
 
 
 
 
 

Nonlinear Control of  
Co-operating Hydraulic Manipulators 

 
 

 

 

By 

Hairong Zeng 

 

 

 

A thesis presented to the University of Manitoba 

in fulfillment of the thesis requirement  

for the degree of  Doctor of Philosophy 

in Mechanical and Manufacturing Engineering 

Winnipeg, Manitoba, Canada 2007 

 

 

 

 

 

 

©Hairong Zeng 

 



 

 ii

Abstract 

 

This thesis presents the design, analysis, and numerical and experimental evaluation of 

nonlinear controllers for co-operation among several hydraulic robots operating in the 

presence of significant system uncertainties, non-linearities and friction. The designed 

controllers allow hydraulically driven manipulators to (i) co-operatively handle a rigid 

object (payload) following a given trajectory, (ii) share the payload and (iii) maintain an 

acceptable internal force on the object.  

A general description of the kinematic and dynamic relations for a hydraulically 

actuated multi-manipulator system is presented first. The entire mathematical model 

incorporates object dynamics, robot dynamics, hydraulic actuator functions and friction 

dynamics. For the purpose of simulations, a detailed numerical simulation program of 

such a system is also developed, in which two three-link planar robot manipulators 

resembling the Magnum hydraulic manipulators manufactured by ISE, interact with each 

other through manipulating a common object. 

The regulating control problem is studied next, in which the desired position of the 

object and the corresponding desired link displacement change step-wise. Initially, a 

controller is designed based on a backstepping technique, assuming that full knowledge 

of the dynamics and kinematics of the system is available. The assumption is then relaxed 

and the control system is analyzed. Based on the analysis, the controller is then modified 

to account for the uncertainty of the payload, robot dynamic parameters and hydraulic 

functions.  

Next, the regulating controller is extended to a tracking controller, which allows the 

object to follow a given trajectory and is robust against parameter uncertainties. 

Additionally, an observer is added to the controller to avoid the need of acceleration 

feedback. 

To investigate the effect of friction force, the above controllers are examined by 

introducing the most recent and complete LuGre friction model into the system dynamics. 

The tracking controller is then redesigned to compensate the effect of friction. Observers 

are designed to observe the immeasurable friction states. Based on the observed friction 
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states and estimated friction parameters, an appropriate friction compensation scheme is 

designed which does not directly use velocity in order to avoid the need of acceleration 

feedback by the controller.  

Finally, the problem of “explosion of terms” coming from the backstepping method is 

solved by using the concept of dynamic surface control in which a low pass filter is 

integrated to avoid model differentiation. 

Simulations are carried out for analysis of the control system and verification of the 

developed controllers. Experimental examinations are performed on an available 

hydraulic system consisting of two single-axis hydraulic actuators. 
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Chapter 1 Introduction 
 

1.1 Problem Statement 
In recent years, co-operative robots have continued to receive a great deal of attention 

from both the robotics research community (Vukobratovic, 1998) and the robotics 

industry.  

It has been recognized that many tasks are difficult or impossible to execute by a 

single robot. It is more manageable when two or more manipulators are employed in a 

co-operative manner. Typically a single manipulator cannot handle an object because it is 

either beyond the manipulator's load capacity or the geometry of the object makes it 

difficult to manipulate. Among various types of actuators to drive manipulators; 

hydraulic actuators are prevailing in many industrial applications due to their high load 

capability and reliable performance. Their application scope ranges from heavy-duty 

robots in mining and forestry, to fine machine tools and underwater exploration. An 

example is that of two hydraulic manipulators installed in an underwater vehicle; named 

Magnum and manufactured by International Submarine Engineering Ltd. (ISE) in BC, 

Canada. The control of co-operating hydraulic robots to perform tasks such as handling a 

common object presents many difficulties which are outlined in the following. 

The addition of a second manipulator or several manipulators, leads to a complex 

system since the motion of multiple manipulators must be both kinematically and 

dynamically coordinated. In addition, for an object being rigidly grasped (i.e. no relative 

motion among grippers and the object) and manipulated by multiple robots, the problem 

of internal loading, which does not contribute to the object’s motion, must also be 

addressed (Walker et al., 1991). Due to the kinematic and dynamic interaction imposed in 

co-operative robots and the nonlinear dynamics of the hydraulic actuators, a global 

description of the kinematic and dynamic relations for a multi-manipulator system is 

needed for controller development.  

Hydraulic actuators are highly nonlinear, resulting from servovalve flow-pressure 

characteristics, unequal piston cross sectional areas, orifice area openings and in part also, 

to the variations of fluid volume under compression (Merritt, 1967).  
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Aside from the nonlinear nature of the hydraulic dynamics, hydraulic systems also 

contain to a large extent, uncertainties. The uncertainties can be classified into two 

categories: parametric uncertainties and un-modeled nonlinearities. Examples of 

parametric uncertainties are large changes in the load seen by the system and/or large 

variations in the hydraulic parameters due to the change of temperature (e.g., bulk 

modulus) and component wear (Watton, 1989). Other general uncertainties, such as 

external disturbances and leakage cannot be modeled exactly and the nonlinear functions 

that describe them are unknown. These types of uncertainties are called un-modeled 

nonlinearities, which may cause the control system designed on the nominal model, to 

become unstable or have a much-degraded performance (Yao et al. 2000). 

In practical applications, friction compensation is particularly important for hydraulic 

manipulators. Due to high supply pressure, tight sealing is required to prevent the 

actuators from significant internal and external leaks. This in turn generates very high 

joint friction that can reach up to 30% of the nominal actuator torque (Lischinsky et al., 

1997). Because friction is a very complicated phenomenon that relies on the material 

properties of the contact surfaces, relative velocity and lubrication conditions, a good 

friction model is important. 

Unlike electrical actuators, force and position control of hydraulic manipulators is a 

difficult problem. In a hydraulic actuator, the control signal activates the spool valve that 

controls the flow of hydraulic fluid into and out of, the actuator. This flow, in turn causes 

a pressure differential buildup that is proportional to the actuator force. Even if the spool 

valve dynamics are ignored, the control signal fundamentally controls the derivative of 

the actuator force and not the force itself (Heinrichs et al. 1997).  

Finally, most existing control methods for hydraulic systems deal with only one 

hydraulic actuator (see references by Alleyne, 1996; Niksefat, et al. 2000; Yao et al. 2000; 

Duraiswamy and Chiu, 2003; Sekhavat et al. 2004). Certain assumptions held in these 

control methods do not apply to a system of multiple hydraulic manipulators designed to 

co-operatively handle an object. This includes control of the internal force exerted on the 

manipulated object. 
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1.2 General Background 

Prior to the work reported here, a number of control methods have been proposed for 

rigid body dynamics of closed-loop kinematic chains for electrically driven manipulators. 

To name a few, Khatib (1988) developed a coordinated control scheme for non-redundant 

arms based on the dynamic model in the operational space. Liu and Arimoto (1996) 

developed a distributed controller, which needs knowledge of the payload, although the 

internal force can be regulated by feed-forward of the desired forces. Caccavale et al. 

(1999) provided a stability analysis for a joint space control law in which asymptotic 

stability of a set of equilibrium points was demonstrated. The problem of steady-state 

error was noted for the case of imperfect gravity compensation while its solution is not 

recommended.  

Other studies on this topic include the work by Alford and Belyeu (1984) who 

provided a master-slave control scheme for a two-robot system. Zheng and Luh (1986) 

assigned one robot to carry the major part of the task with its motion planned accordingly, 

and the second robot to follow the first one with the corresponding variables determined 

through the constrained relations. Tarn et al. (1987) established a formulation describing 

two co-operative electric robots handling a common object by considering the whole 

system as a closed kinematic chain. Giving a symmetric role to the manipulators in the 

coordination, Uchiyama and Dauchez (1988) redefined the task and the joint space 

coordinates to formulate the kinematics and dynamics for two co-operating robots. A 

controller was then developed to regulate the motion of an object as well as the internal 

forces applied to it.  

The methods outlined above all require the exact dynamic model of the robots as well 

as the payload. To overcome the effects of the uncertainties, a few control laws have been 

developed (Hu and Goldenberg, 1989; Walker et al., 1989; Zribi and Ahmad, 1991). 

These methods are based on the fact that the dynamics of a robot can be represented as a 

linear combination of its physical parameters. A few other research studies focused on the 

communication among the robots. For example, Sugar et al. (1999) proposed a 

decentralized control approach for multiple robots in which the robots do not exchange 

information at servo-rates; they are weakly coupled to exchange motion plans. Built upon 

such work, a design for tightly coupled multi-robot co-operation was developed by 
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Chaimowicz et al. (2001) focusing on the use of communication in conjunction with 

simple control algorithms. 

Within the context of hydraulic manipulators, most existing control methods are 

designed for a single hydraulic actuator. There are only a few papers that address the 

control of manipulators driven by hydraulic actuators. d'Andrea-Novel et. al. (1994) 

established a simplified model for the hydraulic actuator and applied singular 

perturbation methods to position control. No experimental or numerical results were 

presented in their work. Sirouspour and Salcudean (2001) developed a nonlinear position 

tracking controller, in which the effect of friction (both viscous and Coulomb) in the 

hydraulic actuators or external disturbances, were not considered in their controller 

development. In their paper, they briefly discussed the effect of Coulomb friction and 

noted that the proposed controller could only guarantee the “boundedness” of the tracking 

error. Bu and Yao (2000, 2001) proposed a Lyapunov-based adaptive controller for a 

hydraulic arm driven by single-rod hydraulic actuators. The effects of uncompensated 

friction forces were lumped together with external disturbances as disturbance torques. 

Or, friction was modeled as a static map between velocity and friction force/torque that 

depended on the sign of velocity. Dynamics of the friction were not explicitly considered 

in their controller design and stability analysis. However, there are several interesting 

properties in systems with friction that cannot be explained by static models alone. This 

is due to the fact that friction does not have an instantaneous response on a change of 

velocity, i.e., it has internal dynamics (Lin and Chen, 2006).  

In applications with high precision positioning and low velocity tracking; it is more 

desirable to develop a strategy during the controller design, for on-line estimation and 

compensation of frictional forces, than to use the static friction model or to consider 

friction as simply being part of the external disturbance to be identified.  

It has been shown by Tafazoli et al. (1998) that friction can lead to tracking errors, 

limit cycle oscillations and undesirable stick-slip motion. They discussed the importance 

of modeling friction and compensation for its effects and proposed an adaptive technique 

for tracking control in a single horizontal hydraulic actuator with friction being the only 

disturbance in the system. No stability analysis was reported in their work. Bonchis et al. 

(2002) evaluated ten previously developed methods on low-level positioning control of 
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the pitch axis of an instrumented four-degree-of-freedom hydraulic manipulator, 

resembling a heavy-duty mining machine. Using a low bandwidth, proportional 

directional valve, the performances of the controllers in terms of tracking accuracy, 

robustness and control effort were compared. The importance of friction compensation 

and the difficulty in its experimental identification was emphasized in their work.  

Friction is an important issue that needs to be considered in the controller design of 

multiple co-operating robots. As a complex, natural phenomenon, friction is present in 

virtually all mechanical control systems. It poses a serious challenge towards achieving 

good performance. In particular, friction plays an important albeit damaging role in 

hydraulic control systems (Merritt, 1967). Friction should be considered early in the 

system design by reducing it as much as possible through good hardware design. Recent 

advances in computer control have also shown the possibility to reduce the effects of 

friction by estimation and control. Modeling friction and compensation for its effects 

have received considerable attention (Armstrong-H´elouvry, 1991 and 1994; Friedland 

and Park, 1992; Mentzelopoulou and Friedland, 1994; and Amin et al., 1997). Recently, a 

dynamic friction model, named the LuGre model, has been presented (Canudas de Wit et 

al., 1995), which relates to the bristle interpretation of friction (Haessig and Friedland, 

1991). The LuGre friction model includes the phenomenon that the surfaces are pushed 

apart by the lubricant, and models the Stribeck effect. The model also includes rate 

dependent friction phenomena such as varying breakaway force and frictional lag. 

Applications of the LuGre friction model can be found in Vedagarbha et al. (1999), 

Gafvert (1999), Tan et al. (2003), and Lin and Chen (2006). 

As far as previous work on controller design for co-operative hydraulic manipulators 

is concerned, the existing literature is very limited. Sun and Chiu (2002) investigated the 

problem of load-lifting synchronization of two vertical single hydraulic linear actuators 

coupled by an unknown payload. Internal force regulation was not considered in their 

study. Karpenko et. al. (2006) applied a reinforced learning scheme to coordinate in a 

decentralized fashion, the motions of a pair of horizontal hydraulic actuators whose task 

was to move an object along a specified trajectory under conventional control. The 

learning goal was to reduce the internal force acting on the object that may arise due to 
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positioning errors resulting from the imperfect closed-loop actuator dynamics. Friction 

compensation was not considered in these papers. 

1.3 Objective of this Research 

The objective of this research is to develop and evaluate appropriate controllers for co-

operating hydraulic manipulators, handling rigid objects. An example of such a system is 

the HYSUB, one type of Remotely Operated Vehicles by ISE. HYSUB is generally 

equipped with two hydraulic manipulators named MAGNUM. With individual joystick 

control for each manipulator, the handling of a common object could cause serious 

damage to both the load and the manipulators even with very experienced operators. Thus, 

a controller needs to take into account the internal forces on the object and the 

coordination between the manipulators. Other applications may be found in mining and 

construction. The demanding performance specifications for these applications have 

motivated researchers to examine how to develop controllers applied to co-operating 

hydraulic actuators within the robot-object systems defined here. 

In this research, the Lyapunov-based controller design method is utilized to 

construct appropriate controllers that:  

(i) incorporate the nonlinear dynamics of hydraulic actuators and dynamic 

friction model  

(ii) deal with parametric uncertainties  

(iii) do not need measurement of acceleration  

(iv) compensate for friction  

(v) are capable of tracking desired position and regulating internal force acting on 

the manipulated object.  

1.4 Thesis Outline 

The thesis consists of nine chapters and four appendices. The outline of the thesis is given 

as follows: 

In Chapter 2, a global description of the kinematic and dynamic relations for a 

hydraulically actuated multi-manipulator system is presented. The whole system includes 

object dynamics, robot dynamics, hydraulic actuator functions and friction dynamic 
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model. For the purpose of simulations, a detailed numerical model of such a system is 

created in which the three-link planar robot manipulator resembles the real hydraulic 

manipulator manufactured by ISE. This model is substantially used for simulations 

conducted in the following chapters to evaluate the developed control laws.  

Chapter 3 starts from the regulating control problem, in which the desired position 

of the object and the corresponding desired link displacement change step-wise. Initially, 

a controller is designed assuming that full knowledge of the dynamics and kinematics of 

the system is available. The purpose is to introduce a controller for an ideal case to 

establish a ground for future work. The assumption is then relaxed and the control system 

is analyzed. Based on the analysis, the controller is then modified to account for the 

uncertainty of the payload, robot dynamic parameters and hydraulic functions. Using the 

detailed numerical model, simulations are carried out to investigate the controllers 

developed in this chapter. 

In Chapter 4, the regulating controller is extended to a tracking controller which 

enables the manipulated object to follow a given trajectory and is robust against 

parameter uncertainties of the system. An observer is associated with the controller to 

avoid the need of acceleration feedback. Stability with final zero errors of position and 

velocity tracking is achieved and the error of internal force can be made arbitrarily small. 

Simulations are carried out to verify the developed controller. 

Chapter 5 investigates the effects of friction. The above controllers are examined by 

introducing the well-known LuGre friction model into the actuator dynamics. Theoretical 

analysis is given. Same or similar simulations are carried out, but with the introduction of 

friction into the model, to investigate the previously developed controllers. The 

simulation results validate the theoretical findings, which substantiate the importance of 

modeling friction and compensation for its effects.  

The tracking controller is redesigned in Chapter 6 to accommodate the introduction 

of the most recent and sophisticated friction dynamic model. The friction parameters are 

to be taken care of. Observers have to be designed to observe the immeasurable friction 

states. Based on the estimated friction parameters and observed friction states, an 

appropriate friction compensation scheme is designed which does not directly use 
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velocity in order to avoid the need of acceleration feedback. Simulations are carried out 

to evaluate the performance of the developed controller. 

The problem of “explosion of terms” stemming from the traditional backstepping 

controller design method is addressed by employing the concept of dynamic surface 

control (Swaroop et al., 1997); in which a low pass filter is integrated to avoid model 

differentiation. The adaptation law and friction compensation scheme is redesigned in 

Chapter 7. Simulations then test the developed controller, using the same numerical 

model. 

Experimental examinations are shown in Chapter 8 on an available system 

consisting of two single-axis hydraulic actuators. The goal is to test the final controller 

developed in Chapter 7 in a real hydraulic system. The experimental results further 

validate the developed controller which: 

(i) is capable of tracking a reference position of the common object and regulating a 

reference internal force  

(ii) is robust against uncertainties and nonlinearities presented in hydraulic power 

systems  

(iii) does not require measurements of accelerations, only needs to measure line 

pressures, position and velocity.  

(iv) guarantees stability 

 

The contributions of this thesis along with suggestions for future research are 

summarized in Chapter 9. 

Four appendices are provided in the thesis. The issue of degree of freedom of a 

multi-end-effector/object system is reviewed in Appendix A. Appendix B proves some 

properties regarding those matrices appearing in the dynamic equation of motion for the 

entire robots-object system. The backstepping controller design method is reviewed in 

Appendix C. A detailed dynamic model of a three-degree-of-freedom manipulator used 

for simulation is presented in Appendix D.  



 

9 

 

Chapter 2 Development of a Complete Model of  

Co-operating Hydraulic Manipulators 
 

 

Consider the problem of manipulating a rigid object with n hydraulic robots as shown in 

Figure 2.1. All the robots are considered non-redundant and the end-effectors of all 

robots are rigidly connected to the object, i.e., there is no relative motion between the 

object and the end-effectors (Khatib, 1988; Liu and Arimoto, 1996).  

Object frame

Cartesian reference frame

End-effector frame

Base frame

Robot i

BZi

BYi
BXi

EXi
EYi

EZi

Robot  n

RX

RZ

RY

OZ

OY
OX

 

Figure 2.1: Coordinate systems for co-operating manipulators and object. 

2.1 Kinematics 

The position/orientation of the object frame { }ooo ZYX ,,  with respect to the Cartesian 

reference frame { }RRR ZYX ,,  is described by 16]     [ ×∈= RzyxX T
oooooo ϕθψ , where 

ooo ϕθψ  , ,  are the Euler angles. The Euler angles can be defined using the following 

sequence: first a rotation oψ  about the z axis, then a rotation oθ  about the new x axis and 

finally, a rotation about the new z axis, of oϕ . Let 16]     [ ×∈= RzyxX Ti
e

i
e

i
e

i
e

i
e

i
e

i
e ϕθψ  be the 

position/orientation of the ith end-effector frame { }i
E

i
E

i
E ZYX ,,  with respect to the 
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Cartesian reference frame. i
jq  is the joint variable of the jth link of the ith manipulator; 

thus, 16
621 ]...[ ×∈= Rqqqq Tiiii , and 1621 ] ...[ ×∈= nTnTTT Rqqqq . The relation between X and 

i
eX  can be expressed as (Sun and Mills, 2002):  

⎥
⎦

⎤
⎢
⎣

⎡
+= i

e

i
eooooi

e
rR

XX
φ

ϕθψ ),,(
      (2.1) 

where i
er  and i

eφ  are the position and orientation vectors of the ith end-effector frame 

{ }i
E

i
E

i
E ZYX ,,  with respect to the origin of the object body frame { }ooo ZYX ,,  and 

expressed in the object frame, respectively. They correspond to the configuration of the 

grasp and are constant due to the rigid grasp assumption. ),,( ooooR ϕθψ is the rotation 

matrix of the object frame { }ooo ZYX ,,  relative to the Cartesian reference 

frame { }RRR ZYX ,, . Corresponding to the series of rotation defined here, the rotation 

matrix is given by Thornton and Marion (2004) as 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−+−+

−−−

=

ooooo

oooooooooooo

oooooooooooo

ooooR

θϕθϕθ
θψϕψθϕψϕψθϕψ
θψϕψθϕψϕψθϕψ

ϕθψ

coscossinsinsin
sincoscoscoscossinsinsincoscoscossin

sinsincossincossincossinsincoscoscos
),,(

 

Let 16×∈Rv  and 16×∈Rvi
e  be the vectors of linear and angular velocities of the object 

and the ith end-effector expressed in Cartesian reference frame { }RRR ZYX ,, , respectively. 
1621 ]...[ ×∈= nTnT

e
T

e
T

ee Rvvvv . The relation between v  and the derivatives of the 

position/orientation of the object X& , is given by Khatib (1988) as  

XEv &=         (2.2) 

where  ⎥
⎦

⎤
⎢
⎣

⎡
=

rE
I

E
0

0
 and 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

o

ooo

ooo

rE
θ

θψψ
θψψ

cos01
sincossin0

sinsincos0
.  

The following relation holds between the motion velocities: 

nivWv iTi
e ,...,2,1   , ==        (2.3) 

where  
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 ⎥
⎦

⎤
⎢
⎣

⎡
=

IR
I

W i
i 0

       (2.4) 

and 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−
−−−
−−−

=
0)()(

)(0)(
)()(0

o
i
eo

i
e

o
i
eo

i
e

o
i
eo

i
e

i

xxyy
xxzz

yyzz
R     (2.5) 

i
ev  is related to iq&  by the following relation: 

iii
e qJv &=         (2.6) 

where iJ  is the (6× 6) Jacobian matrix from the joint space to the Cartesian reference 

frame, which is assumed to be nonsingular. Combining equations (2.2), (2.3) and (2.6), 

leads to 

XEWJq iTii && 1}{ −=        (2.7) 

or 

XET && WJq 1−=        (2.8) 

where  nnn RJJJdiag 6621 ] ,...,,[ ×∈=J  and nn RWWW 6621 ] ... [ ×∈=W . W  is called the 

grasp matrix (Uchiyama and Dauchez, 1988; Zribi Ahmad, 1992; Caccavale et al., 1999). 

From equation (2.8), one can arrive at the following kinematic relation: 

XEXEXEXE TTTT &&&&&&&&&& WJJWWWJq 11 )( −− −++=     (2.9) 

2.2 Dynamics 

2.2.1 Manipulator and Object Dynamics  

The dynamic equation of n co-operating robots with respect to joint coordinates is 

given below (Caccavale et al., 1999): 

c
T

mmmm FJTqGqqqCqqH −=++ )(),()( &&&&      (2.10) 

where, nnn
m RHHHdiag 6621 ] ,...,,[ ×∈=H , nnn

m RCCCdiag 6621 ] ,...,,[ ×∈=C , 

1621 ] ... [ ×∈= nTnTTT
m RGGGG , 1621 ] ... [ ×∈= nTnTTT

m RTTTT  and 

1621 ] ... [ ×∈= nTnT
c

T
c

T
cc RFFFF . For the ith manipulator, iH  denotes the robot inertia 

matrix, iC  denotes the Coriolis and centrifugal effects, iG  is the gravitational term and, 
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16
621 ] ... [ ×∈= RTTTT Tiiii  where i

jT  is the generalized joint torque originating from the jth 

hydraulic actuator of the ith manipulator. i
cF  is the vector of contact force/moment on the 

object exerted by the end-effector of the ith robot, also called end-effector force. 

