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" ABSTRACT -

An experimental investigation of fully developed
turbulent flow in an equilateral triangular duct at
ReYnolds numbers between 53,000 and 107,300 is described.
By measuring one component of the secondary velocity, the
secondéry‘flow pattern was shown to consist of six counter-
rofating cellévbounded by the corner bisectors. Secondary
‘flows were directed into the corners via the corner biseétor
and returned along the wall and wall bisector.‘ A maximum
. secondary velocity,of 1.5% of the bulk velocity was observed.
The effects of sécondary currents were evident in the dis-
tributions of meah velocity, wall shear, and Beynolds
stresses and were very prominent in the turbulence kinetic
énergy distribution. The universal law of the wall can be
used to describe the mean axial velocity distribution near
the wall although the constants differ somewhat from those
for pipe flow. The friction factors were 5.0 - 6.5% lower
than pipe friction factors. It is deménstrated that, in
order to obtain satisfactory results, techniques for pre-
dicting the distributions of mean flow quantities in a

triangular duct must allow for secondary flow effects.
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NOMENCLATURE

equivalent hydraulic diameter
energy spectrum function
fricfion factor

dimensional universal constant
height of triangular duct

distance from duct centerline to
midpoint of wall

geometry factor for turbulent flow

yaw sensitivity of hot wire

axial distance from inlet of test seétion
one half length of duct sidéwall
logarithm to the base 10

frequency

mean ététic pressure

mean static pressure referred to static
pressure 2.65 cm from duct exit

fluctuating component of static pressure
mean flow kinetic energy per unit mass

instantaneous turbulence kinetic energy
per unit mass

mean turbulence kinetic energy per unit mass
g' = Ou + Vv + Ww

Reynolds number = Ub Dh
v

correlation coefficient = uv/u'v'

sensitivity of linearized hot wire
anemometry system
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U instantaneous axial velocity

U mean axial velocity (time averaged)

'Ub bulk velocity | |

U+ dimensionleés mean axial velocity = U/u*

u,v,w fluctuating components of veloc1ty in the
X, Y and z dlrectlons

u',v',w' root mean square values of velocity

' fluctuations in the x, y and z directions

‘u* friction ve1001ty

vV, W instantaneous components of velocity parallel
-and normal to base of duct

V, Wu mean veloc1t1es parallel and normal to
base of duct

n dimensionless distance from wall = z u*

: V.
i M viscosity
. v kinematig viscosity = u/p

p density

T, wall shear stress

Q mean axial vorticity

Subscripts

loc

local




TURBULENT FLOW - IN AN

EQUILATERAL TRIANGULAR DUCT

1.0 INTRODUCTION

1.1 Motivation

Most nﬁclear fuel designs inVolvevthe transfer
of heat from the elements of a rod bundle to an axial
flow of coolant at high Reynolds numbers. Past studies
of this‘heat_traﬁsfer process have usually censisted of
full scale exéeriments to evaluate bulk—aﬁerage?qﬁantities
such ae pressure drop, heatntfansfer coefficients and '
Subchannel.mixing for e particular design and range of
conditions.v bue to the raﬁdom_nature of these experiments
and the complex geometry of fuel bundles (Figure 1), it
has not been possible to combine the existing heat transfer
‘data in the form of simple correlations. A more funda-
mental knowledge of the turbulence structure.in rod bundle
flows "is therefore important both for the analysis-of
experimental results and for the development of numerical

techniques for predicting hydraulic and thermal performance.

Some fundamental_studiesvof the structure of
fully developed turbulent flow have been conducted in
‘triangular atray rod bundles (1'2’3). These investigations
indicate that rod bundle flews are strongly influenced by

secondary velocities of the type arising in all straight

non- axisymmetric flow passages under turbulent flow

\




conditions. Although the secondary veloc1t1es are relatlve—
'ly small, they produce a splral motion in the mean flow
which convects kinetic energy and momentum in the plane
normal to the main flow axis. A detailed knowle@ge of
'secondary velocities and their effects on the primary flow
is of key importance. Certain effects such as the homogen-
ization of local wall shear stress have been quantized. At
present, however, there are no reliable measurements of
secondary flows in rod bundle geometries. Hall and

(2)

Svenninygsson attempted direct measurements of secondary
ve1001t1es,but their results were not conclusive and they ~
recommended further investigation. Similarly, although

NED

Trupp and Aza could infer the direction and approx1mate
magnltude of secondary flows from momentum and energy bal-
ances, they were unable to measure the tiny secondary vel-

ocities via conventional X-probes and a three-wire probe.

The.present work constitutes the first phase of
a continuation of rod bundle work(3) at the University of
Manitoba. It involves an experimental investigation of the
turbulence structure and secondary flows in fully developed
turbulent flow in an equilateral triangular.duct. rhis
duct represents a simplification of a single subchannel in
a triangular array rod bundle with a pitch to diameter
ratio of 1.0. The triangular shape was chosen because it
could ea51ly be fabricated w1th a hlgh degree of accuracy."

Much of the information obtalned in the trlangular duct will




be applicable to a subchannel in a triangular array rod
Bundleiin spité of the differences in geometry. In addition,
the triangular test section will provide a convenient
facility for the future development of/a secondary flow
meter which can be used in rod bundles. The present work
also contributes, in its own right, to the existing knowledge
of turbulent duct flows since trlangular ducts have received

‘Vllttle attention to date.

1.2 Scope and Objectives 1

Thé Present work was undértaken to establish the
mean velocity fields, turbulence structure, and secondary
flow patterns in fully developed turbulent flow in an equil-~
ateral triangular duct. The first phase of the work in-
cluded the design and constrqction of a suitable test section
to be attached tO»ah existing wind tunnel. The wind tunnel
; layout and duct cross-section are shown in Figures 2 and 3

respectively.

‘The second phase of the work involved an experi-
‘ mental investigation of the fuliy developed flow near the
exit of the test section. After initial measurements to
verify flow'symmetry,all measurements were made at the grid
points shown ianiguré 4. These grid péints cover one of
the six: symmetrlc flow areas which are formed by lines of
symmetry and whlch Trupp and Azad( ) refer to as primary

flow cells.




The'results.of mean velocity and Reynolds stress‘
measurements conducted at Reynolds numbers of 53,000, 81,000,
‘and 107,300 are discussed in subsequent‘portions:of this
;eport. Additional data on local wall shear stresses and
axial power spectra afe also included. Information con-
cerning secondary flows includes inferences derived from
‘momentum balances and'direct'xfprobé measurements of one
component. Further exbloratiohvof_the sécoﬁdary'velocities

has been planned as a continuation of the present project.




2.0 LITERATURE REVIEW :

Very few publications 'in the open literature have

dealt with turbulent flow in triangular ducts. The first

work to appear was that of Nikuradse(4)

who, in 1930, pre-
sented mean axial velocity profiles for several triangular

duct shapes. Nikuradse noted that isovel lines in these

. ducts tended to'bulge'towards'the corners. This phenomenon

(5)

had also been observed in an earlier study in rectangular

ducts and had been explained(6) by the postulated existence
of.secondary currents which transported momentum from the
‘center region of the duct to the corner region. Flow

(4) .

visualization studies by Nikuradse confirmed the presence
of sécondary flows in an equilateral triangle. As predicted,
secondafy flows are bounded by the corner bisectors which
divide the triangle into six.primary flow cells. The isovels
are distorted by the éonvection of high momentum fluid into
the corner via the bisector of the corner angle, and by the
transport of low momentum fluid ou£ along the wall and
finally along the wall bisector. No flow crosses the lines
of symmetry and, as illustrated by Figure 3, flow cells on

opposite sides of a symmetry line are counter-rotating.

(7)

Cremers and Eckert have published measurements
of the mean axial velocity and five Reynolds stresses in an
isosceles triangle with an'aspect ratio of 5 to 1. They
reported that there was no experimental evidence of secondary

flows at a Reynolds number of 10,900 although contour plots




oﬁ axial velocity fluctuations strongly suggest the presence
of secondary flows near‘éhe base. At a Reynolds number of
5480, Cremers and Eckert noted a region near the apex in
which no veiocity fluctuations could be detected. A recent

(8)

study by Bandopadhayay and Hinwood confirms that, for a
range of Reynolds numbers, laminar and turbulent flows may
coexist near the apex of high as?ect ratio %riangular ducts.
Cremers and Eckert also reported that, in the Reynolds riumber
range ffom 5,000 to 10,000, fluctuating quantities in a
triangle do not become Reynolds number independent when
normaiized by friction velocity. Laufer(g) had:previously
established that, in the case of fully developed pipe flow,
the friction velocity could be used as‘a‘scaling factor to
remove the Reynolds number dependence of turbulence quantities.
Although pipe flow has been studied extensively since Laufer's

original work, his investigation is probably the most com-

prehensive of any to date.

Of particular interest in thé present investigation
is the work aone on secondary flows in fully developed tur-
bulent flow in square ducts. Sécondary flows are common to
all turbulent flows in straight noncircular ducts,. but the
square duct has been studied the most extensively. As pre-
viously mentioned,Nikuradse(s) first noticed the distortion
~of isovéls in a square duct in 1926 and Prandtl(G) attributed
these distortions to secondary flows circulating in closed

cells and bounded by lines of symmetry. However, it was not.




