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Abstract

This thesis studies the Second-order Least Squares (SLS) estimation method

in regression models with and without measurement error. Applications of

the methodology in general quasi-likelihood and variance function models,

censored models, and linear and generalized linear models are examined and

strong consistency and asymptotic normality are established. To overcome

the numerical difficulties of minimizing an objective function that involves

multiple integrals, a simulation-based SLS estimator is used and its asymp-

totic properties are studied. Finite sample performances of the estimators in

all of the studied models are investigated through simulation studies.

Keywords and phrases: Nonlinear regression; Censored regression model;

Generalized linear models; Measurement error; Consistency; Asymptotic nor-

mality; Least squares method; Method of moments, Heterogeneity; Instru-

mental variable; Simulation-based estimation.



Acknowledgements

I would like to gratefully express my appreciation to Dr. Liqun Wang, my su-

pervisor, for his patience, guidance, and encouragement, during my research.

This dissertation could not have been written without his support, chal-

lenges, and generous time. He and the advisory committee members, Drs.

John Brewster, James Fu, and Gady Jacoby, patiently guided me through

the research process, never accepting less than my best efforts. I thank them

all. My thanks go also to the external examiner, Dr. Julie Zhou, for careful

reading the dissertation and helpful suggestions.

Many thanks to the Faculty of Graduate Studies for the University of

Manitoba Graduate Fellowship (UMGF) and Dr. Wang who supported me

financially through his Natural Sciences and Engineering Research Council

of Canada (NSERC) research grant.

Last but not the least, I am grateful to my family and friends, for their

i



patience, love and support. This dissertation is dedicated to my mother, who

never stopped believing in, and loved me unconditionally. May perpetual

light shine upon her soul.

ii



Dedication

To my mother, who loved me unconditionally. . .

iii



Table of Contents

Acknowledgments i

Dedication iii

Table of Contents iv

List of Tables viii

List of Figures xii

1 Introduction 1

2 Second-order Least Squares Estimation in Regression Mod-

els 12

2.1 Quasi-likelihood Variance Function Models . . . . . . . . . . . 12

iv



2.1.1 Model and Estimation . . . . . . . . . . . . . . . . . . 12

2.1.2 Consistency and Asymptotic Normality . . . . . . . . . 14

2.2 Asymptotic Covariance Matrix of the Most Efficient SLS Es-

timator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Computational Method . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Comparison with GMM Estimation . . . . . . . . . . . . . . . 25

2.4.1 Monte Carlo Simulation Studies . . . . . . . . . . . . . 29

2.5 Censored Regression Models . . . . . . . . . . . . . . . . . . . 52

2.5.1 Model and Estimation . . . . . . . . . . . . . . . . . . 52

2.5.2 Consistency and Asymptotic Normality . . . . . . . . . 55

2.5.3 Efficient Choice of the Weighting Matrix . . . . . . . . 57

2.5.4 Simulation-Based Estimator . . . . . . . . . . . . . . . 60

2.5.5 Monte Carlo Simulation Studies . . . . . . . . . . . . . 65

3 Second-order Least Squares Estimation in Measurement Er-

ror Models 78

v



3.1 Linear Measurement Error models . . . . . . . . . . . . . . . . 78

3.2 Generalized Linear Measurement Error Models . . . . . . . . . 84

3.2.1 Method of Moments Estimator . . . . . . . . . . . . . 84

3.2.2 Consistency and Asymptotic Normality . . . . . . . . . 91

3.2.3 Simulation-Based Estimator . . . . . . . . . . . . . . . 95

3.2.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . 100

4 Related Issues 110

4.1 Computational Issues . . . . . . . . . . . . . . . . . . . . . . . 110

4.1.1 Optimization Methods . . . . . . . . . . . . . . . . . . 110

4.1.2 Optimum Weighting Matrix . . . . . . . . . . . . . . . 118

4.2 Simulation Accuracy . . . . . . . . . . . . . . . . . . . . . . . 120

5 Summary and Future Work 128

Appendices 132

A Proofs 132

A.1 Proof of Theorem 2.1.3 . . . . . . . . . . . . . . . . . . . . . . 132

vi



A.2 Proof of Theorem 2.1.4 . . . . . . . . . . . . . . . . . . . . . . 134

A.3 Proof of Theorem 2.5.4 . . . . . . . . . . . . . . . . . . . . . . 139

A.4 Proof of Theorem 2.5.5 . . . . . . . . . . . . . . . . . . . . . . 141

A.5 Proof of Theorem 3.2.4 . . . . . . . . . . . . . . . . . . . . . . 146

A.6 Proof of Theorem 3.2.5 . . . . . . . . . . . . . . . . . . . . . . 149

A.7 Proof of Theorem 3.2.6 . . . . . . . . . . . . . . . . . . . . . . 151

A.8 Proof of Theorem 3.2.7 . . . . . . . . . . . . . . . . . . . . . . 159

A.9 Proof of Theorem 3.2.8 . . . . . . . . . . . . . . . . . . . . . . 163

Bibliography 171

vii



List of Tables

2.1 Estimated parameters and standard errors for Oxidation of

benzene data set . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Estimated parameters and standard errors for Fertility Edu-

cation data set . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Simulation results of the Exponential model with two parameters 37

2.4 Simulation results of the Exponential model with two param-

eters - continued . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 Simulation results of the Logistic model with two parameters . 39

2.6 Simulation results of the Logistic model with two parameters

- continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.7 Simulation results of the Linear-Exponential model with two

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



2.8 Simulation results of the Linear-Exponential model with two

parameters - continued . . . . . . . . . . . . . . . . . . . . . . 42

2.9 Simulation results of the Exponential model with three pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.10 Simulation results of the Exponential model with three pa-

rameters - continued . . . . . . . . . . . . . . . . . . . . . . . 44

2.11 Simulation results of the Exponential model with three pa-

rameters - continued . . . . . . . . . . . . . . . . . . . . . . . 45

2.12 Simulation results of the Logistic model with three parameters 46

2.13 Simulation results of the Logistic model with three parameters

- continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.14 Simulation results of the Logistic model with three parameters

- continued . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.15 Simulation results of the Linear-Exponential model with three

parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.16 Simulation results of the Linear-Exponential model with three

parameters - continued . . . . . . . . . . . . . . . . . . . . . . 50

ix



2.17 Simulation results of the Linear-Exponential model with three

parameters - continued . . . . . . . . . . . . . . . . . . . . . . 51

2.18 Simulation results of the models with sample size n = 200 and

31% censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.19 Simulation results of the models with sample size n = 200 and

31% censoring - continued . . . . . . . . . . . . . . . . . . . . 71

2.20 Simulation results of the models with sample size n = 200 and

31% censoring - continued . . . . . . . . . . . . . . . . . . . . 72

2.21 Simulation results of the models with sample size n = 200 and

60% censoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.22 Simulation results of the models with sample size n = 200 and

60% censoring - continued . . . . . . . . . . . . . . . . . . . . 74

2.23 Simulation results of the models with sample size n = 200 and

60% censoring - continued . . . . . . . . . . . . . . . . . . . . 75

2.24 Simulation results of the misspecified models with sample size

n = 200 and 31% censoring . . . . . . . . . . . . . . . . . . . . 76

x



3.1 Simulation results of the Linear Measurement error model with

instrumental variable. . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Simulation results of the Gamma Loglinear model with Mea-

surement error in covariate . . . . . . . . . . . . . . . . . . . . 102

3.3 Simulation results of the Gamma Loglinear model with Mea-

surement error in covariate - continued . . . . . . . . . . . . . 103

3.4 Simulation results of the Poisson Loglinear model with Mea-

surement error in covariate . . . . . . . . . . . . . . . . . . . . 106

3.5 Simulation results of the Poisson Loglinear model with Mea-

surement error in covariate - continued . . . . . . . . . . . . . 107

3.6 Simulation results of the Logistic model with Measurement

error in covariate . . . . . . . . . . . . . . . . . . . . . . . . . 108

xi



List of Figures

2.1 Monte Carlo estimates of σ2 in the Exponential model with

two parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 RMSE of Monte Carlo estimates of β for the Exponential

model with two parameters . . . . . . . . . . . . . . . . . . . 35

2.3 RMSE of Monte Carlo estimates of β2 in Logistic model with

three parameters . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4 Monte Carlo estimates of the normal model with 60% censor-

ing and various sample sizes. . . . . . . . . . . . . . . . . . . . 67

2.5 RMSE of the estimators of σ2
ε in three models with 60% cen-

soring and various sample sizes. . . . . . . . . . . . . . . . . . 68

xii



Chapter 1

Introduction

Recently Wang (2003, 2004) proposed a Second-order Least Squares (SLS)

estimator in nonlinear measurement error models. This estimation method,

which is based on the first two conditional moments of the response variable

given the observed predictor variables, extends the ordinary least squares

estimation by including in the criterion function the distance of the squared

response variable to its second conditional moment. He showed that under

some regularity conditions the SLS estimator is consistent and asymptotically

normally distributed. Furthermore, Wang and Leblanc (2007) compared the

SLS estimator with the Ordinary Least Squares (OLS) estimator in general

nonlinear models. They showed that the SLS estimator is asymptotically

more efficient than the OLS estimator when the third moment of the random

error is nonzero.
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This thesis contains four major extensions and studies of the second-

order least squares method. First, we extend the SLS method to a wider

class of Quasi-likelihood and Variance Function (QVF) models. These types

of models are based on the mean and the variance of the response given

the explanatory variables and include many important models such as ho-

moscedastic and heteroscedastic linear and nonlinear models, generalized lin-

ear models and logistic regression models. Applying the same methodology

of Wang (2004), we prove strong consistency and asymptotic normality of

the estimator under fairly general regularity conditions.

The second work is a comparison of the SLS with Generalized Method of

Moment (GMM). Since both the SLS and GMM are based on the conditional

moments, an interesting question is which one is more efficient.

GMM estimation, which has been used for more than two decades by

econometricians, is an estimation technique which estimates unknown param-

eters by matching theoretical moments with the sample moments. In recent

years, there has been growing literature on finite sample behavior of GMM

estimators, see, e.g., Windmeijer (2005) and references therein. Although

GMM estimators are consistent and asymptotically normally distributed un-

der general regularity conditions (Hansen 1982), it has long been recognized
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that this asymptotic distribution may provide a poor approximation to the

finite sample distribution of the estimators (Windmeijer 2005). Identifica-

tion is another issue in the GMM method (e.g., Stock and Wright 2000,

and Wright 2003). In particular, the number of moment conditions needs

to be equal to or greater than the number of parameters, in order for them

to be identifiable. This restriction creates problems when the parametric

dimension increases. It seems that adding over-identifying restrictions (mo-

ment conditions) will increase precision; however, this is not always the case

(Anderson and Sorenson 1996). More recently, for a linear model with het-

eroscedasticity, Koenker and Machado (1999) show that an effective sample

size can be given by n/q3
n, where qn is the number of moment conditions used.

This means that a very large sample size is required to justify conventional

asymptotic inference. See also Huber (2004). An interesting question that

arises naturally is how SLS estimators compare with GMM estimators. This

question is partially addressed in our first paper (Abarin and Wang 2006).

In Abarin and Wang (2006), we compare the asymptotic covariance

matrix of the efficient SLS and GMM when both use the same number of

moment conditions and we show that the SLS estimator is asymptotically

more efficient than the GMM estimator. Since a theoretical comparison of
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these two methods is extremely difficult when SLS and GMM use different

number of moment conditions, we compare these two estimators through

Monte Carlo simulation studies. The simulation studies show the superiority

of SLS over GMM, even when it uses more equations.

The third major work is to apply the SLS to the censored linear models,

which has been widely used in many fields. Wang and Leblanc (2007) stud-

ied a second-order least squares estimator for general nonlinear regression

models. However, the framework used in Wang and Leblanc (2007) does not

cover an important family of models including censored regression models.

Regression models with censored response variables arise frequently in

econometrics, biostatistics, and many other areas. In economics, such a

model was first used by Tobin (1958) to analyze household expenditures on

durable goods. Other econometric applications of the Tobit model include

Heckman and MaCurdy (1986), and Killingsworth and Heckman (1986). In

the last few decades various methods have been introduced to estimate the

parameters for various censored regression models. In particular, Amemiya

(1973) and Wang (1998) investigated maximum likelihood and moment esti-

mators when the regression error distribution is normal, while Powell (1984,

1986) proposed semi-parametric estimators when the error distribution is

4



symmetric or satisfies certain quantile restrictions.

In practice, many variables of interests have asymmetric distributions,

e.g., income and expenditures, insurance claims and premiums, survival or

failure times. Regression with asymmetric error distributions has been con-

sidered by many authors, e.g., Williams (1997), Austin et al (2003), Marazzi

and Yohai (2004), and Bianco et al (2005). Most estimators considered be-

long to a large family of so-called M-estimators which maximize or minimize

certain criteria. In our second paper (Abarin and Wang 2008a), we ap-

ply the second-order least squares estimator in censored regression models.

The paper gives regularity conditions under which the proposed estimator is

strongly consistent and asymptotically normal for a wide class of error distri-

butions. Since for some distribution functions for the error term, calculation

of the conditional moments may be quite difficult, a simulation-based esti-

mator is proposed to overcome this problem. Finally, we present the results

of a simulation study of the estimator for two different weighting matrices

(parametric and semi-parametric). In the simulation study we investigate the

finite sample behavior of the estimators and compare them with the MLE.

The fourth work relates to SLS estimation in Measurement Error mod-

els. Since Wang (2003,2004) studied the SLS estimators in measurement error

5



models, this provides a natural motivation to apply the estimation method

in other measurement error models. So we start with linear models with

measurement error.

It is well-known that not all parameters of a normal linear model with

measurement error in explanatory variables are identifiable (Fuller 1987).

One of the methods to overcome this problem is to use instrumental vari-

ables. Similar to the two-stage method that has been suggested by Wang

and Hsiao (2007), we estimate the parameters using the SLS estimation in

the second stage and we show that the parameter estimators are consistent

and asymptotically normally distributed, when there is no assumption on

the distribution of the error terms. Compared to the more convenient two-

stage method which uses OLS estimator in the second stage, we prove that

the two-stage SLS estimator is asymptotically more efficient. A simulation

study shows that in a moderate sample size, the Root Mean Squared Error

(RMSE) reduction can be about 40%.

To generalize the previous results, we study the application of SLS in

Generalized Linear Models (GLM). Generalized Linear Models, as a very im-

portant subclass of QVF models, are widely used in biostatistics, epidemiol-

ogy, and many other areas. However, the real data analysis using GLM often
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involves covariates that are not observed directly or are measured with error.

See, e.g., Franks et al. (2004), Stimmer (2003), Kiechl et al. (2004), and Car-

roll et al. (2006). In such cases, statistical estimation and inference become

very challenging. Several researchers, such as Stefanski and Carroll (1985),

Aitkin (1996), and Rabe-Hesketh et al. (2003), have studied the maximum

likelihood estimation of the GLM with measurement error. However, most of

the proposed approaches rely on the normality assumption for the unobserved

covariates and measurement error, though some other parametric distribu-

tions have been considered (Schafer 2001, Aitkin and Rocci 2002, Kukush

and Schneeweiss 2005, Roy and Banerjee 2006). A computational difficulty

with the likelihood approach is that the likelihood function involves multi-

ple integrals which do not admit closed forms in general. Another approach

is based on corrected score functions (Nakamura 1990, Stefanski and Carroll

1991, and Buzas and Stefanski 1996). This approach, however, produces only

approximately consistent estimators (estimators that are consistent when the

measurement error approaches to zero) and therefore is applicable when the

measurement error is small.

General nonlinear models have been investigated by several authors us-

ing either replicate data (Li 1998, Thoresen and Laake 2003, Li and Hsiao
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2004, and Schennach 2004) or instrumental variables (Wang and Hsiao 1995,

2007; and Schennach 2007), while non- or semi-parametric approaches have

been considered (Schafer 2001, Taupin 2001). In addition, Wang (2003, 2004)

studied nonlinear models with Berkson measurement error. However, most

of these papers deal with models with homoscedastic regression errors. In

our third paper (Abarin and Wang 2008b), we consider the generalized linear

models which allow very general heteroscedastic regression errors. In partic-

ular, we study the method of moments estimation combined with instrumen-

tal variables. This approach does not require the parametric assumptions for

the distributions of the unobserved covariates and of the measurement error,

which are difficult to check in practice.

The dissertation is organized as follows. In Chapter 2 we focus on re-

gression models without measurement error. In Section 2.1 we begin by intro-

ducing the QVF model and the SLS estimator. There we show that the SLS

estimators are strongly consistent and asymptotically normally distributed

under some general regularity conditions. We present the asymptotic covari-

ance matrix of the most efficient SLS estimator in Section 2.2. The optimum

weighting matrix plays an important role in the SLS estimator, so we find

the explicit form of the matrix, presenting the asymptotic covariance ma-
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trix of the most efficient SLS estimator in homoscedastic linear regression

models. In Section 2.3 we develop some computational methods to deal with

heteroscedastisity. We end the section with illustrations of the SLS method-

ology using examples. In Section 2.4 we compare the asymptotic variance

covariance matrix of the GMM and the SLS estimators, using the same num-

ber of equations. We finish the section by showing some simulation results

that compare the two estimators when GMM uses more equations.

In Section 2.5 we revisit the SLS in a censored model and we present the

theories that show the estimator is consistent and asymptotically normally

distributed under some regularity conditions. The SLS estimator is based on

the first two conditional moments of the response variable given the predictor

variables. In practice, it is not always straightforward to calculate the closed

forms of these moments. In this case, the objective function will involve

multiple integrals which makes it difficult to minimize. To overcome this

numerical difficulty, we propose a simulation-based SLS estimator and give

its asymptotic properties. We carry out substantial Monte Carlo simulations

to study finite sample behavior of the SLS estimators and compare them

with the MLE.

In Chapter 3 regression models with measurement error are studied. In

9



Section 3.1 we apply SLS in a linear measurement error model and present a

two-stage estimator which is strongly consistent and asymptotically normally

distributed and we prove the superiority of this estimator over the estima-

tor which uses OLS in the second stage. Section 3.2 focusses on generalized

linear measurement error models. We introduce the model and give some ex-

amples to motivate our estimation method. Then we introduce the method

of moments estimators and derive their consistency and asymptotic normal-

ity properties. We construct simulation-based estimators for the situations

where the closed forms of the moments are not available. Then we present

simulation studies to illustrate the finite sample performance of the proposed

estimators.

In Chapter 4 we present some issues related to the research. One of

the most important parts of computation of the SLS is the optimization

method. In Section 4.1 we discuss various computational methods, together

with their advantages and disadvantages. The section continues with some

discussion about the optimum weighting matrix, as an important part of the

efficient SLS estimator. Since there are substantial simulation studies in the

dissertation, in Section 4.2 we present some theoretical criteria for simulation

accuracy, and show how we applied those criteria in this dissertation. We end

10



the dissertation with a summary and discuss possible extensions for future

work in Chapter 5. The proofs of the theorems are given in the Appendices.
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Chapter 2

Second-order Least Squares
Estimation in Regression
Models

2.1 Quasi-likelihood Variance Function Mod-

els

2.1.1 Model and Estimation

Consider the model

Y = f(X; β) + ε, (2.1)

where Y ∈ IR is the response variable, X ∈ IRk is the predictor variable, and

ε is the random error satisfying E(ε|X) = 0 and E(ε2|X) = σ2g2(X; β, θ).

Here β ∈ IRp, θ ∈ IRq and σ2 ∈ IR are the unknown parameters. In addition,

we assume that Y and ε have finite fourth moments.

12



Under the assumptions for model (2.1), the first two conditional mo-

ments of Y given X are

E(Y |X) = f(X; β),

E(Y 2|X) = σ2g2(X; β, θ) + f 2(X; β),

and therefore, V (Y |X) = σ2g2(X; β, θ). This is a typical Quasi-likelihood

and Variance Function (QVF) model (Carroll et al. 2006).

This model includes many important special cases such as:

• Homoscedastic linear and nonlinear regression, with g(X; β, θ) = 1.

For linear regression, f(X; β) = X ′β.

• Generalized linear models, including Poisson and gamma regression,

with g(X; β, θ) = f θ(X; β) for some parameter θ. For Poisson regres-

sion, θ = 1/2, while θ = 1 for gamma regression.

• Logistic regression, where f(X; β) = 1/(1 + exp (−X ′β)) and

g(X; β, θ) = f(X; β)(1 − f(X; β)), σ2 = 1, and there is no parameter

θ.

Throughout the section we denote the parameter vector as γ = (β′, θ′, σ2)′

and the parameter space as Γ = Ω× Θ× Σ ⊂ IRp+q+1. The true parameter

13



value of model (2.1) is denoted by γ0 = (β′0, θ
′
0, σ

2
0)′ ∈ Γ.

Suppose (Yi, X
′
i)
′, i = 1, 2, ..., n is an i.i.d. random sample. Then the

second-order least squares (SLS) estimator γ̂SLS for γ is defined as the mea-

surable function that minimizes

Qn(γ) =
n∑
i=1

ρ′i(γ)Wiρi(γ), (2.2)

where ρi(γ) = (Yi − f(Xi; β), Y 2
i − σ2g2(Xi; β, θ)− f 2(Xi; β))

′
and Wi =

W (Xi) is a 2× 2 nonnegative definite matrix which may depend on Xi.

2.1.2 Consistency and Asymptotic Normality

For the consistency and asymptotic normality of γ̂SLS we make the following

assumptions, where µ denotes the Lebesgue measure and ‖·‖ denotes the

Euclidean norm in the real space.

Assumption 1. f(x; β) and g(x; β, θ) are measurable functions of x for

every β ∈ Ω and θ ∈ Θ.

Assumption 2. E ‖W (X)‖ (supΩ f
4(X; β) + 1) <∞ and

E ‖W (X)‖
(
supΩ×Θ g

4(X; β, θ) + 1
)
<∞.

Assumption 3. The parameter space Γ ⊂ IRp+q+1 is compact.
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Assumption 4. For any γ ∈ Γ, E[ρ(γ)− ρ(γ0)]′W (X)[ρ(γ)− ρ(γ0)] = 0 if

and only if γ = γ0.

Assumption 5. There exist positive functions h1(x) and h2(x), such that

the first two partial derivatives of f(x; β) with respect to β are bounded by

h1(x), and the first two partial derivatives of g(x; β, θ) with respect to β

and θ are bounded by h2(x). Moreover, E ‖W (X)‖ (h4
1(X) + 1) < ∞, and

E ‖W (X)‖ (h4
2(X) + 1) <∞

Assumption 6. The matrix B = E
[
∂ρ′(γ0)
∂γ

W (X)∂ρ(γ0)
∂γ′

]
is nonsingular.

In the above, assumptions A1 – A3 ensure that the objective function

Qn(γ) is uniformly convergent to Q(γ). Additionally, assumption A4 means

that the objective function Qn(γ) for large n attains a unique minimum at

the true parameter value γ0. Assumption A5 guarantees uniform convergence

of the second derivative of Qn(γ). Finally, assumption A6 is necessary for

the existence of the variance of the SLS γ̂n.

We first restate some existing results which are used in the proofs, which

can be found in Appendix . For this purpose, let Z = (Z1, Z2, ...., Zn) be an

i.i.d. random sample and ψ ∈ Ψ a vector of unknown parameters, where

the parameter space Ψ ⊂ IRd is compact. Further, suppose Qn(Z, ψ) is a
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measurable function for each ψ ∈ Ψ and is continuous in ψ ∈ Ψ for µ–almost

all Z. Then Lemmas 3 and 4 of Amemiya (1973) can be stated as follows.

Lemma 2.1.1. If, as n → ∞, Qn(Z, ψ) converges a.s. to a non stochastic

function Q(ψ) uniformly for all ψ ∈ Ψ and Q(ψ) attains a unique minimum

at ψ0 ∈ Ψ, then ψ̂n = argminψ∈ΨQn(Z, ψ)
a.s.−→ ψ0.

Lemma 2.1.2. If, as n → ∞, Qn(Z, ψ) converges a.s. to a non stochastic

function Q(ψ) uniformly for all ψ in an open neighborhood of ψ0, then for

any sequence of estimators ψ̂n
a.s.−→ ψ0 it holds Qn(Z, ψ̂n)

a.s.−→ Q(ψ0).

Theorem 2.1.3. Under Assumptions 1 – 4, the SLS estimator γ̂SLS
a.s.−→ γ0,

as n→∞.

Theorem 2.1.4. Under Assumptions 1 – 6, as n→∞,
√
n(γ̂SLS − γ0)

L−→

N(0, B−1AB−1), where

A = E

[
∂ρ′(γ0)

∂γ
W (X)ρ(γ0)ρ′(γ0)W (X)

∂ρ(γ0)

∂γ′

]
, (2.3)

and

B = E

[
∂ρ′(γ0)

∂γ
W (X)

∂ρ(γ0)

∂γ′

]
. (2.4)
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2.2 Asymptotic Covariance Matrix of the Most

Efficient SLS Estimator

Asymptotic covariance of γ̂SLS depends on the weighting matrix W . A nat-

ural question is how to choose W to obtain the most efficient estimator. To

answer this question, we first note that, since ∂ρ′(γ0)/∂γ does not depend on

Y , matrix A in (2.3) can be written as

A = E
[
∂ρ′(γ0)
∂γ

WFW ∂ρ(γ0)
∂γ′

]
, where F = F (X) = E[ρ(γ0)ρ′(γ0)|X]. Then,

analog to the weighted (nonlinear) least squares estimation, we have

B−1AB−1 ≥
(
E

[
∂ρ′(γ0)

∂γ
F−1∂ρ(γ0)

∂γ′

])−1

(2.5)

(in the sense that the difference of the left-hand and right-hand sides is

nonnegative definite), and the lower bound is attained for W = F−1 in both

A and B . In the following we provide a proof of this fact.

Theorem 2.2.1. Denote C = ∂ρ(γ)
∂γ′

and D = ρ(γ)ρ′(γ). Then the asymp-

totic covariance matrix of the most efficient SLS estimation is E−1(C ′F−1C),

where F = E(D|X).

Proof. First, it is easy to see that B = E(C ′WC) and A = E(C ′WDWC) =

E(C ′WFWC), because C and W do not depend on Y . Further, let α =
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E−1(C ′WFWC)E(C ′WC). Then we have

E(C − FWCα)′F−1(C − FWCα)

= E(C ′F−1C)− E(C ′WC)α− α′E(C ′WC) + α′E(C ′WFWC)α

= E(C ′F−1C)− E(C ′WC)E−1(C ′WFWC)E(C ′WC)

= E(C ′F−1C)−BA−1B

which is nonnegative definite. It follows that E−1(C ′F−1C) ≤ B−1AB−1,

with equality holds if W = F−1 in both A and B. 2

In the following corollary, we find the optimal weighting matrix.