    The matrices describing the robot dynamics in equation (2.10) satisfy the following 

properties (Slotine and Li, 1991): 

Property 2.1: mH  is a symmetric positive definite matrix, 

Property 2.2: )2( mm CH −&  is a skew-symmetric matrix, i.e.,  

  16;0)2( ×∈∀=− n
mm

T Rxxx CH& , 

Property 2.3: xyyx mm ),(),( qCqC =   16,, ×∈∀ nRyxq  and, 

Property 2.4: )(qH m  and ),( qqC &m are bounded, i.e., UmL HqHH ≤≤< )(0   

  16 ×∈∀ nRq  and xx Um CqC ≤),(   16, ×∈∀ nRxq . 

The degree of freedom of the co-operating system is discussed in Appendix A. The object 

dynamics expressed in Cartesian space can be obtained using Lagrange formulation or 

from the literature (Caccavale, et. al., 1999; Khatib, 1988; Kawasaki, et. al., 2000): 

 c
T

ooo EXGXXXDXXM WF=++ )(),()( &&&&    (2.11) 

where 66)( ×∈RXM o  is the inertia matrix of the object, 16),( ×∈RXXXDo
&&  is the vector 

of Coriolis and centrifugal effects, 16)( ×∈RXGo  is the vector of gravity effects, and 

c
TE WF  is the generalized force corresponding to the vector of position/orientation of the 

object, X . Similarly, matrices describing the object dynamics in equation (2.11) have the 

following properties: 

Property 2.5: )(XM o  is a symmetric positive definite matrix, 

Property 2.6: )),(2)(( XXDXM oo
&& −  is a skew-symmetric matrix, 

Property 2.7: yzxDzyxD oo ),(),( =  16,, ×∈∀ nRzyx  and, 

Property 2.8: )(XM o  and ),( XXDo
&  are bounded, i.e., UooLo MxMM ,, )(0 ≤≤<  

16 ×∈∀ nRx  and yDyxD Uoo ,),( ≤        16, ×∈∀ nRyx . 
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      The effects of each end-effector force i
cF  can be transformed to their equivalent 

effects at the object coordinates. This will produce a resultant motion force applied on the 

object at the object coordinates. The resultant force generates the object motion. The 

contact forces (a set of end-effect forces) could also produce another type of force on the 

object: internal loading. The internal loading represents the elements of force vectors 

applied to an object, which are canceled within the object and therefore do not influence 

the object motion (Vukobratovic and Tuneski, 1998). Let the resultant external force 

vector be, extF , and the internal loading force vector be, intF . The mapping of the contact 

force vector, cF , onto extF  is unique and is expressed as (Khatib, 1988; Walker et al., 

1991; Caccavale et al.,1999):  

cextF WF=         (2.12) 

On the other hand, the reverse mapping is not unique and should take the internal force 

intF  into account (Caccavale et al., 1999): 

int
† FFextc VWF +=        (2.13) 

where †W  is a generalized inverse, or pseudo-inverse (Noble and Daniel, 1977) of W, 

such that IWW =† . V is a full-column-rank matrix spanning the null space of W such 

that 0=WV . The matrix †W  specifies the contribution of each robot in generating the 

external force applied to the object. It may be defined in general by 
1TT† )( −= WWWW AA  for some positive-definite A. In fact, there are an infinite number 

of possible pseudo-inverses †W  to choose from. Thus, there are multiple solutions in 

general for the contact forces, cF , given the desired object motion represented by extF . 

However, it has been discussed (Walker et al., 1991) that †W  must be properly chosen; 

otherwise, internal forces may arise even given the desired internal force represented 

by intF  as zero. To better understand this, consider a one-dimensional problem: given 

100=extF N, 0int =F N, and [ ]11=W , choosing ⎥
⎦

⎤
⎢
⎣

⎡
−

=
1

2†W  which meets IWW =† , 

equation (2.13) gives  ⎥
⎦

⎤
⎢
⎣

⎡
−

=
100

200
cF . Such a set of contact forces results in an internal 
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force of 100N, though given 0int =F . This is a case shown in Figure 2.2(a). Now choose 

⎥
⎦

⎤
⎢
⎣

⎡
=

5.0
5.0†W  ( IWW =†  is satisfied). Distinctly, it gives ⎥

⎦

⎤
⎢
⎣

⎡
=

50
50

cF  which results in the 

given external force and produces no internal force, as shown in Figure 2.2(b).  

 

         
(a)                           (b) 

Figure 2.2: (a) Object experiencing internal force, (b) Object under no internal force. 

      As illustrated above, by choosing an appropriate †W  so that the first term in equation 

(2.13) contributes no internal force effects, the contact force is completely decoupled into 

two components that contribute to the object motion and internal force respectively. 

Importantly, this also makes it feasible to regulate the internal force. An acceptable form 

for †W  is given below: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

IR
I

IR
I

nnn

n

αα
α

αα
α

0

0
111

1

†
MMW       (2.14) 

where 1
1

=∑
=

n

i

iα  with 0>iα . This choice of †W  guarantees that the first term in 

equation (2.13), extF†W , contributes no internal force effects. The proof is given below: 

Recalling that ] ... [ 21 nWWW=W  and ⎥
⎦

⎤
⎢
⎣

⎡
=

IR
I

W i
i 0

, it is easy to show that 

nn

nnn

n
n

IR
I

IR
I

IRIR
II 66

111

1

1
†

0

0

00 ×=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

⎥
⎦

⎤
⎢
⎣

⎡
= IWW

αα
α

αα
α

MM
L

L
. 
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Furthermore, assuming ⎥
⎦

⎤
⎢
⎣

⎡
=

τ
f

Fext , where f  and τ  represent vectors of forces and 

moments, respectively, the following is obtained 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

fR
f

fR
f

F

nnn

n
ext

ατα
α

ατα
α

M

111

1

†W  

where, the ith  component corresponding to the ith end-effector is 

[ ]TTiiiTi fRf )( αταα − . Pre-multiplying it by iW , gives its equivalent force at the 

object coordinates which is [ ]TTiTi f ταα . Since 0>iα  no forces or moments will be 

canceled by each other at the object coordinates. Thus, according to the work by Walker 

et al. (1991), the first term in equation (2.13), extF†W , contributes no internal force 

effects given the choice of †W  in equation (2.14).  

 

Remarks:  

By setting different values for iα , the shared payload for each robot will be different. 

This allows the stronger robot to share more of the payload. In a particular case where 

ni /1=α , equation (2.14) becomes the same solution as given by Walker et al. (1991) 

which allows the manipulators to equally share the load.  

The matrix, V, in equation (2.13) indicates the contribution of each robot in 

generating the internal force applied on the object. Here, the following form for V is 

adopted: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
=

IbRb
Ib

IbRb
Ib

nnn

n 0

0
111

1

MMV        (2.15) 
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Where nibi ,...2,1, =  are constants satisfying 0
1

=∑
=

n

i

ib . For a case where manipulators 

equally contribute to the internal loading, one possible solution for the weight coefficient 
ib  is  

ni
n

b ni

i
i ,...,1   ,

2/))1(1()1(
)1(2

=
−−−−

−
=      (2.16) 

or 

ni
n

b
i

i ,...,1   ,)1(2
=

−
= ,    when n is even       

ni
n

b i

i
i ,...,1   ,

)1(
)1(2

=
−−
−

= ,   when n is odd       

For example, when an object is manipulated by two manipulators, coefficients 1b  

and 2b  become -1 and 1, respectively. When an object is manipulated by an odd number 

of manipulators, for instance, five robots; coefficients ,1b  ,2b  3b , 4b , and 5b  become  

-1/3, 1/2, -1/3, 1/2 and -1/3, respectively. In this case, two of the five robots will be 

contributing half of the internal force against the three other robots, evenly sharing an 

opposite force. 

 

2.2.2 Hydraulic Actuator Dynamics  

With reference to Figure 2.3, for the jth cylinder of the ith manipulator, the governing 

equations that describe the nonlinear valve flow characteristics can be written as 

(Niksefat and Sepehri, 2000 ): 

extension ( 0, ≥i
jspx ) 

)(2)( ,,,
i

jIs
i

jspd
i

jI PPxCq −Δ=
ρ

     (2.17a) 

)(2)( ,,, e
i

jO
i

jspd
i

jO PPxCq −Δ=
ρ

     (2.17b) 

retraction ( 0, <i
jspx ) 
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)(2)( ,,, e
i

jI
i

jspd
i

jI PPxCq −Δ=
ρ

     (2.17c) 

)(2)( ,,,
i

jOs
i

jspd
i

jO PPxCq −Δ=
ρ

     (2.17d) 

where i
jIq , and i

jOq ,  represent fluid flows into and out of the valve, respectively. dC  and 

ρ  are the orifice coefficients of the discharge and the mass density of the fluid, 

respectively. i
jspx ,  represents the spool displacement. i

jIP ,  and i
jOP ,  are the input and 

output line pressures, respectively. sP  and eP  are the pump and the return (exit) pressures. 

)( ,
i

jspxΔ  represents a function that relates the spool displacement, i
jspx , , to the valve 

orifice area. Here it is assumed that (Niksefat and Sepehri, 2000; Bu and Yao, 2001) 
i

jsp
i
j

i
jsp xwx ,, )( =Δ              (2.18) 

where, i
jw  is the orifice area gradient. 

 

IA
IP

Iq

sP

Oq

eP

OP

OA

spx

i
jq

 

Figure 2.3: Diagram of hydraulic actuator with its driven link. 

 

Equations (2.17) and (2.18) are now rewritten in compact forms as 
i

jI
i

jsp
i
j

i
jI QxKq ,,, =        (2.19) 

i
jO

i
jsp

i
j

i
jO QxKq ,,, =        (2.20) 
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where  

i
jd

i
j wCK

ρ
2

=        (2.21) 

)2/))((sgn(2/)( ,,,
i

jIes
i

jspes
i

jI PPPxPPQ −++−=    (2.22) 

)2/)()(sgn(2/)( ,,, es
i

jO
i

jspes
i

jO PPPxPPQ +−+−=    (2.23) 

and 

⎪
⎩

⎪
⎨

⎧

<−
=
>

=
0    when 1
0   when 0   
0    when 1   

)sgn(

,

,

,

,
i

jsp

i
jsp

i
jsp

i
jsp

x
x
x

x      (2.24) 

Continuity equations for fluid flow through the cylinder are (Niksefat  and Sepehri, 2000) 

i
jIi

j

i
j

i
jIi

j
i

jI
i

jI P
xV

xAq ,
,

,,

)(
&&

β
+=       (2.25a) 

i
jOi

j

i
j

i
jOi

j
i

jO
i

jO P
xV

xAq ,
,

,,

)(
&&

β
−=       (2.25b) 

where i
jβ  is the effective bulk modulus of the hydraulic fluids. i

jx  is the cylinder position 

and i
jx&  is the actuator cylinder speed. Volumes i

jIV , and i
jOV , are the fluid volumes trapped 

in the blind and the rod sides of the actuator, respectively. They are expressed as 
i

jI
i
j

i
jI

i
j

i
jI AxVxV ,,, )( +=        (2.26a) 

i
jO

i
j

i
jO

i
j

i
jO AxVxV ,,, )( −=        (2.26b) 

where i
jIV , and i

jOV ,  are the volumes of the two chambers when 0=i
jx .  

      Assuming a very small rise time, the relation between the spool displacement i
jspx ,  

and the input voltage i
ju  to the proportional valve is simply expressed as 

i
jsp

i
j

i
jsp xuK ,, =          (2.27) 

where i
jspK ,  is a gain. The net force from hydraulic actuator i

jF  is 

i
jfr

i
jO

i
jO

i
jI

i
jI

i
j FPAPAF ,,,,, −−=        (2.28) 
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i
jfrF ,  is the friction that is further described in Section 2.3. The cylinder speed is related 

to the joint angular velocity as  
i
j

i
j

i
j

i
j qqJx && )(=         (2.29) 

where )( i
j

i
j qJ  is the Jacobian from link joint space to the linear actuator coordinate and 

assumed nonsingular. Using virtual work principle, the net torque originating from the 

actuator i
jT  is 

i
j

i
j

i
j

i
j FqJT )(=         (2.30) 

2.2.3 Friction Model  

The friction force i
jfrF ,  appearing in equation (2.28) is modeled by the LuGre friction 

model with friction force variations 
i
j

i
j

i
j

i
j

i
j

i
j

i
jfr xzzF && ,2,1,0, σσσ ++=       (2.31) 

i
ji

j

i
ji

j
i
j z

xg

x
xz

)( &

&
&& −=         (2.32) 

where i
jz  is the friction internal state that describes the average deflections of the bristles 

between each pair of contact surfaces. This state is not measurable, but finite (Canudas de 

Wit et al., 1995). The nonlinear function )( i
jxg &  is used to describe different friction 

effects and can be parameterized to characterize the Stribeck effect (Canudas de Wit et 

al., 1995) 
2

, )/(
,,,,0 )()(

i
js

i
j xx

jsl
i

jst
i

jsl
i
j

i
j eFFFxg &&

& −−+=σ      (2.33a) 

or 
2

, )/(
,,, )()(

i
js

i
j xx

jsl
i

jst
i

jsl
i
j efffxg &&
& −−+=       (2.33b) 

where i
jslF ,  and i

jstF ,  represent the levels of the slip friction and the stiction force, 

respectively. Consequently, i
jslf ,  and i

jstf ,  represent the levels of the normalized slip 

friction and the normalized stiction force (Tan et al., 2003), respectively.  i
jsx ,&  is the 

Stribeck velocity. Variables i
j,0σ , i

j,1σ , and i
j,2σ  are the friction force parameters 

physically interpreted as the stiffness of the bristles between two contact surfaces, 
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damping coefficient, and viscous friction coefficient. These friction force parameters i
j,0σ , 

i
j,1σ , and i

j,2σ  can be calibrated through systematic experiments, which may involve 

considerable work (Canuds de Wit et. al., 1995).  Also, they may vary slowly but 

significantly in real applications due to temperature changes, material wear, lubrication 

condition, and the nominal acting forces between contact surfaces (Tan, et al., 2003). 

Therefore, as will be described in the next chapters, these three parameters are considered 

unknown. The friction force/torque is assumed to follow the dynamics in equation (2.31) 

and (2.32), but each friction state i
jz , referred to as the internal state, is finite but 

unknown and not measurable. Hence, each friction state i
jz  needs to be observed by the 

controller.  

Note that the remaining parameters in equation (2.33a) or (2.33b) are normally 

estimated by the construction of static friction-velocity map measured during constant 

velocity motions (Lischinsky, 1999).  
 

2.3 Model of the Entire System 

From equations (2.28) and (2.30) one arrives at: 

)( frm F-FJT =             (2.34) 

where  

OOII PA-PAF =             (2.35) 

and  

][  ];[ 621
21 iiiin JJJJJJJdiag LL ==J ; 

Ti
I

i
I

i
I

i
I

TnT
I

T
I

T
II PPPPPPP ][  ;][ 6,2,1,

21 LL ==P ; 

Ti
O

i
O

i
O

i
O

TnT
O

T
O

T
OO PPPPPPP ][  ;][ 6,2,1,

21 LL ==P ; 

;][  ;][ 6,2,1,
21 Ti

fr
i
fr

i
fr

i
fr

TnT
fr

T
fr

T
fr FFFFFFF LL ==frF  

 ];[  ];[ ,,
i

jOO
i

jII AdiagAdiag == AA  .6,...,1;,...,1 == jni  

Combining equations (2.8), (2.9), (2.10) and (2.34) one arrives at the following equation: 

cfr
-T

m
-T WFF-FJWJGWJ TTT EEEXBX −=++Λ )(&&&    (2.36) 
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where  

EE TTT WJHWJ m
1−−=Λ         (2.37) 

and 

)]([ 111 EEEEEB TTTTTT WJJWWJHWJCWJ mm
−−−− −++= &&&   (2.38) 

Combining equations (2.11) and (2.36) together, will cancel the term " c
TE WF " and lead 

to the dynamic equation of motion for the entire robots-object system:  

TXGXXXDXXM =++ )(),()( &&&&      (2.39) 

where 

)()()( XMXXM o+Λ=        (2.40) 

),(),(),( XXDXXBXXD o
&&& +=       (2.41) 

)()( XGEXG o
T += m

-T GWJ       (2.42) 

)( fr
-T F-FJWJTET =        (2.43) 

It can be shown (see Appendix B) that the following properties hold: 

Property 2.9: )(XM  is a symmetric positive definite matrix, 

Property 2.10: DM 2−&  is a skew-symmetric matrix, 

Property 2.11: yzxDzyxD ),(),( =  16,, ×∈∀ nRzyx , and 

Property 2.12: )(XM and ),( XXD & are bounded as follows: 

UL MxMM ≤≤< )(0  16 ×∈∀ nRx  

yDyxD U≤),(        16, ×∈∀ nRyx  

Note that )(qH m , ),( qqCm & , and )(qGm  are linear in terms of the combined 

manipulator parameters (Slotine and Li, 1991). Also, )(XM o , ),( XXDo
& , and )(XGo  

are linear in terms of the payload parameters. Thus, DM   ,  and G  are linear with respect 

to the manipulators and object dynamic parameters, and the following relation can be 

written: 

θ),,()(),()( XXXΘXGXXXDXXM &&&&&&& =++    (2.44) 

where θ  is a vector of individual or combined unknown parameters of the system and 

)(⋅Θ  is a regressive matrix. 
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      From equations (2.19), (2.20), (2.25), (2.26) and (2.27), one arrives at  

])([ qqJAUQKKCP &&
IIspII −=         (2.45) 

])([ qqJAUQKKCP &&
OOspOO +−=         (2.46) 

where  

i
j

i
jI

i
jI

i
ji

jI
i

jII xAV
CCdiag

,,
,, );(

+
==

β
C ; 

i
j

i
jO

i
jO

i
ji

jO
i

jOO xAV
CCdiag

,,
,, );(

−
==

β
C ; 

);( i
jKdiag=K );( ,

i
jspsp Kdiag=K  

)();( ,,
i

jOO
i

jII QdiagQdiag == QQ ; 

TiiiiTnTTT uuuuuuu ] ... [  ;] ... [ 621
21 ==U ;  .6,...,1;,...,1 == jni  

Differentiating equation (2.35) and using equations (2.45) and (2.46), result in 

),()( qqAUqAF &&
cacq −=       (2.47) 

where 

spOOOIIIcq KKQCAQCAqA )()( +=      (2.48) 

qJCACAqqA && )(),( 22
OOIIca +=      (2.49) 

Similarly, the right-hand side of the hydraulic dynamics (2.47) can be linearly 

parameterized as  

ϕ),,(),()( UqqqqAUqA && Φcacq =−      (2.50) 

where ϕ  is the vector of unknown parameters of the hydraulic function and )(⋅Φ  

represents a regressive matrix. 

     Equations (2.39) and (2.47) describe the dynamics of a complete system of n hydraulic 

robots carrying a common rigid object. 
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Chapter 3 Regulating Control of Co-operating 

Hydraulic Manipulators 
 

In this chapter, a nonlinear stable control scheme is developed to allow two or more 

hydraulic robots to coordinately regulate an object’s position, while maintaining desired 

internal forces on the object and sharing the load.  

The design is based on the backstepping technique (Khalil, 2002), which is a 

recursive procedure that interlaces the choice of a Lyapunov function with the design of 

feedback control. A review about this technique is presented in Appendix C. The 

controller is augmented by an on-line updating law to eliminate the steady-state errors, 

due to the lack of knowledge about the weight of the object. Furthermore, the 

requirement about the knowledge of robot dynamics and hydraulic functions are relaxed 

and the controller is redesigned. Friction is not considered at this stage. The stability of 

the system is guaranteed by constructing a smooth Lyapunov function. For the purpose of 

simulations, a detailed numerical simulation program is also developed. Two three-link 

planar robot manipulators resembling Magnum hydraulic manipulators manufactured by 

ISE, interact with each other through manipulating a common object. Simulation results 

are presented to substantiate the developed controller. 

3.1 Controller Design with Full Knowledge of Physical Parameters 

3.1.1 Controller Design 

Using equation (2.2), one can write equation (2.8) as 

vTWJq 1−=&         (3.1) 

and the following is further obtained 

)(1 qJWWJq &&&&&& −+= − vv TT       (3.2) 

The dynamic equation (2.10) can also be expressed in terms of the object velocity, v  

cm
T

m
T

vv vBv WFTWJGWJ −=++Λ −−&      (3.3) 

where  
T

m
T

v WJHWJ 1−−=Λ        (3.4) 
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and 
T

m
TTT

m
T

vB WJCWJWJJWJHWJ 111 )( −−−−− +−= &&   (3.5) 

Dry friction is neglected at this stage and only viscous force is taken into account. Thus 

equation (2.28) becomes 
i
j

i
jdamp

i
jO

i
jO

i
jI

i
jI

i
j xKPAPAF &,,,,, −−=      (3.6) 

where i
jdampK ,   is a viscous coefficient. Accordingly, equation (2.34) becomes 

qJKFJT &2
dampm −=         (3.7) 

where ,( )i
damp damp jdiag K=K , .6,...,1;,...,1 == jni  The object dynamics expressed in 

Cartesian space can be expressed in term of its velocity, and is given below (Caccavale et 

al., 1999):  

extoooo FXgvvXBvX =++Λ )(),()(      (3.8) 

where 66)( ×∈Λ RXo  is the symmetric and positive definite inertia matrix of the object, 

16),( ×∈ RvvXBo  is the vector of Coriolis and centrifugal forces, 16)( ×∈ RXgo  is the 

vector of gravity forces, and 16×∈RFext  is the vector of resulting forces acting at the 

origin of the object frame expressed in the Cartesian reference frame, and is given by 

equation (2.12). Note ),(2)( vXBX oo −Λ&  is a skew-symmetric matrix.  

Combining equations (3.3), (3.8) and (2.12) together will cancel the term " cWF " and 

lead to the dynamic equation of motion for the robots-object system: 

m
T

m
T

ovovo gvBBv TWJGWJ −− =++++Λ+Λ )()( &    (3.9) 

Note that equation (3.9) is another form of equation (2.39) representing the overall 

system dynamics. The regulating controller design will be based on equation (3.9). 

The following positive definite quadratic form is now chosen as the initial Lyapunov 

function candidate:  

qKqqHq ~~V 2
1

2
1

2
1

1 p
T

o
T

m
T vv +Λ+= &&       (3.10) 

where d= −q q q% and dq  denotes the vector of the desired link angular positions 

corresponding to the desired position/orientation of the object. Since the desired 

position/orientation of the object is related to each robot end-effector’s desired 



3. Regulating Control of Co-operating Hydraulic Manipulators 
   

 

25

position/orientation given by equation (2.1); dq can then be derived from the 

manipulators' desired end-effector positions/orientations by the inverse kinematic 

solution of the robots (Paul, 1981). Note, =&% &q q  since 0d =&q  for regulation problem. 
nn

p R 66 ×∈K  is a positive definite diagonal matrix. 

