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ABSTRACT 

We developed a fast simulator of finite-beam optical coherence tomography (OCT) of 

inhomogeneous turbid media. Our Sequential Monte Carlo (MC) based finite beam OCT 

simulator can reach more than a hundred times faster than one that represents a finite 

OCT’s incident beam as a superposition of infinitely thin beams, i.e., a superposition-based 

MC simulator. In this thesis, first, we highlight the lesser-known correspondence between 

the commonly used MC simulation of light in turbid media, and Sequential MC based 

solution of the Radiative Transfer Equation (RTE). Second, we describe the 

implementation of our simulator of finite-beam OCT as a Sequential MC solution to the 

RTE. Third, we derive analytical expressions for the relationship between simulation errors 

and computational complexities, i.e., simulation times, for both our Sequential MC based 

simulator and a superposition-based MC simulator. We present simulation results of finite 

beam OCT of inhomogeneous turbid media when having a finite beam with a Gaussian 

intensity profile. Our simulator could be used in OCT design since it models realistic beam 

profiles that are typically used in OCT systems. 
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Introduction 

Optical Coherence Tomography (OCT) is a relatively new imaging modality that was 

introduced in 1991 [1]. OCT has several advantages over other modalities, including:  near 

histology level (1 − 15 𝜇𝑚) imaging resolution, real-time image acquisition, and the use 

of non-ionizing radiation [1-5]. In addition, OCT could be coupled with endoscopy to 

image internal organs in situ, as it doesn’t require optical coupling media [2, 4]. The 

applications of OCT in the biomedical field are increasing rapidly. Currently, OCT has 

applications in ophthalmology, cardiology, dermatology, oncology, dentistry, among 

others [4, 7]. 

Current OCT systems only consider single-scattered light for imaging, thereby limiting 

OCT imaging penetration depth to few millimeters from the surface [2, 4]. To overcome 

this limitation, we need to extract information from multiply scattered light, since it is 

dominant at higher depths. In order to do this, researchers need to understand more about 

light scattering in tissue and how multiple-scattered light contribute to the OCT signal. A 

realistic and fast simulator for OCT could help learn more about the contribution of 

multiply scattered light to the OCT signal. It is an important tool for OCT research, as it 

could help with the design of OCT imaging systems with higher penetration depth.  

The current OCT simulators for inhomogeneous arbitrary-shaped turbid media assume that 

the incident light beam for imaging is infinitely-thin, i.e., infinitely small probing area. 

This is not a realistic assumption because the OCT signal will depend on the incident beam 
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diameter and intensity profile. Therefore, simulating a finite incident beam will make the 

simulation closer to reality. Typically, the signal due to a finite incident beam, i.e., finite 

probing area, could be approximated by repeating the simulation at a set of points covering 

the beam area then get the superposition of the results. But, this approach is 

computationally expensive, as it requires repeating the simulation of an infinitely-thin 

incident beam at each point (we will refer to this approach by the superposition approach). 

In this thesis, we focus on building a practical (fast) finite beam OCT simulator for 

inhomogeneous arbitrary-shaped turbid media. 

1.1 Thesis Outline  

To simulate OCT signals, we need to simulate light propagation in tissue. There are two 

approaches to model the propagation of light in turbid media, the electromagnetic (EM) 

approach that is based on Maxwell’s equations, and the radiative transport (RT) approach 

that is based on the Radiative Transfer Equation (RTE). We review both approaches in 

Chapter 2 and highlight how the RTE is related to the Poynting theorem for energy 

conservation. 

In Chapter 3, we briefly explain the theory of time-domain OCT and review the previous 

work on Monte Carlo time-domain OCT simulators. The main components of a massively 

parallel OCT simulator (OCT-MPS) for inhomogeneous arbitrarily shaped turbid media is 

reviewed, which we use as starting point to develop our finite beam simulator. 

To simulate a finite incident beam in a practical way, we revisit the analytical solution of 

the RTE.  In Chapter 4, we explain the basics of Monte Carlo (MC) quadrature methods, 

and how it could be used to solve Fredholm integral equations of the second kind. In 
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Chapter 5, we present a solution of the RTE for homogeneous media using MC quadrature 

methods, and show its equivalence to MC simulation of light. 

Following the MC solution of the RTE, we consider including the incident beam as part of 

the simulation from the beginning, we will refer to this approach by the Sequential MC 

approach. In Chapter 6, we compare the error and computational cost of this Sequential 

MC approach to the traditional superposition approach. We chose the Sequential MC 

approach to build our finite beam OCT simulator because of its superior performance. We 

implemented our simulator on graphics processing units (GPUs) using the Compute 

Unified Device Architecture (CUDA) platform by NVIDIA® to exploit the parallelism 

inherent in the simulation. We also implemented a superposition-based simulator to 

validate the results of our simulator. We demonstrated the accuracy and speed of our 

simulator over the superposition-based simulator. We present simulated OCT reflectivity-

based B-scan OCT images for two inhomogeneous arbitrarily shaped turbid media due a 

finite incident beam with a Gaussian intensity profile. Finally, in Chapter 7, we present our 

conclusions, and suggestions for future work. 

1.2 Thesis research contributions 

 We established the correspondence between the Sequential MC solution of the RTE 

for homogeneous media, written in the form of a Fredholm integral equation of the 

second type, with a common Monte Carlo light simulation procedure. 

 We developed a fast simulator of finite-beam optical coherence tomography for 

inhomogeneous turbid media composed of arbitrarily shaped regions of different 

optical properties based on the Sequential MC solution of the RTE. We validated 
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our Sequential MC based simulator with one that represents the finite beam signal 

(A-scan) as the superposition of the signals (A-scans) due to infinitely-thin beams 

that cover the finite beam area, referred to by superposition-based simulator. 

 We derived analytical expressions for the error in the estimates of our Sequential 

MC based simulator and the superposition-based simulator. We compared the errors 

of both simulator, and showed that the error of our simulator is always less than the 

error of the superposition-based simulator for a comparable computational cost.  
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Light Propagation in Tissue 

To simulate OCT signals from tissue, we need to understand how light propagates in tissue. 

Light is an electromagnetic (EM) radiation. As all EM radiations, light propagation is 

governed by Maxwell’s equations [2, 8, 9]. One approach for finding the distribution of 

light in a medium is the EM approach, where one calculates the distribution of the electric 

and magnetic fields in a medium. The EM approach is easily applied to simple cases, e.g., 

layered media. However, in other cases such as tissue, where scattering and absorption take 

place in a complicated way, it becomes a challenging computational problem. 

Another approach for finding the distribution of light in a medium is the Radiative Transfer 

(RT) approach. This approach considers only the energy of light rather than its EM field. 

Therefore it is relatively easier to obtain distributions of light in scattering media using this 

approach. The RT approach is commonly used to simulate light propagation for two main 

reasons. First, it simplifies the computational problem; second, in many problems, it is 

sufficient to simulate the intensity only. In this chapter, we will explain how both 

approaches model light propagation in tissue. 

2.1 Electromagnetic approach for light propagation 

Visible light occupies a band of relatively short wavelengths in the electromagnetic 

spectrum (between 400 nm to 700 nm) [8]. The electromagnetic field constitutes two 

related fields, function of position and time: the electric field vector 𝑬(𝒓, 𝑡) and the 

magnetic field vector 𝑯(𝒓, 𝑡). James Clark Maxwell formulated a set of partial differential 
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equations that both the electric and magnetic fields must satisfy, known as Maxwell’s 

equations [8, 10].  Before writing Maxwell’s equations, we need to define two more 

vectors, the electric flux density 𝑫(𝒓, 𝑡) and the magnetic flux density 𝑩(𝒓, 𝑡). These 

vectors are used to describe the influence of the medium on the electric and magnetic fields 

[8, 10]. The electric flux density 𝑫(𝒓, 𝑡) relates to the electric field 𝑬(𝒓, 𝑡) and the magnetic 

flux density 𝑩(𝒓, 𝑡) relates to the magnetic field 𝑯(𝒓, 𝑡). Maxwell’s equations, for a 

medium with continuous physical properties, are [11]: 

𝛁 × 𝑯(𝒓, 𝑡) −
𝜕𝑫(𝒓, 𝑡)

𝜕𝑡
=  𝑱(𝒓, 𝑡) (2.1) 

𝛁 × 𝑬(𝒓, 𝑡) +
𝜕𝑩(𝒓, 𝑡)

𝜕𝑡
= 0 (2.2) 

𝛁 ∙ 𝑫(𝒓, 𝑡) = 𝜌(𝒓, 𝑡) (2.3) 

𝛁 ∙ 𝑩(𝒓, 𝑡)  = 0 (2.4) 

where,  𝑱(𝒓, 𝑡) is the electric current density, and 𝜌(𝒓, 𝑡) is the electric charge density. (𝛁 ∙

) and (𝛁 ×) are the divergence and the curl operations, respectively. 

Assume that the medium is linear, nondispersive, nonmagnetic, isotropic, and source free, 

i.e., no electric charges or currents (𝜌 = 0, 𝑱 = 0). Then, the relation between the electric 

flux density and the electric field becomes [8, 10, 11], 

𝑫(𝒓, 𝑡) = 𝜖(𝒓) 𝑬(𝒓, 𝑡) (2.5) 

where, 𝜖 is the dielectric permittivity of the medium. It is assumed to vary slowly with 

position (nearly constant within a distance of a wavelength). 



7 

 

And, the relation between the magnetic flux density and the magnetic field becomes [8, 10, 

11], 

𝑩(𝒓, 𝑡) = 𝜇0 𝑯(𝒓, 𝑡) (2.6) 

where, 𝜇0 is the magnetic permeability of free space. 

Accordingly, Maxwell’s equations becomes, 

𝛁 × 𝑯(𝒓, 𝑡) − 𝜖(𝒓) 
𝜕𝑬(𝒓, 𝑡)

𝜕𝑡
=  0 (2.7) 

𝛁 × 𝑬(𝒓, 𝑡) + 𝜇0  
𝜕𝑯(𝒓, 𝑡)

𝜕𝑡
= 0 (2.8) 

𝛁 ∙ 𝑬(𝒓, 𝑡) =  0 (2.9) 

𝛁 ∙ 𝑯(𝒓, 𝑡)  = 0 (2.10) 

The Cartesian components of the electric field (𝐸𝑥 , 𝐸𝑦 , 𝐸𝑧) and magnetic field (𝐻𝑥 , 𝐻𝑦, 𝐻𝑧) 

satisfies the scaler wave equation [8],  

𝛁𝟐𝑢(𝒓, 𝑡) −
𝑛2(𝒓)

𝑐0
2

𝜕2𝑢(𝒓, 𝑡)

𝜕𝑡
= 0 (2.11) 

such that, 𝑢 represents any of the six components of the electric and magnetic fields, 𝑐0 ≈

3 × 108 𝑚/𝑠, is the speed of light in free space, 𝑛 = √𝜖/ 𝜖0  is the refractive index of the 

medium, 𝜖0 is the electric permittivity of free space, and 𝛁𝟐 is the Laplacian operator. 

Tissue is an inhomogeneous medium, whose refractive index is continuously changing 

with position. It could be considered as a random medium whose refractive index changes 

randomly with position [12], 

𝑛(𝒓) = 𝑛̅ + ∆(𝒓) (2.12) 
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such that, 𝑛̅ is the mean of the refractive index, and ∆(𝒓) (the variation in the refractive 

index) is a random process.  

Assume that the light incident on the tissue is monochromatic with angular frequency, 𝜔. 

Then, Eq. (2.11), becomes time-independent, [2, 8, 10]: 

𝛁𝟐𝑢(𝒓) + 𝑘0
2 𝑛2(𝒓) 𝑢(𝒓) = 0 (2.13) 

such that, 𝑘0 = 𝜔/𝑐0 is the wave number. 

Eq. (2.13) could be written as, 

(𝛁2 + 𝑘2)𝑢(𝒓) = −𝐹(𝒓) 𝑢(𝒓) (2.14) 

 where, 𝐹(𝒓) is known as the scattering potential of the medium, equal, 

𝐹(𝒓) = 𝑘0
2[𝑛2(𝒓) − 1]  (2.15) 

Write 𝑢(𝒓) as the sum of the incident field 𝑢(𝑖𝑛𝑐)(𝒓) and the scattered field 𝑢(𝒓), 

𝑢(𝒓) =  𝑢(𝑖𝑛𝑐)(𝒓) + 𝑢(𝑠𝑐)(𝒓) (2.16) 

Assume that, the incident field, 𝑢(𝑖𝑛𝑐)(𝒓), is a plane wave (the usual case), then it satisfies 

the Helmholtz equation, 

(𝛁2 + 𝑘2) 𝑢(𝑖𝑛𝑐)(𝒓) = 0 (2.17) 

 Therefore, Eq. (2.14) is reduced to, 

(𝛁2 + 𝑘2) 𝑢(𝑠𝑐)(𝒓) = −𝐹(𝒓) 𝑢(𝒓) (2.18) 

The solution of Eq. (2.18) can be written in terms of the Green’s function 𝐺(𝒓, 𝒓′) [9, 10], 

𝑢(𝑠𝑐)(𝒓) = ∫ 𝐹(𝒓′)𝑢(𝒓′)𝐺(𝒓, 𝒓′)𝑑3𝒓′
 

𝑉

 (2.19) 

Finally, by substituting the scattered field in Eq. (2.16) we reach, 
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𝑢(𝒓) = 𝑢(𝑖𝑛𝑐)(𝒓) + ∫ 𝐹(𝒓′)𝑢(𝒓′)𝐺(𝒓, 𝒓′)𝑑3𝒓′
 

𝑉

 (2.20) 

which is commonly known as the integral equation of potential scattering [9, 10]. 

2.2 Radiative transfer approach for light propagation 

After a long debate about the nature of light, it has been proven that light could be treated 

as both a particle and a wave [2]. Light is made up of a large number of photon particles, 

where the energy of a photon is proportional to the light frequency. Statistically photons 

behave in a wave-like manner, and for a large number of photons, they can be treated as a 

wave [2].  

In the RT approach, we focus on the energy of the EM wave (equivalent to the number of 

photons) rather than the electric and magnetic fields. The propagation of energy in a 

scattering medium has been modeled using the Radiative Transfer Equation (RTE) for over 

100 years [9, 13]. The RTE can be derived from Maxwell’s equations using the Poynting 

theorem for energy conservation [9]. To give insight about each term in the RTE, we will 

highlight how each term of the RTE is developed from the Poynting theorem, the detailed 

derivation can be found in [9]. 

2.2.1 Radiative Transfer Equation 

Below it is assumed that the medium is linear, isotropic and locally homogeneous (the 

medium dielectric constant, 𝜖, and magnetic permeability, 𝜇, are nearly constant within the 

distance of a wavelength). Also, it is assumed that, the field is time harmonic, the electric 

and magnetic fields are mutually orthogonal. 

The flow of the power of the EM wave is given by the Poynting vector 𝑺, defined as [8, 9] 
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𝑺 = 𝑬 × 𝑯∗ (2.21) 

The Poynting vector is measured power per unit area. By writing the fields in terms of their 

magnitudes and direction unit vectors, 𝑬 = |𝑬| 𝒆̂ and 𝑯 = |𝑯| 𝒉̂, the direction of the 

Poynting vector (direction of energy propagation) is given by the unitary vector 𝒔̂ = 𝒆̂ ×

𝒉̂. Then the Poynting vector is written as 𝑺 = |𝑬||𝑯| 𝒔̂.  

