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Interaction Effects in Latent Growth Models

Abstract

Latent growth curves are an effective tool for describing the change or growth of an

attribute over time. Interactive effects between two latent variables on the rate of change of a

latent outcome of interest are of great interest to researchers. Several models have been utilized

to conceptualize the interaction in latent growth curves, but as yet there has been a limited

amount of empirical research to assess each of these models. The current study used a Monte

Carlo simulation approach to investigate three latent growth interaction models -- those by Wen

(Wen et al., 2000), Duncan (Duncan et al., 1999), and a longitudinal extension of the model by

Schumacker (2002), under varying conditions, with 5000 replications per condition. The factors

of missing data mechanism (Complete, Missing Completely At Random, Missing Not At

Random), correlation between latent intercept and slope factors (small, medium, large), sample

size (250,500, 1000), and the reliability of the observed variables (very low, low, average, high)

were manipulated to determine their effects on overall model performance and model fit, bias of

the estimates for the latent slope interaction effect, and rates of Type I error. Of the three models

assessed, the Wen model showed the most reliable performance with respect to overall model fit,

and the Duncan and Schumacker models showed the most reliable performance with respect to

parameter estimation, and bias. The Schumacker model showed adequate Type I error control

when the data was either Complete or Missing Completely at Random. When the missing data

mechanism was Missing Not at Random none of the models performed well, however the

Schumacker model showed the most promising behaviour with respect to bias and Type I error

control. Recommendations for researchers utilizing these models are made, as well as

considerations for their use.
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A Simulation Investigation of Latent Variable Growth Models for Interaction Effects

Overview

Longitudinal modeling has received increased interest in psychology and the social

sciences. The ability to detect and investigate trends (or change) over time has great import for

measuring developmental processes (Aiken & West, 1992), and for determining such

phenomenon as the course of adult depression (Zuroff, Blatt, Sanislow, Bondi, & Pilkonis,

1999), the trajectory of cognition in the elderly (Raykov, 1993) and the effecrs of potential

moderators on intervention practices in children (Dawson-McClure, Sandler, V/olchik, &

Millsap, 2004a). An important area of research is the nature of interaction effects within the

framework of latent variable growth modeling. Li, Duncan, Duncan, Yang-Wallentin, and

Acock (2001) note that studying the impact of interactive relationships between growth factors

(i.e., latent slopes) can be of substantive interest in those hypotheses that seek to determine how

change in two latent attributes interact to produce a joint effect on the growth of an outcome.

Due to the relatively recent application of structural equation models to longitudinal data

in terms of latent variable growth models, empirical research delving into the utility of these

models needs to be carried out. More importantly, there has been a paucity of research to

examine the utility of latent variable growth models to investigate interaction effects of rates of

change in longitudinal designs (Curran & Hussong ,2003).
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The current project investigated several basic issues in analyzing latent slope interactions

using latent variable growth models with longitudinal data. Several methods have been proposed

to represent such latent interaction effects in latent variable models, and few studies have

compared them to each other. As a result, the conditions under which these methods have been

studied has been limited. A Monte Carlo simulation was used to examine some of the empirical

issues surrounding the estimation of latent slope interaction effects in latent variable growth

models. Specifically, issues of overall model fit (including model convergence), estimation of

the latent slope interaction effect (including bias in the estimates), and Type I error rates were

compared for three model representations of a latent slope interaction effect, for three types of

missing data mechanism. These issues were examined under the manipulation of the following

factors: correlation between the latent intercept and slope for a factor, sample size, and the

reliability of the observed indicators.
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Chapter 1: Literature Review of Longitudinal Designs in Assessing Chanse Over Time

In cross-sectional studies individuals are measured at only a single time point. These

types of studies allow the researcher to investigate the relationships between variables but are not

optimal for the assessment of any causative influences on the observed outcomes of interest over

time. In order for such causative influences to be determined, individuals (or groups) must be

studied at consecutive time points, utilizing what is known as a longitudinal design. According

to Curran and Hussong (2003) longitudinal designs "permit the systematic study of stability and

change over time and thus can provide critically needed empirical evaluations of the course,

causes, and consequences" of psychological phenomena (p.526).

A particular type of longitudinal design is a repeated-measures design, which involves

measurements of the same variables on the same subjects over a period of time. When using

such a longitudinal perspective to modeling repeated-measures data the researcher is interested in

how a response variable changes over time (Willett, Singer, & Martin, 1998) - be it a linear

increase, a linear decrease, a non-linear type of change, or even no change at all. These types of

models are also termed growth models. An obvious advantage of longitudinal designs over

cross-sectional designs is the ability to assess the stability and growth behaviour of causal

relationships between antecedent independent variables and the subsequent dependent variables

which are the outcomes of interest.

The analysis of longitudinal data (including repeated-measures data) requires the use of

techniques that take account of the correlations between successive measurement occasions

(Raudenbush & Bryk, 2002: Rowe, 2002). Some analytic approaches, such as mixed models

(Littell, Milliken, Stroup, & Wolfinger, 1996; Singer, 1998), hierarchical linear models (e.g.,
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HLM; Raudenbush et al., 2002) and latent growth models (Meredith & Tisak, 1990) can be used

for the proper analysis of longitudinal designs. One purpose of a longitudinal design is to relate

the change in behaviour over time, represented as a growth parameter, to individual

characteristics, background variables, and environmental factors. This approach makes it

possible to detect systematic inter-individual differences in individual growth parameters (Stoel,

van der Wittenboer, & Hox, 2004), and allows for the studying of predictors of growth or decline

(Raykov & Marcoulides, 2000). The next sections describe several methods that can be used to

analy ze I on gitudinal data.

General Linear Modeling (GLM ) Ap¡troaches to tlze Analysis oJ'Longitudùutl Data

A common approach to the analysis of longitudinal data is to utilize a general linear

model approach, such as a repeated-measures analysis of variance (RM ANOVA) or a

multivariate analysis of variance (MANOVA; Keppel, 1991). In an RM ANOVA the dependent

variable is treated as a repeated-measures (within-subjects) factor (Games, 1990), and the interest

is on mean differences among groups and whether any of those differences are likely to have

occured by chance. In a "pure" repeated-measures design, all subjects serve in all treatment

conditions and, as a result, serve to control subject variability. The RM ANOVA has an

assumption that the variances across the repeated measures all come from the same population,

also known as the sphericity assumption (Keppel, I99l). The RM ANOVA can be used to

investigate simple within-subjects designs, where time is assumed to be a categorical factor, with

balanced data, and equal time spacing between assessment points. The RM ANOVA approach

can also analyze a mixed within/between design, with interaction effects between time and other
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between-subjects factors. However, the RM NOVA can only incorporate time-invariant

covariates (Kwok et al., 2008).

The MANOVA is a generulization of the RM ANOVA to the situation of there being

several dependent variables (Tabachnick & Fidell, 1996). Like the RM ANOVA the focus is

still on mean differences among groups. However, the sphericity assumption is no longer

required when the multivariate approach is taken, an advantage of the MANOVA since this

assumption is often violated in longitudinal designs.

Both of these approaches are based on the general linear model (GLM) as a framework,

and many computer statistical packages offer a general linear modeling module. The GLM

approach is limited in a number of ways. This approach requires complete data for all observed

occasions of measurement, in that every subject must have complete data across all occasions of

measurement, and any subjects with missing data are removed from the analysis. Some of the

assumptions that are associated with the univariate GLM approach are often untenable, in

particular the assumption concerning sphericity (McCall & Appelbaum,l973; Raykov et al.,

2000), and there are a limited number of variance/covariance structures that can be modeled.

Finally, the GLM approach can only accommodate continuously distributed repeated measures,

and its reliance on a fixed-effects approach means that systematic relations are evaluated by

pooling across individuals, and the only source of variation is in the residual effect.

Hierarchical Modeling A¡t¡troaclzes to Longituclinal Data

The data generated by a longitudinal design is sometimes referred to as hierarchical data,

where occasions of measurement are considered to be nested within individual subjects (i.e., the
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data are nested with respect to time; for a review see Raudenbush & Bryk, 2002). With

hierarchical models each of the levels in the nested data structure are formally represented by

their own submodel. These submodels express relationships between the variables at a given

level, as well as expressing how variables from different levels exert an influence on the

variables at a given level. In a longitudinal design, the lowest level of measurement (also known

as the Level I model) is the time or occasion of measurement. The general equation for the

unconditional Level I model (i.e., no individual effects) can be represented as

Yi, = Þo; * B1; Xir * Êir,

where N is the number of individuals, T is the number of measurement occasions (or time), Y¡, is

the response of person i at time t, X¡1 is the occasion of measurement (e.g., the age at time t for

person i), and Ê¡1 represents the residual. This general equation also represents the mean model

or population average model. The X¡1 can indicate real time or the ordinal position of occasions

(e.g., 1, 2,3, etc.). This Level 1 model contains three random variables - the intercept (Bç;), the

slope or growth trajectory parameter (Þri), and the residual term (eir) which is assumed to have a

constant variance, o2. Both a time-invariant covariate (Xi; e.g., gender') and a time-varying

covariate (Wi,; e.g., health status) can be introduced into these models if so desired.

The next level of measurement (also known as the Level 2 model) contains the individual

difference variables or person-level characteristics (e.g., gender, socioeconomic status). These

Level 2 model equations are proposed to explain the random variation present in the intercept

(Þoi) and slope (B¡¡) in the Level 1 model. In an unconditional Level 2 model, there are no

(r)
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individual difference variables included, and the model equations are given as:

Þoi=Êo*uoi

Þri =0r*ur.

In this unconditional Level 2 model the Þo and B1 terms are fixed effects and are the

grand means for the intercept and slope, respectively. The u¡¡¡ and uli terms are random variables

representing the variation of individuals around these grand means. Subsequent model levels can

be added as different types of variables are added (e.g., those measured at the group level are

considered to be Level 3 variables). When these Level 2 (and any subsequent levels) model

equations are inserted into the Level I model equation, we obtain a model of both fixed and

random effects, given as:

Yi, = Þo * u6¡* (Fl + uli) X¡1* s;1

= Êo + Fr X;, + us¡ * U1¡X¡1 * t¡1

There have been several names for models that utilize longitudinal data in this fashion -
multilevel linear models (Heck, 2001), mixed-effects models, random-effects models, and

random-coefficient models (Hox, 2000; Littell et al., 1996; Raudenbush et al., 2002). These

types of models all contain a random component for both the intercept (Þo¡) and slope (Þli) of the

response variable. Raudenbush and Bryk (2002) use the term "hierarchical linear models" to

encompass all of these types of models as it conveys information about the structure of the data

(2)

(3)

(4)
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that is common in many of these applications. The assumptions of the hierarchical model are

that the random effects and the residuals are independent and multivariate normally distributed

(Cunan,2003).

Hierarchical models are more flexible than the conventional MANOVA approach to

longitudinal designs (Hox, 2000). Two drawbacks to the use of a MANOVA model are ( I ) the

removal of any cases that have missing data at any of the observed time points and (2) the

assumption that there is an unconstrained error covariance matrix. The hierarchical model

approach does not suffer from these limitations -- it does not require all cases to have complete

data, so that cases with incomplete data are not excluded from the analysis. The hierarchical

model approach can allow for more complicated enor structures (e.g., autoconelational), can

allow the residuals to be modeled as a function of time. or can allow for relaxation of the

assumptions on the variance structure of the errors (due to the complicated error structure that

can arise from lon_eitudinal data).

SAS has introduced a similar procedure, termed mixed models, in their PROC MIXED

(Littell et al., 1996) procedure that is deemed more appropriate for handling longitudinal designs

than its general linear model approach (i.e., PROC GLM). Mixed models are a broad class of

models that include hierarchical linear models (HLM), growth curve models, and random

coeffìcient models. They have their basis in time series analysis (Elston & Grizzle,1962), mixed

and variance components models (Cochran & Cox, 1957), random effects models (Laird &

Ware, 1982), and empirical Bayes models (Lindley & Smith, I9l2), as well as both the nonlinear

mixed model (NLMIXED) and the general linear mixed model (GLMMIX).
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The mixed model approach can be used with simple within-subjects designs, where time is a

categorical factor (allowing for contrasts of time effects) and data is balanced with equal time

spacing between assessment points. If the interest is on the effects of between-subject factors on

individual growth trajectories, mixed within/between designs which incorporate interactions with

time and other between-subjects factors can be used. Mixed models can include both time-

invariant and time-varying covariates, do not require complete data (i.e., the same number of

âssessments on all respondents), and allow researchers to specify a variety of covariance

structures to account for specific patterns of correlations. Finally, mixed models allow certain

assumptions associated with other methods used for analyzing longitudinal data to be relaxed.

An example is the sphericity assumption associated with the RM ANOVA.
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Chapter 2: Growth Modeling Approaches to Longitudinal Data

While the previous Chapter has outlined several methods for analyzing longitudinal data

that are often adequate, at times it is the rate or patterns of change that are of interest to the

researcher. As several authors have noted (Curran et al., 2003; Kline, 1998; Rogosa, 1993),

approaches such as the GLM or mixed model analyze change only in group means, and any

differences among individuals in their growth trajectories is treated as enor variance.

Growth models allow for a flexible modeling of longitudinal data that can encompass

many of the models described earlier. Growth models can accommodate data structures from a

variety of modeling approaches, such as GLM, repeated-measures models and mixed models

(MacCallum, Kim, Malarkey, & Kiecolt-Glaser, l99J). They are also capable of modeling

individual patterns of change and are not restricted by the drawbacks that plague some of the

other approaches described previously (Wolfinger & Chang, 1995). Fan and Fan (2005) have

further noted that traditional approaches are often inferior to latent growth approaches for

detecting linear growth under small sample sizes and low effect sizes.

The Linear Effbct Growth Model

Similar to the hierarchical models presented earlier (see page 22), the linear effect

growth model has two levels that are modeled (Singer, 1998; Willett & Sayer, 1994). The first

level deals with the occasions of measurement and models the trajectory (growth) for each

individual. This level represents the actual repeated measurements themselves, and is sometimes

termed the "within-person" model since observations are taken "within" individuals. The second

level represents the random variables from the first level (the intercept and slope) as outcomes
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that may depend on person-level characteristics (e.g., gender, socioeconomic status). The basic

equations are the same as those presented earlier (Equations 2-4) and are reproduced here.

The Level I model (which is the same as the mean or population average model) is

expressed as

Yi, = pot * 81¡ X¡¡ * s¡1, (s)

with i and t defined as in Section 1.2. Yir is the measure of the rcsponse variable forperson i at

time t, and Xir is the measure of time for individual i at time t (i.e., the occasion of measurement).

The intercept (Þoi) in this Level I model represents the true level of the response variable for

individual i at the first occasion of measurement. The slope (81¡) represents the true rate of

change on the response over time. These intercept and slope terms are random variables that

vary across individuals and represent the individual-specific effects. This random variation is

expressed as a set of Level 2 equations

Foi=Þo*uo¡

Fr; =Þr*uri.

The complete model, joining the Level-1 and Level-2 models, is

Yi, = Þo * uoi + (P I + u1¡) X¡1 * s¡1

= 0o * F I Xit * u¡¡ * u1¡X¡1 * t¡1.

(6)

(7)

(8)
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Non-Linear Effects in Growth Moclels

Not all models of growth are purely linear in effect, i.e., following a monotonic rate of

change with constant slope over time. For example, a growth model that has a quadratic effect is

used when there is a smooth curved increase or decrease in scores over time (Willett et al.,

1998). This is depicted in Figure 1.

Insert Figure I about here

This type of model, termed a non-linear-effect growth model, is useful for studying outcomes

that change rapidly over time. An advantage of non-linear effect growth models is that, with

only three occasions of measurement, the researcher is allowed more flexibility in testing

possible models to explain the observed growth trajectory.

Continuing with the example of a quadratic-efTects growth model, the Level I model

equations presented earlier (Equations 6 to 8) change as there is now a squared polynomial term

to represent the non-linear (quadratic in the current example) effect of growth over the occasions

of measurement. The complete Level I model now becomes

Yi, = Þoi + Fr¡ (Xi,) + p2¡ (X¡1)2 + e¡1.

The addition of the squared polynomial term (X¡12) permits the growth rate to differ smoothly and

systematically as a function of the occasions of measurement, representing the non-linear

quadratic component of the growth model.

The Level 2 model equations change slightly from those for the linear effect growth

(e)
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model as now there is a third random variable, gzi, for the acceleration in each growth trajectory

(how fast the trajectory changes over time) and to represent the non-linear effect. The system of

Level 2 equations now becomes

Þoi =Foo*uoi,

Fri=Þro*uri,

Fzi =Þzo*uzi.

(10)

(l l)

(r2)

The intercept, Þoi, is the status of person i at time t, B1¡ is the growth rate of person i, and B2¡ is the

acceleration in each growth trajectory (how quickly the trajectories change). The combined

model is:

Yi, = Foo + FroXi, * Þzo X;,t * u6¡ * uli Xit + u2¡ X¡12 + B1; ( 13)
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Chapter 3: Structural Equation Modelins (SEM)

Backgromtd ro SEM

Structural equation modeling (also called covariance structure modeling, causal

modeling, or LISREL modeling) is a data analytic technique that can be used to test if a proposed

causal structure is consistent with the covariances and variances for a given set of data (Breckler,

1990). There are two general purposes of structural equation modeling - the assessment of

model fit, and the estimation of model parameters (Fan & Wang, l99S). The assessment of

model fit gives information about the general pattern of the relationships among the variables,

and the estimation of model parameters gives information about the direction and strength of

those relationships. Model fit indices are meant to describe the fit of the proposed model to the

data rather than to test the fit statistically.

The typical structural equation model has two components fhe nrcctsurentenÍ moclel,

which relates a series of observable indicators (often referred to as manifest variables) to a series

of one or more latent (or unobserved) constructs (q), and the structural moclel, which defines the

relations among the latent constructs (Muthen, 2002). The measurement component of the

model is defined in terms of the p-dimensional outcome vector y,

! =\p * Â¡, !,,, * t,

With p representing the number of manifest variables, or indicators, and with m. representing the

number of latent variables, the elements of this model can be defined as follows: v is a p-

dimensional parameter vector of measurement intercepts, z\ is a ¡t-by-m matrix of measurement

slopes (often referred to as model parameters or factor loadings), q is an ¡z-dimensional vector of

(14)
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latent variables, and e is a 7:-dimensional vector of residuals which are uncorrelated with other

variables.

The equation that represents the structural portion of the model is:

lrr=cf,+Br'¡,,,+(.

In this equation, cr is an nz-dimensional parameter vector and B is an rz-by-nt matrix of latent

slope parameter estimates, indicating the relationships among the latent variables. Lastly, ( is an

n-dimensional vector of errors in prediction for the rz dependent latent variable equations. The

covariance matrix of ( is denoted by ry and has dimensions nt-by-m.

Estimation Methocls in SEM

Model estimation involves the determination of a value for the unknown parameters in

the proposed model. For each parameter, an estimate of the unstandardized coefficient and the

standard error of the estimate are generated, with the goal being to minimize the difference

between the observed and estimated population covariance matrices (Tabachnick & Fidell,

2001). The function that is minimized is

Q = (s - o(0))'W (s - o(0)),

(ls)

(16)

where s is the vector of the data, o is the vector of the estimated population covariance matrix, 0

indicates that o is derived from the parameters of the model, and ' is the transpose operator

(indicating a reflection of a matrix along its main diagonal). W is a weight matrix that weights

the squared differences between the sample and estimated population covariance matrix.
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Different estimation procedures vary with respect to their choice of W. Estimation

procedures include maximum likelihood (ML), generalized least squares (GLS), and unweighted

least squares (ULS), among others (see Tabachnick & Fidell, 2001, for a review). Some

methods are better than others with respect to coffecting for the bias introduced by violation of

statistical assumptions (Weston, Gore, Chan, & Catalano, 2008).

ML estimation is one of the most commonly used estimation methods and is robust to

moderate violations of normality in the data. The ML estimation procedure is a normal

distribution theory estimation procedure, and the ML estimator itself is the vector of arguments

that minimizes the following ML fitting function

FvrL = log t E(á) I + tr[SÐ '(d)] - log [S] -p, (fl)

where S is the sample covariance matrix of the observed variables, Ð(9) is the covariance matrix

implied by the model that is a function of á, the model parameters, ¡r is the number of observed

variables, and tr is the trace function (the sum of the elements on the main diagonal for a square

matrix).

The GLS estimator yields results that are asymptotically equivalent to those obtained

fi'om the use of the ML estimator, and uses the following fitting function:

FcLs = 0.5 rr[[s - ¿'(B)] w'lt. (18)

The ULS estimator is defined as (Siernsen & Bollen ,2001)

FuLs = 0.5 tr[S - Ð(Ø]2. (le)
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SEM in Longituclitzal Desigrts

SEM can be used when thele are repeated observations on a set of individuals. This

approach is applicable when the research question is framed as either a longitudinal model or as

a latent variable growth curve model (Hoyle & Smith, 1994; Kline, 1998; MacCallum et al.,

1991; Raykov et al., 2000). SEM offers advantages over the general linear model by its ability to

allow for theoretical models of change to be specified (Rayko v , 1992), and by providing an

assessment of overall model fit which is not a large focus in hierarchical multilevel models

(MacCallum et al., 1997). Further, SEM is useful for studying the influence of latent (enor-free)

constructs that are measured with fallible multiple indicators (the observed variables), and can

yield accurate estimates of causal influences and relationships. SEM approaches are also able to

take into account the effects of conelated errors of measurement in both the independent and

dependent variables (Hox, 2000;' McArdle & Hamagami,1992), which are present in any

longitudinal design. If desired, multiple-group analyses can be used to model between-subjects

effects in longitudinal models (Hoyle et al., 1994) and can examine any time-by-group

intelactions (where there are different effects across time for different groups) as can be done in

hierarchical and mixed-effects models.
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Chapter 4: Latent Growth Models

A growth model can be formulated as a structural equation model (Meredith et al., 1990;

Muthen, 2002), and is then called a latent growth model or a latent growth curve model. Here,

the repeated measurements for each individual are modeled by a latent variable for the intercept

of the growth curve and a second latent variable for the slope of the growth curve (Meredith et

al., 1990; Muthen, 2002; Willett et al., 1994). The interest with a latent growth curve is to model

individual change as a function of time (McArdle & Epstein, l98l), as the use of repeated

measurelnents over time means that the latent factors represent common factors which are

indicative of individual differences ovel'time (Curran et al., 2003: Duncan, Duncan, Li, &.

Alpert, 1999; Hox, 2000).

V/ith respect to the linear-effect growth model presented earlier (in Sectiort 2.1), the

random terms from the growth model (the intercept B6; and the slope B1¡) are now represented as

latent variables that vary across individuals. Also, the p manifest variables now represent the

observed variables at each of the t time points.

History ancl Develo¡tment of the Latent Growth Model

The latent growth model is based on the premise that a set of observed repeated

assessments taken on a given individual over time can be used to estimate an unobserved

trajectory that gives rise to the observed repeated measures - the focus is not on the set of

observed measures, but instead on the underlying unobserved latent constructs that explain the

relations between the observed measures (Burchinal, Nelson, & Poe, 2006). Several authors

have proposed the idea of the analysis of individual trajectories (Gompertz, 1825; Palmer,
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Kawakami, & Reed, 1937; Wishart, 1938), and this was in an effort to capitalize on the rich and

detailed information contained in continuous multi-wave data and also to address research

questions regarding systematic interindividual differences in change (see Bryk & Raudenbush,

1987; Rogosa & Willett, 1985). With this approach, an individual growth model is derived that

represents the change that each person experiences with time (also known as a within-person

model). All members of a population are assumed to have trajectories of the same functional

form, but different members can have different values of the individual growth parameters. If

predictors of change are included in the modeling process, then these get linked to the individual

growth parameters in a between-person model.

There lrave been a variety of methods proposed to estimate the parameters of these within

and between models (also called Level I and Level 2 models, respectively). One avenue of

estimation has been the use of the methods of covariance structure analysis, or structural

equation rnodeling. Meredith and Tisak (1990) provide a technical framework for this, building

on the earlier work of Tucker (1958) and Rao (1958), as well as drawing together other

approaches to the analysis of longitudinal data (e.g., repeated-measures ANOVA, MANOVA).

The approach of Meredith and Tisak (1990) is broad in that it allows the evaluation of the

general shape of the individual growth trajectories (i.e., the individual growth parameters), but

also provides estimates of the between-level means, variances, and covariances across all

members of the population. Wilett and Sayer (1994) note that the integration of individual

growth modeling and covariance structure analysis capitalizes on the mathematical equivalence

of these two alternative methodologies of representing the same data structure. The formulation

of the Levei 1 and Level 2 models for individual change and for systematic interjndividual
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change, respectively, is equivalent to proposing a specific structure for the matrix of population

covariances among the repeated waves of observed data. By using a structural equation

modeling approach with mean structures to articulate this covariance structure and to fit it to the

matrix of sample covariances, estimates of the between-person parameters that were specified

under the original growth modeling formulation can be obtained.

McArdle and Hamagami (200i) fostered the development of techniques for handling

missing data, which aided in allowing the analysis of longitudinal data within a covariance

structure modeling framework. Muthén (1991) and Muthén and Satorra (1989) have provided

the technical basis and examples of the modeling of multilevel data using covariance structure

methods, and have shown that the parameters of a linear growth model can vary across

individuals in ways that are systematically related to selected time-invariance predictors of

change. Curran and Hussong (2003) present extensions of the latent growth modeling

framework to include mediation, moderation, and multivariate models.

Fundantentals of Latent Growth Moclels

The simplest latent growth curve has a single variable that is measured at two time points

(r.e., T = 2), and is also known as a linear latent growth model. This linear growth model

assumes that a one-unit change in time is associated witli a B unit change in the outcome, and

that the magnitude of this relation is constant over all points in time (Curran et al., 2003).

While this is too basic of a model to represent alternative shapes of change over time (three or

more observed time points are needed for this), it is useful for explaining the fundamentals of

latent growth curve models. In matrix notation, the measurement model (which relates the
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repeated measurements to the latent growth variable, r'¡) has the following form (Curran, Bauer,

& Willoughby,2004; Li, Duncan, Duncan, Yang-Wallentin, & Acock, 2001):

Y=Tr+A'n+e,

Here y is a I¡-by-l vector which contains the observed values of Y (the outcome of

interest) across time for each individual, T.,, is a ?',-by-l vector of observed variable intercepts

(similar to B0 given previously in Section 1.2), A, is a T¡by-m matrix of loadings (known as

basis coefficients, with m being the number of latent factors in the model) that reflect the

hypothesized growth pattern underlying )'(Meredith et al., 1990), q is an m-by-l vector of latent

growth factors that capture the facets of growth that are being modeled (in this case an intercept

and a slope), and e is a l¡-by-l vector of measurement residuals which are assumed to be

constant across time and uncorrelated with each other. In LISREL matrix form, the elements of

this equation for a linear latent growth curve model are:

(20)

Y¡'

Yrz

t0

l1

I Ti- l

E¡l

rl.

Tp¡
(2t)

Y¡ri

In this linear latent growth model, both the intercepts and the measurement of time are

parameterized by the factor loading matrix À, which relates the repeated



39

Interaction Effects in Latent Growth Models

measurements to the latent factors (Curran et a1.,2004; Rovine & Molenaar, 1998).

The structural model is represented by the following equation,

1=ü+Br'¡ +(,

where G represents an rz-by-l vector of latent intercepts, B is an nt-by-m matrix containing

structural coefficients, and ( is an nt-by-I latent residual vector, with ry representing the

covariance structure among the latent factors. A typical linear latent growth curve model of this

type using two time points is given in Figure 2.

Insert Figure 2 about here

In this figure, observing from left to right, the first latent factor is the intercept (Io;

analogoustotheB6¡ inSectionl.2),anditisaconstantforanygivenindividualacrosstime. As

a result, all of the factor loadings from this latent factor to the observed variables are fixed to l.

This intercept factor also gives information about the mean (M¡n1, analogous to B6 in Section 1.2)

and variance (Dint, analogous to us¡ in Section I.2) of the collection of intercepts that characterize

the growth curve for each individual, with the mean representing the estimate of the common

intercept across all individuals. The second latent factor is the slope (r11 ; analogous to B ¡¡ in

Section 1.2), and is the slope of each individual trajectory (which in this example is a

monotonically increasing trajectory). The slope factor also has a mean (Mrrp, or B¡) and a

variance (D5¡0, or u1¡). The mean of the slope factor represents the common slope across all

individuals, and the two latent factors of the intercept and the slope are allowed to covary (the

double-headed arrow that links the two latent variables). Individual deviations from these

(22)
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corìmon intercepts and slopes are modeled by their respective variances.

In order for this particular model to be identified (.e., to have a unique set of parameter

estimates which can be calculated for the parameters in the model; Kline, 1998), some of the

factor loadings for the paths from the observed variables to the two latent factors must be fixed

to two different values. Fixing the factor loading from the latent intercept factor (no) to the first

observation point (Y1) at 0 and that from the latent slope factor (Ir) to the second observation

point (Y2) at I (see Figure 2) has the effect of locating the intercept at the first observation point,

Yr. With these choices of factor loadings, the latent intercept factor (no) now represents initial

status and the latent slope factor (q t) represents the difference in scores at the two observation

points (Yz - Yr), and the model can be identified.

In Figure 2,the observed measurements of Y1 and Y2 can be expressed as linear functions

of the latent factor scores (the intercept and the slope), the factor loadings, and the latent factor

means (the Mt,'r and Mr¡o). We can then write the equations that reprcsent the model as:

Yt = Io +,11 q1 + e¡

Yz=îo+72T\*e2

Io= Min,*Dint

It=Mstp*Dslp.

(23)

(24)

(2s)

(26)

Here, the Às represent the factor loadings (from the matrix B of structural coefficients) that relate

the latent factors to the observed variables,16 and l1 are the latent intercept and slope



41

Interaction Effects in Latent Growth Models

respectively, and e1 and è2 àra individual measurement errors.

Assr.un¡ttiorts of LatenÍ Growth Models

There are common assumptions associated with latent growth models. These are: (1) that

the trajectories of all individuals have the same functional growth form (e.g., all linear), (2) that

the longitudinal data can be fully summarized by their means and covariances (which implies

that the repeated measures are multinormally distributed), and (3) that the effects of the observed

indicators are constant over the range of the trajectory parameter values (Curran & Bauer, 2003).

Latent Growth Models vvitlt More Tlzan Two Re¡teated Observatir¡ns

The basic linear effect latent growth curve presented earlier (p. 28) can easily be

extended to incorporate more than two repeated observations per individual. Figure 3 gives an

example of a basic linear effect latent growth model that utilizes three repeated observations per

individual.

lnsert Figure 3 about here

When there are three (or more) repeated observations for each individual there is the

opportunity to test for more complex trajectories, such as quadratic or cubic effects. This can

easily be accomplished with a latent growth model by adding another latent factor to represent

each non-linear effect and fixing the latent factor loadings accordingly (McArdle et al., 1987).

The model presented in Figure 4 is a hypothetical growth model with a quadratic-effect latent

factor (denoted as Iz).
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Insert Figure 4 about here

The factor loadings from the observed indicators to the latent variables can be fixed for particular

shapes or effects (e.g., linear, quadratic) or they can be freely estimated if the shape of the

trajectory is unknown.

Com¡tarison of'Latent Growth Models and RM ANOVA

As prcsented earlier, the RM ANOVA uses each of the repeated measures variables as a

within-subjects factor which distinguishes measurements made on the same individual, rather

than between different individuals (see Sectiort I.Ì ). Further, with a traditional GlM-based

approach only the factor means are of interest, and might not be the optimal choice of statistical

procedure for researchers interested in the trajectory of change over time. Latent variable growth

models offer several advantages over RM ANOVA approaches (Fan & Fan, 2005): they are

more powerful for detecting growth with small effects with small to moderate sample sizes, can

easily accommodate nonlinear growth patterns, and can handle facets of stability (correlations

between latent variables adjacent in time), level (means) and inter-individual differences

(variances) simultaneously (Rudinger & Rietz, 1998).

A latent growth model can be made comparable to the RM ANOVA by placing

restrictions on the parameters that correspond to the assumptions from the RM ANOVA. First,

an orthogonal polynomial transformation matrix needs to be generated, the entries of which

become the factor loadings for each of the variable-factor relationships. Further, the RM

ANOVA assumes that each of the observed variables are measured without error, requiring the
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error terms for each observed variable to be set equal to zero. Duncan et al. (1999) provide an

analytic example that compares the two procedures.

Contpariscnt oÍ'LaÍent Variable Growth Mocleling and Mttltilevel Mojels

Curran (2003) had made direct comparisons between structural equation models and

particular examples of multilevel models (i.e., hierarchical models), showing how the SEM and

multilevel approaches to latent growth curve analyses have a high degree of isomorphism, and

that they provide analytically identical solutions to two-level growth models (see also Rovine &

Moelenaar, 2000). Latent growth curve models can be applied to the same range of longitudinal

data structures as with multilevel approaches, can allow for both missing data and for individuals

to be measured at different occasions and different numbers of occasions. Further, measurement

error distributions within latent growth models can be either homoscedastic or heteroscedastic, as

latent growth models can approximate random changes in measurement eilor. By allowing

specific patterns of indicator-to-factor loadings, latent growth models can also test the adequacy

of specific growth forms (e.g., linear, quadratic), and the interpretation of the intercept and shape

factors for these growth forms are straightforward (Duncan et al., 1999).

As an example, consider the graphical representation of a latent variable growth model

given in Figure 7. In this sample model a group of individuals are measured on a particular

variable at four consecutive time points (Y¡ to Ya). Some potential explanatory variables are

also measured: the Z variable is a time-invariant covariate (i.e., a variable which does not change

over time, e.g., gender), and the W2 and W3 variables are time-varying covariates (i.e,. a variable

that can change over time) measured at the second and third assessment periods, respectively.
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As can be seen from this example, an SEM approach to longitudinal models can easily

incolporate all of the aspects of a hierarchical model when using longitudinal data.

Insert Figure 7 about here

The fitting of hierarchical data with mixed and multilevel models, while being powerful

analytical tools in their own right and being able to explain variance in the parameters, are

unable to provide information about the magnitude of direct, indirect, and total effects among the

latent variables (Rowe, 2002). Further, since multilevel models are extensions of the general

linear mixed model, which specifies the response vector to be a linear sum of the effects of the

independent variables, there is no allowance made for examining the structure of the covariance

matrix among the independent and dependent variables. As a result, it is not possible to jointly

investigate the structural relationships (i.e., direct, indirect, and total effects) that exist among the

independent and dependent variables. Such effects can be studied using the SEM framework

(Rowe,2002).

In summary, as a relatively newer analytical method, latent growth models can be applied

to the same data that could be analyzed with traditional statistical models (e.g., RM ANOVA),

which makes this method a viable one as a research strategy for existing data. The assessment of

growth trajectories can be easily assessed with an LGM approach - in LGM the interest is about

the underlying unobserved latent constructs that explain the relations among the observed

measures, and not expressly in the characteristics of the set of observed measures (as can be the

focus with other approaches such as the mixed model). The LGM approach can accommodate

fixed effects, random effects, or a mixture of both, and is more flexible with incorporating

interaction effects than the RM ANOVA or mixed model.
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Chapter 5: Methods Used to Represent Latent Growth Models

Several methods have been proposed to represent latent growth models. These are: the

LISREL univariate approach utilized by both Duncan et al. (1999) and MacCallum et al. (1997),

the Raykov (1992) T1-Congenericism model, and the Muthén (1994) Two-Level Disaggregated

Model approach.

LI S R E L U nit¡ ar iat e Ap ¡t r o ach

The LISREL univariate approach to longitudinal modeling is probably the most widely-

used approach (Duncan et al., 1999; MacCallum et al., 1997), and it uses a covariance matrix of

ordel t-by-t, where t is the number of measures of the latent outcome variable. Since these

represent repeated measurements, t can also be used to represent the occasions of measurement

(similar to that presented in previous sections). This covariance matrix provides the variances,

covariances, and means of the t measures. The scores for each person i on a single response

variable y, measured at t occasions, are organized into a vector y, where tr = (!tr, yi2, ...., y¡¡) and

' is the transpose operator (indicating a transposition of rows of a matrix into columns). This

LISREL model has the following form:

Y=lYz+e, (21)

where r\ is a t-by-nt matrix, with r¿ representing the number of latent factors in the model. The

columns of Â represent specific trajectories of change, represented as the factor loadings from

the observed indicators to the latent variables (and are sometimes referred to as "basis

functions"). The vector z contains the scores on the m latent factors for a given person, and is
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analogous to the latent vector 11 given in previous sections. The diagrammatic representation of

this LISREL model (as given in Maccallum er al., 1997) is given in Figure 5.

Insert Figure 5 about here

In this model, a dummy variable (represented as a diamond in the upper portion of Figure 5)

represents the specification of non-zero means of the factors. The factor loadings from this

dummy variable to the two latent variables for the intercept ar-rd slope (Bs and Þr) are the factor

means of these two latent variables. This model also estimates all of the parameters from the

latent slope factorto the observed variables. Duncan and colleagues (1999) also use this

apploach but omit the dummy variable.

Raykov ( 1992) T¡-Congenericisnt Model

Raykov (1992) proposes a Tt-congenericism model for representing a latent growth

model. A diagram of this model is given in Figure 6.

Insert Figure 6 about here

In this model the parameters of change are the factor loadings from the latent variable to each of

the observed variables (e.g., Yl to Yr). By setting the loading from the latent variable to Y¡ (i.e.,

b¡ in Figure 6) equal to l, the given structure will model change over time in terms of true initial

status at the time of the study. Furthermore, the scores of all assessments are now linear

functions of the score at the first assessment.
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In order for this model to be realized, a model needs to be fit to the cross-product moment

matrix or the covariance-mean matrix (not the covariance or correlation matrix as is typically

used in SEM procedures; Kline, 1998). The reason is that the cross-product moment matrix

contains information about the means and their change over time, which is not incorporated into

the covariance or correlation matrix. A dummy variable is also used in this model, represented

by the diamond shape at the top of the model diagram in Figure 6, and it is a constant (usually set

to the value of I ). The estimated value of the path from the latent variable to this dummy

variable is interpretable as the mean of the individual scores at first assessment, as in the

LISREL model approach.

Muthé,n's ( I 994 ) Two-Level Disaggregatecl Model A¡t¡trooclt

Muthén (1994) provides a methodology for reducing a hierarchical longitudinal model to

a model that can be rcpresented using traditional structural equation modeling software. The

outcome yit for each individual is reformulated into a T-by-l vector (y'r'), where the elements are

the observed outcome at each time point t, up to the final time point T (Muthén, 1994). This

approach then divides the model into two sections: one section that expresses the mean as a

function of initial status and the mean of the growth rate (representing the fixed parameter

portion of the linear growth model), and a second section that expresses the within-group

variation and error, both of which are random effects. Muthén (1994) proposes that this

apploach can be easily implemented in curent SEM packages.
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Chapter 6: Moderators / Interaction Effects

There is often the need to determine if the effect of one (or more) independent variable(s)

on the dependent measure depends on the level of a second independent variable. Due to the

potential theoretical importance of these interaction effects (also called moderator effects), their

accurate detection is a crucial part of social science research (Wen, Marsh, & Hau, 2002). The

assessment of interaction effects in regression and path analyses have been well documented by

other authors (e.g., Aiken & West, 1992:Baron & Kenny, 1986; Jaccard et al., 1990; McClelland

& Judd, 1993).

D eJinitiotz antl P ur¡to s e oJ' M ode rators

A formal definition of a moderator variable was introduced by Saunders (1956), who

proposed that a moderator was any continuous type of variable which influenced the predictive

effectiveness of other variables in a regression model. Zedeck (1971) furthered this definition by

noting that a moderator variable could affect the nature and/or degree of association between an

independent and a dependent variable. The current definition of a moderator variable is that put

forward by Baron and Kenny (1986), which states that a moderator "is a qualitative or

quantitative variable that affects the direction and/or strength of the relation between an

independent or predictor variable and a dependent or criterion variable" (p. lnQ. Other terms

used to indicate moderator variables have been modifier, buffer, or vulnerability factor (Cleary &

Kessler, 1982). In most analysis settings this type of moderator variable is called an interaction

effect (Jaccard, Turrisi, & Wan, 1990).

A moderator can serve different functions in a given analysis. A moderator allows for the
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predictors in a model to be differentially valid for different groups (Zed,eck, l9l i), acting much

like an interaction effect in an ANOVA setting. Banas (in Zed,eck, 197 I) reported that a

moderator improves the usefulness of a predictor by isolating subgroups of individuals for which

a particular predictor is most appropriate. Cleary and Kessler (1982) called a moderator a

conditional effect, where the relationship between a risk factor and a dependent variable depends

on the prcsence/absence or level of the potential modifier.

Two methods of identifying potential moderators are to use a theoretical approach and an

empirical approach. With the theoretical approach the researcher uses intuition or theory based

on prcvious research (e.g., hypothesis-formation) to discern the potential rnoderators. The

empirical approach utilizes a statistical procedure (e.g., correlating variables within groupings) to

determine the existence of a potential moderator. Kline ( 1998) has noted that if the R-square for

a linear model is low then there could be a need for moderator effects due to the presence of

possible complex relationships.

Regressiott Ap¡troach to Testirtg Motlerator Effects

Saunders (1956) outlined a method for addressing moderated regression with continuous

variables using product terms, which was elaborated upon by Zedeck (197l). This method used

ordinary least-squares (OLS) regression, and was also advocated by Baron and Kenny (1986) for

assessing moderated effects. The basic regression equation for a moderator effect is given as

Y = cr+ ÞrX + FzM + Ê¡(XM) + e, (28)

where Y is the dependent variable of interest, o is the intercept, X is the predictor variable, M is
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the potential moderator variable, and XM is the product of these two variables.

Formal procedures are given in both Aiken and West (1992) and Jaccard et al. (1990) for

testing moderator effects with both continuous and nominal variables using the Baron and Kenny

(1986) approach. If the moderator is a continuous variable, and the product term in the

regression is significant, then probing of the interaction effect involves plotting separate

regression lines for different levels of the moderator. Aiken and West (1992) propose plotting at

moderator values of the mean * one standard deviation to probe the interaction effect, and these

authors also provide a methodology for testing the slope parameters (pp. l -16). This method

has been usedby some authors (e.g., Hewitt, Flett, & Ediger, 1996) to investigate the effects of

psychological variables on mental health.

Cronbach (1987) found that the variance of the product term in this type of model

increases as the individual predictor means differ from zero, leading to biased tests of the

moderator effect. This increase in variance may be the reason why some authors have reported

that moderator effects typically account for small portions of the variance in regression models in

psychology studies (McClelland & Judd, 1993). Cronbach (1987) suggested thar cenrering rhe

individual predictors can minimize this variance and reduce multicollinearity, and Allison (1991)

has noted that this centering does not bias the test of the moderator effect when raw (i.e.,

unstandardized) regression coefficients are used.

If the proposed moderator is categorical an alternative regression approach is to perform

separate regressions for each subsample based on the level of the categorical moderator variable.

This subsample-based analysis does not utilize the entire data set and results in a loss of

statistical power (Monish, Sherman, & Mansfieid, i986). Baron and Kenny (i986) noted further
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deficiencies with this subsample-analysis strategy. It assumes that the independent variable has

equal variance at each level of the moderator and, if the amount of measurement error in the

dependent variable varies as a function of the proposed moderator, then there will be spurious

differences introduced into the coruelations. Regression coefficients based on the entire sample

are not affected by differences in measurement error of the independent variable, and so are more

desirable in this case. Aiken and West ( 1992) propose substituting the different values of the

categorical moderator variable into the regression equation and then plotting each regression line

individually.

This regression-based approach to moderator effects can be represented as in Figure 8.

Insefi Figure 8 about here
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Chapter 7: Interaction Effects in Latent Variable Models

With respect to interaction effects in latent variable models, there are two general

apploaches that can be used depending on the nature of the individual interaction variables. If

one of the variables involved in the interaction is a dichotomous or categorical variable, the

comrlon approach is to assess the structural model at each level of this categorical variable

(Baron & Kenny, i986). In this event, the researcher is seeking to test either (a) models that fit

for some groups and not others, or (b) differential path coefficients for particular levels of the

categorical interaction variable (i.e., test for differences in the path coefficients between levels of

the interaction variable).

The second approach is used when all of the variables in the model are continuous in

nature. The diagram in Figure 9 shows a latent variable model with an interaction term

representing the interaction effect of two continuous latent variables (Kenny & Judd, 1984). As

with regression and path analysis approaches (see Aiken & West, 1992), the latent interaction

variable is constructed by creating product terms from all of the observed indicators for the two

individual latent variables that are proposed to interact, and is termed a multiple indicator model.

Insert Figure 9 about here

The use of structural equation modeling to test for interaction effects allows for the

conection of the estimates for measurement error (which introduces bias into the regression

coefficients), thus increasing the power of the statistical test to detect interactions in comparison

to regression and path analytic methods (Aiken et al., 1992;Li et al., 1998). The original latent

variable interaction model posited by Kenny and Judd (1984) is
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Y = Tr€r + \zEz+Ttt\z+ Ç,

where Y is the latent dependent variable, (1, (2 and (1(2 represent the latent factors for the

independent variables, potential interaction variable, and the interaction product, respectively,

and ( is the residual term. This approach requires all of the observed variables to be in mean

deviation form and to have normal distributions.

The Kenny and Judd (1984) model has led to several methods of specifying the

interaction effect with latent variable models. These are (a) Bollen's (1996) 2-stage least squares

(TSLS) method, (b) the Ping (1996) z-step maximum likelihood (ML) method, (c) the Jaccard

and Wan (1995) ML method, (d) a 2-step ML procedure by Joreskog and Yang (1996), and (e) a

revised Joreskog-Yang model (Algina & Moulder, 2001).

Bollen (1996; Bollen & Paxton, 1998) suggested the TSLS approach for evaluaring the

latent interaction term as the Kenny and Judd (1984) approach produces non-normal indicators

for the latent interaciion term (even if the indicators for (1 and Ez are normally distributed). This

non-normality can result in biased standard errors and fit statistics when ML estimation is used

(Boomsma, 1983, cited in Moulder & Algina, 2002). The TSLS approach esrimates rhe

measurement model equations and the latent variable equations separately, so nonnormality in

the indicators for (1(2 may not affect the standard errors of the interaction effect.

The procedure by Ping (1996) is also a two-step procedure. In this procedure a latent

variable measurentent model for defining the latent variables (¡ and (2 is estimated in the first

step. Parameter estimates from this step are tleated as known parameters in a second step in

(2e)
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which the original Kenny and Judd (1984) model is used.

The Jaccard and Wan (1995) procedure is a slight variation on the original Kenny and

Judd (1984) model, where these authors added an extra main effect latent variable (6r) to the

model.

Y = yr€i + Tz Ez + "hEt + "y+L tEz + Ç. (30)

Using a multiple regression approach (with OLS estimation), these authors found a bias

in detecting the interaction effect but almost no bias when an ML or asymptotic distribution free

(ADF) estimation procedure was used, regardless of the effect size for T+. This approach requires

the observed variables to be multivariate normal and to be in mean deviation form prior to

estimation.

The Joreskog and Yang (1996) procedure is based upon what the authors call a

misspecification in the original equation proposed by Kenny and Judd (1986), namely the

assumption that the intercept (o) of the latent variable regression model is zero (even if all

variables are in mean deviation form). A second difference in their model is that this procedure

is sometimes called a single-indicator method since only a single observed indicator is used for

the latent interaction term (versus the original model depicted in Figure 9 that has four indicators

for the interaction term), and is presented in Figure i0.

Insert Figure l0 about here

Using a variety of estimation methods (ML, weighted least squares, weighted least

squares applied to the augmented moment matrix) these authors fit the following latent variable
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regression niodel:

Y= cx+Yr€r +"'lzEz+TzlÇtEz+ Ç.

Joreskog and Yang (1996) set the intercept (cr) equal to zero in their original study, but a

subsequent simulation study by Algina and Moulder (2001) specified the intercept to be nonzero.

