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ABSTRACT

ln this thesis, we investigate the use of orderly algorithms to enumerate

non-isomorphic (perfect) one-factorizations and sets of orthogonal

one-factorizations (Howell designs) of regular graphs. These algorithms

construct only non-isomorphic one-factorizations, by eliminating isomorphic

structures as the one-factorizations are built up from the individual one-factors.

With the help of a high-speed computer, we implement these algorithms

for several regular graphs. We enumerate one-factorizations of K,, containing

prescribed automorphism groups. All perfect one-factorizations of Kr+

containing nontrivial automorphism groups are determined. We complete the

census on the one-factorizations and sets of orthogonal one-factorizations for

regular graphs of order 10 or less, by performing an enumeration for the graph

K.,o minus a one-factor. We carry out enumerations for 6- and 7-regular graphs

on 12 vertices having transitive automorphísm groups, and find many new

Howell designs. We also study special classes of Howell designs for several

graphs on 10, 12 and 14 vertices, such as skew designs, *-designs and

""-designs.

Two other algorithms, hill-climbing and backtracking, are used to

construct examples of perfect one-factorizations of K.u and Kuo.
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CI-{APTER f

INT'RODUCTIOT\å

I.1 Statement of the problem

ln this thesis, we study the problems of enumerating non-isomorphic

þerteQ one-factorizations and sefs of orthogonal one-factorízations (Howell

designs) of regular graphs.

With the assistance of a computer, we used orderly algorithms to carry out

the enumerations. These algorithms construct only non-isomorphic

one-factorizations, by eliminating isomorphic structures as the

one-factorizations are built up from the individual one-factors.

The study of one-factorizations belongs to the area known as

combinatorial design theory. Like many design problems, one-factorizations (of

complete graphs, in particular) are closely related to problems such as

scheduling round robin tournaments. The importance of the study of

one-factorizations cannot be over-emphasized, as illustrated by the following

quotations from Mendelsohn and Rosa (see [43]).

"The results of this lead to constructions and applications in other

branches of desígn theory and the recognition of other known designs as

special types or orthogonalizations of the basic idea."

"The one-factorization of the complete graph is a building block of

resolvable designs and tournament scheduling. As such, it deserves thorough



study."

ln the following three sections, we define the terminology used in this

thesis. We also give a brief description of previous work done in the areas of

one-factorizations and Howell designs. ln concluding this chapter, we give an

overuiew of the thesis, and some main references.

1.2 Graph theory

A graph Gr is defined as an ordered pair (V, E), where V is a finite

non-empty set of n elements, and E is a finite set of unordered pairs of distinct

elements of V. The elements of V are called vertices, and the elements of E are

called edges. We use the set {xo, Xl, ..., Xn_1} to denote the n vertices in V. The

number of vertices in the set V, n, is also called the order of the graph.

A vertex x is adjacent lo another vertex y if E contains the pair {x, y}

(usually called the edge joining x and y). The degree of the vertex x is the

number of edges incident with it. A graph Gr is r-regular if all its vertices have

the same degree r. An (n-1)-regular graph on n vertices is known as the

complete graph of order n, and is usually denoted by Kn. A complete bipartite

graph Gr on (m+n) vertices, denoted Kr,n, is a graph where it is possible to

partition the vertex set into two subsets, say V, and Vn (lvrl = ffi ârìd lVnl = n),

so that every vertex of V, is adjacent to all vertices of Vn, and no vertex is

adjacent to another vertex of its own set. We note that Kn,n is n-regular.

A walk of the graph Gr is an alternating sequence of vertices and edges in

Gr. The sequence begins and ends with a vertex, and each edge in the walk is

incident with the vertices immediately preceding and following it; for example,
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{xo, {xs, X1}, X1, {x1, X2}, x2,..., X¡-1, {x¡-1, x¡}, x¡}. To shorten the notation, we w¡ll

represent the walk by the sequence of vertices, {xo,X1 ,x2,..., x¡_1, X¡}, with the

understanding that two consecutive vertices in the sequence represent the

edge omitted. A trail of the graph Gr is a walk such that the edges are all

distinct. A path of the graph Gr is a trail such that all vertices are distinct, with

the possible exception of xo and x,. lf xo = Xi, the path is closed and is called a

cycle. The order of a cycle is defined as the number of vertices in it. A cycle

that contains all the vertices of Gr (and hence is of order n) is called a

Hamiltonian cycle. A 2-regular graph on n vertices, denoted by Qn, is a

collectíon of one or more vertex-disjoint cycles, the order of each of which is > 3

and < n.

The n vertices {1, ..., n} in the vertex set V of a graph Gr may be renamed

by some permutation cr = Sn. We write the image of x under cr as xc. Thus

xc e V for all x e V, and we have Vo - V. The edges in E are also renamed

under the action of c¿; that is, EG = {{xo, y"} : {x, y} e E}. Note that Eo may not be

identical to E. We denote the resulting graph of Gr under the action of ø by

GÊ = (V, E"). The automorphísm group of the graph Gr, denoted Aut(Gr), is the

set of permutations such that the resulting graph Gr4 is identical to Gr; that is,

Aut(Gr) = {cr : GÊ = Gr, cr e Sn}. A graph Gr ís said to have a transitive

automorphism group if for every vertex x e V, there exist automorphisms which

map xto each vedexof V;that is, {xo: ae Aut(Gr)} =V forall x e V.

1.3 One-factorizations

For an r-regular graph Gr on n vertices , a one-factorization (OD of Gr is a

3



partit¡on of the edges in Ë into r one-factors, each of which contains n/2 edges

that partition the vertices in V. lt is easy to see that, for an OF to exíst, n must be

even.

The first literature about OFs of complete graphs, as far as we know, goes

back 128 years to the paper of Reiss [48]. However, we cannot rule out the

possibility of earlier written sources. The fact that OFs of complete graphs are

fairly easy to construct suggests that they may have been considered long

before.

It is well-known that there exists an OF of Krn for every positive integer n.

ln fact, over a hundred years ago, Lucas [42] gave a construction for a class of

OFs of Krn, commonly known as the GKrn series. These OFs are constructed as

follows.

Let V =7zn-1,; {-}, and let fo = {ü, 2n-y1l: je Zrn_, \ {0}} u {0, -}. lt is not

difficulttoseethat foisaone-factor. Definef¡ =fo+i={{i+j,i+2n-j-1}: je Zzn_t\

{0}} u {i, -}, for i - 0, 1, ..., 2n-2. Then the set {fo, fl , ...,fzn_rl is an OF of Krn.

Graphically, we can label the vert¡ces of the regular polygon of 2n-1 sides by

the elements in V, and the centre by "o. Joining the vertices using the edges of

fo, we obtain a figure such as the one in Figure 1.1 (we use GKlu as an

example). Rotating the figure successively through an angÞ or 2n I (2n-1)

gives us allthe one-factors of GKrn.

Another well-known family of oFs of Krn is the GArn series (n is odd),

which can be constructed from GKn*1, as illustrated by the following example on

GAt o'

There are two subcollections of one-factors of GA'o. We take two distinct

copies of GKu, as represented by the two one-factors {{0, ""}, {1 , 41, {2,3}} and
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{{0', ".'}, {1', 4'}, {2', 3'}} (see above). Doubling up these two one-factors by

combining the two edges {0, -} and {0, oo'} into {0, 0'}, we obtain a one-factor

{{0,0'}, {1,41, {2,3},{1',4'},{2',3'}}. (Hencethevertexsetof GA,oistheunion

of the vertex sets of these two copies of Ku, with the two infinity elements

deleted.) Now adding 0, 1, ...,4 (mod 5) successively to this one-factor, we

obtain the first subcollection of one-factors of GA.,o. The remaining one-factors

can be obtained by pairing the vertices of the first Ku to those of the second one,

as follows (using mod 5 arithmetic):

{ {{0, (j+0)'}, {1, (j+1)'}, {2, (j+2)'1, {3, (j+3)'}, {4, (j+4)'}}: j = 1 , ..., 41.

Figure 1.'l

The one-factor fo of GK.,u

For an OF F = {11, t2,..., fr} of an r-regular graph Gr on n veñices, we denote
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the resulting OF of F under the action of some permutation cx, e Sn by Fo =

{f1u,12a,...,f¡},wheref,o={{xs,y"}:{x, y1 e f¡}. Two OFs F={fl ,f2,...,f) andG =

{gr, ge, ..., g,} of an r-regular graph Gr of order n are isomorphic if there exists a

permutation o on n vertices such that Fø = G; that is, {f,r,fzo,..., f,o} =

{gl,92,..., gJ (note that since F and G are OFs of the same graph Gr,

ø e Aut(Gr)). The automorphism group of F, denoted by Aut(F), is the set of

permutations that fix F; that is, Aut(F) - {cl : Fc = F, G e Aut(Gr)}. We call

a e Aut(F) an automorphism oÍ F.

An OF F of an r-regular graph Gr on n vertices is said to be cyclic if Aut(F)

contains an automorphism that permutes the vertices of Gr in a single cycle (of

length n). An OF F is called 1-rotational, if there exists an automorphism in

Aut(F) which permutes the r one-factors of F in a single cycle.

Given two distinct one-factors of an OF of an r-regular graph Gr, the 2n

edges form a union of disjoint cycles. Furthermore, the order of such a cycle

must be an even integer greater than or equal to 4. An OF F of the graph Gr is

perfect if every pair of distinct one-factors of F forms a Hamiltonian cycle of the

graph. We give an example of a perfect OF of Ku, as follows. (ln displays,

edges will be given without braces.)

12

34

56

13

25

46

14

26

35

15

24

36

16

23

45

It has been conjectured that a perfect OF exists for all Krn. This appears to

be a difficult question. ln fact, we only know of two infinite families of perfect
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OFs: GKrn when 2n-1 is a prime, and GArn when n is a prime (see [1] and t35l).

Perfect OFs were also known to exist on K16, Krr,Kz¿q and Kroo (see [2]), and

no examples of a perfect OF were known for any other values of n. ln this

thesis, we shall present two new perfect oFs, of Kru and Kuo (see Chapter 9).

Given a one-factor f of Krn, a sub-one-factor l' is a non-empty subset of s

edges of f, where s

sub-one-factorization (sub-oF) of Kr' if there exists a set F' of 2s-1

sub-one-factors from the one-factors of F, such that F' is an OF of a complete

graph on 2s vertices. For example, the following oF of K, contains a sub-OF of

Ko (on the set of vertices {1 , 2,3, 4}):

12

34

56

78

13

24

57

68

14

23

58

67

15

26

37

48

16

25

38

47

17

28

35

46

18

27

36

45

1.4 Orthogonal one-factorizations and Howell designs

Two OFs F and G of the graph Gr are orthogonal if any two edges of the

graph which belong to the same one-factor of G belong to d¡fferent one-factors

of F (and vice versa).

A Howell Desígn H(s, t) is a square array of side s having the following

properlies: (1) each cell of the array is either empty or contains a two-subset of

at-set,whichweusuallyrepresentbythesetof tintegers {1,2,...,t}, (2) each

element of the t-set occurs in exactly one cell of each row and each column, (3)
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any two-subset occurs in at most one cell of the array.

Howell designs were first defined by Hung and Mendelsohn in [28], after

E. C. Howell, who first constructed such designs (for s = t-1 and I = 4,6, ..., 30)

around 1900 for scheduling bridge tournaments (see t28l).

It is well-known that a pair of orthogonal OFs of Gr, an r-regular graph on

2n vertices, gives rise to a H(r, 2n); and, conversely, the existence of a H(r, 2n)

implies the existence of a pair of orthogonal OFs of some r-regular graph on 2n

veñices (see [50]). We call Grthe underlying graph of the Howell Design. Thus

the underlying graph of the following H(4, 6) is Ku minus a one-factor.

16

34

25

12

36

45

12

35

46

26

14

35

14

26

35

14

25

36

45

36

12

15

23

46

15

26

34

23

15

16

25

34

16

23

45

46

We note that the two corresponding orthogonal OFs, F and G, are as follows.

F:

tJ.
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It is easy to see that for H(s, t) to exist, we must have ll2 < s < t-1. ln fact,

the necessary and sufficient conditions for the existence of a Howell design

H(s, t) have been completely resolved, as stated in the following theorems.

Therore¡n 1.1 ([60], Theorem 6.1)

lf s is an odd positive integer and if t is any even integer

satisfying the necsssary condition (t/2 < s < t-1), then there is

an H(s, t) with precisely three exceptions: there is no H(s, t)

for (s, t) = (3, 4), (5, 6), and (5, 8).

Theorem 1.2 ([6], Theorem 6.10)

lf s is an even positive integer and if t is any even integer

satisfying the necessary condition, then there is an H(s, t)

with precisely one exception:there is no H(2, 4).

However, the question as to which regular graphs admit a Howell design

appears to be a difficult one. Holyer [26] showed that deciding whether a

regular graph Gr admits an OF is NP-complete. The computational complexity

of deciding the existence of Howell designs for Gr remains an open problem.

It is well-known that Kn,n þ * 2or 6), K2n (n > 4) and Ken - f (where f is a

one-factor of Krn and n > 3) admit Howell desígns (see [10], [18] and [19]). Also,

everything is known for regular graphs of order up to 10. Aside from these

cases, not much else is known in general (see [51]).

We remark that an H(2n-1 ,2n), a (2n-1) x (2n-1) square array with Krn as

the underlying graph, is commonly referred to as a Room square of order2n

I



[49]. Nemeth (see [27]) was the first to observe that the existence of a pair of

orthogonal OFs of Krn is equivalent to the existence of a Room square of order

2n. The following is an example of a Room square of order B.

12 57

13

24

38

4726

37

15

48

46

28

58

1456

34

78

68

17

35

27

45

36

18

23

67

16

25

This idea of Howell designs can be generalized to higher dimensions, as

well. we can define an i-dimensional Howell design H,(s, t) to be an

í-dimensional array which satisfies property (1) of the Howell Design, such that

each two-dimensional projection of H,(s, t) is an H(s, t). we refer to an Hr(s, t)

as a Howell cube. Similar to the 2-dimensional case, an H¡(r, 2n) is equivalent

to a set of i mutually orthogonal OFs of the underlying graph Gr, an r-regular

graph on 2n vedices.

Given a pair of orthogonal oFs {F1, G1} of an r-regurar graph Gr on n

vertices, we say that it is isomorphic to another pair of orthogonal OFs {F2,G2l

of the same graph, if there exists a permutation G on n vertices such that

{F1cr, G1o} = {F2, G2}. Thus we define isomorphism of Howell designs in terms

of isomorphism of pairs of orthogonal OFs. This can also be generalized to

higher dimensions. The isomorphism of sets of i orthogonal OFs (that is,
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i-dimensional Howell designs), i > 3, is defined similarly.

Several classes of Howell designs that are of special interest are defined

in later Chapters (see Chapters 7 and 8).

'1.5 Overuiew of the thesis

ln Chapters 2 to 4, orderly algorithms for enumerating OFs and Howell

designs of regular graphs are discussed. Chapter 2 presents orderly

algorithms for complete enumeration of OFs of regular graphs, while Chapter 3

gives orderly algorithms that enumerate OFs containing prescribed

automorphism groups. Chapter 4 deals with orderly algorithms for enumerating

Howell designs.

Chapters 5 to I give the results of enumeration of OFs and Howell

designs for several graphs. An enumeration of OFs of K.,, containing cerlain

prescribed automorphism groups is carried out in Chapter 5. A complete

enumeration of perfect OFs of K.,o containing non-trivial automorphism groups

is presented in Chapter 6. Chapter 7 investigates OFs and Howell designs of

the cocktail-party graph, K,o minus a one-factor. ln addition to special classes

of Howell desígns for some graphs on 10 and 14 vertices, OFs and Howell

designs of several graphs on 12 vertices are studied in Chapter 8.

Chapter I describes the construction of perfect OFs of K.u and Kuo by

other algorithms.

Chapter 10 gives a brief summary of this thesis and some open problems.

Appendices 1 to 13 present some of the results of enumerations.
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Í.6 fuIain references

For background materials on OFs of complete graphs, we refer the

readers to the survey paper by Mendelsohn and Rosa (t431). A wealth of

ínformation on Howell designs can be found in [6], [28], [S2], [S3] and [60].

For readers interested in orderly algorithms, we recommend the papers

by Brown [12] and Read [47].

Many of the results in this thesis can be found in the following papers of

Seah and Stinson: [54], [55], [56], [57] and [58]; and the paper of lhrig, Seah

and Stinson [32].

We would like to mention that all of the computer work in this thesis was

implemented in PASCAL /S, and run on the AMDAHUSBO computer at the

University of Manitoba.
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C¡.IAPTER 2

CIRDERLV ALGORIT!.IMS FOR ENUMERATING ONüE-FACTORIZATIONIS OF

REGULAR GRAPHS

2.1 lntroduction

One of the most interesting problems related to OFs of r-regular graphs is

the enumeration of all pairwise non-isomorphic OFs of these graphs. Many

researchers are also interested in OFs that have additional properties (e.g.

pedect OFs).

ln this chapter, we describe a class of algorithms that can be used to

enumerate non-isomorphic OFs of r-regular graphs. These algorithms are

known as orderly algorithms, and will be described in detail in the remaining of

this chapter. ln Chapter 3, we discuss a related class of algorithms, which

enumerate OFs containing specified automorphism groups. These are referred

to as "automorphism orderly algorithms".

We first record in the following section previous work that has been done

with regard to the enumeration of OFs of r-regular graphs.

2.2 Non-isomorphic OFs of regular graphs of small order

Although the exístence of oFs of complete graphs Krn for every positive

integer n has long been settled, the determination of N(2n), the number of

13



pa¡rwise non-isomorphic OFs of Krn, appears to be difficult. Wallis gave an

lower bound on N(2n) and showed that N(2n) >2Íor n > 4 [65]. Later, Lindner

et al. (see [41]) and Cameron (see [13] and [14]) proved that N(2n) goes to

infinity with n. The best result concerning N(2n) that is known today is derived

by Cameron in [14], and is as follows:

Theorem 2"X For sufficiently large non-negative n, ln N(2n) - 2n2ln 2n.

ln fact, the exact values of N(2n) are only known for a few small values of n.

Theorem 2.2 N(2) = N(4) = N(6) = 1;N(8) = 6 [17,22,66]; N(10) = 396 [22].

Enumeration of non-isomorphic OFs of other r-regular graphs on n

vertices (r * n-1) has been carried out by various researchers. Some earlier

work was done in [28] and [66]. Rosa and Stinson (see [51]) recently

enumerated non-isomorphic OFs of regular graphs of order < 10 and degree

<7. ln Chapter 7, we enumerate OFs of K.,o minus a one-factor.

Denote No(2n) to be the number of non-isomorphic perfect OFs of Krn.

Not much is known about No(2n), except for n < 6. lt is an open question if

No(2n) > 1 for all n> 2.

Theorem 2.3 Ne(4) = Np(6) = Ne(8) = No(10) = 1, and Ne(12) = 5. [49]
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Comments on algorithms for enumerating one-factorizations of regular

graphs

As in many other combinatorial problems, the problem of enumerating the

non-ismorphic OFs of r-regular graphs on n vertices quickly becomes

computationally intractible when n increases. Although N(8) was first

determined by hand [17], the complete enumeration of K.,o is probably

impossible without the use of computers. Since Gelling enumerated N(10) in

1973, computer technology has advanced in leaps and bounds. Yet, the value

N(12) still cannot be determined in a reasonable amount of time, which

suggests how difficult this problem is (see also Chapter 5).

Due to the lack of success with OFs of complete graphs, many

researchers have turned their attention to special classes of OFs. A lot of work

has been done recently on perfect OFs of complete graphs (see [2], [3], [2S],

[29], [30], and t31l). Others have investigated regular graphs of smaller

degrees (see for examples,l2ll and [51]).

ln almost all of these cases, computers have been used to do all or part of

the enumeration. Most of these computer algorithms involve first of all

constructing all OFs of the graph, followed by the rejection of isomorphic

copies. Some of these algorithms do partial isomorphism rejection by means of

invariants (see for examples, [21],l22l and t23l). Specific characteristics of the

problems on hand are often incorporated into the algorithms to speed up the

enumeration process. Thus, the algorithms often cannot be easily modified to

apply to other similar problems. Also, this type of approach will probably end

up requiring more computer time and storage, when compared to the orderly
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algor¡thms discussed in this thesis. More storage is needed because during

the process of enumeration, we are dealing with more (partial) structures (some

of them are isomorphic); hence additional work (computer time) is required to

extend them to (complete) OFs.

Using orderly algorithms, we construct the OFs in a step-by-step, orderly

manner. We build up the OFs by adding a one-factor at a time. Every time a

one-factor is added, we check to make sure that the (partial) OF we have thus

far is not isomorphic to any other one we have already constructed. Thus,

throughout the algorithm, we construct only non-isomorphic OFs, by eliminating

isomorphic structures as they are being constructed.

ln the following sections, we give the definitions and describe the orderly

algorithms for enumerating the OFs of Krn. These algorithms can be modified

easily for other regular graphs, as discussed in Section 2.7.

2.4 Definitions and orderings for K,

To explain the orderly algorithms, we need the following definitions.

We first need to define orderings on edges, one-factors, etc, of Krn. All

orderings are defined lexicographically, as follows.

Suppose the vertices are numbered 1, ...,2n. An edge e will be written as

an ordered pair (p, p') with 1 < p < p' .2n. For any two edges e., = (p1, p1') and

er= (pz, pe'), we say e1 < e, if either of the following is true: (1) pl < p2, or (2)

Pl = Pe and P.,' . Pz'.

A one-factor f is written as a set of ordered edges, i.e. f =

(e1, e2, ê3, ..., en), wherê o¡ < e,whenever i < j. For two one-factors f, -
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(e¡1, ê¡2, êp,..., ê¡¡) and fj = (ej1 , ë¡2, e¡8,..., ê¡n), we say fi < fj if there exists a k

(1 <kcn) such that e,, = ê¡¡ forall l< k, and ê¡¡<ê¡r.

An OF F of Krn is written as an ordered set of 2n-1 one-factors, i.e. F =

(f t,fz,...,tzn_1), where f, < f, whenever i o j. We use F, G, H to denote OFs, and

f¡, g¡, h¡ the correspond¡ng one-factors.

We define an ordering for OFs as follows. For two OFs F and G, we say

that F < G if there exists some i, 1 <i <2n-1, such that fi < g¡, ârìd fj = gj for atl

j< i.

For 1 < i < 2n-1, Fi = (f t,t2,..., f¡) will denote a partialOFconsisting of an

ordered set of i one-factors. We say that i is the rank ol the partial OF. Note that

F2n-1 = F, a (complete) OF. We can also extend our ordering to partial OFs of

rank i, in an analogous manner.

Define U, to be the set of all one-factors containing the edge (1, i+1),

wherei=1,...,2n-1. Wesayapartial OFF¡ =(f1,'t2,...,f¡) of rankiisproperif

l. U¡ for all j. We note that a complete OF is proper.

