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Abstract. Many existing distributed data mining algorithms do not al-
low users to express the patterns to be mined according to their intention
via the use of constraints. Consequently, these unconstrained mining al-
gorithms can yield numerous patterns that are not interesting to users.
Moreover, due to inherited measurement inaccuracies and/or network
latencies, data are often riddled with uncertainty. These call for con-
strained mining and uncertain data mining. In this paper, we propose a
tree-based system for mining frequent itemsets that satisfy user-defined
constraints from a distributed environment such as a wireless sensor net-
work of uncertain data.
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1 Introduction and Related Work

Many frequent itemset mining algorithms in the early days were Apriori-based [1,
19], which depends on a generate-and-test paradigm to find all frequent itemsets
by first generating candidates and then checking their support (i.e., their occur-
rences) against traditional databases (DBs) containing precise data. To avoid the
generate-and-test paradigm, the FP-growth algorithm [7] was proposed. Such a
tree-based algorithm constructs a Frequent Pattern tree (FP-tree) to capture the
contents of the DBs; it focuses on frequent pattern growth which is a restricted
test-only approach.

In many real-life applications, data are riddled with uncertainty. It is par-
tially due to inherent measurement inaccuracies, sampling and duration errors,
network latencies, and intentional blurring of data to preserve anonymity. As
such, the presence or absence of items in a DB is uncertain. Hence, mining un-
certain data [2,11,12,15,21] is in demand. For example, a physician may highly
suspect (but not guarantee) that a patient suffers from asthma. The uncertainty
of such suspicion can be expressed in terms of existential probability P(x,t;) of
an item zx in a transaction ¢; in a probabilistic DB. To mine frequent itemsets
from these uncertain data, the UF-growth [13] algorithm was proposed.
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Many frequent itemset mining algorithms, regardless whether Apriori-based
or tree-based, provide little or no support for user focus when mining precise
or uncertain data. However, in many real-life applications, the user may have
some particular phenomena in mind on which to focus the mining (e.g., medical
analysts may want to find only those lab test records belonging to patients
suspected to suffer from asthma instead of all the patients). Without user focus,
the user often needs to wait for a long period of time for numerous frequent
itemsets, out of which only a tiny fraction may be interesting to the user. This
calls for constrained frequent itemset mining [9, 14], which finds frequent itemsets
that satisfy user-defined constraints. For example, DCF [8] mines constrained
frequent itemsets from traditional precise data.

With advances in technology, one can easily collect large amounts of data
from not only a single source but multiple sources. For example, in recent years,
sensor networks have been widely used in many application areas such as agri-
cultural, architectural, environmental, and structural surveillance. Sensors dis-
tributed in these networks serve as good sources of data. However, sensors usually
have limited communication bandwidth, transmission energy, and computational
power. Thus, data are not usually transmitted to a single distant centralized pro-
cessor to perform the data mining task. Instead, data are transmitted to their
local (e.g., closest) processors within a distributed environment. This calls for
distributed mining [4, 16-18,20]—which discovers implicit, previously unknown,
and potentially useful knowledge that might be embedded in distributed data.

Existing distributed mining algorithms—such as FDM [3] and Parallel-HFP-
Leap [6]—find frequent itemsets in a distributed environment, but they all do
not handle constraints nor do they mine uncertain data. In contrast, DCF finds
constrained frequent itemsets, but they mine a centralized DB of precise data.
UF-growth mines a centralized DB of uncertain data for all (unconstrained)
frequent itemsets instead of only those constrained ones. In other words, these
existing frequent itemset mining algorithms fall short in different aspects. Hence,
a natural question to ask is: Is it possible to mine uncertain data for only those
frequent itemsets that satisfy user constraints in a distributed environment? In
response to this question, we propose in this paper a tree-based system for min-
ing uncertain data in a distributed environment for frequent itemsets that satisfy
user-defined constraints. Here, our key contribution is the non-trivial integration
of (i) constrained mining, (ii) distributed mining, (iii) uncertain data mining,
with (iv) tree-based frequent itemset mining. The resulting tree-based system
efficiently mines from distributed uncertain data for only those constrained fre-
quent itemsets.

