
A Computationally Intelligent Approach to the Detection of Wormhole 

Attacks in Wireless Sensor Networks  

By  

 

 

Mohammad Nurul Afsar Shaon  

 

 

 

 

 

A thesis is submitted to the faculty of graduate studies of                                         

The University of Manitoba  

In the fulfillment of the requirements for the degree of  

Master of Science  

 

Department of Electrical and Computer Engineering  

University of Manitoba  

Winnipeg, Manitoba  

 

 

Copyrights © 2016 by Mohammad Nurul Afsar Shaon  



ii 
 

Abstract 

This thesis proposes an innovative wormhole detection scheme to detect wormhole attacks 

using computational intelligence and an artificial neural network (ANN). The aim of the proposed 

research is to develop a detection scheme that can detect wormhole attacks (In-band, out of band, 

hidden wormhole attack, active wormhole attack) in both uniformly and non-uniformly distributed 

sensor networks. Furthermore, the proposed research does not require any special hardware and 

causes no significant network overhead throughout the network. Most importantly, the probable 

location of the wormhole nodes can be tracked down by the proposed ANN-based detection 

scheme.  

We evaluate the efficacy of the proposed detection scheme in terms of detection accuracy, 

false positive rate, and false negative rate. The performance of the proposed model is also 

compared with other machine learning techniques (i.e. SVM and regularized nonlinear logistic 

regression (LR) based detection models) based detection schemes. The simulation results show 

that proposed ANN-based detection model outperforms the SVM and LR based detection schemes 

in terms of detection accuracy, false positive rate, and false negative rates.
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Chapter 1  

 

 Introduction  

Wireless sensor networks (WSNs) consist of self-directed devices (i.e. sensor nodes), which 

are used in a collective manner monitoring physical or environmental phenomena in a remote 

and/or hostile environment. Spatially distributed autonomous sensor nodes can communicate 

amongst themselves in order to forward sensed data to the base station. The WSN is an especial 

type of ad-hoc network that has gained popularity for its versatile application in military and civil 

domains such as battlefield monitoring, tracking objects, healthcare, and home automation.  

 

Figure 1.1 Wireless sensor network [Printed without permission, from 60]. 

 

In WSN, a larger number of sensor nodes perform an assigned task in a hostile environment 

without any human intervention. Since sensor nodes use a known in-band radio channel for 

communication and are usually deployed in a hostile or remote environment, therefore, WSNs are 

prone to various security threats like a sinkhole attack, sybil attack, and wormhole attack. WSN 

has several vulnerabilities that an attacker can exploit to obtain access to the network. 

Implementing security measures like data encryption is not practical for most WSN since the 
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firewalls become very complicated and challenging task due to the limited communication and 

energy resources and distributed nature of the nodes. However, research on security measures has 

made certain progress in secure localization algorithm, lite weight routing protocols, lite weight 

encryption scheme, and secure data aggregation scheme. However, those security mechanisms 

don’t provide any protection against any attack from a legitimate node. If an attacker gains control 

over a few legitimate nodes, full access would be gained to the data traveling through these 

compromised nodes. The attacker may achieve the capability to modify the contents of the control 

packets later by extracting the cryptographic contents from the compromised node.  

Wormhole attack is recognized as one of the most detrimental security threats for any routing 

protocol of WSNs. The wormhole attack can be easily launched by taking over at least two 

legitimate nodes from the two distant parts of the network or deploying two nodes with superior 

capabilities (e.g. directional antenna, larger radio range) in two distant places of the sensor field. 

Wormhole nodes are connected through a virtual tunnel which can be implemented in numerous 

ways (e.g. high-quality channel, packet encapsulation or packet relay and high powered 

transmission) [1]. This direct low latency link is known as a wormhole link [2]. A wormhole link 

creates an illusion in the network that these two colluding nodes are located within their 

communication range, but, in fact, their physical locations are very far apart. By creating this 

unauthorized link, wormhole nodes gain the ability to circulate false route information into the 

network that they are few hops away from the base stations. This illusion drives other sensor nodes 

to transmit collected data to the base station through the wormhole nodes. Wormhole attack 

disrupts the existing network data flow in order to monitor and capture the data packets passing 

through it. 
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Figure 1.2  The depiction of the structure of a wormhole attack. 

As shown in Figure 1.2, the 𝐸1 and 𝐸2 wormhole nodes, connected by a wormhole link, capture the 

data packets from one terminal of the virtual tunnel and retransmit them to another terminal of that 

link. 

Subsequently, this wormhole attack becomes so severe that it might destroy the network or 

hamper the usual operation of the network by the selective dropping of packets, manipulation of 

traffic, or modify data packets without revealing their identities. Therefore, detection of wormhole 

nodes is an essential task for ensuring the security of wireless sensor networks. It is a very simple 

task to implement wormhole attack, but a very difficult task to detect an infected network since 

wormhole nodes retransmit valid packets into the network. Most of the existing countermeasures 

use the distance bounding technique, direction, and location abnormality among claimed neighbor 

nodes as detection attributes to fight against wormhole attack. To gain a certain level of accuracy, 

some existing schemes uses complex and highly advanced devices such as directional antenna[3], 

GPS[4], or ultrasound for distance measurement [5]. However, incorporation of this special 

hardware to each node makes the scheme more costly and impractical for the deployment. A few 

statistical wormhole detection schemes based on hop count [6], node connectivity [2], or 
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neighborhood count [7][8][9] are proposed that do not need any special hardware. However, they 

usually include a hardware supported scheme as a secondary approach. Furthermore, centralized 

statistical wormhole detection [7] may cause significant network and communication overhead in 

contrast to a distributed statistical approach [8]. In the network connectivity based wormhole attack 

detection schemes [2][10][11], the positions of neighboring nodes are estimated from the received 

signal strength (RSSI ) by each node, which sends this information to the base station. By doing 

this, the network layout is determined by the base station and compared with the given network 

layout. This approach also causes a significant amount of control packets flow to the base station. 

Moreover, it is prone to distance estimation errors. Furthermore, neighborhood-based wormhole 

detection schemes [9][7] may not detect wormhole attack if the wormhole nodes are located in a 

sparsely populated area and caused the significant flow of packets to the base station. In addition, 

their performance in non-uniform sensor distribution is in question. 

In recent years, network anomaly detection schemes have been increasingly using artificial 

intelligence to improve detection accuracy. An artificial neural network (ANN) is a very simplified 

information processing model that aims to grossly imitate the human brain function. An ANN 

consists of interconnected processing units and works in a parallel fashion to find a solution to a 

non-linear problem.  The adaptive and self-learning ability of an ANN help to increase the 

competence of an anomaly detection model [12]. Moreover, ANNs have been widely deployed to 

deal with pattern recognition and classification problems [13].     

 

 Thesis statements  

In this thesis, we introduce a novel detection scheme based on an ANN using ‘neighborhood 

count’ and ‘average residual energy pattern of neighbors (AREPN)’ as detection attributes. The 
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proposed detection scheme can detect wormhole attacks in both uniform and non-uniform sensor 

distributions and does not need any special hardware. Here, we have introduced a mobile node, 

called as detector node (𝐷𝑁) that visits randomly chosen locations within the region of interest and 

collects two featured data samples, along with coordinate at each site visited. When the detector 

node 𝐷𝑁 moves into a wormhole infected zone, this paper theorizes that the collected number of 

neighbors increases abnormally (uniform network scenario) or slightly abnormally (non-uniform 

network scenario), compared to a non-infected zone, in which the counts change normally. This 

thesis paper also introduces a new detection attribute, named AREPN that significantly low at the 

wormhole infected zone compare to non-infected zone. 𝐷𝑁 captures these attributes as the evidence 

of the existence of a wormhole node in the network. In this detection scheme, the gathered dataset 

is used to train and test the learning performance of the ANN. After the training phase, the test 

data samples are fed into the ANN. Based on the network output, the scheme decides if there is 

any data sample that represent wormhole attack in the network. 

 Contributions of the Thesis  

 

a) Machine learning algorithms like ANN, SVM or Logistic regression (LR) are widely used 

to trace the threats or anomalous behavior from the internet traffic. In this thesis, the ANN 

is introduced as a mean of analysis tool to identify the existence of wormhole in the 

network. In this study, The ANN is applied on the two featured simulated data set to detect 

wormhole attack from the infected WSNs. 

b) In this thesis, our proposed detection model can identify the presence of any malicious 

node from both uniform and non-uniform sensor distributions. This detection scheme 

doesn’t need any special hardware such as a directional antenna, sonar, GPS, and 
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ultrasound to detect wormhole attack. That makes the detection scheme inexpensive and 

practical. 

c) The excessive network overhead flow is one of the major causes of energy dissipation of 

the sensor node.  In this thesis, we have introduced a mobile node, also known as detector 

node, to collect the two featured data samples from the infected network and offload those 

collected samples to the base station once it is within the communication range of the base 

station. By introducing this node, the network overhead throughout the network is 

significantly reduced. That would be helpful to increase the lifetime of the network 

significantly. 

d) Neighborhood count is one of the important attributes to identify the presence of the 

wormhole node in the network. If the malicious nodes place themselves in the sparsely 

populated area of the network, then it will be difficult for the detection scheme to identify 

wormhole nodes in the network. In this thesis, we introduce a new detection attribute called 

AREPN that significantly enhanced the performance of the proposed detection scheme. 

e) We have studied in detail and compared the efficacy of the proposed algorithm with SVM 

and LR based detection schemes through simulations. The simulation results confirm that 

an ANN based wormhole detector can detect wormhole attacks with higher precision and 

accuracy as compared to the SVM and non-linear logistic classification based detection 

models. 

 Outline of the thesis  

The organization of this thesis paper is arranged as follows: chapter 2 presents a literature 

survey of wormhole attack detection schemes and their countermeasures for WSNs. Chapter 3 

provides the brief description on wormhole attacks, their classification and the impact of the 
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wormhole attacks on infected wormhole attacks. Chapter 4 describes the background of some 

machine learning algorithms such as ANN, SVM, and LR. This is chapter provides an in-depth 

detail of the ANN. Chapter 5 presents the proposed ANN-based detection scheme. This chapter 

explains how the detector node collects the two featured data samples from the infected WSN, 

how this ANN based detector identifies both the presence of wormhole and the probable location 

of the malicious node. Chapters 6 gives the results from the experimental works. It explains 

simulation setup, analyzes the outcome of the experiments and compares the results of different 

machine learning-based detection scheme (ANN, SVM, LR). Chapter 7 provides the conclusion 

of the thesis and discusses the scope of works that can be done to enhance the performance of the 

ANN-based detection scheme in future.    
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Chapter 2 

2. Related Works  

As the wormhole attack can be launched from legitimate nodes (compromised) and relays the 

valid packets throughout the network; therefore, it is reasonably difficult to detect it from the 

infected network. Furthermore, lightweight cryptographic solutions are incorporated into the most 

of the routing protocol to prevent injection of fictitious data packets into the network. As the 

legitimate nodes are compromised by the adversary and the wormhole node doesn’t change the 

packet’s content at the initial stage, so the wormhole node easily passes the cryptographic test.  

The wormhole attack is a simple task to launch, but very difficult to identify. Many researchers 

have been working on this field to develop efficient wormhole detection schemes based on the 

geographical locations, transmission time, connectivity graph, neighborhood counts and radio 

fingerprint.  

