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ABSTRACT

In this thesis, we investigate the use of orderly algorithms to enumerate
non-isomorphic (perfect) one-factorizations and sets of orthogonal
one-factorizations (Howell designs) of regular graphs. These algorithms
construct only non-isomorphic one-factorizations, by eliminating isomorphic
structures as the one-factorizations are built up from the individual one-factors.

With the help of a high-speed computer, we implement these algorithms
for several regular graphs. We enumerate one-factorizations of K, containing
prescribed automorphism groups. All perfect one-factorizations of K,,
containing non-trivial automorphism groups are determined. We covmplete the
census on the one-factorizations and sets of orthogonal one-factorizations for
regular graphs of order 10 or less, by performing an enumeration for the graph
Ky, minus a one-factor. We carry out enumerations for 6- and 7-regular graphs
on 12 vertices having transitive automorphism groups, and find many new
Howell designs. We also study special classes of Howell designs for several
graphs on 10, 12 and 14 vertices, such as skew designs, *-designs and
**-designs.

Two other algorithms, hill-climbing and backtracking, are used to

construct examples of perfect one-factorizations of K, and Kg,.
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CHAPTER 1

INTRODUCTION

1.1 Statement of the problem

In this thesis, we study the problems of enumerating non-isomorphic
(perfect) one-factorizations and sets of orthogonal one-factorizations (Howell
designs) of regular graphs.

With the assistance of a computer, we used orderly algorithms to carry out
the enumerations. These algorithms construct only non-isomorphic
one-factorizations, by eliminating isomorphic structures as the
one-factorizations are built up from the individual one-factors.

The study of one-factorizations belongs to the area known as
combinatorial design theory. Like many design problems, one-factorizations (of
complete graphs, in particular) are closely related to problems such as
scheduling round robin tournaments. The importance of the study of
one-factorizations cannot be over-emphasized, as illustrated by the following
quotations from Mendelsohn and Rosa (see [43]).

"The results of this lead to constructions and applications in other
branches of design theory and the recognition of other known designs as
special types or orthogonalizations of the basic idea.”

"The one-factorization of the complete graph is a building block of

resolvable designs and tournament scheduling. As such, it deserves thorough



study.”

In the following three sections, we define the terminology used in this
thesis. We also give a brief description of previous work done in the areas of
one-factorizations and Howell designs. In concluding this chapter, we give an

overview of the thesis, and some main references.

1.2 Graph theory

A graph Gr is defined as an ordered pair (V, E), where V is a finite
non-empty set of n elements, and E is a finite set of unordered pairs of distinct
elements of V. The elements of V are called vertices, and the elements of E are
called edges. We use the set {x,, X4, ..., X, 4} to denote the n vertices in V. The
number of vertices in the set V, n, is also called the order of the graph.

A vertex x is adjacent to another vertex y if E contains the pair {x, y}
(usually called the edge joining x and y). The degree of the vertex x is the
number of edges incident with it. A graph Gris r-regular if all its vertices have
the same degree r. An (n-1)-regular graph on n vertices is known as the
complete graph of order n, and is usually denoted by K. A complete bipartite

graph Gr on (m+n) vertices, denoted K is a graph where it is possible to

m,n?
partition the vertex set into two subsets, say V and V, ([V | =mand |V | = n),
so that every vertex of V is adjacent to all vertices of V_, and no vertex is
adjacent to another vertex of its own set. We note that K,  is n-regular.

A walk of the graph Gr is an alternating sequence of vertices and edges in
Gr. The sequence begins and ends with a vertex, and each edge in the walk is

incident with the vertices immediately preceding and following it; for example,



{Xgr {Xgs X4}s X4, {X4s X5}, Xo, -ey Xiq, {Xi.4, X}, X}, To shorten the notation, we will
represent the walk by the sequence of vertices, {x,, X4, X5, ..., X4, X}, with the
understanding that two consecutive vertices in the sequence represent the
edge omitted. A trail of the graph Gr is a walk such that the edges are all
distinct. A path of the graph Gr is a trail such that all vertices are distinct, with
the possible exception of x, and x;. If x, = x;, the path is closed and is called a
cycle. The order of a cycle is defined as the number of vertices in it. A cycle
that contains all the vertices of Gr (and hence is of order n) is called a
Hamiltonian cycle. A 2-regular graph on n vertices, denoted by Q_, is a
collection of one or more vertex-disjoint cycles, the order of each of which is > 3
and £n.

The n vertices {1, ..., n} in the vertex set V of a graph Gr may be renamed
by some permutation € S§,. We write the image of x under a as x* Thus
x*e V forall x e V, and we have V* = V. The edges in E are also renamed
under the action of o; that is, E* = {{x*, y°} : {x, y} € E}. Note that E* may not be
identical to E. We denote the resulting graph of Gr under the action of « by
Gr* = (V, E%). The automorphism group of the graph Gr, denoted Aut(Gr), is the
set of permutations such that the resulting graph Gr® is identical to Gr; that is,
Aut(Gr) = {a : Gr* = Gr, o € S_}. A graph Gr is said to have a transitive
automorphism group if for every vertex x e V, there exist automorphisms which

map X to each vertex of V; that is, {x* : v e Aut(Gr)} =V forallx e V.
1.3 One-factorizations

For an r-regular graph Gr on n vertices, a one-factorization (OF) of Gris a



partition of the edges in E into r one-factors, each of which contains n/2 edges
that partition the vertices in V. It is easy to see that, for an OF to exist, n must be
even.

The first literature about OFs of complete graphs, as far as we know, goes
back 128 years to the paper of Reiss [48]. However, we cannot rule out the
possibility of earlier written sources. The fact that OFs of complete graphs are
fairly easy to construct suggests that they may have been considered long
before.

It is well-known that there exists an OF of K, for every positive integer n.
In fact, over a hundred years ago, Lucas [42] gave a construction for a class of
OFs of K,,,, commonly known as the GK,,, series. These OFs are constructed as
follows.

LetV=2, ;U{e}, and letfy={{j, 2n--1} :je Z, ,\{0}} L {0, oo}. Itis not
difficult to see that f; is a one-factor. Define f;=1, +i= {{i+], i+2n-j-1} : j e Z, 4\
{0} Ui, o0}, fori=0, 1, .., 2n-2. Then the set {f,, f,, ..., f, o} is an OF of K-
Graphically, we can label the vertices of the regular polygon of 2n-1 sides by
the elements in V, and the centre by oo. Joining the vertices using the edges of
fo» we obtain a figure such as the one in Figure 1.1 (we use GK,z as an
example). Rotating the figure successively through an angle of 2n / (2n-1)
gives us all the one-factors of GK,,..

Another well-known family of OFs of K, is the GA, series (n is odd),
which can be constructed from GK__,, as illustrated by the following example on
GA,,.

There are two subcollections of one-factors of GA,,. We take two distinct

copies of GKj, as represented by the two one-factors {{0, o}, {1, 4}, {2, 3}} and



{{0', '}, {1', 4}, {2', 3}} (see above). Doubling up these two one-factors by
combining the two edges {0, oo} and {0, «'} into {0, 0'}, we obtain a one-factor
{{0, 07, {1, 4}, {2, 3}, {1", 47, {2, 3'}}. (Hence the vertex set of GA,, is the union
of the vertex sets of these two copies of K;, with the two infinity elements
deleted.) Now adding 0, 1, ..., 4 (mod 5) successively to this one-factor, we
obtain the first subcollection of one-factors of GA,,. The remaining one-factors
can be obtained by pairing the vertices of the first K, to those of the second one,

as follows (using mod 5 arithmetic):

{{0, (+0)}, {1, (+1)}. {2, (+2)}. {3, (j+3)}. {4, (+4)}h:j =1, ..., 4}.

Figure 1.1

The one-factor f, of GK16
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Foran OF F = {f,, f,, ..., f} of an r-regular graph Gr on n vertices, we denote



the resulting OF of F under the action of some permutation o e S, by F* =
{f,% % ..., 1%} where £& = {x*, y*} : {x, y} € f}. Two OFs F={f, f,,....f}and G =
{94, 95, --., 9} Of an r-regular graph Gr of order n are isomorphic if there exists a
permutation o on n vertices such that F* = G; that is, {f,*, ,%, ..., {%} =

{94, 95, ---, @} (note that since F and G are OFs of the same graph Gr,
o e Aut(Gr)). The automorphism group of F, denoted by Aut(F), is the set of
permutations that fix F; that is, Aut(F) = {a : F* = F, a € Aut(Gr)}. We call
o € Aut(F) an automorphism of F.

An OF F of an r-regular graph Gr on n vertices is said to be cyclic it Aut(F)
contains an automorphism that permutes the vertices of Gr in a single cycle (of
length n). An OF F is called 1-rotational, if there exists an automorphism in
Aut(F) which permutes the r one-factors of F in a single cycle.

Given two distinct one-factors of an OF of an r-regular graph Gr, the 2n
edges form a union of disjoint cycles. Furthermore, the order of such a cycle
must be an even integer greater than or equal to 4. An OF F of the graph Gr is
perfect it every pair of distinct one-factors of F forms a Hamiltonian cycle of the
graph. We give an example of a perfect OF of K, as follows. (In displays,

edges will be given without braces.)

12 13 14 15 16
34 25 26 24 23
56 46 35 36 45

It has been conjectured that a perfect OF exists for all K, . This appears to

be a difficult question. In fact, we only know of two infinite families of perfect



OFs: GK,, when 2n-1 is a prime, and GA,, when n is a prime (see [1] and [35]).
Perfect OFs were also known to exist on Ky, Ky, Ky, and K,,, (see [2]), and
no examples of a perfect OF were known for any other values of n. In this
thesis, we shall present two new perfect OFs, of K, and K., (see Chapter 9).
Given a one-factor f of K,,, a sub-one-factor f' is a non-empty subset of s
edges of f, where s < n. An OF F of K, is said to contain a
sub-one-factorization (sub-OF) of K,, if there exists a set F' of 2s-1
sub-one-factors from the one-factors of F, such that F' is an OF of a complete
graph on 2s vertices. For example, the following OF of Ky contains a sub-OF of

K, (on the set of vertices {1, 2, 3, 4}):

12 13 14 15 16 17 18
34 24 23 26 25 28 27
56 57 58 37 38 35 36
78 68 67 48 47 46 45

1.4 Orthogonal one-factorizations and Howell designs

Two OFs F and G of the graph Gr are orthogonal if any two edges of the
graph which belong to the same one-factor of G belong to different one-factors
of F (and vice versa).

A Howell Design H(s, t) is a square array of side s having the following
properties: (1) each cell of the array is either empty or contains a two-subset of
a t-set, which we usually represent by the set of t integers {1, 2, ..., t}, (2) each

element of the t-set occurs in exactly one cell of each row and each column, (3)



any two-subset occurs in at most one cell of the array.

Howell designs were first defined by Hung and Mendelsohn in [28], after
E. C. Howell, who first constructed such designs (for s =t-1 andt = 4, 6, ..., 30)
around 1900 for scheduling bridge tournaments (see [28]).

It is well-known that a pair of orthogonal OFs of Gr, an r-regular graph on
2n vertices, gives rise to a H(r, 2n); and, conversely, the existence of a H(r, 2n)
implies the existence of a pair of orthogonal OFs of some r-regular graph on 2n
vertices (see [50]). We call Gr the underlying graph of the Howell Design. Thus

the underlying graph of the following H(4, 6) is K; minus a one-factor.

16 45 23
34 26 15
25 14 36

35 12 46

We note that the two corresponding orthogonal OFs, F and G, are as follows.

F:
12 14 15 16
36 26 23 25
45 35 46 34
G:
12 14 15 16
35 25 26 23
46 36 34 45



It is easy to see that for H(s, t) to exist, we must have /2 <s <t-1. In fact,
the necessary and sufficient conditions for the existence of a Howell design

H(s, t) have been completely resolved, as stated in the following theorems.

Therorem 1.1 ([60], Theorem 6.1)
If s is an odd positive integer and if t is any even integer
satisfying the necsssary condition (t/2 < s < t-1), then there is
an H(s, t) with precisely three exceptions: there is no Hfs, 1)

for (s, t) = (3, 4), (5, 6), and (5, 8).

Theorem 1.2 ([6], Theorem 6.10)
If s is an even positive integer and if t is any even integer
satisfying the necessary condition, then there is an H(s, t)

with precisely one exception: there is no H(2, 4).

However, the question as to which regular graphs admit a Howell design
appears to be a difficult one. Holyer [26] showed that deciding whether a
regular graph Gr admits an OF is NP-complete. The computational complexity
of deciding the existence of Howell designs for Gr remains an open problem.

It is well-known that K | (n# 2 or 6), K, (n>4) and K, - f (where fis a
one-factor of K, and n > 3) admit Howell designs (see [10], [18] and [19]). Also,
everything is known for regular graphs of order up to 10. Aside from these
cases, not much else is known in general (see [51]).

We remark that an H(2n-1, 2n), a (2n-1) x (2n-1) square array with K, as

the underlying graph, is commonly referred to as a Room square of order 2n



[49]. Nemeth (see [27]) was the first to observe that the existence of a pair of
orthogonal OFs of K, is equivalent to the existence of a Room square of order

2n. The following is an example of a Room square of order 8.

12 57 38 46
13 58 26 47
56 14 37 28
34 68 15 27
78 23 16 45
48 25 17 36
24 67 35 18

This idea of Howell designs can be generalized to higher dimensions, as
well. We can define an i-dimensional Howell design Hi(s, t) to be an
i-dimensional array which satisfies property (1) of the Howell Design, such that
each two-dimensional projection of Hy(s, t) is an H(s, t). We refer to an Hs(s, t)
as a Howell cube. Similar to the 2-dimensional case, an H(r, 2n) is equivalent
to a set of i mutually orthogonal OFs of the underlying graph Gr, an r-regular
graph on 2n vertices.

Given a pair of orthogonal OFs {F,, G,} of an r-regular graph Gr on n
vertices, we say that it is isomorphic to another pair of orthogonal OFs {F,, G,}
of the same graph, if there exists a permutation o on n vertices such that
{F% G;% ={F,, G,}. Thus we define isomorphism of Howell designs in terms
of isomorphism of pairs of orthogonal OFs. This can also be generalized to

higher dimensions. The isomorphism of sets of i orthogonal OFs (that is,

10



i-dimensional Howell designs), i = 3, is defined similarly.
Several classes of Howell designs that are of special interest are defined

in later Chapters (see Chapters 7 and 8).

1.5 Overview of the thesis

In Chapters 2 to 4, orderly algorithms for enumerating OFs and Howell
designs of regular graphs are discussed. Chapter 2 presents orderly
algorithms for complete enumeration of OFs of regular graphs, while Chapter 3
gives orderly algorithms that enumerate OFs containing prescribed
automorphism groups. Chapter 4 deals with orderly algorithms for enumerating
Howell designs.

Chapters 5 to 8 give the results of enumeration of OFs and Howell
designs for several graphs. An enumeration of OFs of K,, containing certain
prescribed automorphism groups is carried out in Chapter 5. A complete
enumeration of perfect OFs of K, , containing non-trivial automorphism groups
is presented in Chapter 6. Chapter 7 investigates OFs and Howell designs of
the cocktail-party graph, K,, minus a one-factor. In addition to special classes
of Howell designs for some graphs on 10 and 14 verices, OFs and Howell
designs of several graphs on 12 vertices are studied in Chapter 8.

Chapter 9 describes the construction of perfect OFs of Ky, and K, by
other algorithms.

Chapter 10 gives a brief summary of this thesis and some open problems.

Appendices 1 to 13 present some of the results of enumerations.

11



1.6 Main references

For background materials on OFs of complete graphs, we refer the
readers to the survey paper by Mendelsohn and Rosa ([43]). A wealth of
information on Howell designs can be found in [6], [28], [52], [53] and [60].

For readers interested in orderly algorithms, we recommend the papers
by Brown [12] and Read [47].

Many of the results in this thesis can be found in the following papers of
Seah and Stinson: [54], [55], [56], [57] and [58]; and the paper of lhrig, Seah
and Stinson [32].

We would like to mention that all of the computer work in this thesis was
implemented in PASCAL/VS, and run on the AMDAHL/580 computer at the

University of Manitoba.
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CHAPTER 2

ORDERLY ALGORITHMS FOR ENUMERATING ONE-FACTORIZATIONS OF
REGULAR GRAPHS

2.1 Introduction

One of the most interesting problems related to OFs of r-regular graphs is
the enumeration of all pairwise non-isomorphic OFs of these graphs. Many
researchers are also interested in OFs that have additional properties (e.g.
perfect OFs).

In this chapter, we describe a class of algorithms that can be used to
enumerate non-isomorphic OFs of r-regular graphs. These algorithms are
known as orderly algorithms, and will be described in detail in the remaining of
this chapter. In Chapter 3, we discuss a related class of algorithms, which
enumerate OFs containing specified automorphism groups. These are referred
to as "automorphism orderly algorithms".

We first record in the following section previous work that has been done

with regard to the enumeration of OFs of r-regular graphs.

2.2 Non-isomorphic OFs of regular graphs of small order

Although the existence of OFs of complete graphs K,,, for every positive

integer n has long been settled, the determination of N(2n), the number of

13



pairwise non-isomorphic OFs of K, , appears to be difficult. Wallis gave an
lower bound on N(2n) and showed that N(2n) > 2 for n > 4 [65]. Later, Lindner
et al. (see [41]) and Cameron (see [13] and [14]) proved that N(2n) goes to
infinity with n. The best result concerning N(2n) that is known today is derived

by Cameron in [14], and is as follows:

Theorem 2.1 For sufficiently large non-negative n, In N(2n) ~ 2n2n 2n.

In fact, the exact values of N(2n) are only known for a few small values of n.
Theorem 2.2 N(2) = N(4) =N(6) = 1; N(8) =6 [17, 22, 66]; N(10) = 396 [22].

Enumeration of non-isomorphic OFs of other r-regular graphs on n
vertices (r # n-1) has been carried out by various researchers. Some earlier
work was done in [28] and [66]. Rosa and Stinson (see [51]) recently
enumerated non-isomorphic OFs of regular graphs of order < 10 and degree
<7. In Chapter 7, we enumerate OFs of K,, minus a one-factor.

Denote Np(2n) to be the number of non-isomorphic perfect OFs of K,,_.
Not much is known about Np(2n), except for n < 6. It is an open question if

Np(2n) 21foralln>2.

Theorem 2.3 Np(4) = Np(6) = Np(8) = Np(10) =1, and Np(12) =5. [43]

14



2.3 Comments on algorithms for enumerating one-factorizations of regular

graphs

As in many other combinatorial problems, the problem of enumerating the
non-ismorphic OFs of r-regular graphs on n vertices quickly becomes
computationally intractible when n increases. Although N(8) was first
determined by hand [17], the complete enumeration of K,, is probably
impossible without the use of computers. Since Gelling enumerated N(10) in
1973, computer technology has advanced in leaps and bounds. Yet, the value
N(12) still cannot be determined in a reasonable amount of time, which
suggests how difficult this problem is (see also Chapter 5).

Due to the lack of success with OFs of complete graphs, many
researchers have turned their attention to special classes of OFs. A lot of work
has been done recently on perfect OFs of complete graphs (see [2], [3], [25],
[29], [30], and [31]). Others have investigated regular graphs of smaller
degrees (see for examples, [21] and [51]).

In almost all of these cases, computers have been used to do all or part of
the enumeration. Most of these computer algorithms involve first of all
constructing all OFs of the graph, followed by the rejection of isomorphic
copies. Some of these algorithms do partial isomorphism rejection by means of
invariants (see for examples, [21], [22] and [23]). Specific characteristics of the
problems on hand are often incorporated into the algorithms to speed up the
enumeration process. Thus, the algorithms often cannot be easily modified to
apply to other similar problems. Also, this type of approach will probably end

up requiring more computer time and storage, when compared to the orderly
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algorithms discussed in this thesis. More storage is needed because during
the process of enumeration, we are dealing with more (partial) structures (some
of them are isomorphic); hence additional work (computer time) is required to
extend them to (complete) OFs.

Using orderly algorithms, we construct the OFs in a step-by-step, orderly
manner. We build up the OFs by adding a one-factor at a time. Every time a
one-factor is added, we check to make sure that the (partial) OF we have thus
far is not isomorphic to any other one we have already constructed. Thus,
throughout the algorithm, we construct only non-isomorphic OFs, by eliminating
isomorphic structures as they are being constructed.

In the following sections, we give the definitions and describe the orderly
algorithms for enumerating the OFs of K, .. These algorithms can be modified

easily for other regular graphs, as discussed in Section 2.7.
2.4 Definitions and orderings for K,

To explain the orderly algorithms, we need the following definitions.

We first need to define orderings on edges, one-factors, etc, of K,.. All
orderings are defined lexicographically, as follows.

Suppose the vertices are numbered 1, ..., 2n. An edge e will be written as
an ordered pair (p, p') with1 <p< p' <2n. For any two edges e, = (p,, p1') and
€, = (P, p?_'), we say ey < e, if either of the following is true: (1) p; < p,, or (2)
Py =P, and p1' < pz'.

A one-factor f is written as a set of ordered edges, ie. f =

(e, €5, €3, ..., ), where e; <e;whenever i < j. For two one-factors f;=
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(€1, i1 €43 - €5) and f; = (g1, €, €53, ..., ©},), We say f; < f; if there exists a k
(1 <k <n) such that e; = ¢; for all | < k, and e;, < e,

An OF F of K, is written as an ordered set of 2n-1 one-factors, i.e. F =
(f5 f5, ... f55.), where f; < f; whenever i < j. We use F, G, H to denote OFs, and
f, g, h; the corresponding one-factors.

We define an ordering for OFs as follows. For two OFs F and G, we say
that F < G if there exists some i, 1 <i < 2n-1, such that f.<g, and fj =g for all
j <.

