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Interaction Effects in Latent Growth Models

Abstract

Latent growth curves are an effective tool for describing the change or growth of an
attribute over time. Interactive effects between two latent variables on the rate of change of a
latent outcome of interest are of great interest to researchers. Several models have been utilized
to conceptualize the interaction in latent growth curves, but as yet there has been a limited
amount of empirical research to assess each of these models. The current study used a Monte
Carlo simulation approach to investigate three latent growth interaction models -- those by Wen
(Wen et al., 2000), Duncan (Duncan et al., 1999), and a longitudinal extension of the model by
Schumacker (2002), under varying conditions, with 5000 replications per condition. The factors
of missing data mechanism (Complete, Missing Completely At Random, Missing Not At
Random), correlation between latent intercept and slope factors (small, medium, large), sample
size (250, 500, 1000), and the reliability of the observed variables (very low, low, average, high)
were manipulated to determine their effects on overall model performance and model fit, bias of
the estimates for the latent slope interaction effect, and rates of Type I error. Of the three models
assessed, the Wen model showed the most reliable performance with respect to overall model fit,
and the Duncan and Schumacker models showed the most reliable performance with respect to
parameter estimation, and bias. The Schumacker model showed adequate Type I error control
when the data was either Complete or Missing Completely at Random. When the missing data
mechanism was Missing Not at Random none of the models performed well, however the
Schumacker model showed the most promising behaviour with respect to bias and Type I error
control. Recommendations for researchers utilizing these models are made, as well as

considerations for their use.
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A Simulation Investigation of Latent Variable Growth Models for Interaction Effects

Overview

Longitudinal modeling has received increased interest in psychology and the social
sciences. The ability to detect and investigate trends (or change) over time has great import for
measuring developmental processes (Aiken & West, 1992), and for determining such
phenomenon as the course of adult depression (Zuroff, Blatt, Sanislow, Bondi, & Pilkonis,
1999), the trajectory of cognition in the elderly (Raykov, 1993) and the effects of potential
moderators on intervention practices in children (Dawson-McClure, Sandler, Wolchik, &
Millsap, 2004a). An important area of research is the nature of interaction effects within the
framework of latent variable growth modeling. Li, Duncan, Duncan, Yang-Wallentin, and
Acock (2001) note that studying the impact of interactive relationships between growth factors
(i.e., latent slopes) can be of substantive interest in those hypotheses that seek to determine how
change in two latent attributes interact to produce a joint effect on the growth of an outcome.

Due to the relatively recent application of structural equation models to longitudinal data
in terms of latent variable growth models, empirical research delving into the utility of these
models needs to be carried out. More importantly, there has been a paucity of research to

examine the utility of latent variable growth models to investigate interaction effects of rates of

change in longitudinal designs (Curran & Hussong, 2003).
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The current project investigated several basic issues in analyzing latent slope interactions

using latent variable growth models with longitudinal data. Several methods have been proposed
to represent such latent interaction effects in latent variable models, and few studies have
compared them to each other. As a result, the conditions under which these methods have been
studied has been limited. A Monte Carlo simulation was used to examine some of the empirical
issues surrounding the estimation of latent slope interaction effects in latent variable growth
models. Specifically, issues of overall model fit (including model convergence), estimation of
the latent slope interaction effect (including bias in the estimates), and Type I error rates were
compared for three mode] representations of a latent slope interaction effect, for three types of
missing data mechanism. These issues were examined under the manipulation of the following
factors: correlation between the latent intercept and slope for a factor, sample size, and the

reliability of the observed indicators.
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Chapter 1: Literature Review of Longitudinal Designs in Assessing Change Over Time

In cross-sectional studies individuals are measured at only a single time point. These
types of studies allow the researcher to investigate the relationships between variables but are not
optimal for the assessment of any causative influences on the observed outcomes of interest over
time. In order for such causative influences to be determined, individuals (or groups) must be
studied at consecutive time points, utilizing what is known as a longitudinal design. According
to Curran and Hussong (2003) longitudinal designs “permit the systematic study of stability and
change over time and thus can provide critically needed empirical evaluations of the course,
causes, and consequences” of psychological phenomena (p. 526).

A particular type of longitudinal design is a repeated-measures design, which involves
measurements of the same variables on the same subjects over a period of time. When using
such a longitudinal perspective to modeling repeated-measures data the researcher is interested in
how a response variable changes over time (Willett, Singer, & Martin, 1998) — be it a linear
increase, a linear decrease, a non-linear type of change, or even no change at all. These types of
models are also termed growth models. An obvious advantage of longitudinal designs over
cross-sectional designs is the ability to assess the stability and growth behaviour of causal
relationships between antecedent independent variables and the subsequent dependent variables
which are the outcomes of interest.

The analysis of longitudinal data (including repeated-measures data) requires the use of
techniques that take account of the correlations between successive measurement occasions
(Raudenbush & Bryk, 2002; Rowe, 2002). Some analytic approaches, such as mixed models

(Littell, Milliken, Stroup, & Wolfinger, 1996; Singer, 1998), hierarchical linear models (e.g.,



21
Interaction Effects in Latent Growth Models

HLM; Raudenbush et al., 2002) and latent growth models (Meredith & Tisak, 1990) can be used
for the proper analysis of longitudinal designs. One purpose of a longitudinal design is to relate
the change in behaviour over time, represented as a growth parameter, to individual
characteristics, background variables, and environmental factors. This approach makes it
possible to detect systematic inter-individual differences in individual growth parameters (Stoel,
van der Wittenboer, & Hox, 2004), and allows for the studying of predictors of growth or decline
(Raykov & Marcoulides, 2000). The next sections describe several methods that can be used to

analyze longitudinal data.

General Linear Modeling (GLM) Approaches to the Analysis of Longitudinal Data

A common approach to the analysis of longitudinal data is to utilize a general linear
model approach, such as a repeated-measures analysis of variance (RM ANOVA) or a
multivariate analysis of variance (MANOVA; Keppel, 1991). In an RM ANOVA the dependent
variable is treated as a repeated-measures (within-subjects) factor (Games, 1990), and the interest
is on mean differences among groups and whether any of those differences are likely to have
occurred by chance. In a “pure” repeated-measures design, all subjects serve in all treatment
conditions and, as a result, serve to control subject variability. The RM ANOVA has an
assumption that the variances across the repeated measures all come from the same population,
also known as the sphericity assumption (Keppel, 1991). The RM ANOVA can be used to
investigate simple within-subjects designs, where time is assumed to be a categorical factor, with
balanced data, and equal time spacing between assessment points. The RM ANOVA approach

can also analyze a mixed within/between design, with interaction effects between time and other
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between-subjects factors. However, the RM NOVA can only incorporate time-invariant
covariates (Kwok et al., 2008).

The MANOVA is a generalization of the RM ANOVA to the situation of there being
several dependent variables (Tabachnick & Fidell, 1996). Like the RM ANOVA the focus is
still on mean differences among groups. However, the sphericity assumption is no longer
required when the multivariate approach is taken, an advantage of the MANOV A since this
assumption is often violated in longitudinal designs.

Both of these approaches are based on the general linear model (GLM) as a framework,
and many computer statistical packages offer a general linear modeling module. The GLM
approach is limited in a number of ways. This approach requires complete data for all observed
occasions of measurement, in that every subject must have complete data across all occasions of
measurement, and any subjects with missing data are removed from the analysis. Some of the
assumptions that are associated with the univariate GLM approach are often untenable, in
particular the assumption concerning sphericity (McCall & Appelbaum, 1973; Raykov et al.,
2000), and there are a limited number of variance/covariance structures that can be modeled.
Finally, the GLM approach can only accommodate continuously distributed repeated measures,
and its reliance on a fixed-effects approach means that systematic relations are evaluated by

pooling across individuals, and the only source of variation is in the residual effect.

Hierarchical Modeling Approaches to Longitudinal Data
The data generated by a longitudinal design is sometimes referred to as hierarchical data,

where occasions of measurement are considered to be nested within individual subjects (i.e., the
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data are nested with respect to time; for a review see Raudenbush & Bryk, 2002). With
hierarchical models each of the levels in the nested data structure are formally represented by
their own submodel. These submodels express relationships between the variables at a given
level, as well as expressing how variables from different levels exert an influence on the
variables at a given level. In a longitudinal design, the lowest level of measurement (also known
as the Level 1 model) is the time or occasion of measurement. The general equation for the

unconditional Level 1 model (i.e., no individual effects) can be represented as

Yil:B0i+BliXil+€ih i:1,2, ...,N;t=l,2, ...,T, (1)

where N is the number of individuals, T is the number of measurement occasions (or time), Yj is
the response of person i at time t, Xj is the occasion of measurement (e.g., the age at time t for
person 1), and &; represents the residual. This general equation also represents the mean model
or population average model. The Xj, can indicate real time or the ordinal position of occasions
(e.g., 1,2, 3, etc.). This Level 1 model contains three random variables — the intercept (Bo;), the
slope or growth trajectory parameter (;), and the residual term (&) which is assumed to have a
constant variance, o>. Both a time-invariant covariate (Xi; e.g., gender) and a time-varying
covariate (Wj; e.g., health status) can be introduced into these models if so desired.

The next level of measurement (also known as the Level 2 model) contains the individual
difference variables or person-level characteristics (e.g., gender, socioeconomic status). These
Level 2 model equations are proposed to explain the random variation present in the intercept

(Boi) and slope (B1;) in the Level I model. In an unconditional Level 2 model, there are no
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individual difference variables included, and the model equations are given as:
Boi = Bo + uo; (2)

Bri=PB1+ui 3)

In this unconditional Level 2 model the B, and B, terms are fixed effects and are the
grand means for the intercept and slope, respectively. The ug; and u;; terms are random variables
representing the variation of individuals around these grand means. Subsequent model levels can
be added as different types of variables are added (e.g., those measured at the group level are
considered to be Level 3 variables). When these Level 2 (and any subsequent levels) model
equations are inserted into the Level 1 model equation, we obtain a model of both fixed and

random effects, given as:

Yio = Bo + uoi + (B1 + uy) X + g

= Bo + B Xit + ugi + upXi + & 4)

There have been several names for models that utilize longitudinal data in this fashion —
multilevel linear models (Heck, 2001), mixed-effects models, random-effects models, and
random-coefficient models (Hox, 2000; Littell et al., 1996; Raudenbush et al., 2002). These
types of models all contain a random component for both the intercept (Boi) and slope (By;) of the
response variable. Raudenbush and Bryk (2002) use the term “hierarchical linear models” to

encompass all of these types of models as it conveys information about the structure of the data
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that is common in many of these applications. The assumptions of the hierarchical model are
that the random effects and the residuals are independent and multivariate normally distributed
(Curran, 2003).

Hierarchical models are more flexible than the conventional MANOV A approach to
longitudinal designs (Hox, 2000). Two drawbacks to the use of a MANOVA model are (1) the
removal of any cases that have missing data at any of the observed time points and (2) the
assumption that there is an unconstrained error covariance matrix. The hierarchical model
approach does not suffer from these limitations -- it does not require all cases to have complete
data, so that cases with incomplete data are not excluded from the analysis. The hierarchical
model approach can allow for more complicated error structures (e.g., autocorrelational), can
allow the residuals to be modeled as a function of time, or can allow for relaxation of the
assumptions on the variance structure of the errors (due to the complicated error structure that
can arise from longitudinal data).

SAS has introduced a similar procedure, termed mixed models, in their PROC MIXED
(Littell et al., 1996) procedure that is deemed more appropriate for handling longitudinal designs
than its general linear model approach (i.e., PROC GLM). Mixed models are a broad class of
models that include hierarchical linear models (HLM), growth curve models, and random
coefficient models. They have their basis in time series analysis (Elston & Grizzle, 1962), mixed
and variance components models (Cochran & Cox, 1957), random effects models (Laird &
Ware, 1982), and empirical Bayes models (Lindley & Smith, 1972), as well as both the nonlinear

mixed model (NLMIXED) and the general linear mixed model (GLMMIX).
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The mixed model approach can be used with simple within-subjects designs, where time is a
categorical factor (allowing for contrasts of time effects) and data is balanced with equal time
spacing between assessment points. If the interest is on the effects of between-subject factors on
individual growth trajectories, mixed within/between designs which incorporate interactions with
time and other between-subjects factors can be used. Mixed models can include both time-
invariant and time-varying covariates, do not require complete data (i.e., the same number of
assessments on all respondents), and allow researchers to specify a variety of covariance
structures to account for specific patterns of correlations. Finally, mixed models allow certain
assumptions associated with other methods used for analyzing longitudinal data to be relaxed.

An example is the sphericity assumption associated with the RM ANOVA.
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Chapter 2: Growth Modeling Approaches to Longitudinal Data

While the previous Chapter has outlined several methods for analyzing longitudinal data
that are often adequate, at times it is the rate or patterns of change that are of interest to the
researcher. As several authors have noted (Curran et al., 2003; Kline, 1998; Rogosa, 1993),
approaches such as the GLM or mixed model analyze change only in group means, and any
differences among individuals in their growth trajectories is treated as error variance.

Growth models allow for a flexible modeling of longitudinal data that can encompass
many of the models described earlier. Growth models can accommodate data structures from a
variety of modeling approaches, such as GLM, repeated-measures models and mixed models
(MacCallum, Kim, Malarkey, & Kiecolt-Glaser, 1997). They are also capable of modeling
individual patterns of change and are not restricted by the drawbacks that plague some of the
other approaches described previously (Wolfinger & Chang, 1995). Fan and Fan (2005) have
further noted that traditional approaches are often inferior to latent growth approaches for

detecting linear growth under small sample sizes and low effect sizes.

The Linear Effect Growth Model

Similar to the hierarchical models presented earlier (see page 22), the linear effect
growth model has two levels that are modeled (Singer, 1998; Willett & Sayer, 1994). The first
level deals with the occasions of measurement and models the trajectory (growth) for each
individual. This level represents the actual repeated measurements themselves, and is sometimes
termed the “within-person” model since observations are taken “within” individuals. The second

level represents the random variables from the first level (the intercept and slope) as outcomes
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that may depend on person-level characteristics (e.g., gender, socioeconomic status). The basic
equations are the same as those presented earlier (Equations 2-4) and are reproduced here.
The Level 1 model (which is the same as the mean or population average model) is

expressed as

Yio = Boi + B 1i Xi + &is (5)

with i and t defined as in Section 1.2. Yj is the measure of the response variable for person i at
time t, and X, is the measure of time for individual i at time t (i.e., the occasion of measurement).
The intercept (Bo;) in this Level 1 model represents the true level of the response variable for
individual i at the first occasion of measurement. The slope (By;) represents the true rate of
change on the response over time. These intercept and slope terms are random variables that
vary across individuals and represent the individual-specific effects. This random variation is

expressed as a set of Level 2 equations
Boi = Bo + uoi (6)

Bi=P1+u (7)

The complete model, joining the Level-1 and Level-2 models, is
Yio=PBo+uei+ B1+un) Xi + &

=Bo+ B 1 Xi + ug + uXi + €. (8)
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Non-Linear Effects in Growth Models

Not all models of growth are purely linear in effect, i.e., following a monotonic rate of
change with constant slope over time. For example, a growth model that has a quadratic effect is
used when there is a smooth curved increase or decrease in scores over time (Willett et al.,
1998). This is depicted in Figure 1.

Insert Figure 1 about here

This type of model, termed a non-linear-effect growth model, is useful for studying outcomes
that change rapidly over time. An advantage of non-linear effect growth models is that, with
only three occasions of measurement, the researcher is allowed more flexibility in testing
possible models to explain the observed growth trajectory.

Continuing with the example of a quadratic-effects growth model, the Level 1 model
equations presented earlier (Equations 6 to 8) change as there is now a squared polynomial term
to represent the non-linear (quadratic in the current example) effect of growth over the occasions

of measurement. The complete Level 1 model now becomes

Yi = Boi + Bii (Xio) + Bai (Xi)” + &, )

The addition of the squared polynomial term (X;) permits the growth rate to differ smoothly and
systematically as a function of the occasions of measurement, representing the non-linear
quadratic component of the growth model.

The Level 2 model equations change slightly from those for the linear effect growth
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model as now there is a third random variable, B, for the acceleration in each growth trajectory
(how fast the trajectory changes over time) and to represent the non-linear effect. The system of

Level 2 equations now becomes

Boi = Boo + uoi, (10)
Bii = Bio + uyi, (1D
Bai = Boo + uai. (12)

The intercept, Bg;, is the status of person i at time t, B; is the growth rate of person i, and B,; is the
acceleration in each growth trajectory (how quickly the trajectories change). The combined

model is:

Yio = Boo + BroXii + Pao Xi” + ugi + ugi Xit + Uz Xi” + By (13)
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Chapter 3: Structural Equation Modeling (SEM)

Background to SEM

Structural equation modeling (also called covariance structure modeling, causal
modeling, or LISREL modeling) is a data analytic technique that can be used to test if a proposed
causal structure is consistent with the covariances and variances for a given set of data (Breckler,
1990). There are two general purposes of structural equation modeling — the assessment of
model fit, and the estimation of model parameters (Fan & Wang, 1998). The assessment of
model fit gives information about the general pattern of the relationships among the variables,
and the estimation of model parameters gives information about the direction and strength of
those relationships. Model fit indices are meant to describe the fit of the proposed model to the
data rather than to test the fit statistically.

The typical structural equation model has two components: the measurement model,
which relates a series of observable indicators (often referred to as manifest variables) to a series
of one or more latent (or unobserved) constructs (n), and the structural model, which defines the
relations among the latent constructs (Muthen, 2002). The measurement component of the

model is defined in terms of the p-dimensional outcome vectory,

Y=Vp+ A, N +E, (14)
With p representing the number of manifest variables, or indicators, and with m representing the
number of latent variables, the elements of this model can be defined as follows: v is a p-
dimensional parameter vector of measurement intercepts, A is a p-by-m matrix of measurement

slopes (often referred to as model parameters or factor loadings), 1 is an m-dimensional vector of
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latent variables, and € is a p-dimensional vector of residuals which are uncorrelated with other
variables.

The equation that represents the structural portion of the model is:

M =0+ Bn, + L. (15)
In this equation, o is an m-dimensional parameter vector and B is an m-by-m matrix of latent
slope parameter estimates, indicating the relationships among the latent variables. Lastly, { is an
m-dimensional vector of errors in prediction for the m dependent latent variable equations. The

covariance matrix of { is denoted by y and has dimensions n-by-m.

Estimation Methods in SEM

Model estimation involves the determination of a value for the unknown parameters in
the proposed model. For each parameter, an estimate of the unstandardized coefficient and the
standard error of the estimate are generated, with the goal being to minimize the difference
between the observed and estimated population covariance matrices (Tabachnick & Fidell,

2001). The function that is minimized is

Q=(s-06(0))W (s - 6(0)), (16)

where s is the vector of the data, ¢ is the vector of the estimated population covariance matrix, 0
indicates that ¢ is derived from the parameters of the model, and ’ is the transpose operator
(indicating a reflection of a matrix along its main diagonal). W is a weight matrix that weights

the squared differences between the sample and estimated population covariance matrix.
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Different estimation procedures vary with respect to their choice of W. Estimation
procedures include maximum likelihood (ML), generalized least squares (GLS), and unweighted
least squares (ULS), among others (see Tabachnick & Fidell, 2001, for a review). Some
methods are better than others with respect to correcting for the bias introduced by violation of
statistical assumptions (Weston, Gore, Chan, & Catalano, 2008).

ML estimation is one of the most commonly used estimation methods and is robust to
moderate violations of normality in the data. The ML estimation procedure is a normal
distribution theory estimation procedure, and the ML estimator itself is the vector of arguments
that minimizes the following ML fitting function

Fuw = log [ Z(9) ] + u[SE™(0)] - log [S] - p, (17)

where S is the sample covariance matrix of the observed variables, X(6) is the covariance matrix
implied by the model that is a function of 6, the model parameters, p is the number of observed
variables, and tr is the trace function (the sum of the elements on the main diagonal for a square
matrix).

The GLS estimator yields results that are asymptotically equivalent to those obtained
from the use of the ML estimator, and uses the following fitting function:

Fors=0.5 tof[S - Z7(0)] W (18)

The ULS estimator is defined as (Siemsen & Bollen, 2007)

Furs =0.5 tfS - Z(0)]°. (19)
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SEM in Longitudinal Designs

SEM can be used when there are repeated observations on a set of individuals. This
approach is applicable when the research question is framed as either a longitudinal model or as
a latent variable growth curve model (Hoyle & Smith, 1994; Kline, 1998; MacCallum et al.,
1997; Raykov et al., 2000). SEM offers advantages over the general linear model by its ability to
allow for theoretical models of change to be specified (Raykov, 1992), and by providing an
assessment of overall model fit which is not a large focus in hierarchical multilevel models
(MacCallum et al., 1997). Further, SEM is useful for studying the influence of latent (error-free)
constructs that are measured with fallible multiple indicators (the observed variables), and can
yield accurate estimates of causal influences and relationships. SEM approaches are also able to
take into account the effects of correlated errors of measurement in both the independent and
dependent variables (Hox, 2000; McArdle & Hamagami, 1992), which are present in any
longitudinal design. If desired, multiple-group analyses can be used to model between-subjects
effects in longitudinal models (Hoyle et al., 1994) and can examine any time-by-group
interactions (where there are different effects across time for different groups) as can be done in

hierarchical and mixed-effects models.
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Chapter 4: Latent Growth Models

A growth model can be formulated as a structural equation model (Meredith et al., 1990;
Muthen, 2002), and is then called a latent growth model or a latent growth curve model. Here,
the repeated measurements for each individual are modeled by a latent variable for the intercept
of the growth curve and a second latent variable for the slope of the growth curve (Meredith et
al., 1990; Muthen, 2002; Willett et al., 1994). The interest with a latent growth curve is to model
individual change as a function of time (McArdle & Epstein, 1987), as the use of repeated
measurements over time means that the latent factors represent common factors which are
indicative of individual differences over time (Curran et al., 2003; Duncan, Duncan, Li, &
Alpert, 1999; Hox, 2000).

With respect to the linear-effect growth model presented earlier (in Section 2.1), the
random terms from the growth model (the intercept Po; and the slope By;) are now represented as
latent variables that vary across individuals. Also, the p manifest variables now represent the

observed variables at each of the t time points.

History and Development of the Latent Growth Model

The latent growth model is based on the premise that a set of observed repeated
assessments taken on a given individual over time can be used to estimate an unobserved
trajectory that gives rise to the observed repeated measures — the focus is not on the set of
observed measures, but instead on the underlying unobserved latent constructs that explain the
relations between the observed measures (Burchinal, Nelson, & Poe, 2006). Several authors

have proposed the idea of the analysis of individual trajectories (Gompertz, 1825; Palmer,
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Kawakami, & Reed, 1937; Wishart, 1938), and this was in an effort to capitalize on the rich and
detailed information contained in continuous multi-wave data and also to address research
questions regarding systematic interindividual differences in change (see Bryk & Raudenbush,
1987; Rogosa & Willett, 1985). With this approach, an individual growth model is derived that
represents the change that each person experiences with time (also known as a within-person
model). All members of a population are assumed to have trajectories of the same functional
form, but different members can have different values of the individual growth parameters. If
predictors of change are included in the modeling process, then these get linked to the individual
growth parameters in a between-person model.

There have been a variety of methods proposed to estimate the parameters of these within
and between models (also called Level 1 and Level 2 models, respectively). One avenue of
estimation has been the use of the methods of covariance structure analysis, or structural
equation modeling. Meredith and Tisak (1990) provide a technical framework for this, building
on the earlier work of Tucker (1958) and Rao (1958), as well as drawing together other
approaches to the analysis of longitudinal data (e.g., repeated-measures ANOVA, MANOVA).
The approach of Meredith and Tisak (1990) is broad in that it allows the evaluation of the
general shape of the individual growth trajectories (i.e., the individual growth parameters), but
also provides estimates of the between-level means, variances, and covariances across all
members of the population. Wilett and Sayer (1994) note that the integration of individual
growth modeling and covariance structure analysis capitalizes on the mathematical equivalence
of these two alternative methodologies of representing the same data structure. The formulation

of the Level 1 and Level 2 models for individual change and for systematic interindividual
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change, respectively, is equivalent to proposing a specific structure for the matrix of population
covariances among the repeated waves of observed data. By using a structural equation
modeling approach with mean structures to articulate this covariance structure and to fit it to the
matrix of sample covariances, estimates of the between-person parameters that were specified
under the original growth modeling formulation can be obtained.

McArdle and Hamagami (2001) fostered the development of techniques for handling
missing data, which aided in allowing the analysis of longitudinal data within a covariance
structure modeling framework. Muthén (1991) and Muthén and Satorra (1989) have provided
the technical basis and examples of the modeling of multilevel data using covariance structure
methods, and have shown that the parameters of a linear growth model can vary across
individuals in ways that are systematically related to selected time-invariance predictors of
change. Curran and Hussong (2003) present extensions of the latent growth modeling

framework to include mediation, moderation, and multivariate models.

Fundamentals of Latent Growth Models

The simplest latent growth curve has a single variable that is measured at two time points
(i.e., T=2), and is also known as a linear latent growth model. This linear growth model
assumes that a one-unit change in time is associated with a 8 unit change in the outcome, and
that the magnitude of this relation is constant over all points in time (Curran et al., 2003).
While this is too basic of a model to represent alternative shapes of change over time (three or
more observed time points are needed for this), it is useful for explaining the fundamentals of

latent growth curve models. In matrix notation, the measurement model (which relates the
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repeated measurements to the latent growth variable, 1) has the following form (Curran, Bauer,

& Willoughby, 2004; Li, Duncan, Duncan, Yang-Wallentin, & Acock, 2001):

Yy=T,+A, N+E¢,

(20)

Here y is a T;-by-1 vector which contains the observed values of Y (the outcome of

interest) across time for each individual, 1, is a T;-by-1 vector of observed variable intercepts

(similar to By given previously in Section 1.2), A, is a T-by-m matrix of loadings (known as

basis coefficients, with m being the number of latent factors in the model) that reflect the

hypothesized growth pattern underlying ¥ (Meredith et al., 1990), i is an m-by-1 vector of latent

growth factors that capture the facets of growth that are being modeled (in this case an intercept

and a slope), and € is a T;-by-1 vector of measurement residuals which are assumed to be

constant across time and uncorrelated with each other. In LISREL matrix form, the elements of

this equation for a linear latent growth curve model are:

Y, 1 0
Y12 1 1 Nui

= '[lﬁ'
Yiri 1 T;-1

In this linear latent growth model, both the intercepts and the measurement of time are

parameterized by the factor loading matrix A, which relates the repeated

&

21
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measurements to the latent factors (Curran et al., 2004; Rovine & Molenaar, 1998).

The structural model is represented by the following equation,
n=o+Bn+{, (22)
where o represents an m-by-1 vector of latent intercepts, B is an m-by-m matrix containing
structural coefficients, and { is an m-by-1 latent residual vector, with ¥ representing the
covariance structure among the latent factors. A typical linear latent growth curve model of this

type using two time points is given in Figure 2.

Insert Figure 2 about here

In this figure, observing from left to right, the first latent factor is the intercept (To;
analogous to the Bo; in Section 1.2), and it is a constant for any given individual across time. As
a result, all of the factor loadings from this latent factor to the observed variables are fixed to 1.
This intercept factor also gives information about the mean (Mip,, analogous to By in Section 1.2)
and variance (Diy,, analogous to ug; in Section 1.2) of the collection of intercepts that characterize
the growth curve for each individual, with the mean representing the estimate of the common
intercept across all individuals. The second latent factor is the slope (n; analogous to By; in
Section 1.2), and is the slope of each individual trajectory (which in this example is a
monotonically increasing trajectory). The slope factor also has a mean (Mg, or B1) and a
variance (Dqp, or ug;). The mean of the slope factor represents the common slope across all
individuals, and the two latent factors of the intercept and the slope are allowed to covary (the

double-headed arrow that links the two latent variables). Individual deviations from these
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common intercepts and slopes are modeled by their respective variances.

In order for this particular model to be identified (.e., to have a unique set of parameter
estimates which can be calculated for the parameters in the model; Kline, 1998), some of the
factor loadings for the paths from the observed variables to the two latent factors must be fixed
to two different values. Fixing the factor loading from the latent intercept factor (1)) to the first
observation point (Yy) at 0 and that from the latent slope factor (n;) to the second observation
point (Y) at 1 (see Figure 2) has the effect of locating the intercept at the first observation point,
Y. With these choices of factor loadings, the latent intercept factor (1g) now represents initial
status and the latent slope factor (1) represents the difference in scores at the two observation
points (Y2 - Y), and the model can be identified.

In Figure 2, the observed measurements of Y, and Y, can be expressed as linear functions
of the latent factor scores (the intercept and the slope), the factor loadings, and the latent factor

means (the Mi, and Mgp). We can then write the equations that represent the model as:

Y1=T]()+/11T]1+€] (23)

Yo=Mo+Amn +e (24)
Mo = Min + Din (25)
n = Mslp + Dslp- (26)

Here, the As represent the factor loadings (from the matrix B of structural coefficients) that relate

the latent factors to the observed variables, 1 and 1, are the latent intercept and slope
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respectively, and e; and e, are individual measurement errors.

Assumptions of Latent Growth Models

There are common assumptions associated with latent growth models. These are: (1) that
the trajectories of all individuals have the same functional growth form (e.g., all linear), (2) that
the longitudinal data can be fully summarized by their means and covariances (which implies
that the repeated measures are multinormally distributed), and (3) that the effects of the observed

indicators are constant over the range of the trajectory parameter values (Curran & Bauer, 2003).

Latent Growth Models with More Than Two Repeated Observations

The basic linear effect latent growth curve presented earlier (p. 28) can easily be
extended to incorporate more than two repeated observations per individual. Figure 3 gives an
example of a basic linear effect latent growth model that utilizes three repeated observations per
individual.

Insert Figure 3 about here

When there are three (or more) repeated observations for each individual there is the
opportunity to test for more complex trajectories, such as quadratic or cubic effects. This can
easily be accomplished with a latent growth model by adding another latent factor to represent
each non-linear effect and fixing the latent factor loadings accordingly (McArdle et al., 1987).
The model presented in Figure 4 is a hypothetical growth model with a quadratic-effect latent

factor (denoted as Mp).
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Insert Figure 4 about here

The factor loadings from the observed indicators to the latent variables can be fixed for particular
shapes or effects (e.g., linear, quadratic) or they can be freely estimated if the shape of the

trajectory is unknown.

Comparison of Latent Growth Models and RM ANOVA

As presented earlier, the RM ANOVA uses each of the repeated measures variables as a
within-subjects factor which distinguishes measurements made on the same individual, rather
than between different individuals (see Section 1.1). Further, with a traditional GLM-based
approach only the factor means are of interest, and might not be the optimal choice of statistical
procedure for researchers interested in the trajectory of change over time. Latent variable growth
models offer several advantages over RM ANOVA approaches (Fan & Fan, 2005): they are
more powerful for detecting growth with small effects with small to moderate sample sizes, can
easily accommodate nonlinear growth patterns, and can handle facets of stability (correlations
between latent variables adjacent in time), level (means) and inter-individual differences
(variances) simultaneously (Rudinger & Rietz, 1998).

A latent growth model can be made comparable to the RM ANOVA by placing
restrictions on the parameters that correspond to the assumptions from the RM ANOVA. First,
an orthogonal polynomial transformation matrix needs to be generated, the entries of which
become the factor loadings for each of the variable-factor relationships. Further, the RM

ANOVA assumes that each of the observed variables are measured without error, requiring the
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error terms for each observed variable to be set equal to zero. Duncan et al. (1999) provide an

analytic example that compares the two procedures.

Comparison of Latent Variable Growth Modeling and Multilevel Models

Curran (2003) had made direct comparisons between structural equation models and
particular examples of multilevel models (i.e., hierarchical models), showing how the SEM and
multilevel approaches to latent growth curve analyses have a high degree of isomorphism, and
that they provide analytically identical solutions to two-level growth models (see also Rovine &
Moelenaar, 2000). Latent growth curve models can be applied to the same range of longitudinal
data structures as with multilevel approaches, can allow for both missing data and for individuals
to be measured at different occasions and different numbers of occasions. Further, measurement
error distributions within latent growth models can be either homoscedastic or heteroscedastic, as
latent growth models can approximate random changes in measurement error. By allowing
specific patterns of indicator-to-factor loadings, latent growth models can also test the adequacy
of specific growth forms (e.g., linear, quadratic), and the interpretation of the intercept and shape
factors for these growth forms are straightforward (Duncan et al., 1999).

As an example, consider the graphical representation of a latent variable growth model
given in Figure 7. In this sample model a group of individuals are measured on a particular
variable at four consecutive time points (Y to Ya). Some potential explanatory variables are
also measured: the Z variable is a time-invariant covariate (i.e., a variable which does not change
over time, e.g., gender), and the W, and W; variables are time-varying covariates (i.e,. a variable

that can change over time) measured at the second and third assessment periods, respectively.
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As can be seen from this example, an SEM approach to longitudinal models can easily
incorporate all of the aspects of a hierarchical model when using longitudinal data.
Insert Figure 7 about here

The fitting of hierarchical data with mixed and multilevel models, while being powerful
analytical tools in their own right and being able to explain variance in the parameters, are
unable to provide information about the magnitude of direct, indirect, and total effects among the
latent variables (Rowe, 2002). Further, since multilevel models are extensions of the general
linear mixed model, which specifies the response vector to be a linear sum of the effects of the
independent variables, there is no allowance made for examining the structure of the covariance
matrix among the independent and dependent variables. As a result, it is not possible to jointly
investigate the structural relationships (i.e., direct, indirect, and total effects) that exist among the
independent and dependent variables. Such effects can be studied using the SEM framework
(Rowe, 2002).

In summary, as a relatively newer analytical method, latent growth models can be applied
to the same data that could be analyzed with traditional statistical models (e.g., RM ANOVA),
which makes this method a viable one as a research strategy for existing data. The assessment of
growth trajectories can be easily assessed with an LGM approach — in LGM the interest is about
the underlying unobserved latent constructs that explain the relations among the observed
measures, and not expressly in the characteristics of the set of observed measures (as can be the
focus with other approaches such as the mixed model). The LGM approach can accommodate
fixed effects, random effects, or a mixture of both, and is more flexible with incorporating

interaction effects than the RM ANOVA or mixed model.
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Chapter 5: Methods Used to Represent Latent Growth Models

Several methods have been proposed to represent latent growth models. These are: the
LISREL univariate approach utilized by both Duncan et al. (1999) and MacCallum et al. (1997),
the Raykov (1992) T-Congenericism model, and the Muthén (1994) Two-Level Disaggregated

Model approach.

LISREL Univariate Approach

The LISREL univariate approach to longitudinal modeling is probably the most widely-
used approach (Duncan et al., 1999; MacCallum et al., 1997), and it uses a covariance matrix of
order t-by-t, where t is the number of measures of the latent outcome variable. Since these
represent repeated measurements, t can also be used to represent the occasions of measurement
(similar to that presented in previous sections). This covariance matrix provides the variances,
covariances, and means of the t measures. The scores for each person i on a single response
variable y, measured at t occasions, are organized into a vector y, where y° = (yiy, Vi2, -..., i) and
’ 1s the transpose operator (indicating a transposition of rows of a matrix into columns). This

LISREL model has the following form:

y=Az+e, 27)
where A is a t-by-m matrix, with m representing the number of latent factors in the model. The
columns of A represent specific trajectories of change, represented as the factor loadings from

the observed indicators to the latent variables (and are sometimes referred to as “basis

functions™). The vector z contains the scores on the m latent factors for a given person, and is
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analogous to the latent vector 1| given in previous sections. The diagrammatic representation of
this LISREL model (as given in MacCallum et al., 1997) is given in Figure 5.

Insert Figure 5 about here

In this model, a dummy variable (represented as a diamond in the upper portion of Figure 5)
represents the specification of non-zero means of the factors. The factor loadings from this
dummy variable to the two latent variables for the intercept and slope (Bg and B,) are the factor
means of these two latent variables. This model also estimates all of the parameters from the
latent slope factor to the observed variables. Duncan and colleagues (1999) also use this

approach but omit the dummy variable.

Raykov (1992) T;-Congenericism Model
Raykov (1992) proposes a T)-congenericism model for representing a latent growth
model. A diagram of this model is given in Figure 6.

Insert Figure 6 about here

In this model the parameters of change are the factor loadings from the latent variable to each of
the observed variables (e.g., Y to Y3). By setting the loading from the latent variable to Y, (ie.,
b; in Figure 6) equal to 1, the given structure will model change over time in terms of true initial
status at the time of the study. Furthermore, the scores of all assessments are now linear

functions of the score at the first assessment.
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In order for this model to be realized, a model needs to be fit to the cross-product moment
matrix or the covariance-mean matrix (not the covariance or correlation matrix as is typically
used in SEM procedures; Kline, 1998). The reason is that the cross-product moment matrix
contains information about the means and their change over time, which is not incorporated into
the covariance or correlation matrix. A dummy variable is also used in this model, represented
by the diamond shape at the top of the model diagram in Figure 6, and it is a constant (usually set
to the value of I). The estimated value of the path from the latent variable to this dummy
variable is interpretable as the mean of the individual scores at first assessment, as in the

LISREL model approach.

Muthén’s (1994) Two-Level Disaggregated Model Approach

Muthén (1994) provides a methodology for reducing a hierarchical longitudinal model to
a model that can be represented using traditional structural equation modeling software. The
outcome yj for each individual is reformulated into a T-by-1 vector (y*), where the elements are
the observed outcome at each time point t, up to the final time point T (Muthén, 1994). This
approach then divides the model into two sections: one section that expresses the mean as a
function of initial status and the mean of the growth rate (representing the fixed parameter
portion of the linear growth model), and a second section that expresses the within-group
variation and error, both of which are random effects. Muthén (1994) proposes that this

approach can be easily implemented in current SEM packages.
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Chapter 6: Moderators / Interaction Effects

There is often the need to determine if the effect of one (or more) independent variable(s)
on the dependent measure depends on the level of a second independent variable. Due to the
potential theoretical importance of these interaction effects (also called moderator effects), their
accurate detection is a crucial part of social science research (Wen, Marsh, & Hau, 2002). The
assessment of interaction effects in regression and path analyses have been well documented by
other authors (e.g., Aiken & West, 1992; Baron & Kenny, 1986; Jaccard et al., 1990; McClelland

& Judd, 1993).

Definition and Purpose of Moderators

A formal definition of a moderator variable was introduced by Saunders (1956), who
proposed that a moderator was any continuous type of variable which influenced the predictive
effectiveness of other variables in a regression model. Zedeck (1971) furthered this definition by
noting that a moderator variable could affect the nature and/or degree of association between an
independent and a dependent variable. The current definition of a moderator variable is that put
forward by Baron and Kenny (1986), which states that a moderator “is a qualitative or
quantitative variable that affects the direction and/or strength of the relation between an
independent or predictor variable and a dependent or criterion variable” (p. 1174). Other terms
used to indicate moderator variables have been modifier, buffer, or vulnerability factor (Cleary &
Kessler, 1982). In most analysis settings this type of moderator variable is called an interaction
effect (Jaccard, Turrisi, & Wan, 1990).

A moderator can serve different functions in a given analysis. A moderator allows for the
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predictors in a model to be differentially valid for different groups (Zedeck, 1971), acting much
like an interaction effect in an ANOVA setting. Banas (in Zedeck, 1971) reported that a
moderator improves the usefulness of a predictor by isolating subgroups of individuals for which
a particular predictor is most appropriate. Cleary and Kessler (1982) called a moderator a
conditional effect, where the relationship between a risk factor and a dependent variable depends
on the presence/absence or level of the potential modifier.

Two methods of identifying potential moderators are to use a theoretical approach and an
empirical approach. With the theoretical approach the researcher uses intuition or theory based
on previous research (e.g., hypothesis-formation) to discern the potential moderators. The
empirical approach utilizes a statistical procedure (e.g., correlating variables within groupings) to
determine the existence of a potential moderator. Kline (1998) has noted that if the R-square for
a linear model is low then there could be a need for moderator effects due to the presence of

possible complex relationships.

Regression Approach to Testing Moderator Effects

Saunders (1956) outlined a method for addressing moderated regression with continuous
variables using product terms, which was elaborated upon by Zedeck (1971). This method used
ordinary least-squares (OLS) regression, and was also advocated by Baron and Kenny (1986) for

assessing moderated effects. The basic regression equation for a moderator effect is given as
Y =0+ BiX + M + B3(XM) + ¢, (28)

where Y is the dependent variable of interest, o is the intercept, X is the predictor variable, M is
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the potential moderator variable, and XM is the product of these two variables.

Formal procedures are given in both Aiken and West (1992) and Jaccard et al. (1990) for
testing moderator effects with both continuous and nominal variables using the Baron and Kenny
(1986) approach. If the moderator is a continuous variable, and the product term in the
regression is significant, then probing of the interaction effect involves plotting separate
regression lines for different levels of the moderator. Aiken and West (1992) propose plotting at
moderator values of the mean * one standard deviation to probe the interaction effect, and these
authors also provide a methodology for testing the slope parameters (pp. 14-16). This method
has been used by some authors (e.g., Hewitt, Flett, & Ediger, 1996) to investigate the effects of
psychological variables on mental health.

Cronbach (1987) found that the variance of the product term in this type of model
increases as the individual predictor means differ from zero, leading to biased tests of the
moderator effect. This increase in variance may be the reason why some authors have reported
that moderator effects typically account for small portions of the variance in regression models in
psychology studies (McClelland & Judd, 1993). Cronbach (1987) suggested that centering the
individual predictors can minimize this variance and reduce multicollinearity, and Allison (1997)
has noted that this centering does not bias the test of the moderator effect when raw (i.e.,
unstandardized) regression coefficients are used.

If the proposed moderator is categorical an alternative regression approach is to perform
separate regressions for each subsample based on the level of the categorical moderator variable.
This subsample-based analysis does not utilize the entire data set and results in a loss of

statistical power (Morrish, Sherman, & Mansfield, 1986). Baron and Kenny (1986) noted further
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deficiencies with this subsample-analysis strategy. It assumes that the independent variable has
equal variance at each level of the moderator and, if the amount of measurement error in the
dependent variable varies as a function of the proposed moderator, then there will be spurious
differences introduced into the correlations. Regression coefficients based on the entire sample
are not affected by differences in measurement error of the independent variable, and so are more
desirable in this case. Aiken and West (1992) propose substituting the different values of the
categorical moderator variable into the regression equation and then plotting each regression line
individually.

This regression-based approach to moderator effects can be represented as in Figure 8.

Insert Figure 8 about here
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Chapter 7: Interaction Effects in Latent Variable Models

With respect to interaction effects in latent variable models, there are two general
approaches that can be used depending on the nature of the individual interaction variables. If
one of the variables involved in the interaction is a dichotomous or categorical variable, the
common approach is to assess the structural model at each level of this categorical variable
(Baron & Kenny, 1986). In this event, the researcher is seeking to test either (a) models that fit
for some groups and not others, or (b) differential path coefficients for particular levels of the
categorical interaction variable (i.e., test for differences in the path coefficients between levels of
the interaction variable).

The second approach is used when all of the variables in the model are continuous in
nature. The diagram in Figure 9 shows a latent variable model with an interaction term
representing the interaction effect of two continuous latent variables (Kenny & Judd, 1984). As
with regression and path analysis approaches (see Aiken & West, 1992), the latent interaction
variable is constructed by creating product terms from all of the observed indicators for the two
individual latent variables that are proposed to interact, and is termed a multiple indicator model.

Insert Figure 9 about here

The use of structural equation modeling to test for interaction effects allows for the
correction of the estimates for measurement error (which introduces bias into the regression
coefficients), thus increasing the power of the statistical test to detect interactions in comparison
to regression and path analytic methods (Aiken et al., 1992; Li et al., 1998). The original latent

variable interaction model posited by Kenny and Judd (1984) is
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Y=7E+ v +vE&+ (29)

where Y is the latent dependent variable, &;, &, and &,&, represent the latent factors for the
independent variables, potential interaction variable, and the interaction product, respectively,
and  is the residual term. This approach requires all of the observed variables to be in mean
deviation form and to have normal distributions.

The Kenny and Judd (1984) model has led to several methods of specifying the
interaction effect with latent variable models. These are (a) Bollen’s (1996) 2-stage least squares
(TSLS) method, (b) the Ping (1996) 2-step maximum likelihood (ML) method, (c) the Jaccard
and Wan (1995) ML method, (d) a 2-step ML procedure by Joreskog and Yang (1996), and (e) a
revised Joreskog-Yang model (Algina & Moulder, 2001).

Bollen (1996; Bollen & Paxton, 1998) suggested the TSLS approach for evaluating the
latent interaction term as the Kenny and Judd (1984) approach produces non-normal indicators
for the latent interaction term (even if the indicators for &, and &, are normally distributed). This
non-normality can result in biased standard errors and fit statistics when ML estimation is used
(Boomsma, 1983, cited in Moulder & Algina, 2002). The TSLS approach estimates the
measurement model equations and the latent variable equations separately, so nonnormality in
the indicators for &;&, may not affect the standard errors of the interaction effect.

The procedure by Ping (1996) is also a two-step procedure. In this procedure a latent
variable measurement model for defining the latent variables &; and &, is estimated in the first

step. Parameter estimates from this step are treated as known parameters in a second step in
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which the original Kenny and Judd (1984) model is used.
The Jaccard and Wan (1995) procedure is a slight variation on the original Kenny and
Judd (1984) model, where these authors added an extra main effect latent variable (&3) to the

model.

Y=v&i+1&+1&+1ugiE+ L (30)

Using a multiple regression approach (with OLS estimation), these authors found a bias
in detecting the interaction effect but almost no bias when an ML or asymptotic distribution free
(ADF) estimation procedure was used, regardless of the effect size for ys. This approach requires
the observed variables to be multivariate normal and to be in mean deviation form prior to
estimation.