This paper is organized as follows. In the next section, we propose our non-
trivial integration of tree-based frequent set mining, constrained mining, dis-
tributed mining, and uncertain mining. Experimental results are shown in Sec-
tion 3. Finally, Section 4 presents the conclusions.
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2  Our Proposed Distributed Mining System

Without loss of generality, we assume to have p sites/processors and m =
mi + mo + ... + my, sensors in a distributed network such that m; wireless
sensors transmit data to their closest or designated site/processor Pj, mgo sen-
sors transmit data to the site/processor P, and so on. With this setting, our
distributed mining system finds (i) constrained itemsets that are locally fre-
quent w.r.t. site/processor P; and (ii) those that are globally frequent w.r.t. all
sites/processors in the entire wireless sensor network.

2.1 Finding Constrained Locally Frequent Itemsets

Given m; sensors transmitting data to the processor P;, a local database T'D B;
of uncertain data can be created for P;. Here, we use the “possible world” in-
terpretation of uncertain data. We aim to find itemsets that are both (i) locally
frequent to P; and (ii) satisfying a succinct constraint, to which a majority of
user-defined constraints belong. A constraint C' is succinct [9] if one can directly
generate precisely all and only those itemsets satisfying C' without generating
and excluding itemsets not satisfying C. Examples of succinct constraints include
C1 = max(X.Price) < $25 (which expresses the user interest in finding every
itemset X such that the maximum price of all market basket items in X is at
most $25) and Cy = min(X.Price) < $30 (which says that the minimum price
of all items in X is at most $30). Note that many non-succinct constraints (e.g.,
C3 = avg(X.Price) < $30) can be induced into weaker but succinct constraints

(e.g., Cq).

Step 1: Identification of items satisfying the constraint. A succinct con-
straint C' is also anti-monotone [9] if all subsets of an itemset X satisfy C' when-
ever X satisfies C. Hence, succinct constraints can be further into (i) succinct
anti-monotone (SAM) and (ii) succinct non-anti-monotone (SUC) con-
straints. Then, let Item” be the collection of mandatory items—i.e., the collection
of domain items that individually satisfy C' (e.g., SAM or SUC constraint); let
Item® be the collection of optional items—i.e., the collection of domain items
that individually violate C.

For any Csaps, an itemset X satisfying Cs 437 cannot contain any item from
Item? (e.g., if an itemset X containing an item having price > $25, then X
violates C'saps C1 and so does every superset of X). So, any X satisfying Csan
must be generated by combining items from Item" (i.e., X C Item"). Items in
Item" can be efficiently enumerated (from the list of domain items) by selecting
only those items that individually satisfy Cs43s. Due to page limitation, please
see Ref. [5] for an illustrative example.

For any Csyc, any itemset X satisfying Csyc is composed of mandatory
items (i.e., items that individually satisfy Csyc) and possibly some optional
items (regardless whether or not they satisfy Csyc). Note that, if X violates
Csuc, there is no guarantee that all or any of its supersets would violate Csyc.

Nicola Ferro and Letizia Tanca (Eds.): SEBD 2012, Edizioni Libreria Progetto, Padova, Italia
ISBN: 978-88-96477-23-6, Copyright (c) 2012 - Edizioni Libreria Progetto and the authors



246 A. Cuzzocrea and C. K. Leung

Hence, any itemset X satisfying Csyc must be generated by combining at least
one Item" item and possibly some Item® items. Due to succinctness, items in
Item" and in Item® can be efficiently enumerated. See Ref. [5] for an illustrative
example.

Step 2: Construction of an UF-Tree. Once the domain items are classified
into Item" and Item? items (no Item® items for Csans), our system then con-
structs an UF-tree, which is built in preparation for mining constrained frequent
itemsets from uncertain data. It does so by first scanning the DB of uncertain
data once. It accumulates the expected support of each of the items in order to
find all frequent domain items. The expected support [10] of an itemset X
consisting of k£ independent items over n transaction in the DB can be com-
puted by expSup(X) = Y, (HZGX P(x, ti)). The system discards infrequent
items and only captures frequent items in the UF-tree. Note that any infrequent
Item" or Item® items can be safely discarded because any itemset containing an
infrequent item is also infrequent.

Once the frequent Item" and Item® items are found, our system arranges
these two kinds of items in such a way that Item" items appear below Item®
items (i.e., Item" items are closer to the leaves, and Item’ items are closer to
the root). Among all the items in Item”, they are sorted in non-ascending order of
accumulated expected support. Similarly, among all the items in Item®, they are
also sorted in non-ascending order of accumulated expected support. The system
then scans the DB the second time and inserts each transaction of the DB into
the UF-tree. Here, the new transaction is merged with a child (or descendant)
node of the root of the UF-tree (at the highest support level) only if the same
item and the same expected support exist in both the transaction and the child
(or descendant) nodes.

