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Abstract

In this thesis, we consider a competing risks scenario wherein lifetimes are potentially right

censored. Instead of considering all the patients to be at risk to the event of interest, we

assume that a proportion of these patients are cured and have no recurrence of the disease,

known as the cure fraction. We further assume that the number of competing risks is random

and follows a Poisson distribution. We consider the lifetimes of individuals to follow a two

parameter generalized exponential distribution. The objective is to estimate the model pa-

rameters. Using a direct approach and also by using the expectation maximization estimation

approach, we obtain maximum likelihood estimates. Standard errors of the estimates are

obtained by inverting the observed Fisher information matrix. Monte Carlo simulations are

used to demonstrate the performance of the two methods of estimation. Finally, we fit our

model to two real data sets to illustrate the model competence.

Keywords: cure rate, generalized exponential distribution, lifetimes, competing risks,

censoring, Poisson distribution.
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Chapter 1

Introduction

1.1 Motivation

The longevity of patients is of great importance in biomedical studies. For patients with long

term diseases, prolonged lifetimes can be indicators of improved treatment. When studying

such patients, one may find a part of them to be permanently cured who don’t show any

recurrence of the disease of interest. This proportion of the total target population is of

medical significance and that is the motivation for developing models referred to as cure rate

models.

As mentioned in Pal and Balakrishnan (2016), such cure rate models can be applied in

varieties of disciplines other than biomedical studies, such as, criminology, finance, demography,

manufacturing, and industrial reliability. This means that cure rate models can also be used

to model the distribution of survival time or failure time of a product/item /subject for a

specified population. Moreover, cure rate models are useful under the assumption of multiple

mode of failures or competing causes. If there is more than one reason to experience the

event of interest, then understanding and developing such cure rate model using the cured

fraction is crucial. Furthermore, censoring of survival time or failure time needs to be properly

addressed for developing models as such.

Our proposed model is inspired by the work of Balakrishnan and Pal (2016)where they have
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proposed a cure rate model with Weibull lifetime distribution. Also, another related paper is

by Pal and Balakrishnan (2016), where they considered a cure rate model with generalized

gamma lifetime distribution. We will be proposing a model with generalized exponential

lifetime distribution in a competing cause scenario. After introducing the proposed model,

we will subsequently develop two methods of estimation for finding the estimates of the

parameters of the model. The performance of these methods is then investigated numerically.

1.2 Thesis organization

In Chapter 2, some relevant concepts are discussed. First, we briefly discuss some important

tools used in the analysis of survival data. We then discuss the concepts of censoring,

competing risks and cure rate models. This is followed by some properties on the generalized

exponential distribution. Finally, Chapter 2 closes with the description of two approaches to

maximum likelihood estimation and some model discrimination tools.

In Chapter 3, we introduce our proposed model. The model assumes generalized ex-

ponential lifetimes and incorporates censoring and competing risks. In addition, in this

chapter, we construct the likelihood function. In Chapter 4, we develop likelihood inference

for our proposed model in two different ways. This is followed by a numerical assessment

(via a simulation study and illustrative examples) in Chapter 5. Finally, in Chapter 6, some

conclusions and ideas for future work are provided. Some of the R codes used to produce the

numerical results and the tables in this thesis are provided in Appendix B.
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Chapter 2

Preliminaries

2.1 Concepts in survival analysis

In survival analysis, the concept of lifetime is the root of all survival analysis problems.

Lifetimes are positive random variables mostly dealt in reliability engineering and survival

analysis and some other disciplines. Finkelstein (2008) states that a lifetime can be understood

by its distribution function. Lifetime can be defined by the time before the occurrence of

death, end of marriage or some other “end event”. For example, manufactured items have

mechanical or electronic components and in order to get information on their durability, life

tests are performed. That means in a laboratory setting, such items may put into operation

and observed until they fail. Therefore it is common to refer lifetimes as “failure times” as it

is said to be “failed” when it stops operating satisfactorily.

Lawless (2003) discusses the case of a single continuous lifetime variable, T . Specifically, let

T be a nonnegative random variable denoting the lifetimes of individuals in some population.

Other than some exceptions, the lifetimes are defined over [0,∞) interval. If the probability

density function (p.d.f.) for T is denoted by f(t), then the cumulative distribution function

(c.d.f.) is defined as

F (t) = Pr(T ≤ t) =

∫ t

0

f(x)dx.
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The probability of an individual surviving to time t is given by

S(t) = Pr(T ≥ t) =

∫ ∞
t

f(x)dx;

this is called the survival function. In some contexts involving systems or lifetimes of

manufactured items, S(t) is also referred to as the reliability function. Here, S(t) is a monotone

decreasing continuous function with S(0) = 1 and S(∞) = lim
t→∞

S(t) = 0. Sometimes, we may

allow S(∞) > 0, to consider settings where some individuals never fail; these are special cases.

Moreover, the pth quantile of the distribution of T is the value tp such that Pr(T ≤ tp) = p,

0 ≤ p ≤ 1. Note tp can be found as tp = F−1(p). The pth quantile is also called the 100pth

percentile of the distribution. The 0.5 quantile is referred to as the median of the distribution.

The instantaneous rate of death or failure at time t, given that up to time t the subject

has already survived, is known as the hazard function. It is also known as hazard rate or

force of mortality. The hazard function h(t) is an essential concept with lifetime distributions

in survival analysis and is defined as:

h(t) =
lim

∆t→0
Pr(t ≤ T < t+ ∆t|T ≥ t)

∆t
=
f(t)

S(t)
.

Therefore, in the time interval t < x < t+ ∆t , the probability of a subject dying for small

value of ∆t, where the subject has already survived up to time t, is defined as h(t)∆t.

Another important topic in survival analysis is the Cox proportional hazards model,

which assumes that all the individuals in the study population are susceptible to the event of

interest. It considers a binary response which determines whether the individual is susceptible

or not. According to Lawless (2003), the proportional hazards model is the best known

semi-parametric lifetime regression model introduced by Cox, which has the hazard function

for T given X to be of the form:

h(t|x) = h0(t)exp(β′x),

4



where h0(t) is an arbitrary “baseline” hazard function meaning that in the absence of the

covariate, hazard function h(t|x) will take the form of h0(t). A convenient way of handling

time varying covariates is through the hazard function. Let X(t) = x(s), 0 ≤ s ≤ t refer to

the history up to time t, with X(∞) = X. It is assumed that the hazard function for T given

X depends only on X(t); we denote this as h(t|x(t)). Another flexible approach is defining a

vector w(t) that refers to the features of X(t), and accordingly define h(t|X(t)) as a function

of t and w(t). The multiplicative formulation

h(t|x(t)) = h0(t)exp(β′w(t))

is useful and is an extension of proportional hazard function. The source of survival data

varies according to the application. For instance, survival data may arise in clinical trials or

reliability studies, which are commonly referred to as life tests.

Other sources of survival data are medical studies. When the subjects/units aren’t human,

another tool used to obtain survival data are accelerated life tests, which are a special type

of life tests. These tests are applied especially in the area of reliability problems. The main

principle behind these tests is the imposition of stresses in order to observe the lifetimes in

shorter time; for further details see Pascual et al. (2006).

2.2 Censoring

In a life test, the chronological time required to observe the full lifetime of the units on

test may not be possible due to practical constraints. In such cases, “censoring” is often

introduced. For instance, in clinical trials, censoring is very common since the trials are

usually terminated before all individuals fail(die). Also, at various time points the individuals

may enter the study (Arnold et al. (1992)).

There are four general types of censoring: Type I censoring, Type II censoring, random

censoring and progressive censoring. Suppose there is a life test and n units are put on test.
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If the experiment is terminated at a predetermined time T , then items which fail prior to this

specified time are observed and the recorded data is referred to as Type I censored. We say

these observations are right censored in this case, since we can only observe the minimum of

the lifetime and censoring time. In this case, the number of observations is random but the

duration of the test is fixed.

On the other hand, suppose it is decided to terminate experiment at the time of the rth

failure. We refer this type of data as a Type II right censored sample. In this case, the

number of observations is fixed but the duration of the test is random. It may correspond

to left censoring wherein smaller values are censored or one can have censoring of multiple

regions and can only observe the maximum of the lifetime and censored time. If there is right

and left censoring, then it is referred to as double censoring.

Suppose there are n lifetimes Y1, ..., Yn with a common c.d.f. F (y; θ), and p.d.f. f(y; θ)

where θ is the unknown parameter. Now, with the ith item let us associate a random variable

Ci called the censoring time whose c.d.f. is Fc and it is free of θ. We define Ti = min(Yi, Ci).

Then Di = 1 if Ti = Yi and else Di = 0. Assuming independence between Yi and Ci,

we observe the pairs (Ti,Di), where i = 1, 2, ..., n. Thus each lifetime is censored by an

independent time and also whether we have observed the lifetime or the censoring time is

known. This is called a random censoring scheme.

Another kind of censoring is progressive censoring, which is of two kinds: Type I progressive

censoring and Type II progressive censoring. Let R be the number of items to be tested. At

time T1, we may randomly remove R1 unfailed items among the R; at time T2, we randomly

remove R2 unfailed items, etc., where T1 < T2 < ... are predetermined times. If Ri items

exceeds the remaining number of unfailed items at time Ti, then the experiment will be

terminated. This is Type I progressive censoring scheme. All Ti and Ri values are prefixed

ahead of experiment. A graphical representation of Type I progressive censoring is given in

Figure 2.1 as shown by Balakrishnan and Cramer (2014):

6



Figure 2.1: Type I progressive scheme with interval censoring

In a Type II progressive censoring experiment, there is a prefixed progressive censoring

scheme R = (R1, . . . , Rm), where m is the number of failures to be observed. At the time of

the first failure, R1 items are randomly removed from the test. At the time of the second

failure, R2 surviving items are randomly removed from the test. This continues until the

occurence of the mth failure, at which time all remaining units are removed. We refer to

the resulting observed failures as a progressively Type II right censored data. A graphical

representation of Type II progressive censoring is given in Figure 2.2 as shown by Balakrishnan

and Aggarwala (2000):

Figure 2.2: Type II progressive scheme with right censoring
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2.3 Competing risks

Individuals can, in some settings, fail in different ways, and are then assigned a mode of

failure. The modes may refer to the cause of failure, in which case they are often termed

competing risks. For example, an individual in a demographic study might be recorded as

dying at age t from one form of cancer, cardiovascular disease, or other causes. Failure modes

can also be defined in other ways, for example, to reflect costs or severity of consequences

associated with failure Lawless (2003). The probability of dying because of a specific cause

prior to death is attributed as risk. But when the death has actually occurred, we also refer

to the cause responsible for the death as the risk.

As described by Gross and Clark (1975), rather than the disease for which a patient is

under study, the patient may die due to a cause instead of the specific disease that is being

studied in a clinical trial. As an example, we may consider a person who is under study due

to prostate cancer and may die due to a fatal accident or heart attack. All such risks and

the risk of being dead due to disease of interest are called competing risks. The authors

also point out that lifetime data involving competing risks can be analyzed in different ways.

First, the survival times can be analyzed separately for each cause. And in a simpler model,

the existence of several competing risks can be ignored. Lastly, and the most appropriate,

one can develop a model that can incorporate all the information in a competing risk data.

One common assumption for competing risk data is that the number of competing risks

and the lifetimes associated with these risks are unobservable. These unobservable lifetimes

can hence be considered latent variables. What is actually observed is the minimum lifetime

due to these risks. In a seminal paper by Prentice et al. (1978), new methods were proposed

for the analysis of failure times in the presence of competing risks. In particular, the author

considered cause specific hazard function and developed estimation methods. In the initial

investigations of competing risk data, such as Prentice et al. (1978), it was common to
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assume the risks were independent. In fact, recent literature often still makes this assumption.

For instance, in Miyakawa (1982), assuming exponential lifetimes and independent risks,

they developed maximum likelihood estimators (MLEs) and uniformly minimum variance

unbiased estimators. This work was followed up by Kundu and Basu (1991) wherein the

results of Miyakawa (1982) were further investigated and extended to the case of Weibull

lifetimes. Also, in Ishioka and Nonaka (1991), the authors estimated the parameters of the

two parameter Weibull distribution in the scenario of two independent competing risks. They

demonstrated the performance of estimation procedure through simulation and an illustrative

example. In Hong and Meeker (2014), the authors developed inference procedures for system

reliability data and applied their procedure to competing risks data. These data involved

lifetimes of electronic components which were subject to two competing risks (surge and wear

out). In a completely different field, Austin et al. (2016) discussed the role of competing

risks and cardiovascular disease. When studying time to death due to a cardiovascular cause,

death due to other causes was considered as competing risks. The authors developed various

non-parametric techniques and constructed cause-specific hazard models. The authors then

applied their methods in an illustrative example involving cardiac data.

It is important to note at this junction that competing risks can be dependent, and perhaps

this is a more realistic assumption in certain situations. In Moeschberger (1974), the author

discussed the estimation for two bivariate lifetime distributions when the causes of failure

are dependent. The paper also included an illustrative example which involved the failure of

small electrical appliances. As pointed out in the paper, it is suggested that dependent causes

of failure often arise in physical situations. For instance, dependent competing risks may exist

in the engineering and reliability fields. For example, there is what is referred to as a common

shock model. As described in Eryilmaz (2018), a shock can be viewed as a load which might

refer to mechanical stress, a voltage or internally generated stress such as temperature. In
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common shock models, in addition to independent shocks, there is a common shock which

can impact all components simultaneously. For some work in the literature on common shock

models, we refer the reader to G̊asemyr and Natvig (1995). In addition to this, Moeschberger

and Klein (1995) provide a survey of the literature on the various statistical methods that

have been developed for the situation where the competing risks are not independent. Since

then, many works have focused on the statistical analysis of dependent competing risk data;

see for example: Feizjavadian and Hashemi (2015), Kundu and Basu (2000), Wu et al. (2017)

and Shi and Wu (2016).

2.4 Cure rate model

Cure rate models or long term survival models are the models for lifetime data which include a

proportion, as a fraction of the total population, who are permanently cured. In the literature,

this proportion is referred to as a cure fraction. In survival analysis, we usually consider that

all patients are susceptible to the event of interest but in these models, there may is a cure

fraction. Hence, these models are referred to as cure rate models. The population can then

be separated into two categories: cured and non-cured or susceptible.

There have been many works on cure rate models. Boag (1949) first considered the

proportion of cured in all the patients treated for cancer. The remainder of the patients

were considered to be susceptible of dying due to disease, if not dead due to some other

causes. So the cure rate model was introduced here in a form of a mixture model. The author

assumed that the survival time follows a lognormal distribution and the maximum likelihood

estimators for the model parameters were found. Also, the precision of the estimators of

proportion cured, i.e., the cure rate, was examined.

Berkson and Gage (1952) developed a model with two parameters, one associated with

the cured proportion and the other was associated with the susceptible group. As such, the
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proportion of the population cured and remaining proportion who were not gave rise to a

mixture distribution. The authors argued that the five year survival rate cannot be identified

as the proportion of cured patients, since all patients are not guaranteed to die if untreated

within five years and also a noncancerous patient can die within this period.

As previously mentioned, the Cox proportional hazards (Cox PH) model assumes that all

the individuals in the study population are susceptible to the event of interest. A proportional

hazards model was suggested for the susceptible group by Sy and Taylor (2000), which was

called proportional hazards cure rate model. They used maximum likelihood techniques to

estimate the incidence and latency regression parameters together by using nonparametric

likelihood structure. The inverse of the observed information matrix was used to estimate

standard errors of the estimates. A comparison between PH mixture model and Weibull

mixture model was graphically shown.

A class of cure rate models was proposed by Yin and Ibrahim (2005), which included the

mixture cure model and the promotion time cure model as special cases. The promotion

time cure model is a cure model where the number of competing causes follows a Poisson

distribution, whereas the mixture cure model has the number of competing causes to be a

Bernoulli random variable. The proposed model was based on a Box-Cox transformation of

the population survival function. In particular they defined a link parameter, where one value

yields the mixture cure model and the other value yields the promotion time cure model.

Moreover, a general covariate structure was suggested in order to accommodate for different

covariate structures.

Rodrigues et al. (2009) proposed a Conway-Maxwell (COM) Poisson cure rate model. If a

random variable M follows a COM-Poisson distribution, its probability mass function (p.m.f)

is:

P [M = m; η, φ] =
1

Z(η, φ)

ηm

(m!)φ
, m = 0, 1, 2, . . . , where Z(η, φ) =

∞∑
j=0

ηj

(j!)φ
.
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This distribution has Bernoulli, Poisson and geometric distribution as special cases. If φ = 1,

it reduces to Poisson distribution with parameter η. If φ = 0, it reduces to geometric

distribution with parameter (1− η) and η < 1. Moreover, if φ→∞, the limiting case is a

Bernoulli distribution with parameter η
1+η

. In the case of discrete data, over dispersion and

under dispersion are regularly encountered and that can be accounted for in this model. In

this cure rate model, it is assumed that the number of competing risks follows a COM-Poisson

distribution, call this M .

As mentioned earlier, in a competing risk scenario, it is commonly assumed that both

M and the lifetimes due to these risks are unobservable and only the minimum lifetime is

observed; call this Y . The survival function of this Y , which they refer to as long term

survival function, is expressed as:

Sp(y) = P [Y ≥ y]

=
∞∑
m=0

P (M = m)[S(y)]m

=
Z(ηS(y), φ)

Z(η, φ)
. (2.1)

The authors developed inference for their model and demonstrated it through an illustrative

example.

