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Abstract
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Wave transport in strongly scattering, disordered media is investigated experimentally 

using ultrasonic techniques. Several cases of anomalous wave transport (deviations from 

conventional diffusion) are studied through experiments on aluminum mesoglass samples, which 

were designed and created for this purpose. The anomalous wave behaviour is contrasted with 

conventional diffusion, observed at some frequencies via both transmission and backscattering 

measurements on wide, thick, slab-shaped samples. The coherent backscattering (CBS) effect is 

measured experimentally for strongly scattered acoustic waves in three dimensions (3D), and is 

compared for the first time with theory for diffusive elastic waves in 3D to give an estimate of 

the diffusion coefficient. At other frequencies, an Anderson localization regime is observed, and 

is studied in detail. The first experimental study of CBS for localized elastic waves in 3D is 

presented. By comparing both backscattering and transmission measurements with predictions 

from a ‘local’ self-consistent theory of localization, the first experimental observation of a 

complete Anderson mobility gap for elastic waves in 3D is reported. In this mobility gap, large 

contributions to backscattered intensity from recurrent scattering were observed, enabling the 

first experimental study of recurrent scattering on its own. The time-dependence of the recurrent 

scattering, ܴ(ݐ), is shown to agree with theoretical predictions in the diffuse and localized 

regimes. At the mobility edge, ܴ(ݐ)  shows a surprisingly slow decay, prompting further 

theoretical work. Localization and criticality are also investigated via statistical measurements of 

ultrasound from cubic mesoglasses of different sizes. Finite-size scaling of multifractal quantities 

is observed in these cubic samples, and a preliminary fit with theory to determine critical 

parameters of the Anderson transition is demonstrated. Finally, a sample is which is a candidate 

to exhibit superdiffusion of ultrasound is studied via a range of experimental techniques, 

showing subtle deviations from diffusion and opening doors for the next steps in this study. 
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1. Introduction 
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Wave propagation is central to many areas of physics, and has been studied in depth for 

centuries. Special attention has more recently been focussed on waves in complex media, where 

waves leaving the medium look very different to those that entered. Having been enthusiastically 

researched for several decades, this subject remains at the frontier of science. This is partly due 

to the difficulty of characterizing waves in a disordered medium, theoretically or experimentally, 

but also to the great promise of such work, whether for imaging, communication, controlling 

naturally-occurring catastrophes, or other applications yet to be devised. The variety and 

complexity of the remaining problems make it an exciting time to work in this field.  

One of the great interests in studying waves in complex media is that one can observe 

anomalous wave behaviour, i.e. waves that behave differently to what is expected in the majority 

of situations. Typically, waves propagate through a medium of random scattering objects via 

diffusive transport. This occurs for a system where size (ܮ) is larger than a few mean free paths, 

the average distance travelled by a wave between scattering events (ℓ). For a dense enough 

system where wavelength ߣ is comparable to ℓ, the propagating waves interact with many 

different scatterers, becoming multiply scattered. For a large enough ܮ, the waves become 

randomized by the random positions of the scatterers, eventually losing their coherence with the 

original input wave. Then, the wave propagation can be very accurately modeled by the diffusion 

approximation. This theory describes the energy transport of multiply scattered waves in 

probabilistic terms, instead of keeping track of each possible individual wave path through the 

sample (an impossible task). I refer to transport which is well-described by the diffusion 

approximation as conventional diffusion. Other types of wave phenomena, where this theory fails 

or breaks down altogether in a multiple scattering medium, are referred to as anomalous.  

In the diffusion approximation, interference effects between individual waves are 
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unimportant. This means that if one averages the phase of the diffusing waves over different 

positions of the source and/or detector (configurational averaging), the result should approach 

zero. However, certain measureable quantities can survive this average despite the randomizing 

effect of the scattering medium. These quantities are not included in the diffusion approximation, 

but can be explained with a more comprehensive theory of wave scattering. They thus provide 

valuable insight into the details of wave scattering inside the medium, at a deeper level than is 

possible using the diffusion approximation. Perhaps the most extreme example of anomalous 

wave behaviour is Anderson localization, where waves are ‘trapped’ inside the medium due to 

the disorder of the scatterers, and the diffusion approximation breaks down completely. Such 

major deviations from diffusion are usually observed in the strong scattering regime. This is a 

regime where the scatterer size ݀ is comparable to ߣ, so that ℓ is small and waves are very 

sensitive to the presence and arrangement of the scatterers. Experimentally, this is a difficult 

regime to access, especially for three-dimensional (3D) media, so the observation and 

characterization of phenomena such as localization are still uncommon in 3D. The experimental 

study of anomalous wave transport of elastic waves in 3D, and Anderson localization in 

particular, is the focus of my work in this thesis. 

Since the rare phenomena which I would like to study are caused by interference effects, 

acoustic waves are a natural choice for experiments, as the phase of the waves can be measured 

as well as amplitude; in contrast, the rapidity of the oscillations of light waves make phase 

measurements extremely difficult. The impedance mismatch between scattering particles and the 

surrounding medium can also be made larger for sound than it can for light. This could 

potentially enhance strong scattering effects, facilitating the observation of exotic phenomena 

such as localization. The Ultrasonics Laboratory has been a world leader in studying 



4 

 

conventional diffusion with ultrasound (Page et al. 1995; Page et al. 1996; Schriemer et al. 1997), 

and more recently reported the first unambiguous observation of 3D Anderson localization (Hu 

et al. 2008). The goal of my research for this thesis is to, building on this previous work, 

investigate new avenues of exploration for exotic wave phenomena. I have engineered and 

created all of the samples presented in this thesis to show specific types of anomalous wave 

behaviour. All of the experiments presented in this thesis were also carried out by me. 

Proof that a certain wave phenomenon is present is not a trivial matter. Sometimes only 

subtle deviations are observed from typical behaviour, or else multiple processes may be present 

which can confuse the interpretation of experimental results. There also tends to be a significant 

grey area between ‘conventional’ wave behaviour and the rare phenomena that I am searching for. 

The most reliable approach is to measure several different aspects of wave propagation, and to 

carefully compare the experimental results to appropriate theoretical predictions. This is the 

approach that I take in this thesis. Chapter 2 outlines the background concepts and theory 

necessary to plan and interpret my experiments. Chapter 3 explains in detail the experimental 

techniques which I used to study ultrasound in complex media in this thesis. Each of the 

subsequent chapters presents a study of a different wave phenomenon, all of which are 

interrelated by the concepts in Chapter 2.  

Most of the research of this thesis is for ultrasound in the strong scattering regime, where 

diffuse transport can be observed, but where there is also a good likelihood of anomalous wave 

behaviour. My experimental observations begin with Chapter 4, where both conventional 

diffusion and the beginnings of deviations from diffusion are studied. Notably, this work includes 

reflection data which are compared to as-yet unpublished theory for reflected acoustic waves 

from a 3D medium. The results suggest that subdiffusion, the slowing of wave spreading due to 
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disorder, is prevalent in my system at some frequencies. Since, in this thesis, subdiffusion can be 

seen to be a precursor to localization, this work is a natural lead-in to my research on Anderson 

localization, which begins in Chapter 5. There I present the first ever experimental measurement 

of an Anderson mobility gap, which also constitutes the first ever experimental observation of 

localization of elastic waves in 3D in reflection. Chapter 5 is supplemented by a manuscript 

(included as an Appendix) that I have submitted for peer-review on this work. Chapter 6 presents 

the first experimental study of recurrent scattering, a process that is fundamental to Anderson 

localization but which has not, until this work, been examined on its own. A submitted 

publication is also appended to this thesis.  

Chapters 7 and 8 focus more on the use of statistical measurements to measure deviations 

from diffusion. Chapter 7 presents experimental results aimed at studying critical behaviour (the 

transition between diffusion and localization) in different sizes of cubic samples. Localization 

can be observed and quantified simply by changing the sample size, but this is very difficult 

experimentally for 3D samples. These measurements are the first of their kind for 3D samples. 

Finally, Chapter 8 presents a study of a sample which could potentially show superdiffusion of 

ultrasound. Although it is always possible to make some guesses based on theory and experience, 

how ultrasound behaves inside this unique sample was mostly unknown, a priori. This chapter 

presents the combination of several different experimental techniques, introduced in the previous 

chapters, to probe this wave behaviour. 

The signatures of anomalous wave behaviour that are studied in this thesis can seem very 

different from each other. However, they are different manifestations of similar wave scattering 

processes. It is the goal of this thesis to, via experimental study, advance the current knowledge 

on a few of these topics, and more broadly, to illustrate some parallels between them.
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2. Background Theory and Concepts 
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2.1. Overview 

The theory of wave scattering has been reviewed in detail in several past works (e.g. Sheng 

2006; Akkermans and Montambaux 2007; Ishimaru 1977). The goal of this chapter is to provide 

an intuitive understanding of the scattering processes to be experimentally investigated in this 

thesis, along with a description of the theory with which experimental results are compared. Each 

section presents a concept using (1) a heuristic introduction, (2) a treatment of the same concept 

with diagrammatic scattering theory, and (3) a discussion of experimental aspects in the context 

of this thesis. The scattering theory allows for an understanding of how different scattering 

processes contribute to what is observed experimentally; effects which may appear quite 

different from each other can be seen to arise from very similar principles.  

2.2. Multiple scattering of waves in disordered media 

The description of energy transport of waves through a multiple scattering medium is often 

treated as a random walk process. Each possible trajectory through the sample is imagined as a 

random path from scatterer to scatterer, with equal probability of scattering into all directions. 

The transport through the system is described by the probability of a walker travelling a distance 

 through the sample. This amounts to performing a statistical average, also called an ensemble ݎ⃑

average or configurational average, over all possible paths. Despite neglecting interferences 

between different possible paths through the sample, this classical picture can describe wave 

transport through inhomogeneous media remarkably well. However, there are some cases which 

defy this classical picture. This can be illustrated by a simple example of wave propagation 

through an inhomogeneous medium: 
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Figure 2.1: Ultrasonic waves observed after an initial short pulse. The left plots show 

ultrasound transmitted through water. The right plots show ultrasound transmitted through 
a multiple scattering medium (sample L1, introduced in this thesis in Section 3.1.1.2). The 
top plots show the transmitted field at a time shortly after the initial pulse was emitted; the 
diffraction pattern on the left is a sharp contrast to the field speckle pattern on the right, 
where waves appear to have lost all coherence with the source pulse. (Note that the field on 
the top left is spiral-shaped, instead of having concentric circles, due to a slight 
misalignment of source and detector.) The bottom plots show the transmitted amplitude in 
the frequency domain (at 1 MHz); the amplitude speckle pattern (right) retains no spatial 
coherence with the initial pulse (left). 

Waves travelling through a homogeneous material retain their coherence, resulting in 

simple diffraction patterns such as that shown in Figure 2.1. In this case, a wave has scattered at 

most once from something in the medium – for these single scattering processes, the scattered 

wave retains its coherence with the source. In contrast, coherence is not necessarily maintained 

for a wave travelling through a disordered material, for example light in a medium with a 
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randomly-varying dielectric, or sound in a medium with randomly-ordered scatterers. Then, the 

resulting transmitted or reflected signals viewed in the far field forms a speckle pattern with 

randomly-varying bright and dark spots of intensity as shown in Figure 2.1. This is the result of 

multiple scattering, where the wave has scattered more than once inside the sample.  

Speckle can seem completely random, but actually contains detailed information about the 

scattering medium. The study of wave propagation in random media consists of extracting 

information from quantities such as speckle. This is difficult experimentally because the disorder 

of the scatterers randomized the path lengths of the waves, which means that phase and 

amplitude are also randomized. If an average is performed over a sufficient number of 

configurations of disorder, i.e. different distributions of scatterers in the medium, then the 

speckle pattern disappears. Such an effect has indeed been observed turbid media such as milk, 

where the positions of scatterers change with time, so a time-averaged speckle will disappear if 

one waits long enough. However, there are some cases in which coherence remains even after 

this configurational averaging process. These phenomena, such as coherent backscattering and 

recurrent scattering, provide experimental proof that classical transport theory cannot fully 

describe wave propagation in random media. They also provide excellent opportunities to study 

waves in disordered media, as will be shown in this thesis. 

Theory describing waves in random media can be divided up into two types: analytical 

theory and transport theory (Ishimaru 1977). Analytical theory begins with basic differential 

equations such as the wave equation, and gives as a result differential or integral equations for 

statistical quantities. It is thus possible to take into account all multiple scattering and 

interference effects, but impossible to yield an exact result, making comparison with experiment 

difficult. Examples of analytical theories include the Dyson and Bethe-Salpeter equations. 
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Transport theory describes the transport of energy through the scattering medium more 

heuristically, and is generally less mathematically rigorous than an analytical theory. One of the 

major transport theories, called radiative transport theory, is based on a differential equation 

called the equation of transport, which is analogous to the Boltzmann’s equation used in the 

kinetic theory of gases. Transport theories generally ignore the phase and fluctuations of wave 

fields in random media, which may become important when the wave is scattered many times.  

 Theory for wave propagation through a disordered medium1 2.2.1.

Presented is a ‘microscopic’ treatment of wave propagation in a homogeneous medium, 

which is then extended to include the presence of scatterers.  

Scalar waves of frequency ߱ propagating through a homogeneous medium obey the 

Helmholtz equation: 

 2 2
0 0     , (2.1) 

where ߢ଴
ଶ = ߱ଶ/ݒ଴

ଶ, and ݒ଴ is the wave velocity. If at t = 0, the system is excited by a pulse 

localized at ⃑ݎ =  then this wave equation becomes ,′ݎ⃑

      2 2
0 0 , ,G r r r r         

. (2.2) 

where ⃑ݎᇱ denotes the source position. The Green’s function, ܩ଴(߱, ,ݎ⃑  ᇱ), describes the responseݎ⃑

of the medium at ⃑ݎ , in frequency and spatial domains, of a delta-function source excitation. For 

a uniform medium, the system response does not depend on the source position, only on the 

distance between source and detector, so the Green’s function is ܩ଴(߱, ,ݎ⃑ (ᇱݎ⃑ = ,߱)଴ܩ ݎ⃑ −  ᇱ). Inݎ⃑

real space in three dimensions, there are two solutions: the retarded (ܩା) and advanced (ିܩ) 

Green’s functions, which represent outgoing and incoming spherical waves:  
                                                

1 (Sheng 2006; Tourin 1999) 
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    0
0

exp
,

4
i R

G R
R





 
 


, (2.3) 

where ܴ = ݎ⃑| − ିܩ is the distance between source and detector. Note that |′ݎ⃑ =  In the .∗(ାܩ)

frequency domain, the Green’s function is 

  0 2 2
0

1,
( )

G k
k


 





. (2.4) 

To study the effects of scatterers, we introduce a term (ݎ⃑)ߪ  denoting deviations from 

homogeneity, like an effective potential in the analogous quantum mechanics situation. Equation 

(2.2) becomes 

          2 2
0 , , , ,G r r r r r G r r                

. (2.5) 

The solution to Equation (2.5) is the recursive relation 

          0 0 1 1 1 1, , , , , ,G r r G r r G r r V r G r r dr        
         

 (2.6) 

where the impurity potential operator ܸ(⃑ݎ) has elements ௥ܸభ,௥మ = ௥భ,௥మߜ(ଵݎ⃑)ߪௗ(ݎߜ) . In wave 

vector space,  

          0 0, , ,G k k G k k G k V k q G q k dq    
        

. (2.7) 

The Green’s function, being the solution to the wave equation (Equation (2.2) or (2.5)), 

completely describes the propagation of an acoustic wave in the medium. However, just like in 

the classical picture which averages over many random walks through the sample, the knowledge 

of a single Green’s function is not sufficient to describe overall wave transport. Only by 

averaging over all possible configurations of disorder (arrangements of scatterers) can we 

determine useful information about wave propagation. Importantly, though, the Green’s function 

explicitly includes phase, while the random walker picture does not. 

The next goal is the average Green’s function 〈ܩ〉, which describes the average field inside 
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the medium. Here we outline the calculation of the average of Equation (2.7), and see what 

quantities we can measure from it.  

It is convenient to continue in matrix notation. Note that we really only desire to calculate 

ሬ݇⃑)ܩ , ሬ݇⃑ ), since it is the only part that will resist the process of configurational averaging. 

Equation (2.7) may be written as  

 0 0G = G + G VG . (2.8) 

Substituting G back into Equation (2.8) gives  

 0 0 0G = G +G TG . (2.9) 

Whereas V represents just the first order of multiple scattering (single scattering), the scattering 

matrix T is a sum of all orders of multiple scattering, and is defined as the matrix power series 

summation 

 0 0 0T = V + VG V + VG VG V + ... . (2.10) 

When the medium is randomly varying in space and/or time, the waves in the medium also vary 

randomly in phase and amplitude, and must therefore be described in terms of statistical 

quantities. Thus, as discussed above, the goal is to calculate the configurationally averaged 

Green’s function  

 0 0 0G = G + G TG , (2.11) 

where 

   11   0T V G V   (2.12) 

We now define an operator Σ as 

 1 -1
0 -  G G  (2.13) 

and 
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   1
  0T I TG . (2.14) 

Equation (2.13) is known as the Dyson equation, and Σ as the self-energy operator. It follows 

that 

      2 2
0

1,
,

k
k k


  


 

G


 . (2.15) 

All non-trivial information about ۵ഥ is contained in the self-energy Σ(ω, kሬ⃑ ).  

2.2.1.1.1. Coherent propagation (the Coherent Potential Approximation) 

When wavelength is large compared to scatterer size (Rayleigh scattering), mean field 

approximations such as the Coherent Potential Approximation (CPA) are appropriate, but they 

only take into account particle-particle correlations in a limited way. The idea is that the effect of 

the scatterers in the sample is simply to renormalize the wave propagation, and thus parameters 

describing the medium are renormalized. The description becomes that of an effective, 

homogenized, medium. The renormalization occurs when considering the Green’s function 

which includes the self-energy, as in Equation (2.15). If the self-energy is ሬ݇⃑ -independent, then it 

renormalizes the Green’s function, so that ߢ௘
ଶ(߱) = ଴ߢ

ଶ(߱) − Σ(߱), and the new, effective-

medium (e) configurationally-averaged Green’s function is 

    2 2

1,e c
e

k
k


 




G


. (2.16) 

Correspondingly, for a 3D continuous effective medium, the Green’s function in real space is 

 
 exp

4
e

e c

i R
G

R



 . (2.17) 

This homogenization of the medium results in the replacement of subscript 0 in ۵ഥ଴ with e. 
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Mean-field theories such as the CPA generally focus on calculating the real part of the self-

energy (i.e. the real part of ߢ௘
∗ ), which gives information about effective properties of a 

homogenized medium such as the effective dielectric constant. For scattering theory, it is more 

interesting to calculate the imaginary part of the self-energy, as we will see below: 

It can be shown (Sheng 2006) that the local density of states at ⃑ݎ is related to the Green’s 

function:  

    2
0

2 1DOS , Im ,r G r r
v
 


   
 

     (2.18) 

where ݒ଴ is the phase velocity in the uniform medium. For the system to be physical, we 

require Im(̅ܩା) < 0. Now, if ߢ௘
∗
 has a positive imaginary part, then ̅ܩାdecays exponentially, 

as shown by Equation (2.17). What physical mechanism is responsible for this spatial decay of 

 :ା? The answer can be inferred from the optical theoremܩ̅

 0 0
0

1 ImO t 


   (2.19) 

where the total scattering cross-section ܱ is related to the imaginary part of ݐା, which is the 

average scattering matrix (Equation (2.12)) for a single scatterer. The scattering matrix is in turn 

related to Im(ߢ௘
∗) via Equation (2.14) Thus, the loss of a unique propagation direction (the 

decay of ̅ܩା), is a result of scattering loss. This (intensity) decay length is usually denoted by 

1/Im(ߢ௘
∗) = 2ℓ௦, and ℓ௦ as the scattering mean free path. Note that since Equation (2.17) is 

not a transport equation, ℓ௦ is not a transport mean free path, but is an extinction length of the 

averaged disordered medium.  

The exponential decay of this 〈ܩ〉 due to scattering from the forward direction implies a 

loss of coherence past this length scale. This makes sense, since averaging together many 

completely uncorrelated fields would yield a result of zero. Thus, we can see that the average 
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field propagating in the medium, 〈ܩ〉, describes the coherent behaviour of wave propagation. 

Several quantities can be measured from 〈ܩ〉, and are described in more detail in Section 3.2.5. 

  Intensity propagation through the disordered medium2 2.2.2.

The intensity of a wave field ߰ is proportional to the product of the fields: ܫ ∝ ߰߰∗. 

Thus, just as 〈ܩ〉 gives us information about the average field in the medium, 〈ܩܩ∗〉 gives us 

information about the average intensity transport. Define the intensity Green’s function as the 

tensor product 

      *
2 1 2 3 4 1 3 2 4, , , , ,r r r r r r r rG G G          , (2.20) 

where incident and outgoing directions are ⃑ݎଵ (⃑ݎଶ) and ⃑ݎଷ (⃑ݎସ), respectively, as sketched in 

Figure 2.2.  

 

Figure 2.2: Two scattering paths: ⃑ݎଵ to ⃑ݎଷ and ⃑ݎଶ to ⃑ݎସ. 

The intensity of a pulse in a random medium, averaged over all configurations of disorder, is  

 2I G   (2.21) 

(Sheng 2006). The Green’s functions in the random medium are related to those defined for 

homogeneous media by  

                                                

2 (van der Mark, van Albada, and Lagendijk 1988; Tourin 1999; Sheng 2006).  
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0 0 0

* * * *
0 0 0

 

 

G G G TG
G G G TG

  , (2.22) 

where the subscript for ۵଴ denotes the Green’s function defined relative to the homogeneous 

medium in which the scatterers are embedded. After configurational averaging,  

    * * *
2 0 0 0 0 0 0    G G G G G Γ G G  (2.23) 

where the vertex function ડ = 〈લ⨂લ∗〉 represents all multiple scattering processes. Defining a 

new vertex function U as 

  *
0 0  Γ U U G G Γ, (2.24) 

we have in analogy with the self-energy, 

 * *
2 2 G GG GG UG  (2.25) 

(tensor multiplication notation is from now on implicitly assumed). Equation (2.25), with the 

definitions of ડ and U, is the Bethe-Salpeter (BS) equation – the intensity Green’s function 

analog of the Dyson Equation. The physical meaning is significant: U incorporates all wave 

scattering processes into ۵ഥଶ. The Bethe-Salpeter equation is the microscopic equivalent of the 

radiative transport equation used in a transport theory approach, which is discussed in Section 

2.2.4.1.3. 

  Scattering theory revisited: diagrammatic perturbation theory 2.2.3.

2.2.3.1. Diagrammatic derivation of the Dyson equation and self-energy3 

A derivation using diagrammatic notation is presented for the Dyson equation and the self-

energy. While this is a longer method of obtaining Equation (2.13), the physical meaning of the 

                                                

3 Much of the theory in this section is from reference (Tourin 1999). 
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results is more easily understood. The method also forms the basis for calculations in following 

sections.  

We will adopt the following Feynman diagram conventions:  

 0 , ,G k k
 

     

V                   

A horizontal line with an arrow represents the homogeneous Green’s function, and a dotted line 

ending in a solid square represents one scattering. Then ܩ(ሬ݇⃑ , ሬ݇⃑ ), as expressed in Equations (2.9) 

and (2.10), is  

 

Here, ⃑ݍ represents a scattering vector. For example, the interpretation of the third diagram is as 

follows: a wave with direction ሬ݇⃑  is scattered by potential ܸ(⃑ݍ) (Figure 2.3), changing its 

direction to ሬ݇⃑ + ݍ⃑ . The wave then encounters potential ܸ(−⃑ݍ)  and leaves in direction 

ሬ݇⃑ + ݍ⃑ − ݍ⃑ = ሬ݇⃑ .  

 

Figure 2.3: Physical interpretation of the third diagram of ܩ(ሬ݇⃑ , ሬ݇⃑ ). Used with 
permission (Tourin 1999). 

In general, these diagrams represent all possible chains of events which result in ሬ݇⃑ = ሬ݇⃑ ᇱ. 
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Equations (2.9) and (2.10) may be written more explicitly in terms of ሬ݇⃑  and ⃑ݍ as 

                    0 0 0 0 0 00 ...
q

G k G k G k V G k G k V q G k q V q G k    


         . (2.26) 

We want to average Equation (2.26) over all realizations of disorder. Assuming that there are N 

randomly placed scatterers with no correlations between their positions, it may be shown that the 

average of Equation (2.26) is a sum of terms with increasing orders of N (Tourin 1999): 

 

Looking at the scattering diagrams, we can see that the sum in the third term has had the effect of 

‘entangling’ the involved scattering processes, since the sum can not be factorized. The diagonal 

dotted lines represent the fact that the final wave direction depends on both of the scattering 

processes involved. Another way of describing this concept is to note that there are two basic 

types of diagrams: reducible and irreducible. A reducible diagram is one where a vertical cut 

may be made without intersecting any dotted lines, e.g. 
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A diagram which may not be cut in this way is irreducible; in the above expression, the diagrams 

on the right-hand-side are both irreducible.   

Grouping the diagrams as a function of the number of irreducible diagrams they contain, 

the diagrams with one irreducible diagram are 

 

i.e. each term on the right contains one irreducible diagram. Similarly, the sum of all diagrams 

containing two irreducible diagrams is 

 

etc. Thus, we may write the average homogeneous Green’s function (the average of Equation 

(2.26)) as 

 

Multiplying each term by   , we may directly derive the Dyson equation: 

 

Identifying terms between Equation (2.14) and the diagrammatic representation, written above, 

it is clear that the self-energy Σ is the sum of all irreducible diagrams, . 

These diagrams include all those proportional to N, but also those proportional to higher 

orders of N: 
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It is common to only include some of the terms of the self-energy in subsequent 

calculations. Our diagrammatic description of self-energy will show the physical consequences 

of such approximations. 

2.2.3.2. Intensity transport 

Diagrammatic perturbation theory is presented here for ۵ഥଶ just as it was for self-energy in 

Section 2.2.3.1. In the diagrammatic representation, one scattering event is represented by a cross 

(x), and Green’s functions by horizontal lines. Thus, 

0 0 0  G G G TG  
 
(2.27) 

To write ۵ଶ = ۵۵∗ in terms of diagrams, the elements of ۵ (outgoing propagation) are placed 

on the top, and the elements of ۵∗ (incoming propagation) on the bottom. Identical scatterers 

are connected by dashed lines. For example, the average product of the third terms of ۵ and ۵∗ 

is: 

 

All of the possibilities for a chain of two scattering events are represented. Writing the same 

thing in matrix notation is much more work:  
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* * * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0

* * * * * * * * *
0 0 0 0 0 0 0 0 0 0 0 0

i j k l i j k l
i i j k l k i i j k l k

k i l j
k j l i

i j k l i j k l
i i j k l k i i j k l k

k i l j k j l i
k j l i k i l j

G t G t G G t G t G G t G t G G t G t G

G t G t G G t G t G G t G t G G t G t G

   
 
 

   
   
   

  

   

   

   

(2.28) 

Here, ݐ௞  are elements of the scattering matrix T, representing scattering from one impurity only.  

 

Yet another way of representing the third term of ۵ଶ is shown below, by interpreting it as 

symbolizing pairs of paths through groups of scatterers: 

 

(Tourin 1999). The first diagram represents two paths with no scatterer in common. The second 

path represents two paths which encounter the scatterers in the same order. The third path 

represents two paths which encounter the same scatterers, but in an inverse order. We can see that 

the order in which the scatterers are encountered by the waves is important; this is the only 

difference between the last two terms. 
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There are three basic types of diagrams: 

1) Non-connected:            contributing to the first term of the BS equation, ۵ഥ⨂۵ഥ∗. 

 

2) Irreducible:                                            

 

3) Reducible :   

 

We will represent all irreducible diagrams with one irreducible diagram as: 

 

So ۵ഥଶ , being a collection of all reducible and irreducible diagrams, may be written as  

 

  (2.29) 

where, for example, the third term is the sum of all reducible diagrams which each contain two 

irreducible diagrams. In analogy with the Dyson equation, comparing terms of the above 

diagrammatic equation with Equation (2.25) shows that the sum of all connected diagrams 

(without the incoming and outgoing Green’s functions) is 

 

ડ is called the reducible vertex function ડ, and gives information on the total scattered wave 

intensity. From Equations (2.6), (2.9), and (2.10), the averaged scattering intensity may be 

expressed as  

            2 * *
0 1 0 2 1 2 3 4 0 3 0 4 1 2 3 4, , , , , , ,s

c
R G r R G r R r r r r G r R G r R drdr dr dr  
               

  (2.30) 
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for incident wave ߶ and scattered wave amplitude ߰௦ (Sheng 2006).  

From the definition of ડ given by Equation (2.24), the sum of all irreducible diagrams 

may be recognized as the irreducible vertex function, ܃: 

 

  (2.31) 

As shown by Equation (2.25), ܃ is involved in the successive recalculation of the scattering 

intensity due to wave scattering processes. Thus, ܃ is most useful for finding information about 

wave transport and the diffusion coefficient (van Tiggelen 1999; Akkermans et al. 1988; Sheng 

2006). 

At this point, it is useful to look at the vertex functions more closely. We will define the 

first term in Equation (2.31) as l. The irreducible vertex ܃ is sometimes called the generator of 

ડ, as it successively generates ડ according to Equation (2.24). For example, if we let ܃ → ݈, 

then Equation (2.24) becomes 

 *
l ll lΓ G G Γ L        (2.32) 

where L is the sum of all so-called ladder diagrams, shown in Figure 2.4. In other words, l (the 

first term in Equation (2.31)) generates all of the ladder diagrams. This approximation (letting 

܃ → ݈) is called the ladder diagram approximation, and is discussed in Section 2.2.4.1.2.  

 

Figure 2.4: Summation of ladder terms. 

Without approximation, the full reducible vertex is  

  Γ U R  (2.33) 

where R is the sum of all reducible diagrams. These include many higher-order diagrams, 
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making it difficult to work with the full expression for ડ when calculating intensity. Thus, most 

of the diagrams of R are often ignored. We will use this treatment in the following sections, as it 

applies very well to most (weakly-scattering) systems. Only for very strong scattering is a more 

complete description required; this issue is discussed in Section 2.5.2. 

 Calculating intensity propagation: approximations  2.2.4.

Just as with ۵ഥ, exact solutions for ۵ഥ૛ are generally not possible in the presence of 

disorder, due to the difficulty of summing the terms in U and ડ exactly. For weak scattering 

systems, it is possible to obtain accurate theoretical predictions using approximations which 

break down in the strong scattering regime. The two most common approximations employed by 

multiple scattering theories are: i) particle-particle correlations are neglected, and ii) paths in 

which the wave interacts with the same scatterer more than once are neglected. These 

assumptions break down for high densities of scatterers in the sample. Some useful 

approximations are summarized in this section. 

2.2.4.1.1. The Independent Scattering Approximation4 

The Independent Scattering Approximation (ISA) consists of keeping only first-order terms 

in the diagrammatic expansion of the self-energy (also called the Born approximation). It is 

appropriate for dilute systems with low density of scatterers.  

Keeping only the first-order terms for the self-energy, i.e. all terms proportional to the 

impurity concentration (the diagrams of the self-energy are given in Section 2.2.3.1), gives 

 ( , ) kk Nt  


, (2.34) 

                                                

4 (Ishimaru 1977; Tourin 1999; van der Mark, van Albada, and Lagendijk 1988; Sheng 
2006). 
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where N is the number of scatterers, and elements ݐ௞  were defined previously. Now, if the 

scatterers are randomly positioned and are pointlike (relative to ߣ) then Σ(߱, ሬ݇⃑ ) becomes ሬ݇⃑ -

independent. In this case, the Green’s function in the ISA takes the form of Equation (2.17). 

The contribution to self-energy from the second order in N depends on ߣ/ℓ௦, where ℓ௦ is 

the scattering mean free path (see Section 2.2.1.1.1) and is thus negligible for very dilute systems. 

However, contributions from higher orders may become important for time-dependant scattering 

and for the coherent backscattering effect.  

2.2.4.1.2. The Ladder Diagram Approximation (a.k.a. Boltzmann approximation) 

As discussed in Section 2.2.2, including only the first term for the irreducible vertex 

function is called the ladder diagram approximation. This is equivalent to making a dilute 

medium approximation. It may be shown that, in this case, 

 (1)
k kU Nt  , (2.35) 

where N and tk were defined previously. The reducible vertex function ડ now only contains 

ladder diagrams (Equation (2.32)). All intensity transport is carried out through the processes 

shown in Figure 2.4, where only pairs of Green’s functions involving identical paths contribute. 

The replacement of U by ௞ܷሬ⃑
(ଵ) is also commonly known as the Boltzmann approximation. 

2.2.4.1.3. The Radiative Transfer Equation5 

The radiative transfer approach is equivalent to that of the ladder diagram approximation; 

only weak scattering is taken into account. However, transport theory enables the calculation of 

theoretical predictions to compare with experimental quantities.  

All theory on radiative transfer employs the ISA and the Boltzmann approximation. We 
                                                

5 See, e.g., (Lagendijk and van Tiggelen 1996). 
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begin by interpreting the Bethe-Salpeter equation, without approximation, as the following type 

of transport equation:  

 losses ( , ) sources scatteringuI r t
t
       

   , (2.36) 

where ܫ௨(⃑ݎ,  If both the dilute .ݒ⃑ is the average propagating intensity for waves of velocity (ݐ

medium approximation (ISA) (taking Equation (2.34) for Σ(߱, ሬ݇⃑ ) ), and the Boltzmann 

approximation (taking Equation (2.35) for U) are made, it can be shown (Lagendijk and van 

Tiggelen 1996) that ܫ௨(⃑ݎ,  :obeys the radiative transfer equation (ݐ

 
         ,1 1, , , sourceu

u u u u
p s

I r t dv I r t I r t n d v v I r t
v t l d


        

 
          

, (2.37) 

where ݒ௣ is the phase velocity of the wave in the effective medium. The left side of the equation 

represents variations in time and space along the direction of ݑሬ⃑ . The first equation on the right 

represents the energy loss in the incident direction due to scattering in other directions. The 

second right-hand-side equation represents the energy gain in the incident direction due to 

scattering events in direction ݑሬ⃑  towards the incident direction ݑሬ⃑ .   

2.2.4.1.4. The Diffusion Approximation (a.k.a. the Boltzmann approximation)6  

The exact radiative transfer equation can only be solved numerically, making it difficult to 

treat strong scattering processes, and thus the diffusion approximation is often preferred. The 

common procedure is to replace an exact transport equation with a diffusion equation, optionally 

incorporating appropriate boundary conditions. We may write the diffusion equation as  

    2,
, ( ) ( )B

W r t
D W r t r t

t
 


  


, (2.38) 

                                                

6 (Tourin 1999; Akkermans et al. 1988). 



27 

 

where ܹ(ݎ, ஻ܦ is the local energy density, and (ݐ  is the Boltzmann diffusion coefficient, 

defined as 

 *1
B ED v

d
  . (2.39) 

Parameter ݒா is the energy (or transport) velocity. The transport mean free path ℓ∗ describes 

the distance the waves travel before the direction of propagation is randomized, and is given by  

 
 

*

1 cos1 cos ,
S S

du u d
d
 

 
 


 
 

  (2.40) 

where ݑሬ⃑  and ݑሬ⃑ ᇱ were previously defined. The solution of the diffusion equation in an infinite 

medium is 

  
 

2

4
/2

1,
4

B

r
D t

d
B

W r t e
D t



 . (2.41) 

Here we can recognize the expression for a random walk whose number of steps goes to infinity. 

Thus, intensity propagation in the diffusive medium is analogous to a random walk between 

scattering events. Like the ladder diagram approximation, the diffusion approximation does not 

take into account interference effects between different possible paths through the sample, and 

hence breaks down for very strong scattering. It is only valid on length scales larger than ℓ∗.   

 Configurational averaging 2.2.5.

As introduced in Section 2.2.1, waves in a random medium have randomly-varying phase 

and amplitude – an effect that occurs even for weak scattering. To extract information from this 

type of system, two main approaches may be employed: analysis of speckle statistics such as 

variance, or the calculation of configurationally-average quantities. Experimentally, an average 

over all possible configurations of randomly-positioned scatterers is not possible, but enough 
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configurational averaging can be performed to obtain good measurements of the desired 

quantities such as average transmitted intensity as a function of time (c.f. Equations (2.11) and 

(2.23)). Configurational averaging in experiment is typically achieved by physically changing 

the medium through which waves propagate, i.e. by using a medium which changes slowly with 

time, or by creating a great many different samples, and then averaging the desired quantity over 

all times/samples.  

2.3. Symmetry in scattering systems 

A scattering system in which energy is conserved may exhibit reciprocity and/or time-

reversal symmetry. It is useful to discuss these properties here, as they are fundamental to 

understanding both the theory and real-world applications of wave scattering. 

A spatially reciprocal system is one which is invariant upon interchange of source and 

detector (Figure 2.5, top). Time-reversal invariance is a related property in which, for every wave 

pulse ߰(⃑ݎ, ,ݎ⃑)߰ diverging from a source, there exists a set of waves (ݐ -that can be ‘time (ݐ

reversed’, i.e. retrace all of the paths taken by the partial waves of pulse ߰(⃑ݎ,  to converge ,(ݐ

back at the original source. This process is illustrated in Figure 2.5 (bottom); imagine that a pulse 

is sent into a medium from point a, and the scattered signal is detected some time later at point b. 

Then, if that detected signal is time-reversed (a ‘first-in, last-out’ operation) and emitted from 

point b, the original pulse should be detected at point a. The concept of time-reversal is at the 

heart of the scattering theory presented in this thesis, as can be seen by the two Green’s function 

solutions to the wave equation (Equation (2.2)). For each causal solution, there exists an anti-

causal solution which is simply a time-reversed copy of the causal one. If energy conservation in 

the system is obeyed, then the conditions of reciprocity and time-reversal invariance are 

equivalent (Carminati et al. 2000). 
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Figure 2.5: The concepts of spatial reciprocity and time-invariance are linked. Each 
is obeyed for any input/output geometry (shown here are reflection, top, and transmission, 
bottom, for slab-shaped samples). Top: A pulsed emission from i results in a multiply-
scattered pulse at j. For a spatially reciprocal system, a pulsed emission at j will result in 
the same multiply-scattered pulse at i. Bottom: A pulse sent through a spatially reciprocal 
system results in a multiply-scattered signal being detected on the other side. If this 
multiply-scattered signal is time-reversed and sent back into the medium, the resulting 
transmitted signal will be the original source pulse. 

 The consequences of spatial reciprocity 2.3.1.

Reciprocity applied to diagrammatic scattering theory can show why classical transport 

theory should not be used to describe very strongly scattering systems (Akkermans et al. 1988; 

van Tiggelen, Lagendijk, and Wiersma 2001). Recall that the reducible vertex, ડ, represents all 

of the scattering processes of the intensity Green’s function. Written without approximation 

(Equation (2.33), reproduced here) it is: 

  Γ U R  

where U holds all irreducible diagrams, and R holds all reducible diagrams. Spatial reciprocity 

imposes the following relation for the intensity Green’s function: 

      1 2 3 4 2 1 4 3 1 2 4 3, , , , , , , , ,r r r r r r r r r r r r             
 (2.42) 
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(van Tiggelen, Lagendijk, and Wiersma 2001). The first identity is a well-known classical 

reciprocity relation also obeyed by radiative transfer (Section 2.2.4.1.3). The second identity 

consists of reversing directions either from 1→3 or 2→4, but not both. This identity is obeyed by 

ડ, but not by U or R on their own. The reason for this is the following: 

The interchange of source and receiver for either ۵ or ۵∗ is equivalent to reversing the 

direction of either the top or bottom of the diagrams shown in Section 2.2.3.2. Clearly, this 

process can convert any reducible diagram into an irreducible one (for a proof see van Tiggelen 

and Maynard (1998)): 

    1 2 3 4 1 2 4 3, , , , , ,R r r r r C r r r r          (2.43) 

where new vertex C represents all crossed diagrams which may be constructed from reducible 

diagrams with the bottom replaced by its adjoint. However, C does not make up the entire set of 

diagrams in U; there is another set of irreducible diagrams that we will write as S. 

      1 2 3 4 1 2 3 4 1 2 3 4, , , , , , , , ,r r r r r r r r r r r rU S C             .  (2.44) 

The set S is a set of (irreducible) scattering diagrams that transforms into itself; 

    1 2 3 4 1 2 4 3, , , , , ,S r r r r S r r r r        . (2.45) 

The vertex S describes so-called “super single-scattering”. It contains not only the single 

scattering diagram l, but also all “loop” events, which are paths which begin and end at the same 

place (or, more accurately, within ℓ௦ of each other) (van Tiggelen, Wiersma, and Lagendijk 

1995). These “loop” events are also called recurrent scattering.   

By approximating ܃~݈ the classical treatment of wave scattering ignores the entire set of 

crossed diagrams C as well as the recurrent scattering diagrams. Thus radiative transfer (and 

therefore the diffusion approximation) does not obey reciprocity! The importance of the crossed 

diagrams was first suggested by Götze, and was subsequently demonstrated by Vollhardt and 
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Wölfle for the renormalization of wave diffusion (Götze 1979; Vollhardt and Wölfle 1980b; 

Vollhardt and Wölfle 1992). The crossed diagrams give rise to the coherent backscattering effect 

(introduced in Section 2.4), which was in fact the first experimental evidence that the radiative 

transfer theory is incomplete for light, and by extension, other classical waves. The recurrent 

scattering diagrams become important for systems with very strong scattering, and are discussed 

in Chapter 6. 

 The propagation matrix in backscattering 2.3.2.

In a real-world system, time-invariance is never perfectly obeyed since this assumption 

requires, for example, a completely lossless medium in which the velocity of individual 

scatterers is much less than the velocity of the waves in the medium. However, the time-

invariance and interference effects with which it is associated may be remarkably robust for 

classical waves (shown, for example, by Fink et al. (2000)). There are powerful experimental 

methods based on this concept. A ubiquitous example is ultrasonic imaging, which employs 

multiple sources and detectors to capture a matrix of signals, containing the responses between 

each source and detector. This propagation matrix contains all relevant information about the 

system, and thus is ideal for the characterization of the material through which the waves have 

travelled. The beauty of this approach is its simplicity; once a propagation matrix is measured for 

a particular system, all imaging and extraction of information from the matrix can be performed 

after the experiment has been finished. For a reciprocal system, iterative time-reversal can be 

used for, for example, selective target detection through an aberrating layer (Prada et al. 1996; 

Popoff et al. 2011) and wave focussing across a highly scattering slab (Popoff et al. 2010; Kim et 

al. 2012). Coherent backscattering and recurrent scattering effects can also be calculated 

(following sections). In this thesis, all experiments in the backscattering configuration consist of 
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the measurement of the propagation matrix and its subsequent analysis. 

2.4. Introduction to coherent backscattering 

Coherent backscattering (CBS) is an interference effect that is seen in the configurationally 

averaged intensity of backscattered waves from a disordered medium. CBS can occur for any 

type of wave, and in fact was first reported independently in two different fields: for electrons in 

dirty metals (Langer and Neal 1966) and for light waves in a turbulent atmosphere (de Wolf 

1971). Coherent backscattering of light was first measured experimentally by three different 

groups: in 1984 by Kuga and Ishimaru using dense latex microspheres as a scattering medium, 

and in 1985 by van Albada and Lagendjik, and by Wolf and Maret with polystyrene spheres 

(Kuga and Ishimaru 1984; van Albada and Lagendijk 1985; Wolf and Maret 1985). The first 

observation of dynamic (time-dependent) coherent backscattering was reported for light waves 

(Vreeker et al. 1988). However subsequent experiments highlighted the advantages of acoustics 

for CBS, where time information is readily available (femtosecond pulses are needed in optics) 

(Tourin et al. 1997; Bayer and Niederdränk 1993).       

The CBS effect can be understood in a basic way by considering the schematic of Figure 

2.6. Two ray paths in a scattering medium are shown. Both paths A and B have amplitude Ai at 

some far-off source point R0 and wave vector ki. After path A experiences n elastic scatterings it 

leaves the front surface with kf. Ray path B undergoes the same n scatterings, but in the opposite 

order, and also exits with kf. The outgoing rays, A0 and B0, are detected at some far-off position r0.  
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Figure 2.6: Two interfering rays A and B. Ray B may be regarded as ray A 

propagating backwards in time (Sheng 2006). 

The outgoing and initial ray amplitudes are related to each other by a product of Green’s 

functions, i.e. 

0 1 0 1,2 2 1 1, 1 0exp ( ) ( ) ... ( ) ( )i A i n n n n f nA AG ik r R ik r r ik r r ik r r               
          , (2.46) 

where kn-1,n is the wave vector of ray propagation between scatterers n-1 and n, and GA is a factor 

that accounts for the scattering strength of each scatterer. Similarly for ray path B, since Bi=Ai, 

0 0 , 1 1 2,1 1 2 0 1exp ( ) ( ) ... ( ) ( )i B i n n n n n fB AG ik r R ik r r ik r r ik r r               
          , (2.47) 

where GB=GA since all scatterers involved are identical. Since kn-1,n=- kn-1,n, the sum of all phase 

factors between the first and last terms is the same for both rays ܣ and ܤ. Thus, for a coherent 

beam incident on the surface of a random medium, backscattered intensity from A and B is 

 
  2 2 2 2* *

0 0 0 0 0 0 0 0 02 1 cos ( )i fA B A B A B A B k k r r A           . (2.48) 

The constant term inside the curly brackets is due to incoherent scattering (paths that do not 

interfere with each other constructively on average), and the cosine term is due to the 

constructive interference between reciprocal paths A and B. This interference causes an 

enhancement in backscattered intensity; this is the coherent backscattering effect. The coherence 

is maximum for ki+kf=0, where the backscattered intensity is enhanced by a factor of 2. This 
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reciprocal paths argument rests on the condition of spatial reciprocity; for every path ߙ there 

exists a time-reversed path ߚ, where the wave encounters the same scatterers in exactly the 

reverse order (and vice versa).  

The CBS effect is also often called weak localization, and occurs in even the most weakly-

scattering systems. All that is needed to produce coherent backscattering is a reciprocal medium 

where waves may be multiply scattered (i.e. the existence of reciprocal paths like the ones shown 

in Figure 2.6). Note that the term backscattering is different than reflection; backscattered waves 

have not simply reflected off of the sample surface, but have entered the sample, interacted with 

at least one scatterer, and then exited the sample via the same side they entered.  

 Calculating the CBS effect 2.4.1.