Corollary 2.2.2. If detF 6= 0, then the optimal weighting matrix is given by

F−1 =
1

detF

 f22 −f12

−f12 σ2
0g

2(X; β0, θ0)

 (2.6)

where

f22 = E(ε4|X) + 4f(X; β0)E(ε3|X)

+ 4σ2
0f

2(X; β0)g2(X; β0, θ0)− σ4
0g

4(X; β0, θ0),

and

f12 = E(ε3|X) + 2σ2
0f(X; β0)g2(X; β0, θ0).
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Proof. First, by definition the elements of F are

f11 = E
[
(Y − f(X; β0))2 |X

]
= σ2

0g
2(X; β0, θ0),

f22 = E
[(
Y 2 − σ2

0g
2(X; β0, θ0)− f 2(X; β0)

)2 |X
]

= E(ε4|X) + 4f(X; β0)E(ε3|X)

+ 4σ2
0f

2(X; β0)g2(X; β0, θ0)− σ4
0g

4(X; β0, θ0),

and

f12 = E
[
(Y − f(X; β0))

(
Y 2 − σ2

0g
2(X; β0, θ0)− f 2(X; β0)

)
|X
]

= E(ε3|X) + 2σ2
0f(X; β0)g2(X; β0, θ0).

It is straightforward to calculate the inverse of F which is given by (2.6). 2

In general F (X) is unknown, and it must be estimated, before the γ̂SLS

using W (X) = F (X)−1 is computed. This can be done using the follow-

ing two-stage procedure. First, minimize Qn(γ) using the identity matrix

W (X) = I2 to obtain the first-stage estimator γ̂n. Secondly, estimate F (X)

using γ̂n and then minimize Qn(γ) again with W (X) = F̂ (X)−1 to obtain

the two-stage estimator ˆ̂γn. We can use the residuals to estimate E(ε3|X)

and E(ε4|X).
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It is useful to have an explicit form of the asymptotic covariance ma-

trix of the most efficient SLS estimator for a homoscedastic linear regression

mode. The following Corollary shows it.

Corollary 2.2.3. The asymptotic covariance matrix of the most efficient

SLS estimator for a homoscedastic linear regression model is given by

C =

 V
(
β̂SLS

)
µ3

µ4−σ4
0
V (σ̂2

SLS)E−1(XX ′)EX

µ3

µ4−σ4
0
V (σ̂2

SLS)EX ′E−1(XX ′) V (σ̂2
SLS)

 ,

(2.7)

where

V
(
β̂SLS

)
=

(
σ2

0 −
µ2

3

µ4 − σ4
0

)(
E(XX ′)− µ2

3

σ2
0(µ4 − σ4

0)
EXEX ′

)−1

,

V
(
σ̂2
SLS

)
=

(µ4 − σ4
0) (σ2

0(µ4 − σ4
0)− µ2

3)

σ2
0(µ4 − σ4

0)− µ2
3EX

′E−1(XX ′)EX
,

and µ3 = E(ε3|X), and µ4 = E(ε4|X).

Proof. Consider a homoscedastic linear regression model

Y = f(X; β) + ε,

where E(ε|X) = 0 and E(ε2|X) = σ2. Wang and Leblanc (2007) combined

(2.6) and the lower bound of (2.5), to find the asymptotic covariance matrix

of the most efficient SLS estimator for a general nonlinear regression model
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with homoscedasticity. Assuming that E(ε3|X) = µ3 and E(ε4|X) = µ4,

we apply the special case for f(X; β) = X ′β to their asymptotic covariance

matrix to find (2.7). 2

It should be mentioned that when X is fixed and ε is symmetric, then

(2.7) reduces to

C =

 σ2(XX ′)−1 0

0 2σ4

 ,

which is equivalent to covariance matrix for ordinary least squared estimator

for the parameters.

2.3 Computational Method

If we set Y ∗ = Y
g(X;β0,θ0)

, then

E(Y ∗|X) =
f(X; β)

g(X; β0, θ0)
, E(Y ∗2|X) = σ2 +

f 2(X; β)

g2(X; β0, θ0)
.

Similar to (2.2), we can define ρ∗i (γ) as
(
Yi−f(Xi;β)
g(X;β0,θ0)

,
Y 2

i −σ2g2(Xi;β,θ)−f2(Xi;β)

g2(X;β0,θ0)

)′
which is equivalent to

 1
g(X;β0,θ0)

0

0 1
g2(X;β0,θ0)


 Y − f(Xi; β)

Y 2 − σ2g2(Xi; β, θ)− f 2(Xi; β)

 .

21



The optimal weighting matrix for the new setting is

W ∗
opt = E

(
ρ∗(γ)ρ∗

′
(γ)|X

)

=

 1
g(X;β0,θ0)

0

0 1
g2(X;β0,θ0)

 E (ρ(γ)ρ′(γ)|X)

 1
g(X;β0,θ0)

0

0 1
g2(X;β0,θ0)

 .

Therefore,

W ∗
opt =

 1
g(X;β0,θ0)

0

0 1
g2(X;β0,θ0)

 Wopt

 1
g(X;β0,θ0)

0

0 1
g2(X;β0,θ0)

 .

Assuming Q∗n(γ) is the objective function for the new setting, simple calcu-

lation allows us to write it in terms of Qn(γ). We have

Q∗n(γ) =
n∑
i=1

ρ∗
′

i (γ)W ∗
ioptρ

∗
i (γ) =

n∑
i=1

ρ′i(γ)Wioptρi(γ) = Qn(γ).

It shows that minimizingQ∗n(γ) is equivalent to minimizingQn(γ). Therefore,

for computational purpose we have two options:

(i). Using the transformation Y ∗ = Y
g(X;β0,θ0)

to estimate the parameters.

Since β0 and θ0 are unknown, we can estimate them in the first step us-

ing the identity matrix for the weighting matrix. To estimate E(ε3|X)

and E(ε4|X) we can use the third and fourth mean of the residuals.

(ii). Estimate the parameters using the original data and estimate of the

third and forth mean of the studentized residuals ( ε
g(X;β0,θ0)

).
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2.3.1 Examples

Example 2.3.1. Oxidation of benzene

Prichard et al. (1977) describes an example concerning the initial rate of

oxidation of benzene over a vanadium oxide catalyst at three reaction tem-

peratures and several benzene and oxygen concentrations.

Carrol and Rupert (1988) suggested the following highly nonlinear

model to fit the data set:

E(Y ) = 1/[β1x4x
−1
1 exp (β3x3) + β2x

−1
2 exp (β4x3)]

In the model, Y is the initial rate of disappearance of benzene, x1 and x2 are

the oxygen and benzene concentrations respectively.

They defined x3 as 2000(1/T − 1/648) and x4 as the number of moles of

oxygen consumed per mole of benzene, where T is the absolute temperature

in Kelvins. They plotted the absolute studentized residuals against the log-

arithm of the predicted values, and the logarithm of the absolute residuals

against the logarithm of the predicted values (pages 43– 44 Carroll and Ru-

pert (1988)), to show that the variability varies systematically as a function

of the mean response.

Table 2.1 shows the Second-order Least Squares (SLS), as well as Un-
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Table 2.1: Estimated parameters and standard errors for Oxidation of ben-
zene data set

Parameter β1 β2 β3 β4 σ

UWNLS 0.97 3.20 7.33 5.01 -

SE 0.1 0.20 1.14 0.64

GLS 0.86 3.42 6.20 5.66 0.11

SE 0.04 0.13 0.63 0.41 -

SLS 0.82 3.53 5.99 5.86 0.10

SE 0.04 0.12 0.62 0.38 0.04

Weighted Nonlinear Least Squares (UWNLS) and Generalized Least Squares

(GLS) parameter estimates and their estimated standard errors (SE) for com-

parison. Note that both GLS and SLS are computed for a generalized linear

model in which the standard deviation is proportional to the mean.

Example 2.3.2. Effects of Education on Fertility

Wooldridge (2002) studies the effects of education on women’s fertility in

Botswana. He considers the number of living children as the response vari-
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able, and years of school (edu), a quadratic in age (age2), binary indicators

for ever married (evermarr), living in an urban area (urban), having electric-

ity (electric), and owning a television (tv), as explanatory variables. Table

2.2 reports the results for the Generalized Least-Squares (GLS) and Second-

order least-squares (SLS), in a Poisson regression model. The next table

shows the parameter estimates with their standard errors for a Poisson log-

linear model.

2.4 Comparison with GMM Estimation

Consider model (2.1), where ε satisfies E(ε|X) = 0 and E(ε2|X) = σ2

(g2(X; β, θ) = 1). Under this general nonlinear regression model, the first

two conditional moments of Y given X are respectively E(Y |X) = f(X; β)

and E(Y 2|X) = σ2 + f 2(X; β), where γ = (β′, σ2)′. Suppose (Yi, X
′
i)
′,

i = 1, 2, ..., n is an i.i.d. random sample. Following Wang and Leblanc (2007),

the second-order least squares estimator γ̂SLS for γ is defined as the measur-

able function that minimizes (2.2) where

ρi(γ) =
(
Yi − f(Xi; β), Y 2

i − f 2(Xi; β)− σ2
)′
.

It is easy to see that this estimator is an extension of the ordinary least

squares estimator by adding the distance of the squared response variable to
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Table 2.2: Estimated parameters and standard errors for Fertility Education
data set

Variable GLS SE SLS SE

edu -0.0217 0.0025 -0.0233 0.0023

age 0.337 0.009 0.325 0.007

age2 -0.0041 0.0001 -0.0040 0.0001

evermarr 0.315 0.021 0.246 0.019

urban -0.086 0.019 -0.070 0.017

electric -0.121 0.034 -0.053 0.023

tv -0.145 0.041 -0.145 0.037

constant -5.375 0.141 -5.009 0.117

σ 0.867 - .733 0.130
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its second conditional moment into the criterion function.

Wang and Leblanc (2007) proved that, under some regularity condi-

tions, the SLS estimator is consistent and has an asymptotic normal distri-

bution with the asymptotic covariance matrix given by B−1AB−1, where A

and B are given in (2.3) and (2.4), respectively.

Moreover, in this special case of model (2.1),

∂ρ′(γ)

∂γ
= −

 ∂f(X;β)
∂β

2f(X; β)∂f(X;β)
∂β

0 1

 .

In Theorem 2.2.1 we proved that the best choice for the weighting matrix

is W = F−1, where F = E(ρ(γ)ρ′(γ)|X), which gives the smallest variance

covariance matrix (
E

[
∂ρ′(γ)

∂γ
F−1∂ρ(γ)

∂γ′

])−1

.

In the rest of this section, SLS always refers to the most efficient second-order

least squares estimator using the weight W = F−1.

Now we compare the SLS with GMM estimator when both use the

same set of moment conditions. Given the i.i.d. random sample (Yi, X
′
i)
′, i =

1, 2, ..., n, the GMM estimator using the first two conditional moments is
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defined as the measurable function which minimizes

Gn(γ) =

(
n∑
i=1

ρi(γ)

)′
Wn

(
n∑
i=1

ρi(γ)

)
,

where ρi(γ) is defined in (2.2) and Wn is a nonnegative definite weighting

matrix. It can be shown (e.g., Mátyás (1999)) that under some regularity

conditions, the GMM estimator has an asymptotic normal distribution and

the asymptotic covariance matrix of the efficient GMM is given by[
E

(
∂ρ′(γ)

∂γ

)
V −1E

(
∂ρ(γ)

∂γ′

)]−1

,

where V = E[ρ(γ)ρ′(γ)] = E(F ) is the optimum weighting matrix. The next

theorem compares the asymptotic covariance matrices of the SLS and GMM

estimators.

Theorem 2.4.1. The SLS estimator is asymptotically more efficient than

the GMM estimator using the first two moment conditions, i.e.

E−1(C ′F−1C) ≤ [E(C ′)V −1E(C)]
−1

.

Proof. The proof is similar to that of Theorem 2.2.1. Let α = V −1E(C).

Then the result follows from

E(C − Fα)′F−1(C − Fα) = E(C ′F−1C)− E(C ′)α− α′E(C) + α′E(F )α

= E(C ′F−1C)− E(C ′)V −1E(C) ≥ 0.
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The proof is completed. 2

If β̂ and σ̂2 denote the estimators of the regression and variance pa-

rameters respectively, then the above theorem implies that V
(
θ̂GMM

)
≥

V
(
β̂SLS

)
and V (σ̂2

GMM) ≥ V (σ̂2
SLS) asymptotically. Given these theoreti-

cal comparison results, an interesting question is GMM performs better than

SLS if using more than two moment conditions. This question is examined

in the next part.

2.4.1 Monte Carlo Simulation Studies

In order to study the finite sample behavior of the second-order least squares

(SLS) estimation approach and the generalized method of moment (GMM)

estimation, several simulation scenarios are considered.

We consider the following exponential, logistic and linear-exponential

models, each with two or three parameters.

1. Exponential model with two parameters Y = 10eβX + ε, where X ∼

U(0.1, 10), ε ∼ N(0, σ2), and true parameter values are β = −0.5 and

σ2 = 1.

2. Exponential model with three parameters Y = β1e
β2X + ε, where X ∼
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U(0.1, 10), ε ∼ N(0, σ2), and true parameters are β1 = 10, β2 = −0.5

and σ2 = 1.

3. Logistic model with two parameters Y = 20
1+exp[−(X−β)/34]

+ ε, where

X ∼ U(20, 100), ε ∼ N(0, σ2), and true parameters are β = 50 and

σ2 = 1.

4. Logistic model with three parameters Y = 20
1+exp[−(X−β1)/β2]

+ ε, where

X ∼ U(20, 80), ε ∼ N(0, σ2), and true parameters are β1 = 50, β2 = 34

and σ2 = 1.

5. Linear-exponential model with two parameters Y = 5eβ1X + 10eβ2X + ε,

where X ∼ U(0.1, 10), ε ∼ N(0, 1), and true parameters are β1 = −3

and β2 = −1.

6. Linear-exponential model with three parameters Y = β3e
β1X+10eβ2X+ε,

where X ∼ U(0.1, 10), ε ∼ N(0, 1), and true parameters are β1 = −3

and β2 = −1 and β3 = 5.

In each model we compare SLS with two versions of GMM estimator,

one (GMM3) using the first three and another (GMM4) using the first four

moment conditions. Both SLS and GMM estimators are computed in two
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steps. In the first step, identity weighting matrix is used to obtain initial

parameter estimates. In the second step, first the optimal weight for the

SLS is calculated according to formula (7) in Wang and Leblanc (2007), and

optimal weight for GMM is calculated as Wn = n−1
∑n

i=1 ρi(γ̂)ρi(γ̂)′. Then

the final estimates are computed using the estimated weights.

As is frequently the case in nonlinear numerical optimization, con-

vergence, numerical complaints, and other problems will be encountered.

To avoid potential optimization problems involved in the iterative proce-

dures, a direct grid search method is applied. In particular, n0 = 5000 grid

points per parameter are generated in each iteration. For each model, 1000

Monte Carlo repetitions are carried out for each of the sample sizes n =

10, 20, 30, 50, 70, 100, 200, 300, 500. The Monte Carlo means (SLS, GMM3,

GMM4) and their root mean squared errors (RMSE) are computed. The

numerical computation is done using the statistical computer language R for

Windows on a PC with standard configuration.

Tables 2.3 – 2.17 report the results for n = 100, 200, 300, 500. We

present the Monte Carlo means, accuracy, root mean squared errors of the

estimators, and 95% confidence interval for the parameters. The accuracy

for the estimators is calculated using A = zα/2

√
V ar(β̂)/R, where R = 1000
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is the Monte Carlo replication number, and zα/2 is the 1 − α/2 quantile on

the right tail of the distribution N(0, 1).

According to the results, SLS shows its asymptotic properties for sam-

ple size larger than 100. However, both GMM3 and GMM4 converge slower.

Figure 2.1 suggests a downward bias in the GMM3 and GMM4 for σ2 but

not in SLS. The confidence intervals show that the true value of parameters

fall in the intervals for SLS when sample size increases. However, the same

results for GMM are not satisfying because of its finite sample bias. More-

over, the accuracy values show that SLS has more accurate mean values than

GMM.

Figure 2.2 shows the RMSE of the estimates for β , versus sample size.

We used these values to compare the efficiency of the estimators. Clearly

SLS is more efficient than GMM3 and GMM4. This fact is more obvious,

when we compare the corresponding confidence intervals (Confidence inter-

vals for GMM are outside of the confidence intervals for SLS). As sample

size increases we can see that RMSE decreases and the confidence intervals

become smaller.

Although the overall results show that SLS has smaller RMSE than
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GMM, in logistic model with three parameters (Tables 2.13 – 2.14), SLS

estimator for β2 and σ2 has larger RMSE for small sample sizes than GMMs.

As sample size increases, SLS starts to dominate both GMM3 and GMM4.

Figure 2.3 shows this result. Table 2.15 shows the case (β1 = −3) that SLS

has larger RMSE than GMM, even for sample size equal to 500. It seems

that in this case, SLS needs more sample size to perform better than GMMs.

Another point in the results is that GMM3 has smaller RMSE than

GMM4. Since GMM4 uses more information than GMM3, we expect to have

more precise estimators for GMM4 than GMM3. However this is not always

true. In Koenker and Machado (1999), they imply that GMM with higher

number of moment equations needs more sample sizes to justify conventional

asymptotic inference.
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Figure 2.1: Monte Carlo estimates of σ2 in the Exponential model with two
parameters
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Figure 2.2: RMSE of Monte Carlo estimates of β for the Exponential model
with two parameters
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Figure 2.3: RMSE of Monte Carlo estimates of β2 in Logistic model with
three parameters
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Table 2.3: Simulation results of the Exponential model with two parameters

n = 100 n = 200 n = 300 n = 500

β = −0.5

SLS -0.5031 -0.5001 -0.5000 -0.5004

RMSE 0.0255 0.0160 0.0145 0.0098

Accuracy 0.0016 0.0010 0.0009 0.0006

95% C.I. -0.505,-0.502 -0.501,-0.499 -0.501,-0.499 -0.501,-0.500

GMM3 -0.4988 -0.4933 -0.4942 -0.4949

RMSE 0.0588 0.0368 0.0364 0.0251

Accuracy 0.0037 0.0022 0.0022 0.0015

95% C.I. -0.502,-0.495 -0.496,-0.491 -0.496,-0.492 -0.496,-0.493

GMM4 -0.4986 -0.4925 -0.4918 -0.4914

RMSE 0.0764 0.0456 0.0475 0.0323

Accuracy 0.0047 0.0028 0.0029 0.0019

95% C.I. -0.503,-0.494 -0.495,-0.490 -0.495,-0.489 -0.493,-0.489
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Table 2.4: Simulation results of the Exponential model with two parameters
- continued

n = 100 n = 200 n = 300 n = 500

σ2 = 1

SLS 0.9882 0.9949 1.0020 1.0008

RMSE 0.1427 0.1003 0.0851 0.0622

Accuracy 0.0088 0.0062 0.0053 0.0039

95% C.I. 0.979,0.997 0.989,1.001 0.997,1.007 0.996,1.004

GMM3 0.8335 0.8159 0.8440 0.8451

RMSE 0.4309 0.4399 0.4169 0.4371

Accuracy 0.0246 0.0248 0.0240 0.0254

95% C.I. 0.809,0.858 0.791,0.841 0.820,0.868 0.820,0.870

GMM4 0.7966 0.8211 0.8145 0.7972

RMSE 0.4567 0.4398 0.4449 0.4493

Accuracy 0.0254 0.0249 0.0251 0.0249

95% C.I. 0.771,0.822 0.796,0.846 0.789,0.840 0.772,0.822
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Table 2.5: Simulation results of the Logistic model with two parameters

n = 100 n = 200 n=300 n = 500

β = 50

SLS 50.0112 50.0315 50.0021 50.0101

RMSE 0.7832 0.5426 0.4357 0.3419

Accuracy 0.0486 0.0336 0.0270 0.0212

95% C.I. 49.963,50.060 49.998,50.065 49.975,50.029 49.989,50.031

GMM3 49.8564 49.9216 49.8726 49.8778

RMSE 0.8998 0.6909 0.5931 0.4849

Accuracy 0.0551 0.0426 0.0359 0.0291

95% C.I. 49.801,49.911 49.879,49.964 49.837,49.909 49.849,49.907

GMM4 49.7912 49.8827 49.8076 49.8232

RMSE 0.9950 0.7768 0.7113 0.5993

Accuracy 0.0603 0.0476 0.0425 0.0355

95% C.I. 49.731,49.852 49.835,49.930 49.765,49.850 49.788,49.859
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Table 2.6: Simulation results of the Logistic model with two parameters -
continued

n = 100 n = 200 n=300 n = 500

σ2 = 1

SLS 0.9927 0.9974 0.9934 0.9956

RMSE 0.1357 0.0940 0.0820 0.0628

Accuracy 0.0084 0.0058 0.0051 0.0039

95% C.I. 0.984,1.001 0.992,1.003 0.988,0.998 0.992,0.999

GMM3 0.8370 0.8097 0.8233 0.7939

RMSE 0.4290 0.4482 0.4490 0.4452

Accuracy 0.0246 0.0252 0.0256 0.0245

95% C.I. 0.812,0.862 0.785,0.835 0.798,0.849 0.769,0.818

GMM4 0.8150 0.8193 0.8077 0.7978

RMSE 0.4463 0.4464 0.4453 0.4543

Accuracy 0.0252 0.0253 0.0249 0.0252

95% C.I. 0.790,0.840 0.794,0.845 0.783,0.833 0.773,0.823
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Table 2.7: Simulation results of the Linear-Exponential model with two pa-
rameters

n = 100 n = 200 n = 300 n = 500

β1 = −3

SLS -3.0766 -3.0452 -3.0168 -3.0235

RMSE 0.7899 0.5711 0.4997 0.3840

Accuracy 0.0487 0.0353 0.0310 0.0238

95% C.I. -3.125,-3.028 -3.080,-3.010 -3.048,-2.986 -3.047,-3.000

GMM3 -3.0474 -2.9455 -2.9732 -2.9497

RMSE 0.5817 0.5728 0.5627 0.5463

Accuracy 0.0360 0.0354 0.0349 0.0337

95% C.I. -3.083,-3.011 -2.981,-2.910 -3.008,-2.938 -2.983,-2.916

GMM4 -3.0470 -2.9862 -2.9290 -2.9405

RMSE 0.5833 0.5677 0.5797 0.5693

Accuracy 0.0361 0.0352 0.0357 0.0351

95% C.I. -3.083,-3.011 -3.021,-2.951 -2.965,-2.893 -2.976,-2.905
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Table 2.8: Simulation results of the Linear-Exponential model with two pa-
rameters - continued

n = 100 n = 200 n = 300 n = 500

β2 = −1

SLS -1.0182 -1.0104 -1.0103 -1.0027

RMSE 0.0798 0.0722 0.0538 0.0381

Accuracy 0.0048 0.0044 0.0033 0.0024

95% C.I. -1.023,-1.013 -1.015,-1.006 -1.014,-1.007 -1.005,-1.000

GMM3 -1.0180 -1.0351 -1.0293 -1.0275

RMSE 0.0950 0.1417 0.1372 0.1137

Accuracy 0.0058 0.0085 0.0083 0.0068

95% C.I. -1.024,-1.012 -1.044,-1.027 -1.038,-1.021 -1.034,-1.021

GMM4 -1.0268 -1.0354 -1.0508 -1.0393

RMSE 0.1205 0.1883 0.2011 0.1668

Accuracy 0.0073 0.0115 0.0121 0.0101

95% C.I. -1.034,-1.020 -1.047,-1.024 -1.063,-1.039 -1.049,-1.029
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Table 2.9: Simulation results of the Exponential model with three parameters

n = 100 n = 200 n = 300 n = 500

β1 = 10

SLS 10.0228 10.0055 10.0182 9.9832

RMSE 0.6031 0.3615 0.3346 0.2789

Accuracy 0.0374 0.0224 0.0207 0.0173

95% C.I. 9.985,10.060 9.983,10.028 9.997,10.039 9.966,10.001

GMM3 10.1560 10.2193 10.2312 10.1981

RMSE 0.9316 0.8114 0.9176 0.9007

Accuracy 0.0570 0.0484 0.0551 0.0545

95% C.I. 10.099,10.213 10.171,10.268 10.176,10.286 10.144,10.253

GMM4 10.2152 10.4046 10.2722 10.2912

RMSE 1.0557 0.9777 1.0554 1.0189

Accuracy 0.0641 0.0552 0.0632 0.0606

95% C.I. 10.151,10.279 10.349,10.460 10.209,10.335 10.231,10.352
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Table 2.10: Simulation results of the Exponential model with three parame-
ters - continued

n = 100 n = 200 n = 300 n = 500

β2 = −0.5

SLS -0.5042 -0.5017 -0.5026 -0.4997

RMSE 0.0381 0.0257 0.0234 0.0192

Accuracy 0.0024 0.0016 0.0014 0.0012

95% C.I. -0.507,-0.502 -0.503,-0.500 -0.504,-0.501 -0.501,-0.499

GMM3 -0.5150 -0.5365 -0.5261 -0.5196

RMSE 0.0940 0.1239 0.1094 0.0993

Accuracy 0.0058 0.0073 0.0066 0.0060

95% C.I. -0.521,-0.509 -0.544,-0.529 -0.533,-0.519 -0.526,-0.514

GMM4 -0.5270 -0.5916 -0.5419 -0.5391

RMSE 0.1317 0.2020 0.1591 0.1411

Accuracy 0.0080 0.0112 0.0095 0.0084

95% C.I. -0.535,-0.519 -0.603,-0.580 -0.551,-0.532 -0.548, -0.531
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Table 2.11: Simulation results of the Exponential model with three parame-
ters - continued

n = 100 n = 200 n = 300 n = 500

σ2 = 1

SLS 0.9743 0.9843 0.9887 0.9967

RMSE 0.1492 0.1082 0.0954 0.0774

Accuracy 0.0091 0.0066 0.0059 0.0048

95% C.I. 0.965,0.983 0.978,0.991 0.983,0.995 0.992,1.001

GMM3 0.8518 0.8719 0.8424 0.8427

RMSE 0.4360 0.4245 0.4260 0.4319

Accuracy 0.0254 0.0251 0.0245 0.0249

95% C.I. 0.826,0.877 0.847,0.897 0.818,0.867 0.818,0.868

GMM4 0.8217 0.7826 0.7897 0.8082

RMSE 0.4424 0.4558 0.4527 0.4490

Accuracy 0.0251 0.0248 0.0249 0.0252

95% C.I. 0.797,0.847 0.758,0.807 0.765,0.815 0.783,0.833
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Table 2.12: Simulation results of the Logistic model with three parameters