Noting that ),(2)( vXBX oo −Λ&  is a skew-symmetric matrix, and using properties 2.1 

and 2.2, stated in Section 2.2, it can be shown that the time derivative of 1V  is 

o
T

pm
T

damp
T gv−+−+−= )~)()(()(V 2

1 qKqGFqJqqqJKq &&&&    (3.11) 

Let the virtual controller for F  be   

))(~( int
††1 dT

o
T

mp
TTd Fg VJWJqGqKWJWJJF +++−= −−   (3.12) 

where dFint  is the desired internal force. Define  

dFFF −=~          (3.13) 

Replacing F with dFF +~ , equation (3.11) can be rewritten as  
dTT

o
TTT

p
TTT

damp
T FgvI int

††2
1 )(~)(~)()(V VJqWJqqKWJJWqFqJqqqJKq &&&&&&& +−+−++−= −

 (3.14) 

Terms 3, 4 and 5 on the right side of equation (3.14) are now proven to be zero. Any 

vector of cF  can be written as follows: 

ccc FWWIWFWF )( †† −+=       (3.15) 

The first term of equation (3.15), cWFW † , represents the part that leads to a resultant/ 

external force on the object since extc FWFWW =)( † . Thus, WW †  acts as a filter to 

remove those force components leading to internal forces. In particular, the internal force 

related components could be completely removed with the choice of †W  in equation 

(2.14). The second term, cFWWI )( †− , represents the part of the contact forces that 

produce internal forces, since 

0)( † =− cFWWIW         (3.16) 

Vector cF  can be related to cT , the part of the generalized forces/torques, corresponding 

to the contact forces. The relation can be expressed by 

c
T

c TJF −=         (3.17) 
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Substituting equation (3.17) into equation (3.15) leads to 

c
T

c
T

c I TWWJWTWJT )( †† −+=      (3.18) 

Similar to terms in equation (3.15); TT −WJWJ †  acts as a filter to remove those 

torques corresponding to the internal forces. Equation (3.15) indicates that any set of 

contact forces can always be divided into two parts: one part contributes to the motion of 

the object; the other makes no contribution to the motion of the object. Similarly, any set 

of torques which produce contact forces, can be decoupled as described by equation 

(3.18). For a rigid object, the second term on the right side of equation (3.18) only 

corresponds to producing the internal forces, meaning that this part of the torque makes 

no work. Thus, the following relation holds: 

0)( † =− c
TT I TWWJq&       (3.19) 

Since cT  can be any value, one has  

0)( † =− WWJq ITT&         (3.20) 

Alternatively, equations (3.19) and (3.20) can be explained in terms of relative 

velocity (Caccavale et al., 1999). The left side of equation (3.20) can be actually treated 

as the relative velocity due to the internal force, and then the left side of equation (3.19) 

is the work corresponding to deformation. For a rigid body, there is no deformation and 

no relative velocity due to internal force. This helps to explain equations (3.19) and 

(3.20). 

It is easy to verify that term 3 on the right side of equation (3.14) is zero using 

equation (3.20). Also, terms 4 and 5 on the right side of equation (3.14), are zero by 

substituting equation (3.1) into these terms and using the fact that 0=WV .  

Equation (3.14) then becomes 

FqJqqqJKq ~)()(V 2
1

T
damp

T &&&& +−=       (3.21) 

The Lyapunov candidate function of the entire closed-loop system is now defined as  

FΓF ~~VV 2
1

12
T+=         (3.22) 

where Γ   is a positive definite diagonal matrix. The time derivative of 2V  is 

)(~)(~)(V 2
2

dTT
damp

T FFΓFqqJFqqJKq &&&&&& −++−=     (3.23) 

Using equation (2.47) to replace F&  results in 
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]),()([~)(~)(V 2
2

d
cacq

TT
damp

T FqqAUqAΓFqqJFqqJKq &&&&&& −−++−=  (3.24) 

Equation (3.24) suggests the controller to be 

)~)(),()(( 11 FKFqqJΓqqAqAU F
d

cacq −+−= −− &&&     (3.25) 

where FK  is a positive definite diagonal matrix. 

The derivative of 2V  then becomes 

FΓKFqqJKq ~~)(V 2
2 F

T
damp

T −−= &&&       (3.26) 

It is easy to see that 2V&  is continuous, negative and semi-definite. Therefore, the 

control system, given the controller (3.25), is stable in the sense of Lyapunov. 

 

3.1.2 Equilibrium of the Control System 

For a set point dq corresponding to the desired set-position of the object, the 

equilibrium of system (3.9), under controller (3.25), satisfies the following relations: 

0=ssU          (3.27) 

0~ =ssF          (3.28) 

0~ =− ss
p

T qKWJ         (3.29) 

d
o

ss
c Fg int

† VWF +=         (3.30) 

where the superscript “ss” represents steady-state. Variables with superscripts are the 

corresponding variables at the steady-state phase. For example, ssU  is the steady-state 

input voltage. Equation (3.27) indicates the hydraulic control valves are closed when the 

system is at the steady-state phase. If ss
pqK ~  is treated as the joint-error related torques, 

terms ss
p

T qKJ ~−  and ss
p

T qKWJ ~−  become the joint-error related contact forces and 

external forces, respectively. Thus, equation (3.29) implies that the steady-state joint-

error related external forces are zero and a set of solution points exist. It can be shown in 

a way similar to the work by Caccavale et al (1999) that there actually exists a domain of 

attraction for the equilibrium point with 0~ =ssq . Because 2V  is quadratic, there always 

exists a positive l and a bounded region Rl such that Rl includes the point with 0~ =ssq  

and  
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lRx
x

lx
∈∀
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⎨
⎧

≤
<

         
0)(V

)(V

2

2

&   

By employing the local invariant set theorem, it follows that Rl is a domain of 

attraction for the equilibrium point with 0~ =ssq . Equation (3.30) leads to the desired 

internal forces at the steady-state phase. By applying equations (2.12), (2.13) and (3.30), 

it can be proven that: 

o
ss

c
ss

ext g==WFF         (3.31) 

and 
dss

ext
ss

c
ss FFF int

†
int VWFV =−=        (3.32) 

where ss
extF  and ssFint  are steady-state external and internal forces, respectively. Since 

matrix V  is full-column-rank, it can be concluded that  
dss FF intint =          (3.33) 

 

3.1.3 Comments on the Control Law 

      With respect to controller (3.25), the hydraulic system parameters needed by the 

controller are the effective piston areas IA  and OA , and the effective bulk modulus of the 

hydraulic fluid, β . Measurements of line pressures are required for feedback. Mass, 

length and position of the center of mass for each link of the robots are also required, 

since the Jacobian and compensation of link gravity appear in the controller. To calculate 
dF& , measurements of robot joint positions and velocities are required. Finally, the mass 

of the object is also required for the control law.  

      Usually, only rough estimates of some of those parameters are available. Thus, 

stability and equilibrium of the control system need to be studied under different cases. 

      Assuming that only a rough estimate of the load weight oĝ , is available, the desired 

force vector needed by the actuators and determined in equation (3.12) becomes  

)ˆ)(~( int
††1 dT

o
T

mp
TTd Fg VJWJqGqKWJWJJF +++−= −−   (3.34) 

The equilibrium of the system under the controller (3.25) and (3.34), will then be 

0=ssU          (3.35) 

0~ =ssF          (3.36) 
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oo
ss

p
T gg −=− ˆ~qKWJ         (3.37) 

d
o

ss
c Fg int

† ˆ VWF +=         (3.38) 

      As seen, the uncertainty in the estimation of the payload leads to a new equilibrium 

configuration set, indicated by equations (3.35) to (3.38). Note that although the contact 

forces are different due to the inaccurate estimation of the payload, the internal forces 

remain at the desired steady-state level. This can be shown by equations (2.12), (2.13) 

and (3.38): 

o
ss

c
ss

ext gF ˆ==WF         (3.39) 

dss FF intint =          (3.40) 

      With respect to stability, considering a gravity energy function )(qE , such that it is 

positive semi-definite and )ˆ()( †
oo

T ggE
−=

∂
∂ WJ

q
q , let the Lyapunov candidate be 

)(~~~~V 2
1

2
1

2
1

2
1

2 qFΓFqKqqHq Evv T
p

T
o

T
m

T +++Λ+= &&    (3.41) 

It can be then shown that 

FΓKFqqJKq ~~)(V 2
2 F

T
damp

T −−= &&&       (3.42) 

which is negative semi-definite. Thus, the stability is still guaranteed in spite of the 

imperfect gravity compensation. 

 

3.2 Modification to the Controller to Account for the Uncertainty of 

Payload 

Previous analysis shows that there exist position errors in the case of unknown payload. 

The controller is now modified to cope with the uncertainty of the payload.  

3.2.1 Controller Design 

      To avoid leading to a different equilibrium configuration due to the uncertainty of the 

payload; it is proposed to add an integral-like adaptive scheme to the controller (3.25), 

which updates the estimate oĝ . Let  

qKWJ ~ˆ p
T

Io Kg −−=&        (3.43) 
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where IK  is a positive diagonal matrix. The equilibrium of equation (3.43) is 

0~ =− ss
p

T qKWJ        (3.44) 

which is the same as equation (3.29). By updating the estimate of the payload using 

equation (3.43); the steady-state error of the system, due to imperfect object gravity 

compensation, can be eliminated. 

      To prove the stability of the entire system given the modified controller, consider a 

gravity energy function )~,( ogE q , where ooo ggg −= ˆ~ , such that it is positive semi-

definite, o
To ggE ~)~,( †WJ

q
q

−=
∂

∂ , and o
o

o g
g

gE ~
~

)~,(
ζ−=

∂
∂ q , where ζ  is a constant. Let the 

Lyapunov candidate be 

)~,(~~~~~~V 2
1

2
1

2
1

2
1

2
1

2 oo
T
o

T
p

T
o

T
m

T gEggvv qFΓFqKqqHq ++++Λ+= ζ&&  (3.45) 

It can be easily shown that 

FΓKFqqJKq ~~)(V 2
2 F

T
damp

T −−= &&&       (3.46) 

which is negative semi-definite. Thus, the stability is guaranteed for the system with the 

on-line payload updating scheme (3.43).  

 

3.2.2 Simulation Studies 

      Numerical simulations have tested the nonlinear controller presented in Section 3.2.1. 

With reference to Figure 3.1, two three-degree-of-freedom manipulators (see Appendix D 

for single manipulator’s dynamics) held an object, which was initially rested on the 

ground. Parameters of the robots used in simulations were chosen to closely resemble the 

MAGNUM 7-function hydraulic manipulators manufactured by International Submarine 

Engineering Ltd. (ISE), Canada, with some joints fixed. These parameters, adopted from 

AutoCAD drawings provided by ISE, are given in Table 3.1 and Table 3.2. Each actuator 

has the same parameters, with the exception of a different stroke. The load distribution 

between the two robots needs to be even, as defined by 5.021 == αα . The controller 

gains were chosen as =i
jpK , 8Nm, =Γ i

j 0.01mN-1, =i
jFK , 40 s-1, and 1

, s5 −=i
jIK . 
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Table 3.1: Link parameters. 

Link Length (m) Mass (kg) Inertia (kg 2m ) Range  

1 0.537 22.5 0.5407 90°  

2 0.336 15.7 0.1477 130°  

3 0.606 22.5 0.6886 115°  

 

Table 3.2: Hydraulic actuator parameters. 

Parameter Symbol Value 

Pump pressure sP  6.895  MPa 

Exit(tank) pressure eP  0 MPa 

Valve constant ,
i
sp jK  -54.064 10× m/V 

Orifice area gradient i
jw  21.01 10−× m 

Flow gain 
2i i

j d jK C w
ρ

=  
5

4 m2.94415 10
kg

−×

Bulk modulus of the hydraulic fluid i
jβ  689 MPa 

Piston area (blind side) ,
i
I jA  3 23.167 10  m−×  

Piston area (rod side) ,
i
O jA  3 22.6603 10  m−×  

Stroke of cylinder 1 stroke1l  0.26416 m 

Stroke of cylinder 2 stroke2l  0.15875 m 

Stroke of cylinder 3 stroke3l  0.1016 m 

Initial fluid volume (blind side) ,
i

I jV  2.14 510−× 3m  

Initial fluid volume (rod side), cylinder 1 ,1
i

oV  72.4144 510−× 3m  

Initial fluid volume (rod side), cylinder 2 ,2
i

oV  44.37 510−× 3m  

Initial fluid volume (rod side), cylinder 3 ,3
i

oV  29.17 510−× 3m  

 

 



3. Regulating Control of Co-operating Hydraulic Manipulators 
   

 

32

As shown in Figure 3.1, a payload of 80 kg sat on the ground with both robots holding it 

rigidly. At this point, the loads experienced by the robots were only due to their own arms. 

A command was given to the robots to lift the object 0.2-meter above the ground, while 

maintaining a horizontal internal force of zero on the payload. At the moment the 

command was issued, the object weight was unknown and estimated as zero.  

      Figure 3.2 shows that the object was moved to the desired position. Control signals to 

the actuators for one of the manipulators are shown in Figure 3.3. Control signals for the 

other manipulator were very much the same and are therefore not shown here. Note that 

the control signals at the beginning of the task were small. This was due to the object’s 

weight being estimated as zero at the beginning of the task. The controller initially 

produced small signals. As the true value of the load was identified, the controller 

adjusted its signals to compensate for the load. The lifting forces by the two manipulators 

were almost the same, as shown in Figure 3.4. The estimate of the object's weight went 

from zero (the initial estimate) to the actual value, as shown in Figure 3.5. Figure 3.6 

shows that the desired internal force was maintained during the steady state, with little 

change during the transient period. For simplicity, Figure 3.7 only shows the line 

pressures in actuator 1 of the first manipulator. 

 

Figure 3.1: Two planar hydraulic robots co-operatively lift an object sitting on the 
ground. 
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Figure 3.2: Position trajectory of the object. 
 

     

Figure 3.3: Control signals for the first manipulator. 
 

 

Figure 3.4: Load sharing between two manipulators. 
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Figure 3.5: Estimation of the payload. 

 

 

Figure 3.6: Horizontal internal force exerted on the object by two manipulators. 

   
Figure 3.7: Chamber pressures in link 1 actuator of one of the manipulators. 
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      The above simulation was repeated with an uneven load distribution, described by 

3/21 =α , 3/12 =α . The response, such as tracking error and internal force, did not 

change significantly as shown in Figure 3.8 and 3.9 respectively. The control signals for 

the manipulators shown in Figures 3.10 and 3.11 were different from each other. 

Consequently, Figure 3.12 shows that lifting forces were not evenly distributed between 

the two manipulators; the first manipulator contributed more to the lift and hold of the 

object. During the steady-state phase, the lifting forces were 523N and 261N; therefore 

the ratio is equal to 21 /αα . This shows that the load distribution was completely 

manageable by the load distribution scheme. 

 
Figure 3.8: Position trajectory of the object (uneven load distribution). 

 

 
Figure 3.9: Horizontal internal force exerted on the object by two manipulators. 
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Figure 3.10: Control signals for the first manipulator. 
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Figure 3.11: Control signals for the second manipulator. 

 

 
Figure 3.12: Load distribution between two manipulators. 
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      The last simulation was about the system response over a series of step inputs as 

shown in Figure 3.13. The same control gains as in the first simulation study were used; 

and the payload was initially estimated as zero. As can be seen, the controller performed 

well over the entire workspace. Note that following the first step input, the object stayed 

at desired position and the payload was estimated properly. Thus, for the subsequent 

steps the gain of the adaptive scheme (3.43) was reduced to 1.0, =i
jIK  s-1.   

 

 
Figure 3.13: Position trajectory of the object given a series of step inputs. 

 

3.3 Design of a General Controller to Account for the Uncertainty of 

Payload, Robot Dynamic Parameters and Hydraulic Functions 

The controller developed in Section 3.1 is now further investigated in the case where 

gravity terms og  and )(qGm  for the payload and manipulators respectively, are unknown. 

The desired forces needed by actuators given in equation (3.12) then become  

)ˆ)(ˆ~( int
††1 dT

o
T

mp
TTd Fg VJWJqGqKWJWJJF +++−= −−   (3.47) 

where, )(ˆ qG  is a rough estimate of the gravity term )(qG . The equilibrium of the system 

under the controller (3.25) and (3.47), will then be 

0=ssU          (3.48) 

))()(ˆ(ˆ~ qGqGWJqKWJ mm
T

oop
T gg −+−= −−     (3.49) 
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d
omm

Tss
c FgI int

†† ))()(ˆ()( VWqGqGJWWF ++−−= −    (3.50) 

d
mm

Tss
c

ss
c

ss FIF int
††

int ))()(ˆ()( VqGqGJWWWFWFV +−−=−= −   (3.51) 

Equation (3.49) shows its right-hand side becomes nonzero due to inaccurate 

compensation of the object gravity term or the manipulators’ gravity term. This leads to 

a set of different equilibrium configurations from those obtained via equation (3.29) or 

(3.37), and the desired position can not be achieved. In the case of imperfect 

compensation of the manipulators’ gravity term, the equilibrium does not yield desired 

internal force at steady state.  

     With respect to stability, considering a gravity energy function, )(qE , such that it is 

positive semi-definite and ))(ˆ)(()ˆ()( † qGqGWJ
q
q

mmoo
T ggE

−+−=
∂

∂ , let the Lyapunov 

candidate be 

)(~~~~V 2
1

2
1

2
1

2
1

2 qFΓFqKqqHq Evv T
p

T
o

T
m

T +++Λ+= &&    (3.52) 

It can be easily shown that 

FΓKFqqJKq ~~)(V 2
2 F

T
damp

T −−= &&&       (3.53) 

which is negative semi-definite. Thus, the stability is still guaranteed in spite of the 

imperfect gravity compensation of both the payload and the robots. 

 

3.3.1 Controller Design 

      The above analysis concludes that position regulation could not be achieved if either 

the object’s or the manipulators’ gravity term is not accurately compensated. As for the 

regulation of internal force, it could not be achieved only because of unknown 

manipulators’ gravity term. To avoid these undesirable performances, adaptation laws 

are introduced to estimate both unknown payload and manipulators’ gravity term, and 

internal force feedback is also added to help achieve desired internal force. In addition, 

uncertainties from hydraulic functions are considered in this section.  

To replace the terms related with parameters from hydraulic functions, 

manipulators, and the object required in the previous controller with their estimates, the 

controller is suggested to be 
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)~)(),(ˆ)((ˆ 11 FKFqqJΓqqAqAU F
d

cacq −+−= −− &&&     (3.54) 

where 

))(ˆ~( intintintint
†1 dTdT

Ep
TTd FFKF −−++−= −− VJVJGqKWJWJJF  (3.55) 

Note that vector EĜ  is the estimate of the combined gravity term o
T

m g†)( WJqG + , 

instead of estimation of )(qGm  and og  separately. intK  is a control gain. Vector ϕ̂  is 

the estimate of unknown hydraulic parameters, ϕ . Matrix )(ˆ 1 qA−
cq  and vector ),(ˆ qqA &ca  

are calculated using ϕ̂ . Vectors EĜ  and ϕ̂  are updated by following laws 

qKKG ~ˆ
pIE −=&        (3.56) 

FΓUqqΓ ~),,(ˆ 1
F

TΦ && −= ϕϕ       (3.57) 

To prove the stability of the entire system given the modified controller above, consider a 

gravity energy function, )~,( EE Gq , where ))((ˆ~ †
o

T
mEE gWJqGGG +−= , such that it is 

positive semi-definite, E
EE G

q
Gq ~)~,(

−=
∂

∂ , and E
E

EE G
G

Gq ~
~

)~,( ζ−=
∂

∂ , where ζ  is a positive 

constant. Define ϕϕϕ −= ˆ~ . Let the Lyapunov candidate be 

ϕϕζ ϕ
~~)~,(~~~~~~V 2

1
2
1

2
1

2
1

2
1

2
1

2 ΓGqGGFΓFqKqqHq T
EE

T
EF

T
p

T
o

T
m

T Evv +++++Λ+= &&  

 (3.58) 

then  

ϕϕ ϕ
&&&&&&& ~~)(~)(~)(V 2

2 ΓFFΓFqqJFqqJKq Td
F

TT
damp

T +−++−=   (3.59) 

Since  

ϕϕϕ ~),,(),(ˆ)(ˆ)~ˆ)(,,( UqqqqAUqAUqqF &&&& ΦΦ cacq −−=−=    (3.60) 

with the controller (3.54) and the adaptation law (3.57), it can be easily shown that 

FΓKFqqJKq ~~)(V 2
2 F

T
damp

T −−= &&&       (3.61) 

which is negative semi-definite. Thus, the stability is guaranteed for the system with the 

controller expressed in equation (3.54). 

     The equilibrium of the system will then be 

0=ssU          (3.62) 



3. Regulating Control of Co-operating Hydraulic Manipulators 
   

 

40

0~ =q           (3.63) 

0)))((ˆ( † =+−−
o

T
mE

T gWJqGGWJ       (3.64) 

d
o

T
mE

T FgKF int
†1

intint )))((ˆ()( VWJqGGJIV ++−+= −−    (3.65) 

Equation (3.64) implies that the external forces due to the errors of gravity 

compensation are zero. However, it does not guarantee 0))((ˆ † =+− o
T

mE gWJqGG . In 

other words, EĜ , the estimate of the gravity term ))(( †
o

T
m gWJqG + , does not have to 

converge to its actual value. The desired internal force cannot be achieved at steady state 

by inspection of equation (3.65). Nevertheless, the internal force can be controlled 

through gain intK . Increasing the value of intK  can impose the actual internal force more 

approximate to its desired value.  

      In the implementation of equation (3.55) associated with the controller (3.54), the 

derivative of the internal force is difficult to obtain and is calculated using numerical 

differentiation; or can be neglected if the variation of internal force is slow.  

 

3.3.2 Simulation Studies 

      Numerical simulations on the same system that was used in Section 3.2.2 have tested 

the nonlinear controller presented in Section 3.3.1. The desired internal force was set to 

zero, i.e., 0int =
dF . The controller gains were chosen as =i

jpK , 12Nm, =i
jΓ 0.01mN-1, 

=i
jFK , 40 s-1, =i

jIK , 2 s-1, and intK =0. As shown in Figure 3.1, a payload of 80 kg sat on 

the ground with both robots holding it rigidly. The command was given to the robots to 

lift the object, 0.2-meter above the ground, while maintaining a horizontal internal force 

of zero on the payload. At the moment the command was issued, the combined gravity 

term from both the payload and the robots was unknown and estimated as zero. The 

vector of the unknown hydraulic function parameters 
T

ji
i
j

i
jsp

i
j

i
jsp KKKK 3,2,1;2,1,

1
1

1
1,

1
1

1
1 ,...) ,,..., ,( === ββββϕ , were also estimated online using half 

of their actual values, initially. Figure 3.14 shows that the object was moved to the 

desired position. The control signals to the actuators for one of the robots are shown in 

Figure 3.15, which is different from the one (Figure 3.3) in Section 3.2. Figure 3.16 

shows that the actual internal force was not exactly the same as the desired value during 
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the steady-state phase, as expected by the theoretical analysis in Section 3.3.1. The 

difference is about 10 N.  

      Estimates of unknown hydraulic function parameters are shown in Figure 3.17. The 

simulation results show that the external forces due to the errors of gravity compensation 

are zero i.e. 0)))((ˆ( † =+−−
o

T
mE

T gWJqGGWJ  at the steady-state phase, as can be seen 

in Figure 3.18 where the second component is along the gravity direction. This agrees 

with the theoretical analysis in Section 3.3.1.  

 

 

Figure 3.14: Position trajectory of the object. 

 

 

 

Figure 3.15: Control signals for the first manipulator. 
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Figure 3.16: Horizontal internal force exerted on the object by two manipulators. 
 