Kannan et al. (2010) proposed a cure rate model which assumed the generalized exponential

distribution for the lifetimes and a cure fraction. The authors also included covariates in

their model through the cure proportion. They developed an estimation procedure in the

form of the EM algorithm and illustrated their proposed model through a simulation study

and a real life dataset involving drug abuse.

Balakrishnan and Pal (2015) considered a flexible cure rate model with generalized gamma

lifetimes subject to right censoring. The authors developed their model in a competing
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risk scenario where the number of competing risks follows a COM-Poisson distribution.

Missingness was identified in the data within the censored observations, which includes both

cured and non-cured observations; that is, for a censored observation, it is not known if the

subject is susceptible or not. They considered Bernoulli, Poisson, Geometric as special cases

of the COM-Poisson distribution. Using the Expectation-Maximization (EM), to be discussed

soon, the parameters were estimated. Moreover, a simulation study was performed to test the

fit of the models. The results of the simulation concluded that the EM algorithm converges

almost accurately to the true parameter. Model discrimination within the generalized gamma

family was also carried out using AIC and BIC criterion. Additionally, the model was tested

on cutaneous melanoma data with two way model discrimination.

In Balakrishnan and Pal (2016) the authors considered a cure rate model incorporating

Weibull distribution to model lifetimes and a COM-Poisson distribution to model the number

of competing risks. They assumed right censoring in the data and used EM algorithm to

estimate these right censored data. They also observed special cases of the model. The

performance of the model was evaluated by Monte-Carlo simulation study.

In Pal and Balakrishnan (2016), they considered a Gamma distribution for the lifetimes of

the susceptible group of patients and used the exponentially weighted Poisson distribution to

model the number of competing causes while constructing a cure rate model. They considered

the case where the number of competing risks were gradually diminishing. It was therefore

called a destructive exponential cure rate model. In many real life problems, including

naturally occurring mechanisms, it may be more appropriate to make this assumption. They

adjusted the existing cure rate model by introducing a new random variable which represents

the total number of competing causes, among the initial competing causes, which have not

been destroyed. The authors used the EM algorithm to estimate the model parameters. A

simulation study was conducted to observe the model fitting. AIC, BIC and likelihood ratio

test were performed as ways to discriminate between the models. The authors observed
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significant differences between the lognormal distribution and the Weibull, gamma and

exponential distribution.

2.5 Generalized exponential distribution

The three parameter generalized exponential distribution has been proposed instead of Weibull

and gamma families for lifetime data analysis by Kundu and Gupta (1999). It can be viewed

as an exponentiated Weibull distribution when the location parameter is not present. If the

location parameter were present, complexity in direct numerical calculations would be higher.

When the shape parameter is not an integer, it is difficult to obtain the distribution function

or the survival function of the gamma distribution. The c.d.f. of the generalized exponential

family for lifetime data y is given as:

F (y) = (1− e−λy)α (2.2)

for y > 0, α, λ > 0, and with this, the survival function is defined as:

S(y) = 1− F (y) = 1− (1− e−λy)α. (2.3)

By differentiating the c.d.f., we obtain the p.d.f. as

f(y) = αλe−λy(1− e−λy)α−1. (2.4)

Therefore, the hazard function is:

h(y) =
αλe−λy(1− e−λy)α−1

1− (1− e−λy)α
,where α, λ, y > 0. (2.5)

Clearly when α = 1, this model reduces to the simple exponential distribution. A graphical

representation of the c.d.f and the p.d.f. of generalized exponential distribution are shown in

Figures 2.3 and 2.4, respectively, for various parameter settings.

The parameters of the generalized exponential (GE) distribution were estimated using

classical estimation procedures like maximum likelihood estimation (MLE), method of mo-
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Figure 2.3: CDF of the generalized exponential distribution
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Figure 2.4: PDF of the generalized exponential distribution
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ment estimation (MOM), Least square estimation (LSE), percentile estimation, L-moment

estimation etc. by Kundu and Gupta (2008). The authors pointed out that the generalized

exponential distribution model is quite flexible and can effectively analyze positive lifetime

data instead of gamma, Weibull or log-normal model. However, it has properties similar to

gamma distribution. It is more suitable for data purposes since gamma has an intractable

distribution function. If the data is censored, this model can also be quite useful.

Gupta and Kundu (2007) compared approximate Bayes estimator and exact Bayes

estimator with classical maximum likelihood estimations under the assumption of non-

informative prior. Under the assumption of gamma prior for scale and shape parameters of

GE and assuming the squared error loss function, they calculated the Bayes estimators. A

data was used for illustration purposes.

In Gupta and Kundu (2000), the authors briefly discussed the different methods of

estimation used on parameters of a generalized exponential distribution. Maximum likelihood

estimation, least squares estimation, weighted least squares estimation, percentile estimation,

method of moments and L-moment estimation were used for the estimation. The authors

considered three cases: (1) α, the shape parameter, is known but λ, the reciprocal of a scale

parameter, is unknown; (2) λ is known but α is unknown and; (3) when both α and λ are

unknown.

Raqab and Madi (2006) in their paper have described some usefulness of generalized

exponential distribution as it can be used in skewed distributions. The authors reflect on the

simplicity of its distribution function and accordingly mentioned that the distribution can be

extensively used to model lifetime data even with censoring or grouped data. They estimated

the model parameters using a Bayesian approach. To use posterior and predictive inferences,

they applied stochastic simulation based approaches. The Gibbs and Metropolis samplers

were also applied in studying the future failure times and predictive density functions. For

illustrative examples, two data sets were used. The authors Markiewicz et al. (2015) studied
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the relative use of generalized exponential distribution and inverse Gaussian distribution in

fitting the flood extremes data in Polish rivers. For model discrimination, they used various

non-parametric methods. According to their study, the GED fits well to the extreme flood

data of Polish rivers.

2.6 Inference and model discrimination

2.6.1 Maximum likelihood estimators

According to Casella and Berger (2002), the likelihood function can be used to summarize

data. It is the most common and widely used technique to estimate model parameters. If

X1, ..., Xn are an independently identically distributed (i.i.d.) sample from a population with

p.d.f. or p.m.f f(x|θ1, ..., θk), the likelihood function is defined by

L(θ|x) = L(θ1, ..., θk|x1, x2, . . . , xn) =
n∏
i=1

f(xi|θ1, ..., θk).

If x is an observed sample, let θ̂(x) be a parameter value at which maximum value of L(θ|x)

is attained as a function of θ, with x held fixed. A maximum likelihood estimator (MLE) of

the parameter θ based on a sample X is then θ̂(x) .

We can also mention some properties of MLEs and the usefulness of such properties.

MLEs satisfy the properties stated below:

• Consistency,

• Asymptotic normality.

Suppose n is the sample size, θ̂ is a estimate of θ and θ0 is the true parameter of the sample

distribution. Then as n→∞, if θ̂ → θ0, then this θ̂ is a consistent estimate. Moreover if the

√
n(θ̂ − θ0)

d−→ N(0, σθ0
2), meaning the difference of estimator and parameter value converges
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in distribution to a Normal density function, then θ̂ is said to be asymptotically Normal

under regularity conditions. Here, σθ0
2 is called the asymptotic variance of the estimate θ̂.

According to asymptotic normality, the estimator converges at a rate of 1√
n

.

Associated with the likelihood function, we can also look at the hessian matrix and the

Fisher Information. The hessian matrix of some objective function is the matrix of its second

partial derivative, and hence can be written as:

H(θ) =
δ2L(θ)

δθδθ′
,

where L is the objective function. The hessian matrix above is directly related to the Fisher

Information, which, for a random variable X, can be written as:

I(θ) = −E(
δ2L(θ)

δθδθ′
).

We call the sample based Fisher information the observed Fisher information. As pointed

out in Efron and Hinkley (1978), the observed information can be used to determine the

accuracy of the maximum likelihood estimates. In particular, since
√
n(θ̂ − θ0)

d−→ N(0, I−1),

where I−1 is the inverse of the observed information matrix, the variance (standard errors)

can be approximated. The maximum likelihood estimation technique can be applied to all

forms of data, including, for instance, censored data. In other words, the likelihood function

can be appropriately modified and then maximized.
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2.6.2 Expectation maximization algorithm

In order to estimate the MLEs in a missing data scenario, a useful technique is the expectation

maximization (EM) algorithm. The EM algorithm converges to the MLEs almost surely

(Casella and Berger (2002)). The main idea of the algorithm is to replace one difficult

likelihood maximization with a sequence of easier maximizations and the original problem’s

answer is the limit of such maximizations. In this case, we are interested in solving the

“incomplete data” problem but we actually address and solve the “complete-data problem”. To

incorporate the observations in an incomplete data setup, the EM algorithm was introduced

by Dempster et al. (1977) as an iterative approach for computing MLEs. The algorithm

estimates the parameters in such a way that involves two steps: first is the expectation

step and the next step is the maximization step. Therefore, the process is referred to as

Expectation-Maximization or EM algorithm.

Using the notation of Chauveau (1995), let v be complete data and x denote incomplete

data, where the incomplete data is assumed to be what is observed. They denote the complete

data density by g(v|ϕ) and the incomplete data density by f(x|ϕ), where ϕ ∈ Φ and Φ

was the parameter space. The objective is to estimate ϕ in such a way that maximizes the

incomplete log likelihood function, i.e.,

argmax
ϕ∈Φ

log{f(x|ϕ)}.

However, such maximization is very difficult due to the missingness in data. Using the current

parameter value and the observed data value x, a conditional expectation of the unknown

complete data log likelihood log{g(v|ϕ)} can be done iteratively. In each iteration, such

expectation is maximized.
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Suppose h(v|x, ϕ) is the conditional density of v given x, where

h(v|x, ϕ) =
g(v|ϕ)

f(x|ϕ)

Then the objective function and the observed likelihood are:

Q(ϕ|ϕ′) = E[log{g(v|ϕ)}|x, ϕ′]

and

L(ϕ) = log{f(x|ϕ)},

respectively. The EM steps are:

E-step: Compute the density h(v|x, ϕ(n)), where ϕ(n)is the value of ϕ at nth iteration.

M-step: Choose ϕ(n+1) ∈ argmax
ϕ∈Φ

Q(ϕ|ϕ(n)).

The EM steps continue until convergence of the sequence of ϕ(n) has been attained.

As pointed out in Diebolt and Ip (1994), many inference problems can be solved by the

EM algorithm when they are formulated as missing value problems. The authors also point

out, however, that the EM algorithm has shortcomings. For instance, it may converge to a

local maxima or minima, and it is often seen to be sensitive to initial values. In Park (2005),

the author described a technique to handle incomplete data in a competing risk scenario.

Considering incompleteness to have arisen from either censoring and/or masking, the author

applied the EM algorithm.

An alternative to the EM algorithm, as introduced in Celeux and Diebolt (1985), is the

stochastic EM algorithm. It has been noted in the literature that this algorithm is particularly

useful when the EM algorithm fails or is intractable. The main principle of this alternative

technique is to impute missing data from a specified conditional distribution. That is, upon

completion of the E-step where this distribution is determined, missing values are randomly

generated from this distribution. This is called the S-step. From here, the dataset is referred
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to as a pseudo-complete sample, and the MLEs can be computed. Hence, this procedure

is often denoted by SEM. Over the years, the SEM has been used in a variety of inference

problems. Dejardin and Lesaffre (2013) proposed the use of SEM for doubly interval-censored

data and similarly, Zhang et al. (2013) demonstrated the use and efficiency of SEM in the

case of progressively censored data. More recently, the algorithm was applied to reliability

problems in Yang et al. (2016), where the authors considered system lifetime data.

2.6.3 Model discrimination

To discriminate between models, one can use Akaike’s information criterion (AIC), Bayesian

information criterion (BIC) and also the likelihood ratio test (LRT) to choose the best fit

between two or more models.

AIC is measured by Kullback-Leibler divergence between the restricted density and the

unrestricted density. So, there needs to be at least two likelihoods, one corresponding to

a generalized model and another is obtained by putting constraints on the parameters of

that generalized model. The latter is called the restricted likelihood and the former the

unrestricted likelihood. Here, the AIC is calculated using the formula:

AIC = −2l + 2k,

where l is the maximized log-likelihood value of the model and k is the number of estimated

parameters in the model. So, one can compute AIC for each model and compare values. The

model with lower AIC has less missing information and hence is said to provide a better fit.

Similarly, the BIC can be calculated as:

BIC = −2l + klog(n),

where l is the maximized log-likelihood value of the model, k is the number of estimated

parameters in the model and n is the sample size. Among the values of BIC, the one with

lowest value is the best fitted model.

The likelihood ratio test considers the two models under study by taking their log-
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likelihood values into account. In the null hypothesis, we assume that the lifetime distribution

can be described by the restricted model and in the alternative hypothesis we say that the

lifetime distribution can be described by the unrestricted model other than the one specified

in the null hypothesis. If l̂0 is the restricted maximized log-likelihood value and l̂ is the

unrestricted maximized log-likelihood value, the formula to calculate the LRT test statistic is:

Λ = −2(l̂0 − l̂).

This test statistic is asymptotically distributed as χ2(k), where k is the difference in the

number of parameters between the two models. Therefore, one makes a conclusion whether

to reject the null hypothesis or not by comparing the computed test statistic to percentiles of

the appropriate χ2 distribution.
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Chapter 3

Proposed model

3.1 Model construction

In this chapter, we propose a cure rate model where the lifetimes have generalized exponential

distribution. Moreover, we consider a competing risk scenario where the number of the

competing risks follows a Poisson distribution and each lifetime is subject to right censoring.

The whole population of interest is considered to be composed of two groups: cured and

susceptibles (non-cured) and our model is developed in a competing risk scenario where we

incorporate the existence of these separate groups.

Let M be the number of competing causes. We denote the p.m.f for this M as pm, with

m = 0, 1, 2, . . . We denote the lifetime due to jth competing risk as Wj, where j = 1, 2, . . . ,.

There is a common distribution function for all the Wj lifetimes, defined as F (y) = 1− S(y),

where S(y) is the survival function. We assume that both the competing causes M and the

lifetime Wj associated to a particular cause are unobservable in the scenario of a competing

causes. We assume to observe Y as:

Y = min{W0,W1,W2, ...,WM},

which can be interpreted as the minimum lifetime amongst the causes and includes W0, where

W0 is such that P [W0 =∞] = 1. Inclusion of W0 gives rise to a proportion of the population
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who are not susceptible to the event of interest and hence can be considered cured. From

hereon in, we refer to this proportion as the cure rate.

Under our proposed model, the probability mass function pm = P (M = m) for m =

0, 1, 2, . . . ,m since M ∼ Poisson, can be expressed as:

pm = P (M = m) =
e−ηηm

m!
, (3.1)

where η is the model parameter denoting the average number of competing causes. If there is

no competing risk, then we obtain the cure rate, denoted as p0, from the (3.1) by considering

M = 0, i.e.,

p0 = P (M = 0) = e−η. (3.2)

As noted in Chapter 2, in (2.1),

Sp(y) =
∞∑
m=0

P (M = m)[S(y)]m. (3.3)

In our case, since the number of competing causes has a Poisson distribution with mean η,

we then have:

Sp(y) =
∞∑
m=0

e−ηηm[S(y)]m

m!

= e−η
∞∑
m=0

[ηS(y)]m

m!

= eηS(y)e−η

= e−η(1−S(y)). (3.4)

Note, in this case, Sp(y) is not a proper survival function since lim
y→∞

Sp(y) = e−η = p0 (i.e.,

not 0).

26



Here, as mentioned, we consider a situation where the lifetimes may not be completely

observed and are subject to right censoring. Suppose, for the ith lifetime, the censoring time

is a random, call it Ci. Now, with cure rate p0 and overall censoring proportion p, each

lifetime will have its own censoring time. We assume that each Ci follows an exponential

distribution with parameter γ, i.e., Ci ∼ exp(γ). Now, suppose there are n individuals. For

each individual, we observe Ti = min{Yi, Ci}. In order to generate data from our model, γ

needs to be determined numerically. To find γ, and to ensure a cure proportion p0, we take

the ratio of susceptible proportion amongst the censored group with the total proportion of

susceptible and equate it to the conditional probability of a subject living longer than the

censored time, when at least 1 competing cause is present. That is:

p− p0

1− p0

= Pr[min(W1, . . . ,WM) > C|M > 0]. (3.5)

To find γ, this implies we need to solve (3.5). In order to solve this under our model, we

substitute in the appropriate quantities and (3.5) becomes:

p− p0

1− p0

=
Pr[min(W1, . . . ,WM > C,M > 0)]

Pr[M > 0]

p− p0

1− p0

=

∑∞
m=1 Pr[min(W1, . . . ,WM) > C]Pr[M = m]

1− Pr[M = 0]

p− p0

1− p0

=
1

1− p0

∞∑
m=1

e−ηηm

m!

∫ ∞
0

S(x)mγe−γxdx. (3.6)
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Let t = γx and so, x = t
γ
. Then, the right hand side of (3.6) becomes:

1

1− p0

∞∑
m=1

e−ηηm

m!

∫ ∞
0

(S(
t

γ
))me−tdt =

1

1− p0

∞∑
m=1

e−ηηm

m!
E(S(

t

γ
))m

≈ 1

1− p0

∞∑
m=1

e−ηηm

m!

[
1

N

N∑
i=1

(S(
ti
γ

))m

]
.