The Joreskog and Yang (1996) procedure is based upon what the authors call a
misspecification in the original equation proposed by Kenny and Judd (1986), namely the
assumption that the intercept (o) of the latent variable regression model is zero (even if all
variables:are in mean deviation form). A second difference in their model is that this procedure
is sometimes called a single-indicator method since only a single observed indicator is used for
the latent interaction term (versus the original model depicted in Figure 9 that has four indicators
for the interaction term), and is presented in Figure 10.

Insert Figure 10 about here

Using a variety of estimation methods (ML, weighted least squares, weighted least

squares applied to the augmented moment matrix) these authors fit the following latent variable
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regression model:

Y=o0+v&+28+:E&+ L (31)

Joreskog and Yang (1996) set the intercept (o) equal to zero in their original study, but a
subsequent simulation study by Algina and Moulder (2001) specified the intercept to be nonzero.
Their results showed that the ML estimation procedure frequently did not converge when the
intercept was nonzero. Algina and Moulder revised the model so that the measurement model
intercepts for the indicators of the primary latent variables were zero but that the intercepts for
the indicators of the interaction term were not. It was shown that this model was better able to
converge under ML estimation than the original Joreskog and Yang (1996) model.

A subsequent simulation study by Moulder and Algina (2002) compared all five of these
methods for testing the interaction effect, manipulating factors such as the effect size of the
interaction, the squared multiple correlation for the full latent variable interaction regression
model, the correlation between the primary latent factors, reliability of the indicators, sample size
and the observed means of the indicators. Bollen’s (1996) TSLS procedure showed a higher
amount of bias in the estimation of parameters and a lower power than the other four methods.
The original model by Joreskog and Yang (1996) under ML estimation showed Type I error rates
that were very conservative when robust estimators (e.g., Satorra-Bentler chi-square; Satorra &
Bentler, 1994) were used and very little power for detecting the interaction effect. The method
by Ping (1996) showed conservative Type I error rates and little bias, but the bias did not decline

as sample size increased so this procedure was discouraged from use. The Jaccard and Wan



56
Interaction Effects in Latent Growth Models

(1995) method and the revised Joreskog-Yang model from the Algina and Moulder (2001) study
showed adequate control of Type I errors and provided good power to detect interaction effects.

Liet al. (1998) compared the Joreskog and Yang (1996), the Ping (1996) and the Jaccard
and Wan (1995) methods on a model for the interactive effects of perceptions of exercise
competence. They found the Joreskog and Yang (1996) method to suffer from multicollinearity
as it does not use mean centering for the indicators in the latent variable model, while the other
two methods (which do utilize mean centering) are less susceptible to this. These authors also
found the Joreskog and Yang (1996) and Jaccard and Wan (1995) methods to be more robust to
the effects of non-normality introduced by use of the product indicator method, and simpler
programming of the model specification in conventional SEM packages. Li et al. (1998)
recommend the Joreskog and Yang (1996) and the Jaccard and Wan (1995) procedure for
modeling latent interaction effects, in concordance with Algina and Moulder (2001).

These methods for modeling latent interactions described above, which all involve the
use of the products of indicators, can be grouped into the general category of constrained
methods, called such because non-linear constraints must be placed on the factor loadings and
variances that are associated with the latent interaction term. These constraints are necessary
because of the assumption of normality of the latent variables (Wen et al., 2002).

A related approach is the Generalized Appended Product Indicator (GAPI) approach
(Wall & Amemiya, 2001). This approach is similar to the constrained approach but does not
constrain the covariance matrix of the latent variables. It has been shown to be effective for
when the latent variables are not normally distributed (i.e., when used with non-normal data;

Wen et al., 2002). A third approach is the Unconstrained approach, based on the work of Algina
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and Moulder (2001). With this approach no nonlinear constraints are imposed on the
relationships between the product indicators and the latent interaction factor. This method
appears to be robust to violations of multivariate normality (Wen et al., 2002).

Schumacker (2002) outlined a latent variable score approach to interaction effects, in
contrast to the product-indicator methods described previously, which does not involve the
multiplication of the observed indicators to construct the latent interaction term. The procedure
by Schumacker creates the latent interaction term by a multiplication of the latent scores of the
individual latent factors, and is presented graphically in Figure 11.

Insert Figure 11 about here

Schumacker (2002) found that both procedures (traditional product-indicator and latent variable
score) produced similar parameter estimates for the interaction effect but differed in the
estimation of their standard errors. He concluded that the latent variable score approach was
easier to implement yet called for more research into the computation of the standard errors.
Wall and Amemiya (2003) proposed a technique for interaction effects based on factor score
estimates, called the two-stage method of moments, which is a method similar to that put
forward by Schumacker (2002). This method, through the use of factor scores, has no
measurement error in the indicators.

Klein and Moosbrugger (2000) proposed an alternative method for analyzing interaction
effects using LISREL that is similar to that of Schumacker (2002). Their method, Latent
Moderated Structural Equations (LMS), takes the nonlinearity of the latent interaction term

explicitly into account, which has caused some concern when linear methods are used to model
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the relationships (Joreskog & Yang, 1996). This approach utilizes a new method of ML
estimation that is specifically designed to take the nonlinearity of the latent interaction term into
account. These authors showed that the LMS method was efficient and unbiased with regards to
computing standard errors and parameter estimation (see also Schermelleh-Engel, Klein, &
Moosbrugger, 1998). This method has not yet been studied extensively, but does show some
benefits over conventional approaches such as LISREL models and Bollen’s (1995) two-stage
least squares method. More specifically, the LMS method, when used with ML estimation,
shows no bias in the parameter estimates and is capable of incorporating a non-normal
distribution for the interaction term (Moosbrugger, Schermelleh-Engel, & Klein, 1998). This
approach has now become the Quasi-Maximum Likelihood (QML; Klein & Muthen, 2002)
approach. The QML approach uses all of the first-order factor indicators to estimate the latent
interaction effect, and does not require the forming of any new indicators for the interaction

term. The QML approach assumes that the first-order factors are normally distributed.
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Chapter 8: Interaction Effects in Latent Variable Growth Models

Li et al. (1998) expressed a concern with traditional multiple regression approaches for
investigating interaction effects. The measurement errors for the indicator variables have
traditionally introduced bias in the regression coefficients and also decrease the power to detect
nonlinear effects such as interactions in the regression approach (see also Jaccard & Wan, 1995).
These authors and several others (e.g., Duncan et al., 1999; Li et al., 2001) have proposed that
SEM techniques are useful for investigating interaction effects among change scores, especially
when attempting to determine how a change in two latent attributes interact to produce a joint
effect on the growth of an outcome attribute.

Duncan and colleagues (Duncan et al., 1999; Li et al., 1998; Li, Duncan, & Acock, 2000)
have utilized an approach to interactions in latent growth modeling that is based upon the
constrained product-indicator method. In this approach with cross-sectional data the product
indicators are formed from all possible combinations of indicators for the two latent factors
involved in the interaction. With a longitudinal design, it is reasonable to form the product
indicators based on measures corresponding to the same time point. For example, for Latent
Factor A and Latent Factor B measured at three time points, the interaction terms would be
formed by the product of observations at Time 1 for Latent Factors A and B, the observations at
Time 2 for Latent Factors A and B, and the observations at Time 3 for Latent Factors A and B.
The first two parameters for the latent interaction slope factor are constrained (to 0 and 1,
respectively) in order to identify the model, and the remaining parameters are freely estimated to
approximate any potential curvilinear trajectories. A further result of this fixing of parameters is

that the indicators for the first observed time point are not used to form a product indicator, since
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their respective loadings are zero. This conceptualization of the latent growth model with an
interaction is given in Figure 12.

Insert Figure 12 about here

The interaction effect on the rate of change of the outcome can be observed in the

following structural regression equation:
N1 =0t + Y228 + V2a&a + V25Ea8a + G

= (Vo2 +Y25€4) & + (0 + Y24) + G, (32)
where the first part of the right-hand-side of equation 32, (22 + Y25€4) &, represents the simple
slope of the regression of 1; on &, for a given value of &. This characterization of the simple
slope is similar to that given to the interaction effect in regression approaches (Aiken et al.,
1992). Li et al. (2000) give the full equations and LISREL matrices for the complete latent
growth interaction model.

However, Wen et al. (2002) contend that the model (and the matrices) used by both
Duncan et al. (1999) and Li et al. (2000) are incorrect. They considered the constraints on the
exogenous latent mean vector and on the covariance matrix to be inappropriate, as was the
variance-covariance matrix for the errors of measurement. Wen et al. (2002) instead proposed a
full interaction model that had more appropriate constraints, and a graphical representation of
their full interaction model is given in Figure 13.

Insert Figure 13 about here
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These authors showed that their model yielded more accurate estimates than the approach
utilized by Duncan et al. (1999) and Li et al. (2000). No further empirical studies have been
reported that compare these two models.

As noted previously, the two approaches by Duncan et al. (1999) and Wen et al. (2002)
are both product-indicator approaches to interaction effects in latent growth models. However,
also noted previously, the model proposed by Schumacker (2002) is a latent interaction model
that does not require the use of product indicators. However, the Schumacker (2002) model for
latent interaction effects has not been extended to applications with longitudinal data. The
original development of the Schumacker model proceeded in three steps. In the first step, factor
scores for the main effect latent factors are created. In the second step these factor scores are
multiplied together to create a latent interaction factor score. In the third step, the latent factor
scores (from both the main effects and the interaction) are used in an OLS regression model with
the latent score for the outcome variable as the dependent variable.

The extension of the Schumacker (2002) model to longitudinal data is straightforward. In
the first step, a latent growth model using the main effects only is used to create the latent factor
scores for the main effects. In the second step, the latent scores from this growth model are used
to create the latent interaction scores. In the third step, there are two latent dependent variables,
one for the latent intercept and one for the latent slope. As a result, the model in the third step is
estimated as a path analytic regression model, containing all the latent main and interaction
effects. A graphical depiction of this process is given in Figure 14.

Insert Figure 14 about here



62
Interaction Effects in Latent Growth Models

One difference between the two product-indicator method models (i.e., the Wen and the
Duncan) and the Schumacker model are the function of the indicator variables. In all three of the
models, with respect to the latent main effects, the main indicator variables are playing the same
roles, as they are indicators of the same main effect latent slope and intercept factors. However,
the characterization of the latent interaction terms is different in the three models. For the Wen
and Duncan models, the indicators actually play two roles — they are indicators of both a latent
main effect and a latent interaction effect, essentially appearing twice in the latent growth
interaction model. The indicators for the latent interaction effect are created by forming products
of the main-effect indicators, and the resulting product indicators for the latent interaction effect
that are formed introduce non-normality into the model. Further, to incorporate these product-
indicators into the model they need to be specified as a function of the latent variable that has
variances and covariances that reflect the multiplicative relationship. This is achieved through
the imposition of nonlinear constraints on several of the matrices involved in the estimation of
the latent model. For the Schumacker model, the indicators only appear once, in the formation
of the latent factor scores, after which they are not required further. As a result, there are no
product-indicators in the model, and the imposition of nonlinear constraints is not necessary as

there is no concern of multicollinearity among the indicators for the latent factors.
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Chapter 9. Attrition in Longitudinal Studies (Missing Data Mechanisms)

Missing data occurs quite often in both cross-sectional and longitudinal research, and
should be an important consideration for researchers pursuing longitudinal studies (Figueredo,
McKnight, McKnight, & Sidani, 2000). The concept of missing data has also been referred to as
coarsened data, aggregated data, rounded data, truncated data, or censored data (Schafer &
Graham, 2002). The reasons for missing data are varied. In longitudinal studies a missing data
point can occur from events that preclude measurement, such as attrition or dropout, or a
respondent may not be available for one or more data collection instances (Schafer & Olsen,
1998). This is sometimes referred to as wave nonresponse. A respondent may simply choose to
not respond to a particular survey questionnaire, or they may even miss a single item from an
entire questionnaire. Some studies have planned missing values incorporated into the study
design (Graham, Taylor, & Cumsille, 2001). When the missing values are a result of the data
collection procedure (as is seen in most of survey research) this is termed unit nonresponse
(Schafer et al., 2002).

Missing data can contain important information for the researcher and their hypotheses of
interest, and not addressing the missing data properly can lead to biased results, especially in
longitudinal designs (Cox, Rutter, Yule, & Quinton, 1977). When using statistical methods that
assume responding on all variables of interest, missing data can greatly reduce the effective
sample size which results in a loss of statistical power, making the detection of significant effects
difficult (Delucchi & Bostrom, 1999). A further consequence is that statistical results may
evidence some bias if the missing data contains influential information.

In a longitudinal study missing data can take on a variety of patterns (Little, 1992). One
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pattern is termed univariate missing data where the missing values are confined to a single
varlable at a single time point, and another is a monotone missing data pattern where once an
observation is missed all future observations are also missed. This pattern is usually seen in
longitudinal studies when there is participant attrition. A third type of pattern is when there is no
special pattern to the missing data. Graphical representations of these three patterns are given in
Figure 15.

Insert Figure 15 about here

Missing Data Mechanisms

The rate and pattern of missing data within a dataset has been described as a probabilistic
phenomenon by Rubin (1976) called missingness. Missingness is used to capture the
relationship between the pattern of the missing data and the values of the missing items. Rubin
(1976) introduced the concept of a missing-data indicator matrix to quantify this relationship and
then formalized the notion of a missing-data mechanism in terms of a conditional distribution.

The three missing data mechanisms are described below.

Missing At Random (MAR)

MAR occurs when the distribution of missingness does not depend on the missing values
of the response variable — the probability of missingness depends on the observed data in the
covariates. In other words, once the covariates are taken into account there is no residual
relationship between the missingness and the response variable. This type of mechanism is also

known as an ignorable response. This type of mechanism usually holds when the missingness is
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planned (Schafer et al., 2002). An example of this would be if an individual in a longitudinal
study missed an item on a survey at a particular assessment point. There is no definitive way to
test for the presence of the MAR mechanism, but even making an erroneous assumption of an
MAR mechanism does not severely impact estimates and standard errors (Collins, Schafer, &

Kam, 2001).

Missing Completely At Random (MCAR)

The MCAR mechanism is similar to the MAR mechanism but here the missing response
occurs by chance (Sinharay, Stern, & Russel, 2001), usually by some features of the study itself
rather than the observed behaviour of the participants (Little, 1995). In other words, the missing
response is not related to or is independent of the observed variables of interest. Compared to
MAR, Figueredo et al. (2000) give an additional condition for MCAR, namely that the missing
cases are a random subsample of the total sample. The presence of this mechanism can be
assessed by testing .across patterns of the missing data (e.g., complete cases versus missing cases)
using t-tests for location (Bingham, Stemmler, Petersen, & Graber, 1998). Little (1995) has also
called this mechanism covariate-dependent dropout, and notes that analysis of complete cases in

this instance will not yield biased estimates but will be inefficient.

Missing Not At Random (MNAR)
This is known as nonignorable missing data, and the missing data is related to the
observed values of the response variable (Sinharay et al., 2001). Sometimes MNAR is referred

to as informative dropout. An example of this in a longitudinal design is if a participant drops
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out because their observed score on a previous measurement was over (or under) a particular
value. With an MNAR mechanism there is residual dependence between the missingness
function and the response variable after the covariates are accounted for. Figueredo et al. (2000)
note that the MNAR condition can be detected by locating significant differences between means
on subgroups of the data with complete cases versus those with incomplete cases. With an
MNAR mechanism the researcher needs to specify a model for the missingness that is
approximately correct otherwise bias will be present.

A specific kind of missing data pattern, specific to longitudinal designs, is attrition.
Attrition, or dropout, occurs when a participant leaves the study and does not return, and is a
special case of participant non-response. However, because later responses are not available, it
is possible that scores on the missing covariates are the cause of the missingness. When attrition
is present in a longitudinal study, the mechanism of missingness (MAR, MCAR, MNAR) can
have some implications with respect to the dropout of the data. MCAR requires attrition to be
independent of responses at every occasion, MAR allows attrition to depend on responses at any
or all occasions prior to the dropout occasion so that missingness may be related to other
variables, and MNAR means that the attrition depends on the unseen responses after the

participant dropped out (Schafer et al., 2002).

Effects of Missing Data on Estimates
Determining the severity of missing data on the estimates of model parameters can be
difficult and depends on many factors including sample size, proportion of missing data, the

pattern (if any) of missing data, the type of analysis, and the number of variables being analyzed
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(Rovine & Delaney, 1990). It is recognized that a failure to incorporate the missing-data
mechanism into an analysis will result in biased parameter estimates (Figueredo et al., 2000;
Rubin, 1976).

Missing data can represent a significant difficulty in longitudinal designs, since the
assumptions of data being MCAR or MAR may not be tenable. Under MCAR, the use of
maximum likelihood can give estimates that are efficient and which have a lower sampling
variability (Duncan & Duncan, 1994; Rovine et al., 1990). Under MAR, maximum likelihood
yields unbiased parameter estimates in structural equation models (Muthen, Kaplan, & Hollis,
1987). Under MNAR, the implications regarding bias are unclear, and researchers may find that
a latent growth model may not fit the data and standard errors inflated, but parameter estimates

are accurate (McAurdle et al., 1992).

Methods of Addressing Missing Data

There are several methods within the SEM framework that are currently available to
researchers for addressing missing data. Conventional procedures for handling missing data
include listwise and pairwise deletion. In listwise deletion (or complete case analysis) only those
observations that have complete data on all variables are included in the analysis (Little, 1992).
With respect to the accuracy of parameter estimation this is usually a valid procedure under an
MCAR mechanism, but rarely for MAR. In a multivariate setting this approach can result in
discarding an unacceptably high proportion of participants (Schafer, 2001). A second
conventional method is pairwise deletion (or available case analysis), where different sets of data

are used to estimate the different parameters depending on if they have the necessary data or not.
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A drawback to this method is that the parameters are generally estimated from different units
within the sample so it is difficult to compute standard errors or other measures of uncertainty.

These procedures have the advantage of being simple to implement (Little & Rubin,
1987). However, both of these case deletion methods can result in biased estimates if the data
are not MCAR due to the resulting complete cases not being representative of the full population
(Hedecker & Gibbons, 1997; Schafer & Olsen, 1998) and most likely resulting in non-normal
data (Figueredo et al., 2000). Yet even if the MCAR mechanism is present the results will be
inefficient due to the discarded information contained in the missing data (Figueredo et al., 2000;
Little & Rubin, 1987). Little (1992) and Bingham et al. (1998) have noted that these methods
can result in an estimated covariance matrix of the observed predictor variables that is not always
positive definite, which can lead to indeterminate slope estimates. This is usually seen when the
predictors are highly correlated. Bingham et al. (1998) further note that there can be a loss of
power (which will increase the rate of Type II errors; Figueredo et al., 2000), and recommends
that in longitudinal designs these case deletion methods should not be used.

Tomarken and Waller (2005) outline four methods for addressing missing data that are
considered specific to structural equation modeling procedures. The first is multiple imputation
(Rubin, 1987; Schafer, 1997). This method first creates multiple samples in which all missing
data values are estimated (i.e., imputed), then estimates the model of interest separately for each
sample, and finally generates aggregate estimates of the parameters, standard errors, and model
fit by taking into account variability both within and between samples.

The remaining three methods are based on maximum likelihood procedures (Enders,

2001). The first is multisample analysis (Allison, 1987; Muthen et al., 1987), where a sample is
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divided into G subgroups, such that each subgroup has the same pattern of missing data (all of
the members in the same subgroup are missing/present on the same set of variables). Likelihood
estimates are computed for each group, and then are accumulated across the entire sample and
maximized. An advantage of this approach is that parameters and standard errors are estimated
directly from the data. A second advantage is that this approach yields the usual measures of
model fit in SEM approaches, although the degrees of freedom may be inaccurate (this can be
remedied by subtracting an appropriate value from the degrees-of-freedom term). A limitation of
this multisample approach is that the specification of multiple-group analyses is difficult,
especially if there are many patterns of missing data that result in a high number of groups.

The second maximum likelihood approach is full-information maximum likelihood
(FIML; Finkbeiner, 1979), which generates maximum likelihood estimates of the parameters of a
specified model based on all of the available data per participant. This approach is similar to the
multiple-group approach, except that the FIML approach uses the sum of all the casewise
likelihood values, whereas the multiple-group approach uses the sum of all the G groupwise
likelihood values. The FIML approach is flexible, being applicable to a variety of analyses
including the estimation of covariance matrices, multiple regression, and SEM. Like the
multiple-group approach, parameter estimates and standard errors are estimated directly from the
available data. With respect to SEM, FIML yields a chi-square test of model fit and several
model fit indices.

The third maximum likelihood approach to missing data is the expectation-maximization
(EM) algorithm (Dempster, Laird, & Rubin, 1977). This uses a two-step iterative procedure

where the missing observations are imputed and then unknown parameters are estimated. At the
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imputation stage (E step), missing values are replaced with the conditional expectation of the
missing data given the observed data. Then, maximum likelihood estimates of the mean vector
and covariance matrix are obtained (M step) as if there was no missing data using the statistics
calculated in the previous step. The resulting covariance matrix and estimates are used to derive
new estimates of the missing values at the next E step, and the process repeats until the
difference between covariance matrices in subsequent M steps falls below some specified
convergence criterion. The EM procedure cannot be used to directly obtain parameter estimates
and standard errors, however the covariance matrix that is generated can be used as input to
regression and SEM analyses. A drawback to the EM algorithm is that the imputed values lack
the residual variability that is present in the hypothetically complete data set, since the imputed
values fall directly on a regression line and are imputed without a random error component. As a
result the standard errors from the EM approach will be negatively biased, and bootstrap

procedures must be employed to obtain correct estimates of the standard errors.

Missing Data and Estimation Methods

If the data is MCAR or MAR, the maximum likelihood approaches will generally yield
unbiased estimates of population parameters, more accurate coverage probabilities for
confidence intervals, and more efficient estimates (i.e., smaller standard errors) than other
traditional methods (e.g., listwise deletion; Sinharay et al., 2001) There is limited evidence that
these methods can produce adequate results when the data are MNAR (Schafer et al., 2002;
Sinharay et al., 2001). Arbuckle (1996) found that, under both MCAR and MAR, full-

information maximum likelihood estimation (FIML) yielded unbiased estimates in SEM models
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when compared to pairwise and listwise deletion. Using multivariate normal data and an MCAR
mechanism, Graham, Hofer, and MacKinnon (1996) found that estimated variances and
covariances were unbiased under FIML. Enders and Bandalos (2001) further found that FIML
showed equivalent or better performance with respect to convergence failure, bias, and efficiency
of parameter estimates compared to listwise and deletion methods using normal data. This was
the case regardless of factor loading magnitude, sample size, missing data rate, and missing data
mechanism (MCAR or MAR). Enders and Bandalos (2001) further noted that the efficiency of
the FIML approach improved as the percentage of missing data increased, and concluded that the
FIML approach is appropriate when researchers do not know the appropriate missing data
mechanism.

The previous studies have all included data that was normal in distribution. Enders
(Enders, 2001) used a Monte Carlo study to investigate the impact of non-normality in the
presence of missing data with the FIML approach, noting that a potential drawback to the use of
FIML is that it was developed under the assumption of MAR and multivariate normality, and
may not show the same efficiency under multivariate non-normality. Using both MAR and
MCAR mechanisms, and comparing FIML against conventional missing data techniques such as
listwise and pairwise deletion, Enders found that FIML was affected most by non-normality of
the data, and that the presence of missing data (either MAR or MCAR) did not have a noticeable

effect over and above the impact of non-normality.

Missing Data in Latent Growth Models

With latent growth models, model estimation in the face of missing data can utilize an
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FIML approach, as outlined previously with research on structural equation models. Users of the
multisample approach run the risk of there being many distinct patterns of missingness, thus
resulting in some models with small samples sizes that cannot be estimated with SEM (Duncan,
Oman, & Duncan, 1994). If all individuals are missing the same observation (i.e., nobody was
assessed at that particular time point), then a simple solution has been to represent the missing
data point as a latent variable (Ferrer, Hamagami, & McArdle, 2004), however in most
naturalistic longitudinal studies this scenario would be rare.

It has been shown by previous authors (e.g., Enders & Bandalos, 2001; Graham, Hofer, &
MacKinnon, 1996) that FIML estimation will exhibit no large-sample bias if the assumptions of
MCAR or MAR are tenable, especially against conventional methods such as listwise deletion
and pairwise deletion (Wothke, 2000). A study by Duncan, Duncan, and Li (1998) showed that,
under MCAR, maximum likelihood methods performed as well or better than conventional
methods (e.g., listwise deletion), but multiple imputation procedures performed poorly when
missing data was due to both attrition and design (in their study a cohort-sequential design was
used). McArdle and Hamagami (1992) assumed an MNAR mechanism for their missing data,
and found that this did not affect the estimates of parameters using maximum likelihood
procedures, although standard errors were inflated.

Much of the empirical research involving missing data in latent growth modeling has
utilized a multi-sample procedure (e.g., Duncan et al., 1994; McArdle et al., 1992). There is very
little research on the performance of likelihood-based methods with respect to overall model fit

and parameter estimation and bias.
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Chapter 10: Proposed Project

General Research Objectives and Hypotheses

The primary objective of the proposed research was to examine the performance of three
approaches to latent variable modeling of an interaction effect between latent growth slope
factors. These approaches were: (1) the full interaction model (“Wen”) proposed by Wen et al.
(2002), (2) the reduced interaction model (“Duncan”) proposed by Duncan et al. (1999), and (3)
the modified latent interaction model based on the model by Schumacker (2002). There has only
been one published study comparing the Wen full interaction model against the Duncan reduced
interaction model, and this comparison was based on an empirical data set with no manipulation
of factors (e.g,. sample size, reliability) to evaluate the robustness of either of the models. Wen
et al. (2002) contend that their model is superior to that of Duncan and colleagues with respect to
estimating model parameters, but there is a paucity of empirical evidence besides their single
study to support this contention. Further, the Wen et al. study only concerned itself with a
comparison of parameter estimates, and did not investigate issues of overall model fit or bias.

The Schumacker (2002) model is a latent interaction model based on a cross-sectional
design, and which does not use the cross-product of indicators method to characterize the latent
interaction as do the Wen and Duncan models. It has not previously been extended into the
latent growth modeling perspective. With its lack of product terms of the indicatofs, it does not
require any complex constraints to be placed on the model parameters in order to take into
account the non-normal nature of these product terms (see Chapter 8, p. 64), and as a result it
shows promise as a viable approach to modeling latent slope interaction effects. However, as it

is not known how the extension of the Schumacker model will perform, this model may not
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perform as well as either the Wen or Duncan models.

There are several issues that were investigated to assess the performance of the three
models. The primary focus was on the model performance with respect to overall model fit
statistics, as well as an examination of convergence rates, in the presence of several missing data
conditions. The examination of overall model fit was carried out in a qualitative fashion, as we
expected to observe particular trends in the overall model fit indices for each of the models.
Specifically, it was expected that the Wen would show superior performance on the overall
model fit indices compared to both the Duncan and Schumacker models. As there were no
specific expectations about the performance of the Schumacker model in relation to the other two
models, we expected that it would perform as good or worse than the Duncan model. This was
based on its similarity to the Duncan model (i.e., only having a latent interaction term for the
slopes, and not for any of the other latent factors as represented in the Wen model).

A secondary focus was on the estimation of the latent slope interaction parameter for the
three models across the three missing data conditions. Specific aspects that were examined were
the amount of bias in the parameter estimate and the rate of Type I error. Bias of a parameter
estimate 1s the difference between the observed value of the estimate and the true value of the
parameter being estimated (Mood, Graybill, & Boes, 1974). Type I error is considered to be an
error of inference (Keppel, 1991), and occurs when we have rejected the null hypothesis in
favour of the alternative when in fact the null hypothesis is true. A Type I error can occur in a
latent growth curve interaction model when there is actually no presence of an interaction effect,
yet the model estimates a parameter for this interaction effect that is significantly different from

zero. A measure of robustness to Type I error is Bradley’s (1978) liberal criterion of robustness,
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where a model is considered robust if its empirical rate of Type I error @ is contained in the
interval 0.5 <& <1.5a. Foran a = 0.05 level of significance, a test is considered robust in a
particular condition if its empirical rate of Type I error falls within the interval (0.25, 0.75) with
values less than 0.25 being considered conservative and values higher than 0.75 being considered
liberal.

There were two hypotheses generated with respect to bias and Type I error, and each
hypothesis was evaluated separately for each missing data condition:

Hypothesis 1:

Null: All three models will show similar bias in the estimation of the unstandardized
latent slope interaction parameter, as evidenced by similar average mean squared error (MSE)
values and standardized bias values, across all study conditions.

Alternative: The Wen model will show a lesser degree of bias than both the Duncan and
Schumacker models, and the Duncan model will show an equal or lesser degree of bias than the
Schumacker model, across all study conditions. Specifically, the ordering of values for the MSE

and standardized bias will be Wen < Duncan < Schumacker.

Hypothesis 2:

Null: All three models will be similarly effective at controlling the rate of Type I error at
the nominal level of significance of o = 0.05 (using Bradley’s criterion), across all study
conditions.

Alternative: The Wen model will be provide adequate control of Type I error (i.e.,

maintaining a Type I error rate close to the nominal level of significance of a = 0.05 using
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Bradley’s criterion) than both the Duncan and Schumacker models, across all study conditions.
In other words, the Wen model will falsely detect the presence of the latent slope interaction
effect at a rate that is closer to a nominal level of a = 0.05 than both the Duncan and Schumacker
models. Further, the Duncan model will provide adequate control of Type I error in as many or

more study conditions than the Schumacker model.

Procedural Plan

A Monte Carlo simulation study was well suited to this type of project, as previous
studies have utilized Monte Carlo simulations to investigate issues related to Type I error rates in
latent variable models (e.g., Moulder & Algina, 2002). The following procedural plan was used
to conduct the Monte Carlo simulation and analysis. The three latent growth interaction models
— Wen (Wen et al., 2002), Duncan (Duncan et al., 1999; Li et al., 2000), and Schumacker (2002)
were implemented in the SAS software using the PROC CALIS procedure. Data were generated
according to a longitudinal repeated-measures design with four assessment points (with no
specification of the time period between assessment points), with the Duncan model acting as the
population model. Four factors were manipulated in the simulation: (1) the correlation between
the latent intercept and slope for each factor, (2) the sample size, (3) the reliability of the
observed indicators for each latent factor, and (4) the type of missing data mechanism.

To assess the main objective of the current study, the unstandardized value of the latent
slope interaction parameter (which represents the effect of the latent interaction of the slopes of
the independent factors on the latent slope of the outcome factor) was set equal to 2.0. The

following overall model fit indices were extracted from the CALIS procedure for each model:
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the comparative fit index, the normed fit index, the goodness of fit index, and the root mean
square error of approximation.

To assess the secondary objective of the current project, and the two hypotheses, two
approaches were used. Based on the original data used to assess overall model fit in the first
objective, an evaluation of the estimation of the latent interaction slope parameter was also
carried out for each model, examining the issues of estimation of the unstandardized latent slope
interaction parameter, and the amount of bias in the estimation of this parameter. Bias was
assessed through two indices, the mean square error (MSE) and the standardized bias. To assess
the rates of Type I error for each of the three latent growth models in estimating the latent slope
interaction parameter, the data were re-generated with the population value of the unstandardized
latent slope interaction parameter being set equal to zero. The proportion of cases that showed
inadequate control of Type I error rates (i.e., by being too liberal or too conservative) were
reported, with values less than 0.25 being considered conservative and values higher than 0.75

being considered liberal.
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Chapter 11: Method

Data Simulation Conditions

Four factors were manipulated in the simulation of data for this study: the correlation
between the latent intercept and slope factors for the independent variables (3 levels), the sample
size (3 levels), the reliability of the observed indicator variables for the independent variables (4
levels), and the mechanism of attrition (3 levels).

For the correlation between the latent intercepts and slopes, three values corresponding to
low (0.20), medium (0.50) and high (0.80) were chosen. Sivo, Fan, and Witta (2005) have noted
that the correlation between the latent intercept and slope is an important question (similar to
correlated errors, which can introduce bias into the estimates). Correlations between latent
constructs that approach 0.90 are considered to be indicative of significant overlap and are
suggestive of collapsing the two latent constructs into a single construct. We chose three values
of correlation that reflected a low, medium, and high correlation, but that were not high enough
as to be reflective of too much overlap, but also not low enough to be considered trivial. A
previous study by Hertzog and colleagues (Hertzog, Lindenberger, Ghisletta, & von Oertzen,
2006) used slope correlations of 0.25, 0.50, and 0.75 in their simulation using latent growth
curves.

Three sample sizes were used in the study: n = 250, 500, and 1000. We chose a lower
bound of 250 as a result of most basic articles on structural equation modeling reporting a
minimum sample size of 200 being required for any SEM analysis (Weston & Gore, 2006), and
some of the empirical literature has utilized samples close to this size (e.g., Dawson-McClure,

Sandler, Wolchik, & Millsap, 2004b; Gilliom & Shaw, 2004). Further, we desired to take into
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account the loss in sample size that would occur through the process of generating missing data
which would reduce the absolute sample size, and we wanted to be confident that we had enough
of a sample size to meet what are considered general requirements for analyzing structural
equation models in the missing data conditions. The middle sample size of 500 was chosen as
many empirical studies have samples that are close to this size, ranging between 450 and 600
(e.g., Curran et al., 2003; DeShon, Kozlowksi, Schmidt, Milner, & Wiechmann, 2004). The
highest sample size, 1000, was chosen as an upper limit as few longitudinal studies approached
this number of participants (e.g., Duncan, Duncan, & Strycker, 2001), had a sample size of 770),
and very few longitudinal studies have sample sizes above 1000.

A third factor that was manipulated was the reliability of the observed indicators, as this
can influence the amount of measurement error. Since SEM models are aimed towards
distinguishing true score from measurement error, the degree of reliability of the indicators is
important in determining the best procedure for modeling an interaction. Following the
procedure of Moulder and Algina (2002), four levels of reliability of the observed indicators for
the latent variables were chosen, 0.30, 0.50, 0.70, and 0.90, corresponding to a range of poor,
good, and exceptional reliabilities for the indicator variables. The reliability of each indicator is
a function of the error variance for that indicator, given by the following formula (Allen & Yen,

1979):

Error variance = V (observed score variance * (1-reliability)). (33)

The observed score variance was set to increase non-linearly as the number of assessment points
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increased, with an observed score variance of 1 at the first assessment point, 3 at the second, 6
and the third, and 9 at the fourth. This pattern was chosen as other authors (e.g., Rudinger &
Rietz, 1998) have noted that the relationship between time and the variance of scores in a linear
latent growth model follows a quadratic relationship.

A final factor was the mechanism of missing data, or attrition. All cases had complete
data for the first assessment point. In the Complete data condition, there was no attrition, and all
cases had complete data for all assessment points. Two mechanisms of missing data were
chosen: Missing Completely at Random (MCAR) and Missing Not at Random (MNAR). The
full details for the generation of these attrition-based datasets is given in Step 3 of the Data
Generation section below.

With 5000 replications for each condition, this resulted in 1,620,000 total replications
being generated (3 latent growth interaction models X 3 latent intercept-slope correlations X 3

sample sizes X 4 reliabilities X 3 missing data mechanisms X 5000 replications).

Data Generation

Step 1: Specification of Population Model

Data were generated according to the latent growth model given in Figure 16, which is
based on the model proposed by Duncan et al. (1999). This model has two latent slope factors,
Factor 2 (&) and Factor 4 (£,), that are proposed to have a direct effect on the latent slope of the
outcome variable (1;). These two slope factors are also proposed to have an interaction effect

(&2E4) on the latent slope of the outcome. The symbol & represents an error term, similar to that
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guided by the research of Li et al. (2000) and Wen et al. (2002). Li et al. used empirical data and

found that the latent slope interaction parameter was -0.006, and Wen et al. used a value of 1.2 in

their simulation study. In our study we strove to utilize a latent slope interaction parameter value

that would be clearly identifiable as an interaction effect.

Insert Figure 16 about here

The LISREL specification of the measurement portion of the latent growth interaction model is:
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For Factor 1, all observed variables (X;-X4) were specified to have an intercept (1| — 14)

equal to 1. For Factor 2, all observed variables (Z;-Z4) were specified to have an intercept (15 —

Tg) equal to 1. From Figure 16, A3, = 2.0; Ao = 3.0; A7a = 2.0; Aga = 4.0.

Following Wen et al. (2002) the latent exogenous mean vector (K) is specified as
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+ Q31 0415 P75 = 021 P33+ Q031 0325 Pgs = Q21 P43+ P32 Q415 Q76 = P21 Qa3+ P31 Q425 Og6 = Q21 Qg+

Q41 ©42; Q37 = 022 Q43+ P32 Qao.

The variances of the latent intercept and slopes (¢ to @.4) were set equal to 1, the expectation
(mean) of each of the latent variables was set equal to 0, and the covariances of the latent
intercepts (@s;) were set equal to 0.

The variance-covariance matrix of error, ®;, is defined as

0,
0 0,
0 0 O

(37)
0 0 0 0 0 06
0 0 0 0 0 0 0,
0 0 0 0 0 0 0 05
0 09, 0 0 0 096 0 0 0y
0 0 0103 0 0 0 0107 0 0 010
0 0 0 0114 0 0 0 0113 0 0 01
Where

0o=16" 0 + ¢330 + 04402 + T 06 + @106 + 02206 + 020
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010= 17" 03 + 03303 + A2 Qusbs + T3 0, + 01107 + X32°02,07 + 630,
011= 15" 04 + 03304 + Aga’Qasbs + 4 05 + 01105 + haz 0205 + 0,405

892 = 76 02, 096 = 12 B, 0103 =17 03, B107=13 07, 011.4= 13 04, 011 5= T4 05.

Step 2: Generating Model Parameters

The SAS code used to generate the data for the longitudinal models is given in Appendix
A. The SAS RANNOR procedure was used to generate the raw data for the current study. The
RANNOR procedure is based on the RANUNI procedure, and uses the Box-Muller
transformation of RANUNI uniform variates, and which has a period of 2,147,483,646 (SAS
Institute Inc., 2009). When using the SAS random number functions or subroutines, one should
specify a SEED in the range of 1 to 2#*31-2 to initialize the starting point of the pseudorandom
number stream, or use a nonpositive integer (0 or negative) to create the initial seed from the
system clock. If a nonpositive number is used, SAS reads the system time and computes the
initial seed value using an algorithm equivalent to SEED = le3 * mod(round(le3 * datetime()),
le6) + 1.

For all simulations, a negative seed number was used, which resulted in the initial seed
being derived from the system clock. Bang, Schumacker, and Schlieve (1998) have shown that
the sample size is important factor when generating normal random numbers, and advocated for
sample sizes larger than 1000 in order to ensure small departures from the expected mean = 0
and standard deviation = 1. A random sample of 1000 cases from three separate simulation
conditions showed that the observed variables all had means close to 0 (ranging from 0 to 0.02)

with small standard deviations (ranging from 0.08 to 0.34), with skewness and kurtosis values
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less than 1 in absolute value. Further, the observed variables showed an increasing amount of
variance acorss the assessment points — that is, the variance of the observations at the second
assessment point was larger than the variance at the first assessment point, and the variance of
the observations at the third assessment point was larger than the variance at the second

assessment point, and so on through to the fourth assessment point.

Step 3: Generating Missing Data from the Complete Population Data

To generate the missing values under the MCAR and MNAR mechanisms, the following
attrition process was utilized (e.g., Jamshidian & Bentler, 1999; Newman, 2003). MCAR
missing samples were simulated by randomly removing a percentage of scores from each of the
last three repeated observations in the Complete data set. To accomplish this, the raw data for
the second, third, and fourth assessment points were paired with corresponding random values
(denoted as RV_T2, RV_T3, RV_T4) from a normal distribution, and these random values were
used to select scores for deletion. The deletion process was performed as follows: (1) starting
with the second assessment point, all those cases with an RV_T?2 value greater than a z-score of
1.30 (corresponding to the 90" percentile) were removed and, further, those cases had their third
and fourth observations eliminated; (2) from the remaining undeleted scores at the third
assessment point, those cases with an RV_T3 value greater than 1.30 were selected to be
removed, along with those cases’ fourth observation; (3) finally, from the remaining undeleted
scores at the fourth assessment point, those cases with an RV_T4 value greater than 1.30 were
selected to be deleted. Through this attrition process, a monotone pattern of MCAR samples was

obtained. An inspection of a random selection of 1000 datasets from each of the three sample
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size conditions (250, 500, 1000) showed average dropout rates of 10% for the second assessment
point, 8.2% for the third assessment point, and 8.0% for the fourth assessment point, resulting in
a cumulative attrition rate of 26%.

For MNAR samples, the dropout process was different from the MCAR process in that
missingness depended on the observed scores of the outcome variable. The MNAR data was
generated from the Complete data in the following manner. (1) The scores for the Y-variable at
the second observation point were standardized into a new variable (STDY2) which had a mean
of 0 and a standard deviation of 1. Those STDY2 scores that were above 1.30 (corresponding to
the 90" percentile) were removed, as were their corresponding observations for the remaining
assessment points; (2) The remaining observations for the third observation point were
standardized into a new variable (STDY3) which had a mean of 0 and a standard deviation of 1.
Those STDY 3 scores that were above a value of 1.30 were removed, as were their corresponding
observations at the fourth assessment point; (3) Of the remaining observations, their fourth
observation point scores were standardized into a new variable (STDY4) which had a mean of 0
and a standard deviation of 1, and those STDY4 scores which were above 1.30 were removed.
An inspection of a random selection of 1000 datasets from each of the three sample size
conditions (250, 500, 1000) showed average dropout rates of 10% for the second assessment
point, 4% for the third assessment point, and 1% for the fourth assessment point, resulting in a
cumulate attrition rate of 15%.

As the models are independent of the data, there is not modification of the raw data by
any of the models, beyond the generation of the new variables for the interaction terms. The

process of the missing data mechanisms does modify the raw data to some extent, but these
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modifications are natural outcomes of the missing data mechanisms. As a result, we can confirm
that the generalization of the results will be valid for all of that data that is generated by the

mechanisms described above.

Assessment of Overall Model Fit

The analysis of the results began with a descriptive examination of the rates of
convergence for the three latent growth interaction models in the three data conditions.
Convergence occurs when the estimation function has reached a minimum and the model
parameters are estimated (Tabachnick & Fidell, 2001). This was followed by an examination of
the overall model fit of the three latent growth interaction models. To assess overall model fit
for the three models, the following model fit indices were used: the comparative fit index (CFI,
Bentler, 1988), the Bentler and Bonnett normed fit index (NFI; Bentler & Bonnett, 1980), the
goodness-of-fit index (GFL; Joreskog & Sorbom, 1986), and the root mean square error of

approximation (RMSEA; Steiger & Lind, 1980).

CFl

The CFI (Bentler, 1988) is part of a class of comparative fit indexes, where models are
conceptualized as being nested within one another. At one extreme is a model that is saturated
(full or perfect) with zero degrees of freedom. At the other extreme is a model that corresponds
to completely unrelated variables, called an independence model. The CFI assesses fit of the
specified model relative to the independence model. The CFI uses a noncentral y” distribution

with noncentrality parameter, 7;. The larger the value of 1;, the greater the model
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misspecification. That is, if the estimated model is perfect, T; = 0 and the CFI = 1. The CFIis

defined as

CFlI=1- (Teslima[cd model / Tindepcndcncc modcl)- (38)

The 7 value for a model can be estimated by
2 -
Tindependencc model = X independence model ~ dfindcpcndencc models and (39)

2
Testimated model = X estimated model ~ dfeslimalcd model- (40)

NFI

The Bentler-Bonnett (Bentler & Bonnett, 1980) NFI is also part of the class of
comparative fit indexes, where models are conceptualized as being nested within one another.
The NFI evaluates the estimated model by comparing the X2 value of the model to the x?‘ value of

the independence model,

2 2 2
NFI = (X~indepcndence - X-modcl) / X—indcpcndcncc- (41)
This yields a descriptive fit index that lies in the O to 1 range, with higher values indicative of a

good-fitting model.

GFI
The GFI is analogous to the R? in multiple regression (Hoyle et al., 1994), and assesses
the degree to which the reproduced covariance matrix based on the specified model has

accounted for the original sample covariance matrix (Tanaka & Huba, 1985). The GFI calculates



89
Interaction Effects in Latent Growth Models

a weighted proportion of variance in the sample covariance accounted for by the estimated

population covariance matrix (Tabachnick & Fidell, 2001). The GFI can be defined by

GFI = tr(6’Wo) / tr(s’Ws), 42)
where the numerator is the sum of the weighted variances from the estimated model covariance
matrix (o) and the denominator is the sum of the squared weighted variances from the sample
covariance (s). W is the weight matrix that is selected by the choice of estimation method. The

GFlIranges in value from O to 1, with values close to 0 indicating poor model fit and values close

to 1 indicating good model fit.

RMSEA

The RMSEA was proposed by Steiger and Lind (1980), and was developed further by
Browne and Cudeck (1993). The RMSEA is a test of exact model fit, comparing the proposed
model to a perfect (saturated) model, with values less than 0.05 being indicative of good model

fit. The equation for the estimated RMSEA is given by

estimated RMSEA = V(F / dfmodel), (43)
where
Fo = (£’ model - Afmoder) / N (44)
or
F,=0,

whichever is smaller but positive. When the model is perfect, F, = 0. The greater the model

misspecification, the larger F,,.
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Data Analysis Procedure

The following frequently used criteria were used to evaluate the adequacy of the models:
CFI> 0.90, NFI > 0.90, GFI > 0.90, and RMSEA < .05 (Fan et al., 1998; Tabachnick & Fidell,
2001). The analysis of the results began with a descriptive examination of the rates of
convergence for the three latent growth interaction models in the three data conditions.
Convergence occurs when the estimation function has reached a minimum and the model
parameters are estimated (Tabachnick & Fidell, 2001). Only those models that successfully
converged and had CFI, NFI, or GFI values greater than 0 were analyzed (as these models were
considered to be no different from an independence model).

