ai ∈ Ai, where a∗−i is the set of equilibrium actions for all players other

than i.

2.3.4 Applications of Game Theory for Resource Allocation in CRNs

In CRNs, since players (based on different scenarios, CRs and /or PUs) arrive and

departure stochastically [42] and these players may stay on the spectrum resource

for different periods of time to complete their service [43], they need to compete

for the resource for several times with different competitors. Thus, when game

theory is applied for resource allocation in CRNs, the formulated games are in-

herently extensive games. Moreover, since in most CRNs, players are not aware

of the utility function of other players at the beginning of games, the formulated

games have only incomplete information.

However, in literature, in order to reduce the complexity, players are usually

assumed to be unchanged and make decisions simultaneously, which results in

strategic games [44] [45]. Furthermore, in order to exchange some necessary
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information in a distributed manner so as to overcome the CCC problem in Cog-

nitive Ad hoc networks, repeated games were also proposed [46] [47], where each

player learned other players’ utility functions from their previous actions. More-

over, the selection between non-cooperative game and cooperative games in CRNs

is based on the trade-off between complexity and network performance so that the

non-cooperative game is adopted for its less complexity [48] [49], while the co-

operative game is adopted for its better social welfare [47].

2.4 Cooperative Communication

Transmission bit rate and coverage range are two of the toughest demands in wire-

less communications. To satisfy these demands, multiple input multiple output

(MIMO) has been proposed. In MIMO systems, multiple antennas are used at

the transmitter or/and receiver so that the systems are capable to provide spatial

multiplexing to increase the throughput, or to provide spatial diversity to increase

the coverage range and reliability, without consuming extra radio frequency [50].

Meanwhile, the wireless ad hoc network is proposed to increase the flexibility

of wireless networks [51]. However, highly interconnected ad hoc networks, i.e.,

the ad hoc sensor networks, make the multi-user interference more significant

[52], and due to the limited size, volume number of users, and cost, equipping

multiple antennas at the user terminal is infeasible. To address this challenge, the

concept of cooperative communications was thus introduced [46].

In cooperative communications, two or more nodes share their information

and transmit jointly as a virtual antenna array and formulate a virtual MIMO sys-
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tem. This enables them to obtain spatial diversity just as the traditional MIMO

systems [53] [54]. The application of cooperative communication techniques in

CRNs is expected to further improve the network performance. Since we propose

a resource allocation algorithm based on this, basic ideas in cooperative commu-

nications are introduced here for future reference.

In cooperative communications, the direct connection between a source and its

intended destination may not be always good due to the channel fading. However,

some nodes within the transmission range of the source may have good link qual-

ity and could work as relays to cooperate with the source. These relays overhear

the transmitted signal from the source and retransmit this signal to the destina-

tion. They are used as supportive antennas to form a virtual MIMO system. Due

to the independent fading in each source-relay-destination link, the probability of

having a good link from the source to the destination increases as the number of

independent links to the destination increases, which provides significant perfor-

mance gains for the wireless channel.

There are two types of relay protocols, i.e., amplify-and-forward (AF) and

decode-and-forward (DF) [55]. In the AF relaying protocol, each relay node am-

plifies and retransmits the received signal directly to its destination, while in the

DF relaying protocol, each relay first decodes the receiving signal with noise, then

re-encodes this signal and sends to the destination. These two protocols differ in

the achievable performance. For a same Source-Relay-Destination connection,

DF can achieve higher signal-to-noise ratio (SNR) with increased complexity and

longer delay. However, there is no difference in the structures of the network.

Several issues arise in the cooperative scenario. For example, it is important
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to find an appropriate set of the relays for cooperation. In addition, the algorithms

to find these relays should be efficient, preferably distributed and scalable to the

network size. It may also be useful to analyze the maximum achievable gain in

different cooperation methods, and choose a better one for a specific framework.

2.5 Resource Allocation in Cooperative Cognitive Radio Net-

works

Two important issues stimulate the application of cooperative communications in

CRNs, or cooperative cognitive radio networks (CCRNs). First, CRs may serve

as relays for PUs to motivate PUs to share channels with CRs. Second, the in-

troduction of relays to CRNs can assist the communications between pairs of CR

transmitters and receivers. Resource allocation in CCRNs consists of not only the

traditional spectrum sharing problems, but also the allocation of relays to these

communication pairs.

In CCRNs, a node can communicate with its source/destination nodes directly,

or select other nodes as its relays and transmit and/or receive data under these re-

lays’ cooperation. The introduction of relays can improve performance of CRNs

in two scenarios: 1) When cooperation between PUs and CRs exists, since PUs

can satisfy their own requirements more easily via the help of CRs, the idle prob-

ability of the licensed channels can be increased and so is CRs’ probability to

access channels. In this way, performance of both PUs and CRs can be im-

proved [56] [57]; 2) When the heterogeneity of the CRN increases due to the

location and impact of PUs, different CRs may have different channel availability
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and channel conditions. Thus, it is possible that pairs of CR transmitters and CR

receivers can not satisfy their communication requirements through direct links.

If CRs with abundant channels can serve as relays for them, more communication

pairs can be satisfied because of the decreased outage probability [58] or improved

throughput [59].

Since 2005, research on CCRNs has attracted great interests. In [60], an or-

thogonal frequency-division multiple access (OFDMA) based CCRN was studied

with both channel and power allocation, where the interference power constraints

of the primary system was considered. Zhao et al [61] [62] also worked on joint

power and channel allocation and relay selection in CCRNs with main consider-

ation on the spectrum heterogeneity with DF protocol. Channels were classified

into three different categories based on their availability may, and both optimal

and sub-optimal allocation algorithms were proposed for each category to im-

prove the overall convergence time. In [63], relays can exploit the retransmission

slot for its own traffic during its cooperation with the source. An auction mech-

anism was adopted to decide the relays for the source, and the portion of a slot

a relay could utilize for its own transmission. Other works include, for example,

Zou et al, worked on relay selection and outage probability, and jointly considered

spectrum sensing and relay transmission [64] [65]. In [66], cooperative commu-

nication was applied in spectrum sensing, called cooperative spectrum sensing,

where all CRs’ sensing results are forwarded to a common receiver, and fused to

infer the presence of the PU.

In most existing publications in literature on CCRNs, relay nodes are prede-

fined and differentiated from the source nodes. The research commonly jointly

22



considered relay selection and resource allocation, and several games were for-

mulated to solve this joint optimization problem [67] [68] [69]. However, if pre-

defined relays are not available, two-layer resource allocation should be designed,

where in layer 1, suitable nodes should be selected as relays and allocated with

adequate resource, and in layer 2, these selected relays should be further allocated

to the required source nodes. Therefore new resource allocation algorithms should

be proposed.
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3 Demand-matching Spectrum Sharing with a Clas-

sified Game

In cognitive radio networks (CRNs), due to the complexity and cost to setup a

common control channel (CCC) for control information exchange, and due to the

popular application of CRNs to Ad hoc networks which are lack of centralized

controllers, distributed approaches become necessary. The key issue in designing

distributed spectrum sharing is to determine the way to coordinate communica-

tions suitably, where decisions are made independently by each radio based only

on the local information. In [32], a biologically-inspired algorithm is proposed,

which enabled the cognitive radio (CR) to eventually learn the appropriate spec-

trum band and adapt the probability to select a channel. In [70], a non-cooperative

game model was used to obtain the spectrum allocation among a primary user and

multiple secondary users. The problem was formulated as a market competition,

and the Nash Equilibrium (N.E.) is considered as the solution of this game. The

Correlated Equilibrium (C.E.), which is more general than the N.E., was consid-

ered for dynamic spectrum access in [71] and [72] to achieve better performance.

