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Abstract

This thesis presents the design, analysis, and numerical and experimental evaluation of
nonlinear controllers for co-operation among several hydraulic robots operating in the
presence of significant system uncertainties, non-linearities and friction. The designed
controllers allow hydraulically driven manipulators to (i) co-operatively handle a rigid
object (payload) following a given trajectory, (ii) share the payload and (iii) maintain an
acceptable internal force on the object.

A general description of the kinematic and dynamic relations for a hydraulically
actuated multi-manipulator system is presented first. The entire mathematical model
incorporates object dynamics, robot dynamics, hydraulic actuator functions and friction
dynamics. For the purpose of simulations, a detailed numerical simulation program of
such a system is also developed, in which two three-link planar robot manipulators
resembling the Magnum hydraulic manipulators manufactured by ISE, interact with each
other through manipulating a common object.

The regulating control problem is studied next, in which the desired position of the
object and the corresponding desired link displacement change step-wise. Initially, a
controller is designed based on a backstepping technique, assuming that full knowledge
of the dynamics and kinematics of the system is available. The assumption is then relaxed
and the control system is analyzed. Based on the analysis, the controller is then modified
to account for the uncertainty of the payload, robot dynamic parameters and hydraulic
functions.

Next, the regulating controller is extended to a tracking controller, which allows the
object to follow a given trajectory and is robust against parameter uncertainties.
Additionally, an observer is added to the controller to avoid the need of acceleration
feedback.

To investigate the effect of friction force, the above controllers are examined by
introducing the most recent and complete LuGre friction model into the system dynamics.
The tracking controller is then redesigned to compensate the effect of friction. Observers

are designed to observe the immeasurable friction states. Based on the observed friction
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states and estimated friction parameters, an appropriate friction compensation scheme is
designed which does not directly use velocity in order to avoid the need of acceleration
feedback by the controller.

Finally, the problem of “explosion of terms” coming from the backstepping method is
solved by using the concept of dynamic surface control in which a low pass filter is
integrated to avoid model differentiation.

Simulations are carried out for analysis of the control system and verification of the
developed controllers. Experimental examinations are performed on an available

hydraulic system consisting of two single-axis hydraulic actuators.
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Chapter 1 Introduction

1.1 Problem Statement

In recent years, co-operative robots have continued to receive a great deal of attention
from both the robotics research community (Vukobratovic, 1998) and the robotics
industry.

It has been recognized that many tasks are difficult or impossible to execute by a
single robot. It is more manageable when two or more manipulators are employed in a
co-operative manner. Typically a single manipulator cannot handle an object because it is
either beyond the manipulator's load capacity or the geometry of the object makes it
difficult to manipulate. Among various types of actuators to drive manipulators;
hydraulic actuators are prevailing in many industrial applications due to their high load
capability and reliable performance. Their application scope ranges from heavy-duty
robots in mining and forestry, to fine machine tools and underwater exploration. An
example is that of two hydraulic manipulators installed in an underwater vehicle; named
Magnum and manufactured by International Submarine Engineering Ltd. (ISE) in BC,
Canada. The control of co-operating hydraulic robots to perform tasks such as handling a
common object presents many difficulties which are outlined in the following.

The addition of a second manipulator or several manipulators, leads to a complex
system since the motion of multiple manipulators must be both kinematically and
dynamically coordinated. In addition, for an object being rigidly grasped (i.e. no relative
motion among grippers and the object) and manipulated by multiple robots, the problem
of internal loading, which does not contribute to the object’s motion, must also be
addressed (Walker et al., 1991). Due to the kinematic and dynamic interaction imposed in
co-operative robots and the nonlinear dynamics of the hydraulic actuators, a global
description of the kinematic and dynamic relations for a multi-manipulator system is
needed for controller development.

Hydraulic actuators are highly nonlinear, resulting from servovalve flow-pressure
characteristics, unequal piston cross sectional areas, orifice area openings and in part also,

to the variations of fluid volume under compression (Merritt, 1967).



1. Introduction 2

Aside from the nonlinear nature of the hydraulic dynamics, hydraulic systems also
contain to a large extent, uncertainties. The uncertainties can be classified into two
categories: parametric uncertainties and un-modeled nonlinearities. Examples of
parametric uncertainties are large changes in the load seen by the system and/or large
variations in the hydraulic parameters due to the change of temperature (e.g., bulk
modulus) and component wear (Watton, 1989). Other general uncertainties, such as
external disturbances and leakage cannot be modeled exactly and the nonlinear functions
that describe them are unknown. These types of uncertainties are called un-modeled
nonlinearities, which may cause the control system designed on the nominal model, to
become unstable or have a much-degraded performance (Yao et al. 2000).

In practical applications, friction compensation is particularly important for hydraulic
manipulators. Due to high supply pressure, tight sealing is required to prevent the
actuators from significant internal and external leaks. This in turn generates very high
joint friction that can reach up to 30% of the nominal actuator torque (Lischinsky et al.,
1997). Because friction is a very complicated phenomenon that relies on the material
properties of the contact surfaces, relative velocity and lubrication conditions, a good
friction model is important.

Unlike electrical actuators, force and position control of hydraulic manipulators is a
difficult problem. In a hydraulic actuator, the control signal activates the spool valve that
controls the flow of hydraulic fluid into and out of, the actuator. This flow, in turn causes
a pressure differential buildup that is proportional to the actuator force. Even if the spool
valve dynamics are ignored, the control signal fundamentally controls the derivative of
the actuator force and not the force itself (Heinrichs et al. 1997).

Finally, most existing control methods for hydraulic systems deal with only one
hydraulic actuator (see references by Alleyne, 1996; Niksefat, et al. 2000; Yao et al. 2000;
Duraiswamy and Chiu, 2003; Sekhavat et al. 2004). Certain assumptions held in these
control methods do not apply to a system of multiple hydraulic manipulators designed to
co-operatively handle an object. This includes control of the internal force exerted on the

manipulated object.
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1.2 General Background

Prior to the work reported here, a number of control methods have been proposed for
rigid body dynamics of closed-loop kinematic chains for electrically driven manipulators.
To name a few, Khatib (1988) developed a coordinated control scheme for non-redundant
arms based on the dynamic model in the operational space. Liu and Arimoto (1996)
developed a distributed controller, which needs knowledge of the payload, although the
internal force can be regulated by feed-forward of the desired forces. Caccavale et al.
(1999) provided a stability analysis for a joint space control law in which asymptotic
stability of a set of equilibrium points was demonstrated. The problem of steady-state
error was noted for the case of imperfect gravity compensation while its solution is not
recommended.

Other studies on this topic include the work by Alford and Belyeu (1984) who
provided a master-slave control scheme for a two-robot system. Zheng and Luh (1986)
assigned one robot to carry the major part of the task with its motion planned accordingly,
and the second robot to follow the first one with the corresponding variables determined
through the constrained relations. Tarn et al. (1987) established a formulation describing
two co-operative electric robots handling a common object by considering the whole
system as a closed kinematic chain. Giving a symmetric role to the manipulators in the
coordination, Uchiyama and Dauchez (1988) redefined the task and the joint space
coordinates to formulate the kinematics and dynamics for two co-operating robots. A
controller was then developed to regulate the motion of an object as well as the internal
forces applied to it.

The methods outlined above all require the exact dynamic model of the robots as well
as the payload. To overcome the effects of the uncertainties, a few control laws have been
developed (Hu and Goldenberg, 1989; Walker et al., 1989; Zribi and Ahmad, 1991).
These methods are based on the fact that the dynamics of a robot can be represented as a
linear combination of its physical parameters. A few other research studies focused on the
communication among the robots. For example, Sugar et al. (1999) proposed a
decentralized control approach for multiple robots in which the robots do not exchange
information at servo-rates; they are weakly coupled to exchange motion plans. Built upon

such work, a design for tightly coupled multi-robot co-operation was developed by
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Chaimowicz et al. (2001) focusing on the use of communication in conjunction with
simple control algorithms.

Within the context of hydraulic manipulators, most existing control methods are
designed for a single hydraulic actuator. There are only a few papers that address the
control of manipulators driven by hydraulic actuators. d'Andrea-Novel et. al. (1994)
established a simplified model for the hydraulic actuator and applied singular
perturbation methods to position control. No experimental or numerical results were
presented in their work. Sirouspour and Salcudean (2001) developed a nonlinear position
tracking controller, in which the effect of friction (both viscous and Coulomb) in the
hydraulic actuators or external disturbances, were not considered in their controller
development. In their paper, they briefly discussed the effect of Coulomb friction and
noted that the proposed controller could only guarantee the “boundedness” of the tracking
error. Bu and Yao (2000, 2001) proposed a Lyapunov-based adaptive controller for a
hydraulic arm driven by single-rod hydraulic actuators. The effects of uncompensated
friction forces were lumped together with external disturbances as disturbance torques.
Or, friction was modeled as a static map between velocity and friction force/torque that
depended on the sign of velocity. Dynamics of the friction were not explicitly considered
in their controller design and stability analysis. However, there are several interesting
properties in systems with friction that cannot be explained by static models alone. This
is due to the fact that friction does not have an instantaneous response on a change of
velocity, i.e., it has internal dynamics (Lin and Chen, 2006).

In applications with high precision positioning and low velocity tracking; it is more
desirable to develop a strategy during the controller design, for on-line estimation and
compensation of frictional forces, than to use the static friction model or to consider
friction as simply being part of the external disturbance to be identified.

It has been shown by Tafazoli et al. (1998) that friction can lead to tracking errors,
limit cycle oscillations and undesirable stick-slip motion. They discussed the importance
of modeling friction and compensation for its effects and proposed an adaptive technique
for tracking control in a single horizontal hydraulic actuator with friction being the only
disturbance in the system. No stability analysis was reported in their work. Bonchis et al.

(2002) evaluated ten previously developed methods on low-level positioning control of
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the pitch axis of an instrumented four-degree-of-freedom hydraulic manipulator,
resembling a heavy-duty mining machine. Using a low bandwidth, proportional
directional valve, the performances of the controllers in terms of tracking accuracy,
robustness and control effort were compared. The importance of friction compensation
and the difficulty in its experimental identification was emphasized in their work.

Friction is an important issue that needs to be considered in the controller design of
multiple co-operating robots. As a complex, natural phenomenon, friction is present in
virtually all mechanical control systems. It poses a serious challenge towards achieving
good performance. In particular, friction plays an important albeit damaging role in
hydraulic control systems (Merritt, 1967). Friction should be considered early in the
system design by reducing it as much as possible through good hardware design. Recent
advances in computer control have also shown the possibility to reduce the effects of
friction by estimation and control. Modeling friction and compensation for its effects
have received considerable attention (Armstrong-H elouvry, 1991 and 1994; Friedland
and Park, 1992; Mentzelopoulou and Friedland, 1994; and Amin et al., 1997). Recently, a
dynamic friction model, named the LuGre model, has been presented (Canudas de Wit et
al., 1995), which relates to the bristle interpretation of friction (Haessig and Friedland,
1991). The LuGre friction model includes the phenomenon that the surfaces are pushed
apart by the lubricant, and models the Stribeck effect. The model also includes rate
dependent friction phenomena such as varying breakaway force and frictional lag.
Applications of the LuGre friction model can be found in Vedagarbha et al. (1999),
Gafvert (1999), Tan et al. (2003), and Lin and Chen (2006).

As far as previous work on controller design for co-operative hydraulic manipulators
is concerned, the existing literature is very limited. Sun and Chiu (2002) investigated the
problem of load-lifting synchronization of two vertical single hydraulic linear actuators
coupled by an unknown payload. Internal force regulation was not considered in their
study. Karpenko et. al. (2006) applied a reinforced learning scheme to coordinate in a
decentralized fashion, the motions of a pair of horizontal hydraulic actuators whose task
was to move an object along a specified trajectory under conventional control. The

learning goal was to reduce the internal force acting on the object that may arise due to
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positioning errors resulting from the imperfect closed-loop actuator dynamics. Friction

compensation was not considered in these papers.

1.3 Objective of this Research

The objective of this research is to develop and evaluate appropriate controllers for co-
operating hydraulic manipulators, handling rigid objects. An example of such a system is
the HYSUB, one type of Remotely Operated Vehicles by ISE. HYSUB is generally
equipped with two hydraulic manipulators named MAGNUM. With individual joystick
control for each manipulator, the handling of a common object could cause serious
damage to both the load and the manipulators even with very experienced operators. Thus,
a controller needs to take into account the internal forces on the object and the
coordination between the manipulators. Other applications may be found in mining and
construction. The demanding performance specifications for these applications have
motivated researchers to examine how to develop controllers applied to co-operating
hydraulic actuators within the robot-object systems defined here.

In this research, the Lyapunov-based controller design method is utilized to
construct appropriate controllers that:

(i)  incorporate the nonlinear dynamics of hydraulic actuators and dynamic

friction model

(1))  deal with parametric uncertainties

(ii1))  do not need measurement of acceleration

(iv) compensate for friction

(v)  are capable of tracking desired position and regulating internal force acting on

the manipulated object.

1.4 Thesis Outline

The thesis consists of nine chapters and four appendices. The outline of the thesis is given
as follows:

In Chapter 2, a global description of the kinematic and dynamic relations for a
hydraulically actuated multi-manipulator system is presented. The whole system includes

object dynamics, robot dynamics, hydraulic actuator functions and friction dynamic
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model. For the purpose of simulations, a detailed numerical model of such a system is
created in which the three-link planar robot manipulator resembles the real hydraulic
manipulator manufactured by ISE. This model is substantially used for simulations
conducted in the following chapters to evaluate the developed control laws.

Chapter 3 starts from the regulating control problem, in which the desired position
of the object and the corresponding desired link displacement change step-wise. Initially,
a controller is designed assuming that full knowledge of the dynamics and kinematics of
the system is available. The purpose is to introduce a controller for an ideal case to
establish a ground for future work. The assumption is then relaxed and the control system
is analyzed. Based on the analysis, the controller is then modified to account for the
uncertainty of the payload, robot dynamic parameters and hydraulic functions. Using the
detailed numerical model, simulations are carried out to investigate the controllers
developed in this chapter.

In Chapter 4, the regulating controller is extended to a tracking controller which
enables the manipulated object to follow a given trajectory and is robust against
parameter uncertainties of the system. An observer is associated with the controller to
avoid the need of acceleration feedback. Stability with final zero errors of position and
velocity tracking is achieved and the error of internal force can be made arbitrarily small.
Simulations are carried out to verify the developed controller.

Chapter 5 investigates the effects of friction. The above controllers are examined by
introducing the well-known LuGre friction model into the actuator dynamics. Theoretical
analysis is given. Same or similar simulations are carried out, but with the introduction of
friction into the model, to investigate the previously developed controllers. The
simulation results validate the theoretical findings, which substantiate the importance of
modeling friction and compensation for its effects.

The tracking controller is redesigned in Chapter 6 to accommodate the introduction
of the most recent and sophisticated friction dynamic model. The friction parameters are
to be taken care of. Observers have to be designed to observe the immeasurable friction
states. Based on the estimated friction parameters and observed friction states, an

appropriate friction compensation scheme is designed which does not directly use
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velocity in order to avoid the need of acceleration feedback. Simulations are carried out
to evaluate the performance of the developed controller.

The problem of “explosion of terms” stemming from the traditional backstepping
controller design method is addressed by employing the concept of dynamic surface
control (Swaroop et al., 1997); in which a low pass filter is integrated to avoid model
differentiation. The adaptation law and friction compensation scheme is redesigned in
Chapter 7. Simulations then test the developed controller, using the same numerical
model.

Experimental examinations are shown in Chapter 8 on an available system
consisting of two single-axis hydraulic actuators. The goal is to test the final controller
developed in Chapter 7 in a real hydraulic system. The experimental results further
validate the developed controller which:

(i) is capable of tracking a reference position of the common object and regulating a
reference internal force

(1) 1s robust against uncertainties and nonlinearities presented in hydraulic power
systems

(ii1)) does not require measurements of accelerations, only needs to measure line
pressures, position and velocity.

(iv) guarantees stability

The contributions of this thesis along with suggestions for future research are
summarized in Chapter 9.

Four appendices are provided in the thesis. The issue of degree of freedom of a
multi-end-effector/object system is reviewed in Appendix A. Appendix B proves some
properties regarding those matrices appearing in the dynamic equation of motion for the
entire robots-object system. The backstepping controller design method is reviewed in
Appendix C. A detailed dynamic model of a three-degree-of-freedom manipulator used

for simulation is presented in Appendix D.



Chapter 2 Development of a Complete Model of

Co-operating Hydraulic Manipulators

Consider the problem of manipulating a rigid object with » hydraulic robots as shown in
Figure 2.1. All the robots are considered non-redundant and the end-effectors of all
robots are rigidly connected to the object, i.e., there is no relative motion between the

object and the end-effectors (Khatib, 1988; Liu and Arimoto, 1996).

End-effector frame f‘i
XX’E Y Z OY % N
/ 0

0 Object frame

Robot i
Zy

i i
X Y, N
Base frame
X YR,
Cartesian reference frame

Figure 2.1: Coordinate systems for co-operating manipulators and object.

2.1 Kinematics

The position/orientation of the object frame {X,,7,,Z,} with respect to the Cartesian
reference frame {X,,Y,,Z,} is described by X =[x, y, z, v, 0, ¢,]" € R® , where
v,,0 ,¢, are the Euler angles. The Euler angles can be defined using the following
sequence: first a rotation , about the z axis, then a rotation €, about the new x axis and
finally, a rotation about the new z axis, of ¢,. Let X! =[x’ y' z' w! 6’ ¢']" € R™ be the

e

position/orientation of the i™ end-effector frame {X E,YE,Z}"E} with respect to the
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Cartesian reference frame. q; is the joint variable of the /™ link of the i manipulator;
thus, ¢' =[q/q5..q.]" e R*',and q=[¢""¢’"...q"" 1" € R®™" . The relation between X and

X! can be expressed as (Sun and Mills, 2002):

‘ R ) !
XZ, =X+|: o(l//o’ .o’¢o)re:| (21)

P

i i .. . . .th
where r, and ¢, are the position and orientation vectors of the i

end-effector frame
{X,’;;,Ybf,ZfE} with respect to the origin of the object body frame {X,.Y,Z } and
expressed in the object frame, respectively. They correspond to the configuration of the
grasp and are constant due to the rigid grasp assumption. R (y,,6,,¢,)1s the rotation

Y,,Z,} relative to the Cartesian reference

matrix of the object frame {X,,7,
frame {X N v R}. Corresponding to the series of rotation defined here, the rotation
matrix is given by Thornton and Marion (2004) as

Ro(l//o’eoﬂgoo) =
cosy, cosp, —cosf siny, sing, —cosy, sing, —cos@ siny cosep, siny, siné,
siny, cos@, +cosf, cosy, sing, —siny, sing, +cos@ cosy,h cose, —cosy, sind,

sin@, sing, sind, cosg, cosf,

Let ve R™ and v. € R™ be the vectors of linear and angular velocities of the object

and the i" end-effector expressed in Cartesian reference frame {X 2 Yz L }, respectively.

LT 2T nT T 6nx1
v, =[v, v..v.'] €R .