The first objective was to examine the performance of the three latent growth interaction
models in order to assess the strengths and weaknesses of the models in the presence of missing
data. The majority of the analyses for this objective were focused on the evaluation of overall
model fit for the three latent growth interaction models to the simulated data, including an
evaluation of convergence rates for each of the three models. For each condition in the study,
across type of missing data, the number of models that converged and the mean number of
iterations were tabulated. Only those models that converged successfully were subsequently
analyzed. Means, standard deviations and 95% confidence intervals for each of the model fit
indices were calculated. To identify those factors that affected overall model! fit statistics,
analysis of variance (ANOVA) and partial omega squared were evaluated. For all of the
ANOVA models, the dependent variables were the overall model fit statistics (i.e., CFI, NFI,
GFI, RMSEA), and the independent variables were the factors of: type of latent interaction

growth model, latent intercept-slope correlation, sample size, reliability of the observed
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indicators, and all of their interactions. Separate ANOVA were carried out for each type of
missing data mechanism, and effects were assessed at an a = 0.05 level of significance. To
assess the magnitude of the main and interaction effects, partial omega squared was used to
estimate the effect size for each effect. The partial omega squared estimates equaled the ratio of
the variance due to an effect to the sum of (a) the variance due to the effect and (b) the error
variance. According to Cohen (1988, cited in Olejnik & Algina, 2000), suggested values of 0.01,
0.06, and 0.14 correspond to small, medium, and large associations. Pairwise multiple
comparisons of the means in a given condition were conducted using a Ryan-Einot-Gabriel-
Welch (REGWQ) procedure to control familywise experiment error rate (Westfall & Young,
1993).

The second objective was to evaluate these models with respect to parameter estimation
of the latent slope interaction, bias, and Type I error rates, in accordance with the two proposed
hypotheses. For the first hypothesis, three measures of bias were calculated: the difference of the
estimate of the latent slope interaction parameter from the population parameter, the mean square
error (MSE), and the standardized bias. For this assessment the population value of the latent
slope interaction parameter was set to 2.0.

To evaluate the bias in the parameter estimate for the latent slope interaction effect three
aspects of bias were examined. The first was to calculate the mean bias in the estimate itself, by
computing the difference between the population value and the estimated model value. In the
case of the current study, mean bias was the difference between the estimated mode] value and
the population value of 2.0 (see Figure 16). The second aspect was to evaluate the mean square

error (MSE; Degroot, 1980) of the estimated latent slope interaction parameter. The MSE
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quantifies the expected (average) squared deviation of an estimator from a population parameter
(Olejnik & Porter, 1981), and provides information on the spread of the parameter estimates

around the true estimate. The value of the MSE is given by the following equation:

MSE = (population value — model estimate)2 + variance of model estimate. 45)

The third aspect of bias assessed was to utilize a standardized estimate of bias, which is the
average deviation of the sample estimate from the population parameter estimate, divided by the
standard error of the estimate. Values of this standardized estimate which are close to 1.0
indicate no bias in the estimate. Values which are above 1.0 are indicative of an overestimating
bias, while values less than 1.0 are indicative of an underestimating bias.

A one-way analysis of variance was used to examine differences between the means for
the MSE and standardized bias across the levels of manipulated factors, separately for each
missing data mechanism. Pairwise multiple comparisons of the means in a given condition were
conducted using a Ryan-Einot-Gabriel-Welch (REGWQ) procedure to control familywise
experiment error rate.

For the second hypothesis, which addressed Type I error rates, the entire simulation was
re-done, specifying a population value of 0.0 for the latent slope interaction parameter (i.e., Y23 =
0). The proportion of models that generated a significant effect for the latent slope interaction
effect were tabulated. Bradley’s (1978) liberal criterion of robustness was used to evaluate each
of the models: a model is considered robust if its empirical rate of Type 1 error (6. ) is contained

in the interval 0.5a. <6 < 1.50. A model was considered robust if its empirical Type I error rate
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for the latent interaction slope parameter was contained within the interval 0.5 <& < 1.50. For
the five percent level of significance used in this study, a model was considered robust in a
particular condition if its empirical rate of Type I error fell within the interval 0.25 <6 <0.75.
Correspondingly, a model was considered to be nonrobust if, for a particular condition, its Type I
error rate was not contained in this interval. Models that showed Type I error rates that were
above 0.75 were considered to be liberal, and those that showed Type I error rates that were
below 0.25 were considered to be conservative.

All models were estimated using the maximum likelihood estimation method in SAS.
The SAS code for evaluating each of the models are given in Appendix B (for the Wen model),
Appendix C (for the Duncan model), and Appendix D (for the Schumacker model). Once the
models were run for each simulation condition, the resulting parameter estimates, standard

errors, and model fit indices were read into the SAS statistical package and analyzed.
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Chapter 12: Results

Each of the approaches to modeling the interaction effect in the latent growth models
were assessed for their overall model fit to the simulated data (as indicated by the selected model
fit indices). This included descriptive information such as means and standard deviations, as
well as 95% confidence intervals for the model fit indices. Further to this, evaluations of the
accuracy of estimation of the latent slope interaction parameter (accuracy, MSE, standardized
bias), and assessment of Type I error rates in testing the latent slope interaction effect were
carried out. These were done separately for each type of missing data (Complete, MCAR,
MNAR). Prior to the analyses, the rates of convergence for all models across all conditions were
examined, and only those models that converged successfully and had CFI, NFI, or GFI values
that were above 0.0 were considered afterwards.

The main set of analyses were a detailed examination of the overall model fit indices for
the three latent interaction growth models across the three missing data conditions. This
included descriptive information such as the mean and standard error for each model fit index for
each model in each simulation condition, as well as the calculation of 95% confidence intervals
for each of these mean estimates. This was followed by ANOVA models, with an examination
of the main and interaction effects for all fixed effects in the models (i.e., the simulation
conditions), and mean comparisons. The last section presents an examination of the bias in the
estimation of the latent slope interaction parameter (y»3), as well as the empirical Type 1 error
rate for each of the three latent growth interaction models when the population latent slope

interaction parameter was set to zero (i.e., y2g= 0).
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Assessment of Convergence Rates

Table 2 shows the convergence rates for all three latent growth interaction models (Wen,
Duncan, and Schumacker) across the four manipulated factors (latent intercept-slope correlation,
sample size, reliability of observed indicators, and missing data mechanism) where the
population value of the latent slope interaction was set to 2.0 for each missing data type.

Insert Table 2 about here

In the Complete data condition, only the Wen latent interaction model showed
convergence problems, failing to converge in all 5000 replications when the reliability was
lowest (1.e., 0.30 or 0.50) across all three levels of sample size and latent intercept-slope
correlation. In those conditions without full convergence (i.e., not converging for all 5000
replications within a condition), the Wen model converged in over 95% of the replications. The
Duncan and Schumacker models showed convergence in all 5000 replications across all factors
in the Complete data condition. Similar findings were seen for the MCAR data, with
convergence rates being 93% or higher for the Wen model in the individual conditions.

In the MNAR data, the Wen model showed incomplete convergence in many of the
simulation conditions, with rates ranging from 29% to 100%. For the Wen model the highest
rates of convergence were observed at the highest level of reliability across the levels of sample
size and latent intercept-slope correlation. The Duncan model showed a convergence problem in
only a single condition, when the latent intercept-slope correlation was lowest (0.20), the sample
size was smallest (250), and the reliability of the observed indicators was lowest (0.30), however

there was convergence in 4999 out of 5000 simulations in this condition. The Schumacker
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model showed complete convergence across all conditions. Table 3 has the mean number of
iterations for convergence to be achieved in only those models that converged successfully and
had CF1, GFl, or NFI values that were above 0.0.

Insert Table 3 about here

Assessment of Overall Model Fit

The following sections outline the average values, 95% confidence intervals, multiple
comparisons, and ANOV As for the overall model fit indices (CFI, NFI, GFI, RMSEA) within
those simulations for models that converged successfully, and which had CFI, NFI, or GFI
values that were non-zero. The following frequently used criteria were used to evaluate the
adequacy of the models: CFI > 0.90, NFI > 0.90, GFI > 0.90, and RMSEA < 0.05 (Fan et al.,

1998; Tabachnick & Fidell, 2001).

CFlI

Table 4 presents the average CFI values for all models across the three levels of missing
data, with 95% confidence intervals for these average values given in Table 5. Table 6 contains
the results of an ANOVA model, using the CFI model fit index as the dependent variable, with
latent interaction model type (3 levels), correlation of the latent intercept and slope (3 levels),
sample size (3 levels) and reliability of the observed indicators (4 levels) as independent factors.
All interactions between these factors were included in the model. These analyses were carried
out separately for each data type condition (Complete data, MCAR data, MNAR data).

Insert Tables 4, 5, and 6 about here



97
Interaction Effects in Latent Growth Models

Complete Data Analyses

The average CFI value for the Wen model was 0.92 (range 0.91 — 0.93), for the Duncan
model 0.90 (range 0.89 — 0.91), and for the Schumacker model 0.76 (range 0.66 — 0.85). The
95% confidence intervals in Table 5 for the Complete and MCAR data show the Wen and
Duncan model having a large proportion of conditions where the lower and upper bounds of the
confidence intervals are at or above 0.90. This indicates that, for these models, it can be
expected that the average CFI values will be above 0.90 in over 95% of the cases. It was also
seen that the proportion of conditions with 95% confidence intervals above 0.90 increased as
sample size increased for the Wen model. A similar effect was seen for the Duncan model as
reliability of the observed indicators increased. Both of these models showed an increased
proportion of confidence intervals above 0.90 as the correlation between the latent intercept and
slope increased. The Schumacker model did not have any 95% confidence intervals whose
lower bound was above 0.90. Multiple comparisons between the means (using a REGWQ
comparison procedure to control familywise experiment error rate) showed that only a single pair
of means were not significantly different from each other, and they are presented in bold text in
Table 5. This single pair was for the Duncan and Schumacker models in the MNAR condition
for the correlation-sample size-reliability condition of (0.70, 250, 0.30). All other pairs of means
were significantly different from each other.

The ANOVA in Table 6 for the Complete data condition showed significant effects (p <
0.05) for all main effects and their interactions. The overall model effect was significant (F(jo7.
s531703) = 13599.94, p < 0.01, partial eta’ = 0.73). The largest effect sizes were seen for the two-

way interactions of latent interaction model with reliability of the observed indicators (0.13) and
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latent interaction model with correlation between latent intercepts and slopes (0.10), and for the
main effects of reliability (0.11) and latent interaction model (0.70), according to Olejnik and
Algina (2000).

The four-way interaction of latent interaction model type, latent intercept-slope
correlation, sample size, and reliability of the observed indicators was significant (Fp4. s31703) =
2.15, p <0.01) but with a small effect size (partial eta® < 0.01). Normally such a significant
interaction would be broken down into simple effects that would help to interpret the interaction
between the factors. However, the large error degrees of freedom for the ANOV A model results
in even trivial mean differences emerging as significant. To avoid this we have chosen to focus
on only those ANOVA effects that produced effect sizes of at least a medium effect (i.e., 0.06 or
greater for the partial eta-squared). The ANOVA effects that met this criterion were for the two-
way interactions of latent interaction model with reliability of the observed indicators (0.13) and
latent interaction model with correlation between latent intercepts and slopes (0.10), and for the
main effects of reliability (0.11) and latent interaction model (0.70), according to Olejnik and
Algina (2000).

To examine the significant two-way interactions, simple plots of the average CFI values
with the reliability of the observed indicators were produced for each latent growth interaction
model, and are given in Figure 17.

Insert Figure 17 about here

Seen clearly in the simple plots is the difference in pattern of average values of the CFI for the

Schumacker model from both the Wen and the Duncan models. Also of note is the differing
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pattern of CFI values. When examining the simple plot for the interaction of latent growth
interaction model with reliability, across the levels of reliability both the Wen and the Duncan
model produced stable values, while the Schumacker model showed a trend of increasing CFI
values as reliability increased. However, when examining the two-way interaction involving
latent model type and correlation between the latent intercept and slope, the Wen and the Duncan
models again showed a stable pattern while the Schumacker model showed a decreasing trend of

CFI values as the correlation increased.

MCAR and MNAR Data Condition Analyses

In the MCAR data condition the average CFI value for the Wen model was 0.92 (range
0.91-0.93), for the Duncan model 0.90 (range 0.89-0.91), and for the Schumacker model 0.75
(range 0.69-0.81). The results for the analyses of the average CFI model fit statistic were
identical in pattern to those for the Complete data condition. The largest effect sizes were seen
for the two-way interactions of latent interaction model with both reliability of the observed
indicators (0.12) and latent intercept-slope correlation (0.09), and for the main effects of
reliability (0.10) and latent interaction model (0.69). The description of these results, including
the average CFI value for each condition and the figures of the simple effects plots, are given in
Appendix E.

In the MNAR data condition the average CFI value for the Wen model was 0.76 (range
0.69-0.84), for the Duncan model 0.70 (range 0.69-0.74), and for the Schumacker model 0.76
(range 0.69-0.81). None of the models in this data condition showed average CFI values that

were above the cutoff of 0.90 for good model fit. These models are not discussed here, but are
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presented in Appendix E.

Summary

Across the three missing data conditions, the Wen model showed the most consistent and
optimal performance with respect to the CFI model fit index. In the Complete data condition the
Wen model yielded average CFI values that were above the cutoff of 0.90 in all 36 conditions,
while the Duncan model produced values that were above this cutoff in 30 conditions. The
Schumacker model did not provide any average CFI values that were above the cutoff. A similar
pattern was seen in the 95% confidence intervals for the average CFI values. Namely, the Wen
model showed confidence intervals where the lower bound was at or above 0.90 in almost all of
the conditions for the Complete and MCAR data, with the Duncan model showing such
behaviour only at higher levels of latent intercept-slope correlation and reliability. The
Schumacker model did not have any confidence intervals whose lower bound was above 0.90.
These findings were paralleled in the MCAR data condition. In the MNAR data condition none
of the models had average CFI values that were above the cutoff for good model fit.

The Wen model consistently produced average CFI values that were higher than those of
the Duncan model, the only exceptions being in the MNAR data condition when the reliability
was at its highest level. The Schumacker model provided average CFI values that were superior
to the Wen model in the MNAR data condition only, occurring only when the reliability of the
observed indicators was at its highest values (i.e., 0.70 or 0.90), and this was seen across all three
sample sizes and levels of latent intercept-slope covariance. Further, the average CFI values for

the Schumacker model decreased as the latent intercept-slope correlation increased.
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The ANOV As for the CFI statistic showed a consistent two-way interaction of latent
growth interaction model type with the reliability of the observed indicators in all three data
conditions. In both the Complete and MCAR data conditions the pattern of the Wen and Duncan
models showing stable trends of average values around the cutoff of 0.90 as reliability increased
was seen, while the Schumacker model showed a pattern of decreasing average CFI values as
reliability increased. In the MNAR data condition the pattern was more variable, with the Wen
model showing a decreasing trend while the Duncan and Schumacker models showed increasing
trends. An additional interaction was seen in the Complete data, namely that of latent growth
interaction model type with latent intercept-slope correlation. For this interaction, the simple
plot showed that both the Wen and Duncan models showed stable patterns of average CFI values
as the correlation increased, while the Schumacker model showed a pattern of decreasing

average CFI values.

NFI

The NFI (Bentler & Bonnett, 1980) evaluates the estimated model by comparing the X2
value of the model to the y* value of the independence model, yielding an index that lies on a
continuum from O (indicating a poor fit to the data) to 1 (indicating a perfect fit to the data).

Table 7 presents the average NFI values for all of the latent interaction models, across the
three conditions of missing data, and Table 8 presents the 95% confidence intervals for the
average NFI. Table 9 contains the results of three ANOVA models, using the NFI statistic as the
dependent variable, with latent interaction model type (3 levels), correlation of the latent

intercept and slope (3 levels), sample size (3 levels) and reliability of the observed indicators (4
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levels), and all of their interactions, as independent factors. These analyses were carried out
separately for each missing data condition (Complete, MCAR, MNAR).

Insert Tables 7, 8, and 9 about here

Complete Data Condition Analyses

In the Complete data condition the average NFI value for the Wen model was 0.91 (range
0.84-0.94), for the Duncan model 0.89 (range 0.82-0.93), and for the Schumacker model 0.76
(range 0.19-0.94). Only the Wen and Duncan models produced 95% confidence intervals for the
mean NFI values that had lower bounds above the value of 0.90. For the Wen model these were
consistently produced when the reliability was at its highest value (0.90), and occurred more
often as both sample size increased and as the correlation between the latent intercept and slope
increased. The Duncan model showed such confidence intervals only at the highest levels of
reliability, with the highest proportion in the conditions where the correlation between the latent
intercept and slope was highest (0.70) and the sample size was highest (1000). The Schumacker
model did not produce any 95% confidence intervals whose lower bound was at or above 0.90.
Multiple comparisons between the means (using a REGWQ comparison procedure to control
familywise experiment error rate) showed that every pair of means were significantly different
from each other.

The ANOVA in Table 9 for the Complete data shows significant effects (p < 0.05) for all
main effects and their interactions. The overall model effect was significant (F(;07. 531703) =
12496.27, p < 0.01), and had a large effect size (partial eta’ = 0.72). The four-way interaction of

latent interaction model type, latent intercept-slope correlation, sample size, and reliability of the
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observed indicators was significant (Fa4, 531703 = 2.06, p <0.01) with a small effect size (partial
eta’ < 0.01). However, as noted earlier with the CFL, the large error degrees of freedom for the
ANOVA model results in even trivial mean differences emerging as significant, and effects that
produced effect sizes of at least a medium effect (i.e., 0.06 or greater for the partial eta-squared)
were examined.

The ANOVA effects that met this criteria were for the two-way interactions of latent
interaction model with both reliability (0.12) and correlation of latent intercept and slope (0.10),
and the main effects of latent interaction model (0.68) and reliability (0.13). To examine the
significant two-way interactions, separate simple plots of the average NFI values with the
reliability of the observed indicators and the latent interaction-slope correlation were produced
for each latent growth interaction model, and are given in Figure 18.

Insert Figure 18 about here

Seen clearly in the simple plots is the difference in pattern of average values of the NFI for the
Schumacker model from both the Wen and the Duncan models. When examining the simple plot
for the interaction of latent growth interaction model with reliability, across the levels of
reliability both the Wen and the Duncan model produced stable values around 0.90, while the
Schumacker model showed a trend of increasing NFI values as reliability increased. However,
when examining the two-way interaction involving latent model type and correlation between the
latent intercept and slope, the Wen and the Duncan models again showed a stable pattern while
the Schumacker model showed a decreasing trend of NFI values as the correlation increased.

For the MCAR data condition, the means, ranges, 95% confidence intervals, and
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ANOVA results were similar in pattern to those for the Complete data condition and are not

presented here. They are reported in Appendix F.

MNAR Data Condition Analyses
None of the models for this data condition produced average NFI values that were above
the cutoff of 0.90 for good model fit. These results are not discussed here and are presented in

Appendix F.

Summary

The Wen model was consistently able to produce average NFI values that were above the
cutoff of 0.90 for good model fit, and this was seen in the Complete and MCAR data only (for 32
of the 36 conditions in both data conditions). The Duncan model was only able to produce
acceptable average NFI values in some of the conditions, doing so in only 20 conditions in the
Complete data and 17 in the MCAR data. In a parallel manner, the Wen model was able to
produce 95% confidence intervals whose lower bound was at or above 0.90 in almost half of the
conditions in the Complete and MCAR data (16 and 14, respectively), while the Duncan model
produced less than 10. The average NFI values of the Duncan model were generally lower than
those of the Wen model. For both of these models in these two data conditions the average NFI
values were stable across all levels of latent intercept-slope correlation, sample size, and
reliability. The Schumacker model did not produce average NFI values above the cutoff for

good model fit in any of the study conditions, regardless of the type of data.
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GFI

The goodness of fit index (GFI) is analogous to the R in regression, and assesses the
degree to which the reproduced covariance matrix based on the specific model has accounted for
the original sample covariance matrix (Tanaka & Huba, 1985). Table 10 presents the average
GFI values across the three data conditions.

Insert Table 10 about here

Complete and MCAR Data Condition Analyses

The average GFI value for the Wen model was 0.87 (range 0.74 — 0.90), for the Duncan
model 0.86 (range 0.74 — 0.90), and for the Schumacker model 0.77 (range 0.54 — 0.93) in the
Complete data, and the results for the MCAR data were virtually identical. None of the average
GFI values were above the cutoff of 0.90 for good model fit in either of these types of data. The
95% confidence intervals and ANOVA results are presented in Appendix G and are not

discussed here.

MNAR Data Condition Analyses

In the MNAR data condition the average GFI value for the Wen model was 0.73 (range
0.52-0.83), for the Duncan model 0.81 (range 0.68-0.87), and for the Schumacker model 0.76
(range 0.06-0.96). Only the Schumacker model produced 95% confidence intervals that had a
lower bound at or above the value of 0.90, and this occurred in only two of the study conditions
for this data. As a result of the poor performance on this model fit index, these findings are

presented in Appendix G and are not discussed here.
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Summary

Generally, all three of the latent growth interaction models performed poorly with respect
to the GFI. The Wen and the Duncan models produced similar average GFI values in both the
Complete and MCAR data conditions, with the Duncan model having higher average GFI values
in the MNAR data condition. The Schumacker model produced the lowest average GFI values
in the Complete and MCAR data conditions, but produced the highest average values in the
MNAR data condition. In all three data conditions neither the Wen nor the Duncan models
produced average GFI values that were above the cutoff for good model fit of 0.90 in any of the
study conditions, and similarly none of the 95% confidence intervals for the mean GFI value for
these models had a lower bound that exceeded 0.90. The Schumacker model performed poorly
in both the Complete and MCAR data conditions, but did show a trend of increasing average GFI
values as both reliability and sample size increased. The Schumacker model was the only model
to produce average GFI values that were above the cutoff of 0.90 in the MNAR data condition,
doing so in 12 of the 36 conditions, and produced 95% confidence intervals whose lower bound
was above 0.90 in two of the study conditions for this type of data. Adequate model fit only
occurred at the highest levels of reliability across all of the levels of sample size and latent

intercept-slope correlation.

RMSFEA
The RMSEA is a test of exact fit, with the cut-off value of 0.05 (Browne & Cudeck,
1993). The average RMSEA values for all of the models are given in Table 11. None of the

models showed average RMSEA values that were equal to or below the cut-off value of 0.05.
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Across the three missing data conditions, the average RMSEA values for the Wen model ranged
from 0.09 to 0.26, those for the Duncan model ranged from 0.12 to 0.24, and those for the
Schumacker model ranged from 0.22 to 0.70. Due to none of the models passing the criterion for
good fit, all of these results are presented in Appendix H and are not reported here.

Insert Table 11 about here

While the model fit indices presented previously are informative, it is difficult to use
them to directly compare the models with each other. However, for models that are nested
within each other, a chi-square different test can be used to determine the more parsimonious
model (Tabachnick & Fidell, 2001). Table 12 presents the difference in model chi-square
between the Wen and Duncan models. The chi-square for the Schumacker model could not be
compared in this was as it is not considered to be a nested model of either the Wen or the Duncan
models. The Wen model has 91 degrees of freedom and the Duncan model has 92 degrees of
freedom, and the difference was taken as (model chi-square for the Duncan — model chi-square
for the Wen). All difference values were evaluated against a chi-square distribution with degrees
of freedom of 1.

Insert Table 12 about here

For the Complete and MCAR data, across all conditions, the Wen model showed a
significant reduction in model chi-square over that of the Duncan model. These reductions
showed a non-linear trend, with decreasing differences between the two models as reliability
increased, the exception being that at the highest level of reliability there were large differences.

This was consistent across the levels of sample size and latent intercept-slope correlation. In the
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MNAR data, a similar trend occurred, again with the exception being at the highest level of
reliability across the levels of sample size and latent intercept-slope correlation. In this case,
however, the Duncan model showed a better fit to the data.

While not reported, an examination of the chi-square value for each model was
undertaken. Specifically, the ratio of the model chi-square to the degrees of freedom was
computed, with ratios less than 2.5 considered to be indicative of a parsimonious model that was
fitting the observed data adequately (Kline, 1998). None of the models produced ratios of this
nature in any of the missing data conditions. An examination of the chi-square values for the
individual models in each simulation condition, using the G*Power software (Faul, Erdfelder,
Lang, & Buchner, 2007), showed that all models had power equal to 1, across all three missing

data conditions.

Estimation of the Latent Slope Interaction Parameter (y,s) when the Population Value of the
Parameter was Set to 2.0.

Table 13 shows the average of the unstandardized parameter estimates (with standard
deviations in parentheses) for the latent slope interaction, which was set to a value of 2.0 in the
population model (see the parameter y»g in Figure 16).

Insert Table 13 about here

Complete Data Condition Analyses
In the Complete data condition, the Wen model provided unstandardized estimates that

ranged in average value from a minimum of 1.90 to a maximum of 33.58. This model showed
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poor estimation at lower reliability values (i.e., 0.30, 0.50) compared to the higher reliability
values. However, as both sample size and the latent intercept-slope correlation increased the
estimated values for this parameter at lower reliabilities became increasingly accurate, reducing
in value from 33.58 at the lowest reliability/sample size/correlation condition to 2.27 in the
lowest reliability/highest sample size/correlation condition. Further, as both reliability and latent
intercept-slope correlation increased, the Wen model showed a tendency to underestimate the
latent slope interaction parameter. The Duncan model showed poor estimation of the latent slope
interaction parameter, with values ranging from 2.90 to 0.84. This model produced average
values that predominantly underestimated the latent slope interaction parameter, doing so in 35
of the 36 conditions. The estimates for the Duncan model decreased in value towards zero as the
factors of reliability, sample size, and latent intercept-slope correlation increased, and had a
smaller range of values than the Wen model. The Schumacker model underestimated the
population parameter across all conditions, with mean parameter estimates ranging from 1.37 to
1.87. For this model, the estimates improved and approached the population value as the
reliability of the observed indicators increased, but there was no influence on the estimates by
increases in either sample size or latent intercept-slope correlation. This model had the smallest
range of all three models.

An alternative method to assess the accuracy of estimation is to tabulate those estimates
that fell within a particular distance from the population value (e.g., +/- 2 standard deviations).
To remain consistent to our earlier investigation of the model fit indices, we constructed 95%
confidence intervals around each of the mean estimates, and tabulated the number of intervals

that contained the population value of 2.0. For the Wen model, this occurred only 5 conditions,
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for the Duncan model 3, and for the Schumacker model only 4 of the conditions, and these
conditions are presented in bold text in Table 14.

Insert Table 14 about here

MCAR Data Condition Analyses

The estimation of the latent slope interaction parameter in this data condition closely
followed that of the Complete data condition, especially as the reliability of the observed
indicators increased. The average values for the Wen model ranged from a low of 1.90 to a high
of 45.54, those for the Duncan model from 0.84 to 4.63, and those for the Schumacker model
from 1.38 to 1.87. The 95% confidence intervals presented in Table 14 show that the population
value of the parameter was contained in 8 of the study conditions for the Wen model, 4 for the

Duncan model, and 3 for the Schumacker model.

MNAR Data Condition Analyses

All three of the latent growth interaction models showed severe underestimation of the
latent slope interaction parameter across all conditions. The Wen model had average estimates
that ranged from 0.003 to 0.87; for the Duncan model they ranged from 0.11 to 0.15, and those
for the Schumacker model ranged from 0.003 to 0.21. None of these models produced 95%

confidence intervals of the estimate that included the population value of 2.0.

Summary

There were two distinct patterns of estimation of the latent slope interaction parameter.
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Both the Duncan and Wen models showed a trend of increasing underestimation of the latent
slope interaction parameter as the reliability of the observed indicators increased. Conversely,
the Schumacker model showed increasing values of the latent intercept slope parameter as
reliability increased, with a pattern of decreasing underestimation. Overall, in the Complete and
MCAR data conditions, both the Wen and the Schumacker models showed better performance
than the Duncan model, with the Schumacker model providing more consistent parameter
estimates across all of the study conditions. With Complete data the Wen model produced
outlier estimates when reliability was low, and the number of outliers rose as the correlation
between the latent slope and intercept increased. The Duncan model also produced some
outliers, doing so predominantly at the very lowest level of reliability, with the number of
outliers decreasing as both sample size and latent intercept-slope correlation increased. The
Schumacker model produced very few outliers. A similar pattern was also seen in the MCAR
data. In the MNAR data condition none of the models performed in a satisfactory manner, with

all of the models underestimating the latent slope interaction parameter.

Average Mean Square Error (MSE) and Average Standardized Bias in the Latent Slope
Interaction Parameter Estimates when the Population Value of the Parameter was 2.0.

The average MSE values and the average standardized bias values for the estimate of the
latent interaction slope parameter (y2g) are given in Tables 15 and 16, respectively. For the MSE,
lower values are indicative of less bias; for the standardized bias, values close to 1.0 are
desirable, with values greater than 1.0 indicating overestimation and values lower than 1.0

indicating underestimation.
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Insert Tables 15 and 16 about here

Average MSE Bias

Complete Data Condition Analyses

In the Complete Data condition, the average MSE values for the Wen model ranged from
5.90 to 78267.01; those for the Duncan model from 2.52 to 2096.34, and those for the
Schumacker model from 2.43 to 82.13. The Wen model showed a general trend of decreasing
MSE values as reliability, sample size, and latent intercept-slope correlation increased, with
lower bias values at the highest levels of reliability across the factors of sample size and latent
intercept-slope correlation. The only exception to this trend was at the smallest level of all three
factors, where the average MSE value for the reliability level of 0.70 was higher than that for the
level of 0.50. The Duncan model showed a similar pattern to that of the Wen model with
respect to average MSE bias values, namely a decreasing trend as reliability, sample size, and
latent intercept-slope correlation increased, with the largest MSE values occurring at the lowest
level of reliability. However, the Duncan model consistently produced lower average MSE
values than the Wen model across all conditions. The Schumacker model also showed a
decreasing trend in average MSE bias values across the levels of reliability, sample size, and
latent intercept-slope correlation. The Schumacker model produced average MSE values that
were similar to those of the Duncan model at all but the lowest level of reliability, where its MSE
values were lower than both the Wen and Duncan models.

The results for the average MSE bias values in the MCAR data condition (reported in

Table 14) followed the same pattern as seen in the Complete data condition and, when compared
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to the average MSE values for the Complete data condition, at higher reliabilities the three

models produced average MSE values that were very similar.

MNAR Data Condition Analyses

The average MSE values for all three latent interaction models in this data condition are
given in Table 14. The average MSE values for the Wen model ranged from 3.21 to 29.06, those
for the Duncan model from 3.49 to 3.61, and those for the Schumacker model ranged from 3.89
to 105.36. As none of the models performed poorly with respect to overall model fit and
estimation of the latent slope interaction parameter, the MSE results are not discussed further for

this data condition.

Summary

A comparison among the three models showed that the Schumacker model had the best
performance with respect to values of MSE - this model produced values that were routinely
lower than or similar to the other models when the data was Complete or MCAR, and in the
MNAR condition the MSE values for this model were similar across all conditions, showing a
high degree of stability. The Duncan model was comparable to the Schumacker model at
moderate to high levels of reliability in each of the three data conditions, the exceptions being at
low sample sizes and low reliabilities. The Wen model generally performed poorly compared to
the other two models in the Complete and MCAR data conditions, especially across all

conditions.
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Average Standardized Bias Estimates

The average standardized bias estimates for each of the models across all of the
conditions are given in Table 15. For this measure of bias, values close to 1 are desirable, and
values that are less than 1 are indicative of underestimation and values greater than 1 are

indicative of overestimation.

Complete Data Condition Analyses

The Wen model showed average bias values that generally decreased as the factors of
reliability, sample size, and latent intercept-slope correlation increased, with bias values that
ranged from -0.06 to over 1000. Exceptions to this decreasing pattern occurred at the highest
level of the latent intercept-slope correlation, where the trend became one of lower bias values at
lower reliabilities and higher bias values at higher reliabilities as sample size increased. The
Duncan model showed a decreasing pattern of standardized bias values, indicating an increasing
underestimation of the latent slope interaction parameter in almost all of the study conditions,
with values ranging from -1.01 to 30.01. The only exception to this pattern was in the condition
of latent intercept-slope correlation = 0.20, sample size = 1000, reliability = 0.90, where the
value of the bias estimate was 0.75. The degree of underestimating bias increased as reliability
increased, and bias also increased as there were increases in sample size.

The Schumacker model showed a pattern of increasing bias values, with values that
indicated an increasingly lesser degree of underestimation as the study factors of latent intercept-
slope correlation, sample size, and reliability increased. The values of bias ranged from -0.35 to

0.20. The exception to this pattern was in a single condition (latent intercept-slope correlation =
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0.20, sample size = 500), where the bias value for a reliability of 0.70 was positive whereas the
bias for the other reliabilities at this condition were all negative. The bias values were similar

across the level of sample size, especially at higher reliabilities.

MCAR Data Condition Analyses

The overall pattern of results for the MCAR data followed those of the Complete data
closely, with some exceptions. The Wen model showed average standardized bias values that
ranged from -0.88 to over 1000, and showed a similar decreasing trend in bias values (indicative
of biased estimates that ranged from overestimation to underestimation). The exception to this
pattern again was at the highest level of latent intercept-slope correlation, where the pattern at the
lowest sample size (n=250) was for increasing bias values (moving from severe underestimation
to almost no underestimation), at the middle sample size (n=500) the pattern was non-linear
(moved from moderate underestimation to severe overestimation to moderate underestimation),
and to a flat pattern of moderate underestimation at the largest sample size (n=1000). The
Duncan model had standardized bias values that ranged from -1.01 to over 1000. This model
showed a pattern of decreasing standardized bias values as reliability increased, and this was
seen across the levels of sample size and latent intercept-slope correlation. More specifically, the
bias values indicated that at low reliabilities the Duncan model would overestimate the latent
slope interaction parameter (i.e., show a positive bias), and that as reliability increased this model
would underestimate the parameter (i.e., show a negative bias). The Schumacker model
produced average standardized bias values that were similar to those for Complete data, with

values ranging from -0.36 to 0.19. The pattern of bias was also similar to that seen with
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Complete data, whereby as reliability increased the estimates moved towards a lower degree of
bias. The exception to the pattern, whereby the bias increased at the highest level of reliability,
was seen at the largest sample size (n=1000) and the lowest latent intercept-slope correlation

(0.20), where the bias value for the reliability level of 0.70 was positive (0.19), whereas at other

reliabilities the bias value was negative.

MNAR Data Condition Analyses

As noted previously, due to the poor performance of all three of the models in this
condition, the results of the standardized bias values are not discussed in detail. In brief, the
Wen model produced standardized bias values that ranged from less than -1000 to greater than
1000, and there was no consistent pattern that emerged across all of the study conditions. The
Duncan model produced average standardized bias values that ranged from -20.26 to -5.68, and
showed a similar trend to that seen in the Complete and MCAR data conditions, with steadily
increasing values of underestimating bias as reliability increased. The Schumacker model had
average standardized bias values that ranged from -33.64 to -3.87, and the pattern was
predominantly one of decreasing bias as reliability increased, across the factors of sample size

and latent intercept-slope correlation.

Summary
All three of the latent growth interaction models tended to show an underestimating bias
in the estimate of the latent slope interaction parameter according to this index of bias. The Wen

model showed a smaller degree of bias in the estimation of the latent slope interaction parameter
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compared to the Duncan and Schumacker models, across both the Complete and MCAR data
conditions, but this only occurred at the highest levels of reliability. At other levels of reliability
the Duncan and Schumacker models showed modest amounts of underestimating bias, whereas
the Wen model showed large amounts of bias. In the MNAR data condition the Duncan model
showed the smallest degree of bias at lower reliabilities, and the Schumacker model showed
smaller degrees of bias at higher reliabilities. The Schumacker model was the only model to
show a decrease in bias as the factors of reliability, sample size, and latent intercept-slope

correlation increased, and this was seen across all three data conditions.

Type I Error Rates

For this analysis, all of the models were re-run with the population value of the latent
slope interaction parameter set equal to zero. Table 17 provides a tabulation of the proportion of
cases (with frequencies in parentheses) where the absolute value of the estimate of the latent
slope interaction parameter was significantly different from zero.: Bradley’s (1978) liberal
criterion of robustness was used to evaluate the Type I error rate for each of the models. Using a
5% level of significance, Type I error rates outside of the range of (0.25, 0.75) are considered to
be conservative or liberal, respectively. Type I error rates were examined separately for each
missing data condition. In Table 16 those conditions with a liberal Type I error rate are
presented in bold text, and those conditions with a conservative Type I error rate are presented in
underlined text.

Insert Table 17 about here
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Complete Data Condition Analyses

Out of the 36 study conditions, the Wen model showed Type I error rates that were
liberal (over 7.5%) in 26 of the conditions, with adequate Type I error control in only 7 of the
conditions. The liberal error rates were consistently associated with all but the highest level of
reliability (0.90). As the sample size increased the amount of liberal rates increased, but as the
latent intercept-slope correlation increased the rates decreased (i.c., the number of liberal rates
for a sample size of 250 were higher at a correlation value of 0.20 than at the correlation value of
0.50). The Duncan model was liberal in a single condition, showed conservative Type I error
rates (i.e., under 2.5%) in 22 conditions, and adequate Type I error control in 13 conditions. The
conservative rates occurred at the highest levels of reliability (0.70, 0.90) across the factors of
sample size and latent intercept-slope correlation. The rates at the combination of lower latent
intercept-slope correlation and reliability were the highest among all conditions for this model.
The Schumacker model was conservative in 18 conditions, and showed adequate control in the
remaining 18 conditions. There was no consistent pattern to the presence of conservative

conditions.

MCAR Data Condition Analyses

The pattern of Type I error rates for the Wen model were similar to that seen in the
Complete Data condition. Type I error rates for this model were liberal in 25 of the conditions
and adequately controlled in the remaining 11 conditions. As in the Complete data condition, the
majority of the liberal rates occurred at the lowest reliabilities, and adequate Type I error control

was seen only at the highest level of reliability across the levels of sample size and latent
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intercept-slope correlation. The rates of Type I error were higher at lower levels of the latent
intercept-slope correlation, and also increased with sample size.

For the Duncan model, Type I error rates were liberal in 2 of the conditions, conservative
in 16 of the conditions, and adequately controlled in the remaining 18 conditions. A similar
pattern to that seen in the Complete data condition emerged, with almost all of the conservative
error rates occurring when the reliability ranged from 0.70 to 0.90, across all of the latent
intercept-slope correlation and sample size conditions. The rates at the combination of lower
latent intercept-slope correlation and reliability were the highest among all conditions for this
model.

The Schumacker model showed Type I error rates that were conservative in 17 of the
conditions and adequately controlled in the remaining 19 conditions. There was no consistent

pattern to the rates of Type I error.

MNAR Data Condition Analyses

The Wen model showed Type I error rates that were liberal in 7 conditions, conservative
in 23, and only adequately controlled in 6 of the conditions. The presence of liberal Type I error
rates Was associated with the lowest level of reliability across the factors of sample size and
latent intercept-slope correlation for this model. As sample size increased there was a strong
tendency towards conservative Type 1 error rates.

The Duncan model was conservative in 33 of the conditions, showing adequate control in
only 3 of the study conditions. Those conditions that were well-controlled were at the middle

level of reliability (0.50) at the lowest level of latent intercept-slope correlation.
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The Schumacker model was liberal in 11 conditions, and showed adequate Type I error
rate control in the remaining 25 conditions. The liberal rates were associated with the largest

sample size condition (n=1000), and for all of the reliabilities except the lowest (0.30).

Summary

The Schumacker showed the best control of Type I error rates of the three models,
showing a rough split of adequate and conservative control in both the Complete and MCAR
data conditions, and showing adequate control in the majority of conditions with MNAR data.
The Wen model was largely liberal with respect to Type I error control when the data were
Complete or MCAR, but was conservative in almost two-thirds of the conditions when the data
was MNAR. The Duncan model had a more variable pattern, with a slightly higher rate of
conservative control in the Complete data condition, a more even split between conservative and
adequate control in the MCAR data condition, and almost entirely conservative in the MNAR

data condition.
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Chapter 13. Discussion

There were two objectives to the current project. The first objective was to investigate
the performance of three latent interaction growth models by Wen et al. (2002), Duncan et al.,
(1999), and an extension of the Schumacker (2002) cross-sectional model, under several varying
conditions: the correlation between the latent intercept and slope for each latent factor, the
sample size, and the reliability of the observed indicators for the latent factors, with respect to
three types of missing data. The performance of these three models were evaluated with respect
to convergence rates over 5000 replications and overall model fit on several commonly-used
model fit indices (CFI, NFI, GFI, RMSEA).

The second objective was to examine the performance of each of the three latent
interaction growth models with respect to bias in the estimation of the latent slope interaction
parameter (y2g in Figure 15), and included an examination of the amount of bias in estimating the
latent slope interaction parameter (i.e., absolute bias, mean square error, and an estimate of
standardized bias), and an evaluation of each of the three latent interaction growth models with
respect to the rates of Type I error for the latent interaction slope parameter.

A particular challenge for these models is that the presence of an interaction term
introduces non-normality into the data, either in the form of cross-products of the observed
indicators as in the case of the Wen and Duncan models, or in the form of a multiplication of
factor scores as in the case of the Schumacker model. This non-normality can introduce bias into

the model fit indices and the parameter estimates.
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Overall Model Performance
Model Convergence

Convergence occurs when the estimation function has reached a minimum and the model
parameters are estimated (Tabachnick & Fidell, 2001). The Wen model showed minor problems
of convergence when the data was either Complete or MCAR, occurring primarily when the
reliability of the observed indicators were at their lowest levels (i.e., 0.30 or 0.50), and this was
regardless of the value of the latent intercept-slope correlation or sample size. However, in these
instances, the Wen model still converged in 93% of the 5000 replications. In the MNAR data
condition the Wen model showed poor convergence across many conditions, sometimes
converging in less than 30% of the replications for a given condition, the only exceptions being
when the reliability of the observed indicators were at their highest level (0.90). Both the
Duncan and the Schumacker models converged for nearly all 5000 replications in the 36
conditions across all three of the missing data conditions. The only exception was for the
Duncan model in the specific MNAR data condition where the latent intercept-slope correlation
was at its lowest value (0.20), the sample size was smallest (250), and when the reliability of the
observed indicators was at its lowest value (0.30).

Nonconvergence can indicate that the model does not fit the data, but it does not provide
information regarding the rejection or non-rejection of any hypotheses concerning specific model
parameters, and as such provides limited diagnostic information. Convergence of a model to a
proper solution typically fails if the sample size is small, and failure to converge occurs more
often with maximum likelihood estimation than with generalized least squares estimation

(Anderson & Gerbing, 1984; Fan et al., 1998) in the case of complete data. Newman (2003)
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found that the use of maximum likelihood estimation in structural models did not result in
convergence problems with MCAR or MNAR data if there was less than 50% missingness.
Convergence rates do increase if there are more time points assessed in a longitudinal design
(Hamilton, Gagne, & Hancock, 2003). When this was investigated by Fan and Fan (2005), they
found that with only three repeated assessment points non-convergence occurred frequently,
especially if there is little growth over those three assessment points.

In the current study, convergence problems occurred consistently for one model in
particular, the Wen model. Nonconvergence for this model occurred primarily when the
reliability of the observed indicators was low in both the Complete and MCAR data conditions,
which is consistent with previous research. The high rate of nonconvergence with the MNAR
data for this model goes against the findings of Newman (2003). Since sample sizes were quite
high in some conditions, there were more than three repeated assessment points, and the rate of
missing data was not greater than 50%, other factors may be contributing to the poor
convergence rates seen with the Wen model compared to the other two models. Some of these
issues may involve the presence of the interaction effects, which introduce non-normality into
the observed data. A second potential explanation may lie within the differences between the
Duncan and the Wen models. The Duncan model was the population model for generating the
data, and the Wen model represents a misspecification of the model as it contains paths that are
not present in the Duncan model (see Figures 12 and 13). A novel finding from this study is that
convergence rates for the Duncan and Schumacker models using ML estimation were high and
appeared to not be affected by the value of the latent intercept-slope correlation, sample size, or

by the reliability of the observed indicators, a finding which has not been reported elsewhere.
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Further to this, neither the Duncan nor the Schumacker model had the poor rates of convergence
in the MNAR data condition as the Wen model, which leads to two avenues of exploration: what
characteristics of these two models makes them have stable convergence rates in the presence of
MNAR data, and what about the Wen model makes it susceptible to convergence problems,
especially in the presence of MNAR data.

In summary, if longitudinal data are Complete or MCAR, convergence of any of the three
latent growth models assessed in the current project is not a troublesome issue across conditions
of latent intercept-slope correlation, sample size, or reliability of the observed indicators, with
convergence rates above 93% for all of the models under these conditions. Further, the Duncan
and Schumacker models showed better convergence rates than the Wen model, converging in
nearly 100% of the simulations. If the data are MNAR, either the Duncan or the Schumacker
model are the most reliable with respect to converging to a solution, while the Wen model is
problematic. It should be cautioned that convergence of a model does not automatically imply
that the overall model fit indices and parameter estimates are correct, only that estimates of these

values have been achieved.

CFI Values

The CFI (Bentler, 1988) ranges in value from O to 1.0 and assesses fit relative to a null
model, with values between 0.90 and 1.0 being indicative of models that have a better fit to the
data. The Wen and Duncan models showed similar performance across all factors in both the
Complete and MCAR data conditions, with both models producing CFI values that were above

the cutoff of 0.90 for good model fit in many of the conditions. At high sample sizes and
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moderate to high correlations between latent intercepts and slopes the Schumacker model
showed rising average CFI values as reliability of the observed indicators increased, however the
value of the CFI in these conditions was lower than that seen when the latent intercept-slope
correlation was at its lowest value. For all three of the models, the trend in both the Complete
and the MCAR data conditions was that as reliability of the observed indicators increased there
were increases in the mean CFI values, especially for the Schumacker model; the increases seen
in the Wen and Duncan models were incremental.