For1 <i<2n-1, F; = (f;, f,, ..., f;) will denote a partial OF consisting of an
ordered set of i one-factors. We say that i is the rank of the partial OF. Note that
F,..4 = F, a (complete) OF. We can also extend our ordering to partial OFs of
rank i, in an analogous manner.

Define U, to be the set of all one-factors containing the edge (1, i+1),
where i =1, .., 2n-1. We say a partial OF F; = (f,, f,, ..., f;) of rank i is proper if
fj € Uj for all . We note that a complete OF is proper.

The automorphism group of the complete graph K, is S,,, the symmetric
group on 2n elements. Thus given a proper partial OF F, (of rank i), we can
rename the 2n points using a permutation o€ S, , and obtain another partial
OF (not necessarily proper) of the same graph, denoted F®. We say F, is

canonical if F* > F,; for all permutations o. We have the following theorems on

canonicity.

Theorem 2.4 If two proper partial OFs of rank i, F; and G,, are distinct and
are both canonical, then F, and G; are non-isomorphic.

Proof By definitions, F*>F,and G*2 G;foralla e S,,. Without
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Theorem 2.5

Proof

Theorem 2.6

Proof

loss of generality, let F;< G;. If F;and G, are isomorphic, then
there exists an a e S,, such that G® = F,. But then G%=

F, < G;; a contradiction.

If a partial proper OF F;= (f,, f,, ..., f) is canonical, and
1 <j<i, then Fj= (fy, f5, ..., f) is also canonical.

Suppose Fj is not canonical, then there exists an e S,
., B} < F; a

such that F* <F. But then F* U {f,,

contradiction.

If a partial proper OF F;= (f,, f,, ..., f) is not canonical, then
any complete OF extended from F; is also not canonical.

Since F; is not canonical, then there exists an e S,, such
that F*<F. We observe that F® must also be proper.
Consequently, if F, is extended to a complete OF with the set
of one-factors R={f 4, ..., 5,1}, then F* UR* < F, U R. Thus,

F, U R is not canonical.

By Theorem 2.6, we see that if a proper partial OF F; is not canonical, then

we may discard it. This will reduce the amount of work to be done later.

2.5 Orderly algorithms for enumerating canonical OFs of K,,

We now describe the orderly algorithms that can be used to construct

canonical (non-isomorphic) OFs of a complete graph K,,. There are two ways
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that one can go about generating the OFs of K, : (1) breadth-first algorithm, and

(2) depth-first algorithm.

(1) Breadth-first algorithm
Let F; denote the set of canonical proper partial OFs of rank i. A
breadth-first algorithm generates each set F; of canonical proper
partial OFs of rank i in turn, starting with i = 1 and ending with i = 2n-1.
Once the whole process is through, F,_ _, is the set of all the
non-isomorphic OFs of K,  (in canonical form). The following

pseudo-code describes how to generate F,_, from F, (step i+1):

i+1
F.i=9;
FOR each F; e F; DO
FOR each one-factor f e U, _, that is disjoint from all one-factors of
F, DO
FOR each permutation o« DO
(1) compute * and F%;
(2) IFF* U {f} < F, U {f} THEN
F; U {f} is not canonical, discard it and go on to next f;
{Here F* U {f®}>F; u{f} forall a. Hence F; u {f} is canonical and
proper, so save it for the next step.}

Fi.e=F V{FU{fl}.

(2) Depth-first algorithm

A depth-first algorithm uses backtracking. Instead of generating all
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canonical proper partial OFs of each rank in turn, a depth-first
algorithm tries all possible ways of extending each given F;to an OF,
before trying the next F. The following recursive pseudo-code
describes how to generate from a given F;, all F,_; extending F,
where 0 <i<2n-1. Let F, be the partial OF of rank 0 (an empty set),
and F,* = F, forall o € S,,. We invoke the procedure using

Depth-first(F,, 0).

Procedure Depth-first (F, i):
IFi=2n-1 THEN
F;is a canonical OF
ELSE
FOR each f e U, that is disjoint from each of the 1-factors in F, DO
FOR each permutation o DO
(1) compute f* and F;
(2) IFF* U {f < F, U {f} THEN
F, U {f} is not canonical, discard it and go on to next f;
{Here F*u{f} 2F, U {f} forall o. Hence F; U {f} is canonical
and proper.}

Depth-first (F, U {f}, i+1).

It is not difficult to see that both the depth-first and the breadth-first
algorithms will enumerate all canonical proper partial OFs of each rank. Since
all (complete) OFs are proper, we can determine the number of non-isomorphic

OFs by either method.
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The algorithms outlined above can easily be modified for certain classes
of OFs that are of interest. For example, to construct non-isomorphic perfect
OFs of K,,, we modify the algorithms so that a one-factor f € U, ; must be

disjoint from and form Hamiltonian cycles with each of the one-factors in F,.

2.6 Canonicity mappings for K,

In testing whether a proper (partial) OF F, of K, is canonical, we can
check to see if F* =F;forall a e S,,, the automorphism group of K, .. Thisis a
lot of work, even for small values of n; for example, when 2n = 10, |S,, | = 10! =
3628800.

In practice, we can do a lot better than this. In the case of complete
graphs, all one-factors are isomorphic to each other. For any given two
one-factors f; = (i1, Piy), (P Pia)s s (Piy Pin)) AN fj = (B}, Pyt (Pizs P oo
(pjn, Pjn)), there exists an o such that * = fj; for example, o = (p;, Pi1) (Piy’ Pj1) -
(Pin pjn) (P pjn'). Thus, the set of proper partial OF of rank 1 consists of only
one one-factor, f, = ((1, 2), (3, 4), ..., (2n-1, 2n)), the smallest one-factor of Kop
That is, in using the orderly algorithms, we can start with F,={f}.

Consequently, we can restrict the canonicity testing to those o e S,,, such
that o maps a one-factor of F; into f, (any other o will result in F* > F). Now
there are 2"n! ways of mapping one one-factor to another. Therefore, for a
proper partial OF F;, the number of mappings to be carried out equals i-2"n!,
which has a maximum value of (2n-1)2°nl. For example, when 2n = 10, the
maximum number of mappings for testing the canonicity of proper partial OF of

Kyo is 9-2%5! = 34560, a marked improvement over 3628800.
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We can carry this idea one step further. We note that any pair of disjoint
one-factors forms a union of disjoint cycles of even lengths (= 4). Since any
a e S,, must preserve the structure of the graph K,_, it follows that a set of two
one-factors must map to another pair of disjoint one-factors with the same cycle
structure under the permutation oo e S, .. Thus, in testing the canonicity of
proper partial OFs of K, we can restrict ourselves to those o € S, such that
the cycle structure of a pair of disjoint one-factors is preserved. As we shall see
in Chapters 5, 6, and 7, this will further reduce the number of mappings that

need to be done.

2.7 Enumerating canonical OFs of other regular graphs

For other r-regular graphs Gr on 2n vertices, we can enumerate the
non-isomorphic OFs of these graphs by modifying slightly the algorithms for Ko
outlined in the preceding sections.

First, we label the 2n vertices by {1, ..., 2n} in such a way that edges (1, 2),
(1,3), ..., (1, r+1) appear in Gr. An OF F of Gr is written as an ordered set of r
one-factors; that is, F = (f;, f,, ..., f,). We define F; = (f,, f5, ..., f;) to be a partial OF
of rank i, where 1 <i<r. A partial OF F, is proper if fj € Uj, where 1 <j<i. The
orderings are identical to those for complete graphs.

In using the breadth-first algorithm, we would generate F; in turn, starting
with i = 1 and ending with i = r. Similarly, the recursive algorithm for the
depth-first algorithm needs to be changed only so that extension of proper
partial OFs stops ati=r.

In general, the order of the automorphism group of an r-regular graph Gr
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other than K, is much smaller than that of K, . Thus it suffices to use the
automorphism group of such a graph to carry out the canonicity testing (see
Chapter 8); that is, we can use the set Aut(Gr) = {a : Gr* = Gr}. We need to
consider only mappings o € Aut(Gr) because the edge set E must be preserved
under such a (that is, E* = E). One advantage of using the set Aut(Gr) is that we
use the same mappings o for every partial OF. We remark, however, that if a
graph with a "large" automorphism group is to be dealt with (for example, a
complete bipartite graph), we may have to use the techniques of mapping pairs

of disjoint one-factors to reduce the amount of computer work required.

2.8 Breadth-first versus depth-first algorithms

On the surface, the breadth-first and the depth-first algorithms are not very
different. In actual fact, however, they differ in many respecits.

Although both algorithms can produce the number of proper partial
canonical OFs constructed at each step, the breadth-first algorithm seems to be
the more natural way to do it. If the depth-first algorithm does not run to
completion, it would not give a complete count of proper partial canonical OFs
at the initial steps.

On the other hand, the depth-first algorithm has several advantages over

the breadth-first algorithm.
(1) With the depth-first algorithm, we can incorporate pruning, by showing

that some F, cannot be extended to an OF, and hence reducing the

overall amount of work to be done (and the computer time required).
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Pruning can also be incorporated into the breadth-first algorithm, but it
cannot be implemented as efficiently as in the case of the depth-first
algorithm. The reason is that with the breadth-first algorithm,
extension of partial OFs is done on a step-by-step basis. (At step i+1,
F;is extended to F;_,.) Consequently, we will have to redo the addition
and deletion of one-factors at each step (see the next section).

(2) With the depth-first algorithm, no storage is required for the
intermediate structures at each step, as compared to the breadth-first
method. The storage requirement for the breadth-first algorithm could
be quite substantial (for example, refer to Tables 5.2 and 6.2).

(3) The depth-first algorithm is usually faster than the breadth-first
algorithm. This is because with the breadth-first algorithm, some
calculations have to be redone at the next step (since in general, it is
not feasible to store all intermediate results). Thus for example, F¢
may need to be recalculated at steps i+2, i+3 and so on (see Chapter

6).

2.9 Pruning

Pruning involves showing that certain partial OFs F; cannot be extended
to complete OFs by "looking ahead" into later steps, without actually carrying
out the extensions.

We describe the constraints that we used to prune the set of proper partial
OFs F; of K,,, as follows. We remark that this can easily be modified for other

regular graphs.
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Given an F, we define sets T, ,, T » Ton.q, Where Tj ={fe Uj :fis

i1 Big2r o
disjoint from each of the one-factors of F}. If any ‘I'j = @, then F; cannot be
completed to an OF of K, , so we do not have to investigate any extensions of
F,. For perfect OFs, we require that each of the one-factors in T]. (where
i+1 £j <2n-1) also forms a Hamiltonian cycle with each of the one-factors of
F.
Other additional checks can be implemented. For example, in
constructing perfect OFs, we observe that if there exist some j such that |Tj| =1,
then the one-factor in Tj must form a Hamiltonian cycle with at least one
one-factor from each of the T, k #jand i+1 <k < 2n-1.
By eliminating these F; that cannot be extended to complete OFs, a
reduction in computer time generally results. Our experience with the
enumeration of perfect OFs of K, indicates that pruning reduces the CPU time

required by approximately 50% (see Chapter 6).

2.10 Animplementation for pruning

We implemented the pruning scheme described in the previous section
with the depth-first algorithm. We note that when a one-factor f e U, is deleted
from (or added to) a proper partial canonical OF, we do not have to recompute

thesetsT. ., T

is1r Tipor - Tonq- All we need is to be able to dynamically add (delete)

one-factors to (from) the sets T 4, T.,, ..., To.1, When f is deleted from (added

12
to) the proper partial OF.
In this section, we describe an efficient implementation of dynamic

addition and deletion of one-factors.
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To facilitate our discussion, we will use a vector notation. We represent
the one-factors in U; by a vector V; of one-factors. (Thus V/[j] refers the jth
one-factor in U;.) Assume U, has m; one-factors. Define two vectors SOURCE,
and WHERE;,, each containing m; elements. SOURCE(]j] gives the index to the
one-factor in V;, and WHERE(]] gives the index to SOURCE;, such that
SOURCE[WHERE(j]] = j. LAST,is defined such that the one-factors given by
V,[SOURCE(j]] for j = 1, ..., LAST, are admissible candidates for extending a
proper partial OF.

Initially, we set LAST, to m, fori =1, ..., 2n-1 (all one-factors pointed by
SOURCE;[1] to SOURCE[LAST]] are admissible). Thus, T, equals U, fori=1, ...,
2n-1. We also set SOURCE(j] and WHERE/[jJto j, forj=1,..,mandi=1, ..,
2n-1. Thus SOURCE([1] points to the first one-factor in V;, and WHERE;[1] says
that the location of the first one-factor in V, can be found in SOURCE[[1], etc.

When extending F; to the next level (step i+1), we need only examine
those one-factors in V, ; pointed to by SOURCE, ,[1] through
SOURCE;

i+1[LAST, 1. If we want to process these one-factors in the same

orderasinV.

i1» then the following pseudo-code could be used:

FORK:=1tom. , DO

i+1

IF WHERE, ,[K] <= LAST, ; THEN
{The Kth one-factor, V, 4[K], is admissible.}
ELSE

{The Kth one-factor, V, ,[K], is inadmissible.}

If the order in which we process the one-factors is not important, then the
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following, more efficient pseudo-code could be used:

FORK :=11to LAST, , DO

i+1

{The one-factor V, 4[SOURCE, 4[K]] is admissible.}

When a one-factor f e T, 4 is added to F;, we delete those one-factors in
T, - Tpo.4 that cannot be used (that is, are not admissible) in the further
extension of F, U {f}. The following pseudo-code shows how to delete these

one-factors from Tj, fori+2 <j<2n-1:

K:=1,
NO_DELETED,_,[j] := 0;
WHILE (K <= LAST;) DO BEGIN
IF V,-[SOU RCEj[K]] is not admissible with respect to F,u {f} THEN
BEGIN
T = SOURCE{K];
W= SOURCEJ-[LASTJ-];
SOURCEj[K] =W;
SOURCEj[LAST'j] =T;
WHERE[[T] := LAST;;
WHERE([W] = K;
LAST, := LAST, - 1;
NO_DELETED,,4[j] := NO_DELETED,_,[j] + 1
END
ELSE K :=K +1
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END.

Note that NO_DELETED,_,[j] gives the number of one-factors deleted from
T; when a one-factor f € T;,, is added to F;. Also SOURCE[LAST, + 1],
SOURCE|LAST, +2], ..., SOURCE|LAST, + NO_DELETED,,[j] give the indices
in Vj of the deleted one-factors.

When we delete the one-factor f e U.

i1 from F. U {f}, we must add back the

one-factors deleted from T.

iv2s - Ton 1 (When f was added to F.). This can be

done easily. The following line of pseudo-code shows the addition of

one-factors back to Tj, where i+2 <j <2n-1:

LAST, := LAST; + NO_DELETED,[il;

We remark that both the dynamic addition and deletion of one-factors are
accomplished easily, without having to actually move the one-factors around in
the set {Uj :1<j<2n-1}. In fact, addition of one-factors to Tj takes no time, and
deletion of a one-factor requires a constant amount of computer time,
regardless of the size of Uj. However, we do need extra storage for the vectors
SOUF%CEj and WHEREj. For the order of the graphs we are working with, this
presents little problem. For example, there are 135135 distinct one-factors for
K,4 @nd hence a total of 135135-2-4 bytes (or approximately 1080 kilobytes) of

extra memory is needed.
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CHAPTER 3

ORDERLY ALGORITHMS - ENUMERATING ONE-FACTORIZATIONS OF
REGULAR GRAPHS CONTAINING PRESCRIBED AUTOMORPHISM GROUPS

3.1 Introduction

Complete enumeration of (perfect) OFs of complete graphs of relatively
small order still remains a difficult problem. Although orderly algorithms as
described in Chapter 2 can be used, usually the enumeration cannot be
completed within a reasonable amount of time (see Chapter 5), since the
number of intermediate (non-isomorphic) structures grows at an astronomical
rate. Consequently, many researchers have considered certain special classes
of OFs. Anderson investigated starter-induced and even starter-induced OFs of
complete graphs K,,, which contain Z, , and Z,_, respectivelyin their
automorphism groups (see [2] and also Chapter 9). In [25], Hartman and Rosa
enumerated the cyclic OFs of K, (n < 8) and showed that a cyclic OF of K,
exists ifand only if n # 2!, where t > 2.

In this chapter, we modify the orderly algorithms of Chapter 2 to construct
OFs of K, containing certain prescribed automorphism groups. To distinguish
these two classes of algorithms, we call the algorithms in this chapter
"automorphism orderly algorithms". We remark that although we refer to
complete graphs in the following discussion, these algorithms can easily be

modified for other regular graphs.
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3.2 Definitions

Orderings on vertices, edges and one-factors are defined as in Chapter 2.

Let A be any subgroup of S,,, the symmetric group on 2n elements. The
one-factors of K, form disjoint orbits under the action of the group A. We are
only interested in those orbits which contain edge-disjoint one-factors. We say
these are the eligible orbits under the action of A.

We order the one-factors in an orbit O = (f,, f,, f5, ..., f,) such that f, < f
whenever i<]. We say that {, is the representative of the orbit and write f, =
rep(O). We define L(O) = k to be the length of the orbit O.

We are now ready to define orderings on orbits and OFs. For two orbits
O, and O,, we say O, < O, if rep(O,) < rep(O,). An OF F is written as a list of
orbits (Oy, O,, ..., Op), where O; < O; whenever i < j. Note that 3, L(O) =
2n-1.

A partial OF F; = (O, O,, ..., O)) is written as a list of i orbits. We also define
R = X144 L(O)) to be the rank of F;. Note that when R = 2n-1, we have a
(complete) OF. Also, the number of orbits for two distinct OFs of K,,, may be
different.

Let U, be the set of all one-factors containing the edge (1, i+1). We say
that a partial OF F; = (Oy, O,, ..., O)) is proper if it contains one one-factor from
each of Uy, ..., U,, where rep(O;) contains the edge (1, k+1). We note that any

(complete) OF is proper, and we have the following theorem:

Theorem 3.1 If F; = (04, Oy, ..., O) is proper, and 1 <j< i, then F; =
(04, Oy, ..., Oj) is also proper.
Proof Assume rep(Oj) e U, and rep(O;) € U, where m <k. If Fj is
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not proper, then these exists a one-factor f € U, which
appears in F, but not in Fj, and | < m. Thus f must appear in

one of the orbits in {O .., O}. But this is impossible, since

10
f(e U)< rep(Oj) < rep(OjH).

For two proper partial OFs F; = (O4, O, ..., 0;) and G; = (P,, P,, ..., P,) that

have the same number of orbits i, we say that F, < G; if there exists a k, where

1 < k<i, such that rep(O)) = rep(P) for all | < k and rep(O,) < rep(P,). Note

that we do not require F; and G; to have the same rank.
3.3 A-canonicity and quasi-A-canonicity

A proper partial OF F; is said to be A-canonicalif F*2F; forall o e M(F)),
where M(F)) ={a.: e S,, and o maps any orbit of F, into an orbit of the same
length}.

A proper partial OF F, that is A-canonical is in general not canonical as
defined in Chapter 2, since the eligible orbits (one-factors) depend on the
prescribed group A. (Some one-factors may not belong to any eligible orbits.)

For example, the A-canonical OF of Ky containing the automorphism

group A=< o >=<(1)(2)(3 4 5 6) > consists of 1 orbit of length 1 and 1 orbit of

length 4, as follows:
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12
13
14
15
16

35
24
25
26
23

46
56
36
34
45

(orbit of length 1)
(orbit of length 4)

Here, the smallest one-factor f, = ((1, 2), (3, 4), (5, 6)) of K5 under the

action of A is not contained in an eligible orbit, since f,* = ((1, 2), (4, 5), (3, 6)) is

not disjoint from f,. In fact, the canonical equivalent of this OF is as follows:

12
13
14
15
16

34
25
26
24
23

56
46
35
36
45

Given an A-canonical OF F, we can determine its canonical form by, for

example, mapping all the one-factors of F into the smallest one-factor of Kons

((1,2), (3, 4), ..., (2n-1, 2n)). The smallest OF resulting from these mappings

is the canonical representation of F.

Similar to canonicity, we have the following theorems on A-canonicity.

The proofs are similar to Theorems 2.4 - 2.6.

Theorem 3.2

If two proper partial OFs having the same number of orbits i
(not necessary having the same rank), F, and G, are distinct

and are both A-canonical, then F; and G, are non-isomorphic.
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Proof

Theorem 3.3

Proof

Theorem 3.4

Proof

If F; and G; are of different ranks, they must be
non-isomorphic, since they contain different numbers of
one-factors.

Hence, suppose F; and G; have the same rank. Without loss
of generality, let F, < G;. If F; and G; are isomorphic, then
there exists an a. e M(F;) (= M(G))) such that G* = F,. By the
definitions, F*> F; and G* > G;. But then G*=F <G;a

contradiction.

If a partial proper OF F; = (O,, O,, ..., O,) is A-canonical, and
1 <j<i, then Fj = (04, O, ..., Oj) is also A-canonical.
Suppose Fj is not A-canonical; then there exists an a e M(Fj)
such that FjOL < F]-. But then Fj“ @) {Oj+1’ . Q)% < F; a
contradiction.

If a partial proper OF F; = (O,, O,, ..., O)) is not A-canonical,
then any complete OF extended from F; is also not
A-canonical.

Since F, is not A-canonical, then there exists an a e M(F))
such that F* < F,. Now F% must also be proper.
Consequently, if F, is extended to a complete OF with the set
oforbits R = {0, 4, ..., O}, then F* UR* < F, UR. Thus F,UR

is not A-canonical.

