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ABSTRACT 
 

 Value at Risk (VaR) and Expected Shortfall (ES) are methods often used to 

measure market risk. This is the risk that the value of assets will be adversely affected by 

the movements in financial markets, such as equity markets, bond markets, and 

commodity markets. Inaccurate and unreliable Value at Risk and Expected Shortfall 

models can lead to underestimation of the market risk that a firm or financial institution is 

exposed to, and therefore may jeopardize the well-being or survival of the firm or 

financial institution during adverse markets. Crotty (2009) argued that using inaccurate 

Value at Risk models that underestimated risk was one of the causes of 2008 US financial 

crisis. For example, past Value at Risk models have often assumed the Normal 

Distribution, when in reality markets often have fatter tail distributions. As a result, Value 

at Risk models based on the Normal Distribution have often underestimated risk. The 

objective of this study is therefore to examine various Value at Risk and Expected 

Shortfall models, including fatter tail models, in order to analyze the accuracy and 

reliability of these models. 

 Three main approaches of Value at Risk and Expected shortfall models are used. 

They are (1) 11 parametric distribution based models including 10 widely used and most 

studied models, (2) a single non-parametric model (Historical Simulation), and (3) a 

single semi-parametric model (Extreme Value Theory Method, EVT, which uses the 

General Pareto Distribution). These models are then examined using out of sample 

analysis for daily returns of S&P 500, crude oil, gold and the Vanguard Long Term Bond 
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Fund (VBLTX). Further, in an attempt to improve the accuracy of Value at Risk (VaR) 

and Expected Shortfall (ES) models, this study focuses on a new parametric model that 

combines the ARMA process, an asymmetric volatility model (GJR-GARCH), and the 

Skewed General Error Distribution (SGED). This new model, ARMA(1,1)-GJR-

GARCH(1,1)-SGED, represents an improved approach, as evidenced by more accurate 

risk measurement across all four markets examined in the study. This new model is 

innovative in the following aspects. Firstly, it captures the autocorrelation in returns using 

an ARMA(1,1) process. Secondly, it employs GJR-GARCH(1,1) to estimate one day 

forward volatility and capture the leverage effect (Black, 1976) in returns. Thirdly, it uses 

a skewed fat tail distribution, skewed General Error Distribution, to model the fat tails of 

daily returns of the selected markets. 

The results of this study show that the Normal Distribution based methods and 

Historical Simulation method often underestimate Value at Risk and Expected Shortfall. 

On the other hand, parametric models that use fat tail distributions and asymmetric 

volatility models are more accurate for estimating Value at Risk and Expected Shortfall. 

Overall, the proposed model here (ARMA(1,1)-GJR-GARCH(1,1)-SGED) gives the 

most balanced Value at Risk results, as it is the only model for which the Value at Risk 

exceedances fell within the desired confidence interval for all four markets. However, the 

semi-parametric model (Extreme Value Theory, EVT) is the most accurate Value at Risk 

model in this study for S&P 500 Index, likely due to fat tail behavior (including the out of 

sample data). These Results should be of interest to researchers, risk managers, regulators 

and analysts in providing improved risk measurement models. 
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CHAPTER 1 

BACKGROUND AND INTRODUCTION 
 

BACKGROUND OF VALUE AT RISK AND EXPECTED SHORTFALL 
 

The origin of quantifying financial losses can be traced back to New York Stock 

Exchange’s capital requirement for its members in the 1920s (Holton, 2002). In early 

1950s, statistically quantifying financial losses was studied by portfolio theorists for 

portfolio optimization purpose (Holton, 2002). It was in the 1980s when Value at Risk 

began to be used as a financial market risk measure by financial institutions, such as JP 

Morgan, a US bank. JP Morgan also publicized its internal Value at Risk model, 

RiskMetrics, in 1990s, which is defined in its Technical Document (1996), as “a measure 

of the maximum potential change in value of a portfolio of financial instruments with a 

given probability over a pre-set horizon”. In 1995, the Basel Committee on Banking 

Supervision (BCBS) allowed internally developed Value at Risk (VaR) models for 

monitoring daily market risk and calculating capital reserves. Prior to this, a fixed 

percentage approach was required. The problem with the fixed percentage approach is 

that it does not adjust for portfolio specific risk, which could lead to excess reserve and 

inefficient use of capital.  

Artzner (1999) theoretically criticized Value at Risk as an incoherent risk measure 

for its lack of sub- additive ability and information about the size of loss when the true 

loss does exceed the Value at Risk. An alternative to Value at Risk is Expected Shortfall 

(ES) [also known as Conditional Tail Expectation (CTE) or Conditional Value at risk 

(CVaR)]. This is a modified version of Value at Risk that overcomes the above 
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mentioned theoretical deficiencies. Expected Shortfall is defined by McNeil (1999) as 

“the expected loss given that the true loss does exceed the Value at Risk”.  

 

THREE APPROACHES FOR VALUE AT RISK AND EXPECTED SHORTFALL 
 

Since the inception of using Value at Risk in risk management, three main 

approaches, namely, parametric, non-parametric and semi-parametric, have gained 

popularity over the others for either the ease of use, or better accuracy. Below is a brief 

introduction to the three approaches.  

First, the parametric approach (the most common approach) attempts to model 

financial asset returns using parametric distributions. The RiskMetrics Method (J.P. 

Morgan and Reuters, 1996) is one of the most influential models in this category. It 

assumes that returns of financial assets follow the Normal Distribution, and it employs 

Exponentially Weighted Moving Average (EWMA) method to estimate the volatility of 

returns. Although EWMA puts less weight on older historical data, the normality 

assumption tends to cause underestimation of risk because empirical return distributions 

often have fatter tails than Normal Distribution. Historical data shows that returns of 

financial markets, such as equity markets, often have high kurtosis (fat tails) and 

skewness (Duffie and Pan, 1997; Taylor, 2005). To capture the high kurtosis and 

skewness in returns, researchers and risk managers use distributions that exhibit fat tails 

and skewness, such as Student T (Jorion, 1996), Student T with skewness (Giot and 

Laurent, 2004), and General Error Distribution (GED) (Kuester, Mittnik and Paolella, 

2006). Researchers and risk managers attempt to improve the accuracy of volatility 
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estimation, in order to improve the accuracy of Value at Risk and Expected Shortfall 

models. The other widely used volatility models include the GARCH family and 

stochastic volatility models (Pan and Duffie, 1997).  

Second, the non-parametric approach, also known as Historical Simulation (HS) 

method (Best, 1999), uses empirical percentiles of the observed data to estimate future 

risk exposure. The advantage of this approach is its ease of use as it does not require a 

large amount of computation. However, the Value at Risk calculated by this approach put 

too much reliance on older historical data, and therefore has low accuracy. 

Third, the semi-parametric approach is a combined approach of both parametric 

and non-parametric methods. The Extreme Value Theory (EVT) method is considered 

one of the most practical semi-parametric models for the efficient use of data (McNeil 

and Frey, 2000). It separates the estimation of extreme tails and center quantiles. EVT 

models do well in estimating extreme Value at Risk and Expected Shortfall models with 

return data that exhibits high kurtosis (McNeil, 1999; Embrechts, Kluppelberg and 

Mikosch, 1997).  The disadvantage of EVT is that it heavily relies on empirical data for 

estimating the center quantiles of the distribution. 

 

INTRODUCTION 
 

Objective 

Value at Risk (VaR) and Expected Shortfall (ES) are financial risk methods that 

are often used to measure market (price) risk. This is the risk that the value of a portfolio 
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will be adversely affected by the movements in financial markets, such as equity markets, 

bond markets and commodity markets. Inaccurate Value at Risk and Expected Shortfall 

models can lead to underestimation of the market risk that a firm or financial institution is 

exposed to, and therefore jeopardize the well-being or survival of the firm or financial 

institution during adverse market movements. Crotty (2009) argued that using inaccurate 

Value at Risk models that underestimate risk led to inadequate capital reserves in large 

banks and therefore was one of causes of the 2008 US financial crisis. For example, past 

Value at Risk models have often assumed the Normal Distribution, when in reality 

markets often have fatter tail distributions. As a result, Value at Risk models based on the 

Normal Distribution have often underestimated risk. Therefore, the objective of this study 

is to examine various Value at Risk and Expected Shortfall models, including fatter tail 

models, in order to analyze the accuracy and reliability of these models. 

 

Data and Methods 

In this study, the principles of selecting data are (1) to include a variety of 

financial assets that are exposed to daily market risks, (2) to include a sufficiently long 

time period of data for each of the selected markets, and (3) to ensure all data have the 

same start and end date for out of sample data.  Based on these principles, data selected 

include S&P 500 Index (price adjusted for dividends), crude oil, gold and the Vanguard 

Long Term Bond Fund (VBLTX, adjusted for dividends). S&P 500 Index from January, 

1950 to April, 2012 and Vanguard Long Term Bond Fund prices (VBLTX) from March, 

1994 to April, 2012 are obtained from Yahoo Finance website. Crude oil prices from 
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January, 1986 to April, 2012 are obtained from US Energy Information Administration 

(EIA) website. Gold prices from April, 1968 to April, 2012 are obtained from Federal 

Reserve Bank of St. Louis website. Daily log returns are computed from the obtained 

data. The same 1000 days (approximately four years from May, 2008 to April, 2012) are 

used as the out of sample data. 

In this study, three approaches are used for estimating Value at Risk and Expected 

Shortfall. They are (1) parametric approach (11 parametric distribution based models), 

(2) non-parametric approach (a single model, Historical Simulation), and (3) semi-

parametric approach (a single model, Extreme Value Theory). The parametric approach 

includes the widely used and most studied models (Normal, Student T and General Error 

Distribution based models). In addition, this study also proposes a new method, a 

modified parametric model, ARMA(1,1)-GJR-GARCH(1,1)-SGED (Skewed General 

Error Distribution), aimed to increase the accuracy of Value at Risk and Expected 

Shortfall models. This new model is innovative in the following aspects. Firstly, it 

captures the autocorrelation in returns using ARMA(1,1) process. Secondly, it employs 

GJR-GARCH(1,1) to estimate one day forward volatility and capture the leverage effect 

(Black, 1976) in returns. Thirdly, it uses a skewed fat tail distribution, skewed General 

Error Distribution (SGED), to model the fat tails of daily returns. In order to analyze the 

accuracy of these Value at Risk and Expected Shortfall models, statistical tests and out of 

sample tests are conducted to ensure test results are robust.  
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Thesis Structure 

 Following this Chapter 1 of background and introduction, is Chapter 2. This is an 

analysis of Value at Risk and Expected Shortfall using parametric, non-parametric and 

semi-parametric models, which includes an introduction of the theory of Value at Risk 

and Expected Shortfall, literature review, data, methods, and results. This is followed by 

Chapter 3, a comprehensive summary of the study. 
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CHAPTER 2 

ANALYZING VALUE AT RISK AND EXPECTED SHORTFALL 
METHODS: THE USE OF PARAMETRIC, NON-PARAMETRIC, 

AND SEMI-PARAMETRIC MODELS 

 

THEORY AND LITERATURE 
 

Definition of Value at Risk (VaR) and Expected Shortfall (ES) 
 

Value at Risk (VaR) is defined as “the maximum amount of money that may be 

lost on a portfolio over a given period of time, with a given level of confidence” (Best, 

1999). Since Value at Risk was popularized by J.P. Morgan in monitoring daily market 

risk, it is typically calculated over one-day horizon. Statistically speaking, if the one day 

log return of a portfolio on day t is denoted by 𝑅𝑡1 (end note 1), then (1-α) % Value at 

Risk on day t, 𝑉𝑎𝑅𝑡,1−𝛼, is the amount such that  

                                                   𝑃�𝑅𝑡 < 𝑉𝑎𝑅𝑡,1−𝛼� =  𝛼%                                             (1)   

 

Expected Shortfall (ES), also known as Conditional Tail Expectation (CTE) or 

Conditional Value at Risk (CVaR), an alternative risk measure for Value at Risk, is 

defined as “the expected size of loss that exceeds VaR” (McNeil, 1999). The Expected 

Shortfall at (1-α)% confidence level is the expected loss on day t given that the loss does 

exceed 𝑉𝑎𝑅𝑡,1−𝛼, or mathematically (McNeil and Frey, 2000): 

                                𝐸𝑆𝑡,1−𝛼 = 𝐸[𝑅𝑡|𝑅𝑡 < 𝑉𝑎𝑅𝑡,1−𝛼]                                        (2)     

where 𝑅𝑡 is the log return on day t.                      
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A Review of the Three Main Approaches for Value at Risk (VaR) and Expected Shortfall 
(ES) 
 

There are three main approaches, namely parametric, non-parametric and semi-

parametric, for estimating Value at Risk (VaR) and Expected Shortfall (ES). This section 

reviews the three approaches.  

 

The Parametric Approach  

Value at Risk (VaR) and Expected Shortfall (ES) models under the parametric 

approach assume that the returns of financial assets over a given period of time can be 

approximated by a certain parametric distribution (e.g. Normal, Student T, or General 

Error Distribution). Assuming returns are conditional on the previous returns, an example 

of parametric method is illustrated as follows: 

Let 𝑅𝑡 be the daily return of some financial asset on day t and follow a parametric 

distribution D with conditional mean and variance. That is, 

𝑅𝑡|𝑅1,𝑅2, … ,𝑅𝑡−1~ 𝐷(𝜇𝑡,𝜎𝑡2), where D is a known distribution (Taylor, 2005), or 

                                                     𝑅𝑡 = 𝜇𝑡 + 𝜎𝑡𝑋𝑡                                                             (3) 

where 𝜎𝑡|𝑅1,𝑅2, … ,𝑅𝑡−1 is the standard deviation of 𝑅𝑡 (also referred to as the volatility 

of returns); 𝑋𝑡~ 𝑖. 𝑖.𝑑 𝐷(0,1), is the standardized residual of 𝑅𝑡. 