Here, as in other sections, we will calculate the CBS effect using diagrammatic scattering 

theory. Since coherent backscattering is seen in the backscattered intensity from a multiple 

scattering system, we can use Equation (2.30), reproduced here: 

            
2 * *

0 1 0 2 1 2 3 4 0 3 0 4 1 2 3 4, , ,s
c

R G r G r r r r r G r G r dr dr dr dr  
              

Equation (2.30) can be used to calculate the backscattered intensity from any system, so long as 

the Green’s functions between source and medium and between medium and detector ܩ଴൫⃑ݎ, ሬܴ⃑ ൯, 

and the reducible vertex Γ(⃑ݎଵ, ,ଶݎ⃑ ,ଷݎ⃑  ,ସ) are known. Of these, the most difficult to compute is ડݎ⃑

as it requires the summing of a huge number of scattering diagrams. To obtain an expression for 

〈ห߰௦൫ ሬܴ⃑ ൯ห
ଶ

〉 which is comparable to real-world measurements, some kind of approximation must 

be employed. The diagrammatic method of calculation helps to determine which types of 

scattering processes to include and which can be ignored.   

The first consequence of averaging over all realizations of disorder (the integral in 
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Equation (2.30)) is that the interference between paths of the type shown in Figure 2.7a average 

to zero (this is why the first term in Equation (2.29) is not included in the irreducible vertex).   

 

Figure 2.7: Paths of a pair of advanced and retarded Green’s functions. a) Paths 
which do not interfere constructively, b) Identical paths with propagation along the same 
direction, and c) Identical paths with propagation along opposite directions (Akkermans 
and Montambaux 2007). 

Now, the simplest approach to calculate 〈ห߰௦൫ ሬܴ⃑ ൯ห
ଶ
〉  is to use the ladder diagram 

approximation. As discussed in Sections 2.2.3.2 and 2.2.4.1.2, this means that the vertex 

Γ(⃑ݎଵ, ,ଶݎ⃑ ,ଷݎ⃑  ସ) is composed of the sum of all ladder diagrams (Figure 2.4). The backscatteredݎ⃑

intensity is now 

            * *
0 1 0 2 1 2 3 4 0 3 0 4 1 2 3, , , , , , ,incI R G r R G r R L r r r r G r R G r R dr dr dr dr 

                  (2.49) 

and corresponds to the structure in Figure 2.7b. As previously stated, this is equivalent to the 

diffusion approximation. Wave transport is represented as a statistical probability, taking into 

account all possible scattering paths through the sample. However, interference between those 

a) b) 

c) 
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different paths (i.e. accounting for the fact that they are all, in effect, occurring at the same time) 

is not included. For this reason, the backscattered intensity under the ladder approximation is 

often called the incoherent contribution to the backscattering intensity profile. 

As we have seen in the beginning of this section, the ladder diagrams on their own can not 

account for the CBS effect. The CBS effect is due to reciprocal paths through the sample; the 

types of paths shown in Figure 2.7c. If we want our system to obey reciprocity, we need to 

include all of the diagrams that result from an interchange of source and detector for the ladder 

diagrams. In other words, we enforce the reciprocity relation 

    1 2 3 4 3 2 1 4, , , , , ,r r r r r r r rML C          (2.50) 

where the new vertex ۱ۻ contains the sum of all most-crossed diagrams. Diagrammatically, this 

corresponds to flipping the bottom (or top) of each ladder diagram, with dotted lines remaining 

connected to the same scatterers, resulting in a sum of most-crossed diagrams as shown in Figure 

2.8. Thus, we have calculated the paths of Figure 2.7c using the ladder diagrams, simply by the 

interchange of source and detector.   

 

Figure 2.8: Summation of most-crossed diagrams. The first scatterer encountered on 
the top (incoming) path corresponds to the last scatterer encountered on the bottom 
(outgoing) path. 

Since each path pair in both L and ۱ۻ starts and ends at the same particle (or, more accurately, 

within a region about the size of a mean free path), we can expect dependence on only two ⃑ݎ 

positions (van der Mark, van Albada, and Lagendijk 1988): 

 
       
       
1 2 3 4 1 2 3 4 1 3

1 2 3 4 3 2 1 4 1 3

, , , ,

, , , ,M

L r r r r r r r r F r r

C r r r r r r r r F r r

 

 

  

  

         

           (2.51) 
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where the propagator ݎ⃑)ܨଵ,  ଷ from aݎ⃑ ଷ), is the Green’s function for the incoherent intensity atݎ⃑

source at ⃑ݎଵ. ݎ⃑)ܨଵ,  ଷ) can be found by solving a transport equation; on length scales larger thanݎ⃑

the transport mean free path, this reduces to a diffusion equation (van Tiggelen, Lagendijk, and 

Wiersma 2001).  

The contribution of most-crossed diagrams to backscattered intensity is often called the 

coherent contribution, and is given by  

            * *
0 1 0 2 1 2 3 4 0 3 0 4 1 2 3, , , , , , ,coh MI R G r R G r R C r r r r G r R G r R dr dr dr dr 

                . (2.52) 

For most systems (i.e. where the diffusion approximation holds), ડ ≈ ۺ + ۻ۱  is sufficient to 

describe the backscattered intensity.  

2.5. Introduction to Anderson localization 

The concept of Anderson localization is that strong disorder can inhibit the propagation of 

waves, resulting in the spatial localization of wavefunctions. First proposed by P.W. Anderson in 

1958 (Anderson 1958) for quantum spin diffusion (and charge diffusion), the theory was 

extended to classical waves decades later (Anderson 1985; John, Sompolinsky, and Stephen 1983; 

John 1984). For classical waves, the idea is that interference effects between scattered waves in a 

disordered medium cause the slowing, and eventually absence of, wave transport. In the 

localization regime waves remain localized inside the medium on a length scale given by the 

localization length ߦ  (van Tiggelen, Wiersma, and Lagendijk 1995; Anderson 1958; Sheng 

2006). Between diffusive and localized states a true transition occurs at the so-called mobility 

edge, and exists only in three dimensions (3D) (E. Abrahams et al. 1979).   
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 The scaling theory of localization7 2.5.1.

One way of defining localization is that, for an infinite system, almost all states are 

exponentially localized in space. This spatial confinement of modes could be measured by 

imagining a sample which is divided up into many smaller subsamples. In each subsample a 

delta function excitation is placed at the centre, and the response at each subsample surface is 

measured. By varying this procedure for different subsample sizes L, it is possible to distinguish 

between localized and extended (diffuse) states: If states are localized, then the response 

decreases with increasing L, but for extended states the response should be constant with L.   

Another way of stating the concept above is that a localized wavefunction becomes 

insensitive to the presence of sample boundaries when ܮ >  is the ߦ where localization length ,ߦ

spatial extent of the wavefunction. This is the basis of the Thouless criterion of localization, first 

put forth in the 1970s by Thouless et al. (Edwards and Thouless 1972; Thouless 1974; 

Licciardello and Thouless 1975). The fundamental ideas are outlined below using the 

terminology of classical waves. 

Here we will take a time scales approach to identifying localization. We wish to measure 

the time it takes for a change at one sample boundary to be communicated to the other side. We 

define this time as the Thouless time ߬ு, and the frequency width of the mode associated with 

this energy transport as 

 1

TH




  (2.53) 

In the diffusion regime the Thouless time is equal to the diffusion time ߬஽, which is the typical 

time for wave energy to propagate diffusively across the sample: 

                                                

7 See (Sheng 2006; van Tiggelen 1999). 
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2D
L

D



  (2.54) 

where D is the diffusion coefficient. Thus ߱ߜ ∝  ଶ for extended states. For a localized stateିܮ

where ܮ >  can only couple evanescently to the boundary, and therefore has exponential ߱ߜ ,ߦ

dependence on system size: ߱ߜ ∼ exp(−ߦ/ܮ). 

To make a measure of the change in ߱ߜ with system size, we must compare it with the 

average frequency separation Δ߱  between neighbouring eigenvalues. We define the 

dimensionless ratio 

 






. (2.55) 

Δ߱ is inversely proportional to the density of states, which is proportional to sample volume, so  

 dL    (2.56) 

for both extended and localized states. Thus the Thouless criterion is given by 

 
 

2               for extended states  
exp( / )     for localized states  .

dL
L L


  


  

  (2.57) 

It is clear that there should be some transitional point between extended and localized states. 

Furthermore, for ݀ = 3 this point should be a critical one, where ߛ switches from increasing 

with L to decreasing with L. This argument is the basis for the scaling theory of localization, 

which was proposed in the context of phase transitions in 1979 (E. Abrahams et al. 1979). 

Defining  

 ln
ln

d
d L


  , (2.58) 

the problem can now be framed with a single scaling parameter. Figure 2.9 is a schematic of the 

behaviour of ߚ as a function of ln    .and of dimensionality of the system ߛ
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Figure 2.9: The behaviour of the scaling function ߚ as a function of ln  It is .ߛ

assumed that ߚ is continous. The arrows indicate the direction in which ln(ߛ) varies as L 
increases (Sheng 2006).  

Several interesting observations immediately present themselves. Of particular interest for 

this thesis is the existence of an unstable critical point at ߛ௖ , from which the direction of 

variation of ߚ(ln  points away. This critical point, also known as the mobility edge, exists (ߛ

only in 3D, as is clear from Figure 2.9. The system behaviour near the mobility edge can be 

described using the slope of ߚ, defined here as ߥ. In the localization regime near the mobility 

edge, the localization length behaviour depends on ߥ as 

     (2.59) 

where   is a measure of the distance between ߛ  and ߛ௖  (Sheng 2006). Thus, the single 

parameter ߥ governs the localization transition. This demonstrates an important advantage of 

the scaling theory, which is that its predictions can be experimentally tested by varying a sole 

parameter of the system, and keeping all other variables constant. Experimentally, this parameter 

is typically either sample size L, or ‘degree of disorder’ of the medium. For wave scattering, this 

disorder can be altered by changing either the medium itself (e.g. scatterer size, type, and 

position) and keeping frequency of the waves constant, or vice versa. If frequency of the waves 
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is changed (and sample conditions kept constant), then, since ߛ depends on frequency ߱, we 

have  

 c
       (2.60) 

While a value of ߥ = 1 was initially predicted from scaling arguments (Wegner 1979), 

subsequent numerical simulations raised doubts about this prediction, which was finally proven 

untrue (Kramer et al. 2010). Since then, the value of ߥ has been estimated with higher precision 

and for a variety of systems. For 3D disordered systems belonging to the orthogonal universality 

class8, new results from systems including (but not limited to) disordered phonon simulations 

(Pinski and Roemer 2011), cold-atom quantum kicked rotors (Lemarié et al. 2009; Lopez et al. 

2012), and numerical scaling calculations (Slevin and Ohtsuki 2014; Ghosh et al. 2015) have led 

to a current, widely-accepted estimate of ߥ ∼ 1.6. 

Although it was an extremely important advance in the field of localization, the scaling 

theory does not include fluctuations of the wavefunctions (ߛ in Eq. (2.55) is a configurationally 

averaged quantity), and so is not a complete description of wave propagation near the critical 

regime.  

 Renormalized diffusion and the self-consistent theory of localization 2.5.2.

In the 1980s, a powerful reformulation of scaling theory, the self-consistent theory of 

localization, was developed by Vollhardt and Wölfle (Vollhardt and Wölfle 1980a; Vollhardt and 

Wölfle 1980b; Vollhardt and Wölfle 1992). This diagrammatic model describes the 

                                                

8  This is a class of systems which obey time-reversal symmetry (and spin-rotation 
symmetry, for quantum systems), which is probably the most appropriate case for classical 
waves. It is worth noting that a different estimate of ߥ ≈ 1.89 was obtained for simulations of 
elastic waves, wherein it was suggested that such systems are of a different universality class, but 
this has not since been verified (Sepehrinia, Tabar, and Sahimi 2008). 
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renormalization of diffusion processes due to the disorder of the medium. Theoretically, in an 

infinite disordered system, diffusion coefficient ܦ → 0 in the localization regime. In a finite 

system with open boundaries, as is usually the case experimentally, waves are free to propagate 

out of the sample, so transport can not be fully surpressed by localization. However, the 

description of a diffusion coefficient which decreases due to disorder is still a relevant one, and is 

outlined here. A ‘local’ version of this theory (Skipetrov and van Tiggelen 2006; Cherroret, 

Skipetrov, and van Tiggelen 2010) has been successful at describing Anderson localization of 

classical waves near a mobility edge (Hu et al. 2008), and is presented in the context of 

experimental measurements in Section 5.1.1. 

The diffusion coefficient may be obtained from the irreducible vertex U (Sheng 2006). In 

the ISA, where ordinary single scattering is the only contribution to U, the Boltzmann diffusion 

coefficient DB is obtained (that of Equation (2.39)). As scattering strength increases, the 

transport of wave energy begins to deviate from this simple picture. We have shown, using 

diagrammatic theory, how the intensity Green’s function is renormalized by multiple scattering 

events (Equation (2.25)). Equations such as (2.24) and (2.25) make it clear that a complete 

description of wave propagation in random media needs to be self-consistent. This is the basic 

idea of the self-consistent theory of localization. The idea is to successively calculate U from the 

sum ܃ = ݈ + ۱.  

A more detailed summary of self-consistent theory calculations is presented in Section 

5.1.1. Here, we can estimate the effect of the renormalization of U on the diffusion coefficient by 

writing the maximally-crossed diagrams C as a correction to ܃ = ݈. This results in a correction 

to the diffusion coefficient: 

 BD D D    (2.61) 
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where ܦ஻ is known as the Boltzmann diffusion coefficient, the same as that of Equation (2.38). 

The correction to diffusion is, in the weak scattering limit, 

  1

            1D
1 ln        2D

1 -      3D
d

L
vD L

k
L


 


 





 

  (2.62) 

where d is the system dimension and L is the system size (Sheng 2006). Here we assume 

isotropic scattering, i.e. ℓ௦ = ℓ஻
∗ . The absence of diffusion, D = 0, coincides with the presence of 

localized states. The critical system size for localization is the localization length ߦ. Setting 

ܦ = 0 and ܮ =   ,in Equation (2.62) ߦ
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  (2.63) 

This gives the so-called Ioffe-Regel criterion for localization (Ioffe and Regel 1960; Mott 1974),  

 3 1k   . (2.64) 

Note that this correction to the diffusion coefficient is not the same thing as what is being 

calculated by the self-consistent theory, which calculates U  more directly, instead of adding a 

correction to it.  

 Experimental concept: discrimination between diffuse and localized regimes 2.5.3.

Due to its universal nature, Anderson localization has been explored experimentally in a 

wide range of areas including quantum physics (Sapienza et al. 2010), ultracold atoms 

(Jendrzejewski et al. 2012), ultrasound (Hu et al. 2008), optics (Segev, Silberberg, and 

Christodoulides 2013), seismology (Friedrich and Wegler 2005), and even cosmology 

(Bershadskii 2003). Much of this work has focussed on 1D, quasi-1D, and 2D systems, in which 
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there is always some degree of localization. In 3D the presence of Anderson localization is much 

more difficult to verify. One needs to achieve (1) strong enough scattering, and (2) the right 

combination of disorder, frequency, etc. to induce localization of waves in the sample. The 

discrimination between diffuse and localized regimes remains an ongoing problem in the field of 

wave scattering. As discussed in Section 2.5.1, a prevailing approach in many studies is to vary 

one parameter such as system size or frequency while keeping all others constant. The behaviour 

of the system is then studied as a function of that parameter. Some quantity is measured which is 

theoretically predicted to depend on whether wave transport is diffuse or localized. Several such 

localization criteria have been proposed, including:   

1. The Ioffe-Regel criterion of Equation (2.64), often interpreted as ݇ℓ௦~1, and relatedly, 

a small mean free path which denotes ‘strong’ disorder. A definite indication of very strong 

scattering, the Ioffe-Regel criterion is generally accepted as an approximate criterion for 

localization of waves in 3D. 

2. The exponential decay of eigenmodes at large distances (van Tiggelen 1999). This may 

not hold, however, for finite media with open boundaries since waves can propagate through the 

boundaries out of the sample. It is also difficult to distinguish this criterion from absorption. 

3. A vanishing density of states (DOS) (van Tiggelen 1999). This implies that localization 

is more likely near a frequency gap of the scattering medium. 

4. A vanishing diffusion coefficient D. As shown by the self-consistent theory of 

localization, this does not hold for a medium with open boundaries; the diffusion coefficient can 

never really vanish, but at the mobility edge ܦ scales as 1/ܮ (Anderson 1958; van Tiggelen 

and Kogan 1994).  
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5. The Thouless criterion ݃ = ݐ݊ܽݐݏ݊݋ܿ ≈ 1. Here, ݃ is the dimensionless conductance 

which is given approximately by ݃ ≡   . Δ߱/߱ߜ

6. Variance of transmitted intensity var(ܫ) = 2var(ܶ) + 1 = 4/3݃ + 1 = 7/3, where 

݃ = 1 is the dimensionless conductance at the mobility edge, and ܶ is total transmission 

through the sample. This criterion has been used for photons in quasi 1D (Chabanov, Stoytchev, 

and Genack 2000) but could hold for other dimensions. 

Care must be taken when relying on just one of these criteria to demonstrate the presence 

of localization, as most are approximate and must be interpreted based on the specific 

experimental conditions. A more accurate approach may be to combine one or a few of the above 

criteria with measurements of spatial or temporal dependence of transmitted or reflected waves 

from the disordered medium. This is the approach taken in this thesis. The experimental 

strategies are introduced in Chapter 4 in the context of conventional diffusion, and extended to 

localization and anomalous transport in Chapters 5, 7, and 8. 

Appendix 2A : Enhancement factor calculation details9  

Any ladder diagram may be converted to a most-crossed diagram by reversing the direction 

of the adjoint Green’s function, and vice versa. In terms of individual diagrams, the reciprocity 

identity between ladder and most-crossed diagrams is: 

 

This may be written in terms of contributions to the intensity Green’s function ۵ଶ =

                                                

9 (Akkermans and Maynard 1985) 
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۵ଶ
(஼) + ۵ଶ

(௅) as 

     ( ) ( ) ( )
2 2 2

1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ; , , ; , , ; ,
2

C L LG ks ks ks ks G ks ks ks ks G ks ks ks ks              (2A.1) 

where ̂ݏ is a unit vector indicating wave vector direction. This is an identity which is very 

useful when performing calculations involving crossed diagrams. In the special case of exact 

backscattering, ⃑ݏᇱ =  ,ᇱݏ⃑−

    ( ) ( )
2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ; , , ; ,C LG ks ks ks ks G ks ks ks ks     , (2A.2) 

and thus 

    ( )
2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ; , 2 , ; ,LG ks ks ks ks G ks ks ks ks     . (2A.3) 

Thus, the total probability of backscattering is twice the incoherent multiple scattering 

probability. This is a well-known result.
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3. Experimental Techniques and Data Processing 
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3.1. Creation of slab mesoglasses L1 and L2 

To study the propagation of ultrasound in strongly scattering media, I have created two 

slab-shaped ‘mesoglass’ samples. The samples consist of spherical aluminum beads which are 

connected by thin aluminum ‘necks’, forming an elastic network. This section presents details of 

how the samples were created. Section 3.2.5.5 gives more detailed properties of the samples as 

determined from ultrasonic measurements. 

 Sample brazing 3.1.1.

The aim of the brazing process described below is to create a solid 3D network of 

individual aluminum beads. In this network, adjoining beads are connected to each other by thin 

‘necks’, while the spherical structure of each individual bead is preserved.   

The aluminum (Al) beads are brazed together in a furnace, using silicon (Si) powder and a 

potassium fluoroaluminate flux called NOCOLOK10. The NOCOLOK flux enables the silicon 

and aluminum to form a eutectic alloy - at a temperature lower than the melting temperature of 

aluminum, the alloy flows between beads which are in contact, forming bonds. This brazing 

process has been well-covered in references (Hu 2006; Bobowski 2001; Baldantoni et al. 1994). 

Here I summarize the brazing technique and include details on the creation of my specific 

samples. 

3.1.1.1. General brazing process 

The oxide layer on the surfaces of the aluminum beads is removed by briefly immersing 

the beads in a dilute solution of sodium hydroxide. The beads are rinsed with reverse osmosis 

                                                

10 NOCOLOK is a registered trademark of Alcan Aluminum Ltd (Baldantoni et al. 1994). 
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water, and placed into a slurry of silicon powder, NOCOLOK powder, and reverse osmosis water. 

The ratio of Si:NOCOLOK:Al beads was 1:2:400 by weight. By heating and stirring the 

aluminum beads/slurry mixture, the water is evaporated and the beads become evenly coated 

with a Si/NOCOLOK mixture.   

The coated beads are then poured into a stainless steel mold, shown in Figure 3.1. To 

encourage random positioning of the beads, the mold has dimples which are randomly placed 

parallel to the mold bottom, and whose depth in the mold is also random11 (see Figure 3.1, right, 

for a close-up). The bead-filled mold is placed inside an airtight stainless steel retort, which is 

inside a furnace. The retort is closed and sealed. The air in the retort is evacuated, after which the 

retort is filled with nitrogen to a pressure of 10 psi. The furnace and retort are heated to 650-

655°C. The exact heating profile depends on the amount of aluminum being brazed (heating 

profiles for my samples are given in Appendix 3A). Nitrogen is allowed to flow out of the retort 

at a very slow rate throughout the heating process to maintain a slight over-pressure, and to 

remove some of the by-products of the brazing. At around 650°C, the NOCOLOK flux removes 

any oxide layer from the aluminum beads, and enables the silicon and aluminum to form a 

eutectic alloy. The alloy flows between beads which are in contact, forming bonds. This process 

takes around five to ten minutes. The furnace is then cooled back to room temperature.  

                                                

11 A disordered, but fairly close-packed, pattern of holes was calculated using code with the 
following type of strategy; first, several ‘seed’ holes are randomly-placed. Then new holes are 
added near each seed hole, and the program continues to add holes near (randomly selected) 
existing holes, until no space remains which can accommodate a new hole. Distance between 
holes is randomly selected from a range of typically [-1,4] mm. Each hole is assigned a depth 
value randomly between 0.2 and 2 mm. ‘Random’ values are determined using built-in functions 
of the coding language, such as IGOR’s enoise function. A separate pattern of disordered holes 
was created for each detachable piece of each mold (bottom, sides, and top). A Faculty of 
Science machinist then punched the holes into the flat metal mold pieces, and was able to 
automate the process to follow each pattern accurately. 
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Figure 3.1: The stainless steel mold used to make samples L1 and L2, with its top 
(left). The side walls shown are those used for sample L1; those for L2 are taller. A close-
up of the mold surface is shown on the right. 

Finished samples are cleaned of any by-products of brazing by successive rinses in NaOH 

solution, or for small samples, by placing them in a dilute solution of NaOH in a ultrasonic 

cleaner.  

3.1.1.2. Slab samples L1 and L2 

Samples L1 and L2 are polydisperse, in order to discourage the formation of a complete 

band gap in the frequency region which might show Anderson localization (Lee 2014). This 

would be most effective with a continuous distribution of bead diameters around a mean value of 

≲ 4 mm. To approximate this distribution, 4.11 mm diameter Al beads were etched with 

hydrochloric acid (HCl) until they attained the desired size; etching time corresponds roughly to 

the decrease in bead size. The size distribution of beads destined for sample L1 was measured 

(see Section 3.1.2), and was found to correspond nicely with the above goals. Samples L1 and L2 

were then brazed as described above. 

 Bead size measurement (L1 and L2)  3.1.2.

In order to characterize the polydispersity of samples L1 and L2, the distribution of bead 

sizes was measured. This analysis was performed after the beads were etched, and before they 

were brazed together to form samples. Since the process was time-consuming, it was performed 



51 

 

only for beads which were then used to create sample L1; however, since etching and brazing 

procedures for both samples were the same, the bead size distribution should hold for both 

samples L1 and L2. I determined the distribution of bead sizes using the following steps: 

1. Photos were taken of most of the beads which were ultimately included in the sample. 

For each photo, the mean radius of a few beads was measured with calipers, and this value was 

recorded along with their position in the picture. A graticule was included in each photo. 

2. The photos were loaded into ImageJ and processed: the image was converted to binary, 

and the ‘watershed’ option was used to create small boundaries between particles. After 

calibrating the scale/units of the image using the graticule, the ‘Analyze Particles’ method was 

used to measure the size of every ellipse in the image at the same time.  

3. For each ellipse, the measurements of major and minor radii were averaged together for 

an estimate of bead radius (for all beads, measured circularity was 0.9 or higher). Then all 

measurements from all images were combined. 

Figure 3.2 shows the probability density of all measured bead diameters.  
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Figure 3.2: Distribution of diameters for aluminum beads comprising sample L1. 
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Figure 3.3 shows sample L1. Each slab sample has a cross-section of 230 x 250 mm2 

which is much larger than sample thicknesses ܮଵ = 25 ± 2 mm for sample L1, and ܮଶ = 38 ±

2 mm for sample L2. Such a large sample ‘face’ (the broad side of a sample) is important when 

conducting experiments with ultrasonic arrays, as the array can be placed far away from the 

sample and still not ‘see’ waves which have contacted sample boundaries. A large thickness is 

also advantageous for reflection measurements, as the contributions from the far side of the 

sample are limited. Both L1 and L2 are similar to those previously studied for strong scattering 

phenomena, including localization (Hu et al. 2008; Hildebrand et al. 2014), but instead of being 

monodisperse they have a mean bead size diameter of 3.93 mm with a polydispersity of around 

20%. This polydispersity encourages random positioning between beads (Figure 3.3, right).  

   

Figure 3.3: Sample L1. Left: complete sample, slab ‘face’ shown. Right: The bead 
structure of sample L1. Bead neck sizes are slightly larger than those from previous 
monodisperse samples (Hu et al. 2008), indicating a stronger amount of brazing. 

3.2. Experiments (slab samples) 

3.2.1.1. Overview 

Experiments performed on all slab-shaped samples consisted of sending an acoustic pulse 

into one sample face, and then detecting the transmitted (reflected) field that escapes the sample 

on the opposite (same) face. The primary goal of these measurements is the transmitted (reflected) 
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field as a function of time. Time t = 0 is defined as the time that the input pulse arrives at the 

sample surface. This time is often measured directly by acquiring an input signal at the position 

of the input sample face, and determining the arrival time of the input pulse intensity 

(proportional to the square of the envelope of the field). The smaller additional time shift due to 

propagation in water between the sample output surface and the hydrophone is also taken into 

account. The time before ݐ = 0 is called the ‘pretrigger’ signal. Transmitted fields are acquired 

with a long pretrigger (see Figure 3.4) to be able to determine the background noise level due to 

the equipment setup: 
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Figure 3.4: Raw transmitted field through sample L2 for ߩ = 0 mm. Time ݐ = 0 is 

the time that the input pulse arrives at the sample. A long pretrigger signal is acquired 
before ݐ = 0. 

To reduce the noise in the detected field, the receiving electronics for all experiments 

described in this section (both in transmission and reflection) are capable of repeatedly sampling 

the wave field. In other words, the same pulse is emitted many times very rapidly (but with the 

time between emissions much longer than the record length) and an average is taken over the 

resulting transmitted (reflected) fields. Intensity, or at least a quantity proportional to it, is 
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determined in the same way as for the input pulse intensity, by calculating the square of the 

envelope of the transmitted field. These proportionality factors are unimportant for the quantities 

that I examine in this thesis, so this quantity will henceforth be referred to simply as intensity. 

3.2.1.2. Configurational averaging  

For every experiment, configurational averaging is required due to the disorder and strong 

scattering nature of my samples. For my large slab samples, configurational averaging is 

performed in the following way; after all acquisitions for a single source point are completed, the 

sample is translated in the plane parallel to its face, and the acquisition sequence is repeated, with 

the waves propagating through a different region of the sample. Intensity is averaged over all of 

these different configurations, giving a more statistically accurate picture of the wave transport. 

For reflection measurements on strongly scattering media, it is possible to increase the number of 

possible array positions by, for example, flipping or rotating the sample and repeating the 

acquisition sequence with the array.  

3.2.1.3. General experimental setup 

All experiments were performed in a water tank, with the source, sample and detector 

immersed in water. Ultrasound is transmitted efficiently through water, and is also coupled easily 

between water and aluminum. In general, immersion ultrasonic transducers were used, having 

impedances such that ultrasound is well-coupled to water (specific properties are discussed in 

later sections).  

The water tank setup eliminates any need for direct contact between sample and 

transducers, and thus avoids the variable coupling issues that contact bonds often present. The 

water tank used in the following experiments was made out of plexi-glass. A steel frame was 

built above the tank in order to mount equipment above and inside the tank. To be able to move 
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the sample and/or transducers around during the experiment, controllable motorized stages were 

placed on the metal frame.  

The details of the experimental setup and method vary depending on what I expected to 

measure. The following sections describe the different types of experiments performed on slab-

shaped samples. 

 Transmission Experiments 3.2.2.

3.2.2.1. Ultrasonic emission and detection 

For the experiments discussed below, either piezoelectric immersion transducers or 

miniature hydrophones (for detection only) were used to emit and receive ultrasonic fields. 

Piezoelectric focussing transducers made by Panametrics were used to create a good 

approximation of a point source. They have a field pattern sketched in Figure 3.5. In practice, the 

-6dB envelope can produce side lobes, and thus a cone-shaped aperture was added whenever a 

good point source was desired (discussed further in Section 3.2.2.3). Each transducer has a 

central frequency with a nominal bandwidth of ≈ 80%. Experimentally, it is often possible to 

get very good quality signal at the edges or even outside of this frequency range. 

 
Figure 3.5: Schematic of a Panametrics focussing transducer. The position of the 

focal spot is different for transducers of different central frequency. Used with permission 
(Hildebrand 2015). 
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3.2.2.1.1. Miniature hydrophone detector 

For point-source detection, an Onda HNC-0400 needle hydrophone was used. The 

piezoelectric element of the hydrophone has a diameter ∼  s, which is much smaller thanߤ400

the wavelength of sound at the frequencies which it is designed to detect. It has an approximately 

Gaussian angular acceptance width of ߪ ≈ 30°. It can therefore give an accurate measurement 

of scattered field at a certain position, and is assumed, by the theory described in this thesis, to be 

a perfect point-detector. There is a known finite-size effect on measurements of the dynamic 

transmitted intensity profile (Hu 2006), and which is negligible for all data presented in this 

thesis. The hydrophone has a dedicated pre-amplifier to boost the detected signal before it is sent 

to the receiving electronics.   

3.2.2.2. Experimental Setup 

In the transmission geometry, a short pulse was generated by an ultrasonic transducer on 

one side of the sample. On the other side of the sample either a transducer or a miniature 

hydrophone detected the transmitted field. The general experimental setup is presented in Figure 

3.6. As various experiments were performed over an extended time period, several different 

electronic amplifiers and receivers were used, based on availability. Specific equipment used was: 

Arbitrary Waveform Generator Model 33220A 

Ritec Gated Amplifier Model GA-2500A 

E&I Instruments continuous wave amplifier Model 2200L 

Stanford Research Systems Pulse Generator Model DG535 

Panametrics High Voltage Pulser/Receiver Model 5058PR (operating in receiver mode) 

Ritec Broadband Receiver Model BR640A 

Textronix Oscilloscope Model TDS5032B 
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Figure 3.6: Signal path through electronics and experimental setup. 

The Arbitrary Waveform Generator (AWG) sends out an electrical pulse which describes a 

Gaussian-modulated sinusoidal pulse. The central frequency of the pulse is chosen to exactly or 

nearly match that of the transmitting and receiving transducers. The pulse is then amplified by a 

power amplifier, and finally converted to an ultrasonic vibration by the emitting 

transducer.While the E&I amplifier did not require a gating input, the Ritec Gated Amplifier was 

used in conjunction with gating electronics as shown in Figure 3.6. The gating function of the 

Ritec Gated Amplifier was employed to ensure a clean, brief input pulse (i.e. eliminate any 

straggling signals caused by reflections from cables or amplifying electronics). The Stanford 

Pulse Generator was programmed to define a discrete window in time, which was sent to the 

Ritec amplifier and used to window the pulse, which was then output to the transducer.  

On the other side of the sample, either a miniature hydrophone with a preamplifier or a 
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transducer was used to detect the transmitted acoustic field and to convert it into an electrical 

signal. This signal was amplified by the Receiver, and then recorded by the oscilloscope. A 

personal computer captured and saved the data from the oscilloscope. This computer was also 

used to command the motorized stage controllers to move the sample and the 

transducers/hydrophone.  

3.2.2.2.1. Sample holder, waterproofing and vacuum setup 

For all transmission experiments, I constructed a holder for each sample. At the top of each 

support, a steel rod was attached which in turn attached to the motorized stage running above the 

water tank. The holder could be sealed water-tight with the sample inside, enabling the air in the 

pores of the sample to be evacuated. The sample remained under low pressure relative to 

atmosphere (around 20-25 inHg below atmospheric pressure) for the entirety of the experiment 

to ensure that sound was only propagating through the aluminum bead structure. The main 

component of each holder was an acrylic support made by the Faculty of Science machinist, 

either rectangular or ring-shaped depending on the shape of the sample into which the sample 

was placed. The sample was secured in the support with a thin layer of silicone or acrylic (the 

type used for household sealing purposes). To enable the air surrounding the sample to be 

evacuated using a conventional vacuum pump, I used one of two methods:  

1. ‘Gluing method’: Thin plastic sheets were glued to either side of the acrylic support, 

with the sample sandwiched in between. Air was vacuumed from between the sheets via a small 

hole running through the edge of the acrylic, connected by a thin tube to a vacuum chamber and 

pressure gauge.  

2. ‘Bag method’: The sample was placed into a bag which I constructed out of a type of 

plastic commonly used to keep food under vacuum. Air was removed from this bag via a thin 



59 

 

tube at one end of the bag, carefully sealed against air and water leakage. The sample and bag 

were then placed into the acrylic support .  

I developed this second method of vacuum-sealing the samples because the gluing stage of 

the first method is difficult and time-consuming. For both methods, a very thin layer of vacuum 

grease was applied between the plastic walls and sample surface to help couple sound through 

the plastic layer. 

To evacuate the air from a sample and to keep it at low pressure, it was connected via poly-

flo tubing to a vacuum pump and ballast apparatus as shown in Figure 3.7. First, the vacuum 

pump is used to place the ballast (a large empty drum) under reduced pressure, to between 20-25 

inHg below atmospheric pressure. The pump is then turned off. When completely closed, the 

ballast is able to remain at the same stable pressure for weeks at a time. The valve between the 

ballast and sample is then slowly opened, so that all of the air was evacuated from the sample, 

and the sample eventually comes to be the same pressure as the ballast. A sample sealed in its 

holder can remain close to the same stable pressure, connected to the ballast, for the entirety of 

an experiment (sometimes several weeks). While an experiment is running, the sample and 

ballast setup is checked every day for any rise in pressure, and vacuumed out slightly if needed. 

 

Figure 3.7: Simple sketch of the vacuum, ballast and sample setup. The valve 
between the sample and ballast remains open for the duration of an experiment, enabling 
the sample to remain at a stable reduced pressure. 
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3.2.2.2.2. Extraneous reflection elimination (baffles) 

Some of the transmission measurements performed are sensitive to very small transmitted 

signals, which may arrive long after the initial pulse has been sent. Thus, it is important to 

eliminate the possibility of sound arriving at the receiver via any path except through the sample. 

To this end, a baffle was constructed to block any sound propagating through the tank between 

source and receiver. The baffle is a thin sheet of flexible plastic, wrapped in several layers of 

Teflon tape, placed in the center of the tank (shown in Figure 3.9 and Figure 3.10). A hole in the 

center of the baffle allows sound to pass, and this is where the sample is placed, ideally 

completely covering the hole. When placing the baffle in the tank before an experiment, I tested 

it by blocking the hole (with another plastic piece wrapped in Teflon tape) and sending a pulse 

into the tank with the emitting transducer. The receiver was moved around the tank attempting to 

detect any signals transmitted through or around the baffle.  

During the actual experiment, there is the possibility of sound coming around the edges of 

the sample or through the acrylic support. This possibility is very small for samples L1 and L2, 

since they are wide enough to block the baffle hole completely, and I placed them in the tank 

such that the sample surface makes firm contact with the baffle itself. However, to be safe, I 

attached thin ‘wings’ to the edges of the acrylic support, and covered them and the support with 

Teflon tape, to trap and absorb any stray signals. Figure 3.8 shows sample L2 in various stages of 

experimental setup.  
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Figure 3.8: Sample L2 in preparation for a water tank experiment. (a) Close-up of the 
sample surface when sealed in a plastic bag. There is a thin layer of vacuum grease 
between the plastic and the sample surface, and air has been evacuated from the bag. (b,c) 
The sample in its holder, with ‘wings’ attached to the holder sides. The top of the plastic 
bag extends upwards above the sample. (b) The poly-flo tube that is connected to the 
vacuum-ballast setup is visible in the top right corner. (c) The entire sample/holder is then 
wrapped in Teflon tape. 

3.2.2.3. Measurement Techniques and Geometries 

This section describes the transmission experiments that I performed on my slab-shaped 

samples using a quasi-point-like source and detector. For most experiments discussed in this 

thesis, the desired measurement is configurationally-averaged intensity. Thus, the source and 

a) 

b) c) 
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detector must be small (quasi-point-like) so that the spatial averaging is only performed after 

intensity is calculated from the acquired field. The goal when setting up the experiment is to have 

both source and detector are approximately point-like, and positioned in the near-field of the 

sample. 

For the source, a focusing ultrasonic transducer is positioned in the tank, separated from 

the sample by approximately the focal length of the transducer. A cone made of thin plastic, 

wrapped in Teflon tape, is positioned very close to the sample surface (in the near-field, 

approximately 2 mm away) to help couple the focussed sound into the sample at only a small 

spot. The cone is connected to the transducer via rigid plastic rods and a flat bar, as shown in 

Figure 3.9. By making slight adjustments to how the rods are connected to the plastic bar, the 

relative positioning of the transducer and the cone may be changed. This enables the alignment 

of the transducer and the cone on dry land. The apparatus is positioned with the cone pointing 

upwards, and a plumb line is hung through the hole in the cone tip to the transducer face. The 

apparatus is aligned when the plumb line points exactly in the middle of the transducer face. By 

performing this alignment before placing the apparatus in the tank, a very tight and bright focal 

spot may be achieved.  

A miniature sub-wavelength hydrophone is used for detection. In my experiments, the 

hydrophone tip is positioned as close as possible to the sample without contacting it, 

approximately 2-3 mm away in the near-field (Figure 3.10). 
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Figure 3.9: The emission transducer (left) is attached to the cone by acrylic rods. The 

cone tip is a few millimetres from the sample input surface. The sample face is on the 
opposite side of the baffle; some of the sample face is visible through the hole in the baffle. 

   
Figure 3.10: The sample and sample holder are flush against the baffle. The 

hydrophone tip is positioned millimeters away from the sample output surface. In this 
photograph the baffle is the large white surface covering most of the image background. 
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For all quasi-point-source experiments, the source is kept stationary and the hydrophone detector 

scans the opposite face of the sample in the near field. The transmitted intensity as a function of 

transverse distance from the source, ρ is measured. I performed two types of point-source 

experiments, which differed from each other only in the number and spacing of detector 

positions: a) the dynamic transverse intensity profile, introduced in Section 4.3.1.1, and b) ‘field 

maps’, introduced in Section 7.3.1. 

3.2.2.4. Source characterization 

To complete the analysis of this data as described in Sections 4.3.1.1 and 7.4, a map of the 

source must be acquired. The sample is simply removed and the hydrophone moved closer to the 

source so that it is in the plane previously occupied by the input face of the sample. By scanning 

the hydrophone in a grid, and recording the wavefield over many positions on this grid, a map of 

the source spot or plane wave is acquired. 

 Reflection Experiments 3.2.3.

3.2.3.1. Experimental Setup 

In the reflection geometry, an ultrasonic array was used to send short pulses into the 

sample, and detect the signal which is reflected and/or backscattered from the same side of the 

sample. An ultrasonic array is a collection of small transducer elements which can each emit and 

receive wavefields independently of the other elements.  

The experimental setup is shown in Figure 3.11. 
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Figure 3.11: Experimental setup for reflection measurements with an ultrasonic array. 
The array is suspended in the tank by a metal rod attached to the motorized stage. The 
sample is supported by acrylic blocks (shown in white). The metal block is used to test for 
reflections between the sample and the tank bottom, and is removed before the actual 
experiment is started. 

All pulse generation, amplification, and data acquisition for ultrasonic arrays is carried out 

by a dedicated multi-channel electronics system (produced by Lecoeur Electronique). The 

system has a separate digital channel for each array element, and can amplify signals through 

each of these channels in both transmission and reception. A personal computer controls and 

saves data acquired by the electronics. The computer also controls the motorized stages above 

the tank to move the transducer array around in the tank.  

For setup simplicity, reflection measurements were conducted with the array pointing 

downwards at the sample. The sample rests on two or more supports with one of its wide faces 

parallel to the bottom of the tank. The array is translated parallel to the sample face to record 

backscattered signal from different spots on the sample surface. For some experiments, 

additional configuration averaging was achieved by flipping the sample so that the sample face 

initially facing the tank bottom now faces the array, and repeating the experiment. 



66 

 

It is conceivable that unwanted contributions to backscattered field could arise from the 

signal travelling through the sample, reflecting off either a sample support or the tank bottom, 

and travelling back through the sample. A test for this effect was carried out during the setup 

before each experiment. A block of metal was placed under the sample, on the bottom of the tank, 

with its top very close to or touching the bottom sample face (Figure 3.11). The array was used to 

record backscattered field from the sample with and without this block, with a large amount of 

averaging, and the signals compared. The block was never detectable using this method, but was 

always removed anyway before the start of each experiment; waves reflected from the tank 

bottom and back into the sample arrive later and would be weaker than waves reflecting from a 

block very near to the bottom sample surface. 

3.2.3.2. Ultrasonic array specifications 

Reflection measurements on samples L1 and L2 were performed at either the Institut 

Langevin in Paris, France, or at the Ultrasonics Laboratory in Winnipeg, Manitoba. Like single-

element transducers, each ultrasonic array emits a pulse centered at a certain characteristic 

frequency, so different arrays were used order to gather data over a wide frequency range. Table 

3.1 contains the main parameters of each reflection experiment discussed in this thesis. Besides 

the experiments performed on samples L1 and L2, additional measurements were carried out on 

two other samples: ‘H4’, an aluminum-sintered slab sample with a disc-shaped face, which, like 

those studied by Hu et al. (Hu et al. 2008; Hu 2006), has previously shown signatures of 

localization of ultrasound, and ‘GB’, a sample of (unsintered) glass beads, which are known to 

show only diffusion of ultrasound. Results from these experiments are not reported in this thesis, 

as it was found that the sample faces were not wide enough to make edge effects insignificant 

(this issue is discussed further in Section 3.2.3.4). 
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Sample 

Sample-
array 

separation 
(mm) 

Number 
of array 

positions 

Central frequency 
of transducer array 

(MHz) 

Number of 
elements 

used 

Laboratory in which 
experiment was 

performed 

L1 146 91 
3.2 64 Institut Langevin L2 187 117 

Glass 
beads 

84.5 50 
L1 182 302 

1.6 64 Institut Langevin 
H4 67 40 
L2 136 66 1.0 128 Ultrasonics Laboratory 

Table 3.1: Details on setups for reflection experiments. Note that the arrays at the 
Institut Langevin actually had 128 elements, but the number of elements used was 64 
because only 64 channels of the Lecoeur electronics system were operating correctly. 

All arrays used were manufactured by Imasonic. Table 3.2 contains important 

specifications of each array used for reflection experiments. Note that, similarly to the 

transducers used in transmission, good signals are possible at the edges and outside of the -6dB 

bandwidth, especially at the low-frequency end. Notably, the 1.5 MHz array displayed excellent 

signal (and at least SNR > 4) all the way down to 0.6 MHz (c.f. Figure 3.25). 

Central 
freq. 

(MHz) 

Bandwidth 
(-6dB) 
(MHz) 

Number 
of 

elements 

Pitch 
(mm) 

Inter-
element 

separation 
(mm) 

Element 
height 
(mm) 

Homogeneity 
in sensitivity 

(±dB) 

Cross-talk 
(dB) 

3.2 2 - 3.8 64 0.417 0.03 10   

1.5 1.2 - 1.9 128 0.5 0.25 12 3 

Nominal: 
≤ −35 

Experimental: 
≈ −45.9 

1.0 0.7 – 1.4 128 0.9 0.35 15 3 ≤ −35 

Table 3.2: Details on ultrasonic arrays used in reflection experiments. Pitch refers to 
the center-to-center distance of individual elements. Unknown values are left blank. The 
nominal central frequency of the 1.6 MHz array was 1.5 MHz, according to Imasonic, but 
testing in the laboratory showed it to be closer to 1.6 MHz. The experimentally-determined 
bandwidth of this array also greatly exceeded that given by the manufacturer (see text). 
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3.2.3.3. Measurement Techniques and Geometries 

What is essentially desired in my reflection experiments is a measure of backscattered field 

as a function of time, and of distance between source and receiver. To acquire this information 

the experimental procedure technique shown in Figure 3.12 is employed. A short pulse is emitted 

by the first element in the array, and the backscattered field is detected with all ܰ elements. 

Then the same pulse is emitted by the second element, and the backscattered field recorded with 

all ܰ elements. This sequence is repeated, emitting with all ܰ elements in turn. The data 

acquired in this way forms an ܰ × ܰ response matrix, which represents the wavefield responses 

between each emitter and detector. The response matrix holds a huge amount of information 

about the medium, and in particular about wave behaviour inside the medium. It is a powerful 

tool with which to perform analyses such as, for example, beamforming (Aubry et al. 2007; 

Aubry and Derode 2007). Simply by changing the relative delay times between sources and 

emitters, and then summing wavefields, an image of the material’s surface may be produced just 

as if focused beamforming had been done in real time. 

 

Figure 3.12: First step of acquisition sequence for an ultrasonic array of ܰ elements. 
To complete the sequence, this step is repeated but with element 2 emitting, then element 
3… up to element ܰ. 
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The response matrix should reflect the properties of the medium under investigation, and 

not be unduly influenced by the properties of the measurement apparatus. Each experiment 

presents its own set of setup challenges, mainly due to the properties of the array and associated 

electronics, the desired length of time to be recorded, and the desired amount of configurational 

averaging. The most significant of these challenges, and their solutions in the context of my 

experiments, are discussed in the following sections (3.2.3.4 - 3.2.3.7.2). 

3.2.3.4. Long-time signals vs configurational averaging 

A main goal of my reflection experiments is to measure time-dependent quantities such as 

the dynamic coherent backscattering effect, and to observe wave scattering behaviour at as late 

times as possible. Besides signal-to-noise issues (discussed later), the limiting factor in recording 

long times in reflection is the separation between source and sample. Waves that are reflected 

from the sample surface, travel back to the array, are reflected off of the array and then travel 

back to the sample can interfere with those waves that are already scattering around inside the 

sample. By convention, we set time ݐ = 0 to be the time it takes a pulse to travel twice the 

sample-array distance (the first arrival time of reflected signals at the transducer array). Thus, the 

longest possible time that should be used for analysis is ݐᇱ = 2݀, where d is the sample-array 

distance. By placing the array far from the sample, longer times may be investigated. However, 

this goal conflicts with the aim of minimizing the amount of signal from the edges of the sample 

that is seen by the array. Ideally, the only backscattered signal we would like to record is that 

which has not interacted with the edges of the sample, and so the array should be kept nearer to 

the center of the sample. In principle it is unlikely that no signal coming from the sample sides 

will be recorded by the array, especially the outer array elements, but these effects are probably 

negligible if they are very weak compared to the signal coming from the center of the sample. 
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In summary, there is something of a trade-off between long-time acquisition and amount of 

independent array positions (i.e. amount of configurational averaging).  