 Distance consistency based approach 

Most of the researchers in this field try to detect the wormhole attack by distance bounding 

techniques. In these approaches, two communicating nodes are allowed to determine the distance 

between them; based on message traveling time information, transmission time information, and 

geographical information. Sometimes sensor nodes are equipped with specialized hardware like 

the directional antennas, GPS, ultrasound[5] to measure the distance between two adjacent sensor 

nodes. However, these schemes are considered impractical due to the addition of the special 

hardware and their performance in a sparse sensor network. These schemes may not perform well 

in the presence of ‘out of band’ wormhole nodes. 

 Time information based approach  
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The most popular detection model of wormhole attacks uses the packet traveling time between 

two consecutive sensor nodes as a detection attribute. Most of the cases, the data packets traveling 

time is estimated from the measured round trip time (RTT). In [4][14][15][16][17][18][19], the 

authors proposed RTT based solutions to confront wormhole attacks. In [14], delay per hop is 

determined by measured RTT whereas, for each successive hop, RTT is measured to detect 

wormhole attack [15]. In these schemes, the distance between two adjacent nodes is measured 

using RTT and determine if the two communicating sensor nodes are apart by the valid possible 

distance. If the measured RTT  surpasses a defined threshold value, the presence of wormhole 

node will be declared. However, the RTT based solutions require the collaboration of the sensor 

nodes on the path and don’t work properly on the dynamic source routing (DSR) and destination 

sequenced direct vector routing (DSDV) routing protocols [20][21]. These RTT based solutions 

may not perform well if the wormhole is created by protocol deviation. The wormhole nodes 

forward the packets without waiting for the certain time in order to reach the destination earlier 

than legitimate multiple hop path. Beside this, in the ‘out of band’ wormhole attack, the wormhole 

nodes use the high-speed low latency link for transferring packets between them. In this type of 

attack, data packets reach to another wormhole node more quickly than ‘in-band’ wormhole attack. 

In fact, the time required to forward the packets to another wormhole node is significantly reduced 

in ‘out of band’ wormhole attack. Therefore, the performance of RTT based detection scheme is 

in question with the presence of ‘out of band’ wormhole attack. Some literature [22] also suggested 

that the RTT based detection scheme cannot detect ‘active’ mode of wormhole attack and may not 

detect wormhole attack in the sparse sensor network. 

In [19], the authors proposed a detection scheme based on neighborhood count and RTT. The 

authors considered the two facts. First, as the malicious nodes establish the new link in the network, 
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so the neighbors around the malicious node increases significantly. Second, the measured RTT 

between two malicious nodes increases significantly in a similar fashion. However, this proposed 

solution may not identify ‘out of band’ wormhole attack from the infected network.  

In [22], the authors proposed a detection scheme based on the data transmission time of each 

successive hop in a route assuming that the wormhole nodes are in hidden mode. In this scheme, 

the data transmission time of each successive hop is calculated from the measured RTT. All sensor 

nodes in the route transmit the recorded transmission time to the source. The source is solely 

responsible for checking if there is any wormhole node exist in the route. This scheme may perform 

poorly in sparse sensor networks. In fact, the performance of this scheme may be degraded when 

malicious nodes use high-speed communication channel. 

 Special hardware based schemes  

The directional antennas are incorporated with sensor nodes for adding access restriction 

[3][23][24][25] and finding legitimate neighboring nodes in the sensor network. The entire 

communication region of a sensor node is divided into several zones. Moreover, each zone is 

defined by a directional antenna. When a sensor node captures the signal first time from its peering 

sensor node, then the probable location of the sender in terms of the zone is determined by the 

directional antennas. According to the authors, if a sensor node sends a packet from a particular 

zone, the recipient will get the signal from the opposite direction (zone). After that, the recipient 

sensor node verifies the legitimacy of the sender through receiving direction of the packet from 

unknown sensor nodes. The recipient node also cooperates with its neighbors to find out whether 

this node is known to other legitimate neighboring nodes or not. The incorporation of directional 

antennas to each sensor node makes this scheme expensive and inappropriate for practical 

deployment.  
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Another protocol named SECTOR was introduced in [17], that mostly depends on special 

hardware. The main concept of this detection scheme is to measure the distance between two 

communicating nodes based on the data transmission speed. The proposed model does not need 

any clock synchronization and geographical information of communicating nodes. In this 

algorithm, the mutual authentication with distance bounding (MADB) protocol [26] was 

implemented to measure the distance between nodes at the time of the encounter. According to the 

authors in [26], the proposed scheme permits one node to measure the mutual distance between 

two nodes and compares with maximum possible upper bounding distance. In this scheme, each 

node is incorporated with the special device that can give feedback to the sender without any delay. 

Initially, a node sends the one-bit challenge to its neighbors before sending any packets. Then 

recipient node responds back through a special device to the sender at the time it receives the one-

bit challenge. When the sender transmits the one-bit challenge to a node, it turns on the clock and 

measures the time till it gets the response back from that node. After that, the sender estimates the 

mutual distance based on the measured time considering the data transfer speed as same as the 

light propagation speed. However, in the [18], the authors slightly modify the schemes described 

in [26]. In [18], both parties are allowed to measure the mutual distance and validated authenticity 

of the adjacent nodes around their communication range. The addition of the special device to each 

sensor node makes this scheme expensive and inappropriate for practical deployment. 

 Geographical information based solution  

In [27] and [4], the authors proposed a model that assigns a maximum data traveling period 

to each data packet. The authenticity of a data packet is ensured by using the concepts of 

geographical and temporal packet leashes that would help to minimize the effectiveness of the 

wormhole in the network. In the geographical leash (GL), when a sender sends packets to any 
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sensor node, the sender node incorporates sending time and its own location information to the 

packet. When the receiver node captures the packet, it will estimate the packet traveling based on 

the geographical leashes. The temporal leash includes the maximum lifetime to each packet.  In 

temporal leash (TL), a sender adds either packet transmitting time or expired time so that the 

recipient can verify if the packet has traveled valid distance based on maximum transmission speed 

and time. A predetermined time threshold is set between any two neighbors based on their position 

in the network. For a specific two neighboring nodes, the data packet would be discarded if it 

violates the time boundary set by these specific nodes. This scheme can perform better if strict 

time synchronization is maintained and the additional GPS hardware is incorporated to each node. 

Beside this, this proposed scheme may perform poorly when the wormhole node is in active mode. 

 Trust based solution  

Trust information of neighboring nodes is used as an attribute to detect wormhole attacks in 

the WSNs. Each sensor node monitors the data packet forwarding pattern of its neighbors and rates 

them accordingly. In the trust base scheme, a sensor node selects the most trustworthy path to 

reach the destination based on the trustworthiness of its neighbors. In this scheme, the researchers 

consider the fact that the wormhole node drops all the received packets coming from its adjacent 

nodes. It is expected that the system would rate the least trust level to the malicious nodes. By 

using this trust level scheme, the wormhole node can be avoided during the selection of a path to 

the destination. This also helps to reduce the effectiveness of the wormhole nodes in the infected 

network. The source node would forward the packets to the neighbor which possess maximum 

trustworthiness. 

In [28], a new detection scheme was proposed to identify wormhole in the network based on 

both time and trust. In this scheme, both data travel time and trustworthiness of the sensor are used 
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as potential attributes to detect the malicious nodes from the infected network. These two modules 

of this proposed scheme run simultaneously. Here, the time-based module works in three stages. 

Firstly, each sensor node identifies its neighbors and updates the neighbor list accordingly. 

Secondly, each node discovers the best path towards the base station based on the trustworthiness 

of neighbors. Finally, the proposed algorithm determines the presence of the wormhole nodes in 

the selected path. According to the authors, the malicious nodes deceive the time-based solutions 

in many ways. Hence, the trust-based model is incorporated with the time base scheme. In this 

scheme, a sensor node monitors the neighboring node continuously and give them ratings. Based 

on the given ratings each node selects the best route to the destination.  

Another trust based wormhole attack detection scheme was proposed in [29].To execute the 

model, the deployed sensor node must operate in a particular mode, named as ‘promiscuous mode’. 

This trust-based scheme is applied to the DSR protocol and inherent features of DSR routing 

protocol are used to measure the trust level of the neighboring nodes. Here, the algorithm must be 

executed in each sensor node and each node must estimate the trustworthiness of its neighboring 

nodes by monitoring the packet transmission pattern stated by the system. The source node verifies 

in several stages whether the forwarding node passes the data packets or not through a series of 

integrity checks. If the neighboring node for a source forwards all the packets, the trust level of 

the node would be increased. Similarly, if the opposite happens, the trust level of that node would 

be decremented.      

The success of this module lies on the packet dropping criteria of the malicious nodes. 

However, the wormhole nodes do not drop packets in the hidden mode of this attack. Hence, the 

trust base detection model is not capable of detecting the hidden wormhole attack. On the other 

hand, each node monitors the packets forwarding pattern of its neighbors. As we know, sensor 
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nodes have some constraints on power and energy resources. It would be a burden for the system 

which leads to excessive energy dissipation of the nodes.  

 Graph-based solution  

Multi-dimensional scaling-visualization of the wormhole (MD-VOW) [30], was proposed 

based on the graph theory. The multi-dimensional scaling analysis of the constructed connectivity 

graph was used as an analysis tool to identify the presence of malevolent nodes in the network. 

For the static sensor network, the connectivity graph is not supposed to change frequently. Hence, 

the authors have considered the fact that the presence of malicious nodes introduces anomalies in 

the connectivity graph. In the network connectivity based wormhole attacks detection scheme, the 

positions of the neighboring nodes are estimated from the received signal strength (RSSI) by each 

node. After that, each node transmits this information to the base station for further analysis. By 

compiling the received information, the base station determines the network layout and compares 

it with the current connectivity graph. Then the presence of the wormhole node can be detected if 

any forbidden structure is found in the constructed network layout. However, it is prone to the 

distance estimation errors, especially for the sparse network. The surface smoothing technique is 

applied to the constructed network layout graph to compensate distance error. This approach also 

causes a significant amount of control packets flow to the base station. Similarly, if the wormhole 

node is located in the sparsely populated area, then the wormhole attack may not be identified by 

this network visualization based algorithm.  

 Radio fingerprinting based scheme 

In [31], the authors explored the potentiality of the fingerprinting device as a tool to validate 

the legitimacy of the node in a wireless sensor network. The most important goal of this research 
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is to extract the features from the radio signals, radiating from the nearby sensor nodes; by which 

the legitimacy of a node can be evaluated. In this research, each node must be equipped with the 

radio fingerprinting device. The radio fingerprinting device captures the radiated radio signal from 

the nearby sensor nodes. After that, the fingerprinting device converts the radio signals into digital 

format. The transient part of the signal is located and the important features are extracted.  After 

that, those extracted features are taken into account as fingerprints so that recipient sensor node 

can identify the neighboring node. The authors also implemented the incorporation of the radio 

fingerprinting device with a sensor node [31]. In this research, the authors also showed that the 

fingerprinting approach identified the nearby node while the message contents and the 

identification of the nearby devices were hidden. There are a few issues required to be investigated 

in this approach. The radio fingerprinting devices’ performance in a noisy environment, and in the 

mobile platform is in question. By using this detection method, only the ‘out of band’ wormhole 

attack can be detected. This proposed model may find difficulties to detect ‘in-band’ wormhole 

attack as it can be launched from the legitimate node.    