Let N(A) be the normalizer group of A within S, ; that is, N(A) =

n:n'An=Ane S,.}. We remark that r € N(A) maps any eligible orbit into
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an eligible orbit of the same length, since (O™A = (OA)" = O". It should be noted
that for a given F;, N(A) < M(F)), and in general [N(A)| << [M(F})|.

We say F,;is quasi-A-canonical if F* > F, for all a € N(A). A
quasi-A-canonical F, may not be A-canonical, since it is possible to have the
situation where all the mappings that take a F, into its isomorphic copy are not

in N(A) (for example, refer to case 20 of Table 5.4).

3.4 Automorphism orderly algorithms

In this section, we outline the automorphism orderly algorithms that can
be used to construct OFs of complete graphs containing prescribed
automorphism groups.

We can use either the breadth-first or the depth-first algorithms, as
described in the following paragraphs (see also Chapter 2). We use N(A)
instead of M(F) (for a given F,) to eliminate isomorphic structures, for the
following two reasons:

(1) the number of mappings to be performed is significantly reduced:;

(2) recalculation of M(F)) is avoided when F, changes.

However, the OFs thus generated are not necessarily non-isomorphic. An
additional step is therefore required to identify and eliminate the isomorphic

copies of these OFs.

(1) Breadth-first algorithm: the following pseudo-code describes how to

generate F; , from F,, where F, is the set of all quasi-A-canonical

i+1

proper partial OFs containing i orbits. Note that F, = {&}. We repeat

the procedure until some F, , (i 2 0) is an empty set.
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Fii1 =9
FOR each F, e F,DO
Determine the smallest integer j such that the edge (1, j+1) is not
inF;;
IFj#2n+1 THEN
FOR each orbit O whose representative is in Uj DO
IF the one-factors of O are disjoint from the one-factors in
F; THEN
FOR each n € N(A) DO
(1) compute O™ and F/7;
(2) IF F;*u {0O™ < F, U {O} THEN
F; U {O} is not canonical, discard it and go on to
next O;
{Here F* L {O™ > F; L {O} for all =, save F; U {O} for the
next step.}
Firi =Fiy U{F L {O}}
ELSE

F,is a complete OF.

(2) Depth-first algorithm: the following recursive pseudo-code outlines
how to generate from a given F;, all quasi-A-canonical OFs extending

F;
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PROCEDURE Depth-first ( F; )

Determine the smallest integer j such that the edge (1, j+1) is not in F.
IFj=2n+1 THEN
F, is a quasi-A-canonical OF;
ELSE
FOR each orbit O whose representative is in Uj DO
IF the one-factors of O are disjoint from the one-factors of F;
THEN
IFF®0{0% 2F, U {0} forall r e N(A) THEN
Depth-first (F;, U {O}).

The comments in Chapter 2 about the differences between the
breadth-first and the depth-first algorithms also apply here.

We remark that when A is the trivial group of order one, all one-factors are
eligible orbits of length one and N(A) = S, . Consequently, these two
algorithms reduce to the orderly algorithms described in Chapter 2. In this
case, we would obtain a complete enumeration of the OF s of Ksp-

Note that the algorithms above can be easily modified for subclasses of
OFs that may be of interest. For example, to enumerate perfect OFs, we modify
the algorithms so that pairs of distinct one-factors are both disjoint and
Hamiltonian.

Similar to the orderly algorithms in Chapter 2, automorphism orderly
algorithms can be modified easily for other r-regular graphs Gr on 2n vertices.

Again, we would label the 2n vertices by {1, ..., 2n} in such a way that

edges (1, 2), (1, 3), ..., (1, r+1) appear in Gr. Orderings are similar to complete
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graphs, and complete OFs would have rank = r. The '2n+1'in the pseudo-code
for the depth-first and the breadth-first algorithms in the previous section would

be changed to 'r+1'.

3.5 Canonicity testing

In some cases, the number of mappings of N(A) required for
quasi-A-canonicity testing, where A is the prescribed automorphism group,
could be so large that the enumeration probably cannot be done in a
reasonable amount of time (for example, see Section 6.4). This occurs when
the order of A is "small". Consequently, we can use one of the following three

strategies:

(i) Omit the canonicity testing of partial structures entirely;

(it) Carry out "partial” canonicity testing of partial structures: use a proper
subset of N(A);

(iii) Omit canonicity testing for certain steps. It should be noted that this
can also be implemented for the depth-first algorithm, although it is

more natural with the breadth-first algorithm.

In general, these strategies are only useful in situations when a small
number of OFs are expected. Otherwise, the number of isomorphic copies may
explode and much work would be required later. Examples illustrating the use
of these strategies include the enumeration of perfect OFs that contain certain
automorphism groups, and the enumeration of some special classes of OFs

which we suspect to be non-existent (see Section 6.4).
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3.6 Pruning

As in the case of orderly algorithms in Chapter 2, pruning can be
incorporated into automorphism orderly algorithms. The main difference is that
we now prune the orbits, instead of the one-factors.

To implement pruning with automorphisnﬁ orderly algorithms for complete
graphs K,,, we keep a list of orbit representatives of all the eligible orbits under
the action of prescribed automorphism group A. Let O, be the set of orbits
whose orbit representatives contain edge (1, i+1). Then given a proper partial
OF F, ={0,, O,, ..., O}, where rep(O,) contains the edge (1, i+1), we can
determine the sets P, 4, P,,,, ..., P, 4, Where P is a subset of O;, and every orbit
of F, is disjoint from every orbit in Pj, fori+1 <j<2n-1.

We can dynamically delete orbits from (or add orbits to) Pj, where
i+2 << 2n-1, when an orbit is added to (or deleted from) F.. The process
involved is very similar to the scheme described in Sections 2.9 and 2.10.

To check whether a proper partial OF F; can be extended to complete
OFs, we need to do some additional work. Essentially, we need to determine W
={j: (1, j+1) e f, and f is a one-factor of FlLandY={:(1,j+1) e f,andfis a
one-factor in an orbit of P, i+1 <k <2n-1}. Now if WU Y = {1, ..., 2n-1}, the

partial OF F; cannot be extended to complete OF.
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CHAPTER 4

ORDERLY ALGORITHMS FOR ENUMERATING HOWELL DESIGNS

4.1 Introduction

Enumeration of orthogonal OFs (that is, Howell designs) for regular
graphs has been carried out by various researchers. Define N;(2n) to be the
number of non-isomorphic sets of i mutually orthogonal OFs (or i-dimensional
Howell designs) of K,.. Beaman showed that N,(10) = 257630 [9]. In [7] and
[21], it was proved that N4(10) = 267, N,(10) = 1 (and Ng(10) = 0). In [51], Rosa
and Stinson also enumerated Howell designs of regular graphs of order < 10
and degree <7.

In this Chapter, we extend the canonicity concept for OFs in Chapter 2 to
orthogonal OFs, and devise orderly algorithms that can be used to enumerate

non-isomorphic orthogonal OFs of regular graphs.

4.2 Definitions

As before, we will give the definitions and algorithms in terms of complete
graphs K,.. Generalization to other regular graphs is easy and will be dealt
with at the end of this chapter.

The orderings of vertices, edges, one-factors and OFs are identical to

Chapter 2.
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We write a set of two orthogonal OFs F and G as an ordered pair (F, G),
with F < G. Denote F = (f;, f,, ..., 5, 4), G = (94, 95, -, 95,.1)- Given two Howell
designs (F,, G;) and (F,, G,) having the same underlying graph, we define
(F1, Gy) < (F,, Gy) if either (1) Fy < F,, or (2) F, = F, and G, < G,.

We extend the canonicity concept in Chapter 2, and say that (F, G) is

canonical if, for alla € S,,,, (F, G)*= (F, G). We have the following theorems.

Theorem 4.1 If (F, G) is canonical, then F must be canonical.
Proof If F is not canonical, then there exists an a.e S, such that
F*<F. But then F*< F < G, and hence (F, G)*< (F, G); a

contradiction.

Theorem 4.2 If (Fy, G,) and (F,, G,) are both distinct and canonical, then
they are non-isomorphic.

Proof Without loss of generality, let (F,, G,) < (F,, G,).
Suppose (Fy, G4) and (F,, G,) are isomorphic, then there
exists an o e S, such that (F,, G;) = (F,, G,)* Since
(Fo Gy) is canonical, we have (F,, G,)* 2 (F,, G,). Butthen

(Fy. Gy) = (Fy, Gy)*2 (F,, G,); a contradiction.

It follows from Theorem 4.1 that to construct the Howell designs of
complete graph K, , we can start with the set of canonical OF s F,,.1 of K;,, and
generate all OFs G that are orthogonal to and greater than F for each F ¢ Fo .1
It is easy to see that a given (F, G), where F < G and F is canonical, is not

necessarily canonical. Theorem 4.2 suggests that we can apply canonicity
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testing to all (F, G) pairs generated and eliminate the non-canonical

(isomorphic) ones.

4.3 Canonicity mappings

As in the case of constructing canonical OFs of K, , using the
automorphism group of K,, S,,, to carry out the canonicity testing is generally
unacceptabie.

In fact, in testing whether (F, G) is canonical, it suffices to check all
a e S, such that either F* or G* is canonical (by Theorem 4.1). That is, we
can ignore those a € S,, such that F* > F and G* > G, for then we have
(F, G)*> (F, G).

For a e S,, that makes F® canonical, we must have F* = F, since F is
canonical. That is, we can restrict the a's to the automorphism group of F. If, for
any such a, G*< G, then (F, G) is not canonical.

Fora e S,, that makes G* canonical, we can map each of the one-factors
of G into the smallest one-factor of K, (which must necessarily be a one-factor
of F), namely, f, = ((1, 2), (3, 4), ..., (2n-1, 2n)). As discussed in Chapter 2, the
number of such o equals (2n-1)2™n!, which is still a lot of work. Applying the
idea of mapping a pair of distinct one-factors to another pair as described in
Chapter 2, we can cut down substantially the number of a required. In this
case, it suffices to map every pair of distinct one-factors of G to the smallest pair
of distinct one-factors of F (that is, f, and the one-factor containing the edge
(1, 3)), for otherwise, G* > F. This is the approach we use (see Chapters 7 and

8). Using these permutations a for G, there are three situations where (F, G)is
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not canonical, as described by the following pseudo-code:

IF G*< F THEN (F, G) is not canonical
ELSE
IF G*=F THEN
IF F* < G THEN (F, G) is not canonical
ELSE
IF (F*=F) and (G* < G) THEN (F, G) is not canonical.

4.4 An orderly algorithm for Howell designs

We now outline the algorithm that we use to generate all the

non-isomorphic Howell designs for K,

FOR each F e F of canonical OFs of K, , DO:

1. Generate from U, i = 1, ..., 2n-1 the set T of one-factors that intersect
each of the one-factors of F in at most one edge.

2. Construct all possible OFs G, which consist only of one-factors from T,
discarding those G's < F. These G's are all orthogonal to F. Let G =
(94, 92s - Goq)-

3. IF no G's were constructed in step 2, go on to next F.

4. Determine the automorphism group B of F; that is, B = {o. : F*= F}.

5. FOR each G DO:

(a) IF there exists some o e B such that G* < G, (F, G) is not

canonical, go to next G. Otherwise proceed to (b).
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(b) Determine C = {u : (g, g)% = (f;, f,), fori=j, g, gjeG; f,f,e FLIF
(F,G)*2(F, G) foralla e C, (F, G) is canonical; otherwise (F, G) is

not canonical.
4.5 Higher dimensional Howell designs

We write a set of i mutually orthogonal OFs of K,, (which corresponds to
an i-dimensional Howell design) as an ordered i-tuple (Fy, Fy, ..., F) with Fj <F,
whenever j < k. We say that (Fy, Fy, ..., F)) is canonical if (Fy, Fp, oo, F)22
(Fy, Fy, ..., F) foralla e §,,. We have the following theorems, which are

generalizations of Theorems 4.1 and 4.2.

Theorem 4.3 It (Fy, Fyp, ..., F) is canonical, then for j= 1, ..., i-1, (F,, F,, ..., F)

is canonical.

Proof Assume for some j, where 1 <j<i-1, (Fy, Fo oo, Fj) is not
canonical. Then there exists an o e S, such that
(Fys Fou oeny Fj)“ < (Fy, Fy oo, Fj). Now since (Fy, Fy, ..., F) is
canonical, we have (F,, F,, ..., F)*2 (F,, F,, ..., F), or

i
(Fy, Fau oo, F)*U(F s F)O2(Fy, Fpy o F) U

j+1? Fj+2'
(Fis1» Fjys -, Fy), which is impossible because (F,, F,, ..., F)) <
(Fipq: Fypr s F) and (Fy, Fy, ..., F)* < (Fy, Fp .y F,).

Theorem 4.4 If (Fy, F5, ..., F) and (G,, G, ..., G)) are both distinct and
canonical, then they are non-isomorphic.

Proof Without loss of generality, assume (F,, F,, ..., F)) <
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(Gy, Gy, ...y G).

It (Fy, Fy, ..., F) and (G4, G,, ..., G) are isomorphic, then there
exist an o such that (Fi, For o, F) = Gy, Gy, ..., G;)*. Since

(Gy, Gy, ooy G, is canonical, we have Gy, Gy, ..., G)* =
(Gys Gp, -y G)). Butthen (Fy, F, ..., F) = (Gy, Gy, ..., G)*>

(G4, Gy, ..., Gy); a contradiction.
4.6 An orderly algorithm for Howell cubes

By Theorem 4.3, we know that for a set of three mutually orthogonal OFs
(a Howell cube), (F, G, H), to be canonical, F must be canonical, so must (F, G).
These observations suggest that the following algorithm can be used to

construct the Howell cubes:

FOR each non-isomorphic F of K,, DO: »

1. Construct from T the set of all OFs, G = {G:F < G and G is
orthogonal to F}, as in steps 1 and 2 of the algorithm for Howell
designs (Section 4.4).

2. Examine all pairs of OFs G and H, where G<Hand G,He G. i G
and H are orthogonal, then we have a set (F, G, H) of three
mutually orthogonal OFs.

3. Determine which triples (F, G, H) are canonical.

In determining the canonicity of the set of {(F, G, H)} (step 3 above), we

can make use of Theorem 4.3 to first of all eliminate those (F, G, H) of which
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(F, G) is not canonical. For the remaining triples, we can restrict the mappings
to those a. € S, that makes F%, G* or H* canonical. (The idea is very similar to
the canonicity testing of 2-dimensional Howell designs discussed in Sections

4.3and 4.4.)
4.7 An orderly algorithm for higher dimensional Howell designs

We present in this section an algorithm to construct all non-isomorphic
(i+1)-dimensional Howell designs for a given set of all canonical
non-isomorphic i-dimensional Howell designs H.

ForeachH = (F,,F,, ..., F) e H do

1. Generate from Uj (1 £j< 2n-1) the set T of one-factors that
intersect each of the one-factors of F. (1 <k <i)in at most one
edge.

2. Construct the set F = {F} of all possible OFs, which consist only of
one-factors from T, discarding those F < F..

3. Foreach F e F,Hu {F}is an (i+1)-dimensional Howell design.

We note that the set of (i+1)-dimensional Howell designs produced by the
algorithm above are not necessarily canonical (non-isomorphic). Thus, as in
the cases of Howell designs and Howell cubes, we need to eliminate

isomorphic copies (see Sections 4.3 and 4.6).
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4.8 Other regular graphs

The algorithms described in the preceding sections can be modified
easily for other r-regular graphs Gr.

With the vertices labelled and OFs constructed as described in Section
2.7, the Howell designs can be obtained using the algorithm in Section 4.4: the
only modification required is to change the '2n-1" in line 1 of the algorithm to 'r.
For higher dimensional Howell designs, algorithms described in Sections 4.6
and 4.7 can be used.

We would like to add that the same remarks in Section 2.7 about the
canonicity testing for r-regular graphs also apply here: the full automorphism
group of Gr is usually used since its order is generally fairly small (see Chapter

8).
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CHAPTER 5

ENUMERATING ONE-FACTORIZATIONS OF Ko AND K,

5.1 Introduction

In 1973, Gelling [22] enumerated the non-isomorphic OFs of K,o with the
assistance of the computer. Since then, the number of non-isomorphic OFs of
the complete graph of the next higher order, K,,, still remains to be settled.

In this chapter, we describe how the orderly algorithms described in
Chapter 2 can be used to construct the non-isomorphic OFs of Kyo- We also
show how automorphism orderly algorithms in Chapter 3 are used to
enumerate non-isomorphic OFs of K,, containing prescribed automorphism

groups, and obtain the following lower bound.

Theorem 5.1 For the complete graph K, ,, excluding those OFs containing
exactly one automorphism of six disjoint cycles of length two,
there are precisely 56391 non-isomorphic OFs with
non-trivial automorphism groups.

5.2 One-factorizations of K,

In using the orderly algorithms in Chapter 2, we note that there are

different ways one can carry out the canonicity testing (see Section 2.6). The
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approach we used is to map a pair of one-factors of F, U {f} into a fixed pair of
one-factors.

We observe that any two disjoint one-factors of Ko form either two disjoint
cycles of lengths 4 and 6 (type '46') or a Hamiltonian cycle of length 10 (type
'10'). The smallest one-factor in U, that forms a type '46" structure with f =
((1,2), (3, 4), (5,6), (7, 8), (9, 10)) is f, = ((1, 3), (2, 4), (5, 7), (6, 9), (8, 10)), and
the smallest one-factor in U, that forms a type '10' with f,is f, =
((1,3),(2,5), (4,7), (6,9), (8,10)). It follows then that F, = {(f,, f,), (f T},
where f, < f, <f..

To see how we map a pair of one-factors of F, U {f} (= (st ., fL)) into a

pair of one-factors at step i+1, we consider the following two cases:

(1) f,f,=1.f, (type '46'):

We map any ffo 1 <j<k<i+lof type '46"into f fy (in such a way that
either fj or f, is mapped to f,). To map into any othertwo one-factors of
type '46' would always make F*> F, (and hence would not tell us
whether F; is not canonical). There are 2:(2:2)-(2-3) = 48 ways to do
this.

We may ignore those fjfk of type '10', as mapping them into f,f_ would
always make F>F,. (In general , if f,f, is of type 'x', we may ignore
fjfk of type 'y’ so long as the canonical pair of one-factors
corresponding to type 'y' are greater than those of type 'x'. See the
following section.) The maximum number of mappings o required in
this case is 48:(9-8)/2 =1728, which is 1/20 as many mappings used

when mapping a one-factor to another (which needs 34560
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mappings).

(2) 1,1, =1_f, (type '10'):
All fjfk , 1€j<k<i+1, must be of type '10' (in general, no fjfk can be of
a type corresponding to a canonical structure less than f,f,). Thus we
discard those fe U, ; which form a type '46' structure with any of
fj e F, 1<j<i, before the canonicity testing. There are 2:(2'5) = 20
ways to map type '10' structures. The maximum number of such

mappings is 20-(9-8)/2 = 720.

Table 5.1 gives the number of canonical proper partial OFs and CPU time
taken for each of the steps. The number of (complete) OFs of K,o agrees with
the results in Gelling [22]. The table shows that the number of canonical
structures increases steadily during the earlier steps, then decreases at a
slower pace in the later steps. The enumeration took approximately

10.5 minutes of CPU time.

5.3 One-factorizations of K,

We could use the same algorithms in the previous section to construct the
canonical (non-isomorphic) OFs of K,,. However, the number of canonical
structures grows at such an astronomical rate that it is infeasible to have a
complete enumeration at this point in time. This is illustrated in Table 5.2,
where we use breadth-first algorithm to enumerate sets of canonical proper

partial OFs F, (i = 2, 3, and 4) of K, , containing a sub-OF of Ky
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Table 5.1

Non-isomorphic canonical proper partial OF of Kyo

Step i+1 type '46'  type '10' total CPU time (in seconds)
3 6 6 12 1
4 80 21 101 3
5 586 24 610 20
6 1608 14 1622 89
7 1722 9 1731 181
8 819 1 820 186
9 395 1 396 147
Table 5.2

Non-isomorphic canonical proper partial OF of K2 containing sub-OF of K,

Step i+1 # of canonical structures CPU time (minutes)
3 6 0.1
4 295 0.7
5 15445 26.0

In the remainder of this section, we describe how the different structures

formed by a pair of distinct one-factors of K,, may be incorporated in the orderly
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algorithms in Chapter 2 for enumerating OFs of K, .. We use K,, as an
example.

First of all, we determine the different types of cycle structure that can exist
for a pair of distinct one-factors of K,,. We note that the number of different
structures of a pair of distinct one-factors of K, | increases with n. Thus, a pair of
distinct one-factors of K, forms either (i) 3 cycles of length 4, or (i} 1 cycle of
length 4 and 1 cycle of length 8, or (iii) 2 cycles of length 6, or (iv) a Hamiltonian
cycle.

We then find the smallest one-factors in U, that form such cycle structures

with f,, the smallest one-factor of K. For K,,, the four one-factors are:

@ f = ((1,3),(2,4),(5,7), (6, 8), (9, 11), (10, 12));
(i) f; = ((1,3),(2,4),(5,7), (6,9), (8, 11), (10, 12));
(iii) ;= ((1,3), (2, 5), (4, 6), (7,9), (8, 11), (10, 12));
(iv)f, = ((1,3),(2,5), 4,7), (6,9), (8, 11), (10, 12)).