3.2.3.5. Alignment 

It is important that the ultrasonic array be parallel to the sample surface, in both ݔ and ݕ 

dimensions (where ݖ is the plane running through both array and sample face, as indicated in 

Figure 3.12). During experimental setup, alignment of the array was performed by hand, by 

making slight adjustments to the position of the array in the array holder, and observing reflected 

signals from some flat surface. Alignment in the direction of the height of each element (parallel 

to ݕ in Figure 3.12) was performed by adjusting the array until the largest reflected signal is 

achieved. Alignment along the length of the array (parallel to ݔ in Figure 3.12), to ensure that 

each element is equidistant from the reflecting surface, is achieved by ensuring that reflected 

signals from the flat surface arrive at the same time for all elements. For a well-aligned array, a 

signal sent and received by the first element should have the exact same travel time as one sent 

and received by the last element12.  

3.2.3.6. Calibration 

During an experiment, each array element is connected to one channel of the Lecoeur 

electronics system. Thus, for clarity in the following discussion, we will call a system of one 

array element coupled to its dedicated electronic channel one channel of the experimental 

                                                

12 Often, misalignment along ݔ may be corrected for in post-processing, by correcting the 
relative delay times between source and receivers so that the first reflected signals arrive at the 
same time. However, since the surfaces of my samples are rather bumpy, the specular signal 
differs slightly in phase and amplitude depending on the spot on the surface from which waves 
were reflected, and it is often not easily discerned from other backscattered signals. This means 
that the alignment of sample and array is especially important during the setup of the experiment, 
as it can not be perfectly corrected in post-processing.  
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measurement system. 

Ideally, each channel sends and receives signals in exactly the same way. If, for example, a 

uniform plane wave is detected by the array, the recorded signal from a particular channel should 

be the same as from each other one. One way to observe this effect is by looking at the 

reciprocity of the measured response matrix. If the system obeys reciprocity, and if all channels 

are behaving in exactly the same way, then the signal sent from, for example, channel 1 to 64 

should be exactly the same as that sent from channel 64 to channel 1.  

My scattering samples L1 and L2 are reciprocal systems as described in Section 2.3. The 

response matrices measured in experiments at the Institut Langevin show remarkably good 

reciprocity, indicating that each channel was behaving very similarly in both emission and 

reception. As Figure 3.13 shows, even between the farthest-separated array elements, and 

through the strongly-scattering sample L1, reciprocity is well-obeyed for this system. Note that 

no calibration of the system, other than the built-in internal calibration of the Lecoeur electronics 

system, was performed during experimental setup. 

At the time that I performed my experiments, the reciprocity of the array/electronics 

apparatus used at the Ultrasonics Laboratory was not as good. Figure 3.14 shows backscattered 

signals from a flat aluminum sheet, measured at the Ultrasonics Laboratory. Here, calibration in 

emission has been applied (see below for details), but not in reception. The sheet was used to 

illustrate that the non-reciprocal nature of the signals was due almost entirely to the 

array/electronics system. There is no phase shift between reciprocal signals, which is good. 

Between elements that are close together, reciprocal signals are similar (left plot), but there is a 

systematic amplitude difference noticeable. Between elements that are farther from each other 

(right plot), there is a huge difference in amplitude between reciprocal signals. The inset of each 
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plot shows the attempt to correct for these differences, before performing the actual experiment. 

Results are not perfect, but do bring reciprocal signals much closer together. The procedure for 

applying this correction, or calibration of measurement apparatus, is outlined below. 
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Figure 3.13: Backscattered field signals from sample L1, measured with array and 
electronics at the Institut Langevin. 
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Figure 3.14: Backscattered field signals from a flat aluminum sheet, measured at the 

Ultrasonics Laboratory. Solid lines represent signals which have been corrected in 
emission to account for the non-reciprocity of this measurement system, but not in 
reception. Dotted lines in insets represent signals which have been corrected in reception 
(via calibration 'masks'). 
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Calibration must always be performed for the array and Lecoeur electronics apparatus 

together rather than separately. If the array is disconnected from the electronics and then 

connected again, or even if the initialization of the electronics is performed again, the amplitude 

differences in reception and emission from element-to-element change completely, in a 

seemingly random way. Also, which elements are ‘bad’ (emit/receive disproportionately noisily) 

changes. These ‘bad’ elements are detected in post-processing, and their contributions are not 

used in subsequent analysis. 

After the array is positioned in the water tank as shown in Figure 3.11, the array/electronics 

system is calibrated using the following steps: 

Calibration in reception: with the goal that each channel records the same pulse with the 

same amplitude. 

 Set up a single transducer in approximately the same area as the sample will be placed 

during the experiment, facing up (facing the array). The transducer emits a single pulse 

centered at the central frequency of the array (connected to a single channel of the 

Lecoeur electronics). 

 The array begins with its first element centered over the transducer. That first element 

records the pulse from the transducer. The array is translated parallel to the transducer a 

distance equal to the inter-element distance of the array, so that the second element is 

centered over the transducer, in the exact position that the first element was.  

 The second element records the pulse from the transducer.  

 The process is repeated until each array element has recorded, in principle, the exact 

same pulse.  
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 A ‘mask’ to correct for differences in amplitude between signals is constructed. To apply 

this reception calibration, all experimental data should be multiplied by these correction 

factors (one for each channel) in post-processing. 

Calibration in emission: with the goal that, when each channel is directed to emit the 

same pulse, the actual pulses that are physically emitted have the same amplitude. 

 Replace the single transducer with some flat reflecting surface. It is easy and convenient 

for later setup steps to put the sample in place now, with some kind of hard reflecting 

sheet (I used aluminum) laid over top of it.  

 Emit and receive with each individual element (emit with 1, receive with 1, then emit 

with 2, receive with 2, etc.).  

 Apply the reception calibration mask to recorded signals appropriately. Any differences 

in recorded amplitude should be, in principle, due to differences in the operation of the 

array/electronics in emission only. 

 A ‘mask’ to correct for differences in amplitude between signals is constructed. To apply 

this emission calibration, the pulses to be emitted are defined in matlab and then 

multiplied by these correction factors (one for each channel). Then these corrected pulses 

are sent to the Lecoeur electronics to be emitted by the array13. 

As well as being closer in amplitude as shown for some examples in Figure 3.14, the 

overall backscattered wave field appears smoother and has less variations across different 

channels. Backscattered intensity measured at the Ultrasonics Laboratory is shown in, for both 

pre- and post-calibration in reception. The initial pulse was emitted by channel 64 (in the center 
                                                

13 Another, possibly better, way to perform this calibration could be to iteratively change the 
amplitude of the pulse sent to a particular channel until the emitted pulse has the desired 
amplitude, and then repeat this for each channel. 
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of the 128-element array). 
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Figure 3.15: Reflected intensity from a flat aluminum sheet, measured at the 

Ultrasonics Laboratory. The initial pulse was sent from channel 64, with emission 
calibration applied. Left: reception calibration has not been applied. Right: reception 
calibration has been applied. 
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Figure 3.16: Backscattered intensity from sample L2, measured at the Ultrasonics 

Laboratory. The initial pulse was sent from channel 64, with emission calibration applied. 
Left: reception calibration has not been applied. Right: reception calibration has been 
applied. 

Although the resulting signals after calibration still exhibit some irregularity (Figure 3.15), 

this was the best that could be done at the time, and did result in cleaner data. It is important to 
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note that the less-than-ideal reciprocity of this system should not have an important impact on 

the experimental results presented in this thesis (i.e. the backscattering results for sample L2). 

This is because the desired measurements are quantities of averaged intensity. The large amount 

of spatial and configurational averaging involved should compensate for the asymmetry caused 

by imperfect functioning of the array system described above. However, this raw experimental 

data is less appropriate for other potential analyses that are very sensitive to differences in each 

detected field, such as correlations (e.g. Hildebrand et al. 2014; Knothe and Wellens 2015). 

3.2.3.7. Data acquisition techniques and details 

3.2.3.7.1. Signal-to-noise issues  

To measure backscattered field at long times after the initial pulse was input to the sample, 

a good signal-to-noise (SNR) ratio is needed. Here I define ‘good’ SNR as having 

ห߮signal(ݐ)ห |߮noise(ݐ)|⁄ ≥ 4. To improve SNR, averaging is performed so that for N successive 

averages the noise is reduced by √ܰ assuming that noise is uncorrelated from one acquisition to 

the next. However, this operation also increases the acquisition time per emission (and ܰ 

accompanying acquisitions) by a factor of N. 

At the Institut Langevin, onboard averaging was not enabled for the Lecoeur system, 

meaning that multiple averaging had to be performed ‘manually’, by recording many signals and 

averaging them with the personal computer. This process takes much more time than would 

internal averaging by the Lecoeur system (or by an oscilloscope, as is done with transmission 

measurements), and can greatly increase the total time of an experiment. Already, experiments 

may take up to several weeks, so methods to decrease the experimental running time are needed.  

The next section details one such method, called the Hadamard method (Lingevitch 2002). 

This technique was introduced to me at the Institut Langevin, and was used for the 
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backscattering experiment with sample L1 centered at 1.6 MHz (Dec 17, 2010). I did not use it 

for the subsequent experiment on L2 (Oct. 30, 2013), as I found that the onboard averaging was 

just as fast as using the Hadamard method, and does not rely on the linearity of array elements. 

3.2.3.7.1.1. The Hadamard method 

The idea behind this technique is that instead of acquiring the response matrix ‘directly’ as 

outlined in Section 3.2.3.3, the acquisition can be performed ‘indirectly’ by the emission of a 

more complicated form, from all array elements. The following explanation is a summary of the 

technique14: 

The Hadamard matrix is a square matrix composed of vectors which are all orthogonal 

with each other, and has all coefficients equal to ±1. Thus, its row (or column) vectors obey  

 ,
1

N

ij kj i k
j

N


 E E  (3.1) 

where iE  is the ith vector (݊ = 1 … ܰ) of the Hadamard base. This property may be exploited 

to improve SNR in the following way; instead of the normal ‘direct’ method of emission and 

reception (outlined in previous sections), the vectors ۳௜ of a Hadamard matrix are emitted one 

after another from the entire array: 

Emission 1: ۳ଵ is emitted with all ܰ elements participating simultaneously, each with a 

weight coefficient of ۳ଵ௝  ( ݆ = 1 … ܰ ). The received signal on element ݊  is therefore 

∑ ۳ଵ௝۹௡௝(ݐ)ே
௝ୀଵ , where ݊ = 1 … ܰ. 

Emission 2: ۳ଶ is emitted with all ܰ elements participating simultaneously, each with a 

weight coefficient of ۳ଶ௝  ( ݆ = 1 … ܰ ). The received signal on element n is therefore 

∑ ۳ଶ௝۹௡௝(ݐ)ே
௝ୀଵ , where ݊ = 1 … ܰ. 

                                                

14 This is a summary of a personal communication with Arnaud Derode. 
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Etc. The ܰଶ  received signals ۻ௡௜(ݐ)  can therefore be expressed as ۻ௡௜(ݐ) =

∑ ۳௜௝۹௡௝(ݐ)ே
௝ୀଵ  or, in matrix notation, 

 TM KE  (3.2) 

where i denotes the emission element, and ݊ the reception element. It is simple to recover the 

signal matrix (i.e. the response matrix) ۹, due to the orthogonality of the Hadamard vectors. For 

example, to obtain the signal received by element ݊ if the element p had emitted by itself, we 

write ۹௡௣(ݐ) = ∑ ∑ ۳௜௣۳௜௝۹௡௝(ݐ)௝ = ଵ
ே

∑ ۹௡௝(ݐ) ∑ ۳௜௝
்

௝ ۳௜௣௜௜  or, in matrix notation (and 

substituting in Equation (3.2)), 

 T1 1
N N

 K KE E ME . (3.3) 

Equation (3.3) shows us that for the same emission amplitude, the obtained signal ܁ =  is a ۻ۳

factor ܰ times higher than that which would have been obtained via the ‘direct’ measurement 

method. Thus, in the presence of (assumedly uncorrelated) electronic noise, we obtain without 

averaging the same SNR as if we had used the ‘direct’ procedure and averaged N times. 

Therefore for the same acquisition time, we gain SNR. Or inversely, for the same SNR, we can 

perform the experiment much more rapidly.  

The main drawback of the this method is that it rests on the linearity of the entire 

acquisition system (transducer array + emission/reception electronics). No apparatus is perfectly 

linear, and thus careful testing is required before an experiment to ensure that the recovered 

signal (e.g. a reference pulse) is acceptable, i.e. almost identical to that obtained using more 

standard methods. 

3.2.3.7.2. Time-gain control 

Amplification of the detected field is needed to be able to have enough signal at long times. 
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In backscattering, this can prove challenging because the initial backscattered field, being made 

up of mostly specular reflection, is very large compared to the field at longer times. If gain 

applied to the detected field is too large it would saturate the field at early times (amplify it 

above the input voltage range of the recording electronics).  

In all experiments performed at the Institut Langevin this issue was a significant concern. 

The solution I employed (developed by researchers prior to my arrival) was to acquire the 

backscattered signal three separate times, with different time delays. Then, different gain could 

be applied to each acquired signal, so that the initial signals had low gain and the long-time 

signals had high gain. After the experiment, the sections of signal were ‘stitched’ back together, 

correcting for differences in amplitude caused by differing applied gain. This technique, although 

very effective when no other solution is available, requires three times the acquisition time, so is 

not ideal. For experiments performed at the Ultrasonics Laboratory, this ‘stitching’ method was 

not required, probably due to changes made to the Lecoeur system since the fabrication of the 

version used at the Institut Langevin. Improvements that apply here are a wider range of 

amplitudes that can be recorded, and better onboard averaging capabilities to increase SNR at 

long times. 

 Frequency filtering 3.2.4.

For temporal and frequential analysis, data (both transmitted and reflected) were filtered in 

the frequency domain with a narrow Gaussian filter of the form 

  2

2exp cf f
w

 
 
  

, (3.4) 

where ݂௖  is the central frequency of the filter and ݓ  is the filter width. The Fourier-

transformed field is multiplied by the Gaussian filter, and the resulting product is inverse Fourier 
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transformed back into the time domain, and the envelope of the time-domain signal squared to 

obtain intensity. By performing these steps many times, changing the central frequency of the 

Gaussian filter, frequency- and time- dependent data are obtained. The frequency filter is applied 

before any other data processing is done (before the RS-MSF and CBS calculations, for 

backscattering measurements).  

 Ballistic Measurements 3.2.5.

3.2.5.1. Ballistic transport 

Wave propagation through a strongly scattering medium contains both coherent and 

incoherent contributions. The incoherent contribution arises from the interference of multiply 

scattered partial waves. The coherent signal, which we also refer to as the ballistic signal, is one 

which has propagated through the sample without scattering away from the forward direction, 

and thus maintains a definite phase relation to the incident pulse.  

Fundamental to the description of ballistic transport is the dispersion relation, which relates 

wavelength λ with frequency f. A medium is non-dispersive when the relationship between 

wavevector ݇ = ߱ and angular frequency ߣ/ߨ2 =  is linear. The velocity at which the ݂ߨ2

oscillation of waves travel is called the phase velocity, defined as ݒ௣ = ߱/݇, and is constant in a 

non-dispersive medium. In a dispersive medium the relationship between frequency and 

wavevector is not necessarily linear, so phase velocity is frequency-dependent. Wave pulses are 

then made up of components of different frequencies, each of which travels at its own phase 

velocity. These components interfere to produce a pulse, which is well-defined in time if the 

frequency range is narrow enough. The pulse envelope travels at the group velocity, defined 

mathematically as 
0

g
k

dv
dk


 .  
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Experimentally, both phase and group velocities may be determined using the general 

relation ݒ =  is the time that a wave takes to ݐis the sample thickness and Δ ܮ where ,ݐΔ/ܮ

travel through the sample. For group velocity, Δݐ௚௥௢௨௣ is the time required for the peak of the 

envelope of a pulse to propagate through the material. This means that experimentally, the 

frequency range needs to be narrow enough to have a well-defined pulse. To obtain frequency 

dependence, the pulse is filtered in frequency with a narrow bandwidth (10% of the central 

frequency of the input transducer). For phase velocity, Δݐ௣௛௔௦௘  is found by measuring the phase 

difference Δ߶  between the FFTs of the ballistically-transmitted pulse and an input pulse 

through water, using the relation Δݐ௣௛௔௦௘ = Δ߶/߱ = Δ߶/2݂ߨ (see, e.g., (Hu 2006)).  

The amplitude of a wave pulse is also affected by propagation through a dispersive 

medium. Due to both scattering and absorption losses, a wave pulse would be expected to decay 

exponentially as it travels through the sample. This loss of ballistic intensity is described by the 

parameter the extinction mean free path, ℓ௘. Both the scattering mean free path ℓ௦ and the 

absorption length ℓ௔ contribute to the extinction mean free path: 

 
( ) exp exp exp
(0) s a e

I x x x x
I

     
         

       
 (3.5) 

i.e. 

 1 1 1

e a s

 
  

 (3.6) 

For strongly scattering samples, scattering losses will dominate those from absorption, and thus 

the extinction mean free path may be often considered essentially equal to the scattering mean 
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free path15. Experimentally, ℓ௘ (and thus ℓ௦) may be found by measuring the total attenuation 

  of the wave pulse through the medium, since ℓ௘ =  .ߙ/1

In the following sections, wave transport parameters including ݒ௣ ௚ݒ , , and ℓ௦  are 

measured and results given. Calculations are based on the preceding explanations; further details 

may be found in the 1996 and 1997 works of Page et al.  

3.2.5.2. Measurement of the ballistic pulse 

Experiments with both plane-wave source and detector were carried out to measure the 

average transmitted field as a function of time. A disordered, strongly scattering medium will 

have ‘dark spots’ where very little signal may be coupled in or out. In contrast with the 

experiments presented earlier, here the goal is to measure the average field to be transmitted 

directly through the sample. Thus, a plane-wave source may be more effective than a point-

source, as it couples signal into the medium over a wider area. Similarly, a transducer measures 

the average field across its entire surface, so while it is not sensitive to small-scale fluctuations of 

transmitted wave fields, a wide, flat-face transducer is a good choice for the measurement of 

average transmitted field (not intensity). 

Transducers used were similar to those described in Section 3.2.2.1, but have a flat face to 

create an approximate plane-wave. For convenience, these transducers will be referred to as 

‘plane-wave transducers’ in this thesis. Since a plane-wave transducer emits ultrasound from 

many points on its face, the overall intensity varies along the beam due to interference between 

                                                

15 For example, for sample L1 we have at most ℓ௔ ∼ ௣τୟݒ ≈ (2.7 mm/μs)(200 ߤs) ∼
540 mm, where ߬௔ is the absorption time, measured as detailed in Section 3.2.5) and ݒ௣ is 
measured from the ballistic pulse (this result presented in Section 3.2.5.5). In contrast, ℓ௦ ∼ 1 
mm was estimated from the ballistic pulse. Thus, absorption is entirely negligible for the ballistic 
pulse, and ℓ௦ ≈ ℓ௘ is an excellent approximation for samples L1 and L2. 
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these emitted partial waves. The variations in the beam are substantial nearer to the source, in an 

area called the near-field of the beam. The zone beyond the near field where the beam is more 

uniform is called the far-field. The beam has the least fluctuations and the highest amplitude at 

the transition between near- and far-field, often called the natural focus of an unfocused 

transducer. In my experiments, the plane-wave transducer and the sample were separated by 

roughly the natural focus of the transducer. If need be, the separation distance may be larger and 

wider than the natural focus to produce a wider beam. 

I performed what I call a plane-wave experiment to measure the average transmitted 

wavefield through sample L1 for the frequency range 0.7 – 1.5 MHz. The goal of this experiment 

was to measure the ballistic pulse. Thus, long-time signals are of little importance, so the baffle 

and sample-holder ‘wings’ (discussed in Section 3.2.2.2.2) were not used. Both source and 

detector were plane-wave transducers with a central frequency of 1 MHz. The source transducer 

face had a diameter of 0.5” (1.27 cm), and was placed approximately 21.6 cm from the sample 

center. The detector had a face 1” (2.54 cm) in diameter, and was placed approximately 21.8 cm 

from the sample center. In both cases the sample-transducer distance was larger than the natural 

focus.  

For a medium in which multiple scattering dominates, the ballistic signal may not be 

visible over the scattered signal in any single transmitted waveform. However, the spatially-

averaged total wavefield may make the ballistic field measureable due to the phase sensitivity of 

ultrasonic transducers. The ballistic pulse maintains its phase coherence with the input signal, 

regardless of the exact arrangement of scatterers. In contrast, the scattered wave arrives at the 

detector with a phase shift that depends on the different possible paths through the sample from 

source to detector. By averaging together waves which are transmitted through different regions 
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of a disordered sample, the incoherent contributions cancel each other out, while the coherent 

contributions interfere constructively. For large-diameter transducers this is achieved 

experimentally by fixing the positions of the transmitting and receiving transducers, and 

translating the sample in a plane perpendicular to the sample surface. In this way, the transmitted 

field was measured over a grid of 31x31 points, separated by 5 mm, across the sample surface. 

To reduce electronic noise, the detected signal was averaged over many repetitions of the input 

waveform. The experimental configurations used are discussed in Section 3.2.5.4, below. 

3.2.5.3. Coherence criterion 

The dominance of strong scattering at some frequencies, which is exacerbated by the 

thickness of samples L1 and L2, make ballistic experiments especially challenging. It is not 

obvious whether the first signal to be transmitted is only ballistic, or whether it includes scattered 

signals which have not been completely cancelled by the various averaging techniques. Thus, a 

criterion was established (by Kurt Hildebrand and myself) to determine help with this 

determination. The quantity under consideration is the square of the average field divided by the 

average intensity:  

      2 2ˆ t t t    (3.7) 

This ratio is a statistical measure of the amount of fluctuations of the set of wavefunctions 

from the average. If all ߰(ݐ) are completely independent of each other, then ෠߰(ݐ) = 1/ܰ. If 

signals are completely coherent (all the same), then ෠߰(ݐ) = 1. In a practical sense, if our 

ballistic signal is mostly coherent, then we should expect ෠߰(ݐ) ≫ 1/ܰ over the range of times 

spanned by the ballistic pulse. In this context, intensity ߰ଶ(ݐ) was found by squaring the 

envelope of the waveform. 
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3.2.5.4. Extraction of the ballistic pulse 

Experiments to measure the ballistic pulse were carried out for the frequency range of 0.25 

– 1.5 MHz. This was done using two different input transducers centered at 500 kHz and 1 MHz. 

For lower frequencies below 750 kHz, where ߣ ≫ ܽ (ܽ is bead size), scattering is not very 

strong, and much of the initial detected signal is coherent. Thus, the ballistic signal could be 

extracted from existing transverse confinement data performed with a central frequency of 500 

kHz. This experiment used a point-source input and output: The ballistic pulse was found by 

averaging all transmitted wavefunctions for which source and detector were directly opposite 

each other (ρ = 0). The average transmitted wavefunction is shown in Figure 3.17. 

50 60 70 80 90 100 110 120

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

A
ve

ra
ge

 tr
an

sm
itt

ed
 fi

el
d 

(a
.u

.)

Time (s)

  Total average field
  Initial coherent signal
  Input pulse

 
Figure 3.17: Average transmitted wavefield through sample L1 (dotted line) 

(broadband frequency filtering around 500 kHz). Due to the time it takes to travel through 
the sample, the coherent part of the average field (red thick solid line) arrives much later 
than the input pulse (black thin solid line). 

To determine the range of time over which the transmitted pulse is coherent (i.e. to identify 

the ballistic signal), ෠߰(ݐ) was calculated. The result is shown in Figure 3.18. 
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Figure 3.18: Coherence criterion applied to average transmitted field through sample 

L1, from a transducer centered at 500 kHz, with no frequency filtering applied. 

The dashed line shows the theoretical value for ෠߰(ݐ)  if all detected waves were 

completely incoherent. It is clear between around 77-89 µs, the transmitted field is much more 

coherent than at any other time, and that during these times ෠߰(ݐ) ≫ 1/ܰ. There is some 

coherence in the noise before the signal begins, indicating that the noise is not purely random. 

Thus the coherence criterion, applied to the data shown in Figure 3.18, indicates the presence of 

a clear ballistic signal, and gives us an estimate of its extent in time. This ballistic pulse is 

highlighted in Figure 3.17 (solid line).  

The ballistic signal includes all frequencies in the bandwidth of the input pulse. However, 

not all frequencies contribute equally to this pulse. Near the band gap at 500 kHz, there may not 

even be any coherent propagation at all. Thus, we would like to apply the coherence criterion as 

a function of frequency, as well as time. To do this, we filter the transmitted wavefields in 

frequency as discussed in Section 3.2.4 with a width of ݓ = 0.1 MHz. By varying the central 

frequency of Gaussian frequency filter, ෠߰(ݐ) was calculated over a range of frequencies. Figure 
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3.19 shows that the coherent signal is largest around 250 kHz. However, ෠߰(ݐ) ≫ 1/ܰ for all 

frequencies between 200-550 kHz. Thus, we can have confidence that parameters measured 

using the ballistic pulse are reliable between around 200 kHz and 450 kHz.  
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Figure 3.19: Coherence criterion applied to average transmitted field through sample 

L1 (narrowband frequency filtering, 200 - 600 kHz). 

In the strong scattering regime where ߣ~ܽ, closer to 1 MHz, the ballistic signal was much 

more difficult to observe. I attempted to extract the ballistic pulse from existing measurements 

for calculating the dynamic transverse profile with a point-source and detector centered at 1 MHz 

(see Section 4.3.1.1), but this data failed the coherence criterion completely. Thus, a separate 

experiment with a plane-wave source and detector was performed to measure the ballistic pulse.  

The experimental setup and equipment are presented in Section 3.2.2. The transmitting and 

receiving transducers were fixed in place, and the sample was translated parallel to the 

transducers to enable a measurement of transmitted field through different parts of the sample. 

Transmitted waveforms were recorded over a grid of 10x10 points, separated by 5mm.  

The coherence criterion was applied to these plane-wave data. Without frequency filtering, 
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෠߰(ݐ) includes the entire bandwidth of the input pulse (0.7 – 1.5 MHz), and is shown in Figure 

3.20. An initial coherent signal may be observed between around 32 – 37 µs, although it is not 

more coherent than signals arriving later on in time. This may indicate a lack of sufficient 

averaging to completely cancel out scattered signals.  
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Figure 3.20: Coherence criterion applied to average transmitted field through sample 

L1 (broadband frequency filtering around 1 MHz). 

Figure 3.21 shows ෠߰(ݐ) with a narrow frequency filter (ݓ = 0.08) of varying central 

frequency applied. Only for 800-900 kHz is the initially-arriving pulse more coherent than the 

rest of the signal at later times. We thus only have confidence that transport parameters measured 

using this ballistic pulse are reliable between 800-900 kHz. However, it does seem as though the 

initially-arriving transmitted signal is at least somewhat coherent over a frequency range of 

around 750 kHz to 900 kHz. This lends additional support to the identification of the ballistic 

signal between 25 and 28 μs. The average transmitted signal is shown in Figure 3.22 (dotted line), 

with the initial coherent contribution highlighted (red thick solid line). 
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Figure 3.21: Coherence criterion applied to average transmitted field through sample 

L1 (narrowband frequency filtering, 750 kHz – 1 MHz). 

10 20 30 40 50 60
-0.18

-0.12

-0.06

0.00

0.06

0.12

0.18
  Total average field
  Initial coherent signal
  Input pulse

A
ve

ra
ge

 tr
an

sm
itt

ed
 fi

el
d 

(a
.u

.)

Time (s)  

Figure 3.22: Average transmitted wavefield through sample L1 (dotted line) 
(broadband frequency filtering around 1 MHz). Due to the time it takes to travel through 
the sample, the coherent part of the average field (red thick solid line) arrives much later 
than the input pulse (black thin solid line). This effect is more drastic than for the data 
taken at 500 kHz (Figure 3.17). 
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3.2.5.5. Results 

The thickness of sample L2 prohibits the use of many conventional methods of sample 

characterization which were employed to study L1, such as ballistic measurements. However, the 

samples were created with very similar techniques, so estimates of ݒ௣, ݒ௚, ℓ௦, and ݇ℓ௦ from 

coherent measurements on L1 can be expected to be good approximations for L2. By comparing 

the ballistic pulse to the reference pulse (taken without the sample in place) (this calculation 

described in Hefei Hu’s 2006 thesis), the following parameters were determined:  

At 250 kHz: 

Phase velocity vp = 3.4 mm/s  

Group velocity vg = 4.0 mm/s 

Wavelength = 14 mm  

Scattering mean free path, ℓ௦ = 1.8 mm 

݇ℓ௦ = 0.83 ≈ 0.8  

R = 0.68 (assuming vS = 0.5 ݒ௅) 

R = 0.75 (assuming vS = ݒ௅/√2) 

The calculation for the internal reflection coefficient R for multiply scattered waves has been 

summarized for acoustic waves by (Schriemer 1997) and for elastic waves by (Beck 1999). I 

used a program called ‘crbar.c’ (written by James Beck) to calculate ܴ . Inputs include 

longitudinal and shear velocities. To estimate shear velocity it is necessary to assume a model for 

the ratio of longitudinal and shear modes. I used the estimate ݒ௅/ݒ௦  = √2, which is the result of 

predictions from elasticity percolation near the percolation threshold (which we are not near). 

This ratio has been observed experimentally for porous glass sinter samples (Schriemer, Pachet, 

and Page 1996). 
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At 450 kHz: 

Phase velocity vp = 3.2 mm/s  

Group velocity vg = 3.0 mm/s 

Wavelength = 7.2 mm  

Scattering mean free path, ℓ௦ = 1.3 mm 

݇ℓ௦ = 1.10 ≈ 1.1  

R = 0.70 

Between 800-900 kHz (values are averaged over this range): 

Phase velocity vp = 2.78  2.8 mm/s  

Group velocity vg = 2.696  2.7 mm/s 

Wavelength  3.3 mm  

Scattering mean free path, ℓ௦ = 1.233 ≈ 1.2 mm  

݇ℓ௦ = 2.48 ≈ 3 (upper bound) 

R  0.67 

Complete frequency-dependent results for vp, vg, ℓ௦, and ݇ℓ௦ are shown in Figure 3.24 and 

Figure 3.24. The range of values which are most reliable, according to the coherence criterion, 

are highlighted (solid circles). 
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Figure 3.23: Estimates of velocity through sample L1 from ballistic measurements. 
Shown are vp (top) and vg (bottom). Solid circles indicate data which is most reliable 
according to the coherence criterion. 
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Figure 3.24: Estimates of transport parameters through sample L1 from ballistic 
measurements. Shown are: ℓ௦ (top), and ݇ℓ௦ (bottom). Solid circles indicate data which 
is most reliable according to the coherence criterion.  

The measurement of ݇ℓ௦ ∼ 1 − 4 indicate that ultrasound is strongly scattered in sample 

L1, over the frequency range of 0.25 MHz to 1.3 MHz.  
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 The transmission/reflection coefficient 3.2.6.

One of the first quantities that is usually evaluated for a new sample is the amplitude 

transmission coefficient ܶ(݂), defined as the ratio of the average FFT of the transmitted signal 

and that of the reference: 

 
 
 

( ) transmitted

reference

f
T f

f




  (3.8) 

In this thesis, the transmission coefficient is determined in the following way. The numerator of 

Equation (3.8) is found by calculating the configurationally-averaged on-axis transmitted 

intensity through the sample. The reference signal is the same quantity through water, measured 

simply by removing the sample and repeating the same measurement for one on-axis position.  

Figure 3.25 shows the spectrum of transmitted amplitude, ܶ(݂), through samples L1 and 

L2. These results were calculated using (on-axis) data from the experiments which were 

performed to measure the dynamic transverse intensity profile. With this method of measuring 

ܶ(݂) , not all the transmitted signal is measured, so the total transmitted amplitude is 

underestimated. However, the relative frequency dependence of the transmitted amplitude is the 

desired quantity here, which is accurately determined. Note that no correction has been made to 

account for reflections at the two interfaces. The amplitude transmission reflection coefficient 

ܴ(݂) is also shown in Figure 3.25. This quantity is calculated similarly to ܶ(݂), but the 

measurement of a reference is trickier. Probably the best approximation would be to employ a 

smooth reflecting surface similar to that of the sample component material (i.e. metal). Another 

possibility is to use the initial, specularly reflected signal (that which only interacted with the 

sample surface before being reflected). This second approach is used here, as a reference signal 

was not recorded at the time of the experiment. This approach probably overestimates the 
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amplitude of ܴ(݂) compared to ܶ(݂), but does show similar frequency dependence. 
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Figure 3.25: Amplitude transmission coefficient of ultrasound through samples L1 

and L2 as a function of frequency, and amplitude reflection coefficient ܴ(݂) from sample 
L1. ܶ(݂) was only measured for a limited range of frequencies for L2, but its frequency 
dependence is expected to be similar to that of L1. Inset: a close-up of ܶ(݂) around the 
1.2 MHz pseudo-gap. This is the frequency range that is closely studied to observe the 
Anderson localization regime. In the inset the left vertical axis represents the data from 
sample L1 (black line), and the right vertical axis represents the data from sample L2 (blue 
dash-dot line). 

In Figure 3.25 one can observe regions of high transmission, called pass-bands, which are 

due to the coupling of individual bead resonances (Turner, Chambers, and Weaver 1998; Lee 

2014; Hu et al. 2008). If the coupling is not too strong, there will also be regions of low 

transmission, called band gaps, which are due simply to the absence of pass bands. These gaps 

are not the same as the complete gaps observed in the transmission spectra of crystalline media, 

which are due to Bragg scattering. 
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: Furnace heating profiles Appendix 3A 

The following are the heating profiles that were programmed into the furnace. They consist 

of segments; each segment has a heating/cooling section at a certain rate (‘Rate’), up to a target 

temperate (‘Temp’), and then holds at that temperature for a time (‘Hold’). The actual 

temperature inside the furnace was recorded with thermocouple wires extending from the top and 

bottom of the sample inside the furnace to an external recording device. An example of the 

programmed and actual heating profile is shown in Figure 3A.1.  

 
Figure 3A.1: Heating profile used to braze sample L1. The temperature inside the 

furnace (dotted lines) matches the programmed profile (solid line) near peak temperature, 
where the brazing results are most sensitive to temperature changes. At around 4 hr the 
furnace stops heating. Just before 5 hr the door of the furnace was opened to hasten cooling. 

Sample L1 

Segment Rate (°C/hr) Temp (°C) Hold (min) 

1 350 600 15 
2 40 635 15 

3 20 650 15 
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Sample L2 

Segment Rate (°C/hr) Temp (°C) Hold (min) 
1 300 600 15 

2 40 635 15 

3 20 650 22 
 

Sample L3 (see Chapter 8 for more details on this sample) 

Segment Rate (°C/hr) Temp (°C) Hold (min) 
1 475 610 65 

 

Sample L3 is a highly polydisperse sample that is investigated in Chapter 8. This sample 

was made using the brazing technique described in Section 3.1.1.1. However, it was found that 

this technique was not reliable to produce samples such as L0. Unlike samples like L1 and L2, 

which could be reproduced consistently using the same heating profiles, the heating profile used 

to produce L3 failed to produce other similarly polydisperse samples. The reason for this is 

probably due to the high degree of polydispersity of L0. Due to differences in surface area, 

different sizes of beads likely require different ratios of Si:NOCOLOK:Al beads. The ratio used 

for L3 was the same as that used for L1 and L2 (1:2:400 by weight), which was optimized for 

4.11-mm diameter beads (Hu 2006). Subsequent difficulties in brazing small (1 and 2 mm) beads 

can almost certainly be solved by adjusting the coating based on bead surface area (Match 2015). 

Finally, note that the mold used for this sample had a flat, not dimpled surface. 

 

Cubic samples (see Chapter 7 for more details on these samples) 

Segment Rate (°C/hr) Temp (°C) Hold (min) 

1 350 610 90 
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4. Strong Diffusive Scattering 
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4.1. Introduction 

To investigate departures from diffusion, it is necessary to first identify the signatures of 

conventional diffusion. To this end, this chapter presents a study of conventional diffusion of 

ultrasound in the slab mesoglass L1. The absorption-independent techniques which are used to 

observe localization in Chapter 5, both in reflection and transmission, are introduced here in the 

context of conventional diffusion. In reflection, I demonstate experimentally the dynamic 

coherent backscattering effect from a strongly scattering 3D medium, in the diffuse regime. Data 

are compared to theory written by B. A. van Tiggelen in 2002 for CBS of diffuse classical waves 

in a 3D slab sample (van Tiggelen 2002). Fitting functions for this procedure were written by 

Matthew Hasselfield (Hasselfield 2003). I have adapted these functions to my own uses, written 

several more, and made several adjustments to both theory and fitting procedures. In this chapter 

I report a comparison of experiment to this theory. Such a comparison was performed once 

before (Hasselfield 2003), but was not published due to limitations in data quality. My analysis 

and results have obtained much better agreement and have extended the theory to more closely 

match the experimental setup.  

I support my results with transmission measurements of the same samples. Included in this 

chapter are results from fitting transmission data from my sample L1 with theory, in the diffuse 

regime. These are presented as both a verification of some measured parameters for my sample 

(like velocity and mean free path), and as a verification of the result for the diffusion coefficient 

 .஻ measured via the CBS effect in the diffuse regimeܦ
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4.2. Coherent backscattering in the diffuse regime 

The coherent backscattering (CBS) effect was introduced in Section 2.4, where it was 

shown that CBS occurs due to the constructive interference of waves travelling reciprocal paths 

inside the medium. For decades, the CBS effect has been used to measure characteristics of 

disordered media. For various types of diffuse waves and scattering media, the width of the static 

(time-integrated) CBS profile is commonly used to measure the transport mean free path, ℓ∗ 

(Tourin et al. 1997; Jonckheere et al. 2000; Wolf et al. 1988; Bayer and Niederdränk 1993). The 

dynamic (time-dependent) CBS profile can be used to give an experimental measure of the 

Boltzmann diffusion coefficient ܦ஻. At each time, the CBS profile typically has a rounded cone-

shape. In the diffusive regime, the width of the dynamic CBS profile (the half width at half 

maximum) evolves as Δିߠଶ(ݐ) ∝  From this we can understand that the cone becomes .ݐܦ

narrower as time increases. This is because higher orders of scattering, i.e. longer path lengths, 

contribute more to small angles of the CBS cone (Akkermans et al. 1988). As the waves spend 

more time in the medium, they make longer and longer path lengths, which contribute more and 

more to small angles of the backscattered intensity profile.       

The first experimental measurement of the dynamic CBS profile for acoustics was reported 

in 1997 by Tourin et al. for a 2D scattering medium (Tourin et al. 1997). Figure 4.1 shows how 

the diffusion coefficient was directly measured from the dynamic CBS profile, by plotting cone 

width vs time and fitting the results with a straight line. 
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Figure 4.1: Left: Dynamic albedo measured with acoustic pulses for one 
representative time. Right: Cone width versus time. Smooth lines show theoretical 
predictions for a 2D scattering medium. Used with permission (Tourin et al. 1997). 

Traditionally, the backscattered intensity profile has been assumed to have a Gaussian cone 

shape at every time, and one looks for the behaviour of the cone width in time (such as in the 

work of Tourin et al.). In 2D (in a far-field, plane-wave approximation), the half width at half 

maximum (HWHM) is expected to depend on time t as Δିߠଶ(ݐ) = ௧௞మ஽ಳ
୻

, where Γ is a factor 

that depends on the transducers’ directivity (Mamou 2005). As will be shown in this chapter, the 

expression is similar in 3D. It is therefore tempting to simply plot the experimentally-measured 

Δିߠଶ(ݐ) versus time, and fit a straight line to it. However, my CBS data in the diffuse regime 

show fluctuations despite a large amount of configurational averaging, which is perhaps not 

surprising considering the strong scattering nature of my samples. Deviations of the cone shape 

from exactly Gaussian at a certain time can only worsen fluctuations of Δ(ݐ)ߠ. Fitting the entire 

intensity profile with theory can, to a certain extent, compensate for fluctuations in time and in 

space. The calculation of the ିߠଶ(ݐ) depends on variables such as mean free path and velocity, 

so it is not much less difficult than calculating theory for the intensity profile. Thus, in this 

chapter, the dynamic CBS profiles are fit with theory for all space and time, simultaneously, to 
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obtain estimates of ܦ஻ and other parameters. 

 Theory for diffuse coherent backscattering in 3D 4.2.1.

Section 2.4.1 demonstrates how to calculate the dynamic CBS profile, in general (by 

expressing the vertices L and C as solutions to the time-dependent diffusion equation). This 

section applies this method to produce theory which corresponds to my specific experimental 

geometry. Presented is a scattering theory developed by B. A. van Tiggelen for acoustic CBS 

from a 3D medium in the diffusion regime, similar to that presented for 2D by Tourin et al. 

(Tourin et al. 1997; van Tiggelen 2002). Some steps in the following derivation are excluded for 

brevity, but all relevant assumptions and references are included.  

The geometry of the system is shown in Figure 4.2. The problem is assumed to be 

symmetric in ߶, so the detector is taken to be at (0, ,ߩ− −ܽ +  represent ݓ and ߩ where (ݓ

the difference in source-detector positions parallel and perpendicular to the slab surface, 

respectively. Ideally, in an experiment one attempts to have ݓ = 0, i.e. the array and sample 

surface as parallel as possible.  

The source, assumed to be monochromatic, emits: 

  
2 2

2 2

e
4

ik a R

in R
a R






 



 . (4.1) 

The first scattering event happens not exactly on the surface but somewhere inside the sample, 

after the extinction length ℓ௦ (the ‘skin layer’) (Sheng 2006). In the following calculations we 

will neglect any phase shift which might occur in the skin layer. Additional assumptions are that 

݇ܽ ≫ 1 and ܽ ≫ ℓ௦. 
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Figure 4.2 : Schematic for backscattering experimental geometry. Source S and 

detector D are separated in the z direction by a small distance w, which is exaggerated in 
this diagram for clarity. For a well-aligned experiment (see, for example, the discussion in 
Section 3.2.3.5), w should be near zero. Inside the sample the scattering is described by the 
coordinate system in the upper right. Vector ሬܴ⃑  is in the ݕݔ plane, parallel to the sample 
surface. 

For the basic form of the calculation we refer back to the basic CBS theory of Section 2.4.1. 

The general expression for intensity output from a scattering medium is Equation (2.30), 

reproduced here: 

            
2 * *

0 1 0 2 1 2 3 4 0 3 0 4 1 2 3 4, , ,s
c

R G r G r r r r r G r G r dr dr dr dr  
              (4.2) 

where propagation between the source and the sample is given by ܩ଴(⃑ݎଵ) = ,ܵ)଴ܩ ሬܴ⃑ ) and 

(ଶݎ⃑)଴ܩ = ,ܵ)଴ܩ ሬܴ⃑ ), and propagation between the sample and detector is given by ܩ଴(⃑ݎଷ) =

,ܦ)଴ܩ ሬܴ⃑ ) and ܩ଴(⃑ݎସ) = ,ܦ)଴ܩ ሬܴ⃑ ). The subscripts 1,2,3 and 4 refer to the various incoming and 
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outgoing waves, and can be understood by referring back to Figure 2.2.  

As discussed in Section 2.2.3.2, the reducible vertex Γ(⃑ݎଵ, ,ଶݎ⃑ ,ଷݎ⃑  ସ) describes all of theݎ⃑

scattering processes inside the medium between ⃑ݎଵ and ⃑ݎଷ, and between ⃑ݎଶ and ⃑ݎସ. Since we 

are considering the diffuse regime where the diffusion approximation holds, the approximation 

of ડ ≈ ۺ + ۻ۱  will be applied. Both L and ۱ۻ  are found using Equation (2.51), i.e. by 

solving the diffusion approximation for our particular experimental geometry. We therefore 

require the ‘3D ladder kernel’ ݎ⃑)ܨଵ,  ଷ), given by the solution to the diffusion equation forݎ⃑

energy density:  

    2,
,B

W r t
D W r t

t


 


 (4.3) 

in the region 0 < ݖ < ,ݎ)ܹ where ,ܮ  ஻ is the Boltzmannܦ is the local energy density, and (ݐ

diffusion coefficient. In 3D, ܦ஻ =  ா is the energy velocity (c.f. (Schriemer etݒ ாℓ∗/3, whereݒ

al. 1997)). The Green’s function for Eq. (4.3) is that introduced in Eq. 2.41; the energy density in 

an infinite medium from a point source of unit strength at ݐ = 0 at (ݔ, ,ݕ (ݖ = ,′ݔ) ,′ݕ  :(′ݖ

  
 

 22 4

3/2
1, , ,

8
Br z z D t

B

G x y z t e
D t

       (4.4) 

where ݎଶ = ݔ) − ᇱ)ଶݔ + ݕ) −  ,ᇱ)ଶ (Carlslaw and Jaeger 1995). For our experimental geometryݕ

the most appropriate solution would be that of a a slab–shaped medium with partial reflection of 

energy at the boundaries. The boundary conditions are therefore: 

 
0

0

0  ,    

0  ,    0

II z z L
z
II z z
z


  




  


 (4.5) 

with 
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 *refl
0

refl

12
3 1

Rz
R





  (4.6) 

where here ܴ୰ୣ୤୪ refers to the reflectivity of the sample. Physically, the extrapolation length ݖ଴ 

is the distance outside the sample where the intensity decreases to zero. This leads to an effective 

increase in sample thickness 

 eff 02L L z  . (4.7) 

To simplify the problem, we can now change from the case of partially reflecting boundaries at 

ݖ = 0 and ݖ = ݖ to that of non-reflecting boundaries at ܮ = ݖ ଴ and atݖ− = ܮ +  ଴. This isݖ

achieved with a linear extrapolation of conditions (4.5) to the interfaces, giving ܫ = 0 at 

ݖ = ݖ ଴ and atݖ− = ܮ +  ଴. The solution to equation (4.3) is then given by (Carlslaw andݖ

Jaeger 1995)  

 

     
2 2

2
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/4
1 2 1 2 0

3 1 2
1

2
, , , (const.) cos cos
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B
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 
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

      
             

 (4.8) 

 

Now that the propagator is known, the backscattered intensity will be calculated from 

Equation (4.2). Here, as is commonly done, the derivation will be performed separately for the 

incoherent and coherent contributions to backscattered intensity. 

4.2.1.1. Incoherent contribution to backscattered intensity 

For the incoherent intensity, using Equations (2.30) and (2.51), we have 

 
           

     

* *
0 1 0 2 1,2 3,4 1 3 0 3 0 4 1 2 3 4

2 2

0 1 1 3 0 3 1 3

, , , , ,

, , ,

incI R G r R G r R F r r G r R G r R dr dr dr dr

G r R F r r G r R dr dr

 






             

      
.