The automorphism group of the complete graph Krn is Srn, the symmetric

group on 2n elements. Thus given a proper partial OF Fi (of rank i), we can

rename the 2n points using a permutation cr e S2n, and obtain another partial

OF (not necessarily proper) of the same graph, denoted F,o. We say F, is

canonical ¡f Fia > F, for all permutations cr. We have the following theorems on

canonicity.

Theorem 2.4 lf two proper partial OFs of rank i, F, and G,, are distinct and

are both canonical, then F, and G, are non-isomorphic.

By definitions, F,o > F, and Gio ) G, for all a e Srn. WithoutFroof
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loss of generality, let F,< G,. lf F, and G, are isomorphic, then

there exists an o. Sen such that G¡o = F,. But then G,o=

Fi < Gi; a contradiction.

T'heorem 2.5 lf a partíal proper OF Fi = (fl, f2, ..., f¡) is canonical, and

1 < j< i, then F¡= (f1 ,12,..., f,) is also canonical.

Suppose F, is not canonical, then there exists an cr = Szn

such that Fj" . Fj. But then Fjo r {f¡+1, ..., f¡}o < F¡; a

contradiction.

Proof

Theorem 2.6 ff a partial properOF F¡= (f1,t2,..., f¡) is not canonical, then

any complete OF extended from F¡ is also not canonical.

Since F, is not canonical, then there exists an cr € Srn such

that F,o < F,. We observe that F,c must also be proper.

Consequently, if F, is extended to a complete OF with the set

of one-factors R = {f¡*1, ..., f2n_1}, then F,q r.,.r Ro. F¡ u R. Thus ,

F, u R is not canonical.

Froof

By Theorem 2.6, we see that if a proper partial OF Fi is not canonical, then

we may discard it. This will reduce the amount of work to be done later.

2.5 Orderly algorithms for enumerating canonical OFs of Çn

We now describe the orderly algorithms that can be used to construct

canonical (non-isomorphic) OFs of a complete graph Krn. There are two ways
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that one can go about generating the OFs of Krn: (1) breadth-first algorithm, and

{2) depth-first algorithm.

(1 ) Breadth-first algorithm

Let F, denote the set of canonical proper parlial OFs of rank i. A

breadth-firsf algorithm generates each set F, of canonical proper

pa't¡al OFs of rank i in turn, starting with i = 1 and ending with i = 2n-1.

Once the whole process is through, Fzn_, is the set of all the

non-isomorphic oFs of Kzn (in canonical form). The following

pseudo-code describes how to generate F,*., from F, (step i+1):

Fu, = Ø;

FOR each F,e F, DO

FOR each one-factor f e l.I¡*., that is disjoint from all one-factors of

Fi DO

FOR each permutation cr DO

(1) compute fs and Fio;

(2) lF F¡o u {P} < F¡ u {f} THEN

F¡ u {f} is not canonical, discard it and go on to next f;

{Here F¡o r {f"} > Fiu {fi for all cr. Hence F¡ u {f} is canonical and

proper, so save it for the next step.)

Fi*1 = Fi*l U {F¡u {f}}.

(2) Depth-first algorithm

A depth-firsf algorithm uses backtracking. lnstead of generating all
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canon¡cal proper partial OFs of each rank in turn, a depth-first

algorithm tries all possible ways of extending each given F,to an OF,

before trying the next F,. The following recursive pseudo-code

describes how to generate from a given F, , all Frn_, extending F,,

where 0 < i < 2n-1. Let Fo be the paftial OF of rank 0 (an empty set),

and Foo = Fo for all cr = Szn. We ínvoke the procedure using

Depth-first(Fo, 0).

Procedure Depth-first (F,, i):

lFi=2n-1 THEN

F, is a canonical OF

ELSE

FOR each f e U¡*1 that is disjoint from each of the 1-factors in F, DO

FOR each permutation cr DO

(1) compute fc and F,q;

(2) lF F¡o r {f*} . F¡ u {f} THEN

F¡ u {f} is not canonical, discard it and go on to next f;

{Here Fio, {f"} > F¡ u tf} for all o. Hence F¡ u {f} is canonical

and proper.)

Depth-first (F, u {f}, i+1).

It is not difficult to see that both the depth-first and the breadth-first

algorithms will enumerate all canonical proper part¡al OFs of each rank. Since

all (complete) OFs are proper, we can determine the number of non-isomorphic

OFs by either method.
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The algorithms outlined above can easily be modified for certain classes

of OFs that are of interest. For example, to construct non-isomorphic perfect

OFs of Krn, we modify the algorithms so that a one-factor f e å.1,*., must be

disjoint from and form Hamiltonian cycles with each of the one-factors in F,.

2.6 Canonicity mappings for Çn

ln testing whether a proper (partial) oF Fi of Krn is canonicar, we can

check to see if Fi,' > F,for all cr e Srn, the automorphism group of Krn. Thís is a

lot of work, even for small values of n; for example, when zn = 10, ls2nl = 10! =

3628800.

ln practice, we can do a lot better than this. ln the case of complete

graphs, all one-factors are isomorphic to each other. For any given two

one-factorsf¡ = ((p¡l,pil'), (p¡2, p¡2'),..., (p¡n, pin')) andt= ((p¡r,pjl'), (p¡2, p¡z'),...,

(P¡n, P¡n')), there exists an cr such that f,c = fji for example, ø = (p¡l p¡r) (Þir'p¡r') ...

(P¡n Pjn) (P¡n' P¡n'). Thus, the set of proper parlial OF of rank 1 consists of only

one one-factor, fa = ((1, 2), (3, 4), ..., (2n-1,2n)), the smallest one-factor of Krn.

That is, in using the orderly algorithms, we can start with F., = {fa}.

Consequently, we can restrict the canonicity testing to those a e Srn such

that s maps a one-factor of F, into fa (any other cr will result in F,o r Fi). Now

there are 2nn! ways of mapping one one-factor to another. Therefore, for a

proper partial OF Fi, the number of mappings to be carried out equals í.2nn!,

which has a maximum value of (2n-1)2nn!. For exampre, when 2n - 1l0, the

maximum number of mappings for testing the canonicity of proper partial OF of

K.'o is 9.2s5! = 34560, a marked improvement over 3628900.
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We can carry this idea one step further. We note that any pair of disjoint

one-factors forms a union of disjoint cycles of even lengths (> 4). Since any

cr e Srn must preserve the structure of the graph Kzn, it follows that a set of two

one-factors must map to another pair of disjoint one-factors with the same cycle

structure under the permutation ø e Srn. Thus, in testing the canonicity of

proper partial OFs of Krn, we can restrict ourselves to those cr e Srn such that

the cycle structure of a pair of disjoint one-factors is preserved. As we shall see

in Chapters 5,6, and7, this will further reduce the number of mappings that

need to be done.

2.7 Enumerating canonical OFs of other regular graphs

For other r-regular graphs Gr on 2n vertices, we can enumerate the

non-isomorphic OFs of these graphs by modifying slightly the algorithms for Krn

outlined in the preceding sections.

First, we label the 2n vertices by {1 , ...,2n1in such a way that edges (1,2),

(1, 3), ..., (1, r+1) appear in Gr. An oF F of Gr is written as an ordered set of r

one-factors;that ís, F = (fl ,f2,..., fr). We define Fi = (fl ,f2, ..., f¡)to be a partial OF

of ranki,wherel <i<r. Apartial OFFi isproperif te U,,where 1<j<i. The

orderings are identical to those for complete graphs.

ln using the breadth-first algorithm, we would generate F, in turn, stañing

with i = 1 and ending with i = r. Similarly, the recursive algorithm for the

depth-first algorithm needs to be changed only so that extension of proper

paftial OFs stops ât i = r.

ln general, the order of the automorphism group of an r-regurar graph Gr
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other than Krn is much smaller than that of Krn. Thus it suffices to use the

automorphism group of such a graph to carry out the canonicity testing (see

Chapter 8); that is, we can use the set Aut(Gr) = {cr : Grc = 64. We need to

consider only mappings cr e Aut(Gr) because the edge set E must be preserved

under such cr (that is, Eo = E). One advantage of using the set Aut(Gr) is that we

use the same mappings cr for every partial OF. We remark, however, that if a

graph with a "large" automorphism group is to be dealt with (for example, a

complete bipartite graph), we may have to use the techniques of mapping pairs

of disjoint one-factors to reduce the amount of computer work required.

2.8 Breadth-first versus depth-first algor¡thms

On the surface, the breadth-first and the depth-first algorithms are not very

different. ln actual fact, however, they differ in many respects.

Although both algorithms can produce the number of proper partial

canonical OFs constructed at each step, the breadth-first algorithm seems to be

the more natural way to do it. lf the depth-first algorithm does not run to

completion, it would not give a complete count of proper partial canonical OFs

at the initial steps.

On the other hand, the depth-first algorithm has several advantages over

the breadth-first algorithm.

(1) W¡th the depth-first algorithm, we can incorporate pruning, by showing

that some F, cannot be extended to an OF, and hence reducing the

overall amount of work to be done (and the computer time required).

23



Pruning can also be incorporated into the breadth-first algorithm, but it

cannot be implemented as efficiently as in the case of the depth-first

algorithm. The reason is that with the breadth-first algorithm,

extension of partial OFs is done on a step-by-step basis. (At step i+1,

F' is extended to F¡or.) Consequently, we will have to redo the additíon

and deletion of one-factors at each step (see the next section).

(2) With the depth-first algorithm, no storage is required for the

intermediate structures at each step, as compared to the breadth-first

method. The storage requirement for the breadth-first algorithm could

be quite substantial (for example, refer to Tables 5.2 and 6.2).

(3) The depth-first algorithm is usually faster than the breadth-first

algorithm. This is because with the breadth-first algorithm, some

calculations have to be redone at the next step (since in general, it is

not feasible to store all intermediate results). Thus for example, F,q

may need to be recalculated at steps i+2, i+3 and so on (see Chapter

6).

2.9 Fruning

Pruning involves showing that certain partial OFs F, cannot be extended

to complete OFs by "looking ahead" into later steps, without actually carrying

out the extensions.

We describe the constraints that we used to prune the set of proper partial

OFs F' of K2n, as follows. We remark that this can easily be modified for other

regular graphs.
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Given ârì F¡, we def¡ne sets T¡+1 ,Tí*2,...,T2n_1, where T¡ = {f e t!, : f is

disjoint from each of the one-factors of Fi). lf any Tj=Ø, then F, cannot be

completed to an OF of Krn, so we do not have to investigate any extensions of

Fi. For perfect OFs, we require that each of the one-factors in T, (where

i+1 < j < 2n-1) also forms a Hamiltonian cycle with each of the one-factors of

Fi.

other additional checks can be implemented. For example, in

constructing perfect OFs, we observe that if there exist some j such that lTjl = 1,

then the one-factor in T', must form a Hamiltonian cycle with at least one

one-factor from each of the Tn, k + j and i+1 < k < 2n-1.

By eliminating these F, that cannot be extended to complete oFs, a

reduction in computer time generally results. Our experience with the

enumeration of perfect OFs of K.,, indicates that pruning reduces the CPU tíme

required by approximately 50% (see Chapter 6).

2.'lO An implementation for pruning

We implemented the pruning scheme described in the previous section

with the depth-first algorithm: We note that when a one-factor f e U, is deleted

from (or added to) a proper partial canonícal OF, we do not have to recompute

the sets Ti*.¡,Ti*2, ..., T2n-1. Allwe need is to be able to dynamically add (delete)

one-factors to (from) the sets Ti*1,Ti*r, ..., T2n_1, when f is deleted from (added

to) the proper partial OF.

ln this section, we describe an efficient implementation of dynamic

addition and deletion of one-factors.
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To facilitate our discussion, we will use a vector notation. We represent

the one-factors in [,!, by a vector V, of one-factors. (Thus V¡[] refers the jth

one-factor in [,]¡.) Assume l.I, has m, one-factors. Define two vectors SOURCE,

and WHERE,, each containing m, elements. SOURCEi[j] gives the index to the

one-factor in Vi, and WHERE¡U] gives the index to SOURCE' such that

SOURCE¡IWHERE¡I¡]I = j. LAST'is defined such that the one-factors given by

V¡ISOURCE¡ü]l for j = 1, ..., LAST¡ are admissible candidates for extending a

proper partial OF.

lnitially, we set LAST. to m, for i = 1, ..., 2n-1 (all one-factors pointed by

SOURCE¡[1]to SOURCE'ILASTJ are admissible). Thus, T, equals U,for i = 1, ...,

2n-1. We also set SOURCE¡[¡] and WHERE¡II] to j, for j = 1, ..., tri and i = 1, ...,

2n-1. Thus SOURCE¡[1] points to the first one-factor in V,, and WHEREi[1] says

that the location of the first one-factor in V, can be found in SOURCE¡[1], etc.

When extending F, to the next level (step i+1), we need only examine

those one-factors in v¡*, pointed to by SouRcEi*1[1] through

SOURCE¡+1[LAST¡*1]1. lf we want to process these one-factors in the same

order as ín V,*.', then the following pseudo-code could be used:

FOR K := 1 to m,*., DO

lF WHERE¡*r[K] <= LAST¡*1 THEN

{The Kth one-factor, V¡*1IKJ, is admissible.]

ELSE

{The Kth one-factor, V¡*,[K], is inadmissible.]

lf the order in which we process the one-factors is not impofiant, then the
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following, more efficient pseudo-code could be used:

FOR K := 1 to l-ASTi+1 DO

{The one-factor Vi+1 ISOURCE¡*, [Kl] is admissible.]

When a one-factor f e T,*., is added to F¡, we delete those one-factors in

T¡*2,..., Tzn_t that cannot be used (that is, are not admissible) in the further

extension of F' u {f}. The following pseudo-code shows how to delete these

one-factors from T,, for i+2 < i < 2n-1:

K:=1;

NO_DELETEDi+1[j] := 0;

WHILE (K <= LASTj) DO BEGIN

lF VjISOURCEj[K]l is not admissible with respect to F, u {f} THEN

BEGIN

T := $QggCE,[Kl;

w := $QgRCE,ILASII;

SOURCEj[KI := W;

SOURCE¡ILASTI := T;

WHEREjITI := LASI;

WHERE,IA4 := K;

LAsTj := LASl - 1;

NO_DELETEDi*1ljl := NO_DELETED¡+1[l] + 1

END

ELSEK:=K+1
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END.

Note that NO_DELETED¡+1[j] gives the number of one-factors deleted from

T, when a one-factor f e T',*., is added to F,. Also SOURCEjILAST, + 1],

SoUROE¡ILAS¡ + 2f, ..., SoURcE¡tus¡ + NO-DELETED¡+1[jll give the indices

in \ of the deleted one-factors.

when we delete the one-factor f = u¡*r from F,\J {f}, we must add back the

one-factors deleted from T'*r, ..., T2n-1 (when f was added to F¡). This can be

done easily. The following line of pseudo-code shows the addítion of

one-factors back to Tj, where i+2 < i < 2n-1:

LASI := LAST¡ + NO_DELETEDi+1UI;

We remark that both the dynamic addition and deletion of one-factors are

accomplished easily, without having to actually move the one-factors around in

the set {u, : 1 < j s 2n-1}. In fact, addition of one-factors to T, takes no time, and

deletion of a one-factor requires a constant amount of computer time,

regardless of the size of U,. However, we do need extra storage for the vectors

SOURCE, and WHEREj. For the order of the graphs we are working with, this

presents little problem. For example, there are 135135 distinct one-factors for

K.'0, and hence a total of 135135'2'4 bytes (or approximately 1080 kilobytes) of

extra memory is needed.

28



C¡-IAPTER 3

O RD ERLV ALG O RITI.I MS - EN [.'M ERÅTING ON E.FACTOR ¡ZATIONS CIF

REGULAH GRAP!{S COT\üTAINING PRESCRIBED ÅUTOMORP!.IISM GROUPS

3.'l lntroduction

Complete enumeration of (perfect) OFs of complete graphs of relatively

small order still remains a difficult problem. Although orderly algorithms as

described in Chapter 2 can be used, usually the enumeration cannot be

completed within a reasonable amount of time (see Chapter 5), since the

number of intermediate (non-isomorphic) structures grows at an astronomical

rate. Consequently, many researchers have considered cerlain special classes

of OFs. Anderson investigated starter-induced and even starter-induced OFs of

complete graphs Krn, which contain Zrn-, andTrn-, respectivelyin their

automorphism groups (see [2] and also Chapter 9). ln [2s], Hartman and Rosa

enumerated the cyclic OFs of K2n (n < 8) and showed that a cyclic OF of Krn

exists if and only if n +2t, where l> 2.

ln this chapter, we modify the orderly algorithms of Chapter 2 to construct

OFs of Krn containing certain prescribed automorphism groups. To distinguish

these two classes of algorithms, we call the algorithms in this chapter

"automorphism orderly algorithms". We remark that although we refer to

complete graphs in the following díscussion, these algorithms can easily be

modified for other regular graphs.
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3.2 Ðefinitions

Orderings on vertices, edges and one-factors are defined as in Chapter 2.

Let A be any subgroup of Srn, the symmetric group on 2n elements. The

one-factors of Krn form disjoint orbits under the action of the group A. We are

only interested in those orbits which contain edge-disjoint one{actors. We say

these are the eligible orbits under the action of A.

We orderthe one-factors in an orbit O = (f., ,t2,fs,...,fr) such thatf, <f,

whenever i< j. We saythat f., isthe representativeof the orbit andwrite f., =

rep(O). We define L(O) = k to be the length of the orbit O.

We are now ready to define orderings on orbits and OFs. For two orbits

01 and or, we say o.' < 02 if rep(o.,¡ < rep(o2). An oF F is written as a list of

orbits (Ol, Oz, ..., Or), where Oi . Oj whenever i < j. Note that I,=¡=, L(O¡) =

2n-1.

A partialOF F¡ = (Ol ,C.2,..., O¡) is written as a list of iorbits. We also define

R = Irs¡si L(O¡) to be lhe rank of F,. Note that when R = 2n-1, we have a

(complete) oF. Also, the number of orbits for two distinct oFs of Krn may be

different.

Let u' be the set of all one-factors containing the edge (1 , i+1). we say

thatapartial OFFi =(Ol ,C.2,...,O,) is properif itcontainsoneone-factorfrom

each of u,,... , [.!¡, where rep(o¡) contains the edge (1, k+1). we note that any

(complete) OF is proper, and we have the following theorem:

Theorem 3.1 lf Fi = (Ol, Oz, ..., O¡) is proper, and 1 < j s i, then F, =

(Ol,Oa,...,Oj) is also proper.

Assume rep(q) = U, and rep(Oi) e l,,l*, where m < k. lf F, is
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not proper, then these exists a one-factor f e {.J, which

appears ín F, but not in F,, and I < m. Thus f must appear in

one of the orbits in {O¡*r, ..., O¡}. But this is impossible, since

f (e U¡) < rep(O¡) q rep(Oj+1).

For two proper partial OFs F, = (Ot , C.2, ..., O¡) and G¡ = (P1 , P2, ..., P,) that

have the same number of orbits i, we say that F, < Gi if there exists a k, where

1<kci, such that rep(o¡) = rep(P¡) forall lckand rep(ok) < rep(pk). Note

that we do not require F, and G,to have the same rank.

3.3 A-canonicityandquasi-A-canonicity

A proper partial OF Fi is said to be A-canonical if Ficr > F, for all cr e M(Fi),

where M(Fi) = {a : cr e S2n, and cr maps any orbit of F, into an orbit of the same

length).

A proper partial OF Fi that is A-canonical is in general nol canonìcal as

defined in Chapter 2, since the eligible orbits (one-factors) depend on the

prescribed group A. (Some one-factors may not belong to any eligible orbits.)

For example, the A-canonical OF of Ku containing the automorphism

group A = < cr) = < (1X2)(3 4 5 6) > consists of 1 orbit of length 1 and 1 orbit of

length 4, as follows:
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Here, the smallest one-factor f" = ((1, 2), (3, 4), (5, O)) of Ku under the

action of A is not contained in an eligible orbit, since f"s = ((1 ,2), (4, S), (9, 6)) is

not disjoint from f". ln fact, the canonicalequivalent of this OF is as follows:

12

13

14

15

16

12

13

14

15

16

35

24

25

26

23

46

56

36

34

45

34 56

25 46

26 35

24 36

23 45

(orbit of length 1)

(orbit of length 4)

Given an A-canonical OF F, we can determine its canonical form by, for

example, mapping all the one-factors of F into the smallest one-factor of Krn,

((1, 2), (3, 4), ..., (2n-1, 2n)). The smallest OF resulting from these mappings

is the canonical representatíon of F.

Similar to canonicity, we have the following theorems on A-canonicity.

The proofs are similar to Theorems 2.4 - 2.G.

Theorem 3.2 lf two proper partial OFs having the same number of orbits i

(not necessary having the same rank), F, and G,, are distinct

and are both A-canonical, then F, and G, are non-isomorphic.



Froof

Theorem 3.3

Proof

lf Fi and G¡ are of different ranks, they must be

non-isomorphic, since they contain dífferent numbers of

one-factors.

Hence, suppose F, and G, have the same rank. Without loss

of generality, let F¡ o G¡. lf F, and G, are isomorphic, then

there exists an o e M(F¡) (= M(G¡)) such that G¡o = Fi. By the

definitions, F¡o ) F, and G¡o t G¡. But then Gio = F, < G,; a

contradiction.

lf a partial proper OF F¡ = (Ol ,C.2, ..., O¡) is A-canonical, and

1 < j<i, then l= (O', 02,..., O¡) is also A-canonícal.

Suppose I is not A-canonical; then there exists an G € M(Fj)

such that l" . l. But then l" r {O¡*r, ..., Oi}o < F,; a

contradiction.

Theorem 3.4 lf a partial proper OF Fi = (Ol , C.2, ..., O¡) is not A-canonical,

then any complete OF extended from F, is also not

A-canonícal.

Since F, is not A-canonical, then there exists an cl e M(F¡)

such that F¡o . F¡. Now F,c must also be proper.

Consequently, íf F, is extended to a complete OF with the set

of orbits R = {O¡*1, ..., OJ,then F,a u Rc . F¡ u R. Thus F, u R

is not A-canonical.

Proof

Let N(A) be the normalizer group of A within Srn; that is, N(A) =

{n:n-1An= A,Tce S2n}. We remarkthat æe N(A) maps any eligible orbit into
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an eligible orbit of the same length, since (On)A = (OA)" = Oæ. lt should be noted

that for a given Fi, N(A) s M(F¡), and in generat lN(A)l << lM(Fi)|.

We say F, is qua si-A-canonical if Ficr > F, for all ø e N(A). A
quasi'A-canonical F, may not be A-canonical, since it is possible to have the

situation where all the mappings that take a F, into its isomorphic copy are not

in N(A) (for example, refer to case 20 of Table 5.4).