Notethat f, <f,<f; <f.< f,-

We say that a pair of distinct one-factors is of type 'x' if it is isomorphic to
the one-factors f, and f,. We can now define an ordering on the types of cycle
structure for a pair of distinct one-factors. We say a pair of distinct one-factors of
type X' < a pair of distinct one-factors of type 'y' if f, < fy, where f,, fy are the
smallest one-factors in U, that forms type 'x’ and type 'y’ cycle structures with f,
respectively. The breadth-first algorithm in Section 2.5 can then be modified as

follows (modifications to the depth-first algorithm are similar):

(1) In considering whether F, = {f;, 1, ..., f} could be extended to Fou{f}, if
for some 1 <j<i, the type of {fj, ft < type of {f;, f,}, then F, U {f} is not
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canonical and we do not extend F; to F,u {f}. Otherwise, go to (2).
(2) (i) For1 <j<i, if the type of {fj, f} is greater than the type of {fy, &},
then we do not have to carry out the mapping o of {fj, f} into {f,, f,},
since (F; U {fh)* > F, L {f}.
(i) For 1 <j<i, if the type of {fj, f} is equal to the type of {fy, 1o}, we
perform the mapping o of {fj, fyinto {f,, £,}. If (F, U {f})* < F,u {f} for

some j, F; L {f} is not canonical and we do not extend F, to F, U {f}.

5.4 Cycle structures of automorphism groups of one-factorizations of Kon

As a complete enumeration of non-isomorphic OFs of K, is not possible
at this point in time, we turned to a problem of a smaller scale: non-isomorphic
OFs containing prescribed (non-trivial) automorphism groups.

For the remainder of this chapter, we describe how automorphism orderly
algorithms as described in Chapter 3 are used to enumerate OFs_of Ky, with
certain prescribed automorphism groups.

Let a be a permutation of {1, ..., 12}, and define A= < a>. The generator a
of a cyclic group A on 12 elements can have one of 77 different cycle structures
(see Appendix 1). Many of these cases can be eliminated easily by the

following general results on the cycle structure of automorphisms of OFs of K,,,..

Lemma 5.2 If ais a non-identity automorphism of an OF of K, , then the
number of fixed points in ais even or 1.
Proof Let the number of fixed points of a be 2k+1 (k 2 1), and let the

fixed points be p,, p,, P3; ---s Pog,1- Consider the one-factor f

52



Lemma 5.3

Proof

Lemma 5.4

Proof

containing the edge {py, p,}. Then f must be an orbit of
length one. But then there exists an edge {p; pj} (qj is a
non-fixed point) in f which maps into an edge of another

one-factor; hence a contradiction.

It ais a non-identity automorphism of K, and has more than
n fixed points, then the number of fixed points in a = 2n.

Let the number of fixed points be 2k, where 2k > n. Then
there exists an edge of two fixed points in every one-factor of
the OF. Every one-factor is thus an orbit of length one.
Consequently, each one-factor has k edges made up of the
2k fixed points and it is impossible to have an edge of the
form {p, qj}, where p, is a fixed point and q; is a non-fixed
point (except the case when all the points in a are fixed

points).

If ais a non-identity automorphism of an OF of K,, and has
exactly n fixed points, then the remaining n points of a must
appear as disjoint 2-cycles.

Consider the one-factors that are fixed by a. Each of these
one-factors has n/2 edges made up of fixed points, so there
are exactly n-1 such one-factors.

The remaining n one-factors consist of edges of the form
{p;» qj}, where p, is a fixed point and q is a non-fixed point.

Therefore, all edges made up of non-fixed points, {q;, at,
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Corollary

Proof

Lemma 5.5

Proof

Lemma 5.6

must appear in the n-1 fixed one-factors. Consequently, the

non-fixed points can only appear as disjoint 2-cycles in a.

If n=2 (mod 4), then the number of fixed points in a cannot
be n (except when n = 2).

Consider the n-1 one-factors that are fixed by a. Each of
these one-factors has n/2 edges from the n points in the
2-cycles. Since n = 2 (mod 4), each of these one-factors
must have at least one edge of the form {py, P,}, where p,
and p, appear in the same 2-cycle. Now there are n/2
2-cycles (edges) to be filled in these n-1 one-factors. So

(n/2) 2 (n-1),orn< 2.

If ais a non-identity automorphism of an OF of K,, and has
no fixed points, then the number of 3-cycles in a cannot be 1.
Consider a 3-cycle (a b c). Edges {a, b}, {b, ¢} and {c, a}
appear in 3 distinct one-factors forming an orbit of length 3.
Thus we have

{a,b} --> {b,c} --> {c,a} > {a, b}

{e.xd > {ay} > {bz} > {c,%;

and (x y z) is another 3-cycle.
Let a be a non-identity automorphism of an OF of K,,. If the

number of fixed points in a is even and the remaining points

form a cycle, then there must be exactly two fixed points in a.
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Proof

Lemma 5.7

Proof

Corollary

Proof

Lemma 5.8

Proof

Let the number of fixed points be 2k, then the number of
non-fixed points is 2n-2k and they form a cycle
(4 92 93 -+ Aap-24)-

Consider the one-factors containing the edge {p; pj} made
up of fixed points: there are 2k-1 of these one-factors (orbits).
There is only one way that the non-fixed points may appear
in these 2k-1 one-factors; they must appear as edges

{94: Qe {920 Ay {930 Apyals -+ @nd {4, Qoppid- Thus
2k-1 = 1 and hence the number of fixed points is two.

Let a be a non-identity automorphism of an OF of K, If there
is @ 2-cycle (a b) in a, then the OF has an orbit of length one.

The one-factor containing the edge {a, b} must be fixed by a.

If a has exactly one fixed point, then there cannot be any
2-cycles in a.
If a has exactly one fixed point, then there is no one-factor

fixed by a. Consequently, there cannot be any 2-cycles in a.

Let a be a non-identity automorphism of an OF of K,.. If a
has 2 cycles of lengths L1 and L2 (L1 < L2), then
LCM(L1, L2) < 2n-1.

Let the L1-cycle be denoted (Py P2 ... P ), and the L2-cycle
be denoted by (q; q, ... ;). Since L1 = L2, the one-factor f

containing the edge {p,, g,}is in an orbit of length greater
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than one. So f maps into another one-factor containing the
edge {p,, g5}, which in turn maps into the one-factor
containing the edge {p,, 95}, and so on. Thus the one-factor
containing {py, q,} is in an orbit of length LCM(L1, L2).
Hence, LCM(L1, L2) < 2n-1.

5.5 One-factorizations of K, containing prescribed automorphism groups

We have the following theorem on the cycle structures that admit OFs for

K12-

Theorem 5.9 There are at most 18 cycle structures of a that admit OFs for
K12-
Proof Using Lemmas 5.2 to 5.8, we eliminated all but 29 cases

(refer to Appendix 1). Of these 29 cases, we can eliminate
11 further cases, by observing that a" for some n >1 is not an
admissible automorphism. As an example, for case 24, a
has cycle structure 6132, But then a3 has cycle structure

2318, which is case 74 and is ruled out by Lemma 5.4.

For those cases that are not eliminated by the above lemmas and hence
may admit OFs, we resort to the help of computer.  All the cases in Appendix 1
except cases 71 and 77 are dealt with. For cases 72 and 73, we first used the
breadth-first algorithm to construct F,, then extended the proper partial OFs in

F, to complete OFs by the depth-first algorithm. For the other cases, only the
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depth-first algorithm was used.

Both cases 71 and 77 require large amount of computing time. Case 77
is equivalent to a complete enumeration of the OFs of K,,, which is out of our
reach at this point in time. Case 71 involves constructing OFs containing
automorphisms of six 2-cycles. Instead of dealing with case 71 in its entirety,
we looked at the subproblem of the enumeration of OFs that contain two
automorphisms of six 2-cycles. That is, we have A = < a,, a, >, where a, =
((12) (34)(56) (78) (910) (1112)) and a, = ((13) (24) (57) (68) (9 11)
(10 12)). (It turns out that, up to isomorphism, this is the only admissible case
once we pick a;.) We refer to this as case 78 in Table 5.4. Similar to cases 72
and 73, we used the combination of breadth-first and depth-first algorithms.

Therefore, we have enumerated all OFs of K, except those containing
exactly one automorphism of six 2-cycles and those with the trivial
automorphism group.

In Table 5.4, we list the cases that admit at least one OF and the
associated statistics. It is interesting to note that there are 6 cases where N(A)
did not eliminate all the isomorphic OFs (cases 20, 44, 46, 47, 73 and 78).

Interested in finding out what mappings would have eliminated these
isomorphic OFs, we looked into case 20, where 30 pairs of isomorphic OFs
survived the test of N(A). Here, A=<(123456) (78910 11 12) >.

Of these 30 pairs of OFs, 6 of them have the full automorphism groups of
order 12, and 21 have order 24. The automorphism groups of these 27 pairs of
OFs each contains a unique cyclic subgroup B = < (135)(246) (79 11)
(810 12) >. Since B is unique, any « that takes an OF into its isomorphic copy

must also maps B into B; that is, oo e N(B). Thus if we use N(B) instead of N(A),
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we would be able to eliminate the 27 isomorphic OFs.

Each of the remaining 3 pairs of OFs has the full automorphism group of
order 48, and each has 4 copies of Z, in its automorphism group. In each of
these three cases, there exists an o € N(B) which takes a OF into its isomorphic
copy. Here again, using N(B) would have eliminated the 3 isomorphic OFs.

It should be emphasized that, in general, we do not know what the full
automorphism groups look like beforehand. Consequently, the best strategy is
perhaps to use the normalizer of the prescribed subgroup N(A) to obtain the
quasi-A-canonical OFs, followed by testing these OFs for isomorphism. The
statistics on K|, indicates that N(A) is able to get rid of most of the isomorphic
OFs. We would like to point out that, in certain situations, however, the
normalizer of the prescribed group N(A) is sufficient to eliminate isomorphic
OFs; that is, quasi-A-canonical OFs are non-isomorphic in these cases. These

results were derived in [33] and [46] which we record as the following theorem:

Theorem5.10  Suppose two OFs F and G of K, , contain Z_ in their
automorphism groups, where n is an odd prime or the
product of two distinct primes. If F is isomorphic to G, then

F¢ =G, for some o e N(Z,).

Thus for A = Z,,, the OFs of K,, constructed with the use of N(A) are
non-isomorphic (case 2 in Table 5.4 and Appendix 1).

Table 5.3 gives the distribution of the orders of automorphism groups for
the OF s of K, constructed in this paper. Note that the numbers in Table 5.3 are

exact, with the exception of the number of OFs of order 2.
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The CPU time for all cases dealt with except 72, 73 and 78 added up to
about 40 minutes. Case 72 took 7.5 hours, case 73 needed 30 hours, and case
78 consumed about 17 hours. These timings include the final step to eliminate
the isomorphic OFs from the set of quasi-A-canonical OFs (we first find the
canonical representation of these OFs, and then delete any duplications).

Given enough computer time, it would appear that case 71 can be
completely resolved. It remains to be seen how long it will take to enumerate
the case of trivial automorphism (case 77). However, judging from the fact that
there are 298 non-isomorphic automorphism-free OFs of K;, (out of a total of
396) [22], we suspect there will be many more non-isomorphic
automorphism-free OFs for K,, (It is interesting to note that none of the
complete graphs of lower order has automorphism-free OFs.) In fact, it has
been shown in [5] and [41] that the number of non-isomorphic
automorphism-free OFs of K, increases rapidly and goes to infinity with n.
(In[41], it is also shown that an automorphism-free OF of K,,, exists if and only

ifn>5.)
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Table 5.3

Frequency distribution of the orders of automorphism groups of OFs of Kyo

Order No.
2 > 39706
3 669
4 14801
5 92
6 245
8 610
10 10
11 2
12 138
16 76
20 2
24 25
32 4
48 6
55 1
110 1
240 2
660 1
Total 256391
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Table 5.4

One-factorizations of K, containing prescribed automorphism groups

Quasi-A-canonical OF A-canonical OF

Case Cycle |N(A)] No.of No. of Total Notin In Notin In
No.  Struc- distinct distinct prev. prev. prev. prev.
ture orbits  1-factors cases cases cases cases
ofa 1 @ (3) (4) ()
1 121 48 19 79 6 6 0 6 0
2 11111 110 25 275 5 5 0 5 0
3 10121 80 17 81 3 2 1 2 1
4 10112 80 57 561 7 6 1 6 1
11 82112 128 133 1033 12 12 0 12 0
20 62 144 221 1073 297 287 10 227 8
32 5212 400 905 4505 109 97 12 97 12
44 43 768 709 2557 390 381 9 376 8
46 4222 512 399 1551 76 74 2 64 2
47 422112 256 565 2213 328 291 37 273 31
48 4214 1536 783 3087 222 173 49 173 49

59 34 3888 1953 5805 1086 850 236 850 236
72 2512 7680 2561 5041 5676 5665 11 5665 11
73 2444 9216 1803 3531 38751 38029 722 37063 598
78  26x25 2304 399 927 13341 11572 1769 11572 695
Total 56391
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(1) =(2) +(3).

(2)- (4)  gives the number of isomorphic OFs (not appearing in previous cases)
which are not eliminated by N(A).

(3)-(5)  gives the number of isomorphic OFs (appearing in previous cases)

which are not eliminated by N(A).
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CHAPTER 6

ENUMERATING PERFECT ONE-FACTORIZATIONS OF Kia

6.1 Introduction

In this chapter, we investigate the number of non-isomorphic perfect OFs
of K,,. Four non-isomorphic perfect OFs for K,4 were shown to exist in [43].
Using the orderly algorithms described in Chapters 2 and 3, we construct 17
new pen‘ect OFs and hence improve the lower bound to 21. We also show that

these are the only perfect OFs of K4 having non-trivial automorphism groups.
Theorem 6.1 Np(1 4)>21.

We also compute the automorphism groups of these perfect OFs. We
find examples where the automorphism group has order 2, 3, 4, 6, 12, 84, and
156. It is interesting to note that none of the OFs is automorphism-free. The
existence of an automorphism-free perfect OF for K,, would lead one to suspect
there might be some of these for K, ,.

6.2 Orderly algorithms

In this and the following sections, we describe how the orderly algorithms

of Chapter 2 are used to construct perfect OFs of K, and Ky4- In the later
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sections, we apply automorphism orderly algorithms of Chapter 3 to produce
perfect OFs of K, , containing certain automorphism groups.

In testing whether a proper partial perfect OF F, v {f} of K, is canonical,
we used those o's that map a pair of distinct one-factors of F; U {f} into a fixed
pair of one-factors. Since we require any pair of disjoint one-factors to form a
Hamiltonian cycle, we can map a Hamiltonian cycle of length 2n into another
one of the same length. The number of such mappings is 2:2n = 4n. In the
case of K,,, we map any pair of disjoint one-factors into f, =
((1,2), (3, 4),(5,6), (7, 8), (9, 10), (11, 12), (13, 14)) and fy =
((1,3),(2,5),(4,7), (6,9), (8,11), (10, 13), (12, 14)), where f, is the
smallest one-factor in U, that forms a Hamiltonian cycle with f,, The maximum
number of such mappings for K, is (2n-1)-4n. Thus we have a polynomial-time
algorithm for determining isomorphism of perfect OFs of complete graphs. In
general, it is unknown if one can determine isomorphism of OFs in polynomial

time. The best known algorithms have complexity nc(°g 0 (see [16]).

6.3 ResultsonK ,andK,,

We started out by implementing the breadth-first algorithm, since this
method tells us the number of non-isomorphic proper partial perfect OFs at
each intermediate level before proceeding to the next level. It took
approximately 132 minutes of CPU time to construct the 5 perfect OFs of K,.,.
Using the depth-first method, incorporating pruning as described in Sections
2.9 and 2.10, the number of intermediate proper partial perfect OFs is

significantly reduced , and the enumeration took only 23 minutes of CPU time.
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(Depth-first algorithm without pruning took approximately 50 minutes of CPU
time.) The following table gives the number of canonical proper partial perfect

OFs of each rank, both with and without pruning.

Table 6.1

Non-isomorphic canonical proper partial perfect OFs of Ko

i # of canonical proper partial perfect OFs of rank i

without pruning with pruning
3 24 24
4 395 395
5 2679 2679
6 10987 10906
7 13791 3542
8 3491 14
9 209 7
10 6 6

-
oy
(4]
(8))

It is interesting to note that a canonical partial perfect OF need not be
proper. For example, there are exactly 32 (non-isomorphic) canonical partial
perfect OFs of rank 3 (see [34]), but only 24 of these are proper (see Table 6.1 ).

When we used the breadth-first method to attempt to enumerate Np(14), it

did not take long for us to conclude that the complete enumeration is
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impossible at this time. The number of proper partial perfect OF structures
generated and the amount of CPU time increase dramatically from one step to

the next, as indicated by the following table.

Table 6.2
Non-isomorphic canonical proper partial perfect OFs of Kiq

using the breadth-first algorithm

i # of canonical proper partial perfect OFs of rank i

3 174
4 23704
5* 34272

* using only the first 464 sets F, e F,

Consequently, we decided to improve the lower bound on Np(14) by
constructing as many perfect OFs of K4 as possible. We used the breadth-first
method to construct all partial perfect OFs in F,. Then, given a partial perfect
OF in F,, the depth-first method was used to generate all extensions to ~
complete perfect OFs.

With this approach, we were able to find 11 new perfect OFs of Ky4. They
are listed as sets 2 - 12 in Appendix 2. The four previously known perfect OFs
of Ky, are sets 1, 13, 14, and 15 (see Appendix 2). Sets 1 and 13 are GA,,and
GK,, respectively. Sets 13, 14 and 15 are constructed from even-starters in

Z,,; and set 13 can also be generated by a starter in Z,,.
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In total, 105 hours of CPU time were spent in finding these 11 new perfect

OFs.

6.4 Perfect one-factorizations of K, , containing prescribed automorphism

groups

The algorithms outlined in Chapter 3 were also to construct perfect OFs of
Ky, that contain prescribed automorphism groups.

We were able to prove that there are exactly 21 perfect OFs of K, with
non-trivial automorphism groups. In fact, these algorithms helped find 6 new
perfect OFs (sets 16 - 21 in Appendix 2), in addition to the 11 new perfect OFs
found by the orderly algorithms of Chapter 2.

We started by looking at the cycle structures of a permutation a of 14
elements.

In total, there are 135 possibilities, many of which can be easily

eliminated. In fact, lhrig proved the following results in [29].

Lemma 6.2 ([29], Theorem 3.3)

If a is a non-identity automorphism of a perfect OF of Ko
then the number of fixed points is at most 2.

Proof Suppose the number of fixed points of ais 2s, where s > 1
(from Lemma 5.2 we know that it must be even). There are
exactly s(2s-1) edges made up of these fixed points, and
these edges appear only in one-factors which are fixed by a.

Thus there are precisely s(2s-1)/s = 2s-1 one-factors fixed by
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Lemma 6.3

Theorem 6.4

Proof

a, since each such one-factor contains s edges from the 2s
fixed points. Since s > 1, there exist at least one such
one-factors. The edges of any two of these one-factors
containing the 2s fixed points form a cycle of length at most

2s. Butthen the OF is not perfect (unless 2s = 2n).

({29], Corollary 3.4)
If ais an automorphism of a perfect OF of K, then its cycle
structure must be one of the 4 forms:

(1) 12k(2n-2)/k, (2> 11k(2n-1)/k, (3) 21k(2n~2)/k, (4) k2nk_

There are at most 13 cycle structures of a that admit perfect
OFsforK,,.

By Lemma 6.3, there are at most 14 cycle structures of a that
admit perfect OFs for K,,. They are:

(1) 141 (2) 13111 (3) 12121  (4) 12112

(5) 72 (6) 6221 (7) 6212 (8) 4321

(9) 4312 (10) 3421 (11) 3412 (12) 27

(13) 2812 - (14) 114,

Case 10 can be eliminated since a3 has the form 21112,

which is not admissible.

We list in Table 6.3 those cases that admit at least one perfect OF for Kig

and the associated statistics. We omit the case involving the trivial

automorphism (case 14), as this would amount to a complete enumeration. In
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total, approximately 10 hours of computer time was required for the remaining
12 cases (including the time required to determine the canonical

representation of the perfect OFs constructed).

Table 6.3

Perfect OFs of K, , containing prescribed automorphism groups

- Non-isomorphic perfect OF -
Case Cycle IN(A)] No.of No. of total

No. Structure distinct distinct  gene- set no. in
of a orbits  1-factors rated Appendix 2
1 141 84 12 63 1 set 1
2 13111 156 1 13 1 set 13
4 12112 96 25 289 3 sets 13, 14,15
5 72 294 565 3913 1 set 1
7 6212 288 1399 8359 12 sets1,3-6,9-15
9 4312 1536 4621 18445 5 sets 9,10, 13- 15
11 3412 7776 15579 46683 17 sets1,3-6,9-20
12 27 645120 23880 46920 4 sets 1, 2, 3, 21
13 2612 92160 32395 64659 15 sets 1-15

Of special interest is case 12 (where a=((1 2) (3 4) ... (13 14)) ). Itis not
difficult to see that the seven edges from the seven 2-cycles of a must either )

appear in the same one-factor, or (ii) appear in seven distinct one-factors. An
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OF of type (i) would have 1 orbit of length 1 and 6 orbits of length 2, and type (i)
would have 7 orbits of length 1 and 3 orbits of length 2. In using orderly
algorithms for these two subcases, we omit canonicity testing (645120
mappings would have been needed for each F;), and test the OFs for
isomorphism after they have been created.

In [29], lhrig defined a P element to be an automorphism of n 2-cycles of a
perfect OF of K, , the cycles of which form the edges of a one-factor of the
perfect OF. Thus, an OF of type (i) contains a P element. lhrig observed that,
other than the perfect OF of K,, there is no other example known of a perfect OF
of K,, containing a P element. Our computer search did not find any perfect OF
of type (i) for K,,. In Section 6.6, we will show that, when n is even (except
n = 2), there does not exist a perfect OF of K,, containing a P element; hence
the smallest unknown case is K.

There are 165 perfect OFs of type (ii), of which 4 are non-isomorphic. The
information on the number of orbits and distinct one-factors listed in Table 6.3
for case 12 pertains to type (ii).