The relation between v and the derivatives of the
position/orientation of the object X , is given by Khatib (1988) as
v=EX (2.2)

I 0 0 cosy, siny, sin@,
where E = [O £ } and £ =0 siny, —cosy,siné |.
' 1 0 cosd,

The following relation holds between the motion velocities:
vé =Wy, i=12,...n (2.3)

where
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W' = L0 2.4
- Ri I ( . )
and
0 —(z.-z,) (.-,
R'=| (z.-z,) 0 —(x,—x,) (2.5)
-(vo-y,) (x.-x,) 0

V! is related to ¢’ by the following relation:
vi=J'q' (2.6)
where J' is the (6x 6) Jacobian matrix from the joint space to the Cartesian reference

frame, which is assumed to be nonsingular. Combining equations (2.2), (2.3) and (2.6),

leads to

G ={JV'"WTEX (2.7)
or

g=J'W'EX (2.8)
where J =diag[J',J’,....J" 1€ R and W =[W' W>..W"]e R™". W is called the
grasp matrix (Uchiyama and Dauchez, 1988; Zribi Ahmad, 1992; Caccavale et al., 1999).
From equation (2.8), one can arrive at the following kinematic relation:

G=J "W EX+W EX+W"EX)-JJ'W"EX (2.9)

2.2 Dynamics

2.2.1 Manipulator and Object Dynamics
The dynamic equation of n co-operating robots with respect to joint coordinates is

given below (Caccavale et al., 1999):

Where’ Hm = dlag[Hl 5H25"'5 H'l] € R6nX6n s Cm = diag[cl’cza--'a Cl’l] € R6n><6n s
Gm — [GIT GZT“.GHT]T c R6n><l , Ivm — [TIT T2T...TnT]T c Rﬁnxl and

F =[F" F* .F"1" €R*™ . For the i™ manipulator, H' denotes the robot inertia

matrix, C' denotes the Coriolis and centrifugal effects, G' is the gravitational term and,
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T'=[T; T,..T;1" € R*' where T} is the generalized joint torque originating from the ;"
hydraulic actuator of the i manipulator. F! is the vector of contact force/moment on the

object exerted by the end-effector of the i robot, also called end-effector force.
The matrices describing the robot dynamics in equation (2.10) satisfy the following

properties (Slotine and Li, 1991):
Property 2.1: H, 1s a symmetric positive definite matrix,
Property 2.2: (H » —2C ) 1s a skew-symmetric matrix, i.e.,
x"(H, -2C,)x=0;VxeR"™,
Property 2.3: C, (q,x)y =C, (q,y)x Vq,x,y€R*™ and,
Property2.4: H, (q) and C, (q,q) are bounded, i.e., 0< H, < ||Hm (q)|| <H,

Vg e R and |

C,(q, x)|| <C, ||x|| Vq,x e R,

The degree of freedom of the co-operating system is discussed in Appendix A. The object
dynamics expressed in Cartesian space can be obtained using Lagrange formulation or

from the literature (Caccavale, et. al., 1999; Khatib, 1988; Kawasaki, et. al., 2000):

M (X)X +D,(X,X)X +G,(X)=E"WF, (2.11)
where M ,(X) e R* is the inertia matrix of the object, D, (X , X)X € R* is the vector
of Coriolis and centrifugal effects, G,(X)e R* is the vector of gravity effects, and

E"WF, is the generalized force corresponding to the vector of position/orientation of the

object, X . Similarly, matrices describing the object dynamics in equation (2.11) have the
following properties:

Property 2.5: M ,(X) is a symmetric positive definite matrix,
Property 2.6: (M ,(X)-2D (X, X)) is a skew-symmetric matrix,

Property 2.7: D,(x,y)z=D,(x,2)y Vx,y,ze R*™ and,
Property 2.8: M ,(X) and D, (X, X) are bounded, i.e., 0 < M, < ||M0 (x)” <M,,

Vx e R* and |

D,(x.»)| <D,y

|y|| Vx,ye R,
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The effects of each end-effector force F. can be transformed to their equivalent

effects at the object coordinates. This will produce a resultant motion force applied on the
object at the object coordinates. The resultant force generates the object motion. The
contact forces (a set of end-effect forces) could also produce another type of force on the
object: internal loading. The internal loading represents the elements of force vectors
applied to an object, which are canceled within the object and therefore do not influence

the object motion (Vukobratovic and Tuneski, 1998). Let the resultant external force

vector be, F

ext

and the internal loading force vector be, £}, . The mapping of the contact

force vector, F, , onto F,

ext

is unique and is expressed as (Khatib, 1988; Walker et al.,
1991; Caccavale et al.,1999):

F

. =WF, (2.12)
On the other hand, the reverse mapping is not unique and should take the internal force

E

int

into account (Caccavale et al., 1999):

F. =W'F,_ +VF,

ext int

(2.13)

where W' is a generalized inverse, or pseudo-inverse (Noble and Daniel, 1977) of W,
such that WW' =1I. V is a full-column-rank matrix spanning the null space of W such

that WV =0. The matrix W' specifies the contribution of each robot in generating the

external force applied to the object. It may be defined in general by

W' =AW " (WAW ™)™ for some positive-definite A. In fact, there are an infinite number

of possible pseudo-inverses W' to choose from. Thus, there are multiple solutions in

general for the contact forces, F,

c

, given the desired object motion represented by F, ,.

However, it has been discussed (Walker et al., 1991) that W' must be properly chosen;

otherwise, internal forces may arise even given the desired internal force represented

by F,, as zero. To better understand this, consider a one-dimensional problem: given

F

ext

=100N, F,

int

. 2 .
=0N, and W = [l 1], choosing W' ={ J which meets WW' =1,

200

equation (2.13) gives F. =
q (2.13) g : {—100

} . Such a set of contact forces results in an internal
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force of 100N, though given F;, =0. This is a case shown in Figure 2.2(a). Now choose

0.5 50
wt :{O 5} (WWT =1 is satisfied). Distinctly, it gives F, :{50} which results in the

given external force and produces no internal force, as shown in Figure 2.2(b).

(a) (b)
Figure 2.2: (a) Object experiencing internal force, (b) Object under no internal force.

As illustrated above, by choosing an appropriate W' so that the first term in equation
(2.13) contributes no internal force effects, the contact force is completely decoupled into
two components that contribute to the object motion and internal force respectively.

Importantly, this also makes it feasible to regulate the internal force. An acceptable form

for W' is given below:

a'l 0
—a'R' o'l
wh= : : (2.14)
a"l 0
—a'R" a"l]

where Zai =1 with @’ >0 . This choice of W' guarantees that the first term in
i=1

equation (2.13), W'F

ext

contributes no internal force effects. The proof is given below:

|1 0
Recalling that W =[W' W*>..W"] and W' ={Ri J , it 1s easy to show that
Ca'l 0]
_ lRl 11
(10 1 o] 2% @ -
ww' = : Pol=T0n,
R' I - R" I
a'l 0
|—a"R" a'l|
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Furthermore, assuming F,, = {f}, where f and 7 represent vectors of forces and
T

moments, respectively, the following is obtained

a'f
a't-a'R'f
W'F,, = :
o
la"t—a"R"f ]
where, the " component corresponding to the " end-effector is

[ai T (@'t-a'R'f )T]T. Pre-multiplying it by W', gives its equivalent force at the

object coordinates which is [ai foa't! ]T. Since a’ >0 no forces or moments will be
canceled by each other at the object coordinates. Thus, according to the work by Walker

et al. (1991), the first term in equation (2.13), W'F_, contributes no internal force

ext >

effects given the choice of W' in equation (2.14).

Remarks:
By setting different values for «', the shared payload for each robot will be different.
This allows the stronger robot to share more of the payload. In a particular case where

a' =1/n, equation (2.14) becomes the same solution as given by Walker et al. (1991)

which allows the manipulators to equally share the load.

The matrix, V, in equation (2.13) indicates the contribution of each robot in

generating the internal force applied on the object. Here, the following form for V is

adopted:
b 0]
-b'R' b'I
V= : : (2.15)
b"I 0
| —b"R" b
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Where b',i=1,2,..n are constants satisfying Zbi =0. For a case where manipulators
i=1

equally contribute to the internal loading, one possible solution for the weight coefficient

b is

b = 21 , i=Ll..,n (2.16)
n—(—1) (1= (=1)")/2
or
b’ _ 2D , i=1,...,n, whenniseven
n
bi:ﬂ, =1,..,n, whennis odd
n—(=1)

For example, when an object is manipulated by two manipulators, coefficients b'
and b* become -1 and 1, respectively. When an object is manipulated by an odd number
of manipulators, for instance, five robots; coefficients b', b*>, b, b*, and b° become
-1/3, 1/2, -1/3, 1/2 and -1/3, respectively. In this case, two of the five robots will be

contributing half of the internal force against the three other robots, evenly sharing an

opposite force.

2.2.2 Hydraulic Actuator Dynamics
With reference to Figure 2.3, for the /™ cylinder of the /™ manipulator, the governing
equations that describe the nonlinear valve flow characteristics can be written as

(Niksefat and Sepehri, 2000 ):

extension (x,, , 20)

i i 2 i

91; = CdA(xSp,j)w’;(Ps -F ) (2.17a)
i i 2 i

o, = CoA(x,,, ),/;(Po,j ~F,) (2.17b)

. i
retraction (x;, ; <0)
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2 5
q]j _C A(xvpj) ;(Pl,j _f)e) (217C)

i i 2 i
Go,; = CiAx,, ),/;(Ps S, (2.17d)

where qj’j and qg,j represent fluid flows into and out of the valve, respectively. C, and
p are the orifice coefficients of the discharge and the mass density of the fluid,
respectively. xép, , represents the spool displacement. P,’; ; and Pé’ ; are the input and

output line pressures, respectively. P. and P, are the pump and the return (exit) pressures.

A(xy,, J) represents a function that relates the spool displacement, xb .., » to the valve
orifice area. Here it is assumed that (Niksefat and Sepehri, 2000; Bu and Yao, 2001)
A(xy, ;) = WX, (2.18)

where, w; is the orifice area gradient.

ST

l q;@ —F——

e

Bav

Figure 2.3: Diagram of hydraulic actuator with its driven link.

Equations (2.17) and (2.18) are now rewritten in compact forms as
q,; =Kx,, 01 (2.19)

90, =Kix,, 00, (2.20)
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where
i 2 i
K!=C, |[=w (2.21)
Yo,
0;, =/(P.—P)/2+sgn(x,, J(P, +P)/2~P])) (2.22)
b, =(P. = P)/2+sgn(x’, )Py, —(P.+P)/2) (2.23)
and

1 whenx,, >0
sgn(x,, ) )=1 0 whenx =0 (2.24)
—1 whenx], ;<0

Continuity equations for fluid flow through the cylinder are (Niksefat and Sepehri, 2000)

. N AT
qp; =4 ;%5 + 2 ’)P/,j (2.25a)
J
i i Vi‘(xi') i
9o, = Ao X =25 F; (2.25b)

j
where [ ; is the effective bulk modulus of the hydraulic fluids. xll is the cylinder position

and X is the actuator cylinder speed. Volumes ¥, ;and ¥, ; are the fluid volumes trapped
in the blind and the rod sides of the actuator, respectively. They are expressed as
Vi,(x) =V +x'4; (2.26a)
Vo, (x)=Vy, —xi Ay, (2.26b)
where ¥, and ¥, ; are the volumes of the two chambers when x! =0.
Assuming a very small rise time, the relation between the spool displacement xgp’ ;

and the input voltage uj to the proportional valve is simply expressed as

K, u;=x,,; (2.27)
where K, . is a gain. The net force from hydraulic actuator F is
F=A4,,P -4, P, —F,;, (2.28)
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F ;r ; 1s the friction that is further described in Section 2.3. The cylinder speed is related
to the joint angular velocity as

), =J,(4))q, (2.29)
where j j (qj.) is the Jacobian from link joint space to the linear actuator coordinate and
assumed nonsingular. Using virtual work principle, the net torque originating from the
actuator 77 is

T/ =J(q})F] (2.30)
2.2.3 Friction Model

The friction force F /’r , appearing in equation (2.28) is modeled by the LuGre friction

model with friction force variations

Fy ;= 00,2 + 025 + 05 X, (2.31)
. i
YA (2.32)
T g(x))

where zj. is the friction internal state that describes the average deflections of the bristles

between each pair of contact surfaces. This state is not measurable, but finite (Canudas de

Wit et al., 1995). The nonlinear function g()'cj.) is used to describe different friction

effects and can be parameterized to characterize the Stribeck effect (Canudas de Wit et

al., 1995)

i . i i —(%) /% ;)
00, 8(X;) = Fy, +(F, ;= F, e (2.33a)
or
. i i —(& /%)
gxy) =/, +Sa,—Sfu)e (2.33b)
where Fj},j and F;,_,- represent the levels of the slip friction and the stiction force,

respectively. Consequently, f;), ; and f‘,’;jj represent the levels of the normalized slip
friction and the normalized stiction force (Tan et al., 2003), respectively. xi ; is the

Stribeck velocity. Variables o ;s o, ;» and g ; are the friction force parameters

physically interpreted as the stiffness of the bristles between two contact surfaces,
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damping coefficient, and viscous friction coefficient. These friction force parameters o i

o, ;> and o) ; can be calibrated through systematic experiments, which may involve

considerable work (Canuds de Wit et. al., 1995). Also, they may vary slowly but
significantly in real applications due to temperature changes, material wear, lubrication
condition, and the nominal acting forces between contact surfaces (Tan, et al., 2003).
Therefore, as will be described in the next chapters, these three parameters are considered

unknown. The friction force/torque is assumed to follow the dynamics in equation (2.31)
and (2.32), but each friction state z;., referred to as the internal state, is finite but
unknown and not measurable. Hence, each friction state z’l needs to be observed by the

controller.
Note that the remaining parameters in equation (2.33a) or (2.33b) are normally
estimated by the construction of static friction-velocity map measured during constant

velocity motions (Lischinsky, 1999).

2.3 Model of the Entire System
From equations (2.28) and (2.30) one arrives at:
T,=J(F-F,) (2.34)
where
F=A4P -4,P, (2.35)
and
J =diag{J'J*---J"), J =[J] T} J;
P =[PP P P =[PP, P];
Py =[Py Py - Py"1"s Py =[Py, Pyy Pl
Fy = F - FTS Fy = LF Fp o Fil's
A, = diag[A}'jj]; A, = diag[Aé,j]; i=1..,nj=1..,6.
Combining equations (2.8), (2.9), (2.10) and (2.34) one arrives at the following equation:
AX+BX+E'WJ'G, =E'"WJ"J(F-F,)-E"WF, (2.36)



2. Development of a Complete Model of Co-operating Hydraulic Manipulators 21

where

A=E'"WJ'H, J'W'E (2.37)
and

B=E"WJT[C,J'W'E+H, J' W E+W"E-JJ'WT"E)] (2.38)
Combining equations (2.11) and (2.36) together, will cancel the term " E"WF." and lead

to the dynamic equation of motion for the entire robots-object system:

MX)X+DX, X)X +G(X)=T (2.39)

where
M(X)=AX)+M  (X) (2.40)
D(X,X)=B(X,X)+D,(X,X) (2.41)
GX)=E'"WJ'G, +G,(X) (2.42)
T=E'"WITJ(F-F,) (2.43)

It can be shown (see Appendix B) that the following properties hold:

Property 2.9: M(X) is a symmetric positive definite matrix,
Property 2.10: M —2D is a skew-symmetric matrix,
Property 2.11: D(x,y)z = D(x,z)y Vx,y,ze R*™, and
Property 2.12: M(X)and D(X,X) are bounded as follows:
0<M, <|M(x)|<M, VxeR™
] <D]  veyer™
Note that H,(q), C,(q.9) , and G, (gq) are linear in terms of the combined
manipulator parameters (Slotine and Li, 1991). Also, M, (X), D, (X ,X), and G,(X)

are linear in terms of the payload parameters. Thus, M, D and G are linear with respect
to the manipulators and object dynamic parameters, and the following relation can be
written:

M(X)X +D(X, X)X +G(X)=0(X,X,X)0 (2.44)
where @ is a vector of individual or combined unknown parameters of the system and

O(-) is a regressive matrix.
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From equations (2.19), (2.20), (2.25), (2.26) and (2.27), one arrives at
P, =C/[KK QU - 4,J (¢)4]

P, =C,[-KK,_0,U + A,J (9)4]

where
- B
C, =diag(C,; . ,CIZ—J,
I g( 1,,) 1, I/Il,j N A},jx}
i B,
C, = dlag(co,j):co,j = T
Vo, = 4o X;

K= diag(K;.); K, :diag(ij,j);
Q, = diag(Q; ;);Q, = diag(Q, ) ;
U=[u" " u"];u =[uf ué...ug]T; i=1..,nj=1..6.
Differentiating equation (2.35) and using equations (2.45) and (2.46), result in
F=A4,@U-A,94.9
where

Acq (q9)=(4,C,0,+ 4,C,0, )KKsp

A.,(4.9) = (4/C, + 4,C,)Jq

(2.45)

(2.46)

(2.47)

(2.48)

(2.49)

Similarly, the right-hand side of the hydraulic dynamics (2.47) can be linearly

parameterized as

Acq (q)U - Aca (q’ q) = @(q’ q’ U)(D

(2.50)

where ¢ is the vector of unknown parameters of the hydraulic function and @(-)

represents a regressive matrix.

Equations (2.39) and (2.47) describe the dynamics of a complete system of n hydraulic

robots carrying a common rigid object.



Chapter 3 Regulating Control of Co-operating

Hydraulic Manipulators

In this chapter, a nonlinear stable control scheme is developed to allow two or more
hydraulic robots to coordinately regulate an object’s position, while maintaining desired
internal forces on the object and sharing the load.

The design is based on the backstepping technique (Khalil, 2002), which is a
recursive procedure that interlaces the choice of a Lyapunov function with the design of
feedback control. A review about this technique is presented in Appendix C. The
controller is augmented by an on-line updating law to eliminate the steady-state errors,
due to the lack of knowledge about the weight of the object. Furthermore, the
requirement about the knowledge of robot dynamics and hydraulic functions are relaxed
and the controller is redesigned. Friction is not considered at this stage. The stability of
the system is guaranteed by constructing a smooth Lyapunov function. For the purpose of
simulations, a detailed numerical simulation program is also developed. Two three-link
planar robot manipulators resembling Magnum hydraulic manipulators manufactured by
ISE, interact with each other through manipulating a common object. Simulation results

are presented to substantiate the developed controller.

3.1 Controller Design with Full Knowledge of Physical Parameters

3.1.1 Controller Design

Using equation (2.2), one can write equation (2.8) as

g=J'w' (3.1)
and the following is further obtained
G=J"'WV+WTv-J§) (3.2)
The dynamic equation (2.10) can also be expressed in terms of the object velocity, v
AV+Byv+WI'G, =WJ'T —WF, (3.3)
where
A, =WJTH J'W" (3.4)

23
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and
B,=WJ""H J'W" —JI'wH+wr'c J'w’ (3.5)
Dry friction is neglected at this stage and only viscous force is taken into account. Thus

equation (2.28) becomes

Fj = A1,Pr ;= Ao Fo ;= Ky, (3.:6)
where K, isa viscous coefficient. Accordingly, equation (2.34) becomes

T,=JF-K,,J*q (3.7)
where K,.,, = diag(K;amp,j) , i=1..,n;j=1,..,6. The object dynamics expressed in

Cartesian space can be expressed in term of its velocity, and is given below (Caccavale et
al., 1999):
A XWw+B (X,vv+g,(X)=F,, (3.8)

where A, (X)e R is the symmetric and positive definite inertia matrix of the object,
B,(X,v)ve R™ is the vector of Coriolis and centrifugal forces, g, (X)e R™ is the

vector of gravity forces, and F,, € R is the vector of resulting forces acting at the

ext

origin of the object frame expressed in the Cartesian reference frame, and is given by
equation (2.12). Note A (X)—2B,(X,v) is a skew-symmetric matrix.
Combining equations (3.3), (3.8) and (2.12) together will cancel the term "WF," and
lead to the dynamic equation of motion for the robots-object system:
(A, +AW+(B, +BWw+g, +WI'G, =WJ'T, (3.9)
Note that equation (3.9) is another form of equation (2.39) representing the overall
system dynamics. The regulating controller design will be based on equation (3.9).

The following positive definite quadratic form is now chosen as the initial Lyapunov

function candidate:
V, :%qTqu+%vTon+{¢iTKp¢7 (3.10)
where §=g—¢q° and ¢° denotes the vector of the desired link angular positions

corresponding to the desired position/orientation of the object. Since the desired

position/orientation of the object is related to each robot end-effector’s desired
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position/orientation given by equation (2.1); ¢° can then be derived from the
manipulators' desired end-effector positions/orientations by the inverse kinematic
solution of the robots (Paul, 1981). Note, § =4 since §° =0 for regulation problem.
K, e R®™®" is a positive definite diagonal matrix.
Noting that AU (X)—-2B,(X,v) is a skew-symmetric matrix, and using properties 2.1
and 2.2, stated in Section 2.2, it can be shown that the time derivative of V, is
Vi=—4"K,, ) (@§+q" J@F -G, () +K,§)—'g, (3.11)

Let the virtual controller for F be

F'=J'(<J"WWITK 4+G, (q)+J"W'g, +J VF, (3.12)
where F is the desired internal force. Define
F=F-F" (3.13)

Replacing F with F+F?, equation (3.11) can be rewritten as

Vi =~4"K @G+ 4" T@F +¢" (L= IWWIT)K G +(§ T W' —v)g, +§ J'VE,;

int

(3.14)

damp

Terms 3, 4 and 5 on the right side of equation (3.14) are now proven to be zero. Any

vector of F, can be written as follows:
F.=W'WF,+(I-W'W)F, (3.15)
The first term of equation (3.15), W'WF ., represents the part that leads to a resultant/

external force on the object since W (W 'WF.,)=F,, . Thus, W'W acts as a filter to
remove those force components leading to internal forces. In particular, the internal force
related components could be completely removed with the choice of W' in equation
(2.14). The second term, (I —-W'W)F,, represents the part of the contact forces that
produce internal forces, since

W({I-W'W)F, =0 (3.16)
Vector F, can be related to T, the part of the generalized forces/torques, corresponding

to the contact forces. The relation can be expressed by

F =J'T (3.17)
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Substituting equation (3.17) into equation (3.15) leads to
T.=J"WWT.+J (I-W'W)T, (3.18)

Similar to terms in equation (3.15); J'WWJ ™" acts as a filter to remove those
torques corresponding to the internal forces. Equation (3.15) indicates that any set of
contact forces can always be divided into two parts: one part contributes to the motion of
the object; the other makes no contribution to the motion of the object. Similarly, any set
of torques which produce contact forces, can be decoupled as described by equation
(3.18). For a rigid object, the second term on the right side of equation (3.18) only
corresponds to producing the internal forces, meaning that this part of the torque makes
no work. Thus, the following relation holds:

g J I-WW)T. =0 (3.19)
Since T, can be any value, one has
g I I-WWw)=0 (3.20)

Alternatively, equations (3.19) and (3.20) can be explained in terms of relative
velocity (Caccavale et al., 1999). The left side of equation (3.20) can be actually treated
as the relative velocity due to the internal force, and then the left side of equation (3.19)
is the work corresponding to deformation. For a rigid body, there is no deformation and
no relative velocity due to internal force. This helps to explain equations (3.19) and
(3.20).

It is easy to verify that term 3 on the right side of equation (3.14) is zero using
equation (3.20). Also, terms 4 and 5 on the right side of equation (3.14), are zero by
substituting equation (3.1) into these terms and using the fact that WF =0.

Equation (3.14) then becomes

Vi =4 K, I @4+ 4" T(@F (3.21)
The Lyapunov candidate function of the entire closed-loop system is now defined as

V,=V,+1F'IF (3.22)
where I’ is a positive definite diagonal matrix. The time derivative of V, is

V,=—¢"K, J*(q)§+F'J(q)g+F I'(F-F") (3.23)

damp

Using equation (2.47) to replace F results in
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V, ="K, I (@q+ F T (@) + F'TTA (U~ A, @.9)-F']  (3.24)
Equation (3.24) suggests the controller to be
U=A) (@A, (@.9)-T" T+ F' K, F) (3.25)
where K, is a positive definite diagonal matrix.
The derivative of V, then becomes
V,=-4"K,,,J (q)§-F'TK.F (3.26)

It is easy to see that V, is continuous, negative and semi-definite. Therefore, the

control system, given the controller (3.25), is stable in the sense of Lyapunov.