Light propagates at frequencies higher than the frequencies measured by conventional 

detectors [2, 9]. Therefore, detectors measure the time-averaged Poynting vector 〈𝑺(𝒓)〉. 

The time-averaged conservation of energy at an arbitrary point 𝒓, is given by the time-

average of the Poynting’s theorem [9], 

1

𝑐

𝜕〈𝑺(𝒓)〉 ∙ 𝒔̂

𝜕𝑡
+ 〈

𝑑𝑃𝑎𝑏𝑠(𝒓)

𝑑𝑉
〉 +  𝛁 ∙ 〈𝑺(𝒓)〉 = 0 (2.22) 

where,  
𝑑𝑃𝑎𝑏𝑠

𝑑𝑉
= 𝑱 ∙ 𝑬, is the absorbed power per unit volume. 

Since the conservation of energy applies to any direction, then, from Eq. (2.22) the energy 

conservation for an arbitrary direction 𝒗̂, is given by [9], 

1

𝑐

𝜕〈𝑺(𝒓)〉 ∙ 𝒗̂

𝜕𝑡
+ ⟨

𝑑𝑃𝑎𝑏𝑠(𝒓)

𝑑𝑉
⟩ (𝒔̂ ∙ 𝒗̂) +  𝒗̂ ∙ 𝛁(〈𝑺(𝒓)〉 ∙ 𝒗̂ ) = 0 (2.23) 

To reach the RTE, we start by defining some important quantities,  

1. The specific intensity, 𝐼(𝒓, 𝒗̂), is the power per unit area per unit solid angle flowing 

at 𝒓 in direction 𝒗̂. It is given by the volume-average (over a small differential 

volume 𝛿𝑉) of the time-averaged Poynting vector projected on direction 𝒗̂,  
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𝐼(𝒓, 𝒗̂) =
1

4𝜋 𝛿𝑉
∫〈𝑺(𝒓 − 𝒓′)〉 ∙ 𝒗̂ 𝑑3𝒓′

 

𝛿𝑉

 (2.24) 

2. The scattering phase function 𝑝(𝒗̂′, 𝒗̂), is the portion of energy that changes its 

propagation direction from 𝒗̂′ to 𝒗̂ [9]. It could be interpreted statistically as the 

probability of propagating in direction 𝒗̂ due to scattering of light propagating in 

direction 𝒗̂′[2, 12, 14]. The scattering phase function depends on the scattering 

behaviour of the medium [9]. In biomedical optics it is usually approximated by the 

Henyey-Greenstein’s phase function. The Henyey-Greenstein’s phase function 

describes the scattering behaviour of the medium in terms of the anisotropy factor, 

𝑔 = 〈𝒗̂′ ∙ 𝒗̂〉, equal to the mean of cosine the angle suspended between the incidence 

and scattering directions [9, 14]. 

Then, by averaging Eq. (2.23) over a small differential volume, 

 The first term yields the temporal change of the specific intensity, 

1

𝑐

𝜕

𝜕𝑡
𝐼(𝒓, 𝒗̂) (2.25) 

 The second term is the origin of losses due to absorption, it becomes, 

𝜇𝑎 𝐼(𝒓, 𝒗̂) (2.26) 

such that 𝜇𝑎 is the absorption coefficient. 

 The time-averaged Poynting vector, 〈𝑺(𝒓)〉, could be written as the sum of two 

contributions 〈𝑺(𝑖𝑛𝑐)(𝒓)〉, 〈𝑺(𝑠𝑐)(𝒓)〉, the contributions from non-scattered light and 

scattered light respectively. The third term in Eq. (2.23) results in three components. 
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The first component is due to 〈𝑺(𝑖𝑛𝑐)(𝒓)〉, while the second and third components 

are due to 〈𝑺(𝑠𝑐)(𝒓)〉. 

1- Spatial change in the specific intensity, 

𝒗̂ ∙ 𝛁𝐼(𝒓, 𝒗̂) (2.27) 

2- Energy lost due to scattering (energy scattered outside 𝛿𝑉) 

𝜇𝑠 𝐼(𝒓, 𝒗̂) (2.28) 

such that 𝜇𝑠 is the scattering coefficient. 

3- Energy gained due to the scattered light coming from adjacent differential 

volumes (energy scattered inside 𝛿𝑉) 

−𝜇𝑠 ∫ 𝐼(𝒓, 𝒗̂′) 𝑝(𝒗̂′, 𝒗̂)

4𝜋

𝑑𝒗̂′ (2.29) 

such that 𝑑𝒗̂′ is the differential solid angle. Note that the factor 𝜇𝑠 in the above 

term comes from the definition used for the phase function [9, 14]. 

Finally, by accounting for a source term, 𝜖(𝒓, 𝒗̂), we reach the RTE in its familiar integro-

differential form [9, 14],  

1

𝑐

𝜕

𝜕𝑡
𝐼(𝒓, 𝒗̂) + 𝒗̂ ∙ 𝛁𝐼(𝒓, 𝒗̂) + 𝜇𝑡 𝐼(𝒓, 𝒗̂) − 𝜇𝒔 ∫ 𝐼(𝒓, 𝒗̂′) 𝑝(𝒗̂′, 𝒗̂)

 

4𝜋

𝑑𝒗̂′ = 𝜖(𝒓, 𝒗̂) (2.30) 

such that 𝜇𝑡 is the total extinction coefficient equal to the sum of 𝜇𝑎 and 𝜇𝑠. 

The first term in Eq. (2.30) could be neglected, due to the high speed of light (1/c factor), 

resulting in the steady-state equation [12, 15].  
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2.2.2 Specular reflection and refraction 

The RTE assumes that the medium is homogeneous with constant refractive index, 𝑛. To 

model the flow of energy in inhomogeneous media using the RT approach, we have to 

handle the interaction of light at the interface between regions of different refractive 

indexes separately [9].   

 

Figure 2.1 Reflection and transmittance at the surface between two different media 

When a light beam meets a surface between two media of different refractive indices, it is 

either totally reflected or partially reflected and refracted (the two cases will be 

distinguished below). In partial reflection and refraction, the light beam splits into two 

beams one reflected back to the first medium, and the other is refracted and transmitted to 

the second medium. Fig. (2.1) shows a beam 𝑰𝑖 (propagating in a region of refractive index 

𝑛1) incident on the surface of another region (refractive index 𝑛2). The reflected beam, 𝑰𝑟, 

the transmitted (refracted) beam, 𝑰𝑡, the angles between the beams and the surface normal, 

𝑛̂, are shown in Fig. (2.1). The relation between the reflection angle 𝜃𝑟 and the incidence 

angle 𝜃𝑖 is given by the law of reflection, 

𝜃𝑡 

 𝜃𝑖   𝜃𝑟   

𝑰𝒕 

𝑛1 

𝑰𝒊 𝑰𝒓 
𝑛̂ 

𝑛2 
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𝜃𝑟 = 𝜃𝑖 (2.31) 

The transmittance angle 𝜃𝑡 could be calculated using Snell’s law [10, 14], 

𝑛1 sin(𝜃𝑖) = 𝑛2 sin(𝜃𝑡) (2.32) 

If 𝑛1 > 𝑛2 and 𝜃𝑖 is greater than the critical angle, 𝜃𝑐 = sin−1(𝑛2/𝑛1), then the light is 

totally reflected [10, 14]. This means that all the incident power is reflected, |𝑰𝑖| = |𝑰𝒓|, 

and no power is transmitted, |𝑰𝑡| = 0. Otherwise, light is partially reflected and refracted. 

The ratio between the power of the reflected and incident beams, known as the reflection 

coefficient, 𝑅, is given by Fresnel’s formula, 

𝑅 =
|𝑰𝑟|

|𝑰𝑖|
=

1

2
(

sin2(𝜃𝑖 − 𝜃𝑡)

sin2(𝜃𝑖 + 𝜃𝑡)
+

tan2(𝜃𝑖 − 𝜃𝑡) 

tan2(𝜃𝑖 + 𝜃𝑡) 
)  (2.33) 

assuming that the light is unpolarized [9, 10, 14]. 

Accordingly, the transmittance, 𝑇, the ratio between the power of the transmitted and 

incident beams, is given by 

𝑇 =
|𝑰𝒓|

|𝑰𝒊|
= 1 − 𝑅  (2.34) 
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Optical Coherence Tomography theory and simulation 

Optical Coherence Tomography (OCT) is a high-resolution optical imaging technique that 

creates subsurface cross-sectional images. OCT theory is analogous to ultrasonic pulse-

echo imaging theory, except that OCT uses light waves rather than ultrasonic waves [1, 

16]. OCT imaging resolution is few micrometers (1-15 𝜇m), which is 10 - 100 times more 

than the imaging resolution of conventional ultrasound. However, OCT imaging 

penetration depth is limited to few millimeters (2-3 mm) from the tissue surface, which is 

much less than ultrasound imaging penetration depth [16]. OCT has many applications in 

the biomedical field and in other fields.  

In ultrasonic pulse-echo imaging, pulses of ultrasonic waves are incident on tissue surface, 

the waves are reflected from internal structures and their echoes are measured. The position 

where the wave was reflected is calculated from the time delay between sending and 

receiving; then the image is constructed from the intensity of the echoes [16]. This 

methodology is not practical for light because light is approximately 1 million times faster 

than sound, i.e., we need ultrafast (femtosecond) pulses and detectors [16]. In OCT 

systems, the back-reflected light is combined with a reference light and their interference 

is measured [2, 16, 17]. Based on the interference profile tomographic images are 

constructed. 
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OCT imaging systems could be classified as time domain OCT (TDOCT), and frequency 

domain OCT (FDOCT) [2, 16]. Both of them relies on interferometry, but they differ in 

their design. In this thesis, we will focus on time domain OCT and its simulation. 

3.1  Theory of time domain Optical Coherence Tomography 

Time domain OCT theory is based on low coherence interferometry. The coherence of light 

is the degree of correlation between the optical field at different locations and time [2, 12, 

16]. The coherence length of an optical source is the length over which two waves from a 

light source are coherent; it depends on the bandwidth of the source spectrum. Low 

coherence interferometry uses a broad-bandwidth light source to measure the time delay 

by comparing the reflected light with a reference light [2, 16, 17]. Maximum interference 

occurs when the optical path lengths of the reflected and reference light are precisely equal 

[2, 16, 17]. 

 

Figure 3.1. Time Domain OCT system schematic diagram 
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A simplified setup of a TDOCT system (Michelson type interferometer) is shown in Fig. 

(3.1) [2, 16, 17].  In TDOCT, light from a low coherence optical source is split (using a 

beam splitter) into two beams, a reference beam, and a sample beam. The reference beam 

is reflected back from a moving reference mirror. The sample beam is incident on the tissue 

sample and reflected back from different depths in the sample. The two reflected beams 

are combined and their interference is measured by a photodetector. Interference occurs 

between the reference beam and light reflected from the sample that has matching optical 

path length within the coherence length of the source. By moving the reference mirror, we 

change the optical path length of the reference beam, allowing interference with light 

coming from different depths in the sample. Accordingly, the OCT A-scan is obtained from 

the magnitude of the interference at different depth. 

3.2 Monte Carlo simulation of TDOCT 

To simulate the OCT signals from tissue, we need to model the propagation of light in 

scattering media. In 1983, Wilson and Adam introduced a Monte Carlo (MC) model, based 

on the RT approach, for light simulation in turbid media [18]. Since then their model has 

become popular, due to its accuracy and simplicity. It has been used to simulate light in 

homogeneous, multilayered [19, 20], and arbitrarily shaped scattering media [21-25]. 

The first OCT simulator was introduced in 1998 by Smithies et al. [26]. That simulator 

only considers homogeneous turbid media, i.e., the optical properties of the medium are 

the same all over its volume. In 1999, Yao and Wang developed a simulator for OCT 

signals from multilayered turbid media, i.e., media with parallel boundaries between 

regions of different optical properties [27]. Lima et al. then improved this simulator by 
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applying an advanced importance sampling technique, which reduced the simulation 

computation time by two orders of magnitude [28, 29]. In 2007, Kirillin et al. used 

sinusoidal functions to model the boundaries between regions with different optical 

properties and to simulate the OCT signals from such media [30]. Periyasamy and 

Pramanik developed an OCT simulator for multilayered turbid media with embedded, 

spherical, cylindrical, ellipsoidal, or cuboidal objects [31]. Then, those authors accelerated 

the simulation by using importance sampling [32]. 

Malektaji et al. introduced a simulator of the OCT signals for turbid media constructed of 

arbitrarily shaped regions that have different optical properties [17, 33]. To allow the 

inclusion of any structure, with the desired accuracy, they used tetrahedron meshes to 

model the media. Besides improving accuracy, the use of tetrahedrons reduce the 

simulation computation cost, compared with other ways for modeling arbitrarily shaped 

regions, such as triangular surface-meshes [17, 33]. They used an advanced importance 

sampling scheme that reduced the computational cost, but the simulation was still 

computationally expensive [17, 33]. Later in 2017, Escobar implemented the simulator 

introduced by Malektaji et al. on Graphics Processing Units (GPUs) using a Compute 

Unified Device Architecture (CUDA) platform by NVIDIA [34, 35]. The GPUs-based 

simulator, referred to by the name OCT Massively parallel simulator (OCT-MPS), was 

faster than the CPU-based simulator by more than one order of magnitude, which made 

OCT simulations with that method more practical [34, 35]. In the next section, we will 

review the main components of OCT-MPS, which we will use to build our simulator, and 

in the following section, we will highlight its limitation. 
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3.2.1 OCT Massively Parallel Simulator (OCT-MPS) 

In OCT-MPS the medium is constituted of arbitrarily shaped regions of different optical 

properties. Each region is defined by the following parameters: scattering coefficient 𝜇𝑠, 

absorption coefficient 𝜇𝑎, refractive index 𝑛, and anisotropy factor 𝑔. A tetrahedron mesh 

is used to define the shape of the medium, identifying regions of different optical 

properties. 

A large number of photon packets (a group of photons) are launched from an optical source 

and propagated in the medium while recording different quantities of interest. The tracing 

of the photon packets is performed simultaneously on the GPU threads. Each thread is 

responsible for the complete tracing of a photon packet. After a thread completes tracing a 

photon packet, it could start tracing a new packet if there are remaining packets not traced 

yet. Finally, the OCT signals are estimated from the expected value of the recorded 

quantities. Fig. (3.2) shows the flow chart of the photon propagation procedure used in 

OCT-MPS [35].  
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Figure 3.2. Flow chart of the photon propagation procedure in OCT-MPS (from Mauricio R. Escobar, 

M.Sc. thesis, 2015, p. 71) 

3.2.1.1 Launching a Photon Packet 

The light source is assumed to be an infinitely-thin incident beam (delta source). To speed 

up the simulation, photons are grouped in packets, rather than simulating one photon at a 

time. The weight of the photon packet represents the portion of the non-absorbed photons 

in the packet. The initial position and propagation direction for all the photon packets is 

the same, equal to the position and direction of emission of the source respectively. Their 

initial weight is set to unity, 𝑊 = 1, i.e., non of the photons in the photon packet are 

absorbed. 
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3.2.1.2 Propagation in the medium 

The packets are propagated inside the medium according to MC light simulation procedure 

for inhomogeneous media, as described in [21]. Photons undergo scattering and absorption 

at the so-called interaction sites. The distance between the interaction sites 𝑙, free path 

length, is a random variable. The cumulative distribution function (CDF) of 𝑙, is given by, 

𝐹𝑙(𝑙) = 1 − 𝑒−𝜇𝑡𝑙 (3.1) 

where, 𝜇𝑡 is the total extinction coefficient, equal to the sum of 𝜇𝑠 and 𝜇𝑎, of the region 

where the photon packet is traveling.  