It is interesting to note that, except for case 12, the quasi-A-canonical
perfect OFs constructed from each of the other cases turn out to be

non-isomorphic (that is, they are also A-canonical).

6.5 Automorphism groups of perfect one-factorizations of K.,

We summarize from Appendix 2 the automorphism groups of the 21

perfect OFs of K, ,:
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Z, is the automorphism group for sets 7, 8 and 21;

Z, is the automorphism group for sets 16 - 20;

Z, x Z, is the automorphism group for set 2;

Z; is the automorphism group for sets 4 - 6, 11, and 12;

Z, x Z; is the automorphism group for set 3;

Q; (adicyclic group) is the automorphism group for sets 9 and 10;

Z,, is the automorphism group for sets 14 and 15;

[Z,5] Z,, (semi-direct product) is the automorphism group for set 13; and

[Z,,] Z5 (semi-direct product) is the automorphism group for set 1.

In [29], Ihrig studies automorphism groups of perfect OFs. The next two
theorems give several properties such a group must have, if it contains an

automorphism of order 2 having fixed points.

Theorem 6.5 ([29], Theorem 5.5)
It a perfect OF for K, contains a noncentral automorphism of
order 2 having fixed points, then the perfect OF is either
GK,, (2n-1 prime) or GA,, (n prime).

Theorem 6.6 ([29], Theorem 5.9)
If a perfect OF on K, contains a central automorphism of
order 2 having fixed points, then the following statements
hold:
(a) the order of the automorphism group divides 2n-2;

(b) there are at most 3 automorphism of order 2, and only
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one of these has fixed points.

We note that the perfect OFs of sets 1 - 15 and 21 all have an
automorphism of order 2 containing fixed points. Our examples illustrate every
group order allowed by Theorem 6.6 (a) (namely, orders 2, 4, 6, and 12). Also,
note that sets 2 and 3 each contain three automorphisms of order 2, while sets
4 - 12 and 21 each contain only one such automorphism.

If the automorphism group of a perfect OF does not contain an

automorphism of order 2 containing fixed points, then the following results hold.

Theorem 6.7 ([30], Theorem 3.10)
If a perfect OF on K, contains no automorphism of order 2
having fixed points, then the order of the automorphism
group is my-m,-m,, where my | 2n, my [ (2n - 1), and
m, | (n - 1). Further, m, is odd; and at least one of mg , my,

and m, is equal to 1.

In the case of K, we obtain m | 14, m, | 13, and m,|3. Ifmy=13,
then the perfect OF must be generated by a starter in Z,,. These were
enumerated in [2], and set 13 (GK,,) is the only example. Hence, we can
ignore this case, and assume my = 1. Then, the order of the automorphism
group must divide 42.

We have enumerated all perfect OFs of Ky4 having an automorphism of
order 7, and set 1 is the only example. Consequently, the order of the

automorphism group must divide 6, and orders 1 and 3 are the only new
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possibilities. As mentioned already, sets 16 - 20 have automorphism groups
isomorphic to Z,, and we have no examples with trivial automorphism groups.

Hence, we have examples of every possible group order, except 1.

Two of the new perfect OFs found (sets 9 and 10) have the property that
their automorphism groups are the dicyclic group Qg of order 12. The dicyclic
group Q,, of order 4n is the group defined by Q,,={abi:0<i<2n-1,0 <j<H,
a®"=e,b2=a" bab'=a'}.

A sequencing of a finite group G of order 2n is an ordering e, s, 8g, +ny Ay,
of all elements of G such that the partial products e, ea,, eayay, ..., €a,a,, are
distinct and hence also all of G. The sequencing is symmetric if in addition the
following are true: (1) G has a unique element z of order 2, (2) 8n,q =2, and
(3) @n 14 = (@n,1.)7"- In[4], Anderson observed that these two perfect OFs (sets
9 and 10) give rise to symmetric sequencings in the group Q. (A sequencing
in this group was previously unknown). Subsequently, Anderson[4] showed
that for any odd n > 3, the dicyclic group Q,, can be symmetrically sequenced.

Given a symmetric sequencing of a group G, one can construct an OF (not
necessarily perfect) of KIGI+2 (see [4]). It thus seems hopeful that symmetric
sequencings of Q,, can be used to construct perfect OFs of Kyn.o- However, it
remains to be seen whether symmetric sequencings will give us a new class of

perfect OFs.

6.6 Perfect one-factorizations of K,,, containing a P element

In this section, we investigate the perfect OFs of K,, containing a P

element (refer to Section 6.4 for definition), and prove that such perfect OFs do
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not exist for K, when n is even (with the exception of n = 2). For n odd, it
remains an open problem, and the smallest unknown case is 2n = 18.

Without loss of generality, assume the P element of Ky,,is a=
(12)(34)...(2n-1 2n). Hence, a perfect OF of K, containing the P element
has f = ((1, 2), (3, 4), ..., (2n-1, 2n)) as a one-factor, and has the orbit structure

as described in the following lemma.

Lemma 6.8 I n> 2, then a perfect OF of K, containing a P element has 1
orbit of length 1 and (n-1) orbits of length 2, under the action
of a.

Proof fis an orbit of length 1.
Assume there exists another one-factor g which is an orbit of
length 1. Without loss of generality, suppose g contains the
edge {1, 3}. Now it must map into {2, 4} in g. But then we
have a 4-cycle on vertices {1, 2, 3, 4}, and the OF is not

perfect (unless n < 2).

Let O = {f,, f,} be an orbit of length 2 under the action of a. By definition,
the 2n edges of O form a Hamiltonian cycle. Without loss of generality, we can
name the vertices on the cycle (in the clockwise direction) by a,, a,, a,, ..., 8n.1-
(Thus {g;:i=0,1,..,2n1}={i:i=1,2,..,2n}.) The edges of f (the orbit of

length 1) must then be of the form given in the following lemma.

Lemma 6.9 The one-factorf={{g,, a,,} :i1=0,1, ..., n-1}.

Proof Suppose {a,, a,} € f. Consider an edge {ay, a;} e fy: it must
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map into an edge € f,. It maps into either (i) {a, a4}, or
(ii) {a, a1}

In case (i), {ay, a4} € f. Butthen {a,, a;} maps into {a,_, a_.},
and thus {a,, a,,} € f. Using similar arguments, we can show
that {a3, a5} {ay, a4} - {80 8, ) € 1. Now {a,, a.} =
{a,, a,,,}, and hence 2k = 0, ork = n. Thus f = {{ay, a5} -
i=0,1, ..., n-1}.

In case (ii), {a;, a4} € f. Butthen {a;, a,} maps into {a, ,, 8o}
and thus {a,, a, ,} € f. Using similar arguments, we can show
that {ay, a, s}, {84, a4}, ... € f. If k is even, this implies
{ay» a0} € Tand a has a fixed point, which is impossible (by
definition). If k is odd, we have {8k-1)2) eyt € 1. But then

{a(k_”,z, 8,1y} IS also an edge of O; a contradiction.

We now prove the main result of this section.

Theorem 6.10

Proof

For n even and > 2, there does not exist a perfect OF of Ky,
containing a P element.

Let n = 2m. From Lemma 6.9, we know that the edge {a, a4}
maps into the edge {a,, a,.,,4}. Itis easy to see that edges
{ay, a4} and {a,,,, a,,,,1} appear in the same one-factor. Now,
{2, a5} and {ay, a,,,,, 1} are two edges of f. Hence, there exists

a 4-cycle on {ay, ay, @y, @y, 1}, and the OF is not perfect.
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CHAPTER 7

ENUMERATING ONE-FACTORIZATIONS AND HOWELL DESIGNS OF Kio
MINUS A ONE-FACTOR

7.1 Introduction

Using the orderly algorithms in Chapters 2 and 4, we enumerate the
(non-isomorphic) OFs and sets of orthogonal OFs of the graph Kio - f, where f is
a one-factor of K,,. We find that there are 3192 OFs; 18220 pairs, 3 triples, and
1 quadruple of mutually orthogonal OFs. It is also shown that there is no set of

five mutually orthogonal OFs.

7.2 A conjecture about the number of orthogonal OFs of regular graphs

The results about K, - f are interesting for several reasons. First, the
non-isomorphic OFs and Howell designs have been enumerated for all graphs
on at most 10 vertices except K, - f (see [21], [22] and [51]). Hence, the results
of this chapter complete this census. Also, the graph Kyo - f is the smallest
graph (other than complete or complete bipartite graphs) for which there exist
three (or more) orthogonal OFs.

It has been conjectured that the maximum number of mutually orthogonal
OFs of a regular graph on n vertices is at most (n-2) /2. (It has been shown in

[24] that the maximum number of orthogonal OFs of K, goes to infinity with n.)
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There are in fact infinitely many graphs for which (at least) (n-2) / 2 mutually
orthogonal OFs are known to exist, but there are no graphs known for which
this conjectured bound is exceeded. The following results were previously

known.

Theorem 7.1 The following graphs have at least (n-2) / 2 orthogonal OFs:
(1) K, ifn-1is a prime power =3 (mod 4), or n = 10.
(2) Koo if N/2is a prime power.
(3) K, minus a one-factor, ifn=2+2,j>2.

Proof (1) is proved in [21] and [24]. The OFs of the graphs in (2)
are equivalent to mutually orthogonal Latin squares, so this

result is well-known. The result (3) is proved in [24].

The four orthogonal OFs of Kyo - f were previously known to exist. What
we have done is to show that this set of four is unique, and that there is no set of
five mutually orthogonal OFs. Hence, the graph K,, - f provides another
example of a graph which meets, but does not exceed, the bound. Thus it

provides a little more empirical evidence in favour of this conjecture.
7.3 Orderly algorithms and canonicity mappings

The results are established with the use of the orderly algorithms
described in Chapters 2 and 4. In particular, we used the breadth-first

algorithm.

Without loss of generality, we let f = f_ = ((1, 2), (3, 4), ..., (11, 12)), the
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smallest one-factor of Ky,. We note that the OFs of K, - f have eight one-factors
and do not include the five edges in f.

In constructing the OFs, we pretend that f, is part of the OFs of Kyo-f. That
is, the set of proper partial OF of rank 1, F,,is {f.}. The set of proper partial OF
of various ranks are then constructed in a step-by-step manner. f_ can be
ignored after Fyis produced.

In testing whether a proper partial OF Folgl={f.f, .., f.. 4} (where
g € U, ,) is canonical, we observe that the mappings must preserve f,( = f).
Thus we could use the set {a.: e S, and f,% = 1.}, the cardinality of which is
255! = 3840.

We implemented canonicity testing by mapping pairs of distinct
one-factors. Similar to K,,, any pair of distinct one-factors of K,q - f forms either
two disjoint cycles of lengths 4 and 6 (type '46') or a Hamiltonian cycle of length
10 (type '"10'). The smallest one-factor in U, that forms a type '46' structure with
faisfy=((1,3), (2, 4), (5, 7), (6,9) (8, 10)), and the smallest one-factor in U,
that forms a type '10'" structure is f.=((1,3), (2,5), (4,7), (6,9), (8,10)). It
follows then that the set of proper partial OF of rank 2, F,, is the set {(f,, f,),
(fa, £)}, where f, < f, < f_.

To test the canonicity of F,; = F,u{g} (= (f;, f,, ..., fi.1) at step i+1, we
need only examine f1fj, where 2 <j < i+1, because f, (= f,) must be fixed.

Depending on f, =, or f, = f,, we have the following two cases:
(1) f,f, =1 f, (type '46"):

We may ignore those f1fj of type '10', as mapping them into f.f. would

always make F, ,*>F, ,.
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We map any f1fj, 2 <j<i+l of type '46" into f_f, (in such a way that f, is
mapped to f, and fj is mapped to f,). To map into any other set of two

one-factors of type '46' would always make F,

I+1°‘> Fm. There are

(22):(2-3) = 24 ways to do this. The maximum number of mappings
foraF, ,is (i+1)-24.

(2) 1,1, =1.f_ (type '10'):
All f1fj , 2 <j<i+l must be of type '10' (in general, no 1‘1fj can be of a
type corresponding to a canonical structure less than f,f,). Thus we
discard those g € U,, ; which form a type '46' structure with any of f,,
before the canonicity testing. We must map f, into f, and fj- into f,
where 2 <j<i+1. Thus there are (2-5) = 10 ways to map type '10'

structures. The maximum number of mappings for Fi.qis (i+1)-10.

7.4 One-factorizations of K, - f

The number of canonical structures and CPU time required for each of the
steps are listed in Table 7.1. The number of non-isomorphic OFs of Kio- fof

types '46' and '10' are 2944 and 248 respectively. The algorithm required

approximately 18 minutes of CPU time.
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Table 7.1

Non-isomorphic canonical proper partial OF s of Kig-f

Step # of canonical structures at step i+1 CPU time
i+1 type '46' type '10' total (in seconds)
3 7 15 22 1
4 114 109 223 2
5 1039 412 1451 12
6 4600 1136 5736 67
7 7802 1437 9239 206
8 4917 610 5527 385
9 2944 248 3192 401

7.5 Howell designs H(8, 10)

The underlying graph of the Howell designs H(8, 10) is K, - f. We used
the orderly algorithms described in Section 4.4 to construct pairs of orthogonal
OFs (F, G) of K, - f. LetF = (t, T, ..., fg) and G = (g4, 95, --» 9g). Note that

gy =f; =f,. In testing for canonicity, we restrict the mappings to the following:
(1) Mappings for F. It suffices to examine those o e S, such that F*=F

and f.® =1{.), since F is canonical. That is, we restrict the a's to the
1 1

automorphism group of F. If, for any such o, G*< G, then (F, G) is not
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canonical. Note that if f,f, = ff. (hence all 'f1fj are of type '10'), then all
g,9; must necessarily be of type '10".
(2) Mappings for G. There are two cases:
(a) There exists a 949 of type '46', where 2 <j<9. We map all 919 of
type '46" into f,f, (with g, mapped into f,), and ignore those 919 of
type '10".
(b) All 949; are of type '10". We map them into f.f. (with g, mapped

into f,).

In total, there are 18220 non-isomorphic (F, G) of Kyo- f. It required 38
minutes of CPU time. Appendix 3 gives the frequency distribution of these

designs, based on the number of non-isomorphic (F, G) for a given F.
7.6 Howell cubes and H,(8, 10)

Using the algorithm outlined in Section 4.6, we find 12 iriples (F, G, H)in
step 2. We immediately eliminate 7 of them, as their corresponding (F, G)'s are
not canonical. The first (smallest) set is necessarily canonical (set 1 in
Appendix 4). Three of the 12 sets , which are all distinct from set 1, form a
quadruple (F, G, H, I); hence the corresponding (F, G, H) must be canonical (set
3 in Appendix 4). This leaves us with 3 sets to which we apply canonicity
testing. In this case, we simply use the a's in the group Aut(K,, - f) =
{o:f, %=1, ae S,}. We find one of them is canonical (set 2 in Appendix

4). In summary, we have
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1. N3(Ky,- f) = 3. The corresponding Howell cubes are shown in
Appendix 4.
2. N4(Kp-f) = 1. Appendix 5 gives the corresponding H,(8, 10).

It is interesting to note that the set of four mutually orthogonal OFs can be
constructed from a finite projective plane of order 8 [38].
We present the automorphism groups A of the non-isomorphic Howell

cubes and H,(8, 10) in Appendix 6.

7.7 Skew H(8, 10) designs

In [36], Lamken and Vanstone introduce skew Howell designs H(r, r + 2),
where r is even, and give a construction for a skew H(4, 6). ltis also reported
that there does not exist a skew H(6, 8), and the first unsettled case was that of
a skew H(8, 10). In this section, we perform an enumeration of skew H(8, 10),
and we find that there are exactly three non-isomorphic examples.

A Howell design H(r, r + 2), say H, is said to be skew if there exist two
symbols a, b, where {a, b} is not an edge of the underlying graph, such that the

following properties are satisfied:

(1) Denote the r cells of H which contain a by T, , and denote the r cells of
H which contain b by T,. Then T, U T, consists of the r cells on the
diagonal of H (say D), and r other cells which form a transversal of
cells (say D') of H, such that D' is symmetric with respect to D (i.e. a

cell (i, j) € D'if and only if cell (j, i) e D").
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(2) Given any cell (i, j) ¢ D U D', precisely one of cell (i, j) and cell (j, i) is

empty.

In Section 7.5, we enumerated all non-isomorphic H(8, 10); there are
18220 such Howell designs. It was therefore a straightforward test to see which
of these designs could be written down in such a way that it forms a skew
H(8, 10). This was done as follows. For any given H(8, 10), there are five
possibilities for the pair {a, b}. For each possibility, the cells in T, u T, form four
4-cycles (no matter how the Howell design is written down). For each 4-cycle,
there are essentially two inequivalent ways of permuting the rows / columns
containing the 4-cycle. There are thus only 25 = 32 row / column permutations
that must be considered (for each possible {a, b}).

As a result of these tests, we found precisely three non-isomorphic skew

H(8, 10), which we record in Appendix 7.
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CHAPTER 8

ENUMERATING ONE-FACTORIZATIONS AND HOWELL DESIGNS OF OTHER
REGULAR GRAPHS

8.1 Introduction

In this chapter, we turn to the non-isomorphic OFs and Howell designs of
several regular graphs of small order.

The non-isomorphic OFs and (i-dimensional) Howell designs have been
enumerated (for all i) for all graphs on at most 10 vertices (see [7], [51], and
Chapter 7). It is not feasible to continue this enumeration to all graphs Gron 12
vertices, for two reasons. If Gris r-regular with r close to 12, the numbers N;(Gr)
will be astronomical, and present techniques would not yield any results in a
reasonable amount of time (see Chapter 5). If Gr is 6- or 7-regular, we can
determine the numbers N;(Gr); the problem here is that there are too many
graphs to test them all. In the remaining sections, we discuss the enumeration
of OFs and sets of orthogonal OFs (that is, Howell designs) for several graphs
on 10, 12 and 14 vertices.

Among our results are the following. From the twelve 6-regular graphs on
12 vertices having transitive automorphism groups, we found that there are
precisely 24 non-isomorphic H(6, 12), and precisely one H,(6, 12). From the
ten 7-regular graphs on 12 vertices having transitive automorphism groups, we

found that there are precisely 1393 non-isomorphic H(7, 12), and precisely five
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H;(7, 12). We also determined that there are exactly three H*(7, 12) designs.
We found an example of an H**(13, 14), which was the smallest case of an
H**(2n-1, 2n), and was not previously known to exist. Finally, we proved that

there are precisely 2 non-isomorphic H**(9, 10).

8.2 6-regular graphs on 12 vertices

The case of 6-regular graphs on 12 vertices is particularly interesting, due
to the non-existence of a pair of orthogonal Latin squares of order 6 (i.e.
N,(Kgg) = 0). In [28], Hung and Mendelsohn presented the first example of an
H(6, 12). More recently, Brickell found a Howell cube H4(6, 12) for which the
underlying graph is the icosahedron with antipodal points joined (see [11]). ltis
also worth mentioning that the automorphism group of this cube is the same as
the automorphism group of the icosahedron (this group is isomorphic to
Z, X Ag).

In the hope of finding further examples, we investigated the 6-regular
graphs on 12 vertices having a transitive automorphism group. There are
precisely 12 such graphs (see [8]); we present a listing of the edges of the
complements of these graphs in Appendix 8. From these 12 graphs, we found
that there are precisely 24 non-isomorphic H(6, 12), and precisely one
Hg(6, 12) (the Brickell cube). There are no examples of an H,(6, 12) in this

class of graphs. A summary of our results is given in Table 8.1.

85



8.3 7-regular graphs on 12 vertices

As in Section 8.2, we looked at the graphs having transitive
automorphism groups. For 7-regular graphs on 12 vertices, there are 10 such
graphs (see [8]). We list the edges in the complements of these graphs in
Appendix 9. From these 10 graphs, we found many more Howell designs:
1393 non-isomorphic H(7, 12), and five non-isomorphic Hy(7, 12). The
enumeration is summarized in Table 8.2. An example of an H;(7, 12) was not
previously known; we present one of them in Appendix 10.

We also investigated two other 7-regular graphs on 12 vertices, namely,
the graphs which correspond to the so-called *-designs. Thus the underlying
graph of H*(7, 12) has the form Ks® + Q,, where K is the complement of the
complete graph on 5 vertices (hence it is a graph of 5 vertices with no edges),
and Q is either a 7-cycle or the disjoint union of a 3-cycle and a 4-cycle. In the
first case, there are 4045 OFs but no H*(7, 12); in the second case, there are
1160 OFs and three non-isomorphic H*(7, 12), which are presented in
Appendix 11. These are thus the smallest examples of H*(n, 2n-2) for n odd,
since there are no Howell designs H(3, 4) or H(5, 8) (previously, the smallest

example in this class was an H*(13, 24), constructed in [52]).
8.4 Algorithms
We modified the orderly algorithms for K,, in Section 2.7 to enumerate the

non-isomorphic OFs of the 6- and 7-regular graphs on 12 vertices in the

preceding sections. We used the automorphism groups of these graphs in the
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canonicity testing, since their orders are fairly small (see Table 8.1 ). Depth-first
algorithm without pruning was employed.

Orderly algorithms in Chapter 4 are used to enumerate the Howell
designs of these graphs. Again, automorphism groups of the graphs are used
to test the canonicity of sets of orthogonal OFs.

In total, enumeration for the 6-regular graphs took about 20 minutes of

CPU time, while the 7-regular graphs required approximately 10 hours.

8.5 H**(13, 14)

Another special class of Howell designs are called **-designs. An

H**(r, n) is defined to be an H(r, n) which satisfies the following two properties:

(1) there exists an (r-n/2) x (r- n/ 2) subarray of the Howell design
which consists of empty cells,

(2) there exists a one-factor of the underlying graph which forms a

transversal of the n/2 rows and columns which do not meet the

empty subarray of (1).