These findings are further bolstered by the evidence of the 95% confidence intervals for
these mean CFI values. Both the Wen and Duncan models produced confidence intervals whose
lower bound was at or above the model cut-off of 0.90, with the Wen model producing a higher
proportion of such intervals across both the Complete and MCAR data conditions. The
implication of this, when considered in conjunction with the preponderance of mean CFI values
that were above the cut-off for good model fit, is that when a model such as the Wen full
interaction model produces a CFI value that indicates good fit to the data, the researcher can
have a high degree of confidence that such a result is not a spurious finding.

The presence of meaningful (i.e., having at least a medium effect size) two-way
interactions of (a) latent growth interaction model with reliability and (b) latent growth
interaction model with correlation between latent intercept and slope was noted in both the
Complete and MCAR data conditions. For both types of interactions, the Wen and Ducnan
models showed stable patterns of CFI values across the levels of reliability and correlation. For
(a) the Schumacker model showed a trend of increasing CFI values as reliability increased, and

for (b) this model showed a trend of decreasing CFI vales as the correlation increased. These
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findings imply that the largest influences on a model fit index like the CFI are the type of model,
the reliability of the observed indicators, and the correlation between the latent intercept and
slope, and a factor such as sample size has very limited influence. In the MNAR data condition,
none of the three latent interaction growth models produced average CFI values that were above
the cutoff of 0.90 for good model fit.

Previous authors have noted that the CFI is susceptible to particular facets of study
design. The CFI is susceptible to the type of estimation method used and shows a downward
bias when the model is incorrectly specified (Sugawara & MacCallum, 1993), and this was
confirmed by Fan, Thompson, and Wang (1999) with both ML and GLS estimation. The CFI is
not affected by nonnormality of the data, nor by sample size (Fan et al., 1998), although these
authors only studied minor degrees of non-normality in the observed variables (i.e., skewness of
* 1.5, kurtosis between +3 and +4). Hu and Bentler (1998) examined more severe non-normality
(e.g., kurtosis values of -1, 2, 5, and elliptical distributions of the data), and found that this
accounted for a small proportion of variance in model fit with ML estimation.

These findings from the current study contradict what has been reported in previous
research, as the CFI did not show a downward bias for the Wen model, which is a
misspecification of the population model used in this study. As the Schumacker model was not
comparable in this manner to either the Wen or Duncan models, it is difficult to determine if the
CFI model fit index was performing as expected for this model. However, the CFI did show an
increase in value as sample size increased for the Schumacker model, which is similar to that

seen in previous research.
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NFI Values

The NFI compares the specified model against an independence model and, similar to the
CFI, ranges in value from 0 to 1.0 and uses the same cutoff of 0.90 for indicating good fit to the
data by the model. For the three latent growth interaction models studied in the current project,
the results for the NFI were very similar to those of the CFI. The Wen model produced average
NFI values that were above the cutoff for good model fit in a higher proportion of conditions
than the Duncan and Schumacker models in both the Complete and MCAR data conditions. The
Duncan model produced average NFI values that were consistently lower than those of the Wen
model. The Schumacker model produced average NFI values that were lower than those of the
other two models at low levels of reliability, and which never approached the cutoff for good
model fit. For the MNAR data condition, none of the models produced average NFI values that
were above the cutoff for good model fit.

Similar to the findings with the CFI, the NFI values showed slight increases as sample
size increased, which is consistent with previous research. The performance of the NFI with
respect to measurement error (i.e., reliability of the observed indicators) and missing data has not
been studied previously. While there was a significant effect associated with the measurement
error factor, this was most likely due to the variation in average values between the three models
across the three data conditions. The Wen and Duncan models had stable average NFI values
across all manipulated conditions in the Complete and MCAR data, while the Schumacker model
showed an increasing trend in these two data conditions. In the presence of MNAR data each of
the models showed a different pattern: the Wen model showed a decreasing pattern of values, the

Duncan model an increasing pattern, and the Schumacker model showed a stable pattern. The
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similarity of performance for the NFI with respect to missing data type also represents a new
finding, with the NFI performing in the MCAR data similarly to that seen in the Complete data
condition, and the poor performance in the MNAR data condition. This result confirms and
extends the findings from previous studies on other fit indices to that of the NFL

These findings are further bolstered by the supporting evidence of the 95% confidence
intervals for the mean NFI values. Both the Wen and Duncan models produced confidence
intervals whose lower bound was at or above the model cut-off of 0.90, with the Wen model
producing a higher proportion of such intervals across both the Complete and MCAR data
conditions (22 vs 15 and 19 vs 9, respectively). The implication of this, when considered in
conjunction with the preponderance of mean NFI values that were above the cut-off for good
model fit, is that when a model such as the Wen full interaction model produces an NFI value
that indicates good fit to the data, the researcher can have a high degree of confidence that such a
result is not a spurious finding.

Similar to the findings with the CFI, the largest effect sizes were seen with the two-way
interactions of (a) latent interaction model and reliability of the observed indicators, and (b)
latent interaction model with correlation between the latent intercept and slope. These large
effect sizes were seen with the same two-way interactions as with the CFI, and the pattern of NFI
values in the corresponding simple plots were similar as well. This implies that the largest
influences on a model fit index like the NFI are the type of model, the reliability of the observed
indicators, and the size of the latent intercept-slope correlation, and a factor such as sample size

has very limited influence.
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The NFT is sensitive to the type of model that is being analyzed, with both nested
confirmatory factor analysis models and structural models with misspecified paths leading to
unreliable NFI values for comparison across models (Fan & Sivo, 2007). The NFI statistic was
designed to be free of the influences of sample size as well as to provide accurate model fit
assessment across several estimation methods (e.g., ML, GLS; Bentler et al., 1980). However,
the NFI has been shown to be affected by sample size (Bearden, Sharma, & Teel, 1982;
McDonald & Marsh, 1990), with larger values as sample size increases and smaller values as
sample size decreases when used with ML estimation (Fan et al., 1998; La Du & Tanaka, 1989).
Marsh et al. (1988) found that the NFI is not affected by non-normality of the data. La Du and
Tanaka (1989) found that this model fit index was insensitive to model misspecification when a

ULS estimation method was used.

GFI Values

The GFI is analogous to the R? in regression, and assesses the degree to which the
reproduced covariance matrix based on the specific model has accounted for the original sample
covariance matrix (Tanaka et al., 1985). Values of the GFI which are closer to 1.0 are desirable,
with a value of 0.90 being recommended as a cutoff value for good model fit. The GFI model fit
index is sensitive to sample size when used with ML estimation (Anderson et al., 1984; Marsh,
Balla, & McDonald, 1988), with increasing GFI values as sample size increases (La Du et al.,
1989), and a downward bias as sample size decreases. Fan and Wang (1998) have found that the

GFl is not affected by non-normality of the data.
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In the current study, only the Schumacker model showed average GFI values that were
above the cutoff of 0.90 for good model fit, and this was only in one-third of the cases in the
MNAR data condition. In the Complete and MCAR data conditions, even though none of the
models showed average GFI values that were above the cutoff, the Wen and Duncan models
showed stability in their values across all of the manipulated factors, while the Schumacker
model showed a trend of rising average values as reliability increased. In the MNAR data
condition, the Wen model continued to show a stable pattern of average GFI values, generally
between 0.70 and 0.80. The Duncan model showed a decreasing pattern, with values decreasing
from 0.85 to 0.74 across all of the conditions. As noted earlier, only the Schumacker model
produced average GFI values above the cutoff in this condition, and this same model showed an
increasing pattern of average values as the reliability of the observed indicators increased. The
positive results of the Schumacker model in the MNAR data should be tempered with the
evidence from the 95% confidence intervals for the GFI values. There were only two conditions
in the MNAR data where the lower bound of the confidence interval was at or above the cutoff
for good model fit. The implication of this is that a GFI value produced by the Schumacker
model that indicates adequate fit to the data may not be the typical GFI value obtained, and it is
likely that a GFI value that indicates poor fit to the data would also have been obtained.

The findings reported for the current study with respect to the GFI show some
consistency with previous research with respect to the factor of sample size. To this author’s
current knowledge, there have been few studies that have looked at influences of either the latent
intercept-slope correlation or the reliability of the observed indicators on the GFL. This study

presents novel findings with respect to these factors and their influence on the GFI statistic. For
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both the Wen and the Duncan models the value of the latent intercept-slope correlation has little
impact on the GFI, and this was seen across both the Complete and MCAR data conditions. For
the Schumacker model there were slight decreases in the average GFI values as the latent
intercept-slope value increased across both the Complete and MCAR data conditions. As noted
earlier, a potential reason for this decrease in GFI values may be due to the presence of
multicollinearity introduced by the increasing value of the correlation. In the MNAR data
condition, there were no differences at the two lowest levels of correlation (0.20, 0.50), but lower
values were seen at the highest level (0.70), for the Wen and Schumacker models only. These
differences were slight.

With respect to the reliability of the observed indicators, this factor was also seen to have
little impact on the average GFI values produced by the Wen and Duncan models in both the
Complete and MCAR data conditions. In the MNAR data condition, this same pattern held for
the Wen model only, while the Duncan model showed a decreasing pattern of average GFI
values as reliability increased. For the Schumacker model, across all three data conditions, the
reliability of the observed indicators had the strongest influence, and the influence of the latent
intercept-slope correlation and sample size were minimal.

If the Duncan model can be considered the properly specified “correct model”, the
average GFI indices for this model in particular should have been well above the cutoff required
for good model fit to the data. That this did not occur is evidence that more research on the
utility of this statistic is needed, especially in the context of latent growth modeling. The GFI

also utilizes the non-central chi-square distribution as part of its computation (Curran et al.,
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2002), and some of the concerns noted previously with respect to the RMSEA may also be

applicable to the GFI.

RMSFEA Values

The RMSEA was proposed by Steiger and Lind (1980), developed further by Browne and
Cudeck (1993), and is a test of exact fit. Values of the RMSEA that are lower than 0.05 are
considered to represent a model that fits the data well, with values up to 0.08 also being
indicative of a well-fitting model. None of the three latent growth interaction models showed
average RMSEA values that were below the minimum criteria of 0.05 (nor of 0.08) used in this
study for adequate model fit across any of the three data conditions. Despite this lack of positive
findings, some conclusions regarding the performance of the models can be presented. The Wen
and Duncan models showed a trend of increasing average RMSEA values (indicating an
increasing degree of poor fit to the data) as there were increases in the latent intercept-slope
correlation, sample size, and reliability of the observed indicators, in all three of the data
conditions. Conversely, the Schumacker model showed a decreasing pattern of average RMSEA
values (indicating an increasing degree of good fit to the data) across all of the manipulated
factors for all of the missing data conditions.

The RMSEA is sensitive to model misspecification (Fan et al., 2007), which is actually
an advantage since an index that identifies misspecified models is desirable. The RMSEA has
shown itself to be insensitive to sample size, and is not affected by the nonnormality of the data
(Fan et al., 1998). However, Nevitt and Hancock (2004) found that there was an interaction

between sample size and non-normality of the data. At large sample sizes there was no influence
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of non-normality on the RMSEA, and at more moderate sample sizes (e.g., n=500) the RMSEA
was affected by non-normality, yielding reduced power. In general, Nevitt and Hancock (2000)
found that, if the model was misspecified, the RMSEA did not seem to be affected by changes in
sample size, but increasing non-normality led to increases in the RMSEA values, which can be
exacerbated by decreasing sample size.

These previously reported findings were largely corroborated in the current study for the
Wen and Duncan models, as these models showed average RMSEA values that consistently
increased across the rising levels of reliability, sample size, and latent intercept-slope correlation.
What is surprising is that the Duncan model, which can be considered a correctly specified
model, showed performance that was similar to that of the Wen model (a misspecified model)
and that none of the average RMSEA values for the Duncan model approached the criterion for
good model fit.

There are several possibilities for why this unexpected relationship occurred. Previous
authors (e.g., Fan et al., 1999) have shown that the RMSEA can be overestimated at small
sample sizes even if the model is properly specified, and also that the value of the RMSEA can
be inflated if there is multivariate non-normality present in the data. Due to the aforementioned
inclusion of interaction terms in the models, which introduce non-normality into the data, this
could be contributing to the poor performance of the RMSEA in the current study. Curran,
Bollen, Paxton, Kirby, and Chen (2002) have noted that, in the presence of uncorrelated
variables in structural equation models the distribution of the model chi-square, part of the
formula for the RMSEA (see page 79), may not follow a non-central chi-square distribution.

This is problematic for fit indices such as the RMSEA, which are assessed based on the
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assumption that this model chi-square follows a non-central chi-square distribution. If this
assumption is not met then the RMSEA as an statistic of overall model fit may not be suitable.
In the current study, the two latent independent factors were specified as being uncorrelated, and
this may have led to the situation of the model chi-square not following the proper distribution.
The Wen and the Duncan models use the product-indicator method for the interaction
effect, which contains a procedure for mean centering that reduces the multicollinearity that is
introduced by the creation of the product terms from the individual observed indicators.
However, since the nature of the interaction terms used in both the Wen and Duncan models
produces non-normal data, the high values of the RMSEA may be a result of the presence of
these interaction terms (i.e., even though multicollinearity is reduced, the influence of non-
normal data may not be entirely controlled by centering). The Schumacker model had
substantially higher RMSEA values than either of these models across all of the study
conditions. The Schumacker model does not explicitly outline a method for reducing
multicollinearity, and this may have further contributed to the poor performance of the
Schumacker model with respect to non-normal data and mean values of the RMSEA. However,
this finding is mitigated to some degree by the fact that the Schumacker model showed
increasingly good fit to the data as the study factors increased. The finding that the correlation
between the latent intercept and slope did not adversely affect the average RMSEA values for

any of the models is a novel result.
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Bias in the Unstandardized Parameter Estimate for the Latent Slope Interaction Parameter (yss)
with a Population Value of 2.0

A secondary objective was to evaluate the accuracy of each of the three latent growth
interaction models in estimating the unstandardized structural parameter for the effect of the
latent slope interaction on the latent slope of the outcome variable (i.e., y2gin Figure 16).
Accuracy in parameter estimation is one of the important goals of structural equation modeling
(Fan & Wang, 1998). When measurement error is present, bias is introduced into the parameter
estimates, power to detect differences is lowered, and inference becomes problematic (DeShon,
Ployhart, & Sacco, 1998).

The first method used to assess the accuracy in parameter estimation was to examine the
difference in the estimated parameter from the population value of 2.0. In the Complete data
condition, the Wen model showed parameter estimates that closely approximated the population
value as reliability increased, with values above the population value at low to moderate levels of
reliability (i.e., 0.30, 0.50, 0.70), and values below the population value at the highest level of
reliability (0.90). Further, the estimate approached the population value as both the latent
intercept-slope correlation and sample size increased, however this effect was more apparent at
estimates associated with lower levels of reliability. The Duncan model consistently produced
estimates that were below the population value across almost all study conditions, and these
estimates became more distant as reliability increased. Similar to the Wen model, as the latent
intercept-slope correlation and sample size increased, the deviation from the population value
decreased, especially at lower levels of reliability. The Schumacker model was consistent in its

estimation of the population value of the latent slope interaction parameter, with estimates
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increasing towards the population value as the correlation between the latent intercept and slope
increased and as the reliability of the observed indicators increased. An examination of 95%
confidence intervals around the estimates showed that very few of them included the population
value of zero, indicating that the models were not estimating the population parameter very
accurately.

Sample size appeared to have very little influence on the estimates provided by the
Schumacker model. In the MCAR condition findings were similar to those seen in the Complete
data condition, with the exception that at lower reliabilities the inaccuracy in estimation was
greater, especially for the Wen and Duncan models. In the MNAR condition all of the models
provided inaccurate estimates, consistently estimating the latent slope interaction parameter to be
close to zero.

The second facet of parameter estimation examined was the amount of bias in the
parameter estimates. The degree of bias in the estimate of the latent slope interaction parameter
was assessed by two methods, the mean square error (MSE) and the standardized bias. The MSE
quantifies the expected (average) squared deviation of an estimator from a population parameter
(Olejnik & Porter, 1981), and provides information on the spread of the parameter estimates
around the true estimate. For all of the models, across all three data conditions, the values of the
MSE consistently decreased as sample size and reliability increased, which is a desirable
property. In other words, as reliability and sample size increased, the amount of deviation of the
estimates from the population value decreased. The Schumacker model consistently had the
lowest MSE values except in the MNAR data condition, indicating less bias in the estimated

latent slope interaction parameter when data was Complete or MCAR (this was also reflected in
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the unstandardized parameter estimates for the Schumacker model). The Duncan model
produced MSE values that were slightly higher than those for the Schumacker model at the
highest value of the latent intercept-slope correlation. The Wen model was consistent in
producing the largest MSE values across the Complete and MCAR data conditions, but showed
similar MSE values to the other models as reliability increased in the MNAR data condition.

For all three of the latent growth interaction models the average MSE values were largest
at the lowest levels of the reliability of the observed indicators, which is not surprising since the
degree of reliability has an effect on the amount of error variance of the parameter estimates,
with lower reliabilities yielding larger error variances (see Equation 33). In general, the
combination of a low intercept-slope correlation, small sample size, and low reliability produced
inaccurate parameter estimates and a substantial amount of bias for all three models in the
Complete and MCAR data conditions. All of the models performed similarly in the MNAR
condition, producing low MSE values in almost all conditions, however as noted earlier all of the
models were poor in estimating the latent slope interaction parameter in this data condition.

The last measure of bias examined was the standardized estimate of bias, which is the
average deviation of the sample estimate from the population parameter estimate, divided by the
empirical standard error of the estimate. Values of this standardized estimate which are close to
1.0 indicate no bias in the estimate, those above 1.0 are indicative of an overestimating bias, and
those less than 1.0 are indicative of an underestimating bias. The standardized bias for the latent
slope interaction parameter estimates showed a pattern very similar to that seen with the actual
estimates of the latent slope interaction parameter itself, with the Wen model showing consistent

overestimation in the Complete and MCAR data conditions, the Duncan model showing
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consistent underestimation, and the Schumacker model showing slight underestimation in some
conditions but providing more accurate estimates in other conditions. The degree of
standardized bias in the MNAR data was large for the Wen and Duncan models, both of which
showed an increasing underestimating bias as the study factors increased. The Schumacker
model showed a large degree of underestimating bias, with a trend of decreasing amounts of bias
as the reliability of the observed indicators increased — in other words, the degree of bias
lessened for this model as the reliability of the observed indicators increased. Increases in bias
were seen as both sample size and the correlation between latent intercepts and slopes increased.
Overall, the Schumacker mode] was consistent in the bias values that it provided,
especially at higher reliabilities. The Wen model showed a large amount of variability in its bias
values, to such a degree as to make the trustworthiness of its estimates questionable. The
Duncan model, while providing biased estimates, was not as biased as the Wen model and at
times provided bias estimates that were similar to those of the Schumacker model. However, all

of the models were biased to some degree.

Type I Error Rates

The last facet of the parameter estimate that was assessed was Type I error rates in
detecting the latent slope interaction parameter. For this facet, all of the simulations were re-run
with the population parameter of the latent slope interaction set to zero. For each model, the p-
value for the test of the latent slope interaction parameter was evaluated to determine if it was
within the acceptable range (i.e., 0.025 to 0.075), or if it was liberal (i.e., greater than 0.075) or

conservative (i.e., less than 0.025). All of the models were poor in their control of Type I error
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rate, with the Schumacker model showing adequate control in only 14 of 36 conditions when the
data was Complete (15 when MCAR), and the Wen and the Duncan models being predominantly

liberal and conservative, respectively.

Assessment of Objectives and Hypotheses

The first objective of this study was to evaluate the overall performance of the models in
each of the three missing data conditions with respect to model fit. It was our expectation that
particular trends in the overall model fit indices would emerge. Specifically, it was expected that
the Wen would show superior performance on the overall model fit indices compared to both the
Duncan and Schumacker models. Further, it was expected that the Schumacker model would
perform as good or worse than the Duncan model. This was based on its similarity to the
Duncan model (i.e., only having a latent interaction term for the slopes, and not for any of the
other latent factors as represented in the Wen model).

Relative to the other two models, the Wen model showed the best performance with
respect to overall model fit, providing fit values that were indicative of a good-fitting model for
both the CFI and NFI when the data was either Complete or MCAR. However, none of the
models were satisfactory in their performance on the other two indices of model fit used (the GFI
and RMSEA) in these two data conditions. Further, when the data was MNAR, all of the models
performed poorly.

The secondary objective was an evaluation of each of the models for their ability to
estimate the latent slope interaction parameter across the three missing data conditions. Specific

aspects that were examined were the amount of bias in the parameter estimate and the rate of
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Type L error. To recap, there were two hypotheses generated with respect to bias and Type I
error:
Hypothesis I:

Null: All three models will show similar bias in the estimation of the unstandardized
latent slope interaction parameter, as evidenced by similar average mean squared error (MSE)
values and standardized bias values, across all study conditions.

Alternative: The Wen model will show a lesser degree of bias than both the Duncan and
Schumacker models, and the Duncan model will show an equal or lesser degree of bias than the
Schumacker model, across all study conditions. Specifically, the ordering of values for the MSE

and standardized bias will be Wen < Duncan < Schumacker.

Hypothesis 2:

Null: All three models will be similarly effective at controlling the rate of Type I error at
the nominal level of significance of o = 0.05 (using Bradley’s criterion), across all study
conditions.

Alternative: The Wen model will be provide adequate control of Type I error (i.e.,
maintaining a Type I error rate close to the nominal level of significance of a = 0.05 using
Bradley’s criterion) than both the Duncan and Schumacker models, across all study conditions.

In other words, the Wen model will falsely detect the presence of the latent slope interaction

Hypothesis 1 was marginally supported. The Wen model did not produce the lowest bias

values of the three models, as evidenced by lower average MSE values and standardized bias
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values close to 1.0, than the Duncan model, across all study conditions. With respect to the
MSE, the values for the Duncan model were significantly smaller than those for the Wen model
in all but two conditions for the Complete data. When the data was MCAR there were a majority
of conditions where the Wen model showed larger MSE values than the Duncan model, and
multiple comparisons showed more conditions of non-significant differences between these two
models (however, the variability in the estimates of the bias were quite large). In the MNAR
data condition the Duncan model showed lower average MSE values than the Wen model at all
but the highest levels of reliability. However, it should be noted that neither of these models
performed particularly well in providing an accurate estimate of the population parameter.

The second half of the first hypothesis, which proposed that the Schumacker model
would show a level of bias that was similar or worse than the Duncan model, was not supported
when the data were Complete or MCAR, and only partially supported when the data was
MNAR. With Complete and MCAR data the Schumacker model had average MSE values that
were lower than the Wen model in all conditions, and which were similar or lower than those of
the Duncan model. In these two data conditions, the standardized bias values for the
Schumacker model indicated that it was more accurately estimating the population estimate than
either the Wen or Duncan models. When the data was MNAR the Schumacker model showed
average MSE values that were similar to both the Wen and the Duncan model. Similar to the
MSE values in the Complete and MCAR data, the standardized bias values for the Schumacker
model in MNAR data indicated that it was more accurately estimating the latent slope interaction
parameter than either the Wen or Duncan models. Further, it was the only model to show a trend

of lesser bias as the reliability of the observed indicators increased.
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The second hypothesis was not supported. Both the Wen and the Duncan model had
similar rates of adequate Type I error control when the data was Complete, and the Duncan
model showed a higher rate of error control when the data was MCAR. In both of these data
conditions the Wen model was largely biased towards a more liberal rate of Type I error control
while the Duncan model was biased towards a conservative rate of error control. In the MNAR
data condition both of these models showed conservative Type I error rates in the majority of
conditions studied. The Wen model showed control of Type I error rate in fewer than 1/3 of the
study conditions across the three types of missing data, and the Duncan model showed Type I
error control in 1/3 of the conditions in the Complete data and V2 of the conditions in the MCAR
data. In the MNAR data both of these models showed Type I error control in fewer than 1/3 of
the 36 study conditions.

The second part of this hypothesis proposed that the Schumacker model would perform
similar to or worse than the Duncan model with respect to controlling Type I error. This was not
seen in the current results, as the Schumacker model was better than both the Wen and the
Duncan models in controlling the rate of Type I error across the three data conditions. The
Schumacker model showed Type I error control that was split between being adequately
controlled or being conservative when the data was either Complete or MCAR, and controlled
Type I error rates in 25 of the 36 conditions when the data was MNAR. However, in the MNAR
data all of the parameter estimates for the latent slope interaction were close to zero, so the

impact of this finding is lessened.
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A question that can be addressed with the results of these two hypotheses is “Does one of
the models provide a more accurate estimate of the latent slope interaction parameter than the
others?” The Schumacker model appears to be the model that provides the most accurate
estimate of this parameter, with estimated values that were qualitatively close to the population
value, and had a small amount of variability compared to the Wen and Duncan models, and this
was seen in the Complete and MCAR data conditions only. The Wen and Duncan models
showed large amounts of variability when reliability of the observed indicators was low, but this
was reduced to levels comparable to those of the Schumacker at higher levels of reliability. The
Duncan model outperformed the Wen model with respect to MSE. When the data was MNAR,
none of the models showed adequate estimation of this parameter, although MSE values were
low for all models in this data condition.

It is not uncommon to have missing data in longitudinal studies, and statistical inferences
are improved if the effect of missing data has been taken into account (Song & Lee, 2003). The
attrition from multivariate (e.g., longitudinal) studies can lead to large standard errors in
parameter estimates due to non-response being compounded across the waves of data collection
to produce small longitudinal data sizes (Newman, 2003). If the missing data is due to a non-
random mechanism, this can further bias model parameters and lead to both misspecification and
misestimation of the model (Chan, 1998; Muthen et al., 1987). As the percentage of missing
data approaches 15-20%, the choice of estimation used with missing data can have implications
for the parameter estimates (Roth, 1994). Taken together, the finding that all of the models
performed poorly with respect to both the overall model fit indices and the latent slope

interaction estimate when the missing data mechanism was MNAR is not surprising.
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Bias in the parameter estimates can also come from other sources. Curran (2003) has
noted that parameter estimates in structural equation models are biased if the assumption of
independence of observations is violated. Given that the framework used in the current project is
that of a longitudinal design, this assumption is violated with latent growth curves and some bias
in the parameter estimates is expected. The current study provides evidence that bias in the
parameter estimates of the latent growth structural model, in particular that of the latent
interaction of two slope factors, can be affected by the value of the correlation of the latent
intercept and slope, sample size, and reliability, especially in those models that use the product-
indicator approach to form interaction effects. The Schumacker model, which does not use the
product-indicator method to form the latent slope interaction effect, showed consistent estimation
across all conditions regardless of whether the data was Complete, MCAR, or MNAR, which
would indicate that this model is preferable to the other two models in obtaining accurate
parameter estimates in latent growth models that involve interaction effects. Further, the
Schumacker model showed a decreasing amount of bias as the study factor increased.

The reliability of the observed indicators for a model can have an influence on the
robustness and quality of the estimates. Indicators that are more reliable, and which contain
more information about the latent constructs being assessed, may be able to compensate for the
biasing effects of small sample sizes to some degree (Boomsma & Hoogland, 2001). Other
authors (e.g., Schmidt & Hunter, 1996) have noted that increased measurement error (i.e., low
reliability) can produce a downward bias in the correlations (or covariances) between variables.
As the accurate estimation of the variance-covariance matrix is the goal of latent modeling, an

increased amount of measurement error will lead to a higher rate of erroneous models, and can
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also produce a downward influence on the estimates (Schwartz & Coull, 2003). Cronbach's
alpha is a commonly used measure testing the extent to which multiple indicators for a latent
variable belong together (Green & Yang, 2009). It varies from 0 to 1.0. A common rule of thumb
is that the indicators should have a Cronbach's alpha of 0.7 to judge the set of items reliable
(Moulder & Algina, 2002). Alpha may be low because of lack of homogeneity of variances
among items, for instance, and it is also lower when there are few items in the scale/factor.
Another method to assess reliability is to use Raykov's reliability rho, also called reliability rho
or composite reliability, which tests the assumption that a single common factor underlies a set
of variables (Raykov, 1998). Raykov (1998) has demonstrated that Cronbach's alpha may over-
or under-estimate scale reliability, with underestimation being more common. For this reason,
rho 1s now preferred and may lead to higher estimates of true reliability. Raykov's reliability rho
is not to be confused with Spearman's median rho, an ordinal alternative to Cronbach'’s alpha.
The acceptable cutoff for rho would be the same as the researcher sets for Cronbach's alpha since
both attempt to measure true reliability.

The correlation between the latent factors can also have an influence on the ML estimates
of the factor loadings (Cudeck & O'Dell, 1994). Further, the standard errors of the estimates
show an upwards bias as the amount of missing data increases (Newman, 2003). This same
phenomenon was seen in the MCAR data condition for the latent interaction slope parameter
estimates (see Table 13) where the standard deviation for the estimates were larger in the MCAR
data condition than in the Complete data condition. However, the same influence was not seen
in the MNAR data condition, where the estimates of the latent slope interaction parameter were

close to zero in all conditions for all models, which most likely contributed to the lack of
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variance in the estimates for this data condition. The reasons for the poor performance of all
three of these models in the MNAR condition may be due to a combination of the MNAR
mechanism and the violation of the assumption of independence of observations.

In the current study, an advantage of the Schumacker model may be attributed to the use
of factor scores from a confirmatory factor analysis as a preliminary step in forming the latent
growth interaction model (see Figure 14). Rowe (2002) has noted that using factor scores
resulting from a confirmatory approach minimizes the measurement error that is present in the
indicator variables themselves. This is a potential explanation as to why the Schumacker model
showed performance that was consistently better than either the Wen or the Duncan models in
terms of estimating the latent slope interaction parameter. This may also account for the low
amount of bias seen across the levels of the reliability factor for both the latent slope interaction
parameter estimates themselves and for the estimates of MSE and standardized bias (see Tables
13 through 16).

The mean values of the model fit indices did not appear to be affected when the data
condition was either Complete or MCAR, as the values for each individual model were similar
across these two data conditions. The effect of missing data was largest for the MNAR
condition, and showed an influence on the model fit indices by severely lowering their values.
The impact of data that is MNAR is especially pernicious, as even the Duncan model (which is
correctly specified as the population model) showed poor fit to the data in this condition. The
nature of this impact by MNAR data needs further exploration.

There are three conclusions that can be drawn from the preceding hypotheses. The first

pertains to the question of “Which of the three models is uniformly better with respect to overall
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model fit?” The Wen model is the best model when the data are Complete or MCAR. Within
these two data types, for a given condition, the multiple comparison tests favoured the Wen
model as having the highest overall model fit indices, and that these values were significantly
different from those of the other two models. When the data is MNAR, no model does well with
respect to overall model fit, and so no real conclusion can be drawn other than that these models
should not be used if the data is MNAR.

A second related conclusion pertains to the question “Does the same pattern of overall
model fit indices hold across the different types of missing data?” In other words, is there a
consistent ranking for the models that is replicated across the three data types? An examination
of the means and the multiple comparisons showed that the order of models with respect to the
CFI and NFI was Wen > Duncan > Schumacker, and for the RMSEA the ranking was Wen <
Duncan < Schumacker when the data was Complete or MCAR. The GFI showed a slightly more
variable pattern, with the Duncan model having slightly higher GFI values than the Wen model
at lower reliabilities. The Wen model always produced GFI values that were higher than the
Schumacker model. When the data was MNAR no clear ranking emerged, however some global
patterns were observed as the study factors were manipulated. For the CFI and NFI, as
reliability, sample size, and the latent intercept-slope correlation increased the Wen model
consistently decreased, the Duncan increased, and the Schumacker showed stability. For the GFI
the Wen and Duncan models decreased, and the Schumacker showed an increase. For the
RMSEA the Wen and Duncan models increased, and the Schumacker model decreased. In other
words, the pattern of model fit indices when the data is MNAR depends on which model and fit

index is chosen.
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A third conclusion relates to the finding in the previous paragraphs regarding the
significant mean differences among the models. Given that almost all of these differences were
significant, is this occurring because one model in particular is consistently passing (or failing) to
meet the criterion for good model fit? An examination of the 95% confidence intervals for each
of the models showed that the Wen model was passing the cutoff of 0.90 for the CFI (in 30 of the
36 conditions) and for the NFI (in 16 of the 36 conditions) when the data was Complete, and in
slightly fewer conditions when the data was MCAR. For the GFI only the Schumacker model
showed confidence intervals that were above 0.90, and this was only in two conditions. None of
the models showed confidence intervals for the RMSEA that met the criterion for good fit. This
finding shows that the Wen model is consistent in its performance on the indices for the CFI and
NFI when the data is Complete or MCAR, and that the GFI and RMSEA are problematic fit
indices for all models.

These findings with respect to overall model fit in each of the latent growth interaction
models should be considered carefully in light of the fact that the models used in this study were
longitudinal designs with a non-linear effect (i.e., the latent slope interaction), and the model
design itself may be having an impact on the model fit indices. The model fit indices used in the
current study are commonly used in articles that present structural equation models, and they are
used mainly from a cross-sectional perspective. The performance of these fit indices in
longitudinal research designs which utilize SEM is largely unexplored, and it is possible that
some of the violations of the assumptions that are not seen with cross-sectional data (e.g.,
independence of observations,) may be impacting the proper estimation of these fit indices. An

indication of this is with the poor performance of the Duncan model, which is the model that was
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used as a basis for the data generation. Of the latent interaction growth models examined in the
current study, this model can be considered the “true” model, and the model fit indices should
have been approaching perfect fit in the Complete data condition. That this did not occur may be

indicative of the inadequacy of conventional model fit indices to evaluate latent growth models.

Addressing Missing Data in SEM

The current study indicates that, compared to models using complete data, when the
missing data follows an MCAR mechanism the influence of the missing data may not be as
severe and results are comparable to those found with complete data. When the missing data
follow an MNAR mechanism the resulting poor model fit and bias in estimation becomes
problematic.

A method to determine the type of missing data mechanism has been forwarded by Shin,
Davison, and Long (2009). In their approach, missing data vectors are created that correspond to
each assessment point after the initial assessment. Letting Y* represent the complete response
variable that consists of both observed and missing values, and Y*; being a particular score for
the i individual (i=1,2,...,N)at the " time point (r=1, 2, ..., T), at each time point a binary
indicator variable, I;7, can be created such that I;7 = 1 if Y*;, was observed and I;; = 0 if Y*; was
missing. Each I;r can be regressed on the complete data for the T™ time point and all previous

time points using the following regression formula,

T
Lir=Bo+Z B, Y* + e,
J=1

(46)
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for all time points T (e.g., one model for T=2, another for T=3, etc). For samples with an MCAR
mechanism, the R for all models should be 0 and all estimates of B, to be nonsignificant. Under
an MNAR mechanism, R? should be greater than O for all models and all B, to be significant.

Other methods for assessing the mechanism of missing data have also been proposed.
The presence of the MCAR mechanism can be assessed by testing across patterns of the missing
data (e.g., complete cases versus missing cases) using t-tests for location (Bingham et al., 1998).
Little (1995) has also called this mechanism covariate-dependent dropout, and notes that analysis
of complete cases in this instance will not yield biased estimates but will be inefficient.
Figueredo et al. (2000) note that the MNAR condition can be detected by locating significant
differences between means on subgroups of the data with complete cases versus those with
incomplete cases.

Several authors have proposed methods to addressing missing data using SEM
techniques, and some of them have been discussed previously (see Section 8, p.60). While the
implementation and comparison of the described methods was not a focus of this study, future
research could investigate the use of these methods with longitudinal latent modeling.

Lee (1986) and Allison (1987) examined missing data in SEM, and also investigated the
use of ML estimation with missing data. Both authors treated the problem of missing data as a
multiple-group model. With this approach, the sample is split into groups based on the patterns
of missing data, and equality constraints are then placed on the parameters of the groups. If the
sample size in a group is small, the sample covariance matrices are singular and may not

converge.
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Jamshidian and Bentler (1999) proposed an EM algorithm for missing data which
circumvented the problems of small sample sizes, however Dempster, Laird, and Rubin (1977)
report that convergence with the EM algorithm 1s dependent to the proportion of missing
information. Song and Lee (2002) proposed a Bayesian approach to SEM with data that was
ignorably missing (MAR). In this approach, the observed data is augmented with missing
quantities in a posterior analysis. A sequence of random observations are generated from a joint
posterior distribution and the model has converged if the posterior distribution can be
approximated adequately by the empirical distribution of the simulated observations. These
authors performed their study with 100 replications for 2000 observations, and the procedure
performed well under different patterns of missing data with small samples, as well as
converging quickly.

Lee and Tang (2006) sought to develop a model that accounted for nonignorable missing
data in nonlinear structural equation models, using a Bayesian approach as (1) it can provide
more accurate estimates obtained when good prior information is available, (2) Bayesian
methods do not rely on asymptotic theory and so may work well with small sample sizes, and (3)
gives a more flexible statistic for model comparison / selection than the likelihood ratio test (i.e.,
the Bayes factor). These authors used a linear logistic regression model that produced assessable
conditional distributions whose observations can be sampled in their method.

A procedure that has also been presented is to use a latent variable to represent the
missing observations or assessment points, but this approach is only viable if there are no

observations at that assessment point (Ferrer et al., 2004).
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This section has highlighted some of the more recent approaches to handling missing data
in latent variable modeling, and some of this research has focused on the MNAR mechanism.
However, there is a paucity of research that examines these methods, and those described earlier,
for their use with missing data in longitudinal designs. Future research should aim towards

investigating the performance of these methods in longitudinal designs with latent variables.

Limitations

The findings of the current project, while being novel and extending the literature in
several areas, should be considered within the light of several limitations. The first limitation is
that only specific conditions were used in the current Monte Carlo study — three specific levels of
latent intercept-slope correlation, three specific sample sizes, and four specific levels of
reliability. The levels of latent intercept-slope correlation and reliability chosen covered a wide
range of possible values. Only three sample sizes were chosen (250, 500, 1000) and longitudinal
research with sample sizes approaching the largest sample size used may be both expensive and
difficult to conduct in a practical manner. Smaller sample sizes should be examined in future
studies. A related factor that could have been manipulated was the amount of missing data, with
higher rates of missing data being incorporated into the study design, and missing data patterns
other than a monotone attrition pattern (see Figure 15). Other potential factors that were not
studied were the method of estimation for the models and the non-normality of the original data
for the observed factors (not including the non-normality introduced by the formation of the
interaction terms by the product-indicator method, nor by the product of latent factor scores).

A second limitation to the study is the modification of the Schumacker (2002) model to
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make it applicable to latent growth modeling. The original Schumacker model is based on a
cross-sectional design, and the extension used in the current project, while straightforward, may
not have taken into account some of the considerations of other latent interaction models.
Namely, both the Wen and the Duncan models impose constraints on the model parameters that
are meant to account for the non-linear nature of the interaction effect, but this is not a feature of
the Schumacker model. A mitigating factor to this limitation are the findings of Algina and
Moulder (2001) that a model with no cross-product indicators, such as the Schumacker model, is
robust to violations of normality, and this may have contributed to the ability of this model to
perform well in some respects compared to the Wen and Duncan models.

A third limitation is that the interaction effect studied in the current project may have
been too weakly specified to be detected reliably. Interaction effects in cross-sectional studies
generally account for a small amount of variance (Hewitt et al., 1996), and may need to be
particularly strong in order to be detected reliably. Related to this limitation is the specification
of the interaction effect in latent growth models. The approach advocated by both Wen and
Duncan, namely the product-indicator approach, has also been utilized in standard regression
approaches to interaction effects, and there is an additional assumption that the parameters which
define the growth model are invariant across the levels of predictors (Curran & Hussong, 2003).
The Wen and Duncan models place non-linear constraints on the parameters of the model which
are difficult to program manually. Other product-indicator approaches are available (e.g., Marsh
et al., 2004), some of which may be easier to implement than the one used by the Wen and
Duncan models.

A fourth limitation is that the data generation scheme was based upon the model
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proposed by Duncan et al. (1999), and so this model should have demonstrated close to perfect
fit in the Complete data condition. That this did not occur could indicate that (1) the model fit
indices used to evaluate the overall performance of the latent growth interaction models may not
be appropriate for these types of models, or (2) these latent growth interaction models have an
underlying flaw that makes their performance sub-optimal, for example the parameterization of
the models or the imposition of the nonlinear constraints on some of the model parameters.
There is some support for this second option, as Rudinger and Rietz (1998) have noted that the
coding of the time factor is an essential feature of a correctly-specified latent growth model. The
models examined in the current study all represent the dimension of time as a function of the
factor loadings, which Rudinger and Rietz contend is simply a confirmatory factor analysis
model and not a true latent growth model.

A final limitation is with respect to the Type I error rates for the MNAR data condition.
For the population model in this section of the study, the value of the latent slope interaction
parameter was set to zero. However, even when the population value for this parameter is set to
be non-zero, in the MNAR condition the estimated value was close to zero in almost all of the
conditions (see Table 13). As a result, the Type I error rates for the MNAR data condition may
be misleading, and future research using different population values are needed.

There are some further limitations that, while not specific to this study, are applicable to
latent variable growth modeling in general. The latent growth model is based on the premise that
a set of observed repeated measures taken on a given individual over time can be used to
estimate an unobserved underlying trajectory that gives rise to the repeated measures (Curran &

Hussong, 2003). The process of latent growth modeling imposes a very restrictive factor loading
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matrix, and so the usage of standard model fitting criteria may need to be loosened (e.g., relaxing
the cutoff value of 0.90 for the CFI, GFI, and NFI). However, with strict parameter restrictions,
passing the model fit indices using the existing cutoff values is desirable, since the particular
growth trend is what researchers are aiming to test by imposing such restrictions.

The representation of latent growth models is varied, as can be seen in the models
presented by authors such as Raykov (1993), Muthen (1994), and Wen et al. (2002) and Duncan
et al. (1999). Further to this, the finding that latent growth models can be also be represented as
a hierarchical model, which has a single representation (e.g., Curran, 2003), can leave a
researcher with several options for modeling the basic latent growth curve. The various methods
of representation for a latent growth model have not been extensively compared, and this could
lead to confusion as to what representation to use, further complicated by an attempt to include
interaction terms. The Duncan and Wen models have been the only models that have explicitly
represented an interaction effect in a latent growth model, but the existence of other latent
growth models does open up the possibility of other representations of the interaction effect.

Data preparation for these models is an important factor. As was noted in this study, all
observed data was mean-centered prior to analysis in the latent growth models. Ideally the
interaction term is uncorrelated with (i.e., is orthogonal to) its first-order effect terms. With
continuous scores, transforming the raw-score variables to deviation-score variables (by
subtracting the variable mean from all observations) results in a product term that is minimally
correlated with the first-order variables, depending on their proximity to bivariate normality.
However, an additional data-processing procedure can also be utilized prior to analysis — that of

generating normalized data. The normalized data also serves to control sampling fluctuations in
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the generated data — by normalizing the data any outliers have their influence minimized, and
skewness will be more controlled.

There are some practical limitations to the use of the latent growth modeling approach.
At least three repeated measures are needed to overidentify a linear growth model. Currently the
latent growth approach is largely restricted to multiple assessment points nested within
individuals, and extensions into higher-order nesting (e.g., multiple individuals nested within a
cluster) are difficult (and HLM approaches might be better suited for this). Further, the latent
growth approach assumes that the same measure is used to assess the construct of interest over
time (e.g., that the measure is invariant, which may not always be the case). Finally, the use of
latent growth models requires careful screening and evaluation of the data prior to model fitting
to remove outliers. Other limitations noted by other authors is that the function of time, or the
role of time as a predictor, is not as clearly obvious as with other approaches (e.g., HLM; Curran
et al., 2004).

. Missing data is a difficult issue with latent growth modeling, as many latent modeling
approaches utilize a complete-case method of analysis. However, recent improvements in
handling missing data (e.g., FIML, multiple imputation) and in computational software (e.g.
LISREL, Mplus) are making it increasingly easier to incorporate missing data into these models.
Several authors have suggested various approaches for addressing missing data (see pp. 150-153)
and their application in latent growth modeling needs to be explored further. Missing data of an
attrition-based nature is of especial interest in this regard.

The following outlines some further factors that, while not limitations related directly to

the factors manipulated in the current study, do represent factors that may have had an impact on
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the findings.

Estimation Method

The maximum likelihood (ML) estimation procedure was initially derived under the
assumption that the observed variables were from a multivariate normal distribution, however
Browne (1984) has shown that the ML estimator has desirable asymptotic properties under less
restrictive conditions (e.g., having no excess multivariate kurtosis). Bollen (1996) and Siemsen
and Bollen (2007) have shown that the ML estimator has several desirable properties — it is
consistent, uses information from the model specification to obtain parameter estimates that have
the highest likelihood of reproducing the data for a given model, and is asymptotically efficient.
However, these desirable properties only hold if the model is correctly specified and if the
sample size is sufficiently large. When these conditions are not met, the ML estimator is
problematic (Anderson et al., 1984; Bollen, 1989), and can lead to large biases in the estimates of
parameters when the underlying model is misspecified (Bollen, 1996).

The performance of the ML estimator with small sample sizes are not theoretically
established, since only their asymptotic distributions have been derived, and consistent
estimators can be biased in small samples. In using the ML estimator in structural equation
models, the appropriate sample size required has varied from small (e.g., 100; Gorsuch, 1983) to
moderate (e.g., 400; Cheung, 2004), while others have reported that the required sample size is a
function of the number of estimated parameters contained within the model (e.g., Marsh et al.,
1988). Further, in smaller samples the ML estimator may not converge successfully (Anderson

et al., 1984), as a result of both the observed covariance estimates being farther away from their
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true population value and of the initial starting values used to start the parameter estimation.
Finally, with small sample sizes ML estimation can have high rates of non-convergence and/or
improper solutions, parameter standard errors that are attenuated, and Type I error rates which
are inflated (non-normality of the data can further inflate the Type I error rates). In a related
area, improper estimates can occur when sample sizes are small, leading to problems in the
interpretation of the parameter estimates (Chen, Bollen, Paxton, Curran, & Kirby, 2001).