Let the photon packet position be 𝒓p, its propagation direction be 𝒗̂p, and 𝑙p be the 

randomly sampled free path length. The code checks whether the photon packet will remain 

in the same tetrahedron or move to another one. Let 𝑑 be the distance from 𝒓p to the 

position on the tetrahedron face (of the enclosing tetrahedron) where the photon packet 

may intersect while propagating. If 𝑙p < 𝑑, i.e., the interaction site is in the same 

tetrahedron, the packet is moved to the interaction site, 𝒓p = 𝒓p + 𝑙p 𝒗̂p,  to undergo 

scattering and absorption. Otherwise, the packet is moved to the intersection position on 

the tetrahedron face, 𝒓p = 𝒓p + 𝑑 𝒗̂p, and the un-walked distance is stored to be 

propagated in the new tetrahedron. The un-walked part of the sampled step is stored as,  

𝑠𝑙𝑒𝑓𝑡 = (𝑙p − 𝑑) × 𝜇𝑡 (3.2) 

where, 𝑠𝑙𝑒𝑓𝑡 is dimensionless. 

If the region of the new tetrahedron is different, specular reflection and refraction occur at 

the tetrahedron face (as explained in section 2.2.2). OCT-MPS is designed to trace one 
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photon packet at a time. Therefore, statistical splitting is preferred over actual splitting. In 

case that the transmitted photon packet will exit the medium, i.e., will no longer be traced, 

actual splitting is used. Otherwise, statistical splitting is used. In statistical splitting, the 

calculated Fresnel’s coefficient of reflection, 𝑅, (a formula equivalent to Eq. (2.30) is used 

for computational efficiency) gives the probability of the reflection of the photon packet, 

accordingly the probability of transmission is 1 − 𝑅.  

Then, the un-walked part of the sampled step is similarly propagated in the new 

tetrahedron. The remaining part of the free path length is equal to, 

𝑙𝑙𝑒𝑓𝑡 =
𝑠𝑙𝑒𝑓𝑡

𝜇𝑡

 (3.3) 

such that, 𝜇𝑡 is the total extinction coefficient of the region of the enclosing tetrahedron 

(the new tetrahedron).  

3.2.1.3 Scattering and Absorption 

At the interaction sites, the photon packet undergoes scattering and absorption. A portion 

of the photons in the packet is absorbed, equal to, 

∆𝑊 = 𝑊 ×
𝜇𝑎

𝜇𝑡

 (3.4) 

where, 𝜇𝑎 and 𝜇𝑡 are the absorption and total extinction coefficients, respectively, of the 

enclosing tetrahedron. Therefore, the weight of the packet after absorption is given by, 

𝑊 = 𝑊 − ∆𝑊. 

The photon packet scatters at the interaction site and changes its propagation direction 

based on the phase function. The Henyey-Greenstein phase function is the most commonly 
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used phase function in biomedical optics [9, 14]. The Henyey-Greenstein phase function is 

a probability density function, given by, 

𝑝(HG)(𝒗̂p ∙ 𝒗̂p′) = 𝑝(HG)(cos(𝜃𝑠)) =
1 − 𝑔2

2(1 + 𝑔2 − 2𝑔 cos(𝜃𝑠))3/2
 (3.5) 

such that, 𝒗̂p, 𝒗̂p′, are the directions of propagation before and after scattering, 𝜃𝑠 is the 

angle between the two directions, i.e., cos(𝜃𝑠) = 𝒗̂p ∙ 𝒗̂p′, and 𝑔 is the anisotropy factor of 

the phase function (depends on the medium). The azimuthal angle, 𝜑𝑠, is a uniform random 

variable over the interval [0, 2𝜋].   

The anisotropy factor of tissue is high. Therefore, the probability of backward scattering 

towards the OCT fiber probe is small. Importance sampling could be used to increase the 

probability of these rare events by biasing the propagation direction to the desired direction 

(towards the OCT fiber probe position) while recording the likelihood of the biased event. 

The likelihood of the biased event is used as a compensating function to obtain unbiased 

estimates of the OCT signals. The importance sampling scheme used in OCT-MPS is 

described in [29]. 

3.2.1.4 Random number generation  

In OCT-MPS random numbers are generated using the CDF inversion method. This 

method relies on the one-to-one mapping between any two CDFs (any CDF is 

monotonically increasing from zero to one) [15, 36].  

Let the random variable we want to sample be, 𝑥, and its CDF be, 𝐹𝑥(𝑥). Let 𝑢 be a uniform 

random variable over the interval [0, 1] (we could sample using pseudo-random number 
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generators). The inverse CDF method could be used to obtain samples of 𝑥 from the 

samples of 𝑢, 

𝑥 = 𝐹𝑥
−1(𝑢) (3.6) 

When generating uniform random numbers (samples of 𝑢) in a parallel environment, we 

want to avoid any inter-thread and intra-thread correlations. OCT-MPS uses an improved 

implementation of the Multiply-With-Carry method to generate uniform random numbers 

in its parallel environment [37, 38]. OCT-MPS has three independent streams of random 

numbers, one is used for the scattering function (scattering direction), the other is used for 

reflection and refraction function, and the third is used for random number generation in 

the remaining functions. The seed of each stream could either be set manually (different 

seed for each stream) or obtained from the system’s clock. The seed of each thread is a 

unique safe prime number (a prime number that has the form, 2 p + 1, where p is also a 

prime number) [34, 35]. 

3.2.1.5 Photon tracing termination 

The tracing of a photon packet ends when it is collected by the OCT fiber probe or exits 

the medium. While propagating in the medium, the photon packet weight decreases due to 

absorption. After the photon packet weight decrease below a certain threshold (the 

threshold used is 10−4), the tracing of the packet is terminated with probability 1 −
1

𝑚
. If 

the packet survives (probability of survival is 
1

𝑚
), its weight will be multiplied by the factor 

𝑚 (𝑚 is set to 10 in the simulator). This method is known by Russian Roulette, it is an 

unbiased technique that speeds up the simulation. 
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3.2.1.6 Estimation of Class I and Class II diffuse reflectance 

In OCT-MPS the fiber probe, of diameter Φf and acceptance angle 𝜃f, is placed in direct 

contact with the surface of the medium (tissue). The surface of the medium is in the XY-

plane, i.e., 𝑧 = 0, and normal to the z-axis. The packets are collected by the fiber if they 

hit its surface with an angle that does not exceed the acceptance angle (𝜃f). Information 

about the collected photon packets is used to estimate the OCT signals (Class I and Class 

II diffuse reflectance). Class I diffuse reflectivity is due to photons scattered within the 

coherence length of the optical source. While Class II diffuse reflectivity is due to photons 

multiply scattered beyond the source coherence length. Class I photon packets, reflected 

from a depth 𝑧, are identified by the spatial-temporal indicator function below,  

𝟙I(𝑧, 𝑖) ∶= {1        𝑙𝑐 > |∆𝑙(𝑖) − 2𝑧max
(𝑖)

|, 2𝑟(𝑖) < Φf,   𝜃𝑧
(𝑖)

< 𝜃f, |∆𝑙(𝑖) − 2𝑧| <  𝑙𝑐 

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                             
 (3.7) 

such that, 𝑙𝑐 is the coherence length of the optical source, 𝑧 is the depth imaged, ∆𝑙(𝑖) is the 

optical path length of the 𝑖th packet, 𝑧max
(𝑖)

 is the maximum depth reached by the 𝑖th packet, 

𝑟(𝑖) is the distance between the packet exit position and fiber probe centre position, and 

𝜃𝑧
(𝑖)

is the angle between the packet propagation direction and the 𝑧-axis for the 𝑖th packet. 

A similar function is used for identifying Class II photon packet, 

𝟙II(𝑧, 𝑖) ∶= {1        𝑙𝑐 < |∆𝑙(𝑖) − 2𝑧max
(𝑖)

|, 2𝑟(𝑖) < Φf,  𝜃𝑧
(𝑖)

< 𝜃f, |∆𝑙(𝑖) − 2𝑧| <  𝑙𝑐 

0       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                            
 (3.8) 

Finally, Class I diffuse reflectance, 𝑅I(𝑧), and Class II diffuse reflectance, 𝑅II(𝑧), at a depth 

𝑧, are estimated by, 
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R̂I,II(𝑧) =
1

𝑁
∑ 𝟙I,II(𝑧, 𝑖)𝐿(𝑖)𝑊(𝑖)

𝑁

𝑖=1

 (3.9) 

where 𝑁 is the total number of photon packets simulated, 𝐿(𝑖) is the likelihood value of 

the 𝑖th packet, and 𝑊(𝑖) is the weight of the 𝑖th packet. In addition, the error in the estimate 

R̂I,II is given by the estimate of its variance,  

𝑒̂I,II
2 (𝑧) =

1

𝑁(𝑁 − 1)
∑ (𝟙I,II(𝑧, 𝑖)𝐿(𝑖)𝑊(𝑖) −  R̂I,II(𝑧))

2
𝑁

𝑖=1

  (3.10) 

3.2.2 Limitation of the Massively Parallel OCT (OCT-MPS) Simulator 

In OCT-MPS, the OCT fiber probe is placed in direct contact with the medium. The light 

emitted from the OCT fiber is assumed to be an infinitely thin beam, i.e., the probing area 

is infinitely small, which is not a realistic assumption. Typically, the signal due to a finite 

incident beam could be approximated by repeating the simulation at a set of points over 

the incident beam area, then get the superposition of the results. But, this approach is 

computationally expensive, as it requires repeating the simulation at each point, this is 

referred to as the superposition-based simulation approach. 
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Solution of Linear Integral Equations using Monte Carlo Methods 

In many cases, the closed-form solution of an integral cannot be reached, especially when 

the dimension of the integral is high. Monte Carlo (MC) methods could be used as a 

quadrature method to estimate high dimensional integrals. Fredholm integral equations of 

the second kind commonly appear in a lot of problems, such as light scattering. Solving 

these equation requires solving an infinite summation of integrals with increasing 

dimensions. In this chapter, we will explain how MC methods could be used to solve 

integrals, focusing on the Fredholm integral equation of the second kind.  

4.1 Solving high dimensional Integrals using Monte Carlo 

To estimate an integral using Monte Carlo, it has to be written in the form of an expectation, 

i.e., 

𝐼 = 𝐄𝑝𝑥
{𝑔(𝑥)} = ∫ 𝑔(𝑥) 𝑝𝑥(𝑥) 𝑑𝑥

 

 

 (4.1) 

where, 𝑝𝑥(𝑥) is a probability distribution. 

The integral above could be estimated using Monte Carlo, by randomly sampling 𝑥, from 

the distribution 𝑝𝑥(𝑥). Then, the estimate is given by [15, 36],  

𝐼𝑘̂ =
1

𝑁
∑ 𝑔(𝑋(𝑖))

𝑁

𝑖=1

 (4.2) 

such that, 𝑋(𝑖) are samples from 𝑝𝑥(𝑥), and 𝑁 are the number of samples. 

For a large 𝑁, the error in the estimate is given by, |𝑒𝐼| ≅
𝜎𝐼

√𝑁
, where [15, 36], 
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𝜎𝐼
2 ≡ 𝐯𝐚𝐫𝑝𝑔

 {𝑔(𝑥)} = ∫ 𝑔2(𝑥) 𝑝𝑥(𝑥) 𝑑𝑥 − 𝐼2 (4.3) 

Consider a general 𝑘-dimensional integral, not given in the form of an expectation, 

𝐼𝑘 = ∫ 𝑓𝑘(𝑥1:𝑘) 𝑑𝑥1:𝑘

 

𝑉𝑘

 (4.4) 

where, 𝑥1:𝑘 ≡ {𝑥1, 𝑥2 … , 𝑥𝑘} are the variables of the integral, 𝑓𝑘(𝑥1:𝑘) is the integrand. 

To solve such integral using Monte Carlo, it must be written in the form of an expectation; 

this could be done using importance sampling [15, 36]. Importance sampling relies on 

proposing a probability distribution, 𝑞𝑘(𝑥1:𝑘), that could be sampled, such that,  

𝑞𝑘(𝑥1:𝑘) > 0    ∀  𝑓𝑘(𝑥1:𝑘) ≠ 0  (4.5) 

Then, the integral in Eq. (4.4) could be written as an expectation under 𝑞𝑘(𝑥1:𝑘),  

𝐼𝑘 = ∫ 𝑓𝑘(𝑥1:𝑘)𝑑𝑥1:𝑘

 

𝑉𝑘

= ∫
  𝑓𝑘(𝑥1:𝑘)

𝑞𝑘(𝑥1:𝑘)
 𝑞𝑘(𝑥1:𝑘) 𝑑𝑥1:𝑘

 

 

= 𝐄𝑞𝑘
{

𝑓𝑘(𝑥1:𝑘)

𝑞𝑘(𝑥1:𝑘)
} (4.6) 

Then, the MC estimate of 𝐼𝑘 is given by,  

𝐼𝑘̂ =
1

𝑁
∑

𝑓𝑘(𝑋1:𝑘
(𝑖)

)

𝑞𝑘(𝑋1:𝑘
(𝑖)

)

𝑁

𝑖=1

 (4.7) 

where, 𝑋1:𝑘
(𝑖)

 are samples from 𝑞𝑘(𝑥1:𝑘), and 𝑁 are the number of samples. 

And, the error in the estimate, |𝑒𝐼𝑘
| ≅

𝜎𝐼𝑘

√𝑁
, where, 

𝜎𝐼𝑘

2 ≡ 𝐯𝐚𝐫𝑞𝑘
{

  𝑓𝑘(𝑥1:𝑘)

𝑞𝑘(𝑥1:𝑘)
} = ∫

  𝑓𝑘
2(𝑥1:𝑘)

𝑞𝑘
2(𝑥1:𝑘)

 𝑞𝑘(𝑥1:𝑘)𝑑𝑥1:𝑘 − 𝐼𝑘
2 (4.8) 

It is clear from the above equation that the error strongly depends on our choice of 𝑞𝑘(𝑥1:𝑘). 
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4.1.1 Minimizing the variance 

To minimize the error in the estimate, we need to find and sample the distribution, 𝑞𝑘
∗ (𝑥1:𝑘), 

that minimizes the variance, 𝜎𝐼𝑘

2 , given in Eq. (4.8). It could be showed that, 𝑞𝑘
∗(𝑥1:𝑘) is 

equal to [36], 

𝑞𝑘
∗ (𝑥1:𝑘) =  

|𝑓𝑘(𝑥1:𝑘)|

 𝑍𝑓𝑘

 (4.9) 

where, 𝑍𝑓𝑘
 is the normalizing constant, equal to, 

𝑍𝑓𝑘
= ∫ |𝑓𝑘(𝑥1:𝑘)|𝑑𝑥1:𝑘

 

𝑉𝑘

 (4.10) 

Then, the estimate of the integral, 𝐼𝑘, becomes,  

𝐼𝑘̂ =
1

𝑁
∑

𝑓𝑘(𝑋1:𝑘
(𝑖)

)

𝑞𝑘(𝑋1:𝑘
(𝑖)

)

𝑁

𝑖=1

=
1

𝑁
∑  

 𝑓𝑘(𝑋1:𝑘
(𝑖)

)

|𝑓𝑘(𝑋1:𝑘
(𝑖)

)|

𝑁

𝑖=1

 𝑍𝑓𝑘
 (4.11) 

 where, 𝑋1:𝑘
(𝑖)

 are samples from 𝑞𝑘
∗(𝑥1:𝑘), 𝑁 are the number of samples. 