                   
Figure 3.17: Typical hydraulic function parameter estimation errors. 

 

                  

Figure 3.18: Components of the vector )))((ˆ( †
o

T
mE

T gWJqGGWJ +−−  in Cartesian 
reference frame { }RRR ZYX ,, . 
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3.4 Summary 

This chapter documented design, stability analysis and numerical verification of position 

controllers for the problem of point-to-point regulation of a payload manipulated by 

several hydraulic robots. The highly nonlinear hydraulic actuator dynamics were 

incorporated in the Lyapunov-based controller design. Issues of motion, internal force 

control of the object and load sharing were addressed. The equilibrium of the system 

under the proposed controller was investigated leading to a set of equilibrium points 

corresponding to given internal forces. The issue of unknown payload was also analyzed 

and the controller was modified to eliminate the steady-state error due to imperfect 

compensation. Simulation results validated the efficacy of the proposed nonlinear 

controller. The controller was extended to the case where gravity terms of both the 

payload and the robots, as well as the parameters of hydraulic functions were unknown. 

Inspection of the new control system’s equilibrium found that the desired internal force 

might not converge to the desired value. The introduction of force feedback control 

reduced internal force error. 

      The first controller is easier to implement but requires knowledge about the gravity 

terms for the payload and the manipulators, as well as the hydraulic function parameters. 

The second controller is suitable for the scenario in which only the payload is unknown. 

The third controller is designed for a general case where all the parameters including the 

gravity terms from the payload and manipulators, as well as the hydraulic function 

parameters are unknown. 
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Chapter 4 Tracking Control of Co-operating Hydraulic 

Manipulators 
 

In this chapter, a scheme is developed for tracking control of multiple hydraulic 

manipulators handling a rigid object without relative motion between the object and the 

grippers. The goal is to design a controller that allows two or more hydraulic robots to 

coordinately track an object’s position/orientation while maintaining a desired internal 

force on the object. The issues of load sharing between the hydraulic robots, unknown 

payload and uncertainty on the manipulators’ dynamics as well as hydraulic functions are 

also addressed. Similar to the regulating controller design in the Chapter 3, friction is not 

yet considered for simplicity in this chapter. An on-line updating law to compensate for 

parametric uncertainties augments the controller.  

      It is assumed that the unknown parameters are constants or that they vary slowly with 

time due to temperature, wear, humidity etc. That is to say, their time derivatives can be 

treated as zero. An acceleration observer is also developed for the co-operating control 

system to avoid the requirement of acceleration feedback, which could be difficult to 

measure or determine in practice. As in Chapter 3, the backstepping technique is 

implemented during the adaptive controller design. The position tracking error is proven 

to converge to zero while internal force error is bounded and can be reduced by 

introducing a force feedback loop. Results from simulations, which are performed on two 

co-operative hydraulic manipulators, are provided to demonstrate the effectiveness of the 

proposed control law. 

4.1 Controller Design 

The following variables are defined first and used in the design of the controller.  
dXXe −=         (4.1) 

XXX ˆ~ −=         (4.2) 

)~()ˆ( 11 XeXXXXX ddd
r −−=−−= λλ &&&     (4.3) 

XXXXXX o
~ˆ)ˆ(ˆ

22 λλ −=−−= &&&      (4.4) 
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)~(11 XeeXXs r −+=−= λ&&&       (4.5) 

XXXXs o
~~

22 λ+=−= &&&       (4.6) 

where dX and X̂  are the desired and estimated values of X  , respectively. 1λ  and 2λ  are 

diagonal positive definite matrices. It is assumed that dX  belongs to 3C  (a function with 

k continuous derivatives is called a kC  function (Rowland, 2006 and Husch, 2001)). 

      The controller is proposed as a proposition as below. That means the controller is 

presented first followed by stability analysis. In practice, however, the controller is 

obtained from constructing a Lyapunov-like scalar function and finding its time 

derivative. Although the backstepping technique has been implemented, trial and error 

method is sometime necessary to find a proper controller that theoretically guarantees the 

system’s stability. This methodology is also applied to develop the controllers in the 

followed chapters. 

Proposition:  

      Consider the system described by equations (2.39) and (2.47), without the friction 

term frF . Given the following acceleration observer:  

XsKsKXLXGXXXDTMX ddpo
&&&&& ~]~)(ˆ),(ˆ[ˆˆ

22
'

1
1 λ++++−−= −   (4.7) 

and the controller: 

( )FWJJFqqAqAU ~),(ˆ)(ˆ
1

111
F

TT
F

d
cacq KEs −Γ−+= −−− &&   (4.8) 

where 
dFFF −=~           (4.9) 

)( int
†1 ddTTd FTE VWJJF += −−      (4.10) 

eKssKXGXXXDXXMT pdrrr
d −−−++= )()(ˆ),(ˆ)(ˆ

21
&&&&  (4.11) 

with the following adaptation law for manipulators-object parameters: 

]),,,(),,([ˆ
2211

1 sXXXXΘsXXXΘ oo
T

rr
T &&&&&&&& +Γ−= −

θθ    (4.12) 

where  

)(ˆ),(ˆ)(ˆˆ),,(1 XGXXXDXXMXXXΘ rrrrr ++= &&&&&&& θ   (4.13) 

)(ˆ),(ˆ)(ˆˆ),,,(2 XGXXXDXXMXXXXΘ oooo ++= &&&&&&&& θ   (4.14) 
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as well as the following hydraulic parameters adaptation law: 

FUqq ~),,(ˆ 1
F

TΦ ΓΓ= − &&
ϕϕ       (4.15) 

where θ̂  and ϕ̂  are the estimates of θ  and ϕ , respectively. GDM ˆ,ˆ,ˆ  are estimates of the 

dynamic matrices GDM ,, , associated with θ̂ . caÂ  and cqÂ  are the estimated vector and 

matrix associated with ϕ̂ . ϕΓΓ ,,,,,, '
FFddpp KKKLK , and θΓ  are constant positive 

definite diagonal matrices. dFint  is the desired internal force.  

     Providing the following conditions are satisfied 

)()()(2 121 ppp KLK λσλσλσ >       (4.16) 

U

pUpL

U

d
UUd

U

L VV
D

XDK
r

αλσ
σ

α
α −

+⎥
⎦

⎤
⎢
⎣

⎡ −
≤

2

1 )(
)(

2
)0(

&
    (4.17) 

with TTTTTT ssXetr )~   ~ ()( 21 F= , then )(tr  is bounded and converges to zero as ∞→t . 

In equations (4.16) and (4.17), σ (.) and σ (.) are the minimum and maximum 

singular values of their matrix argument, respectively; d
UX&  is the upper bound on the 

norm of dX& ; Scalars pLUL V,,αα , and pUV  are positive constants defined as follows: 

2
2
1

2
1

2
1

222
1

112
12 ~~~~)()( rXLXeKesxMssXMsr UF

T
p

T
p

TTT
L αα ≤Γ++++≤ FF  (4.18) 

pU
TT

pL VV ≤Γ+Γ≤ ϕϕθθ ϕθ
~~~~

2
1

2
1 .       (4.19) 

where θθθ −= ˆ~ , ϕϕϕ −= ˆ~ . 

Proof:  

      Consider a scalar function: 

θθ θ
~~~~)()(V 2

1
2
1

2
1

222
1

112
1

1 Γ++++= T
p

T
p

TTT XLXeKesxMssXMs   (4.20) 

The following error dynamics can be obtained and will be used in 1V& : 

FJWJ -T ~),()(~),,(),()( 121111
T

rpdrr EXsXDeKssKXXXΘsXXDsXM +−−−−=+ &&&&&& θ
 (4.21) 

XLsKsKXXXXΘsXXDsXM pddoo
~~),,,(),()( 2

'
1222 −−−=+ θ&&&&&&   (4.22) 

where equations (2.39), (4.7), and (4.11) have been employed in deriving equations (4.21) 

and (4.22). 
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     It can be shown that the time derivative of 1V  is given by 

θθ

λλλ

θ
~)],,,(),,(~[~        

),(~~~V

22121

111212
'

2111

oo
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rr
TTTT

r
T
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T

XXXXΘsXXXΘsEs

XsXDseKXXLXeKesKssKs

&&&&&&&&

&&

++Γ++

−+−−−−=

FJJ T-
 (4.23) 

Substituting the adaptation law (4.12) leads to 

FJJ -T ~),(~~~V 1111212
'

2111
TT

r
T

p
T

p
T

p
T

d
T

d
T EsXsXDseKXXLXeKesKssKs +−+−−−−= && λλλ

  (4.24) 

      Following the backstepping approach, for the entire system, consider a scalar function:  