3.4 Automorphismorderlyalgorithms

ln this section, we outline the automorphism orderly algorithms that can

be used to construct OFs of complete graphs containing prescribed

automorphism groups.

We can use either the breadth-first or the depth-first algorithms, as

described in the following paragraphs (see atso Chapter 2). we use N(A)

instead of M(F¡) (for a given F¡) to eliminate isomorphic structures, for the

following two reasons:

(1) the number of mappings to be performed is significantly reduced;

(2) recalculation of M(F¡) is avoided when F, changes.

However, the OFs thus generated are not necessarily non-isomorphic. An

additional step is therefore required to identify and eliminate the isomorphic

copies of these OFs.

(1) Breadth-first algorithm: the following pseudo-code describes how to

generate F,*.' from F,, where F, is the set of all quasi-A-canonical

proper parlial OFs containing iorbits. Note that Fo={Ø}. We repeat

the procedure until some Fi*1 (i > 0) ís an empty set.



F¡t = Ø;

FOR each F,e F¡ DO

Determine the smallest integer j such that the edge (1, j+1) is not

in F¡;

lF j* 2n+1 THEN

FOR each orbit O whose representative is in LI, DO

lF the one-factors of O are disjoint from the one-factors in

F¡ THEN

FOR each æ e N(A) DO

(1) compute Oæ and F,æ;

(2) lF F¡" {O"} " F, u {O} THEN

F, u {O} is not canonical, discard it and go on to

next O;

{Here F¡* r {Oj > F, u {O} for all 7r, save F, u {O} for the

next step.)

F¡*1 =F¡*lu{F, u{O}}

ELSE

F, is a complete OF.

(2) Depth-first algorithm: the following recursive pseudo-code outlines

how to generate from a given F,, all quasi-A-canonical OFs extending

F¡:
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PROCEDURE Depth-firsr ( F¡ )

Determine the smallest integer j such that the edge (1, j+1) is not in F,;

lF j=2n+1 THEN

F, is a quasi-A-canonical OF;

ELSE

FOR each orbit O whose representative is in U, DO

lF the one-factors of O are disjoint from the one-factors of F,

ÏHEN

lF F¡?E u {OT > Fi u {O} for all æ e N(A) THEN

Depth-first (F, u {O}).

The comments in Chapter 2 about the differences between the

breadth-first and the depth-first algorithms also apply here.

We remark that when A is the trivial group of order one, all one-factors are

eligible orbits of length one and N(A) = S2n. Consequently, these two

algorithms reduce to the orderly algorithms described in Chapter 2. ln this

case, we would obtain a complete enumeration of the OFs of Krn.

Note that the algorithms above can be easily modified for subclasses of

OFs that may be of interest. For example, to enumerate perfect OFs, we modify

the algorithms so that pairs of distinct one-factors are both disjoint and

Hamiltonian.

Similar to the orderly algorithms in Chapter 2, automorphism orderly

algorithms can be modified easily for other r-regular graphs Gr on 2n vertices.

Again, we would label the 2n vertices by {1 , ...,2n1 in such a way that

edges (1,2), (1, 3), ..., (1, r+1) appear in Gr. Orderings are similar to complete



graphs, and complete OFs would have rank = r. The '2n+f in the pseudo-code

for the depth-first and the breadth-first algorithms in the previous section would

be changed to 'r+1'.

3.5 Canonicity testing

ln some cases, the number of mappings of N(A) required for

quasi-A-canonicity testing, where A is the prescribed automorphism group,

could be so large that the enumeration probably cannot be done in a
reasonable amount of time (for example, see Section 6.4). This occurs when

the order of A is "small". Consequently, we can use one of the following three

strategies:

(i) Omit the canonicity testing of partial structures entirely;

(ii) Carry out "partial" canonicity testing of partial structures: use a proper

subset of N(A);

(iii) Omit canonicity testing for certain steps. lt should be noted that this

can also be implemented for the depth-fírst algorithm, although it is

more natural with the breadth-first algorithm.

ln general, these strategies are only useful in situations when a small

number of OFs are expected. Othen¡vise, the number of isomorphic copies may

explode and much work would be required later. Examples illustrating the use

of these strategies include the enumeration of perfect OFs that contain certain

automorphism groups, and the enumeration of some special classes of OFs

which we suspect to be non-existent (see Section 6.4).
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3.6 Fruning

As in the case of orderly algorithms in chapter 2, pruning can be

incorporated into automorphism orderly algorithms. The main difference is that

we now prune the orbits, instead of the one-factors.

To implement pruning wíth automorphism orderly algorithms for complete

graphs Krn, we keep a list of orbit representatives of all the eligible orbits under

the action of prescribed automorphism group A. Let O, be the set of orbits

whose orbit representatives contain edge (1, i+1). Then given a proper partial

oF Fk = {or, 02, ..., or}, where rep(or,) contains the edge (1, i+1), we can

determine the sets Pi*r, Pi*2, ..., P2n-1, where F., is a subset of o,, and every orbit

of F* is disjoint from every orbit in P,, for i+1 < j < 2n-1 .

we can dynamically delete orbits from (or add orbits to) pj, where

i+2 < j < 2n-1, when an orbit is added to (or deleted from) F,. The process

involved is very similarto the scheme described in Sections 2.9 and 2.10.

To check whether a proper partial OF Fi can be extended to complete

OFs, we need to do some additional work. Essentially, we need to determine W

= fi : (1, j+1) e f, and f is a one-factor of F,), and y = {j : (1, j+1) e f, and f is a

one-factor in an orbit of Pn, i+1 < k < 2n-11. Now if w u y r {1, ..., 2n-1}, the

partial OF Ficannot be extended to complete OF.
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E¡JAPT'ER 4

ORDERLV ALcORIT!-IMS FOR Ef\¡UMERATTNG ¡-|OWELL ÐEStcnüS

4.1 lntroduction

Enumeration of orthogonal OFs (that is, Howell designs) for regular

graphs has been carried out by various researchers. Define N,(2n) to be the

number of non-isomorphic sets of i mutually orthogonal OFs (or i-dimensional

Howell designs) of Krn. Beaman showed that N2(10) = 257630 t9]. ln [7] and

[21], ¡twas provedthat N3(10) =267, N4(10) = 1 (and N5(10) = 0). ln [s1], Rosa

and Stinson also enumerated Howell designs of regular graphs of order < 10

and degree <7.

ln thís Chapter, we extend the canonicity concept for OFs in Chapter 2 to

otthogonal OFs, and devise orderly algorithms that can be used to enumerate

non-isomorphic orthogonal OFs of regular graphs.

4.2 Definitions

As before, we will give the definitions and algorithms in terms of complete

graphs Krn. Generalization to other regular graphs is easy and will be dealt

with at the end of this chapter.

The orderings of vertices, edges, one-factors and OFs are identical to

Chapter 2.
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we write a set of two orthogonal oFs F and G as an ordered pair (F, G),

with F<G. Denote F= (f1 ,f2,...,t2n_,), G = (gl ,e2,...,g2n_l). Giventwo Howell

designs (Fr,Gr) and (F2,G) having the same underlying graph, we define

(F1, G1) o (Fe,G2) if either (1) Fr <Fr,or (2)Ft = Fe âîd G., . Gr.

we extend the canonicity concept in chapte r 2, and say that (F, G) is

canonicalif, for all cr e Szn, (F, G)"> (F, G). we have the following theorems.

Theorem 4.'l

Froof

lf (F, G) is canonical, then F must be canonical.

lf F is not canonical, then there exists an cr, * Sen such that

Fct< F. But then FCr< F < G, and hence (F, G)"< (F, G); a

contradiction.

Theorem 4.2 lf (F1, G.,) and (F2, G2) are both distinct and canonical, then

they are non-isomorphic.

Without loss of generality, let (F.,, G.,) . (F2, G2).

Suppose (Fl,Gl) and (Fz,Gz) are isomorphic, then there

exists an oe Sen such that (Fl,Gl) = (Fz,Gr)". Since

(F2, G2) is canonical, we have (Fr, Gz)" à (F2, G2). But then

(Fl, Gt) = (Fz, Gz)"2 (F2, G2); a contradiction.

Proof

It follows from Theorem 4.1 that to construct the Howell designs of

complete graph Krn, we can start with the set of canonical oFs Frn_., of Krn, and

generate all OFs G that are orthogonal to and greater than F for each F e Frn_.,.

It is easy to see that a given (F, G), where F < G and F is canonical, is not

necessarily canonical. Theorem 4.2 suggests that we can apply canonicity
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testing to all (F, G) pairs generated and eliminate the non-canonical

(isomorphic) ones.

4.3 Canonicitymappings

As in the case of constructing canonical oFs of R2n, using the

automorphism group of Krn, Srn, to carry out the canonicity testing is generally

unacceptable.

ln fact, in testing whether (F, G) is canonical, it suffices to check all

øe Srn such that either FoorGc is canonical (by Theorem 4.1). That is, we

can ignore those cr e srn such that Fcr > F and Gq > G, for then we have

(F, G)" > (F, G).

For cr = szn that makes Fc canonical, we must have Fo = F, since F is

canonical. That is, we can restrict the ct's to the automorphism group of F. lf, for

any such G, Gct < G, then (F, G) is not canonical.

For cr = Szn that makes Go canonical, we can map each of the one-factors

of G into the smallest one-factor of K2n (whích must necessarily be a one-factor

of F), namely, fa = ((1, 2), (3, 4), ..., (2n-1,2n)). As díscussed ín chapter 2, the

number of such ø equals (2n-1)2nn!, which is still a lot of work. Applying the

idea of mapping a pair of distinct one-factors to another pair as described in

Chapter 2, we can cut down substantially the number of a required. ln this

case, it suffices to map every pair of distínct one-factors of G to the smallest pair

of distinct one-factors of F (that is, f" and the one-factor containing the edge

(1, 3)), for otherwise, Gc > F. This is the approach we use (see chapters 7 and

8). Using these permutations cr for G, there are three situations where (F, G) is
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not canonical, as described by the following pseudo-code:

lF Gg < F THEN (F, G) is not canonical

ELSE

lFGct=FTHEN

lF Fo < G THEN (F, G) is not canonical

ELSE

lF (Fct = F) and (G" < G) THEN (F, G) is not canonical.

4.4 An orderly algorithm for l-lowelldesigns

we now outline the algorithm that we use to generate all the

non-isomorphic Howell designs for Krn:

FOR each F e F of canonical OFs of Krn DO:

1. Generate from Ll,, i= 1, ...,2n-1the set T of one-factors that intersect

each of the one-factors of F in at most one edge.

2. Construct all possible OFs G, which consist only of one-factors from T,

discarding those G's < F. These G's are all orthogonal to F. Let G =
(91, 92, ...,gzn-r).

3. lF no G's were constructed in step 2, go on to next F.

4. Determine the automorphism group B of F; that is, B = {cr : Fo = F}.

5. FOR each G DO:

(a) lF there exists some cl € B such that Go . G, (F, G) is not

canonical, go to next G. Otherwise proceed to (b).
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(b) DetermineC={a:(g¡,gj)"=(f1,f2),fori+ j,g¡,g¡ e G; f.,,fre F}. lF

(F, G)"> (F, G) for all cr e C, (F, G) is canonical; otherwise (F, G) is

not canonical.

4.5 [-ligherdimensional l-lowell designs

We write a set of i mutually orthogonal OFs of K2n (which corresponds to

an i-dimensional Howell design) as an ordered i-tuple (Fr,Fe, ...,F¡) with F, < Fn

whenever j. k. we say that (Fl,F2,..., F¡) is canonicatif (F1, F2,..., F¡)"2

(Fr,F2,..., F¡) forall c,e Srn. We have the following theorems, which are

generalizations of Theorems 4.1 and 4.2.

Theorem 4.3 lf (F1, F2,..., F¡) is canonical, then for j= 1, ..., i-1, (F1, F2, ..., F.¡)

is canonical.

Assume for some j, where 1 < j< i-1, (Ft,F2,..., l) is not

canonical. Then there exists an û, € Srn such that

(Fl,Fe,..., l)". (Fl, F2,..., F¡). Nowsince (F1,F2,..., F¡) is

canonical, we have (Ft, F2,..., F¡)o> (Fl , Fz, ..., F¡), or

(Fr, Fz, ..., F¡)o r.-/ (Fj*r , F¡*2, ..., F¡)o > (Fr , F2, ..., l) t
(F¡*r, F¡*r, ..., F¡), whicn is impossible because (F.,, Fr, ..., l) .
(F¡*r,F¡*2, ..., F¡) and (Fr ,F2,...,1)". (Ft,F2,..., Fj).

lf (F1 ,F2, ..., F¡) and (Gl,Ge, ...,G¡) are both distinct and

canonical, then they are non-isomorphic.

Without loss of generality, assume (Fl, Fe, ..., F¡) .

Proof

Theorem 4.4

Proof
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(Gl, Ge, ..., G¡).

lf (F1, F2, ..., F¡) and (Gr,Ge, ...,G¡) are isomorphic, then there

exist an crsuch that (F., ,F2,..., F¡) = (G1, G2,..., G¡)o. Since

(Gl,Ge,...,G¡) is canonical, we have (G1,G2,..., G¡)o)

(Gr,Gz,...,G¡). Butthen (Ft,Fz,...,F¡) = (Gl, G2,..., Gi)"t
(Gl, Ge, ..., G¡)i a contradiction.

4.6 An orderly algorithm for Flowell cubes

By Theorem 4.3, we know that for a set of three mutually orthogonal OFs

(a Howell cube), (F, G, H), to be canonicar, F must be canonical, so must (F, G).

These observations suggest that the following algorithm can be used to

construct the Howell cubes:

FOR each non-isomorphic F of Krn DO:

1. Construct from T the set of all OFs, G = {G : F < G and G is

orthogonal to F), as in steps 1 and 2 of the algorithm for Howell

desígns (Section 4.4).

2. Examine all pairs of oFs G and H, where G < H and G, H e G. lf G
and H are orthogonal, then we have a set (F, G, H) of three

mutuaÍly orthogonal OFs.

3. Determine which triples (F, G, H) are canonical.

ln determining the canonicity of the set of {(F, G, H)} (step 3 above), we

can make use of Theorem 4.3 to first of all eliminate those (F, G, H) of which
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(F, G) is not canonical. For the remaining triples, we can restrict the mappings

to those c e Srn that makes Fs, Gc or Hc canonical. (The idea is very similar to

the canonicity testing of 2-dimensional Howell designs discussed in Sections

4.3 and 4.4.)

4.7 An orderly algorithm for higher dimensional l-lowelldesigns

We present in this section an algorithm to construct all non-isomorphic

(i+1)-dimensional Howell designs for a given set of all canonical

non-isomorphic i-dimensional Howell designs l-{,.

For each H = (F1 ,F2, ..., F¡) e l-1, do

1. Generate from Uj (1 < i < 2n-1) the set T of one-factors that

intersect each of the one-factors of Fn (1 < k < i) in at most one

edge.

2. Construct the set F = {F} of all possible OFs, which consist only of

one-factors from T, discarding those F. F¡.

3. For each F e F, H u {F} is an (i+1)-dimensional Howell design.

We note that the set of (i+1)-dimensional Howell designs produced by the

algorithm above are not necessarily canonical (non-isomorphic). Thus, as in

the cases of Howell designs and Howell cubes, we need to eliminate

ísomorphic copies (see Sections 4.3 and 4.6).
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4.8 Other regular graphs

The algorithms described in the preceding sections can be modified

easily for other r-regular graphs Gr.

With the vertices labelled and OFs constructed as described in Section

2.7,the Howell designs can be obtained using the algorithm in Section 4.4;the

only modification required is to change the 'Zn-f in line 1 of the algorithm to 'r'.

For hígher dimensional Howell designs, algorithms described in Sections 4.6

and 4.7 can be used.

We would like to add that the same remarks in Section 2.7 about the

canonicity testing for r-regular graphs also apply here: the full automorphism

group of Gr is usually used since its order ís generally fairly small (see Chapter

8).
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CI.{APTER 5

ENUMERATTNG ONE-FACTORTZAT¡ONS OF K1o ANÞ q2

5.1 Introduction

ln 1973, Gelling [22] enumerated the non-isomorphic OFs of K.,o with the

assistance of the computer. Since then, the number of non-isomorphic OFs of

the complete graph of the next higher order, K.,r, still remains to be settled.

ln this chapter, we describe how the orderly algorithms described in

Chapter 2 can be used to construct the non-isomorphic oFs of K.,0. we also

show how automorphism orderly algorithms in Chapter 3 are used to
enumerate non-isomorphic OFs of K,, containing prescribed automorphism

groups, and obtain the following lower bound.

Theorem 5.1 For the complete graph Klr, excluding those OFs containing

exactly one automorphism of six disjoint cycles of length two,

there are precisely 56391 non-isomorphic OFs with

non-tr¡vial automorphism groups.

5.2 One-factorizations of Kro

ln using the orderly algorithms in Chapter 2, we note that there are

different ways one can carry out the canonicity testing (see Section 2.6). The
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approach we used isto map a pairof one-factors of Fiu{f} into a fixed pairof

one-factors.

We observe that any two disjoint one-factors of K'o form either two disjoint

cycles of lengths 4 and 6 (type'46') or a Hamiltonian cycle of length 10 (type

'10'). The smallest one-factor in 1..!, that forms a type'46'structure with f"=
((1,2), (3,4), (5,6), (l,B), (9, 10)) isfo- ((1,0), (2,4), (S,7), (6,9), (g, 10)), and

the smallest one-factor in u2 that forms a type '10' with f" is f" -
((1,3), (2,5),(4,7), (6,9), (8, 10)). lt follows then that F2= {$^, fb), (f", f")},

where fa < fb < fc.

To see how we map a pair of one-factors of F,u {f} (= (lt,rz,..., fi*1)) into a

pair of one-factors at step i+1, we consider the following two cases:

(1) f1f2 = f"fo (tYPe '46'):

we mapanyf,fn, 1 <j<kci+lof type'46'intof"fo (in such awaythat

either f, or f* is mapped to f"). To map inÍo any othertwo one-factors of

type '46' would always make F¡o t F¡ (and hence would not tell us

whether F, is not canonical). There are 2.(2.2).(2.3) = 4g ways to do

this.

we may ignore those f,f* of type'10', as mapping them into f"f" would

always make F¡otFi. (ln general ,ittiz is of type'x', we may ignore

f¡fn of type 'y' so long as the canonical pair of one-factors

corresponding to type 'y' are greater than those of type 'x'. see the

following section.) The maximum number of mappíngs o required in

this case is 48'(9'8)/2 =1728, which is 1 /20 as many mappings used

when mapping a one-factor to another (which needs 94560
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mappings).

(2) f iz = f"f" (type'10'):

All fjfk,1 <j<k<i+1, must be of type'10'(in general, nof,fncan be of

a type corresponding to a canonical structure ress than f.,fr). Thus we

discard those f e u¡*1 which form a type '46' structure with any of

f¡ e F¡, 1 < j < i, before the canonicity testing. There are 2.(2.5) = 20

ways to map type '10' structures. The maximum number of such

mappings is 20'(9.8)12 = 720.

Table 5.1 gives the number of canonical proper partial OFs and CpU time

taken for each of the steps. The number of (complete) oFs of K.,o agrees with

the results in Gelling 122). The table shows that the number of canonical

structures increases steadily during the earlier steps, then decreases at a
slower pace in the later steps. The enumeration took approximately

10.5 minutes of CPU time.

5.3 One-factorizatíons of K*

We could use the same algorithms in the previous section to construct the

canonical (non-isomorphic) oFs of K'r. However, the number of canonical

structures grows at such an astronomical rate that it is infeasible to have a

complete enumeration at this point in time. This is illustrated in Table S.2,

where we use breadth-first algorithm to enumerate sets of canonical proper

partial OFs F, (i = 2,3, and 4) of Krrcontaining a sub-OF of Ko.
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Table 5"I

Non-isomorphic canonical proper partial OF of K'o

step i+1 type '46' type '10' total cpu time (in seconds)

3

4

5

6

7

I
o

6

80

586

1 608

1722

819

395

12

101

610

1622

1731

820

396

1

3

20

89

181

186

147

6

21

24

14

I
1

1

Table S.2

Non-isomorphic canonical proper partial oF of K,, containing sub-oF of Ko

Step i+1 # of canonical structures CPU time (minutes)

3

4

5

6

295

15445

0.1

0.7

26.0

ln the remainder of this section, we describe how the different structures

formed by a pair of distinct one-factors of Krn may be incorporated in the orderly
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algorithms in chapter 2 for enumerating oFs of Krn. we use Kl, as an

example.

First of all, we determine the different types of cycle structure that can exist

for a pair of distinct one-factors of Krn. We note that the number of different

structures of a pair of distinct one-factors of Krn increases with n. Thus, a pair of

distinct one-factors of K', forms either (i) 3 cycles of length 4, or (ii) 1 cycle of

length 4 and 1 cycle of length 8, or (iií) 2 cycles of length 6, or (iv) a Hamiltonian

cycle.

We then find the smallest one-factors in [,], that form such cycle structures

with f", the smallest one-factor of Krn. For K'r, the four one-factors are:

(i) fi = ((1, 3), (2, 4), (5,7), (6, 8), (9, 11), (10, 12));

(i¡) fii = ((1,3), (2,4), (5,7), (6,9), (8, 11), (10, 12));

(iii) fiii = ((1,3), (2,5), (4,6), (7,9), (8, 11), (10, 12));

(iv) f,u = ((1,3), (2,5), (4,7), (0,9), (8, 11), (10, 12)).

Note that f" . f¡ . f¡i . f¡¡¡ . fiu.

We say that a pair of distinct one-factors is of type 'x' if it is isomorphic to

the one-factors f" and f*. We can now define an ordering on the types of cycle

structure for a pair of distinct one-factors. We say a pair of distinct one-factors of

type 'x' < a pair of distinct one-factors of type 'y' if fx < f' where f' f, are the

smallest one-factors ín U, that forms type 'x' and type 'y'cycle structures with f"

respectívely. The breadth-first algorithm in Section 2.5 can then be modified as

follows (modifications to the depth-first algorithm are similar):

(1 ) ln considering whether F¡ = {f1 , t2, ..., f¡} courd be extended to F, u {f}, if
for some 1 < j< i, the type of {t, f}. type of {Í1,121, then F,u {f} is not
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canonical and we do not extend F, to F,u {f}. otherwise, go to (2).

(2) (i) For 1 <j < i, if the type of {i, f} is greaterthan the rype of {f1,Í21,

then we do not have to carry out the mapping ø of {i, f} into {t1,,,2.',

since (F¡u {f})" > F¡u {f}.

(ii) For 1 < js i, if the type of {i, r} is equar to the type of {f.,, fr}, we

perform the mapping a of {t, f} into {f1, f2}. rf (F' u {f})" . F, u {f} for

some j, F¡u {f} is not canonical and we do not extend F, to F,u {fi.

