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ABSTRACT

In wireless communications, when available radio resources are insufficient com-

pared to the total demand from mobile nodes, the resources need to be allocated

among the nodes optimally. Game theory is a mathematical tool which can be ap-

plied for design, analysis, and optimization of multiple access and resource allocation

in wireless networks. We first present a noncooperative auction game model to solve

the bandwidth allocation problem for noncooperative channel access in a wireless

network. In this model, we assume that the mobile nodes have information about

other mobile nodes. Nash equilibrium is obtained as the solution of the auction game

which gives the bandwidth share for each group of nodes. To address the problem

of bandwidth sharing under unknown information about the opponent mobile nodes,

we further develop a Bayesian auction game model. Bayesian Nash equilibrium is

obtained as the solution of the auction game with incomplete information.

Next, we present a framework based on coalitional game for cooperative carry-and-

forward-based data delivery in a wireless network. Each mobile node helps others to

carry and then forward their data due to the limited coverage of wireless access points

and to improve the transmission delay performance. A coalitional game is proposed

to find a stable coalition structure for this cooperative data delivery. We next present

a coalitional game for carry-and-forward-based data delivery in a wireless network

under uncertainty. Each mobile node has incomplete information about types of

other mobile nodes. A static Bayesian coalitional game is formulated to investigate

how cooperative groups can be formed under the uncertainty of mobile nodes’ types.

Moreover, the static Bayesian game is extended to a dynamic Bayesian coalitional

game. In this dynamic game, each mobile node can update its beliefs about other

mobile nodes’ types when the coalitional game is played repeatedly. As the game

evolves, the payoff obtained from the Bayesian coalitional game can converge to the

payoff obtained from the coalitional game with complete information.

Finally, we summarize the contributions of this thesis and present future research

directions.
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Chapter 1

Introduction

Wireless communications and networking technology has become an important part

of our daily life. It provides flexibility in communications and improve productivity of

users. Nowadays, wireless devices such as laptops, smart phones have become essential

elements in our life to connect with people, exchange information, and enjoy different

infotainment services. In a wireless network, mobile users may have different quality-

of-service (QoS) requirements which need to be satisfied using the limited available

radio resources (e.g., radio bandwidth, transmission power). Also, due to the limited

coverage area of the wireless access points (depending on the location and mobility of

the users) and limited amount of radio resources, the wireless connectivity may not be

fully available for all the users throughout an entire service area. Therefore, the users

may have to share their connectivity with other users. Hence, resource allocation

mechanisms need to be optimized considering different performance measures for

the users, such as throughput, delay, and fairness. While throughput and delay

are measured from the individual node’s perspective, fairness is measured from the

network perspective. The network must be able to allocate the resources to all active

nodes in a fair manner.

Radio resources in a wireless network can be allocated to the users either in a

centralized fashion or a distributed fashion. With centralized resource allocation, a

centralized controller (e.g., a base station) collects information about the QoS re-

quirements of the mobile nodes and then allocates the network resources to the mo-

bile nodes accordingly. Although centralized radio resource allocation schemes can

achieve optimal network performance, they suffer from the computational complex-

ity, signaling overhead, and scalability problems since all the information of all the
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mobile nodes or users needs to be analyzed only at the centralized controller. Alter-

natively, since the decisions can be made locally without exchanging all information

among the nodes and the network controller, distributed resource allocation schemes

are more scalable, and are viable for networks without any centralized controller (e.g.,

an ad hoc network). Nevertheless, distributed resource allocation has to address the

incomplete information and uncertainty issues for decision making.

The mobile nodes sharing the limited radio resources in a wireless network may

have different behaviors. We can describe the mobile nodes’ behaviors using two main

scenarios. The first one is a scenario of group rationality in which all mobile nodes can

be cooperative to meet their social welfare requirements, i.e., achieve optimal network

performance. The second one is a scenario of self-interest in which the mobile nodes

are noncooperative and compete with each other for the radio resources. These two

types of scenarios can be modeled as games. Game theory has become a very useful

mathematical tool to model and analyze multiple access schemes in wireless networks,

and to obtain solutions for resource allocation, channel assignment, power control,

and cooperation enforcement among the nodes.

Game theory is a branch of applied mathematics which is concerned with how

rational entities make decisions in a situation of conflict [1]. It provides a rich set of

mathematical tools to model and analyze interactions among the rational entities, and

the rationality is based on gains or payoffs perceived by these entities. Game theory

has been primarily used in Economics. It has also been used in other disciplines such

as Biology, Political Science, Engineering, and Philosophy. One of the major areas

in Engineering where game theory has been used is data communication networking.

In particular, it has been used to model and analyze routing and resource allocation

problems in a competitive environment, and more recently to model security problems

in wireless networks. Applicability of game theory tools to analyze power control,

waveform adaptation, medium access, routing, and node participation was discussed

in [2] from a layered perspective.

In this research, we address the problem of designing distributed multiple access

and resource allocation methods for wireless networks using game theory. Game

theory can model a multi-player decision making process and analyze how players

interact with each other during the process. There can be different solution concepts
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for a game. Most of the solution concepts deal with finding an equilibrium point.

The well-known equilibrium concepts are Nash equilibrium and Pareto efficiency [1].

A player will receive an optimal or fair payoff given other players’ strategies if the

equilibrium point is reached.

1.1 Overview of Multiple Access and Resource Al-

location

In this section, the general concepts of channel access and resource allocation and

performance issues related to multiple access design in wireless networks are discussed.

1.1.1 General Concepts

Channel access methods in wireless networks can be divided into two main groups,

namely, contention-free channel access and contention-based random channel access

schemes. In contention-free schemes, multiple nodes are allocated with the radio

resources (e.g., time slot, channel, and code) by a central entity and the nodes use the

allocated resources for data transmission [3]. Contention-free channel access can be

used in time-division, frequency-division, and code-division multiple access networks.

• Time-division multiple access (TDMA): In TDMA, time is divided into fixed-

length frames and each frame is divided into multiple time slots. Time slots

are allocated to the nodes for data transmission. In TDMA, synchronization

among the nodes is required to avoid interference [4].

• Frequency-division multiple access (FDMA): In FDMA, radio frequency band

is divided into multiple channels. The channels are allocated to the nodes for

data transmission. Orthogonal frequency-division multiple access (OFDMA)

is an improved version of FDMA which is based on the orthogonal frequency-

division multiplexing (OFDM) modulation in the physical layer. In OFDMA,

frequency band is divided into multiple subcarriers which are shared among the

nodes. OFDMA is used in the IEEE 802.16-based WiMAX networks [5].

• Code-division multiple access (CDMA): In CDMA, multiple nodes can transmit

data on the same channel simultaneously. The transmitted data by each node is
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encoded by using a unique spreading code. The spreading codes for the different

users are orthogonal/near-orthogonal to each other. The receiver of each node

can decode the original data correctly if the signal-to-interference-plus-noise

ratio (SINR) is maintained above a threshold.

For contention-based random access schemes, a node has to compete with other

nodes to transmit data over the wireless channel. A packet transmitted by a node

will be received successfully if there is no collision. A collision occurs when multiple

nodes transmit data simultaneously and the SINR at the receiver is lower than the

minimum SINR required to decode the original packet correctly. If collision occurs,

a node may attempt to retransmit the packet, and the specifics of the retransmission

method depend on the protocol used. The most common contention-based channel

access schemes are as follows [6]:

• ALOHA: In ALOHA, if a node has a packet to send, it will attempt to transmit

the packet immediately. If the packet collides with packets from other nodes,

the node will retransmit the packet later. The ALOHA protocol can be oper-

ated in a slotted fashion, in which case, time is divided into slots, and packet

transmissions are aligned with the time slots.

• Carrier sense multiple access (CSMA): CSMA is a probabilistic medium access

method in which a node senses the status of the channel before attempting

transmission. If the channel is idle, the node initiates a transmission attempt.

If the transmission is unsuccessful due to a collision, the node waits for a packet

retransmission interval and transmits again. Two of the improved variants

of CSMA are CSMA with collision detection (CSMA/CD) and CSMA with

collision avoidance (CSMA/CA). In CSMA/CD, assuming that a node is able to

detect a collision, a transmission is terminated as soon as a collision is detected.

The collision can be avoided by expanding the retransmission interval (i.e.,

backoff period) for the node to wait before a new transmission. In CSMA/CA,

if the channel is sensed busy before transmission, to decrease the probability

of collisions on the channel, transmission is postponed for a random backoff

period of time between 1 and CW where CW is contention window in units of

slot time.
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1.1.2 Performance Issues in Multiple Access and Resource

Allocation for Wireless Networks

The key requirements for the design and optimization of multiple channel access and

resource allocation schemes for wireless networks are as follows [7]:

• Maximize network throughput: Throughput refers to the amount of data suc-

cessfully transmitted by the nodes over a time period. Maximizing the overall

system throughput is a key objective of most of the multiple access schemes.

This in turn improves the spectrum efficiency in wireless networks.

• Minimize delay: Delay refers to the time required for a packet to be transmitted

successfully since it has been received at the transmission buffer from the upper

layer. Delay is a key performance metric for real-time traffic (e.g., voice and

video). Multiple channel access schemes for such traffic have to minimize delay.

• Guarantee fairness: Fairness is a measure of whether the nodes are receiving an

equal (or fair) share of radio resources. Multiple channel access schemes must

guarantee a certain level of fairness to all nodes in the network.

• Improve power efficiency: Power efficiency is an important performance metric

for battery-powered wireless nodes. There is a tradeoff between power efficiency

and network performance. To reduce power consumption, a node can be put in

standby mode during which the node cannot transmit and/or receive packets.

Consequently, the throughput reduces.

1.1.3 Multiple Access and Resource Allocation Under Un-

certainty

In a wireless and mobile communications environment, uncertain or unknown network

parameters, which are involved in distributed resource allocation, include channel

state information, number of competing mobile nodes, bandwidth and QoS require-

ments of the mobile nodes, and mobility patterns. The parameters are uncertain

or unknown due to the lack of any information collector, and/or selfish behavior of

the mobile nodes, and/or the random nature of the system. As an example, consider

the uplink transmission scenario in a cellular wireless system in a fading environment,
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where multiple mobile nodes transmit in the uplink direction to the same base station

simultaneously. The objective of each mobile node is to maximize its transmission

rate subject to the power constraint. However, information of other nodes (e.g., num-

ber of mobile nodes competing for the resources, channel quality, QoS requirements,

and mobility patterns) is private. Therefore, to achieve the optimal or nearly optimal

solution of the resource allocation, the values of unknown or uncertain parameters

have to be estimated. Different mathematical and statistical techniques can be used

to estimate the values of unknown system parameters, and subsequently, decisions

can be made in a distributed manner.

1.2 Game Theory for Multiple Access and Resource

Allocation

The notion of multiple access game can be illustrated by the following example [8, 9].

Suppose that there are two mobile nodes tx1 and tx2 who want to access a shared

wireless channel to send information to the corresponding receivers rcvr1 and rcvr2.

Both the receivers are within the transmission range of both the transmitters. Each

transmitter has one packet to transmit in each time step and it can either choose

to transmit during a time step or wait. If tx1 transmits, the packet is successfully

transmitted if tx2 chooses not to transmit during that time step (and hence there

is no collision). For successful packet transmission, tx1 obtains a benefit while its

transmit power is considered as the cost of this transmission. It is of interest to

analyze the interactions between the transmitters under different network settings

and performance objectives.

Different game models (e.g., noncooperative/cooperative, static/dynamic, and

complete/incomplete information games) have been developed to study the behavior

of transmitting nodes to access the wireless channel(s) and obtain the multiple access

solution (or equilibrium) [8, 10]. Various game models are considered under differ-

ent scenarios, perspectives, or assumptions on transmitting nodes’ behavior. Never-

theless, the common aim of these models is to improve network performance (e.g.,

throughput maximization, resource consumption minimization, and QoS guarantee)

given self-interest or group-rationality of transmitting nodes.
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The motivations of using game models for design, analysis, and optimization of

multiple access and resource allocation in wireless networks are as follows:

• Theoretical foundation for multiple access schemes: Game theory, which is most

notably used in Economics, usually considers a multiplayer decision problem. A

success or benefit of an individual in making decisions depends on the decisions

of others. Game theory provides a theoretical basis to analyze interactions

in multiplayer systems including human as well as non-human players (e.g.,

computers, animals, and plants) [11]. Therefore, it can be applied to a wireless

communication network in the context of resource sharing where the players are

the nodes (e.g., mobile stations, base stations, access points) in the network.

Cooperation or competition among mobile nodes for channel access in a wireless

network is a multiplayer decision problem that can be modeled as a game. The

benefit of a node as a result of its chosen action (i.e., strategy or move) can

be measured in terms of performance metrics such as throughput or delay.

An equilibrium solution of the game model defines the actions of the different

nodes (e.g., transmission power) for which the chosen performance objective is

optimized.

• Modeling selfish/malicious behavior of nodes: The transmitting nodes in a wire-

less network may behave selfishly in order to reap performance advantage over

other nodes, as a result of which the overall network performance may degrade.

To make the network robust against the selfish behaviors (or attacks) by these

malicious nodes, efficient defense mechanisms have to be built into the system.

Game theory can be used to model and analyze the selfish behavior of nodes and

design the defense mechanisms for robust multiple access in wireless networks.

• Distributed protocols: In many scenarios, wireless nodes make their decisions

in an individual (or distributed) manner rather than in a centralized manner.

Then, game theory, which is a suitable tool to optimize wireless access distribu-

tively [12], can be used to solve problems of individual decision making. In a

centralized scheme, solving the problem of multiple access may become compu-

tationally expensive when the network size increases. Also, the network control

overhead could be prohibitive. In contrast, efficient distributed algorithms can

be designed based on game theory which can reduce the communication and
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computation overhead significantly. Therefore, game theory is a useful tool to

develop efficient distributed protocols for wireless networks. With an appro-

priate game formulation, cross-layer optimization can be also performed in a

distributed way.

• Mechanism design: The parameters of a game can be designed (or varied) such

that it leads the independent and self-interested wireless nodes toward a system-

wide desirable outcome. Pricing is one technique that can be used for such

mechanism design (or incentive scheme) to regulate the usage of radio resources

by the wireless nodes.

1.3 Objectives and Scope of this Research

The primary objective of this research is to develop and analyze game theoretic mod-

els for multiple access and resource allocation in wireless networks. We consider both

noncooperative and cooperative scenarios where rational mobile nodes share the lim-

ited radio resources in a wireless network. We aim at

(i) designing, analyzing, and solving the problem of multiple access and resource

allocation among rational mobile nodes in wireless communications networks

using game theoretic models,

(ii) considering both noncooperative and cooperative game models for different sce-

narios of multiple access and resource allocation problems,

(iii) considering uncertainty in system parameters while performing resource alloca-

tion,

(iv) developing decentralized algorithms to optimize resource allocation in multi-

access wireless networks based on the theoretical basis of game theory.

We primarily focus on modeling, analysis, and simulation of the game theoretic

models. We consider realistic system parameters to define the utility and cost func-

tions for the players in the game models. The developed game models are evaluated

considering practical application scenarios such as vehicle-to-roadside communica-

tions in a vehicular network. The research thus contributes to the field of applied

game theory as well as the field of wireless communications systems design.
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1.4 Organization of the Thesis

In this thesis, we focus on two main scenarios in multiple access and resource alloca-

tion for wireless networks as follows:

• Single-hop transmission: a mobile node can be directly connected to a base

station/access point. Then, when several mobile nodes are connected to the

wireless access point at the same time, the bandwidth allocation problem in

the multi-access wireless network happens. The bandwidth of the link to the

wireless access point has to be shared among these mobile nodes. Then, each

mobile node competes with others to obtain an amount of bandwidth when

the total demand of the bandwidth is greater than its available quantity. This

scenario will be considered in Chapter 3 and Chapter 4.

• Multi-hop transmission: a base station has packets to transmit to a mobile

node. However, this mobile node may not be in the transmission range of the

base station. Then, other mobile nodes can help store and forward packets

to the mobile node. This problem is related to the concept of delay-tolerant

networks. When the mobile nodes encounter each other, they can then connect

and forward packets. Then, a cooperative game can analyze the behavior of

mobile nodes which helps each other to forward data packets based on their

individual selfishness. This scenario will be considered in Chapter 5 and Chapter

6.

Motivated by these two key problems, we propose noncooperative and cooper-

ative game-theoretic models. Moreover, we consider the game models with either

complete or incomplete information (i.e., uncertain parameters) while we are solving

the problems. The organization of this thesis is shown as follows.

In Chapter 2, we provide an overview of different game theoretic models and their

applications.

In Chapter 3, we deal with the bandwidth allocation problem in a multi-access

wireless network where several mobile nodes are connected to a wireless access point

at the same time, and the bandwidth of the link to the wireless access point has to be

shared among these mobile nodes. We propose a noncooperative auction game model,

where mobile nodes in a neighborhood (e.g., users in a vehicle) form a group. In order
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to obtain its required amount of bandwidth, each group has to compete with other

groups by offering bid prices to the wireless access point. Each group of mobile nodes

tries to maximize its payoff which is calculated by the allocated amount of bandwidth

and the price to be paid for bandwidth sharing. The bandwidth allocation to all the

groups is performed by the wireless access point using a fair allocation strategy. Based

on the solution of the game model, we present a distributed iterative algorithm to

solve the bandwidth allocation problem. Then, the Nash equilibrium [1] (i.e., bid

prices and corresponding allocated bandwidth), which is the solution of the proposed

game model, is obtained.

In Chapter 4, we also deal with the bandwidth allocation problem in a multi-access

wireless network. However, in this case, we consider the case that information of a

mobile node is not known completely by other nodes. That is, individual wireless

nodes have to make a decision without having complete information about the other

nodes (e.g., speed of movement, bandwidth demand) in the network. Our objective

is to analyze a conflicting situation among multiple mobile nodes competing for the

shared bandwidth from a wireless access point in its coverage area. The mobility and

application QoS parameters of the mobile nodes are considered to obtain the required

amount of bandwidth for a mobile node. A noncooperative game model with incom-

plete information, namely, a Bayesian game model is developed to solve the problem.

The Bayesian Nash equilibrium [1], which is the solution of the proposed game model,

is then compared to the Nash equilibrium solution with incomplete information. Also,

a distributed algorithm is presented that achieves the solution. An example scenario

of this game model is presented for vehicle-to-roadside communications in a public

transportation system.

In Chapter 5, we deal with cooperative channel access problem in downlink data

transmission from a wireless access point to mobile nodes. Wireless access points act

as gateways between mobile nodes and other terrestrial networks such as the Internet

for data transfer. Some mobile applications and services such as safety and emergency,

infotainment, and real-time traffic applications require short communication time.

For these applications, mobile nodes may be able to receive information in a timely

manner if they are connected to the wireless access points. However, the transmission

range of the wireless access points is limited, and the data from an wireless access
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point cannot be transferred to the mobile nodes outside its transmission range. A

wireless access point can transfer data to mobile nodes in its transmission range

only. Once these mobile nodes carrying data move and meet other mobile nodes

(i.e., destination mobile nodes) outside the transmission range of the wireless access

point, the data is forwarded to the destination mobile nodes. This carry-and-forward-

based cooperative data delivery is useful for various mobile applications (e.g., vehicle

safety and infotainment applications). We develop such a carry-and-forward-based

cooperative data delivery scheme. To study the behavior of the proposed scheme, a

social network analysis (SNA)-based approach and a cooperative game model (which

is a combination of a coalition formation game and a Nash bargaining game) are used.

A Nash-stable coalitional structure, which is a solution of the coalitional game that no

mobile node has an incentive to move from its coalition to another coalition, is then

obtained. A comprehensive performance evaluation is carried out for the proposed

framework.

In Chapter 6, we deal with cooperative channel access problem under uncertainty

in downlink data transmission from a wireless access point to mobile nodes. Cooper-

ative packet delivery can improve the data delivery performance in wireless networks

by exploiting the mobility of the nodes, especially in networks with intermittent con-

nectivity, high delay and error rates such as wireless mobile delay-tolerant networks

(DTNs). For such a network, we study the problem of rational coalition formation

among mobile nodes to cooperatively deliver packets to other mobile nodes in a coali-

tion. Such coalitions are formed by mobile nodes which can be either well-behaved

or misbehaving in the sense that the well-behaved nodes always help each other for

packet delivery, while the misbehaving nodes act selfishly and may not help the other

nodes. A Bayesian coalitional game model is developed to analyze the behavior of

mobile nodes in coalition formation in presence of this uncertainty of node behav-

ior (i.e., type). Given the beliefs about the other mobile nodes’ types, each mobile

node makes a decision to form a coalition, and thus the coalitions in the network

vary dynamically. A solution concept called Nash-stability is considered to find a

stable coalitional structure in this coalitional game with incomplete information. We

present a distributed algorithm and a discrete-time Markov chain (DTMC) model to

find the Nash-stable coalitional structures. We also consider another solution concept,
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namely, the Bayesian core, which guarantees that no mobile node has an incentive to

leave the grand coalition. The Bayesian game model is extended to a dynamic game

model for which we propose a method for each mobile node to update its beliefs about

other mobile nodes’ types when the coalitional game is played repeatedly. The per-

formance evaluation results show that, for this dynamic Bayesian coalitional game, a

Nash-stable coalitional structure is obtained in each subgame. Also, the actual payoff

of each mobile node is close to that when all the information is completely known. In

addition, the payoffs of the mobile nodes will be at least as high as those when they

act alone (i.e., the mobile nodes do not form coalitions).

Finally, Chapter 7 summarizes the research contributions presented in this thesis,

and points out interesting avenues for future research.

We provide the list of abbreviations that are commonly used throughout this thesis

as shown in Table 1.1. More specific symbols and their definitions used in our game

models will be listed later in each chapter.
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Table 1.1. List of abbreviations
Abbreviation Definition

AP Access point
BER Bit error rate
BNE Bayesian Nash equilibrium
BS Base station

CDMA Code-division multiple access
CRISP cooperation via randomized inclination to selfish/greedy play
CSMA Carrier sense multiple access

CSMA/CA Carrier sense multiple access with collision avoidance
CSMA/CD Carrier sense multiple access with collision detection
CTMC Continuous-time Markov chain
CW Contention window

DTMC Discrete-time Markov chain
DTN Delay-tolerant network
EMA Exponential moving average
ESS Evolutionarily stable strategy

FDMA Frequency-division multiple access
FIFO First in, first-out
ITS Intelligent transportation systems
KKT Karush-Kuhn-Tucker
MAC medium access control

MANET Mobile ad hoc network
MDP Markov decision process

MKPAR Multiple knapsack problem with assignment restrictions
NE Nash equilibrium
NTP Non-transferable payoff

OFDMA Orthogonal frequency-division multiple access
PBE Perfect Bayesian equilibrium
PDF Probability density function

POMDP Partially observable Markov decision process
QoS Quality-of-service
RSB Roadside base station
SINR Signal-to-interference-plus-noise ratio
SDSE Strongly dominant strategy equilibrium
SNA Social network analysis
SNR Signal-to-noise ratio

SPRING Social-based privacy preserving packet forwarding protocol
SUMO Simulation of Urban MObility
TDMA Time-division multiple access
TSP Transportation service provider
TTl Time-to-live
V2R Vehicle-to-roadside
VDTN Vehicular delay-tolerant network
WiFi Wireless fidelity

WiMAX Worldwide interoperability for microwave access
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1.5 Chapter Summary

We have provided an introduction to the multiple access problem in wireless networks

and discussed the motivations of using game theoretic models to solve the problem.

The objectives of the research and the outline of the rest of the thesis have been

provided.
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Chapter 2

Game Theory and Its Application

to Multiple Access

In this chapter, we review the existing literature on game theoretic approaches for

channel access and resource allocation in a multi-user wireless network. In this con-

text, different types of game models are reviewed for both contention-free and random

channel access schemes. For contention-free channel access, time-division multiple ac-

cess (TDMA), frequency-division multiple access (FDMA), and code-division multiple

access (CDMA)-based wireless networks are considered. For contention-based chan-

nel access, game models for ALOHA and carrier sense multiple access (CSMA)-based

channel access methods are reviewed.

2.1 Overview of Game Theory Models

In this section, the basic concepts used in game theory are discussed and different

game models are briefly introduced. The issues pertinent to using game theory to

analyze multiple access schemes in wireless networks are also discussed.

2.1.1 General Concepts

A game is defined by a set of players, a set of actions for each player, and the payoffs

for the players. A player chooses an action and the complete plan of action is referred

to as the strategy. When the action is chosen deterministically, it is called a pure

strategy. On the other hand, when the action is chosen probabilistically according

to a certain probability distribution, it is called a mixed strategy. Based on the
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strategies of the players, their payoffs are determined. Depending on the nature

of the game, there are different solution concepts, e.g., Nash equilibrium, subgame

perfect equilibrium, and perfect Bayesian equilibrium. However, almost all of them

rely on the equilibrium concept which ensures that a player will gain a fair or optimal

payoff given the strategies of other players in the game. Pareto optimality or Pareto

efficiency [1] is another well-known concept in a game. A strategy is called Pareto

optimal if it is impossible to make one player better off without necessarily making

other players worse off.

2.1.2 Game Theoretic Models

Two major game-theoretic approaches which can be used to model multiple access

schemes are noncooperative and cooperative game approaches. In a noncooperative

game, the players make rational decisions by considering only their individual payoffs.

In a cooperative game, players are grouped together and establish an enforceable

agreement in their group.

2.1.2.1 Noncooperative games

Self-interested players in a noncooperative game make decisions independently. The

players are unable to make enforceable contracts but it does not mean that players do

not cooperate. Any cooperation in the games must be self-enforcing. Noncooperative

game theory has been used extensively to study various issues in wireless networks

(e.g., medium access control (MAC) game, time slot competition, and power control

in CDMA). The goal of a noncooperative game model is to find the equilibrium

solution for networks with self-interested nodes. A well-known solution concept for a

noncooperative game is Nash equilibrium [1]. A Nash equilibrium is a set of strategies

for the players such that no player has any intention to change his/her strategy to

gain a higher payoff given that all the other players do not change their strategies.

Let i be an index of a player, i ∈ M = {1, . . . ,M} where M is a set of players and

M is the total number of players. Let Si denote a set of strategy of player i. si ∈ Si

is any possible strategy of player i. The Nash equilibrium satisfies the following
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condition [1]:

ui(s
∗
i , s

∗
−i) ≥ ui(si, s

∗
−i), ∀i ∈ M, ∀si ∈ Si (2.1)

where ui(·) is the payoff function of player i, s∗i is a Nash equilibrium strategy of

player i, and s∗−i is a Nash equilibrium strategy vector of all players except player

i. However, a Nash equilibrium may not exist in a game. Also, even if a Nash

equilibrium exists, it may not be unique.

Another solution concept which is more general than the Nash equilibrium is

known as correlated equilibrium [13]. In this concept, a strategy profile is chosen

according to the joint distribution instead of the marginal distribution of players’

strategies as in the Nash equilibrium solution. The definition of correlated equilibrium

is given below. Let Si denote a set of strategies of player i. A probability distribution

π over S1×· · ·×SM is a correlated equilibrium if for every strategy s∗i ∈ Si such that

π(s∗i , s−i) > 0, and every alternative strategy si ∈ Si, it holds that,

∑
s−i∈S−i

π(s∗i , s−i)[ui(s
∗
i , s−i)− ui(si, s−i)] ≥ 0,

∀i ∈ M, ∀si ∈ Si. (2.2)

To interpret this definition, given a recommendation (i.e., a recommended strategy

according to the distribution π) to player i, a distribution π is defined to be a corre-

lated equilibrium if no player i can choose a strategy si instead of s∗i which results in

a higher expected payoff.

A noncooperative game can be classified as either a complete or an incomplete

information game. In a complete information game, information such as the payoffs

and strategies of the players can be observed by all the players. On the other hand,

in an incomplete information game, the information is unknown by other players.

An incomplete information game can be modeled as a Bayesian game [1] in which

Bayesian analysis is used to predict the outcome of the game. The equilibrium solution

of such a game is called Bayesian Nash equilibrium [1]. Similar to the Nash equilibrium

in a complete information game, a Bayesian Nash equilibrium can be obtained in

which each player seeks for a strategy profile that maximizes its expected payoff

given its beliefs about the types and strategies of other players.
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Moreover, a game can be classified as either a static game or a dynamic game. A

static game is a one-shot game where all players make decisions without knowledge of

the strategies that are being chosen by other players. The one-shot game ends when

actions of all players are chosen and payoffs are received. In contrast, in a dynamic

game, a player chooses an action in the current stage based on the knowledge of the

actions chosen by the other players in the current or previous stages. This dynamic

game can be called a sequential game since players play a static game repeatedly.

The common equilibrium solution in dynamic games is a subgame perfect Nash equi-

librium [14]. A subgame perfect Nash equilibrium represents a Nash equilibrium of

every subgame of the original game. A common method to obtain subgame perfect

equilibria is backward induction.

A dynamic game with incomplete information can be described as a multi-stage

game when information is unknown to other players [1]. It is similar to a dynamic

game with complete information in that the players take turns sequentially rather

than simultaneously but information is incompletely known to others. The players

follow their beliefs and dynamically update their beliefs by using the Bayes’ rule. In

a dynamic game with incomplete information, perfect Bayesian equilibrium is the

solution concept which can be considered as a combination of the Bayesian Nash

equilibrium and subgame perfect equilibrium concepts.

Repeated game [1] is a special kind of dynamic game in which the same set of

players plays the same stage game or one-shot game repeatedly over a long time

period. Repeated games can be divided into two key types, namely, finite and infinite

repeated games, depending on whether the period of time during which the game is

played is finite or infinite. Most repeated games are typically infinite repeated games

and a player takes into account the effect of his/her current action on the future

actions of other players.

Markovian game (i.e., Markovian dynamic game or Markov game) [15, 16] is an

extension of game theory to Markov Decision Process-like environments . A Marko-

vian game can be defined as a type of stochastic game which can be regarded as a

multiagent extension of Markov decision process [17]. The key difference between

a Markov game and a Markov decision process is that a transition depends on the

current state and the action profile of the players. Also, each player may receive
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different reward as a result of the action profile. Each player has a reward function

(i.e., payoff function) and tries to maximize its expected sum of discounted reward.

A more specific type of Markovian game is a switching controlled Markovian game

where the transition probability in any given state depends on the action of only one

player. The Nash equilibrium for such a game can be computed by solving a sequence

of Markov decision processes.

Auction game is a game theoretic approach in which an object or service is ex-

changed on the basis of bids submitted by the bidders to an auctioneer [18]. There

are two main auction mechanisms, namely, the first and second price auctions. In

first price auction, an object or service is given to a bidder who submitted the highest

bid and pays a price equal to the amount of bid. In second price auction, an object

or service is given to a bidder who submitted the highest bid and pays a price equal

to the second highest amount of bid.

Stackelberg game or leader-follower game [1] is a strategic game in which the player

acting as a leader moves first and then the rest acting as followers move afterward.

Then, the problem is to find an optimal strategy for the leader, assuming that the

followers react in such a rational way that they optimize their objective functions

given the leader’s actions. The Stackelberg game model can be solved by subgame

perfect Nash equilibrium.

Evolutionarily stable strategy (ESS) [19] is a solution concept in the evolutionary

game theory. In this game, the evolution of social behaviour of animals in a population

is considered. In a wireless network, a population can be a group of mobile nodes

sharing the channels. A strategy is called an ESS if in a fixed population, the entire

population using ESS cannot be invaded by mutant strategies of a small group.

2.1.2.2 Cooperative games

In a cooperative game, players are able to make enforceable contracts. The players

in a coalition cooperate to maximize a common objective of a coalition. In this

case, players can coordinate strategies and agree on how the total payoff is to be

divided among players in a coalition. Nash bargaining game is one type of cooperative

games where the players maximize the product of their gains given what each player

would receive without cooperation (i.e., threat point). This is referred to as the Nash
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bargaining solution which can be defined as follows:

s∗ = argmax
s

∏
i∈M

(ui(si)− ud
i ) (2.3)

where ui(·) is the payoff function of player i, si is a strategy of player i, and s∗ is

a Nash bargaining solution strategy vector of all players, and ud
i is the threat point

(i.e., the utility gained if player i decides not to cooperate and bargain with the other

players).

Coalition formation game is a cooperative game involving a set of players who are

looking for cooperative groups (i.e., coalitions). A coalition S, which represents an

agreement among the players to act as a single entity, can be formed by players in a

set M to gain a higher payoff, and the worth of this coalition, denoted by v is called

the coalitional value. Two common forms of coalitional games are strategic form and

partition form. In the former case, the value of a coalition S depends on the members

of that coalition only (i.e., independent of how the players in M\S are structured). In

the latter case, the value of a coalition S strongly depends on how the players in M\S
are structured. Coalitional game models can be developed with either transferable

payoff or non-transferable payoff. In a transferable payoff coalitional game, there

is no restriction on how the total payoff will be divided among the members of a

coalition. In a non-transferable payoff coalitional game, the payoff that each player in

a coalition obtains depends on the joint actions that the players of a coalition select

[20]. A stable solution for a coalition formation game ensures that the outcome is

immune to deviations by groups of players (i.e., no player has an incentive to move

from its current coalition to another coalition).

2.2 Game Models for Contention-Free Channel Ac-

cess

In this section, game models for contention-free channel access based on TDMA,

FDMA, and CDMA are reviewed.
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2.2.1 Channel Access Games in TDMA

Since the nodes have to transmit data during their allocated time slots, in TDMA-

based channel access games, the nodes compete for time slots to achieve their per-

formance objectives (i.e., QoS requirements). Three different game models, namely,

auction game, dynamic game, and repeated game models are discussed.