Now, substitute 𝑅𝑡 in Equation (1) by Equation (3), 

                                           𝑃�𝜇𝑡 + 𝜎𝑡𝑋𝑡 < 𝑉𝑎𝑅𝑡,1−𝛼� =  𝛼%                                         (4) 
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Since 𝐷(0,1) is known, the α percentile of 𝐷(0,1) is also known. 𝑉𝑎𝑅𝑡,1−𝛼 can then be 

obtained by the following equation. 

                                                𝑉𝑎𝑅𝑡,1−𝛼 = 𝜇𝑡 + 𝜎𝑡𝑍𝛼                                                      (5) 

where 𝑍𝛼 is the α percentile of 𝐷(0,1), 𝜇𝑡 and 𝜎𝑡 follow the definition in Equation (3). 

For example, assume D follows standard Normal Distribution [𝐷~ 𝑁(0,1)] and 𝜇𝑡 = 0, 

portfolio size $1,000,000, daily volatility (𝜎𝑡) 2%, desired confidence level is 99% or α = 

0.01 (𝑍 ≈ −2.33), the absolute value of value at risk on day t is then (0 + 2% × 2.33) ×

$1,000,000 = $46,600. This means that the maximum amount that can be lost on the 

portfolio in one day is $46,600, given a 99% confidence level. 

The corresponding (1 – α%) Expected Shortfall on day t can then be expressed as 

below, 

                                        𝐸𝑆𝑡,1−𝛼 = 𝜇𝑡 + 𝜎𝑡𝐸[𝑋𝑡|𝑋𝑡 < 𝑍𝛼]                                             (6) 

where 𝑍𝛼, 𝜇𝑡 and 𝜎𝑡 follow the definition in Equation (5). 

Continuing from the example for Value at Risk (VaR) above, given that the loss on day t 

will exceed $46,600, the expected amount of money will be lost is (0 + 2% × 2.65) ×

$1,000,000 = 53,000 (2.65 ≈ −𝐸[𝑋𝑡|𝑋𝑡 < 𝑍0.01] = −∫ � 1
0.01

� 𝑥𝑓(𝑥)𝑑𝑥−2.33
−∞ , 𝑓(𝑥) is 

standard normal pdf ). This means that given the loss on day exceeds the Value at Risk 

(VaR) of $46,600, the expected amount of money lost on day t is $53,000 with a 99% 

confidence level.  

Equation (5) and (6) imply that the estimation of Value at Risk and Expected 

Shortfall under parametric approach depends on (1) the estimation of conditional mean, 
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(2) the estimation of conditional variance or volatility and (3) the distribution assumed 

for standardized residual (𝑋𝑡). Empirical evidence often suggests that the one day mean 

return in many financial markets is very close to zero (Taylor, 2005). In this study, the 

conditional mean for daily returns will be assumed to be a constant, or  

                                                   𝜇𝑡 =  𝜇                                                                (7) 

One of the most influential conditional variance models in the literature is 

Autoregressive Conditional heteroskedasticity (ARCH) (Engle, 1982). “Autoregressive” 

here means that the variance of some asset returns that is conditional on the information 

of previous returns is dependent on this information. GARCH (Bollerslev, 1986) is a 

generalized model of ARCH by including a lagged variance term in the model. GARCH 

is one of the most widely used conditional variance models because it is relatively 

consistent with financial market behavior. The first order GARCH(1,1) conditional 

variance model is defined as follows, 

                                   𝜎𝑡2 = 𝛽0 + 𝛽1(𝑅𝑡−1 − 𝜇)2 + 𝛽2𝜎𝑡−12                                          (8)      

                            

where 𝛽0, 𝛽1, 𝛽2  are the model parameters (𝛽𝑖 ≥ 0 (𝑖 = 0, 1, 2); 𝛽1 + 𝛽2  < 1). σt is the 

volatility of returns on day t; 𝑅𝑡−1 is the asset return on day t-1.  𝜇𝑡−1 is the mean of 

return on day 𝑡 − 1 (note this study assumes to the mean of return is a constant over time, 

therefore 𝜇𝑡 and μ are interchangeable in this study). 

Using maximum likelihood estimation method (assuming standardized residuals follow 

standard Normal Distribution), consistent estimators can be obtained for parameters 
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𝛽0,𝛽1,𝛽2,𝜇 and 𝜎1. Let these consistent estimates be  𝛽0�,𝛽1�,𝛽2�, 𝜇̂ and  𝜎1�. From Equation 

(5), the equation below can be obtained,   

                                    𝑉𝑎𝑅�𝑡,1−𝛼 = 𝜇̂ + 𝜎𝑡�𝑍𝛼                                                      (9)         

and by Equation (6) 

                                             𝐸𝑆�𝑡,1−𝛼 = 𝜇̂ + 𝜎𝑡�𝐸[𝑋𝑡|𝑋𝑡 < 𝑍𝛼]                                        (10)                                 

where 𝜎𝑡�  is obtained by back-iterating Equation (6) (t-1) times. That is,  

𝜎𝑡� =  �𝛽0� + 𝛽1�(𝑅𝑡−1 − 𝜇̂)2  + 𝛽2�𝜎�𝑡−12 , 𝜎�𝑡−1 =  �𝛽0� + 𝛽1�(𝑅𝑡−2 − 𝜇̂)2  + 𝛽2�𝜎�𝑡−22 , …, 

𝜎�2 =  �𝛽0� + 𝛽1�(𝑅1 − 𝜇̂)2  + 𝛽2�𝜎�12. 

 Another widely used conditional variance model is the Exponentially Weighted 

Moving Average (EWMA). The well known Riskmetrics (the Value at Risk model by 

J.P. Morgan) uses EWMA to estimate the volatility. The estimated one day forward 

volatility is given by the expression below (J.P. Morgan and Reuters, 1996), 

                                            𝜎𝑡 = �𝜆𝜎𝑡−1
2 + (1 − 𝜆)𝑅𝑡−1

2                                           (11) 

where σt is the volatility estimate for day t; σt−1 is the volatility on day t-1; Rt−1 is the 

return on day 𝑡 − 1;  λ is the weight given to the previous day’s volatility. (1 − λ) is the 

weight given to the previous day’s return. (λ is also referred to as the decay factor). The 

RiskMetrics model pre-sets the decay factor to be 0.94 based on empirical data on 480 

different time series data. 
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An interesting phenomenon about volatility, discussed by Black (1976), is that 

stock price movements are often negatively correlated with volatility. This is referred to 

as the leverage effect by Black (1976). Black (1976) argued that falling stock prices often 

imply an increased leverage and therefore higher market perceived uncertainty which 

leads to higher volatility. After that, the term “leverage effect” was widely used to 

describe the asymmetric behavior of volatility that for the same magnitude, losses are 

accompanied with higher volatility, compared to gains. To capture this asymmetry in 

volatility, Glosten, Jagannathan and Runkle (1993) introduced a modified GARCH by 

separating the positive and negative error terms. Its first order expression is as follows, 

                                   𝜎𝑡2 = 𝛽0 + 𝛽1𝜀𝑡−12 + 𝛽1− 𝐼𝜀<0 𝜀𝑡−12 + 𝛽2𝜎𝑡−12                                (12)        
                                 

where 𝛽𝑖 ≥ 0 (𝑖 = 0, 1, 2); β1 + β1−  > 0; 𝜀𝑡−1 is the error term at time t-1 [𝜀𝑡−1 =

𝜎𝑡−1𝑋𝑡−1, where 𝜎𝑡−1 and 𝑋𝑡−1 follow the definition in Equation (3)]; 𝐼𝜀<0 is an indicator 

function such that 𝐼𝜀<0 = 0 when  𝜀𝑡−1 ≥ 0 and 𝐼𝜀<0 = 1 when  𝜀𝑡−1 < 0. This modified 

GARCH model is referred to as GJR-GARCH(1,1). Other major models that consider 

leverage effect include EGARCH (Nelson, 1991), APARCH (Ding et al., 1993) and 

FGARCH (Hentschel, 1995). [Implied volatility is not considered in this study, since the 

focus here is on historical volatility.] 

 Another variation in parametric models is the distributional assumptions for 

returns. Studies suggest that the empirical distribution of financial asset returns often 

exhibit high kurtosis and occasionally skewness in comparison to Normal Distribution 

(Taylor, 2005). Therefore assuming normality often leads to underestimation of Value at 

Risk. In attempts to capture the high kurtosis and skewness, distributions that exhibit fat 
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tails and skewness are used in Value at Risk and Expected Shortfall models. These 

distributions include Student T (Jorion, 1997), Student T with skewness (Giot and 

Laurent, 2004), and General Error Distribution (GED) (Kuester, Mittnik and Paolella, 

2006; Fan, Zhang, Tsai and Wei, 2008). 

 

 The Non-Parametric Approach  

The non-parametric approach is also referred to as the Historical Simulation 

Method. The Historical Simulation method does not assume any distributions for return, 

so is referred to as a non-parametric method. It uses empirical percentiles to estimate 

Value at Risk and Expected Shortfall. To illustrate its Value at Risk estimation process, 

let 𝑅1,𝑅2,⋯𝑅100 be a time series of daily financial returns from day one to day one 

hundred. The series is then sorted from smallest to largest. The 𝑉𝑎𝑅101,95% is simply the 

5th return from the smallest (Best, 1999). Accordingly, the 𝐸𝑆101,95% is the average of the 

4 returns from 1st to the 4th from the smallest. The advantage of this method is apparently 

its simplicity. The disadvantage is the over reliance on past returns. 

 

The Semi–Parametric Approach   

Value at Risk (VaR) and Expected Shortfall (ES) models under semi-parametric 

approach use both parametric and non-parametric methods jointly to estimate the return 

distribution, and further estimate Value at Risk (VaR) and Expected Shortfall (ES). In the 

example above for Historical Simulation method, suppose the 5 smallest returns are used 
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to estimate the tail of the return distribution, and the 95% Value at Risk is obtained 

parametrically using an estimated tail distribution. Then, the method used above is then a 

combination of parametric and non-parametric approach, or the semi-parametric 

approach. Models under this approach include Extreme Value Theory (EVT, based on 

General Pareto Distribution), Block Maxima and Hill Estimator methods (McNeil, 1999). 

The Extreme Value Theory (EVT) model is one of most practical semi-parametric 

models for its efficient use of data (McNeil and Frey, 2000), and therefore the only semi-

parametric model examined in this study. An illustration of the EVT model is provided 

below. 

 Assuming F(𝑥) is the CDF of the random variable 𝑋 from an unknown 

distribution, the excess variable 𝑌 is defined as the excess of 𝑋 over a chosen threshold 𝑢, 

or 𝑌 = 𝑋– 𝑢 for all 𝑋 > 𝑢. Then the CDF of  𝑌 can be written as follows, 

                  𝐹𝑢(𝑦) = 𝑃{𝑋 − 𝑢 ≤ 𝑦|𝑋 > 𝑢} = 𝐹(𝑦+𝑢)−𝐹(𝑢)
1−𝐹(𝑢)

                                (13)                                    
                                 

Balkema et al. (1974) and Pickands (1975) showed that for a large class of distributions 

(including Pareto, Student T, Loggamma, Gamma, Normal, Lognormal), a positive 

function 𝛽(𝑢) can be found such that  

                   𝑙𝑖𝑚𝑢→𝑥0 𝑆𝑈𝑃0≤𝑦<𝑥0−𝑢 |𝐹𝑢 (𝑦) − 𝐺𝜉,𝛽(𝑢)(𝑦)| = 0                          (14)               
                                 

where 𝑥0 is the upper end point of distribution 𝑋, or 𝑥0 =  𝐹𝑥−1(1); 𝐺𝜉,𝛽(𝑦) is the CDF of 

General Pareto distribution (GPD),      
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    𝐺𝜉,𝛽(𝑦) =  �
1 − �1 + 𝜉𝑦

𝛽
�
−1𝜉  

   𝜉 ≠ 0

1 − 𝑒𝑥𝑝 �− 𝑦
𝛽
�       𝜉 = 0

  

where 𝛽 > 0; 𝑦 ≥ 0 when 𝜉 ≥ 0, and 0 ≤ 𝑦 ≤ −𝛽
𝜉
 when 𝜉 < 0. The theory of Balkema 

et al. (1974) and Pickands (1975) implies that if 𝑢 is chosen close enough to 𝑥0, the 

excess distribution of 𝑋, or the tail of the distribution of 𝑋 converges to GPD. Loosely 

speaking, if 𝑢 is chosen large enough, 𝐹𝑢(𝑦) =  𝐺𝜉,𝛽(𝑢)(𝑦) (McNeil and Frey, 2000). 

Thus, given 𝑋 > 𝑢, the following can be obtained, 

                        𝐹(𝑥) = �1 − 𝐹(𝑢)�𝐺𝜉,𝛽(𝑥 − 𝑢) + 𝐹(𝑢)                                  (15)                   
                                 

where 𝐹(𝑢) is the cumulative density of the chosen threshold 𝑢 (can be obtained 

empirically).  