When used with missing data, ML estimation produces unbiased estimates when missing
data is MAR (Jamshidian et al., 1999; McArdle et al., 1992; McArdle & Hamagami, 2001). ML
estimation has been found to be a suitable estimation method when missing data due to attrition
1s “natural” (e.g., due to mortality; Feng, Silverstein, Giarrusso, McArdle, & Bengston, 2006).
Newman (2003) found that ML estimation provided accurate standard errors when used with
missing data, and that the ML estimation procedure was robust to data that was missing at
random (MAR), but provided poor estimates for MNAR data. This was not a surprising finding,
since non-random missingness leads to bias due to restriction of range. When data is MNAR,
ML estimation gives larger errors for estimates and larger bias compared to MCAR (Jamshidian
et al., 1999). With interaction models using cross-sectional data (Lee, Song, & Poon, 2004), ML

estimation only produced satisfactory results in simple models with large sample sizes.

Data Normality
Mild degrees of data non-normality have little influence on the overall model fit indices
(Fan et al., 1998). Non-normality in the data has also been shown to have little effect on the

parameter estimates compared to when data is normal, and this non-normality has accounted for
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less than 1% of the variance in the estimates (Fan & Wang, 1998). While the individual
variables for the individual latent factors were normally distributed, the use of interaction terms
in the current study introduces non-normality into the data and a centering procedure (Aiken &
West, 1992) was used to reduce the effects of multicollinearity between the interaction variables
and their constituent variables. The findings of Fan and colleagues are supportive of the
conclusion that the effects of non-normality on the model fit indices and parameter estimation in

the current study are negligible.

Power

Most of the studies that have examined power within the context of latent growth models
have done so in an attempt to detect group differences in latent growth trajectories. In an
examination of power in latent growth models, Fan and Fan (2005) found that neither the
magnitude of the effect nor the number of assessment points had an influence on the power of
latent growth models to detect linear growth. These authors also found that the latent growth
perspective was more powerful than traditional approaches (e.g., dependent t-tests, RM
ANOVA) at smaller effect sizes (see Fan et al., 2005, for a review). In other words, the latent
growth model is a powerful analytical tool, and is preferable when the effects being studied are
small and may not be detected reliably by other methods.

Hertzog and colleagues (2006) found that the power to detect linear change and
correlations between change is low unless the reliability of the observed indicators is quite high
(i.e., above 0.90), sample size is substantial (i.e., greater than 500), and there is a large number of

assessment points (i.e., greater than four). These authors used only a single indicator for each
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assessment point, as was done in the current study, and the authors proposed that their results
could be improved if there were multiple indicators for each assessment point. A similar

recommendation is made for the current study, and is an area of future research.

Coding of Time

Rudinger and Rietz (1998) propose that the coding or representation of time is crucial in
a latent growth model. Typical SEM and LGM models lose the sequential nature of time, and
these authors assert that one can change the ordering of the indicators in these models (which are
generally individual assessment points) and still have an equivalent model. In other words, these
models do not take the basis / factor loadings into account, instead treating all LGM models as
pure CFA models (see p. 112 of their manuscript). In general, the variance of the true scores will
have a quadratic relationship with time in a linear growth model, and the correlation (or
covariance) between the level of a true score at a given time t and the growth rate is dependent
on the time factor (Mehta & West, 2000), and this sheuld be incorporated into the model design.
The current project used the coding of time as outlined by Duncan and colleagues (Duncan et al.,
1999), which codes time by fixing the parameter loadings for the observed variables on their

respective latent variables (see Figure 15).
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Chapter 14: Summary and Recommendations

There were several themes addressed by the current project of latent slope interaction
effects in latent growth modeling. The first was the comparison of three alternative methods for
constructing interaction effects in latent growth models — the methods of Duncan et al. (1999),
Wen et al. (2002), and an extension of the cross-sectional model by Schumacker (2002). The
findings of this project provide mixed support for the utility of these approaches in the modeling
of a latent growth interaction effect. The Wen et al. (2002) model showed the best performance
with respect to overall model fit, especially when the data is either Complete or MCAR, with the
Duncan et al. (1999) model showing similar performance. The Schumacker model provided the
most accurate estimation of the latent interaction slope parameter, with the Wen model showing
accurate estimation at high levels of reliability and the Duncan model doing so at lower levels of
reliability. The Duncan and Schumacker models performed similarly with respect to bias in the
estimation of the latent interaction slope parameter across the three types of missing data, and the
Wen model was biased in the majority of the conditions studied regardless of the type of missing
data. However, Type I error was not well controlled by any of the models.

A second theme was the examination of the effects of missing data in the area of latent
growth interactions. Previous studies that have examined the impact of missing data in
longitudinal designs have done so with simple longitudinal models that have only included a
single latent factor, and have not used more complex models that involve multiple factors. In the
current study, it was seen that the impact of missing data that was the result of an MCAR
mechanism does not result in performance that was qualitatively different from that of having

Complete data. For all of the models, their performance under the MCAR mechanism was
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similar with respect to overall model fit, latent slope interaction parameter estimation, bias in the
parameter estimation, and Type I error rates. The evaluation of these latent growth interaction
models with MNAR data is a new contribution to the literature. Not surprisingly, none of the
models performed particularly well when missing data was derived from an MNAR mechanism.
Each of the models studied in the current project had several strengths and weaknesses.
The Duncan model was the population model (i.e., all data was generated from the framework of
this model) and the Wen model is an extension of this model, so they are discussed jointly. The
Wen model is a “full” model in the sense that it contains all estimated paths and effects, and one
of its strengths is that it provided better model fit to the data and better estimation of the latent
slope interaction parameter than the Duncan model, and this is impressive since the Wen model
can be considered to be a misspecified model compared to the Duncan model from which the
population data was derived. A strength of the Wen model was its accurate estimation of the
latent slope interaction parameter, a conclusion supported by Wen et al. (2002) in their study. A
third strength of the Wen model was its programming difficulty in relation to the Duncan model.
Both the Duncan and the Wen model require substantial programming for imposing the
constraints on the parameters in the model due to the non-linear nature of the interaction effects.
While the Wen has some additional constraints that need to be imposed compared to the Duncan
model, the addition of these constraints is not onerous, and the current findings would indicate
that these extra constraints are worthwhile towards providing accurate model estimation.
A fourth strength is that the Wen model showed desirable characteristics in the context of the
manipulated model factors (i.e., latent intercept-slope correlation, sample size, and reliability of

the observed indicators), namely improved performance in overall model fit indices and



163
Interaction Effects in Latent Growth Models

parameter estimation as all of these factors increased. Again, this is especially notable due to the
fact that the Wen model was not the population model from which the data was derived. A final
strength of the Wen model, and of the Duncan model but to a lesser extent, is the similarity of
performance of the model when the data was either Complete or MCAR.

The Duncan model had several strengths. It showed a high rate of convergence across all
of the conditions, regardless of the type of missing data, and converged faster than the Wen
model at lower reliabilities. The values for the CFI and NFI model fit indices were very similar
to those found for the Wen model in the Complete and MCAR data, and also showed slight
increases as sample size increased. The estimate of the latent slope interaction parameter
showed a lower degree of bias than the Wen model, and the bias also decreased as the study
factors of reliability, sample size, and latent intercept-slope correlation increased. The
programming for this model is simpler than that for the Wen model.

Weaknesses of both the Wen and the Duncan models include a poor control of Type I
error rates, with the Wen model showing liberal control and the Duncan model showing
conservative control when the data was either Complete or MCAR, and both of these models
were conservative when the data was MNAR. A further weakness is that both of these models
performed poorly when the data was MNAR, showing poor model fit, parameter estimation, and
control of Type I error, across all of the manipulated study factors. The reasons behind the poor
performance in the MNAR data condition are unknown at this time.

The Schumacker model had several strengths relative to the Wen and Duncan models.
These include an ease of conceptualization, as forming the multiple cross-products of indicators

was not needed. This model also provided qualitatively more accurate parameter estimates at all
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levels of the manipulated factors, and performed especially well when the reliability of the
observed indicators were at their highest levels, surpassing the other two models studied. The
Schumacker model showed reasonable control of Type I error rates when compared to either the
Wen or the Duncan models, and showed better performance as both reliability and sample size
increased.

Some weaknesses of the Schumacker model include the difficulty in programming, as
there are several SEM models that are required to be constructed and evaluated, as well as the
saving of the factor scores from one of the models as an intermediate step so that they can be
manipulated to form the interaction terms in the final model. This can be a confusing and
daunting task for researchers. A second weakness is that this model was extended from a cross-
sectional perspective, and while it performed adequately in the current study, the model was not
designed to investigate latent interaction effects in growth models. A third weakness is that the
Schumacker model performed worse than the other two models at lower levels of reliability of
the observed indicators, and did not show adequate model fit on any of the model fit indices

when the data was Complete or MCAR.

Recommendations For the Researcher

There are several recommendations that can be made to researchers who are considering
using one of the three latent growth interaction models examined in the current project.

Based on these findings, the following contributions and recommendations can be made.
If the researcher believes that the factor of time is a fixed effect, then the Schumacker model

should be used. If the researcher believes that time is a random effect, then the Schumacker
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model can provide accurate estimates but may not be wholly suitable for model fit, mainly due to
the final step of the Schumacker model which is a purely fixed-effect model.

If the trend for growth is considered to be a random effect, then either the Wen or the
Duncan model can be used. The Duncan model should be attempted first, as if it shows good
model fit to the data the parameter estimates for the interaction effect will not show a large
amount of bias compared to the Wen model. If the Duncan model does not provide adequate
model] fit, the Wen model can be used, with the careful consideration that the parameter
estimates may be biased. Further to this, if the model is complex (e.g., the growth may not be
purely linear) the Wen model may be preferred as it has a better chance to provide adequate
model fit, especially when the data is Complete or MCAR.

A second recommendation is that researchers should examine their longitudinal data
closely, paying particular attention to any missing data and the mechanism behind the
missingness. If the missing data can be attributed to an MCAR mechanism the influence on
model performance will be minimal. If the mechanism is determined to be MNAR then each of
the models studied in the current project will show poor performance. The current findings
indicate that model choice may depend on the type of data — if data is Complete or MCAR the
Duncan and Wen models are acceptable.

A third recommendation is that researchers should make efforts to utilize observed
measures that are highly reliable. Of all the factors in the current study the factor of reliability
had the strongest influence, as seen in the large effect sizes associated with this factor in the

ANOVA analyses. Reliable indicators will reduce the amount of measurement error, and can
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also mitigate the influence of other negative effects on latent variable modeling (e.g., small

sample sizes; Boomsma & Hoogland, 2001).

Future Directions

This study can act as a starting point for an extensive body of research that examines
interactions in latent growth modeling with respect to types of missing data (e.g., cohort-
sequential designs, planned missingness designs), as well as their robustness to other factors not
studied in the current project (e.g., non-normality of the observed indicators, estimation methods,
ordinal data). Other methods of forming the interaction effect can also be explored. The
traditional product-indicator approach used in the current study may not be the most suitable
approach, given all of the constraints that need to be programmed. The latent interaction model
by Schumacker, which was extended in this current project, shows some promise buy may also
not be wholly suitable. There are other methods of characterizing the latent interaction term such
as the GAPI approach (e.g., Marsh, Wen, & Hau, 2004) and the QML method of Klein and
Muthén (2002) which should be investigated.

A promising area of future research is the comparison of the performance of latent
growth models with other methods that can be used to analyze longitudinal data. As discussed
briefly in the Introduction (page 38), mixed effects models are an alternative approach to
modeling longitudinal repeated-measures data. Mixed effects models assume that individuals
deviate randomly from the overall average response, and that the correlation between repeated
observations on the same subject arises from the common random effects for this individual (i.e.,

a random intercept and slope). The mixed model possesses several advantages, namely that all
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available data on a case is used, is unaffected by randomly missing data, and can flexibly model
time effects even with unequally spaced intervals. These models can also model the pattern of
variability over time, which results in more accurate treatment effects and standard errors of
estimates, and helps to control Type I error (Gueorguieva & Krystal, 2004). Mixed effects
models can model the missingness mechanism along with the outcome variable, but it does yield
biased estimates when missing data is MNAR, and if sample sizes are small (Gueorguieva et al.,
2004). A further drawback to the mixed model approach is that it can only incorporate bivariate
relationships with a single dependent variable (Gao, Thompson, Xiong, & Miller, 2006).

Mixed effects models and structural equation models for longitudinal data are
analytically equivalent under a variety of conditions (see Raudenbush, 2001; Willett et al., 1994),
despite differences in estimation procedure (Curran, 2003). SEM approaches longitudinal data
through the use of multiple-indicator latent factors. However, due to the assumption of
independence of observations, the analysis is still done on a single aggregate covariance matrix.
The key facet of the SEM approach is to incorporate time as fixed values within the factor
loading matrix (A), whereas the mixed and hierarchical model approaches enter time as a
predictor. An advantage of the SEM approach is the ability to separate the Level 1 and Level 2
effects in the aggregate covariance matrix. Curran (2003) gives formulas showing that the
matrices for the fixed and random effects are identical for SEM and hierarchical models. He also
gives methods for making them equivalent for a variety of models, achieved by ordering the data
by groups (according to the level of the variables), and adding a latent variable for each second-

level variable. This approach does not use repeated observations, but nested observations.



168
Interaction Effects in Latent Growth Models

Some of the advantages of SEM are: (1) hierarchical / mixed models assume the
predictors are error free, and with multiple indicators the SEM approach can model measurement
error, (2) can have multiple-indicator dependent variables, (3) can decompose effects into direct,
indirect, and specific indirect effects, and (4) can provide omnibus measures of model fit (the
hierarchical model has no logical saturated model that it can compare to the fitted model).

Some of the limitations of SEM are: (1) unless there is something unique about the SEM
approach, it is probably easier to use the hierarchical / mixed approach; (2) Curran (2003)
outlines an approach with SEM that is more about data management, which can be tedious and
difficult; (3) the interpretation of models done in SEM is non-standard, in that latent factor
means represent regression coefficients, and that indirect effects are representative of cross-level
interactions; and (4) the SEM technique discards data if it is incomplete (i.e., there are missing
assessment points).

A final area of future research is to utilize an empirical data set with “real” missing data,
and to examine how the three models from the current study perform with respect to overall
model fit and parameter estimation. This could potentially be done with large nationally
representative datasets that can be considered to be representative of the population (e.g., data
from Statistics Canada). Findings from this approach may reduce the arbitrariness of the

simulation and may improve the generalizations of the findings in the current study.
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Figure 1

Example of a Non-Linear (Quadratic) Effects Growth Curve.
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Figure 2
Basic Linear Latent Variable Growth Model.

Rim-slp

Intercept
Mo

Y, Y,
€1 €2

Note: My, = Mean of the latent intercept; D, = Variance of the latent intercept; Mg, = Mean of
the latent slope; Dy, = Variance of the latent slope; Rin.q, = correlation between the latent
intercept and slope; e; and e, represent residual terms.
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Figure 3

Basic Linear Latent Variable Growth Model With Three Repeated Observations.

Min
Din \ / Mip
N\

Intercept
No

Yl Y2 Y3
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Note: M, = Mean of the latent intercept; D, = Variance of the latent intercept; Mg, = Mean of

the latent slope; Dy, = Variance of the latent slope; Rin.qp = correlation between the latent

intercept and slope; ey, €2, and e3 represent residual terms.
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Figure 4

Quadratic Effect Latent Variable Growth Model with Three Repeated Observations.

Rinl-quzld

Mint

Mslp M 1
sip
Dinl \ Dslp

Rinl-slp

Intercept
Mo

Quadratic
P

Yl Y2 Y3
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Note: M, = Mean of the latent intercept; D;, = Variance of the latent intercept; Mg, = Mean of
the latent slope; Dy, = Variance of the latent slope; Mgu.q = Mean of the quadratic slope; Dguad =
Variance of the quadratic slope; Rin.s1p = correlation between the latent intercept and slope; Rin.-
quad = correlation between the latent intercept and quadratic slope; Rgp-quag = correlation between
the latent slope and quadratic slope; ey, €2, and ez represent residual terms.



197
Interaction Effects in Latent Growth Models

Figure 5
LISREL Univariate Latent Growth Curve Model.

Rinl-slp
Dinl Dslp
Intercept
Mo
Y, Y, Y;
e € €3

Note: Diy = Variance of the latent intercept; Dy, = Variance of the latent slope; Rinesip =
correlation between the latent intercept and slope; the diamond shape represents the estimated
non-zero means of the two latent factors, and Pp and B; represent the factor means of the latent
intercept and slope, respectively; €;, €2, and e; represent residual terms.
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Figure 6
Raykov T)-Congenericism Latent Growth Model.

Y, Y, Y;
e €2 €3

Note: D = Variance of the latent factor; the diamond shape represents the estimated non-zero
mean of the latent factor, and B represents the factor mean of the latent factor; e, €», and e3
represent residual terms.



Figure 7

Sample Structural Model for Longitudinal Analysis.
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Y

Y,

Y3

G O~

Note: The observed variables Y; to Y4 represent repeated observations on individuals at four
consecutive assessment points. The Z variable is a time-invariant covariate and the W, and W3
variables are time-varying covariates measured at the second and third assessment point,
respectively. The latent variables 1 and 1, represent a latent intercept and slope, respectively.
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Figure 8
Graphical Depiction of an Interaction Effect

XM

Note: All variables are observed variables, where Y is the dependent variable of interest, X is the
predictor variable, M is the potential moderator variable, and XM is the product of these two
variables.
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Figure 9
The Multiple Indicator Regression Model by Kenny and Judd (1984).

Xl X’)

A\ 4

Interaction

Gi&

— 7
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Note: & represents a latent independent variable with X, and X, as observed indicators, &,
represents the latent moderator variable with M; and M> as observed indicators, and &;&,
represents the interaction latent variable between the independent variable and the moderator; 1
represents the latent dependent variable, and € represents the error term associated with the latent
dependent variable.
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Figure 10
Joreskog and Yang’s (1996) Single-Indicator Interaction Model.

v

Interaction

&i&

XiMi

Note: &, represents a latent independent variable with X; and X, as observed indicators, &
represents the latent moderator variable with M; and M, as observed indicators, and &,
represents the interaction latent variable between the independent variable and the moderator; 1
represents the latent dependent variable, and € represents the error term associated with the latent
dependent variable.
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Figure 11
Schumacker’s (2002) Latent Interaction Model.

v

Note: &; represents a latent independent variable with X; and X, as observed indicators, &
represents the latent moderator variable with M; and M, as observed indicators, and &;&,
represents the interaction latent variable between the independent variable and the moderator; 1

represents the latent dependent variable, and € represents the error term associated with the latent
dependent variable.
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Figure 12
Latent Interaction Growth Model (Based on Duncan et al., 1999) with Four Assessment Points.
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Note: Error terms and covariances are omitted from the figure for clarity.
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Figure 13
The Full Interaction Latent Growth Model (Wen et al., 2002) with Four Assessment Points.

|Y1 | Y7 Y3 Y4
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Note: Error terms and covariances are omitted from the figure for clarity.




Figure 14
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Graphical Depiction of the Steps Involved for the Schumacker Latent Growth Interaction Model.

Y[ Ya Y] Y_‘

Rate of Changd
(Slope): i

Initial Leve
(Intercept): W

Xy X» X3 Xy Z Z Zs

Zs

Step 1: Model a latent growth model with no interaction terms.
Step 2: Save the latent factor scores from this model.

Note: Error terms and covariances are omitted from the figure for clarity.

Rate of Changd
(Slope): My

v

Step 3: Use those factor scores from Step 2 in the above path analytic model.
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Figure 15
Potential Patterns of Missing Data in a Longitudinal Study.

Subject Univariate Monotone Intermittent
Xi X X5 X X, X3 X Xo Xj
! ?
2 ?
3
4 ? ?
5 ?
6 ? ?
7 ? ? ? 9 ?

Note: X, X,, and X3 represent repeated measurements on the same individuals; the “?” symbol
represents those values that are missing for a particular subject at the repeated measurements.



208
Interaction Effects in Latent Growth Models

Figure 16
Latent Interaction Growth Model Used to Generate the Simulation Data.
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Note: The correlation between the latent intercepts and slopes will be set at 0.20, 0.50, and 0.70.
The reliability of the observed indicators (X;-X4, Z1-Z4, Y1-Y4) will be set at 0.30, 0.50, 0.70,
and 0.90. The sample size will be set at 250, 500, and 1000. The type of missing data will be

set at none (complete) data, missing completely at random data, and missing not at random data.
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Plots of the Interaction Effect of Latent Interaction Model Type Factor with the Observed

Indicator Reliability Factor (1) and Latent Intercept-Slope Correlation (2) on the Comparative Fit

Index (CFI) in the Complete Data Condition in Those Models that Converged Successfully.
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Figure 18
Plots of the Interaction Effect of Latent Interaction Model Type Factor with the Observed
Indicator Reliability Factor (1) and Latent Intercept-Slope Correlation (2) on the Normed Fit

Index (NFI) in the Complete Data Condition in Those Models that Converged Successfully.
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Table 1
Definition of Symbols Used in Structural Equation Models.

Symbol Meaning

Observed variable

O Latent variable / error variable

Direct Path

v

/—\ Correlation

Note: Notation for latent variables can be either with a 1 or an & symbol.
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Convergence Frequency for All Latent Growth Interaction Models (Population Value of Latent
Interaction Parameter Equal to 2.0) For 5000 Simulations, For the Three Missing Data
Conditions (Complete, MCAR, MNAR).

Corr N Rel Complete Data MCAR Data MNAR Data
Wen  Duncan  Schumacker Wen Duncan  Schumacker Wen Duncan  Schumacker
0.20 250 0.30 4881 5000 5000 4854 5000 5000 3692 4999 5000
0.50 4991 5000 5000 4975 5000 5000 3666 5000 5000
0.70 5000 5000 5000 4999 5000 5000 4158 5000 5000
0.90 5000 5000 5000 5000 5000 5000 4955 5000 5000
500  0.30 4947 5000 5000 4943 5000 5000 3808 5000 5000
0.50 4998 5000 5000 4996 5000 5000 3742 5000 5000
0.70 5000 5000 5000 5000 5000 5000 4316 5000 5000
0.90 5000 5000 5000 5000 5000 5000 4981 5000 5000
1000  0.30 4979 5000 5000 4967 5000 5000 4026 5000 5000
0.50 5000 5000 5000 5000 5000 5000 3884 5000 5000
0.70 5000 5000 5000 5000 5000 5000 4498 5000 5000
0.90 5000 5000 5000 5000 5000 5000 4996 5000 5000
.50 250  0.30 4809 5000 5000 4760 5000 5000 2670 5000 5000
0.50 4934 5000 5000 4900 5000 5000 2410 5000 5000
0.70 4999 5000 5000 5000 5000 5000 2290 5000 5000
0.90 5000 5000 5000 5000 5000 5000 4581 5000 5000
500  0.30 4932 5000 5000 4899 5000 5000 2617 5000 5000
0.50 4985 5000 5000 4968 5000 5000 2313 5000 5000
0.70 5000 5000 5000 5000 5000 5000 1902 5000 5000
0.90 5000 5000 5000 5000 5000 5000 4755 5000 5000
1000  0.30 4985 5000 5000 4971 5000 5000 2590 5000 5000
0.50 5000 5000 5000 4996 5000 5000 2313 5000 5000
0.70 5000 5000 5000 5000 5000 5000 1469 5000 5000
0.90 5000 5000 5000 5000 5000 5000 4835 5000 5000
.70 250  0.30 4742 5000 5000 4639 5000 5000 2261 5000 5000
0.50 4879 5000 5000 4838 5000 5000 2043 5000 5000
0.70 4998 5000 5000 4991 5000 5000 2379 5000 5000
0.90 5000 5000 5000 5000 5000 5000 4184 5000 5000
500  0.30 4872 5000 5000 4822 5000 5000 1954 5000 5000
0.50 4973 5000 5000 4933 5000 5000 1634 5000 5000
0.70 5000 5000 5000 4998 5000 5000 2217 5000 5000
0.90 5000 5000 5000 5000 5000 5000 4354 5000 5000
1000 0.30 4960 5000 5000 4934 5000 5000 1854 5000 5000
0.50 4996 5000 5000 4987 5000 5000 1467 5000 5000
0.70 5000 5000 5000 5000 5000 5000 2252 5000 5000
0.90 5000 5000 5000 5000 5000 5000 4539 5000 5000

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr =
Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.
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Table 3

Mean Number of Iterations (with Standard Deviation in parentheses) for All Latent Growth
Interaction Models where the Population Value of Latent Interaction Parameter was Equal to 2.0,
In Those Simulations That Converged For the Three Missing Data Conditions (Complete, MCAR,
MNAR,).

Corr N Rel Complete Data MCAR Data MNAR Data

Wen Duncan Schumacker Wen Duncan Schumacker Wen Duncan  Schumacker

0.20 250 0.30 509.83 230.51 5.16 525.00 241.91 5.65 1772.03 139.26 5.93
(291.182) (108.028) (2.951) (344.637) (130.156) (3.758) (581.932) (54.598) 2.817)

0.50 337.55 202.59 4.92 349.43 204.11 5.51 1658.82 132.68 5.77
(177.743)  (22.211) (2.551) (205.007)  (29.143) (4.233) (632.107) (18.636) (2.903)

0.70 183.85 181.66 4.56 192.01 183.91 5.02 1133.57 135.63 5.33
(41.041) (22.737) (1.977) (65.142) (24.801) (3.017) (731.272) (26.394) (2.103)

0.90 164.80 172.83 4.45 165.67 175.19 4.77 452.91 136.60 4.63
(10.719) (15.667) (1.794) (12.197) (18.998) (2.168) 417.678) (33.326) (1.809)

500  0.30 510.48 212.93 4.57 514.38 216.29 4.76 1745.22 132.37 5.74
(233.485) (43.199) (1.194) (275.198)  (59.484) (1.919) (584.006) (11.907) (1.246)

0.50 311.98 201.25 4.30 319.62 201.95 4.50 1638.78 128.53 5.47
(123.846) (16.734) (1.308) (142.888)  (19.534) (1.598) (562.391) (13.609) (1.247)

0.70 175.08 176.74 3.93 178.63 178.08 4.14 1050.72 133.90 5.04
(16.861) (17.322) (1.176) (31.368) (19.145) (1.359) (690.658) (24.065) (1.348)

0.90 164.51 169.48 3.96 164.92 170.47 4.16 374.28 133.18 3.99

(8.100) (8.750) (1.362) (9.086) (10.658) (1.537) (329.442) (29.425) (1.328)

1000 0.30 508.51 209.76 4.49 511.23 211.02 4.51 1699.82 129.62 5.85
(168.585)  (20.127) (0.988) (202.820) (34.844) (1.054) (576.568) (8.624) (0.890)

0.50 306.17 199.45 4.13 309.31 200.71 4.19 1611.70 125.77 5.62
(111.060)  (12.686) (0.006) (117.378)  (14.821) (1.046) (539.930) (10.250) 0.932)

0.70 173.44 173.60 3.62 173.87 174.46 3.74 993.37 131.32 5.03
(8.199) (12.340) (1.001) (10.680) (14.116) (1.071H) (642.100) (22.551) (1.084)

0.90 164.26 168.39 3.67 164.47 168.87 3.77 337.30 131.70 3.60
(6.029) (6.986) (1.138) (6.816) (7.576) (1.250) (280.847) (27.389) (1.111)

.50 250 0.30 475.31 220.677 5.31 497.14 224.10 5.94 1899.96 144.11 5.18
(387.922) (40.016) (3.750) (409.886)  (58.098) (4.881) (578.413) (30.013) (3.482)

0.50 30043 197.81 5.16 32271 199.68 5.76 1935.32 141.21 5.00
(281.686) (21.863) (3.306) (303.420) (24.967) (4.495) (877.110) (22.707) (3.090)

0.70 184.04 180.566 5.28 187.76 182.80 5.79 1859.73 142.76 4.87
(14.596) (12.504) (2.851) (48.837) (15.023) (3.826) (676.576) (27.470) (2.692)

0.90 171.28 196.05 6.13 172.04 197.27 6.33 537.66 145.00 5.38
(11.997) (12.201) (2.365) (13.646) (14.336) (3.074) (600.108) (30.722) (2.542)

500  0.30 424.02 216.75 4.29 452.08 218.04 4.67 1956.01 139.96 4.23
(340.192)  (22.894) (1.665) (361.692)  (28.276) (2.449) (559.102) (16.234) (1.622)

0.50 262.78 196.17 4.40 282.50 196.64 4.68 1986.29 138.11 4.08
(224.428)  (17.606) (1.710) (261.391)  (19.591) (2.336) (588.549) (20.185) (1.390)

0.70 182.38 177.54 473 182.89 178.84 4.88 1983.55 139.67 4.08
(8,797) (9.004) (1.562) (9.576) (10.594) (1.893) (630.741)  (26.066) (1.391)

0.90 169.91 195.26 5.88 170.37 195.57 5.91 449.19 144.44 4.93

(8.442) (9.491) (1.446) (9.666) (10.839) (1.700) (524.624)  (29.655) (1.661)
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369.94
(243.501)
232.49
(140.593)
181.78
(7.124)
168.99
(6.301)

504.36
(480.770)
336.32
(354.058)
194.93
(71.971)
185.36
(17.227)

44232
(425.451)
287.75
(283.163)
190.31
(9.379)
182.71
(13.354)

383.59
(352.578)
252.11
(182.462)
189.98
(7.432)
180.93
(9.880)

216.88
(20.429)
195.17
(14.715)
175.74
(6.886)
194.78
(7.210)

208.37
(29.493)
194.86
(17.873)
187.28
(11.625)
208.75
(13.493)

203.30
(21.758)
192.82
(14.074)
185.28
(8.967)
207.85
(10.118)

201.71
(18.970)
192.15
(12.509)
184.01
(7.112)
207.42
(7.653)

3.80
(1.015)
4.03
(1.096)
4.59
(1.081)
5.83
(0.980)

5.89
(4.060)
5.93
(3.929)
6.11
(3.385)
7.07
(2.479)

4.96
(1.972)
5.19
(1.937)
5.70
(1.728)
6.93
(1.547)

4.71
(1.147)
4.99
(1.113)
5.55
(1.073)
6.86
(1.044)

391.66
(282.092)
242.73
(172.962)
181.94
(7.599)
169.14
(6.981)

515.68
(486.118)
359.06
(393.736)
201.24
(109.403)
186.55
(19.209)

474.78
(457.454)
303.58
(312.653)
190.78
(11.250)
183.56
(14.987)

410.79
(389.762)
265.59
(228.990)
190.07
(8.427)
181.65
(11.438)
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217.03
(22.530)
195.58
(15.821)
176.49
(7.505)
194.94
(8.254)

211.53
(33.969)
196.28
(20.145)
188.71
(13.809)
210.06
(15.945)

204.45
(23.115)
193.60
(15.492)
186.17
(10.040)
208.27
(11.736)

202.65
(19.805)
192.46
(13.158)
184.58
(7.880)
207.52
(8.872)

3.98
(1.161)
4.16
(1.269)
4.61
(1.257)
5.85
(1.157)

6.51
(5.052)
6.37
4.714)
6.35
(3.933)
7.22
(3.180)

5.31
(2.632)
5.44
(2.769)
5.88
(2.574)
7.00
(1.867)

4.81
(1.542)
5.10
(1.383)
5.57
(1.279)
6.86
(1.217)

2024.31
(563.903)
2053.01
(563.394)
2018.09
(579.381)
371.30
(431.407)

2039.36
(573.146)
2005.30
(605.273)
1799.88
(622.313)
671.38
(730.176)

2116.83
(549.383)
2089.26
(578.033)
1824.87
(607.351)
540.66
(666.937)

2184.94
(534.136)
2101.92
(580.371)
1814.51
(548.154)
450.53
(626.779)

136.79
(13.318)
136.07
(18.784)
139.13
(24.673)
145.15
(28.374)

150.25
(23.359)
148.03
(25.693)
148.44
(28.667)
151.26
(30.869)

146.93
(20.260)
144.81
(23.874)
146.96
(27.518)
149.73
(28.925)

145.59
(18.257)
143.37
(22.614)
145.55
(26.378)
149.47
(26.905)

3.94
(0.842)
3.63
(0.889)
3.56
(1.026)
4.88
(1.223)

5.46
(4.043)
5.32
(3.702)
543
(3.133)
6.48
(2.820)

441
(1.832)
4.39
(1.550)
4.88
(1.715)
6.25
(1.750)

3.87
(0.941)
4.03
(1.044)
4.55
(1.127)
6.12
(1.155)

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr =
Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.
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Average Comparative Fit Index (CFI) Values (with Standard Deviations in Parentheses) for All
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Latent Growth Interaction Models (Population Value of Latent Interaction Parameter Equal to

2.0) For Those Simulations That Converged, For the Three Missing Data Conditions (Complete,

MCAR, MNAR).

Corr N Rel Complete Data MCAR Data MNAR Data
Wen Duncan  Schumacker Wen Duncan  Schumacker Wen Duncan  Schumacker
0.20 250 0.30 0.92 0.89 0.72 0.92 0.89 0.71 0.80 0.64 0.71
0.012) (0.013) (0.123) (0.014) (0.016) 0.127) (0.023) (0.018) (0.136)
0.50 0.91 0.89 0.75 0.91 0.89 0.74 0.77 0.66 0.74
0.011) (0.009) 0.122) (0.013) (0.011) 0.119) (0.033) (0.016) (0.120)
0.70 0.91 0.90 0.79 0.91 0.90 0.78 0.72 0.69 0.76
(0.008) (0.008) 0.097) (0.009) (0.009) (0.108) (0.043) (0.014) (0.097)
0.90 092 ° 0.90 0.84 0.92 0.90 0.84 0.69 0.71 0.74
(0.005) (0.0006) 0.035) (0.006) (0.007) (0.046) (0.021) (0.011) (0.076)
500 0.30 0.92 0.89 0.74 0.92 0.89 0.73 0.79 0.64 0.77
(0.009) (0.008) (0.120) (0.010)  (0.009) 0.122) (0.016) (0.013) (0.085)
0.50 0.91 0.89 0.78 0.91 0.89 0.77 0.77 0.66 0.79
(0.009)  (0.006) (0.103) (0.009) (0.007) (0.111) (0.019) (0.011) (0.073)
0.70 0.91 0.90 0.82 0.91 0.90 0.81 0.72 0.69 0.79
(0.005) (0.005) (0.068) (0.006)  (0.006) (0.083) (0.040) (0.010) (0.061)
0.90 0.92 0.90 0.85 0.92 0.90 0.85 0.69 0.71 0.75
(0.004) (0.004) (0.020) (0.004)  (0.005) (0.025) (0.018)  (0.008) (0.052)
1000 0.30 0.92 0.89 0.76 0.92 0.89 0.75 0.79 0.64 0.80
(0.007) (0.005) (0.104) (0.008) (0.006) (0.112) (0.012)  (0.009) (0.053)
0.50 0.91 0.89 0.80 0.91 0.89 0.79 0.77 0.66 0.81
(0.007) (0.004) (0.080) (0.008) (0.005) (0.095) (0.011)  (0.008) (0.048)
0.70 0.91 0.90 0.85 0.91 0.90 0.84 0.71 0.69 0.81
(0.004) (0.004) (0.036) (0.004) (0.004) (0.050) (0.037) (0.007) (0.042)
0.90 0.92 0.90 0.85 0.92 0.90 0.85 0.69 0.71 0.76
(0.003) (0.003) (0.010) (0.003) (0.003) (0.015) (0.017)  (0.005) (0.037)
Average 0.92 0.89 0.80 0.92 0.90 0.79 0.74 0.68 0.77
0.101)  (0.010) (0.010) 001ty (0.011) (0.104) 0.051) (0.029) (0.085)
.50 250  0.30 0.91 0.90 0.67 0.91 0.90 0.67 0.82 0.68 0.71
(0.010)  (0.009) (0.120) (0.011) (0.01H 0.122) 0.021) (0.016) (0.134)
0.50 0.91 0.90 0.70 0.91 0.90 0.69 0.81 0.69 0.75
(0.008) (0.008) 0.111) (0.010) (0.010) 0.117) 0.022) (0.014) (0.104)
0.70 0.91 0.91 0.75 0.91 0.91 0.73 0.79 0.71 0.76
(0.007)  (0.007) (0.090) (0.008)  (0.009) (0.100) (0.029) (0.013) 0.077)
0.90 0.93 0.91 0.79 0.92 0.91 0.79 0.71 0.73 0.78
(0.005)  (0.006) 0.024) (0.006) (0.007) (0.034) 0.031) (0.010) (0.057)
500  0.30 0.91 0.90 0.68 0.91 0.90 0.68 0.82 0.68 0.77
0.007) (0.006) (0.115) (0.008) (0.008) 0.117) 0.017y (0.011) (0.084)
0.50 0.91 0.90 0.73 0.91 0.90 0.72 0.81 0.69 0.78
0.006)  (0.0006) (0.098) (0.007)  (0.007) (0.103) (0.019) (0.010) (0.063)
0.70 0.91 0.91 0.78 0.91 0.91 0.76 0.79 0.71 0.79
(0.005) (0.005) (0.061) (0.006)  (0.006) (0.076) (0.022)  (0.009) (0.049)
0.90 0.93 0.91 0.80 0.93 0.91 0.80 0.70 0.73 0.79
(0.003) (0.004) (0.016) (0.004) (0.005) (0.019) (0.025)  (0.007) (0.038)
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1000 0.30 091 0.90 0.70 0.91 0.90 0.70 0.82 0.68 0.80
(0.006)  (0.004) (0.100) (0.006) (0.005) (0.106) (0.015)  (0.008) (0.052)

0.50 0.91 0.90 0.75 091 0.90 0.74 0.81 0.69 0.80
(0.004)  (0.004) (0.075) (0.005)  (0.005) (0.085) (0.017)  (0.007) (0.041)

0.70 0.91 0.91 0.80 0.91 0.91 0.79 0.79 0.71 0.80
(0.003) (0.003) (0.034) (0.004) (0.004) (0.046) (0.020)  (0.006) (0.032)

0.90 0.93 0.91 0.80 0.93 0.91] 0.80 0.69 0.73 0.79
(0.002)  (0.003) (0.011) (0.003)  (0.003) (0.013) (0.020)  (0.005) (0.026)

Average 0.92 0.91 0.75 0.92 0.91 0.74 0.77 0.70 0.78
(0.009)  (0.007) (0.093) (0.009)  (0.008) (0.098) (0.059)  (0.023) (0.075)

70 250 0.30 0.92 0.91 0.66 0.92 0.91 0.65 0.84 0.69 0.69
(0.009) (0.009) (0.116) (0.011) (0.011) (0.120) 0.021)  (0.015) (0.136)

0.50 0.91 0.91 0.69 0.91 0.91 0.68 0.83 0.71 0.71
(0.008)  (0.009) (0.109) (0.010)  (0.009) (0.116) (0.023)  (0.014) (0.110)

0.70 0.92 0.91 0.73 0.92 0.91 0.72 0.81 0.72 0.74
(0.007)  (0.007) (0.089) (0.008)  (0.008) (0.096) (0.022) (0.012) 0.077)

0.90 0.93 0.91 0.77 0.93 0.91 0.77 0.72 0.74 0.75
(0.005)  (0.005) (0.029) (0.006)  (0.006) (0.040) (0.037)  (0.010) (0.059)

500  0.30 0.91 0.91 0.67 0.91 0.91 0.66 0.84 0.69 0.74
(0.007)  (0.000) (0.108) (0.008)  (0.007) (0.116) (0.017)  (0.010) (0.092)

0.50 0.91 0.91 0.71 0.91 0.91 0.70 0.83 0.70 0.75
(0.006)  (0.005) (0.096) (0.006)  (0.006) 0.101) (0.019)  (0.010) (0.070)

0.70 0.92 0.91 0.76 0.92 0.91 0.75 0.82 0.72 0.76
(0.005)  (0.005) (0.058) (0.005)  (0.006) (0.069) (0.018)  (0.008) (0.050)

0.90 0.93 0.91 0.78 0.93 0.91 0.78 0.71 0.74 0.76
(0.003) (0.004) (0.0106) (0.004) (0.004) (0.019) (0.032)  (0.007) (0.039)

1000 0.30 0.91 0.91 0.69 0.9] 0.91 0.68 0.84 0.69 0.77
(0.005)  (0.004) (0.093) (0.006)  (0.005) (0.102) (0.014)  (0.007) (0.056)

0.50 0.91 0.91 0.73 0.91 0.91 0.72 0.83 0.70 0.77
(0.004)  (0.004) 0.071) (0.004)  (0.004) (0.082) (0.016)  (0.007) (0.043)

0.70 0.92 0.91 0.78 0.92 0.91 0.77 0.82 0.72 0.77
(0.003) (0.003) (0.034) (0.004) (0.004) (0.043) (0.014)  (0.006) (0.034)

0.90 0.93 0.91 0.78 0.93 0.91 0.78 0.70 0.74 0.76
(0.002)  (0.003) (0.011) (0.003) (0.003) (0.013) (0.027)  (0.005) (0.028)

Average 0.90 0.91 0.73 0.92 0.91 0.072 0.78 0.71 0.75
(0.008)  (0.006) (0.088) (0.009)  (0.007) (0.095) (0.062)  (0.020) (0.086)

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr =
Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.
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Confidence Intervals (95%) for the Average Comparative Fit Index (CFI) Values for All Latent

Growth Interaction Models (Population Value of Latent Interaction Parameter Equal to 2.0) For

the Three Missing Data Conditions (Complete, MCAR, MNAR).

Complete MCAR MNAR
Corr N Rel Wen Duncan  Schumacker Wen  Duncan  Schumacker Wen  Duncan  Schumacker
020 250 o030 L 0919 0888 0.705 0918  0.888 0.692 0.797  0.638 0.692
U 0921 0892 0.735 0.922  0.892 0.728 0.803  0.642 0.728
050 L 0909 0872 0.497 0.908  0.867 0.493 0.766  0.658 0.724
U 0911 0908 1.003 0912 0913 0.987 0.774  0.662 0.756
070 L 0909 0899 0.778 0.909  0.899 0.764 0.714  0.688 0.747
U 0911 0901 0.802 0911  0.901 0.796 0.726  0.692 0.773
090 L 0919 0899 0.836 0.919  0.899 0.833 0.687  0.709 0.730
U 0921  0.901 0.844 0.921  0.90] 0.847 0.693  0.711 0.750
500 030 L 0919  0.889 0.730 0.919  0.889 0.718 0.789  0.639 0.762
U 0921 0891 0.751 0.921  0.891 0.742 0.792  0.641 0.778
050 L 0909 0878 0.566 0.909  0.889 0.759 0.768  0.659 0.783
U 0911 0902 0.994 0911  0.891 0.781 0772  0.661 0.797
070 L 0910  0.900 0.814 0.909  0.899 0.802 0716 0.689 0.784
U 0910  0.900 0.826 0.911  0.901 0.818 0724  0.691 0.796
090 L 0920 0900 0.848 0.920  0.900 0.847 0.688  0.709 0.745
U 0920 0.900 0.852 0.920  0.901 0.853 0.692  0.711 0.755
1000 930 L 0920 089 0.754 0.919  0.890 0.742 0.789  0.639 0.796
U 0920  0.890 0.766 0.921  0.890 0.758 0.791  0.641 0.804
050 L 0910 0882 0.634 0.909  0.890 0.783 0.769  0.660 0.807
U 0910 0898 0.966 0911  0.890 0.797 0.771  0.661 0.813
070 L 0910  0.900 0.848 0.910  0.900 0.836 0.708  0.690 0.807
U 0910  0.900 0.852 0.910  0.900 0.844 0712 0.690 0.813
090 L 0920 0900 0.849 0.920  0.900 0.849 0.689  0.710 0.758
U 0920  0.900 0.851 0.920  0.900 0.851 0.691  0.710 0.762
050 250 o030 L 0909 0.899 0.655 0.908  0.898 0.652 0.817 0.678 0.692
U 0911 0901 0.685 0.912  0.902 0.688 0.823  0.682 0.728
050 L 0909 0884 0.471 0.909  0.899 0.673 0.807  0.688 0.736
U 0911 0916 0.929 0911  0.901 0.707 0.813  0.692 0.764
070 L 0909  0.909 0.739 0.909  0.909 0.716 0.786  0.708 0.750
U 90911 0911 0.761 0911 0911 0.744 0.794  0.712 0.770
090 L 0929  0.909 0.787 0.919  0.909 0.785 0.706  0.729 0.772
U 0931 0911 0.793 0.921 0911 0.795 0.714  0.731 0.788
5000 030 L 0909  0.900 0.670 0.909  0.899 0.668 0818  0.679 0.762
U o911 0.901 0.690 0911 0.901 0.692 0.822  0.681 0.778
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050 L 0910 0838 0.528 0.909  0.899 0.710 0.808  0.689 0.774

U 0911 0912 0.932 0911  0.901 0.731 0812  0.691 0.786

070 L 0910 0910 0.775 0.909  0.909 0.752 0.788  0.709 0.785

U 0910 0910 0.785 0911 0911 0.768 0792 0.711 0.795

090 L 0930 0910 0.799 0.930  0.910 0.798 0.698  0.729 0.786

U 0930 0910 0.801 0.930  0.911 0.802 0.702  0.731 0.794

1000 030 L 0910 0900 0.694 0.910  0.900 0.692 0.819  0.680 0.797
U 0910 0900 0.706 0.910  0.900 0.708 0.821  0.681 0.803

050 L 0910 0892 0.595 0.910  0.900 0.734 0.809  0.690 0.797

U 0910 0908 0.905 0.910  0.900 0.746 0811  0.690 0.803

070 L 0910 0910 0.798 0.910  0.910 0.787 0.789  0.710 0.798

U 0910 0910 0.802 0.910  0.910 0.793 0.791  0.710 0.802

090 L 0930 0910 0.799 0.930  0.910 0.799 0.689  0.730 0.788

U 0930 0910 0.801 0.930 0910 0.801 0.691  0.730 0.792

070 250 o030 L 0919 0909 0.646 0.918  0.908 0.633 0.837  0.688 0.672
U 0921 0911 0.674 0.922 0912 0.667 0.843  0.692 0.708

050 L 0909 0892 0.466 0.909  0.909 0.663 0.827  0.708 0.695

U 0911 0928 0.914 0.911 0911 0.697 0833 0712 0.725

070 L 0919 0909 0.719 0919  0.909 0.706 0.807  0.718 0.730

U 0921 0911 0.741 0.921 0911 0.734 0813  0.722 0.750

090 L 0929 0909 0.766 0.929  0.909 0.764 0715  0.739 0.742

U 0931 0911 0.774 0.931  0.911 0.776 0.725  0.741 0.758

500 030 L 0909 0910 0.661 0.909  0.909 0.648 0.838  0.689 0.731
U 09011 0911 0.679 0911 00911 0.672 0.842  0.691 0.749

050 L 0910 0900 0.513 0.909  0.909 0.690 0.828  0.699 0.743

U 0911 0920 0.907 0911 0911 0.710 0.832  0.701 0.757

070 L 090 0910 0.755 0.920  0.909 0.743 0.818 0719 0.755

U 0920 0910 0.765 0.921  0.911 0.757 0.822  0.721 0.765

090 L 0930 0910 0.779 0.930  0.910 0.778 0.707  0.739 0.756

U 0930 0910 0.781 0.930  0.910 0.782 0.713  0.74] 0.764

10000 030 L o910 00910 0.684 0.910  0.910 0.673 0.839  0.690 0.766
U 0910 0910 0.696 0910  0.910 0.687 0.841  0.690 0.774

050 L 0910 0902 0.584 0.910 0910 0.714 0.829  0.700 0.767

U 0910 0918 0.876 0910 0910 0.726 0.831  0.700 0.773

070 L 0920 0910 0.778 0.920  0.910 0.767 0.819  0.720 0.768

U 0920 0910 0.782 0.920 0910 0.773 0.821  0.720 0.772

090 L 0930 0910 0.779 0.930 0910 0.779 0.698  0.740 0.758

U 0930 0910 0.781 0.930 0910 0.781 0.702  0.740 0.762

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr =
Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator; L
= Lower 95% limit; U = Upper 95% limit.
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Table 6

Analysis of Variance Results with Comparative Fit Index (CFI) Values as the Dependent Variable, with Latent
Model Type, Latent Intercept-Slope Correlation, Sample Size, and Reliability of Observed Indicators as
Between-Subjects Factors, For the Three Missing Data Conditions (Complete, MCAR, MNAR).