2.2.1.1 Auction game-theoretic approach

A. T. Hoang and Y.-C. Liang[21] proposed a second price and sealed bid auction for

time slot competition in a dynamic spectrum access scenario. In dynamic spectrum

access, each node i (i.e., the bidder/player in a game) submits its bid to the base

station. The value of the submitted bid is the portion of the time slot (i.e., between

0 and 1) that will be used to help the base station relaying data to another distant

node. The bidding value bi of node i is a non-decreasing function of the channel

condition xi. The base station (i.e., the auctioneer) allocates the downlink channel

to a node offering the highest bid. The price that this winning node pays is equal

to the second highest bid. The amount of transmitted data of winning node j is

denoted as dj = xj(1− max
i∈M,i �=j

bi(xi)), where xj is the channel condition of the winning

node which is assumed to be the amount of data received per unit time, and bi(xi)

is the bid submitted by a node. A node chooses a value of bid which maximizes its

expected amount of transmitted data under its budget constraint given the probability

distributions of the channel conditions of all the nodes. The budget constraint of node

i represents the amount of time that the node is able to provide to the base station

for data relaying. Nash equilibrium is considered as the solution. It is found that,

for pure strategy, a Nash equilibrium exists in the two-node case, but in a general

multiple-node case, a Nash equilibrium may not exist. A distributed algorithm is

proposed for updating the bids which converges to the Nash equilibrium. The results

show that to avoid zero throughput (i.e., maximum bid), the budget constraint has

to be smaller than one. Also, the higher the budget constraint, the lower is the

throughput for each node.
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2.2.1.2 Dynamic game-theoretic approach

J. W. Huang and V. Krishnamurthy [22] formulated a Markovian dynamic game to

solve the transmission rate adaptation problem in a dynamic spectrum access-based

cognitive radio network. In such a network, the secondary users (or cognitive radio

users) opportunistically access the radio spectrum, which is licensed to the primary

(or licensed) users, without causing harmful interference to the primary users. The

players of the game are secondary nodes competing for the channel or time slot in

a TDMA scenario (e.g., in the IEEE 802.16-based network). In a TDMA cognitive

radio system, the system has a predefined decentralized access rule that allows only

one secondary node to access the channel at a time. The access rule is defined as

a function of channel quality and transmission delay. This transmission rate control

problem is formulated as a general-sum switching control Markovian dynamic game.

In this dynamic game, the system state transition probability at each time slot

depends only on the active secondary node. Node i (i.e., secondary node i) follows a

decentralized access rule to try to occupy a time slot at time n after a period of time

tni = γi
qni h

n
i
where γi is the QoS parameter of node i, qni is the buffer occupancy state

of user i, and hn
i is the channel state of node i. The composite variable xn

i = [qni , h
n
i ]

denotes the state of user i at time n. If there are more than one node having the same

waiting period, a node will be randomly picked with equal probability. After node

j is selected to transmit data, this node chooses action anj (i.e., transmission rate in

bits/symbol) assuming an M-ary quadrature amplitude modulation. The transmis-

sion cost of the selected node j, cj(x
n, anj ), is defined as its transmission bit error rate

(BER), and the cost of node i, di(x
n, anj ), is defined as its delay constraint (i.e., QoS

constraint) which is a function of the buffer state qni . The transition probabilities

depend only on the action of active node; hence, a Markovian dynamic game can be

formulated. The strategy of node i denotes the transmission policy si. The Nash

equilibrium policy s∗i is computed by minimizing the expected total discounted cost

function subject to the expected total discounted delay constraint as follows:

s
∗(n)
i = {sni : min

si
Cn

i (si)} subject to Dn
i (si) ≤ D̂i (2.4)

where Cn
i (si) is the infinite expected total discounted transmission cost calculated
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from cj(x
n, anj ). D

n
i (si) is the infinite expected total discounted delay which is calcu-

lated from di(x
n, anj ) and cannot be greater than threshold D̂i.

The value iteration algorithm is used to obtain a Nash equilibrium policy. The

Nash equilibrium policy of any node i is observed to be a randomized mixture of pure

policies and the pure policies are non-decreasing on the buffer occupancy state. A

stochastic approximation algorithm exploiting this structure is presented to efficiently

estimate the Nash equilibrium policy by computing parameters such as buffer state

thresholds and randomization factors.

2.2.1.3 Repeated game-theoretic approach

Y. Wu, B. Wang, and K. J. R. Liu [23] presented a repeated game model for spectrum

sharing in a cognitive radio network. The game enforces the nodes to tell their

true channel conditions and to cooperate with each other. Data transmission over a

long time period is considered. Therefore, spectrum sharing can be formulated as a

repeated game where the nodes are concerned about their payoffs (e.g., throughputs)

in the future. The actions of the nodes are the power allocation according to the power

constraint and channel condition. In this game, the power constraint is assumed to

be identical for all nodes. If all the nodes make an agreement and share the spectrum

in an orderly fashion, every node gains benefit from the cooperation. However, some

nodes may violate the agreed upon rule and deviate from cooperation. Then, the

game model provides a punishment mechanism which will be triggered and applied

to the deviating node for a certain period of time. The period of time for punishment

is chosen such that the expected payoff from cooperation is greater than the expected

payoff from deviation.

To design a cooperation rule, an opportunistic time slot allocation method is de-

veloped which maximizes the total throughput. The node informing the best channel

gain will be allocated time slots for transmission. However, in the incomplete infor-

mation case, the channel gain of one node may not be known to other nodes, and

some node may falsely inform its channel gain information. Therefore, a Bayesian

mechanism is introduced to enforce all the nodes to tell the true values of their channel

gains.
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2.2.2 Channel Access Games in FDMA

In FDMA, the nodes compete for available channels in the network and the solutions

of the game models (i.e., equilibria) can be obtained in the complete and incomplete

information cases. We consider three different game models, namely, noncooperative

static game, auction game, and cooperative game models.

2.2.2.1 Noncooperative static game-theoretic approach

F. Wu, S. Zhong, and C. Qiao [24] studied the optimal FDMA channel assignment

problem for noncooperative wireless networks. It is assumed that the nodes can be

equipped with either single or multiple radio interfaces. The available frequency band

is divided into orthogonal channels. The authors introduce a payment formula to

ensure the existence of a strongly dominant strategy equilibrium (SDSE) [25], which

is a stronger solution concept than the Nash equilibrium. This payment is used to

obtain the globally optimal solution in terms of effective system-wide throughput.

The strategy of node i (si) is the channel assignment vector which is the number of

radio interfaces allocated to each channel. The solution in terms of SDSE can be

described as follows:

∀s−i ∈ Si, ∀si �= s∗i , ui(s
∗
i , s−i) ≥ ui(si, s−i) (2.5)

∃s−i ∈ Si, ∀si �= s∗i , ui(s
∗
i , s−i) > ui(si, s−i) (2.6)

where Si is the set of all possible strategies and ui(·) is the payoff function of node i.

The payoff function is defined as the difference between the throughput and the pay-

ment to the system administrator. The payment is a function of the node’s throughput

plus a penalty (if the node deviates from the globally optimal solution) or a bonus

(if the node does not deviate). An algorithm to obtain the SDSE is proposed. It is

proved that the algorithm converges to the SDSE.

2.2.2.2 Auction game-theoretic approach

W. Noh [26] presented a distributed resource control scheme to achieve fairness in

OFDMA systems. Specifically, an auction game-theoretic resource allocation scheme
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based on iterative multi-unit second price auction was applied. A base station con-

trols transmission power and bidding to maximize system capacity and node fairness.

From an information-theoretic point of view, the medium access control (MAC)-layer

throughput capacity region is achievable by successive decoding [27] when at each

subchannel k, the first node’s decoded signal is subtracted from the sum signal, then

the next node’s signal is decoded, and so on.

In this auction, first each node i submits bid bi which includes power control

variable and bid value. Each node calculates its bid by maximizing the expected

Shannon capacity, and each node submits its bid and waits to be assigned the decoding

priority for each sub-channel from the base station. After the bids are received by the

base station, the decoding priority is assigned to each node following the weighted

sum-rate capacity maximization of the base station. The cost that each node i pays

is the cost for winning the lth decoding priority at subchannel k. Then, transmission

power will be allocated based on the optimal and fair water-filling allocation according

to the result of the decoding order. Also, the cost that the nodes have to pay will be

announced.

To obtain the Nash equilibrium for bidding in this auction, an iterative update

algorithm is proposed. The key concept is to update the bid value based on the

difference between the current bidding efficiency and the target bidding efficiency at

each time slot t. Bidding efficiency is computed by a node’s achievable transmission

rate divided by the cost of the node. Also, the bidding control variable is updated

using the subgradient algorithm as follows:

x(t+1) = x(t) + αtg
(t) (2.7)

where x(t) is the bidding control variable at time t, αt is a constant step size, and

g(t) is a subgradient which is a function of the total cost that node has to pay for

and the total bid money that node can use during the game. The analytical and

simulation results show that this iterative update algorithm can converge to the stable

and optimal equilibrium which can achieve fairness among users when the channel

conditions of the subchannels for the different nodes are uniformly distributed.
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2.2.2.3 Cooperative game-theoretic approach

Figure 2.1. Coalitions of players are formed following the game model by F. Shams,
G. Bacci, and M. Luise [28] when there are 3 mobile nodes and 3 subchannels.

A coalitional game for transmission power allocation and subchannel assignment

in the uplink channel of an OFDMA system was presented by F. Shams, G. Bacci,

and M. Luise [28]. In the considered system model, there are M nodes located in the

coverage area of a same base station. The base station provides K subchannels to

node i ∈ M = {1, . . . ,M} to guarantee the target rate requirement. Let k denote

each subchannel k ∈ K = {1, . . . , K}. Let Ri be the target rate requirement of node i.

Suppose that the total bandwidth is B, then the carrier spacing of every subchannel

is 	f = B/K. A player defined in this game is a pair of one subchannel and one

node. Hence, MK players are considered in this game. The strategy of each player

is the transmission power assigned to subchannel pik. Then, there are M coalitions

ζ = [S1, . . . ,Si, . . . ,SM ] to be assigned to the M nodes and each coalition Si contains

K players (e.g., shown in Figure 2.1).

In this game, the members in each coalition do not change during the game. Conse-

quently, the coalition Si achieves its rate Ci =
∑

k∈K Cik where Cik = 	f log2(1+γik)

is the Shannon capacity achieved by node i on subchannel k. γik is the SINR at the
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base station. The payoff that each coalition will obtain is defined as follows:

u(Si) =
1

Ck/Rk − 1
− α.t(1− Ck/Rk) (2.8)

where t(·) is the step function with t(y) = 1 if y ≥ 0 and t(y) = 0 if y < 0, and

α is a positive constant. A coalition will achieve the highest payoff (i.e., positive

infinite) when Ck = Rk. An iterative algorithm based on Markov modeling of the

TU coalitional game is proposed to update the best-responses. The analytical and

numerical results show that the algorithm can be considered as a Markov process. The

process can quickly converge to an absorbing state which is also a Nash equilibrium

solution with probability of one.

2.2.3 Channel Access Games in CDMA

CDMA systems use spread-spectrum technology in which each node is assigned with

a different code to allow multiple users to be multiplexed over the same channel at

the same time. Power control for multiple access is crucial for CDMA to ensure that

the received signal can be decoded correctly. In a CDMA system with self-interested

nodes, the transmission power control problem can be modeled as both the complete

and incomplete information noncooperative games. Also, cooperative game models

can be used for group-rational nodes in a CDMA system to achieve a Pareto optimal

power control strategy.

2.2.3.1 Noncooperative static game-theoretic approach

F. Meshkati et al. [29] presented a noncooperative game model for power control.

Each node has an objective to maximize its own utility. The game considers a multi-

carrier direct-sequence CDMA system in which the data stream for each node is

divided into multiple parallel streams. Each stream is first spread using a spreading

sequence and then transmitted on a carrier. The strategy of each node is to choose

its transmission power. A high transmission power may yield high SINR and high

transmission rate. However, it may also cause high interference to the other nodes in

the network. The utility of a node is defined as the ratio of the total throughput and

the total transmission power for all K carriers.
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Assuming that all the nodes use equal transmission rates, the utility function of a

node can be expressed as the ratio of the summation of the efficiency functions and the

summation of transmission powers for all K carriers. The efficiency function (f(γ))

represents packet success probability. The utility is a non quasi-concave function of

the transmission power of the node. Nash equilibrium is considered as a solution. At

the Nash equilibrium, each node transmits only on the carrier with the best effective

channel. This best effective channel is the channel that requires the least amount of

transmission power to achieve optimal SINR γ∗ at the output of the uplink receiver.

Optimal SINR γ∗ = γf
′
(γ) is the solution to the efficiency function. A unique Nash

equilibrium in this game can be achieved under a certain set of conditions.

Also, an iterative and distributed algorithm based on best-response update is

proposed to obtain the Nash equilibrium. The results show that, at the Nash equi-

librium, the total network utility of this multicarrier system is higher than that of a

single carrier system. Also, it is higher than that of a multicarrier system with the

nodes choosing their transmission powers to maximize their utilities over each carrier

independently.

C. A. St Jean and B. Jabbari [30] presented a noncooperative static Bayesian game

for uplink power control in a CDMA network. Each node chooses its transmission

power by . The payoff is a function of the difference between throughput and power

consumption. The throughput part in the payoff function is composed of the gain

from achievable bit rate and a ‘success function’. The ‘success function’ is a Sigmoid

function of SINR. Since the path loss information for the other nodes is not completely

known, each node uses path loss probability density functions to estimate the SINR

(and hence payoff) of the other nodes.

The solution of this incomplete information game is the Bayesian Nash equilibrium

(BNE), which can be obtained from the best-response dynamics. This dynamics

represents the strategy update rules based on the expected utility when path loss

information is not completely known to the other nodes. The existence of the Bayesian

Nash equilibrium is proved and it can be obtained in a distributed way.
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2.2.3.2 Cooperative static game-theoretic approach

A. Feiten and R. Mathar applied [31] a cooperative game to obtain the optimal

power allocation in a CDMA system. A multiuser CDMA system with perfectly

known channel information and fixed signature and linear sequences is considered.

The objective is to minimize power consumption given minimum SINR of each node.

It is shown that the power region (i.e., a feasible set of power allocation such that

the SINR requirement of each node is met) is convex and log-convex. If the power

region is not empty, then there is a unique power allocation that satisfies the SINR

requirements of all nodes. To obtain the unique, Pareto optimal, and proportional

fair solution, a bargaining game similar to that in (2.3) is formulated and solved.

In this case, a node’s strategy is its transmission power. The results show that the

utility should be appropriately selected as a function of transmission power. The

payoff function can be chosen to be ui(si) = −esi , where si, node i’s strategy is the

choice of transmission power.

2.3 Game Models for Random Channel Access

In this section, the game models for random channel access are reviewed. In partic-

ular, channel access based on ALOHA and CSMA/CA protocols are considered.

2.3.1 Channel access games in ALOHA-like protocols

In the literature, different game models, namely, noncooperative game, cooperative

game, evolutionary game, and Stackelberg game models have been used for analyz-

ing ALOHA-like channel access schemes with (and without) power control and rate

adaptation.

2.3.1.1 Noncooperative game-theoretic approach

H. Inaltekin and S. Wicker [32] applied a noncooperative static game analysis to the

slotted ALOHA protocol with M selfish nodes. Actions of nodes are “To transmit”

and “Not to transmit”. A node has the objective to maximize its expected payoff

given other nodes’ transmission probabilities. The payoff is zero when a node chooses
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not to transmit, one when a node chooses to transmit and it is successful, and −ci

when a node chooses to transmit but it is unsuccessful (here ci is the cost of unsuc-

cessful transmission for node i). Mixed strategy Nash equilibria are considered as the

solutions which can be described as the transmission probability (i.e., the probability

to perform action “To transmit” and “Not to transmit”) of the nodes.

In a noncooperative ALOHA game, the Bayesian Nash equilibrium is always the

threshold strategy of a channel gain. That is, a node will transmit if its channel

gain is not lower than the threshold. The threshold strategy enables the system to

exploit multiuser diversity by giving more chance of transmission to the node with

better channel gain. To find the optimal strategy, the optimal threshold strategy has

to be obtained first. In this model, only a symmetric case is considered where the

cumulative distribution function (CDF) of channel gains and weights of the payoff

function are identical for all nodes. The existence of a unique symmetric Bayesian

Nash equilibrium is proved.

Noncooperative Bayesian static ALOHA games were also presented in the research

papers of Y. Cho, C. S. Hwang, and F. A. Tobagi [33] and H. Lee et al. [34]. Both the

game models consider interference. As in [32], a fixed power is assumed in both the

MAC games. The nodes do not know others’ channel states (i.e., signal-to-noise ratio

(SNR)). Each node decides to transmit or not to transmit the data (i.e., strategies)

based on the SNR. In [33] and [34], each node will then obtain its payoff which is the

difference between the utility function of SNR and the cost function if its transmission

is successful.

D. Wang et al. [35] presented a pricing-based noncooperative slotted ALOHA

MAC game. The key idea of this game is to motivate the nodes to cooperate with

each other by using a pricing mechanism in the payoff function so that the multiuser

diversity gain can be achieved. A static game is proposed in which the actions of

each player i ∈ M = {1, . . . ,M} are “To transmit” and “Not to transmit”. If a

player successfully transmits its packet(s), the payoff is 1 − ci − μi, where ci is the

cost of transmission and μi is the price charged per successful packet transmission.

If the transmission is unsuccessful, the payoff is −ci − vi. If a player chooses not to

transmit and it waits, the payoff is −vi, where vi is the waiting cost which is defined

as 1− ci − μi.
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In this game, each node maximizes its payoff given the medium access probabilities

of all nodes. The probabilities of medium access are identical for all nodes since a

fair game is considered. To maximize the expected payoff, a node will choose “To

transmit” when the expected utility of “To transmit” action is not lower than that

of “Not to transmit” action. Nash equilibrium, which is considered as a solution,

can be found to be of threshold type. The equilibrium threshold is the cost of the

corresponding action. Therefore, the transmission is successful only if there is exactly

one transmitting node and transmission cost is smaller than the equilibrium threshold.

2.3.1.2 Evolutionary game-theoretic approach

H. Tembine, E. Altaian, and R. El-Azouzi [36] formulated an evolutionary game-

theoretic model for ALOHA protocol. An evolutionary game is a dynamic game

where players interact with other players and adapt their strategies based on payoff

(fitness). The dynamics (i.e., stability) of the population adopting different strategies

is studied. Also, an evolutionary stable strategy (ESS) is considered. In the evolu-

tionary game model, if an ESS is reached, the proportions of population adopting

different strategies do not change over time. In particular, the population with ESS

is immune from being invaded by a population with non-ESS strategy. The effect of

time delay on the dynamics of the evolutionary game model is studied. Similar to

the other ALOHA games, each player has two possible strategies (i.e., “To transmit”

and “Not to transmit”).

For the two-player case, if a player transmits a packet, it incurs a transmission cost

(c ∈ (0, 1)) irrespective of whether the transmission is successful or not. The payoffs

are 1− c, 0, and −c if the player has a successful transmission, no transmission, and

collision, respectively. It is found that this game has two pure Nash equilibria (i.e.,

(Player I - Transmit, Player II - Not to transmit) and (Player I - Not to transmit,

Player II - Transmit)) and one mixed Nash equilibrium (1 − c, c) where 1 − c and c

represent proportions of individuals which transmit and do not transmit, respectively.

The strategy (1− c, c) can also be an ESS since this strategy is a unique symmetric

Nash equilibrium.
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2.3.1.3 Stackelberg game-theoretic approach

R. T. B. Ma, V. Misra, and D. Rubenstein [37] analyzed slotted ALOHA protocols

using game theory. The model considers throughput of the system when nodes are

of self-interest and compete for bandwidth using a generalized version of slotted-

ALOHA protocols. First, an analysis based on a two-state Markov model is presented

when the nodes cooperate to equally share the bandwidth and maximize the system

throughput. The states are “Free state” when the most recent transmission of node is

successful, and “Backlogged state” when the most recent transmission is unsuccessful

due to collision. The results show that the lower bound of aggregated throughput is

one half and this bound is independent of the number of nodes. Next, an analysis is

presented for the case when the nodes are selfish to maximize their own throughputs.

Since in this case all nodes transmit with probability one, the system throughput will

be zero.

Next, a Stackelberg game model is presented. A leader is any node that takes the

selfish nodes (i.e., the followers) into account. The follower and leader nodes choose

their best strategies (i.e., transmission probabilities in both states) by maximizing

their throughputs (i.e., payoffs) subject to constraints on the budgets of the nodes.

The budget should be higher than the cost of transmission. The followers maximize

their throughputs based on the leader’s strategy while the leader maximizes its own

throughput according to the best response strategies of followers. Backward induction

is used to find the Stackelberg equilibrium. The leader achieves a higher throughput

than that of the followers when the budget is large.

2.3.2 Channel Access Games in CSMA/CA Systems

In this section, the game models formulated for analyzing CSMA/CA-based channel

access are reviewed. The solution of a CSMA/CA game describes how the nodes in

the network should choose their backoff windows so that the equilibrium point can be

reached. Noncooperative static game-theoretic approach, noncooperative dynamic

game approach, and repeated game approach can be used to model and analyze

CSMA/CA systems. Since the nodes are selfish, to maximize their payoffs, the nodes

may set the backoff windows to the smallest value. However, if all the nodes do



33

so, the network throughput will be zero due to collision. To avoid this problem,

incompletely-cooperative game models are used in which the nodes are enforced to

cooperate in the system by using a penalizing mechanism.

2.3.2.1 Noncooperative static game-theoretic approach

Y. Cho, C. S. Hwang, and F. A. Tobagi [33] formulated a medium access contention

game model for the CSMA protocol. Similar to the slotted ALOHA protocol, the

possible results from transmission attempts of each node are successful transmission,

collision, and no-transmission. Transmission after k backoff slots is added to the

action space of each node. The action set is A = {1, . . . , K,K + 1}, where k ∈ K =

A\{K+1} = {1, . . . , K} denotes transmitting at slot k and index K+1 denotes the

action of not-transmitting a packet. The payoff function of node i is the difference

between the utility and the cost of transmission if this node selects a backoff slot

number which is less than the backoff slot number of each of the other nodes. Node

i incus a cost of transmission if a collision occurs, that is, when the earliest backoff

slot chosen by one (or more) of the other nodes is the same as that of node i. Node

i gains nothing if it selects a backoff slot number greater than the lowest backoff

slot number among the other nodes. The nodes play the game by maximizing their

expected payoffs (similar to the ALOHA game models discussed in Section 2.3.1.1

before) given the type spaces (i.e., channel SNR, h) and beliefs (i.e., probabilities of

channel states of other nodes, P−i(h−i)). A symmetric mixed strategy (in terms of

the probability that the node will not transmit at the first k ∈ K slots) Bayesian

Nash equilibrium is found for this single-stage (static) Bayesian game.

2.3.2.2 Noncooperative dynamic game-theoretic approach

The single-stage CSMA Bayesian game in the work of Y. Cho, C. S. Hwang, and F.

A. Tobagi [33] described before was extended to a dynamic game where the static

one-stage game is played repeatedly. The action of node i can be either to transmit

a packet or not to transmit a packet based on node i’s channel gain hi and node

i’s type. K stages associated with K backoff slots are considered in this Bayesian

dynamic game. At stage k ∈ {1, . . . , K}, if node i successfully transmits its packet,

it will obtain the payoff function, μi(hi)− ci(hi) where μi is the utility function and
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ci(hi) is the cost function. If node i unsuccessfully transmits its packet, it will pay

−ci(hi) as a cost of transmission; otherwise, node i gains nothing (i.e., zero payoff). If

there is no transmission, the stage of the game increases from k to k+1. When there

is at least one transmission at any stage k, the game ends. Each node maximizes its

expected payoff from stage 1 to k to obtain the perfect Bayesian equilibrium (PBE).

A symmetric PBE is considered since it is a proper operating point of a distributed

protocol for the following reasons. First, it might not be possible to distinguish among

nodes in the random access network. Second, asymmetric PBE is not sustainable

since it causes unfairness problem by assigning unequal shares of channel to the

nodes. Third, it is much simpler to operate a network with a single strategy in a

symmetric equilibrium for all nodes than to operate a network with different strategies

for different nodes. The symmetric PBE is shown to be a threshold strategy. That is,

any node i decides to transmit at stage k when its SNR is greater than SNR threshold

hk
th (i.e., hi > hk

th). The numerical results show that the proposed protocols provide

better robustness and higher multi-user diversity gain than those of conventional

random access protocols.

2.3.2.3 Incompletely-cooperative game-theoretic approach

M. Felegyhazi, M. Cagalj, and J.-P. Hubaux [38] presented a CSMA/CA-based MAC

game model for dynamic spectrum access in a cognitive radio network. This game

model can be divided into two sub-games. The first sub-game is a channel allocation

game in which the nodes compete to allocate radio interfaces to the channels. The

second sub-game is a multiple access game among the nodes contending to transmit

packets in the same channel. The available frequency band is divided into K channels

of the same bandwidth. Each node is equipped with l radio interfaces (for l < K).

Each node can hear other nodes’ transmissions if the same channel is used. Each

node determines the number of interfaces to be used in each channel. This is the

action of nodes in the first sub-game of channel allocation. Each node maximizes its

utility function which is the sum of throughputs achieved by the node in all allocated

channels. Each node can observe other nodes’ information perfectly. The solution

of the channel allocation game is the Nash equilibrium if the difference between the

number of interfaces in any channel x and that in any other channel y is lower than
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or equal to 1. Also, the number of interfaces allocated to any channel x by node i

is lower than or equal to 1 for any channel y. It is found that if the rate function

of each channel is independent of the number of interfaces in any channel, then any

Nash equilibrium of channel allocation is Pareto optimal. The existence of Nash

equilibrium is shown and its efficiency (i.e., price of anarchy) is studied. It is found

that the price of anarchy is close to one (i.e., Nash equilibrium yields a payoff close

to that of the socially optimal solution).

Next, the second sub-game for CSMA/CA channel contention is formulated. This

sub-game aims not only to optimize the network performance, but also to provide in-

centives to the nodes to behave optimally. The actions of the nodes are “To transmit”,

“Not to transmit”, and “To backoff” in which a contention window value between

one and the maximum value is chosen by a node. Node i selects the value of con-

tention window on each channel c to maximize its throughput (i.e., payoff). The

static CSMA/CA game shows that the Nash equilibrium (i.e., contention window is

chosen to be one) is inefficient and unfair.

A desirable solution for the CSMA/CA game should have three properties: unique-

ness, per-radio fairness, and Pareto optimality. Using the Nash bargaining framework

from the cooperative game theory, these three properties can be achieved. However,

in the noncooperative regime, the Nash bargaining solution is not a Nash equilib-

rium and might not be stable. Therefore, a penalizing mechanism is introduced by

which the node deviating from Nash bargaining solution will be punished. A jam-

ming mechanism is presented to penalize the deviating node. The deviating node is

selectively jammed for a short duration by other nodes using the same channel when

the deviating node is detected doing selfishly for its transmission. Using the penalty

function and the jamming mechanism, the game can reach a Nash equilibrium uni-

lateral deviation from which is not profitable. A distributed algorithm is proposed

to obtain the Pareto-optimal Nash equilibria. The algorithm can converge to the

equilibrium point even in case of imperfect information. The algorithm is based on

a round-based distributed algorithm [39]. Also, a coordination algorithm is proposed

for CSMA/CA in which one node acts as a coordinator for the observed channel by

inflicting penalties to the other nodes which receive a higher throughput.
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2.3.2.4 Incompletely-cooperative repeated game-theoretic approach

J. Konorski [40] presented a game-theoretic study of CSMA/CA under a backoff at-

tack. An enforcement mechanism is introduced for the misbehaving nodes in the

network. Although this enforcement mechanism is similar to that in the work of

M. Felegyhazi, M. Cagalj, and J.-P. Hubaux [38], here it is used in the context of a

mobile ad hoc network and the game formulation is for a repeated game in which a

long-term utility is to be maximized. First, a noncooperative game is formulated for a

finite number of nodes. Each node chooses an action which is a backoff configuration

from a feasible set. The payoff function is defined to be the bandwidth share function

depending on the backoff configuration profile (s = (s1, . . . , si, . . . , sM)). Nash equi-

librium is the solution of this one-shot noncooperative game which might be unfair

or inefficient. Therefore, to obtain a better solution, a repeated game is proposed in

which a node takes into account the effect of its current action on the future actions

of other nodes. The number of stages is finite and should be large enough to approach

the steady state values. Nodes can switch between standard or non-standard backoff

configuration (i.e., fair or more-than-fair bandwidth share, respectively) to maximize

their own long-term payoffs.

To prevent the backoff attack and to obtain a fair Pareto optimal and sub-game

perfect Nash equilibrium, a strategy profile called cooperation via randomized in-

clination to selfish/greedy play (CRISP) is introduced. This optimal solution is a

probability distribution over the selected backoff configuration at stage k (ski ). An

invader node deviating from CRISP will experience lower bandwidth than that of

nodes playing CRISP.

2.4 Chapter Summary

Table 2.1 summarizes the game models formulated for the key multiple access mech-

anisms. In the channel access games for TDMA, nodes compete with each other to

obtain time slots for their transmissions. Time slot allocation among the nodes is

performed by using various game models. In the auction game models, the nodes

bid for time slots and they have to pay to the base stations for the allocated time

slots. Game models can be formulated in which the nodes are able to choose trans-



37

mission power in their allocated time slots. To enforce cooperation among the nodes,

a punishment and truth-telling mechanism can be used.

In the channel access games for FDMA, most of the models consider how nodes

(with single or multiple radio interfaces) choose channels for transmission. In these

game formulations, the number of radios, transmit rate, and power rate assigned to

each channel correspond to nodes’ actions. In the channel access games for CDMA,

power control is the key objective of all the proposed games. Both cooperative and

noncooperative games can be formulated. Nodes select their transmission powers to

meet their requirements in terms of SINR and transmission cost.

In most of the ALOHA-like game models, the nodes can choose either “To trans-

mit” or “Not to transmit” as their possible actions and the transmission powers of the

nodes are assumed to be fixed. Then, the games have mixed strategy solutions. Some

of the games can be shown to have solutions which are threshold strategies. In some

of the CSMA/CA game models, the actions are “To transmit” and “To wait for k

backoff time slots”. The solutions of these game models are mixed strategies (i.e., the

transmitting probability of nodes at the first k time slots). In some CSMA/CA-like

MAC game models, the action set of nodes is defined as transmission probabilities. In

addition, most of the CSMA/CA-like MAC game models consider only the symmetric

strategy case by assuming that all nodes are identical and throughput maximization

is the key objective. Since in random access schemes, nodes access the channel(s)

in a distributed manner, some nodes may misbehave. A penalizing mechanisms is

required to address this problem.

In the following chapters of this thesis, we present novel game theoretic models for

distributed channel access by mobile nodes which consider mobility of the nodes, QoS

performance of the users, and channel uncertainty. Performances of these developed

game models are evaluated considering practical application scenarios (e.g., vehicle-

to-roadside communications in a vehicular network). These game models complement

the existing literature on game theoretic modeling of wireless network protocols.
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Table 2.1. Summary of channel access games
Access Scheme Summary

TDMA In TDMA access games nodes compete for time slots to achieve their objectives and
meet QoS requirements. Noncooperative static game, auction game, dynamic game,
and repeated game models can be applied for TDMA.

FDMA In FDMA, nodes compete for the available channels in the network (e.g., through an
auction mechanism). The solution in terms of equilibrium can be achieved for the
complete and incomplete information cases. Noncooperative static game, auction
game, and cooperative game models can be used for FDMA.

CDMA In a CDMA system, each node is assigned with a different code to allow multiple
users to be multiplexed over the same channel at the same time. Power control
is crucial for CDMA to ensure that the received signal can be decoded correctly.
In a CDMA system with self-interested nodes, the transmission power control can
be modeled as complete and incomplete information noncooperative games. Also,
cooperative game model for group-rational nodes can be used to achieve a Pareto
optimal power control strategy.

ALOHA Noncooperative game, cooperative game, evolutionary game, and Stackelberg game
models can be used for ALOHA-like channel access. For the majority of the models,
the solution is a threshold strategy. Along with channel access, power control and
rate adaptation are also considered in the models.

CSMA/CA In CSMA/CA games, the nodes in the network choose their backoff windows so that
the equilibrium point can be achieved. Noncooperative static game, noncooperative
dynamic game, and repeated game models can be applied for CSMA/CA. Since the
nodes can be selfish (i.e., to maximize their payoffs, they may set the backoff windows
to be the smallest value), a penalizing mechanism is required for the misbehaving
nodes.
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Chapter 3

Distributed Noncooperative

Channel Access: An Auction

Game Model

3.1 Introduction

In a public wireless network, wireless services can be provided through wireless access

points installed at the selected points. Due to the non-continuous network coverage of

the wireless access points, which are deployed at the selected locations, wireless con-

nectivity becomes sporadic for mobile nodes. For streaming media applications, the

mobile nodes require high bandwidth [41]. To ensure smooth infotainment streaming

service, a mobile node needs to obtain sufficient bandwidth to download and cache

the multimedia data [42, 43]. When there are multiple mobile nodes connected to a

wireless access point at the same time, the transmission bandwidth has to be shared

among the mobile nodes. The wireless access point must be able to allocate the

available bandwidth to different mobile nodes optimally.

Multiuser bandwidth allocation problem in communication networks can be solved

by game-theoretic mechanisms. C. Wu, B. Li, and Z. Li [44] presented a model of

bandwidth auction game for multi-overlay peer-to-peer streaming applications. This

auction model uses decentralized strategies in order to allocate bandwidth to peers

and to minimize the streaming cost of the system. An auction model with a varying

reserve price was proposed by S. Baskar et al. [45]. This auction model is based on

the progressive second price model [46]. The variation of the reserve price depends
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on the demand for Internet bandwidth of the buyers. This mechanism was shown to

result in increased revenue for the Internet service provider.

In this chapter, we present a game-theoretic auction mechanism to solve the prob-

lem of bandwidth allocation among mobile nodes in wireless networks. In the pro-

posed game, we consider both cooperative and noncooperative behaviors among mo-

bile nodes. Neighboring mobile nodes owned by the same owners (i.e., in Intelligent

Transportation Systems (ITS), buses equipped with proxy gateways for data trans-

fer are owned by the same transportation service provider (TSP)) form mobile node

groups. The base station or wireless access point allocates its available bandwidth

based on bids from the mobile node groups. Each mobile node group is rational and

selfish to maximize its profit. They are allowed to submit bids in each round of bid-

ding if they are not satisfied with their current allocated portions of bandwidth. The

auction ends when all mobile node groups are satisfied with their allocated amount

of bandwidth.

The organization of the rest of the chapter is as follows. Section 3.2 describes

the system model and assumptions. The auction model is presented in Section 3.3.