n = 100 n = 200 n = 300 n = 500

β1 = 50

SLS 50.0984 50.0689 50.0330 50.0295

RMSE 0.8201 0.5725 0.4620 0.3400

Accuracy 0.0505 0.0352 0.0286 0.0210

95% C.I. 50.048,50.149 50.034,50.104 50.004,50.062 50.009,50.051

GMM3 49.9090 49.8856 49.8797 49.8675

RMSE 0.8464 0.6756 0.5956 0.5430

Accuracy 0.0522 0.0413 0.0362 0.0327

95% C.I. 49.857,49.961 49.844,49.927 49.844,49.916 49.835,49.900

GMM4 49.8544 49.8440 49.8297 49.8212

RMSE 0.9465 0.8296 0.7164 0.6844

Accuracy 0.0580 0.0505 0.0431 0.0410

95% C.I. 49.796,49.912 49.793,49.895 49.787,49.873 49.780,49.862
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Table 2.13: Simulation results of the Logistic model with three parameters -
continued

n = 100 n = 200 n = 300 n = 500

β2 = 34

SLS 33.9483 33.9557 33.9568 33.9424

RMSE 1.3131 1.0907 0.9363 0.7140

Accuracy 0.0814 0.0676 0.0580 0.0441

%95 C.I. 33.867,34.030 33.888,34.023 33.899,34.015 33.898,33.987

GMM3 33.9386 34.0087 33.9917 34.0285

RMSE 1.1588 1.1623 1.1364 1.1621

Accuracy 0.0718 0.0721 0.0705 0.0720

95% C.I. 33.867,34.010 33.937,34.081 33.921,34.062 33.956,34.101

GMM4 33.9530 33.9826 34.0543 34.0038

RMSE 1.1738 1.1250 1.1373 1.1623

Accuracy 0.0727 0.0698 0.0704 0.0721

95% C.I. 33.880,34.026 33.913,34.052 33.984,34.125 33.932,34.076
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Table 2.14: Simulation results of the Logistic model with three parameters -
continued

n = 100 n = 200 n = 300 n = 500

σ2 = 1

SLS 0.9695 0.9848 0.9862 0.9944

RMSE 0.1452 0.1003 0.0833 0.0637

Accuracy 0.0088 0.0061 0.0051 0.0039

95% C.I. 0.961,0.978 0.979,0.991 0.981,0.991 0.990,0.998

GMM3 0.7941 0.8108 0.8136 0.8099

RMSE 0.4502 0.4361 0.4397 0.4385

Accuracy 0.0248 0.0244 0.0247 0.0245

95% C.I. 0.769,0.819 0.786,0.835 0.789,0.838 0.785,0.834

GMM4 0.7884 0.8137 0.8339 0.8125

RMSE 0.4581 0.4311 0.4341 0.4496

Accuracy 0.0252 0.0241 0.0249 0.0253

95% C.I. 0.763,0.814 0.790,0.838 0.809,0.859 0.787,0.838

48



Table 2.15: Simulation results of the Linear-Exponential model with three
parameters

n = 100 n = 200 n = 300 n = 500

β1 = −3

SLS -3.0091 -2.9845 -3.0173 -3.0040

RMSE 0.7339 0.6662 0.6601 0.5772

Accuracy 0.0455 0.0413 0.0409 0.0358

95% C.I. -3.055,-2.964 -3.026,-2.943 -3.058,-2.976 -3.040,-2.968

GMM3 -3.0118 -2.9210 -2.9855 -2.9919

RMSE 0.5904 0.5760 0.5572 0.5631

Accuracy 0.0366 0.0354 0.0345 0.0349

95% C.I. -3.048,-2.975 -2.956,-2.886 -3.020,-2.951 -3.027,-2.957

GMM4 -3.0021 -2.9519 -2.9551 -2.9644

RMSE 0.5685 0.5684 0.5713 0.5921

Accuracy 0.0353 0.0351 0.0353 0.0367

95% C.I. -3.037,-2.967 -2.987,-2.917 -2.990,-2.920 -3.001,-2.928
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Table 2.16: Simulation results of the Linear-Exponential model with three
parameters - continued

n = 100 n = 200 n = 300 n = 500

β2 = −1

SLS -1.0175 -1.0133 -1.0172 -1.0057

RMSE 0.0916 0.0647 0.0528 0.0396

Accuracy 0.0056 0.0039 0.0032 0.0024

95% C.I. -1.023,-1.012 -1.017,-1.009 -1.020,-1.014 -1.008,-1.003

GMM3 -1.0242 -1.0826 -1.0614 -1.0096

RMSE 0.1327 0.2371 0.1980 0.1792

Accuracy 0.0081 0.0138 0.0117 0.0107

95% C.I. -1.032,-1.016 -1.096,-1.069 -1.073,-1.050 -1.020,-0.999

GMM4 -1.0499 -1.1092 -1.1312 -1.0841

RMSE 0.2035 0.3153 0.3364 0.2681

Accuracy 0.0122 0.0183 0.0192 0.0158

95% C.I. -1.062,-1.038 -1.128,-1.091 -1.150,-1.112 -1.100,-1.068
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Table 2.17: Simulation results of the Linear-Exponential model with three
parameters - continued

n = 100 n = 200 n = 300 n = 500

β3 = 5

SLS 4.9739 5.0194 5.0969 5.0629

RMSE 1.4251 0.9281 0.8949 0.8469

Accuracy 0.0884 0.0575 0.0552 0.0524

95% C.I. 4.886,5.062 4.962,5.077 5.042,5.152 5.011,5.115

GMM3 4.9434 5.1693 5.2010 5.1909

RMSE 1.1403 1.0668 0.9990 1.0453

Accuracy 0.0706 0.0653 0.0607 0.0637

95% C.I. 4.873,5.014 5.104,5.235 5.140,5.262 5.127,5.255

GMM4 5.0251 5.2054 5.2798 5.2024

RMSE 1.1481 1.1331 1.1033 1.0956

Accuracy 0.0712 0.0691 0.0662 0.0668

95% C.I. 4.954,5.096 5.136,5.275 5.214,5.346 5.136,5.269
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2.5 Censored Regression Models

2.5.1 Model and Estimation

Consider the censored regression model

Y ∗ = X ′β + ε, Y = max(Y ∗, 0) (2.8)

where Y ∗ and Y ∈ IR are latent and observed response variables, X ∈ IRp is a

vector of observed predictors, and ε is the random error with density f(ε;φ)

which satisfies E(ε|X) = 0 and E(ε2|X) < ∞. The unknown parameters

are β ∈ Ω ⊂ IRp and φ ∈ Φ ⊂ IRq. Although we consider zero as the left

censoring value, it can be easily replaced by any other constant.

Under model (2.8), the first two conditional moments of Y given X are

respectively given by

E(Y |X) =

∫
I(X ′β + ε)(X ′β + ε)f(ε;φ)dε, (2.9)

E(Y 2|X) =

∫
I(X ′β + ε)(X ′β + ε)2f(ε;φ)dε, (2.10)

where I(x) = 1 for x > 0 and I(x) = 0 for x ≤ 0. Let γ = (β′, φ′)′ denote

the vector of model parameters and Γ = Ω×Φ ⊂ IRp+q the parameter space.
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For every x ∈ IRp and γ ∈ Γ, define

m1(x; γ) =

∫
I(x′β + ε)(x′β + ε)f(ε;φ)dε (2.11)

m2(x; γ) =

∫
I(x′β + ε)(x′β + ε)2f(ε;φ)dε. (2.12)

Now suppose (Yi, X
′
i)
′, i = 1, 2, ..., n is an i.i.d. random sample and

ρi(γ) =
(
Yi −m1(Xi; γ), Y 2

i −m2(Xi; γ)
)′
.

Then the second-order least squares (SLS) estimator γ̂n for γ is defined as

the measurable function that minimizes (2.2). For some error distribution

functions f(ε;φ), explicit forms of the integrals in the first two conditional

moments may be quite troublesome. We consider some examples where ex-

plicit forms of these moments can be obtained.

Example 2.5.1. First consider the model (2.8) where ε has a normal distribu-

tion N(0, σ2
ε). This is a standard Tobit model. For this model γ = (β′, σ2

ε)
′,

and the first two conditional moments are given by

E(Y |X) = X ′βΦ

(
X ′β

σε

)
+ σεφ

(
X ′β

σε

)

and

E(Y 2|X) =
[
(X ′β)2 + σ2

ε

]
Φ

(
X ′β

σε

)
+ σε(X

′β)φ

(
X ′β

σε

)
,
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where Φ and φ are the standard normal distribution and density function

respectively.

Example 2.5.2. Now consider the model (2.8) where ε
σε

√
k
k−2

has a t distri-

bution t(k) with k > 2. Then we have

E(Y |X) = (X ′β)Fk

(
X ′β

σε

)
+
σε
√
kΓ(k−1

2
)

2
√
πΓ(k

2
)

(
1 +

(X ′β)2

kσ2
ε

)−(k−1)/2

and

E(Y 2|X) =
[
(X ′β)2 + kσ2

ε

]
Fk

(
X ′β

σε

)
+

σε(X
′β)
√
kΓ(k−1

2
)

√
πΓ(k

2
)

(
1 +

(X ′β)2

kσ2
ε

)−(k−1)/2

+
k(k − 1)σ2

ε

k − 2
Fk−2

(√
k − 2

k

X ′β

σε

)
,

where Fk is the distribution function of t(k).

Example 2.5.3. Now consider the model (2.8) where ε
√

2k
σε

+k has a chi-square

distribution χ2(k), k > 1. Then we have

E(Y |X) = (X ′β + kσε)

− (1− I(X ′β))

[
(X ′β)Fk

(
−X ′β
σε

)
+ kσεFk+2

(
−X ′β
σε

)]
and

E(Y 2|X) = (X ′β + kσε)
2 + 2kσ2

ε − (1− I(X ′β))

[
(X ′β)2Fk

(
−X ′β
σε

)
+ 2kσε(X

′β)Fk+2

(
−X ′β
σε

)
+ σ2

εk(k + 2)Fk+4

(
−X ′β
σε

)]
,
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where Fk is the distribution function of χ2(k).

The above three models and the corresponding moments will be used

in our Monte Carlo simulation studies.

2.5.2 Consistency and Asymptotic Normality

To prove the consistency and asymptotic normal distribution of the SLS γ̂n,

we need to assume some regularity conditions. Here we adopt the setup of

Amemiya (1973) and express these regularity conditions in terms of error

distribution f(ε;φ).

Assumption 7. f(ε;φ) is continuous in φ ∈ Φ for µ-almost all ε.

Assumption 8. The parameter space Γ ⊂ IRp+q is compact.

Assumption 9. The weight W (X) is nonnegative definite with probability

one and satisfies E ‖W (X)‖ (Y 4 + ‖X‖4 + 1) <∞.

Assumption 10. E ‖W (X)‖
∫

(ε4 + 1) supΦ f(ε, φ)dε <∞.

Assumption 11. For any γ ∈ Γ, E[ρ(γ)− ρ(γ0)]′W (X)[ρ(γ)− ρ(γ0)] = 0 if

and only if γ = γ0.

Assumption 12. There exists an open subset φ0 ∈ Φ0 ⊂ Φ in which

f(ε;φ) is twice continuously differentiable with respect to φ, for µ-almost
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all ε. Furthermore, there exists positive function K(ε), such that the first

two partial derivatives of f(ε;φ) with respect to φ are bounded by K(ε), and

E ‖W (X)‖
∫

(ε4 + 1)K2(ε)dε <∞.

Assumption 13. The matrix B = E
[
∂ρ′(γ0)
∂γ

W (X)∂ρ(γ0)
∂γ′

]
is nonsingular.

Assumption A12 guaranties uniform convergence of the second deriva-

tive of Qn(γ). This assumption and the Dominated Convergence Theorem

together imply that the first derivatives ∂m1(X; γ)/∂γ and ∂m2(X; γ)/∂γ

exist and their elements are respectively given by

∂m1(x; γ)

∂β
= x

∫ ∞
−x′β

f(ε;φ)dε

∂m1(x; γ)

∂φ
=

∫ ∞
−x′β

(x′β + ε)
∂f(ε;φ)

∂φ
dε

and

∂m2(x; γ)

∂β
= 2x

∫ ∞
−x′β

(x′β + ε)f(ε;φ)dε

∂m2(x; γ)

∂φ
=

∫ ∞
−x′β

(x′β + ε)2∂f(ε;φ)

∂φ
dε.

Theorem 2.5.4. Under the assumptions A7 – A11, the SLS γ̂n
a.s.−→ γ0, as

n→∞.

Theorem 2.5.5. Under assumptions A7 – A13, as n→∞,
√
n(γ̂n−γ0)

L−→

N(0, B−1AB−1), where A and B are given in (2.3) and (2.4), respectively.
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2.5.3 Efficient Choice of the Weighting Matrix

The SLS γ̂n depends on the weighting matrix W (X). To answer the question

of how to choose W (X) to obtain the most efficient estimator, we first note

that, since ∂ρ′(γ0)/∂γ does not depend on Y matrix A in (2.3) can be written

as

A = E

[
∂ρ′(γ0)

∂γ
W (X)F (X)W (X)

∂ρ(γ0)

∂γ′

]
,

where

F (X) = E[ρ(γ0)ρ′(γ0)|X]

and has elements

F11 = E[(Y −m1(X; γ0))2|X] = m2 −m2
1

F22 = E[(Y 2 −m2(X; γ0))2|X] = m4 −m2
2

and

F12 = E[(Y −m1(X; γ0))(Y 2 −m2(X; γ0))|X] = m3 −m1m2,

where

m3(x; γ) =

∫
I(x′β + ε)(x′β + ε)3f(ε;φ)dε

and

m4(x; γ) =

∫
I(x′β + ε)(x′β + ε)4f(ε;φ)dε.
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We calculated the third and the fourth conditional moments for the examples

we presented at the beginning of this section. We will refer to these moments

later in the simulation study.

For the model in Example 2.5.1:

E(Y 3|X) = [(X ′β)3 + 3(X ′β)σ2
ε ]Φ

(
X ′β

σε

)
+ σε[2σ

2
ε + (X ′β)2]φ

(
X ′β

σε

)

and

E(Y 4|X) = [(X ′β)4 + 6(X ′β)2σ2
ε + 3σ4

ε ]Φ

(
X ′β

σε

)
+ σε(X

′β)[5σ2
ε + (X ′β)2]φ

(
X ′β

σε

)

For the model in Example 2.5.2 with k > 4:

E(Y 3|X) = (X ′β)[(X ′β)2 − 3kσ2
ε ]Fk

(
X ′β

σε

)
−

4σε(X
′β)2

√
k/πΓ(k+1

2
)

Γ(k
2
)(1− k)

(
1 +

(X ′β)2

kσ2
ε

) 1−k
2

+
3k(k − 1)σ2

ε

k − 2
(X ′β)Fk−2

(√
k − 2

k

X ′β

σε

)

+
2σ3

εk
√
k/πΓ(k+1

2
)

Γ(k
2
)(1− k)(3− k)

(
1 +

(X ′β)2

kσ2
ε

) 3−k
2
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and

E(Y 4|X) = [(X ′β)4 + k2σ4
ε − 6k2σ4

ε(X
′β)2]Fk

(
X ′β

σε

)
−

8σε(X
′β)3

√
k/πΓ(k+1

2
)

Γ(k
2
)(1− k)

(
1 +

(X ′β)2

kσ2
ε

) 1−k
2

+
2k2σ2

ε(k − 1)

k − 2
(3(X ′β)2 − 1)Fk−2

(√
k − 2

k

X ′β

σε

)

+
8σ3

ε(X
′β)k

√
k/πΓ(k+1

2
)

Γ(k
2
)(1− k)(3− k)

(
1 +

(X ′β)2

kσ2
ε

) 3−k
2

+ k2σ4
ε

[
(k − 1)(k − 3)

(k − 2)(k − 4)
Fk−4

(√
k − 4

k

X ′β

σε

)]

For the model in Example 2.5.3:

E(Y 3|X) = (X ′β)3 + 3kσε(X
′β)2 + k(k + 2)σ2

ε [3(X ′β) + (k + 4)σε]

+ (1− I(X ′β))

[
(X ′β)3Fk

(
−X ′β
σε

)
+ 3kσε(X

′β)2Fk+2

(
−X ′β
σε

)
+ 3k(k + 2)σ2

ε(X
′β)Fk+4

(
−X ′β
σε

)
+ k(k + 2)(k + 4)σ3

εFk+6

(
−X ′β
σε

)]
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and

E(Y 4|X) = (X ′β)4 + 4kσε(X
′β)3 + 6k(k + 2)σ2

ε(X
′β)2

+ k(k + 2)(k + 4)σ3
ε [4(X ′β) + σε(k + 6)]

+ (1− I(X ′β))

[
(X ′β)4Fk

(
−X ′β
σε

)
+ 4kσε(X

′β)3Fk+2

(
−X ′β
σε

)
+ 6k(k + 2)σ2

ε(X
′β)2Fk+4

(
−X ′β
σε

)
+ 4k(k + 2)(k + 4)σ3

ε(X
′β)Fk+6

(
−X ′β
σε

)
+ k(k + 2)(k + 4)(k + 6)σ4

εFk+8

(
−X ′β
σε

)]

We proved in Theorem 2.2.1 that

B−1AB−1 ≥ E

[
∂ρ′(γ0)

∂γ
F (X)−1∂ρ(γ0)

∂γ′

]−1

(2.13)

and the lower bound is attained for W (X) = F (X)−1 in B and A. The

matrix F (X) is invertible if its determinant F11F22 − F 2
12 > 0. As we will

see later in the simulation study, the weighting matrix W (X) plays a crucial

role in the efficiency of the SLS estimator.

2.5.4 Simulation-Based Estimator

The numerical computation of the SLS estimator of the last section can be

done using standard numerical procedures when closed forms of the first two
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conditional moments are available. However, sometimes explicit forms of the

integrals in (2.11) and (2.12) may be difficult or impossible to derive. In this

case numerical minimization of Qn(γ) will be troublesome, especially when

the dimension of parameters p+ q is greater than two or three. To overcome

this computational difficulty, in this section we consider a simulation-based

approach in which the integrals are simulated by Monte Carlo methods. First

note that by a change of variables the integrals in (2.11) and (2.12) can be

written as

m1(x; γ) =

∫
I(ε)εf(ε− x′β;φ)dε (2.14)

m2(x; γ) =

∫
I(ε)ε2f(ε− x′β;φ)dε. (2.15)

The simulation-based estimator can be constructed in the following way.

First, choose a known density l(t) with support in [0,+∞) and generate

an i.i.d. random sample {tij, j = 1, 2, ..., 2S, i = 1, 2, ..., n} from l(t). Then

approximate m1(x; γ) and m2(x; γ) by the Monte Carlo simulators

m1,S(xi; γ) =
1

S

S∑
j=1

tijf(tij − x′iβ;φ)

l(tij)

m1,2S(xi; γ) =
1

S

2S∑
j=S+1

tijf(tij − x′iβ;φ)

l(tij)
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and

m2,S(xi; γ) =
1

S

S∑
j=1

t2ijf(tij − x′iβ;φ)

l(tij)

m2,2S(xi; γ) =
1

S

2S∑
j=S+1

t2ijf(tij − x′iβ;φ)

l(tij)
.

Hence, a simulated version of the objective function Qn(γ) can be defined as

Qn,S(γ) =
n∑
i=1

ρ
′

i,S(γ)Wiρi,2S(γ), (2.16)

where

ρi,S(γ) =
(
Yi −m1,S(Xi; γ), Y 2

i −m2,S(Xi; γ)
)′

ρi,2S(γ) =
(
Yi −m1,2S(Xi; γ), Y 2

i −m2,2S(Xi; γ)
)′
.

Since ρi,S(γ) and ρi,2S(γ) are conditionally independent given Yi, Xi, Qn,S(γ)

is an unbiased simulator for Qn(γ). Finally, the Simulation-Based estimator

(SBE) for γ can be defined by

γ̂n,S = argminγ∈ΓQn,S(γ).

Note that Qn,S(γ) is continuous in, and differentiable with respect to

γ, as long as function f(ε −X ′β;φ) has these properties. In particular, the

first derivative of ρi,S(γ) becomes

∂ρ
′
i,S(γ)

∂γ
= −

(
∂m1,S(Xi; γ)

∂γ
,
∂m2,S(Xi; γ)

∂γ

)
,
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where ∂m1,S(Xi; γ)/∂γ is a column vector with elements

∂m1,S(Xi; γ)

∂β
=

1

S

S∑
j=1

tij
l(tij)

∂f(tij −X ′iβ;φ)

∂β

∂m1,S(Xi; γ)

∂φ
=

1

S

S∑
j=1

tij
l(tij)

∂f(tij −X ′iβ;φ)

∂φ

and ∂m2,S(Xi; γ)/∂γ is a column vector with elements

∂m2,S(Xi; γ)

∂β
=

1

S

S∑
j=1

t2ij
l(tij)

∂f(tij −X ′iβ;φ)

∂β

∂m2,S(Xi; γ)

∂φ
=

1

S

S∑
j=1

t2ij
l(tij)

∂f(tij −X ′iβ;φ)

∂φ
.

The derivatives ∂m1,2S(Xi; γ)/∂γ and ∂m2,2S(Xi; γ)/∂γ can be given simi-

larly.

With the modified expression (2.14) and (2.15), Assumption A12 can

be substituted by the following assumption.

Assumption 14. There exist an open subset γ0 ∈ Γ0 ⊂ Ω, in which f(ε −

x′β;φ) is twice continuously differentiable with respect to γ and ε. Further-

more, there exists positive function K(ε, x), such that the first two partial

derivatives of f(ε − x′β;φ) with respect to β and φ are bounded by K(ε, x),

and E ‖W (X)‖
∫

(ε4 + 1)K2(ε,X)dε <∞.
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With the new assumption, the first derivatives ∂m1(x; γ)/∂γ and

∂m2(x; γ)/∂γ exist and their elements are respectively given by

∂m1(x; γ)

∂β
=

∫ ∞
0

ε
∂f(ε− x′β;φ)

∂β
dε,

∂m1(x; γ)

∂φ
=

∫ ∞
0

ε
∂f(ε− x′β;φ)

∂φ
dε

and

∂m2(x; γ)

∂β
=

∫ ∞
0

ε2∂f(ε− x′β;φ)

∂β
dε,

∂m2(x; γ)

∂φ
=

∫ ∞
0

ε2∂f(ε− x′β;φ)

∂φ
dε.

Therefore, Theorems 2.5.4 and 2.5.5 can be proved in the same way. We have

the following theorem for the simulation-based estimator.

Theorem 2.5.6. Suppose the Supp[l(t)] ⊇ [0,+∞) ∩ Supp[f(ε − X ′β;φ)]]

for all γ ∈ Γ and x ∈ IRp. Then as n→∞,

(i). Under assumptions A7 – A11, γ̂n,S
a.s.−→ γ0.

(ii). Under assumptions A7 – A11, and A13 – A14,

√
n(γ̂n,S − γ0)

L−→ N(0, B−1ASB
−1), where

2AS = E

[
∂ρ′1,S(γ0)

∂γ
W (X)ρ1,2S(γ0)ρ′1,2S(γ0)W (X)

∂ρ1,S(γ0)

∂γ′

]
+ E

[
∂ρ′1,S(γ0)

∂γ
W (X)ρ1,2S(γ0)ρ′1,S(γ0)W (X)

∂ρ1,2S(γ0)

∂γ′

]
.

The proof for Theorem 2.5.6 is analogous to Theorem 3 in Wang (2004)

and is therefore omitted. In general, the simulation-based estimator γ̂n,S is
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less efficient than the SLS γ̂n, due to the simulation approximation of ρi(γ)

by ρi,S(γ) and ρi,2S(γ). Wang (2004) showed that the efficiency loss caused by

simulation has a magnitude of O(1/S). Therefore, the larger the simulation

size S, the smaller the efficiency loss. Note also that the above asymptotic

results do not require the simulation size S tends to infinity.

2.5.5 Monte Carlo Simulation Studies

In this section we study finite sample behavior of the SLS estimator with

both identity and optimal weighting matrices, and compare them with the

maximum likelihood estimator (MLE). We conducted substantial simulation

studies using a variety of configurations with respect to sample size, degree

of censoring, and error distribution.

In particular, we simulate the three models in Examples 2.5.1 – 2.5.3

with β = (β1, β2)′ and φ = σ2
ε . For each model, we consider the amount of

censoring of 31% and 60% respectively. The covariate X has a normal distri-

bution. For each model, 1000 Monte Carlo repetitions are carried out for each

of the sample sizes n = 50, 70, 100, 200, 300, 500. We computed the Monte

Carlo means of the SLS estimator using the identity weight (SLSIDEN) and

the optimal weight (SLSOPT), together with their root mean squared errors
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(RMSE).

The simulation results for all sample sizes are summarized in Fig-

ures 2.4 and 2.5. In particular, Figure 2.4 contains the estimates of the

model with normal errors, 60% censoring, and the true parameter values

β1 = −6, β2 = 1.5 and σ2
ε = 16. Figure 2.5 compares the root mean squared

errors (RMSE) of the estimators of σ2
ε for the three models with 60% cen-

soring. Both figures show that the SLSOPT and MLE perform very simi-

larly. Furthermore, Figure 2.4 shows that all three estimators achieve their

large-sample properties with moderate sample sizes, even for a relatively high

amount of censoring. Figure 2.5 shows that the SLSIDEN clearly has smaller

RMSE than the other two estimators in all models.

Next we present more detailed numerical results for the sample size

n = 200. In particular, Tables 2.18 – 2.23 present the simulation results for

the models with normal, t, and chi-square error distributions and 31% and

60% censoring respectively. Moreover, we report 95% confidence intervals for

the parameters as well.

