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Abstract 

A Framework for an Automated Neural Network Designer using Evolutionary Algorithms 

Markian Hlyn ka 

Master of Science in Cornputer Science 

University of Manitoba 

One of the major sturnbling blocks of neural networks is the difficulty of designing the 
networks. Networks must be created by experts who understand both the problem domain 
and the process of developing neural networks. For complex problems. the process. even 
for experts. can be an intuitive rather than ratiocinative process. Evo!utionary and genetic 
algorithrns are a robust. probabilistic search strategy that excel in  large. complex problem 
spaces. Research involving the application of evolutionary algorithrns to neural networks 
for piirposes of both training and selection of an optimal network has been carried out. The 
focus of such research. however, has been to generate an optima1 network of a given struc- 
ture. N o  generic framework exists which allows for the automation of the network creation 
process - the selection and design of the architecture - for a particular problem. This the- 
sis is concerried with the design of such an evolutionary framework. The system is subse- 
quently evaluated with backpropagation networks on an unknown data set. A new method 
of evolution. probabilistic Lamarkian learning transfer. appears to produce the desired 
resul ts. 
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1 Introduction 

This Chapter presents a brief overview of neural networks and their main failing, parameter 

selection. 

1.1 Neural Networks 

Neural networks are a non-symbolic approach to pattern recognition. Based on a loose par- 

adigm of neurons in the brain. neural networks are able to pick out pertinent patterns in 

data. often when the data is incomplete, corrupted. noisy. or uncertain. While their training 

pracesses can be slow, cornpleted neural networks are generally qiiite fast in application. 

Their strengths include the abi lity to generalize large numbers of patterns into classes. and 

to learn from a presentation of example problerns and solutions. One major impediment to 

the design of neural networks is the selection of an ideal set of parameters for a particular 

probiem. 

Neural networks are hand-crafted by experts with years of experience in the field. Two 

major drawbacks of this approach are a lack of experts, and a lack of a rigorous design 

methodology. The first problem is straightforward enough: there sirnply are not enoiigh 

experts to attend to all the potential neural network projects the world has to offer. The 

second problem is sornewhat more subtle. No tractable algorithm exists to optimally deter- 

mine the parameters for a particular neuraI network application. The result of this complex- 



ity is that the science of designing neural systems is imprecise at best. At worst. the process 

is guided by intuition nlone. To this end. a system is required to determine neural network 

designs niore efficiently and in grester number than the experts can manage. 

It is unreasonable to expect that any single neural network will be able to solve any problern 

regardless of conipiexity. To address this problem. research is being condocted into mod- 

ular neural networks. In these systems. several networks cooperate to solve a problem 

which would be unsolvable by any single neural network architecture. While the power and 

flexibility of the resulting gestalt has the potential to oiitperform simple neural networks. 

the combination of mu1 tiple networks increases the difficul ty of crafting the systen~. 

Wheress before an expert had to craft only a single network. the problem becomes one of 

designing multiple networks while simultaneousty enabling them to cooperate on the prob- 

lem at hand. The work load rises exponentially with the size of the system. 

Clearly. a method is needed to free experts frorn the imprecise drudgery of hand-crafting 

networks. The recent trend to modrilar networks only exacerbates this need. One promising 

niethod of solving bot11 problerns is through the use of evolutionary algorithms (EAs). This 

thesis presents a systernatic approach to automating the design of neural networks through 

the use of EAs. 

1.2 Evolutionary Algorithms 

Genetic algorithms were developed by John Holiand at the University of Michigan. 144th 

his students and colleagues, Holland set out to achizve two goals. First. to "abstract and rig- 



orously explain the adaptive processes of natural systems". and second. to "design artificial 

systems software that retains the important mechanisms of nattiral systems." [Gold berg 1 [n  

other words. Holland was trying to find out how natural. biological systems manage to be 

so adaptive. and how this knowledge might be applied to artificial systems. 

Due to the inherent difficulty in the process of creating neural networks, genetic algorithms 

have becorne a focus of study in  the field. Using genetic algorithms, it is possible to remove 

some of the burden of trial and error design from the designer. Rather. the genetic algorithm 

is used to search a solution space for effective neural network parameters. 

Genetic algorithms have been used to select various features of neural networks. These 

include learning parameters. hidden units, topology. connections. and even to evolve the 

synaptic weights themselves (a task usually achieved by the learning algorithm) [Korning; 

Catidill 1. 

Possibly the most successful neuroevolutionary algorithm to date is the SANE algorithm 

devised by David Moriarty jbloriartyl. The SANE algorithm was highly successful in 

evolving effective neurons sirnultaneously to evolving effective cooperation among the 

neurons. The result was highly effective networks for sparse reinforcement problems: that 

class of problem wtiere a series of decisions must be made before feedback is achieved. 

Often ttiis feedback is very general; for example, success or failure. 

Research seems to indicate that the combination of genetic algorithms and neural networks 

results in robust systems able to tackle a wide variety of problems. 
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1.3 Overview of Thesis 

The remainder of this tliesis will be consist of several parts. First. an in-depth discussion of 

neiiral networks will review the basic problems encountered when designing application 

specific networks. This will be followed by and overview of genetic aigorithms. and a dis- 

cussion of previous applications of EAs to neural networks. Chapter IV w i l l  present the 

structure of the systern developed for this tliesis. and Chapter V will discuss the experi- 

ments performed and resuits obtained. Finnlly. conclusions will be drawn in Chnpter VI. 

and directions for future work stiggested. 



/. Neural Networks 

The process of designing neural networks is subject to many pitfalls. This chapter provides 

an introduction to neural networks. followed by a more studied review of the backpropap- 

tion algorithm. Finally, the most common problems encountered in trainin? backpropaga- 

tion networks, initia! weights. number of hidden units, training time. and evaluation 

method, are discussed: the most cornrnon solutions for dealing with these problems are pre- 

sented sirnultaneously. 

2.1 Neural Networks: A brief history 

2.1.1 In The Beginning 

Since the creation of simple cornputing machines and automata. researchers have been 

trying to make computers more that just complex calculators. They have been trying to 

make a machine that would tliink and reason as a hiiman might. I t  is not surprising, then. 

that neural networks have their roots in  psychology (Bluml. Early models of the workings 

of the brain were to Iay the foundations for research into how the brain soives problems. 

and later, how to build machines that would solve problerns in a manner similar to the 

human brain. Heiice. the neural network approach is that of drsigning an algorithm mod- 

eled nfter the way the human brain works; a computer that ultimately thinks in the same 

manner as people. 



The first neural network mode1 was formulated by McColloch and Pitts i n  1943 IZurada 1. 

Their network used digital neurons. and had no ability to learn [BI urn 1. The idea of learning 

ability in a neural network came from psychology witli the work of psychologist Donald 

Hebb. Hebb devised the mode1 by which learning is achieved through changes in synaptic 

strengtlis within the brain [Zuradal. This model. which came to be called Hebbian leaming. 

was the fouridation for a neural system which could learn. 

2.1.2 Learning 

NeuropsychoIogist D. O. Hebb described a rule for updating synapse strength between neu- 

rons in two distinct layers. Kiiown as Hebbian learning, it was described by Hebb as fol- 

Iows: (Haykin; Mehrotra 1 

When an axon of ce11 A is near enough to excite a ceIl B and 
repeatedly or persistently takes part in  firing it. sonie growth 
process o r  rnetabolic changes take place in one or both ceils 
such that A's efficiency as one of the cells firing B. is 
increased. 

Mathematically, this can be described by the equation: 

where c is a small constant often referred to as the learning rate and wi,, designates the 

strength of the connection from the jth node to the ith node. .ri and -t> denote the activation 

levels of the nodes. Thus, the change to the strength of the connection between two nodes 

is a proportion of the product of their activations; j's efficiency at firing i is increased. 



This idea was irnplemented by Frank Rosenblatt in 1958 to create a two-layer network 

called a perceptron. [Blum. 1992 & Zurada. 19921 Rosenbiatt's learning rule centered on 

the calculation of weight adjustment of synapses as a proportion of the error between the 

output neurons and the target, or  expected. values. Rosenblatt also developed a theorem. 

the perceptron convergence theorem, by which he was able to prove that the weights of his 

mode1 would converge to produce the desired results if such results were possible. Rosen- 

blatt attempted to create a three-layer perceptron, but he was unable to conceive of a sound 

way of updating the weights between the input and rniddle, or  hidden. layer of neurons. 

Due to problems of linear separability. which will be discussed later. the application for 

two-layer networks was limited. The lack of a provable algorithm for updating hidden layer 

synapses i n  multilayer networks was a major problem. Some work continiied to be done 

with two-Iayer networks. but despite such applications as associative memory and other 

learning based on Stephen Grossberg's models of the brain. the practical application of 

neural networks was limited. [Blum, 19931 Research into neuraI networks entered a stag- 

nation phase, partly due to the multilayer problem. but at least partially due to the "modest 

computational resources available" then [Zurada. 1992 1. 

2.1.3 Overcoming the Block 

Finally, in 1974, the backpropagation network was developed by Werbos. I t  was lar_oely 

ignored by the scientific comrnunity [ Mehrotral. The algorithm was independently redevel- 

oped in 1985 by Parker and LeCun [Haykin 1. The modern version of the algorithm. how- 

ever, was popularized by Rummelhart, Hinton, and Williams Mehrotra, Haykin 1. 



Backpropagation allowed the training of those hidden layers that had been a stumbling 

block for so long. With this block removed. the potential application domain of neural net- 

works was widened immensely. Backpropagation is a powerful algorithm for problem 

solving which, unlike two-layer networks. is able to effectively deal with non-linear pattern 

recognition. For some types of problems backpropagation allows solutions to be found 

which would be very difficult with conventional computer science techniques. [Blum. 

1992 1 

2.1.4 Onward 

With the discovery of backpropagation. neural networks were freed from their Iimited two- 

layer incarnation. The ability to use multiple layer networks opened up a huge realm of pos- 

sibilities. Though currently not useful for ail types of problems. neural networks are full of 

unexplored potential. It is "this mix of failure and success [thatl offers the tantalizing sug- 

gestion that research will eventually produce artificial systems capable of performing a 

large percentage of the tasks that now require human intelligence, hence the exponentially 

increasing growth of neural network research." [ Wasserman 1 

2.2 Neural Network Basics 

2.2-1 Overview 

The basic unit of a neural network is a neuron. Neurons compose Iayers. and layers in  turn 

compose a network. The following sections wilI detail each component of a neural network. 



2.2.2 The Neuron 

A neuron is a cornputational uni t  which takes a vector of input values and produces an 

output value. (Figure 1.1 ) Inputs can be received from othrr neurons or directly as input. A 

single output value is generated. which is either sent to each of the neurons in  the next layer 

or becomes part of the final oi~tput of the network. 

Figure 2.1. A simple neuron (Blum. 19921 
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2.2.3 Mechanics 

Inputs into the neuron are rnultiplied by the weights in the synapses. Biologically speaking. 

the synapse is that area between the end of one neuron and the start of the next one. The 

input synapses of biological neurons are normally located on dendrites - cellular filaments 

which consist. in essence, of many places for 'upstream' neurons to 'plug in'. The dendrite 

sums the activity from the synapses that occur on its surfkce. If the surn exceeds a thresliold 

value, then the neuron discliarges, or sends an output to the next neurons in the chain. Thus. 

a high activation of a particular neuron may cause a subsequent neuron to fire even if other 

neurons connecting to the same target neuron have low activations. Repeated propagation 



across a synaptic cleft ïesults in the strengthening of its ability to propagate signais 

[Haykin: Mehrotra: Mitchell 1. 

In the neural network mode1 used in artificial intelligence, the synaptic strengths are repre- 

sented as a vector of weights. one per input to the neuron. The incoming values are multi- 

plied by tlie weights in the synapses, and the products summed. The accumulated input to 

the neuron is the dot product of the input vector and the synaptic weights vector: 

Equation 2.1. 

This weighted sum is often referred to as the neuron's stimulus. Next. the neuron then 

applies an activation function.f(.r). to the sum x. This activation value is the output of the 

neuron. In sorne cases, a tlireshotd or bias value, O ,  is added to x before the activation func- 

tion is applied. Thus. like its biological counterpnrt. an artificial neuron fires when tlie sum 

of its inputs meets the criteria determined by the activation fiinction. 

1.2.4 The Activation Func tion 

The activation function,f(s). is usually a nonlinear function which indicates the effect on 

the neuron of the inputs. For discrete neural networks a fiinction f(x) such that f(x) produces 

1 if x > 0. - 1  where x < O, and doesn't change the previous value of f(x) if x=O might be 

appropriate [Blum, 1992 1. For nondiscrete and analog netivorks. sigrnoid functions are 

often appropriate, such as 



where f(x) is in the range [O.lj.  This function is illustrated in figure 1.2. 

Figure 3.2. Graph of sigrnoid function. 

2.2.5 Learning 

A neuron's learning is effected through the adjustment of the synaptic weights. Learning 

takes place through the use of a learning rule. which is an algorithm for the adjustment of 

the synaptic weights. The speed of learning is moderated via a learning rate. U .  The learn- 

ing rate is usually in the range O - 1. and is used to calculate the change to each synaptic 

weight. There are many algorithms for synaptic weight adjustrnent [Blum, 19921. A general 

learning rule is expressed in equation 2.2. 

A ~ L .  = C L I P  Equation 3.2. 

Here, the change to the weight is expressed as a product of the learning rate, U .  the input. 

I, and the error in the neuron's output. r .  I can be thought of as the proportion of the error. 

e, that the input is responsible for contributing. The input to the neuron could either be 

direct input from the environment or the activation of the previous neuron. Sirnilarly, the 

1 1  



error could be a measure of the difference between the produced value and the expected 

value in the environment. or the difference between the actual and desired activation of the 

next neuron. Note ttiat this adjustment is effected once for every input into the neuron. 

2.2.6 The Layer 

A layer is a nurnber of neurons operating together. each neuron receiving the sarne inputs. 

What makes a layer an effective computational element is that each neuron has different 

synaptic weights whicli. when multiplied with the inputs. give each neuron a different value 

to which it applies its activation function. Norrnally al1 the neurons in a layer have the same 

activation function. It is also possible. however. for different neurons in a layer to have dif- 

ferent activation functions. This is a highly advanced. often domain-specific subject. and is 

beyond the scope of this thesis. 

Figure 2.3. A h!-c.r of Neurons 

From inputs or 
previous layer - To next layer or 

outputs 

The main purpose behind a byer of neurons is that it can learn more patterns than a single 

neuron. and it can produce multiple output values rather than the single output which a 

single neuron produces. This allows the distribution of a problem over many neiirons. 



The leaming of a layer lies in the adjustment of its synaptic weights. This happens much as 

in section 2.2.5. with the learning Formula applied to each neuron in the layer. Obviously 

some of the parameters of Equation 2.2 c m  be calculated once for the entire layer. Input to 

the layer can be represented as a single vector. as each neuron in the current layer gets input 

from al1 inputs in  the preceding layer. Since this general neural network mode1 has every 

neuron in the current layer connected to every neiiron in  the siibsequent layer. the error for 

a layer can be calculated once. However, this is only one possible approach to training 

Iayers of neurons. 

Thiis. a neuron is a basic functional unit. Many neurons combined comprise a layer. It has 

been noted tliat a layer can be connected to inputs and outputs i n  the environment directly, 

or to other Layers of neurons. Layers of neurons. rather unsrirprisingly. comprise a network. 

2.2.7 The Network 

A network is the end result when layers of neurons are connected in sequence. The Srst 

layer receives inputs from the environment. and the final layer returns outputs to the envi- 

ronment. Hence. these two layers are respectively termed the input and output layers. The 

neurons making up a layer are often referred to as units. and as such the neurons comprising 

the input and outpiit layers are the input and output units [Weiss & Kulikowskil. 

There are many different possible layouts for a network involving physical attributes scich 

as connection of the units. and with differences in  learning algorithms and their application. 

Some networks feed their outputs back into their inputs. ivhile others modify their own 

structures as a result of their learning. Different network models Vary in the range of prob- 
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lems they can be used to solve. In general, however. any network with more than two layers 

of neurons is referred to as a multi-layer network. Layers between the input  and output 

layers are called hidden layers. 

Figure 3.4. A Mu[ ti-la).cr N e t w ~ r k  

2.2.8 Linear Separability 

Though the concept of multi-layer networks has been introduced, no justification for corn- 

plicating the network layout with multiple layers has bren given. Why not just use two- 

Iayer networks with many nodes and adjust the weights accordingly'? The solution reason 

involves the comparative topology of two-layer and multi-layer networks. Two-layer net- 

works are. in essence. linear entities. By tlieir nature they can only classify data that is lin- 

early separable. 

Consider a set of data that is divisible into ttvo classes. The data can be graphed in  two 

dimensions and the two classes separated by a straight line as in Figure 1.5. For multidi- 

rnensional data of n dimensions, the data will be separable with an n-dimensionaI separa- 

tion. That is, data in 3 dimensions will be separable with a plane, and Iiigher dimensions 

will be separable with an appropriate hyperplane [ Wasserman 1. 



Figure 2.5. Lincarly Scparable Data 

0 Class 1 data 

Chss 2 data 

Figure 2.6. Linearly Inseparable Data: The sur funclion 1 Blum. 1992 1 

Some data, however, are not separable i n  this nianner. Consider the graph of the exclusive- 

or fiinction in Figure 2.5. There is no way to draw a line whicti separates the X's froni the 

0's. In some problerns. there might be additional data which could be used to add another 

dimension to the problem. Imagine. for example. an extra piece of data which would indi- 

cnte a move to anothrr plane for eitlier of the two X values. In  that case. a simple 2-layer 

network could be used with an extra input factor [Wasserman 1. In  the case of the exclusive- 

or function. this extra data coiild be a logical coid or  a logical or of the x and y values. This 
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addition would serve to place one of the special cases in a different plane. thus rendering 

them separable by a 2-layer network. Ordinarily, however. the data is linearly inseparable. 

The use of additional data in this manner is not always feasible. as analysis of the dataset 

to discover such data rnay be a non-trivial task. Nevertheless, because a third dimension 

that would create separable data can be conceived of. this problem is solvable by a multi- 

layer network which will not require the use of additional input factors. 

The purpose. therefore. of miilti-layer networks is to solve problems in which the data is 

not linearly separable. If the data can be made separable by the addition of further input fac- 

tors. this may be desirable as the resulting neural network would be simpler. However. as  

this is not always possible. miilti-Iayer networks are required. 

Having discussed the fundamentals of neural networks, and explored the rationale behind 

multi-layer networks, it  is possible to focus on a particular type of multi-layer network: the 

backpropagation network. 

2.3 Backpropagation 

2.3.1 The Network Mode1 

The problem with the neural network learning rnodels described thus far is that they define 

weight changes for the output layer onIy; the weight changes are based on an error term 

onIy available at the output layer. This was the problern that Rosenblatt encountered: a lack 

of a 'teacher' (error t e m )  for the hidden units. To  solve linearly inseparable problems, 

multi-layer networks are required. Thus, a metliod of training the hidden layer is called for. 



Backpropagation refers to the backwards distribution of error used to train a multi-layer 

network. In particular. backpropagation proposes a method of estimating the error of a 

hidden layer in a neural network and so permits the use of the learning law for Iiidden iinits. 

This allows for adjustment of the hidden layer's synapses even though the desired output 

of the hidden units is not known. Though a 34ayer network will be discussed here. the pro- 

cess could be recursively applied for more hidden layers. However, this is rarely necessary 

for more than one or two hidden layers [ Wasserman 1. 

Backpropaption is effectively able to solve a wide range of problems. and as s~icli is a good 

model to study with regards to new research. Backpropagation is one of the most com- 

monly used supervised training algorithms 1 Blum. 1992 1. However. because backpropaga- 

tion is a siipervised learning algorithm. it is required that a set of "fact" data be obtainable 

which associates input patterns with correct ourputs. Also. backpropagation has few if any 

self-organizing aspects and as such a very good "sense" of the problem with regards to net- 

work topology (number of units per layer. for exarnple) is necessary [Blum 1. 

2.3.2 Supervised and Unsupcrvised Learning 

Supervised learning is a process of presenting input patterns to the neural network and com- 

paring the produced output to the desired result. The synaptic weights of the network are 

then updated according to the learning rule of the network mode1 being used. The key factor 

is that it  is required thnt the desired outputs be known. and that learning is done separately 

from the recall process. 



Unsupervised learning. by contrast. makes weight adjustments which are not based on 

comparison with target output values. It is also known as self-organization Blum. 1992 1. 

Backpropagation is a supervised iearning paradigm; unsupervised learnirig is beyond the 

scope of this thesis. 

2.3.3 Thc Learning Algorithm 

The backpropagation learning algorithm operates in several steps. First. a pattern of 

data is presentcd to the network. and the current activations are compiited from the inputs 

to the outputs. [Weiss and Kulikowski, 199 1 1 Then the outpiit layer error is computed and 

hidden layer error is approximated in turn. Finnlly. the second and then the first (hidden) 

layer of synapses is updated. The formulae used are as follows: 

1. Calciilation of hidden-layer neuron activations: 

fz = F ( i W 1 )  Equation 3.3. 

In this case, h is the vector representing the hidden layer neurons, i is the input vector to 

the network, W 1 is the first set of synaptic weights (a matrix). between the input and 

hidden layers. and F is a sigmoid activation function. 

7. Calculation of oiitpiit-layer neuron activations: 

o = F(/z H'2 ) Equation 2.4. 

The new variables here are o. the output layer vector, and W2. the matrix of the second 

set of synaptic weights. between the hidden and output Iayers. 

3. Calculation of the error in  the output layer. This is the observable, non-hidden error. 

The output layer error is represented by the vector d, and is calculated by comparison 

with the target output values in the vector t as follows: 

d = O ( [  - O ) ( [ - O )  Equation 3.5. 

a lent. O ( / - O )  is the first derivative of the sigmoid function, used to calculate the error gr d- 



4. Estimation of the hidden layer error which will be called e. This is the crux of the back- 

propagation model. The difference between the target and produced values for the hid- 

den layer is estimated by taking the product of the output layer error and the second set 

of synaptic weights: 

e = h( I -h)\tT2d Equation 2.6. 