3.1.2 Equilibrium of the Control System
For a set point g° corresponding to the desired set-position of the object, the

equilibrium of system (3.9), under controller (3.25), satisfies the following relations:

U” =0 (3.27)
F¥=0 (3.28)
WI7TK, G =0 (3.29)

F»=Ww'g +VF/

int

(3.30)

€cSSyy

where the superscript represents steady-state. Variables with superscripts are the

corresponding variables at the steady-state phase. For example, U” is the steady-state

input voltage. Equation (3.27) indicates the hydraulic control valves are closed when the

system is at the steady-state phase. If K g™ is treated as the joint-error related torques,

terms J 'K ,4" and WJ K ,4" become the joint-error related contact forces and

external forces, respectively. Thus, equation (3.29) implies that the steady-state joint-
error related external forces are zero and a set of solution points exist. It can be shown in

a way similar to the work by Caccavale ef al (1999) that there actually exists a domain of
attraction for the equilibrium point with ¢* = 0. Because V, is quadratic, there always
exists a positive / and a bounded region R; such that R; includes the point with g** =0

and
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. Vx eR,
V,(x)<0

{Vz (x) <l

By employing the local invariant set theorem, it follows that R; is a domain of
attraction for the equilibrium point with ¢* = 0. Equation (3.30) leads to the desired
internal forces at the steady-state phase. By applying equations (2.12), (2.13) and (3.30),

it can be proven that:

F Ss

w =WF" =g, (3.31)
and

VES =F" -W'F>» =VF!

int ext int

(3.32)

where F and F| are steady-state external and internal forces, respectively. Since

matrix V is full-column-rank, it can be concluded that

Fss — Fd

int int

(3.33)

3.1.3 Comments on the Control Law
With respect to controller (3.25), the hydraulic system parameters needed by the

controller are the effective piston areas 4, and A, and the effective bulk modulus of the

hydraulic fluid, . Measurements of line pressures are required for feedback. Mass,
length and position of the center of mass for each link of the robots are also required,
since the Jacobian and compensation of link gravity appear in the controller. To calculate
F*, measurements of robot joint positions and velocities are required. Finally, the mass
of the object is also required for the control law.
Usually, only rough estimates of some of those parameters are available. Thus,
stability and equilibrium of the control system need to be studied under different cases.
Assuming that only a rough estimate of the load weight g, is available, the desired
force vector needed by the actuators and determined in equation (3.12) becomes
F'=J'-J'WWIK §+G, (@+J ' W'g, +JVFy) (3.34)
The equilibrium of the system under the controller (3.25) and (3.34), will then be
U” =0 (3.35)
F¥*=0 (3.36)
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WITK,§"=¢,-g, (3.37)

F*=W'g +VF/

o (3.38)

As seen, the uncertainty in the estimation of the payload leads to a new equilibrium
configuration set, indicated by equations (3.35) to (3.38). Note that although the contact
forces are different due to the inaccurate estimation of the payload, the internal forces
remain at the desired steady-state level. This can be shown by equations (2.12), (2.13)

and (3.38):

Fo=WF>=g, (3.39)
Fy = Fp, (3.40)

With respect to stability, considering a gravity energy function E(q), such that it is

positive semi-definite and ? =J"W'(g, - g,), let the Lyapunov candidate be
q

V,=1¢"H, g+ V' Av+1§ K §+LF'IF +E(q) (3.41)
It can be then shown that
V,=-4"K,,,J (q)i—F'TK.F (3.42)

which is negative semi-definite. Thus, the stability is still guaranteed in spite of the

imperfect gravity compensation.

3.2 Modification to the Controller to Account for the Uncertainty of
Payload

Previous analysis shows that there exist position errors in the case of unknown payload.

The controller is now modified to cope with the uncertainty of the payload.

3.2.1 Controller Design
To avoid leading to a different equilibrium configuration due to the uncertainty of the
payload; it is proposed to add an integral-like adaptive scheme to the controller (3.25),

which updates the estimate g, . Let

g, =-KWITK g (3.43)
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where K, is a positive diagonal matrix. The equilibrium of equation (3.43) is
WITK,§" =0 (3.44)
which is the same as equation (3.29). By updating the estimate of the payload using
equation (3.43); the steady-state error of the system, due to imperfect object gravity
compensation, can be eliminated.
To prove the stability of the entire system given the modified controller, consider a
gravity energy function E(q,g,), where g, =g —g, , such that it is positive semi-

8E(q’go) :_JTW}Q_'O’ al’ld aE(ng())

definite, —
oq g

=-(g,, where ¢ is a constant. Let the

o

Lyapunov candidate be

V,=1¢"H g+ V' Av+1G K G+1F'TF+1g! g, +E(q.8,) (3.45)
It can be easily shown that

V,=—¢"K, J*(q)§—-F'ITK, F (3.46)

damp

which is negative semi-definite. Thus, the stability is guaranteed for the system with the

on-line payload updating scheme (3.43).

3.2.2 Simulation Studies

Numerical simulations have tested the nonlinear controller presented in Section 3.2.1.
With reference to Figure 3.1, two three-degree-of-freedom manipulators (see Appendix D
for single manipulator’s dynamics) held an object, which was initially rested on the
ground. Parameters of the robots used in simulations were chosen to closely resemble the
MAGNUM 7-function hydraulic manipulators manufactured by International Submarine
Engineering Ltd. (ISE), Canada, with some joints fixed. These parameters, adopted from
AutoCAD drawings provided by ISE, are given in Table 3.1 and Table 3.2. Each actuator

has the same parameters, with the exception of a different stroke. The load distribution
between the two robots needs to be even, as defined by &' =a” =0.5. The controller

. i i -1 i -1 iz -l
gains were chosen as K, =8Nm, I'; =0.0lmN", K. , =40s", and K, =5".
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Table 3.1: Link parameters.

Link Length (m) Mass (kg) Inertia (kgm®) Range
1 0.537 22.5 0.5407 90°
2 0.336 15.7 0.1477 130°
3 0.606 22.5 0.6886 115°
Table 3.2: Hydraulic actuator parameters.
Parameter Symbol Value
Pump pressure P 6.895 MPa
Exit(tank) pressure P, 0 MPa
Valve constant K, . 4.064x10° m/V
Orifice area gradient W, 1.01x107m
Flow gain K; :dej\/z 2.94415x10™ 25
p kg
Bulk modulus of the hydraulic fluid ﬂ; 689 MPa
Piston area (blind side) 4 3.167x107° m?
Piston area (rod side) A 2.6603x107° m?
Stroke of cylinder 1 strokel 0.26416 m
Stroke of cylinder 2 Lok 0.15875 m
Stroke of cylinder 3 Lores 0.1016 m
Initial fluid volume (blind side) v 2.14x107° m’
Initial fluid volume (rod side), cylinder 1 v 72.4144x10° m’
Initial fluid volume (rod side), cylinder 2 17(,12 4437x10° m’

Initial fluid volume (rod side), cylinder 3 V,s

29.17x107° m’
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As shown in Figure 3.1, a payload of 80 kg sat on the ground with both robots holding it
rigidly. At this point, the loads experienced by the robots were only due to their own arms.
A command was given to the robots to lift the object 0.2-meter above the ground, while
maintaining a horizontal internal force of zero on the payload. At the moment the
command was issued, the object weight was unknown and estimated as zero.

Figure 3.2 shows that the object was moved to the desired position. Control signals to
the actuators for one of the manipulators are shown in Figure 3.3. Control signals for the
other manipulator were very much the same and are therefore not shown here. Note that
the control signals at the beginning of the task were small. This was due to the object’s
weight being estimated as zero at the beginning of the task. The controller initially
produced small signals. As the true value of the load was identified, the controller
adjusted its signals to compensate for the load. The lifting forces by the two manipulators
were almost the same, as shown in Figure 3.4. The estimate of the object's weight went
from zero (the initial estimate) to the actual value, as shown in Figure 3.5. Figure 3.6
shows that the desired internal force was maintained during the steady state, with little
change during the transient period. For simplicity, Figure 3.7 only shows the line

pressures in actuator 1 of the first manipulator.

I
1

Figure 3.1: Two planar hydraulic robots co-operatively lift an object sitting on the
ground.
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Figure 3.2: Position trajectory of the object.
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Figure 3.3: Control signals for the first manipulator.
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Figure 3.4: Load sharing between two manipulators.
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Figure 3.5: Estimation of the payload.
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Figure 3.7: Chamber pressures in link 1 actuator of one of the manipulators.
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The above simulation was repeated with an uneven load distribution, described by
a' =2/3, a® =1/3. The response, such as tracking error and internal force, did not
change significantly as shown in Figure 3.8 and 3.9 respectively. The control signals for
the manipulators shown in Figures 3.10 and 3.11 were different from each other.
Consequently, Figure 3.12 shows that lifting forces were not evenly distributed between
the two manipulators; the first manipulator contributed more to the lift and hold of the
object. During the steady-state phase, the lifting forces were 523N and 261N; therefore
the ratio is equal to a'/a”. This shows that the load distribution was completely

manageable by the load distribution scheme.
0.537 — ——p-—-—-—--—---- - ==
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Figure 3.8: Position trajectory of the object (uneven load distribution).
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Figure 3.9: Horizontal internal force exerted on the object by two manipulators.
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Figure 3.10: Control signals for the first manipulator.
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Figure 3.11: Control signals for the second manipulator.
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The last simulation was about the system response over a series of step inputs as
shown in Figure 3.13. The same control gains as in the first simulation study were used;
and the payload was initially estimated as zero. As can be seen, the controller performed
well over the entire workspace. Note that following the first step input, the object stayed

at desired position and the payload was estimated properly. Thus, for the subsequent

steps the gain of the adaptive scheme (3.43) was reduced to K } ;=0.1 s

r
|
|
|
0.637 — :
_| Desired position |
|

Object position (m)
o
o
(%)
-..J
|

0.337 I

0 5 10 15
Time(s)

Figure 3.13: Position trajectory of the object given a series of step inputs.

3.3 Design of a General Controller to Account for the Uncertainty of

Payload, Robot Dynamic Parameters and Hydraulic Functions

The controller developed in Section 3.1 is now further investigated in the case where
gravity terms g, and G, (q) for the payload and manipulators respectively, are unknown.
The desired forces needed by actuators given in equation (3.12) then become

(@)+J " W's, +JVE) (3.47)

F'=J'(-J'"W'WI"K,G+G,
where, (;’(q) is a rough estimate of the gravity term G'(q). The equilibrium of the system
under the controller (3.25) and (3.47), will then be

U”=0 (3.48)

WI'K,G=¢,-g,+WJ"(G,(9)-G,(9) (3.49)
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F*=(I-W'W)J 7 (G,(q)-G,(q)+W'g, +VF

(3.50)

VES =F* -W'WF* =(1-W'W)J (G, (9)-G, (9) +VF

in in (3.51)
Equation (3.49) shows its right-hand side becomes nonzero due to inaccurate

compensation of the object gravity term or the manipulators’ gravity term. This leads to

a set of different equilibrium configurations from those obtained via equation (3.29) or

(3.37), and the desired position can not be achieved. In the case of imperfect

compensation of the manipulators’ gravity term, the equilibrium does not yield desired

internal force at steady state.

With respect to stability, considering a gravity energy function, E(q), such that it is

positive semi-definite and GEa(q) =J"W'(g,-¢,)+(G, (q)— ém (9)), let the Lyapunov
q
candidate be
V,=1¢"H, g+v'Av+1§" K §+LF'IF +E(q) (3.52)
It can be easily shown that
VZ z_qTKdampjz(q)q._ﬁTFKFﬁ (353)

which is negative semi-definite. Thus, the stability is still guaranteed in spite of the

imperfect gravity compensation of both the payload and the robots.

3.3.1 Controller Design
The above analysis concludes that position regulation could not be achieved if either
the object’s or the manipulators’ gravity term is not accurately compensated. As for the
regulation of internal force, it could not be achieved only because of unknown
manipulators’ gravity term. To avoid these undesirable performances, adaptation laws
are introduced to estimate both unknown payload and manipulators’ gravity term, and
internal force feedback is also added to help achieve desired internal force. In addition,
uncertainties from hydraulic functions are considered in this section.
To replace the terms related with parameters from hydraulic functions,
manipulators, and the object required in the previous controller with their estimates, the

controller is suggested to be
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U=A4,@)A,@.9)-T"T(@q+F'~K.F) (3.54)
where

F'=J ' (~J"W'WITK, G+G, +JVEL ~J"VK, (F,, — F%)) (3.55)
Note that vector (;’E is the estimate of the combined gravity term G, (q)+J W'g,_,
instead of estimation of G, (¢q) and g, separately. K, is a control gain. Vector ¢ is

the estimate of unknown hydraulic parameters, ¢ . Matrix 121;]‘ (¢) and vector /Alm (q.9)

are calculated using ¢ . Vectors G » and ¢ are updated by following laws
G, =—K,K j (3.56)
¢=r,'D"(q,4,U)I . F (3.57)
To prove the stability of the entire system given the modified controller above, consider a

gravity energy function, £ (q,& »), Where G p = G . —(G,(q)+J"W'g ), such that it is

E(a.G - G -
positive semi-definite, % =-G,, and % =—-(G,, where ¢ 1is a positive
q E

constant. Define @ = ¢ — ¢ . Let the Lyapunov candidate be

V,=1¢"H, g+ Av+1§ K G+1F'T'.F +1G1¢G, + E(q.G,)+1¢" T ,p

(3.58)
then
V,=—4"K,,,J @i+ F ' J(q)qg+F'T.(F-F')+"I ¢ (3.59)
Since
F =9(q,4,U0)($—5) = A, (U - 4,,(¢.4) - D(¢,4,U)p (3.60)
with the controller (3.54) and the adaptation law (3.57), it can be easily shown that
V,=-4"K,,,J (q)i—F'TK.F (3.61)

which is negative semi-definite. Thus, the stability is guaranteed for the system with the
controller expressed in equation (3.54).

The equilibrium of the system will then be

U® =0 (3.62)
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qg=0 (3.63)
W7 (G, —(G,(q)+J W'g,)=0 (3.64)
VE, =I+K,)' T (G, —(G,(q)+IT ' W'g ) +VF} (3.65)

Equation (3.64) implies that the external forces due to the errors of gravity

compensation are zero. However, it does not guarantee G, — (G, (q)+J W 'g,)=0.1n

other words, éE , the estimate of the gravity term (G, (q)+J W 'g,), does not have to

converge to its actual value. The desired internal force cannot be achieved at steady state
by inspection of equation (3.65). Nevertheless, the internal force can be controlled

through gain K . Increasing the value of K., can impose the actual internal force more

approximate to its desired value.
In the implementation of equation (3.55) associated with the controller (3.54), the
derivative of the internal force is difficult to obtain and is calculated using numerical

differentiation; or can be neglected if the variation of internal force is slow.

3.3.2 Simulation Studies
Numerical simulations on the same system that was used in Section 3.2.2 have tested

the nonlinear controller presented in Section 3.3.1. The desired internal force was set to

zero, i.e., F* =0. The controller gains were chosen as K, =12Nm, I, =0.0lmN",

int

K;’j =405, K;’j =25", and K, =0. As shown in Figure 3.1, a payload of 80 kg sat on
the ground with both robots holding it rigidly. The command was given to the robots to
lift the object, 0.2-meter above the ground, while maintaining a horizontal internal force
of zero on the payload. At the moment the command was issued, the combined gravity
term from both the payload and the robots was unknown and estimated as zero. The

vector of the unknown hydraulic function parameters

o= KK, ,Bl,. KK, )20, Were also estimated online using half

sp.1° sp.Jj?
of their actual values, initially. Figure 3.14 shows that the object was moved to the
desired position. The control signals to the actuators for one of the robots are shown in
Figure 3.15, which is different from the one (Figure 3.3) in Section 3.2. Figure 3.16

shows that the actual internal force was not exactly the same as the desired value during
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the steady-state phase, as expected by the theoretical analysis in Section 3.3.1. The
difference is about 10 N.

Estimates of unknown hydraulic function parameters are shown in Figure 3.17. The
simulation results show that the external forces due to the errors of gravity compensation

are zero i.e. WJ " (é . — (G, (q)+J"W'g, ))=0 at the steady-state phase, as can be seen

in Figure 3.18 where the second component is along the gravity direction. This agrees

with the theoretical analysis in Section 3.3.1.

0537 ———p-——————~—====

= Desired pesition
o
=
."5
o
o
©
el
O
O
0 1 2 3 4 5
Time(s)

Figure 3.14: Position trajectory of the object.

Control signal (V)

Time(s)

Figure 3.15: Control signals for the first manipulator.



3. Regulating Control of Co-operating Hydraulic Manipulators 42

®
o
|

i
[an]
|

R Desired internal force = 0 N

o
[en]
|

Internal force (N)
(=]

o
o
|

Time(s)

Figure 3.16: Horizontal internal force exerted on the object by two manipulators.
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Figure 3.17: Typical hydraulic function parameter estimation errors.
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Figure 3.18: Components of the vector WJ‘T(G’E — (G, (q)+J"WTg,)) in Cartesian

reference frame {X,.Y,.Z,}.



3. Regulating Control of Co-operating Hydraulic Manipulators 43

3.4 Summary

This chapter documented design, stability analysis and numerical verification of position
controllers for the problem of point-to-point regulation of a payload manipulated by
several hydraulic robots. The highly nonlinear hydraulic actuator dynamics were
incorporated in the Lyapunov-based controller design. Issues of motion, internal force
control of the object and load sharing were addressed. The equilibrium of the system
under the proposed controller was investigated leading to a set of equilibrium points
corresponding to given internal forces. The issue of unknown payload was also analyzed
and the controller was modified to eliminate the steady-state error due to imperfect
compensation. Simulation results validated the efficacy of the proposed nonlinear
controller. The controller was extended to the case where gravity terms of both the
payload and the robots, as well as the parameters of hydraulic functions were unknown.
Inspection of the new control system’s equilibrium found that the desired internal force
might not converge to the desired value. The introduction of force feedback control
reduced internal force error.

The first controller is easier to implement but requires knowledge about the gravity
terms for the payload and the manipulators, as well as the hydraulic function parameters.
The second controller is suitable for the scenario in which only the payload is unknown.
The third controller is designed for a general case where all the parameters including the
gravity terms from the payload and manipulators, as well as the hydraulic function

parameters are unknown.



Chapter 4 Tracking Control of Co-operating Hydraulic

Manipulators

In this chapter, a scheme is developed for tracking control of multiple hydraulic
manipulators handling a rigid object without relative motion between the object and the
grippers. The goal is to design a controller that allows two or more hydraulic robots to
coordinately track an object’s position/orientation while maintaining a desired internal
force on the object. The issues of load sharing between the hydraulic robots, unknown
payload and uncertainty on the manipulators’ dynamics as well as hydraulic functions are
also addressed. Similar to the regulating controller design in the Chapter 3, friction is not
yet considered for simplicity in this chapter. An on-line updating law to compensate for
parametric uncertainties augments the controller.

It is assumed that the unknown parameters are constants or that they vary slowly with
time due to temperature, wear, humidity etc. That is to say, their time derivatives can be
treated as zero. An acceleration observer is also developed for the co-operating control
system to avoid the requirement of acceleration feedback, which could be difficult to
measure or determine in practice. As in Chapter 3, the backstepping technique is
implemented during the adaptive controller design. The position tracking error is proven
to converge to zero while internal force error is bounded and can be reduced by
introducing a force feedback loop. Results from simulations, which are performed on two
co-operative hydraulic manipulators, are provided to demonstrate the effectiveness of the

proposed control law.

4.1 Controller Design

The following variables are defined first and used in the design of the controller.

e=X—-Xx1 (4.1)
X=X-X (4.2)
X =X"-2(X-X)=X"-2(e-X) (4.3)
X, =X -4 (X-R)=X-1,X (4.4)

44
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s;=X-X, =é+A(e—X) (4.5)
s,=X-X, =X+1% (4.6)
where X“and X are the desired and estimated values of X , respectively. A, and A, are

diagonal positive definite matrices. It is assumed that X belongs to C* (a function with

k continuous derivatives is called a C* function (Rowland, 2006 and Husch, 2001)).

The controller is proposed as a proposition as below. That means the controller is
presented first followed by stability analysis. In practice, however, the controller is
obtained from constructing a Lyapunov-like scalar function and finding its time
derivative. Although the backstepping technique has been implemented, trial and error
method is sometime necessary to find a proper controller that theoretically guarantees the
system’s stability. This methodology is also applied to develop the controllers in the

followed chapters.