Although all of these papers provide indepth insights in spectrum sharing in

CRNs with consideration of optimization, adaptivity and fairness, the heterogene-

ity among CRs, in terms of quality of service (QoS) requirements, channel avail-

ability, and channel conditions, was missed and should be explored to further

improve the network performance. Moreover, traditional CSMA/CA technique

adopted in [71] and [72] which allocates channels to CRs equally. Inspired by

prioritized CSMA in IEEE802.11e [73] [74], we introduce a priority to classify
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CRs to improve the network performance, in terms of the number of satisfied CRs

by allocating different portion of the channel to CRs based on their demands. A

new algorithm to estimate the number of CRs in different priority levels is also

proposed. In the channel allocation process, each CR jointly determine its chan-

nel selection and priority based on its possible satisfaction and the loss it may

introduce to other CRs. Such trade-off between satisfaction and cost results in a

distributed cooperative game which can maximize the satisfaction of the whole

network. No-regret learning algorithm is adopted to reach the C.E. of the pro-

posed game. Simulation results show that the C.E. based classified game (CECG)

can achieve up to 40% better performance compared to the unclassified game in

highly heterogeneous networks.

3.1 System Model

Consider an overlay CRN. The primary users have a strict priority on the spectrum

access while CRs can only access spectrum not being utilized by PUs. As we

focus on the competition and collaboration among CRs in spectrum sharing, we

ignore the cost and faults from spectrum sensing. Namely, each CR is equipped

with a perfect spectrum sensing technique, which can always detect the presence

of PUs instantly. We consider a simple CR transceiver which can be tuned in a

wide range of spectrum, but can operate only on one channel at any time. All

CRs are in the interference range of each other, and thus have to compete for

the idle channels. CSMA/CA is used as the sharing technique. To improve the

efficiency by considering network heterogeneity, we introduce priority mechanism
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to differentiate users with respect to their specific transmission requirements and

channel qualities. Since applying multiple (> 2) priorities may introduce high

complexity with marginal improvement on performance, as shown in simulation

results, we consider two priority levels in our algorithm.

3.1.1 Network Structure

Assume that there are N channels in the system, represented as a channel set

{CN}. Each channel is licensed to a PU and total I CRs seek for channel access

opportunistically. CRs belong to two different classes, denoted as class 1 and class

2, with low and high priority to access channels, respectively. Time is divided

into slots and we label them as t = 1, 2, .... In a slot, both PUs’ activities and

CRs’ strategies keep unchanged. Each CR’s action consists of tow parts: channel

selection and priority selection. At the beginning of any slot t, each CR i, i =

1, 2, ..., I , knows the following:

1) rreqi ∈ R+: the demand of CR i (in bits per time slot) to satisfy its QoS

requirements, where R+ denotes the set of positive real numbers.

2) Ct
i,n ∈ R+: the channel quality in terms of transmission rate in bits per time

slot for CR i on channel n at time t.

3)Ati,n ∈ {0, 1}: the availability of channel n for CR i at time t, which is deter-

mined by PUs’ activities and the locations of both PUs and CR i. Ati,n = 1 if chan-

nel n is available for CR i at time t; otherwise, Ati,n = 0. Ati = (Ati,1, ..., A
t
i,N)T is

the channel availability vector for CR i.

An example of the channel availability to the CRs is illustrated in Fig.2. All

CRs are in the interference range of each other. There are 4 channels (CH 1, 2, 3
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Figure 2: Network Structure in Spectrum Sharing

and 4), 4 PUs, and 6 CRs. All CRs in the solid circle form the CRN. Let PU 1,

2, 3 and 4 occupy channel 1, 2, 3 and 4, respectively. Then, the secondary users

1 to 6 have channel availability vectors as (0, 1, 1, 1)T , (1, 0, 1, 1)T , (1, 0, 1, 0)T ,

(1, 1, 0, 0)T , (1, 1, 0, 1)T and (1, 1, 1, 1)T , respectively.

4) Act−1
i : the action of CR i in the last slot t − 1. Act−1

i = (X t−1
i , P t−1

i ) is

chosen from the action space

Ωt−1
i = St−1

i × Spt−1
i (1)

In (1), St−1
i is the channel allocation decision space and can be represented as

27



St−1
i = {X t−1

i ∈ (0, 1)c : X t−1
i

T
(1− At−1

i ) = 0,
∑
n∈CN

X t−1
i,n ≤ 1} (2)

where X t−1
i = (X t−1

i,1 , ..., X
t−1
i,N )T is the channel allocation decision of CR i. As

indicated in (2), CR i can only select one available channel n with X t−1
i,n = 1.

Spt−1
i is the priority space of CR i, i.e.,

Spt−1
i = {1, 2} (3)

We have P t−1
i ∈ Spt−1

i . P t−1
i = 1 stands for low priority, while P t−1

i = 2 stands

for high priority.

5) rt−1
i ∈ R+: the achieved average channel rate for CR i in the last slot t− 1,

which is determined by the number of CRs in the allocated channel and their

priorities in the last slot, i.e., by CR i’s action Act−1
i and all other users’ actions,

denoted as Act−1
−i . This data can be acquired from the amount of data transmitted

in the last time slot.

6) N1t−1
n
∗ and N2t−1

n
∗: the estimated number of users of class 1 and class 2 in

the last slot t − 1 on the selected channel n, respectively. An estimation method

will be discussed later.

Based on the aforementioned information, each CR i makes its decision Acti

for slot t. Note that CRs make their decisions based on local information only,

which allows decentralized algorithms.
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3.1.2 Prioritized CSMA/CA

AIFS[1]

AIFS[2]

CW[1]

CW[2]

CW (counted in

minislots)

RTS

ACK

SIFSSIFSData

CTSSIFS

DataSIFSSender

Receiver

subslot

ACK

SIFS

Figure 3: Multiple Backoff in Prioritized CSMA/CA

CRs share channels using a prioritized CSMA/CA scheme. By allocating less

waiting time on average to CRs with higher priority, these CRs have a higher

chance to capture the channel than others.

We introduce following definitions for protocol description:

1) subslot: the time needed for a CSMA attempt. We assume K subslots

constitute a slot which are denoted as t1, t2, ..., tK . Note that the length of subslots

are not equal and so is the length of slots.

2) minislot: the time needed by CR to determine whether another station has

accessed the medium.

3) SIFS (Short Interframe Space): the smallest period between packets. It has

a duration at least enough for CR to sense the channel clear and switch between

receiving and transmitting modes.

4) AIFS (Arbitration Interframe Space): the smallest waiting time before send-

ing a packet. It depends on the corresponding priority class and is larger than

SIFS.

5) RTS/CTS: Request to Send frame/ Clear to Send frame.
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6) DATA/ACK: Data frame/ Acknowledgment frame.

7) CW: Contention Window which depends on the corresponding priority

class.