Hence the narne backpropagation: the output layer error is weighed bnckwc~rds, with 

the synaptic weights. such that it approximates the error of the hidden layer. In other 

words. the error of the output is being weighed to estimate how big the error must have 

been before it reached the hidden Iayer. 

5. The synaptic weights of the second Iayer. W2, are then adjusted by adding to W2 the 

term: 

uhd + Oh WZ, - Equation 3.7. 

The second term is the prodtict of the momentum term, o .  and the change in synaptic 

weights o n  the previous pass (time t-1). 

6. Findly, the hidden layer's synaptic weights are adjusted by adding to W 1 the terrn: 

aie +OAZVI,-  Equation 3.8. 

Again the momentum term is used, a discussion of which follows. 

2.3.4 The Hidden Layer 

A significant issue in backpropagation is the choice of the number of hidden units. This 

depends enrirely on the particular problem to be solved. and the desired performance of the 

trained network. For example, a classification problem might be easily solved by having 

one hidden unit per training pattern. With this model. it can be shown that each Iiidden unit 

would effectivety learn to recognize a single pattern. This might be a good approach for a 

network expected to perform a repetitive task with no unexpected data; that is. one with a 

"complete" set of facts known and available for training. However, if the network were 



expected to generalize its leaming to new information not in its training facts. it ivould 

likely do poorly. This is due to the fact that while each hidden neuron is good at effectively 

recognizing a single pattern of the problern. there exists no overlap in the learning to allow 

the network to effectively generalize its "knowledge". The exact number of hidden units 

required for a generalization problem is variable. and dependent on the exact problem. Tliis 

is why experts are often required to implement neural network systems. 

2.3.5 Momentum 

The momentum term is multiplied with the previous change in  a synapse's weight. This is 

shown in equations 2.7 and 2.8. The resulting prodiict is added to the learning adjustment 

to produce the total adjustment to the current synaptic weight. The obvious question is: 

what is the momentum term for'? 

2.3.5.1 The Problem 

I n  training a neural network. there are two difficulties which occur. The first is that, with a 

low learning rate. a network mny take a long time to lcarn a set of facts. Tliis will be further 

demonstrated later in the tliesis. The difficulty problem is that a network with a Iiigh learn- 

ing rate may encounter a thrashing problem. As the network converges upon the idral value 

for the data, the high Iearning rate causes it to overshoot that ideal value. Then. on the next 

training cycle. the network will generate a synaptic update in reverse (the error will have 

the opposite sign) in  an attempt to remedy the "over-learning" on the previous pass. It is 

therefore possible for the error calciiiation to produce the same nurnbers. with only the 

signs changin; (depending on which side of the target value the actual output is on). on both 



sides of the target value. Since the learning rate is constant, the network will "thrash": that 

is, it will alternate between values on bot11 sides of the desired value without ever act~ially 

converging to the desired value. It is also possible for this to happen over a period of several 

weight adjustments. This problem is endemic to high learning rates in backpropagation. 

and to say that it is undesirable is an understatement. 

2 -3.5.2 The Corzircrclr'ctr'otz 

An ideal neural network is one which quickly and accurately converges to the target values. 

Unfortunately. the avaitable approaches thus fat- each preclude this ideal. If a srnall learning 

rate is used, the network takes an inordinate amount of time to train. Hence, speed is sacri- 

ficed for accuracy. If a Iargs learning rate is used the network trains much faster. However. 

several detrimental situations arise. A large learning rate rnay cause the network to start 

with weights of the wrong sign, which will then take a long time to reverse. Even if this 

problern is circumvented. the network may have trouble converging because the learning 

rate may be too large to bring the network to its optimal point: thrashing will result. These 

situations defeat the purpose of a large learning rate for faster learning, arid sacrifice accu- 

racy. Thus. the only usable option of the two is the former. as accuncy is paramount. The 

resdt is slow training. The only other option is to reduce the learning rate during the train- 

ing. As this slows down the learning. it will not be dwelt upon. Rather. another solution. 

momentum. is the means by which this problem is most easily solved. 



2.3.5.3 The Solutiotz 

The rnonlentum term puts a weight on how much a synapse's previous weiglit adjustment 

(it's learning) should effect its current weight adjustment. The momenturn term is multi- 

plied by the previous result of the learning formula. that is, the previous weight adjustment. 

In essence. the second term of Equations 7 an 8 is equivalent to adding a percentage of the 

last weight adjustment to the current adjustrnent. 

The benefit of a momentum term is twofold. effectively deaiing with both the major prob- 

lems discussed above. First, the time it takes the network to train drops. This is due to the 

momentiim term infiuencing tfie change in synaptic weights. Once the network is training 

in one direction toward the ideal point. the momentum term allows it to pick up speed. 

Since momentum is applied to each iteration. the effect "snowballs". The training actually 

picks up speed. rnaking increasingly Iarger jumps toward the target value until it arrives at 

or passes over the target value. This leads to the second case. that of passing over the target 

value. 

Momentum also solves the thrashing problern ciiscussed eariier. Consider that when a net- 

work oversteps its target value, the next pass may recalculate the same amount ofg-correc- 

tion" as the original error (or some portion thereof to enable a cycle ovsr several iipdates). 

With momenturn. the adjustment in the new. opposite direction is added to a percentage of 

the direction in which the network was previously moving. In  the case of an overstepped 

target. these two values will have opposite signs. While this may cause an overstep in the 

opposite direction, it rnust be less than the previous overstep due to the momentum term. 



This process continues. with each overstep of the target value becoming smaller as the 

rnomentum term influences the current weight change with the previous one. Eventually. 

the synaptic weights will converge upon the target values. 

Thus. momentum allows a network to train faster, both by permitting a higher learning rate 

and "snow balling" synnptic weight adjustment. When using high lenrning rates. rnomen- 

tum also tempers a backpropagation network's tendency to "thrash" around the target 

values tvithout ever actually achieving them. Momentum allows a twofold gain in perfor- 

mance at a usually low irnplernentation cost. Al1 the implementor must do is rnaintain a list 

of the last adjustment to each synapse. Momentum makes backpropagation much easier to 

deal witli and far less temperamental in its training. 

2.3.6 Bias Values 

in section 2.2.3. it was mentioned that sometirnes a tlireshold, or bias. value is added to the 

term in the summation of Equation 1. This would give the equation: 

n 

.r = 2 f i i i . ;  + 8; Equation 2.9. 
i = O  

The bias values are adjusted on each pass with the product of the learning rate and the error 

in the neuron's output. [Blum. 1992 1 The effect of bias values is to give the network a short 

cut to achieving its pattern separation. Referring to the linear separability problem of figure 

2.5, consider that the threshold value corresponds to the y-intercept of the line separating 

the classes. Tlius, the network can focus more exclusively of Iearning the essential slope of 



the line. Meanwhile. the y-intercept position is learned by the threshold values. Natiirally. 

this extrapolates into higher dimensions. 

2.4 Training Problems in Backpropagation 

2.4.1 Initial Weights 

The rnost obvious problem encountered in  training backpropagation networks is that of 

their initial weights. That is. what values should the initial weight matrices be set to in order 

to obtain optimum performance? In order to answer this question. it is necessary to consider 

why the initial weights are important. 

Gradient descent refers to the practice of minimizing the error of a function over several 

iterations. In a backpropagation network. a generalized least rnean squared algorithm is 

used to rnodify network weights. The goal is to minimize the mean squared error between 

the desired and actual outputs of the network. [Melirotral Where the error for a pattern p is 

given by E, = ~ ( i , , ) ' .  with k the node from the outpiit Iayer and 1 the squared error 

between the output and drsired value. backpropagation tnust discover a vector that mini- 

mizes Ep. Since the output of the network is n function of its weights. so must E be a func- 

tion of the network weights. [Mehrotral Thus, the starting weights of a neural network 

affect not only the initial outputs but also the error and. thus. the gradient descent. In other 

words. every set of starting weights for a backpropagation network has a different gradient 

descrnding to the state of minimum error. Some may take many iterations, some only a few, 

and some rnay become stuck in local minima. unable to progress. Since the nurnber of pos- 



sible combinations of weights is infinite for real weights. and the danger of poor weights 

so zreat. how does one choose a starting set of weights with a reasonable gradient descent'? 

The most commonly used method to combat the problem of initial starting weights is to run 

multiple trials of multiple networks. The idea is to eliminate the problem by running a par- 

ticular network architecture with a number of different starting weights- The performance 

of a particular set of network panmeters is determined by considering al! the sample runs 

of that network and comparing it to those of networks rvith other parameten. Since there 

are so many network parameters. such as hidden units. layers. activations. and so forth, 

adding even more trials makes the number of potential runs fa -  too large for an exhaustive 

search. Rather. trials tend to be guided either by previous knowiedge about the data. or the 

intuition of the expert crafting the network. Clearly a systeni ivliich removes the burden of 

this trial and error process from the neural network professional is desirable. The running 

cime of such a system need not be an improvement over the previous method; i t  is the selec- 

tion strategy tl-iat m u t  first be optimized. 

2.4.2 Number of Hidden Units 

One of the most difficuIt choices a neural network designer must rnake in  ciesigning a back- 

propagation network is how many hidden units to employ. To begin. a small number of 

hidden units is iisuaily better at generalizing to unseen data. A large number of hidden ~inits 

tends to be a superior mernorizer; however, the data to be learned c m  make a significant 

difference. For simple data for which the dimensionality, or number of classes, is known, 

it  is often optimal to choose one hidden unit per data class. Unfortunately, data sets from 



the real world are not alwnys well structured. Classes may overlap. be discontigiious. or 

have other properties which mean that a greater (or fewer) nurnber of hidden nodes may 

actually be optimal. Combine tliis with the fact that eacli network has to be run many times 

with different starting values. and a guaranteed optimal solution becomes intractable. 

2.4.3 Length of Training 

Once a few networks are chose11 with nurnbers of hidden units that are likely to work well. 

the designer must decide how long to train the network for. If. as is iisually the case. the 

network will havé to generalize previously unseen data. then training the netrvork for a long 

period of tirne may be coiinterproductive; the network will rnemorize the data rather than 

extnct the patterns contained therein. This is less of a problem if one of the networks has 

an appropriate nomber of hidden nodes to generalize sufficiently. However. the previous 

section discussed the problems in determining such a number to any degree of certainty. 

Sirnilarly. training the network for too shon a time results in a network that perforrns sub- 

optimally on the known data. Idrally. if a method could be devised for selecting the number 

of hidden units with near-optimality. this problem would largely disappear. Alternately, a 

method of stopping training at the optimal point in training would also solve this problem. 

Again. trial runs of different lengtiis only compound the nurnber of required trials. as they 

must be combined with the previous problems. 

2.1.4 Evaluation S trategies 

The final stumbling point in  this maze of pitfalls is the evaluation strategy. That is. in what 

manner does one determine the performance. both significant and relative, of a neural net- 



work? If one uses data that the network has been trained on, this biases the networks in 

favour of memorized patterns. If one uses new data the networks are biased in favour of 

generalizatioii. but iisually at the cost of accuracy on tlie training set. A combination of 

these numben mi$t be desirable. but what combination*? Finally. using test data - data 

withheld during the training phase - to evaluate the netrvork and determine how to use that 

network's parameters in future iterations can be considered to contradict the idea of test 

data. That is. the held out data is. in fact. infiuencing the network architecture. In  some 

cases it is therefore deemed necessary to hold out a third set of data as the final test set. 

Thus. in addition to selecting the discussed training parameters of the netw~rks.  selecting 

the evaluation strategy is itself no trivial decision. 

2.5 Summary 

This chapter lias provided an introduction to the topic of neural networks. A brief history 

was followed by a more in-depth look at tlie subject. Finally. the backpropagation algo- 

rithm was reviewed. and the major problems in its use sxamined. To be able to discuss the 

application of evolutionary algorithrns to neural netrvorks. i t  is now necessary to examine 

evolutionary algorithms in more detail. 



3 Evolutionary Algorithrns 

3.1 Background 

Genetic algorithms. also called evolutionary algorithms (GAs or EAs). were developed by 

John HoIIand at the University of Michigan [Goldberg. 19891. With his studsnts and col- 

leagues. HolIand set out to achieve two goals. First, to "abstract and rigorously explain the 

adaptive processes of natural systems". [Goldberg. 19891 and second' tr! "design artificial 

systems software that retains the important rnechanisms of naturat systems." [ibidl 

In other words. HolIand kvas trying to find o u t  how natural. biological systems manage to 

be so adaptive. and how this knowledge might be applied to artificial systems. The power 

of genetic algorithms lies in their robustness: they effectively balance the need for effi- 

ciency with the need and ability to survive in niany environments. It is this higher level of 

adaptation which is sought for artificial systerns. No artificial systsm is as flexible. effi- 

cient. or robust as a biological system. Biological systems dernonstrate self-repair, self- 

guidance, and reproduction on a level which the most sophisticated artificial systems 

cannot even begin to attempt. IGoldberg, 19891 

Thus, HoIland's reasoning was that if robustness is desired. why not rnodel artificial sys- 

tems after the most robust behavior known: that of biological systems. However, this is not 

just a "shot in the dark". or an appeal to the elegance or aesthetics of natural systems: 
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"Genetic algorithms are theoretically and empiricaily proven to provide robust search in 

complex spaces." [ibid 1 

3.2 Mechanics 

3.2.1 Overview- 

Evolutionary optimization schemes are patterned after Charles Darwin's theory of natural 

selection. That is. the fittest members of a population survive to pass their traits on to ttieir 

offspring. This results. hopefully. in the propagation of beneficial traits. 

When npplied to artificial intelligence (AI). this means tliat a p~pulûiiûii of potentinl solu- 

tions to a problem is constructed. Simultaneously. a representation capable of describing a 

member of the population is defined. Each member of the population is evaluated to deter- 

mine hotv well it solves the problem in question. Based on this fitness value, the represen- 

tations are manipulated by operators such as crossover, mutation. reproduction. and so 

forth. according to some algorithm. Conversion of the new representations to solutions 

results. hopefiilly. in  a superior solution cornbining traits of previous. partially successful 

solutions f Goldberg 1. 

An understanding of the three basic genetic operators. crossover, reproduction. and muta- 

tion. will be helpful in the succeeding sections. Crossover is the exchange of genetic infor- 

mation between two (though possibly more) individuais in a population [Goldbergl. 

"Genetic" information refèrs to the hc t  that the process involves an exchange of the sub- 

stance of the uniqueness of each individual; an exchange of inherited traits. 



Reproduction, also referred to as selection. is the propagation (selection) of individuals into 

a new population. This selection is based upon the titness of the individual judged relative 

to the population. Thus. a highly fit individual may be copied several times into a new pop- 

ulation [Goldberg [. 

Mutation. tlie last of the basic operators. is the occasional random alteration of the value of 

a gene: a spontaneous change in tlie genetic code of an individual. i n  evolutionary algo- 

rithrns mutation plays the role of preventing the Ioss of potentially important genetic mate- 

rial. especially due to overzeaIous reproduction and crossover within the population 

[Goldbergl. The mechanics of each of these operators will become clear through the rest of 

this chapter. 

3.2.2 A Simple Esample of an Evolutionary Algorithm 

Consider the problem of navigating a simple maze. The possible operations at any point are: 

turn left 90 degrees 

turn right 90 degrees 

go forward to next wall or intersection 

Consider also that it is known that the maze can (or must) be navigated with no more than 

ten consecutive operations. [t does not matter if the maze is navigated in  less than ten oper- 

ations. 



Figure 3.1. A Simple M a x .  Action bcgins rit start. facing in thc direction of the mon.. 

start 

Table 3.1. Potcntial Solutions 
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The success of a potential solutio:~ can be rneasiired by first determining the point at which 

it was furthest along the correct path. Then, the distance is calculated by counting the 

number of forward steps reqiiired to complete the rnaze. Thus. a population of potential 

solutions might appear as in table 3.1. These potential solutions are named A, B. C, and D. 
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A seqiience of steps follows. For the sake of brevity, the above operations are abbreviated 

to left. riglit, and forward. respectively. These operations are the encoding of the move- 

rnents of each potential solution. They comprise the genome. or genetic code. of the indi- 

viduals. If it is not possible to go forward at a particular point in an individual's path when 

that individual's genes indicate a fonvard move. no movernent occurs. It is reasonable to 

assume that the final step for each solution is forward, as the potential solutions must step 

out of the maze to be successful. 

Figure 3.2. Position of Solutions 
out 

start 

Figure 3.2 illustrates the position of each solution after they terminate. The current dirzc- 

tion is not indicated. The iowercase Ietter indicates the point at which the corresponding 

solution was furthest dong the correct path. Note that no solution has exited the rnaze (exit- 

ing the maze is one more step; that is, the solution must end up on out), and that there is no 

lowercase D because it wouid be in the same place as the iippercase D. The distance from 

the exit of the closest points are 5.4,3. and 1 for A, B. C .  and D, respectively. Distance has 

been measured as the number of forward moves necessary, not counting turns. 



Now, four new solutions are created based on the performance of the previous 4. These will 

be created, to maintain the simplicity of this example, by combining each of the two best 

solutions with one of the inferior solutions. That is, A will combine with C ,  and B with O. 

This is accomplished by choosing a randorn point and rnixing the soIutions - a technique 

known as crossover. For this example. al1 solution will be mixed between the fifth and sixth 

operations. The result is shown in tabIe 2. 

Table 3.2, Net\ solutions af'tcr mising 

1 right / forward 1 forward 1 forward 

fortvard 1 forward 

left 

forward 

left 

forward 

fonvard 

right 

forward 

fonvard 

forward 

Examination will prove that potential solutions C' and D' now solve the maze as required. 

Naturally. this is a much simplified example. but it serves to demonstrate the salient points 

of genetic algorithms: that through a process of combining partial soIutions, improved and 

possibly optimal solutions can be obtained. 
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Thus. genetic algorithms function by rnanipulating a pool of 'chromosomes' in a popula- 

tion. A chromosome is a string which represents a coding for a parameter set: a representa- 

tion of a potential solution to a problem. A genetic algorithm evaluates each chromosome 

for its fitness: how well it is perforniing relative to other chromosomes in the population. 

Based on the fitness of the chromosomes. the genetic algorithm selects inembrrs of the pop- 

ulation (chromosomes from a group of chromosomes) for reproduction. crossover. and 

mutation. This selection is done randomly. but is weighted by the relative fitness of the 

chromosomes. That is, a particuiarly fit member of a population lias a much better chance 

at reproduction than an unfit member. and so fortli. An detailed exampk serves to iliustrate 

tliis process further. 

3.2.3 A Detailed Esample of a Genctic Algorithm 

Consider a black box consisting of 5 switches each with two positions. For every combina- 

tion of on and off values for the switches. the box prodiices a numeric output. The problem 

is to determine the setting of switches which produces the largest output value froni the box. 

A genetic searcli for this vdue works as follows: 

First. a representation for a chromosome must be constructed which represents the param- 

eters of the problem. Since the problem has five binary switches as parameters. the chro- 

mosome can be a string of 5 binary numbers. Next. an initial population is generated 

randomly. Say an initial population of 5 chromosomes is desired. Witli five bits per chro- 

mosome, a coin would be Ripped 25 times to generate the initial popiilation. Thur. the ini- 

tial population is: 



1 1 0 1 1  
O 1 1 1 1  
1 0 1 0 1  
O O l l O  
1 0 0 1 1  

The black box tvili serve as the evaluator of each string's fitness. Tlie switches on the box 

are set to reflect the 1's and 0's in the strings. and the value output from the box is recorded. 

Consider that the black box produced the following, where fitness is the black box's output: 

Chromosomes Fitness 
1 l O l l  729 
0 1 1 1 1  225 
1 0 1 0 1  441 
O 0 1 1 0  3  6 
1 0 0 1 1  361 

However. the genetic algorithm requires that the fitness of each chromosome be known rel- 

ative to the others. To achieve this. simply sum the fitness values and take each chromo- 

some's relative fitness as a percentage of the total fitness of the population: 

Chromosomes Fitness Relative Fitness ( % ) 
1 1 0 1 1  729 40.7 
0 1 1 1 1  225 12.6 
1 0 1 0 1  441 24.6 
O 0 1 1 0  36 2  
1 0 0 1 1  361 20.1 

Total fitness: 1792 

With this information. the reproduction operator is applied. The piirpose of the rzproduc- 

tion operator is to select. based on the fitness value. which members of the population will 

have the opportunity to mate. Thus. this is not reproduction in  the biological sense: it could 

more correctly be called selection for reproduction. This selection is achieved by creating 



a cumulative probability based on the relative fitnesses. Goldberg calls this a "roulette 

wheel" because each chromosome is allotted slots on tlie wheel according to Iiow fit that 

chromosome is relative to the others. Chromosome 1. for example. would be allotted slots 

O through 40.7. chromosome 2 would be in  slots 30.7 through 53.3 (40.7+12.6) and so 

fonh. The effect of this is that for each member of tlie population a random numDer between 

O and 100 is generated. That number will dstermine wliich rnember of the population to 

reproduce. A random number of 50. for example. indicates that chromosome number 2 

should be reproduced as 50 is greater or eqiial to 30.7 and less than 53.3. Note that the 

implication is that the same chromosome niay be setected more than once. This nieans that 

selection for reproduction can completely remove some menibers frorn the popdation. 

However. the gain from this behaviour is that successfully selected cliromosomes will mate 

more often. Since they are. probabilistically, more fit. they rvill pass on their better genes 

to the next generation in greater numbers. 