5-4 Cycle structures of automorphism groups of one-factorizations of K*

As a complete enumeration of non-isomorphic OFs of K.,, is not possible

at this point in time, we turned to a problem of a smaller scale: non-isomorphic

oFs containing prescribed (non-trivial) automorphism groups.

For the remainder of this chapter, we describe how automorphism orderly

algorithms as described in chapter B are used to enumerate oFs of K.,, with

certain prescribed automorphism g roups.

Let a be a permutation of {1, ...,121, and define A = < a >. The generator a

of a cyclic group A on 12 elements can have one of 77 different cycle structures

(see Appendix 1). Many of these cases can be eliminated easily by the

following general results on the cycle structure of automorphisms of OFs of Krn.

l-emma 5.2 lf a is a non-identity automorphism of an OF of Krn, then the

number of fixed points in a is even or 1.

Let the number of fixed points of a be 2k+1 (k > 1), and let the

fíxed points be pl, p2,p3, ..., p2k*1. Consider the one-factor f

Proof
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Lemma 5.3

Proof

Lemma 5.4

Proof

containing the edge {pt, pe}. Then f must be an orbit of

length one. But then there exists an edge {pi, p¡} (Q¡ is a

non-fixed point) in f which maps into an edge of another

one-factor; hence a contradiction.

lf a is a non-identíty automorphism of Krn and has more than

n fixed points, then the number of fixed points in a = 2n.

Let the number of fixed points be 2k, where 2k > n. Then

there exists an edge of two fixed points in every one-factor of

the OF. Every one-factor is thus an orbit of length one.

Consequently, each one-factor has k edges made up of the

2k fixed points and it is impossible to have an edge of the

form {p,, Q¡}, where p¡ is a fixed point and q, is a non-fixed

point (except the case when all the points in a are fixed

points).

lf a is a non-identity automorphism of an OF of Krn and has

exactly n fixed points, then the remaining n points of a must

appear as disjoint 2-cycles.

consider the one-factors that are fixed by a. Each of these

one-factors has n/2 edges made up of fixed poínts, so there

are exactly n-1 such one-factors.

The remaining n one-factors consist of edges of the form

{P¡, g/, where p¡ is a fixed point and Q¡ is a non-fixed point.

Therefore, all edges made up of non-fixed points, {g¡, g/,
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Corollary

Froof

Lemma 5.5

Froof

N-emma 5.6

must appear in the n-1 fixed one-factors. Consequently, the

non-fixed points can only appear as disjoint 2-cycles in a.

lf n = 2 (mod 4), then the number of fixed points in a cannot

be n (exceptwhen n=2).

Consider the n-1 one-factors that are fixed by a.Each of

these one-factors has n/2 edges from the n points in the

2-cycles. Since n = 2 (mod 4), each of these one-factors

must have at least one edge of the form {p.,, p2}, where p.,

and p, appear in the same 2-cycle. Now there are n/2

2-cycles (edges) to be filled in these n-1 one-factors. So

(nl2)> (n-1), orn <2.

lf a is a non-identity automorphism of an OF of Krn and has

no fixed points, then the number of 3-cycles in a cannot be 1.

Consider a 3-cycle (a b c). Edges {a, b}, {b, c} and {c, a}

appear in 3 distinct one-factors forming an orbit of length 3.

Thus we have

{a, b} --> {b, c} --> {c, a} --> {a, b}

tc, xl --> {a, y} --> {b, z} --> {c, x} ;

and (x y z) is another 3-cycle.

Let a be a non-identity automorphism of an OF of Krn. lf the

number of fixed points in a is even and the remainíng points

form a cycle, then there must be exactly two fixed points in a.
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Froof

Lemma 5"7

Froof

Corollary

Proof

Lemma 5.8

Froof

Let the number of fixed points be 2k, then the number of

non-fixed points is 2n-2k and they form a cycle

(qr qz Qs ... gzn-zù.

Consider the one-factors containing the edge {R¡, O/ made

up of fixed points: there are 2k-1 of these one-factors (orbits).

There is only one way that the non-fixed points may appear

ín these 2k-1 one-factors; they must appear as edges

{qr, qn-r*r}, {Q2,9n-¡*z}, {9s, gn**g},..., and {gn*,Qzn-ex}.Thus

2k-1 = 1 and hence the number of fixed points is two.

Let a be a non-identity automorphism of an OF of Krn. lf there

is a 2-cycle (a b) in a, then the OF has an orbit of length one.

The one-factor containing the edge {a, b} must be fixed by a.

lf a has exactly one fixed point, then there cannot be any

2-cycles ín a.

lf a has exactly one fixed poínt, then there ís no one-factor

fixed by a. Consequently, there cannot be any 2-cycles in a.

Let a be a non-identity automorphism of an OF of Krn. lf a

has 2 cycles of lengths L1 and LZ (L1

LCM(L1 ,L2) <2n-1.

Let the L1-cycle be denoted (pl pz...pll), and the L2-cycle

be denoted by (gr ge ... gr_e). Since L1 * L2, the one-factor f

containing the edge {pl, ql}is in an orbit of length greater
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than one. so f maps into another one-factor containing the

edge {pe, qz}, which in turn maps into the one-factor

containing the edge {ps, qg}, and so on. Thus the one-factor

containing {pl,ql} is in an orbit of length LCM(L1 ,LZ).

Hence, LCM(L1 , L2) <2n-1.

5.5 One-factorizations otKrrconta¡n¡ng prescribecl automorphism groups

We have the following theorem on the cycle structures that adm¡t OFs for

Krr.

Theorem 5.9 There are at most 18 cycle structures of a that admit oFs for

K',2.

using Lemmas 5.2 to 5.8, we eliminated all but 2g cases

(refer to Appendix 1). of these 29 cases, we can eliminate

11 further cases, by observing that an for some n >1 is not an

admissible automorphism. As an example, for case 24, a

has cycle structure 6132. But then a3 has cycle structure

2316, which is case 74 and is ruled out by Lemma 5.4.

Proof

For those cases that are not eliminated by the above lemmas and hence

may admit OFs, we resort to the help of computer. Allthe cases in Appendix 1

except cases 71 and77 are dealt with. For cases 72 and 73, we first used the

breadth-first algor¡thm to construct Fo, then extended the proper paftial OFs in

Fo to complete OFs by the depth-first algorithm. For the other cases, only the
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depth-first algorithm was used.

Both cases 71 and 77 require large amount of computíng time. Case 77

is equivalent to a complete enumeration of the OFs of K.,r, which is out of our

reach at this point in time. Case 71 involves constructing OFs containing

automorphisms of six 2-cycles. lnstead of dealing with case 71 in its entirety,

we looked at the subproblem of the enumeration of OFs that contain two

automorphisms of six 2-cycfes. That is, we have A = < a1, a2>, where a., =

((1 2) (3 4) (5 6) (7 8) (e 10) (1 1 12)) and a, = ((1 s) (z 4) (s 7) (6 s) (e 11)

(10 12)). (lt turns out that, up to isomorphism, this is the only admissible case

once we pick a.'.) We referto this as case 78 in Table 5.4. Similarto cases 72

and 73, we used the combination of breadth-first and depth-first algorithms.

Therefore, we have enumerated all OFs of K.,, except those containing

exactly one automorphism of six 2-cycles and those with the trivial

automorphlsm group.

ln Table 5.4, we list the cases that admit at least one OF and the

associated statistics. lt is interesting to note that there are 6 cases where N(A)

did not eliminate all the isomorphic oFs (cases zo, 44, 46, 42,73 and 7g).

lnterested in finding out what mappings would have eliminated these

isomorphic oFs, we looked into case 20, where 30 pairs of isomorphic oFs

survivedthetestof N(A). Here, A=< (1 2345 6) (79 91011 12)>.

Of these 30 pairs of OFs, 6 of them have the fult automorphism groups of

order 12, and 21 have order 24.The automorphism groups of these 2l pairsof

oFs each contains a unique cyclic subgroup B = < (1 g s) (2 4 6) (7 g 11)

(8 1012)>. Since B is unique, anysthattakes an OFinto its isomorphiccopy

must also maps B into B; that is, cr e N(B). Thus if we use N(B) instead of N(A),
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we would be able to eliminate the 27 isomorphíc OFs.

Each of the remaining 3 pairs of OFs has the full automorphism group of

order 48, and each has 4 copies of zrin its automorphism group. tn each of

these three cases, there exists an cr, e N(B) which takes a OF into its isomorphic

copy. Here again, using N(B) would have eliminated the 3 isomorphic OFs.

It should be emphasized that, in general, we do not know what the full

automorphism groups look like beforehand. Consequently, the best strategy is

perhaps to use the normalizer of the prescribed subgroup N(A) to obtain the

quasi-A-canonical OFs, followed by testing these OFs for isomorphism. The

statistics on K1, indicates that N(A) is able to get rid of most of the isomorphic

OFs. We would like to point out that, in certain situations, however, the

normalizer of the prescribed group N(A) is sufficient to eliminate isomorphic

OFs; that is, quasi-A-canonical OFs are non-isomorphic in these cases. These

results were derived in [33] and [46] which we record as the following theorem:

Theorem 5.10 Suppose two OFs F and G of Kn*., contain Zn in their

automorphism groups, where n is an odd prime or the

product of two distinct primes. lf F is isomorphic to G, then

Fs = G, for some cr e N(Zn).

Thus forA =Ztt, the OFs of K1, constructed with the use of N(A) are

non-isomorphic (case 2 in Table S.4 and Appendix 1).

Table 5.3 gives the distribution of the orders of automorphism groups for

the OFs ol Krrconstructed in this paper. Note that the numbers in Table S.3 are

exact, with the exception of the number of OFs oÍ order 2.
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The CPU time for all cases dealt with excepT72,73 and 78 added up to

about 40 minutes. Case 72look 7.5 hours, case 73 needed 30 hours, and case

78 consumed about 17 hours. These timings include the final step to eliminate

the isomorphic OFs from the set of quasi-A-canonical OFs (we first find the

canonicalrepresentation of these OFs, and then delete any duplications).

Given enough computer time, it would appear that case 71 can be

completely resolved. lt remains to be seen how long it will take to enumerate

the case of trivial automorphism (case 77). However, judging from the fact that

there are 298 non-isomorphic automorphism-free OFs of K.,o (out of a total of

396) 1221, we suspect there will be many more non-isomorphic

automorphism-free OFs for K,r. (lt is interesting to note that none of the

complete graphs of lower order has automorphism-free OFs.) ln fact, it has

been shown in t5] and [41] that the number of non-isomorphic

automorphism-free OFs of Krn increases rapidly and goes to infinity with n.

(ln [41], it is also shown that an automorphism-free OF oÍ Krnexists if and only

ifn>5.)
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Table 5.3

Frequency distribution of the orders of automorphism groups of oFs of K.,,

No.

2

.t

4

5

6

I
10

11

12

16

20

24

32

48

55

110

240

660

Total

> 39706

669

1 4801

92

245

610

10

2

138

76

2

25

4

6

1

1

2

1

>56391
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Table 5.4

one-facto rizatio ns oÍ K, rcontaini ng prescribed auto mo rphism g roups

Quasi-A-canonicalOF A-canonicalOF

Case Cycle lN(A)l No. of No. of Totat Not in ln Not in ln

No. Struc- distinct distinct prev. prev. prev. prev.

ture orbits 1-factors cases cases cases cases

of a (1) (2) (3) (4) (s)

1 121 48 19

2 11111 110 25

3 10121 go fi
4 10112 g0 57

11 912112 128 133

20 62 144 221

32 5212 400 905

44 43 768 709

46 4222 ü2 399

47 422112 256 565

4g 4214 1536 7g3

59 3a 3888 1953

72 2s12 76g0 2561

73 2\4 9216 1803

78 26x26 zgo4 999

Total

796
275 5

81 3

561 7

1033 12

1073 297

4505 109

2557 390

1551 76

2213 328

3087 222

5805 1086

5041 5676

3531 38751

927 13341

60
50
21
61

120
287 10

97 12

381 9

742
291 37

173 49

850 236

5665 1 1

38029 722

11572 1769

60
50
21
61

120
227 I
97 12

376 B

642
273 31

173 49

850 236

5665 11

37063 598

11572 695

56391

61



(1) = (2) + (3).

(2) - (4) gives the number of isomorphic OFs (not appearing in previous cases)

which are not eliminated by N(A).

(3) - (5) gives the number of isomorphic OFs (appearing in previous cases)

which are not eliminated by N(A).
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C!-¡APTER 6

EhtunnERATtNc PERFECT ONE-FACTOR¡ZAT|Or,¡S OF q4

6.1 Introduction

ln this chapter, we investigate the number of non-isomorphic perfect OFs

of K.'o. Four non-isomorphic perfect OFs for K.,o were shown to exist in [ 3].

Using the orderly algorithms described in Chapters 2 and 3, we construct 17

new perfect OFs and hence improve the lower bound lo 21. We also show that

these are the only perfect OFs of K.,o having non-trivial automorphism groups.

Theorem 6.'l Ne(14) >21.

We also compute the automorphism groups of these perfect OFs. We

find examples where the automorphism group has order 2,g,4,6, 12, g4, and

156. lt is interestíng to note that none of the OFs is automorphism-free. The

existence of an automorphism-free perfect OF for K.,, would lead one to suspect

there might be some of these for K.,o.

6.2 Orderly algorithms

ln this and the following sections, we describe how the orderly algorithms

of Chapter 2 are used to construct perfect oFs of K', and K.,0. ln the later
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sect¡ons, we apply automorphism orderly algorithms of Chapter 3 to produce

perfect OFs of K.'o containing certain automorphism groups.

ln testing whether a proper partial perfect OF Fi u {f} of Krn is canonicat,

we used those cr's that map a pair of distinct one-factors of F,u {f} into a fixed

pair of one-factors. Since we require any pair of disjoint one-factors to form a

Hamiltonian cycle, we can map a Hamiltonian cycle of length 2n into another

one of the same length. The number of such mappings is 2.2n = 4n. ln the

case of K14, we map any pair of disjoint one-factors into f" =
((1, 2), (3, 4), (5, 6) , (7, g), (9, 1o), (1 1, 12), (13, 14)) and fb =

((1 ,3), (2,5), (4,7), (6,9), (8, 11), (10, 13), (12, 14)),where fo is the

smallest one-factor in U, that forms a Hamiltonian cycle with f". The maximum

number of such mappings for Krn is (2n-1).4n. Thus we have a polynomial-time

algorithm for determining isomorphism of perfect OFs of complete graphs. ln
general, it is unknown if one can determine isomorphism of OFs in polynomial

time. The best known algorithms have complexity ¡c(los n) (see [16]).

6.3 Results on lÇz and Kro

We started out by ímplementing the breadth-first algorithm, since this

method tells us the number of non-isomorphic proper partial perfect OFs at

each intermediate level before proceeding to the next level. lt took

approximately 132 minutes of CPU time to construct the 5 perfect OFs of K.,r.

Using the depth-first method, incorporating pruning as described in Sections

2.9 and 2.10, the number of intermediate proper partial perfect OFs is

significantly reduced , and the enumeration took only 23 minutes of CPU time.
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(Depth-first algorithm without pruning took approximately 50 minutes of CPU

time.) The following table gives the number of canonical proper partial perfect

OFs of each rank, both with and without pruning.

Table 6.X

Non-isomorphic canonical proper partial perfect OFs of K.,,

# of canonical proper partial perfect OFs of rank i

without pruning with pruning

3

4

5

6

7

B

9

10

11

24

395

2679

1 0987

1 3791

3491

209

6

5

24

395

2679

1 0906

3542

14

7

6

5

It is ínteresting to note that a canonical partial perfect OF need not be

proper. For example, there are exactly 32 (non-isomorphic) canonical partial

perfect OFs of rank 3 (see [34]), but only 24 ol these are proper (see Table 6.1).

When we used the breadth-first method to attempt to enumerate Ne(14), it

did not take long for us to conclude that the complete enumeration is
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impossible at this time. The number of proper partial perfect OF structures

generated and the amount of CPU time increase dramatically from one step to

the next, as indicated by the following table.

Table 6.2

Non-isomorphic canonical proper partial perfect OFs of K.,o

using the breadth-first algorithm

# of canonical proper partial perfect OFs of rank i

g 174

4 23704

5" 34272

" using only the first 464 sets Fo e Fo

consequently, we decided to improve the lower bound on No(1 4) by

constructing as many perfect OFs of K.lo as possible. We used the breadth-first

method to construct all partial perfect OFs in Fo. Then, given a partial perfect

OF in Fo, the depth-first method was used to generate all extensions to

complete perfect OFs.

with this approach, we were able to find 11 new perfect oFs of K.,0. They

are listed as sets 2 - 12 ín Appendix 2. The four previously known perfect OFs

of Ktoare sets 1,13, 14, and 15 (seeAppendix2). sets 1 and 13are GAloand

GKlo respectively. Sets 13, 14 and 15 are constructed from even-starters in

7rr; and set 13 can also be generated by a starter inZrr.
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ln total, 105 hours of CPU time were spent in finding these 11 new perfect

OFs.

6.4 Perfect one-factorizations of Kro containing prescribed automorphism

groups

The algorithms outlined in Chapter 3 were also to construct perfect OFs of

K.,o that contain prescribed automorphism groups.

We were able to prove that there are exactly 21 perlect OFs of K.,o with

non-tr¡vial automorphism groups. ln fact, these algorithms helped find 6 new

perfect OFs (sets 1 6 - 21 in Appendix 2), in addition to the 1 1 new perfect OFs

found by the orderly algorithms of Chapter 2.

We started by looking at the cycle structures of a permutation a of 14

elements.

In total, there are 135 possibilities, many of which can be easily

eliminated. ln fact, lhrig proved the following results in [29].

l-emma 6.2 ([29], Theorem 3.3)

lf a is a non-identity automorphism of a perfect OF of Krn,

then the number of fixed points is at most 2.

Suppose the number of fixed points of a is 2s, where s > 1

(from Lemma 5.2 we know that it must be even). There are

exactly s(2s-1) edges made up of these fixed points, and

these edges appear only in one-factors which are fixed by a.

Thus there are precisely s(2s-1)/s = 2s-1 one-factors fixed by

Proof
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a, since each such one-factor contains s edges from the 2s

fixed points. Since s > 1, there exist at least one such

one-factors. The edges of any two of these one-factors

containing the 2s fixed points form a cycle of length at most

2s. But then the OF is not perfect (unless 2s = 2n).

Lemma 6.3 ([29], Coroltary 8.4)

lf a is an automorphism of a perfect OF o't K2n, then its cycle

structure must be one of the 4 forms:

F) 12k(2n-2)/k', e) 11¡(2n-1)rk, (3) 21VQn-z¡*., g) ¡znrx.

Theorem 6.4 There are at most 13 cycle structures of a that admit perfect

OFs for K.,0.

Proof By Lemma 6.3, there are at most 1 4 cycle structures of a that

admit perfect OFs for K.,0. They are:

(1 ) 141 Ø 1 31 1 1 (3) 12121 @) 12112

(5) 72 (6) 6221 Ø 6212 (B) 4321

(9) 4312 (10) 3421 (1 1) 341, $4 27

(13) 2612 (q 114.

Case 10 can be eliminated since as has the form 21112,

which is not admissible.

We list in Table 6.3 those cases that admit at least one perfect OF for K.,o

and the assocíated statistics. We omit the case involving the trivial

automorphism (case 14), as this would amount to a complete enumeration. tn
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total, approximately 10 hours of computer time was required for the remainíng

12 cases (including the time requíred to determine the canonical

representation of the perfect OFs constructed).

Table 6.3

Perfect OFs of K.,o containing prescribed automorphism groups

- Non-isomorphic perfect OF -

Case

No.

Cycle lN(A)l No. of

Structure distinct

of a orbíts

No. of

distinct

1{actors

total

gene-

rated

set no. in

Appendix 2

1

2

4

5

7

9

11

12

13

141 84 12

1311 1 156 1

12112 96 25

72 294 565

6212 288 1399

4312 1æ6 4621

3412 7776 15579

27 64s120 2gBBo

2612 92160 3239s

63

13

289

391 3

8359

18445

46683

46920

64659

1

1

3

1

12

5

17

4

15

set 1

set 13

sets 13, 14, 15

set 1

sets1,3-6,9-15

sets 9, 10, 13 - 15

sets1,3-6,9-20

sets 1 ,2,3,21

sets 1 - 15

of specíal interest is case 12 (where a= ((1 2) (3 4)... (13 14)) ). lt is not

difficult to see that the seven edges from the seven 2-cycles of a must either (i)

appear in the same one-factor, or (ii) appear in seven distinct one-factors. An

69



OF of type (i) would have 1 orbit of length 1 and 6 orbits of length 2, and type (ii)

would have 7 orbits of length 1 and 3 orbits of length 2. In using orderly

algorithms for these two subcases, we omit canonicity testing (645120

mappings would have been needed for each F¡), and test the oFs for

isomorphism after they have been created.

ln [29], lhrig defined a P element to be an automorphism of n 2-cycles of a

perfect OF of Krn, the cycles of which form the edges of a one-factor of the

perfect OF. Thus, an OF of type (i) contains a P element. lhrig observed that,

other than the perfect OF of Ko, there is no other example known of a perfect OF

of Krn containing a P element. Our computer search did not find any perfect OF

of type (i) for K.,0. ln Section 6.6, we will show that, when n is even (except

n-2), there does not exist a perfect OF of Krn containing a p element; hence

the smallest unknown case is K.,r.

There are 165 perfect OFs of type (ii), of which 4 are non-isomorphic. The

information on the number of orbits and distinct one-factors listed in Table 6.3

for case 12 pertains to type (ii).

It is interesting to note that, except for case 12, the quasi-A-canonical

perfect OFs constructed from each of the other cases turn out to be

non-isomorphic (that is, they are also A-canonical).

6.5 Automorphism groups of perfect one-factorizations of Ç+

we summarize from Appendix 2 the automorphism groups of the 21

perfect OFs of K,o:
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7, is the automorphism group for sets T, B and 21;

Z, is the automorphism group for sets 16 - 20:

7rxZ., is the automorphism group for set 2;

Zu is the automorphism group for sets 4 - 6,11, and 12;

TrxZu is the automorphism group for set B;

Qo (a dicyclic group) is the automorphism group for sets 9 and 10;

7,,, is the automorphism group for sets 14 and 1S;

IZtd4z (semi-direct product) is the automorphism group for set 1B; and

l4alZe (semi-direct product) is the automorphism group for set 1.

ln [29], lhrig studies automorphism groups of perfect OFs. The next two

theorems give several properties such a group must have, if it contains an

automorphism of order 2 having fixed points.

Theorem 6.5 ([29], Theorem 5.5)

lf a perfect oF for Krn contains a noncentral automorphism of

order 2 having fixed points, then the perfect oF is either

GKrn (2n-1 prime) or GArn (n prime).