 (4.9) 

The Green’s functions in Equation (4.9) are the same as those in Equation (2.3). At this point 

two assumptions are made: that ݇ℓ௦ ≫ 1 (the Ioffe-Refel criterion for diffusion), and the 
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Fraunhofer approximation that ห ሬܴ⃑ − ଶหݎ⃑ → ∞. Then, the Green’s functions may be expanded as 

   
2 2

2

2 2

e, skin
4

s

zik a R

G S R z e
a R





 

   



  (4.10) 

with ߤ = cos ߶ = ܽ/√ܽଶ + ܴଶ (Akkermans and Montambaux 2007). To properly express the 

intensity drop due to propagation from the last point in the sample at, e.g., ( ሬܴ⃑ ଷ,  ଷ), to detectorݖ

D, the term in the denominator of Equation (4.10) will be expressed as 

  2 2 2

1
2 cosa R R    

 (4.11) 

when referring to propagation between sample and detector, instead of 1/(ܽଶ + ܴଶ) as is used 

when referring to propagation between source and sample. The task is now to substitute 

Equations (4.8) and (4.10) into the incoherent intensity of Equation (4.9). In cylindrical 

coordinates, this is 
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 
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  (4.12) 

where the propagator ܨଷ஽(⃑ݎ, ,ଶݖଵݖ  is defined in Equation (4.8). The z integrals in Equation (ݐ

(4.12) are the same as in the 2D theory given by Tourin (Tourin 1999) with some differences in 

the denominators. The final result, in cylindrical coordinates, is a 4D integral: 
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 (4.13) 

where the ܮ௠ terms are (Tourin 1999)  
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where ܽ௜ = 1/݈௦ߤ௜, ܾ =   and ,ܤ/݉ߨ
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.

 (4.15) 

4.2.1.2. Coherent contribution to backscattered intensity 

Referring back to Equation (4.2), the coherent contribution to backscattered intensity is, 

for the geometry of Figure 4.2, 

            * *
0 1 0 2 3,2 1,4 1 3 0 3 0 4 1 2 3 4, , , , ,cohI R G r R G r R F r r G r R G r R dr dr dr dr  

               . (4.16) 

The integration over z is the same as in the incoherent calculation, but the rest of the calculation 

can not be simplified like the incoherent part could. This makes intuitive sense; the incoherent 

contribution contains only ladder diagrams, whereas the coherent contribution contains scattering 

processes that can not be ‘unentangled’ from one another. The complex exponential factors in the 

Green’s functions (Equation (4.10)) cancel each other out in the incoherent intensity calculation, 

but not in the coherent case. Now we must explicitly write them out. We have 

ሬܴ⃑ ௜ = (ܴ௜ cos ߶௜ , ܴ௜ sin ߶௜ , 0), ܵ(0,0, −ܽ), and 0)ܦ, ,ߩ− −ܽ +  so the propagation between ,(ݓ

S and the first scatterer is 

    2 2
0 expi iG r ik a R  , (4.17) 

and between the last scatterer and D, 

       2 2 2 2
0 , exp sin cosi i i i iG r R ik a w R R       

 , (4.18) 

and similarly for ܩ଴(⃑ݎଷ) and ܩ଴(⃑ݎସ). The argument of the square root in (4.18) can be 
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simplified: 
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 (4.19) 

where ߤ௜ ≡ cos ௜ߠ = ܽ/ටܽଶ + ܴ௜
ଶ and ݏ௜ ≡ sin  ௜. In (4.19), terms have been neglected due toߠ

the approximations ݓ ≪ ඥܽଶ + ܴ௜ and ߩ ≪ ඥܽଶ + ܴ௜. The definitions of (4.17) and (4.18), 

and the simplification of (4.19), now introduce the following phase factor into the integral: 

      1 2 1 1 2 2exp exp sin sinik w ik s s      (4.20) 

The result for the integral for the coherent contribution to backscattered intensity is  
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 (4.21) 

where ݏ௜ = sin ௜ߠ = ට1 − ௜ߤ
ଶ.  

4.2.1.3. Diffuse far-field assumption 

At this point it is useful to introduce the diffuse far-field assumption to partially evaluate 

the integral. We will assume that backscattered phonons leave the sample at a point which is 

close to where they entered, i.e. 

 2 4 Ba D t   (4.22) 

It is important to consider carefully whether the data to be compared with theory obey this 
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assumption. In my experiments I collect relatively long times, up to ~315 ߤs. This is necessary 

since for my strongly scattering samples it is the long-time behaviour that is the most 

illuminating when disciminating between diffuse and non-diffuse behaviour. However, 

transmission measurements on the same sample L1 reveal that the diffusion coefficient ܦ஻ is 

quite small ( ܦ஻ < 1.5 mmଶ/ߤs) for the frequencies under consideration (shown in Chapter 4), 

so the approximation of Equation (4.22) holds in this case. 

 

Mathematically, we can assume that the dominant contributions to the integral are from 

points (ܴଵ, ߶ଵ) and (ܴଷ, ߶ଷ) separated by distances that are small compared to a. The second 

point ܴଷ can the be expanded as a first order displacement (Δݔ, Δݕ) from (ܴଵ, ߶ଵ) = ሬܴ⃑ . This 

is equivalent to a change of variables ൫ ሬܴ⃑ ଵ, ሬܴ⃑ ଷ൯ → ( ሬܴ⃑ , Δܴሬሬሬሬሬ⃑ ). The full simplification is given in 

Appendix 4A. The result, applied to Equation (4.21) is 
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 (4.23) 

where ܥ is a multiplicative factor.  

The shape of the CBS dynamic cone is determined by the dimensionless parameter 

when ܽଶ ,ܽ/ݐܦ√ߩ݇ ≫  has ߩ Thus, at each time the CBS intensity profile as a function of .ݐܦ

an almost Gaussian shape, with a width (݇ߩ)୊୛ୌ୑ that depends on (݇ߩ)୊୛ୌ୑ ∼ ܽଶ/ݐܦ. There 

is also some weak dependence on ߩ from the denominator. The coherent contribution to total 

intensity sits on a uniform incoherent background given by Equation (4.13), and is equal in 

magnitude to the background level when ߩ = 0.  
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This relation of Δିߠଶ(ݐ) ∝  is commonly-used in other systems as well, notably for ݐ஻ܦ

coherent backscattering in 2D (Mamou 2005; Tourin 1999). As discussed, Δିߠଶ(ݐ) plotted 

versus time can give an estimate of ܦ஻. Here I will use a similar technique, but will base my 

measurement of ܦ஻ on a fit of the entire backscattered intensity profile. 

4.2.1.4. Static CBS profile 

The static (time-integrated) CBS profile (introduced in Section 2.4) may be calculated by 

integrating Equation (4.26) over all time. This calculation is in principle also possible for my 

experimental data, but there are not enough late times available experimentally to be able to 

compare my experimental data with theory. As time progresses, long paths contribute more and 

more to the static profile, typically giving it a narrow, peaked look. In my experiments, I do not 

have access to enough times to even approximate a CBS profile that has been integrated over all 

time, especially since in my strongly-scattering samples, the CBS profiles are wide, and narrow 

very slowly compared to other media. In addition, the earliest times (before around 15 ߤs) are not 

very reliable for my experimental data due to specular reflections which are difficult to 

completely exclude from my experimental data, especially since the sample surfaces are not 

smooth. Any filtering in frequency will also affect the earliest time data, as discussed in Section 

3.2.4. Early times contribute the most to time-integrated intensity, and thus need to be measured 

very accurately for an accurate measure of the static CBS profile. 

 Corrections for experimental limitations 4.2.2.

As detailed in Sections 3.2.3 and 4.2.3, coherent backscattering from my slab samples is 

measured using ultrasonic arrays, which are placed in the far-field of the sample. For an accurate 
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comparison of theory with experimental data, I apply several corrections to the theory, based on 

my specific experimental geometry. The matlab code for these corrections was written by M. 

Hasselfield in 2003. 

4.2.2.1. Ultrasonic array directivity 

Individual transducer array elements are quite narrow, and so emitted waves experience a 

certain amount of spreading out like diffraction of light through a slit. To characterize this effect 

the transducer directivity can be measured, which is the directional dependence of transducer 

efficiency (emitted intensity as a function of angle).  

Directivity can be directly measured (e.g. with a laser interferometer), but when this data is 

not available, the ideal directivity provides a reasonable estimate (Mamou 2005). For a 

rectangular transducer of width W in 1D, field at angle ߠ varies in the far field as a sinc function 

of angle of incidence/emission (Hasselfield 2003): 

     sin0 sinc W   


   
 

 (4.24) 

The same expression can be used to correct for transducer height (ݕ-direction), so total angular 

sensitivity (in the far field) is 

      2 2, sinc sin / sinc sin /x y x yW H          (4.25) 

The directivity of the transducers is incorporated into theory calculations: 
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 (4.26) 

where  
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I use this ideal directivity approximation for my theory calculations, as experimentally-

measured transducer array directivity is not available. 

4.2.2.2. Large transducer height 

The transducer directivity correction included in Equation (4.26) is only concerned with 

width of individual transducer elements. The finite height of the elements means that signal is 

being collected over a larger area in space than is accounted for by the theory, which assumes 

point-sources and detectors. At the array surface, the size of the backscattered speckle is large 

enough that interference cancellation is not important16. Thus, an integration over backscattered 

intensity (instead of field) is sufficient to account for the influence of the finite height of the 

elements. An explicit integration of Equation (4.26) can be performed over all source points S 

on the emitting transducer and all detection points D on the receiving transducer: 

    
/2 /2

1 2
/2 /2

H H

corrected coh
H H

I R dy dy I R
 

  
 

 (4.28) 

where ܫ௖௢௛( ሬܴ⃑ ) is that from Equation (4.26). While this correction does not have a huge effect 

on the resulting theory (Hasselfield 2003), there is a small effect, so it is used for all theory 

presented in this thesis. 
                                                

16 Defining ܹ ≈ ඥܦ஻ݐ as the spatial extent of the wave spreading in the sample, in the 
diffusion approximation (see also Section 6.2), the individual speckle size at the array surface is 
∼ ܹ/ܽߣ ∼ 3 ∗ 182/√1.65 ∗ 350  = 22 mm (this ܦ஻ value taken from Section 4.4). This is 
larger than the array element height of 12 mm. 
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 Experiment and data processing 4.2.3.

An ultrasonic array was used to measure backscattered field from sample L1. The array 

had a central frequency of 1.6 MHz, and was positioned 182 mm from the sample surface. The 

experiments measure the response matrix (similar to the propagation matrix introduced 

conceptually in Section 2.3.2), which holds the responses between each emittor and detector. 

Once the response matrix has been acquired, the CBS profiles may be directly calculated from it 

by summing the intensity (envelope of the amplitude squared) over the same source-receiver 

separation. (This is equivalent to summing the diagonals of the intensity response matrix shown 

in Figure 6.3.) The final result is configurationally-averaged backscattered intensity as a function 

of angle between source and receiver, time, and frequency; ܫ(θ, ,ݐ ݂). The experimental details to 

obtain the response matrices are given in Section 3.2.3. Examples of resulting CBS profiles are 

shown in Figure 4.3. 

As will be shown in this chapter, wave transport is diffusive near 1.65 MHz. Nevertheless, 

there was a non-trivial recurrent scattering contribution to the data, This observation, and its 

significance, is discussed in Chapter 6. Here, the recurrent scattering contribution was removed 

from the total backscattered intensity to simplify the comparison with our diffusive theory. For 

details on this procedure see Chapter 6. 

 Fitting procedure 4.2.4.

To begin fitting theory to data, I calculate several sets of theoretical dynamic cones from 

Equation (4.28), varying parameters which are unknown or imprecisely-known such as ℓ∗ and 

R. I then compare each set of theory calculations to experimental data using nonlinear least 

squares fitting. This analysis is carried out using Matlab code, most of which was initially 

written by M. Hasselfield and subsequently adapted by me, and the rest of which was written by 
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me. Coherent and incoherent intensity contributions are normalized independently to achieve a 

more realistic fit. Each theory set contains a wide range of values of ܦ஻ݐ, and at each time index 

 from the theory set was determined (see ݐ஻ܦ ୶୮ୣ୰୧୫ୣ୬୲ in the data, the best fit value ofୣݐ

Section 5.5.1 for details). An example of such fits is shown in Figure 4.3, where data are shown 

for several different times, along with the best-fit result at each time for a certain theory set.  

The level of background intensity, although theoretically 0.5, was allowed to vary during 

the fitting. In reality, the background level deviates from 0.5 for times before around 100 ߤs. 

This is probably the result of challenges involved in the removal of the recurrent scattering 

contribution to background intensity. However, for the diffuse frequencies presented in this 

chapter the cones are narrow enough, and range of angles collected wide enough, that the 

background level can be fairly easily determined just by the shape of the cones. 
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Figure 4.3: Experimental CBS profiles (symbols) with fits from diffusion theory 

(lines) for several representative times: 22.5 μs, 52.5 μs, 102.5 μs, 152.5 μs, 202.5 μs, and 
227.5 μs. 

An overall value of ܦ஻ is determined either by taking the (weighted) average value of 

 and taking a ,ݐ values vs experimental ݐ஻ܦ ୶୮ୣ୰୧୫ୣ୬୲ or by plotting theoreticalୣݐ/୲୦ୣ୭୰୷ݐ஻ܦ

(weighted) linear fit. The linear fit option provides a graphical representation of the data where 
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deviations from linearity are immediately obvious to the eye, so I prefer this option. Figure 4.4 

shows ܦ஻ vs ୣݐ୶୮ୣ୰୧୫ୣ୬୲ with a weighted linear fit. Error bars are given by the value of ܦ஻ݐ 

needed to change reduced ߯ଶ (goodness of fit) by 1. More results from the fitting of CBS data 

with theory are presented and discussed in Section 4.4. 
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Figure 4.4: An example of the method used to determine the diffusion coefficient that 
best describes wave propagation at a particular frequency. Shown here are the ܦ஻ݐ values 
obtained from the best fit of the theory to the experimental CBS profiles (for 1.65 MHz) at 
each experimental time ୣݐ୶୮ୣ୰୧୫ୣ୬୲, plotted versus ୣݐ୶୮ୣ୰୧୫ୣ୬୲ (symbols). The dashed line 
is a weighted linear fit to the data. Notable parameters used to calculate this theory are 
ℓ௦ = 1.1 mm, ℓ∗ = 8 mm, and R = 0.75, giving a value of ܦ஻ = 0.72 ± 0.02 ݉݉ଶ/ߤs. 

4.3. Transmission 

The diffusion approximation (introduced in Section 2.2.4.1.4) is widely used to 

characterize multiple scattering media in transmission. Here I follow the methods of Page et al. 

to apply the diffusion approximation to strongly scattered ultrasound from a 3D medium (Page et 

al. 1995).  
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 The time-of-flight profile 4.3.1.

The configurationally-average transmitted intensity as a function of time is often called a 

time-of-flight (TOF) profile. To measure the TOF profile, a point source (or, a good 

approximation of one) is placed near the sample surface, and the transmitted intensity is 

measured on the other side of the sample with a point detector (see Section 3.2.2.3 for 

experimental details). The time-of-flight profiles are well-described by solutions to the diffusion 

equation for acoustic energy density in a slab of thickness L with infinite transverse extent, with 

appropriate boundary conditions (similarly to the propagation kernel for backscattered intensity 

profiles). This solution has been described in references (Page et al. 1995; Schriemer 1997) and 

will not be reproduced here. A fitting program in c has been developed (initially written by Art 

Bailey and subsequently modified by John H. Page and Hefei Hu) to perform non-linear least-

squares fitting of experimental TOF profiles with this theory. For more accurate results, I 

modified this program slightly to take into account experimentally measured uncertainties in 

transmitted intensity. Inputs to the fitting function are: group velocity ݒ௚, reflection coefficient R, 

(these are determined from ballistic experiments: see Section 3.2.5) the spatial width of the input 

pulse (to correct for the point-source assumption) ߪ (measured directly from the source map), 

and transport mean free path ℓ∗ . Parameters determined by the fitting function are ܦ஻ , 

absorption time ߬஺, and an arbitrary amplitude parameter. 

Of all the input parameters, ℓ∗ is the only one which is unknown. Thus, I performed 

fitting for a wide range of ℓ∗ values. As shown in the proceeding sections, the possible range of 

ℓ∗ can then be constrained to those values of ℓ∗ which gave reasonable fits.  

4.3.1.1. The dynamic transverse intensity profile 

The measurement of the dynamic transverse intensity profile was first developed by Page 
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et al. to study wave scattering in the diffuse regime (Page et al. 1995). This experimental 

technique measures the spreading of waves in slab-shaped samples, in the transmission geometry. 

The experimental setup is shown in Figure 4.5. The quasi-point source is kept stationary, and a 

subwavelength detector scans the opposite face of the sample in the near field. By translating the 

detector a distance ߩ parallel to the axis of the source, the transmitted intensity as a function of 

transverse distance from the source, ߩ, is measured. (Further experimental details are given in 

Section 3.2.2.) 

 

Figure 4.5: Diagram of the transverse confinement technique. Used with kind 
permission of Società Italiana di Fisica (Page 2011). Copyright (2011) by the Italian 
Physical Society. 

This off-axis transmitted intensity is decreased by exp(−ߩଶ/4ݐܦ) due to the fact that at 

each time, fewer paths contribute to the intensity measured at ߩ. By measuring the ratio of off-

axis/on-axis transmitted intensity a transverse width ݓఘ(ݐ) can be defined as 

      2 2, / 0, exp /I t I t w t       (4.29) 

Since all paths arriving at the same time have travelled the same distance in the sample, they are 

affected equally by absorption, so any absorption factor exp(−ݐ/߬஺) cancels out in Equation 

(4.29). Thus, this ratio is independent of absorption and is a direct measure of the spread of the 

energy outwards from the source. In the diffuse regime, the spatial profile is Gaussian, and the 
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transverse width is independent of ߩ. Then, ݓఘ
ଶ(ݐ) evolves linearly with time as 

  2 4 Bw t D t   (4.30) 

Thus, for purely diffusive wave transport, the measurement of ݓఘ
ଶ(ݐ) can yield a relatively 

simple measurement of ܦ஻ which does not depend on absorption or other any other parameters  

(Page et al. 1995). Here, this method is applied to my transmission measurements of L1. 

 

In my experiments, transmitted field was acquired at three off-axis distances: ߩ =

[15,20,25] mm. Many (typically 3025) source positions were acquired by translating the sample. 

For each source position, the detector was scanned in a cross-shape as shown in . This was done 

so that transmitted intensity could be averaged over the same ߩ  distance, for improved 

configurational averaging. 

 
Figure 4.6: Sketch of cross-shaped acquisition sequence carried out by the detection 

hydrophone for transverse confinement experiments. Shown are the 13 acquisition 
positions for one source position. There is one acquisition point for ߩ = 0 (red, centre), 
and 3 of each off-axis position (yellow, along the arms of the cross). 

After filtering in the frequency domain (section 3.2.4), data are averaged over all source 

positions to obtain intensity as a function of detector position and time: ߩ)ܫ,  The background .(ݐ

noise level is estimated by a linear fit of pretrigger intensity as a function of time, and this 

(constant) level was subtracted from the entire time-dependent intensity. Then, ߩ)ܫ,  taken at (ݐ

the same |ߩ| value were averaged together, and ݓఘ
ଶ(ݐ) calculated according to Equation (4.30). 
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For a demonstration of the use of TOF and ݓఘ(ݐ) to determine ܦ஻  in the diffusive 

regime, I report here results for transmitted intensity through sample L1 at 250 kHz. For such a 

low frequency, the wavelength in the sample is more than twice the mean scatterer size, 

( ௅ଵߣ ∼ 14  mm, bead diameter ≃ 3.9  mm), so localized behaviour is less likely. More 

importantly, 250 kHz is well below the lowest frequency pseudogap where localization effects 

are the least likely to appear. In addition, the relatively large wavelength means that ballistic 

propagation is relatively easily measured. Thus, parameters such as velocity and scattering mean 

free path were unambiguously determined, enabling straightforward fitting of TOF with diffusion 

theory. Interestingly, we measure a value of ݇ℓ௦ ≈ 0.8; such a low values indicates the presence 

of very strong scattering, and are below the oft-used criterion for localization of ݇ℓ௦ < 1. Since 

here I find that there is unequivocably no localized behaviour, this is an example of the need to 

be cautious when relying on this approximate criterion for localized behaviour.  

I have measured both TOF and transverse width ݓఘ(ݐ) from L1 using the technique 

described in this section. Data are filtered in frequency with a Gaussian filter centered at 250 

kHz, with a width of 35 kHz. Figure 4.7 shows ݓఘ
ଶ(ݐ). These data are independent of ρ, as 

expected in the diffuse regime. A linear fit (from 75 to 250 µs) of ݓఘ
ଶ(ݐ) for all ρ values gives 

an average diffusion coefficient of ܦ஻ = 1.516 ± 0.002 mmଶ/ߤs. The discrepancy at early 

times (before around 50 ߤs) is due to the effect of the finite-size frequency filter width 

(discussed in Section 3.2.4). On-axis transmitted intensity as a function of time is shown in 

Figure 4.8.  
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Figure 4.7:  Transverse width measured from sample L1, at 250 kHz, with 

experimental uncertainty. Frequency filter width is 35 kHz. Error bars represent the 
uncertainty in the configurational average. Only every 40th data point is shown for clarity. 
Data for ρ = 20 mm is fit with a straight line (dashed line), with the y-intercept at zero. The 
fitting was performed for data after 50 ߤs, because convolution with the finite width of the 
frequency filter distorts the data slightly at early times. An average over fits for all ρ values 
gives a measure of D = 1.516 ± 0.002 mmଶ/ߤs.  

By fitting with a range of ℓ∗ values we may estimate the most appropriate one. For 250 

kHz (frequency filter width = 35 kHz) the best fit (i.e. lowest chi-squared value) is obtained for 

ℓ∗ =  6  mm. The fit giving a diffusion coefficient that best agrees with the estimate of 

஻ܦ ≅ 1.51 mmଶ/ߤs from the ݓఘ
ଶ(ݐ) linear fit (within the nearest 0.01 mmଶ/ߤs) is ℓ∗ =  7.6 

mm. 

Thus, the transverse width and time-of-flight profiles may be used in conjunction to find 

 ஻ and ℓ∗ in the diffuse regime, even for very strong scattering. This method is only applicableܦ

when ݓఘ
ଶ(ݐ) is linear, which is an unambiguous signature of the diffuse regime. 
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Figure 4.8: TOF profiles for sample L1 (open circles) and fits with diffusion theory. 

The fit for ℓ∗ = 4 mm (green dash-dot line) is an example of an ℓ∗ value that is too low. 
Fits for ℓ∗ = 6 – 8 mm overlap almost completely; shown is the fit for ℓ∗ = 6 (blue solid 
line). These fits (ℓ∗ = 6 – 8 mm) give diffusion coefficients of ܦ஻ = 1.44 – 1.80 mmଶ/ߤs. 
The fit for ℓ∗ = 12 mm (red dashed line) also looks good, but returns a higher ߯ଶ value 
than the ℓ∗ = 6 − 8 mm fits. For data and fits shown here, ݐ = 0 is defined as the time at 
which diffusion begins inside the medium. 
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4.4. Results for backscattering and transmission at 1.65 MHz 

I have measured backscattering and transmission through sample L1 at 1.65 MHz. This 

frequency was chosen because, out of the range of frequencies at which I have data for both 

backscattering and transmission for sample L1 (around 0.75 – 2.5 MHz) the data appear 

qualitatively to be diffusive. At this frequency, scattering is very strong (we estimate ݇ℓ௦ ≈ 3). 

In contrast to ݂ =  ,s, here there is no observable ballistic propagation through the sampleߤ 250

implying even stronger scattering (there may also be absorption losses, but as discussed, these 

are expected to be dominated by scattering losses). Thus, parameters measured from ballistic 

experiments (i.e. R and ℓ௦) are less certain at 1.65 MHz than they are at 250 kHz. 

The transverse width is shown in Figure 4.9. Data are independent of ρ, as expected in the 

diffuse regime. However, ݓఘ(ݐ) does not cross through (0,0). This behaviour has been observed 

for other frequencies and for other samples, often nearer to strong scattering regimes, and I am 

not sure what the cause is. A linear fit (from 50 to 350 µs) of ݓఘ
ଶ(ݐ) for all ρ values gives an 

average diffusion coefficient of ܦ஻ = 0.706 ± 0.002  mmଶ/ߤ s. This fit (the diffusion 

approximation prediction) describes the data well; allowing the linear fit to have a y-offset only 

changes this value to ܦ஻ = 0.71 ± 0.01 mmଶ/ߤs (slightly increased because the offset is 

actually slightly negative for two of the ߩ values).  
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Figure 4.9: Transverse width measured from sample L1, at 1.65 MHz, with 

experimental uncertainty. Frequency filter width is 35 kHz. Error bars represent the 
uncertainty in the configurational average. Only every 150th data point is shown for clarity. 
Data is fit with a straight line, with the y-intercept either held at zero (black solid line) or 
allowed to vary (not shown as the fit result overlaps almost completely with the black solid 
line). For fits through ݕ = 0, an average over all ρ values gives an estimate of ܦ஻ =
0.706 ± 0.002 mmଶ/ߤs. 

Experimental time-of-flight profiles at 1.65 MHz are shown with several theoretical fits in 

Figure 4.10. Clearly, changing the transport mean free path impacts the best fit value of ܦ஻. In 

fact, this is the parameter that has the most impact on ܦ஻; for instance, changing R to 0.45 and 

keeping all other parameters constant only changes ܦ஻  by 0.005 mmଶ/ߤ s. A similar 

observation was made by Page et al. (Page et al. 1995). From the above plots it looks as though 

the best fits are for ℓ∗ ∼ 4 mm and ܦ஻ ∼ 1.3 mmଶ/ߤs. However, this is contradicted by the 

results from the ݓఘ(ݐ), which gives an estimate of ܦ ∼ 0.7 mmଶ/ߤs. A reasonable choice for 

final parameters from both TOF and ݓఘ
ଶ(ݐ) fitting is ℓ∗ = 8 mm and R = 0.75, which gives 

஻ܦ = 0.805 ± 0.004 mmଶ/ߤs and ߬஺ = 133 ±   .sߤ 2
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Figure 4.10: TOF profiles for sample L1 (open circles) and fits with diffusion theory. 

Plots are shown with intensity on a logarithmic scale to illuminate the long-time behaviour 
(top) and a linear scale to highlight early-time behaviour (bottom) The fit for ℓ∗ = 1 mm 
(green dash-dot line) is an example of an ℓ∗ value that is too low. The fit for ℓ∗ = 10 mm 
(black dashed line) is an example of an ℓ∗ value that is probably too high. Fits for ℓ∗ = 4 
– 8 mm overlap almost completely. These fits (ℓ∗ = 4 – 8 mm) give diffusion coefficients 
of ܦ஻ = 0.8 – 1.3 mmଶ/ߤs. Here, ݐ = 0 is the time at which diffusion starts. 



126 

 

In backscattering, changing the value of R also does not make much difference; over a 

range of R = 0.65 – 0.85 with all other parameters constant, ܦ஻  only changes by ∼ 0.1 

mmଶ/ߤs. In fact, the best-fit value of ܦ஻ at 1.65 MHz was found not to depend as much on 

most input parameters such as velocity or mean free path, ranging from around 0.65 – 0.75 

mmଶ/ߤs over a wide range of ℓ௦, ℓ∗, and R values. For example, choosing ℓ௦ = 1.1 mm, ℓ∗ 

= 8 mm, and R = 0.75 gave a best-fit value of ܦ஻ = 0.72 ± 0.02 mmଶ/ߤs. Changing ℓ∗ to 4 

or 10 mm gives ܦ஻ = 0.72 ± 0.02 mmଶ/ߤs or ܦ஻ = 0.73 ± 0.02 mmଶ/ߤs, respectively. 

Thus, even with the uncertainty related to measuring ܴ and ℓ∗, I can state that backscattering 

measurements give ܦ஻ = 0.7 ± 0.2 mmଶ/ߤs. This value agrees within error with the linear fit 

of ݓఘ
ଶ(ݐ), but not with the result from the TOF fitting. 

It seems that we could use this result to narrow down the ‘real’ value of ℓ∗. Since we are 

reasonably sure of our measurement of ܦ஻ = 0.7 ± 0.1 mmଶ/ߤs from both the CBS and 

 .஻ܦ fitting, we could choose a fit result for the TOF curves that gives a similar value of (ݐ)ఘݓ

For the 1.65 MHz data presented here this would give a result of ℓ∗ ∼ 9 ± 2 mm.  

4.5. Conclusion 

I have observed conventional diffusion of ultrasound in sample L1 at 250 kHz and likely at 

1.65 MHz. Using both transmission and backscattering measurements, I have measured 

஻ܦ = 0.7 ± 0.2 mmଶ/ߤs at 250 kHz. The theory presented for CBS from a 3D medium in the 

diffuse regime was shown to describe the experimental data very well, and gave results which 

are consistent with results from the established methods of measuring D in transmission. This 

constitutes the first experimental verification of this theory.  

Some ambiguities in the analysis at 1.65 MHz remain, both in reflection and transmission. 
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Slightly subdiffusive behaviour may be complicating the comparison of experiment and theory in 

transmission, i.e., at later times, the diffusion coefficient may be becoming slightly renormalized 

from its initial value ܦ஻. This hypothesis is supported by the observation of recurrent scattering 

at 1.65 MHz, even though we have established that wave behaviour is mostly diffusive at this 

frequency (this is discussed in Chapter 4).  

Appendix 4A : Diffuse far-field simplification 

This section contains details of how the diffuse far-field approximation simplifies Equation 

(4.21), which is reproduced here: 
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The exponential containing the ሬܴ⃑  dependence rapidly kills off all contributions for which 

൫ ሬܴ⃑ ଵ − ሬܴ⃑ ଶ൯ > ≫ which is the size of the diffuse halo. If this size is ,ݐܦ4√ ܽ (the diffuse far-field 

approximation), then ටܽଶ + ܴ௜
ଶ does not vary much. Thus, we can write 
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 (4A.1) 

The phase factor of (4.20) can be expanded to first order as: 
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So the Equation (4A.1) becomes 
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with  
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Inserting Δ ሬܴ⃑ = (ܴ cos ߶ , ܴ sin ߶), we have 
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where ܬ଴ is a Bessel function of the first kind. For brevity […] refers to the additional factors 
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accomplished via the Bessel function integral identity (Gradshteyn and Ryzhik 2000) 
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The factor ܣଶ +  ଶ is quite complicated. Expanding, it becomesܤ
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In experimental situations, great efforts are made to have detection parallel to the sample face, 

thus setting ݓ = 0. Applying this to (4A.8) gives  22 2 4 2 2sin 1 2sink s s       , and 

thus (4A.4) becomes Equation (4.23), reproduced here: 
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where ܥ is a multiplicative factor. 
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5. The Anderson Mobility Gap 
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5.1. Introduction 

The concept of Anderson localization (introduced briefly in Section 2.5 of this thesis) was 

first proposed by Philip Anderson in 1958 (Anderson 1958). The system that was described 

involved a lattice on which electrons could hop from site to site. The energies of the sites have a 

disordered distribution, and for strong enough disorder, the electron eigenstates become localized 

in space, in that the envelope of the wavefunction decays exponentially in space. Equivalently, 

one can fix the disorder strength and vary the energy of the electrons. Particles in states with low 

energy are expected to be localized, whereas those with high enough energy (for 3D, and for not 

too strong disorder) can remain delocalized. There is thus some critical energy, also called the 

mobility edge, at which there is a transition between localized and delocalized states (Wölfle and 

Vollhardt 2010). For 3D quantum systems (in the orthogonal universality class8), there is only 

one such critical energy, above/below which the system is localized/delocalized. 

In contrast, localization of classical waves in 3D is only expected to occur in some 

intermediate band of energy (or frequency). This is because localization is an extreme case of 

strong scattering, and for classical waves, the strength of scattering depends mainly on the 

frequency of the waves and the structure of the medium. At low frequencies where the 

wavelength is large compared to the scatterer size, the frequency dependence of Rayleigh 

scattering means that scattering is weak (݇ℓ௦ ≫ 1 ), so localization is unlikely. At high 

frequencies where wavelength is small compared with scatterer size or separation, the weak 

scattering condition is again reached, and localization is also unlikely. Strong scattering, and 

hence the possibility of localization, only occurs at intermediate frequencies somewhere in 

between. Thus, the localization regime for classical waves is expected to be bounded by two 

mobility edges (MEs), with conventional diffusion occurring both below the lower ME and 
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above the upper ME. To date, previous works with classical waves in 3D have only ever been 

able to detect at most one mobility edge, due to substantial experimental challenges (Hu et al. 

2008; Hildebrand et al. 2014; Hildebrand 2015). 

In this chapter, I present the first experimental measurements to span an entire Anderson 

localization regime for classical waves, including the two mobility edges on either side of it; we 

term this regime a mobility gap. These observations were accomplished through the comparison 

of a large amount of experimental data with predictions from the local self-consistent (SC) 

theory of localization. I used both transmission and backscattering measurements to measure the 

localization length ߦ all the way through the mobility gap, thereby determining the location of 

the two accompanying mobility edges on either side of it. The use of the dynamic CBS effect to 

study localization is completely novel, and suggests a path towards a measurement of the critical 

exponent governing the Anderson transition.  

 The experimental search for localization of classical waves in 3D 5.1.1.

The first experimental investigations of localization of classical waves in 3D used light 

waves. These measurements focussed on the static (time-integrated) CBS profile (Wiersma et al. 

1997; Schuurmans et al. 1999). However, in stationary experiments it is notoriously difficult to 

exclude absorption, which can mimic (or even obscure) the effects of localization. For this reason, 

measurements which are both spatially and time-resolved have become increasingly popular to 

search for signatures of localization, as absorption-independent quantities may be calculated 

(Weaver and Lobkis 2000; Chabanov, Stoytchev, and Genack 2000).  

My experimental methods enable measurements that are resolved in space, time, and 

frequency. These measurements are: the dynamic CBS effect in reflection, and the dynamic 

transverse intensity profile in transmission, which were both introduced in the context of 
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conventional diffusion in Chapter 4. Both of these techniques measure the spreading of wave 

energy in the transverse direction in the sample (parallel to the slab face). In transmission, this 

spreading is directly measured via the dynamic transverse intensity profile width ݓఘ
ଶ(ݐ). In the 

diffuse regime, the spatial intensity profile is Gaussian, so the transverse width depends on the 

Boltzmann diffusion coefficient ܦ஻  as ݓఘ
ଶ(ݐ) =  In the .(as introduced in Chapter 4) ݐ஻ܦ4

localization regime, the spreading of the wave pulse through the sample is hindered by 

interference effects, so ݓఘ
ଶ(ݐ) is expected to deviate from a linear dependence on time, 

eventually saturating to a constant value. This transverse confinement of wave energy has been 

observed by the group of Page et al. for localized ultrasound in monodisperse, slab-shaped 

samples (Hu et al. 2008). This technique was also employed in recent attempts to observe 

localization of light in 3D, but these measurements were severely limited by nonlinear effects, 

such as fluorescence, whose signatures mimic those of localization (Sperling et al. 2016)17. 

Similarly to ݓఘ
ଶ(ݐ), the dynamic coherent backscattering profile ߩ)ܫ,  is independent of (ݐ

absorption if at each time the intensity profiles are normalized to 1 (i.e. the ratio 0)ܫ, ,ߩ)ܫ/(ݐ  (ݐ

is measured). The shape of ߩ)ܫ,  not the amplitude, is the most sensitive to wave scattering ,(ݐ

processes inside the medium. The measurement of dynamic CBS is in fact directly related to 

ఘݓ
ଶ(ݐ); the width of the backscattering cone is the Fourier transform of the transmitted transverse 

                                                

17 Note that, in acoustics, fluorescence does not exist. I do not anticipate that other nonlinear 
effects will affect my data. In reflection, the input intensity is very low (conversely to the optics 
experiments by Sperling et al.), especially taking into account the source-sample distance and the 
wave spreading due to diffraction. In transmission, the input intensity is higher, but we have not 
seen evidence of nonlinearity for brazed samples or for granular samples where nonlinearities 
should be higher. 
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width18; Δିߠଶ(ݐ) ∝  increase with time, indicating a (ݐ)ଶିߠand Δ (ݐ)ఘݓ ଶ. Thus, both(ݐ)ݓ

spreading of the transverse confinement profile in transmission and a narrowing of the CBS 

profile in backscattering. From this we can intuit that in the localization regime, the behaviour of 

Δିߠଶ(ݐ) should deviate from a linear increase just as that of ݓఘ
ଶ(ݐ) does. It could be expected 

that near localization, Δିߠଶ(ݐ) should increase more slowly, possibly saturating at long times. 

In this thesis the first observation of such behaviour is reported and confirmed with theory.  

5.1.1.1. Potential localization regimes in my mesoglass samples 

The ballistic measurements and amplitude transmission coefficient, presented in Sections 

3.2.5 and 3.2.6, are valuable for making a preliminary estimate of where (at which frequencies) 

we might observe conventional diffusion, versus where we might observe Anderson localization. 

By comparing these results with theoretical predictions and previous measurements of 

localization, we can decide on the frequency range at which to concentrate subsequent analysis. 

In Section 3.1.1.2, it was observed that L1 and L2 are polydisperse, helping to randomize 

the bead positions. Importantly, the polydispersity also lessens the depth and width of the band 

gaps (shown in Figure 3.25) compared to monodisperse samples. It is probable that a higher 

degree of brazing in L1 and L2 also contributes to this effect. Thus in the transmission gaps of 

L1 and L2, which we will call pseudo-gaps, transmission is lessened, but is not absent. At the 

lower edge of pseudo-gaps, the density of states is lower, and these frequencies are thus 

reasonable candidates to show Anderson localization effects (Lee 2014; van Tiggelen 1999). In 
                                                

18 The diffuse halo profile in transmission is exp (−ߩଶ/ݓଶ). In reflection, in the far-field  
approximation ( ߠ ≈ ݇/ୄݍ ), the width of the (Gaussian) diffuse halo in backscattering, 
exp (−ݍଶ/Δߠଶ) is related to ݓ  as Δିߠଶ = ݇ଶݓଶ/4. In the diffuse regime, ݓଶ = ݐܦ4 , so 
Δିߠଶ = kଶݓଶ/4 = ݇ଶ(4ݐܦ)/4 = ݇ଶݐܦ. This makes sense, since the full width at half maximum 
(FWHM) of the CBS profile is FWHM ∝  the proportionality factor must be calculated) ݐܦ√݇/1
from Equation (4.23)). 
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previously-studied monodisperse samples where localization was observed, signals were too low 

in the middle of band gaps to be able to observe the complete localization regime and the 

expected upper mobility edge; the polydispersity of L1 and L2 is expected to improve 

transmission all the way through the pseudo-gaps. 

 

By varying frequency, the ‘disorder’ of the system is varied; this is how we access both 

diffuse and localized regimes. In this thesis, the gap around 1.2 MHz was studied in order to 

observe the Anderson localization regime and its accompanying mobility edges. Although this 

(and any other) gap may correspond to an Anderson mobility gap, this can not be stated with any 

certainty without detailed measurements and comparison to theory. 

5.2. The local self-consistent theory of localization 

As introduced in Section 2.5.2, the principal idea of the self-consistent (SC) theory of 

Anderson localization is that the diffusion coefficient becomes renormalized over time by 

successive scattering events in a disordered medium. In 2000, van Tiggelen et al. extended this 

analysis to finite, open media by introducing a position-dependent diffusion coefficient (van 

Tiggelen, Lagendijk, and Wiersma 2000; Skipetrov and van Tiggelen 2006). In this local SC 

theory the diffusion coefficient is now renormalized by leakage at the sample boundaries, as well 

as by multiple scattering events. The position-dependence of D was later justified using 

diagrammatic perturbation theory (Cherroret, Skipetrov, and van Tiggelen 2010). In 2008, the 

local SC theory was compared to experimental measurements of ultrasound transmitted through 

slab-shaped samples to observe Anderson localization in 3D (Hu et al. 2008). Its application to 

this specific case has been since refined by myself and others at the Ultrasonics Laboratory 

(Cobus, Skipetrov, et al. submitted.; Hildebrand 2015). In this thesis, predictions of the local SC 
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theory are compared to experimental data of both transmitted and reflected ultrasound. This 

constitutes the first comparison of the local SC theory with experimental data in reflection from a 

3D sample.  

 Outline of local SC theory calculations 5.2.1.

The calculation of both transmitted and reflected classical waves from a slab sample is 

based on the self-consistent equations for the intensity Green’s function 

      *
0 0

4, , , , / 2 , , / 2C r r G r r G r r
c
              (5.1) 

and the frequency- and position-dependent diffusion coefficient 
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where ܦ஻ and ℓ஻
∗  are the (Boltzmann) diffusion coefficient and the transport mean free path 

that would be observed in the system for conventional diffusion (in the absence of localization 

effects). The theory is generalized to the case of anisotropic scattering, i.e. ℓ஻
∗ > ℓ. The 

scattering mean free path is denoted in this section as simply ℓ, for brevity.  

,ݎ⃑)ܥ ,ݎ⃑ Ω) represents the return probability; the probability for a wave to return to a spot ⃑ݎ 

that it has previously visited. Now constructive interference from recurrent scattering is being 

taken into account, unlike in the ડ ≈ ۺ +  approximation typically used to describe coherent ۻ۱

backscattering. 

On length scales larger than one transport mean free path, ݎ⃑)ܥ, ,ݎ⃑ Ω) is a solution to the 

stationary diffusion equation  

      , , ,r ri D r C r r r r           
      . (5.3) 

In Equations (5.2) and (5.3), ݎ⃑)ܥ, ,ݎ⃑ Ω) must be the same, and thus one looks for a ‘self-
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consistent’ solution for ݎ⃑)ܥ, ,ݎ⃑ Ω) (Götze 1979; Vollhardt and Wölfle 1980b; Vollhardt and 

Wölfle 1992).  

We define the mobility edge (ME) in terms of the Ioffe-Regel criterion (discussed in 

Section 2.5.3); a ME is at the critical value ݇ℓ = (݇ℓ)௖ = 1. To define the localization length ߦ, 

we first consider an infinite 3D medium, where ܦ  is position-independent. This is most 

convenient in Fourier space: 

  
 

   3
3

1, , ,
2

iq r rC r r d qC q e


    
       (5.4) 

and, from Equation (5.3), 

     12,C q i q D


         (5.5) 

Since Equation (5.3) is only valid for length scales larger than a mean free path, the integral in 

Equation (5.4) must be similarly constrained. This is done by performing the integral in 

Equation (5.4) over the transverse component ⃑ୄݍ of the 3D momentum ⃑ݍ = ,ୄݍ⃑}  ௭} up to aݍ

maximum value of ୄݍ
max = ℓ஻/ߤ

∗ , with ߤ ∼ 1: 

  
 

 
 

 
max

2 3
0

1 1, , , , , ,
2 2

q

z zC r r C r r dq dq dq C q q
 



  


     
      (5.6) 

The value of ߤ is related to the position of the ME. We can see this by combining Equations 

(5.2), (5.4) and (5.5) and calculating the diffusion coefficient: 

  
 2*

30 1B

B

D D
k

 
  
 
 

 (5.7) 
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Thus at the ME ݇ℓ = (݇ℓ)௖ = ߤ ,1 = ଵ
ଷ

(ℓ஻
∗ /ℓ)ଶ. When fitting data with theory, we do not 

know (݇ℓ)௖ a priori, so we will adjust (݇ℓ)௖ (as a fit parameter) to obtain the best fit to the 

data having ߤ = ଵ
ଷ

(݇ℓ)௖
ଶ(ℓ஻

∗ /ℓ)ଶ. 

To define the localization length ߦ, Equations (5.1) and (5.2) can be solved for a point 

source at ⃑ݎ′ = 0 and ݐᇱ = 0, in the long-time limit where ܦ(Ω) = −݅Ωߦଶ. In the localization 

regime ݇ℓ < (݇ℓ)௖, this gives 

 
 

2

2 * 4

6
1Bc

k



 
    

 


 (5.8) 

where ߯ ≡ ݇ℓ/(݇ℓ)௖. In our experiments, ݇, ℓ, and ℓ஻
∗  are determined before the main fitting 

procedure, (݇ℓ)௖ is determined from the fitting procedure itself, and Equation (5.8) provides a 

direct link between (݇ℓ)௖ and ߦ. Here we use ߦ as the main parameter to come out of the 

fitting of experimental data. In the diffuse regime ݇ℓ > (݇ℓ)௖, ߦ is negative, which does not 

have physical significance. In the diffuse regime, the absolute value of ߦ is the correlation 

length associated with intensity fluctuations in the sample. 

 

Subsequent calculations are performed explicitly for a finite system. For a disordered 3D 

slab of thickness ܮ confined between the planes ݖ = 0 and ݖ =  boundary conditions are ,ܮ

added to Equations (5.1) and (5.2): 

        0

,
ˆ, , , , 0

B

D r
C r r z n C r r

D


     


   
 (5.9) 

where ො݊ points inward, normal to the surface of the slab at a point ⃑ݎ on a surface, and the 

extrapolation length is the same as that introduced in the diffusion theory of Section 4.2.1; 

଴ݖ = (2/3)݈஻
∗ (1 + ܴ)/(1 − ܴ) . Equations (5.9) and (5.6) are then solved iteratively to 
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produce a result for ݖ)ܦ, Ω). Transmission and reflection coefficients ܶ(ୄݍ, Ω) and ܴ(ୄݍ, Ω) 

are then calculated from 

      *

0

, , , , ,B
z

R q D z C q z z
z 



     


  (5.10) 

and similarly for transmission.  

5.3. Comparison of experimental data with self-consistent theory 

To observe Anderson localization, experimental data in both transmission and 

backscattering geometries were acquired. Transverse confinement experiments were performed 

on samples L1 and L2, with a frequency range of around 700 – 1.3 MHz (see Section 3.2.2 for 

details). CBS experiments were performed on samples L1 and L2, over frequency ranges of 700 

– 1.3 MHz and 1.0 – 1.8 MHz, respectively (see Section 3.2.3 for details). Then, SC fitting of 

these data was performed for experimental frequencies around the 1.2 MHz pseudo-gap – this is 

a region which is a good candidate to show localization, and for which there exists both 

transmission and backscattering data. 

The main parameter we desire to measure via the fitting procedure is the localization 

(correlation) length ߦ. As mentioned in the previous section, we also do not know the position 

(frequency) of the mobility edge, so (݇ℓ)௖ is a free fit parameter which is adjusted to find the 

best fit value. We fix ݇ℓ, and at each frequency of the experimental data, the value of (݇ℓ)௖ is 

estimated from the resulting best fit. Then ߦ may be directly calculated from Equation (5.8). 