Now consider the following 5 randorn nunibers chosen by the genetic algorithm. The chro- 

mosomes they select for reproduction are indicated in  the next colrimn: 

Random Chromosome selected 
46.6 2 
61.8 3 
52 1  
98 5 
19 1  

Thus. the nsw population tooks iike this: 
Chromosomes 
0 1 1 1 1  
1 0 1 0 1  
1 1 0 1 1  
1 0 0 1 1  
1 1 0 1 1  



The next step is to allow the chromosomes to mate. Mating is carried out by selecting two 

chromosomes at random for t h i s  example. However. some underlying scheme could be 

used if desired. Since there are five mernbers in the population. only 4 wiI1 be paired. Hence 

random numbers between 1 and 5 are generated in pairs, each indicatirig a pair of chromo- 

somes to "mate". This process is stopped when one chromosome is left unpaired: (if a 

random number is generated more than once, it will be ignored and a new one generated) 

Pairs : 
4 5 
2 1 

Thus, chromosomes 4 and 5 are pired.  as are 2 and 1. Chromosome number 3 is left alone 

and merely passes through this section of the algorithm untouched. 

Crossover is now applied ro the pairs. To effect this. a random number is chosen for each 

pair which represents the number of points at which a chromosome couId be broken. Since 

the example contains chromosomes of five bits. there are 4 potential breaking points. or 

loci. They are generated as: 

Pair Locus 
4-5 3 
2-1 2 

Crossover is applied by swapping the chromosome pairs around the locus point: 

Chromosome I r 0  1 1 1 1 
(the space indicates the locus) 

Chromosome 2: 1 O 1 O 1 

Crossover cornpleted : 

Chromosome l':O 1 1 O 1 
Chromosome 2':l O 1 1 1 



The other pair is crossed over in a similar manner. Note that this coincidentally produces 

chromosomes identical to the parents. The new population now appears as follows. with 

new fitness values. This new population completely replaces the original population. 

Chromosomes Fitness Relative Fitness ( % )  

0 1 1 0 1  169 6.7 
1 0 1 1 1  529 21 
1 1 0 1 1  7 29 29 
1 0 0 1 1  361 14.3 
1 1 0 1 1  729 29 

Total fitness: 2517 

Notice that the overall fitness of the population has increased to 25 17 from the original 

1792. Note also the chromosome with the iowest initial fitness was dropped completely 

from the population during reproduction. The current population now contains two chro- 

mosomes of the form " 1  1 O 1 1". This means that the chance of that chromosome being 

selected for reproduction is even Iiigher in subsequent itentions. If the genetic process of 

reproduction and crossover is applied repeatedly to this population. within a relatively short 

period of time the optimal value of " 1  1 1 1 1"  will be achieved. It lias probably been 

observed by the reader that the black box performs a square on the decimal equivalent of 

the five bit binary number represented by the chromosome. However. the beauty of the 

genetic approach is that the actual function is irrelevant; an optimal coding wilI be found 

in the case of most '.black boxes". 

The only genetic operator not used in the preceding exarnple is the mutation operator. In  

nature. genetic robustness of a species is aided by random mutation of genes. When not 



influenced by external soiirces. mutation is actually very rare, and chances are mutants will 

die off fairly quickly. Occasionally. Iiowever. a mitant has some new trait which makes it 

more fit to survive in its environment. Thus, the new trait is added to the gene pool. 

In genetic algorithms. it is possible to [ose genetic material, as it were, or not to have had 

it in  the first place. This can be caused by overzealous reproduction and crossover operators 

selecting what appear to be the most fit  members but losing potentially useful genetic mate- 

rial in the process. or can be merely random. (Recall reproduction's "roulette wheel" 

approach. A fit mernber may die off; there's only a probability that it won't.) 

Consider the previous example. Suppose that each population member had ri zero at posi- 

tion two. Ttiat is. each member of the popdation is of the form x O x x x. where x is a 1 or 

O. Notice that no matter how much reproduction or crossover takes place. that position in  

the chromosome will always contain a zero- With a mutation operator. geries on the chro- 

mosome are randomly changed according to some probability. I n  this case, clianging a gene 

merely involves flipping the bit. De Jong's study of genetic algorithms for fiinction optirni- 

zation suggested a low mutation probability inversely proportional to the population size. 

[Goldberg, 1989 1 Goldberg suggests approximately one mutation per thoitsand bit position 

transfers [ibid 1. Thus, mutation plays a secondary yet important role in genetic algorithms. 

3.3.4 Summary 

It has been shown that genetic algorithms allow a randomized search of a complex searcli 

space. They effectiveIy use "random choice as a tooI to guide a search toward regions of 

the search space with l i  kely improvement". [Goldberg, 19891 Yet becaiise they operate on 
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a coding of the problem. the problem itself is often irrelevant; the genetic algorithm itself 

can operate on any problem once its parameters are coded. it is this "directed randomness" 

combined witli the abiiity to search rnany options in pmllel that makes genetic algorithms 

a powerful search tool. 

3.3 Cornparison to Other Search Methods 

At this point it would be useful to discuss genetic algorithms in cornparison to other types 

of search. This wili give a greater insight into how genetic algorithms are able to do what 

they do. and how they overcome some of the major pitfails of other search alsorithrns. To 

begin. Goldberg identifies tfiree basic types of search: calculus-based. enumerative. and 

random. 

3-3.1 Calculus Based 

Calculus-based search metliods involve two classes. One class operates through solving 

nonlinear sets of equations. These equations result from "setting the gradient of the objec- 

tive function equal to zero." [Goldbergj. That is. restricting the search to points with a slope 

of zero in al1 directions. The second class of caiculus search methods seek to move up a 

local gradient. These are the classical "hill-climbing" algorithms. The trouble with these 

methods is thnt they are susceptible to localized peaks in the domain space. If a start point 

is selected close to a low peak. a higher peak will likeiy be missed al1 together. Also. cal- 

culus besed methods require continuity of the domain and existence of derivatives IibidI In 

the real world, this is not necessarily the case. Thus. except i n  limited. known domains. cal- 

cul us-based methods are insufficiently robust [ i  bid 1. 



3.3.2 Enumerative 

An enumerative scheme is one that evaluates each point in the search space i n  turn, seeking 

the optimal point. The problem with this is obvious: except for very srnaIl search spaces. 

this type of search will be terribly inefficient [Goldbergl. 

3.3.3 Random 

Random search algorithms. in effect. attempt to recti fy the pitfal 1s of calcuIus-based and 

enumerative schemes. A random search involves sarnpling points in the search space at 

random with the goal of locating an optimal point. While this may overcome the tendency 

to get stuck on local peaks, i n  the long run this can be considerd rio more efficient than an 

enumerative search [GoId berg 1. 

3.3.1 Random Versus Randomized 

While random techniques suffer from the same efficiency problems as enumerative tech- 

niques. they shotiid not be contused with randomized techniques such as genetic algorithms 

and simulated nnnealing. Randomized search algorithms use random elements to guide a 

search for an optimum value [Goidberg 1. 

3.3.5 Genetic Aigorithms 

Genetic algorithms are a randornized search method. They Lise randomness combined with 

laws of probability to direct search in a direction where improvement is likely. More cor- 

rectly, genetic algorithms direct a search in many directions that are likely. Goldberg iden- 

tifies 4 ways that genetic algorithn~s differ from the traditional methods discussed above: 

1.  Genetic algorithnis "work with a coding of the parameter set, not with the parameters 
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themsel ves". [Goldbeg, 1989 1 That is. the algorithm generates many possibili ties 

simultaneously, and then evaluates them. 

2. Genetic algorithrns use a population of potential solutions. They are inherently para 

and not restricted to considering a single point at a time as other methods are. This, 

Ilel, 

also 

the reason for their robustness and ability to overcome local peaks in a search space. 

3. Genetic algorithrns use a fitness. or objective function to determine viability of poteri- 

tial solutions. They do not use derivatives. or "other auxiliary knowledge." libid 1 Thus 

they can be tailored to any domain where some judgement of the "goodness" of a result 

can be made, regardless of whether or not the domain has a search space that conforrns 

nicely to the lacvs of calculus. 

4. Genetic algorithms guide the transitions in the search space using pwbr;hi!istic. not 

deterrninistic rules. Unlike a hill climbing search. for example. which rnight have a rule 

to the effect of "if a higher point exists adjacent to the current one. choose it". genetic 

algorithms assign IikeIihood of a good search direction based on the results of the pay- 

off function relative to other directions being explored. 

Thus. genetic algorithms produce a robust search algorithm which works across a wide 

variety of dornains. many of which are not suited to traditional search algorithms. Thrir 

inherent parallelism allow them to search a spnce more efficiently and quickly than many 

traditional algorithms. Though they are randomized, they are not randorn techniques: they 

use randomness as a tool to direct search in promising directions. 

3.4 Neural Networks as Candidates for Genetic Search 

Having discussed the basics of backpropagation networks and genetic algorithms, the ques- 

tion of combining the two is raised. While neural networks can be powerful tools for pattern 

recognition, optirnization, classification, and mapping problems in general, they are by no 



means easi ly constructed. Traditionally. neural networks are designed and implemented by 

specialists - professionals with in-depth knowledge of the strengths and weaknesses of var- 

ious network architectures. While this results in  well designed networks, it can also give 

rise to certain problems. While the underlying algorithms may be relatively simple. net- 

work parameters such as learning rate. momenturn. initial weights. number of Iayers. and 

nurnber of units per hidden Iayer play a large part in  the ability of a particular network to 

solve a given problem. 

Even when selected and implemented by an expert with knowledge both of neural networks 

and the problem domain. the process is often little better than trial and error. A better way 

to determine optimal parameter settings for a neural network is required. The goal of apply- 

ing an evoiuiionary algorithrn is to automate the now largely ad hoc process of neural net- 

work design. 

un. are Thus. it is established that neural networks. by virtue of the complexity of their desi, 

potentially good candidates for genetic search. In order to employ such an approach. how- 

ever. it is necessary to ask whether evolutionary techniques are in fact suited to neural net- 

works. 

3.4.1 Motivation for Evolutionary Networks 

What is the advantage of evolving neural networks'? EAs offer a rnuch more flexible 

approach. Neural networks are. in essence. a hi 11 ciimbing searcti. As such. they are subject 

to the pitfalls. discussed in section 3.3.1. of getting stuck on local features of the solution 

space. Neural networks use an error calculation to compute a gradient to direct the search; 
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for example. the backpropagation network [Haykin 1. These methods require smooth, con- 

tinuous activation fiinctions in  order to derive gradient information [Moriartyl. In contrast. 

evoliitionary algorithms do not perform direct calculation of gradients. Instead. they focus 

on blanketing the search space with potential solutions. This results in a far more global 

search which is mucti less likely to succumb to local features of the solution space. These 

advantages give evolutionary algorithrns a rnuch wider range of options: an EA might use 

Iinear thresholds. splines. or product units where traditional neural networks might require 

a smooth sigmoid function [Moriarty 1. Further, computation of gradients in  the more corn- 

plex neural networks. such as recurrent networks. can be quite costly. EAs do not reqriire 

tliese expensive calcdations. 

Thus, EAs complement the traditional neural network gradient-descent techniques quite 

well. Their simultaneous global search allows large, irregular search spaces to be covered 

in  an automated manner. removin_o human drudgery. and human error. from the equation. 

3.5 Neural Networks and Evolution in the Literature 

Applying genetic algorithms to neural networks is not a new idea. Maureen Caudill, David 

Stork, Ronald Keesing, Peter Korning, and others have discussed genetic algorithms as a 

means of optirnizing network structure. 

3.5.1 Initial Weights 

Caudill proposes an algorithm which focused on initial network weights to produce a net- 

work more siiited to learning a particular problem [Caudill l. She refers to this as a net- 

works's -'nature", that is, its inherent ability to solve a particular problem. This idea was 
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explored in more detail by Stork and Keesing. who went on to patent a technique 

[ US P5245696 1. 

The general idea is to ilse evolutionary algorithms to discover networks which are predis- 

posed to learning a particrilar problem. The alternate view. that of training the network 

incrementally. is discussed in the next section. Al1 the reviewed research hm focused on 

similar networks. That is. the network structure is not an issue - al1 the networks have the 

same niimber of layers. hidden units. and so forth. The question is whether or not networks 

of varying topologies may be the focus of the same evolutionary algorithm. This would 

result i n  an €A which is abIe to explore a much larger sohtion space and hence find a better 

sol ution. 

3.5.2 Training and Evolution 

A different approach is to train the networks for a set amount of time. riin the EA on them. 

and tlien train them further. These methods can run into problerns. however. if the weights 

of the network are manipulated by the EA. To overcome this problem. sometimes the EA 

is usrd as the sole niethod of training or. alternately. the EA is used until it con do no better. 

and the job is finished with gradient descent. 

Korning discusses the various attempts to apply genetic algorithms to neural networks. 

Whitley. Miller. Romaniuk. Zhnng. and Myhlenbein have al1 attempted genetic optimiza- 

tion of network architecture. 

weights and thresholds. Korn 

and too short a chromosome. 

1 Korningl Others have attempted training a neural network's 

ing criticizes these attempts for using too high a mutation rate. 



Korning argues that very long chromosomes, approaching 10000 bits. are required to effec- 

tively aIIow a genetic algorithm effect "hyperplane sampling". 1 ibid. 1 Also, Korning argues 

that the qualitative nature of a genetic search requires a fitness function other than the com- 

monly used "least rnean square" function from backpropagation training. 1ibid.l Korning 

aoes on to show Iiow his  method prodtices very good results. and points out that the gener- 2 

alization abilities of his method are quite high. Thus, he believes that the future of genetic 

algonthms and neural networks lies in more work beinp done in the representetion and 

eval uation areas. 

3.5.3 Adaptive Neurocvolution 

A new method of npplying EAs to neural networks has recently been developed. Symbiotic. 

adaptive neuro-evolution (SANE) is a new neuro-evolutionary technique for solving com- 

plex sequential decision tasks [Moriarty: Weeks & Burgessl. In a dornain where traditional 

neural network and evolutionary techniques have been at best moderately successful. 

SANE demonstrates an ability to excel at tasks which offer sniall. infrequent feedback. 

Developed by Moriarty and Miikkulainen. the key to SANE is a two-pronged attack at the 

search space. The algorithm evolves neurons separately from networks. Thiis. networks are 

formed of evolved neurons and neurons are evaluated based on th& participation in suc- 

cessful networks. Since no single neuron alone can solve a complex problem. it behooves 

the neurons to learn to cooperate. Thus the SANE algorithm is exemplary at maintaining 

population diversity without resorting to high mutation rates. 



3.5.4 Other Mentions 

Otlier wri ters siich as Timothy Masters and Phil ip Wasserman have also discussed genetic 

algorithrns within the context of neural networks. but have proposed no particular imple- 

mentation [Masters; Wasserman 1. 

3.6 Summary 

Research into genetic algorithrns and theirapplication to neural networks is ongoing. There 

remain areas with very little research. such as "sexual reprodriction", diploidy. and domi- 

nance. [Wasserman 1 i t  can be hoped that further research produces newer and better neural 

network training systems. 



4 Structure of the System 

This chapter describes the system designed and implemented for this thesis. 

4.1 Goa1 

It is the goal of this thesis to study evol~itionary algorithrns applied to neural networks as a 

method of automatic neural system generation. The ultimate goal is to create a system 

which can be 'turned on'. and will autonomously design a neural system eqiial in perfor- 

mance to what a hurnan expert would design. To this end. a system is presented which con- 

sists of algorithrns designed to construct backpropagation networks. AI1 the algorithrns 

presented in this chapter were implemented and tested. The advantage of this system. of 

course. is that it generates neural networks without human intervention. 

4.1.1 Implementation 

The irnplementation of the systern consisted of two phases: first. the irnplementation of the 

neural network architecture to be manipulated; second, the design and implementation of a 

sui table evoI utionary algorithm. 

The systern was implemented in as close to standard Ci-+ as possible. The backpropagation 

network was designed as a CH class, while the evolutionary algorithm was implemented, 

for convenience rnostly. in standard C. It is important to note the while the neural networks 

are implemented in CM, care was taken not to sacrifice the speed of the implementation. 
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Thus. the object-oriented design was careful [y constructed to avoid cornmon CU overhead 

problems. 

4.2 Neural Network Implementation 

Backpropagation was chosen as the neural network mode1 for the system. The advantage 

of backpropagation is that it  is a weil known. proven and studied algorithm. The techniques 

for iising it are as rigorous and standardized as possible in AI. 

The backpropagation network. as previously described. kvas implemented in Ci-+. The 

main classes were a layer ctass. an abstract network class. and finally a c!ass defining a spe- 

cific type of network. in  tliis case the third class was obviously backpropagation. The 

classes were designed rvitli two goals in  mind: to simplify the coding of types of networks 

other than backpropagation. and to rrtain as much of the speed of C while garneri ng sorne 

of the benefits of C++. For this reason. cornplex C++ constructs requiring run-time over- 

head were not employed. Rather, sirnpler but leaner solutions were sought. 

4.2.1 The Layer 

In the class hierarchy. the base class is a layer. Arguably. a neuron might be the  ideal base 

case in  such a design. However. this would add an extra level of object dereferencing to 

access every weight. Additionally. the weights would not be easily accessible in other 

orders. For example. assuming a neuron consisted of incoming connections. it  would 

require one object dereference to obtain al1 the weights into that neuron. Conversely. to 

obtain one input weight for each neuron in the layer would require as rnany dereferences as 

there are neurons. It is possible this could be circumvented by retaining a link to the previ- 
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ous neuron. but at best this incurs the same cost as the first case: an extra dereference. Thus. 

the layer was chosen as the basic unit of the network. 

4.2.2 The Network 

The network class is an abstract class: that is, it cannot itself be instantiated. Rather. another 

class rnost inherit it and definc certain key functions such as the learning algorithm. The 

network class consists of generic. network-specific parameters. such as learning rate. bias 

terms. and number of layers. as well as a set of layer objects. To overcome CU ovsrhead, 

the network was initially allowed access to the private members of a layer. However. C++ 

inheritance riiles made this infeasible later in the implernentation phase. Therefore. niost. 

if not all, rnernber functions used to access layers. and some used to access networks, are 

inline functions. This results in Iarger code, but this is not especially significant to this dis- 

sertation. 

4.2.3 The Backpropagation Class 

The final class in the neural network hierarchy is the backpropagation class. This class 

inherits the basic functionality of the network class and adds backpropagation-specific 

items. Specifically. the backpropagation cIass adds class-specific constructors. a learning 

fiinction, activation fiinction, and rniscellaneous access and UO functions. Note that while 

backpropagation in herits from the network class, the network class coiircri~zs. rather thân 

inherits, layers. 

Thus, the backpropagation network encapsulates the following functionality. A backprop- 

agation network is instantiated with a constructor which specifies the number of layers, the 
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length of the input and output vectors. the number of patterns (for training). pointers to the 

desired oiitputs. and an array in which to place results. The network additionally contains 

bias terms and a learning rare. The leaming rate is fixed for the piirposes of this experiment, 

but it could ensily be rnodified to be adjustable. The backpropagation class also contains a 

leaming function. an activation function (the sigmoid functioii described in chapter 2). and 

an output function. The learning function works by being passed a number of cycles for 

which to learn: the weight updating is done on-line: that is. after each pattern. 

4.2.4 Network Evaluation 

As discussed in chapter 2. it is iiecessary to partition the data presented to a neural network 

into training and testing sets. The purpose of this practice is to better evaluate n network's 

future performance on new data. If a backpropagation network is trained on a single large 

data set. it may begin to mernorize some patterns instead of Iearning the general patterns of 

the dataset. By presenting the network with testing data not used in  training. it is possible 

to better evaluate the network's ability to generalize. Several terms derive from this prac- 

tice. The clnssificatiotz rare is the ratio of patterns correctly classified compared to the total 

number of patterns classified. Conversely. the rrjrctioti rcite is eqiial to 1. less the classifi- 

cation rate. Finally, the nccurncy is the ratio of the number of correctly classified patterns 

to the total nimber patterns. Naturally, these number exist for both the test and training sets. 

An evolutionary algorithm requires some form of fitness evaluation to determine the rela- 

tive goodness of the rnembers in the population. The question when dealing with backprop- 

agation networks is whether to base the fitness on the training set. the test set. or a 



combination of the two. Since the intent is to produce networks more capable of learning 

the generalities of the data, the first option is not usefi11 for reasons described above. Due 

to the difficulty in combining the perforniance numbers for the test and training sets into a 

meaningful performance evaluation. it  was decided to evalriate the networks solely on their 

ability to classify the test set. To that end. the fitness of a network was calculated as the 

number of correctly classified patterns as compared to the total number of patterns. it was 

mentioned in chapter two that a comnion practice in neural networks is to withhold a third 

partition for the very end upon which to test the final networks. This method was not used. 

as this experiment was concerned with the ability of the evolutionary algorithm to create 

networks and not the generation of networks by the standard design methods. Thus. it  was 

felt that to effectively measure the performance of the evolutionary algorithm. it must have 

at its disposa1 al1 of the available data whicti a hiiman designer would have. 

42.5 System Verification 

Following the creation of the backpropagation network. it was necessary to make certain 

that it worked correctly. To perform this validation. several tests were performed: 

Training on the xor problem. 

Comparing the number of training cycles required to attain a certain level of perfor- 
mance with a network trained by hand via another system. 

Comparing detailed output of the above for a few cycles to validate the algorithm. That 
is, verifying that both networks produced precisely the same calculations for an entire 
pass through the data set. 



The first test was to create and train a backpropagation network on the xor problem. Any 

backpropagation network should be able to learn this data. provided it hns a minimum of 2 

hidden units. Failure to do so would indicate an implenientation error. 

Once a bnckpropagation network was successfully learning the xor patterns. the network 

was compared to a network which kvas known to operate correctly. Two identical networks 

should achieve the same performance given the same training, regardless of the system. If. 

from the same starting state. the two networks did not converge to the same answer in the 

same number of cycles, a more subtle implementation error must be at rvork. 

Finally. after the first two tests were successfully passed. every step of the network's algo- 

rithm was compared to the control network for two epochs of learning. This ensured that 

precisely the same results were being prodiiced. Additionally. final values some five to ten 

epochs into training were also compared. This final validation ensures that no funher rninor 

errors exist to corrupt the algorithm. 

4.3 Evolutionary Algorithm 

After implementing and verifying the backpropagation network. work began on the devel- 

opment of a suitable evolutionary algorithm. This development was done in iiicremental 

steps. not dissimilar from the evolutionary prototyping paradigm of software engineering. 