ϕϕ ϕ
~~~~VV 2

1
2
1

12 Γ+Γ+= T
F

T FF       (4.25) 

Since  

ϕ̂),,(),(ˆ)(ˆ UqqqqAUA && Φq cacq =−       (4.26) 

the hydraulic dynamics in equation (2.50) can be rewritten as 

ϕ~),,(),(ˆ)(ˆ UqqqqAUqAF &&& Φcacq −−=      (4.27) 

With equation (4.27), the time derivative of 2V  becomes 

)~~(~~)ˆˆ(VV 12 FFFAUA F
T

F
Td

cacq ΦΓ−Γ+Γ−−+= ϕϕ ϕ
&&&&    (4.28) 

With the adaptive law (4.15) and the controller (4.18), equation (4.28) becomes 

XeKLKXLeK

KsKsXeXDK
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FF
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 (4.29) 

where 11 ),( sDsXD U≤  and )~)(()~( 11 XeXXeXX d
U

d
r ++≤−−= λσλ &&&  have been 

used in deriving equation (4.29). Notice that 2222 2)~(2)~( rXeXe ≤+≤+  and 

LpLVr α/)V( 2
2 −≤  resulting from equations, (4.18) and (4.19). To satisfy 

0))~)((()( 1 >++− XeXDK d
UUd λσσ &      (4.30) 

a sufficient condition is  

pL
U

d
UUdL V

D
XDK

+⎥
⎦

⎤
⎢
⎣

⎡ −
≤

2

1
2 )(

)(
2

V
λσ

σα &
      (4.31) 
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The conditions given in equations, (4.31) and (4.16) guarantee that 

)~~(V
22

2
2

1

22
2 F++++−≤ ssXeα&      (4.32) 

with 0>α . Inequality (4.32) guarantees )0(VV 22 ≤ . Thus, a sufficient condition for 

equation (4.31) is 

pL
U

d
UUdL V

D
XDK

+⎥
⎦

⎤
⎢
⎣

⎡ −
≤

2

1
2 )(

)(
2

)0(V
λσ

σα &
     (4.33) 

which can be satisfied by condition (4.17). 

     The above analysis shows that inequality (4.32) is satisfied under conditions (4.16) 

and (4.17). It follows that )0(V)(V 22 ≤t  for all 0≥t  and )(tr  is bounded.  

Inspection of equations (4.25) and (4.32) further reveals that the tracking errors 

21,,~, ssXe  and F~  converge to zero as )(V2 t  is lower bounded by zero. More arguments 

are also referred to Barbalat’s lemma * and its followed theorem with examples by Khalil 

(2002). Since )~(11 Xees −Λ+= & , the velocity tracking error, e& , also converges to zero. 

4.2 Remarks 

Remarks 1:  

      The parameter convergence is not guaranteed here. In fact, the parameter estimates 

may not converge to their actual values, whereby the closed-loop system will have an 

equilibrium subspace }0~,0~,0~,0,0,0~,0{ 21 ≠≠===== ϕθFssXe . The estimates 

might converge to their actual values under the necessary condition of persistency of 

excitation (Slotine and Li, 1991).  

Remark 2:  

      The actual internal force is examined here for convergence to the desired value. The 

following can be obtained about the contact forces:  

)(int
†

m
d

m
d

m
TddTt

c FTE GqCqHJVWF ++−+= −−∞→ &&&    (4.34) 

By using equations, (2.12), (2.13) and (4.34); it can be proven that 

                                                           
*  Barbalat’s lemma: Let RR →:φ  be a uniformly continuous function on ),0[ ∞ . Suppose that 

∫∞→

t

t d
 

0 
)(lim ττφ exists and is finite. Then, 0)( →tφ  as ∞→t . 
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)( m
d

m
d

m
TdTt

c
t

ext WTEWF GqCqHJF ++−== −−∞→∞→ &&&    (4.35) 

and 

)()( †
int

†
int m

d
m

d
m

Tdt
ext

t
c

t FFF GqCqHJWWIVWFV ++−−=−= −∞→∞→∞→ &&&   (4.36) 

where, ∞→t
extF and ∞→tFint  are the external and internal forces when ∞→t , respectively. 

Since V is a full-column rank matrix, it can be concluded that  

)()( ††
intint m

d
m

d
m

Tdt FF GqCqHJWWIV ++−+= −∞→ &&&    (4.37) 

Equation (4.37) shows that there exists a bounded error between the actual internal force 

and its desired value. By introducing a force feedback loop, the internal force can be 

shown to follow the desired one. Equation (4.10) is modified as 

)))((( intintintint
†1 FFKFTE dddTTd −++= −− VWJJF    (4.38) 

The actual internal force intF  can be extracted from contact forces, which are typically 

available through wrist sensors. As a result, equation (4.36) becomes 

)()()1( †1
intintint m

d
m

d
m

Tdt KFF GqCqHJWWIVV ++−+−= −−∞→ &&&   (4.39) 

Thus, the actual internal force can arbitrarily approximate the desired value through 

increasing the force feedback gain intK . As for the stability, consider the same scalar 

function 2V  defined in (4.25). It can be recognized that the time derivative of (4.25) 

satisfies inequality (4.32) under the same conditions (4.16) and (4.17), since only the 

term related to internal force has been changed and the internal force feedback terms do 

not contribute to 2V& . 

      In the implementation of equation (4.38) associated with the controller (4.8), the 

derivative of the internal force is difficult to obtain and is calculated using numerical 

differentiation or can be neglected if the variation of internal force is slow.  

Remark 3:  

      With respect to the controller described in equation (4.8), the only hydraulic system 

parameters needed by the controller are the effective piston areas IA  and OA . The 

effective bulk modulus of the hydraulic fluid β , the constant valve gain spK , and the 

constant flow gain K are not required. As for the manipulators, the mass and position of 

the center of mass for each link is not required. Since the Jacobian matrix appears in the 
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controller, link length is required. No knowledge about the payload is required. For the 

implementation of the proposed controller, only measurements of positions, velocities 

and hydraulic pressures are required. Force measurement is also required if a force 

feedback is used for the reduction of the internal force.  

      Note that acceleration measurements are often not available and they are replaced by 

numerical derivatives of the measured velocities. This may lead to chattering of the 

control inputs due to the combined effect of noisy measurements and un-modeled 

phenomena, such as joint friction and elasticity. To avoid this undesirable behavior, an 

acceleration observer is developed, in a way that is similar to the works by Sirouspour 

and Salcudean (2001) and Bu and Yao (2001), which were for a single hydraulic arm. As 

can be seen from equation (4.11), vector dT  does not contain any velocity terms. That is 

to say, dT& , as well as dF& , does not contain any acceleration terms. The measurement of 

acceleration is not required by inspection of the controller (4.8).  

4.3 Simulation Studies 

The nonlinear position-tracking controller presented in Section 4.1 has been tested on the 

same numerical model as used in Chapter 3. With reference to Figure 4.1, two hydraulic 

manipulators held an object and then moved it along a desired path. Parameters of the 

robots were chosen to closely resemble MAGNUM 7 function hydraulic manipulators by 

International Submarine Engineering Ltd. of Canada. These parameters have been shown 

in Tables 3.1 and 3.2. The vectors of unknown parameters,  

TImamIamIamamammmamIamIamI ),  ,...,, ,,,,,,,,(

Object2Robot  

22
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2
2

2
2

22
1

2
1

2
1
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1
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1
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1
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1
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3

21
2

1
2

1
2

21
1

1
1

1
1

8764444 84444 7644444444444 844444444444 76

+++++=θ

 and T
ji

i
j

i
jsp

i
j

i
jsp KKKK 3,2,1;2,1,

1
1

1
1,

1
1

1
1 ,...) ,,..., ,( === ββββϕ , were estimated online. The 

variables m and I are mass and inertia of the object. i
jm , i

jI , and 3,2,1;2,1, == jiai
j , are 

mass, inertia, and distance of center of mass to the jth joint of the ith robot, respectively. 

Each actuator has identical parameters, with the exception of a different stroke. All 

estimates of the unknown parameters were initially set to different values, (at least 50% 

off) from those used in the model; to investigate the ability of the controller to cope with 

parametric uncertainties. The reference internal force was set to zero and no force 
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feedback was used. The control gains were chosen as 501 =λ , 502 =λ , 10000=pK , 

3000=pL , 700=dK  and 700' =dK . 

     Two reference trajectories along the vertical direction were chosen:  

(i) point-to-point trajectory with a travel distance of 0.3m, maximum speed of 

0.15m/s and maximum acceleration of 0.6m/s2  

(ii) sinusoidal trajectory consisting of one segment with an amplitude of 0.1m and 

frequency of 0.2Hz followed by a second segment with an amplitude of 0.02m 

and frequency of 1Hz.  

These two reference trajectories are shown in Figure 4.2 and Figure 4.8, respectively. The 

controller was also required to maintain the internal force in the horizontal direction close 

to zero and at the same time, evenly distribute the load between the two robots.  

     The first set of tests was conducted using the point-to-point reference trajectory, which 

is shown in Figure 4.2. Figure 4.3 shows that the position error went to zero with about 1-

mm error at the transient period. The control signals to the actuators for one of the robots 

are illustrated in Figure 4.4. Figure 4.5 shows that the internal force exists and went to a 

smaller value (about 40 N) at steady-state phase. Note that force feedback was not 

implemented in this case. The profiles of some parameter estimates are shown in Figure 

4.6, in which the object, link and hydraulic parameters do not converge to their actual 

values. It should be stressed that the parameter convergence is not theoretically 

guaranteed as described in Section 4.2; therefore the results do not contradict the 

theoretical argument. The distribution of the lifting forces is shown in Figure 4.7, from 

which, it can be seen that the two robots shared the payload. 

 

 
Figure 4.1: Two planar hydraulic manipulators co-operatively handle an object. 
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Figure 4.2: Desired position trajectory of the object in the vertical direction. 
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Figure 4.3: Position error of the object, when moved vertically 
from one point to another. 
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Figure 4.4: Control signals for the first manipulator. 
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Figure 4.5: Object internal force in the horizontal direction. 
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Figure 4.6: Load/parameter estimation errors. 
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Figure 4.7: Load sharing between robots. 
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      The next test was conducted using the sinusoidal reference trajectory. The reference 

trajectory is shown in Figure 4.8. Figure 4.9 shows that the position error was about 3 

mm at the transient period and less than 0.2 mm thereafter. The control signals to the 

actuators for one of the robots are illustrated in Figure 4.10. Figure 4.11 shows that the 

internal force had offsets of 20 N and 10N.  Amplitude changes were 10N and 5N, for the 

first and second half of the sinusoidal trajectory, respectively. No force feedback was 

implemented in this case. The profiles of some parameter estimates are shown in Figure 

4.12.  The object, link and hydraulic parameters did not converge to their actual values. 

The lifting forces were as designed, equally distributed between the two robots shown in 

Figure 4.13. 
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Figure 4.8: Desired position trajectory of the object in the vertical direction. 
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Figure 4.9: Position error of the object. 
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Figure 4.10: Control signals for the first manipulator. 
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Figure 4.11: Object internal force in the horizontal direction. 
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Figure 4.12: Typical load/parameter estimation errors. 
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Figure 4.13: Load sharing between robots. 
 

 

 

4.4 Summary 

This chapter documented design, stability analysis and numerical verification of a 

tracking controller for co-operation among several hydraulic robots handling a rigid 

payload. The highly nonlinear hydraulic actuator dynamics were incorporated in the 

Lyapunov-based controller design. The issues of motion and internal force control of the 

object, as well as load sharing among several manipulators were addressed. To deal with 

parametric uncertainties, including unknown payload, robot dynamics and hydraulic 

functions parameters; the controller was augmented with adaptation laws. An adaptive 

observer was also included to avoid the need for measurement of acceleration as 

feedback. It was proven that the position and velocity tracking errors converged to zero, 

while bounded internal force errors existed. These internal force errors can be controlled 

with the addition of force feedback.  

      Simulations were performed with two manipulators resembling MAGNUM 7 

hydraulic manipulators. The results demonstrated the effectiveness of the proposed 

nonlinear controller. 
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Chapter 5 Effects of Friction on the Control System 
 

This chapter investigates the effect of friction, especially dry friction on the performance 

of co-operating robots. The previous control controllers are re-visited by adding a 

dynamic friction model (LuGre) to the actuator dynamics. Simulations are then carried 

out to examine the performances in the presence of friction. Three controllers, including 

the second and third regulating controllers developed in Chapter 3, and the tracking 

controller in Chapter 4; are to be studied in the following three case studies. 
 

5.1 Regulating Controller with Unknown Payload 

The controller developed in Section 3.2, which has an estimator of unknown payload and 

does not consider the effect of friction; is reexamined in the presence of dry friction in the 

hydraulic actuators. The equilibrium of the control system is first established followed by 

a simulation study. 

 

5.1.1 Equilibrium of the Control System in the Presence of Friction 

In the presence of dry friction, a friction term frFJWJ T−  is added to the left side of 

equation (3.9). The corresponding equilibrium of the system under the controller (3.25) 

associated with equations (3.34) and (3.43) will then become 

0=ssU          (5.1) 

0~ =− qKWJ p
T         (5.2) 

d
o

Tss
c FgI int

†† )( VWFJJWWF fr ++−−= −      (5.3) 

dTss
c

ss
c

ss FIF int
††

int )( VFJJWWWFWFV fr +−−=−= −    (5.4) 

Equation (5.4) shows that the desired internal force vector can not be achieved at steady 

state in the presence of friction even if the manipulators’ gravity terms are known. 

Note that the undesirable internal force is an additional load to the co-operating 

system, but makes no contribution to the motion of the object; therefore it could 

significantly reduce the effective lifting capacity of the system. 
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5.1.2 Simulation Studies 

      The same study as in the case study in Section 3.2.2 has been performed with the 

inclusion of a dry friction model in the simulation program. The LuGre friction model 

(Canudas de Wit et al. 1995) described in Section 2.3 was used. For simulations, the 

following values were used: NF i
jsl 900, = , NF i

jst 1100, = , smxs /002.0=& , 

mNi
j /102 5

.0 ×=σ  and mNsi
j /400.1 =σ , mNsi

j /200.2 =σ .  

      Figures 5.1 to 5.5 show the controller’s performance, with the best performing gains 

(fast rise time with no overshoot); which could be compared with Figures 3.2 to 3.6. The 

simulation results show that, in the presence of actuator dry friction; the entire control 

system is still stable and the desired position is achieved (see Figure 5.1). The control 

signals corresponding to one of the robots are shown in Figure 5.2. They are slightly 

higher than the control signals when there is no actuator friction (see Figure 3.3), which 

is expected. The lifting forces by each robot are shown in Figure 5.3.  

      Based on the equilibrium of the system, it is further obtained that 

o
T

o gg += −
frFJWJˆ . From the controller’s point of view, the friction is taken as an extra 

load resulting in an increased object/load that needs to be compensated. Thus, as can be 

clearly seen from Figure 5.4, the object load is over-estimated. As shown by equation 

(5.4), the desired internal force could not be achieved in the presence of actuator friction 

(compare Figure 5.5 with Figure 3.6), given the controller (3.25) associated with 

equations (3.34) and (3.43) developed in Section 3.2.  

      Overall, simulation results show that the system still achieves the desired position. 

However, the presence of friction could make regulation longer and bring about 

undesirable internal forces. The transition between slip to stick friction (i.e. Stribeck 

effect) does not appear to affect the response in this case.  
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Figure 5.1: Position trajectory of the object under controller (3.25) with unknown 
payload and in the presence of friction. 

 

 

Figure 5.2: Control signals for the first manipulator. 
 

 

 

Figure 5.3: Load sharing between two manipulators. 
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Figure 5.4: Estimation of the payload. 
 

 

Figure 5.5: Horizontal internal force exerted on the object by two manipulators. 

5.2 General Regulating Controller  

The controller developed in Section 3.3, which has dealt with the uncertainty of the 

payload, robot dynamic parameters and hydraulic functions; is re-examined in the 

presence of dry friction in the hydraulic actuators. The equilibrium of the control system 

is first studied, followed by simulation studies. 

 

5.2.1 Equilibrium of the Control System in the Presence of Friction 

      Adding a friction term frFJWJ T−  to the left side of equation (3.9), the corresponding 

equilibrium of the system under the controller (3.54) becomes  

0=ssU          (5.5) 
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0~ =q           (5.6) 

0)))((ˆ( † =++−−
o

T
mE

T gWJFJqGGWJ fr      (5.7) 

d
o

T
E

T FgKF int
†1

intint )))((ˆ()( VWJFJqGGJIV fr +++−+= −−   (5.8) 

Note that if the frFJqG +)(m  is treated as an equivalent gravity term originating from 

the robots, the control system can be treated as the system without friction. In the 

presence of friction, EĜ  is actually the estimate of the combined term 

o
T

m g†)( WJFJqG fr ++ .  

      Similarly, equation (5.7) does not guarantee 0))((ˆ † =++− o
T

mE gWJFJqGG fr . In 

other words EĜ , the estimate of the term o
T

m g†)( WJFJqG fr ++ , does not have to 

converge to its actual value. The desired internal force cannot be achieved by inspection 

of equation (5.8). Nevertheless, internal force error can be reduced by the increasing 

gain intK .  

 

5.2.2 Simulation Studies 

      The same step input response study on the same numerical model as in the previous 

case study in Section 3.3.2 has been performed, with the same set of gains; while the 

LuGre friction model is included in the hydraulic actuator dynamics. For simulations, the 

following values were used: NF i
jsl 900, = , NF i

jst 1100, = , smxs /002.0=& , 

mN /102 5
0 ×=σ and mNs /4001 =σ  in the LuGre friction model. 

      Figure 5.6 shows that the desired position is still achieved. The control signals to the 

actuators for one of the robots are shown in Figure 5.7, which is different from the one 

(Figure 3.15) in Section 3.3.2. Figure 5.8 shows that the actual internal force is different 

from the desired value even during the steady-state phase, which is expected in Section 

5.2.1. The difference is about 240 N, much higher than the difference in the case of no 

dry friction (see Figure 3.16). Furthermore, the simulation results show that 

0)))((ˆ( † =++−−
o

T
fr

T
mE

T gWJFJqGGWJ  during the steady-state phase, as seen in 

Figure 5.9. Compared with the simulation results (Figures 3.14 to 3.18) where no dry 
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friction was considered in the model, the inclusion of dry friction makes regulation longer 

and brings about more undesirable internal forces.  
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Figure 5.6: Position trajectory of the object under general regulating controller 
(3.54) and in the presence of friction. 
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Figure 5.7: Control signals for the first manipulator. 
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Figure 5.8: Horizontal internal force exerted on the object by two manipulators. 
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Figure 5.9: Components of the vector )))((ˆ( †
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      The above simulation did not use force feedback. In the next simulation, set 

20int =K  and the derivative of the internal force required by the controller was neglected. 

The position plot remains the same and is not shown here, since only the internal force 

feedback gain was changed. The internal force became about 10 N, much smaller and 

closer to the desired internal force as shown in Figure 5.10. 
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Figure 5.10: Horizontal internal force exerted on the object by two robots for the 
general regulating controller with force feedback and in the presence of friction.  

5.3 Tracking Controller Performance in the Presence of Friction 

The position tracking controller (4.8) developed in Section 4.1 is now investigated in the 

presence of dry friction in the hydraulic actuators. 

 

5.3.1 Equilibrium of the Control System  

In the presence of friction, equation (4.32) does not hold. Therefore, no conclusion 

can be drawn about the position error’s convergence to zero. As for the internal force, 

even assuming no position error, equation (4.39) becomes  

))(),()(()()1( †1
intintint frFJqGqqqCqqHJWWIVV +++−+−= −−∞→ d

m
ddd

m
dd

m
Tdt KFF &&&&

   (5.9) 

Equation (5.9) indicates that friction force will likely increase internal force.  

 

5.3.2 Simulation Studies 

The same tasks as in the previous case study in Section 4.3 have been performed 

with the same set of gains, with the exception of including the LuGre friction model in 

the hydraulic actuator dynamics. For simulations, the following values were used: 

NF i
jsl 900, = , NF i

jst 1100, = , smxs /002.0=& , mNi
j /102 5

,0 ×=σ  and mNsi
j /400,1 =σ .  
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      Force feedback was not used. The corresponding results are shown in Figure 5.11 and 

Figure 5.12. It was found out that the internal force was built so high that the robots lost 

their capability to do the job (reaching their limitation given certain supply pressures).  
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Figure 5.11: Position trajectory of the object under tracking controller (4.8) and in 
the presence of friction. 
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Figure 5.12: Horizontal internal force exerted on the object. 
 

So in the following simulation, force feedback was introduced with the gain 3int =K  and 

the derivative of the internal force was neglected. As shown in Figure 5.13, the internal 
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force was reduced; however there exists a large steady-state position error which can be 

seen from Figure 5.14.  
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Figure 5.13: Horizontal internal force exerted on the object under controller (4.8) 
with force feedback and in the presence of friction. 
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Figure 5.14: Position error of the object. 
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5.4 Stability Analysis in the Presence of Friction 

The effect of friction on the control system has been investigated, but the stability has not 

been re-examined theoretically. The stability of the general regulating control system is 

now proven in the presence of friction. In the presence of dry friction, a friction term 

frFJWJ T−  is added to the left side of equation (3.9). The time derivative of the same 

Lyapunov candidate as defined in equation (3.58), will have an additional term: 

∑∑− i
jfr

i
j Fx ,& . If the friction model is represented by the simple static model, 

)sgn(,,
i
j

i
jsl

i
jfr xFF &= , this term is then equal to ∑∑− i

jsl
i
j Fx ,&  which is always non-

positive. It follows that the time derivative of Lyapunov candidate, remain semi negative-

definite.  

     The following is to further prove that 0, ≤−∑∑ i
jfr

i
j Fx&  when the LuGre model 

represents the friction model. The following property of the friction model will be first 

explored.  

Property: if ))0(()0( i
j

i
j xgz &≤  then  

0    )()( ≥∀≤ txgtz i
j

i
j &       (5.10) 

Proof: let 2/V 2i
jz= , then the time derivative of V is  
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&
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&&  (5.11) 

The derivative V&  is negative whenever )()( i
j

i
j xgtz &> . Since )( i

jxg & is strictly positive 

and bounded by i
j

i
jsti

ji
j

i
jsl F

xg
F

,0

,

,0

, )(
σσ

≤≤ & , it is seen that all the solutions of )(tzi
j  starting 

with ))0(()0( i
j

i
j xgz &≤  will retain this feature, i.e. 0    )()( ≥∀≤ txgtz i

j
i
j & . If 

))0(()0(0 i
j

i
j xgz &≤≤  for 0)( >txi

j& , )(tz i
j  will increase until it is equal to ))(( txg i

j& ; thus 

0)()( ≥tztx i
j

i
j& . If ))0(()0(0 i

j
i
j xgz &−≥≥  for 0)( <txi

j& , )(tz i
j  will decrease until it 

reaches - ))(( txg i
j& ; thus 0)()( ≥tztx i

j
i
j& . If the sign of )(txi

j& changes; it always can be 

broken down and falls in one or the other scenario. It is then concluded that: 
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 0   0)()( ≥∀≥ ttztx i
j

i
j&      (5.12) 

Physically, equation (5.12) means that the deflection of the bristles represented by )(tzi
j  

follows the direction of the relative velocity. Now using equation (2.32), the following 

can be obtained: 

2
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ji
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j
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j
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j

i
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i
j xz

xg

xx
xzxFx &

&

&&
&&& σσσ +−+=    (5.13) 

Inequalities (5.10) and (5.12) are employed to arrive at 

0, ≥i
jfr

i
j Fx&        (5.14) 

which is to say, 0, ≤−∑∑ i
jfr

i
j Fx& . Thus, the time derivative of Lyapunov candidate 

remains semi negative-definite with the LuGre friction model, and the regulating control 

system remains stable in the presence of friction.  

      As for the other regulating controllers previously developed in Section 3.2.1 and 

Section 3.1.1, proof of system stability in the presence of friction can be adopted in 

similar procedures and will not be repeated here. The stability of the track control system 

will not be analyzed here. Instead, the controller will be redesigned in the next chapters. 

5.5 Summary 

This chapter studied the effect of dry friction in the hydraulic actuators for the controllers 

developed previously for ideal robot systems with no friction. The performance of the 

controllers was re-examined. It was found that the regulating control system was stable 

and able to achieve the desired position. However, the presence of friction could make 

regulation longer and bring about undesirable internal forces. It was also found that the 

use of force feedback could bring the internal force close to the desired values in both 

regulating and tracking tasks.  

For the position tracking control system, the stability was not proven with the same 

scalar function. Both position error and internal force could be significantly increased 

because of friction. Simulations were further carried out to verify these findings.  

Presented in the following chapters, friction compensation will be considered in the 

continued development of the controller.  
 



 

71 

Chapter 6 Tracking Control of Co-operating Hydraulic 

Manipulators in the Presence of Friction 
 

This chapter describes development of a tracking controller for multiple hydraulic 

manipulators in the presence of substantial dry frictions at the actuators. It was previously 

discussed that friction could not only degrade the position tracking performance, but also 

bring about undesirable internal force exerted on the object. The importance of 

compensation for friction force was therefore established. This chapter presents a 

controller with friction compensation. The friction is estimated, based on the LuGre 

dynamic friction model. The acceleration observer is redesigned to accommodate the 

inclusion of the dynamic friction model in the actuator system. The issues of load sharing 

between the hydraulic robots, unknown payload and uncertainty on the manipulators’ 

dynamics, as well as hydraulic parameters, are all addressed.  

6.1 Controller Design with Acceleration Feedback  

Using the LuGre friction model, the dynamic equation of motion for the entire robots-

object system described in Chapter 2 can be further written as follows: 

)]
)(

][[][()(][),()( 1012 z
x

x
σzσ-FJJσJ

&

&
&&&&&

g
XGXXXXDXXM a

T
aa +=+++  (6.1) 

),()( qqAUqAF &&
cacq −=         (6.2) 

z
x

x
xz ]

)(
[

&

&
&&

g
−=          (6.3) 

where ]
)(

[
x

x
&

&

g
 is defined as a diagonal matrix with terms 

)( i
j

i
j

xg

x
&

&
 as its diagonal elements. 

z  is a vector of the friction internal states i
jz . ][ 0σ , ][ 1σ , and ][ 2σ  are diagonal matrices 

with 0σ , 1σ , and 2σ  being vectors of diagonal elements of friction force parameters i
j,0σ , 

i
j,1σ , and i

j,2σ . ][][][ 2112 σσσ +=  and JWJJ -TT
a E= . Other variables have been defined 

in Chapter 2.   
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Similar to equation (2.44), the following can be obtained 

θ),,()(][),()( 12 XXXΘXGXXXXDXXM &&&&&&&& =+++ T
aa JσJ   (6.4) 

Equation (6.4) will be used to compensate for the unknown dynamic parameter vector, θ , 

which includes dynamic parameters of the manipulators and a combined parameter 12σ  

(equal to 21 σσ + ). Let 10 ˆ,ˆ σσ  and 12σ̂  be estimates of 10 ,σσ  and 12σ , respectively. Also, 

let 0ẑ  and 1ẑ  be two estimates of z. 000 ˆ~ σσσ −= , 111 ˆ~ σσσ −= , zzz −= 00 ˆ~  and 

zzz −= 11 ˆ~  are errors between the estimates and the actual values. ϕθθ ˆ,~,ˆ , and  ϕ~  have 

been defined earlier in Section 4.1. Additionally, the following notations are defined: 
dXXe −=         (6.5) 

eXX d
r λ−= &&        (6.6) 

ees λ+= &         (6.7) 

where, dX  is the desired value of X  and belongs to 3C . λ  is a diagonal matrix. 

 

Proposition 1:  

Consider the system described by equations (6.1)-(6.3). Given the following controller 

( )FJFqqAqAU ~),(ˆ)(ˆ 11
F

T
aF

d
cacq Ks −Γ−+= −− &&     (6.8) 

where 
dFFF −=~            (6.9) 

fc
ddTTd FE FVWJJF ˆ)τ( int

†1 ++= −−       (6.10) 

1100 ˆ]
)(

][ˆ[ˆ]ˆ[ˆ z
x

x
σzσF

&

&

gfc −=        (6.11) 

sKXGXXXXDXXM dr
T
aarrr

d −+++= )(ˆ]ˆ[),(ˆ)(ˆτ 12
&&&&& JσJ   (6.12) 

and the following adaptation laws for unknown parameters pertaining to the 

manipulators-object dynamics, hydraulic functions and friction parameters, 

sXXXΘ rr
T ),,(ˆ 1 &&&& −Γ−= θθ       (6.13) 

FUqq ~),,(ˆ 1
F

TΦ ΓΓ= − &&
ϕϕ       (6.14) 
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and the following observers for z 
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then the position tracking error converges to zero. 

 

Remarks 6.1.1:  

(i) GDM ˆ,ˆ,ˆ  and ]ˆ[ 12σ , are estimated dynamic matrices/vectors based on θ̂  given in 

equation (6.4). Similarly, matrices caÂ  and cqÂ are estimations based on 

parameter estimation vector ϕ̂  from equation (2.50).  

(ii) ]ˆ[ 0z  and ]ˆ[ 1z , are diagonal matrices with 0ẑ , and 1ẑ  as their diagonal elements, 

respectively. 

(iii) All gains used in the controller and observers, 

FF K,Γ , ,Γ,Γ,Γ,K
0σϕθd 01 Γ,Γ zσ , 1Γ z , are constant positive definite diagonal 

matrices. 

(iv) The friction force, appearing in equation (6.1), which can be represented by 

)]
)(

][[][(][ 1012 z
x

x
σzσJJσJ

&

&
&

g
X a

T
aa −+ , is compensated for separately. The first 

term XT
aa
&JσJ ][ 12  represents the combined damping and viscous friction and does 

not contain any friction states. Therefore, it is combined with the manipulator 

dynamics and compensated for via the adaptation law for unknown manipulators-

object parameters.  
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The second term, )]
)(

][[][( 10 z
x

x
σzσJ

&

&

ga − , represents the Coulomb (dry) friction 

effect which is herewith termed fcF . It is compensated for, by the estimate fcF̂ , 

which requires estimates of internal friction states. 

Proof:  

Define a scalar function as  

ϕϕ ϕ
~~~~VV 2

1
2
1

12 Γ+Γ+= T
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T FF      (6.19) 

and 
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T
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Equations (6.1) and (6.12) are employed to arrive at the following error dynamics  
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It can then be shown that time derivative of 1V  is  
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Substituting the manipulator parameter adaptation law (6.13) and employing relations 

0000000
~][~]ˆ[][ˆ]ˆ[ zσσzzσzσ +=−  and 1111111

~][~]ˆ[][ˆ]ˆ[ zσσzzσzσ +=− , lead to 
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From friction state observers (6.17) and (6.18), one arrives at 
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Applying equations (6.24) and (6.25), and the unknown friction force parameter 

adaptation laws (6.15) and (6.16), results in 
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 (6.26) 

Since  

ϕ̂),,(),(ˆ)(ˆ UqqqqAUA && Φq cacq =−      (6.27) 

the hydraulic dynamics in equation (6.2) can be rewritten as 

ϕ~),,(),(ˆ)(ˆ UqqqqAUqAF &&& Φcacq −−=     (6.28) 

Given equation (6.28), the time derivative of the scalar function V2, becomes 

)~~(~~)ˆˆ(VV 12 FFFAUA F
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F
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&&&&   (6.29) 

By substituting adaptation law (6.14) of unknown hydraulic parameters and the controller 

(6.8) into equation (6.29), the derivative of the scalar function V2, will be 
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(6.30) 

Thus, 2V  is semi negative-definite. It follows that )0(VV0 22 ≤≤ , meaning all states are 

bounded. Using Barbalat’s lemma arrives at 0→s  which implies that the position and 

velocity tracking errors converge to zero as ∞→t .  

 

Remarks 6.1.2:  

In realization of controller (6.8), one needs to compute dF& , which is a function of 

X&& . Accelerations then appear in the proposed control law. The requirement for 



6. Tracking Control of Co-operating Hydraulic Manipulators in the Presence of Friction 76 
   

 

measurement of accelerations as a feedback, which could be difficult in many practical 

situations, is removed in the following section. 

6.2 Controller Design without Acceleration Feedback  

The requirement for measurement of joint angular accelerations is removed by the 

addition of a nonlinear acceleration observer in the feedback loop. Compared with the 

previous observers in Chapter 4, the observers, including acceleration observer in the 

feedback loop, have to be redesigned to accommodate the addition of the LuGre dynamic 

friction model into the hydraulic actuator dynamics. The following notations are defined: 
dXXe −=         (6.31) 

XXX ˆ~ −=         (6.32) 

)~(λ)ˆ(λ 11 XeXXXXX ddd
r −−=−−= &&&     (6.33) 

XXXXXX o
~λˆ)ˆ(λˆ

22 −=−−= &&&      (6.34) 

)~(λ11 XeeXXs r −+=−= &&&       (6.35) 

XXXXs o
~λ~

22 +=−= &&&       (6.36) 

r
T
ar X&& Jx =         (6.37) 

Vectors dX and X̂  are the desired and estimated values of X , respectively. 1λ  and 2λ , 

are positive definite diagonal matrices. dX  belongs to 3C . 

 
Proposition:  

Consider the system described by equations (6.1), (6.2), and (6.3). Given the following 

observers and adaptation laws: 

(i) Acceleration observer 

]~)(ˆ),(ˆ)ˆ([ˆ
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where 
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(ii) Unknown manipulators-object dynamic parameter adaptation law 
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where  
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(iii) Unknown hydraulic function parameter adaptation law 
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(iv) Unknown friction parameter adaptation law 
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(v) Friction internal state observers 
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and the following controller 
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providing the following conditions are satisfied 
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where )0(r  is the initial value of the state vector TTTTTTTT ssXetr ]~ ~ ~   ~ [)( 1021 zzF= , then 

the position tracking error, e , converges to zero with all other states being at least 

bounded. 

Remarks 6.2.1:  

(i) Parameters ,,, 0σϕθ and 1σ  are assumed to be slow varying. They are considered as 

constants by the controller. GDM ˆ,ˆ,ˆ  and ]ˆ[ 12σ  are estimated dynamic 

matrices/vectors based on θ̂  given in equation (6.4). Similarly matrices caÂ  and cqÂ  

are estimations based on parameter estimation vector ϕ̂  from equation (2.50).  

(ii) ]ˆ[ 0z  and ]ˆ[ 1z  are diagonal matrices with 0ẑ , and 1ẑ  as their diagonal elements, 

respectively. 

(iii) All gains used in the controller, adaptation laws and observers, 

( ϕΓΓ ,,,,,, '
FFddpp KKKLK , θΓ ,

00
Γ,Γ,Γ 1 zσσ , and 1Γ z ) are constant positive definite 

diagonal matrices and dFint  is the desired internal force.  

(iv) In equations (6.43) and (6.54), σ (.) and σ (.) are the minimum and maximum 

singular values of their matrix argument, respectively. d
UX&  is the upper bound on the 

norm of dX& . Finally,  η  is defined by  

Lsl

T
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f ,

1 )]][[( JzσJσ
η =        (6.55) 

       where Lslf ,  is the lower bound of the norm of the normalized slip frictions. 

pLUL V,,αα  and pUV , are positive constants defined as follows: 
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(v) The first part of the friction force XT
aa
&JσJ ][ 12 , which does not contain any friction 

states; is compensated for with the manipulator adaptation law, in a similar manner 

as in Section 6.1 for controller (6.8). However, the compensation for the remaining 

part )]
)(

][[][( 10 z
x

x
σzσJF

&

&

gafc −= , in the calculation of the desired force dF , is 

different. With reference to equation (6.52), velocity x&  is replaced with rx& , which 

does not contain any velocity terms. By inspection of equation (6.50), the desired 

force dF , does not contain any velocity terms either. The controller does not need 

acceleration feedback by equation (6.48). On the other hand the compensation, for 

the remaining part of the friction force in acceleration observer dynamics (6.38); 

directly uses velocity x& , since equation (6.38) is not differentiated anywhere. 

Proof:   

Equations describing the entire control system are expressed in a state-space form as: 
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From the above equations it is seen that if the system is initially at the origin, it will 

remain there; thus the origin is an equilibrium point. We now show that the above system 

has a manifold of equilibrium points to which the origin belongs. Consider the case 

where the state vectors 1021
~ ,~ ,~ , , ,~ , zzFssXe  and ϕ~  are zero, while state vectors 10

~,~ σσ  

and θ~  can be set arbitrarily. Setting the right-hand side of state-space equations (6.58) to 

(6.68) to zero, results in the following two vector equations: 

0]~][
)(

[]~[~
101 =−+ zσ

x
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JzσJ aa
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g
Θ

&

&
θ    (6.69) 

0]~][
)(

[]~[~
102 =−+ zσ

x
x

JzσJ aa &

&

g
Θ θ     (6.70) 

Vector equations (6.69) and (6.70) consist of 12 linear scalar equations but with 

more than 12 unknowns originating from state vectors 10
~  ,~ σσ  and θ~ . There are infinite 

solutions for the unknowns, indicating a manifold containing infinite non-isolated 

equilibrium points. Therefore, we can only resort to constructing a Lyapunov-like scalar 

function to show that all the states of the system under the proposed controller are 

bounded. Further, following Barbalat’s lemma, we prove that the position tracking error 

converges to zero.     
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Consider a continuous positive-definite scalar function:  
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The time derivative of 2V  is 
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Thus, 
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(6.75) 

Note that 2222 2)~(2)~( rXeXe ≤+≤+  and LpLr α/)VV( 2
2 −≤  which are 

arrived at from equations (6.56) and (6.57). To satisfy 

0))~)(λ(()][()( 112 >−++−+ ησσσ XeXDK d
MM

T
d

&
aa JσJ    (6.76) 

a sufficient condition is  
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From equation (6.75), the conditions (6.53) and (6.77) guarantee that (note that 0>α ) 
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Inequality (6.78) guarantees )0(VV 22 ≤ . Thus, a sufficient condition for (6.77) is 
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which can be satisfied following inequality (6.54) and pUU Vr +≤ 2
2V α  that can be 

derived from inequalities (6.56) and 6.57). 