 

 Neighborhood Count based Solution   

The number of neighbors is used in [7][8][9]  as detection attributes in the neighbor based 

detection scheme. In the centralized method, each sensor node finds the number of neighbors 

within its communication region and sends this information to the base station. As the distribution 

of the sensor node is known, the base station computes the hypothetical distribution of 

neighborhood counts along with the true distribution of the neighborhood counts. This process 

also creates a significant amount of control data packet flow throughout the network and leads to 

the unexpected energy dissipation of sensor node. This process is also used as secondary approach 
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with the distance-based scheme. In another neighborhood count based approach [9], detector node 

takes the count of neighbors at the each site it visited. In this approach, ANN-based detection 

scheme may not detect the wormhole attacks if the wormhole nodes are located in the sparsely 

populated area. Another important factor is that, by this scheme the probable location of the 

wormhole node cannot be identified.   
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Chapter 3 

3. The Wormhole Attack  

A wormhole can be a severe attack against any packet routing protocol, especially in ad-hoc 

and wireless sensor networks. It is very difficult to detect and to take preventive measures against 

wormhole attack since the malicious nodes behave as legitimate nodes and initially do not perform 

any illegal activity in the network. The word ‘wormhole’ means the creation of any shortcut path 

between two far apart points in the space-time [32]. Thus, the concept of ‘wormhole’ is used as a 

tool to launch this attack aiming to spoil the existing routing protocol. 

  

 

Figure 3.1 Creation of Wormhole in space [Printed without permission, from 59]. 

 

  The wormhole attack starts by compromising at least two nodes from the sensor network by 

hacking or, deploying two nodes with superior capabilities (e.g. directional antenna, larger radio 

range) in two distant places of the network [33]. This attack would be more devastating if the 

aggressor launches the attack with multiple nodes. However, wormhole attack can be launched 
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with the single node by broadcasting received packets with high power level [34]. Those malicious 

nodes are known as ‘wormhole node’. Furthermore, to launch this attack, the wormhole nodes 

form an unauthorized low latency communication link for their own usage. This link is called the 

‘wormhole link’. In some literature, this link is also named as wormhole tunnel [8]. The wormhole 

nodes gain unprecedented access to the network by forming this low latency link. This wormhole 

link can be formed in numerous ways, such as packet encapsulation, wired link and out of band 

radio link [1].  Packet encapsulation is the most prominent way to establish wormhole link in the 

network where smallest hop count uses to select the best route towards any destination.  

 

 

Figure 3.2  The depiction of (a) ‘In-band’ and (b) ‘Out-band’ wormhole attack. 

 

The wormhole attack can be categorized into two classes based on the wormhole link 

formation. In the ‘out of band’ wormhole [35], two external nodes (modified) are deployed with 



19 
 

higher communications and computational power than deployed sensor nodes. This kind of attack 

is hard to establish due to the requirement of the special hardware. In this case, the adversary 

connects two separate zones of the network using a wired link or a directional antenna. Similarly, 

in the ‘in-band’ wormhole, the adversary takes over at least two legitimate nodes from different 

zones of the network. One of these is usually located close to the base station so that it could 

disguise its adjacent nodes by advertising fabricated routing information. In contrast to ‘out of 

band’ wormhole attack, the aggressor uses packet encapsulation technique to create wormhole 

node rather than a wired link or directional antenna [9]. In this circumstances, two compromised 

nodes are connected through several legitimate nodes between them. 

Once the wormhole link is functional, one of the colluding nodes transmits the packets, 

collected from an area of the network, towards another malicious node.  The other malicious node 

broadcasts those received packets into its radio range [36]. The wormhole node influences those 

nodes, who are normally multiple hops away from it, to send data packets via wormhole by 

convincing them that they are few nodes away from the base station [37]. In the other words, due 

to the high-speed wormhole link, the received data packets (by wormhole nodes) would travel 

faster from one part of the network to another part of the network than a usual multi-hop route. 

This illusion would disrupt existing packet routing mechanisms. 

At the initial stage, wormhole node eavesdrops or captures the packets passing through it for 

further analysis and retransmits them to another wormhole node. When the wormhole attack 

begins, malicious nodes do not know about the cryptographic keys are being used in the network. 

If this malicious node starts dropping the packets without knowing the content of the packets, the 

target of compromising integrity and confidentially would not be achieved. On the other hand, the 

dropping of the packets might rise suspicion of those nodes who have relayed the packet through 
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wormhole node. Therefore, there is a chance of being detected as a malicious node in the network. 

In fact, Wormhole node tries to place itself in the most of the route without revealing its identity. 

However, the initial phase of wormhole attack is called ‘hidden wormhole attack’ [34]. In the 

‘hidden mode of attack’, the wormhole does not appear in the routing table. Still, wormhole node 

is able to establish the denial of service (DOS) [38] attack by dropping packets in the ‘hidden mode 

of attack’.  

Once the adversary figures out the encryption keys, is being used in the network, by accessing 

program memory and storage of the compromised node[39]; then the aggressor takes the attack to 

the new level. In the ‘active mode of wormhole attack’, the malicious node takes part in the routing 

mechanism as legitimate node [34] and starts modifying or dropping the packets passing through 

it [1]. In some cases, wormhole node drops the selected or critical packets to interrupt the usual 

operation of the network [35]. 

 

3.1. Modes of wormhole attacks  

Modes of wormhole 
attacks  

Wormhole using 
packet 

encapsulation 
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communication 

Wormhole using 
high power 
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Figure 3.3  Modes of wormhole attacks. 
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3.2. Wormhole attack using packet encapsulation  

Packet encapsulation is one of the prominent methods of creating a wormhole in the network. 

In this type of attack, one wormhole node captures route request packets (RREQ) from other sensor 

nodes and sends those RREQ packets to another malicious node through several legitimate nodes, 

which lie in between them. Since the malicious node forwards the encapsulated data packets, the 

hop count does not change during the transmission of packets [40]. Thus, the data packets are 

transferred from a source to the base station through two malicious nodes. In fact, this 

encapsulation technique prevents sensor nodes from discovering a legitimate route that is multiple 

hops away (from source to destination). 

 

 

 

Figure 3.4  Wormhole attack using packet encapsulation. 
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Consider that node 𝑆 wants to send some collected data to the base station, 𝐷. Hence, the node 

𝑆  tries to discover the shortest path in between base station 𝐷 to node 𝑆 with the existence of two 

malicious node 𝑀 and 𝑁. The node 𝑆 initiates the broadcast of RREQ and this broadcasted RREQ 

message is received by one of the malicious nodes 𝑀 and legitimate node. 𝑀 encapsulates the 

received RREQ, which is destined to another colluding node, 𝑁, through the existing path (𝑃 −

𝑄 − 𝑅) between 𝑀 and 𝑁. In this process, the hop count doesn’t increase during the packet 

traversal through (𝑃 − 𝑄 − 𝑅) due to the encapsulation method. After this, another malicious 

node, 𝑁 receives the RREQ message sent by 𝑀 and rebroadcasts it within its radio range. As the 

base station 𝐷 is a neighboring node of 𝑁, 𝐷 hears the RREQ broadcasted by 𝑁. Simultaneously, 

another copy of RREQ also travels through the path including (𝐴 − 𝐵 − 𝐶) to the base station 𝐷. 

The first path is two hops long, but in reality, it is five (05) hops long. The second route is 

apparently three (03) hops long. Since the first route appears as the shortest path; therefore, the 

base station D will choose the first route over the second legitimate route.  

This mode of wormhole attack is very easy to establish since two malicious nodes don’t need 

to know the cryptographic keys are being used or to have any special hardware such as directional 

antennas, high-quality communication resources. The probable solution for this mode of attack is 

to use the fastest time to reach RREQ message to the destination as metric for selecting best route 

[4]. 

3.3. Wormhole attack using out of band channel  

In this type of wormhole attack, two malevolent nodes are connected through a single hop 

high-quality communication channel. This single hop channel can be established by direct high-

speed wired link or long range wireless link. This type of attack is very difficult to launch since 
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two malicious nodes need to have special hardware than another mode of wormhole attacks.  Let’s 

assume the scenario, depicted bellow. 

 

Figure 3.5  Wormhole attack using out of band channel. 

 

Here, two malicious nodes 𝑀 and 𝑁 are connected through a directional wireless link. The 

node 𝑆 wants to send some collected data packets to the base station 𝐷. The node S broadcasts 

RREQ and the one of the malicious node 𝑀 within its neighborhood receives it.  After that, 𝑀 

forwards RREQ message to another malicious node 𝑁 through a different radio channel. 𝑀 

rebroadcasts it again within its communication range. Due to this broadcast, the base station 𝐷 

hears the RREQ message coming from the node 𝑀 via malicious node 𝑁. Concurrently, another 

copy of the RREQ reaches to the base station 𝐷 through the path 𝐴 − 𝐵 − 𝐶. Since the RREQ 
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message received to 𝐷 (via 𝑀 − 𝑁) faster than the second route and it appears to be the shortest 

path, thus the base station 𝐷  will choose the first route via 𝑀 − 𝑁 over the second route.     

 

3.4. Wormhole attack using high power transmission 

In this mode, one of the malicious nodes has the capability to communicate with other normal 

nodes over long-distance using high-power transmission. When the malicious node gets RREQ, it 

transmits the received message at high-power level. Assume the fact that no other sensor node has 

the capability to send the packet at high-power level except that malicious node. The sensor node 

usually rebroadcasts the RREQ, if the destined sensor node is not located within its communication 

range. Thus, the nodes that hear the broadcasted RREQ, rebroadcasts it again to reach the destined 

node. By doing this, the malicious node wants to increase the probability of placing itself in the 

route towards any destination especially sink node even without taking help from another colluding 

node.  

3.5. Wormhole attack using packet relay  

In this mode of attack, the malevolent node transmits data traffic between two non-

neighboring sensor nodes by convincing them that they are direct neighbors. Packet relay based 

wormhole attacks can be initiated by single wormhole node. To launch this attack, the intruder 

must have a larger radio range compare to another legitimate node. In some literature, this attack 

is also mentioned as ‘replay-based attack’ [48].  
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The malicious node 𝑀 has the superior radio range than the other two sensor nodes (𝐴 and 

𝐵). Let’s consider that, node 𝐴 wants to send packets to the node 𝐵. The malicious node receives 

the packet coming from 𝐴 and sends it to 𝐵 without mentioning its ID in the packet header. Hence, 

the malicious node 𝑀 becomes virtually invisible to both node 𝐴 and node 𝐵. The node 𝐵 doesn’t 

know fact that the packet is relayed by the node 𝑀. Thus, both nodes are forced to believe that 

they are direct neighbors. In this case, the malicious node 𝑀 controls the link between legitimate 

node 𝐴 and node 𝐵. At any time of operation, the malicious node 𝑀 can drop packets coming 

through it or break the link between node 𝐴 and node 𝐵. 

 

Figure 3.6  Wormhole attack using packet relay. 
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3.6. Wormhole attack using protocol deviation  

The wormhole attack can be launched by not complying with the routing protocol. When a 

sensor node receives the packet from other sensor nodes, it has to be backed off for a certain 

amount of time before transmitting packets in order to avoid MAC layer collision. The malevolent 

node violates this rule and sends the packets without waiting for certain time. The main aim of 

forwarding the RREQ packets without backing off is, to reach the destination first. In the literature, 

this attack is also named as ‘rushing attack’. In many situations, the intruder initially launches this 

mode of attack in order to mount DOS attack, which is a severe threat to the whole network. 

 Variant of wormhole attack 

There are several attacks exist in the WSNs which are similar to the wormhole attacks. The 

most common and known attack for WSN is spoofing attacks. In spoofing attacks, the identity of 

a legitimate node is stolen by the intruder and hence, all the data packets heading to the victimized 

node are captured by the aggressor [41]. The spoofing attack is similar to the hidden wormhole 

attack. At the same time, there are many types of spoofing attacks, such as invisible node attack 

[42], stolen identity [43] and Sybil attack [44]. 
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Figure 3.7  Variant of wormhole attack. 