Fig. 3 shows the protocol of prioritized CSMA/CA. As illustrated in the figure,

in any subslot tk, for CR i wishing to send data, it generates its backoff time

τi(tk) according to a uniform distribution within the interval (0, CW [P t
i ]). The

backoff counter starts decreasing after detecting that the channel is idle for an

AIFS[P t
i ]. Upon expiry of the backoff counter, the CR sends an RTS to initiate

its data transmission if the channel is still sensed clear. Only one radio with the

smallest waiting time WTi = τi(tk) + AIFS[P t
i ] will transmit successfully on

channel n in subslot tk. For simplicity, we set AIFS[1] + CW [1] = AIFS[2] +

CW [2], and assume AIFS[1] > AIFS[2]. The values of AIFS and CW are set

to guarantee that CRs in class 2 can have a smaller expectation of WT than those

in class 1, so that they are more likely to take a smaller waiting time. Thus, CRs

in class 2 have a higher priority to access the channel. The probability for CR i to

catch channel n is

if P t
i = 2

Probi,n = 1
CW [2]

´ δ
0

(1− τ
CW [2]

)N2n−1dτ+

1
CW [2]

´ CW [2]

δ
(1− τ

CW [2]
)N2n−1(1− τ−δ

CW [1]
)N1ndτ

(4)

if P t
i = 1

Probi,n = (1− δ

CW [2]
)N2n

1

CW [1]

CW [1]ˆ

0

(1− τ

CW [1]
)N1n+N2n−1dτ (5)
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where δ = AIFS[1]− AIFS[2], and

N1tn =
I∑
i=1

{X t
i,n = 1}{P t

i = 1} (6)

N2tn =
I∑
i=1

{X t
i,n = 1}{P t

i = 2} (7)

Each CR will determine its own priority based on its utility, a function of its

demand and satisfaction. The utility function will be discussed later.

3.1.3 Decision-Feedback-Reaction Model

At the beginning of the t-th slot, each CR makes its decision based on the informa-

tion about the network and its satisfaction, and holds this decision for the whole

period of the slot. Note that channel catching probability and contention proba-

bility for CR i at slot t − 1 are determined by all CRs on channel n, and they are

known to CR i before slot t from channel catching results in the last slot. Hence,

such probability can be seen as the feedback of CR i’s action in the (t−1)-th slot.

In realistic application, the number of subslots in a slot should be large enough to

provide an accurate feedback. Based on this feedback, CR can make estimation

of N1t−1
n
∗ and N2t−1

n
∗, predict its future utility, and update its action in the next

slot.

We introduce a simple estimation method for N1t−1
n
∗ and N2t−1

n
∗as follows.

For CR i, if P t
i = 2, the probability for CR i to successfully catch the channel

after waiting a period in the range of (AIFS[1], AIFS[2]) is
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Pcat21i,n =
1

CW [2]

δˆ

0

(1− τ

CW [2]
)N2n−1dτ (8)

Obviously, Pcat21i,n is only determined by N2n, and could be acquired from

CR i’s competition results. Hence, N2∗n can be estimated from Pcat21i,n by, for

example, maximum-likelihood estimation [75]. Then, substituting N2n in (4) ,

we can have the estimated value of N1n.

Similarly, if P t
i = 1, the probability for CR i to contend on the channel after

waiting a period in the range of (AIFS[1], AIFS[2]) is

Pcon11i,n = 1− (1− δ

CW [2]
)
N2n

(9)

which is also only determined byN2n. Thus, we can similarly estimateN2∗n from

Pcon11i,n and then estimate N1n by substituting N2n in equation (5).

In this chapter, accurate estimates ofN1n andN2n are considered, i.e.,N1∗n =

N1n and N2∗n = N2n. However, as shown in the simulation, even up to 30%

estimation error will not affect the performance of the proposed algorithm signif-

icantly.

3.2 Optimization Problem and Game Formulation

For applications with strict QoS requirements, for instance, voice transmission, a

meaningful global system objective should aim to guarantee as many CRs’ sat-

isfaction as possible. Here, the satisfaction means that the achieved average rate

should be no less than the required one. Hence, we adopted a utility function
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different from the best effort utility functions in [72] to better match the scenar-

ios with strict QoS requirements. As a decentralized scheme is required, a local

utility function is defined to guide the allocation decision of each CR. In follows,

we will first introduce the global optimization problem, and then discuss the dis-

tributed game and utility function in details.

3.2.1 Global Optimization Problem

The global objective is to maximize the number of satisfied users. As the opti-

mization problem is held for any time t, we ignore the index t for simplicity. Let

Ac = (Ac1, ..., AcI) be the joint action of all CRs. The optimization problem can

be formulated as:

max
Ac

I∑
i=1

(G(ri, r
req
i )) (10)

s.t.

Ac ∈ Ω = Ω1 × ...× ΩI (joint action set of all radios) (11)

where

ri =
∑
n∈CN

Xi,nri,n ≤ 1 (12)

ri,n = Probi,nAi,nCi,n (13)

ri,n is the achievable rate for CR i on channel n. Probi,n is the probability for CR

i to catch the channel n, as defined in (4) and (5). G(a, b) is a logic function to
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check whether CR i is satisfied, i.e.,

G(a, b) =

 1 , a ≥ b

0 , a < b
(14)

Note that once CR’s QoS is satisfied, it has no intention to further increase its

achievable rate.

However, this global optimization problem requires global information of the

network. For example, the actions of all CRs and the corresponding rates they can

achieve should be learned by all CRs, which is difficult to achieve. In this way,

we will propose a distributed game, which relies only on local information, other

than solve this global optimization problem.

3.2.2 Distributed Game and Local Utility

Each CR tries to access channel to satisfy its QoS requirements, while at the same

time such access may cause loss to other CRs on the same channel, as it decreases

other users’ probability to catch the channel. Intuitively, if each CR tries to satisfy

itself, and at the same time limits the loss it causes to other CRs, more CRs in

the system could be satisfied. That is to say, CRs should select channels with

better channel condition and less users on it. Thus, for a cooperative distributed

game which aims to improve the global performance, the local utility for each CR

should be a trade-off between its satisfaction and other CRs’ loss. From the game

theory point of view, the satisfaction acts as the income while other CRs’ loss as

the price.

Note that the local utility function is only an estimation from the last slot.
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For instance, since the reward of each CR’s action is determined by other CRs’

actions, the estimated achievable average rate calculated at the beginning of a slot

may differ from the exactly achieved one. However, our simulation indicates that

the proposed algorithm converges after a number of rounds.

We define a distributed game as follows:

CRs are players in the game. Acti, the action of CR i in slot t, is selected from

action space Ωt
i which is defined in (1). Since any CR’s utility is determined not

only by itself but by other CRs’ actions, the local utility for CR i is defined as:

Ui(Ac
t
i, Ac

t
−i) = U1

i (Acti) + αU2
i (Acti) (15)

where Act−i represents all other CRs’ actions.

In (15)

U1
i (Acti, Ac

t
−i) = G(rti , r

req
i ) (16)

stands for the satisfaction, where rti is defined in (12), and

U2
i (Acti, Ac

t
−i) = −P t

i (α1N1t−1
n
∗

+ α2N2t−1
n
∗
) (17)

stands for the cost of CR i, i.e., the loss of all other users in the channel n with

Xi,n = 1. Since it is hard to learn the real decrement on the channel rates for other

users, a rough estimation is adopted. Note that if CR i chooses to act with higher

priority, it may induce more loss to all other CRs in the same channel, and thus it

should pay more. Therefore, if a CR can be satisfied with low priority, there is no
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motivation for it to select the high priority in the same channel.