ﬁntil 1960 that Hoagland(lo), using a sensitive,rotatable
hot-wire probe, was able -to make quantitative measurements

of the transverse velocity components. His measurements
confirmed: the flow patterns suggested by Prandtl and indica-

' ﬁed that the ratio of secondary velocity to centerline
velocity reached a ma#imum value of 1 to 1 1/2 percent near
the corners. lHoagland also found that wall,shear stresses

in a square ductAwere almost uﬁiform everywhere except in the
corners. He concluded that secondary flows, by the éonvection
of axial momentum, have a signifiéanf effect on the axial

velocity distribution throughout most of the flow.

Leutheuéser(ll) in 1963 found that, while the
inner law of velocity distribufion applied to the wall region
tof:flow in square ducts, the flow near»the center of the -
duct does not”féllow the outer law formulation;” ﬁe also
postulated that the strength of secondary flows decréased

with increasing Reynolds number.

2)

Brundrett and Baines(l éarriéd out an investigaf.J
tion of the origin'and dissipation of secondary flows by
examining the mean axial vorticity equation. - Their measure-
ments of the Reynolds stresses indicate that the production
of axial vorticity occurs along the bisector near the corner.
Although they were able to show ﬁhat secondary flows are the

result of Reynolds stress gradients, they did not examine the

turbulence mechanism producing the gradients.




Some further aspects of square duct flow were

studied by Gessner and Jones(l3)

. They examined the

Reynolds equation along a secondary flow streamline and
concluded that secondary flows were caused by a complex
interaction of Reynolds stresses and static pressure

gradients. They also‘concluded that secondary flow velocities'
normalized with either bulk or centerline velocities decréase
with increasing.Reynolds numbefé. Finally, their measurements
showed that the greatest skewness of the wall shear stress
occurs in the corners and that, iﬁ the cross-sectional plane,

Reynolds stress principal planes are not normal and tangent

to isovels.

_ Using ducts of different roughness Launder and
Ying(14) determined that the friction veloéity was the approp-
riate scaling factor to remove the Reynolds number and surface

roughness dependency of secondary velocities.

In 1973,Gessner(15)

conducted a study of the
.origins of secondary flows based on the experimental evalua-
tion of terms in the mean energy and vorticity balance
equations applied along a corner bisector in developing
tﬁrbulent flows. His results indicated that secondary flows
are initiated and sustained as a result of turbulent shear
stress gradiénts normal to the bisector. He also concluded
that the transport of turbulent kinetic energy and axial

vorticity are second order effects of secondary flows, and

the equations governing these processes do not govern the




generation of secondary flows. First order effects are
classified as the convection of axial momentum, total
energy of the mean flow, and transverse vorticity. These
-conclusions»are apparently applicable to all geometries,
including exterior corners, which involve changes of
curvature of isovels.

L]

Although most studies of secondary flow patterns
have involved square ducts, some work has been done in other

(16)

duct shapes. Liggett et al ihvestigated secondary

currents in an open triangular channel. Rectangular ducts

have been studied by Hoagland(lo), Leutheusser(ll), Gessner

and Jones(l3), andﬂrrace¢l7) (;8)

. Kacker studied a

circular pipe with one or tﬁo eccentric rods. For the two
pin geometry, he identified two counter—rotéting secondary
flow cells in each symmetric quadrant. As is the case for
square ducts, Kacker concluded that secondary flows have a
significant influence on mean velocity and wall shéaf stfess'

distributions.

Based on turbulence measurements'in a recténgular
duct with roughened sections of wall and consideration of the

(19) has proposed a

turbulent kinetic energy equations, Hinze
general rule pertaining to the existence of secondary flows.
This rule states that, when in a localized region the pro-

duction of turbulent kinetic energy greatly exceeds viscous
dissipation, there must be a secondary current that transports

turbulence poor fluid into this region and turbulence rich

fluid out.




10

There have been at least three attempts to compute
mean velocity profiles and wall shear stress distributions
in equilateral triangular ducts. The first attempt was

(20) who developed

made in 1954 by Deissler and Taylor
an iterative technique based on the eddy diffusivity in a
tube. They ignored secondary flows and assumed that shear

stresses normal to isovels were negligible.®* The isovels

obtained by this method had the same general shape as the
| (4) .

experimental curves of Nikuradse but did not penetrate

as far into the corners.

A second technique, which is limited to prediction
of wall shear stress distributions but includes the effects
of secondary flows, was suggested by Kogorev et al(Zl) in
1971. 1In this technique, the axial momentum equation is
‘'written in eddy viscbsity form and integrated by‘using an
assumed universal velocity distribution and experimental
data for secondary flows. For a square duct, Kogorev found
»that'agreement between measured and predicted distributions
was improved by including secondéry flow effects. Usihg‘a:
secondary flow pattern obtained by transformation of square
duét data, Kogorev also foﬁnd that secondary flows. tend to

equalize the distribution of the wall shear stress about the

perimeter of an equilateral triangle.

Finaliy the finite element technique was adapted

to the calculation of mean velocity and wall shear stress

(22)

distributions in noncircular ducts by Gerard n 1974.
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r . :
‘His technique uses an eddy viscosity model to account for

Reynolds shear stresses and requires information describing
secondary flows aé input data if their éffects ére to be
taken into account. He applied the technique to an equil-
ateral triangle by ignoring secondary flows and obtained
résults with the éame deficiencies as the results obtained
by Deissler and Taylor. 'In an effort to quantify the
effecﬁs of secondary flows, the case of a square duct was
considered with and without secondary flow data as input.
-The inclusion of secéndary flow effects significantly im-
proved the accuracy of his prédictions. He ccﬁdluded that
secondary flows are responsible for the distorted isovels
and uhexpectedly uniform wall shear stress distributiohs

found in turbulent flow in noncircular conduits.~
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I3

3.0 THEORETICAL CONSIDERATIONS -

In a duct with the cross-section of an equilateral
triangle,flow properties are symmetric about the corner
bisectors. As illustrated in Figure 3, this property of
symmetry can be used té subdividebthe duct cross-section
into six primary flow cells. Each of these cells is identical
when'viewed with respect to rotated coordinate systems and
no net mass or energy is transferred across their boundaries.
A knowledge of the flow properties in one cell is therefore

'sufficient to describe the entire flow field.

The primary cell and éoordinate system considered
in the present ihvestigation are shown in Figure 3. Equations
gOverning the conservation‘of mass, momentum, axial vorticity
and energy in this system are presented below;' These
equations are applicable to the isothetmal,fully developed,

turbulent flow of a constant property fluid.

3.1 Continuity and Reynolds Equations

Within a primary cell, the only allowable simplifi-
cations of the continuity and Reynolds equations:arg those
dué to the fully developed flow condition. This condition
implies that the veldcity fields and axial pressure gradient
are independent of the axial coordinate. Consequently, the
simplest forms of the continuity equations which can. be

applied within a flow cell are:
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IV LW ‘ (3.1)

.9.‘:1.+_3.Y.+.§.W.. =0

90X 3y 3z (3.2)

The Reynolds equations for fully developed flow

within a primary cell are: o

X - direction

_oaT B N 2TF 25 Sre T
FOU LU _ L3P + v(a U .3 U)_ (auv + auw)
3y, 3z p 99X oy?2 9z2 3y 3z
(3.3)
Y - direction
— 3V  — 3V 27 2 eyl
AN AN ) JNVE K AN 4 S L S X0 |
oy 3z p 3y 3y? oz Ay 3z :
(3.4)
Z - direction
PN ~ B - 5 2% 27 Pl =
GO @AW _ 18P, 22, %W, _ oW | 3%,
oy 9z p 3z ay? 3z2 3y - 0z
(3.5)

The Reynolds equation for the X - direction can be

interpreted as an expression for the change in axial momentum
of a small element of fluid. The roles of the various terms
are more easily-understood if the equation is rearranged

in the following form:
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P o— 57 — 2 2
_ 18P _ U 78U _ (8 g, 3 U) + (auv " auw)
p 9x 3y ' 8z ay2 sz 3y 3z
(3.6)

The first term in equation 3.6,

1l 3P, represents
. p 39X

the change in axial momentum due to the axial pressure
gradient. Its magnitude is constant over the cross-section

as can be verified by differentiating equations 3.3, 3.4 and

. 3.5 with respect to x.

On the right haﬁd side 6f equation 3.6, the two
brackéted terms represent the change in momentum due to
viscous and Reynolds shear stresses.A The two remaining '
terms indicate that changes in the axial momentum of a small
fluid particle occur as a result of convection by secondary
flows. These terms represent an important difference be-

tween flow in circular and noncircular ducts.

At the cell boundaries, the Reynolds equations can

be simplified by using the following boundary conditions:

(1) Along the y axis or wall boundary

due to the no-slip condition.

(2) Along the z axis normal to the midpoint of

the wall, V = 0,since no flow crosses the
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cell boundary. Since V = 0 for all z and is
of opposite sign on each side of the z axis,

it follows that:

Due to symmetry about the z axis,*it can also
be shown that: :

"y 3y  dy B8y

a?_a?_av—v’_ﬂ=§ﬁ,_é§_o
3y 3y

By applying the above simplifications, equation

3.4 reduces to:

Upon

=]

(3)

integration, and using the boundary condition

0 at the wall, one obtains vw = 0 for all z.