Theorem 6.6 ([29], Theorem 5.9)

lf a perfect OF on Krn contains a central automorphism of

order 2 having fixed points, then the following statements

hold:

(a) the order of the automorphism group divides 2n-Z;

(b) there are at most 3 automorphism of order 2, and only
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one of these has fixed points.

we note that the perfect oFs of sets 1 - 15 and 21 all have an

automorphism of order 2 containing fixed points. Our examples illustrate every

group order allowed by Theorem 6.6 (a) (namely, orders 2, 4, 6, and 12). Also,

note that sets 2 and 3 each contain three automorphisms of order 2, while sets

4 - 12 and 21 each contain only one such automorphism.

lf the automorphism group of a perfect oF does not contain an

automorphism of order 2 containing fixed points, then the following results hold.

T'heorem 6.7 ([30], Theorem 3.10)

ff a perfect oF on Krn contains no automorphism of order 2

having fixed points, then the order of the automorphism

group is m'.m1.ffi2, where mo l2n, m., l(2n _ 1), and

m, I (n - 1). Further, m, is odd; and at least one of ffio , ffi1,

and m, is equal to 1.

ln the case of Klo we obtain mo 114, tfr1l 13, and m, 13. tf m., = 13,

then the perfect oF must be generated by a starter in 2.,r. These were

enumerated in [2], and set 1g (GK14) is the only example. Hence, we can

ignore this case, and assunìê rTì1 = 1. Then, the order of the automorphism

group must divide 42.

We have enumerated all perfect OFs of K.,o having an automorphism of

order 7, and set 1 is the only example. consequently, the order of the

automorphism group must divide 6, and orders 1 and 3 are the only new
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possibilit¡es. As mentioned already, sets 16 - 20 have automorphism groups

isomorphic to Zr, and we have no examples with trivial automorphism groups.

Hence, we have examples of every possíble group order, except 1.

Two of the new perfect OFs found (sets g and 10) have the property that

the¡r automorphism groups are the dicyclic group Q. of order 12. The dicyclic

groupQrn of order4n is the group defined byeen = l aibl :0 < i <2n-1,0 < j< 1,

azn = e, b2 = an, bab-1 = a-1 ).

A sequencing of a finite group G of order 2n is an ordering e, az, ?s, ..., à2n

of all elements of G such that the partial products e, êà2, eã2às, ..., eaz...aznare

distinct and hence also all of G. The sequencing is symmetricrt in addition the

following are true: (1) G has a unique element z of order 2, (2) ân+1 = z, and

(3) an*l*i= (an*1-¡)-1. ln [4], Anderson observed that these two perfect OFs (sets

9 and 10) give rise to symmetric sequencings in the group e.. (A sequencing

in this group was previously unknown). subsequently, Anderson[4] showed

that for any odd n ) 3, the dicyclic group ern can be symmetrically sequenced.

Given a symmetric sequencing of a group G, one can construct an OF (not

necessarily perfect) of K¡o¡*z (see [4]). lt thus seems hopeful that symmetric

sequencings of Qrn can be used to construct perfect oFs of K+n*2. However, it

remains to be seen whether symmetric sequencings will give us a new class of

perfect OFs.

6.6 Peffect one-factorizations of K, containing a p element

ln this section, we investigate the perfect oFs of Krn containing a p

element (refer to Section 6.4 for definition), and prove that such perfect OFs do
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not ex¡st Íor K"n when n is even (with the exception of n = 2). For n odd, it

remains an open problem, and the smallest unknown case is 2n = 19.

without loss of generality, assume the p element of Krn is a =
(1 2) (3 4) ... (2n-1 2n). Hence, a perfect oF of Krn containing the p element

has f = ((1, 2), (3, 4), ..., (2n-1, 2n)) as a one-factor, and has the orbit structure

as described in the following lemma.

Lemma 6.8 lf n > 2, then a perfect OF of Krn containing a p element has 1

orbit of length 1 and (n-1) orbits of length 2, under the action

of a.

f is an orbit of length 1.

Assume there exists another one-factor g which is an orbit of

length 1. Without loss of generality, suppose g contains the

edge {1, 3}. Now it must map into {2, 4} in g. But then we

have a 4-cycle on vertices {1, 2, g, 4}, and the OF is not

perfect(unlessn<2).

Froof

Let O = {f l, fr} be an orbit of length 2 under the action of a. By definition,

the 2n edges of O form a Hamiltonian cycle. Without loss of generality, we can

name the verlices on the cycle (in the clockwise direction) by â0, a1, az, ..., ãzn_1.

(Thus{a, :i=0, 1,...,2n-1}={i :i='l ,2,...,2n1.) Theedgesof f (theorbitof

length 1) must then be of the form given in the following lemma.

Lemma 6.9

Froof

The one-factor f = {{a¡, an*,} : i = 0, 1, ..., n-1}.

Suppose {ao, a*} e f. Consider an edge {ao, a1} e f.,: it must
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map ¡nto an edge c f2. lt maps into either (i) {an, âk*l}, or

(ii) {a*, ar._l}.

ln case (i), {al, â¡*1} e f. Butthen {a1, a2} maps into {an*., ,ã¡*21,

and thus {ar, E*rl e f . Using similar arguments, we can show

that {ar, â¡*g}, {ao, ayra!, ..., {â¡, a¡*¡} e f. Now {ao, ak} =

{a¡, â¡o¡}, and hence 2k = 0, or k = n. Thus f = {{ai, ân*¡i :

i = 0, 1, ..., n-1).

ln case (ii), {a.,, â¡_1} e f. But then {a1, a2I maps into {a*_., , ãk_zl,

and thus {ar, an_rl e t. Using similar arguments, we can show

that {ar, âr_g}, {ao, an_o}, ... e f. lf k ís even, this implies

làwz,a¡,21 e f and a has a fixed point, which is impossible (by

definitíon). lf k is odd, we have {a6t¡rz,a(x*t)nl e t. But then

lag,-.t¡n,aß¡¡tzl is also an edge of O; a contradiction.

We now prove the main result of this section.

Theorem 6.'t0 For n even and > 2, there does not exist a perfect OF of Krn

containing a P element.

Let n = 2m. From Lemma 6.9, we know that the edge {ao, a1}

maps ínto the edge {âzn.', âe,n*l}. lt is easy to see that edges

{ao, a1} and {ar,n, âzm*l} appear in the same one-factor. Now,

{ao, â2r} and {a.,, â2r*r} are two edges of f. Hence, there exists

a  -cycle on {ao, ã1,à2n, â2r*l}, and the OF is not perfect.

Proof
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C¡-IAPTFR 7

ENUtuIERATII\üG oNE-FAcroRtzATtoNS Ar,tD E-{owEr-[- ÐESxcrus oF qo
MINI.,IS A ONE-FACTOR

7"1 Introduction

using the orderly algorithms in chapters 2 and 4, we enumerate the
(non-isomorphic) oFs and sets of orthogonal oFs of the graph Kro - f, where f is
a one-factor of K.¡o. we find that there are 31g2 oFs; 1g2zo pairs, 3 triples, and

1 quadruple of mutually orthogonal oFs. lt is also shown that there is no set of

five mutually orthogonal OFs.

7.2 A conjecture about the number of orthogonal oFs of regular graphs

The results about K,o - I are interesting for several reasons. First, the

non-isomorphic OFs and Howell designs have been enumerated for all graphs

on at most 10 verlices except Kro - f (see [21],l22l and [s1]). Hence, the results

of this chapter complete this census. Also, the graph Kro - f is the smallest
graph (other than complete or complete bipartite graphs) for which there exist

three (or more) orthogonal OFs.

It has been conjectured that the maximum number of mutually orthogonal

OFs of a regular graph on n vertices is at most (n-2) i 2. (lt has been shown in

[24]lhat the maximum number of orthogonal oFs of Krn goes to infinity with n.)
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There are in fact infinitely many graphs for which (at least) (n-2) /2 mutually

orthogonal OFs are known to exist, but there are no graphs known for which

this conjectured bound is exceeded. The following results were previously

known.

T'heorem 7.1 The following graphs have at least (n-2) /2 orlhogonal oFs:

(1) Kn, if n - 1 isaprime power=3 (mod 4),orn = 10.

(2) Kntz,nrz,il nl2 is a prime power.

(3) Kn minus a one-factor, if n = 2i + 2, j, 2.

(1) is proved in [21] and [24]. The OFs of the graphs in (2)

are equivalent to mutually orthogonal Latin squares, so this

result is well-known. The result (3) is proved in [Za].

The four ofthogonal OFs of K.,o - f were previously known to exist. What

we have done is to show that this set of four is unique, and that there is no set of

five mutually orthogonal oFs. Hence, the graph Kro - f provides another

example of a graph which meets, but does not exceed, the bound. Thus it
provides a little more empirical evidence in favour of this conjecture.

7.3 Orderly algoríthms and canonicity mappings

Proof

The results are established

described in Chapters 2 and 4.

algorithm.

Without loss of generality, we

with the use of the orderly algorithms

ln particular, we used the breadth-first

let f = f"= ((1 ,2), (3,4), ..., (11,12)), the
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smallest one-factor of K1o. We note that the OFs of K,o - f have eight one-factors

and do not include the five edges in f.

ln constructing the oFs, we pretend that f" is part of the oFs of K.,o - f. That

is, the set of proper partial OF of rank 1, F.,, is {f"}. The set of proper partial OF

of various ranks are then constructed in a step-by-step manner. f" can be

ignored after Fn is produced.

ln testing whether a proper partial oF F¡u{g} = {fr,t2,..,f¡*1} (where

I € Ui*l) is canonical, we observe that the mappíngs must preserve f1( =f").
Thus we could use the set {cr : a e S'o and f.,o = fl}, the cardinalíty of which is

2s5! = 3840.

we implemented canonicity testing by mapping pairs of distinct

one-factors. Similar to K10, any pair of distinct one-factors of K.,o - f forms either

two disjoint cycles of lengths 4 and 6 (type '46') or a Hamiltonian cycle of length

10 (type '10'). The smallest one-factor in U, that forms a type '46' structure with

f. is fo = ((1, 3), (2, 4), (S, 7), (6, g) (9, 10)), and the smallest one_factor in U,

that forms a type'10'structure is f"= ((1 ,g), (2,S), (4,7), (6,9), (g, 10)). lt
follows then that the set of proper partial oF of rank 2, Fr, is the set {(f", f6),

(fa, fc)), where fa < fb < fc.

To test the canonicity of Fi*1 = Fiu{g} (=(fr,t2,...,f¡*.,)) at step i+1, we

need only examíne flt, where 2 < js i+1, because f., (= f") must be fíxed.

Depending on f, = fo or f, = f", we have the following two cases:

(1) f1f2 = f"fo (type '46'):

we may ignore those f.,i of type'10', as mapping them into f"f" would

always make Fi*ror F¡*1.
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we map anyf,f,, z<j<i+1 of type'46'into f"fo (in such awaythatf, is
mapped to f" and f, is mapped to f6). To map into any other set of two

one-factors of type '46' wourd arways make Fi*ror F¡*r. There are

(2'2)'(2'g) = 24 ways to do this. The maximum number of mappings

for a F,*., is (i+1)'2a.

(2) t.f,z = f"f" (type'10'):

All f1t , 2 < jci+l must be of type'10' (in generar, no f'tf, can be of a

type corresponding to a canonical structure less than f.,fr). Thus we

discard those g e u¡*r which form a type '46' structure with any of f.,,

before the canonicity testing. we must map f., into f. and i into f",

where 2 < j< i+1. Thus there are (2.S) = 10 ways to map type ,10,

structures. The maximum number of mappings for F,*., is (i+1).10.

7.4 One-factorizations of [Ço- f

The number of canonical structures and CPU time required for each of the

steps are listed in Table 7.1. The number of non-isomorphic oFs of K.,o - f of

types'46' and '10' are 2944 and 248 respectívely. The algorithm required

approximately 18 minutes of CpU time.
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Step

i+1

T'able 7"1

Non-isomorphic canonical proper partial OFs of K,o - f

# of canonical structures at step i+1

type '46' type '10' total

CPU time

(in seconds)

3

4

5

6

7

I
I

7

114

1 039

4600

7802

4917

2944

15

109

412

1136

1437

610

248

22

223

1451

5736

9239

5527

3192

1

2

12

67

206

385

401

7.5 l-lowell designs H(8, 10)

The underlying graph of the Howeil designs H(9, 10) is Klo - f. we used

the orderly algorithms described in Section 4.4 to construct pairs of orthogonal

OFs (F, G) of Klo -f. Let F= (ft,f2,..., fe) and G = (gr, g2,..., Çe). Note that

91 = f, = 1". ln testing for canonicity, we restrict the mappings to the following:

(1) Mappings for F. lt suffices to examine those cr e S.,o such that Fc= F

(and ftq - fl), since F is canonical. That is, we restrict the cr's to the

automorphism group of F. lf , for any such o, Go < G, then (F, G) is not
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canonical. Note that if f iz= f"f" (hence all f.,i are of type '10'), then all

919¡ must necessarily be of type '10'.

(2) Mappings for G. There are two cases:

(a) There exists a grgj of type '46', where 2 <j < g. we map ail g,g, of

type '46' into f"fo (with gt mapped into f"), and ignore those grg¡ of

type '10'.

(b) All g1g¡ are of type'10'. we map them into f"f"(with g., mapped

into f").

ln total, there are 18220 non-isomorphic (F, G) of K.,o - f. tt required 3g

minutes of CPU time. Appendix 3 gives the frequency distríbution of these
designs, based on the number of non-isomorphic (F, G) for a given F.

7.6 Flowell cubes and !-lo(g, 10)

using the algorithm ouilined in section 4.6, we find 12 triples (F, G, H) in
step 2' We immediately elíminate 7 of them, as their corresponding (F, G)'s are

not canonical- The first (smallest) set is necessarily canonical (set 1 in
Appendix 4). Three of the 12 sets , which are all distinct from set 1, form a

quadruple (F, G, H, l); hence the corresponding (F, G, H) must be canonical (set

3 in Appendix 4). This leaves us with 3 sets to which we apply canonicity

testing. ln this case, we simply use the s's in the group Aut(K.,0 - f) =
{a : f"c = f", cr e s1q}. we find one of them is canonical (set 2 in Appendix

4). ln summary, we have
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tn1.

2.

Ns(Kro - f) =

Appendix 4.

N4(K1o-Ð=1.

3. The corresponding Howell cubes are shown

Appendix 5 gives the corresponding H4(9, 10).

It is interesting to note that the set of four mutually orthogonal OFs can be

constructed from a finite projective plane of order g t3gl.

We present the automorphism groups A of the non-isomorphic Howell

cubes and Hr(8, 10) in Appendix 6.

7.7 Skew !-l(8, 10) designs

ln [36], Lamken and Vanstone introduce skew Howell designs H(r, r + 2),

where r is even, and give a construction for a skew H(4, 6). tt is also reported

that there does not exist a skew H(6, 8), and the first unsettled case was that of

a skew H(8, 10). ln this section, we perform an enumeration of skew H(g, 10),

and we find that there are exactly three non-isomorphic examples.

A Howell design H(r, r + 2), say H, is said to be skew ¡f there exist two

symbols a, b, where {a, b} is not an edge of the underlying graph, such that the

following properties are satisfied:

(1) Denote the r cells of H which contain a by T" , and denote the r cells of

H which contain b by To. Then T" r-; To consists of the r cells on the

diagonal of H (say D), and r other cells which form a transversal of

cells (say D') of H, such that D' is symmetric with respect to D (i.e. a

cell (i, j) e D'if and only if cell (j, i) e D,).
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(2) Given any cell (i, j) e D ur D', precisely one of cell (i, j) and cell (j, í) is

empty.

ln section 7.s, we enumerated all non-isomorphic H(g, 10); there are

18220 such Howell designs. lt was therefore a straightforward test to see which

of these designs could be written down in such a way that it forms a skew

H(8, 10). This was done as follows. For any given H(g, 10), there are five

possibilities for the pair {a, b}. For each possibility, the cells in T" u To form four

4-cycles (no matter how the Howell design is written down). For each  -cycle,

there are essentially two inequivalent ways of permutíng the rows / columns

containing the 4-cycle. There are thus only 2s = 32 row / column permutations

that must be considered (for each possible {a, b}).

As a result of these tests, we found precisely three non-isomorphic skew

H(8, 10), which we record in Appendix 7.
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EF¡APTER 8

Ehü U M ERATIT.{G ON.I E-FACTORIZAT¡ONS AT.I D !-IOWELL Ð ESIG NS CIF oT,¡-I ER

REGULAR GRAPI.¡S

8..l lntroduction

ln this chapter, we turn to the non-isomorphic OFs and Howell designs of

several regular graphs of small order.

The non-isomorphic OFs and (i-dimensional) Howell designs have been

enumerated (for all i) forall graphs on at most 10 vertices (see [7] , [51], and

Chapter 7). lt is not feasible to continue this enumerat¡on to all graphs Gr on 12

vertices, for two reasons. lf Gr is r-regular with r close lo 12,the numbers N¡(Gr)

will be astronomical, and present techniques would not y¡eld any results in a
reasonable amount of time (see chapter s). lf Gr is 6- or 7-regular, we can

determine the numbers N,(Gr); tne problem here is that there are too many

graphs to test them all. ln the remaining sections, we discuss the enumeration

of OFs and sets of orthogonal OFs (that is, Howell designs) for several graphs

on 10, 12 and 14 vertices.

Among our results are the following. From the twelve 6-regular graphs on

12 vertices having transitive automorphism groups, we found that there are

precisely 24 non-isomorphic H(6, 12), and precisely one H3(6, 12). From the

ten 7-regular graphs on 12 vertices having transitíve automorphism groups, we

found that there are precisely 1393 non-isomorphic H(7,12), and precisely five
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Hs(7,12). We also determined that there are exactly three H"(2,12) designs.

we found an example of an H""(19, 14), which was the smallest case of an

H""(2n-1 , 2n), and was not previousry known to exist. Finally, we proved that

there are precisely 2 non-isomorphic H".(9, 1O).

8.2 &regular graphs on'12 vertices

The case of 6-regular graphs on 12 vertices is particularly interesting, due

to the non-existence of a pair of orthogonal Latin squares of order 6 (i.e.

N2(K6,6) = 0). ln [28], Hung and Mendelsohn presented the first example of an

H(6' 12). More recently, Brickell found a Howell cube Hs(6, 12) tor which the

underlying graph is the icosahedron with antipodal points joined (see [11]). lt is
also worth mentioning that the automorphism group of this cube is the same as

the automorphism group of the icosahedron (this group is isomorphic to
7, x Au).

ln the hope of finding further examples, we investigated the 6-regular

graphs on 12 vertices having a transitive automorphism group. There are

precisely 12 such graphs (see [B]); we present a listing of the edges of the

complements of these graphs in Appendix g. From these 12 graphs, we found

that there are precisely p4 non-isomorphic H(6, 12), and precisely one

H3(6, 12) (the Brickell cube). There are no examples of an H4(6, 12) in this

class of graphs. A summary of our results ís given in Table g.1.
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8.3 7-regular graphs on'!2 vertices

As in section B.z, we looked at the graphs having transitive

automorphism groups. For 7-regular graphs on 12 vertices, there are 10 such

graphs (see [8]). We list the edges in the complements of these graphs in

Appendix 9. From these 10 graphs, we found many more Howell designs:

1393 non-isomorphic H(7, 12), and five non-isomorphic Hs(7, 12). The

enumeration is summarized in Table 8.2. An example of an Hs(7,12) was not

previously known; we present one of them in Appendix 10.

We also investigated two other 7-regular graphs on 12 vertices, namely,

the graphs which correspond to the so-called *-designs. Thus the underlying

graph of H"(7, 12) has the form Ku" o er, where Kuc ís the complement of the

complete graph on 5 vertices (hence it is a graph of 5 vertices with no edges),

and Qt is either a 7-cycle or the disjoint union of a 3-cycle and a 4-cycle. tn the

first case, there are 404s oFs but no H"(7, 12);in the second case, there are

1160 oFs and three non-isomorphic H*(7, 12), which are presented ín
Appendix 11. These are thus the smallest examples of H*(n, 2n-2) for n odd,

since there are no Howell designs H(9,4) or H(s, g) (previously, the smallest

example in this class was an H.(13,24), constructed in [s2]).

8.4 Algorithrns

We modified the orderly algorithms for Krn in Section 2.7 to enumerate the

non-isomorphic OFs of the 6- and 7-regular graphs on 12 vertices in the

preceding sections. We used the automorphism groups of these graphs in the
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canon¡c¡ty testing, since their orders are fairly small (see Table 8.1). Depth-first

algorithm without pruning was employed.

Orderly algorithms in Chapter 4 are used to enumerate the Howell

designs of these graphs. Again, automorphism groups of the graphs are used

to test the canonicity of sets of orthogonal OFs.

ln total, enumeration for the 6-regular graphs took about 20 minutes of

cPU time, while the 7-regular graphs required approximately 10 hours.

8.5 !'{o*(13, 14)

Another special class of Howell designs are called ""-designs. An

H**(r, n) is defined to be an H(r, n) which satisfies the following two properties:

(1)there exists an (r - n l2) x (r- n /2) subarray of the Howell design

which consists of empty cells,

(2) there exists a one-factor of the underlying graph which forms a
transversal of the n / 2 rows and columns which do not meet the

empty subarray of (1).

These may seem somewhat unusual properties to ask for, but it turns out

that there is a powerful recursive construction for o"-designs, which was

instrumental in the proof of necessary and sufficient conditions for the existence

of Room squares of side 2n+1 (* 3 or S); see [44].

There has recently been some interest in H""(2m-1, 2m) (that ís, Room

squares which are ""-designs). Note that we can define an H**(2m-1, 2m) by

requiring only that property (1) holds; property (2) then foltows as a
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consequence. Such a design has several equivalent formulations, which are

described in [62]: one of these is a partitioned balanced tournament design

PBTD(m), and another is a pair of almost disjoint H(m, 2m). we elaborate on

the second formulation. Two H(m, 2m), say Dl and D, (on the same symbol

set), having underlying graphs Gr., and Grr, respectively, are said to be almost

disjoint if the following properties hold:

(1) Gr., n Gr, = f, where f is a one-factor

(2) Gr., u Gr, - f = K2m, the complete graph on 2m vertices

(3) the edges of f occur in a row (or corumn) of Dl, and in a row (or

column) of Dr.

H".(2m-1 , 2m) do not exist for m = 2, 3, or 4 (see [62]). For m > S, such a

design is known to exist for ail but 12 vatues of m ([37], [39] and [40]). The

smallest unknown case was m = 7. We were able to construct two

non-isomorphic examples of H"*(13, 14), which we present in Appendix 12 as

sets of almost disjoint H(2, 14).