Their results showed that the ML estimation procedure frequently did not converge when the

intercept was nonzero. Algina and Moulder revised the model so that the measurement model

intercepts for the indicators of the primary latent variables were zero but that the intercepts for

the indicators of the interaction term were not. It was shown that this model was better able to

converge under ML estimation than the original Joreskog and Yang (1996) model.

A subsequent simulation study by Moulder and Algina(2002) compared all five of these

methods for testing the interaction effect, manipulating factors such as the effect size of the

interaction, the squared multiple correlation for the full latent variable interaction regression

model, the correlation between the primary latent factors, reliability of the indicators, sample size

and the observed means of the indicators. Bollen's ( I 996) TSLS procedure showed a higher

amount of bias in the estimation of parameters and a lower power than the other four methods.

The original model by Joreskog and Yang ( 1996) under ML estimation showed Type I eror rates

that were very conservative when robust estimators (e.g., Satorra-Bentler chi-square; Satona &

Bentler, 1994) were used and very little power for detecting the interaction effect. The method

by Ping (1996) showed conservative Type I error rates and little bias, but the bias did not decline

as sample size incrcased so this plocedure was discouraged from use. The Jaccard and Wan

(31)
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(1995) method and the revised Joreskog-Yang model from the Algina and Moulder (2001) study

showed adequate control of Type I en'ors and provided good power to detect interaction effects.

Li et al. (1998) compared the Joreskog and Yang (1996), the Ping (1996) and the Jaccard

and Wan ( 1995) methods on a model fol the interactive effects of perceptions of exercise

competence. They found the Joreskog and Yang (1996) method to suffer from multicollinearity

as it does not use mean centering for the indicators in the latent variable model, while the other

two methods (which do utilize mean centering) are less susceptible to this. These authors also

found the Joreskog and Yang (1996) and Jaccard and Wan (1995) methods to be more robust to

the effects of non-normality introduced by use of the product indicator method, and simpler

programming of the model specification in conventional SEM packages. Li et al. (1998)

recommend the Joreskog and Yang (1996) and the Jaccard and Wan (1995) procedure for

modeling latent interaction effects, in concordance with Algina and Moulder (2001).

These methods for modeling latent interactions described above, which all involve the

use of the products of indicators, can be grouped into the general category of constrained

methods, called such because non-linear constraints must be placed on the factor loadings and

variances that are associated with the latent interaction term. These constraints are necessary

because of the assumption of normality of the latent variables (Wen et al., 2002).

A related approacl-r is the Generalized Appended Product Indicator (GAPI) approach

(Wall & Amemiya,20Ol). This approach is similar to the constrained approach but does not

constrain the covariance matrix of the latent variables. It has been shown to be effective for

when the latent variables are not normally distributed (i.e., when used with non-normal data;

Wen et a1.,2002). A thild approach is the Unconstrained approach, based on the work of Algina
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and Moulder (2001). With this approach no nonlinear constraints are imposed on the

relationships between the product indicators and the latent interaction factor. This method

appears to be robust to violations of multivariate normality (Wen et al., 2002).

Schumacker (2002) outlined a latent variable score approach to interaction effects, in

contrast to the product-indicator methods described previously, which does not involve the

multiplication of the observed indicators to construct the latent interaction term. The procedure

by Schumacker creates the latent interaction term by a multiplication of the latent scores of the

individual latent factors, and is presented graphically in Figure 11.

lnsert Figure I I about here

Schumacker (2002) found that both procedures (traditional product-indicator and latent variable

score) produced similar parameter estimates for the interaction effect but differed in the

estimation of their standard errors. He concluded that the latent variable score approach was

easier to implement yet called for more research into the computation of the standard errors.

V/all and Amemiya (2003) proposed a technique for interaction effects based on factor score

estimates, called the two-stage method of moments, which is a method similar to that put

forward by Schumacker (2002). This method, through the use of factor scores, has no

measurement error in the indicators.

Klein and Moosbrugger (2000) proposed an alternative method for analyzing interaction

effects using LISREL that is similar to that of Schumacker (2002). Their method, Latent

Moderated Structural Equations (LMS), takes the nonlinearity of the latent interaction term

explicitly into account, which has caused some concern when linear methods are used to model
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the relationships (Joreskog & Yang, 1996). This approach utilizes a new method of ML

estimation that is specifically designed to take the nonlinearity of the latent interaction term into

account. These authors showed that the LMS method was efficient and unbiased with regards to

computing standard effors and parameter estimation (see also Schermelleh-Engel, Klein, &

Moosbrugger, 1998). This method has not yet been studied extensively, but does show some

benefits over conventional approaches such as LISREL models and Bollen's (1995) two-stage

least squares method. More specifically, the LMS method, when used with ML estimation,

shows no bias in the parameter estimates and is capable of incorporating a non-normal

distribution for the interaction term (Moosbrugger, Schermelleh-Engel, & Klein, 1998). This

approach has now become the Quasi-Maximum Likelihood (QML; Klein & Muthen, 2002)

approach. The QML approach uses all of the first-order factor indicators to estimate the latent

interaction effect, and does not require the forming of any new indicators for the interaction

term. The QML approach assumes that the first-order factors are normally distributed.
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Chapter 8: Interaction Bffects in Latent Variable Growth Models

Li et al. (1998) expressed aconcern with traditional multiple regression apploaches for

investigating interaction effects. The measurement errors for the indicator variables have

traditionally introduced bias in the regression coefficients and also decrease the power to detect

nonlinear effects such as interactions in the regression approach (see also Jaccard & Wan, 1995).

These authors and several others (e.g., Duncan et al., 1999;Li et aI.,2001) have proposed that

SEM techniques are useful for investigating interaction effects among change scores, especially

when attempting to determine how a change in two latent attributes interact to produce a joint

effect on the growth of an outcome attribute.

Duncan and colleagues (Duncan et al., 1999;Li et al., 1998; Li, Duncan, & Acock, 2000)

have utilized an approach to interactions in latent growth modeling that is based upon the

constrained product-indicator method. In this approach with cross-sectional data the product

indicators are formed from all possible combinations of indicators for the two latent factors

involved in the interaction. With a longitudinal design, it is reasonable to form the product

indicators based on measures corresponding to the same time point. For example, for Latent

Factor A and Latent Factor B measured at thrce time points, the interaction terms would be

formed by the product of observations at Time I for Latent Factors A and B, the observations at

Time 2 for Latent Factors A and B, and the observations at Time 3 for Latent Factors A and B.

The first two parameters for the latent interaction slope factor are constrained (to 0 and 1,

respectively) in order to identify the model, and the remaining parameters are freely estimated to

approximate any potential curvilinear trajectories. A further result of this fixing of parameters is

that the indicators for the first observed time point are not used to form a product indicator, since
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their respective loadings are zero. This conceptualization of the latent growth model with an

interaction is given in Figure 12.

Insert Figure l2 about here

The interaction effect on the rate of change of the outcome can be observed in the

following structural regression equation:

îr = Crr +yzz\z+Tz+Ç+TzsEzE++Çz

= (\zz + ^tzsÇ) Êz + (cu + yz+c.ò + Ç2, (32)

where the first part of the right-hand-side of equation 32, (yr.r. + yzsEù (2, represents the simple

slope of the regression of q r on €z for a given value of Ç. This characterization of the simple

slope is similar to that given to the interaction effect in regression approaches (Aiken et al.,

1992). Li et al. (2000) give the full equations and LISREL matrices for the complete latent

growth interaction model.

However, Wen et al. (2002) contend that the model (and the matrices) used by both

Duncan et al. (1999) and Li et al. (2000) are incorrect. They considered the constraints on the

exogenous latent mean vector and on the covariance matrix to be inappropriate, as was the

variance-covariance matrix for the errors of measurement. Wen et al. (2002) instead proposed a

full interaction model that had more appropriate constraints, and a graphical representation of

their full interaction model is given in Figure 13.

lnsert Figure 13 about here
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These authors showed that their model yielded more accurate estimates than the approach

utilized by Duncan et al. (1999) and Li et al. (2000). No further empirical studies have been

reported that compare these two models.

As noted previously, the two approaches by Duncan et al. (1999) and Wen et al. (2002)

are both producrindicator approaches to interaction effects in latent growth models. However,

also noted previously, the model proposed by Schumacker (2002) is a latent interaction model

that does not require the use of product indicators. However, the Schumacker (2002) model for

latent interaction effects has not been extended to applications with longitudinal data. The

original development of the Schumacker model proceeded in three steps. In the first step, factor

scores for the main effect latent factors are created. In the second step these factor scores are

multiplied together to create a latent interaction factor score. In the third step, the latent factor

scores (from both the main effects and the interaction) are used in an OLS regression model with

the latent score for the outcome variable as the dependent variable.

The extension of the Schumacker (2002) model to longitudinal data is straightforward. In

the first step, a latent growth model using the main effects only is used to create the latent factor

scores for the main effects. In the second step, the latent scores from this growth model are used

to create the latent interaction scores. In the third step, there are two latent dependent variables,

one for the latent intercept and one for the latent slope. As a result, the model in the third step is

estimated as a path analytic regression model, containing all the latent main and interaction

effects. A graphical depiction of this process is given in Figure 14.

Insert Figure 14 about here
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One difference between the two product-indicator method models (i.e., the Wen and the

Duncan) and the Schumacker model are the function of the indicator variables. In all three of the

models, with respect to the latent main effects, the main indicator variables are playing the same

roles, as they are indicators of the same main effect latent slope and intercept factors. However,

the characterization of the latent interaction terms is different in the three models. For the Wen

and Duncan models, the indicators actually play two roles - they are indicators of both a latent

main effect and a latent interaction effect, essentially appearing twice in the latent growth

interaction model. The indicators for the latent interaction effect are created by forming products

of the main-effect indicators, and the resulting product indicators for the latent interaction effect

that are formed introduce non-normality into the model. Further, to incorporate these product-

indicators into the model they need to be specified as a function of the latent variable that has

variances and covariances that reflect the multiplicative relationship. This is achieved through

the imposition of nonlinear constraints on several of the matrices involved in the estimation of

the latent model. For the Schumacker model, the indicators only appear once, in the formation

of the latent factor scores, after which they are not required further. As a result, there are no

product-indicators in the model, and the imposition of nonlinear constraints is not necessary as

there is no concern of multicollinearity among the indicators for the latent factors.
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Chapter 9. Attrition in Lonsitudinal Studies (Missing Data Mechanisms)

Missing data occurs quite often in both cross-sectional and longitudinal research, and

should be an important consideration for researchers pursuing longitudinal studies (Figueredo,

McKnight, McKnight, & Sidani, 2000). The concept of missing data has also been referred to as

coarsened data, aggregated data, rounded data, truncated data, or censored data (Schafer &

Graham, 2002). The reasons for missing data are varied. In longitudinal studies a missing data

point can occur from events that preclude measurement, such as attrition or dropout, or a

respondent may not be available for one or more data collection instances (Schafer & Olsen,

1998). This is sometimes referred to as wave nonresponse. A respondent may simply choose to

not respond to a particular survey questionnaire, or they may even miss a single item from an

entire questionnaire. Some studies have planned missing values incorporated into the study

design (Graham, Taylor, & Cumsille, 2001). When the missing values are a result of the data

collection procedure (as is seen in most of survey research) this is termed unit nonresponse

(Schafer et al., 2002).

Missing data can contain important information for the researcher and their hypotheses of

interest, and not addressing the missing data properly can lead to biased results, especially in

longitudinal designs (Cox, Rutter, Yule, & Quinton, I97l). When using statistical methods that

assume responding on all variables of interest, missing data can greatly reduce the effective

sample size which results in a loss of statistical power, making the detection of significant effects

difficult (Delucchi & Bostrom, 1999). A further consequence is that statistical results may

evidence some bias if the missing data contains influential information.

In a longitudinal study missing data can take on a variety of pattelns (Little, 1992). One
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pattern is termed univariate missing data where the missing values are confined to a single

variable at a single time point, and another is a monotone missing data pattern where once an

observation is missed all future observations are also missed. This pattern is usually seen in

longitudinal studies when there is participant attrition. A third type of pattern is when there is no

special pattern to the missing data. Graphical representations of these three patterns are given in

Figure 15.

Insert Figure 15 about here

Missittg Data M ecltanisms

The rate and pattern of missing data within a dataset has been described as a probabilistic

phenomenon by Rubin (1916) called missingness. Missingness is used to capture the

relationship between the pattern of the missing data and the values of the missing items. Rubin

(1916) introduced the concept of a missing-data indicator matrix to quantify this relationship and

then formalized the notion of a missing-data mechanism in terms of a conditional distribution.

The three missing data mechanisms are described below.

Missirtg At Ranclont (MAR)

MAR occurs when the distribution of missingness does not depend on the missing values

of the response variable - the probability of missingness depends on the observed data in the

covariates. In other words, once the covariates are taken into account there is no residual

relationship between the missingness and the response variable. This type of mechanism is also

known as an ignorable response. This type of mechanism usualiy holds when the missingness is
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planned (Schafer et al., 2002). An example of this would be if an individual in a longitudinal

study missed an item on a survey at a particular assessment point. There is no definitive way to

test for the presence of the MAR mechanism, but even making an effoneous assumption of an

MAR mechanism does not severely impact estimates and standard enors (Collins, Schafer, &

Kam,2001).

Missirtg Com¡tletely At Random (MCAR)

The MCAR mechanism is similar to the MAR mechanism but here the rnissing response

occurs by chance (Sinharay, Stern, & Russel, 2001), usually by some features of the study itself

rather than the observed behaviour of the participants (Little, 1995). In other woLds, the missing

response is not related to or is independent of the observed variables of interest. Compared to

MAR, Figueledo et al. (2000) give an additional condition for MCAR, namely that the missing

cases are a random subsample of the total sample. The presence of this mechanism can be

assessed by testing,across patterns of the missing data (e.g., complete cases versus rnissing cases)

using t-tests for location (Bingham, Stemmler, Petersen, & Graber, 1998). Little (1995) has also

called this mechanism covariate-dependent dropout, and notes that analysis of complete cases in

this instance will not yield biased estimates but will be inefficient.

Missing Not At Rctnclom (MNAR)

This is known as nonignorable missing data, and the missing data is related to the

observed values of the response variable (Sinharay et al., 2001). Sometimes MNAR is referred

to as informative dropout. An example of this in a longitudinal design is if a participant drops
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out because their observed score on a previous measurement was over (or under) a particular

value. With an MNAR mechanism there is residual dependence between the missingness

function and the response variable after the covariates are accounted for. Figueredo et al. (2000)

note that the MNAR condition can be detected by locating significant differences between means

on subgroups of the data with complete cases versus those with incomplete cases. With an

MNAR mechanism the researcher needs to specify a model for the missingness that is

approximately correct otherwise bias will be present.

A specific kind of missing data pattern, specific to longitudinal designs, is attrition.

Attrition, or dropout, occurs when a participant leaves the study and does not return, and is a

special case of participant non-response. However, because later responses are not available, it

is possible that scores on the missing covariates are the cause of the missingness. When attrition

is present in a longitudinal study, the mechanism of missingness (MAR, MCAR, MNAR) can

have some implications with respect to the dropout of the data. MCAR requires attrition to be

independent of responses at every occasion, MAR allows attrition to depend on responses at any

or all occasions prior to the dropout occasion so that missingness may be related to other

variables, and MNAR means that the attrition depends on the unseen responses after the

participant dropped out (Schafer et al., 2002).

Effects of Missirtg Data on EsÍimates

Determining the severity of missing data on the estimates of model parameters can be

difficult and depends on many factors including sample size, proportion of missing data, the

pattern (if any) of missing data, the type of analysis, and the number of variables being analyzed
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(Rovine & Delaney, 1990). It is recognizedthat a failure to incorporate the missing-data

mechanism into an analysis will result in biased parameter estimates (Figueredo et al., 2000;

Rubin, 1976).

Missing data can represent a significant difficulty in longitudinal designs, since the

assumptions of data being MCAR or MAR may not be tenable. Under MCAR, the use of

maximum likelihood can give estimates that are efficient and which have a lower sampling

variability (Duncan & Duncan, 1994; Rovine et al., 1990). Under MAR, maximum likelihood

yields unbiased parameter estimates in structural equation models (Muthen, Kaplan, & Hollis,

1987). Under MNAR, the implications regarding bias are unclear, and researchers may find that

a latent growth model may not fit the data and standard errors inflated, but parameter estimates

are accurate (McArdle et al., 1992).

Metlnds of' Acklressing M issing Datct

' There are several methods within the SEM framework that are currently available to

researchers for addressing missing data. Conventional procedures for handling missing data

include listwise and pairwise deletion. In listwise deletion (or complete case analysis) only those

observations that have complete data on all variables are included in the analysis (Little, 1g9Z).

With respect to the accuracy of parameter estimation this is usually a valid procedure under an

MCAR mechanism, but rarely for MAR. In a multivariate setting this approach can result in

discarding an unacceptably high proportion of participants (Schafer, 2001). A second

conventional method is pairwise deletion (or available case analysis), where different sets of data

are used to estimate the different parameters depending on if they have the necessary data or not.



68

Interaction Effects in Latent Growth Models

A drawback to this method is that the parameters are generally estimated from different units

within the sample so it is difficult to compute standard effors or other measures of uncertainty.

These procedures have the advantage of being simple to implement (Little & Rubin,

1981). However, both of these case deletion methods can result in biased estimates if the data

are not MCAR due to the resulting complete cases not being representative of the full population

(Hedecker & Gibbons, 1997; Schafer & Olsen, 1998) and most likety resulting in non-normal

data (Figueredo et al., 2000). Yet even if the MCAR mechanism is present the results will be

inefficient due to the discarded information contained in the missing data (Figueredo et al., 2000;

Little & Rubin, 1987). Little (1992) and Bingham et al. (l99S) have noted that rhese merhods

can result in an estimated covariance matrix of the observed predictor variables that is not always

positive definite, which can lead to indeterminate slope estimates. This is usually seen when the

predictors are highly correlated. Bingham et al. (1998) further note that there can be a loss of

power (which will incrcase the rate of Type II errors; Figueredo et al., 2000), and recommends

that in longitudinal designs these case deletion methods should not be used.

Tomarken and Waller (2005) outline four methods for addressing missing data that are

considered specific to structural equation modeling procedures. The first is multiple imputation

(Rubin, 1987; Schafer,1997). This method first creates multiple samples in which all missing

data values are estimated (i.e., imputed), then estimates the model of interest separately for each

sample, and finally generates aggregate estimates of the parameters, standard errors, and model

fit by taking into account variability both within and between samples.

The remaining three methods are based on maximum likelihood procedures (Enders,

2001). The first is multisample analysis (Allison, 1987; Muthen et al., 1987), where a sample is
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divided into G subgroups, such that each subgroup has the same pattern of missing data (all of

the members in the same subgroup are missing/present on the same set of variables). Likelihood

estimates are computed for each group, and then are accumulated across the entire sample and

maximized. An advantage of this approach is that parameters and standard enors are estimated

directly from the data. A second advantage is that this approach yields the usual measures of

model fit in SEM approaches, although the degrees of freedom may be inaccurate (this can be

remedied by subtracting an appropriate value from the degrees-of-freedom tenn). A limitation of

this multisample approach is that the specification of multiple-group analyses is difficult,

especially if there are many patterns of missing data that result in a high number of groups.

The second maximum likelihood approach is full-information maximum likelihood

(FIML; Finkbeiner, l9l9), which generates maximum likelihood estimates of the parameters of a

specified model based on all of the available data per participant. This approach is similar to the

multiple-group approach, except that the FIML approach uses the sum of all the casewise

likelihood values, whereas the multiple-group approach uses the sum of all the G groupwise

likelihood values. The FIML approach is flexible, being applicable to a variety of analyses

including the estimation of covariance matrices, multiple regression, and SEM. Like the

multiple-group approach, parameter estimates and standard errors are estimated directly from the

available data. With respect to SEM, FIML yields a chi-square test of model fit and several

model fit indices.

The third maximum likelihood approach to missing data is the expectation-maximization

(EM) algorithm (Dempster, Laird, & Rubin, l9l7). This uses a two-step iterative procedure

where the missing observations are imputed and then unknown parameters are estimated. At the
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imputation stage (E step), missing values are replaced with the conditional expectation of the

missing data given the observed data. Then, maximum likelihood estimates of the mean vector

and covariance matrix are obtained (M step) as if there was no missing data using the statistics

calculated in the previous step. The resulting covariance matrix and estimates are used to derive

new estimates of the missing values at the next E step, and the process repeats until the

difference between covariance matrices in subsequent M steps falls below some specified

convergence criterion. The EM procedurc cannot be used to directly obtain parameter estimates

and standard errors, however the covariance matrix that is generated can be used as input to

regression and SEM analyses. A drawback to the EM algorithm is that the irnputed values lack

the residual variability that is present in the hypothetically complete data set, since the imputed

values fall directly on a regression line and are imputed without a random error component. As a

result the standard eruors from the EM approach will be negatively biased, and bootstrap

procedures must be employed to obtain correct estimates of the standard errors.

Missing Data cutcl Estimation Methods

If the data is MCAR or MAR, the maximum likelihood approaches will generally yield

unbiased estimates of population parameters, more accurate coverage probabilities for

confidence intervals, and more efficient estimates (i.e., smaller standard errors) than other

traditional methods (e.g., listwise deletion; Sinharay et al., 2001) There is limited evidence that

these methods can produce adequate results when the data are MNAR (Schafer et al., 2002,

Sinharay et al., 2001). Arbuckle (1996) found that, under both MCAR and MAR, full-

information maximum likelihood estimation (FIML) yielded unbiased estimates in SEM models
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when compared to pairwise and listwise deletion. Using multivariate normal data and an MCAR

mechanism, Graham, Hofer, and MacKinnon ( 1996) found that estimated variances and

covariances were unbiased under FIML. Enders and Bandalos (2001) further found that FIML

showed equivalent or better performance with respect to convergence failure, bias, and efficiency

of parameter estimates compared to listwise and deletion methods using nonnal data. This was

the case regardless of factor loading magnitude, sample size, missing data rate, and missing data

mechanism (MCAR or MAR). Enders and Bandalos (2001) further noted that the efficiency of

the FIML approach improved as the percentage of missing data increased, and concluded that the

FIML approach is appropriate when researchers do not know the appropriate missing data

mechanism.

The previous studies have all included data that was normal in distribution. Enders

(Enders, 2001) used a Monte Carlo study to investigate the impact of non-normality in the

presence of missing data with the FIML approach, noting that a potential drawback to the use of

FIML is that it was developed under the assumption of MAR and multivariate normality, and

may not show the same efficiency under multivariate non-normality. Using both MAR and

MCAR mechanisms, and comparing FIML against conventional missing data techniques such as

listwise and pairwise deletion, Enders found that FIML was affected most by non-normality of

the data, and that the presence of missing data (either MAR or MCAR) did not have a noticeable

effect over and above the impact of non-normality.

Missittg Daîa in Latent Growth Moclels

With latent growth models, model estimation in the face of missing data can utilize an
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FIML approach, as outlined previously with research on structural equation models. Users of the

multisarnple approach run the risk of there being many distinct patterns of missingness, thus

resulting in some models with small samples sizes that cannot be estimated with SEM (Duncan,

Oman, & Duncan, 1994). If all individuals are missing the same observation (i.e., nobody was

assessed at that particular time point), then a simple solution has been to represent the missing

data point as a latent variable (Ferrer, Hamagami, & McArdle,2004), however in most

naturalistic longitudinal studies this scenario would be rare.

It has been shown by previous authors (e.g., Enders & Bandalos,200l;Graham, Hofer, &

MacKinnon, 1996) that FIML estimation will exhibit no large-sample bias if the assumptions of

MCAR or MAR are tenable, especially against conventional methods such as listwise deletion

and pairwise deletion (Wothke, 2000). A study by Duncan, Duncan, and Li (1998) showed that,

under MCAR, maximum likelihood methods performed as well or better than conventional

methods (e.g., listwise deletion), but multiple imputation procedures performed poorly when

missing data was due to both attrition and design (in their study a cohort-sequential design was

used). McArdle and Hamagami (1992) assumed an MNAR mechanism for their missing data,

and found that this did not affect the estimates of parameters using maximum likelihood

procedures, although standard errors were inflated.

Much of the empirical research involving missing data in latent growth modeling has

utilized a multi-sample procedure (e.g., Duncan et al., 1994;Mc\rdle et al.,1992). There is very

little research on the performance of likelihood-based methods with respect to overall model fit

and parameter estimation and bias.
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Chapter 10: Proposed Proiect

General Researclt Ob.jectittes ancl Hypotheses

The primary objective of the proposed research was to examine the performance of three

approaches to latent variable modeling of an interaction effect between latent growth slope

factors. These approaches were: (1) the full interaction model ("Wen") proposed by Wen et al.

(2002), (2) the reduced interaction model ("Duncan") proposed by Duncan et al. (1999), and (3)

the modified latent interaction model based on the model by Schumacker (2002). Tliere has only

been one published study comparing the Wen full interaction model against the Duncan reduced

interaction model, and this comparison was based on an empirical data set with no manipulation

of factors (e.g,. sample size, reliability) to evaluate the robustness of either of the models. Wen

et al. (2002) contend that their model is superior to that of Duncan and colleagues with respect to

estimating model parameters, but there is a paucity of empirical evidence besides their single

study to support this contention. Further, the Wen et al. study only concerned itself with a

comparison of parameter estimates, and did not investigate issues of overall model fit or bias.

The Schumacker (2002) model is a latent interaction model based on a cross-sectional

design, and which does not use the cross-product of indicators method to characterize the latent

interaction as do the Wen and Duncan models. It has not previously been extended into the

latent growth modeling perspective. With its lack of product terms of the indicators, it does not

require any complex constraints to be placed on the model parameters in order to take into

account the non-normal nature of these product terms (see Chapter 8, p. 64), and, as a result it

shows promise as a viable approach to modeling latent slope interaction effects. However, as it

is not known how the extension of the Schumacker model will perform, this model may not
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perform as well as either the Wen or Duncan models.

There are several issues that were investigated to assess the performance of the three

models. The primary focus was on the model performance with respect to overall model fit

statistics, as well as an examination of convergence rates, in the presence of several missing data

conditions. The examination of overall model fit was carried out in a qualitative fashion, as we

expected to observe particular trends in the overall model fit indices for each of the models.

Specifically, it was expected that the Wen would show superior performance on the overall

model fit indices compared to both the Duncan and Schumacker models. As there were no

specific expectations about the performance of the Schumacker model in relation to the other two

models, we expected that it would perform as good or worse than the Duncan model. This was

based on its similarity to the Duncan model (i.e., only having a latent interaction term for the

slopes, and not for any of the other latent factors as represented in the Wen model).

A secondary focus was on the estimation of the latent slope interaction parameter for the

three models across the three missing data conditions. Specific aspects that were examined were

the amount of bias in the parameter estimate and the rate of Type I error. Bias of a parameter

estimate is the difference between the observed value of the estimate and the true value of the

parameter being estimated (Mood, Graybill, & Boes, 1974). Type I enor is considered to be an

error of inference (Keppel, 1991), and occurs when we have rejected the null hypothesis in

favour of the alternative when in fact the null hypothesis is true. A Type I error can occur in a

latent growth curve interaction model when there is actually no presence of an interaction effect,

yet the model estimates a parameter for this interaction effect that is significantly different from

zero. A measure of robustness to Type I error is Bradley's (1978) liberal criterion of robustness,
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where a model is considered robust if its empirical rate of Type I error û, is contained in the

interval 0.54, < ô < 1.5o,. For an o. = 0.05 level of significance, a test is considered robust in a

particular condition if its empirical rate of Type I error falls within the interval (0.25,0.75) with

values less than 0.25 being considered conservative and values higher than 0.75 being considered

libelal.

There were two hypotheses generated with respect to bias and Type I error, and each

hypothesis was evaluated separately for each missing data condition:

Hypothesis l:

Null: All three models will show similar bias in the estimation of the unstandardized

latent slope interaction parameter, as evidenced by similar average mean squared error (MSE)

values and standardized bias values, across all study conditions.

Alternative: The V/en model will show a lesser degree of bias than both the Duncan and

Schumacker models, and the Duncan model will show an equal or lesser degree of bias than the

Schumacker model, across all study conditions. Specifically, the ordering of values for the MSE

and standardized bias will be Wen < Duncan < Schumacker.

Hypothesis 2:

Null: All three models will be similarly effective at controlling the rate of Type I error at

the nominal level of significance of a, = 0.05 (using Bradley's criterion), across all study

conditions.

Alternative: The Wen model will be provide adequate control of Type I error (i.e.,

maintaining a Type I error rate close to the nominal level of significance of a = 0.05 using
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Bradley's criterion) than both the Duncan and Schumacker models, across all study conditions.

In other words, the Wen model will fälsely detect the presence of the latent slope interaction

effect at a rate that is closer to a nominal level of o = 0.05 than both the Duncan and Schumacker

models. Further, the Duncan model will provide adequate control of Type I error in as many or

more study conditions than the Schumacker model.

Procetlural Plan

A Monte Carlo simulation study was well suited to this type of project, as previous

studies have utilized Monte Carlo simulations to investigate issues related to Type I error rates in

latent variable models (e.g., Moulder & Algina, 2002). The following procedural plan was used

to conduct the Monte Carlo simulation and analysis. The three latent growth interaction models

- Wen (Wen et al., 2002), Duncan (Duncan et al., 1999;Li et al., 2000), and Schumacker (2002)

were implemented in the SAS software using the PROC CALIS procedure. Data were generated

according to a longitudinal repeated-measures design with four assessment points (with no

specification of the time period between assessment points), with the Duncan model acting as the

population model. Four faciors were manipulated in the simulation: (1) the correlation between

the latent intercept and slope for each factor, (2) the sample size, (3) the reliability of the

observed indicators for each latent factor, and (4) the type of missing data mechanism.

To assess the main objective of the current study, the unstandardized value of the latent

slope interaction parameter (which represents the effect of the latent interaction of the slopes of

the independent factors on the latent slope of the outcome factor) was set equal to Z.O. The

following overall model fit indices were extracted from the CALIS procedure for each model:
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the comparative fit index, the normed fit index, the goodness of fit index, and the root mean

square eruor of approximation.

To assess the secondary objective of the current project, and the two hypotheses, two

approaches were used. Based on the original data used to assess overall model fit in the first

objective, an evaluation of the estimation of the latent interaction slope parameter was also

canjed out for each model, examining the issues of estimation of the unstandardized latent slope

interaction parameter, and the amount of bias in the estimation of this parameter. Bias was

assessed through two indices, the mean square error (MSE) and the standardized bias. To assess

the rates of Type I error for each of the three latent growth models in estimating the latent slope

interaction parameter, the data were re-generated with the population value of the unstandardized

latent slope interaction parameter being set equal to zero. The proportion of cases that showed

inadequate control of Type I error rates (i.e., by being too liberal or too conservative) were

reported, with values less than 0.25 being considered conservative and values higher than 0.75

being considered liberal.
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Chapter 11: Method

Data Sintulation Conclitions

Four factors were manipulated in the simulation of data for this study: the conelation

between the latent intercept and slope factors for the independent variables (3 levels), the sample

size (3 levels), the reliability of the observed indicator variables for the independent variables (4

levels), and the mechanism of attrition (3 levels).

For the conelation between the latent intercepts and slopes, three values corresponding to

low (0.20), medium (0.50) and high (0.80) were chosen. Sivo, Fan, and Witta (2005) have noted

that the correlation between the latent intercept and slope is an important question (similar to

couelated errors, which can introduce bias into the estimates). Correlations between latent

constructs that approach 0.90 are considered to be indicative of significant overlap and are

suggestive of collapsing the two latent constructs into a single construct. We chose three values

of correlation that reflected a low, medium, and high correlation, but that were not high enough

as to be reflective of too much overlap, but also not low enough to be considered trivial. A

previous study by Hertzog and colleagues (Hertzog, Lindenberger, Ghisletta, & von Oertzen,

2006) used slope correlations of 0.25, 0.50, and 0.75 in their simulation using latent growth

curves.

Three sample sizes were used in the study: n = 250,500, and 1000. We chose a lower

bound of 250 as a result of most basic articles on structural equation modeling reporting a

minimum sample size of 200 being required for any SEM analysis (Weston & Gore, 2006), and

some of the empirical literature has utilized samples close to this size (e.g., Dawson-McClure,

Sandler, Wolchik, & Millsap, 2004b; Gilliom & Shaw, 2004). Further, we desired to take into
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account the loss in sample size that would occur through the process of generating missing data

which would reduce the absolute sample size, and we wanted to be confident that we had enough

of a sample size to meet what are considered general requirements for analyzing structural

equation models in the missing data conditions. The middle sample size of 500 was chosen as

many empirical studies have samples that are close to this size, ranging between 450 and 600

(e.g., Curran et al., 2003; DeShon, Kozlowksi, Schmidt, Milner, & Wiechmann, 2004). The

highest sample size, 1000, was chosen as an upper limit as few longitudinal studies approached

this number of participants (e.g., Duncan, Duncan, & Strycker, 2001), had a sample size of 770),

and very few longitudinal studies have sample sizes above 1000.

A third factor that was manipulated was the reliability of the observed indicators, as this

can influence the amount of measurement error. Since SEM models are aimed towards

distinguishing true score from measurement error, the degree of reliability of the indicators is

important in determining the best procedure for modeling an interaction. Following the

procedure of Moulder and Algina (2002), four levels of reliability of the observed indicators for

the latent variables were chosen, 0.30, 0.50, 0.70, and 0.90, coruesponding to a range of poor,

good, and exceptional reliabilities for the indicator variables. The reliability of each indicator is

a function of the error variance for that indicator, given by the following formula (Allen & Yen,

1979):

Error variance = r/ lobserved score variance r' (l-reliability)). (33)

The observed score variance was set to increase non-linearly as the number of assessment points
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increased, with an observed score variance of 1 at the first assessment point, 3 at the second, 6

and the third, and 9 at the fourth. This pattern was chosen as other authors (e.g., Rudinger &

Rietz, 1998) have noted that the relationship between time and the variance of scores in a linear

latent growth model follows a quadratic relationship.

A final factor was the mechanism of missing data, or attrition. All cases had complete

data for the first assessment point. In the Cornplete data condition, there was no attrition, and all

cases had complete data for all assessment points. Two mechanisms of missing data were

chosen: Missing Completely at Random (MCAR) and Missing Not at Random (MNAR). The

full details for the generation of these attrition-based datasets is given in Step 3 of the Data

Generation section below.

With 5000 replications for each condition, this resulted in 1,620,000 total replications

being generated (3 latent growth interaction models X 3 latent intercept-slope correlations X 3

sample sizes X 4 reliabilities X 3 missing data mechanisms X 5000 replications).

Data Generation

Step 1: Specification of Population Model

Data were generated according to the latent growth model given in Figure 16, which is

based on the model proposed by Duncan et al. (1999). This model has two latent slope factors,

Factor 2 (Eù and Factor 4 (U), that are proposed to have a direct effect on the latent slope of the

outcome variable (1¡). These two slope factors are also proposed to have an interaction effect

(Ezt+) on the latent slope of the outcome. The symbol ô represents an effor term, similar to that
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of e. The choice of the population value of 2.0 for the latent slope interaction parameter was

guided by the research of Li et al. (2000) and Wen et al. (2002). Li et al. used empirical data and

found that the latent slope interaction parameter was -0.006, and Wen et al. used a value of 1.2 in

their simulation study. In our study we strove to utilize a latent slope interaction parameter value

that would be clearly identifiable as an interaction effect.

Insert Figure l6 about here

The LISREL specification of the measurement portion of the latent growth interaction model is:
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ForFactor 1, all observed variables (Xr-X+) were specified to have an intercept (r1 -ta)

equal to L For Factor 2, all observed variables (ZrZ+) were specified to have an intercept (r-s -

ts) equal to 1. From Figure 76,X32= 2.0;),+z= 3.0;h+= 2.0; Às¿ = 4.0.

Following V/en et al. (2002) the latent exogenous mean vector (K) is specified as
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(35)

(36)

Where

)j)j

9.ss =9119¡.1+9¡t-l9oo =9llQ¿++Pqt ,gtt = g:zg¡¡*g¡:-:gra =gz:g.l.r+<p+t''.gos =glr g.l¡
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*9¡r 9+r,9zs = 9zl 9¡¡*9¡r 9¡zl 9ss = 9zl 9¿¡*9:z Q+l,Vto = 9zr Q+¡*g¡l g+zl (P8(, = gzteu+

9qt 9qz,9sz = QzzQqtr Qp9¿2.

The variances of the latent intercept and slopes (q r r to <paa) were set equal to 1, the expectation

(mean) of each of the latent variables was set equal to 0, and the covariances of the latent

intercepts (qrr) were set equal to 0.

The variance-covariance matrix of error, @6, is defined as
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Where

0g= ro? 02 + q3302 + qu}z.+ r¡,2 06* g¡00 * ezz}r,+ 0206
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0rc='tt2 0j * {pçOr +}"7a2rpaa03 + q2 07 * grr0z +}v22<pzz0t + 0102

0n = ta2 0a * {p¡l0a + },sa2<paa0a + ra2 0s * grr0s + Àa22g220s + 0a0s

0112=au 0z,Of,rr= t2 06, 0lo.¡= tu 0¡, 0lo.z= T3 07, 0ll.+= tg 0a,0¡r.g= T¿ 0s.

Step 2: Generating Model Poranteters

The SAS code used to generate the data for the longitudinal models is given in Appendix

A. The SAS RANNOR procedure was used to generate the raw data for the curent study. The

RANNOR procedure is based on the RANUNI procedure, and uses the Box-Muller

transformation of RANUNI uniform variates, and which has a period of 2,147,483,646 (SAS

Institute Inc., 2009). When using the SAS random number functions or subroutines, one should

specify a SEED in the range of I to 2't'"1'31-2 to initialize the starting point of the pseudorandom

number stream, or use a nonpositive integer (0 or negative) to create the initial seed from the

system clock. If a nonpositive number is used, SAS reads the system time and computes the

initial seed value using an algorithrn equivalent to SEED = le3 'r' mod(round(1e3 'i. datetime0),

1e6) + 1.

For all simulations, a negative seed number was used, which resulted in the initial seed

being derived from the system clock. Bang, Schumacker, and Schlieve (1998) have shown that

the sample size is important factor when generating normal random numbers, and advocated for

sample sizes larger than 1000 in order to ensure small departures from the expected meârì = 0

and standard deviation = 1. A random sample of 1000 cases from three separate simulation

conditions showed that the observed variables all had means close to 0 (ranging from 0 to 0.02)

with smaÌl standard deviations (ranging from 0.08 to 0.34:), with skewness and kurtosis values
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less than I in absolute value. Further, the observed variables showed an increasing amount of

variance acorss the assessment points - that is, the variance of the observations at the second

assessment point was larger than the variance at the first assessment point, and the variance of

the observations at the third assessment point was larger than the variance at the second

assessment point, and so on through to the fourth assessment point.

Ste¡t 3: Generating Missirtg Data.fi"om the Complete Po¡tulation Dctta

To generate the missing values under the MCAR and MNAR mechanisms, the following

attrition process was utilized (e.g., Jamshidian & Bentler, 1999; Newman, 2003). MCAR

missing samples were simulated by randomly removing a percentage of scores fi'om each of the

last three repeated observations in the Cornplete data set. To accomplish this, the raw data for

the second, third, and fourth assessment points were paired with corresponding random values

(denoted as RV-T2, RV-T3, RV-T4) from a normal distribution, and these random values were

used to select scores for deletion. The deletion process was performed as follows: (l) starting

with the second assessment point, all those cases with an RV_T2 value greater than a z-score of

1.30 (corresponding to the 90'l' percentile) were removed and, further, those cases had their third

and fourth observations eliminated (2) from the remaining undeleted scores at the third

assessment point, those cases with an RV_T3 value greater than 1.30 were selected to be

removed, along with those cases' fourth observation; (3) finally, from the remaining undeleted

scores at the fourth assessment point, those cases with an RV_T4 value greater than 1.30 were

selected to be deleted. Through this attrition process, a monotone pattern of MCAR samples was

obtained. An inspection of a random selection of i000 datasets from each of the three sample
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size conditions (250, 500, 1000) showed average dropout rates of 1.0Vo for the second assessment

point, 8.2Vo for the third assessment point, and 8.0Vo for the fourth assessment point, resulting in

a cumulative attrition rate of 26Vo.

For MNAR samples, the dropout process was different from the MCAR process in that

missingness depended on the observed scores of the outcome variable. The MNAR data was

generated from the Complete data in the following manner. (l) The scores for the Y-variable at

the second observation point were standardized into a new variable (STDY2) which had a mean

of 0 and a standard deviation of l. Those STDY2 scores that were above 1.30 (corresponding to

the 90th percentile) were removed, as were their corresponding observations for the remaining

assessment points; (2) The remaining observations for the third observation point were

standardized into a new variable (STDY3) which had a mean of 0 and a standard deviation of 1.

Those STDY3 scores that were above a value of 1.30 were removed, as were their corresponding

observations at the fourth assessment point; (3) Of the rernaining observations, their fourth

observation point scores were standardized into a new variable (STDY4) which had a mean of 0

and a standard deviation of 1, and those STDY4 scores which were above 1.30 were removed.

An inspection of a random selection of 1000 datasets from each of the three sample size

conditions (250, 500, 1000) showed average dropout rates of l}Vo lor the second assessment

point, 4Vo for the third assessment point, and lVo for the fourth assessment point, resulting in a

cumulate attrition rate of 15Vo.

As the models are independent of the data, there is not modification of the raw data by

any of the models, beyond the generation of the new variables for the interaction terms. The

process of the missing data mechanisms does modify the raw data to some extent, but these
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modifications are natural outcomes of the missing data mechanisms. As a result, we can confirm

that the generalization of the results will be valid for all of that data that is generated by the

mechanisms described above.

A.çsassntent o.l'Ove rall Mrxlel Fit

The analysis of the results began with a descriptive examination of the rates of

convergence for the three latent growth interaction models in the three data conditions.

Convergence occurs when the estimation function has reached a minimum and the model

parameters are estimated (Tabachnick & Fidell, 2001). This was followed by an examination of

the overall model fit of the three latent growth interaction models. To assess overall model fit

for the three models, the following model fit indices were used: the comparative fit index (CFI;

Bentler, 1988), the Bentler and Bonnett normed fit index (NFI; Bentler & Bonnett, 1980), the

goodness-of-fit index (GFI; Joreskog & Sorbom, 1986), and the root mean square error of

approximation (RMSEA; Steiger & Lind, 1980).

CFI

The CFI (Bentler, 1988) is part of a class of comparative fit indexes, where models are

conceptualized as being nested within one another. At one extreme is a model that is saturated

(full or perfect) with zero degrees of freedom. At the other extreme is a model that corresponds

to completely unrelated variables, called an independence model. The CFI assesses fit of the

specified model relative to the independence model. The CFI uses a noncentral 12 distribution

with noncentrality parameter, Tt. The larger the value of ti, the greater the model
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misspecification. That is, if the estimated model is perfect, Ti = 0 and the CFI = l. The CFI is

defined as

CFI = I - (Tesrimarc<tmodcl / Tin<iepcnclenccnrodcl).

The r value for a model can be estimated by

(38)

NFI

The Bentler-Bonnett (Bentler & Bonnett, 1980) NFI is also part of the class of

comparative fit indexes, where models are conceptualized as being nested within one another.

The NFI evaluates the estimated model by comparing the y2 value of the model to the 12 value of

the independence model,

lindependencc nlodel = f,,2in,l"p"nd"n.e moclel - dfin,l"p"n.l"n.. ¡¡16¿e1, âfìd

Testìnlatcrl mo<lel = f,2.rtin,nred nxrdcl - dfcstil¡arcd nrodel.

NFI = (f,,2ind"p"n,r"n." - X,2n.'od"r) / X2ind.p.n.r"n...

(3e)

(40)

(41)

This yields a descriptive fit index that lies in the 0 to I range, with higher values indicative of a

good-fitting model.

GFI

The GFI is analogous to the R2 in multiple regression (Hoyle et al., lgg|),and assesses

the degree to which the reproduced covariance matrix based on the specified model has

accounted for the original sample covariance matrix (Tanaka & Huba, 19S5). The GFI calculates
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a weighted ploportion of variance in the sample covariance accounted for by the estimated

population covariance matrix (Tabachnick & Fidell,2001). The GFI can be defined by

GFI = tr(o'Wo) / tr(s'Ws), (:42)

where the numerator is the sum of the weighted variances from the estimated model covariance

matrix (o) and the denominator is the sum of the squared weighted variances from the sample

covariance (s). W is the weight matrix that is selected by the choice of estimation method. The

GFI ranges in value from 0 to 1, with values close to 0 indicating poor model fit and values close

to I indicating good model fit.

RMSEA

The RMSEA was proposed by Steiger and Lind (1980), and was developed further by

Browne and Cudeck (1993). Tlie RMSEA is a test of exact model fit, comparing the proposed

model to a perfect (saturated) model, with values less than 0.05 being indicative of good model

fit. The equation for the estimated RMSEA is given by

estimated RMSEA = ^/(Fn 
/ df,,,n¿"r),

where

Fn = (X2n'o¿"r - df,nn¿"r) / N (44)

or

Fo=0'

whichever is smaller but positive. When the model is perfect, Fo = 0. The greater the model

misspecification, the larger Fo.

(43)
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Data Analysis P roceclure

The following frequently used criteria were used to evaluate the adequacy of the models:

CFI > 0.90, NFI > 0.90, GFI > 0.90, and RMSEA < .05 (Fan et al., 1998; Tabachnick & Fidell,

2001). The analysis of the results began with a descriptive examination of the rates of

convergence for the three latent growth interaction models in the three data conditions.

Convergence occurs when the estimation function has reached a minimum and the model

parameters are estimated (Tabachnick & Fidell, 2001). Only those models that successfully

converged and had CFI, NFI, or GFI values greater than 0 were analyzed (as these models were

considered to be no different from an independence model).

The first objective was to examine the performance of the three latent growth interaction

models in order to assess the strengths and weaknesses of the models in the presence of missing

data. The majority of the analyses for this objective were focused on the evaluation of overall

model fit for the three latent growth interaction models to the simulated data, including an

evaluation of convergence rates for each of the three models. For each condition in the study,

across type of missing data, the number of models that converged and the mean number of

iterations were tabulated. Only those models that converged successfully were subsequently

analyzed. Means, standard deviations and 95Vo confidence intervals for each of the model fit

indices were calculated. To identify those factors that affected overall model fit statistics,

analysis of variance (ANOVA) and partial omega squared were evaluated. For all of the

ANOVA models, the dependent variables were the overall model fit statistics (i.e., CFI, NFI,

GFI, RMSEA), and the independent variables were the factors of: type of latent interaction

growth model, latent intercept-slope correlation, sample size, reliability of the observed
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indicators, and all of their interactions. Separate ANOVA were carried out for each type of

missing data mechanism, and effects were assessed at an a = 0.05 level of significance. To

assess the magnitude of the main and interaction effects, partial omega squared was used to

estimate the effect size for each effect. The partial omega squared estimates equaled the ratio of

the variance due to an effect to the sum of (a) the variance due to the effect and (b) the error

variance. According to Cohen (1988, cited in Olejnik & Algina,2000), suggested values of 0.01,

0.06, and 0.14 correspond to small, medium, and large associations. Pairwise multiple

comparisons of the means in a given condition were conducted using a Ryan-Einot-Gabriel-

Welch (REGWQ) procedure to control familywise experiment error rate (Westfall & young,

1993).

The second objective was to evaluate these models with respect to parameter estimation

of the latent slope interaction, bias, and Type I error rates, in accordance with the two proposed

hypotheses. For the first hypothesis, three measures of bias were calculated: the difference of the

estimate of the latent slope interaction parameter from the population parameter, the mean square

error (MSE), and the standardized bias. For this assessment the population value of the latent

slope interaction parameter was set to 2.0.