The reason for using empirical data to estimate 𝐹(𝑢) but not 𝐹(𝑥) (for > 𝑢 ), is 

that empirical data tends to be sparse approaching to the tails. Considering the variable 𝑋 

the standardized residuals in Equation (3), Value at Risk and Expected Shortfall can be 

estimated once 𝑍𝛼 [as defined in Equation (5)] is obtained by Equation (15). Volatility 

can be assumed to follow different processes such as GARCH(1,1). The threshold 𝑢 must 

be chosen large enough so as to be close to 𝑥0 (the end point of a finite sample). 

However, for a finite sample, 𝑢 needs to be chosen in a way such that there is a large 

enough sample in excess of 𝑢. The “large enough sample” generally needs to be larger 

than 50 observations (McNeil and Frey, 2000). 
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Literature Review for Value at Risk and Expected Shortfall Model Comparisons  
 

Huang and Lin (2004) examined a number of Value at Risk models including 

EWMA-Normal Distribution (RiskMetrics), APARCH-Normal Distribution, APARCH-

Student T Distribution, and concluded that the APARCH-Normal (Distribution) model 

generates most accurate Value at Risk for financial asset returns at the lower confidence 

level (95%). At the higher confidence level (99%), Huang and Lin (2004) concluded that 

the APARCH-Student T (Distribution) model outperformed the rest of the models, using 

Taiwan Stock Exchange Index. Ünal (2011) compared the performance of Historical 

Simulation (HS), EWMA-Normal Distribution model (RiskMetrics) and the Extreme 

Value Theory (EVT) model using a variety of stock indices. The conclusion was that 

EVT had the best performance based on the numbers of exceedances. Ouyang (2009) 

reached the same conclusion in a similar study using Chinese stock index. Mittnik, 

Kuester and Paolella (2006) examined GARCH-Student T (Distribution) model, 

GARCH-skewed Student T (Distribution) model, GARCH-EVT model, and Historical 

Simulation (HS) using NASDAQ, and concluded that GARCH-EVT is the best model 

based on the number of exceedances in the out of sample test, followed by GARCH-

GED.  

Ozun, Cifter and Yimazer (2010) examined the performance of a semi-parametric 

Value at Risk and Expected Shortfall model (EVT) and parametric models (GARCH and 

FIGARCH- Student T) and concluded semi-parametric models outperform parametric 

models using ISE100 Index. McNeil and Frey (2000) reached the same conclusion as 

Ozun, Cifter and Yimazer (2010), in comparing EVT model, GARCH-Normal 

(Distribution) model and GARCH-Student T (Distribution) model using a variety of 
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financial data including stock index, individual stock, exchange rate and commodity 

returns. 

 

DATA 
 

Given the objective of this study is to analyze the accuracy and reliability of 

Value at Risk and Expected Shortfall models, the principles of choosing data in this study 

are (1) to include a variety of financial assets (equities, bonds, and commodities) that are 

exposed to daily market risks, (2) to include a sufficiently long time period of data for 

each of the selected markets, and (3) to ensure all data have the same start and end date 

for out of sample data. Based on these principles, the data used in this study include S&P 

500 Index, crude oil price, gold price and the Vanguard Long Term Bond Fund 

(Vanguard Long-Term Bond Index Fund, VBLTX : 41.11% government bonds, 51.37% 

corporate bonds and 0.47% asset backed securities. Average duration is 14.2 years).  

S&P 500 daily prices (adjusted close2) from January, 1950 to April, 2012 and 

Vanguard Long Term Bond Fund (VBLTX) daily prices (adjusted close) from March, 

1994 to April, 2012 are obtained from Yahoo Finance website. WTI (West Texas 

Intermediate) Crude oil daily prices from January, 1986 to April, 2012 are obtained from 

Energy Information Administration site. Gold (London Bullion Market) daily price from 

April, 1968 to April, 2012 are obtained from Federal Reserve Bank of St. Louis website. 

The same 1000 days (approximately 4 years from May, 2008 to April, 2012) are used as 

the out of sample data. 
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The daily returns are calculated by taking log differences of observations on two 

adjacent trading days. The descriptive statistics in Table 2.1 suggest some common 

properties of the calculated daily log returns. All four data sets have close to zero mean 

and negative skewness. The high kurtosis in all four groups of data suggests fatter tails or 

extreme changes. All computations in this study are conducted using statistical software 

R3 (2.15.1) (end note 3) with RUGARCH4  (end note 4) package and Microsoft Excel.   

 

METHODS 
 

In this study, three approaches are used for estimating Value at Risk (VaR) and 

Expected Shortfall (ES) (Appendix B). They are (1) parametric approach (11 models), (2) 

non-parametric approach (a single model, Historical Simulation), and (3) semi-parametric 

approach (a single Extreme Value Theory model). The parametric approach includes the 

widely used and most studied models (based on Normal, Student T and General Error 

Distribution). In addition, this study also uses a new parametric model, ARMA(1,1)-GJR-

GARCH(1,1)-SGED (Skewed General Error Distribution), aiming to improve the 

accuracy of existing Value at Risk (VaR) and Expected Shortfall (ES) models. The next 

section discusses the proposed new parametric model in detail.  

 

The Proposed Model: ARMA(1,1)-GJR-GARCH(1,1)-SGED 
 

 In addition to the widely used and most studied models under the three 

approaches of Value at Risk (VaR) and Expected Shortfall (ES) models, this study uses a 
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new modified parametric model, ARMA(1,1)-GJR-GARCH(1,1)-SGED, based on the 

model (ARMA(1,1)-GARCH(1,1)-Normal) by Berkowitz and O’Brien (2002). This 

model is innovative in the following three aspects. First, it captures the autocorrelation in 

returns using ARMA(1,1) process. Second, it employs GJR-GARCH(1,1) to estimate one 

day forward volatility, and captures the leverage effect (Black, 1976) in returns. Third, it 

uses a skewed fat tail distribution, skewed General Error Distribution, to model the 

extreme tails of daily returns of the selected financial assets.  

 

Using ARMA(1,1) to Capture Autocorrelation in Returns 

The demeaned ARMA(1,1) process is used to capture possible autocorrelation in the 

return time series data. Berkowitz and O’Brien (2002) find that the ARMA(1,1)-

GARCH(1,1) can achieve similar performance to the multi-variate models. Tang, Chiu 

and Xu (2003) also showed that ARMA-GARCH combination produces better results 

than GARCH alone for stock price prediction purpose. The demeaned ARMA(1,1) 

process for returns can be expressed as follows,  

                 𝑅𝑡 =  𝜇 + 𝛷(𝑅𝑡−1 − 𝜇) + 𝜀𝑡 + 𝜃𝜀𝑡−1                                      (16)                   
                                 

where 𝛷 and 𝜃 are respectively the first order AR and MA parameters to be estimated; 

𝜀𝑡 = 𝜎𝑡𝑋𝑡, where 𝑋𝑡 and 𝜎𝑡 follow the definition in Equation (3) (Note that the log return 

on day t, 𝑅𝑡 , is no longer a liner transformation of 𝑋𝑡).𝝁 is the constant mean of returns. 

The (1-α)% VaR on day t is defined as below, 

                             𝑉𝑎𝑅𝑡,1−𝛼 = 𝜇 + 𝛷 (𝑅𝑡−1 − 𝜇) + 𝜎𝑡𝑍𝛼 + 𝜃𝜎𝑡−1𝑥𝑡−1                        (17)            
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where 𝑍𝛼 is the α percentile of D(0,1); 𝑥𝑡−1 =  𝜀𝑡−1/ 𝜎𝑡−1. 

Accordingly, under ARMA(1,1)-GARCH(1,1), the Expected Shortfall is defined as 

below 

                     𝐸𝑆𝑡,1−𝛼 = 𝜇 + 𝛷 (𝑅𝑡−1 − 𝜇) + 𝜎𝑡𝐸[𝑋|𝑋 < 𝑍𝛼] + 𝜃𝜎𝑡−1𝑥𝑡−1                  (18) 

 

Using GJR-GARCH(1,1) to Estimate One Day Ahead Volatility  

 The proposed model uses GJR-GARCH(1,1) [Equation (12)] to capture the 

leverage effect (volatility asymmetry) in daily returns. For selecting the appropriate 

volatility model, Sign Bias Test (Engle and NG, 1993) is conducted as below. The 

methodology of this test is to regress the squared standardized residuals jointly on lagged 

positive and negative standardized residuals, as shown in the equation below, 

                       𝑥�𝑡2 = 𝑐0 + 𝑐1𝐼𝑥�𝑡−1<0 + 𝑐2𝐼𝑥�𝑡−1<0𝑥�𝑡−1 + 𝑐3𝐼𝑥�𝑡−1≥0𝑥�𝑡−1 + 𝜖𝑡                    (19)        
                                 

where 𝑥�𝑡 is the filtered standardized residual (the innovation variable) on day t; 

𝑐0, 𝑐1, 𝑐2 and 𝑐3 are the coefficients to be estimated; 𝜖𝑡 is the error term at time t; the 

indicator functions are defined as  

          𝐼𝑥�𝑡−1<0 =  � 1, 𝑥�𝑡−1 < 0
0,  𝑥�𝑡−1 ≥ 0 

and 

           𝐼𝑥�𝑡−1≥0 = � 1, 𝑥�𝑡−1 ≥ 0 
0, 𝑥�𝑡−1 < 0   

The estimated coefficients are then tested separately [H0: ci = 0 (i = 1,2,3)] and jointly  
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(𝐻0: 𝑐1 = 𝑐2 = 𝑐3 = 0 ). Significant coefficients from the test would suggest that there is 

leverage effect in the residuals, and that an asymmetric volatility model should be used. 

Table 2.2 reports Sign Bias Test results for GARCH(1,1), which suggest that there is 

strong evidence (small p value) that both negative and positive sign biases exist in the 

standardized residuals of S&P 500 and crude oil data. On the other hand, the test results 

for GJR-GARCH(1,1), as reported in Table 2.3, show that there is no evidence for the 

negative or positive sign biases in the standardized residuals for S&P 500. The full 

parameter estimates for ARMA(1,1)-GARCH(1,1) and ARMA(1,1)-GJR-GARCH(1,1) 

are reported in Table 2.4 and Table 2.5. Based on the Sign Bias Test results, GJR-

GARCH(1,1) is selected for the proposed new parametric model to better suit the S&P 

500 data. Based on a study by Hansen and Lunde (2005) that concluded that GJR-

GARCH is superior to a wide range of asymmetric volatility models, including EGARCH 

(Nelson, 1991), APARCH (Ding et al., 1993) and FGARCH (Hentschel, 1995) in terms 

of accuracy, GJR-GARCH is the only asymmetric model included in this study. 

  

Using Skewed General Error Distribution to Model Standardized Residuals of Returns 

Kuester, Mittnik and Paolella (2006) used a number of distributions including 

Normal, Student T and General Error Distribution (GED5 end note 5), to pair with 

ARMA-GARCH. The conclusion is that ARMA-GARCH-GED has the best out of 

sample results for Value at Risk. Inspired by a Kuester et al (2006) study, this study 

introduces a skewed General Error Distribution to pair with ARMA(1,1)-GJR-

GARCH(1,1) to capture the negative skewness in the data (all four groups of data have 
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negative skeweness as shown in Table 2.1). The method of Fernandez and Steel (1998) is 

used to introduce a skewness parameter into the pdf of GED, as follows. Considering a 

random variable X (pdf 𝑓(𝑥)), which is unimodal and symmetric about zero, or formally, 

𝑓(𝑥) = 𝑓(|𝑥|). Then the pdf of the skewed distribution is then given by introducing an 

inverse scale factor to the original pdf,  

                       𝑝 �𝑥
𝛾
� = 2

𝛾+1𝛾
�𝑓(𝑥

𝛾
)𝐼𝑥≥0 + 𝑓(𝑥𝛾) 𝐼𝑥<0�                                        (20)                 

                                 

where 𝛾 is the skewness parameter [to be estimated; when 𝛾 = 1, 𝑝 �𝑥
𝛾
� = 𝑓(𝑥)]; 𝑓(𝑥)is 

the pdf of General Error Distribution (End note 5). The indicator function I is defined as 

follows, 

 𝐼𝑥≥0 =  �1, 𝑥 ≥ 0
0, 𝑥 < 0   

and 

 𝐼𝑥<0 =  �1, 𝑥 < 0
0, 𝑥 ≥ 0 

 

Examining Goodness of Fit of Distributions Assumed by Parametric Models 
 

This section examines the goodness of fit of distributions assumed in parametric 

models using the Adjusted Pearson Goodness of Fit Test (Palm, 1996). The null 

hypothesis of the adjusted Pearson Goodness of Fit is that the observations in the sample 

being tested are from a specific distribution. The test statistic is  
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                                        𝑋2 =  ∑ (𝑂𝑖−𝐸𝑖)
𝐸𝑖

𝑚
𝑖=1                                                       (21)                      

                                 

where 𝑂𝑖 is the observed frequency of a range of observations in the sample; 𝐸𝑖 is the 

expected frequency of the same range of the known distribution; m is the number of bins 

that the distribution has been divided into. If the null hypothesis is true, then 

𝑋2asymptotically approaches to a chi-square Distribution with degree freedom n (number 

of estimated parameters). The data used here is the standardized residuals [the variable X 

in Equation (3)]. The adjusted Pearson Goodness of Fit test is conducted twice using two 

different volatility models, GARCH(1,1) and GJR-GARCH(1,1). 