Here we will use ߦ as the main parameter to characterize how close the system is to a mobility 

edge: at a ME, ߦ diverges. 
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 SC theory for a very thick sample 5.3.1.

The thickness of sample L2 prohibits several methods which were employed to study L1, 

such as the characterization using ballistic measurements. This thickness also limits the amount 

of SC theory that may be calculated for sample L2. Since it calculates ݖ)ܦ, Ω) for every 

(0 ≤ ݖ ≤  the entire calculation takes more time for larger L. Sample L2 is so thick that to ,(ܮ

generate enough theory sets for good fitting results (for a large range of ߦ values) would be 

prohibitively time-consuming19. However, in the backscattering geometry, measurements are not 

as sensitive to the far side of the sample as they are in transmission. Near the localization regime, 

backscattered waves may spend a long time in a thick sample without reaching the far side. This 

means that for the range of times experimentally available in my experiments, the CBS effect is 

not sensitive to sample thickness. Thus, theory for backscattered waves from sample L1 may also 

be used for L2, for the range of times experimentally available. By extension, the critical and 

localized regimes may be studied in arbitrarily thick samples, which is useful for many 

applications in which transmission measurements are not possible. Thus, for this work, SC 

theory that was calculated for sample L1 was also used to fit sample L2, without any need for 

adjustment or modification of either theory or experiment. The fitting of CBS data with theory is 

performed completely separately for L1 and L2. 

 Fortran and matlab calculations 5.3.2.

Numerical solutions to local SC theory were written in Fortran by Sergey Skipetrov, and 

have since been modified by Lauren Hayward, Fabrice Lemoult, Kurt Hildebrand, and myself. 

                                                

19 Several SC calculations for sample L2 were performed, which each lasted almost one 
month. To fit data with SC theory a large set of calculations is required, a process which is 
unfeasible for sample L2. 
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The Fortran code performs the calculations outlined in Section 5.1.1, resulting in ܶ(ୄݍ, Ω) and 

,ୄݍ)ܴ Ω). Code has been written (originally in Mathematica by Segey Skipetrov, translated into 

Matlab and modified by Fabrice Lemoult and myself) to transform these functions into the time-

domain (Fourier transform) and, in the case of transmission, into the near-field (Laplace 

transform), giving intensity ݐ)்ܫ/߬ௗ, (ߩ , where ߩ  denotes position on the sample face 

(perpendicular to the source axis). In reflection no Laplace transform is needed since the 

experiments are in the far-field, so the result ܫோ(ݐ/߬ௗ,  ,can be directly calculated; in reflection (ߠ

sin ߠ = ଴, where ݇଴݇/ୄݍ = ଴ݒ ଴ andݒ/݂ߨ2 ≈ 1500 m/s is the speed of sound in water. The 

time-dependence of the theoretical predictions for intensity is scaled by the diffusion time, ߬஽. 

The most important parameter involved in calculating SC predictions near the Anderson 

transition is the localization (correlation) length ߦ. The calculations are performed over a wide 

range of ߦ values, and then compared to experimental data to determine the best value of ߦ. To 

be able to distinguish between localized and diffuse regimes using ߦ, the SC theory calculations 

employ the parameter ߦ/ܮ, which from Equation (5.8) gives ߦ/ܮ < 0 in the diffuse regime. 

Fortran calculations of transmitted intensity were performed for the following values of L/ξ : {-

12, -10, -7, -6, -5, -4, -3, -2.75, -2.5, -2.25, -2, -1.75, -1.5, -1.25, -1, -0.75, -0.6, -0.5, -0.4, -0.3, -

0.2, -0.1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 4}. 

Calculations of reflected intensity were performed for many, but not all of these values20.  

Most remaining input parameters to the theory were determined by measurements of 

ballistic propagation through sample L1 (Section 3.2.5) and are therefore fixed in the fitting 
                                                

20 My modification of the Fortran code to output reflected intensity, as well as transmitted 
intensity, was not implemented until after many of the transmitted intensity calculations had 
already been completed. Each calculation takes on average around a week, running on the 
WestGrid computing cluster, with more localized theory taking much longer to finish. 



142 

 

procedure. These are summarized in Table 5.1. 

The transport mean free path, ℓ∗, cannot be determined from ballistic measurements, and 

must be “guessed” by the user. To determine the value of ℓ∗ in my system (L1), Fortran 

calculations were performed for values of ranging from 1.1 - 10 mm, and fit to a few 

representative frequencies of experimental data. Almost all of the best fits were for ℓ∗ = 4 mm 

or ℓ∗ = 3 mm. There did not appear to be a relationship between ℓ∗ and frequency, and for all 

frequencies the reduced chi-square values were slightly lower for the ℓ∗ = 4 mm theory sets. 

Frequency range (MHz) 1.17 – 1.25 

݇ℓ௦ 2.9 

ℓ௦ (mm) 1.1 

ℓ∗ (mm) 4 

L (mm) 25 

R (reflection coefficient) 0.67 

m (number of steps across sample thickness) 2001 

Number of ߙ values (ߙ is the Laplace transform of time) 800 

Number of u-values (number of points in spatial frequency domain) 800 

Table 5.1: Input parameters for SC Fortran calculations for sample L1. 

For example, at ݂ = 1.175 MHz, the best fit was for the theory set with ߦ/ܮ = −8 and 

ℓ∗ = 4  mm, giving a goodness-of-fit of ߯ଶ = 1.3. Other theory sets with ߦ/ܮ = −8  but 

different values of ℓ∗ gave goodness-of-fit values of ߯ଶ = 1.4 for ℓ∗ = 3 mm, ߯ଶ = 1.4 for 

ℓ∗ = 1.5 mm, and ߯ଶ = 1.7 for ℓ∗ = 6 mm. These values are all within one ߯ଶ of each other, 

and gave almost identical fits by eye. Thus, the transport mean free path was estimated to be 

ℓ∗ = 4 mm for the entire frequency range under consideration (1.17 MHz to 1.27 MHz). 
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 Self-consistent theory fitting procedure 5.3.3.

An extensive collection of code for loading, manipulating, fitting and viewing of theory 

and data was developed by me and Kurt Hildebrand. This code constitutes a major advance over 

the previous method used by Hu et al., where fits were performed by hand for each individual 

frequency and theory set (Hu et al. 2008). The new fitting procedure is automated to perform all  

fitting in one go, and incorporates improvements such as weighting fits with experimental 

uncertainty. All of this analysis was performed with Wavemetrics software IGOR Pro. 

The fitting of experimental data with SC theory was carried out completely separately for 

transmission (TC data/theory) and reflection (CBS data/theory). The fitting procedures are, 

however, very similar. For each frequency f of experimental data, the experimental data are 

compared to each theory set using a weighted non-linear least-squares fitting. This comparison is 

performed simultaneously over all times and positions. Best fit values are chosen based on the 

reduced chi-square, ߯௥௘ௗ
ଶ  (a goodness-of-fit measure). Thus, by finding the best theory set for 

each frequency, we measure ߦ/ܮ  as a function of frequency. This in turn enables the 

identification of the mobility edge, where ߦ/ܮ =   .(diverges ߦ) 0

5.3.3.1. Fitting transverse confinement data with SC theory 

Fitting transverse confinement data with SC theory is performed simultaneously over both 

,ߩ)ܫ ఘݓ and (ݐ
ଶ(ݐ) profiles for a certain experimental frequency, with all times and positions 

being fit at once. Some representative results for data from sample L1 are shown in Figure 5.1. 

Due to some known inaccuracies with the fortran calculation results, data for the very earliest 

times were not included in the fitting. Data for late times (after 400 ߤs), where echoes off of the 

emission transducer were visible in the averaged TOF profiles, were not included in the fits.  
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Figure 5.1: Transverse confinement results: solid lines are the best fits of our self-

consistent theory to experimental data (symbols), shown for three different frequencies: 
(a,b) 1.18 MHz (diffuse regime), (c,d) 1.20 MHz (mobility edge), (e,f) 1.22 MHz 
(localized regime). For clarity, only every 100 data points are shown. Uncertainties reflect 
the deviation from the average over configurational disorder. Left: Temporal evolution of 
transmitted intensity, for four different ρ values. Uncertainties are smaller than data points. 
Right: Temporal evolution of the transverse width squared, ݓఘ

ଶ(ݐ), for two different ρ 
values. Due to large thickness of our sample, the ݓఘ

ଶ(ݐ) traces show a greater overlap than 
previously reported for similar samples (Hu et al. 2008). The transverse width for ρ = 15 
mm has higher uncertainties, thus contributing less to the global fits. For clarity, it is not 
shown here, as it overlaps with the traces for other ρ values. 
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As illustrated in Figure 5.1, the behaviour of both ߩ)ܫ, ఘݓ and (ݐ
ଶ(ݐ) (symbols) is well-

described by SC theory predictions (lines). Excellent fits are obtained for all frequencies. Both 

theory and data show clear signatures of renormalized diffusion and localization. As the 

localization regime is approached (as frequency is increased from 1.18 MHz to 1.22 MHz), 

,ߩ)ܫ ఘݓ decays less rapidly and (ݐ
ଶ(ݐ) traces become less linear, approaching saturation at long 

times in the localization regime. This behaviour has been observed for ultrasound in similar 

samples (Hu et al. 2008; Hildebrand 2015). Even at 1.18 MHz, where waves are not localized, 

subdiffusive behaviour is evident in Figure 5.1, where ݓఘ
ଶ(ݐ) deviates from linearity at long 

times. 

The effect of frequency filtering of the data (see Section 3.2.4) has an effect on the early-

time behaviour of both ߩ)ܫ, ఘݓ and (ݐ
ଶ(ݐ); as can be seen in Figure 5.1, ݓఘ

ଶ(ݐ) does not 

approach zero at ݐ = 0. This effect is accounted for in our fitting procedure by the convolution 

of the theory curves with a pulse with width determined by the filter width. Free parameters in 

the transmission fitting were ߬஽ and absorption time ߬஺. Since ݓఘ
ଶ(ݐ) profiles are independent 

of absorption, ߬஺ is determined from the fits of ߩ)ܫ,  ,alone. Results, shown in Figure 5.2 (ݐ

demonstrate low absorption values for sample L1 over the frequency range of interest, which are 

similar to values found for similar monodisperse slab samples (Hu et al. 2008). 
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Figure 5.2: Absorption time ߬஺  of ultrasound in sample L1 as a function of 
frequency, determined from self-consistent theory fitting of TOF data. 

Although the L2 transmission data could not be fit with SC theory, it is possible to make a 

rough characterization of the behaviour of ݓఘ
ଶ(ݐ) by fitting these curves with a power law. At 

the mobility edge, this quantity has been predicted to obey a power law of the form ݓఘ
ଶ(ݐ) ∝

 ଴.ହ , for relatively short times, and to saturate in the long-time limit (Cherroret, Skipetrov, andݐ

van Tiggelen 2010). Figure 5.3 shows ݓఘ
ଶ(ݐ) from sample L2 at three representative frequencies. 

Dashed lines are power law fits to the data over the time range 100 – 600 ߤs  (weighted by the 

experimental uncertainty and averaged over results from both ߩ = 20 mm and ߩ = 25 mm). 

At 1.20 MHz, the data are described by a power law of the form ݐ଴.ସହ, which is consistent with 

this frequency being close to (probably slightly higher than) a mobility edge. 
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Figure 5.3: ݓఘ
ଶ(ݐ) profiles for sample L2 for (a) 1.18 MHz (diffuse regime); (b) 

1.20 MHz (mobility edge), and (c) 1.22 MHz (localized regime). Shown are experimental 
data (symbols) with power law fits, weighted by experimental uncertainties (dashed lines). 
Fit results (e.g. ݕ ∝  ଴.଺଴ for 1.18 MHz) have been averaged over the power law fits forݐ
both ߩ = 20 mm and ߩ = 25 mm; for clarity, only fits for ߩ = 20 mm are shown. 
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5.4. The Anderson mobility gap probed by coherent backscattering 

The inhibition of wave propagation due to localization effects severely limits the 

magnitude of the transmitted signals, motivating the development of techniques to observe 

localization in the reflection geometry. A promising tool for these types of measurements is the 

coherent backscattering (CBS) effect, which for decades has been used to measure transport 

parameters of disordered media in the diffuse regime. As has been experimentally observed for 

various types of diffuse waves and scattering media [11–14], the width of the static (time-

integrated) CBS profile is directly related to the transport mean free path, ℓ∗. The dynamic 

(time-dependent) CBS profile provides opportunities to measure additional quantities. As was 

shown in Chapter 4, for relatively weak scattering where the diffusion approximation is valid, 

comparison of the dynamic CBS profile with predictions from theory can directly yield 

quantities such as the Boltzmann diffusion coefficient ܦ஻.  

In the localization regime, the CBS effect has also been well-studied, but with less success. 

Some of the first experimental attempts to observe Anderson localization of classical waves in 

3D focused on measurements of the static CBS profile (Wiersma et al. 1997; Schuurmans et al. 

1999). However, in stationary experiments it is notoriously difficult to exclude absorption, which 

can mimic (or even obscure) the effects of localization. For this reason, measurements which are 

both spatially and time-resolved (such as transverse confinement) have become increasingly 

popular to search for signatures of localization. As well as offering the advantage of the 

reflection geometry (over transmission), dynamic CBS profiles have a shape which is 

independent of absorption (Weaver 1993; Chabanov, Stoytchev, and Genack 2000), and are thus 

useful in situations in which absorption is difficult to exclude. To my knowledge, no dynamic 

CBS profiles have yet been compared with theory for very strong scattering (i.e. beyond the 
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diffusion approximation). In this section, I present the first measurements of the dynamic CBS 

effect of elastic waves in the localization regime in thick 3D samples. Furthermore, I compare 

these data with SC theory to probe the Anderson mobility gap. 

 Experimental backscattering measurements  5.4.1.

The dynamic CBS effect from samples L1 and L2 was measured using ultrasonic arrays, as 

detailed in Section 3.2.3. Figure 5.4 shows the resulting CBS profiles as a function of time and 

source-detector angle. As observed in the diffuse regime, the dynamic CBS ‘cones’ become 

narrower as time evolves. For frequencies near the 1.2 MHz pseudo-gap, however, the cones 

narrow much less rapidly than they do for diffuse frequencies. Recall that in the diffuse regime, 

the width of the dynamic CBS profile evolves as Δିߠଶ(ݐ) ∼  ,For Anderson localization .ݐܦ

Δିߠଶ(ݐ) is expected to increase less rapidly and eventually saturate at long times (Skipetrov and 

van Tiggelen 2006). My experimental data from both samples L1 and L2 display this behaviour, 

as shown in Figure 5.4. The localization regime is represented by the data at frequency 1.22 MHz; 

this has been determined from the results of SC theory fitting to TC data (previous section) and 

to CBS data, presented later in this section.  
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Figure 5.4: Experimental dynamic CBS profiles as a function of both time and angle 

for samples L1 (a,c) and L2 (b,d). Results are shown in the diffuse regime (1.65 MHz for 
L1, 2.5 MHz for L2) (a,b) and in the localized regime (1.22 MHz) (c,d). The profiles 
narrow quite rapidly in the diffuse regime (a,b), but are almost constant (notwithstanding 
the fluctuations in (c), discussed in the text) over the accessible range of times in the 
localized regime (c,d). 

From Figure 5.4, it is clear that data for L1 in the localized regime display a large amount 

of fluctuations in both time and space. In the critical and localized regime fluctuations are to be 

expected, however, the fluctuations shown here cause the SC fitting of L1 CBS data to be more 

difficult than the same process for L2 data. The fluctuations are more extreme for L1 than for L2 

because a greater amount of averaging was performed for the backscattering experiment for L2. 

Twice as many array elements were available for the experiment on L2, resulting in increased 

spatial averaging. Despite the large fluctuations, however, the SC fitting of CBS data from L1 is 

robust (especially for frequencies below 1.23 MHz – see the following sections). This is because 

many points in time and space can be fit simultaneously, in contrast to transmission data which 
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only have four points in space, corresponding to the different ߩ values in the TC experiment.  

In order to fit the experimental CBS profiles with theory, the backscattering data presented 

in this thesis have had the recurrent scattering contribution removed from the total backscattered 

intensity. Chapter 6 of this thesis describes how, for very strong scattering, recurrent scattering 

processes increase the apparent background intensity level compared to the peak value. Theory 

predicts the background level to be exactly one half the peak value. For data near the localized 

regime (e.g. Figure 5.5 (a-c,e,f)), the profiles are very wide even at late times, so the range of 

angles experimentally available is not wide enough to show clearly where the background level 

is. Thus, the recurrent scattering contribution was removed (see Section 6.2.1.1 for more details). 

 Fitting dynamic CBS profiles with SC theory 5.4.2.

The SC theoretical predictions for ܫோ(ݐ/߬஽,  are valid in the far field. Our data are also (ߠ

valid in the far-field limit, defined for diffuse waves by the condition ܽଶ ≫  where ܽ is the ,ݐ஻ܦ

sample-array distance. In the diffuse regime for sample L1 (1.65 MHz), ܦ஻ = 0.7 ± 0.1 mmଶ/

 s, so the approximation is valid. This limit shouldߤ s, and the longest times recorded were 210ߤ

be even better obeyed in the localized regime where the diffuse halo spreads more slowly. 

All input parameters and calculation details for SC theory in backscattering are the same as 

they are for transmission, described in Section 5.3.2. Similarly to transverse confinement fitting, 

the fitting of CBS profiles with SC theory is performed simultaneously over all times and 

positions. For each frequency f, the 2D experimental matrix ߠ)ܫ, (ݐ  is compared to all 

theoretical matrices ߠ)ܫ, ஽). The fit with the lowest ߯௥௘ௗ߬/ݐ
ଶ  is chosen as the best for that 

frequency, giving a measurement of ߦ(݂).  

Figure 5.5 shows representative results of theory fits to CBS data for both L1 and L2.  
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Figure 5.5: Dynamic CBS profiles from samples L1 (top) and L2 (bottom) for three 

different frequencies: (a), (d) 1.18 MHz in the diffuse regime; (b), (e) near 1.20 MHz at a 
ME; and (c), (f) 1.22 MHz in the localization regime. For each plot three representative 
times are shown, illustrating the difference in the rate of profile narrowing between diffuse 
and localized regimes. Solid lines are best fits of the self-consistent theory to the data 
(symbols). 
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(Figure 5.5, cont’d) 
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Both the experimental and theoretical CBS profiles show a subtle difference in long-time 

behaviour between diffuse and localized regimes. Profiles shown in Figure 5.5 (a,d) exhibit the 

narrowing predicted by diffusion theory. As the localization regime is approached (1.18 MHz to 
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1.20 MHz, to 1.22 MHz), this narrowing slows. This slowing down is expected as the 

localization regime is approached because, as discussed previously, the inverse width squared of 

the CBS peak, Δିߠଶ, is proportional to the width of the diffuse halo, ݓ, at the surface of the 

sample. In the localization regime, the diffuse halo is confined to a space on the order of ߦ, and 

thus its growth in time eventually saturates upon reaching this limit. Therefore the corresponding 

Δିߠଶ also stops growing and saturates at long times. This behaviour is illustrated in Figure 5.6 

for both experimental data and theoretical fits.  
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Figure 5.6: The reciprocal of the square of the half width at half maximum of 

dynamic CBS profiles, Δିߠଶ(ݐ). Experimental results (symbols – error bars are smaller 
than symbols sizes) are shown with theoretical predictions of theory (lines) for three 
representative frequencies: ݂ = 1.65 MHz (diffuse regime, fit with theory for diffuse 
elastic waves, ܦ஻ = 0.7 ± 0.1 mm2/μs extracted from the fit (Section 4.4)), ݂ = 1.18 
MHz (subdiffusion, fit with SC theory), and ݂ = 1.22 MHz (Anderson localization, fit 
with SC theory). The inset shows theoretical predictions for longer times.  

The inset of Figure 5.6 also shows that the long-time behaviour at 1.18 MHz is subdiffuse; 

the diffusion coefficient exhibits a slow renormalization causing Δିߠଶ(ݐ) to deviate from 
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linearity. Since this behaviour is more pronounced at very long times, it is not easily observable 

in our experimentally-measure Δିߠଶ(ݐ). However, this observation supports the hypothesis put 

forward in Chapter 4 that slight subdiffusion is present at frequencies which show very strong 

scattering, but are not immediately beside a mobility gap. Note that the theory shown in Figure 

5.6 for 1.65 MHz (diffuse regime) is simply a straight line, as predicted by diffusion theory. 

For each fit of one set of SC theory predictions (one input value of ߦ/ܮ) to one set of 

experimental data (one ݂ ). Free parameters in the transmission fitting were ߬஽  and the 

incoherent background level. In principle, the background level should be exactly 0.5 (for 

profiles normalized to 1) since the recurrent scattering contribution to backscattering intensity 

has been removed. However, the recurrent scattering removal was not perfect, so background 

intensity level was allowed to vary freely for the SC fitting so as not to distort the results and 

reliability of my measurement of ߦ(݂). For both samples L1 and L2, and for almost all 

frequencies, best fits gave a background of within 10% of 0.5.  

5.5. Identification of Anderson mobility edges 

One of the goals of this chapter is to precisely identify the location of a mobility edge (ME), 

i.e. the exact frequency at which the Anderson transition occurs (ߦ/ܮ = 0). I furthermore desire 

to characterize the behaviour of ߦ/ܮ near a ME, as it is this type of approach which could give 

information about the critical exponents ߥ. The measurement of ߦ/ܮ as a function of frequency 

allows the identification of the MEs by finding the experimental frequency which best matches 

the SC theory set with ߦ/ܮ = 0. However, since both experimental frequency and ߦ/ܮ are 

discrete sets, this may not be the ‘true’ frequency which matches ߦ/ܮ = 0, or, equivalently, a 

theory set which best matches a particular experimental frequency may not represent the ‘true’ 

value of ߦ/ܮ for that frequency. To determine the true ߦ/ܮ for a certain frequency in this 
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fashion, one could calculate a large number of theory sets which differ by very small values of 

 However, this not an elegant solution, and furthermore, computing a great many theory sets .ߦ/ܮ

takes considerable time and effort. Here I present a method to determine the true value of ߦ/ܮ 

for each frequency. This method also has the advantage of giving an uncertainty estimate for the 

measurement of ߦ/ܮ for each frequency. 

 Parabola-fitting method 5.5.1.

For a particular frequency, the theory set that best matches the experimental data is that 

which gives the minimum ߯ଶ according to the method of least-squares. However, this only 

determines the best match ߦ for a particular frequency amongst the theory sets which have been 

calculated. A better estimate of the ‘true’ value of ߦ for each frequency can be found by 

considering the entire ߯ଶ(ߦ). The concept is this:  

The method of least-squares defines a probability function ܲ( ௝ܽ)  which gives the 

probability, as a function of dependent variable/s ௝ܽ, that the experimental data belongs to a 

particular parent set – a particular set of theoretical predictions. For a sufficiently large data set, 

the probability function is a Gaussian: 

   2 /2
jP a Ae   (5.11) 

where ߯ଶ ∝ ൫ ௝ܽ − ௝ܽ
ᇱ൯ଶ

௝ߪ
ଶൗ , and ௝ܽ

ᇱ is the value of ௝ܽ that minimizes ߯ଶ. To determine a best 

fit, one seeks to maximize the probability function, which is equivalent to minimizing ߯ଶ, i.e. 

finding ௝ܽ = ܽ௝
ᇱ  such that ߲߯ଶ/߲ ௝ܽ = 0. Thus, near a local minimum in ௝ܽ, ߯ଶ is a quadratic 

function of that parameter. Thus the ‘true’ value of ௝ܽ
ᇱ is found at the minimum of this quadratic 

function of ߯ଶ, and its uncertainty is given by the curvature of the function near the minimum; 
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For each frequency of experimental data, the SC theory fitting procedure returns a ߯ଶ for each 

theory set, i.e. ߯ଶ(ߦ). Representative results for ߯ଶ(ߦ) are shown in Figure 5.7. By fitting a 

parabola to a few points around the minimum value of ߯ଶ, the true minimum and its uncertainty 

can be found. 
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Figure 5.7: ߯௥௘ௗ

ଶ  vs ߦ/ܮ for three different frequencies. Transmission results (left 
vertical axis) have less uncertainty from the fitting than do backscattering results (right 
vertical axis). 

For transmission results, the parabola-fitting gives an estimation of the actual value of ߦ/ܮ 

which has a very small uncertainty (see, for example, Figure 5.8). This uncertainty is an 

underestimation of the uncertainty introduced in the entire fitting process, as it does not take into 

account the inherent uncertainty in the input parameters such as R. However, a comprehensive 
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study of the certainty and effect on fitting results of each input parameter would be a massive 

undertaking and is beyond the scope of this project. In stating my results and conclusions I am 

careful to account for experimental uncertainties and estimations such as the inherent uncertainty 

in input parameters for SC theory. 

5.6. Results for the Anderson mobility gap 

Results from SC fitting of data for both L1 and L2 are shown in Figure 5.8. An Anderson 

mobility gap is clearly identified, bounded by its accompanying mobility edges at 1.198 ±

0.001 MHz (lower ME) and 1.243 ± 0.007 MHz (upper ME). These values were determined 

by the combination of the three sets of measurements shown in Figure 5.8.  
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Figure 5.8: Ratio of sample thickness L to the localization (correlation) length ߦ, 

obtained by fitting SC theory to experimental CBS profiles (sample L1, - red stars; sample 
L2 – green squares) and transverse confinement (TC) data (sample L1 – open circles). 
Error bars are smaller than symbol size for TC results. Fuzzy vertical gray lines show the 
resulting estimates of the positions of mobility edges. Thanks to J. H. Page for help with 
the creation of this figure. 
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Figure 5.9 shows the localization (correlation) length ߦ as a function of frequency; inside 

the mobility gap ߦ reaches a minimum value of 6.5 mm, 3.8 times smaller than the sample 

thickness. This plot emphasizes the divergence of ߦ as the mobility edge is approached. 
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Figure 5.9: Localization (correlation) length ߦ as a function of frequency, obtained 

by fitting SC theory to experimental CBS profiles (sample L1, top; sample L2 – center) 
and transverse confinement (TC) data for sample L1 (bottom). At each mobility edge, ࣈ 
diverges. Dotted vertical lines indicate our estimates of mobility edge positions. Figure 
created by J. H. Page. 

 The Boltzmann diffusion coefficient 5.6.1.

The diffusion time ߬஽ was a free fit parameter in the SC theory fitting of TC and CBS 

data. The diffusion time was allowed to vary freely for all transmission and backscattering fitting. 

Physically, ߬஽ may be described as the typical time required for a wave to traverse the sample 

via conventional diffusion, and is given by ߬஽ = ܮ) + ଴)ଶݖ2 ⁄஻ܦଶߨ  (Skipetrov and van 
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Tiggelen 2006). Thus, the measurement of ߬஽ from our fit results allows us to estimate the 

Boltzmann diffusion coefficient ܦ஻ as a function of frequency. Results for ߬஽ and ܦ஻ are 

shown in Figure 5.10.  
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Figure 5.10: The diffusion time ߬஽ (a) and Boltzmann diffusion coefficient ܦ஻ (b), 

estimated from SC fitting.Results are from TC fitting of L1 (open circles), and CBS fitting 
of L1 (stars) and L2 (solid squares). 

The frequency dependence of ߬஽ from transmission fitting (open blue circles in Figure 



161 

 

5.10(a)) is supported by visual inspection of the time-dependence of the transmitted intensity. 

Figure 5.11 shows 0)ܫ, -for several representative frequencies spanning the 1.2 MHz pseudo (ݐ

gap. The peak arrival time of the average transmitted intensity is much later at frequencies above 

the pseudo-gap. This makes intuitive sense; for larger values of ߬஽, ߩ)ܫ,  curves would be (ݐ

expected to arrive later and decay slower. This behaviour is observed in the transmitted intensity 

through L1 and L2; as frequency is increased from 1.18 MHz to 1.24 MHz, ߬஽ increases 

(Figure 5.10), and ߩ)ܫ,  .profiles arrive later and decay more slowly (Figure 5.11) (ݐ
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Figure 5.11: On-axis time-of-flight profiles for samples L1 (a) and L2 (b). Three 

frequencies are shown; 1.18 MHz (diffusive regime below mobility gap), 1.22 MHz 
(localized regime), and 1.26 MHz (diffusive regime above mobility gap). Above the 
mobility gap, profiles arrive much slower than below the mobility gap, implying a larger 
diffusion time ߬஽ . For each plot (a) and (b) the transmitted intensities have been 
normalized to have approximately the same peak value, to better highlight their time-
dependence. Experimental uncertainties are only shown for a relatively few points, for 
clarity. 

As previously discussed, ߬஽ is introduced in SC theory as a convenient way of scaling the 

time-dependence of the theoretical predictions, but it may not be a very relevant parameter in the 

context of backscattering from thick, strongly-scattering samples such as L1 and L2. In 

backscattering for thick samples, data are measured over an earlier time range (relative to the 

diffusion time), and are therefore expected to be insensitive to sample thickness. It is instructive 

to examine the time scales at play for our experimental geometry. We may estimate that the 
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initial transmitted pulse through L2 arrives around ݐ௙௜௥௦௧௔௥௥௜௩௔௟ = ௚ݒ/ܮ ∼  s. The peak ofߤ 13

transmitted intensity through L2 does not even arrive until at least 200 µs after the incident pulse 

(Figure 5.11), or ∼  s after the ballistic pulse (were it measurable). In contrast, the latestߤ 187

time observed in backscattering from sample L2 is 130 µs. Therefore, backscattering is measured 

for a range of times that are less than the typical time for waves to cross the sample, confirming 

that the backscattering data for L2 are insensitive to sample thickness. 

 

From ܦ஻, we can make an indirect estimate of the energy velocity, since ݒா =  .∗஻/ℓܦ3

Results are shown in Figure 5.12. The large values of ܦ஻ reported in this chapter (as compared 

to ܦ஻ = 0.7 mmଶ/ߤs found in the diffuse regime) imply anomalously large values for the 

energy velocity ݒா =  ஻/ℓ∗ throughout the frequency regime studied. This observation isܦ3

consistent with previous results on similar samples (Hu et al. 2008; Hildebrand 2015), 

motivating further theoretical work to understand the behaviour of ݒா in the localized regime.  
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Figure 5.12: Energy velocity ݒா estimated from the Boltzmann diffusion coefficient 
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 Observations on thick samples 5.6.2.

As discussed, the thickness of L2 prohibits the calculation of enough SC theory to fit the 

data with theory. This thickness also means that waves take much longer to propagate through 

the sample. My dynamic transverse profile measurements for L2 were able to record times 

longer than 600 μs, which is a significant experimental achievement. However, as can be seen in 

the TOF profiles of Figure 5.11 (b), there is still only a limited range of times available relative 

to the time of the first peak, which is related to ߬஽ (Skipetrov and van Tiggelen 2006). Thus, the 

most obvious indicators of localization, e.g. the saturation of ݓఘ
ଶ(ݐ), risk occurring at a time that 

is outside of the range of times experimentally available to us, and therefore transmission data 

for such a thick sample may not be very illuminating for the study of localization, within the 

range of times that are experimentally possible. In reflection, however, there is no difference in 

arrival time between thin and thick samples, suggesting an important advantage of backscattering 

measurements for thick samples. 

 Critical exponent estimation 5.6.3.

Figure 5.8 suggests that the critical exponent ߥ of the localization transition may be 

estimated from the expected behaviour of Equation (2.60): ߦ(݂) ∝ |݂ − ௖݂|ିఔ  for ݂ near ௖݂ . 

We may apply this relation to the results in Figure 5.8, as shown in the figures below for each 

independent set of measurements. Figure 5.13 shows L1 transmission data,and Figure 5.14 

shows L1 and L2 backscattering data.  
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Figure 5.13: The localization (correlation) length ߦ measured in transmission from 

L1, plotted as a function of distance from the lower ME ݂ − ௖݂ where ௖݂ = 1.1986 MHz. 
The approach to the ME is shown for frequencies lower than the ME (݇ < ݇ℓ௖), and for 
frequencies above the ME (the localization regime, with ݇ℓ > ݇ℓ௖). The power law of 
ߥ = 1 predicted by SC theory is shown (black line). A power law of ߥ = 1.06 provides a 
slightly better description of the data (not shown). Figure courtesy of J. H. Page. 
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Figure 5.14: The localization (correlation) length ߦ measured in backscattering, 

plotted as a function of distance from the lower ME ݂ − ௖݂ . The approach to the ME is 
shown for frequencies lower than the ME (݇ℓ < ݇ℓ௖), and for frequencies above the ME 
(the localization regime, with ݇ℓ > ݇ℓ௖ ). The power law of ߥ = 1 predicted by SC 
theory is shown (black line). (a) For sample L1, ௖݂ = 1.1986 MHz. Depending on the side 
(lower or higher frequency) from which the ME is approached, the best fit is closer to 
either ݒ = 1.5 or ߥ = 0.5. (b) For sample L2, ௖݂ = 1.197 MHz, and for ݇ℓ > ݇ℓ௖ the 
best fit is around ݒ = 1.3. Figure courtesy of J. H. Page. 
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The transmission data shown in Figure 5.13 show convincing power law behaviour, and a 

power law with ߥ = 1 describes the behaviour of the data well near the mobility edge. Results 

for backscattering show much more scatter. This analysis yields a rough estimate of ߥ ≈ 1 ± 0.5 

(weighing the transmission and backscattering data evenly). However, this analysis may be 

inescapably biased due to the fact that SC theory assumes ߦ ∝ (1 − ݇ℓ/݇ℓ௖)ିଵ , i.e. it predicts 

that ߥ = 1. This value is far from the generally accepted value of ߥ ≈ 1.6. However, our 

analysis points the way to better estimations of ߥ, with the development of more objective 

theoretical predictions. 

5.7. Conclusion 

The work in this chapter constitutes the first experimental observation of an Anderson 

mobility gap for classical waves. In particular, I have measured ߦ over the entire localization 

regime and identified the two accompanying mobility edges. My method of fitting SC theory to 

experimental data enables very precise determination of the ME positions, especially in 

transmission. Furthermore, my measurement and analysis of the dynamic CBS profiles 

constitutes a completely original and promising method of probing criticality and localization. I 

employed observations of the CBS effect to characterize the Anderson mobility gap in very thick 

samples, demonstrating an advantage of backscattering measurements over those in transmission. 

These results also confirm that SC theory correctly describes the coherent backscattering of 

classical waves in the critical and localized regimes. More generally, my methods and results 

suggest new possibilities for the characterization of strongly scattering and/or localizing media 

using dynamic coherent backscattering. While the estimate of the critical exponent ߥ is likely 

subject to limitation due to the assumptions of SC theory, our observations will prompt further 

theoretical development and inspire new discussion in this area.
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Appendix 5A : Anderson mobility gap probed by dynamic coherent 

backscattering 
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We use dynamic coherent backscattering to study one of the Anderson mobility gaps in the vibra-
tional spectrum of strongly disordered three-dimensional mesoglasses. Comparison of experimental
results with the self-consistent theory of localization allows us to estimate the localization (correla-
tion) length as a function of frequency in a wide spectral range covering bands of diffuse transport
and a mobility gap delimited by two mobility edges. The results are corroborated by transmission
measurements on one of our samples.

A quantum particle is trapped in a three-dimensional
(3D) disordered potential if its energy E is lower than
the so-called mobility edge (ME) Ec. As was discovered
by Philip Anderson in 1958, quantum interferences may
increase Ec to values that are much larger than the clas-
sical percolation threshold, an energy below which a clas-
sical particle would be trapped [1, 2]. The link between
Ec and the statistical properties of disorder has been re-
cently studied in experiments with ultracold atoms in
random optical potentials [3, 4]. In contrast to quan-
tum particles, classical waves—light or sound—may be
Anderson localized by disorder only in a band of in-
termediate energies (or frequencies), the impact of dis-
order becoming weak in both high- and low-frequency
limits [5, 6]. One thus expects a mobility ’gap’ delim-
ited by two MEs instead of a single ME. This is due
to the difference between dispersion relations of quan-
tum and classical waves [7, 8]. Resonant scattering may
further complicate the spectrum by shifting the mobil-
ity gap or splitting it into several narrower ones. Mo-
bility gaps can also exist for quantum particles when
the disordered potential is superimposed on a periodic
one—a common situation for electrons in crystals with
impurities [9]. In the present Letter we report the first
experimental observation of a mobility gap for classical
waves. To this end we take full advantage of experimen-
tal techniques available for classical waves but very dif-
ficult, if not impossible, to put in practice for quantum
particles and, in particular, for electrons in disordered
conductors. We perform frequency-, time-, position- and
angular-resolved ultrasonic reflection and transmission
experiments in strongly disordered ‘mesoglasses’—elastic
networks of brazed aluminum beads. The results are
compared with the self-consistent theory of localization
to precisely locate the two MEs and to estimate the local-
ization length ξ throughout the mobility gap. ξ diverges
at the MEs, as expected.

Among the many definitions of Anderson localization,
two of them rely either on the exponential decay of eigen-
modes at large distances or the vanishing of diffusion

[10]. However, strictly speaking, both only apply in
an infinite disordered medium, and not in experiments
which involve finite samples with often open boundaries.
In the latter case, waves can leak through the sam-
ple boundaries to the surrounding medium; hence, the
eigenmodes no longer decay exponentially at large dis-
tances (because waves propagate freely outside the sam-
ple), and the transport is no longer blocked completely,
even though wave diffusion is suppressed exponentially.
This is why important efforts were devoted in recent years
to study signatures of Anderson localization in finite 3D
samples that can be seen as representative portions of
infinite disordered media in which waves would be An-
derson localized. The most impressive successes were
achieved for quantities measured in transmission where
time- and position-resolved measurements of wave inten-
sity allowed unambiguous observation of Anderson local-
ization of elastic waves [11], without complications due to
absorption. However, an important shortcoming of such
measurements is the weakness of transmitted signals that
decay exponentially with sample thickness L making the
regime of very strong localization L/ξ ≫ 1 inaccessible.
Even in the diffuse regime, the transmitted intensity may
become so weak that the measured signal is dominated
by other, presumably weak phenomena (e.g., nonlinear
effects or fluorescence in optics) which can be misinter-
preted as a signature of Anderson localization [12, 13].

To circumvent the difficulties of transmission experi-
ments, we develop a new approach to Anderson localiza-
tion of waves based on time- and angular-resolved reflec-
tion measurements. The total reflection coefficient of a
thick disordered sample is close to unity because almost
all the incident energy is reflected, allowing for comfort-
able signal levels even deep in the localized regime. For
a plane wave incident upon a slab of weakly disordered
medium, kℓ ≫ 1, the average reflection coefficient R(θ) is
known to be almost Lambertian, but with a two-fold en-
hancement within a narrow angular range ∆θ ∼ (k0ℓ

∗)−1

around the exact backscattering direction θ = 0 [14–18].
Here k and k0 are the wave numbers inside and outside
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the sample, respectively, and ℓ and ℓ∗ are the scattering
and transport mean free paths. If the incident wave is a
short pulse, the shape R(θ, t) of this coherent backscat-
tering (CBS) peak evolves in time whereas its relative
amplitude remains constant [19–21]. The width ∆θ of the
CBS peak decreases with time according to ∆θ2 ∝ 1/Dt,
where D is the wave diffusion coefficient, as can be eas-
ily found from the solution of the diffusion equation [18].
CBS is a very general phenomenon due to constructive
interferences of partial waves that follow time-reversed
paths in a disordered medium. It was observed for light
in suspensions of small dielectric particles [14–16] and
clouds of cold atoms [22], sound [20, 21], seismic [23] and
matter [24] waves. Being an interference phenomenon,
CBS seems natural to use as a probe of Anderson local-
ization. However, the stationary (time-integrated) CBS
peak was predicted to be only weakly affected by local-
ization effects, with the most pronounced effect being the
rounding of its tip which can also be due to absorption
[25]. Optical experiments confirmed the rounding of the
tip [26, 27], but the conclusion that this behaviour was
caused by Anderson localization of light [27] was not sup-
ported by transmission measurements performed on the
same or similar samples [28, 29]. In this context, the dy-
namic CBS is more promising as a probe of Anderson lo-
calization because its shape is independent of absorption
provided the absorption coefficient is spatially uniform
on average, and its width ∆θ explicitly depends on the
diffusion coefficient D. In a different context, recent the-
oretical work suggests that dynamic CBS of cold atoms
in a random potential may serve as a probe of Anderson
transition [30].

In this Letter we report measurements of CBS from two
of our mesoglass samples composed of aluminum beads
brazed together (volume fraction ∼ 55%) to form an elas-
tic network. The samples have the shape of slabs with
cross-sections of 230×250 mm2 much larger than thick-
nesses L1 = 25± 2 mm and L2 = 38± 2 mm of samples
L1 [see Fig. 1(a)] and L2, respectively. They were wa-
terproofed so that experiments could be performed in
a water tank with immersion transducers or transducer
arrays and the pores between the beads held under vac-
uum during all measurements. The samples are similar to
those used in previous studies [11, 31], but instead of be-
ing monodisperse have a mean bead diameter of 3.93 mm
with a polydispersity of about 20%, which helps to ran-
domize bead positions. The samples also have stronger
elastic bonds between beads than previous samples, vis-
ible in Fig. 1(b). These differences influence the fre-
quency dependence of amplitude transmission coefficient,
shown in Fig. 1(c). Coupling between the individual reso-
nances of the beads leads to frequency bands of relatively
high transmission whose widths depend on the coupling
strength [11, 32], but these bands are narrow enough in
our samples to cause transmission dips to appear in be-
tween. The depth and width of the dips are lessened by
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FIG. 1. (a) Sample L1. (b) Bead structure of sample L1.
(c) Amplitude transmission coefficient of ultrasonic waves
through samples L1 and L2 as a function of frequency.

the polydispersity and greater inter-bead bond strength
compared with the monodisperse samples.

These dips may correspond to Anderson mobility gaps
but one has to study the nature of wave transport in the
corresponding frequency ranges to claim anything with
certainty. Here we report a detailed study of wave trans-
port around the transmission dip at 1.23 MHz. Ultra-
sound is very strongly scattered near this frequency; we
have measured the product kℓ as small as kℓ <∼ 3. More
details of sample L1 can be found in a previous work
[33]. Sample L2 is too thick and too strongly scattering
for many of the conventional methods of sample char-
acterization in transmission to work. As no detectable
coherent signal could be transmitted through L2 in the
frequency range of interest, measurements of k and ℓ from
the coherent pulse [34] are not possible. However, both
samples were fabricated using the same technique and
have very similar composition, so that estimates from
coherent measurements on sample L1 are expected to be
a good approximation for L2 as well.

We measure the backscattered intensity using ultra-
sonic transducer arrays, placed in the diffuse far field of
the samples (for details, see the Supplemental Material
[36]). A time-dependent ‘response matrix’ was gathered
by emitting with each element in turn, and recording
the time-dependent backscattered field with all elements
[21, 33]. An average over configurations of disorder was
performed by translating the array parallel to the sample
surface and acquiring the response matrices for different
positions. To obtain results as a function of both time
t and frequency f , the data were filtered using a Gaus-
sian envelope of standard deviation 0.015 MHz, centered
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FIG. 2. Dynamic CBS profiles in the diffuse regime (1.65
MHz) (a,b) and in the localized regime (1.22 MHz) (c,d). The
results in (a,b) are for sample L1, and in (c,d) for sample
L2 (note the different angular scales). In (a,c) theoretical
fits (lines) and experimental data (symbols) are shown for
three representative times. In (a), the data are fitted using
diffusion theory, giving diffusion coefficient D = DB = 0.7
mm2/µs [35], whereas in (c) SC theory is used, giving ξ = 16.5
mm. Additional examples are shown in the Supplemental
Material [36]. In (b,d) experimental CBS profiles are shown
as a function of both time and angle. The profile narrows
quite rapidly in the diffuse regime (b), but is almost constant
over the accessible range of times in the localized regime (d).

around f . As has been previously reported [33], these
backscattering data show significant contributions from
recurrent scattering due to the signal entering and leav-
ing the sample near the same spot [33, 37]. Recurrent
scattering complicates the analysis of CBS peaks, as it is
difficult to determine the (roughly flat) background in-
tensity level corresponding to large angles θ. The recur-
rent scattering contribution was removed from the total
backscattered intensity following the approach developed
previously [33].

To eliminate the effect of absorption, the time-
dependent CBS profiles R(θ, t), where θ is the angle be-
tween source and receiver elements of the ultrasonic ar-
ray, are normalized by R(0, t) [36]. Analogously to trans-
verse confinement measurements in transmission [11], ab-
sorption cancels in the ratio R(θ, t)/R(0, t). Representa-
tive profiles R(θ, t)/R(0, t) are shown in Fig. 2.

To obtain a quantitative description of our data, we use
the self-consistent (SC) theory of Anderson localization
with a position-dependent diffusion coefficient D(z,Ω)
presented in Refs. [38, 39]. First, D(z,Ω) is determined
from an iterative solution of the self-consistent equa-
tions for each depth z inside the sample (0 ≤ z ≤ L).
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FIG. 3. Experimental results (symbols) and theoretical pre-
dictions (lines) for sample L1. Plotted is the reciprocal of the
square of the half width at half maximum of the CBS peaks,
∆θ−2(t) (error bars are smaller than symbol sizes). Three
representative frequencies are shown: f = 1.65 MHz (dif-
fuse regime, diffusion coefficient DB = 0.7 mm2/µs extracted
from the fit), f = 1.18 MHz (slower diffusion as a ME is ap-
proached; correlation length ξ = 2.1 mm), and f = 1.22 MHz
(Anderson localization; localization length ξ = 12.5 mm).
The inset shows theoretical predictions for longer times.

Second, the two-dimensional spatial Fourier transform
of the intensity Green’s function C(q⊥, z, z

′ = ℓ∗B,Ω)
is calculated using this D(z,Ω). Here ℓ∗B is the trans-
port mean free path in the absence of Anderson local-
ization effects. Finally, the CBS profile R(θ, t) is ob-
tained as a Fourier transform of R(q⊥,Ω) = D(z =
0,Ω) ∂C(q⊥, z, z

′ = ℓ∗B,Ω)/∂z|z=0
where q⊥ = k0 sin θ

[36]. Fits to the experimental data obtained from this
theory are shown in Fig. 2(c). We refer the reader to
Ref. [36] for the details of the fitting procedure. For a
given frequency f , important outcomes of the fitting pro-
cedure are the location of f with respect to the ME fc
(indicating whether wave transport at f is extended or
localized) and the value of the localization length ξ that
characterizes the closeness to a ME and the extent of
localization effects [40].

CBS profiles shown in Fig. 2(a,b) exhibit the narrow-
ing with time predicted by the diffusion theory. How-
ever, when approaching f = 1.20 MHz and beyond, the
narrowing of CBS profiles slows down considerably (see
Fig. 2(c,d) and Fig. S1 of Ref. [36]). Such a slowing
down is expected when a ME of the Anderson transition
is approached and crossed because the width of the CBS
peak ∆θ behaves, roughly speaking, as the inverse width
of the diffuse halo at the surface of the sample. The lat-
ter grows without limit in the diffuse regime but cannot
exceed a value on the order of the localization length ξ in
the localized regime. Hence, the corresponding CBS pro-
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file stops shrinking and its width ∆θ saturates. This is
illustrated in Fig. 3 where the different types of behavior
can be clearly distinguished.