As can be seen, we approximate the expectation with a Monte Carlo approximation based

on N simulations. For our purposes, we chose N=1000. Since p0 = e−η, then η = −log(p0).

Rearranging the previous expression, the R.H.S of (3.6) becomes:

1

1− p0

∞∑
m=1

e−ηηm

m!

∫ ∞
0

(S(
t

γ
))me−tdt =

1

1− p0

e−η
1

N

N∑
i=1

∞∑
m=1

ηm

m!
[(S(

ti
γ

))m]

=
1

1− p0

e−η

N

[
N∑
i=1

[
∞∑
m=0

(ηS( ti
γ

))m

m!

]
− 1

]

=
1

1− p0

e−η

N

N∑
i=1

(eηS(
ti
γ

) − 1)

=
p0

1− p0

1

N

N∑
i=1

(e−log(p0)S(
ti
γ

) − 1)

=
p0

1− p0

[
1

N

N∑
i=1

p
−S(

ti
γ

)

0 − 1].
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Now by equating the L.H.S and R.H.S of (3.6), we get:

p− p0

1− p0

=
p0

1− p0

[
1

N

N∑
i=1

p
−S(

ti
γ

)

0 − 1]

⇒ p− p0

p0

=
1

N

N∑
i=1

p
−S(

ti
γ

)

0 − 1

⇒ p

p0

− 1 =
1

N

N∑
i=1

p
−S(

ti
γ

)

0 − 1

⇒ Np

p0

=
N∑
i=1

p
−(1−(1−e−λ

ti
γ )α)

0

⇒ Np

p0

=
N∑
i=1

p
−1+(1−e−λ

ti
γ )α

0

⇒ Np

p0

=
N∑
i=1

p0
−1p0

(1−e−λ
ti
γ )α

⇒ Np

p0

=
1

p0

N∑
i=1

p0
(1−e−λ

ti
γ )α

⇒
N∑
i=1

p =
N∑
i=1

p0
(1−e−λ

ti
γ )α

⇒
N∑
i=1

[p0
(1−e−λ

ti
γ )α − p] = 0. (3.7)

Using (3.7), by applying Newton-Raphson’s iterative root finding technique, we can solve for

γ. Therefore to generate data, one only needs to fix α, λ, p0 and p, where of course p0 and p

need to be chosen appropriately, since, for a given group, p0 must always less than p.

We introduce the covariate effect in the proposed model by relating cure fraction p0 to

covariates x. We do this by setting p0i = 1
exp(exp(x′β))

,where β = (β0, . . . , βk)
′ and k is the
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number of covariates. Here, the log-linear link exp(x′β) ranges from−∞ to ∞ and after

taking exponent of the negative of this term, it ranges from 0 to ∞. Therefore, this link is

chosen to capture the parameter space of the Poisson distribution.

3.2 Likelihood construction

In this section, we use the quantities found in Chapters 2 and Section 3.1 to construct the

likelihood function under our proposed model. To consider our population as a mixture

population, we introduce an indicator variable I. If the subject is cured, I is to take the value

0 and it will take the value 1 if the subject is susceptible. Also, we denote the probability of

being cured as p0, so, P [I = 0] = p0 and P [I = 1] = 1− p0. Suppose, the cumulative density

of overall population is Fp(y) and the cumulative density for susceptible is F1(y). Moreover,

Sp and S1 are the corresponding survival functions for overall population and the susceptible

group. Then:

Fp(y) = (1− p0)F1(y)

and

Sp(y) = p0 + (1− p0)S1(y), (3.8)

lim
y→∞

S1(y) = 0 and it is clear we can solve (3.8) for S1 by using (3.4). Then, using the

expression for Sp(y) in (3.4), we have:

fp(y) = −S ′p(y)

= ηαλe−λy(1− e−λy)α−1e−η(1−e−λy)α . (3.9)

To clarify which observations are censored, an indicator variable δi is introduced, where

δi = I(Yi ≤ Ci). Clearly, δi takes the value 1 if Yi is a lifetime, and takes 0 if it is right

censored, for i = 1, . . . , n where n is the sample size. Our data then consists of pairs of
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times and censoring indicators, which we denote by (t1, δ1), (t2, δ2), . . . , (tn, δn). Therefore,

the observed data likelihood function under our proposed model is:

L(θ; t, x, δ) ∝
n∏
i=1

{fp(ti,xi;θ)δi}{Sp(ti,xi;θ)}(1−δi)

=
∏
I1

ηαλe−λti(1− e−λti)α−1e−η(1−e−λti )α
∏
I0

e−η(1−e−λti )α

=
∏
I1

ex
′βαλe−λti(1− e−λti)α−1e−e

x′β(1−e−λti )α
∏
I0

e−e
x′β(1−e−λti )α . (3.10)

Here, θ = (β′, α, λ)′, t = (t1, . . . , tn)′, δ = (δ1, . . . , δn)′, I1 = {i : δi = 1}, I0 = {i : δi = 0},

and the vector consisting of xi values is denoted as x. Now the log-likelihood becomes:

Log(L) =
∑
I1

log[ex
′βαλe−λti(1− e−λti)α−1e−e

x′β(1−e−λti )α ]
∑
I0

log[e−e
x′β(1−e−λti )α ]

=
∑
I1

[x′β + log(α) + log(λ)− λti + (α− 1)log(1− e−λti)− ex′β(1− e−λti)α]

−
∑
I0

ex
′β(1− e−λti)α. (3.11)

Having an expression for the likelihood (and log-likelihood) function, a natural next step is

to develop maximum likelihood estimators(MLEs). In some cases, closed form expressions

for MLEs can be obtained. In other cases, such as ours, one must turn to numerical methods

and two such methods are discussed in the next chapter.
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Chapter 4

Likelihood inference

In this chapter, we describe two numerical methods of estimation to find MLEs of the

proposed model’s parameters. The first is the direct optimization technique which takes the

observed likelihood and maximizes it directly. The second approach is the EM algorithm,

where we treat the data as an incomplete data problem. The details are discussed in the next

two subsections.

4.1 Direct optimization

Our goal is to obtain values of the parameter which maximize (3.10) and after taking logarithm

the log-likelihood function in (3.11). In order to maximize (3.11) numerically in R, initial

values of the parameters are required. To obtain initial values, we carry out a grid search to

find which values from the grid that maximize (3.11). Once initial values are found, we choose

to use the function optim, which is an inbuilt function in R. Since two of our parameters

are constrained (to the positive real line), we specify the method “L-BFGS-B” which allows

box constraints as developed by Byrd et al. (1995). For a given dataset and associated log

likelihood function, with appropriate initial values, optim, among other things, provides

estimated parameters, the value of the log-likelihood functions at there parameter values and

a convergence code. These estimated parameter values are hence the so calculated MLEs of
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interest.

4.2 EM algorithm

As described in Chapter 3, data arising from our proposed model consist in part of censored

observations. Among these censored observations, it is not known whether the subject is

cured or susceptible. If we let I be the indicator variable taking the value 1 if the lifetime is

observed, clearly this indicates I is unknown amongst censored observations. This indicates

this is a missing data problem and hence EM the algorithm can be used. With this, the

complete log-likelihood function is:

lc(θ; t, x, δ, I) =
∑
I1

Iilogfp(ti,xi;θ)+
∑
I0

(1−Ii)logp0(β,xi)+
∑
I0

Iilog{Sp(ti,xi;θ)−p0(β,xi)}.

(4.1)

As described in Section (2.6.2), we need an E-step and M-step. For our proposed model,

according to Balakrishnan and Pal (2016) and Pal and Balakrishnan (2016), these steps are

as follows.

E-step: We compute the expected value of the complete data log-likelihood function with

respect to the distribution of I ′is given a current set of parameter values and the observed data.

It is clear that I ′is are Bernoulli random variables and we simply need to calculate πi
(k) =

E(Ii|θ(k),O), i = 1, 2, . . . , n, where O = { observed I ′is, (ti,xi, δi)},θ = (β′, α, λ) and θ(k)

denotes the present value of parameters at the kth iteration.
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For i ∈ I0, then:

πi
(k) = P [Ii = 1|Ti > ti;θ

(k)]

=
P [Ti > ti|Ii = 1]P [Ii = 1]

p[Ti > ti]
|θ=θ(k)

=
(1− p0(β,xi))S1(ti,xi;θ)

Sp(ti,xi;θ)
|θ=θ(k)

=
Sp(ti,xi;θ)− P0(β,xi)

Sp(ti,xi;θ)
|θ=θ(k)

=
e−η(1−s(ti)) − e−η

e−η(1−S(ti))

= wi
(k). (4.2)

For i ∈ I1, we have πi
(k) = Ii = 1. In the E-step, the I ′is in (4.1) are substituted by

wi
(k) for i ∈ I0 and by 1 for i ∈ I1. We denote the conditional expectation of the complete

data log-likelihood function by Q(θ,π(k)), where π(k) is the vector of π
(k)
i values. Under our

model, the Q(θ,π(k)) function can be expressed as:

Q(θ,π(k)) =
∑
I1

[log{exp(x′β)}+ log(αλ)− λti + (α− 1)log(1− exp(−λti))

− exp(x′β) + A] +
∑
I0

{−exp(x′β)}+
∑
I0

[−exp(x′β) + log(exp(A)− 1)]

=n1log(αλ) +
∑
I1

x′β − λ
∑
I1

ti +
∑
I1

A+ (α− 1)
∑
I1

log(1− exp(−λti)

+
∑
I0

πi
(k)log(exp(A)− 1)−

∑
I∗

exp(x′β), (4.3)

where A = ηS(ti) = exp(x′β)S(ti) and I∗ = I0 ∪ I1.
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M-step: In this step, we maximize the Q(θ,π(k)) function with respect to θ over the

parameter space Θ, given π(k). This leads to an improved estimate of θ given as:

θ(k+1) = argmax Q
θ∈Θ

(θ,π(k)).

The E-step and M-step are continued until convergence has been established according

to a pre-specified criterion. Once convergence has occurred, the current value of θ are the

MLEs.
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Chapter 5

Numerical results

5.1 Simulation study

In order to determine the performance of our proposed model, we rigorously carried out a

Monte Carlo Simulation study. We considered three different sample sizes: n= 100, 200 and

400. For each sample, we introduced the covariate effect by splitting the entire sample into

four groups. For each group, for simplicity and as done in Pal and Balakrishnan (2016), the

patients of jth group are assigned a covariate value of j, for j = 1, 2, 3, 4. With only one

covariate, our model has two regression parameters, β0 and β1. Using specific values for cure

fraction p0 and censoring proportion p, we can obtain the estimated values of these regression

parameters. In order to calculate the values of the regression parameters, we exploit their

relationship to p0. Since, each p0i is a monotone decreasing function of covariate x, we can

see the inverse relationship from the link function. p′0is decrease from group 1 to group 4 as

covariates takes value from 1 to 4. We considered two choices for the cure rates for groups

1 and 4. For group 1 we used 0.65 and 0.40, and similarly for group 4, we used 0.25 and

0.15. In short, p0 are monotonically deceasing in order to reflect the smaller chance of cure as

the category goes from 1 to 4. For each group we also fixed the censoring proportion, p. We

imposed one of three censoring settings: “High”=(0.85, 0.65, 0.50, 0.35), “Moderate”=(0.65,

0.55, 0.45, 0.35) and “Low”=(0.5, 0.4, 0.3, 0.2). Note, within each group, for a fixed value of
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p, this allows for the calculation of the censoring parameter γ.

After fixing p0 and p, to generate a lifetime, we first generate a censoring time C and a value

of our Poisson random variable M , where η = −log(p0). In the special case that M = 0, this

implies there are no competing risks and so the lifetime is unobservable and so we take the life-

time to be C. In all other cases we generate W1, . . . ,WM from the GED as given in (3.1). The

observed lifetime is then T = min{Y,C}, where Y is the minimum of lifetimes W1, . . . ,WM .

For the lifetime distribution, we considered two parameter settings: (α, λ) = (2, 3) and

(α, λ) = (4, 1). In the case of the EM algorithm, for a simulated dataset, to initiate the

iterative procedure, a grid search was carried out to find a set of parameter values within

the parameter space that maximize Q as given in (4.3). For the M-step, like in the direct

optimization method, we used R’s inbuilt function optim. Moreover, for both methods, with

the obtained estimates, the hessian matrix was calculated for each dataset. This allowed

us to observe the Fisher Information and hence the standard errors of the estimates. This

further allowed us to compute confidence intervals for the estimates. In addition to these

calculations, we also calculated the empirical bias and root mean squared errors (RMSE) of

the estimates, as well as coverage probabilities of the computed confidence intervals. For all

settings considered, 1000 Monte Carlo simulations were run.

In Tables 5.1-5.6, we present the parameter estimation results for the direct optimization

method. From these six tables, we can see that the parameters are efficiently estimated

and the estimation gets better as the sample size increases. Moreover, the estimates of α

display larger bias for the settings α = 4 and λ = 1 when compared to α = 2 and λ = 3. One

possible explanation for this is the shape of the distribution since, in this case, compared to

the other setting α = 2 and λ = 3, there exists a larger portion of longer lifetimes.

These are followed by the estimates of the cure proportions using direct optimization in

Tables 5.7 to 5.12. It is evident from these tables that the estimates of the cured proportion

are mostly negatively biased. Also, the estimation improves as the sample size increases.
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Another important observation is the estimates are almost same for both parameter settings.

Subsequently, in Tables 5.13 to 5.24, we have the analogous results using the EM algorithm.

It is evident from these tables that the EM algorithm converges almost perfectly to the true

parameter in larger sample sizes. Though the estimates have larger bias for small sample

sizes, the estimates improve as n gets larger when we begin to observe smaller standard

errors and see a gradual decrease in RMSE. The method seems to work best in the settings

with low censoring time and cure proportion p01 = 0.40 and p04 = 0.15. Interestingly, the

estimates of α give higher bias for α = 4 and λ = 1 than lambda, whereas, λ gives higher

bias than α in the α = 2 and λ = 3 setup as censoring time decreases.

Unlike the direct method, estimates of the cured proportion using EM algorithm have very

small biases irrespective of sample size. Noticeably, setups with high censoring proportion

and cure proportion p01 = 0.40 and p04 = 0.15 for 1st and 4th group tend to have larger bias

in all six tables. Analogous to the direct method, the estimates are almost same for both

parameter settings.

We also observed the number of iterations per 1000 simulations for the EM algorithm.

The observed average number of iterations ranged from 3 iterations to 16 iterations. We

suspect that due to the large value of elpsilon (0.001) we have a small number of iterations.

If the accuracy is increased, that is, epsilon is significantly small, we believe more iterations

would be required.
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Table 5.1: Estimates, bias and root mean square error(RMSE) and coverage probabilities(CP)
for cure rate model using direct optimization method under different simulation settings with
α = 2, λ = 3, n = 100

n p Parameter Estimate(S.E.) Bias RMSE 95% CP 90% CP
100(30,40,20,10) High α= 2.0000 2.1991(0.5309) 0.1991 0.6294 0.965 0.929

λ= 3.0000 3.1826(0.8064) 0.1826 0.8726 0.955 0.905
β0=-1.2317 -1.2579(0.5074) -0.0262 0.5113 0.955 0.908
β1= 0.3896 0.3985(0.1834) 0.0089 0.1819 0.943 0.909

100(30,40,20,10) High α= 2.0000 2.1688(0.5152) 0.1688 0.6184 0.958 0.909
λ= 3.0000 3.1837(1.1444) 0.1837 1.2800 0.943 0.892
β0=-0.3300 -0.2845(0.6983) 0.0455 0.7190 0.949 0.900
β1= 0.2426 0.2559(0.1862) 0.0133 0.1925 0.946 0.897

100(30,40,20,10) Moderate α= 2.0000 2.1320(0.4393) 0.1320 0.4592 0.963 0.917
λ= 3.0000 3.1236(0.8444) 0.1236 0.8527 0.953 0.912
β0=-0.3300 -0.3161(0.4105) 0.0139 0.4208 0.941 0.888
β1= 0.2426 0.2479(0.1547) 0.0053 0.1636 0.945 0.892

100(30,40,20,10) Low α= 2.0000 2.1021(0.3680) 0.1021 0.3793 0.971 0.931
λ= 3.0000 3.1051(0.5757) 0.1051 0.5872 0.956 0.905
β0=-0.3300 -0.3287(0.3302) 0.0013 0.3360 0.948 0.901
β1= 0.2426 0.2475(0.1337) 0.0049 0.1384 0.943 0.896

Table 5.2: Estimates, bias and root mean square error(RMSE) and coverage probabilities(CP)
using direct optimization method for cure rate model under different simulation settings with
α = 4, λ = 1, n = 100

n p Parameter Estimate(S.E.) Bias RMSE 95% CP 90% CP
100(30,40,20,10) High α= 4.0000 4.5731(1.3333) 0.5731 1.6567 0.966 0.929

λ= 1.0000 1.0516(0.2149) 0.0516 0.2312 0.948 0.892
β0=-1.2317 -1.2382(0.5012) -0.0064 0.5022 0.951 0.900
β1= 0.3896 0.3928(0.1839) 0.0032 0.1883 0.946 0.899

100(30,40,20,10) High α= 4.0000 4.4647(1.2872) 0.4647 1.5669 0.954 0.924
λ= 1.0000 1.0493(0.2682) 0.0493 0.2876 0.948 0.892
β0=-0.3300 -0.3108(0.5429) 0.0192 0.5320 0.958 0.914
β1= 0.2426 0.2457(0.1849) 0.0032 0.1831 0.951 0.896