To evaluate the bias in the parameter estimate for the latent slope interaction effect three

aspects of bias were examined. The first was to calculate the mean bias in the estimate itself, by

computing the difference between the population value and the estimated model value. In the

case of the current study, mean bias was the difference between the estimated model value and

the population value of 2.0 (see Figure 16). The second aspect was to evaluate the mean square

enor (MSE; Degroot, 1980) of the estimated latent slope interaction parameter. The MSE
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quantifies the expected (average) squared deviation of an estimator from a population parameter

(Olejnik & Porter, 1981), and provides information on the spread of the parameter estimates

around the true estimate. The value of the MSE is given by the following equation:

MSE = (population value - model estimate)2 + variance of model estimate. (45)

The third aspect of bias assessed was to utilize a standardized estimate of bias, which is the

average deviation of the sample estimate from the population parameter estimate, divided by the

standard error of the estimate. Values of this standardized estimate which are close to 1.0

indicate no bias in the estimate. Values which are above 1.0 are indicative of an overestimating

bias, while values less than 1.0 are indicative of an underestimating bias.

A one-way analysis of variance was used to examine differences between the means for

the MSE and standardized bias across the levels of manipulated factors, separately for each

missing data mechanism. Pairwise multiple comparisons of the means in a given condition were

conducted using a Ryan-Einot-Gabriel-Welcli (REGWQ) procedure to control familywise

experiment error rate.

For the second hypothesis, which addressed Type I error rates, the entire simulation was

re-done, specifying a population value of 0.0 for the latent slope interaction parameter (i.e., yrs =

0). The proportion of models that generated a significant effect for the latent slope interaction

effectweretabulated. Bradley's(1978)liberalcriterionofrobustnesswasusedtoevaluateeach

of the models: a model is considered robust if its empirical rate of Type I error (ô ) is contained

in the interval 0.5o, < ô < 1.5o. A model was considered robust if its empirical Type I enor rate



93

Interaction Effects in Latent Growth Models

for the latent interaction slope parameter was contained within the interval 0.5o < ô, < 1.5a,. For

the five percent level of significance used in this study, a model was considered robust in a

particular condition if its empirical rate of Type I emor fell within the interval0.25 < ô < 0.75.

Correspondingly, a model was considered to be nonrobust if, for a particular condition, its Type I

elror rate was not contained in this interval. Models that showed Type I error rates that were

above 0.75 were considered to be liberal, and those that showed Type I error rates that were

below 0.25 were considered to be conservative.

All models were estimated using the maximum likelihood estimation method in SAS.

The SAS code for evaluating each of the models are given in Appendix B (for the Wen model),

Appendix C (for the Duncan model), and Appendix D (for the Schumacker model). Once the

models were run for each simulation condition, the resulting parameter estimates, standard

effors, and model fit indices were read into the SAS statistical package and analyzed.
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Chapter 12: Results

Each of the approaches to modeling the interaction effect in the latent growth models

were assessed for their overall model fit to the simulated data (as indicated by the selected model

fit indices). This included descriptive information such as means and standard deviations, as

well as 957o confidence intervals for the model fit indices. Further to this, evaluations of the

accuracy of estimation of the latent slope interaction parameter (accuracy, MSE, standardized

bias), and assessment of Type I error rates in testing the latent slope interaction effect were

camied out. These were done separately for each type of missing data (Complete, MCAR,

MNAR). Prior to the analyses, the rates of convergence for all models across all conditions were

examined, and only those models that converged successfully and had CFI, NFI, or GFI values

that were above 0.0 were considered afterwards.

The main set of analyses were a detailed examination of the overall model fit indices for

the three latent interaction growth models across the thlee missing data conditions. This

included descriptive information such as the mean and standard error for each model fit index for

each model in each simulation condition, as well as the calculation of 957o confidence intervals

for each of these mean estimates. This was followed by ANOVA models, with an examination

of the main and interaction effects for all fixed effects in the models (i.e., the simulation

conditions), and mean comparisons. The last section presents an examination of the bias in the

estimation of the latent slope interaction parameter (y2s), as well as the empirical Type I error

rate for each of the three latent growth interaction models when the population latent slope

interaction parameter was set to zero (i.e., yze - 0).
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Assessnrcnt oJ' Conve rgence Rcttes

Table 2 shows the convergence rates for all three latent growth interaction models (Wen,

Duncan, and Schumacker) across the four manipulated factors (latent intercept-slope correlation,

sample size, reliability of observed indicators, and missing data mechanism) where the

population value of the latent slope interaction was set to 2.0 for each missing data type.

Insert Table 2 about here

In the Complete data condition, only the Wen latent interaction model showed

convergence problems, failing to converge in all 5000 replications when the reliability was

lowest (i.e., 0.30 or 0.50) across all three levels of sample size and latent intercept-slope

correlation. In those conditions without full convergence (i.e., not converging for all 5000

replications within a condition), the Wen model converged in over 957o of the replications. The

Duncan and Schumacker models showed convergence in all 5000 replications across all factors

in the Complete data condition. Similar findings were seen for the MCAR data, with

convergence rates being 937o or higher for the Wen model in the individual conditions.

In the MNAR data, the Wen model showed incomplete convergence in many of the

simulation conditions, with rates ranging |rom297o to lO)Vo. For the Wen model the highest

rates of convergence were observed at the highest level of reliability across the levels of sample

size and latent intercept-slope correlation. The Duncan model showed a convergence problem in

only a single condition, when the latent intercept-slope correlation was lowest (0.20), the sample

size was smallest (250), and the reliability of the observed indicators was lowest (0.30), however

there was convergence in 4999 out of 5000 simulations in this condition. The Schumacker
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model showed complete convergence across all conditions. Table 3 has the mean number of

iterations for convergence to be achieved in only those models that converged successfully and

had CFI, GFI, or NFI values that were above 0.0.

Insert Table 3 about here

Assessntent of Overttll Model Fit

The following sections outline the average values, 957o confídence intervals, multiple

comparisons, and ANOVAs for the overall model fit indices (CFI, NFI, GFI, RMSEA) within

those simulations for models that converged successfully, and which had CFI, NFI, or GFI

values that were non-zero. The following frequently used criteria were used to evaluate the

adequacy of the models: CFI > 0.90, NFI > 0.90, GFI > 0.90, and RMSEA < 0.05 (Fan et al.,

1998; Tabaclinick & Fidell, 2001).

CFI

Table 4 presents the average CFI values for all models across the three levels of missing

data, with 957o confidence intervals for these average values given in Table 5. Table 6 contains

the results of an ANOVA model, using the CFI model fit index as the dependent variable, with

latent interaction model type (3 levels), correlation of the latent intercept and slope (3 levels),

sample size (3 levels) and reliability of the observed indicators (4 levels) as independent factors.

All interactions between these factors were included in the model. These analyses were camied

out separately for each data type condition (Complete data, MCAR data, MNAR data).

Insert Tables 4,5, and 6 about here
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Com¡tlete Data Analyses

The average CFI value for the'Wen model was 0.92 (range 0.91 - 0.93), for the Duncan

model 0.90 (range 0.89 - 0.91), and for the Schurnacker model 0.76 (range 0.66 - 0.85). The

95Vo confidence intervals in Table 5 for the Complete and MCAR data show the Wen and

Duncan model having a large proportion of conditions where the lower and upper bounds of the

confidence intervals are at or above 0.90. This indicates that, for these models, it can be

expected that the average CFI values will be above 0.90 in over 957o of the cases. It was also

seen that the proportion of conditions with 95Vo confidence intervals above 0.90 increased as

sample size increased for the'Wen model. A similar effect was seen for the Duncan model as

reliability of the observed indicators increased. Both of these models showed an increased

proportion of confidence intervals above 0.90 as the correlation between the latent intercept and

slope increased. The Schumacker model did not have any 95Vo confidence intervals whose

lower bound was above 0.90. Multiple comparisons between the means (using a REGWQ

comparison procedure to control familywise experiment enor rate) showed that only a single pair

of means were not significantly different from each other, and they are presented in bold text in

Table 5. This single pair was for the Duncan and Schumacker models in the MNAR condition

for the correlation-sample size-reliability condition of (0.70 ,250,0.30). All other pairs of means

were significantly different from each other.

The ANOVA in Table 6 for the Complete data condition showed significant effects (p <

0.05) for all main effects and their interactions. The overall model effect was significant (F1¡67.

s3r703) = 13599.94,p < 0.01, partial eta2 =0.13). The largest effect sizes were seen for the two-

way interactions of latent interaction model with reliability of the observed indicators (0.13) and
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latent interaction model with correlation between latent intercepts and slopes (0.10), and for the

main effects of reliability (0.I I ) and latent interaction model (0.70), according ro Olejnik and

Algina (2000).

The four-way interaction of latent interaction model type, latent intercept-slope

correlation, sample size, and leliability of the observed indicators was significant (F12a.53r703) =

2.15, p < 0.01) but with a small effect size (partial eta2 < 0.01). Normally such a significant

interaction would be broken down into simple effects that would help to interpret the interaction

between the factors. However, the large error degrees of freedom for the ANOVA model results

in even trivial mean differences emerging as significant. To avoid this we have chosen to focus

on only those ANOVA effects that produced effect sizes of at least a medium effect (i.e., 0.06 or

greater for the partial eta-squared). The ANOVA effects that met this criterion were for the two-

way interactions of latent interaction model with reliability of the observed indicators (0.13) and

latent interaction model with correlation between latentintercepts and slopes (0.10), and forthe

main effects of reliability (0.1 1) and latent interaction model (0.70), according to Olejnik and

Algina (2000).

To examine the significant two-way interactions, simple plots of the average CFI values

with the reliability of the observed indicators were produced for each latent growth interaction

model, and are given in Figure 17.

Insert Figure l7 about here

Seen clearly in the simple plots is the difference in pattern of average values of the CFI for the

Schumacker model from both the Wen and the Duncan models. Also of note is the differing
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pattern of CFI values. When examining the simple plot for the interaction of latent growth

interaction model with reliability, across the levels of reliability both the Wen and the Duncan

model produced stable values, while the Schumacker model showed a trend of increasing CFI

values as reliability increased. However, when examining the two-way interaction involving

latent model type and correlation between the latent intercept and slope, the Wen and the Duncan

models again showed a stable pattern while the Schumacker model showed a decreasing trend of

CFI values as the correlation increased.

MCAR ancl MNAR Data Conclitiott Analyses

In the MCAR data condition the average CFI value for the Wen model was 0.92 (range

0.91-0.93), for the Duncan model 0.90 (range 0.89-0.91), and for the Schumacker model 0.75

(range 0.69-0.81). The results for the analyses of the average CFI model fit statistic were

identical in pattern to those for the Complete data condition. The largest effect sizes were seen

for the two-way interactions of latent interaction model with both reliability of the observed

indicators (0.12) and Iatent intercept-slope conelation (0.09), and for the main effects of

reliability (0.10) and latent interaction model (0.69). The description of rhese resulrs, including

the average CFI value fol each condition and the figures of the simple effects plots, are given in

Appendix E.

In the MNAR data condition the average CFI value for the Wen model was 0.76 (range

0.69-0.84), for the Duncan model 0.70 (range 0.69-0.14), and for the Schumacker model 0.76

(range 0.69-0.81). None of the models in this data condition showed average CFI values that

were above the cutoff of 0.90 for good model fit. These models are not discussed here, but are
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presented in Appendix E.

Suntmary

Across the three missing data conditions, the Wen model showed the most consistent and

optimal performance with respect to the CFI model fit index. In the Complete data condition the

Wen model yielded average CFI values that were above the cutoff of 0.90 in all 36 conditions,

while the Duncan model produced values that were above this cutoff in 30 conditions. The

Schumacker model did not provide any average CFI values that were above the cutoff. A similar

pattern was seen in the 95Vo confidence intervals for the average CFI values. Namely, the Wen

model showed confidence intervals where the lower bound was at or above 0.90 in almost all of

the conditions for the Complete and MCAR data, with the Duncan model showing such

behaviour only at higher levels of latent intercept-slope correlation and reliability. The

Schumacker model did not have any confidence intervals whose lower bound was above 0.90.

These findings were paralleled in the MCAR data condition. In the MNAR data condition none

of the models had average CFI values that were above the cutoff for good model fit.

The Wen model consistently produced average CFI values that were higher than those of

the Duncan model, the only exceptions being in the MNAR data condition when the reliability

was at its highest level. The Schumacker model provided average CFI values that were superior

to the Wen model in the MNAR data condition only, occurring only when the reliability of the

observed indicators was at its highest values (i.e., 0.70 or 0.90), and this was seen across all three

sample sizes and levels of latent intercept-slope covariance. Further, the average CFI values for

the Schumacker model decreased as the latent intercept-slope correlation increased.
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The ANOVAs for the CFI statistic showed a consistent two-way interaction of latent

growth interaction model type with the reliability of the observed indicators in all three data

conditions. In both the Complete and MCAR data conditions the pattern of the Wen and Duncan

models showing stable trends of average values around the cutoff of 0.90 as reliability increased

was seen, while the Schumacker model showed a pattern of decreasing average CFI values as

reliability increased. In the MNAR data condition the pattern was more variable, with the Wen

model showing a decreasing trend while the Duncan and Schumacker models showed increasing

trends. An additional interaction was seen in the Complete data, namely that of latent growth

interaction model type with latent intercept-slope correlation. For this interaction, the simple

plot showed that both the Wen and Duncan models showed stable patterns of average CFI values

as the correlation increased, while the Schumacker model showed a pattern of decreasing

average CFI values.

NFI

The NFI (Bentler & Bonnett, 1980) evaluates the estimated model by comparing the X2

value of the model to the X2 value of the independence model, yielding an index that lies on a

continuum from 0 (indicating a poor fit to the data) to t (indicating a perfect fit to the data).

Table 7 presents the average NFI values for all of the latent interaction models, across the

three conditions of missing data, and Table 8 presents the 95%o confidence intervals for the

average NFI. Table 9 contains the results of three ANOVA models, using the NFI statistic as the

dependent variable, with latent interaction model type (3 levels), correlation of the latent

intercept and slope (3 levels), sample size (3 levels) and reliability of the observed indicators (4



102

Interaction Effects in Latent Growth Models

levels), and all of their interactions, as independent factors. These analyses were carried out

separately fol each missing data condition (Complete, MCAR, MNAR).

lnsert Tables 7, 8, and 9 about here

Contplete Data Condition Analyses

In the Complete data condition the average NFI value for the Wen model was 0.91 (range

0.84-0.94), for the Duncan model 0.89 (range 0.82-0.93), and for the Schumacker model 0.76

(range 0.19-0.94). Only the Wen and Duncan models produced 957o confidence intervals for the

mean NFI values that had lower bounds above the value of 0.90. For the Wen model these were

consistently produced when the reliability was at its highest value (0.90), and occurred more

often as both sample size increased and as the correlation between the latent intercept and slope

increased. The Duncan model showed such confidence intervals only at the highest levels of

reliability, with the highest proportion in the conditions where the conelation between the latent

intercept and slope was highest (0.70) and the sample size was highest (1000). The Schumacker

model did not produce any 95Vo confidence intervals whose lower bound was at or above 0.90.

Multiple comparisons between the means (using a REGWQ comparison procedure to control

familywise experiment error rate) showed that every pair of means were significantly different

from each other.

The ANOVA in Table 9 for the Complete data shows significant effects (p < 0.05) for all

main effects and their interactions. The overall model effect was significant (F1¡s7. _s3r703) =

12496.27,p < 0.01), and had alarge effect size (partial eta2 = 0.72). The four-way interaction of

latent interaction model type, latent intercept-slope correlation, sample size, and reliability of the
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observed indicators was significant (F12a. 53r 703) = 2.06, p < 0.01) with a small effect size (partial

eta2 < 0.01). However, as noted earlier with the CFI, the large enor degrees of freedorn for the

ANOVA model results in even trivial mean differences emerging as significant, and effects that

produced effect sizes of at least a medium effect (i.e., 0.06 or greater for the partial eta-squar-ed)

were examined.

The ANOVA effects that met this criteria were for the two-way interactions of latent

interaction model with both reliability (0.12) and correlarion of latenr intercept and slope (0.10),

and the main effects of latent interaction model (0.68) and reliability (0.13). To examine the

significant two-way interactions, separate simple plots of the average NFI values with the

reliability of the observed indicators and the latent interaction-slope correlation were produced

for each latent growth interaction model, and are given in Figure 18.

Insert Figure l8 about here

Seen clearly in the simple plots is the difference in pattern of average values of the NFI for the

Schumacker model from both the Wen and the Duncan models. When examining the simple plot

for the interaction of latent growth interaction model with reliability, across the levels of

reliability both the Wen and the Duncan model produced stable values around 0.90, while the

Schumacker model showed a trend of increasing NFI values as reliability increased. However,

when examining the two-way interaction invoìving latent model type and correlation between the

latent intercept and slope, the Wen and the Duncan models again showed a stable pattern while

the Schumacker model showed a decreasing trend of NFI values as the comelation incrcased.

For the MCAR data condition, the means, ranges, 95Vo confidence intervals, and
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ANOVA results were similar in pattern to those for the Complete data condition and are not

prcsented here. They are repofted in Appendix F.

MNAR Data Condition Analvses

None of the models for this data condition produced average NFI values that were above

the cutoff of 0.90 for good model fit. These results are not discussed here and are presented in

Appendix F.

Suntntary

The Wen model was consistently able to produce average NFI values that were above the

cutoff of 0.90 fol good model fit, and this was seen in the Complete and MCAR data only (for 32

of the 36 conditions in both data conditions). The Duncan model was only able to produce

acceptable average NFI values in some of the conditions, doing so in only 20 conditions in the

Complete data and 17 in the MCAR data. In a parallel manner, the Wen model was able to

produce 95Vo confidence intervals whose lower bound was at or above 0.90 in almost half of the

conditions in the Complete and MCAR data (16 and 14, respectively), while the Duncan model

produced less than 10. The average NFI values of the Duncan model were generally lower than

those of the Wen model. For both of these models in these two data conditions the average NFI

values were stable across all levels of latent intercept-slope correlation, sample size, and

reliability. The Schumacker rnodel did not produce average NFI values above the cutoff for

good model fit in any of the study conditions, regardless of the type of data.
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GFI

The goodness of fit index (GFI) is analogous to the R2 in regression, and assesses the

degree to which the reproduced covariance matrix based on the specific model has accounted for

the original sample covariance matrix (Tanaka & Huba, 1985). Table l0 presents the average

GFI values across the three data conditions.

Insert Table i0 about here

Complete ancl MCAR Data Conclitiort Analyses

The average GFI value for the Wen model was 0.87 (range 0.74 - 0.90), for the Duncan

model 0.86 (range 0.74 - 0.90), and for the Schumacker model 0J7 (range 0.54 - 0.93) in rhe

Complete data, and the results for the MCAR data were virtually identical. None of the average

GFI values were above the cutoff of 0.90 for good model fit in either of these types of data. The

95Vo confidence intervals and ANOVA results are presented in Appendix G and are not

discussed here.

MNAR Data Condition Analyses

In the MNAR data condition the average GFI value for the Wen model was 0.73 (range

0.52-0.83), for the Duncan model 0.81 (range 0.68-0.87), and for the Schumacker model 0.76

(range 0.06-0.96). Only the Schumacker model produced 95Vo confidence intervals that had a

lower bound at or above the value of 0.90, and this occurred in only two of the study conditions

for this data. As a result of the poor performance on this model fit index, these findings are

presented in Appendix G and are not discussed here.
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Sunmtar¡,

Generally, all three of the latent growth interaction models performed poorly with respect

to the GFI. The Wen and the Duncan models produced similar average GFI values in both the

Complete and MCAR data conditions, with the Duncan model having higher average GFI values

in the MNAR data condition. The Schumacker model produced the lowest average GFI values

in the Complete and MCAR data conditions, but produced the highest average values in the

MNAR data condition. In all three data conditions neither the Wen nor the Duncan models

produced average GFI values that were above the cutoff for good model fit of 0.90 in any of the

study conditions, and similarly none of the 95Vo confidence intervals for the mean GFI value for

these models had a lower bound that exceeded 0.90. The Schumacker model performed poorly

in both the Complete and MCAR data conditions, but did show a trend of increasing average GFI

values as both reliability and sample size increased. The Schumacker model was the only model

to ploduce average GFI values that were above the cutoff of 0.90 in the MNAR data condition,

doing so in 12 of the 36 conditions, and produced 95Va confidence intervals whose lower bound

was above 0.90 in two of the study conditions for this type of data. Adequate model fit only

occured at the highest levels of reliability across all of the levels of sample size and latent

intercept-slope correlation.

RMSEA

The RMSEA is a test of exact fit, with the cut-off value of 0.05 (Browne & Cudeck,

1993). The average RMSEA values for all of the models are given in Table I l. None of the

modeìs showed average RMSEA values that were equal to or below the cut-off value of 0.05.
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Across the three missing data conditions, the average RMSEA values for the Wen model ranged

from 0.09 to 0.26, those for the Duncan model ranged from 0.12 to 0.24, and those for the

Schumacker model ranged from 0.22 to 0.70. Due to none of the models passing the criterion for

good fit, all of these results are presented in Appendix H and are not reported here.

Insert Table 1l about here

While the model fit indices presented previously are informative, it is difficult to use

them to directly compare the models with each other. However, for models that are nested

within each other, a chi-square different test can be used to determine the more parsimonious

model (Tabachnick & Fidell, 2001). Table l2 presents the difference in model chi-square

between the Wen and Duncan models. The chi-square for the Schumacker model could not be

compared in this was as it is not considered to be a nested model of either the Wen or the Duncan

models. The Wen model has 91 degrees of freedom and the Duncan model has 92 degrees of

freedom, and the difference was taken as (model chi-square for the Duncan - model chi-square

for the Wen). All difference values were evaluated against a chi-square distribution with degrces

of freedom of 1.

Insert Table 12 about here

For the Complete and MCAR data, across all conditions, the Wen model showed a

significant reduction in model chi-square over that of the Duncan model. These reductions

showed a non-linear trend, with decreasing differences between the two models as reliability

increased, the exception being that at the highest level of reliability there were large differences.

This was consistent across the levels of sample size and latent intercept-slope correlation. In the
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MNAR data, a similar trend occured, a-eain with the exception being at the highest level of

reliability across the levels of sample size and latent intercept-slope corelation. [n this case,

however, the Duncan model showed a better fit to the data.

While not reported, an examination of the chi-square value for each model was

undertaken. Specifically, the ratio of the model chi-square to the degrees of freedom was

computed, with ratios less than 2.5 considered to be indicative of a parsimonious model that was

fitting the observed data adequately (Kline, 1998). None of the models produced ratios of this

nature in any of the missing data conditions. An examination of the chi-square values for the

individual models in each simulation condition, using the G'i'Power software (Faul, Erdfelder,

Lang, & Buchner,2007), showed that all models had power equal to 1, across all three missing

data conditions.

Estintation of tlrc Latent Slope Interaction Paranteter h,rÐ when the Population Value o.f the

Paranteter was Set to 2.0.

Table 13 shows the average of the unstandardized parameter estimates (with standard

deviations in parentheses) for the latent slope interaction, which was set to a value of 2.0 in the

population model (see the parameter y2s in Figure 16).

Insert Table l3 about here

Corn¡tle te D ata Condition Analyse s

In the Complete data condition, the Wen model provided unstandardized estimates that

ranged in average value from a minimum of 1.90 to a maximum of 33.58. This model showed
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poor estimation at lower reliability values (i.e., 0.30, 0.50) compared to the higher reliability

values. However, as both sample size and the latent intercept-slope conelation increased the

estimated values for this parameter at lower reliabilities became increasingly accurate, reducing

in value from 33.58 at the lowest reliability/sample sizelcorrelation condition to 2.27 inthe

lowest reliability/highest sample sizelcorrelation condition. Further, as both reliability and latent

intercept-slope correlation increased, the Wen model showed a tendency to underestimate the

latent slope interaction parameter. The Duncan model showed poor estimation of the latent slope

interaction parameter, with values ranging from 2.90 to 0.84. This model produced average

values that predominantly underestimated the latent slope interaction parameter, doing so in 35

of the 36 conditions. The estimates for the Duncan model decreased in value towards zero as the

factors of reliability, sample size, and latent intercept-slope correlation increased, and had a

smaller range of values than the Wen model. The Schumacker model underestimated the

population parameter across all conditions, with mean parameter estimates ranging from I .37 to

i.87. For this model, the estimates improved and approached the population value as the

reliability of the observed indicators increased, but there was no influence on the estimates by

increases in either sample size or latent intercept-slope correlation. This model had the smallest

range of all three models.

An alternative method to assess the accuracy of estimation is to tabulate those estimates

that fell within a particular distance from the population value (e.g., +/- 2 standard deviations).

To remain consistent to our earlier investigation of the model fit indices, we constru cted 957o

confidence intervals around each of the mean estimates, and tabulated the number of intervals

that contained the population value of 2.0. For the Wen model, this occurred only 5 conditions,
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for the Duncan model 3, and for the Schumacker model only 4 of the conditions, and these

conditions are presented in bold text in Table 14.

lnsert Table l4 about here

MCAR Data Conclition Anctb,ses

The estimation of the latent slope interaction parameter in this data condition closely

followed that of the Complete data condition, especially as the reliability of the observed

indicators increased. The average values for the Wen model ranged from a low of 1.90 to a high

of 45.54, those for the Duncan model from 0.84 to 4.63, and those for the Schumacker model

f¡om 1.38 to 1.87. The 95Vo confidence intervals presented in Table l4 show that the population

value of the parameter was contained in 8 of the study conditions for the Wen model, 4 for the

Duncan model, and 3 for the Schumacker model.

MNAR Data Conditiort Analyses

All thrce of the latent growth interaction models showed severe underestimation of the

Iatent slope interaction parameter across all conditions. The Wen model had average estimates

that ranged from 0.003 to 0.87; for the Duncan model they ranged from 0. i 1 to 0.15, and those

for the Schumacker model ranged from 0.003 to 0.21. None of these models produced 957o

confidence intervals of the estimate that included the population value of 2.0.

Stutunary

There were two distinct patterns of estimation of the latent slope interaction parameter.
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Both the Duncan and Wen models showed a trend of increasing underestimation of the latent

slope interaction parameter as the reliability of the observed indicators increased. Conversely,

the Schumacker model showed increasing values of the latent intercept slope parameter as

reliability increased, with a pattern of decreasing underestimation. Overall, in the Complete and

MCAR data conditions, both the Wen and the Schumacker models showed better performance

than the Duncan model, with the Schumacker model providing more consistent parameter

estimates across all of the study conditions. With Complete data the Wen model produced

outlier estimates when reliability was low, and the number of outliers rose as the correlation

between the latent slope and intercept increased. The Duncan model also produced some

outliers, doing so predominantly at the very lowest level of reliability, with the number of

outliers decreasing as both sample size and latent intercept-slope correlation increased. The

Schumacker model produced very few outliers. A similar pattern was also seen in the MCAR

data. In the MNAR data condition none of the models performed in a satisfactory manner, with

all of the models underestimating the latent slope interaction parameter.

Average Mean Square Error (MSE) and Average Sttuularcliz.ecl Bias in the ltttent Slope

Interaction Paranteter Estimates when the Po¡tulation Value of the Parameter was 2.0.

The average MSE values and the average standardized bias values for the estimate of the

latent interaction slope parameter (y2s) are given in Tables l5 and 16, respectively. For the MSE,

lower values are indicative of less bias; for the standardized bias, values close to 1.0 are

desirable, with values greater than 1.0 indicating overestimation and values lower than 1.0

indicating underestimation.
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Insert Tables l5 and l6 about here

Average MSE Bias

Conqtlete Datu Conditiort Analyses

In the Complete Data condition, the average MSE values for the Wen model ranged from

5.90 to 18267.01:. those for the Duncan model from2.52 ro 2096.34, and those for the

Schumacker model from2.43 to 82.13. The Wen model showed a general trend of decreasing

MSE values as reliability, sample size, and latent intercept-slope correlation increased, with

lower bias values at the highest levels of reliability across the factors of sample size and latent

intercept-slope correlation. The only exception to this trend was at the smallest level of all three

factors, where the average MSE value for the reliability level of 0.70 was higher than that for the

level of 0.50. The Duncan model showed a similar pattern to that of the Wen model with

respect to average MSE bias values, namely a decreasing trend as reliability, sample size, and

latent intercept-slope correlation increased, with the largest MSE values occurring at the lowest

level of reliability. However, the Duncan model consistently produced lower average MSE

values than the Wen model across all conditions. The Schumacker model also showed a

decreasing trend in average MSE bias values across the levels of reliability, sample size, and

latent intercept-slope correlation. The Schumacker model produced average MSE values that

were similar to those of the Duncan model at all but the lowest level of reliability, where its MSE

values were lower than both the Wen and Duncan models.

The results for the average MSE bias values in the MCAR data condition (reported in

Table 14) followed the same pattem as seen in the Complete data condition and, when compared
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to the average MSE values for the Complete data condition, at higher reliabilities the three

models produced average MSE values that were very similar.

MNAR Data Condition Analyses

The average MSE values for all three latent interaction models in this data condition are

given in Table 14. The average MSE values for the Wen model ranged from 3.21 to 29.06, those

for the Duncan model from 3.49 to 3.61, and those for the Schumacker model ranged from 3.89

to i05.36. As none of the models performed poorly with respect to overall model fit and

estimation of the latent slope interaction parameter, the MSE results are not discussed further for

this data condition.

Sumnnr¡,

A comparison among the thlee models showed that the Schumacker model had the best

performance with respect to values of MSE - this model produced values that were routinely

lower than or similar to the other models when the data was Complete or MCAR, and in the

MNAR condition the MSE values for this model were similar across all conditions, showing a

high degree of stability. The Duncan model was comparable to the Schumacker model at

moderate to high levels of reliability in each of the three data conditions, the exceptions being at

low sample sizes and low reliabilities. The Wen model generally performed poorly compared to

the other two models in the Complete and MCAR data conditions, especialìy across all

conditions.
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Atterage Slatzclarclizecl Bias Estimates

The average standardized bias estimates for each of the models across all of the

conditions are given in Table 15. For this measure of bias, values close to I are desirable, and

values that are less than I are indicative of underestimation and values greater than I are

indicative of overestimation.

Complete Data Contlition Analyses

The Wen model showed average bias values that generally decreased as the factors of

reliability, sample size, and latent intercept-slope correlation increased, with bias values that

ranged from -0.06 to over 1000. Exceptions to this decreasing pattern occurred at the highest

level of the latent intercept-slope correlation, where the trend became one of lower bias values at

lower reliabilities and higher bias values at higher reliabilities as sample size increased. The

Duncan model showed a decreasing pattern of standardized bias values, indicating an increasing

underestimation of the latent slope interaction parameter in almost all of the study conditions,

with values ranging from -1.01 to 30.01. The only exception to this pattern was in the condition

of latent intercept-slope conelation = 0.20, sample size = 1000, reliability = 0.90, where the

value of the bias estimate was 0.75. The degree of underestimating bias increased as reliability

increased, and bias also increased as there were increases in sample size.

The Schumacker model showed a pattern of increasing bias values, with values that

indicated an increasingly lesser degree of underestimation as the study factors of latent intercept-

slope correlation, sample size, and reliability increased. The values of bias ranged from -0.35 to

0.20. The exception to this pattern was in a single condition (latent intercept-slope correlation =
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0.20, sample size = 500), where the bias value for a reliability of 0.70 was positive whereas the

bias for the other reliabilities at this condition were all negative. The bias values were similar

across the level of sample size, especially at higher reliabilities.

MCAR Data Conclition Analvses

The overall pattern of r.rutt, for the MCAR data followed those of the Complete data

closely, with some exceptions. The Wen model showed average standardized bias values that

ranged from -0.88 to over 1000, and showed a similar decreasing trend in bias values (indicative

of biased estimates that ranged from overestimation to underestimation). The exception to this

pattern again was at the highest level of latent intercept-slope correlation, where the pattern at the

lowest sample size (n=250) was for increasing bias values (moving from severe underestimation

to almost no underestimation), at the middle sample size (n=500) the pattern was non-linear

(moved from moderate underestimation to severe overestimation to moderate underestimation),

and to a flat pattern of moderate underestimation at the largest sample size (n=1000). The

Duncan model had standardized bias values that ranged from -i.01 to over 1000. This model

showed a pattern of decreasing standardized bias values as reliability increased, and this was

seen across the levels of sample size and latent intercept-slope correlation. More specifically, the

bias values indicated that at low reliabilities the Duncan model would overestimate the latent

slope interaction parameter (i.e., show a positive bias), and that as reliability increased this model

would underestimate the parameter (i.e., show a negative bias). The Schumacker model

produced average standardized bias values that were similar to those for Complete data, with

values ranging from -0.36 to 0.19. The pattern of bias was also similar to that seen with
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Complete data, whereby as reliability increased the estimates moved towards a lower degree of

bias. The exception to the pattern, whereby the bias increased at the highest level of reliability,

was seen at the largest sample size (n=1000) and the lowest latent intercept-slope correlation

(0.20), where the bias value for the reliability level of 0.70 was positive (0.19), whereas at other

reliabilities the bias value was negative.

MNAR Data Conclition Analyses

As noted previously, due to the poor performance of all three of the models in this

condition, the results of the standardized bias values are not discussed in detail. In brief, the

Wen model produced standardized bias values that ranged from less than -1000 to greater than

1000, and there was no consistent pattern that emerged across all of the study conditions. The

Duncan model produced average standardized bias values that ranged from -20.26 to -5.68, and

showed a similar trend to that seen in the Complete and MCAR data conditions, with steadily

increasing values of underestimating bias as reliability increased. The Schumacker model had

average standardized bias values that ranged from -33.64 to -3.87, and the pattern was

predominantly one of decreasing bias as reliability increased, across the factors of sample size

and latent intercept-slope correlation.

Sumnmry

All three of the latent growth interaction models tended to show an underestimating bias

in the estimate of the latent slope interaction parameter according to this index of bias. The Wen

model showed a smaller degree of bias in the estimation of the latent slope interaction parameter
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compared to the Duncan and Schumacker models, across both the Complete and MCAR data

conditions, but this only occurred at the highest levels of reliability. At other levels of reliability

the Duncan and Schumacker models showed modest amounts of underestimating bias, whereas

the Wen model showed large amounts of bias. In the MNAR data condition the Duncan model

showed the smallest degree of bias at lower reliabilities, and the Schumacker model showed

smaller degrees of bias at higher reliabilities. The Schumacker model was the only model to

show a decrease in bias as the factors of reliability, sample size, and latent intercept-slope

correlation increased, and this was seen across all three data conditions.

Type I Error Rates

For this analysis, all of the models were re-run with the population value of the latent

slope interaction parameter set equal to zero. Table l7 provides a tabulation of the proportion of

cases (with frequencies in parentheses) where the absolute value of the estimate of the latent

slope interaction parameter was significantly different from zero., Bradley's (1978) liberal

criterion of robustness was used to evaluate the Type I error rate for each of the models. Using a

5Vo level of significance, Type I error rates outside of the range of (0.25, 0.75) are considered to

be conservative or liberal, respectively. Type I error rates were examined separately for each

missing data condition. In Table 16 those conditions with a liberal Type I error rate are

presented in bold text, and those conditions with a conservative Type I error rate are presented in

underlined text.

Insert Table l7 about here
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C ont¡t le te D at a C ontl it i on Anabt s e s

Out of the 36 study conditions, the Wen model showed Type I error rates that were

liberal (over 7 .5Vo) in 26 of the conditions, with adequate Type I error control in only 7 of the

conditions. The liberal error rates were consistently associated with all but the highest level of

reliability (0.90). As the sample size increased the amount of liberal rates increased, but as the

latent intercept-slope correlation increased the rates decreased (i.e., the number of liberal rates

for a sample size of 250 were higher at a correlation value of 0.20 than at the correlation value of

0.50). The Duncan model was liberal in a single condition, showed conservative Type I enor

rates (i.e., under 2.5Vo) in22 conditions, and adequate Type I error control in 13 conditions. The

conservative rates occurred at the highest levels of reliability (0.70, 0.90) across the factors of

sample size and latent intercept-slope correlation. The rates at the combination of lower latent

intercept-slope correlation and reliability were the highest among all conditions for this model.

The Schumacker model was conservative in 18 conditions, and showed adequate control in the

remaining 18 conditions. There was no consistent pattern to the presence of conservative

conditions.

MCAR Data Condition Analyses

The pattern of Type I error rates for the Wen model were similar to that seen in the

Complete Data condition. Type I error rates fol this model were liberal in 25 of the conditions

and adequately controlled in the remaining 11 conditions. As in the Complete data condition, the

majority of the liberal rates occurred at the lowest reliabilities, and adequate Type I error control

was seen only at the highest level of reliability across the levels of sample size and latent
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intercept-slope correlation. The rates of Type I error were higher at lower levels of the latent

intercept-slope correlation, and also increased with sample size.

For the Duncan model, Type I error rates were liberal in 2 of the conditions, conservative

in 16 of the conditions, and adequately controlled in the remaining 18 conditions. A similar

pattern to that seen in the Complete data condition emerged, with almost all of the conservative

error rates occuming when the reliability ranged from 0.70 to 0.90, across all of the latent

intelcept-slope correlation and sample size conditions. The rates at the combination of lower

latent intercept-slope correlation and reliability were the highest among all conditions for this

model.

The Schumacker model showed Type I error rates that were conservativ e in 17 of the

conditions and adequately controlled in the remaining l9 conditions. There was no consistent

pattern to the rates of Type I error.

MNAR Data Conclitiort Analyses

The Wen model showed Type I error rates that were liberal in 7 conditions, conservative

in 23, and only adequately controlled in 6 of the conditions. The presence of liberal Type I error

rates was associated with the lowest level of reliability across the factors of sample size and

latent intercept-slope correlation for this model. As sample size increased there was a strong

tendency towards conservative Type I error rates.

The Duncan model was conservative in 33 of the conditions, showing adequate control in

only 3 of the study conditions. Those conditions that were well-controlled were at the middle

level of reliability (0.50) at the iowest level of latent intercept-slope conelation.
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The Schumacker model was liberal in 1l conditions, and showed adequate Type I error

rate control in the remaining 25 conditions. The liberal rates were associated with the largest

sample size condition (n=1000), and for all of the reliabilities except the lowest (0.30).

Summary

The Schumacker showed the best control of Type I eror rates of the three models,

showing a rougl-r split of adequate and conservative control in both the Complete and MCAR

data conditions, and showing adequate control in the majority of conditions with MNAR data.

The Wen model was largely liberal with respect to Type I error control when the data were

Compìete or MCAR, but was conservative in almost two-thirds of the conditions when the data

was MNAR. The Duncan model had a morc variable pattern, with a slightly higher rate of

conservative control in the Complete data condition, a more even split between conservative and

adequate control in the MCAR data condition, and almost entirely conservative in the MNAR

data condition.
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Chapter 13. Discussion

There were two objectives to the current project. The first objective was to investigate

the performance of three latent interaction growth models by Wen et al. (2002), Duncan et al.,

(1999), and an extension of the Schumacker (2002) cross-sectional model, under several varying

conditions: the correlation between the latent intercept and slope for each latent factor, the

sample size, and the reliability of the observed indicators for the latent factors, with respect to

three types of missing data. The performance of these three models were evaluated with respect

to convergence rates over 5000 replications and overall model fit on several commonly-used

model fit indices (CFI, NFI, GFI, RMSEA).

The second objective was to examine the performance of each of the three latent

interaction growth models with respect to bias in the estimation of the latent slope interaction

parameter (yzs in Figure 15), and included an examination of the amount of bias in estimating the

latent slope interaction parameter (i.e., absolute bias, mean square error, and an estimate of

standardized bias), and an evaluation of each of the three latent interaction growth models with

respect to the rates of Type I error for the latent interaction slope parameter.

A particular challenge for these models is that the plesence of an interaction term

introduces non-normality into the data, either in the form of cross-products of the observed

indicators as in the case of the Wen and Duncan models, or in the form of a multiplication of

factor scores as in the case of the Schumacker model. This non-normality can introduce bias into

the model fit indices and the parameter estimates.
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Ot,e rall M ocl el P e rfontzance

Model Convergence

Convergence occurs when the estimation function has reached a minimum and the model

parameters are estimated (Tabachnick & Fidell, 2001). The Wen model showed minor problems

of convergence when the data was either Complete or MCAR, occurring primarily when the

leliability of the observed indicators were at their lowest levels (i.e., 0.30 or 0.50), and this was

regardless of the value of the latent intercept-slope correlation or sample size. However, in these

instances, the Wen model still converged in 93Vo of the 5000 replications. In the MNAR data

condition the Wen model showed poor convergence across many conditions, sometimes

converging in less than 30Vo of the replications for a given condition, the only exceptions being

when the reliability of the observed indicators were at their highest level (0.90). Both the

Duncan and the Schumacker models converged for nearly all 5000 replications in the 36

conditions across all three of the missing data conditions. The only exception was for the

Duncan model in the specific MNAR data condition where the latent intercept-slope correlation

was at its lowest value (0.20), the sample size was smallest (250), and when the reliability of the

observed indicators was at its lowest value (0.30).

Nonconvergence can indicate that the model does not fit the data, but it does not provide

information regarding the rejection or non-rejection of any hypotheses concerning specific model

parameters, and as such provides limited diagnostic information. Convergence of a model to a

proper solution typically fails if the sample size is small, and failure to converge occurs more

often with maximum likelihood estimation than with generalized least squares estimation

(Anderson & Gerbing,1984; Fan et al., 1998) in the case of complete data. Newman (2003)
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found that the use of maximum likelihood estimation in structural models did not result in

convergence problems with MCAR or MNAR data if there was less than 507o missingness.

Convergence rates do increase if there are more time points assessed in a longitudinal design

(Hamilton, Gagne, & Hancock, 2003). When this was investigated by Fan and Fan (2005), they

found that with only three repeated assessment points non-convergence occurred frequently,

especially if there is little growth over those three assessment points.

In the current study, convergence problems occurred consistently for one model in

particular, the Wen model. Nonconvergence fol this model occuned primarily when the

reliability of the observed indicators was low in both the Complete and MCAR data conditions,

which is consistent with previous research. The high rate of nonconvergence with the MNAR

data for this model goes against the findings of Newman (2003). Since sample sizes were quite

high in some conditions, there were more than three repeated assessment points, and the rate of

missing data was not greater than 507o, other factors may be contributing to the poor

convergence rates seen with the Wen model compared to the other two models. Some of these

issues may involve the presence of the interaction effects, which introduce non-normality into

the observed data. A second potential explanation may lie within the differences between the

Duncan and the Wen models. The Duncan model was the population model for generating the

data, and the Wen model represents a misspecification of the model as it contains paths that are

not present in the Duncan model (see Figures l2 and l3). A novel finding from this study is that

convergence rates for the Duncan and Schumacker models using ML estimation were high and

appeared to not be affected by the value of the latent intercept-slope correlation, sample size, or

by the reliability of the observed indicators, a finding which has not been reported elsewhere.
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Further to this, neither the Duncan nor the Schumacker model had the poor rates of convergence

in the MNAR data condition as the Wen model, which leads to two avenues of exploration: what

characteristics of these two models makes them have stable convergence rates in the presence of

MNAR data, and what about the Wen model makes it susceptible to convergence problems,

especially in the presence of MNAR data.

In summary, if longitudinal data are Complete or MCAR, convergence of any of the three

latent growth models assessed in the current project is not a troublesome issue across conditions

of latent intercept-slope corrclation, sample size, or reliability of the observed indicators, with

convergence rates above 93Vo for all of the models under these conditions. Further, the Duncan

and Schumacker models showed better convergence rates than the Wen model, converging in

nearly 100Vo of the simulations. If the data are MNAR, either the Duncan or the Schumacker

model are the most reliable with respect to converging to a solution, while the Wen model is

problematic. It should be cautioned that convergence of a model does not automatically imply

that the overall model fit indices and parameter estimates are correct, only that estimates of these

values have been achieved.

CFI Values

The CFI (Bentler, 1988) ranges in value from 0 to 1.0 and assesses fit relative to a null

model, with values between 0.90 and 1.0 being indicative of models that have a better fit to the

data. The Wen and Duncan models showed similar performance across all factors in both the

Complete and MCAR data conditions, with both models producing CFI values that were above

the cutoff of 0.90 for good model fit in many of the conditions. At high sample sizes and
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moderate to high correlations between latent intercepts and slopes the Schumacker model

showed rising average CFI values as reliability of the observed indicators increased, however the

value of the CFI in these conditions was lower than that seen when the latent intercept-slope

correlation was at its lowest value. For all three of the models, the trend in both the Complete

and the MCAR data conditions was that as reliability of the observed indicators increased there

were increases in the mean CFI values, especially for the Schumacker model; the increases seen

in the Wen and Duncan models were incremental.

These findings are further bolstered by the evidence of the 95Vo confidence intervals for

these mean CFI values. Both the Wen and Duncan models produced confidence intervals whose

lower bound was at or above the model cut-off of 0.90, with the Wen model producing a higher

proportion of such intervals across both the Complete and MCAR data conditions. The

implication of this, when considered in conjunction with the preponderance of mean CFI values

that were above the cut-off for good model fit, is that when a model such as the Wen full

interaction model ploduces a CFI value that indicates good fit to the data, the researcher can

have a high degree ofconfidence that such a result is not a spurious finding.

The presence of meaningful (i.e., having at least a medium effect size) two-way

interactions of (a) latent growth interaction model with reliability and (b) latent growth

interaction model with correlation between latent intercept and slope was noted in both the

Complete and MCAR data conditions. For both types of interactions, the Wen and Ducnan

models showed stable patterns of CFI values across the levels of reliability and correlation. For

(a) the Schumacker model showed a trend of increasing CFI values as reliability increased, and

for (b) this model showed a trend of decreasing CFI vales as the correlation increased. These
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findings imply that the largest influences on a model fit index like the CFI are the type of model,

the reliability of the observed indicators, and the correlation between the latent intercept and

slope, and a factor such as sample size has very limited influence. In the MNAR data condition,

none of the three latent interaction growth models produced average CFI values that were above

the cutoff of 0.90 for good model fit.

Previous authors have noted that the CFI is susceptible to particular facets of study

design. The CFI is susceptible to the type of estimation method used and shows a downward

bias when the model is incoruectly specified (Sugawara & MacCallum, 1993), and this was

confirmed by Fan, Thompson, and Wang (1999) with both ML and GLS estimation. The CFI is

not affected by nonnormality of the data, nor by sample size (Fan et al., 1998), although these

authors only studied minor degrees of non-normality in the observed variables (i.e., skewness of

+ 1.5, kurtosis between +3 and +4). Hu and Bentler (1998) examined more severe non-normality

(e.g., kurtosis values of -1,2,5, and elliptical distributions of the data), and found that this

accounted for a srnall proportion of variance in model fit with ML estimation.

These findings from the cun'ent study contradict what has been reported in previous

research, as the CFI did not show a downward bias for the Vy'en model, which is a

misspecification of the population model used in this study. As the Schumacker model was not

comparable in this manner to either the Wen or Duncan models, it is difficult to determine if the

CFI model fit index was performing as expected for this model. However, the CFI did show an

increase in value as sample size increased for the Schumacker model, which is similar to that

seen in previous research.
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NFI Valttes

The NFI compares the specified model against an independence model and, similar io the

CFI, ranges in value from 0 to 1.0 and uses the same cutoff of 0.90 for indicating good fit to the

data by the model. For the three latent growth interaction models studied in the cunent project,

the results for the NFI were very similar to those of the CFI. The Wen model produced average

NFI values that were above the cutoff for good model fit in a higher proportion of conditions

than the Duncan and Schumacker models in both the Complete and MCAR data conditions. The

Duncan model produced average NFI values that were consistently lower than those of the Wen

model. The Schumacker model produced average NFI values that were lower than those of the

other two models at low levels of reliability, and which never approached the cutoff for good

model fit. For the MNAR data condition, none of the models produced average NFI values that

were above the cutoff for good model fit.