In (15) and (17), α, α1, α2 are user-defined trade-off factors. Since the ac-

tual effect of CR i’s action on the global utility is unknown, these weights are

adjustable.

3.3 Correlated Equilibrium and No-Regret Learning

In this section, we adopt the concept of C.E. and introduce a no-regret learning

algorithm as a distributed adaptive learning algorithm to solve the optimization

problem defined in the previous section.

3.3.1 Correlated Equilibrium

A C.E. is a solution concept that is more general than the well known N.E. [76].

Given a public signal (the satisfaction history of CRs), a strategy consists of rec-

ommendatory actions to every possible observation of the public signal a player

can make. Players reach the C.E. if no player would want to deviate from a recom-

mended strategy. Note that N.E. corresponds to the special case of a C.E. The C.E.

considers the interaction among players to make decision and thus could achieve

better performance than N.E..

In the proposed distributed game, the C.E. is defined as: if and only if, for all

player i, Aci ∈ Ωi is i’s action, a probability distribution Pr(Aci, Ac−i) satisfies

∑
Ac−i∈Ω−i

Pr(Aci, Ac−i)[Ui(Ac
′
i, Ac−i)− Ui(Aci, Ac−i)] ≤ 0,

∀Ac′i, Aci ∈ Ωi

(18)
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where Pr(Aci, Ac−i) is called the correlated strategy.

3.3.2 No-Regret Learning

No-regret learning (also called regret tracking or regret matching) is a kind of

adaptive learning algorithms with fast convergence [77]. In no-regret learning,

the probability to conduct an action is proportional to the “regret” for not having

played other actions, and the stationary solution of the learning algorithm exhibits

no regret. This algorithm will almost surely converge to C.E., as proved in [78].

For the action of CR i in slot t, Acti ∈ Ωt
i, we denote actions in the state space

as j ∈ {0, 1, 2, ..., 2N} for simplicity, i.e.: if ∃X t
i,n = 1, j = 2n + P t

i − 2;

otherwise, j = 0.

Each CR i executes the following steps:

1) Initialize arbitrarily probability of taking action for CR i. Set θi,0 = 0.

2) Generate regret matrix H i with elements

H i
jk = I{Acti = j} × (Ui,n(k,Act−i)− Ui,n(j, , Act−i)) (19)

which stands for the regret of not using action k other than the real action j in slot

t.

3) Set a regret value

θi,t+1
jk = θi,tjk + ε(H i

jk − θ
i,t
jk), 0 < ε << 1 (20)

which stands for the average gain that i would have received had he chosen action
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k in the past (from time 0 to t) instead of j. Here, ε is the learning rate.

4) Update action

CR i updates action Act+1
i = k with probability

P (Act+1
i = k|Acti = j) =


max(θi,t+1

jk , 0)/µi , k 6= j

1−
∑
i 6=j

max(θi,t+1
jk , 0)/µi , k = j

(21)

In (21), µi is an arbitrary updating rate that is sufficiently large, i.e.,

µi > (NAci − 1)(umax
i − umin

i ) (22)

where NAci is the number of actions for CR i, umax
i is the maximum achievable

utility, and umin
i is the minimum utility for CR i. In our work, we set µi = (NAci +

1)(umax
i − umin

i ).

Note that the algorithm requires that CR i knows what utility it would have

received for each action, even if that action was not taken. This puts a request to

know the number of users of each class on each channel. In fact, a modified regret

tracking algorithm can be used without such information [72] [78]. However, the

convergence is far too slow.

3.4 Simulation Results

We focus on slightly congested systems, with total capacity of channels slightly

less than the total user demand to highlight the effect of spectrum sharing algo-
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rithms on the resource utilization efficiency. For each CR, some randomly selected

channels are set to be unavailable to reflect the occupation of PUs. For CRs’

channel condition and required rate, we adopt randomly generated data following

Gaussian distribution for simplicity to introduce heterogeneity among CRs.

In simulations, AIFS[1]=150, CW[1]=100, AIFS[2]=100, and CW[2]=150, all

in a unit of minislots. In the case that there is only one user in each class on the

same channel, the probability to catch channel for user in class 1 is 0.32, and for

class 2 is 0.65. Learning rate ε = 0.1, trade-off factor α = 0.015, α1 = 1.1 and

α2 = 2 are obtained from simulation results.
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Figure 4: The Comparison of Catching Probability with Number of Users of Different Class
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Fig. 4 compares the catching probability and sensitivity of users in different

classes. From this figure, we can see that for a user in class 1, if we increase the

number of users in class 2, the catching probability decreases rapidly; while for

the user in class 2, if we increase the number of users in class 1, the probability

decreases much slower and converges to a non-zero limitation. That is because,

for the catching probability of class 2, the first part in equation (4) is not affected

by N1n, and the second part in (4) converges to 0 with large N1n; while for

catching probability of class 1, with N2n in the exponent, it decreases rapidly

with increasing N2n.

Fig. 5 compares the performance if 3 other than 2 priority levels are applied.

For the 3-priority level case, we set AIFS[1]=150, CW[1]=100, AIFS[2]=125,

CW[2]=125, AIFS[3]=100 and CW[3]=150. From this figure, we can see that

with 3-level priority, the algorithm can only provide marginal performance im-

provement, but much slower convergence rate. That is because more priority lev-

els will introduce a larger action space, which increases the complexity. Moreover,

as in the proposed sharing algorithm, an unsatisfied CR can switch to the channel

with better channel condition and lighter competition to increase its throughput

other than continuously increasing its priority in the same channel, the effects by

introducing more priorities becomes marginal. This justifies our selection of 2

priority levels.

Fig. 6 shows the influence of estimation error. The performance of the C.E.

based unclassified game (CEUG) in [72] is adopted as a comparison benchmark.

From this figure we can see that for up to 30% estimation error, the performance

of our algorithm is just affected slightly. The reason is that users are dispersed in
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all actions so that the number of users with the same action is not large. Thus,

the estimation error can only change the number of users with the same action

slightly.

Fig. 7 compares the performance of the proposed CECG algorithm with

CEUG in [72]. The best response algorithm with unclassified game (BSUG)

in [79] is also adopted for comparison. In the BSUG algorithm, in every round

each CR selects the channel with largest utility, and it has been proved in [79]

that the N.E. of this unclassified game can be achieved. From the figure, perfor-

mance improvement can be obviously observed in terms of the number of satisfied

users. The introduction of C.E. brings in about 10% improvement comparing to

the BSUG algorithm, as it considers the cooperation among CRs, at the cost of

convergence rate. Note that if all CRs chose to be in the same class, our algorithm

will degrade to that in [72]. Comparing to [72], since the proposed algorithm has

a larger action space including those in CEUG, at least we can acquire a same

performance as the CEUG algorithm.

Fig. 8 demonstrates the influence of heterogeneity of users on the performance

where two groups of CRs with difference in demands are applied. Comparing the

results in Fig. 7 and Fig. 8, we can find that the improvement of CECG over

CEUG (about 40%) is larger in the latter case than that in the former (about 10%).