 

 However, there are also other types of attacks, that are related to the wormhole attack, 

namely black hole attack, grey hole attack and sinkhole attack. The main objectives of these attacks 

are either gain access of the collected data that is sent toward the base station or interrupt the data 

packet flow towards the base station.  In the black-hole attack, the malicious nodes drop all the 

received packets coming from their neighboring nodes to degrade the performance of the network. 

Thus, this phenomenon also increases the probability to get caught by the existing detection 

scheme. To evade the intrusion detection scheme, the attacker might introduce a more 

sophisticated attack, known as a grey-hole attack. In this grey hole attack, the attacker drops the 
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critical data packets selectively so that it could cause a major interruption to the operation of the 

system.    

In the sinkhole attack, one of the malicious nodes places itself in the network as a neighboring 

node of the base station or creates a high-quality single hop link with the base station through 

different radio channel [33]. The malicious node usually has higher capabilities than deployed 

legitimate nodes in terms of communication and computational resources. The intruder tries to the 

put itself in most of the routing paths toward the base station. Sometimes, this attack targets any 

potential node in the network instead of sink node. In this case, the sinkhole attack hampers 

availability and usability of this targeted sensor node. After gaining the access to the data packets 

directed to the base station, the malicious node alters the data packets flow or drops the packets in 

order to suppress the network performance. 

 

 The impact of the wormhole attack        

Wormhole attack is considered as severe threats for routing protocols of WSNs. This attack 

usually occurs in the network layer and is immune to encryption techniques. The wormhole attack 

is able to degrade the efficacy of the existing routing protocol and compromises the integrity and 

confidentiality of the data packets traveling throughout network [45]. Once wormhole nodes get 

the access to the network, the adversary can drop the packet selectively or delay the transmission 

of critical packets for the system in order to destabilize system performance [35]. The aggressor 

tries to establish the denial of service attack (DOS) and attempts to compromise the integrity and 

confidentiality of the network. 
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During the active mode of this attack, the malicious nodes become the sinkholes [1]. However, 

other nodes around the wormhole send data packets without knowing the fact that they are the 

victims of the wormhole attacks. Since the major share of data packets traverses through the 

malicious nodes, the attacker may control and monitor the packet without having multiple 

observation points in the network. Some literature also suggests that wormhole node also lessens 

the throughput of the network by the selective dropping of the packets [1]. Furthermore, wormhole 

node also can turn on and off the wormhole link randomly [1].  This event creates instability in the 

routing service and causes a significant amount of control packets flow throughout the sensor 

network suddenly.  

In general, the routing protocol of the wireless sensor network can be categorized into two 

classes, such as ‘pro-active’ routing protocol and ‘on-demand’ routing protocol. Routing updates 

 

Figure 3.8 Wormhole Packet reception pattern 
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are transmitted periodically in the pro-active routing protocol, whereas on-demand routing 

protocol searches the route to a specific destination when it is necessary. However, the wormhole 

attack is successful to invade the network accessibility for both classes of wormhole attack [46]. 

Some literature on wormhole attack mentions that two wormhole nodes are able to attract more 

than 50% data traffic towards them directed to the base station [3], [47]. 
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Chapter 4 

 Background on Machine learning algorithms  

This chapter describes the background on the machine learning algorithms such as ANN, 

SVM, and LR in detail. The first section explains the structure of the ANN and how the ANN 

defines a non-linear relationship of given data samples and actual outputs. The following section 

explains the SVM and LR in detail.     

 Artificial neural networks (ANN) 

The Artificial Neural Network (ANN) is a network based stochastic learning model that has 

evolved from the study, characteristics, organization, and decision-making ability of the unit cell 

of a human brain called a neuron [48]. In other words, it aims to imitate the most simplified and 

basic function of the human brain. Analogous to the unit cell of a human brain, an ANN contains 

several interconnected information processing units, called a neuron, learning the underlying 

process of the data samples presented to the network. The significant phenomena of ANN are the 

ability to estimate the non-linear complex relationship between inputs and outputs without any 

prior knowledge of dataset like a black box. ANN is usually observed as a model of interconnected 

neurons that maps the input and outputs through information exchange among neurons. 

4.1.1. Natural neuron and Analogy to the ANN model 

The fundamental building block of the human neural network is a neuron.  A typical human 

neuron has four parts- a cell body (Soma) which is responsible to perform non-linear complex 

operation, an array of input paths or spiked (myriad) extension of soma to receive input signals 

from the adjacent neurons (Dendrites), a relatively long output path that carries the output signal 

from the soma away from the neuron, and multiple axon terminals (synapses) that connect the 
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neurons with other neurons. The dendrites capture the transmitted signal from the adjacent neurons 

and forward them toward the cell body [49]. The synaptic terminals are connected with dendrites 

of the other adjacent neurons or the effector cells in the muscles or glands. 

 

 

The main objective of a neuron is to capture the incoming signals from the other neurons and 

determine whether to send or not to send the processed electrical signal to the other neurons, 

muscles, or glands. The neuron usually receives signals from the external environments or from 

the other adjacent neurons. In the soma, all the received information is integrated and summed up. 

Based on the strength of the summed input, the neuron determines the transmission of the output 

from the cell body. The most noticeable aspect of the neuron is it can transmit and receive both 

electrical and chemical signals simultaneously. Furthermore, neuron sends the action potential 

(normalized summed inputs) to the end terminal of the neuron (Synapses) through the axon. When 

the signal reaches at the end terminal of the neuron, it forces the synaptic terminals to trigger a 

 

Figure 4.1  Drawing of natural neuron [Printed without permission, from 58]. 
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release of the chemically encoded message. That is why the synaptic terminals are also called 

neurotransmitters [50]. These chemically encoded signals relay across the synapses to the next 

neuron or the effector cell. The magnitude, density of the chemical release is not well understood 

or defined. However, the response of the receiver can be either excitatory or inhibitory, depending 

on the characteristics of the receptor. If the received signal surpasses the certain threshold of 

recipient neuron, it would activate the recipient neuron and forces it to send an excitatory signal 

along the axon to the synaptic terminal.  

 

Figure 4.2  The basic operation of the natural neuron. 

 

For example, let’s say 𝑛  neurotransmitters send the electrical activation levels (𝑎𝑘) to the 

specific neuron 𝑞 through and along the axon (shown in Figure 4.2). At the synaptic terminal of the 

𝑘𝑡ℎ neuron, the activation level (𝑎𝑘) is multiplicatively amplified before transferring to the 

dendrites of the adjacent neuron 𝑞. The amplification process can be understood through weight 
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value (𝜃𝑘). Therefore, the 𝑘𝑡ℎ neuron sends out the activation level  𝑎𝑘𝜃𝑘 . Dendrites of the neuron 

𝑞 receive those activation levels and transmit to the cell body. In the cell body of the neuron 𝑞, all 

the received activation levels are summed up and normalized by the activation function. If the sum 

of the activation levels is strong enough to surpass the predefined threshold, then the neuron 𝑞  

sends the excitatory signal along the axon to the synaptic terminal. Otherwise it transmits the 

inhibitory signal to the synaptic terminals. The threshold value of the neuron can be known easily, 

though we can model it to be learned as the weight value 𝜃0.   

The exact behaviors of the neuron are still a mystery for the researcher, though some aspect 

of the neurons is known. There is the diverse class of neurons in the human brain whose exact 

mechanism are completely different from each other. The myriad dendrites and synapses of the 

neurons perform the non-linear complex computation that cannot be modeled till now. Hence, 

drawing a serious analogy between neural network models and the human brain is not suited well.  

The artificial neural networks try to imitate the basic functions of the most complex, diverged and 

potent building block of the human brain, the neuron. The artificial neural networks have been 

evolved or modified to solve the computational problems which cannot be solved by the 

conventional methods. It is just a new way to solve problems.   

 

4.1.2.  Structure of the ANN 

Furthermore, in a multi-layer perceptron (MLP), there is an input layer, followed by one or 

more hidden layers, and an output layer [51]. In each layer, several neurons are employed, which 

are fully connected with other neurons of an adjacent layer, and they are associated with different 

random weight values [52]. In other words, neurons are fully attached to the neurons of the 
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following layer; but in the same layer, neurons are not connected with each other. The number of 

neurons in the output layer depends on the type of the problem that we want to solve by the ANN.  
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Figure 4.3 The structure of the ANN.  

 

4.1.3. Forward propagation  

Input features from the input layer are shared with an adjacent hidden layer through 

unidirectional branches [53]. Those input features are multiplied by random weights associated 

with the unidirectional branches; summed up, and passed through the activation function of the 

neuron (e.g. sigmoid function). The bias term is also added to each layer except the output layer 

to activate the artificial neurons. This bias term is also connected to the neurons of the adjacent 

layer with unidirectional branches associated with the weight values (𝑏𝑖
(𝑙)

) so that the summed 

inputs exceed the predefined threshold. In the forward propagation, the output of each neuron of 
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the prior layer is considered as the input to all neurons of the following layer. As shown in the 

Figure 4.4, the three layers relate to the weight value 𝜃𝑖𝑗
(𝑙)

. 𝜃𝑖𝑗
(𝑙)

 represents the weight value going to 

the unit 𝑖 in layer (𝑙 + 1) and coming from the unit 𝑗 in layer 𝑙.  

 

Figure 4.4  Forward propagation of the ANN. 

 

According to the Figure 4.4, the net output of 𝑖𝑡ℎ unit (including bias term) of the hidden layer 

(𝑎𝑖
(𝑙)

 ) is, 

𝑍𝑖
(2)

= ∑ 𝜃𝑖𝑗
(1)

𝑥𝑗
(1)

+ 𝑏𝑖
(1)𝑛

𝑗=1                                                                (1)  
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𝑎𝑖
(2)

= 𝑔(𝑧𝑖
2) = 𝑔(∑ 𝜃𝑖𝑗

(1)
𝑥𝑗

(1)
+ 𝑏𝑖

(1)𝑛
𝑗=1 )                                        (2)  

Similarly, the output of 𝑘𝑡ℎ unit in the output layer is, 

𝑜𝑘
(3)

= 𝑔(∑ 𝜃𝑘𝑗
(2)

𝑎𝑗
(2)

+ 𝑏𝑘
(2)𝑛

𝑗=1 )                                                        (3) 

The cost function, 

𝐽(𝜃) = [∑
1

2𝑚
∑ (𝑜𝑘

𝑚 − 𝑦𝑘
𝑚)2]                                                  𝑚

𝑖=1
𝑛
𝑘=1 (4) 

 

In the equation (4), 𝐽(𝜃) refers to the average error occurred over 𝑚 training samples during the 

training procedure, and 𝑘 defines the number of neurons in the output layer. 

The transfer function of a neuron plays an important role in the training procedure. The 

purpose of the transfer function is to replicate the activation mechanism of the biological neuron. 

Usually, the net output of a unit in a layer is calculated from the net received input through the 

transfer function. The transfer function must be non-linear, continuous and differentiable at any 

point in order to apply gradient descent learning algorithm. There are several types of transfer 

function such as sigmoid function, hyperbolic tangent function, and rectified linear function. Some 

literature [50] also suggests that the rectified linear function was found to accelerate the 

convergence rate of stochastic gradient descent due to its non-linear and non-saturating form. 

However, in our research, the sigmoid function was used as the transfer function of each unit in 

any layer (except input layer). 