For Cgap, the corresponding UF-tree captures only those frequent Item"
items; for Csyc, the corresponding UF-tree captures both the frequent Item"
items and the frequent Item® items. With such a tree construction process, the
UF-tree possesses the property that the occurrence count of a node is at least
the sum of occurrence counts of all its child nodes. For an illustrative example,
see Ref. [5].

Step 3: Mining of Constrained Frequent Itemsets from the UF-Tree.
Once the UF-tree is constructed with the item-ordering scheme where Item®
items are above Item” items, our proposed system extracts appropriate paths
to form a projected DB for each z € Item”. The system does not need to form
projected DBs for any y € Item® because all itemsets satisfying Csyc must be
“extensions” of an item from Item" (i.e., all valid itemsets must be grown from
Item" items) and no Item® items are kept in the UF-tree for Csans.

When forming each {z}-projected DB and constructing its UF-tree, our sys-
tem does not need to distinguish those Item" items from Item® items in the
UF-tree for {z}-projected DB. Such a distinction between two kinds of items

is only needed for the UF-tree for the DB (for SUC constraints only) but not
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projected UF-trees once we found at least one valid item z € Item" because,
for any v satisfying Csyc, v = {x} U others, where (i) z € Item", (ii) others
C (Item"UItem” — {z}). After constructing these projected UF-tree for each
x € Item", our proposed system mines all frequent itemsets that satisfy Csyo
in the same manner as it mines those satisfying Csaas. Again, see Ref. [5] for

an illustrative example.

2.2 Finding Constrained Globally Frequent Itemsets

Once the constrained locally frequent itemsets are found from distributed un-
certain data, the next step is to find the constrained globally frequent item-
sets among those constrained locally frequent itemsets. Note that it is not a
good idea to transmit all data T DB, from each site/processor P; to a cen-
tralized site/processor @, where all data are merged to form a global database
TDB = J,; TDB; from which constrained globally frequent itemsets are found.
The problem with such an approach is that it requires lots of communication for
transmitting data from each site. This problem is worsen when T'D B;’s are huge;
wireless sensors can generate huge amount of data. Moreover, such an approach
does not make use of constrained locally frequent itemsets in finding constrained
globally frequent itemsets.

Similarly, it is also not a good idea to ask each site to transmit all its con-
strained locally frequent itemsets to a centralized site, where the itemsets are
merged. The merge result is a collection of global candidate itemsets. The prob-
lem is that if a constrained itemset X is locally frequent at a site P; but not
at another site P», then we do not have the frequency of X at P,. Lacking this
frequency information, one may not be able to determine whether X is globally
frequent or not.

Instead, our proposed system does the following. Each site/processor P; (for
1 < ¢ < p) applies constraint checking and frequency checking to find locally
frequent Iten! items (and Item? items for Csyc), which are then transmitted to
a centralized site/processor Q. It takes the union of these items, and broadcasts
the union to all P;’s. Each P; then extracts these items (potentially globally
frequent items) from transactions in T'DB; and puts into an UF-tree. Note that
all globally frequent itemsets must be composed of only the items from this union
because: (i) if an item A is globally frequent, A must be locally frequent in at least
one of P;’s; (ii) if an item B is locally infrequent in all the P;’s, B is guaranteed
to be globally infrequent.) At each site P;, the UF-tree contains (i) items that are
locally frequent w.r.t. P; and (ii) items that are potentially globally frequent but
locally infrequent items w.r.t P;. Then, our system recursively applies the usual
tree-based mining process (e.g., UF-growth) to each a-projected DB (where
locally frequent @ C Item}) of the UF-tree at P; to find constrained locally
frequent itemsets (with local frequency information). These itemsets are then
sent to (), where the local frequencies are summed. As a result, constrained
globally frequent itemsets can be found. If the sum of available local frequencies
of a constrained itemset X meets the minimum support threshold, then X is
globally frequent. For the case where a constrained itemset is locally frequent at
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a site P; but not at another site Ps, then ) sends a request to P, for finding its
local frequency. It is guaranteed that such frequency information can be found
by traversing appropriate paths in the UF-tree at Py (because the UP-tree keeps
all potential globally frequent items).