Along the corner bisector, the condition that

no net flow crosses the boundary implies that:

V=-/3U

Due to symmetry along this boundary

3u?
on

where n is the direction normal to the diagonal.

It should be noted that symmetry about the cell

boundaries does not imply that the gradients of all quan-
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tities are zero across these boundaries. For example, V-
has an antisymmetric distribution about the z axis and 3V/ay

can have finite values along the z axis.

Using the above simplifications, the Reynolds

equations at the wall become:

X - direction

_ — P _
0=-2123P , ,3%U _ 3uw
p 9% 9z2 9z
(3.7)"
Y - direction
S o5 _
0 = - 1 3P , 32V _ a3vw
o Y 3z 2 8z :
: (3.8)
Z -~ direction
S .o —
0 = - 1 3P + vi_ﬂ - W%
p 3z 322 32
(3.9)

Along the z axis from the midpoint of the wall to
the duct centerline, the Reynolds equations reduce to the

following forms:

X - direction

— = o o5 _— —_
l.@.g = - W U + \,(..a_g_ + _3___9_) - (M-’_ M)
p 9X 02 - ay? 3z2 3y 3z

(3.16)
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Y - direction

0=0 ' | (3.11)

Z - direction
| - — atT 2% 2% — =7
13p _ _ waw v(ﬁ_ﬂ + E_E) - (EXE + Eﬂ_)
p 3z 0z ay?2 9z2 oy dz

(3.12)

It is of interest to examine equation 3.10 ih
more detail to see if anything can be learned abou£ the
distribution of uw along the z axis. First consider the
viscous stress contribution. Due to the relatively flét
axial velocity distribution, it is expected that the term
02U0/92z2 will be significant only very near the wali and
ézayayz will be négligible everywhere. For points not too
close to the wall both of these terms can therefore be
ignored. Inspection of the remainihg terms indicates that
no further simplificationsAcan be made. For example, the
gradient of uv Qith respect to y may take on non-zero values
since uv has an antisymmetric distribution about the z axis.
W may also have a finite value everywhére except at the
wall and the duct centerline. As a result, the simplest form

- to which equationv3.10 can be reduced is :

- - a0 _ 2wy, auw,
8z oy 02

% f

1
p

(3.13)
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Evidently, it is not possible to obtain a theoreti-
cal distribution of uw without a detailed knowledge of the

various quantities in equation 3.13.

3.2 Axial Vorticity

(12)

As derived by Brundrett and Baines , the

equation governing conservation of axial vorticity is:

o _ 2 - 2o 2 o
KA IO (vZ - wZ) - (3IVW _ BTVW,
Ay 9z  3ydz ' 3y2 3z2
‘ 20 52 ' S
+ oy (222 4 278, ' : (3.14)
: ay?2 3z -

The'terms on thé left hand side of equation 3.14
represent the change in axial vorticity due.to convection
'along‘a secondary.flow streamline while the viscous terms
on the right hand side represent the diffusion of vorticity
down its gradient. Deééhding on the local tufbulence fieid,
the remainihg termé may represent either'prodﬁction or

‘dissipation of axial vorticity.

3.3 Energy Equations

A mean energy equation can be obtained by multi-
plying equations 3.3, 3.4 and 3.5 by U, V and W respectively
and adding thé resultant equations. After rearrangement and
simplificatioﬁ using the continuity equation, the mean energy
equation for flow in a triangular duct can be written as

‘follows:
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where

6=%—[Ef'2+\72+v_v2]

q' = Ou + Vv + Wiw

The various terms in equation 3.15 can be glven

the follow1ng phy51ca1 1nterpretatlons.
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energy input per unit volume and time due to

axial pressure drop.

change in energy per unit volume and time due to

convection of mean energy by secondary flows.

change in energy per unit volume and time due to

convection by turbulence.

production of turbulence energy per unit volume
and time. |

viscous diffusion of mean flow energy.

direct viscous dissipation per unit Volume and

time.

\

The mechanical energy balance equation for

turbulence, as derived by Hinze(lg), is:
Tg+-Wa
3y 3z
VII
4+ v({g + B) + w(g + E)
9y p 92 P
VIII
+av Uy o WL w (& W) L g7y

3y 3z 9z 3y oY

IX




where

N N

21

- L [ (.a__ll + _@l’.) + 2v _a_V_ + w(_a_W_ -+ _B_Y.) j
(3' 3y X 3y 3y 3z
-v [ (-a-E + 2-"Z) + v(iz + Eﬂ) + 2w ]
2z 3z . 9x 3z Yy 3z
X

N1y 2 Axr 2 —_—Z‘ N2 N1 2
+ w27+ 27 4 237 ¢ QY 4 Ay
X 3y oz dy 3z

. ey
2 @At &7 (@74 2y (2

ax 9z X oy 9ax y
+22) @& 42 () =0
- 8x ¥z dy 9z
XT ‘ (3.16)

[u2 + v2 + w2 ]

Physically the terms in equation 3.16 represent'

the following effects:
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—

VI conyection of mean turbulence kinetic energy
by secondary flows.
VIII = convection of turbulence kinetic and pressure

- energy by the turbulence.

IX = production of turbulence energy.
X = energy diffusion due to viscous effects.
XI = viscous dissipation of the turbulent motion.

A mean total energy equafion'can be obtained by
multiplyinglequation 3.16 by the density and addihg withb'
equation 3.15. Since the term describing production of
turbulence has opposite signs iﬁ the two equations, it will
disappear. All other terms will appear in the total energy
equation and wiil Have the physical interpretations described

above.
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4.0 EXPERIMENTAL APPARATUS

The present wofk included the design and constrﬁc-
tion of a test section and traversing mechanism to be used
in conjunction with an existing wind tunnel. Figutelzvshows
the wind tunnel and test section layout. A brief description

of the components is given below.

4.1 Wind Tunnel

| The wind tunnel portion of the présent'fécility
was used previously by Trup? and Azéd(3) in their investi-
b'gafion of rod bundlé flow.  For theupresentvwofk,-the wind
tunnel was modified to operate in the open circuit mode. As
shdwn_in Figure 2, atmospheric air was dréwn through a con-
traction cone by four counter-rotating axial aerofoil fans.
Each of these fans was powered by a two speed motor which
¢ou1d be used for air flow cbhtrol. A damper was located
.just'upstream of the fans for finer flow adjustments and fan
vibrations were .isolated by a canvas coupling and silencef
at the exit of the fan section. .

"Following the silencer, air passed throﬁgh two sets
of turhing Vanes; a screen section, and a.circular contraction
cone before entering a transition section. In this section,
‘the flow area was gradually reduced and transformed to match
the cross-section of the triangular test section. Air dis-

charged through the open end of the triangular duct.
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4.2 Test Section

As shown in Figure 2, the triangular test section
consisted of a wooden entrance length and a final acrylic

section. The entrance length totalled 7.32 m in length and

was fabricated in 3 lengths from 2 cm thick mahogany plywood.
A 2.44 m sheet of 2 cm thick clear acrylic plasticAwas used
fbr fhé remaining section. The overall length of the duct
was 9.76 m and the length of the‘interior sidewalls was

12.70 cm.

Both the wooden and acrylic sections were con-
structed from three interlocking walls as shown in Figure 3.
- The walls were fastened in pPlace with closely spaced screws
and all joints were sealed from the outside with a flexible
silicone sealant. This method of conétruction proviaed

accurate control of the interior dimensions and ensured a

; leak free duct. It is estimated that variations in the
sidewall lengths were less than + 0.25 mm and + 1.0 mm for
the acrylic and wooden sections respectively.

Prior to assembly,all interior wooden surfaces

were varnished, sanded, and waxed to ensure a hydraulically
smooth surface. Irreqularities in the acrylic section were

vremoved with a polishing compound. During éssembly,great

care was taken in matching the joints and aligning the
sectlons to ensure that flow symmetry existed at the duct
ex1t.

In order to provide the longest possible entrance

length and easy access, the test plane for mean velocity and
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turbulence measurements was located 2.5 cm inside the open
end of the duct. This location corresponded to a distance
of about 133 equivalent hydraulic diameters from the test
section inlet.

Provision for akial pressure gradient measure-
ments was made by locating static taps at 15.24 cm intervals
along the duct lengthf Taps in the wooden ‘section consisted
of 0.8 mm holes drilled midway across the base. In the
plastic section,piezometric rings were formed by joining
0.6 mm square edge holes 1ocated in the middle.of each wall.
Connectors for the manometer tubing wére epoxied in 8 mm

holes drilled behind the small diameter holes.

4.3 Traversing Mechanism

The traversing mechanism shown in Figure 5 pro-
vided for accurate positioning of either a pitot tube or
hot-wire probé in the test plane. Three directions of motion
were possible. Vertical motion was achieved by means of
a DISA SSHOl traversing mechanism. This mechanism was
mounted on two vernier calipers which allowed up to 15 cm of
horizontal travel in the test plane. The vernier scales gave
an accurate indicatioﬂ of the horizontal position; Motion
in the axial direction was provided by two concentric tubes.

Probes were located by observing their images as
they were broughtinto contact with the shiny acrylic walls.
The distance between the active sections of hot wire probes

and the wall was measured with a travelling microscope. It
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was estimated that probe positions could be determined
‘to within + 0.05 mm and + 0.1 ﬁm in the vertical and
horizontal directions respectively.