Proposition:
Consider the system described by equations (2.39) and (2.47), without the friction

term F, . Given the following acceleration observer:

X =M [T=DX, X)X, ~GX)+ L, X + K5, +K,5,]+ A, X 4.7)
and the controller:
U=4" @A, (g¢)+ F' ~T;'T"J "W’ Es, K, F) 4.8)
where
F=F-F" (4.9)
F'=J"'"J"W'ETT! +VE? (4.10)
T =MX)X, + DX, X)X, +G(X)-K,(s,—s,)-K e (4.11)

with the following adaptation law for manipulators-object parameters:

0=-T;'[6] (X,X,, % )s, +607 (X, X,X,,%,)s,] 4.12)
where

O,(X, X, , X )0=MX)X, +D(X,X )X +G(X) (4.13)

0,(X,X,X,,X)0=MX)X,+D(X, X)X, +G(X) (4.14)
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as well as the following hydraulic parameters adaptation law:

p=T,'®(4.4.U)T, F (4.15)
where 6 and ¢ are the estimates of 8 and ¢, respectively. M ,ﬁ,é are estimates of the
dynamic matrices M,D,G , associated with 6. /Alm and /Alcq are the estimated vector and
matrix associated with ¢ . K ,L K, K, T K, ,I', , and T, are constant positive

definite diagonal matrices. F° is the desired internal force.

mt

Providing the following conditions are satisfied

2Jo(AK,)\o(hL,) > F(AK,) (4.16)
g Vo, =V U
ROE \/ o {0(1;36 (Z )X } i 4.17)

with 7(¢) = (e’ X7 s s IN7'T)T , then r(¢) is bounded and converges to zero as t — .
In equations (4.16) and (4.17), o (.) and & (.) are the minimum and maximum
singular values of their matrix argument, respectively; X is the upper bound on the

norm of X“; Scalars « L0,V ,and V,, are positive constants defined as follows:

pL>
a, ||’ < LtsIM(X)s, +1sIM(x)s, +1e"K e+ L XL X +LF a | @.18)
V,<i0'T,0+13'T,p<V,, (4.19)

where § =66, P=0—¢.
Proof:

Consider a scalar function:
V, =15/ M(X)s, +1s]M(x)s, +1e' K, e+1 XL X +10'T,0 (4.20)
The following error dynamics can be obtained and will be used in \71 :
M(X)s, + D(X,X)s, = 0,(X,X,,X)0 —K,(s, ~s5,)~ K e~ D(X,s)X, + E'WJ " JF
(4.21)
M(X)s, + D(X, X)s, = 0,(X, X, X,,X)0 —K,s, ~K,s, —L, X (4.22)
where equations (2.39), (4.7), and (4.11) have been employed in deriving equations (4.21)
and (4.22).
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It can be shown that the time derivative of V, is given by

V,=—s/K,s, —s K s, — eT/IIer— )N(TAZLP)N( + )N(T/llee —s/ D(X,s,)X, 423)
+sTETJTIF+[0'T, +s70,(X, X, X )+s70,(X,X,X,,X )0

Substituting the adaptation law (4.12) leads to
V,=-s/K;s,—s;K,s, —e' AK e~ X" ,L X + X" 2K je—s/ D(X,s)X, +s/ E'J"JF
(4.24)

Following the backstepping approach, for the entire system, consider a scalar function:

V,=V,+1F'T,F+13'T,¢ (4.25)
Since

A (U~ A4,(4.9) = (q.4.0)9 (4.26)
the hydraulic dynamics in equation (2.50) can be rewritten as

F=4,U-4,4.9-94.4.0)p (4.27)

With equation (4.27), the time derivative of V, becomes

V, =V, +(AU-A,-F')T,.F+§" ([,p -9, F) (4.28)
With the adaptive law (4.15) and the controller (4.18), equation (4.28) becomes
V,=—s/K,s,—s K s, —eT/llee—)N(T/”tsz)? +)?T/11er—slTD(X,sl)Xr ~F'K,T,.F

<~(a(K )= Dy (X +&4)(e|+|XDsi|” - (K s|* - FTK T F

~(Jo WK )l ~e(uL,)|X])? - @ Ja(ihK ) Ja(i,L,) -5 (4K, )| X]

(4.29)

where D(X,s,)< Dy s, and X, = X* -4 (e—X) < X +&(4 )] + H)N(H) have been

used in deriving equation (4.29). Notice that (||e||+”)? ) S2(||e||2 +H)? H2)£2||r||2 and

||r||2 <(V, =V,.)/a, resulting from equations, (4.18) and (4.19). To satisfy
o(K,) =Dy (X +&(A)(d + | X[ > 0 (4.30)

a sufficient condition is

+V

pL

v, <2
2| Do)
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The conditions given in equations, (4.31) and (4.16) guarantee that

V, <—a(ld +[Z]"+|s + . +|F] (4.32)

with o >0 . Inequality (4.32) guarantees V, <V, (0). Thus, a sufficient condition for

equation (4.31) is

a,

V2(0)s—{

(4.33)

. 2
a(K,)-DyXg
2 d U Ui| +VPL

Dyo(4)
which can be satisfied by condition (4.17).

The above analysis shows that inequality (4.32) is satisfied under conditions (4.16)
and (4.17). It follows that V, () < V,(0) forall #>0 and r(¢) is bounded.

Inspection of equations (4.25) and (4.32) further reveals that the tracking errors
e, X, s,,S, and F converge to zero as V,(¢) is lower bounded by zero. More arguments

are also referred to Barbalat’s lemma ~ and its followed theorem with examples by Khalil

(2002). Since s, =e+ A, (e— X ), the velocity tracking error, ¢, also converges to zero.

4.2 Remarks

Remarks 1:

The parameter convergence is not guaranteed here. In fact, the parameter estimates
may not converge to their actual values, whereby the closed-loop system will have an
equilibrium subspace {e = 0,)? =0,s, =0,s, = O,F = 0,5 #0,0 #0} . The estimates
might converge to their actual values under the necessary condition of persistency of
excitation (Slotine and Li, 1991).

Remark 2:

The actual internal force is examined here for convergence to the desired value. The

following can be obtained about the contact forces:

Fr =W'ETT  +VF! —J T (H

int

§'+C q'+G,) (4.34)

m

By using equations, (2.12), (2.13) and (4.34); it can be proven that

" Barbalat’s lemma: Let ¢: R — R be a uniformly continuous function on [0,00) . Suppose that

t
lim, Io @(7)d T exists and is finite. Then, @(¢) = 0 as t > .
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Ft~>oo — WFCt%oo - E—TTd _WJ_T(qud +Cqu +Gm) (435)

ext

and

V t—w — Fct—)oo _W'}'Ft—mo — VFd

int ext int

-I-w'wysy"(H,'+C,q' +G,) (4.36)

where, F'>*and F!”” are the external and internal forces when ¢ — o, respectively.

ext int
Since V'is a full-column rank matrix, it can be concluded that

Fl*)OO — Fd

. a+Via-wwys"(H,4°+C,q° +G,) (4.37)
Equation (4.37) shows that there exists a bounded error between the actual internal force
and its desired value. By introducing a force feedback loop, the internal force can be
shown to follow the desired one. Equation (4.10) is modified as

F'=JJ " W'ETT" +V(Fy + K, (F = F,)) (4.38)

int i
The actual internal force F,, can be extracted from contact forces, which are typically

available through wrist sensors. As a result, equation (4.36) becomes

VE," =VEy —(+K, )" I-W'W)J " (H,§'+C,4" +G,) (4.39)

Thus, the actual internal force can arbitrarily approximate the desired value through

increasing the force feedback gain K, . As for the stability, consider the same scalar

function V, defined in (4.25). It can be recognized that the time derivative of (4.25)
satisfies inequality (4.32) under the same conditions (4.16) and (4.17), since only the
term related to internal force has been changed and the internal force feedback terms do
not contribute to V.

In the implementation of equation (4.38) associated with the controller (4.8), the
derivative of the internal force is difficult to obtain and is calculated using numerical
differentiation or can be neglected if the variation of internal force is slow.

Remark 3:
With respect to the controller described in equation (4.8), the only hydraulic system

parameters needed by the controller are the effective piston areas 4, and A, . The
effective bulk modulus of the hydraulic fluid 2, the constant valve gain K, and the

constant flow gain K are not required. As for the manipulators, the mass and position of

the center of mass for each link is not required. Since the Jacobian matrix appears in the
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controller, link length is required. No knowledge about the payload is required. For the
implementation of the proposed controller, only measurements of positions, velocities
and hydraulic pressures are required. Force measurement is also required if a force
feedback is used for the reduction of the internal force.

Note that acceleration measurements are often not available and they are replaced by
numerical derivatives of the measured velocities. This may lead to chattering of the
control inputs due to the combined effect of noisy measurements and un-modeled
phenomena, such as joint friction and elasticity. To avoid this undesirable behavior, an
acceleration observer is developed, in a way that is similar to the works by Sirouspour
and Salcudean (2001) and Bu and Yao (2001), which were for a single hydraulic arm. As
can be seen from equation (4.11), vector T¢ does not contain any velocity terms. That is

to say, T 4 as well as F“, does not contain any acceleration terms. The measurement of

acceleration is not required by inspection of the controller (4.8).

4.3 Simulation Studies

The nonlinear position-tracking controller presented in Section 4.1 has been tested on the
same numerical model as used in Chapter 3. With reference to Figure 4.1, two hydraulic
manipulators held an object and then moved it along a desired path. Parameters of the
robots were chosen to closely resemble MAGNUM 7 function hydraulic manipulators by
International Submarine Engineering Ltd. of Canada. These parameters have been shown

in Tables 3.1 and 3.2. The vectors of unknown parameters,

Robot1 Robot2 Object
—

ol 112 41 1 12 71 112 1 1 11 1.1 1.1 72 2 22 12 2 22 T
0=, +ma, I, +ma, I, +ma, ,m,,my,ma,,ma,,ma,, I, +mya; ,I;+mya; ..., ml )
_ 111 1 ipri i i T : :
and @=(B K K,,, B\, BK;K,, ;s Bs-)ic1njmns » Were estimated online. The

variables m and I are mass and inertia of the object. m;, I j, and aj,i =1,2;j=123, are

mass, inertia, and distance of center of mass to the jth joint of the i™ robot, respectively.
Each actuator has identical parameters, with the exception of a different stroke. All
estimates of the unknown parameters were initially set to different values, (at least 50%
off) from those used in the model; to investigate the ability of the controller to cope with

parametric uncertainties. The reference internal force was set to zero and no force
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feedback was used. The control gains were chosen as 4, =50, 4, =50, K , =10000,
L,=3000, K, =700 and K, =700.

Two reference trajectories along the vertical direction were chosen:

(1) point-to-point trajectory with a travel distance of 0.3m, maximum speed of
0.15m/s and maximum acceleration of 0.6m/s’

(i1) sinusoidal trajectory consisting of one segment with an amplitude of 0.Im and
frequency of 0.2Hz followed by a second segment with an amplitude of 0.02m
and frequency of 1Hz.

These two reference trajectories are shown in Figure 4.2 and Figure 4.8, respectively. The

controller was also required to maintain the internal force in the horizontal direction close

to zero and at the same time, evenly distribute the load between the two robots.
The first set of tests was conducted using the point-to-point reference trajectory, which

is shown in Figure 4.2. Figure 4.3 shows that the position error went to zero with about 1-

mm error at the transient period. The control signals to the actuators for one of the robots

are illustrated in Figure 4.4. Figure 4.5 shows that the internal force exists and went to a

smaller value (about 40 N) at steady-state phase. Note that force feedback was not

implemented in this case. The profiles of some parameter estimates are shown in Figure

4.6, in which the object, link and hydraulic parameters do not converge to their actual

values. It should be stressed that the parameter convergence is not theoretically

guaranteed as described in Section 4.2; therefore the results do not contradict the
theoretical argument. The distribution of the lifting forces is shown in Figure 4.7, from

which, it can be seen that the two robots shared the payload.

Figure 4.1: Two planar hydraulic manipulators co-operatively handle an object.
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Figure 4.2: Desired position trajectory of the object in the vertical direction.
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Figure 4.3: Position error of the object, when moved vertically
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Figure 4.4: Control signals for the first manipulator.
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Figure 4.5: Object internal force in the horizontal direction.
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Figure 4.7: Load sharing between robots.
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The next test was conducted using the sinusoidal reference trajectory. The reference
trajectory is shown in Figure 4.8. Figure 4.9 shows that the position error was about 3
mm at the transient period and less than 0.2 mm thereafter. The control signals to the
actuators for one of the robots are illustrated in Figure 4.10. Figure 4.11 shows that the
internal force had offsets of 20 N and 10N. Amplitude changes were 10N and 5N, for the
first and second half of the sinusoidal trajectory, respectively. No force feedback was
implemented in this case. The profiles of some parameter estimates are shown in Figure
4.12. The object, link and hydraulic parameters did not converge to their actual values.
The lifting forces were as designed, equally distributed between the two robots shown in

Figure 4.13.

0.56 —
0.52 —
0.48 —
0.44 —

0.4 —

Desired position (m)

0.36 —

0.32 | | | | |

0 4 8 12 16 20
Time (s)

Figure 4.8: Desired position trajectory of the object in the vertical direction.
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Figure 4.10: Control signals for the first manipulator.
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Figure 4.13: Load sharing between robots.

4.4 Summary

This chapter documented design, stability analysis and numerical verification of a
tracking controller for co-operation among several hydraulic robots handling a rigid
payload. The highly nonlinear hydraulic actuator dynamics were incorporated in the
Lyapunov-based controller design. The issues of motion and internal force control of the
object, as well as load sharing among several manipulators were addressed. To deal with
parametric uncertainties, including unknown payload, robot dynamics and hydraulic
functions parameters; the controller was augmented with adaptation laws. An adaptive
observer was also included to avoid the need for measurement of acceleration as
feedback. It was proven that the position and velocity tracking errors converged to zero,
while bounded internal force errors existed. These internal force errors can be controlled
with the addition of force feedback.

Simulations were performed with two manipulators resembling MAGNUM 7

hydraulic manipulators. The results demonstrated the effectiveness of the proposed

nonlinear controller.



Chapter 5 Effects of Friction on the Control System

This chapter investigates the effect of friction, especially dry friction on the performance
of co-operating robots. The previous control controllers are re-visited by adding a
dynamic friction model (LuGre) to the actuator dynamics. Simulations are then carried
out to examine the performances in the presence of friction. Three controllers, including
the second and third regulating controllers developed in Chapter 3, and the tracking

controller in Chapter 4; are to be studied in the following three case studies.

5.1 Regulating Controller with Unknown Payload

The controller developed in Section 3.2, which has an estimator of unknown payload and
does not consider the effect of friction; is reexamined in the presence of dry friction in the
hydraulic actuators. The equilibrium of the control system is first established followed by

a simulation study.

5.1.1 Equilibrium of the Control System in the Presence of Friction

In the presence of dry friction, a friction term WJ " JF 18 added to the left side of

equation (3.9). The corresponding equilibrium of the system under the controller (3.25)

associated with equations (3.34) and (3.43) will then become

U® =0 (5.1)
WITK,§=0 (5.2)
F>=—(I-W'W)J"JF,+W'g, +VF,, (5.3)
VFy =F" -W'WF> =—(1 -W'W)J "JF , +VF,, (5.4)

Equation (5.4) shows that the desired internal force vector can not be achieved at steady
state in the presence of friction even if the manipulators’ gravity terms are known.

Note that the undesirable internal force is an additional load to the co-operating
system, but makes no contribution to the motion of the object; therefore it could

significantly reduce the effective lifting capacity of the system.

59
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5.1.2 Simulation Studies
The same study as in the case study in Section 3.2.2 has been performed with the
inclusion of a dry friction model in the simulation program. The LuGre friction model

(Canudas de Wit et al. 1995) described in Section 2.3 was used. For simulations, the

following values were used: F, ,=900N , F, =1100N , x =0.002m/s |,
O'é_j =2x10°N/m and O'f_j =400Ns/m , aé_j =200Ns/m .

Figures 5.1 to 5.5 show the controller’s performance, with the best performing gains
(fast rise time with no overshoot); which could be compared with Figures 3.2 to 3.6. The
simulation results show that, in the presence of actuator dry friction; the entire control
system is still stable and the desired position is achieved (see Figure 5.1). The control
signals corresponding to one of the robots are shown in Figure 5.2. They are slightly
higher than the control signals when there is no actuator friction (see Figure 3.3), which
is expected. The lifting forces by each robot are shown in Figure 5.3.

Based on the equilibrium of the system, it is further obtained that

g, =WJJF 4+ +8,- From the controller’s point of view, the friction is taken as an extra

load resulting in an increased object/load that needs to be compensated. Thus, as can be
clearly seen from Figure 5.4, the object load is over-estimated. As shown by equation
(5.4), the desired internal force could not be achieved in the presence of actuator friction
(compare Figure 5.5 with Figure 3.6), given the controller (3.25) associated with
equations (3.34) and (3.43) developed in Section 3.2.

Overall, simulation results show that the system still achieves the desired position.
However, the presence of friction could make regulation longer and bring about
undesirable internal forces. The transition between slip to stick friction (i.e. Stribeck

effect) does not appear to affect the response in this case.
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Figure 5.1: Position trajectory of the object under controller (3.25) with unknown
payload and in the presence of friction.
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Figure 5.2: Control signals for the first manipulator.
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Figure 5.3: Load sharing between two manipulators.
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Figure 5.5: Horizontal internal force exerted on the object by two manipulators.

5.2 General Regulating Controller

The controller developed in Section 3.3, which has dealt with the uncertainty of the
payload, robot dynamic parameters and hydraulic functions; is re-examined in the
presence of dry friction in the hydraulic actuators. The equilibrium of the control system

is first studied, followed by simulation studies.

5.2.1 Equilibrium of the Control System in the Presence of Friction

Adding a friction term WJ ' JF 4+ to the left side of equation (3.9), the corresponding

equilibrium of the system under the controller (3.54) becomes

U” =0 (5.5)
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Gg=0 (5.6)
WI (G, (G, (q)+JF, +J"W'g, ) =0 (5.7)

Y I (G, —(Gq)+TF, +J"W'g ) +VF!

int

VEnt :(I+K

nt

(5.8)
Note that if the G, (q) +.7F_ 4 18 treated as an equivalent gravity term originating from

the robots, the control system can be treated as the system without friction. In the

presence of friction, G , 1s actually the estimate of the combined term
G ()+JF,+J ' W'g,.
Similarly, equation (5.7) does not guarantee G, — (G, (q)+ JF L+ Wig,)=0.In

other words G, the estimate of the term G (¢q)+JF, +J'W'g,, does not have to

converge to its actual value. The desired internal force cannot be achieved by inspection
of equation (5.8). Nevertheless, internal force error can be reduced by the increasing

gain K .

5.2.2 Simulation Studies
The same step input response study on the same numerical model as in the previous
case study in Section 3.3.2 has been performed, with the same set of gains; while the

LuGre friction model is included in the hydraulic actuator dynamics. For simulations, the

following values were used: F, =900N , F,

=1100N , x, =0.002m/s ,

0, =2x10°N/mand o, =400Ns/m in the LuGre friction model.

Figure 5.6 shows that the desired position is still achieved. The control signals to the
actuators for one of the robots are shown in Figure 5.7, which is different from the one
(Figure 3.15) in Section 3.3.2. Figure 5.8 shows that the actual internal force is different
from the desired value even during the steady-state phase, which is expected in Section
5.2.1. The difference is about 240 N, much higher than the difference in the case of no
dry friction (see Figure 3.16). Furthermore, the simulation results show that
wI ' (G, -(G

m

(@)+J"F,+J"W'g,))=0 during the steady-state phase, as seen in

Figure 5.9. Compared with the simulation results (Figures 3.14 to 3.18) where no dry
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friction was considered in the model, the inclusion of dry friction makes regulation longer

and brings about more undesirable internal forces.
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Figure 5.6: Position trajectory of the object under general regulating controller
(3.54) and in the presence of friction.
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Figure 5.7: Control signals for the first manipulator.
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Figure 5.8: Horizontal internal force exerted on the object by two manipulators.
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Figure 5.9: Components of the vector WJ ™" (G, — (G, (q) + J'F,+J'W'g))) in

Cartesian reference frame {X,,Y,.Z,}.

The above simulation did not use force feedback. In the next simulation, set

K., =20 and the derivative of the internal force required by the controller was neglected.

The position plot remains the same and is not shown here, since only the internal force

feedback gain was changed. The internal force became about 10 N, much smaller and

closer to the desired internal force as shown in Figure 5.10.
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Figure 5.10: Horizontal internal force exerted on the object by two robots for the
general regulating controller with force feedback and in the presence of friction.

5.3 Tracking Controller Performance in the Presence of Friction

The position tracking controller (4.8) developed in Section 4.1 is now investigated in the

presence of dry friction in the hydraulic actuators.

5.3.1 Equilibrium of the Control System

In the presence of friction, equation (4.32) does not hold. Therefore, no conclusion
can be drawn about the position error’s convergence to zero. As for the internal force,
even assuming no position error, equation (4.39) becomes
~(+ K, ) U-W'W)I 7 (H,(g")§" +C,(¢".4)q" +G,(q")+TF,)

VE!>" =VF2 o
(5.9)

int int
Equation (5.9) indicates that friction force will likely increase internal force.

5.3.2 Simulation Studies
The same tasks as in the previous case study in Section 4.3 have been performed
with the same set of gains, with the exception of including the LuGre friction model in

the hydraulic actuator dynamics. For simulations, the following values were used:

i
Fy

=900N , F!

st,j

=1100N, x, =0.002m/s, o, , =2x10°N/m and o}, = 400Ns/m .
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Force feedback was not used. The corresponding results are shown in Figure 5.11 and
Figure 5.12. It was found out that the internal force was built so high that the robots lost

their capability to do the job (reaching their limitation given certain supply pressures).
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Figure 5.11: Position trajectory of the object under tracking controller (4.8) and in
the presence of friction.
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Figure 5.12: Horizontal internal force exerted on the object.