Model Effect Complete Data MCAR Data MNAR Data
df F-value Partial F-value Partial F-value Partial
eta’ eta’ eta’

Corrected Model 107 13599.94 732 12805.37 722 4456.85 501
Latent Tnteraction Model 2 625752.50 702 59760327 693 120586.55 337
Correlation (Corn) 2 6000.76 022 5003.64 019 13111.61 052
Sample Size (N) 2 2934.51 011 2923.65 011 3984.76 017
Reliability (Rel) 3 2181736 .110 19681.74 100 5431.93 033
Latent Model X Corr 4 14691.94 100 12317.34 085 9606.90 075
Latent Model X N 4 2940.86 022 2881.55 021 5535.97 045
Latent Model X Rel 6 13231.16  .130 12102.99 121 25305.06 242
Corr X N 4 7.95 000 7.54 000 16.88 .000
Corr X Rel 6 57.55 001 45.56 001 250.26 003
N X Rel 6 218.60 002 192.60 002 596.95 007
Latent Model X Corr X N 8 8.66 000 8.79 000 31.64 001
Latent Model X Corr X Rel 12 75.23 002 61.59 001 112874 028
Latent Model X N X Rel 12 226.78 005 187.52 004 441.97 011
Corr X N X Rel 12 1.58 ns .000 234 000 7.65 .000
Latent Model X Corr X N X Rel 24 2.15 000 2.22 000 9.49 000
Error 531703

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr = Latent intercept-
slope correlation; N = Sample size; Rel = Reliability of the observed indicator. The symbol “X” represents an
interaction between two factors.

All effects are significant at the p < 0.01 level.
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Table 7

Average Normed Fit Index (NFI) Values (with Standard Deviation in parentheses) for All Latent
Growth Interaction Models (Population Value of Latent Interaction Parameter Equal to 2.0) For
Those Simulations That Converged, For the Three Missing Data Conditions (Complete, MCAR,
MNAR).

Corr N Rel Complete Data MCAR Data MNAR Data
Wen Duncan  Schumacker Wen Duncan  Schumacker Wen Duncan  Schumacker

0.20 250  0.30 0.90 0.87 0.72 0.89 0.86 0.71 0.77 0.62 0.71
(0.012) (0.013) (0.122) 0.013)  (0.015 (0.125) (0.022) (0.018) (0.131)

0.50 0.89 0.87 0.75 0.89 0.86 0.74 0.75 0.65 0.74
(0.011) (0.009) 0.121H) 0.012) (0.01D 0.117) (0.032) (0.0106) (0.115)

0.70 0.89 0.88 0.79 0.89 0.88 0.78 0.71 0.67 0.76
(0.008) (0.008) (0.096) (0.009)  (0.009) (0.106) (0.042) (0.014) 0.091)

0.90 0.91 0.89 0.84 0.91 0.89 0.83 0.68 0.70 0.74
(0.005)  (0.006) (0.035) (0.006) (0.007) (0.045) (0.021) (0.011) 0.070)

500  0.30 0.91 0.88 0.74 0.91 0.87 0.73 0.78 0.63 0.77
(0.009)  (0.008) 0.119) (0.010)  (0.009) (0.121) (0.016) (0.013) (0.083)

0.50 0.90 0.88 0.79 0.90 0.88 0.77 0.76 0.65 0.79
(0.009) (0.006) (0.103) (0.009)  (0.007) (0.110) (0.019) (0.011) (0.071)

0.70 0.90 0.89 0.82 0.90 0.89 0.81 0.71 0.68 0.79
(0.005)  (0.005) (0.067) (0.006) (0.006) (0.082) (0.040) (0.010) (0.059)

0.90 0.92 0.90 0.85 0.92 0.90 0.85 0.68 0.71 0.75
(0.004)  (0.005) (0.020) (0.004)  (0.005) (0.025) (0.018) (0.008) (0.050)

1000  0.30 0.92 0.88 0.76 0.91 0.88 0.75 0.79 0.64 0.80
(0.007) (0.005) (0.104) (0.008) (0.006) 0.111) (0.012)  (0.009) (0.053)

0.50 0.90 0.87 0.80 0.90 0.88 0.79 0.77 0.66 0.81
(0.007) (0.004) (0.079) (0.008)  (0.005) (0.095) (0.011) (0.008) (0.048)

0.70 0.90 0.89 0.85 0.90 0.89 0.84 0.71 0.68 0.80
(0.004)  (0.004) (0.036) (0.004) (0.004) (0.049) (0.037) (0.007) (0.042)

0.90 0.92 0.90 0.85 0.92 0.90 0.85 0.68 0.71 0.76
(0.003) (0.003) 0.010) (0.003) (0.003) (0.014) (0.017) (0.006) (0.036)

Average 0.90 0.88 0.80 0.90 0.88 0.79 0.73 0.67 0.77
0.012) (0.013) (0.097) (0.013) (0.015) (0.103) (0.048) (0.031) (0.082)

.50 250  0.30 0.89 0.88 0.67 0.89 0.87 0.67 0.80 0.66 0.71
(0.010) (0.009) (0.119) (0.011) (0.0 (0.120) (0.020) (0.016) (0.131)

0.50 0.89 0.89 0.70 0.89 0.88 0.69 0.79 0.68 0.74
(0.008)  (0.008) 0.110) (0.010) (0.010) (0.1106) (0.021) (0.014) 0.101)

0.70 0.90 0.89 0.75 0.89 0.89 0.73 0.78 0.70 0.76
(0.007) (0.007) (0.090) (0.008) (0.008) (0.099) 0.028) (0.012) (0.074)

0.90 0.91 0.90 0.79 0.91 0.90 0.79 0.70 0.72 0.78
(0.005)  (0.006) (0.024) (0.006) (0.007) (0.034) (0.030) (0.010) (0.054)

500 0.30 0.90 0.89 0.68 0.90 0.89 0.68 0.81 0.67 0.77
(0.007) (0.006) (0.114) (0.008)  (0.008) 0.116) (0.017) (0.011) (0.083)

0.50 0.90 0.90 0.73 0.90 0.89 0.72 0.80 0.69 0.78
(0.006)  (0.006) (0.098) (0.007)  (0.007) (0.103) (0.019) (0.010) 0.062)

0.70 0.9]1 0.90 0.78 0.90 0.90 0.76 0.79 0.71 0.79

(0.005) (0.005) (0.060) (0.006)  (0.006) (0.076) (0.022)  (0.009) (0.048)
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0.90 0.92 0.91 0.80 0.92 0.90 0.80 0.70 0.73 0.79

(0.003)  (0.004€) (0.016) (0.004)  (0.005) (0.019) (0.025)  (0.007) (0.037)

1000 0.30 0.90 0.90 0.70 0.90 0.89 0.70 0.82 0.67 0.80
(0.006)  (0.004) (0.100) (0.006)  (0.005) (0.106) (0.015)  (0.008) 0.051)

0.50 0.90 0.90 0.75 0.90 0.90 0.74 0.80 0.69 0.80
(0.004) (0.004) (0.075) (0.005)  (0.005) (0.085) 0.017)  (0.007) (0.040)

0.70 0.91 0.90 0.80 0.9] 0.90 0.79 0.79 0.71 0.80
(0.003)  (0.003) (0.034) (0.004)  (0.004) (0.046) (0.020)  (0.000) (0.032)

0.90 0.92 0.91 0.80 0.92 0.91 0.80 0.69 0.73 0.79
(0.002)  (0.003) 0.011H) (0.003)  (0.003) (0.013) (0.020)  (0.005) (0.026)

Average 0.91 0.90 0.75 0.90 0.89 0.74 0.76 0.70 0.78
(0.011)  (0.010) (0.092) (0.013) (0.012) (0.098) (0.055)  (0.025) (0.074)

70 250 0.30 0.90 0.89 0.66 0.89 0.88 0.65 0.82 0.67 0.69
(0.009)  (0.009) (0.115) 0.011)  (0.010) (0.119) (0.020) (0.015) (0.133)

0.50 0.90 0.89 0.69 0.89 0.89 0.68 0.81 0.69 0.71
(0.008)  (0.008) (0.108) (0.010)  (0.009) (0.114) (0.022)  (0.013) (0.107)

0.70 0.90 0.90 0.73 0.90 0.89 0.72 0.80 0.71 0.74
(0.007y  (0.007) (0.089) (0.008)  (0.008) (0.094) 0.021)  (0.012) (0.075)

0.90 0.92 0.90 0.77 0.91 0.90 0.77 0.71 0.73 0.75
(0.005)  (0.005) (0.029) (0.006)  (0.000) (0.039) (0.036)  (0.009) (0.056)

500  0.30 0.90 0.90 0.67 0.90 0.90 0.66 0.83 0.68 0.74
(0.007)  (0.006) (0.107) (0.008)  (0.007) (0.115) (0.016) (0.010) (0.091)

0.50 0.90 0.90 0.71 0.90 0.90 0.70 0.82 0.70 0.75
(0.006)  (0.005) (0.010) (0.006)  (0.006) (0.101) (0.019)  (0.010) (0.069)

0.70 0.91 0.91 0.76 0.91 0.90 0.75 0.81 0.72 0.76
(0.005)  (0.005) (0.058) (0.005)  (0.006) (0.069) (0.018)  (0.008) (0.049)

0.90 0.92 0.91 0.78 0.92 0.91 0.78 0.71 0.73 0.76
(0.003)  (0.004) (0.0106) (0.004)  (0.004) (0.019) (0.031) (0.007) (0.038)

1000 0.30 0.91 0.90 0.69 0.91 0.90 0.68 0.83 0.68 0.77
(0.005) (0.004) (0.093) (0.006)  (0.005) 0.101) (0.014)  (0.007) (0.056)

0.50 0.91 0.91 0.73 0.91 0.91 0.72 0.82 0.70 0.77
(0.004)  (0.004) (0.071) (0.004)  (0.004) (0.082) (0.016)  (0.007) (0.043)

0.70 0.91 091 0.78 0.91 0.91 0.77 0.81 0.72 0.77
(0.003) (0.003) (0.034) (0.004)  (0.004) (0.043) (0.014)  (0.006) (0.034)

0.90 0.93 0.91 0.78 0.92 091 0.78 0.70 0.73 0.76
(0.002) (0.003) (0.011) (0.003)  (0.003) (0.013) (0.026)  (0.005) (0.027)

Average 0.91 0.90 0.73 0.91 0.90 0.72 0.77 0.71 0.75
(0.010)  (0.008) (0.087) (0.012)  (0.010) (0.094) (0.059)  (0.022) (0.075)

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr =

Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.
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Confidence Intervals (95%) for the Average Normed Fit Index (NFI) Values for All Latent Growth Interaction

Models (Population Value of Latent Interaction Parameter Equal to 2.0) For the Three Missing Data Conditions

(Complete, MCAR, MNAR).

Complete Data MCAR Data MNAR Data
Corr N Rel Wen Duncan  Schumacker Wen Duncan  Schumacker Wen Duncan  Schumacker
020 250 30 L 0899 0.868 0.705 0.888  0.858 0.692 0.767  0.618 0.692
U 0901 0.872 0.735 0.892  0.862 0.728 0773  0.622 0.728
050 L 088 0869 0.735 0.888  0.858 0.723 0.746  0.648 0.724
U 0891 0.871 0.765 0892  0.862 0.757 0.754  0.652 0.756
070 L 0889 0879 0.778 0.889  0.879 0.765 0.704  0.668 0.748
U 0891 0.881 0.802 0.891  0.881 0.795 0716  0.672 0.772
090 L 0909 0889 0.836 0.909  0.889 0.823 0.677  0.699 0.731
U o911 0.891 0.844 0911  0.891 0.837 0.683  0.701 0.749
500 030 L 0909 0.879 0.730 0.909  0.869 0.718 0.778  0.629 0.762
U 0911 0.881 0.750 0911 0871 0.742 0.782  0.631 0.778
050 L 0899 0879 0.781 0.899  0.879 0.759 0758  0.649 0.783
U 0901 0.881 0.799 0.901  0.881 0.781 0762 0.65] 0.797
070 L 0900 0890 0.814 0.899  0.889 0.802 0.706  0.679 0.784
U 0900 0890 0.826 0901  0.891 0.818 0.714  0.681 0.796
090 L 0920 0900 0.848 0.920  0.899 0.847 0.678  0.709 0.745
U 0920 0900 0.852 0920  0.901 0.853 0.682 0711 0.755
1000 030 L 0920 0880 0.754 0.909  0.880 0.742 0.789  0.639 0.796
U 0920 0880 0.766 0911  0.880 0.758 0.791  0.641 0.804
050 L 0900 0870 0.795 0.899  0.880 0.783 0.769  0.659 0.807
U 0900 0870 0.805 0.901  0.880 0.797 0771 0.661 0.813
070 L 0900 0890 0.848 0.900  0.890 0.836 0.708  0.680 0.797
U 0900 0890 0.852 0.900  0.890 0.844 0712 0.680 0.803
09 L 0920 0900 0.849 0.920  0.900 0.849 0.679  0.710 0.758
U 0920 0900 0.851 0.920  0.900 0.851 0.681  0.710 0.762
050 250 030 L 0889 0.879 0.655 0.888  0.868 0.653 0.797  0.658 0.692
U 0891 0.881 0.685 0.892  0.872 0.687 0.803  0.662 0.728
050 L 088 0889 0.686 0.889  0.879 0.673 0.787  0.678 0.726
U 0891 0.891 0.714 0.891  0.881 0.707 0793  0.682 0.754
070 L 0899 0889 0.739 0.889  0.889 0.716 0776 0.698 0.750
U 0.901 0.891 0.761 0.891  0.891 0.744 0.784  0.702 0.770
090 L 00909 0899 0.787 0.909  0.899 0.785 0.696  0.719 0.773
U 0911 0.901 0.793 0911 0.901 0.795 0.704  0.721 0.787
5000 030 L 0899 0889 0.670 0.899  0.8%9 0.668 0.808  0.669 0.762
U 0.901 0.891 0.690 0.901  0.891 0.692 0812  0.671 0.778
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0.900
0.900
0.900
0.910
0.910
0.920
0.920

0.899
0.901
0.899
0.901
0.899
0.901
0.919
0.921

0.899
0.901
0.899
0.901
0.910
0.910
0.920
0.920

0.910
0.910
0.910
0.910
0.910
0.910
0.930
0.930

0.899
0.901
0.900
0.900
0.910
0.910

0.900
0.900
0.900
0.900
0.900
0.900
0910
0.910

0.889
0.891
0.889
0.891
0.899
0.901
0.899
0.901

0.899
0.901
0.900
0.900
0.910
0.910
0.910
0.910

0.900
0.900
0.910
0.910
0.910
0.910
0.910
0.910

0.721
0.739
0.775
0.785
0.799
0.801

0.694
0.706
0.745
0.755
0.798
0.802
0.799
0.801

0.646
0.674
0.677
0.703
0.719
0.741
0.766
0.774

0.661
0.679
0.709
0.711
0.755
0.765
0.779
0.781

0.684
0.696
0.726
0.734
0.778
0.782
0.779
0.781
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0.899
0.901
0.899
0.901
0.920
0.920

0.900
0.900
0.900
0.900
0.910
0.910
0.920
0.920

0.888
0.892
0.889
0.891
0.899
0.901
0.909
0.911

0.899
0.901
0.899
0.901
0.909
0.911
0.920
0.920

0.910
0.910
0.910
0.910
0.910
0.910
0.920
0.920

0.889
0.891
0.899
0.901
0.899
0.901

0.890
0.890
0.900
0.900
0.900
0.900
0.910
0.910

0.879
0.881
0.889
0.891
0.889
0.891
0.899
0.901

0.899
0.901
0.899
0.901
0.899
0.901
0.910
0.910

0.900
0.900
0.910
0.910
0910
0.910
0.910
0910

0.709
0.731
0.752
0.768
0.798
0.802

0.692
0.708
0.734
0.746
0.787
0.793
0.799
0.801

0.633
0.667
0.664
0.6%6
0.706
0.734
0.764
0.776

0.648
0.672
0.690
0.710
0.743
0.757
0.778
0.782

0.673
0.687
0.714
0.726
0.767
0.773
0.779
0.781

0.798
0.802
0.788
0.792
0.698
0.702

0.819
0.821
0.799
0.801
0.789
0.791
0.689
0.691

0.817
0.823
0.807
0.813
0.797
0.803
0.705
0.715

0.828
0.832
0.818
0.822
0.808
0.812
0.707
0.713

0.829
0.831
0.819
0.821
0.809
0.811
0.698
0.702

0.689
0.691
0.709
0.711
0.729
0.731

0.669
0.671
0.690
0.690
0.710
0.710
0.730
0.730

0.668
0.672
0.688
0.692
0.708
0.712
0.729
0.731

0.679
0.681
0.699
0.701
0.719
0.721
0.729
0.731

0.680
0.680
0.700
0.700
0.720
0.720
0.730
0.730

0.774
0.786
0.785
0.795
0.786
0.794

0.797
0.803
0.797
0.803
0.798
0.802
0.788
0.792

0.672
0.708
0.696
0.724
0.730
0.750
0.742
0.758

0.731
0.749
0.743
0.757
0.755
0.765
0.756
0.764

0.766
0.774
0.767
0.773
0.768
0.772
0.758
0.762

Complete = Complete Data; MCAR = Missing Complete at Random Data; MNAR = Missing Not at Random Data;
Corr = Correlation between latent intercepts and slopes; N = Sample size; Rel = Reliability of the observed

indicator.; L = Lower 95% limit; U = Upper 95% limit.
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Table 9

Analysis of Variance Results with Normed Fit Index (NFI) Values as the Dependent Variable,
with Latent Model Type, Latent Intercept-Slope Correlation, Sample Size, and Reliability of
Observed Indicators as Between-Subjects Factors, For the Three Missing Data Conditions
(Complete, MCAR, MNAR).

Model Effect Complete Data MCAR Data MNAR Data
df F-value Partiﬁal F-value Parliﬁal F-value Parliﬂal

cla” eta” eta”
Corrected Model 107 12496.27 715 11478.07 .699 4961.38 528
Latent Interaction Model 2 561513.46 .679 519361.46 .663 141548.37 374
Correlation (Corr) 2 5285.12 019 4197.62 .0l6 14700.13 058
Sample Size (N) 2 8322.38 .030 10067.81 .037 9748.44 .039
Reliability (Rel) 3 25774.02 127 24467.69 122 4365.73 027
Latent Model X Corr 4 15188.22 103 12885.76 .089 10153.64 079
Latent Model X N 4 1381.96 .010 1042.62 .008 3563.60 .029
Latent Model X Rel 6 11858.39 118 10447.35 106 25221.59 242
Corr X N 4 22.33 .000 25.92 000 27.29 .000
Corr X Rel 6 59.16 .001 47.33 .001 262.64 .003
N X Rel 6 304.89 003 265.02 .003 890.49 011
Latent Model X Corr X N 8 6.18 000 5.81 .000 28.74 .000
Latent Model X Corr X Rel 12 72.57 .002 58.80 .001 1159.34 028
Latent Model X N X Rel 12 187.84 004 162.12 .004 351.52 .009
Corr X N X Rel 12 1.92 (.03) .000 2.86 .000 7.86 .000
Latent Model X Corr X N X Rel 24 2.06 .000 2.04 .000 10.39 .001
Error 531703

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr =
Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.
The symbol “X” represents an interaction between two factors.

All effects are significant at the p < 0.01 level.
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Table 10

Average Goodness of Fit Index (GFI) Values (with Standard Deviation in parentheses) for All
Latent Growth Interaction Models (Population Value of Latent Interaction Parameter Equal to
2.0) For Those Simulations That Converged, For the Three Missing Data Conditions (Complete,
MCAR, MNAR).

Corr N Rel Complete Data MCAR Data MNAR Data
Wen Duncan  Schumacker Wen Duncan  Schumacker Wen Duncan  Schumacker

0.20 250 0.30 0.85 0.86 0.77 0.84 0.85 0.76 0.76 0.83 0.85
(0.015) (0.010) (0.058) (0.017) (0.012) (0.061) 0.020) (0.011) (0.063)

0.50 0.84 0.85 0.78 0.83 0.84 0.77 0.73 0.82 0.87
(0.024)  (0.008) (0.057) (0.024) (0.010) (0.059) 0.025) (0.011) (0.055)

0.70 0.86 0.85 0.80 0.85 0.84 0.79 0.73 0.79 0.90
(0.015)  (0.008) (0.054) 0.018) (0.010) (0.057) (0.039) (0.012) (0.038)

0.90 0.85 0.82 0.84 0.84 0.81 0.83 0.72 0.75 0.92
(0.008) (0.009) (0.026) (0.009) 0.011) (0.032) 0.024) (0.012) 0.022)

500  0.30 0.86 0.88 0.77 0.85 0.87 0.77 0.77 0.84 0.87
(0.012) (0.007) (0.052) (0.013)  (0.008) (0.055) 0.016) (0.007) (0.042)

0.50 0.85 0.87 0.79 0.85 0.87 0.79 0.74 0.83 0.90
0.024) (0.005) (0.052) (0.024) (0.007) (0.054) (0.019) (0.008) (0.032)

0.70 0.87 0.86 0.81 0.87 0.86 0.81 0.74 0.81 0.92
(0.008)  (0.006) (0.045) (0.011) (0.007) (0.049) (0.039)  (0.009) (0.022)

0.90 0.87 0.83 0.85 0.86 0.83 0.85 0.74 0.77 0.93
(0.005)  (0.006) 0.017) (0.006) (0.007) 0.021) (0.019)  (0.008) 0.012)

1000 0.30 0.86 0.88 0.78 0.86 0.88 0.78 0.77 0.85 0.89
(0.009) (0.005) (0.046) (0.010)  (0.006) (0.049) (0.012)  (0.005) (0.028)

0.50 0.86 0.88 0.80 0.86 0.88 0.80 0.74 0.84 0.91
(0.025)  (0.004) (0.044) (0.024) (0.005) 0.047) (0.015) (0.005) 0.021)

0.70 0.88 0.87 0.83 0.88 0.87 0.82 0.74 0.82 0.92
" (0.004) (0.004) (0.033) (0.005)  (0.005) (0.038) (0.039)  (0.007) (0.015)

0.90 0.88 0.84 0.85 0.87 0.84 0.85 0.75 0.77 0.93
(0.003) (0.004) 0.010) (0.004) (0.005) (0.012) (0.016) (0.006) (0.008)

Average 0.86 0.86 0.81 0.86 0.85 0.80 0.74 0.81 0.90
0.019) (0.021) (0.053) (0.021) (0.023) (0.055) (0.029) (0.032) (0.042)

.50 250  0.30 0.84 0.86 0.73 0.83 0.85 0.73 0.76 0.83 0.83
0.021) (0.009) (0.056) (0.021) (0.01D) (0.059) (0.023) (0.012) (0.059)

0.50 0.86 0.86 0.74 0.84 0.84 0.73 0.73 0.81 0.85
(0.022)  (0.008) (0.054) 0.024) (0.010) (0.057) 0.022) (0.012) (0.049)

0.70 0.86 0.85 0.76 0.85 0.83 0.75 0.69 0.79 0.87
(0.008) (0.009) (0.050) 0.012) (0.011H (0.054) 0.027) (0.013) (0.036)

0.90 0.86 0.82 0.80 0.85 0.81 0.79 0.71 0.75 0.91
(0.008) (0.009) (0.027) (0.009) (0.011) (0.033) (0.033) (0.013) (0.020)

500  0.30 0.86 0.88 0.73 0.85 0.87 0.73 0.77 0.85 0.85
(0.021)  (0.006) (0.049) (0.021)  (0.007) (0.053) (0.020) (0.008) (0.043)

0.50 0.88 0.87 0.75 0.87 0.87 0.74 0.73 0.83 0.87
0.014)  (0.006) (0.047) (0.018) (0.007) (0.050) (0.022)  (0.009) (0.034)

0.70 0.88 0.86 0.77 0.87 0.86 0.76 0.69 0.81 0.89
(0.005)  (0.006) (0.040) (0.007)  (0.007) (0.046) 0.023) (0.010) (0.024)

0.90 0.87 0.83 0.80 0.87 0.83 0.80 0.72 0.76 0.91

(0.005)  (0.006) (0.017) (0.006)  (0.008) 0.021) (0.026)  (0.009) (0.015)
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(0.009)
0.86
(0.008)

0.87
(0.018)
0.88
(0.012)
0.88
(0.006)
0.88
(0.005)

0.88
(0.015)
0.89
(0.008)
0.89
(0.004)
0.88
(0.003)

0.87
0.017)

0.89
(0.004)
0.88
(0.004)
0.87
(0.004)
0.84
(0.004)

0.86
(0.022)

0.86
(0.009)
0.86
(0.009)
0.85
(0.009)
0.82
(0.009)

0.88
(0.006)
0.87
(0.006)
0.86
(0.006)
0.83
(0.006)

0.89
(0.004)
0.88
(0.004)
0.87
(0.004)
0.84
(0.004)

0.86
(0.022)

0.74
(0.040)
0.76
(0.038)
0.78
(0.030)
0.81
(0.012)

0.76
(0.049)

0.71
(0.055)
0.72
(0.053)
0.74
(0.050)
0.77
(0.029)

0.72
(0.047)
0.73
(0.046)
0.75
(0.040)
0.78
(0.019)

0.72
(0.039)
0.73
(0.036)
0.76
(0.030)
0.78
(0.013)

0.74
(0.047)
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0.86
(0.021)
0.89
(0.010)
0.86
(0.004)
0.88
(0.004)

0.86
(0.022)

0.84
(0.021)
0.85
(0.020)
0.85
(0.012)
0.85
(0.010)

0.86
(0.018)
0.87
(0.014)
0.88
(0.007)
0.87
(0.0006)

0.87
(0.016)
0.89
(0.010)
0.89
(0.004)
0.88
(0.004)

0.87
(0.012)

0.88
(0.005)
0.88
(0.005)
0.87
(0.005)
0.83
(0.005)

0.85
(0.023)

0.85
(0.011)
0.85
(0.011)
0.84
(0.011)
0.81
(0.011)

0.87
(0.007)
0.87
(0.007)
0.86
(0.007)
0.82
(0.008)

0.88
(0.005)
0.88
(0.005)
0.87
(0.005)
0.83
(0.005)

0.85
(0.024)

0.74
(0.044)
0.75
(0.042)
0.78
(0.035)
0.81
(0.014)

0.76
(0.052)

0.71
(0.059)
0.72
(0.056)
0.73
(0.054)
0.77
(0.035)

0.71
(0.052)
0.72
(0.049)
0.74
(0.044)
0.78
(0.023)

0.71
(0.043)
0.73
(0.039)
0.75
(0.035)
0.78
(0.016)

0.74
(0.050)

0.78
(0.019)
0.74
(0.021)
0.70
(0.022)
0.72
(0.020)

0.73
(0.035)

0.76
(0.022)
0.73
(0.023)
0.69
(0.023)
0.70
(0.040)

0.77
(0.018)
0.74
(0.020)
0.70
(0.018)
0.71
(0.035)

0.78
(0.016)
0.74
0.020)
0.71
(0.014)
0.72
(0.029)

0.72
(0.038)

0.85
(0.000)
0.84
(0.0006)
0.81
(0.008)
0.76
(0.007)

0.81
(0.035)

0.83
(0.012)
0.81
(0.013)
0.79
(0.013)
0.74
(0.014)

0.84
(0.008)
0.83
(0.009)
0.80
(0.010)
0.75
(0.010)

0.85
(0.006)
0.84
(0.007)
0.81
(0.008)
0.76
(0.008)

0.80
(0.038)

0.87
(0.030)
0.88
(0.023)
0.90
(0.016)
0.91
(0.012)

0.88
(0.042)

0.81
(0.059)
0.82
(0.052)
0.85
(0.039)
0.88
(0.020)

0.83
(0.047)
0.84
(0.038)
0.86
(0.028)
0.88
(0.018)

0.84
(0.033)
0.85
(0.026)
0.86
(0.020)
0.89
(0.013)

0.85
(0.043)

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr =
Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.
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Table 11

Average Root Mean Square Error of Approximation (RMSEA) Values (with Standard Deviation
in parentheses) for All Latent Growth Interaction Models (Population Value of Latent
Interaction Parameter Equal to 2.0) For the Three Missing Data Conditions (Complete, MCAR,

MNAR).
Corr N Rel Complete Data MCAR Data MNAR Data
Wen Duncan  Schumacker Wen Duncan  Schumacker Wen Duncan  Schumacker
0.20 250 0.30 0.11 0.13 0.59 0.11 0.13 0.59 0.16 0.21 0.37
(0.009) (0.008) (0.216) (0.010)  (0.010) 0.217) (0.010) (0.005) (0.153)
0.50 0.13 0.14 0.56 0.13 0.14 0.56 0.18 0.22 0.31
(0.008) (0.0006) (0.216) (0.009)  (0.007) (0.206) (0.013) (0.003) (0.121)
0.70 0.14 0.15 0.49 0.14 0.15 0.51 0.23 0.24 0.25
(0.006)  (0.006) (0.175) (0.007)  (0.007) (0.191) (0.018)  (0.005) 0.071)
0.90 0.15 0.17 0.39 0.16 0.17 0.40 0.29 0.28 0.23
(0.005) (0.005) (0.051) (0.006) (0.007) (0.070) (0.011) (0.006) (0.044)
500  0.30 0.11 0.13 0.58 0.11 0.13 0.58 0.16 0.21 0.30
(0.007) (0.004) (0.212) (0.008) (0.005) (0.214) (0.007) (0.004) (0.079)
0.50 0.13 0.14 0.51 0.13 0.14 0.53 0.18 0.22 0.26
(0.006) (0.004) (0.183) (0.007)  (0.005) 0.197) (0.008) (0.004) (0.059)
0.70 0.14 0.15 0.44 0.14 0.15 0.46 0.23 0.24 0.23
(0.004)  (0.004) (0.122) (0.004) (0.004) (0.148) (0.016) (0.004) (0.039)
0.90 0.15 0.17 0.38 0.15 0.17 0.38 0.29 0.28 0.22
(0.003) (0.004) (0.029) (0.004) (0.004) (0.035) (0.009) (0.004) (0.023)
1000 0.30 0.11 0.13 0.55 0.11 0.13 0.56 0.16 0.21 0.28
(0.005) (0.003) (0.184) (0.006) (0.003) 0.197) (0.005)  (0.002) (0.045)
0.50 0.13 0.14 0.48 0.13 0.14 0.50 0.18 0.22 0.25
(0.005) (0.003) (0.142) (0.006)  (0.003) (0.170) (0.005) (0.002) (0.035)
0.70 0.14 0.15 0.40 0.14 0.15 0.42 0.23 0.24 0.22
(0.002)  (0.003) (0.067) (0.003) (0.003) 0.091) (0.015) (0.003) (0.026)
0.90 0.15 0.17 0.38 0.15 0.17 0.38 0.29 0.28 0.22
(0.002) (0.003) 0.015) (0.003) (0.003) (0.020) (0.009) (0.003) (0.016)
Average 0.13 0.15 0.48 0.13 0.15 0.49 0.22 0.24 0.26
(0.018) (0.015) 0.170) (0.018) (0.016) (0.179) (0.053) (0.026) (0.084)
.50 250  0.30 0.12 0.13 0.68 0.12 0.13 0.67 0.16 0.22 0.42
(0.007)  (0.006) (0.216) (0.009) (0.007) 0.214) (0.010) (0.006) (0.157)
0.50 0.13 0.14 0.64 0.13 0.14 0.65 0.18 0.23 0.36
(0.006) (0.006) (0.200) (0.007) (0.007) (0.210) (0.010) (0.005) (0.103)
0.70 0.14 0.15 0.57 0.14 0.15 0.59 0.21 0.25 0.31
(0.005) (0.006) (0.166) (0.006) (0.007) 0.181) (0.014)  (0.006) (0.062)
0.90 0.16 0.17 0.49 0.16 0.17 0.49 0.30 0.28 0.25
(0.005) (0.005) (0.038) (0.006)  (0.006) (0.056) 0.017)  (0.006) (0.033)
500  0.30 0.12 0.13 0.67 0.12 0.13 0.68 0.16 0.22 0.36
(0.005) (0.004) (0.208) (0.006) (0.003) (0.213) (0.008) (0.004) (0.092)
0.50 0.13 0.14 0.61 0.13 0.14 0.62 0.18 0.23 0.32
(0.004)  (0.004) (0.179) (0.005) (0.005) (0.189) (0.009) (0.004) (0.059)
0.70 0.14 0.15 0.52 0.14 0.15 0.55 0.21 0.25 0.29
(0.004)  (0.004) (0.112) (0.004)  (0.005) (0.142) 0.011)  (0.004) (0.040)
0.90 0.16 0.17 0.48 0.16 0.17 0.48 0.30 0.28 0.25

(0.003)  (0.004) (0.022) (0.004) (0.004) (0.027) (0.014)  (0.004) (0.025)
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1000 0.30 0.12 0.13 0.65 0.12 0.13 0.66 0.16 0.22 0.33
(0.004) (0.003) (0.182) (0.004)  (0.003) (0.194) (0.007)  (0.003) (0.055)

0.50 0.13 0.14 0.57 0.13 0.14 0.59 0.18 0.23 0.30
(0.003)  (0.003) (0.138) (0.003)  (0.003) (0.157) (0.008) (0.003) (0.038)

0.70 0.14 0.15 0.50 0.14 0.15 0.51 0.21 0.25 0.28
(0.002)  (0.003) (0.063) (0.003)  (0.003) (0.085) (0.010)  (0.003) (0.0206)

0.90 0.16 0.17 0.47 0.16 0.17 0.48 0.30 0.28 0.25
(0.002)  (0.003) (0.015) (0.003)  (0.003) (0.017) (0.011)  (0.003) 0.021)

Average 0.14 0.15 0.57 0.14 0.15 0.58 0.23 0.24 0.31
(0.013) (0.017) (0.164) (0.014) (0.017) (0.173) (0.062)  (0.026) (0.0806)

70 250 030 0.12 0.13 0.70 0.12 0.13 0.70 0.16 0.22 0.45
(0.007)  (0.006) (0.211) (0.008)  (0.007) (0.214) (0.011)  (0.006) 0.161)

0.50 0.13 0.14 0.67 0.13 0.14 0.67 0.18 0.23 0.40
(0.006)  (0.006) (0.199) (0.007)  (0.007) (0.208) (0.011)  (0.006) (0.120)

0.70 0.14 0.15 0.60 0.14 0.15 0.62 0.21 0.25 0.35
(0.005)  (0.006) (0.168) (0.006)  (0.007) 0.177) (0.012)  (0.006) (0.066)

0.90 0.16 0.17 0.52 0.16 0.17 0.53 0.30 0.29 0.29
(0.005)  (0.005) (0.039) (0.006) (0.007) (0.058) (0.022)  (0.006) (0.046)

500  0.30 0.13 0.13 0.69 0.12 0.13 0.70 0.16 0.22 0.40
(0.005)  (0.004) (0.196) (0.006)  (0.005) 0.211) (0.008)  (0.004) (0.102)

0.50 0.13 0.14 0.64 0.13 0.14 0.65 0.18 0.23 0.37
(0.004) (0.004) (0.177) (0.005)  (0.005) (0.185) (0.009) (0.004) (0.069)

0.70 0.14 0.15 0.56 0.14 0.15 0.57 0.20 0.25 0.33
(0.004)  (0.004) (0.109) (0.004)  (0.005) (0.129) (0.010)  (0.004) (0.042)

0.90 0.16 0.17 0.52 0.16 0.17 0.52 0.30 0.29 0.29
(0.003)  (0.004) (0.023) (0.004) (0.004) (0.028) (0.018) (0.004) (0.025)

1000 0.30 0.13 0.13 0.68 0.13 0.13 0.69 0.16 0.22 0.37
(0.003)  (0.003) 0.171) (0.004)  (0.003) (0.185) (0.007)  (0.003) (0.059)

0.50 0.13 0.14 0.61 0.13 0.14 0.62 0.18 0.23 0.35
(0.003)  (0.003) (0.130) (0.003)  (0.003) (0.150) (0.008)  (0.003) (0.041)

0.70 0.14 0.15 0.53 0.14 0.15 0.54 0.20 0.25 0.33
(0.002)  (0.003) (0.063) (0.003)  (0.003) (0.080) (0.007)  (0.003) (0.029)

0.90 0.16 0.17 0.51 0.16 0.17 0.51 0.31 0.29 0.28
(0.002)  (0.003) (0.015) (0.003)  (0.003) (0.018) (0.015)  (0.003) (0.019)

Average 0.14 0.15 0.60 0.14 0.15 0.61 0.23 0.25 0.35
(0.013)  (0.017) (0.156) (0.014) (0.018) (0.166) (0.063)  (0.026) (0.090)

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr =
Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.



Table 12
Chi-Square Difference Values for the Wen and Duncan Latent Growth Interaction Models For
the Three Missing Data Conditions (Complete, MCAR, MNAR).
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Corr N Rel Complete MCAR MNAR
0.20 250 0.30 119.85 87.59 366.14
0.50 80.60 62.81 308.46

0.70 52.69 39.57 132.29

0.90 117.81 86.19 -121.83

500  0.30 243.67 180.11 725.44

0.50 142.88 109.71 625.40

0.70 103.50 76.92 215.66

0.90 237.59 174.16 -291.36

1000 0.30 482.96 355.38 1451.34

0.50 272.61 205.62 1253.65

0.70 208.97 154.04 364.37

0.90 477.29 350.93 -625.40

0.50 250 0.30 48.52 40.40 413.74
0.50 25.90 22.23 382.54

0.70 36.07 20.75 325.21

0.90 112.65 82.97 -131.98

500 0.30 76.67 63.95 820.90

0.50 42.79 33.93 751.46

0.70 73.12 53.92 671.45

0.90 227.47 166.71 -362.34
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1643.06
1485.13
1356.42
-866.32
454.48
427.51
386.24
-94.63
914.05
866.04
798.54
-315.75
1836.34
1735.67
1665.09

-806.35

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr =
Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.

All differences are significant at p < 0.05.
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Table 13
Average Unstandardized Latent Slope Interaction Parameter Estimate (yg) with Standard
Deviation in Parentheses, for All Latent Growth Interaction Models (Population Value of Latent

Interaction Parameter Equal to 2.0) For Those Simulations That Converged For the Three
Missing Data Conditions (Complete, MCAR, MNAR).

Corr N Rel Complete Data MCAR Data MNAR Data
Wen Duncan  Schumacker Wen Duncan  Schumacker Wen Duncan  Schumacker

0.20 250 0.30 33.58 2.90 1.41 45.54 4.63 1.57 0.87 0.15 0.06
(179.830) (18.456) (2.543) (273.150)  (30.3406) (8.759) (5.262) (0.042) (0.067)

0.50 12.76 0.94 1.48 16.75 1.07 1.47 0.33 0.14 0.06
(34.093) (0.208) (0.267) (68.808) (4.768) (0.316) (2.660) (0.028) (0.060)

0.70 5.44 0.89 1.63 4,21 0.89 1.62 0.13 0.14 0.07
(205.319)  (0.166) (0.225) (90.073) (0.196) (0.263) 0.676) (0.023) (0.045)

0.90 1.93 0.84 1.84 1.94 0.85 1.84 0.23 0.14 0.08
(0.257) (0.128) (0.156) (0.305) (0.151) (0.183) (0.067) (0.019) (0.043)

500 0.30 24.44 1.44 1.37 25.06 2.05 1.38 0.56 0.14 0.05
(176.830) (7.698) (0.213) (61.869) (15.483) (0.707) (4.528) (0.023) (0.035)

0.50 9.00 0.93 1.50 9.67 0.99 1.50 0.16 0.14 0.05
(9.963) (0.143) (0.192) (12.763) (3.725) (0.223) (2.930) (0.019) (0.026)

0.70 2.18 0.88 1.65 2.33 0.88 1.64 0.10 0.14 0.06
(0.793) (0.113) (0.156) (4.769) (0.134) 0.184) (0.192)  (0.0106) 0.023)

0.90 1.93 0.84 [.85 1.93 0.84 1.85 0.24 0.14 0.08
(0.176) (0.088) (0.110) (0.206) (0.103) (0.129) (0.053) (0.013) (0.019)

1000 0.30 18.08 1.09 1.38 18.18 1.21 .38 0.25 0.14 0.05
(31.931) (1.901) (0.150) (23.463) (4.537) 0.175) (1.887) (0.016) (0.018)

0.50 8.12 0.93 [.50 8.26 0.93 1.51 0.08 0.14 0.06
(7.513) (0.100) (0.133) 8.377) (0.119) (0.156) (0.816) (0.013) 0.015)

0.70 2,13 0.88 1.66 2.13 0.88 1.66 0.10 0.14 0.07
(0.188) (0.079) 0.112) (0.345) (0.093) 0.131) 0.171)y  (0.012) (0.014)

0.90 1.93 0.84 1.85 1.93 0.84 1.85 0.25 0.14 0.08
(0.125) (0.063) (0.075) 0.147) (0.074) (0.089) (0.047) (0.010) (0.014)

.50 250  0.30 8.63 1.59 1.47 10.15 3.15 1.46 0.04 0.12 0.01
(73.580) (16.196) (4.790) (48.388)  (104.172) 4.760) (0.659) (0.025) (0.019)

0.50 3.77 0.91 1.52 3.56 0.91 1.51 0.02 0.12 0.01
(60.868) (0.154) (0.248) (15.878) (0.184) (0.298) (0.118) (0.021) 0.021)

0.70 1.99 0.88 1.66 2.01 0.88 1.65 0.04 0.12 0.02
(0.276) (0.126) (0.2006) (0.877) (0.150) (0.239) 0.067) (0.017) (0.019)

0.90 1.91 0.86 1.85 1.91 0.86 1.84 0.17 0.12 0.03
(0.203) (0.099) 0.147) 0.241) 0.116) (0.172) (0.069) (0.014) (0.018)

500  0.30 4.85 0.95 1.41 5.77 1.00 1.40 0.01 0.12 0.01
(6.235) (0.190) (0.196) (18.936) 3.014) (0.230) (0.112)  (0.016) (0.014)

0.50 2.22 0.91 1.53 2.38 0.91 1.53 0.01 0.12 0.01
(1.794) (0.108) (0.175) (2.668) (0.126) (0.207) (0.03) (0.014) 0.013)

0.70 1.97 0.87 1.67 1.98 0.88 1.67 0.03 0.12 0.02
(0.192) (0.088) (0.146) (0.225) (0.103) (0.170) (0.063) (0.012) (0.013)

0.90 191 0.86 1.86 1.91 0.86 1.85 0.18 0.12 0.03

(0.141) (0.069) (0.103) (0.166) (0.082) 0.121) (0.053)  (0.010) (0.018)
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4.27
(4.218)
2.05
(0.328)
1.97
(0.131)
1.90
(0.098)

3.09
(7.168)
2.04
(1.645)
1.95
(0.250)
1.91
(0.185)

2.43
(2.244)
1.95
(0.334)
1.93
(0.169)
1.91
(0.120)

2.27
(1.305)
1.95
(0.202)
1.93
0.117)
1.90
(0.087)

1.03
(6.421)
0.90
(0.073)
0.87
(0.061)
0.85
(0.049)

0.96
(0.280)
0.92
(0.136)
0.89
(0.113)
0.88
(0.090)

0.94
(0.113)
0.91
(0.093)
0.89
(0.078)
0.87
(0.062)

0.94
(0.078)
0.91
(0.063)
0.89
(0.054)
0.87
(0.043)

1.41
(0.138)
1.54
(0.124)
1.68
(0.101)
1.86
(0.071)

1.45
(0.264)
1.56
(0.238)
1.69
(0.202)
1.86
(0.151)

1.46
(0.186)
1.57
(0.164)
1.70
(0.137)
1.87
(0.097)

1.46
(0.130)
1.57
(0.113)
1.70
(0.097)
1.87
(0.068)

4.58
(5.715)
2.07
(0.669)
1.97
(0.154)
1.90
0.114)

3.99
(27.254)
2.18
(2.360)
1.95
(0.312)
1.91
0.218)

2.55
(2.602)
247
(36.736)
1.94
(0.199)
1.91
(0.1406)

2.33
(1.491)
1.95
(0.249)
1.94
(0.137)
1.90
(0.102)
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0.94
(0.155)
0.90
(0.086)
0.87
(0.072)
0.85
(0.057)

1.02
(2.250)
0.92
(0.161)
0.90
(0.134)
0.88
(0.108)

0.95
(0.131)
0.91
(0.110)
0.89
(0.092)
0.87
(0.073)

0.94
(0.091)
0.91
(0.075)
0.89
(0.064)
0.87
(0.051)

1.41
(0.158)
1.53
(0.146)
1.68
0.118)
1.86
(0.084)

1.45
(0.313)
1.55
(0.282)
1.69
(0.236)
1.85
(0.193)

1.46
(0.218)
1.57
(0.191)
1.70
(0.159)
1.87
(0.113)

1.46
(0.152)
1.57
(0.135)
1.70
(0.114)
1.87
(0.080)

0.003
(0.009)
0.01
(0.019)
0.03
(0.061)
0.18
(0.039)

0.04
(0.358)
0.02
(0.080)
0.05
(0.065)
0.14
(0.069)

0.01
(0.054)
0.02
(0.046)
0.04
(0.056)
0.15
(0.056)

0.01
(0.020)
0.01
(0.029)
0.03
(0.042)
0.16
(0.045)

0.12
0.011)
0.12
(0.010)
0.12
(0.008)
0.12
(0.007)

0.11
0.021)
0.11
(0.018)
0.11
(0.015)
0.11
(0.012)

0.11
(0.014)
0.11
(0.012)
0.11
(0.010)
0.11
(0.008)

0.11
(0.009)
0.11
(0.008)
0.11
(0.007)
0.11
(0.006)

0.01
(0.009)
0.01
(0.010)
0.02
(0.009)
0.03
(0.019)

0.003
(0.023)
0.01
(0.015)
0.01
(0.012)
0.21
(9.40)

0.003
(0.021)
0.01
(0.008)
0.01
(0.009)
0.02
(0.01D)

0.003
(0.006)
0.01
(0.006)
0.01
(0.0006)
0.02
(0.012)

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr =

Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.
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Table 14

Confidence Intervals (95%) for the Unstandardized Parameter Estimate of the Latent Slope Interaction for All
Latent Growth Interaction Models (Population Value of Latent Interaction Parameter Equal to 2.0) For the Three
Missing Data Conditions (Complete, MCAR, MNAR).