The simulation results further justify the necessity to apply the proposed algorithm

for performance improvement in CRNs, especially when significant heterogeneity

exists among CRs.
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4 Two Layer Auction Game in Cooperative Cogni-

tive Radio Networks

In cooperative cognitive radio networks (CCRNs), it is reasonable to select some

CRs with good throughput on licensed bands to the base station (BS) to com-

municate with other CRs’ via free band, i.e., the ISM band, and then relay this

communication to the BS. One example of such networks could be a vehicle net-

work where an access point (AP) in the vehicle communicates with these personal

terminals via Wi-Fi as the free band, and then works as the relay to communicate

with the BS via cellular network in the licensed band. It is possible that personal

terminals are also equipped with a CDMA transceiver, and then people may need

to determine which network they should use for their gadgets.

In this chapter, we address resource allocation problem in CCRNs by formulat-

ing a Two-Layer Auction Game (TLAG). Simulation results show that comparing

the TLAG with the Direct Sharing (DS) algorithm and the Auction with Prede-

fined Best Relays (APBR) algorithm, this two-layer auction game algorithm can

greatly improve the network throughput.

4.1 System Model and Problem Formulation

4.1.1 System Model

We consider an overlay CCRN as shown in Fig 9, which consists of one BS,

M PUs, N licensed channels, and I CRs. M, N, I are the set of PUs, licensed

channels, and CRs, respectively. Each CR can communicate with the BS via
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Figure 9: System model of the CCRN

licensed channels. Each PU is allocated a specific licensed channel and has a

strict priority to access. A variation of TDMA-based sharing technique is adopted

here, i.e., in each channel, time is divided into frames of equal size of T slots.

Based on the channel availability, channel conditions and traffic demands of CRs,

the BS allocates time slots to CRs without interference to PUs. The demands

of CRs are modeled as the average rate in a frame. Let Pi,n(t) ∈ {0, 1} be the

channel-slot allocation status, i.e., Pi,n(t) = 1 stands for the fact that the t-th slot

of channel n is allocated to CR i . Otherwise Pi,n(t) = 0, t = {1, ..., T}.

Each CR is equipped with two radios which can operate simultaneously. One

of them, called CR transceiver (CRT), works on the licensed band for the commu-

nication between the CR and the BS, while the other, called ISM transceiver (IT),
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works on the free ISM band for the short range communication between CRs.

CRs allocated with abundant resource on the licensed band become relays, while

those unsatisfied CRs are called pure source nodes without performing relay. Re-

lays can set up links with these pure source nodes on the ISM band, and help their

communication with the BS so as to improves the satisfaction of the whole CRN.

As the communication between relays and pure source nodes on the ISM band

is short-ranged, we assume a local ISM channel available to each pair of CRs

without interfering other CRs, while each CR is in the interference range of all

others to share the licensed band. We further set the channel switching cost to

be zero. For simplicity, only up-link communication is considered here, i.e., CRs

send packets directly to the BS or via the help of CR relays. However, a similar

way can be applied to the downlink as well. Also, we consider a slowly variant

CRN, i.e., PUs’ locations and activities, CRs’ demands, and the channel condi-

tions keep unchanged in a frame.

4.1.2 Problem Formulation

We define that the satisfaction of a CR follows a best effort manner, i.e., the gross

utility gain for CR i is the meaningful throughput

ui = min(Ri, Rreqi) (23)

where Rreqi ∈ R+ is the predefined demand of CR i , which is the required

average rate in a frame in the term of bits per time slot, to fully satisfy its QoS

requirements, e.g., throughput, and Ri is the achievable average rate for CR i in a
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frame.

The objective is to maximize the overall meaningful throughput in the net-

work, which can be formulated as

max
P,Pr

∑
i∈I

ui (24)

where P = {Pi,n(t), i = 1, 2, ...I, n = 1, 2, ..., N}, Pr = {P r
i,j(t), i = 1, 2, ...I, n =

1, 2, ..., N}, P r
i,j(t) is the relay allocation status. P r

i,j(t) = 1 means that relay i is

allocated to j in time slot t; otherwise P r
i,j(t) = 0. Apparently, the allocation of

each slot from each link should be solved.

Let Rl be the set of relays and S be the set of pure source nodes. Apparently,

Rl ∪ S = N, andRl ∩ S = ∅. Then, we have

Ri =


∑
n∈N

T∑
t=1

Pi,n(t)Ci,n i ∈ Rl

∑
n∈N

T∑
t=1

Pi,n(t)Ci,n +
∑
k∈Rl

T∑
t=1

P r
i,k(t)C

r
i,k i ∈ S

(25)

The constraints to the objective function are listed as follows.

Pi,n(t) ≤ Ai,n (26)

if Ri ≥ Rreqi, i ∈ Rl ; otherwise i ∈ S (27)
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if i ∈ Rl,Ri ≥ Rreqi +
∑
j∈S

T∑
t=1

P r
j,i(t)C

r
j,i (28)

∑
n∈N

Pi,n(t) ≤ 1 (29)

∑
i∈I

Pi,n(t) ≤ 1 (30)

∑
k∈Rl

P r
i,k(t) ≤ 1 (31)

∑
j∈S

P r
j,i(t) ≤ 1 (32)

where Ci,n > 0 is the channel quality in terms of transmission rate in bits per

time slot for CR i on channel n; Cr
j,i > 0 is the channel quality in terms of

transmission rate in bits per time slot from CR i to CR j; and Ai,n ∈ {0, 1} is

the availability of channel n for CR i, which is determined by PUs’ activities

and the locations of both PUs and CR i. Ai,n = 1 if channel n is available for

CR i; otherwise, Ai,n = 0. Condition (26) is the constraint on licensed channel

availability. Condition (27) guarantees that a relay node has to satisfy its own

demands first. Condition (28) means that the overall traffic demands for a relay

should be smaller than its capacity. Conditions (29)~(32) mean that in a slot, each

CRT can only work on at most one specific channel, each time slot of a licensed

channel can be allocated to at most one CR, each relay can only serve at most
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one pure source node, and each pure source node can only be served by one relay,

respectively.

The problem of channel allocation in CRNs belongs to the class of Mixed In-

teger Nonlinear Programming (MINLP) problems which is known to be NP-Hard

[80]. Besides channel allocation, the optimization problem defined in (24)~(32)

needs relay allocation which makes the defined problem at least NP-hard. Since

for a given link, all slots in a frame have the same quality, Ri is determined by

the number of slots from different links allocated to CR i, rather than by spe-

cific slots of a same link. Here, a link refers to a channel between a CR and the

BS, or a connection between a pure source node and a relay. However, as condi-

tions (29)~(32) require each slot to be used exclusively, the allocation of each slot

should be solved, i.e., a certain order should be determined for CRs to access the

resource. Thus, heuristically, the optimization problem can be decoupled into two

subproblems, i.e., slot allocation which figures out the number of slots from dif-

ferent links allocated to CRs, and scheduling which determines the order for CRs

to utilize these slots. In follows, these two subproblems will be solved separately.

(1) Slot Allocation Let Puri,n =
∑T

t=1
Pi,n(t) stand for the number of slots

allocated to CR i on channel n, and Purrini,j =
∑T

t=1
P r
i,j(t) the number of slots

allocated to pure source node i from relay j. Then, we can rewrite the optimization

problem in (24) as

max
Pur,Purrin

∑
i∈I

ui (33)
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s.t.