If, 𝑓𝑘(𝑥1:𝑘), is always positive, then, the normalizing constant, 𝑍𝑓𝑘
= 𝐼𝑘, the integral itself, 

Eq. (4.11) becomes, 

𝐼𝑘̂ =
1

𝑁
∑

 𝑓𝑘(𝑋1:𝑘
(𝑖)

)

 𝑓𝑘(𝑋1:𝑘
(𝑖)

)

𝑁

𝑖=1

 𝐼𝑘 =
1

𝑁
∑  𝐼𝑘

𝑁

𝑖=1

 (4.12) 

And, Eq. (4.8), the variance becomes equal to zero, i.e., one sample is enough to give the 

exact answer. 

It is clear that to reach the minimum variance we need to evaluate 𝑍𝑓𝑘
, which is a high 

dimensional integral (equal to the integral we want to solve, 𝐼𝑘, when 𝑓𝑘(𝑥1:𝑘) is always 
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positive). Even though, we cannot use 𝑞𝑘
∗ (𝑥1:𝑘) in practice, this result tells us that using a 

distribution close to 𝑞𝑘
∗ (𝑥1:𝑘) will reduce the variance [36]. 

4.2 Solution of the Fredholm Integral Equations of the second kind using Sequential 

Importance sampling. 

Consider the Fredholm integral equation of the second kind below, 

𝑦(𝒙) = 𝑔(𝒙) + ∫ 𝑦(𝒙′) 𝐵(𝒙′, 𝒙) 𝑑𝒙′
 

𝑉

,     𝒙′ 𝜖 𝑉 (4.13) 

This equation could be thought of as a system with  𝑔(𝒙) as input and 𝑦(𝒙) is output [39]. 

The presence of 𝑦(𝒙), the unknown output, inside the integral makes solving such 

equations difficult. To solve Eq. (4.13) we could write it in different integrative forms, one 

of them is [39-41], 

𝑦(𝑘)(𝒙) =  𝑔(𝒙) + ∫  𝑦(𝑘−1)(𝒙′) 𝐵(𝒙′, 𝒙) 𝑑𝒙′,         𝑦(0)(𝒙) = 𝑔(𝒙) (4.14) 

where, 𝑘 = 0, 1, 2, …  ∞, then 𝑦(𝒙) is approximated by a series known as the Neumann’s 

series, equal to, 

𝑦(𝒙) =  𝑔(𝒙) + ∫  𝑔(𝒙0) 𝐵(𝒙0, 𝒙) 𝑑𝒙0 + ∬ 𝑔(𝒙0) 𝐵(𝒙0, 𝒙𝟏)𝐵(𝒙1, 𝒙) 𝑑𝒙0:1  

+ ∭ 𝑔(𝒙0) 𝐵(𝒙0, 𝒙1)𝐵(𝒙1, 𝒙2)𝐵(𝒙2, 𝒙) 𝑑𝒙0:2 + ⋯ 

(4.15) 

A sufficient condition for the convergence of this series is that the spectral radius of the 

kernel 𝐵(𝒙′, 𝒙) should be less than one [15, 42]. Assuming that the series converges, then, 

𝑦(𝒙) = lim 
𝑘→∞

𝑦(𝑘)(𝒙)    (4.16) 



31 

 

Each term in the series contributes to the output; the first term is the direct contribution of 

the input, the second term is the contribution of the input after applying the kernel once to 

it, and, the 𝑘𝑡ℎ term is the contribution of the input after applying the kernel (𝑘 − 1) times 

to it. 

Monte Carlo could be used to get the inner product of 𝑦(𝒙) with a weighting function, 

ℎ(𝒙), defined based on our interest [15, 36]. Let, the quantity of interest be 𝑄, equal to 

𝑄 = ∫ 𝑦(𝒙)ℎ(𝒙)𝑑𝒙 ≅ ∑ ( ∬ 𝑔(𝒙0) ∏ 𝐵(𝒙𝑖−1, 𝒙𝑖)

𝑖=𝑘

𝑖=0

ℎ(𝒙𝑘)

 

𝑘+1

𝑑𝒙0:𝑘)

𝐾

𝑘=0

 (4.17) 

Any integral in the series could be solved using an MC based quadrature as explained in 

the above section. Technically, the proposed distribution 𝑞𝑘(𝑿1:𝑘) could be any 

distribution satisfying the conditions in Eq. (4.5) However, the dependence between each 

two consecutive variables, proposes using a sequential importance sampling strategy.  

4.2.1 Sequential Importance Sampling (SIS) 

Sequential Importance Sampling (SIS) is a sampling strategy where the proposed 

distribution, 𝑞𝑘(𝒙0:𝑘), has the structure [43], 

𝑞𝑘(𝒙0:𝑘) = 𝑞𝑘(𝒙𝑘|𝒙𝑘−1) …  𝑞1(𝒙1|𝒙0) 𝑞0(𝒙0) (4.18) 

The distribution, 𝑞𝑘(𝒙0:𝑘), is constructed such that, each random variable, 𝒙𝑖, is 

conditionally independent of all the previous variables except the last one, namely, 

𝑞𝑖(𝒙𝑖|𝒙1: 𝑖−1) = 𝑞𝑖(𝒙𝑖|𝒙𝑖−1), for, 𝑖 = 1, … 𝑘 [39, 43]. 

For sampling 𝑞𝑘(𝒙0:𝑘), the equation above could be reordered to, 

𝑞𝑘(𝒙0:𝑘) =  𝑞0(𝒙0) 𝑞1(𝒙1|𝒙0) … 𝑞𝑘(𝒙𝑘|𝒙𝑘−1) (4.19) 
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Meaning, to get a sample of the variables 𝒙0:𝑘 from the distribution 𝑞𝑘(𝒙0:𝑘), we first 

sample, 𝒙0~ 𝑞0(𝒙0), then 𝒙1~ 𝑞1(𝒙1|𝒙0), till 𝒙𝑘~ 𝑞𝑘(𝒙𝑘|𝒙𝑘−1).  This is a relatively easy 

sampling approach because each component (𝒙1, 𝒙2, … , 𝒙𝑘), is sampled from a low 

dimensional distribution. 

By choosing, 𝑞0(𝒙), such that,  

 𝑞0(𝒙) ≠ 0   ∀  𝑔(𝒙) ≠ 0 (4.20) 

And choosing, 𝑞𝑖(𝒙𝑖|𝒙𝑖­1) = 𝑇(𝒙𝑖|𝒙𝑖­1), where, 𝑇(𝒙′, 𝒙) is a probability transition kernel 

(which gives the probability of 𝒙 given 𝒙′), such that, 

𝑇(𝒙′, 𝒙) > 0,           for all          𝐾(𝒙′, 𝒙) ≠ 0 (4.21) 

Then, the proposed sequential importance sampling distribution, 𝑞𝑘(𝒙0:𝑘), would be equal 

to, 

𝑞𝑘(𝒙0:𝑘) =  𝑞0(𝒙0) ∏ 𝑇(𝒙𝑖|𝒙𝑖­1)

𝑘

𝑖=1

 (4.22) 

satisfies the condition in Eq. (4.5)  

And Eq. (4.17) could be altered and written as a series of expectations under the 

distributions {𝑞𝑘(𝒙0:𝑘)}𝑘=0:𝐾.   

𝑄 ≅ ∑ (𝐄𝑞𝑘
{

𝑔(𝒙0)

 𝑞0(𝒙0)
∏

𝐾(𝒙𝑖−1, 𝒙𝑖)

𝑇(𝒙𝑖|𝒙𝑖­1)

𝑖=𝑘

𝑖=0

ℎ(𝒙𝑘)})

𝐾

𝑘=0

 (4.23) 

Finally, the above equation could be estimated using a large number, 𝑁, of samples from 

{𝑞𝑘(𝒙0:𝑘)}𝑘=0:𝐾,  
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𝑄̂ =
1

𝑁
∑ ∑

𝑔(𝑿0
(𝑗)

)

 𝑞0(𝑿0
(𝑗)

)
∏

𝐾(𝑿𝑖−1
(𝑗)

, 𝑿𝑖
(𝑗)

)

𝑇(𝑿𝑖
(𝑗)

|𝑿𝑖­1
(𝑗)

)

𝑖=𝑘

𝑖=0

ℎ(𝑿𝑘
(𝑗)

)

𝐾

𝑘=0

𝑁

𝑗=1

 (4.24) 

such that, 𝑿𝑖
(𝑗)

 is the 𝑖𝑡ℎ component of the 𝑗𝑡ℎ sample chain. 

We note that, when using this sampling approach, the chains are independent of the 

weighting function ℎ(𝒙), therefore, we could use the chains to estimate several quantities 

of interest, i.e., inner products with different ℎ(𝒙) weighting functions.  
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Solution of Radiative Transfer Equation for homogeneous media 

This chapter, will focus on applying the MC methods discussed in chapter 4 to solve the 

steady state RTE for homogeneous media. First, we will show how to write the steady-state 

RTE for homogeneous media in a linear integral form. Then, a solution using the MC 

methods discussed in the previous chapter, will be presented. Finally, the correspondence 

between the solution presented and the common MC simulation procedure for light 

propagation, will be established. 

5.1 Linear Integral form of the RTE 

Recall that the RTE in its integro-differential form,  

1

𝑐

𝜕

𝜕𝑡
𝐼(𝒓, 𝒗̂) + 𝒗̂ ∙ 𝛁𝐼(𝒓, 𝒗̂) + 𝜇𝑡 𝐼(𝒓, 𝒗̂) = 𝜖(𝒓, 𝒗̂) + 𝜇𝒔 ∫ 𝐼(𝒓, 𝒗̂′) 𝑝(𝒗̂′, 𝒗̂)

 

4𝜋

𝑑𝒗̂′ (5.1) 

Define, 𝜒(𝒓, 𝒗̂), the particle emission density, to be equal to the right-hand side of Eq. (5.1), 

𝜒(𝒓, 𝒗̂) = 𝜖(𝒓, 𝒗̂) + 𝜇𝑠 ∫ 𝐼(𝒓, 𝒗̂′) 𝑝(𝒗̂′, 𝒗̂)

 

4𝜋

𝑑𝒗̂′ (5.2) 

The particle emission rate density, 𝜒(𝒓, 𝒗̂), represents the amount of energy (per unit 

volume per unit time) emitted at 𝒓 propagating in direction 𝒗̂ , which is equal to the sum 

of,  

1- The emission due to a source at 𝒓 radiating in the direction 𝒗̂ (the term 𝜖(𝒓, 𝒗̂)). 

2- The emissions due to light that scatters at 𝒓 from an arbitrary direction, 𝒗̂′, to start 

propagating in 𝒗̂ direction. 

According to the definition of the emission rate density in Eq. (5.2), Eq. (5.1) becomes,  
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𝜒(𝒓, 𝒗̂) = 𝒗̂ ∙ 𝛁𝐼(𝒓, 𝒗̂) + 𝜇𝑡𝐼(𝒓, 𝒗̂) (5.3) 

The term, 𝒗̂ ∙ 𝛁𝐼(𝒓, 𝒗̂), represents the spatial change of the specific intensity, it could be 

written as the rate of change of 𝐼(𝒓, 𝒗̂) along the direction −𝒗̂, as explained below.  

Let, 𝑙 be the distance between 𝒓, and an arbitrary point 𝒓′ along the direction −𝒗̂, see Fig. 

(5.1), then, the direction 𝒗̂ could be written as, 

𝒗̂ =
𝒓 − 𝒓′

𝑙
 (5.4) 

Let, 𝑑𝑘, be a differential distance along the direction of the gradient, ∇𝐼, then the magnitude 

of the gradient could be written as, 
𝑑𝐼

𝑑𝑘
. And, let 𝜃 be the angle between the direction of the 

gradient and 𝒗̂ as shown in Fig. (5.1).  

 

Figure 5.1. Representation of the inner product, 𝒗̂ ∙ 𝛁𝐼(𝒓, 𝒗̂), as the rate of change of specific intensity 

along the direction 𝒗̂. 

Therefore, from Fig. (5.1), the inner product, 𝒗̂ ∙ 𝛁𝐼(𝒓, 𝒗̂), can be written as, 

𝒗̂ ∙ 𝛁𝐼(𝒓, 𝒗̂) = cos(𝜃)
𝑑𝐼(𝒓, 𝒗̂)

𝑑𝑘
=

𝑑𝑘

−𝑑𝑙
 
𝑑𝐼(𝒓, 𝒗̂)

𝑑𝑘
= −

𝑑𝐼(𝒓, 𝒗̂)

𝑑𝑙
 (5.5) 

Accordingly, Eq. (5.1) becomes,  

−
𝑑𝐼(𝒓, 𝒗̂)

𝑑𝑙
+ 𝜇𝑡𝐼(𝒓, 𝒗̂) = 𝜒(𝒓, 𝒗̂) (5.6) 

By multiplying both sides of Eq. (5.6) by 𝑒−𝜇𝑡𝑙, the left-hand side becomes,  

𝛻𝐼 

𝒗̂ 

𝜃 

𝑑𝑘 𝒓 

𝒓′ 
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−𝑒−𝜇𝑡𝑙  
𝑑𝐼(𝒓, 𝒗̂)

𝑑𝑙
+ 𝑒−𝜇𝑡𝑙  𝜇𝑡 𝐼(𝒓, 𝒗̂) =

𝑑

𝑑𝑙
{−𝐼(𝒓, 𝒗̂) 𝑒−𝜇𝑡𝑙} (5.7) 

Then, Eq. (5.6) could be written as 

𝑑

𝑑𝑙
{−𝐼(𝒓, 𝒗̂) 𝑒−𝜇𝑡𝑙} = 𝜒(𝒓, 𝒗̂) 𝑒−𝜇𝑡𝑙 (5.8) 

Assume that the medium is infinite, then by integrating Eq. (5.8), over 𝑙, the left-hand side 

is reduced to, 

∫
𝑑

𝑑𝑙
{−𝐼(𝒓, 𝒗̂) 𝑒−𝜇𝑡𝑙} 𝑑𝑙

∞

𝑙=0

= −𝐼(𝒓∞, 𝒗̂) 𝑒−𝜇𝑡∞ +  𝐼(𝒓, 𝒗̂) = 𝐼(𝒓, 𝒗̂) (5.9) 

Then, the specific intensity is given by, 

𝐼(𝒓, 𝒗̂) = ∫ 𝜒(𝒓 − 𝑙 𝒗̂, 𝒗̂)
∞

𝑙=0

 𝑒−𝜇𝑡𝑙   𝑑𝑙 ≡ ∫ 𝜒(𝒓′, 𝒗̂)
∞

𝑙=0

 𝑒−𝜇𝑡𝑙   𝑑𝑙 (5.10) 

where, 𝒓′ ≡ 𝒓 − 𝑙 𝒗̂, is defined as a point along the direction −𝒗̂ (see Fig. (5.2)).  