100(30,40,20,10) Moderate α= 4.0000 4.2757(1.0532) 0.2757 1.1291 0.957 0.921
λ= 1.0000 1.0218(0.2089) 0.0218 0.2095 0.958 0.908
β0=-0.3300 -0.3313(0.3963) -0.0013 0.4131 0.949 0.893
β1= 0.2426 0.2540(0.1541) 0.0114 0.1606 0.947 0.889

100(30,40,20,10) Low α= 4.0000 4.2605(0.8964) 0.2605 1.0049 0.961 0.901
λ= 1.0000 1.0190(0.1566) 0.0190 0.1633 0.948 0.898
β0=-0.3300 -0.3276(0.3287) 0.0024 0.3450 0.945 0.890
β1= 0.2426 0.2461(0.1336) 0.0035 0.1392 0.945 0.887
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Table 5.3: Estimates, bias and root mean square error(RMSE) and coverage probabilities(CP)
for cure rate model using direct optimization method under different simulation settings with
α = 2, λ = 3, n = 200

n p Parameter Estimate(S.E.) Bias RMSE 95% CP 90% CP
200(55,60,45,40) High α= 2.0000 2.0887(0.3275) 0.087 0.3481 0.958 0.908

λ= 3.0000 3.0864(0.5252) 0.0864 0.5615 0.944 0.886
β0=-1.2317 -1.2269(0.3515) 0.0048 0.3665 0.940 0.889
β1= 0.3896 0.3885(0.1138) -0.0011 0.1166 0.947 0.890

200(55,60,45,40) High α= 2.0000 2.0743(0.3184) 0.0743 0.3578 0.948 0.885
λ= 3.0000 3.0839(0.7075) 0.0839 0.7653 0.941 0.889
β0=-0.3300 -0.3348(0.3893) -0.0048 0.3927 0.948 0.903
β1= 0.2426 0.2499(0.1149) 0.0073 0.1144 0.946 0.899

200(55,60,45,40) Moderate α= 2.0000 2.0595(0.2865) 0.0595 0.3042 0.952 0.901
λ= 3.0000 3.0752(0.5712) 0.0752 0.5979 0.944 0.884
β0=-0.3300 -0.3275(0.2802) 0.0025 0.2896 0.941 0.895
β1= 0.2426 0.2444(0.0943) 0.0018 0.0974 0.947 0.896

200(55,60,45,40) Low α= 2.0000 2.0498(0.2457) 0.0498 0.2595 0.958 0.904
λ= 3.0000 3.0499(0.3953) 0.0499 0.4073 0.938 0.885
β0=-0.3300 -0.3399(0.2292) -0.0099 0.2319 0.951 0.899
β1= 0.2426 0.2463(0.0822) 0.0037 0.0840 0.950 0.893

Table 5.4: Estimates, bias and root mean square error(RMSE) and coverage probabilities(CP)
for cure rate model using direct optimization method under different simulation settings with
α = 4, λ = 1, n = 200

n p Parameter Estimate(S.E.) Bias RMSE 95% CP 90% CP
200(55,60,45,40) High α= 4.0000 4.2610(0.8021) 0.2610 0.9194 0.955 0.913

λ= 1.0000 1.0265(0.1412) 0.0265 0.1453 0.959 0.907
β0=-1.2317 -1.2323(0.3483) -0.0006 0.3431 0.953 0.907
β1= 0.3896 0.3911(0.1138) 0.0015 0.1130 0.962 0.907

200(55,60,45,40) High α= 4.0000 4.1726(0.7733) 0.1726 0.8562 0.949 0.901
λ= 1.0000 1.0156(0.1714) 0.0156 0.1771 0.953 0.904
β0=-0.3300 -0.3429(0.3702) -0.0129 0.3829 0.942 0.894
β1= 0.2426 0.2520(0.1146) 0.0094 0.1170 0.945 0.896

200(55,60,45,40) Moderate α= 4.0000 4.1784(0.6978) 0.1784 0.7607 0.958 0.907
λ= 1.0000 1.0218(0.1431) 0.0218 0.1430 0.958 0.902
β0=-0.3300 -0.3338(0.2735) -0.0038 0.2744 0.951 0.902
β1= 0.2426 0.2429(0.0946) 0.0003 0.0960 0.946 0.893

200(55,60,45,40) Low α= 4.0000 4.1198(0.5906) 0.1198 0.6510 0.951 0.893
λ= 1.0000 1.0116(0.1087) 0.0116 0.1147 0.940 0.892
β0=-0.3300 -0.3353(0.2278) -0.0053 0.2308 0.946 0.893
β1= 0.2426 0.2474(0.0820) 0.0048 0.0806 0.952 0.911
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Table 5.5: Estimates, bias and root mean square error(RMSE) and coverage probabilities(CP)
for cure rate model using direct optimization method under different simulation settings with
α = 2, λ = 3, n = 400

n p Parameter Estimate(S.E.) Bias RMSE 95% CP 90% CP
400(110,120,90,80) High α= 2.0000 2.0453(0.2247) 0.0453 0.2304 0.959 0.910

λ= 3.0000 3.0346(0.3661) 0.0346 0.3802 0.938 0.894
β0=-1.2317 -1.2327(0.2477) -0.0009 0.2558 0.946 0.895
β1= 0.3896 0.3908(0.0803) 0.0012 0.0810 0.950 0.901

400(110,120,90,80) High α= 2.0000 2.0303(0.2172) 0.0303 0.2199 0.953 0.900
λ= 3.0000 3.0284(0.4914) 0.0284 0.4788 0.954 0.905
β0=-0.3300 -0.3221(0.2712) 0.0079 0.2730 0.952 0.902
β1= 0.2426 0.2438(0.0807) 0.0012 0.0824 0.947 0.901

400(110,120,90,80) Moderate α= 2.0000 2.0337(0.1988) 0.0337 0.2064 0.946 0.904
λ= 3.0000 3.0233(0.3978) 0.0233 0.4045 0.942 0.907
β0=-0.3300 -0.3303(0.1975) -0.0003 0.2008 0.943 0.895
β1= 0.2426 0.2449(0.0667) 0.0024 0.0677 0.943 0.893

400(110,120,90,80) Low α= 2.0000 2.0217(0.1701) 0.0217 0.1705 0.961 0.914
λ= 3.0000 3.0208(0.2770) 0.0208 0.2778 0.943 0.907
β0=-0.3300 -0.3355(0.1612) -0.0055 0.1590 0.949 0.907
β1= 0.2426 0.2466(0.0578) 0.0041 0.0582 0.950 0.900

Table 5.6: Estimates, bias and root mean square error(RMSE) and coverage probabilities(CP)
for cure rate model using direct optimization method under different simulation settings with
α = 4, λ = 1, n = 400

n p Parameter Estimate(S.E.) Bias RMSE 95% CP 90% CP
400(110,120,90,80) High α= 4.0000 4.0797(0.5341) 0.0797 0.5480 0.952 0.911

λ= 1.0000 1.0040(0.0983) 0.0040 0.0983 0.952 0.898
β0=-1.2317 -1.2376(0.2455) -0.0058 0.2520 0.954 0.899
β1= 0.3896 0.3929(0.0802) 0.0034 0.0840 0.947 0.883

400(110,120,90,80) High α= 4.0000 4.0932(0.5292) 0.0932 0.5280 0.963 0.919
λ= 1.0000 1.0112(0.1197) 0.0112 0.1143 0.962 0.917
β0=-0.3300 -0.3261(0.2586) 0.0039 0.2697 0.940 0.891
β1= 0.2426 0.2411(0.0805) -0.0015 0.0813 0.952 0.902

400(110,120,90,80) Moderate α= 4.0000 4.0613(0.4735) 0.0613 0.4773 0.949 0.907
λ= 1.0000 1.0067(0.1000) 0.0067 0.0986 0.947 0.902
β0=-0.3300 -0.3363(0.1927) -0.0063 0.1946 0.952 0.907
β1= 0.2426 0.2444(0.0666) 0.0018 0.0672 0.949 0.898

400(110,120,90,80) Low α= 4.0000 4.0584(0.4085) 0.0584 0.4295 0.951 0.904
λ= 1.0000 1.0064(0.0764) 0.0064 0.0788 0.951 0.892
β0=-0.3300 -0.3278(0.1608) 0.0022 0.1581 0.956 0.898
β1= 0.2426 0.2422(0.0579) -0.0004 0.0575 0.947 0.897
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Table 5.7: Estimates, bias and root mean square error(RMSE)for cure fraction using direct
optimization method under different simulation settings with α = 2, λ = 3, n = 100

n p p0 Estimate Bias RMSE
100(30,40,20,10) High p01=0.6500 0.6454 -0.0046 0.0951

p02=0.5294 0.5291 -0.0003 0.0747
p03=0.3910 0.3905 -0.0005 0.0768
p04=0.2500 0.2539 0.0039 0.1064

100(30,40,20,10) High p01=0.4000 0.3886 -0.0114 0.1562
p02=0.3110 0.3022 -0.0088 0.1186
p03=0.2257 0.2194 -0.0063 0.0984
p04=0.1500 0.1537 0.0037 0.1013

100(30,40,20,10) Moderate p01=0.4000 0.3925 -0.0075 0.1028
p02=0.3110 0.3040 -0.0070 0.0746
p03=0.2257 0.2211 -0.0046 0.0771
p04=0.1500 0.1558 0.0058 0.0936

100(30,40,20,10) Low p01=0.4000 0.3971 -0.0029 0.0790
p02=0.3110 0.3077 -0.0033 0.0538
p03=0.2257 0.2233 -0.0025 0.0606
p04=0.1500 0.1546 0.0046 0.0784

Table 5.8: Estimates, bias and root mean square error(RMSE) for cure fraction using direct
optimization method under different simulation settings with α = 4, λ = 1, n = 100

n p p0 Estimate Bias RMSE
100(30,40,20,10) High p01=0.6500 0.6423 -0.0077 0.0925

p02=0.5294 0.5267 -0.0027 0.0703
p03=0.3910 0.3894 -0.0016 0.0784
p04=0.2500 0.2560 0.0060 0.1128

100(30,40,20,10) High p01=0.4000 0.3916 -0.0084 0.1304
p02=0.3110 0.3059 -0.0052 0.0956
p03=0.2257 0.2243 -0.0014 0.0854
p04=0.1500 0.1596 0.0096 0.0984

100(30,40,20,10) Moderate p01=0.4000 0.3953 -0.0047 0.1000
p02=0.3110 0.3047 -0.0064 0.0713
p03=0.2257 0.2194 -0.0063 0.0727
p04=0.1500 0.1520 0.0020 0.0878

100(30,40,20,10) Low p01=0.4000 0.3972 -0.0028 0.0810
p02=0.3110 0.3083 -0.0027 0.0527
p03=0.2257 0.2240 -0.0017 0.0574
p04=0.1500 0.1551 0.0051 0.0765
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Table 5.9: Estimates, bias and root mean square error(RMSE) for cure fraction using direct
optimization method under different simulation settings with α = 2, λ = 3, n = 200

n p p0 Estimate Bias RMSE
200(55,60,45,40) High p01=0.6500 0.6436 -0.0064 0.0720

p02=0.5294 0.5267 -0.0027 0.0579
p03=0.3910 0.3903 -0.0007 0.0502
p04=0.2500 0.2523 0.0023 0.0633

200(55,60,45,40) High p01=0.4000 0.3984 -0.0016 0.1039
p02=0.3110 0.3094 -0.0016 0.0770
p03=0.2257 0.2233 -0.0025 0.0600
p04=0.1500 0.1494 -0.0006 0.0587

200(55,60,45,40) Moderate p01=0.4000 0.3978 -0.0022 0.0764
p02=0.3110 0.3097 -0.0014 0.0570
p03=0.2257 0.2252 -0.0006 0.0513
p04=0.1500 0.1527 0.0027 0.0569

200(55,60,45,40) Low p01=0.4000 0.4019 0.0019 0.0581
p02=0.3110 0.3123 0.0013 0.0397
p03=0.2257 0.2264 0.0006 0.0370
p04=0.1500 0.1520 0.0020 0.0454

Table 5.10: Estimates, bias and root mean square error(RMSE) and for cure fraction using
direct optimization method under different simulation settings with α = 4, λ = 1, n = 200

n p p0 Estimate Bias RMSE
200(55,60,45,40) High p01=0.6500 0.6423 -0.0077 0.0925

p02=0.5294 0.5267 -0.0027 0.0703
p03=0.3910 0.3894 -0.0016 0.0784
p04=0.2500 0.2560 0.0060 0.1128

200(55,60,45,40) High p01=0.4000 0.3916 -0.0084 0.1304
p02=0.3110 0.3059 -0.0052 0.0956
p03=0.2257 0.2243 -0.0014 0.0854
p04=0.1500 0.1596 0.0096 0.0984

200(55,60,45,40) Moderate p01=0.4000 0.3953 -0.0047 0.1000
p02=0.3110 0.3047 -0.0064 0.0713
p03=0.2257 0.2194 -0.0063 0.0727
p04=0.1500 0.1520 0.0020 0.0878

200(55,60,45,40) Low p01=0.4000 0.3972 -0.0028 0.0810
p02=0.3110 0.3083 -0.0027 0.0527
p03=0.2257 0.2240 -0.0017 0.0574
p04=0.1500 0.1551 0.0051 0.0765
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Table 5.11: Estimates, bias and root mean square error(RMSE) for cure fraction using direct
optimization method under different simulation settings with α = 2, λ = 3, n = 400

n p p0 Estimate Bias RMSE
400(110,120,90,80) High p01=0.6500 0.6473 -0.0027 0.0508

p02=0.5294 0.5281 -0.0014 0.0400
p03=0.3910 0.3900 -0.0010 0.0335
p04=0.2500 0.2497 -0.0003 0.0428

400(110,120,90,80) High p01=0.4000 0.3962 -0.0038 0.0730
p02=0.3110 0.3080 -0.0030 0.0526
p03=0.2257 0.2232 -0.0025 0.0411
p04=0.1500 0.1494 -0.0006 0.0423

400(110,120,90,80) Moderate p01=0.4000 0.3990 -0.0010 0.0531
p02=0.3110 0.3098 -0.0012 0.0390
p03=0.2257 0.2244 -0.0013 0.0351
p04=0.1500 0.1499 -0.0001 0.0394

400(110,120,90,80) Low p01=0.4000 0.4003 0.0003 0.0404
p02=0.3110 0.3103 -0.0008 0.0281
p03=0.2257 0.2240 -0.0017 0.0270
p04=0.1500 0.1487 -0.0013 0.0329

Table 5.12: Estimates, bias and root mean square error(RMSE) and for cure fraction using
direct optimization method under different simulation settings with α = 4, λ = 1, n = 400

n p p0 Estimate Bias RMSE
400(110,120,90,80) High p01=0.6500 0.6483 -0.0017 0.0487

p02=0.5294 0.5284 -0.0010 0.0370
p03=0.3910 0.3894 -0.0016 0.0322
p04=0.2500 0.2485 -0.0015 0.0452

400(110,120,90,80) High p01=0.4000 0.3985 -0.0015 0.0715
p02=0.3110 0.3113 0.0002 0.0500
p03=0.2257 0.2269 0.0012 0.0372
p04=0.1500 0.1529 0.0029 0.0389

400(110,120,90,80) Moderate p01=0.4000 0.4013 0.0013 0.0502
p02=0.3110 0.3123 0.0013 0.0351
p03=0.2257 0.2267 0.0010 0.0312
p04=0.1500 0.1519 0.0019 0.0367

400(110,120,90,80) Low p01=0.4000 0.3992 -0.0008 0.0398
p02=0.3110 0.3107 -0.0004 0.0267
p03=0.2257 0.2258 0.0001 0.0251
p04=0.1500 0.1514 0.0014 0.0316
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Table 5.13: Estimates, bias and root mean square error(RMSE) and coverage probabilities(CP)
for cure rate model using EM under different simulation settings with α = 2, λ = 3, n = 100

n p Parameter Estimate(S.E.) Bias RMSE 95% CP 90% CP
100(30,40,20,10) High α= 2.0000 2.1877(0.5305) 0.1877 0.6321 0.960 0.922

λ= 3.0000 3.1525(0.8089) 0.1525 0.9170 0.934 0.883
β0=-1.2317 -1.2414(0.5105) -0.0096 0.5430 0.939 0.888
β1= 0.3896 0.3965(0.1834) 0.0069 0.1846 0.937 0.902

100(30,40,20,10) High α= 2.0000 2.0979(0.5108) 0.0979 0.5922 0.956 0.901
λ= 3.0000 2.8589(1.1689) -0.1411 1.1867 0.954 0.902
β0=-0.3300 -0.1376(0.7084) 0.1924 0.6540 0.964 0.922
β1= 0.2426 0.2331(0.1851) -0.0095 0.1872 0.947 0.899

100(30,40,20,10) Moderate α= 2.0000 2.0416(0.4328) 0.0416 0.4969 0.937 0.876
λ= 3.0000 2.8256(0.8528) -0.1744 1.0404 0.912 0.808
β0=-0.3300 -0.2318(0.4256) 0.0982 0.4436 0.948 0.888
β1= 0.2426 0.2460(0.1533) 0.0034 0.1600 0.938 0.886