𝑔(𝑧) =
1

1+𝑒−𝑧
                                                                             (5) 

𝑔(𝑧) = tanh(z) =
𝑒𝑧−𝑒−𝑧

𝑒𝑧+𝑒−𝑧
                                                       (6) 

 𝑔(𝑧) = {
0   𝑖𝑓 𝑧 ≤ 0
𝑧  𝑖𝑓 𝑧 > 0

                                                          (7) 
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Figure 4.5 Sigmoid function.  

Figure 4.6 Hyperbolic function.  
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4.1.4. Backward Propagation   

In the back propagation, the outcome of the output layer is compared with actual output. The 

error is measured and propagated backward to adjust the branch weights in order to minimize error 

that would occur due to the estimation of output. In other words, we minimize the cost or energy 

of the error function, 𝐽(𝜃), by passing back the error occurred during the training phase. In the 

back-propagation algorithm, the gradient descent algorithm is applied to learn the network 

parameters (𝜃𝑖𝑗
(𝑙)

, 𝑏𝑖𝑗
(𝑙)

) from the training set {𝑥𝑖
𝑚, 𝑦𝑖

𝑚}.  

However, there are many ways to update the weights: batch mode, online mode. In the batch 

mode, each weight is updated after measuring the total error occurred in an epoch (i.e. after one 

 

Figure 4.7  Rectified linear unit.  
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training cycle). In contrast, in the online mode, a training sample is drawn randomly from the 

training set and passes through the network. The network parameters are modified 𝑚 times per  

training cycle if there are 𝑚 training examples in the training set. This online mode of weight 

updating is also known as stochastic gradient descent.  

 

Let’s consider the above multilayer feed forward network. The impact of the change in the 

weight (𝜃11
(2)

) on error occurred in the output layer is, 

 

Figure 4.8  Backward propagation of the ANN. 
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𝜕𝐸1

(3)

𝜕𝜃11
(2)

=
𝜕𝐸1

(3)

𝜕𝑜1
(3)

∙
𝜕𝑜1

(3)

𝜕𝑧1
(3)

∙
𝜕𝑧1

(3)

𝜕𝜃11
(2)

                                                                    

=
𝜕

𝜕𝑜1
(3)

[
1

2
(𝑜1

(3)
− 𝑦(𝑡))

2

]
𝜕

𝜕𝑧1
(3)

𝑔(𝑧1
(3)

)
𝜕

𝜕𝜃11
(2)

(∑ 𝜃1𝑘
(2)

𝑎1
(2)

+ 𝑏1
(2)

)               

4

𝑘=1

 

= (𝑜1
(3)

− 𝑦(𝑡)) ∙ 𝑜1
(3)

(1 − 𝑜1
(3)

) ∙ 𝑎1
(2)

                                   (8) 

In general, the impact of the change in the weight (𝜃1𝑗
(2)

) on error (𝐸1
(3)

) in the output layer is, 

𝜕𝐸1
(3)

𝜕𝜃1𝑗
(2) = (𝑜1

(3)
− 𝑦(𝑡)) ∙ 𝑜1

(3)
(1 − 𝑜1

(3)
) ∙ 𝑎𝑗

(2)                                  (9) 

Similarly, the impact of the change in the weight (𝜃2𝑗
(2)

) on error (𝐸2
(3)

) of the output layer is, 

𝜕𝐸2
(3)

𝜕𝜃2𝑗
(2) = (𝑜2

(3)
− 𝑦(𝑡)) ∙ 𝑜2

(3)
(1 − 𝑜2

(3)
) ∙ 𝑎𝑗

(2)
                                (10) 

Therefore, the impact of the change in the weight (𝜃𝑘𝑗
(2)

) on error (𝐸𝑘
(3)

) of the output layer is, 

𝜕𝐸𝑘
(3)

𝜕𝜃𝑘𝑗
(2) = (𝑜𝑘

(3)
− 𝑦(𝑡)) ∙ 𝑜𝑘

(3)
(1 − 𝑜𝑘

(3)
) ∙ 𝑎𝑗

(2)
                                (11) 

Let’s compute the impact of the changes in weight (𝑏𝑖
(2)

) associated with bias value on error 

(𝐸𝑘
(3)

) occurred in output layer. 

𝜕𝐸𝑘
(3)

𝜕𝑏𝑖
(2) = (𝑜𝑘

(3)
− 𝑦(𝑡)) ∙ 𝑜𝑘

(3)
(1 − 𝑜𝑘

(3)
)                                         (12) 

According to the above equations (11) and (12), the update formulas for the weights associated 

with output layer are given below. 

𝜃𝑘𝑗
(2)

= 𝜃𝑘𝑗
(2)

− 𝛼(𝑜𝑘
(3)

− 𝑦(𝑡)) ∙ 𝑜𝑘
(3)

(1 − 𝑜𝑘
(3)

) ∙ 𝑎𝑗
(2)

                 (13) 

𝑏𝑖
(2)

= 𝑏𝑖
(2)

− 𝛼(𝑜𝑘
(3)

− 𝑦(𝑡)) ∙ 𝑜𝑘
(3)

(1 − 𝑜𝑘
(3)

)                           (14) 

In the above equations, 𝛼 refers to the learning rate. 



42 
 

In the same way, we also calculate the impact of the changes in weights associated between 

input layer and hidden layer on the error (𝐸1
(3)

). Let’s start with  𝜃11
(1)

. 

𝜕𝐸1
(3)

𝜕𝜃11
(1) =

𝜕𝐸1
(3)

𝜕𝑜1
(3) ∙

𝜕𝑜1
(3)

𝜕𝑧1
(3) ∙

𝜕𝑧1
(3)

𝜕𝑎1
(2) ∙

𝜕𝑎1
(2)

𝜕𝑧1
(2) ∙

𝜕𝑧1
(2)

𝜕𝜃11
(1)                                                              

= (𝑜1
(3)

− 𝑦(𝑡)) ∙ 𝑜1
(3)

(1 − 𝑜1
(3)

) ∙ 𝜃11
(2)

∙    𝑎1
(2)

(1 − 𝑎1
(2)

)  ∙ 𝑥1
(1)

(15)     

Consider that  

𝛿1
(3)

= (𝑜1
(3)

− 𝑦(𝑡)) ∙ 𝑜1
(3)

(1 − 𝑜1
(3)

)                                                             

Then the equation (15) can be rewritten as  

𝜕𝐸1
(3)

𝜕𝜃11
(1) = 𝛿1

(3)
∙ 𝑎1

(2)
(1 − 𝑎1

(2)
) ∙ 𝜃11

(2) ∙ 𝑥1
(1)

                                           (16) 

Similarly, 𝜃11
(1)

 is required to be updated considering the error 𝐸2
(3)

 occurred in 2𝑛𝑑 unit of the 

output layer. Therefore, we can write 

𝜕𝐸2
(3)

𝜕𝜃11
(1) = 𝛿2

(3)
∙ 𝑎1

(2)
(1 − 𝑎1

(2)
) ∙ 𝜃21

(2) ∙ 𝑥1
(1)

                                            (17) 

In general, the impact of the changes in weights associated between input layer and hidden layer 

on the errors  (𝐸𝑘
(3)

) occurred in the output layer can be written as follows, 

  
𝜕𝐸𝑘

(3)

𝜕𝜃𝑖𝑗
(1) = 𝛿𝑘

(3)
∙ 𝑎𝑖

(2)
∙ (1 − 𝑎𝑖

(2)
) ∙ 𝜃𝑘𝑖

(2) ∙ 𝑥𝑗
(1)

                                          (18) 

Similarly, the impact of the changes in weights (𝑏𝑖
(1)

) associated between bias value and hidden 

layer on error (𝐸𝑘
(3)

) occurred in output layer can be calculated. 

𝜕𝐸𝑘
(3)

𝜕𝑏𝑖
(1)

=
𝜕𝐸𝑘

(3)

𝜕𝑜𝑘
(3)

∙
𝜕𝑜𝑘

(3)

𝜕𝑧𝑘
(3)

∙
𝜕𝑧𝑘

(3)

𝜕𝑎𝑖
(2)

∙
𝜕𝑎𝑖

(2)

𝜕𝑧𝑖
(2)

∙
𝜕𝑧𝑖

(2)

𝜕𝑏𝑖
(1)
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𝜕𝐸𝑘
(3)

𝜕𝑏
𝑖
(1) = 𝛿𝑘

(3)
∙ 𝑎𝑖

(2)
(1 − 𝑎𝑖

(2)
) ∙ 𝜃𝑘𝑖

(2)                                                    (19) 

Therefore, the weights associated with input layer and the hidden layer can be updated using 

following equations. 

𝜃𝑖𝑗
(1)

= 𝜃𝑖𝑗
(1)

− 𝛼𝛿𝑘
(3)

∙ 𝑎𝑖
(2)

(1 − 𝑎𝑖
(2)

) ∙ 𝜃𝑘𝑖
(2) ∙ 𝑥𝑗

(1)
                          (20) 

𝑏𝑖
(1)

= 𝑏𝑖
(1)

− 𝛼𝛿𝑘
(3)

∙ 𝑎𝑖
(2)

(1 − 𝑎𝑖
(2)

) ∙ 𝜃𝑘𝑖
(2)                                      (21) 

 

Table 4.1 Representation of the Symbols  

Symbol Description 

𝑙 No. of the layer of neural network 

𝑖, 𝑗 Index of the neurons input and hidden layer  

𝑘 Index of the neuron of the output layer 

𝑥𝑖 𝑖𝑡ℎ training example 

𝑦𝑖 Corresponding actual output of 𝑖𝑡ℎ training example 

𝜃𝑖𝑗
𝑙  The weight value going to the unit 𝑖 in layer (𝑙 + 1) and coming 

from the unit 𝑗 in layer 𝑙.  

𝑍𝑖
(2)

 Summed output of the 𝑖𝑡ℎ neuron in the layer 2.  

𝑎𝑖
(2)

 The net output of the 𝑖𝑡ℎ neuron in the layer l. 

𝑂𝑘
(3)

 Output of the 𝑘𝑡ℎ neuron in the output layer. 

𝐸𝑘
(3)

 Error occurred at the 𝑘𝑡ℎ neuron of the output layer while 

estimating the actual output.  

𝑏𝑖
1 The bias value going to the unit 𝑖 in layer 2 and coming from the 

layer 1.  

𝛼 Learning rate 
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 Support Vector Machine (SVM) 

The support vector machine (SVM) is one of the reliable and widely used supervised learning 

model that analyze the presented data samples to perform classification and regression analysis. 

The SVM learns the given data samples, each sample marked with a specific class, builds a model 

that can assign a class to a new data sample [54]. SVM learning model set a hyperplane in an 

optimum position in the data space so that Euclidian distance from the decision surface for all 

training data samples would be maximized. SVM has been emerged to provide the generalized 

performance to solve a wide range of classification and pattern recognition problems such as face 

detection, pedestrian detection, and text categorization.  