Similar to the findings with the CFI, the NFI values showed slight increases as sample

size increased, which is consistent with previous research. The performance of the NFI with

respect to measurement error (i.e., reliability of the observed indicators) and missing data has not

been studied previously. While there was a significant effect associated with the measurement

error factor, this was most likely due to the variation in average values between the three models

across the three data conditions. The Wen and Duncan models had stable average NFI values

across all manipulated conditions in the Complete and MCAR data, while the Schumacker model

showed an increasing trend in these two data conditions. In the presence of MNAR data each of

the models showed a different pattern: the Wen model showed a decreasing pattern of values, the

Duncan model an increasing pattern, and the Schumacker model showed a stable pattern. The
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similarity of performance for the NFI with respect to missing data type also represents a new

finding, with the NFI performing in the MCAR data similarly to rhat seen in the Complere dara

condition, and the poor performance in the MNAR data condition. This result confirms and

extends the findings from previous studies on other fit indices to that of the NFI.

These findings are further bolstered by the supporting evidence of the 95Vo confidence

intervals for the mean NFI values. Both the Wen and Duncan models produced confidence

intervals whose lower bound was at or above the model cut-off of 0.90, with the Wen model

producing a higher proportion of such intervals across both the Complete and MCAR data

conditions (22vs 15 and l9 vs 9, respectively). The implication of this, when considered in

conjunction with the preponderance of mean NFI values that were above the cut-off for good

model fit, is that when a model such as the Wen full interaction model produces an NFI value

that indicates good fit to the data, the researcher can have a high degree of confidence that such a

result is not a spurious finding.

Similar to the findings with the CFI, the largest effect sizes were seen with the two-way

interactions of (a) latent interaction model and reliability of the observed indicators, and (b)

latent interaction model with correlation between the latent intercept and slope. These large

effect sizes were seen with the same two-way interactions as with the CFI, and the pattern of NFI

values in the coresponding simple plots were similar as well. This implies that the largest

influences on a model fit index like the NFI are the type of model, the reliability of the observed

indicators, and the size of the latent intercept-slope conelation, and a factor such as sample size

has very limited influence.
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The NFI is sensitive to the type of model that is being analyzed, with both nested

confirmatory factor analysis models and structural models with misspecified paths leading to

unreliable NFI values for comparison across models (Fan & Sivo, 2007). The NFI statistic was

designed to be free of the influences of sample size as well as to provide accurate model fit

assessment across several estimation methods (e.g., ML, GLS; Bentler et al., 1980). However,

the NFI has been shown to be affected by sample size (Bearden, Sharma, & Teel, 1982;

McDonald & Marsh, 1990), with larger values as sample size increases and smaller values as

sample size decreases when used with ML estimation (Fan et al., 1998; La Du & Tanaka, l9S9).

Marsh et al. (1988) found that the NFI is not affected by non-normality of the data. La Du and

Tanaka (1989) found that this model fit index was insensitive to model misspecification when a

ULS estimation method was used.

GFI Values

The GFI is analogous to the R2 in regression, and assesses the degree to which the

reproduced covariance matrix based on the specific model has accounted for the original sample

covariance matrix (Tanaka et al., 1985). Values of the GFI which are closer to i.0 are desirable,

with a value of 0.90 being recommended as a cutoff value for good model fit. The GFI model fit

index is sensitive to sample size when used with ML estimation (Anderson et al., l9B4; Marsh,

Balla, & McDonald, 1988), with increasing GFI values as sample size increases (La Du et al.,

1989), and a downward bias as sample size decreases. Fan and Wang (1998) have found that the

GFI is not affected by non-normality of the data.
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In the current study, only the Schumacker model showed average GFI values that were

above the cutoff of 0.90 for good model fit, and this was only in one-third of the cases in the

MNAR data condition. In the Complete and MCAR data conditions, even though none of the

models showed average GFI values that were above the cutoff, the Wen and Duncan models

showed stability in their values across all of the manipulated factors, while the Schumacker

model showed a trend of rising average values as reliability increased. In the MNAR data

condition, the Wen model continued to show a stable pattern of average GFI values, generally

between 0.70 and 0.80. The Duncan model showed a decreasing pattern, with values decreasing

from 0.85 to 0.74 across all of the conditions. As noted earlier, only the Schumacker model

produced average GFI values above the cutoff in this condition, and this same model showed an

increasing pattern of average values as the reliability of the observed indicators increased. The

positive results of the Schumacker model in the MNAR data should be tempered with the

evidence from the 95Vo confidence intervals for the GFI values. There were only two conditions

in the MNAR data where the lower bound of the confidence interval was at or above the cutoff

for good model fit. The implication of this is that a GFI value produced by the Schumacker

model that indicates adequate fit to the data may not be the typical GFI value obtained, and it is

likely that a GFI value that indicates poor fit to the data would also have been obtained.

The findings reported for the current study with respect to the GFI show some

consistency with previous research with respect to the factor of sample size. To this author's

cuüent knowledge, there have been few studies that have looked at influences of either the latent

intercept-slope comelation or the reliability of the observed indicators on the GFI. This study

presents novel findings with respect to these factors and their influence on the GFI statistic. For
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both the Wen and the Duncan models the value of the latent intercept-slope correlation has little

impact on the GFI, and this was seen across both the Complete and MCAR data conditions. For

the Schumacker model there were slight decreases in the average GFI values as the latent

intercept-slope value increased across both the Complete and MCAR data conditions. As noted

earlier, a potential reason for this decrease in GFI values may be due to the presence of

multicollinearity introduced by the increasing value of the conelation. In the MNAR data

condition, there were no differences at the two lowest levels of correlation (0.20, 0.50), but lower

values were seen at the highest level (0.70), for the Wen and Schumacker models only. These

differences were slight.

With respect to the reliability of the observed indicators, this factor was also seen to have

little impact on the average GFI values produced by the Wen and Duncan models in both the

Complete and MCAR data conditions. In the MNAR data condition, this same pattern held for

the Wen model only, while the Duncan model showed a decreasing pattern of average GFI

values as reliability increased. For the Schumacker model, across all three data conditions, the

reliability of the observed indicators had the strongest influence, and the influence of the latent

intercept-slope correlation and sample size were minimal.

If the Duncan model can be considered the properly specified "correct model", the

average GFI indices for this model in particular should have been well above the cutoff required

for good model fit to the data. That this did not occur is evidence that more research on the

utility of this statistic is needed, especially in the context of latent growth modeling. The GFI

also utilizes the non-central chi-square distribution as part of its computation (Curran et al.,
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2002), and some of the concerns noted previously with respect to the RMSEA may also be

applicable to the GFI.

RMSEA ValLtes

The RMSEA was proposed by Steiger and Lind (1980), developed further by Browne and

Cudeck (1993), and is a test of exact fit. Values of the RMSEA that are lower than 0.05 are

considered to represent a model that fits the data well, with values up to 0.08 also being

indicative of a well-fitting model. None of the three latent growth interaction models showed

average RMSEA values that were below the minimum criteria of 0.05 (nor of 0.08) used in this

study for adequate model fit across any of the three data conditions. Despite this lack of positive

findings, some conclusions regarding the performance of the models can be presented. The Wen

and Duncan models showed a trend of increasing average RMSEA values (indicating an

increasing degree of poor fit to the data) as there were increases in the latent intercept-slope

cor¡elation, sample size, and reliability of the observed indicators, in all three of the data

conditions. Conversely, the Schumacker model showed a decreasing pattern of average RMSEA

values (indicating an increasing degree of good fit to the data) across all of the manipulated

factors for all of the missing data conditions.

The RMSEA is sensitive to model misspecification (Fan et a1.,2007), which is actually

an advantage since an index that identifies misspecified models is desirable. The RMSEA has

shown itself to be insensitive to sample size, and is not affected by the nonnormality of the data

(Fan et al., 1998). However, Nevitt and Hancock (2004) found that there was an interaction

between sample size and non-normality of the data. At large sample sizes there was no influence
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of non-normality on the RMSEA, and at more moderate sample sizes (e.g., n=500) the RMSEA

was affected by non-normality, yielding reduced power. In general, Nevitt and Hancock (2000)

found that, if the model was misspecified, the RMSEA did nor seem to be affected by changes in

sample size, but increasing non-normality led to increases in the RMSEA values, which can be

exacerbated by decreasing sample size.

These previously reported findings were largely corroborated in the cunent study for the

'Wen 
and Duncan models, as these models showed average RMSEA values that consistently

increased across the rising levels of reliability, sample size, and latent intercept-slope correlation.

What is surprising is that the Duncan model, which can be considered a correctly specified

model, showed performance that was similar to that of the Wen model (a misspecified model)

and that none of the average RMSEA values for the Duncan model approached the criterion for

good model fit.

There are several possibilities for why this unexpected relationship occurred. Previous

authors (e.g., Fan et al., 1999) have shown that the RMSEA can be overestimated at small

sample sizes even if the model is properly specified, and also that the value of the RMSEA can

be inflated if there is multivariate non-normality present in the data. Due to the aforementioned

inclusion of interaction terms in the models, which introduce non-normality into the data, this

could be contributing to the poor performance of the RMSEA in the current study. Curran,

Bollen, Paxton, Kirby, and Chen (2002) have noted that, in the presence of uncorrelated

variables in structural equation models the distribution of the model chi-square, part of the

formula for the RMSEA (see page 79), may not follow a non-central chi-square distribution.

This is problematic for fit indices such as the RMSEA, which are assessed based on the
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assumption that this model chi-square follows a non-central chi-square distribution. If this

assumption is not met then the RMSEA as an statistic of overall model fit may not be suitable.

In the current study, the two latent independent factors were specified as being uncorrelated, and

this may have led to the situation of the model chi-square not following the proper distribution.

The Wen and the Duncan models use the product-indicator method for the interaction

effect, whicli contains a procedure for mean centering that reduces the multicollinearity that is

introduced by the creation of the product terms from the individual observed indicators.

However, since the nature of the interaction terms used in both the Wen and Duncan models

produces non-normal data, the high values of the RMSEA may be a result of the presence of

these interaction terms (i.e., even though multicollinearity is reduced, the influence of non-

normal data may not be entirely controlled by centering). The Schumacker model had

substantially higher RMSEA values than either of these models across all of the study

conditions. The Schumacker model does not explicitly outline a method fol reducing

multicollinearity, and this may have further contributed to the poor performance of the

Schumacker model with respect to non-normal data and mean values of the RMSEA. However,

this finding is mitigated to some degree by the fact that the Schumacker model showed

incleasingly good fit to the data as the study factors increased. The finding that the comelation

between the latent intercept and slope did not adversely affect the average RMSEA values for

any of the models is a novel result.
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Bias itt the Unstanclardized Paranteter Estinnte.for the Latent Slo¡te Interctction Parameter (1t26)

with a Po¡tulatiort Value 0f 2.0

A secondary objective was to evaluate the accuracy of each of the three latent growth

interaction models in estimating the unstandardized structural parameter for the effect of the

latent slope interaction on the latent slope of the outcome variable (i.e., ),zsin Figure l6).

Accuracy in parameter estimation is one of the important goals of structural equation modeling

(Fan & Wang, 1998). When measurement error is present, bias is introduced into the parameter

estimates, power to detect differences is lowered, and inference becomes problematic (DeShon,

Ployhart, & Sacco, 1998).

The first method used to assess the accuracy in parameter estimation was to examine the

diffelence in the estimated parameter from the population value of 2.0. ln the Complete data

condition, the Wen model showed parameter estimates that closely approximated the population

value as reliability increased, with values above the population value at low to moderate levels of

reliability (i.e., 0.30, 0.50, 0.70), and values below the population value at the highest level of

reliability (0.90). Further, the estimate approached the population value as both the latent

intercept-slope conelation and sample size increased, however this effect was more apparent at

estimates associated with lower levels of reliability. The Duncan model consistently produced

estimates that were below the population value across almost all study conditions, and these

estimates became more distant as reliability increased. Similar to the Wen model, as the latent

intercept-slope conelation and sample size increased, the deviation from the population value

decreased, especially at lower levels of reliability. The Schumacker model was consistent in its

estimation of the population value of the latent slope interaction parameter', with estimates
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increasing towards the population value as the conelation between the latent intercept and slope

increased and as the reliability of the observed indicators increased. An examination of 95Vo

confidence intervals around the estimates showed that very few of them included the population

value of zero, indicating that the models were not estimating the population parameter very

accurateiy.

Sample size appeared to have very little influence on the estimates provided by the

Schumacker model. In the MCAR condition findings were similar to those seen in the Complete

data condition, with the exception that at lower reliabilities the inaccuracy in estimation was

greater, especially for the Wen and Duncan models. In the MNAR condition all of the models

provided inaccurate estimates, consistently estimating the latent slope interaction parameier to be

close to zero.

The second facet of parameter estimation examined was the amount of bias in the

parameter estimates. The degree of bias in the estimate of the latent slope interaction parameter

was assessed by two methods, the mean square error (MSE) and the standardized bias. The MSE

ql¡antifies the expected (average) squared deviation of an estimator from a population parameter

(Olejnik & Porter, 1981), and provides information on the spread of the parameter estimates

around the true estimate. For all of the models, across all three data conditions, the values of the

MSE consistently decreased as sample size and reliability increased, which is a desirable

property. In other words, as reliability and sample size increased, the amount of deviation of the

estimates from the population value decreased. The Schumacker model consistently had the

lowest MSE values except in the MNAR data condition, indicating less bias in the estimated

latent slope interaction parameter when data was Complete or MCAR (this was also reflected in
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the unstandardized parameter estimates for the Schumacker model). The Duncan model

produced MSE values that were slightly higher than those for the Schumacker model at the

highest value of the latent intercept-slope correlation. The Wen model was consistent in

producing the largest MSE values across the Complete and MCAR data conditions, but showed

similar MSE values to the other models as reliability increased in the MNAR data condition.

For all three of the latent growth interaction models the average MSE values were largest

at the lowest levels of the reliability of the observed indicators, which is not surprising since the

degree of reliability has an effect on the amount of error variance of the parameter estimates,

with lower reliabilities yielding larger error variances (see Equation 33). In general, the

combination of a low intercept-slope correlation, small sample size, and low reliability produced

inaccurate parameter estimates and a substantial amount of bias for all three models in the

Complete and MCAR data conditions. All of the models performed similarly in the MNAR

condition, producing low MSE values in almost all conditions, however as noted earlier all of the

models were poor in estimating the latent slope interaction parameter in this data condition.

The last measure of bias examined was the standardized estimate of bias, which is the

average deviation of the sample estimate from the population parameter estimate, divided by the

empirical standard emor of the estimate. Values of this standardized estimate which are close to

i.0 indicate no bias in the estimate, those above I.0 are indicative of an overestimating bias, and

those less than 1.0 are indicative of an underestimating bias. The standardized bias for the latent

slope interaction parameter estimates showed a pattern very similar to that seen with the actual

estimates of the latent slope interaction parameter itself, with the Wen model showing consistent

overestimation in the Complete and MCAR data conditions, the Duncan model showing
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consistent undercstimation, and the Schumacker model showing slight underestimation in some

conditions but providing more accurate estimates in other conditions. The degree of

standardized bias in the MNAR data was large for the V/en and Duncan models, both of which

showed an increasing underestimating bias as the study factors increased. The Schumacker

model showed a large degree of underestimating bias, with a trend of decreasing amounts of bias

as the reliability of the observed indicators increased - in other words, the degree of bias

lessened for this model as the reliability of the observed indicators increased. Increases in bias

were seen as both sample size and the co¡relation between latent intercepts and slopes increased.

Overall, the Schumacker model was consistent in the bias values that it provided,

especially at higher reliabilities. The Wen model showed a large amount of variability in its bias

values, to such a degree as to make the trustworthiness of its estimates questionable. The

Duncan model, while providing biased estimates, was not as biased as the Wen model and at

times provided bias estimates that were similar to those of the Schumacker model. However, all

of the models were biased to some degree.

Type I Error Rates

The last facet of the parameter estimate that was assessed was Type I error rates in

detecting the latent slope interaction parameter. For this facet, all of the simulations were re-run

with the population parameter of the latent slope interaction set to zero. For each model, the p-

value for the test of the latent slope interaction parameter was evaluated to determine if it was

within the acceptable range (i.e., 0.025 to 0.075), or if it was liberal (i.e., greater than 0.075) or

conservative (i.e., less than 0.025). All of the models were poor in their control of Type I error
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rate, with the Schumacker model showing adequate control in only 14 of 36 conditions when the

data was Complete (15 when MCAR), and the Wen and the Duncan models being predominantly

liberal and conservative, respectively.

As s e s stnent oJ' Obj e criv e s ancl H y¡tothe s e s

The first objective of this study was to evaluate the overall performance of the models in

each of the three missing data conditions with respect to model fit. It was our expectation that

particular trends in the overall model fit indices would emerge. Specifically, it was expected that

the Wen would show superior performance on the overall model fit indices compared to both the

Duncan and Schumacker models. Further, it was expected that the Schumacker model would

perform as good or worse than the Duncan model. This was based on its similarity to the

Duncan model (i.e., only having a latent interaction term for the slopes, and not for any of the

other latent factors as represented in the Wen model).

Relative to the other two models, the Wen model showed the best performance with

respect to overall model fit, providing fit values that were indicative of a good-fitting model for

both the CFI and NFI when the data was either Complete or MCAR. However, none of the

models were satisfactory in their performance on the other two indices of model fit used (the GFI

and RMSEA) in these two data conditions. Further, when the data was MNAR, all of the models

performed poorly.

The secondary objective was an evaluation of each of the models for their ability to

estimate the latent slope interaction parameter across the three missing data conditions. Specific

aspects that were examined were the amount of bias in the parameter estimate and the rate of
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Type I error. To recap, there were two hypotheses generated with respect to bias and Type I

error:

Hypothesis l:

Null: All three models will show similar bias in the estimation of the unstandardized

latent slope interaction parameter, as evidenced by similar average mean squared error (MSE)

values and standardized bias values, across all study conditions.

Alternative: The Wen model will show a lesser degree of bias than both the Duncan and

Schumacker models, and the Duncan model will show an equal or lesser degree of bias than the

Schumacker model, across all study conditions. Specifically, the ordering of values for the MSE

and standardized bias will be Wen < Duncan < Schumacker.

Hypothesis 2:

Null: All three models will be similarly effective at controlling the rate of Type I error at

the nominal level of significance of q, = 0.05 (using Bradley's criterion), across all study

conditions.

Alternative: The Wen model will be provide adequate control of Type I enor (i.e.,

maintaining a Type I error rate close to the nominal level of significance of a = 0.05 using

Bradley's criterion) than both the Duncan and Schumacker models, across all study conditions.

In other words, the Wen model will falsely detect the presence of the latent slope interaction

Hypothesis 1 was marginally supported. The Wen model did not produce the lowest bias

values of the three models, as evidenced by lowel average MSE values and standardized bias
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values close to 1.0, than the Duncan model, across all study conditions. With respect to the

MSE, the values for the Duncan model were significantly smaller than those for the Wen model

in all but two conditions for the Complete data. When the data was MCAR there were a majority

of conditions where the Wen model showed larger MSE values than the Duncan model, and

multiple comparisons showed more conditions of non-significant differences between these two

models (however, the variability in the estimates of the bias were quite large). In the MNAR

data condition the Duncan model showed lower average MSE values than the Wen model at all

but the highest levels of reliability. However, it should be noted that neither of these models

performed particularly well in providing an accurate estimate of the population parameter.

The second half of the first hypothesis, which proposed that the Schumacker model

would show a level of bias that was similar or worse than the Duncan model, was not supported

when the data were Complete or MCAR, and only partially supported when the data was

MNAR' With Complete and MCAR data the Schumacker model had average MSE values that

were lower than the Wen model in all conditions, and which were similar or lower than those of

the Duncan model. In these two data conditions, the standardized bias values for the

Schumacker model indicated that it was more accurately estimating the population estimate than

either the Wen or Duncan models. When the data was MNAR the Schumacker model showed

average MSE values that were similar to both the Wen and the Duncan model. Similar to the

MSE values in the Complete and MCAR data, the standardized bias values for the Schumacker

model in MNAR data indicated that it was more accurately estimating the latent slope interaction

parameter than either the Wen or Duncan models. Further, it was the only model to show a trend

of Ìesser bias as the reliabilìty of the observed indicators increased.
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The second hypothesis was not supported. Both the Wen and the Duncan model had

similar rates of adequate Type I error control when the data was Complete, and the Duncan

model showed a higher rate of error control when the data was MCAR. In both of these data

conditions the Wen model was largely biased towards a more liberal rate of Type I error control

while the Duncan model was biased towards a conservative rate of error control. In the MNAR

data condition both of these models showed conservative Type I error rates in the majority of

conditions studied. The Wen model showed control of Type I error rate in fewer than 1/3 of the

study conditions across the three types of missing data, and the Duncan model showed Type I

error control in l/3 of the conditions in the Complete data and Vz of the conditions in the MCAR

data. In the MNAR data both of these models showed Type I enor control in fewer than i/3 of

the 36 study conditions.

The second part of this hypothesis proposed that the Schumacker model would perform

similar to or worse than the Duncan model with respect to controlling Type I error. This was not

seen in the current results, as the Schumacker model was better than both the Wen and the

Duncan models in controlling the rate of Type I error across the three data conditions. The

Schumacker model showed Type I error control that was split between being adequately

controlled or being conservative when the data was either Complete or MCAR, and controlled

Type I error rates in 25 of the 36 conditions when the data was MNAR. However, in the MNAR

data all of the parameter estimates for the latent slope interaction were close to zero, so the

impact of this finding is lessened.
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A question that can be addressed with the results of these two hypotheses is "Does one of

the models provide a mole accurate estimate of the latent slope interaction parameter than the

others?" The Schumacker model appears to be the model that provides the most accurate

estimate of this parameter, with estimated values that were qualitatively close to the population

value, and had a small amount of variability compared to the Wen and Duncan models, and this

was seen in the Complete and MCAR data conditions only. The Wen and Duncan models

showed large amounts of variability when reliability of the observed indicators was low, but this

was reduced to levels comparable to those of the Schumacker at higher levels of reliability. The

Duncan model outperformed the Wen model with respect to MSE. When the data was MNAR,

none of the models showed adequate estimation of this parameter, although MSE values were

low for all models in this data condition.

It is not uncommon to have missing data in longitudinal studies, and statistical inferences

are improved if the effect of missing data has been taken into account (Song & Lee, 2003). The

attrition fiom multivariate (e.g., longitudinal) studies can lead to large standard errors in

parameter estimates due to non-response being compounded across the waves of data collection

to produce small longitudinal data sizes (Newman, 2003). If the missing data is due to a non-

random mechanism, this can further bias model parameters and lead to both misspecification and

misestimation of the model (Chan, 1998; Muthen et al., 1987). As the percentage of missing

data approaches l5-20Vo, the choice of estimation used with missing data can have implications

for the parameter estimates (Roth, 1994). Taken together, the finding that all of the models

performed poorly with respect to both the overall model fit indices and the latent slope

interaction estimate when the missing data mechanism was MNAR is not surprising.
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Bias in the parameter estimates can also come from other sources. Curran (2003) has

noted that parameter estimates in structural equation models are biased if the assumption of

independence of observations is violated. Given that the framework used in the current project is

that of a longitudinal design, this assumption is violated with latent growth curves and some bias

in the parameter estimates is expected. The current study provides evidence that bias in the

parameter estimates of the latent growth structural model, in particular that of the latent

interaction of two slope factors, can be affected by the value of the correlation of the latent

intercept and slope, sample size, and reliability, especially in those models that use the product-

indicator approach to form interaction effects. The Schumacker model, which does not use the

product-indicator method to form the latent slope interaction effect, showed consistent estimation

across all conditions regardless of whether the data was Complete, MCAR, or MNAR, which

would indicate that this model is preferable to the other two models in obtaining accurate

parameter estimates in latent growth models that involve interaction effects. Further, the

Schumacker model showed a decreasing amount of bias as the study factor increased.

The reliability of the observed indicators for a model can have an influence on the

robustness and quality of the estimates. Indicators that are more reliable, and which contain

more information about the latent constructs being assessed, may be able to compensate for the

biasing effects of small sample sizes to some degree (Boomsma & Hoogland, 2001). Other

authors (e.g., Schmidt & Hunter,1996) have noted that increased measurement enor (i.e., low

reliability) can produce a downward bias in the conelations (or covariances) between variables.

As the accurate estimation of the variance-covariance matrix is the goal of latent modeling, an

increased amount of measurement error will lead to a higher rate of erroneous models, and can
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also produce a downward influence on the estimates (Schwartz & Coull, 2003). Cronbach's

alpha is a commonly used measure testing the extent to which multiple indicators for a latent

variable belong together (Green & Yang, 2009).It varies from 0 to 1.0. A common rule of thumb

is that the indicators should have a Cronbach's alpha of 0.7 to judge the set of items reliable

(Moulder & Algina, 2002). Alpha may be low because of lack of homogeneity of variances

among items, for instance, and it is also lower when there are few items in the scale/factor.

Another method to assess reliability is to use Raykov's reliability rho, also called reliability rho

or composite reliability, which tests the assumption that a single common factor underlies a set

of variables (Raykov, 1998). Raykov (1998) has demonstrated that Cronbach's alpha may over-

or under-estimate scale reliability, with underestimation being more common. For this reason,

rho is now preferred and may lead to higher estimates of true reliability. Raykov's reliability rho

is not to be confused with Spearman's median rho, an ordinal alternative to Cronbach's alpha.

The acceptable cutoff for rho would be the same as the researcher sets for Cronbach's alpha since

both attempt to measure true reliability.

The correlation between the latent factors can also have an influence on the ML estimates

of the factor loadings (Cudeck & O'Dell, 1994). Further, the standard errors of the estimates

show an upwards bias as the amount of missing data increases (Newman, 2003). This same

phenomenon was seen in the MCAR data condition for the latent interaction slope parameter

estimates (see Table 13) where the standard deviation for the estimates were larger in the MCAR

data condition than in the Complete data condition. However, the same influence was not seen

in the MNAR data conditiou, where the estimates of the latent slope interaction parameter were

close to zero in all conditions for all models, which most likely contributed to the lack of
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variance in the estimates for this data condition. The r€asons for the poor performance of all

three of these models in the MNAR condition may be due to a combination of the MNAR

mechanism and the violation of the assumption of independence of observations.

In the current study, an advantage of the Schumacker model may be attributed to the use

of factor scores from a confirmatory factor analysis as a preliminary step in forming the latent

growth interaction model (see Figure 14). Rowe (2002) has noted that using factor scores

resulting from a confirmatory approach minimizes the measurement error that is present in the

indicator variables themselves. This is a potential explanation as to why the Schumacker model

showed performance that was consistently better than either the Wen or the Duncan models in

terms of estimating the latent slope interaction parameter. This may also account for the low

amount of bias seen across the levels of the reliability factor for both the latent slope interaction

parameter estimates themselves and for the estimates of MSE and standardized bias (see Tables

13 through l6).

The mean values of the model fit indices did not appear to be affected when the data

condition was either Complete or MCAR, as the values for each individual model were similar

across these two data conditions. The effect of missing data was largest for the MNAR

condition, and showed an influence on the model fit indices by severely lowering their values.

The impact of data that is MNAR is especially pernicious, as even the Duncan model (which is

conectly specified as the population model) showed poor fit to the data in this condition. The

nature of this impact by MNAR data needs further exploration.

There are three conclusions that can be drawn from the preceding hypotheses. The first

pertains to the question of "Which of the three models is uniformly better with respect to overall
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model fit?" The Wen model is the best model when the data are Complete or MCAR. Within

these two data types, for a given condition, the multiple comparison tests favoured the Wen

model as having the highest overall model fit indices, and that these values were significantly

different from those of the other two models. When the data is MNAR, no model does well witli

respect to overall model fit, and so no real conclusion can be drawn other than that these models

should not be used if the data is MNAR.

A second related conclusion pertains to the question "Does the same pattern of overall

rnodel fit indices hold across the different types of missing data?" In other words, is there a

consistent ranking for the models that is replicated across the three data types? An examination

of the rleans and the multiple comparisons showed that the order of models with respect to the

CFI and NFI was Wen > Duncan > Schumacker, and for the RMSEA the ranking was Wen <

Duncan < Schumacker when the data was Complete or MCAR. The GFI showed a slightly more

variable pattern, with the Duncan model having slightly higher GFI values than the Wen model

at lower reliabilities. The Wen model always produced GFI values that were higher than the

Schumacker model. When the data was MNAR no clear ranking emerged, however some global

patterns were observed as the study factors were manipulated. For the CFI and NFI, as

reliability, sample size, and the latent intercept-slope correlation increased the Wen model

consistently decreased, the Duncan increased, and the Schumacker showed stability. For the GFI

the Wen and Duncan models decreased, and the Schumacker showed an increase. For the

RMSEA the Wen and Duncan models increased, and the Schumacker model decreased. In other

words, the pattern of model fit indices when the data is MNAR depends on which model and fit

index is chosen.
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A third conclusion relates to the finding in the previous paragraphs regarding the

significant mean differences among the models. Given that almost all of these differences were

significant, is this occurring because one model in particular is consistently passing (or failing) to

meet the criterion for good model fit? An examination of the 95Vo confidence intervals for each

of the models showed that the Wen model was passing the cutoff of 0.90 for the CFI (in 30 of the

36 conditions) and for the NFI (in 16 of the 36 conditions) when the data was Complete, and in

slightly fewer conditions when the data was MCAR. For the GFI only the Schumacker model

showed confidence intervals that were above 0.90, and this was only in two conditions. None of

the models showed confidence intervals for the RMSEA that met the criterion for good fit. This

finding shows that the Wen model is consistent in its performance on the indices for the CFI and

NFI when the data is Complete or MCAR, and that the GFI and RMSEA are problematic fit

indices for all models.

These findings with respect to overall model fit in each of the latent growth interaction

rnodels should be considered carefully in light of the fact that the models used in this study were

longitudinal designs with a non-linear effect (i.e., the latent slope interaction), and the model

design itself may be having an impact on the model fit indices. The model fit indices used in the

current study are commonly used in articles that present structural equation models, and they are

used mainly from a cross-sectional perspective. The performance of these fit indices in

longitudinal research designs which utilize SEM is largely unexplored, and ir is possible that

some of the violations of the assumptions that are not seen with cross-sectional data (e.g.,

independence of observations,) may be impacting the proper estimation of these fit indices. An

indication of this is with the poor performance of the Duncan model, which is the model that was
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used as a basis for the data generation. Of the latent interaction growth models examined in the

cuffent study, this model can be considered the "true" model, and the model fit indices should

have been approaching perfect fit in the Complete data condition. That this did not occur may be

indicative of the inadequacy of conventional model fit indices to evaluate latent growth models.

Aclclressing Missittg Data in SEM

The current study indicates that, compared to models using complete data, when the

missing data follows an MCAR mechanism the influence of the missing data rnay not be as

severe and results are comparable to those found with complete data. When the missing data

follow an MNAR mechanism the resulting poor model fit and bias in estimation becomes

problematic.

A method to determine the type of missing data mechanism has been forwarded by Shin,

Davison, and Long (2009). In their approach, missing data vectors are created that correspond to

each assessment point after the initial assessment. Letting Y'r' represent the complete response

variable that consists of both observed and missing values, and Y'i'¡, being a particular score for

the i'h individual (i = 1, 2, ..., N) at the t'h time point (r = 1,2,..., T), at each time point a binary

indicator variable, l¡7-, càrr be created such that I¡r = | if Y'i'¡, was observed and I¡, = 0 if Y,i.,/ was

missing. Each I¡7 can be regressed on the complete data for the Tth time point and all previous

time points using the following regression formula,

T
I¡r= Fo + Ð BrY'r'ir + eir,

J=l

(46)
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for all time points T (e.g., one model for T=2, another for T=3, etc). For samples with an MCAR

mechanism, the R2 for all models should be 0 and all estimates of B¡ to be nonsignificant. Under

an MNAR mechanism, R2 should be greater than 0 for all models and all B, to be significant.

Other methods for assessing the mechanism of missing data have also been proposed.

The presence of the MCAR mechanism can be assessed by testing across patterns of the missing

data (e.g., complete cases versus missing cases) using t-tests for location (Bingham et al., 1998).

Little (1995) has also called this mechanism covariate-dependent dropout, and notes that analysis

of complete cases in this instance will not yield biased estimates but will be inefficient.

Figueredo et al. (2000) note that the MNAR condition can be detected by locating significant

differences between means on subgroups of the data with complete cases versus those with

incomplete cases.

Several authors have proposed methods to addressing missing data using SEM

techniques, and some of them have been discussed previously (see Section 8, p.60). While the

implementation and comparison of the described methods was not a focus of this study, future

research could investigate the use of these methods with longitudinal latent modeling.

Lee (i986) and Allison (1987) examined missing data in SEM, and also investigated the

use of ML estimation with missing data. Both authors treated the problem of missing data as a

multiple-group model. With this approach, the sample is split into groups based on the patterns

of missing data, and equality constraints are then placed on the parameters of the groups. If the

sample size in a group is small, the sample covariance matrices are singular and may not

converge.
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Jamshidian and Bentler (1999) proposed an EM algorithm for missing data which

circumvented the problems of small sample sizes, however Dempster, Laird, and Rubin (1971)

report that convergence with the EM algorithm is dependent to the proportion of missing

infolmation. Song and Lee (2002) proposed a Bayesian approach to SEM with data that was

ignorably missing (MAR). In this approach, the observed data is augmented with missing

quantities in a posterior analysis. A sequence ofrandom observations are generated from ajoint

posterior distribution and the model has converged if the posterior distribution can be

approximated adequately by the empirical distribution of the simulated observations. These

authors performed their study with 100 replications for 2000 observations, and the procedure

performed well under different patterns of missing data with srnall samples, as well as

converging quickly.

Lee and Tang (2006) sought to develop a model that accounted for nonignorable missing

data in nonlinear structuralequation models, using a Bayesian approach as (1) it can provide

more accurate estimates obtained when good prior information is available, (2) Bayesian

methods do not rely on asymptotic theory and so may work well with small sample sizes, and (3)

gives a more flexible statistic for model comparison / selection than the likelihood ratio test (i.e.,

the Bayes factor). These authors used a linear logistic regression model that produced assessable

conditional distributions whose observations can be sampled in their method.

A procedure that has also been presented is to use a latent variable to represent the

missing observations or assessment points, but this approach is only viable if there are no

observatiotzs at that assessment point (Ferrer et al., 2004).
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This section has highlighted some of the more recent approaches to handling missing data

in latent variable modeling, and some of this research has focused on the MNAR mechanism.

However, there is a paucity of research that examines these methods, and those described earlier,

for their use with missing data in longitudinal designs. Future research should aim towards

investigating the performance of these methods in longitudinal designs with latent variables.

Litnitations

The findings of the current project, while being novel and extending the literature in

several areas, should be considered within the light of several limitations. The first limitation is

that only specific conditions were used in the current Monte Carlo study - three specific levels of

latent intercept-slope correlation, three specific sample sizes, and four specific levels of

reliability. The levels of latent intercept-slope correlation and reliability chosen covered a wide

range of possible values. Only three sample sizes were chosen (250,500, 1000) and longitudinal

research with sample sizes approaching the largest sample size used may be both expensive and

difficult to conduct in a practical manner. Smaller sample sizes should be examined in future

studies. A related factor that could have been manipulated was the amount of missing data, with

higher rates of missing data being incorporated into the study design, and missing data patterns

other than a monotone attrition pattern (see Figure 15). Other potential factors that were not

studied were the method of estimation for the models and the non-normality of the original data

for the observed factors (not including the non-normality introduced by the formation of the

interaction terms by the product-indicator method, nor by the product of latent factor scores).

A second limitation to the study is the modification of the Schumacker (2002) model to
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make it applicable to latent growth modeling. The original Schumacker model is based on a

cross-sectional design, and the extension used in the current project, while straightforward, may

not have taken into account some of the considerations of other latent interaction models.

Namely, both the Wen and the Duncan models impose constraints on the model parameters that

are meant to account for the non-linear nature of the interaction effect, but this is not a feature of

the Schumacker model. A mitigating factor to this limitation are the findings of Algina and

Moulder (2001) that a model with no cross-product indicators, such as the Schumacker model, is

robust to violations of normality, and this may have contributed to the ability of this model to

perform well in some respects compared to the Wen and Duncan models.

A third limitation is that the interaction effect studied in the cunent project may have

been too weakly specified to be detected reliably. Interaction effects in cross-sectional studies

generally account for a small amount of variance (Hewitt et al., 1996), and may need to be

particularly strong in order to be detected reliably. Related to this limitation is the specification

of the interaction effect in latent growth models. The approach advocated by both Wen and

Duncan, namely the product-indicator approach, has also been utilized in standard regression

approaches to interaction effects, and there is an additional assumption that the parameters which

define the growth model are invariant across the levels of predictors (Curran & Hussong, 2003).

The Wen and Duncan models place non-linear constraints on the parameters of the model which

are difficult to program manually. Other product-indicator approaches are available (e.g., Marsh

et al., 2004), some of which may be easier to implement than the one used by the Wen and

Duncan models.

A fourth limitation is that the data generation scheme was based upon the model
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ploposed by Duncan et al. (1999), and so this model should have demonstrated close to perfect

fit in the Complete data condition. That this did not occur could indicate that (l) the model fit

indices used to evaluate the overall performance of the latent growth interaction models may not

be appropriate for these types of models, or (2) these latent growth interaction models have an

underlying flaw that makes their performance sub-optimal, for example the parameterization of

the models or the imposition of the nonlinear constraints on some of the model parameters.

There is some support for this second option, as Rudinger and Rietz (1998) have noted that the

coding of the time factor is an essential feature of a correctly-specified latent growth model. The

models examined in the current study all represent the dimension of time as a function of the

factor loadings, which Rudinger and Rietz contend is simply a confirmatory factor analysis

model and not a true latent growth model.

A final limitation is with respect to the Type I error rates for the MNAR data condition.

For the population model in this section of the study, the value of the latent slope interaction

parameter was set to zero. However, even when the population value for this parameter is set to

be non-zero, in the MNAR condition the estimated value was close to zero in almost all of the

conditions (see Table 13). As a result, the Type I error rates for the MNAR data condition may

be misleading, and future research using different population values are needed.

There are some further limitations that, while not specific to this study, are applicable to

latent variable growth modeling in general. The latent growth model is based on the premise that

a set of observed repeated measures taken on a given individual over time can be used to

estimate an unobserved underlying trajectory that gives rise to the repeated measures (Curran &

Hussong, 2003). The process of latent growth modeling imposes a very restrictive factor loading
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matrix, and so the usage of standard model fittin-e criteria may need to be loosened (e.g., relaxing

the cutoff value of 0.90 for the CFI, GFI, and NFI). However, with strict parameter restrictions,

passing the model fit indices using the existing cutoff values is desirable, since the particular

growth trend is what researchers are aiming to test by imposing such restrictions.

The representation of latent growth models is varied, as can be seen in the models

presented by authors such as Raykov (1993), Muthen (1994), and Wen et al. (2002) and Duncan

et al. ( 1999). Further to this, the finding that latent growth models can be also be represented as

a hierarchical model, which has a single representation (e.g., Curran, 2003), can leave a

researcher with several options for modeling the basic latent growth curve. The various methods

of representation for a latent growth model have not been extensively compared, and this could

lead to confusion as to what representation to use, further complicated by an attempt to include

interaction terms. The Duncan and Wen models have been the only models that have explicitly

represented an interaction effect in a latent growth model, but the existence of other latent

growth models does open up the possibility of other representations of the interaction effect.

Data preparation for these models is an important factor. As was noted in this study, all

observed data was mean-centered prior to analysis in the latent growth models. Ideally the

interaction term is uncorrelated with (i.e., is orthogonal to) its first-order effect terms. With

continuous scores, transforming the raw-score variables to deviation-score variables (by

subtracting the variable mean from all observations) results in a product term that is minimally

corelated with the first-order variables, depending on their proximity to bivariate normality.

However, an additional data-processing procedure can also be utilized prior to analysis - that of

generating normalized data. The normalized data also serves to control sampling fluctuations in
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the generated data - by normalizing the data any outliers have their influence minimized, and

skewness will be more controlled.

There are some practical limitations to the use of the latent growth modeling approach.

At least three repeated measures are needed to overidentify a linear growth model. Cumently the

latent growth approach is largely restricted to multiple assessment points nested within

individuals, and extensions into higher-order nesting (e.g., multiple individuals nested within a

cluster) are difficult (and HLM approaches might be better suited for this). Further, the latent

growth approach assumes that the same measure is used to assess the construct of interest over

time (e.g., that the measure is invariant, which may not always be the case). Finally, the use of

latent growth models requires careful screening and evaluation of the data prior to model fitting

to remove outliers. Other limitations noted by other authors is that the function of time, or the

role of time as a predictor, is not as clearly obvious as with other approaches (e.g., HLM; Curran

et al., 2004).

Missing data is a difficult issue with latent growth modeling, as many latent modeling

approaches utilize a complete-case method of analysis. However, recent improvements in

handling missing data (e.g., FIML, multiple imputation) and in computational software (e.g.

LISREL, Mplus) are making it increasingly easier to incorporate missing data into these models.

Several authors have suggested various approaches for addressing missing data (see pp. 150-153)

and their application in latent growth modeling needs to be explored further. Missing data of an

attrition-based nature is of especial intercst in this regard.

The following outlines some further factors that, while not limitations related directly to

the factors manipulated in the current study, do represent factors that may have had an impact on
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the findings.

Estintcttion Method

The maximum likelihood (ML) estimation procedure was initially derived under the

assumption tl'rat the observed variables were from a multivariate normal distribution, however

Browne (1984) has shown that the ML estimator has desirable asymptotic properties under less

restrictive conditions (e.g., having no excess multivariate kurtosis). Bollen (1996) and Siemsen

and Bollen (2001) have shown that the ML estimator has several desirable properties - it is

consistent, uses information from the model specification to obtain parameter estimates that have

the highest likelihood of reproducing the data for a given model, and is asymptotically efficient.

However, these desirable properties only hold if the model is conectly specified and if the

sample size is sufficiently large. When these conditions are not met, the ML estimator is

problematic (Anderson et al., 1984; Bollen, 1989), and can lead to large biases in the estimates of

parameters when the underlying model is misspecified (Bollen, 1996).

The performance of the ML estimatol with small sample sizes are not theoretically

established, since only their asymptotic distributions have been derived, and consistent

estimators can be biased in small samples. In using the ML estimator in structural equation

models, the appropriate sample size required has varied from small (e.g., 100; Gorsuch, 1983) to

moderate (e.g.,400; Cheung, 2004), while others have reported that the required sample size is a

function of the number of estimated parameters contained within the model (e.g., Marsh et al.,

1988). Further, in smaller samples the ML estimator may not converge successfully (Anderson

et al., 1984), as a result of both the observed covariance estimates being farther away from their
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true population value and of the initial starting values used to start the parameter estimation.

Finally, with small sample sizes ML estimation can have high rates of non-convergence and/or

improper solutions, parameter standard errors that are attenuated, and Type I error rates which

are inflated (non-normality of the data can further inflate the Type I error rates). In a related

area, improper estimates can occur when sample sizes are small, leading to problems in the

interpretation of the parameter estimates (Chen, Bollen, Paxton, Curran, & Kirby, 2001).

When used with missing data, ML estimation produces unbiased estimates when missing

data is MAR (Jamshidian et al., 1999; McArdle et a1.,1992: McArdle & Hamagami, 2001). ML

estimation has been found to be a suitable estimation method when missing data due to attrition

is "natural" (e.9., due to mortality; Feng, Silverstein, Giarrusso, McArdle, & Bengston, 2006).

Newman (2003) found that ML estimation provided accurate standard errors when used with

missing data, and that the ML estimation procedure was robust to data that was missing at

random (MAR), but provided poor estimates for MNAR data. This was not a surprising finding,

since non-random missingness leads to bias due to restriction of range. When data is MNAR,

ML estimation gives larger errors for estimates and larger bias compared to MCAR (Jamshidian

et al., 1999). With interaction models using cross-sectional data (Lee, Song, & Poon, 2004),ML

estimation only produced satisfactory results in simple models with large sample sizes.

Data Normality

Mild degrees of data non-normality have little influence on the overall model fit indices

(Fan et al., 1998). Non-normality in the data has also been shown to have little effect on the

parameter estimates compared to when data is normal, and this non-normality has accounted for
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less than l% of the variance in the estimates (Fan & Wang, 1998). While the individual

variables for the individual latent factors were normally distributed, the use of interaction terms

in the current study introduces non-normality into the data and a centering procedure (Aiken &

'West, 
1992) was used to reduce the effects of multicollinearity between the interaction variables

and their constituent variables. The findings of Fan and colleagues are supportive of the

conclusion that the effects of non-normality on the model fit indices and parameter estimation in

the current study are negligible.

Power

Most of the studies that have examined power within the context of latent growth models

have done so in an attempt to detect group differences in latent growth trajectories. In an

examination of power in latent growth models, Fan and Fan (2005) found that neither the

magnitude of the effect nor the number of assessment points had an influence on the power of

latent growth models to detect linear growth. These authors also found that the latent growth

perspective was more powerful than traditional approaches (e.g., dependent t-tests, RM

ANOVA) at smaller effect sizes (see Fan et a1.,2005, for a review). In other words, the latent

growth model is a powerful analytical tool, and is preferable when the effects being studied are

small and may not be detected reliably by other methods.

Hertzog and colleagues (2006) found that the power to detect linear change and

coruelations between change is low unless the reliability of the observed indicators is quite high

(i.e., above 0.90), sample size is substantial (i.e., greater than 500), and there is a large number of

assessment points (i.e., greater than four). These authors used only a single indicator for each
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assessment point, as was done in the cunent study, and the authors proposed that their results

could be improved if there were multiple indicators for each assessment point. A similar

recommendation is made for the current study, and is an area of future research.

Cotling of Tinte

Rudinger and Rietz (I998) propose that the coding or representation of time is crucial in

a latent growth model. Typical SEM and LGM models lose the sequential nature of time, and

these authors assert that one can change the ordering of the indicators in these models (which are

generally individual assessment points) and still have an equivalent model. In other words, these

models do not take the basis / factor loadings into account, instead treating all LGM models as

pure CFA models (see p. Il2 of their manuscript). In general, the variance of the true scores will

have a quadratic relationship with time in a linear growth model, and the correlation (or

covariance) between the level of a true score at a given time t and the growth rate is dependent

on the time factor (Mehta & West, 2000), and this should be incorporated into the model design.

The current project used the coding of time as outlined by Duncan and colleagues (Duncan et al.,

1999), which codes time by fixing the parameter loadings for the observed variables on their

respective latent variables (see Figure 15).
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Chapter 14: Summary and Recommendations

There were several themes addressed by the current project of latent slope interaction

effects in latent growth modeling. The first was the comparison of three alternative methods for

constructing interaction effects in latent growth models - the methods of Duncan et al. (1999),

Wen et al. (2002), and an extension of the cross-sectional model by Schumacker (2002). The

findings of this project provide mixed support for the utility of these approaches in the modeling

of a latent growth interaction effect. The Wen et al. (2002) model showed the best performance

with respect to overall model fit, especially when the data is either Complete or MCAR, with the

Duncan et al. (1999) model showing similar performance. The Schumacker model provided the

most accurate estimation of the latent interaction slope parameter, with the Wen model showing

accurate estimation at high levels of reliability and the Duncan model doing so at lower levels of

reliability. The Duncan and Schumacker models performed similarly with respect to bias in the

estimation of the latent interaction slope parameter across the three types of missing data, and the

Wen model was biased in the majority of the conditions studied regardless of the type of missing

data. However, Type I error was not well controlled by any of the models.

A second theme was the examination of the effects of missing data in the area of latent

growth interactions. Previous studies that have examined the impact of missing data in

longitudinal designs have done so with simple longitudinal models that have only included a

single latent factor, and have not used more complex models that involve multiple factors. In the

current study, it was seen that the impact of missing data that was the result of an MCAR

mechanism does not result in performance that was qualitatively different from that of having

Complete data. For all of the models, their performance under the MCAR mechanism was
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similar with respect to overall model fit, latent slope interaction parameter estimation, bias in the

parameter estimation, and Type I error rates. The evaluation of these latent growth interaction

models with MNAR data is a new contribution to the literature. Not surprisingly, none of the

models performed particularly well when missing data was derived from an MNAR mechanism.