So in the following simulation, force feedback was introduced with the gain K., =3 and

the derivative of the internal force was neglected. As shown in Figure 5.13, the internal
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force was reduced; however there exists a large steady-state position error which can be

seen from Figure 5.14.
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Figure 5.13: Horizontal internal force exerted on the object under controller (4.8)
with force feedback and in the presence of friction.
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Figure 5.14: Position error of the object.
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5.4 Stability Analysis in the Presence of Friction

The effect of friction on the control system has been investigated, but the stability has not
been re-examined theoretically. The stability of the general regulating control system is

now proven in the presence of friction. In the presence of dry friction, a friction term

WI''JF 4 18 added to the left side of equation (3.9). The time derivative of the same

Lyapunov candidate as defined in equation (3.58), will have an additional term:

—ZZx’]F fim‘ . If the friction model is represented by the simple static model,

i . .
F;, which is always non-

S sl,j

F, , =F, sgn(x}), this term is then equal to —ZZ‘)C;

positive. It follows that the time derivative of Lyapunov candidate, remain semi negative-

definite.

The following is to further prove that —ZZx;F ;r ; <0 when the LuGre model

represents the friction model. The following property of the friction model will be first

explored.

Property: if |z},(0)] < g(i}(0)) then
|25 (0) < g(x)) Vr=20 (5.10)

Proof: let V = zj.z /2, then the time derivative of V is

V=2 (i —ﬂz’i) = |l \[ﬂ —sgn(x})sgn(z’ )J (5.11)
JNT g(x;) J J T g(xz ) J J :

J

The derivative V is negative whenever ‘z; (t)‘ > g(x'). Since g(x})is strictly positive

L F! .
sl,j . st,j sy s . i .
and bounded by —= < g(x}) <—, it is seen that all the solutions of z'(¢) starting

0,/ 0,/

with |2/ (0)[< g(¥(0)) will retain this feature, ie. |2(1)|<g(x)) V20 . If
0<z}(0) < g(x}(0)) for x’.(£) >0, z}(t) will increase until it is equal to g(x}(7)); thus
X0z ()20 . If 022(0)2-g(x;(0)) for x;(r)<0, z\(r) will decrease until it
reaches - g(x'(¢)); thus X} (r)z’(t) 2 0. If the sign of X} () changes; it always can be

broken down and falls in one or the other scenario. It is then concluded that:
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X(0)z ()20 V20 (5.12)
Physically, equation (5.12) means that the deflection of the bristles represented by zj (¥)

follows the direction of the relative velocity. Now using equation (2.32), the following

can be obtained:

-iFi Y A | i i -i2 ‘Z/‘ ; i i -1'2 513

Xilty ) =X;00,;2; T0y (‘x«/‘ - g(i)) z;)+ 0y, ‘x‘/‘ (5.13)
Inequalities (5.10) and (5.12) are employed to arrive at

i

120 (5.14)

which is to say, —ZZx;F ;r ; <0. Thus, the time derivative of Lyapunov candidate

remains semi negative-definite with the LuGre friction model, and the regulating control
system remains stable in the presence of friction.

As for the other regulating controllers previously developed in Section 3.2.1 and
Section 3.1.1, proof of system stability in the presence of friction can be adopted in
similar procedures and will not be repeated here. The stability of the track control system

will not be analyzed here. Instead, the controller will be redesigned in the next chapters.

5.5 Summary

This chapter studied the effect of dry friction in the hydraulic actuators for the controllers
developed previously for ideal robot systems with no friction. The performance of the
controllers was re-examined. It was found that the regulating control system was stable
and able to achieve the desired position. However, the presence of friction could make
regulation longer and bring about undesirable internal forces. It was also found that the
use of force feedback could bring the internal force close to the desired values in both
regulating and tracking tasks.

For the position tracking control system, the stability was not proven with the same
scalar function. Both position error and internal force could be significantly increased
because of friction. Simulations were further carried out to verify these findings.
Presented in the following chapters, friction compensation will be considered in the

continued development of the controller.



Chapter 6 Tracking Control of Co-operating Hydraulic

Manipulators in the Presence of Friction

This chapter describes development of a tracking controller for multiple hydraulic
manipulators in the presence of substantial dry frictions at the actuators. It was previously
discussed that friction could not only degrade the position tracking performance, but also
bring about undesirable internal force exerted on the object. The importance of
compensation for friction force was therefore established. This chapter presents a
controller with friction compensation. The friction is estimated, based on the LuGre
dynamic friction model. The acceleration observer is redesigned to accommodate the
inclusion of the dynamic friction model in the actuator system. The issues of load sharing
between the hydraulic robots, unknown payload and uncertainty on the manipulators’

dynamics, as well as hydraulic parameters, are all addressed.

6.1 Controller Design with Acceleration Feedback

Using the LuGre friction model, the dynamic equation of motion for the entire robots-

object system described in Chapter 2 can be further written as follows:

MX)X + DX, X)X +J,[6,] X +G(X)=J,(F -[6,]z + [al][%]z) (6.1)
g(x

F=A4,qU-A.,q.9) (6.2)
.|
g=x—[—z (6.3)
g(x)
. xl
where [ |x| ] is defined as a diagonal matrix with terms M as its diagonal elements.

g(%) 2 (i)
z is a vector of the friction internal states z’] lo,], [0,], and [o,] are diagonal matrices
with ¢,, &,, and o, being vectors of diagonal elements of friction force parameters o ;,
o,,and o3 . [6,,]1=[6,]+[c,] and J, = E"WJ " J . Other variables have been defined

in Chapter 2.
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Similar to equation (2.44), the following can be obtained
MX)X + DX, X)X +J 6, X +G(X)=0(X,X,X)0 (6.4)
Equation (6.4) will be used to compensate for the unknown dynamic parameter vector, &,
which includes dynamic parameters of the manipulators and a combined parameter o,,
(equal to 6, +0,). Let 6,,6, and &,, be estimates of &,,6, and &,,, respectively. Also,
let z, and z, be two estimates of z. 6,=6,—-06,, 6,=6,—-06,, Z,=2%,—% and
7, = g, —z are errors between the estimates and the actual values. 0,0 ,0,and @ have

been defined earlier in Section 4.1. Additionally, the following notations are defined:

e=X-X" (6.5)
X, =X" e (6.6)
s=é+Ae (6.7)

where, X is the desired value of X and belongs to C’. A is a diagonal matrix.

Proposition 1:

Consider the system described by equations (6.1)-(6.3). Given the following controller

U= @4, (q.q)+ F' -T;'J"s - K ,F) (6.8)
where
F=F-F"* (6.9)
F'=J'J"WE +VF)+F, (6.10)
. T -
F,=[6,lz, [0 (6.11)
g(x)
' =MX)X, + DX, X)X, +J 6, X, +G(X)-K,s (6.12)

and the following adaptation laws for unknown parameters pertaining to the

manipulators-object dynamics, hydraulic functions and friction parameters,

0=-T,0"(X,X X )s (6.13)

¢=T,'d"(q,4,U) . F (6.14)
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6,=-T_[2M,s (6.15)
b= By 7 (6.16)
1 .
g(x)
and the following observers for z
2 : |x| -1
2, =Xx—-[——1z, —FZOJas (6.17)
g(x)
Z=x—[ [ 12, | | rJls (6.18)
1 o

then the position tracking error converges to zero.

Remarks 6.1.1:

(1) M,D,G and [6,,], are estimated dynamic matrices/vectors based on @ given in
equation (6.4). Similarly, matrices /Alm and Iflcq are estimations based on

parameter estimation vector ¢ from equation (2.50).
(i1) [z,] and [z,], are diagonal matrices with Z,, and z, as their diagonal elements,

respectively.
(i) All gains used in the controller and observers,
e Ke, Ky, g, I, T

I' ,,T, , are constant positive definite diagonal

ol» zl

matrices.

(iv) The friction force, appearing in equation (6.1), which can be represented by

A

J [e,1J] X +J, ([ao]z—[al][ﬁ]z) , 1s compensated for separately. The first
g(x

term J [o,,]J aTX represents the combined damping and viscous friction and does

not contain any friction states. Therefore, it is combined with the manipulator
dynamics and compensated for via the adaptation law for unknown manipulators-

object parameters.
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The second term, J, ([ao]z—[al][%]z), represents the Coulomb (dry) friction
g(x

effect which is herewith termed F, . It is compensated for, by the estimate ﬁ s

which requires estimates of internal friction states.
Proof:

Define a scalar function as
V,=V,+1F' T, F+13'T,¢ (6.19)
and

V= %{STM(X)S + 571“35 + EOTFG'O o)+ EITFUI o, + ZOTFZO (6,12, + Z1T1—‘z1 [6,]Z,} (6.20)

Equations (6.1) and (6.12) are employed to arrive at the following error dynamics

MX)s+D(X,X)s=O(X, X, X )0 -K,s—J [6,|J s+J'F
B (6.21)

+ JaT [([&0 ]20 —[oy]2) - [—.]([6'1 ]21 —[0,]2)]
g(x)

It can then be shown that time derivative of V, is

V,=—s"K,s—s"J [6, W s+s"J F+[0'T, +s"0(X,X,,X )0

T yTr(ra 12 _ _|x|AA_ AT~ | AT =~ >T ~ AT ~
+s°J,[([oy]2, —[o,]2) E([al Iz, —[o,12)]+ g, I, o0+0, 1,0, +2," [o)]z, + 2, I, [o}]z,
(6.22)

Substituting the manipulator parameter adaptation law (6.13) and employing relations
(6,12, —[6,]2=[2,]6, +[6,]2, and [6,]z, —[6,]2=[%,]0, + [0, ]z, lead to
Y T T T Ty T Lo ~ |x| A~ ~
Vi=—s K;s=s J e, ), s+s I F+s J,[([z]e,+[6,]z,) _[5]([&]01 +[o,1z))]
AT ~ AT ~ ~T ~ ~T ~
+o,l,06,+0,1, 0 +7,1, [6,]2,+2 T, [0]z,
(6.23)

From friction state observers (6.17) and (6.18), one arrives at



6. Tracking Control of Co-operating Hydraulic Manipulators in the Presence of Friction 75

Ty =[—lz -1, J,s (6.24)
g(x)

T oo |x| > |x| -1 g7

g =x—[— g+ [T J,s (6.25)

g(x) gx)” "¢

Applying equations (6.24) and (6.25), and the unknown friction force parameter
adaptation laws (6.15) and (6.16), results in

. ~ X o X -
v, = _STKdS _STJa[O'lz]JaTS +STJaF - zOT[l][GO]FZOZO - le[L][Gl]rzlzl
g(x) X)

(6.26)
Since
A, (U~ 4,,(4.4)=P(4.4.U)9 (6.27)
the hydraulic dynamics in equation (6.2) can be rewritten as
F=A4,@U~A,.4)-2¢.4.U)5 (6.28)
Given equation (6.28), the time derivative of the scalar function V,, becomes
V,=V, +(4,U-A,-F")T,F+§"([,p —-D'T,.F) (6.29)

By substituting adaptation law (6.14) of unknown hydraulic parameters and the controller

(6.8) into equation (6.29), the derivative of the scalar function V,, will be

o T T T =T r =T |x| ~ ~T |x| i~
V== K;s=s J 6,0, s—F K. I'.F—-z)[—ll6,]1.0z, -2, [—llo, I3,
g(x) g(x)
(6.30)
Thus, V, is semi negative-definite. It follows that 0 <V, <V,(0), meaning all states are

bounded. Using Barbalat’s lemma arrives at s — 0 which implies that the position and

velocity tracking errors converge to zero as f — .

Remarks 6.1.2:
In realization of controller (6.8), one needs to compute F“, which is a function of

X . Accelerations then appear in the proposed control law. The requirement for
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measurement of accelerations as a feedback, which could be difficult in many practical

situations, is removed in the following section.

6.2 Controller Design without Acceleration Feedback

The requirement for measurement of joint angular accelerations is removed by the
addition of a nonlinear acceleration observer in the feedback loop. Compared with the
previous observers in Chapter 4, the observers, including acceleration observer in the
feedback loop, have to be redesigned to accommodate the addition of the LuGre dynamic

friction model into the hydraulic actuator dynamics. The following notations are defined:

e=X-X* (6.31)
X=X-X (6.32)
X =X'-0A(X-X)H)=X! -\, (e-X) (6.33)
X =X -0,(X-X)=X 2% (6.34)
s,=X—-X =é+),(e—X) (6.35)
s, =X X, =X+, X (6.36)
x, =J'X, (6.37)

Vectors X“and X are the desired and estimated values of X, respectively. A, and A,,

are positive definite diagonal matrices. X belongs to C*.

Proposition:
Consider the system described by equations (6.1), (6.2), and (6.3). Given the following
observers and adaptation laws:

(1)_Acceleration observer

X, =M"'[J,(F-F,)-DX, X)X, -G(X)+L, X +K,s, +K,s,] (6.38)
where
. T -
F, =lo,]z, —[o ][z, (6.39)
g(x)

(i1)_Unknown manipulators-object dynamic parameter adaptation law
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0=-T,'[07 (X, X, X )s, +OT (X, X, X,, X )s,] (6.40)

where
O,(X, X, , X )0=MX)X, +D(X, X)X, +J [6, X, +G(X) (6.41)
0,(X, X, X, X)0=MX)X, +D(X, X)X, +J [6, X, +G(X) (6.42)

(ii1) Unknown hydraulic function parameter adaptation law

o=0"'0"(q,4,U).F (6.43)

(iv) Unknown friction parameter adaptation law

6, =T [Z] (s, +5,) (6.44)
=T B[ M8 +[— = L ——1,s,) (6.45)
g(xr) g(x)

(v) Friction internal state observers

s X

Zo=x-——-2,- I 2 a(S1+S2) (6.46)

g(x)
.. e s AL RV (6:47)
g(x ) g(x ,) g(x)

and the following controller

U=A47(g\A,(q.¢)+ F' -T;'J7s, —K,F) (6.48)
where

F-F_F¢ (6.49)

F'=J'J"W'E"t? +VF¢

nt

)+ F (6.50)

=MX)X, + DX, X)X, +J (6,0 X, +G(X)-K,(s, —5,) - 651
—0,(X,X,,X,)0-K,(s,-5,)-K e '
F; =[6,13,-[6, ][L] 2 (6.52)

g(x,)

providing the following conditions are satisfied
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2o K ,)\o(,L,)>a(K,) (6.53)

(6.54)

oD, X' -p V,-V
”r(())n < [ %L oK,)+o,(6,DJ,)-D,X;—n Lt U
B 2aU DUE(A‘I) aU

where r(0) is the initial value of the state vector (¢) =[e” X' s| st FT Z0 7, 1", then

the position tracking error, e, converges to zero with all other states being at least

bounded.

Remarks 6.2.1:

(1) Parameters 6,¢,0,,and o, are assumed to be slow varying. They are considered as
constants by the controller. M,D,G and [6,,] are estimated dynamic
matrices/vectors based on @ given in equation (6.4). Similarly matrices ,:lm and /Alcq

are estimations based on parameter estimation vector ¢ from equation (2.50).

(ii) [2,] and [z, ] are diagonal matrices with z,, and 2, as their diagonal elements,

respectively.

(ii1)) Al gains used in the controller, adaptation laws and observers,

(Kp,Lp,Kd,K;,,FF,KF,F(P 5 2 RN DY D and I" ) are constant positive definite

ol>
diagonal matrices and F}?\ is the desired internal force.
(iv) In equations (6.43) and (6.54), o (.) and & (.) are the minimum and maximum

singular values of their matrix argument, respectively. X 4 is the upper bound on the

norm of X¢. Finally, 7 is defined by

ALY
fus

(6.55)

where f,, is the lower bound of the norm of the normalized slip frictions.

a;,a,,V, and V,

,u » are positive constants defined as follows:



6. Tracking Control of Co-operating Hydraulic Manipulators in the Presence of Friction 79

) r = e
a, | <tis/M(X)s, +s)M(x)s, +e" K e+ XL X+F'T,F (6.56)

~ ~ ~ ~ 2
+onon [oy]z, +z1TFz] [6,]2,} < aU”r”
V,<H0'T,0+¢'T.6+6,T,6,+6/T,6}<V, (6.57)

(v) The first part of the friction force J, [o,]J aTX , which does not contain any friction

states; is compensated for with the manipulator adaptation law, in a similar manner

as in Section 6.1 for controller (6.8). However, the compensation for the remaining
x

part F,.=J, ([ao]z—[al][%]z), in the calculation of the desired force F?, is
. o (x

different. With reference to equation (6.52), velocity x is replaced with x,, which

does not contain any velocity terms. By inspection of equation (6.50), the desired

force F¢, does not contain any velocity terms either. The controller does not need
acceleration feedback by equation (6.48). On the other hand the compensation, for
the remaining part of the friction force in acceleration observer dynamics (6.38);

directly uses velocity x, since equation (6.38) is not differentiated anywhere.

Proof:

Equations describing the entire control system are expressed in a state-space form as:
é=s,—h(e—X) (6.58)
X=s5,-0,X% (6.59)

$, =M (X){-D(X,X)s, +O0,(X,X,,X)0 —K,(s,—s,) - K ,e— D(X,s5,) X,

~J 6, U] s +J,F+J,(6,)% ~[0,]2) (6.60)
I 106,12, —[6,12) + J, ([ |x|] Eat Do, 1z}

- 0,13, —10,12 a 1 . (N
““g(x,) g(%) g(x,)

$, =M (X){-D(X,X)s, +0,(X,X,X,,X,)0 ~K,s,~K,s, L, X
; o |x| o (6.61)
- Ja [612 ]Ja S5 + Ja ([O-o ]zo - [O-o ]Z) - Ja [—]([61 ]z1 - [0-1 ]Z)}

g(x)

0’

F=—T;J"s, K, F - ®(¢,4,U0)p (6.62)
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4

Zy = -1z, ~ T (s, +5,) (6.63)
g(x)

T e .

L= AT (M, s, + [, s,) (6.64)
g(x) g(x,) g(x)

0 =T, [0] (X, X, X )s, +07 (X, X, X,, X )s,] (6.65)

¢=TI,'d"(q.4,U),F (6.66)

Gy =T 12,1 (s +5,) (6.67)

~ ~lrz xr T |x| T

o =1 [z J(—W.s +[—=,5,) (6.68)

g(x) T Tg(x)

From the above equations it is seen that if the system is initially at the origin, it will
remain there; thus the origin is an equilibrium point. We now show that the above system

has a manifold of equilibrium points to which the origin belongs. Consider the case

where the state vectors e, X, s,,s,,F,Z,,%, and ¢ are zero, while state vectors 6,5,

and 6 can be set arbitrarily. Setting the right-hand side of state-space equations (6.58) to

(6.68) to zero, results in the following two vector equations:

0,0 +J.[6,]-J, ["‘—_’][&l 12=0 (6.69)
g(x,)

@25+J,,[Eo]z—Ja[ﬂ][51]z=0 (6.70)
g(x)

Vector equations (6.69) and (6.70) consist of 12 linear scalar equations but with
more than 12 unknowns originating from state vectors &,, &, and 6 . There are infinite

solutions for the unknowns, indicating a manifold containing infinite non-isolated
equilibrium points. Therefore, we can only resort to constructing a Lyapunov-like scalar
function to show that all the states of the system under the proposed controller are
bounded. Further, following Barbalat’s lemma, we prove that the position tracking error

converges to zero.
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Consider a continuous positive-definite scalar function:
V,=V,+HF'T,F+3'T,p +6,1,6,+6/T, 5 +%, T, 6,17, +7/'T, 0,1z} (6.71)
where
=i/ M(X)s, +s]M(x)s, +e'K e+ XL X +0'T0} (6.72)

The time derivative of V, is

VZ=_S1TJa[O.12]']aTS1_S1TKdS1 =5 D(XS)X +S1J ([ | | -1

20 ( )])[ o]z
—s3d [0, s, —+s1K,s, —e" MK ,e— X "ML, X+ XL K e (6.73)
—NT[ | | [0' I,z —Zf[ﬂ][a Ir.z -F'K,[.F
0 0 z0%0 1 g(x) 1 z1*%1 F-F
Since | ||] [ ]I < = asl“,onearrivesat
g(x) (x ) Fy, Fy,
| | U(J [e,1[z]J]) ||
1 a 674
J. e )] [ ( )])[ o]z < F, =nfs,| (6.74)
Thus,

V, <=(a(K,) + (I, [0, 10]) = Dy (X + & el + [ X)) = m)s, |
~(e(K)+ o lo,W))s|
~(Jo &K, )e| - Je L)X - 2o K ,) Je(h,L,) - 50n K ,))el|X]

ZoT[ | | ——1[o, T, ozo_zf[ | | —1lo,I.,Z, - I?TKFFFINT
g(x) g(x)

(6.75)

Note that (||e||+”)~(u)2 < 2(||e||2 +HA~’H2) < 2||r||2 and ||r||2 <(V,-V, )/ a, which are
arrived at from equations (6.56) and (6.57). To satisfy

o(K,)+ o, [0, W]) =Dy (X, + &0 )] +[ X -n>0 (6.76)

a sufficient condition is
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+V

pL

v, {Q(ngua [0,,}0) =D, X —n} 6.77)

2 Dyo(M)

From equation (6.75), the conditions (6.53) and (6.77) guarantee that (note thata > 0)

: ~ ~ e |X - o7 |X -
il |7 bl s+ A - L - e
(6.78)
Inequality (6.78) guarantees V, <V, (0) . Thus, a sufficient condition for (6.77) is
a,[aK,)+o,le,10])~D,Xi 1|
V,(0) < 5 [ D, 00) } +V, (6.79)

which can be satisfied following inequality (6.54) and V, < ¢, ||r||2 +V,, that can be

derived from inequalities (6.56) and 6.57).
The above analysis shows that (6.78) is satisfied under conditions (6.53) and (6.54).