Let’s consider a training data set, 𝐷 = {(𝑥𝑚, 𝑦𝑚)} contains 𝑚 training data samples where 

𝑥𝑚 ∈ 𝑅𝑛 and 𝑦𝑚 ∈ {−1, +1}, represents the label of the 𝑚𝑡ℎ data sample. The hyperplane in form 

of decision surface can be defined as 

 

                  ∑ 𝒘𝑇𝑥(𝑖) + 𝑏 = 0𝑚
𝑖=1                                                                   (22) 

  

Where 𝒘  and b represent a weight vector and a bias term that can be determined through the 

training process. Through these parameters (𝑤, 𝑏), the decision surface places itself in the 

optimum position in the data space. As we know, the SVM places the decision surfaces in the data 

space in such way that it maximizes the geometric margin of all training data samples. In this 

circumstance, the optimization problem is  

min
𝑤,𝑏

1

2
∥ 𝑊 ∥2                                                                         (23)     
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Subject to 

∑ 𝑦(𝑖)(𝑊𝑇𝑥(𝑖) + 𝑏) − 1 ≥ 0

𝑚 

𝑖=1

 

 

The concept of the Lagrange multiplier is implemented to solve this optimization problem with 

constraint boundary stated in the equation (23). Therefore, the Lagrange function is  

𝐿(𝑤, 𝑏, 𝛼) =
1

2
∥ 𝑊 ∥2− ∑ 𝛼(𝑦(𝑖)(𝑊𝑇𝑥(𝑖) + 𝑏) − 1)𝑚 

𝑖=1                   (24) 

 

Where 𝛼 is the multiplication factor and 𝛼 ≥ 0. If we differentiate the Lagrange function with 

respect to 𝑤, 𝑏 and, 𝛼; then the optimization problem mention in the equation (20) can be 

formulated as   

max
𝛼

𝐿(𝛼) = max (
𝛼

∑ 𝛼𝑖
𝑚
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦(𝑖)𝑚

𝑗=1 𝑦(𝑗)𝑥(𝑖)𝑥(𝑗))𝑚
𝑖=1   (25)   

 

Subject to  

∑ 𝛼𝑖

𝑚

𝑖=1

𝑦(𝑖) = 0 

𝛼𝑖 ≥ 0, 𝑖 = 1,2, … … . . , 𝑚 

 

The solution of the equation (25) drives to get optimum decision surface that is able to separate 

the positive and negative training data samples. If the presented data samples are not linearly 

separable, then the non-linear kernel trick can be implemented to deal with this problem. The 

Gaussian kernel is widely used as the kernel function. Because this function can increase the 

dimension of the data samples infinitely [54]. The expression of the Gaussian kernel is given as 

follows.  
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𝐾(𝑥(𝑖), 𝑥(𝑗)) = exp (
−∥𝑥(𝑖)−𝑥(𝑗)∥2

2𝜎2 )                                                      (26) 

 

 Non-linear Logistic regression (LR) 

Logistic regression is a statistical model in which the category, from a predefined list of 

categories, of a new observation or data sample, is predicted, by estimating the probability of the 

class using a logistic function (e.g. email sorting) [55]. It is evolved from linear regression and 

designed to solve classification problems. That’s why, in some literature, it is referred as logistic 

classification. 

Logistic classification can be shown as a special case of linear regression, but we can draw a 

distinct line between these two statistical models. In the linear regression, the predictor predicts 

the continuous value by a fitting curve to the given training input data samples [56]. In contrary, 

in logistic classification, a predictor learns how to classify the data through a training phase and 

predicts a discrete value for the corresponding new data sample. Like linear regression, the same 

decision boundary equation is used for logistic classification. 

ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2
2 + ⋯ + 𝜃𝑛𝑥𝑛

𝑛 = 𝜃𝑇𝐱                         (27) 

 

Here, 𝒙 represents a given input vector that contains 𝑛 input features. The 𝜃 refers to the 

model parameter that is required to be optimized by using the training input data samples. This 

decision boundary can be either linear or nonlinear that depends on the application of the logistic 

classification. 

𝑍 = 𝜃𝑇𝒙                                                                            (28) 

𝑔(𝑧) =
1

1+𝑒−𝑧
                                                                          (29) 
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In logistic regression, a sigmoid function is used to measure the certainty level of the class that 

new observation or data sample belongs to. The main advantage of using sigmoid function is that 

it is continuous, differentiable at any point and monotonically increasing. The probabilistic 

interpretation can be done in a simple way; as the value of the 𝑔(𝑧) in greater than 0.5, the predictor 

would be more certain about the class of the given data sample [57]. If the same cost function of 

linear regression is used, 𝐽(𝜃) yields non-convex cost function. Consequently, special kind of the 

cost function is used in logistic classification to learn the model from the training data which is 

convex. 

𝐽(𝜃) = − [
1

𝑚
∑ 𝑦𝑖log (𝑚

𝑖=1 ℎ𝜃(𝑥𝑖)) + (1 − 𝑦𝑖)log (1 − ℎ𝜃(𝑥𝑖))]] +
𝜆

𝑚
∑ 𝜃𝑗

2  𝑛
𝑗=1    (30) 

𝐽(𝜃) denotes the cost function of the logistic classification with regularization term, where 𝑚 refers 

to the total training examples of a given training set, 𝜆 is the regularization parameter, 𝑦𝑖 represents 

the target output for 𝑖𝑡ℎ training example, and 𝑥𝑖 represents the 𝑖𝑡ℎ training example. There are 

two learning methods used in the training procedures:  Gradient decent and Newton’s method. In 

this research, the Newton’s method is applied as the learning model, because it converges to the 

optimal solution within few iterations.   
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Chapter 5 

 Proposed algorithm  

The proposed algorithm is a network based approach, in which neighborhood counts are used as the 

detection feature to detect a wormhole attack. 

 

A mobile sensor node, known as detector node (𝐷𝑁), is deployed in an area where sensor 

nodes could be uniformly or non-uniformly distributed. The detector node 𝐷𝑁 moves around this 

sensor field and collects a neighborhood count and the coordinate at each site it visited. When it 

reaches to the wormhole infected zone, the neighborhood population would increase abnormally 

sharply or abnormally lightly, depending on the sensor distribution and the position of the 

wormhole nodes. For instance, Figure 5.1 shows the impact of wormhole nodes on the 

neighborhood counts.  Let’s say, the detector node 𝐷𝑁  is moving spontaneously around the area 

where the sensor nodes are deployed. At the time 𝑡1,  𝐷𝑁 moves from a location 𝐴1 to another 

location 𝐴2. Since the detector node collects the neighborhood count at each site, it transmits 

neighbor discovery message (NDM) to the adjacent sensor nodes within its communication range. 

According to the Figure 5.1, the wormhole node (𝐸1) also hears the broadcast as it is located in the 

E2
E1

A1

A2

Acom

DN

Figure 5.1  Impact of wormhole attack on neighborhood count. 
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transmission range of 𝐷𝑁. Since wormhole node is not able to read the content of the packet for a 

while, it encapsulates and forwards the packets along the virtual tunnel to another malicious 

node (𝐸2). Furthermore, 𝐸2 retransmits the received packets towards its neighbors. The neighbors 

of the distant malicious nodes (𝐸2) respond back with valid neighbor ID (NID) through the 

wormhole link. After that, 𝐸1 unicasts the received responses to the originator, 𝐷𝑁. 𝐸1 compels 𝐷𝑁 

to think that the responses have come from the sensors located within its radio ranges. Though 

some of those responses have traveled long distant within the network. That’s how the 

neighborhood counts from the infected zone increases sharply due to the wormhole node. This 

may be true for uniform sensor distribution. As we know, the sensor density in the non-uniform 

sensor distribution is inconsistent over the area. If the wormhole nodes are placed in the sparsely 

populated area, then the number of neighbors would not increase abruptly as expected. In this 

circumstances, it would be difficult for ANN based detection scheme to detect wormhole attack 

based on the collected neighborhood counts (also true for the sparse network). Sometimes the 

neighborhood counts taken from the infected zone are the same as, or far smaller than the counts 

taken from the non-infected zone. In this case, the ANN based detector may suffer to distinguish 

between positive and negative data samples. Therefore, another detection attributes along with 

neighborhood count is required in order to detect wormhole attack from the infected network 

(either uniform or non-uniform) more precisely and confidently. 

In this research work, we introduce a new detection feature called ‘average residual energy 

pattern of the neighbors (AREPN)’. As we know, wormhole nodes circulate false route information 

into the network that the base station is multiple hops away from the wormhole nodes. Therefore 

adjacent sensor nodes of the wormhole get influenced and transmit their data packets to the base 

station through wormhole nodes. However, the wormhole nodes force them to hand over the 
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collected data packets to one of the wormhole nodes. That means the wormhole nodes receive 

more data packets after the base station and its neighbors. Now, the question is how the wormhole 

nodes get those data packets coming from the adjacent nodes. Apparently, the data packets are 

coming through its neighbors. 

 

Figure 5.2 Impact of wormhole nodes on adjacent nodes. 

 

More packets arrive at the wormhole node means, more packets have been received and 

transferred by its neighbors. As we know, a node dissipates a significant amount of energy due to 

the transmission and reception of the data packets. Since the wormhole nodes are getting the 

numerous data packets from the adjacent nodes, so the neighbors of the wormhole nodes are also 

losing energy more quickly by retransmitting packets intended for the wormhole node. Now it can 

be said that the sensors located in the infected zone lose more energy than other nodes located in 

the non-infected zone.  
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In our proposed scheme, the detector node broadcasts NDM to the adjacent sensor nodes at 

each site visited. The adjacent nodes reply back by transmitting a data packet incorporating valid 

NID and information of residual energy. In this way, 𝐷𝑁 is able to calculate the number of 

neighbors and average residual energy of the neighbors (AREPN).  𝐷𝑁 captures this evidences as 

a two-featured sample and stores it. It is expected that AREPN taken from the infected zone is 

much smaller than the AREPN taken from the non-infected zone. As we know, the adjacent nodes 

of the base station dissipate energy quicker than the normal node. That’s why, 𝐷𝑁 doesn’t cover a 

certain geographic area based on the location of the base station. Once the mobile node reaches 

close to the base station, it transfers all the collected samples for further analysis.  

 

The efficacy of an artificial neural network highly depends on the method of training and the 

dataset containing potential attributes. The base station gathers (with the help of the detector node) 

a data set (𝐷𝑠𝑒𝑡)   that consists of two featured 𝑁  data samples. In this first half, 𝐷𝑁 gathers two 

featured 𝐾  data samples (𝐾 ∈ 𝑁) from the non-infected zone which are called negative data 

samples. Similarly, the same amount of data samples is collected from the wormhole infected zone, 

known as positive data samples. After that, those two types of data samples are mixed up randomly 

so that training can be performed without any bias. Then, 𝑀 data samples (𝑀 ∈ 𝑁) are drawn from 

the 𝐷𝑠𝑒𝑡  and stores in a training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 (𝐷𝑡𝑟𝑎𝑖𝑛 ⊂ 𝐷𝑠𝑒𝑡). At the same time, rest of the 𝑃 

data samples (𝑃 ∈ 𝑁) are stored in 𝐷𝑡𝑒𝑠𝑡 (𝐷𝑡𝑒𝑠𝑡 ⊂ 𝐷𝑠𝑒𝑡)  to evaluate the learning performance of 

the trained neural network. 
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Proposed Algorithm 

 

1. Collect two featured  𝐾 negative data samples from the non-infected zone  

2. Collect two featured  𝐾  positive data samples from the wormhole infected zone  

3. Store the both type of data samples in 𝐷𝑠𝑒𝑡 which consists of two featured 𝑁 data samples 

4. Select two featured 𝑀 data samples from 𝐷𝑠𝑒𝑡 and store in 𝐷𝑡𝑟𝑎𝑖𝑛 where (𝐷𝑡𝑟𝑎𝑖𝑛 ⊂ 𝐷𝑠𝑒𝑡)   

5. Rest of the  𝑃 data samples are stored in 𝐷𝑡𝑒𝑠𝑡 where (𝐷𝑡𝑒𝑠𝑡 ⊂ 𝐷𝑠𝑒𝑡)   

6. Train the neural network with the data set 𝐷𝑡𝑟𝑎𝑖𝑛 and appropriate network parameters up to 𝑇 

epochs 

7. Test the neural network by using the samples of  𝐷𝑡𝑒𝑠𝑡  

8. If output for a specific sample ≥ 0.5, then this sample represents wormhole attack 

9. If output for a specific sample  < 0.5, then this sample doesn’t represent wormhole attack and 

probable location of the malicious node are identified.  