Each of the models studied in the current project had several strengths and weaknesses.

The Duncan model was the population model (i.e., all data was generated from the framework of

this model) and the Wen model is an extension of this model, so they are discussed jointly. The

Wen model is a "full" model in the sense that it contains all estimated paths and effects, and one

of its strengths is that it provided better model fit to the data and better estimation of the latent

slope interaction parameter than the Duncan model, and this is impressive since the Wen model

can be considered to be a rnisspecified model compared to the Duncan model from which the

population data was derived. A strength of the Wen model was its accurate estimation of the

latent slope interaction parameter, a conclusion supported by Wen et al. (2002) in their study. A

third strength of the Wen model was its programming difficulty in relation to the Duncan model.

Both the Duncan and the Vy'en model require substantial programming for imposing the

constraints on the parameters in the model due to the non-linear nature of the interaction effects.

While the Wen has some additional constraints that need to be imposed compared to the Duncan

model, the addition of these constraints is not onerous, and the cunent findings would indicate

that these extra constraints are worthwhile towards providing accurate model estimation.

A fourth strength is that the Wen model showed desirable characteristics in the context of the

manipulated model factors (i.e., latent intercept-slope correlation, sample size, and reliability of

the observed indicators), namely improved performance in overall model fit indices and
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parameter estimation as all of these factors increased. Again, this is especially notable due to the

fact that the Wen model was not the population model from which the data was derived. A final

strength of the Wen model, and of the Duncan model but to a lesser extent, is the similarity of

performance of the model when the data was either Complete or MCAR.

The Duncan model had several strengths. It showed a high rate of convergence across all

of the conditions, regardless of the type of missing data, and converged faster than the Wen

model at lower reliabilities. The values for the CFI and NFI model fit indices were very similar

to those found for the Wen model in the Complete and MCAR data, and also showed slight

increases as sample size increased. The estimate of the latent slope interaction parameter

showed a lower degree of bias than the Wen model, and the bias also decreased as the study

factors of reliability, sample size, and latent intercept-slope correlation increased. The

programming for this model is simpler than that for the Wen model.

Weaknesses of both the V/en and the Duncan models include a poor control of Type I

error rates, with the Wen model showing liberal control and the Duncan model showing

conservative control when the data was either Complete or MCAR, and both of these models

were conservative when the data was MNAR. A further weakness is that both of these models

performed poorly when the data was MNAR, showing poor model fit, parameter estimation, and

control of Type I error, across all of the manipulated study factors. The reasons behind the poor

performance in the MNAR data condition are unknown at this time.

The Schumacker model had several strengths relative to the Wen and Duncan models.

These include an ease of conceptualization, as forming the multiple cross-products of indicators

was not needed. This model also provided qualitatively more accurate parameter estimates at all
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levels of the manipulated factors, and performed especially well when the reliability of the

observed indicators were at their highest levels, surpassing the other two models studied. The

Schumacker model showed reasonable control of Type I error rates when compared to either the

Wen or the Duncan models, and showed better performance as both reliability and sample size

incleased.

Some weaknesses of the Schumacker model include the difficulty in programming, as

there are several SEM models that are required to be constructed and evaluated, as well as the

saving of the factor scores from one of the models as an intermediate step so that they can be

manipulated to form the interaction tenns in the final model. This can be a confusing and

daunting task for researchers. A second weakness is that this model was extended from a cross-

sectional perspective, and while it performed adequately in the current study, the model was not

designed to investigate latent interaction effects in growth models. A third weakness is that the

Schumacker model performed worse than the other two models at lower levels of reliability of

the observed indicators, and did not show adequate model fit on any of the model fit indices

when the data was Complete or MCAR.

Reconunenclations F or the Re s earclte r

There are several recommendations that can be made to researchers who are considering

using one of the three latent growth interaction models examined in the current project.

Based on these findings, the following contributions and recommendations can be made.

If the researcher believes that the factor of time is a fixed effect, then the Schumacker model

should be used. If the researcher believes that time is a random effect, then the Schumacker
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model can provide accurate estimates but may not be wholly suitable for model fit, mainly due to

the final step of the Schumacker model which is a purely fixed-effect model.

If the trend for growth is considered to be a random effect, then either the Wen or the

Duncan model can be used. The Duncan model should be attempted first, as if it shows good

model fit to the data the parameter estimates for the interaction effect will not show a large

amount of bias compared to the Wen model. If the Duncan model does not provide adequate

model fit, the Wen model can be used, with the careful consideration that the parameter

estimates may be biased. Further to this, if the model is complex (e.g., the growth may not be

purely linear) the Wen model may be preferred as it has a better chance to provide adequate

model fit, especially when the data is Complete or MCAR.

A second recommendation is that researchers should examine their longitudinal data

closely, paying particular attention to any missing data and the mechanism behind the

missingness. If the missing data can be attributed to an MCAR mechanism the influence on

model performance will be minimal. If the mechanism is determined to be MNAR then each of

the models studied in the current project will show poor performance. The current findings

indicate that model choice may depend on the type of data - if data is Complete or MCAR the

Duncan and Wen models are acceptable.

A third recommendation is that researchers should make efforts to utilize observed

measures that are highly reliable. Of all the factors in the current study the factor of reliability

had the strongest influence, as seen in the large effect sizes associated with this factor in the

ANOVA analyses. Reliable indicators will reduce the amount of measurement er.ror, and can
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also mitigate the influence of other negative effects on latent variable modeling (e.g., small

sample sizes; Boomsma & Hoogland, 2001).

Future Directions

Tliis study can act as a starting point for an extensive body of research that examines

interactions in latent growth modeling with respect to types of missing data (e.g., cohort-

sequential designs, planned missingness designs), as well as their robustness to other factors not

studied in the current project (e.g., non-normality of the observed indicators, estimation methods,

ordinal data). Other methods of forming the interaction effect can also be explored. The

traditional product-indicator approach used in the cunent study may not be the most suitable

approach, given all of the constraints that need to be programmed. The latent interaction model

by Schumacker, which was extended in this current project, shows some promise buy may also

not be wholly suitable. There are other methods of characterizing the latent interaction term such

as the GAPI approach (e.g., Marsh, Wen, & Hau, 2004) and the QML method of Klein and

Muthén (2002) which should be investigated.

A promising area of future research is the comparison of the performance of latent

growth models with other methods that can be used to analyze longitudinal data. As discussed

briefly in the Introduction (page 38), mixed effects models are an alternative approach to

modeling longitudinal repeated-measures data. Mixed effects models assume that individuals

deviate randomly from the overall average response, and that the correlation between repeated

observations on the same subject arises from the common random effects for this individual (i.e.,

a random intercept and slope). The mixed model possesses several advantages, namely that all
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available data on a case is used, is unaffected by randomly missing data, and can flexibly model

time effects even with unequally spaced intervals. These models can also model the pattern of

variability over time, which results in more accufate treatment effects and standard errors of

estimates, and helps to control Type I error (Gueorguieva & Krystal, 2004). Mixed effects

models can model the missingness mechanism along with the outcome variable, but it does yield

biased estimates when missing data is MNAR, and if sample sizes are small (Gueorguieva et al.,

2004). A further drawback to the mixed model approach is that it can only incorporate bivariate

relationships with a single dependent variable (Gao, Thompson, Xiong, & Miller, 2006).

Mixed effects models and structural equation models for longitudinal data are

analytically equivalent under a variety of conditions (see Raudenbush, 2001; Willett et al., 1994),

despite differences in estimation procedure (Cuman, 2003). SEM approaches longitudinal data

through the use of multiple-indicator latent factors. However, due to the assumption of

independence of observations, the analysis is still done on a single aggregate covariance matrix.

The key facet of the SEM approach is to incorporate time as fixed values within the factor

loading matrix (Â), whereas the mixed and hierarchical model approaches enter time as a

predictor. An advantage of the SEM approach is the ability to separate the Level 1 and Level 2

effects in the aggregate covariance matrix. Curran (2003) gives formulas showing that the

matrices for the fixed and random effects are identical for SEM and hierarchical models. He also

gives methods for making them equivalent for a variety of models, achieved by ordering the data

by groups (according to the level of the variables), and adding a latent variable for each second-

level variable. This approach does not use repeated observations, but nested observations.
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Some of the advantages of SEM are: (1) hierarchical / mixed models assume the

predictors are error free, and with multiple indicators the SEM approach can model measurement

error, (2) can have multiple-indicator dependent variables, (3) can decompose effects into direct,

indirect, and specific indirect effects, and (4) can provide omnibus measures of model fit (the

hierarchical model has no logical saturated model that it can compare to the fitted model).

Some of the limitations of SEM are: (i) unless there is something unique about the SEM

approach, it is probably easier to use the hierarchical / mixed approach; (2) Curran (2003)

outlines an approach with SEM that is more about data management, which can be tedious and

difficult; (3) the interpretation of models done in SEM is non-standard, in that latent factor

means represent regression coefficients, and that indirect effects are representative of cross-level

interactions; and (4) the SEM technique discards data if it is incomplete (i.e., there are missing

assessment points).

A final area of future research is to utilize an empirical data set with "teal" missing data,

and to examine how the three models from the current study perform with respect to overall

model fit and parameter estimation. This could potentially be done with large nationally

representative datasets that can be considered to be representative of the population (e.g., data

from Statistics Canada). Findings from this approach may reduce the arbitrariness of the

simulation and may improve the generalizations of the findings in the current study.
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Figure I

Exarnple of a Non-Linear (Quctclratic) Et'fecrs Grovvth Curve.
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Figure 2

Basic Linear LatenÍ Varktble Growth Model.
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Note: M¡n1 = Mean of the latent intercept; Dinr = Variance of the latent intercept; Mrlp = Mean of
the latent slope; Dsrp = Variance of the latent slope; Rint-slp = correlation between the latent
intercept and slope; er and e2 represent residual terms.
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Figure 3
Basic Linectr Lotent Variable Grovvth Model With Three Repeatetl Observatiotzs.
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Note: Minr = Mean of the latent intercept; Dint = Variance of the latent intercept; Mstp = Mean of
the latent slope; Dstp = Variance of the latent slope; Rincrtp = correlation between the latent
intercept and slope; et, a2, and eq represent residual terms.
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Figure 4

Quaclratic Effect Latent Vctriable Grovvth Model with Three Re¡teated Observations.

Rint-qru,l

Note: Mint = Mean of the latent intercept; Dint = Variance of the latent intercept; Mslp = Mean of
the latent slope; Dslp = Variance of the latent slope; Mquact = Mean of the quadratic slope; Dquad =
Variance of the quadratic slope; Rinr-rlp = correlation between the latent intercept and slope; R¡n,-

quacr = colTelation between the latent intercept and quadratic slope; Rslp{uact= correlation between
the latent slope and quadratic slope; êt, è2, and e3 reprcsent residual terms.
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Figure 5

LISREL Univariate Latent Growth Curve Model.

Rint-slp

A

Note: Dint = Variance of the latent intercept; Dslp = Variance of the latent slope; Rinr-srp =
correlation between the latent intercept and slope; the diamond shape represents the estimated
non-zero means of the two latent factors, and Fo and B1 represent the factor means of the latent
intercept and slope, respectivel!, e r, e2, and e3 represent residual terms.
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Figure 6

Raykov T 1 -Congettericisnt Latent Growth Model.

Y1

Note: D = Variance of the latent factor; the diamond shape represents the estimated non-zero
mean of the latent factor, and B represents the factor mean of the latent factor; ct, c2, and e¡
represent residual terms.
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Figure 7

Sanqtle StrLtctural M oclel for Lottgituclinctl Analysis.

Note: The observed variables Y1 to Ya represent repeated observations on individuals at four
consecutive assessment points. TheZ variable is a time-invariant covariate and the W2 and Wr
variables are time-varying covariates measured at the second and third assessment point,
respectively. The latent variables 116 and [¡ represent a latent intercept and slope, respectively.
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Figure 8
Gra¡tlzical Depictiort of art InÍeraction EJfect

Note: All variables are observed variables, where Y is the dependent variable of interest, X is the
predictor variable, M is the potential moderator variable, and XM is the product of these two
variables.
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Figure 9

TIte Multi¡tle lrulicafor Regression Model b),Keruty and Judd (1984).

Note: (1 represents a latent independent variable with X¡ and Xz as observed indicators, (2
represents the latent moderator variable with M¡ and Mz as observed indicators, and (1(2
represents the interaction latent variable between the independent variable and the moderator; n
represents the latent dependent variable, and e represents the elror term associated with the latent
dependent variable.
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Figure l0
Joreskog cuul Yang's (1996) Single-hulicator Interaction Motlel.
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Note: (r represents a latent independent variable with X¡ and Xz as observed indicators, (2
represents the latent moderator variable with Mr and M2 as observed indicators, and [¡(2
represents the interaction latent variable between the independent variable and the moderator; 11

represents the latent dependent variable, and e represents the errol term associated with the latent
dependent variable.
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Figure 1l
Schumac:ker's (2002 ) Latent Interaction Model.

Note: (1 represents a latent independent
represents the latent moderator variable

represents the interaction latent variable
represents the latent dependent variable,
dependent variable.
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variable with Xr and Xz as observed indicators, (2

with Mr and Mu as observed indicators, and (¡(2
between the independent variable and the moderator;1'ì

and e represents the erlor term associated with the latent
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Figure 12

Latent Interaction Groyvth Moclel (Basecl on Duncun et al., 1999)with Four Assessnrcnt Poittts.

ddd

Note: Error terms and covariances are omitted from the figure for clarity.
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Figure l3
The Full Interaction Latent Growth Model (Wen eî al., 2002) witlt Four Assessntent Poitzts.

ndã
Note: Enor terms and covariances are omitted from the figure for clarity.
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Figure 14

Graphical Depictiort of tlrc Ste¡ts Involt,ed.for the Schmnacker Latent Growth Interaction Model.

Step 1: Model a latent glowl.h rnodel with no interaction tel'ms.
Step 2: Save the latent factor scores fi'om this modcl.

Note: Error terms and covariances are omitted from the figure for clarity.

hiteraction Effects in Latent Growth Models

Intercept: (,

Step 3: Use those factol scores florn Step 2 in the above path analyl.ic nrodel.

Irìtelaction:
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Figure i5
Potential Pattents of Missirtg Data in a Lortgitt,rdùutl Stucl¡,.

Subject Univariate Monotone lntermittent

Xr Xz X¡ Xl X2 Xr Xr X2 Xr
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Note: X l, X2, and Xr represent repeated measurements on the same individuals; the "?" symbol
represents those values that are rnissing for a particular subject at the repeated measurements.
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Figure l6
Latent Interactiott Grovvth Motlel Usecl to Generate the Sintulation Data.
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Note: The correlation between the latent intercepts and slopes will be set at 0.20, 0.50, and 0.70.

The reliability of the observed indicators (X¡-Xa, Zt-Zq, Yl-Y¿) will be set at 0.30, 0.50, 0.70,

and 0.90. The sample size will be set at250,500, and 1000. The type of missing data will be

set at none (complete) data, missing completely at random data, and missing not at random data.
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Figure l7

Plots of'the Interaction Effect of Latent Interaction Model Ty¡te Factor vvith the Obsen,etl

Inclicator Reliabilir¡, Factor (l) and Latent Intercept-Slope Correlation (2) on the Contparative Fit

Index (CFI) in tlrc Com¡tlete Data Conditiotz in Those Models that Cotwerged Successfully.
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Figure 18

Plots of the Interaction Effect of Latent ltúeraction Model Type Factor yvitlt the Observecl

Incliccttor Reliabilit¡, Factor (l) and Latent Intercept-Slope Correlution (2) on the Norntecl Fit

Inclex (NFI) in the Complete Data Condition in Those Moclels that Convergecl Successfully.
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Table I
Defittition of'Symbols Usecl in Structural Equcttiott Models.

Symbol Meaning

Observed variable

Latent variable / emor variable

Direct Path

Correlation

O

Note: Notation for latent variables can be either with a n or an ( symbol.
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Table 2

Cotn,ergence Frequency.for AII Latent Growth Interaction Moclels (Population Value of Latenr
Interactiott Paratneter Eclual to 2.0) For 5000 Simularions, For the Three Missirtg Data
Conclitions ( Contplete, M CAR, MNAR).

IìelCorr Cornplete Data MCAR Data MNAIì Data

Wen Duncan Schumacker Wen Duncan Schumacker Wen Duncan Schumacker

0.20 2-50

.50 250

488 I
49()l
5000
5000

494'7 5000
4998 .s000

5000 5000
5000 -s000

4854
4975
4999
5000

4L)43 5000
4996 -s000
5000 -s000
s000 s000

3692 4999
3666 s000
4l 58 .5000
495-s 5000

500

0.30
0.-50

0.70
0.90

0.30
0.s0
0.70
0.90

0.30
0.50
0.70
0.90

0.30
0.50
0.70
0.90

0.30
0.s0
0.70
0.90

0.30
0.,50

0.70
0.90

4979
s000
5000
5000

4809
4934
491)9

5000

4932
498-s

.5000

5000

498-5

5000
5000
5000

4742
4879
4998
5000

4872
4973
,s000

-5000

5000
5000
5000
5000

s000
-5000

-s000
s000

5000
5000
s000
s000

5000 5000
s000 s000
.5000 5000
.5000 5000

4967
5000
5000
s000

_5000

_s000

5000
5000

-s000
5000
5000
5000

s000
5000
5000
5000

s000
s000
s000
5000

5000
5000
5000
5000

5000
5000
s000
5000

,s000

,s000

-s000

-s000

-5000

-s000

-s000

-5000

.5000

.5000

-s000

-5000

s000
5000

-5000

-5000

5000
.s000

5000
5000

.5000

-s000
-5000

-5000

.s000 5000

-s000 5000

-5000 5000
5000 5000

-s000

-s000

-s000
5000

s000
s000
5000
5000

_5000

_5000

-5000

-5000

-5000

-5000

.5000

-5000

-5000

.s000

5000

-s000

3808
3742
43t6
49rì I

4026 5000
3884 5000
4498 5000
4996 5000

2670 5000
24t0 -5000
2?90 5000
458 r s000

26t1 5000
23 r 3 5000
r902 s000
4755 5000

2590 5000
23 I 3 5000
l4(t9 5000
4835 5000

226t 5000
2043 5000
2379 s000
4r84 5000

1954 5000
r634 5000
2217 5000
4354 5000

I8-s4 5000
1467 5000
2252 5000
4539 5000

5000
5000
5000
5000

5000
5000
5000
5000

-5000
5000

-5000
5000

,5000

-5000

-s000
-5000

r000 0.30
0.50
0.70
0.90

-s000

-5000

-s000

-5000

-5000

-s000

-5000
.s000

.5000 s000
5000 5000
s000 5000
5000 5000

5000 5000
5000 5000

-5000 -s000

-s000 s000

5000 -5000
5000 5000
5000 5000
5000 5000

5000 -5000
5000 5000
s000 5000
5000 5000

500

4760
4900
5000

-5000

4899
4968
5000
5000

4971
4996
5000

-s000

r000 0.30
0.s0
0.70
0.90

25070

500

4639 .5000
4838 .5000
499t 5000
5000 -5000

5000
5000
5000
5000

4822
4933
4998
5000

4934 -5000 5000
4987 .s000 5000
5000 -5000 5000
5000 ,s000 5000

1000 0.30 4960 5000 s000
0.-s0 4996 5000 s000
0.70 5000 5000 s000
0.90 5000 5000 5000

Note: MCAR = Missing Completely At Random; MNAR - Missing Not At Random; Coru =
Latent intercept-slope coffelation; N = Sample size; Rel = Reliability of the observed indicator.
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Table 3

Merm NLtntber of lteratiotts (with SÍanclard DeviaÍion in parentlrcses).for All Latent Growtlt
Interactiott Models where tlrc Population Value of'Latent Interaction Paranteter was Equal to 2.0,

In Those Sintulations That Cont,ergecl For tlte Three Missing Data Conclitions (Complete, MCAR,
MNAR).

Iìel Complete Data MCAIì Data MNAIì Data
Duncrn Schurnackcr Wcn Duncan Schumacker Wen Duncan Schumackcr

0.20 2.50 0.30

0.-s0

0.70

0.90

500 0.30

0.50

0.70

0.90

r000 0.30

0.50

0.70

0.90

.-s0 250 0.30

0.50

0.70

0.90

500 0.30

0.50

0.70

0.90

-s09.83
(29t.t82)

337.5-5
(t77.743)

183.8-5

(4r.04r)
164.80

( r0.719)

5 r 0.48
(233.48.s)

3 r r.98
( r 23.846)

17,5.08

( I 6.861 )

I ó4.51
(8. r 00)

-508.51
( r 68.-s8.5)

306.t7
( r r 1.060)

t73.44
(8. I 99)
t64.26
(6.029)

4'75.3t
(387.922)

300.43
(28 r.686)

184.04
( r4.596)

17 t.28
(t 1.997)

424.02
(340. r 92)

262.78
(224.428)

r 82.38
(8.797)
I 69.91
(8.442)

230.5 r

( r08.028)
202.s9

(22.2r)
181.66

(22;737)
t72.83

( r 5.667)

2t2.93
(43.199)
zrJl.25

(t6.734)
176.74

(17.322)
r69.48
(8.750)

209.-t6
(20.127)

t 99.4-s

( r2.686)
t73.60

(12.340)
r 68.39
(6.986)

220.677
(40.0 r 6)

r 97.81
(2 r .863)
t 80.566
( r2.s04)
I96.05

(t2.20t)

2t6.75
(22.894)
t96.t7

( r 7.60ó)
177.54
(9.004)
t95.26
(9.49t)

-5.l6
(2.9s 1)

4.92
(2.5s r)

4.56
(t.917)

4.4s
(t.794)

4.51
(r.194)

4.30
( r.308)

3.93
(r.176)

3.96
(1.362)

4.49
(0.988)

4.13
(0.006)

3.62
(1.001)

3.67
(1.r38)

-s.31
(3.750)

5.16
(3.306)

5.28
(2.8s 1)

6.13
(2.36s)

4.29
(1.66-5)

4.40
( 1.7 r0)

4.73
( 1.s62)

5.88
(1.446)

_525.00

(3M.637)
349.43

(20-5.007)

r92.01
(6-s. r 42)

165.67
(t2.t97)

5 r4.38
(27-s. r98)

319.62
( r 42.88s)

178.63
(3 r.368)
t64.92
(9.086)

5 r 1.23

(202.820)
309.3 r

( r 17.378)
173.87

( r 0.680)
t64.47
(6.rì l 6)

497.t4
(40e.8rì6)

322.7 t
(303.420)

t87.76
(48.837)
t72.04

( 1 3.646)

452.08
(361.692)

282.50
(26r.39r)

182.89
(9.-576)

t'70.37
(9.666)

241.9t
(r30.r56)

204.t1
(29.143)

I 83.91
(24.801)

1'7 5.tL)
( r 8.998)

216.29
(59.484)
201 .9,s

( 19.-534)

r78.08
( r 9.14.5)

170.47
( 10.6s8)

2|.02
(34.844)
200.7 t

( 14.821 )

l'74.46
(r4.r l6)

r 68.87
(7.s76)

224.10
(-s8.098)
199.68

(24.967)
I 82.80

( 1s.023)
197.27

( r 4.336)

2 r 8.04
(28.276)
196.64

( I 9.s91 )
178.84

( 10.s94)
195.57

( r 0.839)

-s.65
(3.7s8)

5.s l
(4.233)

5.02
(3.01 7)

4.77
(2. r 6rì)

4.76
(r.9r9)

4.50
( l.-598)

4.14
( 1 .3s9)

4.t6
( l.-537)

4.51
( r .0s4)

4.t9
( 1.046)

3.74
(r.07r)

3.77
( r.2-s0)

5.94
(4.88 r)

5.76
(4.49s)

5.79
(3.826)

6.33
(3.074)

4.67
(2.449)

4.68
(2.336)

4.88
( L893)

-s.91
( r .700)

t772.03
(s81.932)
l6-58.82

(632.101)
I r33.57

(731.272)
4s2.91

(4t7.678)

t745.22
(-s84.006)
r638.78

(562.39 r)
1050.72

(690.6.58)

374.28
(329.M2)

1699.82
(s76.s68)
l6l L70

(s39.930)
993.37

(642.100)
337.30

(280.847)

r899.96
(-578.413)

r935.32
(-577.1 r0)
r859.73

(676.576)
537.66

(600.108)

I 956.01
(s59. I 02)
t986.29

(s88.s49)
1983.-5.s

(630.74r)
449.t9

(s24.624)

t39.26 .5.93

(.54.s98) (2.8 r7)
132.68 5.77

( r8.636) (2.903)
135.63 5.33

(26.394) (2.103)
r 36.60 4.63

(33.326) (r.809)

132.31 5.74
(1r.907) (t.246)
128.53 5.47

( 1 3.609) (1 .247)
133.90 -s.04

(24.06s) ( 1.348)
133. r8 3.99

(29.425) ( r .328)

129.62 5.85
(8.624) (0.890)
t2s.7't 5.62

( 10.2s0) (0.932)
131.32 -s.03

(22.5s r) ( r.084)
131.70 3.60

(2'/.389) (r.1il)

tM.n 5.18
(30.01 3) (3.482)
t4t.2t 5.00

(22.707) (3.0e0)
142.76 4.87

(27.470) (2.692)
145.00 -s.38

(30.722) (2.s42)

139.96 4.23
(16.234) (t.622)
r38.rr 4.08

(20.r8s) (r.390)
t39.67 4.08

(26.066) (1.39r)
144.44 4.93

(29.65-5) 0.66r)
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1000 0.30

0.-s0

0.70

0.90

250 0.30

0.50

0.70

0.90

s00 0.30

0.50

0.70

0.90

r 000 0.30

0.50

0.70

0.90

369.94
(243.50 l )

232.41)
( I 40.s93)

r 81.78
('7.t24)
I (r8.99

(6.30r )

-504.3(r
(480.770)

336.32
(3s4.0.58)

t94.93
(7 t.97 t)
r85.36

(t1.227)

M2.32
(42s.4s1)

287.75
(283. r63)

r90.3 r

(9.37e)
182.7 |

( r3.3-54)

2l 6.88
(20.429)
r95.17

(r4.7r5)
t75.74
((r.886)
194.'78
(7.2t0)

208.37
(29.493)

r 94.86
(t7.873)

r 87.28
( r r.62-s)
208.7-s

( 13.493)

203.30
(2 r .7s8)
t92.82

(t4.074)
r85.28
(8.967)
207.8-s

(10.t l8)

3.80
( r.015)

4.03
( 1.096)

4.-s9
(r.08i)

5.83
(0.980)

5.89
(4.060)

,5.93
(3.929)

6.1 I

(3.38-5)

7.0-7
(2.479)

4.96
(t.9'72)

5. l9
( 1.937)

5.70
( r.728)

6.93
( r..547)

3.98

0.161)
4.16

(t.269)
4.61

(t.2s7)
5.85

(r.rs7)

6.5 r

(s.052)
6.37

(4.714)
6.3-5

(3.933)
7.22

(3. r 80)

5.3 r

(2.632)
5.44

(2.769)
5.88

(2.574)
7.00

( r.867)

2024.3t
(-s63.903)

20-53.01
(-s63.394)
2018.09

(-s79.381)

371.30
(43t.407)

2039.36
(573.t46)
200-s.30

(60s.273)
1799.88

(622.3t3)
67 r.38

(730. r 76)

2l r6.83
(s49.383)
2089.26

(-578.033)

r824.87
(607.3-s r)

540.66
(666.937)

2t84.94
(-534. r36)
2t0t.92

(s80.37 r )
I 8 14.-s I

(_s48.154)

4-50.-53
(626.779)

39 r.66 2t'7.03
(282.092) (22.530)
242.73 t9-5.-58

(172.962) (l-5.82r)
181.94 t76.49
(7.s99) (7.505)
169.14 t94.94
(6.981) (8.2s4)

.515.68 2il.53
(486. il 8) (33.969)
3-59.06 t96.28

(393.736) (2o.t4s)
201.24 188.7 r

(r09.403) (r3.809)
r 86.-55 2 r0.06

( r9.209) ( r-5.945)

474.78 204.45
(4s7.4s4) (23.r rs)
303.-58 r93.60

(312.6.53) (1s.492)
r90.78 r86. r7

(r r.2-s0) ( r0.040)
183.-56 208.27

(r4.987) (r r.736)

136.79 3.94
(r3.318) (0.842)

r 36.07 3.63
( 18.784) (0.889)
139. 13 3.-5(.r

(24.673) ( 1.026)
145.15 4.88

(28.3',74) (t.223)

1s0.25 5.46
(23.3s9) (4.043)
148.03 5.32

(2.s.693) (3.702)
148.44 .5.43

(28.667\ (3. r33)
15t.26 6.48

(30.869) (2.820)

t46.93 4.41
(20.260) ( r .832)
144.81 4.39

(23.874) ( r.s50)
146.96 4.88

(27.sr8) (r.71-s)

149.73 6.25
(28.92s) ( 1.7s0)

r45.s9 3.87
( r 8.2s7) (0.94 r )

143.37 4.03
(22.6t4) ( r.044)
145.5-s 4.55

(2ó.378) (t.127)
149.47 6.t2

(26.90.s) ( r. rs-5)

383.59 20t.7 t 4.7 t 4t0.79 202.65 4.81
(3s2..578) (r8.970) (1.t4't) (389.762) ( 19.80s) (t.s42)
252.n t92.ts 4.99 265.59 t92.46 5.10

(182.462) ( 12..509) ( r.l l3) (228.990) ( r3.1.58) ( 1.383)
189.98 184.0t 5.-s-5 190.07 184.,58 s.57
(7 .432) ('7 .t t2) ( r .073) (8.427) (7.880) (t .279)
180.93 207.42 6.8(1 181.6-5 207 .52 6.86
(9.880) (7 .(¡53) ( I .044) ( I I .438) (8.872) (t .211)

Note: MCAR = Missing Completely
Latent intercept-slope coffelation; N

At Random; MNAR - Missing Not At
= Sample size; Rel = Reliability of the

Random; Corr =
observed indicator.
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Table 4
Average Crnt¡tarative Fit Index (CFI) Values (with Standarcl Deviations in Pctretttheses).fòr All
Latent Growth Interaclion Moclels (Populatiorz Value oJ'Latenr Interacfiotz Paranteter Eclual to
2.0) For Those Sinnilations Thctt Convergetl, For tlte Three Missirtg Data ConcliÍions (Complete,
MCAR, MNAR).

Iìcl Complctc Data MCAR Data MNAIì Data

Wcn Duncan Schumacker Wen l)uncan Schumacker Wen Duncan Schumacker

0.20 250 0.30 0.92 0.89
(0.0 r 2) (0.0 r 3)

0.9 r 0.89
(0.0r r) (0.009)

0.9 r 0.90
(0.008) (0.008)
o.g2 ' 0.90

(0.00s) (0.006)

0.92 0.89
(0.009) (0.008)

0.9 r 0.89
(0.009) (0.006)
0.91 0.90

(0.00s) (0.00.s)

0.92 0.90
(0.004) (0.004)

0.92 0.89
(0.007) (0.00s)

0.9 r 0.89
(0.007) (0.004)

0.9 r 0.90
(0.004) (0.004)
0.92 0.90

(0.003) (0.003)

0.92 0.89
(0.r01) (0.0r0)

0.91 0.90
(0.0r0) (0.009)
0.91 0.90

(0.008) (0.008)
0.9 r 0.9 r

(0.007) (0.007)
0.93 0.9 r

(0.00-s) (0.006)

0.9 r 0.90
(0.007) (0.006)

0.9 r 0.90
(0.006) (0.006)

0.9 r 0.9 r

(0.00s) (0.00s)
0.93 0.91

(0.003) (0.004)

0.92 0.89
(0.014) (0.0r6)

0.9 r 0.89
(0.013) (0.01 1)

0.9 r 0.90
(0.009) (0.009)
0.92 0.90

(0.006) (0.007)

0.92 0.89
(0.010) (0.009)
0.91 0.89

(0.009) (0.007)
0.9 r 0.90

(0.006) (0.006)
0.92 0.90

(0.004) (0.00s)

0.92 0.89
(0.008) (0.006)
0.91 0.89

(0.008) (0.00s)
0.9 r 0.90

(0.004) (0.004)
0.92 0.90

(0.003) (0.003)

0.92 0.90
(0.0il ) (0.0il )

0.9 r 0.90
(0.0il) (0.011)

0.9 r 0.90
(0.0 r0) (0.0 r0)
0.91 0.91

(0.008) (0.009)
0.92 0.91

(0.006) (0.007)

0.9 r 0.90
(0.008) (0.008)

0.9 r 0.90
(0.007) (0.007)

0.9 r 0.9 r

(0.006) (0.006)
0.93 0.9 r

(0.004) (0.00s)

0.80 0.64 0.7 t

(0.023) (0.0r8) (0.136)
0;77 0.66 0.74

(0.033) (0.0r6) (0. r20)
0.72 0.69 0.76

(0.043) (0.0 r 4) (0.097)
0.69 0.71 0.74

(0.021) (0.0il) (0.076)

0.'79 0.64 0.77
(o.or6) (o.ot3) (0.08-5)

0.7'7 0.6(1 0.79
(o.ol9) (o.oll) (0.073)
o.'72 0.69 0.'79

(0.040) (0.0 r0) (0.06 r )

0.69 0.7 t 0.75
(0.0r 8) (0.008) (0.0.52)

0.79
(0.0 r 2)

0.77
(0.0r r)

0.7 |

(0.037)
0.69

(0.0 r 7)

0.74
(0.0.s r )

0.64 0.80
(0.009) (0.0-s3)

0.6(1 0.81
(0.008) (0.048)
0.69 0.8 r

(0.007) (0.042)
0.71 0.76

(0.00-s) (0.037)

0.68 0.77
(0.029) (0.08s)

0.82 0.68 0.7 r

(0.02 I ) (0.01 6) (0. r 34)
0.8 r 0.69 0.75

(0.022) (0.0r4) (0.r04)
0.79 0.71 0.76

(0.029) (0.0 r 3) (0.077)
0.'71 0.73 0.78

(0.03 r) (0.0r0) (0.0.57)

0.82 0.68 0.77
(0.0r7) (0.0il ) (0.084)

0.8 r 0.69 0.78
(0.0r9) (0.0r0) (0.063)
0.79 0.7 | 0.79

(0.022) (0.009) (0.049)
0.70 0;73 0.79

(0.02,5) (o.oo7) (0.038)

.-50

0.50

0.70

0.90

t 000 0.30

0.-50

0.70

0.90

Avera-9e

0.72
(0.123)

0.75
(0.t22)

0.79
(0.097)

0.84
(0.03-5)

0.74
(0. r20)

0.78
(0. r03)

0.82
(0.068)

0.8s
(0.020)

0.'76
(0.104)

0.80
(0.080)

0.8-5

(0.036)
0.8-s

(0.010)

0.80
(0.010)

0.67
(0. I 20)

0.70
(0.1 I l)

0.75
(0.090)

0.79
(0.024)

0.68
(0.1 rs)

o.'73
(0.098)

0.78
(0.06 r)

0.80
(0.0r6)

0.7 |

(0.127)
0.74

(0. r l9)
0.78

(0. r08)
0.84

(0.046)

0.73
(0.t22)

u.t I
(0.rrr)

0.8 r

(0.083)
0.85

(0.025)

0.75
(0.1 l 2)

0.79
(0.09.s)

0.84
(0.0-50)

0.85
(0.01-5)

0.79
(0. r04)

0.67
(0.122)

0.69
(0.ll7)

0.73
(0. r00)

0.79
(0.034)

0.68
(0.1 l7)

0.72
(0. I 03)

0.76
(0.076)

0.80
(0.0r9)

0.50

0.70

0.90

0.30

0.90

0..50

0.70

0.90

0.30

0.50

0.70

-500
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1000 0.30

0.s0

0.70

0.90

Averagc

2.s0 0.30

0.-50

0.70

0.90

-s00 0.30

0.50

0.70

0.90

i000 0.30

0.50

0.70

0.90

Average

0.70
(0. I 00)

0.7-s

(0.07-5)

0.80
(0.034)

0.80
(0.01 l)

0.7-5

(0.093)

0.66
(0. r r6)

0.69
(0. r 09)

0.73
(0.089)

0.77
(0.029)

0.67
(0. r 08)

0.7 r

(0.096)
0.'76

(0.0s8)
0.78

(0.0 r 6)

0.69
(0.093)

0.73
(0.07 r )

0.78
(0.034)

0.78
(0.0 il )

0.73
(0.088)

0.70
(0.106)

0.'74
(0.08-5)

0.19
(0.046)

0.80
(0.0r 3)

0.74
(0.098)

0.65
(0. r 20)

0.68
(0.1 r 6)

o.'72
(0.096)

0.'77
(0.040)

0.66
(0.I ló)

0.70
(0. r0r)

0.75
(0.069)

0.78
(0.0 r 9)

0.68
(0. r 02)

0.72
(0.082)

0.77
(0.043)

0.78
(0.013)

0.072

0.9 r 0.90
(0.006) (0.004)
0.91 0.90

(0.004) (0.004)
0.91 0.91

(0.003) (0.003)
0.93 0.91

(0.002) (0.003)

0.92 0.9r
(0.009) (0.007)

0.92 0.91
(0.009) (0.009)
0.91 0.91

(0.008) (0.009)
0.92 0.91

(0.007) (0.007)
0.93 0.9 r

(0.00s) (0.00.5)

0.9 r 0.91
(0.007) (0.006)

0.9 r 0.9 r

(0.006) (0.00-5)

0.92 0.9 r

(0.00s) (0.00s)
0.93 0.9 r

(0.003) (0.004)

0.9 r 0.9 r

(0.005) (0.004)
0.9 r 0.9 r

(0.004) (0.004)
0.92 0.91

(0.003) (0.003)
0.93 0.9 r

(0.002) (0.003)

0.s0 0.91
(0.008) (0.006)

0.9 r 0.90
(0.006) (0.005)
0.91 0.90

(0.00s) (o.Oos)

0.91 0-9 r
(0.004) (0.004)
0.93 0.9 r

(0.003) (0.003)

0.92 0.9 r

(0.00e) (0.008)

0.()2 0.91
(o.ol l) (o.ol l)

0.9 r 0.9 r

(0.0 r 0) (0.009)
0.92 0.9 r

(0.008) (0.008)
0.93 0.91

(0.006) (0.006)

0.9 r 0.91
(o.oo8) (o.oo7)

0.9 r 0.9 r

(0.006) (0.006)
0.92 0.9r

(0.00s) (0.006)
0.93 0.9 r

(o.oo4) (o.oo4)

0.91 0.9 r

(0.006) (0.00-5)

0.9 r 0.9 r

(0.004) (0.004)
0.92 0.9r

(0.004) (0.004)
0.93 0.9 r

(0.003) (0.003)

0.92 0.9t

0.82 0.68 0.80
(0.0 r 5) (0.008) (0.0s2)

0.8 r 0.69 0.80
(0.0r 7) (0.007) (0.04r )
0.79 0.7 t 0.80

(o.o2o) (0.006) (0.032)
0.69 0.73 o;79

(o.o2o) (o.oos) (0.026)

0.7'7 0.70 0.78
(0.0.59) (0.023) (0.07,s)

0.84 0.69 0.69
(0.021) (0.01s) (0.136)
0.83 0.7 r o.-7 t

(0.023) (0.0 r 4) (0. il 0)
0.8 r 0.72 0.74

(0.022) (0.012) (0.077)
0.72 0.'74 0.75

(0.037) (0.0r0) (0.0-s9)

0.84 0.69 0.74
(0.0r7) (0.0r0) (0.092)
0.83 0.70 0.7s

(0.0r9) (0.0r0) (0.070)
0.82 0.'72 0.76

(0.0 r 8) (0.008) (0.0s0)
0.71 0.74 0.76

(0.032) (0.007) (0.039)

0.84 0.69 0.77
(0.0r4) (0.007) (0.0-56)

0.83 0.70 0.77
(0.0r6) (0.007) (0.043)
0.82 0.72 rJ.77

(0.0 r4) (0.006) (0.034)
0.70 0;74 0.76

(0.027) (0.005) (0.028)

0.75
(0.086)

0.78 0.7 r

(0.00e) (0.007) (0.09s) (0.062) (0.020)

Note: MCAR - Missing Completely At Random;MNAR
Latent intercept-slope correlation;N = Sample size; Rel =

- Missing Not At Random; Com =
Reliability of the observed indicator.
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Table 5

Cottficlence Intervctls (957o)for the Average Corn¡tarative Fit Inclex (CFI)Values.for All Latent
Growth Interactirnt Moclels (Po¡tulatiotz Value oJ'Latenr Interaction Paranrcter Equal to 2.0) For
the Three Missirtg Data Conditions (Complete, MCAR, MNAR).

Complete MCAIì MNAR

Corr Wen f)uncan Schurnacker Wen Duncan Schurnacker Wen Duncan Schumacker

0.20

0.50 0.899

0.901

0.884

0.9 t6

0.909

0.91 I

0.909

0.91I

0.900

0.901

0.705

0.73-5

0.491

r.003

0.778

0.802

0.836

0.844

0.730

0.751

0.-566

0.994

0.8 r4

0.826

0.848

0.852

0.754

0.76ó

0.634

0.966

0.848

0.8-52

0.849

0.8-51

0.655

0.685

0.47 t

0.929

0.739

0.761

0.787

0.793

0.670

0.690

o.692

0.'728

0.493

0.987

0.764

0.796

0.833

0.847

0.718

0.742

0.7-s9

0.781

0.802

0.8 r8

0.847

0.853

0.'742

0.758

0.783

0.'79'7

0.836

0.844

0.849

0.851

0.652

0.688

0.673

0.'70'7

0.716

0.744

0.785

0.795

0.668

0.692

0.692

0.728

0.724

0.756

0.747

0.'773

0.730

0.750

0;762

0.778

0.783

0.797

0.784

0.796

0.745

0.755

0.'796

0.804

0.807

0.8t3

0.807

0.813

0.7-s8

0.762

0.692

0.728

0.736

0.764

0.750

0.770

0.772

0.788

0.762

0.778

1000 0.30

0.50

0.70

0.90

0.30

0.50

0.70

0.90

0.30

0.9 r9 0.888

0.92 r 0.892

0.909 0.8'72

0.9il 0.908

0.909 0.899

0.9 r r 0.901

0.91 9 0.899

0.92 l 0.901

0.9 r9 0.889

0.921 0.89 r

0.909 0.878

0.91 l 0.902

0.9 r 0 0.900

0.910 0.900

0.920 0.900

0.920 0.900

0 920 0.890

0.920 0.890

0.9 r0 0.882

0.910 0.898

0.9 r 0 0.900

0.9 t0 0.900

0.920 0.900

0.920 0.900

0.909

0.91 I

0.909

0.911

0.909

0.9rI
0.929

0.93 t

0.909

0.91I

0.9 r8 0.888

0.922 0.892

0.908 0.867

0.912 0.913

0.909 0.899

0.9 r r 0.901

0.9 r9 0.899

0.92t 0.90r

0.9 r9 0.889

0.92t 0.89 r

0.909 0.889

0.9rr 0.89t

0.909 0.899

0.9rl 0.90t

0.920 0.900

0.920 0.901

0.9 r 9 0.890

0.921 0.890

0.909 0.890

0.9r I 0.890

0.9 r0 0.900

0.9 r0 0.900

0.920 0.900

0.920 0.900

0.908 0.898

0.9t2 0.902

0.909 0.899

0.9 il 0.901

0.909 0.909

0.91l 0.911

0.9 r9 0.909

0.921 0.9il

0.909 0.899

0.9r I 0-901

0;797 0.638

0.803 0.642

0.766 0.6s8

o.'t74 0.662

0.-t t4 0.688

0.726 0.692

0.1187 0.709

0.693 0.71I

0.789 0.639

o.792 0.641

0.768 0.6-59

0.172 0.661

0.716 0.689

0;724 0.691

0.688 0.709

0.692 0.71l

0.789 0.639

0.79t 0.641

0.769 0.660

0.77 | 0.66 I

0.708 0.690

0;7 t2 0.690

0.689 0.7 t 0

0.69 r 0.7 r0

0.8 r 7 0.678

0.823 0.682

0.807 0.688

0.813 0.692

0.786 0.708

0.794 0.7 t2
0.706 0.729

0.714 0.731

0.8 r8 0.679

0.822 0.681

0.30

0.50

0.70

0.90

0.30

0.s0

0.70

0.90

L
U

L
U

L
U

L
U

L
U

L
U

L
U

L
U

L
U

L
U

L
U

L

U

L
U

L
U

L
U

L
U

L
U
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0.-50

0.70

0.90

1000 0.30

0.9 r 0 0.888

0.9il 0 9r2

0.9 t0 0.910

0.9 l0 0.91 0

0.930 0.910

0.930 0.9 t 0

0.9 r0 0.900

0.9 r0 0.900

0.9 r 0 0.892

0.910 0.908

0.9r0 0.910

0.9 r0 0.9 i0
0.930 0 9 r0

0.930 0.910

0.9 r9

0.92r

0.909

0.91I

0.91 9

0.92t
0.929

0.931

0.909

0.9r r

0.892

0.928

0.909

0.9t I

0.909

0.91r

0.909 0.9 r0

0.9il 0.911

0.9 r 0 0.900

0.911 0.920

0.920 0-9 r0

0.920 0.9 r0

0.930 0.910

0.930 0.9r 0

0.9r0 0.9r0

0.910 0.9r0

0.910 0.902

0.910 0.9r8

0.920 0.9 r 0

0.920 0.9 t 0

0.930 0.9 r0

0.930 0.91 0

0.909 0.899

0.9 I I 0.901

0.909 0.909

0.9r l 0.911

0.930 0.9 r0

0.930 0.91l

0.910 0.900

0.9 r0 0.900

0.910 0.900

0.9 r 0 0.900

0.9t0 0.9I0
0.9 l0 0.9 r 0

0.930 0.910

0.930 0.910

0.9 r8 0.908

0.922 0.9t2
0.909 0.909

0.91I 0.9tI
0.9 r 9 0.909

0.921 0.91t

0.929 0.909

0.93 r 0.9r l

0.909 0.909

0.9il 0.9r r

0.909 0.909

0.911 0.91I

0.920 0.909

0.92t 0.9r r

0.930 0.9 r 0

0.930 0.910

0.9r0 0.9I0
0.9r0 0.9r0

0.910 0.9r0

0.9 r0 0.9 r0

0.920 0.9 r0

0.920 0.9 t0
0.930 0.910

0.930 0.9 r0

0.808 0.689

0.812 0.691

0.788 0.709

0.792 0.71 I

0.698 0.729

0.702 0.73 r

0.819 0.680

0.82 r 0.68 r

0.809 0.690

0.81 I 0.690

0.789 0.7 r 0

0.79t 0.710

0.689 0.730

0.691 0.730

0.837 0.688

0.843 0.692

0.827 0.708

0.833 0.1t2

0.807 0.7 r8

0.813 0.722

0.71-5 0.^Ì39

0.'725 0.141

0.838 0.689

0.842 0.69 r

0.828 0.699

0.832 0.70 r

0.818 0.7 t9

0.822 0;72t

0.707 0.739

0.713 0.741

0.839 0.690

0.841 0.690

0.829 0.700

0.83 r 0.700

0.819 0.720

0.821 0.720

0.698 0.'740

0.702 0.740

0.-s0

0.70

0.90

0.30

0.50

0.70

0.90

0.30

0.50

0.'70

0.90

0.-528

0.932

0.775

0.785

0.799

0.801

0.694

0.70(¡

0.-59-s

0.905

0.798

0.802

0.799

0.80 r

0.646

0.674

0.466

0.914

0.7 t9

0.741

0.766

0.774

0.661

0.619

0.-s t 3

0.907

0.75-s

0.765

0.779

0.781

0.684

0.696

0.584

0.876

0.778

0.782

0.779

0.78 r

0.710

0.73 r

0.'752

0.768

0.798

0.802

0.692

0.708

0.734

0.746

0.787

0.793

0.'799

0.801

0.633

0.667

0.663

0.(¡97

0.706

0.734

0.764

0.776

0.648

0.672

0.690

0.710

0.'743

0.75'7

0.778

0.782

0.673

0.687

0.714

0,726

0.7(¡7

0.7'Ì3

0.779

0.781

0.77 4

0.786

0.785

0.795

0.786

0.194

0.79'7

0.803

0.797

0.803

0.798

0.802

0.788

0.792

0.672

0.708

0.69-s

0.725

0.730

0.750

0.742

0.7-s8

0.731

0.749

0.743

0.757

0.755

0.76-5

0.7-s6

0.764

0.766

0.774

0.767

0.773

0.768

0.772

0.758

0.762

L
U

L
U

L
U

L
U

L
U

L
U

L
U

0.70 250 L
U

L
U

L
U

L
U

L
U

L
U

L
U

L
U

L
U

L
U

L
U

L
U

500

1000 0.30

0.50

0.70

0.90

Note: MCAR = Missing Completely At Random; MNAR - Missing Not At Random; Con =
Latent intercept-slope colrelation; N = Sample size; Rel = Reliability of the observed indicator; L
= Lower 95Vo limit; U = Upper 95Vo limil
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Table 6
Analysis of Variance Results with Cont¡tarative Fit hulex (CFI) Valttes as the Dependent Variable, vvith Latent
Model Tvpe, LaÍenÍ Intercept-Slope Correltttion, Santple Siz.e, ancl Retiabitit-tt of Observecl Indicators as
Betvveen-Sub.iects Fctctr¡rs, For the Three Missirtg Data Corulitions (Contplete, MCAR, MNAR).