Section 3.4 presents numerical study on the proposed auction game and Section 3.5

concludes this chapter. Note that the list of symbols used in this chapter is shown in

Table 3.1.



41

3.2 System Model and Assumptions

Table 3.1. List of symbols used in Chapter 3
Symbol Definition

B The amount of data (Mbits) currently available in the gateway of a mobile node
Bij The amount of data (Mbits) currently available in the gateway of mobile node j in

group i
BRi(.) The best response function for mobile node group i

�b The vector containing the bids (bi) from all mobile node groups
�b−i The vector containing the bids offered by all mobile node groups except mobile node

group i
�b∗ The vector containing the Nash equilibrium (i.e., the bids) of the bandwidth alloca-

tion game
bi The bid from mobile node group i

Cij(.) The cost function for mobile node j in group i
�g The vector containing the allocated amounts of bandwidth to all mobile node groups
gi The allocated amounts of bandwidth to mobile node group i
i The index of a group of mobile nodes
j The index of a mobile node in each group
M The set of indices of mobile node groups
M The number of mobile node groups connected to a wireless access point
Ni The set of indices of mobile nodes in group i
ni The number of members in group i
Pi The payoff for mobile node group i
Pij The payoff for mobile node j in group i
pi The price per unit of downloaded data ( monetary units (mu)/Mbits)
qi The total required amount of bandwidth from group i
ru The total playout rate
ruij The total playout rate of mobile node j in group i
rp The physical data rate
rw) The required rate of a mobile node
rwij The requested rate by mobile node j in group i
S(.) The user’s satisfaction function, given an service interruption interval
ton The mean time intervals during which a mobile node remains in state “online”
tonij The mean time interval during which mobile node j in group i in state “online”
toff The mean time intervals during which the mobile node remains in state “offline”
toffij The mean time interval during which mobile node j in group i in state “offline”
toutij The time interval during which the service interruption of mobile node j in group i

occurs
U(.) The utility function for a mobile node
Vij(.) The valuation function for mobile node j in group i
W The transmission bandwidth available at a wireless access point (Mbps)
ε The initial price of downloaded data (mu/Mbits)
δi The weight corresponding to the cost function for mobile node group i

α and γ The constants indicating the scale and the shape of the utility function
σi The constant indicating the scale of the user dissatisfaction function of mobile node

group i
μ The steepness of the Sigmoid function (i.e., the user’s satisfaction function)
β The acceptable region of operation of the Sigmoid function (i.e., the user’s satisfac-

tion function)
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Consider a public wireless network which offers Internet access to the commuting

customers (Figure. 3.1). The Internet connection is available at wireless access points

sporadically deployed throughout the city (e.g., at traffic lights, bus stations, or bus

transfer points). The mobile nodes are divided into groups and the mobile nodes

in a group are owned by the same owner. To ensure smooth uninterrupted Internet

access, a caching system and a WiFi transceiver is installed in each mobile node. The

data stored in the caching system is unique and is retrieved in a FIFO manner. The

mobile node downloads and caches data from a wireless access point when the mobile

node is connected to the wireless access point and retrieve data from the caching

system when the mobile node is in either “online” or “offline” to a wireless access

pointstate. The mean time intervals during which the mobile node remains in each

state are represented by variables ton and toff , respectively.
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Figure 3.1. Schematic diagram shows mobile nodes connected to a wireless access
point.

We assume that the data stored in the buffer is retrieved at a total playout rate ru

during the time period ton + toff . Let rp denote the physical data rate (e.g., 2 Mbps,

11 Mbps, or 54 Mbps for IEEE 802.11-based radio). At the wireless access point , the

rate (rw) at which each mobile node needs to download and cache the data without

any service interruption during time period ton + toff is calculated as follows:

rw ≥ min

(
rp,max

(
0, ru +

rutoff −B

ton

))
(3.1)
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where B is the amount of data (Mbits) currently available in the proxy buffer when

the mobile node begins downloading and caching data from the wireless access point.

3.3 Auction Model

Our main interest is the competition among mobile nodes to download data at the

wireless access point when the total amount of requested bandwidth from all mobile

nodes is greater than the link capacity. We can solve this problem by formulating it

as an auction game. Each mobile node tries to compete with other mobile nodes to

obtain its required amount of bandwidth. Then, the wireless access point allocates

the bandwidth by using its allocation strategy.

In a realistic scenario as shown in Figure. 3.1, some mobile nodes connected to the

same wireless access point could be owned by the same owner. Then, a mobile node

should pay the same price per unit of bandwidth as other mobile nodes owned by

the same owner. Moreover, each mobile node should be able to prorate the allocated

bandwidth among the group members in order to maximize the profit of the group. In

the auction model considered in this chapter, a wireless access point allows a mobile

node to cooperate with other mobile nodes owned by the same owner.

3.3.1 Bandwidth Allocation Strategy

The transmission bandwidth available at a wireless access point is W Mbps. Let

i be an index of a group of mobile nodes, i ∈ M = {1, · · · ,M}, where M is the

set of indices of mobile node groups and M is the number of mobile node groups

connected to a wireless access point. Let �b be a vector containing the bids (bi) from

all mobile node groups sent to the wireless access point. This vector is defined as

follows: �b = [b1 · · · bi · · · bM ]T . Assume that a leader mobile node is selected for

each group. The leader of each mobile node group sends the first bid to the wireless

access point who is the auctioneer. The first bid is composed of the total required

amount of bandwidth from the group (qi) and the price per unit of downloaded data

(pi monetary units (mu)/Mbits), and the number of members in the group (ni):

b1i = (qi, pi, ni) (3.2)
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where 0 < qi ≤ W , pi ≥ ε, ni > 0, qi =
∑ni

j=1 r
w
ij. Let ε be the initial price of

downloaded data (mu/Mbits) defined by the wireless access point. Here j denotes

the index of a mobile node in group i, j ∈ Ni = {1, · · · , ni}, where Ni is the set

of indices of mobile nodes in group i. rwij is the requested amount of bandwidth by

mobile node j in group i.

The wireless access point defines its allocation strategy to be proportionally fair by

weight [47]. After all bids are reported to the wireless access point, then the wireless

access point determines an allocation �g = [g1 · · · gi · · · gM ]T , where �g is the vector

containing the allocated amounts of bandwidth to the mobile node groups. That is,

gi = min

(
qi,

nipi∑M
i=1 nipi

W

)
. (3.3)

3.3.2 Bidding Strategy

The bidders who obtain their required bandwidth will not submit new bids in the

next round of bidding. If all the bidders are satisfied, the game stops. However, if

some of them are not satisfied, they can submit new bids in the next round. Only

new “willing-to-pay” prices are reported to the auctioneer (i.e., bi = (pi)).

After this point, their payoffs are considered in order to make the decision whether

to further bid or not. The payoff function is found as the difference between the valu-

ation of the object and the cost of the object. For an allocated amount of bandwidth

gij from the wireless access point, the payoff for mobile node j in group i is given by

Pij(bi, �b−i) = Vij(gij(�b))− δiCij(gij(�b), pi) (3.4)

Pi(bi, �b−i) = max

ni∑
j=1

Pij(bi, �b−i) (3.5)

subject to

gi =

ni∑
j=1

gij

0 ≤ gij ≤ rwij
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and

0 ≤ gij ≤ gi, ∀i ∈ M, ∀j ∈ Ni

where the vector �b−i contains the bids offered by all mobile node groups except

mobile node group i, Vij(.) is the valuation function, the constant δi denotes the

weight corresponding to the cost function for mobile node group i, and Cij(.) is the

cost function for mobile node j in group i. From (3.4) and (3.5), the bandwidth

assigned to mobile node j in group i (gij) is computed by maximization of the total

payoff of the group, which can be done numerically.

The cost function, which is the price paid for downloading data, is given by

Cij(gij, pi) = tonij gijpi (3.6)

where tonij is the time interval during which mobile node j in group i is connected to

the wireless access point. The valuation function is given by

Vij(gij) = tonij U(gij) + σiS(t
out
ij ) (3.7)

where U(.) the utility function [48], S(.) is the user’s satisfaction function [49] which

is a Sigmoid function, toutij is the time interval during which the service interruption

of mobile node j in group i occurs, and σi is a constant indicating the scale of the

user dissatisfaction function of mobile node group i. For an allocated bandwidth of

w, the utility function for a mobile node is defined as follows:

U(w) = α log(1 + γw) (3.8)

where α and γ are constants indicating the scale and the shape of the utility function.

The satisfaction function, which is used to approximate the satisfaction with respect

to the interruption time, is defined as follows:

S(τ) = 1− 1

1 + exp(−μ(t− β))
(3.9)

where τ is the service interruption interval, μ is the steepness of the Sigmoid function,

and β is the acceptable region of operation. In the rest of the chapter β is assumed
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to be 0.

The service interruption interval during when mobile node j in group i is connected

to the wireless access point before it connects to another wireless access point (i.e., a

time period of ton + toff) is computed as follows:

toutij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
(
0,
(
tonij + toffij

)− (Bij

ruij
+

tonij gij

ruij

))
,

tonij ≤ Bij

ruij

max
(
0, tonij −

(
Bij

ruij
+

Bijgij
ruij

(
1

ruij−gij

)))
+ toffij −max

(
0,

Bij+gijt
on
ij −ruijtonij
ruij

)
,

tonij >
Bij

ruij
& gij < ruij

max
(
0, toffij −

(
(gij−ruij)(tonij −Bij/r

u
ij)

ruij
+

Bijgij/r
u
ij

ruij

))
,

tonij >
Bij

ruij
& gij ≥ ruij

(3.10)

where toffij is the time interval during which mobile node j in group i is on the road,

Bij is the amount of data currently available in the gateway of mobile node j in group

i, and ruij is the rate at which data is retrieved from the gateway of mobile node j in

group i.

3.3.3 Nash Equilibrium

The Nash equilibrium, which is a solution of this auction game, can be obtained by

using the best response function. The best response function is the best strategy of

one player given others’ strategies. That is,

BRi(�b−i) = argmax
bi

Pi(bi, �b−i). (3.11)

The auction ends when all bidders obtain their best strategies given others’ best

strategies. The best strategy of bidder i (b∗i ) is the strategy giving the maximum pay-

off. Let vector �b∗ = [b∗1 · · · b∗i · · · b∗M ]T denote the Nash equilibrium of this bandwidth

allocation game. Then

b∗i = BRi(�b
∗
−i). (3.12)



47

3.3.4 Procedure of the Auction Game

First, the leaders of the mobile node groups submit their first bids to the wireless

access point. The bidding price can be set to ε which is the given initial price from

the wireless access point. In the first bid, the total amount of bandwidth that can

be asked as part of the bid can be calculated as the sum of the minimum required

bandwidth for the mobile nodes to avoid any service interruption. That is,

qi = min

(
W,

ni∑
j=1

min

(
rp,max

(
0, ruij +

ruijt
off
ij −Bij

tonij

)))
. (3.13)

After all groups obtain the allocated bandwidth from the wireless access point, if

some mobile node groups are not satisfied (i.e., do not have the best bidding strategies

yet), they report new bids (i.e., new prices) to the wireless access point. The auction

process continues until all mobile nodes are satisfied with their received amount of

bandwidth which is an equilibrium point and then the game ends.

In a practical environment, a mobile node may not be able to observe the payoffs

of other mobile nodes except mobile nodes owned by the same owner. Also, the

current bidding strategy adopted by each group of mobile nodes may be unknown.

Hence, each group of mobile nodes should learn the strategy on choosing the bidding

price. Therefore, a distributed price adjustment algorithm is required for a mobile

node group in order to reach the Nash equilibrium of the auction game.

Let bi[t] be the bid offered by mobile node group i at iteration t. The vectors �b[t]

and �b−i[t] are defined accordingly. Let us assume that mobile node groups update

their bids bi[t] at time t according to the best response. That is,

bi[t] = BRi(�b−i[t− 1]), ∀i ∈ M. (3.14)

To find the best response, mobile node groups need to know the amount of band-

width that will be obtained after a bidding price is reported to the wireless access

point. Even though the strategies (i.e., bidding prices) used by other mobile node

groups may not be known, each mobile node group is able to know the sum of bidding

prices of all others by using only local information and the allocation strategy of the
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wireless access point. Now, rewriting (3.3) as

gi =
nipi∑M

k=1,k �=i(nkpk) + nipi
W (3.15)

the sum of others’ bidding prices at iteration t can be obtained as

M∑
k=1,k �=i

(nkpk[t]) =
nipi[t]W − nipi[t]gi[t]

gi[t]
(3.16)

where gi[t] denotes the amount of bandwidth offered by the wireless access point to

mobile node group i after bid bi[t] is submitted at iteration t. After that, the best

response BRi(�b−i[t]) can be found.

Algorithm 1 Bidding algorithm.
1: t = 1.
2: b1i [t] = (qi, pi[t], ni), ∀i ∈ M is submitted to the wireless access point.
3: gi[t] is allocated to each group.
4: repeat
5: if gi[t] < qi
6: each group updates

∑M
k=1,k �=i(nkpk[t]).

7: t = t+ 1.
8: bi[t] = (BRi(�b−i[t− 1])).
9: else
10: t = t+ 1.
11: bi[t] = bi[t− 1].
12: end
13: gi[t] is allocated to each group.
14: until bi[t] = bi[t− 1], ∀i ∈ M.
15: gij of gi[t] is allocated to each mobile node of the group.

3.4 Numerical Study

In this numerical study, we apply this auction game model to the bandwidth alloca-

tion in vehicle-to-roadside (V2R) communications as an example. In V2R communi-

cations, data is transferred through the roadside base stations (RSBs), i.e., wireless

access points. That is, the mobile nodes shown in Figure. 3.1 are vehicles. The
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transportation service provider (TSP) installs a proxy gateway equipped with WiFi

transceiver in its vehicles. The streaming proxy gateway downloads data when the

vehicle is connected to the RSB.

3.4.1 Parameter Setting

We consider two groups vehicles (Group 1 and Group 2) with 2 vehicles in each group.

The time intervals during which the vehicles are connected to the RSB have average

values of ton11 = 30, ton12 = 30, ton21 = 25, and ton22 = 20 seconds. The time intervals

during which the vehicles are on the road have average values of toff11 = 90, toff12 = 75,

toff21 = 90, and toff22 = 80 seconds. The physical data rate of the all mobile nodes is rp

= 11 Mbps and the available bandwidth at the RSB is W = 12 Mbps. The playout

rate of Group 1 is ru11 = ru12 = 1 Mbps and the playout rate of Group 2 is ru21 = ru22

= 1.2 Mbps. Assume that the buffers at the gateways are empty for all vehicles, i.e.,

B11 = B12 = B21 = B22 = 0 Mbits. The values of the parameters α and γ in the

valuation function are assumed to be 15 and 5, respectively, for all the vehicles. The

values of μ and β in the satisfaction function are assumed to be 0.1 and 0, respectively.

The weights of the satisfaction function of both groups are σ1 = σ2 = 20. The weights

corresponding to the cost function of both groups are δ1 = δ2 = 0.1. The initial price

ε is 5 mu/Mbits. The first bidding price of both groups is ε mu/Mbits. The requested

amount of bandwidth of both groups, as computed using (3.13), is q1 = 7.50 Mbps

and q2 = 11.52 Mbps.

3.4.2 Payoff and Best Response

Figure. 3.2 shows the payoff and best response of Group 2 under different strategies

adopted by Group 1. When the Group 2 vehicles offer high price to the RSB, as

expected, the payoff increases. However, after a certain point this payoff decreases.

This is due to the fact that, the total cost to be paid is higher than the valuation of

the obtained bandwidth. The maximum payoff can be found and the strategy (i.e.,

bidding price) corresponding to this maximum payoff is defined as the best response

for Group 2. When the bidding price of Group 1 increases, the bidding price of

Group 2 becomes higher as well in order to obtain the best response and also the
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Figure 3.2. Payoff function and best response of Group 2 under different bidding
prices of Group 1.

payoff decreases since the cost of bandwidth sharing increases.

3.4.3 Nash Equilibrium

Figure. 3.3 shows the best response functions of Group 1 and Group 2. The Nash

equilibrium is located at the point where the best response functions of the two groups

intersect.

3.4.4 Bidding Iteration and Bandwidth Allocation

We apply the iterative algorithm in Section 3.3.4 to obtain the Nash equilibrium in

this two-group auction game. Each vehicle group increases its bidding price in each

bidding iteration. As shown in Figure. 3.4, the bidding prices of both the groups

converge to the solution within a few iterations. At the equilibrium, Group 1 bids

with a price of 7.46 mu/Mbits and obtains 6.17 Mbps of bandwidth while Group 2

bids with a price of 7.06 mu/Mbits and obtains 5.83 Mbps of bandwidth.
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Figure. 3.5 shows that the amount of bandwidth offered by the RSB to Group 2

increases when the bidding price of Group 2 increases. We observe that the amount

of bandwidth is unequally divided to each member since the allocation is based on

maximization of payoff. Next, we show the allocation of bandwidth at each bidding

iteration. As the bidding prices of both the groups vary, the offered amount of

bandwidth by the RSB also vary (Figure. 3.6).

3.5 Chapter Summary

We have presented an auction mechanism for bandwidth allocation among mobile

nodes for downlink communications. The auction game allows a mobile node to

cooperate with others mobile nodes owned by the same owner. Each group of mobile

nodes tries to maximize its payoff. On the contrary, each group tries to compete with

other groups by offering “willing-to-pay” prices to the wireless access point in order

to obtain its required amount of bandwidth. The wireless access point then manages

the groups’ requirements by using a fair allocation strategy. The Nash equilibrium

is a solution of the game and a distributed iterative algorithm has been presented to

obtain the solution.



54

Chapter 4

Distributed Resource Allocation in

Wireless Networks Under

Uncertainty and Application of

Bayesian Game

4.1 Introduction

Differently from the previous chapter, we present a game-theoretic Bayesian auc-

tion mechanism (also referred to as Bayesian auction game) for bandwidth allocation

among mobile nodes taking the mobility parameters and application quality-of-service

(QoS) requirements into account. First, problem of resource allocation with uncer-

tainty and different approaches to estimate and predict the values of uncertain pa-

rameters and their applications are briefly reviewed. Then, we focus on the game

theoretic approach to address the problem of resource sharing among multiple mobile

nodes. Different game theoretic models for resource allocation in wireless networks

and the related work in the literature are briefly discussed. To this end, we present

a game-theoretic Bayesian auction mechanism (also referred to as Bayesian auction

game) for bandwidth allocation among mobile nodes taking the mobility parameters

and application quality-of-service (QoS) requirements into account. In this game

model, a wireless access point allocates available bandwidth among mobile nodes

based on the bids from these nodes, while the mobile nodes make decisions on the

bids in a noncooperative and incomplete information environment. With incomplete
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information about other nodes (e.g., their bandwidth and QoS requirements, and mo-

bility pattern), each rational mobile node will aim at maximizing its expected utility.

In this bandwidth auction game, a node determines its bidding strategy based on

the minimum bandwidth required to satisfy the target QoS requirements given that

the node does not know the exact values of related parameters for other nodes. The

solution of this game model is the Bayesian Nash equilibrium (BNE) which has the

property that with incomplete information, none of the nodes can improve its util-

ity given that the other nodes do not change their bidding strategies. A distributed

algorithm to obtain the BNE is presented.

The organization of the rest of the chapter is as follows. Section 4.2.2 describes

different approaches to solve the resource allocation problem in wireless networks

under uncertainly. Section 4.3 provides an overview of the Bayesian game model.

Section 4.4 describes the system model and assumptions. The auction model is pre-

sented in Section 4.5. Section 4.6 presents numerical results on the proposed auction

game and Section 4.7 concludes the chapter. Note that the list of symbols used in

this chapter is shown in Table 4.1.

4.2 Distributed Resource Allocation in Wireless

Networks Under Uncertainty

4.2.1 Resource Allocation with Uncertainty

In a wireless network, mobile users may have different QoS requirements which need

to be satisfied using the limited available radio resources (e.g., radio bandwidth).

Therefore, resource allocation mechanisms need to be optimized. Radio resources

in a wireless network can be allocated either in a centralized or distributed fashion.

With centralized resource allocation, a centralized controller (e.g., a base station) col-

lects information about the QoS requirements of the mobile nodes and then allocates

the network resources to the mobile nodes accordingly. Although centralized radio

resource allocation schemes can achieve optimal network performance, they suffer

from high computational complexity, signaling overhead, and scalability problems.

Alternatively, since the decisions can be made locally without exchanging all the
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information among the nodes and the network controller, distributed resource alloca-

tion schemes are more scalable, and are viable for networks without any centralized

controller (e.g., an ad hoc network). Nevertheless, distributed resource allocation has

to address the incomplete information and uncertainty issues for decision making.

In a wireless and mobile communication environment, uncertain or unknown

network parameters, which are involved in distributed resource allocation, include

channel state information, number of competing mobile nodes, bandwidth and QoS

requirements of the mobile nodes, and mobility patterns etc. The parameters are

uncertain or unknown due to the lack of any information collector, and/or selfish

behaviors of the mobile nodes, and/or the random nature of the system. As an ex-

ample, consider the uplink transmission scenario in a cellular wireless system in a

fading environment where multiple mobile nodes transmit in the uplink direction to

the same base station simultaneously. The objective of each mobile node is to maxi-

mize its transmission rate subject to the power constraint. However, information of

other nodes (e.g., number of mobile nodes competing for the resources, channel qual-

ity, QoS requirements, and mobility patterns) is private. Therefore, to achieve the

optimal or nearly optimal solution of the resource allocation problem, the values of

unknown or uncertain parameters have to be estimated. Different mathematical and

statistical techniques can be adopted for this estimation, and subsequently, decisions

can be made in a distributed manner.

4.2.2 Approaches to Solve the Resource Allocation Problem

Under Uncertainty

In the following, we discuss different approaches to address the uncertainty and to

support decision making process in resource management in multi-access wireless

networks.

• Kalman Filter

Kalman filter measures the value of an unknown parameter which could be noisy,

and then makes the estimation using the previous original measured value and

the previous estimated value [52]. It can be used for linear dynamic systems,

and sequential measurements are required for this. A Kalman filter is used to
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estimate the number of competing nodes in the IEEE 802.11 wireless local area

networks in both saturated and non-saturated conditions [53]. Since perfor-

mance of the IEEE 802.11 protocol is sensitive to the number of contending

mobile nodes, to maximize the network performance, the backoff window can

be adjusted optimally according to the number of contending mobile nodes. An

extended Kalman filter is built based on the relationship between the number of

contending mobile nodes and the packet collision probability. A measurement

model is used to estimate the number of contending mobile nodes at each time

step while mobile nodes that have been activated and/or terminated are con-

sidered as noise. In most of the Kalman filter applications, the noise is assumed

to be a stationary process with a constant variance. The Kalman filter can

estimate the number of contending mobile nodes close to the actual number.

• Maximum Entropy Principle

The principle of maximum entropy is used to obtain least-biased statistical in-

ference when information available about the possible outcomes or data are in-

sufficient. The principle of maximum entropy is a general, flexible, and efficient

technique to assign probability distribution to any problem of inference when

information is incomplete. Hence, it has been widely used in many different

disciplines including wireless communications [54]. The probability distribution

is chosen to maximize information entropy (i.e., a measure of the uncertainty).

However, finding the probability distribution maximizing information entropy

subject to the information constraints is normally complex. M. Johansson and

M. Sternad [54] developed a channel allocation to maximize system throughput

for multiple mobiles nodes while the QoS requirements (i.e., minimum rate con-

straints and priorities of mobile nodes) are satisfied. However, the bit rates of

users sharing the channels and transmission capacities of the available channels

are uncertain. The maximum entropy principle is applied to this channel allo-

cation problem to find the optimal solution given partial statistical knowledge

of both the bit rates and capacities.

• Bayesian Learning Bayesian learning is a statistical learning approach based

on Bayes’ theorem in which the probability is used to describe uncertainty of

data being learned [55]. The prior probability distribution about the uncertain
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data is first initialized. After the data has arrived and been observed, the a

priori distribution is updated to be a posterior distribution using Bayes’ Rule.

Then, the estimate of unknown data can be expressed as its expected value

given the posterior distribution or the value with the highest probability. The

Bayesian method can be used to provide solutions to predict future value after

the data is learned. D. H. T. Huang, S. H. Wu, and P. H. Wang [56] applied

the concept of Bayesian learning for cooperative spectrum sensing and locating

the primary users in a cognitive radio network. The number of primary users,

the locations of the primary users, and their power profiles are used for radio

resource management in the cognitive radio network; however, these parame-

ters are imperfectly known in a real scenario. The transmit power and location

information of primary users (e.g., TV transmitters) used to build the proba-

bility model are assumed to be measured and reported to the cognitive radio

base stations by customer premise equipments. Then, a Bayesian-based sensing

approach estimates the unknown parameters of the primary users and updates

the beliefs at each time step. Bayesian learning approach is suitable to estimate

unknown parameters when some information about the uncertain parameters

can be made available over time.

• Partially Observable Markov Decision Process In a wireless network, some pa-

rameters (e.g., the number of users, power, and channel occupancy) dynamically

vary over time. Therefore, dynamic optimization is essential for a wireless net-

work to maximize long-term utility (e.g., defined as the function of throughput

and delay) of the users (or the system). Partially observable Markov deci-

sion process (POMDP) [57] is an extension of Markov decision process (MDP)

which considers the uncertainty of system states from the perspective of a de-

cision maker to maximize the long-term utility of the decision maker. In a

POMDP, the current state (which is not completely observable) changes to an-

other state based on a transition probability estimated from observations. Q.

Zhao et al [58] applied POMDP to find the optimal channel sensing and ac-

cess strategy of secondary users in a multi-channel cognitive radio system. The

availability of each sensed channel (i.e., idle or occupied) is considered as a state

which is incompletely observed but the state transition probability is assumed
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to be known. Each user obtains the optimal proportion of bandwidth maxi-

mizing her long-term utility based on its belief of channel availability and past

observations.

All of the above statistical methods are suitable for a system with single player

and one objective. Bayesian learning is suitable to estimate parameters in dynamic

systems when some information can be obtained over time. Kalman filter is typically

suitable for multiple sequential measurements in a linear dynamical system rather

than a single measurement. Maximum entropy principle is more general framework

used to assign probability distributions to unknown random variables. Bayesian learn-

ing, Kalman filter, and maximum entropy principles provide only methods to estimate

the value of unknown parameters, but they do not provide any mechanisms to ob-

tain the optimal solutions for a system with individual agent or multiple agents. In

addition, the above approaches have their own limitations. For example, POMDP

requires the system to have Markov property. Also, POMDP suffers from the curse

of dimensionality problem in which the complexity of the model grows rapidly with

the number of states and actions.

4.2.3 Game-theoretic Model with Incomplete Information

Game theory can be used in a situation where information about characteristics of the

other nodes is incompletely known to a node. A game is called complete information

game if the payoffs and set of strategies of the players are completely known by all

the players. On the other hand, in an incomplete information game, the information

is unknown or partly known by other players. An incomplete information game can

be modeled as a Bayesian game in which the outcome of the game can be predicted

by using Bayesian analysis. A game-theoretic model with incomplete information can

be seen as an extension of the Bayesian learning approach. In this case, a probability

distribution is used to express the belief about uncertain or unknown information of

the players or nodes, which is referred to as the type of the player. Then, the solution

in terms of equilibrium is obtained. Game theory has many applications for resource

allocation in distributed wireless networks (e.g., ad hoc networks [60]).
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4.3 Bayesian Game Model for Distributed Resource

Allocation Under Uncertainty

Most of game theoretic approaches for radio resource management assume that, in a

game, all information needed by any player to make a decision, is known correctly.

However, in a real situation, this assumption may not be true. Some important in-

formation may be uncertain or unknown by the decision makers (i.e., players). An

incomplete information game can be modeled as a Bayesian game in which Bayesian

analysis is used to predict the outcome of the game. The advantages of using a

Bayesian game to solve the problem of distributed resource allocation, when informa-

tion is incomplete, are as follows: i) A Bayesian game can relax the assumption that

all key required information are completely known. Bayesian game allows players to

have beliefs over the uncertainty of the other players’ types. This is the main advan-

tage of a Bayesian game over other game models. ii) A Bayesian game inherits the

theoretical basis of game theory. Therefore, it is a suitable tool to design a distributed

resource allocation mechanism.

A Bayesian game is generally composed of a set of players, a set of actions, types of

players, payoff function for each player, and probability distributions associated with

the types. The equilibrium solution of such a game is called Bayesian Nash equilibrium

(BNE). Similar to the Nash equilibrium in a complete information game, a Bayesian

Nash equilibrium can be obtained in which each player seeks for a strategy profile

that maximizes its expected payoff given its beliefs about the types and strategies of

other players.

To illustrate the application of Bayesian game for distributed resource allocation

under uncertainty, we consider the problem of radio resource sharing in a public

wireless network.
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Table 4.1. List of symbols used in Chapter 4
Symbol Definition

B The maximum number of packets of a queue (i.e., buffer)
Bi The action set (i.e., possible bids) for player or mobile node i

BRi(.) The best response function of mobile node i
�b The vector containing the bids (bi) from all mobile nodes
�b−i The vector containing the bids offered by all mobile nodes except mobile node i
bi The bid from mobile node i
C The amount of bandwidth available at a wireless access point
di The distance between vehicle i and the RSB in meters

fT (.) The probability function of the type profile of a player
fS(.) The speed of a vehicle can be modeled as a random variable with normal distribution
�g The vector containing the allocated amounts of bandwidth to all mobile nodes
gi The allocated amounts of bandwidth to mobile node i
i The index of each mobile node
L The packet length
l The transmission range in meters
M The number of mobile nodes connected to a wireless access point
P The finite state transition matrix of a queue

Punder The required buffer underrun probability
pbu The buffer underrun probability
Pi The payoff for mobile node i
pi The offered price per unit of bandwidth per unit of time (monetary unit

(mu)/s/MHz)
qi The required bandwidth of mobile node i
Q The inner square matrix of P representing the transitions between the online state

and the offline state
rp The maximum physical rate of the transmitter
ru The total playout rate (packets/second)
rw The required rate of a mobile node (packets/second)
ron The rate for which a mobile node remains in state “online”
roff The rate for which a mobile node remains in state “offline”
S The mobile node’s state (i.e., either online or offline)
s The speed of a vehicle
Ti Player or mobile node i’s type set which is the time interval during which the player

wants to connect to the wireless access point
ti The time interval that mobile node i requests to connect to wireless access point
�t−i The vector of time intervals for all mobile nodes except mobile node i to be in state

“online”
ton The mean time intervals during which a mobile node remains in state “online”
ton,i The mean time for mobile node i to be in state “online”
toff The mean time intervals during which a mobile node remains in state “offline”
tbu The proportion of service interruption time during period ton + toff
Ui(·) The utility function for mobile node i
X The buffer occupancy state
�π The stationary probability vector
�π(x) The probability vector composed of two stationary probabilities that there are x

packets in system
α and γ The constants indicating the scale and the shape of the utility function
π(x,0) The probability that there are x packets in system when a mobile node is in the

offline state
π(x,1) The probability that there are x packets in system when a mobile node is in the

online state
φ The spectral efficiency
τ The minimum price for a unit of bandwidth which is acceptable to the wireless

access point
ε The reserved price (mu/MHz) defined by the wireless access point
δi The weight corresponding to the cost for mobile node i
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4.4 System Model and Assumptions

4.4.1 A Public Wireless Network

We consider a public wireless network which supports streaming applications for

mobile users through the wireless access points sporadically deployed throughout the

city (e.g., at shops or bus transfer points). To ensure seamless playback, a proxy

caching system, (e.g., data buffering mechanism) is installed in the mobile devices

(Figure 4.1). The pre-fetched data stored in the caching system in a mobile node is

unique and is retrieved by the user in a FIFO fashion. A mobile node is equipped with

WiFi transceiver to download data when it is connected to the wireless access point.

This cached data is used when the mobile node is not in the coverage of wireless

access point. A mobile node can be in either “online” (i.e., connected to the wireless

access point) or “offline” (i.e., not connected to the wireless access point) state. The

time intervals during which the mobile node remains in each state are assumed to be

random with means ton and toff , respectively [43].
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Figure 4.1. Schematic diagram of a public wireless network. A mobile node caches
the streaming content when connected to a wireless access point.

We assume that the data stored in the buffer is retrieved at a total playout rate

ru packets/second during the time period ton + toff . At the wireless access point, the

minimum rate (rw packets/second) at which each mobile node needs to download the

data given the target buffer underrun probability, can be obtained analytically from

the queuing model which will be presented later in this chapter.
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We consider the competition among nodes to download continuous data from a

wireless access point when the total amount of requested bandwidth from all mobile

nodes is greater than the link capacity. We analyze this competitive situation among

nodes in bandwidth auction using the Bayesian noncooperative game. The Bayesian

Nash equilibrium (BNE) is obtained from this game model. Note that each node

acts noncooperatively. Intuitively, the BNE might not be optimal from a centralized

utility perspective but BNE ensures that none of the nodes changes its strategy to

improve the payoff as long as the other nodes do not do so. In addition, BNE can be

obtained in the decentralized fashion.

4.4.2 Queueing Analysis for a Mobile Node’s Buffer Occu-

pancy

For the proxy caching system, a queueing model based on continuous-time Markov

chain can be formulated [43, 65]. This queueing model is used to obtain the minimum

transfer rate from a wireless access point to a mobile node, which is equivalent to the

minimum arrival rate to the queue. This minimum transfer rate is obtained to satisfy

the target buffer underrun probability. This minimum transfer rate will be used by

the mobile node to bid for bandwidth from the wireless access point.

The state space of the queueing model can be expressed as a two-dimensional

state space as follows:

Ψ = {(X,S);X ∈ {0, · · · , B + 1}, S ∈ S} (4.1)

where S denotes the mobile node’s state (i.e., either online or offline) and X is the

buffer occupancy. The maximum number of packets in the system is B + 1 packets

including one packet in service (i.e., being downloaded by user). The mobile node

is in the online state, the mean duration of which is ton seconds, when it is in the

transmission range of an wireless access point. Therefore, the state transition rate

from online state to offline state is roff = 1/ton. The mobile node is in the offline state,

the mean duration of which is toff seconds, when it is not in the transmission range

of an wireless access point. Therefore, the state transition rate from offline to online

is ron = 1/toff . When the mobile node is in the online state, data is downloaded from
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the wireless access point to the buffer of the mobile node following a Poisson process

with average rate rw packets/second. The packets stored in the proxy caching system

are played back by user’s media applications a with rate ru packets/second.