We performed systematic fits of SC theory to our data
for frequencies from 1.17 to 1.27 MHz for both samples
L1 and L2, thereby determining the frequency dependen-
cies of the localization (correlation) length ξ. The results
are shown in Fig. 4 where MEs at approximately 1.20
and 1.24 MHz are indicated by fuzzy vertical gray lines.
The Anderson mobility gap is clearly visible in between,
whereas the wave transport is diffusive for frequencies
below 1.20 and above 1.24 MHz. Other and possibly
multiple mobility gaps can exist in our samples outside
the frequency range from 1.17 to 1.27 MHz that we ex-
plored. It is important to note that although the position
of the Anderson mobility gap that we have found coin-
cides with one of the dips in the transmission spectra of
Fig. 1(c), the latter is not sufficient to claim the exis-
tence of the former. Indeed, a dip in transmission can
simply correspond to spectral regions with a low den-
sity of states—precursors of band gaps in larger samples.
It is important to prove that the wave transport corre-
sponds to strongly suppressed diffusion that is consistent
with Anderson localization, in order to claim an Ander-
son mobility gap. This is achieved here by comparing
experimental results with SC theory of localization.

To support our conclusions based on CBS measure-
ments, we performed complementary experiments and
analysis in transmission on sample L1. We used the tech-
nique of transverse confinement, which has been previ-
ously established as an unambiguous method of observing
localization [11]. The experimental method and compari-

son of measurements with SC theory have been presented
in detail in Refs. [11, 41, 42]. As can be seen in Fig. 4, the
results of transmission and reflection experiments agree
reasonably well. From the combination of these mea-
surements we estimate the position of MEs to be 1.198 ±
0.001 MHz and 1.243 ± 0.007 MHz. Inside the mobility
gap the measured localization length reaches a minimum
of 6.5 mm (3.8 times smaller than sample thickness). The
CBS results fluctuate much more with frequency, as do
the CBS profiles themselves, especially around the upper
ME where the position of the ME is less clear than for the
lower ME. While large fluctuations are to be expected in
this regime, the precision of future measurements could
be improved with a greater amount of configurational av-
eraging, longer measurement times, and a wider angular
array aperture.

Figure 4 may be used to estimate the critical expo-
nent of the localization transition ν because one expects
ξ(f) ∝ |f − fc|−ν for f in the vicinity of a ME fc. As
can be seen in Fig. 4, L/ξ looks approximately linear as a
function of f when it crosses the axis L/ξ = 0, leading to
ν ≈ 1. It should be understood, however, that this result
has large uncertainties due to the spread of data points
in Fig. 4 (especially at the upper ME). In addition, Fig.
4 is obtained by fitting the experimental data with SC
theory which is known to yield ν = 1 in contradiction
with numerical calculations [43] and may thus bias the
result. More work is needed to obtain accurate estimates
of ν for the localization transitions reported here.

In conclusion, we have employed the dynamic CBS
effect to demonstrate an Anderson mobility gap in the
spectrum of ultrasound scattered in a 3D strongly dis-
ordered elastic network. Performing our measurements
in reflection instead of transmission as in previous works
[11, 31] ensured a sufficiently strong signal throughout
the mobility gap, even for a very thick sample. This is
a significant advance, as previous experiments were only
able to reveal a single mobility edge [31]. Fits to the data
by the self-consistent theory of localization yielded pre-
cisely the locations of the two mobility edges that serve
as bounds of the mobility gap, and the localization length
ξ as a function of frequency. We were able to corrobo-
rate these results via transmission measurements on one
of our samples. This work demonstrates the potential of
dynamic CBS experiments to study localization effects in
thick samples where transmission measurements are diffi-
cult or impossible, allowing us to access the deeply local-
ized regime where ξ ≪ L. The thickness-independence
of backscattering in a wide range of times provides an
important advantage in the investigation of critical be-
havior where the elimination of finite-size effects is de-
sired. This approach, made possible by a combination of
modern experimental techniques with a careful theoreti-
cal description, can be extended to other classical waves
(light, microwaves) as well.
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Supplemental material

INTRODUCTION

This document provides further information on the
experimental techniques, the self-consistent theory for
backscattered intensity, and the procedure used to fit the
predictions of this model to experimental data. Repre-
sentative values of the best-fit parameters are also pre-
sented and discussed.

EXPERIMENTAL METHOD

In this section, we give additional details on the
backscattering experiments that we performed to demon-
strate a robust new approach for investigating 3D Ander-
son localization. As emphasized in the letter, time- and
angle-resolved backscattering experiments have several
important advantages compared with the transmission
measurements used in previous studies, enabling inves-
tigations of Anderson localization all the way through
any mobility gap. Access to the deeply localized regime,
where ξ << L, obviously requires that the signals emerg-
ing from the medium be large enough to be measurable.
In transmission, this requirement is difficult, if not impos-
sible, to satisfy. In previous works, transmission through
the samples was so greatly reduced inside the transmis-
sion dips (where a mobility edge was demonstrated) that
measurements were not possible all of the way through
the mobility gap, the most deeply localized regime was
inaccessible, and the upper mobility edge could not be
identified [S1, S2]. By contrast, the reflection geometry
that we employ here capitalizes on the distinct advantage
that backscattered ultrasound is not affected by this lim-
itation, allowing arbitrarily thick samples to be studied,
and a complete investigation of the entire localization
regime to be carried out. In addition, backscattering
measurements are independent of sample thickness over
a significant range of times before the detected signals
have been able to reach and travel back from the far side
of the sample. This not only simplifies the interpreta-
tion of the current backscattering measurements but will
also enable future investigations of critical behaviour in
which finite size effects can be eliminated. It is these con-
siderations that motivated the design of our backscatter-
ing experiments, and have led to the significant progress
in the investigation of 3D Anderson localization that is
highlighted in the conclusions of our letter.
Given these advantages of backscattering measure-

ments, one might wonder why we have focused on dy-
namic coherent backscattering rather than near-field de-
tection of the time-dependent transverse intensity pro-
file at the surface of the sample. Such dynamic trans-
verse profile measurements would be expected to give

the same type of (absorption-free) information on local-
ization as was obtained previously in transmission [S3],
but with all of the additional advantages of the reflection
geometry. While this is true in principle, we found that
practical limitations preclude effective measurements of
this type in reflection. Specifically, near-field measure-
ments in reflection are extremely problematic because the
placement of transducers at the sample surface leads to
spurious reflections between the generator, sample sur-
face, and detector. In addition, the generation and de-
tection transducers get in the way of each other, making
measurements difficult and data for some positions sim-
ply inaccessible. We also tried making measurements of
the near-field transverse profile through the use of ultra-
sonic arrays in direct contact with the sample surface,
but these were plagued by crosstalk between transducer
elements during emission, which interfered with the de-
tection of the interesting signals that have penetrated in-
side the sample. In addition, placing an array in contact
with the sample complicates the boundary conditions.
In contrast, coherent backscattering enables the spatial
Fourier transform of the entire spatial intensity profile
to be measured in the far-field with a single ultrasonic
transducer array, making it the perfect tool to investigate
the growth (or not) of the transverse width in reflection.

The backscattering experiments, as well as the trans-
mission measurements used to corroborate the results for
sample L1, were carried out by immersing water-proofed
samples and transducers in a large water tank. The pores
between the brazed beads in the samples were held under
vacuum, thus ensuring that ultrasonic transport inside
the sample was confined to the elastic bead network, and
that both backscattering and transmission experiments
were performed under the same conditions (apart from
placement and type of ultrasonic emitters and detectors
used). Thus, although both longitudinal and transverse
elastic waves are present inside our solid samples, the
emitted and measured signals for all experiments have
longitudinal polarization (acoustic waves in water).

In backscattering, the response matrix was measured
for sample L1 (L2) using 64 (128) elements of a linear
ultrasonic array with a central frequency of 1.6 (1.0)
MHz, capable of emitting/detecting signals for a fre-
quency range of 0.6 - 1.9 MHz (0.5 - 1.4 MHz). Ut-
most care was taken to ensure that all possible contri-
butions due to stray background signals were eliminated
from the backscattering data by systematically search-
ing for such contributions, removing them where possi-
ble, and analysing the data only over the range of times
where valid data, uncontaminated by stray signals, were
detected. For example, careful placement of the array
and sample, the design of a support system for the sam-
ple that eliminated spurious reflections, as well as checks
with (temporarily inserted) reflecting or opaque objects,
were used to ensure that effects from the edges of samples
were negligible. The use of short pulses and a large water
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tank ensured that reflections from the sides of the tank
arrived after the backscattered signals from the sample.
The data were analyzed only for times greater than 40
µs (to discard any vestiges of specular reflections from
the sample surface and single scattering, which might
have persisted despite the sophisticated filtering tech-
nique that were used to remove these contributions [S4])
and for times less than 200 (120) µs for L1 (L2) (to reject
contributions from echoes between the array and sam-
ple). Similar care was employed to ensure that only mul-
tiply scattered signals from inside the sample were anal-
ysed for the transmission measurements on L1 (see Refs.
[S1, S2] for details on similar transmission experiments).

For configurational averaging of the backscattering
data, the array was translated parallel to the sample,
acquiring response matrices at 302 (66) different posi-
tions. The distance between the array and sample was
182 (136) mm, so that the backscattering experiments
were carried in out in the far field, which for diffuse waves
is defined by the condition a ≫

√
DBt (a is the sample-

array distance, DB is the Boltzmann diffusion coefficient,
t is time). In the diffuse regime (e.g., 1.65 MHz for sample
L1), DB for sample L1 has been measured to be approx-
imately 0.7 mm2/µs, and the longest times experimen-
tally available to us are 210 µs, so the approximation of
a = 182 mm ≫

√
0.7× 210 ≈ 12 mm is valid. In the lo-

calized regime, the dynamic spreading of the diffuse halo
is less, so that the far-field limit is even better respected.

After filtering the recurrent scattering contribution,
the bandwidth-limited time-dependent CBS profiles
R(θ, t) were extracted from the conventional multiple
scattering contribution to the response matrix. The dy-
namic CBS profiles were normalized to eliminate the in-
fluence of absorption by dividing R(θ, t) by R(0, t), since
at time t the effect of absorption on the numerator and
denominator of this ratio is the same, and therefore can-
cels. Typical results near the lower mobility edge are
shown in Fig. S1, where the data are compared with the-
oretical predictions as described in the next two sections.

SELF-CONSISTENT THEORY FOR DYNAMIC

COHERENT BACKSCATTERING

Our theoretical model to describe the dynamic coher-
ent backscattering (CBS) of ultrasound is based on the
equations of self-consistent (SC) theory of Anderson lo-
calization with a position- and frequency-dependent dif-
fusion coefficient D(r,Ω) as derived in Ref. [S5]. In these
equations, the scattering mean free path ℓ should be re-
placed by ℓ∗B—the transport mean free path in the ab-
sence of localization effects— to account for the scatter-
ing anisotropy of our samples (ℓ∗B > ℓ).
To define the mobility edge (ME) and the localization

length, we first analyze SC equations in the infinite 3D
medium where D becomes independent of position. For

the stationary (Ω = 0) diffusion coefficient we obtain

D = DB

[

1− 3µ

(kℓ∗B)
2

]

, (S1)

where DB is the (Boltzmann) diffusion coefficient in
the absence of localization effects and an upper cut-off
qmax
⊥

= µ/ℓ∗B (with µ ∼ 1) was introduced in the inte-
gration over the transverse momentum q⊥ = {qx, qy} in
order to regularize the integral. Here we break the sym-
metry between q⊥ and qz to anticipate the experimen-
tal geometry of a disordered slab perpendicular to the z
axis. A ME of the Anderson transition at kℓ = (kℓ)c cor-
responds to µ = 1

3
(kℓ)2c(ℓ

∗

B/ℓ)
2. In the localized regime

kℓ < (kℓ)c, an analytic solution of the equations of SC
theory can be obtained for a point source emitting a short
pulse at r

′ = 0 and t′ = 0, in the long-time limit. We
obtain an intensity Green’s function

C(r, r′, t → ∞) =
1

4πξ2|r− r
′| exp (−|r− r

′|/ξ) , (S2)

where the localization length is

ξ =
6ℓ

(kℓ)2c

(

ℓ

ℓ∗B

)

p2

1− p4
, (S3)

and p = kℓ/(kℓ)c.
To describe the experimental data, we solve the equa-

tions of SC theory in a slab of thickness L with boundary
conditions derived in Ref. [S5], where the extrapolation
length

z0 =
2

3
ℓ∗B

1 +R

1−R
(S4)

depends on the internal reflection coefficient R. To this
end, we Fourier transform the SC equations in the trans-
verse plane ρ = {x, y} and discretize the remaining or-
dinary differential equation for C(q⊥, z, z

′,Ω) on a grid
for z ∈ [0, L] [S6]. A sufficiently fine discretization is also
introduced for q⊥ and Ω, and the resulting system of lin-
ear equations with a tridiagonal matrix of coefficients is
solved numerically using a standard routine zgtsl from
LAPACK library [S7] for D(z,Ω) = DB. A new value of
D(z,Ω) is then obtained from the return probability

C(r, r′ = r,Ω) =
1

2π

qmax

⊥
∫

0

dq⊥q⊥C(q⊥, z, z
′ = z,Ω), (S5)

and the solution is iterated until convergence, i.e.,
D(z,Ω) does not change by more than a very small
amount, typically less than (5x10−5)%, from one itera-
tion to the next. Transmission and reflection coefficients
T (q⊥,Ω) and R(q⊥,Ω) are then calculated as

R(q⊥,Ω) = D(z,Ω)
∂

∂z
C(q⊥, z, z

′ = ℓ∗B,Ω)

∣

∣

∣

∣

z=0

(S6)

and similarly for T (q⊥,Ω). We obtain the time-
dependent intensity profiles in transmission T (ρ, t) and
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reflection R(ρ, t) by a double inverse Fourier transform of
T (q⊥,Ω) and R(q⊥,Ω), respectively. The dynamic CBS
profile R(θ, t) = R(q⊥ = k0 sin θ, t) follows from the ob-
servation that the CBS shape is given by the Fourier
transform of the ‘diffuse intensity halo’ at the sample
surface [S8].

FITTING SELF-CONSISTENT THEORY TO

EXPERIMENTAL BACKSCATTERING DATA

The theory for R(θ, t) developed in the previous sec-
tion is valid in the far field, where sin θ = q⊥/k0. Here
k0 = 2πf/v0 and v0 ≈ 1500 m/s is the speed of sound in
water. This is the appropriate limit for comparing with
the experimental data, since our backscattering experi-
ments are performed in the far-field (discussed in the first
section of this Supplemental Material).

Near the localized regime, backscattered waves may
spend a long time in a thick sample without reaching
the far side. This means that for a range of times less
than twice the typical time for waves to cross the sam-
ple, which can be estimated from the peak in the time-
dependent transmission, the CBS effect is not sensitive
to sample thickness. This is significant because calcula-
tions for very thick samples can be prohibitively time-
consuming, so the modeling of backscattering in the lo-
calized regime is more convenient when there is no ex-
plicit dependence on sample thickness. In other words,
theory for backscattered waves from a thin sample may
also be used for a thicker sample, provided that the range
of times investigated is short enough. Here we calculate
SC theory for sample L1 and can compare it to experi-
mental CBS profiles of both L1 and L2.
Most input parameters for the calculation of SC the-

ory were determined from measurements performed in
separate experiments and could thus be fixed in the fit-
ting procedure. These (fixed) parameters are: scatter-
ing mean free path ℓ = 0.9 mm, reflection coefficient
R = 0.67, and wave vector k = 2πf/vp, with phase ve-
locity vp = 2.8 mm/µs, giving kℓ = 2.7 for f = 1.2 MHz.
The remaining parameter, the transport mean free path
l∗B = 4 mm, was determined from SC fitting of transverse
confinement (transmission) data from sample L1.
The most important parameter involved in SC theory

calculations of R(θ, t) in the vicinity of an Anderson tran-
sition is the localization (correlation) length ξ. As this
parameter is unknown a priori, theoretical predictions for
R(θ, t) are calculated for a large range of ξ values from
the diffuse to localized regimes (and back again). These
values of ξ are determined from kℓ and its critical value
at the transition (kℓ)c using Eq. (S3), with kℓ fixed at
the experimentally estimated value for f = 1.2 MHz. For
each frequency f of experimental data, the experimental
CBS matrix R(θ, t) is fitted with every theory set. All fits
are least-squares comparisons between the 2D matrices

from experiment and theory, R(θ, t), using the reduced
χ2 to determine the best-fit values of ξ. All times and θ
values are fit simultaneously. This fitting procedure was
performed with Wavemetrics software IGOR Pro. By
finding the best-fit theory set for each f , the frequency-
dependence of the localization (correlation) length ξ(f)
was determined. This, in turn, enabled the locations of
the two MEs, fc1 and fc2, to be determined (these are
the frequencies where ξ diverges).

Representative fit results for both samples are shown
in Fig. S1, showing the quality of the fits in the dif-
fuse regime at a frequency below the first localization
transition [Fig. S1(a),(d)], at the first mobility edge [Fig.
S1(b),(e)], and in the mobility gap [Fig. S1(c),(f)]. In all
cases, the experimental data are well-described by the
SC theory: the narrowing of CBS profiles with time is
reduced as the ME is reached [Fig. S1(b),(e)], and in the
localized regime CBS profiles change even less with time
[Fig. S1(c),(f)], with the width approaching a constant
at long times.

The Boltzmann diffusion coefficient DB was a free fit
parameter, yielding DB(f) after the entire fitting pro-
cess. For sample L1, DB ≈ 10 ± 7 mm2µs−1 below
1.24 MHz, and DB ≈ 5 ± 2 mm2µs−1 above 1.24 MHz
(from transmission and reflection measurements). The
frequency-dependence of DB(f) is supported by visual
inspection of the time-dependence of the transmitted in-
tensity in these regimes, and these values of DB are sim-
ilar to the results of previous measurements in similar
samples [S2, S3]. For sample L2, the fitting results gave
values of DB ranging from DB ∼ 13−61 mm2µs−1 below
1.24 MHz (peaking in the localized regime) and DB ∼ 9
mm2µs−1 above 1.24 MHz. However, for such a thick
sample as L2, the backscattering data are not very sen-
sitive to DB over the experimentally accessible range of
times, so that these estimates for sample L2 are not likely
to be very accurate, although they are still consistent
with surprisingly large values of DB, as has been found
for other samples in the localized regime. Such values
imply anomalously large values of the energy velocity vE
[S3], motivating future work to seek a theoretical under-
standing of vE in the localized regime.

The only other fit parameter was the background in-
tensity level, which was also allowed to vary freely. For
both samples L1 and L2, and for almost all frequencies,
best fits gave a background of within 10% of the value
of 0.5 which would be expected after the removal of the
recurrent scattering contribution. This variation of the
background intensity results from the challenges of com-
pletely removing the recurrent scattering contribution,
especially at early times where recurrent scattering dom-
inates the backscattered intensity; by allowing the back-
ground intensity to be a free fit parameter, we were able
to ensure that these background fluctuations did not de-
grade the reliabilty of our determination of the frequency
dependence of the localization (correlation) length.
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FIG. S1. Dynamic CBS profiles from samples L1 (top) and L2 (bottom) for three different times, and for three different
frequencies: (a),(d) 1.18 MHz in the diffuse regime (correlation length ξ = 2.1±0.2 mm for L1 and 3.2±0.9 mm for L2); (b),(e)
near 1.20 MHz at a ME (ξ diverges); and (c),(f) 1.22 MHz in the localized regime (ξ = 12± 1 mm for L1 and 16 ± 3 mm for
L1). Solid lines are best fits of SC theory to the data (symbols). Note that the horizontal scales are different between (a,b,c)
and (d,e,f), and that a different range of times is presented. It is also important to note that ξ should not necessarily be the
same for both samples at exactly the same frequency.
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6. Recurrent Scattering 
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6.1. Introduction to recurrent scattering 

Recurrent scattering is often described in terms of scattering diagrams as a “loop” 

scattering process, where the wave returns to the same scatterer more than once (this concept was 

introduced in terms of diagrammatic scattering theory in Section 2.3.1). However, it is more 

accurate to define recurrent scattering in terms of the probability of a wave returning within a 

mean free path of a spot it has previously visited (van Tiggelen, Wiersma, and Lagendijk 1995). 

In most multiple scattering phenomena, recurrent scattering is negligible compared to other 

lower-order processes. Recurrent scattering events become important only when the return 

probability – the probability of a wave returning near a spot it has previously visited – is 

significantly high. Such circumstances tend to arise only in the strong scattering regime, where 

the diffusion approximation may not fully describe wave transport. Scattering strength may be 

characterized by the product of wave vector and scattering mean free path, ݇ℓ௦. For small ݇ℓ௦, 

i.e. ݇ℓ௦ ∼ 1, scattering is strong and interference effects are important in describing wave 

behaviour. 

As it is by nature a backscattering phenomenon, recurrent scattering is most easily studied 

in the reflection geometry. The first direct experimental observation of recurrent scattering of 

classical waves was presented by Wiersma et al. via measurements of static CBS profiles 

(Wiersma et al. 1995). Specifically, the group showed that the enhancement factor, which is the 

ratio of intensity at the top of the CBS cone to the incoherent intensity, deviated from 2 due to 

recurrent scattering. In the heuristic discussion of CBS (Section 2.4), the CBS cone was stated to 

show an enhancement of 2 in the exact backscattering direction. This implies that the 

enhancement factor is also always exactly 2. However, this is not necessarily the case 

experimentally, since there are coherent contributions to intensity which are angle-independent, 
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and thus add to the observed ‘incoherent’ background, reducing the enhancement factor. One of 

these contributions is recurrent scattering. In addition, experiments have shown that in general, 

the reduction in enhancement factor is only observable in strongly scattering media (van Albada, 

van der Mark, and Lagendijk 1987; Wiersma et al. 1995). We may explain this fact by examining 

the enhancement factor more carefully using diagrammatic theory. 

 We can now rewrite the reducible vertex function in terms of the vertices defined in 

Section 2.3.1: ડ = ܀ + ܃ = ܀ + ۱ + ߠ At exact backscattering (source-receiver angle .܁ = 0), 

we have ܵ(⃑ݎଵ ≈ ଶݎ⃑ ≈ ଷݎ⃑ ≈ (ସݎ⃑  and ܥ଴ = ܴ଴  from reciprocity (subscript 0 denotes exact 

backscattering). Here, the experimental enhancement factor Ξ is given by the ratio  

 0 0 0

0 0 0 0

0total intensity 2
incoherent intensity

R C S S
R S R S

  
    

  
. (6.1) 

where ܵ଴
ᇱ  indicates that single-scattering contributions (the term l) are not included21 (van 

Tiggelen, Wiersma, and Lagendijk 1995). Thus, recurrent scattering processes are mostly 

responsible22 for the occurrence of Ξ < 2. These contributions are entirely absent from the 

diffusion approximation picture23. Figure 6.1 shows experimentally-measured enhancement 

factors for backscattered light: the enhancement factor decreases as scattering strength increases. 

(Note that in this experiment, single-scattering contributions were carefully removed.) This effect 

illustrates the idea that recurrent scattering events are important in the strong scattering regime. 

This fact was described theoretically in Section 2.3.1, where recurrent scattering events were 

                                                

21 The last step follows, since ܥ଴ = ܴ଴, by adding and subtracting ܵ଴
ᇱ  in the numerator. 

22 It has also been suggested that non-linear effects, such as the presence of nonlinear point-
scatterers, could modify the enhancement factor (Wellens 2009), but this has yet to be 
conclusively shown in experiment. 

23 Note that the same calculation done with only ladder and most-crossed diagrams gives 
2   (Akkermans and Maynard 1985). 
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shown to be one of the set of diagrams which are ignored by the diffusion approximation U ∼ ݈.  

 
Figure 6.1: (Left) Backscattered intensity plotted against scattering angle. Narrow 

cone: BaSO4 sample, ݇௠௘ௗℓ∗ = 22.6 ± 1.0, where ݇௠௘ௗ is the wave vector of light in the 
medium. Broad cone: TiO2 sample, ݇௠௘ௗℓ∗ = 5.8 ± 1.0. Solid and dashed lines are, 
respectively, coherent and incoherent contributions from diffusion theory. Insert: top of 
both cones. The enhancement factor for the broad cone is less than 2. (Right) Enhancement 
factor plotted against ݇௠௘ௗℓ∗. The enhancement factor is less than 2 for ݇௠௘ௗℓ∗ ≤ 10 
Used with permission (Wiersma 1995). 

Beyond ‘mere’ strong scattering, it is clear that an increased return probability is directly 

linked with the phenomenon of Anderson localization. With more recurrent scattering, waves 

spend a longer time in the sample and transport slows down. This link between recurrent 

scattering and localization is shown clearly in the equations for the self-consistent theory of 

localization – an increase in return probability results in the renormalization (decrease) of the 

diffusion coefficient ܦ(Ω,  ஻ (seeܦ from the purely diffusive Boltzmann diffusion coefficient (ݎ⃑

Equation. (5.2), Section 5.2.1). 

In this chapter, I show that experimental measurements of the return probability can be 

used to study Anderson localization. The recurrent scattering contribution to backscattered 

intensity is obtained via a numerical method of separating recurrent scattering and ‘conventional’ 

multiple scattering processes. This constitutes the first experimental study of dynamic recurrent 

scattering on its own, as well as the first ever experimental study of recurrent scattering in the 

critical and localized regimes. We also show that this recurrent/multiple scattering separation is 
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necessary to our studies of coherent backscattering (the work presented in Section 5.4), because 

the decrease in enhancement factor due to recurrent scattering complicates the fitting of theory to 

experimental CBS cones. 

6.2. Surface recurrent scattering effects on the coherent backscattering profile 

Using ultrasonic arrays, the backscattered field was measured from samples L1 and L2 as 

detailed in Section 3.2.3. The backscattered intensity as a function of angle, time and frequency 

was calculated as detailed in Section 4.2.3. Results are shown in Figure 6.2 for two 

representative frequencies. The total backscattered intensity (black circles) has the same shape as 

would be expected for a CBS profile, but it has a reduced enhancement factor. In other words, 

since ultrasound is so strongly scattered in these mesoglasses, the recurrent scattering 

contribution to total backscattered intensity is non-negligible. This effect is clearly visible by eye 

even in the diffuse regime (1.65 MHz, Figure 6.2a) - the background intensity level is more than 

half of the peak value. In the localized regime (1.23 MHz, Figure 6.2b) it is not so evident what 

the enhancement factor is, since the cones are so broad even at these late times that the 

background level is not easily discernable. This becomes a problem when trying to fit theory to 

these data. Theoretical CBS profiles have background levels of 0.5 times the peak value. During 

the fitting process, the background level may be allowed to vary to account for any deviations 

from 0.5, but only if the background is visible. Thus, in order to fit CBS profiles with theory, 

recurrent scattering had to be removed from the experimental data. This process is detailed in 

Section 6.2.1.1. Results are shown in Figure 6.2, where the recurrent scattering and conventional 

multiple scattering processes are shown with the original total intensity profiles. Only the 

conventional multiple scattering profiles (e.g. the curves represented by blue pentagons in Figure 

6.2) were used in the analysis of Chapter 5. 



181 

 

 
Figure 6.2: Backscattered intensity profiles at time ݐ =  s from sample L1. Totalߤ200

backscattered intensity (black circles) consists of contributions from recurrent and single 
scattering (RS, red diamonds) and conventional multiple scattering (MS, blue pentagons). 
The RS contribution in the diffuse regime (a) at 1.65 MHz is less than that in the 
localization regime (b) at 1.23 MHz. Profiles are all normalized to the peak value of total 
backscattered intensity. Some uncertainties are smaller than symbols sizes. 

 Recurrent scattering and the memory effect 6.2.1.

Backscattering experiments conducted with ultrasonic arrays enable the measurement of 

the propagation matrix. As discussed in Section 2.3.2, the propagation matrix contains all 

relevant information about the system composed of the sources, the medium through which the 

waves travel, and the detectors. For random heterogeneous media, it is thus naturally described 

by random matrix theory (RMT). The manipulation of the propagation matrix based on RMT is 

the basis for some sophisticated studies of multiple scattering media. It has been used to fully 

describe the transmission modes of a complex system (Genack 2011; Gérardin et al. 2014), for 

selective target detection through an aberrating layer (Prada et al. 1996; Popoff et al. 2011), wave 

focussing across a highly scattering slab (Popoff et al. 2010; Kim et al. 2012), and optimized 

control of wave transport in diffusive media (Shi, Davy, and Genack 2015; Gérardin et al. 2014).  

Another RMT approach to complex media was shown to separate the single and 

conventional multiple scattering contributions to backscattered intensity (Aubry and Derode 
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2009b; Aubry and Derode 2009a; Shahjahan et al. 2014). Pioneered by Aubry et al. in 2009, the 

original intent of this technique was to isolate singly-scattered signals to improve target detection 

through a multiple-scattering medium. However, the signatures of recurrent scattering in the 

propagation matrix are the same as those of single scattering. Figure 6.3 shows the 

experimentally-measured propagation matrix ۹  (consisting of the Green’s functions ܭ௜௝  

describing the propagation from source i, through the sample, and to detector j) at times 

ݐ = ݐ s andߤ 15 =  s. Contrary to the speckle pattern for transmission of Figure 2.1, theߤ 200

backscattered speckle patterns of Figure 6.3 do not appear random. Instead, they display a 

deterministic coherence along its antidiagonals. These coherences in ۹ are caused by the 

memory effect in backscattering.  
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Figure 6.3: Propagation matrices K for time ݐ = ݐ s (a) andߤ 15 =  .s (b)ߤ 200

Antidiagonal coherences persist for long times, far past the range of times in which single 
scattering is possible. 

Originally discovered in optics (Freund, Rosenbluh, and Feng 1988; Feng et al. 1988), the 

memory effect describes how the rotation of an incident beam by an angle ߠ causes the 

resulting speckle to be shifted by the same angle ߠ in transmission, or –  .in backscattering ߠ

This means that the speckle pattern retains some ‘memory’ about the incident beam, even for a 
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very strongly scattering sample. For single scattering, the memory effect persists over the entire 

angular domain, i.e. the angular correlation width Δߠ =  For multiple scattering, the effect .2/ߨ

is limited to a much smaller range of Δߠ ∼  where ܹ is the spatial extent of the wave ܹ/ߣ

spreading in the sample (Akkermans and Montambaux 2007). The signature of the memory 

effect on a propagation matrix is that of coherences along the antidiagonals (Aubry et al. 2014; 

Aubry and Derode 2009b), as shown in Figure 6.3. At early times, the coherences are due to the 

effects of single scattering. However, at very late times (ݐ =  s, Figure 6.3(b)), theߤ 200

coherences remain, despite there being no possibility of their resulting from single scattering. 

These coherences are caused by recurrent scattering, which, involving paths which begin and end 

near the same spot on the sample surface, exhibits the same angular range as single scattering.  

6.2.1.1. The separation of recurrent and multiple scattering  

The memory effect gives an opportunity to separate single/recurrent scattering (SS/RS) 

from the ‘conventional’ multiple scattering (MS), by taking advantage of the signature of the 

antidiagonal coherences (Aubry and Derode 2009a; Aubry and Derode 2011; Aubry et al. 2014; 

Aubry and Derode 2009b). This process is outlined here, and described in detail by Aubry et al. 

(Aubry et al. 2014) (this work is included in this thesis as Appendix 6A).  

The ‘filter’ of single/recurrent scattering from conventional multiple scattering will be 

referred to here as the RS-MSF24. The method consists of four steps: 

1. Rotation and separation 

The propagation matrix ۹ is rotated, and separated into two submatrices ۯ(ଵ)(ݐ) and 

 The submatrices contain the antidiagonals of ۹. The coherences that can be seen in .(ݐ)(ଶ)ۯ

                                                

24 The filter was adapted for the strong scattering regime by Alexandre Aubry (Aubry et al. 
2014). Its use in this project is thanks to the collaboration with and support of Dr. Aubry. 
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Figure 6.3 now lie along the columns of ۯ(௤), where ݍ = 1,2. The matrices ۯ(௤) are made up 

of two components that we want to separate:  

 R M A A A  (6.2) 

where ۯோ  represents the SS/RS contribution to backscattered intensity, and ۯெ  is the MS 

contribution. Theoretically, the SS/RS contribution can be expressed as 

  
2

2[ , ] exp
4R m
kpl m j s r r

a
A

 
  

 
  (6.3) 

where ݇ is the wave number in water and ݎ௠ is a random coefficient. The variables ݏ and ݎ 

are related to the indices of ۯோ  as ݈ = ݏ) − 2/(ݎ + (ܰ + 3)/4 + 1  for ۯ(ଵ)[݈, ݉]  and 

݈ = ݏ) − ݎ − 1)/2 + (ܰ + 3)/4 for ۯ(ଶ)[݈, ݉], where ܰ is the number of rows/columns of the 

original propagation matrix (i.e. the number of ultrasonic array elements). Equation (6.3) gives 

the theoretical dependence of ۯோ  on index ݈. Conversely, the MS contribution does not display 

such a dependence, and has only a short-range correlation between its lines. 

2. Separation of signal and noise 

A singular value decomposition (SVD) of ۯ(௤) is performed in the frequency domain:  

 † ( ) ( )†

1

p
q q

q
q

A UΛV U V


  . (6.4) 

઩ is a square diagonal matrix containing the (real and positive) singular values ߣ௤ in decreasing 

order, and ܃ and ܄ are square unitary matrices with columns ܃(୯) and ܄(୯) that correspond 

to the singular vectors associated with each ߣ௤.  

Conceptually, the SVD separates the ۯ(௤) matrices into two subspaces: a signal subspace 

 The signal subspace is a matrix with long-range correlation between .ۼ and a noise subspace ܁

its rows and/or columns, while the noise subspace is a random matrix with only short- or 
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medium-range correlations between its rows/columns. The signal subspace is given by largest 

singular values (and their corresponding singular vectors), and the noise subspace is given by the 

smallest singular values.  

To discriminate between signal and noise subspaces, we need to determine the value (rank) 

of ߣ௤ that separates the subspaces. For our experimental geometry the job is simple, as we can 

use the paraxial approximation that ܽ ≫  is the ݌ where ܽ is the sample-array distance and ,݌ܰ

pitch of the individual elements. Thus only the first singular value and vector, ߣଵ and ܃(ଵ), are 

associated with the signal subspace. The subspaces can be calculated by: 

 
(1) (1)†

(1) (1)†

S U U A
N A U U A


 
  (6.5) 

3. A correction for strongly scattering media 

We have seen that the RS contribution displays the same signatures as SS, and that these 

contributions may be separated from those of MS. This is due to the memory effect, which 

causes long-range correlations for SS/RS, but relatively short ones for MS. For MS, the memory 

effect is limited to the area of Δߠ ∼  where ܹ is the spatial extent of the wave spreading ܹ/ߣ

in the sample. In the diffusion approximation, ܹ ∝ ඥܦ஻ݐ, so the correlation angle Δߠ quickly 

becomes small as time progresses. However, for subdiffusive or localized behaviour, the wave 

energy spreads much more slowly, so there may be a significant memory effect in the multiple 

scattering subspace.  

This issue was dealt with by Aubry et al. via the development of a correction for the RS-

MSF (Aubry et al. 2014). 

4. The final step is the reconstruction of ۹୑ and ۹ୖ by re-rotating ܁(୯) and ۼ(୯). An 

inverse Fourier transform can (if desired) return the data back to the time-domain. 
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Some representative results of the RS-MSF filter applied to my experimental data are 

shown in Figure 6.4. 
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Figure 6.4: Propagation matrices from L1 after the RS-MSF process, shown for 

frequency ݂ = 1.65 MHz and time ݐ =  s. Even for this late time and diffuseߤ 150
frequency, the total backscattered intensity (a) is clearly dominated by the recurrent 
scattering contributions (b). After RS-MSF is applied, the conventional multiple scattering 
contribution (c) has mostly recovered the random appearance that would be expected for a 
speckle pattern for incoherent waves. 

Using only ۹୑, the coherent backscattering profiles can now be calculated25 free of RS effects 

(giving, e.g., the data represented by blue pentagons in Figure 6.2). The recurrent scattering on 

its own, however, also holds valuable information about wave behaviour inside the medium. This 

RS-MSF technique has enabled the first experimental study of RS on its own, and furthermore, 

the first characterization of RS in the critical and localized regimes (Aubry et al. 2014). 

6.3. Recurrent scattering in the Anderson mobility gap 

Figure 6.5 shows the time-evolution of the recurrent scattering (RS) ratio ܫோ/ܫ) ܫ is total 

                                                

25 Actually, if the desired quantity is ߠ)ܫ, ,ߠ)ܫ step 4 is not necessary, as ,(ݐ  can be (ݐ
computed by summing ܁ and/or ۼ directly over the appropriate indices. Since with every 
rotation and re-rotation of matrices some elements are lost (Aubry and Derode 2009b), this is a 
worthwhile approach to take. Note that this is the reason that there are only 61 ߠ values for CBS 
intensity profiles, and only 31 ߠ values in the matrices shown in Figure 6.4, while the original 
propagation matrices have 64 rows and columns. 
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backscattered intensity) in the diffuse regime (1.65 MHz), the critical regime (1.20 MHz), and 

the localized regime (1.23 MHz). At early times (ݐ ≲  s) the backscattered intensity is almostߤ 40

completely composed of single scattering and specular reflections from the sample surface. After 

50 µs the RS ratio decreases. In the diffuse regime the RS contribution to total intensity quickly 

becomes small. In the critical and localized regime the RS ratio remains high even for late times, 

and has a particularly slow decay at the mobility edge (1.20 MHz). This observation supports the 

idea that RS plays an important role in the discussion of Anderson localization. 
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Figure 6.5: Time dependence of the RS to total intensity ratio ܫோ(ݐ)/(ݐ)ܫ in the 
diffuse regime (1.65 MHz, black diamonds), the critical regime (1.20 MHz, red circles), 
and the localized regime (1.23 MHz, blue triangles). 

The decay of RS with time has particular significance in the study of localization. For 

times less than twice the Thouless time ߬஽ = ஻ܦ/ଶܮ ∼  s, the medium can be consideredߤ 100

semi-infinite, backscattered waves having not had the time to interact with the opposite sample 

face. In this case, the return probability measured at the sample surface should decay as a power 

law: in the diffuse regime, ܫோ ∝ ହ/ଶݐ/1  for a point source (Douglass et al. 2011). In the 
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localized regime, for times earlier than ݐ <  ஻ (this is a different time scale than in theܦ/ଶߦ

diffuse case, since the waves may not have spread throughout the entire sample), return 

probability should decay as ܫோ ∝  .ଶ (Douglass et al. 2011; Skipetrov and van Tiggelen 2006)ݐ/1

At longer times (ݐ > 2߬஽), the finite sample thickness becomes a factor, so the rate of decay 

should be similar to that of transmission; exponential in the diffuse regime (Page et al. 1995; 

Johnson et al. 2003) and slower than exponential in the localized regime (Hu et al. 2008). 

Figure 6.6 shows the experimentally-measured recurrent scattering ܫோ(ݐ) from L1.  
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Figure 6.6: Time dependence of the RS intensity ܫோ(ݐ) normalized by their values at 
time ݐ଴ =  Data shown are from sample L1, at the same three frequencies as .(଴ݐ)ோܫ ,ݏߤ 60
in Figure 6.5. The corresponding power law fits (solid lines) give ܫோ(ݐ) ∝  ଶ.ସଽ±଴.଴଼ inିݐ
the diffuse regime, ܫோ(ݐ) ∝ (ݐ)ோܫ ଴.ଽସ±଴.଴ସ at the mobility edge, andିݐ ∝  ଵ.ଽସ±଴.଴଺ inିݐ
the localized regime.  

At all frequencies, ܫோ(ݐ) is well described by a power law 1/ݐఈ between 85 μs and 100μs 

(these fits are weighted by experimental uncertainties, given by the standard deviation of the 

configurational average). In the diffuse regime (1.65 MHz), the expected ߙ = 5/2 behaviour is 

observed. In the localization regime (1.23 MHz), the predicted decay of ߙ = 2 is obtained. In 
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between the diffuse and localized regimes, a shift in ߙ can be observed from 5/2 to 2. However, 

at the mobility edge of 1.20 MHz, ܫோ decays unexpectedly slowly, giving a value of ߙ ≈ 1. 

Interestingly, the transition between ܫோ(ݐ) ∼ (ݐ)ோܫ ,ଶ.ସଽ±଴.଴଼ at 1.65 MHzିݐ ∼  ଴.ଽସ±଴.଴ସିݐ

at 1.20 MHz and ܫோ(ݐ) ∼  ଵ.ଽସ±଴.଴଺ at 1.23 MHz does not occur for the upper ME around 1.24ିݐ

MHz, where the result of ߙ ≈ 1 at the ME is not observed. This may have a physical 

significance; it has been shown that the local density of states probably differs between the upper 

and lower MEs of a mobility gap (Lee 2014). As discussed in earlier chapters, the LDOS is 

expected to be much higher at the lower edge of a band gap than at the upper edge (our upper 

ME). This could cause a physical difference in wave behaviour between upper and lower MEs. It 

is also possible that the significant fluctuations and low signal-to-noise at those frequencies are 

obscuring the results, as was observed for the fitting of CBS data with SC theory (Section 5.4). 

The same quantity ܫோ(ݐ) from sample L2 is shown in Figure 6.7. Frequency 1.15 MHz is 

shown as an example of a ‘diffuse’ frequency, although its proximity to the localization regime 

suggests that transport is probably subdiffusive. At all frequencies, ܫோ(ݐ) is well described by a 

power law 1/ݐఈ between 60 μs and 125μs (these fits are weighted by experimental uncertainties, 

given by the standard deviation of the configurational average). These data do not agree as well 

with theoretical predictions as do the data from sample L1 (Figure 6.6). However, the general 

trend is still obeyed; in the localization regime (1.23 MHz), a decay of ߙ ≈ 1.7 is obtained, and 

in between the diffuse and localized regimes, a shift upwards in ߙ can be observed.  
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Figure 6.7: Time dependence of the RS intensity ܫோ(ݐ) normalized by their values at 
time ݐ଴ =  Data shown is for L2. The corresponding power law fits (solid .(଴ݐ)ோܫ ,ݏߤ 53
lines) give ܫோ(ݐ) ∝ ଶ.଴ସ±଴.଴ଵିݐ  at 1.15 MHz, ܫோ(ݐ) ∝ ଵ.ହଶ±଴.଴ହିݐ  at the mobility edge 
(1.20 MHz), and ܫோ(ݐ) ∝  .ଵ.଻ସ±଴.଴ସ in the localized regime (1.23 MHz)ିݐ

At the mobility edge of 1.20 MHz, ܫோ decays unexpectedly slowly, giving a value of ߙ ≈ 1.5. 

Although the limitation in the range of times available for this data set may impact the accuracy 

of this power law fitting, the results agree qualitatively with the surprising results from sample 

L1 data, that is, the observation of a surprisingly slow decay of ܫோ(ݐ) at the lower ME. 

Theoretical predictions for the decay of the return probability do not give a separate prediction 

for the mobility edge (only predictions for the diffuse and localized cases). Our striking result 

shows that further theoretical work is required. 

6.4. Statistics of the propagation matrix 

The RMT approach to the propagation matrix goes far beyond the recurrent scattering 

separation presented in this chapter. The statistical distribution of the singular values of a random 

matrix can be predicted based on the properties of the matrix. A random matrix ۹ whose 
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antidiagonals are strongly correlated would be expected to resemble a Hankel matrix, an NxN 

random matrix whose antidiagonals are equal (Aubry and Derode 2009b). The distribution of the 

singular values of ۹ could also be expected to resemble a Hankel distribution. This effect has 

been demonstrated experimentally for weakly scattering media (Aubry and Derode 2010; Aubry 

and Derode 2009b). Here, we would expect the same effect, since the propagation matrices 

measured from samples L1 and L2 show very strong antidiagonal correlations (Figure 6.3). We 

find that their singular values do indeed show Hankel-like distributions for most frequencies. 

Near the mobility edge, however, large deviations from the theoretical predictions were observed, 

especially around 1.2 MHz (Aubry et al. 2014). In the next paragraph we consider the 

mechanism leading to those large singular values. 

For weakly scattering media containing several well-separated reflecting objects, the 

largest singular of ۹ values may be associated with the most brightly reflecting objects. Each 

corresponding singular vector can be interpreted physically as the wavefront which, if sent from 

the array of transducers, would cause a wave to converge to that object. This interpretation can 

be applied in the real-world to produce powerful target detection and imaging techniques (Prada 

and Fink 1994; Popoff et al. 2011). Instead of physically emitting a singular vector from the 

ultrasonic array to focus to a target, this backfocussing can be performed numerically. For a 

medium in which single scattering dominates, this technique enables the imaging of each bright 

reflecting target. 

Sample L1 is very strongly scattering, and does not consist of bright, well-resolved 

individual scatterers. Nonetheless, if the singular vectors corresponding to the two largest 

singular values for ۹ from L1 are backpropagated, target-like images are produced (Figure 6.8).  
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Figure 6.8: ‘Hotspots’ (the numerical backpropagation of singular vectors from the 

propagation matrix) of sample L1 at frequency 1.20 MHz. Peaks correspond to intense 
recurrent scattering paths inside the sample. Shown are different configurations of disorder 
(array positions) (plots (a-h)). For different configurations of disorder, the backfocussing 
produces peaks at different (but regular) time windows – these time intervals are marked 
on each plot (a-h) (Aubry et al. 2014). 

If single scattering were the dominant process, the observation of a single peak would indicate a 

brightly reflecting object, whose distance inside the sample would correspond to the time 

required for a wave to travel between the array and the object. Instead, for sample L1 at the first 

ME (1.2 MHz), distinct peaks are observed to occur at regular time intervals, as shown in Figure 

6.8. We interpret these peaks as the intensity which travels along recurrent scattering paths 

having their start and end points near the sample surface. The regular time intervals at which the 

intensity returns would therefore correspond to the length of the recurrent scattering path inside 

the sample. For ۹ matrices acquired at different array positions (i.e. different configurations of 

disorder), these hotspots exhibit different recurring time intervals, which supports the 

interpretation that the peaks correspond to recurrent scattering paths of different distances inside 

the sample. 
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6.5. Conclusion 

We have observed a significant contribution of recurrent scattering to total backscattered 

intensity from slab mesoglasses L1 and L2. Usually practically non-existent for weakly-

scattering media, this high RS contribution indicates the presence of very strong scattering in 

these samples. This observation agrees qualitatively with our previous estimate of ݇ℓ ∼ 1, but is 

subject to fewer assumptions and is directly observable by inspecting the propagation matrix at 

long times (e.g. Figure 6.3). 