The right hand side of (6.78) is also semi-negative. Thus, V, <V, (0), meaning states in
r(t) are bounded. Using Barbalat's lemma, inspection of (6.71) and (6.78) reveals that the

tracking errors e, X,s,,s, and F approach zero as t—co . Furthermore, since

s, :é+k1(e—)~( ), the velocity tracking error é, also converges to zero. Additionally,

X X
inspection of term —EOT[%][JO]F 020 —ZIT[|(—!][0'1 II'.,z, shows that this term is
g(x x

negative definite everywhere, except for instances in which x =0. Thus, for tracking

tasks with non-zero velocity trajectories, inequality (6.78) can be written as

vV, <’ (6.80)
and it can be further concluded that 7,7, — 0 as ¢t — «. Finally, from equation (6.75),

inequality (6.78) shows that a local negative semi-definite upper bound on Vz can be
obtained. The size of the bounded region can be expanded by changing the values of

control gains o(K,), o(K,) and o(A,L,).
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Remarks 6.2.2:

(1) The parameter estimates, however, do not necessarily converge to their exact values.
In general, parameter convergence to true values can be potentially achieved if the
desired trajectory is “sufficiently rich” (Slotine and Li, 1991). Additionally, it is

desirable to keep parameter estimates within bounded sets. This is particularly

i

«.7» approach zero,

important since if the estimates of some parameters, such as ﬂ;k;k

the inverse of the estimated matrix 4,(g) in (6.48) becomes very large and the

control signal saturates. An intuitively motivated procedure (Slotine and Li, 1991) is
to stop updating parameter estimates when they reach their assigned upper or lower
bounds. Updating, resumes as soon as the corresponding derivatives change signs.
The inclusion of this procedure, also termed discontinuous projection (Goodwin and
Mayne, 1987), does not affect the stability proof presented above. The remarks
presented here are also applicable for previously developed controllers that involve
adaptation laws for unknown parameters. The inclusion of the discontinuous

projection with the adaptation law is demonstrated in the next chapter.

(1)) With respect to controller (6.48), the only hydraulic parameters needed by the

controller are the effective piston areas 4, and A, . Other hydraulic function

parameters such as effective bulk modulus S or control valve gain K, , are all

considered in the adaptation laws described in the proposed control strategy.
Similarly, the control law requires no knowledge about mass or inertia of the
manipulators’ links or payload. The controller only needs knowledge about the
length of the manipulators’ links, since the Jacobian matrix appears in the control law.
(i11)) The internal force is examined here for convergence to the desired value. The

following can be obtained about the contact forces:

Fcl%oo — WTE—TTd +VFd

w—J[H,§'+C,q'+G, +J(F,-F/)]  (681)
From equations (2.12), (2.13) and (6.81), it can then be proven that
F*=WF™* =E "¢ -WJ"[H, §"+C, 4 +G, +7(ch —F_;c)] (6.82)

ext

and
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VFt%OO — Fct%w _WTFt—)w

int ext
d
=VF,

_ . (6.83)
< —I-wwWYJTH, §+C, ¢ +G, +J(F,-F})]

where F!’”and F,’” are the external and internal forces as ¢ — o0, respectively.

ext

Since V is a full-column-rank matrix, it can be concluded that

Ft—)oo — Fd

int int

+Via-wwys'[H §'+C,q' +G, + .7(ch - ﬁf’; )] (6.84)

Equation (6.84) indicates that the actual internal force is bounded, but does not
converge to the desired value. In order to enhance the regulation of the internal force,
a force feedback loop in the control law (6.48) is further introduced by replacing
VFy

¢ with V(FS + K (F2 —F,_)) in equation (6.50) that describes the desired force
F’:
F'=J 0" W'E ¢! +V(FS + K, (Fi - F, )N+ F}, (6.85)

int i

The internal force F,

.. » can be extracted from contact forces, which are typically
available through wrist force sensors. As a result, equation (6.84) becomes
Fl>” =Ft -+ K, ) VIA-WW)[H,§' +C,q'+G, +J(F, - F})]

int fe

(6.86)

Theoretically, the actual internal force can be arbitrarily set as close as possible to the
desired value through adjusting the force feedback gain K, . With respect to
stability, the format of the Lyapunov-like scalar function remains the same, since
only the term related to internal force has been changed.

(v) The time derivative of the virtual force F“ is required by the controller (6.48). But

the virtual force contains term |x,| in its friction compensation part, which is not
differentiable at x, = 0. Fortunately, F“ is continuous everywhere, differentiable
anywhere except at the point of x, =0, and its left and right derivatives at x, =0
exist and finite. Actual control input can still be synthesized to accomplish the job.
Another way to deal with this problem is to replace |x,| with x, tanh(x, /&) in the
friction compensation part of F¢. Replacing the control gain K, used in equations

(6.38) and (6.51), with K, + K, , equation (6.80) becomes
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xr

—x, tanh(x, /&)

g(x,)

V, < —05||r||2 -K, S1||2 +s{J,[

16,1z, (6.87)

o(/,[e,][z,)

sl,L

Define 7'= . Using the following property (Polycarpou and Ioannou,

1993):

0 <|%,|- %, tanh(x, / £) < 0.2785¢,Ve > 0 (6.88)
One can arrive at

V, <—afr|" =Kl +0.2785¢n s, (6.89)

Since 0.2785¢7|ls,| < K, 5| +(0.2785¢n")? (4K ) , one further obtains

V, <—afr|" +(0.2785¢n") /(4K ,) (6.90)

V2 <0 whenever r is outside the compact set {r | ||r||2 <(0.2785¢n")? /(4dea)}. Thus,

it can be concluded that the tracking error is bounded and converges to a small

neighbourhood of zero, whose size is adjustable by design parameters ¢ and K, .

6.3 Simulation Results

The nonlinear controller derived in Section 6.2, has been examined by numerical
simulations, using the same model as in the previous chapters. The task was to have two
identical planar three degree-of-freedom hydraulic manipulators hold a rigid object and
move it along a desired path (see Figure 6.1). The stick and slip frictions were chosen as

2200N and 1500N respectively. The values of other friction parameters used in the

simulation model were o, ; =2x10°N/m, o}, =400Ns/m, o, =200Ns/m, and

i, =0.002m/s.

The vectors of unknown parameters & and ¢, for the above system are given below:
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Robot 1 Robot 2 Object
—

7l 112 41 1 12 g1 1 12 1 1 1.1 1.1 1.1 72 2 22
0={l, +ma, ,I,+mya, I, +mia, ,m,,my,ma,,mya,,ma,, I +ma, ,.,ml |,

012

1 1 2 2 2 \T
012,1501220123:0121>01220123 ¥

(6.91)

Q= {ﬂllKllelp,D 1311 s---vﬂji‘K;Ksip,ja ,B,l a---}iTzl,z;jzl,z,3 (6.92)

In equation (6.91), m and [ are mass and inertia of the object, respectively. mll , I} and aj.

(i=1,2; j=1,2,3) are mass, inertia and distance of center of mass to the /™ joint of the i
manipulator, respectively. For the controller, the values of these unknown parameters
were initially set to values different from those used in the model to investigate the ability
of the controller to cope with parametric uncertainties. The controller gains were chosen

as
AT =diag(50...,50), 1, =diag(50....50), K, =diag(1000....,1000),

1+ (6x6)

L, =diag(300.,..,300), K, =diag(700,...,700), K,

=diag(700,...,700),

K, = diag(200,...,200), T, =diag(0.05,...,0.05),

r, =diag(1,1,1,1,1,1,5,1,1,1,1,1,1,1,5,1,0.02,1, 10, 107, 107,107, 107, 107"),

I, — diag(42x10°, 5x107, ..42x10*, 5x107),
r, " =diag(5x10", ..5x10™), T, =diag(10*, ..,107),
FZO ) =d161g(10, ,10)5 le o =dl(lg(10, ’10) :

Two reference trajectories along the vertical direction were simulated:

(1) point-to-point trajectory with a travel distance of 0.3m, maximum speed of 0.15m/s

and maximum acceleration of 0.6m/s* and,

(i1) sinusoidal trajectory consisting of one segment with an amplitude of 0.Im and
frequency of 0.2Hz, followed by a second segment with an amplitude of 0.02m and

frequency of 1Hz.
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These two reference trajectories are shown in Figures 6.1 and 6.11, respectively. The
controller was also required to maintain the internal object force in the horizontal
direction close to zero and at the same time, evenly distribute the load between the two

robots.

0.8 —

0.7 —

0.6 —

Desired Positions (m)

0.5 —

0.4 | | | | |

Time (s)

Figure 6.1: Point-to-point vertical reference trajectory.

The first set of tests was conducted using the point-to-point reference trajectory
shown in Figure 6.1. Simulations were first conducted with controller (6.48) and no force
feedback. Figure 6.2 shows the tracking error. As can be seen, the object follows the

desired path closely. In the calculation of the control signals, the derivative of | x, | was
setto zero at x, =0.
Additional simulations, where term |xr| was replaced with x, tanh(x, /¢) in their

controllers were also carried out, with no significant differences apparent. The control
signals shown in Figure 6.3 are all reasonable and smooth. With reference to Figure 6.4,
the internal force acting on the object is different from the desired level of zero. This was
expected since the internal force is theoretically not guaranteed to converge to the desired
level, given the controller (6.48) with no force sensed at each of the manipulators’ end-
effectors. Estimates of typical parameters are shown in Figure 6.5. Note that the
estimated values of the parameters do not converge to the actual. Such results do not

contradict the theoretical argument, since the parameter convergence is not theoretically
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guaranteed as discussed in Section 6.2. The distribution of the payload between the two
manipulators was fairly even as seen from Figure 6.6 where two manipulators’ lifting
forces are very close to each other. Figure 6.7 shows the friction estimation for the
second link of one manipulator calculated from equation (6.39), which follows the actual

value reasonably well.

Position error (m)

-0.004 | |

Time (s)

Figure 6.2: Tracking error in the vertical direction under controller (6.48) with no
force feedback.

4 —
ug
S TS S
=0 f
g u}
k<)
n
s
€
S | 3
-8 —

Time (s)

Figure 6.3: Control signals for one of the manipulators.
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200 —
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E 100 — «— Actual internal force
s |
©
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B | \ Desired internal force
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0 2 4 6 8 10

Time (s)

Figure 6.4: Internal force on the object in the horizontal direction.
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Figure 6.5: Typical parameter estimation relative errors.
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500 —
= s . Lifting force by robot 2
< 400 e
c |
8 300 — \ Lifting force by robot 1
[%)]
K |
S 200 —
— J
100 | | | | |
0 2 4 6 8 10

Time (s)

Figure 6.6: Lifting forces by two manipulators.

Friction
————— Estimated Friction

iction (N)

Fr

S e, e e, e, e e, e, —m =

Time (s)

Figure 6.7: Friction and its estimate (link two of the first manipulator).

In order to bring the internal force closer to the desired level, the controller (6.48)
incorporating the force feedback signal given in equation (6.85), was applied to the
same point-to-point-tracking trajectory shown in Figure 6.1. The same control gains as

before were used with the addition of force feedback gain, which was set to K, =3.

The derivative of the internal force was neglected in the calculation of the control
signals. The position tracking error shown in Figure 6.8 is very similar to the one in
the tracking control with no force feedback (see Figure 6.2). The control signals (see
Figure 6.9) exhibit less effort (i.e. peak control signals are less) than the previous case
(compare Figures 6.9 and 6.3). Figure 6.10 shows a great improvement in the internal
force response as a result from adding a force feedback in the loop. The internal force
is noticeably reduced to 40N. This also explains why less control efforts (smaller

control signals) are needed for the controller with force feedback.
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Figure 6.8: Tracking error in the vertical direction (controller with force feedback).
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Figure 6.9: Control signals for the first manipulator pertaining to Figure 6.8.
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Figure 6.10: Object internal force in the horizontal direction.

The next test was conducted using sinusoidal trajectory tracking shown in Figure
6.11. Controller (6.48), with the addition of force feedback and having same gains as in
the previous set of tests; was used and the derivative of the internal force was neglected
again. Figures 6.12 to 6.15 show the simulation results. As can be seen in Figure 6.12, the
control system shows excellent performance. The amplitude of the tracking error,
corresponding to the trajectory with higher frequency and lower amplitude, is about
4x10™" m. The control signals to the actuators are reasonable and not saturated (see
Figure 6.13 for a plot of a typical signal). Figure 6.14 shows that the internal force on the
object changes slightly with the response. The distribution of the lifting forces was quite

even, as shown in Figure 6.15.
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Figure 6.11: Sinusoidal reference trajectory used for further controller evaluation.
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Figure 6.12: Tracking error in the vertical direction.
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Figure 6.13: Control signals for link two of the first manipulator.
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Figure 6.14: Internal force on the object in the horizontal direction.
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Figure 6.15: Load sharing between manipulators.
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6.4 Summary

This chapter documented the design, stability analysis and numerical verification of a
tracking controller for co-operation among several hydraulic manipulators handling a
rigid payload. The highly nonlinear dynamic behavior of hydraulic actuation,
manipulators and dry friction were incorporated in the controller design. The issues of
internal force control on the object, as well as load sharing among several manipulators
were also addressed. To deal with parametric uncertainties in the payload, manipulators,
hydraulic functions as well as friction, the controller was augmented with various
adaptation laws. An appropriate observer was included to avoid the need for
measurement of acceleration as feedback. Thus, the proposed tracking controller does not
need exact knowledge of the payload, manipulators’ dynamic parameters, or hydraulic
function parameters. With respect to the implementation, the controller only requires
measurements of robots’ joint angular positions and velocities as well as hydraulic line
pressures. In the case force feedback is implemented to impose desired internal forces,

the contact forces need to be measured as well.

The equilibrium of the entire system under the proposed controller was theoretically
investigated, and the stability of the position tracking system was ensured with final zero
position tracking error while the internal force on the object was maintained arbitrarily
close to the desired level. Simulations were performed with two manipulators resembling
MAGNUM hydraulic manipulators. The results demonstrated the effectiveness of the

proposed nonlinear controller.



Chapter 7 Dynamic Surface Control of Co-operating

Hydraulic Manipulators in the Presence of Friction

The previous chapter used the backstepping method to develop a Lyapuov-based
nonlinear controller for co-operating hydraulic manipulators. The method however,
suffers from the problem of “explosion of terms” (Swaroop, et al., 1997). This can be
seen, for example, by an inspection of the controller (6.48), which requires the
calculation of the derivative of F?that creates many terms. To overcome the problem of
“explosion of terms” associated with the backstepping method and the problem of finding
derivatives, dynamic surface control technique by Swaroop et. al. (2000), which is a
dynamic extension to multiple surface sliding (MSS) control by Won and Hedrick (1996);
is introduced in this chapter. By incorporating a low pass filter in the controller design
within the framework of the backstepping method, the control law does not involve
model differentiation. Thus the problem of “explosion of terms” is avoided. Another
benefit is that no acceleration observer is required, in order to avoid the requirement of

acceleration feedback.

7.1 Controller Design

Let 6,(,6,,6, and 6,, be estimates of 6,¢,6,,6,and 6,,, respectively. Also, let 7, and
Z, be two estimates of 7.  =0-0, F=p—¢,6,=6,-6,,6,=6,—6,, %y =%, -2
and 7, =z, —z are errors between the estimates and the actual values. Additionally, the

following notations are defined:

e=X-X* (7.1)
X, =X e (7.2)
s=é+\e (7.3)

X“ is the desired value of X and belongs to C*. It is assumed that X, X“, X are all

bounded. Matrix A is diagonal and positive definite. The unknown parameters satisfy:

96
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s S”y”é U, where u=60,9,6,,0,.

Proposition:
Consider the system described by equations (6.1), (6.2) and (6.3). Given the
following control law, updating laws and observers:

(1) Controller

U=4, @A, @9+ F' ~T;'J"s—K,F) (7.4)
where
F=F-F" (7.5)
F'=—F%/7,; F'=F*—-F; F*(0)=F(0) (7.6)
F=J"'J"W'E "t +VF{)+F, (7.7)
F,=[6,]3, —[&ll[ﬁ]a (7.8)
g(x)
Y =MX)X, + DX, X)X, +J,[6,0 X, +G(X)-K,s (7.9)

(i1) Discontinuous projection-based adaptation laws for unknown parameters pertaining

to the manipulators-object dynamics, hydraulic functions and friction parameters,

0V g=up, and w,¥Y, <0
f1="Proj,(w,Y,)=10 V 2=y, and w,Y, >0 (7.10)

w,Y, otherwise
where ©=6,9,6,,6,. y, and y, are lower and upper bounds of 4. Scalar w, >0

represents the adaptation rate, and Y, is an adaptation function to be synthesized later.

(i11) Observers for friction state z

p o |x| 5 _ -l gT

Ly =X—-[—<lz, 1. J,s (7.11)
g(x) ’

I IV

5 =x—[ Iz, +1[ . J,s (7.12)

. 1 . z1 % a
g(x) g(x)
then, there exists a set of control gains and a filter time constant such that, the closed-loop

control system is stable and achieves arbitrarily small bounded tracking error.
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Remarks 7.1.1

(i) The desired force F¢ is obtained by filtering F through the first order filter (7.6),
which also provides F“ for the controller. With this filter, one does not need explicit
differentiation of F . z,, is a positive design parameter constant.

(i1) For a discontinuous projection-based adaptation law, it has been shown (Kristic et. al.,

1995) that for any adaptation function Y, if g, < ||,[t(0)|| <y, , the adaptation law

given by equation (7.10) guarantees

;ULS”,[‘"S/UUa vV i (7.13)
B (a-w,Y,)<0, V Y, (7.14)

(1i1) M,D,G and [6,,] are estimated dynamic matrices or vectors corresponding to the
parametric estimation vector 6. Similarly, matrices /Alm and vector A_ are the

cq

estimates of 4, and 4, corresponding to parameter estimation vector ¢. Vector

cq

. x
F, is the estimate of F,=J, ([ao]z—[al][g]z) , based on the estimates of

internal friction states and friction force parameters.

(iv) [Z,] and [z,] are diagonal matrices with Z,, and z, as their diagonal elements,

respectively.

(v) All gains used in the controller and observers, /'.,K,.,K,, I',,,I,, are constant

positive definite diagonal matrices.
Proof.
Define a Lyapunov-like scalar function as:
I,F* (7.15)
where

V= %{STM(X)S + ZOTFZO [o, ]2, + ElTle [o,]2,} (7.16)

Equations (6.1) and (7.9) are employed to arrive at the following error dynamics
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M(X)§+D(X,X)s=0(X,X,, X )0 —K,s—J [6,J s+J (F-F)

| | (7.17)

+J,[([6,12, ~[6,]2) - [ ]([6'1]51 —[o,]2)]

where matrix @ is defined by equation (6.4). It can then be shown that time derivative of

V, is

V,=—s"K,s—s"J [6, 0 s+s"J (F-F)-0"Y,+s"J[([6,1%, —[0,]2)
| | (7.18)

2 G e T T o0, + 2T, [0,
where Y ,=-0"(X,X,,X,)s is the adaptation function for 6. According to equations

(7.1) to (7.3), variables X, X,, X, can be defined by state variables e, s, and desired

values X, X, X?. There exists a positive continuous function y, given by
[Vl <7 e, X, X7, XD)s| (7.19)

Employing relations [6,]2, —[0,]z =[2,]6, +[6,]2, and 0,12, —[0,]12=[2,]0, + [0, I3,

leads to

Vl :—STKdS—STJa[O'IZ]JTS+STJa(F—F)_gTYQ _EOTYaO Y

o)

| | (7.20)
——llo, z1)+zo L, [ao]zo +z1 F [0' Iz,

(%)

+s'J ([6,17, - [

where ¥, =3, ,s.7, :[%][2l 1J.s. There exist two continuous functions y,
g(x

and y, given by

<7, (6,2, X9 (7.21)

<7, (5,7, X, X)) (7.22)
From equations (7.11) and (7.12), one arrives at

| | T
=[——= 7.23
[ ( )] 0 z0 a § ( )
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< _ ¥

7, =

Ay
. (x)]z‘ +[g(x)]rzl J's (7.24)

Applying equations (7.23) and (7.24) results in

V,=—s"K,;s—s"J [6, 0 s+s"J (F+F")-0"Y,

r o . |x| o |x| N (7.25)
-6,Y, -0, Y, -1, [——lloo 102 — 2 [l 17,7
x) g(x)
Since
A,(U~-A,,(4.9) = P44, U)p (7.26)
the hydraulic dynamics in equation (2.50) can be rewritten as
F=A4,@U-A,(4.9)-?4.4.0)p (7.27)

Given equation (7.27), the time derivative of the Lyapunov-like scalar function becomes
V, =V, +(A4,U-A,-F)' T, F-§"Y, +(F' -F) I.F (7.28)
where ¥ = @' (q.4,U )FFﬁ . There exists a continuous positive function y,,, given by
v, < yw(e,s,ﬁ,fd,Xd,Xd,Xd,ro)“ﬁ“ (7.29)
Substituting controller (7.4) into equation (7.28), the derivative of V, will be
V,=V,=s"J F-F'K,.[.F-§"Y, +(F'-F)' I, F* (7.30)
Employing filter (7.6), the last term in equation (7.30) arrives at
(F'—-F)' I',F'=—¢,'F" T .F' ~F'I',F* (7.31)

Two issues have to be taken care of here, with respect to F that appears in equation

(7.31). First, term F will include 5 . Following the DSC method, s is shown bounded as
follows. Equation (7.17) shows that



7. Dynamic Surface Control of Co-operating Hydraulic Manipulators in the Presence of Friction 101

S=M (X)X, X, X )0 -K,s—J [, s+J (F+F")—D(X,X)s

+ JaT [([6,]2, —[0,]2) - [L]([&l 1z, —[e,12)]}
g(x)

(7.32)

All the estimates 6, 6, and &, in equation (7.32) are bounded according to equation

(7.13); so 1s 0 . Therefore, there exists a positive continuous function y,, such that
sl <7, (e.s. F F,%,%, X, X', X*,K,) (7.33)

Second, vector F includes friction compensation ¥, , which has a term containing ‘x;‘ .