These may seem somewhat unusual properties to ask for, but it turns out
that there is a powerful recursive construction for **-designs, which was
instrumental in the proof of necessary and sufficient conditions for the existence
of Room squares of side 2n+1 (= 3 or 5); see [44].

There has recently been some interest in H**(2m-1, 2m) (that is, Room
squares which are **-designs). Note that we can define an H**(2m-1, 2m) by

requiring only that property (1) holds; property (2) then follows as a
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consequence. Such a design has several equivalent formulations, which are
described in [62]: one of these is a partitioned balanced tournament design
PBTD(m), and another is a pair of almost disjoint H(m, 2m). We elaborate on
the second formulation. Two H(m, 2m), say D, and D, (on the same symbol
set), having underlying graphs Gr, and Cr,, respectively, are said to be almost

disjoint if the following properties hold:

(1) Gry N Gr, =1, where fis a one-factor
(2) Gry U Gr, - f=K,_, the complete graph on 2m vertices
(3) the edges of f occur in a row (or column) of D4, and in a row (or

column) of D,

H*(2m-1, 2m) do not exist for m = 2, 3, or 4 (see [62]). Form =5, such a
design is known to exist for all but 12 values of m ([37], [39] and [40]). The
smallest unknown case was m = 7. We were able to construct two
non-isomorphic examples of H**(13, 14), which we present in Appendix 12 as
sets of almost disjoint H(7, 14).

These were found as follows. The H(7, 14) labelled D, was constructed
by E. Lamken (private communication). Call the underlying graph Gr,, and let f
denote the one-factor occurring in the last column of D;. We first enumerated
all OFs of the graph Gr, = (Ky4 - Gry) U f which contain f as a one-factor, using
the orderly algorithms of Chapter 2. The automorphism group of Gr, (order
= 5184) is used to test the canonicity of the OFs. There were precisely 5272
non-isomorphic OFs F of this type. For each such F, we determined all possible

OFs G of Gr, orthogonal to F, such that G also contains f as a one-factor (see
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Chapter 4). For only two of these 5272 OFs F could we find such a G
orthogonal to F (up to isomorphism). The enumeration took 7 hours of CPU

time.

8.6 H*(9, 10)

A H*(9, 10) is equivalent to a pair of almost disjoint H(5, 10), and an
example has been constructed in [62] (see set 1 of Appendix 13). In this
section, we generalized the approach used in the previous section, and carried
out a complete enumeration of pairs of almost disjoint H(5, 10).

In [51], orthogonal OFs of all 5-regular graphs on 10 vertices (that is,
H(5, 10)) were enumerated. In total, there are 5 graphs giving rise to a total of
6 H(5, 10)'s (see Table 9in [51]). We number these graphs as in [51]: no. 2, no.
17, no. 50, no. 53 and no. 60. No. 60 is KS'5 and admits 2 H(5, 10)'s. In [62], it
was mentioned that a pair of almost disjoint H(5, 10) cannot have Ks 5 as one of
the underlying graphs. (Ks s° + f, where f is a one-factor on 10 vertices, is not
isomorphic to any of these 5 graphs.) Thus we can restrict our investigation to
Gr = {no. 2, no. 17, no. 50, no. 53}. We define an ordering on these graphs
such that no. 2 < no. 17 < no. 50 < no. 53.

We now give the orderly algorithm for enumerating canonical pairs of
almost disjoint H(5, 10). We remark that the algorithm can be modified easily
for any complete graph of order 2n.

We use (D,, D,) to denote a pair of almost disjoint H(5, 10), where D, and
D, are H(5, 10)'s of underlying graphs Gr, and Gr, respectively, and Gr, and

Gr, are isomorphic to some graphs in Gr. Since we construct canonical
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(Dy, Dy), D; must be canonical; that is, D,*2 D, for all o. Aut(Gry). D, need
not be canonical. Hence, D, = (F, G), where F < G, and F, G are OFs of Gr,
containing the special one-factor. The following is the pseudo-code for the

algorithm.

FOR each Gr, € Gr DO
FOR each H(5, 10) D, having underlying graph Gr, DO
FOR each one-factor f in D, DO {There are 10 possibilities.}
Gry= (Ko - Gry) UT;
IF Gr, is isomorphic to some graph in Gr THEN
IF Gry < Gr, THEN |
construct all H(5, 10) D, having underlying graph Gr,;
determine {r : f* = f, and (Gr, - f)* = (Gry - 1) or (Cr, - f)}
IF (D4, D,)" < (D4, D,) for some n THEN
(D4, D,) is not canonical; discard it.

{Here, (D, D,) is canonical.}
We implemented the algorithm above and found that there are 2

non-isomorphic pairs of almost disjoint H(5, 10). We list them in Appendix 13.

It took about 3 minutes of CPU time.
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Table 8.1
Howell designs from 6-regular graphs on 12 vertices having

transitive automorphism groups

Graph No.  |Aut(Gr)]  DPM(Gr) NGr  N,(Gr) N4 (Gr)

1 768 368 190 0 0
2 144 348 469 3 0
3 48 344 1248 8 0
4 24 342 2018 0 0
5 96 392 1451 0 0
6 12 386 6932 1 0
7 120 368 733 4 1
8 12 354 4976 0 0
9 24 344 2216 5 0
10 48 344 1021 0 0
11 24 336 1983 3 0
12 1440 376 132 0 0

Notation: DPM(Gr) denotes the number of distinct one-factors of Gr.
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Table 8.2
Howell designs from 7-regular graphs on 12 vertices having

transitive automorphism groups

Graph No. [Aut(Gr)) DPM(Gr) N(Gr) N,(Gr) N;(Gr)

1 48 825 127222 84 1
2 24 837 270875 235 3
3 48 827 130176 103 0
4 48 824 130141 166 0
5 24 821 245138 189 0
6 24 808 218138 130 0
7 768 827 9145 47 0
8 144 820 43060 72 1
9 24 818 237042 264 0
10 48 804 110656 103 0

Notation: DPM(Gr) denotes the number of distinct one-factors of Gr.
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CHAPTER 8

CONSTRUCTING PERFECT ONE-FACTORIZATIONS USING OTHER
ALGORITHMS

9.1 Introduction

Most known examples of perfect OFs arise from starters or even starters.
In [2], Anderson enumerates all perfect OFs in Ky, arising from starters and
even starters, up to n = 11. These empirical results suggest that there exists a
starter-induced perfect OF in K, for all n > 6, and an even starter-induced
perfect OF in K, for all n > 6. Thus starters or even starters might provide new
examples of perfect OF for larger values of n.

In this chapter, we construct starter-induced perfect OFs for Ksg and Kg,,.

The algorithms we use are hill-climbing and backtracking algorithms.
9.2 Starters and even starters

We need the following definitions for starters and even starters.

Let Z | be the cyclic additive group on the set of m elements, {0, 1, ..., m-1}.
A starterin Z, ; is a set S = {{xy, X5}, {X3, Xz}, -.., {X, 3, Xon.0}} such that every

non-zero element of Z, , occurs as

(1) an element of some pair of S, and
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(2) a difference of some pair of S.

Define 8" =S U {0, o0} and o0 + g = g + o0 = oo for all ge Z,,4. ltis easy to see
that F={S"+g:ge Z,,,}is an OF of K, (see [43]).
An even starterin Z,, is a set E = {{xy, X5}, {X3, X4}, ... {Xo.3, Xo,.5}} SUCh

that

(1) every non-zero element of Z, except one, denoted m, occurs as an
element in some pair of E, and
(2) every non-zero element of Z,,, except n occurs as a difference of some

pair of E.

Define E' = E U {{0, eo,}} U {{m, o,}}, and g + 00, =00, +g=00forge Z,
andi=1,2. AlsodefineQ ={{g,g+n}:ge Z,.} U {{ooy, oo,}}. ThenF =
{E"+g:g€eZ,}u {Q}is an OF of Ko (see [43]).

9.3 Hill-climbing algorithms

Traditionally, backtracking algorithms have been used to construct
designs on computer. However, the computer time required for these
algorithms often grows exponentially with the order of the problems, making
them impractical to produce designs of relatively smaller order. In these cases,
hill-climbing algorithms often have more success. In fact, hill-climbing
algorithms have been used in recent years to construct combinatorial designs

such as strong starters, Steiner triple systems, Room squares and OFs, and to
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solve many other optimization problems (see [20], [45], [59], [61], [63] and [64]).
Researchers have found that this approach works very well for certain
problems.

Hill-climbing is a non-enumerative algorithm which constructs designs in
a non-deterministic manner using some heuristics. It implicitly assumes the
existence of a solution. Hence in order for hill-climbing to be successful, there
must be a solution, or better still, many solutions. The heuristics used in the
algorithm to build up the design should be fast, as generally many trials
(repetition of these heuristics) are needed to successfully construct a design.

We use a modification of the hill-climbing algorithm in [20] to generate
(even) starters. For each (even) starter generated, we then test the induced OF
for perfection. We now give a brief description of the hill-climbing algorithm
used.

Define a partial starterto be a set §' = {{x4, x5} {xg, X4}, ..., {Xom-3» Xom-ol}s
where m < n, satisfying the conditions that (1) x/s are distinct non-zero
elements of Z,_ ., and (2) (Xpiq = Xo)) # i(xzj_1, Xy) fori=j. Similarly, we define a
partial even starterto be a set E' = {{xq, X5}, {X5, x4}, ...y {Xom-a1 Xom.o}}, Where
m < n, satisfying the conditions (1) x;'s are distinct non-zero elements of Z,.,
and (2) (Xpi.q - X) ¢i(x2]._1, X2j) fori=j. Note that when m = n, we have either a
(complete) starter S or a (complete) even starter E.

The algorithm non-deterministically constructs the pairs in the (even)
starter using one of two possible heuristics. At a given stage in the algorithm,
we have a partial (even) starter S' (E'). We say that an element or difference is
used or unused depending on whether it occurs in the (current) partial (even)

starter.
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(1) An unused element u and an unused difference d are picked
randomly. This determines a second element v of the pair (either of
u+doru-d). Ifvis unused, then add the pair {u, v} to the partial
(even) starter ' (E'). Otherwise, delete the pair containing v from the
partial (even) starter ' (E'), and add the pair {u, v}.

(2) Choose two unused elements (u and v, where u < v). If the difference
d (d = v - u) is unused, then add the pair {u, v}. Otherwise, delete the
pair that has the difference d from the partial (even) starter S' (E'), and

add the pair {u, v}.

Note that at no time does the number of pairs in the partial (even) starter
decrease. Although we cannot guarantee that (even) starters will always be
found by this algorithm, in actuality it seems to work all the time, and it is very

fast. Forthose readers interested in this class of algorithms, we suggest [61].
9.4 A perfect one-factorization of K,

We implemented the hill-climbing algorithm for both starters and even
starters. After 15 hours of CPU time (having constructed a total of 6 million
starters and even starters) we found the following starter in Z.- which induces a

perfect OF:

{{14, 15}, {5, 7}, {19, 22}, {28, 32}, {25, 30}, {11, 17}, {6, 13}, {18, 26}, {29, 3},
{34, 9}, {20, 31}, {33, 10}, {23, 1}, {2, 16}, {12, 27}, {8, 24}, {4, 21} }.
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The automorphism group of the induced perfect OF is Zys.
We were not as lucky with K40, having spent about 100 hours of CPU time

without finding a perfect OF.

9.5 Statistics on hill-climbing algorithms

The probability of finding a perfect OF by means of the hill-climbing

algorithm described in Section 9.3 depends on two factors.

1) What is the probability that a random (even) starter-induced OF is
perfect?
2) Does the hill-climbing algorithm generate random (even)

starter-induced OFs?

To help answer these two questions, we performed some experiments on
Ky, (for 16 <2n < 30). For 2n < 22, a complete enumeration of (even) starters
was done in [2]. By testing the resulting OFs for perfection, we obtain exact
probabilities for 1), dividing the number of (even) starters into the number of
(even) starter-induced perfect OFs. Due to the large number of (even) starters
for 2n > 22, it is computationally infeasible to extend this enumeration to larger
orders.

To help answer 2), we generated many (even) starters using the
hill-climbing algorithm in order to estimate the probability that a given (even)
starter produced by the hill-climbing algorithm induces a perfect OF. (We note

that the perfect OFs generated are not necessarily non-isomorphic, nor even
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distinct.) These results are summarized in Tables 9.1 and 9.2. The two sets of
probabilities (for 16 < 2n < 22) appear to be fairly close, suggesting that the
(even) starters generated by the hill-climbing algorithm are random.

Define S(n) to be the expected number of (even) starters required to
obtain a perfect OF on K,- From our empirical evidence, it appears that
log, S(n) is a linear function of n (i.e. S(n) increases exponentially as a
function of n). Using a linear least-squares approximation against the sample
data, we estimate, for the case of starters, that S(n) =~ 10-288n - 2.843. and for even
starters, that S(n) = 102297 -1.977 gypbstituting n = 40, we obtain estimates of
1087 and 1072 respectively. That is, we would expect to have to generate over
15,000,000 even starters before we would expect to find a perfect OF for K,
and even more starters. |

The computer results provide further empirical evidence that perfect OFs
are very difficult to construct. Given enough computer time, we might find a
perfect OF for K,,, but these techniques will most likely be unsuccesful for

larger orders.
9.6 A perfect one-factorization of K,

The computer results in the previous sections suggest that, to construct
(even) starter-induced perfect OFs of complete graphs of orders larger than 36,
we would probably have to try a different algorithm. Alternatively we may
restrict ourselves to (even) starters that have additional structures, so as to cut
down on the computer search time. We tried the second approach and

succeeded in finding a perfect OF for K.
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Recently, Ihrig [30] showed that if 2n-1 is not prime, then the order of the
automorphism group of a starter-induced perfect OF of K,, must be odd and
divide (2n-1)-GCD(¢(2n-1),n-1), where ¢ is the Euler function. In fact, the
"maximum” automorphism group A of the perfect OF is a semidirect product of
(i) Z,,.4 and (ii) a subgroup of the multiplicative group of units in Z,,.1; for
which the order is odd and divides n-1 (hence the order of A is at most
(2n-1)-GCD(9(2n-1), n-1)).

In [2], Anderson enumerated the starter-induced perfect OF of K,, (for n
up to 11). The results indicated that there exists a starter-induced perfect OF
the automorphism group of which has the largest permissible order.

Often, GCD(¢(2n-1), n-1) = 1, which means that the automorphism group
of the starter-induced perfect OF is simply Z, ,. The smallest order of K, for
which the existence of perfect OF is unknown, and for which the largest odd
factor in GCD(¢(2n-1), n-1) > 1, is 2n = 50. Here, the largest odd factor in
GCD(¢(49), 24) =3, and thus the largest permissible order of the
automorphism group of a perfect OF of K, is 49x3.

thrig suggested there could exist a starter in the ring Z,, which is fixed by
the multiplicative subgroup {1, 18, 30} and which generates a perfect OF of
order 50. Thus this perfect OF will have the semidirect product of Z,4 with Z; as
its automorphism group. We carried out an exhaustive search using
backtracking, and found that there are precisely 938 such starters, 67 of which
are non-isomorphic. The enumeration took about 5 hours of CPU time. A

starter is as follows:
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4 6 22 33 23 10
42 45 35 27 21 26
12 16 17 39 20 43
32 38 29 13 37 47

8 15 44 9 46 25
19 28 31 7 48 14
40 3 24 41 34 5

9.7 Backtracking algorithm

To explain the backtracking algorithm used in finding the starter for Z,,
we need the following definitions.

Let D be the set of differences of the n-1 pairs of a starter S of Z, ¢ thatis,
D={+d:de Z\{0}}. Let M be a multiplicative subgroup of Z, ,. We observe
that for a given *d, the set {xmd : m € M} is a subset of D and forms an orbit.
That is, M partitions the differences of D into disjoint orbits. We denote these
orbits by O = {O,, O,, ..., O}, where O; is a subset of D and O;n Oj =
whenever i # j. Let rep(O;) = =d, where d is the smallest element in the set
{d :+d e O}. Define rep(O) to be the set {rep(O)) : O, € O}.

We note that adding a pair {a, b} to a partial starter causes all the pairs in
the set {{ma, mb} : m e M} to be added, since M fixes the starter. Consequently,
adding a pair {a, b} with the differences +(a-b) O, to a partial starter implies
that all other differences in O, are also used in the partial starter. Thus, in

building up a starter, it suffices to consider only the differences in rep(O).
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The backtracking algorithm constructs the set T of |rep(O)| pairs of
elements {a, b}, where a, b e Z, {0}, such that (i) their differences are distinct
and are in the set rep(0O), and (ii) the set {ma, mb : m ¢ M and {a, b} € T} is
identical to Z,_,\{0}. Once this is done, the starter S is just simply the set {{ma,
mb} :me Mand {a, b} € T}.

Thus for Kg,, we have D = {1, 2, ..., 24}, M = {1, 18, 30}, O =
{{x1, £19, £18}, {£2, 11, £13}, {¥3, 18, +5}, {+4, +22, +23}, {+6, +16, +10},
{7, £12, 21}, {+9, +24, +15}, {+12, 17, +20}}, and rep(0) =
{1, 22, £3, +4, +6, £7, £9, +12}. Note that the set T would have 8 pairs
eventually.

The following recursive pseudo-code describes the backtracking
algorithm that can be used to construct all starters of K, , that is fixed by the

multiplicative subgroup M. To invoke the algorithm, use Extend(Q, @, 1).

PROCEDURE Extend (T, S, i)

IF i > |rep(O)| THEN
{we have the starter S,} check the perfectness of the induced OF
ELSE
FOReachje Z,, ,\{0} DO
IF jis unused THEN {Here jis notin S.}
k =]+ rep(O);
IF k= 0 and is unused THEN {Here k is valid and is not in S.}
W = J;
FOReachme M DO W := W U {mj, mk};
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IFWANS =0 THEN
T=Tu{,k}
S=SuW;
extend(T, S, i+1);
T=T-{,k}
S=S-W.

9.8 ResultsonK,,

The next unknown case where GCD(¢(2n-1), n-1) has an odd factor
exceeding 1 is 2n=92. Here, GCD(¢(91), 45) = 9. The "maximum"
automorphism group would be a semidirect product of Zy, with Z;x Z,. We
conducted an exhaustive search for starters in the ring Z,, which is fixed by the
product of the multiplicative subgroup {1, 2, 4} of Z; and the multiplicative
subgroup {1, 3, 9} of Z,, (which corresponds to {1, 9, 16, 22, 29, 53, 74, 79, 81}
of Z,,). After approximately 12 minutes of computer time, we found no such
starter that generates a perfect OF.

Here, we have D ={1, 2, ..., 45}, M= {1, 9, 16, 22, 29, 53, 74, 79, 81}, O =
{{£1, 49, £16, 22, 429, +38, +17, +12, +10}, {+2, +18, £32, +44, +33, +15, +34,
124, +20}, {£3, 27, 43, £25, +4, +23, 440, +36, +30}, {15, +45, +11, +19, +37,
18, 16, 31, +41}, {17, £21, £28}, {13, +26, 39}, {+14, 35, +42}}, and rep(O)
= {11, £2, £3, 45, 7, 13, £14}. Note that the last 3 orbits in O are shorter than
the other.

For composite values of 2n-1, this is the first example where there does

not exist a perfect OF for which the automorphism group has order equal to the
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product of (2n-1) and the largest odd factor in GCD(@(2n-1), n-1).
A complete search for starters in the semidirect product of Z,, with Z,

looks quite impossible at this time.

Table 9.1

Statistics for starter-induced perfect OFs

Graph Hill-climbing algorithm Exhaustive enumeration
Noof Noof Estimated No of No of True prob
starters perfect prob of starters perfect of perfect
OF perfect OF OF OF
Kis 137000 1851  0.135x10" 631 8 0.127x10!
Kig 122000 526 0.432x1072 3857 17 0.441x10%2
K,, 106000 284  0.267x102 25905 65 0.251x102
K,, 3938000 84 0.209x10° 188181 36 0.191x1073
K,, 499000 37 0.741x10%4
K, 2102000 72 0.343x104
K,g 2463000 13  0.528x10°°
Ky 2638000 4 0.152x10°
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Table 9.2

Statistics for even starter-induced perfect OFs

Graph Hill-climbing algorithm Exhaustive enumeration
Noof Noof Estimated No of No of True prob
even perfect prob of even perfect of perfect

starters OF  perfect OF starters OF OF
Kig 351000 4490  0.128x10! 960 12 0.125x101
K,y 624000 8371 0.134x10" 5760 80  0.139x10"
Kso 546000 1476  0.270x1072 42816 120  0.280x10%2
Ky, 475000 412  0.869x103 320512 272 0.849x107°
K,, 423000 86 0.203x1073
Kys 394000 44  0.112x103
K,g 1135000 40  0.352x104
Ky, 5596000 75 0.134x10+4
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CHAPTER 10

CONCLUSION

10.1 Summary

In this thesis, we defined the canonicity concept, and developed various
orderly algorithms to enumerate canonical (non-isomorphic) OFs and Howell
designs of regular graphs.

These algorithms worked fairly well for regular graphs with small
automorphism groups. We were able to carry out complete enumerations of
canonical OFs and Howell designs of K, , minus a one-factor, and for all 6- and
7-regular graphs on 12 vertices containing transitive automorphism groups.

For regular graphs with large aﬁtomorphism groups (for example,
complete graphs), orderly algorithms have not been successful in completely
enumerating the OF s of K, and perfect OFss of K,,, due to the large amount of
CPU time required. Consequently, we turned to orderly algorithms that
enumerate canonical OFs containing prescribed automorphism groups. Using
these algorithms, we were able to enumerate all canonical perfect OFs of K,,
containing non-trivial automorphism groups. We also enumerated all OFs of
K2 containing non-trivial automorphism groups (except those containing
exactly one automorphism of order 2).