Again, these results show that in general the SLS with optimal weight

(SLSOPT) performs very closely to the MLE. This pattern holds for both
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Figure 2.4: Monte Carlo estimates of the normal model with 60% censoring
and various sample sizes.
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Figure 2.5: RMSE of the estimators of σ2
ε in three models with 60% censoring

and various sample sizes.
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amounts of censoring. Generally, the bias of the estimators increases as the

error distribution changes from symmetric to asymmetric. In the case of

χ2 error distribution, MLE shows more bias in both β1 and β2. Comparing

Tables 2.18 – 2.23 reveals that as the proportion of censored observation de-

clines, the RMSE of the estimators decreases. This is because of the decrease

in the variance of the estimators. It is also apparent that the 95% confidence

intervals for β2 are generally shorter than the confidence intervals for β1 and

σ2
ε . As usual, estimating σ2

ε with a similar accuracy or precision as regression

coefficients would need more Monte Carlo iterations.

We also examine the behavior of the estimators under misspecified dis-

tributions. In particular, we calculate the estimators assuming the normal

random errors, while the data is generated using t or χ2 distributions. In

each case, the error term ε is normalized to have zero mean and variance

σ2
ε . The simulated mean estimates, the RMSE, and the biases for the sam-

ple size n = 200 and 31% censoring are presented in Table 2.24. As we

can see from Table 2.24 that, under misspecification, both the MLE and the

SLSOPT have relatively high biases. In contrast to previous simulation re-

sults, in this case, the SLSIDEN performs dramatically better in terms of

bias for all the parameters and RMSE for σ2
ε . This is due to the fact that in

69



Table 2.18: Simulation results of the models with sample size n = 200 and
31% censoring

Error Normal t(5) χ2
(4)

β1 = −1.5

SLSIDEN -1.4860 -1.4483 -1.4806

RMSE 0.7428 0.7754 0.8069

Accuracy 0.0461 0.0480 0.0500

95% C.I. (-1.532,-1.440) (-1.496,-1.400) (-1.531,-1.431)

MLE -1.5097 -1.5188 -1.5695

RMSE 0.4614 0.4298 0.4814

Accuracy 0.0286 0.0266 0.0295

95% C.I. (-1.538,-1.481) (-1.545,-1.492) (-1.599,-1.540)

SLSOPT -1.5016 -1.5155 -1.5472

RMSE 0.4749 0.4959 0.5770

Accuracy 0.0294 0.0307 0.0357

95% C.I. (-1.531,-1.472) (-1.546,-1.485) (-1.583,-1.512)
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Table 2.19: Simulation results of the models with sample size n = 200 and
31% censoring - continued

Error Normal t(5) χ2
(4)

β2 = 1.5

SLSIDEN 1.4924 1.4869 1.4947

RMSE 0.1632 0.1538 0.1829

Accuracy 0.0101 0.0095 0.0113

95% C.I. (1.482,1.503) (1.477,1.496) (1.483,1.506)

MLE 1.4999 1.5026 1.5219

RMSE 0.1091 0.0948 0.0923

Accuracy 0.0068 0.0059 0.0056

95% C.I. (1.493,1.507) (1.497,1.508) (1.516,1.527)

SLSOPT 1.4988 1.5021 1.5092

RMSE 0.1106 0.1103 0.1161

Accuracy 0.0069 0.0068 0.0072

95% C.I. (1.492,1.506) (1.495,1.509) (1.502,1.516)
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Table 2.20: Simulation results of the models with sample size n = 200 and
31% censoring - continued

Error Normal t(5) χ2
(4)

σ2
ε = 16

SLSIDEN 15.9419 15.9363 15.9210

RMSE 0.6625 0.6878 0.7301

Accuracy 0.0409 0.0425 0.0450

95% C.I. (15.901,15.983) (15.894,15.979) (15.876,15.966)

MLE 15.9249 15.9388 15.9287

RMSE 0.7835 0.7879 0.7549

Accuracy 0.0484 0.0487 0.0466

95% C.I. (15.877,15.973) (15.890,15.987) (15.882,15.975)

SLSOPT 15.9075 15.8561 15.9408

RMSE 0.7830 0.7968 0.7995

Accuracy 0.0482 0.0486 0.0494

95% C.I. (15.859,15.956) (15.807,15.905) (15.891,15.990)
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Table 2.21: Simulation results of the models with sample size n = 200 and
60% censoring

Dist. Normal t(5) χ2
(4)

β1 = −6

SLSIDEN -5.9127 -5.9714 -5.9146

RMSE 0.8471 0.8548 0.8592

Accuracy 0.0523 0.0530 0.0530

95% C.I. (-5.965,-5.860) (-6.024,-5.918) (-5.968,-5.862)

MLE -6.0113 -6.0388 -6.1176

RMSE 0.5910 0.6093 0.6660

Accuracy 0.0366 0.0377 0.0407

95% C.I. (-6.048,-5.975) (-6.077,-6.001) (-6.158,-6.077)

SLSOPT -6.0279 -6.0418 -6.0361

RMSE 0.6102 0.6775 0.6992

Accuracy 0.0378 0.0419 0.0433

95% C.I. (-6.066,-5.990) (-6.084,-6.000) (-6.079,-5.993)
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Table 2.22: Simulation results of the models with sample size n = 200 and
60% censoring - continued

Dist. Normal t(5) χ2
(4)

β2 = 1.5

SLSIDEN 1.4785 1.4957 1.4752

RMSE 0.2024 0.1796 0.2136

Accuracy 0.0125 0.0111 0.0132

95% C.I. (1.466,1.491) (1.485,1.507) (1.462,1.488)

MLE 1.5028 1.5051 1.5287

RMSE 0.1325 0.1180 0.1086

Accuracy 0.0082 0.0073 0.0065

95% C.I. (1.495,1.511) (1.498,1.512) (1.522,1.535)

SLSOPT 1.5059 1.5064 1.5073

RMSE 0.1346 0.1288 0.1271

Accuracy 0.0083 0.0080 0.0079

95% C.I. (1.498,1.514) (1.498,1.514) (1.499,1.515)
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Table 2.23: Simulation results of the models with sample size n = 200 and
60% censoring - continued

Dist. Normal t(5) χ2
(4)

σ2
ε = 16

SLSIDEN 15.9563 15.9154 16.0025

RMSE 0.7177 0.7166 0.7605

Accuracy 0.0444 0.0441 0.0472

95% C.I. (15.912,16.001) (15.871,15.960) (15.955,16.050)

MLE 15.8526 15.8927 15.9100

RMSE 0.8185 0.8070 0.7935

Accuracy 0.0499 0.0496 0.0489

95% C.I. (15.803,15.903) (15.843,15.942) (15.861,15.959)

SLSOPT 15.8393 15.8426 15.9053

RMSE 0.8120 0.7959 0.8141

Accuracy 0.0494 0.0484 0.0501

95% C.I. (15.790,15.889) (15.794,15.891) (15.855,15.955)
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Table 2.24: Simulation results of the misspecified models with sample size
n = 200 and 31% censoring

t(5) χ2
(4)

Mean RMSE Bias Mean RMSE Bias

β1 = −1.5

SLSIDEN -1.7644 0.7664 0.2644 -1.3148 0.8223 0.1852

MLE -1.7792 0.5409 0.2792 -1.8527 0.6024 0.3527

SLSOPT -1.9290 0.6285 0.4290 -2.0917 0.7539 0.5917

β2 = 1.5

SLSIDEN 1.5153 0.1583 0.0153 1.4671 0.2041 0.0329

MLE 1.5560 0.1204 0.0560 1.5430 0.1309 0.0430

SLSOPT 1.5748 0.1447 0.0748 1.5582 0.1377 0.0582

σ2
ε = 16

SLSIDEN 15.7071 0.6819 0.2929 16.1360 0.6900 0.1360

MLE 15.2305 0.9006 0.7695 16.6462 0.8713 0.6462

SLSOPT 15.3186 0.8878 0.6814 16.7860 0.8889 0.7860
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SLSIDEN, the weighting matrix does not depend on the parameters which

are poorly estimated because of misspecification. Although SLSIDEN is not

as efficient as MLE and SLSOPT in the correct specification cases, it shows

more robustness in misspecified cases.
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Chapter 3

Second-order Least Squares
Estimation in Measurement
Error Models

3.1 Linear Measurement Error models

Consider a linear regression model

Y = X ′β + ε, (3.1)

where Y ∈ IR and X ∈ IRp are response and predictor variables respectively,

β ∈ IRp is the unknown parameters, and ε is the random error. The observed

predictor variable is

Z = X + δ, (3.2)

where δ is the random measurement error. We assume that X, δ, and ε

are mutually uncorrelated and have means µx, 0, 0 and covariances Σx,Σδ, σ
2
ε
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respectively, where Σx has full rank but Σδ can be singular to allow some

components of X to be measured without error. In addition, suppose that

an instrumental variable (IV) V ∈ IRq is available which is correlated with

X but uncorrelated with δ and ε. We can see that (3.1) and (3.2) give a

conventional linear errors-in-variables model

Y = Z ′β + ε− δ′β.

It is well-known that the ordinary least squares estimators for β based on

(Z, Y ) will be inconsistent because Z is correlated with the error term ε −

δ′β. Our goal is to find consistent estimators for parameters β and σ2
ε in

model (3.1) – (3.2). The observed data is (Zi, Vi, Yi), i = 1, 2, ..., n, which are

supposed to be independent but not necessarily identically distributed. Wang

and Hsiao (2007) proposed a method that can yield consistent estimators,

both for β and σ2
ε . First, since Σvx 6= 0, we have

X = HV + U, (3.3)

where U is uncorrelated with δ, ε and satisfies E(V U ′) = 0 by construction.

Furthermore, because V is uncorrelated with U and δ, substituting (3.3) into

(3.2) results in a standard linear regression equation

Z = HV + U + δ. (3.4)
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It follows that H can be consistently estimated using the least squares

method. On the other hand, substituting (3.3) into (3.1) we obtain

Y = V ′ω + ν, (3.5)

where ω = H ′β and ν = ε + U ′β is uncorrelated with V . Hence ω can be

consistently estimated using the data (Vi, Yi). We note that in (3.4) H can

be estimated by

Ĥ =

(
n∑
i=1

ZiV
′
i

)(
n∑
i=1

ViV
′
i

)−1

. (3.6)

We can see that ω in (3.5) can be estimated either by OLS or SLS. If we use

OLS to estimate ω we have

ω̂OLS = (V V ′)−1V Y. (3.7)

The second-order least squares estimator γ̂SLS for γ is defined as the mea-

surable function that minimizes (2.2), where

γ = (ω′, σ2
ν)
′, ρi(γ) = (Yi − V ′i ω, Y 2

i − (V ′i ω)2 − σ2
ν)
′
, and σ2

ν = β′Σuβ + σ2
ε .

Given the consistent estimators Ĥ and ω̂, consistent estimator for β can

be obtained by minimizing (ω̂−Ĥ ′β)′An(ω̂−Ĥ ′β), where An is a nonnegative

definite weighting matrix which may depend on the data. The minimum

distance estimator (MDE) is given by

β̂OLS = (ĤAnĤ
′)−1ĤAnω̂OLS. (3.8)
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Similarly,

β̂SLS = (ĤAnĤ
′)−1ĤAnω̂SLS. (3.9)

Furthermore, since
√
n (ω̂OLS − ω)

L−→ N (0,Σω̂OLS
) (Wang and Leblanc

(2007)), then the delta-method implies

√
n
(
β̂OLS − β

)
L−→ N

(
0, (HAH ′)−1HAΣω̂OLS

AH ′(HAH ′)−1
)
,

where A = plim(An/n). Similarly for SLS we have
√
n (ω̂SLS − ω)

L−→

N (0,Σω̂SLS
), then

√
n
(
β̂SLS − β

)
L−→ N

(
0, (HAH ′)−1HAΣω̂SLS

AH ′(HAH ′)−1
)
.

Here Σω̂OLS
= σ2

νG
−1
2 and

Σω̂SLS
=

(
σ2
ν −

µ2
3

µ4 − σ4
δ1

)(
G2 −

µ2
3

σ2
ν(µ4 − σ4

ν)
G1G

′
1

)−1

,

where G1 = E(V ), G2 = E(V V ′), µ3 = E(ν3|V ), and µ4 = E(ν4|V ). To

estimate σ2
ε , we have

σ2
y = β′Σzy + σ2

ε ,

hence σ̂2
ε = Syy− β̂′Szy. The next theorem shows that under some conditions

SLS estimator of ω dominates OLS estimator.

Theorem 3.1.1. V (β̂OLS) − V (β̂SLS) is nonnegative definite if µ3 6= 0 and

G′1G
−1
2 G1 = 1, and is positive definite if G′1G

−1
2 G1 6= 1.
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Proof. Let B = AH ′(HAH ′)−1, so for every nonzero vector y, we have

y′(V (β̂OLS)− V (β̂SLS))y = y′B′(V (ω̂OLS)− V (ω̂SLS))By = x′ΣDx

Depends on either ΣD = V (ω̂OLS) − V (ω̂OLS) is n.n.d. or p.d., V (β̂OLS) −

V (β̂SLS) will be either n.n.d or p.d. (Wang and Leblanc (2007)), and x = By

is a nonzero vector.

2

In a simulation study, under the condition that the error terms have chi

squared distribution, we compared the OLS estimation with SLS estimation.

Table 3.1 shows the results of the study. It shows that in a moderate sample

size the RMSE reduction was about 40%.
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Table 3.1: Simulation results of the Linear Measurement error model with
instrumental variable.

n = 50 n = 70 n = 100 n = 200 n = 300 n = 400

β1 = 0.5

OLS 0.6613 0.5356 0.5412 0.5048 0.5125 0.5038

RMSE 3.2698 0.5291 0.2500 0.1345 0.1083 0.0932

SLS 0.6356 0.5282 0.5311 0.5047 0.5116 0.5037

RMSE 2.3860 0.5027 0.2179 0.1176 0.0977 0.0831

β2 = −0.5

OLS -0.7058 -0.5504 -0.5460 -0.5105 -0.5085 -0.5100

RMSE 4.0054 0.7919 0.3952 0.1997 0.1611 0.1407

SLS -0.6896 -0.5630 -0.5476 -0.5116 -0.5098 -0.5086

RMSE 3.5007 0.7536 0.3817 0.1822 0.1411 0.1235

σ2
ε = 1

OLS 0.8392 0.9217 0.9566 0.9728 0.9843 0.9900

RMSE 3.8355 0.8642 0.4054 0.2522 0.2027 0.1822

SLS 0.8719 0.9295 0.9714 0.9741 0.9877 0.9924

RMSE 2.3432 0.8264 0.4038 0.2425 0.1980 0.1767
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3.2 Generalized Linear Measurement Error

Models

3.2.1 Method of Moments Estimator

In a generalized linear model (GLM, McCullagh and Nelder 1989), the first

two conditional moments of the response variable Y ∈ IR given the covariates

X ∈ IRp can be written as

E(Y |X) = G−1(X ′β)

V (Y |X) = θK(G−1(X ′β)),

where β ∈ IRp and θ ∈ IR are unknown parameters, G is the link function,

and K is a known function. It follows that

E(Y 2|X) = θK(G−1(X ′β)) + (G−1(X ′β))2.

In order to have uniform notations with the second chapter, we consider the

model of the form

E(Y | X) = f(X ′β), (3.10)

E(Y 2 | X) = f 2(X ′β) + g2(X ′β, θ). (3.11)
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Here we assume that V (Y | X) = g2(X ′β, θ). Furthermore, suppose that X

is unobservable, instead we observe

Z = X + δ, (3.12)

where δ is a random measurement error. We also assume that an instrumental

variable V ∈ IRq is available and is related to X through

X = HV + U, (3.13)

where H is a p × q matrix of unknown parameters with rank p and U is

independent of V has mean zero and distribution fU(u;φ) with unknown

parameters φ ∈ Φ ⊂ IRk. In addition, assume that E(Y j|X) = E(Y j|X, V ),

j = 1, 2 and the measurement error δ is independent of X, V, Y . There is

no assumption concerning the functional forms of the distributions of X and

δ. In this sense, model (3.10) – (3.13) is semi parametric. In this model the

observed variables are (Y, Z, V ). Our interest is to estimate γ = (β′, θ, φ′)′.

We propose the method of moments estimators as follows.

First, substituting (3.13) into (3.12) results in a usual linear regression

equation

E(Z | V ) = HV. (3.14)
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Furthermore, by model assumptions we have

E(Y | V ) =

∫
f(V ′H ′β′ + u′β)fU(u;φ)du, (3.15)

E(Y 2 | V ) =

∫
f 2(V ′H ′β′ + u′β)fU(u;φ)du

+

∫
g2(V ′H ′β′ + u′β; θ)fU(u;φ)du, (3.16)

and

E(Y Z | V ) =

∫
(HV + u)f(V ′H ′β′ + u′β)fU(u;φ)du. (3.17)

Throughout the section, all integrals are taken over the space IRp. It follows

that H can be consistently estimated by (3.14) and the least squares method,

and β, θ, and φ can be consistently estimated using (3.15) – (3.17) and

nonlinear least squares method, provided that they are identifiable by these

equations. Indeed, the identifiability of the unknown parameters by these

equations have been shown by Wang and Hsiao (1995) for the case where

f is integrable and g is a constant function, Schennach (2007), and Wang

and Hsiao (2007) for the more general cases. Since it is straightforward to

estimate H using (3.14), in the following we assume that H is known and

focus on the estimation of β, θ, and φ. In practice, one can estimate H

using an external sample, or a subset of the main sample, and estimate other
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parameters using the rest of the main sample. Now we use some examples to

demonstrate that the mentioned parameters may indeed be estimated using

(3.15) – (3.17). To simplify notations, we consider the case where all variables

are scalars and U ∼ N(0, φ).

Example 3.2.1. Consider a Gamma loglinear model where Y has a continuous

distribution with the first two conditional moments E(Y | X) = exp(β1 +

β2X) and V (Y | X) = θ exp[2(β1+β2X)]. Here θ is the dispersion parameter.

This type of model has wide applications in finance, radio ligand assays, and

kinetic reaction experiments. Using the assumptions for the model, we find

E(Y | V ) = E [exp(β1 + β2X) | V ]

= exp(β1)E [exp(β2(HV + U)) | V ]

= exp

(
β1 + β2HV +

β2
2φ

2

)
, (3.18)

E(Y 2 | V ) = E [(θ + 1) exp(2(β1 + β2X) | V )]

= (θ + 1) exp(2β1) exp(2β2HV )E [exp(2β2U | V )]

= (θ + 1) exp
[
2(β1 + β2HV + β2

2φ)
]
, (3.19)
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and

E(Y Z | V ) = exp(β1)E[(HV + U) exp(β2(HV + U)) | V ]

= exp(β1 + β2HV ) [HV E(exp(β2U) | V )

+ E(U exp(β2U) | V )]

= exp

(
β1 + β2HV +

β2
2φ

2

)
(HV + β2φ). (3.20)

Example 3.2.2. Consider a Poisson loglinear model where Y is a count vari-

able with moments E(Y | X) = exp(β1 + β2X) and V (Y | X) = exp(β1 +

β2X). This model has applications in biology, demographics, and survival

analysis. For this model, we find

E(Y | V ) = E [exp(β1 + β2X) | V ]

= exp(β1)E [exp(β2(HV + U)) | V ]

= exp

(
β1 + β2HV +

β2
2φ

2

)
, (3.21)

E(Y 2 | V ) = E(exp(β1 + β2X | V )) + E(exp(2(β1 + β2X | V ))) (3.22)

= exp
[
2(β1 + β2HV + β2

2φ)
]

+ exp

(
β1 + β2HV +

β2
2φ

2

)
,
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and

E(Y Z | V ) = exp(β1)E[(HV + U) exp(β2(HV + U)) | V ]

= exp(β1 + β2HV ) [HV E(exp(β2U) | V )

+ E(U exp(β2U) | V )]

= exp

(
β1 + β2HV +

β2
2φ

2

)
(HV + β2φ). (3.23)

Example 3.2.3. Consider a logistic model where

E(Y | X) = 1/[1 + exp(−β1 − β2X)]

and

V (Y | X) = exp(−β1 − β2X)/[1 + exp(−β1 − β2X)]2.

In this model, Y is binary and its second moment is equal to the mean.

Logistic regression has been used extensively in medical and social sciences

as well as marketing applications. Using the assumptions for the model, we

find

E(Y | V ) = E(Y 2 | V )

=
1√
2πφ

∫
exp(−u2/2φ)du

[1 + exp(−β1 − β2HV − β2u)]
(3.24)

and

E(Y Z | V ) =
1√
2πφ

∫
(HV + u) exp(−u2/2φ)du

[1 + exp(−β1 − β2HV − β2u)]
. (3.25)
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These moments do not have closed forms. However, the unknown parameters

can still be estimated by the simulation-based approach in Section 3.2.2.

We define γ = (β′, θ, φ′)′ and the parameter space to be Γ = Ω×Θ×Φ.

The true parameter value of the model is denoted by γ0 ∈ Γ. For every

τ ∈ IRp and γ ∈ Γ, define m(τ ; γ) = (m1(τ ; γ),m2(τ ; γ),m3(τ ; γ))′, where

m1(τ ; γ) =

∫
f(x′β)fU(x− τ ;φ)dx, (3.26)

m2(τ ; γ) =

∫
f 2(x′β)fU(x− τ ;φ)dx

+

∫
g2(x′β; θ)fU(x− τ ;φ)dx, (3.27)

and

m3(τ ; γ) =

∫
xf(x′β)fU(x− τ ;φ)dx. (3.28)

Suppose Ti = (Yi, Zi, Vi), i = 1, 2, ..., n, is an i.i.d. random sample, and

ρi(γ) = YiTi − m(HVi; γ), then the method of moments estimator (MME)

for γ is defined as

γ̂n = argminγ∈ΓQn(γ) = argminγ∈Γ

n∑
i=1

ρ′i(γ)Wiρi(γ), (3.29)

where Wi = W (Vi) is a nonnegative definite matrix which may depend on

Vi. Note that for the binary response Y , we have E(Y |V ) = E(Y 2|V ).

In this case the first two elements of ρi(γ) are identical. This redundancy
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can be eliminated by setting the first row and first column of W (Vi) to zero.

However, to simplify presentation in the following we present results in terms

of general response Y .

3.2.2 Consistency and Asymptotic Normality

To prove the consistency of γ̂n, we assume the following regularity conditions,

where µ denotes Lebesgue measure.

Assumption 15. The parameter space Γ = Ω×Θ×Φ is compact in IRp+k+1,

and also parameter space is a compact subset of IRpq, containing the true

value ψ0 = vecH0. Furthermore, E ‖W (V )‖ (‖Y Z‖2 + Y 4) <∞, and EV V ′

is nonsingular.

Assumption 16. f(x′β) and g(x′β; θ) are measurable functions of x for each

β ∈ Ω and θ ∈ Θ. Furthermore, f 2(x′β)fU(x−τ ;φ) and g2(x′β; θ)fU(x−τ ;φ)

are uniformly bounded by a function K(x, v), which satisfies

E ‖W (V )‖
(∫

K(x, V )(‖x‖+ 1)dx
)2
<∞.

Assumption 17. E[ρ(γ) − ρ(γ0)]′W (V )[ρ(γ) − ρ(γ0)] = 0 if and only if

γ = γ0, where ρ(γ) = Y T −m(HV ; γ).

Theorem 3.2.4. Under Assumptions 15 – 17, γ̂n
a.s.−→ γ0, as n→∞.
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To derive the asymptotic normality for γ̂n, we assume additional regu-

larity conditions as follows.

Assumption 18. There exists an open subset γ0 ∈ Γ0 ⊂ Γ, in which the

first two partial derivatives of f 2(x′β)fU(x− τ ;φ) and g2(x′β; θ)fU(x− τ ;φ)

w.r.t. γ and ψ are uniformly bounded by a function K(x, v), which satisfies

E ‖W (V )‖
(
‖V ‖

∫
K(x, V )(‖x‖+ 1)dx

)2
<∞.

Assumption 19. The matrix

B = E

[
∂ρ′(γ0)

∂γ
W (V )

∂ρ(γ0)

∂γ′

]
is nonsingular.

These assumptions are equivalent to the ones that are needed for con-

sistency and asymptotic normality of an M-estimator (see e.g., van der Vaart

2000, Sections 5.2 and 5.3).

Theorem 3.2.5. Under Assumptions 15 – 19,

√
n(γ̂n − γ0)

L−→ N(0, B−1AB−1) as n→∞, where

A = E

[
∂ρ′(γ0)

∂γ
W (V )ρ(γ0)ρ′(γ0)W (V )

∂ρ(γ0)

∂γ′

]
.

When H is unknown, we can estimate it using

Ĥ =

(
n∑
i=1

ZiV
′
i

)(
n∑
i=1

ViV
′
i

)−1

. (3.30)
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In that case the method of moments estimator for γ is defined as γ̂n =

argminγ∈ΓQn(γ), where

Qn(γ) =
n∑
i=1

ρ̂′i(γ)Wiρ̂i(γ), (3.31)

and ρ̂i(γ) = YiTi − m(ĤVi; γ), then Theorem 3.2.5 can be modified to the

following theorem.

Theorem 3.2.6. Under Assumptions 15 - 19, as n→∞,
√
n(γ̂n−γ0)

L−→

N(0, B−1CAC ′B−1), where

C =

[
Ip+k+1, E

(
∂ρ′(γ0)

∂γ
W (V )

∂ρ(γ0)

∂ψ′

)
(EV V ′ ⊗ Ip)−1

]
,

A =

 A11 A12

A′12 A22

 ,

A11 = E

[
∂ρ′(γ0)

∂γ
W (V )ρ(γ0)ρ′(γ0)W (V )

∂ρ(γ0)

∂γ′

]
,

A12 = E

[
∂ρ′(γ0)

∂γ
W (V )ρ(γ0) ((Z −HV )′ ⊗ V ′)

]
and A22 = E [V V ′ ⊗ (Z −HV )(Z −HV )′].

The asymptotic covariance of γ̂n depends on the weight W (V ). A

natural question is how to choose W (V ) to obtain the most efficient esti-

mator. To answer this question, we first write C = (Ip+k+1, G), where G =
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E
(
∂ρ′(0)
∂γ

W (V )∂ρ(γ0)
∂ψ′

)
(EWW ′ ⊗ Ip)−1. Therefore, CAC ′ = A11 + GA′12 +

A12G
′ +GA22G

′. Since

∂ρ(γ)

∂ψ′
= −∂m(HV ; γ)

∂ψ′
,

and

∂m1(HV ; γ)

∂ψ′
= −

∫
f(x′β)

∂fU(x−HV ;φ)

∂u′
dx(V ⊗ Ip)′,

∂m2(HV ; γ)

∂ψ′
= −

∫
f 2(x′β)

∂fU(x−HV ;φ)

∂u′
dx(V ⊗ Ip)′

−
∫
g2(x′β; θ)

∂fU(x−HV ;φ)

∂u′
dx(V ⊗ Ip)′,

∂m3(HV ; γ)

∂ψ′
= −

∫
xf(x′β)

∂fU(x−HV ;φ)

∂u′
dx(V ⊗ Ip)′,

the last three terms in CAC ′ are due to the least squares estimation of ψ. To

simplify discussion, assume for the moment that ψ is known, so that these

three terms do not appear in CAC ′. The following discussion remains valid,

when ψ is unknown and estimated using a part of the sample (Yi, Zi, Vi),

i = 1, 2, ..., n, while Qn(γ) is constructed using the rest of the sample points.