The gradient of ‘x;‘ is undetermined when xj =0. However, the generalized gradient

(Clark, 1983)

1 xj eR”
o] = SGN (i) = {[-1,+1] xj = (7.34)
-1 xl] eR”

is bounded anywhere, including x; = (. Based on equation (7.7) and the above analysis,

there exists a continuous positive function y,., such that
—F'T.F'<y.(ess,F,F'7,,%,X', X", X', K,)F* (7.35)

The generalized gradient at a point x; can be viewed as a set valued map equal to the

convex closure of the limiting gradient near x; [for a similar argument, see references by

Maciuca and Hedrick (1997) and Duraiswamy and Chiu (2003)]. Now from equation

(7.30), one arrives at
V, <V, =" F ~ FTK L F + |, |[F- o T [F[ 47 | (7.36)

Replacing Vl in equation (7.36) with equation (7.25) gives
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V2 <—s"K;s=s"J 6, s+ STJaf'd ngy ||s|| + ”50”7% ||s||
+ [l sl -2 g|( |)][aolfzozo —Ef[g|( |)][61]F21z1 (7.37)
—FK L+l [F] - T F] 4 [

Forany r, >0 and V{V, <r,}, define constants C,, C,, C,

C, =max(8,,7,) + max(c, 7, )+ max(c,, 7, ) (7.38a)
C, =max(¢,7,) (7.38b)
C; =max(y,) (7.38c¢)

where :”:uU _ﬂL”: u=0.9,0,,0,.

2
Since C1||s||£f—1||s”2 +e . HFH HFH +e, ||Fd||< ”Fd” +g, , for any
81

g, >0,i=1,2,3; the following is obtained

. aJ,) C/ N ~
Uy <K, + 29D Sy ko SE] -2- Loz,
2 4¢, 4, g(x)
1% L, oW, G "
~ X ~ o ~ 12
~E e L E + T+ =+ )|+
g(x) 7, 2 4,
where E=¢& +&,+é&, . Noting the semi-negative terms
x x
-z L[O’O]F A l[al]lﬂ .12, in equation (7.39), there exist appropriate gains
g(x) g(x)
K, and K, and a filter time constant 7, such that
. 2
V, <=n(s| (7.40)
and
: a(J,) C! Cy| 1 gJ,) C;
n=min{(K, — ( ")——1),(KFFF——2),(—FF— ) _ —)1>0 (741)
2 4¢, 4e, T, 2 4e,

which is to say
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— 2
k,>2Y) C (7.42)
2 4¢,
2
K., > (7.43)
4¢,
J) c)'
r, <T, e (7.44)
2 4e,

V2 <0, whenever vector r(s,f',l?d) =(ST,FT,FdT)T is outside the compact set
~ o~ ~2 ~ 112
{r(s, F,F?")| (||s||2 +HFH +HF"H Y<¢&/n}. Thus, it is concluded that the closed—loop

system is stable and eventually the tracking error converges to a small neighborhood of
zero, whose size is adjustable by the design parameters ¢, K,, K, and r,. Moreover,
for most of the time during the tracking task, velocity is nonzero, i.e. |x| # 0. Therefore,

excluding the zero velocity, equation (7.39) becomes

V, <—&V, +¢ (7.45)
and
& =min{ny [ﬁ][a r [ﬂ][a 1. ea, >0 (7.46)
H g(x) 0 z0° g(x) 1 z1 U

where «a,>0, and is defined by

v, <ay (s +|F]" +[F| + 5]+ (7D (7.47)
Inequality (7.45) gives
V, () <exp(=& 1)V, (0) +[1—exp(=E t)]e/ & (7.48)

This further indicates that an exponentially converging transient performance is achieved

with the exponentially converging rate £ and the final tracking error can be adjusted via

controller parameters freely, in a known form. It is seen from equation (7.46) that the

convergence rate can be made arbitrarily large, and final tracking errors ¢/¢, can be

made arbitrarily small by increasing the control gains K,, K., I",,I",,; or decreasing
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the design parameter ¢ and the filter time constant 7,. A small or appropriate time
constant plays a role to ensure that F“ follows F timely without affecting the system’s
stability.

Finally, since s =é+2ie (A >0), the position tracking error is bounded and reaches

an arbitrarily small value. This completes the proof of the proposition.

Remarks 7.1.2:

(1) The proposed controller is also robust against un-modeled nonlinearities. Let term 5

be an uncertain and nonlinear function in the dynamics of the system under investigation,

and practically | 5 |< éN'U . Accordingly, the term in equation (7.38a) is adjusted as

~

+3,) (7.49)

C, = max(6,, |7/9|) +max(6, |7, )+ max(e, |7,

which, shows that the inclusion of an uncertain non-linearity increases C, and thus may
require a higher gain K, to meet equation (7.41). In other words, without any other
efforts, simply increasing the control gain K, can improve the control system’s

robustness against un-modeled nonlinearities.

(i1) The contact force of the entire control system can be shown to be

For =WETo! +VEL ~J[H,§"' +C,4" +G, + J(F, ~F,)+Z] (7.50)

int

where & is a bounded function of the bounded state errors. From equations (2.12), (2.13)

and (7.50), it can then be proven that

F > =WF™" =E "¢ -WJ'[H §" +C

ext

§'+G,+J(F, —ﬁﬂ,) +Z] (7.51)

m

and

VFt—)oo — th—)oo _WTFt—mo — VFd

int ext int

~(I-WW)[H,§' +C,q' +G, +J(F, —F,)+Z]
(7.52)

where, F|”and F, " are the external and internal forces as ¢ — o, respectively. Since

ext

V is a full-column-rank matrix, it can be concluded that

Fp =Fo=V'U-WW)J'[H,§" +C,4" +G, +J(F, ~F,)+] (7.53)

int int
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Equation (7.53) indicates that the actual internal force is bounded, but does not converge

to the desired value. In order to enhance the regulation of the internal force, a force

feedback loop in the control law (7.4) is further introduced by replacing VF with

V(F: +K, (F.—F,)) in equation (7.7):

int i

F=J"'"J"WE "t +V(F +K, (Ft - F, )N+ F, (7.54)

int i

The internal force, F:

int ?

can be extracted from contact forces, which are typically
available through wrist force sensors. As a result, equation (7.53) becomes

Fl =Fa—(+K, )" VIA-WW)[H,§' +C,q'+G, +J(F, —F,)+Z]
(7.55)

Theoretically, the actual internal force can be arbitrarily set as close as possible to the
desired value through adjusting the force feedback gain K. . With respect to stability, the

same Lyapunov-like scalar function will result in the same conclusion, since only the
term related to internal force has been changed.

Regarding the load distribution, it is noticed that the contact force in equation (7.50)

has an extra term —J ' [H §° +C, ¢' +G, +.7(ch —Is’fc)+§] , when compared with the

reverse mapping F, =W'F,_ +VF

ext int

as stated in equation (2.13). Therefore, the load

distribution scheme described in W' can be dynamically changed because of this extra

term, especially when uneven load distribution is scheduled.

(i11)) With respect to the controller (7.4), the only hydraulic parameters needed by the

controller are the effective piston areas 4, and A, . Other hydraulic function parameters
such as effective bulk modulus S or control valve gain K, ; are all considered in the

adaptation laws described in the proposed control strategy. Similarly, the control law
requires no knowledge about mass or inertia of the manipulators’ links or payload. The
controller only needs knowledge about the length of the manipulators’ links, since the
Jacobian matrix appears in the control law. Only measurements of manipulators’ joint
angular positions and velocities as well as hydraulic line pressures are required for
feedback.

(iv) Construct the following Lyapunov-like scalar function for the same control system:



7. Dynamic Surface Control of Co-operating Hydraulic Manipulators in the Presence of Friction 106

V, =V, + L F T F+ L F" I F +5(0"w,'0 + & w,'5, + & w,'&, + " w,'F) (7.56)
where term V, is given by equation (7.16). Given the above Lyapunov-like scalar

candidate, instead of arriving at equation (7.37), one obtains

V, <=5"K,s =" [, Wls+s" T F ~F K I F -, T, |[F| 4y |F|

—ZT[ﬂ][a 1.,z —ET[L][a 1.7, (7.57)
0 g(x) 0 z0%0 1 g(x) 1 z1%1

+07(w,'0-Y,))+ 5, (w,'6, Y, )+& (w,'6,-Y, )+ (w,'9-Y,)
Using inequality (7.14), one further arrives at

V,<—s"K,s—s"J [6,1 s +s"J F* —f’TKFFFf—TO_IFF“f’d“Z +yFHI~7dH

- - 7.58
r - e X . (7:5%)
=2 [—<llo .02 — 2 [l 1.2
g(x) g(x)
Similar to inequality (7.39), one obtains
. a(J,) ~12 . |X -
V, < (_Kd +T)”S”2 —K Iy FH _on[%][ao]rzozo
" & 2 (7.59)
~r¢ |X ~ 1 o) C; j=al?
~F Ll % + (T + =+ )|[F + 2
g(x) 7, 2 4,

From inequality (7.59), the same conclusions can be made as from inequality (7.39),
except that exponentially converging transient performance is not shown. Compared with

equation (7.41), the ranges for K, and K, /I, are wider, which can be obtained from

equation (7.59) as below:

k, > 2 (7.60)
2
K, T, >0 (7.61)

It follows, that to achieve exponentially converging transient performance, gains K,

K, I', are expected to be higher, to account for the parameter uncertainties represented

by C, and C,.
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7.2 Simulation Results

The nonlinear controller derived in Section 7.1 has been examined by numerical

simulations using the same simulation model presented in the previous Chapter. The

same two reference trajectories as used in Chapter 6 were used again:

(1) point-to-point trajectory with a travel distance of 0.3m, maximum speed of
0.15m/s and maximum acceleration of 0.6m/s” and

(i1) sinusoidal trajectory consisting of one segment with an amplitude of 0.Im and
frequency of 0.2Hz followed by a second segment with an amplitude of 0.02m
and frequency of 1Hz.

These two reference trajectories are shown in Figures 7.1 and Figure 7.13, respectively.

The controller was also required to maintain the internal force on the object in the

horizontal direction close to zero and at the same time, evenly distribute the load between
the two robots, i.e. &' = a” =0.5. The control gains were chosen as follows:
A =diag(200,...,200), 7, =diag(0.01,...,0.01), K. =diag(3,...,3),

K, =diag(2000....,2000), K, =diag(2,...,2), I',. =diag(0.05,...,0.05),
w, =diag(1,1,1,1,1,1,0.2,1,1,1,1,1,1,1,0.25,1,50,1, 107, 107, 107,107, 107, 107),

w,""" = diag(2.4x107, 2x10°, ..,2.4x10%, 2x10%),
Gﬂ(mﬁ) :diag(2><109, ...,2)(109), Wa](6X6) :diag(5X106, ..-,5)(106)7
r,*" =diag(10, ...,10), """ = diag(10, ...,10).

The first set of tests was conducted using the point-to-point trajectory tracking
shown in Figure 7.1. Figure 7.2 shows the tracking error. As can be seen, the object
follows the desired path closely with almost zero steady state error of position. The
control signals shown in Figure 7.3 are all reasonable and smooth. The internal force is
theoretically not guaranteed to converge to the desired level. With force feedback
(K,, =diag(3....,3)), the internal force has a small value of 40N (shown in Figure 7.4),
which is the same magnitude as the simulation in last chapter. Estimations of typical

parameters are shown in Figure 7.5. Note that the estimated values of the parameters do

not converge to the actual. Such results, however, do not contradict the theoretical
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argument, since the parameter convergence is not theoretically guaranteed in Section 7.1.

The distribution of the payload between the two manipulators was fairly even as shown in

Figure 7.6. Finally, Figure 7.7 shows the friction estimation 13“ 1» for the second link of

one manipulator during the tracking control, which follows the actual (F,) reasonably

well.

0.8 —

0.7 —

0.6 —

Desired position (m)

0.5 —

0.4 | | | | |

Time (s)

Figure 7.1: Point-to-point reference trajectory.
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o
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K
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Position error (m)
o
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-0.0004
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Figure 7.2: Position tracking error.
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Control Signals (V)
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Figure 7.3: Control signals for one of the manipulators.
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Figure 7.4: Internal force on the object in the horizontal direction.
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Figure 7.5: Typical parameter estimation errors.
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Figure 7.7: Friction and its estimate (link two of one of the manipulators).
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The above simulation was repeated with uneven load distribution described by

a' =0.6 and a® = 0.4 that required the first manipulator to contribute more to carry the
payload. Tracking errors and the internal force did not change much as shown in Figure
7.8 and 7.9 respectively. The control signals for the manipulators, shown in Figures 7.10
and 7.11, were quite different from each other. Consequently, Figure 7.12 shows that the
lifting forces were not evenly distributed between the two manipulators. The first

manipulator contributed more to the lift and hold of the object. Quantitatively, the

distribution was not exactly the same as expected by the values of &' =0.6 and a’ = 0.4
due to the extra term in (7.50) that has been discussed in Section 7.1. Nevertheless, it is
shown that the load distribution is still adjustable in the presence of significant friction in

the actuators.
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Position error (m
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Figure 7.8: Position tracking error (uneven load distribution).
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Figure 7.9: Internal force on the object in the horizontal direction.
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Figure 7.10: Control signals for the first manipulator.
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Figure 7.11: Control signals for the second manipulator.
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Figure 7.12: Load sharing between manipulators.

The next set of tests was conducted using even load distribution and sinusoidal
trajectory tracking shown in Figure 7.13. All the gains were kept without changes.
Figures 7.14 to 7.18 show the simulation results. As seen in Figure 7.14, the control
system had excellent performances. The amplitudes of the position tracking errors,
corresponding to the trajectory with lower frequency and higher amplitude, and the one
with higher frequency and lower amplitude, are about 1 mm and 0.2 mm, respectively.
The control signals to the actuators are reasonable and not saturated (see Figure 7.15).
Figure 7.16 shows that the internal force on the object changes less and is closer to zero
during the tracking of the low-amplitude reference. Estimations of parameters are shown
in Figure 7.17. Again, they do not converge to their actual values as discussed before. The

distribution of the lifting forces from the robots was quite even, as shown in Figure 7.18.
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Figure 7.13: Sinusoidal reference trajectory.
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Figure 7.14: Position tracking error of the object.
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O

Figure 7.15: Control signals for the first manipulator.
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Figure 7.16: Internal force on the object in the horizontal direction.
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Figure 7.18: Load sharing between manipulators.

7.3 Summary

This chapter documented design, stability analysis and numerical verification of a

tracking controller for co-operation among several hydraulic manipulators handling a

rigid payload. Different from the controller developed in last chapter, this controller used

the concept of dynamic surface control. A low pass filter was integrated in the controller

design, eliminating model differentiation. Thus, complex calculation arising from

“explosion of terms”, as well as the requirement of acceleration feedback and the

derivative of F.

int

in the case that force feedback is implemented, was avoided.

The controller design also addressed all the other issues listed in Chapter 6. The

highly nonlinear dynamic behavior of hydraulic actuation, manipulators and dry friction
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were incorporated in the controller design. The issues of internal force control on the
object, as well as load sharing among several manipulators were also addressed. To deal
with parametric uncertainties in the payload, manipulators, hydraulic functions as well as
friction, the controller was augmented with various adaptation laws. The proposed
tracking controller does not need exact knowledge of the payload, manipulators’ dynamic
parameters, or hydraulic function parameters. With respect to the implementation, the
controller only requires measurements of robots’ joint angular positions and velocities,
and hydraulic line pressures. The measurements of contact forces are needed when force
feedback is implemented.

The equilibrium of the entire system under the proposed controller was theoretically
investigated. Although final zero error of the object position tracking was not ensured,
which was achieved by the controller previously developed in Chapter 6; position errors
were proven bounded in a ball which could be made arbitrarily small by adjusting control
gains, design parameters and filter time constant. In addition, the closed-loop system was
robust against un-modeled nonlinearities. The internal force on the object could be made
arbitrarily close to the desired level.

Simulations were performed with two manipulators resembling MAGNUM
hydraulic manipulators. The results demonstrated the effectiveness of the proposed

nonlinear controller.



Chapter 8 Experimental Studies

The controller developed in Chapter 7 has been implemented on an available fully
instrumented system, including two single-axis electro-hydraulic actuators. The goal is to
further show that the proposed control scheme can effectively cope with parametric
uncertainties, counteract friction effects and achieve desired position tracking and

internal force adjustment on a real system.

8.1 Description of the Test Rig

The test rig shown in Figure 8.1 includes two hydraulic actuators. Each of them is treated
as a single-axis hydraulic robot. The system is originally constructed for experimentation
on fault tolerant control and condition monitoring algorithms in fluid power systems, in
which one actuator acts as a fault simulator and the other as a load simulator (Sepehri, et.
al, 2005).

With reference to Figure 8.1, Actuator 1 on the left side is controlled by a high
performance, closed-center nozzle-flapper servovalve. It is a double rod type with a 610
mm (24 in.) stroke, a 38.1 mm (1.5 in.) bore and 25.4 mm (1 in.) diameter rods. A Moog
D765 servovalve modulates the flow in the circuit. The D765 is a modern servovalve that
utilizes a linear variable differential transformer (LVDT) to measure the position of the
spool. The spool position loop is closed, via integrated electronics that allow the spool to
be positioned proportionally to an electrical command signal. The D765 flows 34 L/min
(9 GRM) at 21 MPa (3000 psi) and has a nominal 2 ms rise time (Moog Inc., form no.
500-300 601).

Actuator 2 on the right side in Figure 8.1 is controlled by a Moog 31 series
servovalve, an aerospace grade, closed-center nozzle-flapper type. The Moog 31 is
capable of delivering fluid at a rate of 26 L/min (7 GPM) when operated at 21 MPa (3000
psi) and has a nominal 1.5 ms rise time (Thayer, 1965). With the exception of a shorter
203-mm (8 in) stroke, Actuator 1 is identical to Actuator 2.

118
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Figure 8.1: Test rig on which all experiments are performed.

Both actuators are mounted on a reinforced steel table. The fluid pressures at the
actuator chambers, as well as the pressures of fluid supplied to the valves, can be

measured by six pressure transducers. An S-beam type load cell measures the contact

force between Actuator 1 and the load, named F,. There is no force sensor between

Actuator 2 and the load. Two rotary encoders with a resolution of 1024 counts/revolution
(linear resolution of 0.038mm) established the relative position of the actuators. Each
encoder works with a steel cable which is tightly in contact with the encoder. When the
actuator moves, the cable synchronically moves and causes the encoder to rotate. End-to-
end round trips are carried out to find the accuracy of the position measurement. Their

relative errors are about 0.5% and 0.2%, for Actuators 1 and 2 respectively. Actuator
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velocities are obtained by numerical differentiation with filtration since differentiation
process amplifies the noise.

The structure of the object (payload) shown in Figure 8.2, was designed to protect the
system from damage in the case that high internal force is built up. The object consists of
three plates and in-between springs that can compromise the two actuators’ motions.
Actuator 2 is firmly connected to plate B through a hole in plate C. Actuator 1 is fixed to
Plate A which is connected with Plate C by bolts that go through holes in Plate B. When
the object is compressed, springs between Plates A and B will be compressed.
Conversely when the object is stretched, springs between Plate B and C will be
compressed standing for the internal stretching force inside the object. In other words,
springs on the left-side can comprise compression and springs on the right comprises
tension. At the same time, the springs have to be stiff to meet the realistic assumption that
the grasped object is rigid. The overall stiffness of the object is 602.54N/mm which
results in a 0.33 mm incremental displacement in compression or stretching when there is

a 200 N change of internal force on the object.

Rigidly connected to Rigidly connected to
‘ Actuator 1 and Plate C Actuator 2

Figure 8.2: Close-up view of the object.
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The data acquisition system is comprised of two Pentium II personal computers,
operating at 866 MHz. They are configured such that each actuator has a dedicated
processor. A DAS-16F input /output (I/O) board is installed in each PC and each board is
capable of monitoring 16 single-ended analog to digital input channels while supporting 2
channels of digital to analog output. All sensors are directed to the DAS-16F 1/O boards
with the exception of the optical rotary position encoders, which are supported by
independent Keithley M5312 quadrature incremental encoder cards installed in each PC.
Since the output of the DAS-16F is unipolar, both output channels are required to
generate bipolar servovalve command signals. Each servovalve is controlled by the
appropriate PC. A local area network (LAN) is configured to establish a connection

between the PCs so that both actuator circuits can be synchronized.

8.2 Controller Implements

8.2.1 Controller Layout

X, X, X X X F¢

int

Figure 8.3: Controller layout.

The system consists of two actuators. Each is independently wired, with its own PC
and dedicated processor. Without rewiring the system, a distributed control scheme is
designed such that experiments on co-operating hydraulic manipulators can be conducted
on the available system.

The layout is shown in Figure 8.3. There are two levels of information exchange

between the physical structures. The information exchanged between the actuators and
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their associated computers includes measurement of line pressures to the chambers, and
sending control signals (voltages) to the valves. The control signals are directly sent to
the valves by the dedicated local computers. The computer dedicated to Actuator 2 also
has the object position and velocity. The information related to desired and actual
positions and velocities, and desired accelerations, is sent from Workstation 2 to

Workstation 1 using UDP protocol.

8.2.2 Selection of Supply Pressure

Both actuators share one common pump. The maximum supply pressure is 21MPa
(3000 psi). All the pressure gauges can only read up to 21MPa beyond which the sensors
could be destroyed. There are relief valves built in this experimental system to protect it
from becoming overloaded. However, the response of these valves may not be fast
enough to protect the pressure sensors. For unforeseen pressure spikes, the final supply

pressure used in the experiments was chosen as around 8 MPa (1150 psi).