The above analysis shows that (6.78) is satisfied under conditions (6.53) and (6.54). 

The right hand side of (6.78) is also semi-negative. Thus, )0(VV 22 ≤ , meaning states in 

r(t) are bounded. Using Barbalat's lemma, inspection of (6.71) and (6.78) reveals that the 

tracking errors 21,,~, ssXe  and F~  approach zero as ∞→t . Furthermore, since 

)~(λ11 Xees −+= & , the velocity tracking error e& , also converges to zero. Additionally, 

inspection of term 11110000
~]][

)(
[~~]][
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[~ zσ

x
x

zzσ
x

x
z z

T
z

T

gg
Γ−Γ−
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&

&
 shows that this term is 

negative definite everywhere, except for instances in which 0=x& . Thus, for tracking 

tasks with non-zero velocity trajectories, inequality (6.78) can be written as  

2
2V rα−≤&        (6.80) 

and it can be further concluded that  0~,~
10 →zz  as ∞→t . Finally, from equation (6.75), 

inequality (6.78) shows that a local negative semi-definite upper bound on 2V&  can be 

obtained. The size of the bounded region can be expanded by changing the values of 

control gains )( '
dKσ , )( '

dKσ  and )λ( 2 pLσ . 
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Remarks 6.2.2: 

(i) The parameter estimates, however, do not necessarily converge to their exact values. 

In general, parameter convergence to true values can be potentially achieved if the 

desired trajectory is “sufficiently rich” (Slotine and Li, 1991). Additionally, it is 

desirable to keep parameter estimates within bounded sets. This is particularly 

important since if the estimates of some parameters, such as i
jsp

i
j

i
j kk ,β , approach zero, 

the inverse of the estimated matrix (q)Acq
ˆ  in (6.48) becomes very large and the 

control signal saturates. An intuitively motivated procedure (Slotine and Li, 1991) is 

to stop updating parameter estimates when they reach their assigned upper or lower 

bounds. Updating, resumes as soon as the corresponding derivatives change signs. 

The inclusion of this procedure, also termed discontinuous projection (Goodwin and 

Mayne, 1987), does not affect the stability proof presented above. The remarks 

presented here are also applicable for previously developed controllers that involve 

adaptation laws for unknown parameters. The inclusion of the discontinuous 

projection with the adaptation law is demonstrated in the next chapter. 

(ii) With respect to controller (6.48), the only hydraulic parameters needed by the 

controller are the effective piston areas IA  and OA . Other hydraulic function 

parameters such as effective bulk modulus β  or control valve gain spK , are all 

considered in the adaptation laws described in the proposed control strategy. 

Similarly, the control law requires no knowledge about mass or inertia of the 

manipulators’ links or payload. The controller only needs knowledge about the 

length of the manipulators’ links, since the Jacobian matrix appears in the control law.  

(iii) The internal force is examined here for convergence to the desired value. The 

following can be obtained about the contact forces:  

)]ˆ([int
† r

fcfcm
d

m
d

m
TddTt

c FE FFJGqCqHJVWF −+++−+= −−∞→ &&&τ  (6.81) 

        From equations (2.12), (2.13) and (6.81), it can then be proven that 

)]ˆ([ r
fcfcm

d
m

d
m

TdTt
c

t
ext WEWF FFJGqCqHJF −+++−== −−∞→∞→ &&&τ  (6.82) 

        and 
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       where ∞→t
extF and ∞→tFint  are the external and internal forces as ∞→t , respectively. 

Since V is a full-column-rank matrix, it can be concluded that  

)]ˆ([)( ††
intint

r
fcfcm

d
m

d
m

Tdt FF FFJGqCqHJWWIV −+++−+= −∞→ &&&  (6.84) 

       Equation (6.84) indicates that the actual internal force is bounded, but does not 

converge to the desired value. In order to enhance the regulation of the internal force, 

a force feedback loop in the control law (6.48) is further introduced by replacing 
dFintV  with ))(( intintintint FFKF dd −+V  in equation (6.50) that describes the desired force 

dF : 
r
fc

dddTTd FFKFE FVWJJF ˆ)))((( intintintint
†1 +−++= −− τ    (6.85) 

      The internal force intF , can be extracted from contact forces, which are typically 

available through wrist force sensors. As a result, equation (6.84) becomes 

)]ˆ([)()1( ††1
intintint

r
fcfcm

d
m

d
m

Tdt KFF FFJGqCqHJWWIV −+++−+−= −−∞→ &&&  

 (6.86) 

      Theoretically, the actual internal force can be arbitrarily set as close as possible to the 

desired value through adjusting the force feedback gain intK . With respect to 

stability, the format of the Lyapunov-like scalar function remains the same, since 

only the term related to internal force has been changed. 

(v) The time derivative of the virtual force dF  is required by the controller (6.48). But 

the virtual force contains term rx&  in its friction compensation part, which is not 

differentiable at 0=rx& . Fortunately, dF  is continuous everywhere, differentiable 

anywhere except at the point of 0=rx& , and its left and right derivatives at 0=rx&  

exist and finite. Actual control input can still be synthesized to accomplish the job. 

Another way to deal with this problem is to replace rx&  with )/tanh( εrr xx &&  in the 

friction compensation part of dF . Replacing the control gain dK , used in equations 

(6.38) and (6.51), with dsd KK + , equation (6.80) becomes 
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Define 
Lsl

a

f ,

11 ])ˆ][ˆ[(
'

zσJσ
η = . Using the following property (Polycarpou and Ioannou, 

1993): 

0,2785.0)/tanh(0 >∀<−< εεεrrr xxx &&&     (6.88) 

One can arrive at 

1
2

1
2

2 '2785.0V ssKr ds εηα +−−≤&     (6.89) 

Since )4/()'2785.0('2785.0 22
11 dsds KsKs εηεη +≤ , one further obtains 

)4/()'2785.0(V 22
2 dsKr εηα +−≤&      (6.90) 

0V2 ≤&  whenever r is outside the compact set { })4/()'2785.0(| 22 αεη dsKrr < . Thus, 

it can be concluded that the tracking error is bounded and converges to a small 

neighbourhood of zero, whose size is adjustable by design parameters ε  and dsK . 

6.3 Simulation Results 

The nonlinear controller derived in Section 6.2, has been examined by numerical 

simulations, using the same model as in the previous chapters. The task was to have two 

identical planar three degree-of-freedom hydraulic manipulators hold a rigid object and 

move it along a desired path (see Figure 6.1). The stick and slip frictions were chosen as 

2200N and 1500N respectively. The values of other friction parameters used in the 

simulation model were ,N/m102 5
,0 ×=i
jσ     ,Ns/m400  ,1 =i

jσ  ,Ns/m200,2 =i
jσ  and 

m/s.002.0, =i
jsx&   

The vectors of unknown parameters θ  and ϕ, for the above system are given below: 
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1 ,...} ,,..., ,{ === ββββϕ      (6.92) 

In equation (6.91), m and I are mass and inertia of the object, respectively. i
jm , i

jI  and i
ja  

(i=1,2; j=1,2,3) are mass, inertia and distance of center of mass to the jth joint of the ith 

manipulator, respectively. For the controller, the values of these unknown parameters 

were initially set to values different from those used in the model to investigate the ability 

of the controller to cope with parametric uncertainties. The controller gains were chosen 

as  

),50,...,50(λ )66(
1 diag=×  ),50,...,50(λ )66(

2 diag=×  ),1000,...,1000()66( diagK p =×   

),300,...,300()66( diagLp =×  ),700,...,700()66( diagK d =×  ),700,...,700()66(' diagK d =
×  

),200,...,200()66( diagK F =×     ),05.0,...,05.0()66( diagF =Γ ×   

),10  ,10  ,10 ,10  ,10  ,10  ,1 ,02.0 ,1 ,5 ,1 ,1 ,1 ,1 ,1 ,1 ,1 ,5 ,1 ,1 ,1 ,1 ,1 ,1( 444444 −−−−−−=Γ diagθ  

),105   ,10...,4.2  ,105   ,104.2( -78-78)1212(
××××=Γ

× diagϕ   

),105 ...,  ,105( 10-10-)66(

0
××=Γ

× diagσ     ),10 ...,  ,10( 5-5-)66(

1
diag=Γ

×

σ   

10), ...,  ,10(
)66(

0
diagz =Γ

×      10) ...,  ,10(
)66(

1
diagz =Γ

× . 

Two reference trajectories along the vertical direction were simulated:  

(i) point-to-point trajectory with a travel distance of 0.3m, maximum speed of 0.15m/s 

and maximum acceleration of 0.6m/s2 and,  

(ii) sinusoidal trajectory consisting of one segment with an amplitude of 0.1m and 

frequency of 0.2Hz, followed by a second segment with an amplitude of 0.02m and 

frequency of 1Hz.  
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These two reference trajectories are shown in Figures 6.1 and 6.11, respectively. The 

controller was also required to maintain the internal object force in the horizontal 

direction close to zero and at the same time, evenly distribute the load between the two 

robots.  
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Figure 6.1: Point-to-point vertical reference trajectory. 
 

The first set of tests was conducted using the point-to-point reference trajectory 

shown in Figure 6.1. Simulations were first conducted with controller (6.48) and no force 

feedback. Figure 6.2 shows the tracking error. As can be seen, the object follows the 

desired path closely. In the calculation of the control signals, the derivative of || rx&  was 

set to zero at 0=rx& .  

Additional simulations, where term rx&  was replaced with )/tanh( εrr xx &&  in their 

controllers were also carried out, with no significant differences apparent. The control 

signals shown in Figure 6.3 are all reasonable and smooth. With reference to Figure 6.4, 

the internal force acting on the object is different from the desired level of zero. This was 

expected since the internal force is theoretically not guaranteed to converge to the desired 

level, given the controller (6.48) with no force sensed at each of the manipulators’ end-

effectors. Estimates of typical parameters are shown in Figure 6.5. Note that the 

estimated values of the parameters do not converge to the actual. Such results do not 

contradict the theoretical argument, since the parameter convergence is not theoretically 
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guaranteed as discussed in Section 6.2. The distribution of the payload between the two 

manipulators was fairly even as seen from Figure 6.6 where two manipulators’ lifting 

forces are very close to each other. Figure 6.7 shows the friction estimation for the 

second link of one manipulator calculated from equation (6.39), which follows the actual 

value reasonably well.  
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Figure 6.2: Tracking error in the vertical direction under controller (6.48) with no 
force feedback. 
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Figure 6.3: Control signals for one of the manipulators.  
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Figure 6.4: Internal force on the object in the horizontal direction. 
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Figure 6.5: Typical parameter estimation relative errors. 
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Figure 6.6: Lifting forces by two manipulators. 
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Figure 6.7: Friction and its estimate (link two of the first manipulator). 

 

In order to bring the internal force closer to the desired level, the controller (6.48) 

incorporating the force feedback signal given in equation (6.85), was applied to the 

same point-to-point-tracking trajectory shown in Figure 6.1. The same control gains as 

before were used with the addition of force feedback gain, which was set to 3int =K . 

The derivative of the internal force was neglected in the calculation of the control 

signals. The position tracking error shown in Figure 6.8 is very similar to the one in 

the tracking control with no force feedback (see Figure 6.2). The control signals (see 

Figure 6.9) exhibit less effort (i.e. peak control signals are less) than the previous case 

(compare Figures 6.9 and 6.3). Figure 6.10 shows a great improvement in the internal 

force response as a result from adding a force feedback in the loop. The internal force 

is noticeably reduced to 40N. This also explains why less control efforts (smaller 

control signals) are needed for the controller with force feedback. 
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Figure 6.8: Tracking error in the vertical direction (controller with force feedback). 
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Figure 6.9: Control signals for the first manipulator pertaining to Figure 6.8. 
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Figure 6.10: Object internal force in the horizontal direction. 
 

The next test was conducted using sinusoidal trajectory tracking shown in Figure 

6.11. Controller (6.48), with the addition of force feedback and having same gains as in 

the previous set of tests; was used and the derivative of the internal force was neglected 

again. Figures 6.12 to 6.15 show the simulation results. As can be seen in Figure 6.12, the 

control system shows excellent performance. The amplitude of the tracking error, 

corresponding to the trajectory with higher frequency and lower amplitude, is about 
4104 −× m. The control signals to the actuators are reasonable and not saturated (see 

Figure 6.13 for a plot of a typical signal). Figure 6.14 shows that the internal force on the 

object changes slightly with the response. The distribution of the lifting forces was quite 

even, as shown in Figure 6.15.  
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Figure 6.11: Sinusoidal reference trajectory used for further controller evaluation. 
 

0 4 8 12 16 20
Time (s)

-0.004

-0.002

0

0.002

0.004

Po
si

tio
n 

er
ro

r (
m

)

  

Figure 6.12: Tracking error in the vertical direction. 
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Figure 6.13: Control signals for link two of the first manipulator. 
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Figure 6.14: Internal force on the object in the horizontal direction. 
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Figure 6.15: Load sharing between manipulators. 
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6.4 Summary 

This chapter documented the design, stability analysis and numerical verification of a 

tracking controller for co-operation among several hydraulic manipulators handling a 

rigid payload. The highly nonlinear dynamic behavior of hydraulic actuation, 

manipulators and dry friction were incorporated in the controller design. The issues of 

internal force control on the object, as well as load sharing among several manipulators 

were also addressed. To deal with parametric uncertainties in the payload, manipulators, 

hydraulic functions as well as friction, the controller was augmented with various 

adaptation laws. An appropriate observer was included to avoid the need for 

measurement of acceleration as feedback. Thus, the proposed tracking controller does not 

need exact knowledge of the payload, manipulators’ dynamic parameters, or hydraulic 

function parameters. With respect to the implementation, the controller only requires 

measurements of robots’ joint angular positions and velocities as well as hydraulic line 

pressures. In the case force feedback is implemented to impose desired internal forces, 

the contact forces need to be measured as well. 

The equilibrium of the entire system under the proposed controller was theoretically 

investigated, and the stability of the position tracking system was ensured with final zero 

position tracking error while the internal force on the object was maintained arbitrarily 

close to the desired level. Simulations were performed with two manipulators resembling 

MAGNUM hydraulic manipulators. The results demonstrated the effectiveness of the 

proposed nonlinear controller. 
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Chapter 7 Dynamic Surface Control of Co-operating 

Hydraulic Manipulators in the Presence of Friction 
 
The previous chapter used the backstepping method to develop a Lyapuov-based 

nonlinear controller for co-operating hydraulic manipulators. The method however, 

suffers from the problem of “explosion of terms” (Swaroop, et al., 1997). This can be 

seen, for example, by an inspection of the controller (6.48), which requires the 

calculation of the derivative of dF that creates many terms. To overcome the problem of 

“explosion of terms” associated with the backstepping method and the problem of finding 

derivatives, dynamic surface control technique by Swaroop et. al. (2000), which is a 

dynamic extension to multiple surface sliding (MSS) control by Won and Hedrick (1996); 

is introduced in this chapter. By incorporating a low pass filter in the controller design 

within the framework of the backstepping method, the control law does not involve 

model differentiation. Thus the problem of “explosion of terms” is avoided. Another 

benefit is that no acceleration observer is required, in order to avoid the requirement of 

acceleration feedback.  

7.1 Controller Design 

Let 10 ˆ,ˆ,ˆ,ˆ σσϕθ  and 12σ̂  be estimates of 10 ,,, σσϕθ and 12σ , respectively. Also, let 0ẑ  and 

1ẑ  be two estimates of z.  θθθ −= ˆ~ , ϕϕϕ −= ˆ~ , 000 ˆ~ σσσ −= , 111 ˆ~ σσσ −= , zzz −= 00 ˆ~  

and zzz −= 11 ˆ~  are errors between the estimates and the actual values. Additionally, the 

following notations are defined: 
dXXe −=         (7.1) 

eXX d
r λ−= &&         (7.2) 

ees λ+= &         (7.3) 
dX  is the desired value of X  and belongs to 2C . It is assumed that X , dd XX &&& ,  are all 

bounded. Matrix λ  is diagonal and positive definite. The unknown parameters satisfy:  
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UL μμμ ≤≤  where 10 ,,, σσϕθμ = . 

 

Proposition:  

Consider the system described by equations (6.1), (6.2) and (6.3). Given the 

following control law, updating laws and observers: 

(i) Controller 

( )FJΓFqqAqAU ~),(ˆ)(ˆ 11
F

T
aF

d
cacq Ks −−+= −− &&     (7.4) 

where 
dFFF −=~          (7.5) 

;~   ;/~
0 FFFFF −=−= dddd τ&  )0()0( FF =d     (7.6) 

fc
ddTT FE FVWJJF ˆ)τ( int

†1 ++= −−       (7.7) 

1100 ˆ]
)(

][ˆ[ˆ]ˆ[ˆ z
x

x
σzσF

&

&

gfc −=        (7.8) 

sKXGXXXXDXXM dr
T
aarrr

d −+++= )(ˆ]σ̂[),(ˆ)(ˆτ 12
&&&&& JJ   (7.9) 

(ii) Discontinuous projection-based adaptation laws for unknown parameters pertaining 

to the manipulators-object dynamics, hydraulic functions and friction parameters, 

⎪
⎩

⎪
⎨

⎧
>=∀
<=∀

==
               otherwise         
0  and  ˆ     0
0  and  ˆ     0

)(Projˆ

μμ

μμ

μμ

μμμ μμ
μμ

μ
Yw

Yw
Yw

Yw U

L
&    (7.10) 

where 10 ,,, σσϕθμ = . Lμ  and Uμ  are lower and upper bounds of μ . Scalar 0>μw  

represents the adaptation rate, and μY  is an adaptation function to be synthesized later. 

(iii) Observers for friction state z 

sΓ
g

T
az Jz

x
x

xz 1
00 0

ˆ]
)(

[ˆ −−−=
&

&
&&       (7.11) 

sΓ
gg

T
az J

x
x

z
x

x
xz 1

11 1
]

)(
[ˆ]

)(
[ˆ −+−=

&

&

&

&
&&      (7.12) 

then, there exists a set of control gains and a filter time constant such that, the closed-loop 

control system is stable and achieves arbitrarily small bounded tracking error.  
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Remarks 7.1.1  

(i) The desired force dF  is obtained by filtering F  through the first order filter (7.6), 

which also provides dF&  for the controller. With this filter, one does not need explicit 

differentiation of F . 0τ , is a positive design parameter constant. 

(ii) For a discontinuous projection-based adaptation law, it has been shown (Kristic et. al., 

1995) that for any adaptation function μY , if UL μμμ ≤≤ )0(ˆ , the adaptation law 

given by equation (7.10) guarantees  

μμμμ ˆ       , ˆ ∀≤≤ UL     (7.13) 

μμμμμ YYwT       ,0) ˆ (~ ∀≤−&     (7.14) 

(iii) GDM ˆ,ˆ,ˆ  and ]ˆ[ 12σ  are estimated dynamic matrices or vectors corresponding to the 

parametric estimation vector θ̂ . Similarly, matrices caÂ  and vector cqÂ  are the 

estimates of caA  and cqA , corresponding to parameter estimation vector ϕ̂ . Vector 

fcF̂  is the estimate of )]
)(

][[][( 10 z
x

x
σzσJF

&

&

gafc −= , based on the estimates of 

internal friction states and friction force parameters. 

(iv) ]ˆ[ 0z  and ]ˆ[ 1z  are diagonal matrices with 0ẑ , and 1ẑ  as their diagonal elements, 

respectively. 

(v) All gains used in the controller and observers, FF KΓ , , ,dK 0zΓ , 1zΓ , are constant 

positive definite diagonal matrices. 

Proof:  

Define a Lyapunov-like scalar function as: 

d
F

Td
F

T ΓΓ FFFF ~~~~VV 2
1

2
1

12 ++=       (7.15) 

where 

}~][~~][~)({V 1110002
1

1 10
zσzzσz z

T
z

TT ΓΓsXMs ++=     (7.16) 

Equations (6.1) and (7.9) are employed to arrive at the following error dynamics  



7. Dynamic Surface Control of Co-operating Hydraulic Manipulators in the Presence of Friction 99 
   

 

)]][ˆ]ˆ]([
)(

[)][ˆ]ˆ[([                                        

)(][~),,(),()(

111000

12

zσzσ
x

x
zσzσJ

FFJJσJ

−−−+

−+−−=+

&

&

&&&&&

g

ssKXXXΘsXXDsXM

T
a

T
a

T
aadrr θ

 (7.17) 

where matrix Θ  is defined by equation (6.4). It can then be shown that time derivative of 

1V  is  

111000111

000121

~][~~][~)]][ˆ]ˆ]([
)(

[         

)][ˆ]ˆ[([ ~)(][V
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&&
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++−−

−+−−+−−= θθ
 (7.18) 

where sXXXΘY rr
T ),,( &&&−=θ  is the adaptation function for θ̂ . According to equations 

(7.1) to (7.3), variables rr XXX &&& ,,  can be defined by state variables e, s, and desired 

values dX , dd XX &&& , . There exists a positive continuous function θγ  given by 

sXXXseY ddd ),,,,( &&&
θθ γ≤       (7.19) 

Employing relations 0000000
~][~]ˆ[][ˆ]ˆ[ zσσzzσzσ +=−  and 1111111

~][~]ˆ[][ˆ]ˆ[ zσσzzσzσ +=− , 

leads to 

1110001100

10121
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)(
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&&
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θθ

 (7.20) 

where sY T
aJzσ ]ˆ[ 00

−= , s
g

Y T
aJz

x
x

σ ]ˆ][
)(

[ 11 &

&
= . There exist two continuous functions 

0σ
γ  

and 
1σ

γ  given by 

sXeY d ),~,( 000
zσσ γ≤        (7.21) 

sXXseY dd ),,~,,( 111
&zσσ γ≤        (7.22) 

From equations (7.11) and (7.12), one arrives at 

sΓ
g

T
az Jz

x
x

z 1
00 0

~]
)(

[~ −−=
&

&&        (7.23) 
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Applying equations (7.23) and (7.24) results in 

1111000010
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−++−−= θθ
  (7.25) 

Since  

ϕ̂),,(),(ˆ)(ˆ UqqqqAUA && Φq cacq =−       (7.26) 

the hydraulic dynamics in equation (2.50) can be rewritten as 

ϕ~),,(),(ˆ)(ˆ UqqqqAUqAF &&& Φcacq −−=      (7.27) 

Given equation (7.27), the time derivative of the Lyapunov-like scalar function becomes 

d
F

TdT
F

Td
cacq ΓYΓ FFFFFAUA ~)(~~)ˆˆ(VV 12

&&&&& −+−−−+= ϕϕ   (7.28) 

where FUqq ~),,( F
TΦY Γ= &ϕ . There exists a continuous positive function ϕγ , given by 

FFF ~),,,,~,~,,( 0τγϕϕ
dddd XXXseY &&&≤      (7.29) 

Substituting controller (7.4) into equation (7.28), the derivative of 2V  will be 

d
F

TdT
FF

T
a

T ΓYΓKs FFFFFFJ ~)(~~~~VV 12
&&&& −+−−−= ϕϕ    (7.30) 

Employing filter (7.6), the last term in equation (7.30) arrives at 

d
F

Td
F

Tdd
F

Td ΓΓΓ FFFFFFF ~~~~)( 1
0

&&& −−=− −τ     (7.31) 

Two issues have to be taken care of here, with respect to F&  that appears in equation 

(7.31). First, term F&  will include s& . Following the DSC method, s&  is shown bounded as 

follows. Equation (7.17) shows that  
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  (7.32) 

All the estimates θ̂ , 0σ̂  and 1σ̂  in equation (7.32) are bounded according to equation 

(7.13); so is θ~ . Therefore, there exists a positive continuous function sγ , such that 

 ),,,,~,~,~,~,,( 10 d
dddd

s KXXXses &&&& zzFFγ≤      (7.33) 

Second, vector F  includes friction compensation fcF̂ , which has a term containing i
jx& . 