 

Figure 5.2  Specific Intensity arriving at 𝒓 with direction 𝒗̂, it is due to all the emissions from any point, 

𝒓′, along the direction −𝒗̂.  

This result shows that the intensity arriving at the position 𝒓 in direction 𝒗̂ is the result of 

the emissions from all other points along the direction −𝒗̂ (see Fig. (5.2)). 

Finally, by substituting Eq. (5.2) (the definition of the emission rate density) in Eq. (5.9) 

we reach the RTE in a linear integral form, 

𝒓 

𝒓′ 
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𝐼(𝒓, 𝒗̂) = ∫ 𝜖(𝒓 − 𝑙 𝒗̂, 𝒗̂)𝑒−𝜇𝑡𝑙   𝑑𝑙

∞

𝑙=0

+ 𝜇𝑠 ∫ ∫ 𝐼(𝒓 − 𝑙 𝒗̂, 𝒗̂′) 𝑝(𝒗̂′, 𝒗̂)𝑒−𝜇𝑡𝑙  𝑑𝒗̂′𝑑𝑙

 

4𝜋

∞

𝑙=0

  

(5.10) 

We could illustrate the above equation using Fig. (5.3), the intensity arriving at 𝒓 in 

direction 𝒗̂, is due to light coming from, 

- Sources along the direction −𝒗̂. 

- Scattering that occurs at any position along the direction −𝒗̂, from any arbitrary 

direction 𝒗̂′ to the direction 𝒗̂. 

  

Figure 5.3. Intensity arriving at position 𝒓 with propagation direction 𝒗̂ due to radiation scattering at a 

position along the direction −𝒗̂. 

Let, 𝒑 ≡ (𝒓, 𝒗̂), be the radiation state, defined by the position 𝒓 and direction of 

propagation 𝒗̂.  Then, the above equation could be written in the compact form, 

𝐼(𝒑) = 𝜖̃(𝒑) + ∬ 𝐼(𝒑′) 𝐵(𝒑′, 𝒑) 𝑑𝑙 𝑑𝒗̂ (5.11) 

such that,  

- 𝒓′ is defined as a position away from 𝒓 by a distance 𝑙 along the direction −𝒗̂, 

𝒓′ = 𝒓 − 𝑙 𝒗̂ (5.12) 

- 𝜖(𝒑) is the source emission term, 𝜖̃(𝒑) is the source contribution to 𝐼(𝒑) , equal to, 

𝒓 
𝒗̂ 𝒓′ 

𝑙 
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𝜖̃(𝒓, 𝒗̂) = ∫ 𝜖(𝒓′, 𝒗̂)𝑒−𝜇𝑡𝑙   𝑑𝑙

∞

𝑙=0

  (5.13) 

We note that, the direction of emission from the source is equal to the direction of 

the light coming directly from the source (non-scattered light). 

- 𝐵(𝒑′, 𝒑), is the kernel equal to, 

𝐵(𝒑′, 𝒑) = 𝜇𝑠 𝑝(𝒗̂′, 𝒗̂) 𝑒−𝜇𝑡𝑙 (5.14) 

5.2 Solution of the RTE for a homogeneous medium using Sequential Importance 

Sampling  

Eq. (5.11) is a Fredholm integral equation of the second kind, hence, we could estimate the 

inner product of  𝐼(𝒑) with a weighting function ℎ(𝒑) using Monte Carlo as explained in 

section 4.2. 

Let, the quantity of interest be, 𝑄, equal to,  

𝑄 = ∬ 𝐼(𝒓, 𝒗̂) ℎ(𝒓, 𝒗̂)𝑑𝒓 𝑑𝒗̂ (5.15) 

By expanding, 𝐼(𝒓, 𝒗̂),  using the Neumann’s expansion, we could approximate 𝑄, by the 

first 𝐾 terms in the series, 

𝑄 ≅ ∑ (∬ 𝜖(𝒓0, 𝒗̂1) 𝑒−𝜇𝑡𝑙1  ∏ 𝐵(𝒑𝑖−1, 𝒑𝑖)

𝑖=𝑘

𝑖=1

ℎ(𝒑𝑘)

 

 

𝑑𝒓0𝑑𝒗̂1:𝑘 𝑑𝑙1:𝑘)

𝐾

𝑘=1

 (5.16) 

We note that, by definition, the phase function, 𝑝(𝒗̂′, 𝒗̂), is a probability distribution [3, 8]. 

It could be interpreted as the probability of propagating in the direction 𝒗̂ due to the 

scattering of a photon incident in direction 𝒗̂′ [3, 6, 8]. And, 𝑓(𝑙) = 𝜇𝑡 𝑒−𝜇𝑡𝑙, is an 
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exponential probability distribution, thus the distance, 𝑙, could be interpreted as an 

exponential random variable. Accordingly, the kernel, 𝐵(𝒑′, 𝒑), could be written as, 

𝐵(𝒑′, 𝒑) =  
𝜇𝑠

𝜇𝑡

 𝑇(𝒑′, 𝒑) (5.17) 

such that, 𝑇(𝒑′, 𝒑) = 𝑝(𝒗̂′, 𝒗̂)𝑓(𝑙), is a transition kernel. And, 𝜖̃(𝒑), could be written as,  

𝜖̃(𝒑1) =
1

𝜇𝑡

∫ 𝜖(𝒓0, 𝒗̂1)𝑓(𝑙) 𝑑𝑙

∞

𝑙=0

 (5.18) 

Then, Eq. (5.16) could be written as 

𝑄 ≅ ∑ (
1

𝜇𝑡

(
𝜇𝑠

𝜇𝑡

)
𝑘−1

∬ 𝜖(𝒓0, 𝒗̂1)𝑓(𝑙1) ∏ 𝑇(𝒑𝑖−1, 𝒑𝑖)

𝑖=𝑘

𝑖=1

ℎ(𝒑𝑘)

 

 

𝑑𝒓0𝑑𝒗̂1:𝑘 𝑑𝑙1:𝑘)

𝐾

𝑘=1

 (5.19) 

such that, 𝒓𝑖 = 𝒓𝑖−1 + 𝑙𝑖𝒗̂𝑖 for 𝑖 = 1, 2, … , 𝑘. 

The above equation could be solved using SIS, explained in section 4.2, by randomly 

sampling the radiation states. The first radiation state, 𝒑1, is sampled using two steps. First, 

we sample (𝒓0, 𝒗̂1), the initial emission state from 𝜖(𝒑) (assuming that it is normalized, 

i.e., a probability distribution). Then, sample the distance, 𝑙1, from 𝑓(𝑙), and calculate, 

𝒓1 = 𝒓0 + 𝑙1𝒗̂1 (see Fig. (5.4)). The following radiation states {𝒑𝑖}𝑖=2:𝐾, are sampled using 

the transition kernel, 𝑇(𝒑′, 𝒑) = 𝑓(𝑙)𝑝(𝒗̂′, 𝒗̂). To sample the 𝑖𝑡ℎ state, 𝒑𝑖 ≡ (𝒓𝑖 , 𝒗̂𝑖), from 

its previous state, 𝒑𝑖−1, we first sample 𝒗̂𝑖 from the phase function, given that 𝒗̂′ = 𝒗̂𝑖−1, 

i.e., sample 𝒗̂𝑖 from  𝑝(𝒗̂|𝒗̂′ = 𝒗̂𝑖−1 ). Then, sample 𝒓𝑖, through sampling the propagation 

distance 𝑙𝑖 from 𝑓(𝑙), where, 𝒓𝑖 = 𝒓𝑖−1 + 𝑙𝑖𝒗̂𝑖 (see Fig. (5.4)). 
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Figure 5.4 Updating radiation states (position and direction of propagation) 

Using a large number, 𝑁, of samples of the radiation chain of states, {𝒑𝑖}𝑖=1:𝐾, let the 

sample of the 𝑗𝑡ℎ chain be, {𝒑𝑖
(𝑗)

}
𝑖=1:𝐾

, then, MC estimate of 𝑄, is equal to, 

𝑄̂ =
1
𝑁

∑  
1
𝜇𝑡

(
𝜇𝑠

𝜇𝑡
)

𝑘−1

∑ ℎ (𝒑
𝑘
(𝑗)

)

𝑁

𝑗=1

𝐾

𝑘=1

 (5.20) 

We note that, when using this sampling, the chains are independent of the weighting 

function ℎ(𝒑). Therefore, we could use them to estimate several quantities of interest such 

as inner products with different ℎ(𝒑) weighting functions.  

For instance, consider the fluence at a position 𝒓, given by, 

𝜑(𝒓) = ∫ 𝐼(𝒓, 𝒗̂) 𝑑𝒗̂
 

4𝜋

 (5.21) 

To estimate 𝜑(𝒓) we use a weighting function that averages the fluence within a small 

volume, ∆𝑉 centered at 𝒓. We could estimate the fluence at a set of positions {𝒓𝑖}, using 

the weighting functions, 

𝒓0 

𝒗
1  

𝒓2 

…  

𝒓𝑘−2 
𝒓𝑘−1 

𝒓𝑘 

𝒓1 

𝑙1  
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ℎ𝑖(𝒓, 𝒗̂) =
𝟙𝒓𝑖

(𝒓)

∆𝑉
 (5.22) 

such that, 𝟙𝒓𝑖
(𝒓) is an indicator function for the position, defined as, 

𝟙𝒓𝑖
(𝒓) ∶= {

1        𝒓 ∈ (∆𝑉 at 𝒓𝑖)

0        𝒓 ∉ (∆𝑉 at 𝒓𝑖)
 (5.23) 

Then, the MC estimate of the fluence at 𝒓𝑖 is, 

𝜑̂(𝒓𝑖) =
1

𝑁∆𝑉
∑  

1
𝜇𝑡

(
𝜇𝑠

𝜇𝑡
)

𝑘−1

∑ 𝟙𝒓𝑖
(𝒓𝑘

(𝑗)
)

𝑁

𝑗=1

𝐾

𝑘=1

 (5.24) 

5.3 Mapping the RTE solution to Monte Carlo simulation of light 

To map the solution derived to MC simulation procedure, we explain a basic MC 

simulation procedure for light propagation in homogeneous turbid media [18, 19]. To 

record the physical quantities of interest during the simulation, a grid system is created to 

enable the characterization of the local energy absorbed in the medium. 

In summary, the steps for simulating the propagation of light emitted in direction 𝒗̂𝜖 from 

a source located at 𝒓𝜖 are: 

1. Launch a photon packet with weight, 𝑊0 = 1, from the source. 

𝒓0 = 𝒓𝜖 , 𝒗̂1 = 𝒗̂𝜖 (5.25) 

2. Propagate the 𝑘𝑡ℎ step in the medium (𝑘 = 1, 2, … ) 

a. Sample a propagation distance 𝑙𝑘 from the exponential distribution, 𝑓(𝑙) =

𝜇𝑡 𝑒−𝜇𝑡𝑙. 

b. Propagate to the 𝑘𝑡ℎ interaction site, 

𝒓𝑘 = 𝒓𝑘−1 + 𝑙𝑘 . 𝒗̂𝑘 (5.26) 

c. Calculate weight lost due to absorption, 
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∆𝑊𝑘 =
𝜇𝑎

𝜇𝑡

𝑊𝑘−1 (5.27) 

d. Accumulate the weight ∆𝑊𝑘 to the local grid element, 

𝐴(𝒓𝑘) = 𝐴(𝒓𝑘) + ∆𝑊𝑘 (5.28) 

e. Calculate the new weight of the photon packet after absorption, 

𝑊𝑘 = 𝑊𝑘−1 − ∆𝑊𝑘 =
𝜇𝑠

𝜇𝑡

𝑊𝑘−1 = (
𝜇𝑠

𝜇𝑡

)
𝑘

 (5.29) 

f. Decide whether the packet will continue propagation or not. This could be 

decided according to a maximum value for 𝑘 (equivalently a minimum value 

for 𝑊𝑘). If the packet continues propagation,  

i. Sample a new propagation direction 𝒗̂𝑘+1 from  𝑝(𝒗̂|𝒗̂′ = 𝒗̂𝑘 ). 

ii. Propagate the next step (repeat from step 𝑎)  

3. Repeat the photon packet tracing from step 1 for a large number, 𝑁, of photon 

packets. 

4. Estimate different quantities of interest, 

a. Absorbed photons per unit volume, at each grid positions (𝒓𝑖), 

𝐴(𝒓𝑖) =
𝐴(𝒓𝑖)

𝑁. ∆𝑉
          (cm−3) (5.30) 

such that ∆𝑉 is the volume of the grid element. 

b. Photons fluence, 

𝜑̂(𝒓𝑖) =
𝐴(𝒓𝑖)

𝜇𝑎

          (cm−2) (5.31) 
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From Eq. (5.27), and Eq. (5.29), the updating equation for the absorption, Eq. (5.28) could 

be written as 

𝐴(𝒓𝑘) = 𝐴(𝒓𝑘) + 
𝜇𝑎

𝜇𝑡

(
𝜇𝑠

𝜇𝑡

)
𝑘−1

 (5.32) 

Let the stopping criteria for the photon packet tracing be the number of steps, 𝑘 = 𝐾. Then, 

the estimate of the fluence at a grid position 𝒓𝑖, could be written as, 

𝜑̂(𝒓𝑖) =
1

𝑁∆𝑉
(

1

𝜇𝑡

) ∑ ∑ (
𝜇𝑠

𝜇𝑡

)
𝑘−1

𝐾

𝑘=1

𝟙𝒓𝑖
(𝒓𝑘

(𝑗)
)

𝑁

𝑗=1

 (5.33) 

where, 𝒓𝑘
(𝑗)

 is the 𝑘𝑡ℎ sampled position for the 𝑗𝑡ℎ simulated photon packet, and 𝟙𝒓𝑖
(𝒓) is 

an indicator function for the position, given by Eq. (5.24). 

It is clear the equivalence between the simulation procedure and the Sequential MC 

solution of the RTE. The update schema for the radiation states in the solution of the RTE 

and the simulation procedure are equivalent (shown in Fig. (5.4)). The source used in the 

simulation could be written as, 𝜖(𝒑) =  𝛿(𝒑 − 𝒑𝜖), which is equivalent to having a 

deterministic source emission state. Moreover, the equations that estimate the fluence using 

both methods, Eq. (5.33) and Eq. (5.24), are equal. 
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Simulation of the OCT signals using a finite probing area  

We simulate the OCT signals (A-scans) using a finite beam incident on the surface of an 

inhomogeneous medium. The medium is constituted of arbitrarily shaped regions of 

different optical properties. Each region is defined by the following parameters: scattering 

coefficient 𝜇𝑠, absorption coefficient 𝜇𝑎, refractive index 𝑛, and anisotropy factor 𝑔. An 

optical fiber, of diameter Φf and acceptance angle 𝜃f, is placed above the medium surface 

by a distance ‘𝑑’ (parallel to the medium surface), probing the medium by a beam of 

diameter Φp(see Fig. (6.1)). The direction of incidence on the medium surface, and the 

probing diameter Φp are calculated based on 𝜃f and Φf (see Fig. (6.1)). 