Model Ellèct Complctc Data
F-value Partial

7
eta-

F-value Partial
1

etâ-
F-value Partial

)
eta-

MCAR Data MNAR Data
dt

Corrected Model

Latcnt Interaction Modcl 2

Colrelation (Corr) 2

Sample Siz-c (N) 2

Reliability (Rel) 3

Latent Model X Corr 4

LatcntMoclel XN 4

Latcnt Model X Rel 6

10'7 13599.94

625752.50

6000.76

2934.51

21817.36

14691.94

2940.86

13231.16

1.95

51.55

2 r 8.60

8.66

15.23

226.78

1.58 ns

2.15

.l -'t¿

.702

.022

.01I

.t t0

. 100

.o22

.130

.000

.001

.002

.000

.002

.005

.000

,000

12805.37

591603.27

5003.64

2923.65

19681.14

t23n.34

2881.55

12102.99

1.54

45.56

192.60

8.19

61.59

187.52

2.34

2.22

.722 4456.85 .501

Corr X N

Corr X Rel

NXReI

Latcnt Modcl X Corr X N

Latent Model X Corr X Rel

LatcntModel XNXReI
CorrXNXRel

120586.55 .331

l3l il .6l .052

3984.76 .jtl
-543 r .93 .033

9606.90 .015

5535.91 .045

25305.06 .242

16.88 .000

250.26 .003

596.95 .007

31 .64 .001

1128.14 .028

441 .91 .0 t I

7.65 .000

9.49 .000

4

6

6

8

't2

12

12

.693

.019

.0r I

.100

.08s

.02t

.121

.000

.00 |

.002

.000

.00 r

.004

.000

.000LatentModel X CorrX NX Rel 24

Error 531703

Note: MCAR = Missing Completely At Random; MNAR - Missing Not At Random; Corr = Latent intercept-
slope correlation; N = Sample size; Rel = Reliability of the observed indicator. The symbol "X" represents an
interaction between two factors.
All effects are significant at the p < 0.01 level.
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Table l
Average Nornwl Fit Index (NFI) Values (with Standard Deviatiort in ¡tarentheses).t'òr All Latent
Growth Interactirn Models (Po¡tulation Value oÍ'Latent Interûction Paranteter Ecltral to 2.0) For
Those Sintulotions TInt Convergecl, For the Three Missirtg Data Cotzclitions (Conqtlete, MCAR,
MNAR).

lìelCorr Conlplctc l)ata MCAIì Data MNAIì Data
Duncan Schurnacker Duncan Schumacker Wen Duncan Schumacker

0.20 250 0.30 0.90 0.87
(0.012) (0.0r3)
0.89 0.87

(0.0r r) (0.009)
0.89 0.88

(0.008) (0.008)
0.91 0.89

(0.005) (0.006)

0.9 r 0.88
(0.00e) (0.008)
0.90 0.88

(0.009) (0.006)
0.90 0.89

(0.00s) (0.00s)
0.92 0.90

(0.004) (0.00s)

0.92 0.88
(0.007) (0.00-s)

0.90 0.87
(0.007) (0.004)
0.90 0.89

(0.004) (0.004)
0.92 0.90

(0.003) (0.003)

0.90 0.88
(0.0r 2) (0.0r3)

0.89 0.88
(0.0r 0) (0.009)
0.89 0.89

(0.008) (0.008)
0.90 0.89

(0.007) (0.007)
0.91 0.90

(0.00.5) (0.006)

0.90 0.89
(0.007) (0.006)
0.90 0.90

(0.006) (0.006)
0.91 0.90

(0.00s) (0.00_5)

0.89 0.86
(0.0r3) (0.0r5)
0.89 0.8ó

(0.0 r 2) (0.01 I )

0.89 0.88
(0.009) (0.009)

0.9 r 0.89
(0.006) (0.007)

0.91 0.87
(0.0 r 0) (0.009)
0.90 0.88

(0.009) (0.007)
0.90 0.89

(0.006) (0.006)
0.92 0.90

(0.004) (0.00s)

0.9 r 0.88
(0.008) (0.006)
0.90 0.88

(0.008) (0.00s)
0.90 0.89

(0.004) (0.004)
0.92 0.90

(0.003) (0.003)

0.90 0.88
(0.013) (0.0r.5)

0.89 0.87
(0.0r r) (0.0r r)
0.89 0.88

(0.010) (0.0r 0)
0.89 0.89
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0.90 0.89

(0.008) (0.008)
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0.75
(0.0e2)

0.66
(0. r l-5)

0.69
(0.108)

0.73
(0.0s9)

o.77
(0.029¡

0.6'7
(0. r 07)

0.11
(0.0r0)

0.^t6
(0.058)

0.78
(0.0 r6)

0.69
(0.093)

0.73
(0.07 r )

0.78
(0.034)

0.78
(0.01 l)
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0.80
(0.0 r 9)
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(0.106)

0.14
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0.79
(0.046)

0.80
(0.0 r 3)

0.74
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(0. r r9)
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(0. r r4)
0.72

(0.094)
0.77

(0.039)

0.(16
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0.70
(0.r0r)

0.7-s

(0.069)
0.78

(0.0 r 9)

0.68
(0.r0r)

0.72
(0.082)

0.77
(0.043)

0.78
(0.0r3)

0.72

lnteraction Effects in

0.77 0.71
(0.094) (0.059) (0.022)
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Latent Growth Models

0.70 0.73 0.'79
(0.02-s) (0.007) (0.037)

0.82 0.67 0.80
(0.0r.5) (0.008) (0.0_5 r )

0.80 0.69 0.80
(0.0r7) (0.007) (0.040)
0.79 0.7t 0.80

(0.020) (0.006) (0.032)
0.69 0.'73 rJ.',lg

(0.020) (0.00.5) (0.026)

0.16 0.70 0.78
(0.0ss) (0.02-5) (0.074)

0.82 0.67 0.69
(0.020) (0.0r-s) (0.133)

0.8 r 0.69 0.7 t
(0.022) (0.0r3) (0. t07)
0.80 0.'7 r 0.74

(0.02 r ) (o.o r2) (0.07.s)
0.7 t 0.73 0.75

(0.036) (0.009) (0.0-56)

0.83 0.68 0.74
(0.0r6) (0.0r0) (0.091)
0.82 0.70 0.75

(0.0 I 9) (0.01 0) (0.069)
0.81 0.t2 0.76

(0.0 r 8) (0.008) (0.04e)
0.71 0.73 0.76

(0.03 r) (0.007) (0.038)

0.83 0.68 0.77
(0.0r4) (0.007) (0.0s6)
0.82 0.70 0.7'Ì

(0.0r 6) (0.007) (0.043)
0.81 0.'Ì2 0.77

(0.0r4) (0.006) (0.034)
0.70 0.73 0.76

(0.026) (0.00s) (0.027)

0.7-s
(0.07.s)

Note: MCAR - Missing Completely
Latent intelcept-slope con'elation; N

At Random; MNAR - Missing Not At Random; Con =
= Sample size; Rel = Reliability of the observed indicator.
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Table 8

Conficlence InÍenals (950/o) J'or the Average Normecl Fit Incler (NFI) Values .for Atl Latunr Grotyth Interctt:tion
Models (Populatiott Value of Latettl Interacfir¡tt Pctranteter Equal ro 2.0) For the Three Mis.sittg Data Conlitions
( Cont¡tlere, M CAR, MNAR).
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Complete = Complete Data; MCAR - Missing Complete at Random Data: MNAR = Missing Not at Random Data:
Corr = Correlation between latent intercepts and slopes: N = Sample sizc; Rel = Reliability ol'the observed
indicator.; L = Lower 95o/o lintit; U = Upper 957o lintit.
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Table 9

Analysis of Variance Results with Normed Fit Index (NFI) Values as the Depenclent Variable,
with Latent Model Type, Laterú Interce¡tt-Slope Cr¡rrelcttiotz, Sant¡tle Size, ancl Reliability of
Observecl htdicators as Betvveen-Subjects FacÍors, For tlrc Three Missing Dato Contlitions
(Conqtlete, MCAR, MNAR).

Modcl El'lect Complete Data MCAR Data MNAR Data

dl' F-value Paltial
1

eta-
F-value Partial

1
eta-

F-value Partial
1

eta-

Corrected Model

Latent Interaction Modcl

Correlation (Corr)

Santplc Size (N)

Rcliability (Rel)

Lal.cnt Model X Corr

Latent Model X N

Latent Modcl X Rel

Corr X N

Corr X Rel

NXReI

Latent Model X Corr X N

Latent Model X Corr X Rel

LatcntModelXNXRcl

CorrXNXRel

Latent Model X Corr X N X Rel

Error

101

2

2

2

-1

4

4

6

4

6

6

8

12

12

12

24

53 r 703

12496.21

561513.46

5285.12

8322.38

25114.02

15188.22

138 r.96

1 r 858.39

22.33

59.1 6

304.89

6.r8

72.57

187.84

r.92 (.03)

2.06

.1t5

.619

.0 r9

.030

.127

.103

.010

.l 18

.000

.00 r

.003

.000

.002

.004

.000

.000

.699

.663

.016

.037

.t22

.089

.008

. 106

.000

.00 r

.003

.000

.001

.004

.000

.000

11478.01

519361.46

4191.62

r 0067.8 r

24461.69

I 2885.76

1042.62

10441.35

25.92

47.33

265.02

5.8 r

58.80

162.12

2.86

2.04

4961.38 .528

141548.31 .314

14700.13 .058

9148.44 .039

4365.73 .027

10153.64 .019

3563.60 .029

25221.59 .242

27.29 .000

262.64 .003

890.49 .01I

28.14 .000

| 159.34 .028

351.52 .009

7.86 .000

10.39 .00 r

Note: MCAR = Missing Completely At Random;MNAR - Missing Not At Random;
Latent intercept-slope conelation; N = Sample size; Rel = Reliability of the observed
The symbol "X" represents an interaction between two factors.
AII effects are significant at the p < 0.01 level.

Corr =
indicator.
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Table l0
Average Gooclness of Fit Index (GFI) Values (with Standard Deviatiorz in ¡tarentheses).for AII
Latent Growtlt Interactirn Models (Po¡tulation Value of Latent Interaction Paratneter Equal to
2.0) For Those Sitnulations That Cornerged, For the Tlree Missirtg Data Conditirnts (Contplete,
MCAR, MNAR).
Corr N lìel Cor¡plcte Data MCAIì Data MNAR Data

Duncan Schumacker Wen I)uncan Schumacker Wen Duncan Schumacker

0.20 250

r 000

0.8-s 0.86
(0.01s) (0.0r0)
0.84 0.8-s

(0.024) (0.008)
0.86 0.85

(0.0r5) (0.008)
0.8s 0.82

(0.008) (0.00e)

0.86 0.88
(0.0 r 2) (0.007)
0.8-5 0.87

(0.024) (0.005)
0.87 0.86

(0.008) (0.006)
0.87 0.83

(0.00s) (0.006)

0.86 0.88
(0.009) (0.00.s)

0.86 0.88
(0.02s) (0.004)
0.88 0.87

(0.004) (0.004)
0.88 0.84

(0.003) (0.004)

0.86 0.86
(0.0 r 9) (0.02 r )

0.84 0.86
(0.02 r) (0.009)
0.86 0.86

(0.022) (0.008)
0.86 0.8-5

(0.008) (0.009)
0.86 0.82

(0.008) (0.009)

0.86 0.88
(0.021 ) (0.00(r)

0.88 0.87
(0.0 r 4) (0.006)
0.88 0.86

(0.00-s) (0.006)
0.87 0.83

(0.00-5) (0.006)

0.84 0.85
(0.0 r 7) (0.01 2)
0.83 0.84

(0.024) (0.010)
0.8-s 0.84

(0.0 r 8) (0.0 r 0)
0.84 0.81

(0.009) 0.0t l)

0.8s 0.87
(0.0r3) (0.008)
0.8s 0.87

(0.024) (0.007)
0.87 0.86

(0.01 r) (0.007)
0.8(r 0.83

(0.006) (0.007)

0.86 0.88
(0.0r0) (0.006)
0.86 0.88

(0.024) (0.00s)
0.88 0.87

(0.00-5) (0.00.s)

0.87 0.84
(0.004) (0.00s)

0.86 0.85
(0.02 r ) (0.023)

0.83 0.8-5

(0.02r) (0.011)
0.84 0.84

(0.024) (0.010)
0.8.s 0.83

(0.0r2) (0.0r r )

0.85 0.8 r

(0.009) (0.0rr)

0.8-s 0.87
(0.021 ) (0.007)
0.87 0.87

(0.0r8) (0.007)
0.87 0.86

(0.007) (0.007)
0.87 0.83

(0.006) (0.008)

Average

250

0.30

0.-50

0.70

0.90

0.30

0..50

0.70

0.90

0.30

0.50

0.70

0.90

0.30

0.-50

0.70

0.90

0.30

0.-50

0.70

0.90

0.77
(0.0s8)

0.78
(0.0-s7)

0.80
(0.0s4)

0.84
(0.026)

0.77
(0.052)

0.79
(0.0-s2)

0.81
(0.04s)

0.8-s
(0.0r7)

0.78
(0.046)

0.80
(0.044)

0.83
(0.033)

0.8s
(0.0r0)

0.81
(0.0.s3)

0.'73
(0.0s6)

rJ.74

(0.0-54)

0.76
(0.0.s0)

0.80
(0.02'1)

0.73
(0.049)

0.75
(0.047)

0.77
(0.040)

0.80
(0.017)

0.16
(0.06 i )

0.77
(0.0-s9)

0.79
(0.0s7)

0.83
(0.032)

0.77
(0.05s)

0.79
(0.0-s4)

0.8 r

(0.049)
0.8.s

(0.02 t )

0.78
(0.049)

0.80
(0.047)

0.82
(0.038)

0.8-s

(0.0r 2)

0.80
(0.055)

0.73
(0.0s9)

0.73
(0.057)

0.7-5

(0.0s4)
0.79

(0.033)

0.73
(0.0_53)

0.74
(0.0s0)

0.76
(0.046)

0.80
(0.021 )

0.76 0.83 0.8,5
(0.020) (0.0il ) (0.063)
0.73 0.82 0.87

(0.02-s) (0.011) (0.0.s.s)

0.'73 0.'79 0.90
(0.039) (0.0r2) (0.038)
0.72 0.7-s 0.92

(0.024) (0.0r2) (0.022)

..50

0.17 0.84
(0.0r6) (0.007)
0.74 0.83

(0.0r 9) (0.008)
0.74 0.81

(0.03e) (0.009)
0.74 0.77

(0.0 r 9) (0.008)

0.77 0.8-5
(o.ol2) (o.oos)
0.74 0.84

(0.0 r -5) (0.00-5)

0.74 0.82
(0.039) (0.007)
0.75 0.77

(0.016) (0.006)

0.87
(0.042)

0.90
(0.032)

0.92
(0.022)

0.93
(0.012)

0.89
(0.028)

0.9r
(0.021 )

0.92
(0.01s)

0.93
(0.008)

0;74 0.81 0.90
(0.029) (0.032) (0.042)

0.7(t 0.83 0.83
(0.023) (0.0r2) (0.0.s9)
0.73 0.81 0.85

(0.022) (0.0r 2) (0.049)
0.ó9 0.79 0.87

(0.027) (0.01 3) (0.03(r)
0.7 r 0.75 0.9 t

(0.033) (0.0r 3) (0.020)

0.77 0.8.s 0.8-s
(0.020) (0.008) (0.043)
0.73 0.83 0.87

(0.022) (0.009) (0.034)
0.69 0.8 r 0.89

(0.023) (0.010) (0.024)
0.72 0.76 0.91

(0.026) (0.009) (0.01-5)
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.70

t 000 0.30

0.50

0.70

0.90

Avcragc

250 0.30

0.50

0.70

0.90

500 0.30

0.-50

0.70

0.90

t000 0-30

0.50

0.70

0.90

Average

0.87 0.89
(0.02 r) (0.004)
0.89 0.88

(0.008) (0.004)
0.89 0.87

(0.004) (0.004)
0.88 0.84

(0.003) (0.004)

0.87 0.86
(0.0 r 9) (0.022)

0.8-5 0.86
(0.020) (0.009)
0.86 0.86

(0.018) (0.009)
0.86 0.85

(0.009) (o.oOe)

0.86 0.82
(0.008) (0.009)

0.87 0.88
(0.0r 8) (0.006)
0.88 0.87

(0.0 r 2) (0.006)
0.88 0.8ó

(0.006) (0.006)
0.88 0.83

(0.00-s) (0.006)

0.88 0.8c)

(0.01 s) (0.004)
0.89 0.88

(0.008) (0.004)
0.89 0.87

(0.004) (0.004)
0.88 0.84

(0.003) (0.004)

0.87 0.86
(0.017) (0.022)

0.86 0.88
(0.02 r) (o.o0s)
0.89 0.88

(0.010) (0.00.s)

0.86 0.87
(0.004) (0.00s)
0.88 0.83

(0.004) (0.00.5)

0.86 0.85
(0.022) (0.023)

0.84 0.8-s
(0.02 r) (0.01 I )
0.8-5 0.85

(0.020) (0.0rr)
0.85 0.84

(0.0r 2) (0.0r l )
0.8-5 0.81

(0.0 r 0) (0.01 I )

0.86 0.87
(0.0 r 8) (0.007)
0.87 0.87

(0.0r4) (0.007)
0.88 0.86

(0.007) (0.007)
0.87 0.82

(0.006) (0.008)

0.87 0.88
(0.0r 6) (0.00s)
0.89 0.88

(0.010) (0.00.5)

0.89 0.87
(0.004) (0.005)
0.88 0.83

(0.004) (0.00-5)

0.87 0.8-s
(0.012) (0.024\

0.72 0.80 0.8-5

0.74
(0.040)

0.76
(0.038)

0.78
(0.030)

0.81
(0.012)

0.76
(0.049)

0.7 t

(0.0-s.5)

0.72
(0.0-s3)

0.74
(0.0s0)

0.77
(0.029)

0.72
(0.047)

0.73
(0.046)

0.75
(0.040)

0.78
(0.0 r 9)

0.72
(0.039)

0.73
(0.036)

o.'76
(0.030)

0.78
(0.0 r 3)

0.74
(0.047)

0.'14
(0.044)

0.7-5

(0.042)
0.78

(0.03s)
0.8 r

(0.0r4)

0.76
(0.052)

0.71
(0.0.59)

0.72
(0.0.56)

0.73
(0.0_54)

0.77
(0.035)

0.71
(0.0s2)

o.'72
(0.049)

0.74
(0.044)

0.78
(0.023)

0.71
(0.043)

0.73
(0.039)

0.75
(0.03s)

0.78
(0.016)

0.78 0.8-5 0.87
(0.01 9) (0.006) (0.030)
0.'74 0.84 0.88

(0.02 r) (0.006) (0.023)
0.70 0.8 t 0.90

(0.022) (0.008) (0.0t 6)
o.'72 0.76 0.91

(0.020) (0.007) (0.012)

0.73 0.81 0.88
(0.03-5) (0.03-s) (0.042)

0.7(t 0.83 0.81
(0.022) (0.012) (0.0s9)
0.73 0.81 0.82

(0.023) (0.013) (0.0-52)

0.69 0.79 0.8.s
(0.023) (0.013) (0.03e)
0.70 0.74 0.88

(0.040) (0.014) (0.026)

0.77 0.84 0.83
(0.018) (0.008) (0.047)
0.74 0.83 0.84

(0.020) (0.009) (0.038)
0.70 0.80 0.86

(0.0 r 8) (0.010) (0.028)
0.7 | 0.75 0.88

(0.03s) (0.010) (0.018)

0.7rì 0.85 0.84
(0.0r6) (0.006) (0.033)
0.74 0.84 0.8s

(0.020) (0.007) (0.026)
0.7 r 0.81 0.86

(0.0 r4) (0.008) (0.020)
0.72 0.'76 0.89

(0.029) (0.008) (0.013)

o.74
(0.0.50) (0.038) (0.038) (0.043)

Note: MCAR = Missing Completely At Random;MNAR = Missing Not At Random; Corr =
Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.
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Table 11

Averctge RooÍ Mean Scluare Error of Approxintation (RMSEA) ValLtes (with Starzdttrd Deviation
itt ¡tarentheses).for All LatenÍ Grovvth Interctction Models (Population Vc¿lue of Latent
Interaction Pctranteter Equul to 2.0) For the Three Missirtg Dctta Conclitions (Conrplete, MCAR,
MNAR).
Corr N lìel Complc¡.e Datû MCAIì Data MNAIì l)ata

Wcn Duncan Schuntacker Wen Duncan Schumackcr Wen Duncan Schnmacker

0.20 250

r000

0.r r 0.13
(0.009) (0.00fì)
0.13 0.14

(0.008) (0.006)
0.14 0.l5

(0.006) (0.006)
0.15 0.1'7

(0.00-5) (0.00-s)

0.1 I 0.t3
(0.007) (0.004)

0. t 3 0.14
(0.006) (0.004)
0.14 0.1-5

(0.004) (0.004)
0.1-s 0.17

(0.003) (0.004)

0.1 I 0.t3
(0.005) (0.003)
0.13 0.r4

(0.005) (0.003)
0.14 0.15

(0.002) (0.003)
0. t -s 0.17

(0.002) (0.003)

0.13 0.1.5
(0.0ì 8) (0.01s)

0.12 0. i3
(0.007) (0.006)

0. r3 0.14
(0.006) (0.006)
0.r4 0.15

(0.00.s) (0.006)
0.16 0.t7

(0.00s) (0.005)

o.l2 0.13
(0.00s) (0.004)
0.13 0.14

(0.004) (0.004)
0.14 0.1_5

(0.004) (0.004)
0.16 0.t7

(0.003) (0.004)

0. l l 0.13
(0.010) (0.010)
0.r3 0.14

(0.009) (0.007)
0.l4 0. 15

(0.007) (0.007)
0.16 0. 17

(0.006) (0.007)

0.1 I 0.13
(0.008) (0.00s)
0.13 0.t4

(0.007) (0.00-s)
0.r4 0.15

(0.004) (0.004)
0. r 5 o.l7

(0.004) (0.004)

0.1 I 0.13
(0.006) (0.003)
0.13 0.14

(0.006) (0.003)
0.l4 0.l-5

(0.003) (0.003)
0.1-5 0.17

(0.003) (0.003)

0.r3 0.r5
(0.018) (0.016)

0.12 0.13
(0.009) (0.007)

0.1 3 0. 14

(0.007) (0.007)
0.t4 0.l-s

(0.006) (0.007)
0.16 0.t7

(0.006) (0.006)

o.l2 0. r3
(0.006) (0.00s)
0.13 0.14

(0.00-5) (0.005)
0.14 0.15

(0.004) (0.00-5)

0. 16 0.t7
(0.004) (0.004)

500

Avcrage

250

0.30

0.-s0

0.70

0.90

0.30

0.50

0.70

0.90

0.30

0.-50

0.70

0.90

0.30

0.-s0

0.70

0.90

0.30

0.50

0.70

0.90

0.s9
(0.21 6)

0.-56
(0.2 r6)

0.49
(0. r 7.s)

0.39
(0.0_51)

0.-58

(0.2t2)
0.-51

(0. r 83)
0.44

(0.t22)
0.38

(0.02e)

0.5-s
(0. 184)

0.48
(0.t42)

0.40
(0.067)

0.38
(0.0r 5)

0.48
(0. r 70)

0.68
(0.21 6)

0.64
(0.200)

u.) /
(0. r66)

0.49
(0.038)

0.6'7
(0.208)

0.6 r

(0. I 79)
0.52

(0. r r2)
0.48

(0.022)

0.-s9

(0.217\
0.56

(0.206)
0.5 r

(0.rer)
0.40

(0.070)

0.58
(0.214)

0.53
(0. I 97)

0.46
(0.148)

0.38
(0.03.5)

0.-56

(0. r 97)
0.50

(0. r 70)
0.42

(0.09 r )

0.38
(0.020)

0.49
(0.17e)

0.67
(0.2t4)

0.6-s
(0.210)

0.59
(0.r8r)

0.49
(0.0-56)

0.68
(0.213)

0.62
(0. I 89)

0.-5-5

(0.142)
0.48

(0.027)

0.16 0.21
(0.0 r 0) (0.00.5)

0. 18 0.22
(0.013) (0.00-s)

0.23 0.24
(0.0r8) (0.005)
0.29 0.28

(0.01 I ) (0.006)

0.3'7
(0. l s3)

0.31
(0.r2r)

0.25
(0.07 r )

0.23
(0.044)

0.16 0.2t 0.30
(0.007) (0.004) (0.079)
0.r8 0.22 0.26

(0.008) (0.004) (0.0-s9)

0.23 0.24 0.23
(0.01 6) (0.004) (0.039)
0.29 0.28 0.22

(0.009) (0.004) (0.023)

0.16 0.21 0.28
(0.00s) (0.002) (0.04s)

0. t8 0.22 0.25
(0.00-5) (0.002) (0.03.5)
0.23 0.24 0.22

(0.0rs) (0.003) (0.026)
0.29 0.28 0.22

(0.009) (0.003) (0.01 6)

0.22 0.24 0.26
(0.0.53) (0.026) (0.084)

0.16 0.22 0.42
(0.01 0) (0.006) (0. r -57)
0.18 0.23 0.36

(0.0r 0) (0.00s) (0. r03)
0.2r 0.25 0.31

(0.0 r 4) (0.006) (0.062)
0.30 0.28 0.25

(0.0 r 7) (0.006) (0.033)

0.16 0.22 0.36
(0.008) (0.004) (0.092)
0.18 0.23 0.32

(0.009) (0.004) (0.0-59)

0.21 0.25 0.29
(0.0il ) (0.004) (0.040)
0.30 0.28 0.25

(0.0r 4) (0.004) (0.02_5)

.50



r000 0.30

0.50

0.70

0.90

Averagc

.70 2-50 0.30

0..50

0.70

0.90

500 0.30

0.-50

0.70

0.90

1000 0.30

0.-50

0.70

0.90

Avcrage

0.1 2 0.1 3

(0.004) (0.003)
0. 13 0. 14

(0.003) (0.003)
0. 14 0. 15

(0.002) (0.003)
0.16 0.1'7

(0.002) (0.003)

0.14 0.t5
(0.0r3) (0.0r7)

0.12 0.13
(0.007) (0.006)

0. 13 0. 14

(0.006) (0.006)
0.t4 0.1-s

(0.005) (0.006)
0. 1 6 0.17

(0.00.s) (0.00.s)

0.r3 0.r3
(0.00s) (0.004)
0.13 0.14

(0.004) (0.004)
0. 14 0. l5

(0.004) (0.004)
0. 16 0.17

(0.003) (0.004)

0. r 3 0.13
(0.003) (0.003)

0. t3 0.14
(0.003) (0.003)
0.14 0.15

(0.002) (0.003)
0. 16 0.t7

(0.002) (0.003)

0.r4 0.r5
(0.0r3) (0.0r 7)

0. 12 0. 13

(0.004) (0.003)
0.13 0.t4

(0.003) (0.003)
0. 14 0. l5

(0.003) (0.003)
0. r 6 0.t7

(0.003) (0.003)

0.14 0.15
(0.0r4) (0.0r7)

0.r2 0.13
(0.008) (0.007)
0.13 0.t4

(0.007) (0.007)
0.14 0.15

(0.006) (0.007)
0. r 6 0.17

(0.006) (0.007)

0.12 0. t 3
(0.006) (0.005)
0.13 0.14

(0.00.s) (0.00-s)

0.t4 0.1-5

(0.004) (0.005)
0. 16 0.t7

(0.004) (0.004)

0. r 3 0.13
(0.004) (0.003)
0.13 0.14

(0.003) (0.003)
0.r4 0.15

(0.003) (0.003)
0.16 0.t7

(0.003) (0.003)

0.r4 0.15
(0.0r4) (0.0r8)

o.23 0.2s

0.65
(0.182)

0.57
(0. r 38)

0.-s0
(0.0ó3)

0.47
(0.01s)

0.57
(0. r64)

0.70
(0.211)

0.67
(0. r 99)

0.60
(0. i68)

0.52
(0.039)

0.69
(0. r 96)

0.64
(0.177)

0.56
(0. 109)

0.-s2
(0.023)

0.68
(0. r7 r)

0.6r
(0. r30)

0.53
(0.063)

0.-s l
(0.0r -5)

0.60
(0. r-56)

0.(r(r
(0. 194)

0.59
(0. r s7)

0.,51

(0.085)
0.48

(0.017)

0.-58

(0.173)

0.70
(0.214)

0.6'7
(0.208)

0.62
({J.t77)

0.53
(0.0-58)

0.70
(0.21 I )

0.65
(0. I 85)

0.57
(0.t29)

0.52
(0.028)

0.69
(0.18-s)

0.62
(0. l -s0)

0.-54

(0.080)
0.-51

(0.0 r 8)

0.6r
(0. r 66)

0.35
(0.090)
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0. 16 0.22 0.33
(0.007) (0.003) (0.0.s.5)

0. 18 0.23 0.30
(0.008) (0.003) (0.038)
0.21 0.25 0.28

(0.010) (0.003) (0.026)
0.30 0.28 0.2s

(0.01I) (0.003) (0.02r)

0.23 0.24 0.3 r

(0.062) (0.026) (0.086)

0. 16 0.22 0.4s
(0.0il) (0.006) (0.161)
0.r8 0.23 0.40

(0.011) (0.006) (0.120)
0.21 0.25 0.35

(0.012) (0.006) (0.066)
0.30 0.29 0.29

(0.022) (0.006) (0.046)

0. 16 0.22 0.40
(0.008) (0.004) (0. t 02)
0.r8 0.23 0.37

(0.009) (0.004) (0.069)
0.20 0.2-s 0.33

(0.0 r0) (0.004) (0.042)
0.30 0.29 0.29

(0.018) (0.004) (0.02-5)

0.16 0.22 0.37
(0.007) (0.003) (0.059)
0.l8 0.23 0.35

(0.008) (0.003) (0.04 r )

0.20 0.25 0.33
(0.007) (0.003) (0.029)

0.3 r 0.29 0.28
(0.0r -5) (0.003) (0.0t 9)

(0.063) (0.026)

Note: MCAR = Missing Completely
Latent intercept-slope correlation ; N

At Random; MNAR
= Sample size; Rel =

- Missing Not At Random; Corr =
Reliability of the observed indicator.
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Table 12

Chi-Scluare Dffirence Values for the Wen and Dutzcan Lafent Growth Interaction Moclels For
the Three Missirtg Dttta Conditions (Cont¡tlete, MCAR, MNAR).

Corr N Complctc MCAR MNAR

0.20 250

Rcl

500

0.30

0.50

0.10

0.90

0.30

0.s0

0.10

0.90

0.30

0.50

0.70

0.90

0.30

0.s0

0.70

0.90

0.30

0.s0

0.70

0.90

r r 9.85

80.60

52.69

r r 7.81

243.61

142.88

r 03.50

237.59

482.96

272.61

208.91

477.29

48.52

2s.90

36.01

\ 12.65

76.67

42.79

73.12

227.47

81.59

62.81

39.57

86.r9

r80.r l

109.11

16.92

t]4.16

355.38

205.62

t54.04

350.93

40.40

22.23

26.15

82.91

63.95

33.93

53.92

166.1t

366.14

308.46

132.29

- 121 .83

125.44

625.40

215.66

-291.36

1451.34

1253.65

364.31

-625.40

413.74

382.54

325.21

- 131.98

820.90

151.46

671.45

-362.34

r 000

0.-50 250

500
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I000 0.30

0.50

0.70

0.90

0.70 250 0.30

0.s0

0.10

0.90

500 0.30

0.-50

0.70

0.90

1000 0.30

0.50

0.70

0.90

t21.19

80.98

145.32

455.69

30.1 8

17.30

21.81

109.93

39.19

25.32

55.5 r

219.80

55.08

43.43

111 .11

439.96

102.04

60.63

107.44

335.71

26.28

14.99

20.16

80.14

35.29

20.19

41.10

161.94

48.00

34.23

82.22

323.49

1643.06

r 48-5. I 3

1356.42

-866.32

454.48

421.51

386.24

-94.63

914.05

866.04

198.54

-315.15

1836.34

t735.67

t 665.09

-806.3-5

Note: MCAR = Missing Completely At Random; MNAR - Missing Not At Random; Con =
Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.
All differences are significant atp < 0.05.
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Table 13

At¡erage Unstanclartlizetl Laten[ Slo¡te Interaction Paranteter Estimate 0'n)with Stanclarcl
Deviation in Parentheses,.f'or All Latent Growth Interacîion Moclels (Po¡tulation Value oJ'Lotent
húeraction Pctrcmteter Equal to 2.0) For Those Sitnulatiotts That Convergetl For the Three
Missing Data Conditions (Complete, MCAR, MNAR).

Corr Completc Data MCAR Data MNAIì Data
Duncan Schunracker Wen Duncan Schurnacker Wcn Duncan Schumlckcr

0.20 250

1000

33..s8 2.90
(r79.830) (18.456)

12.7(¡ 0.94
(34.093) (0.208)
5.44 0.89

(20s.3 r 9) (0. I 66)
r.93 0.84

(0.257) (0. r 28)

24.44 l.M
( r76.830) (7.698)

9.00 0.93
(9.9(r3) (0. I43)

2. r8 0.88
(0.7e3) (0.rr3)
1.93 0.84

(0. r76) (0.088)

r8.08 1.09
(31.93r) (r.90r)
8.12 0.93

(7..s r 3) (0. l o0)
2.13 0.88

(0. r88) (0.079)
r.93 0.84

(0. r2-5) (0.063)

8.63 r.59
(73.s80) (16.196)
3.77 0.9 r

(60.868) (0. l -s4)
r.99 0.88

(0.276) (0.t26)
r.9 r 0.86

(0.203) (0.099)

4.85 0.9s
(6.23-s) (0.190)
2.22 0.91

(1.794) (0. r 08)
1.97 0.87

(0. r 92) (0.088)
r .91 0.86

(0.r41) (0.069)

250

0.30

0.-s0

0.70

0.90

0.30

0.-s0

0.70

0.90

0.30

0.-50

0.70

0.90

0.30

0._50

0.70

0.90

0.30

0.50

0.70

0.90

t.4l
(2.s43)

L48
(0.261)

1.63
(0.22s)

1.84
(0. l -s6)

1.37
(0.213)

1.50
(0. r92)

1.6-5

(0. r 56)
1.8-s

(0.r r0)

r.38
(0. r,50)

t.50
(0.133)

l (16

(0.I l2)
1.85

(0.075)

1.4'7

(4.'790)
1.52

(0.248)
l.(16

(0.206)
r.85

(0.t47)

L4r
(0. I 96)

1.53
(0. r 7.s)

t.67
(0. r46)

r.86
(0.r03)

45.54
(273.1,s0)

t6.75
(68.808)

4.2t
(90.073)

t.94
(0.30s)

2-5.06

(ó 1.869)
9.67

(t2.763)
2.33

(4.769)
r.93

(0.206)

18.18
(23.463)

8.26
(8.377)

2.13
(0.34-5)

r.93
(0.t41)

l0.l -5

(48.388)
3.56

( rs.878)
2.01

(0.877)
I .91

(0.24t)

5.77
(18.936)

2.38
(2.668)

r.98
(0.22s)

l.9 r

(0. I 66)

4.63
(30.346)

I.O'7

(4.768)
0.89

(0. r96)
0.8-s

(0.rsl)

2.05
( r.s.483)

0.99
(3.72s)

0.88
(0. r 34)

0.84
(0.103)

t.2l
(4.537)

0.93
(0. r l9)

0.88
(0.0e3)

0.84
(0.074)

3.1-s

(r04.t72)
0.91

(0. 184)
0.88

(0.1.50)

0.86
(0.1 l6)

1.00
(3.014)

0.91
(0.126)

0.88
(0. t03)

0.86
(0.082)

1,57
(8.7-59)

1.4'7

(0.3 l6)
l,62

(0.263)
1.84

(0. I 83)

r.38
(0.707)

1.50
(0.223)

1.64
(0. I 84)

r.8.5
(0. t 29)

r.38
(0. l7-5)

l.-s I
(0.ls6)

1.66
(0. r3 r)

1.8-s

(0.08e)

1.46
(4.760)

l.-51

(0.298)
t.65

(0.239)
1.84

(0.172)

1.40
(0.230)

l.-53
(0.207)

1.67
(0. r 70)

1.8-s

(0.r2r)

0.01
(0. I l2)

0.0r
(0.03)
0.03

(0.063)
0. l8

(0.0_53)

0.87 0. ls 0.06
(5.262) (0.042) (0.067)
0.33 0.14 0.06

(2.660) (0.028) (0.060)
0.13 0. 14 0.0'l

(0.676) (0.023) (0.04.5)

0.23 0. 14 0.08
(0.067) (0.0 r 9) (0.043)

0..56 0. 14 0.05
(4.s28) (0.023) (0.035)

0. 16 0.14 0.0-s
(2.930) (0.0 r 9) (0.026)

0. r 0 0. 14 0.06
(0. r 92) (0.0 t 6) (0.023)
0.24 0.14 0.08

(0.0-53) (0.0r3) (0.019)

0.25
( r .887)

0.08
(0.8 r 6)

0. r0
(0. 171 )

0.2-s

(0.047)

0. 14 0.05
(0.0 r 6) (0.0 r 8)
0.14 0.06

(0.0r3) (0.01-5)

0. 14 0.07
(0.0r2) (0.0r4)

0. 14 0.08
(0.0 r0) (0.0t4)

0.04 0.t2 0.01
(0.659) (0.02s) (0.019)
0.02 0.12 0.01

(0.rr8) (0.02r) (0.021)
0.04 0. 12 0.02

(0.067) (0.0r7) (0.0r9)
0. 17 0.t2 0.03

(0.069) (0.0r4) (0.018)

o.r2 0.01
(0.0r6) (0.0r4)
0.12 0.01

(0.0 r 4) (0.01 3)
0. 12 0.02

(0.0r2) (0.013)
0.t2 0.03

(0.0r0) (0.018)
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.70

1000 0.30

0.-50

0.70

0.90

2s0 0.30

0.-50

0.70

0.90

500 0.30

0..s0

0.70

0.90

r 000 0.30

0.50

0.70

0.90

4.2'7 r.03
(4.218) (6.421)
2.05 0.90

(0.328) (0.073)
1.97 0.87

(0.r3r) (0.06r)
r.90 0.85

(0.09rÌ) (0.049)

3.09 0.96
(7. r 6s) (0.280)
2.04 0.92

( 1.645) (0.136)
r.95 0.89

(0.2.50) (0. r r3)
r .91 0.88

(0. r8-5) (0.090)

2.43 0.94
(2.244) (0.1 r 3)
1.95 0 91

(0.334) (0.093)
r.93 0.89

(0. r69) (0.078)
l.9l 0.87

(0.t26) (0.062)

2.27 0.94
( 1.30.s) (0.078)
1.95 0.91

(0.202) (0.063)
1.93 0.89

(0.rr7) (0.0s4)
1.90 0.87

(0.087) (0.043)

4.58 0.94
(.s.715) (o.l-5s)
2.07 0.90

(0.669) (0.086)
],97 0.87

(0. r-54) (0.072)
r.90 0.85

(0. il 4) (0.0s7)

3.99 r .02
(27.2s4) (2.2s0)
2.18 0.92

(2.360) (0. r6l)
l.gs 0.90

(0.3 r2) (0. r 34)
r.9 r 0.88

(0.2r8) (0.r08)

2.55 0 9-s

(2.602) (0. r 31)
2.47 0.91

(36.736) (0.rr0)
t.94 0.89

(0. r99) (0.092)
t.gt 0.87

(0. I 46) (0.073 )

2.33 0.94
( r.491) (0.091)
1.9-5 0.9 t

(0.249) (0.07-5)

1.94 0.89
(0. r 37) (0.064)
l.90 0.87

(0. r 02) (0.0s r )

t.4l
(0. r 38)

r.54
(0.t24)

r.68
(0.10 r)

1.86
(0.07 r )

1.45
(0.264)

1.56
(0.238)

t.69
(0.202)

1.86
(0.15 r)

1.46
(0. r 86)

1.57
(0.164)

1.70
(0. l 37)

l.87
(0.097)

1.46
(0. r 30)

1.5'7

(0.I l3)
t.70

(0.097)
r.87

(0.068)

t.4l
(0. r-s8)

l.-s3
(0. r46)

r.ó8
(0.1 r 8)

1.86
(0.084)

1.45
(0.313)

r.-55

(0.282)
t.69

(0.236)
1.85

(0. r93)

1.4(t

(0.218)
1,57

(0.r9r)
1'70

(0. r59)
1.87

(0. r r3)

t.46
(0. r.52)

1.57
(0. r3.5)

.70
(0. r r4)

1.87
(0.080)

0.003 o.tz 0.01
(0.009) (0.01r) (0.009)
0.01 0.t2 0.01

(0.0r9) (0.0r0) (0.0r0)
0.03 0.12 0.02

(0.06r) (0.008) (0.009)
0.18 0.t2 0.03

(0.039) (0.007) (0.0r9)

0.04 0. il 0.003
(0.3s8) (0.02 r) (0.023)
0.02 0. il 0.01

(0.080) (0.018) (0.0r5)
0.0-s 0.1 I 0.01

(0.06s) (0.01_5) (0.0r2)
0.14 0.1 I 0.21

(0.069) (0.0 r 2) (9.40)

0.01 0.r1 0.003
(0.0s4) (0.0 r4) (0.02 r )

0.02 0.1 I 0.01
(0.046) (0.0r2) (o.oo8)
0.04 0.1 I 0.01

(0.0.s6) (0.010) (0.009)
0. 15 0. l r 0.02

(0.0-56) (0.008) (0.0r r)

0.01 0. il 0.003
(0.020) (0.009) (0.006)
0.01 0.1 I 0.0r

(0.029) (o.oo8) (0.006)
0.03 0.rr 0.0r

(0.042) (0.007) (0.006)
0. 16 0.1 r 0.02

(0.04-5) (0.006) (0.012)

Note: MCAR = Missing Completely At Random; MNAR - Missing Not At Random;Corr =
Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.
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Table l4
CottJictence InÍen,als (95%)Í'or the Un,çtandartliz.ecl Parctnteter Estimate of the Latettt Slope Interacfion.for All
Latent Growth Interac'Íiott ModeLs (PopuLation Value oJ'Lotent Interctction Peronteter Eelual to 2.0) For the Three
Missing Data Conclitiotrs (Conrplete, MCAR, MNAR).