The gradient of i
jx&  is undetermined when 0=i

jx& . However, the generalized gradient 

(Clark, 1983) 

⎪
⎩

⎪
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        1  
   0   ]1,1[

     1       
)(       (7.34) 

is bounded anywhere, including 0=i
jx& . Based on equation (7.7) and the above analysis, 

there exists a continuous positive function Fγ , such that 

d
d

dddd
F

d
F

T KXXXseΓ FzzFFFF ~),,,,~,~,~,~,,(~
10

&&&& γ≤−    (7.35) 

The generalized gradient at a point i
jx&  can be viewed as a set valued map equal to the 

convex closure of the limiting gradient near i
jx&  [for a similar argument, see references by 

Maciuca and Hedrick (1997) and Duraiswamy and Chiu (2003)]. Now from equation 

(7.30), one arrives at 

dd
FFF

T
a

T ΓΓKs FFFFFFJ
F

~~~~~~~VV
21

012 γτγϕ ϕ +−+−−≤ −&&   (7.36) 

Replacing 1V&  in equation (7.36) with equation (7.25) gives 



7. Dynamic Surface Control of Co-operating Hydraulic Manipulators in the Presence of Friction 102 
   

 

dd
FFF

T

z
T

z
T

d
a

TT
aa

T
d

T

ΓK

Γ
g

Γ
g

s

ssssssKs

FFFFF

zσ
x

x
zzσ

x
x

zσ

σFJJσJ

F

σ

σ