The approximnte steps taken in the developrnent of the EA are summarized below. 

1. Run a single network for n epochs at a time until performance starts to degrade. 

2. Run multiple networks as in 1. 



3. Run multiple networks, n epochs at a time, removing the worst performers after every 

set of n. Stop after a fixed number of sets o r  when onIy a few networks remain. 

4. Apply reproduction to trained networks. 

5. Apply reproduction crossover and mutation to trained networks. 

6. Apply reproduction. crossover. and mutation to initial network weights using both dis- 

tributed and uniforrn learning epochs. 

7. Method 6. but allow the best performers to pass on their learned genome with some 

probability. 

For methods one through four. a fitness function was drveloped. By the time method five 

was reached, the fitness function hnd been finalized. T h e  following sections discuss the rep- 

resentation upon wliich the EA operates, and then discuss the steps above in fwther detail. 

4.3.1 Rcprcsentation 

In order to operate on neuraI networks. the evolutionary algorithm reqiiires a representation 

of those networks which is easily manipulable. The  salient features are the network 

weights, the number of layers. and the number of hidden units. 

The niimber of layers is deemed irrelevant for the purposes here, as extra layers rarely add 

much to the neural network. This is dus to Kolmogorov's theorem [Bishopl. Thus. it is 

assumed that al1 networks in the systern are two layer networks. (An input layer, one hidden 

layer. and an output layer.) 

The network weights are the key features for the evolutionary algorithm, as the EA is look- 

ing for an optimal set of weights. As there are two distinct layers. it rnakes sense to encode 

the weights on two distinct chromosomes; mixing of weights across layer boundaries is not 
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investigated for the purposes of this thesis. Thus, two strings are created which catenate 

each weight matrix into a single vector. These two vectors are stored together. and consist 

of the EA's representation of a neural network. 

Fortunately. the number of inputs and outputs for each networks are fixed. as they depend 

upon the data in  use. Therefore, the precise number of genes. representing weights, in a 

chromosome created in the above manner can be calculated at any time. Additionally. a 

value indicating the length of a chromosome is stored in the first position of that cliromo- 

some. This obviates the need for extra calculations by the algorithm. This system of encod- 

ing is easily extensible to additional network types and topologies. 

4.3.2 Pre-reproduction approachcs 

The first method used to develop the EA was the most trivial possible method. The goai 

was to automate the network training to continue running until  the performance of the net- 

work on either the test data. training data. or some combination thereof. began to degrade. 

[nitially. the system kvas run with al1 the data i n  an attempt to automate the process of learn- 

ing al1 the data. This is similar to what experts do with a new set of data. By training the 

networks on the entire set of data. they are able to determine the overall "learnability" of 

the data set. Preferably this is done with a small number of hidden units. As the number of 

hidden tinits increases, the network begins to memorize more of the specific records. This 

behaviour is undesirable: since the network is intended to work with data it has not been 

trained on, learning the generaI patterns in the data is more important. Thus. a smaller 



number of hidden units indicates a more l i  kely ability to learn the general patterns in the 

data. 

The algorithm worked by running the network for several sets with n epochs in a set, where 

N was a suitable number that was predefined. Every set. the system would check to see if 

performance had improved. degraded. o r  stayed the same. If it had degraded. then the 

system would stop. The problern with this approach is that gradient descent algorithms 

often have 'burnps': sections in the solution space where the error becomes temporarily 

worse before becoming substantially better. Later versions of this basic algorithm took into 

accoiint 'bumps' in the gradient descent algorithrn by requiring two consecutive degrada- 

tions to stop the rirn. 

The obvioris next step to this simple algorithm was to run a number of networks in  this 

rnanner simultaneously. The first iterations of  this improvement rnerely ran al1 of the net- 

works for a fixed number of epochs and presented the best ones. Later. networks whose per- 

formance had degraded prior to the end of the run were not trained further. A final 

adjustment was to remove poorly performing networks from the run entirely. This was 

accomplished through a variety of methods. The rnost successful involved eliniinating net- 

works whose performance was below the nth percentile for that iteration, or  generation. In 

other words. the current average fitness of the population, minus some percentage of the 

standard deviation. For example, killing off networks in every generation which were per- 

forming below the average l e s ~  the standard deviation meant that the top 84% of networks 

were retained. Conversely. the worst 16% were removed from the population. Note that it 
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is not possible to remove networks peiforming too close to the average. or else when the 

population begins to converge (which will happen due to continued training) all the net- 

works will suddenly be removed! This iteration of the algorithm did not attempt to replace 

the removed members, but rather ran either for a fixed nurnber of sets or until only a few 

networks remained. 

43.3 The Fitness Function 

Throughout the previous developrnent. the  fitness function was also in constant flux. Ini- 

tially. when the entire data set was being learned, the total sum squared errer (TSS) was 

used. This quickly gave way to the nurnber correct. or the percent correct. as much less 

= sets. a iinwieldy numbers thnn the TSS. Upon t h e  introduction of separate test and trainin, 

new titness evaluation had to be formdated. For example. the percent correct in the test set 

was somewhat effective in  encoiiraging the networks to learn to generalize. Unfoi-tunately. 

as this does not take into account the performance on the training set. the ability to identify 

some sprcial-case patterns in the training set might be lost. Also. as the networks increased 

their performance on the training set. test set performance tended to fall off: the networks 

were overfitting the training set [Haykin; Evlehrotra]. A happy medium was reqiiired which 

sought out a balance between the two. One method wns the product of the classification 

rates of the test and training sets. The clussificntioit rrirr is the percentage of correctly clas- 

sified patterns in the total number of patterns classified. Thiis the network is not penalized 

for patterns if it is able to indicate that it is uncertain as to their classification. Thiis, a higher 

evaluation with this function indicates a higher ability to make accurate predictions. 



Once again. however. increased performance in the test set causes an undesirable decline 

in training set performance. For this reason. and becriuse the data set was known to be train- 

able (able to be learned to a high degree of accuracy) [Wolberg; Mangasarian; Scusel. the 

final evaluation used in  the later stages of the experiments kvas the percent performance on 

the test set only. This ensiired the evolution of networks with the highest ability to gener- 

alize. 

43.4 Standard Genetic Operations 

Before discussing the standard genetic operators, i t  is necessary to briefly review the rep- 

resentation chosen for the system. Recall that network layers consist of weight matrices. 

Thus. for this system. a rnulti-chromosome representation was chosen where each Iayer. or 

rather. the weight matrix preceding the layer. was transformed into a separate chromosome. 

Thus, each chromosome becomes a linear representation of the corresponding weight 

matrix. For the sake of simplicity, this study will be lirnited to two-hyer networks; that is. 

networks with one hidden layer. It follows that only chromosomes that originate from the 

same relative layers wiII be allowed to cross. By thus restricting the motion ofgenetic mate- 

rial. it is possible to focus more upon the effects of the base system. Also. this would appear 

to be the approach taken by biological systems: only homologous chromosomes cross over. 

not any chromosomes at randorn. Future work may indeed include networks of differing 

numbers of layers and cross-layer mating. 

The next step towards the evolutionary algorithm is implementing the standard genetic 

operators of reproduction, crossover, and mutation. 



The EA developed for this thesis uses standard roulette wheel reproduction as discussed in 

Chapter 3. Mutation is also standard. and the mutation rate was set to one mutation in one 

tliousand weight copy operations. or O. 1%. The mutation rate is purposely kept at this low 

Ievel. as this is not a study of the effects of mutation. but rather an atternpt to learn about 

the evolutionary potential of these networks. Therefore. a high mutation rate would be 

counterproductive. as it would confuse the results. 

Crossover. on the other hand. involved some new ideas. Most of the Iiterature invoIves pop- 

ulations of networks of the same architectiires. that is, the weight matrices have the same 

dimensions. The authors have been concerned with performance rather tlian arcliitecture 

optiniization [Stork Br Keesing. Caudill. etc.[. Since the system constructed herein differs 

in that aspect, crossover is irnplemented by choosing a crossover point on the shorter of the 

two chromosomes (if one is shorter). This effectively deals with the problern of differing 

network structures. 

4.4 Consolidation: The Systern 

The combination of the neural network and the evolutionary algorithm constitute the entire 

system. While the basics of genetic representation and operation have been presented. there 

remain a variety of ways in which the two systems can interact. [Caudill. Stork. Moriarty 1. 

The evolutionary system devised hrrein is a synthesis of several ideas. Caudill proposed 

the mating of trained network weights in  1991. Her work followed that of Keesing and 

Stork in 1990, w hich focused on the matiiig of initial weights based on the performance of 

partially trained systems. With the addition of the innovation of distributed learninp epochs 



(to be discussed shortly), Stork and Keesing went on to patent this technique a few years 

later [USP53456961. A conversation with Dr. Stork indicates that further work was not 

realized and the system was left where it was. 

Indeed. the literature is rife with exaniples of evolutionary algorithms used to optimize 

neural network performance [Caudill; Stork: Dodd: Chang]. However. on the subject of 

automating the creation of neura1 networks. especiatly when considering increasing the 

EA's degrees of freedorn to operate on the networks. there appears to be a marked absence. 

This dissertation briefiy explores each of these ideas as applied to backpropagation. 

Finally. whiIe mating of both trained and initial weights has been explored. a combination 

of the two does not seem to have been attempted. Thus. the final incarnation of the system 

involves an attempt to probabilistically allow trained weights to be passed into the subse- 

quent population to mix with the gene pool of initial weights. The results. presented in  the 

next chapter, are encouraging. 

1.4.1 Mating Trained Wcights 

The first. and perhaps the most obvious. way to combine neural networks with evolutionary 

algorithrns is to alternate cycles of neural network learning and performance evaluation 

with evolutionary optimization. This approach is straightfonvard, and at first would seem 

to be the obvious rnethod. However, there are several inherent draw backs to this technique. 

4.4.1.1 Lanznrkicrn Evolution 

Lamark was a scientist of the late nineteenth century who proposed that evolution was 

directly influenced by the experiences of individual organisms in  their lifetime 1 Mitchell 1. 



The classic example of Larnarkian evolution is that of a j inffe with a short neck which 

stretches to reach leaves in tall trees d l  its life. Subsequently. its offspring have longer 

a icts necks. which they stretch further. and so fonh. While current scientific evidence contr d' 

this mode1 rather vehemently. there is naturally a tendency to attempt Larnarkian tech- 

niques for Lise in artificiai systems such as XI and neural networks. Indeed. studies have 

shown that these processes can improve artificial evolutionary algorithms [Mitchell. Cau- 

dilll. 

However. tlie fact remains that biological systems do not operate in this manner. (Mitchell. 

Stork & Keesing] The exceptions are the lowest forms of life. such as planaria. Since arti- 

ficial intelligence is concerned with modeling higlier brain functions. sfiould the evolution- 

ary optirnizetions used upon learning systerns be a reflection of those iised upon the lowest 

forms of stimul us-response processi ng? 

4.4. / .2 Misitrg IVe&/zts hz fferlrd Nmvorks 

A neural network. particularly a backpropagation network. depends upon the gradient 

descent of the error in order to l e m .  Networks are typically robust in that, because the 

learning is distributed among al1 the network weights. damage to the network or noise in  

the data does not necessarily cause cornplete failure of the network. However, recall that 

backpropagation begins with a random starting point and then applies tlie learning algo- 

rithm to minimize the error over the training time; different starting weights lead to com- 

pletely different learning ciirves. By crossing over networks with two different sets of 

starting weights, it is unlikely that the resulting amalgam will be any better than a third net- 



work with a random starting point. The fact that the system presented herein also mixes net- 

works of varying topology (specifically the number of hidden iinits) rnerely compounds the 

unlikelihood of a genetic operation resulting in  a network that is anything more than a new 

random starting point for gradient descent learning. Finally. the further the networks are 

along in their total training. the more specialized their weights. and the less likely that 

genetic operations will produce anything usefui. 

4-4.1.3 Nrrrtrrre overcomes Ncrtr ~ r e  

Another problem arising from the ~nating of trained weights is the fact that the learning 

algorithm. backpropagation in this case. is higllly effective. The design of the algorithm 

allows it to learn from nearly any starting point. This means that the longer the network is 

trained. the greater its ability will become: this is the whole point of gradient descent. How- 

ever. w hen combined with an evolutionary system. the two brconie inextricably inter- 

twined: the learnirig process is performing local search. whicli moves al1 population 

members closer to potential solutions. The EA in turn performs a global search. However. 

the diversity of its population has been reduced by the previous local search. The network 

weights which were once widely different rnay now be tending down the error gradient to 

the same local minimum in the solution space. The more training sessions that are used. the 

greater the effect it has on the evolutionary algorithm. Thus. the inherent goodness of any 

particular network structure or starting point is lost. overwhelmed by the efficient learning 

strategy. The nurturing of tlie system has overcome any inherent nature that may have been 

discerni ble. 



4.4.2 Mating Initial Weights 

The alternative to the method of section 4.4.1 is the mating of initial weights. In short. this 

method trains networks for a short period of time. evaluates tlieir fitness. and then mates 

their itzirid weights based on this information. In essence. this is akin to true biological evo- 

lution: the success of the parent influences its ability to pass on its itiitid genetic makeup. 

How then do improvements occurb? In biology, species are iniproved through the Baldwin 

effect [Mitchell 1. 

4.4.2.1 The Baidwitz Effecr 

't rec- Proposed by J. M. Baldwin near the end of the nineteenth century, the Baldwin effe, 

ognizes that environniental pressure may favour individuals with the capability to learn 

[Mitchell]. Individiials more capable of learning are more likely to survive. and therefore 

reproduce. It followç that an orsanisrn able to learn rnany traits will be less dependent upon 

genetically encoded traits. Thus, a more diverse gene pool is supported rvhich allows for 

learning to compensate for traits not fully developed by the genetic code. The ability to 

learn indirectly accelerates the rate of evolution. 

4.4.2.2 Bnldwitz Evolutiotz itz Ne~rral Networks 

The realization of the Baldwin effect in neural networks is straightfonvard. Instead of 

mating weights wliich have been trained by the Iearning algorithm, the initial weights are 

mated. The fitness of the network, however, is evaluated through the performance of the 

network after a set amount of learning. In essence, this modification to the evolutionary 

algorithm gives the neural networks a 'life' which is distinct from their genetic makeup. A 

network's performance i n  its iife determines the relative fitness of its genome compared to 
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other individuals in the population. This approach is successfully demonstrated by Stork 

and Keesing. Further. they discovered that distributed learning trials produce better perfor- 

mance. 

4.4.2.3 Disrributrd Learnirzg Triais and Baidwitz Evohtiorz 

Stork and Keesing discovered that randornly choosing the nurnber of learning epochs for  

each individual in a population of neural networks gave rnuch improved performance than 

using the same nurnber of leaning trials for  all networks. [Keesing & Stork] This makes 

intuitive sense when one considers the biological paradigm. No two organisms are exposed 

to exactly the sanie arnount o r  type of stimulus. Modifying the nurnber of learning epochs 

on an individual basis mirrors this biological truth. Unfort~inately. there is no straightfor- 

ward way to  modify the type. as  opposed to amount, of stimulus other that to break up the 

training data into randoni partitions. Due to lack of data. this is not always feasi ble. 

4.4.3 Probabilistic Lamarkian Learning Transfer 

The final enhancement presented by this dissertation is that of probabiiistic Lamarkian 

learning transfer (PLLT). Earlier. section 4.4.1.1 rnentioned that studies had shown that 

Lamarkian techniques can improve artificial evolutionary algorithms. The question this 

raised was under what circumstances Lamarkian techniques could irnprove the previously 

discussed Baldwin-type models. It was postulated tliat this could be accomplished by 

allowing the best networks in the system of section 4.4.2 t nns fe r  their trained weights. 

rather than their initial weights, to  their offspring with a certain probability. By restricting 



the frequency of this occurrence. it is possible to artificially boost the performance of the 

evolutionary system via a pseudo-Lamarkian process. 

PLLT allows new genetic materinl to be introduced into the population. Because there is a 

possibility of a network mating with itself. thus producing identical progeny. this also. in 

effect. allows particularly successful networks to. in  essence. 'live' longer. Thus. a well 

performing network has the chance of kerping it's learning through n generation (or per- 

haps more). instead of always losing it. 

Figure 4.1. Thc Basic E~.oliltionary Algorithm 

step 1: 

step 2: 

step 3: 

step 4: 

step 5: 

NN' -@Z$------+ Fit 

Chrl@- Chr' 
Fit 



4.4.4 The Algorithm Revisited 

The evolutionary system developed uses thz basic algorithm described in  figure 4.1. The 

algorithm begins with a population of neural networks. NN. These are trained via the learn- 

ing process to obtain trained networks. NN'. Next. the trained networks are evaluated to 

produce a fitness measure. Fit. for each rnember of the population. Step 3 takes the original 

networks and encodes them into chromosomes. Ctir. wi th w hich the evolutionary algori thm 

c m  work. The chromosomes and their corresponding fitnesses are sent to the evolutionary 

algorithm in step 4. The result is a new set of encodings. Chf .  which represents the off- 

spring of the previous generation. Finally. in step 5. the new encodings are converted to a 

new set of networks, NN". The process repeats for as many generations as desired. 

This presents the basic aigorithm. In the case of PLLT. a few extra steps occur. Step rhree 

lias the addition indicated in figure 4.2: with a probability influenced by the fitness. some 

members of the set [\IN*. the trained networks, are encoded into chromosomes. This selec- 

tion process uses a lower and upper bound. When a network's fitness is greater than the 

lower bound. a uniforrn variate is generateb between these two bounds. If the network's fit- 

ness exceeds this variate. its trained. rather than initiaI. weights are encoded into the gene 

pool. Next, these members are addzd to the evolutionary algorithm in step four. 

In order to maintain a population of constant size. after the PLLT chromosomes are created 

(Step 3b). enough additional chromosomes are added in the traditional manner (Step 3a) to 

make a total population equal in size to the previous genention. It is important to note that 

the genes created in step 3b are passed into the EA for mating. Tliey do not imrnediately 



find their way into the next generation. Such behaviour might indeed be desirable. but is in 

the scope of future work. 

Figure 4.2. PLLT Moditlcd Et-olutionaq- Algorithm 

step 3a: 

step 3 b: 

step 4: 

Fit 

Fit 

4.5 Sumrnary 

The focus of this thesis is one of unifying a learning system and a search system. The corn- 

bination should result in an evolutionary learning systern. where the powers of each system 

both support the strengths and compensate for the iacks of the other. The goal of this tvork 

is to remove the drudgery from neural network design: Once a task has been identified as 

being a candidate for a neural network approach, the ideal situation would be the mere acti- 



vation of a system which would automatically generate the most appropriate. accurate net- 

work. 

This system is a step in that direction. While the network type and architecture are limited. 

no feasible reason has been encountered to suggest that multiple network types and config- 

urations could not be added to the same genetic pool. Thus, the lessons learned in  this appIi- 

cation of genetic algorithms to backpropagation networks sliotild hoid true for at least 

several other architectures. Minor modifications will probably suffice to add more network 

types to the system. 

Freeing humans frorn the iinnecessary drudgery of network creation will allow research in 

more elaborate areas of learning and evolution to take place. The ability to set up neural 

systems without hutnan intervention is a vital step on the patli to fully adaptive. autono- 

mous intelligent systems. 



d Experimentation 

5.1 Description 

This chapter will describe the performance of the system described in chapter 4 i n  an exper- 

irnentaI environment. SpecificalIy, a dataset will be seiected on which the system will be 

trained. The system's results will be compared to that of kiiown results of expert-designed 

neural networks. 

5.2 Purpose 

The purpose of this experiment is to demonstrate the practical vnlidity of the theoretical 

designs presented in previous chapters. It will be demonstrated that the systern described 

herein is a viable and effective alternative to having experts design neural networks by 

hand. 

5.3 Materials 

The materials used in the experiment consisted of a computer and associated hardware. the 

system whose design was described in Chapter 4. and a daraset from an AI data repository 

on the internet. 

5.3.1 Cornputer 

For this experiment. the system was run on a Power Mncintosh 86001300. This cornputer 

system runs on a 300 Mhz Motorola PowerPC 604ev microprocessor on an Apple Com- 
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puter designed motherboard witli 128 megabytes of interleaved RAM. and 1 rnegabyte 

inline Ievei two cache running at 100 MHz. This machine was running MacOS version 8.5. 

As previously mentioned. the evolutionary system has been designed to be highly portable. 

and contains very l i ttle platforrn-specific code. 

The evolutionary system itself was written using the Metrowerks Codewarrior compiler, 

release 4. The accompanying SIOUX-WASTE (Simple Input  and Output User exchange) 

console library was used for console output. This library actually aids portability because 

it allows standard Ci-+ console input and output to be used on a platform without a standard 

command-line console. The code was written entirely i n  CH-; however Ci-t specific fea- 

tures. such as classes and overloading, were used sparingly (only when their use was 

deemed to overcome the traditional speed loss in using C++ over plain C). 

5.3.2 Dataset 

The dataset chosen for tliis experiment was the Wisconsin Diagnostic Breast Cancer 

(WDBC) dataset. The set consists of five hundred sixty-nine records, each with thirty vari- 

ables. Each record is classified as either malignant or benign. Three hundred fifty-seven 

cases are benign, while two hundred twelve are malignant. The data are known to be nearly 

linearly separable when al1 thirty input features are used. There are a few patterns which 

are on the class boundaries: thus, achieving 100% accuracy is a problematic endeavor. Pre- 

viously, the best predictive accuracy obtained at the University of Wisconsin. Madison, is 

97% through the use of repeated ten-fold crossvalidntions [ WDBC.doc 1. 