Most of the mean velocity and turbulence measure-
ments were made at the nodes of a grid covering a flow cell
along the duct base. Thls flow cell was chosen because it
allowed the most accurate positioning of the probe in the

direction normal to the wail.

4.4 Pitot and Static Pressure Probes

Two pitot tubes,w1th outside diameters of 1. 067 mm
and l 27 mm, were built from stalnless steel tubing with an
inside to outside diameter ratio of 0.6. A chamfer of
approximately 45° was placed on the inside diametefs of the
upstream ends of these tubes. Both pitot tubes extended 11 cm
upstream from the probe holder which was located approximately
8.5 cm outside the duct dtring testing.

Mean ve1001ty and wall shear stress measurements
~at the highest Reynolds number were made with the large pltOt
tube used in conjunction with a Betz Projection Manometer.
This manometer has a range of 0 - 400 mm H20 and an accuracy
of + 0.05 mm H,0. An R. Fuess manometer (DISA 134B) and

the smaller probe was used at the lower Reynolds numbers.

The Fuess manometer had five ranges varying from 0 - 16 mm

H,0 to 0 - 160 mm H,0 and an accuracy of + 0.5% of full

scale.
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Static pressures for the mean velocity measure-
ments were determined from the axial pressure drop in the
duct. and verified by measurements with a commercial static

pressure probe and a HERO micromanometer. The static ‘Pressure
probe was also used to inﬁestigate the extent of end effects

" near the duct exit.

4.5 Hot-Wirée Anemometry EQuipment

Turbulence measurements were made by using constant

. temperature linearized hot-wire anemomefryQ Thé éhemometry
systems were manufactured by DISA and consisted of two sets
of 55D05 anemometers, 55D10 linearizers, and 55D25 auxiliary:
units and a single 55D01 anemometer. These sYstems were
operated in conjunction with DISA probes having 1.25 mm
sensing lengths of 5 um platinum plated tungsten wire. The

" ancillary equipment, consisting of a 55ﬁ30 mechanical DC
voltmeter, a 55D31 digitaivDC voltmeter, tﬁ6 55D35 RMS
voltmeters, two 55A06 corrélators and a 55D70 correlator,

was also manufaétured by DISA.

Measurements of axial velocity fluctuations were
made with a 55P01 single wire probe powered by the 55D01
anemometer. The 55P01 probe has widely spaced prongs and
thick gold plated sections at each.end of the sensing length

to minimize prong interference(23). During testing, the

probe was operated at an overheat ratio of 0.8 and was

positioned with the sensing wire normal to the flow and

parallel to the base. The above system was also used in
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‘conjunction with a KROHN-HITE model 3700 band pass filter
to obtain axial power spectra.

The uw and uv shear stresses and the three normal
Reynolds stress were measured with X-probes and the matched
anemometer systems described above. Simultaneous measure-
ments of the shear stresses Weré made by the one ahd two

(23)

correlator methods€24g miniature 55P61 probe was used

-for most measurements of uw and w' since its shaft could be
placed in contact with the wall even when the X-wires were
- aligned in the X-Z plane. Measurements of uv and v' were
made with a gold plated 55P51 probé which is better suited
to measurements in high turbulence fields. Both probes had
to be operated at less than optimum overheat ratios'beqause
of the coarse operating resistance adjustments on the 55D05
anemometers. This feature also prevented exact métching of
the operating résistances of the two wires in an X-probe

if their cold resistances were not identical. As a result,
it was necessary to match the X wire sensitivities by ad-

justing the amplification of the output signals.

Linearization of both the single wire probes and
X-probes was accomplished by varying the tunnél'speéd while
holding the probe at the duct centerline. The probe outputs
were then compared with the kndwn centerline velocities.
»Since'the probes tended to drift with extended use, the probe
sensitivity for each test was determined by comparing the
output voltages with the known velocities at selected grid

points. Gain adjustments were made with the auxiliary units.
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5.0 RESULTS AND DISCUSSIONS

Measurements characterizing the mean velocity and
turbulence fields at a point 2.5 cm from the exit of the
~triangular duct were made at each of the three nominal test
conditions outlined in Table 1. The quantitieskmeasured
included mean axial and secondary velocities, five Reynolds
>.stresses, local wall shear streSses, and akial power spectra.
Because of the symmefry properties referred to previously,
most of the measurements werefconcentrated in one primary
flow‘cell. The grid used for mean velocity and Reynolds
stress measurements is shown in Figure 4.

Results of the abdve measurements and axial pres-
sure.drop measurements are presented.and discussed in the
following sections. The threée nominal Reynolds numbers
listed in Table 1 are uséd to identify all test results
although the actual Reynolds numbers varied slightly from
day to day. Any values of u* and Ub'which were used to non-
dimensionalize data were corrected for daily variations in

test conditions by the equations in Appendix A.

Centerline Avg. Friction Pressure Drop
Reynolds Velocity Velocity Velocity as. T
Number U - m/s Ub_rn/s u* - /s a;— secz cm
53,000_ 14.4 11.5 0.570 2.03
81,100 22.0 17.8 0.834 4.35
107,300 28.4 23.2 1.05 7.03
Table 1

Nominal Test Conditions
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5.1 Flow Development and End Effects

The present test section provided an entrance
length of 133 hydraulic diameters for flow development.
This compares favou;ablj with the required entrance length
of less than 49 hydraulic diameters for flow in a circular
_ pipe Qith boundary laYer tripping(g). Due to differences in
geometry and entrance conditiong,however,the state of flow
development in the triéngular test section could not be

determined from the above comparison alone. Previous in-

,vestigations_bf noncircular duct flows Were thefefbre reviewed
to establish whether or not fully developed flow'would be
achieved at the test station. .

A survey of the 1iteréture revealed that fully
develQped turbulent flow has purportedly been achieved in
noncircular ducts very much shorter than 133 hydraulic

(13).

diameters. For example, Gessner and Jones reported that,

in a square duct with bouhdary layer tripping and variable
density screens to thickeﬁ the boundary layer, fully developed

flow was achievéd at L/Dh=40. In a rectangular duct with

only boundary layer tripping, they achieved fully developed
flow at L/Dh=60. Hinze(lg) found that, in a rectangular

duct with one wall roughened, fully developed flow was achieved

before L/Dh=127. In an investigation of fully developed
turbulent flow in pipes with one and two eccentric rods,

Kacker(lB)

made measurements at L/Dh=67 and L/Dh=78 respect-
ively. Unfortunately, Kacker does not state whether or not

boundary layer tripping was used.
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Some experimenters have carried out investigations
‘of fully developed flow in relatively short, square ducts

(14) used
(15)

without boundary layer tripping. For example, Ying
a duct with an entrance length of L/Dh=69 and Gessner
repo#ted essentially fully developed flow at L/Dh=84. In

the case of a high-aséect ratio (5 to 1) isosceles triangle;

(7)

Cremers and Eckert reported that, even with boundary
layer tripping, an entrance length of 130 hydraulic diameters

was required.

Alﬁhough turbulent flow in an equilatefal triangu-

lar duct may be somewhat more complex than square duct and
‘pipe flows, it is probably less complex than flow in a high
esbect ratio triangle. In light of the above review(it'wasA
therefore concluded that fully developed flowlwouia very
likely be achieved in the present test section. This con-

clusion was corroborated to some extent by a series of axial

pressure drop measurements which indicated that fully devel-

oped flow was aehieved at a point 30 hydraulic diameters up-
stream of the test station.

In order to prevent blockage of the flow at the
test station, it was necessary to make turbulence measure-
ments no farther than 2.5 cm inside the open end of the duct.
In this position;the~probe holderlwas entirely outside the
‘duct and upstream disturbances due to its presence were
found to be negligible. . Pitot tube measurements indicated
that end effects on the mean velocity field penetrated only

about 1 cm.
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5.2 Flow Symmetry

A number of tests were conducted to verify that
flow at the test station was symmetric. At the mean velocity
level, symmetry was checked by comparing Pitot tube readings
from symmetric points along horizontal lines or corner bi-
sectors. fhese tests indicated that, in the Reynolds
number range of concern, asymmetrics in the mean.velocity
field were negligible in compafison with the uncertainties
in the Pitot_tube readings. For example, the mean absolute
percentage differences between a large number of symmetric
points were only 0.3% and 0.5% at the highest and lowest
Reynolds numbers respectively. The good agreement betWeen
measurements in opposite halves of the duct is further illus;
trated by the superimposed velocity profiles presented in
Figure 6. |

Symmetry at the turbulence level was investigated
by making horizontal traverses with a single hot wire and o
an X-probe with its wires aligned in the X-Y pPlane. Measure-
ments of this type indicated a high degree of symmetry in
the u' and v' fields. For example, the mean absolute per-
centage difference between the intensities of u' in opposite
halves of the duct was only 1.3%. Variations in v' were |
equally small. Typical distributions of u' and Vv' are
plotted in Figures 7 and 8.

Measurements to test the symmetry of RuV indicated
that it has an antisymmetric distribution about the z axis.

As .indicated by the results in Figure 9, however, the measured




33

distributions of Ruv did not exhibit the high degree of
;symmetry characterizing u' and v'. Asymmetries in the form of
a bias towards one sign were consistently observed in re-

peated experiments.. The sign and magnitude of the bias

appeared to be .strongly dependent on the calibration and
alignment of the probe. Since this dependence was particu-

“larly strong in the mldwall region where R v is very small

and the other Reynolds stresses are relatively 1arge, it

. was concluded that the observed asymmetrles were largely

the result of experimental error.