Then the independence of the sample points implies that A12 = 0. Since

∂ρ′(γ0)/∂γ depends on V only, matrix A11 can be written as

A11 = E

[
∂ρ′(γ0)

∂γ
W (V )FW (V )

∂ρ(γ0)

∂γ′

]
,
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where F = F (V ) = E[ρ(γ0)ρ′(γ0)|V ]. Then, analogous to the weighted

(nonlinear) least squares estimation, we have

B−1A11B
−1 ≥ E

[
∂ρ′(γ0)

∂γ
F−1∂ρ(γ0)

∂γ′

]−1

(3.32)

(in the sense that the difference of the left-hand and right-hand sides is

nonnegative definite), and the lower bound is attained for W = F−1 in both

B and A11 (Hansen (1982), Abarin and Wang 2006).

In practice, F is a function of unknown parameters and therefore needs

to be estimated. This can be done using the following two-stage procedure.

First, minimize Qn(γ) with identity matrix W = Ip+2 to obtain the first-

stage estimator γ̂n. Secondly, estimate F by F̂ = 1
n

∑n
i=1 ρi(γ̂n)ρ′i(γ̂n) or

alternatively by a nonparametric estimator, and then minimize Qn(γ) again

with W = F̂−1 to obtain the second-stage estimator ˆ̂γn. Since F̂ is consistent

for F , the asymptotic covariance of ˆ̂γn is given by the right hand side of

(3.32). Consequently ˆ̂γn is asymptotically more efficient than the first-stage

estimator γ̂n.

3.2.3 Simulation-Based Estimator

When the explicit form of m(τ ; γ) exists, the numerical computation of MME

γ̂n can be done using the usual optimization methods. However, sometimes
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the integrals in (3.26) – (3.28) do not have explicit forms. In this section, we

use a simulation-based approach to overcome this problem. The simulation-

based approach is used to approximate the multiple integrals in which they

are simulated by Monte Carlo methods such as importance sampling.

We start with choosing a known density l(x) and generate independent

random points {xij, j = 1, 2, ..., 2S, i = 1, 2, ..., n} from l(x). Then we can

approximate m(HVi; γ) by Monte Carlo simulators

m1,S(HVi; γ) =
1

S

S∑
j=1

f(x′ijβ)fU(xij −HVi;φ)

l(xij)
(3.33)

m2,S(HVi; γ) =
1

S

S∑
j=1

f 2(x′ijβ)fU(xij −HVi;φ)

l(xij)

+
1

S

S∑
j=1

g2(x′ijβ; θ)fU(xij −HVi;φ)

l(xij)
(3.34)

m3,S(HVi; γ) =
1

S

S∑
j=1

xijf(x′ijβ)fU(xij −HVi;φ)

l(xij)
(3.35)

and

m1,2S(HVi; γ) =
1

S

2S∑
j=S+1

f(x′ijβ)fU(xij −HVi;φ)

l(xij)
(3.36)

m2,2S(HVi; γ) =
1

S

2S∑
j=S+1

f 2(x′ijβ)fU(xij −HVi;φ)

l(xij)

+
1

S

2S∑
j=S+1

g2(x′ijβ; θ)fU(xij −HVi;φ)

l(xij)
(3.37)
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m3,2S(HVi; γ) =
1

S

2S∑
j=S+1

xijf(x′ijβ)fU(xij −HVi;φ)

l(xij)
. (3.38)

Finally, the Simulation-Based Estimator (SBE) for γ is defined by

γ̂n,S = argminγ∈ΓQn,S(γ) = argminγ∈Γ

n∑
i=1

ρ′i,S(γ)Wiρi,2S(γ), (3.39)

where ρi,S(γ) = YiTi −mS(HVi; γ) and ρi,2S(γ) = YiTi −m2S(HVi; γ).

Here we define

mS(HVi; γ) = (m1,S(HVi; γ),m2,S(HVi; γ),m3,S(HVi; γ))′

and

m2S(HVi; γ) = (m1,2S(HVi; γ),m2,2S(HVi; γ),m3,2S(HVi; γ))′.

We notice that by construction,

E[mS(HVi; γ)|Vi] = E[m2S(HVi; γ)|Vi] = m(HVi; γ), and therefore

mS(HVi; γ) and m2S(HVi; γ) are unbiased simulators for m(HVi; γ).

Moreover, Qn,S(γ) is an unbiased simulator for Qn(γ), because Qn,S(γ) and

Qn(γ) have the same conditional expectations given the sample (Yi, Zi, Vi).

Alternatives to (3.33) – (3.38) which generally yield more stable esti-

mates are

m′1,S(HVi; γ) =
S∑
j=1

f(x′ijβ)fU(xij −HVi;φ)/l(xij)∑S
j=1 fU(xij −HVj;φ)/l(xij)

(3.40)
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m′2,S(HVi; γ) =
S∑
j=1

f 2(x′ijβ)fU(xij −HVi;φ)/l(xij)∑S
j=1 fU(xij −HVj;φ)/l(xij)

+
S∑
j=1

g2(x′ijβ; θ)fU(xij −HVi;φ)/l(xij)∑S
j=1 fU(xij −HVj;φ)/l(xij)

(3.41)

m′3,S(HVi; γ) =
S∑
j=1

xijf(x′ijβ)fU(xij −HVi;φ)/l(xij)∑S
j=1 fU(xij −HVj;φ)/l(xij)

(3.42)

and

m′1,2S(HVi; γ) =
2S∑

j=S+1

f(x′ijβ)fU(xij −HVi;φ)/l(xij)∑2S
j=S+1 fU(xij −HVj;φ)/l(xij)

(3.43)

m′2,2S(HVi; γ) =
2S∑

j=S+1

f 2(x′ijβ)fU(xij −HVi;φ)/l(xij)∑2S
j=S+1 fU(xij −HVj;φ)/l(xij)

+
2S∑

j=S+1

g2(x′ijβ; θ)fU(xij −HVi;φ)/l(xij)∑2S
j=S+1 fU(xij −HVj;φ)/l(xij)

(3.44)

m′3,2S(HVi; γ) =
2S∑

j=S+1

xijf(x′ijβ)fU(xij −HVi;φ)/l(xij)∑2S
j=S+1 fU(xij −HVj;φ)/l(xij)

, (3.45)

where we have replaced S with the sum of the weights.

Since (1/S)
∑2S

j=S+1 fU(xij −HVi;φ)/l(xij) ≈ 1, when S is large enough,

m′S(HVi; γ) ≈ mS(HVi; γ) and m′2S(HVi; γ) ≈ m2S(HVi; γ). Although these

simulators are biased, the biases are small and the improvement in variance

makes them preferred alternatives to (3.33) – (3.38). (See Lemma 4.3 of

Robert and Cassella 2004.)
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Theorem 3.2.7. Suppose that the support of l(x) covers the support of

g2(x′β; θ)fU(x − τ ;φ) and f 2(x′β)fU(x − τ ;φ), for all τ ∈ IRp and γ ∈ Γ.

Then the simulation estimator γ̂n,S has the following properties:

(i). Under Assumptions 15 – 17, γ̂n,S
a.s.−→ γ0, as n→∞.

(ii). Under Assumptions 15 – 19,
√
n(γ̂n,S − γ0)

L−→ N(0, B−1ASB
−1),

where

2AS = E

[
∂ρ′1,S(γ0)

∂γ
Wρ1,2S(γ0)ρ′1,2S(γ0)W

∂ρ1,S(γ0)

∂γ′

]
+ E

[
∂ρ′1,S(γ0)

∂γ
Wρ1,2S(γ0)ρ′1,S(γ0)W

∂ρ1,2S(γ0)

∂γ′

]
.

When H is unknown and estimated using a part of the sample

(Yi, Zi, Vi), i = 1, 2, ..., n, while Qn(γ) is constructed using the rest of the

sample points, we can still define the simulation estimator simply by replacing

H with Ĥ. In this case, Theorem 3.2.7 will be modified to the following

theorem.

Theorem 3.2.8. Suppose that the support of l(x) covers the support of

g2(x′β; θ)fU(x − τ ;φ) and f 2(x′β)fU(x − τ ;φ), for all τ ∈ IRp and γ ∈ Γ.

Then the simulation estimator γ̂n,S has the following properties:

(i). Under Assumptions 15 – 17, γ̂n,S
a.s.−→ γ0, as n→∞.
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(ii). Under Assumption 15 - 19,
√
n(γ̂n,S−γ0)

L−→ N(0, B−1CASC
′B−1),

where

AS =

 AS,11 AS,12

A′S,12 AS,22

 ,

C =

[
Ip+k+1, E

(
∂ρ′(γ0)

∂γ
W (V )

∂ρ(γ0)

∂ψ′

)
(EV V ′ ⊗ Ip)−1

]
,

and

2AS,11 = E

[
∂ρ′1,S(γ0)

∂γ
Wρ1,2S(γ0)ρ′1,2S(γ0)W

∂ρ1,S(γ0)

∂γ′

]
+ E

[
∂ρ′1,S(γ0)

∂γ
Wρ1,2S(Γ0)ρ′1,S(ψ0)W

∂ρ1,2S(γ0)

∂γ′

]
.

Although asymptotically, the importance density l(x) does not have

an effect on the efficiency of γ̂n,S, however, the choice of l(x) will affect the

finite sample variances of the simulators mS(HVi; γ) and m2S(HVi; γ). In

addition, Wang (2004) showed that the efficiency loss caused by simulation

is of magnitude O(1/S).

3.2.4 Simulation Studies

In this section we present simulation studies on three generalized linear mod-

els of Examples 3.2.1 – 3.2.3, to demonstrate how the proposed estimators

can be calculated and their performance in finite sample sizes.
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First, consider the Gamma loglinear model in Example 3.2.1 where

U ∼ N(0, φ). We calculated conditional moments (3.18) - (3.20) for this

model. Therefore, the method of moments estimators (MME) can be com-

puted by minimizing Qn(γ) in (3.29). Specifically, the estimators are com-

puted in two steps, using the identity and the estimated optimal weighting

matrix, respectively.

To compute the Simulation-Based Estimators (SBE), we choose the

density of N(0, 2) to be l(xij), and generate independent points xij using

S = 2000.

Furthermore, the simulated moments mS(HV ; γ) and m2S(HV ; γ), and

m′S(HV ; γ) and m′2S(HVi; γ) are calculated according to (3.33) – (3.38), and

(3.40) – (3.45) respectively. The two-step SBE1 γ̂n,s is calculated by mini-

mizing Qn,S(γ), using the identity and the estimated optimal weighting ma-

trix, and mS(HV ; γ) and m2S(HV ; γ). Similarly the two-step SBE2 γ̂n,s is

calculated by minimizing Qn,S(γ), using the identity and the estimated op-

timal weighting matrix, and m′S(HV ; γ) and m′2S(HV ; γ). The data have

been generated using V and δ from a standard normal distribution, and

parameter values β1 = −0.2, β2 = 0.3, φ = 0.8, θ = 0.1. We also gener-

ated the response variable from a Gamma distribution with parameters 1/θ
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Table 3.2: Simulation results of the Gamma Loglinear model with Measure-
ment error in covariate

β1 = −0.2 β2 = 0.3 φ = 0.8 θ = 0.1

MME -0.206 0.299 0.810 0.101

RMSE 0.045 0.045 0.182 0.032

Accuracy 0.003 0.003 0.012 0.002

95% C.I. (-0.209,-0.203) (0.297,0.301) (0.798,0.821) (0.089,0.103)

SBE1 -0.206 0.299 0.814 0.101

RMSE 0.045 0.045 0.184 0.032

Accuracy 0.003 0.003 0.013 0.002

95% C.I. (-0.209,-0.203) (0.297,0.301) (0.803,0.826) (0.089,0.102)

and θ exp(β1 + β2X), respectively. In the simulation, we assumed that H

is known. N = 1000 Monte Carlo replications have been carried out and

in each replication, n = 400 sample points (Yi, Zi, Vi) have been generated.

The computation has been done using MATLAB on a workstation running

LINUX operating system.

Tables 3.2 and 3.3 show the summaries of the results for the Gamma
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Table 3.3: Simulation results of the Gamma Loglinear model with Measure-
ment error in covariate - continued

β1 = −0.2 β2 = 0.3 φ = 0.8 θ = 0.1

SBE2 -0.206 0.298 0.815 0.101

RMSE 0.045 0.045 0.182 0.032

Accuracy 0.003 0.003 0.012 0.002

95% C.I. (-0.209,-0.203) (0.296,0.300) (0.803,0.826) (0.089,0.102)

z1 0.450 0.515 0.312 0.058

z2 0.223 0.134 1.355 0.333
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Loglinear model. As we can see, estimators show their asymptotic properties.

However, both SBE1 and SBE2 converge slower for φ. The tables present the

accuracy corresponding to each estimation value, using A = zα/2

√
V ar(θ̂)/R

and with confidence 95%, where θ is the notation for a parameter in general.

They show that the three estimators have the same amount of accuracy. The

tables also show 95% confidence intervals for the parameters. They show that

the true value of parameters fall in the intervals for β2, φ, and θ, although

because of the larger bias of the estimators, this is not the case for SBE1 and

SBE2. The same results for β1 is not satisfying and it shows that estimators

have finite sample bias.

We used the root mean squared errors (RMSE) to compare the efficiency

of the estimators. There is no significant difference between the estimators

efficiencies.

To test the difference between MME and SBE1, we calculated z statistic

for the test. As we can see in the tables, z1 shows that there is no significant

difference between MME and SBE1 for each parameter. Similarly, we calcu-

lated z2 to test the difference between SBE1 and SBE2. The results show

that there is no significant difference between them.
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Next, we consider the Poisson loglinear model in Example 3.2.2, where

U ∼ N(0, φ). We calculated conditional moments (3.21) – (3.23) for this

model. Parameters are β1 = −0.2, β2 = 0.3, and φ = 1, and we choose the

density of N(0, 2) to be l(xij). We generated the response variable from a

Poisson distribution with parameter exp(β1 + β2X).

Tables 3.4 – 3.5 show the summaries of the results for the Poisson

Loglinear model. As we can see in the tables, all the estimators show their

asymptotic properties. All the estimators show the same accuracy and 95%

confidence intervals for the parameters. The results show that the true value

of parameters fall in the intervals. The root mean squared errors (RMSE) of

the estimates show that MME and both SB estimators perform equally, for

all the parameters. Furthermore, the test statistic values imply that there is

no significant difference between the estimators.

Finally, we consider the Logistic model in Example 3.2.3, where U ∼

N(0, φ). For this model, conditional moments (3.24) – (3.25) do not have

closed forms. Therefore, we were only able to compute SBE1 and SBE2.

Parameter values for this model are β1 = 0.5, β2 = 0.3, and φ = 0.8, and we

choose the density of N(0, 2) to be l(xij). We generated the response variable

from a Binary distribution with parameter (1 + exp(−(β1 + β2X)))−1.
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Table 3.4: Simulation results of the Poisson Loglinear model with Measure-
ment error in covariate

β1 = −0.2 β2 = 0.3 φ = 1

MME -0.201 0.295 0.998

RMSE 0.055 0.071 0.030

Accuracy 0.004 0.005 0.173

95% C.I. (-0.205,-0.197) (0.291,0.300) (0.987,1.011)

SBE1 -0.201 0.296 0.999

RMSE 0.055 0.071 0.176

Accuracy 0.004 0.005 0.011

95% C.I. (-0.205,-0.197) (0.291,0.300) (0.987,1.011)
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Table 3.5: Simulation results of the Poisson Loglinear model with Measure-
ment error in covariate - continued

β1 = −0.2 β2 = 0.3 φ = 1

SBE2 -0.201 0.295 0.999

RMSE 0.055 0.071 0.173

Accuracy 0.004 0.005 0.011

95% C.I. (-0.205,-0.197) (0.291,0.300) (0.987,1.011)

z1 0.281 0.641 0.445

z2 0.224 0.570 0.411
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Table 3.6: Simulation results of the Logistic model with Measurement error
in covariate

β1 = 0.5 β2 = 0.3 φ = 0.8

SBE1 0.506 0.306 0.811

RMSE 0.134 0.118 0.192

Accuracy 0.008 0.007 0.015

95% C.I. (0.498,0.515) (0.299, 0.313) (0.795,0.827)

SBE2 0.507 0.307 0.809

RMSE 0.130 0.118 0.187

Accuracy 0.008 0.007 0.015

95% C.I. (0.499,0.515) (0.299,0.314) (0.795,0.823)

z 0.515 0.294 0.446
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Table 3.6 shows the summaries of the results for the Logistic model. All

the estimators show their asymptotic properties. Both estimators show the

same accuracy and 95% confidence intervals for the parameters. The results

show that the true value of parameters fall in the intervals. The root mean

squared errors (RMSE) of the estimates show that SBE1 and SBE2 perform

equally well, except for slightly more efficiency in SBE2, for φ. Furthermore,

the test statistic values imply that there is no significant difference between

the estimators.
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Chapter 4

Related Issues

4.1 Computational Issues

4.1.1 Optimization Methods

Considering model (2.1), we know that the second-order least squares estima-

tor (SLSE) γ̂SLS for γ is defined as the measurable function that minimizes

Qn(γ) =
n∑
i=1

ρ′i(γ)Wiρi(γ). (4.1)

The first derivative of Qn(γ) exists and is given by

∂Qn(γ)

∂γ
= 2

n∑
i=1

∂ρ′i(γ)

∂γ
Wiρi(γ),

and the second derivative of Qn(γ) is given by

∂2Qn(γ)

∂γ∂γ′
= 2

n∑
i=1

[
∂ρ′i(γ)

∂γ
Wi

∂ρi(γ)

∂γ′
+ (ρ′i(γ)Wi ⊗ Ip+q+1)

∂vec(∂ρ′i(γ)/∂γ)

∂γ′

]
.

(4.2)
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There are numerous optimization methods which are suitable for nonlinear

objective functions. Under some regularity conditions, we know that the

first and the second derivatives of Qn(γ) exist. Therefore, we start with the

methods based on the gradient of the objective function.

(i). Gradient Descent (Steepest Descent) Method

This method is based on the observation that if the real-valued function

Qn(γ) is defined and differentiable in a neighborhood of a point γ̂0,

then Qn(γ) decreases fastest if one goes from γ̂0 in the direction of the

negative gradient of Qn(γ) at γ̂0. It follows that if γ̂1 = γ̂0 − ε0
∂Qn(γ̂0)
∂γ

for ε0 > 0, then Qn(γ̂0) ≥ Qn(γ̂1). If one starts with a guess γ̂0 for a

local minimum of Qn(γ), given the nth iterate γ̂n, the (n+ 1)th iterate

will be

γ̂n+1 = γ̂n − εn
∂Qn(γ̂n)

∂γ
, n ∈ N.

The iteration will be repeated until convergence is achieved. The idea

of this method is simple and it works in space of any number of dimen-

sions. However, the algorithm can take many iterations to converge

towards a local minimum, if the curvature in different directions is

very different. Since the value of the step size ε changes at every itera-
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tion, finding the optimal ε per step can be time-consuming. Conversely,

using a fixed ε can yield poor results.

(ii). Gauss-Newton Method

This method is used for minimization problems for which the objective

function is a sum of squares. Because of this property, this method is

used to solve nonlinear least squares problems. It is a modification of

Newton’s method that does not use second derivatives. The method

starts with linearization of f(Xi; β) by a Taylor series around the initial

estimate β̂0 as

f(Xi; β) ≈ f(Xi; β̂0) +
∂f(Xi; β̂0)

∂β
(β − β̂0).

Then using least squares method, the next estimator β̂1 is attained by

minimizing
∑n

i=1[Yi − ∂f(Xi;β̂0)
∂β

(β − β̂0)]2 with respect to β as

β̂1 = β̂0 + [
n∑
i=1

∂f(Xi; β̂0)

∂β

∂f(Xi; β̂0)

∂β′
]−1

n∑
i=1

(Yi − f(Xi; β̂0))
∂f(Xi; β̂0)

∂β
,

and like the previous method, the iteration will be repeated until con-

vergence is achieved.

Although Gauss-Newton Method is a popular method for least squares

problems, it can not be applied to SLS method. The objective function
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(4.1) can not be expressed as a sum of squares. The quadratic form of

Qn(γ) is

n∑
i=1

[
Wi11(Yi − f(X; β))2 +Wi22(Y 2

i − f 2(X; β)− σ2g2(Xi; β, θ))
2

+ 2Wi12(Yi − f(X; β))(Y 2
i − f 2(X; β)− σ2g2(Xi; β, θ))

]
.

Since W (X) is symmetric, we can write the spectral decomposition

form of Qn(γ) as

Qn(γ) =
n∑
i=1

λ1i(ρ
′
ie1i)

2 +
n∑
i=1

λ2i(ρ
′
ie2i)

2,

when λ1i and λ2i are nonnegative eigenvalues and e1i and e2i are eigen-

vectors of matrix W (Xi).

Even if we use the linearization stage, the minimization stage cannot

be applied because the first derivative of Qn(γ) does not have a linear

form. So the minimization problem remains.

(iii). Newton-Raphson Method

Newton-Raphson is an algorithm for finding approximations to the

roots of a real-valued function. The Taylor series of ∂Qn(γ)
∂γ

about the

point γ̂0 + ε is given by (keeping terms only to first order)

∂Qn(γ̂0 + ε)

∂γ
=
∂Qn(γ̂0)

∂γ
+
∂2Qn(γ̂0)

∂γ∂γ′
ε.
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Setting ∂Qn(γ̂0+ε)
∂γ

= 0, and solving the equation for ε = ε0, we have

ε0 = −(
∂2Qn(γ̂0)

∂γ∂γ′
)−1∂Qn(γ̂0)

∂γ
.

With an initial choice of ε0, the algorithm can be applied iteratively to

obtain

γ̂n+1 = γ̂n − (
∂2Qn(γ̂n)

∂γ∂γ′
)−1∂Qn(γ̂n)

∂γ
. (4.3)

In application it is common to multiply a controlling factor (step size)

by the second factor of (4.3) to control the steps toward the minimum

value. There are other Newton’s methods that use the second deriva-

tives of ∂Qn(γ)
∂γ

which are more complicated in SLS case.

Comparing to Gradient descent method, it potentially speeds the con-

vergence significantly. If the objective function (∂Qn(γ)
∂γ

) is continuously

differentiable and its derivative does not vanish at the root and it has

a second derivative at the root, then the convergence is quadratic or

faster. If the derivative does vanish at the root, then the convergence

is usually only linear.

The method can be used with an approximation to calculate the second
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derivative of Qn(γ). As we can see in (4.2), calculating the second part

of the equation is troublesome. In application, we ignore the second

part of the equation, so for minimization of the objective function, we

need only the first derivative.

A problem with the Newton-Raphson method is that global optimiza-

tion is not guaranteed and the procedure can be unstable near a hor-

izontal asymptote or a local extremum. If the criterion function and

parameter space are convex, then the criterion function has a unique

local minimum, which is also the global minimum. For non convex

problems however, there can be many local minima.

For such problems, a multi-start algorithm is used. In this algorithm,

one starts a local optimization algorithm from initial values of the pa-

rameters to converge to a local minimum, and then one repeats the

process a number of times with different initial values. The estimator

is taken to be the parameter values that correspond to the small value

of the criterion function obtained during the multi-start process.

There are some issues that are common between methods based on the

gradient of the objective function. Here we mention some of them.

(a) The first common issue is the start point. The SLS estimator is
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defined as a global minimizer of Qn(γ), and its consistency and

asymptotic normality depends on this assumption. A good initial

value for minimization method is crucial because a poor starting

value may obtain a local minimum instead of a global one. If

the initial value is too far from the true parameter, the method

converges very slowly or may even fail to converge. In SLS mini-

mization problem with homoscedasticity, OLS estimator can be a

good start. If we look at the quadratic form of Qn(γ), we see that

OLS estimator minimizes the first two components, so it may be

a good start. In the same way, for regression models with het-

eroscedasticity, weighted LS can be a proper start.

(b) Another issue is determining the step size. Too large of a step may

miss the target and too small of a step may slow down the speed of

convergence. It seems for regression models with homoscedastic-

ity, fixed steps work. If we look at the form of ρi(γ) and ∂ρ′(γ0)
∂γ

, we

see that in homoscedasticity case, g(X; β, θ) = 1 and this makes

the form of the matrices much simpler and their variations more

controlled. However, for the models with heteroscedasticity, not

only different step sizes for each iteration looks necessary, but also
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different step sizes for each component of γ̂ can improve the con-

vergence procedure. This improvement makes the minimization

algorithm more complicated.

(c) Computation and evaluation of the gradients is another issue. If

Qn(γ) has many extremum points, or it’s too flat, the optimization

procedure can be unstable. The second derivative matrix of the

objective function can be exact or near singular.

Another group of optimization methods is Search Methods group. One

of the simplest and most direct search methods is Random Grid Search

method. This method usually handles the cases that the objective function

is not differentiable, the derivatives are not continuous, or their evaluation

is much more difficult than the evaluation of the objective function itself, or

the second derivative matrix is exact or near singular. The method relies

only on evaluating the objective function at a sequences of random points

and comparing values in order to reach the optimum point. Comparing to

the optimization methods based on the gradient of the objective function,

this method is more stable, and because it does not need an initial value, it

avoids the false convergence problem. The most important issue about this

method is when the dimension of parameter space is high, the procedure can
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be very slow, or it may cause memory constraints problem.

Another search method that enhances the performance of a local method by

using memory structure is Tabu Search. A more recent method that mim-

ics the improvisation process of musicians is Harmonic Search. Although it

seems that the method shows some advantages comparing with traditional

mathematical optimization techniques, there are still no applications of this

method in statistical literature. There are other optimization methods for

convex functions, called Simplex Methods such as Nelder-Mead method or

Downhill simplex method. There are also some methods based on smooth-

ness of the objective function when existence of derivatives is not assumed.