5.3.2. / Fecrt~1re.s 

The thirty features of this dataset are computed from a digital image of a fine needle aspi- 

rate (FNA) of a breast mass [WDBC 1. "The ... limage analyzer [ ... computes values for each 

of ten characteristics of each nuclei. measuring size. shape and texture. The mean. standard 

error and extreme values of these features are compu~ed, resiilting in a total of 30 nuclear 

features for each sample." [WDBC; Mangasarian 1 

Figures 5. t and 5.2 show two examples of the images processed by the image analyzer and 

turned into records in the dataset. The features cornputed for each ce11 nucleus by the image 

analyzer are as follows: [WDBC.doc 1 

a > radius (mean of distances from center to points on the 
perimeter) 

b) texture (standard deviation of gray-scaIe values) 

c > perimeter 

smoothness (local variation in  radius lengths) 
-l 

f) compactness peritnerrr- 
( oreLi - 1.0 ) 

30) concavity (severity of concave portions of the con- 
tour 

h )  concave points (number of concave portions of the 
contour 

i )  symrnetry 

j) fractal dimension ("coastline approximation" - 1 ) 

When the mean, standard error, and extreme vaIues are added to these ten features for each 

cell, the result is the thirty features per saniple. 



Figure 5.1. Bcnign Brcast Mass [92-53 1 1 1 

Figure 5.2. iMrilignant Brcasl Mass (Croppcd) 19 1-569 L 1 



This thirîy-feature dataset was normalized - converted to values in the range 10,lJ -for use 

in this experiment. Furthermore. the benipn-mal ignant result was converted into two fea- 

tures per record. A 1 in one category indicated a malignant mass. while a 1 in the other cat- 

egory indicated a benign mass. A pair of ones or a pair of zeros is undefined. and indicates 

no classification. For the purposes of this experiment, the ID tag was dropped from the 

dataset: it has no bearing on the diagnosis. 

5.4 Methodoiogy 

In  order to assess the performance of the evolutionary system, a cornparison must be made 

to a known quantity. Since the goal of the system is to eliminate the need for humans in  the 

neural network design process. i t  seerns reasonable to compare the system's performance 

to that of hand-designed neural networks. To this end. several results were available. First. 

the results from the University of Wisconsin where the data was first used [Mangasarian 1. 

Second, two neuraI network designers (the author of this dissertation. and the main advisor) 

independently created networks i n  an attempt to determine the best possible rate of classi- 

fication. 

5.4.1 The TraidTest S trategy 

One of the most frequently used strategies in creating neural networks is the trainltest strat- 

egy. Because of the ever-present danger that a neural network will rnemorize a set of pat- 

terns rather than generalize them, the dataset is spIit into two portions. The network is 

trained on the first. but tested oii the second. Unfortunately, the choice of how many and 

which patterns to allocate to each set is something of a devil's alternative. AlIocating more 



patterns to the training set ensures that the network learns these patterns well. However. the 

testing data may therefore not be representative of the entire dataset. and the network may 

perform poorly on the test set. 

Consider. for example. tlie possibility of an entire class being inadvertently placed into only 

the testing set. The tnined networks will perform inordinately poorly on the training set. 

Conversely. one niight opt for adding more data to the test set. Unfortunately. this means 

that now the training set may not be representative. Thus. with either choice. there are risks. 

5.4.1. / k-jbki cross vctlidcrtioiz 

It is possible to estimate the maximum possible neural network performance by using k- 

fold cross validation. in this type of validation. the data is divided into k partitions. One par- 

tition is chosen to test. and the remainder to train. This data is used to train several net- 

works. whose performance is either averaged. or the best performer is chosen. Then. the 

process is repeated choosing a different partition as the test set. This is repeated for each of 

the k partitions. 

The average of the results is a good predictor of how well the system will perform. If this 

is done with a partition size of one pattern, that is k = n where n is the total nurnber of pat- 

terns. the average performance represents an approximation of the maximum possible per- 

formance obtainable with the neural network model. Clearly, this method is 

compiitationally very expensive. However. there is another problem with this technique: 

after tlie trials are complete and a number representing the projected system performance 

is obtained, there is no single 'best' network. That is to Say, while this technique is very 
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good at predicting theoretical network capabilities. it does not. upon completion, generate 

a usable network. Instead. such a network must be created from the knowledge garnered 

during the crossvalidation runs. By contrat. an evolutionary algorithm functions by main- 

taining a population of real solutions. As such. the €A can at any time. implementation per- 

mitting. produce n neural network of known. as opposed to theoretical. ability. 

5.4.1.2 Sqarclrirq the Vnlidntiotl o f r k  A~or i thn is  

For this experirnent, the focus is on the validation of the evoltitionary algorithm as a viable 

and effective method of desigriing neural networks. Therefore. using k-fold cross validation 

r p m  within the  system would incur needless computational expense. I nus, the experirnent 

involving the evolutionary system uses a straight Iioldoiit approach to testing. The holdout 

chosen for the aforementioned datîset is 500 training patterns. 69 test patterns. The results 

of the system on tliis dataset will be compared to networks drsigned by hand, as weil as to 

the best results obtained using leave-one-out cross validation. 

5.43 Training by hand 

When training networks by hand. varying numbers of hidderi units were eniployed with a 

wids variety in training epochs. The results were compared. and the best were selected. The 

performance measure used was the acciiracy on the test set, the classification rate, and the 

value cutoffs. o r  thresholds. These cutoffs are the values for which a network output is 

taken to mean 1,  O. or neither. Forall runs in this experirnent. numbers greater than 0.9 were 

taken to be 1, numbers less than 0.1 were taken to be 0, and numbers in between O. I and 

0.9 were taken to be neither. 



Using between 4 and 8 hidden units appeared to give the best resiilts. with some networks 

performing well with fewer or greater numbers of hidden units. The best networks classi- 

fied 98.559 of unseen data. These were rare. and iisually had around six hidden units. By 

far the most common 'best' result was 97.0588%. Again. it was apparent that provided the 

networks did not have so many hidden units that they niemorized the training data rather 

than learning the inherent patterns. a variety of networks with different niimbers of hidden 

units could potentially perform rvell. Thus, for this particular dataset. there is a range of 

possible nurnbers of hidden units that produce equally good results. The observed variabil- 

ity comes from the initiai weights of the network. 

5.3.3 N-fold Crossvalidation 

An independent test using n-fold crossvalidation. with n=569. showed that it definitely pos- 

sible to classify 98.55% of unseen data. This confirms the results obtained above by the 

Iiuman expert. That is. a human designing networks by hand was able to achieve the theo- 

retical maximum accoracy as determi ned by the n-fold crossval idation method [Scuse 1. 

Finnlly. it should be noted that 97.5% is the best figure obtained at the University of Wis- 

consin, where this data originated. 

5.5 Experiment 

After creating hand-trained networks to provide a basis for cornparison, the evoliitionary 

algorithm was then employed. First. some triai runs were carried out. The purpose of the 

trial runs was to determine the best combinations of features discussed in chnpter 4. Then 

long runs were performed ta determine the best results attainable with the combinations of 
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features determined in the previous step. This was necessary because testing every possible 

combinations of features would have been computationalfy prohibitive with short riins, let 

alone trying to do it with (ong runs. 

5.5.1 Setup 

To begin. small numbers of networks ivcre created and run for a small number of genera- 

tions. Once the system was determined to be perforrning correctly. twenty networks were 
C 

created by a network-generating function. These networks ranged in their number of hidden 

units from one to ten. with two networks of each. These networks were run for varying 

numbers of generations, starting with ten. but eventilally settling with fifty as a reasonable 

number of generations. As explained in chapter 4. and with the exception of PLLT. al1 

genetic operations were performed witli initial weights as opposed to  trained weights. 

Where PLLT \vas used, the parameters were 0.9 to 0.97. (That is, a uniform variate between 

0.9 and 0.97 was generated. If the current network's fitness was greater. the network was 

allowed to pass on its trained weights.) These networks gave rise to the following observa- 

tions. 

The training from section 5.4.2 indicated that five thousand to ten thousand epochs were 

more than sufficient to learn the data in most cases. Literature suggests that for evolutionary 

algorithms, using five to ten percent of the total required epochs seems to give the best per- 

formance [Caudi 1 1; Stork]. This information, combined with experirnentation. lead to the 

choice of 250 to 500 as the number of epochs per generation. 



Each of distributed learning and PLLT. gave some increase in performance. 

Using 250 (5% of 5000) epochs for every network (uniform learning). the networks 
failed to achieve even the 'easy' result of 97% accuracy on unseen data. 

With the exception of uniform learning. al1 of the aforernentioned were capable of find- 
ing the 'easy' answer. That is. 9 7 8  accuracy on unseen data. However. their abilities 
varied. 

Distri buted learni ng. using a uniform variate with a mean of 250 (from O to 500) for the 
nurnber of epochs. produced the 97% figure. but with 20 networks. th i s  resiilt appeared 
only once in 50 generations. 

Distributed learning with PLLT prodilced the 97% figure over 20 times in 50 genera- 

These results indicated that distributed learning with and without PLLT were the best per- 

formers. Thus, these two models were to be used for several extended r u s .  To accomplish 

this. the population size was increased to 100. This was accomplished by applying the same 

algorithm as before. only now there would be ten networks of each number of hidden units. 

Thus. the new population has many times the diversity of the previous test. With more start- 

ing positions, it was hypothesized that the distributed learning woiild be able to produce the 

97% figure. and possibly the 98% figure. I t  was also hypothesized that the distribiited 

PLLT algorirhm would be able to produce the sought-after 98% accuracy on new dara. The 

results follow. 

With 100 networks, the distributed learning produced networks achieving 97% accu- 
racy more than 20 times. especially in the latter part of the run. 

The distributed Iearning alone did not produce 98% accuracy. 

Using distributed PLLT, 97% accuracy was to be had anywhere from over 100 times to 
over 1000 times in the course of a run. It existed in each and every generation. 



Using distributed PLLT. 98% accuracy occurred anywhere from 2 through 8 times in a 
run. It was al  most always in the very late part of the run, if anyw here. it is important to 
note that the way the PLLT parameter was set, networks with this performance nlr~nys 
pass on their trained weights. 

Due to the probabilistic nature of evolutionary algorithm, it is riot surprising that once the 

98% figure appears. it does not always carry through to the next generation: the continued 

training, selection. mating. and mutation. are almost certain to evolve that set of weights 

into something different. Because of the delicate nature of backpropagation networks. this 

new network is not necessarily the equal of its parents. There are a number of possible ways 

of overcoming this shortcornint which will be discussed i n  chapter 6 .  

Another point that is of note is that the crossing over of trained weights did not cause an 

overabundance of poor networks. One might suspect that crossing weights of trained net- 

works woiild produce garbage more often than not. However. consider the following 

extract. Of a population of 100 networks. 69 passed on their trained weights. This means 

that their minimurn accuracy was 90%. Of the subsequent generation. 79 networks had a 

resdting fitness of grsater than 0.9. Seven networks had a fitness in the range 0.7 5 x < 0.8. 

one network had a fitness i n  the range 0.6 5 x < 0.7, seven networks hnd a fitness in the 

range 0.2 5 x < 0.3. and six had a fitness of O. With 69 networks using trained weights in 

this population, it would be expected that much more of the population would be poor per- 

formers. There are several explanations for this. First, the learning may completely correct 

for this. Second, networks which are approaching the same minimum in the solution space 

may be crossing over. thus helping each other to get closer to the minimum. Finally, it may 
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be that there is an abundance of networks al1 following the gradient descent algorithms to 

the same minimum, and as such they al1 reproduce amonsst theniselves. giving an errone- 

ous impression as to the true diversity of the population. This answer can be determined by 

testing the fitness of a population before training as well as after. If the rietworks have a 

uniform fitness distribution. then that will rule out the second possibility in favour of the 

first or last. The last possibility is the trickiest to weed out. It woiild require an algoritlm 

to compare the weights of several nerworks and. by calculating if they wçre within some 

tolerance of each other. determine if they belonged to the same local minimum on the solu- 

tion space. 

5.6 Conclusion 

To surnmarize. it does appear that distri buting the numbsr of learning epochs results in a 

higher occurrence of well-performing networks. This confirms the work of Keesing and 

Stork. The use of PLLT not only increases the number of good networks. but provides the 

impetus reqiiired to get the networks over the last obstacle to set the 98% theoretical max- 

i rnum acciiracy. 

The most success was had with the Probabilistic Larnarkian Learning Transfer method dis- 

cussed in  4.4.3. Note that this does not mean that the non-PLLT method of section 4.4.2 

was unsuccessful: rather, the PLLT method produced the best results more consistently and 

in greater number. 



Using a large population. over many generations, it has been established that the evolution- 

ary system can produce networks which correctly classify 98.55% of iinseen data. This is 

consistent with the best classification obtained to date on this ciataset. Further, the evolu- 

tionary system is able to obtain this result with relatively low cornputational expense on 

today's desktop hardware. (Runs of 100 networks for 50 generations took from 6 to 8 

hours). Finally. and most importantly, these results were achieved without the intervention 

or supervision of an expert. While numerous refinements can undoubtedly be made to this 

approach. this experiment has demonstrated that automatic generation of neural networks 

via evolutionary algorithms is capable of attaining the maximum accuracy on a particular 

dataset. It remains to be determineci as to whether the performance would be equally high 

on otlier datasets. However, while the generic applicability of a particular evolutionary 

systern recluires further testing, evolutionary algorithnts do indeed provide a viable and 

effective alternative to having experts design neural networks by hand. 



6.1 Summary 

6.1.1 S uccesses 

This study has developed a framework which alloivs for rhe automation of the neural net- 

work creation process. As demonstrated in cliapter 5. the system developed within this 

framework was successful in attaining the maximum accuracy on unseen data. Further. this 

result was reached in a rerisonable aniount of time on a common desktop computer system. 

The system was able to determine the best backpropagation architecture to use with regards 

to the number of hidden units. This ability opens new possibilities which will be discussed 

in  section 6.2. Of particular note are trvo novel approaches taken by this  systern: the mating 

of chromosomes of unequal length. and the use of a pseudo-Lamarkian process. dubbed 

PLLT. to enhance the performance of the algorithm. While these results are encouraging. 

there are. naturatly. several caveats to be considered. 

6.1.2 Caveats 

Like aiiy study. the successful results must be considered in light of their shortcornings. It 

is important to consider a few important points: the dataset. the Iimited flexibility. and other 

factors. 



6.1 -2.1 Dataset 

The system was tested. as described in chapter 5. with the Wisconsin Diagnostic Breast 

Cancer dataset. The creation of the system was not directly biased by the dataset. as the 

experirnenter was blind to the nature of the dataset. That is. the dataset was presented as 

raw data. and was not identified to the experirnenter until the experiment was cornplete. 

However. the fact remains that to date the system has only been tested on the WDBC 

dataset. To properly validate the ideas in this dissertation. funhei- testing on a variety of 

datasets w i I l  be necessary. 

6.1.2.2 Lirnitedjkibility 

The experirnent in chapter 5 was designed as a testbed for a number of evolutionary ideas. 

As such. the actual freedom of the systern was somewhat constrained: the evolutionary 

algorithm was free only to clioose the niimber of hidden units in the networks. It is felt that 

this is a significant achievement over previous methods which focus more on evolutionary 

algorithms as an optirnization method. However. this is only one step in the development 

of a general-purpose evolutionary systein. It is hypothesized that the system will work 

equally well when additional degrees of freedom are given it. For example. no impediments 

are known which would prevent the system from being able to choose the nurnber of layers 

in  addition to the number of networks (though this is unlikely to be beneficial as noted in 

4.3.1). or to create hierar~h~es of networks for use in gating or voting systerns. or even con- 

sider networks of several different types (for example. backpropagation, radial basis, and 

Hopfield networks) a11 in the sarne population. However. these facets remain to be tested. 

They will be discussed in sornewhat more depth in section 6.2. 



6.2 Future Work 

This thesis lias left open a plethora of avenues for future work. The most obvious of these 

will be detailed herein. 

6.2.1 Improved Implementation 

While an attempt was made to keep the systeni efficient. it is nearly always possible to do 

a better job. A more rigorous software design. with a focus on efficiency of the neural net- 

works and interaction between the evolutionary algorithm and the networks would oniy 

benefit the systeni. Possibly a Ianguage other that C++ is better suited to the problem. For- 

tran. for example. excels at mathematical catculation. and Pascal or Modula give a high 

degree of structure. While this is an incidental concern. not directly related to the ability of 

the system or the validity of the evolutionary framework, it should be a concern in  any seri- 

ous software implementation. 

6.2.2 Curved Fitness Functions 

It was rernarked i n  chapter 5 that even when an accuracy of 98% kvas achieved. it did not 

necessarily carry over to tlie next generation. Part of the reason behind this irritating behav- 

iour is that when the total and percent fitnesses are calculated. 98% does not achieve a mtrch 

bigger portion of the fitness space than 97%. Consider a population of 4 networks. three of 

which have a fitness of 0.97. and one of which has the sought-after 0.98 fitness. The total 

fitness for this population is 3.89. When it is time for the reproduction phase. the roulette 

wheel approach gives 24.94% of the wheel to each of the 0.97 networks. and only 25.19% 

to the one network with 98% accuracy. Clearly, this approach does not favour the 98% 



accuracy much over the 97% accuracy. If such accuracy is important to the application of 

the systern. either a different reproduction scheine or a different fitness function may be 

requi red. 

For example. the experiment in chapter 5 used 69 patterns in the test set. Thus. the rnaxi- 

murn nuniber of correct patterns is 69. The elusive 98% acccuracy figure corresponds to 68 

correct patterns. Now consider the equation 

where x is the number of test patterns correct for a network. This equation produces the 

graph in figure 6.1. By using the value of y for the fitness evaluation of a network success- 

fully classifyiiig x patterns. it is possible to make the change between 97% and 9 8 6  accu- 

racy non-linenr. To further adjust the curve. an exponent could be added to x. producing (+ 

This is one example of how the fitness function couid be tailored to produce a non-linear 

evaluation. Thus. the evolutionary system would perceive 98% to be significantly better 

than 97%. depending upon the tuning of the exponent n. 



1 Figure 6.1. Gnph of y = - 
69 - .r 

Naturally. it is important not to evaluate th i s  function for x=69 and n= l .  Using such a fit- 

ness function (69.5 or 70 in place of 69 are two examples of the possibilities) would help 

ensure that better networks always srirvived. 

6.2.3 Othcr Genetic Operators 

The exprriments perforrned to date have made use of the most basic genetic operators: 

reproduction. crossover. and mutation. There exist a variety of other operators: for exam- 

ple. double point crossover, sexual versus asexual reproduction. elitism. and so forth. Each 

of these methods has advantages and drawbacks. Any future work in this area should cer- 

tninly include some exploration of different genetic operators. 



6.2.4 Network Types 

For the experimental purposes of this thesis. it was explained that backpropagation net- 

works were chosen. It was further suggested that while the current system only selects dif- 

ferent nunibers of hidden units. there kvas no foreseeabIe reason why other attributes. such 

as the number of layers. might not also be selected. Indeed. taking this idea one step further. 

there is no reason to stick with a single type of network. 

Different neural network models learn in different ways. Radial basis networks employ a 

learning strategy that rxcels at learning local features of the solution set. Contnst this to 

the global approach of backpropagation. Other network rnodels have other strengths. There 

are several ways that additional network models could be added to the system. 

6.2.4. / Mivecl Popr{lrtiotr 

One possibility is to have a population consist of networks of several different types. 

Mating might be only among Iike members. or possibly even among unlike members 

(though this seems improbable). The evolutionary algoritlirns would search for the best net- 

works without regard to their type. merely their ability. 

6.2.4.2 Segregotecl Poprrlatiorz 

This method is similar to the above. but in this case the best networks from each type of 

network would be selected separately. thus enforcing a wider diversity of the population. 

6.2.4.3 Cooperc-rrive Poprhtiorz 

In this extension of the aforementioned methods the evolutionary a .Igorithm would be 

designed to take into account each network's unique abilities. Thus. 
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backpropagation network could do broad classification and a radial basis network subclas- 

sification might mise. This approach could give rise to the automatic generation of gating. 

voting. or hierarchical networks. 

6.2.5 Survivat Traits 

The next two possibilities lie in the area of rewarding or restricting certain actions based 

upon the fitness of individual networks. 

6.2.5.1 Prcverzr lizbreciciirrg 

Biologically speaking. inbreeding. the mating of closely related organisms. is considered 

harmful to the gene pool. This is because the practice amplifies poor traits without the pos- 

sibiiity of a corresponding introduction of new. possibiy superior traits. Thus. the gene pool 

is snid to stagnate. No resenrch appears to have been done iising the prevention of inbreed- 

ing as a means of promoting population diversity in an artificial evoli~tionary system. 

6.2.5.2 Age-carreirttxl Firness 

In the system as described in chapter 4. probabilistic Lamnrkian learning transfer is intro- 

duced as a way of introdiicing new genes into the gene pool. This practice. while referred 

to as Lamarkian. c m  also be viewed as a method of increasing the granularity of the aging 

process for the population members. That is. it gives certain msmbers of the population the 

ability to live longer than a single generation. As discussed in  section 4.4.4. this might 

include allowing the PLLT-generated chromosomes to pass directly into the next genera- 

tion. This idea coiiid be further exploited by correlating the fitness of an individual to its 

age. Thus. older individuals which had managed to survive longer would be considered to 



have better genes, and thus would rate a higher fitness. This idea in combination with that 

in 6.2.2 rnight produce some very interesting results. as it would overcome some of the 

main problems encountered in the design of this system: difficulty in keeping good net- 

works in the population. and difficulty in selecting marginally better networks for repro- 

duction due to the high fitness of the population. 

6.2.5.3 Dartrser Pcrrririorzing 

One of the tenets behind the use of distributed learning cycles was that in the biological 

world. every organism does not receive the sarne amount of learning. SimilarIy. in  the bio- 

logical realm. not every organism receives the same rypr of learning. An avenue for future 

exploration would be the partitioning of the dataset among the netrvorks of the population 

such that the networks each receive a different training set. A new partition would be gen- 

erated for each network in each generation. Testing would be performed on a partition that 

none of the networks had been trained on. Naturally. there are many possible permutations 

of this approach. For example, the ability to partition a dataset for distribution to the mem- 

bers of a neural network population could be of use in the creation of gating, voting. and 

hierarchical networks as discussed in section 6.2.4.3. The use of such partitioning methods 

cvould theoretically increase the diversity of the gene pool and result in more robust indi- 

viduals of higher fitness. 