Con'ìplctc Data

Rel Wen Duncan Schun.racker

MCAIì Dara

Wen Duncan Schumacke¡ Wcn

MNAIì Data

Duncan Schur¡r¿rcker

0.20 2-s0 U

L

U

L

U

L

U

L

U

L

U

L

U

L

U

L

U

L

U

L

U

L

U

L

0.30

0..50

0.70

0.90

0.30

0.70

0.90

0.30

0.50

0.70

0.90

0.30

0.70

0.90

0.30

55.872 5.188

l r.2tì8 0.612

16.986 l .054

8.534 0.826

30.892 0.91 l

-20.012 0.869

1.962 0.t15(r

t.89tì 0.824

39.1)40

8.940

9.873

8.127

2.250

2.1 l0

1,915

l .915

20.0s9

r6.t0l

rì.586

7.654

2.142

2.1 l8

r.938

t.922

17.751

-0.491

I1.315

-3.775

2.024

1.956

1.935

r.885

5-397

4.303

2.115

0.765

1.023

0.tì37

0.rì90

0.870

0.84tì

0.832

r.208

0,912

0.999

0.86 t

0.8rìs

0.875

0.844

0.836

3.s98

-0.418

r.066

0.75s

0.896

0.tì64

0.872

0.848

0.967

0.933

85.008 9.015

6-072 0.245

26.692 3.353

6.808 -1.213

17.225 0.9 l 8

-8.805 0.862

1.984 0.872

1.896 0.828

7.705

3.83-5

l 308

0.692

3 r.373

18.747

10.972

rì.368

2.817

l.843

1.95 t

1.909

t9.8t4

l(r.486

8.8(r5

7.655

2.1-55

2.10-5

1.94t

I .919

3.630

0.470

L370

0.6 r0

0.894

0.866

0.851

0.829

l.-s38

0.882

0.939

0.92t

0.887

0.873

0.84-s

0.83-5

t7.142 18.202

3.1-s8 -11.902

5.854 0.937

1.266 0.883

2.137 0.902

1.883 0.tì58

1.945 0.877

t.tì75 0.843

1.725

1.09-5

2.020

0.940

1.658

1.602

1.8-59

I .821

1.389

I .351

r.890

I.I IO

t.664

1.63(r

l.860

t.840

1.389

1.37 I

t.7'70

1.230

1.667

r.653

1.855

1.84-5

2.0(t4

0.876

2.030

1.010

I .(r8(r

r.ó34

1.868

t.832

1.421

r.393

2.836

0.304

2.069

0.871

1.658

1.582

l.866

I .814

t.452

1.308

I .-s23

1.477

1.659

t.621

1.8(r3

1.837

r.393

1.36'/

L52 t

t.499

1.670

l .651

I.tl5(r

l.tì44

2.148

0.772

l.-s-53

1.461

l.ótì-5

1.615

1.865

I .815

1.424

1.311

1.582

0.1 58

0.689

-0.029

0.221

0.039

0.239

0.221

0.993

0.t27

0.440

-0. l 20

0.1 tfl

0.082

0.24-s

0.23-5

0.378

0.t22

0. l3-5

0.025

0.1 t2

0.0rì8

0.2-53

0.247

0.129

-0.049

0.036

0.004

0.049

0.03 r

0.1 79

0.1(r I

0.021

-0.001

0.1 5(r

0.144

0.t44

0.1 36

0.r43

0.r37

0.143

0.1 37

0.t42

0. r3rì

0.t42

0.1 38

0.142

0.t38

0.141

0.1 39

0.141

0.r39

0.1 41

0.1 39

0.141

0.1 39

0.141

0.1 39

0.1 23

0.1 r7

0.t23

0.1l7

0,122

0.t I tì

0.t22

0.tl8

0.122

0.1i8

0.069

0.051

0.068

0.052

0.076

0.064

0.0{ì6

0.074

0.053

0.047

0.0-s3

0.048

0.062

0.058

0.082

0.078

0.05 r

0.049

0.061

0.0-59

0.071

0.069

0.08 r

0.079

0.013

0.007

0.01 3

0.007

0.023

0.017

0.032

0.02tì

0.01l

0.009

I 000

2500.-50 U

L

U

L

U

L

U

L

U

L

500
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0.70

0.90

0.30

0.70

0.90

0.30

0.50

0.70

0.-s0

0.70

0.90

0.90

2.377

2.063

1.987

I .9-s3

t.922

1.898

4.531

4.009

2.070

2.030

1.978

1.962

1.90(r

1.894

3.979

2.201

2.244

1.836

L98 r

I.9t9

I.933

l.887

2.627

!-!-1\

1.979

1.921

1.94.s

r .915

t.921

1.899

1.0-s2

0.7(rtÌ

0.878

0.tì62

0.866

0.8_54

1.428

0.632

r.000

0.800

0.¡ì74

0.8ó(r

0.8-s3

0.847

0.995

0.92.s

I .107

0.733

0.904

0.876

0.891

0.869

0.950

0.930

1.041

0.779

0.897

0.883

0.875

0.865

0.945

0.935

0.998

0.822

0.893

0.ft87

0.873

0.867

1.890

1.170

l.6tì3

1.657

1.869

I .8-5 I

1.419

1.401

t.796

1.284

1.686

l,674

1.864

1.8-5(r

1.483

t.4ll
2.046

1.074

1.715

1.665

r.879

L841

t.416

1.444

t.907

I.233

t.712

l.ó88

r.879

I .861

1.4ó8

1.452

r.802

1.338

t.to6

1.694

t.874

1.866

2.652

2.1 08

2.003

1.957

1.927

1.893

4.993

1.16'7

2.1r8

2.022

l .981

1.9-s9

L908

I.tì92

7.928

0.052

2.521

1.839

1.995

1.90-s

1.942

1.879

2.81(r

2.285

6.223

- 1.283

ì.960

l'920

1.925

t.89-s

2.438

2.222

1.9(r8

1.932

1.950

1.930

r.907

r.893

0.923

0.897

0.891

0.869

0.868

0.852

0.951

0.929

0.906

0.894

0.875

0.865

0.854

0.t14(r

1.34-s

0.69s

0.943

0.897

0.919

0.titìl

0.896

0.864

0.963

0.937

0.921

0.899

0.899

0.88 r

0.878

0.8(r3

0-947

0.933

0.9 l -s

0.90-s

0.895

0.88-5

0.874

0.866

t .551

1.509

t.687

1.653

1.862

1.838

1.421

1.399

1.541

I .519

r.689

1.67 l

1.8ó6

1.854

1.49.s

1.405

I .591

1.509

t.724

1.6-56

1.878

t.822

1.482

1.438

l.-s90

1.550

I .116

L684

r.882

r.858

L47t

t.449

r.580

1..560

t.708

1.692

1.u76

I.864

0.01 3

0.007

0.036

0.024

0.t85

0.17-s

0.004

0.002

0.01I

0.009

0.034

0.026

0.r83

0.t71

0.0rì8

-0.00tì

0.03 r

0.009

0.0s9

0.041

0.t49

0.13t

0.01 5

0.00-5

0.024

0.016

0.045

0.035

0.1 55

0.145

0.01I

0.009

0.0t2

0.008

0.033

0.027

0.1(r3

0.157

0.121

0.1 l9

o.t2t
0.il9
0.t21

0.1 I9

0.12 r

0.1 l9

0.121

0.1 t9

0.121

0.1 l9

0.121

0.1 20

0.1t3

0.1 07

0.il2
0.1 08

0.1 l2

0. r0rì

0.1 l2

0. l0tì

0.1I I

0.r09

0.lll
0.r09

0.lll
0.r09

0.1il
0.1 09

0.01 I

0.009

0.021

0.0 r9

0.032

0.028

0.01 r

0.009

0.01 I

0.009

0.021

0.0r9

0.031

0.029

0.00(r

0.000

0.012

0.008

0.012

0.008

1.469

-1.049

0.00s

0.00 r

0.01r

0.009

O.OI I

0.009

0.02 r

0.019

U

L

U

L

U

L

U

L

U

L

U

L

U

L

o-70 U

L

U

L

U

L

U

t_

500 0.30 U

L

U

L

U

L

U

L

looo o.3o u 
2.3-s l

L z.lsq

o.-50 u r.9o:
L l.s3z

o.7o u l.q¡z
L 1.923

o.9o u 
l.gr.l-s

L r.sss

0.1 r l 0.003

0.109 0.003

0.1I I 0.010

0. r 09 0.010

0.1I I 0.0t0

0.1l0 0.010

0.110 0.02r

0.019

Complcte = Complcte Data: MCAR = Missing Complete at Random Data: MNAR - Missing Not at Random Data:
Corr = Correlation between latenl. intercepts and slopes; N = Samplc sizc; Rel = Reliabilily ol'the observed
indicator.; L = Lower 95o/o limtt; U = Upper 95Vo li:rrut.
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Table 15

Mean Square Errc¡r Bias of the Unstanclardiz,ed Latent Slope Interaction Paranteter Estintate (1t2fl.for
AII Latent Growth Interactirm Models (Po¡tulation Value of Latent Interctction Paranrcter Equal to 2.0)
Fr¡r tlrc Three Missittg Data Conclitions (Cont¡tlete, MCAR, MNAR).

Complcte Data MCAIì Data MNAIì Dara
Schurnacker Schuuracker Duncan Schulnacker

0.20 250 78267 -01

t6390.26
42-s83.60

10.-59

66695.51
7 428.t5
30.66
1o.24

23682.0(r

381_5.27

14.98

r0.08

14624.92
4811.21)

r 0.61

1.44

2l-5I.(r4
227.75
l0.l I

ó-s3.5tì

14.42
9.91

7.t3

1628.80

174.89

8.70
6.t5

5tì5.74
I 1.07
tì.33

-s.99

15.27
10.-s2

8.16

5.90

2096.34
6.t2
4.88
3.86

459.45

5.89
4.78
3.80

58.32

5.78
4.42
3.17

290.77
4.17
3.49
2.91

-5.19
4.05
3.42
:.o I

45.12

3.98
3.40
2.tì-5

-s. l0
3.-55

3.04
2.57

4-06
3.47
2.1)9

2.54

3.98

3.42
2-96
2.52

405.28
4.50
3.6'7

3.0-s

(-l.58

4.t9
3.-50

2.10

4.66
4.08
3.41

2.60

79.89
4.33
3.-59

i.ò+

4.54
4.01

3.41

2.69

4.36
3.87
.1. -1 I

?.64

4.61

4.03
3.43
3.69

4.25
_J. /O

3.19
2.52

4.08
3.6 r

3.09
145

3.90
3.90
3.90
3.94

3.92

3.91
3.90
3.94

3.9 r

3.90
3.89

3.93

4.00
4.00
3.99
4.00

4.00
3.99
3.98
3.99

3.99

3.9tì

3.98

3.98

4.03
4.00
4.00

I 105.3(r

4.02
4.00
4.00
4.00

4.00
4.00
3.99
400

I 000

0.30
0.50
0.70
0.90

0.30
0.50
0.70
0.90

0.30
0.50
0.70
0.90

0.30
0.-s0

0.70
0.90

0.30
0.50
0.70
0.90

0.30
0.50
0.70
0.90

0.30
0.50
0.70
0.90

0.30
0.50
0.70
0.90

0.30
0.-50

0.70
0.90

28.93
4.34
3.s6
2.tì I

4.1I
4.13
3.45

2.64

4.61

4.04
3.39
2.54

82.1 3

4.1 5

-1.+ö

?.75

4.46
3.9s
3.3(r
2.66

3.8-s

3-29

2.62

4.44
3.90
3.32
2.9s

4.1 8

3.70
3.r3
2.48

4.04
3.57

3.0(r
2.43

8.22

5,92
2.97

2.53

129123.07 8286.00
23280.62 92.09
8664.61 4.9t)

r 0.86 3.9 I

43694,34 901.81
I 0070.78 19.t1
89.89 4.82
10.33 3.82

21044.35 179.58
49s9.39 5.82

r 6.70 4.7 4

10.15 3.78

t4952.97 10913.87
26t4.t6 4.2s
23.76 3.54
7.58 3.94

469t .7() l -5.34
38ó.97 4.08
10.29 3.4s
1.3t 2.88

143 t .05 4.96
32.81 4.00
10.00 3.4t
7.t6 2.86

3170-42 1305.90
398.69 3.60
9.01 3.08
6.25 2.s8

395.42 4.10
1361.8ó 3.50
tì.46 3.01
6.04 2._5-5

60.73 4.00
10.60 3.44

29.06 3.s6
9.89 3.52
4.02 3.-s0

3.2s 3.49

22.59 3.-55

tt.g7 3.52
3.69 3.50
3.22 3.49

6-66 3.5-s

4.31 3.5?
3.(ru 3.50
3.21 3.49

4.28 3.(r0
3.94 3.58
3.87 3..s7

3.39 3.-5(r

3.9n 3.59
3.97 3.58
3.88 3.s1
3.37 3.56

3.99 3.-s9

3.98 3.5tì
3 89 3.s7
3.37 3.-56

4.00 3.61

3.92 3.61
3.84 3.60
3.49 3.59

3.96 3.(; I

3.9-s 3.(r0
3.85 3.(r0
3.46 3.59

3.97 3.61

3.9(: 3.60
3.88 3.(f)
3.41 3.-s9

.50

l 000

l 000

Note: Complete = Completc Data condition; MCAR = Missing Completely At Random Data condition: MNAR = Missing
Not At Random Data condition; Corr = LatenL interceprsìope coûclation; N = Samplc sizo: Rel = Reliability ol'the observed
indicator.
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Table 16

Statzdctrcliz,ed Bias Estintates of the Unstandailizetl Lalent Slope Interaction Paranteter EsÍimate (1t4)
.fòr AII Latent Grovvth llrteractiotl Models (Population Value of Latent Interaction Pctratneter Equul to
2.0) For the Three Missing Datct Conditions (Com¡tlete, MCAR, MNAR).

Rci Colnplctc Data MCAIì Data MNAIì Data
Duncan Schunracker Wcn Duncan Schu¡nacker Duncan Schu¡nacker

0.20 2-50

0.50 250

> 1000 9.14
> 1000 -0.-sl
> 1000 -0.(rl
-0.03 -0.7-s

> 1000 0.69
0.1 8 -0.51

0.03 -0.61
-0.03 -0.75

> 1000 -0.41
0.15 -0.51
0.03 -0.61

-0.02 0.7-s

> 1000 30.01

> 1000 -0.61
-0.02 -0.78
-0.04 -0.93

0.05 -0.s7
-0.004 -0.67
-0.01 -0.78
-0.04 -0.93

0.06 t.97
0.004 -0.67
-0.0t -0.78
-0.04 -0.93

> 1000 -0.64
-0.06 -0.73
-0.03 -0.85
-0.04 - r .01

-0.04 -0.64
-0.04 -0.74
-0.03 -0.86

0.04 -1.0r

-0.02 -0.64
-0.02 -0.74

0.03 -O.tì(r

0.04 I .01

> 1000 178.82
> 1000 -0.46
> 1000 -0.(rl
-0.03 -0.75

> 1000 9.06
l 30 -0.0(r
0.41 -0.61
-0.03 -0.7-5

> 1000 -0.38
0.r4 -0.5I
0.03 -0.61
-0.03 -0.7s

> 1000 > 1000
t67.s3 -0.61
-0.02 -0.7¡l
-0.04 -0.93

124.00 -0.56
-0.01 -0.67
-0.01 -0.78
-0.04 -0.93

0.0(r -0.57
0.001 -0.61
-0.0 r -0.78
-0.04 -0.93

< -t000 -0.63
-0.88 -0.74
-0.03 -0.8-5

-0.04 -1.0t

-0.23 -0.64
> 1000 -0.74
-0.03 -0.8-5

-0.04 - LOl

-0.03 -0.64
-0.03 -0.74
-0.03 -0.8(r
-0.04 -r.0r

0.30
0.50
0.70
0.90

0.30
0.50
0.70
0.90

0.30
0..50

0.70
0.90

0.30
0..s0

0.70
0.90

0.30
0.50
0.70
0.90

0.30
0.50
0-70
0.90

0.30
0.-s0

0.70
0.90

0.30
0.50
0.70
0.90

0.30
0.s0
0.70
0.90

-0.3-s

-0.28
-0.21
-0. l0

-0.32
-o.27

0.20
-0. r0

-0.3 r

-0.26

-0. l9
-0.10

-0.3 r

-0.2(r
-0.20
0. r0

-0.31
-0.2-5

-0. l9
-0.09

-0.30
-0.2-5

-0. r8
-0.09

-0.29

-0.24
-0.1 8

-0.09

-0.28
-0.24
-0.r8
-0.09

-0.28
-o.24
-0. l8
-0.09

-0.36
-0.29

-0.22
-0.1 I

-0.32
-0.27
-0.20
-0.1 0

-0.31
-0.26
0.r9
-0.10

-0.32
-0.27
-0.21
-0.r0

-0.3 r

-0.26
-0. r9
-0.09

-0.30
-0.2s
-0. r9
-0.09

-0.30
-0.2-5

-0.19
-0.r0

-0.29
-0.24

-0. l8
-0.09

-0.28
-0.24
-0. l8
-0.09

<-t000
< -1000
< -1000
-149.96

< -1000
< -1000
-5 10.-s4

< -1000

> 1000 -8.67 -12.30
> t000 -7 .21 -7.89
> 1000 -8.9-5 -2t .69
-45.25 -ll.l7 -3.87

> 1000 -5.68 -6.53
> 1000 -7.18 -5.98
> 1000 -8.92 -5.13
-12.65 -il.19 -3.89

> 1000 --5.69 -6.43
> t000 -7 .'t6 --s.86

> 1000 -8.89 --5.1I
-6.41 -il.21 -3.91

> 1000 -13.00 -30.81
< -1000 -t0.93 -13.40
< -1000 -13.47 -9.48
< -1000 -l(r.70 -6.36

-8.99 - 13.6
-10.75 -il.38
- 13.4ó -9. l.s
-16;75 -6.40

l 000

2.s00.70

< -1000 -8.91 -12.14
< -1000 -10.800 -l 1.0(r

< -1000 -t3.42 -9.04
-4t.32 -16.73 -6.34

> t000 -|.4t -33.64
< -1000 -12.97 -19.89
< -t000 -16.10 -12.83
< - I 000 -20.32 -8.24

-10.78 -19.36
-12.86 -15.91
- 16.06 -12.25
-20.26 -8.23

I 000 < - 1000 - I 0.78 -17 .79
< -1000 -12.88 -15.02
-251.0-s -l(r.03 -12.13
< -1000 -20.26 -[ì.16

Note: Complete = Complete Data condition; MCAR - Missing Completely At Random Data conclition; MNAR = Missing
Not At Random Data condition; Corr = Latent intercepl.-slopc correlation; N = Samplc size: Rel = Reliability ol the obscrved
indicator.
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Table 17

Type I Error Rates For Those Sitrutlations (Frequencies in ParenTheses) That Cont,ergecl vvhen
tlrc Latent Slope Interaction Paranteter (y2fl was set Equal to 0 For the Three Missing Datct
Cotzditions (Complete, M CAR, MNAR).

Rcl Complctc l)ata MCAIì Data MNAIì Data
Wen Duncan Schumacker Wen Duncan Schumackcr Duncan Schumacker

0.300.20

0.-50

0.70

0.90

0.30

0.30

0.70

0.90

0.30

0.70

0.50

0.70

0.90

1000 0.30

0.-s0

0.70

0.90

0.30 0.09
(868) (427)
0.u 0.0-s

( r0e8) (257)
0.r4 0.03
(694) (r48)
0.0-5 0.02
(258) (ros)

0.37 0.07
(r060) (360)
0.28 0.04

(1389) (207)
0.17 0.02
(832) ( r 09)
0.04 0.0r
(204) (68)

0.43 0.06
(t248) (296)
0.33 0.03

(r6s3) (r4r)
0.18 0.02
(ezo) (78)
0.03 0.01
(r38) (3t)

0.15 0.04
(603) (2r2)
0.12 0.03
(608) (1s3)
0.09 0.03
(4s7) (t2'7)
0.05 0.02
(24s) (r07)

0.16 0.03
(647) (144)
0.15 0.02
(733) (112)
0.10 0.02
(4e3) (80)
0.04 0.02
(207) (85)

0.29 0.10
(824) (466)
0.22 0.0(r
(961) (301)

0.r5 0.04
('734) (203)

0.06 0.03
(320) (r40)

0.3r 0.08
(88s) (40.5)

0.25 0.05
(t 154) (246)
0.16 0.03
(783) ( I 70)
0.04 0.02
(2t9) (80)

0.37 0.07
(r069) (3s4)
0.28 0.04

(r38r) (208)
0.16 0.02
(800) ( r 0s)
0.04 0.0r
(r98) (.s8)

0.15 0.0-s
(581) (2s6)
0.72 0.04
(se3) (207)
0.09 0.03
(447) ( r.52)

0.0.5 0-03
(242) ( r2-s)

0.13 0.04
(s42) (r84)
0.14 0.03
(680) (r70)
0.09 0.02
(4s2) (l 13)

0.05 0.02
(227) (e9)

0.03
(133)
0.02
(r l2)
0.02

( il8)
0.03
(138)

0.02
(r r0)
0.02
(il r)
0.02
(r r2)
0.03
(t29)

0.02
(r il)
0.02
(l r3)
0.03
(r28)
0.03
(t24)

0.03
(134)
0.03
(r30)
0.03
(t23)
0.03
(l-53)

o.o2
(l l8)
0.02
(rr9)
0.02
(109)
0.02
(ll9)

0.03
(t42)
0.03
(r49)
0.03
(t26)
0.03
(143)

0.03

t37)
0.03
(r34)
0.02
(l 16)
0.03

( 140)

0.02
(l l7)
0.02
(107)
0.02
(e0)
0.02
(r20)

0.03
(t4'7)
0.02
(il8)
0.02
(r r0)
0.02
(r r8)

0.02
(l17)
0.02
(r r0)
0.03
(t24)
0.02
(t l0)

0.10
(320)
0.03
(r37)
0.0 r

(2s)
0.02
(il r)

0.05
(lss)
0.0 r

(2e)
0.00 r

(7)

0.01
(.53)

0.0r
(41)

0.00 r

(3)
0.00
(0)

0.003
( l7)

0.15
(426)
0.06

( r40)
0.01
(32)
0.02
(e2)

0.11
(276)

0.02
(37)

0.002
(7)

0.01
(3-s ¡

0.003
( t7)

0.004
(20)
0.0r
(36)
0.03
(r46)

0.00 r

(.s )

0.001
(4)

0.004
( t9)
0.04
(t71)

0.00
(0)

0.00 r

(4)
0.00 r

(4)
0.04
(177)

0.002
(e)

0.002
(e)

0.003
( l6)
0.0r
(27)

0.00
(0)

0.00 r

(3)
0.00r

(s)
0.004
(22)

0.04
(218)
0.0s
(26'7)

0.0-s
(263\
0.0s
(22e)

0.06
(277)
0.07
(330)
0.07
(37 I\
0.06
(315)

0.07
(370)
0.09
(454)
0.10
(522)
0.09
(425)

0.03
(r7r)
0.04

()))l

0.0-s

(241)
0.06
(308)

0.0-5

(23e)
0.0-5

(243)
0.07
(334)
0.09
(441)

0.90
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1000 0.30 0.21
(870)

0.-50 0.17
(823)

0.70 0.1I
(s30)

0.90 0.04
(r88)

.70 2-50 0.30 0.08
(3 r6)

0.-s0 0.09
(439)

0.70 0.07
(372)

0.90 0.04
(214)

500 0.30 0.08
(2e0)

0..s0 0.11
(s24)

0.'70 0.08
(420)

0.90 0.04
(213)

1000 0.30 0.09
(2es )

0.50 0.11
(567)

0.70 0.08
(4r8)

0.90 0.04

0.16 0.03
(665) ( r 60)
0.15 0.03
(7s-5) ( 137)

0.10 0.02
(s 14) (98)
0.04 0.02
(2t7) (83)

0.10 0.04
(39e) (22t)
0.10 0.04
(448) (173)
0.07 0.02
(3s8) (r r8)
0.04 0.02(2rs) (r r8)

0.07 0.03
(2e3) (139)
0.10 0.03
(466) (r33)
0.08 0.02
(391) (l l l)
0.0.5 0.02
(247) (l l8)

0.08 0.03
(2e6) (r23)
0.10 0.02
(487) (89)
0.08 0.0 r

(3e7) (72)
0.04 0.02

0.03
(139)
0.02
(e4)
0.01
(s7)
0.01
(.s3 )

0.03
(r63)
0.03
(r30)
0.02
(r02)
0.02
(r04)

0.02
(l t3)
0.02
(e7)
0.0r
(68)

0.02
(82)

0.02
(83)
0.01
(s8)
0.02
(73)
0.01

0.02
(l t6)
0.03
(134)
0.03
(r26)
0.02
(118)

0.02
(ll0)
0.02
(r 19)

0.02
(r08)
0.03
(r30)

0.02
( r0r)
0.02
(il3)
0.02
(l2r )

0.03
( r 3-5)

0.02
(120)
0.02
(120)
0.03

( 125)
0.02

0.03
(t24)
0.03
(r32)
0.03
(t3s)
0.03
(r3e)

0.02
(l l0)
0.02
(82)
0.02

( u0)
0.02
(l r7)

0.02
(9t ¡

0.02
(r06)
0.02
(100)
0.02
(t t2)

0.05
(123)
0.02
(108)
0.02
(r06)
0.03
(t23)

0.15
(389)
0.04
(e8)
0.0r
(38)
0.01
(40)

0.08
(r90)
0.0r
(t7)
0.0 r

(31)
0.002
(12)

0.07
(326)
0.08
(380)

0.09
(43e)
0.12
(622)

0.0-s

(238)
0.04
(196)
0.05
(2.s3)

0.06
(2ee)

0.0-s

(238)
0.07
(323)
0.06
(308)

0.09
(4s0)

0.07 0.00
(168) (0)
0.003 0.00
('7) (0)

0.00 i 0.00
(3) (0)
0.0r 0.00 t

(23) (7)

0.00 r

(4)
0.00r

(3)
0.003
( l4)

0.003
( l6)

0.00
(0)

0.00
(0)

0.0002
(l)

0.001
(4)

0.00
(0)

0.00
(0)

0.00
(0)

0.00
(0)

0.20
(.s83)

0.08
(206)
0.03
(84)
0.01
(38)

(20-5) (s7) ( | 16) (216) (94)

0.06
(3 lo)
0.09
(424)
0.10
(49't)
0.14
(7r3)

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr =
Latent intercept-slope corelation; N = Sample size; Rel = Reliability of the observed indicator.
A liberal condition is where the Type I error rate is above 0.75, and is presented in bold text; a
conservative condition is where the Type I error rate is below 0.25, and is presented in
underlined text.
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Appendix A

SAS Code for Generating the Latent Growth Data

libname fdata "C: \Ian\phD DisserLation,, ,.

libname temp "C: \Ian\temp" ,-

rur¡,'
OPTIONS mprint symbolgen;

%Ì4ÀCRO

COMPUTE (REPS, N, VüAVES, M-TNTX, V_fNTX, M_SLPX, V-SLPX, PHIX, M_iNIZ, V_íNLZ,
m_slpz, v_slpz, phiz,
m_i-nty, v_int.y, m_s1py, v_slpy, phiy, reI, pARM) ;

/****************************************************************************-**
********** DATA GENERATTON***************************
*******************************************************************************
*******x f
?do j = l- ?to &reps,'
data fdata. semt&j ;
array errx errxl-errx&n,- *arr"11zs for error terms,-
array ertz errzl-errz&n,.
array erry erryl-erry&n,-

array alphx a1phx1-al-phx&n; *arrays for ratent intercepts and slopes;
array betax betaxl-betax&n,-
array alphz alphzl-aIphz&n;
array betaz betazl-betaz&n,-
array alphy alphy1-alphy&n,-
array betay betayl -betay&n ;

array betaxz betaxzl-betaxz&n; *l-at.ent slope interaction arra-,,¡;

array var_x var_x1 -var_x&waves,-
arr ay var _z v at _zI -v ar_z &waves,.
array var_y var_yl-var_y&fÂraves ;
array var_xz var _x21, -var_xz&\,vaves ;
seedl=- 11;
seed2=-22;
seed3=-33;
seed(=-44 ¡

* generating the data ;
do i=l- to &n;

errx(i) = rannor(seedl); * error term for X, rooL of variance X random;
errz(i) = rârlnor(seed1); *error term for Z;
erry (i ) = I.âÐ.Ilor ( seedl ) ,' * error terln f or Y;
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alphx(i) = &m_intx +

betax(j-) = &m slpx +
rannor ( seed3 ) *sqrt ( &v_s1px)

alphz (i) = &m_intz
betaz(i) = &m_slpz

rannor (seed3 ) *sqrt (av_s1pz) ;
betaxz(i) = betax(i)
alphy(i) = &m_inty +

3*alphz (i) ;
betay(i) = &m_sIpy +

ranrtor (seed3 ) *sqrt (ev_slpy) +

k=0;

var_x ( 1 )

var_x (2 )

var_x ( 3 )

var_x (4 )

var_z (L)
var_z (2)
var_z (3)
var_z (4)

var_y ( 1 )

var_y (2 )

var_y (3 )

var_y (4 )

output;

alphx ( i )

alphx ( i )

alphx ( i )

alphx ( i )

alphz ( i )

alphz ( i )

alphz ( i )

al-phz (i )

alphy ( i )

alphy ( i )

alphy ( i )

alphy ( i )

+

+

+

+

0*betax(i)
1*betax(i)
2*betax(i)
3*betax(i)

0*betaz (i)
1*betaz (i)
2*betaz (i)
4 *bet.az (i )

0*betay (i)
1*betay ( i )

3*betay(i)
9*betay(i)

+

+

+
+

* generating the x and z means;
?do j = l- åto &reps,'
proc means data=fdata. semt&j ; var var_
run;
dat.a f data. mxt1,' set f data. mxtl; keep

proc means data=fdat.a. semt&j ; var var_x2;
run;
data f data . mxt2 ,' set f data . mxt2 ,- keep var

proc means data=fdata. semt&j ; var var_x3;
run;
data f data . mxt3 ,' set f data . rnxt3 ,- keep var

proc means data=fdaLa. semt&j ; var var_x4;
run,'
dat.a f data. mxt4 ,' set f data . rnxt4 ; keep var

Interaction Effects in

rannor (seed2) "sqrt (&v_intx) ,. *latent int.ercept
(sqrt(acorx) * alphx(i)) +
*latent slope X;
rannor (seed2) *sqrt (ev_intz) ; d'latent intercept
(sqrt (&corz) * alphz (i) ) +
*latent slope Z;
* betaz(i); * latent interaction of slopes;
rannor(seed2)*sqrt(&v inty) + 1*a1phx(i) +

(sqrt(&cory) " alphy(i)) +
L.5 *betax(i) + l-.4*betaz(í) + 2*betaxz(i);

rannor ( seed4 )

rannor ( seed¿ )

rannor (seed¿)
rannor ( seed4 )

*sqrt ( (1-are1¡ *1¡
*sqrt ( (1-erel¡ *3¡
*sqrt ( (1-crel) *s)
*sqrt ( (1-&re1¡ *9¡

+

+

+

+

+
+
+
+

+

+

+

+

+

+

+

end,'

keep var_xl-var_x&waves var 27,-war_z&waves var_y1-var_y&waves ;

?end;

rannor (seed4) *sqrt ( (l--erel¡ *1¡
rannor (seed4) *sqrt ( (1-arel) *3)
rannor (seed4) *sqrt ( (1-erel¡ *5¡
rannor (seed¿) "sqrt ( (1-Arel¡ *9¡

rannor (seed4) *sqrt ( (1-are1) *1¡
rannor(seed4) *sqrt ( (1-Arel¡ *3¡
rannor (seed4) *sqrt ( (1-arel¡ *5¡
rannor (seed4) *sqrt ( (1-arel¡ *9¡

x1; ods output summary=fdata.mxtl;

var x1 mean; run,-

ods output summary=fdata.mxt.2;

_x2_mean,' runr.

ods output summary=fdata.mxt.3 ;

x3_mean,' run,.

ods output summary=fdata.mxt4;

x4_mean,. run;
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proc means data=fdata.semt&j; var var_z1,- ods output summary=fdata.mztl
run;
dat.a fdata.mztl,- set fdata.mztl; keep var_z1_mean,. run,.

proc means data=fdata. semt&j ; var var_22; ods output summary=fdata .mzt2
run,'
data fdat.a-mzL2; set fdata.mzL2; keep var_z2_mean,. run,.

proc means data=fdata.semt&j; var var_23; ods output summary=fdata.mzt3
run,'
data fdata.mzt3; set fdata.mzt3; keep var_23_mean,. run;

proc means data=fdata.semt&j; var var_24; ods output summary=fdata.mzL4
run;
data fdata.rnzL4,. set fdata.mztL; keep var 24 mean,. run,.

data f dat.a. tmeans&j ;
merge fdata.mxtl fdata.mxt2 fdata.mxt3 fdata.mxt4 fdata.mztl fdata .mzl2
fdata.mzt3 fdata.mzt4;
run;
?end,'

* generating che x and z means for ever\. observat.ion,.
?do j = L ?to &reps,'
data f data. tmean&j ,-

set fdata. tmeans&j ;
array mx mx1 - rTtx&rrr'aves,- *array for means;
array mz mzI - mz&waves; *arral¡ for means;
do i= 1 to &n;

mx(1) = v¿r_xl_mean,'
mx(2) = var_x2_mean;
mx(3) = var_x3_mean;
mx(4) = vâ.r_x4_mean;

mz(1) = var-¿7--mean,'
mz (2\ = var_22_mean,-
mz (3) = var-23-mean¡'
mz(4) = var z4 mean;

output;
end,-
?end;

ådo j = 1 ?to &reps,'
data fdata. semt&j ;
merge fdata. tmean&j fdata. semt&j ;
run;
?end;
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?do j = L ?to &reps,'
data fdata. sem&j ;
array phix phixl-phix&n; *arravs for error Lerms;
array phiz phizl-phiz&n;
array phiy phiyl-phiy&n,'

array alphx al-phx1-alphx&n; *arravs for latent intercept.s and s1opes,.
array betax betaxl-betax&n,'
array alphz alphzl-alphz&n;
array betaz betazl-betaz&n;
array alphy alphy1-alphy&n;
array betay betayl-betay&n;

array betaxz betaxzl-betaxz&n; *latent slope interaction array;

artay var_x var_xl-var_x&waves ;
array var _z var _zI -var_z&\À/aves ;
array var_y var_y1-var_y&\¡/aves,.
array var _xz var_xz 1 -var_xz&waves,-
array Íìx mx1 - rnx&waves,' *arral,r for means;
array mz mz1 - mz&waves; *array f or means,-

set fdata. semt&j ;
var_xz(L) = (var_x(1) -mx(1)
var_xz (2) = (war_x (2 ) - mx (2 )

var_xz (3) = (var_x(3) - mx(3)
var xz(4) = (var x(4) - mx(4)

* (var_z (1) - mz (1) ) ;* (var_z (2) - mz (2) ) ;* (var_z(3) - mz(3));
* (var_z(4) - mz (4)) ;

output;

keep var_x1-var_x&waves var_zl-way_z&waves var_xz1-var_xz&waves var_y1-
var_y&waves;
?end;

/* MOD]FYING THE COMPLETE DATA TO TNCLIIDE 10 PERCENT MISSTNG fTOM T2, CXITA 10
perc from T3, and 10 perc from T4 x /

?do j = l- åto &reps,'
dat.a fdata. semmiss&j ; set fdata. sem&j ;
seedl= (123) ;

missl = abs(rannor (seed1));
IF (miss1 >= 1.30) then remove_xZ = .;
if (missl < 1-.30) Lhen remove x2 = 1;

var_x2 = var_xz * remove_x2;
var_x3 = var_x3 * remove_x2;
var_x4 = var_x4 * remove_x2,.
run;
åend;

?;do j = 1 ?tto &reps,'
data f data. semmiss&j ,' set f dat.a. semmiss&j ;
seed2= (-1L) ;
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miss2 = abs(rannor (seed2) );
TF ((remove_x2 = L) ç (miss2 >= 1.30)) then remove_x3 = .;
if ((remove_x2 -- L) & (miss2 < 1.30)) then remove x3 = 1;

var_x3 = var_x3 * remove_x3;
var_xA = var_x4 * remove x3;
run,.
?end;

?do j = 1 ?to &reps,'
data f data. semmiss&j ,- set f dat.a. semmiss&j ;
seed3 = (_55);
miss3 = abs (rannor (seed3) ) ;
IF ((remove_x2 = 1) & (remove_x3 = 1-) & (miss2 >= 1".30)) then remove_x4 = .;
if ((remove_x2 = l) & (remove_x3 = 1) & (miss2 < L.30)) t.hen remove x4 = 1;

var_x4 = var_x  * remowe x4;
run,'
?end;

/* MODIFYTNG THE COMPLETE DATA To ]NCLUDE 10 PERCENT MTSSING NoT AT RÀNDOM*/
ods listing;
/* standardizing of Y1 scores Lo 0 mean and std of L* /
ådo j = 1 %to &reps,'
proc standard data=fdata. sem&j m=0 std = 1 out=stan&j ;
var var_y1 ,. run,-

data stan&j;
set stan&j;
if (var_y1 >= abs(l-.3)) then remove_x2 = .;
Íf (var_y1 < abs (L.3)) then remove x2 = 1,.
var_y1 = var_yl * remove_x2,-
var_x2 = var_x2 * remove_x2,.
var_x3 = war_x3 * remove_x2;
var_x4 = var_x4 * remove x2,-
runr'

/* st,andardizing of remaining Y2 scores Lo 0 mean and std of L*/
proc standard dat.a=stan&j m=0 std = 1 out=stan&j;
var var_y2; run;

data stan&j; set stan&j;
if (var_y2 >= abs(1.3)) then remove_x3 = .;j-f (var_y2 < abs (f--3)) then remove x3 = 1;
var_y2 = vAr_y2 * remove*x3,-
var_x3 = var_x3 * remove_x3,.
var_x4 = vâr_x4 * remove_x3,-
run,'

/* standardizing of remaining Y3 scores to O mean and std of I* /proc standard data=stan&j m=0 std = L ouL=stan&j;
var var_y3,' run;
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data stan&j; set stan&j;
if (var_y3 >= abs(L.3)) then remove_x4= -;
if (var_y3 < abs (1.3)) t.hen remowe x4 = !;
var_y3 = var_y3 * remove_x4;
var_x4 = var_x4 * remove_x4,.
run,'
data fdata.semmnar&j; set stan&j;
åend;
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Appendix B

SAS S)¡ntax for the Wen Latent Growth lnteraction Model

/**xx**************************************************************************
xx***x* f
proc calis ucov aug method=ml- data=fdata.semg maxiter=5000 maxfunc=5000
outram=temp. wenfit;
title "CALIS output for Wen model samp]e ";
ods out.put iterstop = v¡eniter,' ods output convergencestatus = temp.wenconverge;
ods out.put stdl-atenteq = temp.wenstdlatenteq,.

'I i nanc

/* measurement model for 1, : assun'ìe the tau vector is a mistake in the
ñ^tè * 1

var_yl = Intercept + F_eta1 + e1,
var_y2 = fntercept + F_etal + l_ F_eta2 + ê2,
var_y3 = fntercept + F_eta1 + betay3 F_eta2 + e3,
vay_yA = ïntercept + F_eta1 + betay4 F eta2 + e4,

1* measurement model for x and z "/var_x1 = t.au1 fntercept + l_ F xi1
êE

vat_x2 = tau2 Intercept+ 1 Fxj-1 +l- Fxi2
ê6,

var_x3 = tau3 Intercept+ 1 Fxit+]-32Fxí2
e'7,

var_x4 = tau4 Intercept+ L Fxi1+I42Fxi2
ê8,

val]_2L = tau5 Intercept+ 1 Fxi3
aQ

var_22 = tau6 Intercept + 1 F xi3 + l- f' xi¿
e10,

var_23 = tauT Intercept + J- F xi3 + ]-74 F xi4
e11,

var_24 = tauS Intercept+ 1 Fxi3+184Fxi+
ã1 )

var_xz2 = tau9 ïnt.ercept+tau6Fxi1 +tau6 Fxi2 +tau2 Fxi3
+ tau2 F_xi4

+ Fxi13+ Fxi14 + Fxi23 +
F_xi24 + e13 t

var_xz3 = taulorntercept+tau7Fxi1 +l_102Fxí2 +tau3 Fxi3
+ 110_4 F_xi4

+ F xi13 + 174 F xi14 + I32 F xi23 +
110_8 F_xi24 + e1-4,

vay_ïzq = tau11ïntercept+tau8Fxil +1112Fxi2 +tau4 Fxi3
+ 111_4 F_xi4

+ F xi13 + l-84 F xi14 + l-42 F xí23 +
111BFxi24+e15,

/* structural- modef */
F_etal = gAI F_xi1 + 913 F_xi3 + 915 F xi13 + d1,



246

Interaction Effects in Latent Growth Models

F_eta2 = 922 F_xíz + 924 F_xj_4 + g2B F xi24 + d2;

std ,/*r'ariance paramet.ers */
F_xi1 F_xi2 F_xi3 F_xi¿ F_xi13 F xi14 F xi23 F xi24 =

phi11 phi22 pñi:: prti+a ptriss prriãe phizT phi88,
e5-e15 = t.h1-th11,
e1-e4 d1-d2 = anyl-any6; /* unconst.rained parameters I added */

cov f * mean parameters *,/
Intercept f_xi1 = 0,
Intercept f xí2 = 0,
Intercept f_xi3 = 0,
Intercept f_xi4 = 0,
Intercept f_xi13 = phi3l_,
Tntercept f_xil| = phi41,
InLercept f_xl-23 = phi32,
Intercept f_xi24 = plnia2,
f * cow parameters *./
F_xil-F_xia = phi21 phi31 phi32 phial phi42 phi43,
F-xi13 F_xi14 F_xi23 F_xi24 = phi65 phiTs phi76 phi8s phie6 phig7,
e13 e6 = L}:92,
e1,4 e7 = th10_3,
e15 eB = th11_4,
e13 e10 = t.h96,
e14 e11 = th10_7,
e15 e12 = th11_B;

f " programming statements for paramet.er constraj-nLs */
taug = tau2 *tau6 

,.

tau10 = tau3*tau7;
tau11 = tau4*tau8;
IIO_2 = Laul*I32;
110_4 = tau3*I74;
110_8 = I32*l'74;
1LL_2 = tau8*l-42;
111_4 = tau4*l-84;
111_8 = 142*184;
phiss = phi11 * phi33 + phi31 * phi31
phi66 = phi11 * phi44 + ph141 * phi41
p}:i77 = pi:Li.22 * phi33 + phi32 * phi32
phj-88 = phi22 * phi44 + plni-A2 * plni42
phi65 = phi11 * phi43 + phi31 * phi41
phiTs = phi21 * phi33 + phi31 * phi32;
phi76 = phi21 * phi43 + phi31 * pini42;
phi85 = phi21 * phi43 + phi32 * phi41;
phi86 = phi21 * phi44 + phi41 * plní42;
phi87 = phi22 * phi43 + phi32 * plni42;
phi88 = p}:Ii22 * phi44 + p]ní42 * p:r-t 42;
th9 = tau6 * Lau6 * Lh2 + phi33 * t]n2 + phi44*th2 + tau2*tau2*th6 + phi11*th6 +
phi22*th6 + th2*th6;
th10 = tauT*tau7*t.h3 + phi33*th3 + I'14*I74*phi44*th3 + tau3*tau3*th7 +
phi11*th7 + I32*I32*pi;ri22*Lh7 + t.h3*Lh7 ;
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th11 = tauS*tau8*th4 + phi33*th4 + 184*184*phi44*th4 + tau4*t.au4*th8 +phi11*th8 + I42*I42*phi22*th8 + th4*th8;
Lh92 -- tau6 * th2;
th96=tau2*th6;
th10_3 = tauT * th3;
th10_7 = tau3 * Lh7;
th11_4 = tau8 * th4,.
th11_8 = tau4 * t.h8,.

* outram staternent for fit indices for WEN model;
data temp.wenfit2at; set temp.wenfit;
keep _name_ _estim_;

dat,a temp. wenf it2bt.; set temp. wenf it.;
keep _name_ _stderr_,.

proc transpose data=temp.wenfit2at out=temp.wenfit2a l-et;proc trarrspose data=temp.wenfit2bt out.=temp.wenfit2b 1et;

data temp. wenf it.2b1;
set temp.wenfit2b;
l-32_str -- I32;
I42 sLr = I42;
1'74_str = I74;
911_str = 91L;
913_str = 913;
915_str = 915;
922_str = 922;
924_sLr = 924;
928_str = 928; run,.

data temp . lvenf it2b2 ,. set temp . wenf it2b1 ;
keep 132-str 142-str rT4_str 911_str 913_str 915_str g22_sLr g24_sLr g2B_str;run;

/* merging of the t.wo data rovr's to get estimates and std errors on one line foreach model r'/
data temp.wenfitx,-
merge temp. vrenf it2a temp. wenf iL2b2,. run;

/* merging in ODS output of convergence*/
data temp.wenfits;
merge temp.wenfitx t.emp.wenconverge;
run;

/* pulling in standardized estj_mat.e from ODS f_ile*/
data temp.std_temp;
set temp. wenstdl_atenteq;
if parameter3 = ,F_xi24,¡
92Bstd = coefficient3,.
run;
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data temp.92Bstd;
set temp.std temp;
keep g28std;
run;

dat,a temp. wenf its;
merge Lemp.wenfits temp. 92Bstd;
run,.

,/* adding of model- index value */
data temp.wenfits;
set. temp.wenfits;
model- = 1;
run;

/* pulling in j-terations from OIS fil_e*,/
daÈa itr_temp;
set wenj-ter,-
if Label-1 = 'Tterations',.
iter = nvaluel,-

data itr;
set itr_temp;
keep it.er;

data temp. wenf it.s;
merge temp.wenfits itr;

data temp.wenfits; set temp.wenfit.s;
keep status model n fit nparm df chisquar p_chisq gfi agfi rmseaest

compfiti bb_nonor bb_normd bo1_rho1 bol_del_2 centrali
I32 I32-sLr I42 l42_str 174 l74_str 184 184_str g11 g11_str g13 g13 s¡r

915 915_sLr 922 922_sLr 924 924_sLr g2B g28_str
92Bstd iter;

run;

/" merging all i{en replicates into one dataset*/
proc append base=fdat.a.zsemfits wen force,.
run,'
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Appendix C

SAS Syntax fbr the Duncan Latent Growth Interaction Model

/**x***************************************************************************************** //
/ **** **** ** ***** **** **** * * ** * D¡IIJCA¡'T MODEL**** ** ******* **** ** * * * *** ***.***** * ***/
/x*xx******t'*****************'k**'*****************-k**************.*****************************/

?do i = 1 ?to &reps;

proc calis ucov aug method=ml data=fdata.sem&j maxiter=5000 maxfunc=S000
outram=dunfit;
title'TCALIS output for Duncan model sample &j,',.
ods output iterstop = dunciter;
ods output convergencestatus = dunconverge,.
ods output stdlatenteq = dunstdl_atenteq,.

1 ineqs
/* measurement modef for y : assume tire tau vecLor j-s a mistake in the

^^+^ + /lIU LC

var-y1 = F-eta1 + e1,
var_y2 = F_eta1 + l- F_eta2 + e2,
var_y3 = F_eta1 + bet.ay3 F_eta2 + e3,
var_y  = F_etal + betay{ F eLa2 + e4,

/* measurement model- for x arrd, z * f
var_x1 = taul Tnt.ercept+ 1 Fxil

e5,
var_x2 = tau2 Tntercept+ 1 Fxil+1 Fxi2

e6,
var_x3 = tau3 Intercept+ 1 Fxil+I32 Fxi2

ê7,
var_x4 = tau4 Intercept + J- F xi1 + I42 F xi2

e8,
vay_z\ = tau5 Intercept+ 1 Fxi3

êq

var_22 = tau6 Intercept+ 1 Fxi3+1 Fxi4
e10,

var_23 = tauT Intercept+ 1 Fxi3+I"t4 Fxi4
e11,

var_24 = tauS Intercept+ 1 Fxi3+lg+Fxi¿
e12,

var_xz2 = tau9 rntercept+tau6Fxi1 +tau6 Fxi2 +t.au2 Fxi3
+ tau2 F_xi¿

+ 1 F_xi24 + e13,
var_xz3 = tau10 rntercept + tauT F xi1 + r10 2 F xi2 + tau3 F xi3

+ 110_4 F_xi4
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+ l_10_B F_xi24 + eI4,
var_xz+ = taulllntercept+tau8Fxi1 +l-112Fxi2 +tau4 Fxi3

+ 111_4 F_xi4
+1118Fxi24+e15,

/* structural model */
F_eta1 = 911 F_xi1 + 913 F_xi3 + d1,
F_eta2 = 922 F_xi2 + 924 F_xi4 + g2B F xí24 + d2;

std /*variance paramet.ers */
F_xi1 F_xi2 F_xi3 F_xi4 F_xi24 =

phi11 phi22 phi33 plniaa phi55,
e5-e15 = th1-th11,
e1-e4 d1-d2 = anyl-any6; /* unconstrained parameters r added *,/

cov /* mean parameters */
Intercept f_xif = 0,
Tntercept f_xi2 = 0,
Intercept f_xi3 = 0,
Tntercept f_xi4 = 0,
Tntercept f_xi24 = phia2, f*does this need to be Lhere;
/^' cov parameters */
F_xi1-F_x1a = phi21 phi31 phi32 phi41 p]hia2 phi43,
e13 e6 = Lh92,
e7-4 e7 = th10_3 ,

e15 eB = th11_4,
e13 e10 = th96,
e14 e11 = th10_7,
e15 e12 = th11 8;

f * programmir-rg statements for parameter constraj-nts */
tau9 = tau2*tau6;
tau10 = tau3*tau7,'
tau11 = tau4*tau8,. *duncan ms has tau4xtau7;

1L0_2 = tau7*l-32,-
110_4 = tau3xI74;
110_8 = I32*I74;
11-I_2 = tau8 *I42;
111_4 = tau4*184;
l_l_1_B = I42*L84;

phi55 = plni22 * phi44 + phi42*plní42 ¡

th9 = tau2*tau2*th6 + tau6*tau6*th2 + phi22*Lin6 + phi44*t:h2 + Un2*th6;
th10 = tau3*tau3*th7 + tauT*tau7*th3 + :-32*I32*pL.'i22*Lh7 + 174*I.le*p!1!44*th3 +
th3 *th7 ;
t.h11 = tau4*tau4*th8 + tau8*taug*th4 + I42*I42*phi22*thg + l_84*184*pl,í44*th4 +
th4 * th8 ;
Lir92 = tau6 * th2;
th96=tau2*th6;
th10_3 = tauT * th3;
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th10_7=tau3*th7;
th1 1_4 = tauS * th4 ,-

th11_8=tau4*th8;
*missing constraj-nt on ka (5) of phi (4, z) ;

* outram statement. for fit indices for Duncan model;
dat.a dunf it2at; set dunf it;
keep _name_ _estim_;

data dunf it2bt.,- set
keep _name_ _st.derr

proc transpose data=dunfit2at out=dunfit2a let;
proc transpose dat.a=dunf it2bt out=dunf it2b l_et.;

data dunf,lL2bL;
set dunfit2b;
132_st.r -- I32;
142_str = I42;
174_str = I74;
911_str = g1-I;
913_str = 913;
915_str = 915;
922_sLT = 922;
924_sLr = 924;
g28_st.r = g2B;

data dunf iL2b2,- set dunf itZbt;
keep 132_str 142_sLr rj4_sLr 911_str 913_st.r 915_str g22_str g24_str g2B_s1r;

l* merging of t.he tit'o data rows to geL estirnates and std errors on one fine for
each model */
data dunfit.x;
merge dunfit2a dunfit2b2;

f* merging in ODS output of convergence*/
data dunfits;
merge dunfitx dunconverge,-

,/* pulling in standardized estimate from ODS fl!e* /
data std_temp;
set. dunstdl-atenteq;
if parameter3 = 'F_xi24,;
g28std = coefficient3;

dat.a 928std;
set std temp;
keep g28std;

data dunfits;
merge dunfits 928st.d;

dunfit;
ì
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,/" adding of model index value */
data dunfits;
set dunfits;
model = 2;

7'* pulling in iterations from ODS fít.e*/
data itr_temp;
set dunciter,-
i-f Label1 = 'Iterations' ;
iter = nvalue1,-

data itr;
set itr_temp;
keep iter;

dat.a dunf its;
merge dunfits itr;

data dunfits; set. dunfits;
keep status model n fit nparm d.f chisquar p_chisq gfi agfi rmseaest

compfiti bb_nonor bb_normd bol_rho1 bol_ del_2 central_i
I32 l-32-sLr I42 I42_sLr I74 l74_str 184 184_str g11 gl1_str g13 g13 str

915 915_sLr 922 g22_sLr 924 924_sLr g2B g2B str
928std iter;

/* nrerging of all Duncan replicat.es to one dataset */
proc append base=fdata.zsemfits dun force,.