Generally, no matter what method of optimization is used to minimize a cri-

terion function, it should be accompanied by evaluating the behavior of the

function using graphical techniques (in small dimensional cases), exploratory

steps, and analyzing the derivatives.

4.1.2 Optimum Weighting Matrix

One of the most important components in SLS estimation procedure is com-

putation of the optimum weighting matrix. As we mentioned in the previous

chapters, the optimum weighting matrix depends on unknown parameters,
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and it must be estimated. In nonlinear regression models with constant

variance (homoscedastic), computation of the unknown parameters can be

done in two steps using moments of the residuals. Li (2005), and Wang and

Leblanc (2007) showed that this method works quite satisfactory. The prob-

lem arises when the variance of the response is not constant and may cause

wild behavior of the weighting matrix. Using the Pearson (Studentized)

residuals seem to solve the problem. We applied this method in examples

2.3.1 and 2.3.2 and the results were quite acceptable.

Another issue in computation of the weighting matrix is singularity.

In chapter 2 we proved that the asymptotic covariance matrix of the most

efficient SLS estimation is

(
E

[
∂ρ′(γ0)

∂γ
F−1∂ρ(γ0)

∂γ′

])−1

,

where F = F (X) = E[ρ(γ0)ρ′(γ0)|X]. This is based on the assumption that

F is nonsingular and therefore it is invertible. However, sometimes in real

application, the matrix might be singular. In this case, using the diagonal

matrix with the same variance components as the optimum matrix, instead

of the optimum matrix, can solve the problem. Although this matrix is not

optimum anymore, but it is applicable.
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A good initial value for SLS minimization method is crucial because

a poor starting value may obtain a local minimum instead of a global one.

In section 2.2 we stated that the optimum matrix can be computed using a

two-stage procedure. In the first stage we minimize Qn(γ) using the identity

matrix W (X) = I2 to obtain the first-stage estimator γ̂n. Although this

is an easy choice for the weighting matrix, however, in nonlinear regression

models with homoscedasticity, calculating the optimum weighting matrix

using the ordinary least squares estimation in the first stage, usually leads

to a faster convergence. Similarly, for the nonlinear regression methods with

heteroscedasticity, the generalized least squares estimation can be used in

the first stage.

4.2 Simulation Accuracy

Mathematical theories have been able to show asymptotic behavior of estima-

tors such as maximum (quasi) likelihood, (generalized) method of moment,

and least squares. In this case, when there is no strong theory to verify the

finite sample behavior of estimators, simulation study is a solution. Monte

Carlo simulation offers an alternative to analytical mathematics for under-

standing a statistic’s sampling distribution and evaluating its behavior in

120



random samples. Monte Carlo simulation does this empirically using random

samples from a known population of simulated data to track an estimator’s

behavior.

Consider model (2.1) where β ∈ IR is the unknown regression pa-

rameter. Here we consider the case that β is a scalar, however it can be

generalized to a vector case with more complicated notations. Suppose

(Yi, X
′
i)
′, i = 1, 2, ..., n is an i.i.d. random sample. Our goal is to estimate the

parameter β and measure the quality of the estimator.

A simulation study is usually undertaken to determine the value of β

connected with a stochastic model like model (2.1). It estimates the param-

eter according to a criterion (such as minimizing sum of squared of residuals

for least squares), and results in an output data β̂, a random variable whose

expected value is β. A second independent simulation - that is, a second sim-

ulation run - provides a new and independent random variable having mean

β. This continues until we have amassed a total R runs - and R indepen-

dent random variables β̂1, ..., β̂R - all of which are identically distributed with

mean β. The average of these R values, β̂ =
∑R

i=1 β̂i/R, is then used as an

estimator of β. If β̂ has a finite variance then the Law of Large Numbers im-

plies that this estimate converges to β as R tends to infinity. Under the same
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conditions, the Central Limit Theorem allows us to refine this conclusion by

asserting that the estimator β̂ =
∑R

i=1 β̂i/R is approximately normally dis-

tributed about β with standard deviation

√
V ar(β̂)/R (Lange(1999)). Since

a random variable is unlikely to be many standard deviations from its mean,

it follows that β̂ is a good estimator of β when

√
V ar(β̂)/R is small. Ross

(1997) justifies the above statement from both the Chebyshev’s inequality

and more importantly for simulation studies, from the Central Limit Theo-

rem. Indeed, for any c > 0, Chebyshev’s inequality yields the rather conser-

vative bound

P

(
|β̂ − β| > c

√
V ar(β̂)/R

)
≤ 1

c2
.

However, when R is large, as will usually be the case in simulations, we

can apply the Central Limit Theorem to assert that (β̂ − β)/

√
V ar(β̂)/R is

approximately distributed as a standard normal random variable; and thus

P

(
|β̂ − β| > c

√
V ar(β̂)/R

)
≈ P (|Z| > c) = 2(1− Φ(c)), (4.4)

where Φ is the standard normal distribution function. In practice, we esti-

mate the Monte Carlo error as
√
v/R, where v = 1

R−1

∑R
i=1[β̂i− 1

R

∑R
i=1 β̂i]

2 is

the usual unbiased estimator of V ar(β̂). Finster (1987) defines the following
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concept of an accurate estimate.

Definition: β̂ is an accurate estimate for β with accuracy A and con-

fidence 1− α (with 0 < α < 1), if

P (|β̂ − β| ≤ A) ≥ 1− α,

where [−A,A] is the set of acceptable simulation errors. Similar to (4.4),

applying the Central Limit Theorem for β̂, we have

P

(
|β̂ − β| ≤ zα/2

√
V ar(β̂)/R

)
≈ 1− α, (4.5)

when zα/2 is the 1−α/2 quantile on the right tail of the distribution N(0, 1).

This provides a way of relating the number of replications with the accuracy

A = zα/2

√
V ar(β̂)/R. (4.6)

Solving for R, and replacing v as an unbiased estimator for V ar(β̂), we have

R = (
zα/2
A

)2v.

Therefore, if we have a desirable value for accuracy A, we can calculate the

(minimum) number of iterations. In literature, it is common to use R = 1000
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iterations for simulation studies. However, Diaz-Emparanza (2000) argues

that this size of sample for some models is small.

Once a variable is defined in terms of its distribution function, a variety

of useful attributes of that variable are determined. One of the simplest ways

to observe the asymptotic behavior of an estimator is to draw a histogram

of the estimated values. It is useful to visualize the variable’s distributional

form of β̂, and compare it with the bell-shaped normal curve with mean β

and variance V ar(β̂). The skewness and kurtosis of a distribution function

often are important in Monte Carlo work. Mooney (1997) presents

∑R
i=1(β̂i − β̂)3/R

[
∑R

i=1(β̂i − β̂)2/R]3/2

as a measure of skewness, and

∑R
i=1(β̂i − β̂)4/R

[
∑R

i=1(β̂i − β̂)2/R]2

as a measure of kurtosis for a simulated estimator. Comparing these values to

the corresponding numbers for a normal distribution (zero for skewness and 3

for kurtosis), gives a better evaluation about the distribution of an estimator.

Comparison of the distribution of an estimator to normal distribution can

be done by a formal test. For example Jarque and Bera (1987) combine the
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skewness and kurtosis estimators to allow probability-based inferences about

the normality of β̂, based on a chi squared distribution. Moreover, Ross

(1997) considers the Kolmogorov-Smirnov test to evaluate that whether an

assumed probability distribution (in our case normal) is consistent with a

given data set. Although these goodness-of-fit tests are quite common in

simulation studies, however, Mooney (1997) argues that they have a low

power issue.

There are other basic characteristics that have been used in litera-

ture as measures of accuracy in a Monte Carlo study. The central ten-

dency of a distribution lets us estimate the estimator’s bias by β̂ − β. Sim-

ilarly, the root mean-squared error of an estimator can be estimated by√
1
R

∑R
i=1(β̂ − β)2. The characteristics that we mentioned in here are more

common, however, other measures of accuracy, such as median absolute er-

ror (median|β̂−β|), and the bias of estimator’s standard error in percentage

(100
R

∑R
i=1[σ̂i(β̂i)− σ(β̂)]/σ(β̂)) can be found as well (Mátyás (1999)), where

σ̂i(β̂i) indicates the i th estimate of the standard errors of β̂ based on the

asymptotic standard errors and σ(β̂) indicates the standard errors from the

Monte Carlo replications.

Since in a simulation study we generate a data set from a given model,
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the methods that are usually used to assess whether a model fits to a data

set, are not applicable. However, usual inferences about a parameter that

are common in nonlinear regression books (Graybill and Iyer (1994), Seber

and Wild (1989), Allen (1997)), can be done to evaluate the quality of an

estimation procedure. For example hypothesis


H0 : β = β0

H1 : β 6= β0

can be tested using a z statistic Z = β̂−β0√
v/R

. We can assess the quality of the

test by calculating Type I error, Type II error, and the power. Using power

(rejection rate when H0 is not true) as a measure of the quality of the test, is

very common in regression articles (See Wright (2003), and Schafgans (2004)

as examples).

Constructing confidence intervals for the parameter is another common

inference. We can construct a two-sided 1 − α confidence interval, by β̂ ±

zα/2
√
v/R. The rate of the coverage of the confidence interval and/or the

average length of the interval have been used in articles to assess the quality

of the inference about the parameter (See Fygenson and Ritov (1994) as an

example).
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Finally, graphical methods are useful to evaluate the asymptotic be-

havior of an estimator. As asymptotic theories demonstrates, we expect to

see β̂ converges to β, and confidence interval becomes smaller, as number of

observation increases.

In the simulation studies in the past chapters, we evaluated the quality

of the estimators, using different criteria, such as speed of convergence, bias,

accuracy, root mean squared errors, and confidence intervals.
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Chapter 5

Summary and Future Work

This thesis consists of four major contributions to the theory and method

of nonlinear inference. The first contribution is to extend the SLS method

to the Quasi-likelihood Variance Function (QVF) models. There we have

established the strong consistency and asymptotic normality of the SLS es-

timators. We have derived the asymptotic covariance matrix of the most

efficient SLS estimator. Since the optimum weighting matrix plays a very

important role in the SLS estimator, we have found the explicit form of the

matrix, presenting the asymptotic covariance matrix of the most efficient

SLS estimator in homoscedastic linear regression models. We have shown

some computational methods to deal with heteroscedasticity and we have

applied the SLS method in some examples. The asymptotic confidence in-

terval and testing hypothesis for the parameters of the QVF models based
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on SLS estimator, is a subject of future work.

The second contribution is theoretical and numerical comparisons be-

tween the SLS and GMM estimators. We have shown that SLS estimator is

asymptotically more efficient than GMM estimator. The simulation studies

show the superiority of the SLS comparing to GMM, even when it uses more

equations. Similar to GMM, the higher order asymptotic properties of SLS

can be investigated. More specifically, asymptotic bias of SLS is of interest.

The third contribution is to introduce the SLS in a censored model and

we present the theories that show the estimator is strongly consistent and

asymptotically normally distributed under some regularity conditions. We

have also proposed a computationally simpler estimator which is consistent

and asymptotically normal under the same regularity conditions. Finite sam-

ple behavior of the proposed estimators under both correctly and misspecified

models have been investigated through Monte Carlo simulations. The sim-

ulation results show that the proposed estimator using optimal weighting

matrix performs very similar to the maximum likelihood estimator, and the

estimator with the identity weight is more robust against the misspecifica-

tion. Improvement of the optimum SLS using a nonparametric weighting

matrix is an extension of interest.
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The fourth contribution is to extend the SLS method to generalized

linear regression models with measurement error. We have estimated the pa-

rameters of a linear measurement error model using the SLS estimation in the

second stage and we have shown that the parameter estimators are consistent

and asymptotically normally distributed, when there is no assumption on the

distribution of the error terms. Comparing to the more convenient two-stage

method which uses OLS estimator in the second stage, we have proved that

the two-stage SLS estimator is asymptotically more efficient. A simulation

study shows an outstanding RMSE reduction in a moderate sample size. We

have also presented the method of moments estimation for generalized linear

measurement error models using the instrumental variable approach. We

have assumed that the measurement error has a parametric distribution that

is not necessarily normal, while the distributions of the unobserved covari-

ates are nonparametric. We have also proposed simulation-based estimators

for the situation where the closed forms of the moments are not available.

We have shown that the proposed estimators are strongly consistent and

asymptotically normally distributed under some regularity conditions. Fi-

nite sample performances of the estimators have been investigated through

simulation studies. The extension of the method to the case that the mea-
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surement error has a nonparametric distribution of the error term will also

be studied.

As one of the minimization methods, SLS has its own computational

issues. We have discussed about various computational methods with their

advantages and disadvantages. We have encountered some of the issues in

nonlinear models and we have improved the method of computation. We

are still looking for an efficient and fast computational method to estimate

parameters. It is particularly important because those practical models tend

to have a large number of parameters.
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Appendix A

Proofs

Throughout the proofs, we use the following notations. For any matrix M ,

its Euclidean norm is denoted as ‖M‖ =
√

trace(M ′M), and vecM denotes

the column vector consisting of the stacked up columns of M . Further, ⊗

denotes the Kronecker product operator.

A.1 Proof of Theorem 2.1.3

We show that Assumptions 1 - 4 are sufficient for all conditions of Lemma

2.1.1. By Cauchy-Schwarz inequality and Assumptions 1 – 3 we have

E

[
‖W1‖ sup

Ω
(Y1 − f(X1; β))2

]
≤ 2E ‖W1‖Y 2

1 + 2E ‖W1‖ sup
Ω
f 2(X1; β) <∞
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and

E

[
‖W1‖ sup

Γ

(
Y 2

1 − f 2(X1; β)− σ2g2(X1; β, θ)
)2
]

≤ 2E ‖W1‖Y 4
1 + 2E ‖W1‖ sup

Ω
f 4(X1; β)

+2E ‖W1‖ sup
Σ
σ4 sup

Ω×Θ
g4(X1; β, θ) <∞,

which imply

E sup
Γ
ρ′1(γ)W1ρ1(γ) ≤ E ‖W1‖ sup

Γ
‖ρ1(γ)‖2 <∞. (A.1)

It follows from the uniform law of large numbers (ULLN) (Jennrich 1969,

Theorem 2) that 1
n
Qn(γ) converges almost surely (a.s.) to

Q(γ) = Eρ′1(γ)W (X1)ρ1(γ) uniformly for all γ ∈ Γ. Since ρ1(γ) − ρ1(γ0)

does not depend on Y1, we have

E[ρ′1(γ0)W1 (ρ1(γ)− ρ1(γ0))] = E[E(ρ′1(γ0)|X1)W1 (ρ1(γ)− ρ1(γ0))] = 0,

which implies Q(γ) = Q(γ0) + E[(ρ1(γ) − ρ1(γ0))′W1(ρ1(γ) − ρ1(γ0))]. It

follows that Q(γ) ≥ Q(γ0) and, by Assumption 4, equality holds if and

only if γ = γ0. Thus all conditions of Lemma 2.1.1 hold and, therefore,

γ̂SLS
a.s.−→ γ0 follows.
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A.2 Proof of Theorem 2.1.4

By Assumption 5 the first derivative ∂Qn(γ)/∂γ exists and has a first-order

Taylor expansion in Γ. Since γ̂n
a.s.−→ γ0, for sufficiently large n it holds with

probability one

∂Qn(γ0)

∂γ
+
∂2Qn(γ̃n)

∂γ∂γ′
(γ̂SLS − γ0) =

∂Qn(γ̂SLS)

∂γ
= 0, (A.2)

where ‖γ̃n−γ0‖ ≤ ‖γ̂SLS−γ0‖. The first derivative of Qn(γ) in (A.2) is given

by

∂Qn(γ)

∂γ
= 2

n∑
i=1

∂ρ′i(γ)

∂γ
Wiρi(γ),

where

∂ρ′(γ)

∂γ
= −


∂f(X;β)
∂β

2σ2g(X; β, θ)∂g(X;β,θ)
∂β

+ 2f(X; β)∂f(X;β)
∂β

0 2σ2g(X; β, θ)∂g(X;β,θ)
∂θ

0 g2(X; β, θ)


The second derivative of Qn(γ) in (A.2) is given by

∂2Qn(γ)

∂γ∂γ′
= 2

n∑
i=1

[
∂ρ′i(γ)

∂γ
Wi

∂ρi(γ)

∂γ′
+ (ρ′i(γ)Wi ⊗ Ip+q+1)

∂vec(∂ρ′i(γ)/∂γ)

∂γ′

]
,
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where

∂vec(∂ρ′i(γ)/∂γ)

∂γ′
=

−



a 0 0

0 0 0

0 0 0

b c 2g(Xi; β, θ)
∂g(Xi;β,θ)

∂β

d e 2g(Xi; β, θ)
∂g(Xi;β,θ)

∂θ

2g(Xi; β, θ)
∂g(Xi;β,θ)

∂β′
2g(Xi; β, θ)

∂g(Xi;β,θ)
∂θ′

0



.

Here

a =
∂2f(Xi; β)

∂β∂β′
,

b = 2σ2g(Xi; β, θ)
∂2g(Xi; β, θ)

∂β∂β′
+ 2σ2∂g(Xi; β, θ)

∂β

∂g(Xi; β, θ)

∂β′

+ 2f(Xi; β)
∂2f(Xi; β)

∂β∂β′
+ 2

∂f(Xi; β)

∂β

∂f(Xi; β)

∂β′
,

c = 2σ2g(Xi; β, θ)
∂2g(Xi; β, θ)

∂β∂θ′
+ 2σ2∂g(Xi; β, θ)

∂β

∂g(Xi; β, θ)

∂θ′
,

d = 2σ2g(Xi; β, θ)
∂2g(Xi; β, θ)

∂θ∂β′
+ 2σ2∂g(Xi; β, θ)

∂θ

∂g(Xi; β, β)

∂β′
,

and

e = 2σ2g(Xi; β, θ)
∂2g(Xi; β, θ)

∂θ∂θ′
+ 2σ2∂g(Xi; β, θ)

∂θ

∂g(Xi; β, β)

∂θ′
.
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By Assumption 5 and Cauchy-Schwarz inequality, we have

E sup
Γ

∥∥∥∥∂ρ′1(γ)

∂γ
W1

∂ρ1(γ)

∂γ′

∥∥∥∥ ≤ E ‖W1‖ sup
Γ

∥∥∥∥∂ρ′1(γ)

∂γ

∥∥∥∥2

≤ E ‖W1‖ sup
Γ

(∥∥∥∥∂f(X1; β)

∂β

∥∥∥∥2

+ 4σ4

∥∥∥∥g(X1; β, θ)
∂g(X1; β, θ)

∂β

∥∥∥∥2

+ 4σ4

∥∥∥∥g(X1; β, θ)
∂g(X1; β, θ)

∂θ

∥∥∥∥2

+ 4

∥∥∥∥f(X1; β)
∂f(X1; β)

∂β

∥∥∥∥2

+
∥∥g2(X1; β, θ)

∥∥2

)

≤ E ‖W1‖ sup
Ω

∥∥∥∥∂f(X1; β)

∂β

∥∥∥∥2

+ E ‖W1‖ sup
Ω×Θ

∥∥g2(X1; β, θ)
∥∥2

+ 4 sup
Σ
σ4

[
E

(
‖W1‖ sup

Ω×Θ
‖g(X1; β, θ)‖4

)
E

(
‖W1‖ sup

Ω×Θ

∥∥∥∥∂g(X1; β, θ)

∂β

∥∥∥∥4
)]1/2

+ 4 sup
Σ
σ4

[
E

(
‖W1‖ sup

Ω×Θ
‖g(X1; β, θ)‖4

)
E

(
‖W1‖ sup

Ω×Θ

∥∥∥∥∂g(X1; β, θ)

∂θ

∥∥∥∥4
)]1/2

+ 4

[
E

(
‖W1‖ sup

Ω
‖f(X1; β)‖4

)
E

(
‖W1‖ sup

Ω

∥∥∥∥∂f(X1; β)

∂β

∥∥∥∥4
)]1/2

< ∞. (A.3)
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Similarly, because of (A.1) and

E

(
‖W1‖ sup

Γ

∥∥∥∥∂vec(∂ρ′1(γ)/∂γ)

∂γ′

∥∥∥∥2
)

≤ E ‖W1‖ sup
Γ

(∥∥∥∥∂2f(X1; β)

∂β∂β′

∥∥∥∥2

+ 4σ4

∥∥∥∥g(X1; β, θ)
∂2g(X1; β, θ)

∂β∂β′

∥∥∥∥2

+ 4σ4

∥∥∥∥∂g(X1; β, θ)

∂β

∥∥∥∥4

+ 4

∥∥∥∥f(X1; β)
∂2f(X1; β)

∂β∂β′

∥∥∥∥2

+ 4

∥∥∥∥∂f(X1; β)

∂β

∥∥∥∥4

+ 8σ4

∥∥∥∥∂g(X1; β, θ)

∂θ

∂g(X1; β, θ)

∂β

∥∥∥∥2

+ 8σ4

∥∥∥∥g(X1; β, θ)
∂2g(X1; β, θ)

∂θ∂β′

∥∥∥∥2

+ 4σ4

∥∥∥∥∂g(X1; β, θ)

∂θ

∥∥∥∥4

+ 4σ4

∥∥∥∥g(X1; β, θ)
∂2g(X1; β, θ)

∂θ∂θ′

∥∥∥∥2

+ 8

∥∥∥∥g(X1; β, θ)
∂g(X1; β, θ)

∂β

∥∥∥∥2

+ 8

∥∥∥∥g(X1; β, θ)
∂g(X1; β, θ)

∂θ

∥∥∥∥2
)

≤ E

(
‖W1‖ sup

Ω

∥∥∥∥∂2f(X1; β)

∂β∂β′

∥∥∥∥2
)

+ 4 sup
Σ
σ4E

(
‖W1‖ sup

Ω×Θ

∥∥∥∥∂g(X1; β, θ)

∂β

∥∥∥∥4
)

+ 4 sup
Σ
σ4

[
E

(
‖W1‖ sup

Ω×Θ
‖g(X1; β, θ)‖4

)
E

(
‖W1‖ sup

Ω×Θ

∥∥∥∥∂2g(X1; β, θ)

∂β∂β′

∥∥∥∥4
)]1/2

+ 4

[
E

(
‖W1‖ sup

Ω
‖f(X1; β)‖4

)
E

(
‖W1‖ sup

Ω

∥∥∥∥∂2f(X1; β)

∂β∂β′

∥∥∥∥4
)]1/2

+ 4E

(
‖W1‖ sup

Ω

∥∥∥∥∂f(X1; β)

∂β

∥∥∥∥4
)

+ 4 sup
Σ
σ4E

(
‖W1‖ sup

Ω×Θ

∥∥∥∥∂g(X1; β, θ)

∂θ

∥∥∥∥4
)

+ 8 sup
Σ
σ4

[
E

(
‖W1‖ sup

Ω×Θ

∥∥∥∥∂g(X1; β, θ)

∂β

∥∥∥∥4
)
E

(
‖W1‖ sup

Ω×Θ

∥∥∥∥∂g(X1; β, θ)

∂θ

∥∥∥∥4
)]1/2

+ 8 sup
Σ
σ4

[
E

(
‖W1‖ sup

Ω×Θ
‖g(X1; β, θ)‖4

)
E

(
‖W1‖ sup

Ω×Θ

∥∥∥∥∂2g(X1; β, θ)

∂θ∂β′

∥∥∥∥4
)]1/2

+ 4 sup
Σ
σ4

[
E

(
‖W1‖ sup

Ω×Θ
‖g(X1; β, θ)‖4

)
E

(
‖W1‖ sup

Ω×Θ

∥∥∥∥∂2g(X1; β, θ)

∂θ∂θ′

∥∥∥∥4
)]1/2
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+ 8

[
E

(
‖W1‖ sup

Ω×Θ
‖g(X1; β, θ)‖4

)
E

(
‖W1‖ sup

Ω×Θ

∥∥∥∥∂g(X1; β, θ)

∂β

∥∥∥∥4
)]1/2

+ 8

[
E

(
‖W1‖ sup

Ω×Θ
‖g(X1; β, θ)‖4

)
E

(
‖W1‖ sup

Ω×Θ

∥∥∥∥∂g(X1; β, θ)

∂θ

∥∥∥∥4
)]1/2

< ∞,

we have

E sup
Γ

∥∥∥∥(ρ′1(γ)W1 ⊗ Ip+q+1)
∂vec(∂ρ′1(γ)/∂γ)

∂γ′

∥∥∥∥
≤ (p+ q + 1)E ‖W1‖ sup

Γ
‖ρ1(γ)‖

∥∥∥∥∂vec(∂ρ′1(γ)/∂γ)

∂γ′

∥∥∥∥
≤ (p+ q + 1)

[
E

(
‖W1‖ sup

Γ
‖ρ1(γ)‖2

)
E

(
‖W1‖ sup

Γ

∥∥∥∥∂vec(∂ρ′1(γ)/∂γ)

∂γ′

∥∥∥∥2
)]1/2

< ∞. (A.4)

It follows from (A.3), (A.4) and the ULLN that

1

n

∂2Qn(γ)

∂γ∂γ′
a.s.−→ ∂2Q(γ)

∂γ∂γ′

= 2E

[
∂ρ′1(γ)

∂γ
W1

∂ρ1(γ)

∂γ′
+ (ρ′1(γ)W1 ⊗ Ip+q+1)

∂vec(∂ρ′1(γ)/∂γ)

∂γ′

]
uniformly for all γ ∈ Γ. Therefore by Lemma 2.1.2, we have

1

n

∂2Qn(γ̃n)

∂γ∂γ′
a.s.−→ ∂2Q(γ0)

∂γ∂γ′
= 2B, (A.5)

where the second equality holds, because

E

[
(ρ′1(γ0)W1 ⊗ Ip+q+1)

∂vec(∂ρ′1(γ0)/∂γ)

∂γ′

]
= E

[
(E(ρ′1(γ0)|X1)W1 ⊗ Ip+q+1)

∂vec(∂ρ′1(γ0)/∂γ)

∂γ′

]
= 0.
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Furthermore, since
∂ρ′i(γ)

∂γ
Wiρi(γ) are i.i.d. with zero mean, the Central Limit

Theorem (CLT) implies that

1√
n

∂Qn(γ0)

∂γ

L−→ N(0, 4A), (A.6)

where A is given in (2.3). It follows from (A.2), (A.5), (A.6) and Assumption

6, that
√
n(γ̂SLS − γ0) converges in distribution to N(0, B−1AB−1).