The test statistics and p values are summarized in Table 2.6 for GARCH(1,1) and 

Table 2.7 for GJR-GARCH(1,1). The results (p values) suggest that the skewed Student T 

Distribution has the strongest goodness of fit for crude oil data. The skewed General 

Error Distribution (SGED) and skewed Student T Distribution (SSTD) have the strongest 

goodness of fit for S&P 500. None of the distributions has strong goodness of fit for gold 

and Vanguard Long Term Bond Fund based on the test results. To visually examine the 

goodness of fit of the five distributions (Normal, Student T, skewed Student T, General 

Error Distribution, Skewed General Error Distribution) assumed by parametric models, 

Figure 2.1-2.5 show QQ plots of these distributions to data (S&P 500 is used for 

illustration purpose). Generally on QQ plots, goodness of fit is measured by the distances 

from hollow dots (represent the data) to the straight line (represents the theoretical 

quantiles of underlying distribution), and being closer the straight line indicates a better 

fit. Skewed Student T Distribution (SSTD) and skewed General Error Distribution 
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(SGED) show stronger goodness of fit compared to the other three, based on visual 

examination. 

 

Examining Goodness of Fit of General Pareto Distribution in the Semi-Parametric Model 
(Extreme Value Theory) 
 

This section discusses the goodness of fit of the General Pareto Distribution used 

by semi-parametric model (Extreme Value Theory). It has been mentioned in the 

previous section that the first step in applying the EVT model is choosing a threshold μ. 

It has also been emphasized that μ has to be large (or small if left tail is to be estimated) 

so it is close enough to the end point of empirical distribution yet small (or large) enough 

to leave a sufficient number of observations for estimation. In this study, the 5% 

empirical percentile (of the standardized residuals of returns) is chosen, which means the 

smallest (largest loss wise) 5% of observations are used for EVT estimation. 

Standardized residuals are obtained by assuming GARCH(1,1) process for returns. The 

parameter estimation is done by Maximum Likelihood Estimation Method. Using the 

S&P 500 data for an example, the reverse signed in sample standardized residuals 

(14,683 = 15,683 [total data points] – 1,000 [out of sample data]) are sorted from smallest 

to the largest and μ is chosen such that exact 5% from the top of the observations or 734 

observations exceed μ. The 734 observations are then used for GPD parameter estimation 

by Maximum Likelihood Estimation Method. The estimated parameters, ξ (the shape 

parameter) and β (the scaling parameter) are reported in Table 2.8. The estimated ξ is 

greater than zero for all four groups of data, indicating high kurtosis (generally speaking, 

a greater-than-zero ξ indicates a heavy tailed data.). 
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To visually examine the tail goodness of fit of the estimated GPD to data, the 

theoretical tail of estimated GPD is plotted against the data (S&P 500, crude oil, gold and 

Vanguard Long Term Bond Fund) in Figure 2.6-2.9. For the purpose of Value at Risk 

estimation, it is desirable that the dots fall on or under the solid curve. Figure 2.6-2.9 

show that the tail of the estimated GPD fit the data tail well and the underestimation 

(estimated is less than data) only happens at the far left tail.  

[Goodness of fit for the Historical Simulation method (non-parametric approach) is not 

included, as this method does not contain any distribution assumptions, therefore 

goodness of fit cannot be examined].  

 

Out of Sample Test Procedures for Value at Risk and Expected Shortfall  
 

Out of Sample Test Procedure for Value at Risk 

In the previous sections, statistical tests and various plots are used to examine the 

goodness of fit of the parametric and semi-parametric models. In this section, the out of 

sample test is conducted to examine model performance against past realized returns. For 

example, the model is constructed using earlier in sample data, then tested using more 

recent out of sample data, that the model has not seen. The general procedure for a 

dynamic out of sample test can be summarized as follows [For non-parametric model – 

Historical Simulation method, skip step 2, 3, 6, and 7. The semi-parametric model – 

Extreme Value Theory model does re-estimate model parameters as described in step 6.] 
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1) Given the log return data (𝑅1, 𝑅2, 𝑅3, … , 𝑅𝑛), determine in sample (𝑅1, 𝑅2, 𝑅3 

… 𝑅𝑡−1) and out of sample data (𝑅𝑡, 𝑅𝑡+1, 𝑅𝑡+2 … 𝑅𝑛).  

2) Estimate parameters of the chosen Value at Risk models using in sample data (𝑅1, 

𝑅2, 𝑅3 … 𝑅𝑡−1). [This step applies to parametric and semi-parametric models 

only.] 

3) Estimate one day forward volatility 𝜎𝑡 using the selected conditional variance 

models [GARCH(1,1) or GJR-GARCH(1,1)]. [This step applies to parametric 

models only.] 

4) Calculate one-day 𝑉𝑎𝑅𝑡,1−𝛼 

5) Measure 𝑅𝑡 against 𝑉𝑎𝑅𝑡,1−𝛼. If 𝑅𝑡 < 𝑉𝑎𝑅𝑡,1−𝛼, then count one exceedance. 

6) Re-estimate parameters with the new in sample data (𝑅1, 𝑅2, 𝑅3, …, 𝑅𝑡). [This 

step applies to parametric models only.] 

7) Repeat step 3 – 6 for n – t + 1 times. 

8) The total number of exceedances is then compared to the expected number of 

exceedances at the given level of confidence. 

In this study, the same number of out of sample data points, 1000, is chosen to 

create comparability across data for all three financial markets. Also, choosing a 

relatively large size of out of sample data will ensure more robust results. 

A deviation to the general procedure above is that instead of re-estimating model 

parameters daily, re-estimation is done every 25 days. This is because the initial in 

sample size is large, and re-estimation with one addition of in sample data point is not 

important. For example, the S&P 500 data has 15683 observations and therefore 14683 

initial in sample observations. It is unlikely that re-estimating with one additional 
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observation would produce significantly different parameters. For the consistent out of 

sample sizes (1000), exactly 40 parameter estimations will be conducted for each of the 

four data sets.   

 

Out of Sample Test Procedure for Expected Shortfall (ES) 

Expected Shortfall (ES), on the other hand, is a measure of expected values which 

are not directly comparable to empirical data. Therefore, the Value at Risk out of sample 

test cannot be used to examine Expected Shortfall models. Instead, the method introduced 

by McNeil and Frey (2000) is used to test Expected Shortfall. The procedure is 

introduced below. 

In the case of a Value at Risk exceedance (i.e. 𝑅𝑡 < 𝑉𝑎𝑅𝑡,1−𝛼), define a new 

residual 𝑧𝑡, such that 

                                    𝑧𝑡 = 𝑥𝑡 − 𝐸[𝑋|𝑋 < 𝑍𝛼]                                                (22)        

where 𝑥𝑡 is the (GARCH or GJR-GARCH) filtered standardized residual on day t; 𝑍𝛼 is α 

percentile of distribution 𝑋𝑡 (since 𝑋𝑡 is i.i.d. as defined in Equation (3), 𝑋 is independent 

of t ).                                 

Then by Equation (16) and (18),  

                           𝑥𝑡 = 𝑅𝑡−𝜇−𝛷(𝑅𝑡−1−𝜇)−𝜃𝜎𝑡−1𝑥𝑡−1
𝜎𝑡

                                               (23)                   
                                 

                𝐸[𝑋|𝑋 < 𝑍𝛼] = 𝐸𝑆𝑡,1−𝛼−𝜇−𝛷(𝑅𝑡−1−𝜇)−𝜃𝜎𝑡−1𝑥𝑡−1
𝜎𝑡

                                 (24)                               
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Now, if the estimated Expected Shortfall (by the underlying model) is accurate, then the 

new residual 𝑧𝑡 should be an independently and identically distributed variable with zero 

mean. The one sided t test is conducted to test the null hypothesis, 

                                            𝐻0: 𝜇𝑧 = 0 Versus 𝐻1:𝜇𝑧 < 0                                              

where 𝜇𝑧 is the mean of new residual 𝑧𝑡. 

One sided t test is used because risk managers are mainly interested in detecting 

underestimation of Expected Shortfall (the absolute value of estimated Expected Shortfall 

is smaller than the absolute value of the true Expected Shortfall).  

 

Procedures for Measuring Exceedances and Confidence Interval for Value at Risk 

A confidence interval (based on Z test) is introduced here to facilitate the 

exceedance test. The confidence intervals are calculated assuming the total number of 

exceedances is random variable from a Binomial Distribution. That is, 𝑣 ~ 𝐵(Np, Npq), 

where p = (1-α)% and q = α%; N is the total number of out of sample observations. Then 

by central limit theory, 𝑣 is asymptotically normally distributed, or  𝑣−Np
�Npq

 ~ N (0, 1). The 

(1-π)% confidence interval for number of exceedances over (1-α)% level Value at Risk is 

then (𝑁𝑝 − 𝑍1−𝜋2�
𝑁𝑝𝑞, 𝑁𝑝 + 𝑍1−𝜋2�

𝑁𝑝𝑞). The 95% confidence interval is used in the 

Value at Risk out of sample test because it is not only one of the most commonly used 

confidence level (Best, 1999), but also the standard that Basel Committee adopts in 

accessing a Value at Risk models (Basel II, 2006). Since the size of out of sample 
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observations is 1000, the expected number of exceedances is 10 for 99% confidence level 

and 50 for 95% confidence level.  

 
 

OUT OF SAMPLE TEST RESULTS 
 

Value at Risk Out of Sample Test Results for All Models  
 

Table 2.9 reports the Value at Risk out of sample test results. The numbers of 

exceedances that fall outside the 95% confidence interval are shown with asterisk. 

Overall speaking, the proposed parametric model (ARMA(1,1)-GJR-GARCH(1,1)-

SGED) is the most balanced model, as it is the only model for which the numbers of 

exceedances fall within 95% confidence internal (for the Z test) for all four markets in 

this study. Figure 2.10-2.17 show plots of the estimated Value at Risk versus actual out of 

sample returns using the proposed model (eight plots for four markets at two confidence 

levels). Therefore, it is considered an adequate VaR model for all four markets.    

For S&P 500, the EVT model is superior to all other models in terms of accuracy, 

due to the smallest number of exceedances at both confidence levels. The only other 

model that passes the Z test at 95% level is the proposed parametric model (GJR-

GARCH-SGED). The Normal (Distribution) based models (EWMA-Normal, GARCH-

Normal and GJR-GARCH-Normal) and Historical Simulation (HS) have the largest 

numbers of exceedances and therefore underestimate Value at Risk.  

For crude oil, all models except for EVT performed reasonably well with all 

numbers of exceedances falling within the confidence intervals. This could be because 
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the crude oil data has relatively low kurtosis (Table 2.1).  For gold, the most accurate 

models are GARCH-GED and GARCH-SGED based (Appendix B) on the numbers of 

exceedances, followed closely by GJR-GED and GJR-SGED. Normal (Distribution) 

based parametric models and EVT all failed the Z test at 5% level (α) for Value at Risk 

(numbers of exceedances fall outside the confidence interval). 

For Vanguard Long Term Bond Fund, most parametric models are statistically 

adequate for estimating Value at Risk [except for Student T and Skewed Student T based 

models (Appendix B) at 95% confidence level]. The Historical Simulation method  (HS)  

underestimated risk evidenced by the large number of exceedances at both confidence 

levels. Extreme Value Theory (EVT, semi-parametric) overestimated Value at Risk due 

to the small number of exceedances. 

 

Expected Shortfall Out of Sample Test Results for All Models 
 

Table 2.10 reports out of sample test results for Expected Shortfall. For S&P 500 

and 95% Expected Shortfall, the null hypothesis (the Expected Shortfall residual has a 

zero mean) is rejected at 5% level for five models, EWMA-Normal, ARMA(1,1)-

GARCH(1,1)-Normal, ARMA(1,1)-GJR-GARCH(1,1)-Normal), ARMA(1,1)-

GARCH(1,1)-GED and HS model. For 99% Expected Shortfall, the null hypothesis is 

rejected at 5% level for ARMA(1,1)-GARCH(1,1)-Normal and HS models. 

For crude oil, the hypothesis is also rejected (at 5% level) for ARMA(1,1)-GJR-

GARCH(1,1)-Normal and HS for Expected Shortfall confidence level of 99%. For gold, 

the null hypothesis cannot be rejected at 5% level using non-Normal (Distribution) based 
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parametric models. Normal (Distribution) based parametric models and HS failed the t 

test at 5% level. For Vanguard Long Term Bond Fund, EWMA-Normal (Distribution) 

failed the t test for 95% Expected Shortfall. It is worth to mention that the size of sample 

data for EVT is small for this test, especially for Expected Shortfall with confidence level 

of 99%. This is due to the overestimation of EVT for Value at Risk, and the returns that 

exceed Value at Risk are too few.  

 

CHAPTER SUMMARY 
 

In this Chapter, three main Value at Risk (VaR) and Expected Shortfall (ES) 

approaches (parametric, semi-parametric and non-parametric), were analyzed. Then a 

modified parametric model was proposed, which uses ARMA(1,1) process, the GJR-

GARCH(1,1) volatility model and skewed General Error Distribution (SGED). These 

models were then compared for accuracy using out of sample test. Based on the out of 

sample results, the proposed parametric model (ARMA(1,1)-GJR-GARCH(1,1)-SGED) 

is the most balanced model for both Value at Risk (VaR) and Expected Shortfall (ES) 

based on out of sample results. It passed all Z tests at 95% confidence level for Value at 

Risk and T tests for Expected Shortfall for all four markets. Figure 2.10-2.17 show plots 

for estimated Value at Risk versus actual out of sample returns using the proposed model 

(four markets and two confidence levels).  