Puri,n(1− Ai,n) = 0 (34)

if Ri ≥ Rreqi, i ∈ Rl ; otherwise i ∈ S (35)

if j ∈ Rl,
∑
i∈S

Purrouti,j +Rreqj ≤ Rj , where Purrouti,j = Purrini,j C
r
i,j (36)

∑
i∈I

Puri,n ≤ T (37)

∑
n∈N

Puri,n ≤ T (38)

∑
j∈Rl

Purrini,j ≤ T (39)

∑
i∈S

Purrini,j ≤ T , j ∈ Rl (40)

where Pur = {Puri,n, i = 1, 2, ...I, n = 1, 2, ..., N}, Purrin = {Purrini,j , i =

1, 2, ...I, n = 1, 2, ..., N}, ui = min(Ri, Reqi), and Ri =
∑
n∈N

Puri,nCi,n +∑
j∈Rl

Purri,jC
r
i,j . Conditions (37)~(40) are constraints for the number of available

slots in a link.
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Obviously, in the redefined optimization problem, only the number of slots in

different links are considered. Comparing with the original optimization problem

which needs to consider each specific slot, the complexity has been significantly

reduced. By solving this problem, we acquire Puri,n and Purri,j .

(2) Scheduling After obtaining Puri,n and Purri,j , the scheduling problem is to

solve Pi,n(t) and P r
i,j(t) based on the following equations

Puri,n =
∑T

t=1
Pi,n(t)

Purrini,j =
∑T

t=1
P r
i,j(t)

(41)

subject to the exclusive utilization conditions (29)~(32).

4.2 Game Formulation for Slot Allocation

In our case, the BS first allocates licensed channels to CRs, and then CRs with

abundant resources become relays and assign their relay capacity to pure source

nodes. Thus, the slot allocation problem could be formulated as a two-level auc-

tion game, with BS serving as the first level resource owner and relays serving

as second level resource owners. In auction games, the price paid for the own-

ers should not be larger than the gross utility of buyers, and owners with limited

resources will accept users based on their prices.

In the first level, all CRs compete to share all licensed channels. Although

only one BS works as the coordinator, since each CR may have different channel

availability and channel conditions, the prices each CR is willing to pay for differ-
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ent channels are thus different. Therefore, each channel can be seen as a virtual

seller with each CR as a buyer, which result in a multi-sell multi-buyer multi-slots

allocation problem.

In the first level, the gross utility for a CR i (or buyer i) is only associated with

the meaningful throughput on the licensed channel, i.e.,

ui = min(R1
i , Rreq

′
i) (42)

where R1
i =

∑
n∈N

Puri,nCi,n, Rreq′i = Rreqi + Rpr
i , and Rpr

i is the prediction of

traffic required for i to relay. If i ∈ S, Rpr
i = 0; otherwise Rpr

i =
∑
j∈S

Purrini,j C
r
i,j .

Note that Purrini,j is acquired from the second level auction game. At the beginning

of the auction, since all CRs are pure source nodes directly contacting the BS, we

have Rpr
i = 0,∀i.

Define Pri,n as the price charged by channel n to CR i, we define channel cost

function as

U c
i = −

∑
n∈N

Puri,nPri,n (43)

Then, the local utility function of buyer i becomes

Ui = ui − U c
i (44)

and the local utility function of virtual seller n becomes
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UBS
n =

∑
i∈I

Puri,nPri,n (45)

Once the first level auction is solved, licensed band resources are allocated to

CRs. Then CRs can be separated into relays and pure source nodes. In the second

level auction, all pure source nodes which serve as buyers are competing to use

resources in relays which serve as sellers. For the relays, the relay process consists

of two steps: receiving and relay. The resources consumed by a relay process thus

consist of the receiving slots for relays’ ITs, and the transmitting slots for relay’s

CRTs, where two different kinds of prices should be charged for these two steps.

Let Prrini,j denote the price between pure source node i and relay j for a slot of

receiving, and Prrouti,j denote the price between pure source node i and relay j for

one bit of relay traffic. We have gross utility for buyer i ∈ S as

usi = min(R1
i +

∑
j∈Rl

Purrini,j C
r
i,j, Rreqi)−min(R1

i , Rreqi) (46)

which stands for the meaningful rate via relays. The overall relay cost function is

U rc
i = −(

∑
j∈Rl

Purrini,j Pr
rin
i,j +

∑
j∈Rl

Purrouti,j Prrouti,j ) (47)

and the local utility is

U s
i = usi + U rc

i (48)

Note that Rpr
i and relay resources are updated after solving the second level

auction. The overall algorithm structure is an interaction of these two levels of
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Figure 10: Interaction of these two levels of games

games, as shown in Fig. 10.

For both levels of auction games, local utility is maximized subject to all con-

straints for the slot allocation problem defined in (34)~(36), as well as constraints

0 ≤ Pri,n ≤ Ci,n (49)

0 ≤ Prrini,j + Cr
i,jPr

rout
i,j ≤ Cr

i,j , ∀i ∈ S, j ∈ Rl (50)

Prrini,j ≥ 0, P routi,j ≥ 0 (51)

which guarantee the prices are positive and no larger than utilities available to

each layer.
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4.3 Algorithm Analysis

4.3.1 Game Analysis

(1) Single Level Auction Analysis In [81], an auction game is proposed as the

optimal converging solution to the multi-seller multi-buyer allocation problem.

However, in [81], each buyer can only purchase 1 slot from the seller, while in our

case, CRs may purchase several slots from each seller. To our best knowledge,

there is no optimal solution to such multi-seller multi-buyer multi-slot allocation

problem. Although the problem can be converted to the original multi-seller multi-

buyer problem if we treat each slot of every channel as an independent resource for

allocation, to allocate slots of the same channel independently is quite inefficient

in terms of complexity and memory cost. In order to solve the problem with

low computational complexity, we propose a new method, called Dynamic Multi-

seller Multi-buyer Slot Allocation (DMMSA) algorithm.

We start with the DMS algorithm proposed in [81], which is to find the best

buyer-seller combination to match the buyers’ utilities with sellers’ intrinsic val-

ues on the auction items so as to maximize the total network utility. For each

auction item, the auction procedure is started with an initial bidding price. How-

ever, if all the competing buyers in all the auctions with similar items, i.e., slots

from a same link, remain unchanged, a same auction will repeat on each slot and

each buyer’s bidding price and the allocation results on these slots will be same.

As in the considered scenario, since buyers have demands for multiple slots, the

overall auction procedure may be composed of several different repeated games.

Thus, rather than dealing different slots of a same link differently, we require that
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each buyer has the same bidding price on all slots of the same link, and in each

auction round, we only update each buyer’s action by at most one slot on each

link, so that transitions between different games are smoothed. Following this

idea, we proposed a suboptimal algorithm, where the computational complexity

is reduced since the auction procedure in the repeated games is simplified.

The procedure of the proposed algorithm consists of 2 phases: buyer phase

and seller phase. In the buyer phase, buyers update their bidding prices based on

the last rejection status, and then update the number of slots they request on each

link. In the seller phase, unless the demands are less than the capacity, buyers

with the smallest bidding price on each link are rejected. The pseudo code of the

proposed algorithm is shown as follows.