 

Figure 6.1. OCT fiber probe setup. 

As mentioned earlier, there are two approaches to simulate the OCT signals (A-scans) due 

to a finite probing area. The first is the computationally costly superposition approach, 
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where the simulation of an infinitely-thin incident beam is repeated at different positions 

covering the probe area, then the finite beam signal is approximated by a weighted sum of 

thin beams signals (see section 6.1). The second is following the analytical solution of the 

RTE, the Sequential MC approach, where the incidence position of each photon packet is 

randomly sampled according to the intensity profile at the surface (see section 6.2). 

In both approaches, photon packets are launched into the medium. The launch positions 

are set differently, and the total number of used photon packets would be different in both 

methods to achieve comparable accuracy. However, the simulation of packet propagation 

in the medium, and the biasing towards the fiber probe (importance sampling schema), and 

estimation of OCT signals (A-scans) from the reflected packets, are identical to ones used 

in OCT-MPS, see section 3.2.1 for more details. 

Let g(𝑥0, 𝑦0) be the simulated OCT A-scan (Class I or Class II reflectance from different 

depths), due to a unit power, infinitely-thin beam incident at the position (𝑥0, 𝑦0), i.e., the 

under bar notation in g(𝑥0, 𝑦0) signifies that it is a function of the depth 𝑧. The A-scan 

g(𝑥0, 𝑦0) is equal to the expected value of back-reflected power collected by the fiber 

(Class I or Class II) for each depth, given the position of the incident beam, it could be 

written as, 

g(𝑥0, 𝑦0) = 𝐄{𝑤𝑟|𝑥0, 𝑦0} (6.1) 

such that, 𝑤𝑟 is the weight, from each depth, of the collected photon packet (Class I or 

Class II portion of the photon packet). 
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To estimate g(𝑥0, 𝑦0) using MC, a large number (𝑁𝑔) of photon packets are launched from 

(𝑥0, 𝑦0) and propagated in the medium to get samples of 𝑤𝑟. Then, MC estimate of 

g(𝑥0, 𝑦0) is the mean of the samples of 𝑤𝑟, and the error in the estimate is given by, 

|𝑒𝑔| ≅
𝜎𝑔

√𝑁𝑔

 (6.2) 

such that, 𝜎𝑔
2 ≡ 𝐯𝐚𝐫{𝑤𝑟|𝑥0, 𝑦0} is the variance of the weight collected by the fiber from all 

depths. It is important to note that we will assume that  𝜎𝑔
2 is approximately equal over the 

support of the incident beam, i.e., 𝜎𝑔
2 would be assumed to not depend on (𝑥0, 𝑦0). 

6.1  Superposition approach for simulating a finite incident beam 

Assume that the surface of the medium is in the XY-plane, i.e., 𝑧 = 0, and normal to the 

z-axis. Let, 𝜖(𝑥0, 𝑦0), be a function that defines the finite incident beam profile, then the 

OCT signal due to the finite beam, denoted as R, is given by the superposition integral, 

R = ∬ 𝜖(𝑥0, 𝑦0) g(𝑥0, 𝑦0) 𝑑𝑥𝑑𝑦 (6.3) 

In this approach, we focus on solving the superposition integral above by any quadrature 

method. We use the composite midpoint quadrature rule as a basic superposition method 

to compare between both approaches, even though other possible quadrature rules that 

could be used. 

The composite midpoint quadrature rule approximation of a one-dimensional integral is 

given by, 
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𝐼 = ∫ 𝑓(𝑥)
𝑏

𝑎

𝑑𝑥 = ℎ𝑥 ∑ 𝑓(𝑥(𝑖))

𝑀𝑥

𝑖=1

+ 𝑒𝑞 (6.4) 

where, 𝑥(𝑖), are the quadrature nodes (points), given by, 

𝑥(𝑖) = 𝑎 + (𝑖 −
1

2
) ℎ𝑥 ,               𝑖 = 1, 2, … , 𝑀𝑥 (6.5) 

the quadrature weights are constant, equal to, 

ℎ𝑥 =
𝑏 − 𝑎

𝑀𝑥

 (6.6) 

and, 𝑒𝑞, is the quadrature error, given by [44, 45], 

|𝑒𝑞| ≤
  (𝑏 − 𝑎)

24 
 ℎ𝑥

2  max|𝑓′′(𝑥)| (6.7) 

The order of the error, 𝑒𝑞, is 𝑂(ℎ𝑥
2), which is equivalent to 𝑂(𝑀𝑥

−2). 

The composite midpoint quadrature rule could also be extended to double integrals, 

𝐼 = ∬ 𝑓(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦
 

𝐴

= ∫ ∫ 𝑓(𝑥, 𝑦)
𝑑(𝑥)

𝑐(𝑥)

𝑑𝑦 𝑑𝑥
𝑏

𝑎

 (6.8) 

The integral above could be written as,  

𝐼 = ∫ 𝐹(𝑥)
𝑏

𝑎

𝑑𝑥 (6.9) 

where, 

𝐹(𝑥) = ∫ 𝑓(𝑥, 𝑦)
𝑑(𝑥)

𝑐(𝑥)

𝑑𝑦 (6.10) 

First, by approximating Eq. (6.9) using the composite midpoint rule (Eq. (6.5) and Eq. (6.6) 

gives the quadrature nodes and weights). Then, by approximating Eq. (6.10) using the 

composite midpoint rule, where  
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ℎ𝑦
(𝑖)

=
𝑑(𝑥(𝑖)) − 𝑐(𝑥(𝑖))

𝑀𝑦
(𝑖)

 (6.11) 

and, 

𝑦(𝑖,𝑗) = 𝑐(𝑥(𝑖)) + (𝑗 −
1

2
) ℎ𝑦

(𝑖)
 ,               𝑗 = 1, 2, … , 𝑀𝑦

(𝑖)
 (6.12) 

Eq. (6.8) is approximated by, 

𝐼 = ∑ ∑ ℎ𝑥

𝑀𝑦
(𝑖)

𝑗=1

ℎ𝑦
(𝑖)

𝑀𝑥

𝑖=1

𝑓(𝑥(𝑖), 𝑦(𝑖,𝑗)) + 𝑒𝑞 (6.13) 

where the order of the error, 𝑒𝑞, is given by 𝑂 (ℎ𝑥
2 + max

𝑖
{ℎ𝑦

(𝑖)2
}). 

When we implemented this simulation approach, we used a user-defined maximum 

distance, hmax, between any two adjacent nodes (in X or Y direction), to calculate 𝑀𝑥, 𝑀𝑦
(𝑖)

 

and the quadrature nodes accordingly. First, the number of grid lines in the X direction is 

calculated according to, 

𝑀𝑥 = ⌈
𝑏 − 𝑎

ℎ𝑚𝑎𝑥

⌉ (6.14) 

such that, ⌈∙⌉ is the ceiling function. Then, ℎ𝑥 and 𝑥(𝑖) are calculated from equations (6.6) 

and (6.5) respectively. Following that, for each grid line in the X direction, the number of 

grid lines in the Y direction are calculated according to, 

𝑀𝑦
(𝑖)

= ⌈
𝑑(𝑥(𝑖)) − 𝑐(𝑥(𝑖))

ℎ𝑚𝑎𝑥

⌉ (6.15) 

Then, ℎ𝑦
(𝑖)

 and 𝑦(𝑖,𝑗) are calculated from equations (6.11) and (6.12), i.e., the grid lines in 

the Y direction are not uniform. 
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Eq. (6.13) could be written in a compact form as, 

𝐼 = ∑ ℎ(𝑚)

𝑀

𝑚=1

𝑓(𝑥(𝑚), 𝑦(𝑚)) + 𝑒𝑞 (6.16) 

where, 𝑚 ≡ (𝑖, 𝑗), ℎ(𝑚) = ℎ𝑥 . ℎ𝑦
(𝑖)

, and M  is the total number of quadrature nodes. 

By applying the composite midpoint rule to the superposition integral in Eq. (6.3) 

(assuming that it is a definite integral) we get, 

R = ∑ ℎ(𝑚)𝜖(𝑥0
(𝑚)

, 𝑦0
(𝑚)

) g(𝑥0
(𝑚)

, 𝑦0
(𝑚)

)

𝑀

𝑚=1

+ 𝑒𝑞 (6.17) 

where, {(𝑥0
(𝑚)

, 𝑦0
(𝑚)

)} are the quadrature nodes.  

We note that each term, g(𝑥0
(𝑚)

, 𝑦0
(𝑚)

), in Eq. (6.17), should be estimated using a MC 

simulation using an infinitely thin beam. Denote the error in the estimate of g(𝑥0
(𝑚)

, 𝑦0
(𝑚)

) 

by 𝑒𝑔(𝑥0
(𝑚)

, 𝑦0
(𝑚)

). Therefore, the total error in the estimate of R is given by, 

𝑒𝑅
𝑆𝑃 ≅ ∑   ℎ(𝑚) 𝜖(𝑥0

(𝑚)
, 𝑦0

(𝑚)
) 𝑒𝑔(𝑥0

(𝑚)
, 𝑦0

(𝑚)
) 

𝑀

𝑚=1

+ 𝑒𝑞 (6.18) 

The errors in the terms, {g(𝑥0
(𝑚)

, 𝑦0
(𝑚)

)} add in quadrature [46], so the error in R becomes, 

|𝑒𝑅
𝑆𝑃| ≅  √ ∑ ℎ(𝑚)2

𝜖2(𝑥0
(𝑚)

, 𝑦0
(𝑚)

)

𝑀

𝑚=1

 𝑒𝑔
2(𝑥0

(𝑚)
, 𝑦0

(𝑚)
) + |𝑒𝑞| (6.19) 

The error, 𝑒𝑔(𝑥0
(𝑚)

, 𝑦0
(𝑚)

), for each term is given by Eq. (6.2). Therefore, since we assumed 

that  𝑒𝑔
2(𝑥0

(𝑚)
, 𝑦0

(𝑚)
) does not change from one quadrature node to another, we could write 

Eq. (6.19) as, 
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|𝑒𝑅
(SP)

| ≅  
𝜎𝑔

√𝑁𝑔

√ ∑ ℎ(𝑚)2
𝜖2(𝑥0

(𝑚)
, 𝑦0

(𝑚)
)

𝑀

𝑚=1

 + |𝑒𝑞| (6.20) 

We note that that, for each quadrature point, we would need to run a simulation with 𝑁𝑔 

(large number) photon packets. Therefore, the total number of photon packets to be used 

in a superposition-based simulator would be 𝑀. 𝑁𝑔. 

6.2 Sequential MC approach for simulating a finite incident beam 

This approach is following the analytical solution of the RTE, described in section 5.2. The 

launch position of the photon packets is considered a random variable. The incident beam 

is defined by, 

𝜖(𝑥0, 𝑦0) = P𝜖  𝑓𝜖(𝑥0, 𝑦0) (6.21) 

where 𝑓𝜖(𝑥0, 𝑦0) is a probability distribution function of the spatial distribution of the 

incident intensity at the surface of the medium, and P𝜖 = ∬ 𝜖(𝑥0, 𝑦0) 𝑑𝑥0𝑑𝑦0 is the total 

power in the beam. The OCT signal (A-scan), R, is equal to the expected value of back-

reflected power from each depth, which could be written as, 

R = P𝜖  𝐄{𝑤𝑟} (6.22) 

where 𝑤𝑟 is the packet reflected weight from each depth.  

According to the law of total expectation that is given by [47] 

𝐄{𝑢} = 𝐄𝑓𝑣
{𝐄{𝑢|𝑣}} (6.23) 

where 𝑓𝑣 is the probability distribution of 𝑣. Defining 𝑢 ≡ P𝜖 𝑤𝑟, and 𝑣 ≡ (𝑥0, 𝑦0), then, 

𝑞𝑣 = 𝑓𝜖(𝑥0, 𝑦0) and, 
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R = P𝜖 ∙ 𝐄{𝑤𝑅} = P𝜖 𝐄𝑓𝜖
{𝐄{𝑤𝑟|𝑥0, 𝑦0}} (6.24) 

Substituting Eq. (6.1) into (6.24) we obtain, 

R = P𝜖 ∙ 𝐄𝑓𝜖
{g(𝑥0, 𝑦0)} = P𝜖 ∬  g(𝑥0, 𝑦0) 𝑓𝜖(𝑥0, 𝑦0)𝑑𝑥0𝑑𝑦0 (6.25) 

which is identical to the superposition integral in Eq. (6.3), except that  𝜖(𝑥0, 𝑦0) that 

represents the spatial distribution of the finite beam, is now described by a probability 

distribution function rather than a deterministic function. 

The reflectance, R, could be estimated using MC by simulating a large number (𝑁) of 

photon packets to get samples of 𝑤𝑟, where the launch position of each photon packet is 

randomly sampled from 𝑓𝜖(𝑥0, 𝑦0). Then, the estimate of R is equal to the sample mean of 

𝑤𝑟 and the error in the estimate is given by, 

|𝑒𝑅| ≅
𝜎𝑅

√𝑁
 (6.26) 

 where  𝜎𝑅
2 ≡ 𝐯𝐚𝐫{P𝜖  𝑤𝑟}. 

The randomness in the photons incidence position would increase the variance of 𝑤𝑟 

compared to the case when the position is deterministic (infinitely-thin beam). Therefore, 

to obtain a comparable accuracy, more photon packets may be needed in the finite beam 

case than those needed in the infinitely-thin beam case. Therefore, we analyze the variance 

introduced due to the randomness in the photon packet incidence positions. 