100(30,40,20,10) Low α= 2.0000 2.1143(0.3711) 0.1143 0.4069 0.960 0.909
λ= 3.0000 3.1193(0.5760) 0.1193 0.5867 0.950 0.902
β0=-0.3300 -0.3315(0.3301) -0.0015 0.3389 0.948 0.907
β1= 0.2426 0.2445(0.1336) 0.0019 0.1385 0.946 0.891

Table 5.14: Estimates, bias and root mean square error(RMSE) and coverage probabilities(CP)
using EM algorithm for cure rate model under different simulation settings with α = 4, λ =
1, n = 100

n p Parameter Estimate(S.E.) Bias RMSE 95% CP 90% CP
100(30,40,20,10) High α= 4.0000 4.5821(1.3358) 0.5821 1.6639 0.966 0.927

λ= 1.0000 1.0540(0.2150) 0.0540 0.2314 0.948 0.893
β0=-1.2317 -1.2465(0.5018) -0.0147 0.4998 0.949 0.902
β1= 0.3896 0.3949(0.1840) 0.0053 0.1878 0.945 0.901

100(30,40,20,10) High α= 4.0000 4.3164(1.2606) 0.3164 1.4532 0.946 0.919
λ= 1.0000 0.9972(0.2708) -0.0028 0.2721 0.948 0.902
β0=-0.3300 -0.1996(0.5435) 0.1305 0.5117 0.957 0.918
β1= 0.2426 0.2248(0.1836) -0.0177 0.1810 0.955 0.896

100(30,40,20,10) Moderate α= 4.0000 4.2166(1.0430) 0.2166 1.1039 0.951 0.914
λ= 1.0000 1.0027(0.2089) 0.0027 0.2153 0.952 0.902
β0=-0.3300 -0.3037(0.3959) 0.0263 0.4279 0.943 0.877
β1= 0.2426 0.2515(0.1537) 0.0090 0.1617 0.948 0.888

100(30,40,20,10) Low α= 4.0000 4.2615(0.8965) 0.2615 1.0032 0.961 0.901
λ= 1.0000 1.0194(0.1566) 0.0194 0.1625 0.948 0.898
β0=-0.3300 -0.3292(0.3289) 0.0009 0.3460 0.945 0.887
β1= 0.2426 0.2464(0.1336) 0.0038 0.1394 0.945 0.887
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Table 5.15: Estimates, bias and root mean square error(RMSE) and coverage probabilities(CP)
using EM algorithm for cure rate model under different simulation settings with α = 2, λ =
3, n = 200

n p Parameter Estimate(S.E.) Bias RMSE 95% CP 90% CP
200(55,60,45,40) High α= 2.0000 2.0780(0.3266) 0.0780 0.3436 0.957 0.912

λ= 3.0000 3.0898(0.5269) 0.0898 0.5293 0.958 0.908
β0=-1.2317 -1.2594(0.3535) -0.0276 0.3645 0.939 0.892
β1= 0.3896 0.3950(0.1144) 0.0054 0.1190 0.942 0.882

200(55,60,45,40) High α= 2.0000 2.0279(0.3133) 0.0279 0.3289 0.950 0.895
λ= 3.0000 2.8741(0.7069) -0.1259 0.7086 0.940 0.902
β0=-0.3300 -0.2208(0.3932) 0.1092 0.3567 0.960 0.920
β1= 0.2426 0.2321(0.1140) -0.0105 0.1075 0.969 0.927

200(55,60,45,40) Moderate α= 2.0000 1.9733(0.2790) -0.0267 0.3229 0.906 0.846
λ= 3.0000 2.7615(0.5665) -0.2385 0.7526 0.863 0.759
β0=-0.3300 -0.2094(0.2836) 0.1206 0.3173 0.922 0.855
β1= 0.2426 0.2330(0.0934) -0.0096 0.0954 0.945 0.897

200(55,60,45,40) Low α= 2.0000 2.0437(0.2443) 0.0437 0.2530 0.960 0.912
λ= 3.0000 3.0481(0.3955) 0.0481 0.4048 0.954 0.907
β0=-0.3300 -0.3408(0.2290) -0.0108 0.2398 0.936 0.898
β1= 0.2426 0.2480(0.0821) 0.0054 0.0877 0.935 0.877

Table 5.16: Estimates, bias and root mean square error(RMSE) and coverage probabilities(CP)
using EM algorithm for cure rate model under different simulation settings with α = 4, λ =
1, n = 200

n p Parameter Estimate(S.E.) Bias RMSE 95% CP 90% CP
200(55,60,45,40) High α= 4.0000 4.2679(0.8032) 0.2679 0.9232 0.955 0.913

λ= 1.0000 1.0286(0.1413) 0.0286 0.145608 0.959 0.909
β0=-1.2317 -1.2408(0.3489) -0.0090 0.3410 0.959 0.911
β1= 0.3896 0.3931(0.1140) 0.0036 0.1126 0.964 0.908

200(55,60,45,40) High α= 4.0000 4.0799(0.7615) 0.0799 0.8181 0.942 0.898
λ= 1.0000 0.9783(0.1717) -0.0217 0.1716 0.952 0.904
β0=-0.3300 -0.2415(0.3669) 0.0886 0.3459 0.949 0.911
β1= 0.2426 0.2323(0.1134) -0.0104 0.1107 0.948 0.909

200(55,60,45,40) Moderate α= 4.0000 4.1351(0.6925) 0.1351 0.7432 0.954 0.904
λ= 1.0000 1.0068(0.1429) 0.0067 0.1460 0.948 0.888
β0=-0.3300 -0.3128(0.2730) 0.0172 0.3007 0.931 0.870
β1= 0.2426 0.2412(0.0943) -0.0014 0.09948 0.940 0.879

200(55,60,45,40) Low α= 4.0000 4.1201(0.5906) 0.1201 0.6492 0.951 0.894
λ= 1.0000 1.0118(0.1087) 0.0118 0.1139 0.943 0.897
β0=-0.3300 -0.3363(0.2278) -0.0063 0.2331 0.946 0.887
β1= 0.2426 0.2476(0.0820) 0.0050 0.0812 0.949 0.909
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Table 5.17: Estimates, bias and root mean square error(RMSE) and coverage probabilities(CP)
using EM algorithm for cure rate model under different simulation settings with α = 2, λ =
3, n = 400

n p Parameter Estimate(S.E.) Bias RMSE 95% CP 90% CP
400(110,120,90,80) High α= 2.0000 2.0463(0.2247) 0.0463 0.2307 0.960 0.910

λ= 3.0000 3.0395(0.3663) 0.0395 0.3801 0.940 0.895
β0=-1.2317 -1.2371(0.2478) -0.0053 0.2550 0.947 0.895
β1= 0.3896 0.3918(0.0803) 0.0022 0.0808 0.951 0.899

400(110,120,90,80) High α= 2.0000 2.0001(0.2156) 0.0001 0.2114 0.950 0.897
λ= 3.0000 2.8669(0.4908) -0.1331 0.4485 0.961 0.915
β0=-0.3300 -0.2313(0.2718) 0.0987 0.2337 0.968 0.937
β1= 0.2426 0.2290(0.0802) -0.0136 0.0756 0.967 0.927

400(110,120,90,80) Moderate α= 2.0000 1.9405(0.1930) -0.0595 0.2337 0.886 0.814
λ= 3.0000 2.6897(0.3945) -0.3103 0.6370 0.730 0.619
β0=-0.3300 -0.2039(0.1990) 0.1261 0.2520 0.888 0.795
β1= 0.2426 0.2345(0.0657) -0.0081 0.0670 0.948 0.891

400(110,120,90,80) Low α= 2.0000 2.0183(0.1698) 0.0183 0.1730 0.948 0.896
λ= 3.0000 3.0196(0.2774) 0.0196 0.2831 0.953 0.895
β0=-0.3300 -0.3285(0.1612) 0.0015 0.1658 0.943 0.892
β1= 0.2426 0.2435(0.0578) 0.0009 0.0599 0.945 0.895

Table 5.18: Estimates, bias and root mean square error(RMSE) and coverage probabilities(CP)
using EM algorithm for cure rate model under different simulation settings with α = 4, λ =
1, n = 400

n p Parameter Estimate(S.E.) Bias RMSE 95% CP 90% CP
400(110,120,90,80) High α= 4.0000 4.0858(0.5349) 0.0858 0.5498 0.952 0.910

λ= 1.0000 1.0059(0.0984) 0.0059 0.0983 0.952 0.900
β0=-1.2317 -1.2456(0.2459) -0.0138 0.2510 0.956 0.902
β1= 0.3896 0.3949(0.0803) 0.0053 0.0838 0.948 0.883

400(110,120,90,80) High α= 4.0000 4.0204(0.5227) 0.0204 0.5350 0.946 0.899
λ= 1.0000 0.9768(0.1196) -0.0232 0.1189 0.948 0.907
β0=-0.3300 -0.2267(0.2574) 0.1033 0.2322 0.962 0.923
β1= 0.2426 0.2217(0.0799) -0.0209 0.0780 0.949 0.890

400(110,120,90,80) Moderate α= 4.0000 4.0208(0.4704) 0.0208 0.5195 0.926 0.861
λ= 1.0000 0.9912(0.1001) -0.0088 0.1145 0.910 0.848
β0=-0.3300 -0.3026(0.1922) 0.0274 0.2331 0.915 0.830
β1= 0.2426 0.2403(0.0663) -0.0022 0.0712 0.941 0.877

400(110,120,90,80) Low α= 4.0000 4.0761(0.4112) 0.0761 0.4367 0.949 0.889
λ= 1.0000 1.0067(0.0764) 0.0067 0.0804 0.950 0.887
β0=-0.3300 -0.3406(0.1611) -0.0106 0.1656 0.951 0.901
β1= 0.2426 0.2467(0.0580) 0.0041 0.0603 0.950 0.900
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Table 5.19: Estimates, bias and root mean square error(RMSE) using EM algorithm for cure
fraction under different simulation settings with α = 2, λ = 3, n = 100

n p p0 Estimate Bias RMSE
100(30,40,20,10) High p01=0.6500 0.6400 -0.0100 0.1088

p02=0.5294 0.5245 -0.0049 0.0875
p03=0.3910 0.3870 -0.0040 0.0836
p04=0.2500 0.2516 0.0016 0.1077

100(30,40,20,10) High p01=0.4000 0.3450 -0.0550 0.1419
p02=0.3110 0.2650 -0.0460 0.1061
p03=0.2257 0.1930 -0.0327 0.0932
p04=0.1500 0.1394 -0.0106 0.0985

100(30,40,20,10) Moderate p01=0.4000 0.3634 -0.0366 0.1140
p02=0.3110 0.2767 -0.0343 0.0906
p03=0.2257 0.1983 -0.0275 0.0877
p04=0.1500 0.1383 -0.0117 0.0937

100(30,40,20,10) Low p01= 0.4000 0.3991 -0.0009 0.0797
p02=0.3110 0.3109 -0.0001 0.0544
p03=0.2257 0.2272 0.0015 0.0611
p04=0.1500 0.1585 0.0085 0.0803

Table 5.20: Estimates, bias and root mean square error(RMSE) using EM algorithm for cure
fraction under different simulation settings with α = 4, λ = 1, n = 100

n p p0 Estimate Bias RMSE
100(30,40,20,10) High p01=0.6500 0.6441 -0.0059 0.0914

p02=0.5294 0.5281 -0.0013 0.0696
p03=0.3910 0.3901 -0.0009 0.0782
p04=0.2500 0.2559 0.0059 0.1127

100(30,40,20,10) High p01=0.4000 0.3597 -0.0403 0.1244
p02=0.3110 0.2811 -0.0300 0.0907
p03=0.2257 0.2087 -0.0170 0.0830
p04=0.1500 0.1529 0.0029 0.0964

100(30,40,20,10) Moderate p01= 0.4000 0.3862 -0.0138 0.1060
p02=0.3110 0.2968 -0.0142 0.0776
p03=0.2257 0.2133 -0.0124 0.0761
p04=0.1500 0.1478 -0.0022 0.0881

100(30,40,20,10) Low p01=0.4000 0.3976 -0.0024 0.0812
p02=0.3110 0.3087 -0.0024 0.0527
p03=0.2257 0.2242 -0.0015 0.0574
p04=0.1500 0.1552 0.0052 0.0766
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Table 5.21: Estimates, bias and root mean square error(RMSE) using EM algorithm for cure
fraction under different simulation settings with α = 2, λ = 3, n = 200

n p p0 Estimate Bias RMSE
200(55,60,45,40) High p01= 0.6500 0.6511 0.0011 0.0695

p02= 0.5294 0.5334 0.0040 0.0546
p03= 0.3910 0.3950 0.0040 0.0483
p04= 0.2500 0.2544 0.0044 0.0652

200(55,60,45,40) High p01= 0.4000 0.3641 -0.0359 0.0959
p02= 0.3110 0.2812 -0.0299 0.0710
p03= 0.2257 0.2032 -0.0225 0.0575
p04= 0.1500 0.1378 -0.0122 0.0565

200(55,60,45,40) Moderate p01= 0.4000 0.3592 -0.0408 0.0898
p02= 0.3110 0.2760 -0.0350 0.0713
p03= 0.2257 0.1986 -0.0272 0.0614
p04= 0.1500 0.1339 -0.0161 0.0587

200(55,60,45,40) Low p01= 0.4000 0.4016 0.0016 0.0595
p02= 0.3110 0.3114 0.0004 0.0398
p03= 0.2257 0.2250 -0.0008 0.0371
p04= 0.1500 0.1505 0.0005 0.0466

Table 5.22: Estimates, bias and root mean square error(RMSE) using EM algorithm for cure
fraction under different simulation settings with α = 4, λ = 1, n = 200

n p p0 Estimate Bias RMSE
200(55,60,45,40) High p01=0.6500 0.6471 -0.0029 0.0654

p02=0.5294 0.5286 -0.0008 0.0512
p03=0.3910 0.3903 -0.0008 0.0456
p04=0.2500 0.2504 0.0004 0.0614

200(55,60,45,40) High p01=0.4000 0.3711 -0.0289 0.0898
p02=0.3110 0.2877 -0.0233 0.0637
p03=0.2257 0.2089 -0.0169 0.0518
p04=0.1500 0.1425 -0.0075 0.0551

200(55,60,45,40) Moderate p01=0.4000 0.3937 -0.0063 0.0781
p02=0.3110 0.3066 -0.0044 0.0547
p03=0.2257 0.2231 -0.0027 0.0459
p03=0.1500 0.1512 0.0012 0.0522

200(55,60,45,40) Low p01=0.4000 0.4001 0.0000 0.0593
p02=0.3110 0.3101 -0.0009 0.0405
p03=0.2257 0.2238 -0.0020 0.0356
p04=0.1500 0.1492 -0.0009 0.0426
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Table 5.23: Estimates, bias and root mean square error(RMSE) using EM algorithm for cure
fraction under different simulation settings with α = 2, λ = 3, n = 400

n p p0 Estimate Bias RMSE
400(110,120,90,80) High p01=0.6500 0.6483 -0.0017 0.0505

p02=0.5294 0.5289 -0.0005 0.0398
p03=0.3910 0.3905 -0.0005 0.0334
p04=0.2500 0.2499 -0.0001 0.0428

400(110,120,90,80) High p01=0.4000 0.3688 -0.0312 0.0628
p02=0.3110 0.2858 -0.0252 0.0450
p03=0.2257 0.2077 -0.0181 0.0381
p04=0.1500 0.1406 -0.0094 0.0409

400(110,120,90,80) Moderate p01=0.4000 0.3567 -0.0433 0.0760
p02=0.3110 0.2726 -0.0385 0.0637
p03=0.2257 0.1944 -0.0313 0.0550
p04=0.1500 0.1284 -0.0216 0.0487

400(110,120,90,80) Low p01=0.4000 0.3989 -0.0011 0.0422
p02=0.3110 0.3100 -0.0010 0.0292
p03=0.2257 0.2248 -0.0009 0.0274
p04=0.1500 0.1503 0.0003 0.0333

Table 5.24: Estimates, bias and root mean square error(RMSE) using EM algorithm for cure
fraction under different simulation settings with α = 4, λ = 1, n = 400

n p p0 Estimate Bias RMSE
400(110,120,90,80) High p01=0.6500 0.6500 0.0000 0.0481

p02=0.5294 0.5297 0.0003 0.0367
p03=0.3910 0.3902 -0.0009 0.0320
p04=0.2500 0.2486 -0.0014 0.0452

400(110,120,90,80) High p01=0.4000 0.3698 -0.0302 0.0605
p02=0.3110 0.2893 -0.0218 0.0409
p03=0.2257 0.2131 -0.0126 0.0344
p04=0.1500 0.1472 -0.0028 0.0401

400(110,120,90,80) Moderate p01=0.4000 0.3905 -0.0095 0.0628
p02=0.3110 0.3033 -0.0078 0.0444
p03=0.2257 0.2197 -0.0060 0.0345
p04=0.1500 0.1469 -0.0031 0.0359

400(110,120,90,80) Low p01=0.4000 0.4022 0.0022 0.0414
p02=0.3110 0.3121 0.0010 0.0276
p03=0.2257 0.2256 -0.0001 0.0256
p04=0.1500 0.1500 0.0000 0.0323
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5.2 Illustrative examples

In this section, we consider two real life datasets to illustrate our inference procedures. For

each dataset, we use direct optimization and the EM algorithm to estimate the MLEs under

our proposed model. Furthermore, we discriminate our model from exponential and for this

purpose, we used AIC, BIC and LRT.

5.2.1 Melanoma data I

In this section, we consider a cutaneous melanoma data. This data, from Kirkwood et al.