For S&P 500 data only, The EVT model had the smallest number of Value at Risk 

exceedances and therefore outperformed all other models. However, it overestimated 

Value at Risk for crude oil, gold and Vanguard Long Term Bond Fund, which also 
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resulted in the small sample sizes in the Expected Shortfall out of sample test. The 

Normal Distribution based parametric models (Appendix B) have the most unreliable 

performance in both Value at Risk (VaR) and Expected Shortfall (ES) out of sample 

tests. They mostly underestimated risk for all markets. 

The results above should be of value to researchers, risk managers, regulators, and 

analysts for selection of Value at Risk (VaR) and Expect shortfall (ES) models. Based on 

the results of this study, the semi-parametric model, Extreme Value Theory (EVT), is 

recommended for estimating Value at Risk for S&P 500 Index, or similar indices, likely 

due to fat tail behavior for both in sample and out of sample data. As an overall model for 

Value at Risk (VaR) and Expect shortfall (ES) for equity, bond and commodity markets, 

the proposed parametric model (AMRA(1,1)-GJR-GARCH(1,1)-SGED) is recommended 

based on the results of this study. In all cases, the Normal Distribution based parametric 

models (Appendix B) and Historical Simulation models are inadequate for estimating 

Value at Risk (VaR) and Expect shortfall (ES). 
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END NOTES
                                                           
1 𝑅𝑡 = 𝑙𝑜𝑔𝑃𝑡 − 𝑙𝑜𝑔𝑃𝑡−1, where 𝑃𝑡  is the price of some financial asset on day t and 𝑃𝑡−1  

is the price of same financial asset on day t-1. 
 
2 Adjusted close: the pre-dividend (coupon) data is adjusted to exclude the dividend 

(coupon) payout. https://help.yahoo.com/kb/finance/historical-prices-
sln2311.html?impressions=true 

 
3 A statistical freeware http://www.r-project.org/  

4 A specialized package for R http://cran.r-project.org/web/packages/rugarch/index.html 

5 PDF of Generalized Error Distribution (Giller, 2005): 

 𝑓(𝑥) = 𝜅𝑒
−0.5|𝑥−𝛼𝛽 |𝜅

21+𝜅−1𝛽Г(𝜅−1)
 

 where 𝛼,𝛽, 𝜅 are respectively the location, scale and shape parameter. 
 Г(∙) is the gamma function. 
 

https://help.yahoo.com/kb/finance/historical-prices-sln2311.html?impressions=true
https://help.yahoo.com/kb/finance/historical-prices-sln2311.html?impressions=true
http://www.r-project.org/
http://cran.r-project.org/web/packages/rugarch/index.html
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Table 2.1  Descriptive Statistics and Sources of Data (Daily Return) 

Data # Obs Mean Std-dev Min Max Skewness 
  Excess      
Kurtosis** Source 

S&P 500  15683 0.0003 0.0098 -0.2290 0.1096* -1.0384 27.83 Yahoo Finance 

Crude Oil  6640 0.0002 0.0259 -0.4064 0.1915 -0.7668 14.52 EIA 

Gold  11232 0.0003 0.0135 -0.3756 0.3589 -0.1154 104.22 FRED 

Vanguard Long Term 
 Bond Fund  4576 0.0003 0.0062 -0.0438 0.0324 -0.1004 1.82 Yahoo Finance 

Notes: Obs = observations;  
Yahoo Finance website http://finance.yahoo.com/ 
EIA = US Energy Information Administration, website http://www.eia.gov/ 
FRED = Federal Reserve Bank of St. Louis, website http://research.stlouisfed.org/ 
*For example, the maximum daily return of S&P 500 is 10.96%. 
**Kurtosis values greater than zero indicate positive kurtosis. 
 

Data: S&P 500 daily return (adj close) from 01/01/1950 to 04/30/2012; Crude oil price daily return from 01/02/1986 to 04/30/2012; Gold daily 
return from 04/02/1968 to 04/30/2012; Vanguard Long Term Bond Fund (Vanguard Long-Term Bond Index Fund, VBLTX), daily return 
(adj close) from 03/01/1994 to 04/30/2012 (41.11% government bonds, 51.37% corporate bonds and 0.47% asset backed securities. Average 
duration is 14.2 years). 

 
 

 

http://finance.yahoo.com/
http://www.eia.gov/
http://research.stlouisfed.org/
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Table 2.2  Leverage Effect Test: Sign Bias Test Results for ARMA(1,1)-GARCH(1,1) 
(Daily Returns) 

Market Test t value p value 

   S&P 500 
    

Sign Bias (𝑐1) 0.6093 0.5420 
 

Negative Sign Bias (𝑐2) 3.7870  0.0002 
 

Positive Sign Bias (𝑐3) 2.6935 0.0071 
 

Joint Effect 46.0427 0.0000 

Crude Oil 
   

 Sign Bias (𝑐1) 0.1537 0.8780 

 Negative Sign Bias (𝑐2) 3.6892 
 

0.0002 

 Positive Sign Bias (𝑐3) 2.2421 
 

0.0250 

 Joint Effect 31.4795 
 

0.0000 

Gold 
   

 Sign Bias (𝑐1) 0.3191 0.7497 

 Negative Sign Bias (𝑐2) 1.1457 0.2519 

 Positive Sign Bias (𝑐3) 0.2310 0.8173 

 Joint Effect 2.1441 0.5430 
Vanguard  

Long Term 
Bond Fund 

    
Sign Bias (𝑐1) 0.4668 0.6406 

 
Negative Sign Bias (𝑐2) 0.7504 0.4530 

 
Positive Sign Bias (𝑐3) 1.0716 0.2840 

 
Joint Effect 2.9891 0.3933 

Notes: The purpose of this test is to detect leverage effect (asymmetric volatility) in the residuals 
(return mean residual divided by standardized deviation) assuming underlying volatility model 
and distribution. Small p values suggest existence of leverage effect, which was found for much 
of the S&P 500 and crude oil data. 

 
Data: S&P 500 daily return from 01/01/1950 to 04/30/2012; Crude oil price daily return from 

01/02/1986 to 04/30/2012; Gold daily return from 04/02/1968 to 04/30/2012; Vanguard Long 
Term Bond Fund (VBLTX), daily return from 03/01/1994 to 04/30/2012. 
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Table 2.3  Leverage Effect Test: Sign Bias Test Results for ARMA(1,1)-GJR-
GARCH(1,1) (Daily Return) 

Market Test t value p value 

S&P 500 
    

Sign Bias (𝑐1) 0.9838 0.3252 
 

Negative Sign Bias (𝑐2) 1.4471 0.1479 
 

Positive Sign Bias (𝑐3) 1.5222 0.1280 
 

Joint Effect 14.8191 0.0020 

Crude Oil 
   

 Sign Bias (𝑐1) 3.8670 0.0001 

 Negative Sign Bias (𝑐2) 1.1040 0.2698 

 Positive Sign Bias (𝑐3) 2.8150 0.0049 

 Joint Effect 16.1790 0.0010 

Gold 
   

 Sign Bias (𝑐1) 0.1860 0.8525 

 Negative Sign Bias (𝑐2) 2.0545 0.0400 

 Positive Sign Bias (𝑐3) 0.0061 0.9952 

 Joint Effect 5.9358 0.1148 
Vanguard 
Long Term 
Bond Fund 

    
Sign Bias (𝑐1) 0.4233 0.6721 

 
Negative Sign Bias (𝑐2) 0.7694 0.4417 

 
Positive Sign Bias (𝑐3) 0.9986 0.3180 

 
Joint Effect 2.5649 0.4637 

Notes: The purpose of this test is to detect leverage effect (asymmetric volatility) in the standardized 
residuals (return mean residual divided by standardized deviation) of returns, assuming 
underlying volatility model and distribution; Small p values suggest existence of leverage 
effect; Leverage effect is eliminated completely for S&P 500 and partially for crude oil, when 
replacing GARCH(1,1) with GJR-GARCH(1,1) for its asymmetric nature.   

 
Data: S&P 500 daily return from 01/01/1950 to 04/30/2012; Crude oil price daily return from 

01/02/1986 to 04/30/2012; Gold daily return from 04/02/1968 to 04/30/2012; Vanguard Long 
Term Bond Fund (VBLTX), daily return from 03/01/1994 to 04/30/2012. 
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Table 2.4  Parameter Estimates for ARMA(1, 1)-GARCH(1, 1) (Daily Return) 

Market     Parameters Estimate Std. Error t value p value 

S&P 500 
 

        

 µ 0.0005 0.0000 6.6616 0.0000 

 ϕ -0.1609 0.1146 -1.4044 0.1602 

 θ 0.2644 0.1101 2.4005 0.0164 

 𝛽0 0.0000 0.0000 4.4824 0.0000 

 𝛽1 0.0830 0.0126 6.5969 0.0000 

 𝛽2 0.9114 0.0119 76.3090 0.0000 

Crude Oil 
 

        

 µ 0.0006 0.0001 4.5094 0.0000 

 ϕ -0.1436 0.1188 -1.2089 0.2267 

 θ 0.1576 0.1229 1.2827 0.1996 

 𝛽0 0.0000 0.0000 1.5845 0.1131 

 𝛽1 0.0923 0.0417 2.2114 0.0270 

 𝛽2 0.8996 0.0418 21.5059 0.0000 

Gold 
 

        

 µ 0.0001 0.0001 0.9010 0.3676 

 ϕ -0.7109 0.0525 -13.5438 0.0000 

 θ 0.7406 0.0383 19.3445 0.0000 

 𝛽0 0.0000 0.0000 1.0724 0.2835 

 𝛽1 0.0946 0.0147 6.4568 0.0000 

 𝛽2 0.9044 0.0213 42.5261 0.0000 
Vanguard 

Long Term 
Bond Fund 

 
        

 µ 0.0003 0.0001 4.7679 0.0000 
 ϕ 0.7927 0.0679 11.6682 0.0000 
 θ -0.8245 0.0629 -13.1000 0.0000 
 𝛽0 0.0000 0.0000 1.4401 0.1498 
 𝛽1 0.0354 0.0026 13.4456 0.0000 
 𝛽2 0.9548 0.0025 376.9083 0.0000 

Notes: Table shows parameter estimates and their statistical significance. ARMA(1,1) parameters (ϕ and θ) 
are shown to be most significant for Gold and Vanguard Long Term Bond Fund. GARCH parameters 
(𝛽0, 𝛽1 and 𝛽2) are shown to be mostly significant in all four markets. 

 
Data: S&P 500 daily return from 01/01/1950 to 04/30/2012; Crude oil price daily return from 01/02/1986 to 

04/30/2012; Gold daily return from 04/02/1968 to 04/30/2012; Vanguard Long Term Bond Fund 
(VBLTX), daily return from 03/01/1994 to 04/30/2012. 
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Table 2.5  Parameter Estimates for ARMA(1, 1)-GJR-GARCH(1, 1) (Daily Returns) 

Market     Parameters Estimate Std. Error t value p value 
S&P 500 

 
        

 µ 0.0003 0.0001 2.5879 0.0097 

 ϕ 0.7776 0.0461 16.8795 0.0000 

 θ -0.7907 0.0455 -17.3595 0.0000 

 𝛽0 0.0000 0.0000 2.8215 0.0048 

 𝛽1 0.0103 0.0102 1.0079 0.3135 

 𝛽2 0.9103 0.0226 40.3017 0.0000 

   𝛽1− 0.1256 0.0345 3.6365 0.0003 

Crude Oil 
 

        
 μ 0.0004 0.0002 1.7641 0.0777 

 ϕ 0.8534 0.0597 14.2933 0.0000 

 θ -0.8807 0.0551 -15.9761 0.0000 

 𝛽0 0.0000 0.0000 2.9261 0.0034 

 𝛽1 0.0963 0.0183 5.2671 0.0000 

 𝛽2 0.9019 0.0163 55.3443 0.0000 

   𝛽1− -0.0063 0.0116 -0.5443 0.5862 

Gold 
 

        
 µ 0.0001 0.0001 1.3355 0.1817 

 ϕ -0.7380 0.0493 -14.9756 0.0000 

 θ 0.7631 0.0386 19.7473 0.0000 

 𝛽0 0.0000 0.0000 1.1339 0.2568 

 𝛽1 0.1056 0.0161 6.5595 0.0000 

 𝛽2 0.9137 0.0201 45.5324 0.0000 

   𝛽1− -0.0405 0.0123 -3.2844 0.0010 
Vanguard  
Long-term 
Bond Fund 

 
        

 μ 0.0003 0.0001 4.9467 0.0000 
 ϕ 0.7990 0.0666 12.0036 0.0000 
 θ -0.8305 0.0613 -13.5482 0.0000 
 𝛽0 0.0000 0.0000 1.4207 0.1554 
 𝛽1 0.0365 0.0037 9.8203 0.0000 
 𝛽2 0.9567 0.0019 510.5048 0.0000 
   𝛽1− -0.0040 0.0060 -0.6616 0.5082 

Notes: Table shows parameter estimates and their statistical significance. ARMA(1,1) parameters (ϕ and θ) 
are shown to be most significant for Gold and Vanguard Long Term Bond Fund. GARCH 
parameters (β0 , β1  and β2 ) are shown to be mostly significant in all four markets. The GJR 
parameter, β1−, is significant for S&P 500 and gold.  