~~~~~~       

~]][
)(

[~~]][
)(

[~~        

~~~][V

21
0

111100001

0122

1

0

γτγϕ

γ

γγθ

ϕ

θ

+Γ−+−

−−+

+++−−≤

−

&

&

&

&

&

  (7.37) 

For any 0>εr  and }V{ 2 εr≤∀ , define constants 1C , 2C , 3C  

)max()max()max(
10 ,1,01 σσ σσ γγγθ θ MMMC ++=    (7.38a) 

)max(2 ϕγϕMC =        (7.38b) 

)max(3 F
γ=C         (7.38c) 

where LUM μμμ −= , 10 ,,, σσϕθμ = . 
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where 321 εεεε ++= . Noting the semi-negative terms 
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−−  in equation (7.39), there exist appropriate gains 

dK  and FK , and a filter time constant 0τ , such that  
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which is to say  
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0V2 ≤& , whenever vector TTdTTd ssr )~,~,()~,~,( FFFF =  is outside the compact set 

}/)~~(|)~,~,({
222 ηε<++ dd ssr FFFF . Thus, it is concluded that the closed–loop 

system is stable and eventually the tracking error converges to a small neighborhood of 

zero, whose size is adjustable by the design parameters ε , dK , FK  and 0τ . Moreover, 

for most of the time during the tracking task, velocity is nonzero, i.e. 0≠x& . Therefore, 

excluding the zero velocity, equation (7.39) becomes  

εξ +−≤ 22 VV&         (7.45) 

and  
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where Uα >0, and is defined by  

)~~~~(V 10

222
2 zzFF ++++≤ d

U sα     (7.47) 

Inequality (7.45) gives  

ξεξξ /)] exp(1[)0(V) exp()(V 22 ttt −−+−≤     (7.48) 

This further indicates that an exponentially converging transient performance is achieved 

with the exponentially converging rate ξ  and the final tracking error can be adjusted via 

controller parameters freely, in a known form. It is seen from equation (7.46) that the 

convergence rate can be made arbitrarily large, and final tracking errors ξε / , can be 

made arbitrarily small by increasing the control gains dK , FK , 0zΓ , 1zΓ ; or decreasing 
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the design parameter ε  and the filter time constant 0τ . A small or appropriate time 

constant plays a role to ensure that dF  follows F  timely without affecting the system’s 

stability. 

      Finally, since 0)λ(  λ >+= ees & , the position tracking error is bounded and reaches 

an arbitrarily small value. This completes the proof of the proposition. 

Remarks 7.1.2:     

(i) The proposed controller is also robust against un-modeled nonlinearities. Let term δ~  

be an uncertain and nonlinear function in the dynamics of the system under investigation, 

and practically Uδδ ~|~| < . Accordingly, the term in equation (7.38a) is adjusted as 

)~max()max()max(
10 ,1,01 UMMMC δγγγθ θ +++= σσ σσ    (7.49) 

which, shows that the inclusion of an uncertain non-linearity increases 1C  and thus may 

require a higher gain dK  to meet equation (7.41). In other words, without any other 

efforts, simply increasing the control gain dK  can improve the control system’s 

robustness against un-modeled nonlinearities.  

(ii) The contact force of the entire control system can be shown to be  

]~)ˆ([int
† ετ +−+++−+= −−∞→

fcfcm
d

m
d

m
TddTt

c FE FFJGqCqHJVWF &&&   (7.50) 

where ε~  is a bounded function of the bounded state errors. From equations (2.12), (2.13) 

and (7.50), it can then be proven that 
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and 
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ext
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c
t FFF FFJGqCqHJWWIVWFV &&&

(7.52) 

where, ∞→t
extF and ∞→tFint  are the external and internal forces as ∞→t , respectively. Since 

V is a full-column-rank matrix, it can be concluded that  

]~)ˆ([)( ††
intint ε+−+++−−= −∞→

fcfcm
d

m
d

m
Tdt FF FFJGqCqHJWWIV &&&   (7.53) 
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Equation (7.53) indicates that the actual internal force is bounded, but does not converge 

to the desired value. In order to enhance the regulation of the internal force, a force 

feedback loop in the control law (7.4) is further introduced by replacing dFintV  with 

))(( intintintint FFKF dd −+V  in equation (7.7): 

fc
dddTT FFKFE FVWJJF ˆ)))((( intintintint

†1 +−++= −− τ    (7.54) 

The internal force, intF , can be extracted from contact forces, which are typically 

available through wrist force sensors. As a result, equation (7.53) becomes 

]~)ˆ([)()1( ††1
intintint ε+−+++−+−= −−∞→

fcfcm
d

m
d

m
Tdt KFF FFJGqCqHJWWIV &&&  

 (7.55) 

      Theoretically, the actual internal force can be arbitrarily set as close as possible to the 

desired value through adjusting the force feedback gain intK . With respect to stability, the 

same Lyapunov-like scalar function will result in the same conclusion, since only the 

term related to internal force has been changed. 

      Regarding the load distribution, it is noticed that the contact force in equation (7.50) 

has an extra term ]~)ˆ([ ε+−+++− −
fcfcm

d
m

d
m

T FFJGqCqHJ &&& , when compared with the 

reverse mapping int
† FFextc VWF +=  as stated in equation (2.13). Therefore, the load 

distribution scheme described in †W  can be dynamically changed because of this extra 

term, especially when uneven load distribution is scheduled. 

(iii) With respect to the controller (7.4), the only hydraulic parameters needed by the 

controller are the effective piston areas IA  and OA . Other hydraulic function parameters 

such as effective bulk modulus β  or control valve gain spK ; are all considered in the 

adaptation laws described in the proposed control strategy. Similarly, the control law 

requires no knowledge about mass or inertia of the manipulators’ links or payload. The 

controller only needs knowledge about the length of the manipulators’ links, since the 

Jacobian matrix appears in the control law. Only measurements of manipulators’ joint 

angular positions and velocities as well as hydraulic line pressures are required for 

feedback.  

(iv) Construct the following Lyapunov-like scalar function for the same control system:  
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where term 1V  is given by equation (7.16). Given the above Lyapunov-like scalar 

candidate, instead of arriving at equation (7.37), one obtains  
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Using inequality (7.14), one further arrives at 
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Similar to inequality (7.39), one obtains 
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 (7.59) 

From inequality (7.59), the same conclusions can be made as from inequality (7.39), 

except that exponentially converging transient performance is not shown. Compared with 

equation (7.41), the ranges for dK  and FF ΓK  are wider, which can be obtained from 

equation (7.59) as below: 

2
)( a

dK
Jσ

>        (7.60) 

0>FF ΓK         (7.61) 

It follows, that to achieve exponentially converging transient performance, gains dK , 

FF ΓK  are expected to be higher, to account for the parameter uncertainties represented 

by 1C  and 2C .  
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7.2 Simulation Results 

The nonlinear controller derived in Section 7.1 has been examined by numerical 

simulations using the same simulation model presented in the previous Chapter. The 

same two reference trajectories as used in Chapter 6 were used again:  

(i) point-to-point trajectory with a travel distance of 0.3m, maximum speed of 

0.15m/s and maximum acceleration of 0.6m/s2 and  

(ii) sinusoidal trajectory consisting of one segment with an amplitude of 0.1m and 

frequency of 0.2Hz followed by a second segment with an amplitude of 0.02m 

and frequency of 1Hz.  

These two reference trajectories are shown in Figures 7.1 and Figure 7.13, respectively. 

The controller was also required to maintain the internal force on the object in the 

horizontal direction close to zero and at the same time, evenly distribute the load between 

the two robots, i.e. 5.021 == αα . The control gains were chosen as follows:  

),200,...,200(λ diag= ),01.0,...,01.0(0 diag=τ ),3,...,3(int diagK =  

),2000,...,2000(diagK d = ),2,...,2(diagK F = ),05.0,...,05.0(diagΓ F =

),10  ,10  ,10 ,10  ,10  ,10  ,1 ,50,1 ,25.0,1 ,1 ,1 ,1 ,1 ,1 ,1 ,0.2 ,1 ,1 ,1 ,1 ,1 ,1( 777777diagw =θ  

),102  ,104.2...,  ,102  ,104.2( 6-96-9)1212(
××××=

× diagwϕ  

),102 ...,  ,102( 99)66(

0
××=

× diagwσ  ),105 ...,  ,105( 66)66(

1
××=

× diagwσ  

10), ...,  ,10()66(

0
diagΓ z =

×  10) ...,  ,10()66(

1
diagΓ z =

× . 

The first set of tests was conducted using the point-to-point trajectory tracking 

shown in Figure 7.1. Figure 7.2 shows the tracking error. As can be seen, the object 

follows the desired path closely with almost zero steady state error of position. The 

control signals shown in Figure 7.3 are all reasonable and smooth. The internal force is 

theoretically not guaranteed to converge to the desired level. With force feedback 

( )3,...,3(int diagK = ), the internal force has a small value of 40N (shown in Figure 7.4), 

which is the same magnitude as the simulation in last chapter. Estimations of typical 

parameters are shown in Figure 7.5. Note that the estimated values of the parameters do 

not converge to the actual. Such results, however, do not contradict the theoretical 
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argument, since the parameter convergence is not theoretically guaranteed in Section 7.1. 

The distribution of the payload between the two manipulators was fairly even as shown in 

Figure 7.6. Finally, Figure 7.7 shows the friction estimation fcF̂ , for the second link of 

one manipulator during the tracking control, which follows the actual ( fcF ) reasonably 

well.  
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Figure 7.1: Point-to-point reference trajectory. 
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Figure 7.2: Position tracking error. 
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Figure 7.3: Control signals for one of the manipulators. 
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Figure 7.4: Internal force on the object in the horizontal direction. 
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Figure 7.5: Typical parameter estimation errors. 
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Figure 7.6: Load sharing between manipulators. 
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Figure 7.7: Friction and its estimate (link two of one of the manipulators). 
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The above simulation was repeated with uneven load distribution described by 

6.01 =α  and 4.02 =α  that required the first manipulator to contribute more to carry the 

payload. Tracking errors and the internal force did not change much as shown in Figure 

7.8 and 7.9 respectively. The control signals for the manipulators, shown in Figures 7.10 

and 7.11, were quite different from each other. Consequently, Figure 7.12 shows that the 

lifting forces were not evenly distributed between the two manipulators. The first 

manipulator contributed more to the lift and hold of the object. Quantitatively, the 

distribution was not exactly the same as expected by the values of 6.01 =α  and 4.02 =α  

due to the extra term in (7.50) that has been discussed in Section 7.1. Nevertheless, it is 

shown that the load distribution is still adjustable in the presence of significant friction in 

the actuators. 
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Figure 7.8: Position tracking error (uneven load distribution). 
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Figure 7.9: Internal force on the object in the horizontal direction. 

 

 

 

        
0 1 2 3 4 5 6 7 8 9 10

Time (s)

-8

-4

0

4

C
on

tro
l S

ig
na

ls
 (V

)

_

u1

u1

u1

2

1

3

 

Figure 7.10: Control signals for the first manipulator. 
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Figure 7.11: Control signals for the second manipulator. 
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Figure 7.12: Load sharing between manipulators. 

 

The next set of tests was conducted using even load distribution and sinusoidal 

trajectory tracking shown in Figure 7.13. All the gains were kept without changes. 

Figures 7.14 to 7.18 show the simulation results. As seen in Figure 7.14, the control 

system had excellent performances. The amplitudes of the position tracking errors, 

corresponding to the trajectory with lower frequency and higher amplitude, and the one 

with higher frequency and lower amplitude, are about 1 mm and 0.2 mm, respectively. 

The control signals to the actuators are reasonable and not saturated (see Figure 7.15). 

Figure 7.16 shows that the internal force on the object changes less and is closer to zero 

during the tracking of the low-amplitude reference. Estimations of parameters are shown 

in Figure 7.17. Again, they do not converge to their actual values as discussed before. The 

distribution of the lifting forces from the robots was quite even, as shown in Figure 7.18.  
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Figure 7.13: Sinusoidal reference trajectory. 
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Figure 7.14: Position tracking error of the object. 
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Figure 7.15: Control signals for the first manipulator. 
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Figure 7.16: Internal force on the object in the horizontal direction. 
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Figure 7.17: Typical parameter estimation errors 
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Figure 7.18: Load sharing between manipulators. 

7.3 Summary 

This chapter documented design, stability analysis and numerical verification of a 

tracking controller for co-operation among several hydraulic manipulators handling a 

rigid payload. Different from the controller developed in last chapter, this controller used 

the concept of dynamic surface control. A low pass filter was integrated in the controller 

design, eliminating model differentiation. Thus, complex calculation arising from 

“explosion of terms”, as well as the requirement of acceleration feedback and the 

derivative of intF  in the case that force feedback is implemented, was avoided. 

The controller design also addressed all the other issues listed in Chapter 6. The 

highly nonlinear dynamic behavior of hydraulic actuation, manipulators and dry friction 
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were incorporated in the controller design. The issues of internal force control on the 

object, as well as load sharing among several manipulators were also addressed. To deal 

with parametric uncertainties in the payload, manipulators, hydraulic functions as well as 

friction, the controller was augmented with various adaptation laws. The proposed 

tracking controller does not need exact knowledge of the payload, manipulators’ dynamic 

parameters, or hydraulic function parameters. With respect to the implementation, the 

controller only requires measurements of robots’ joint angular positions and velocities, 

and hydraulic line pressures. The measurements of contact forces are needed when force 

feedback is implemented.  

The equilibrium of the entire system under the proposed controller was theoretically 

investigated. Although final zero error of the object position tracking was not ensured, 

which was achieved by the controller previously developed in Chapter 6; position errors 

were proven bounded in a ball which could be made arbitrarily small by adjusting control 

gains, design parameters and filter time constant. In addition, the closed-loop system was 

robust against un-modeled nonlinearities. The internal force on the object could be made 

arbitrarily close to the desired level.  

Simulations were performed with two manipulators resembling MAGNUM 

hydraulic manipulators. The results demonstrated the effectiveness of the proposed 

nonlinear controller. 
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Chapter 8 Experimental Studies 
 
 
 
 
The controller developed in Chapter 7 has been implemented on an available fully 

instrumented system, including two single-axis electro-hydraulic actuators. The goal is to 

further show that the proposed control scheme can effectively cope with parametric 

uncertainties, counteract friction effects and achieve desired position tracking and 

internal force adjustment on a real system.  

8.1 Description of the Test Rig 

The test rig shown in Figure 8.1 includes two hydraulic actuators. Each of them is treated 

as a single-axis hydraulic robot. The system is originally constructed for experimentation 

on fault tolerant control and condition monitoring algorithms in fluid power systems, in 

which one actuator acts as a fault simulator and the other as a load simulator (Sepehri, et. 

al, 2005). 

With reference to Figure 8.1, Actuator 1 on the left side is controlled by a high 

performance, closed-center nozzle-flapper servovalve. It is a double rod type with a 610 

mm (24 in.) stroke, a 38.1 mm (1.5 in.) bore and 25.4 mm (1 in.) diameter rods. A Moog 

D765 servovalve modulates the flow in the circuit. The D765 is a modern servovalve that 

utilizes a linear variable differential transformer (LVDT) to measure the position of the 

spool. The spool position loop is closed, via integrated electronics that allow the spool to 

be positioned proportionally to an electrical command signal. The D765 flows 34 L/min 

(9 GRM) at 21 MPa (3000 psi) and has a nominal 2 ms rise time (Moog Inc., form no. 

500-300 601). 

Actuator 2 on the right side in Figure 8.1 is controlled by a Moog 31 series 

servovalve, an aerospace grade, closed-center nozzle-flapper type. The Moog 31 is 

capable of delivering fluid at a rate of 26 L/min (7 GPM) when operated at 21 MPa (3000 

psi) and has a nominal 1.5 ms rise time (Thayer, 1965). With the exception of a shorter 

203-mm (8 in) stroke, Actuator 1 is identical to Actuator 2.  
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Figure 8.1: Test rig on which all experiments are performed. 

 
Both actuators are mounted on a reinforced steel table. The fluid pressures at the 

actuator chambers, as well as the pressures of fluid supplied to the valves, can be 

measured by six pressure transducers. An S-beam type load cell measures the contact 

force between Actuator 1 and the load, named 1
1,cF . There is no force sensor between 

Actuator 2 and the load. Two rotary encoders with a resolution of 1024 counts/revolution 

(linear resolution of 0.038mm) established the relative position of the actuators. Each 

encoder works with a steel cable which is tightly in contact with the encoder. When the 

actuator moves, the cable synchronically moves and causes the encoder to rotate. End-to-

end round trips are carried out to find the accuracy of the position measurement. Their 

relative errors are about 0.5% and 0.2%, for Actuators 1 and 2 respectively. Actuator 

Actuator 1 Actuator 2ObjectLoad cell
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velocities are obtained by numerical differentiation with filtration since differentiation 

process amplifies the noise. 

The structure of the object (payload) shown in Figure 8.2, was designed to protect the 

system from damage in the case that high internal force is built up. The object consists of 

three plates and in-between springs that can compromise the two actuators’ motions. 

Actuator 2 is firmly connected to plate B through a hole in plate C. Actuator 1 is fixed to 

Plate A which is connected with Plate C by bolts that go through holes in Plate B. When 

the object is compressed, springs between Plates A and B will be compressed. 

Conversely when the object is stretched, springs between Plate B and C will be 

compressed standing for the internal stretching force inside the object. In other words, 

springs on the left-side can comprise compression and springs on the right comprises 

tension. At the same time, the springs have to be stiff to meet the realistic assumption that 

the grasped object is rigid. The overall stiffness of the object is 602.54N/mm which 

results in a 0.33 mm incremental displacement in compression or stretching when there is 

a 200 N change of internal force on the object. 

 

 
 

Figure 8.2: Close-up view of the object. 

 

A B C

Rigidly connected to 
Actuator 2 

Rigidly connected to 
Actuator 1 and Plate C 
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The data acquisition system is comprised of two Pentium II personal computers, 

operating at 866 MHz. They are configured such that each actuator has a dedicated 

processor. A DAS-16F input /output (I/O) board is installed in each PC and each board is 

capable of monitoring 16 single-ended analog to digital input channels while supporting 2 

channels of digital to analog output. All sensors are directed to the DAS-16F I/O boards 

with the exception of the optical rotary position encoders, which are supported by 

independent Keithley M5312 quadrature incremental encoder cards installed in each PC. 

Since the output of the DAS-16F is unipolar, both output channels are required to 

generate bipolar servovalve command signals. Each servovalve is controlled by the 

appropriate PC. A local area network (LAN) is configured to establish a connection 

between the PCs so that both actuator circuits can be synchronized.  

8.2 Controller Implements 

8.2.1 Controller Layout  

dddd FXXXXX int,,,,, &&&&

cOI FPP
XX

,,
,, &

cOI FPP ,,

dddd FXXX int,,, &&&

 

Figure 8.3: Controller layout. 
 

The system consists of two actuators. Each is independently wired, with its own PC 

and dedicated processor. Without rewiring the system, a distributed control scheme is 

designed such that experiments on co-operating hydraulic manipulators can be conducted 

on the available system.  

The layout is shown in Figure 8.3. There are two levels of information exchange 

between the physical structures. The information exchanged between the actuators and 
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their associated computers includes measurement of line pressures to the chambers, and 

sending control signals (voltages) to the valves. The control signals are directly sent to 

the valves by the dedicated local computers. The computer dedicated to Actuator 2 also 

has the object position and velocity. The information related to desired and actual 

positions and velocities, and desired accelerations, is sent from Workstation 2 to 

Workstation 1 using UDP protocol. 

 

8.2.2 Selection of Supply Pressure 

Both actuators share one common pump. The maximum supply pressure is 21MPa 

(3000 psi). All the pressure gauges can only read up to 21MPa beyond which the sensors 

could be destroyed. There are relief valves built in this experimental system to protect it 

from becoming overloaded. However, the response of these valves may not be fast 

enough to protect the pressure sensors. For unforeseen pressure spikes, the final supply 

pressure used in the experiments was chosen as around 8 MPa (1150 psi).  

 

8.2.3 Measurement of Object Position, Contact Forces and Calculation of Internal 

Force 

The object’s position can be obtained from Actuator 1 or Actuator 2. The position 

measurement of Actuator 1 is chosen to represent the object’s position in the experiments 

because of better accuracy than in Actuator 2. At this time, there is no force sensor 

between the object and Actuator 2 to measure the contact force applied by Actuator 2. It 

is possible to calculate this contact force (named 2
1,cF ) using 

maFF cc =+ 2
1,

1
1,       (8.1) 

i.e. 
1
1,

2
1, cc FmaF −=       (8.2) 

In the experiments, the object mass is about 4.5 kg and the maximum acceleration 

for the desired sinusoidal trajectory is about 0.1 m/s2. Therefore, the maximum value for 

the inertia force will theoretically be about 0.45 N. The real value might be higher than 

this value, but it is still small and negligible compared to the contact force (above 100N).  
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The contact force, 2
1,cF , is obtained by  

1
1,

2
1, cc FF −=         (8.3) 

that is to say, 2
1,cF  is just opposed to 1

1,cF , meaning that the internal force could be 

represented by one of the contact forces as follows: 
2
1,int cFF ≈         (8.4) 

8.3 Experimental Results 

A sinusoidal desired trajectory with a travel distance of 0.12m and frequency of 0.2Hz 

was used as reference. The desired internal force was set to zero, i.e., 0int =
dF . The values 

of stick and slip frictions were chosen as 1300N and 1100N, respectively. The controller 

gains were chosen as shown in Table 8.1. 

Table 8.1: Control gains. 

Control 
gains Value Control 

gains Value 

λ  100 22×
θw  )10  ,1( 5diag  

)22(
0

×τ  )005.0,005.0(diag  )44( ×

ϕw  )102   ,108 ,102   ,108( 6-126-12 ××××diag
)22( ×

dK  )200,200(diag  )22(

0

×

σw  )10 ,10( 99diag  
)22( ×

FK  )200,100(diag  )22(

1

×

σw  )10  ,10( 44diag  
)22( ×

FΓ  )01.0,.01.0(diag  )22(

0

×

zΓ  1)  ,1(diag  
)22(

int
×K  )25.2,25.2(diag  )22(

1

×

zΓ  1)  ,1(diag  

 

The experimental results are shown in Figures 8.4 to 8.12. Figure 8.4 shows the desired 

position trajectory of the object. The position tracking error of the object, shown in 

Figure 8.5, is less than 1 mm. The internal force is between 200± N as shown in Figure 

8.6. Control signals to the two actuator valves are shown in Figures 8.7 and 8.8, 

respectively. Figure 8.9 shows the chamber pressures in Actuator 1 and the supply 

pressure, which presented variations of %10±  of its nominal value. Estimations of 

typical parameters are shown in Figure 8.10. Note that the parameter convergence is not 

theoretically guaranteed. Estimates of friction states are shown in Figure 8.11. Based on 
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the estimated friction parameters and friction states, the friction is estimated and 

compensated for as shown in Figure 8.12. 
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Figure 8.4: Reference trajectory. 
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Figure 8.5: Position tracking error (Experiment 1). 
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Figure 8.6: Internal force acting on the object (Experiment 1). 
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Figure 8.7: Control signal to Actuator 1 (Experiment 1). 
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Figure 8.8: Control signal to Actuator 2 (Experiment 1). 
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Figure 8.9: Supply and Actuator 1 line pressures (Experiment 1). 
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Figure 8.10: Parameter estimates pertaining to Actuator 1 (Experiment 1). 
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Figure 8.11: Friction state estimates in Actuator 1 (Experiment 1). 
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Figure 8.12: Friction estimate in Actuator 1 (Experiment 1). 

 

To compare the performance of the developed controller with that of a simple 

proportional controller, two experiments were conducted with the same position tracking 

reference as in the previous experiment. The proportional gain is 2000 V/m. No force 

feedback was used for both experiments; thus, the developed controller used 0int =K . 

Control signals are shown in Figures 8.14, 8.16 and 8.17. Figures 8.13 and 8.15 show the 

position errors and internal forces obtained from the experiments that used the 

proportional controller and the developed nonlinear controller, respectively. Both the 

position errors are smaller than 1 mm. However, the developed controller resulted in 

much smaller internal force. It was also observed during the experiments that the 

increasing of proportional gain did not change much of the internal force. The 

experiments conducted here involved two single-axis actuators only. In the case of multi-

axis robot manipulators, the internal force could be significantly larger because of the 

coupling dynamics among the links.  
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Figure 8.13: Response of a proportional position controller (Experiment 2). 
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Figure 8.14: Control signal to each of the Actuators 1 and 2 (Experiment 2). 
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Figure 8.15: Response of the developed controller (desired internal force was set to 
zero, no force feedback, with adaptation of dynamic parameters) (Experiment 3). 
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Figure 8.16: Control signal to Actuator 1 (Experiment 3). 
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Figure 8.17: Control signal to Actuator 2 (Experiment 3). 

 

The next experiment was conducted with no online adaptations of the unknown 

parameters. The results are shown in Figure 8.18 and indicate that the maximum position 

tracking error is much larger, close to 3 mm. The internal force seems not to change 

significantly. Figures 8.19 and 8.20 show the control signals to Actuator 1 and 2 

respectively. Estimated friction state and friction force in Actuator 1 are provided in 

Figures 8.21 and 8.22. 

-0.003
-0.002
-0.001

0
0.001
0.002
0.003

Po
si

tio
n 

er
ro

r (
m

)

0 2 4 6 8 10
Time (s)

-800

-400

0

400

800

In
te

rn
al

 fo
rc

e(
N

)

  
Figure 8.18: Response of the developed controller (desired internal force was set to 

zero, no force feedback, no adaptation of dynamic parameters) (Experiment 4). 
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Figure 8.19: Control signal to Actuator 1 (Experiment 4). 
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Figure 8.20: Control signal to Actuator 2 (Experiment 4). 
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Figure 8.21: Friction state estimates in Actuator 1 (Experiment 4). 
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Figure 8.22: Friction estimate in Actuator 1 (Experiment 4). 

 

The last experiment was done in comparison with the first experiment, with the 

exception that the desired internal force dFint  was set to -444.8N (-100lb), instead of zero. 

The results shown in Figure 8.23 indicate that the internal force had shifted down about 



8. Experimental Studies  130 
   

 

400N, yet the position tracking error did not change much. This demonstrates that the 

internal force is adjustable by the controller. The control signals to Actuator 1 and 2 are 

presented in Figures 8.24 and 8.25 respectively. 
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Figure 8.23: Response of the developed controller 
 (desired internal force was set to -444.8N, force feedback gain was 2.25) 

(Experiment 5). 
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Figure 8.24: Control signal to Actuator 1 (Experiment 5). 
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Figure 8.25: Control signal to Actuator 2 (Experiment 5). 
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Summary:  

In this chapter, the tracking controller for co-operation among several hydraulic 

manipulators handling a rigid payload developed in Chapter 7, was tested on a two-

single-axis hydraulic actuator system. A sinusoidal desired trajectory with travel distance 

of 0.12m and frequency of 0.2Hz was used. The experimental results further validated the 

developed controller which:  

(i) is capable of tracking a reference position of the common object and regulating a 

reference internal force  

(ii) is robust against uncertainties and nonlinearities presented in hydraulic power 

systems 

(iii) does not require measurement of acceleration, only needs to measure line 

pressures, position and velocity 

(iv) guarantees stability. 
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Chapter 9 Summary and Conclusions 
 

This thesis has made important contributions to the development, implementation, and 

experimental evaluation of stable and robust control laws, for co-operating hydraulic 

manipulators handling a common rigid object. In spite of existence of many references 

regarding multi-robot systems, the literature in the area of co-operating hydraulic 

manipulators is sparse. Especially, prior to this work there was no publication on 

coordinated control of multi-axis hydraulic manipulators handling a common object. The 

detailed contributions made in this thesis are listed below. 

A complete general model of co-operating hydraulic manipulators including object 

and manipulator dynamics and hydraulic functions was developed. This was under the 

assumption that there was no relative motion among the object and the manipulators’ 

end-effectors. Plant nonlinearities including servovalve flow-pressure characteristics, 

unequal piston cross sectional areas and variations of fluid volume under compression. 

As well, plant uncertainties such as bulk modulus were included in the model.  

First, a position-regulating controller was developed under the assumption that the 

system’s physical parameters were fully known and that there was no friction. The highly 

nonlinear hydraulic actuator dynamics were incorporated in the Lyapunov-based 

controller design. The issues of motion and internal force control of the object, and load 

sharing were addressed. The equilibrium of the system under the proposed controller was 

investigated, leading to a set of equilibrium points corresponding to the desired position 

and internal forces. Further, the issue of unknown payload was analyzed and the 

controller was modified to eliminate the steady-state error due to imperfect compensation. 

Next, the controller was modified to account for the uncertain parameters in both robot 

dynamics and hydraulic functions. 

The adaptive approach within the framework of backstepping controller design 

technique was employed next to design a tracking controller in the presence of 

uncertainties as a natural direction for control of co-operating hydraulic robots. The 

design methodology proceeded with the construction of on-line updating laws and 

observers. The controller features updating laws to consider parametric uncertainties 
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(unknown dynamic parameters of the payload, robots, and hydraulic functions), and 

observers to avoid the requirement of acceleration feedback.  

Many researchers have shown that friction plays an important albeit damaging role in 

control systems. The above controllers were investigated for hydraulic manipulators 

having substantial friction. Theoretical analysis showed that the regulating control system 

was stable and could achieve the desired position. However, the existing friction could 

make regulation longer, when compared with the case having no friction, and bring about 

undesirable internal forces. It was discovered that the use of force feedback could bring 

the internal force closer to the desired value. For the position tracking control system, 

both position and internal force errors could be significantly increased with the presence 

of friction and the stability could not be guaranteed given the existing Lyapunov-like 

scalar function. Simulations were further carried out to verify the theoretical findings.  

Built upon the above studies, a new Lyapunov-based controller was developed for co-

operating hydraulic manipulators handling a common rigid object in the presence of 

friction. The well known LuGre friction model was introduced in the actuator dynamics 

and was considered when designing the controller. Main parameters in the friction model 

were assumed to be unknown and were estimated by an adaptive control scheme. 

Adaptive observers were used to identify friction internal states that were not measurable. 

Utilizing the online estimated friction parameters and observed friction states, a novel 

friction compensator was designed. Additionally, in an effort to avoid the need for 

measuring acceleration, an acceleration observer was introduced. Using the new 

controller, the states of the control system were proven bounded. The Lyapunov-like 

analysis showed that the position tracking error moved to zero as time went to infinity. 

The internal force error could theoretically be made arbitrarily small, when using an 

additional force feedback.  

Inspired by the concept of dynamic surface control, the above controller was 

redesigned. The problem of “explosion of terms” was solved while the need for 

measuring acceleration was avoided without having to design an observer. Other features 

remained, except for the position tracking error which was made arbitrarily small rather 

than zero.  
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The above tracking controllers were tested in simulations using two 3-DoF hydraulic 

manipulators. The kinematic and dynamic model of robot manipulators in the simulations 

was built to resemble a Magnum robot, manufactured by the International Submarine 

Engineering, Canada. A number of simulations were carried out on the developed 

simulation model. Simulation results validated the effectiveness of the developed 

controllers. 

The dynamic surface controller was further tested experimentally on an available 

hydraulic system consisting of two single-axis actuators. A hierarchical distributed 

control scheme built on local network and using UDP protocol, was designed to carry out 

the experiments. The experimental results further validated the effectiveness of the 

controller. 

Future work should focus on experiments on multi-axis hydraulic robot manipulators, 

as well as on the following issues. Firstly, in this study the valve dynamics were 

neglected by assuming a small rise time. Incorporating a general model of the valve with 

the controller design could accurately represent the valve dynamics. Secondly, to 

eliminate the internal force error, an integral-like term, ∫ −
t

dFF d 

0 intint
 

)( τ , could be 

considered to add in the force feedback loop. Finally, one feature of the LuGre friction 

model is, that it is continuous compared to other friction models. However, it is not 

differentiable at some isolated points while the backstepping controller design technique 

requires a differentiable model. It is, therefore, worthwhile to investigate the possibility 

of modifying the LuGre model such that it becomes differentiable.  
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Appendix A  
Degree of Freedom of the Co-operating System  

 
Katib (1988) has discussed the issue of degree of freedom of a multi-end effector/object 

system. The following is a review with more details. 

      The system considered in this thesis results from rigidly connecting an object to the 

end-effectors of n N-degree-of-freedom manipulators. One way to see this system’s 

structure is that it is formed by n(N-1) links, one object link and one ground link 

connected through nN one-degree-of-freedom joints. The number of total degrees of 

freedom of these links obtained before the connection is )1( link0 −nn , where the numbers 

of total links linkn , is n(N-1)+2, and n0 is the number of degrees of freedom of an 

unconnected link (3 in the planar case and 6 in the spatial case). The number of total 

degrees of freedom lost by the joint constraints after the connection is joint0 )1( nn − , where 

jointn  is the number of total joints. Thus, the number ns of degrees of freedom of this 

system is given by the difference between )1( link0 −nn  and joint0 )1( nn − . This number is 

given by the Grubler formula (Hartenberg and Denavit, 1964), 

joint0link0 )1()1( nnnnns −−−=      (A.1) 

For the system of n N degree-of-freedom manipulators and the object considered here, 

)()1()1)1(( 0000 nNnnnNnNnnns −+=−−+−=    (A.2) 

With the assumption of non redundancy, the number of degrees of freedom in the planar 

case (n0 =N=3) is ns=3. This number is ns =6 in the spatial case (n0 =N=6). 
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Appendix B  
Properties of Matrices M and D  

 
Given  

EE TTT WHJWJ 1−−=Λ        (B.1) 

)]([ 111 EEEEEB TTTTTT WJJWWHJWCJWJ −−−− −++= &&&   (B.2) 

oMM +Λ=          (B.3) 

oDBD +=          (B.4) 

and the following properties: 

Property B.1: H  is a symmetric positive definite matrix, 

Property B.2: )2( CH −& is a skew-symmetric matrix, i.e., 16;0)2( ×∈∀=− nT Rxxx CH& , 

Property B.3: xyyx ),(),( qCqC =   16,, ×∈∀ nRyxq  and, 

Property B.4: )(qH and ),( qqC & are bounded, i.e., UL HqHH ≤≤< )(0  16 ×∈∀ nRq  

and xx MCqC ≤),(   16, ×∈∀ nRxq . 

Property B.5: oM  is a symmetric positive definite matrix, 

Property B.6: )2( oo DM −& is a skew-symmetric matrix, i.e., 16;0)2( ×∈∀=− n
oo

T RxxDMx &  

Property B.7: yzxDzyxD oo ),(),( =  16,, ×∈∀ nRzyx  and, 

Property B.8: )(xM o and ),( yxDo are bounded, i.e., UooLo MxMM ,, )(0 ≤≤<  

16 ×∈∀ nRx  and yDyxD Uoo ,),( ≤        16, ×∈∀ nRyx . 

Matrices M and D  have the same properties, i.e., 

Property B.9: M  is a symmetric positive definite matrix, 

Property B.10: DM 2−& is a skew-symmetric matrix, i.e., 16;0)2( ×∈∀=− nT RxxDMx & , 

Property B.11: yzxDzyxD ),(),( =  16,, ×∈∀ nRzyx , and 

Property B.12: )(xM and ),( yxD are bounded as follows: 

UL MxMM ≤≤< )(0  16 ×∈∀ nRx  

yDyxD U≤),(        16, ×∈∀ nRyx  
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Proof: 

i) It is easy to see that )(XΛ  is a symmetric positive definite matrix in observation of 

Property B.1. Thus, Property B.9 is true.  

ii) Equations (B.3) and (B.4) show that 

XDMXXBXXDMX oo
TTT &&&&&&& )2()2()2( −+−Λ=−    (B.5) 

Using Property B.6, one arrives at 

XEEEE
dt

EdEE
dt

EdX

XEEXXBXXDMX

TTTTT

T
TTT

TT
T

TTTTTT

&&&&

&

&&&&&&&&&

))(2                        

)()((    

)2()2()2(

11

1
1

1

WJJWWHJWJ

WJHWJWHJWJ
WJCHWJ

−−−

−
−−

−

−−

−+−

++

−=−Λ=−

  (B.6) 

Using Property B.2 and that )()( 11
1

EEE
dt

Ed TTT
T

WJJWWJWJ −−
−

−+= &&& , one arrives 

at 

X
dt

EdEE
dt

EdXXDMX
T

TTT
TT

TT &&&&& ))()(()2(
1

1 WJHWJWHJWJ −
−−

−

−=−  (B.7) 

Because XE
dt

EdX T
TT

T && WHJWJ 1)( −
−

 is a scalar (hence equal to its transpose) and 

HH =T , the following is obtained,  

X
dt

EdEXXE
dt

EdX
T

TTTT
TT

T &&&& )()( 1
1 WJHWJWHJWJ −

−−
−

=    (B.8) 

This results in Property B.10     

0)2( =− XDMX T &&&         (B.9) 

iii) Equation (B.2) and Property B.7 show that 

yzxDz
dt

EdEEzyxDzyxBzyxD o

T
TTT

o ),(])([),(),(),(
1

1 ++=+=
−

−− WJHWCJWJ

 (B.10) 

where  

z
dt

EdEEzyxB
T

TTT ])([),(
1

1 WJHWCJWJ
−

−− +=    (B.11) 

yzxDzyxD oo ),(),( =        (B.12) 
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Noting that ETWJ 1−  is a function of position only, and using Property B.3, it is 

concluded that  

yzxBzyxB ),(),( =        (B.13) 

thus Property B.11 is proven. 

iv) 1−J  is bounded since J  is assumed to be nonsingular. Thus, Property B.12 is true. 

 

 



 

146 

Appendix C  
Review of Backstepping Controller Design Technique 

 

A third order system of co-operating hydraulic manipulators is presented in Chapter 2. To 

design appropriate controllers for the system under investigation, the backstepping 

technique is utilized.  

Backstepping is a recursive procedure that interlaces the choice of a Lyapunov 

function with the design of feedback control. It breaks a design problem for the full 

system into a sequence of design problems for lower order subsystems. Thus 

backstepping is suitable for high-order systems. By exploiting the extra flexibility that 

exists with lower order subsystems, backstepping can often solve stabilization, tracking, 

and robust control problems under certain conditions. The following is a brief 

introduction of backstepping adopted from the work by Khalil (2002). 

 

Proposition:  

Consider the system 

ξηηη )()( Gf +=&          (C.1a) 

uGf aa ),(),( ξηξηξ +=&        (C.1b) 

where, mn RR ∈∈ ξη ,  and mRu∈  , in which m could be greater than one. Suppose 

Gff a ,, , and aG  are known smooth functions over the domain of interest, 0)0( =f and 

0)0,0( =af , and the mm×  matrix aG  is nonsingular. Suppose further that the 

component (C.1a) can be stabilized by a smooth feedback control law )(ηφξ =  (also 

called virtual controller) with 0)0( =φ , and a known Lyapunov function )(V1 η  satisfies 

the following inequality  

)()]()()([
)(V1 ηηφηη

η
η

WGf −≤+
∂

∂
      (C.2) 

where function )(ηW  is positive definite. Then the following control law asymptotically 

stabilizes the whole system described by equations (C.1a) and (C.1b) 
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0    ))],(())(
)(V

()()[,( 11 >−−−
∂

∂
−= − kkfGGu a

T
a ηφξη

η
η

ηφξη &   (C.3) 

Proof:  

The proof is adopted from the framework by Khalil (2002). Using 

)]([)]([)(VV 2
1

12 ηφξηφξη −−+= T       (C.4) 

as a Lyapunov function candidate for the overall system, one arrives at 

)]([][)(V)(VV 11
2 ξ

η
φφξφξ

η
φ

η
GfuGfGGf aa

T +
∂
∂

−+−+−
∂
∂

++
∂
∂

=&  (C.5) 

Note that the variables’ names in bracket parts following the function names are not 

presented for the sake of simplicity. Taking the law (C.3) results in 

][][)(][][)(
V

V 1
2 φξφξηφξφξφ

η
−−−−≤−−−+

∂
∂

= TT kWkGf&  (C.6) 

which shows that the origin )0,0( =−= φξη  is asymptotically stable. 

 

Remark:  

The above design does not address parametric system uncertainties. By inspection 

equation (C.3), the controller for the overall system needs the time derivative of the 

virtual control law )(ηφ  for the component system (C.1a). This requires more 

measurements as feedback to the controller for the overall system. To avoid the 

requirement, observers should be developed. Thus, the above controller has to be 

redesigned with the observer dynamics and parametric updating law included. 

The differentiation of the virtual control law might bring about the issue of 

“explosion of terms” (Swaroop, et al., 1997) that introduces many more terms to measure 

or calculate. 
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Appendix D  
Dynamics of a Three-link Robot 

 
The physical parameters of the ith robot manipulator are as follows: 

Link length: iii lll 321 ,,  

Center of mass: iii aaa 321 ,,  

Mass: iii mmm 321 ,,  

Inertia: iii III 321 ,,  

iq2

iq3

iq1

 

i
a 1

il3
ia

3

il 1

 

ia2 il2

 

Figure D.1: Three-link planar robot. 
 

While other approaches are available to formulate robotic arm dynamics, such as the 

Newton-Euler and the generalized d’Alembert principle formulations, the Lagrange-Euler 

method is used to obtain the following dynamic equations that are used for simulations in 

the studies. 

i
c

Tiiiiiiiiiii FJTqGqqqCqqH −=++ )(),()( &&&&         (D.1) 

where 133333 ,, ××× ∈∈∈ RGRCRH iii . The details of these matrices or the vector are 

given as follows: 

)]cos(2cos2cos2)()()[(      

]cos2)()[()(

3231332221
2

3
2

2
2

13

221
2

2
2

12
2

1132111
iiiiiiiiiiiiii

iiiiiiiiiiii

qqalqalqllallm

qalalmamIIIH

+++++++

++++++=
   (D.2) 

)]cos(cos2cos             

)()[(]cos)[(

3231332221

2
3

2
23221

2
223212

iiiiiiiiii

iiiiiiiiiii

qqalqalqll

almqalamIIH

++++

+++++=
       (D.3) 

)]cos(cos)[( 3231332
2

33313
iiiiiiiiiii qqalqalamIH ++++=       (D.4) 
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ii HH 1221 =             (D.5) 

]cos2)()[()( 332
2

3
2

23
2

223222
iiiiiiiiiii qalalmamIIH +++++= ;      (D.6) 

]cos)[( 332
2

33323
iiiiiii qalamIH ++=          (D.7) 

ii HH 1331 =             (D.8) 

ii HH 2332 =             (D.9) 

2
33333 )( iiii amIH +=          (D.10) 

iiiii

iiiiiiiiiiiiiiiiii

qqalm

qqqqalmqqllmqqalmC

33323

3232313222132221211

sin                                                             

)sin()(sinsin
&

&&&&

−

++−−−=
  (D.11) 

iiiiiiiiiiiii

iiiiiiiiiiiii

qqalmqqqqqalm

qqqllmqqqalmC

3332332321313

22121322121212

sin)sin()(        

sin)(sin)(
&&&&

&&&&

−+++−

+−+−=
    (D.12) 

iiiiiiiiiiiiiiii qqqqalmqqqqqalmC 33213233232131313 sin)()sin()( &&&&&& ++−+++−=   (D.13) 

)sin(sinsinsin 32131333323212132121221
iiiiiiiiiiiiiiiiiiiiii qqqalmqqalmqqllmqqalmC ++−+= &&&&  (D.14) 

iiiiii qqalmC 3332322 sin&−=         (D.15) 

iiiiiiii qqqqalmC 332132323 sin)( &&& ++−=        (D.16) 

)sin(sin)( 32131332132331
iiiiiiiiiiiii qqqalmqqqalmC +++= &&&      (D.17) 

iiiiiii qqqalmC 32132332 sin)( && +=         (D.18) 

033 =
iC           (D.19) 

)cos()cos(                            

cos)cos(coscos

321332123

11321221121111

iiiiiiiii

iiiiiiiiiiiiii

qqqgamqqglm

qglmqqgamqglmqgamG

+++++

++++=
  (D.20) 

)cos()cos()cos( 32133212321222
iiiiiiiiiiiiii qqqgamqqglmqqgamG ++++++=   (D.21) 

)cos( 321333
iiiiii qqqgamG ++=         (D.22) 

 

Note: it is easy to verify that 13;0)2( ×∈∀=− RxxCHx iiT & .  

 

 

 