These were found as follows. The H(7, 14) labelled D., was constructed

by E' Lamken (private communication). Call the underlying graph Gr', and let f

denote the one-factor occurring in the last column of D.,. We first enumerated

all oFs of the graph Gr, = (Kr¿ - Gr.,) u f which contain f as a one-factor, using

the orderly algorithms of chapter 2. The automorphism group of Gr, (order

= 5184) is used to test the canonicity of the OFs. There were precisely S2Z2

non-isomorphic OFs F of this type. For each such F, we determíned all possible

OFs G of Gr, orthogonal to F, such that G also contains f as a one-factor (see
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chapter 4). For only two of these s272 oFs F could we find such a G
orthogonal to F (up to isomorphism). The enumeration took 7 hours of CpU

time.

8.6 å-å**(9,'¡0)

A H**(9, 10) is equivalent to a pair of afmost disjoint H(s, 10), and an

example has been constructed ín [62] (see set 1 of Appendix 13). ln this

section, we generalized the approach used in the previous section, and carried

out a complete enumeration of pairs of almost disjoint H(s, 1o).

ln [51J, orlhogonal OFs of all S-regular graphs on 10 verlices (that is,

H(5, 10)) were enumerated. ln total, there are 5 graphs giving rise to a total of

6 H(5, 10)'s (see Table 9 in [s1]). we number these graphs as in [51]: no. 2, no.

17,no.50, no.53 and no.60. No.60 is Ku,u and admits 2 H(s, 10)'s. ln [62], it

was mentioned that a pair of almost disjoint H(s, 10) cannot have Ku,u as one of

the underlying graphs. (Ks,s" + f, where f is a one-factor on 10 vertices, is not

isomorphic to any of these 5 graphs.) Thus we can restrict our ínvestigation to

ç¡ = {no. 2, no. 17, no.50, no. s3}. we define an ordering on these graphs

such that no.2 < no. 17 < no. S0 < no. 53.

We now give the orderly algorithm for enumerating canonical pairs of

almost disjoint H(5, 10). We remark that the algorithm can be modified easily

for any complete graph of order 2n.

we use (D1, D2) to denote a pair of almost disjoint H(s, 1o), where Dl and

Drare H(5, 10)'s of underlying graphs Gr., and Gr, respectively, and Gr., and

Gr, are isomorphic to some graphs in Gr. Since we construct canonical
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(D1, D2), D., must be canonical;that is, Dlo> D, forall cre Aut(Gr1). D, need

not be canonical. Hence, D2 = (F, G), where F < G, and F, G are oFs of Gr,

containing the special one-factor. The following is the pseudo-code for the

algorithm.

FOR each Gr., e Gr DO

FOR each H(S, 10) Dl having underlying graph Gr., DO

FoR each one-factor f in D, Do {There are 10 possibilities.}

Grr=(Kro_Gr.,)uf;

lF Gr, is isomorphic to some graph in Gr THEN

lF Gr., ( Gre THEN

construct all H(5, 10) D2 having underlying graph Grr;

determine {æ : fr = f, and (Grl - flæ = (Gr' - f) or (Gr, _ f)}

lF (D1 ,Dz)n. (Dl, Dr) for some æ THEN

(D1, D2) is not canonical; discard it.

{Here, (D1, D2) is canonical.}

We implemented the algorithm above and found that there are 2

non-isomorphic paírs of almost disjoint H(5, 1O). We list them in Appendix 13.

It took about 3 minutes of CpU time.
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T'able 8.'t

Howell designs from 6-regular graphs on 12 vertices having

transitive automorphism groups

Graph No.

1

2

3

4

5

6

7

I
9

10

11

12

lAut(Gr)l

768

144

48

24

96

12

120

12

24

48

24

1440

DPM(cr)

368

348

344

342

392

386

368

354

344

344

336

376

N(Gr)

190

469

1248

201 I
1451

6932

733

4976

2216

1021

1 983

132

Nz(G4

0

3

I
0

0

1

4

0

5

0

3

0

Ns(cr)

0

0

0

0

0

0

1

0

0

0

0

0

Notation: DPM(Gr) denotes the number of distinct one-factors of Gr.
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T'able 8.2

Howell designs from 7-regular graphs on 12 vertices having

transitive automorphism g roups

Graph No.

1

2

3

4

5

6

7

I
o

10

lAut(Gr)l

48

24

48

48

24

24

768

144

24

48

DPM(c0

825

837

827

824

821

808

827

820

818

804

N(Gr)

127222

270875

1 301 76

1 301 41

245138

21 81 38

91 45

43060

237042

1 1 0656

Nz(G0

84

235

103

166

189

130

47

72

264

103

N3(c0

1

3

0

0

0

0

0

1

0

0

Notation: DPM(Gr) denotes the number of distinct one-factors of Gr.
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9.X ¡ntroduct¡on

Most known examples of perfect OFs arise from starters or even staners.

ln [2], Anderson enumerates all pedect OFs in Krn arising from starters and

even starters, up to n = 11. These empirical results suggest that there exists a

starter-induced perfect OF in Krn for all n > 6, and an even starter-induced

perfect OF in Krn for all n > 6. Thus starters or even staders might provide new

examples of perfect OF for larger values of n.

ln this chapter, we construct starter-induced perfect oFs for Kru and Kuo.

The algorithms we use are hill-climbing and backtracking algorithms.

9.2 Starters and even starters

we need the following definitions for starters and even starters.

Let Z, be the cyclic additive group on the set of m elements, {0, 1 , ..., m-1}.

A sta,terinTrn_., is a set S = {{x.l, X2}, {X3, Xq}, ..., {Xzn_g, xzn-zl! such that every

non-zero element of Zrn_., occurs as

(1) an element of some pair of S, and
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(2) a difference of some pair of S.

Define S. = St/{0, o"} andoo +g =g + oo=ooforall geZzn_.t lt ¡S easyto see

that F = {S" + g : g € Zzn*ìis an OF of K2n (see [43]).

An even starterinZ.rnis a set E = {{xr, x2}, {X3, xo}, ... {*en_g,x2n_2}} such

that

(1) every non-zero element of Trnexcept

element in some pair of E, and

(2) every non-zero element of Zrn except n

pair of E.

one, denoted m, occurs as an

occurs as a difference of some

Define E' = E u {{0, -l}} u {{m, -2}}, and g + -i = -i + g = oo, for g e Zzn

and i = 1, 2. Also define Q' = {{g, g+n} : g e z2n\u {{_t, *z\l. Then F =

{E' + g : g € Trnl v {Q'} is an OF of Krn*, (see [43]).

9.3 Hill-climbingalgorithms

Traditionally, backtrackíng algorithms have been used to construct

designs on computer. However, the computer time required for these

algorithms often grows exponentially wíth the order of the problems, making

them impractical to produce designs of relatively smaller order. ln these cases,

hill-climbing algorithms often have more success. ln fact, hill-climbing

algorithms have been used in recent years to construct combinatorial designs

such as strong starters, Steiner triple systems, Room squares and OFs, and to
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solve many other optimization probtems (see [20], [4s], [s9], [61], [63] and [64]).

Researchers have found that this approach works very well for certain

problems.

Hill-climbíng is a non-enumerative algorithm whích constructs designs in

a non-deterministic manner using some heuristics. lt implicitly assumes the

existence of a solution. Hence in order for hill-climbing to be successful, there

must be a solution, or better still, many solutions. The heuristics used in the

algorithm to build up the design should be fast, as generally many trials
(repetition of these heuristics) are needed to successfully construct a design.

We use a modification of the hill-climbing algorithm in [20] to generate

(even) starters. For each (even) starter generated, we then test the induced OF

for perfection. We now give a brief description of the hill-climbing algorithm

used.

Define a partial starterto be a set S'= {{xl, X2}, {X3, x4},..., {ozr_g, xz^_zl!,

where ffi ( r, satisfying the conditions that (1) x¡'s are distinct non-zero

elements of Zrn-,,, and (2) (xz¡_t - xr,) *t(xej_1, xr,) for i re l. Similarly, we define a
partial even starterto be a set E'= {{xr, X2}, {X3, X4}, ..., {*er_g, x2^_21.,, where

m ( ñ, satisfying the conditions (1) x,'s are distinct non-zero elements of Z2n,

and (2) (xe¡-r - xr,) * t(xej-r, xr,) for i * l. Note that when rr'ì = rì, we have either a
(complete) starter S or a (complete) even starter E.

The algorithm non-deterministically constructs the pairs in the (even)

starter using one of two possible heuristics. At a given stage in the algorithm,

we have a partial (even) starter S' (E'). We say that an element or difference is

used or unused depending on whether it occurs ín the (current) partial (even)

starter.
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(1) An unused element u and an unused difference d are picked

randomly. This determines a second element v of the pair (either of

u + d or u - d). lf v is unused, then add the pair {u, v} to the partial

(even) starter s' (E'). otherwise, delete the pair containing v from the

partial (even) starter S' (E'), and add the pair {u, v}.

(2) Choose two unused elements (u and v, where u < v). lf the difference

d (d = v - u) is unused, then add the pair {u, v}. otherwise, delete the

pair that has the difference d from the partial (even) starter s' (E'), and

add the pair {u, v}.

Note that at no time does the number of pairs in the partial (even) starter

decrease. Although we cannot guarantee that (even) starters will always be

found by this algorithm, in actuality it seems to work all the time, and it is very

fast. For those readers interested in this class of algorithms, we suggest [61].

9.4 A perfect one-factorization of q6

We ímplemented the hill-climbing algorithm for both starters and even

starters. After 15 hours of CPU time (having constructed a total of 6 million

starters and even starters) we found the following starter in Z.u which induces a

perfect OF:

{ {14, 15}, {5, 7}, {19,22]l, {29,321, {25, 30}, {11, 17}, {6, 13}, {1g, 26}, {29, 3},

{34,9}, {20,31}, {33, 10}, {23, 1lt,{2,16}, {12,271,{9,241,{4,21}1.
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The automorphism group of the induced perfect OF is Z.u.

We were not as lucky with Koo, having spent about 100 hours of CpU time

without finding a perfect OF.

9.5 Statistics on hill-ctimbing atgorithms

The probability of finding a perfect OF by means of the hill-climbing

algorithm described in section g.3 depends on two factors.

what is the probability that a random (even) starter-induced oF is
perfect?

Does the hill-climbing algorithm generate random (even)

starter-induced OFs?

To help answer these two questions, we performed some experiments on

Krn (for 16 < 2n < 30). For 2n < 22, a complete enumeratíon of (even) staners

was done in [2]. By testing the resulting OFs for perfection, we obtain exact

probabilities for 1), dividing the number of (even) starters into the number of

(even) starter-induced perfect OFs. Due to the large number of (even) starters

for 2n > 22, it is computationally infeasible to extend this enumeration to larger

orders.

To help answer 2), we generated many (even) starters using the

hill-climbing algorithm in order to estimate the probability that a given (even)

starter produced by the hill-climbing algorithm induces a perfect OF. (We note

that the perfect OFs generated are not necessarily non-isomorphic, nor even

1)

2)
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distinct.) These results are summarized in Tables g.1 and g.2. The two sets of

probabilities (for 16 < 2n < 22) appear to be fairly close, suggesting that the

(even) starters generated by the hill-climbing algorithm are random.

Define S(n) to be the expected number of (even) starters required to

obtain a perfect OF on Kn. From our empirical evidence, it appears that

logro S(n) is a linear function of n (i.e. S(n) increases exponentially as a
function of n). Using a linear least-squares approximation against the sample

data, we estimate, for the case of starters, that S(n) = 16.288n -2.u3. and for even

Starters, that S(n) = 1}.22en-1.e77. Substituting rì = 40, we obtain estimates of

108'7 and 107'2 respectively. That is, we would expect to have to generate over

15,000,000 even starters before we would expect to find a perfect OF for Koo,

and even more starters.

The computer results provide further empirical evidence that perfect OFs

are very difficult to construct. Given enough computer time, we might find a
perfect OF for Koo, but these techniques will most likely be unsuccesful for

larger orders.

9.6 A perfect one-factorization of Go

The computer results in the previous sections suggest that, to construct

(even) starter-induced perfect OFs of complete graphs of orders larger than 36,

we would probably have to try a different algorithm. Alternatively we may

restrict ourselves to (even) starters that have additional structures, so as to cut

down on the computer search time. we tried the second approach and

succeeded in finding a perfect OF for Kuo.
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Recently, lhrig [30] showed that if 2n-1 is not prime, then the order of the

automorphism group of a starter-induced perfect OF of Krn must be odd and

divide (2n-1)'GcD(<p(2n-1),n-1), where <p is the Euler function. ln fact, the

"maximum" automorphism group A of the perfect OF is a semidirect product of

(i) Zzn-t and (ii) a subgroup of the multiplicative group of units inzrn_,, tor

which the order is odd and divides n-1 (hence the order of A is at most

(2n-1 )'GCD(q(2n-1 ), n-1 )).

ln [2], Anderson enumerated the starter-induced perfect OF of Krn (for n

up to 11). The results indicated that there exists a starter-induced perfect OF

the automorphism group of which has the largest permissible order.

Often, GCD(g(2n-1), n-1) = 1, which means that the automorphism group

of the starter-induced perfect OF is simply Zzn_r. The smallest order of Krn for

which the existence of perfect OF is unknown, and for which the largest odd

factor in GCD(q(2n-1), n-1) > 1, is 2n = S0. Here, the largest odd factor in

GcD(q(ag) , 24) - 3, and thus the rargest permissible order of the

automorphism group of a perfect OF of Kuo is 4gx3.

lhrig suggested there could exist a starter in the ringTon which is fixed by

the multiplicative subgroup {1,18,30} and which generates a perfect OF of

order 50. Thus this perfect OF will have the semidirect product of Zon with Z. as

its automorphism group. We carried out an exhaustive search usíng

backtracking, and found that there are precisely 938 such starters, 67 of which

are non-isomorphic. The enumeration took about 5 hours of CpU time. A
starter is as follows:
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12
46

42 45

12 16

32 38

I 15

19 28

403

30 11

22 33

35 27

17 39

29 13

449
31 7

24 41

18 36

23 10

21 26

20 43

37 47

46 25

48 14

345

9.7 Backtrackingalgorithm

To explain the backtracking algorithm used in finding the starte r tor Zuo,

we need the following definitions.

Let D be the set of differences of the n-1 pairs of a starter S of Zzn-tithat is,

D = 1+6 : d e Zn\{0}}. Let M be a multiplicative subgroup of zrn-r. we observe

that for a given +d, the set {+¡¡fl : m € M} is a subset of D and forms an orbit.

That ís, fuI partitions the differences of D into disjoint orbits. We denote these

orbits by o = {or,C2,..., o,n}, where o, is a subset of Ð and o, o or=Ø
whenever i * j. Let rep(O¡) = *d, where d is the smallest element in the set

{d :td e O¡}. Define rep(O) to be the set {rep(O¡) : O, e O}.

We note that adding a pair {a, b} to a partial starter causes all the pairs in

the set {{ma, mb} : m e M} to be added, since M fixes the starter. Consequently,

adding a pair {a, b} with the differences +(a-b) e O, to a partial starter implíes

that all other differences in O, are also used in the partial starter. Thus, in

building up a starter, it suffices to consider only the differences in rep(o).
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The backtracking algorithm constructs the set T' of lrep(o)l pairs of

elements {a, b}, where a, b e Z2n_1\{0}, such that (i) their differences are distinct

and are in the set rep(o), and (ii) the set {ma, mb : m e M and {a, b} e T} is

identical to zrn_1\{0}. once this is done, the starter S is just simply the set {{ma,

mb) : m e tul and {a, b} = T}.

Thus for Kso, we have Ð = {1, 2, ...,241, M = {1, 18, 3O}, O =

{{t1, +19, +18}, {+2, +11, t13}, {+3, +9, +5}, {+4, +22, +231,{+6, +16, +10},

l+7, +12, t211, {19, +24, t15}, {+12, +17, t20}}, and rep(O ) =

{+1, +2, +3, +4, +6,+2, +9, +12}. Note that the set T would have g pairs

eventually.

The followíng recursive pseudo-code describes the backtracking

algorithm that can be used to construct all staners of Krn_, that is fixed by the

multiplicative subgroup nI. To invoke the algorithm, use Extend(Ø, Ø,1).

PROCEDURE Extend (T, S, i)

lFi>lrep(O)l THEN

{we have the starter s,} check the perfectness of the induced oF

ELSE

FOReachjeZzn_1\{0}DO

lF j is unused THEN {Here j is not in S.}

k:=j+rep(O),;

lF k * 0 and is unused THEN {Here k is valid and is not in S.}

W:=Ø;

FOR each m e M DOW := W u {mj, mk};
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IFWnS=ØTHEN

T := T',u ü, k);

S:=SuW;

extend(T, S, i+1);

T:=T-ü,kÌ;

S:=S-W.

9.8 Results on Çz

The next unknown case where GCD(<p(2n-1), n-1) has an odd factor

exceeding 1 is 2n=92. Here, GCD(rp(91), 45) = g. The ',maximum"

automorphism group would be a semidirect product of zn, with Z. x zr. we

conducted an exhaustive search for starters in the ring Zn., which is fixed by the

product of the multiplicative subgroup {1 , 2, 4I of Z, and the multiplicative

subgroup {1 , 3, 9} of 2.,, (which corresponds to {1 , g, 16, ZA,29, 53, 74, Tg, g1l

of Ze1). After approximately 12 mínutes of computer time, we found no such

starter that generates a perfect OF.

Here, we have D = {1 ,2, ...,45}, M = {1 , g, 16,22,29, 53, 74,29, g1}, O =

{{+1, +9, +16,!22, t2g, +38, +17,+12,+101, {_2,+19,+92,+44, +33, +15, +34,

t24, x201, {13, t27 , +43, Ð5, +4, +23, +40, +36, +30}, {+5, +45, +1 1 , +1 g, +37,

+8, t6, +31, t411, {17,*21,!281, t+13, 126, +39}, {+14,135, +42}}, and rep(O)

= {+1 , !2, x3, +5, +7, +13, +14}. Note that the last 3 orbits in o are shorter than

the other.

Forcomposite values of 2n-1, this is the first example where there does

not exist a perfect OF for which the automorphism group has order equal to the
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product of (2n-1) and the largest odd factor in GCD(9(2n-1), n-1).

A complete search for starters in the semidirect product of 7n, with Z,

looks quite impossible at this time.

Table 9.1

Statistics for starter-induced perfect OFs

Graph Hill-climbing algorithm

No of No of Estimated

starters perfect prob of

OF pedect OF

Exhaustive enume ration

No of No of True prob

starters perfect of perfect

OF OF

Kro 137000

K,, 122000

Kzo 106000

K2 399000

Kzo 499000

Kru 2102000

Kze 2463000

Kro 2639000

1851 0.135x1 0-1

526 0.432x10-2

284 0.267x10-2

84 0.209x10-3

37 0.741x10-a

72 0.343x10-a

13 0.528x10-s

4 0.152x10-s

8 0.127x10'1

17 0.441x10'2

65 0.251x10-2

36 0.191x1 0-3

631

3857

25905

1 881 81
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T'able 9.2

Statistics for even starter-induced perfect OFs

Graph Hill-climbing algorithm

No of No of Estimated

even perfect prob of

starters OF perfect OF

Exhaustive enume ration

No of No of True prob

even perfect of perfect

starters OF OF

Kt.

Krs

Kro

K22

Kz+

Kru

KÆ

Kso

351 000

624000

546000

475000

423000

394000

1 1 35000

5596000

0.128x10-1

0.134x10-1

0.270x10-2

0.869x10-3

0.203x10-3

0.1 12x10-3

0.352x10-a

0.134x10-a

960

5760

42816

320512

0.125x10-1

0.139x1 0-1

0.280x10'2

0.849x10-3

4490

8371

1476

412

86

44

40

75

12

80

120

272

104



C¡-flAPTER 1O

COr,¡CLLJSlOhü

'10.'! Summary

ln this thesis, we defined the canonicity concept, and developed various

orderly algorithms to enumerate canonical (non-isomorphic) OFs and Howell

designs of regular graphs.

These algorithms worked fairly well for regular graphs with small

automorphism groups. We were able to carry out complete enumerations of

canonical OFs and Howell designs of K.,o minus a one-factor, and for all 6- and

7-regular graphs on 12 vertices containing. transitive automorphism groups.

For regular graphs with large automorphism groups (for example,

complete graphs), orderly algorithms have not been successful in completely

enumerating the OFs of K1, and perfect OFs of K,o, due to the large amount of

CPU time requíred. Consequently, we turned to orderly algorithms that

enumerate canonical OFs containing prescribed automorphism groups. Using

these algorithms, we were able to enumerate all canonical perfect OFs of K'o

conta¡ning non-trivial automorphism groups. We also enumerated all OFs of

K.,, containing non-trivial automorphism groups (except those containing

exactly one automorphism of order 2).

Special classes of Howell designs for several graphs were enumerated

by modifying the orderly algorithms. These classes include Skew designs,
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"- and "*-desígns.

ln an attempt to find perfect OFs of complete graphs of larger orders, we

used hill-climbing and backtracking algorithms to construct (even)

starter-induced perfect OFs. We succeeded in finding examples of perfect OFs

for K.u and Kuo.

10.2 Open problems

There remain many interesting open problems.

The complete enumeration of non-isomorphic OFs of K.,, is still not

resolved. Using the algorithms in this thesis, OFs of K.,rcontaining exactly one

automorphism of order 2 can probably be enumerated ín less than 100 hours of

CPU time. However, enumeration of automorphism{ree OFs of K.,, will require

a lot more time.

Similar comments also apply to the enumeration of perfect OFs of K1o: it

will probably take many many hours of CPU time before the entíre problem can

be resolved. Since the existence of an automorphism-free perfect OF for Krn

remains an open problem, it would be interesting to see whether there exists an

automorphism-free perfect OF for K.,0.

We would líke to comment that the current difficulty in carrying out

complete enumerations for oFs of K.,, and pl Fs of K.,o is due mainly to the

complexity of testíng canonicity, and to the fact that there are many

non-isomorphic (parlial) structures. ln fact, for complete graphs of larger order,

a complete enumeration of non-isomorphic OFs with the orderly algorithms of

Chapter 2 is computationally intractible. ln these cases, "automorphism orderly
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algorithms" as described in chapter 3 may be used to enumerate oFs

containing certain automorphism groups (for example, cyclic oF).

It was shown in Chapter 6 that a perfect OF containing a P element does

not exist for Krn when n (> 2) is even. The question of existence of such OF for

Krn when n is odd appears to be difficult.

We would like to comment that the concept of canonicity and orderly

algorithms can also apply to other combinatorial design problems, such as

enumeration of non-ísomorphic balanced incomplete block designs,

BIBD(v, k, l,), containing certain automorphism groups. lt seems hopeful that

these algorithms will be fruitful in obtaining new results for other combinatorial

design problems.