1. Initialization: l = 1, Pri,n(l − 1) = 0, Puri,n(l − 1) = 0

2. Buyer phase:

For each CR i

a) If CR i’s request is rejected by channel n in step l−1, i.e.,Reji,n = 1, update

its bidding price Pri,n(l) = Pri,n(l−1) + e; otherwise Pri,n(l) = Pri,n(l−1).

Reset Reji,n = 0. e is the price updating step determines the convergence time of

the algorithm, i.e., the smaller the e, the more convergence time is required. On

the other hand, e should be small enough to differentiate CRs’ utility on different

channels.

b) If Pri,n(l) > Ci,n, Pri,n(l) = Ci,n, and update Puri,n(l) = Puri,n(l) − 1.

If Puri,n(l) < 0, Puri,n(l) = 0.

c) Update Ri and channel profit ui,n = Ci,n − Pri,n(l).
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d) If Ri < Reqi and
∑
n∈N

Puri,n(l) < T , increase the purchase on the channel

with maximum positive profit ui,n by one

e) Send out a request to each channel n with Pri,n(l) and Puri,n(l).

3. Seller phase: For each channel n that has received purchasing requests from

CRs

a) if
∑
i∈I

Puri,n(l) ≤ T , it will accept all requests. Otherwise, it rejects the CR

with the smallest bidding prices, i.e., Reji∗,n = 1 for i∗ = arg mini Pri,n(l).

b) if no rejection is issued and no request is different from that in the last step,

algorithm stops; otherwise l = l + 1, go back to buyer phase.

The convergence of the proposed algorithm is guaranteed since each CR will

end either with its largest bidding prices or with its largest purchasing on these

channels. Compared to the DMS algorithm in [81], it only needs as much as1/T

memory cost. Moreover, with smaller number of sellers, it also converges faster

than the DMS algorithm.

(2) Modified Two Level Auction The interaction of two levels of games as in

Fig.10 may take very long time to converge. Here, we propose a modified two-

level auction, where the relay request is updated before the first level auction is

solved. The basic idea is to partition the whole auction into three phases, i.e., the

BS phase, the Relay phase, and the pure source node phase. In the BS phase, the

BS decides whether to reject a CR i’s request in channel n based on its bidding

price Pri,n and the total demands in channel n; in the Relay phase, the relay

node j first updates its bidding price Prj,n and purchase Purj,n according to the

rejection result Rejj,n and utility, and then decides whether to reject a pure source
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node i’s request based on i’s bidding price and the demands for receiving and for

retransmission; and in the Pure source node phase, a pure source node i updates

its price and purchase on channels and relays according to the rejection results

and utilities. The pseudo-code of CR’s actions in each phase is shown as follows.

Algorithm:

1.Initialization:

Treat all CRs as pure source nodes. Set all corresponding prices, purchase and

rejections as 0 at the initial step l = 0. Let l = 1.

2. BS phase:

For each channel n receiving purchasing requests from CRs, if
∑
i∈N

Puri,n(l − 1) ≤ T ,

it will accept all requests. Otherwise, it rejects the SU with the lowest bidding

price.

3. Relay phase:

If the CR is a relay node:

a) Relay-BS price updating sub-phase

(1) If Relay j’s request is rejected by channel n in step l, update Prj,n(l) =

Prj,n(l−1) + e1. Otherwise, Prj,n(l) = Prj,n(l−1). e1 is the price updating step

for the prices of channels.

(2) If Prj,n(l) > Cj,n, Prj,n(l) = Cj,n and Purj,n(l) = Purj,n(l) − 1. If

Purj,n(l) < 0, Purj,n(l) = 0.

(3) Update Rj and uj,n = Cj,n − Prj,n(l).

(4) Compute relay capacity Rj
cap = Rj −Reqj . If Rj

cap < 0, change j’s status

to pure source node and jump to pure source node phase.

(5) Compute the retransmission base price for pure source node i, PrRB(i, j) =
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∑
n∈N

Prj,nPurj,n∑
n∈N

Cj,nPurj,n
Cr
i,j , which is the amount of money that relay j need to pay the

BS for relaying a slot of traffic from the pure source node i.

b) Relay-CR rejection sub-phase

For relay receiving purchasing requests from CRs:

(1) Receiving requests checking:

If
∑
i∈S

Purrini,j (l) < T , it will accept all requests. Otherwise, it rejects the CR

with the lowest bidding price.

(2) Transmitting requests checking:

If
∑
i∈S

Purrouti,j (l) ≤ Rj
cap, it will accept all requests. Otherwise, it rejects the

CR with the lowest bidding price.

c) Relay-BS purchase

If
∑
i∈S

Purrouti,j (l) ≥ Rj
cap and

∑
n∈N

Purj,n(l) < T , increase the purchase on the

channel with the maximum positive utility by one.

4. Pure source node phase

a) Pure source-BS sub-phase

(1) If source node i’s request is rejected by Channel n in step l−1, pi,n(l) =

pi,n(l−1) + e1. Otherwise, pi,n(l) = pi,n(l−1)

(2) If Pri,n(l) > Ci,n, Pri,n(l) = Ci,n, and Puri,n(l) = Puri,n(l) − 1. If

Puri,n(l) < 0, Puri,n(l) = 0.

(3) Update Ri and ui,n

(4) If Ri ≥ Reqi and
∑
n∈N

Puri,n(l) ≤ T , change CR i’s status to relay node,

go to phase 3.
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b) Pure source-Relay sub phase

(1) If source node i’s request is rejected by Relay j in step t−1 for receiving

checking, Prrini,j (l) = prini,j (l − 1) + e2. Otherwise, Prrini,j (l) = prini,j (l − 1). e2 is

the price updating step for the prices of relays.

(2) If Prrini,j (l) > Cr
i,j − Prrouti,j (l − 1), Prrini,j (t) = Cr

i,j − Prrouti,j (l), and

Purrini,j (l) = Purrini,j (l)− 1. If Purrini,j (l) < 0, Purrini,j (l) = 0.

(3) If source node i’s request is rejected by Relay j in step t−1 for transmitting

checking, update the retransmission offset PrRPi,j (l) = PrRPi,j (l − 1) + e2. Other-

wise, PrRPi,j (l) = PrRPi,j (l − 1). The retransmission offset is the price charged for

competition of relay j.

(4) Compute the out relay price as Prrouti,j (l) = PrRB(i, j) + PrRPi,j (l)

(5) If Prrouti,j (l) > Cr
i,j − prini,j (l), Prrouti,j (l) = Cr

i,j − Prrini,j (l), Purrini,j =

Purrini,j (l)− 1. If Purrini,j < 0, Purrini,j = 0.

c) Pure source purchase sub-phase

(1) Update Ri, uri,j

(2) If Ri < Reqi
∑
n∈N

Puri,n ≤ T , and
∑
j∈Rl

Purri,j ≤ T , list all channels and

relays in decreasing order, and increase the purchase on the seller (channel or

relay) with maximum positive utility by one.

If there is no rejection and no request changing, algorithm ends; otherwise

l = l + 1, go to phase 2.
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4.3.2 Scheduling Algorithm

Since each CR’s two transceivers can work simultaneously on different bands

without interference, the scheduling problems for licensed band allocation and

relay resource allocation are thus decoupled. Since the scheduling problems for

both allocation are similar, we only consider the licensed band allocations as an

example.