10. Update 𝐷𝑡𝑟𝑎𝑖𝑛  by 𝐷𝑡𝑒𝑠𝑡   for further training 

11. Reset 𝐷𝑡𝑒𝑠𝑡  and update with new data samples gathered by 𝐷𝑁 

 

 

Furthermore, data samples of 𝐷𝑡𝑟𝑎𝑖𝑛 are fed into the input layer of the ANN. The training 

procedure is performed repeatedly until it reaches a predefined maximum number of training 

cycles i.e. 𝑇 epochs. The testing procedure involves checking the learning progress of the ANN-

based detector. In the testing part, each data sample passes through the trained neural network. If 

the output for a specific data sample is greater than 0.5, then this sample represents wormhole 

attack. Since, 𝐷𝑁 stores the coordinate of the locations along with the two featured data samples, 
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so the probable position of the wormhole node can also be identified by the detection scheme. 

After that, 𝐷𝑡𝑟𝑎𝑖𝑛  is updated by the 𝐷𝑡𝑒𝑠𝑡   for further training. This would minimize the error level 

that has achieved in the training phase. The 𝐷𝑡𝑒𝑠𝑡   entries are cleared up and updated with new data 

samples collected by the 𝐷𝑁 in real time. 

 

 

 

 

Figure 5.3 Probable location of a wormhole node. 

 



54 
 

 

Figure 5.4 Flowchart of the ANN-Based proposed algorithm. 
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Chapter 6 

 Simulation and results 

In this section, extensive research experiments are conducted under various network scenarios 

in order to assess the effectiveness of the proposed algorithm in detecting wormhole attack from 

the affected sensor network. The first phase of the experiments is conducted to see if the proposed 

scheme is able to classify the malicious data samples that represent wormhole attack. Furthermore, 

we evaluate the performance of the detection scheme in terms of detection accuracy, false positive 

rates, and false negative rates. In the second phase, the efficacy of the proposed algorithm is 

explored considering single featured data samples and two featured (i.e. number of neighbors and 

AREPN) data samples. In the literature, it is mentioned that wormhole attack can invade pro-active 

(DSR, DSDV) and reactive (on-demand base routing protocol) routing protocols of WSN. What’s 

impact of wormhole attack on cluster based routing protocol like LEACH- It is not explored in the 

previous researches. AODV and LEACH are the most widely used routing protocols for WSN and   

the energy dissipation of the sensor node depends on the routing protocol; hence, the proposed 

algorithm is also tested considering ‘On demand’ based routing protocol (AODV) and cluster 

based routing protocol (LEACH). Afterward, we record and analyze the efficacy of the proposed 

algorithm in detecting wormhole attack from different sensor distributions. Finally, the 

performance of the proposed algorithm is compared with the performance of other machine 

learning technique based detection schemes like support vector machine (SVM) and regularized 

non-linear logistic regression (LR). In addition, all experiments have been performed in 

MATLAB. 
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Figure 6.2 Non- uniform sensor distribution (Gaussian). 

Figure 6.1 The depiction of the simulation set up (uniform sensor distribution). 
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Figure 6.3 Non- uniform sensor distribution (poisson). 

 

In the simulation, 300 sensor nodes are distributed (uniform or non-uniform) within the square 

field of 500𝑚×500𝑚. The deployed sensor nodes and the base station are static in nature. Radio 

range of each sensor node equals to 50 𝑚. Initially, each sensor node has five (05) units of energy 

that would be used in sensing and transferring packets. A detector mobile sensor node, 𝐷𝑁 is 

deployed as a mobile observation point of the network. The basic task of the 𝐷𝑁 is to collect 

neighborhood counts and AREPN of neighboring population at each site it visited within this 

deployed area. The radio range of the detector node is same as deployed sensor nodes. We assume 

that the detector node is fully aware of its position, the boundary of the targeted area, and any 

obstacles in the area that may restrain its movement. A pair of wormhole nodes is placed at the 

locations 150𝑚×150𝑚, and 300𝑚×350𝑚. Random waypoint model is implemented in the 

simulation as the mobility model for the 𝐷𝑁. Similarly, the base station is positioned at a location 
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of 350𝑚×450𝑚 .In these experiments, we only consider the data transmission between a node 

and the base station. Moreover, the experiments have been conducted on thirty (30) different 

instances for each sensor distribution (e.g. uniform sensor distribution, Gaussian sensor 

distribution, Poisson sensor distribution, Gamma and Beta Sensor distribution) in order to get valid 

(average) performance measures of the proposed detection scheme. 

 

Figure 6.4  The location visited by the  𝐷𝑁 ( red ,blue and white indicate non-infected zone, 

infected zone and the area not covered by 𝐷𝑁). 

 

In this simulation, the detector node collects two featured data sample (i.e. number of neighbors 

and AREPN) at each site it visited. For each instance of each sensor distribution (uniform or non-

uniform sensor distribution), the detector node, 𝐷𝑁 collects 50000 data samples from deployed 

area in which 25000 samples are negative data samples, and 25000 samples are positive data 

samples. The collected data samples are stored at the 𝐷𝑠𝑒𝑡 in the base station. After that, 49000 
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randomly selected samples are stored in the 𝐷𝑡𝑟𝑎𝑖𝑛 for the training purpose. Rest of the data 

samples is used to test the learning performance of the proposed detection scheme. 

 

Figure 6.5 Collected two featured data samples (poisson sensor distribution). 

 

Table 6.1 The network parameters of the Simulation setup 

Network Parameters Value 

Network Area  500𝑚×500𝑚 

No. of the sensor nodes 300 

Radio range  50𝑚 

Nature of the sensor nodes  Static 

Position of the base station 350𝑚×450𝑚 

Position of the first wormhole node  150𝑚×150𝑚 

Position of the second wormhole node  300𝑚×350𝑚 

Sensor distribution Uniform or Non-uniform 

 

 

 The performance of the proposed ANN-based detection scheme 
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Figure 6.6  The structure of the ANN for two featured data samples. 

 

A multi-layer perceptron (with back propagation algorithm) is implemented for the 

experiments. The input layer contains one or two neurons considering the type of data samples 

(one featured or two featured) used to train the network. Moreover, the hidden layer consists of 

100 neurons and the output layer has only one (01) neuron. We used a sub data set, 𝐷𝑡𝑟𝑎𝑖𝑛  

comprised of 49000 randomly selected data samples from 𝐷𝑠𝑒𝑡 for training collected by 𝐷𝑁. At 

first, the neural network was trained by the single featured training examples from  𝐷𝑡𝑟𝑎𝑖𝑛 and 

evaluated learning performance of ANN by the rest of the data samples stored in the  𝐷𝑡𝑒𝑠𝑡 . After 

that, two featured training samples are fed into the neural network and acquired results are 

compared with the results obtained by using single feature data samples. During the training 

period, the minimum error tolerance level is set to 10−5.  The  Table 6.2 represents the parameters 

which are used during the training phase.  

 

Table 6.2 Parameters used for ANN. 
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Parameter  Value 

No of attributes 2 

No of Data points (training) 49000 

No of Data points (testing) 1000 

Architecture (for one feature) [1,100,1] 

Architecture (for two features) [2,100,1] 

Minimum gradient  0.00001 
Learning rate, α 0.001 
Epoch 500 

CPU time (for one instance) 2.43 mins 

 

In the testing phase, the test data set,  𝐷𝑡𝑒𝑠𝑡 is fed into the input layer. Then the output of 

the ANN based model is observed if it could identify the existence of malicious node in the 

given network. Figure 6.7 shows that, the ANN based wormhole attack detection scheme can 

classify the samples that represent wormhole attack from the both single featured and two 

featured data samples successfully. 

 

 

Figure 6.7  Classification of wormhole attack (for single feature). 
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Figure 6.8 Performance of the ANN-based detection scheme using single featured data samples 

(AODV). 

 

Figure 6.8 shows the performance of the ANN-based detection model in detecting wormhole 

attack using single featured data samples (i.e. neighborhood count) when the network uses AODV 

routing protocol. In this graph, the highest detection accuracy is recorded as 97.47% when sensors 

are distributed uniformly in the square field, whereas the lowest detection accuracy is measured 

90.29% for poisson sensor distribution. Furthermore, detection accuracy for Gaussian distribution 

is almost same as the gamma distribution. Accordingly, 91.056%, 91.74%, and 97.873% detection 

rates are measured for Gaussian, Gamma, and Beta sensor distribution. However, the average 

detection accuracy is calculated as 92.23%. The false positive rate and false negative rate entirely 

follow the same trend of detection accuracy. The lowest false positive rates and false negative rates 

are measured for uniform sensor distribution. The average false positive rates and false negative 

rate are accordingly 5.98% and 1.74%. 
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Figure 6.9 Performance of the ANN-based detection scheme using single featured data samples 

(LEACH). 

 

Figure 6.9 shows the results obtained by applying single featured data samples on ANN based 

detection model considering LEACH routing protocol. It is observed that this algorithm performs 

better for uniform sensor distribution as compared to non-uniform sensor distribution. 97.63% 

detection accuracy, 1.62% false positive rate, and 1.23% false negative rate are achieved for the 

uniform sensor distribution. After that, it has performed better for Gaussian sensor distribution 

among all non-uniform sensor distributions. The detection accuracy, false positive rate and false 

negative rate for Gaussian sensor distribution are 91.95%, 7.03% and 1.02% accordingly. The 

similar trend in detection accuracy is observed for Poisson, beta, and gamma sensor distribution. 

However, considering all the sensor distributions, the false negative rates are lower than the false 

positive rates. The average detection accuracy and false positive rate for all sensor distributions 

are accordingly 92.62% and 5.99%. 
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Figure 6.10  The relationship between neighborhood count and detection accuracy (ANN). 

 

Figure 6.10 represents the relationship between the neighborhood counts and the detection 

accuracy. Undeniably, the detection accuracy of the proposed algorithm (considering single 

featured data samples) increases as the total number of neighbors around wormhole nodes increase 

for all sensor distributions. The detection accuracy of the system has a non-linear relationship with 

the total number of the neighbors around the wormhole nodes. For the uniform sensor distribution, 

we can model this relationship as 4𝑡ℎ degree polynomial. For the other non-uniform sensor 

distribution, the relationship can be modelled as 2𝑛𝑑 degree polynomial. It means that the proposed 

scheme may not perform well considering single featured data samples if the wormhole nodes are 

located in the sparsely populated area in the network.  
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Figure 6.11 Performance of the ANN-based detection scheme using two featured data samples 

(AODV). 

The two featured data samples are applied to the ANN-based detection scheme. Like prior, 

the performance of the ANN is evaluated considering both AODV and LEACH routing protocol. 