Existence of perfect oFs for all complete graphs remains an open,

difficult problem. The smallest unknown case is now Koo. Empirical statistics

with hill-climbing algorithms suggest that the expected number of (even)

starters required to obtain a (even) starter-índuced perfect OF of Krn increases

exponentially as a function of n. Thus, although we did find an example of

starter-induced perfect OF of K.u using the hill climbing algorithms, it appears

that these techniques will likely not be successful for larger orders. Algorithms

other than the current hill-climbing algorithms will probably be needed to find

an example for Koo.

Given an r-regular graph Gr on 2n vertices, it is a well-known conjecture

that there exists an OF of Gr if r > n. The best result so far was obtained by

Chetwynd and Hilton [15], who showed that this conjecture is true i,f r > (6/7).2n.

Whether a Chetwynd-Hilton type of result holds for Howell designs remains an

open question. However, it should be noted that for r = r.ì, n+1 and n+2, there
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are examples of graphs Gr for which OFs exist but Howell designs do not exist

(see Tables 8.1 and 8.2, and Section 1.4). lnfinite families of graphs forwhich

Howell designs do not exist are not known at present.
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APPENDIX 1

Cycle structures of admissible automorphisms of OFs of K,,

case cycle Eliminated by case cycle Elimínated by

No. Structure Lemma No. Structure Lemma

1 121 2 11111

3 10121 4 10112

S 9131 6.5 6 g121j 1 6.8

7 9113 6.2 I Bt41

9 gtg11 1 6.9 10 9122

11 812112 12 Bt14 6.6

13 7151 6.9 14 714111 6.g

15 7t3121 6.5 16 713112 6.g

17 712211 6.7 18 71211s 6.2

19 7115 6.2 20 62

21 6rsr 11 6.9 22 6t4t21 6.g

2g 614t12 6.9 24 6132 d (case 74)

zs 613121 11 6.7 26 61311 s 6.2

27 6123 aÊ (case 65) 2g 6t2212 dz (case 65)

29 612114 d2 (case 65) 30 6116 6.4

31 5221 d (case 76) 92 S2t2

93 514131 6.5 g4 5t412t11 6.7

35 5141 13 6.2 gO S1g211 6.8

97 g\122 6.5 gg 5131 2112 6.8
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39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

Slgt 1¿ 6.9

s12213 6.2

s117 6.2

423111 6.9

422t12

413221 6.9

41312211 6.7

41311s 6.2

412312 d2 (case 75)

412116 6.4

3a

3313 6.2

322212 d3 (case 75)

3216 6.4

912313 6.2

912117 6.2

2a

24 14

2218 6.3

112

40

42

44

46

48

50

52

54

56

58

60

62

64

þb

68

70

72

74

76

512311

512t 1s

43

4222

4214

413212

413121f

4124

4t221+

4118

332t11

3223

322tf

3t2al

3t221s

311e

25 12

23 16

21 110

6.7

6.2

6.8

6.2

# (case 75)

aÊ (case 75)

6.3

6.7

å (case 74)

aP (case 76)

6.7

6.2

6.2

6.4

o.J
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Set 1:

APPET.üDIX 2

Perfect OFs of K.,o and their automorphism groups

lAl : B4 (G414)

A : <91, g2>

91-:(r12 11 837)(2 1.4 13 1_059)

92: (1- 13 4 9I 5 12 211_ 6 j t_O 3 14)

9L induces (f2 L4 fB ftZ ftt f7 f3) (f5 fe)
(fg f19) (f13 ftq)

92 induces (fZ f3 f4 ftt f1 ftZ)
(fs fro fts f 6 f9 fr: )

1,2
r_3
t4
l-5
16

L1
1_B

1_9

1_ r-0

1_ 11

t12

r. 13

L 1,4

34
25

26
24
23
20

2 1,0

2B

27

2L3

214

212

2 11

56
47

38
39
4 r_0

35
3:J.2

313

36

37

3 r-1

3 1,4

3 10

78
69

5 10

6B
R?

4 1_1_

46
45

414

412

48

49

4 1,3

9 r_0

I 1r_

7 1"2

1 1,3

B l-4

613

514

6 1,2

5 11

59

5 1_3

5B

5 1,2

11 L2

10 r_3

914

10 L2

9 r_1

B12

1 11_

7]-4

813

6L4

6 r_0

6 1_L

6'7

1-3 L4

1_2 14

11 13

1l- 74

1_2 13

10 14

913

10 11

9 1,2

B 10

79

1r0
89

111



Set 2: lAl -4
2\ =7, *7,
A : <91, g2t

gI: (r 2) ß s) (4 6) (1 9) (8 l-0) (t_1 1,3) (r2 ]-4)

s2 (l- 2) (3 6) (4 s) (7 l_O) (B 9) (l_1 1.4) (rz 13)

91 induces (f5 f6) (f9 f1g) (f13 ftq)
92 induces (f: f ù G7 fB) (f11 f tZ)

T2
13
1,4
15
1,6

I7
r_B

l_9
1 r_0

1 1l_

1 1,2

113

L14

34
25
26
24
23

29
2 1,0

2B

27
2 1,3

2 1_4

212

2 !3_

56
47

3B
39
4 r_0

313
?R

3L2

36
3 1_4

37

3 11

3L0

7B

69
5 i-0

6B

57
46

4 1,4

45

4 L1_

4B
4 1_3

49

4 1,2

910

B 11

712

713

814

5 1l_

6 1_2

6 r_3

5 l_4

5 1,2

59

5B

513

1r_ 12

10 13

9 1-4

l_0 L2

9 t-r_

Bt2
7 1_t

714

813

6 1_0

6 1r.

6L4

67

13 1"4

1,2 t4

11 13

11 L4

1_2 13

1-0 L4

913

l_0 11

9]-2

79

B 10

7 1,0

B9

112



Set 3: lAl : 1-2.

A =7, *7,
A : (gt1 , g2>

91, (3 r_1 10 4 12 9) (5 t_3 B 6 1,4 7)

s2 (1 2) (3 6, (4 s) (7 10) (g 9) (t_l- 1,4) (1,2 13)

91- induces (f: ftt ffO f4 ftZ fg)
(f5 ft¡ fB f6 ftq ft)

92 induces (fS f4) (f11 ftZ¡ ltn frO)

1,2

13
!4
15

1-6
1, 1

1_B

r-9
1_ 10

1_ l_ 1-

1, 1,2

1_ 13

1_ 3.4

34
25

26
24
23

2]-0

29

27

2B

2]-3

2 1,4

212

2 1"L

56
47

3B
39
4 l_0

36

3]-2

313

35

3]-4

37

3 1r_

3 r-0

1B

69
5 r.0

6B
57
4Lr

45

46

4 1,4

4B

4 l_3

49

4 1,2

9 r_0

B 11

7 1-2

113

8]-4

5 14

6 t_3

5 11_

6L2

5]-2

59

5B

5 1_3

11 1,2

10 13

9 1,4

l_0 L2

9 1r-

B 1-3

7 1_4

812

7LL

6 1_0

6 1_1

6 1,4

67

13 14

1,2 L4

11 1-3

11 74

t2 13

912

10 11

10 14

913

79

B 1_0

7 1-0

B9

113



Set 4: lAt

A

A

L2
r_3
1_4

r-5
16
T7
r_8
r_9
r. 1_0

l_ 11

r 1,2

1 r_3

1, 1,4

6.

=t o

: <91>

91 : (3 10 7 4 9 B) (5 L4 L2 6 13 11)

gI induces (f¡ ftO f7 f4 f9 fe)

(fs ftq ftz f6 fr: frr)

34
25
26

24
23

272

2 L1,

2 1"3

2L4

27

28

2 1_0

29

56
47

38
39
4L0

3 r_r_

36
3 r-0

?R

3 r_4

37
3]-2

313

7B

69
5 r_0

68
57
45

412

46
49

48

4 l_3

414

4 1,1,

9 r_0

B 1r_

712

t 1,3

BL4

6 r_3

5 1-4

5 11

6L2

5 r_3

59

5B

5 1,2

11 1_2

r_0 13

9]-4

l_0 L2

9 r-r_

89

710

7 1_4

7 1,7

610

614

6 1"r

67

13 14

L2 L4

l_1 t_3

11 1_4

1_2 13

l_0 14

913

BL2

813

9\2
10 11

'Ì9

B r_0

114



Set 5: IAI :6

A =7u
A : <91>

91': (3 10 7 4 9 B) (5 13 l-1 6 ]--4 12)

9L induces (fS ffO fj f4 f9 fA)

(fs ft3 frr f6 ftq f:2l

I2

1-3

14

l-5

l-6
1,7

r_B

r.9
r_ L0

1 11_

I 1,2

t- r.3

1_ 1,4

34

25
26

24

23

2 71"

2 1,2

2L4

2 1,3

2B
27

29
2 1,0

56
41

3B

39
4 r_0

3]-2

35

3 r_0

36

37

3 r_3

3t4

3 11

7B

69

5 l-0

6B

57
46

4 1_1_

45

49

4 1,4

4B

4L2

4 r-3

9 1_0

B r_1

712

7]-4

B r_3

513

614

6 r_r_

5 1,2

59
5 l_4

5 r_1

5B

11 12

r_0 13

9L4

10 11

9L2

B9

7 1,O

7 1,3

7 L1,

6 r_3

6 r.0

67
6 1,2

13 14

72 L4

r_1 1_3

L2 1_3

11 1-4

10 14

9 l_3

B12

B r_4

10 12

9 11

B r_0

19

115



Set 6: lAl 6

A =Zu
A : <91>

91 :(3L4 124

9L induces (f¡
13 11)(s9B6l_0 1)

ftq ftz f4 fr¡ frr)
(fs fg fB f6 fro ft)

L2
1_3

1,4

r-5
r_6
1-7
1_B

1,9
1_ r_0

1 1i_

I 1,2

1_ t_3

1, 74

34
25

26

24

23
2L2

2 1_1,

2L3

2L4

27
28

2 t-0

29

56
41

3B
?o

4 1,0

3 10

313

37
3L2

314
?Ê

3 Lr_

36

1B

69

5 r_0

6B

51
4 1_4

49
4 t1,

48
46
4t3

45
4 1,2

9 1_0

81r-

712

774

B r_3

5 1r-

5 t_4

5 1,2

59
5B
61
6L4

513

1_1 1,2

10 13

9:-4

10 11

9L2

613

6L2

6 r_0

6 11

913

9 11

79

7tr

t_3 L4

1,2 L4

11 13

12 13

1l_ 14

B9
7 1,0

814

113

10 1-2

10 74

B 1,2

B r_0

116



Set 7z lAl -2
A =7,
A : <91>

gl- : (3 4) (s 6) (7 8) (9 l-0) (1-l- :-2) (I3 ]-4)

9L induces (f¡ f4) (f5 fe G7 fe)

(f g f16) (f11 f 72) ,f13 f tq)

T2

13

1-4
r_5
16

l7
1B
1.9
1 1_0

1- 11

1. 1_2

l_ 1_3

1, L4

34

25

26

24
23
212

2LL
2B
2'7
2L3

214

29

2 1,0

56
47

3B

39
4L0

36
3 1-4

3'7
3 1,2

3 r_0

3 r-3

3 1r_

35

7B

69

5 r_0

6L4

513

413

45
471

4B
4]-4

49
46

412

9 r_0

B 1r_

7L2

7L3

7LL

5 11

6 1,2

5 1_4

59

5L2

57

5B

67

l_1 L2

r_0 r_3

9L4

B 1"2

B 14

B9

1 1,0

6 r-0

613

6B

6 11

714

B r_3

13 1"4

12 t4

11 i_3

10 1t_

9:-2

l_0 L4

913

1,2 13

11 1_4

79

810

l-0 1_2

9 r-r-

117



Set B: lAl -2
L=,I

-b2

A : (91)

s1 : (3 4) (s 6) (7 8) (9 10) (rr n) 03 L4)

91- induces (fS fa) (f5 f.6 ) Gj fS)

(fg f10) (f11 fp) ,f13 fta)

L2
13

1_4

l-5
r_6
1, 1

r_B
L9

1_ 1_0

1 1l_

1, 1,2

t- t_3

1, 1,4

34
25

26
24
23
29

210

2 71"

2 1"2

2L4

273

2B
27

56
47

3B
3 r_1

4 1-2

36

3]4
3 r-0

37
3]-2

35
39
3 r-3

7B

69
510

6 1-3

514

413

45
4B
49

46
41r
4 1_4

4 1,0

9 r_0

B r_1_

7 1_2

19
7tL

5B
67
5 1-2

5 r-3

59
6L0

57

5 11

11 12

r-0 13

9 1_4

BL2

B 1-0

10 L2

9 1L

6L4

6 11

710

714

6 1,2

68

t_3 L4

1,2 1,4

11 13

10 74

9 r_3

11 1,4

t2 l-3

'7 13

B t_4

813

B9
t_0 l-1

9]-2

118



Set 9: lAl : L2

A = Q, (dicyclic group)

A : <91, g2>

s1 (3 s 4 6) (1 t3 B 1.4) (9 11 l_0 Lz)

92:(3 13 l-04149)(5 1l-76L2B)

91- induces (fS f5 f.4 f6) (f7 frS fB fr¿)
(fg frr fro ftz)

92 induces (f: ffS ffO f4 ftA fg)
(fs frl_ f7 f6 ftZ fg)

1-2
13
14
1-5
r_6
1,7

LB

1_9

1 1_0

1 11

1, 12

L r_3

I 1,4

34
25
26
24

23
29

2L0

2B

27
2L4

2 1,3

2 1,r

212

56
47

3B
3 r_r_

472

314

37

3 r_3

35
36

3 t_0

3L2

39

1B
69
5 r-0

6 r_3

5 r_4

4B
4 r_3

46
4 1_4

49

45

4 l_0

4 1,1-

9 1_0

B r_r_

7 1_2

79

1 1,1,

5 11

59

51.2

6 l_l-

5B

67

57

5 r_3

l-1 1-2

r_0 r_3

9 1,4

B12

B 1_0

6 r_0

6 1-2

1 1_4

B r-3

7 1,3

B 14

6L4

6B

13 74

1_2 14

11 13

10 L4

9 1-3

12 t_3

11 t4

i_0 11

9 1"2

1_0 L2

9 11_

B9

710

119



Set 1-0 : lAl : 1"2

A = Q. (dicyclic group)

A : <91, g2)

91, : (3 5 4 6) (7 12 B t_1) (9 l-3 j-O t4)

92: (3 7 1,4 4 813) (5 10 1t_ 6 9 12)

91- induces (f¡ f5 f4 f6) (fT ft2 fB frr)
(fg frs fro fta)

92 induces (f¡ fj ftq f4 fB ff¡)
(fs fro frr f6 f9 ftzl

1,2
L3
1,4

15

1-6
1,7

18

19

r- L0

1_ 1r_

r 1,2

1_ 1_3

I 1,4

34
25
26

24

23

210

29

27

2B

2 1,3

214

212

2 l_l_

56
47

3B

3 r_3

4 1_4

3 r-r_

36

3 1_2

37

35

3 r_0

314
?o

7B

69
5 r_0

6L2

5 1-r_

45

4 1_2

4B

4 1,1

49

46

4 1,0

4 1,3

9 10

B 1r_

112

7Lr
710

613

5 r_4

5 r_3

qo

6B

57

5B

5 1,2

11 12

r_0 13

9 1-4

B9

8]-2

B 1,4

7 1_3

610

6 1"4

7.j-4

813

6 r_1

67

l_3 14

L2 L4

1r_ 13

10 14

913

972

10 11

1l_ 74

1,2 13

10 72

9 11

79

B r_0

120



Set 1l-: lÀl : 6

L=t

A : <91>

gl- (3 7 1,L 4 12 8) (5 t-0 1,4 6 9 t_3)

gI induces

(fS frr f.j f4 ftZ fB) (f5 frg ftq f6 f9 fr¡)

I2
r_3
L4
15
r_6
1-7

1_8

1.9

1_ l_0

l_ 11

1, 1,2

t_ r_3

I 1-4

34
)q

26

2B
21
2L4

2L3

24

23

2L0

29

2 1,2

2L1

56
47

3B
3 r_0

31.4

39

3L2

35

46

37

3 r_1_

36

3 r-3

7B

69
5 r_0

4 l_3

49
4 1_r

4 1,0

6 1_1

5]-2

4 1,2

4B

4]-4

45

9 r_0

B t-1-

7 1_2

6L2

5 1_1

5 r_3

59
1 1_0

7]-3

5 1_4

57

5B
67

1L L2

1_0 r_3

9L4

7t4

B r_3

6 1-0

6L4

B r-4

B9

68

613

79

I r_0

l-3 14

1,2 t4

11 t_3

9 11

t_0 L2

B12

1 ]-1,

12 13

11 1_4

913

10 1-4

10 11

9 1-2

121



Set 12: lAl 6

A =zu
A : <91>

91-:(38134

91 induces (fa

(rs

7 1,4) (5 9 12 6 10 11)

f8 frs f4 f7 fr¿ )

fg ftz f6 fro frr)

1,2

L3

1,4

r_5
t-6
T7

1_8

1_9

r. L0

1_ 11

L 1,2

1_ 13

1, L4

34
25

26

2B
21

270

29
2L3

2L4
)a

24
2L2

2 11-

56
47

3B

3 r_3

?6

372

36
3 r.1_

3'7
4 1,0

39

3 1"4

3 r-0

18

69

5 1_0

46

4 1,4

45

4 1_1_

48

4 1_2

59
5B
49
4L3

9 r_0

B 11

7 1,2

7 1,I

B 1,2

6 1_4

513

5 14

5 11

61

6 r_0

57
5L2

11 1_2

10 r-3

9]-4

9L2

9 i_3

813

7]-4

612

613

B t_4

1]-3

6 1_r-

6B

13 14

L2 14

1t_ 13

l_0 74

r_0 11

9Lr
10 1,2

770

B9
1,2 r_3

11_ L4

B r_0

79

122



Set 13: lAl l-56 (cK14)

1_2

r.3
1,4
t_5

r-6
1_7

1B

I9

1 t-0

1 11_

t12
r- 13

1, 1,4

34
25

26
29

2L0

213

2L4

2 1,2

2 1_r

2B

27
24
23

56
47

3B
37

3 1"2

3 1r_

3 i_3

3L4

39

310

35

36
45

1B

69

510

4tr

48

4]-4

4 1,2

4r0

4 l_3

46
49

5B
67

9 1_0

B 1_r-

7 1_2

6 r_3

514

59

5 11

513

57

5]-2

6 11

7 L0

B9

l_1_ L2

r_0 13

9l.4
BL4

1 1,3

6L2

6 l_0

6B

6L4

7]-4

B r_3

912

1_0 r_t-

13 1"4

1,2 14

11 13

10 1_2

9 1_1

810

79

7t7

872

913

l_0 1_4

11 1_4

12 13

123



Set 1,4 z lAl : L2

A =7r,
A : <91>

91 :(3598]-4 ]-2461_071,3 11)

91- induces

(fs f5 f9 fB ftq ftz f4 f6 fro f7 fr¡ frr)

1,2

r-3
L4

15
1_6

1,7
r_8
T9
r. t_0

t_ 11

1, 1,2

1_ 1_3

1, t4

34
25

26

29
2 l-0

2]-3

2L4

2B
21
23

24
2LL
212

56
47

3B

3 3_4

3 1r_

3 r-0

31
313

35
45

36

372

39

78

69

5 1_0

4]-2

413

4B
49
46
4:l.4

67
5B
4r0

4 1r_

9 r_0

B 1_r_

712

613

514

59

5 11

512

6 1_1

B r_4

7L3

57
5 r-3

11 L2

r_0 13

9L4

7 1_I

79

612

6 1_0

7 1_4

B r_3

9 r-3

9 1_1

6 1,4

6B

l_3 14

1_2 74

11 t_3

B t_0

B12

11 I4

L2 l-3

t-0 1t_

9L2

10 L2

1_0 L4

B9
7 1,0

124



Set l-5 : lAl : L2

fI = LI2

A : <91>

gI (351497l_1

9L induces

(fs f5 ftq fg f7

4 6 r-3 1_0 I 1,2)

EECÊ.11 L4 l-6 r13 €Eî!l_0 rB Lrz)

L2
r_3
1,4
15
T6
1.7

1B
1,9
t- 1_0

r_ 11

1, 1,2

1- r_3

1 1,4

34
25
26

2 1-4

2]-3

2L7

2L2

2'7
2B
24

23

2L0

29

56
47

3B

39
3 11

35
3 r_0

3 1_2

37
313

4 1,4

3L4

36

78

69
5 10

4 1,2

410

49
46
4B
4 1,1

5 1_4

5B
45

4 1,3

910

B 11

712

6 11

5]-2

6 1,2

5 r_r-

513

59

67

6 r_3

6B

57

11 1_2

10 13

9 1-4

7 1,3

79

B r_3

7L4

6 r_0

6 1-4

B9

710

7 1_1_

872

13 1-4

L2 1_4

l-1 l-3

B r_0

814

l-0 1_4

913

1t- 14

1,2 13

1_0 L2

9 r_1_

9L2

10 11

125



Set 1-6: lAl - 3

A =2.3
A : <91>

91.: (l- 5 L4) (3 11 L3) (4 B 1) (6 1,2 10)

91- induces

rcZ f3 f1O) (f4 fg fr2) ffs frS f1a) (f6 fj frr)

1-2
13
74
1_5

r-6
t7

18

19
r- 10

1 r_1

t 1,2

1- r-3

1, 1,4

34
25
26
24
23
2LL

29

2 1-2

2L4

2 1,3

2L0

2B

27

56
41

3B
310

4L2

374

3]-2

313

36

39
3 r_r_

37
35

1B

69
5 1_0

6 1,2

5L3

46

4]-4

4 l-0

48

45
4 t_3

49

4 1-1-

9 r_0

B 11

7L2

79

7r0
512

57

5B

5 11

61

59

5 1,4

6 r-0

11 1_2

10 t_3

9L4

B 1_3

B 14

I 1_0

613

6]-4

7t3

BT2

6B

6 r_1

89

13 14

72 14

11 13

11 1,4

9 r-l-

9 l-3

1_0 11

17I

9L2

l_0 L4

7 1-4

1-0 1_2

L2 r_3

126



Set L7: lAt :3
A =2.3
A : (91)

gL: (l- B 3) (2 9 L4) (4 l_1 s) (7 l_3 l_0) (6) (r2)

9L induces

GZ frr f16) (f3 fB f4) (f5 ftq f9) (f6 ftZ fr:)

1-2
1-3
1,4

t-5
L6
1,7

r_8
1.9

r- r_0

1 11

r 1,2

113

1, 14

34
25
26

24
2 1-4

2]-1

2L2

2B

2]-3

2r0

29

27

23

s6
47

3B

39
3L2

310

35
3 11

3L4

3 r-3

31

36
4B

7B

69
510

613

45

4]-4

49

413

4 1,2

46

4 11,

4]-0

57

910

B 1i.