A.3 Proof of Theorem 2.5.4

First, assumption A7 and the Dominated Convergence Theorem imply that

m1(X; γ), m2(X; γ) and therefore Qn(γ) are continuous in γ ∈ Γ. Let Q(γ) =

Eρ′1(γ)W1ρ1(γ). Since by Hölder’s inequality and assumptions A8 - A10

E ‖W1‖ sup
Γ

[Y1 −m1(X1; γ)]2

≤ 2E ‖W1‖Y 2
1 + 2E ‖W1‖ sup

Γ
m2

1(X1; γ)

≤ 2E ‖W1‖Y 2
1 + 2E ‖W1‖

∫
sup
Ω×Φ

(X ′1β + ε)2f(ε;φ)dε

< ∞
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and

E ‖W1‖ sup
Γ

[Y 2
1 −m2(X1; γ)]2

≤ 2E ‖W1‖Y 4
1 + 2E ‖W1‖ sup

Γ
m2

2(X1; γ)

≤ 2E ‖W1‖Y 4
1 + 2E ‖W1‖

∫
sup
Ω×Φ

(X ′1β + ε)4f(ε;φ)dε

< ∞,

we have

E sup
Γ
‖ρ′1(γ)W1ρ1(γ)‖ ≤ E ‖W1‖ sup

Γ
‖ρ1(γ)‖2

≤ E ‖W1‖ sup
Γ

[Y1 −m1(X1; γ)]2 + E ‖W1‖ sup
Γ

[Y 2
1 −m2(X1; γ)]2

< ∞. (A.7)

It follows from Jenrich (1969, Theorem 2) that 1
n
Qn(γ) converges almost

surely to Q(γ) uniformly in γ ∈ Γ. Further, since

E[ρ′1(γ0)W1(ρ1(γ)− ρ1(γ0))] = E[(E(ρ′1(γ0)|X1)W1(ρ1(γ)− ρ1(γ0))] = 0,

we have

Q(γ) = Q(γ0) + E[(ρ1(γ)− ρ1(γ0))′W1(ρ1(γ)− ρ1(γ0))].

It follows that Q(γ) ≥ Q(γ0) and, by assumption A11, equality holds if and

only if γ = γ0. Thus all conditions of Lemma 2.1.1 hold and, therefore,

γ̂n
a.s.−→ γ0 follows.
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A.4 Proof of Theorem 2.5.5

By assumption A12 the first derivative ∂Qn(γ)/∂γ exists and has a first order

Taylor expansion in a neighborhood Γ0 ⊂ Γ of γ0. Since ∂Qn(γ̂n)/∂γ = 0

and γ̂n
a.s.−→ γ0, for sufficiently large n we have

0 =
∂Qn(γ0)

∂γ
+
∂2Qn(γ̃n)

∂γ∂γ′
(γ̂n − γ0), (A.8)

where ‖γ̃n − γ0‖ ≤ ‖γ̂n − γ0‖. The first derivative of Qn(γ) in (A.8) is given

by

∂Qn(γ)

∂γ
= 2

n∑
i=1

∂ρ′i(γ)

∂γ
Wiρi(γ),

where

∂ρ′i(γ)

∂γ
= −

(
∂m1(Xi; γ)

∂γ
,
∂m2(Xi; γ)

∂γ

)
and the first derivatives of m1(Xi; γ) and m2(Xi; γ) with respect to γ are

given after assumption A13. Therefore, by the Central Limit Theorem we

have

1√
n

∂Qn(γ0)

∂γ

L−→ N(0, 4A), (A.9)

where

A = E

[
∂ρ′1(γ0)

∂γ
W1ρ1(γ0)ρ′1(γ0)W1

∂ρ1(γ0)

∂γ′

]
.
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The second derivative of Qn(γ) in (A.8) is given by

∂2Qn(γ)

∂γ∂γ′
= 2

n∑
i=1

[
∂ρ′i(γ)

∂γ
Wi

∂ρi(γ)

∂γ′
+ (ρ′i(γ)Wi ⊗ Ip+q)

∂vec(∂ρ′i(γ)/∂γ)

∂γ′

]
,

where

∂vec(∂ρ′i(γ)/∂γ)

∂γ′
= −

(
∂2m1(X; γ)

∂γ∂γ′
,
∂2m2(X; γ)

∂γ∂γ′

)′
.

The elements in ∂2m1(x; γ)/∂γ∂γ′ are

∂2m1(x; γ)

∂β∂β′
= xx′f(−x′β;φ),

∂2m1(x; γ)

∂β∂φ′
= x

∫ ∞
−x′β

∂f(ε;φ)

∂φ′
dε,

∂2m1(x; γ)

∂φ∂φ′
=

∫ ∞
−x′β

(x′β + ε)
∂2f(ε;φ)

∂φ∂φ′
dε,

and the elements in ∂2m2(x; γ)/∂γ∂γ′ are

∂2m2(x; γ)

∂β∂β′
= 2xx′

∫ ∞
−x′β

f(ε;φ)dε,

∂2m2(x; γ)

∂β∂φ′
= 2x

∫ ∞
−x′β

(x′β + ε)
∂f(ε;φ)

∂φ′
dε,

∂2m2(x; γ)

∂φ∂φ′
=

∫ ∞
−x′β

(x′β + ε)2∂
2f(ε;φ)

∂φ∂φ′
dε.

Analogous to the proof of Theorem 2.5.4, in the following we verify by as-

sumption A12 and Jenrich (1969, Theorem 2) that (1/n)∂2Qn(γ)/∂γ∂γ′ con-

verges almost surely to ∂2Q(γ)/∂γ∂γ′ uniformly in γ ∈ Γ0. First, by assump-
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tion A12, we have

E sup
Γ

∥∥∥∥∂ρ′1(γ)

∂γ
W1

∂ρ1(γ)

∂γ′

∥∥∥∥ ≤ E ‖W1‖ sup
Γ

∥∥∥∥∂ρ′1(γ)

∂γ

∥∥∥∥2

≤ E ‖W1‖ sup
Γ

(∥∥∥∥∂m1(X1; γ)

∂β

∥∥∥∥2

+

∥∥∥∥∂m1(X1; γ)

∂φ

∥∥∥∥2

+

∥∥∥∥∂m2(X1; γ)

∂β

∥∥∥∥2

+

∥∥∥∥∂m2(X1; γ)

∂φ

∥∥∥∥2
)

≤ E ‖W1‖X ′1X1 sup
Γ

(

∫ ∞
−X′1β

f(ε;φ)dε)2

+ E ‖W1‖ sup
Γ

∥∥∥∥∥
∫ ∞
−X′1β

(X ′1β + ε)
∂f(ε;φ)

∂φ

∥∥∥∥∥
2

dε

+ 8E ‖W1‖X ′1X1 sup
Γ

(X ′1β)2(

∫ ∞
−X′1β

f(ε;φ)dε)2

+ 8E ‖W1‖X ′1X1 sup
Γ

(

∫ ∞
−X′1β

εf(ε;φ)dε)2

+ E ‖W1‖ sup
Γ

∥∥∥∥∥
∫ ∞
−X′1β

(X ′1β + ε)2∂f(ε;φ)

∂φ

∥∥∥∥∥
2

dε <∞

and

E sup
Γ

∥∥∥∥(ρ′1(γ)W1 ⊗ Ip+q)
∂vec(∂ρ′1(γ)/∂γ)

∂γ′

∥∥∥∥
≤

√
2(p+ q)E ‖W1‖ sup

Γ
‖ρ1(γ)‖

∥∥∥∥∂vec(∂ρ′1(γ)/∂γ)

∂γ′

∥∥∥∥
≤

√
2(p+ q)

(
E ‖W1‖ sup

Γ
‖ρ1(γ)‖2E ‖W1‖ sup

Γ

∥∥∥∥∂vec(∂ρ′1(γ)/∂γ)

∂γ′

∥∥∥∥2
)1/2

< ∞,
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where the last inequality holds, because

E

(
‖W1‖ sup

Γ

∥∥∥∥∂vec(∂ρ′1(γ)/∂γ)

∂γ′

∥∥∥∥)2

< ∞

and, by (A.7), E ‖W1‖ supΓ ‖ρ1(γ)‖2 < ∞. Therefore by Lemma 2.1.2 we

have

1

n

∂2Qn(γ̃n)

∂γ∂γ′

a.s.−→ 2E

[
∂ρ′1(γ0)

∂γ
W1

∂ρ1(γ0)

∂γ′
+ (ρ′1(γ0)W1 ⊗ Ip+q)

∂vec(∂ρ′1(γ0)/∂γ)

∂γ′

]
= 2B, (A.10)
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where the second equality holds, because

E

(
‖W1‖ sup

Γ

∥∥∥∥∂vec(∂ρ′1(γ)/∂γ)

∂γ′

∥∥∥∥)2

≤ E ‖W1‖ sup
Γ

(∥∥∥∥∂2m1(X1; γ)

∂β∂β′

∥∥∥∥2

+

∥∥∥∥∂2m1(X1; γ)

∂φ∂φ′

∥∥∥∥2

+ 2

∥∥∥∥∂2m1(X1; γ)

∂β∂φ′

∥∥∥∥2

+

∥∥∥∥∂2m2(X1; γ)

∂β∂β′

∥∥∥∥2

+ 2

∥∥∥∥∂2m2(X1; γ)

∂β∂φ′

∥∥∥∥2

+

∥∥∥∥∂2m2(X1; γ)

∂φ∂φ′

∥∥∥∥2
)

≤ E ‖W1‖ ‖X1X
′
1‖

2
sup

Γ
f 2(−X ′1β;φ)

+ 2E ‖W1‖ sup
Γ

∥∥∥∥∥X1

∫ ∞
−X′1β

∂f(ε;φ)

∂φ
dε

∥∥∥∥∥
2

+ E ‖W1‖ sup
Γ

∥∥∥∥∥
∫ ∞
−X′1β

(X ′1β + ε)
∂2f(ε;φ)

∂φ∂φ′
dε

∥∥∥∥∥
2

+ 4E ‖W1‖ ‖X1X
′
1‖ sup

Γ
(

∫ ∞
−X′1β

f(ε;φ)dε)2

+ 16E ‖W1‖ sup
Γ

∥∥∥∥∥X1(X ′1β

∫ ∞
−X′1β

∂f(ε;φ)

∂φ
dε)

∥∥∥∥∥
2

+ 16E ‖W1‖ sup
Γ

∥∥∥∥∥X1

∫ ∞
−X′1β

ε
∂f(ε;φ)

∂φ
dε

∥∥∥∥∥
2

+ E ‖W1‖ sup
Γ

∥∥∥∥∥
∫ ∞
−X′1β

(X ′1β + ε)2∂
2f(ε;φ)

∂φ∂φ′
dε

∥∥∥∥∥
2

<∞

It follows then from (A.8)− (A.10), Assumption A13 and the Slutsky The-

orem, that
√
n(γ̂n − γ0)

L−→ N(0, B−1AB−1).
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A.5 Proof of Theorem 3.2.4

To prove the consistency, we use the Uniform Law of Large Numbers (ULLN,

Jennrich 1969, Theorem 2). The idea is to show that E supγ |Qn(γ)| < ∞.

We prove the theorem for two cases.

(i). Assume that H is known, then by Assumptions 15 and 16, and the

Dominated Convergence Theory,

E sup
γ
|ρ′1(γ)W1ρ1(γ)|

≤ E ‖W1‖ sup
γ
‖ρ1(γ)‖2

≤ 2E ‖W1‖ (‖Y1Z1‖2 + Y 4
1 )

+ 2E ‖W1‖
(∫

sup
γ
f(x′β)fU(x−HV1;φ)(‖x‖+ 1)dx

)2

+ 2E ‖W1‖
(∫

sup
γ
f 2(x′β)fU(x−HV1;φ)dx

)2

+ 2E ‖W1‖
(∫

sup
γ
g2(x′β; θ)fU(x−HV1;φ)dx

)2

< ∞. (A.11)

It follows from ULLN that

sup
γ

∣∣∣∣∣ 1n
n∑
i=1

ρ′i(γ)Wiρi(γ)−Q(γ)

∣∣∣∣∣ a.s.−→ 0,
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where Q(γ) = Eρ′1(γ)W1ρ1(γ). Therefore,

sup
γ

∣∣∣∣ 1nQn(γ)−Q(γ)

∣∣∣∣ a.s.−→ 0.

Now for the next step, we use Lemma 2.1.1 to show that γ̂n
a.s.−→ γ0.

Since E(ρ1(γ0)|V1) = 0 and ρ1(γ)− ρ1(γ0) depends on V1 only, we have

E[ρ′1(γ0)W1(ρ1(γ)− ρ1(γ0))] = E[E(ρ′1(γ0)|V1)W1(ρ1(γ)− ρ1(γ0))] = 0,

which implies Q(γ) = Q(γ0) + E[(ρ1(γ) − ρ1(γ0))′W1(ρ1(γ) − ρ1(γ0))].

By Assumption 17, Q(γ) ≥ Q(γ0) and equality holds if and only if

γ = γ0. Thus, Q(γ) attains a unique minimum at γ0 ∈ Γ, and it follows

from the Lemma that γ̂n
a.s.−→ γ0.

(ii). Assume that H is unknown. We know that ρ̂i(γ) and hence Qn(γ) are

continuously differentiable with respect to ψ. Therefore, for sufficiently

large n, Qn(γ) has the first-order Taylor expansion about ψ0:

Qn(γ) =
n∑
i=1

ρ′i(γ)Wiρi(γ) + 2
n∑
i=1

ρ′i(γ, ψ̃)Wi
∂ρi(γ, ψ̃)

∂ψ′

(
ψ̂ − ψ0

)
,

(A.12)

where ρi(γ) = YiTi − m(HVi; γ), ρi(γ, ψ̃) = YiTi − m(H̃Vi; γ), and

ψ̃ = vecH̃ satisfies
∥∥∥ψ̃ − ψ0

∥∥∥ ≤ ∥∥∥ψ̂ − ψ0

∥∥∥. Moreover from A.11 we
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have

E sup
γ
|ρ′1(γ)W1ρ1(γ)| < ∞.

Therefore, it follows from ULLN that the first term on the right-hand

side of (A.12) satisfies

sup
γ

∣∣∣∣∣ 1n
n∑
i=1

ρ′i(γ)Wiρi(γ)−Q(γ)

∣∣∣∣∣ a.s.−→ 0,

where Q(γ) = Eρ′1(γ)D1ρ1(γ). Similarly, by Cauchy-Schwarz inequal-

ity and Assumption 18

(
E sup

γ,ψ

∥∥∥∥ρ′1(γ, ψ)W1
∂ρ1(γ, ψ)

∂ψ′

∥∥∥∥)2

≤ E ‖W1‖ sup
γ,ψ
‖ρ1(γ, ψ)‖2E ‖W1‖ sup

γ,ψ

∥∥∥∥∂ρ1(γ, ψ)

∂ψ′

∥∥∥∥2

≤ pE ‖W1‖ sup
γ,ψ
‖ρ1(γ, ψ)‖2E ‖W1‖ ‖V1‖2

(∫
sup
γ,ψ

∥∥∥∥f(x′β)
∂fU(x−HV1;φ)

∂u′
(‖x‖+ 1)

∥∥∥∥ dx)2

+ pE ‖W1‖ sup
γ,ψ
‖ρ1(γ, ψ)‖2E ‖W1‖ ‖V1‖2

(∫
sup
γ,ψ

∥∥∥∥f 2(x′β)
∂fU(x−HV1;φ)

∂u′

∥∥∥∥ dx)2

+ pE ‖W1‖ sup
γ,ψ
‖ρ1(γ, ψ)‖2E ‖W1‖ ‖V1‖2

(∫
sup
γ,ψ

∥∥∥∥g2(x′β; θ)
∂fU(x−HV1;φ)

∂u′

∥∥∥∥ dx)2

<∞,
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then again by the ULLN we have

sup
γ,ψ

∥∥∥∥∥ 1

n

n∑
i=1

ρ′i(γ, ψ)Wi
∂ρi(γ, ψ)

∂ψ′

∥∥∥∥∥ = O(1) (a.s.)

and therefore, since ψ̂ = vecĤ is the least squares estimator of ψ0,

sup
γ

∥∥∥∥∥ 1

n

n∑
i=1

ρ′i(γ, ψ̃)Wi
∂ρi(γ, ψ̃)

∂ψ′

(
ψ̂ − ψ0

)∥∥∥∥∥
≤ sup

γ,ψ

∥∥∥∥∥ 1

n

n∑
i=1

ρ′i(γ, ψ)Wi
∂ρi(γ, ψ)

∂ψ′

∥∥∥∥∥∥∥∥ψ̂ − ψ0

∥∥∥ a.s.−→ 0. (A.13)

It follows from (A.12) - (A.13) that

sup
γ

∣∣∣∣ 1nQn(γ)−Q(γ)

∣∣∣∣ a.s.−→ 0.

In the previous part of the theorem, we showed that Q(γ) attains a

unique minimum at γ0 ∈ Γ. Thus, it follows from Lemma 2.1.1 that

γ̂n
a.s.−→ γ0.

A.6 Proof of Theorem 3.2.5

In the first step of the proof, using Lemma 2.1.2, we need to show that

E supγ

∥∥∥∂2Qn(γ)
∂γ∂γ′

∥∥∥ < ∞. By the Dominated Convergence Theorem, the first

derivative ∂Qn(γ)/∂γ has the first-order Taylor expansion in the open neigh-

borhood Γ0 ⊂ Γ of γ0. Since ∂Qn(γ̂n)/∂γ = 0 and γ̂n
a.s.−→ γ0, for sufficiently
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large n we have

∂Qn(γ0)

∂γ
+
∂2Qn(γ̃)

∂γ∂γ′
(γ̂n − γ0) = 0, (A.14)

where ‖γ̃ − γ0‖ ≤ ‖γ̂n − γ0‖. The first and the second derivative of Qn(γ) in

(A.14) is given by

∂Qn(γ)

∂γ
= 2

n∑
i=1

∂ρ′i(γ)

∂γ
Wiρi(γ),

and

∂2Qn(γ)

∂γ∂γ′
= 2

n∑
i=1

[
∂ρ′i(γ)

∂γ
Wi

∂ρi(γ)

∂γ′
+ (ρ′i(γ)Wi ⊗ Ip+k+1)

∂vec(∂ρ′i(γ)/∂γ)

∂γ′

]
,

respectively. Assumptions 15 – 18 imply that

E sup
γ

∥∥∥∥∂ρ′1(γ)

∂γ
W1

∂ρ1(γ)

∂γ′

∥∥∥∥ <∞.
and

(
E sup

γ

∥∥∥∥(ρ′1(γ)W1 ⊗ Ip+k+1)
∂vec(∂ρ′1(γ)/∂γ)

∂γ′

∥∥∥∥)2

<∞.

Since ∂vec(∂ρ′1(γ0)/∂γ)/∂γ′ depends on V1 only and therefore

E

[
(ρ′1(γ0)W1 ⊗ Ip+k+1)

∂vec(∂ρ′1(γ0)/∂γ)

∂γ′

]
= E

[
(E(ρ′1(γ0)|V1)W1 ⊗ Ip+k+1)

∂vec(∂ρ′1(γ0)/∂γ)

∂γ′

]
= 0,
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it follows from the ULLN and Lemma 2.1.2 that

1

2n

∂2Qn(γ)

∂γ∂γ′

a.s.−→ E

[
∂ρ′1(γ0)

∂γ
W1

∂ρ1(γ0)

∂γ′
+ (ρ′1(γ0)W1 ⊗ Ip+k+1)

∂vec(∂ρ′1(γ0)/∂γ)

∂γ′

]
= B.

Now, we know that
∂ρ′i(γ)

∂γ
Wiρi(γ), i = 1, 2, ..., n are i.i.d. with the mean

vector zero and the variance covariance matrix A, where A is given in The-

orem 3.2.5. Therefore, by Slutsky’s Theorem, we have

√
n(γ̂n − γ0)

L−→ N(0, B−1AB−1).

A.7 Proof of Theorem 3.2.6

Similar to Theorem 3.2.5, using Lemma 2.1.2, we can show that E supγ,ψ

∥∥∥∂2Qn(γ̃)
∂γ∂γ′

∥∥∥ <
∞. By Assumptions 16 – 18 and the Dominated Convergence Theorem, the

first derivative ∂Qn(γ)/∂γ exists and has the first-order Taylor expansion in

the open neighborhood Γ0 ⊂ Γ of γ0. Since ∂Qn(γ̂n)/∂γ = 0 and γ̂n
a.s.−→ γ0,

for sufficiently large n we have

∂Qn(γ0)

∂γ
+
∂2Qn(γ̃)

∂γ∂γ′
(γ̂n − γ0) = 0, (A.15)
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where ‖γ̃ − γ0‖ ≤ ‖γ̂n − γ0‖. The first derivative of Qn(γ) in (A.15) is given

by

∂Qn(γ)

∂γ
= 2

n∑
i=1

∂ρ̂′i(γ)

∂γ
Wiρ̂i(γ),

where ∂ρ̂i(γ)/∂γ′ consists of the following nonzero elements

∂m1(ĤVi; γ)

∂β′
=

∫
∂f(x′β)

∂β′
fU(x− ĤVi;φ)dx,

∂m2(ĤVi; γ)

∂β′
=

∫
∂g2(x′β; θ)

∂β′
fU(x− ĤVi;φ)dx

+

∫
∂f 2(x′β)

∂β
fU(x− ĤVi;φ)dx,

∂m3(ĤVi; γ)

∂β′
=

∫
x
∂f(x′β)

∂β′
fU(x− ĤVi;φ)dx,

∂m2(ĤVi; γ)

∂θ′
=

∫
∂g2(x′β; θ)

∂θ′
fU(x− ĤVi;φ)dx,

∂m1(ĤVi; γ)

∂φ′
=

∫
f(x′β)

∂fU(x− ĤVi;φ)

∂φ′
dx,

∂m2(ĤVi; γ)

∂φ′
=

∫
f 2(x′β)

∂fU(x− ĤVi;φ)

∂φ′
dx

+

∫
g2(x′β; θ)

∂fU(x− ĤVi;φ)

∂φ′
dx,

∂m3(ĤVi; γ)

∂φ′
=

∫
xf(x′β)

∂fU(x− ĤVi;φ)

∂φ′
dx.

The second derivative of Qn(γ) in (A.15) is

∂2Qn(γ)

∂γ∂γ′
= 2

n∑
i=1

[
∂ρ̂′i(γ)

∂γ
Wi

∂ρ̂i(γ)

∂γ′
+ (ρ̂′i(γ)Wi ⊗ Ip+k+1)

∂vec(∂ρ̂′i(γ)/∂γ)

∂γ′

]
,
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where ∂vec(∂ρ̂′i(γ)/∂γ)/∂γ′ consists of the following nonzero elements

∂2m1(ĤVi; γ)

∂β∂β′
=

∫
∂2f(x′β)

∂β∂β′
fU(x− ĤVi;φ)dx,

∂2m2(ĤVi; γ)

∂β∂β′
=

∫
∂2f 2(x′β)

∂β∂β′
fU(x− ĤVi;φ)dx

+

∫
∂2g2(x′β; θ)

∂β∂β′
fU(x− ĤVi;φ)dx,

∂2m3(ĤVi; γ)

∂β∂β′
=

∫
x⊗ ∂2f(x′β)

∂β∂β′
fU(x− ĤVi;φ)dx,

∂2m2(ĤVi; γ)

∂β∂θ′
=

∫
∂2g2(x′β; θ)

∂β∂θ′
fU(x− ĤVi;φ)dx,

∂2m2(ĤVi; γ)

∂θ∂θ′
=

∫
∂2g2(x′β; θ)

∂θ∂θ′
fU(x− ĤVi;φ)dx,

∂2m1(ĤVi; γ)

∂φ∂β′
=

∫
∂fU(x− ĤVi;φ)

∂φ

∂f(x′β)

∂β′
dx,

∂2m2(ĤVi; γ)

∂φ∂β′
=

∫
∂fU(x− ĤVi;φ)

∂φ

∂f 2(x′β)

∂β′
dx

+

∫
∂fU(x− ĤVi;φ)

∂φ

∂g2(x′β; θ)

∂β′
dx,

∂2m3(ĤVi; γ)

∂φ∂β′
=

∫
x⊗ ∂fU(x− ĤVi;φ)

∂φ

∂f(x′β)

∂β′
dx,

∂2m2(ĤVi; γ)

∂φ∂θ′
=

∫
∂fU(x− ĤVi;φ)

∂φ

∂g2(x′β; θ)

∂θ′
dx,
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and

∂2m1(ĤVi; γ)

∂φ∂φ′
=

∫
∂2fU(x− ĤVi;φ)

∂φ∂φ′
f(x′β)dx,

∂2m2(ĤVi; γ)

∂φ∂φ′
=

∫
∂2fU(x− ĤVi;φ)

∂φ∂φ′
f 2(x′β)dx

+

∫
∂2fU(x− ĤVi;φ)

∂φ∂φ′
g2(x′β; θ)dx,

∂2m3(ĤVi; γ)

∂φ∂φ′
=

∫
x⊗ ∂2fU(x− ĤVi;φ)

∂φ∂φ′
f(x′β)dx.
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It follows from Assumptions 15 – 18 that

E sup
γ,ψ

∥∥∥∥∂ρ′1(γ, ψ)

∂γ
W1

∂ρ1(γ, ψ)

∂γ′

∥∥∥∥
≤ E ‖W1‖ sup

γ,ψ

∥∥∥∥∂ρ1(γ, ψ)

∂γ′

∥∥∥∥2

= E ‖W1‖ sup
ψ,γ

(∥∥∥∥∂m1(HVi; γ)

∂β′

∥∥∥∥2

+

∥∥∥∥∂m2(HVi; γ)

∂β′

∥∥∥∥2 ∥∥∥∥∂m3(HVi; γ)

∂β′

∥∥∥∥2
)

+ E ‖W1‖ sup
ψ,γ

(∥∥∥∥∂m1(HVi; γ)

∂φ′

∥∥∥∥2

+

∥∥∥∥∂m2(HVi; γ)

∂φ′

∥∥∥∥2 ∥∥∥∥∂m3(HVi; γ)

∂φ′

∥∥∥∥2
)

+ E ‖W1‖ sup
ψ,γ

(∥∥∥∥∂m2(HVi; γ)

∂θ′

∥∥∥∥)2

≤ E ‖W1‖
(∫

sup
ψ,γ

∥∥∥∥∂f(x′β)

∂β′
fU(x−HV1;φ)

∥∥∥∥ (‖x‖+ 1)dx

)2

+ E ‖W1‖
(∫

sup
ψ,γ

∥∥∥∥∂f 2(x′β)

∂β′
fU(x−HV1;φ)

∥∥∥∥ dx
+

∥∥∥∥∂g2(x′β; θ)

∂β′
fU(x−HV1;φ)

∥∥∥∥ dx)2

+ E ‖W1‖
(∫

sup
ψ,γ

∥∥∥∥∂g2(x′β; θ)

∂θ′
fU(x−HV1;φ)

∥∥∥∥ dx)2

+ E ‖W1‖
(∫

sup
ψ,γ

∥∥∥∥∂fU(x−HVi;φ)

∂φ′
f(x′β)dx

∥∥∥∥ (‖x‖+ 1)dx

)2

+ E ‖W1‖
(∫

sup
ψ,γ

∥∥∥∥∂fU(x−HVi;φ)

∂φ′
(f 2(x′β) + g2(x′β; θ))

∥∥∥∥ dx)2

<∞.
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Similarly, by Assumptions 15 – 18 we have(
E sup

γ,ψ

∥∥∥∥(ρ′1(γ, ψ)W1 ⊗ Ip+k+1)
∂vec(∂ρ′1(γ, ψ)/∂γ)

∂γ′

∥∥∥∥)2

≤ (p+ k + 1)

(
E ‖W1‖ sup

γ,ψ
‖ρ1(γ, ψ)‖

∥∥∥∥∂vec(∂ρ′1(γ, ψ)/∂γ)

∂γ′

∥∥∥∥)2

≤ (p+ k + 1)E ‖W1‖ sup
γ,ψ
‖ρ1(γ, ψ)‖2E ‖W1‖ sup

γ,ψ

∥∥∥∥∂vec(∂ρ′1(γ, ψ)/∂γ)

∂γ′

∥∥∥∥2

< ∞.