6.3 Conclusion 

This dissertation has preseiited a framework to allow for the automatic creation of neural 

networks to solve a task. The implication of such a system is two-fold. By rernoving the 



requirernent that an expert design a neural system. the technology cornes within reach of a 

greater number of potential applications. Secondly. the divorcing of the expert frorn the 

drudgery of dny-to-day creation will allow for the sttidy of more interesting problems. 

The systern designed and presented herein successfully prodoced networks with the maxi- 

mum theoretical accuracy on previously unseen data. The benefiî is that i t  runs unattended 

as opposed to reqiiiring the constant attention of an expert. The system is by no means a 

finished product: many avenues are open for future exploration. It  is felt. however. that the 

basis of the underlying theories is promising, and that future work will result in  increasing 

flexible automated neural network design systerns. 

Once it is possible to generate neural networks in an accurate. automated fashion. problems 

involving more complex applications can bç considered. Network collaboration and sparse 

reinforcernent problems are two such areas. Indeed. the ability to generate neural networks 

for srnaII tasks will lead to their application in ever-larger tasks. The future holds the prom- 

ise of systems which c m  create hierarchical systems of networks working in concert. much 

as the biological brain. Within a few short years. the cornputetional power of cornputers 

will rival that of the human brain [Kurzweil1. AH that is required, then, is a system to orga- 

nize that power into an artificial intelligence. The twenty-first century holds great promise 

as the century that the Hoiy Grail of A l  may finally corne within our grasp. 
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Appendix A 

This appendix consists of a sample run output. 

A.1 Long run, full EA with PLLT 

This run has been truncated. Only the first five and final five generations are shown in the 

interests of space conservation. 

A.1.1 First Five Generations 

S a t  J u l  3 00:06:49 1999 

Random Seed: 6458 

5 6 9  p a t t e r n s ,  30 i n p u t s ,  and 2 o u t p u t s .  
Reading i n  ... 
F i n i s h e d  Reading.  

S p l i t t i n g  ... 
A l l o c a t i n g  
Copying t r a i n i n g  i n p u t  
a l l o c a t i n g  t r a i n i n g  o u t p u t  
Copying t r a i n i n g  t a r g e t  
Copying t e s t i n g  i n p u t  
a l l o c a t i n g  t e s t i n g  o u t p u t  
Copying t e s t i n g  t a r g e t  

S p l i t  off f i r s t  500 p a t t e r n s  t o  t r a i n ,  
6 9  t o  test. 

Seed i n  Netset: 8874 

F i n a l  Random Seed = 8974  

S t a r t i n g  r u n s  f o r  100  networks . 
5 0  g e n e r a t i o n s .  
250 epochs of t r a i n i n g  p e r  set. 

D i s t r i b u t e d  L e a r n i n g  
Continued l e a r n i n g  r ange :  0 . 9  t o  0 . 9 7  



Genera t ion  O 
Network : 

O 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1 
22 
23 
24 
25 
26 
27 
28 
29 
30 
3 1 
32 
33 
34 
35 
36 
37 
38 
39 
40 
4 1 
42 
43 
44 
45 
46 
47 
48 

Epochs : 
209 
202 
369 
242 
489 
469 





T o t a l  f i t n e s s :  66.913 

Real ave rage :  0,66913 

Miss-O avg: 0.916617 

s t a r t i n g  c o n t i n u a n c e  
end ing  c o n t i n u a n c e  
Cont inued  n e t s :  30 

Generation elapsed run t i m e :  449 s, or  7.48333 min. 
Genera t i on  1 
Network : F i t n e s s :  Epochs  : 

O 0,971014 202 
1 0.971014 243 
2 O. 246377 15 
3 O, 942029 211 
4 0,971014 395 
5 O 53 
6 0.913043 64 
7 0 -913043 234 
8 O. 927536 275 
9 O 157 
10 O . 927536 348 
11 O. 927536 147 
12 O. 956522 35 
13 0.710145 369 
14 O 11 
15 O. 927536 199 
16 0.913043 65 
17 0,898551 7 7 
18 O 282 
19 O ,927536 222 
20 O. 927536 7 1 
21 0 -956522 109 
22 O 17 7 
23 O 417 
24 0.971014 385 
25 0.971014 432 
26 O. 927536 28 0 
27 O. 942029 412 
28 0.217391 187 
29 0.927536 226 
30 0.927536 226 
3 1 O. 956522 4 9 7 
32 O. 927536 143 
33 0.927536 140 
34 O. 942029 234 





T o t a l  f i t n e s s :  72.8841 

Real a v e r a g e :  0.728841 

Miss-O avg:  0,911051 

s t a r t i n g  c o n t i n u a n c e  
e n d i n g  c o n t i n u a n c e  
Con t inued  n e t s  : 35 

G e n e r a t i o n  e l a p s e d  r u n  tirne: 477 s, o r  7.95 min. 
G e n e r a t i o n  2 
Network : Fitness : Epochs : 

O O, 942029 143 
1 0,710145 29 
2 0,246377 435 
3 0,971014 265 
4 O ,956522 492 
5 O 323 
6 O. 927536 294 
7 O. 942029 223 
8 O. 956522 173 
9 0.971014 35 
10 O. 956522 467 
11 0,956522 488 
12 O, 927536 328 
13 O. 956522 490 
14 0.971014 342 
15 O. 942029 466 
16 0.971014 380 
17 0.913043 47 
18 0.217391 114 
19 O 432 
20 O. 956522 460 





T o t a l  f i t n e s s :  76.4203 

R e a l  a v e r a g e :  0.764203 

Miss-O avg:  0.878394 

s t a r t i n g  c o n t i n u a n c e  
e n d i n g  c o n t i n u a n c e  
Con t inued  n e t s :  42 

G e n e r a t i o n  e l a p s e d  run tirne: 538 s, o r  8.96667 min. 
Generation 3 
Network : F i t n e s s  : Epochs : 

O 0,173913 450 
1 0,971014 444 
2 0.927536 324 
3 0.797101 206 
4 0.971014 214 
5 O. 942029 398 
6 0 -724638 418 





T o t a l  f i t n e s s :  72.4203 

Real  average: 0.724203 

Miss-O avg: O -872534 

s t a r t i n g  c o n t i n u a n c e  
ending  con t inuance  



C o n t i n u e d  n e t s :  43 

G e n e r a t i o n  e l a p s e d  r un  t h e :  5 7 3  s ,  o r  9 . 5 5  min. 
G e n e r a t i o n  4  
N e  twork : F i t n e s s  : Epochs : 

O O .  9 5 6 5 2 2  4  4 9  
1 0 . 9 4 2 0 2 9  2 9 1  
2  0 .971014  2 4 9  
3  0 . 9 5 6 5 2 2  4 8 3  
4 O 6 3  
5 0 .971014  1 2 9  
6  O 6 7  
7  0 .  2 4 6 3 7 7  1 7 8  
8  O .  9 5 6 5 2 2  3 9 3  
9  0 .971014  1 1 4  
1 0  O .  9 5 6 5 2 2  1 9 4  
1 L O 4  
1 2  0 . 9 7 1 0 1 4  314  
1 3  0 . 9 7 1 0 1 4  3 7 2  
1 4  0 .942029  400  
1 5  O .  6 9 5 6 5 2  2 0 9  
1 6  0 . 8 9 8 5 5 1  1 2 3  
17  0 , 9 7 1 0 1 4  1 9 7  
18 0 .231884  4 8 1  
19  O .  927536  4 2 0  
20 0 . 9 7 1 0 1 4  2 3 2  
2  1 0 .971014  1 5 8  
22  0 . 9 4 2 0 2 9  432 
2 3  0 .971014  4 6 2  
24 O , 9 2 7 5 3 6  9 4  
2 5  0 . 9 7 1 0 1 4  3 5 1  
26 0 . 9 7 1 0 1 4  2 6 5  
27  0 . 7 1 0 1 4 5  2 3 5  
28  0 . 2 1 7 3 9 1  1 2 9  
29  O .  927536  3 3 5  
3 0  0 - 9 1 3 0 4 3  8 9  
3 1 O .  942029  1 0 1  
3 2  O .  9 5 6 5 2 2  1 0 8  
3 3  0 . 2 4 6 3 7 7  60 
34 0 . 2 1 7 3 9 1  2 9 5  
3 5  O .  9 5 6 5 2 2  4 2 8  
36  0  . 9 2 7 5 3 6  2 4 2  
37  0 . 9 7 1 0 1 4  3 2 8  
3 8  O .  9 5 6 5 2 2  4 8 6  
3  9  0  - 9 5 6 5 2 2  230  
40 0 .971014  4  5 6 
4  1 O 8 7  
4 2  O 469  
4 3  0 .913043  5 8  





T o t a l  f i t n e s s :  74.5362 

Real ave rage :  0.745362 

Miss-O avg: 0.837486 

s t a r t i n g  c o n t i n u a n c e  
ending  c o n t i n u a n c e  
Continued n e t s :  43 

Genera t ion  e l a p s e d  run tirne: 525 s, or  8-75 min. 

A. 1.2 Finai Five Generations 

Genera t ion  45 
Network: F i t n e s s  : 

0.971014 
O 
0.971014 
0.927536 
O 
0.971014 
0.971014 
O. 942029 
0 -231884 
O. 956522 
O. 956522 
0 -942029 
O. 956522 
0.9S6S22 
O. 942029 
0.971014 
O. 956522 
O -956522 
O. 971014 
O .97lOl4 
0.9S6522 
0.971014 
0.956522 
0.971014 
0.971014 
O .97lOl4 

Epochs : 
311 
332 
321 
97 
137 
367 
211 
131 
258 
176 
89 
47 
27 
228 
23 
220 
434 
417 
85 
369 
324 
467 
449 
372 
389 
448 





T o t a l  f i t n e s s :  84.2464 

Real average: 0,842464 

M i s s - O  avg: 0.915721 

s t a r t i n g  con t inuance  
e n d i n g  con t inuance  
Cont inued  n e t s :  72 

G e n e r a t i o n  e l a p s e d  r u n  t i m e :  340 s, o r  5.66667 min. 
G e n e r a t i o n  46 
Network: F i t n e s s  : Epochs : 

O O ,246377 151 
1 O. 927536 313 
2 O. 971014 169 
3 O. 956522 440 
4 O. 942029 437 
5 O. 956522 183 
6 0.710145 202 
7 0.942029 158 
8 O. 956522 103 
9 O .942029 56 
10 0,971014 233 
11 0.927536 177 





T o t a l  fitness: 76.4638 

Real  average: 0.764638 

M i s s - O  avg: 0.859143 

s t a r t i n g  con t inuance  
ending c o n t i n u a n c e  
Continued n e t s :  60 

Genera t ion  elapsed run  tirne: 3 3 6  s, or  5.6 min. 



Generation 47 
Network: 

O 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2 1 
22 
23 
24 
25 
26 
27 
28 
29 
30 
3 1 
32 
33 
34 
35 
36 
37 
38 
39 
40 
4 1 
42 
43 
44 
45 
4 6 
47 
48 

Fitness : 
O .942O29 
0,971014 
0. 942029 
0.956522 
O. 666667 
0,956522 
O. 956522 
0.971014 
O. 246377 
0 ,956522 
O -942029 
O. 942029 
0.971014 
O. 942029 
O. 956522 
0.971014 
0.971014 
0.942029 
O. 956522 
0.956522 
0.971014 
0.942029 
O .956522 
0.927536 
O. 956522 
O 
0.971014 
O. 985507 
0.942029 
O. 956522 
0.942029 
O. 956522 
O 
0.971014 
O. 956522 
0.681159 
0.246377 
0.971014 
0.217391 
0.956522 
0.971014 
0.956522 
0.942029 
O .942O29 
0.956522 
0.971014 
0.971014 
0,971014 
O. 942029 

Epochs : 
157 
462 
432 
356 
42 
21 
29 1 
406 
7 
175 
137 
179 
9 
79 
4 
163 
389 
60 
82 
441 
14 
129 
472 
462 
334 
24 
317 
7 5 
208 
439 
4 1 
385 
111 
3 8 8 
183 
221 
89 
352 
5 3 
255 
58 
141 
205 
92 
317 
143 
452 
347 
373 





Total fitness: 82.3478 

Real average: 0 .823478 

Miss-O avg: O .  88546  

starting continuance 
ending continuance 
Continued nets: 64 

Generation elapsed run time: 336 s, or 5.6 min. 
Generation 48 
Network : Fitness : Epochs : 

O O .  956522  1 7 1  
1 O 14 
2 0.971014 294 
3  O. 956522  52 
4 0 - 9 2 7 5 3 6  222 
5  O .  956522  3  
6  0 .0434783 9  
7  O 3 8 1  
8  O 395 
9 0 .898551  63 
10 O 179 
11 0 .637681  4  7  
12  0 .971014 5 2  
13 0 .971014 432 
14 0 .971014 176 
15 O - 9 5 6 5 2 2  314 
16 O. 942029  2 4 1  
17  0 - 9 5 6 5 2 2  236 
18 O 272 
19  0 .971014 465 
20 0 .971014 72 
2  1 O .  956522  63 
22 0 .956522 265 
23 0 .971014 4 5 7  
24 0 .971014 468 
25 0 . 8 9 8 5 5 1  366 
26 0 .971014 454 
27 O.  956522  8 1 
28 0 .971014 448 
29 0 .942029 456 
30  0 .971014 35 
3  1 0 .217391  214 
32  0 .971014 3 9 1  
33 0 .971014 46 
34 O 193 





Total fitness: 78,3768 

Real average: 0.783768 

Miss-O avg: 0 -900883 

starting continuance 
ending continuance 
Continued nets: 69 

Generation elapsed run time: 321 s, or 5.35 min. 
Generation 49 
Network: Fitness : Epochs : 

O 0.971014 284 
1 0 - 927536 259 
2 0. 956522 218 
3 O 430 
4 O 16 
5 O 226 
6 0.971014 282 
7 O 208 
8 O. 956522 177 
9 0.971014 438 
10 O. 942029 178 
11 0.971014 229 
12 0.971014 241 
13 O. 927536 349 
14 O .927536 156 
15 0.971014 198 
16 0.971014 157 
17 0.246377 3 1 
18 O. 724638 179 
19 0.956522 478 
20 0.913043 97 





Total f i t n e s s  : 

R e a l  average : 

Miss-O avg: 

Total e l a p s e d  r u n  tirne: 21676 s, or 361.267 min. 



Appendix B 

This appendix contains the C++ code for the evolutionary and neural systems. 

B. 1 Neural Network Code 

finclude <string-h> //for memset 
#include "Debug-hW 

typedef double (*SimpActFunc)(const double in); 
typedef double * (BatchActFunc)(const double* in, const double* out); 

class NLayer 

public : 

//layex Constructor: 

NLayer(int numin, int numnodes, double wrange, double brange); 

//Set fuctions 
bool SetBatchActivation(doub1e * (*Batch)(const double* in, const 

double* out)); 
bool SetSimpleActivation(double (*Simple)(const double in)); 

inline const double *SetInput(double *in)(return (Input=in);) 
inline const double *SetOutput(double *out){return (Output=out);) 



inline bool OutputIsNull(){return (Output==NULL);) 
inline bool InputIsNull(){return (Input==NULL);) 
inline double *GetOutput ( ) {return Output; ) 
inline const double *GetInput(){return Input;) 
inline double **SetWeights(double** wts){return(~eights=wts);) 
inline const int NumNodes(){return outsize;) 
inline const int NumIn(){return insize;) 

inline double *GetET(){return ErrorTerrn;) 
inline const double SetETElement(int ir double towhat){return 

ErrorTerm[i)=towhat;) 

inline const double GetETElement(int x){return ErrorTerm[x];) 
inline const double GetOutElement(int i){return Output[i];) 
inline const double GetInElement(int i){return Input[i];) 

inline const double GetWeightElement(int ir int j){return 
Weights[i][j];) 

inline const double Set~eightElement( int i, int j ,  double x) {return 
Weights[i)[j]=x;) 

inline const double GetBiasElement(int i){return Bias[i];) 
inline const double Set~iasElement(int ir double x){return 

Bias[i]=x;) 

void pieceofship(){return;) 

//recurrent vectors must have an initial input. ( L a t e r )  

/ /Other 
double* Evaluate();//Evaluate input*weights, apply activation. 
double* BackPass(double*sourcer double* dest);//Take array pointed 

to by 
//double * and pass through 

weights . 
//MUST be the right size array. 

void DumpWeights(); 

private : 

int insize, outsize; 
const double *Input;//Allocated outside. We don't go 

/ /about modif ying our 
own inputs. 

double *Output;//Allocated outside 
double **Weights;//Allocated inside 
double *ErrorTerm;//Allocated inside 



double  * B i a s ; / / B i a s  texm a l l o c a t e d  i n s i d e  

/ ;Ac t iva t ion  mechanisms 
/ / A l 1  t h i s  a c t i v a t i o n  s t u f f  is e a s i l y  so lved .  L a y e r s  have ONE 

a c t i v a t i o n  
/ / f u n c t i o n ,  M u l t i p l e  l a y e r s  a t  t h e  same l e v e l  a r e  p o s s i b l e .  

T h a t  d e a l s  w i t h  
/ / e v e r y t h i n g ,  because  i n  a  f u l l y  connec ted  g r a p h ,  i t ' s  a l 1  

isomorphic anyway. 
/ / W e  w i l l  p r o v i d e  2 a c t i v a t i o n  f u n c t i o n s ,  A b a t c h  one  and a  

s i m p l e  one. E i t h e r  
/ / o r  b o t h  c a n  b e  used- 

/ / T h i s  i s  t h e  Batch A c t i v a t i o n .  I t  t a k e s  an a r z a y  o f  d o u b l e  
i n ,  a p o i n t e r  

/ / t o  s u f f i c i e n t  mernory, and r e t u r n s  a p o i n t e r  t o  t h a t  mernory 
t h a t  it " f i l l e d  i n "  

double* (*BatchActivation)(const d o u b l e *  i n ,  c o n s t  d o u b l e *  o u t ) ;  

/ / T h i s  i s  t h e  s i m p l e  A c t i v a t i o n .  It t a k e s  a d o u b l e  a n d  r e t u r n s  
a doub le  

double  (*SimpleActivation)(const d o u b l e  i n ) ;  

/ / I t  may a l s o  b e  b e n e f i c i a l  t o  add  one  which m o d i f i e s  i t s  
pa rama te r s .  

/ /Recurrence  mechanisms ( I g n o r e  f o r  now)  
bool  Done; 
i n t  RecurrenceCount ;  
i n t  Recur renceLimi t ;  
/ /Recurrence  t e s t  f u n c t i o n  he re :  tests whether  i t ' s  t i m e  t o  

t e r m i n a t e  a r e c u r r e n c e  

//If you want debug o u t p u t ,  #define VERBOSE-NN 
# i n c l u d e  "Debug. h " 

/ / # i n c l u d e  < s t r i n g * h >  / / f o r  memset 

class NeuralNet 
{ 

p r o t e c t e d :  



double **Input;//an array of input vectors; ie an array of 
double arrays- 

double **Output;//Array of output vectors 

double **Desired;//Array of Output Vectors 

double **layerVecs;//an array of double arrayç- 
//Each layer of the network 

points to the 
//memory "between" 
//allocate each one as output 

when we allocate each NLayer. 
//Thus, processing layer [O] 

outputs to layerVec[O], etc. 
//Obviously, there is one less 

of these than the number of 
//layers, as the last one 

points to output. 
//unnecessary: 
//layervecç[Sj is the "fan" ie 

puts input into everything- 

int numlayersizesSet;//~ow many layers are allocated with 
sizes 

int numLayers;//Number of layers in Network 
int numActivations ; 
int numpatterns; //Number of input Patterns to be processed, 
int whichPattern;//Input pattern currently being processed. 

int inVecSize;//number of elements in input vector. 
int outVecSize;//number of elements in output/desired vector. 

~~ayer**layers;//ptr to ptr so we can allocate one by one 

double weightRange;//note that these are not arrays of 
values, one 

double biasRange;//for each layer; they should be, but there 
is no 

//reason for this at this time. 

double lrate; //the learning rate; 

public : 
bool Run(boo1 output); //Produce Output to Input 

bool Run(boo1 output, double **in,//Produce Output to Input 
for 

double **out, int num);//given non-training array 



bool Evaluate(); //Evaluate a single pattern 
virtual bool Learn(int cycles) = O;//~earn Input 

//NeuralNet(int nlayers, int inputsize, int outputsize, int 
numpats, 

/ /  double **invecs, double**outvecs); 
NeuralNet(int nlayers, int nactivations, int inputsize, int 

outputsize, 
int numpats, double** invecs, double** 

outvecs, double** desvecs, 
double learn=.l); 

bool AllocateActivationList(int howMany); 

//The way Assign and Setsimple -Activation work is as follows. 
//Setsimple- is called to set the network's activation array 

to point to the 
//activation function- AssignActivation is used to associate 

an activation in 
//this master list (in the network) with a particular layer. 

The caveat to this 
//is IFF there is only one activation function for the 

network, 
//SetSimpleActivation will sense this and automatically fil1 

in al1 the layers, 
//precluding the need to cal1 AssignActivation. 
bool AssignActivation(int which, int layer); 

bool SetSimpleActivation(int which, SimpActFunc thefunc); 

bool SetLayerSize(int whichlayer, int layerin, int 
layernodes); 

bool Connect(int source, int destination); 
bool Connect(NLayer source, NLayer destination); 

bool SetLayerWeights(int thelayer, double** theweights); 

double GetLayerWeight(int thelayer, int i, int j) 
{return layers[thelayer]- 

>GetWeightElernent(i,j);} 

double SetLayerWeight(int thelayer, int i, int j, double 
value ) 



{return layers[theLayer]- 
>SetWeightElement(i,j,value);) 

void DumpNet() ; 
virtual void PrintStats(ostream& foo=cout); 
inline const int GetNuml;ayers(){return numlayers;} 
inline const int GetLayerSize(int which){return 

layers [which] ->NumNodes ( ) ; } 
inline const int GetLayerInSize(int which){return 

inline const double GetWeightRangeO {return weightRange;) 

//backprop.h 
#pragma once 

class BPNet: public NeuralNet 

private : 
static inline double Sigrnoid(const double in); 

public : 
BPNet(int nlayers, int* sizes, int insize, int outsize, int 

numpats, 
double** inv, double*" outv, double*" desv); 

bool Learn(int cycles); 
void PrintStats (ostream& f oc=cout ) ; 

//Layer Definitions 



NLayer::NLayer(int numin, int numnodes, double wrange, double brange) 

//Sets size, but leaves input and output to be connected. 
//Set up layer size 
insize = numin; 
outsize = numnodes; 
Input=NULL; 
Output=NULL; 

#if def VERBOSE-NN 
cout<<"Initial ranges; weights: "c<wrange<C" bias: 

"<<brangeccendlc<endl; 
#endif 

weights = new double*[insize];//DON'T FORGET TO RANDOMIZE!! 