In view of the high degree of symmetry in ﬁ,.u'y
and v'! fields‘and the ﬁncertainties in measurements of Ruv’ :
it was decided that flow at the test station was, for all
practical purposes, symmetric.. This result was very important

since it allowed subsequent measurements to be concentrated

in one flow cell.

5.3 Axial Pressure Drop

The axial pressure distribution at each of the

three test Reynolds numbers was determined from measurements
at 64 static pressure taps spanning the length of the test

section. All upstream measurements were referred to the

pressure at a tap 2.65 cm from the open end and reduced by
a dynamic pressure based on the bulk velocity. The normalized
distributions are plotted in Figure 10 with straight lines

faired through the data points for comparison.
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No marked entrance region is évident in the
plotted axial pressure distributions. At the higher
Reynolds numbers, however, the pressure gradient does not
attain its final value until L/Dh=100. Deviations from the
general trend occured consistently at a few imperfect taps.

| Friction factors for each Reynolds number were
calculated from least équare fits of straight lines to the
last 16 downstream taps. The results are plotted in Figure
11 along with the empirical Blasius equation for friction
- factor in a smooth circular tube. -On the basis of the
equivalent hydraulic diameter concept,the experimental
points should coinéide with the Blasius equation. However,
the experimental_points are from 5 to 6.5% lower than the
empirical prediction. In this respect, the present resﬁlts
are consistent with reported results for other noncircular

(11)

ducts. For example, Leutheusser found that friction

factors in square ducts were signifiéantly lower than pre-
dicted by the hydraulic diameter rule. Carlson and Irvine(zs)
reported similar results for isosceles triangular ducts.
In both céses the magnitudes of the deviations were a |
function of geometry.

A correction for the above inadequacies in the
equivalent hydraulic diameter concept has been suggested by
Malak et al(zs). For‘Re>lO4,they report that.friction factor
and ReYnolds number data can be correlated by the following
rélationship

£=0.184 x_ 12 Re70-2 (5.1)




The variable K_ is a function of'geometry and
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can be obtained from the'geometric dependence of the friction

factor for laminar flow. They suggest a value of KT= 0.936

for an equilateral triangle. As shown in Figure 11, equation .

5.1 gives a satisfactory representation of the present

results when the suggested value of K_r is employed.

5.4 local Wall Shear Stress

The local wall shear stress distribution for a

primary flow cell was determlned by the Preston technique.

This technlque relates the shear stress at the wall to the

dynamlc pressure at the open end of a total head tube in

contact with the wall. The technlque ;s appllcable to any

flow in which the velocity distribution for the wall region

‘can be described by the inner law of the wall. Several

(27 28) pave confirmed the validity of the

investigations
technique for measuring wall shear in pipe flows and
Leutheusser (11) has demonstrated its validity for a square

duct with secondary flows. For the present case, the wall

similarity requirement described above was tested by comparing

velocity profiles in the triangular duct with the inner law

of the wall. As discussed in subsequent sectiohs, this

comparison showed that the velocity distribution in the wall

region can be described by the inner law of the wall when

the values of the empirical constants are suitably modified.

Preston tube measurements corresponding to the

axial component of wall shear in the triangular test section -
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were obtained by comparing the stagnation pressures at the
open end of a Pitot tube with the static pressure at an
adjacent wall tap. Pitot tubes with outside diameters of

1.27 and 1.067 mm were ﬁsed for measurements at the highest

and two lower Reynolds numbers respectively. Actual values

of the axial component of wall shear were obtained from the

(28)

appropriate form of Patel's correlations between the

measured dynamic pressﬁres and the wall shear in a pipe. The

directional characteristics of the wall shear stress were

not examined although it has been shown(l3) that transverse
components'do exist in noncircular ducts.

- The measured distributions of the axial-compbnént
of wall shear at three Reynolds'numbers are shown in Figure'
12; In order to facilitate comparisons, each distribution
has been normalized by its intégrated average value. The
average shear stress values obtained by integrating the
local stress distributions ranged from 1.8% to 2.4% lower
than the corresponding values obtained from axial pressure

drop measurements. The cause of these small, systematic

deviations was not apparent.
The shear stress distributions presented in Figure

12 do not show the tendency toward greater uniformity with

(11)

increasing Reynolds number that Leutheusser observed in a

rectangular duct. As shown in Figure 13, however, the dis-
tributions at all Reynolds numbers investigated are consid-

erably more uniform than the computed distributions of

(20) q(22)

Deissler and Taylor and Gerar . For example, the
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maximum shear stress at the low Reynolds number is 16% to
'18% lower £han the predicted maxima. In addition, the peéks
in the measured distributions are‘shifted towards the
corners. Since neither.of the computed.distributions

allowed for the existence of secondary flows, these discrep-
énciés can probébly be attributed to the effects of secondary
flows. This conclusion is supported by the work of Kogorev

1(21). Using a method which did not allow for secondary

et a
flows, they obtained a wall shear stress distribution similar
to the computed'distributions discussed above.‘_WHén they
allowed for a secondary flow pattern which they had inferred
from square duct data, the much improved prediction shown in
Figure 13 was obtained. Gerard‘observed a similar trend in
thé predicted wall shear distribution for a‘square"duct whenr

he included secondary flow data in his finite element pre-

diction.

5.5 Mean Axial Velocity

The mean axial velocity distribution at the test
station was examined by making Pitot tube measurements at
each of the grid points shown in Figure 4. The measurements
were repeated for three tunnel speeds and the results con-
verted to point velocities. The resultant velocity dis-
fributions were integrated numerically to obtain the bulk
velocities and Reynolds numbers listed in Table 1.

- All mean velocity calculations were based on actual

properties in the tunnel and included density corrections




38

for variations in relative humidity. No corrections were
‘made for velocity gradient or turbulence effects although

the wall proximity correction suggested by Ower and

(29)

Pankhurst was applied. Excluding turbulence effects,_

it is ‘estimated that the calculated velocities are accurate
to within +1% while the estimated accuracy of the bulk
velocity is +2%.

The measured velocity distributidns at three

tunnel speeds are présented in Figures l4a, 14b, and l4c in
the form of élots of constant mean velécity (isovéls).
Although the data in these manually prepared plbts has_been
normalized by the bulk velocities, slight variations between
the distributions at different Reynolds numbers are evident;
The Reynolds number dependence is most obvious near the

centre of the duct where the normalized local velocity

decreases with increaéing bulk velocity. At-higher Reynolds
numbers, the isovels also extend farther into'the corners.

This trend towards greater uniformity at highef ReYnolds

1)

numbers is consistent with Leutheusser's(1 results for a

square duct.
A particularly interesting feature of the plotted

velocity distributions is the distortion of isovels due to

the presence of secondary flows. The direction and magnitude
of these disﬁortions is clearly illustrated by a comparison
of the experimental results in Figure l4a with Gerard's (22)

predicted isovel pattern for a triangular duct without

secondary flows. This comparison indicates that secondary
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flows in a triangular duct tené to decrease the velocity
“in the midwall region and increase the velocity in thév
corners. Similar distortions havé been observed in other
noncircular ducts.‘In tﬁe case of a square duct, Gerard(zzy
has confirmed that the isovels are distorted as a result df
the iateral convection of axial momentum by secondary flows.
Evidently, secondary flow effech must be considered if
‘accurate predictions of mean velocity fields, wall shear

stresses, and local heat transfer coefficients are desired.

The present results indicateAthat, in spite of the

three;dimgnsional nature of the mean velocity vector, wall
similarity exists over a considerable portion of the fiow in
an equilateral triangular duct. This is best demonstrated
by plotting velocity profiles normal to the wall in terms of
the dimensionless coordinates ut and n. A semilogarithmic
plot such as the one in Figure 15 shows that, when these.
coordinates are based oﬁ the local friction velocity, the
data points near the walllfall on a straight line. The data
in this region éan be correlated by a relationship of the
form:

+ ' _
Uloc = A log Moc + B (5.2)

Equation 5.2 is the familiar inner law of the wall.
This law is based on the hypothesis that the velocity dis-
tribution near a wall is determined solely by the wall shear

stress and the density and viscosity of the fluid. As shown
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r

(11,30,31) the inner law can be

by previous investigations,
applied to pipe, boundafyvlayer,and square duct flows with
only slight mbdifications to -the values of the empiriéal
' éonétanﬁs A and B. Reported values of>the constants for

several geometries are presented in Table 2 for comparison.

Table 2
Empirical Constants For Inner Law of Wall

A B
Pipe - Nikuradse (30) : . 5.75 5.5
Boundary Layer - clauser (31) | 5.6 4.9
Rectangular Duct - Leutheusser (11) 5.67 5.5

For the present case,values of A and B were detér—
mined from the high Reynolds number data. A total of 44
points from the logarithmic portion of the meanvvelocity
distribution normal to the wall were considered. A least
squérés fit of this data indicated that, for turbulent flow
in an equilateral triangular duct, the inner law of the wall

takes’the form:

+

Uloc

= 5.69 log n, + 5.08 v (5.3)

Equation 5.3 is plotted in Figure 15 for comparison
- with the experimental data and Leutheusser's(ll)'correlation

for rectangular ducts. In the midwall region,equation 5.3
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accurately represents the velocity distribution up to about

9 = 1000. However, the extent of the logarithmic distribu-

tion is reduced considerably in the corner region where the
flow is influenced by the presence of a second wall.