 
Data: S&P 500 daily return from 01/01/1950 to 04/30/2012; Crude oil price daily return from 01/02/1986 

to 04/30/2012; Gold daily return from 04/02/1968 to 04/30/2012; Vanguard Long Term Bond Fund 
(VBLTX), daily return from 03/01/1994 to 04/30/2012.      
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Table 2.6  Pearson Goodness-of-Fit Statistic Test Results for Five Distributions, ARMA(1,1)-GARCH(1,1) 
(Daily Return) 

 
Market   S&P 500   Crude Oil   Gold   

Vanguard Long Term 
Bond Fund 

Test # bin 
 

    statistic     p value 
 

   statistic   p value 
 

   statistic p value 
 

 statistic p value 
    

 
Normal 

1 20 
 

282.8 6.64E-49 
 

121.0 7.18E-17 
 

584.2 1.10E-111 
 

578.4 1.85E-110 
2 30 

 
323.7 1.58E-51 

 
129.3 1.28E-14 

 
647.8 7.54E-118 

 
632.6 1.11E-114 

3 40 
 

350.2 1.14E-51 
 

153.3 1.80E-15 
 

726.0 1.91E-127 
 

623.7 1.93E-106 
4 50 

 
373.5 1.69E-51 

 
170.8 2.16E-15 

 
756.1 2.02E-127 

 
708 1.21E-117 

    
 

Student T 
1 20 

 
64.0 8.94E-07 

 
27.4 0.09602 

 
140.2 1.68E-20 

 
91820 0 

2 30 
 

93.7 9.59E-09 
 

32.9 0.28326 
 

181.8 4.65E-24 
 

142606 0 
3 40 

 
89.0 8.92E-06 

 
38.9 0.47313 

 
214.6 4.03E-26 

 
193433 0 

4 50 
 

108.8 1.98E-06 
 

56.6 0.21172 
 

209.9 8.43E-22 
 

244278 0 
    

 
Skewed Student T 

1 20 
 

48.3 0.0002305 
 

15.8 0.6721 
 

144.7 2.30E-21 
 

91820 0 
2 30 

 
59.7 0.0006649 

 
22.8 0.7869 

 
180.5 8.00E-24 

 
142606 0 

3 40 
 

70.9 0.0013501 
 

29.9 0.8514 
 

218.5 7.96E-27 
 

193433 0 
4 50 

 
86.5 0.0007548 

 
43.4 0.6973 

 
216.1 7.47E-23 

 
244278 0 

    
 

GED 
1 20 

 
67.5 2.37E-07 

 
57.2 1.06E-05 

 
72.6 3.36E-08 

 
16679 0 

2 30 
 

80.2 1.09E-06 
 

59.7 6.68E-04 
 

95.4 5.18E-09 
 

20939 0 
3 40 

 
88.0 1.21E-05 

 
69.1 2.09E-03 

 
120.5 2.99E-10 

 
25431 0 

4 50 
 

104.1 7.50E-06 
 

84.9 1.12E-03 
 

128.7 4.49E-09 
 

30640 0 
    

 
Skewed GED 

1 20 
 

43.3 0.001177 
 

44.9 0.000705 
 

70.2 8.54E-08 
 

17724 0 
2 30 

 
43.6 0.039921 

 
49.4 0.010549 

 
92.9 1.30E-08 

 
21129 0 

3 40 
 

57.0 0.031558 
 

62.4 0.010184 
 

123.4 1.09E-10 
 

25631 0 
4 50 

 
77.0 0.0065   72.9 0.014959   132.0 1.53E-09   30938 0 
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Table 2.6 (continued) 

Note: The purpose of this test is to examine the goodness of fit of the distributions assumed by parametric models. Test is conducted for five 
distribution assumptions for four markets, assuming daily returns follow ARMA(1,1) process, and the volatility follows GARCH(1,1) 
process. Data are grouped into 20, 30, 40 and 50 bins for each market, and the test is conducted independently for each of these bin 
numbers used. The results suggest that Skewed GED is the best fit for S&P 500 and skewed Student T Distribution is the best fit for 
crude oil. None of the distributions fits well with gold and Vanguard Long Term Bond Fund. 

 
Data: S&P 500 daily return from 01/01/1950 to 04/30/2012; Crude oil price daily return from 01/02/1986 to 04/30/2012; 

Gold daily return from 04/02/1968 to 04/30/2012; Vanguard Long Term Bond Fund (VBLTX), daily return from 03/01/1994 to 
04/30/2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 



41 
 

Table 2.7  Pearson Goodness-of-Fit Statistic Test Results for Five Distributions, ARMA(1,1)-GJR-
GARCH(1,1) (Daily Return) 

Market   S&P 500   Crude Oil   Gold   
Vanguard Long Term 

Bond Fund 
Test # bin 

 
statistic      p value    statistic  p value     statistic p value   statistic p value 

    
 

Normal 
1 20 

 
248.8 5.41E-42 

 
125.7 9.50E-18 

 
576.5 4.62E-110 

 
579.6 1.01E-110 

2 30 
 

275.7 5.02E-42 
 

136.0 8.64E-16 
 

655.7 1.73E-119 
 

623.4 9.06E-113 
3 40 

 
308.3 1.41E-43 

 
163.5 3.47E-17 

 
739.8 2.73E-130 

 
628.8 1.72E-107 

4 50 
 

304.7 1.27E-38 
 

177.3 1.99E-16 
 

771.9 1.25E-130 
 

722 1.80E-120 
    

 
Student T 

1 20 
 

52.0 6.70E-05 
 

31.7 0.03422 
 

143.5 3.93E-21 
 

82597 0 
2 30 

 
72.5 1.35E-05 

 
37.4 0.13628 

 
178.8 1.69E-23 

 
128281 0 

3 40 
 

79.3 1.46E-04 
 

44.4 0.25593 
 

208.3 5.53E-25 
 

174002 0 
4 50 

 
94.3 1.07E-04 

 
55.0 0.25878 

 
211.3 4.75E-22 

 
219740 0 

    
 

Skewed Student T 
1 20 

 
37.0 0.008061 

 
14.9 0.7302 

 
146.4 1.10E-21 

 
82597 0 

2 30 
 

50.5 0.008021 
 

16.3 0.9723 
 

185.8 8.54E-25 
 

128281 0 
3 40 

 
55.3 0.043349 

 
30.9 0.8179 

 
214.6 3.95E-26 

 
174002 0 

4 50 
 

67.3 0.042597 
 

36.9 0.8982 
 

216.1 7.50E-23 
 

219740 0 
    

 
GED 

1 20 
 

66.4 3.56E-07 
 

57.1 1.11E-05 
 

72.9 3.04E-08 
 

13766 0 
2 30 

 
68.7 4.60E-05 

 
63.1 2.50E-04 

 
94.2 8.24E-09 

 
18280 0 

3 40 
 

94.2 1.81E-06 
 

68.9 2.20E-03 
 

122.9 1.29E-10 
 

23027 0 
4 50 

 
110.3 1.29E-06 

 
86.9 6.87E-04 

 
111.0 1.04E-06 

 
26615 0 

    
 

Skewed GED 
1 20 

 
46.7 0.0003964 

 
49.7 0.000146 

 
70.2 8.67E-08 

 
12963 0 

2 30 
 

55.0 0.002494 
 

47.8 0.015554 
 

89.5 4.36E-08 
 

17781 0 
3 40 

 
59.7 0.0179324 

 
68.0 0.002755 

 
113.7 3.17E-09 

 
22805 0 

4 50 
 

73.2 0.0142492   74.3 0.011254   106.7 3.68E-06   25743 0 
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Table 2.7 (continued) 

Note: The purpose of this test is to examine the goodness of fit of the distributions assumed by parametric models. Test is conducted for five 
distribution assumptions for four markets, assuming daily returns follow ARMA(1,1) process, and the volatility follows GJR-
GARCH(1,1) process. Data are grouped into 20, 30, 40 and 50 bins for each market, and the test is conducted independently for each 
of these bin numbers used. The result suggests that Skewed Student T is the best fit for S&P 500, closely followed by skewed GED. 
Student T, skewed Student T and Skewed GED (with 50 bins) are all acceptable for crude oil at 99% level. None of the distributions 
fit well with gold and Vanguard Long Term Bond Fund. 

 
Data: S&P 500 daily return from 01/01/1950 to 04/30/2012; Crude oil price daily return from 01/02/1986 to 04/30/2012; 

            Gold daily return from 04/02/1968 to 04/30/2012; Vanguard Long Term Bond Fund (VBLTX), daily return from 03/01/1994 to 
         04/30/2012.  
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Table 2.8  Parameter Estimates for Extreme Value Theory (EVT) (Daily return, In Sample Data) 

  S&P 500   Crude Oil   Gold   
Vanguard   

Long Term Bond Fund 

ξ 0.2993045* 
 

0.1608582 
 

0.257962 
 

0.0360845 

β 0.4662844 
 

0.6627524 
 

0.620441 
 

0.5634607 
Note:  ξ and β are the shape and scaling parameters in the CDF of General Pareto Distribution respectively. A greater than 

zero ξ indicates fat tails. Threshold u is chosen to be the 95% percentile of empirical distribution. 
*For example, for S&P 500, ξ = 0.2993045 indicates that the original distribution of S&P 500 daily returns contains fat tails,  
since it is greater than zero (the lower 5% of the daily return distribution is used for EVT estimation) . 

 
Data: S&P 500 daily return from 01/01/1950 to 05/12/2008; Crude oil price daily return from 01/02/1986 to 05/12/2008; Gold daily return 

from 04/02/1968 to 05/15/2008; Vanguard Long Term Bond Fund (VBLTX), daily return from 03/01/1994 to 05/12/2008. 
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Table 2.9  Value at Risk Out of Sample Results: Number of Exceedances (Daily Return) 

Market 
VaR 
confd  

EWMA-
Norm 

ARMA-
GARCH-

Norm 

ARMA-
GARCH-

STD 

ARMA-
GARCH-

SSTD 

ARMA-
GARCH-

GED 

ARMA-
GARCH-

SGED 

ARMA-
GJR-
Norm 

ARMA-
GJR-
STD 

ARMA-
GJR-
SSTD 

ARMA-
GJR-
GED 

ARMA-
GJR-
SGED EVT HS 

S&P 500                             

 
99%   27*   26*   21*   18*   21* 16   28*   17* 15   17* 15 8    68* 

  95%   64*   69*   72*   69*   68*   67*   67*   70*   68*   67* 62 43  140* 

Crude Oil   
             

 
99% 14 16 9 7 10 7 12 9 7 10 7   3*   19* 

  95% 52 53 61 58 56 51 55 61 58 56 51   21*   80* 

Gold   
             

 
99%   23*   20* 13 13 12 12   20* 14 14 12 12   3* 16 

  95% 54 52   65*   64* 56 56 52 63 63 57 57   28*   84* 
Vanguard LT 

Bond Fund   
             

 
99% 11 15 9 9 9 10 15 9 9 10 10   3* 35* 

  95% 56 61   64*   64* 60 60 63   64*   64* 60 60  35* 125* 
Note: The expected number of Value at Risk exceedances is 10 for 99% confidence level and 50 for 95% confidence level, given 1000 out of 

sample observations. More exceedances indicate the model underestimates Value at Risk, and fewer exceedances indicate the model 
overestimates Value at Risk. Z test confidence intervals are obtained by assuming each number of exceedances follows a Binomial 
Distribution. For 99% Value at Risk, the 95% confidence level is (3.83, 16.17). For 95% Value at Risk, the 95% confidence level is (36.49, 
63.51).  
* indicates that the number of exceedances fall outside 95% confidence interval. ARMA-GJR-SGED model is the only model that passes the 
Z test at both confidence levels for all four markets.  
ARMA = ARMA(1,1), GARCH = GARCH(1,1), GJR = GJR-GARCH(1,1), EWMA-Norm model has a fixed λ = 0.94.  

 
Data:  Out of sampled data, S&P 500 daily return from 05/13/2008 to 04/30/2012; Crude oil price daily return from 05/13/2008 to 04/30/2012; Gold 

daily return from 05/16/2008 to 04/30/2012; Vanguard Long Term Bond Fund (VBLTX), daily return from 05/12/2008 to 04/30/2012. N = 
1000.  
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Table 2.10  Expected Shortfall Out of Sample Test Results: P Values (Daily Return) 

Note:  t-test with 𝐻0: 𝜇𝑧 = 0 vs. 𝐻1: 𝜇𝑧 > 0, where z is the difference between out of sample returns and calculated Expected Shortfall 
Small p values indicate less reliable Expected Shortfall. 
* indicates that model fails the 95% one sided t test. For example, the t test p value for EWMA-Norm and S&P 500 is 0.0009, based on which 
the null hypothesis (the estimated Expected Shortfall is reliable) is rejected at 5% level.  

           ARMA = ARMA(1,1), GARCH = GARCH(1,1), GJR = GJR-GARCH(1,1), EWMA-Norm model has a fixed λ = 0.94 
 
Data: Out of sample data, S&P 500 daily return from 05/13/2008 to 04/30/2012; Crude oil price daily return from 05/13/2008 to 04/30/2012; Gold daily 

return from 05/16/2008 to 04/30/2012; Vanguard Long Term Bond Fund (VBLTX), daily return from 05/12/2008 to 04/30/2012. N = 1000. 
 