Special classes of Howell designs for several graphs were enumerated

by modifying the orderly algorithms. These classes include Skew designs,

1056



*- and **-designs.

In an attempt to find perfect OFs of complete graphs of larger orders, we
used hill-climbing and backtracking algorithms to construct (even)
starter-induced perfect OFs. We succeeded in finding examples of perfect OFs

for K35 and Ko,

10.2 Open problems

There remain many interesting open problems.

The complete enumeration of non-isomorphic OFs of Ky5 is still not
resolved. Using the algorithms in this thesis, OFs of Ky, containing exactly one
automorphism of order 2 can probably be enumerated in less than 100 hours of
CPU time. However, enumeration of automorphism-free OFs of Ky, will require
a lot more time.

Similar comments also apply to the enumeration of perfect OFs of K, ,: it
will probably take many many hours of CPU time before the entire problem can
be resolved. Since the existence of an automorphism-free perfect OF for Ko,
remains an open problem, it would be interesting to see whether there exists an
automorphism-free perfect OF for K, ,.

We would like to comment that the current difficulty in carrying out
complete enumerations for OFs of K,, and P1Fs of K,4 is due mainly to the
complexity of testing canonicity, and to the fact that there are many
non-isomorphic (partial) structures. In fact, for complete graphs of larger order,
a complete enumeration of non-isomorphic OFs with the orderly algorithms of

Chapter 2 is computationally intractible. In these cases, "automorphism orderly
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algorithms” as described in Chapter 3 may be used to enumerate OFs
containing certain automorphism groups (for example, cyclic OF).

It was shown in Chapter 6 that a perfect OF containing a P element does
not exist for K, when n (> 2) is even. The question of existence of such OF for
K,, When n is odd appears to be difficult.

We would like to comment that the concept of canonicity and orderly
algorithms can also apply to other combinatorial design problems, such as
enumeration of non-isomorphic balanced incomplete block designs,
BIBD(v, k, 1), containing certain automorphism groups. It seems hopeful that
these algorithms will be fruitful in obtaining new results for other combinatorial
design problems.

Existence of perfect OFs for all complete graphs remains an open,
difficult problem. The smallest unknown case is now K4o- Empirical statistics
with hill-climbing algorithms suggest that the expected number of (even)
starters required to obtain a (even) starter-induced perfect OF of K,, increases
exponentially as a function of n. Thus, although we did find an example of
starter-induced perfect OF of K, using the hill climbing algorithms, it appears
that these techniques will likely not be successful for larger orders. Algorithms
other than the current hill-climbing algorithms will probably be needed to find
an example for K.

Given an r-regular graph Gr on 2n vertices, it is a well-known conjecture
that there exists an OF of Gr if r> n. The best result so far was obtained by
Chetwynd and Hilton [15], who showed that this conjecture is true if r > (6/7)-2n.
Whether a Chetwynd-Hilton type of result holds for Howell designs remains an

open question. However, it should be noted that for r = n, n+1 and n+2, there
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are examples of graphs Gr for which OFs exist but Howell designs do not exist
(see Tables 8.1 and 8.2, and Section 1.4). Infinite families of graphs for which

Howell designs do not exist are not known at present.
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APPENDIX 1

Cycle structures of admissible automorphisms of OFs of Ko

Case Cycle Eliminated by
No. Structure Lemma
1 121
3 10121
5 913! 6.5
7 9113 6.2
9 813111 6.8
11 812112
13 7151 6.8
15 713121 65
17 712211 6.7
19 7115 6.2
21 6'5'17 6.8
23 6'4'12 6.8
25 613121116.7
27 6123 a? (case 65)
29 612114 22 (case 65)
31 5221 a° (case 76)
33 514131 6.5
35 514113 6.2
37 513122 g5

109

Case  Cycle Eliminated by
No. Structure Lemma
2 11111
4 10112
6 9’211 6.8
8 8141
10 8122
12 8114 6.6
14 7141117 6.8
16 713112 6.8
18 712113 6.2
20 62
22 6'4'2" 6.8
24 6132 a® (case 74)
26 63113 6.2
28 612212 22 (case 65)
30 6116 6.4
32 5212
34 51412111 6.7
36 513217 6.8
38 51312112 6.8



39
41
43
45
47
49
51
53
55
57
59
61
63
65
67
69
71
73
75
77

513114
510213
5117

423111
420142
413201

6.8
6.2
6.2
6.8

6.8

41312211¢.7

413145
4193412
410116
34
3313
322212
3216
312313
312197
26
2414
2218
112

6.2
a° (case 75)
6.4

6.2
a3 (case 75)
6.4
6.2
6.2

6.3

110

40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76

519311
519115
43

4292
4214
413212
41312143
4104
410214
4118
330141
3203
320144
310441
312215
3119
2512
2316
21110

6.7
6.2

6.8
6.2
& (case 75)
& (case 75)
6.3
6.7
a® (case 74)
a® (case 76)
6.7
6.2
6.2

6.4
6.3



Set 1:

|A
A

gl
g2

gl

g2

APPENDIX 2

Perfect OFs of K, and their automorphism groups

= (112 11 8 3 7)(2 14 13 10 5 9)

= (113498512211 6 7 10 3 14)

I = 84 (GAqy)
= <gl, g2>
induces (f,

(fq
induces (f,
(fg

2 3 4
3 2 5
4 2 6
5 2 4
6 2 3
7 2 9
8 210
9 2 8

10 2 7

11 2 13

12 2 14

13 2 12

14 2 11

£, fg
f10) (£13
£5 £,
f10 fig
5 6

4 7

3 8

3 9

4 10
35
312
313

3 6

3 7
311

3 14

3 10

f12 11
f14)
f11 %y

f6 Ig
7 8
6 9
5 10
6 8
5 7
411
4 6
4 s
4 14
4 12
1 8
4 9
413

111

£y

le)

f13)

7 12
7 13
8 14
6 13
5 14
6 12

5 11

5 13

f3) (f5

11

10

10

fe)

12
13
14
12
11
12
11
14
13
14
10

11

13

12

11

11

12

10

10

14
14
13
14
13
14
13
11
12

10

10



Set 2: |A] = 4
A =2, x Z,
A = <gl, g2>
gl = (1 2)(3 5) (4 6)(7 9)(8 10) (11 13) (12 14)
g2 = (1 2)(3 6)(4 5) (7 10)(8 9) (11 14) (12 13)
gl induces (fg5 £fg) (fg f10) (£13 £14)

g2 induces (3 £4) (£4 fg) (£17 £99)

1 2 3 4 5 6 7 8 9 10 11
1 3 2 5 4 7 6 9 8 11 10
1 4 2 6 3 8 5 10 7 12 )
1 5 2 4 3 9 6 8 7 13 10
1 6 2 3 4 10 5 7 8 14 9
1 7 2 9 3 13 4 6 5 11 8
1 8 210 3 5 4 14 6 12 7
1 9 2 8 3 12 4 5 6 13 7
110 2 7 3 6 4 11 5 14 8
111 2 13 3 14 4 8 5 12 6
112 2 14 3 7 4 13 5 9 6
113 2 12 3 11 4 9 5 8 6
1 14 2 11 3 10 4 12 5 13 6

112

12
13
14
12
11
12
11
14
13
10
11

14

13

12

11

11

12

10

10

14
14
13
14
13
14
13
11

12

10

10



= (3 11 10 4 12 9)(5 13 8 6 14 7)

= (1 2)(3 6) (4 5)(7 10) (8 9) (11 14) (12 13)

IA] = 12

A =2, xZ,

A = <gl, g2>

gl

g2

gl induces (f3 f14
(fs £33

g2 induces

1 2 3 4 5

1 3 2 5 4

1 4 2 6 3

1 5 2 4 3

1 6 2 3 4

1 7 2 10 3

1 8 2 9 3

1 9 2 7 3

110 2 8 3

111 2 13 3

112 2 14 3

113 2 12 3

1 14 2 11 3

10

12

13

14

11

10

fq

fe

113

f14
(f3  £4) (11 £19) (£g

14

13

12

£g)
£9)

f10)

10
11
12
13
14
14
13
11
12

12

13

11

10

10

12
13
14
12
11
13
14
12
11
10
11

14

13
12
11
11

12

10

10

14
14
13
14
13
12
11
14

13

10

10




]
o

Set 4: A}

A = <gl>
gl = (3107 4 9 8)(5 14 12 6 13 11)

(f5 f£14 f1p fg £13 £17)

10

11

12

13

14

3 4
2 5
2 6
2 4
2 3
2 12
2 11
2 13
2 14
2 7
2 8
2 10
2 9

10

11

10

14

12

13

114

13

14

11

10
11
12
13
14
13
14
11
12

13

12

11

10

10

12

13

14

12

11

10

14

11

10

14

11

13

12

11

11

12

10

14

14

13

14

13

14

13

12

13

12

11

10



Set 5:

[A]

gl

gl

induces (f3

10

11

12

13

14

<gl>

(310 7 4 9 8)(5 13 11 6 14 12)

(fg

3 4
2 5
2 6
2 4
2 3
2 11
2 12
2 14
2 13
2 8
2 7
2 9
2 10

10

12

10

13

14

11

fq

e

7 8
6 9
5 10
6 8
5 7
4 6
411
4 5
4 9
4 14
4 8
4 12
413

115

£12)

10

11

12

14

13

13

14

11

12

14

11

11

10

10

12

13

14

11

12

10

13

11

13

10

12

13

12

11

12

11

10

14

14

13

13

14

14

13

12

14

12

11

10



Set 6: IA] = 6
A =2,

A = <Lgl>

gl = (3 14 12 4 13 11)(5 9 8 6 10 7)

gl induces (f3 f34 £f15 1f4 f13 £q17)

(f5 fo fg fg fi09 £7)

1 2 3 4 5 6 7 8 10
1 3 2 5 4 7 6 9 11
1 4 2 6 3 8 5 10 12
1 5 2 4 3 9 6 8 14
1 6 2 3 4 10 5 7 13
1 7 2 12 3 10 4 14 11
1 8 2 11 3 13 4 9 14
1 9 2 13 3 7 4 11 12
110 2 14 3 12 4 8 9
111 2 7 3 14 4 6 8
112 2 8 3 5 4 13 7
113 2 10 3 11 4 5 14
1 14 2 9 3 6 4 12 13

116

11

10

10

12

13

14

11

12

13

12

10

11

13

11

11

13

12

11

12

11

10

10

14

14

13

13

14

10
14
13
12
14
12

10



Set 7: |A] = 2
A =€,

A = <gl>

gl = (3 4)(5 6) (7 8) (9 10) (11 12) (13 14)

gl induces (f3 f£4) (f5 £g) (£ fg)

(fg fq0) (£17 f12)(£13 £14)

1 2 3 4 6 7 8 10
1 3 2 5 7 6 9 11
1 4 2 6 8 5 10 12
1 5 2 4 9 6 14 13
1 6 2 3 10 5 13 11
1 7 2 12 6 4 13 11
1 8 2 11 14 4 5 12
1 9 2 8 7 4 11 14
110 2 7 12 4 8 9
111 2 13 10 4 14 12
112 2 14 13 4 9 7
113 2 9 11 4 6 8
1 14 2 10 5 4 12 7

117

11

10

12

13

14

12

14

10

10

13

11

14

13

13

12

11

10

10

12

11

10

14

14

13

11

12

14

13

13

14

10

12

11



I
[

Set 8: JA]

A = <gl>
gl = (3 4)(5 6) (7 8) (9 10) (11 12) (13 14)
gl induces (f3

£4) (f5 £g ) (£7 fg)

(fg fq0) (f17 f312) (£13 £q4)

1 2 3 4 6 7 8 10
1 3 2 5 7 6 9 11
1 4 2 6 8 5 10 12
1 5 2 4 11 6 13 9
1 6 2 3 12 5 14 11
1 7 2 9 6 4 13 8
1 8 2 10 14 4 5 7
1 9 2 11 10 4 8 12
110 2 12 7 4 9 13
111 2 14 12 4 6 9
112 2 13 5 4 11 10
113 2 8 9 4 14 7
114 2 1 13 4 10 11

118

11

10

12

13

14

12

10

12

11

14

11

10

14

12

13

12

11

10

11

12

10

14
14
13
14
13
14
13
13
14

13

11

12



Set 9:

[A] = 12

gl
g2

gl

g2

= Q. (dicyclic group)

g2>

= (354 6)(7 13 8 14)(9 11 10 12)

= (313 10 4 14 9)(5 11 7 6 12 8)

= <gl,
induces
induces
2 3
3 2
4 2
5 2
6 2
7 2
8 2
9 2
10 2
11 2
12 2
13 2
14 2

(f5 fs
(fg  f11
(f3 £33
(fs f13
4 5
5 4
6 3
4 3
3 4
9 3

10 3
8 3
7 3

14 3

13 3

11 3

12 3

ty

11
12

14

13

10

12

£6) (£7

£12)

fq

119

10

13

14

13

14

10

11

f13

fq)

fg)

7 12

7 11

5 11

5 12

6 11

fg

f14)

11

10

12
13
14
12
10
10
12
14
13
13
14

14

13
12
11

10

12

11

10

10

14

14

13

14

13

13

14

11

12

12

11

10



gl
g2

gl

g2

m

= <gl,

g2>

Q. (dicyclic group)

(354 6)(7 12 8 11) (9 13 10 14)

= (3 7 14 4 8 13)(5 10 11 6 9 12)

induces
induces
2 3
3 2
4 2
5 2
6 2
7 2
8 2
9 2
10 2
11 2
12 2
13 2
14 2

(£3
(fq
(f3

(f5

13
14
12

11

£

13
14

11

12

10

14

4

£6) (£7

£14)
fg

)

fe

120

10

12

11

12

11

10

13

fq

1, fg

f13)

£12)

7 12
7 11
7 10
6 13
5 14

5 13

£11)

11

10

12

13

14

12

14

13

10

14

14

13

11

13

12

11

10

10

11

12

10

14
14
13
14
i3

12

14

13

12

11

10



Set 11: Al = 6
A =£Z,

A = <gl>

gl = (37 11 4 12 8)(5 10 14 6 9 13)

gl induces

(£3 £11 £7 £4 £1p fg)(f5 f19 £14 £ £g f13)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 3 2 5 4 7 6 9 8 11 10 13 12 14
1 4 2 6 3 8 5 10 7 12 9 14 11 13
1 5 2 8 3 10 4 13 6 12 7 14 9 11
1 6 2 7 3 14 4 9 5 11 8 13 10 12
1 7 2 14 3 9 4 11 5 13 6 10 8 12
1 8 2 13 3 12 4 10 5 9 6 14 7 11
1 9 2 4 3 5 6 11 7 10 8 14 12 13
110 2 3 4 6 5 12 7 13 8 9 11 14
111 210 3 7 4 12 5 14 6 8 9 13
112 2 9 3 11 4 8 5 7 6 13 10 14
1 13 2 12 3 6 4 14 5 8 7 9 10 11
1 14 2 11 3 13 4 5 6 7 8 10 9 12
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Set 12:

IA]

gl

gl

= (3813 4 7 14)(5 9 12 6 10 11)

= 6
=2,
= <gl>
induces
2 3
3 2
4 2
5 2
6 2
7 2
8 2
9 2
10 2
11 2
12 2
13 2
14 2

(f3  fg
(f5 £q
4 5
5 4
6 3
8 3
7 3
10 3
9 3
13 3
14 3
3 4
4 3
12 3
11 3

13

f12

13

12

11

10

14

10

fy

fe

122

tq

10

10

14

11

12

13

£14)

f11)

10

11

12

11

12

14

13

14

11

10

12

11

10

12

13

14

12

13

13

14

12

13

14

13

11

13

12

11

10

10

10

12

11

14

14

13

14

11

11

12

10

13

14

10



Set 13:

A|

1 2
1 3
1 4
1 5
1 6
1 7
1 8
19
110
111
112
113
1 14

156 (GKq4)
3 4
2 5
2 6
2 9
2 10
2 13
2 14
2 12
2 11
2 8
2 7
2 4
2 3

12

11

13

14

10

123

10

11

14
12
10

13

10
i1
12
13

14

11

13

12

11

10

11

10

10

12

13

14

14

13

12

10

14
14
13
12

11

13

12

11

10

10
11

12

14

14

13

12

11

10

11

12

13

14

14

13



Set 14:

Al = 12

A _=_Z12

N
il

<gl>

gl = (35098 14

gl induces

(f3 £5 f£gq
1 2 3 4
1 3 2 5
1 4 2 6
1 5 2 9
1 6 2 10
17 2 13
1 8 2 14
19 2 8
1 10 2 7
111 2 3
112 2 4
113 2 11
114 2 12

12 4 6 10 7 13 11)

f14

5 6
4 7
3 8
3 14
311
310
37
313
35
4 5
3 6
3 12
3 9

124

10

12

13

10

11

10
11
12
13

14

11
12
11
14

13

13

11

10

f13

12
13
14

11

12

10

14

13

13

11

14

£11)

13
12

11

11
12

10

10

10

14

14

13

10

12

14

13

11

12

12

14

10



gl =

<gl>

(3514 97 11 4 6 13 10 8 12)

gl induces

(£3
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
110
111
112
1 13
1 14

fs fi14
3 4
2 5
2 6
2 14
2 13
2 11
2 12
2 7
2 8
2 4
2 3
2 10
2 9

£7

11

10

12

13

14

14

11

125

fq

10
12

10

11

14

13

f13

10

11

12

11

12

12

11

13

11

10

fg

12
13
14

13

13
14
10

14

10
11

12

£12)

13
12

11

10

11

12

10

10

14
14
13
10
14
14
13
14
13
12
11
12

11



Set 16:

Al = 3
A = Z,
A = <gl>
gl =

gl induces

(f2 £3 £10) (£4 £g £15) (f5 £13 £14) (fg £5 £97)

1 2 3
1 3 2
1 4 2
1 5 2
1 6 2
1 7 2
1 8 2
1 9 2
110 2
111 2
112 2
113 2
1 14 2

11

12

14

13

10

10

12

14

12

13

126

10

12

13

14

10

13

11

(1 5 14) (3 11 13)(4 8 7)(6 12 10)

10

11

12

10

12

14

10

11

10

12
13
14
13
14
10
13
14
13

12

11

13
12
11

11

10

10

12

14
14
13
14
11
13
11
11
12
14
14
12

13



Set 17:

IA] = 3
A = Z
A = <gl>

gl = (1 8 3)(2 9 14) (4 11 5) (7 13 10) (6) (12)

gl induces

(F2 £11 f10) (£3 £y

1 2 3 4 5
1 3 2 5 4
1 4 2 6 3
1 5 2 4 3
1 6 2 14 3
1 7 2 11 3
1 8 2 12 3
1 9 2 8 3
110 2 13 3
111 2 10 3
112 2 9 3
113 2 7 3
1 14 2 3 4

£4) (£5 £14 £q) (£5 £15 £13)

12

10

11

14

13

127

10

13

14

13

12

11

10

10

11

13

12

11

14

14

12

13

11

10

11

10

12
13
12
14
10
12

10

11

14

12

11

13

12

11

10

11

10

10

12

14

14

14

11

i3

13

13

12

14

14

13



Set 18:

Al = 3
A = Z,
A = <gl>

gl = (1 5 9)(2 7 14)(4 6 8) (10 13 11)

gl induces

(f2 T3 £4) (£3 £g f£14) (£5 10 o) (£ f17 £1)

1 2 3
1 3 2
1 4 2
1 5 2
1 6 2
1 7 2
1 8 2
1 9 2
110 2
1 11 2
112 2
113 2
1 14 2

13

10

12

14

11

13
12

14

10

11

128

11

12

11

10

12

13

14

14

10

11

10

14

12

14

13

10

10

13

11

10

12

13

14

10

11

11

13

13

12

13
12

12

10

11

11
10

10

14

14

13

11

13

13

14

12

12

14

12

11



Set 19:

Al = 3

A = Z3
A = <gi>
gl =

gl induces

(f2 f14 £10) (f3 £9

1 2 3 4 5
1 3 2 5 4
1 4 2 6 3
1 5 2 13 3
1 6 2 7 3
1 7 2 11 3
1 8 2 12 3
1 9 2 4 3
110 2 3 4
111 2 10 3
112 2 14 3
113 2 9 3
1 14 2 8 3

£4) (£5 £g £15) (fg £11 £13)

14

10

13

12

11

129

11

10

13

12

14

11

(1 4 7)(2 11 5)(3 12 10) (6 8 14)

10

11

10

11

12

14

12

13

13

10

11

10

12
13

14

14
10
13
14
12
14
11
14

13

13

12

12

10
11

11

10

14

14

13

12

11

11

13

14

13

10

12

12



Set 20:

fal = 3

A = Z,
A = <gl>
gl =

gl induces

(£ £14 £9)(f3 £17 fg) (f5 £13 £¢) (g £15 £1q)

1 2 3
1 3 2
1 4 2
1 5 2
1 6 2
1 7 2
1 8 2
1 9 2
110 2
111 2
112 2
113 2
1 14 2

12

14

11

13

10

11

14

10

12

130

11

10

14

11

13

14
12

12

(1 8 11) (2 9 10) (3 5 4) (6 12 14)

10

11

13

12

10

13

10

13

11

10

12
13
12
14
10
11
12
11
12
14

10

11

13
12
10

11

12

10

11

14

14

14

13

13

13

13

14

14

12

11

14



Set 21:

induces (£, f£7) (fg £15) (fg £q4)

|A]

A =
A =
gl =
gl

1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
111
112
113
1 14

<gl>

(1 4)(2 5)(3 7)(6 10) (8 12) (9 13) (11 14)

3 4
2 5
2 6
2 4
2 14
2 10
2 11
2 13
2 3
2 9
2 7
2 12
2 8

12

10

13

14

11

131

10

11

12

11

14

10

13

10

11

12

13

13
14
12
13
13

11

11

10

12

13

14

12

11

14

10

12

12

14

10

13

12

11

10

12

10

14

14

13

14

13

11

13

14

14

10

11

12



APPENDIX 3

Frequency distribution of non-isomorphic set of two

mutually orthogonal OFs of K, - f

j Fr() j*Fr()
0 540 0
1 373 373
2 301 602
3 286 858
4 268 1072
5 220 1100
6 191 1146
7 153 1071
8 135 1080
9 109 981
10 88 880
11 81 891
12 75 900
13 48 624
14 52 728
15 34 510
16 38 608
17 27 459
18 20 360
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19
20
21
22
23
24
25
26
27
28
29
30
31
32
35
36
37
38
39
40
41
42
43
44
45

18
17
10
10
10

11

W W - - B O b ©® O O

b

133

342
340
210
220
230
432
275
130
216
252
116
240
124
32
105
36
37
114
117
40
41
42
43
88
45



47 1 47
63 1 63

3192 18220

Fr(j) :Number of one-factorizations F for which the number of non-isomorphic

canonical pairs of one-factorizations of the form (F, G) is j.
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(F, H):

10

10

10

10

APPENDIX 4

Howell cubes H,4(8, 10)

6 10
1 5
2 8
3 9
4 7
2 4
7 9
1 5
6 8
3 10

10

10

135

10

10

10

10

10

10

10

10



Set 2

(G, H):

(F, G):

10

10

10

10

10

10

10

10

136

10

10

10

10

10

10



(F, H):

(G, H):

10

i0

10

10

10

10

10

10

137

10

10

10

10

10

10

10

10




Set 3

(F, G):

(F, H):

10

10

10

10

10

10

138

10

10

10

10

10

10

10

10



(G, H):

10

10

10

10

139

10

10

10

10



APPENDIX 5
H,(8, 10)

(F, G), (F, H), (G, H): see Appendix 4, Set 3.