Via the RS-MSF, the contribution of recurrent scattering to total backscattered intensity 

was studied for the first time on its own. In particular, the return probability as a function of time 

was examined, and experimental results were supported by theoretical predictions in both the 

diffusive and localized regimes. However, at the lower mobility edge of 1.20 MHz, a strikingly 

slow return probability decay was observed, which is different than the theoretical predictions for 

both diffuse and localized regimes. Our observation may indicate the presence of related 

processes at the mobility edge, motivating further theoretical work to understand such behaviour. 

Certainly, additional measurements of multifractality and possibly ܥ଴ correlations (Hildebrand 

et al. 2014) for samples L1 and L2 may be interesting.  

This work constitutes the first study of RS in the critical and localized regimes. As 

recurrent scattering is directly linked to the scattering processes which accompany Anderson 

localization, this work represents a valuable and direct new method of investigating the critical 

and localized regimes.
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Appendix 6A : Recurrent scattering and memory effect at the Anderson 

localization transition 
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We report on ultrasonic measurements of the propagation operator in a strongly scattering mesoglass.
The backscattered field is shown to display a deterministic spatial coherence due to a remarkably large
memory effect induced by long recurrent trajectories. Investigation of the recurrent scattering contribution
directly yields the probability for a wave to come back close to its starting spot. The decay of this quantity
with time is shown to change dramatically near the Anderson localization transition. The singular value
decomposition of the propagation operator reveals the dominance of very intense recurrent scattering paths
near the mobility edge.
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In a disordered medium, a classical approach is to
consider the trajectory followed by a wave as a
Brownian random walk. After a few scattering events,
the spatiotemporal evolution of the mean intensity is
governed by the diffusion equation. The relevant param-
eters are the scattering mean free path ls, the transport mean
free path l�, and the Boltzmann diffusion coefficient DB.
However, this classical picture neglects interference effects
that may resist the influence of disorder. In particular,
constructive interference between reciprocal multiple scat-
tering (MS) paths enhances the probability for a wave to
come back close to its starting point as compared to
classical predictions: this phenomenon is known as weak
localization. Hence, interference can slow down and
eventually stop the diffusion process, giving rise to
Anderson localization (AL) [1–5]: instead of spreading
diffusely from the source, a wave packet remains localized
in its vicinity on a length scale given by the localization
length ξ. The transition at a mobility edge between diffuse
and localized behavior is predicted to exist only in three-
dimensional media and occurs when the scattering is
sufficiently strong, i.e., when kls ∼ 1 (with k the wave
number in the scattering medium) [2]. Several experiments
in optics have shown deviations from diffuse behavior in
three-dimensional strongly scattering samples [6–8].
However, the most direct proof of three-dimensional
classical wave localization was first established in acous-
tics, by observing the transverse confinement of energy in a
mesoglass consisting of an elastic network of aluminium
beads [9]. More recently, this transverse confinement
method [9] has also been used in optics [10].
In this Letter, we investigate some new mesoscopic

aspects of AL, taking advantage of ultrasonic technology.
More precisely, we adopt a matrix formalism which is
particularly appropriate since the ultrasonic wave field can

be controlled by an array of independent transducers acting
both as sources and receivers (Fig. 1). The Green’s
functions Kij, obtained by emitting a wave from an array
element i and recording the backscattered field at an
element j, constitute the propagation matrixK. This matrix
provides many fundamental insights into the medium under
investigation. One can, for instance, extract from K the
single- and multiple-scattering components [11–13], the
diffusive halo and the coherent backscattering cone [14], or
even determine the open scattering channels [15,16].
In this study, the propagation matrix is investigated in the

strongly scattering regime (kls ∼ 1). Surprisingly, the back-
scattered field displays a deterministic coherence along the
antidiagonals of K in a way similar to single scattering
[11], but at much longer times of flight. We argue that
recurrent scattering (RS) paths account for this long-range
coherence and establish the link with the memory effect

FIG. 1 (color online). Experimental setup. Examples of a
single scattering path (green dashed arrows), of a RS path
(red solid arrows) and of a conventional MS path (orange dotted
arrows) are drawn.
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[17,18]. By RS paths, we mean any scattering path that
begins and ends at positions separated by less than one
mean free path. A matrix method is then applied to extract
the RS contribution from the backscattered wave field. This
yields a quantitative measurement of the probability for a
wave to return to its starting spot. A slowing down of the
decay of this return probability with time is observed near
the localization transition, in qualitative agreement with
theory [4]. At the mobility edge, the measured decay is
actually slower than anticipated from the self-consistent
(SC) theory of localization [4]. This surprising behavior
coincides with the emergence of very intense RS paths that
dominate the singular value spectrum of K. These obser-
vations offer new insights into key aspects of three-
dimensional AL that have not been accessible to
experimental investigation previously.
Our random scattering sample is a mesoglass similar to

those used in a previous work [9]. It is made from 3.93 mm
mean diameter aluminium beads brazed together at a
volume fraction of approximately 55%. The cross section
(230 × 250 mm2) of the slab-shaped sample is much larger
than its thickness L ¼ 25 mm. Unlike the samples in
Ref. [9], there is a polydispersity of about 20% in the size
of the beads, and different brazing conditions resulted in
stronger elastic bonds between the beads, thereby modi-
fying the scattering properties of the sample. From mea-
surements at 0.9 MHz of the coherent pulse crossing the
sample [19], we estimate the longitudinal phase velocity
vp ≈ 2.8 mm=μs and the mean free path ls ≈ 1.3 mm [19].
This leads to a product of wave number k and mean free
path kls ≲ 3. Above 1 MHz, the coherent pulse becomes
too small to measure accurately in this thick sample,
consistent with even stronger scattering and smaller values
of kls. By performing transverse confinement measure-
ments [9], we find that the waves are localized between 1.2
and 1.25 MHz (mobility edges), with ξ < L in the middle
of this band.
The experimental setup (Fig. 1) uses N ¼ 64 elements of

a linear ultrasonic array in the 1–2 MHz frequency range.
The array pitch p is 0.5 mm. The array is immersed in
water, at a distance a ¼ 182 mm from the waterproofed
sample. N2 time-dependent responses are measured by
sending a pulse from element i and recording the scattered
wave field at element j (see Fig. 1), for all i and j. To
perform a time-frequency analysis, these signals are filtered
by a Gaussian envelope of standard deviation of 0.015MHz
centered around a given central frequency f. A set of
matrices Kðt; fÞ is obtained at each time-frequency pair.
This operation was repeated for 302 different realizations of
disorder by moving the array in a plane parallel to the
sample surface.
Figure 2(a) displays a typical example of the matrix K

obtained at frequency f ¼ 1.25 MHz and time t ¼ 185 μs
much exceeding the mean free time ls=vp ∼ 1 μs, deep in
the MS regime. Surprisingly, despite its overall random

appearance, the matrix K exhibits a clear coherence along
its antidiagonals. This result should be considered in the
context of previous studies [11,20] that dealt with much
weaker scattering (kls ∼ 100). In these media, the anti-
diagonal coherence was proven to be associated with the
single scattering contribution and insensitive to disorder. It
can also be understood as a manifestation of the well-
known memory effect. This phenomenon was discovered in
optics in the late eighties [17,18] and has recently received
renewed interest in the context of ultrasonic and optical
imaging [12,21–24]. When an incident plane wave is
rotated by an angle θ, the speckle image measured in
transmission or in backscattering in the far field of the
sample is shifted by the same angle θ (or −θ in reflection),
as long as θ does not exceed a certain threshold, namely the
angular correlation width Δθ. In the single scattering
regime, the memory effect actually spreads over the whole
angular spectrum (Δθ ¼ π=2) [17,18]. This accounts for
the fact that the signals Kij are coherent along the same
antidiagonal, as long as only single scattering takes place.
Indeed two pairs of array elements ði1; j1Þ and ði2; j2Þ on
the same antidiagonal obey i1 þ j1 ¼ i2 þ j2. Changing the
direction of emission amounts to changing i1 into i2.
Consequently, in reflection the resulting speckle will be
tilted so that the signal that was received in j1 will be
coherent with the new signal in j2 ¼ j1 − ði2 − i1Þ. When
MS takes place, the correlation width Δθ is greatly
restricted. Therefore the Kij’s are no longer expected to
exhibit this remarkable antidiagonal coherence, and are
expected to emerge as random and only short-range
correlated [11,20]. However, Fig. 2(a) clearly contradicts
this simple picture. It indicates that the matrix K corre-
sponding to the strongly MS regime shares the spatial
coherence of the matrix corresponding to the single
scattering regime, though at much longer times of flight.

FIG. 2 (color online). (a) Real part of the matrix K at time
t ¼ 185 μs and frequency f ¼ 1.25 MHz for a given realization
of disorder. (b) Real part of the RS contributionKR. (c) Real part
of the conventional MS contribution KM. (d) Spatial mean
intensity profiles at the same time and frequency.
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Another surprising result is shown by Fig. 2(d) which
displays the mean backscattered intensity as a function of
the distance between the source i and the receiver j at the
same time and frequency as in Fig. 2(a). In the MS regime
(vpt ≫ ls) and far from localization (kls ≫ 1), the intensity
backscattered at the source is expected to be twice as large
as the intensity far from the source: this is the coherent
backscattering phenomenon [25–28]. Although we do
indeed obtain this coherent backscattering peak, the
enhancement factor is clearly smaller than 2. We interpret
this as a sign of a large contribution from RS (red arrows in
Fig. 1). RS, just like single scattering, contributes to the
background intensity that is independent of the distance
between source and receiver. The interference between a
wave and its reciprocal counterpart is indeed always
constructive for these two contributions. A reduction of
the enhancement factor due to RS was previously observed
experimentally, but in a much lower proportion and not as a
function of time [29,30].
The very large RS contribution seen in our experiment

sheds new light on the long-range spatial coherence
observed in Fig. 2(a). In the strongly scattering regime,
the backscattered field can be decomposed into a sum of
two terms: (i) A RS contribution (red arrows in Fig. 1) that
displays the same statistical properties as the single
scattering one. This contribution accounts for the
deterministic coherence along the antidiagonals of K in
Fig. 2(a). (ii) A conventional MS contribution (orange
arrows in Fig. 1) for which the first and last scattering
events are separated by more than one mean free path. In
this case, the memory effect is restricted to the angular
width of the backscattering cone [31,32].
Previous studies have taken advantage of the memory

effect to separate single and multiple scattering [11–13].
Here, the previous method is significantly extended [33] to
enable K [Fig. 2(a)] to be separated into a RS component
KR [Fig. 2(b)] and a conventional MS component KM

[Fig. 2(c)]. Once the separation of these two contributions
is performed, one can compute the corresponding mean
backscattered intensity [Fig. 2(d)]. Whereas RS leads to a
flat intensity profile, the conventional MS intensity exhibits
a coherent backscattering cone. The recovery of an
enhancement factor close to two demonstrates that RS
was indeed responsible for reducing the enhancement
factor seen for the total intensity I [30] [Fig. 2(d)].
The RS intensity IR is directly related to the probability

PR for a wave to return to the spot at which it entered the
scattering sample. From a theoretical point of view, this
return probability is a key quantity in the description of the
renormalization of the diffusion constant in the SC theory
of localization [3,4]. Figure 3(a) shows the time evolution
of the RS ratio IR=I at f ¼ 1.2 MHz (critical regime), f ¼
1.225 MHz (localized regime), and f ¼ 1.8 MHz (diffuse
regime), with I the total backscattered intensity. After a
plateau close to 100% that lasts until t ¼ 50 μs due to

specular echoes from the sample surface (see green arrows
in Fig. 1), the RS ratio starts to decrease with time. This
ratio is highest at 1.225 MHz, and has a particularly slow
decay at f ¼ 1.2 MHz, with IR=I being still above 70% at
t ¼ 200 μs (i.e., after 450 scattering events) for both
frequencies. The large predominance of RS paths at
frequencies near 1.225 MHz strongly suggests it to be a
crucial element in any discussion of AL.
The decay of the RS intensity with time bears particular

signatures of AL. For times of flight smaller than twice the
Thouless time τD ¼ L2=DB ∼ 100 μs, the medium can be
considered as semi-infinite in a backscattering configura-
tion. In that case, a power law decay is expected for the
return probability at the surface of the sample: IRðtÞ should
decrease as 1=t5=2 in the diffuse regime [8] and, for
t > ξ2=DB, as 1=t2 in the localized regime [4,8]. At longer
times of flight (t > 2τD), the finite sample size should come
into play so that the decay becomes similar to that of time-
dependent transmission, i.e., exponential in the diffuse
regime [34,35] and nonexponential in the localized
regime [7,9].
Figure 3(b) displays the typical time dependence of IRðtÞ

in the 1–2 MHz frequency range. At all frequencies, IRðtÞ
can be described by a power law 1=tα between 85 and
200 μs. We recover the exponent α ¼ 5=2 at 1.8 MHz,
characteristic of the diffuse regime, and observe its shift to
2 at 1.225 MHz as expected in the localized regime.
Furthermore, we observe a strikingly slower decay at
f ¼ 1.2 MHz, which corresponds to a mobility edge and
where α reaches a value close to 1. Further theoretical work
on the Anderson transition in open media is needed to
account for this unexpected behavior. As the exponent α is
linked to the dimension of available space in which the
waves propagate, it might be related to previously observed
[36] and theoretically predicted [37–40] multifractal prop-
erties of the wave function. In the literature, transmission
measurements have also shown some deviations from SC
theory in the localized regime [41] due to long-lived

FIG. 3 (color online). (a) Time evolution of the RS ratio IR=I at
f ¼ 1.2 MHz (red circles), f ¼ 1.225 MHz (green diamonds),
and f ¼ 1.8 MHz (blue squares). (b) Time evolution of the RS
intensities IRðtÞ, normalized by their values at time t0 ¼ 90 μs, at
the same three frequencies, shown in a log-log scale. The
corresponding fits with a power law (continuous lines) yield
IRðtÞ ∝ t−2.55�0.13 at 1.8, IRðtÞ ∝ t−2.04�0.18 at 1.225 and IRðtÞ ∝
t−0.95�0.23 at 1.2 MHz.
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resonant modes [42]. Interestingly, as discussed below, the
discrepancy with SC theory in backscattering coincides
with the emergence of very intense RS paths close to the
mobility edge.
We now investigate the effect of RS on the statistical

properties of the random matrix K. First, we study the
statistical properties of the singular values of K and
compare them with the predictions of random matrix
theory (RMT). The singular value decomposition (SVD)
consists in writing K ¼ UΛV†, where U and V are unitary
matrices and Λ is a diagonal matrix whose nonzero
elements λi are called the singular values of K. They are
real, positive, and arranged in decreasing order. In the case
of random matrices whose antidiagonals are either constant
or strongly correlated (Hankel matrices), the statistical
distribution of singular values, particularly the strongest
ones, can be calculated and compared to experimental
measurements [11,20]. In the present situation, given the
substantial memory effect, one would expect the singular
values to follow Hankel-like distributions, as was observed
in previous work dealing with weaker scattering [11,20].
However, the present experimental results show that this is
clearly not the case for the first two singular values,
especially around 1.2 MHz. Figure 4(a) displays the
average of the three largest singular values, hλi¼1;2;3i, as
a function of frequency at a given time t ¼ 150 μs [43].
The hλii are compared to the theoretical values expected for
Hankel random matrices [20]. As we will now discuss, the
spectacular discrepancy between the first two singular
values and RMT predictions around 1.2 MHz is related
to the dominance of intense RS paths in the backscattered
wave field.
Singular vectors can be given a physical interpretation:

they are the invariants of the time reversal operatorKK†. In
a weakly scattering regime, there is a one-to-one corre-
spondence between single scattering paths and eigenvec-
tors of K associated with nonzero singular values [44,45]:
each singular vector of K corresponds to the wave front

that, if sent as such from the array, would focus onto the
corresponding scatterer. By contrast, in strongly scattering
media, the physical meaning of singular vectors and the
result of their back propagation will be different, and may
reveal unusual phenomena. Figure 4(b) shows the time
evolution of the numerical back propagation of V1 at the
sample surface for one realization of disorder. Once again,
we observe remarkable behavior around 1.2MHz:V1 back-
focuses on the same particular location at regular time
intervals (every 40 μs), as if it were associated with a
particular dynamic hot spot. The corresponding peaks are
of same duration as the incident pulse (∼10 μs). In the
strongly scattering regime, near the localization transition,
we argue that the largest singular values ofK are associated
with predominant RS paths, whose entry and exit points
appear as specific hot spots at the surface of the sample. For
the realization of disorder considered in Fig. 4(b), the
occurrence of the same hot spot every 40 μs could indicate
that it corresponds to successive round trips along a RS
path of no less than 90 scattering events. Note that the
emergence of dynamic hot spots has been observed in other
configurations of disorder with different regularly spaced
intervals of time ranging from 30 μs to 100 μs [33]. From a
practical point of view, the selective and independent
excitation of RS paths can open new perspectives for
manipulation of wave fields in complex media. In an
amplifying medium, for example, one could select the
scattering paths to be amplified and thus control the random
laser process [46].
In conclusion, we have shown how new information on

the dynamics of Anderson localization can be obtained
using the mesoscopic reflection matrix approach. The long-
range spatial coherence of the RS contribution has been
directly observed and its link with the memory effect has
been established. A sophisticated matrix manipulation
method has been further developed to separate this con-
tribution from the conventional MS background, enabling
RS to be examined experimentally on its own for the first
time. Thus we are able not only to demonstrate that the
contribution of RS to the total backscattered intensity is
strikingly large near the Anderson transition, but also to
investigate the dynamics of the return probability for waves
within the scattering medium. In particular, a dramatic
slowing down in the decay of the return probability has
been found near the mobility edge, with a power-law
exponent α that is smaller than expected, motivating new
theoretical work to understand this behavior quantitatively.
The emergence of very intense RS paths, which are
revealed by our analysis of the singular values of the
backscattering matrix, is another novel feature of our
results, and provides support for the idea that RS plays a
very important role near the mobility edge.
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FIG. 4 (color online). (a) Average of the first three singular
values hλii versus frequency at time t ¼ 150 μs. The experi-
mental results (circles) are compared to the RMT predictions
(lines). Error bars correspond to� the standard error in the mean.
(b) Back propagation of the first singular vector at the sample
surface computed at each time for one realization of disorder at
frequency f ¼ 1.2 MHz. x represents the coordinate along the
surface.
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7. Statistics and Multifractality Near the Mobility Edge 
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7.1. Introduction 

The scaling theory of localization explains how, in principle, the effects of localization can 

be probed by examining the behaviour of waves on different length scales (see Section 2.5.1). 

However, this theory does not take into account fluctuations, which is a significant limitation 

because fluctuations are expected to be especially strong near the critical point (Krachmalnicoff 

et al. 2010; Mirlin 2000). This thesis has demonstrated that near the Anderson transition, the 

localization length  is difficult to measure due to huge fluctuations, which are a source of 

uncertainty in the experimental data. However, the fluctuations themselves can be used to probe 

the critical and localized regimes. This chapter demonstrates such a technique, based on 

measurements of the multifractal spatial structure of the wave function intensity. I present 

measurements of the spatial variations of the speckle pattern which are expected to show one or 

more Anderson localization transitions. These systems are slab sample L1 and similarly-

constructed cubic-shaped aluminum-brazed samples. As it is a measure of spatial fluctuations 

which are enhanced in the critical regime, multifractal (MF) analysis is a natural tool for an 

investigation of the localization transition. A recent theoretical advance suggests that 

experimentally-measured signatures of MF from cubic samples of varying sizes could enable the 

measurement of the critical exponent ߥ. The first steps towards this ambitious goal are reported 

here, and promising results are presented. 

7.2. Introduction to multifractality26 

Multifractality is a sensitive measure of the spatial structure of wavefunctions. This means that 

the moments of transmitted intensity depend on the system size L in a nontrivial way (Evers and 
                                                

26 (Rodriguez et al. 2011; Evers and Mirlin 2008) 
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Mirlin 2008; Faez et al. 2009). This dependence can be determined either by varying system size, 

L, or by dividing the system into boxes of size b, and varying b, as shown in Figure 7.1. 

 
Figure 7.1: For a fixed system size, the spatial structure of the transmitted speckle 

pattern can be probed by dividing up the speckle map into boxes of size b. Shown here is a 
map of intensity transmitted through a cubic aluminum brazed sample (these types of 
samples are discussed further in Section 7.4). 

The scaling of the moments of intensity is measured by the generalized inverse 

participation ratio (GIPR): 

  
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where ܫመ(⃑ݎ) = |߰ଶ(⃑ݎ)|/∫ |߰ଶ(⃑ݎ)|݀ௗ⃑ݎ. The integral over ܤ௜ denotes a summation of intensity 

inside a particular box ܤ௜ of linear size b, with ߣ ≪ ܾ ≪  is the wavelength. This ߣ where ,ܮ

box-summing concept is sketched in Figure 7.1, where in this case ܮ =  ௚ is the linearܮ ௚, asܮ

size of the speckle pattern on the surface of the sample, and ݀ = 2 since the spatial structure in 

a plane is analysed. By carrying out this procedure on the entire sample surface, and varying b, 

the dependence of ௤ܲ  on b can be measured. The GIPR scales with L/b as 

   ( )/ q
qP L b  . (7.2) 
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The exponent ߬(ݍ) is often used to define the fractal dimension of a system ܦ௤ via ߬௤ =

ݍ)௤ܦ − 1). For extended states, ܦ௤ = ݀, where d is the system dimension. For localized states 

௤ܦ = 0. A single, non-integer value of ܦ௤ would imply that the wavefunctions exhibit a (single) 

fractal structure. For critical states, ܦ௤ is a nontrivial function of q, indicating that the spatial 

structure of wavefunctions is multifractal.  

By separating ߬(ݍ) into its ‘conventional’ (diffuse) and anomalous parts, we can write 

  1 Δq qd q     , (7.3) 

where Δ௤ is defined as the anomalous fractal dimension. For extended states, Δ௤ = 0 (for 

ܮ → ∞  or ߣ → 0 ). At criticality, ߬௤  is a continuous function of q, indicating that the 

wavefunction structure is multifractal. This (nonlinear) dependence of ߬௤  on ݍ  can be 

characterized using the singularity strengths ߙ௤, defined as: 

 q qd dq   (7.4) 

The GIPR are proportional to the moments of the distribution function of the intensities, 

 This distribution, also called the probability density function (PDF), scales with L/b at .(஻ܫ)࣪

criticality as 

      ln / d f
BI L b  P . (7.5) 

where ߙ ≡ ln ஻ܫ / ln(ܮ/ܾ) and ܫ஻ ≡ ∫ ஻೔ݎௗ⃑݀(ݎ⃑)መܫ
 . The second term in the exponent, ݂(ߙ), is 

called the singularity spectrum, and is the fractal dimension of the set of points ⃑ݎ where the 

wavefunction intensity scales as (ݎ⃑)ܫ ∼   .ఈିܮ

 

While the wavefunctions are, strictly speaking, only predicted to be multifractal exactly at 

the critical point, they are expected to remain multifractal on either side of the transition (on a 
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range smaller than the correlation length ߦ) (Cuevas and Kravtsov 2007; Rodriguez et al. 2011; 

Faez et al. 2009). This idea is supported by the common observation of very high wavefunction 

fluctuations as the transition is approached, and by recent work showing that wave functions 

exhibit strong multifractality (MF) near the Anderson transition (Faez et al. 2009). This 

experimental study by Faez et al. measured multifractal aspects of ultrasound in 3D, in samples 

similar to my samples L1 and L2. Figure 7.2 shows the results for Δ௤ in the localized regime 

near the critical point, compared with optical measurements for diffuse waves. The data show the 

expected parabolic shape (Faez et al. 2009), and are relatively flat in the diffuse regime and 

curved in the localized regime. The data also confirm the predicted symmetry relation for Δ௤: 

 1q q   . (7.6) 

 
Figure 7.2: The measured anomalous exponents Δ௤ from ultrasound in a brazed 

aluminum bead slab mesoglass. The ultrasonic results in the localized regime (black 
squares) are compared with optical measurements in the diffuse regime (red circles). The 
dashed line shows the results in the localized regime, mirrored about ݍ = 1/2. The 
agreement between black squares and dashed line supports the predicted symmetry relation 
of Equation (7.6). Figure courtesy of John H. Page. 

 Multifractality and finite-size scaling 7.2.1.

The expectation that multifractality will persist away from the critical point suggests that 



212 

 

the phase transition itself could be studied using multifractal quantities. Recently, Rodriguez et al. 

have extended the multifractal theory summarized in the previous section to the vicinity of the 

critical point (Rodriguez et al. 2010; Rodriguez et al. 2011). They have done this by combining 

multifractal analysis with finite-size scaling concepts. Their theoretical model (supported by 

numerical simulations) which is applicable throughout the entire critical regime, suggests that 

critical parameters at the Anderson transition may be measured from the probability density 

function (PDF) and/or the generalized inverse participation ratio (GIPR). The main ideas of the 

extended theory are summarized very briefly below, and described in detail by Rodriguez et al. 

At the critical point (and in the thermodynamic limit ܮ → ∞), the GIPRs obey the scaling 

law of Equation (7.2), reproduced here: 

 ( )q
qP    

where ߣ ≡  Close to the transition, the GIPRs are expected to depend on the ratio of L and b .ܮ/ܾ

to the localization (correlation) length ߦ. This is justified using renormalization group (RG) 

arguments. This concept is also fundamental to scaling theory, where the width of localized 

modes, ߛ, scales as ߛ ∝ exp (−ߦ/ܮ) (Equation (2.57)). Thus, the scaling law for the GIPRs can 

be written more generally as 

    ( ), , / , /q
q qP W L b P L b     (7.7) 

with ߦ = and ܹ is the disorder parameter. At the critical point ௖ܹ (ܹ)ߦ  the correlation 

length diverges according to the critical exponent ߥ: 

 cW W      (7.8) 

Combining Equations (7.7) and (7.8) recovers the ܮ/ܾ invariance of the GIPR at the critical 

point (Equation (7.2)). It is important to note that in this theory, sample size ܮ is assumed to be 
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equivalent to the linear size of the grid, ܮ௚, over which transmitted speckle is measured. For our 

experiments these quantities are not equivalent. In previous work on slab-shaped samples 

(including Section 7.3 in this thesis), sample size ܮ was not relevant in the comparison with 

theory, so the relation ߣ =  ,௚ was used. For the finite-size scaling analysis presented hereܮ/ܾ

we keep the definition of ߣ ≡  as clearly the physical sample dimensions must be involved ,ܮ/ܾ

in the RG method begun at Equation (7.7). 

 

Away from the transition, the GIPRs depend on ܮ, ܾ, and disorder ܹ. To quantify this 

dependence, Equation (7.7) can be rearranged as  

      1
, , / , /

lnq q q

q q
W L L b    




    (7.9) 

where the function B௤  is related to the original GIPRs ௤ܲ . This enables the definition of 

generalized anomalous scaling exponents 

  1q q d q      (7.10) 

which will obey the scaling law 

      1
, , / , /

lnq q q

q q
W L L b  




     . (7.11) 

Similarly, the PDF may be approximated throughout the critical regime using a generalized 

version of the singularity spectrum, ሚ݂(ߙ): 

      ln ; , ,ln ; , , / Bd f I W L b
BI W L b L b  


P . (7.12) 

As the thermodynamic limit ߣ → 0 is approached at the critical point, Equation (7.12) reduces 

to the standard expression of Equation (7.5). For fixed ߣ, the PDF is scale invariant at the 

transition. Using Equations (7.4) and (7.9), we can see that the generalized ߙ obeys a scaling 
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law similar to that of Δ௤; 

    1, , / , /
lnq q qW L A L b    


   (7.13) 

It can be shown that the mean value of the PDF, 〈ߙ〉, and the position of its maximum, obey the 

same scaling law as Equation (7.13). 

 

This multifractal theory applies over the entire critical regime. Two applications of the 

theory to experimental data are immediately evident (Rodriguez et al. 2011): 

1. By varying disorder and system size, but fixing ߣ, the critical parameters of the 

Anderson transition can be measured. This analysis was performed for numerical simulations by 

Rodriguez et al. Results for the PDF are shown in Figure 7.3. As the Anderson transition is 

crossed from the diffusive (metal) to localized (insulator) regime, the PDF broadens and its 

center shifts. The rate at which the center shifts depends only on sample size. 

 
Figure 7.3: Numerical simulations of the probability density ࣪(ln ஻ܫ ; ܹ, ,ܮ ܾ) as a 

function of disorder, ܹ, across the Anderson transition for a fixed ߣ. Results are shown 
for two system sizes ܮ. In this figure, ߙ ≡ ln ஻ܫ / ln  Used with permission (Rodriguez .ߣ
et al. 2010).

In other words, multifractal quantities such as the PDF and GIPR exhibit finite-size scaling 
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behaviour close to the Anderson transition. For fixed L/b, both Δq and the PDF show : 

a) Scale-invariance at the critical point 

b) Finite-size scaling behaviour away from the transition 

The theory predicts that 

c) As the mobility edge is approached, Δq and the mean of the PDF will shift at a rate 

which depends on L. 

The theory would allow the fitting of experimental data with disorder and system size for a 

simultaneous estimate of critical parameters ௖ܹ , which is determined by ௖݂  for my experiments 

in the SC theory analysis in Section 5.1.1 of this thesis, and ߥ. An example of how this type of 

analysis could be applied to my experimental data is presented in Section 7.5.4 of this chapter. 

 

2. To go further with the analysis, the theory would allow the fitting of experimental data 

with disorder, system size and box size. This would yield, in addition to ௖݂  and ߥ, an estimate 

of the scale-invariant multifractal exponents Δ௤ and ߙ. This technique was demonstrated for 

numerical data by Rodriguez et al. in 2011. 

 

In this work, I would like to see if the shift in the Δ௤ and 〈ߙ〉 as the ME is approached 

(points 1a-c, above) can be observed experimentally. This measurement will be extremely 

challenging, as it requires samples of different sizes in which the mobility edge occurs at the 

same frequency, and enough samples (realizations of disorder) to provide an adequate 

configurational average. Success with this first experimental step, however, will lead to more 

sophisticated fitting of the data with the theory (point 2, above), which could simultaneously 

pinpoint the frequency of the mobility edge and provide an unambiguous experimental 
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measurement of ߥ for classical waves in a 3D medium. 

7.3. Speckle statistics in a slab mesoglass 

In Chapter 5 of this thesis, fluctuations in the averaged transmitted and backscattered 

dynamic intensity were observed near the critical regime (e.g. Figure 6.6 and Figure 5.5, and 

accompanying text). For a more direct quantification of the spatial fluctuations in transmitted 

intensity, the variance ߪଶ (the square of the standard deviation) can be examined. This quantity 

can be measured experimentally by acquiring speckle maps of transmitted field in the following 

way. 

 Field mapping 7.3.1.

A field map is used to study the speckle pattern of transmitted waves near (within 1-2 ߣ) 

the surface of the sample. In these experiments, the source is kept stationary and the detector 

scans over a relatively large grid on the opposite sample face. In this way, a speckle pattern near 

the output face of the sample (such as that shown in Figure 2.1) is acquired. To ensure that 

results are not dependent on a particular source point (and to acquire more points for statistical 

analysis), several speckle maps are recorded with the source point at different positions on the 

sample surfcace. Further experimental details are given in Section 3.2.2. 

 Variance from speckle maps 7.3.2.

 Figure 7.4 shows ߪଶ(݂) of the normalized transmitted intensity ܫመ(݂) ≡  〈(݂)ܫ〉/(݂)ܫ

through sample L1. The variance is calculated from the experimental speckle maps measured in 

transmission, as described in the previous section. Five different maps were acquired, each with a 

different source position. The configurationally-averaged variance 〈ߪଶ(݂)〉 is the average of the 

variance from each map. The difference in the level of this quantity and the ‘overall variance’, 
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 ଴ correlations. Theseܥ ଶ(݂), calculated over all data from all maps, is most likely due toߪ

correlations are related to the fluctuations of the density of states at the source position, and have 

been shown to increase significantly near a mobility edge (Hildebrand et al. 2014). In Figure 7.4 

the difference between 〈ߪଶ〉 and ߪଶ is most markedly observed near MEs (1.2 MHz and 0.88 

MHz, which is almost certainly a ME). This concept is in keeping with the theme of enhanced 

fluctuations near the localization regime. 

0.8 0.9 1.0 1.1 1.2
1

2

10

20

1

10

  2  ( no C0)
  2        (with C0)
  7/3

2

Frequency (MHz)
 

Figure 7.4: Variance of normalized transmitted intensity speckle maps for sample L1. 
Configurationally-averaged 〈ߪଶ〉  (black squares) is generally lower than ߪଶ  which 
includes data from all source positions (red circles), especially near critical regimes, due to 
the presence of significant ܥ଴ correlations. Error bars for 〈ߪଶ〉 indicate the deviation 
from the mean over the variance from each individual speckle map. Every second point for 
 .is omitted, for clarity 〈ଶߪ〉

The large variance at the lower ME of 1.20 MHz indicates the presence of huge 

fluctuations of transmitted intensity, in agreement with previous observations in this thesis and 

for similar samples. At no frequency is 〈ߪଶ〉 = 1 recovered, which is the expected value for 
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purely diffuse behaviour. The exception is near 1.25 – 1.3 MHz, where the presence of noise in 

these experimental measurements dominates (see Figure 7.6 and accompanying text). Even at 1.0 

– 1.1 MHz, where the probability of purely diffuse behaviour is highest, ߪଶ > 1. It is probable 

that wave transport is subdiffusive all the way through the 1.0 MHz passband. In any case, Fig. 

7.4 shows that the magnitude of variance depends on how the variance is measured, so that care 

must be used in trying to establish a criterion for located a mobility edge based on a particular 

value of the variance.   

Figure 7.4 also enables a tentative comparison of the data with one of the criteria for 

localization, outlined in Section 2.5.3: variance of transmitted intensity 〈ߪଶ〉 = 7/3 at the 

mobility edge (so 〈ߪଶ〉 > 7/3 for localization). However, this criterion was established for 

quasi 1D systems, and may not be valid in 3D. 

 Multifractality 7.3.3.

As a first approach to observing multifractality near a mobility edge, I have calculated the 

anomalous exponent Δ௤  for my slab mesoglass L1. This quantity is calculated from 

transmission speckle maps. The analysis is similar to that detailed by Faez et al. (Faez et al. 

2009). For these experimental data, the appropriate length scale to compare with b is ܮ௚, the 

linear size of the grid over which the speckle map was measured (as shown in Figure 7.1), and 

not the actual sample size. The GIPRs are calculated directly from the speckle map (Equation 

(7.1)), for a range of box sizes b. From the configurationally-averaged GIPRs, the anomalous 

fractal dimension Δ௤ can be directly calculated. Results are shown in Figure 7.5 for diffuse (1.0 

MHz) and localized (1.2 MHz) regimes. The data in the localized regime are very similar to that 

for the monodisperse sample shown in Figure 7.2, but the conventional diffusive behaviour is not 

recovered: the Δ௤ at 1 MHz depend more heavily on q than would be expected in the diffuse 
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regime. The reason for this may be that waves at 1 MHz are not purely diffusive. Being at the 

center of a pass band, 1 MHz is presumed to be the ‘most’ diffuse frequency out of the available 

range for the measured transmitted speckle map (0.75 to 1.28 MHz), but this fact has not been 

independently confirmed (as was done, for example, at 250 kHz in Chapter 4). However, it is 

definitely not localized, and is shown in Figure 7.5 and Figure 7.6 to be at least somewhat 

diffusive.  
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Figure 7.5: Anomalous fractal exponents Δ௤ for the diffuse regime (1 MHz, blue 

squares) and localized regime (1.20 MHz, red circles). The logarithm of the GIPRs are 
shown in the inset, for a range of ݍ = {−2, −1,0,1,2,3} , in descending order (the 
uppermost line is for ݍ = −2, the lowest line is for ݍ = 3). Linear fits of 〈log൫ ௤ܲ൯〉 
enable the direct calculation of Δ௤ from Equations (7.2) and (7.3). Uncertainties for Δ௤ 
are given by the uncertainty in the linear fits of 〈log൫ ௤ܲ൯〉 vs log൫ܾ/ܮ௚൯.  

Figure 7.6 shows the frequency dependence of Δ௤ୀଶ. For ݍ = 2, the Δ௤ decrease as the critical 

point is approached, as predicted by theory (Rodriguez et al. 2011; Evers and Mirlin 2008). We 

can observe that there is probably also a localization regime near 0.88 MHz, a frequency range 

which was not included in the time-consuming self-consistent theory fitting approach of Chapter 
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5. The brief results presented here suggest that the relatively simple approach of multifractal 

analysis could, with further development, be used to locate localized regimes. 
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Figure 7.6: Anomalous fractal exponents Δଶ as a function of frequency. There is a 
clear dip at 1.2 MHz, the lower mobility edge for this sample. The noise dominates after 
around 1.25 MHz for this measurement. The spike around 1.3 MHz is due to signals from a 
local radio station (frequency 1290 kHz), which are picked up clearly by our water tank 
experiments (this is visible as a spike in the transmission coefficient shown in Figure 3.25). 

7.3.3.1. The effect of noise  

It is clear from Figure 7.5 that the predicted symmetry relation for the Δ௤ (Equation (7.6)) 

is not obeyed for the data from sample L1. This was found to be due to the influences of noise. 

Noise affects negative q values more, since in Equation (7.1) the reciprocal of very small values 

is being calculated. Thus, excessive noise has the effect of increasing the GIPRs, especially for 

small b where the noise cannot be completely averaged away. This causes a decrease in Δ௤ 

values. This effect can be demonstrated by calculating the anomalous fractal exponents for 
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matrices of pseudo-random noise27, as shown in Figure 7.7. This figure also demonstrates that a 

larger grid size (i.e. more points in the configurational average of the GIPRs) can help to 

alleviate this effect. One can anticipate from this plot that only for an extremely large grid will 

Δ௤ approach 0 for all q (and obey the predicted symmetry relation), which would be intuitively 

expected for purely uncorrelated speckle. 
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Figure 7.7: Anomalous exponent Δ௤  calculated for matrices of pseudo-random 

values27. Values for negative q are lower than for positive q. Uncertainties are given by the 
standard deviation from the mean over all grid points. 

Conclusions that can be drawn from this simple example are that positive q values are 

more reliable than negative ones. Noise, which in the case examined here may have some 

correlations, causes Δ௤ to decrease for all q, except very near to ݍ = 1/2: the parabola shape of 

Δ௤  is ‘bent’ inwards. This observation demonstrates that the Δ௤  are very sensitive to any 

correlations, as well as the effect of waves being diffuse or localized. For practical experimental 

                                                

27  These matrices are filled with numbers between the typical minimum values of 
transmitted speckle intensity for L1, given by the pseudo-random number generator function 
enoise in Wavemetrics IGOR software.  
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purposes, it is clear that noise can distort the results for Δ௤, motivating the development of 

careful noise discrimination techniques. 

7.4. Experiments on cubic mesoglasses 

Multifractal behaviour was observed in slab mesoglasses in the critical regime in the 

previous section by keeping L constant and varying b. Next, we are interested in investigating the 

sample-size dependence of two measures of multifractality (the GIPR and PDF) by varying L. To 

this end, I have constructed cubic samples similar to the slab mesoglasses, but which are smaller 

and exist in a range of sizes. This section details the experimental measurement of ultrasound 

through these samples, and the comparison of these results with predictions from the finite-size 

scaling theory of Section 7.2.1. I report significant differences in several different statistical 

quantities between cube and slab-shaped samples. 

 Construction of brazed cubic samples 7.4.1.

Cubic samples were made of aluminum beads (diameter 4.11 mm) brazed together to form 

porous 3D disordered networks. This brazing technique is the same as that described in Section 

3.1.1. Each sample is cube-shaped, with volume ܮଷ and linear size ܮ = 2 cm, 3 cm, 4 cm, 5 cm, 

and 6 cm (Fig. below). Several cubes of each size were made to provide opportunity for greater 

configurational averaging. Thus, since each sample represents a different configuration of 

disorder, it is important to achieve the same ‘strength’ of brazing (Lee 2014) (i.e. the same size of 

‘necks’ connecting individual beads) for all samples. To this end, individual molds for the cubic 

samples were fashioned so that many different samples, of varying sizes, could be brazed at the 

same time. Several sets of samples were brazed in this fashion, using the same conditions such as 

furnace heating profile, pressure, etc. For each cube, one face was sanded flat for laser 
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interferometry measurements. Representative samples are shown in Figure 7.8. Details on 

brazing conditions and finished samples are provided in Section 3.1.1. 

 

Figure 7.8: Cubic aluminum-sintered samples shown against a background grid of 
0.5 x 0.5 cm squares. One representative sample is shown for each size ܮ: left to right: 2 
cm, 3 cm, 4 cm, 5 cm, 6 cm. In this picture, the nearest face of each sample is the flat 
output face, on which acoustic vibrations are measured with a laser interferometer. 

 Measurements of vibrations on the sample surface 7.4.2.

The transmission of acoustic waves through each cubic sample was experimentally 

measured using an acoustic transducer as the source, and a laser interferometer as the detector. 

The laser ultrasonic receiver (TEMPO-2D, produced by Bossa Nova Technologies) is a 

photorefractive interferometer. A probe beam is incident on the sample (as shown in Figure 7.9). 

The light reflected back from the sample surface enters the interferometer and is mixed with a 

reference beam in a photorefractive crystal. This generates a local oscillator beam, which then 

interferes with the signal beam on a photodetector, producing a photocurrent proportional to the 

displacement of the sample surface.  

The experimental setup around the sample is shown in Figure 7.9. A quasi-point source 

was constructed by gluing an aluminum cone to a small contact-coupled ultrasonic transducer 

with a central frequency of 1 MHz (CrystalBond 555 was used, as the hardened glue may be 

simply dissolved in warm water). The tip of the cone is the diameter of one bead. For each 
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experiment, the cone tip was placed into contact with an individual bead on the sample surface, 

which was partially sanded flat for better contact. The transducer emits a long chirp spanning a 

wide range of frequencies. A laser interferometer measures the acoustic vibrations at the opposite 

sample surface over a wide range of times and frequencies. Both sample and source are placed 

on a motorized stage. By translating the stage relative to the interferometer, a two-dimensional 

(2D) scan of the vibrations on the sample face was recorded.  

 
Figure 7.9: The experimental setup for a representative 5 cm cube. The transducer, 

glued to an aluminum cone (far right) is placed into firm contact with one bead on the input 
sample surface (right side of sample). The laser interferometer (left) scans the opposite face 
of the sample, recording a map of the transmitted speckle intensity as a function of time. 

These experiments were performed on many different samples, and, for each sample, 

several experiments were performed with the source in contact with different spots on the input 

face. By changing the source position, the input signal is coupled to different modes of the 

sample. Thus, configuration averaging was performed over experiments on different samples of 

the same size, and on experiments on the same sample with differing source positions.  

7.4.2.1. Details of signal generation and detection 

An Arbitrary Wave Generator (AWG) generates the input signal (in this case a wideband 

chirp), which is amplified by a linear amplifier (E&I Broadband Power Amplifier, Model 2200L) 
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and sent to the contact-coupled transducer. The laser interferometer records the vibrations normal 

to the surface, on the opposite face of the sample. For the analysis presented here only out-of-

plane signals were used. Signals were acquired using a Gage Compuscope CS14200/CSE1621 

digital oscilloscope card, which allows for fast onboard averaging. The Gage card is 

synchronized in time with the output of the AWG. Acquired signals were downloaded from the 

Gage card by Matlab in real-time. Thus, additional averaging was possible by performing 

multiple acquisitions and averaging them together in Matlab.  

The entire generation and detection process is controlled by a sophisticated set of software 

developed mostly by Cody Friesen, and modified by Eric Jin Ser Lee and myself. This software 

also controls the motors which translate the sample and source parallel to the interferometer, and 

includes a complex autofocusing routine for the interferometer. This routine ensures that signal is 

only collected where an acceptable amount of light is reflected back into the interferometer 

(Friesen 2011). This means that in a scan of a sample surface, voids or areas which are very 

rough are neglected, decreasing the time required to complete an entire scan. 

7.4.2.2. Data processing 

With each acquired signal, two additional measurements are also taken: (1) a calibration 

value, which depends on the total amount of collected light for that point, and (2) the in-plane 

accuracy, which is a measure of the angular dependence of the reflected light. A small in-plane 

accuracy indicates that a relatively large percentage of reflected light is not parallel to the 

incident beam axis.  

The magnitude of an acquired signals is in volts. The signal is converted to displacement in 

nanometers by dividing it by the calibration signal. The calibration signal can be used to reject 

those points which are not within the plane of the acquisition grid scan, i.e. areas which are voids, 
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or too rough for a decent measurement. The in-plane accuracy can also be used to identify areas 

from which a large proportion of backscattered light is reflected at an angle to the probe beam. 

For instance, at the edge of a bead, the in-plane error is often quite high, if light is scattered 

sideways from the edge, or if only some of the probe beam is in contact with the bead. Here, 

measurements of normal displacement are not as reliable. Thresholding of the raw data using 

both the calibration signal and the in-plane accuracy was used to reject signals at rough surfaces 

or at bead edges. 

The data from a scan are immediately Fourier-transformed into intensity as a function of 

frequency, and calibration and in-plane error thresholding performed. Figure 7.10 shows the 

average transmitted intensity through a 5 cm sample. Band gaps are clearly visible. They appear 

at very similar frequencies as the pseudo-gaps of the slab mesoglasses (shown in Figure 3.25), 

which is not surprising since the cubic and slab samples have similar bead sizes. 
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Figure 7.10: Average transmitted intensity through a 5 cm cube (other sizes very 
similar). Pass bands are due to the coupling of individual bead resonances.  

Figure 7.11 shows transmitted amplitude from a scan of a 5 cm cube, for a few 

representative frequencies. These data have been normalized by the calibration signal, and both 

the calibration and in-plane error have been used to discriminate between polished bead surfaces 
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and voids/rough spots on bead edges. These void areas are given a value of not-a-number (NAN) 

(white areas in Figure 7.11), so that such data are not included in any statistical analysis. 