 

Market 
 EWMA-

Norm 

ARMA-
GARCH-

Norm 

ARMA-
GARCH-

STD 

ARMA-
GARCH-

SSTD 

ARMA-
GARCH-

GED 

ARMA-
GARCH-

SGED 

ARMA-
GJR-
Norm 

ARMA-
GJR-
STD 

ARMA-
GJR-
SSTD 

ARMA-
GJR-
GED 

ARMA-
GJR-
SGED EVT  HS 

ES 
Confd 

S&P 500                             

 
99% 0.0530  0.0182* 0.7479 0.7272 0.3067 0.1760 0.0855 0.3382 0.5614 0.1149 0.2676 0.9880 0.0004* 

 
95%   0.0009*  0.0001* 0.0580 0.1964  0.0448* 0.1258   0.0004* 0.0815 0.2797 0.0878 0.2243 1.0000 0.0000* 

Crude Oil                             

 
99% 0.0578 0.0684 0.8451 0.7513 0.5841 0.3889   0.0492* 0.8469 0.7631 0.5817 0.3756  0.7278 0.0020* 

 
95% 0.1599 0.5773 0.9932 0.9998 0.9873 0.9918 0.4913 0.9932 0.9998 0.9864 0.9940  0.9611 0.4867 

Gold                             

 
99% 0.0876  0.0235* 0.9931 0.9927 0.8559 0.8320   0.0254* 1.0000 1.0000 0.9702 0.9984 0.9999 0.0073* 

 
95%   0.0126*  0.0036* 0.7477 0.7416 0.6845 0.6456   0.0050* 0.7608 0.7694 0.7197 0.7382 0.9465 0.0916 

Vanguard LT  
Bond Fund                             

 
99% 0.1323 0.1270 0.5448 0.6294 0.5089 0.5243 0.1321 0.4872 0.4409 0.3416 0.3894 0.3803 0.5000 

  95%   0.0467* 0.0697 0.7883 0.8538 0.7507 0.7322 0.0595 0.7332 0.7407 0.6992 0.6878 0.9219 0.5000 
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Figure 2.1  QQ Plot for S&P 500 (Daily Return Standardized Residuals, 1950-2012): ARMA(1,1)-GJR-
GARCH(1,1)-Norm (Normal Distribution)  

 

Notes: The solid straight line represents theoretical Normal quantiles, the hollow dots represent actual return standardized residuals. 
 The hollow dots falling on or close to the solid straight line would indicate that the underlying distribution fits the data well. 
 This figure suggests that Normal Distribution fits the data poorly. 

  
 Data: S&P 500 daily return from 01/01/1950 to 04/30/2012, entire data time period.  

Return standardized residual is defined as return mean residual divided by standardized deviation. 
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Figure 2.2  QQ Plot for S&P 500 (Daily Return Standardized Residuals, 1950-2012): ARMA(1,1)-GJR-
GARCH(1,1)-STD (Student T Distribution) 

 

Notes:  The solid straight line represents theoretical quantiles of Student T with DOF = 7.367265. The hollow dots represent actual 
return standardized residuals. The hollow dots falling on or close to the solid straight line would indicate that the 
underlying distribution fits data well. 
Comparing to Figure 2.1 (Normal Distribution), Student T Distribution better fits the left tail and right tail of return 
standardized residuals distribution. Standardized residual is defined as return mean residual divided by standardized 
deviation 
 

Data: S&P 500 daily Index return from 01/01/1950 to 04/30/2012, entire data time period 
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Figure 2.3  QQ Plot for S&P 500 (Daily Return Standardized Residuals, 1950-2012): ARMA(1,1)-GJR-
GARCH(1,1)-SSTD (Skewed Student T Distribution) 

 

Notes: The solid straight line represents theoretical quantiles of Student T with DOF = 7.435878; Skewness = 0.943460; 
The hollow dots represent actual return standardized residuals. The hollow dots falling on or close to the solid straight line 
indicate that the underlying distribution fits data well. Skewed Student T Distribution fits the data better than both Student T 
(Figure 2.2) and Normal Distribution (Figure 2.1).  Standardized residual is defined as return mean residual divided by 
standardized deviation. 
 

Data: S&P 500 daily Index return from 01/01/1950 to 04/30/2012, entire data time period. 
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Figure 2.4  QQ Plot for S&P 500 (Daily Return Standardized Residuals, 1950-2012): ARMA(1,1)-GJR-
GARCH(1,1)-GED (General Error Distribution) 

 

Notes: The solid straight line represents theoretical quantiles of GED with Κ (shape) = 1.374324. 
The hollow dots represent actual return standardized residuals. The hollow dots falling on or close to the solid straight line 
indicate that     the underlying distribution fits data well.  
This figure shows GED is superior to Normal Distribution (Figure 2.1) in approximating standardized residuals. However, it 
is inclusive that GED is superior to Student T (Figure 2.2) or skewed Student T Distribution (Figure 2.3). 
Standardized residual is defined as return mean residual divided by standardized deviation. 

 
Data: S&P 500 daily Index return from 01/01/1950 to 04/30/2012, entire data time period.  
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Figure 2.5  QQ Plot for S&P 500 (Daily Return Standardized Residuals, 1950-2012): ARMA(1,1)-GJR-
GARCH(1,1)-SGED (Skewed General Error Distribution) 

 

Note: The solid straight line represents theoretical quantiles of SGED with Κ (shape) = 1.387967; Skewness = 0.937046 
The Hollow dots represent actual return standardized residuals. The hollow dots falling on or close to the solid straight line 
indicate that the underlying distribution fits the data well.  
This figure shows that SGED fits the data better than Normal Distribution (Figure 2.1), Student T Distribution (Figure 2.2), 
and GED Distribution (Figure 2.4). Standardized residual is defined as return mean residual divided by standardized 
deviation. 
 

Data: S&P 500 daily return from 01/01/1950 to 04/30/2012, entire data time period. 
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Figure 2.6  Extreme Value Theory (EVT): Actual Versus Estimated Left Tail for S&P 500 
(Standardized Residuals) 

 

 
Notes: Solid line represents the estimated left tail by EVT. Dots represent actual data. Dots sitting above the solid line suggest 

underestimation of risk by EVT at the corresponding percentile, and vice versa. Figure suggests that EVT captures the tail 
risk well. The threshold u is chosen to be the lower 5 percentile of the in sample returns. 

 Residuals are obtained by assuming GARCH(1,1). 
 
Data: S&P 500 daily Index daily return, the lower 5% of the in sample data (from 01/01/1950 to 04/30/2012). 
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Figure 2.7  Extreme Value Theory (EVT): Actual Versus Estimated Left Tail for Crude Oil 
(Standardized Residuals) 

 

Note: Solid line represents the estimated left tail by EVT. Dots represent actual left tail. Dots sitting above the solid line suggest 
underestimation of risk by EVT at the corresponding percentile, and vice versa. Figure suggests that EVT overestimates risk 
except in the far left tail. The threshold u is chosen to the lower 5 percentile of the in sample returns. 

           Residuals are obtained by assuming GARCH(1,1). 
 
 
Data: crude oil daily return, the lower 5% of the in sample data (from 01/02/1986 to 05/12/2008). 



53 
 

Figure 2.8  Extreme Value Theory (EVT): Actual Versus Estimated Left Tail for Gold (Standardized 
Residuals) 

 

Note: Solid line represents the estimated left tail by EVT. Dots represent actual left tail. Dots sitting above the solid line suggest 
underestimation of risk by EVT at the corresponding percentile, and vice versa. Figure suggests that EVT overestimates risk 
except in the far left tail.  The threshold u is chosen to be the lower 5 percentile of the in-sample returns. 

           Residuals are obtained by assuming GARCH(1,1). 
 
 
Data: gold daily returns, the lower 5% of the in sample data (from 04/02/1968 to 05/15/2008) 
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Figure 2.9  Extreme Value Theory (EVT): Actual Versus Estimated Left Tail for Vanguard Long Term 
Bond Fund (Standardized Residuals) 

 

Note: Solid line represents the estimated left tail by EVT. Dots represent actual left tail. Dots sitting above the solid line suggest 
underestimation of risk by EVT at the corresponding percentile, and vice versa. Figure suggests that EVT overestimates risk 
except in the far left tail. The threshold u is chosen to be lower 5 percentile of the in-sample returns. 

 Residuals are obtained by assuming GARCH(1,1). 
  

Data: Vanguard Long Term Bond Fund (VBLTX) daily return, the lower 5% of the in sample data (from 03/01/1994 to 
05/12/2008). 
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Figure 2.10  Actual Daily Return Versus Estimated Value at Risk (Model: ARMA(1,1)-GJR-
GARCH(1,1)-SGED, Data: Out of Sample S&P 500 Daily Return N=1000, Confidence 
Level = 99%)  

  

  
   
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Note: Figure compares Value at Risk estimted by the proposed parametric model, ARMA(1,1)-GJR-GARCH(1,1)-SGED and 
actual S&P 500 return on each of 1000 out of sample days. Dots represent log daily returns of S&P 500. Solid line 
represents estimated Value at Risk at 99% confidence level by the proposed parametric model, GJR-GARCH(1,1)-SGED. 

 
Data: S&P 500 log daily return from 05/13/2008 to 04/30/2012. N = 1000. 
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Figure 2.11  Actual Daily Return Versus Estimated Value at Risk (Model: ARMA(1,1)-GJR-
GARCH(1,1)-SGED, Data: Out of Sample S&P 500 Daily Return N=1000, Confidence 
Level = 95%)     

 
Note: Figure compares Value at Risk estimted by the proposed parametric model, ARMA(1,1)- GJR-GARCH(1,1)-SGED and 

actual S&P 500 return on each of 1000 out of sample days. Dots represent log daily returns of S&P 500. Solid line represents 
estimated Value at Risk at 95% confidence level by the proposed parametric model, GJR-GARCH(1,1)-SGED. 

 
Data: S&P 500 log daily return from 05/13/2008 to 04/30/2012. N = 1000. 
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Figure 2.12  Actual Daily Return Versus Estimated Value at Risk (Model: ARMA(1,1)-GJR-
GARCH(1,1)-SGED, Data: Out of Sample Crude Oil Daily Return N=1000, Confidence 
Level = 99%) 

 

Note: Figure compares Value at Risk estimted by the proposed parametric model, ARMA(1,1)-GJR-GARCH(1,1)-SGED and 
actual crude oil return on each of 1000 out of sample days. Dots represent log daily returns of crude oil. Solid line 
represents estimated Value at Risk at 99% confidence level by the proposed parametric model, GJR-GARCH(1,1)-SGED. 

 
Data: Crude oil daily return from 05/13/2008 to 04/30/2012. N = 1000. 
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Figure 2.13  Actual Daily Return Versus Estimated Value at Risk (Model: ARMA(1,1)-GJR-
GARCH(1,1)-SGED, Data: Out of Sample Crude Oil Daily Return N=1000, Confidence 
Level = 95%) 

  

 

Note: Figure compares Value at Risk estimted by the proposed parametric model, ARMA(1,1)-GJR-GARCH(1,1)-SGED and actual 
crude oil return on each of 1000 out of sample days. Dots represent log daily returns of crude oil. Solid line represents 
estimated Value at Risk at 95% confidence level by the proposed parametric model, GJR-GARCH(1,1)-SGED. 

 
Data: Crude oil daily return from 05/13/2008 to 04/30/2012. N = 1000. 
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Figure 2.14  Actual Daily Return Versus Estimated Value at Risk (Model: ARMA(1,1)-GJR-
GARCH(1,1)-SGED, Data: Out of Sample Gold Daily Return N=1000, Confidence Level = 
99%) 

 
Note: Figure compares Value at Risk estimted by the proposed parametric model, ARMA(1,1)-GJR-GARCH(1,1)-SGED and actual 

gold return on each of 1000 out of sample days. Dots represent log daily returns of gold. Solid line represents estimated 
Value at Risk at 99% confidence level by the proposed parametric model, GJR-GARCH(1,1)-SGED. 

 
Data: Gold daily return from 05/16/2008 to 04/30/2012. N = 1000. 
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Figure 2.15  Actual Daily Return Versus Estimated Value at Risk (Model: ARMA(1,1)-GJR-
GARCH(1,1)-SGED, Data: Out of Sample Gold Daily Return N=1000, Confidence Level = 
95%) 

 
Note: Figure compares Value at Risk estimted by the proposed parametric model, ARMA(1,1)-GJR-GARCH(1,1)-SGED and actual 

gold return on each of 1000 out of sample days. Dots represent log daily returns of gold. Solid line represents estimated 
Value at Risk at 95% confidence level by the proposed parametric model, GJR-GARCH(1,1)-SGED. 

 
Data: Gold daily return from 05/16/2008 to 04/30/2012. N = 1000. 
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Figure 2.16  Actual Daily Return Versus Estimated Value at Risk (Model: ARMA(1,1)-GJR-
GARCH(1,1)-SGED, Data: Out of Sample Vanguard Long Term Bond Fund Daily 
Return N=1000, Confidence Level = 99%) 

 

Note: Figure compares Value at Risk estimted by the proposed parametric model, ARMA(1,1)-GJR-GARCH(1,1)-SGED and actual 
Vanguard Long Term Bond Fund return on each of 1000 out of sample days. Dots represent log daily returns of Vanguard 
Long Term Bond Fund. Solid line represents estimated Value at Risk at 99% confidence level by the proposed parametric 
model, GJR-GARCH(1,1)-SGED. 

 
Data: Vanguard Long Term Bond Fund (VBLTX), daily return from 03/01/1994 to 04/30/2012. N = 1000.  
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Figure 2.17  Actual Daily Return Versus Estimated Value at Risk (Model: ARMA(1,1)-GJR-
GARCH(1,1)-SGED, Data: Out of Sample Vanguard Long Term Bond Fund Daily 
Return N=1000, Confidence Level = 95%) 

 

 
 
 

Note: Figure compares Value at Risk estimted by the proposed parametric model, ARMA(1,1)-GJR-GARCH(1,1)-SGED and actual 
Vanguard Long Term Bond Fund return on each of 1000 out of sample days. Dots represent log daily returns of Vanguard 
Long Term Bond Fund. Solid line represents estimated Value at Risk at 95% confidence level by the proposed parametric 
model, GJR-GARCH(1,1)-SGED. 