(F, 1):
1 3 6 9 8 10
5 10 1 4 7 9
1 5 3 8
4 7 1 6
2 9 5 8 4 10
6 7 2 10 3 9
4 8 2 6
3 7 2 5
G, b:
1 3 2 5

140

10

10

10

10

10

10

10

10



(H, I):

10

10

141

10

10

10



APPENDIX 6
Automorphism groups of H,(8, 10) and H,(8, 10)

Hy(8, 10) = (F, G, H)

Set1 A=< 1 >.

Set2 A=<g>=Z, where g=(358104679).
g interchanges G and H.

Set3 A=<g>=Z,whereg=(56)(3810479).
g maps F into G, G into H, and H into F.

H,(8,10)=(F, G, H, 1)
A=<g.,0,>|A|=24,
andg,=(34)(5108697),

9,=(56)(3810479).

g, maps Hinto G, Ginto I, and | into H,
g, maps Finto G, G into H, and H into F.

142



10

10

APPENDIX 7
Three skew H(8, 10) designs

10 2 3

143

10

10

10



10

144

10



APPENDIX 8

S-regular graphs on 12 vertices having transitive automorphism groups

graphno.1 1-2,8,4,5,6;2-3,4,5,6;3-4,7,8;4-7,8,5-6,9,10;6-9,
10;7-8,11,12;8-11,12;9-10, 11,12;10- 11, 12; 11 - 12,

145



graphno.2 1-2,3,4,5,6;2-3,4,7,8;3-4,9,10;4-11,12;5-6,7,9, 11;
6-8,10,12;7-8,9,11,8-10,12;9-10,11;10-12; 11 - 12.

10 7

11 12

graphno.3 1-2,3,4,5,6;2-3,4,7,8;3-4,9,10;4-11,12;5-7,8,9, 11:
6-7,8,10,12;7-9,11;8-10,12;9-11,12;10- 11, 12.

146



graphno.4 1-2,3,4,5,6;2-3,4,7,8;3-4,9,10;4-11,12;5-7,8,9, 11;
6-7,9,10,12;7-10,12;8-9,11,12;9-11;10- 11, 12.

graphno.5 1-2,8,4,5,6;2-3,4,7,8;3-5,7,9;4-5,7,10;5-7,11;6 - 8,
9,10,11;7-12;8-9,10,12;9-11,12;10- 11, 12; 11 - 12.

12 5

10

147



1-2,3,4,5,6,2-3,4,7,8,3-5,7,9;4-5,7,10;5-7,11;6 - 8,

9,10,12;7-12;8-9,11,12;9-10,11;10- 11, 12; 11 - 12,

graph no. 6

N

O

1-2,3,4,5,6,2-3,4,7,8;3-5,7,9;4-6,8,10;5-6,9,11;6 -

10,11,7-8,9,12;8-10,12;9-11,12;10-11,12; 11 - 12.

graph no. 7

12

148



graphno.8 1-2,8,4,5,6;2-3,4,7,8;3-5,9,10;4-7,9,10;5-9, 11, 12;
6-8,9,11,12;7-10,11,12;8-10,11,12;9-11; 10 - 12.

1
2 4
7 10
12 8
6 ~ 11
9 5

graph no. 9 1-2,3,4,5,6,2-3,4,7,8;3-5,9,10;4-7,11,12;5-9, 11,
12;6-8,10,11,12;7-9,10,11;8-9,10,12;9-12; 10 - 11.

149



graphno. 10 1-2,3,4,5,6;2-3,7,8,9;3-10,11,12;4-5,7,8,10:5-9, 11,
12;6-7,8,11,12;7-9,11;8-10,12;9-10, 12; 10 - 11.

10 4

graphno. 11 1-2,3,4,5,6;2-3,7,8,9;3-10,11,12;4-7,8,9,10;:5- 7, 8,
10,11;6-7,10,11,12;7-12;8-11,12;9- 10, 11, 12.

150



graphno. 12 1-2,3,4,5,6;2-7,8,9,10;3-7,8,9,11;4-7,8,10,11:5-7,
9,10,11;6-8,9,10,11;7-12;8-12;9-12;10-12; 11 - 12.
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APPENDIX 9

4-regular graphs on 12 vertices having transitive automorphism groups

graphno.1  1-2,3,4,5;2-3,4,6;3-4,7,4-8;5-6,9,10;6-9,10:7 -8,
11,12;8-11,12;9-10,11;10-12; 11 - 12.

3 7
11 AN 9
6 é::\2
4 ¢ < 8
12 10
5
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graphno.2 1-2,3,4,5;2-3,4,6;3-5,7,4-6,8,5-7,9:6-8,10:7-9,
11,8-10,12;9-11,12;10-11,12; 11 - 12.

graphno.3 1-2,8,4,5;2-3,6,7,3-8,9;4-5,6,10;5-8,11:6-7,10:7 -
9,12;8-9,11;9-12;10- 11, 12; 11 - 12.

1563



graphno.4 1-2,8,4,5;2-3,6,7;3-8,9;4-6,8,10;5-7,9,10;6-8, 11;
7-9,11,8-12;9-12;10-11,12; 11 - 12.

77 N\
vj Brﬂ

12

10

graphno.5 1-2,3,4,5;2-3,6,7;3-8,9;4-6,8,10;5-7,9,11:6-8, 11;
7-9,12;8-12;9-10;10-11,12; 11 - 12.
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graphno.6 1-2,38,4,5;2-3,6,7;3-8,9;4-6,10,11;5-8,10,12;6 - 11,
12;7-9,10,12;8-11, 12;9- 10, 11.

8 11
\

7

graphno.7 1-2,3,4,5;2-6,7,8;3-6,7,8,4-6,9,10;5-6,9, 10: 7 - 11,
12;8-11,12;9-11,12;10- 11, 12.
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graph no. 8 1-2,3,4,5;2-6,7,8;3-6,7,9;4-6,7,10;5-8,9,10;6-11;
7-12;8-11,12;9-11,12;10- 11, 12.

graph no. 8 1-2,3,4,5;2-6,7,8;3-6,7,9;4-6,8,10;5-7,9,10;6—11;
7-12;8-11,12;9-11,12;10- 11, 12.




graph no. 10 1-2,8,4,52-6,7,8;3-6,9,10;4-7,9,11;5-8, 10, 12: 6 -
11,12;7-10,12;8-9,11;9-12; 10 - 11.
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10

11

12

12

10

11

11 5
3 6
5 1
9 2

10 3

11

12

6
3

11 1
8 10

12 2
9 3

10 5

A Howell cube Hy(7, 12)

10

12

11

12

APPENDIX 10

7 12 3
2 9 8
7

1 5
4 11 1
3 8 2
6 10 5
3 4 8
6 7 4
9 12 2

1 5
8 10 1
11
2 11 3

158

12

11

10

10

12

10

12

11

10

11

12

10
12

11

12

11

10



11
12

10

10

11

12

10 12
6 11
1 4
3 8
5 9
2 7

10

11

12

159

3 7
2 5
11 12
1 6
8 9
4 10

5

12

10

11

11

12

10



12

11

10

12

10

11

10

12

11

11

12

10

12
11

i0

10
12

11

6 12

APPENDIX 11
Three Howell designs H*(7, 12)

6
4

11

10

10
9

12

12

11

12

11

160

3

2

4

5

10

11

12

10

12

10

12

8

6

12
11

5

12

11

10

10

11

12

11

12

11

10

12

11

10

12



Set 1: {Dy, D,}.

D1 a

|B5N

o W ol o

o

Jps

APPENDIX 12

Two sets of almost disjoint Howell designs H(7, 14)

a 3 2 4 2 4 1 1 5

a 2 1 3 1 3 4 6 4 6 5
1 2 a 5 a b5 3 6 3 6 4
3 4 a 6 a 6 2 5 2 5 1
4 5 6 2 6 a 1 a 1 3
1 6 3 5 3 3 a 4 a 4 2
5 6 14 1 4 2 3 2 a
3 1 5 3 1 a 2 4 2 6
2 4 4 6 a 3 &6 1 a 3 S
6 5 a 1 2 3 5 2 a 1 4
a 4 32 5 4 a5 2 6 1
a 2 25 4 1 1 & 6 4 3
1 3 a &6 a &6 3 4 5 1 2
5 6 1 4 6 2 4 3 5 3 a

161

ko B o

1383

SN VR o N SR o kv

[



Set 2:
2: {D,, D3}
3-

DB
a

N

oo

=

=
v
ko
(18

oy fw

v fw

=

VI 84

w

s

J=

N e

N

s
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APPENDIX 13

Non-isomorphic almost disjoint Howell designs H(5, 10)

Set1: {D,,D,}. f={(19),(210),(37), (4 8), (56)}.
Underlying graph of D, is graph no. 2;
Underlying graph of D, is graph no. 17.

D, 1 2 3 4 5 7 6 9 8 10
37 19 2 10 4 8 5 6
4 6 2 5 8 9 7 10 1 3
5 8 6 10 1 4 2 3 7 9
9 10 7 8 3 6 1 5 2 4
D, 1 6 5 10 4 9 2 7 3 8
4 10 17 3 5 6 8 2 9
5 9 2 6 1 8 3 10 4 7
307 4 8 2 10 1 9 5 6
2 8 39 6 7 4 5 1 10

163




Set2: {D,, D,}. f={(110),(28),(39),(486),(57).
Underlying graph of D, is graph no. 17;
Underlying graph of D, is graph no. 50.

D, 1 2 3 5 4 6 7 9
9 10 2 6 5 7 4 8
3 7 1 4 2 8 6 10
6 8 7 10 3 9 1 5
4 5 8 9 110 2 3
D, 1 6 4 10 2 5 7 8
5 10 17 6 9 3 4
4 9 3 6 1 8 2 10
2 7 5 8 3 10 19
3 8 2 9 4 7 5 6

164

8 10
1 3
5 9
2 4
6 7
3 9
2 8
5 7

4 6
110




-t

REFERENCES

B. A. Anderson, Finite topologies and Hamiltonian paths, Journal of

Comb. Theory B 14 (1973), 87-93.

B. A. Anderson, "Some perfect 1-factorizations", Proc. of 7th Southeastern
Conference on Combinatorics, Graph Theory and Computing, Utilitas

Math., Winnipeg (1976), 79-91.

B. A. Anderson, Symmetry Groups of Some Perfect One-factorizations of
Complete Graphs, Discrete Math. 18 (1977), 227-234.

B. A. Anderson, Sequencings of Dicyclic Groups, Ars Combinatoria 23

(1987), 131-142.

B. A. Anderson, M. M. Barge and D. Morse, A recursive construction of

asymmetric one-factorizations, Aequationes Math. 15 (1977), 201-211.
B. A. Anderson, P. J. Schellenberg and D. R. Stinson, The existence of
Howell designs of even side, Journal of Comb. Theory A 36 (1984),

23-55.

D. S. Archdeacon, J. H. Dinitz and W. D. Wallis, Sets of orthogonal

1-factorizations of K,,, Congressus Numerantium 43 (1984), 45-79.

165



8

10

11

12

13

14

15

A. M. Barayev and |. A. Faradzev, Postroenie i issledovanie na EVM
odnorodnykh i odnorodnykh dvudol'nykh grafov, Algoritmiceskie

issledovania v kombinatorike, Moscow, Nauka (1978), 25-60.

L. R. Beaman, "Variability of Room squares", Ph. D. Thesis, University of

Newcastle (1979).
R. C. Bose, E. T. Parker and S. S. Shrikhande, Further results on the
construction of mutually orthogonal Latin squares and the falsity of Euler's

conjecture, Canad. Journal Math. 12 (1960), 189-203.

E. F. Brickell, A few results in message authentication, Congressus

Numerantium 43 (1984), 141-154.

J. W. Brown, Enumeration of Latin squares with application to order 8,

Journal of Comb. Theory B 5 (1968), 177-184.

P. J. Cameron, Minimal edge-colourings of complete graphs, Journal

London Math. Soc. (2) 11 (1975), 337-346.

P. J. Cameron, "Parallelisms of complete designs", London Math. Soc.

Lecture Note Ser. 23, Cambridge University Press, Cambridge 1976.

A. G. Chetwynd and A. J. W. Hilton, Regular graphs of high degree are
1-factorizable, Proc. London Math. Soc. (3), 50 (1985), 193-206.

166



16

17

18

19

20

21

22

23

C. J. Colbourn and M. J. Colbourn, Combinatorial isomorphism problems

involving 1-factorizations, Ars Combinatoria 9 (1980), 191-200.

L. E. Dickson and F. H. Safford, Solution to problem 8 (group theory),
Amer. Math. Monthly 13 (1906), 150-151.

J. H. Dinitz, Pairwise orthogonal symmetric Latin squares, Congressus

Numerantium 32 (1981), 261-265.

J. H. Dinitz and D. R. Stinson, The spectrum of Room cubes, Europ.

Journal of Comb. 2 (1981), 221-230.

J. H. Dinitz and D. R. Stinson, A fast algorithm for finding strong starters,
SIAM Journal of Alg. and Discrete Math. 2 (1981), 50-56.

J. H. Dinitz and W. D. Wallis, Four orthogonal one-factorizations on ten
points, in "Algorithms in Combinatorial Design Theory", Annals of

Discrete Math. 26 (1985), 143-150.
E. N. Gelling, "On 1-factorizations of the complete graph and the
relationship to round robin schedules”, M.A. Thesis, University of Victoria,

1973.

P. B. Gibbons, "Computing techniques for the construction and analysis of

block designs”, Ph. D. thesis, University of Toronto, 1976.

167



24

25

26

27

28

29

30

31

32

K. B. Gross, R. C. Mullin and W. D. Wallis, On the number of pairwise
orthogonal symmetric Latin squares, Utilitas Math. 4 (1973) 239-251.

A. Hartman and A. Rosa, Cyclic one-factorizatons of the complete graph,

Europ. Journal of Comb. (1985), 45-48.

I. Holyer, NP-completeness of edge-coloring, SIAM Journal Computing 10
(1981), 718-720.

J. D. Horton, Room designs and one-factorizations, Aequationes Math. 22

(1981), 56-63.

S. H. Y. Hung and N. S. Mendelsohn, On Howell designs, Journal of
Comb. Theory A 16 (1974), 174-198.

E. C. lhrig, Symmetry groups related to the construction of perfect

one-factorizations of K, Journal of Comb. Theory B 40 (1986), 121-151.

E. C. lhrig, The structure of the symmetry groups of perfect

one-factorizations of K,_, to appear.

E. C. Inrig, Cyclic perfect one-factorizations of K,,. preprint.

E. C. Ihrig, E. Seah and D. R. Stinson, A perfect one-factorization of Ky,
Journal Comb. Math. and Comb. Comput., 1 (1987), 217-219.

168



33

34

35

36

37

38

39

40

W. L. Kocay, D. R. Stinson and S. A. Vanstone, On strong starters in cyclic
groups, Discrete Math. 56 (1985), 45-60.

N. P. Korovina, On the construction of closed triples of pair groups of order

12 (in Russian), Kombinatornyi Anal. 2 (1972), 42-45.
A. Kotzig, "Hamilton graphs and Hamilton circuits”, Theory of graphs and
its application, Proc. Sympos. Smolenice (1963), Nake. CSAV, Praha

(1964), 63-82.

E. R. Lamken and S. A. Vanstone, Complementary Howell designs of side

2n and order 2n+2, Congressus Numerantium 41 (1984), 85-113.

E. R. Lamken and S. A. Vanstone, Partitioned balanced tournament

designs of side 4n+1, Ars Combinatoria 20 (1985), 29-44.

E.R. Lamken and S. A. Vanstone, Designs with mutually orthogonal
resolutions, Europ. Journal of Comb. 7 (1986), 249-257.

E. R. Lamken and S. A. Vanstone, The existence of partitioned balanced

tournament designs of side 4n+3, Annals of Discrete Math., to appear.

E. R. Lamken and S. A. Vanstone, The existence of partitioned balanced

tournament designs, Annals of Discrete Math., to appear.

169



41

42

43

44

45

46

47

48

C. C. Lindner, E. Mendelsohn and A. Rosa, On the number of
1-factorizations of the complete graph, Journal of Comb. Theory B 20

(1976), 265-282.

E. Lucas, Sixieme récréation: Les jeux de demoiselles, Récréations

Mathématiques, Vol. 2, Gauthier-Villars, Paris (1883), 161-197.

E. Mendelsohn and A. Rosa, One-factorizations of the complete graph - a

survey, Journal Graph Theory 9 (1985), 43-65.

R. C. Mullin and W. D. Wallis, The existence of Room squares,

Aequationes Math. 13 (1975), 1-7.

C. Papadimtriou and K. Steiglitz, Chapter 19 in "Combinatorial

optimization: algorithm and complexity", Prentice Hall, 1982.

K. T. Phelps and S. A. Vanstone, Isomorphism of strong starters in cyclic

groups, preprint.

R. C. Read, Every one a winner, Annals of Discrete Math. 2 (1978)
107-120.

M. Reiss, Uber eine Steinersche combinatorische Aufgabe, welche im

45sten Bande dieses Journals, Seite 181, gestellt worden ist, J. fur die

reine angew. Math. 56 (1859), 326-344.

170



49

50

51

52

53

54

55

56

T. G. Room, A new type of magic square, Math. Gaz. 39 (1955), 307.

A. Rosa, Room squares generalized, Annals of Discrete Math. 8 (1980),

43-57.

A. Rosa and D. R. Stinson, One-factorizations of regular graphs and

Howell designs of small order, Utilitas Math. 29 (1986), 99-124.

P. J. Schellenberg, D. R. Stinson, S. A. Vanstone and J. W. Yates, The
existence of Howell designs of side n+1 and order 2n, Combinatorica 1

(1981), 289-301.

P. J. Schellenberg and S. A. Vanstone, The existence of Howell designs

of side 2n and order 2n+2, Congressus Numerantium 29 (1980), 879-887.
E. Seah and D. R. Stinson, An enumeration of non-isomorphic
one-factorizations and Howell designs for the graph K,, minus a

one-factor, Ars Combinatoria 21 (1986), 145-161.

E. Seah and D. R. Stinson, Some perfect one-factorizations of K, ,, Annals

of Discrete Math., to appear.

E. Seah and D. R. Stinson, An assortment of new Howell designs, Utilitas

Math., to appear.

171



57

58

59

60

61

62

63

E. Seah and D. R. Stinson, A perfect one-factorization for K,4, Discrete

Math., to appear.

E. Seah and D. R. Stinson, On the enumeration of one-factorizations of
complete graphs containing prescribed automorphism groups, Math. of

Comp., to appear.
D. P. Shaver, "Construction of (v, k, A) - configuration using a
non-enumerative search technique”, Ph. D. Thesis, Syracuse University,

1973.

D. R. Stinson, The existence of Howell designs of odd side, Journal of

Comb. Theory A 32 (1982), 53-65.

D. R. Stinson, Hill-climbing algorithms for the construction of

combinatorial designs, Annals of Discrete Math. 26 (1985), 321-334.

D. R. Stinson, Room squares with maximum empty subarrays, Ars

Combinatoria 20 (1985), 159-166.

D. R. Stinson and H. Ferch, 2000000 Steiner triple systems of order 19,
Math. of Comp. 44 (1985) 533-535.

172



64 M. Tompa, "Hill-climbing: a feasible search technique for the construction
of combinatorial configurations", M. Sc. Thesis, University of Toronto,

1975.

65 W. D. Wallis, On one-factorizations of complete graphs, Journal Austral.

Math. Soc. 16 (1973), 167-171.
66 W.D. Wallis, A. P. Street and J. S. Wallis, "Combinatorics: Room squares,

sum-free sets, Hadamard matrices," Lecture Notes in Math., Vol. 292,

Springer, New York, 1972.

173