Complete Data MCAR Data MNAR Data
Corr N Rel Wen Duncan Schumacker Wen Duncan Schumacker Wen Duncan Schumacker
020 250 30 U 55872 5188 1.725 85.008  9.015 2.836 1.582 0.156 0.069
L1288 o612 1.095 6072 0245 0.304 0.158 0.144 0.051
050 Y 16986 1.054 2.020 26692 3353 2.069 0.689 0.144 0.068
L gs34 0.826 0.940 6808  -1.213 0.871 0029 0136 0.052
070 Y 30892 o911 1.658 17225 0918 1.658 0221 0.143 0.076
L 20012 0869 1.602 8805 0.862 1.582 0.039 0.137 0.064
090 Y 1962 0.856 1.859 1984 0872 1.866 0239 0.143 0.086
L 1808 0.824 1.821 1896  0.828 1.814 0221 0.137 0.074
5000 930 YU 39940 2115 1.389 31373 3.630 1.452 0.993 0.142 0.053
L 5940 0.765 1351 18747 0470 1.308 0.127 0.138 0.047
050 Y 9873 1.023 1.890 10972 1370 1.523 0.440 0.142 0.053
L g127 0.837 1110 8368  0.610 1.477 0120 0138 0.048
070 Y 2250 0.890 1.664 2817 0.894 1.659 0.118 0.142 0.062
L 2110 0.870 1.636 1843 0.866 1.621 0.082 0.138 0.058
090 Y 1945 0.848 1.860 1.951 0.851 1.863 0245 0.141 0.082
L a5 0.832 1.840 1909  0.829 1.837 0.235 0.139 0.078
1000 939 U 20059 1.208 1389 19874 1538 1.393 0.378 0.141 0.051
L 6101 0.972 1.371 16486 0.882 1.367 0.122 0.139 0.049
050 U 8586 0.999 1.770 8.865 0939 1.521 0.135 0.141 0.061
L 7654 0.861 1230 7655 0921 1.499 0.025 0.139 0.059
070 Y 214 0.885 1.667 2155 0.887 1.670 0.112 0.141 0.071
Loy 0.875 1.653 2105 0873 1.651 0.088 0.139 0.069
090 YU 1938 0.844 1.855 1.941 0.845 1.856 0253 0.141 0.081
L o 0.836 1.845 1919 0.835 1.844 0.247 0.139 0.079
050 250 30 U 17751 3508 2.064 17142 18202 2.148 0.129 0.123 0.013
L 491 0418 0.876 3158 -11.902 0.772 0049 0117 0.007
050 Y 11315 1.066 2.030 5854 0937 1.553 0.036 0.123 0.013
L3715 0755 1.010 1266 0883 1.467 0.004 0.117 0.007
070 Y 2004 0.896 1.686 2137 0902 1.685 0.049 0.122 0.023
L 1956 0.864 1.634 1883 0858 1.615 0.031 0.118 0.017
090 Y 1935 0.872 1.868 1945 0877 1.865 0.179 0.122 0.032
L 1885 0.848 1.832 1875  0.843 1.815 0.161 0.118 0.028
500 030 YU 5397 0.967 1427 7.705 1.308 1.424 0.021 0.122 0.011
L 4303 0.933 1.393 3835 0.692 1377 -0.001 0.118 0.009
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2.377
2.063
1.987
1.953
1.922

1.898

4.531
4.009
2.070
2.030
1.978
1.962
1.906
1.894

3.979
2201
2.244
1.836
1.981
1.919
1.933
1.887

2.627
2233
1.979
1.921
1.945
1.915
1.921
1.899

2.351
2.189
1.963
1.937
1.937
1.923
1.905
1.895

1.052
0.768
0.878
0.862
0.866
0.854

1.428
0.632
1.000
0.800
0.874
0.866
0.853
0.847

0.995
0.925
1.107
0.733
0.904
0.876
0.891
0.869

0.950
0.930
1.041
0.779
0.897
0.883
0.875
0.865

0.945
0.935
0.998
0.822
0.893
0.887
0.873
0.867

1.890
1.170
1.683
1.657
1.869
1.851

1.419
1.401
1.796
1.284
1.686
1.674
1.864
1.856

1.483
1.417
2.046
1.074
1.715
1.665
1.879
1.841

1.476
1.444
1.907
1.233
1.712
1.688
1.879
1.861

1.468
1.452
1.802
1.338
1.706
1.694
1.874
1.866

2.652
2.108
2.003
1.957
1.927
1.893

4.993
4.167
2.118
2.022
1.981
1.959
1.908
1.892

7.928
0.052
2.521
1.839
1.995
1.905
1.942
1.879

2816
2285
6.223
-1.283
1.960
1.920
1.925
1.895

2438
1.968
1.932
1.950
1.930
1.907
1.893
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0.923
0.897
0.891
0.869
0.868
0.852

0.951
0.929
0.906
0.894
0.875
0.865
0.854
0.846

1.345
0.695
0.943
0.897
0919
0.881
0.896
0.864

0.963
0.937
0.921
0.899
0.899
0.881
0.878
0.863

0.947
0.933
0915
0.905
0.895
0.885
0.874
0.866

[.551
1.509
1.687
1.653
1.862
1.838

1.421
1.399
1.541
1.519
1.689
1.671
1.866
1.854

1.495
1.405
1.591
1.509
1.724
1.656
1.878
1.822

1.482
1.438
1.590
1.550
1.716
1.684
1.882
1.858

1.471
1.449
1.580
1.560
1.708
1.692
1.876
1.864

0.013
0.007
0.036
0.024
0.185
0.175

0.004
0.002
0.011
0.009
0.034
0.026
0.183
0.177

0.088
-0.008
0.031
0.009
0.059
0.041
0.149
0.131

0.015
0.005
0.024
0.016
0.045
0.035
0.155
0.145

0.011
0.009
0.012
0.008
0.033
0.027
0.163
0.157

0.121
0.119
0.121
0.119
0.121
0.119

0.121
0.119
0.121
0.119
0.121
0.119
0.121
0.120

0.113
0.107
0.112
0.108
0.112
0.108
0.112
0.108

0.111
0.109
0.111
0.109
0.111
0.109
0.111
0.109

0.111
0.109
0.111
0.109
0.11t
0.110
0.110
0.110

0.011
0.009
0.021
0.019
0.032
0.028

0.011
0.009
0.011
0.009
0.021
0.019
0.031
0.029

0.006
0.000
0.012
0.008
0.012
0.008
1.469
-1.049

0.005
0.001
0.011
0.009
0.011
0.609
0.021
0.019

0.003
0.003
0.010
0.010
0.010
0.010
0.021
0.019

Complete = Complete Data; MCAR = Missing Complete at Random Data; MNAR = Missing Not at Random Data;
Corr = Correlation between latent intercepts and slopes; N = Sample size; Rel = Reliability of the observed

indicator.; L = Lower 95% limit; U = Upper 95% limit.
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Table 15

Mean Square Error Bias of the Unstandardized Latent Slope Interaction Parameter Estimate (y2s) for
All Latent Growth Interaction Models (Population Value of Latent Interaction Parameter Equal to 2.0)
For the Three Missing Data Conditions (Complete, MCAR, MNAR).

Corr N Rel Complete Data MCAR Data MNAR Data
Wen Duncan Schumacker Wen Duncan Schumacker Wen Duncan Schumacker
020 250 0.30 78267.01 2096.34 28.93 129123.07 8286.00 405.28 29.06 3.56 3.90
0.50 16390.26 6.12 4.34 23280.62 92.09 4.50 9.89 3.52 3.90
0.70 42583.60 4.88 3.56 8664.67 4.99 3.67 4.02 3.50 3.90
0.90 10.59 3.86 2.81 10.86 391 3.05 3.25 349 3.94
500 0.30 66695.57 459.45 4.71 43694.34 901.81 6.58 22.59 3.55 392
0.50 7428.15 5.89 4.13 10070.78 19.71 4.19 11.97 3.52 391
0.70 30.60 4.78 345 89.89 4.82 3.50 3.69 3.50 3.90
0.90 10.24 3.80 2.64 10.33 3.82 2.70 3.22 349 394
1000  0.30 23682.06 58.32 4.61 27044.35 179.58 4.66 6.66 3.55 3.91
0.50 3815.27 5.78 4.04 4959.39 5.82 4.08 437 3.52 3.90
0.70 14.98 442 3.39 16.70 4,74 341 3.68 3.50 3.89
0.90 10.08 3.77 2.54 10.15 3.78 2.60 3.21 3.49 393
.50 250 0.30 14624.92 290.77 82.13 14952.97 10913.87 79.89 4.28 3.60 4.00
0.50 4871.29 4.17 4.15 2614.16 4.25 4.33 3.94 3.58 4.00
0.70 10.61 349 348 23.76 3.54 3.59 3.87 3.57 3.99
0.90 7.44 291 275 7.58 3.94 2.84 3.39 3.56 4,00
500 0.30 2151.64 5.19 4.46 4691.79 15.34 4.54 3.98 3.59 4.00
0.50 227.75 4.05 395 386.97 4.08 4.01 397 3.58 3.99
0.70 10.11 3.42 3.36 10.29 345 341 3.88 3.57 398
0.90 7.24 2.87 2.66 7.31 2.88 2.69 3.37 3.56 399
1000 0.30 653.58 45.72 433 1431.05 4.96 4.36 3.99 3.59 3.99
0.50 14.42 3.98 3.85 32.81 4.00 3.87 3.98 3.58 3.98
0.70 991 3.40 3.29 10.00 341 332 3.89 3.57 3.98
0.90 7.13 2.85 2.62 7.16 2.86 2.64 3.37 3.56 398
70 250 0.30 1628.80 5.10 4.44 3170.42 1305.90 4.61 4.00 3.61 4.03
0.50 174.89 3.55 3.90 398.69 3.60 4.03 3.92 3.61 4.00
0.70 8.70 3.04 332 9.01 3.08 343 3.84 3.60 4.00
0.90 6.15 2.57 2.95 6.25 2.58 3.69 3.49 3.59 1105.36
500 0.30 585.74 4.06 418 39542 4.10 425 3.96 3.61 4.02
0.50 11.07 3.47 3.70 1361.86 3.50 3.76 3.95 3.60 4.00
0.70 8.33 2.99 3.13 8.46 3.01 3.19 3.85 3.60 4.00
0.90 5.99 2.54 2.48 6.04 2.55 2.52 3.46 3.59 4.00
1000 0.30 45.27 3.98 4.04 60.73 4.00 4.08 3.97 3.61 4.00
0.50 10.52 3.42 3.57 10.60 344 3.61 3.96 3.60 4.00
0.70 8.16 2.96 3.06 8.22 297 3.09 3.88 3.60 3.99
0.90 5.90 2.52 243 5.92 2.53 245 344 3.59 4.00

Note: Complete = Complete Data condition; MCAR = Missing Completely At Random Data condition; MNAR = Missing
Not At Random Data condition; Corr = Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed
indicator.
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Standardized Bias Estimates of the Unstandardized Latent Slope Interaction Parameter Estimate (y2g)
Jor All Latent Growth Interaction Models (Population Value of Latent Interaction Parameter Equal to
2.0) For the Three Missing Data Conditions (Complete, MCAR, MNAR).

Corr N Rel Complete Data MCAR Data MNAR Data
Wen Duncan  Schumacker Wen Duncan  Schumacker Wen Duncan  Schumacker

0.20 250 0.30 > 1000 9.14 -0.35 > 1000 178.82 -0.36 > 1000 -8.67 -12.30
0.50 > 1000 -0.51 -0.28 > 1000 -0.46 -0.29 > 1000 -7.21 -7.89
0.70 > 1000 -0.61 -0.21 > 1000 -0.61 -0.22 > 1000 -8.95 -21.69

0.90 -0.03 -0.75 -0.10 -0.03 -0.75 -0.11 -45.25 -11.17 -3.87

500 0.30 > 1000 0.69 -0.32 > 1000 9.06 -0.32 > 1000 -5.68 -6.53

0.50 0.18 -0.51 -0.27 1.30 -0.06 -0.27 > 1000 -7.18 -5.98

0.70 0.03 -0.61 0.20 0.47 -0.61 -0.20 > 1000 -8.92 -5.13

0.90 -0.03 -0.75 -0.10 -0.03 -0.75 -0.10 -12.65 -11.19 -3.89

1000 0.30 > 1000 -0.41 -0.31 > 1000 -0.38 -0.31 > 1000 -5.69 -6.43

0.50 0.15 -0.51 -0.26 0.14 -0.51 -0.26 > 1000 -7.16 -5.86

0.70 0.03 -0.61 -0.19 0.03 -0.61 0.19 > 1000 -8.89 -5.11

0.90 -0.02 0.75 -0.10 -0.03 -0.75 -0.10 -6.41 -11.21 -3.91

0.50 250 0.30 > 1000 30.01 -0.31 > 1000 > 1000 -0.32 > 1000 -13.00 -30.81
0.50 > 1000 -0.67 -0.26 167.53 -0.67 -0.27 <-1000 -10.93 -13.40

0.70 -0.02 -0.78 -0.20 -0.02 -0.78 -0.21 < -1000 -13.47 -9.48

0.90 -0.04 -0.93 0.10 -0.04 -0.93 -0.10 < -1000 -16.70 -6.36

500 0.30 0.05 -0.57 -0.31 124.00 -0.56 -0.31 <-1000 -8.99 -13.6
0.50 -0.004 -0.67 -0.25 -0.01 -0.67 -0.26 <-1000 -10.75 -11.38

0.70 -0.01 -0.78 -0.19 -0.01 -0.78 -0.19 < -1000 -13.46 -9.15

0.90 -0.04 -0.93 -0.09 -0.04 -0.93 -0.09 -149.96 -16.75 -6.40
1000 0.30 0.06 1.97 -0.30 0.06 -0.57 -0.30 < -1000 -8.97 -12.74
0.50 0.004 -0.67 -0.25 0.001 -0.67 -0.25 < -1000 -10.800 -11.06

0.70 -0.01 -0.78 -0.18 -0.0! -0.78 -0.19 < -1000 -13.42 -9.04

0.90 -0.04 -0.93 -0.09 -0.04 -0.93 -0.09 -41.32 -16.73 -0.34
0.70 250 0.30 > 1000 -0.64 -0.29 < -1000 -0.63 -0.30 > 1000 -11.41 -33.64
0.50 -0.06 -0.73 -0.24 -0.88 -0.74 -0.25 < -1000 -12.97 -19.89
0.70 -0.03 -0.85 -0.18 -0.03 -0.85 -0.19 <-1000 -16.10 -12.83

0.90 -0.04 -1.01 -0.09 -0.04 -1.01 -0.10 < -1000 -20.32 -8.24
500 0.30 -0.04 -0.64 -0.28 -0.23 -0.64 -0.29 < -1000 -10.78 -19.36

0.50 -0.04 -0.74 -0.24 > 1000 -0.74 -0.24 < -1000 -12.86 -15.91
0.70 -0.03 -0.86 -0.18 -0.03 -0.85 -0.18 -510.54 -16.06 -12.25

0.90 0.04 -1.01 -0.09 -0.04 -1.01 -0.09 < -1000 -20.26 -8.23
1000 0.30 -0.02 -0.64 -0.28 -0.03 -0.64 -0.28 <-1000 -10.78 -17.79
0.50 -0.02 -0.74 -0.24 -0.03 -0.74 -0.24 <-1000 -12.88 -15.02
0.70 0.03 -0.86 -0.18 -0.03 -0.86 -0.18 -251.05 -16.03 -12.13

0.90 0.04 1.01 -0.09 -0.04 -1.01 -0.09 < -1000 -20.26 -8.16

Note: Complete = Complete Data condition; MCAR = Missing Completely At Random Data condition; MNAR = Missing
Not At Random Data condition; Corr = Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed

indicator.
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Type I Error Rates For Those Simulations (Frequencies in Parentheses) That Converged when
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the Latent Slope Interaction Parameter (y2g) was set Equal to 0 For the Three Missing Data
Conditions (Complete, MCAR, MNAR).

Corr N Rel Complete Data MCAR Data MNAR Data
Wen Duncan  Schumacker Wen Duncan  Schumacker Wen Duncan  Schumacker
0.20 250 0.30 0.30 0.09 0.03 0.29 0.10 0.03 0.10 0.003 0.04
(868) 427) (133) (824) (466) (142) (320) (17 218)
0.50 0.24 0.05 0.02 0.22 0.06 0.03 0.03 0.004 0.05
(1098) (257) (112) 961) (301 (149) (137) (20) (267)
0.70 0.14 0.03 0.02 0.15 0.04 0.03 0.01 0.01 0.05
694) (148) (118) (734) (203) (126) (25) (36) (263)
0.90 0.05 0.02 0.03 0.06 0.03 0.03 0.02 0.03 0.05
(258) (105) (138) (320) (140) (143) (1) (146) (229)
500  0.30 0.37 0.07 0.02 0.31 0.08 0.03 0.05 0.001 0.06
(1060) (360) (110) (885) (405) (137) (155) 5 77)
0.50 0.28 0.04 0.02 0.25 0.05 0.03 0.01 0.001 0.07
(1389) 207) (1 (1154) (246) (134) (29) (4) (330)
0.70 0.17 0.02 0.02 0.16 0.03 0.02 0.001 0.004 0.07
(832) (109) (112) (783) (170) (116) (7) (19) (371)
0.90 0.04 0.01 0.03 0.04 0.02 0.03 0.01 0.04 0.06
(204) (68) (129) 219) (80) (140) (53) (177 (315)
1000  0.30 0.43 0.06 0.02 0.37 0.07 0.02 0.01 0.00 0.07
(1248) (296) a1 (1069) (354) (117 41 ©) (370)
0.50 0.33 0.03 0.02 0.28 0.04 0.02 0.001 0.001 0.09
(1653) (140 (113) (1381) (208) (107 3) @) (454)
0.70 0.18 0.02 0.03 0.16 0.02 0.02 0.00 0.001 0.10
(920) (78) (128) (800) (105) 90) 0) (4) (522)
0.90 0.03 0.01 0.03 0.04 0.01 0.02 0.003 0.04 0.09
(138) €)) (124) (198) (58) (120) a7 (77 (425)
.50 250  0.30 0.15 0.04 0.03 0.15 0.05 0.03 0.15 0.002 0.03
(603) (212) (134) (581) (256) (147) 426) ) (171
0.50 0.12 0.03 0.03 0.12 0.04 0.02 0.06 0.002 0.04
(608) (153) 130y (593) (207) (118) (140) 9 (222)
0.70 0.09 0.03 0.03 0.09 0.03 0.02 0.01 0.003 0.05
457) (127) (123) 447) (152) 110) 32) (16) 247)
0.90 0.05 0.02 0.03 0.05 0.03 0.02 0.02 0.01 0.06
(245) (107) (153) (242) (125) (118) (92) 27 (308)
500 0.30 0.16 0.03 0.02 0.13 0.04 0.02 0.11 0.00 0.05
(647) (144) (118) (542) (184) (117) (276) (V) (239)
0.50 0.15 0.02 0.02 0.14 0.03 0.02 0.02 0.001 0.05
(733) (112) (119) (680) (170) (110) 37 3) (243)
0.70 0.10 0.02 0.02 0.09 0.02 0.03 0.002 0.001 0.07
493) (80) (109) 452) (113) (124) (7 5 (334)
0.90 0.04 0.02 0.02 0.05 0.02 0.02 0.01 0.004 0.09
207) (85) (119) (227) (99) (110) 35) 22) (441)
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1000 0.30

0.90

0.21
(870)
0.17
(823)
0.11
(530)
0.04
(188)

0.08
(316)
0.09
(439)
0.07
(372)
0.04
(214)

0.08
(290)
0.11
(524)
0.08
(420)
0.04
(213)

0.09
(295)
0.11

(567)
0.08

(418)
0.04
(205)

0.03
(139
0.02
(94)

0.01
(57

0.0

(53)

0.03
(163)
0.03
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0.16
(665)
0.15
(755)
0.10
(514)
0.04
217

0.10
(399)
0.10
(448)
0.07
(358)
0.04
(215)

0.07
(293)
0.10
(466)
0.08
391)
0.05
(247)

0.08
(296)
0.10
(487)
0.08
397)
0.04
(216)

0.03

(160)
0.03
(137)
0.02
(98)

0.02
(83)

0.04
221)
0.04
(173)
0.02
(118)
0.02
(118)

0.03
(139)
0.03
(133)
0.02
(111
0.02
(118)

0.03
(123)
0.02
(89)
0.01
(72)
0.02
4

0.03
(124)
0.03
(132)
0.03
(135)
0.03
(139)

0.02
(110)
0.02
(82)
0.02
(110)
0.02
(117)

0.02
91)
0.02
(106)
0.02
(100)
0.02
(112)

0.05
(123)
0.02
(108)
0.02
(106)
0.03
(123)

0.07
(168)
0.003

N
0.001
3)
0.01
(23)

0.20
(583)
0.08
(206)
0.03
(84)
0.01
(38)

0.15
(389)
0.04
(98)
0.01
(38)
0.01
(40)

0.08
(190)
0.01
(17)
0.01
@31
0.002
(12)

0.00
)
0.00
0)
0.00
0
0.001
N

0.001
@
0.001
3)
0.003
(14)
0.003
(16)

0.00
()
0.00
()
0.0002
)
0.001
4)

0.00
0
0.00
0)
0.00
)
0.00
O

0.07
(326)
0.08
(380)
0.09
(439)
0.12
(622)

0.05
(238)
0.04
(196)
0.05
(253)
0.06
(299)

0.05
(238)
0.07
(323)
0.06
(308)
0.09
(450)

0.06
(310)
0.09
(424)
0.10
(497)
0.14
(713)

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr =
Latent intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.
A liberal condition is where the Type I error rate is above 0.75, and is presented in bold text; a

conservative condition is where the Type I error rate is below 0.25, and is presented in

underlined text.
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Appendix A

SAS Code for Generating the Latent Growth Data

libname fdata "C:\Ian\PhD Dissertation";
libname temp "C:\Ian\temp";

run;

OPTIONS mprint symbolgen;

SMACRO

COMPUTE (REPS, N, WAVES, M _INTx, V_INTx, M_SLPx, V_SLPx, PHIX, m_intz, v_intz,
m_slpz, v_slpz, phiz,

m_inty, v_inty, m_slpy, v_slpy, phiy, rel, PARM);

/**************-k**'k**~k~k********************************************************
kkkkkkk Kk

KA KKK KA Kk DATA GENERATION

EE R R R R R R
*****************************7‘(********************'k-k**k*************************
********/

$do j = 1 %$to &reps;

data fdata.semt&j;

array errx errxl-errx&n; *arrays for error terms;

array errz errzl-errz&n;

array erry erryl-erryé&n;

array alphx alphxl-alphx&n; *arrays for latent intercepts and slopes;
array betax betaxl-betaxé&n;
array alphz alphzl-alphzé&n;
array betaz betazl-betazéan;
array alphy alphyl-alphyé&n;
array betay betayl-betay&n;

array betaxz betaxzl-betaxzé&n; *latent slope interaction array;

array var_x var_ xl-var_x&waves;
array var_z var_ zl-var_z&waves;
array var_y var_yl-var_y&waves;
array var_xXz var_xzl-var_xz&waves;

seedl=-11;
seed2=-22;
seed3=-33;
seed4=-44;

* generating the data ;

do i=1 to &n;
errx(i) = rannor(seedl); * error term for X, root of variance X random;
errz (i) = rannor(seedl); *error term for Z;
erry(i) = rannor(seedl); * error term for Y;



alphx (i)
betax (i)

&m_slpx + (sqgrt(&corx)
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&m_intx + rannor (seed2) *sqrt(&v_intx); *latent intercept X;
* alphx(i)) +

rannor (seed3) *sgrt (&v_slpx); *latent slope X;
alphz (i) = &m_intz + rannor(seed2)*sgrt(&v_intz); *latent intercept Z;
betaz (i) = &m_slpz + (sgrt(&corz) * alphz(i)) +
rannor (seed3) *sgrt (&v_slpz); *latent slope Z;
betaxz (i) = betax(i) * betaz(i); * latent interaction of slopes;
alphy (i) = &m _inty + rannor (seed2)*sqrt(&v_inty) + l*alphx(i) +
3*alphz (1) ;

betay (i) = &m_slpy + (sgrt(&cory)

* alphy(i)) +

rannor (seed3) *sgrt (&v_slpy) + 1.5 #*betax(i) + 1l.4*betaz(i) + 2*betaxz(i):

k=0;

var_x(1) = alphx(i) + O*betax(i) +
var_x(2) = alphx(i) + l*betax(i) +
var_x{(3) = alphx(i) + 2*betax(i) +
var_x(4) = alphx(i) + 3*betax(i) +
var_z{(1l) = alphz(i) + O*betaz(i) +
var_z(2) = alphz(i) + 1*betaz(i) =+
var_z(3) = alphz(i) + 2*betaz(i) +
var_z(4) = alphz(i) + 4*betaz (i) +
var_y(l) = alphy(i) + O*betay(i) +
var_y(2) = alphy(i) + 1l*betay(i) +
var_y(3) = alphy(i) + 3*betay(i) +
var _y(4) = alphy(i) + 9*betay (i) +

output;
end;

keep var_ xl-var_ x&waves var_ zl-var_z&waves
send;

* generating the x and z means;

$do j = 1 %to &reps;

proc means data=fdata.semt&j; var var x1;
run;

’

rannor (seed4) *sgrt ( (1-&rel) *1
rannor (seed4) *sqgrt ( (1-&rel) *3
((
((

)
)
) .
)

7

rannor (seed4) *sqgrt ( (1-&rel) *6

rannor (seed4) *sqrt ( (1-&rel) *9) ;
rannor (seed4) *sqgrt { (1-&rel) *1) ;
rannor (seed4) *sqgrt ( (1-&rel) *3) ;
rannor (seed4) *sqgrt ( (1-&rel) *6) ;
rannor (seed4) *sqgrt ( (1-&rel) *9);
rannor (seed4) *sqrt ((1-&rel) *1) ;
rannor (seed4) *sqgrt ( (1-&rel) *3) ;
rannor (seed4) *sqrt ( (1-&rel) *6) ;
rannor (seed4) *sqgrt ( (L-&rel) *9) ;

var_yl-var y&waves;

ods output summary=fdata.mxtl;

data fdata.mxtl; set fdata.mxtl; keep var_xl mean; run;

proc means data=fdata.semt&j; var var x2;
run;

ods output summary=fdata.mxt2;

data fdata.mxt2; set fdata.mxt2; keep var x2 mean; run;

proc means data=fdata.semt&j; var var x3;
run;

ods output summary=fdata.mxt3;

data fdata.mxt3; set fdata.mxt3; keep var x3 mean; run;

proc means data=fdata.semt&j; var var x4;
run;

ods output summary=fdata.mxt4;

data fdata.mxt4; set fdata.mxt4; keep var_x4 mean; run;
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proc means data=fdata.semté&j; var var zl; ods output summary=fdata.mztl;
rumn;

data fdata.mztl; set fdata.mztl; keep var_zl mean; run;

proc means data=fdata.semté&j; var var_z2; ods output summary=fdata.mzt2;
run;

data fdata.mzt2; set fdata.mzt2; keep var z2 mean; run;

proc means data=fdata.semt&j; var var z3; ods output summary=fdata.mzt3;
run;
data fdata.mzt3; set fdata.mzt3; keep var_z3 mean; run;

proc means data=fdata.semt&j; var var z4; ods output summary=fdata.mzt4;
run;
data fdata.mzt4; set fdata.mzt4; keep var_z4 mean; run;

data fdata.tmeansé&j;

merge fdata.mxtl fdata.mxt2 fdata.mxt3 fdata.mxt4 fdata.mztl fdata.mzt2
fdata.mzt3 fdata.mzt4;

run;

%end;

* generating the x and z means for every observation;
$do j = 1 %to &reps;

data fdata.tmeané&j;

set fdata.tmeansé&j;

array mx mxl - mx&waves; *array for means;

array mz mzl - mz&waves; *array for means;

do i= 1 to &n;

mx (1) = var x1 mean;
mx (2) = var_x2 mean;
mx (3) = var x3 mean;
mx{4) = var x4 mean;
mz(l) = var_zl mean;
mz (2) = var z2 mean;
mz (3) = var_ z3 mean;
mz (4) = var_z4_mean;
output;
end;
send;

%3do j = 1 %to &reps;

data fdata.semté&j;

merge fdata.tmean&j fdata.semté&j;
run;

$end;
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$do j = 1 %to &reps;

data fdata.sem&j;

array phix phixl-phix&n; *arravs for error terms;
array phiz phizl-phizé&n;

array phiy phiyl-phiyén;

array alphx alphxl-alphxé&n; *arrays for latent intercepts and slopes;
array betax betaxl-betaxé&n;
array alphz alphzl-alphzé&n;
array betaz betazl-betazé&n;
array alphy alphyl-alphyé&n;
array betay betayl-betayé&n;

array betaxz betaxzl-betaxzén; *latent slope interaction array;

array var_XxX var xl-var_x&waves;

array var_z var_zl-var_z&waves;

array var_y var yl-var_y&waves;

array var_Xz var_xzl-var_xz&waves;

array mx mxl - mx&waves; *array for means;
array mz mzl - mz&waves; *array for means;

set fdata.semt&j;

var_xz(1l) = (var_x(1) - mx(1)) * (var z(1) - mz(1) );
var_xz(2) = (var x(2) - mx(2)) * (Var z(2) - mz(2) );
var_xz(3) = (var_x(3) - mx(3)) * (var_z(3) - mz(3));
var_xz(4) = (var_x(4) - mx(4)) * (var z(4) - mz(4));

output;

keep var_xl-var_ x&waves var_zl-var z&waves var_xzl-var_xz&waves var_vyl-
var_y&waves;
send;

/* MODIFYING THE COMPLETE DATA TO INCLUDE 10 PERCENT MISSING from T2, extra 10
perc from T3, and 10 perc from T4 */

%do j = 1 %to &reps;

data fdata.semmiss&j; set fdata.semé&j;
seedl=(123);

missl = abs{(rannor (seedl));

IF (missl >= 1.30) then remove x2 = .;
if (missl < 1.30) then remove x2 = 1;

var_ X2 = var_X2 * remove_X2;
var_X3 = var_ X3 * remove_xX2;
var_x4 = var_x4 * remove_x2;
run;
$end;

%do j = 1 %to &reps;
data fdata.semmiss&j; set fdata.semmissé&j;
seed2=(-11) ;
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miss2 = abs(rannor (seed2));

IF ((remove_x2 = 1) & (miss2 >= 1.30)) then remove x3 = .;
if ((remove_x2 = 1) & (miss2 < 1.30)) then remove x3 = 1;
var_x3 = var_x3 * remove_ x3;

var_x4 = var_x4 * remove X3;

run;

%end;

%do j = 1 %to &reps;
data fdata.semmiss&j; set fdata.semmissé&j;

seed3 = (-55);

miss3 = abs(rannor (seed3));

IF ((remove_x2 = 1) & (remove_x3 = 1) & (miss2 >= 1.30)) then remove x4 = .;
if ((remove_x2 = 1) & (remove_x3 = 1) & (miss2 < 1.30)) then remove x4 = 1;

var_x4 = var_x4 * remove xX4;
run;
send;

/* MODIFYING THE COMPLETE DATA TO INCLUDE 10 PERCENT MISSING NOT AT RANDOM* /
ods listing;

/* standardizing of Y1 scores to 0 mean and std of 1%/

%do j = 1 %to &reps;

proc standard data=fdata.sem&j m=0 std = 1 out=stan&j;

var var_yl; run;

data stan&j;
set stan&j;

if (var_yl »>= abs(1.3)) then remove x2 = .;
if (var_yl < abs(1.3)) then remove x2 = 1;
var_yl = var_yl * remove X2;

var_X2 = var_X2 * remove_x2;

var_x3 = var_X3 * remove_x2;

var_x4 = var_x4 * remove Xx2;

run;

/* standardizing of remaining Y2 scores to 0 mean and std of 1%/
proc standard data=stan&j m=0 std = 1 out=stan&j;
var var_y2; run;

data stané&j; set stan&j;

if (var_y2 »= abs(1.3)) then remove_x3 = .;
if (var_y2 < abs(1.3)) then remove x3 = 1;
var_y2 = var_y2 * remove_x3;

var_x3 = var_x3 * remove X3;

var_x4 = var_x4 * remove_ x3;

run;

/* standardizing of remaining Y3 scores to 0 mean and std of 1%/
proc standard data=stan&j m=0 std = 1 out=stan&j;
var var_y3; run;



data stané&j; set stané&j;

if (var_y3 »>= abs(1.3)) then remove x4= .;
if (var_y3 < abs(1.3)) then remove x4 = 1;

var_y3 = var_y3 * remove_x4;
var_x4 = var_x4 * remove_ x4;
run;

data fdata.semmnar&j; set stan&j;
%end;
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Appendix B

SAS Syntax for the Wen Latent Growth Interaction Model

/*******************‘k**************‘k‘k*************’k****************************
*******/

proc calis ucov aug method=ml data=fdata.sem9 maxiter=5000 maxfunc=5000
outram=temp.wenfit;

title "CALIS output for Wen model sample ";

ods output iterstop = weniter; ods output convergencestatus = temp.wenconverge;
ods output stdlatenteg = temp.wenstdlatenteq;
linegs

/* measurement model for y : assume the tau vector is a mistake in the
note */

var_yl = Intercept + F etal + el,
var_y2 = Intercept + F_etal + 1 F_eta2 + ez,
var_y3 = Intercept + F_etal + betay3 F_eta2 + e3,
var_y4 = Intercept + F_etal + betay4 F_eta2 + e4,

/* measurement model for x and z */

var_x1 = taul Intercept + 1 F_xil +
es,

var_x2 = tau2 Intercept + 1 F xil + 1 F_xi2 +
e6,

var_x3 = tau3 Intercept + 1 F xil + 132 F_xi2 +
e7,

var x4 = tau4 Intercept + 1 F _xil + 142 F xi2 +
es,

var_zl = tau5 Intercept + 1 F xi3 +
€9,

var_z2 = taué Intercept + 1 F xi3 + 1 F_xi4 +
elo,

var_z3 = tau7 Intercept + 1 F_xi3 + 174 F xi4 +
ell,

var_z4 = tau8 Intercept + 1 F xi3 + 184 F_xi4 +
el2,

var_xz2 = tau9 Intercept + taué F xil + taué F xi2 + tau2 F xi3

+ tau2 F_xi4
+ F xil3 + F xi14 + F xi23 +
F_xi24 + el3,
var_xz3 = taull Intercept + tau7 F_xil + 110_2 F xi2 + tau3 F_xi3
+ 110_4 F_xi4
+ F xil3 + 174 F xil4 + 132 F xi23 +
110_8 F_xi24 + el4,
var_xz4 = taull Intercept + tau8 F_xil + 111 _2 F xi2 + tau4 F_xi3
+ 111 4 F_xi4
+ F_x113 + 184 F xil4 + 142 F_xi23 +
111 8 F_xi24 + el5,

/* structural model */
F_etal = gll1 F_xil + gl3 F_xi3 + gl5 F_xil3 + d1,



F.—.
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eta2 = g22 F_xi2 + g24 F xi4 + g28 F_xi24 + 42;

/*variance parameters */

_xil F_xi2 F_xi3 F_xi4 F_xil3 F_xil4 F xi23 F xi24 =

phill phi22 phi33 phi44 phi55 phi66 phi77 phiss,
5-el5 = thl-thill,
l-e4 dl1-d2 = anyl-any6; /* unconstrained parameters I added #*/

/* mean parameters
Intercept £ xil = 0O
Intercept £ xi2 = 0,
Intercept £ xi3 = 0
Intercept £ xi4 = 0
Intercept £ xil13 = phi31l,
Intercept £ xil4 = phi4l,
Intercept £ xi23
Intercept £ xi24 phi42,

/* cov parameters */

F_xil-F xi4 = phi2l phi31l phi32 phi4l phi42 phi43,

F_xil3 F_xil4 F_xi23 F _xi24 = phié65 phi75 phi76 phi85 phig8e phis7,
el3 e6 = tho2,

|
o]
=
.
[P8]
N

el4 e7 = thlo_3,

el5 e8 = thll 4,

el3 el0 = thos,

el4 ell = thlo 7,

el5 el2 = thll 8;

gramming statements for parameter constraints */
= tau2*taub6;

= tauld*tau’7;

= taud*taus8;

= tau7+*132;

= tau3*174;

= 132*174;

= tau8*1l42;

= tau4*184;

= 142*184;

= phill * phi33 + phi3l * phi3l;
= phill * phi44 + phi4l * phi4l;
= phi22 * phi33 + phi32 * phi32;
= phi22 * phi44 + phi42 * phi42;
= phill * phi43 + phi31l * phi4l;
= phi21 * phi33 + phi3l * phi32;
= phi2l * phi43 + phi3l * phi42;
= phi2l * phi43 + phi32 * phi4l;
= phi2l * phi44 + phi4l * phi42;
= phi22 * phi43 + phi32 * phi42;
= phi22 * phi44 + phi42 * phid2;
taué * taué * th2 + phi33 * th2 + phi44*th2 + tau2*tau2+*thé + phill*thé +

thée + th2*thé;
tau7*tau7*th3 + phi33*th3 + 174*174*phi44*th3 + taul3*tau3*th7 +
th7 + 132*132*phi22+*th7 + th3*th7;
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thll = tauB8*tau8*th4 + phi33*th4 + 184*184*phid44+*thd + taud*taud*ths +
phill*th8 + l42*142*phi22+*th8 + th4a*ths;

th92 = taué * th2;

th96 = tau2 * thé;

thl0_3 = tau7 * th3;
thl0_7 = tau3 * th7;
thll 4 = tau8 * th4;
thll 8 = tau4 * ths;

* outram statement for fit indices for WEN model:
data temp.wenfit2at; set temp.wenfit;
keep _name_ _estim ;

data temp.wenfit2bt; set temp.wenfit;
keep _name _stderr ;

proc transpose data=temp.wenfit2at out=temp.wenfit2a let;
proc transpose data=temp.wenfit2bt out=temp.wenfit2b let;

data temp.wenfit2bl;
set temp.wenfit2b;
132_str = 132;
142_Str 142;

174 _str = 174;
gll_str = gli;
gl3_str = gl3;
gl5_str = gl5;
g22_str = g22;
g24_str = g24;

g28 str = g28; run;

It

data temp.wenfit2b2; set temp.wenfit2bil;
keep 132_str 142_str 174 str gll_str gil3_str gl5_str g22_str g24 str g28_str;
run;

/* merging of the two data rows to get estimates and std errors on one line for
each model */

data temp.wenfitx;

merge temp.wenfit2a temp.wenfit2b2; run;

/* merging in ODS output of convergence*/
data temp.wenfits;

merge temp.wenfitx temp.wenconverge;

run;

/* pulling in standardized estimate from ODS filex/
data temp.std temp;

set temp.wenstdlatenteq;

if parameter3 = 'F_xiz4‘;

g28std = coefficient3;

run;



data temp.g28std;
set temp.std temp;
keep g28std;

run;

data temp.wenfits;
merge temp.wenfits temp.g28std;
run;

/* adding of model index value */
data temp.wenfits;

set temp.wenfits;

model = 1;

run;

/* pulling in iterations from ODS filex/

data itr_ temp;

set weniter;

if Labell = 'Iterations’;
iter = nvaluel;

data itr;
set itr temp;
keep iter;

data temp.wenfits;
merge temp.wenfits itr;

data temp.wenfits; set temp.wenfits;
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keep status model n fit nparm df chisquar p_chisq gfi agfi rmseaest
compfiti bb_nonor bb_normd bol_rhol bol del2 centrali

132 132 _str 142 142 _str 174 174_str 184 184 str giil gll_str gl3 gl3 str
gl5 gl5_str g22 g22_str g24 g24 str g28 g28_str

g28std iter;
run;

/* merging all Wen replicates into one dataset*/

proc append base=fdata.zsemfits wen force;

run;
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Appendix C

SAS Syntax for the Duncan Latent Growth Interaction Model

/******************************************************************************
**************/

Fhkhkkkhhhhh v hhkFrA kA hhF AR A * ok hxx 2
/ DUNCAN MODEL
*************************************/
/******************************************************************************

**************/

%3do j = 1 %to &reps;

proc calis ucov aug method=ml data=fdata.sem&j maxiter=5000 maxfunc=5000
outram=dunfit;

title "CALIS output for Duncan model sample &3 ";

ods output iterstop = dunciter;

ods output convergencestatus = dunconverge;
ods output stdlatenteg = dunstdlatenteq;
lineqgs

/* measurement model for y : assume the tau vector is a mistake in the

note */

var_yl = F_etal + el,
var_y2 = F_etal + 1 F_eta2 + ez,
var_y3 = F_etal + betay3 F_eta2 + e3,
var_y4 = F_etal + betay4 F_eta2 + e4,

/* measurement model for x and z */

var_xl1 = taul Intercept + 1 F_xil +
e5b,

var x2 = tau2 Intercept + 1 F xil + 1 F xi2 +
eo6,

var_x3 = tau3 Intercept + 1 F_xil + 132 F xi2 +
e7,

var_x4 = tau4 Intercept + 1 F_xil + 142 F xi2 +
es,

var_zl = taub5 Intercept + 1 F xi3 +
e9,

var_z2 = taué Intercept + 1 F xi3 + 1 F_xi4 +
elo,

var_z3 = tau7 Intercept + 1 F_xi3 + 174 F xi4 +
ell,

var_z4 = tau8 Intercept + 1 F_xi3 + 184 F xi4 +
el2,

var xz2 = tau9 Intercept + taué F_xil + taué F xi2 + tauz F_xi3

+ tau2 F_xi4
+ 1 F xi24 + el3,
var_xz3 = taull Intercept + tau7 F_xil + 110 2 F_xi2 + tau3 F xi3
+ 110_4 F _xi4
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+ 110_8 F_xi24 + els,
var_xz4 = taull Intercept + tau8 F_xil + 111 2 F_xi2 + tau4 F_xi3
+ 111 4 F xi4
+ 111 8 F_xi24 + el5,

/* structural model */
F_etal = gl1 F_xil + gl3 F_xi3 + di,
F_eta2 = g22 F_xi2 + g24 F_xi4 + g28 F xi24 + d2;

std /*variance parameters */
F_xil F_xi2 F _xi3 F_xi4 F_xi24 =
phill phi22 phi33 phi44 phiss,
e5-el5 = thl-thll,
el-e4 dl-d2 = anyl-any6; /* unconstrained parameters I added */

cov /* mean parameters */
Intercept £ xil = 0,
Intercept £ xi2 0
Intercept f xi3 0,
Intercept £ xi4 0,
Intercept £ xi24 = phi42, /*does this need to be there;
/* cov parameters */
F_xil-F_xi4 = phi2l phi31 phi32 phi4l phi42 phi43,