//this is the random seed 1 used for testing with Dr. Scusets data 
//srand(1574); 

for(int i=O;i<insize;i++) 

Weights[i]=new double[outsize]; 
for(int j=O;j<outsize;j++) 

Weights[i][j]= (wrange- -wrange)*(double(rand())/ 
R A N D M A X ) +  -wrange; 

Bias=new double[outsize]; 
for(int i=O;i<outsize;i++) 

Bias[i]=(brange- -brange)*(double(rand())/RANDDMAX)+ - 
brange ; 

//Set activation functions to NULL 
BatchActivation=NU~L ; 
SirnpleActivation=NULL; 

NLayer : : -NLayer ( ) 
{ 

delete [ ] Bias ; 
for(int i=O;i<insize;i++) 

deletel] Weightsti]; 
delete[] Weights; 
delete[] E r r o r T e r m ;  



bool NLayer::SetBatchActivation(double * (*Batch)(const double* in, const 
double* out)) 
{ 

//Set up Batch Activation 

return ~atchActivation = Batch; 
k 

bool NLayer::SetSimpleActivation(double (*Simple)(const double in)) 
{ //why can ' t this be inline? 

//Set up Simple Activation 
return SimpleActivation = Simple; 

double* NLayer::Evaluate() 
{ 

//Outputs a pointer to the array we filled up, or NULL if 
//something went wrong (though the array may be fillud üp 
//anyway. it probably is. 

//We assume that the Output array is zeroed... who should do that? 
//We had better, because it has to be done every time. 
//This has been tested in the debugger; it works. 
memset((void*)Output,'\O', sizeof(double)*outsize); 

//Now, the way this works, is for every input value, ie position 
//on the input vector, if each is multiplied by every one of it's 
//associated weights, [i,j], and added to tne appropriate output 
//vector element, j . Thus, on each pass , with each subsequent input 
//vector, the outputs arc accumulated until i hits the top (insize) 
//and at that point they ' re al1 there. This was done this way because 
//The inputs are accessed over and over again, and this method 

groups 
//these accesses- The weights are accessed once each, so it doesn't 

matter. 
//However, each output vector element is accessed as many times as 

the 
//nuder of input elements. Thus, since writing is slower, this 

could 
//be a bottleneck in performance. To access the output vector 

elements 
//once each (at the cost of the input element optimization) we can 

swap 
//the two 'for' conditions. The rest stays the same. 

//Note: if we want to be really anal, we can determine which 
//will have the greater number of accesses, input or output, and 
/ / r u  the appropriate code. 



//Zero the output array with bzero or memzero or something. 

Output[j]+=Input[i] * Weights[i][j]+~ias[j];//Every 
Output is the 

if (~atch~ctivation) 
{ if (Output==BatchActivation(Output, Output)) 

return Output; 
1 

return Output; 
1 

double* NLayer::BackPass(double*source, doublekdest) 
{ 

//~he difference between this and Pass is that this function uses 
//insize and outsize for the bounds in the opposite way of pass. 
//source and dest are provided for convenience, and must be EXACTLY 
//the right size. that is, dest is of size insize and source is of 
//size outsize 
//returns a pointer to dest, 
//dest will be set to zero and rnodified. 

{ 
dest[i]+=source[j] * Weights[i][j];//~very Output is 

the 

return dest; 
1 

void NLayer::~ump~eights() 

C 
for (int i=0 ; icinsize; i++) 



#include "neural-h" 

/ /  
/ /  
/ /  NeurzlNet::NeuraiNet(int nlayers, int inputsize, int outputsize, int 
numpats, 

double **invecs, double**outvecs) 
{ 

//Allocate number of layers 
layers = new NLayer*[nlayers]; 
numlayers=nlayers ; 
numlayers izesSet=O ; 

//set al1 the layers to NULL 
for (int i=O;i<numLayers;i++) 

layers[i]=NULL; 

//now, allocate the memory between the layers. ie the containers 
layervecs = new double*[nlayers-11; 
//allocate the input container 

//no. point at Input as necessary. 
//layerVecs[O] = new double [inputSize]; 

numPatterns=numpats;//set the number of input/output patterns to 
process . 
/ / wnichPattern=O; //set which pattern we're currently processing. 
/ / 
/ /  Input=invecs; 
/ /  Output=outvecs; 
11 
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NeuralNet::NeuralNet(int nlayers, int nactivations, int inputSizef int 
outputsize, 

int numpats, double** invecs , 
double**outvecs , double** desvecs , 

double learn) 
{ 

//Set learning rate 
lrate=learn; 

//Allocate number of layers 
layers = new NLayer* [nlayers J ; 
numlayers=nlayers; 
numlayersizesSet=O; 
inVecSize=inputSize; 
outVecSize=outputSize; 

//Allocate number of activations 
ActRecord=new SimpActFunc[nactivations]; 

//set a i l  activations to NULL 
for(int i=O;i<nactivations;i++) 

ActRecord[i]=NULL; 

//set a l 1  the layers to NULL 
for (int i=O;i<numLayers;i++) 

layers[i]=NULL; 

//now, allocate the memory between the layers. ie the containers 
layervecs = new double*[nlayers-11; 
//allocate the input container 

//no. point at Input as necessary. 
//layerVecs[O] = new double [inputsize]; 

numPatterns=numpats;/lçet the number of input/output patterns to 
process . 

whichPattern=O; //set which pattern we're currently processing. 



//set default range values 
weightRange=l; 
biasRange=l; 

//Need a destructor!!!! 
Neura1Net::-NeuralNeto 

delete [ 3 ActRecord; 
for(int i=O;i<numLayers;i++) 

delete layers [il ; 
for(int i=O;i<(numl;ayers-1);itt) 

delete [ ] layervecs [ i ] ; 
delete[] layervecs; 
deletel] layers; 

//Later, we will need to differentiate between simple and batch 
activations. 
/ /  

bool NeuralNet::AllocateActivationList(int howMany) 

{ 
if (numLayersizesSet! =numLayers 

{ 
#ifde£ VERBOSE-NN 
coutc<"Size of Layer not allocated in 

NeuralNet::~~~ocateActivationLi~t''~~endl; 



#endif 
return f alse ; 

} 
//how many activation functions will we need? 
if (ActRecord!=NULL) //if it already exists 

delete [ JActRecord; //delete it 

numActivations=howMany; //allocate the new mernory 
return ActRecord=new SimpActFunc[howMany]; 

/ /  
.....As~i~~~~ti~~ti~~.-...............................-. ............... 
......... 

1 p r r r c r y e ~  ) bool NeuralNet::AssignActivation(int whichact, int whLbL'----- 

//This function assigns the layer layers[whichlayerj the activation 
//function found in ActRecord[whichact]. It returns an error for 

overflow etc, 

#ifdef VERBOSE-NN 
cout<<"Error - out of range layer or activation index 

return false; 

#if def VERBOSE-NN 
if (ActRecord[whichact]==NULL) 

cout<<"Warning - assigning nul1 function to layer 
"<<whichlayer<<endl; 

#endif 

//This could also be done as 
//layers[whichlayer].SetSimple~~tivation(~ct~ecord[~~hichact]); 
return true; 



bool NeuralNet::SetSimpleActivation(int which, SimpActFunc thefunc) 
{ 

//Set the activation of ActRecord[which] to thefunc 
if (!numActivations) //ie if it's zero 

C 
#ifde£ VERBOSE-rn 
cout<<"Error - no activation functions allocated in 

SetSimpleActivation''<~endl; 
#endif 
return false; 

} 

//if we're trying to se a function slot that doesn't exist 
if (which>=numActivations I I  whichC0) 
C 

#ifdef VERBOSE-NN 
cout<<"Error - Activation function siot is out of range 

inW<cendl; 
cout<<"NeuralNet::Set~imp~eActivation'~~~end~; 
#endif 
return false; 

//if we only have 1 activation function, set it for al1 the layers 
if (numActivations==l & &  which==O)//do a double check so we don't 

screw up 
for (int i=O;i<n&ayers;i++) 

AssignActivation(0,i); 

real bad programming practice. <grin> 
return true; 

/ / 
. . ..................................................................... 
. . . . . . . . .  

bool NeuralNet::SetLayerSize(int whichlayer, int layerin, int layernodes) 
C 

//whichlayer is the index of the layer we're setting, starting at 
zero 



//layerin is how many inputs, and layernodes is how many nodes. ie 
layerin 

//is the number of nodes in the previous layer. 
//maybe later 1'11 make it automatic : )  

//NLayer foo(layerin, layernodes); 

//first the debugging 
if (Input==NULL I I  O U ~ ~ U ~ = = N U L L ~  lwhichlayer>=numLayers) 
#if def VERBOSE-NN 

{ 
cout<CUError: Input and Output to Neural Network notl*<<endl; 
tout<<" allocated or Layer doesn' t exist in "ccendl; 
tout<<" NeuralNet : : S e t L a y e r S i z e 1 ' < C e n d l e n d l ;  

#endif 
return false; 

#ifdef VEFU3OSE-NN 
} 
#endif 

//now the important stuf f 

bool initialstatus=layers[whichlayer]; //use this to determine if 
we incrernent 

/ /  
numLayersizesSet 

bool toreturn; 

//Sets the size for a layer 

//if the allocation worked 

{ 
if(numLayersizesSetcnumT;ayers & &  !initialstatus) 

numlayersizesSet++; 
if (whichlayer==O) 

layers[whichlayer]-~SetInput(Input[whichPattern]); 

//Allocate the array to store this layer's output. There are 
layernodes 

//outputs, one for each neuron/node in the layer. 
//donnt do it if we're the last layer. 

if (whichlayer!=numLayers-l)//if it's not the last layer 



toreturn=layers[whichlayex]- 
>SetOutput(layerVecs[which1ayer] = 

new double[layernodes]); 

#if de£ VERBOSE-NN 
if (!toreturn)//if we pointed at a nul1 

{ 
cout<<"Warning: Pointing at Nul1 in 

NeuraiNet::SetLayerSizewc<endi; 
tout<<" While setting layer 

"<<whichlayer<<" - ' ' < < e n d l ;  

return toreturn; 

#ifdef VERBOSE-NN 
cout<<"Memory Allocation Failure 

NecralNet::SetLayerSize"<<endl; 
#endif 
return false; 

bool NeuralNet::Connect(int source, int destination) 
{ 

//Connect source layer to destination layer, ~xploit the fact that 
//we're a friend. 

//By convention, only connect destination to point to source. 
//that is, destination's input is source's output. 

//Assume source is allocated, otherwise return false 
if (layers[source]->OutputIsNull()) 

i 
cout<<"Warning: Pointing layer "<<destination<<"'s input to 

cout<<"layer "<<source<<"'s output, which is NULL."<<endl; 



//return layers[destination]-~SetInput(layers~urce]-~Output); 
return layers[destination]-~SetInput(1ayerVecs[source]~; 

//This will work only if we initialize to NULL in the constructor 
//for the layers. 

//we do this by passing NULL to Our layer constructors. 

bool NeuralNet::Connect(NLayer source, NLayer destination) 
{ 

return destination.SetInput(source.GetOutput()); 

/ /  
. ...................................................................... 

bool NeuralNet::TestConnections() 
{ 

//This function tests each layer to ensure that its input and output 
//are not NULL. It does not ensure that non-NULL values are valid 
bool retval=true; 

for (int i=O;i<numfatterns;i++) 
C 

if(layers[i]->InputIsNull()) 
cout<<"Input of layer "<ci<<" is NULL."<cendl; 

if(layers[i]->OutputIsNull()) 
cout<<"Output of layer "<Ci<<" is NULL."<<endl; 

retval=retvol&&(layers[i]->Getrnput() & &  layers[i]- 
>GetOutput()); 

} 

if (numLayersizesSet ! =nuiLayers ) 

C 
cout<<numLayers-numLayer~izesSet<<'~ of "<<numLayers<<" not 

set."<<endl; 
cout<<"Layer test returned "<<retval<<"."<<endl; 
return f alse ; 

} 



return retval; 

//Warning. The layer class asumes it owns its weights- It will 
//dispose of the memory passed it when the destructor is called, 
//either explicitly or implicitfy. This may cause a problem if 
//the weights are on the stack. 

//add error checking. 

return layers[thelayer]->SetWeights(theWeights); 

bool NeuralNet::Run(bool @utput) 
{//runs through and evaluates each pattern 

for (whichPattern=O;whichPattern~num~atterns;which~attern++) 
{//set which pattern 

layers[O]->SetInput(Input[whichPatter~);//st input layer 
to pattern 

layers[numlayers-l]-~SetOutput(Output[whichPattern]);//set 
output layer 

for(int i=O;i<numlayers;i++)//I could make this an inline 
f unction 

layers[i]->Evaluate(); 

1 



for (int i=O;i<num~atterns;i++) 

C 
for(int j=O;j<inVecSize;j++) 

printf("%l-3f ",Input[i][jJ); 
//cout<<Input[i][jJ<<" "; 

(-out<<"== " 0  

for(int j=O;j<outVecSize;j++) 
printf("81.3f ",Output[iJ[j]); 
/ /cout<<Output [ i ] [ j ] Cct' " ; 

cout<cendl; 
1 

cout<<endl; 
) / /output 

whichPattern=O;//reset for next time 
layers[Oj->SetInput(Input[whichPattern]);//set input layer to 

pattern 
layers[numl;ayers-l]-~SetOutput(Output[whchattern]);//set output 

1 ayer 

return true; 

bool NeuralNet::Run(bool output, double **in,double **out, int num) 
{ //Produce Output to Input for given non-training array 

//runs through and evaluates each pattern 
for (whichPattern=O;whichPattern~num;whichPattern++) 
{//set which pattern 

layers[O]->SetInput(in[whichPattern]);//set input layer to 
pattern 

layers[n~ayers-l]->SetO~tput[whichPattern]);//set 
output layer 

for(int i=O;i<numlayers;i++)//I could make this an inline 
f unction 

layers[i]->Evaluate(); 



coutcc" Out"<<endl; 

for ( int i=0 ; icnum; i++ ) 

whichPattern=O;//reset for next time 
layers[O]->SetInput(Input[whichPattern]);//set inp 

p a t t e r n  
lut la! 

layers[numlayers-l]-~SetOutput(Output[whch~attern);//set output 
layer 

return true; 

void NeuralNet::DumpNet() 

for(int i=O;i<numlayers;i++) 
{ 

cout<<"Layer "<<i<<endl; 
layers[ij->DumpWeights(); 
cout<<endl; 



//print 0ut:network 
/ /  
/ /  
/ /  
/ / 
/ / 
/ / 
with network 
/ /  

architecture 
numlayers 
units per layer 
? ? ? ?  

weight range 
bias range 
random seed --NO- external. Has nothing 

l e a r n i n g  rate 

/ /backprop, cc 
#include "backprop.hW 
#include <iomanip.h> 
#include <console-h> 
#include <Events.h>//this is for 'press s to Save' functionality- 
#indude <Sioux.h> 

BPNet::BPNet(int nlayers, int* sizes, int insize, int outsize, int 
numpats , 

double** inv, double** outv, double** desv): 
NeuralNet(nlayers,l,inçize, outsize, numpats,inv, 

outv, desv) 

//nlayers- number of processing layers 

B-2 1 



//insize- number of input items(1ength of an input vector) 
//outsize- number of output items 
//numpats- number of patterns (number of input and output vectors 
/ / inv - arcay of input vectors (size insize) 
//outv - array of output vectors (size outsize) 
/ /desv - array of desired vectors (size outsize) 

//backprop specific: 
//sizes -size of each processing layer 

int i; 

//set up the links. 
SetLayerSize(O,insize, sizes[O]);//set the first processing layer 

//to take 
insize inputs and have 

//sizes[O] 
neurons 

for (i=l;i<nlayers-l;i++)//for each layer 
SetLayerSize(i,sizes[i-l],sizes[ij); 

SetLayerSize(nlayers-L,sizeç[nlayers-2l,outsize);//set the last 
processing 

//layer to take sizes[nlayers-21 inputs and have 
outsize neurons. 

//we could work this into the previous loop, but let's 
do it this way- 

//that means that sizes can be one value short. let's 
Say it shouldn't 

//be; we always pass o. size for -EACH processing layer- 

//set activation, which should be a private member?? 
SetSimpleA~tivation(0~~igmoid); 

for (i=O;i<nlayers-l;i++)//~onnect up the layers 
Connect(i,i+l); 

.I 
return l.O/(l.O+exp(-in)); 

} 



bool BPNet::Learn(int cycles) 

{ 
int ncycles ; 

//overrides class lrate: 
//double lrate=O -1; 

int i,j,k,pattern;//counters 
double tss; 

EventRecord event; 

clock-t ptime, starttime; 
//cycles is number of times to cycle. 
starttime=clock(); 
ptime=clock()+l0*CL0CKSptime=clocko+l0*C10CKS_PERSEC;PERRSEC; 

char c; 
for(ncycles=0;ncycles~cycles;ncycles++)//for each cycle 

c=event.message&charCodeMask; 
//cout<<c<<endl; 
if(c=='s1) 

cout<<"I would Save here."<<endl; 
cout<<"Starting cycle "<<ncycles<<endl; 
coutcC" Estimate "; 
cout<<(cycles-ncycles)*(double((ptime- 

starttime)/CLOCKS-PER-sEc)/ncycles); 
coutcc" seconds rernaining."<<endl; 

)//else 

} 
ptime=clock()+lO*CLOCKS-PER-SEC; 

1 
if (ncycles%500==0) 

if (kbhit()) 



cout<<"Starting cycle "<<ncycles<<endl; 

#if def VERBOSE-BP 
tss=O; 

for(pattern=O; patterncnumpatterns; pattern++)//for each 
pattern 

#ifdef VERBOSE-BP 
tout<<" Evaluating Pattern "<<pattern<<endl; 
#endif 

layers[O]->SetInput(Input[pattern]);//set input layer 
to pattern 

layers[numT;ayers-l]-~SetOutput(~ut(Output[pattern]);//set 
output layer 

//evaluate the network, ie forward pass 
for(i=O;i<numlayers;i++) 

layers[i]->~valuate(); 

/ /now the backward pass , 

//cornpute output-layer error 
fifdef VERBOSE-BP 

tout<<" Computing output-layer errorwc<endl; 
fendif 
for (i=O;i~layers[nurnLayers-l]-~NumNodes();i++)//for 

each output neuron 

//The error term for the neuron is the difference 
between the output and 

//desired/target, ie the output of the layer's 
ith neuron - the desired 

//patternos ith member. 
//theNet.layers[numLayers-11->ErrorTerm[i]= 
/ / 

theNet-layers[numLayers-l]->OutCil 
/ i - 

theNet-Desired[pattern][i];//d=o-t 



//Multiply the difference by 1-0 ... 
layers[numLayers-lJ->SetETElernent(i,//d=(~-o)(t- 

//Multiply by O, ie the output 
layers[numlayers-11->SetETE1ement(ir//d=o(l- 

//if (/*((pattern==O)l ((pattern==3))&&*/((ncycles+l)%~00==0)) 
/ /  cout<C"Pattern "Ccpatterncc" Error: "<~layers[numLayers-11- 
>GetETElement(i)<<endl; 

)//output-layer error 

#ifdef VERBOSE-BP 
tout<<" Cornputing hidden layer errors"<<endl; 
#endif 
/ /now cornpute error for each hidden layer. This 

corresponds to any layer with 
//output, ie any and al1 layervecs except the last one. 

Do in reverse. 

for(i=numl;ayers-2;i>=O;i--)//for each hidden layer 

t 
#ifdef VERBOSE-BP 
tout<<" Layer "c<i<<endl; 
fendif 
//calculate the last layer's error*Wts and place 

in current layer ' s 

layers [ i+l ] ->BackPass ( Iayers [ i+l ] ->GetET ( ) 
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for(j=O;j<layers[i]->NumNodes();j++)//fo each 
neuron in the current 

C 
/ /  (ith) layer 

//Multiply error by 1 minus this layer's 
output ((1-h)WZd) 

>~etOutEïement(j)); 

>GetETEïernent(j)*temp); 

double temp=(l.O-layers[i]- 

//Multiply by this layes's output (h(l- 

) //for each neuron 

#if def VERBOSE-BP 
tout<<" Updating WeightsN<<endl; 
#endif 

//update al1 weights, starting w i t h  l a s t ,  working to 
f irst. 