Figure 6.11 presents the performance of the ANN-based model considering two featured samples 

and AODV routing protocol. The proposed algorithm gives a better performance to detect the 

wormhole attack for the uniform sensor distribution. 99.56% detection accuracy, 0.2% false 

positive rates, and 0.24 % false negative rate are achieved for the uniform sensor distribution. For 

all non-uniform sensor distribution, the detection accuracy varies in between 95% to 97%. In this 

circumstance, the average detection accuracy and false positive rate for all the sensor distributions 

are 97.69% and 1.82%. Most importantly, the detection accuracy, considering all sensor 

distribution, is significantly increased for the application of the two featured data samples. 
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Figure 6.12 Performance of the ANN-based detection scheme using two featured data samples 

(LEACH). 

As shown in the Figure 6.12, the performance of the ANN-based detection scheme improves 

significantly considering LEACH routing protocol and the application of two featured data 

samples on the ANN. Evidently, the ANN-based model performs better for the uniform sensor 

distribution as compared to all non-uniform sensor distribution. The highest achieved detection 

accuracy for the uniform sensor distribution is 99.88%. The detection accuracy for the non-uniform 

sensor distributions fluctuates from 97.43% to 97.98%. Furthermore, the lowest false positive rates 

and false negative rates are achieved for the poisson sensor distribution which is 1.54% and 0.35% 

respectively. In this circumstances, the average detection accuracy, false positive rate, and the false 

negative rate for all the sensor distribution are accordingly 98.23%, 0.45%, and 0.33%. In 

summary, the application of the two featured data samples on the ANN enhances the performance 

of the proposed scheme for both AODV and LEACH protocol. 

 The performance of the proposed SVM based detection scheme 

For the different sensor distributions, one and two featured training examples are applied to 

the SVM accordingly.  The average result of detection accuracy, false positive rates, and false 
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negative rates are calculated to measure the efficacy of the SVM-based algorithm for different 

network scenarios. Table 6.3 represents the parameters which are used during the training phase. 

Table 6.3  Parameters used for SVM 

 

Parameter  Value 

No of attributes 2 

No of Data samples (training) 49000 

No of Data samples (testing) 1000 

Kernel Gaussian 

Sigma default 
Tool MATLAB 

CPU time (for one instance) 2.39 mins 

 

 

 

Figure 6.13  The relationship between the neighborhood count and the detection accuracy 

(SVM). 
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Figure 6.13 represents the relationship between the counts of neighbors around wormhole 

nodes and the detection accuracy considering one featured data samples applied to the SVM-based 

detection scheme. Like the previous case, the detection accuracy follows the non-linear 

relationship with the total number of neighbors for all sensor distribution. As the neighborhood 

count increases, the detection accuracy of the SVM-based algorithm also increases. Similar to the 

ANN-based detection scheme, it may suffer to detect wormhole attack if the wormhole nodes are 

placed in the sparsely populated area. 

 

 

 

 

Figure 6.14  Performance of the SVM-based detection scheme (AODV) 

 

Figure 6.14 shows that the performance of the SVM-based algorithm when the network uses AODV 

as the routing protocol. According to the Figure 6.14, SVM-based detection scheme gives better the 

performance considering two featured data samples like the ANN-based model. SVM-based algorithm 

reaches approximately 96.30% on an average of all sensor distribution. Similarly, it achieves lowest false 
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positive and false negative rates for two featured data samples which are 6.27% and 0.58% approximately. 

Using two featured data samples, the performance of the SVM-based algorithm enhances around 3.39%. 

 

 

Figure 6.15  Performance of the SVM-based detection scheme (LEACH). 

  

 Figure 6.15 shows the performance of the SVM-based detection scheme considering LEACH 

protocol. Similar kind of trend in detection accuracy, shown in Figure 6.12, is observed for the 

LEACH protocol. In Figure 6.15, SVM-based detection scheme performs better on the two 

featured data samples. It achieves averagely 96.44% detection accuracy for all sensor distribution, 

whereas, 93.38% detection accuracy is measured for the one featured data samples. In this case, 

the detection accuracy increases approximately 3.27% for the two featured data samples. Inversely, 

the false positive rates and false negative rates declined significantly for the two featured data 

samples. 

 The performance of the proposed LR based detection scheme 
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Non-linear logistic regression (LR) algorithm is used to measure the performance on this 

classification problem and compare its outcomes with the proposed algorithm. Table 6.4 shows the 

parameters which are used during the training phase of the non-linear logistic classification 

algorithm. 

 

Table 6.4 Parameters used for logistic linear classification 

 

Parameter  Value 

No of attributes 2 

No of Data samples (training) 49000 

No of Data samples (testing) 1000 

Iteration 07 

Regularized parameter (𝜆) default 
Learning method Newton’s 

methods  

CPU time (for one instance)  3.17 mins 

 

 

 

Figure 6.16  Performance of the LR. 
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Figure 6.16 represents the overall performance of the LR to detect the wormhole attack 

considering one featured and two featured data samples. According to the Figure 6.16, LR based 

detection scheme performs better with two featured data samples when the network uses LEACH 

as the routing protocol. The detection accuracy reaches to 95.28 % considering two featured data 

samples. In this case, lowest false positive rate and false negative rate are achieved for the LEACH 

routing protocol, which is 3.87% and 0.82% respectively. Most importantly, this LR based 

detection scheme gives better performance with two featured data samples like ANN or SVM 

based detection scheme. 

 

 Performance comparison 

 

 

 

Figure 6.17  Performace analysis on the uniform and the non-uniform sensor distribution. 

 

Figure 6.17 represents the performance of the detection schemes on the uniform and the non-

uniform sensor distributions considering two featured data samples. Clearly, for the uniform sensor 
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distribution, three (03) detection schemes achieve higher detection accuracy in contrast to the non-

uniform sensor distributions. As the sensor density of the area is uniform; the neighborhood counts 

increase significantly with the presence of the wormhole nodes in the network. In contrary to the 

non-uniform sensor distribution, the neighborhood counts increase slightly or significantly 

depends on the position of the wormhole nodes in the network. Sometimes the neighborhood 

counts are smaller than the count taken from the wormhole non-infected zone (wormhole nodes 

can be placed in the sparsely populated area in the network). Since the uniform sensor distribution 

has a consistency in the node density, the total neighbor population of the wormhole nodes is much 

smaller than the total neighborhood counts in non-uniform sensor distribution. Since the neighbors 

of the wormhole nodes are the only way to reach the wormhole nodes; therefore, the neighbors of 

wormhole nodes in uniform distribution dissipate more energy than the neighbors of the malicious 

node in non-uniform sensor distribution. Hence, positive data samples are easily distinguished 

from the presented data set. That’s why the detection accuracy of these schemes is much better for 

uniform sensor distribution. 
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Figure 6.18 Performance comparison among ANN,SVM, and LR 

If we analyze the performance of the three detection schemes, ANN outperforms SVM and 

LR in detecting the malicious samples that represent wormhole attack considering both AODV 

and LEACH routing protocol. According to the Figure 6.18, ANN achieves 97.69% and 98.23% 

detection accuracy respectively for AODV and LEACH routing protocol. SVM based detection 

scheme performs better than LR based detection scheme (achieves approximately 96% detection 

accuracy) in view of AODV and LEACH. Considering LEACH routing protocol, the LR based 

detection scheme attains 95.28% detection accuracy which is the lowest among all the detection 

schemes. As we know, the performance of the machine learning techniques highly depends on the 

dataset. In this case, ANN distorts the two featured data samples in the higher dimension better 

than other two machine learning techniques; and efficiently put dynamic decision surface in 

between positive and negative data samples. That would help the ANN-based detection scheme to 

gain highest detection accuracy.  
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Another important observation of this research is that the three detection schemes give better 

performance in classifying positives data samples for LEACH protocol. In the cluster based 

routing protocol like LEACH, a node is nominated as a cluster head among the members of a 

cluster for a specific round of data transmission to the base station. Once the cluster head is 

selected, other members send their data packets to the cluster head. Afterward, selected cluster 

head transfers the data packets to the base station. For the next round, a new member is randomly 

chosen as cluster head from the other members who is not selected as cluster head before for any 

round. However, wormhole node manipulates the cluster head selection process in a particular 

cluster of nodes. Furthermore, in the active mode of attack, wormhole node can be selected as a 

cluster head. If it happens, the wormhole node gets a bunch of data packets easily from the other 

members through its neighbors. As we know, wormhole nodes create shortcut path to the base 

station in the network. Therefore, the cluster head is deceived throughout the data transmission 

process to the base station. If wormhole nodes are placed in two different clusters, the members of 

the cluster may also be deceived while they are selecting closest cluster head to transmit their data 

packets. Hence, the neighbors around wormhole node dissipate more energy in LEACH compared 

to AODV. The extra dissipation of the energy reflects in the feature called AREPN collected by 

detector node. That would help in separating the positive data samples and negative data samples 

when two featured data samples are presented to the detection schemes. 
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Chapter 7 

 Conclusion and Future works  

Wormhole attack is one of the detrimental network layer attacks for wireless sensor networks. 

This thesis presents a novel detection model based on neighborhood count and AREPN using an 

ANN for wireless sensor networks. The goal of this proposed detection scheme is to detect 

wormhole attacks (In-band, out of band, hidden or active mode of wormhole attack) with higher 

precision and accuracy, especially in a non-uniform network environment. The experimental 

results confirm that the proposed detection scheme is able to identify the existence of the wormhole 

node without requiring any special hardware both in uniform and non-uniform sensor distribution. 

Another important aspect of this detection model is it doesn’t increase the significant amount of 

network overhead flow throughout the network. The simulation results also validate that our ANN-

based approach performed better than SVM or LR based detection scheme. This ANN based 

detection scheme achieves around 99.72% (average) and 97.52% (average) accordingly for 

uniform and non-uniform sensor distribution.  Most significantly, the probable location of the 

wormhole node can be identified by this scheme. Future works are required to enhance the 

performance of the detection scheme and to investigate in different directions so that we can 

evaluate the efficacy of the proposed detection scheme perfectly. Proposed future works are noted 

as follows. 

a)  Nowadays, deep neural networks and convolutional neural networks are used to 

enhance the performance internet threat detection schemes. We want to apply this 

advanced machine learning algorithms on the acquired data set to evaluate their 

performance. After that, we will compare the results with the Proposed ANN based 

scheme. 
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b) In this research, the relationship between detection accuracy and the total count of 

neighbors around wormhole nodes is investigated. In the future work, we want to 

investigate the impact of changes in radio range of sensor nodes 

(60𝑚 ,70𝑚, 𝑎𝑛𝑑 80𝑚 𝑒𝑡𝑐) and number of the sensor nodes (deployed) and position of 

the wormhole nodes on the detection accuracy of the proposed model. 

c) If we use more than one mobile node, the two featured data samples will be gathered 

more quickly rather than using single detector node. Multiple detector nodes will help 

to locate the positions of the wormhole nodes by triangulation algorithm. Therefore, in 

the future work, we want to investigate the performance of the proposed detection 

scheme by deploying multiple detector nodes in the different sensor network 

environments. 

d)  As we know, the performance of the ANN depends on its own architecture. In the future 

work, we want to apply the acquired data set on different network architecture (Varying 

number of neurons in a layer, varying number of hidden layer) to optimize the 

performance of the proposed ANN-based detection scheme.  

e) In this detection scheme, probable location of the wormhole node is identified 

through 𝐷𝑁. We want to work further in this direction to find the exact location of the 

malicious nodes in the infected sensor network.  

f) The energy dissipation of a sensor node depends on the routing protocol that being used 

in the network. In this research, the performance of the proposed detection model is 

verified considering on demand based and cluster based routing protocol. In the future, 
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we want to the test the proposed algorithm on the hybrid routing protocol such as zoned 

based routing protocol (ZRP) and wireless ad-hoc routing protocol (WARP).  
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