4.4.2.1 Transition Matrix

Let P denote the finite state transition matrix of the queue defined as follows:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 E0

C0 A1 A0

A2 A1 A0

. . . . . . . . .

A2 A1 E1

C1 B1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (4.2)

The dimension of the square matrix P is (B + 2) × (B + 2) and matrix P has

a block-tridiagonal structure. Let Q denote the inner square matrix of P. Q ∈
{B0,E0,C0,A0,A1,A2,E1,C1,B1} represents the transitions between the online state

and the offline state. These inner square matrices can be defined as follows:

B0 =

[
−ron ron

roff −rw − roff

]

E0 = A0 = E1

[
0 0

0 rw

]

C0 = A2 = C1

[
ru 0

0 ru

]

A1 =

[
−ru − ron ron

roff −ru − rw − roff

]

B1 =

[
−ru − ron ron

roff −ru − roff

]
.
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Given transition matrix P of the queue, the stationary probability vector �π can be

obtained by solving the following equation:

�πTP = �0T (4.3)

where �πT�1 = 1 and �π =
[
�π(0) · · · �π(x) · · · �π(B+1)

]T
. �0 is a vector of zeros,

and �1 is a vector of ones. �π(x) is the probability vector composed of two stationary

probabilities π(x,0) and π(x,1) which are the probabilities that there are x packets in

system when the mobile node is in the offline state and in the online state, respectively.

4.4.2.2 Buffer Underrun Probability

Let pbu denote the buffer underrun probability and tbu denote the proportion of service

interruption time during period ton + toff . Then, we obtain

pbu = π(0,0) + π(0,1). (4.4)

Let the buffer underrun probability be defined as a function of packet arrival

rate (i.e., required transfer rate from wireless access point to mobile node in pack-

ets/second) as follows: pbu(rw) where pbu(rw) can be found by (4.4). To maintain the

buffer underrun probability at the target level Punder, an optimization problem can

be formulated to obtain the minimum transfer rate as follows:

min rw (4.5)

subject to pbu(rw) ≤ Punder (4.6)

where the decision variable is rw. The optimal solution r∗w (i.e., minimum transfer

rate) can be obtained numerically by using a search method.

With the adaptive modulation and coding as shown in Table 4.2 [66], the amount

of required bandwidth can be obtained from

q = min

(
r∗wL
φ

,
rp
φ

)
(4.7)

where φ is the spectral efficiency and q is the required bandwidth. We assume that
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Table 4.2. Required SNR and transmission rate using adaptive modulation and con-
volutional coding [66].

Mode Rate Modulation Convolutional SNR (dB) for
Coding Rate BER ≤ 10−5

1 1BW QPSK 1/2 4.09
2 1.33BW QPSK 2/3 5.86
3 1.5BW QPSK 3/4 6.84
4 1.75BW QPSK 7/8 8.44
5 2BW 16QAM 1/2 10.04
6 2.66BW 16QAM 2/3 12.13
7 3BW 16QAM 3/4 13.29
8 3.5BW 16QAM 7/8 15.01
9 4BW 64QAM 2/3 17.70
10 4.5BW 64QAM 3/4 18.99
11 5.25BW 64QAM 7/8 21.06

all packets have the same length L, and rp is the maximum physical rate of the

transmitter.

The required bandwidth is used to determine the bidding strategy in the band-

width auction game as shown in Figure 4.2.

Figure 4.2. Diagram showing the interaction between queueing model and bandwidth
auction.
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4.5 Noncooperative Game Formulation for Band-

width Auction

We present a noncooperative game with incomplete information for bandwidth auc-

tion. In this game, a mobile node competes with other mobile nodes to obtain the

required amount of bandwidth by optimizing the bidding strategy. A distributed al-

gorithm to obtain the Bayesian Nash equilibrium, which is the solution of this game,

is also presented.

4.5.1 Bandwidth Allocation Strategy

The amount of bandwidth available at a wireless access point is denoted as C MHz.

Let i denote an index of a mobile node, i ∈ M = {1, . . . ,M}, whereM is the set of mo-

bile nodes and M is the total number of mobile nodes connected to an wireless access

point. Let �b denote a vector of bids from all mobile nodes submitted to the wireless

access point. This vector is defined as follows: �b =
[
b1 · · · bi · · · bM

]T
. Each

mobile node sends the first bid to the wireless access point (i.e., auctioneer). The

first bid is defined as: b1i = (pi, ti), for pi ≥ τ , where pi is the offered price per unit of

bandwidth per unit of time (monetary unit (mu)/s/MHz), and ti is the time interval

that the mobile node requests to connect to wireless access point (i.e., ti > 0). τ is

the minimum price for a unit of bandwidth which is acceptable to the wireless access

point.

Assume that mobile node i submits ti = ton,i where ton,i is the average time

for the mobile node to be in online state. Let ε be the reserved price (mu/MHz)

defined by the wireless access point. The access point will adjust its reserved price

due to the variation of bandwidth demand. The bandwidth allocation policy based

on proportional fairness [47] is used by the wireless access point where the weight

is the price per unit of bandwidth. After all the bids are submitted to the wireless

access point, the wireless access point determines the bandwidth allocation vector

�g =
[
g1 · · · gi · · · gM

]T
, where gi is the amount of allocated bandwidth to
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mobile node i. This allocated bandwidth is obtained from

gi(ti,�t−i) =
piti∑M

j=1 (pjtj) + ε
C (4.8)

where �t−i is the vector of time intervals for all mobile nodes except mobile node i to

be in online state, i.e., �t−i =
[
· · · tj · · ·

]T
for j �= i.

4.5.2 Bidding Strategy

The mobile nodes (i.e., bidders) which are previously allocated with the required

bandwidth will not submit new bids in the new bidding round. If all the bidders

are satisfied (i.e., reaching the equilibrium solution), the game stops. However, if

some mobile nodes are not satisfied with the allocated bandwidth, they can submit

new bids in the next round. Only new “willing-to-pay” prices are reported to the

auctioneer (i.e., bi = (pi)). A Bayesian noncooperative game for bandwidth auction

can then be formulated as follows:

• Players are M mobile nodes. A set of player is M = {1, . . . ,M} .

• Action set is B = B1 × · · · × BM (‘×’ is the Cartesian product), where Bi =

{τ, bmax
i } denotes the action set (i.e., possible bids bi ∈ Bi) for player i. The

bids have nonnegative values in the range τ and bmax
i . τ is the minimal bidding

price defined by the wireless access point and bmax
i is the maximum bidding

price that mobile node i can pay.

• Type set is T = T1 × · · · × TM , where Ti = {tmin, tmax} denotes a player’s

type set which is the time interval during which the player wants to connect

to the wireless access point (i.e., ti ∈ Ti). Since a time slot-based allocation

is considered, mobile nodes’ types are discrete values between tmin and tmax,

where 0 < tmin < tmax. tmin is the minimum connection period and tmax is the

maximum connection period before the connection is terminated. Note that

each mobile node can observe its own type but not the types of other mobile

nodes.

• Probability function is the conditional probability assigned to the type profile

denoted as fTi
(ti). Let fTi

(ti), ti ∈ Ti denote the probability function of the type
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profile of each player i (i.e., the time interval during which the player wants to

connect to the wireless access point).

• Payoff is defined as the difference between the utility of allocated bandwidth

and the cost paid to wireless access point. For allocated bandwidth gi from the

wireless access point, the payoff of mobile node i is given by

Pi(bi, �b−i, ti,�t−i) = tiUi(gi(ti,�t−i))− δigi(ti,�t−i)piti (4.9)

where �b−i and �t−i denote, respectively, the vector of bids and the vector of time

intervals to be in online state for all mobile nodes except mobile node i. δi is

the weight corresponding to the cost for mobile node i. This parameter can

be chosen according to the preference of mobile nodes (e.g., according to the

application). Ui(·) is the utility function of bandwidth. We assume this utility

function to be logarithmic [48], which is given by

Ui(gi(ti,�t−i)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α log(1 + γgi(ti,�t−i)),

for gi(ti,�t−i) < qi

α log(1 + γqi),

for gi(ti,�t−i) ≥ qi

(4.10)

where α and γ are the constants indicating the scale and the shape of the utility

function, respectively. For the function defined in (4.10), the utility becomes

constant (i.e., saturated) if the allocated bandwidth is equal to or greater than

the required bandwidth qi. Note that Ui(gi) is also a function of ti due to the

allocation policy of the auctioneer gi.

The mobile nodes (i.e., bidders) which are previously allocated with the re-

quired bandwidth will not submit new bids in the new bidding round. If all

the bidders are satisfied (i.e., the equilibrium solution is reached), the game

terminates. However, if some mobile nodes are not satisfied with the allocated

bandwidth (i.e., allocated bandwidth is smaller than the required bandwidth),

they can submit new bids in the next round. Only new “willing-to-pay” prices

are reported to the auctioneer.
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4.5.3 Optimal Bidding Strategy and Bayesian Nash Equilib-

rium

To obtain the Bayesian Nash equilibrium (BNE), the best bidding strategy of mo-

bile node i is defined as the strategy yielding the highest expected payoff given the

strategies of other players. This BNE is obtained as follows:

BRi(�b−i, ti,�t−i) = argmax
bi

E[Pi(bi, �b−i, ti,�t−i)]

= argmax
bi

∑
j

f
′j
T (�t−i)P

j
i (bi,

�b−i, ti,�t−i) (4.11)

where �t−i is the vector of time intervals to be in online state by all mobile nodes

except mobile node i, and f
′j
T (�t−i) is the joint probability for index j of the different

events of other mobile nodes’ types. Since the best response is obtained based on

the joint distribution of the time intervals for the mobile nodes to be in online state,

the accuracy of the distribution will affect the best response function. Note that

the joint probability can be calculated from the mobility information of nodes (e.g.,

speed and direction) estimated at the access point. Note that the noncooperative

game formulation is a one-shot (single-stage) game in which the outcome of the game

is determined only once (i.e., when Bayesian Nash equilibrium is reached). In this

case, type ti of mobile node i is fixed for one stage. This is in contrast to a dynamic

game where the players play the one-shot game repeatedly.

Let vector �b∗ =
[
b∗1 · · · b∗i · · · b∗M

]
denote the BNE of this game. The

auction ends when all bidders obtain their best bidding strategies given others’ best

bidding strategies as follows:

b∗i = BRi(�b
∗
−i, ti,�t−i) (4.12)

where �b∗−i is a vector of best bidding strategies of all mobile nodes except mobile node

i.

Since a Bayesian Nash equilibrium is a Nash equilibrium when players are expected

to be utility-maximizing, the existence of a Bayesian Nash equilibrium is immediately
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proved by the Nash existence theorem. Since the strategy space bi is convex, compact,

and nonempty for each i, the expected payoff function E[Pi(·)] is continuous in both

bi and �b−i, and E[Pi(·)] is concave for any �b−i. Therefore, it is guaranteed that at

least one Bayesian Nash equilibrium (or Nash equilibrium) exists [125]. Furthermore,

using the Karush-Kuhn-Tucker (KKT) conditions to (4.12), which yield the necessary

and sufficient conditions for BNE in this case, the uniqueness of BNE can be proved

as shown in Appendix A.1.

4.5.4 Distributed Algorithm for Bandwidth Auction Game

We assume that the wireless base station announces all the trading prices to the mobile

nodes at the end of each bidding round and the mobile nodes know the allocation

strategy of the wireless base station. Let k denote the bidding round. A distributed

bidding algorithm for a mobile node to reach the BNE of the bandwidth auction game

is presented in Algorithm 2.

Algorithm 2 Bidding algorithm.

1: Initialize k = 1.
2: b1i [k] = (pi[k], ti), ∀i ∈ M is submitted to the wireless access point.
3: Wireless access point allocates bandwidth gi[k] to each mobile node.
4: repeat
5: Vector �b[k] is announced to all mobile nodes by the wireless access point.
6: k = k + 1.
7: bi[k] = BRi(�b−i[k − 1], ti,�t−i).
8: bi[k] is submitted to the wireless access point.
9: Wireless access point allocates bandwidth gi[k] to each mobile node.
10: until bi[k] = bi[k − 1], ∀i ∈ M.

4.6 Numerical Study

4.6.1 Application Scenario

In this numerical study, we apply this auction game model to the bandwidth allocation

in vehicle-to-roadside (V2R) communications as the example. In V2R communica-

tions, data is transferred through the roadside base stations (RSBs), i.e., wireless
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access points. That is, the mobile nodes shown in Figure 4.1 are vehicles. We assume

that network coverage of the roadside base stations (RBSs) is non-continuous. To

ensure smooth streaming service, a vehicle needs to obtain sufficient bandwidth to

download and cache the continuous data within its limited connection time interval

(i.e., due to high mobility of vehicles).

We assume that each vehicle can observe its own type but not the types of other

vehicles, and the types of the vehicles are assumed to be independent. We assume

that the probability distribution of connection duration is given as follows [43]:

fT (t) =
1

β
e−t/β, t ≥ 0 (4.13)

where β is the average connection duration. Note that any other probability distribu-

tion function (pdf) for connection duration can also be applied in our system model.

From [67], the speed of a vehicle can be modeled as a random variable with normal

distribution with the pdf expressed as follows:

fS(s) =
1

σ
√
2π

e−
(s−μ)2

2σ2 (4.14)

where s is the vehicle speed, μ is the average speed, and σ is the standard deviation

of speed. Since the speed can be only positive value and it is bounded, we normalize

the pdf for vehicle’s speed as follows:

f̃S(s) =
fS(s)∫ smax

smin
fS(v) dv

, smin ≤ s ≤ smax (4.15)

where smin denotes the minimum speed and smax denotes the maximum speed.

Next, we show the relationship among vehicle’s speed, connection duration, and

transmission range of the RSB [68]. Let tr denote the time remaining in the trans-

mission range of the RSB in seconds, d denote the distance between the vehicle and

the RSB in meters, l denote the transmission range in meters, and s is the vehicle’s

speed in km/h. We assume that the vehicles connect to the RSB when they are in
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the RSB’s transmission range.

tr =
d+ l

(s× 103)/3600
=

2l

(s× 103)/3600
. (4.16)

Therefore, we can replace β in (4.13) by

β = E[tr] =
2l

103/3600

∫ smax

smin

f̃S(s)

s
ds. (4.17)

Clearly, if the vehicle knows the statistics of the other vehicles’ speed (e.g., observ-

ing from the current traffic condition, speed limit of the road, etc.), the probability

distributions of the time intervals that other vehicles will connect to the RSB can be

obtained by using (4.13).

Since the players’ types are considered to have discrete values, the probability

distribution of the type is discretized into a probability mass function (pmf) of values

equally spaced between tmin and tmax. Then, we obtain this pmf f
′
T (·) that can be

used in (4.12).

4.6.2 Parameter Setting

We consider three vehicles. The time intervals during which the vehicles have con-

nection to RSB have average values of ton,1 = 30, ton,2 = 20, and ton,3 = 50 seconds

for vehicles 1, 2, and 3, respectively. The time intervals during which the vehicles

do not have connection to RSB have average values of toff,1 = 60, toff,2 = 60, and

toff,3 = 70 seconds for vehicles 1, 2, and 3, respectively. The physical data rate of all

the WiFi transceivers equipped in all the vehicles is rp = 11 Mbps. The data transfer

rate from the gateway to vehicle 1 is ru,1 = 20 packets/second, to vehicle 2 is ru,2

= 15 packets/second, and to vehicle 3 is ru,3 = 25 packets/second, where all packets

have the same length L = 0.1 Mbits. Buffers at the gateways of all the vehicles have

the same size B1 = B2 = B3 = 2,000 packets. The target buffer underrun probabil-

ities of vehicles 1, 2, and 3 are Punder,1 = 0.25, Punder,2 = 0.20, and Punder,3 = 0.40,

respectively. Vehicles 1, 2, and 3 use transmission modes 5, 4, and 6, respectively, as

given in Table 4.2 [66].

In the utility function, we set α = 9 and γ = 5 for all the vehicles. The weights
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corresponding to the cost function of the three vehicles are δ1 = δ2 = δ3 = 0.05. We

assume that the currently available bandwidth at the RSB is C = 5 MHz and the

transmission range of the RSB is l = 250 m. The reserved price and minimum price

defined by the RSB are ε = 5 mu/MHz and τ = 5 mu/s/MHz, respectively. The

maximum bidding price for all the vehicles is 50 mu/MHZ. The speed of vehicles 1,

2, and 3 as observed by other vehicles follows normal distribution with parameters

N(70, 21), N(90, 27), andN(90, 27), respectively. We assume smax = μ+3σ km/h [70].

4.6.3 Required Transfer Rate

Figure 4.3 shows the minimum transfer rate of vehicle 1 when the target buffer un-

derrun probability is 0.25 and ton and toff are varied. Vehicles can calculate their

required transfer rates to meet their performance requirements so that the bidding

strategy can be adapted accordingly.
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Figure 4.3. Minimum transfer rate of vehicle 1 when ton and toff are varied with the
target buffer underrun probability Punder,1 = 0.25.

4.6.4 Bayesian Nash Equilibrium and Payoff

Figure 4.4 shows the best bidding strategies of all the vehicles. The Bayesian Nash

equilibrium is located at the point where the best bidding strategies of the three

vehicles intersect.
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Figure 4.4. Bayesian Nash equilibrium in the bandwidth auction game among three
vehicles.

Since a Bayesian Nash equilibrium is a Nash equilibrium when players are expected

to be utility-maximizing, the existence of a Bayesian Nash equilibrium is immediately

proved by the Nash existence theorem [1]. Since this game has a finite number

of players each of whom has a finite number of pure strategies (bi), this game of

incomplete information possesses at least one Bayesian Nash equilibrium.

Using the distributed algorithm based on the best response bidding strategy, the

equilibrium point will be reached [69]. Then, we apply the distributed algorithm to

obtain the solution of the bandwidth auction game. Each vehicle adjusts its bidding

price in each bidding round. As shown in Figure 4.5, the bidding prices of all the

vehicles converge to the solution within a few rounds. At the equilibrium, vehicle 1

bids with a price of 24.67 mu/MHz and obtains 1.97 MHz of bandwidth, vehicle 2

bids with a price of 31.29 mu/MHz and obtains 1.66 MHz of bandwidth, and vehicle

3 bids with a price of 20.33 mu/MHz and obtains 1.35 MHz of bandwidth.

Next, we compare the payoffs of vehicle obtained from the BNE, the NEs in

an incomplete information environment and a complete information environment,

and the optimal social welfare strategy for which the sum of all vehicles’ utilities is
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Figure 4.5. Bidding price and amount of bandwidth for the three vehicles at each
bidding round.

maximized in a centralized environment with complete information (i.e., connection

time intervals for all the vehicles are known). The optimal social welfare strategy is

given by

�b�
i = argmax

�bi

M∑
i=1

Pi(bi, �b−i, ti,�t−i). (4.18)

The payoffs of vehicles 1 and 2 obtained from BNE and NEs with complete and

incomplete information are shown in Figs. 4.6(a) and (b), respectively. The mean

value of vehicle 3’s speed is varied in the x-axis, and its variance is varied according

to the mean speed based on Table I of [70]. Here, the NE with incomplete information

refers to the equilibrium solution when a vehicle does not use any probabilistic belief

when information is incomplete. For example, a node uses only single-type beliefs

about the types of other nodes. In this game, the connection time interval of each ve-

hicle (i.e., type), which is computed from average speed observed by its competitors,

is fixed (i.e., the probability density function for the type built from the observation

of speed is a delta function). The NE with complete information refers to the Nash

equilibrium solution when the vehicles perfectly know the connection time intervals
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(i.e., types) of each other. The BNE and the NE in an incomplete information en-

vironment are different from the NE in a complete information environment; that

is, they represent different equilibrium points. The payoffs corresponding to BNE

and NE in an incomplete information environment may be higher or lower than, or

equal to the payoff corresponding to the NE in a complete information environment

depending on the accuracy of beliefs about opponents’ types. The more accurate the

belief, the closer will be the actual payoff to the one computed from BNE or NE.

In the incomplete information environment, we observe the difference between the

expected and actual payoffs obtained from BNE and NE when the observed speed

is varied. Note that the actual payoff is computed from actual allocated bandwidth,

actual types, and equilibrium bid prices. In this case, the differences between the

expected and actual payoffs for vehicles 1 and 2 obtained from the BNE are lower

than those from the NE with incomplete information. The reason is that when a

player does not have complete information, using probabilistic beliefs would be better

than using a single-type beliefs about other vehicles’ types. Moreover, the payoffs of

both the vehicles obtained from the BNE and NEs are less than the payoffs obtained

from social welfare optimization. This difference is called the price of anarchy which

shows how well the players do when they play selfishly in the auction game compared

to the centralized social welfare optimization. Note that since the expected payoffs

are computed based on the actual bids but not the actual types, it can be higher

than the payoff from social welfare optimization, which is computed based on perfect

information. In case of social welfare optimization, the players play cooperatively

and all the information are known. As a result, the actual payoffs of the players are

higher than those from NE.

4.7 Chapter Summary

We have discussed the applications of game theoretic models, and in particular, the

application of Bayesian game, to solve the problem of distributed resource allocation

under uncertainty in wireless networks. As an example, we have presented a dis-

tributed Bayesian auction mechanism for bandwidth allocation among mobile nodes

in a public wireless network while considering their QoS requirements for a stream-
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ing application. Given the required transfer rate for the streaming application, a

Bayesian noncooperative game has been formulated to model the decision making

process of mobile nodes to bid for the radio bandwidth in an incomplete information

environment. The Bayesian Nash equilibrium has been considered as the solution of

this bandwidth auction game. Performance of this game model has been studied for

bandwidth allocation in vehicle-to-roadside communications environment. As an ex-

tension, advanced models such as coalitional Bayesian game models can be developed

for cooperative distributed resource allocation under uncertainty in wireless networks.
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Figure 4.6. Comparison between the payoffs of (a) vehicle 1 and (b) vehicle 2 from
Bayesian Nash equilibrium (BNE), Nash equilibrium (NE) in an incomplete informa-
tion environment, and Nash equilibrium (NE) in a complete information environment
when the expected speed and its variance of vehicle 3 observed by other vehicles is var-
ied.
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Chapter 5

Distributed Cooperative Channel

Access: A Coalitional Game Model

5.1 Introduction

Since we have considered the bandwidth allocation problem for the single-hop trans-

mission scenario (i.e., a wireless node directly connected to a base station/access

point) in Chapter 3 and Chapter 4, here we consider a multiple access problem for

the multi-hop transmission scenario. A mobile node may be able to receive infor-

mation in a timely manner only if it is within the transmission range of a BS and

connected to the BS for a sufficient amount of time. However, if a mobile node moves

out of the transmission range of a BS (e.g., due to high mobility), data can be for-

warded to this node by other nodes carrying data from that BS and meeting this

destination mobile node (Figure 5.1). Also, when the wireless link condition between

the BS and a mobile node in poor (e.g., the mobile node is inside a tunnel), carry-

and-forward-based cooperative data delivery will be useful to reduce the delay of data

delivery. A mobile node, which is currently connected to a BS, can help the BS to

forward packets to other mobile nodes until the packets reach their destinations. This

is an example of hybrid wireless networking model because it uses communications

among mobile nodes and BSs as well as communications among mobile nodes.

A few works in the literature proposed communication models for wireless net-

works with relay-based schemes [72]–[74] to reduce the delay of data delivery. In

these schemes, mobile nodes in a group (i.e., cluster) cooperatively deliver data pack-

ets among each other. However, the key assumption here is that the mobile nodes in
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Figure 5.1. In a hybrid wireless network, the mobile nodes can form coalitions to
help forward data from a base station to other mobile nodes which are out of the
transmission range of the base station.

the same group always help each other for data delivery. Since a tradeoff exists be-

tween performance improvement (i.e., smaller packet delivery delay) and transmission

cost (i.e., bandwidth and energy-consumption) for such cooperative data delivery, this

assumption may not be always true. For example, when a mobile node has limited

transmission bandwidth and is of self-interest, it may not join a group for cooperative

data delivery. In this context, the theory of coalitional game [20] can be applied to

analyze the dynamics of coalition (or group) formation among mobile nodes. Coali-

tional games have been used to model and analyze the resource allocation problem

in wireless networks. In the research paper of D. Niyato et al. [75], mobile nodes

(e.g., vehicular users) form coalitions and cooperatively share the limited bandwidth

of vehicle-to-roadside links to achieve high spectrum utilization. In the research pa-

per of W. Saad et al. [76], roadside BSs form coalitions in which the BSs in the same

coalition cooperatively coordinate the classes of data that they transmit to mobile

nodes, and thereby, improve their revenue.
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Figure 5.2. Diagram showing the interrelationship among the three steps, namely,
mobile node grouping using social network analysis (SNA), bargaining game, and
coalitional game.

Different from the above works, in this study, we present a cooperative packet

delivery scheme in a hybrid wireless networking scenario. In the scenario under con-

sideration, a base station has packets to transmit to a mobile node which may not be

in the transmission range of the BS. To reduce the delay of packet delivery, coalitions

of mobile nodes can be formed. The social relationship among the mobile nodes can

be exploited to reduce the complexity of coalition formation. Mobile nodes in the

same coalition help each other to deliver packets sent from the BS to the destination

mobile nodes. Based on a coalitional game model, we study the dynamics of the

behavior of mobile nodes helping each other to forward data packets based on their
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individual selfishness with an objective to maximizing their individual payoffs.

The proposed scheme consists of three interrelated steps as shown in Figure 5.2.

We first use a social network analysis (SNA)-based approach [77]-[79] to identify

which mobile nodes have the potential to help other mobile nodes for data delivery

in the same group or coalition. After the SNA-based mobile node grouping is done,

the mobile nodes in each group play a coalitional game to obtain a stable coalitional

structure. The payoff of each mobile node is a function of cost incurred by the

mobile node in relaying packets and the delivery delay for packets transmitted to

this mobile node from a BS. A continuous-time Markov chain (CTMC) model is

formulated to obtain the expected cost and packet delivery delay for each mobile

node in the same coalition. Since the expected cost and packet delivery delay vary

with the probability that each mobile node helps other mobile nodes deliver packets,

a bargaining game [66, 80] is used to find the optimal helping probabilities for all the

mobile nodes in a coalition. For each mobile node, after the optimal probability of

helping other mobile nodes is obtained, we can determine the payoff of each mobile

node when it is a member of its current coalition. The payoffs obtained from the

bargaining game are used to determine the solution of the coalitional game in terms of

stable coalitional structure (i.e., a group of stable coalitions). A distributed algorithm

is used to obtain the solution of the coalitional game and a Markov chain-based

analysis is presented to evaluate the stable coalitional structures obtained from the

distributed algorithm.

The major contributions of the proposed work can be summarized as follows.

• We introduce a coalitional game formulation to study how mobile nodes can dy-

namically form coalitions to cooperatively forward data of other mobile nodes

in the same coalition. We apply social network analysis to reduce the compu-

tational complexity of coalition formation. Two solution concepts, i.e., stable

coalitional structure and core, are considered for the proposed coalitional game.

• We propose a Nash bargaining game formulation to obtain Pareto-optimal solu-

tion for the probabilities that mobile nodes will help other mobiles in the same

coalition.

• A distributed coalition formation algorithm is proposed which guarantees that

stable coalitional structures can be obtained. We perform a comprehensive
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performance evaluation of the proposed method.

Using SNA-based grouping, bargaining game-based optimal data forwarding, and

distributed coalition formation in a unified framework for cooperative packet deliv-

ery in a hybrid wireless network constitutes the major novelty of this work. The

proposed framework will be useful for supporting various mobile applications based

on distributed cooperative packet delivery. The rest of this chapter is organized as

follows. Section 5.2 describes the system model and assumptions. The social net-

work analysis-based mobile node grouping is presented in Section 5.3. Section 5.4

presents the bargaining game model for cooperative packet delivery. The formulation

of the coalitional game is presented in Section 5.5. Section 5.6 presents representative

performance evaluation results for the proposed coalitional game framework. The re-

lated researches on cooperative data delivery are reviewed in Section 5.7. Section 5.8

concludes the chapter. Note that the list of symbols used in this chapter is shown in

Table 5.1 and Table 5.2.

5.2 System Model and Assumptions

5.2.1 Models for Mobile Node Encounter, Node Mobility,

and Cooperative Packet Transmission

We are interested in downlink communications from the sporadically deployed BSs/APs

(e.g., based on IEEE 802.11) to the mobile nodes.1 To reduce the delay of packet

delivery to a mobile node which is out of the transmission range of a BS (e.g., con-

nectivity lost due to high mobility), a cooperative packet delivery scheme based on

carry-and-forward mechanism is used. We assume that the BSs can communicate

with each other through the wired network to exchange information about the mobile

nodes.

Multiple mobile nodes can cooperate and form coalitions. We assume that each

mobile node in the same coalition will carry and forward packets to other mobile

nodes when they meet each other. Each mobile node i ∈ M = {1, . . . ,M} has a

transmission range of hi meters. We consider a period of time and assume that over

1The proposed model can also be applied for uplink transmission from mobile nodes to a BS/AP.
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Table 5.1. List of symbols used in Chapter 5
Symbol Definition

“0” The index of any base station
0 The zero matrix

BΥ,Υ′ The set of players who move from its current coalition to a new coalition and the
coalitional structure changes from Υ to Υ

′

C The core of the coalitional game
Ci The total cost of mobile node i for packet delivery to any mobile node j in the same

coalition
crij The cost incurred to mobile node i for receiving packet(s) from a BS or from other

mobile node j in the same coalition
cfij′ The cost incurred to mobile node i for forwarding packet(s) to its destination or to

another mobile node j′ in the same coalition

cX
′

ij The expected cost that mobile node i incurs for delivering the packet to mobile node
j in state X ′

DN The number of different coalitional structures for N players
di The packet delivery delay from when the packet is originally transmitted from the

base station to when the packet is received by mobile node i
E The edges of the graph (i.e., edges are the mobile nodes’ relationships)
F The transition probability matrix corresponding to the transitions from the transient

states to the absorbing state
f0j(t) The probability density function (PDF) of T0j

fji(t) The probability density function (PDF) of Tji

h0 The transmission range in meters of a base station
hi The transmission range in meters of mobile node i
I The identity matrix
i The index of each mobile node
K The label of a mobile node which is the final destination for a transmitted packet
M The number of mobile nodes
M The set of all mobile nodes
M The fundamental matrix of the absorbing DTMC

mX ,X ′ The expected number of times that the transient state X ′
will be visited if it starts

in transient state X
Nk and N The group of mobile nodes in social group k

N The number of mobile nodes in a social group
nij The number of encounters between mobile node i and mobile node j during a period

of time
nth The threshold on the number of encounters
Pij The probability that the data packet will be delivered from the base station to

mobile node i via mobile node j
P The transition probability matrix of the absorbing DTMC
Pi The action set of each player which is to choose its optimal probability pi
�p The vector of probabilities that mobile nodes help each other in the same coalition
pi The probability that mobile node i is willing to help other mobile nodes to deliver

packets
pX ,X ′ The probability of state transition from state X to any state X ′

Qi The vector denoting the relationship of mobile node i with other mobile nodes
qX ,X ′ The total state transition rate from X , which is a transient state, to another state

X ′

qX The summation of state transition rates from state X to any state X ′

Ri The utility of mobile node i
rij The encounter rate between mobile node i and mobile node j during a period of

time
ri0 The encounter rate between mobile node i and base station during a period of time
S The coalition of players (i.e., mobile nodes)
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Table 5.2. List of symbols used in Chapter 5 (continued)
Symbol Definition

T The transition probability matrix corresponding to the transitions among the tran-
sient states

Ti The required delivery time of mobile node i
T0j The time interval before mobile node j is contacted by the base station
Tij The time interval before mobile node j is contacted by mobile node i
tX ′ The mean sojourn time in state X ′

�uS The payoff vector of all mobile nodes in coalition S
ui The payoff of mobile node i
ud
i The status-quo payoff of mobile node i
V The vertices of the graph (i.e., vertices are the mobile nodes)

V (S) The characteristic function of coalition S
v(S) The total payoff of coalition S
X The set of mobile nodes which already have the packet destined to mobile node K

in the same coalition
αi The positive weight constant of the utility of delivering a packet to other mobile

nodes in the same coalition
βi The positive weight constant of the cost of delivering a packet to other mobile nodes

in the same coalition
γ The probability that a player will make a decision
Ω The state space or set of all possible coalitional structures
ωi The threshold on probability Pij of mobile node i
Ψ The state space of the CTMC for the cooperative packet delivery scheme
ΨA The set of absorbing states of the CTMC
ΨT The set of transient states of the CTMC
�π The stationary probability vector of all stable coalitional structures
πΥx The probability that the coalitional structure Υx will be formed
ρΥ,Υ′ The probability that the coalitional structure changes from coalitional structure Υ

to coalitional structure Υ
′

τ The index of time iterattion
Υ The coalitional structure

ϕi(Υ
′ |Υ) The probability that player i decides to move from its current coalition S i

l to a new
coalition
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a period of time (e.g., one hour), we can predict the mobility and inter-encounter

time pattern of each mobile node (e.g., based on the technique presented by S. C.

Nelson et al. [81]). The effects of speeds and density of mobile nodes may result

in a change of encounter-related statistical data [82]. Moreover, the mobility and

inter-encounter time pattern of mobile nodes collected during a specific and short

time period can be expressed as transient social contact pattern which can be better

improve carry-and-forward-based data delivery than cumulative contact pattern (i.e.,

long time collection of contact pattern) [83]. Let mobile node i meet another mobile

node j on the road with rate rij = rji per unit of time and the number of encounters

between mobile node i and mobile node j during a period of time is nij = nji. Let ri0

and r0i be the rates that mobile node i meets the base station and vice versa. Note

that “0” is used as the index of any base station and its transmission range is h0.

The encounter process for each pair of nodes is assumed to follow a Poisson process

and the encounter rate is used as the corresponding parameter. For the encounter

process, that the stochastic properties can be represented by the Poisson assumption,

was justified be the research paper of Z. Xinjuan and X. Bo [84] and the research

paper of R. Groenevelt, P. Nain, and G. Koole [85]. It was shown that the encounters

between a pair of mobile nodes follow a Poisson distribution if the nodes move in a

limited region.