Since ∂vec(∂ρ′1(γ0)/∂γ)/∂γ′ depends on V1 only and therefore

E

[
(ρ′1(γ0)W1 ⊗ Ip+q)

∂vec(∂ρ′1(γ0)/∂γ)

∂γ′

]
= E

[
(E(ρ′1(γ0)|V1)W1 ⊗ Ip+k+1)

∂vec(∂ρ′1(γ0)/∂γ)

∂γ′

]
= 0,

it follows from the ULLN and Lemma 2.1.2 that

1

2n

∂2Qn(γ̃)

∂γ∂γ′

a.s.−→ E

[
∂ρ′1(γ0)

∂γ
W1

∂ρ1(γ0)

∂γ′
+ (ρ′1(γ0)W1 ⊗ Ip+k+1)

∂vec(∂ρ′1(γ0)/∂γ)

∂γ′

]
= B. (A.16)

Similarly, for sufficiently large n, ∂Qn(γ0)/∂γ, has the first-order Taylor ex-

pansion about ψ0:

∂Qn(γ0)

∂γ
= 2

n∑
i=1

∂ρ′i(γ0)

∂γ
Wiρi(γ0) +

∂2Q̃n(γ0)

∂γ∂ψ′

(
ψ̂ − ψ0

)
, (A.17)
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where

∂2Q̃n(γ0)

∂γ∂ψ′
=

2
n∑
i=1

[
∂ρ′i(γ0, ψ̃)

∂γ
Wi

∂ρi(γ0, ψ̃)

∂ψ′
+
(
ρ′i(γ0, ψ̃)Wi ⊗ Ip+k+1

) ∂vec(∂ρ′i(γ0, ψ̃)/∂γ)

∂ψ′

]
,

and ψ̃ = vecH̃ satisfies
∥∥∥ψ̃ − ψ0

∥∥∥ ≤ ∥∥∥ψ̂ − ψ0

∥∥∥. Similar to (A.16), it can be

shown that

1

2n

∂2Q̃n(γ0)

∂γ∂ψ′
a.s.−→ E

[
∂ρ′1(γ0)

∂γ
W1

∂ρ1(γ0)

∂ψ′

]
. (A.18)

By definition (3.30), Ĥ−H = [
∑n

i=1(Zi −HVi)V ′i ] (
∑n

i=1 ViV
′
i )
−1

, which can

be written as

ψ̂ − ψ0 = vec(Ĥ −H) =
(∑

ViV
′
i ⊗ Ip

)−1
n∑
i=1

Vi ⊗ (Zi −HVi)

(Magnus and Neudecker (1988), p.30). Hence (A.17) can be written as

∂Qn(γ0)

∂γ
= 2Cn

n∑
i=1

Bi,

where

Cn =

Ip+k+1,
1

2

∂2Q̃n(γ0)

∂γ∂ψ′

(
n∑
i=1

ViV
′
i ⊗ Ip

)−1


and

Bi =


∂ρ′i(γ0)

∂γ
Wiρi(γ0)

Vi ⊗ (Zi −HVi)

 .
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Now, we know that Bi, i = 1, 2, ..., n are i.i.d. with the mean vector zero

and the variance covariance matrix A, where A is given in Theorem 3.2.6.

On the other hand, by the Law of Large Numbers, n (
∑
ViV

′
i ⊗ Ip)

−1 a.s.−→

(EV1V
′

1 ⊗ Ip)−1, which together with (A.18) implies

Cn
a.s.−→

(
Ip+k+1, E

[
∂ρ′1(γ0)

∂γ
W1

∂ρ1(γ0)

∂ψ′

]
(EV1V

′
1 ⊗ Ip)

−1

)
= C,

where C is given in Theorem 3.2.6. Therefore, by the Central Limit Theorem,

1√
n

∑n
i=1Bi

L−→ N(0, A), where A = E(B1B
′
1). Therefore, by Slutsky’s

Theorem, we have

1

2
√
n

∂Qn(γ0)

∂γ

L−→ N(0, CAC ′). (A.19)

Finally, the theorem follows from (A.15), (A.16) and (A.19).
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A.8 Proof of Theorem 3.2.7

Since

E

(
sup
γ
‖ρ1,S(γ)‖ |V1, Y1, Z1

)
≤ ‖Y1T1‖+ E

(
sup
γ
‖mS(HV1; γ)‖ |V1

)
≤ ‖Y1T1‖+

1

S

S∑
j=1

E

(
sup
γ

∥∥∥∥f(x′ijβ)fU(xij −HV1;φ)

l(xij)

∥∥∥∥ |V1

)

+
1

S

S∑
j=1

E

(
sup
γ

∥∥∥∥f 2(x′ijβ)fU(xij −HV1;φ)

l(xij)

∥∥∥∥ |V1

)

+
1

S

S∑
j=1

E

(
sup
γ

∥∥∥∥g2(x′ijβ; θ)fU(xij −HV1;φ)

l(xij)

∥∥∥∥ |V1

)

+
1

S

S∑
j=1

E

(
sup
γ

∥∥∥∥xijf(x′ijβ)fU(xij −HV1;φ)

l(xij)

∥∥∥∥ |V1

)
≤ ‖Y1T1‖+

∫
sup
γ
f(x′β)fU(x−HV1;φ)(‖x‖+ 1)dx

+

∫
sup
γ
f 2(x′β)fU(x−HV1;φ)dx

+

∫
sup
γ
g2(x′β; θ)fU(x−HV1;φ)dx,
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and similarly

E

(
sup
γ
‖ρ1,2S(γ)‖ |V1, Y1, Z1

)
≤ ‖Y1T1‖+

∫
sup
γ
f(x′β)fU(x−HV1;φ)(‖x‖+ 1)dx

+

∫
sup
γ
f 2(x′β)fU(x−HV1;φ)dx

+

∫
sup
γ
g2(x′β; θ)fU(x−HV1;φ)dx,

and because ρ1,S(γ) and ρ1,2S(γ) are conditionally independent given

(V1, Y1, Z1), it follows from Assumptions 15 – 16 that

E sup
γ

∣∣ρ′1,S(γ)W1ρ1,2S(γ)
∣∣

≤ E ‖W1‖E
(

sup
γ
‖ρ1,S(γ)‖ |V1, Y1, Z1

)
E

(
sup
γ
‖ρ1,2S(γ)‖ |V1, Y1, Z1

)
≤ E ‖W1‖

(
‖Y1T1‖+

∫
sup
γ
f(x′β)fU(x−HV1;φ)(‖x‖+ 1)dx

+

∫
sup
γ
f 2(x′β)fU(x−HV1;φ)dx

+

∫
sup
γ
g2(x′β; θ)fU(x−HV1;φ)dx

)2

≤ 2E ‖W1‖ (Y 4
1 + ‖Y1Z1‖2)

+ 2E ‖W1‖
(∫

sup
γ
f(x′β)fU(x−HV1;φ)(‖x‖+ 1)dx

+

∫
sup
γ
f 2(x′β)fU(x−HV1;φ)dx

+

∫
sup
γ
g2(x′β; θ)fU(x−HV1;φ)dx

)2

< ∞.
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Therefore by the ULLN we have

sup
γ

∣∣∣∣∣ 1n
n∑
i=1

ρ′i,S(γ)Wiρi,2S(γ)− Eρ′1,S(γ)W1ρ1,2S(γ)

∣∣∣∣∣ a.s.−→ 0,

where

Eρ′1,S(γ)W1ρ1,2S(γ)

= E
[
E
(
ρ′1,S(γ)|V1, Y1, Z1

)
W1E

(
ρ′1,2S(γ)|V1, Y1, Z1

)]
= Eρ′1(γ)W1ρ1(γ)

= Q(γ).

Therefore,

sup
γ

∣∣∣∣ 1nQn,S(γ)−Q(γ)

∣∣∣∣ a.s.−→ 0.

We showed in the proof of Theorem 3.2.4 that Q(γ) attains a unique min-

imum at γ0 ∈ Γ. Therefore γ̂n,S
a.s.−→ γ0 follows from Lemma 2.1.1.

To prove the second part of the theorem, first, ∂Qn,S(γ)/∂γ has the

first-order Taylor expansion in an open neighborhood Γ0 ⊂ Γ of γ0:

∂Qn,S(γ0)

∂γ
+
∂2Qn,S(γ̃)

∂γ∂γ′
(γ̂n,S − γ0) = 0,

where ‖γ̃ − γ0‖ ≤ ‖γ̂n,S − γ0‖. The first and the second derivative of Qn,S(γ)

is given by

∂Qn,S(γ)

∂γ
=

n∑
i=1

[
∂ρ′i,S(γ)

∂γ
Wiρi,2S(γ) +

∂ρ′i,2S(γ)

∂γ
Wiρi,S(γ)

]
,
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and

∂2Qn,S(γ)

∂γ∂γ′

=
n∑
i=1

[
∂ρ′i,S(γ)

∂γ
Wi

∂ρi,2S(γ)

∂γ′
+ (ρ′i,2S(γ)Wi ⊗ Ip+k+1)

∂vec(∂ρ′i,S(γ)/∂γ)

∂γ′

]
+

n∑
i=1

[
∂ρ′i,2S(γ)

∂γ
Wi

∂ρi,S(γ)

∂γ′
+ (ρ′i,S(γ)Wi ⊗ Ip+k+1)

∂vec(∂ρ′i,2S(γ)/∂γ)

∂γ′

]
,

respectively. Similar to (A.16), we can show that 1
n

∂2Qn,S(γ)

∂γ∂γ′
converges a.s. to

E

[
∂ρ′1,S(γ0)

∂γ
W1

∂ρ1,2S(γ0)

∂γ′
+ (ρ′1,2S(γ0)W1 ⊗ Ip+k+1)

∂vec(∂ρ′1,S(γ0)/∂γ)

∂γ′

]
+

E

[
∂ρ′1,2S(γ0)

∂γ
W1

∂ρ1,S(γ0)

∂γ′
+ (ρ′1,S(γ0)W1 ⊗ Ip+k+1)

∂vec(∂ρ′1,2S(γ0)/∂γ)

∂γ′

]

uniformly for all γ ∈ Γ. Since

E

[
∂ρ′1,S(γ0)

∂γ
W1

∂ρ1,2S(γ0)

∂γ′

]
= E

[
∂ρ′1(γ0)

∂γ
W1

∂ρ1(γ0)

∂γ′

]
= B

and

E

[
(ρ′1,2S(γ0)W1 ⊗ Ip+k+1)

∂vec(∂ρ′1,S(γ0)/∂γ)

∂γ′

]
= 0,

we have

1

n

∂2Qn,S(γ)

∂γ∂γ′
a.s.−→ 2B. (A.20)

Further, by the Central Limit Theorem we have

1

2
√
n

∂Qn,S(γ)

∂γ

L−→ N(0, AS), (A.21)
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where

AS =
1

4
E

[(
∂ρ′1,S(γ0)

∂γ
W1ρ1,2S(γ0) +

∂ρ′1,2S(γ0)

∂γ
W1ρ1,S(γ0)

)
×

(
ρ′1,2S(γ0)W1

∂ρ1,S(γ0)

∂γ′
+ ρ′1,S(γ0)W1

∂ρ1,2S(γ0)

∂γ′

)]
=

1

2
E

[
∂ρ′1,S(γ0)

∂γ
W1ρ1,2S(γ0)ρ′1,2S(γ0)W1

∂ρ1,S(ψ0)

∂γ′

]
+

1

2
E

[
∂ρ′1,S(γ0)

∂γ
W1ρ1,2S(γ0)ρ′1,S(γ0)W1

∂ρ1,2S(γ0)

∂γ′

]
,

Finally, the second part of Theorem 3.2.7 follows from (A.20) and (A.21),

and Slutsky’s Theorem .

A.9 Proof of Theorem 3.2.8

The proof of the first part of Theorem 3.2.8 is similar to that for Theo-

rem 3.2.4. First, for sufficiently large n, Qn,S(γ) has the first-order Taylor

expansion about ψ0:

Qn,S(γ) =
n∑
i=1

ρ′i,S(γ)Wiρi,2S(γ) (A.22)

+
n∑
i=1

[
ρ′i,S(γ, ψ̃)Wi

∂ρi,2S(γ, ψ̃)

∂ψ′
+ ρ′i,2S(γ, ψ̃)Wi

∂ρi,S(γ, ψ̃)

∂ψ′

](
ψ̂ − ψ0

)
,

where ρi,S(γ) = YiTi −mS(HVi; γ), ρi,S(γ, ψ̃) = YiTi −mS(H̃Vi; γ),∥∥∥ψ̃ − ψ0

∥∥∥ ≤ ∥∥∥ψ̂ − ψ0

∥∥∥ and ρi,2S(γ, ψ̃) is given similarly. Further, because

ρ1,S(γ) and ρ1,2S(γ) are conditionally independent given (V1, Y1, Z1), it follows
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from Assumptions 15 – 16 that

E sup
γ

∣∣ρ′1,S(γ)W1ρ1,2S(γ)
∣∣ <∞.

Therefore by the ULLN the first term on the right-hand side of (A.22) satisfies

sup
γ

∣∣∣∣∣ 1n
n∑
i=1

ρ′i,S(γ)Wiρi,2S(γ)− Eρ′1,S(γ)W1ρ1,2S(γ)

∣∣∣∣∣ a.s.−→ 0, (A.23)

where

Eρ′1,S(γ)W1ρ1,2S(γ) = Q(γ).

The second term on the right-hand side of (A.22) satisfies

E sup
γ,ψ

∥∥∥∥ρ′1,S(γ, ψ)W1
∂ρ1,2S(γ, ψ)

∂ψ′

∥∥∥∥
≤ E ‖W1‖ sup

γ,ψ

∥∥ρ′1,S(γ, ψ)
∥∥∥∥∥∥∂ρ1,2S(γ, ψ)

∂ψ′

∥∥∥∥
≤ E ‖W1‖E

(
sup
γ,ψ
‖ρ1,S(γ, ψ)‖ |V1, Y1, Z1

)
E

(
sup
γ,ψ

∥∥∥∥∂ρ1,2S(γ, ψ)

∂ψ′

∥∥∥∥ |V1, Y1, Z1

)
.
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Since

E

(
sup
γ,ψ

∥∥∥∥∂ρ1,2S(γ, ψ)

∂ψ′

∥∥∥∥ |V1, Y1, Z1

)
≤ 1

S

2S∑
j=S+1

E

(
sup
γ,ψ

∥∥∥∥f(x′1jβ)

l(x1j)

∂fU(x1j −HV1;φ)

∂u′
(V1 ⊗ Ip)′

∥∥∥∥ |V1

)

+
1

S

2S∑
j=S+1

E

(
sup
γ,ψ

∥∥∥∥f 2(x′1jβ)

l(x1j)

∂fU(x1j −HV1;φ)

∂u′
(V1 ⊗ Ip)′

∥∥∥∥ |V1

)

+
1

S

2S∑
j=S+1

E

(
sup
γ,ψ

∥∥∥∥g2(x′1jβ; θ)

l(x1j)

∂fU(x1j −HV1;φ)

∂u′
(V1 ⊗ Ip)′

∥∥∥∥ |V1

)

+
1

S

2S∑
j=S+1

E

(
sup
γ,ψ

∥∥∥∥x1jf(x′1jβ)

l(x1j)

∂fU(x1j −HV1;φ)

∂u′
(V1 ⊗ Ip)′

∥∥∥∥ |V1

)
≤ √

p ‖V1‖
∫

sup
γ,ψ

∥∥∥∥f(x′β)
∂fU(x−HV1;φ)

∂u′

∥∥∥∥ (‖x‖+ 1)dx

+
√
p ‖V1‖

∫
sup
γ,ψ

∥∥∥∥f 2(x′β)
∂fU(x−HV1;φ)

∂u′

∥∥∥∥ dx
+
√
p ‖V1‖

∫
sup
γ,ψ

∥∥∥∥g2(x′β; θ)
∂fU(x−HV1;φ)

∂u′

∥∥∥∥ dx,
by Cauchy-Schwarz inequality and Assumptions 15 – 18,

(
E sup

γ,ψ

∥∥∥∥ρ′1,S(γ, ψ)W1
∂ρ1,2S(γ, ψ)

∂ψ′

∥∥∥∥)2

<∞.

Thus by the ULLN we have

sup
γ

∥∥∥∥∥ 1

n

n∑
i=1

ρ′i,2S(γ, ψ̃)Wi
∂ρi,S(γ, ψ̃)

∂ψ′

(
ψ̂ − ψ0

)∥∥∥∥∥ (A.24)

≤ sup
γ,ψ

∥∥∥∥∥ 1

n

n∑
i=1

ρ′i,2S(γ, ψ)Wi
∂ρi,S(γ, ψ)

∂γ′

∥∥∥∥∥∥∥∥(ψ̂ − ψ0

)∥∥∥ a.s.−→ 0.
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It follows from (A.22) - (A.24) that

sup
γ

∣∣∣∣ 1nQn,S(γ)−Q(γ)

∣∣∣∣ a.s.−→ 0. (A.25)

It has been shown in the proof of Theorem 3.2.4 that Q(γ) attains a unique

minimum at γ0 ∈ Γ. Therefore γ̂n,S
a.s.−→ γ0 follows from Lemma 2.1.1.

The proof of the second part of Theorem 3.2.8 is analogous to that of Theorem

3.2.6. First, by assumption 18, ∂Qn,S(γ)/∂γ has the first-order Taylor

expansion in an open neighborhood Γ0 ⊂ Γ of γ0:

∂Qn,S(γ0)

∂γ
+
∂2Qn,S(γ̃)

∂γ∂γ′
(γ̂n,S − γ0) = 0, (A.26)

where ‖γ̃ − γ0‖ ≤ ‖γ̂n,S − γ0‖. The first derivative of Qn,S(γ) in (A.26) is

given by

∂Qn,S(γ)

∂γ
=

n∑
i=1

[
∂ρ̂′i,S(γ)

∂γ
Wiρ̂i,2S(γ) +

∂ρ̂′i,2S(γ)

∂γ
Wiρ̂i,S(γ)

]
,

and second derivative in (A.26) is given by

∂2Qn,S(γ)

∂γ∂γ′
=

n∑
i=1

[
∂ρ̂′i,S(γ)

∂γ
Wi

∂ρ̂i,2S(γ)

∂γ′
+ (ρ̂′i,2S(γ)Wi ⊗ Ip+k+1)

∂vec(∂ρ̂′i,S(γ)/∂γ)

∂γ′

]
+

n∑
i=1

[
∂ρ̂′i,2S(γ)

∂γ
Wi

∂ρ̂i,S(γ)

∂γ′
+ (ρ̂′i,S(γ)Wi ⊗ Ip+k+1)

∂vec(∂ρ̂′i,2S(γ)/∂γ)

∂γ′

]
.
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Completely analogous to (A.16), we can show that 1
n

∂2Qn,S(γ)

∂γ∂γ′
converges a.s.

to

E

[
∂ρ′1,S(γ0)

∂γ
W1

∂ρ1,2S(γ0)

∂γ′
+ (ρ′1,2S(γ0)W1 ⊗ Ip+k+1)

∂vec(∂ρ′1,S(γ0)/∂γ)

∂γ′

]
+

E

[
∂ρ′1,2S(γ0)

∂γ
W1

∂ρ1,S(γ0)

∂γ′
+ (ρ′1,S(γ0)W1 ⊗ Ip+k+1)

∂vec(∂ρ′1,2S(γ0)/∂γ)

∂γ′

]
uniformly for all γ ∈ Γ. Since

E

[
∂ρ′1,S(γ0)

∂γ
W1

∂ρ1,2S(γ0)

∂γ′

]
= E

[
E

(
∂ρ′1,S(γ0)

∂γ
|V1

)
W1E

(
∂ρ1,2S(γ0)

∂γ′
|V1

)]
= E

[
∂ρ′1(γ0)

∂γ
W1

∂ρ1(γ0)

∂γ′

]
= B

and

E

[
(ρ′1,2S(γ0)W1 ⊗ Ip+k+1)

∂vec(∂ρ′1,S(γ0)/∂γ)

∂γ′

]
= E

[(
E(ρ′1,2S(γ0)|V1)W1 ⊗ Ip+k+1

) ∂vec(∂ρ′1,S(γ0)/∂γ)

∂γ′

]
= 0,

we have

1

n

∂2Qn,S(γ̃)

∂γ∂γ′
a.s.−→ 2B. (A.27)

Again, by Assumption 18, ∂Qn,S(γ0)/∂γ has the first-order Taylor expan-

sion about ψ0:

∂Qn,S(γ0)

∂γ
=

n∑
i=1

[
∂ρ′i,S(γ0)

∂γ
Wiρi,2S(γ0) +

∂ρ′i,2S(γ0)

∂γ
Wiρi,S(γ0)

]
(A.28)

+
∂2Q̃n,S(γ0)

∂γ∂ψ′

(
ψ̂ − ψ0

)
,
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where

∂2Q̃n,S(γ0)

∂γ∂ψ′

=
n∑
i=1

[
∂ρ′i,S(γ0, ψ̃)

∂γ
Wi

∂ρi,2S(γ0, ψ̃)

∂ψ′
+
(
ρ′i,2S(γ0, ψ̃)Wi ⊗ Ip+k+1

) ∂vec(∂ρ′i,S(γ0, ψ̃)/∂γ)

∂ψ′

]

+
n∑
i=1

[
∂ρ′i,2S(γ0, ψ̃)

∂γ
Wi

∂ρi,S(γ0, ψ̃)

∂ψ′
+
(
ρ′i,S(γ0, ψ̃)Wi ⊗ Ip+k+1

) ∂vec(∂ρ′i,2S(γ0, ψ̃)/∂γ)

∂ψ′

]
,

and
∥∥∥ψ̃ − ψ0

∥∥∥ ≤ ∥∥∥ψ̂ − ψ0

∥∥∥. Now rewrite (A.28) as

∂Qn,S(γ0)

∂γ
= 2Cn,S

n∑
i=1

Bi,S,

where

Cn,S =

Ip+k+1,
1

2

∂2Q̃n,S(γ0)

∂γ∂ψ′

(
n∑
i=1

ViV
′
i ⊗ Ip

)−1


and

Bi,S =
1

2


∂ρ′i,S(γ0)

∂γ
Wiρi,2S(γ0) +

∂ρ′i,2S(γ0)

∂γ
Wiρi,S(γ0)

2Vi ⊗ (Zi −HVi)

 .

Then, analogous to (A.18), we can show that

1

n

∂2Q̃n,S(γ0)

∂γ∂ψ′
a.s.−→ 2E

[
∂ρ′1(γ0)

∂γ
W1

∂ρ1(γ0)

∂ψ′

]
and hence

Cn,S
a.s.−→

(
Ip+k+1, E

[
∂ρ′1(γ0)

∂γ
W1

∂ρ1(γ0)

∂ψ′

]
(EV1V

′
1 ⊗ Ip)

−1

)
= C. (A.29)

Further, by the Central Limit Theorem we have

1√
n

n∑
i=1

Bi,S
L−→ N(0, AS), (A.30)
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where

AS = EB1,SB
′
1,S =

 AS,11 A′S,21

AS,21 AS,22

 ,

AS,11 =
1

4
E

[(
∂ρ′1,S(γ0)

∂γ
W1ρ1,2S(γ0) +

∂ρ′1,2S(γ0)

∂γ
W1ρ1,S(γ0)

)
×(

ρ′1,2S(γ0)W1
∂ρ1,S(γ0)

∂γ′
+ ρ′1,S(γ0)W1

∂ρ1,2S(γ0)

∂γ′

)]
=

1

2
E

[
∂ρ′1,S(γ0)

∂γ
W1ρ1,2S(γ0)ρ′1,2S(γ0)W1

∂ρ1,S(γ0)

∂γ′

]
+

1

2
E

[
∂ρ′1,S(γ0)

∂γ
W1ρ1,2S(γ0)ρ′1,S(γ0)W1

∂ρ1,2S(γ0)

∂γ′

]
,

AS,21

=
1

2
E

[
(V1 ⊗ (Z1 −HV1))

(
ρ′1,2S(γ0)W1

∂ρ1,S(γ0)

∂γ′
+ ρ′1,S(γ0)W1

∂ρ1,2S(γ0)

∂γ′

)]
= E

[
(V1 ⊗ (Z1 −HV1)) ρ′1(γ0)W1

∂ρ1(γ0)

∂γ′

]
= A21

and

AS,22 = E
[
(V1 ⊗ (Z1 −HV1)) (V1 ⊗ (Z1 −HV1))′

]
= E

[
V1V

′
1 ⊗ (Z1 −HV1) (Z1 −HV1)′

]
= A22.

It follows from (A.29) and (A.30) that

1

2
√
n

∂Qn,S(γ0)

∂γ

L−→ N(0, CASC
′). (A.31)
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Finally, the second part of Theorem 3.2.8 follows from (A.26), (A.27) and

(A.31).
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