The law of the total variance allows us to write the variance in the case of a finite incident 

beam, 𝜎𝑅
2, in terms of the variance 𝜎𝑔

2(𝑥0, 𝑦0) (variance in the case of a unit power 

infinitely-thin incident beam). 
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Recalling the law of total variance [48], 

𝐯𝐚𝐫{𝑢} = 𝐄𝑞𝑣
{𝐯𝐚𝐫{𝑢|𝑣}} + 𝐯𝐚𝐫𝑞𝑣

{𝐄{𝑢|𝑣}} (6.27) 

where 𝑓𝑣 is the probability distribution of 𝑣. Defining  𝑢 ≡ P𝜖 𝑤𝑅, and 𝑣 ≡ (𝑥0, 𝑦0), then, 

𝑞𝑣 = 𝑓𝜖(𝑥0, 𝑦0). And, 

𝐯𝐚𝐫{P𝜖 𝑤𝑅} = P𝜖
2 ∙ 𝐄𝑓𝜖

{𝐯𝐚𝐫{ 𝑤𝑟|𝑥0, 𝑦0}} + P𝜖
2 ∙ 𝐯𝐚𝐫𝑓𝜖

{𝐄{ 𝑤𝑟|𝑥0, 𝑦0}} (6.28) 

Therefore, from Eq. (6.1), 

𝜎𝑅
2 = P𝜖

2 (𝐄𝑓𝜖
{𝜎𝑔

2(𝑥0, 𝑦0)} + 𝐯𝐚𝐫𝑓𝜖
{g(𝑥0, 𝑦0)}) (6.29) 

Following the assumption that, 𝜎𝑔
2(𝑥0, 𝑦0) is constant over the support of the incident beam, 

Eq. (6.29) becomes, 

𝜎𝑅
2 = P𝜖

2 (𝜎𝑔
2 +  𝐯𝐚𝐫𝑓𝜖

{g(𝑥0, 𝑦0)}) (6.30) 

We note that 𝜎𝑔
2 in Eq. (6.30) results from the uncertainty due to the photon propagation in 

the turbid medium (a long random walk), while  𝐯𝐚𝐫𝑓𝜖
{g(𝑥0, 𝑦0)} results from the 

uncertainty due to the photon packet incidence positions. Therefore, the variance term, 𝜎𝑔
2, 

which depends on a long chain of random variables (radiation states), is typically much 

larger than the term, 𝐯𝐚𝐫𝑓𝜖
{g(𝑥0, 𝑦0)}, which depends on one random variable (the initial 

position), 

𝜎𝑔
2 ≫  𝐯𝐚𝐫𝑓𝜖

{g(𝑥0, 𝑦0)}  (6.31) 

Eq. (6.30) will be approximately equal to, 

𝜎𝑅
2 ≅ P𝜖

2 𝜎𝑔
2 (6.32) 
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and the error in the estimate could be written as, 

|𝑒R
(MC)

| ≅
P𝜖  𝜎𝑔

√𝑁
 (6.33) 

6.3 Comparison between errors resulting from two simulation approaches 

When using the superposition approach, the total number of packets is 𝑀. 𝑁𝑔 and the error 

is 𝑒R
(SP)

, which is given by Eq. (6.20). When using the Sequential MC approach, the total 

number of packets is 𝑁 and the error is 𝑒R
(MC)

, which is given by Eq. (6.33). Below, we 

compare these two errors when the total number of photon packets used are equal, i.e., 𝑁 =

𝑀. 𝑁𝑔, which would require comparable computational time. 

Recalling the Cauchy Schwarz inequality [49], 

|〈𝑢, 𝑣〉|2 ≤  〈𝑢, 𝑢〉 . 〈𝑣, 𝑣〉 (6.34) 

Let 𝑢[𝑚] = 1 and 𝑣[𝑚] = ℎ(𝑚)𝜖(𝑥0
(𝑚)

, 𝑦0
(𝑚)

), with, 𝑚 = 1, 2, … , 𝑀, then, 

|〈𝑢, 𝑣〉|2 = ( ∑ 1 . ℎ(𝑚) 𝜖(𝑥0
(𝑚)

, 𝑦0
(𝑚)

)

𝑀

𝑚=1

)

2

, (6.35) 

〈𝑢, 𝑢〉 = ∑ 12

𝑀

𝑚=1

= 𝑀, (6.36) 

〈𝑣, 𝑣〉 = ∑ (ℎ(𝑚) 𝜖(𝑥0
(𝑚)

, 𝑦0
(𝑚)

))
2

𝑀

𝑚=1

= ∑ ℎ(𝑚)2
 𝜖2(𝑥0

(𝑚)
, 𝑦0

(𝑚)
)

𝑀

𝑚=1

. (6.37) 

Therefore, 

( ∑ ℎ(𝑚) 𝜖(𝑥0
(𝑚)

, 𝑦0
(𝑚)

)

𝑀

𝑚=1

)

2

≤ 𝑀 ∑ ℎ(𝑚)2
 𝜖2(𝑥0

(𝑚)
, 𝑦0

(𝑚)
)

𝑀

𝑚=1

 (6.38) 
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We note that, P𝜖, is approximately equal to, 

P𝜖 = ∬ 𝜖(𝑥0, 𝑦0) 𝑑𝑥0𝑑𝑦0 ≅ ∑ ℎ(𝑚) 𝜖(𝑥0
(𝑚)

, 𝑦0
(𝑚)

)

𝑀

𝑚=1

 (6.39) 

Therefore, Eq. (6.38) is approximately equal to, 

P𝜖

√𝑀
 ≤ √ ∑ ℎ(𝑚)2

 𝜖2(𝑥0
(𝑚)

, 𝑦0
(𝑚)

)

𝑀

𝑚=1

 (6.40) 

By multiplying Eq. (6.40) by 
𝜎𝑔

√𝑁𝑔
, we obtain, 

𝜎𝑔

√𝑁𝑔

P𝜖

√𝑀
 ≤

𝜎𝑔

√𝑁𝑔

√ ∑ ℎ(𝑚)2
 𝜖2(𝑥0

(𝑚)
, 𝑦0

(𝑚)
)

𝑀

𝑚=1

 (6.41) 

The left-hand side of Eq. (6.41) is equal to 𝑒R
(MC)

 in Eq. (6.33), and the right-hand side of 

Eq. (6.41) is equal to (|𝑒R
(SP)

| −  |𝑒𝑞|) in Eq. (6.20).  Therefore, (6.41) becomes, 

|𝑒R
(MC)

| ≤  |𝑒R
(SP)

| −  |𝑒𝑞|  (6.42) 

Eq. (6.42) indicates that, for an equal number of packets, the error in the OCT signal 

calculation obtained using the Sequential MC approach is smaller than the corresponding 

error obtained when using the superposition approach. 

In the superposition approach, 𝑀 (the number of quadrature points) is chosen to reach an 

acceptable quadrature error 𝑒𝑞. Therefore, 𝑀 may be large, and the total number of packets, 

𝑀. 𝑁𝑔, may not be practical. On the other hand, when using the Sequential MC approach, 

there is no quadrature error. Therefore, 𝑁 (the number of packets) is chosen flexibly 

according to the desired accuracy. Another advantage of using the Sequential MC approach 
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is the ability to estimate the error by calculating the variance. However, in the superposition 

method, the function g(𝑥0, 𝑦0) in the integrand is unknown and, as a consequence, one 

cannot accurately estimate the quadrature error. 

6.4 Implementation and Numerical Results 

We chose the Sequential MC approach to implement our finite beam OCT simulator 

because of its superior performance when compared with the superposition simulation 

approach. We also implemented a superposition-based MC simulator to validate the results 

of our simulator. Both simulators are implemented in NVIDIA’s CUDA environment using 

extensions of the C language; their codes are based on the OCT-MPS code.  

For the distribution of the light intensity at the surface of the medium, we considered a 

bivariate normal distribution with standard deviation equal to, 
Φp

6
, i.e., the probing area 

contains 99% of the incident power. The superposition-based simulator is implemented 

according to the composite midpoint quadrature rule (as described in section 6.1). For the 

Sequential MC based simulator, we created an independent stream of pseudo-random 

numbers to sample the photon packet launch position. The launch position of the photon 

packet is sampled from the bivariate normal distribution using the Box-Muller method. 

Following this method, the incidence position, (𝑥0, 𝑦0), on the surface of the medium is 

given by [35],  

𝑥0 = 𝑥f +
Φp

6
√−2 ln(𝑢1) cos(2𝜋 𝑢2) (6.43) 

𝑦0 = 𝑦f +
Φp

6
√−2 ln(𝑢1) sin(2𝜋 𝑢2) (6.44) 
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where (𝑥f, 𝑦f) is the fiber probe center position, and 𝑢1, 𝑢2 are uniform random variables 

over the interval [0, 1]. 

We simulated the OCT signals from two different inhomogeneous media, (a) a slab 

containing two spheres and a tri-axial ellipsoid, (b) a slab containing a tri-axial ellipsoid. 

In both cases, we used an optical source of unit power and coherence length lc = 15 𝜇m, a 

fiber probe of diameter 𝛷f = 20 𝜇m and acceptance angle 𝜃f = 5°. The fiber is placed above 

the medium by a distance, d = 0.25 mm, which means that the probing diameter at the 

surface of the medium 𝛷p ≅ 64 𝜇m. The configuration of the implemented importance 

sampling is the same as in [24, 25] (a = 0.925, and p = 0.5). 

All the results reported are obtained using a workstation with the NVIDIA Tesla P100-

12GB graphics processing unit (GPU) with compute capability 6.0. The P100 GPU is built 

in the Pascal architecture, which has 56 streaming multiprocessors (SMs) with 64 CUDA 

cores each (a total of 3584 cores) running at 1328 MHz. The GPU has 12GB of memory 

(HBM2) with 549 GB/s peak memory bandwidth. 

6.4.1 Simulation Case 1 

The abstract view of the medium is shown in Fig. (6.2). The medium has a square surface 

of side length 3 mm (centered at the origin in the XY-plane), and its thickness is 1 mm (in 

the z-axis). The spheres have a 0.06 mm radius, and are centered at, (0.08, 0.0, 0.1) mm, (-

0.08, 0.0, 0.3) mm. The tri-axial ellipsoid is centered at, (0.0, 0.0, 0.2) mm, and its axes are 

represented by, v1 = [0.06 sin(60°), 0, -0.06 cos(60°)]T mm, v2 = [0, 1, 0]T  mm, and v3 = 

[0.17 sin(30°), 0, 0.17 cos(30°)]T mm.  
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Figure 6.2. Abstract view of the medium: a slab containing an Ellipsoid and two spheres 

The optical parameters of the medium are shown in Table (6.1). The tetrahedron mesh of 

this medium is shown in Fig. (6.3), it has a total of 5248 vertices and 29,697 tetrahedrons, 

it was generated by NETGEN [50]. 

Table 6.1. Optical parameters of the medium: a slab containing an Ellipsoid and two spheres 

 

‘𝜇a’ (cm-1) 

Absorption 

coefficient 

‘𝜇s’ (cm-1) 

Scattering 

coefficient 

‘g’  

Anisotropy 

factor 

‘n’  

Refractive 

index 

Background 1.5 60 0.9 1 

Spheres 3 120 0.9 1 

Ellipsoid 3 120 0.9 1 
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Figure 6.3. Tetrahedron mesh of the medium: a slab containing an Ellipsoid and two spheres 

Similar to other MC simulators, the accuracy of our simulator is given by the confidence 

interval (CI) of its estimate, equal to, 

CI ≡ [R̂ −  𝑒𝑅̂ ,  R̂ + 𝑒𝑅̂] (6.45) 

 such that, R̂ is the estimate of the A-scan (Class I or Class II), and 𝑒𝑅̂ is the estimate of the 

error in R̂. 

6.4.1.1 Validation of our finite beam simulator with a superposition-based simulator 

First, we consider using the superposition-based simulator to estimate an A-scan of Class 

I reflectivity, at the lateral position 𝑥 = − 0.1 mm, due to a finite incident beam with a 

Gaussian intensity profile. The quadrature nodes are set according to a defined maximum 

distance, hmax, between any two quadrature nodes (in X or Y direction) as explained in 

section (6.1). For an acceptable error in the estimate of g(𝑥0, 𝑦0) (A-scan due to an 

infinitely-thin incident beam at position 𝑥0, 𝑦0) the number of photon packets used to 

estimate it is Ng = 107 (as reported by Malektaji in [25]). To choose hmax, several 

calculations decreasing the value of hmax, i.e., increasing the number of quadrature nodes 
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𝑀, were carried until the A-scan converge (see Fig. (6.4)). Fig. (6.4) shows that the A-scan 

at this lateral position converges when using the distance hmax = 4 𝜇m. 

 

Figure 6.4. Class I signal A-scan, at the lateral position 𝑥 = −0.1 mm, due to a finite incident beam with 

a Gaussian intensity profile, obtained using the superposition-based simulator with different numbers of 

quadrature nodes (M). 

We validate the results of our Sequential MC based simulator with those obtained using 

the superposition-based simulator (when hmax = 4 𝜇m, i.e., using 210 quadrature point). 

Figs. (6.5) and (6.6) show the A-scan of Class I and Class II reflectivity, respectively, 

obtained using the superposition-based simulator and our Sequential MC based simulator. 

When using our simulator, the number of photon packets needed to reach an acceptable 

error was N =107. The confidence intervals of the estimates of our simulator are calculated 

and shown on both figures at different depths.  
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Figure 6.5. Comparison of finite beam A-scan of Class I reflectivity estimated using: superposition-based 

simulator with a total of 210×107 photon packets (210 quadrature nodes, plotted in red), and our 

Sequential MC based simulator with 107 photon packets (plotted in blue, showing confidence interval at 

different depths). 

 

Figure 6.6. Comparison of finite beam A-scan of Class II reflectivity estimated using: superposition-based 

simulator with a total of 210×107 photon packets (210 quadrature nodes, plotted in red), and our 

Sequential MC based simulator with 107 photon packets (plotted in blue, showing confidence interval at 

different depths). 

Figs. (6.5) and (6.6) show that the results obtained using both simulators are in agreement. 

The number of photon packets needed by any of the simulators is proportional to its 

computational time. The number of photon packets used by our simulator was 107, and the 
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computation time was 8.5 seconds. The total number of packets used by the superposition-

based simulator was 210×107 (210 quadrature point each simulated by 107 photon packets), 

and the total time was 30 minutes.  

6.4.1.2 Error comparison and analysis between our Sequential MC based simulator and 

the superposition-based simulator 

Assume that, when using a large number of quadrature nodes the quadrature error 𝑒𝑞 is 

negligible. Then, from Eq. (6.19) the error of superposition-based simulator could be 

estimated according to, 

|𝑒̂R
(SP)

| ≅  √ ∑ ℎ(𝑚)2
𝜖2(𝑥0

(𝑚)
, 𝑦0

(𝑚)
)

𝑀

𝑚=1

 𝑒̂𝑔
2(𝑥0

(𝑚)
, 𝑦0

(𝑚)
)  (6.46) 

such that, 𝑒̂𝑔(𝑥0
(𝑚)

, 𝑦0
(𝑚)

), is the estimate of the error in ĝ(𝑥0
(𝑚)

, 𝑦0
(𝑚)

). 

We compare the errors of both simulators for the A-scan simulated above. From Fig. (6.4), 

we assume that the quadrature error is negligible when using 210 quadrature nodes. First 

we compare the errors when using our Sequential MC based simulator with 107 photon 

packets. Figs. (6.7) and (6.8) compares the estimated errors of both simulators estimates of 

Class I and Class II reflectivity, respectively. As expected, the superposition-based 

simulator results are more accurate since the total number of photon packets this simulator 

used was 210 times more than those used by our simulator. However, in the superposition-

based simulator, if we reduce the total number of packets by reducing the number of 

quadrature nodes, the quadrature error (𝑒𝑞) may be significant as illustrated in Fig. (6.4).  
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Figure 6.7. Comparison of error in the estimate of Class I reflectivity estimated using: superposition-

based simulator with a total of 210×107 photon packets (210 quadrature nodes, plotted in red), and our 

Sequential MC based simulator with 107 photon packets (plotted in blue). 

 

Figure 6.8. Comparison of error in the estimate of Class II reflectivity estimated using: superposition-

based simulator with a total of 210×107 photon packets (210 quadrature nodes, plotted in red), and our 

Sequential MC based simulator with 107 photon packets (plotted in blue). 