Each mobile node i is willing to help other mobile nodes to deliver packets with

probability pi (i.e., pi = 1 if mobile node i always receives data packets, carries, and

forwards them to other mobile nodes). Any mobile node i receives packet(s) from a BS

or from other mobile node j in the same coalition at the cost of crij per packet. Mobile

node i then forwards the packet(s) to its destination or to another mobile node j′ in

the same coalition (which does not have the packet(s)) at the cost of cfij′ per packet.

Note that the cost of transmission can be defined based on the application (e.g., the

cost for delivering a packet for safety message dissemination can be lower than that

for an entertainment message) as well as the physical transmission parameters. We

assume that each mobile is able to know whether the other mobile nodes have the

same packet(s), for example, by applying a point-to-point communication mechanism

used in a routing protocol (e.g., encounter-based routing protocols) [81, 82, 86]. The

cost of receiving a mobile node’s own packets and the cost of packet transmission of
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a base station are assumed to be zero.

With the cooperative packet delivery scheme, the mobile nodes consider whether

they should form a coalition, and if they form coalition which coalition to form.

Let di denote the packet delivery delay which is the duration from when the packet

is originally transmitted from the base station to when the packet is received by

its destination. The time delay depends on the number of mobile nodes that help

to deliver the packet. The mobile nodes may achieve a lower delay if they join a

coalition. However, since they have to use their own resources for packet delivery

of other mobile nodes in the same coalition, they will incur a cost. To model this

tradeoff in the coalition formation among mobile nodes for cooperative packet delivery,

a coalitional game-theoretic approach is applied. We assume that the packets are not

immediately discarded from the cache of the BSs or the mobile nodes after they are

sent or forwarded. In addition, there is a coordinator at the application server which

collects mobility information of the nodes by using the following procedure.

(i) When the mobile nodes encounter each other, they make a record of the time

they encounter.

(ii) Given a certain time period (e.g., one hour), the mobile nodes calculate the

encounter rate with other nodes by dividing the number of encounters by the

length of the time period.

(iii) The mobile nodes provide the encounter rate information to the central coordi-

nator at the application server periodically.

(iv) The coordinator maintains a database of the encounter rate information for all

the mobile nodes in the network, and this database is used for social network

analysis. Also, the coordinator manages the information exchange among the

base stations or access points.

5.2.2 Hierarchical Structure of Cooperative Data Delivery

For the hierarchical model of cooperative data delivery shown in Figure 5.2, given

a coalition of mobile nodes (i.e., a coalitional structure in the considered coalitional

game), a Markov chain model is formulated to find the expected cost and delay

of each mobile node in a coalition. The expected cost and delay depend on the
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probabilities that the mobile nodes in the same coalition will help each other. To

find the optimal probabilities, a bargaining game model is formulated and the Nash

bargaining solutions [66] are obtained which are Pareto optimal. Subsequently, these

probabilities are used to obtain the payoff of each mobile node which is a function

of the expected cost and delay. The payoffs of all the mobile nodes are used to

determine whether the current coalitional structure is stable or not. If it is unstable,

a new coalitional structure will be formed, and the bargaining game and the Markov

chain models will be used to find the payoff of the mobile nodes again until a stable

solution is reached.

While the mobile nodes play the coalitional game, the bargaining game is used to

find the optimal probabilities of helping other mobile nodes deliver packets, and then

each mobile node’s payoff is obtained. Therefore, for the purpose of presentation,

the SNA-based mobile node grouping is first introduced. Then, the bargaining game

model is presented and solved given a coalition of mobile nodes. Lastly, the coalitional

game model is presented to obtain the stable coalitional structure.

5.3 Social Network Analysis-Based Mobile Node

Grouping

In this section, we present a method for mobile node grouping based on social net-

work analysis (SNA). The main problem of coalition formation is that the computa-

tional complexity increases exponentially when the number of nodes increases [20, 87].

Hence, the main objective of the proposed SNA-based mobile node grouping is to re-

duce the complexity of coalition formation when there are many mobile nodes partici-

pating in the cooperative data delivery scheme. The key mechanism of the SNA-based

mobile node grouping is to filter out some mobile nodes which will not contribute to

the cooperative packet delivery (i.e., to divide the mobile nodes into multiple social

groups which mobile nodes in a social group do not cooperate with the mobile nodes

in another social group).

A social network or a group is composed of nodes and ties. In this model, each

mobile node is a node and relationships of mobile nodes are ties. Whether or not

a tie will be established between two nodes can be determined by using centrality
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metrics used in graph theory and network analysis. Centrality is a quantification of

the relative importance of a vertex within the graph (e.g., how important a node is

within a social network). We identify how each node is important to others based on

the Poisson modelling of the network which is called Poisson process-based centrality.

To identify groups of mobile nodes using their Poisson process-based centrality, we

propose an algorithm which ensures that for each mobile node in the same group, the

probability that the packet delivery delay remains below a required time interval, can

be maintained above a target threshold.

To ensure that mobile node j will deliver a packet received from the base station

to mobile node i within the required time Ti (which depends on the application), we

consider that if mobile node j is contacted by the base station within a time interval

of T0j = 1/r0j and then contacted by mobile node i within an interval of Tji = 1/r0j,

the probability that the data packet will be delivered from the base station to mobile

node i via mobile node j is

Pij(T0j + Tji < Ti) =

∫ Ti

0

f0j(t)⊗ fji(t)dt (5.1)

=

∫ Ti

0

∫ t

0

f0j(t
′)fji(t− t′)dt′dt

where ⊗ is the convolution operator, and f0j(t) and fji(t) for t ≥ 0 are the probability

density functions (PDFs) of T0j and Tji, respectively. f0j(t) and fji(t) are given by

exponential PDFs. Hence, the probability density function of random time interval t

that mobile nodes i and j will contact each other is given by: fij(t) = rije
−rijt, where

rij is the encounter rate between mobile node i and mobile node j. Note that f0j(t)

and fji(t) are general and can be any other PDF rather than the exponential PDF.

Algorithm 3 below identifies the groups of mobile nodes. The nodes in such

a group are the players in the bargaining game and the coalitional game. In this

algorithm, M denotes the set of all mobile nodes and Qi is a vector denoting the

relationship of mobile node i with other mobile nodes.

Mobile node i is said to have a social relationship with mobile node j if they

meet each other within a required time Ti (i.e., Pij is greater than threshold ωi and

the number of encounters between mobile node i and mobile node j is greater than
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Algorithm 3 Mobile node grouping algorithm based on social network analysis

1: Profile information (i.e., encounter information) of mobile nodes are collected by
the central coordinator.

2: Set K = ∅. // a temporary variable.
3: Initialize sets of relationships for all the mobile nodes, i.e., Qi = ∅, ∀i ∈ M.
4: for each mobile node i ∈ M = {1, . . . ,M}
5: K = K ∪ {i}
6: for each mobile node j ∈ M \ K
7: if (Pij(T0j + Tji < Ti) ≥ ωi and Pji(T0i + Tij < Tj) ≥ ωj and nij > nth)
8: Add mobile node j to mobile node i’s set of relationships and vice versa.
9: Qi = Qi ∪ {(i, j)}
10: Qj = Qj ∪ {(j, i)}
11: end
12: end
13: end
14: Use the sets of relationships Qi of all the mobile nodes to build a graph G(V, E).
15: Set the vertices of the graph V = M (i.e., vertices are the mobile nodes).
16: Set the edges of the graph E =

⋃M
i=1 Qi (i.e., edges are the mobile nodes’ relation-

ships)
17: Identify each group k of mobile nodes, Nk ⊆ V where

⋃
k Nk = M, which is a

maximal complete clique or subgraph in the graph G(V, E) by using algorithms
such as those in [88].
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threshold nth). Each mobile node would like to reduce the expected packet delay

by cooperating with the mobile nodes it has strong social ties with. Here both ωi

and nth are design parameters which define the “strength” of the social tie. When

ωi increases, the number of mobile nodes in a social group may decrease due to the

tighter requirement for encountering. However, the chances to contact those mobile

nodes within the required time interval will be higher. On the other hand, when ωi

decreases, the number of mobile nodes in a social group may increase due to the looser

requirement for encountering. However, the chances to contact those mobile nodes

within the required time interval will be lower. The threshold nth on the number

of encounters is used to ensure that the relationship between a pair of mobile nodes

is strong enough. If the value of threshold nth increases, the mobile nodes require

stronger relationship to meet the condition. As a result, the number of mobile nodes

in a social group may decrease. Conversely, if the value of the threshold nth decreases,

the number of mobile nodes in a social group may increase. If the requirement is

satisfied, mobile node i adds (i, j) (i.e., its relationship with mobile node j) to Qi.

After the relationships among all the mobile nodes are created, we can identify the

groups of mobile nodes which are complete subgraphs in the graph representing the

mobile nodes’ relationships. In a complete subgraph, each member has relationships

with other mobile nodes in the same group (i.e., the same subgraph). In particular,

after the social network analysis is done, multiple groups of mobile nodes are obtained.

Mobile nodes in the same social group have social ties (i.e., relationships in term of

inter-encounter times). Next, the mobile nodes in the same social group will play

the coalitional game in order to form coalitions (i.e., mobile nodes will be members

of the same coalition if all of them satisfy their obtained payoffs). Also, to obtain

their payoffs, the mobile nodes in the same coalition will play the bargaining game.

Clearly, there can be multiple coalitions within a social group as shown in Figure 5.3.

5.4 Formulation of Bargaining Game for Cooper-

ative Packet Delivery

In this section, we first formulate a continuous-time Markov chain (CTMC) to find the

expected cost and delay of each mobile node in the same coalition. The expected cost
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Figure 5.3. Diagram showing the relation between social groups and coalitions.
There can be multiple coalitions within a social group.

and delay depend on the probabilities that the mobile nodes will help each other to

deliver data. Then, we present a Nash bargaining solution to find these probabilities.

5.4.1 Markov Chain Model for Cooperative Packet Delivery

We focus only on a group of mobile nodes Nk ⊆ M. To simplify the presentation,

we omit index k of a group (e.g., Nk is represented by N). Consider a particular

coalition S ⊆ N ∈ {1, . . . , N} of mobile nodes. A CTMC with absorbing states can

be formulated for the scenario in which one mobile node in the coalition is considered

as the final destination of a packet transmitted from a base station, and the rest of

the mobile nodes in the coalition help the base station to deliver the packet to the

final destination. The CTMC model is used to obtain the expected packet delivery

delay (di) for a mobile node which is the final destination of the packet originally

transmitted from the BS. Also, it is used to obtain the expected cost of other mobile

nodes (cij) in the same coalition which help the base station to deliver the packet to

the final destination.

Let K ∈ S denote the label of a mobile node which is the final destination for a

packet transmitted from the BS. The state space of the CTMC for the cooperative

packet delivery scheme can be expressed as follows:

Ψ = {(X );X ⊆ S,S ⊆ N} (5.2)
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where X is the set of mobile nodes which already have the packet destined to mobile

node K in the same coalition S. N is the set of all the mobile nodes. The state

space Ψ can be partitioned into ΨA (absorbing states) and ΨT (transient states), i.e.,

Ψ = ΨA ∪ ΨT . State X ∈ Ψ is an absorbing state if mobile node K is a member of

X . Otherwise, it is a transient state.

Let Y = X ∪ {0} and Z = X ∩ X ′
, where X ′

is another state. The total state

transition rate from X , which is a transient state, to another state X ′
is defined as

follows:

qX ,X ′ =

{ ∑
i∈Y,j∈Z rij, (|Z| = 1)&(|X ′ | − |X | = 1)&(K /∈ X )

0, otherwise
(5.3)

where |X | and |X ′ | denote the cardinalities of sets X and X ′
, respectively, and &

denotes the logical AND operation. Recall that, rij denotes the rate that mobile

node i meets mobile node j for i �= j and ri0 = r0i is the rate that mobile node i

meets the BS. Hence, the state transition rate qX ,X ′ is the rate that any mobile node

in X , or the BS (i.e., any member of set Y) will meet another mobile node which does

not have the packet destined to mobile node K. Then, the state changes from X to

X ′
.

As an example, Figure 5.4 shows the CTMC model of a packet delivery scenario

when there are 3 mobile nodes in the same coalition. Mobile nodes 1 and 2 help the

BS to deliver the packet to mobile node 3. Given the state transition rate of the

CTMC model, the corresponding discrete-time Markov chain (DTMC) (also called

the embedded Markov chain [89]) can be derived. Each mobile node may help other

mobile nodes deliver data with probability pi. Note that probability pi, when mobile

node i is a destination node K (i.e., i = K), is one (i.e., mobile node i always needs to

obtain its own packets). Let qX =
∑
X ′∈Ψ qX ,X ′ be the summation of state transition

rates from state X to any state X ′
. Then, the probability of state transition of the
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Figure 5.4. The CTMC model for cooperative packet delivery from the BS to a
destination mobile node. In this scenario, there are 3 mobile nodes in the same
coalition. Mobile nodes 1 and 2 help the BS to deliver a packet to mobile node 3.

DTMC can be obtained from

pX ,X ′ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∑
i∈Y,j∈Z pjrij

qX
, (qX �= 0) & (|Z| = 1) & (|X ′ | − |X | = 1) & (K /∈ X )

1−∑X ′∈Ψ pX ,X ′ , (qX �= 0) & (X = X ′
)

1, (qX = 0) & (X = X ′
)

0, otherwise.

(5.4)

The transition probability matrix of the absorbing DTMC can be partitioned [90] as

follows:

P =

[
T F

0 I

]
(5.5)

where T is the transition probability matrix corresponding to the transitions among

the transient states, I is an identity matrix, 0 is a zero matrix, and F is the transition

probability matrix corresponding to the transitions from the transient states to the

absorbing state.

For an absorbing DTMC with transition probability matrix P, the matrix M =

(I−T)−1 is its fundamental matrix. The entrymX ,X ′ ofM gives the expected number
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of times that the process is in transient state X ′
if it starts in transient state X before

the Markov chain reaches any absorbing state (i.e., the expected number of times that

the transient state X ′
will be visited). To obtain the packet delivery delay from the

BS to mobile node K (i.e., destination of the packet), let state X = ∅ be the initial

transient state (i.e., the state that no mobile node in coalition S obtains the packet

destined to mobile node K, or only the BS has the packet for mobile node K). Let

tX ′ be the mean sojourn time in state X ′
(i.e., the amount of time spent in state X ′

before the process leaves state X ′
) given as follows:

tX ′ =
1∑

X ′′∈Ψ qX ′X ′′
, where X ′′ ∈ Ψ. (5.6)

Then, the expected packet delivery delay to the final destination (i.e., mobile node

K) can be calculated as follows:

di=K =
∑
X ′∈ΨT

tX ′mX=∅,X ′ . (5.7)

Next, we find the expected cost (cij) that incurs to mobile node i for delivering

the packet of mobile node j(= K), which is defined as follows [91]:

cij =

{ ∑
X ′∈ΨT

cX
′

ij mX=∅,X ′ , (i �= j) & (j = K)

0, i = j
(5.8)

where cX
′

ij is the expected cost that mobile node i incurs for delivering the packet to

mobile node j(= K) in state X ′
. If mobile node i is in the set X ′

of mobile nodes

which already have the packet for mobile node K, there will be an expected cost of

forwarding the packet to other mobile nodes. If mobile node i is not in the set X ′
of

mobile nodes, there will be an expected cost of receiving the packet from the BS or

from other mobile nodes, i.e.,

cX
′

ij =

⎧⎨
⎩
∑

g∈S∩X ′
pgrig∑

X′′∈Ψ qX′ ,X′′
cfig, i ∈ X ′

∑
g∈X ′∪{0}

pirgi∑
X′′∈Ψ qX′ ,X′′

crig, i /∈ X ′
.

(5.9)

Again, from the CTMC model shown in Figure 5.4, we can obtain the expected
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costs of mobile nodes 1 and 2 (i.e., c13 and c23) and the delay of mobile node 3 (i.e.,

d3). To obtain the packet delivery delays for other mobile nodes (i.e., d1 and d2) and

the expected costs (i.e., c21, c31, c12, and c32), mobile nodes 1 and 2 are considered as

the final destinations (i.e., K = 1 and K = 2), and the same steps are applied.

5.4.2 Nash Bargaining Game Model

A Nash bargaining game is used to model the interaction among a group of mobile

nodes in cooperative delivery of packets. The players of this bargaining game are

the mobile nodes in the same coalition. The set of mobile nodes is denoted by N =

{1, . . . , N} and a coalition of players (i.e., mobile nodes) is denoted by S ⊆ N. The

action set of each player is Pi = [0, 1]. The strategy of each player is to choose the

optimal probability, pi ∈ Pi, that the mobile node will help other mobile nodes in the

same coalition to deliver packets. The payoff of each player is a function of expected

cost that the player will incur for other players and the packet delivery delay for its

own packet, delivery of which is helped by other players.

Consider the expected cost and delay of packet delivery calculated in Section 5.4.1.

Any mobile node i can achieve a lower packet delivery delay due to the help from

other mobile nodes in the same coalition S. However, an additional cost is incurred to

mobile node i due to the packet delivery to other mobile nodes in the same coalition.

The total cost of mobile node i for packet delivery to any mobile node j in the same

coalition can be expressed as follows:

Ci(S) =
{ ∑

j∈S,j �=i cij(S), |S| > 1

0, otherwise
(5.10)

where cij(S) is the expected cost that incurs to mobile node i for delivering the packet

of mobile node j in the same coalition S as defined in (5.8). |S| is the number of

mobile nodes in coalition S.
The utility of mobile node i is defined as a function of Ri(S) as follows:

Ri(S) =
{

1− di(S)
d̂i

, |S| > 1

0, otherwise
(5.11)
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where di(S) is the packet delivery delay for mobile node i ∈ S, and d̂i = 1/r0i is the

packet delivery delay for mobile node i without any coalition (i.e., mobile node i acts

alone).

The objective of each mobile node is to maximize its payoff. The payoff of mobile

node i in the coalition S can be defined as follows:

ui(S) = αiRi(S)− βiCi(S) (5.12)

where αi and βi denote, respectively, the positive weight constants of the utility and

the cost of delivering a packet to other mobile nodes in the same coalition. The

solution of the bargaining game is presented in the next section.

5.4.3 Nash Bargaining Solution

Nash axioms specify the conditions for reaching Pareto-optimal Nash bargaining so-

lutions [92, 66]. The payoff of each mobile node depends on the probabilities of the

mobile nodes to help other mobile nodes in the same coalition. As a result, for each

mobile node, using the bargaining game we find the probability that it will help other

mobile nodes in the same coalition deliver a packet transmitted from a BS.

Let �p = [. . . , pi, . . .], ∀i ∈ S be the vector of the probabilities that the mobile nodes

help each other in the same coalition. To find a solution of the Nash bargaining game,

all mobile nodes in coalition S exchange their payoff functions. We assume that the

mobile nodes which are members of the same coalition can exchange their information

(e.g., payoff function and active status) with the help of the base stations and the

coordinator. After a mobile node obtains all other mobile nodes’ payoffs, it solves

the following optimization problem to obtain the probability of helping other mobile

nodes:

�p∗ = argmax
�p

∏
i∈S

(ui(S, �p)− ud
i ({i})) (5.13)

subject to pi ∈ Pi = [0, 1], ∀i ∈ S
ui(S) ≥ 0, and ui(S) ≥ ud

i ({i})

where ui(S) is defined as in (5.12) and can be calculated as shown in Section 5.4.1 and
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ud
i is the status-quo payoff (i.e., the payoff obtained if mobile node i decides not to

bargain with other mobile nodes or when the mobile node acts alone). According to

(5.10) and (5.11), ud
i ({i}) is zero. Each mobile node varies the probability from zero

to one and selects the value which maximizes the Nash product term of all the payoffs.

The optimal solution can be obtained by a search method. Simplex method [93] can

be used to optimize the objective function defined in (5.13).

5.5 Formulation of Coalitional Game for Cooper-

ative Packet Delivery

For the cooperative packet delivery scheme described in Section 6.2, we now formulate

a coalitional game among rational mobile nodes to improve their individual payoffs.

5.5.1 Rational Coalition Formation

We propose a non-transferable utility (NTU) coalitional game. The players of this

game are the mobile nodes. The set of mobile nodes is denoted by N = {1, . . . , N}. A
coalition of players is denoted by S ⊆ N. Each player wants to achieve a low packet

delivery delay by participating in a coalition, and at the same time to minimize its

cost. Each player is indifferent to the total payoff of the coalition (i.e., v(S)). In this

NTU game, the payoff of a coalition cannot be arbitrarily divided among the players

in a coalition. The payoff ui(S) of each mobile node (as given in (5.12)) is composed

of the cost Ci(S) of helping other mobile nodes to deliver packet(s) and the function

of packet delivery delay Ri(S) that the mobile node will experience when it is helped

by other mobile nodes. The payoff that each player in a coalition obtains depends on

the joint actions selected by players in a coalition. The value of coalition S is defined

as follows:

v(S) =
∑
i∈S

ui(S), for v(∅) = 0 (5.14)

where ui(S) is the payoff of each player defined as in (5.12). The strategy of each

player is to make a decision on which coalition to form. The solution of the coali-

tional game is a stable coalitional structure. The coalitional structure is a set of
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coalitions spanning all the users in N. The coalitional structure is defined as Υ =

{S1, . . . ,Sl, . . . ,Ss}, where Sl ∩ S ′l = ∅ for l �= l
′
and s is the total number of coali-

tions for 1 ≤ s ≤ N , and
⋃s

l=1 S
′
l = N. The coalition consisting of all mobile nodes

is referred to as the grand coalition. There can be 2N − 1 distinct non-empty coali-

tions and DN different coalitional structures for N players, where DN is the Nth Bell

number given as follows:

DN =
N−1∑
j=0

(
N − 1

j

)
Dj, for N ≥ 1 and D0 = 1. (5.15)

5.5.2 Stable Coalitional Structure

Each player i can decide to leave its current coalition and join another coalition based

on the received payoff given that decision. Let S i denote a coalition in which mobile

node i is a member of. The merge and split rules for the coalition are stated below.

• Merge Rule: Given original coalitions S i
l ∈ Φ†, the coalitions can be merged to

a new single coalition S i†
l′ if all players in all of the original coalitions obtain

higher payoffs after merging, i.e.,

ui(S i†
l′ ) > ui(S i

l ), ∀i ∈ S i†
l′ , where S i†

l′ =
⋃
Si
l∈Φ†

S i
l . (5.16)

• Split Rule: The players in coalition Sl can split into multiple new coalitions if

the payoffs of all the players are higher than those in the same original coalition,

i.e.,

ui(S i‡
l′ ) > ui(S i

l ), ∀i ∈ S i
l (5.17)

where S i
l =
⋃
Si‡
l
′ ∈Φ‡ S

i‡
l′ , Φ

‡ denotes the set of all new coalitions S i‡
l′ .

The coalitional structure which has the properties of internal stability and external

stability [75] is considered as a stable solution of the proposed coalitional game.

• Internal Stability: A coalition S possesses internal stability if no user can im-

prove its payoff by leaving its coalition and acting alone, i.e., ui(S) ≥ ui({i}).
• External Stability: A coalition S possesses external stability if merging with

another coalition S ′ does not improve the payoffs of the players in the coalitions,
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i.e., ui(S ∪ S ′) < ui(S ′) for i ∈ S and ui′ (S ∪ S ′) < ui′ (S ′) for i
′ ∈ S ′ and

S ∩ S ′ = ∅.

5.5.2.1 Distributed Merge-and-Split-Based Algorithm

At time τ , any mobile node in a coalition can decide to leave its current coalition

and join a new coalition. For a mobile node, we present a distributed algorithm

(Algorithm 4) based on the merge-and-split mechanism to find a stable coalitional

structure. It is known that any algorithm constructed based on the merge-and-split

rules always converges [94].

Algorithm 4 Distributed coalition formation algorithm based on merge-and-split
mechanism
1: Initialize τ = 0 and Υ(τ) = {S1(τ), . . . ,Ss(τ)}.
2: loop
3: Mobile node i computes its utility Ri(S

i
l (τ)) and cost Ci(S

i
l (τ)) given its current

coalition Si
l (τ).

4: Mobile node i computes its payoff ui(S
i
l (τ)).

5: Randomly select one possible coalitional structure Υ
′
(τ) after merging.

6: if ui(S i†
l′ ) > ui(S i

l (τ)) for i ∈ S i†
l′

7: Merge the coalitions: S i
l (τ + 1) = S i†

l′ for S i†
l′ ∈ Φ†.

8: Υ(τ + 1) = Υ
′
(τ)

9: end
10: τ = τ + 1
11: Randomly select one possible coalitional structure Υ

′
(τ) after splitting.

12: if ui(S i‡
l′ ) > ui(S i

l (τ)) for i ∈ S i
l

13: Split the coalition: S i
l (τ + 1) = S i‡

l′ for S i‡
l′ ∈ Φ‡

14: Υ(τ + 1) = Υ
′
(τ)

15: end
16: τ = τ + 1
17: end loop when a stable coalitional structure is obtained.

5.5.2.2 Markov Chain-Based Analysis of the Coalitional Structure

We formulate a discrete-time Markov chain (DTMC) [95] to analyze the stable coali-

tional structure obtained from the distributed algorithm. The state space of the

DTMC can be expressed as follows: Ω = {(Υ1), . . . , (Υx), . . . , (ΥDN
)}, where Υx is
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a coalitional structure, and DN is the Nth Bell number. The transition probabil-

ity of this DTMC is denoted by ρΥ,Υ′ . Specifically, ρΥ,Υ′ is the probability that the

coalitional structure changes from Υ to Υ
′
during a period of time. Let BΥ,Υ′ denote

the set of players who move from its current coalition to the new coalition and the

coalitional structure changes from Υ to Υ
′
. The transition probability from state Υ

to Υ
′
is then found as follows:

ρΥ,Υ
′ =

⎧⎨
⎩
∏

i∈B
Υ,Υ

′ γϕi(Υ
′ |Υ), Υ �= Υ

′

1−∑Υ′∈Ω,Υ′ �=Υ ρΥ,Υ
′ , Υ = Υ

′ (5.18)

where γ (0 < γ ≤ 1) is the probability that a player makes a decision. ϕi(Υ
′ |Υ) is

the probability that a player decides to move from its current coalition S i
l to a new

coalition S i
l
′ which changes the coalitional structure from Υ to Υ

′
, i.e.,

ϕi(Υ
′ |Υ) =

{
ϕ, ui(S i

l′ ) > ui(S i
l )

0, otherwise
(5.19)

where 0 < ϕ ≤ 1, S i
l ∈ Υ, and S i

l
′ ∈ Υ

′
. Given the transition matrix Q whose

elements are ρΥ,Υ′ , the stationary probability vector �π can be obtained by solving

the following equation: �πTQ = �πT , where �πT�1 = 1, and �1 is a vector of ones,

�π =
[
πΥ1 · · · πΥx · · · πΥDN

]T
, and πΥx is the probability that the coalitional

structure Υx will be formed.

Observation 1 If for all coalitions S ⊆ N, the condition
∑

i∈S v({i}) < v(S) is true,
then there is at least one absorbing state which is a stable solution of the coalitional

game (Theorem 1 in [95]).

Proof. This observation states that no player forms a singleton coalition since the

player can obtain a better payoff by being a member of any other coalition. Since the

payoff of a player will be zero if the player acts alone, from (5.14), we can show that∑
i∈S v({i}) =

∑
i∈S ui({i}) = 0 < v(S). Therefore, v(S) will be equal to or higher

than zero, and then a stable solution may exist depending on the value of the payoff

(i.e., utility and cost functions). Note that the utility and cost functions of the payoff

can be adjusted by the weight constants αi and βi defined in (5.12). Therefore, the
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players will act alone if the cost incurred to them is higher than the utility that they

obtain from the cooperative packet delivery.

The implication of Observation 1 is that there will be at least one stable solution

of the coalitional game which can be analytically obtained from the Markov chain

model. This corresponds to the fact that a mobile node will be a member of a non-

singleton coalition, since its payoff would be higher than that due to a singleton

coalition.

Next, we show the existence of non-empty core of the coalitional game. The

core is a solution concept for a coalitional game which is comparable to the Nash

equilibrium for a noncooperative game. The core is regarded as a set of payoff allo-

cations such that no player has an incentive to leave the grand coalition (i.e., a set

of payoffs of the grand coalition upon which no other coalition can improve). Let

�uN = [u1(N), . . . , ui(N), . . . , uN(N)] and �uS = [u1(S), . . . , ui(S), . . . , uN(S)] be the

payoff vectors of all mobile nodes when they are the members of the grand coalition

and any coalition S, respectively. Then, the characteristic function of coalition S is

a set of feasible payoff vector �xS of length |S| which is defined as follows:

V (S) = {�xS ∈ RS |�xS ≤ �uS}. (5.20)

For an NTU game, the core is defined as follows [95, 96]:

C = {�uN ∈ V (N)|∀S ⊆ N, ��uS ∈ V (S)
subject to ui(S) ≥ ui(N), ∀i ∈ S}. (5.21)

For an NTU game, the Bondareva-Shapley theorem [96, 97] states that the core of a

game is not empty if and only if the game is balanced.

Definition 1 Consider an NTU game. For every S ⊆ N, let VS = V (S) × RN\S .

The NTU game is balanced if

⋂
∀S⊆N

V (S) ⊆ V (N). (5.22)
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Observation 2 The core of the coalitional game for cooperative packet delivery is

not empty if

(i) αi ≥ 0 and βi ≥ 0 and

(ii) αiRi(S) > βiCi(S) and
(iii) αiRi(N)− βiCi(N) > αiRi(S)− βiCi(S).

Proof. Since αi ≥ 0 and βi ≥ 0, we can find αi and βi such that condition (ii) holds.

If condition (ii) does not hold, i.e., ui(S) ≤ ui(i) = 0, then each mobile node may act

alone, and the core is empty. Next, we can express V (S) and V (N) as follows:

V (N) = {�xN = [. . . , xi, . . .] ∈ RN|xi ≤ αiRi(N)− βiCi(N), ∀i ∈ N} (5.23)

and

V (S) = {�xS = [. . . , xj, . . .] ∈ RS |xj ≤ αjRj(S)− βjCj(S), ∀j ∈ S}. (5.24)

If condition (iii) holds, then �xN > �xS ×RN\S ∀S ⊆ N which satisfies the definition of

balanced game. Consequently, this game has a non-empty core if the conditions (i),

(ii), and (iii) above are satisfied.

The implication of Observation 2 is that the stability of a grand coalition can be

verified by checking the above conditions. That is, when the conditions are satisfied,

the outcome from the Markov chain and the merge-and-split algorithm (i.e., Algo-

rithm 4) will be a stable grand coalition. In many cases, a stable grand coalition is

desirable since it ensures that all mobile nodes will be members of the same coalition.

5.5.3 Optimal Social Welfare Solution

The mobile nodes can cooperatively form an optimal coalitional structure, which

maximizes their optimal social welfare instead of rational individual payoffs (i.e., The

summation of all the mobile nodes’ payoffs is maximized), as follows:

Υ∗ = {S∗1 , . . . ,S∗l , . . . ,S∗s} = argmax
Si
l∈Υ

∑
Si
l∈Υ

∑
i∈Si

l

ui(S i
l ). (5.25)
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To obtain this optimal coalitional structure, the Markov chain model presented in

Section 6.4.2 can be used. However, the probability pi that each mobile node will

help others to deliver packets needs to be obtained by maximizing the summation of

all the mobile nodes’ payoffs in the same coalition (instead of maximizing the Nash

product term shown in (5.13)) as follows:

�p∗ = argmax
�p

∑
i∈S

ui(S, �p) (5.26)

subject to pi ∈ Pi = [0, 1], ∀i ∈ S.

Moreover, the rule that a player decides to move from its current coalition S i
l to

a new coalition S i
l′ , which makes the coalitional structure change from Υ to Υ

′
, as

shown in (5.27), becomes

ϕi(Υ
′ |Υ) =

⎧⎨
⎩

ϕ,
∑
Si

l
′∈Υ′ v(S i

l′ ) >
∑
Si
l∈Υ v(S i

l )

0, otherwise
(5.27)

where 0 < ϕ ≤ 1, S i
l ∈ Υ, and S i

l
′ ∈ Υ

′
, and v(S) is defined as in (5.14).

5.6 Performance Evaluation

For performance evaluation of the proposed cooperative packet delivery scheme, we

use a vehicle-to-roadside (V2R) communications scenario. In V2R communications,

data is transferred through the roadside BSs. That is, the mobile nodes shown in

Figure 5.1 are vehicles. Each vehicle is equipped with a Wi-Fi transceiver for down-

loading data when the vehicle is connected to the BS.

5.6.1 Simulation Parameters

For the simulations, in order to find the encounter information among vehicles and

base stations, we use a microscopic road traffic simulation package designed for the

large road networks named “SUMO”, an acronym for “Simulation of Urban MObil-

ity” [99]. Moreover, we use MATLAB to analyze the results obtained from SUMO.
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In the simulation, a grid road network with 121 intersections is used. The area of

the road network is 2 km × 2 km. A BS is located at an intersection for every 400 m

in both horizontal and vertical directions (Figure 5.5). There are 100 vehicles in the

area. Each vehicle moves along a shortest path from a random originating position

to a random destination position. When the vehicle reaches the destination, a new

destination position is selected. Note that each vehicle randomly selects a destination

position from its set of specified positions. We perform multiple simulation runs for

833 simulated hours. Unless otherwise specified, the default values of parameters in

Table 5.3 are used.

���� ����

Figure 5.5. A grid road network used in the simulation.

To simulate the encounter process for the vehicles, we set the required time and

the probability threshold that vehicle j will deliver a packet from the base station to

vehicle i within Ti, to be 25s (i.e., Ti = 25, ∀i ∈ N) and 0.07 (i.e., ωi = 0.07, ∀i ∈ N),

respectively. We also assume that the time-to-live (TTL) value for all packets is

25s. After the simulation is done, we identify and select a group of four vehicles by

the SNA-based vehicle grouping approach using the encounter information from the

simulation.

For the simulation of coalitional game model, the weight constants of the utility
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Table 5.3. Default values of simulation parameters
Parameter Description/value
Road network The area of the road map is 2

km× 2 km with 121 intersec-
tions.