(2000) and also analyzed by Yin and Ibrahim (2005), were originally a part of a test on

cutaneous melanoma, a malignant cancer type, for the evaluation of postoperative treatment

performance with a high dose of a certain drug(interferon alpha-2b) for prevention of recurrence

of the disease. Patients were included from 1991 to 1995 and followed up until 1998. We used

survival time as our response variable. There are four nodule categories which are considered

as the covariates and the data has been right censored. Relevant information of these data

can be found in Appendix. The average survival time is 3.17 and the standard deviation is

1.69.

The results of the two maximum likelihood procedures are shown in Table 5.25. It is clear

that the results from the two estimation methods give similar results, more noticeably in the

case of GED. Cure fraction estimates and their standard errors are obsereved in Table 5.26

for the GED and in Table 5.27 for exponential distribution. Delta method is used to obtain

these standard errors. The model discrimination results are shown in Table 5.28. From this

table we can see that, according to both AIC and BIC, the model with GED lifetimes give

smaller values and hence better fits the data. Moreover, as mentioned, we performed the

likelihood ratio test. Our hypotheses of consideration are: H0 : α = 1 vs. Ha : α 6= 1. For this

dataset, Λ = 45.5808 for direct optimization and Λ = 46.50491 for the EM algorithm. Now,

since the difference in the number of parameters between the two models is 1, we compare
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our computed test statistic to a χ2(1) percentile. We chose 5% level of significance and so the

critical value is 3.84. We concluded that we reject the null hypothesis; in other words, GED

gives a better fit to the dataset. We have also constructed QQ plots of normalized residuals

as developed by Dunn and Smyth (1996). These are shown in Figure 5.1. It is clear from all

four plots that both GED and exponential give good fits to the dataset.

Figure 5.1: QQ plot for the melanoma data I
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Table 5.25: Parameter estimates and SE of melanoma data I using the GED and exponential
distribution

GED estimates (SE) Exponential estimates (SE)

Estimation method α̂ λ̂ β̂0 β̂1 λ̂ β̂0 β̂1

Direct optimization
2.5087 0.6845 -1.2326 0.3648 0.1182 -0.4399 0.3453

(0.3153) (0.0921) (0.2002) (0.0686) (0.0536) (0.4000) (0.0685)

EM
2.5088 0.6845 -1.2326 0.3648 0.1189 -0.4459 0.3457

(0.3154) (0.0921) (0.2002) (0.0686) (0.0534) (0.3967) (0.0685)

Table 5.26: Cure fraction estimates, SE and 95% confidence interval of melanoma data I
using the GED

GED estimates (SE)

Estimation method p01 p02 p03 p04

Direct optimization
0.6571 0.5463 0.4186 0.2853

(0.0392) (0.0327) (0.0342) (0.0469)
95% CI with direct optimization (0.5802, 0.7340) (0.4822, 0.6103) (0.3516, 0.4856) (0.1933, 0.3773)

EM
0.6572 0.5463 0.4186 0.2853

(0.0392) (0.0327) (0.0342) (0.0470)
95% CI with EM (0.5803, 0.7340) (0.4822, 0.6104) (0.3516, 0.4856) (0.1933, 0.3774)

Table 5.27: Cure fraction estimates, SE and 95% confidence interval of melanoma data I
using exponential distribution

Exponential estimates (SE)

Estimation method p01 p02 p03 p04

Direct optimization
0.4026 0.2767 0.1629 0.0771

(0.5017) (0.4873) (0.4058) (0.2717)
95% CI with direct optimization (-0.5806, 1.3859) (-0.6785, 1.2319) (-0.6325, 0.9583) (-0.4555, 0.6096)

EM
0.4047 0.2785 0.1643 0.0779

(0.1368) (0.1291) (0.1081) (0.0753)
95% CI with EM (0.1365, 0.6729) ( 0.0255, 0.5316) (-0.0475, 0.3761) (-0.0696, 0.2254)

Table 5.28: AIC and BIC of melanoma data I using the GED and exponential distribution

Direct optimization EM algorithm

Distribution of lifetime AIC BIC AIC BIC
GED 1028.192 1044.315 1028.195 1044.318

Exponential 1071.773 1083.865 1072.7 1084.792
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5.2.2 Melanoma data II

Our second illustrative example involves the dataset used by Rodrigues et al. (2009). This

melanoma dataset, which can be found in the R package timereg, contains data relating to

survival of patients after operation for malignant melanoma and relevant part of it is included

in the Appendix. It contains several covariates including gender, tumour thickness and

ulceration status, among others. For our analysis, we considered the single covariate tumour

thickness, which we note to be continuous. Also, based on the dataset’s status indicator

variable, we constructed our censoring indicator. As in previous example, we fit our model to

the survival times. The average survival time is 5.898 and the standard deviation is 3.07.

Table 5.29: Parameter estimates and SE of melanoma data II using the GED and exponential
distribution

GED estimates (SE) Exponential estimates (SE)

Estimation method α̂ λ̂ β̂0 β̂1 λ̂ β̂0 β̂1

Direct optimization
2.1620 0.2790 -1.2311 0.1608 0.0321 -0.0081 0.1545

(0.4753) (0.0845) (0.2383) (0.0312) (0.0494) (1.3690) (0.0315)

EM algorithm
2.1641 0.2794 -1.2320 0.1608 0.0366 -0.1262 0.1545

(0.4758) (0.0845) (0.2382) (0.0312) (0.0468) (1.1217) (0.0314)

Table 5.30: Cure fraction estimates, SE and 95% confidence interval of melanoma data II
using the GED

GED estimates (SE)

Estimation method p01 p02 p03 p04

Direct optimization
0.7097 0.6685 0.6232 0.5738

(0.0544) (0.0572) (0.0606) (0.0647)
95% CI with direct optimization (0.6031, 0.8164) (0.5564, 0.7806) (0.5045, 0.7418 ) (0.4469, 0.7007)

EM
0.7099 0.6687 0.6234 0.5741

(0.0543) (0.0571) (0.0605) (0.0646)
95% CI with EM (0.6034, 0.8164) (0.5568, 0.7807) (0.5049, 0.7419) (0.4474, 0.7007)
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Table 5.31: Cure fraction estimates, SE and 95% confidence interval of melanoma data II
using exponential distribution

Exponential estimates (SE)

Estimation method p01 p02 p03 p04

Direct optimization
0.3142 0.2590 0.2067 0.1588

(0.4982) (0.4796) (0.4473) (0.4020)
95% CI with direct optimization (-0.6622, 1.2907) (-0.6811, 1.1991) (-0.6701, 1.0834) (-0.6290, 0.9466)

EM
0.3575 0.3010 0.2463 0.1949

(0.4124) (0.4055) (0.3878) (0.3589)
95% CI with EM (-0.4508, 1.1658) (-0.4938, 1.0959) (-0.5138, 1.006 ) ( -0.5086, 0.8984)

Table 5.32: AIC and BIC of melanoma data II using the GED and exponential distribution

Direct optimization EM algorithm

Distribution of lifetime AIC BIC AIC BIC
GED 440.9625 454.2545 440.9625 454.2546

Exponential 449.5995 459.5685 449.6127 459.5817

The results of the two maximum likelihood procedures are shown in Table 5.29. It is

evident that the results from two estimation methods gives similar results, once again more

noticeably in GED. Moreover, we also observe the cure fraction separately for the GED in

Table 5.30 and also for exponential in Table 5.31. To find the standard errors of cure fractions

delta method is used. Also for the model discrimination, results are shown in Table 5.32.

From this table, we can see that according to both AIC and BIC, the GED gave smaller

values of the criteria and hence better fits the data.
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We again performed the likelihood ratio test. Under the same hypotheses as the previous

example, for this dataset, Λ = 10.637 for direct optimization and Λ = 10.650 for the EM

algorithm. Again, at 5% level of significance, the critical value is 3.84. As before, we

reject the null hypothesis; in other words, the GED gives a better fit to the dataset. We

have also constructed QQ plots for the second dataset; these are shown in Figure 5.2. It is

once again clear from all four plots both GED and exponential provides good fits to the dataset.

Figure 5.2: QQ plot for the melanoma data II
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Chapter 6

Conclusion

In this thesis, a cure rate model based on generalized exponential lifetimes distribution in a

competing risks scenario has been proposed. Our model also allows for a cure fraction in the

population. Furthermore, to be more realistic, right censoring was also incorporated. The

likelihood function for the proposed model was then constructed, and in relation to that,

two methods of maximum likelihood estimation were developed. First we consider a direct

optimization technique of the likelihood function through numerical methods. Secondly, an

EM algorithm was developed. Here, the E-step was to find the conditional expectation of the

complete log-likelihood of our proposed model and the M-step involved maximization of the

conditional log-likelihood incorporating the expectation of cure fraction found in the E-step.

We have demonstrated these two estimation methods through a simulation study and two

illustrative examples. We were then able to observe their performance and make comments.

In the simulation study, we found each method gave reasonable estimates of the parameter

values in different settings. It was evident that model fitting works better for large sample

sizes compared to small sample sizes, as expected. Two cuteneous melanoma datasets were

chosen illustrate the model fitting. For each dataset, we fitted both the GED and exponential

distributions. After the analyses, it was clear that both estimation methods gave very similar

results overall. Three model discrimination methods were then carried out and the cure

rate model with GED lifetimes fitted both datasets better than one assuming exponential
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lifetimes.

Overall, the proposed estimation methods seem to work well. However, in our numerical

studies, we did not allow the situation when there is no cure proportion. Here, the results are

limited to the case of p0 > 0, and further work is needed to handle the special case of p0 = 0.

Finally, we only considered one form of censoring, that is of right censoring. It would be

interesting to extend our inference procedures to other forms of censoring, such as progressive

censoring. Also, the work in this thesis could be extended to look at other distributions for

the number of competing risks, such as the COM-Poisson.
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APPENDIX

A

Melanoma data I

Table 1: Melanoma data I

Surv.Time Censoring Nodule Category

0.7228 1 3
6.2998 0 1
6.6229 0 3
3.4716 1 4
7.0116 0 1
6.6475 0 1
6.9760 0 2
0.6708 1 4
6.8802 0 1
6.6092 0 1
1.0678 1 4
6.3299 0 2
6.3217 0 1
1.5031 1 3
0.7721 1 3
1.7823 1 4
6.6585 0 2
3.5373 1 1
5.7495 0 2
3.8138 1 1
5.9767 0 2
1.6892 1 1
5.7385 1 3
5.8754 0 1
1.5743 1 1
5.5688 0 3
1.5715 1 3
2.4367 1 1
5.7878 0 3
1.5989 1 2

Continued on next page
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Table 1 – Melanoma data I
Surv.Time Censoring Nodule Category

0.6078 1 2
5.6756 0 1
0.2409 1 4
5.5469 0 3
6.0452 0 4
1.9001 1 2
2.1328 1 4
0.3559 1 2
2.4339 1 4
1.4538 1 3
5.2485 0 2
1.5305 1 4
5.3279 0 3
0.9336 1 4
2.2231 1 3
4.9446 0 1
5.0760 0 4
5.1061 0 1
5.0513 1 4
5.7303 0 2
1.2457 1 4
1.4127 1 3
0.9418 1 2
5.4648 0 2
1.6290 1 3
5.4155 0 2
5.6400 0 2
3.1485 1 1
5.6345 0 3
1.6920 1 4
5.1335 0 3
3.2416 1 3
5.2430 0 2
5.3114 0 4
2.2752 1 1
2.5681 1 2
5.0431 0 3
4.9500 0 1
4.9802 0 3
1.5441 1 3
4.7200 0 4
5.1581 0 1
5.0678 0 1
1.7139 1 3
5.1526 0 3
1.9220 1 4
4.6872 0 3
4.9582 0 1

Continued on next page
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Table 1 – Melanoma data I
Surv.Time Censoring Nodule Category

4.1478 0 2
1.4456 1 2
4.7392 0 2
5.1088 0 1
4.3696 0 2
3.3347 1 4
3.3046 1 4
3.6112 0 2
0.5859 1 3
1.4866 1 4
4.6379 0 1
4.3203 0 2
4.4627 0 3
4.9035 0 1
2.1958 1 1
1.1855 1 4
4.4271 0 2
1.5359 1 2
4.3778 0 2
4.3368 0 1
4.5010 0 3
4.4654 0 1
2.7981 1 1
4.7146 0 3
3.0308 1 3
3.3374 1 2
2.7789 1 1
4.1396 0 1
4.4873 0 1
0.7666 1 1
4.1944 0 2
4.5777 0 1
1.5332 1 2
1.4812 1 4
4.4955 0 3
4.4627 0 2
4.4901 0 1
4.0739 0 3
4.0767 0 2
3.3949 0 3
3.9617 0 1
3.9398 0 3
4.1862 0 1
2.0096 1 4
4.2190 0 2
4.0219 0 2
1.9685 1 3
2.0835 1 4

Continued on next page
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Table 1 – Melanoma data I
Surv.Time Censoring Nodule Category

3.5072 0 1
3.7673 0 1
1.1526 1 3
0.8131 1 2
4.0685 0 2
2.9897 0 2
1.3416 1 2
3.8494 0 2
2.2204 1 1
3.7454 0 2
3.6030 0 4
0.6845 1 4
1.0623 1 2
3.5592 0 1
3.3867 0 2
3.4661 0 1
3.5373 0 2
3.6824 0 2
3.5756 0 4
0.9610 1 2
1.4237 0 2
2.1547 0 1
3.6167 0 2
3.2361 0 1
0.9254 1 1
0.9555 1 4
3.2115 0 2
3.2033 0 2
3.4442 0 2
2.6420 0 3
1.9411 1 3
0.9802 1 2
0.9555 1 4
3.1020 0 2
3.2005 0 1
2.9651 0 2
3.1239 0 2
2.3792 0 2
2.9268 0 4
3.0664 0 3
3.0472 0 3
2.5845 0 1
2.0589 1 4
0.7912 0 1
2.8967 0 1
3.1266 0 3
0.3477 1 4
5.9986 0 4

Continued on next page
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Table 1 – Melanoma data I
Surv.Time Censoring Nodule Category

5.9685 1 4
6.2943 0 1
6.5818 0 3
6.6749 0 2
0.6133 1 2
0.8761 1 2
5.8453 0 2
6.1054 0 3
1.7029 1 3
6.0151 0 1
1.6646 1 2
2.1109 1 4
1.5962 1 2
0.7721 1 3
1.4073 1 2
1.6810 1 2
1.6044 1 4
1.8179 1 3
3.4114 1 2
5.1937 0 4
5.9548 0 4
5.7112 0 2
3.3922 0 1
1.8864 1 1
3.9617 0 1
1.0075 1 4
2.0862 1 1
1.6290 1 2
6.0397 0 3
1.2046 1 3
3.3073 1 1
5.5031 0 4
1.7358 1 1
3.7235 1 1
2.0753 1 3
0.8214 1 3
5.8070 0 1
2.8720 1 2
1.5797 1 2
4.9829 0 2
5.7714 0 4
0.9637 1 1
1.3251 0 2
5.2266 0 1
1.5140 1 1
0.6762 1 4
1.0157 1 3
5.0431 0 4

Continued on next page
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Table 1 – Melanoma data I
Surv.Time Censoring Nodule Category

5.2238 0 2
4.8843 0 2
0.4600 1 3
5.0130 0 1
5.0924 0 1
5.4045 0 2
2.8638 1 2
4.9829 0 2
5.0897 0 4
0.8022 1 4
3.6578 1 2
4.8049 0 2
2.4038 1 1
4.1725 0 2
1.7385 1 2
0.6023 1 3
5.1636 0 2
1.2950 1 2
4.8077 0 4
5.1499 0 4
4.5229 0 1
4.7557 0 2
4.2710 0 1
0.5257 1 3
5.0157 0 1
2.5161 1 1
4.8022 0 1
0.8597 1 2
4.7365 0 2
4.9227 0 3
4.4846 0 3
0.4600 1 2
4.8515 0 1
3.3073 1 1
4.4928 0 1
0.4791 1 3
3.8823 0 1
4.6817 0 2
4.5996 0 3
3.5044 0 4
4.3450 0 3
1.6701 1 3
2.4011 1 4
4.3450 0 3
4.6133 1 2
3.4415 0 1
3.7372 0 2
3.2279 0 4

Continued on next page
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Table 1 – Melanoma data I
Surv.Time Censoring Nodule Category

4.1287 0 4
0.5476 1 4
1.2129 1 2
4.1478 0 3
1.6071 1 4
4.5421 0 4
2.0205 1 1
0.1698 1 4
4.2656 0 2
4.2081 0 1
1.3388 1 4
3.5181 0 3
0.5968 1 4
3.2964 0 1
4.1205 0 1
1.7632 1 1
3.0390 1 3
2.2587 0 3
0.5558 1 2
1.2430 1 2
2.8172 0 1
4.0575 0 2
3.7454 0 1
2.8665 0 3
3.6140 0 1
4.0328 0 2
2.8008 0 3
1.4730 1 2
0.7420 1 4
4.0630 0 2
3.9891 0 2
3.5702 1 4
3.5838 0 1
3.5975 0 4
1.8590 1 2
0.8597 1 4
1.6372 1 1
1.6975 1 1
1.5086 1 3
3.8686 0 3
3.6578 0 1
1.9959 1 3
0.3313 1 3
3.6386 0 3
3.6030 0 2
2.5462 1 1
2.1738 1 1
3.5209 0 2