In the licensed band allocation, each channel could be seen as a server, and the

slot allocation on each channel is the traffic demand for this server. The objective

for the scheduling algorithm is to complete all traffic demands within the smallest

time. Note that because of the exclusive utilization of slots, the overall consumed

time is determined by the channel with the heaviest traffic demand. Thus, at any

time, CRs should select channels with heaviest traffic demand for service. On the

other hand, on each channel, CR with the largest demand should be served first.

The detailed procedure is described as follows.

1. Denote Puri,n as Pur0
i,n. Let the traffic demand on channel n be Dn =∑

i∈I Pur
0
i,n and

−→
D = {D1, ..., DN}T . Set step l = 1 and time slot t = 0

2. Sort
−→
D in descending order. For each channel, select the CR with the

largest no-zero purchase on this channel if it has not been selected before in this

step, i.e., jn = argmax
j
Purl−1

j,n , where Purl−1
jn,n

> 0, jn /∈ {j1, ..., jn−1}. If there

is no unselected CR with non-zero purchase on a channel, this channel is ignored

in this step l.

3. Let timel = minnPur
l−1
jn,n

.

4. For each channel n, let Pjn,n(τ) = 1, for τ = t, t + 1, ..., t + timel. Let
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t = t+ timel, and Purljn,n = max(0, Purl−1
jn,n
− timel);

5. If all Purli,n = 0, stop; otherwise let l = l + 1, go to phase 2.

The combination of the modified two level auction and the scheduling algo-

rithm compose of the proposed TLAG algorithm.

4.4 Simulate Results

In simulation, we focus on slightly congested systems, i.e., the total capacity of

channels is slightly less than the total user demands, to highlight the effect of

spectrum sharing algorithms on the resource utilization efficiency. CRs and PUs

are randomly generated in a 100m × 100m area with the BS at the center. There

are N channels and I = 10N CRs. Each channel is assigned a PU as the licensed

user and CRs can not access this channel within 10m of this PU. Channel between

CRs and BS experience shadowing with log-normal distribution. Demands of CRs

follows Gaussian distribution with mean 5, variance 3.

For comparison purpose, two other algorithms are also simulated. One is the

DS algorithm where only direct communication between CRs and the BS is al-

lowed without any relays. An one-layer auction algorithm is adopted among CRs

and a sub-optimal result is reached. The other is the APBR algorithm. In the

APBR algorithm, we first perform a one-layer auction among CRs, but set CRs’

demands as infinite so that all channel resources are allocated only to CRs with

best channel conditions without considering their demands. These CRs are then

selected as relays, and the second layer auction is performed to further allocate

these relay resources.
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Figure 11: Fast convergence of the proposed suboptimal algorithm
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Figure 13: Comparison of the convergence time

Fig. 11 compares the performance of the optimal DMS algorithm and the pro-

posed suboptimal DMMSA algorithm for the single level auction. Performance

metrics acquired before convergence are considered as 0 since they are not real-

izable. From this figure, we can find that the proposed algorithm can converge

70% more faster than the optimal algorithm with only less than 5% degradation in

performance. It is because the seller set becomes smaller in the proposed scheme,

which is critical in determining the convergence time.

Fig. 12 compares the performance of the three algorithms, i.e., TLAG, DS, and

APBR, in term of overall meaningful throughput in the network. From this figure

we can see that the APBR algorithm outperforms the DS algorithm by 10% ∼

20% , as the introduction of relays helps the communication of those pure source

nodes which do not have good connections with the BS. The proposed TLAG

algorithm can further result in improvement over the APBR algorithm by about
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10%. It is because in the TLAG algorithm, resources are allocated to relays with

the considerations of both the relays’ own traffic, channel condition, and relay

demands.

Fig. 13 compares the performance of the three algorithms in term of conver-

gence time. From this figure, it can be observed that the APBR algorithm takes

about 100% more rounds to converge than the DS algorithm. It is because two

auction games need to converge in serial. However, in the proposed TLAG algo-

rithm, since CRs are classified into two groups, i.e., relays and pure source nodes,

which makes less buyers participate in the auction, it can converge about 30%

faster than the DS algorithm without relay.

In summary, the proposed TLAG algorithm demonstrates performance im-

provement in both network throughput and convergence time.
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5 Conclusion and Future Work

5.1 Conclusion and Comments

In this thesis, the history and the recent development of CRNs have been intro-

duced first. Then the properties of CRNs were described in details. As the CRNs

are distinct from traditional networks by their spectrum heterogeneity and spec-

trum variability, novel resource allocation algorithms are needed to address these

new challenges and to improve the network performance.

A novel demand matching spectrum sharing algorithm, which takes into con-

sideration users’ heterogeneity in demands, channel availability and channel con-

ditions, was proposed. A distributed cooperative game with classified players is

formulated in this thesis, where CRs select channel and their priority based on

their satisfaction history. This satisfaction history is used as a public signal for

CRs to collaborate with each other. A prioritized game is formulated and no

regret learning algorithm is adopted to reach the Correlated Equilibrium (C.E.).

The proposed sharing algorithm solves the equal allocation problem in traditional

CSMA algorithms, so that it is more suitable for CRNs. The simulation results

demonstrate that the proposed algorithm is able to greatly improve the number of

satisfied users for CRNs.

In order to further improve the performance of the CRNs, CCRNs have been

introduced with a two-layer auction game to conduct channel slots allocation,

relay formation, and relay selection. Starting from a homogeneous network with-

out predefined relays, CRs allocated with abundant resources become amateur re-
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lays to provide connectivity for those allocated with insufficient resources. Prices

charged on slots of relays and channels are used to leverage resource allocation. A

suboptimal algorithm is provided for the single level auction. Modified two level

auction is adopted to accelerate the convergence. Compared with the traditional

DS algorithm and APBR algorithm, the proposed algorithm can improve both the

network throughput and the convergence time.

5.2 Future Work

Providing efficient and dynamic resource allocation algorithms in CRNs is still an

open topic. Plenty of future works are possible to further improve network perfor-

mance. For the spectrum sharing in TCRNs, one potential extension is to consider

the spectrum variability, i.e., PUs’ on/off. By conducting PU activity prediction

and learning the statistical behaviors of the PUs, dynamic and adaptive allocation

algorithms can be proposed for more efficient resource utilization. Moreover, the

duration of idle channels may also be taken into account to match CRs’ specific

communication requirements. Besides, in practice the interference among users

in the CRN is complex. The allocation of channels is also influenced by CRs’

interfering neighbors, which introduces new challenges to resource allocation al-

gorithm design. The cross-layer design, i.e., joint resource allocation and routing

design, is another promising direction for future research.

In the CCRNs, we considered a simple overlay CRN with a BS as the central

controller in the proposed algorithm. Such network structure is plausible as it is

similar to the one in IEEE 802.22 standard. However, with the increased applica-
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tions of ad hoc networks and their integration with CRNs, designing resource al-

location algorithm for such highly distributed networks becomes necessary. Since

there is no central controllers in ad hoc networks, the resource allocation algorithm

is expected to be fully distributed based on local information only, and has more

strict constraints on the overhead related to the control information exchange. Be-

sides, similar to the spectrum sharing in direct CRNs, spectrum variability and

more practical interference environment should be taken into account in future

works.
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