Number of vehicles (M) 100 vehicles
Communication range of base station Radius of 100 m (i.e., h0 = 100

m)
Communication range of a vehicle Radius of 50 m (i.e., hi = 50

m)
Maximum speed on roads 50 km/h (31.25 mph)

Vehicle’s acceleration and deceleration 0.8 m/s2 and 4.5 m/s2, respec-
tively

and cost functions are assumed to be α1 = α2 = α3 = α4 = 15 and β1 = β2 = β3 =

β4 = 2, respectively. If α is set to a large value, the utility of a vehicle, which is a

function of the packet delivery delay for the vehicle, will change significantly when

the packet delivery delay changes by a small amount. If a vehicle sets β to a small

value (e.g., zero), it means that the vehicle does not care about the cost it incurs.

That is, the vehicle is more willing to help others. The parameters of the best-reply

rule are γ = 0.9 and ϕ = 0.99. Note that ϕ denotes the probability that a vehicle

will change to a new coalition through either the merge or the split process. γ is the

probability that the vehicle will make a decision to move at that time. Any values of

ϕ and γ in the range of (0, 1] can be set since the stationary probability will be the

same at the end.

5.6.2 Encounter Rate

We verify that the encounters between a pair of vehicles follow a Poisson process (i.e.,

the time interval between two consecutive encounters is exponentially distributed)

as shown in Figure 5.6. The curve of cumulative distribution function of the time

interval between two consecutive encounters observed in the simulation is fitted by

an exponential distribution curve with encounter rate 0.0145 (i.e., mean = 1/0.0145).

The rates for each vehicle to meet other vehicles and a BS (i.e., rij) are shown in

Table 5.4. We observe that the mean time duration (i.e., 1/rij) that all the vehicles

will meet the BS and obtain their packets are more than their TTL. The encounter
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Figure 5.6. Cumulative distribution function of the time interval between two con-
secutive encounters of a pair of vehicles.

Table 5.4. Rates (rij) per second that each vehicle meets other vehicles and a base
station on a road

Rate BS Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4
Base station - 0.0339 0.0345 0.0299 0.0308
Vehicle 1 0.0339 - 0.0103 0.0108 0.0104
Vehicle 2 0.0345 0.0103 - 0.0122 0.0145
Vehicle 3 0.0299 0.0108 0.0122 - 0.0247
Vehicle 4 0.0308 0.0104 0.0145 0.0247 -

rate between vehicle 1 and other vehicles from the simulation are shown in Figure 5.7.

When the transmission range increases, as expected, the encounter rate increases due

to the higher chance to meet other vehicles.

5.6.3 Stable and Optimal Coalitional Structures

We consider the V2R communications scenario as shown in Figure 5.1 with 4 vehicles.

As shown in Table 5.5, there are 15 different coalitional structures for 4 vehicles,

and there are 15 possible coalitions. In a coalitional structure, the total number of

coalitions ranges from 1 to 4.

We compare the solution of optimal social welfare coalition formation (as described

in Section 5.5.3) with the stable solution of the rational coalition formation. We set

the cost of receiving a packet from and forwarding a packet to other vehicles to be

equal (i.e., cfij = crij = ci), where ci is referred to as the cost-coefficient. This cost-

coefficient ci = 1.5 and assumed to be the same for all the vehicles.
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Figure 5.7. Encounter rate between vehicle 1 and other vehicles when the transmis-
sion range of vehicles is varied.

Table 5.5. 15 different coalitional structures for 4 vehicles
Coalitional structure

Υ1 {1}, {2}, {3}, {4} Υ2 {1, 2}, {3}, {4} Υ3 {1}, {2}, {3, 4}
Υ4 {1, 3}, {2}, {4} Υ5 {1}, {3}, {2, 4} Υ6 {1, 4}, {2}, {3}
Υ7 {1}, {4}, {2, 3} Υ8 {1, 2}, {3, 4} Υ9 {1, 3}, {2, 4}
Υ10 {1, 4}, {2, 3} Υ11 {1, 2, 3}, {4} Υ12 {1, 2, 4}, {3}
Υ13 {1, 3, 4}, {2} Υ14 {1}, {2, 3, 4} Υ15 {1, 2, 3, 4}

Figure 5.8 shows the stationary probabilities of the coalitional structures for

both stable rational and optimal coalition solutions. There are 4 stable coalitional

structures when ci is 1.5, i.e., Υ3 = {{1}, {2}, {3, 4}}, Υ8 = {{1, 2}, {3, 4}}, Υ9 =

{{1, 3}, {2, 4}}, and Υ14 = {{1}, {2, 3, 4}}. With 4 stable coalitional structures, we

observe that vehicle 1 should not be in the same coalition that vehicle 4 is a mem-

ber of, since the encounter rate between these two vehicles is small compared to the

encounter rates between vehicle 4 and vehicle 2, and between vehicle 4 and vehicle

3. Moreover, since the encounter rates between vehicle 3 and any BS, and between

vehicle 4 and any BS, are small, to reduce the packet delivery delay, both vehicle 3

and vehicle 4 should not act alone. For the optimal solution, since the highest total

payoff of the optimal coalitional structure is Υ3, the probability of the coalitional

structure is one.

Figure 5.9 shows the probabilities that each vehicle will help other vehicles to

deliver packets. These probabilities are obtained as the solutions of the bargaining

game. Given the stable coalitions and the optimal coalition as shown in Figure 5.8,

we can determine how much each vehicle is willing to help others. If a vehicle does
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Figure 5.8. Stationary probability of stable rational and optimal structures.

not form a coalition, the corresponding helping probability is zero.
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Figure 5.9. Probability that each vehicle will help deliver other vehicles’ packets.

Figure 5.10 shows the stable coalitional structure obtained from the merge-and-

split algorithm when the number of coalitions that can be merged and split at a time

is 2. The initial coalitional structure is Υ1 for each run of the algorithm. When

the algorithm runs, we can observe that the coalitional structure changes and then

it converges to the stable coalitional structure shown in Figure 5.8. Recall that the

algorithm based on merge-and-split rules always converges to the stable solution [94].

5.6.4 Payoff of the Vehicles and Coalition Formation

Assuming that the cost-coefficient ci is the same for all the vehicles, we vary ci of

all vehicles from 0 to 3. Figure 5.11 shows the total payoff of all the vehicles under
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Figure 5.10. Stable coalitional structure obtained from the merge-and-split algorithm
when the number of coalitions that can be merged and split at a time is 2.

different values of ci. The expected total payoff of all the vehicles obtained from the

bargaining game and the Markov chain-based analysis is given as follows:

E[utotal] =
∑
i∈N

DN∑
x=1

πΥxui(S i
j), for S i

j ∈ Υx (5.28)

where DN is the Nth Bell number.
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Figure 5.11. Total payoff of all the vehicles under different cost-coefficient.

As expected, for a small value of ci, the total payoff is large when the coalition
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is formed. However, when the value of ci increases, the total payoff of all vehicles

decreases since a higher cost is incurred to all vehicles involved in cooperative packet

delivery. As a result, a vehicle will leave its current coalition if the utility is not higher

than the cost incurred from cooperative packet delivery. As shown in Figure 5.11,

the total payoff becomes zero when ci is higher than 2.40. Moreover, the total payoff

from the optimal social welfare solution is equal to or higher than the payoffs of the

stable solution of the rational coalition formation obtained from the merge-and-split

algorithm and the DTMC analysis, and the payoff when all the players act alone.
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Figure 5.12. Expected payoff of each vehicle under different values of cost-coefficient.
The coalitional structure changes when the cost-coefficient is varied.

Figure 5.12 shows the expected payoff of each vehicle under different values of ci

calculated as follows:

E[ui] =

DN∑
x=1

πΥxui(S i
j), for S i

j ∈ Υx. (5.29)

As expected, when ci is zero, a grand coalition Υ15 is formed and becomes stable

since all the vehicles will obtain the highest expected payoff (i.e., with the lowest

packet delivery delay). When ci increases, the expected payoff of each vehicle de-

creases. Also, vehicles in a coalition decide to split into multiple coalitions to reduce

their expected cost incurred from cooperative packet delivery. When the cost is too

high, no vehicle will form any coalition. As shown in Figure 5.12, when the values of
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ci are 0.6, 0.8, and 2.4, there is a high probability that the stable coalitional struc-

tures will change from Υ15 to Υ14, from Υ14 to Υ8, and from Υ8 to Υ1, respectively.

When ci is higher than 2.4, all the vehicles act alone since any coalition formed will

be unstable.
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Figure 5.13. Expected total payoff of all the vehicles under different transmission
range of vehicles.

Figure 5.13 shows the expected total payoff of each vehicle for different transmis-

sion ranges (hi) and different cost-coefficients (ci). When hi increases, it might be

expected that the payoff will increase since the chance to encounter other vehicles

increases (i.e., rate of encounter increases) and then the transmission delay will de-

crease. However, the vehicles incur more costs due to the increase of rate of encounter

with other vehicles. The vehicles can then adjust their probabilities to help others to

maintain their optimal utilities. For example, a vehicle will decrease its probability to

help others if it knows that the utility to be obtained is not high enough compared to

the cost that it will incur. As shown in the figure, the payoff will not always increase

as it is expected to be.

5.6.5 Packet Delivery Delay

Figure 5.14 shows variations in the expected delay of each vehicle for different values

of ci, which is calculated as follows:

E[di] =

DN∑
x=1

πΥxdi(S i
j), for S i

j ∈ Υx. (5.30)

When ci is zero, a grand coalition Υ15 (i.e., all the vehicles are in the same coali-
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tion) is formed and it is stable. When the grand coalition is obtained, all the vehicles

achieve the lowest packet delivery delay, and in this case, the packet delivery delay

requirement is met for all vehicles (i.e., Ti ≤ 25s). As shown in Figure 5.14, when the

cost increases, the packet delivery delay for each vehicle changes due to the change of

the coalitional structure. When the cost is too high, all the vehicles act alone. In this

case, since there is no help from other vehicles for packet delivery, the packet delivery

delay is the highest. Moreover, it is observed that, not only the coalitional structure,

but also the cost can affect the packet delivery delay. Considering that the coalitional

structure Υ8 is formed when ci increases from 0.8 to 2.4, the packet delivery delay

changes since each vehicle will recalculate its optimal probability to help to deliver

other vehicles’ packets.
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Figure 5.14. Expected packet delivery delay of each vehicle under different values of
cost-coefficient.

5.7 Related Work

Since the proposed cooperative packet delivery approach is related to the concept

of delay-tolerant networks (DTNs), in this section, we review the related work on

delay-tolerant and cooperative data transmission in wireless networks. DTNs are

characterized by long transmission delay, high error rates, intermittent connectivity,
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and existence of multiple unreliable links [100]. Vehicular delay tolerant networks

(VDTNs) [101] constitute an important class of DTNs.

R. Lu, X. Lin, and X. Shen [101] presented a social-based privacy preserving packet

forwarding protocol for VDTNs, called SPRING. The main idea is to deploy roadside

BSs at the intersections according to the social centrality information in a VDTN. This

social relation-based roadside base station placement approach can improve the packet

delivery ratio in store-and-forward-based VDTNs. Q. Li, S. Zhu, and G. Cao [102]

considered the social selfishness of mobile nodes in DTN. An optimization model was

proposed to achieve the best packet delivery performance given that the nodes will

forward packets to the nodes that they have social ties with. The similarity between

their scheme [102] and our proposed scheme is the use of social relations and encounter

opportunities among mobile nodes to improve routing and packet forwarding in DTNs.

However, a key difference between both the schemes is that the formulation of the

problem of packet delivery in a DTN. Their scheme formulated the packet delivery as

a Multiple Knapsack problem with Assignment Restrictions (MKPAR) [102] but our

work formulates it as the game theoretic approach which takes the individual benefits

of mobile nodes into account.

P. Hui et al. [103] used a community detection algorithm was proposed based

on the mobility traces of the mobile nodes and this algorithm for improved packet

delivery performance. D. Niyato and P. Wang [104] studied the performance of a

VDTN in terms of throughput and delay, where a vehicle acting as a mobile relay

node helps a source node transmit data to a sink node. However, there are multiple

source nodes competitively sharing the resources of the vehicle acting as a mobile relay

node. The equilibrium solution for the transmission strategies of the source nodes

were obtained from a noncooperative game. T. D. C. Little and A. Agarwal [105]

proposed a data propagation scheme in the vehicular networks, called Directional

Propagation Protocol. The dissemination algorithm was implemented as a routing

protocol based on the concepts from mobile ad hoc networks (MANETs) and DTN.

Cooperative data transmission schemes based on some other approaches are also

worth mentioning. In [73], a vehicle-roadside-vehicle relay communication scheme was

presented with the key assumption that vehicles always cooperate with others. H. Su

and X. Zhang [74] presented a clustering-based multichannel medium access control
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protocol for cooperative data dissemination in a clustered vehicular network. O.

Brickley et al. [106] introduced a data dissemination strategy for cooperative vehicular

systems which considers the application requirements and the quality of the wireless

link to determine how the information can be disseminated to the vehicles effectively

and efficiently. S. Bai [107] developed a vehicular multi-hop broadcasting protocol for

safety message dissemination. The protocol adopts a cooperative forwarding strategy

to improve the reliability of broadcasting.

We summarize the related work in Table 5.6. The key assumption in all of the

existing cooperative packet delivery schemes is that the mobile nodes (e.g., vehicles)

in the same group always help each other for data delivery. However, this assumption

may not be always true since there is a tradeoff between performance improvement

(i.e., smaller packet delivery delay) and packet transmission/reception cost (i.e., op-

erational cost, energy consumption, bandwidth, and other resources for receiving,

carrying, and forwarding a packet). We address this issue in this work using a coali-

tional game framework. In particular, we use the coalitional game theory to analyze

how the mobile nodes can dynamically form coalitions for carry-and-forward-based

data delivery in a hybrid wireless network. Moreover, we present an SNA-based node

grouping method to reduce the complexity of coalition formation and a bargaining

game for efficient cooperative packet delivery.

5.8 Chapter Summary

We have presented a coalitional game framework for carry-and-forward-based coop-

erative packet delivery to mobile nodes in a hybrid wireless network. The mobile

nodes are rational to form coalitions to maximize their individual payoffs. First, a

continuous-time Markov chain model has been developed to obtain the packet de-

livery delay and the expected cost of mobile nodes for cooperative packet delivery.

The packet delivery delay and the expected cost depend on the probability that each

mobile node will help other mobile nodes in the same coalition. Then, a bargaining

game has been formulated to find the optimal helping probabilities for all the mobile

nodes. Based on the packet delivery delay and expected cost, a coalitional game

has been formulated to model the decision making process of mobile nodes, that is,



117

Table 5.6. Summary of Related Work
Scenario Solution Concept used to

find the solution
Key assump-
tion/limitation

Reference

Study of packet
delivery in vehicle-
roadside-vehicle
networks

Optimal trans-
mission strategy
according to whether
it is a direct com-
munication or
retransmission

Using multiple
frequencies (i.e.,
separating frequency
bands between di-
rect communication
and retransmission)
to increase packet
delivery rate

A vehicle will al-
ways relay a packet
to other nearby vehi-
cles.

[73]

Study of MAC proto-
cols for data delivery
in vehicular ad hoc
networks

Optimal transmis-
sion strategy

Cluster-based multi-
channel communica-
tions

Vehicles which are lo-
cated in the same
area form a cluster
and help each other
deliver data.

[74]

Study of packet
forwarding protocol
in store-and-forward-
based VDTNs

Optimal roadside
BS placement and
packet forwarding
protocol

Using social central-
ity to help deploy
roadside BSs

A vehicle will always
forward a packet to
other nearby vehicles
when it has available
storage.

[101]

Study of routing al-
gorithm in DTNs

Optimal routing
path

Multiple Knapsack
problem with as-
signment restrictions
(MKPAR) and social
network theory

Nodes are willing to
forward packets for
nodes with whom
they have social ties
but not others.

[102]

Study of distributed
community detection
algorithms in DTNs

Detected social net-
work topology

Algorithms based on
graph and social net-
work theories

N/A [103]

Study of packet de-
livery from multiple
traffic sources to a
sink with one re-
lay mobile node in
VDTNs

Nash equilibrium so-
lution for the trans-
mission strategies of
the source nodes

Noncooperative
game

Each source node is
rational to compete
for transmission to
the relay node.

[104]

Study of routing pro-
tocol and data prop-
agation in vehicular
ad hoc networks

Optimal routing
path and data
propagation strategy

Cluster-based data
propagation protocol

Nearby vehicles have
to form a cluster
of vehicles in order
to disseminate mes-
sages.

[105]

Study of data dis-
semination strategy
for cooperative vehic-
ular systems

Optimal dissemi-
nation strategy to
achieve the highest
throughput

A simple policy
based dissemina-
tion management
function

Only infrastructure-
to-vehicle communi-
cations are consid-
ered

[106]

Study of safety mes-
sage dissemination
protocol in vehicular
ad hoc networks

Optimal data propa-
gation strategy

Algorithm based
on optimization of
packet forwarding
delay

Forwarder candi-
dates (i.e., relay
vehicles) are selected
to help others based
on their forwarding
delay and location
constraints. No
cost of cooperative
packet forwarding is
considered.

[107]
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whether they will cooperatively deliver packets to other mobile nodes or not. A stable

coalitional structure (i.e., set of coalitions) has been considered as the solution of this

coalitional game. Using the coalitional game model, the performance of cooperative

packet delivery has been analyzed in terms of average packet delivery delay. As an

extension of the work, the problem of mechanism design can be addressed to enforce

truthful packet delivery and prevent the misbehavior of the mobiles nodes under the

proposed coalitional game framework.
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Chapter 6

Distributed Cooperative Channel

Access Under Uncertainty: A

Dynamic Bayesian Coalitional

Game

6.1 Introduction

Mobility of the nodes can be exploited for data dissemination in wireless mobile net-

works with intermittent connectivity and very low link reliability such as the wireless

mobile delay-tolerant networks (DTNs) [100]. A few works in the literature proposed

cooperative communications models with relay-based mechanisms in DTNs and mo-

bile ad hoc networks to decrease the delay of data delivery (e.g., the research papers

of T. Yamada et al. [72] and V. N. G. J. Soares et al. [108]). The key assumption in

all of the existing schemes is that the mobile nodes which are located near each other

always help for data delivery. However, due to the tradeoff between performance im-

provement (i.e., smaller packet delivery delay) and transmission cost (i.e., bandwidth

usage and energy consumption), the rational mobile nodes may not always want to

help the same other mobile nodes. Consequently, cooperation among the nodes in a

group would be dynamic, and the dynamics of the formation of groups among coop-

erative nodes (or coalitions) needs to be analyzed. In this proposed work, we use the

theory of coalitional games [75, 109] to analyze how the coalitions are formed among

mobile nodes for cooperative packet delivery.
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As an example, Figure 6.1 shows a downlink data communications scenario based

on coalition formation where carry-and-forward-based cooperative packet delivery is

used to send packets from the base station to mobile nodes. Mobile nodes in the

same coalition help each other to deliver packets sent from the base station to the

destinations. Here, each rational mobile node makes a decision to leave its current

coalition and join another coalition based on its individual preference over coalitions.

When the number of mobile nodes in a coalition increases, the packet delivery delay

decreases (i.e., due to the fact that there are more mobile nodes to carry and forward

the packet) [110].
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Figure 6.1. In a wireless network, mobile nodes can form coalitions to help forward
data from a base station to other mobile nodes which are out of the transmission range
of the base station.

After the coalitions of mobile nodes are formed, the rational mobile nodes, which

are the members of a coalition, will agree to always help each other for packet delivery

as studied in Chapter 5. However, some misbehaving mobile nodes may break the

agreement and may not help other nodes (e.g., to reduce their transmission costs [86]

and improve their own benefits). As a result, a fully cooperative scenario may not
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exist. Also, whether a mobile node is well-behaved or misbehaving cannot be perfectly

known to the other mobile nodes. That is, a mobile node cannot observe whether

other mobile nodes will forward packets to third-person or destination mobile nodes or

not. Nevertheless, a mobile node can gradually learn other mobile nodes’ behaviors.

Since each of the mobile nodes will encounter the other mobile nodes in the same

coalition, it can estimate the type of a particular node whether it is well-behaved or

misbehaving by maintaining its own belief based on its experience of interactions with

that node.

To model the dynamics of coalition formation under the uncertainty of node be-

haviors (which is referred to as the types of mobile nodes), we propose a Bayesian

coalitional game for coalition-based cooperative packet delivery. In this model, the

mobile nodes’ observations are used to update their beliefs about other mobile nodes’

types and used when the next coalition formation game is played. Therefore, this can

be considered as a dynamic Bayesian coalitional game.

The major contributions of this work can be summarized as follows:

• formulation of a Bayesian coalitional game to model the uncertainty in node

behavior for cooperative packet delivery in wireless mobile networks,

• analysis of two solution concepts, namely, Nash-stable equilibrum and Bayesian

core, for the proposed Bayesian coalitional game,

• extension of the static Bayesian coalitional game to a multi-stage dynamic coali-

tional game and proposal of a belief update mechanism for the dynamic Bayesian

coalitional game, and

• a comprehensive performance evaluation of the proposed game model.

The rest of this chapter is organized as follows. Section II describes the system

model and assumptions. The Bayesian coalitional game model and the coalition

formation algorithm under uncertainty in node behavior are presented in Section III.

Section IV presents the analysis of the Bayesian coalition formation process. In

particular, two solution concepts, namely, the Nash-stable coalitional structure and

Bayesian core are analyzed. The dynamic Bayesian coalitional game is presented in

Section V. Section VI presents the performance evaluation results for the proposed

Bayesian coalitional game framework. Section VII presents the related work and
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Section VIII concludes the chapter. Note that the list of symbols used in this chapter

is shown in Table 6.1 and Table 6.2.

6.2 System Model and Assumptions

6.2.1 Network and Communication Model

We consider a scenario withM rational mobile nodes which can form coalitions among

them for cooperative packet delivery to/from the base stations. We assume that

each mobile node will carry-and-forward packets to other mobile nodes in the same

coalition when they meet each other. In this scenario, we assume that, over a period

of time, the patterns of mobility and inter-encounter time of each mobile node can be

predicted (e.g., by using the technique proposed by Nelson S. C. Nelson, M. Bakht,

and R. Kravets [81]). The inter-encounter interval between nodes is assumed to be

exponentially distributed [85]1. Let mobile node i meet another mobile node j with

rate rij = rji per unit of time. Let ri0 and r0i denote the rates that mobile node

i meets the base station and vice versa. Note that “0” is used as the index for a

base station. Since the end-to-end connectivity among mobile nodes does not always

exist, statistical data about the encounter rates among the mobile nodes are used

for estimation of mobility patterns of the nodes [82, 86]. We assume that there is a

coordinator at the central application server to collect information about the mobile

nodes (e.g., mobility and encounter-rate information).

Any mobile node i receives packets from the base station or from another mobile

node j in the same coalition at the cost of crij per packet
2. Mobile node i then forwards

the packets to their destination or to another mobile node j′ in the same coalition

which does not have these packets. For mobile node i, the cost of this transmission is

cfij′ per packet. The cost of receiving its own packets by a mobile node, and the cost of

packet transmission by a base station are assumed to be zero. Let di denote the packet

delivery delay which is the duration from when a packet is originally transmitted from

1We verify this assumption the previous chapter
2This cost can be defined based on the application as well as the physical transmission parameters.

For example, in the research paper of L. M. Feeney and M. Nilsson [111], for packet forwarding in
an ad hoc network, the cost was defined in terms of the energy-consumption.
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Table 6.1. List of symbols used in Chapter 6
Symbol Definition

“0” The index of any base station
AΩ The set of cooperative and noncooperative acknowledgements
Aω The set of observations of cooperative and noncooperative acknowledgements

BΥ,Υ′ The set of players who move from its current coalition to the new coalition and the
coalitional structure changes from Υ to Υ

′

C The core of the coalitional game
Ci The total cost of mobile node i for packet delivery to any mobile node j in the same

coalition
crij The cost incurred to mobile node i for receiving packet(s) from a BS or from other

mobile node j in the same coalition
cfij′ The cost incurred to mobile node i for forwarding packet(s) to its destination or to

another mobile node j′ in the same coalition
DM The number of different coalitional structures for N players
di The packet delivery delay from when the packet is originally transmitted from the

base station to when the packet is received by mobile node i
di(S) The packet delivery delay for mobile node i ∈ S
dTTL
i The time-to-live (TTL) value for a packet
G The proposed Bayesian coalitional game
i The index of each mobile node
M The number of mobile nodes
M The set of all mobile nodes
P The common a priori probability over the type in T

P i
j (tj) The mobile node i’s belief probability about mobile node j’s type tj

p
′
i(�t

i
S\{i}) The joint belief probability of mobile node i about other mobile nodes in the same

coalition S
pe The probability that a false positive observation error occurs
ps The probability that a false negative observation error occurs
Q The transition probability matrix of the DTMC for the coalition formation analysis
Ri The utility of mobile node i
rij The encounter rate between mobile node i and mobile node j during a period of

time
ri0 The encounter rate between mobile node i and base station during a period of time
S A coalition of players (i.e., mobile nodes)
S i
l Any coalition Sl which mobile node i is a member of
T The type space of all the mobile nodes’ types
Ti The mobile node i ’s possible type set
Tw The well-behaved type
Tm The misbehaving type
ti The mobile node i’s type
t0 the type of a base station
�tiS The vector of beliefs of mobile node i about the types of all mobile nodes in S
tij The belief of mobile node i about the type of mobile node j
ūi The expected payoff of player or mobile node i

V (S) The characteristic function of coalition S
αi The positive weight constant of the utility of delivering a packet to other mobile

nodes in the same coalition
βi The positive weight constant of the cost of delivering a packet to other mobile nodes

in the same coalition
χij The event that mobile node i observes an acknowledgement from mobile node j
Ω The state space or set of all possible coalitional structures
Ωc The cooperative acknowledgement
Ωn The noncooperative acknowledgement
ωc The observation of cooperative acknowledgement
ωn The observation of noncooperative acknowledgement
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Table 6.2. List of symbols used in Chapter 6 (continued)
Symbol Definition

Ψ The state space of the CTMC for the cooperative packet delivery scheme
�π The stationary probability vector of all stable coalitional structures
πΥx The probability that the coalitional structure Υx will be formed
ρΥ,Υ′ The probability that the coalitional structure changes from coalitional structure Υ

to coalitional structure Υ
′

φ The index of time iterattion
τij The τij-th time of observation of mobile node i on an acknowledgement of mobile

node j
Υ The coalitional structure

ϕi(Υ
′ |Υ) The probability that a player decides to move from its current coalition S i

l to a new
coalition

ςi The probability that misbehaving node i may refuse to deliver a packet of other
nodes in the same coalition

�i Player i’s preference

the base station to when the packet is received by its destination. Given the benefit

of smaller delay due to cooperative packet delivery at the cost of relaying packets to

the other mobile nodes in the same coalition, a coalitional game-theoretic approach

is applied to analyze the coalition formation process among mobile nodes.

6.2.2 Uncertainty in Node Behavior for Cooperative Packet

Delivery

We assume that there are two types of mobile nodes, i.e., well-behaved node and

misbehaving node.

• A well-behaved node always helps to deliver packets to the other nodes in the

same coalition.

• A misbehaving node does not always help to deliver packets to other nodes.

In particular, a misbehaving node i may refuse to deliver a packet of other nodes in

the same coalition with probability ςi. In other words, the probability that a well-

behaved node and a misbehaving node will forward the packets of other nodes is 1 and

1− ςi, respectively. We assume that a mobile node does not know the types of other

mobile nodes. Due to the absence of a monitoring mechanism such as the one in the

research paper of W. Yu and K. J. R. Liu [112], a mobile node cannot observe whether

a packet sent to the next mobile node will be forwarded to other mobile nodes or not.
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We define a set of cooperative and noncooperative acknowledgements as AΩ =

{Ωc,Ωn} and a set of observations of cooperative and noncooperative acknowledge-

ments as Aω = {ωc, ωn}. In particular, cooperative acknowledgement (i.e., Ωc) and

noncooperative acknowledgement (i.e., Ωn) mean that a mobile node accepts and re-

fuses, respectively, to help deliver a packet. In other words, when the mobile node

sends a packet (i.e., a data packet that will be forwarded ) to another mobile node,

it implies that a cooperative acknowledgement is done by the mobile node who is a

sender. If the mobile node does not send any new packet to another mobile node, it

implies that a noncooperative acknowledgement is done by the sending node. Next,

we consider two observation errors that can cause imperfect observations in the net-

work.

• False positive observation error, which occurs with probability pe, means that a

cooperative acknowledgement Ωc from one mobile node is observed by another

mobile node as a noncooperative acknowledgement ωn due to, for example, link

breakage, transmission error, or no new packet to transmit.

• False negative observation error, which occurs with probability ps, means that

a noncooperative acknowledgement Ωn corresponding to one mobile node is

observed by another mobile node as a cooperative acknowledgement ωc which

is caused by the malicious behavior of a misbehaving node.

When a pair of mobile nodes (e.g., mobile nodes 1 and 2) encounter each other,

a connection is initialized and packet transmission starts. Mobile node 2 requests a

packet from mobile node 1 and mobile node 2 observes the behavior of mobile node

1. If mobile node 2 receives a packet from mobile node 1, mobile node 2 perfectly

knows that mobile node 1 helps to forward packets at this time (i.e., mobile node

2 observes ωc = Ωc). If no packet is received by mobile node 2, a noncooperative

acknowledgement ωn is observed. Moreover, if mobile node 1 has a new packet but

it does not transmit the packet (i.e., mobile node 1 does a noncooperative acknowl-

edgement Ωn), mobile node 2 will definitely not receive any packet and thus observe

a noncooperative acknowledgement ωn.

Since mobile node 2 itself directly experiences the packet forwarding from mo-

bile 1, a false negative observation error (i.e., the event that mobile node 1 does a

noncooperative acknowledgement Ωn but mobile node 2 observes a cooperative ac-
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knowledgement ωc) cannot occur in our model. In other words, mobile node 2 itself

directly experiences only a noncooperative acknowledgement ωn
3. However, observa-

tion of a noncooperative acknowledgement ωn may be caused by the event of packet

forwarding refusal if mobile node 1 is misbehaving or by the event of false positive

observation error if mobile node 1 is well-behaved. Then, mobile node 2 cannot con-

clude whether mobile node 1 is a well-behaved or a misbehaving node. Note that

mobile node 2 may not need to actually carry the packet after it is received if mobile

node 2 is also a misbehaving mobile node.

6.2.3 Cooperative Packet Delivery Protocol

The observations on the other mobile nodes’ behaviors are used to estimate the types

of other mobile nodes. Then, given the uncertainty of types of other mobile nodes,

we obtain the expected payoff function for mobile nodes. The expected payoff is a

function of the average cost of communication and the average packet delivery delay.

The expected payoffs of all the mobile nodes are used to determine whether the current

coalitional structure is stable or not. If it is unstable, a new coalitional structure will

be formed, and then the new expected payoff is calculated. Moreover, while mobile

nodes are traveling and participating in the cooperative packet delivery with others in

the same coalition, they observe other mobile nodes’ behavior in cooperative packet

delivery. Then, the mobile nodes update their beliefs, i.e., the probabilities of types

of other mobile nodes, by using a belief update mechanism. This process is repeated

until a stable solution is reached.

The cooperative packet delivery protocol for the mobile nodes to achieve a stable

coalition-based solution works as follows:

(i) Mobile node i has to be registered to a coordinator at the central application

server.

(ii) Mobile node i submits its information (i.e., rate of encounter rij with other

mobile nodes) to the coordinator.

(iii) Mobile node i can ask for the information about the other mobile nodes from

the coordinator.

3False negative observation error will not be used later in the analysis.
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(iv) The mobile nodes play a coalitional game to obtain a stable coalitional structure

(i.e., stable groups of mobile nodes participating in cooperative packet delivery).

(v) Each mobile node carries and forwards packets to others within the same coali-

tion.

(vi) Each mobile node observes others’ behaviors of packet delivery and updates its

beliefs about other mobile nodes’ types based on the observations.

(vii) The mobile nodes repeatedly play the coalitional game.

6.3 Formulation of the Bayesian Coalitional Game

Model

We formulate a Bayesian coalitional game model to capture the uncertainty in players’

types in coalition formation in an incomplete information environment. This Bayesian

coalitional game is similar to a Bayesian noncooperative game [113]-[115].

6.3.1 Bayesian Coalitional Game with Non-Transferable Util-

ity

Definition 2 A Bayesian coalitional game with non-transferable utility is defined as

G = 〈M,T,P , (ūi)i∈M, (�i)i∈M〉. (6.1)

The formulation of this game is as follows:

• Players: The set of players consists of M rational mobile nodes and is denoted

by M = {1, . . . ,M} .

• Type: The type space is denoted by T = T1 × · · · × TM , where Ti = {Tw, Tm}
denotes player i ∈ M ’s possible type set – type Tw is for well-behaved nodes

and type Tm is for misbehaving nodes. Each player i has a type ti ∈ Ti. Each

mobile node can observe its own type completely but not the types of other

mobile nodes. Each well-behaved mobile node always acts cooperatively with

others. That is, it always tries to send or receive packets to or from others when
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it encounters any other mobile node in the same coalition (i.e., a cooperative

acknowledgement Ωc occurs with probability 1). However, a misbehaving mobile

node does not always cooperate with others. That is, a misbehaving node refuses

to deliver a packet with probability ςi (i.e., a cooperative acknowledgement Ωc

and a noncooperative acknowledgement Ωn occur with probabilities 1− ςi and

ςi, respectively). Also, the probability ςi for mobile node i is unknown to the

other mobile nodes. t0 is the type of a base station which is always Tw and is

perfectly known to all the mobile nodes. Note that a player cannot have both

the types at the same time and its type is assumed not to change for a sufficiently

long period of time4.

• Probability Distribution: P is a common a priori probability over the type in T.

Let P i
j (tj = Tw) = pij and P i

j (tj = Tm) = 1 − pij denote mobile node i’s belief

probabilities about mobile node j over types Tw and Tm, respectively.