Continued on next page

67



Table 1 – Melanoma data I
Surv.Time Censoring Nodule Category

2.8227 1 2
2.6366 1 2
2.6256 0 1
2.8036 0 2
3.5455 0 2
0.9938 1 4
2.7187 0 1
0.9199 1 4
1.8508 1 2
0.9117 1 4
5.1253 1 3
5.7988 0 2
3.2005 0 2
4.4326 0 2
1.1581 1 1
0.2656 1 3
5.4976 0 4
1.2430 1 4
5.5031 0 2
5.6509 0 2
3.4935 1 2
0.1478 1 3
5.9302 0 2
0.7830 1 2
1.9247 1 2
3.1102 1 2
4.9336 0 3
1.7029 1 4
1.7358 1 4
1.4374 1 4
2.2478 1 2
5.4100 0 4
4.2628 1 1
4.7392 0 3
4.4764 0 1
0.5366 1 3
0.9774 1 1
5.0760 0 4
5.0020 0 2
3.0582 1 2
4.4134 0 1
1.9192 1 3
0.8898 1 4
1.3169 1 4
4.0739 0 2
2.6804 1 1
3.8905 0 2
4.0465 0 3

Continued on next page
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Table 1 – Melanoma data I
Surv.Time Censoring Nodule Category

4.4928 0 3
1.5441 1 3
2.0917 1 4
3.8029 1 2
3.1567 0 2
1.1389 0 3
2.3080 1 2
4.6489 0 2
0.2847 1 2
1.2676 1 4
3.7043 0 1
3.2580 1 3
4.1369 1 3
0.4244 1 4
2.9377 0 2
1.8371 1 2
4.0027 0 3
3.0856 0 1
3.6523 0 3
3.7892 0 1
1.5113 0 2
3.3758 0 1
2.9952 0 3
1.3196 1 1
3.4114 0 2
0.2930 1 2
2.9322 0 1
2.8912 0 2
3.0198 0 1
3.1732 0 2
3.2526 0 1
2.7378 0 2
0.8843 1 4
3.3621 0 1
0.6899 1 4
2.9870 0 1
3.2690 0 4
3.2224 0 4
1.7823 1 2
1.8070 1 2
2.8830 0 3
2.7159 0 2
3.1923 0 4
2.9432 0 1
0.7337 1 4
2.7707 0 1
1.3689 1 1
2.6776 0 2

Continued on next page
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Table 1 – Melanoma data I
Surv.Time Censoring Nodule Category

2.7762 0 2
2.9788 1 1

Melanoma data II

Table 2: Melanoma data II

Surv.Time Censoring Tumour Thickness

0.0274 0 6.76
0.0822 0 0.65
0.0959 0 1.34
0.2712 0 2.90
0.5068 1 12.08
0.5589 1 4.84
0.5753 1 5.16
0.6356 1 12.88
0.6356 0 3.22
0.7644 1 7.41
0.8082 1 4.19
0.9726 0 0.16
1.0575 1 3.87
1.1671 1 4.84
1.2849 1 2.42
1.3507 0 12.56
1.4493 1 5.80
1.7014 1 7.06
1.7233 1 5.48
1.8055 1 7.73
1.8274 1 13.85
1.9671 1 2.34
2.0603 1 4.19
2.1342 1 4.04
2.1726 1 4.84
2.2384 1 0.32
2.2630 0 8.54
2.2822 1 2.58
2.3507 1 3.56
2.3808 1 3.54
2.3890 1 0.97
2.6493 1 4.83
2.6767 1 1.62
2.6904 1 6.44
2.8521 1 14.66
2.8904 1 2.58
2.9096 1 3.87

Continued on next page
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Table 2 – Melanoma data II
Surv.Time Censoring Tumour Thickness

2.9452 1 3.54
3.1671 1 1.34
3.3644 1 2.24
3.4301 1 3.87
3.4822 1 3.54
3.5945 1 17.42
3.9096 0 1.29
3.9315 1 3.22
4.1068 0 1.29
4.1260 1 4.51
4.1315 0 8.38
4.1370 0 1.94
4.1425 0 0.16
4.1534 1 2.58
4.1781 0 1.29
4.2247 0 0.16
4.2411 1 1.62
4.2658 0 1.29
4.2740 1 2.10
4.2822 0 0.32
4.3397 1 0.81
4.3973 0 1.13
4.4411 1 5.16
4.4575 0 1.62
4.4767 0 1.37
4.4959 0 0.24
4.4959 0 0.81
4.5151 0 1.29
4.5260 0 1.29
4.5315 0 0.97
4.5315 0 1.13
4.5671 1 5.80
4.5973 0 1.29
4.6164 0 0.48
4.6301 1 1.62
4.6849 0 2.26
4.6849 0 0.58
4.7288 1 0.97
4.7808 0 2.58
4.8274 0 0.81
4.8740 0 3.54
4.8959 0 0.97
4.8959 0 1.78
4.9123 0 1.94
4.9425 0 1.29
4.9644 0 3.22
5.0301 0 1.53
5.0384 0 1.29
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Table 2 – Melanoma data II
Surv.Time Censoring Tumour Thickness

5.0384 0 1.62
5.0795 0 1.62
5.0849 0 0.32
5.0959 0 4.84
5.1068 0 1.29
5.2027 0 0.97
5.2438 0 3.06
5.2575 0 3.54
5.2603 0 1.62
5.2795 0 2.58
5.2959 1 1.94
5.3205 0 0.81
5.3562 0 7.73
5.3589 0 0.97
5.3644 0 12.88
5.3781 0 2.58
5.3973 0 4.09
5.4932 0 0.64
5.4986 0 0.97
5.5096 0 3.22
5.5452 0 1.62
5.5562 0 3.87
5.5836 0 0.32
5.6329 0 0.32
5.6411 0 3.22
5.6466 1 2.26
5.6493 1 3.06
5.6849 0 2.58
5.7123 0 0.65
5.7589 0 1.13
5.7616 1 0.81
5.7644 0 0.97
5.7753 1 1.76
5.7863 0 1.94
5.8904 0 0.65
5.9068 0 0.97
5.9315 0 5.64
6.0521 0 9.66
6.1014 0 0.10
6.1014 0 5.48
6.1808 1 2.26
6.2027 0 4.83
6.4082 0 0.97
6.4685 0 0.97
6.5397 0 5.16
6.5425 1 0.81
6.5836 0 2.90
6.6466 0 3.87

Continued on next page
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Table 2 – Melanoma data II
Surv.Time Censoring Tumour Thickness

6.6466 0 1.94
6.6603 0 0.16
6.7397 0 0.64
6.7589 1 2.26
6.8274 0 1.45
6.8301 0 4.82
6.9068 0 1.29
6.9644 0 7.89
7.0110 0 0.81
7.0274 1 3.54
7.0411 0 1.29
7.2877 0 0.64
7.3041 0 3.22
7.3315 0 1.45
7.5014 0 0.48
7.6219 1 1.94
7.6356 0 0.16
8.1753 0 0.16
8.3068 0 1.29
8.3288 0 1.94
8.3342 1 3.54
8.4027 0 0.81
8.4356 0 0.65
8.4959 0 7.09
8.6137 0 0.16
8.6356 0 1.62
8.6411 0 1.62
8.7123 0 1.29
8.7178 0 6.12
8.7260 0 0.48
8.7644 0 0.64
8.8438 0 3.22
8.8466 0 1.94
8.9808 0 2.58
9.0329 0 2.58
9.1178 0 0.81
9.1233 0 0.81
9.1452 1 3.22
9.2685 0 0.32
9.2712 0 3.22
9.2740 0 2.74
9.2822 0 4.84
9.3205 0 1.62
9.4274 0 0.65
9.4740 0 1.45
9.4767 0 0.65
9.4767 0 1.29
9.5233 0 1.62

Continued on next page
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Table 2 – Melanoma data II
Surv.Time Censoring Tumour Thickness

9.6521 0 3.54
10.0466 0 3.22
10.1233 0 0.65
10.1233 0 1.03
10.3452 0 7.09
10.3452 0 1.29
10.4932 0 0.65
10.5644 0 1.78
10.6082 0 12.24
10.7096 0 8.06
10.8712 0 0.81
10.9616 0 2.10
11.2411 0 3.87
11.2849 0 0.65
11.2986 0 1.94
11.5260 0 0.65
11.8082 0 2.10
12.0274 0 1.94
12.2712 0 1.13
12.3068 0 7.06
12.7890 0 6.12
12.8438 0 0.48
13.4959 0 2.26
15.2466 0 2.90
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B

R codes for simulation study

#### we need to find theta in order to obtain a random censoring time from exponential distribution

####The function to calculate theta parameter of censoring time t is:

parameter<-function(theta,p,pnot,N,alpha,lambda)

{

a<-c() # a is a vector

x<-rexp(N) #N observations from exp(1) distribution

for (i in 1:N) #for loop to obtain ’a’ vector

{

a[i]<- pnot^(1-exp(-lambda*x[i]/theta))^alpha- p

}

return(sum(a))

}
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#function to obtain the observed time

data.fun<-function(p,pnot,N,alpha,lambda,x,s_size)

{

ind<-list()

cov<-list()

lifetime<-list()

for (j in 1:4)

{

theta<-uniroot(parameter,c(exp(-10),exp(10)),p=p[j],

pnot=pnot[j],N=N,alpha=alpha,lambda=lambda)$root

observed<-NULL ##vector of observed lifetime data

unobserved<-NULL ##vector of unobserved lifetime data

for( i in 1:s_size[j])

{

m<-rpois(1,-log(pnot[j]))#one observation from poisson

if (m!=0)

{

ged<-rgen.exp(m, alpha, lambda) #m observation from GED

y<-min(ged) #minimum of GED observations

cens<-rexp(1, rate=theta) #an observation from exp(theta)

t <-min(y,cens) #minimum of y and c which is the observed time

}

else {

cens<-rexp(1, rate=theta) #an observation from exp(theta)

t <-cens

}
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if (t!=cens){

observed <- c(observed, t)

}

else {

unobserved<-c(unobserved,t)

}

}

lifetime[[j]]<- c(observed,unobserved)

ind[[j]]<-c(rep(1,times=length(observed)),rep(0,times=length(unobserved)))

cov[[j]]<-rep(j,s_size[j])

}

result<-list(lifetime=lifetime,ob=observed,un=unobserved,

indicator=ind,covariate=cov)

output<-matrix(c(unlist(result$lifetime),unlist(result$indicator),

unlist(result$covariate)),ncol=3)

output

}
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################################## the log likelihood function

neg.loglikelihood<-function(param,gdata)

{

alpha<-param[1]

lambda<-param[2]

beta0<-param[3]

beta1<-param[4]

m11<-c()

m22<-c()

beta<-matrix(c(beta0,beta1),ncol=1)

for (j in 1:4)

{

m1<-c()

m2<-c()

y1 <- gdata[which(gdata[,2]==1&gdata[,3]==j),1]

x <- c(1,j)

y2 <- gdata[which(gdata[,2]==0&gdata[,3]==j),1]

if (length(y1)==0){m1=0}

else {for (i in 1:length(y1))

{m1[i]<-log(alpha)+log(lambda)+(x%*%beta)+(-lambda*y1[i])+

(alpha-1)*log(1-exp(-lambda*y1[i]))-(exp(x%*%beta))*(1-exp(-lambda*y1[i]))^alpha

}}

if (length(y2)==0){m2=0}
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else {for (k in 1:length(y2))

{m2[k]<- -(exp(x%*%beta))*(1-exp(-lambda*y2[k]))^alpha

}

}

m11[j]<-sum(m1)

m22[j]<-sum(m2)

}

a<- -(sum(m11,m22))

return(a)

}
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##****************function to get betas

betas<-function(p01,p04)

{

b1<-((log(-log(p04)))-log(-log(p01)))/3

b0<- log(-log(p01))-b1

b<-c(b0,b1)

p02<-exp(-exp(b[[1]]+b[[2]]*2))

p03<-exp(-exp(b[[1]]+b[[2]]*3))

p02

p03

a<-list(b0,b1,p01,p02,p03,p04)

return(a)

}

######***************grid search

grid<-function(gdata)

{

alpha<-seq(0.5,4.5,by=0.5)

lambda<-seq(0.5,4.5,by=0.5)

beta0<-seq(-5,5,by=0.5)

beta1<-seq(-5,5,by=0.5)

min.like<-Inf

for (i in 1:9){

for (j in 1:9){

for (k in 1:21){

for (l in 1:21){
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like<-neg.loglikelihood(c(alpha[i],lambda[j],beta0[k],beta1[l]),gdata)

if (like < min.like) {min.like<-like

alpha.min<-alpha[i]

lambda.min<-lambda[j]

beta0.min<-beta0[k]

beta1.min<-beta1[l]

}

}

}

}

}

minima<-c(alpha.min,lambda.min,beta0.min,beta1.min)

return(minima)

}

log.likelihood <- function(mles,data)

{-neg.loglikelihood(param = mles,gdata=data)}
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############EM section:

pi.em<-function(param,gdata)

{

p0<-c()

N<-c()

D<-c()

alpha<-param[1]

lambda<-param[2]

beta0<-param[3]

beta1<-param[4]

beta<-matrix(c(beta0,beta1),ncol=1)

y<-gdata[,1]

x<-matrix(c(rep(1,times=length(y)),gdata[,3]),ncol=2)

s_t<-1-(1-exp(-lambda*y))^alpha

eta<-exp(x%*%beta)

pi.e<-c()

for (i in (1 :length(y)))

{

p0[i]<-exp(-exp(x[i,]%*%beta))

if(s_t[i]==0){s_t[i]<-.Machine$double.eps}

if(p0[i]==0){p0[i]<-.Machine$double.eps}

N[i]<-(p0[i]^(-s_t[i]))*p0[i]-p0[i]

D[i]<-(p0[i]^(-s_t[i]))*p0[i]

if(round(N[i],15)==0){N[i] <- .Machine$double.eps}

if(round(D[i],15)==0){D[i] <- .Machine$double.eps}

pi.e[i]<-(N[i]/D[i])
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}

return(pi.e)

}
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#############conditional log likelihood

Q2<-function(param,gdata,pi.e) ##need to use only censored lifetime

{

alpha<-param[1]

lambda<-param[2]

beta0<-param[3]

beta1<-param[4]

m1<-c()

m2<-c()

beta<-matrix(c(beta0,beta1),ncol=1)

A<-c()

B<-c()

y1<-gdata[which(gdata[,2]==1),1]

x1<-matrix(c(rep(1,times=length(gdata[which(gdata[,2]==1),3])),

gdata[which(gdata[,2]==1),3]),ncol=2)

x2<-matrix(c(rep(1,times=length(gdata[which(gdata[,2]==0),3])),

gdata[which(gdata[,2]==0),3]),ncol=2)

y2<-gdata[which(gdata[,2]==0),1]

s_t1<-(1-(1-exp(-lambda*y1))^alpha)

s_t2<-(1-(1-exp(-lambda*y2))^alpha)

eta1<-exp(x1%*%beta)

eta2<-exp(x2%*%beta)
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if (length(y1)==0){m1=0}

if(length(y1)!=0 ) {for (i in 1:length(y1))

{if(s_t1[i]==0){s_t1[i]<-.Machine$double.eps}

m1[i]<-log(alpha*lambda)+(x1[i,]%*%beta)-lambda*y1[i]

+(alpha-1)*log(1-exp(-lambda*y1[i]))-exp(x1[i,]%*%beta)+eta1[i]*s_t1[i]}}

if (length(y2)==0){m2=0}

if(length(y2)!=0) {for (k in 1:length(y2))

{if(s_t2[k]==0){s_t2[k]<-.Machine$double.eps}

A[k]<-exp(x2[k,]%*%beta)*s_t2[k]

if(A[k]<40){

B[k]<-exp(A[k])*exp(-exp(x2[k,]%*%beta))-exp(-exp(x2[k,]%*%beta))

if (B[k]==0){

B[k]<-.Machine$double.eps

m2[k]<- pi.e[k]*log(B[k])-(1-pi.e[k])*exp(x2[k,]%*%beta)}

else{m2[k]<- pi.e[k]*log(exp(A[k])-1)-exp(x2[k,]%*%beta)}}

if(A[k]>=40){

m2[k]<- pi.e[k]*(A[k])-exp(x2[k,]%*%beta)}

}

}

a<- -sum(sum(m1),sum(m2))

#####a<- list((m1),(m2),x2,s_t2,eta2,pi.e,A)

return(a)

}
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######***************grid search

grid.em<-function(gdata)

{

alpha<-seq(0.5,4.5,by=0.5)

lambda<-seq(0.5,4.5,by=0.5)

beta0<-seq(-5,5,by=0.5)

beta1<-seq(-5,5,by=0.5)

min.Qfun<-Inf

for (i in 1:9){

for (j in 1:9){

for (k in 1:21){

for (l in 1:21){

pi.grid<-pi.em(c(alpha[i],lambda[j],beta0[k],

beta1[l]),gdata[which(gdata[,2]==0),])

Qfun<-(Q2(c(alpha[i],lambda[j],beta0[k],

beta1[l]),gdata,pi.grid))

if (Qfun < min.Qfun) {min.Qfun<-Qfun

alpha.min<-alpha[i]

lambda.min<-lambda[j]

beta0.min<-beta0[k]

beta1.min<-beta1[l]

}

}

}

}
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}

minima<-c(alpha.min,lambda.min,beta0.min,beta1.min)

return(minima)

}

################################## EM.ALGORITHM

EM<-function(gdata,epsilon)