åend;
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Appendix D

sAS s)¡ntax for the Schumacker Latent Growth Interaction Model

/******************************************************************************
***************
f****************
* ***********x**************
***********l'*******************************r.**************.t*************i-*.k****
*******x****** f
ådo j = 1 ?to &reps..

proc calis ucov aug method=ml data=fdata.sem&j maxiter=5000 maxfunc=5000
out.ram=temp . schf i t_t &j

noprint outstat.=temp . schumout_t&j ;title ',CALIS output for Schumacker model ãample &j for creat.ing factor scores";lineqs
/* measurement model for y :

note * /

SCHT]Þ,IAC]iER FACTOR SCORE T4ODEL

assume the tau vector is a mistake in t.he

êq

€þ,

ë1,

€8,

cQ

e10,

e11 ,

e7-2;

std

var_y1 = F_eta1 +
var_y2 = F_et.al + 1. F_et.a2 +
var_y3 = F_eta1 + betay3 F_eta2 +
var_yA = F_etal + betay4 F eta2 +

/* measuremenL rnodel for x and. z *f
var_x1 = taul Tntercept+ 1 Fxil

var_x2 = tau2 Intercept + l- F xi1

var_x3 = tau3 Tntercept+ 1 Fxil

var_x4 = tau4 Intercept+ L Fxi1

var_zl = tau5 Intercept. + J_ F xi3

var_22 = tau6 Intercept+ 1 Fxi3

var_23 = tauT Intercept + 1_ F xi3

var_24 = tau8 Intercept.+ 1 Fxi3

e1,
êt

e4,

+ 1 F_xi2

+ 732 F_xí2

+ I42 F_xi2

+ l- F_xi4

+ I74 F_xi4

+ 184 F_xi4

/*variance parameLers * f
F_xir F_xi2 F_xi3 F_xi4 = phi11 p]ní22 phi33 phiaa,

F_eta1 = phiy1, F_eta2 = piniy2,
e5-e12 = th1-th8,
e1-e4 = anyl-any4; /* unconst.rained parameters I added */

cov ,/* mean parameters */
fntercept f_xi1 = 0,
ïntercept f_xi2 = 0,
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lntercept. f_xi3 = 0,
Int.ercept f xiL = 0,

/* cov parameters *,/
F_xi1-F_xia = p];Ii21 phi31 phi32 phial p:hí42 phi43,

F_etal F_eta2 = ceta12,
F_et.a1 F_xi1 = etaxy11,
F_etal F_xi3 = eLazyaa,
F_eta2 F_xi2 = eEaxy22,
F_eta2 F_xi4 = eLazy22;

/**** ***** factor score creation for schumacker modef******************** * ** x f
proc score data=fdata. sem&j score=temp. schumout_t&j out=temp. schumxzfac&j ;var var_xr var_x2 var x3 var x4 var zr var z2 var z3 var 24 var _yl var_y2
var_y3 var_y4;

?end;

f******* CPEATTNG oF FACTOR scoRE TNTEP.ACTTONS FoR scHlrrlAcKER IvioDEL *********/

?do j = 1 ?to &reps;
data temp. schumf2&j ;

set temp. schumxzfac&j ;
F_xi_13 = F_xi1 * F_xi3;
F_xi24 = F xi2 * F xi4,.

dat.a temp.schumf 2&j;
set temp. schumf2ej ;
keep F_x11 F xi2 F xi3 F xi4 F xi24 F etal F eta2;

åend;

f x x * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * t * * * * * * * * * * * * *

*********** CREATING OF SCHIIMACKER TNTERÀCTION MODEL USTNG CALTS
)t**********

tr******************************************************************************

ådo j = l- ?;to &reps,-

proc calis ucov aug method=m] data=temp.schumf2&j maxiter=S000 maxfunc=S000
outram=schfit

outstat=schumout all_ nomod;

ods output iterstop = schiter;
ods output convergencestatus = schconverge,.
ods out.put st.dmanifesteq = schstdlatenteq,.

title 'cAl,rs output for schumacker model sample &jr actual model';



std /*1--riance parameters */
F'xil : 'l

F_xi2 = L,
d1-d2 = anyl any2; /* unconstrained paramet.ers I addecl */

cov 7'* mean paramet.ers *//
fn cov parameters */
F_xi1 F_xi2 = phi12,

F_xi3 F_xi4 = phi34;
run,'

* outram statement for fit indices for SCHUMACKER nodel;
data schfit2at; set schfit;
keep name estim ..

data schfit2bt; set schfit;
keep _name_ _stderr ,-

proc transpose data=schfit2at
proc transpose data=schfit2bt

out=schfit2a let;
out=schf it.2b let;

data schfit2bl;
set schfit2b;
l-32_str = I32;
I42_sEr = I42;
174_str = I74;
911_str = 911;
913_str = 913;
915_str = 915;
922_sLr = 922;
924_sLr = 924;
928_str = 928,- run;
ods trace off;

data schfít2b2; set schfit2bl;
keep 132-str 142-st.r 174_str g11_str g13_str 915_str g22_str g2r_str 928_str;run,'

lineqs
F_eta1 = 911 F_xi1 + 913

F_eta2 = 922 F_xi2 + 924 F_

Interaction Effects in

F_xi3 + d1,
xi|+g2BFxí24+d2;
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rows to get estimates and std errors orr one line for

run;

conwergence*/

run;

/* merging of the two data
each model */
data schfits;
merge schfit2a schfit2b2;

7* merging in ODS output of
data temp;
merge schf its schconverge,-

data schfits;
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set temp,'

/* pulling in standardized esLimate from ODS fi- e * /
data std_temp;
set. schstdlatenteg;
if parameter3 = 'F_xí24';
928std = coefficient3;
run,'

data 928std;
set std_t.emp;
keep g28std;
run,'

data schfits;
merge schfits 92Bstd;
run,'

/x aclding of model index r¡al-ue */
data schfits;
set schfits;
model- = 3;

7*' pullrng in iterations from OOS file*¡
data itr temp;
set schj-ter,'
1f Label-1 = 'ILeratJ-ons' ,.

iter = nvalue1,.
run.'

data itr;
set it.r_temp;
keep iter;

data schfits;
merge schf its itr; run,-

data schfits; set schfits;
keep status model n fit nparm df chisquar p_chisq Sfi agfi rmseaest

compfiti bb_nonor bb_normd bol_rhol bo1_de12 central_i
I32 l-32_slur l-42 lL2_str I74 l74_str l-84 184_str g11 g11_str g13 g13_str

915 91S_sLr 922 922_sLr 924 924_sLr 928 92B_str
928std iter;

/* rnergireg of alÌ Schumacker replì-cates into one dataset */
proc append base=fdata.zsemfits schum force;
run;

?end;
/* nun oF ScHUMA.CKER MoDEL*/
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data f data. ztotal ,.

set f data. zsemf i-ts_dun f dat.a. zsemf its schum;
run,'
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Appendix E

Results of the CFI Analyses for the MCAR and MNAR Data Conditions

MCAR Data Conclitiotz Anab,ses

The ANOVA in Table 5 for MCAR data shows significant effects (p < 0.05) for all main effects

and tlreir interactions. The overall model effect was significant (F1roz. s2887r) = 12805.37,7r < 0.01,

partial eta2 =0.12). The four-way interaction of latent interaction model type,latent intercept-

slope correlation, sample size, and reliability of the observed indicators, was signifìcant (F12a. s2887r)

= 2.22, p < 0.01, partial eta2 <0.01). However, as witli the Complete data, only those effects with

a partial eta-squared greater than 0.06 were considered strong enough to warrant further

investigation. The ANOVA effects that met this criterion were for the two-way interactions of

latent interaction model with reliability of the observed indicators (0.12) and the main effects of

reliability (0.10) and latent interaction model (0.69), according to Olejnik and Algina (2000).

To examine these significant two-way interactions, simple plot of the average CFI values

for each latent growth interaction model with both level of reliability of the observed indicators

(0.30, 0.50, 0.70,0.90) and latent intercept-slope corelation (0.20, 0.50, 0.70) on the X-axis.

These simple plots are given in Figure ApxE-Fl.

Insert Figure ApxE-Fl about here

Seen clearly in the simple plot is the difference in pattern of average values of the CFI for the

Schumacker model from both the Wen and the Duncan models across the levels of indicator

reliability. Both the Wen and the Duncan model ploduced stable values around the average value
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of 0.90, while the Schumacker model showed a trend of increasing CFI values as reliability

increased, with values increasing from 0.69 to 0.81. However, when examining the two-way

interaction involving latent model type and correlation between the latent intercept and slope, the

'Wen 
and the Duncan models again showed a stable pattern (with average values around clustered

around 0.90) while the Schumacker model showed a decreasing trend of CFI values as the

correlation increased.

MNAR Dttta Contlitir¡n Analyses

The ANOVA in Table 6 for the MNAR data condition showed significant effects @ < 0.05)

for all main effècts and their interactions. The largest effect sizes were seen for the two-way

interaction of latent interaction model with reliability of the observed indicators (0.24) and for the

main effect of latent interaction model (0.34). The overall model effect was significant (F1¡67.

4i47s8) = 4456.85,p < 0.01, partial eta2 = 0.50). The four-way interaction of latent interaction

model type, latent intercept-slope correlation, sample size, and reliability of the observed

indicators, was significant (F12a, 474758)=9.49, p < 0.01) and with a small effect size (partial eta2 <

0.01). As with the Complete data, only those effects with a partial eta-squared greater than 0.06

were considered strong enough to wanant further investigation. The ANOVA effects that met this

criterion were for the two-way interactions of latent interaction model with both reliability of the

observed indicators (0.24) and latent intercept-slope correlation (0.08), and the main effect of

latent interaction model (0.34), according to Olejnik and Algina (2000).

To examine the significant two-way interactions, a simple plot of the average CFI values
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for each latent growth interaction model with both level of reliability of the observed indicators

and latent intercept-slope correlation on the X-axis. These simple plots are given in Figure ApxE-

F2.

Insert Figure ApxE-F2 about here

Seen clearly in the simple plot is the difference in pattern of average values of the CFI for all three

of the latent growth interaction models. The Wen model showed a pattern of decreasing average

CFI values (from 0.81 to 0.70) as reliability increased. The Duncan and Schumacker models both

showed patterns of increasing average CFI values (0.61 to 0.73 and 0.75 to 0.78, respectively),

although the Schumacker model showed a slight decrease at the highest level of reliability. For the

interaction of latent interaction model type with latent intercept-slope correlation, both the Wen

and the Duncan models showed slightly increasing trends as the correlation increased, wihle the

Schumacker model showed a decreasing trend.
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Figure ApxE-Fl

Plots of tlrc Interctction Effect ot'Latetú Interaction Mr¡del T¡tpe Factor with the Observecl

Indicator Relittbility Factor (I) and Latent Interce¡tt-Slope Correlation (2) on the Contparative Fit

Inclex (CFI) in the Missirtg Contpletely At Ranclont Data Cotzclition in Those Moclels that
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Figure ApxE-F2

Plots of the Interaction Effect of Latent Interaction Model TTrpe Factor with the Obsentecl

Inclicatr¡r Reliability Factr¡r ( I ) and Latent Intercept-Slope Correlation (2) on the Comparative Fit

Inclex (CFI) in tlte Missing Not At Ranclom Data Condition in Those Models that Convergecl
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Appendix F

Results of the NFI Analyses for the MCAR and MNAR Data Conditions

MCAR Data Cotzditiort Analyses

In the MCAR data condition the average NFI value for the Wen model was 0.90 (range

0.83-0.94), for the Duncan model 0.89 (range 0.81-0.93), and for the Schumacker model 0.75

(range 0. t8-0.95). Only the Wen and Duncan models produced 95Vo confidence intervals for the

mean NFI values that had lower bounds above the value of 0.90. For the Wen model these were

consistently produced when the reliability was at its highest value (0.90), and occurred more often

as both sample size increased and as the correlation between the latent intercept and slope

increased. The Duncan model showed such confidence intervals only at the highest levels of

reliability, with the highest proportion in the conditions where the con'elation between the latent

intercept and slope was highest (0.70) and the sample size was highest (1000). The Schumacker

model did not produce any 95Vo confidence intervals whose lower bound was at or above 0.90.

The ANOVA in Table l3 for MCAR data shows significant effects (p < 0.05) for all main

effects and tlreir interactions. The overall model effect was significant (F1¡67..s2rì87r) = 1147g.07, tt

< 0.01), and had a large effect size (partial eta2 = 0.70). The four-way interaction of latent

interaction model type, latent intercept-slope correlation, sample size, and reliability of the

observed indicators, was significant (F12a. s2rì871) = 2.04, p < 0.01) with a small effect size (partial

eta2 <0.01). However, as noted earlier with the CFI, the large error degrees of freedom for the

ANOVA model results in even trivial mean differences emerging as significant, and effects that

produced effect sizes of at least a medium effect (i.e., 0.06 or gleater for the partial eta-squared)
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were examined.

The ANOVA effects that met this criteria were for the two-way interactions of latent

interaction model with both reliability (0.1l) and correlation of latent intercept and slope (0.09),

and the main effects of latent interaction model (0.66) and reliability (0.12). To examine these

significant two-way interactions, separate simple plots of the average NFI values with the

reliability of the observed indicators and the latent interacept-slope correlation were produced for

each latent growth interaction model, and are given in Figure ApxF-Fl.

Insert Figure ApxF-Fl about here

Similar to that seen with the Complete data, the simple plot for the interaction of latent growth

interaction model with reliability showed that both the Wen and Duncan models produced stable

NFI values (around 0.90) across the levels of reliability, while the Schumacker model showed a

trend of increasing NFI values as reliability increased. However, when examining the two-way

interaction involving latent model type and correlation between the latent intercept and slope, the

Wen and the Duncan models again showed a stable pattern (with average values around clustered

around 0.90) while the Schumacker model showed a decreasing trend of NFI values as the

correlation incrcased.

MNAR Data Crnulition Anab,ses

In the MNAR data condition the average NFI value for the Wen model was 0.75 (range

0'59-0.87), for the Duncan model 0.69 (range 0.56-0.80), and for the Schumacker model 0.76

(range 0.06-0.96).
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The ANOVA in Table l3 for MNAR data shows significant effects þ < 0.05) for all main

effects and their interactions. The overall model effect was significant (F1¡67. 4'4758)= 496L38, p <

0.01), and had a large effect size (partial eta2 = 0.53). The four-way interaction of latent

interaction model type, latent intercept-slope comelation, sample size, and reliability of the

observed indicators, was significant (F12a. 4747s8)= 10.39, p < 0.01) with a small effect size (partial

etaz <0.01). However, as noted earlier with the CFI, tl-re large error degrees of freedom for the

ANOVA model results in even trivial mean differences emelging as significant, and effects that

produced effect sizes of at least a medium effect (i.e., 0.06 or greater for the partial eta-squared)

were examined.

The ANOVA effects that met this criteria were the two-way interactions of latent

interaction model with both reliability (0.24) and latent inrercept-slope correlation (0.08), and the

main effect of latent interaction model (0.31). To examine these significant two-way interactions,

separate simple plots of the average NFI values with the reliability of the observed indicators and

the latent interaction-slope correlation were produced for each latent growth interaction model, and

are given in Figure ApxF-F2.

Insert Figure ApxF-F2 about here

Similar to that seen with the Complete data, the simple plot for the latent growth interaction model

X reliability interaction showed that the Wen model showed a decreasing trend of average NFI

values as reliability increased, and the Duncan and Schumacker models showed increasing trends,

with the Schumacker model producing higher average values than the Duncan. With respect to the

interaction of latent model type with correlation, both the Wen and the Duncan models showed

slight increases as the correlation increased, and the Schumacker model showed a non-linear trend
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offirst increasing average values and then decreasing average values as the couelation increased.
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Figure ApxF-Fl

Plots oJ'the Interctctiott Effect of Latent Interaction Moclel Type Fctctor with the Ob.çervecl

Inrlicator Reliability Fttctor (I ) and Latent Interce¡tt-Slo¡te Correlatiol (2) orz the Nontrc¿ Fit

Index (NFI) itt the Missirtg Cont¡tletely At Ranclont Data Conclition in Tltose Models that
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Figure ApxF-F2

Plots of tlte Interactiott Efr'ect oJ'Laterzt Interaction Model TTrpe Factor with the Observerl

Inclicator Reliahility Factor (t ) and Latent Interce¡tt-slo¡te correlation (2) on the Nonned Fit

Index (NFI) fu the Missirzg Not At Ranclotn Dara Conclition in Those Moclels that Cotwerged
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Appendix G

Results of the GFI Analyses for the Complete. MCAR. and MNAR Data Condition,

Complete Data Cutdition Anab,ses

Table ApxG-T1 presents the 95vo confidence intervals for the mean value. Table ApxG-T2

contains the results of three ANOVA models, using the GFI statistic as the dependent variable,

with latent interaction model type (3 levels), correlation of the latent intercept and slope (3 levels),

sample size (3 levels) and reliability of the observed indicators (4 levels), as well as their

interactions, as independent factors. These analyses were carried out separately for each data

condition (Complete data, MCAR data, MNAR data).

The ANOVA in Table ApxG-T2 for Complete data showed significant effecrs (p < 0.05)

for all main effects and their interactions. The overall model showed a significant efïect (Froz.

53r703) = 19863.89,2 < 0.01), and had a large effect size (partial eta2 = 0.44). The four-way

interaction of latent interaction model type, latent intercept-slope correlation, sample size, and

reliability of the observed indicators, was significant (F12a,53r703) = 1g.02, 7r < 0.01) with a small

effect size (partial eta2 < 0.01). HoweveL, the largest effects were seen for the two-way

interactions of latent growth interaction model type with reliability of the observed indicators

(0'34),latent growth interaction model with intercept-slope correlation (0.23),and for the main

effects of latent growth interaction model (0.75), sample size (0.1 1) and coffelation between latent

intercept and slope (0.07).

To examine these significant two-way interactions, separate simple plots of the average

GFI values with the reliability of the observed indicators and the latent interaction-slope
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correlation were produced for each latent growth interaction model, and are given in Figure ApfG-

Fl.

Insert Figure ApxG-Fl about here

The simple plot for the interaction of latent growth interaction model with reliability showed the

Wen model having a stable pattern of GFI values as reliability increased, the Duncan model having

a decreasing pattern of GFI values, and the Schumacker with a slight increasing pattern. With

respect to the interaction of latent model type with correlation, both the Wen and the Duncan

models showed stable patterns of average GFI values as the correlation increased. and the

Schumacker model showed a decreasing trend as the correlation increased.

MCAR Data Conclition Analyses

The ANOVA in Table ApxG-T2 for MCAR data shows significant effects @ < 0.05) for all

main effects and their interactions. The overall model showed a significant effect (Frroz, s28B7r) =

16169.14,p < 0'01), and had a large effect size (partial eta2 = 0.77). The four-way interaction of

latent interaction model type, latent intercept-slope correlation, sample size, and reliability of the

observed indicators, was significant (F12a. .s28871) = 17 .36, p < 0.01) and a small effect size (partial

eta2 <0.01).

However' the largest effects were seen for the two-way interactions of latent growth

interaction model type with reliability of the observed indicators (0.30), latent growth interaction

model with intercept-slope correlation (0.19), and forthe main effects of latent growth interaction

model (0.71), sample size (0.15) and correlation between larent intercepr and slope (0.06).
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To examine these significant two-way interactions, separate simple plots of the average

GFI values with the reliability of the observed indicators and the latent interaction-slope

correlation were produced for each latent growth interaction model, and are given in Figure ApfG-

F2.

Insert Figure ApxG-F2 about here

The simple plot for the interaction of latent growth interaction model with reliability showed the

Wen model having a stable pattern of GFI values as leliability increased, the Duncan model having

a decreasing pattern of GFI values, and the Schumacker with a slight increasing pattern. With

respect to the interaction of latent model type with correlation, both the Wen and the Duncan

models showed stable patterns of average GFI values as the correlation increased, and the

Schumacker model showed a decreasing trend as the correlation increased. For the main effect of

sample size, the means show an increasing trend as sample size increased (0.82, 0.g3, and 0.g4, at

initial sample sizes of 250, 500, and 1000, respectively).

MNAR Data conditiort Analyses

The ANOVA for the MCAR data (reported in ApxG-T2, and nor reproduced here) showed

significant effects (p < 0.05) for all main effects and their interactions. The overall model showed

a significant effect (Fooz. 4i47sB)=27877.66,p < 0.01), and had a large effect size (partialeta2 =

0.86). The four-way interaction of latent interaction model type, Iatent intercept-slope correlation,

sample size, and reliability of the observed indicators, was significant (F12a, 4747s8t = 9.99, ¡r < 0.01)

and produced a small effect size (partial eta2 < 0.01). The largest effects were seen for the two-

way interactions of: latent interaction model with reliability (0.49) and correlation of the latent
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intercept and slope (0.10), and the main effects of latent interaction model (0.82), cor-relation

between latent intercept and slope (0.13), sample size (0.09), and reliability (0.12).

To examine these significant two-way interactions, separate simple plots of the average

GFI values with the reliability of the observed indicators and the latent interactio.-slope

conelation were produced for each latent growth interaction model, and are given in Figure ApxG-

F3.

Insert Figure ApxG-F3 about herc

The simple plot for the interaction of latent growth interaction model with reliability showed both

the Wen and Duncan models having a decrcasing pattern of GFI values as reliability increased,

with the Wen model being more affected at lower reliabilities and the Duncan model being

affected at higher reliabilities. The Schumacker model showed a slight increasing pattern. With

respect to the interaction of latent model type with correlation, both the Wen and the Duncan

models showed stable patterns of average GFI values as the correlation increased, and the

Schumacker model showed a decreasing trend as the corelation incrcased. For the main effect of

sample size, the means show an increasing trend as sample size increased (0.80,0.82, and 0.g3, at

initial sample sizes of 250, 500, and 1000, respectively).
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ApxG-Tl
Conlìdence Inlcrvals (95o/o) Ïor thc Goodness o1'Fit Index (GFI) Values 1'or All Latent Growth Interaction Models
(Population Value ol'Latent Interaction Parametel Equal to 2.0) For the Three Missing Data Conditions (Conrplete
Data, MCAR Data, MNAR Data).

Corr Rcl Complete Data MCAR Data MNAIì Data

Wen Duncan Schumackcr l)uncan Schumacker Wcn I)uncan Schumacker

0.20 250

I 000

0.50 250

0.30 L 0.848
u 0.852

0.50 L 0.837
u 0.843

0.70 L 0.858
u 0.862

0.90 L 0.849
u 0.851

0.30 L 0.859
u 0.861

0.50 L 0.848
u 0.852

0.70 L 0.869
u 0.871

0.90 L 0.870
u 0.870

0.30 L 0.859
u 0.861

0.50 L 0.858
u 0.862

0.70 L 0.880
u 0.880

0.90 L 0.880
u 0.880

0.30 L 0.837
u 0.843

0.50 L 0.8s7
u 0.863

0.70 L 0.859
u 0.861

0.90 L 0.859
u 0.861

0.30 L 0.858
u 0.862

0.838 0.848
0.842 0.852
0.827 0.839
0.833 0.841
0.847 0.839
0.853 0.841
0.839 0.808
0.841 0.812

0.849 0.869
0.851 0.871
0.848 0.869
0.852 0.871
0.869 0.859
0.871 0.861
0.859 0.829
0.861 0.831

0.859 0.880
0.861 0.880
0.858 0.880
0.862 0.880
0.880 0.870
0.880 0.870
0.870 0.840
0.870 0.840

0.827 0.848
0.833 0.852
0.837 0.839
0.843 0.841
0.848 0.828
0.852 0.832
0.849 0.808
0.851 0.812

0.848 0.869
0.852 0.871

0.859
0.861
0.849
0.851
0.849
0.851
0.819
0.821

0.879
0.881
0.870
0.870
0.859
0.861
0.829
0.831

0.880
0.880
0.880
0.880
0.870
0.870
0.840
0.840

0.859
0.861
0.859
0.861
0.849
0.851
0.819
0.821

0.879
0.88'l

0.763
0.777
0.773
0.787
0.793
0.807
0.837
0.843

0.765
0.775
0.785
0.795
0.806
0.814
0.849
0.851

0.777
0.783
0.797
0.803
0.828
0.832
0.849
0.851

0.723
0.737
0.733
0.747
0.754
0.766
0.797
0.803

0.726
0.734

0.751
0.769
0.761
0.779
0.782
0.798
0.825
0.835

0.764
0.776
0.784
0.796
0.805
0.815
0.848
0.852

0.776
0.784
0.797
0.803
0.817
0.823
0.849
0.851

0.721
0.739
0.722
0.738
0.742
0.758
0.785
0.795

0.725
0.735

0.757 0.829 0.841
0.763 0.831 0.859
0.727 0.819 0.863
0.733 0.821 0.877
0.725 0.788 0.895
0.735 0.792 0.905
0.717 0.748 0.917
0.723 0.752 0.923

0.768 0.839 0.866
0.772 0.841 0.874
0.738 0.829 0.897
0.742 0.831 0.903
0.736 0.809 0.918
0.744 0.811 0.922
0.738 0.769 0.929
0.742 0.771 0.93't

0.769
0.771
0.739
0.741
0.737
0.743
0.749
0.751

0.850 0.888
0.850 0.892
0.840 0.909
0.840 0.911
0.820 0.919
0.820 0.921
0.770 0.929
0.770 0.931

0.757 0.828 0.822
0.763 0.832 0.838
0.727 0.808 0.843
0.733 0.812 0.857
0.686 0.788 0.865
0.694 0.792 0.875
0.706 0.748 0.907
0.714 0.752 0.913

0.768 0.849 0.846
0.772 0.851 0.854

500
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0.70 250

0.868 0.869
0.872 0.871
0.869 0.8s9
0.871 0.861
0.869 0.829
0.871 0.83'l

0.858 0.880
0.862 0.880
0.889 0.880
0.891 0.880
0.860 0.870
0.860 0.870
0.880 0.830
0.880 0.830

0.837 0.848
0.843 0.852
0.847 0.848
0.853 0.852
0.848 0.838
0.852 0.842
0.849 0.808
0.851 0.812

0.858 0.869
0.862 0.871
0.869 0.869
0.871 0.871
0.879 0.859
0.881 0.861
0.869 0.819
0.871 0.821

0.869 0.880
0.871 0.880
0.889 0.880
0.891 0.880
0.890 0.870
0.890 0.870
0.880 0.830

0.735 0.728
0.745 0.732
0.755 0.688
0.765 0.692
0.798 0.718
0.802 0.722

0.737 0.779
0.743 0.781
0.747 0.739
0.753 0.741
0.777 0.699
0.783 0.701
0.809 0.719
0.811 0.721

0.701 0.757
0.719 0.763
0.712 0.727
0.728 0.733
0.722 0.687
0.738 0.693
0.765 0.695
0.775 0.705

0.705 0.768
0.715 0.772
0.715 0.738
0.725 0.742
0.736 0.698
0.744 0.702
0.778 0.707
0.782 0.713

0.707 0.779
0.713 0.781
0.727 0.739
0.733 0.741
0.747 0.709
0.753 0.711
0.779 0.718

0.829 0.867
0.831 0.873
0.809 0.888
0.811 0.892
0.759 0.909
0.761 0.911

0.850 0.868
0.850 0.872
0.840 0.878
0.840 0.882
0.809 0.899
0.811 0.901
0.760 0.909
0.760 0.911

0.828 0.802
0.832 0.818
0.808 0.813
0.812 0.827
0.788 0.845
0.792 0.855
0.738 0.877
0.742 0.883

0.839 0.826
0.841 0.834
0.829 0.836
0.831 0.844
0.799 0.857
0.801 0.863
0.749 0.878
0.751 0.882

0.50

0.70

0.90

1000 0.30

0.50

0.70

0.90

L 0.879
u 0.881
L 0.880
u 0.880
L 0.870
u 0.870

L 0.869
u 0.871
L 0.890
u 0.890
L 0.890
u 0.890
L 0.880
u 0.880

L 0.848
u 0.852
L 0.858
u 0.862
L 0.859
u 0.861
L 0.859
u 0.861

L 0.868
u 0.872
L 0.879
u 0.881
L 0.879
u 0.881
L 0.880
u 0.880

0.879
0.881
0.890
0.890
0.890
0.890
0.880
0.880

0.869
0.871
0.859
0.861
0.829
0.831

0.890
0.890
0.880
0.880
0.870
0.870
0.840
0.840

0.859
0.861
0.859
0.861
0.849
0.851
0.819
0.821

0.879
0.881
0.869
0.871
0.859
0.86'1

0.829
0.83'1

0.890
0.890
0.880
0.880
0.870
0.870
0.840
0.840

0.746
0.754
0.766
0.774
0.799
0.801

0.738
0.742
0.758
0.762
0.778
0.782
0.809
0.811

0.703
0.717
0.713
0.727
0.734
0.746
0.766
0.774

0.716
0.724
0.726
0.734
0.746
0.754
0.778
0.782

0.718
0.722
0.728
0.732
0.758
0.762
0.779
0.781

0.30

0.50

0.70

0.90

500 0.30

0.50

0.70

0.90

1000 0.30

0.50

0.70

0.90

0.850
0.850
0.840
0.840
0.809
0.811
0.759
0.761

0.838
0.842
0.848
0.852
0.859
0.861
0.889
0.8910.880 0.830 0.781 0.722

Note: MCAR = Missing Completely At Random; MNAR - Missing Not At Random: Corr = Latent intercept-slope
correlation; N=Samplesize;Rel =Reliabilityol'theobserveclindicator:L=Lower95o/olilmit;U=Upperg5ok'limjt.
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ApxG-T2
Analysis oJ'Variance Resnlts vvith the Gooclness ofFit Inclex (GFI)Values as the Depenclent Variable,
witlt Latent Moclel Ty¡te, Latent Intercept-Slope Correlatiott, Sanqtle Size, ancl Reliabili4, of Ob.sertterl
Inclicators as Between-Subjects Factors, For the Three Missirtg Dctta Cr¡nclitirns (Com¡t¡ete, MCAR,
MNAR).

Corrected Modcl Completc Data MCAR Data MNAR Data

dl F-value Partial
1

et¿ì-

F-value Partial
1

etâ-
F-value Partial

1
eta-

Latenl. Interaction Model

Covariance (Corr)

Sample Sizc (N)

Reliability (Rel)

Latent Modcl X Corr

Latent Modcl X N

Latent Model X Rel

CorXN
Corr X Rel

NXReI
Latent Model X Corr X N

Latent Model X Corr X Rel

LatentModclXNXRel

CorrXNXRel
Latent Model X Corr X N X Rel

Error

Corrected Model

Latent Interaction Model

2

2

2

-1

4

4

6

4

6

6

8

12

12

12

'tA

53 I 703

19863.89

805 r 26.83

20525.50

31928.74

1112.53

39979.81

598.83

45 168. I 9

19.42

485.02

127.63

108.3s

300.32

93.61

7.51

18.02

t07 .800

.152

.012

.101

.039

.231

.004

.338

.000

.005

.001

.002

.007

.002

.000

.001

.766

.708

.06 r

.r45

.030

.191

.0 t0

.296

.000

.004

.002

.002

.00-5

.003

.000

.00 r

.863

.815

.126

.094

.1 t7

.099

.003

.492

.000

.020

.004

.001

.020

.008

.000

.00r

16169.14

640801 .5 r

17042.7 t

44685.90

5384.41

3 r 238.55

1341.12

37003.55

24.52

336.68

r 33.60

I14.86

215.68

| 13.25

8.15

n.36

27817.66

1042513.02

34084.41

24627.15

21040.21

13075.84

341.29

76710.94

25.02

1517.68

324.11

51.57

788.15

320.51

4.99

9.99

Note:MCAR=MissingCompletelyAtRandom;MNAR=Missi
intercept-slope coffelation; N = Sample size; Rel = Reliability of the observed indicator. The symbol
"X" represents an interaction between two factors.
All effects are significant at the ¡t <0.01 level.
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Figure ApxG-Fl

Plots of the InÍeraction Effect of'Latent ltzteraction Model Type Factor vvith the Observed Inclicator

Reliability Factor (l ) and Latent Interce¡tt-Slope Correlatiott (2) on tlze Goodness of Fit Inclex (GFI) í,

the Contplete Data Contlition in Those Moclels that Converged Successfutl¡,.
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Figure ApxG-F2

Plots of'the Interttctiott Effect of'Latent Interaction Moclel Type Factor with the Observed Inclicator

Reliability Factor (I ) ancl Latent Interce¡tt-Slope Correlatiott (2) on the Gooclness of'Fit hrclex (GFI) in

the Missirtg Completely At Randont Data Condition in Those Moclels that Contterged Success.fully.
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Figure ApxG-F3

Plots of the Interctction Elfect of'Latent hzteraction Mc¡det Type Factor with the Obsertte¿ Inclicator

Reliability Factor (I ) and Latent Intercept-Slo¡te Correlation (2) on the Gooclness of Fit Index (GFI) in

the Missirtg Not At Randont Dctta Conclition in Tlnse Models that Cotzvergecl SuccessJrilly.
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Appendix H

Results of the RMSEA Anal)¿ses for All Data Conditions

Table ApxH-Tl contains the 95Vo confidence intervals for the mean RMSEA values for each of

the three latent interaction growth models across all conditions, in each of the missing data conditions.

Analysis of Variance of RMSEA Values

Table ApxH-T2 contains the results of three ANOVA models, using the RMSEA statistic as the

dependent variable, with latent interaction model type (3 levels), coruelation of the latent intercept and

slope (3 levels), sample size (3 levels) and reliability of the observed indicators (4 levels) as independent

factors. These analyses were carried out separately for each data type condition (Complete data, MCAR

data, MNAR data) using only those replications that successfully converged.

C ont¡t I e te D ctt a C onclitiort Analy s i s

The ANOVA in Table ApxH-T2 for Complete data shows significant effecrs Qr < 0.05) for all

main effects and their interactions. The overall model effect was significant (F11¡17..s31703) = 27467 .60, lt

< 0.01), with a large effect size (partial eta2 = 0.85). The four-way interaction of latent interaction

model type, latent intercept-slope correlation, sample size, and reliability of the observed indicators, was

significant(Frz¿.s¡rzo¡)=7.63, p<0.05)andproducedasmalleffectsize(<0.01). Thelargesteffect

sizes were seen for the two-way interactions of latent interaction model and reliability of the observed

indicators (0.18) and the latent intercept-slope correlation (0.08) and for the main effect of latent
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interaction model (0.84).

To examine these significant two-way interactions, separate simple plots of the average RMSEA

values with the reliability of the observed indicators and the latent intercept-slope correlation were

produced for each latent growth interaction model, and are given in Figure ApxH-Ft.

Insert Figure ApxH-F1 about here

The simple plot for the interaction of latent growth interaction model with reliability showed both the

Wen and Duncan models having an increasing pattern of RMSEA values as reliability increased, with

the Duncan model showing a shatper increase at higher levels of reliability. The Schumacker model

showed a decreasing pattern of average RMSEA values as reliability increased. With respect to the

interaction of latent model type with correlation, both the Wen and the Duncan models showed stable

patterns of average RMSEA values as the correlation increased, and the Schumacker model showed an

increasing trend as the con'elation increased.

MCAR Data Contlitiort Analysis

The ANOVA in Table ApxH-T2 for MCAR data shows significant effecrs þ < 0.05) for all main

effects and their interactions. The overall model effect was significant (F¡¡67.2887r) = 25003.44, ¡t <

0.01), with a large effect size (partial eta2 = 0.84). The four-way interaction of latent interaction model

type, latent intercept-slope correlation, sample size, and reliability of the observed indicators, wâs not

significant (F12+..s2887r) = 1.44, ns). The largest effect sizes were seen with the two-way interactions of

latent interaction model with both reliability of the observed indicators (0.17) and latent intercept-slope

correlation (0.07), and the main effect of latent interaction model (0.g3).

To examine these significant two-way interactions, separate simple plots of the average RMSEA
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values with the reliability of the observed indicators and the latent intercept-slope conelation were

produced for each latent growth interaction model, and are given in Figure ApxH-F2.

Insert Figure ApxH-F2 about here

The results for the MCAR data closely resemble those of the Complete data. The simple plot for the

interaction of latent growth interaction model with reliability showed both the Wen and Duncan models

having an increasing pattern of RMSEA values as reliability increased, with the Duncan model showing

a sharper increase at higher levels of reliability. The Schumacker model showed a decreasing pattern of

average RMSEA values as reliability increased. With respect to the interaction of latent model type

with correlation, both the Wen and the Duncan models showed stable patterns of average RMSEA

values as the correlation increased, and the Schumacker model showed an increasing trend as the

correlation increased.

MNAR Data Conditiort Analyses

The ANOVA in Table ApxH-T2 for MNAR data shows significant effecrs (1, < 0.05) for all main

effects and their interactions. The overall model effect was significant (F11e7. 4747s8) = 7g25.30,¡r < 0.01),

with a large effect size (partial eta2 = 0.64). The four-way interaction of latent interaction model type,

latent intercept-slope correlation, sample size, and reliability of the observed indicators was significant

(Fp+.+t+tsu=6.02, p<0.01),withasmalleffectsize(partialeta2<0.01). However,thelargesteffect

sizes were seen for the two-way interactions of latent interaction model with reliability (0.43) and

correlation between latent intercepts and slopes (0.I2), and the main effèct of latent interaction model

(0.4r).
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To examine these significant two-way interactions, separate simple plots of the average RMSEA

values with the reliability of the observed indicators and the latent intercept-slope correlation were

produced for each latent growth interaction model, and are given in Figure ApxH-F3.

Insert Figure ApxH-F3 about here

The simple plot for the interaction of latent growth interaction model with reliability showed both the

Wen and Duncan models having an increasing pattern of RMSEA values as reliability increased, with

the Wen model showing a sharper increase at higher levels of reliability (and having an average value

that was higher than that of the Duncan model). The Schumacker model showed a decreasing pattern of

average RMSEA values as reliability increased, with average RMSEA values that were comparable to

those of the \ù/en and Duncan models at the highest level of reliability. With respect to the interaction of

latent model type with correlation, both the Wen and the Duncan models showed stable patterns of

average RMSEA values as the correlation increased, and the Schumacker model showed an increasing

trend as the conelation increased.

Sununary

None of the three latent growth interaction models showed average RMSEA values that were

below the cutoff of 0.05 for adequate model fit. Even using a relaxed value of 0.08 as a cutoff for

"acceptable" model fit (Fan et al., 1998), none of the latent growth interaction models had average

RMSEA values that were lower than this value, although the Wen model did have average RMSEA

values that were equal to 0.I I in several of the study conditions, most notably when the reliability of the

observed indicators was at its lowest value (0.30). In the Complete and MCAR data conditions the

average RMSEA values for the Wen and Duncan models were substantially lower than those of the
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Schumacker model. In the MNAR data condition this same pattern held at lower reliabilities, but all

three models produced similar average RMSEA values at higher reliabilities as sample size increased.

Under two of the three missing data conditions (Cornplete, MCAR) there was a trend for both the

'Wen 
and the Duncan models to show average RMSEA values that were stable as the latent intercept-

slope correlation increased, and which increased as the reliability of the observed indicators increased.

In these conditions the Schumacker model showed an increasing pattern of average RMSEA values as

the latent intercept-slope correlation increased and a decreasing pattern of average RMSEA values as

reliability increased.
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Table ApxH-Tl
Confklence InÍervals (95Va) for the At¡erage Root Mean Square Error of Approxinmtion (RMSEA)
Valttes.f'or All Latenr Growth Interaction Models (Po¡tulation Vctlue of Latent InteracÍion Porattteter
Equal to 2.0) For the Three Missing Dcttct Conditions (Complete, MCAR, MNAR).

Corr Iìel Complete Data MCAIì Data MNAIì Data

Wen DL¡ncan Schulnacker Duncan Schumacker Wcn I)uncan Schumacker

0.20

0.-50

0.30

0.-s0

0.70

0.90

0.70

0.90

0.30

0.r09

0.lll
0.t29
0.131

0. r39

0.14r

0.t49
0. t5l

0.1 l9
0.t21
0.t29
0.r3r
0.r39

0.141

0. l -59

0. l6l

0.563

0.6t7

0.533

0.587

0.468

0.512

0.384

0.396

0.561

0.-s99

0.494

0.526

0.429

0.4-s l

0.377

0.383

0.539

0.561

0.47 |

0.489

0.396

0.404

0.379

0.38 r

0.653

o.7rJ7

0.61 -5

0.6(r-5

0.-549

0.59 r

0.48-s

0.49-s

0.652

0.688

0.1 09

0.llt
0.t29
0.r3r
0.1 39

0. l4l
0.1 59

0.I6t

0.t09

0.lll
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0.131

0.t40
0. t40

0.r50

0.1.50

0.1 l0
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0.1 30

0.130

0. t40

0. r40

0.150

0.150

0.r l9
o.tzl
0.r29

0.131

0.1 39

0. t41

0. l -s9

0.l6r

0-l t9

0.121

0.129

0.r3r
0.r39

0. t41

0. t49

0.151

0.1 69

0.171

0.t29
0.131

0.139

0. l4l
0.r50

0. L50

0.1 70

0.t70

0.t30
0.r30

0.i40
0. t40

0.t50
0. l -50

0.t70

0.r70

0.129

0.13t

0.1 39

0. t4t
0.149

0.15 t

0.1 69

0.r71

0.t29
0. l3l

0.-559

0.621

0.530

0.590

0.482

0-538

0.390

0.4r0

0.5-s8

0.602

0.,s 10

0.550

0.445

0.475

0.376

0.384

0.54ó

0.574

0.488

0.512

0.4r3

0.427

0.3'79

0.38 r

0.639

0.701

0.620

0.680

0.-5(r4

0.6 t6

0.482

0,498
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0.702

0. t -59

0.161

0.r78

0.1 82

0.228

0.232

0.289

0.291

0. l -59

0.16 t

0.179

0. t8l
0.228

0.232

0.289

0.29t

0.r60

0.r60

0.r80

0.r80

0.229

0.231

0.289
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0.159

0.r61

0.179

0. t8l
0.208

0.212

0.298

0.302

0.209

0.21I

0.219

0.221

0.239
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0.220
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0.280

0.280

0.2r 0
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0.240
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0.219
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0.229
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0.249
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0.294

0.326

0.240

0.260

0.224

0.236

0.292
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0.254

0.266

0.226
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0.21 8

0.222
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Q.248

0.252
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0.222

0.219
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0.346
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0.246

0.254

-s00 0.30

0.50

0.70

0.90

1000 0.30
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0.70

0.90

0.t29
0.131

0.r39

0.t41

0.149

0. t5l
0.r69
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0.r09 0.r30

0.1 I I 0.130

0-t29 0. r40

0.r3r 0.140
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0.r40 0.t50
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L
U

L
U

L
U

L

U

L
U

L

U

L

U

L
U

0.30

0._50

L
U

L
U

L
U

L
U

L
U

L
U

L

U

L
U

0.t29
0.13 I

0.r39

0.141

0. r49

0.15 r

0.169

0. r71

L

U

0.r20 0.r30

0.r20 0.130
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0.3-s l

0.369
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Note: MCAR = Missing Completely At Random; MNAR - Missing Not At Random; Corr = Latenr
intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator; L = Lower 95Vo
limit; U = Upper 95Vo limit.
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Table ApxH-T2
Anttl¡,siq of Variance Restilts with Root Mean Square Emor of Approxintatiotz (RMSEA) Values as the
Deperulent Variable, witlt Latent Model Ty¡te, Laterú Interce¡tt-Slope Correlatiott, Sample Size, ctnd

Reliabili4, oJ'Observed Indicators as Between-Sub.jects FacÍors, For the Three Missittg Datct Conclitirnts
(Contplete, M CAR, M NAR).

Modcl Ellect Complete Data MCAR Data MNAR Data
d1' F-value Partial

1
eta-

F-value Partial
1

eta-
F-value Partial

)
ela-

107

2

2

2

3

4

4

6

4

6

6

8

l2

l2

12

24

53 l 703

27461.60

r382988.46

r 355 r .28

1515.19

4146.54

10987.56

1556.91

19615.99

1.96

t5.65

170.00

8.05

r 9.03

166.14

1.41 ns

r.63 (.03)

25003.44

t266019.26

1 1584.3 r

1218.98

4031.53

931 1.09

1240.22

11402.04

9.13

12.29

115.31

9.41

14.91

162.18

l.6l ns

1.44 ns

1825.30

r 66830.89

16514.99

3741.89

r 5486.33

16578.51

4667.88

60306.20

20.20

54.54

706.96

25.17

446.79

650.52

4.12

6.02

.841

.839

.049

.006

.026

.076

.012

.182

.000

.000

.002

.000

.000

.004

.000

.000

.835

.827

.042

.005

.022

.066

.009

. r65

.000

.000

.002

.000

.000

.004

.000

.000

.638
Corrected Model

Latcnt Interaclion Model

Covariance (Corr)

Samplc Size (N)

Rcliabiliry (Rel)

Latent Model X Corr

Latent Model X N

Latent Model X Rel

CorXN
Cclrr X Rel

NXRcI

Latent Model X Corr X N

Latent Model X Corr X Rel

LatentModelXNXRel

CorrXNXRel
Latent Model X Corr X N X Rel

Error

.413

.065

.0r 6

.089

.123

.038

.433

.000

.001

.009

.000

.011

.0r6

.000

.000

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr = Latent
intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.
All effects are significant at the p < 0.01 level.
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Figure ApxH-Fl

Plots of the Interaction EfJ'ect of Latent Interaction Moclel Type Factor v,itlt the Obsen¡ed

Inclicatr¡r Reliabilit¡, Factor (I ) and Latent Intercepr-Slope Correlation (2) on the Root Mean

Sqrnre Error of A¡t¡troxirnafion (RMSEA) in the Cont¡tlete Data Conclition in Tltose Moclels that

C onv e r g, e tl S uc c e s sful I ¡,.
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Figure ApxH-F2

Plots oJ'the Interaction Effect of Latenr InÍeracÍion Model T1t¡te Factor with tlte Observed

Indicator Reliabilit¡, Factor (Ì) and Latent Interce¡tt-Slope Correlation (2) on tlrc Root Mean

Sclttare Error of A¡tproxintation (RMSEA) in the Missirtg Com¡tletely At Ranclom Data Conclition

in Those Moclels that Convergecl SuccessÍully.
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Figure ApxH-F3

Plots of the Interctction Effect oÍ'Latenr Interaction Model Type Factor vvith tlrc Observed

Inclicator Reliability Factor ( l ) and Latent Intercept-SIope Correlation (2) on the Root Meatt

Square Error of Approximation (RMSEA) in the Missittg Not At Rantlont Datct Conclitiott itt

Those Morlels tltat Converged Successfully.
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