• Payoff: ūi(S,�tiS), is defined as the expected payoff of mobile node i which is the

difference between the average utility and the average cost given the beliefs of

node i about the types of all players in the coalition S. The vector of types of

all players is denoted as �tiS = [. . . , tij, . . .]
T , j ∈ S, where tij is the belief of node

i about the type of mobile node j, which is a member of coalition S.
With a discrete type space, the expected payoff of node i can be defined as

follows [1]:

ūi(S,�tiS) = E[αiRi(S,�tiS)− βiCi(S,�tiS)]

=
2|S|−1∑
k=1

p
′k
i (�t

i
S\{i})(αiR

k
i (S,�tiS)− βiC

k
i (S,�tiS)) (6.2)

where αi and βi denote, respectively, the non-negative weight constants of the

average utility and the average cost of delivering a packet to other mobile nodes

in the same coalition. Since the type ti of mobile node i is completely known

to itself, for node i, p
′k
i (�t

i
S\{i}) is its joint belief probability about other mobile

4If the type of a node changes frequently, during coalition formation, it may not be possible to
learn what the type of this node is.
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nodes in the same coalition S corresponding to the index k, and �tiS\{i} is the

belief vector of mobile node i about the types of other mobile nodes. For a

particular index k, the joint belief probability can be expressed as follows:

p
′
i(�t

i
S\{i}) =

∏
j∈S\{i}

P i
j (tj = tij) (6.3)

where tij is the type of mobile node j believed by mobile node i.

The utility of mobile node i is defined as a function Ri(S) as follows:

Ri(S,�tiS) =
⎧⎨
⎩ max

(
0, 1− di(S)

min(d̂i,dTTL
i )

)
, |S| > 1

0, otherwise
(6.4)

where di(S) is the packet delivery delay for mobile node i ∈ S, d̂i = di({i})
is the packet delivery delay when mobile node i acts alone, and dTTL

i is the

time-to-live (TTL) value for a packet.

The average cost of mobile node i for delivering a packet to any mobile node j

in the same coalition can be expressed as follows:

Ci(S,�tiS) =
{ ∑

j∈S,j �=i cij(S), |S| > 1

0, otherwise
(6.5)

where cij(S) is the average cost that mobile node i incurs for delivering a packet

destined to mobile node j in the same coalition S and |S| is the number of mobile

nodes in coalition S. In Appendix B.1, we formulate a Markov chain model

to find the utility and the average cost (and hence the expected payoff) of each

mobile node under uncertainty about other mobile nodes’ types.

• Preference: �i describes player i’s preference. For example, S1 �i S2 means

that player i prefers to be a member of coalition S2 at most as much as S1.

• Action: The action of each player is to make a decision on which coalition to

form (i.e., to join or leave a coalition) based on its own payoff and the payoffs

of other players in the current coalition as well as the new coalition.
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Each of the well-behaved mobile nodes always helps others by sending cooperative

acknowledgements and doing cooperation. However, due to a false positive observa-

tion error which occurs with probability 0 < pe < 1, a mobile node imperfectly

observes other mobile nodes’ behaviors. Note that a false negative observation error

occurs with probability ps = 0.

In this work, we consider a non-transferable utility (NTU) coalitional game since

the individual payoff of each mobile node (i.e., utility as a function of packet deliv-

ery delay minus cost of helping other nodes to deliver packets) cannot be given or

transferred arbitrarily to other mobile nodes. The solution of the coalitional game is

a stable coalitional structure.

6.3.2 Coalition Formation

Definition 3 A coalitional structure is a set of coalitions spanning all the users in

M which is defined as Υ = {S1, . . . ,Sl, . . . ,SS}, where Sl ∩ S ′l = ∅ for l �= l
′
and S

is the total number of coalitions for 1 ≤ S ≤ M , and
⋃s

l=1 Sl = M. The coalition

consisting of all the mobile nodes is referred to as a grand coalition. There can be

2M − 1 distinct non-empty coalitions and DM different coalitional structures for M

players, where DM is the M th Bell number given as follows:

DM =
M−1∑
j=0

(
M − 1

j

)
Dj, for M ≥ 1 and D0 = 1. (6.6)

Let S i
l denote any coalition Sl for i ∈ Sl. In a coalitional game, a player’s action

is to choose a coalition that the player prefers to be a member of according to its

expected payoff. Therefore, the concept of preference has to be defined.

Definition 4 The preference of any mobile node i is denoted by (�i)i∈S⊆M. S i
l �i S i

l′

denotes that mobile node i weakly prefers to be a member of S i
l , i ∈ Sl ⊆ M over S i

l′,

i ∈ Sl′ ⊆ M or at least, mobile node i prefers to be a member of both the coalitions.

S i
l �i S i

l′ denotes that mobile node i strictly prefers to be a member of S i
l over S i

l′.

Since a player is rational and the expected payoff of a player in a coalition depends

only on the members of the coalition and can be predicted, this game can be consid-
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ered a hedonic game which is a special case of NTU game [116]. From the definition

of hedonic game, the preference of a node can be defined as follows.

• S i
l �i S i

l′ is valid if two following conditions are true. First, all the other mobile

nodes j in S i
l believe that they are not worse off when mobile node i is a member

of S i
l (i.e., ūj(S i

l ,�t
j

Si
l
) ≥ ūj(S i

l \ {i},�tjSi
l \{i}

), ∀j ∈ S i
l \ {i}). Second, mobile node

i believes that its payoff, when this node is a member of S i
l , is greater than that

when this node is a member of S i
l′ (i.e., ūi(S i

l ,�t
i
Si
l
) > ūi(S i

l′ ,�t
i
Si
l′
)).

• S i
l �i S i

l′ is valid if two following conditions are true. First, all the other mobile

nodes j in S i
l believe that they are not worse off when mobile node i is a member

of S i
l (i.e., ūj(S i

l ,�t
j

Si
l
) ≥ ūj(S i

l \ {i},�tjSi
l \{i}

), ∀j ∈ S i
l \ {i}). Second, mobile node

i believes that its payoff, when this node is a member of S i
l , is not less than

that when this node is a member of S i
l′ (i.e., ūi(S i

l ,�t
i
Si
l
) ≥ ūi(S i

l′ ,�t
i
Si
l′
)), or

• S i
l �i S i

l′ is valid if the following condition is true. At least one of the other

mobile nodes j in S i
l′ believes that it is worse off when mobile node i is a

member of S i
l′ and no mobile node j in S i

l believes that it is worse off when

mobile node i is a member of S i
l , or at least one of the other mobile nodes j

in both S i
l and S i

l′ believes that it is worse off when mobile node i is a member

of S i
l (i.e., ūj(S i

l′ ,�t
j

Si
l′
) < ūj(S i

l′ \ {i},�tjSi
l′\{i}

), ∃j ∈ S i
l′ \ {i} and ūj(S i

l ,�t
j

Si
l
) <

ūj(S i
l \ {i},�tjSi

l \{i}
), �j or ∃j ∈ S i

l \ {i}).

6.3.3 Coalition Formation Algorithm

At any time φ, any single mobile node in a coalition can decide to leave its current

coalition and/or join a new coalition (i.e., make an individual decision). We present

a distributed algorithm (Algorithm 5) based on mobile nodes’ strict preferences as

presented in Definition 4 to achieve a solution of the game.

Algorithm 5 works as follows. First, the time φ is initialized to be zero, and

also the coalitional structure is initialized. The algorithm repeats the following steps.

Any mobile node i makes a decision to leave or to join the new coalition. To do so,

the mobile node has to compute its expected payoff. Given the calculated expected

payoff, the mobile node randomly selects a coalition to join. After joining, the mobile

node recalculates its expected payoff. If the new expected payoff is higher, the mobile
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node requests to join the new coalition by sending request message to the coordinator.

Upon receiving the request message, the mobile nodes in the target coalition evaluate

the expected payoffs in the case that mobile node i joins their coalition. If the

expected payoff is higher, the new coalition will be formed. Otherwise, there is no

change of the coalitional structure.

Next, we consider whether any coalitional structure obtained from Algorithm 5

is Nash-stable. The definition of a Nash-stable coalitional structure is given as follows:

Definition 5 A coalitional structure Υ = {S1, . . . ,Sl, . . . ,Ss} is Nash-stable if ∀i ∈
M,S i

l �i Sk ∪ {i} for all Sk ∈ Υ \ S i
l ∪ {∅} [116].

From the definition, if a coalitional structure (i.e., a set of coalitions) is stable,

then

• No player i has an incentive to leave its current coalition S i
l and act alone (i.e.,

S i
l �i {i}). This implies that no player believes that she will be better off (in

terms of expected payoff) by acting alone, i.e., ūi(Sl,�t
i
Sl) ≥ ui({i}, ti).

• Given a player’s beliefs about the other players, no player i will have an incentive

to move from its current coalition S i
l to any other coalition (assuming that the

other coalitions do not change) that makes the coalitional structure to change

(i.e., S i
l �i Sl′ ∪ {i},Sl′ ∈ Υ \ S i

l , i ∈ M and Sl′ �j Sl′ ∪ {i}, ∀ j ∈ Sl′). This

implies no player believes that she will be better off by joining the new coalition

Sl′ without making all the players in the coalition Sl′ believe that they will

be worse off, i.e., ūi(S i
l ,�t

i
Si
l
) ≥ ūi(Sl′ ∪ {i},�tiSl′∪{i}), i ∈ M and ūj(Sl′ ,�t

j
Sl′ ) >

ūj(Sl′ ∪ {i},�tjSl′∪{i}) ∀ j ∈ Sl′ .

In the next section, we analyze the stability of the Bayesian coalitional game.

6.4 Analysis of the Bayesian Coalitional Game

The concepts of Nash-stability and core [20, 96] are used to analyze the stability of

the Bayesian coalition formation game. Also, a discrete-time Markov chain model is

developed to analyze the coalition formation algorithm. Note that since the prefer-

ences of players are based on their expected payoffs given their beliefs about other

players’ types, the Nash-stability may be described as the Bayesian Nash-stability
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Algorithm 5 Distributed coalition formation algorithm based on individual prefer-
ences for cooperative packet delivery

1: Initialize φ = 0 and Υ(φ) = {S1(φ), . . . ,Ss(φ)}
2: loop
3: At time φ, mobile node i is randomly selected to make a decision to leave S i

l (φ)
and join any coalition Sk ∈ Υ(φ) \ S i

l (φ) ∪ {∅}.
4: Mobile node i computes its expected payoff ūi(S

i
l (φ),�t

i
Si
l (φ)

).

5: Mobile node i randomly selects one of coalitions, i.e., Sk, to join.
6: Mobile node i computes its expected payoff ūi(Sk(φ) ∪ {i},�tiSk(φ)∪{i}).
7: if ūi(Sk(φ) ∪ {i},�tiSk(φ)∪{i}) > ūi(S

i
l (φ),�t

i
Si
l (φ)

)

8: Mobile node i sends its request to the central coordinator to join Sk(τ).
9: Mobile node j ∈ Sk(φ) computes and sends its expected payoff ūj(Sk(φ) ∪

{i},�tjSk(φ)∪{j}) to the central coordinator.

Note that if there is no change of information (e.g., beliefs about the types of
other mobile nodes, and delivery costs) that causes any payoff to change, no new
calculation or update is required.

10: if Sk(φ) ∪ {i} �i S i
l (φ) is true

11: Mobile node i joins Sk(φ).
12: Υ(φ+ 1) = (Υ(φ) \ {S i

l (φ),Sk(φ)}) ∪ {Sk(φ) ∪ {i}} ∪ {S i
l (φ) \ {i}}

13: else
14: Υ(φ+ 1) = Υ(φ)
15: end
16: else
17: Υ(φ+ 1) = Υ(φ)
18: end
19: φ = φ+ 1
20: end loop when a Nash-stable coalitional structure Υ∗ is obtained (i.e., no mobile

node prefers to move to another coalition).
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which is comparable to the Bayesian Nash equilibrium of a noncooperative game

with incomplete information.

6.4.1 Bayesian Nash-Stability

Theorem 1 Algorithm 5 will converge to a Nash-stable coalitional structure Υ∗.

Proof. FromDefinition 4, any mobile node will be able to move to another coalition

only when none of the mobile nodes in that coalition is worse off (i.e., the mobile nodes

believe that they will not be worse off in terms of expected payoff after the new node

joins). Starting with any coalitional structure Υ, if any mobile node i still prefer to

move to a new coalition based on Definition 4 (i.e., Sk∪{i} �i S i
l , Sk ∈ Υ\S i

l ∪{∅}
), then the current coalitional structure is not Nash-stable. Consequently, the current

coalitional structure changes to a new coalitional structure after mobile node i joins a

new coalition (i.e., lines 10–12 of Algorithm 5). Since there can be 2M − 1 distinct

non-empty coalitions and DM different coalitional structures as given in (6.6), this

implies that there are maximum 2M−1 coalitions including an empty coalition for each

mobile node i to possibly join. The worst case is that if mobile node i cannot find

any non-empty coalition (i.e., the number of members of the coalition is greater than

zero, |Sk| > 0) to join, mobile node i then forms its singleton coalition.

Note that mobile node i moving to the empty coalition from its current singleton

coalition (i.e., currently it is not a member of any other coalition) is considered to

have no incentive to deviate from the current coalition because there would be no

change in the coalition structure (i.e., it is still the same singleton coalition). Since

the number of coalitions that each mobile node i can be a member of is finite, the

algorithm will converge to a Nash-stable coalitional structure Υ∗.

From [116], a Nash-stable coalitional structure is also an individually stable coali-

tional structure (i.e., Nash-stability is a subset of individual stability).

Definition 6 A coalitional structure Υ = {S1, . . . ,Sl, . . . ,Ss} is individually stable

if �i ∈ M, �Sk ∈ Υ \ S i
l ∪ {∅} such that Sk ∪ {i} �i S i

l and ∀j ∈ Sk,Sk ∪ {i} �j Sk.

This definition means that no player can move to another coalition, which it prefers

to join, without making some members of that coalition worse off. Moreover, we can
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observe a more specific example of the condition of existence of an individually stable

and also Nash-stable coalitional structure which does not consist of any singleton

coalition. In particular, no player will leave its current coalition and join an empty

coalition (i.e., no singleton coalition will be formed) if the following proposition is

true.

Proposition 2 If for all coalitions S ⊆ M, the condition ∀i ∈ S,S �i {i} is true,

then there exists at least one a Nash-stable and also individual stable coalition struc-

ture in which all coalitions in the coalition structure are not singleton coalitions.

Proof. This observation states that no player forms a singleton coalition since each

player believes that a better expected payoff can be obtained by being a member of a

coalition. Since the payoff of a player will be zero if the player acts alone, from (6.2),

we can show that ui({i}, ti) = 0 < ūi(S,�tiS) (i.e., S �i {i}), ∀i ∈ S. According to

Algorithm 5, we can obtain a Nash-stable and individual stable coalitional structure

at the end.

Since there can be multiple Nash-stable coalition structures, we formulate a discrete-

time Markov chain (DTMC) to analyze the Nash-stable coalitional structure [95]

resulting from the distributed algorithm.

6.4.2 Discrete-Time Markov Chain-Based Analysis of Coali-

tion Formation

The DTMC follows Algorithm 5 when the state (i.e., coalitional structure) changes

based on individual preferences of the players. As an example, with three players, the

state transition diagram of the DTMC for coalition formation is shown in Figure 6.2.

The state space of the DTMC can be expressed as follows:

Θ = {(Υ1), . . . , (Υx), . . . , (ΥDM
)} (6.7)

where Υx is a coalitional structure and DM is the Mth Bell number. The transition

probability of this DTMC is denoted by ξΥ,Υ′ . In particular, ξΥ,Υ′ is the probability

that the coalitional structure changes from Υ to Υ
′
. Let BΥ,Υ′ denote the set of players
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Figure 6.2. State transition diagram of the discrete-time Markov chain (DTMC) for
coalition formation among 3 players.

involved in the change of coalitional structure from Υ to the coalitional structure Υ
′
.

For example, players 1 and 2 are involved in the change of the coalitional structure

from Υ = {{1}, {2}, {3}} to Υ
′
= {{1, 2}, {3}}. The transition probability from state

Υ to Υ
′
is then found as follows:

ξΥ,Υ
′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
i∈B

Υ,Υ
′

1
M

1
|Υ\Si

l∪{∅}|
ϕi(Υ

′ |Υ), Υ �= Υ
′
& Υ

′
= (Υ \ {S i

l ,Sk}) ∪ {Sk ∪ {i}}
∪{S i

l \ {i}}
0, Υ �= Υ

′
& Υ

′ �= (Υ \ {S i
l ,Sk}) ∪ {Sk ∪ {i}}

∪{S i
l \ {i}}

1−∑Υ′′∈Θ,Υ′′ �=Υ ξΥ,Υ′′ , Υ = Υ
′

(6.8)

where Sk ∈ Υ \ S i
l ∪ {∅}, 1

M
is the probability that player i is selected to make

her individual decision, 1
|Υ\Si

l∪{∅}|
is the probability that player i selects one possible

coalition Sk ∈ Υ\S i
l ∪{∅} to join. ϕi(Υ

′ |Υ) is the probability that a player decides to

move from its current coalition S i
l to a new coalition S i

l′ which makes the coalitional

structure to change from Υ to Υ
′
, i.e.,

ϕi(Υ
′ |Υ) =

{
1, S i

l
′ �i S i

l

0, otherwise
(6.9)

where S i
l ∈ Υ and S i

l′ ∈ Υ
′
.

Given the transition matrixQ, whose elements are ξΥ,Υ
′ , the stationary probability

vector �π can be obtained by solving the following equation: �πTQ = �πT , where

�πT�1 = 1, and �1 is a vector of ones. �π =
[
πΥ1 · · · πΥx · · · πΥDM

]T
, where πΥx is
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the probability that the coalitional structure Υx will be formed.

6.4.3 Bayesian Core

In this solution concept, the core is regarded as a set of payoffs corresponding to a

grand coalition upon which no other coalition can improve, and therefore, no player

has an incentive to leave the grand coalition. The grand coalition refers to a coalition

of all the M players, i.e., all mobile nodes participating in the game. We study the

conditions to achieve the core of the Bayesian coalitional game (i.e., Bayesian core).

Let �̄uM = [ū1(M,�t1M), . . . , ūi(M,�tiM), . . . , ūM(M,�tMM )] and �̄uS = [. . . , ūi(S,�tiS), . . .]
denote the expected payoff vectors of all the mobile nodes when they are members

in the grand coalition and the expected payoff vectors of the mobile nodes in any

coalition S ⊆ M calculated from (6.2), respectively.

Definition 7 The characteristic function of coalition S, which is a set of feasible

payoff vector �xS of length |S|, is defined as follows:

V (S) = {�xS ∈ RS |�xS ≤ �̄uS}. (6.10)

We can use the concepts of core and Bayesian core in the non-transferable utility

game [20, 96] and the transferable utility game [113]-[115], respectively, to define the

Bayesian core in NTU game in Definition 8 and Definition 9.

Definition 8 For an NTU Bayesian coalitional game, the weak Bayesian core is

defined as follows:

C = {�uM ∈ V (M)|∀S ⊆ M, ��uS ∈ V (S) s.t. S �i M, ∀i ∈ S}. (6.11)

This definition indicates that there exist payoffs from the grand coalition upon

which no other coalition can improve so that no member in the grand coalition believes

that she is better off by deviating from the grand coalition (i.e., no other coalition

blocks the grand coalition and its payoffs).

Remark 1 Clearly, in our game model, the coalitional structure composed of only the

grand coalition can be a Nash-stable coalitional structure but its expected payoffs may
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not be the Bayesian core (i.e., the grand coalition can be blocked by other coalitions).

On the other hand, if the Bayesian core is not empty, then the coalitional structure

composed of only the grand coalition exists and is Nash-stable.

Next, we consider another stability concept called strong Bayesian core. Let

ūi
j(S,�tiS) and �i

j be the expected payoff vector of mobile node j and the preference of

mobile node j believed by mobile node i, respectively, when they are members in any

coalition S. Note that, ūi
i = ūi, as shown in (6.2), and ūi

j, for j �= i, can be calculated

based on the types of other mobile nodes believed by mobile node i as follows:

ūi
j(S,�tiS) = E[αjRj(S,�tiS)− βjCj(S,�tiS)]. (6.12)

Then, the preference of mobile node j believed by mobile node i can be found by

following Definition 4 and using (6.12) to find the expected payoffs.

Definition 9 For an NTU Bayesian coalitional game, the strong Bayesian core is

defined as follows:

C = {�uM ∈ V (M)|∀S ⊆ M, ��uS ∈ V (S)
s.t. S �i M, ∀i ∈ S and S �i

j M, ∀i ∈ S, ∀j ∈ S, j �= i}. (6.13)

The definition states that there exist payoffs from the grand coalition such that, no

member in the coalition believes that she is better off by leaving the grand coalition,

and each member, who uses her own view of expected payoffs of others members,

believes that no other member is better off if she leaves the grand coalition. The

strong Bayesian core is a subset of the weak Bayesian core. Therefore, if the weak

Bayesian core exists, it may or may not be the strong Bayesian core. In our NTU

game, the strong Bayesian core cannot be considered if all the needed information

about the other mobile nodes (i.e., weight constants and costs of packet delivery)

except their actual types are not known to each player. Moreover, the core is a

special case of the weak Bayesian core when there is no type uncertainty (i.e., all the

players perfectly know each other’s actual type). Since a Bayesian coalitional game

generalizes a coalitional game, the Bayesian core may be empty [113].

For an NTU game, the Bondareva-Shapley theorem [96, 97] states that the core
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of a game is not empty if and only if the game is balanced.

Definition 10 Consider an NTU game. For every S ⊆ M, let VS = V (S) × RM\S .

The NTU game is balanced if

⋂
∀S⊆M

V (S) ⊆ V (M). (6.14)

Observation 3 The weak Bayesian core of the coalitional game for cooperative packet

delivery is not empty if

αiRi(S,�tiS) > βiCi(S,�tiS), and (6.15)

αiRi(M,�tiM)− βiCi(M,�tiM) > αiRi(S,�tiS)− βiCi(S,�tiS). (6.16)

Proof. Since αi ≥ 0 and βi ≥ 0, we can find αi and βi such that constraint in (6.15)

holds. If the constraint in (6.15) does not hold, i.e., ui(S,�tiS) < ui({i}, ti) = 0, then

each mobile node will act alone, and the core is empty. Next, we can express V (S)
and V (M) as follows:

V (M) = {�xM = [. . . , xi, . . .] ∈ RM|xi ≤ αiRi(M,�tiM)− βiCi(M,�tiM), ∀i ∈ M} and

(6.17)

V (S) = {�xS = [. . . , xi′ , . . .] ∈ RS |xi′ ≤ αi′Ri′(S,�ti′S)− βi′Ci′(S,�ti′S), ∀i′ ∈ S}. (6.18)

If the constraint in (6.16) holds, then �xM > �xS × RM\S , ∀S ⊆ M, which satisfies the

definition of a balanced game. Consequently, the Bayesian core is not empty if the

constraints in (6.15) and (6.16) above are satisfied.

For example, if αi = 0, ∀i ∈ M, then each mobile node in any coalition has no cost

for packet delivery. Intuitively, the expected payoffs of all the mobile nodes will be the

highest (i.e., the lowest delivery delay for all the mobile nodes). Then, we can obtain

M �i S, ∀i ∈ M and ∀ S ⊆ M. Moreover, the obtained coalitional structure, which

contains only the grand coalition, i.e., Υ = {M}, is also Nash-stable and individually

stable since there is no mobile node i that has an incentive to leave the grand coalition

and act alone (i.e., M �i {i}).

Remark 2 From Observation 2, there can be multiple Nash-stable coalitional struc-



140

Table 6.3. Solution concepts and the corresponding conditions for the proposed co-
operative packet delivery game
Solution concept Condition
Nash stability 1) No player has an incentive to leave its current coalition and act alone.

2) No player will have an incentive to move from its current coalition to any
other coalition (assuming that the other coalitions do not change) that makes
the coalitional structure to change.

Individual stability No player can move to another coalition, which it prefers to join, without
making some members of that coalition worse off.

Weak Bayesian core There exist payoffs from the grand coalition upon which no other coalition can
improve so that no member in the grand coalition believes that she is better
off by deviating from the grand coalition (i.e., no other coalition blocks the
grand coalition and its payoffs).

Strong Bayesian core There exist the payoffs and the grand coalition that based on each player’s
beliefs, no player in the coalition believes that she is better off from the grand
coalition. Moreover, each player who uses her own view of expected payoffs
of other players believes that no other player is better off if he or she deviates
from the grand coalition.

tures which are the solutions of the game and one of them can be the grand coalition.

The grand coalition for which the set of associated expected payoffs may or may not

be the Bayesian core, may not be reached by the proposed algorithm since the algo-

rithm will terminate when any Nash-stable coalitional structure is achieved. Hence,

if the Nash-stable coalitional structure composed of only the grand coalition needs to

be obtained, the initial coalitional structure in Algorithm 5 has to be set to the

grand coalition. Then, if the grand coalitional structure is not Nash-stable, any other

coalitional structure, which is Nash-stable, will be obtained.

The different solution concepts described above for the proposed cooperative

packet delivery game are summarized in Table 6.3.

6.5 Dynamic Bayesian Coalitional Game

In this section, we extend the static Bayesian coalitional game to a multi-stage dy-

namic Bayesian coalitional game and propose a distributed algorithm for this game.

In this game, a player can update her beliefs (i.e., probabilities) about the types of

other players as the game evolves. The update is made based on each player’s ob-

servations about others’ behaviors. When the coalitional game with belief update

mechanism is repeatedly played, it will converge to a solution which is the same as
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the solution that could be obtained when all the information are known (i.e., players’

types are known).

6.5.1 Belief Update Mechanism

Each player (i.e., mobile node) can update her beliefs about the types of other players

according to Bayes’theorem [117]. As in Section 6.2.2, let us consider the situation

that mobile node i requests a packet from node j. In this case, mobile node i can

observe whether node j sends the packet or not. Two cases can happen in this

scenario, which we define as χij(ωc = Ωc) and χij(ωn). Here χij(ωc = Ωc) denotes the

event that mobile node i observes a cooperative acknowledgement ωc implying that

it receives the packet from mobile node j successfully. χij(ωn) denotes the event that

mobile node i observes a noncooperative acknowledgement ωn implying that it has

not received any packet from mobile node j. Given an observation χij(ωc = Ωc) or

χij(ωn) at the τij-th time of observation, where τij ≥ 0, mobile node i can update

its belief probability about mobile node j’s well-behaved type according to Bayes’

theorem as shown in (6.19) and (6.20).

p
τij+1
ij (χij(ωc = Ωc)) =

p
τij
ij (1− pe)

p
τij
ij (1− pe) + (1− p

τij
ij )(1− ς

τij+1
ij )(1− pe)

. (6.19)

p
τij+1
ij (χij(ωn)) =

p
τij
ij pe

p
τij
ij pe + (1− p

τij
ij )(ς

τij+1
ij + (1− ς

τij+1
ij )pe)

. (6.20)

If mobile node j is misbehaving, the probability that the mobile node will refuse to

deliver packets is ςi. At the time instant τij +1, the belief probability of mobile node

i that mobile node j refuses to deliver a packet, when mobile node j is misbehaving,

is denoted by ς
τij+1
ij , and can be found by using (6.21) and (6.22). Let |χij(ωc = Ωc)|,

|χij(ωn)|, and |χij| denote, respectively, the number of observations of cooperative

acknowledgement ωc, noncooperative acknowledgement ωn, and total observations

of acknowledgement. In (6.21), the probability that mobile node i will observe a

cooperative acknowledgement ωc can be expressed as the ratio between |χij(ωc = Ωc)|
and |χij|. In (6.22), the probability that mobile node i will observe a noncooperative
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acknowledgement ωc can be expressed as the ratio between |χij(ωn)| and |χij|. Note
that the expression on the left hand side of the equation is the theoretical probability

but the expression on the right hand side is the probability computed from the actual

observations.

pij(1− pe) + (1− pij)(1− ςij)(1− pe) =
|χij(ωc = Ωc)|

|χij| . (6.21)

pijpe + (1− pij)(ςij + (1− ςij)pe) =
|χij(ωn)|
|χij| . (6.22)

Then, given mobile node i’s belief probability p
τij
ij about mobile node j’s well-

behaved type and the number of observations |χij|τij+1, |χij(ωn)|τij+1, and |χij(ωc =

Ωc)|τij+1 at the τij +1-th time of observation, mobile node i can estimate its ς
τij+1
ij as

shown in (6.23) and (6.24), where |χij|τij+1 = τij + 1 .

ς
τij+1†
ij =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎛
⎝ (1−pe)− |χij(ωc=Ωc)|τij+1

|χij |
τij+1

(1−pτijij )(1−pe)

⎞
⎠ , |χij(ωc = Ωc)|τij+1 > 0

⎛
⎝ |χij(ωn)|τij+1

|χij |
τij+1 −pe

(1−pτijij )(1−pe)

⎞
⎠ , |χij(ωn)|τij+1 > 0.

(6.23)

For mobile node i, we obtain the new belief probability that mobile node j will

refuse to deliver packet at the τij + 1-th time of observation, i.e., ς
τij+1†
ij , in (6.23).

Note that in (6.23), when both the number of observations of cooperative acknowl-

edgement (i.e., |χij(ωc = Ωc)|τij+1) and the number of observations of noncooperative

acknowledgement (i.e., |χij(ωn)|τij+1) are greater than zero, using either the first equa-

tion or the second equation will give the same result. Since the probability obtained

at each time of observation is independently calculated using the statistical data (i.e.,

|χij|τij+1, |χij(ωn)|τij+1, and |χij(ωc = Ωc)|τij+1), each mobile node can update its

belief probability ς
τij+1
ij as the weighted sum of the previous value ς

τij
ij and the new

value ς
τij+1†
ij as shown in (6.24) below:

ς
τij+1
ij = w1ς

τij+1†
ij + w2ς

τij
ij (6.24)

where w1 and w2 are adjustable weight constants such that 0 < w1 < 1, 0 < w1 ≤ 1,
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and w1 +w2 = 1. Note that the linear combination in (6.24) is based on the concept

of exponential moving average (EMA) which is a standard method of estimating an

unknown parameter [118]. It is used to estimate the belief ς
τij+1
ij at step τij + 1 when

the instantaneous belief ς
τij+1†
ij in (6.23) is given.

We can compare the solution of the dynamic Bayesian coalitional game with a

dynamic Bayesian noncooperative game. In a dynamic Bayesian noncooperative

game [1], a combination of strategies and beliefs is a perfect Bayesian equilibrium

if

• the beliefs of each information set are updated by Bayes’ theorem whenever

applicable, and

• the strategy of each player at each information set is optimal or it maximizes

her expected payoff with respect to her beliefs given the strategies of all the

other players (i.e., this is called sequential rationality).

Then, when the coalitional game is repeatedly played (i.e., in a multi-stage game),

the players’ beliefs are updated according to Bayes’ theorem and the players make

their decisions to leave and join any coalition optimally based on their preferences

(i.e., optimal actions with respect to their beliefs given the strategies of all the others)

until a (Bayesian) Nash-stable coalitional structure is achieved. Hence, the solution

of each subgame, which is Nash-stable coalitional structure, can be compared to the

perfect Bayesian equilibrium for a dynamic Bayesian noncooperative game.

6.5.2 Distributed Algorithm

We present an algorithm for dynamically playing a coalitional game with belief update

mechanism based on (6.19)–(6.24) in Algorithm 6. First, mobile node i initializes

the counter for time of observation, and its belief. Then, the coalitional game is played

and a Nash-stable coalitional structure is obtained according to Algorithm 5. Each

mobile node then updates its beliefs about other mobile nodes’ types while it is helping

others in packet delivery. When a period of time to do cooperative packet delivery

ends, the mobile nodes repeatedly play the coalitional game given their updated

beliefs. In this case, if any player is misbehaving, the belief probabilities for other

players about this player’s well-behaved type will decrease or that of misbehaved type
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will increase due to the belief update mechanism. When the mobile nodes repeatedly

play the coalitional game given their updated beliefs, the algorithm converges to the

Nash-stable coalitional structure which is the same as the solution that could be

obtained when all the players’ types are known.

Algorithm 6 Distributed algorithm for dynamic Bayesian coalitional game with
belief update mechanism

1: Mobile node i initializes the counter τij, ∀ j ∈ M and j �= i. τij is the τij-th time
of observation of helping behavior of mobile node j observed by mobile node i
(i.e., τij = 0, ∀j).

2: Mobile node i initializes its beliefs P i
j (tj = Tm) = p

τij
ij and P i

j (tj = Tw) = 1− p
τij
ij

∀ j ∈ M and j �= i, where 0 < p
τij
ij < 1.

3: The coalition formation algorithm (Algorithm 5) is run (i.e., a Nash-stable
coalitional structure based on mobile node’s preferences with respect to their
beliefs).

4: loop
5: Mobile node i in S i

l ∈ Υ helps others to deliver packet according to the current
stable coalitional structure Υ.

6: Mobile node i observes the helping behavior χ
τij
ij of mobile node j.

7: Mobile node i updates its the belief probability of packet delivery to be refused by
other mobile node j, if mobile node j is a misbehaving node, i.e., ς

τij+1
ij (χ

τij
ij (ωn)),

according to (6.23)-(6.24).
8: Mobile node i updates its probabilistic belief about another mobile node j’s type

p
τij+1
ij (χ

τij
ij ) according to (6.19)–(6.20).

9: end loop until packet delivery is done or network state changes
10: Go to Step 3.

6.6 Performance Evaluation

We apply the proposed cooperative packet delivery framework in a vehicle-to-roadside

(V2R) communications scenario (i.e., the mobile nodes shown in Figure 6.1 are ve-

hicles). In such a scenario, data is transferred through the roadside base stations

(RBSs) or wireless access points. Each vehicle is equipped with a Wi-Fi transceiver

for downloading data when the vehicle is connected to the RBS.
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Table 6.4. Default values of parameters
Parameter Description/value

Communication range of base station Radius of 100 m
Communication range of vehicle Radius of 50 m

Maximum speed on roads 50 km/h (31.25 mph)
Vehicle’s acceleration 0.8 m/s2

Vehicle’s deceleration 4.5 m/s2

Table 6.5. Rates (rij) per second that each vehicle meets other vehicles and an RSB
on a road

Rate RBS Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 4
RSB - 0.0339 0.0345 0.0299 0.0308

Vehicle 1 0.0339 - 0.0103 0.0108 0.0104
Vehicle 2 0.0345 0.0103 - 0.0122 0.0145
Vehicle 3 0.0299 0.0108 0.0122 - 0.0247
Vehicle 4 0.0308 0.0104 0.0145 0.0247 -

6.6.1 Simulation Parameters and Assumptions

To obtain the parameters on rate of encounters among the vehicles, we use a micro-

scopic road traffic simulation package named “SUMO”, an acronym for “Simulation

of Urban MObility” [99] and then use MATLAB to analyze the results obtained from

the SUMO simulator. The rates for each vehicle to meet other vehicles and an RBS

(i.e., rij) are shown in Table 6.5. The rates are obtained using the parameters in

Table 6.4. The area of the road map is of size 2 km×2 km with 121 intersections.