As shown in Figure 15,the present data deviates

(11)

slightly from Leutheusser's correlation for flow in a

rectangular duct. However, the empirical constants in equation

5.3 are within the'range'Observed_in previous investigations

of various geometries. The present data therefore lends
further suppert to the concept of wallAsimilaritylin non-
circuiar ducts.

| Since the use of equation 5.3 requires prior
knowledge of the boundary'shear distribution, some of the
preseht data was also correlated in terms of coordinates
calculated from the average friction velocity. A least
squares fit of the inher_law'to 152 data poihts from all’
Reynolds numbers resulted_in the following eQuation:'

vt =6.31 Tog n + 5.1 . (5.4)

As shown in Figure 16, the mean velocity distribu-
tion near the wall and in the region y/1 < 0.5 is predicted

satisfactorily by equation 5.4. For values of y/1 >0.5 and

n > 500 the measured velocity distribution departs consid-

erably from this relationship.

5.6 Reynolds Stresses

A summary of the experimental data for the three
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normal Reynolds stresses, the uw and uv shear Stresses,and
“the turbuleﬁt kinetic energy is presented in this section.
In general, only the data for the lowest Reynolds number

has been plotted, although all quantities were measured at
threé'Reynolds numbers. The v', w', uv,and uw data has been
corrected for tangential cooling effects as suggested by

(32). All results:have been normalized by the average

Lawn
friction velocity, u*, to fécilitate comparisons with data
for other duct shapes.

| Dué to the compiexity of the-aﬁemometry:system
no detailéd'estimate of the‘a¢curacy of the data was made.
However, the errors in éome quaﬁtities were estimated from the
variations between repeated measurements with different
probes. Errors in u' could be estimated best sinée four
separate measuréments were made at each Reynolds number .
At the two lower Reynélds numbers, the maximum error (20:1
odds) in the quantity u'/u* was estimated toibe +5.5%.
.Calibration drift due to probe fouling resulted in slightly
higher errors at the highest Reynolds number. Some typical
results have been plotted in Figure 17 to illustrate the |
repéatability and trend accuracies of u' measurements.

vThe.repeatability of the measufements of transverse

_vélocity fluctuations was not as éood as that for axial
-Velocity fluétuations. For example, variations in the
average values of W'/u* obtained in successive tests with
different probes ranged from 5% to 12%. However, in the same

tests, trend errors were only about + 3%. Similar accuracies -
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”

are expected for v‘/u*;althoughvno comparative measurements
were made. |

The largest absolute errors occured in the shear
stress heasurements. In the case of uw, separate measure—
ments with the miniature aﬁd the gold plated X-probes
varied by an average of 14% and 22% at Reynolds numbers of
53,60O and 81,000 respectively. However, the trends indicated
by the two sets of measurements were much more consistent,
and, for a given test, measurements by the single and double
f corre;ator methods génera]ly differed by less than 10%. As
a resﬁlt,it was estimated. that trend errors in the measure-
ments of uw were within about + 10%.

Measurements of uv were complicated by the fact
that, over much of the flow cell, uv was extremely small.
As a result, uv measureﬁents were very sensitive to probe
misalignment and wire mismatch. Measurements wefe particu-
larly difficult at the higher'Reynélds numbers where probe
fouling was encountered. In fact, satisfactory data could
only be obtained by operating the tunnel at the lowest test
velocity and making rapid measurements with a new gold
plated probe and the 55D70 correlator. Trends in data ob-
tained in this manner are thought to be reliable, although
the accuracy of the data has nét been established quanti—
~ tatively. |
In general, it may be concluded that trend

accuracies in the turbulence measurements are much better

than the absolute accuracies of the measurements. Inaccuracies
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in determining theé wire sensitivities and wire mismatch

were considered to be the largest sources of error.

Contour plots of constant u‘/u*, V'/u*, w'/u*,
and E/(u*)2 are presented in Figures 18 - ?l. The manually
prepared plots COVér only one primary flow cell and generally
include only thé data obtained at a Reynolds number of
53,000. Contour plots of the data for the two higher Reynolds
numbers are similar to those presented. It should be noted
that, with the present coordinates system, distributions of
v and w' are not symmetric about the cornér bisector. As
a réSult,portions of the w'/u* contours were omitted because
of uncertainty about their shape near the bisector.

The contéur plots of turbulence intensities
clearly indicate the effects of convection of turbulence
kinetic energy by secondary flows. As would be expected,
turbulence levels are highest near the wall, where the tur-
bulence is produced,and lowest near the duct centerline.

Due to the transverse component of mean veldcity,however,

the low turbulence region extends far into the corner while
the}hiéh turbulence region bulges outwards from the midpoint
of the wall. These distortions are similar to the bulges
observed in the mean velocity field although much more
pronounced. The distortions in the turbulence fields are

also similar to those observed in the mean turbulence kinetic
(12)

. energy field in a square duct , and they are consistent
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(4)

with the secondary flow pattern observéd by Nikuradse .
Distributions of u'/u*, v'/u*,and w}/u* along
thé midwall bisector are compared in Figure 22. In the wall
region, the largest of the three components, u'/u*, reaches
'values of 18% of the local velocity or 10% of the center-
line velocity. Velocity fluctuations parallel to the wall
generally exceed those normal to the wall although the two
components have.equa1 magnitudes in the central region of
the duct. The fact that V'/u* and w'/u* are equal in the
central region is signifiéant siﬁce there are no symmetry
arguménts to indicate that this should be so. When considered
in combination with the circular shape of the contours of
constant V'/u* and W'/u* near the duct axis, this fact indi-
cateé that there is a small core region in which the trans-
verse velocity fluctuations are essentially independent of
orientation. This result is consistent with Laufer's(g)
findings in éipe flow and the measurements of Brundrett and

(12) in a square duct.

Baine
The distributions of turbulence intensities
along normals to the wall are compared with those in a pipe
and a square duct in Figures 23 - 27. In the central region,
the normalized intensities of u', v', w',and g for all
Reynolds numbers are generally somewhat higher than the
corresponding quantities in pipe flow and lower than those
for a square duct. Use of the local friction velocity as
a scaling factor would reduce the differences somewhat but

would not change the order in which the quantities are

- stacked.
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For Z/h < 0.5 in the midwall region, the in-
tensities of v' and w' deviate further from the corresponding
distributions in pipe flow and tend towards the distributions

in a square duct. Very near the wall, the distributions for

the triangular duct tend towards peaks which are sharper
and closer to the wall than those in pipe flow at similar

Reynolds numbers. (See Figures 25 and 26)% The data of

Cremers and Eckert(7) indicates that similar peaks occur in

the transverse velocity fluctuations in a narrow isosceles

triangle. Evidently,the turbulence structure in the wall
region of a triangular duct is in some way altered by the
action of secondary flows.

| The abové comments can geherally be applied to
the data at all Reynolds numbers since the turbulence
quantities appear to be essentially independent of Reyndlds
number when reduced by the average friction velocity.

(9)

Laufer has demonstrated that this is also the case
in the central region of a circular pipe. Near the wall,

however, he found marked differences in the distributions

at Reynolds numbers of about 41,000 .and 420,000. Since
the present results only cover a Reynolds number range of

53,000 to 107,300, any similar deviations in the wall region

would be proportionally smaller. If such variations were

present, they are masked by the scatter in the data.

5.6.2 Reynolds Shear Stresses

The distributions of the uv and uw shear stress
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e

- components were measured by two techniques, the single
correlator technique and'the double corrélator technique.
In the casé of uw, measurements by the two techniques wefé“
geﬁeréliy in good'agreement. However,thé single correlator
method proved unsuitable for measurements of uv, since the
measurements often contained scatter of the same drder of
maéhitude as the acﬁual value of uv. 1In view of the above,
Aonly the data which was obtained by the tWo correlator .
technique has been presented in this section. It should
" be noted that,althouéh both UV and uw are presented as
posiﬁive,the physical sign of uw is actually negative in the
flow cell examined. | |

Figure28.shows the measured distribution of
the uv shear‘stress component at Re = 53,000.. Although uv
~measurements were also'made'at the higher Reynolds numbers,
the results were not considered reliable and have not been
presented. . The rejection of this data was largely based on
the results of measurements élong the Z axis where uv
'should vanish due to its antisymmetric distribution. For .
the lowest Reynolds nﬁmber,the values of ﬁVV(u*)z along the
Z axis ranged from -0.01 to +0.02. At the highér Réeynolds
numbers, the measurements generally didlnot satisfy the re-
quirement of zero GV shear alohg_the‘wall bisector. 1In
- addition, the indicated values of uv changed significantly
during the course of the tests as a result of calibration
drift. Examination of the éffected probes under a miéro-

scope indicated that this drift was caused by a buildup of

’
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dust on the sensing wires.
The results in Figure 28 indicate that uv is
generally smallest in the midwall region and largest in

the corner and along the corner bisector. This is in accord-

ance;withvthe predictable behaviour based on the U distribu-
tion in Figure l4a if it is assumed that uv is associated
with 3U/3y gradients. The main exception to this trend
occured in the region very near the wall, 2=0, where 3U/5y

was very small but relatively large values of uv were in-

dlcated. Measurements in this region were probably 1nfluenced
by the presence of large velocity and turbulence gradients
‘and have not been inciuded in Figure 28. |

One particularly interesting feature of the uv
diStribution is the region of_negative uv straddling the
wall bisector. The validity of these negative values may at
first appear questionable since they are oniy of the order
of magnitude of the deviations from zero shear on the Z axis.
However, a similar change in sign was noted in almost every

attempt to measure the uv distribution. In addition, Brundrett
(12)

and Baine observed that the corresponding stress in
square duct flow changes sign within a flow cell. It would

therefore appear that the indicated sign reversal in Figure

28 is real and is a phenomena  associated with flows in non-
circular ducts.