 
Data: Vanguard Long Term Bond Fund (VBLTX), daily return from 03/01/1994 to 04/30/2012. N = 1000.
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CHAPTER 3 

SUMMARY 

PROBLEM AND OBJECTIVE 
 

Value at Risk (VaR) and Expected Shortfall (ES) are methods that are often used 

to measure market risk. This is the risk that the value of an asset will be adversely 

affected by the movements in financial markets, such as equity markets, bond markets, 

and commodity markets. Inaccurate and unreliable Value at Risk and Expected Shortfall 

models can lead to underestimation of market risk that a firm or financial institution is 

exposed to, and therefore may jeopardize the well-being or survival of the firm or 

financial institution during adverse market movements. Crotty (2009) argued that using 

(inaccurate) Value at Risk models led to inadequate capital reserves in large banks, and 

therefore this was one of the causes of the 2008 US financial crisis. For example, past 

Value at Risk models have often assumed the Normal Distribution, when in reality 

markets often have fatter tail distributions. As a result, Value at Risk models based on the 

Normal Distribution have often underestimated risk. The objective of this study is 

therefore to examine various Value at Risk and Expected Shortfall models, including 

fatter tail models, in order to analyze the accuracy and reliability of these models. 
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DATA AND METHODS 
 

The principles for selecting data in this study are (1) to include a variety of 

financial assets (equities, bonds, and commodities) that are exposed to daily market risk, 

(2) to include a sufficiently long time period of data for each of the selected markets, and 

(3) to ensure all data have the same start and end date for out of sample data. Based on 

these principles, data used in this study include daily returns of S&P 500 Index, crude oil, 

gold and the Vanguard Long Term Bond Fund (VBLTX). S&P 500 daily prices from 

January, 1950 to April, 2012 and Vanguard Long Term Bond Fund daily prices 

(VBLTX) from March, 1994 to April, 2012 are obtained from Yahoo Finance website. 

Crude oil daily prices from January, 1986 to April, 2012 are obtained from US Energy 

Information Administration (EIA) website. Gold daily prices from April, 1968 to April, 

2012 are obtained from Federal Reserve Bank of St. Louis website. The same 1000 days 

(approximately four years from May, 2008- April, 2012) are used as the out of sample 

data in the out of sample test, to create comparability across data sets. 

Three approaches are used for estimating Value at Risk and Expected Shortfall 

(Appendix B). They are (1) parametric approach (including 11 models), (2) a single 

model non-parametric approach [Historical Simulation (HS)], and (3) a single model 

semi-parametric approach [Extreme Value Theory (EVT), with the use of General Pareto 

Distribution]. The parametric models used in this study involve three volatility models 

including Exponential Weighted Moving Average (EWMA), GARCH(1,1), and GJR-

GARCH(1,1), and three distribution assumptions including Normal, Student T, General 

Error Distribution (GED). The ARMA(1,1)-GJR-GARCH(1,1)-SGED (Skewed General 

Error Distribution) model is the new and proposed model of this study. It is innovative in 
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the following aspects. Firstly, it captures the autocorrelation in returns using ARMA(1,1) 

process. Secondly, it employs GJR-GARCH(1,1) to estimate one day forward volatility 

and captures the leverage effect (Black, 1976) in returns. Thirdly, it uses a skewed fat tail 

distribution, skewed General Error Distribution, to model the extreme tails of daily 

returns of the selected financial markets.  

Statistical tests and out of sample test are used to examine the accuracy and 

reliability of Value at Risk and Expected Shortfall models. Statistical tests include sign 

bias test for leverage effect and Pearson test for goodness of fit for each distribution 

assumption. The Value at Risk out of sample test directly examines Value at Risk by 

measuring the total number of exceedances of each model using 1000 out of sample data. 

The Expected Shortfall out of sample test uses a one-tailed t test to examine the residuals 

and therefore indirectly examines the accuracy of the Expected Shortfall models.  

 

RESULTS 
 

Value at Risk Out of Sample Test Results 

First, regarding the parametric models, the proposed model, ARMA(1,1)-GJR-

GARCH(1,1)-SGED, is the most balanced model for estimating Value at Risk and 

Expected Shortfall based on the out of sample test. This model is statistically adequate 

for estimating Value at Risk for all four markets, based on the exceedance results for the 

out of sample test. Figure 2.10-2.17 show plots of estimated Value at Risk versus out of 

sample returns using the proposed model (eight plots for four markets and two 

confidence levels). Second, the non-parametric model (Historical Simulation method) 



66 
 

and Normal Distribution based parametric models underestimate risk under most 

circumstances based on the results of this study. Third, the semi-parametric model 

(Extreme Value Theory) is the most accurate Value at Risk model for S&P 500, based on 

the results of out of sample test. However, for the other three markets (crude oil, gold, 

and Vanguard Long Term Bond Fund), the the semi-parametric model (Extreme Value 

Theory) overestimates risk as evidenced by the overly small numbers of exceedances in 

the out of sample test.  

 

 Expected Shortfall Out of Sample Test 

First, all parametric models except for ARMA(1,1)-GARCH(1,1)-GED and the 

Normal Distribution based models (Appendix B) are statistically adequate for estimating 

Expected Shortfall at both 95% and 99% level, based on the out of sample test results. 

Second, the non-parametric model (Historical Simulation) and Normal Distribution based 

models are unreliable for estimating Expected Shortfall compared to other models, based 

on the number of failed t test. Third, the semi-parametric approach (Extreme Value 

Theory) is adequate for Expected Shortfall estimation for all four markets based on the 

test p values. However, due to the small sample size for the t test, the reliability of these p 

values is questionable for Expected Shortfall with 99% confidence level. 
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CONCLUSION 
 

Main Conclusions 

In summary, four conclusions are drawn based on the results of this study. First, 

Historical Simulation (HS) method and Normal Distribution based models tend to 

underestimate financial market risk (i.e. Value at Risk and Expected Shortfall), based on 

the test results in this study. Second, the parametric models using skewed and fat tailed 

distributions (such as Student T and General Error Distribution) are superior to the 

Normal Distribution based models for accurately estimating Value at Risk and Expected 

Shortfall. The proposed modified parametric model, ARMA(1,1)-GJR-GARCH(1,1)-

SGED, is the most balanced Value at Risk model in this class, as it is the only model that 

is considered statistically adequate for estimating risk for all four markets. This is 

advantageous as a Value at Risk model because it opens up the possibility of measuring 

the risk of a variety of assets within a portfolio without having to change models. Third, 

modeling asymmetric volatility increases the accuracy of Value at Risk and Expected 

Shortfall models, as demonstrated by the proposed model, ARMA(1,1)-GJR-

GARCH(1,1)-SGED, in estimating risk in S&P 500. Finally, the semi-parametric model 

(EVT) is most accurate Value at Risk model for S&P 500 Index, likely due to fat tail 

behavior for both in sample and out of sample data. 

 

Implications, Limitations and Future Research 

This study should be of value to researchers, risk managers and regulators, and 

analysts for selection of Value at Risk (VaR) and Expect shortfall (ES) models. To 
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accurately estimate Value at Risk for S&P 500 Index or equity indices that have similar 

distributional properties to S&P 500, the semi-parametric model, Extreme Value Theory 

(EVT) model is recommended based on this study. As an overall Value at Risk and 

Expected Shortfall model for risk in equity, commodity and bond markets, the proposed 

parametric model, AMRA(1,1)-GJR-GARCH(1,1)-SGED, is recommended based on the 

results of this study. This model is advantageous because it opens up the possibility of 

measuring the risk of a variety of financial assets within a portfolio without having to 

change models. In all cases, the Normal Distribution based parametric models (Appendix 

B) and Historical Simulation method are not recommended for estimating Value at Risk 

and Expected Shortfall due to the general underestimation of risk.   

This study has a few limitations. First, it focuses on examining the accuracy and 

reliability of Value at Risk and Expected Shortfall models for only four individual 

markets (S&P 500 equity, crude oil, gold and Vanguard Long Term Bond Fund) as 

opposed to portfolios of assets from many countries and markets. Second, in relation to 

the first limitation, correlations of different markets are not considered in this study when 

computing Value at Risk and Expected Shortfall, though it would be expected that these 

correlations may considerably reduce risk for a portfolio of assets if the portfolio is well 

diversified, and could be examined in future research.  
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APPENDIX A: ABBREVIATION LIST 
 

ARCH Autoregressive Conditional Heteroscedasticity 

ARMA Autoregressive Moving Average 

BCBS Basel Committee on Banking Supervision 

CDF Cumulative probability Density Function 

CVAR Conditional Value at Risk 

CTE Conditional Tail Expectation 

ES Expected Shortfall 

EVT Extreme Value Theory 

EWMA Exponentially Weighted Moving Average 

GARCH Generalized Autoregressive Conditional Heteroscedasticity 

GED General Error Distribution 

GJR-GARCH Glosten Jagannathan Runkle (GARCH) 

GPD General Pareto Distribution 

HS Historical Simulation 

PDF Probability Density Function 

SGED Skewed General Error Distribution 

STD Student T Distribution 

SSTD Skewed Student T Distribution 

VaR Value at Risk 
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APPENDIX B: LIST OF VALUE AT RISK AND EXPECTED 
SHORTFALL MODEL TYPES 

 

Description of 13 Value at Risk and Expected Shortfall Models 

Non-Parametric Model (1): Historical Simulation (HS) 

Semi-Parametric Model (1): Extreme Value Theory (EVT) 

Parametric Models (11):  

EWMA-Norm (Normal Distribution) 

ARMA(1,1)-GARCH(1,1)-Norm (Normal Distribution) 

ARMA(1,1)-GARCH(1,1)-STD (Student T Distribution) 

ARMA(1,1)-GARCH(1,1)-SSTD (Skewed Student T Distribution) 

ARMA(1,1)-GARCH(1,1)-GED (General Error Distribution) 

ARMA(1,1)-GARCH(1,1)-SGED (Skewed General Error Distribution) 

ARMA(1,1)-GJR-GARCH(1,1)-Norm (Normal Distribution) 

ARMA(1,1)-GJR-GARCH(1,1)-STD (Student T Distribution) 

ARMA(1,1)-GJR-GARCH(1,1)-SSTD (Skewed Student T Distribution) 

ARMA(1,1)-GJR-GARCH(1,1)-GED (General Error Distribution) 

ARMA(1,1)-GJR-GARCH(1,1)-SGED (Skewed General Error Distribution) 

 

Subgroups of the 13 Value at Risk and Expected Shortfall Models 

Parametric Models with Asymmetric Volatility Model:  

ARMA(1,1)-GJR-GARCH(1,1)-Norm (Normal Distribution) 

ARMA(1,1)-GJR-GARCH(1,1)-STD (Student T Distribution) 

ARMA(1,1)-GJR-GARCH(1,1)-SSTD (Skewed Student T Distribution) 

ARMA(1,1)-GJR-GARCH(1,1)-GED (General Error Distribution) 

ARMA(1,1)-GJR-GARCH(1,1)-SGED (Skewed General Error Distribution) 
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Normal Distribution Based Parametric Models: 

EWMA-Norm (Normal Distribution) 

ARMA(1,1)-GARCH(1,1)-Norm (Normal Distribution) 

ARMA(1,1)-GJR-GARCH(1,1)-Norm (Normal Distribution) 

 

Student T Distribution Based Parametric Models: 

ARMA(1,1)-GARCH(1,1)-STD (Student T Distribution) 

ARMA(1,1)-GARCH(1,1)-SSTD (Skewed Student T Distribution) 

ARMA(1,1)-GJR-GARCH(1,1)-STD (Student T Distribution) 

ARMA(1,1)-GJR-GARCH(1,1)-SSTD (Skewed Student T Distribution) 

 

General Error Distribution (GED) Based Parametric Models: 

ARMA(1,1)-GARCH(1,1)-GED (General Error Distribution) 

ARMA(1,1)-GARCH(1,1)-SGED (Skewed General Error Distribution) 

ARMA(1,1)-GJR-GARCH(1,1)-GED (General Error Distribution) 

ARMA(1,1)-GJR-GARCH(1,1)-SGED (Skewed General Error Distribution) 

 
The New Proposed Parametric Model:  

ARMA(1,1)-GJR-GARCH(1,1)-SGED (Skewed General Error Distribution) 
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APPENDIX C: GRAPH OF DAILY RETURN PROBABILITY DENSITY VERSUS NORMAL 
DISTRIBUTION PROBABILITY DENSITY FOR S&P 500, OIL, GOLD, AND VANGUARD LONG 

TERM BOND FUND 
 

 

Notes: Solid curve represents the kernel probability density of data. Dashed curve represents the kernel probability density of Normal distribution 
with the same mean and standard deviation. 

 
Data: S&P 500 daily return from 01/01/1950 to 04/30/2012.  
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Notes: Solid curve represents the kernel probability density of data. Dashed curve represents the kernel probability density of Normal distribution 
with the same mean and standard deviation. 

 
Data: Crude oil price daily return from 01/02/1986 to 04/30/2012. 
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Notes: Solid curve represents the kernel probability density of data. Dashed curve represents the kernel probability density of Normal distribution 
with the same mean and standard deviation. 

 
Data: Gold daily return from 04/02/1968 to 04/30/2012. 
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Notes: Solid curve represents the kernel probability density of data. Dashed curve represents the kernel probability density of Normal distribution 

with the same mean and standard deviation. 
 
Data: Vanguard Long Term Bond Fund (VBLTX), daily return from 03/01/1994 to 04/30/2012. 
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