 

 
Figure 7.11: Transmitted amplitude through a 5 cm cube, measured by a laser 

interferometer. Units on colour scales are nm normalized by the average transmitted 
amplitude at each frequency. Data are shown for several representative frequencies. The 
approximate spatial extent of acoustic modes in the sample is visible by eye: at 30 kHz (a) 
and 330 kHz (b), wavelength is much larger than bead size, and modes spread across the 
entire sample. Around 1.1 to 1.2 MHz (c,d), wavelength is comparable to bead size, and at 
1.165 MHz (e), wavelength is smaller than bead size. 
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(Figure 7.11, cont’d) 
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(Figure 7.11, cont’d) 

 
 

 

In the monodisperse cubic samples, strong scattering can be expected for frequencies 

where wavelength is comparable to bead size. Thus, frequencies around the band gap near 1.2 

MHz were chosen to be investigated for signs of localization. Indeed, at 1.146 MHz, a single 

spatially localized mode can be observed by eye in Figure 7.11 (d) (and similar behaviour is 

observed for many other samples). While this in itself is not evidence of Anderson localization, 

the existence of spatially confined modes near a lower band gap edge is extremely suggestive of 

localized waves (Hu et al. 2008). This estimate is supported by the fact that in the slab samples 

L1 and L2, Anderson localization was observed near the pseudo-band gap at around 1.2 MHz 

(Chapter 5). Thus, the frequencies around the 1.2 MHz band gap are studied in this work. 
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7.5. Speckle statistics from cubic mesoglasses  

Although average transmitted intensity through the cubes is similar for different samples 

and source points (resembling that shown in Figure 7.10), transmitted modes inside band gaps 

such as that shown in Figure 7.11 (d) are not observed for every source point. In other words, not 

every input and output point can couple to a localized mode. This means that ܥ଴ correlations are 

significant, as was observed for sample L1 (see Figure 7.4 and accompanying text). A large ܥ଴ 

effect is encouraging in a search for a ME, but it also means that a large number of experiments, 

and careful noise discrimination, are required for meaningful statistical analysis of the speckle 

maps from the brazed cubes.  

 Variance  7.5.1.

For each frequency and source position, normalized variance of intensity fluctuations ߪଶ 

was calculated in the same way as it was for the speckle maps from L1 (Section 7.3). Results are 

shown in Figure 7.12, averaged over different source positions and configurations of disorder28. 

Variance at pass band edges shows a dramatic increase, indicating large fluctuations. 

Waves at these frequencies are good candidates to show localized behaviour. The prediction of 

ଶߪ ≈ 7/3 at a ME, along with the expectation that the DOS is small at the upper edge of a pass 

band, gives an indication of where mobility edges may be expected for these samples. 

                                                

28 Variance and multifractal quantities were averaged over the following different samples 
and scans (input position): for 2 cm samples, 3 scans in total on 3 different samples, for 4 cm 
samples, 3 scans in total on 2 different samples, for 5 cm samples, 7 scans in total on 2 different 
samples, and for 6 cm samples, 3 scans in total on 2 different samples. 
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Figure 7.12: Average variance as a function of frequency. Values of ߪଶ → 1 for 

some sizes (e.g. 6 cm) are due to noise inside band gaps as described in Section 7.5.2. The 
reason for the spikes in variance for the 5 cm sample at lower frequencies are unknown. 

 Noise discrimination 7.5.2.

The most interesting statistics were found in the frequencies at the lower edge of the 1.2 

MHz band gap – more specifically, around 1.14 to 1.18 MHz. However, SNR at these 

frequencies is very low, and noise effects were found to seriously interfere with the desired 

statistical analysis. Therefore, for each scan, the following method was used to discriminate 

between signal and noise: 

1. The average intensity level inside the band gap is found, and any point in the scan where the 

intensity level is lower than that threshold is set to NAN (illustrated in Figure 7.13).  
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Figure 7.13: Intensity maps of one 5 cm cube at 1.1538 MHz, normalized by the total 
average intensity. (a) shows all points, and (b) shows only points for which intensity is 
above the average level inside the 1.2 MHz band gap (the result of the first intensity level 
thresholding procedure). Only the points in (b) are used in subsequent analysis. 

Since each scan is different, and the output speckle map depends greatly on the source position, 

the intensity thresholding helps to shield configurationally-averaged quantities from noise, and to 

obtain accurate statistics farther into the band gap than would otherwise be possible. For example, 

in Figure 7.14, for different source positions on the same sample, very different maps result. For 

some frequencies near the band gap (e.g. 1.1538 MHz, shown in Figure 7.14), almost no signal is 

transmitted through the sample for some source positions. Neglecting these points enables more 

accurate statistical analysis which only includes those points which are above the noise. In the 

example of Figure 7.14, ‘scan 2’ of Cube 5b (right) would hardly contribute at all to resulting 

statistics at this frequency. Note that setting these points to NAN is different from setting them to 

zero, as NANs do not contribute to any average quantities. 
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Figure 7.14: Intensity maps of one 5cm cube at 1.1538 MHz after intensity 

thresholding. Three maps of the same sample surface are shown, for different source 
positions. 

 
2. A similar procedure is performed during the box-summing step of the analysis – for each 

frequency f, any box ܫ௕(݂) is rejected (not counted in subsequent statistical analysis) for which 

the sum of intensity in the box is less than 4x the sum of intensity in that same box, averaged 

over a frequency range inside the neighbouring band gap (1.18 to 1.19 MHz), i.e.  
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where ஻݂ீ  denotes the range of frequencies inside the band gap (entirely dominated by noise for 

most source positions) and ܰ ஻݂ீ  is the number of points in frequency in that range. The factor 

of 4 was chosen by observing in detail the effect of this box-intensity-thresholding on the 

subsequent analysis results.  

 Multifractality and finite-size scaling 7.5.3.

Both the PDFs and GIPRs were calculated for the transmitted intensity through each cubic 

sample. These quantities were calculated separately for each scan, and then averaged together for 

each different cube size. Since each scan measures transmitted intensity for a unique source 

position, this average is an average over realizations of disorder28. For the PDF calculation, 

boxes (such as those shown in Figure 7.1) were allowed to overlap for increased averaging (this 

was not possible for the GIPR calculation). This did not introduce any unexpected effects in the 

final results. Noise discrimination was performed as outlined in Section 7.5.2.  

Results for the probability density are shown in Figure 7.15 for two representative 

frequencies. I observe a subtle scaling of PDF maxima with system size L, in the diffuse regime 

(left plot). In the plot on the right, a clear shift in PDF maxima from the diffusive regime towards 

criticality (1.1 → 1.2 MHz) is demonstrated, and there is much less variation with system size. 

By varying nothing but the physical size of the sample, a difference in behaviour near the 

mobility edge is seen. For frequencies higher than 1.15 MHz, there is too much noise to observe 

definite signs of localization, i.e. a further shift of the PDF maxima such that the 6 cm PDF is 

furthest to the right and the 2 cm PDF is furthest to the left. However, it should in principle be 

possible to fit data which approaches the ME with the existing theory, and still extract the critical 
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exponent, seeing as it is the rate of the shift with disorder and system size that is important. This 

step is considered in the next section. 
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Figure 7.15: Probability Density Functions. Expected shifting of maxima is observed 

in the diffuse regime (left). With the approach to the mobility edge, distributions for 
different L shift to the right at different rates (right). At 1.145 MHz, the 2 cm curve is 
distorted due to noise. For both frequencies, data are averaged over a frequency range of 
7.55 kHz. 

Results for the GIPRs are shown in Figure 7.16 for two representative frequencies. In the 

theory of Rodriguez et al., the GIPRs are calculated for one box size only (Rodriguez et al. 2011; 

Rodriguez et al. 2010). Here, I calculate the GIPRs using the method of Faez et al. (Faez et al. 

2009; Hildebrand 2015), where ߬௤ is calculated over a range of box sizes, and a linear fit of 

〈log൫ ௤ܲ൯〉 vs log൫ܾ/ܮ௚൯ gives Δ௤ directly (this is the same method to calculate the GIPR in 

sample L1). I have verified that these calculations give approximately the same results, i.e. 

〈log൫ ௤ܲ൯〉 depends linearly on log൫ܾ/ܮ௚൯, and that they give values of Δ௤ that are similar to 

the single box size method used by Rodriguez et al. The linear fitting method involves more 

averaging (better statistics), giving results with less uncertainty. There is a subtle difference 

between these methods according to the theory, but the data quality are limited by the amount of 

available configurational averaging and the influence of noise, precluding a detailed analysis 

beyond the observation of a general shift of Δ௤ with ݂ and ܮ. 
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Figure 7.16: Anomalous exponents Δq are very low even for the diffuse regime (1.10 

MHz, left, averaged over 17.75 kHz). Closer to the pass band edge, the Δq decrease even 
more and are less curved, as expected for the localization regime (right, averaged over 7.75 
kHz). For negative q values, Δq are highly affected by noise and are therefore not shown. 
For each sample thickness, configurational averaging was done over 2-5 source points 
and/or samples. 

In Figure 7.16, 1.137 MHz is the frequency the farthest into the band gap at which there is 

enough statistics to give clear results for Δ௤ which are relatively unaffected by noise. There is a 

subtle shift observed between diffuse (1.10 MHz) and near-critical (1.137 MHz) regimes, in 

which the anomalous exponents for different sample sizes become lower (indicating an approach 

to localization) and closer together (implying an approach size-independence).  

 Critical exponent estimation 7.5.4.

 Although is it clear that much more configurational averaging is required to obtain 

accurate results from the experimental data, we can anticipate the finite-size scaling analysis to 

be performed on future more complete results. To get a sense of the next steps of this project, I 

present here the FSS analysis that will be used, and apply this theory to the data available so far. 

To obtain an estimate of the critical exponent from my data, I apply the simplest possible 

version of the finite-scaling theory; a one-parameter finite-scaling scaling (FSS) model. This 

model can be applied to systems whose evolution can be described in terms of one variable only; 
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in this case, the variable is ߦ/ܮ. In principle, a two-parameter FSS model can also be used to 

analyse these data, by varying the box-size so that the PDF and Δ௤ depend on both ߦ/ܮ and 

 but this analysis should probably only be attempted after verifying that the one-parameter ,ߦ/ܾ

FSS gives meaningful results, and is thus beyond the scope of this project at present. 

Let the function Γ௤(ܹ, ,ܹ)denote either Δ෩௤ (ܮ ,ܮ (ߣ  or ߙ෤௤(ܹ, ,ܮ (ߣ  from Equations 

(7.11) and (7.13). For the one-parameter FSS, the value of ߣ  is fixed so that Γ௤(ܹ,  (ܮ

depends on only one parameter (ߦ/ܮ). Γ௤(ܹ,  ;can be expressed as a function of two variables (ܮ

 a relevant variable which describes the nonlinearities of the ܹ dependence on the scaling ,ߚ

variable (ߦ/ܮ), and ߟ, an irrelevant variable. We can write: 

    , /q qW L L     (7.15) 

where ߞ௤  denotes the RHS of either Equation (7.11) or (7.13). The role of the irrelevant 

variable is to account for a shift with ܮ of the disorder at which the Γ௤(ܹ,  curves cross (ܮ

(away from the mobility edge, ௖ܹ). Equation (7.15) can be expanded in first order in ߟ to 

obtain  

      1/ 1/ 0 1/ 1 1/,k y
q q qL L L L L            . (7.16) 

The irrelevant component is a finite-size effect which should vanish for large ܮ, so ݕ < 0. The 

scaling function can be expanded:  
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Expanding ߚ and ߟ in terms of ݓ = ܹ − ௖ܹ  up to order ݉ఉ and ݉ఎ, respectively, gives 
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The fitting of this model to experimental data is characterized by the fitting orders ݊଴, ݊ଵ, ݉ఉ, 

and ݉ఎ. The fitting should be performed using the lowest orders of these expansions as possible, 

while keeping high enough orders to give an acceptable goodness-of-fit. Ideally, these orders are 

parameters in the fitting process; the total number of free parameters would therefore be 

௣ܰ = ݊଴ + ݊ଵ + ݉ఉ + ݉ఎ + 4 (including ௖ܹ  For this work, the data are probably .(ݕ and ,ߥ ,

not of good enough quality to obtain meaningful fits with higher order terms. Here I will use 

only the lowest orders of the model. To second order, Equation (7.18) gives 

   2
2w w b w   ,   2

21w c w    (7.19) 

To second order, Equation (7.17) is  

  1/ 1/ 2 2/
0 1 2

k
q k k kL a a L a L          (7.20) 

Thus, Equation (7.16) becomes 
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The irrelevant variable is not expected to contribute meaningfully to the approximate fitting of 

my data. In the work of Rodriguez et al., which consists of numerical simulations involving over 

one million configurational averages, the shift in ܹ that is described by ߟ is still very small. 

Thus, only the lowest order in ߟ will be kept from Equation (7.21). Here I will also replace the 

general disorder parameter (ܹ), with that for our systems of ultrasound in brazed mesoglasses, 

frequency (݂). This gives the fitting function 

      21/ 2/
0 1 2 3, y

q c cf L f f L f f L L             (7.22) 

The localization (correlation) length is related to the critical frequency ௖݂  as ߦ ∝ ݂)ߚ| − ௖݂)|ିఔ. 

Variables ߙ଴, ߙଵ, ߙଶ, ߙଷ, and ௖݂  are common to all data curves, while ܮ is a fixed parameter 
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which is different for each data curve (since they originate from samples of different sizes). The 

model can be applied to either the mean value of the PDF curves, 〈ߙ〉(݂,  or to the anomalous ,(ܮ

exponent Δ௤(݂, ,݂)〈ߙ〉 Here, experimental data for .(ܮ  is fit with the model. A global fit to (ܮ

all curves is first performed using only the first two terms of Equation (7.22). Then, the results 

for the fit parameters are used as initial guesses for subsequent fits which include, one by one, 

the next two parameters of Equation (7.22). Fit results do not change significantly with the 

addition of each term, indicating an insensitivity to higher order terms and to any order of ߟ.  

Figure 7.17 shows the mean values28 of the PDF of the experimental data, 〈ߙ〉, as a 

function of frequency and for four different cube sizes. These are the same data that are shown 

for two frequencies in Figure 7.15, but here have not been averaged over frequency. 

(Corresponding reuslts for Δ௤ are not shown as they are too noisy.) On either side of the band 

gap, FSS has been performed via a global fit of all (4) curves with Equation (7.22). Fits were 

weighted by experimental uncertainties. Performing the fit with, and without, the last two terms 

of Equation (7.22) changes the fit results only by a trivial amount. Free and fixed parameters 

are given in Table 7.1. It is important to note that the goodness-of-fit measures are not acceptable 

(reduced ߯ଶ ≪ 1 due to the large experimental uncertainties, and the resulting uncertainties for 

some fit parameters are larger than the parameter value), and that therefore the results for ௖݂  and 

 are probably not very meaningful. This analysis is shown solely as an indication of the future ߥ

direction of this project. The estimates of ௖݂ ∼ 1.5 MHz (for the data below the bandgap) and 

௖݂ ∼ 1.1 MHz (for the data above the bandgap) are clearly not accurate. These results indicate 

either that there are not enough data at the band edges to clearly show the critical behaviour of 

 or that there is not a localization regime inside the band gap, so that the waves do not ,〈ߙ〉

undergo a full transition at the band edges. However, the fit results for ߥ) ߥ = 1.1 for the lower 
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gap edge data, and ߥ = 1.0 for the upper gap edge data) are not unreasonable given the 

uncertainties in the data, since the generally accepted value is ߥ ∼ 1.6 (see Section 2.5.1). 
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Figure 7.17: Experimentally-measured mean PDF values, 〈ߙ〉, for four different cube 

sizes. Global fits to the FSS model are shown, which were performed separately on each 
side of the band gap. For clarity only every 15th data point, and fewer error bars, are shown. 
Note that inside the band gap (∼ 1.15 − 1.20 MHz) the low 〈ߙ〉 values are due to noise.  

 

௖݂ ߥ   ݕ ଷߙ ଶߙ ଵߙ ଴ߙ 

Lower gap edge (∼ 1.10 − 1.15 MHz) 

Starting value 1.6 1.15 8 0.5 0 0 0 

Results 1.1 1.5 8.3 0.03 -0.01 -0.0001 -0.001 

Upper gap edge (∼ 1.20 − 1.23 MHz) 

Starting value 1.6 1.18 8 -0.5 0 0 0 

Results 1.0 1.1 7.9 -0.1 -0.04 -0.008 0.5 

Table 7.1: Starting values and results for free fit parameters from FSS model applied 
to the experimentally-measured 〈ߙ〉. Corresponding uncertainties for several of these 
parameters, and overall unacceptable goodness-of-fits, indicate that these parameters 
should not be taken as physically meaningful. 
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7.6. Conclusions and future directions 

I have measured transmitted intensity through cubic samples of different sizes. The 

transmitted speckle patterns on the surface of the cubes show dramatic fluctuations and localized 

modes. To quantify these effects, I have investigated the multifractality of the transmitted 

intensity. A shift in the mean of the calculated PDFs shows finite-size scaling, and seems to 

indicate that critical regimes exist as the bandgap is approached from lower and higher 

frequencies. Improved statistics are needed to be able to conclusively observe a crossing over of 

 or Δq into the localized regime. I have also fit the PDFs with a finite-size scaling model to 〈ߙ〉

estimate the critical exponent and critical frequencies. This analysis suggests that there may be 

no Anderson transition in these samples, which seems surprising in view of the significant 

fluctuations of transmitted intensity through the cubes at these frequencies. In general, the results 

so far highlight the need for a large amount of configurational averaging, especially since 

localized modes inside the band gap are rare and are not excited by all input points. Alternately, 

creating similar cubic samples which are less strongly brazed (Lee 2014) and/or polydisperse 

(see e.g. Section 5.1.1.1 of this thesis) could help to increase the likelihood of Anderson 

localization ocurring, and increase the amount of signal that is transmitted in band gaps.  

An important question which has not yet been addressed is whether our measured surface 

multifractal properties are similar to those of the bulk medium, which is what simulations 

generally measure (cf. (Evers and Mirlin 2008)). Another question concerning surface speckle 

that has not been addressed theoretically is how polarization of elastic waves influences the 

measured MF properties. Answering these questions, and improving signal-to-noise via different 

samples or greater configurational averaging, will be instrumental in obtaining an accurate 

experimental estimate of the critical exponent from this project.  
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8. A Lévy Phononic Glass 
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8.1. Introduction 

In this thesis and in many other works, departures from conventional diffusion are used as 

indications that localization may be present. We have looked experimentally at how diffusion, 

subdiffusion, and localization are exhibited in the same sample, and how transitions between 

them are made. We have also seen that very careful work is required for definitive proof of 

critical or localized behaviour. This point is especially crucial when one considers that a whole 

host of scattering processes can show departures from conventional diffusion, other than 

localization. The description of diffusive transport as a random walk is in fact a special case of 

an entire class of random walk processes. These include superdiffusion, where transport is faster 

than conventional diffusion. Just as with subdiffusion, superdiffusive waves will deviate from 

conventional diffusive behaviour, but for superdiffusion, these deviations will not indicate an 

approach to localization.  

We propose to investigate whether localization and superdiffusive processes can be 

observed in the same sample, and if so, whether there is any interplay between them. This 

chapter presents preliminary research on a sample which is a good candidate for the proposed 

project. 

 

A generalized description of diffusion can be written simply in terms of the mean squared 

displacement 〈ݔଶ〉 as 

 2x Dt  (8.1) 

where D is the generalized diffusion coefficient, and ߛ is a parameter that governs the transport. 

For ߛ = 1, conventional diffusion is recovered, but for ߛ < 1 transport is subdiffusive, and for 
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ߛ > 1 transport is superdiffusive (Savo et al. 2014).  

An example of superdiffusion is the Lévy flight. This is a process in which the steps of the 

random walk have a power law distribution given by 

 1

1( )P z
z

   (8.2) 

where ܲ(ݖ) is the probability of a step of length z, and ߙ determines the type of Lévy flight 

(1 ≤ ߙ < 2). Transport is dominated by long steps (Mandelbrot 1983), so the mean step length 

diverges and the diffusion approximation breaks down.  

Recently, Lévy flights were observed for light propagation through samples of so-called 

Lévy glasses (Barthelemy, Bertolotti, and Wiersma 2008). This material consisted of packed 

glass microspheres with a specific distribution of sizes; it was shown that a very specific 

distribution ܲ(݀) of microsphere diameters d is required to obtain a Lévy flight of type ߙ 

(Bertolotti et al. 2010): 

   21 /P d d   (8.3) 

This is a fractal (self-similar) distribution, meaning that the structure is independent of length 

scale. Real-world samples have a finite range of possible sphere sizes, resulting in a so-called 

truncated Lévy flight; conventional diffusive behaviour is recovered on length scales larger than 

the largest possible step size (i.e. the largest sphere diameter). In a recent work, convincing 

observations of Lévy flights were made by studying the thickness-dependence of time-dependent 

transport through the Lévy glasses (Savo et al. 2014). The transmitted intensity was shown to 

decay as ܶ(ݐ) ∼ exp(−ݐ/τ). The lifetime was expected to show a sample thickness dependence 

of ߬ ∼ ௗೢܮ , thus enabling an estimate of the fractal dimension ݀௪ of the system. 

This chapter explores an analogous system which is expected to exhibit superdiffusion for 

acoustic waves; a Lévy phononic glass. This is a material which is engineered to show both 
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strong scattering of ultrasound, and to have a fractal distribution of available steps. Initial 

measurements on this system have been carried out, and show interesting departures from 

conventional diffusion. This concrete first step towards the study of superdiffusion of ultrasound 

lays the foundation for a more involved study of the thickness-dependence of transmission 

through Lévy phononic glasses. 

8.2. Slab sample L0 

A slab-shaped Lévy phononic glass sample ‘L0’ was constructed using the brazing 

technique described in Section 3.1.1. As was pointed out by Bertolotti et al., the easiest type of 

Lévy flight to construct is that of ߙ = 1. This means that the diameter distribution is ܲ(݀) =

1/݀ଷ, so that equal volumes of different sizes of spheres are required to achieve a fractal 

distribution of diameters (Bertolotti et al. 2010). Sample L0 was constructed from four different 

aluminum bead sizes, with the final sample being composed of close to 40 g of 7.9 mm beads, 40 

g of 4.11 mm beads, 41 g of 2 mm, and ~48 g of 1 mm (extra 1 mm beads were added to fill out 

the sides of the sample in the mold). The sample has a circular face of diameter ݀ ≈ 23 cm, and 

the thickness equals the diameter of the largest bead size; ܮ ≈ 7.9 mm. Additional details on 

sample preparation are included in Section 3.1.1. The finished sample is shown in Figure 8.1. 

Subsequent samples will include many more bead sizes, but since sample L0 is, in principle, 

statistically self-similar, sample L0 should exhibit some Lévy-like wave transport. 
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Figure 8.1: Sample L0, shown in its acrylic holder for ultrasonic experiments. The 

sample (like all others studied in this thesis) is held in the holder by a thin layer of silicone 
(white outer layer), which also prevents stray sound from propagating between the sample 
edges and the holder. The hole through which air is evacuated from the sample is visible as 
a white vertical line (top of figure). The final steps of adding thin plastic walls over the 
sample faces, and wrapping the holder in Teflon tape, were performed after this picture was 
taken.  

8.3. Transmission through the Lévy phononic glass 

Speckle maps were acquired in transmission for sample L0 following the procedure 

detailed in Section 7.3.1. These experiments were carried out using two different broadband 

focussing transducers for the input signal with central frequencies of 1 MHz and 2.25 MHz, 

respectively. Thus, experimental data for a wide range of frequencies is available. Unlike 

previous samples discussed in this thesis, it is unclear at what frequency or frequencies 

departures from conventional diffusion will occur for sample L0. As most of the sample is 

composed of smaller beads than samples L1 and L2, one would expect stronger scattering at 

higher frequencies, i.e. for the 2 MHz experimental data. As usual when beginning to study a 
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new sample, we can look for interesting features in the transmission as a function of frequency. 

Figure 8.2 shows the amplitude transmission coefficient for L0. There are no clear pass bands or 

gaps observed, but there is a clear decrease in transmitted signal from 1MHz to 2 MHz.  

For samples L1 and L2, very strong scattering was observed around 1-1.3 MHz, where the 

wavelength of waves entering the sample, ߣ = ݂/ݒ ∼ 1.5/1.2 = 1.25 mm is smaller than the 

mean bead diameter. Thus, we might expect strong scattering in L0 at wavelengths smaller than 1 

mm, which is the diameter of the majority of beads in the sample (although the polydispersity 

makes this argument approximate at best). Thus, we expect more interesting behaviour near or 

above 2 MHz, where ߣ ∼ 1.5/2 = 0.75 mm. 
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Figure 8.2: Amplitude transmission coefficient for sample L0 over the 
experimentally available range of frequencies. This quantity was measured using only the 
on-axis data from the transmitted speckle maps and normalized by the frequency 
dependence of the reference signal. Although only a relatively small amount of 
configurational averaging could be done (26 (22) points for the 1 MHz (2 MHz) 
experiment) this quantity is still very useful as an estimate of the frequency dependence. 

Figure 8.3 shows the transmitted time-of-flight (TOF) intensity profile, averaged over all 

detector positions, filtered at different central frequencies. A significant ballistic component was 
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also anticipated, due to the small sample thickness and the presence of the 7.9 mm diameter 

beads, which span the entire sample thickness. However, transmission through the sample was 

lower than expected, including the initial coherent signal. It is surprising that the material is so 

opaque for this entire frequency range of 0.75 – 2.5 MHz. To obtain a sufficient amount of 

configurational averaging, therefore, many different maps corresponding to different source 

positions were obtained: 26 maps for 1 MHz, and 22 maps for 2 MHz. 
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Figure 8.3: Average time-of-flight profiles through sample L0, filtered in frequency 

with a (relatively narrow) bandwidth of 50 kHz. The input transducer is centered at 2 MHz. 
The TOF profiles have been averaged over all (22) configurations of disorder, and all 
detector positions (ߩ) on the 2D speckle map. Profiles have been normalized so that they 
have approximately the same peak value, for easier comparison of their time-dependence. 

The weak frequency dependence is also shown in measured time-of-flight (TOF) profiles 

(time-dependent transmitted intensity), which hardly vary at all as a function of frequency. Thus, 

data were filtered in frequency with a large width of ݓ = 250 kHz (see Section 3.2.4 for more 

details). This gives the advantage of additional averaging and lesser effects from the filter width. 
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The frequency filtering was performed for two central frequencies (corresponding to the central 

frequencies of the two input transducers): 1 MHz and 2 MHz. Data presented in this chapter are 

thus labeled ‘1 MHz’ and ‘2MHz’, following the convention laid out in earlier chapters of this 

thesis. For better statistics, a moderate amount of spatial averaging was performed; since the 

speckle maps are acquired on a discrete two-dimensional grid, this amounts to averaging the data 

over similar values of ߩ. Thus for the data presented below, ߩ represents a mean radial distance 

from the center of the grid. For all transmitted intensity profiles, the noise level is determined 

from the pretrigger signal and subtracted from the entire profile (as detailed in Section 3.2.2). 

 

Figure 8.4 shows the TOF profiles for the 1 MHz data as a function of time for three 

different ߩ values. The profiles decay much more quickly than was observed for samples L1 

and L2 (see Section 4.3). At long times, the decay of the TOF profiles is well-described by a 

function of the form 

  
/

0  
tey t y A
t



   (8.4) 

which is the expected behaviour for transmitted intensity with a point source and point detector 

in the diffusion regime (Page et al. 1995). If the transmitted intensity is integrated over all output 

points, the expected long-time behaviour in the diffusion approximation is an exponential decay. 

This behaviour is exhibited by our data from L0 (Figure 8.4, grey squares, and Figure 8.3). The 

observations of what appears to be diffuse TOF profiles, however, does not mean that the 

behaviour is not Lévy flight-like (Savo et al. 2014). 
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Figure 8.4: Average transmitted intensity through sample L0 at 1 MHz. Shown are 

TOF profiles for on-axis data (ߩ = 0 cm, pink circles), and off-axis data (ߩ = 1.01 cm, 
blue triangles, and ߩ = 1.98 cm, green diamonds). The decay of the intensity at later 
times has been fit with a function of the form (ݐ)ݕ = 0ݕ +  The .(black lines) ݐ/௧/ఛି݁ ܣ
on-axis data displays more oscillations since less spatial averaging is possible for small ߩ 
values in a 2D grid. After around 250 ߤs the TOF profiles descend into the noise level. The 
grey squares show transmitted intensity averaged over all output points, which displays an 
exponential decay at long times. Only every 30 data points are shown for clarity. Error bars 
represent the uncertainty in the configurational average. The ߩ = 0 mm trace has been 
multiplied by 2 so that the long-time behaviour can be distinguished from the other traces. 

In Figure 8.5, the same data shown in Figure 8.4 is plotted as a function of ߩ for three 

different times. As expected, (ߩ)ܫ is roughly Gaussian for all times after around 35 ߤs. 

However, for earlier times (ݐ <  ߩ s) there is an additional contribution to intensity at smallߤ 35

values, and a Gaussian can not be fit to the entire intensity profile. This is illustrated in Figure 

8.5 for ݐ =  is not expected for ݐ and small ߩ s. This enhancement of intensity at smallߤ27

diffusion, but is predicted to occur for superdiffusion (Zumofen and Klafter 1993; Drysdale and 

Robinson 2006) and has been observed for Lévy flights in optics (Savo et al. 2014).  
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Figure 8.5: (ߩ)ܫ for three different times (symbols) with Gaussian fits (black lines). 
Error bars (which represent the uncertainties from the configurational average) are smaller 
than symbols. 

To further investigate the time-dependent transport of ultrasound inside L0, the transverse 

width may be calculated from the time- and spatially- dependent speckle maps, similarly to the 

calculation for the transmitted dynamic transverse profile experimental data (Equation (4.29)). 

Results are shown in Figure 8.6. For all frequencies and ߩ values, ݓఘ
ଶ(ݐ)/ܮଶ is only very 

weakly dependent on ߩ, close to the behaviour found for conventional diffusion (Page et al. 

1995). It also increases linearly with time for ݐ >  .s as would be expected for diffusionߤ 50

However, a straight line can only be fit to the traces by allowing a substantial y-intercept 

଴ݕ > 0.5. As discussed in Section 4.3.1.1, a linear increase with a zero y-intercept is theoretically 

predicted for ݓఘ
ଶ(ݐ)  for conventional diffusion, and has been observed experimentally, 

originally for glass bead suspensions by Page et al. (Page et al. 1995), and for aluminum-brazed 

samples at low frequencies in this thesis (Chapter 4). The finite size of the point source can 

introduce a vertical offset to ݓఘ
ଶ(ݐ) (Hu 2006), but this effect is negligible for this experiment. 
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The frequency filter width (see Section 3.2.4), being large, should also not cause this effect. 

These observations, namely ݕ଴ > 0 and the kink in ݓఘ
ଶ(ݐ) at around 15-25 ߤs, indicate 

anomalous wave behaviour in sample L0 that must be related to the structure of this sample. 

0 50 100 150 200
0

2

4

6

8

w
2 (t)

/L
2

Time (s)

  = 1.98 cm
  = 1.35 cm
  = 0.95 cm
 Linear fit 

for  = 1.98 cm 

 
Figure 8.6: Transverse width divided by sample thickness squared for sample L0 at 1 

MHz. Three representative ߩ values are shown. After 50 ߤs, ݓఘ
ଶ(ݐ)/ܮଶ increases linearly 

for all ߩ values. A linear fit to the ߩ = 1.98 cm trace is shown as a guide to the eye. 
Only every 15 data points are shown for clarity. Error bars represent the uncertainty in the 
spatial averaging and in the configurational average. 

For the Lévy flight observations in optics, the clearest indications of superdiffusive 

behaviour were from the dependence of transmitted intensity on sample thickness. The research 

presented in this thesis is limited to one sample thickness only. However, we may simulate 

thickness-dependent measurements using our speckle maps, since transmitted waves that are 

detected at different transverse ߩ values have travelled on average along longer paths, as though 

they had travelled through different thicknesses of the same sample. By fitting the exponential 
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decay of the TOF profiles with the exponential function ܶ(ݐ) ∼ exp(−ݐ/߬)/ݐ, the lifetime ߬ 

was estimated for each ‘effective’ sample thickness, ୣߩ୤୤ ≡ ඥߩଶ +  ଶ. Results are shown inܮ

Figure 8.7. Note that the lifetimes measured are quite short compared to the expected absorption 

times (which, for aluminum-brazed samples, are generally on the order of 100 ߤs) so the 

contribution of absorption time to the TOF time-dependence decay is negligible. Thus, it is 

ignored for the analysis presented here. 
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Figure 8.7: Experimental lifetime of transmitted intensity through sample L0 (black 
circles), as a function of ୣߩ୤୤ . Error bars (smaller than the symbols) represent the 
uncertainty in the fits of the TOF profiles which were used to measure ߬. A power law fit 
of the data (red line) gives a scaling exponent of ܾ = 0.25. Inset: the same data and fit on 
wider horizontal and vertical scales. Only every 4th data point is shown in the inset for 
clarity. 

For conventional diffusion, it is well known that diffusion time scales with effective 

sample thickness as ߬஽ ∼ ୤୤ୣܮܿ
ଶ , where ୣܮ୤୤ ≡ ܮ + ଴ݖ2 = ୤୤ୣߩ + ଴ݖ ,଴ݖ2 = 2݈∗(1 − ܴ)/3(1 +

ܴ), and c is a constant. For the generalized class of diffusive processes that we consider here, the 

lifetime ߬ is expected to scale with the fractal dimension of the random walk: ߬ ∼ ୤୤ୣܮܿ
ௗೢ. For 
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conventional diffusion, ݀௪ = 2, for subdiffusion ݀௪ > 2, and for superdiffusion ݀௪ < 2. For 

the photonic Lévy glasses studied by Savo et al., ݀௪ ≈ 1.3 was measured (Savo et al. 2014). 

For my phononic Lévy glass, ߬ vs ୣߩ୤୤  is shown in Figure 8.7. A fit of the form 

߬ ∼ ୤୤ୣߩ
௕ yields ܾ ≈ 0.25, which seems very small. However, for a measurement of ݀௪, it is 

necessary to use ୣܮ୤୤, which means that ݖ଴, and therefore ݈∗ and R, must be known29. The result 

for ݀௪  is very sensitive to the values of ୣܮ୤୤ . For instance, if ݖ଴ ≈ 1.36 cm (the value 

calculated for sample L1) is used, then the power law fit gives ܾ ≈ 0.5. To go further with this 

analysis will require more samples of different thicknesses and accurate determination of ݖ଴. 

8.4. Speckle statistics of the Lévy phononic glass 

As the features of ߩ)ܫ,  are rather frequency-independent, and their deviations from (ݐ

conventional diffusive behaviour are not very spectacular, it is now instructive to look at the 

statistics of the speckle maps, as was done for data near Anderson localization in Section 7.3. As 

can be observed by eye in Figure 8.8, the transmitted speckle maps from sample L0 show 

striking differences in overall intensity and distribution for different source positions. These 

fluctuations could be due to the ܥ଴ effect, which measures the variation in local density of states 

near the source.  

                                                

29 Assuming that the calculation of ݖ଴ is the same for a Lévy flight as it is for diffusion, 
which to my knowledge has not been proven (see also the work of Savo et al.). 
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Figure 8.8: Speckle maps of transmitted intensity through sample L0 at 1 MHz. Maps 

for six (of 26) different source points are shown.  

To quantify fluctuations in intensity, the variance ߪଶ of the speckle maps was calculated 
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in the same two ways that are detailed in Section 7.3; (1) variance is calculated for each intensity 

map, and the results averaged over all maps (denoted in this thesis as 〈ߪଶ〉), or (2) variance is 

calculated over all maps at once (denoted ߪଶ). With method 1, variations from map to map due 

to the coupling between the source and the input surface of the sample do not contribute, 

whereas method 2 is sensitive to these variations. Figure 8.9 shows the results in both the time (a) 

and frequency (b) domain. In both plots ߪଶ >   .〈ଶߪ〉

As shown in Figure 8.9 (a), the variance shows a general decrease with time. This 

behaviour has not been observed before in aluminum-brazed slab mesoglasses (Page 2011). In 

the diffuse regime, one would expect ߪଶ to be independent of time. In the localization regime, a 

small increase with time is expected in 3D, and a large increase has been observed in quasi-1D 

(Wang et al. 2010). 

In a previous work, a similar difference ߪଶ >  was observed between speckle maps .〈ଶߪ〉

from a point source and plane wave source (a speckle map from a plane-wave source does not 

exhibit ܥ଴ correlations). These measurements were shown to be due to significant ܥ଴ effects, 

which are enhanced near the Anderson transition (Hildebrand 2015). Thus it is possible that the 

results in this section could be interpreted as showing a large ܥ଴ effect.  
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Figure 8.9: Variance of transmitted intensity speckle maps through sample L0. Shown 

are variance calculated over all speckle maps at once, ߪଶ, and the variance calculated for 
each speckle map and averaged, 〈ߪଶ〉. (a) Variance as a function of time for 1 MHz (red 
symbols) and 2 MHz (black symbols). Data have been filtered in frequency with a width of 
250 kHz. (b) Variance as a function of frequency, for all times 0 < ݐ <  s. The spikesߤ 200
in (b) are probably due to signals from two local radio stations (frequencies 1250 and 1290 
kHz). 
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8.5. Conclusions and future directions 

Several subtle deviations from conventional diffuse transport were experimentally 

measured from sample L0. The TOF profiles arrive more abruptly and decay more quickly than 

is generally observed for diffusion in similar 3D slab samples (Page et al. 1995; Hu 2006). The 

transmitted intensity shows anomalous behaviour near ݐ = 0 and ߩ = 0, which is an effect 

previously observed for superdiffuse light (Zumofen and Klafter 1993; Drysdale and Robinson 

2006; Savo et al. 2014). Measurements of variance indicate that transmitted intensity is 

extremely sensitive to a change in source position, implying possibly ܥ଴ effects. Finally, an 

extremely weak frequency dependence of the time-dependent transmitted intensity was observed, 

which is surprising as other aluminum-brazed samples show dramatic changes in wave scattering 

properties over this wide range of frequencies (c.f. Figure 3.25, or work by Hu et al. (2008) or 

Hildebrand (2015)). Perhaps considerably higher frequencies are required to obtain stronger 

scattering and/or Lévy-like behaviour in L0. Experiments at higher frequencies and on thicker 

samples (which can contain a much wider range of bead sizes, including larger ones) should be 

able to answer this question. In any case, samples of different thicknesses will probably be 

required to study superdiffusion and localization using transmission measurements.  

Backscattering measurements on sample L0 would also be instructive; for a single sample, 

a measurement of the static CBS intensity profile can be used to calculated the fractal dimension 

of the system (Dogariu, Uozumi, and Asakura 1992; Burresi et al. 2012)30. Dynamic CBS 

measurements have, to my knowledge, not been carried out for the superdiffuse regime in 3D, 

but would also be highly interesting.  

                                                

30  To do this would require that the experimental issues that arose for static CBS 
measurements on my other slab mesoglasses can be overcome; see Section 4.2.1.4. 
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9. Conclusions and future directions
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In this thesis, a wide range of experimental measurements was used to observe several 

novel aspects of waves in random media. Since most of these interesting phenomena occur in the 

strong scattering regime, several samples were constructed specifically to exhibit strong 

scattering of ultrasound. The dimensions and structure of each sample were also designed with 

the experiments in mind. In particular, slab-shaped mesoglasses were constructed with much 

larger widths and thicknesses than those of previous samples, in order to be well-suited for 

backscattering measurements using ultrasonic arrays.  

Diffuse, subdiffuse and localized wave behaviour in the slab mesoglasses was observed 

using the dynamic CBS effect. Results for the diffuse regime were presented first. To characterize 

the wave transport, the Boltzmann diffusion coefficient (ܦ஻ ) was measured by fitting the 

dynamic CBS profiles with theory for diffuse acoustic waves in a 3D medium (van Tiggelen 

2002). Results agreed with similar measurements made in transmission using more established 

methods. This work constitutes the first comparison of experimental dynamic CBS with the 

presented theory. It also illustrates the commonality between the dynamic transverse intensity 

profiles in reflection and in transmission. Since the CBS profile ߠ)ܫ,  is the Fourier transform (ݐ

of the reflected dynamic intensity profile, the width of ߠ)ܫ,  is related to the width of the (ݐ

intensity profile in transmission: Δିߠଶ(ݐ) ∝ ఘݓ
ଶ(ݐ). In the diffuse regime, both ݓఘ

ଶ(ݐ) and 

Δିߠଶ(ݐ) increase linearly with time, an effect which was established for ݓఘ
ଶ(ݐ) (Page et al. 

1995) and Δିߠଶ(ݐ) (Tourin et al. 1997) separately, and observed in this thesis via reflection and 

transmission measurements on the same sample.  

The analysis of the transmission measurements for diffuse waves at higher frequencies 

(1.65 MHz) shows some subtle ambiguities. They indicate slight subdiffuse behaviour, i.e. ܦ஻ 

appears to be renormalized (becomes smaller and smaller) at later times. The self-consistent 
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theory of localization (SC theory) describes this renormalization in terms of an increased return 

probability. This means that, due to sample disorder and strong scattering, waves have an 

increased probability of returning near to a spot which they have previously visited in the sample. 

For a ‘perfect storm’ of disorder, wavelength, and several other factors, this effect can become 

extreme; ܦ஻ can be successively renormalized until it approaches zero. This phenomenon is 

called Anderson localization (AL). In 3D, there is a transition between AL and the diffuse regime, 

occurring at the mobility edge. Localization is very difficult to observe experimentally, especially 

for 3D, as it is accompanied by large fluctuations and low transmission, and can also be confused 

with other effects including absorption. In this thesis, AL in 3D was studied experimentally via 

(absorption-independent) dynamic CBS measurements. This work constitutes the first 

observation of dynamic CBS in 3D in the localization regime. Results were supported by 

experiments in transmission, which are also fit with SC theory. Previous work has shown that, in 

the AL regime, ݓఘ
ଶ(ݐ) bends over and eventually saturates at long times (Hu et al. 2008; 

Cherroret, Skipetrov, and van Tiggelen 2010). Similar behaviour for Δିߠଶ(ݐ) was anticipated, 

and was reported here for the first time. Both CBS and the dynamic transverse intensity profile 

were fit with SC theory, enabling a measurement of the correlation/localization length ߦ (the 

spatial extent of wave energy) over the entire mobility gap - the AL regime bounded by two 

mobility edges. This is the first complete experimental characterization of a mobility gap for 

classical waves in 3D.  

Results for the average intensity in reflection could be improved by lessening the effect of 

fluctuations on experimental data. With a larger experimental range of angles and/or times, the 

dynamic CBS effect could be employed on its own to locate mobility edges and characterize the 

Anderson transition. In this thesis, a preliminary estimate is given for the critical exponent ߥ 
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which governs the transition between localized and diffuse behaviour, but it is unclear how much 

this analysis is biased by assumptions made by SC theory (Cobus, Skipetrov, et al. submitted). 

There are several promising approaches for measuring ߥ from the dynamic CBS data, including 

scaling methods similar to those presented by Ghosh et al. (Ghosh et al. 2015). In addition, since 

this is the first experimental reflection data for AL in 3D, there are several theoretical predictions 

which (with some further data manipulation) could now be experimentally investigated, 

including phase derivative (delay time) calculations (Schomerus, van Bemmel, and Beenakker 

2001; Chabanov, Stoytchev, and Genack 2000) and frequency correlations (Muskens, van der 

Beek, and Lagendijk 2011; Hildebrand et al. 2014). 

Significant recurrent scattering was observed in the dynamic backscattering data near the 

localization regime. This contribution to backscattered intensity was found to complicate the 

analysis of the CBS effect. Thus, recurrent scattering was separated from these data using a 

matrix method originally developed for the weak scattering diffuse regime (Aubry and Derode 

2009a; Aubry and Derode 2011; Aubry and Derode 2009b) and extended to the strong scattering 

regime (Aubry et al. 2014). However, since recurrent scattering is directly related to the return 

probability, it is interesting to study on its own. In this thesis, the first experimental study of the 

recurrent scattering contribution to backscattered intensity was presented (this work was first 

published by Aubry et al. in 2014). The dynamics of the return probability ܴ(ݐ) were examined; 

in the diffuse and localized regimes, the behaviour of ܴ(ݐ) agreed with theoretical predictions. 

At the mobility edge, a surprisingly slow decay of ܴ(ݐ) was observed, which should stimulate 

further theoretical research in this area. This work implies that recurrent scattering is particularly 

sensitive to extraordinary scattering processes at criticality, and could potentially be used to 

discriminate between diffuse, critical and localized regimes without having to do complicated 
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theory fitting. Further experimental work (including lessening the effect of fluctuations) could 

investigate whether ܴ(ݐ) could be used to measure the critical exponent. 

In the strong scattering regime, and especially near localization, fluctuations of 

wavefunctions inside the scattering medium can be extremely large. In this thesis, experiments 

and post-processing techniques were designed carefully to extract meaningful measurements, but 

analyses were nevertheless made more complicated by remaining fluctuations. However, the 

calculation of some statistical quantities which measure fluctuations can take advantage of this 

effect to study localization. One such quantity, called multifractality (MF), has been previously 

used to investigate localization of ultrasound (Faez et al. 2009). A recent theoretical advance has 

shown that measurements of MF from systems of varying sizes could enable the determination of 

the critical exponent ߥ (Rodriguez et al. 2010; Rodriguez et al. 2011). In this thesis, the first 

steps towards performing this task experimentally were presented. Cubic samples of different 

sizes were created, and the transmitted intensity through many of them was measured using a 

laser interferometer. Careful noise discrimination was necessary to investigate critical behaviour, 

which is most likely to occur in a pseudo-band gap (a range of frequencies of low signal relative 

to the noise). The transmitted intensity on the surface of the cubes showed dramatic fluctuations 

and spatially-localized modes. Signatures of MF were calculated, which show sample-size 

dependent effects in frequency ranges on either side of a bandgap. This finite-size scaling 

suggests that critical regimes exist within these frequency ranges. Results so far highlight the 

need for a large amount of configurational averaging and a significant dependence on the 

position of the input signal, an effect which is prevalent near criticality. This project will, in 

future, involve data from many more cubic samples, resulting in more reliable averaged 

quantities that can be fit with theoretical predictions. This fitting procedure, which would result 
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in a measurement of both ௖݂  and ߥ, is demonstrated on the data available so far, and is the long-

term goal of this project. 

This thesis ends with a step into future planned research; we propose to observe the 

interplay between subdiffusion, localization, and other diffusion-like processes. An example of 

one of these other anomalous processes is superdiffusion, in which transport may be faster than 

diffusion (rather than slower, like subdiffusion). Investigated in this thesis was a sample with a 

fractal structure, engineered to resemble those which have displayed a type of superdiffusion 

called a Lévy flight, for light waves (Bertolotti et al. 2010; Barthelemy, Bertolotti, and Wiersma 

2008). As this is a new type of sample for ultrasound, exploratory experiments were carried out 

over a wide range of frequencies, and various analyses performed to provide clues as to the 

nature of wave transport in the sample. The results demonstrated the presence of effects that 

seem diffusive, as well as clear deviations from conventional diffusive behaviour. The next 

immediate steps of the project will be the creation of more samples of different thicknesses, with 

more sizes of beads for a better approximation of a fractal distribution, and possibly experiments 

at different frequencies. Measurements of the thickness-dependence of transmission through the 

samples will be instructive. On a longer time-scale, further engineering of samples will be 

carried out to encourage strong scattering, with the goal of inducing both localization and 

superdiffusion in the sample. 

Anomalous wave behaviour, and Anderson localization in particular, continues to be an 

area of great interest and potential. The work presented in this thesis contributes important 

advances to the field, including new experimental observations and the development and 

improvement of sophisticated experimental techniques and analysis. This research and the 

reported conclusions are not a closed case, but suggest even more new ways forward. 
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