To summarize, given p sites/processors in a distributed environment (e.g.,
a wireless sensor network), our system makes use of (i) the constrained locally
frequent itemsets and (ii) the UF-trees that keep all potentially global frequent
items to efficiently find constrained globally frequent itemsets (w.r.t. the entire
distributed environment). Again, constraints are pushed inside the mining pro-
cess; the computation is proportional to the selectivity of constraints. Moreover,
our proposed system does not require lots of communication among processors
(e.g., it does not need to transmit TDB;).

3 Experimental Results

For experimental evaluation, we used different datasets including IBM synthetic
data, real-life DBs from the UC Irvine Machine Learning Depository as well as
those from the Frequent Itemset Mining Implementation (FIMI) Dataset Repos-
itory. Due to page limitation, we cite below those experimental results based on
a dataset generated by the program developed at IBM Almaden Research Cen-
ter [1]. The dataset contains 10M records with an average transaction length of
10 items, and a domain of 1,000 items. Unless otherwise specified, we used min-
sup = 0.01%. We randomly assigned to each item an existential probability in
the range of (0,1]. All experiments were run in a time-sharing environment in a
2.4 GHz machine. The reported figures are based on the average of multiple runs.
Runtime includes CPU and I/Os for constraint checking, UF-tree construction,
and frequent itemset mining steps.

In the first experiment, we evaluated the accuracy and flexibility of our pro-
posed system, which was implemented in C. For instance, we used (i) a dataset
of uncertain data and (ii) a constraint with 100% selectivity (so that every item is
selected). With this setting, we compared our system (which mines constrained
frequent itemsets from uncertain data) with UF-growth [13] (which mines uncon-
strained itemsets). Experimental results showed that (i) our system is as accurate
as UF-growth (and they both returned the same collection of frequent itemsets),
and (ii) our system is more flexible than UF-growth (because the former is capa-
ble of finding frequent itemsets from distributed uncertain data with constraints
of any selectivity whereas the latter is confined to those of 100% selectivity.

Similar observations were made when we compared our system (which mines
uncertain data) with DCF [8] (which mines precise data) by using (i) a constraint
and (ii) a dataset of uncertain data consisting of items all with existential proba-
bility of 1 (indicating that all items are definitely present in the DB). We observed
that (i) our system is as accurate as DCF, and (ii) our proposed system is more
flexible than DCF (because the former is capable of finding frequent itemsets
containing items with various existential probability values ranging from 0 to 1
whereas the latter is confined to those of existential probability of 1.
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In the second experiment, we evaluated the effectiveness of constrained min-
ing in a distributed environment by measuring the amount of communication,/
data transmitted between the distributed sites P;’s and their centralized site Q.
Fig. 1(a) shows that the amount of transmitted data decreased when the se-
lectivity of constraints decreased. Fig. 1(b) shows the corresponding runtimes.
Specifically, runtimes decreased when the selectivity of constraints decreased.

In the third experiment, we evaluated the effects of varying the number of
distributed sites. When more sites were in the distributed network, our system
transmitted more data because an addition of a site implies transmission of an
additional set of locally frequent items and locally frequent itemsets. In terms
of runtime, when more sites were in the network, the runtime of our system
increased slightly. This is because the extra communication time (due to extra
sites) was offset by the savings in building and mining from a smaller UF-tree at
each site. For example, when we doubled the number of sites (from 4 to 8 sites),
the amount of communication/data transmitted was almost double (because
each site produced a similar set of locally frequent itemsets—especially when
T DB,’s were similar); but, the runtime just increased slightly (1.07 times; i.e.,
not doubled) because we built and mined from smaller FP-trees at 8 sites (rather
than from bigger trees at 4 sites).

In addition, we conducted a few more experiments. For example, we tested
the effect of distribution of existential probabilities of items. When items took
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Fig. 1. Experimental results of our proposed system
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on a few unique existential probability values, UF-trees became smaller and
thus took shorter runtimes. See Fig. 1(c). We also tested the effect of minsup.
When minsup increased, fewer itemsets had expected support > minsup, and
thus shorter runtimes were required for the experiments. See Fig. 1(d).

All these experimental results showed the importance and the benefits of
using our proposed system in mining probabilistic datasets of uncertain data for
frequent itemsets.

4 Conclusions

In this paper, we proposed a tree-based system for mining frequent itemsets that
satisfy user-defined constraints from a distributed environment such as a wireless
sensor network of uncertain data. Experimental results show effectiveness of
our proposed system. As future work, we plan to extend our experiments to
additional datasets.
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