Contour plots of the uw distributions at two
Reynolds numbers are compared in Figure 29. The distributions

are very similar. As expected, uw is a maximum near the wall
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and a minimum at the center of the duct. Gradients of uw
along normals to the wall are much steeper in the corner
than in the midwall region. This is clearly illustrated

in Figure 30 where distributions of uw along normals to

the wall have been plotted. The results in Figure 30 also , e

indicate that, in the corner region, the maximum values of
uw represent significantly larger portions of the local wall

shear stress. than in the midwall region. Along the Z - axis,

the maximum value of uw is onlv about 80% of the local wall

shear stress. For a similar Reynolds number in pipe flow,
- the corresponding turbulence stress attains a value equalling-

90% of the wall shear stress.

As mentioned in Section 3.1, the axial momentum
equation for triangular duct flows cannot be.simplified
and integrated to give a theoretical distribution of uw
similar to that for pipe flow. However, some useful informa-
tion can be obtained by examining the. simplified form of the
momentum equation along the line y/1=0. Away from the wall,

this equation reduces to equation.3.13 which is repeated

here for convenience

1 9P W 30 duv , duw (3.13)
9z

In pipe flow, only the terms correéponding to
the first and last terms in. equation 3.13 are nonzero, and
the axial momentum equation can be directly integrated to

give a theoretical distribution for the EW shear stress.
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For discussion's sake, a hypothetical uw
;distribution was calculated by assuming that éimplificaﬁions
similar to those for pipe flow coﬁld be made along the
bisectors of the walls of an equilateral triangular duct.
The hypothetical distribution was obtained by direct in-
tegrétion of the first and last terms in equation 3.13 and

is given by ::

P (h-z)

uw = 1 3P
p 9X
or uw =4  (h-z)
*¥2 D (5.5)

e
=

The above uw distribution is compared witﬁ uw
measurements for three tunnel speeds in Figure 31. In the
wall region, the viscous stress for a Reynolds number of
53,000 is also shown. The large differences between the
hypothetical and meaéﬁred distributions indicate that the
terms omitted in obtaining equation 5.5 make an important
contribution to the axial-momentum balance at all points
along the wall‘bisector. |
| In ofder to illustrate more clearly the relative
importance of the various terms in equation 3.13, a point by
point momentum balance was carried out along the line
_y/l=0. All‘terms except W'aﬁyaz Were calculated from ex-
perimental daté. The value of W 3U0/3z was obtained by
treating it as a closure term. In the wall region, the
viscous term, v320/9z2 , was also considered. Its magnitude

was calculated from the inner law of the wall.
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Calculated.distributiéns‘of the momentum
balance terms at Re = 55,000 are shown in Figure 32. These
results show that, in the central region of the duct, the
uw shear stress gradient is the predominant term. The
gradient of uv also makes a significant contribution in this
\ région. Very near £he wall,the axial pressure drop contribu-
tion is balanced by viscous forces. Between these two
regioﬁs,the overall momentum balance is dominated by the
convection of axial momentum by a secondary flow normél to
: the wall. This pheﬁomena evidently accounts fbr the apparent
discrepancy.betweenvthe values of the local wéll shear stress

and the uw shear stress in the midwall region.
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5.7 Axial Turbulence Power' Spectra

Axial turbulence power spectra at the duct center-

line and at points along the wall and corner bisectors were
measured at' each Reynolds number. The results for Reynolds
numbefs of 53,000 and l07,30O are presented in Figures 33
and 34 respectively. Each of the spectra has been scaled to
make the area under the curves equal to the total value of
u'2 in the frequency fange investigated. When scaled in
this manner, the spectra for the t;iangular test.éection
éxhibit the same general shape as the corresponding spectra
for flow in pipes and in the wall region of turbﬁlent boundary
layeré. .In the spectra for the triangular duct, the largeét
contribution to the total energy is made by velocity fluctua-
tions with frequencies of less than 100 hz. The portion of
the total energy contributed by £hese relatively low frequency
fluctuations is greatest in the wall region where production
occurs.

As illustrated in‘Figures 33 and 34, the high
frequency portions of theﬁpresent spectra tend toward the
n'_7 slope assoéiated with turbulence dissipation. None of
the spectra exhibited the extended region of -5/3 slope which
has been observed in both pipe and boundary layer flows and
which is frequently referred to as the nonviscous subrange.
The absence of this region can probably be explained by the
fact that the present data was obtained at relatively low

Reynolds numbers.




5.8 Secondary Velocities

» The present work included direct measurements of
V by the X-probe technique outlined in Appendix B. The
"problems of wire mismatch and drift normally associated with
this ﬁethod were minimized by taking adﬁantage of the anti-
symmetric distribution of V. (See Appendix B). Results for
bRe=53,000 are presented in_Figure,35 in the* form of velocity
. profiles along normalé'to the wall. The_indiﬁidual data
points for Re=107,300 arerreSented for comparison. Both |
sets vadata have been normalizéd by u*. |

- From the,réSults presented in Figure 3$‘it is
 e§ident that the secondary‘flow batterns indicated by .-
vNikuradse’s(4) flow visualization .tests are indeed correct;'
As suggested previdusly,these secondary flow patterns can
be subdivided into the six primary flow cells illustrated in
Figure 3, In each of these cells, a secondary current is
directed from the centef of the duct ﬁo the corner via the
corner bisector. The cohtinuity requirement for the cell is
met by a return flow along the wall and the wall bisector.
The horizontal component of this flow, V, reaches a ﬁaximum
value of 1.5% of Ub near the wall in the corner region.

In accordance with the findings of Launder and

(14)

Ying » the secondary velocities over most of the cross—

section are practically independent of Reynolds number when
reduced by u*. For the present results, an apparent exception
to this rule occured in the corner where the V profiles

appeared to vary with changes in the Reynolds number. These
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1variations were probably due to ekperimentalverror since
they did hot exhibit a sYstematic trend with respéct to
Reynolds number. o

| Due to the complexity of the X-probe technique for
measuring secondary velocities, a detailed assessment of the
~errors in the present data was not possible,. However, a
crudg estimate of the accuracy was obtaiﬁed'by‘applying the
requireﬁents of mass §Onservation to individualvvelocity
profilés within flow cell boundaries. Integration of the
veloc1ty profiles in the midwall reglon 1ndlcated that flows
into and away from .the corner dl:fered by less than 15%.
This compares favourably with the 20% diécrepancy which

(13) observed in data obtained with a single

Gessner and Jones
rotatable wire. Unfortunately, the accuracy of velocity pro-
files,near the corner of the triangular duct could not be
checked because of a lack of data near the wall.

The applicability of the X—probe technique for
measuring secondary velocities is 1imited,in practice, to
components of secondary velocity which have an antlsymmetrlc
distribution. In the present test section, only ¥V quallfles
in this respect. However, it was possible to obtain estimates
of the W distribution along the z axis by two indirect methods.

The first indirect method involVedla simple calcu-
lation of W from the measured distribution of U and the
calculated distfibution of W 3U/%z. The latter quantity
was the closure term in the momentum balance calculation -

discussed in section 5.6.




The second method for estimating ﬁ is based on the
mean flow ¢ontinuity equation for fully developed flow wﬁich
is-given'in equation 3.1. By rearfanging.this equation and
integfatihg along the z éxis,the following expression for
' W can be obtained: |
L : }z(gi) dz | S (5.6)

W= -
o 93y y=6

'Fof the present case, the requifed'distribution'of
avyay-waé obtéined from the direét measurements'ofiv. The
.'gradient was obtained by assuming that the distribution of
’ vaetﬁeén y/i¥0 and y/1=0.12 Wés lihear. Although this was
a rather crudé approximation, the quantiﬁy_and accuracyNOf v o
data did not warfant a more sophisticated treatment.