8.2.3 Measurement of Object Position, Contact Forces and Calculation of Internal
Force

The object’s position can be obtained from Actuator 1 or Actuator 2. The position
measurement of Actuator 1 is chosen to represent the object’s position in the experiments
because of better accuracy than in Actuator 2. At this time, there is no force sensor

between the object and Actuator 2 to measure the contact force applied by Actuator 2. It
is possible to calculate this contact force (named Ffl) using
FC‘,1 + Ffl =ma (8.1)
ie.
Fjl =ma— FC‘,1 (8.2)
In the experiments, the object mass is about 4.5 kg and the maximum acceleration
for the desired sinusoidal trajectory is about 0.1 m/s>. Therefore, the maximum value for

the inertia force will theoretically be about 0.45 N. The real value might be higher than

this value, but it is still small and negligible compared to the contact force (above 100N).
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2

The contact force, F , is obtained by

Fl =-F,, (8.3)

that is to say, F ?1 is just opposed to E}J, meaning that the internal force could be

represented by one of the contact forces as follows:

Ent ~ Fc?l (84)

8.3 Experimental Results

A sinusoidal desired trajectory with a travel distance of 0.12m and frequency of 0.2Hz
was used as reference. The desired internal force was set to zero, i.e., F% = 0. The values
of stick and slip frictions were chosen as 1300N and 1100N, respectively. The controller

gains were chosen as shown in Table 8.1.

Table 8.1: Control gains.

G T

i 100 w, diag(1, 10%)

7, diag(0.005,0.005)  w " diag(8x10™7, 2x10°,8x10™%, 2x10°)
K,*®  diag(200,200) w, "7 diag(10°,10%)

K,®?  diag(100,200) w, "7 diag(10*, 10%)

r,>  diag(0.01,0.01) r,”?  diag(l, 1)

K. diag(2.252.25) r,””  diag(l, 1)

The experimental results are shown in Figures 8.4 to 8.12. Figure 8.4 shows the desired
position trajectory of the object. The position tracking error of the object, shown in
Figure 8.5, is less than 1 mm. The internal force is between £ 200N as shown in Figure
8.6. Control signals to the two actuator valves are shown in Figures 8.7 and 8.8,
respectively. Figure 8.9 shows the chamber pressures in Actuator 1 and the supply
pressure, which presented variations of +10% of its nominal value. Estimations of
typical parameters are shown in Figure 8.10. Note that the parameter convergence is not

theoretically guaranteed. Estimates of friction states are shown in Figure 8.11. Based on
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the estimated friction parameters and friction states, the friction is estimated and

compensated for as shown in Figure 8.12.
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Figure 8.4: Reference trajectory.
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Figure 8.5: Position tracking error (Experiment 1).

400 —

200 —

Internal force (N)

-200 | | | | |

0 2 4 6 8 10
Time (s)

Figure 8.6: Internal force acting on the object (Experiment 1).
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Figure 8.7: Control signal to Actuator 1 (Experiment 1).
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Figure 8.8: Control signal to Actuator 2 (Experiment 1).
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Figure 8.9: Supply and Actuator 1 line pressures (Experiment 1).
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Figure 8.10: Parameter estimates pertaining to Actuator 1 (Experiment 1).

Estimated
friction states (m)

Time (s)

Figure 8.11: Friction state estimates in Actuator 1 (Experiment 1).
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Figure 8.12: Friction estimate in Actuator 1 (Experiment 1).

To compare the performance of the developed controller with that of a simple
proportional controller, two experiments were conducted with the same position tracking
reference as in the previous experiment. The proportional gain is 2000 V/m. No force

feedback was used for both experiments; thus, the developed controller used K, =0.

Control signals are shown in Figures 8.14, 8.16 and 8.17. Figures 8.13 and 8.15 show the
position errors and internal forces obtained from the experiments that used the
proportional controller and the developed nonlinear controller, respectively. Both the
position errors are smaller than 1 mm. However, the developed controller resulted in
much smaller internal force. It was also observed during the experiments that the
increasing of proportional gain did not change much of the internal force. The
experiments conducted here involved two single-axis actuators only. In the case of multi-
axis robot manipulators, the internal force could be significantly larger because of the

coupling dynamics among the links.
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Figure 8.13: Response of a proportional position controller (Experiment 2).
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Figure 8.14: Control signal to each of the Actuators 1 and 2 (Experiment 2).
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Figure 8.15: Response of the developed controller (desired internal force was set to
zero, no force feedback, with adaptation of dynamic parameters) (Experiment 3).
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Figure 8.16: Control signal to Actuator 1 (Experiment 3).
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Figure 8.17: Control signal to Actuator 2 (Experiment 3).
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The next experiment was conducted with no online adaptations of the unknown
parameters. The results are shown in Figure 8.18 and indicate that the maximum position
tracking error is much larger, close to 3 mm. The internal force seems not to change
significantly. Figures 8.19 and 8.20 show the control signals to Actuator 1 and 2
respectively. Estimated friction state and friction force in Actuator 1 are provided in

Figures 8.21 and 8.22.
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Figure 8.18: Response of the developed controller (desired internal force was set to
zero, no force feedback, no adaptation of dynamic parameters) (Experiment 4).

P T B A



8. Experimental Studies 129

Control signal (V)

-2 I
2 4 6 8 10
Time (s)

Figure 8.19: Control signal to Actuator 1 (Experiment 4).
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Figure 8.20: Control signal to Actuator 2 (Experiment 4).
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Figure 8.21: Friction state estimates in Actuator 1 (Experiment 4).
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Figure 8.22: Friction estimate in Actuator 1 (Experiment 4).

The last experiment was done in comparison with the first experiment, with the
exception that the desired internal force F° was set to -444.8N (-1001b), instead of zero.

int

The results shown in Figure 8.23 indicate that the internal force had shifted down about



8. Experimental Studies 130

400N, yet the position tracking error did not change much. This demonstrates that the
internal force is adjustable by the controller. The control signals to Actuator 1 and 2 are

presented in Figures 8.24 and 8.25 respectively.
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Figure 8.23: Response of the developed controller
(desired internal force was set to -444.8N, force feedback gain was 2.25)
(Experiment 5).
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Figure 8.24: Control signal to Actuator 1 (Experiment 5).
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Figure 8.25: Control signal to Actuator 2 (Experiment 5).
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Summary:

In this chapter, the tracking controller for co-operation among several hydraulic

manipulators handling a rigid payload developed in Chapter 7, was tested on a two-

single-axis hydraulic actuator system. A sinusoidal desired trajectory with travel distance

of 0.12m and frequency of 0.2Hz was used. The experimental results further validated the

developed controller which:

(1) is capable of tracking a reference position of the common object and regulating a
reference internal force

(i1) is robust against uncertainties and nonlinearities presented in hydraulic power
systems

(ii1))  does not require measurement of acceleration, only needs to measure line
pressures, position and velocity

(iv)  guarantees stability.



Chapter 9 Summary and Conclusions

This thesis has made important contributions to the development, implementation, and
experimental evaluation of stable and robust control laws, for co-operating hydraulic
manipulators handling a common rigid object. In spite of existence of many references
regarding multi-robot systems, the literature in the area of co-operating hydraulic
manipulators is sparse. Especially, prior to this work there was no publication on
coordinated control of multi-axis hydraulic manipulators handling a common object. The
detailed contributions made in this thesis are listed below.

A complete general model of co-operating hydraulic manipulators including object
and manipulator dynamics and hydraulic functions was developed. This was under the
assumption that there was no relative motion among the object and the manipulators’
end-effectors. Plant nonlinearities including servovalve flow-pressure characteristics,
unequal piston cross sectional areas and variations of fluid volume under compression.
As well, plant uncertainties such as bulk modulus were included in the model.

First, a position-regulating controller was developed under the assumption that the
system’s physical parameters were fully known and that there was no friction. The highly
nonlinear hydraulic actuator dynamics were incorporated in the Lyapunov-based
controller design. The issues of motion and internal force control of the object, and load
sharing were addressed. The equilibrium of the system under the proposed controller was
investigated, leading to a set of equilibrium points corresponding to the desired position
and internal forces. Further, the issue of unknown payload was analyzed and the
controller was modified to eliminate the steady-state error due to imperfect compensation.
Next, the controller was modified to account for the uncertain parameters in both robot
dynamics and hydraulic functions.

The adaptive approach within the framework of backstepping controller design
technique was employed next to design a tracking controller in the presence of
uncertainties as a natural direction for control of co-operating hydraulic robots. The
design methodology proceeded with the construction of on-line updating laws and

observers. The controller features updating laws to consider parametric uncertainties

132
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(unknown dynamic parameters of the payload, robots, and hydraulic functions), and
observers to avoid the requirement of acceleration feedback.

Many researchers have shown that friction plays an important albeit damaging role in
control systems. The above controllers were investigated for hydraulic manipulators
having substantial friction. Theoretical analysis showed that the regulating control system
was stable and could achieve the desired position. However, the existing friction could
make regulation longer, when compared with the case having no friction, and bring about
undesirable internal forces. It was discovered that the use of force feedback could bring
the internal force closer to the desired value. For the position tracking control system,
both position and internal force errors could be significantly increased with the presence
of friction and the stability could not be guaranteed given the existing Lyapunov-like
scalar function. Simulations were further carried out to verify the theoretical findings.

Built upon the above studies, a new Lyapunov-based controller was developed for co-
operating hydraulic manipulators handling a common rigid object in the presence of
friction. The well known LuGre friction model was introduced in the actuator dynamics
and was considered when designing the controller. Main parameters in the friction model
were assumed to be unknown and were estimated by an adaptive control scheme.
Adaptive observers were used to identify friction internal states that were not measurable.
Utilizing the online estimated friction parameters and observed friction states, a novel
friction compensator was designed. Additionally, in an effort to avoid the need for
measuring acceleration, an acceleration observer was introduced. Using the new
controller, the states of the control system were proven bounded. The Lyapunov-like
analysis showed that the position tracking error moved to zero as time went to infinity.
The internal force error could theoretically be made arbitrarily small, when using an
additional force feedback.

Inspired by the concept of dynamic surface control, the above controller was
redesigned. The problem of “explosion of terms” was solved while the need for
measuring acceleration was avoided without having to design an observer. Other features
remained, except for the position tracking error which was made arbitrarily small rather

than zero.
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The above tracking controllers were tested in simulations using two 3-DoF hydraulic
manipulators. The kinematic and dynamic model of robot manipulators in the simulations
was built to resemble a Magnum robot, manufactured by the International Submarine
Engineering, Canada. A number of simulations were carried out on the developed
simulation model. Simulation results validated the effectiveness of the developed
controllers.

The dynamic surface controller was further tested experimentally on an available
hydraulic system consisting of two single-axis actuators. A hierarchical distributed
control scheme built on local network and using UDP protocol, was designed to carry out
the experiments. The experimental results further validated the effectiveness of the
controller.

Future work should focus on experiments on multi-axis hydraulic robot manipulators,
as well as on the following issues. Firstly, in this study the valve dynamics were
neglected by assuming a small rise time. Incorporating a general model of the valve with

the controller design could accurately represent the valve dynamics. Secondly, to

t
eliminate the internal force error, an integral-like term, _[O (F% —F,)dr , could be

int
considered to add in the force feedback loop. Finally, one feature of the LuGre friction
model is, that it is continuous compared to other friction models. However, it is not
differentiable at some isolated points while the backstepping controller design technique
requires a differentiable model. It is, therefore, worthwhile to investigate the possibility

of modifying the LuGre model such that it becomes differentiable.
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Appendix A

Degree of Freedom of the Co-operating System

Katib (1988) has discussed the issue of degree of freedom of a multi-end effector/object
system. The following is a review with more details.

The system considered in this thesis results from rigidly connecting an object to the
end-effectors of n N-degree-of-freedom manipulators. One way to see this system’s
structure is that it is formed by n(N-1) links, one object link and one ground link
connected through nN one-degree-of-freedom joints. The number of total degrees of

freedom of these links obtained before the connection is n,(n,,, —1), where the numbers

of total links n, , is n(N-1)+2, and no is the number of degrees of freedom of an

unconnected link (3 in the planar case and 6 in the spatial case). The number of total

degrees of freedom lost by the joint constraints after the connection is (n, —1)n where

joint »

n.. s the number of total joints. Thus, the number ng of degrees of freedom of this

joint
system is given by the difference between n (n,, —1) and (n, —1)n This number is

joint *

given by the Grubler formula (Hartenberg and Denavit, 1964),

ng=ny(ny =D —(n, — l)njoint (A.1)
For the system of n N degree-of-freedom manipulators and the object considered here,
n, =ny(n(N -1)+1)—(n, =1)nN =n, + n(N —n,) (A.2)

With the assumption of non redundancy, the number of degrees of freedom in the planar

case (ng =N=3) is ny=3. This number is n; =6 in the spatial case (n) =N=06).
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Appendix B
Properties of Matrices M and D

Given
A=E'"WJ"HJ'W'E (B.1)
B=E"WJ'[CI]'W'E+HI "W E+W"E—-JJ"'W"E)] (B.2)
M=A+M, (B.3)
D=B+D, (B.4)

and the following properties:

Property B.1: H is a symmetric positive definite matrix,

Property B.2: (H —2C) is a skew-symmetric matrix, i.e., x” (H —2C)x = 0;Vx € R*"",

Property B.3: C(q,x)y =C(q,y)x Vq,x,y€R"" and,

Property B.A: H(q)and C(q,q)are bounded, i.e., 0< H, <|H(q)|< H, VgeR""
and ||C(q, x)|| <C, ||x|| Vg,x € R .

Property B.5: M, is a symmetric positive definite matrix,
Property B.6: (M, —2D,) is a skew-symmetric matrix, i.e., x’ (M, —2D,)x=0; Vx € R

Property B.7: D, (x,y)z=D,(x,z)y Vx,y,ze R and,
Property B.8: M (x)and D, (x, y)are bounded, i.e., 0 <M, < ||M0 (x)|| <M,,

Vx e R and"Do (x, y)|| <D,,

|y|| Vx,ye R,

Matrices M and D have the same properties, i.¢.,

Property B.9: M is a symmetric positive definite matrix,
Property B.10: M -2Disa skew-symmetric matrix, i.e., x’ (M -2D)x =0;Vx e R,
Property B.11: D(x,y)z = D(x,z)y Vx,y,z< R*, and
Property B.12: M (x)and D(x, y)are bounded as follows:
0<M, <|M(x)|<M, VxeR™™

el <Dl vrve R
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Proof:
1) It is easy to see that A(X) is a symmetric positive definite matrix in observation of
Property B.1. Thus, Property B.9 is true.
i1) Equations (B.3) and (B.4) show that
X" (M -2D)X =X"(A-2B)X+X" (M, -2D,)X (B.5)
Using Property B.6, one arrives at
XM -2D)X =X"(A-2B)X =X"E'"WJ " (H -2C)J'W"EX

T -7 -lgy T

dEW) )HJ‘IWTE+ETWJ‘TH—d(J W E)
dt dt
—2E'"WJTTHI "W E+WTE-JI"'WTE)X

+XT( (B.6)

dJ'W'E) _

y JWTE+WTE-JJ"'WT"E), one arrives
t

Using Property B.2 and that

at

d(J'W'E)
dt

X'"(M-2D)X =X"( HI'W'E-E'"WJ'H )X (B.7)

d(E"WJIT)
dt
d(E"WI™T)

p HJ'WT'EX is a scalar (hence equal to its transpose) and
t

Because X'

H' = H , the following is obtained,

T -T -1 T
X7 MHJ‘lWTEX :XTETWJ‘THMX (B.8)
dt dt
This results in Property B.10
X"(M-2D)X =0 (B.9)

ii1) Equation (B.2) and Property B.7 show that

-1 T
D(x,y)z=B(x,y)z+D, (x,y)z = E'Wy" [CJ_IWTE + Hw]z +D,(x,z)y
(B.10)
where
-1 T
B(x,y)Z=ETWJT[CJIWTE+HW]Z (B.11)

D,(x,y)z=D,(x,2)y (B.12)
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Noting that J'W'E is a function of position only, and using Property B.3, it is
concluded that

B(x,y)z=B(x,z)y (B.13)
thus Property B.11 is proven.

iv) J' is bounded since J is assumed to be nonsingular. Thus, Property B.12 is true.



Appendix C

Review of Backstepping Controller Design Technique

A third order system of co-operating hydraulic manipulators is presented in Chapter 2. To
design appropriate controllers for the system under investigation, the backstepping
technique is utilized.

Backstepping is a recursive procedure that interlaces the choice of a Lyapunov
function with the design of feedback control. It breaks a design problem for the full
system into a sequence of design problems for lower order subsystems. Thus
backstepping is suitable for high-order systems. By exploiting the extra flexibility that
exists with lower order subsystems, backstepping can often solve stabilization, tracking,
and robust control problems under certain conditions. The following is a brief

introduction of backstepping adopted from the work by Khalil (2002).

Proposition:

Consider the system

n=fm+Gn)< (C.1a)

§=1,(1.6)+G,(n,5)u (C.1b)
where, 7€ R",£ € R” and ue R" , in which m could be greater than one. Suppose
f.f,,G, and G, are known smooth functions over the domain of interest, f(0)=0and
£,0,00=0, and the mxm matrix G, is nonsingular. Suppose further that the
component (C.la) can be stabilized by a smooth feedback control law & = ¢(77) (also
called virtual controller) with ¢(0) =0, and a known Lyapunov function V,(77) satisfies

the following inequality

oV, (n)

W[f () +Gme(m]<-Wn) (C2)

where function W (77) is positive definite. Then the following control law asymptotically

stabilizes the whole system described by equations (C.1a) and (C.1b)
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1 i aVl T
0= . Ol - ("2 DG £, kg, k>0 (€3)
Proof:
The proof is adopted from the framework by Khalil (2002). Using
V, = Vi) + 31 = ¢]' [~ ¢()] (C4)
as a Lyapunov function candidate for the overall system, one arrives at
.0 0 r
V= ZL(74Go)+ SEGE - P +E- IS, + G- L (F+GO] (C9)
7 on on

Note that the variables’ names in bracket parts following the function names are not

presented for the sake of simplicity. Taking the law (C.3) results in
y ov T T
v, = 8—771(1” +GP)—k[S =PI [ =91 <-W(n) —klg 4] [ - 4] (C.0)

which shows that the origin (17 =0,& — ¢ = 0) is asymptotically stable.

Remark:
The above design does not address parametric system uncertainties. By inspection
equation (C.3), the controller for the overall system needs the time derivative of the

virtual control law ¢(n) for the component system (C.la). This requires more

measurements as feedback to the controller for the overall system. To avoid the
requirement, observers should be developed. Thus, the above controller has to be
redesigned with the observer dynamics and parametric updating law included.

The differentiation of the virtual control law might bring about the issue of
“explosion of terms” (Swaroop, et al., 1997) that introduces many more terms to measure

or calculate.
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Appendix D

Dynamics of a Three-link Robot

The physical parameters of the i"™ robot manipulator are as follows:
Link length: //,1},1;

Center of mass: a|,al,a}

Mass: m|,m},m;

Inertia: 1,,15,1,

Figure D.1: Three-link planar robot.

While other approaches are available to formulate robotic arm dynamics, such as the
Newton-Euler and the generalized d’Alembert principle formulations, the Lagrange-Euler
method is used to obtain the following dynamic equations that are used for simulations in

the studies.

i oiNsi PP osin s i i il i
H'(¢")g' +C'(q".4")q' +G'(¢")=T"-J" F, (D.1)
where H' € R¥,C" € R*?,G' € R™ . The details of these matrices or the vector are

given as follows:

Hi = 1 1 @) )+ + 20 cose] o
+mi[(1]) +(15)* +(al)? + 21/} cosqh + 21 a} cos g} + 21 a) cos(qh + q3)]

Hy, =I5 + I+ mi[(ay)* +1{a cos gy 1+ mi[(13)* +(ay)? (D.3)
+1[1] cosq} +2l5a; cosqi + 1 al cos(qy +q5)]

Hy =I5 +m;[(a3)" + 1,05 cosqs +1jay cos(q; +45)] (D.4)



Hél = Hliz
H, =1, +[; +m;(a;)2 +m;[(lé)2 Jr(a;)2 +21£a§ cosqé] ;
Hi, =1, +mi[(a})’ +1a; cosq}]
Hzil = Hf3
Héz = H£3
Hy =15 +mi(a;)’
C\, = -m;llasq; sing; —mil[1q, sin g —milai (g5 +43)sin(g; +¢5)
—m;lya;q; sing,
Cy, =—m3lias (g +¢5)sing, —myl 15 (g +¢3)sing,
—myliay (g + 4, +¢3)sin(q, +q3) —myliaig; sing;
Cy = -mljay(§) + ¢, +¢5)sin(g; +q3) —milay(g) + ¢, +¢3)sing;
C;, =myliayq, sing, +myli1,g) sin g, —mil,aiq; sing; + myllasq, sin(g; +q3)
C;, =-mylya5q; sin g
Cy =-mylay(4) + 45 +¢;)sing;
Cs, = mylai(§) +45)singy +miliasg, sin(g, +¢5)
Cy, = mslias (g, +¢5)sing;
C;3 =0
G| =majgcosq, +mil g cosq] +mialgcos(q, +q5)+mil g cosq|
+mil g cos(q; +q;) +miazgcos(q; +q; +qs)
G, =myasgcos(q) +q;) +myligcos(qy +q5) +miasg cos(q) +q; +q5)

Gy = mya,gcos(q, +q5 +¢q3)

Note: it is easy to verify that x” (H' —2C")x = 0;Vx € R>.
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