//implement rnomentum here later. 
//update Bias too 
for(i=nurnLayers-l;i>=O;i--)//for each layer 

for(j=O;j<layers[i]->NumIn();j++) 
for(k=O;k<layers[i]->NumNodes();k++) 

C 
double temp2; 
if( (i-1)cO) 

temp2=Input[pattern][j]; 
else 

tempZ=layers[i]- 



//update Bias 

)//for each layer - weight update 

#ifde£ VEREOSE-BP 
coutc<" Completed ~eight UpdateW<<endl; 

for (i=O;i<layers[num~ayers-11->NumNodes();i++) 
tss+=layers[numLayer~-1]-~~et~~~1ernent(i)* 

layers [numlayers- 
11->GetETElement(i); 

#endif 

)//for pattern 
layers[O]->SetInput(Input[pattern]);//set input layer to 

pattern 
layers[numl;ayers-l]-~SetOutput(Output[pattern]);//setoutput 

layer 

//update tss 

/ / if ((ncycles+1)%100==0) 
/ /  { 
/ /  cout,setf(ios~base::fixed~iosibase::f1oatfie1d~; 
/ /  cout<<"TSS: "<<setprecision(20)<~tss<<end1; 
/ /  cout.setf(0, ios-base::floatfield); 
/ /  / / 
cout~~setiosflags(ios::fi~ed)~~setprecision(3O)~~tss~~endl; 
/ /  //cout<<setiosflags(ios::scientific); 
/ /  //printf ("%2-30f\nlI, tss) ; 
/ /  ) 

#ifdef V32RBOSE-BP 
tout<<" Completed patternN<<endl; 
#endif 

)//for cycles 
return false; 

) 

void BPNet::PrintStats(ostream& foo) 
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B.2 Evolutionary System and Supporting System Code 

B.Z. 1 genetich 

"backprop -hW 

const double MutationRate=.OOl; 
const double MutationRange = 1.0; 

typedef double Gene; 

typedef Gene* Chromosome; 

typedef Chromosome* Genome; 

typedef Genome* GenePool; 

Genome Encode(BPNet &theNet); 

GenePool EncodePopulation(BPNet** &theNets, int popsize); 

BPNetk* DecodePopulation(GenePool allGenes, int popSize, ostrearn& 
filerecord); 

bool Decode(BPNet &theNet, Genome theGenes); 

void DestroyPop(GenePoo1 prevgen, BPNet** &theNets, int popsize); 
void DestroyPop(GenePoo1 &prevgen, int* sizes, int popsize); 

bool Cross(Chromosome x, Chromosome y); 

bool Mate(Genome x, Genome y) ; 

inline voie Mutate(Chromosome x, Chromosome y); 

Genome CopyGenome(const Genome& src, BPNet* net); 

B.2.2 netparms.h 

//netparms.h 



//#pragrna once 
/ * 
#ifndef NETPARMS 
#define N E T P W S  
* /  

extern int numPats,numIn,numOut; 
extern int trainpats, testPats; 

extern double ** trainIn; 
extern double * *  trainout; 
extern double **  trainTarget; 

Genome Encode(BPNet &theNet) 
{ 

//encode each layer of the neural net into a 1-D  
//array of doubles. Return an array of those arrays. 

Genome retval; 
int size,i,j,which~ayer~genepoint; 
//double temp; 

for (i=O;i<theNet.GetNumLayers();it+) 
{ 

//let's store the size of the gene in the first (0th) elernent 



//ie, the first element of the array is a number which tells 
//how many -more numbers are in the array. Eg, the string 

//would be stored as "4abcdM, So to loop, we start at 1 and 
//go to <=4 

l 
//ok, because there's no way to know, I've decided to do this in 
//column-major order. That is, go down the columns first, and read 
//into the array. 

//the number of rows = the number of inputs to the layer. The 
//number of hidden units/outputs corresponds to the number of 
//columns 

//for each Layer 

for (whichLayer=O,genepoint=l; 
whichLayerctheNet.GetNumLayers(); 

which~ayer++,genepoint=l) 

{ 
//£or each column/node: 
£or(j=0;~<theNet.GetLayerSize(whichLayer);~++) 

C 
//for each row/input 

retval[whichLayer][genep~int~=theNet.GetLayerWeight(whichLayer,i~j); 
//retval[whichLayer][genepoint]=temp; 
//note: instead of genepoint 1 could use i + j + l  

} 

l 

return retval; 



GenePool ~ncodePopulation(BPNet** &theNets, int popSize) 

{ 

//This function takes an array of networks, and a population size 
and returns 

/ /its genepool 
GenePool genetics ; 

int i; 

for (i=O;i<popSize;i++) 
if (i==12) 

genetics[if=Encode(*theNets[i]); 
else 

genetics[i]=Encode(*theNets[i]); 

return ( genetics ) ; 

} 
/ /  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

/ /  
....-Decode--.....-..----....-...-.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
......... 
bool Decode(BPNet &theNet, Genome theGenes) 

{ 
int whichlayer, genepoint, i, j; 

for (whichLayer=O , genepoint=l ; 
whichLayer<the~et.GetNumLayers(); 

whichLayer++,genepoint=l) 
//for each column/node: 
for(j=O;j<the~et,GetLayerSize(which~ayer);~++) 

//for each row/input 

theNet.SetLayerWeight(whichLayer,i,j,theGenes[whichLayer][genepoint]); 
//1 could use SetWeights here, but then I'd have 

to delete the already 
//allocated memory, and it just seems kind of 

messy and Eoolish. 
return true; 

} 



BPNet** DecodePopulation(GenePool allGenes, int popsize, ostream& 
filerecord) 

{ 
BPNetf* retval; 
int layersizes[2]={lr2);//This array will be passed to the BP 

constructor- 
//Wetll change the 0th 

element every time. 
int i; 

//allocate the array of bpnet pointers 
retval=new BPNet*[popSize]; 

for ize; i++ ) 
t 

iayersizes[0]=allGenes[i][O][O]/30.0;//take the ith 
network ' s 

//first layer's size, and 

//divide by the number of inputs 

//to get the number of hidden units. 
retvalt i ] =new 

BPNet(2,layersizes,nmInrnumOut,trainPatsrtrainInrtrainOutr 
trainTarget); 

//set al1 the weights £rom the correct chromosome, 
Decode(*(retval[i]), allGenes[i]); 

//dump it. 
//filerecord<<"~etwork ll<<i<<endl; 
//retval[i]->~rint~tats(filerecord); 
/ /  f ilerecord<<endl; 

return retval; 

l 



int i, j; 

for  (i=O;i<popSize;i++) 

C 
for (j=O;j<theNets[i]->GetN~nLayers();j++) 

delete[] prevgen[i][j]; 

delete[] prevgen; 

int i, j; 

for (i=O;i<popSize;i++) 

{ 
for (j=O;j<sizes[i];j++) 

deletel] prevgen[i][j]; 

delete[] prevgen; 
prevgen=NULL; 



boo l  Cross(Chromosome x ,  Chromosome y )  

{ 
//New, s i n c e  chromosomes have t h e i r  s i z e  a s  t h e  0 t h  e l emen t ,  
/ / O U T  l i f e  is  made e a s i e r .  

/ / L e t ' s  d e c l a r e  a coup le  of p o i n t e r s  t o  make l i f e  easier. 

Chromosome s m a l l e r ,  b i g g e r ;  
i n t  c u t ,  i; 

double  temp; 

/ / F i r s t ,  de te rmine  which is smaller 
~ ~ ( ~ ~ o I < Y [ o I  
{ 

s m a l l e r = x ;  
b i g g e r = y  ; 

//now, g e n e r a t e  a c u t  p o i n t ,  which is  a number between 1 and 
Smal l e r [O]  

/ / D i s c r e e n  uni form = ( top+ l )* rand+bo t tom 

cut= f l o o r (  ( s m a l l e r [ O ] )  * ((double)rand()/RAND_MAX) + 1 ) ;  
//1 d e c i d e d  t h a t  s i n c e  same-size a r r a y s  can  c r o s s ,  1 want t o  

en f  o r c e  
/ / a t  l e a s t  one exchanged gene,  hence  sma l l e r [O]  i s  t h e  top. 

//now, t a k e  t h e  cut s t u f f  o u r  of t h e  b i g g e r ,  and p u t  it i n  temp. 
/ / S i m u l t a n e o u s l y  copy from s m a l l e r  t o  b i g g e r .  



return true; 

bool Mate(Genome x, Genome y )  

{ 
//this f u n c t i o n  will be changed depending on what type of mating we 

want 
//to do. For now, let's select which layer to cross over randomly. 

//We M a y  later want t o  consider inter-layer rnating, 

int which; 
double coin; 

//generate random [0,1] continuous 
coin=(double)rand()/RANDDMAX; 

return true; 

......... 
inline void Mutate(Chrornosome x, Chromosome y) 

/ /muta te  the two chromosomes based on Binomial Variate. 

int i; 



for (i=l;i<=x[O];i++) 
if((double)rand()/RANDDMAX~=MutationRate) 

x[i] = (MutationRange- -MutationRange)* 
(double(rand())/RANDDEIAX)+ - 

MutationRange; 

for (i=l;i<=y[O];i++) 
if((double)rand()/RAND-MAXc=MutationRate) 

y[i] = (MutationRange- -MutationRange)* 
(double(rand())/RANDW)+ - 

MutationRange; 

Genome CopyGenome(const Genome& src, BPNet* net) 

{ //passing pointer to bpnet, so no destructor called. 

//makes a copy of src 
Genome dest; 
int i; 

return dest; 

} 

B.2.4 main-cc 

#include <iostream> 
#include "backprop-h" 
#include "genetic . h W  
#include ctime.h> 
finclude <console.h> 



using namespace std;//introduces namespace std 

//Useful ~unctions 
void PrintBanner(ostream& out=cout); 
inline void NextDigit(ifstream& thestream); 
int EvaluateBinary (int &unclass, double tolerance, int numPats, int 
vecSize, 

double **Output, double **Target); 
double CalcTSS(int nurnPats, int vecSize, double **Output, double 
**Target ) ; 
void NetSet(BPNet** &array, int howmany, ofstream& filerecord); 

int numPats,numIn,numOut; 
int trainPats , testPats ; 

int layersizes[2]={4,2);//last one must equal numOut 

double ** inArray=NULL; 
double * * outArray=NULL ; 
double **  targetArray=NULL; 

double ** trainIn=NULL; 
double * *  trainOut=NULL; 
double * *  trainTarget=NULL; 

double **  testIn=NULL; 
double **  testOut=NULL; 
double **  testTarget=NULL; 

//misc control stuff 
unsigned int seed=6458; //1574 
int split=O; 
int epochsPerCycle=250; 
int nurnGens=50; 
int eachgen;//a counter 
ofstream out£  ile ( "neural. out ") ; 
bool continuance=true; 
int continuers; 
double contbot=.9; 
double conttop=.97; 

//population control 
int popSize=100; //size of population, ie number of networks 



//MUST BE EVEN NUMBER 
BPNet **~opulation;//The population, [Array of Networks] 

GenePool theGenes=NULL, newGenes=NULL;//array of genomes for each netork; 
int* genomeSize;//this array is to store the size of the genome, 

//ie how many chromosomes for a particular 
individual 

/ /  .....-..rnIN...............................-........ 

int main(int argc, char*argv[]) 
{ 

argc=ccommand(&argv); 
if (argcc2) 

return 1; 

int i; //a u s e f u l  counter that doesn't % ^ & *  up the debugger. 

//reading in data file 

if(!infile.is-open()) 

{ 
cout<<"error opening file."<<endl; 
return 1; 

//allocate array sizes, first dimension 



inArray=new double*[numPats]; 
outArray=new double* [nurnPats ] ; 
targetArray=new double*[n~atsj; 

//allocate pattern lengths, second dimension 
for ( i=O ; i<numPats ; i++) 

C 
inArray[i]=new double[numIn]; 

? 
for (i=O;i<numPats;i++) 

outArray[i]=new double[numOut]; 
for (i=O;i<numPâts;i++) 

targetArray[i]=new double[numOut]; 

for (i=O;icnum~ats;i++) 

l 
l 
cout<<"Finished Reading."c<endl~<endl; 

//finished reading in data file 

//do split of data file. 
if (split) 

//split them. . - 
tout<<" AllocatingW<<endl; 
//first allocate array sizes, first dimension 
trainIn=new double*[trainPats]; 
trainOut=new double*[trainPats]; 
trainTarget=new double*[trainPats]; 



//allocate pattern lengths and copy patterns 
coutc<" Copying training inputW<<endl; 
for (i=O;i<trainPats;i++) 
C 

trainIn[i]=new double[numln]; 
for(int j=O;j<numIn;j++) 

trainIn[i][j]=inArray[i][j]; 

tout<<" allocating training output"<<endl; 
for (i=O;i<trainPats;i++) 
{ 

trainOut[i]=new double[numOut]; 

1 
tout<<" Copying training targetW<<endl; 
for (i=O ; i<trainPats; i++) 
{ 

trainTarget[i]=new double[numOutJ; 
for(int j=O;j<numOut;j++) 

trainTarget[i][j]=targetA.rray[i]Cjl; 

) 
tout<<" Copying testing inputW<<endl; 
for (i=O;i<testPats;i++) 
{ 

testIn[i]=new double[numIn]; 
for(int j=O;j<numIn;j++) 

testIn[i][j]=inArray[i+trainPats][j]; 

1 
tout<<" allocating testing outputW<<endl; 
for (i=O;i<testPats;i++) 
{ 

testOut[i]=new double[nurnOut]; 

1 
cout<cW Copying testing targetW<<endl<<endl; 
for (i=O;i<testPats;i++) 

testTarget[i]=new double[numOut]; 
for(int j=O;j<numOut;j++) 

testTarget[i][j]=targetArray[i+trainPats][j]; 

cout<<"Split off first "<<split<cW patterns to train,"<<endl; 
coutc<num~ats-split<<" to test,\nW<<endl; 
outfile<c"Split off first "<csplit<<" patterns to 

train,"<<endl; 
outfile<<numPats-split<<" to test.\nn<<endl; 



int testcorrect, testclassified, testUnclassified; 
double* testFitList= new double[popSize];//array of fitnesses 
double testTotalFitness=O;//total fitness of test set. 
int nonzeros ; 

double roulette; 
double cumTotal;//cumulative total for roulette wheol. 

//Set up the networks 
NetSet(PopulationrpopSizeroutfile); 
t heGenes=EncodePopu la t ion (Popu la t ion ,popS ize ) ;  

coutc<"Starting runs for "<<popSize<<" networks."<cendl; 
cout<<numGensC<" generations."<<endl; 
cout<<epo~hsPerCycle~~~' epochs of training per set."<<endl<<endl; 
outfile<<endl<cendl; 
outfile<c"Starting runs for "<<popSize<<" networks."<<endl; 
outfilec<numGens<<" generations."<<endl; 
o u t f i l e ~ < e p o c h s P e r C y c I e ~ ~ ~ ~  epochs of training per 

set."<<endl<<endl; 

if (continuance) 

coutc<"Continued learning range: "cccontbot<<" to 
"<<conttop<<endl; 

outfile<<"Continued learning range: "<<contbot<c" to 
"<<conttop<<endl; 



cout~~"Network:\t"~~1*\tFitness:\tEpochs:"~~endl; 
outf i1e<cMNetwork: \t'l<<l'\t~itness : t ~ p o c h s  : "<<endl ; 

for (int whichnet=0;whichnet~popSize;whichnet++)//for each 
network 

{ 
epochsPerCycle=(500epochspercycle=o"(double(rand(O-OOO)*(d~ub1e(rand())/ 

RAND-MAX ) +O. O ; 

//Run the member on the training and test data. 
~opulation[whichnet]->Run(false, testIn, testout, 

//evaluate performance on the test set. 
testCorrect=EvaluateBinary(testUnclassified,~l, 

testPats,numOut,testOut, testTarget); 
testClassified=test~ats-testunclassified; 
testTotalFitness+=te~tFitLi~t[~hi~hnet]=testCorrect/ 

(doub1e)testPats; 

out£ ile<<"\t"<<whichnet<~~~\t\t\t~~c<test~it~ist [whichnet ]<<"\tl' ; 
if(testFitList[whichnet]==O) 

C 
cout<<"\t\tW ; 
outfile<<"\t\tU; 

1 
else 

nonzeroç++; 



)//for each network 

//ok, we've trained each network, and got the total fitness. 
Now we. . . 

//output total fitness: 
cout<<endl<<"Total fitness: "<<"\t"<<testTotalFitness<<endl; 
outfile<<endl<c"Total fitness: 

"~~'l\t"<<testTotalFitness~~endl; 
cout<<endl<<"Real average: "c<"\t"<CtestTotalFitness/ 

popSize<<endl; 
outfile<<endl<<"Real average: "<<"\t"<<testTota1Fitness/ 

popSizec<endl; 
cout<<endl<<"Miss-0 avg: "<<"\t"<<testTotalFitness/ 

nonzeros<<endl<<endl; 
outfile<<endl<<"Miss-O avg: "c<"\t"<<testTotalFitness/ 

nonzeros<<endlC<endl; 

if (eachgen+l==numGens) 
break; 

//allocate the new genes 

newGenes= new Genome[popSize] ; 
continuers=O; 
cout<<"starting continuance"<<endl; 
if(continuance) 
C 

continuers=O; 
for(i=O;i<popSize;i++)//for every memmber in the 

population 
{ //generate a continuous random nurnber £rom 

contbot to conttop 
roulette=(conttop-contbot)*(double(rand())/ 

RAND - MAX)+contbot; 

continue: 
//NOW, if our fitness is greater than that nuinber, 

if(roulette~test~itList[i]) 



wheel 
//For each member in the population member, spin the roulette 

//and place that member of the genePool into a new population. 

for(i=continuers;i<popSize;i++) 

C 
//Now we spin our roulette wheel. Generate a number f rom 

O to TotalFitness, 
//note that we have to be careful of the ends of the 

range. 
roulette=(testTotalFitness-O.O)*(double(~and())/ 

R A N D M A X ) +  0.0; 
cumTotal=O, 0 ; 
for(int k=O;k<popSize;k++)//for each net/pop mernber 
C 

>GetNumZlayers ( ) ; 
break; 

1 

>GetNumLayers(); 
break ; 

)//for i, each new pop member- 

//mate every pair, delete the old networks while we're about 
it. 

for ( i=0 ; icpopsize; i + = 2  ) 

C 
Mate(newGenes[i], newGenes[i+l]); 
delete Population[i]; 



delete[] Population; 

//create new networks 
Population=DecodePopulation(newGenesf popSizef outfile); 

//after cross over etc, delete theGenes before we delete the 
old networks. 

DestroyPop(theGenes,genomeSize,popSize); 
theGenes=newGenes; 
newGenes=NULL; 

cout<<endl; 
genEnd=clock(); 
genTime=(genEnd-genStart)/((double) CLOCKS-PER-SEC); 
cout cc end1 CC "Generation elapsed run tirne: " 

<< genTime<<" s, or " <<(double)(genTime/60.0)<<" 
min. "<c end1 ; 

outfile CC end1 << "Generation elapsed run time: " 
genTime<<" s, or " <<(double)(genTime/60.0)<<" 

min."<< endl; 

)//for each generation 

for(i=O;i<pop~ize;i++) 

{ 
outfile<c"Network "<<i<<endl; 
Population[i]->PrintStats(outfile); 
outf ileceendl; 

TEnd=clock(); 
TTime=(TEnd - TStart) / ((double) CLOCKS-PER-SEC); 

cout cc endl cc "Total elapsed run time: " 
c< TTime<<" s, or " <<(double)(~Tirne/60.0)<~ min-"<< endl; 



outfile << endl Cc "Total elapsed run time: " 
CC TTime<=" s, or " <<(double)(TTime/60.0)~c1' min."<< endl; 

outf ile-close ( ) ; 
return O; 

1 
/ /  
.................................. 

inline void NextDigit(ifstream& thestream) 

while (!isdigit(thestream-peek()) & &  thestream.peeki)!=EOF) 

int EvaluateBinary (int &unclassr double tolerance, int numPats, int 
vecSize, 

double **Output, double **Target) 

t 
//returns then nurnber of successful 
//classifications within tolerance 

bool good;//tells whether the current pattern is good or not. 

double up,down;//lower and upper bounds 

int numgood=O; 
unclass=O; //number unclassified; 
up=l.O-tolerance; 
down=O. O+tolerance; 

for (int i=O;i<numPats;i++)//for every pattern 
{ 

good=true; 



for (int j=O;j<vecSize;j++)//for each element of the current 

{ 

pattern 

if (Output[i][j]Cup & &  Output[i][j]>down) 

good=f alse ; 
unclass++; 
break; 

1 
if (Target[i][j]==l.O & &  Output[i][j]<down) 

C 
çood=false; 
break; 

if (Target[i][j]==O.O & &  Output[iJ[j]>up) 

good=false; 
break; 

} 
)//for each element 

if (good==true) //if we got here because the pattern was OK, 
numgood++; //increment the number of correct 

patterns. 

)//for each pattern 

return numgood; 

double CalcTSS(int numPats, int vecSize, double **Output, double **Target) 

{ 
int i, j; 
double tss=O; 
double TSS=O ; 
double out; 

for (i=O ; i CnumPats ; i++) //for each pattern 
for(j=O;j<vecSize;j+t) 

{ 
out=Output[i][j]; 
tss=Target[i][OJ-out;//t-O 



return TSS; 

t 
tirne-t thetime; 

out<<ctime(&thetime)C~endl; 
//Random Seed: 
out<<"Random Seed: "c<seed<<endl<<endl; 

int HU~[20~={1,1,2,2,3,3~4,4,5,5,6,6,7,7,8,8,9,9,10,10); 
//the number of hidden units in each of the networks. Later, 

t h i s  
//can be generated randomly. 

int layersizes[2]={1,2);//This array will be passed to the BP 
constructor. 

element every time. 
clock-t clockseed; 
unsigned int aseed; 

//We1ll change the 0th 
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//aseed=9040343; 
//aseed=7793; 
//aseed=24238324; 
cout<<"Seed in Netset: "<<aseed<<endlc<endl; 
filerecord<<"Seed in Netset: "<<aseed<cendl<<endl; 

for ( int i=0 ; ichowmany; i++ ) 
C 

filerecord<<"Network "<<i<<endl; 
filerecord<<"Seed = "<<aseed<<endl; 
srand(aseed++); 

//create the network-. 
//bad bad bad. I ' m  using globals. now I've put them in the 

netparms.h header. 
iayersizes[O]=~~s[i%20]; 
array[i]=new 

~P~et(2~~ayersizes,num1n~numOut,trainPats,trainIn,trainOut, 
trainTarget ) ; 

//dump it, 
array[i]->Print~tats(filerecord); 
filerecord<<endl; 

Eilerecord<<"Final Random Seed = "<<aseed<<endl<<endl; 
coutC<"Final Random Seed = "<<aseed<<endl<<endl; 
srand(aseed++); 

1 