” | Thé distributions'of'W calculated by the above
methods are presented in Figuré 36. Results fromAthe two
methods are in good agreement. Both indicate‘that secondéry‘
currents. in the midwall region are directedvtoward the
center of the duct. As the flow leaves the wall regibn its .

strength increases rapidly to a maximum value of about

b
V/Ub = 0 by z/h = 0.75. As shown in Figure 36,this pattern

V/U,_ = 0.6% at z/h = 0.35. It then decreases to a value of

is very similar to the observed distribution for the corres-
-ponding compoﬁent of secondary velocity in a square duct(lz)._
In a square duct, however, the maximum value of the secondary
velocity along‘ﬁhe midwall bisector is about twice that in

a triangular duct.
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In the central region of the trianguia; duct, &
-secondary flow towards the wali is indicated by.fhe results
in Figure 36. This implies that two directions of circulation
exist within each primary flow cell. Since all other evidence
pointé'to a single direction of rotation, it is very probable
that the negative Valﬁes’of W are the result of the large

errors inherent in the indirect methods for calculating W.
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6.0 CONCLUDING REMARKS

The following conclusions are based on the above
results and are applicable to fully developed tdrbulent
flows in equilateral triangular ducts for Reynolds numbers

in the range of 5 x lO4 to 1.1 x 105.

a) -The friction factor is 5% to 6.5% lower than that
predicted by the Blasius equation. The "Universal

Critérion Relationship" proposed by Malak et al(26)

prbvides a satisféctoryvcorrelation of the present
friction factor data.

b) Tﬁe wall shear stress distribution is sensibly in-
dependent of Reynolds number when normalized by the
average surface shear stress. Due tQ momentum trans=-

port by secondary flows, the wall shear stress over the

central half of each wall is constant to within a few

percent.

c) The mean velocity distribution in the wall region can

be described by the inner law of the wall if u' and n

are based on local valves of the wall shear stress,

d) The mean velocity and turbulence fields are clearly

influenced by the presence of secondary flows. Differ-

ences between the measured mean velocity distribution

and Gerard's(zz)

predicted isovel pattern are mainly
due to the neglect of secondary flow effects in Gerard's

analysis. Secondary flows influence the turbulence

kinetic energy distribution more than the mean velocity
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distribution.

e) The normal Reynolds stress distributions are essen-
tially independent of Reynolds number when normalized

by the average friction velocity.

f) The secondary flow pattern observed by Nikuradse was
confirmed by direct measurements of V., The actual
pattern consists of six counterotating flow cells in

which the flow is directed from the centre of the duct

to the corner via the corner bisector. The return flow
is along the wall and the wall bisector. The V com-
ponent of the secondary velocity has a maximum strenéth

of about 1.5% of Ub in the return flow along the wall.

The present work indicates that secondary flows

have an important influence on the distributions of both

mean flow and turbulence quantities in triangular duct
flows. The secondary flow effects arise from the lateral

convection of momentum and energy by the helical flow.

This mechanism must be considered if the flow is to be
effectively modelled. It is therefore suggested that, as
the next phase of the work, both components of sécondary

velocity be measured. The proposed measurements could be

made by using a single rotatable slanted wire ih conjunction

with the equations derived in Appendix B.
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Future work should also bé directed at the

application of a technique such as the-Gosman(33) finite

difference'method to the prediction of secondary flows from

‘turbulence data. This is an important step in the develop-

ment of techniques for the prediction of flow and heat

transfer characteristics in noncircular ducts from

measured or modelled turbulence data. The successful

development of such techniques would undoubtédly be of

great beneflt in the analy51s of heat transfer in non-

circular geometrles such as nuclear fuel bundles and should

be considered the ultimate goal of future research.
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" APPENDIX A

Friction Velocity and Reynolds Number Corrections

Tunnel operating conditions for successive tests
at the same Reynolds number were matched on the basis of the

axial pressure drop in the duct. For each-*test at a given

Reynolds number, the fan speed and damper settings were

adjusted to obtain the same pressure drop over the last 62

hydraulic diameters of the test section. Slight variations
in the settings were required due to daily variations in
atmospheric conditions.

Tunnél conditions in tests With equal pressure
drops were related by.first assuming a Reynolds humber

dependence of the friction factor of the form:

1/4

f = C/(Re) (1a)

Since flow in the last 60 hydraulic diameters

of the test section was essentially fully developed it

follows that:

=5 . 2 3/4 1/4 7/4
EE = fi QiUb ,i= C. Py w3 Ub,i (23)
dx 2D, ’ZLDh) ;J

where the subscript i denotes conditions for the ith test.
Since the Reynolds numbers of the mean velocity-pressure

drop tests were known, the tunnel conditions for these tests
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were selected as reference conditions. Denoting the
‘reference conditions by the subscript o and equating

pressure drops, equation 2A gives the followihg relationship:

(3n)

Rearranging 3A, the following expression for the

th

Reynolds number of the i test is obtained:

Re, = Re_ (°1)*/7 (H0)8/7 | - (4a)

po_ By

Equation 3A can also be rearranged to relate‘bulk‘

velocities as follows:

3/7 1/7 ‘

p H . 5A

Up,i = Y,0 2077 (=9 | (52)
ey LR

Average friction velocities for two matched tests

can also be related. By definition:

- 5 v/ 2

u* = /' Iw o /(dP/dx) o VE Uy (63)
p P

Substituting equation 1A for the friction factor,

‘equation 6A can be rewritten :

7/8 1/8

u* o U (X , , (73)

o e
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For two matched tests it follows that:
o+ 0. 1/8 u. 1/8 - 7/8
= (A Yy, (8R)
Py "o T
b,o

Reference values of the friction velocity were
calculated from least squares fits of data from the axial

pressure drop tests.
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APPENDIX B

Equations for Direct Measurement of Secondary

Velocities with an X—Probe

The mean effective cooling velocity on a slanted

wire parallel to the duct base will contain a component

of the secondary veldcity in the y direction. For an

- X-probe with wires slanted at plus and minus 45° to the
duct axis, the secondary flow component will increase the
i - cooling effect on one wire and lower the heat transfer rate
| from the other. The equations for the mean effectivg
% cooling velocities of the two wires in an X-probe can there—

fore be written:

(Ueff)I (U cos 45 + V sin 45)2 + ﬁ

(U sin 45 - V cos 45)2 =1 (T2 + 20V + V2 +
2

k12 (U2- 20 ¥ + v2)

2 .

(1B)

(ﬁeff)2 = (U cos 45 - V sin 45)2+ k12
IT

i - (U sin 45 + V cos 45)2 =1 (U2 - 2U V + V2) + S
2 .

| k2 (@2 + 20 T + ¥2)

|

- (2B)
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where k1 = 0.23 for DISA probes.

For a constant temperature linearized system
the mean effective cooling velocities are related to the

output voltage by the following relationships:

Ep = S;p (Uggeg) (3B)

Brp = Spp Wegs) 11 (4B) ¥

where SI = SIi if the wires are matched. Applying these

‘relationships to the difference between equations 1B and
2B and neglecting terms containing V2, the following ex-
pression can be obtained:

2 - 2 = 2 72 v T2
By Eir | St [(Us + 20UV + V ) +

2

k12 (02 - 2 OV + V2) ]

sII2 [ (T2 - 2 OV + V%) + k12 (U2+ 2 TV + V2) ]
2

=282 (1-kx2U0V . (5B)
I 1 .

If the probe is calibrated at the centre of the
duct where V = 0, equations 1B and 2B can be combined with

equations 3B and 4B and reduced to the form:

E=(S/V2) (L + k5% T (6B)
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This egquation cah also be applied at points where
'7 is finite if the average voltage from the two wires,
v(EI + EII)/Z, is used. An expression for the horizontal-
component of the secondary velocity can therefore be ob-
» tained'by Sdlving 6B for S, substituting for S in 5B, aﬁd
' rearranging to giveﬁ

» 2 2 2
1+k2 £ Epg

V=1

- 2 - 2 : -
1 -k (Bp+ Ey R (7B)
where U is the local value of the axial velocity.

Equation 7B indicates that the secondary flow
‘velocity, V, is proportional to the difference of ﬁhe
squares of the mean voltage outputs from an X-probe when the
wires are parallel to the base. Similar expressions can be
obtained for any probe orientation and, in theory, any
velocity component can be bbtained by a single point measure-

ment with an X-probe.

In practice, the applicability of the point
measurement technique is limited by its sensitivity to
transverse velocity gfadients and'wire mismatch. However,

a slightly mddified technique can be applied to give reliable
measurements of Veldcity components with antisymmeﬁric
distributions. This technique requires that separate point

measurements be made at symmetric points on opposite sides
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~

of the flow cell boundary which is normal to the velocity
componént desired. 1In the case of V, for example, the mean
voltage outputs of the two wires would be recorded at

- symmetric points on opposite sides of the z axis. If V is
perfectly symmetric, the two output voltages for each wire
will be related to the secondary velocity by equation 7B.
As a result, separate estimates of V can be made for each
wiré, thereby eliminating the problems of wire mismaﬁch

and transverse velocity gradients. Furthermore, it can be
:shown that the effects of sméll positioning errors and
asymmetries in the axial velocity distribution éan be mini-
mized by cémbining the point measurements in an equation

of the form:

1+%k 2?2 (E + E 2 - (& + 2
1T |=|40 o Br,a * Brpp)® (B et By

-k 2 '
1=k Er,a* Er,p ¥ Prr,a ¥ B11,p

The subscrips a and b identify measurements made
on different sides of the symmetry line. The physical sign
of the secondary velociﬁy componeht can be determined from
the relétive magnitudes of the mean voltagé outputs by

inspection.
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th X-probe.

ism wl

5. Traversing Mechan

Fig.




Fig.6 . Comparison of Mean Velocity Profiles ffom Opposite Holves.
-of Triangular Duct. Re = 107,300. '
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Fig.36. Calculated Distribution of W/u*Along Midwall Bisector in
Equilateral Triangular Duct. Re =53,000