7 1_3

't 1,2

7r]-
59

614

5 14

5B

5 1,2

513

5 11

6 r-0

t_1 1_2

r_0 L3

9]-2

814

B r_0

6 1,2

710

61

6 11

7L4

6B

IL2

I 1,1,

1_3 74

1,2 14

11 14

l_0 11

913

B l-3

11 l_3

10 12

79

B9

10 14

914

1"2 13
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Set l-8 : lAl -3
À=l "s
A : <91>

s1- (l- 5 9) (2 7 t4) (4 6 B) (10 j-3 11)

91 induces

ff2 fr: fa) (f3 fB f14) (f5 frO fg) G7 ftt ftZ)

1,2

13
T4
r_5
r_6
1,7

r-B
r_9
1_ L0

1 1l-

L 1,2

t- r_3

1, 1,4

34
25
26

24
2L3

2L0

2L2

2'7

214

23

29
211

2B

56
47

3B

3 r_3

3 1,2

3 1-4

35

310

3 1r_

4B

37
36
39

18

69
5 t-1

6 1_2

49

4 L1_

4 1_0

412

4 1,3

5 14

46

4 1,4

45

9 r_0

B r.r_

'7 r0

1L4

5B
5 1_2

6L4

513

59

6 10

5 r_0

57
6 r-3

11 1,2

1_0 1,3

974

B 1_0

7 11,

6B
79

6 r-1

6l
7L3

813

B9
7 J_2

t_3 1,4

L2 L4

12 13

9 r_1

10 1_4

913

11 13

B 14

872

9L2

Ll_ t4

1-0 1,2

10 1r_
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Set 19: lAl : 3

A =23
A : <91>

91, : (r 4 1) (2 11 5) (3 t2 l_0) (6 I 14)

gI j-nduces

ffz ftq f16) (f3 f1 fa) (f5 fg f1) ff6 frr fr¡)

L2

1-3
L4
15

L6

1,7

18
I9

1_ r_0

1 r_1_

L 1,2

1_ l-3

1, L4

34
25

26
2L3

27

2LL

2 1,2

24

23

2 1,0

2L4

29
2B

56
47

3B

3]-4

3 r-0

313

35
31
46

3 1.2

36
3 1r_

39

7B

69

511_

4 1_0

4 r-3

4 1"2

4 1,4

5B
5'7

4B
49
45
4 1,L

910

B Lr_

7 t_0

6 1,3_

5 1,2

5 1,4

67

612

813

59

5 r-3

6B
510

11 12

r_0 r-3

9 1"4

79

B 14

6 1_0

9 r_3

10 74

9 1,2

6L4

7 11"

7 1_4

6 r-3

13 1"4

1,2 14

L2 13

B12

9L7

B9
10 11

1r_ 13

11 1_4

7]-3

810

1_0 1"2

7 1,2
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Set 20: lAt : 3

À=V -:
A : <91>

91. : (1 B LI) (2 9 10) (3 5 4) (6 1,2 L4)

91 induces

G2 ftq f7) (f3 frr fB) (fs fr: f6) (f9 ftz frO)

1,2

l-3

T4

1-5
!6
1,7
1B
1.9
i_ l_0

t_ Ll_

1, 1,2

r_ 13

r 1,4

34
25

26

27
2 1"2

29
21.4

2B
27L

2 1,3

24
23
2L0

56
47

3B

36

31r_

3]-4

310

372

39

37
3 r_3

4B
?tr
JJ

1B

69

5 11

4 l-0

4L4

45

4 ]-1-

4l.3

46

49

5 r_4

5 1,2

4 1,2

9 t_0

I r-1

1 1,3

B 1,2

59
6B
57
510

s r_3

5B
67

6 r_0

6 1_3

11 1,2

10 13

9 3"2

9 1,4

7!0
10 11

6L2

6 r_1

712

6L4

B r_0

19
7 ],L

13 14

12 14

l_0 14

r_1 r_3

B t_3

L2 13

9 l_3

7]-4

B 3-4

r_0 12

9 11

11 14

B9
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Set 2I: lAl - 2

a, -7

A : <91>

sL (1 4l (2 s) (3 7) (6 l_o) (B 1,2) (9 1-3) (1_l_ 14)

9L induces (f 2 f7) G6 f 1) ffg ftq)

t2

r.3
T4

15
T6
1,7
1B
1,9
r- l-0

l_ 11

1]-2

1_ 13

1, 1,4

34
25

26
24
2t4
2 1,O

2 L1,

2]-3

23
29

27

2 1,2

28

56
47

3B
39
35
3]2
36
3 r_0

46

37
3 r-3

3L4

3 11

7B

69

5 r_0

6 r-r_

48
45
4 1,2

41r

5'7
4l.4

4r0
49
4 1,3

910

B 1L

1 1,2

7 1_3

79

6 r-3

514

5]-2

B r-3

5 1_3

5 l_r_

5B

59

11 12

10 1-3

9]-4

B 1,2

10 11

B 14

7 1,0

6B
9L2

6]-2

614

6 r.0

67

13 74

12 1_4

11 t-3

10 L4

1_2 l_3

9 r_l-

913

71-4

11 I4

810

B9
7 1_7

10 1,2
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APPFNDIX 3

Frequency distribution of non-isomorphic set of two

mutually orthogonal OFs of K.,o - f

Fr(.l) j" Frü)

0

1

2

3

4

5

6

7

I
o

10

11

12

13

14

15

16

17

18

540

373

301

286

268

220

191

153

135

109

88

81

75

48

52

34

38

27

20

0

373

602

858

1072

1 100

1146

1071

1 080

981

880

891

900

624

728

510

608

459

360
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19

20

21

22

23

24

25

26

27

28

29

30

31

32

35

36

37

3B

39

40

41

42

43

44

45

18

17

10

10

10

18

11

5

I
9

4

I
4

1

3

1

1

3

3

1

1

1

1

2

1

342

340

210

220

230

432

275

130

216

252

116

240

124

32

105

.to

37

114

117

40

41

42

43

88

45
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47

63

47

63

3192 18220

Frfi) : Number of one-factorizations F for which the number of non-isomorphic

canonical pairs of one-factorizations of the form (F, G) is j.
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APPENDIX 4

Set 1

(F, G):

(F, H):

Howell cubes H3(8, 10)

810

23
24

5B

36
71,0 4 9

6B

37
1_925

t_ 1_0

B 1_0

1_3

79 t4

B9

35

2 1,0

6 r_0

1-5
2B
39

3 r_0

4 r-0

16
1_ '7

2946

6 10

?tr

1,7
29

4B

45

1_B

3 r.0

36
49
2r0
1B

q?o
JJJ

146

9

6 l_10

5 1_0

4B
26

67

7 10

4 1_0

2B

5B
21

24
7923
1589

l_6

369
L4

6725
s938

5 r_0

4

i.

2
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Set 2

(G, H):

(F, G):

6 9 31_0

71,0 2 4

2s68

Br_0 2 4

1,4 2 3 7 9 5l_0

89261_s

26

39
1,62957

2 3 1,7 B1_0 4 6

184527

361,958

4 9 3 7 1t_0

r-3
67]-4
28

4r_0 3 B

59

r-3

2 5 7l-0

6 10

59
4'l

49

3861

1_648

L'7

310

6B
3 7 41_0

39
3528

182746

r_ 10

7 9 51_0 4 B

B 9 3 5 2 t_0

1 5 4't 6l-0

69 51

5 B 3 6 21_0 1_ 9

2945
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5724

2368

37

6

L4

891_5

3t-

1859

361,9
5B3

46

5B
29

32

B9
14

67

25B
29

l_

5

2 1,0

67

2r0
35

2B

310

41

l_5
3 10

4B

610

q 6 r_0

1 10

B

37
968
7 r t_0

(F, H):

(G, H):

710

5 1_0

3B
49
r-6
5 10

B r_0

26

B r-0

79

4 1,0

25

t9

36
1B

4 r_0

26
1,639
49L7
21

53

13
lro

1_7

45

93B

6

26
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Set 3

(F, G):

(F, H):

r_357
68L4'79

49 1_5

3 r_0

71,0 2 6 4 B

2589

1 3 B 10

B 1_0

5 r_0

1628

3746

2469

69 24
23

2 7 6 10 3 B

4159

6'7

3519

1 10

57

3 6 2 9 1 7 4 l-0 5 B

21,0 4 5 3 9 1- I

7 9 14 2 3 510 6 B

6l_0 2 7 1- 5 4 g 3 B

2 B 5 9 r 6 310 4 7

3 6 410 5 B L 1 2 g

45 6739

B9

1_ B 2r0
7L0 4 B 2 6 1 9 3 5

2 5 3 7 4 6 l_10
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(G, H):

t- 3 7ro 2 5 4 9 6 B

r 4 B 9 310 2 6 5 ?

7 9 3 6 1 5 4 B 2 1-O

4 5 810 1- 6 3 7 2 g

2 B 3 9 L 1 5l_O 4 6

2 7 410 6 9 l_ B 3 5

6l-0 2 3 5 B t_ 9 4 7

5 9 6 7 2 4 3 B l_t_o
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APPESüDIX 5

H4(9, 1o)

(F, G), (F, H), (G, H): see Appendix 4, Set 3.

(F, t):

r_ 3 6 9 810 2 4 5 7

st_O 1" 4 7 9 2 3 6 B

t_ 5 3 I 6l-0 2 1 4 9

4 7 1,6 5 9 310 2 B

362 9 5 B 4l-0 t 7

6 7 2L0 3 9 l_ B 4 5

4 B 2 6 3 5 7t_O 1 9

31 2 5 B 9 4 6 110

(G, t):

13 2 5 710 6 B 4 g

r 4 2 6 B 9 310 51
4 8 2r0 1 5 1 9 3 6

2 9 3 7 Bl-0 L 6 4 5

51_0 3 9 1_ 7 4 6 2 B

6 9 4t_0 3 5 l_ B 2 7

5 B 4 1 6l_0 2 3 1, g

6 7 3 8 2 4 5 g 1, 10
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(H, t):

l_ 3 1 9 6 10 4 5 2 B

r 4 810 5 9 2 7 3 6

6 7 1 5 410 B 9 2 3

5 B 3 9 1 6 2 4 710
4 B 6 9 2 5 1_ t 3t-o
510 3 1 2 6 1_ B 4 g

2r0 3 B 4 6 1 9 5 1

2 9 4 7 3 5 6 B lt_o
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APPENDIX 6

Automorphism groups of H3(8, 10) and H4(9, 10)

H3(8, 10) = (F, G, H)

Setl A=< l>.
set2 A= < g >=zr,where g = (35 g 10 467 g).

g interchanges G and H.

set 3 A= < g >=Zu, where g = (5 6 )( 3 910 4 7 g).

g maps F into G, G into H, and H into F.

H+(8, 10) = (F, G, H, l)

A=<9t,92>,lAl=24,

and 91 = (3 4 ) (S 10I6 9 7 ),

9z=(56)(3810479).

g1 maps H into G, G ínto l, and I into H,

g2 maps F into G, G into H, and H into F.
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APPEf,üDlX 7

Three skew H(8, 10) designs

a:5, b:6

a : 5, b : 6

2 6 3t_o 4 7 s 9 1_ B

3 B 610 2 7 4 s 1_ 9

4 9 3 5 2 B t_10 6 7

7ra 2 5 B 9 3 6 L 4

1.7 4 6 5 B 21,0 3 9

1 3 810 5 -7 6 9 2 4

15 7 9 410 2 3 6I
4 B 1_ 6 2 9 3 7 5 1_O

6l-0 1- 9 4 5 2 I 3 7

8 9 2 5 7LO 3 6 t 4

1.7 4 6 21,0 5 9 3 B

r_ 5 2 7 6 B 3 g 4 1_0

6 9 B1_0 1_ 3 5 7 2 4

2 3 4 9 6 7 1_ B 5l_0

4 B 3 5 110 2 6 1 g

4'7 3t_0 2 9 5 B 1 6
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a: -Ì, b: B

B1_0 6 9 5 7 2 4 1 3

4 9 2 7 7 6 51_O 3 B

l- 9 2 B 310 6 7 4 5

2 5 4 7 t_i_o 3 9 6 B

1,7 3 5 41_0 I 9 2 6

3 7 4 6 t_ B 210 5 9

61_0 5 B 2 3 7 g 1, 4

3 6 4 B l_ 5 2 9 710
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APPENDIX 8

5-regular graphs on 12 vertices havíng transitive automorphism groups

graph no. 1 1-2,3,4,5,6;2- 3,4,5,6; 3- 4,7,8;4-Z,B; S-6,9, 10; 6-g,
10;7 -8,11,12;8- 11,12:g- 10,11,12;10- 11,12;11 -12.
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graph no.2 1 -2,3, 4, 5, 6;2-3,4,7,8;S- 4,9,10;4-11,12;S- 6, 7,g,11;

6 - 8, 10,12;7 - 8,9, 11;8 - 10, 12;9 - 10, 1 1; 10 - 12:11 - 12.

graph no.3 1-2,3,4,5,6;2-9,4,7,8; 3- 4,9,10;4-11,12;S-7,g, g, 11;

6-7,8,10, 12;7 - 9,11;8 - 10,12; g - 11 ,12;lO - 11,12.
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graph no. 4 1 -2,3, 4, 5, 6:2-3,4,2,8; B- 4,9,10;4 - 11,12:S-7,9, g, 11;

6-7,9, 10, 12;7 - 10, 12;8- g, 1'1, 12;g - 11;10 - 11,12.

graph no. 5 1 - 2,3, 4,5, 6;2 - 3, 4,7,8; g - 5,7,g; 4 - S,

9,10,11;7 -12;8 -9,10,12:g - 11,12:10-

7,10;5-7,11;6-8,

11,12;11 - 12.

147



graph no. 6

graph no.7

1 - 2,3, 4, 5, 6;2 - 3,4,7,8; 3 - 5,7,9;4 - 5,

9, 10, 12;7 - 12;8 - 9, 1 1 ,12;9 - 10, 1 1; 10

7,1Oi5-7,11;6-8,

11,12;11 - 12.

1 -2,3, 4,5,6;2-3, 4,7,8; 3- 5,7,9; 4 -6,8, 10; S - 6, g, 11; 6 -

1 0, 1 1 ;7 - 8,9,12;8 - 10, 12:g - 11,12:10 - 1 1,12i 11 - 12.
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graph no. I 1 - 2,3, 4,5, 6;2 - 3,4,7,8; g - S, g, 10,4 -7,9,10; 5 - g,11,12;

6- 8, 9, 11, 12;7 - 10, 11,12;g- 10, 11,12:g - 11 :10 - 12.

graph no. 9 1 - 2,3, 4, 5, 6:2 - 3, 4,7,8; 3 - S, 9,

12;A- 8,10, 11,12;7 -9,10,11; B- 9,

10;4-7,11,12;5-9,11,

10,12;9-12;10- 11.
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graph no. 10 1-2,3,4,5,6;2-9,2,A,9;3- 10, 11 ,12 4-5,7,8, 10; 5- g, 11,

12;6 -7,8, 11, 12;7 -9,11; I - 10, 12;g - 10, 12; 10 - 11.

graph no. 11 1-2,3,4,5,6;2-9,7,8,g; 3- 10, 11,12 4-7,9,9, 10; S-7,g,
10, 11;6-7,10, 11,12;7 -12;B- 11,12:g- 10, 11,12.
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graph no. 12 1-2,3,4,5,6:2-7,8,9,10; 3 -7,8, g, 11; 4-7,9,10, 11;S-7,

9, 10, 1t; 6-8, 9, 10, 11; 7 - 12;B- 12;g - 12;10 - 12:11 - 12.
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APPEF,üD¡X I
A-regular graphs on 12 vertices having transitive automorphism groups

graph no. 1 1-2,3,4,5; 2-9,4,6; 3 -4,7;4-B;5-6,g, 10;6-9, 1O;7 -8,

11,12;8- 11,12;9- 10, 11; 10 - 12:11 - 12.
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graph no.2 1-2,3,4,5; 2-9,4,6; 3 -5,7;4-6,8; S- Z,g;6 - g, 10;7 -g,

11 ; 8 - 10, 12;9 - 11, 12;10 - 1 1, 12;11 - 12.

graph no.3 1-2,3,4,5; Z-5,6,1:B-B, g; 4-5,6, 10; S- g, 11;6 - 7,10;7 -

9,12;8 - 9, 11 ; 9 - 12;10 - 11, 12; t1 - 12.

5

12
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graph no.4 1-2,3,4,5; 2-3,6,7;3 - 8, g; 4-6,8, 10; S-7, g, 10; 6 - g, 11;

7 - 9,11; I - 12;9 - 12; 10 - 11, 12i11 - 12.

graph no. 5 1 -2,3,4,5;2-3,6,7;3-

7 - 9,12;8 - 12;g - 10; 10 -

8, 9; 4 - 6, 8, 1 0; 5 - 7 , 9, 1 1 ; 6 - 8, 1 1 ;

11,12;11 - 12.

10

12
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graph no. 6

graph no.7

1-2,3,4,5; 2-3,6,7; 3-8,9; 4-6,
12;7 -9,10,12:8- 11,12;g- 10,11.

1 - 2,3, 4, 5; 2 - 6,7,8;3 - 6,7,8; 4 - 6, g,

12;B- 11, 12;g - 11, 12:10 - 1 1, 12.

10, 11; 5 - 8, 10, 12;6 - 11,

10; S - 6, 9, 10:7 - 11,
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graph no. I

graph no. 9

1 - 2,3, 4, 5;2 - 6,7, 8; B - 6,7, g; 4 - 6,7,

7 -12;8- 11,12;9 - 11,12:10-11,12.

1 -2,3,4,5; 2-6,7,8; 3 -6,7, g; 4 - 6, g,

7 -12;8- 11,12;9 - 11,12;10-11,12.

10;5-8,9,10;6-11;

10;5-7,9,10;6-11;

10
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graph no. 10 1 - 2,3, 4, 5; 2- 6,7,8;3- 6, g, 10; 4 -7,g,11; 5 - g,

11, 12;7 - 10, 12; 8- g, 1 1; g - 1 Z: 10 - 11.

10, 12;6 -
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ÅPPENDIX 1O

A Howell cube Hr(7, 12)

I2

5 l_1

6B
l-0 L2

1,2

B 1,2

3 l_0

79

4 1,L

56

712

29

34
B12
.7 II

6 11- 5 10

1367
2574
7928

B 10 3 9

11 1_2

4]-2

6 11

r_3
7L1_ 1, 4

2 B t0 L2

512 2 7

4938

610 5 9

15
4 1,1"

3B

6 r_0

I6
2L0

59

3489

6 7 4l_0

91,2 2 5

15

Br_0 r 6

11 12

2IT 31

410

3 l_0 9 1,2

4 6 3 11

5L2 2 7

1_756
27I l_ B

9I

49

31

5 1_0 7 t2
2 9 51i_

6B

3 r_1 4 6

?o
¿J

r 1 210

4L2 1 B
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1-2
79

4 9 103-2

1 3 6 t_1

283-4

6r_0 3 B

lTT 5 9

5 1,2

31
Br_0 2 5

6 7 11 12

15

341_6
21,L g g

9 1_2 4 1,0

6B
4 3-2

5 10

29

77

3 11

5l-1

39
7L2

2ro
46

1B

4 1,L

BL2

3 r.0

s6 2
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1,2
1 1,2

B9
4 1,1_

5 r_0

36

5t2
3B
1L0
49
6 r-i_

69
38
7 i_0

5L2
4 L1_

7TL

13

2B

5]-2

69
410

r_3
79

6 1,2

5 t_1

I r.0

24

r-3
B r-0

7 1,2

5 1t-

49

26

Bt2

69
7 l.1_

25

36
910

4 1,2

t ]-1,

25

9 10

4l.2

36
r_8

APPEI\¡D¡X 11

Three Howell designs H"(7,12)

6 r_0 34
810 4 9 2 5

r 4 11 12 7 t_0

61,2 l_ 5

19381-6

2 3 B]_t_

5 r-1 2 7 9 12

61_0 3 4

B r_r_ 7 L2

r 4 l_0 l_1

2715

B9
3526
I 1,2

s9
4 r_0

2B

BT2 5 9

6 1r_

3526

91_0 3 1

2 4 l-0 11

L 7 4L2

l_8

2l_

1.6
1l- 1,2

37

59
410

11 t2

4II

23

1, 1

5 r_0

610

B 1_t_

35
24

L]

9L2

B

2 BL2 3 4

7 9 6L2

1427

6 t_1 1 5

2389

10 r-1

5 1_0

16

28

37

160



APpEf,üDlX 12

Two sets of almost disjoint Howell designs H(7, 14)

Set 1: {D.,, D2}.

D1 a3

a2
12

34
45
l_6

55.

A4
t2

36

63
a5
45
2L

D2

a3
a2
T2

34
45
1_6

s6

31
24

65
d. ¿4

g.¿

1_3

s6

24
'1 ?

èi¿

a5

ê6
26

35
L4

s3
4S

al-
32
25

a6
L4

24

t-3

a5

a6
25.

35
14

r-5
a3
23

54
41"

a5
62

r-5
45.

36
25

a1

A4
2?

a2
61-

52
a5
t6
34
43

1s65
46s5
35.44
2 5 11
a133
a422
23aa

4266
a355
aI44
2511

6433
5122

53aa
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Set 2: {Dr, Ds}.

D3 a4

63
L2

34

-e. g

s6
2L

a4
32
25

a5
61
r_3
46

23
aÊ
51

65
42

a3
t4

15
4L

36
a2

a2
64
s3

52
24

a6
43
16
ct l-

35

3166
a155

a344
2511

5433
4522

62aa
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APPEf\üDlX 13

lrlon-isomorphic almost disjoint Howell designs H(S, 10)

Set 1: {D1, D2}. f =t(1 9), (2 10), (3 7),(4 8), (S6)}.

Underlying graph of D., is graph no.2;

Underlying graph of D, is graph no. 17.

D1

D2

1,2

37
46

5B
910

1,6
4 1,0

59

37
28

34
19
25

6 r_0

7B

57
2L0

B9
1,4
36

49

3s
1B

2L0

67

69
4B
7 l-0

23
15

27

6B

3 10

1,9

45

B 10

56
13
19

24

3B
29
41

56

1 r_0

s r_0

1,7

¿o

4B

39
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Set 2: {D1, D2}. f = {(1 10), (2 8), (3 9), (4 6), (S 7)}.

Underlying graph of D,, is graph no.1Z;

Underlying graph of D, is graph no. S0.

D1 1-2

9 t-0

3'1

68
45

D2 r_6
5 r-0

49

27

3B

3s
26

1,4

7 1,0

B9

4L0

L1

36

5B
29

46

57
2B

39
1 l_0

25

69
r_B

310

47

'79

4B

610

15

¿J

7B

34
2 1,0

19

56

810

r.3
59
24

61

39
2B

57

46

1 1_0
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