{

abs.diff<-Inf

inits<-grid.em(gdata)

pi.e<-pi.em(inits,gdata[which(gdata[,2]==0),])

Q.old<-Q2(inits,gdata,pi.e)

k=0

while (abs.diff>epsilon) {

k<-k+1

pi.e<-pi.em(inits,gdata[which(gdata[,2]==0),])

out <- optim(inits, fn=Q2,method="L-BFGS-B",

lower= c(1e-3,1e-3,-Inf,-Inf),gdata=gdata,pi.e=pi.e)

inits<-out$par

Q.new<-out$value

abs.diff<-abs((Q.new-Q.old)/Q.old)

Q.old<-Q.new

output<-c(inits,k)

if(k>500){output<-NULL

epsilon<-Inf

}

}

return(output)
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}
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#############simulation with direct method

set.seed(123)

library(reliaR)

library(numDeriv)

######### case 1(b0=-1.231746,b1=0.3895951,alpha=2,lambda=3)

betas(.65,.25)

para1<-c(alpha=2,lambda=3,b0=-1.231746,b1=0.3895951)

p_all<-c(.85,.65,.5,.35)

pnot_all1<-c(0.65,0.5294055,0.3910264,0.25)

x_all<-c(1,2,3,4)

s_all<- c(30,40,20,10)

test11 <- matrix(nrow=1000 ,ncol=4)

ged.data1<-list()

H<-matrix(nrow=1000,ncol=4)

s<-matrix(nrow=1000,ncol=4)

count11<-0

count21<-0

count31<-0

count41<-0

count12<-0

count22<-0

count32<-0

count42<-0

po1<-c()

po2<-c()

po3<-c()
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po4<-c()

d1<-c()

d2<-c()

d3<-c()

d4<-c()

e1<-c()

e2<-c()

e3<-c()

e4<-c()

for(i in 1:1000 ){

ged.data1[[i]]<-data.fun(p_all,pnot_all1,1000 ,2,3,x_all,s_all)

inits <- grid(ged.data1[[i]])

out <- optim(inits, fn=neg.loglikelihood,method="L-BFGS-B",

lower= c(1e-3,1e-3,-Inf,-Inf),gdata=ged.data1[[i]])

test11[i,] <- out$par #######vector of estimates

H<- hessian(f=log.likelihood,x=test11[i,],data=ged.data1[[i]])

Hinv <- solve(H)

VAR1 <- -Hinv[1,1]

VAR2 <- -Hinv[2,2]

VAR3 <- -Hinv[3,3]

VAR4 <- -Hinv[4,4]

###

SE1 <- sqrt(VAR1)

SE2 <- sqrt(VAR2)

SE3 <- sqrt(VAR3)

SE4 <- sqrt(VAR4)
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###95%CI

CI11<-c(test11[i,1]-1.96*SE1,test11[i,1]+1.96*SE1)

CI21<-c(test11[i,2]-1.96*SE2,test11[i,2]+1.96*SE2)

CI31<-c(test11[i,3]-1.96*SE3,test11[i,3]+1.96*SE3)

CI41<-c(test11[i,4]-1.96*SE4,test11[i,4]+1.96*SE4)

###counts to make coverage probabilities

if(para1[1]>=CI11[1] & para1[1]<=CI11[2] ){count11<-count11+1} else {count11<-count11+0}

if(para1[2]>=CI21[1] & para1[2]<=CI21[2] ){count21<-count21+1} else {count21<-count21+0}

if(para1[3]>=CI31[1] & para1[3]<=CI31[2] ){count31<-count31+1} else {count31<-count31+0}

if(para1[4]>=CI41[1] & para1[4]<=CI41[2] ){count41<-count41+1} else {count41<-count41+0}

######90%CI

CI12<-c(test11[i,1]-1.645*SE1,test11[i,1]+1.645*SE1)

CI22<-c(test11[i,2]-1.645*SE2,test11[i,2]+1.645*SE2)

CI32<-c(test11[i,3]-1.645*SE3,test11[i,3]+1.645*SE3)

CI42<-c(test11[i,4]-1.645*SE4,test11[i,4]+1.645*SE4)

###counts to make coverage probabilities

if(para1[1]>=CI12[1] & para1[1]<=CI12[2] ){count12<-count12+1} else {count12<-count12+0}

if(para1[2]>=CI22[1] & para1[2]<=CI22[2] ){count22<-count22+1} else {count22<-count22+0}

if(para1[3]>=CI32[1] & para1[3]<=CI32[2] ){count32<-count32+1} else {count32<-count32+0}

if(para1[4]>=CI42[1] & para1[4]<=CI42[2] ){count42<-count42+1} else {count42<-count42+0}

#########

s[i,]<-c(SE1,SE2,SE3,SE4)

#####squared difference of true and estimated parameter

d1[i]<-{test11[i,1]-para1[1]}^2
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d2[i]<-{test11[i,2]-para1[2]}^2

d3[i]<-{test11[i,3]-para1[3]}^2

d4[i]<-{test11[i,4]-para1[4]}^2

###cured fraction for four groups

po1[i]<-exp(-exp(test11[i,3]+test11[i,4]))

po2[i]<-exp(-exp(test11[i,3]+2*test11[i,4]))

po3[i]<-exp(-exp(test11[i,3]+3*test11[i,4]))

po4[i]<-exp(-exp(test11[i,3]+4*test11[i,4]))

########squared difference of true and estimated cured fraction

e1[i]<-{po1[i]-pnot_all1[1]}^2

e2[i]<-{po2[i]-pnot_all1[2]}^2

e3[i]<-{po3[i]-pnot_all1[3]}^2

e4[i]<-{po4[i]-pnot_all1[4]}^2

}

est11 <- c(est.a=mean(test11[,1]), est.l=mean(test11[,2])

,est.b0=mean(test11[,3]),est.b1=mean(test11[,4]))

SE11 <- c(est.se.a=mean(s[,1]), est.se.l=mean(s[,2]),

est.se.b0=mean(s[,3]),est.se.b1=mean(s[,4]))

bias11<- est11-para1

CP95_11<-c(count11/1000,count21/1000,count31/1000,count41/1000)
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CP90_11<-c(count12/1000,count22/1000,count32/1000,count42/1000)

RMSE11<- c(rmse.a=sqrt(sum(d1)/999),rmse.l= sqrt(sum(d2)/999),

rmse.b0= sqrt(sum(d3)/999),rmse.b1= sqrt(sum(d4)/999))

RMSE_p11<-c(rmse.po1= sqrt(sum(e1)/999),

rmse.po2= sqrt(sum(e2)/999),

rmse.po3= sqrt(sum(e3)/999),

rmse.po4= sqrt(sum(e4)/999))

###mean estimates of cured fraction for four groups

est.p11<-c(mean(po1),

mean(po2),

mean(po3),

mean(po4))

biasp11<- est.p11-pnot_all1
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##EM simulation study

set.seed(123)

library(reliaR)

library(numDeriv)

######### case 1(b0=-1.231746,b1=0.3895951,alpha=2,lambda=3)

betas(.65,.25)

para1<-c(alpha=2,lambda=3,b0=-1.231746,b1=0.3895951)

p_all<-c(.85,.65,.5,.35)

pnot_all1<-c(0.65,0.5294055,0.3910264,0.25)

x_all<-c(1,2,3,4)

s_all<- c(30,40,20,10)

test11 <- matrix(nrow=1000 ,ncol=4)

ged.data1<-list()

H<-matrix(nrow=1000,ncol=4)

s<-matrix(nrow=1000,ncol=4)

count11<-0

count21<-0

count31<-0

count41<-0

count12<-0

count22<-0

count32<-0

count42<-0

po1<-c()

po2<-c()
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po3<-c()

po4<-c()

d1<-c()

d2<-c()

d3<-c()

d4<-c()

e1<-c()

e2<-c()

e3<-c()

e4<-c()

iter<-c()

i=1

while(i<= 1000 ){

ged.data1[[i]]<-data.fun(p_all,pnot_all1,1000,2,3,x_all,s_all)

temp<- EM(ged.data1[[i]],epsilon=.001)

if(is.null(temp)==FALSE){test11[i,]<-temp[1:4]

iter[i]<-temp[5]

H<- hessian(f=log.likelihood,x=test11[i,],data=ged.data1[[i]])

Hinv <- solve(H)

VAR1 <- -Hinv[1,1]

VAR2 <- -Hinv[2,2]

VAR3 <- -Hinv[3,3]

VAR4 <- -Hinv[4,4]

###

if (min(c(VAR1,VAR2,VAR3,VAR4))>0){

SE1 <- sqrt(VAR1)
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SE2 <- sqrt(VAR2)

SE3 <- sqrt(VAR3)

SE4 <- sqrt(VAR4)

###95%CI

CI11<-c(test11[i,1]-1.96*SE1,test11[i,1]+1.96*SE1)

CI21<-c(test11[i,2]-1.96*SE2,test11[i,2]+1.96*SE2)

CI31<-c(test11[i,3]-1.96*SE3,test11[i,3]+1.96*SE3)

CI41<-c(test11[i,4]-1.96*SE4,test11[i,4]+1.96*SE4)

###

if(para1[1]>=CI11[1] & para1[1]<=CI11[2] ){count11<-count11+1} else {count11<-count11+0}

if(para1[2]>=CI21[1] & para1[2]<=CI21[2] ){count21<-count21+1} else {count21<-count21+0}

if(para1[3]>=CI31[1] & para1[3]<=CI31[2] ){count31<-count31+1} else {count31<-count31+0}

if(para1[4]>=CI41[1] & para1[4]<=CI41[2] ){count41<-count41+1} else {count41<-count41+0}

######90%CI

CI12<-c(test11[i,1]-1.645*SE1,test11[i,1]+1.645*SE1)

CI22<-c(test11[i,2]-1.645*SE2,test11[i,2]+1.645*SE2)

CI32<-c(test11[i,3]-1.645*SE3,test11[i,3]+1.645*SE3)

CI42<-c(test11[i,4]-1.645*SE4,test11[i,4]+1.645*SE4)

###

if(para1[1]>=CI12[1] & para1[1]<=CI12[2] ){count12<-count12+1} else {count12<-count12+0}

if(para1[2]>=CI22[1] & para1[2]<=CI22[2] ){count22<-count22+1} else {count22<-count22+0}

if(para1[3]>=CI32[1] & para1[3]<=CI32[2] ){count32<-count32+1} else {count32<-count32+0}

if(para1[4]>=CI42[1] & para1[4]<=CI42[2] ){count42<-count42+1} else {count42<-count42+0}

#########
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s[i,]<-c(SE1,SE2,SE3,SE4)

d1[i]<-{test11[i,1]-para1[1]}^2

d2[i]<-{test11[i,2]-para1[2]}^2

d3[i]<-{test11[i,3]-para1[3]}^2

d4[i]<-{test11[i,4]-para1[4]}^2

###

po1[i]<-exp(-exp(test11[i,3]+test11[i,4]))

po2[i]<-exp(-exp(test11[i,3]+2*test11[i,4]))

po3[i]<-exp(-exp(test11[i,3]+3*test11[i,4]))

po4[i]<-exp(-exp(test11[i,3]+4*test11[i,4]))

########

e1[i]<-{po1[i]-pnot_all1[1]}^2

e2[i]<-{po2[i]-pnot_all1[2]}^2

e3[i]<-{po3[i]-pnot_all1[3]}^2

e4[i]<-{po4[i]-pnot_all1[4]}^2

i=i+1

}

}

}

#test11

est11 <- c(est.a=mean(test11[,1]), est.l=mean(test11[,2]),

est.b0=mean(test11[,3]),est.b1=mean(test11[,4]))

SE11 <- c(est.se.a=mean(s[,1]), est.se.l=mean(s[,2]),

est.se.b0=mean(s[,3]),est.se.b1=mean(s[,4]))

bias11<- est11-para1
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CP95_11<-c(count11/1000,count21/1000,count31/1000,count41/1000)

CP90_11<-c(count12/1000,count22/1000,count32/1000,count42/1000)

RMSE11<- c(rmse.a=sqrt(sum(d1)/999),rmse.l= sqrt(sum(d2)/999),

rmse.b0= sqrt(sum(d3)/999),rmse.b1= sqrt(sum(d4)/999))

RMSE_p11<-c(rmse.po1= sqrt(sum(e1)/999),

rmse.po2= sqrt(sum(e2)/999),

rmse.po3= sqrt(sum(e3)/999),

rmse.po4= sqrt(sum(e4)/999))

est.p11<-c(mean(po1),

mean(po2),

mean(po3),

mean(po4))

biasp11<- est.p11-pnot_all1
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Model discrimination codes

############# the log likelihood function

# R code for automatically loading and installing required packages.

libPath = Sys.getenv("R_LIBS_USER")

if (!file.exists(libPath))

{

dir.create(libPath, recursive=TRUE)

}

# Set repository options:

local({r <- getOption("repos")

r["CRAN"] <- "http://cran.stat.sfu.ca/"

options(repos=r)})

# Set a vector of strings: package names to use (and install, if necessary)

pkg_list = c(‘survival’, ‘timereg’)

for (pkg in pkg_list)

{

# Try loading the library.

if ( ! library(pkg, logical.return=TRUE, character.only=TRUE, lib=libPath) )

{

# If the library cannot be loaded, install it; then load.

install.packages(pkg, lib=libPath)

library(pkg, character.only=TRUE, lib=libPath)

}

}

source("ged_exp_aic bic_melanoma.R")

source("exp_aic bic_melanoma.R")
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data("melanoma")

mel.data<-data.matrix(melanoma)

t<-mel.data[,3]/365 ###columns for day ###survival time

I<-mel.data[,2]###columns for ulc ###censoring indicator

u<-mel.data[,4]

x<-mel.data[,5]/100###columns for tumour thickness ### category variable

a<-replace(I, I==2 | I==3, 0)

gdata<-matrix(cbind(t,a,x),ncol=3)

inits.exp1 <- grid.exp(gdata)

inits.exp1

out.exp1 <- optim(inits.exp1, fn=neg.loglikelihood.exp,

method="L-BFGS-B", lower= c(1e-3,-Inf,-Inf),gdata=gdata)

test.dat.exp1<- out.exp1$par

test.dat.exp1

library(numDeriv)

H11<- hessian(f=log.likelihood.exp,x=test.dat.exp1,data=gdata)

Hinv11 <- solve(H11)

em.dat.exp1<-EM.exp(gdata,epsilon=.001)

H1.em1<- hessian(f=log.likelihood.exp,x=em.dat.exp1[1:3],data=gdata)

Hinv1.em1 <- solve(H1.em1)

inits1 <- grid(gdata)

out1 <- optim(inits1, fn=neg.loglikelihood,method="L-BFGS-B",

lower= c(1e-3,1e-3,-Inf,-Inf),gdata=gdata)

test.dat1<- out1$par

library(numDeriv)
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H1.g<- hessian(f=log.likelihood,x=test.dat1[2],data=gdata)

Hinv1.g <- solve(H1.g)

em.dat1g<-EM(gdata,epsilon=.001)

H1.g.em<- hessian(f=log.likelihood,x=em.dat1g[1:4],data=gdata)

Hinv1.g.em <- solve(H1.g.em)

aic.g<-(2*4-2*log.likelihood(test.dat1,gdata))

aic.exp<-(2*3-2*log.likelihood.exp(test.dat.exp1,gdata))

aic.g.em<-(2*4-2*log.likelihood(em.dat1g,gdata))

aic.exp.em<-(2*3-2*log.likelihood.exp(em.dat.exp1,gdata))

bic.g<-log(205)*4-2*log.likelihood(test.dat1,gdata)

bic.exp<-log(205)*3-2*log.likelihood.exp(test.dat.exp1,gdata)

bic.g.em<-log(205)*4-2*log.likelihood(em.dat1g,gdata)

bic.exp.em<-log(205)*3-2*log.likelihood.exp(em.dat.exp1,gdata)

LRT<-2*(log.likelihood(test.dat1,gdata)-log.likelihood.exp(test.dat.exp1,gdata))

LRT.em<-2*(log.likelihood(em.dat1g,gdata)-log.likelihood.exp(em.dat.exp1,gdata))
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Code for QQ plot

datafile<-read.table("dataset1.txt",header=T)

t<-datafile$SURVTIME ### this is lifetimes

x<-datafile$NODES1 ### this is X

I<-datafile$SURVCENS ### this is censoring indicator

a<-replace(I, I==1, 0)

d<-replace(a, a==2, 1)

dataset1<-matrix(c(t,d,x),ncol=3)

set.seed(123)

par(mfrow=c(2,2))

#########

b0=-1.2326388

b1=0.3647754

alpha=2.5086833

lambda=0.6845316

eta=exp(b0+b1*x)

F=(1-exp(-lambda*t))^alpha

s=1-F

Sp=exp(-eta*(1-(s)))

nrep = 5

mqresid = NULL

u = d * (1 - Sp) + (1 - d) * runif(length(t), 1 - Sp)

for (i in 1:nrep) {
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qresid = sort(qnorm(runif(u)))

mqresid = cbind(mqresid, qresid)

}

qresid = apply(mqresid, 1, median)

ks.test(qresid, "pnorm")

qqnorm(qresid, pch = 20, main = "QQ plot for GED (direct method)", xlab = "N(0, 1) quantiles",

ylab = "Quantile residuals", cex.lab = 1.5,

cex.axis = 1.5, ylim = c(-3,3))

#######################

##melanoma data II uses the similar code
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