Second, we compare the results of both simulators when they have comparable 

computational cost, i.e., 𝑁 = 𝑀. 𝑁𝑔. We reran our simulator with N = 210×107 photon 

packets (equal to the total number of photon packets used by the superposition-based 
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simulator), the computation time was 30 minutes. Figs. (6.9) and (6.10) compare both 

simulators estimated Class I and Class II reflectivity, respectively. Figs. (6.11) and (6.12) 

compare both simulators estimated errors for Class I and Class II reflectivity estimates, 

respectively. Fig. (6.11) shows that, for Class I reflectivity, at a comparable computational 

cost the estimated error of the Sequential MC based simulator estimate was smaller than 

that of the superposition-based simulator estimate at all depths. Fig. (6.12) shows that, for 

Class II reflectivity, at a comparable computational cost the estimated error of the 

Sequential MC based simulator estimate was on average smaller than that of the 

superposition-based simulator estimate. 

 

Figure 6.9. Comparison of finite beam A-scan of Class I reflectivity estimated, due to a beam with a 

Gaussian intensity profile, by both simulators when using the same total number of photon packets, equal 

to 210×107.  
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Figure 6.10. Comparison of finite beam A-scan of Class II reflectivity, due to a beam with a Gaussian 

intensity profile, estimated by both simulators when using the same total number of photon packets, equal 

to 210×107.  

 

Figure 6.11. Comparison of the error in the estimate of the A-scan of Class I reflectivity obtained by 

superposition-based simulator (plotted in red), and our Sequential MC based simulator (plotted in blue) 

when the total number of photon packets are equal (210×107 photon packets).  
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Figure 6.12. Comparison of the error in the estimate of the A-scan of Class II reflectivity obtained by 

superposition-based simulator (plotted in red), and our Sequential MC based simulator (plotted in blue) 

when the total number of photon packets are equal (210×107 photon packets).  

6.4.1.3 Comparison of OCT A-scan when using a finite incident beam and assuming an 

infinitely-thin incident beam 

To demonstrate the importance of using a finite beam OCT simulator we compare the A-

scan at the same lateral position,  𝑥 = −0.1 mm, when using a finite incident beam with a 

Gaussian intensity profile with that when assuming an infinitely-thin incident beam. The 

finite beam A-scan was simulated using our Sequential MC based simulator, and for both 

beams the number of photon packets used was 107 photon packets. 

Figs. (6.13) and (6.14) compare Class I and Class II reflectivity, respectively. Fig. (6.13) 

shows that there is a significant difference in Class I reflectivity. Fig. (6.14) also shows a 

significant difference in Class II reflectivity at shallow depths. Figs. (6.15) and (6.16) 

compare the estimated errors in both cases for Class I and Class II reflectivity respectively. 

Both figures show that, for equal number of photon packets the error in both cases are 

approximately equal at all depths. 



66 

 

 

Figure 6.13. Comparison of A-scan of Class I reflectivity when using a finite incident beam with a 

Gaussian intensity profile (plotted in blue, showing confidence interval at different depths) and when 

assuming an infinitely-thin incident beam (plotted in blue, showing confidence interval at different 

depths). A-scan is simulated at 𝑥 = −0.1 mm, in both cases the number of photon packets used was 107. 

 

Figure 6.14. Comparison of A-scan of Class II reflectivity when using a finite incident beam with a 

Gaussian intensity profile (plotted in blue, showing confidence interval at different depths) and when 

assuming an infinitely-thin incident beam (plotted in blue, showing confidence interval at different 

depths). A-scan is simulated at 𝑥 = −0.1 mm, in both cases the number of photon packets used was 107. 
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Figure 6.15. Comparison of the error in the estimate of the A-scan of Class I reflectivity when using a 

finite incident beam with a Gaussian intensity profile (plotted in blue) and when assuming an infinitely-

thin incident beam (plotted in red). Finite beam A-scan was simulated using our Sequential MC based 

simulator. A-scan is simulated at 𝑥 = −0.1 mm, in both cases the number of photon packets used was 

107. 

 

Figure 6.16. Comparison of the error in the estimate of the A-scan of Class II reflectivity when using a 

finite incident beam with a Gaussian intensity profile (plotted in blue) and when assuming an infinitely-

thin incident beam (plotted in red). Finite beam A-scan was simulated using our Sequential MC based 

simulator. A-scan is simulated at 𝑥 = −0.1 mm, in both cases the number of photon packets used was 

107. 
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6.4.1.4 Finite beam B-scan simulation using our Sequential MC based simulator 

Finally, we present the simulated reflectivity-based B-scan OCT images, due to finite 

incident beams with a Gaussian intensity profile, obtained using our Sequential MC based 

OCT simulator. Figs. (6.17) and (6.18) show the simulated Class I and Class II reflectivity-

based B-scan OCT images, respectively. The simulation was done by obtaining 500 

equidistant A-scans, each using 107 photon packets, along the X-axis from x = −0.15 mm 

to x = 0.15 mm.  

 

Figure 6.17. Simulated Class I reflectivity-based B-scan OCT images of a slab containing an Ellipsoid 

and two spheres, when using finite incident beams with a Gaussian intensity profile. Class I B-scan OCT 

image (right), along with its enlarged version (left), generated by our Sequential MC based finite beam 

OCT simulator. The surface of the medium is in the XY-plane, i.e., 𝑧 = 0. 
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Figure 6.18. Simulated Class II reflectivity-based B-scan OCT images of a slab containing an Ellipsoid 

and two spheres, when using finite incident beams with a Gaussian intensity profile. Class II B-scan OCT 

image (right), along with its enlarged version (left), generated by our Sequential MC based finite beam 

OCT simulator. The surface of the medium is in the XY-plane, i.e., 𝑧 = 0. 

As shown in Fig. (6.17) the magnitude of Class I signal gets smaller as the depth in the 

medium increase. This is what we expect in actual OCT systems, the reason behind that is 

the low probability of single backscattering at a higher depth. Fig. (6.18) shows that Class 

II signal has high magnitude inside the objects, this is due to their high scattering 

coefficients.  

6.4.2 Simulation Case 2 

The medium consists of a slab containing a tri-axial ellipsoid; its abstract view is shown in 

Fig. (6.19). The slab is extended for 3 mm in X and Y directions and 0.4 mm in the Z 

direction. The tri-axial ellipsoid is centered at the position (0.0, 0.0, 0.2) mm. The three 

vectors representing the axes of the ellipsoid are given by v1 = [0.2, 0, 0]T mm, v2 = [0, 0.1, 

0]T  mm, and v3 = [0, 0, 0.1]T mm. 
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Figure 6.19. Abstract view of the medium: a slab containing an Ellipsoid 

The tetrahedron mesh of the medium contains a total of 1275 vertices and 6673 

tetrahedrons; it was generated by NETGEN [50]. Fig. (6.20) shows the tetrahedron mesh. 

The optical properties of the medium are shown in Table (6.2). 

Table 6.2. Optical parameters of the medium: a slab containing an Ellipsoid 

 

‘𝜇a’ (cm-1) 

Absorption 

coefficient 

‘𝜇s’ (cm-1) 

Scattering 

coefficient 

‘g’  

Anisotropy 

factor 

‘n’  

Refractive 

index 

Slab 1.5 60 0.9 1 

Ellipsoid 3 120 0.9 1 
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Figure 6.20. Tetrahedron mesh of the medium: a slab containing an Ellipsoid 

6.4.2.1 Validation of our finite beam simulator with a superposition-based simulator 

We simulate an A-scan at an arbitrary lateral position, 𝑥 = 0, due to a finite incident beam 

with a Gaussian intensity profile. The number of photon packets simulated at each 

quadrature node is 𝑁𝑔 = 107. When using the superposition-based simulator the A-scan 

converged after using 14 quadrature nodes (hmax = 20 𝜇m), as shown in Fig. (6.21). 

 

Figure 6.21. Class I signal A-scan, at the lateral position 𝑥 = 0, due to a finite incident beam with a  

Gaussian intensity profile, obtained using the superposition-based simulator with different number of 

quadrature nodes (M). 

Figs. (6.22) and (6.23) show the A-scan of Class I and Class II reflectivity, respectively, 

estimated using the superposition-based simulator (with 14 quadrature nodes, total of 

14×107 photon packets) and our Sequential MC based simulator (with 107 photon packets). 

The figures show that the results of both simulators are in agreement. 
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Figure 6.22. Comparison of finite beam A-scan of Class I reflectivity estimated using: superposition-

based simulator with a total of 14×107 photon packets (14 quadrature nodes, plotted in red), and our 

Sequential MC based simulator with 107 photon packets (plotted in blue, showing confidence interval at 

different depths). 

 

Figure 6.23. Comparison of finite beam A-scan of Class II reflectivity estimated using: superposition-

based simulator with a total of 14×107 photon packets (14 quadrature nodes, plotted in red), and our 

Sequential MC based simulator with 107 photon packets (plotted in blue, showing confidence interval at 

different depths). 
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6.4.2.2 Error comparison and analysis between our simulator and the superposition-based 

simulator 

We compare the errors of both simulators for the A-scan simulated above. We assume that 

the quadrature error is negligible when using 14 quadrature nodes (as shown in Fig. 6.21). 

We estimate the error of the superposition-based simulator using Eq. (6.46). Figs. (6.24) 

and (6.25) compare the errors from both simulators for Class I and Class II reflectivity, 

respectively. The number of photon packets used by the superposition-based simulator was 

14 times more than those used by our Sequential MC based simulator. 

 

Figure 6.24. Comparison of error in the estimate of Class I reflectivity estimated using: superposition-

based simulator with a total of 14×107 photon packets (14 quadrature nodes, plotted in red), and our 

Sequential MC based simulator with 107 photon packets (plotted in blue) 
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Figure 6.25. Comparison of error in the estimate of Class II reflectivity estimated using: superposition-

based simulator with a total of 14×107 photon packets (14 quadrature nodes, plotted in red), and our 

Sequential MC based simulator with 107 photon packets (plotted in blue) 

To compare the two simulators error at comparable computational cost, we reran our 

simulator to simulate the same A-scan with N = 14×107, which is equal to the total number 

of photon packets used by the superposition based simulator. Figs. (6.26) and (6.27) 

compare the estimated errors from both simulators, for Class I and Class II reflectivity 

respectively, when the number of photon packets are the same (14×107 photon packets).  
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Figure 6.26. Comparison of the error in the estimate of the A-scan of Class I reflectivity obtained by 

superposition-based simulator (plotted in red), and our Sequential MC based simulator (plotted in blue) 

when the total number of photon packets are equal (14×107 photon packets).  

 

Figure 6.27. Comparison of the error in the estimate of the A-scan of Class II reflectivity obtained by 

superposition-based simulator (plotted in red), and our Sequential MC based simulator (plotted in blue) 

when the total number of photon packets are equal (14×107 photon packets).  

6.4.2.3 Comparison of OCT A-scan when using a finite incident beam and assuming an 

infinitely-thin incident beam 

We compare an A-scan, at an arbitrary lateral position, 𝑥 = 0, due to a finite incident beam 

having a Gaussian intensity profile with the A-scan due to an infinitely-thin incident beam. 

For both beams, the number of photon packets used to simulate the A-scan was 107. The 

finite beam A-scan was obtained using the Sequential MC based simulator. Figs. (6.28) 

and (6.29) compare Class I and Class II reflectivity respectively. Figs. (6.30) and (6.31) 

compare the estimated errors for Class I and Class II reflectivity respectively.  
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Figure 6.28. Comparison of A-scan of Class I reflectivity when using a finite incident beam with a 

Gaussian intensity profile (plotted in blue, showing confidence interval at different depths) and when 

assuming an infinitely-thin incident beam (plotted in red, showing confidence interval at different depths). 

A-scan is simulated at arbitrary lateral position, 𝑥 = 0, in both cases the number of photon packets used 

was 107. 

 

Figure 6.29. Comparison of A-scan of Class II reflectivity when using a finite incident beam with a 

Gaussian intensity profile (plotted in blue, showing confidence interval at different depths) and when 

assuming an infinitely-thin incident beam (plotted in red, showing confidence interval at different depths). 

A-scan is simulated at arbitrary lateral position, 𝑥 = 0, in both cases the number of photon packets used 

was 107. 
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Figure 6.30. Comparison of the error in the estimate of the A-scan of Class I reflectivity when using a 

finite incident beam with a Gaussian intensity profile (plotted in blue) and when assuming an infinitely-

thin incident beam (plotted in red). Finite beam A-scan was simulated using our Sequential MC based 

simulator. A-scan is simulated at arbitrary lateral position, 𝑥 = 0, in both cases the number of photon 

packets used was 107. 

 

Figure 6.31. Comparison of the error in the estimate of the A-scan of Class II reflectivity when using a 

finite incident beam with a Gaussian intensity profile (plotted in blue) and when assuming an infinitely-

thin incident beam (plotted in red). Finite beam A-scan was simulated using our Sequential MC based 

simulator. A-scan is simulated at arbitrary lateral position, 𝑥 = 0, in both cases the number of photon 

packets used was 107. 
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6.4.2.4 Finite beam B-scan simulation using our Sequential MC based simulator 

Finally, Figs. (6.32) and (6.33) show the simulated Class I and Class II reflectivity-based 

B-scan OCT images, respectively, due to finite incident beams with a Gaussian intensity 

profile. The simulated B-scan was constructed of 100 equidistant A-scans, each simulated 

using 107 photon packets, along the X-axis from x = −0.25 mm to x = 0.25 mm. 

 

Figure 6.32. Class I reflectivity-based B-scan OCT images of a slab containing an Ellipsoid, when using 

finite incident beams with a Gaussian intensity profile. B-scan was simulated using our Sequential MC 

based finite beam OCT simulator. The surface of the medium is in the XY-plane, i.e., 𝑧 = 0. 
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Figure 6.33. Class II reflectivity-based B-scan OCT images of a slab containing an Ellipsoid, when using 

finite incident beams with a Gaussian intensity profile. B-scan was simulated using our Sequential MC 

based finite beam OCT simulator. The surface of the medium is in the XY-plane, i.e., 𝑧 = 0. 
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Conclusions and suggested future work 

7.1 Conclusions 

We present the derivation of the linear integral form of the RTE, for homogeneous turbid 

media, form its integro-differential form. We present a solution of the RTE using 

Sequential MC methods. We established the correspondence between the Sequential MC 

solution of the RTE for homogeneous media and the MC simulation method for light 

transport.  

We developed and implemented a finite-beam OCT simulator for inhomogeneous turbid 

media with arbitrary boundaries between regions of different optical properties based on 

the Sequential MC solution of the RTE. Our simulator is implemented on GPUs using 

NVIDIA’s CUDA architecture and extensions of the C language. We validated our 

simulator with an equivalent simulator that represents the finite beam OCT signal (A-scan) 

with the superposition of the OCT signals (A-scans) due to infinitely-thin beams covering 

the beam area. We compared the accuracy and computational cost of both simulators, 

showing that our simulator has superior performance. We presented the simulated finite 

beam reflectivity-based B-scan OCT images for two inhomogeneous arbitrarily shaped 

media due to finite incident beams with a Gaussian intensity profile. 

7.2 Suggested future work 

As future work, we suggest using other advanced MC methods, such as reversible jump 

Markov Chain Monte Carlo and advanced particle filtering techniques, to simulate light 
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propagation in tissue more efficiently. One thing that can make our simulator more 

physically realistic is to include light polarization. Our OCT simulator simulates time 

domain OCT system, but it can be extended to simulate swept source OCT systems. 
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