’

h

el3 e6 = tho2,
el4 e7 = thlo_3,
el5 e8 = thll 4,

el3 el0 = thos,
el4 ell = thio 7,
el5 el2 = thll 8;

/* programming statements for parameter constraints *x/
taud9 = tau2*taué;

taull0 = tau3*tau7;

taull = tau4+*tau8; *duncan ms has taudXtau7;

110_2 = tau7+*132;
110 4 = tau3*174;
110_8 = 132*174;
111_2 = tau8*142;
111 4 = tau4*184;

111_8 = 142*184;

il

phi55 = phi22 * phi44 + phi42*phi4d2;

th9 = tau2*tau2+*thé + taué*tau6*th2 + phi22*theé + phid44*th2 + th2*the;

thl0 = tau3*tau3*th7 + tau7+*tau7+th3 + 132*132*phi22*th7 + 174*174*phidd*th3 +
th3*th7;

thll = taud4*taud*th8 + tau8*taus8*thd + 142*142*phi22*th8 + 184*184*phid4d*thd +
tha*ths;

tho2 tau6 * th2;

th96 = tau2 * thé;

thl0_3 = tau7 * th3;

It
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]

thio_7 tau3d * th7;
thil 4 tau8 * th4;
thll 8 = tau4 * ths;
*missing constraint on ka(s) of phi(4,2);

I

* outram statement for fit indices for Duncan model;
data dunfit2at; set dunfit;
keep _name__estim ;

data dunfit2bt; set dunfit;
keep _name_ _stderr ;

proc transpose data=dunfit2at out=dunfit2a let;
proc transpose data=dunfit2bt out=dunfit2b let;

data dunfit2bil;
set dunfit2b;
132 _str = 132;
142 str = 142;
174 str = 174;
gll_str = gli;
gl3_str = gl3;
gls_str = gl5;
g2z _str = g22;
g24_str = g24;
g28_str = g28;

data dunfit2b2; set dunfit2bil;
keep 132 _str 142_str 174_str gll_str gl3 str gls_str g22_str g24_str g28_str;

/* merging of the two data rows to get estimates and std errors on one line for
each model */

data dunfitx;

merge dunfit2a dunfit2b2;

/* merging in ODS output of convergence*/
data dunfits;
merge dunfitx dunconverge;

/* pulling in standardized estimate from ODS file*/
data std temp;

set dunstdlatenteq;

if parameter3 = 'F_oxi24';

g28std = coefficient3;

data g28std;
set std temp;
keep g28std;

data dunfits;
merge dunfits g28std;



/* adding of model index value */
data dunfits;

set dunfits;

model = 2;

/* pulling in iterations from ODS file=*/

data itr_temp;

set dunciter;

if Labell = 'Iterations’';
iter = nvaluel;

data itr;
set itr temp;

keep iter;

data dunfits;
merge dunfits itr;

data dunfits; set dunfits;
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keep status model n fit nparm df chisquar p_chisqg gfi agfi rmseaest
compfiti bb_nonor bb_normd bol_rhol bol del2 centrali

132 132 str 142 142_str 174 174_str 184 184 str gill gll_str gl3 gl3 str
gl5 gl5_str g22 g22_ str g24 g24_str g28 g28_str

g28std iter;

/* merging of all Duncan replicates to one dataset */

proc append base=fdata.zsemfits dun force;

%end;
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Appendix D

SAS Syntax for the Schumacker Latent Growth Interaction Model

/****-k'k****************‘k**‘k***************‘k************************************
EE R o I S

[ R R R Kk SCHUMACKER FACTOR SCORE MODEL

R o I e a3
*‘k****‘k****v\'********************7‘(*****'k***'k'k*******'A‘**‘k***‘k***************'k****

**************/

%do j = 1 %to &reps;

proc calis ucov aug method=ml data=fdata.sem&j maxiter=5000 maxfunc=5000
outram=temp.schfit t&j
noprint outstat=temp.schumout_t&j;
title "CALIS output for Schumacker model sample &j for creating factor scores®;
lineqgs
/* measurement model for y : assume the tau vector is a nmistake in the
note */

var yl = F_etal + el,
var_y2 = F_etal + 1. F_eta2 + ez,
var_y3 = F_etal + betay3 F_eta2 + e3,
var_ y4 = F_etal + betay4 F eta2 «+ e4,

/* measurement model for x and z */

var_x1 = taul Intercept + 1 F xil +
eb,

var_x2 = tau2 Intercept + 1 F xil + 1 F_xi2 +
e6,

var_x3 = tau3 Intercept + 1 F_xil + 132 F xi2 +
e7,

var_ x4 = tau4 Intercept + 1 F_xil + 142 F xi2 +
es,

var_zl = tau5 Intercept + 1 F xi3 +
eg,

var_z2 = taué Intercept + 1 F xi3 + 1 F_xi4 +
elo,

var_z3 = tau7 Intercept + 1 F xi3 + 174 F xi4 +
ell,

var_z4 = tau8 Intercept + 1 F_xi3 + 184 F xi4 +
el2;

std /*variance parameters */
F_xil F _xi2 F_xi3 F_xi4 = phill phi22 phi33 phi44,
F_etal = phiyl, F _eta2 = phiy2,
e5-el2 = thl-ths,
el-e4 = anyl-any4; /* unconstrained parameters I added */

cov /* mean parameters */
Intercept £ xi1 g,
Intercept £ xi2 0,

]
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Intercept £ xi3 o,
Intercept £ xi4 = 0,

/* cov parameters */
F_xil-F_xi4 = phi2l phi31l phi32 phi4l phi42 phi43,
F_etal F_eta2 = cetal2,
F_etal F_xil1 = etaxyll,
F etal F _xi3 = etazyll,
F_eta2 F_xi2 = etaxy22,
F_eta2 F xi4 = etazy22;

J kR R R Kk ko factor score creation for Schumacker model
‘k*******‘k**‘k************/

proc score data=fdata.sem&j score=temp.schumout_t&j out=temp.schumxzfacs&ij;
var var_xl1 var_x2 var_x3 var_x4 var_zl var_z2 var_z3 var_z4 var_yl var_y2
var_y3 var_vé4;

Fend;
/xxx*kxk%x CREATING OF FACTOR SCORE INTERACTIONS FOR SCHUMACKER MODEL IRk xkk kK [

3do j = 1 %to &reps;

data temp.schumf2&j;
set temp.schumxzfac&j;
F_xil3 = F_xil * F xi3;
F xi24 = F_xi2 * F_xi4;

data temp.schumf2&j;
set temp.schumf2&j;
keep F_xil F _xi2 F_xi3 F_xi4 F_xi24 F etal F_eta2;

%end;

/**********k****************************'k*************************'k*********‘k***
* %

FRE K I AKX A KK CREATING OF SCHUMACKER INTERACTION MODEL USING CALIS

A KT I Kk khhk

*******************************k************************************************

**/
3do j = 1 %to &reps;
proc calis ucov aug method=ml data=temp.schumf2&j maxiter=5000 maxfunc=5000
outram=schfit
outstat=schumout all nomod;
ods output iterstop = schiter;
ods output convergencestatus = schconverge;

ods output stdmanifesteq = schstdlatenteq;

title 'CALIS output for Schumacker model sample &j, actual model';
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linegs
F_etal = gll F_xil + g13 F_xi3 + 41,
F_eta2 = g22 F xi2 + g24 F_xi4 + g28 F xi24 + d2;

std /*variance parameters */

F xil = 1,
F xi2 = 1,
dl-d2 = anyl any2; /* unconstrained parameters I added */

cov /* mean parameters */
/* cov parameters */
F xil F xi2 = phil2,
F_xi3 F_xi4 = phi34;
run;

* outram statement for fit indices for SCHUMACKER model;
data schfit2at; set schfit;
keep _name_ _estim ;

data schfit2bt; set schfit;
keep _name_ _stderr ;

proc transpose data=schfit2at out=schfit2a let;
proc transpose data=schfit2bt out=schfit2b let:

data schfit2bil;
set schfit2b;
132 _str = 132;
l42_str = 142;
174 _str = 174;
gll str = gli;
gl3_str = gl3;
gls_str = glb;
g22_str = g22;
g24_str = g24;
g28_str = g28; run;
ods trace off;

data schfit2b2; set schfit2bil;
keep 132 _str 142_str 174_str gll_str gl3_str glb_str g22_str g24_str g28 str;
run;

/* merging of the two data rows to get estimates and std errors on one line for
each model */
data schfits;
merge schfit2a schfit2b2; run;

/* merging in ODS output of convergence#/
data temp;

merge schfits schconverge; run;

data schfits;
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/* pulling in standardized estimate from ODS file */

data std_temp;
set schstdlatenteq;

if parameter3 = 'F_xi24';
g28std = coefficient3;
run;

data g28std;
set std _temp;
keep g28std;
run;

data schfits;
merge schfits g28std;
run;

/* adding of model index wvalue */
data schfits;

set schfits;

model = 3;

/* pulling in iterations from ODS filex/
data itr_temp;
set schiter;

if Labell = 'Iterations';
iter = nvaluel;

run;

data itr;

set itr_ temp;
keep iter;

data schfits;
merge schfits itr; run;

/* */
data schfits; set schfits;

keep status model n fit nparm df chisquar p chisqg gfi agfi rmseaest
compfiti bb_nonor bb_normd bol_rhol bol del2 centrali

132 132 _str 142 142 str 174 174_str 184 184_str gll gll_str gl3 gl3 str
gls gl5_str g22 g22_str g24 g24_str g28 g28 str

g28std iter;

/* merging of all Schumacker replicates into one dataset */

proc append base=fdata.zsemfits_ schum force;

run;

%end;
/* END OF SCHUMACKER MODEL* /
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data fdata.ztotal;

set fdata.zsemfits dun fdata.zsemfits schum;
run;
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Appendix E

Results of the CFI Analyses for the MCAR and MNAR Data Conditions

MCAR Data Condition Analyses
The ANOVA in Table 5 for MCAR data shows significant effects (p < 0.05) for all main effects
and their interactions. The overall model effect was significant (Fjo7. sogs71) = 12805.37, p<0.01,
partial eta’ = 0.72). The four-way interaction of latent interaction model type, latent intercept-
slope correlation, sample size, and reliability of the observed indicators, was significant (F4, sags71)
=2.22, p<0.01, partial eta® < 0.01). However, as with the Complete data, only those effects with
a partial eta-squared greater than 0.06 were considered strong enough to warrant further
investigation. The ANOVA effects that met this criterion were for the two-way interactions of
latent interaction model with reliability of the observed indicators (0.12) and the main effects of
reliability (0.10) and latent interaction model (0.69), according to Olejnik and Algina (2000).

To examine these significant two-way interactions, simple plot of the average CFI values
for each latent growth interaction model with both level of reliability of the observed indicators
(0.30, 0.50, 0.70, 0.90) and latent intercept-slope correlation (0.20, 0.50, 0.70) on the X-axis.
These simple plots are given in Figure ApxE-F1.

Insert Figure ApxE-F1 about here

Seen clearly in the simple plot is the difference in pattern of average values of the CFI for the
Schumacker model from both the Wen and the Duncan models across the levels of indicator

reliability. Both the Wen and the Duncan model produced stable values around the average value
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of 0.90, while the Schumacker model showed a trend of increasing CFI values as reliability
increased, with values increasing from 0.69 to 0.81. However, when examining the two-way
interaction involving latent model type and correlation between the latent intercept and slope, the
Wen and the Duncan models again showed a stable pattern (with average values around clustered
around 0.90) while the Schumacker model showed a decreasing trend of CFI values as the

correlation increased.

MNAR Data Condition Analyses

The ANOVA in Table 6 for the MNAR data condition showed significant effects (p < 0.05)
for all main effects and their interactions. The largest effect sizes were seen for thé two-way
interaction of latent interaction model with reliability of the observed indicators (0.24) and for the
main effect of latent interaction model (0.34). The overall model effect was significant (F;¢7.
474758) = 4456.85, p < 0.01, partial eta’ = 0.50). The four-way interaction of latent interaction
model type, latent intercept-slope correlation, sample size, and reliability of the observed
indicators, was significant (Fp4, 474758y = 9.49, p <0.01) and with a small effect size (partial eta’ <
0.01). As with the Complete data, only those effects with a partial eta-squared greater than 0.06
were considered strong enough to warrant further investigation. The ANOVA effects that met this
criterion were for the two-way interactions of latent interaction model with both reliability of the
observed indicators (0.24) and latent intercept-slope correlation (0.08), and the main effect of
latent interaction model (0.34), according to Olejnik and Algina (2000).

To examine the significant two-way interactions, a simple plot of the average CFI values
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for each latent growth interaction model with both level of reliability of the observed indicators
and latent intercept-slope correlation on the X-axis. These simple plots are given in Figure ApxE-
F2.

Insert Figure ApxE-F2 about here

Seen clearly in the simple plot is the difference in pattern of average values of the CFI for all three
of the latent growth interaction models. The Wen model showed a pattern of decreasing average
CFI values (from 0.81 to 0.70) as reliability increased. The Duncan and Schumacker models both
showed patterns of increasing average CFI values (0.67 to 0.73 and 0.75 to 0.78, respectively),
although the Schumacker model showed a slight decrease at the highest level of reliability. For the
interaction of latent interaction model type with latent intercept-slope correlation, both the Wen
and the Duncan models showed slightly increasing trends as the correlation increased, wihle the

Schumacker model showed a decreasing trend.
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Figure ApxE-F1
Plots of the Interaction Effect of Latent Interaction Model Type Factor with the Observed
Indicator Reliability Factor (1) and Latent Intercept-Slope Correlation (2) on the Comparative Fit
Index (CFI) in the Missing Completely At Random Data Condition in Those Models that
Converged Successfully.
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Plozs of the Interaction Effect of Latent Interaction Model Type Factor with the Observed

Indicator Reliability Factor (1) and Latent Intercept-Slope Correlation (2) on the Comparative Fit

Index (CFl) in the Missing Not At Random Data Condition in Those Models that Converged

Successfully.
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Appendix F

Results of the NFI Analyses for the MCAR and MNAR Data Conditions

MCAR Data Condition Analyses

In the MCAR data condition the average NFI value for the Wen model was 0.90 (range
0.83-0.94), for the Duncan model 0.89 (range 0.81-0.93), and for the Schumacker model 0.75
(range 0.18-0.95). Only the Wen and Duncan models produced 95% confidence intervals for the
mean NFI values that had lower bounds above the value of 0.90. For the Wen model these were
consistently produced when the reliability was at its highest value (0.90), and occurred more often
as both sample size increased and as the correlation between the latent intercept and slope
increased. The Duncan model showed such confidence intervals only at the highest levels of
reliability, with the highest proportion in the conditions where the correlation between the latent
intercept and slope was highest (0.70) and the sample size was highest (1000). The Schumacker
model did not produce any 95% confidence intervals whose lower bound was at or above 0.90.

The ANOVA in Table 13 for MCAR data shows significant effects (p < 0.05) for all main
effects and their interactions. The overall model effect was significant (Fy97, s28871) = 11478.07, p
<0.01), and had a large effect size (partial eta’ = 0.70). The four-way interaction of latent
interaction model type, latent intercept-slope correlation, sample size, and reliability of the
observed indicators, was significant (Fpy, s08871) = 2.04, p < 0.01) with a small effect size (partial
eta’ < 0.01 ). However, as noted earlier with the CFI, the large error degrees of freedom for the
ANOVA model results in even trivial mean differences emerging as significant, and effects that

produced effect sizes of at least a medium effect (i.e., 0.06 or greater for the partial eta-squared)
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were examined.

The ANOVA effects that met this criteria were for the two-way interactions of latent
interaction model with both reliability (0.11) and correlation of latent intercept and slope (0.09),
and the main effects of latent interaction model (0.66) and reliability (0.12). To examine these
significant two-way interactions, separate simple plots of the average NFI values with the
reliability of the observed indicators and the latent interacept-slope correlation were produced for
each latent growth interaction model, and are given in Figure ApxF-F1.

Insert Figure ApxF-F1 about here

Similar to that seen with the Complete data, the simple plot for the interaction of latent growth
interaction model with reliability showed that both the Wen and Duncan models produced stable
NFI values (around 0.90) across the levels of reliability, while the Schumacker model showed a
trend of increasing NFI values as reliability increased. However, when examining the two-way
interaction involving latent model type and correlation between the latent intercept and slope, the
Wen and the Duncan models again showed a stable pattern (with average values around clustered
around 0.90) while the Schumacker model showed a decreasing trend of NFI values as the

correlation increased.

MNAR Data Condition Analyses
In the MNAR data condition the average NFI value for the Wen model was 0.75 (range
0.59-0.87), for the Duncan model 0.69 (range 0.56-0.80), and for the Schumacker model 0.76

(range 0.06-0.96).
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The ANOVA in Table 13 for MNAR data shows significant effects (p < 0.05) for all main
effects and their interactions. The overall mode] effect was significant (F(107, 474758y = 4961.38, p <
0.01), and had a large effect size (partial eta’ = 0.53). The four-way interaction of latent
interaction model type, latent intercept-slope correlation, sample size, and reliability of the
observed indicators, was significant (Fo4, 474758 = 10.39, p <0.01) with a small effect size (partial
eta’ < 0.01). However, as noted earlier with the CFI, the large error degrees of freedom for the
ANOVA model results in even trivial mean differences emerging as significant, and effects that
produced effect sizes of at least a medium effect (i.e., 0.06 or greater for the partial eta-squared)
were examined.

The ANOVA effects that met this criteria were the two-way interactions of latent
interaction model with both reliability (0.24) and latent intercept-slope correlation (0.08), and the
main effect of latent interaction model (0.37). To examine these significant two-way interactions,
separate simple plots of the average NFI values with the reliability of the observed indicators and
the latent interaction-slope correlation were produced for each latent growth interaction model, and
are given in Figure ApxF-F2.

Insert Figure ApxF-F2 about here
Similar to that seen with the Complete data, the simple plot for the latent growth interaction model
X reliability interaction showed that the Wen model showed a decreasing trend of average NFI
values as reliability increased, and the Duncan and Schumacker models showed increasing trends,
with the Schumacker model producing higher average values than the Duncan. With respect to the
interaction of latent model type with correlation, both the Wen and the Duncan models showed

slight increases as the correlation increased, and the Schumacker model showed a non-linear trend
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of first increasing average values and then decreasing average values as the correlation increased.
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Figure ApxF-F1

Plots of the Interaction Effect of Latent Interaction Model Type Factor with the Observed
Indicator Reliability Factor (1) and Latent Intercept-Slope Correlation (2) on the Normed Fit
Index (NF1) in the Missing Completely At Random Data Condition in Those Models that

Converged Successfully.
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Figure ApxF-F2

Plots of the Interaction Effect of Latent Interaction Model Type Factor with the Observed
Indicator Reliability Factor (1) and Latent Intercept-Slope Correlation (2) on the Normed Fit
Index (NFI) in the Missing Not At Random Data Condition in Those Models that Converged

Successfully.
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Appendix G

Results of the GFI Analyses for the Complete, MCAR, and MNAR Data Conditions

Complete Data Condition Analyses

Table ApxG-T1 presents the 95% confidence intervals for the mean value. Table ApxG-T2
contains the results of three ANOVA models, using the GFI statistic as the dependent variable,
with latent interaction model type (3 levels), correlation of the latent intercept and slope (3 levels),
sample size (3 levels) and reliability of the observed indicators (4 levels), as well as their
interactions, as independent factors. These analyses were carried out separately for each data
condition (Complete data, MCAR data, MNAR data).

The ANOVA in Table ApxG-T2 for Complete data showed significant effects (p <0.05)
for all main effects and their interactions. The overall model showed a significant effect (F;q7.
531703 = 19863.89, p < 0.01), and had a large effect size (partial eta’ = 0.44). The four-way
interaction of latent interaction model type, latent intercept-slope correlation, sample size, and
reliability of the observed indicators, was significant (Fi24, 531703 = 18.02, p <0.01) with a small
effect size (partial eta® < 0.01). However, the largest effects were seen for the two-way
interactions of latent growth interaction model type with reliability of the observed indicators
(0.34), latent growth interaction model with intercept-slope correlation (0.23), and for the main
effects of latent growth interaction model (0.75), sample size (0.11) and correlation between latent
intercept and slope (0.07).

To examine these significant two-way interactions, separate simple plots of the average

GFI values with the reliability of the observed indicators and the latent interaction-slope
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correlation were produced for each latent growth interaction model, and are given in Figure ApfG-
FI.

Insert Figure ApxG-F1 about here
The simple plot for the interaction of latent growth interaction model with reliability showed the
Wen model having a stable pattern of GFI values as reliability increased, the Duncan model having
a decreasing pattern of GFI values, and the Schumacker with a sli ght increasing pattern. With
respect to the interaction of latent model type with correlation, both the Wen and the Duncan
models showed stable patterns of average GFI values as the correlation increased, and the

Schumacker model showed a decreasing trend as the correlation increased.

MCAR Data Condition Analyses

The ANOVA in Table ApxG-T2 for MCAR data shows significant effects (p < 0.05) for all
main effects and their interactions. The overall model showed a si gnificant effect (F(107, s28871) =
16169.74, p < 0.01), and had a large effect size (partial eta® = 0.77). The four-way interaction of
latent interaction model type, latent intercept-slope correlation, sample size, and reliability of the
observed indicators, was significant (Fa4, sp8871, = 17.36, p <0.01) and a small effect size (partial
eta’ <0.01).

However, the largest effects were seen for the two-way interactions of latent growth
interaction model type with reliability of the observed indicators (0.30), latent growth interaction
model with intercept-slope correlation (0.19), and for the main effects of latent growth interaction

model (0.71), sample size (0.15) and correlation between latent intercept and slope (0.06).
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To examine these significant two-way interactions, separate simple plots of the average
GFI values with the reliability of the observed indicators and the latent interaction-slope
correlation were produced for each latent growth interaction model, and are given in Figure ApfG-
F2.

Insert Figure ApxG-F2 about here

The simple plot for the interaction of latent growth interaction model with reliability showed the
Wen model having a stable pattern of GFI values as reliability increased, the Duncan model having
a decreasing pattern of GFI values, and the Schumacker with a slight increasing pattern. With
respect to the interaction of latent model type with correlation, both the Wen and the Duncan
models showed stable patterns of average GFI values as the correlation increased, and the
Schumacker model showed a decreasing trend as the correlation increased. For the main effect of
sample size, the means show an increasing trend as sample size increased (0.82, 0.83, and 0.84, at

initial sample sizes of 250, 500, and 1000, respectively).

MNAR Data condition Analyses

The ANOVA for the MCAR data (reported in ApxG-T2, and not reproduced here) showed
significant effects (p < 0.05) for all main effects and their interactions. The overall model showed
a significant effect (Fjo7. 474758y = 27877.66, p < 0.01), and had a large effect size (partial eta’ =
0.86). The four-way interaction of latent interaction model type, latent intercept-slope correlation,
sample size, and reliability of the observed indicators, was significant (Fo4, 474758) = 9.99, p <0.01)
and produced a small effect size (partial eta® < 0.01). The largest effects were seen for the two-

way interactions of: latent interaction model with reliability (0.49) and correlation of the latent
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intercept and slope (0.10), and the main effects of latent interaction model (0.82), correlation
between latent intercept and slope (0.13), sample size (0.09), and reliability (0.12).

To examine these significant two-way interactions, separate simple plots of the average
GFI values with the reliability of the observed indicators and the latent interaction-slope
correlation were produced for each latent growth interaction model, and are given in Figure ApxG-
F3.

Insert Figure ApxG-F3 about here

The simple plot for the interaction of latent growth interaction model with reliability showed both
the Wen and Duncan models having a decreasing pattern of GFI values as reliability increased,
with the Wen model being more affected at lower reliabilities and the Duncan model being
affected at higher reliabilities. The Schumacker model showed a slight increasing pattern. With
respect to the interaction of latent model type with correlation, both the Wen and the Duncan
models showed stable patterns of average GFI values as the correlation increased, and the
Schumacker model showed a decreasing trend as the correlation increased. For the main effect of
sample size, the means show an increasing trend as sample size increased (0.80, 0.82, and 0.83, at

initial sample sizes of 250, 500, and 1000, respectively).
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ApxG-TI

Confidence Intervals (95%) for the Goodness of Fit Index (GFI) Values for All Latent Growth Interaction Models
(Population Value of Latent Interaction Parameter Equal to 2.0) For the Three Missing Data Conditions (Complete
Data, MCAR Data, MNAR Data).

Corr N Rel Complete Data MCAR Data MNAR Data

Wen Duncan  Schumacker Wen Duncan  Schumacker Wen Duncan  Schumacker

020 250 030 L 0848 0.859 0.763 0.838 0.848 0.751 0.757 0.829 0.841
U 0852 0.861 0.777 0.842 0.852 0.769 0.763 0.831 0.859

050 L 0.837 0.849 0.773 0.827 0.839 0.761 0.727 0.819 0.863

U 0.843 0.851 0.787 0.833 0.841 0.779 0.733 0.821 0.877

070 L 0858 0.849 0.793 0.847 0.839 0.782 0.725 0.788 0.895

U 0862 0.851 0.807 0.853 0.841 0.798 0.735 0.792 0.905

090 L 0849 0819 0.837 0.839 0.808 0.825 0.717 0.748 0.917

U 0.851 0.821 0.843 0.841 0.812 0.835 0.723 0.752 0.923

500 030 L 0.859 0879 0.765 0.849 0.869 0.764 0.768 0.839 0.866
U 0.861 0.881 0.775 0.851 0.871 0.776 0.772 0.841 0.874

050 L 0848 0.870 0.785 0.848 0.869 0.784 0.738 0.829 0.897

U 0852 0.870 0.795 0.852 0.871 0.796 0.742 0.831 0.903

070 L 0.869 0.859 0.806 0.869 0.859 0.805 0.736 0.809 0.918

U 0871 0.861 0.814 0.871 0.861 0.815 0.744 0.811 0.922

090 L 0870 0.829 0.849 0.859 0.829 0.848 0.738 0.769 0.929

U 0870 0.831 0.851 0.861 0.831 0.852 0.742 0.771 0.931

1000 030 L 0.859 0.880 0.777 0.859 0.880 0.776 0.769 0.850 0.888
U 0.861 0.880 0.783 0.861 0.880 0.784 0.771 0.850 0.892

050 L 0.858 0.880 0.797 0.858 0.880 0.797 0.739 0.840 0.909

U 0862 0.880 0.803 0.862 0.880 0.803 0.741 0.840 0.911

070 L 0.880 0.870 0.828 0.880 0.870 0.817 0.737 0.820 0.919

U 0880 0.870 0.832 0.880 0.870 0.823 0.743 0.820 0.921

080 L 0.880 0.840 0.849 0870 0.840 0.849 0.749 0.770 0.929

U 0880 0.840 0.851 0.870 0.840 0.851 0.751 0.770 0.931

050 250 030 L 0837 0.859 0.723 0.827 0.848 0.721 0.757 0.828 0.822
U 0843 0.861 0.737 0.833 0.852 0.739 0.763 0.832 0.838

050 L 0.857 0.859 0.733 0.837 0.839 0.722 0.727 0.808 0.843

U 0863 0.861 0.747 0.843 0.841 0.738 0.733 0.812 0.857

070 L 0.859 0.849 0.754 0.848 0.828 0.742 0.686 0.788 0.865

U 0.861 0.851 0.766 0852 0.832 0.758 0694 0.792 0.875

080 L 0.859 0819 0.797 0.849 0.808 0.785 0.706 0.748 0.907

U 0.861 0.821 0.803 0.851 0.812 0.785 0.714 0.752 0.913

500 030 L 0858 0.879 0.726 0.848 0.869 0.725 0.768 0.849 0.846
U 0862 0.881 0.734 0.852 0.871 0.735 0.772 0.851 0.854
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0.869
0.871
0.859
0.861
0.829
0.831

0.880
0.880
0.880
0.880
0.870
0.870
0.830
0.830

0.848
0.852
0.848
0.852
0.838
0.842
0.808
0.812

0.869
0.871
0.869
0.871
0.859
0.861
0.819
0.821

0.880
0.880
0.880
0.880
0.870
0.870
0.830
0.830

0.735
0.745
0.755
0.765
0.798
0.802

0.737
0.743
0.747
0.753
0.777
0.783
0.809
0.811

0.701
0.719
0.712
0.728
0.722
0.738
0.765
0.775

0.705
0.715
0.715
0.725
0.736
0.744
0.778
0.782

0.707
0.713
0.727
0.733
0.747
0.753
0.779
0.781

0.728
0.732
0.688
0.692
0.718
0.722

0.779
0.781
0.739
0.741
0.699
0.701
0.719
0.721

0.757
0.763
0.727
0.733
0.687
0.693
0.695
0.705

0.768
0.772
0.738
0.742
0.698
0.702
0.707
0.713

0.779
0.781
0.739
0.741
0.709
6.711
0.718
0.722

0.829
0.831
0.809
0.811
0.759
0.761

0.850
0.850
0.840
0.840
0.809
0.811
0.760
0.760

0.828
0.832
0.808
0.812
0.788
0.792
0.738
0.742

0.839
0.841
0.829
0.831
0.799
0.801
0.749
0.751

0.850
0.850
0.840
0.840
0.809
0.811
0.759
0.761

0.867
0.873
0.888
0.892
0.909
0.911

0.868
0.872
0.878
0.882
0.899
0.901
0.909
0.911

0.802
0.818
0.813
0.827
0.845
0.855
0.877
0.883

0.826
0.834
0.836
0.844
0.857
0.863
0.878
0.882

0.838
0.842
0.848
0.852
0.859
0.861
0.889
0.891

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr = Latent intercept-slope
correlation; N = Sample size; Rel = Reliability of the observed indicator; L = Lower 95% lilmit; U = Upper 95% limit.
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ApxG-T2

Analysis of Variance Results with the Goodness of Fit Index (GFI) Values as the Dependent Variable,
with Latent Model Type, Latent Intercept-Slope Correlation, Sample Size, and Reliability of Observed
Indicators as Between-Subjects Factors, For the Three Missing Data Conditions (Complete, MCAR,

MNAR).

Corrected Model Complete Data MCAR Data MNAR Data

df F-value Parlioal F-value Parti7a1 F-value ParlLal

cta” ela” eta”

Latent Interaction Model
Covariance (Corr) 107 19863.89 .800 16169.74 .766 27877.66 .863
Sample Size (N)
Reliability (Rel) 2 805126.83 152 640801.51 708 1042513.02 815
Latent Model X Corr 2 20525.50 072 17042.71 .061 34084.47 126
Latent Model X N 2 31928.74 107 44685.90 145 24627.15 .094
Latent Model X Rel 3 7112.53 .039 5384.47 030 21040.27 117
Corr X N 4 39979.81 231 31238.55 191 13075.84 .099
Corr X Rel 4 598.83 004 1347.12 010 341.29 .003
N X Rel 6 45168.19 338 37003.55 296 76710.94 492
Latent Model X Corr X N 4 19.42 .000 24.52 000 25.02 .000
Latent Model X Corr X Rel 6 485.02 .005 336.68 004 1577.68 020
Latent Model X N X Rel 6 127.63 .001 133.60 .002 324.11 004
Corr X N X Rel 8 108.35 .002 114.86 .002 57.57 .001
Latent Model X Corr X N X Rel 12 300.32 .007 215.68 005 788.15 .020
Error 12 93.61 .002 113.25 003 320.57 .008
Corrected Model 12 7.51 .000 8.75 .000 4.99 .000

24 18.02 .001 17.36 .001 9.99 .001

531703

Latent Interaction Model

Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr = Latent
intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator. The symbol
“X” represents an interaction between two factors.

All effects are significant at the p < 0.01 level.
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Figure ApxG-F1

Plots of the Interaction Effect of Latent Interaction Model Type Factor with the Observed Indicator
Reliability Factor (1) and Latent Intercept-Slope Correlation (2) on the Goodness of Fit Index (GFI) in
the Complete Data Condition in Those Models that Converged Successfully.
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Plots of the Interaction Effect of Latent Interaction Model Type Factor with the Observed Indicator

Reliability Factor (1) and Latent Intercept-Slope Correlation (2) on the Goodness of Fit Index (GFI) in

the Missing Completely At Random Data Condition in Those Models that Converged Successfully.
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Figure ApxG-F3
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Plots of the Interaction Effect of Latent Interaction Model Type Factor with the Observed Indicator

Reliability Factor (1) and Latent Intercept-Slope Correlation (2) on the Goodness of Fit Index (GFI) in

the Missing Not At Random Data Condition in Those Models that Converged Successfully.
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Appendix H

Results of the RMSEA Analyses for All Data Conditions

Table ApxH-T1 contains the 95% confidence intervals for the mean RMSEA values for each of

the three latent interaction growth models across all conditions, in each of the missing data conditions.

Analysis of Variance of RMSEA Values

Table ApxH-T2 contains the results of three ANOVA models, using the RMSEA statistic as the
dependent variable, with latent interaction model type (3 levels), correlation of the latent intercept and
slope (3 levels), sample size (3 levels) and reliability of the observed indicators (4 levels) as independent
factors. These analyses were carried out separately for each data type condition (Complete data, MCAR

data, MNAR data) using only those replications that successfully converged.

Complete Data Condition Analysis

The ANOVA in Table ApxH-T2 for Complete data shows significant effects (p <0.05) for all
main effects and their interactions. The overall model effect was significant (Fj07. s31703) = 27467.60, p
< 0.01), with a large effect size (partial eta> = 0.85). The four-way interaction of latent interaction
model type, latent intercept-slope correlation, sample size, and reliability of the observed indicators, was
significant (F4, 531703, = 1.63, p < 0.05) and produced a small effect size (< 0.01). The largest effect
sizes were seen for the two-way interactions of latent interaction model and reliability of the observed

indicators (0.18) and the latent intercept-slope correlation (0.08) and for the main effect of latent
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interaction model (0.84).

To examine these significant two-way interactions, separate simple plots of the average RMSEA
values with the reliability of the observed indicators and the latent intercept-slope correlation were
produced for each latent growth interaction model, and are given in Figure ApxH-FI.

Insert Figure ApxH-F1 about here
The simple plot for the interaction of latent growth interaction model with reliability showed both the
Wen and Duncan models having an increasing pattern of RMSEA values as reliability increased, with
the Duncan model showing a sharper increase at higher levels of reliability. The Schumacker model
showed a decreasing pattern of average RMSEA values as reliability increased. With respect to the
interaction of latent model type with correlation, both the Wen and the Duncan models showed stable
patterns of average RMSEA values as the correlation increased, and the Schumacker model showed an

increasing trend as the correlation increased.

MCAR Data Condition Analysis

The ANOVA in Table ApxH-T2 for MCAR data shows significant effects (p <0.05) for all main
effects and their interactions. The overall model effect was significant (F(107, 28871y = 25003.44, p <
0.01), with a large effect size (partial eta’ = 0.84). The four-way interaction of latent interaction model
type, latent intercept-slope correlation, sample size, and reliability of the observed indicators, was not
significant (Fi24. s08871) = 1.44, ns). The largest effect sizes were seen with the two-way interactions of
latent interaction model with both reliability of the observed indicators (0.17) and latent intercept-slope
correlation (0.07), and the main effect of latent interaction model (0.83).

To examine these significant two-way interactions, separate simple plots of the average RMSEA
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values with the reliability of the observed indicators and the latent intercept-slope correlation were
produced for each latent growth interaction model, and are given in Figure ApxH-F2.

Insert Figure ApxH-F2 about here
The results for the MCAR data closely resemble those of the Complete data. The simple plot for the
interaction of latent growth interaction model with reliability showed both the Wen and Duncan models
having an increasing pattern of RMSEA values as reliability increased, with the Duncan model showing
a sharper increase at higher levels of reliability. The Schumacker model showed a decreasing pattern of
average RMSEA values as reliability increased. With respect to the interaction of latent model type
with correlation, both the Wen and the Duncan models showed stable patterns of average RMSEA
values as the correlation increased, and the Schumacker model showed an increasing trend as the

correlation increased.

MNAR Data Condition Analyses

The ANOVA in Table ApxH-T2 for MNAR data shows significant effects (p < 0.05) for all main
effects and their interactions. The overall model effect was significant (F07, 474758y = 7825.30, p < 0.01),
with a large effect size (partial eta’ = 0.64). The four-way interaction of latent interaction model type,
latent intercept-slope correlation, sample size, and reliability of the observed indicators was significant
(F24. 474758y = 6.02, p <0.01), with a small effect size (partial eta® < 0.01). However, the largest effect
sizes were seen for the two-way interactions of latent interaction model with reliability (0.43) and
correlation between latent intercepts and slopes (0.12), and the main effect of latent interaction model

(0.41).
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To examine these significant two-way interactions, separate simple plots of the average RMSEA
values with the reliability of the observed indicators and the latent intercept-slope correlation were
produced for each latent growth interaction model, and are given in Figure ApxH-F3.

Insert Figure ApxH-F3 about here
The simple plot for the interaction of latent growth interaction model with reliability showed both the
Wen and Duncan models having an increasing pattern of RMSEA values as reliability increased, with
the Wen model showing a sharper increase at higher levels of reliability (and having an average value
that was higher than that of the Duncan model). The Schumacker model showed a decreasing pattern of
average RMSEA values as reliability increased, with average RMSEA values that were comparable to
those of the Wen and Duncan models at the highest level of reliability. With respect to the interaction of
latent model type with correlation, both the Wen and the Duncan models showed stable patterns of
average RMSEA values as the correlation increased, and the Schumacker mode! showed an increasing

trend as the correlation increased.

Summary

None of the three latent growth interaction models showed average RMSEA values that were
below the cutoff of 0.05 for adequate model fit. Even using a relaxed value of 0.08 as a cutoff for
“acceptable” model fit (Fan et al., 1998), none of the latent growth interaction models had average
RMSEA values that were lower than this value, although the Wen model did have average RMSEA
values that were equal to 0.11 in several of the study conditions, most notably when the reliability of the
observed indicators was at its lowest value (0.30). In the Complete and MCAR data conditions the

average RMSEA values for the Wen and Duncan models were substantially lower than those of the
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Schumacker model. In the MNAR data condition this same pattern held at lower reliabilities, but all
three models produced similar average RMSEA values at higher reliabilities as sample size increased.
Under two of the three missing data conditions (Complete, MCAR) there was a trend for both the
Wen and the Duncan models to show average RMSEA values that were stable as the latent intercept-
slope correlation increased, and which increased as the reliability of the observed indicators increased.
In these conditions the Schumacker model showed an increasing pattern of average RMSEA values as
the latent intercept-slope correlation increased and a decreasing pattern of average RMSEA values as

reliability increased.
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Table ApxH-T1

Confidence Intervals (95%) for the Average Root Mean Square Error of Approximation (RMSEA)
Values for All Latent Growth Interaction Models (Population Value of Latent Interaction Parameter
Equal to 2.0) For the Three Missing Data Conditions (Complete, MCAR, MNAR).

Corr N Rel Complete Data MCAR Data MNAR Data

Wen Duncan  Schumacker Wen Duncan  Schumacker Wen Duncan Schumacker

020 250 o030 L 0109  0.129 0.563 0.109 0.129 0.559 0.159 0.209 0.349
U 0111 0.131 0.617 0.111 0.131 0.621 0.161 0.211 0.391

050 L 0129  0.139 0.533 0.129 0.139 0.530 0.178 0.219 0.294

U 0131 0141 0.587 0.131 0.141 0.590 0.182 0.221 0.326

070 L 0139  0.149 0.468 0.139 0.149 0.482 0.228 0.239 0.240

U 0141  0.15] 0.512 0.141 0.151 0.538 0.232 0.241 0.260

090 L 0149  0.169 0.384 0.159 0.169 0.390 0.289 0.279 0.224

U 0151 0171 0.396 0.161 0.171 0.410 0.291 0.281 0.236

5000 030 L 0109 0.130 0.561 0.109 0.129 0.558 0.159 0.210 0.292
U 0ll1l 0130 0.599 0.111 0.131 0.602 0.161 0.210 0.308

050 L 0129  0.140 0.494 0.129 0.139 0.510 0.179 0.220 0.254

U 0131  0.140 0.526 0.131 0.141 0.550 0.181 0.220 0.266

070 L 0.140  0.150 0.429 0.140 0.150 0.445 0.228 0.240 0.226

U 0140  0.150 0.451 0.140 0.150 0.475 0.232 0.240 0.234

090 L 0150 0.170 0.377 0.150 0.170 0.376 0.289 0.280 0.218

U 0150 0.170 0.383 0.150 0.170 0.384 0.291 0.280 0.222

1000 030 L 0110  0.130 0.539 0.110 0.130 0.546 0.160 0.210 0.277
U 0110  0.130 0.561 0.110 . 0.130 0.574 0.160 0.210 0.283

050 L 0130  0.140 0.471 0.130 0.140 0.488 0.180 0.220 0.248

U 0130  0.140 0.489 0.130 0.140 0.512 0.180 0.220 0.252

070 L 0140  0.150 0.396 0.140 0.150 0.413 0.229 0.240 0.218

U 0140  0.150 0.404 0.140 0.150 0.427 0.231 0.240 0.222

090 L 0150 0.170 0.379 0.150 0.170 0.379 0.289 0.280 0.219

U 0150  0.170 0.381 0.150 0.170 0.381 0.291 0.280 0.221

050 250 o030 L 0119 0129 0.653 0.119 0.129 0.639 0.159 0.219 0.399
U 0121  0.131 0.707 0.121 0.131 0.701 0.161 0.221 0.441

050 L 0129  0.139 0.615 0.129 0.139 0.620 0.179 0.229 0.346

U 0131 0.14] 0.665 0.131 0.141 0.680 0.181 0.231 0.374

070 L 0.139  0.149 0.549 0.139 0.149 0.564 0.208 0.249 0.302

U 0141  0.151 0.591 0.141 0.151 0.616 0.212 0.251 0.318

090 L 0159  0.169 0.485 0.159 0.169 0.482 0.298 0.279 0.246

U 0161  0.171 0.495 0.161 0.171 0.498 0.302 0.281 0.254

5000 030 L 0120 0.130 0.652 0.119 0.129 0.658 0.159 0.220 0.351
U 0120 0.130 0.688 0.121 0.131 0.702 0.161 0.220 0.369
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Note: MCAR = Missing Completely At Random; MNAR = Missing Not At Random; Corr = Latent

intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator; L = Lower 95%

limit; U = Upper 95% limit.
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Table ApxH-T2

Analysis of Variance Results with Root Mean Square Error of Approximation (RMSEA) Values as the
Dependent Variable, with Latent Model Type, Latent Intercept-Slope Correlation, Sample Size, and
Reliability of Observed Indicators as Between-Subjects Factors, For the Three Missing Data Conditions
(Complete, MCAR, MNAR).

Model Effect Complete Data MCAR Data MNAR Data
df F-value Parlioal F-value Parli7a1 F-value Parlijal

eta” cta” eta”
Corrected Model 107 27467.60 .847 25003.44 835 7825.30 .638
Latent Interaction Model 2 1382988.46 .839 1266019.26 .827 166830.89 413
Covariance (Corr) 2 13551.28 .049 11584.31 042 16514.99 .065
Sample Size (N) 2 1575.79 .006 1278.98 .005 3747.89 016
Reliability (Rel) 3 4746.54 026 4031.53 .022 15486.33 .089
Latent Model X Corr 4 10987.56 076 9311.09 .066 16578.51 123
Latent Model X N 4 1556.97 012 1240.22 .009 4667.88 .038
Latent Model X Rel 6 19675.99 182 17402.04 165 60306.20 433
Corr X N 4 7.96 .000 9.13 .000 20.20 .000
Corr X Rel 6 15.65 .000 12.29 .000 54.54 .001
N X Rel 6 170.00 .002 175.37 002 706.96 .009
Latent Model X Corr X N 8 8.05 .000 9.47 .000 25.77 .000
Latent Model X Corr X Rel 12 19.03 000 14.97 .000 446.79 011
Latent Model X N X Rel 12 166.74 .004 162.78 .004 650.52 .016
Corr X N X Rel 12 147 ns .000 1.61 ns .000 4,72 .000
Latent Model X Corr X N X Rel 24 1.63 (.03) .000 1.44 ns .000 6.02 .000
Error 531703

Note: MCAR = Missing Cofnpletely At Random; MNAR = Missing Not At Random; Corr = Latent
intercept-slope correlation; N = Sample size; Rel = Reliability of the observed indicator.
All effects are significant at the p < 0.01 level.
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Figure ApxH-FI

Plots of the Interaction Effect of Latent Interaction Model Type Factor with the Observed
Indicator Reliability Factor (1) and Latent Intercept-Slope Correlation (2) on the Root Mean
Square Error of Approximation (RMSEA) in the Complete Data Condition in Those Models that

Converged Successfully.
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Figure ApxH-F2
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Interaction Effects in Latent Growth Models

Plots of the Interaction Effect of Latent Interaction Model Type Factor with the Observed

Indicator Reliability Factor (1) and Latent Intercept-Slope Correlation (2) on the Root Mean

Square Error of Approximation (RMSEA) in the Missing Completely At Random Data Condition

in Those Models that Converged Successfully.

Estimated Marginal Means

Estimated Marginal Means

Estimated Marginal Means of RMSEA

Data Condition: MCAR

0.707

5

5

g

g
3

=)
XY
?

0.10-]

T T T
0.30 0.50 0.70 0.90
Reliability of Indicators

Estimated Marginal Means of RMSEA

Data Condition: MCAR

0.707

8

8

5

8

8

0.107

$

020 050 0.70
Latent Intercept-Siope Correlation

Model
—— Wen

Schumacker

Model

~—Wen
~— Puncan
Schumacker



289
Interaction Effects in Latent Growth Models

Figure ApxH-F3

Plots of the Interaction Effect of Latent Interaction Model Type Factor with the Observed
Indicator Reliability Factor (1) and Latent Intercept-Slope Correlation (2) on the Root Mean
Square Error of Approximation (RMSEA) in the Missing Not At Random Data Condition in
Those Models that Converged Successfully.
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