An RBS is located at an intersection for every 400 m in both horizontal and vertical

directions, and they are connected by a wired infrastructure. There are 100 vehicles

in the area among which 4 vehicles, namely, vehicles 1 to 4, are selected to show the

performance evaluation results. Each vehicle moves along the shortest path from a

random originating position to a random destination position.

We assume that the type of each of vehicle 1, vehicle 2, and vehicle 3 is misbehaving

with ς1 = 0.90, ς2 = 0.70, and ς3 = 0.50, respectively. Vehicle 4’s type is well-behaved

(i.e., ς4 = 0). Vehicle i initially believes that the types of the other vehicles j are well-

behaved with probability pij = 0.99 and misbehaving with probability 1− pij = 0.01.

The false positive observation error occurs with pe = 0.1. Also, each vehicle i initially

believes that if another vehicle j is misbehaving, it will refuse to deliver a packet

with the same probability ςij = 0.1. The weight constants of the utility function
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Table 6.6. 15 different coalitional structures for 4 vehicles
Coalitional structure

Υ1 {1}, {2}, {3}, {4} Υ2 {1, 2}, {3}, {4} Υ3 {1}, {2}, {3, 4}
Υ4 {1, 3}, {2}, {4} Υ5 {1}, {3}, {2, 4} Υ6 {1, 4}, {2}, {3}
Υ7 {1}, {4}, {2, 3} Υ8 {1, 2}, {3, 4} Υ9 {1, 3}, {2, 4}
Υ10 {1, 4}, {2, 3} Υ11 {1, 2, 3}, {4} Υ12 {1, 2, 4}, {3}
Υ13 {1, 3, 4}, {2} Υ14 {1}, {2, 3, 4} Υ15 {1, 2, 3, 4}

are assumed to be α1 = α2 = α3 = α4 = 15. A large value of α means that the

utility of a vehicle will change significantly when the packet delivery delay changes

by a small amount. The weight constants of the cost function are assumed to be

β1 = β2 = β3 = β4 = 1.5. A small value of β (e.g., zero) means that the vehicle does

not care about the cost it incurs. We assume that w1 and w2 (i.e., the weight constants

for updating ςi) are 0.9 and 0.1, respectively. Since there are 4 vehicles, there are 15

possible coalitions. The Time-To-Live (TTL) value for all packets is assumed to be

dTTL
i = 35 s. We set the cost of receiving a packet from and forwarding a packet to

other vehicles to be equal (i.e., cfij = crij = ci), where ci is referred to as the cost-

coefficient. This cost-coefficient is ci = 1.0 and assumed to be the same for all the

vehicles.

We compare the stable solution from the proposed rational coalition formation

game with incomplete information with the solution from optimal coalition formation,

and the solution from rational coalition formation with complete information. In the

optimal coalition formation, vehicles will form coalitions to maximize the total payoff

of all the vehicles given that all the information are completely known. In the case of

rational coalition formation with complete information, the coalitions are formed by

the vehicles to maximize their individual payoff given that all the vehicles’ types are

completely known.

6.6.2 Numerical Results

6.6.2.1 Nash-stable Coalitional Structure

Figure 6.3 shows the stationary probabilities of the Nash-stable rational coalition

solutions with incomplete information, with complete information, and optimal coali-
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Figure 6.3. Stationary probability of the Nash-stable rational coalitional structures
with incomplete and complete information and optimal coalitional structure.

tion solution. For the Nash-stable rational coalition formation with incomplete in-

formation, there are 3 Nash-stable coalitional structures, i.e., Υ∗13 = {{1, 3, 4}, {2}},
Υ∗14 = {{1}, {2, 3, 4}}, and Υ∗15 = {{1, 2, 3, 4}}. For the Nash-stable rational coalition
formation with complete information, there are 2 Nash-stable coalitional structures,

i.e., Υ∗6 = {{1, 4}, {2, 3}} and Υ∗12 = {{1, 2, 4}, {3}}. For the optimal solution, since

the highest total payoff of the optimal coalitional structure is Υ∗15, the probability of

this coalitional structure is one.
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Figure 6.4. Nash-stable coalitional structure obtained from the individual preference-
based algorithm.

Figure 6.4 shows the Nash-stable coalitional structure with incomplete information
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obtained from the individual preference-based algorithm (i.e., Algorithm 5). The

initial coalitional structure for each run of the algorithm is set to Υ1, Υ5, Υ10, and Υ15.

When the algorithm runs, we can observe that the coalitional structure changes and

then it converges to the Nash-stable coalitional structure, i.e., coalitional structure

Υ∗13,Υ
∗
14, or Υ

∗
15 as shown in Figure 6.3.
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Figure 6.5. (a) Nash-stable coalitional structures with incomplete information, (b)
Nash-stable coalitional structures with complete information, and (c) optimal coali-
tional structures under different values of cost-coefficient.

Assuming that the cost-coefficient ci is the same for all the vehicles, we vary

the cost-coefficient ci of all vehicles from 0 to 3. Figures 6.5(a), (b), and (c) show,

respectively, the Nash-stable coalitional structures with incomplete information, with

complete information, and the optimal coalitional structure under different values
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Figure 6.6. Total payoff of all the vehicles under different values of cost-coefficient.

of the cost-coefficient. As shown in Figure 6.5, all the vehicles will act alone (i.e.,

Υ∗1 is formed) and the total payoff becomes zero when the cost-coefficient is greater

than 2, 1.4, or 2.1 in the cases of incomplete information, complete information or

optimal solution, respectively. Moreover, as shown in Figure 6.5(a), with incomplete

information, the grand coalition and the Bayesian core (i.e., the payoffs of the grand

coalition) exist when the cost-coefficient is between 0 and 0.6 since there is only one

Nash-stable coalitional structure Υ∗15. When the cost-coefficient lies between 0.7 and

1.2, the grand coalition may not be formed since it can be blocked by other Nash-stable

coalitional structures (e.g., there are two other Nash-stable coalitional structures Υ∗13
and Υ∗14). Also, as shown in Figure 6.5(b), with complete information, the grand

coalition is Nash-stable when the cost-coefficient lies between 0 and 0.4. When the

cost-coefficient is between 0.5 and 1.9, the grand coalition may not be formed since

other Nash-stable coalitional structures (e.g., Υ∗6, Υ
∗
12, and Υ∗13) can also be formed.

6.6.2.2 Payoffs of the Nodes

Given all the possible Nash-stable coalitional structures as shown in Figure 6.5, Fig-

ure 6.6 shows the average total payoff of all the vehicles under different values of the
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cost-coefficient. The average total payoff of all the vehicles is obtained as follows:

E[utotal] =
∑
i∈M

DM∑
x=1

πΥxui(S i
l ), for S i

l ∈ Υx (6.25)

where DM is the Mth Bell number and ui(S i
l ) is the payoff of vehicle i when it is a

member of coalition S i
l .

As expected, for small value of cost-coefficient, the average total payoff is high

when the coalition is formed. However, when the value of cost-coefficient increases,

the average total payoff of all vehicles decreases since a higher cost is incurred to all

vehicles involved in the cooperative packet delivery. As a result, a vehicle will leave its

current coalition if the utility is not higher than the cost incurred from cooperative

packet delivery. Moreover, the average total payoff from the optimal solution is

equal to or higher than the average total payoffs of the Nash-stable solutions of the

rational coalition formations with incomplete and complete information and the payoff

when all the players act alone. Note that the Nash-stable solutions of the rational

coalition formations with incomplete and complete information are different. Hence,

the average payoff of the Nash-stable solution of the rational coalition formation

with incomplete information may or may not be higher than that with complete

information.

Observation 4 Given a coalitional structure obtained from Algorithm 5, without

any belief update, the expected payoff of each vehicle computed under incomplete infor-

mation is not necessarily lower than the payoff when the vehicle acts alone. However,

the payoff of each vehicle actually obtained may be lower than the payoff when the

vehicle acts alone.

Discussion: A coalitional structure obtained from Algorithm 5 is guaranteed to

be Nash-stable. Consequently, each vehicle believes that its expected payoff is greater

than or equal to the payoff when it acts alone. However, the coalitional structure may

not be a Nash-stable when the complete information scenario is considered. Hence,

the vehicle’s actual payoff (i.e., the payoff computed based on the actual types of the

vehicles after the coalitional structure is formed based on the vehicles’ beliefs) may

be lower than the payoff when the vehicle acts alone as shown in Figure 6.7.
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Figure 6.7. Average payoffs obtained from the proposed coalitional game with incom-
plete information (i.e., both expected and actual payoffs), with complete information,
and without coalition: (a) for vehicle 1, (b) for vehicle 2, (c) for vehicle 3, and (d)
for vehicle 4.

Figures 6.7(a), (b), (c), and (d) show the average payoffs of vehicles 1, 2, 3, and

4, respectively. We can see that the average payoffs of all vehicles obtained from the

proposed game model with incomplete information and with complete information

are not lower than zero. In particular, the expected payoff of vehicles at the Nash-

stable coalition is not lower than that when they act alone. However, with incomplete

information, in some cases, the actual payoff can be lower than zero due to lack of

true information about other vehicles’ types.

Observation 5 Given a Nash-stable coalitional structure, with the belief update mech-

anism, each vehicle will obtain the expected payoff close to the actual payoff. Moreover,

finally, the actual payoff obtained from the dynamic Bayesian coalitional game can

be similar to that from the coalitional game with complete information or at least the

actual payoff when the vehicle acts alone.

Discussion: When the Bayes’ theorem is used to update the beliefs about the other

vehicles in the same coalition, the probabilistic beliefs of the vehicles will converge
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Figure 6.8. (a) Vehicle 4’s belief probabilities that vehicles 1, 2, and 3 are well-
behaved (i.e., p41, p42, p43), and (b) vehicle 4’s belief probabilities that vehicles 1, 2,
and 3 will refuse to deliver a packet (i.e., ς41, ς42, ς43).

to the actual values. Then, the expected payoff of each vehicle will converge to its

actual payoff. The updated expected payoff may change the Nash-stable coalitional

structure. If all of the vehicles’ beliefs converge to the actual values, the actual

payoffs from the dynamic Bayesian coalitional game will converge to the same values

of payoff obtained from the coalitional game with complete information. The results

are shown in Figures 6.8-6.9. However, if a vehicle has no chance to update its beliefs,

its actual payoff may not converge to the payoff obtained from the coalitional game

with complete information. In the worst case, the vehicle acts alone after the vehicle

can learn some other vehicles’ actual types. Hence, the actual payoff is not lower than

the payoff when the vehicle acts alone.
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6.6.2.3 Dynamic Bayesian coalitional game

Given that the grand coalition is formed when the cost-coefficient is 1.0, Figures 6.8(a)

and (b) show the probabilistic beliefs of vehicle 4 when vehicles 1, 2, and 3 are well-

behaved and the probabilistic beliefs of vehicle 4 when vehicles 1, 2, and 3 refuse to

deliver a packet, respectively. After vehicle 4 observes the behaviors of vehicles 1, 2,

and 3, it updates its beliefs about the other vehicles’ types accordingly. Vehicle 4’s

belief probabilities that vehicles 1, 2, and 3 are well-behaved converge to zero. Also,

vehicle 4’s belief probabilities that vehicles 1, 2, and 3 will refuse to deliver a packet

are close to the actual probabilities (i.e., 0.9, 0.7, and 0.5, respectively).
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Figure 6.9. Nash-stable coalitional structure during each period of coalition forma-
tion.

Figure 6.9 shows the Nash-stable coalitional structure formed during each period

of coalition formation according to Algorithm 6. Given the initial beliefs of all the

vehicles and after the first period of coalition formation, with the cost-coefficient 0, 1,

2, and 3, the Nash-stable coalitional structures are Υ∗15, Υ
∗
14, Υ

∗
8, and Υ∗1, respectively.

Each vehicle in the same coalition updates its beliefs during the period of each round

of coalition formation. After that, the coalition formation starts its next round. Given

that the cost-coefficient is 1, the Nash-stable coalitional structure changes from Υ∗14
to Υ∗13, from Υ∗13 to Υ∗12, and from Υ∗12 to Υ6∗ at the end of the coalition formation

periods 1, 2, 3, and 4, respectively. Given that the cost-coefficient is 2, the Nash-

stable coalitional structure changes from Υ∗8 to Υ∗5, from Υ∗5 to Υ∗15, and from Υ∗15
to Υ∗1, at the end of coalition formation periods 1, 2, 3, and 4, respectively. When
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the cost-coefficient is 0 and 3, the Nash-stable coalitional structure does not change.

When the cost-coefficient is 0, all the vehicles will always form the grand coalition

regardless of the types of all the vehicles. When the cost-coefficient is 3, Υ∗1 is firstly

formed, and no vehicle has a chance to update its beliefs. However, with the complete

information, the same Nash-stable coalitional structure is reached.

Comparing the results shown in Figure 6.5 and Figure 6.9, we observe that, the

Nash-stable coalitional structure obtained from the dynamic Bayesian coalitional

game with incomplete information and the belief update mechanism converges to

the same Nash-stable coalitional structure obtained from the coalitional game with

complete information. Hence, the actual payoff from the dynamic Bayesian coali-

tional game is similar to the payoff obtained from the coalitional game with complete

information. Moreover, there is a case that a vehicle has no chance to join any coali-

tion with others. For example, with incomplete information of the vehicles’ types

and given the vehicles’ beliefs, the Nash-stable coalitional structure in which all the

coalitions are singleton coalitions, i.e., Υ∗1 is firstly formed. Then, a vehicle will not

have a chance to update its beliefs about the other vehicles’ types. With complete

information, if the obtained Nash-stable coalitional structure is not the same as that

with incomplete information (i.e., it is not Υ∗1 ), it is not possible that the actual

payoff from the Bayesian coalitional game will converge to the payoff obtained from

the coalitional game with complete information. However, if a vehicle cannot update

all its beliefs, its actual payoff will not be lower than the payoff when it acts alone.

6.7 Related Work

There are a very few work using the dynamic Bayesian game theory to solve the

resource allocation problem in wireless and mobile communications systems. For

example, Y. Yan et al. [119, 120] modeled a multi-slot coopeartive spectrum sharing

mechanism as a dynamic Bayesian bargaining game. A primary user (PU) offers its

licensed spectrum to a secondary user (SU) while the secondary user will relay the

primary user’s data. However, the information about SU’s energy cost is unknown

by the PU. A perfect Bayesian equilibrium or sequential equilibrium, which is a

refinement of perfect Bayesian equilibrium, can be obtained as the solution of the
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game.

In our cooperative packet delivery model, we have used a dynamic Bayesian coali-

tional game. The key idea of the coalitional game theory is to study the formation

of coalition among players in a game. In wireless networks, coalitional games have

been used to model and analyze the resource allocation problem, where coalitions of

mobile nodes are formed so that the mobile nodes achieve higher utilities compared

to when they do not form coalitions. Z. Han and H.V. Poor [109] used a coalitional

game model to solve the problem of packet-forwarding among boundary nodes and

backbone nodes in wireless networks. As the result, the boundary nodes can trans-

mit their packets effectively. W. Saad et al. [76] proposed a coalitional game for

cooperative data service among the base stations in vehicular networks. Through

coalitions, the revenue of any cooperative group of base stations can be improved by

exploiting the underlying vehicle-to-vehicle content-sharing network. D. Niyato and

P. Wang [75] proposed a coalitional game for cooperative bandwidth sharing among

mobile nodes (i.e., vehicles) in vehicle-to-roadside communications scenarios. When

mobile nodes form coalitions, the mobile nodes can reduce the cost of bandwidth

reservation while meeting their quality-of-service (QoS) requirements; hence, higher

utilities can be achieved.

In reality, it is not guaranteed that the rational mobile nodes, which are the mem-

bers of the coalition, will agree to always help each other in the same coalition since

some of them may misbehave. For packet forwarding in mobile ad hoc networks

(MANETs), some reputation-based and game theory-based cooperation enforcement

mechanisms were proposed [121]-[123] to prevent nodes from misbehaving. However,

most of the existing schemes assume that, to detect the misbehaving nodes, perfect

observations of mobile nodes’ behaviors (e.g., through monitoring systems) are avail-

able. There are only a very few work which consider that the nodes’ behaviors cannot

be perfectly observed. For example, Z. Ji, W. Yu, and K. J. R. Liu [123] presented a

noncooperative repeated game with belief-based cooperative enforcement mechanism

for packet forwarding in mobile ad hoc networks under imperfect observation.

In order to study the problems of cooperation under uncertainty or imperfect

observation of mobile nodes’ behaviors or types, coalitional game was generalized

to Bayesian coalitional game [113]-[115]. In the research paper of G. Chalkiadakis
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and C. Boutilier [113] and the research paper of S. Ieong and Y. Shoham [115],

the Bayesian core, which is a solution concept of the Bayesian coalitional game, was

studied. With this concept, no group of players would prefer to leave a grand coalition

and form a new coalition. G. Chalkiadakis and C. Boutilier [113] proposed the notion

of Bayesian core in a transferable-utility Bayesian coalitional game based on how

the payoffs can make a grand coalition stable given the beliefs about players’ types.

S. Ieong and Y. Shoham [115] proposed the notion of ex-interim blocking to achieve

the Bayesian core. Ex-interim blocking means that given the beliefs of the players, a

grand contract is blocked by a coalition (i.e., a set of expected payoffs in the coalition,

which the authors call a contract).

6.8 Chapter Summary

We have presented a dynamic Bayesian coalitional game for coalition-based cooper-

ative packet delivery among mobile nodes in a mobile network under uncertainty in

node behavior (i.e., selfishness of nodes). The mobile nodes are rational to form coali-

tions to maximize their individual payoffs. Based on the individual preferences, which

are related to the expected payoffs of the nodes, a Bayesian coalitional game has been

formulated to model the decision making process of mobile nodes (e.g., to coopera-

tively deliver the packets of other mobile nodes or not). A Nash-stable coalitional

structure, which is the solution of this coalitional game, can be obtained by using the

individual preference-based algorithm. Moreover, a belief update mechanism based

on Bayes’ theorem has been proposed. With this mechanism, each mobile node can

update its beliefs about the other mobile nodes’ types (i.e., well-behaved or misbehav-

ing) under the proposed Bayesian coalitional game. A comprehensive performance

evaluation has been carried out for the proposed Bayesian coalitional game.
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Chapter 7

Discussions and Summary

In recent years, wireless access services have become increasingly widespread to sup-

port anytime-anywhere communications among users. Due to resource constraints

and multiple mobile nodes (i.e., users) in a wireless communication network, the

transmitting nodes share the limited radio resources (e.g., wireless channels and trans-

mission power). Therefore, one critical issue is how the nodes share these resources

to transmit data so that the optimal network performance can be achieved. In a

multiple access scheme, nodes can either cooperate or compete to achieve their ob-

jectives. Consequently, the theory of both noncooperative and cooperative games has

become a very efficient tool to model and analyze multiple access schemes in wireless

networks, and to obtain solutions for resource allocation. Built on the game theory,

this thesis presents a set of game models to solve the aforementioned problems for

multiple access and resource allocation in wireless networks. Our results show that

the proposed game-theoretic models can bring optimal and equilibrium solutions for

both the noncooperative and cooperative scenarios.

While the game-theoretic approach is effective, it may not scale well in some cases,

e.g., coalition formation when the number of players is high. Then, we discuss about

the complexity and scalability of the proposed algorithms and other issues in Section

7.1. After that we conclude by summarizing the contributions of this thesis in Section

7.2 and later point out interesting avenues for future research in Section 7.3.
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7.1 Discussions

In this section, we discuss the complexity and scalability of the proposed distributed

algorithms. Moreover, we discuss about the core solution of coalitional game

7.1.1 Complexity and Scalability of the Proposed Algorithms

The proposed best response-based algorithms, i.e., Algorithm 1 and Algorithm 2,

which rely on an iterative strategy update, scale with the number of mobile nodes.

The number of mobile nodes will depend on the type of application. For example, with

a vehicle-to-roadside (V2R) communications scenario, the typical number of vehicles

(i.e., mobile nodes) at a roadside base station (RSB) can be, for example, 10 (due

to the limited space at the bus stop). We have used the system model in Chapter 4

conducted new simulations considering 10 vehicles as shown inAppendix C.1. From

the new result, we observe that Algorithm 2 can converge to the solution within

about 12 bidding rounds as shown in Fig. C.1. However, to maintain the consistency

throughout the numerical study in Chapter 4, we present the results only for three

vehicles in the chapter (i.e., Figures. 4.3, 4.4, 4.5, and 4.6 are for 3-vehicle case).

The new result shows that Algorithm 2 can achieve the scalability. Moreover, the

result also implies that Algorithm 1 can achieve the scalability as well since both

the algorithms are based on the same concept of best-response update.

In Chapter 5 and Chapter 6, for an N -player coalitional game, the number of coali-

tional structures is given by the Nth Bell number (defined in (6.6)) and the number of

possible non-empty coalitions is 2N −1. As the number of mobile nodes increases, the

number of coalitional structures and the number of coalitions increase exponentially.

To obtain a Nash-stable coalitional structure, let us consider the merge-and-split al-

gorithm. Since there are 2N−1 coalitions which each node can join as a coalition’s

member, the total number of payoff computation of all mobile nodes is O(N2N−1).

In each time step (τ), each mobile node compares its current payoff with the payoff

when it is a member of a new coalition if the coalitional structure changes. Since

there are DN coalitional structures, the number of comparisons used to obtain the

stable solution is O(NDN). The complexity incurred is at the analysis, but not at

the implementation of the coalition formation. In particular, as the number of mo-
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bile nodes increases, the state space of Markov chain model will increase. However,

the mobile nodes can use the distributed algorithms to reach the solution. Regard-

ing Algorithm 6, taking the belief update mechanism does not incur significant

complexity, since each mobile node updates its beliefs about the other mobile nodes

types when they encounter each other by using Bayes rule. Moreover, the algorithms

(Algorithms 4–6) are scalable since they do not need the global information about

the network and about all nodes all the time. When a mobile node would like to

move to another coalition, the mobile node needs some information (e.g., information

of payoffs of the mobile nodes in the new coalition) is needed.

Using the SNA-based mobile node grouping as Algorithm 3 in Chapter 5, we can

filter mobile nodes which have not have the opportunity to help others. As a result of

the reduction of the number of mobile nodes in the game, the complexity of finding the

solution of the game model will reduce dramatically. The objective of the SNA-based

mobile node grouping, i.e., Algorithm 3, is to reduce the complexity of coalition

formation which increases exponentially when the number of nodes increases [20, 87].

In the social network analysis-based mobile node grouping, the complexity of building

the graph of relationship among M mobile nodes is M(M − 1)/2 = O(M2). The

complexity of listing all groups of M mobile nodes (i.e., maximal cliques in the M-

vertex relationship graph) is at most of O(3M/3) [98]. All maximal cliques in the

graph may be generated in time O(M |E|) per clique, where |E| is the number of

edges in the graph [88]. The complexity and computational time increase when the

number of mobile nodes increases. However, the mobile node grouping algorithm

can be performed offline to update the mobile nodes’ relationships (i.e., no real-

time update is needed.). The statistical data (i.e., encounter rates and the number

of encounters) sent from mobile node is collected by the central coordinator at the

application server periodically) and then relationship among mobile nodes is analyzed

and updated according to Algorithm 3.

7.1.2 Core Solution in Coalitional Games

In Chapter 5 and Chapter 6, the grand coalition (i.e., coalition with all mobile nodes)

will be stable, if the core is non-empty. Therefore, in each proposed game, one of

the cores can be obtained if all the conditions (i.e., Observation 2 in Chapter 5
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Table 7.1. Approaches to find the existence of the core and the payoffs that lie in
the core of a coalitional game [20]
Game theoretical and mathematical approaches
1. A graphical approach can be used for finding the core of TU games with up to 3
players.
2. Using duality theory, a necessary and sufficient condition for the non-emptiness
of the core exists through the Bondareva-Shapley theorem (Theorem 1) for TU and
NTU.
3. A class of canonical games, known as convex coalitional games always has a
non-empty core.
4. A necessary and sufficient condition for a non-empty core exists for a class of
canonical games known as simple games, i.e., games where v(S) ∈ {0, 1}, ∀S ⊆ N
and v(N) = 1.
Application-specific approaches
5. In several applications, it suffices to find whether payoff distributions that are of
interest in a given game, e.g., fair distributions, lie in the core.
6. In many games, exploiting game-specific features such as the mathematical defi-
nition or the underlying nature and properties of the game model, helps finding the
imputations that lie in the core.

or Observation 3 in Chapter 6) are satisfied which are based on the Bondareva-

Shapley theorem. In [20], the approaches to find the existence of the core and the

payoffs that lie in the core of a coalitional game (without finding the complete set of

the core solution) are given. These approaches are summarized in Table 7.1 of this

response. However, the core could be a set, and it is not easy to obtain the complete

set of the core solution especially with the non-transferable utility (NTU) coalitional

games. The problem of obtaining the complete set of the core solutions is an open

research problem in coalitional game theory.

7.2 Summary of Contributions

The contribution of Chapter 2 is a comprehensive survey on the applications of game

theory used to model, analyze and solve the multiple access and resource allocation

problem in wireless networks.

The contribution of Chapter 3 is the proposed auction mechanism for distributed

bandwidth sharing among multiple mobile nodes. In this auction game, a group of
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mobile nodes competes with other groups by offering bid prices to the wireless access

point to obtain its required amount of the bandwidth (i.e., a scenario of single-hop

transmission when each mobile node can be directly connected to the access point)

and maximize the group payoff. The wireless access point then allocates portions

of bandwidth to all the group by using a fair allocation strategy. The allocated

bandwidth to the group is further divided among the nodes based on the maximization

of the group payoff. Each mobile node in the same group will pay the same cost per

unit of bandwidth. We have presented a distributed iterative auction mechanism to

obtain a solution of the game which is Nash equilibrium. The distributed algorithm

is based on the best response update that can converge to the solution within a few

bidding iterations.

The contribution of Chapter 4 is the proposed distributed noncooperative game

model for resource allocation under uncertainty. We have presented an auction mech-

anism to solve the problem of bandwidth allocation among rational mobile nodes in

a wireless network as same as in Chapter 3. However, we also consider the problem

under incomplete information. We have developed a queueing model to analyze the

required amount of bandwidth for all the mobile nodes. Given the mobility and ap-

plication parameters, the required amount of bandwidth (i.e., transmission rate) is

obtained such that the buffer underrun probability is below the target threshold. In

this study, we have considered a case when the mobility of a mobile node is unknown

by other nodes. We have formulated a Bayesian noncooperative game to model the

decision making process of mobile nodes for bandwidth auction. A distributed mech-

anism has been proposed for the bidding process which achieves the solution of the

bandwidth auction game, namely, the Bayesian Nash equilibrium. Also, we have an-

alyzed the uniqueness of the Bayesian Nash equilibrium of the proposed game. We

have used the proposed auction game model for bandwidth allocation in vehicle-to-

roadside communications as an example.

The contribution of Chapter 5 is the proposed distributed cooperative channel ac-

cess method for carry-and-forward-based packet delivery. Differently from Chapter 3

and Chapter 4, in this chapter, we have considered a scenario of the multi-hop cooper-

ative transmission among mobile nodes. In particular, a coalitional game framework

has been proposed to deal with packet delivery among mobile nodes in a downlink
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transmission scenario. The rational mobile nodes form coalitions to increase their

individual payoffs. We have first used a social network analysis to group mobile

nodes such that each mobile node has enough capability to help others in the same

group. Next, we have developed a continuous-time Markov chain model to obtain the

packet delivery delay and the expected cost that each mobile node will incur when

it participates in the cooperative packet delivery process. Both the packet delivery

delay and the expected cost depend on how mobile nodes in the same coalition are

willing to help each other. We have then proposed a bargaining game to find the

optimal helping probabilities for all the mobile nodes. Next, we have formulated

a nontransferable payoff coalitional game to analyze the decision making process of

mobile nodes whether to be members in any coalitions or not. Their decisions to

cooperatively deliver packets to other mobile nodes are based on their packet delivery

delays and expected costs. The solution of this coalitional game is a stable coalitional

structure. We have proposed a distributed merge and split algorithm to obtain the

solution. The improvement of packet delivery delay using the proposed coalitional

game model for cooperative packet delivery has been illustrated through numerical

results.

The contribution of Chapter 6 is the proposed distributed cooperative channel ac-

cess method for carry-and-forward-based packet delivery under uncertainty. We have

relax the cooperative concept in Chapter 5 that mobile nodes in the same coalition

always help each other according to the cooperative agreement. In particular, a coali-

tional game framework has been proposed to deal with packet delivery among mobile

nodes in a downlink transmission scenario. Each mobile node can be well-behaved

or misbehaving in the cooperative delivery. A well-behaved node always helps to

deliver packets to the other nodes in the same coalition but a misbehaving node may

refuse to deliver a packet of other nodes in the same coalition. Each mobile node’s

behavior or type is not completely known by other nodes. Then, we have first formu-

lated a Bayesian coalitional game to analyze the decision making process of mobile

nodes whether to be members in any coalitions or not based on the mobile node’s

beliefs about other mobile nodes’ types. The solution of this coalitional game is a

stable coalitional structure under the incomplete information of mobile nodes’ types.

Moreover, Bayesian core which is another solution concept has been analyzed. We
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have proposed a distributed merge and split algorithm to obtain the solution. We

have then extended the static coalitional game to a dynamic Bayesian a multi-stage

dynamic. In this game, according to Bayes’ theorem, a mobile node can update its

beliefs about the types of other mobile nodes as the game evolves. The mobile nodes

repeatedly play the coalitional game. Finally, it will converge to a solution which is

the same as the solution that could be obtained when all the information are known.

We have proposed an algorithm for dynamically playing a coalitional game with be-

lief update mechanism. The improvement of packet delivery delay using the proposed

static coalitional game model for cooperative packet delivery and the performance of

the proposed dynamic Bayesian coalitional game have been presented through the

numerical results.

7.3 Open Problems and Future Directions

We have studied the problem of multiple access at a single base station as a nonco-

operative game in Chapter 4. The main objective of each mobile node is to obtain

an optimal and equilibrium individual throughput. However, we did not consider a

scenario that mobile nodes cooperatively access a channel when they are connected

to a base station. Given a cooperative group, each mobile node shares its channel

access information with other mobiles in the group. Then, the mobile nodes try to

not send access the channel at the same time. Hence, the cooperative channel access

among mobile nodes can increase the overall network throughput since the number of

transmission collisions decreases. However, the cooperative channel access may not

be useful if the cost of cooperative operations (e.g., signaling overhead for exchang-

ing personal information among mobile nodes) is higher than the benefit obtained

from the cooperation. Moreover, the mobile nodes can travel in a service area where

multiple base stations are deployed. The mobile nodes may be connected to different

base stations or same base stations at a time. Combining both the mobility and

cooperative channel access in a unified framework is an interesting avenue for future

research. The key question is when and how cooperative groups of mobile nodes

should be formed to achieve the network objectives such as maximization of overall

throughput while ensuring fair channel access among mobile nodes.
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In Chapter 5 and Chapter 6, we have considered the coalition-based cooperative

channel access method for carry-and-forward based packet delivery. Mobile nodes

which are in the same cooperative group or coalition help each other to carry and

forward packets in order to decrease the packet transmission delay and increase the

network throughput. One of the limitations of the proposed work is that a mobile

node in a coalition will not carry and forward packets to other mobile nodes which

are in different coalitions even if they can occasionally encounter each other. We

can extend the work by considering cooperative packet delivery among coalitions. In

particular, we can an extend the proposed work to a game-based hierarchical frame-

work consisting of coalitional and bargaining games. The first game is a coalitional

game similar to the one proposed in this thesis and the second one is a bargaining

game. Each coalition formed by using the first coalitional game acts as a player in

this bargaining game. Each coalition (i.e., mobile nodes in the coalition) helps other

coalitions to deliver packets across the coalitions according to a bargaining game

model (i.e., two or more players prefer to reach an agreement regarding how much

each player will help others). In this case, not all mobile nodes but at least one mo-

bile node in each coalition needs to have encounter relationships with other mobile

nodes in the different coalitions. Then, the benefit obtained by each coalition from

the bargaining game may be fairly distributed to all the members according to how

much each mobile node in the coalition helps deliver packet to other coalitions.

Finally, the multiple access methods based on game theory need to consider the

resource constraints as well as application requirements [124]. For example, a multiple

access (MAC) protocol for vehicular wireless networks needs to consider high mobility

of the nodes that causes the topology of the network to vary rapidly, limited radio

bandwidth, as well as vehicle density. Transmission delay (i.e., emergency messaging

delay) is one of the main performance measures for such a MAC protocol. For a

game theoretic multiple access scheme, the utility functions for the players should

take the related parameters into account. Again, since users’ quality of experience

(QoE) depends on the performance of the transport level protocol (e.g., TCP, UDP),

performance of the developed MAC schemes needs to be investigated from transport

layer’s point of view. Accordingly, cross layer optimizations can be performed. In our

future work, we will also focus on application-centric and transport-level evaluation
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of game theoretic models and cross-layer optimization issues.



166

Bibliography

[1] D. Fudenberg and J. Tirole, Game Theory, The MIT Press, London, 1991.

[2] V. Srivastava, J. A. Neel, A. B. MacKenzie, J. E. Hicks, L. A. DaSilva, J. H. Reed,
and R. P. Gilles, “Using game theory to analyze wireless ad hoc networks,” IEEE
Communications Surveys and Tutorials, vol. 7, no. 5, Fourth Quarter 2005, pp.
46–56.

[3] R. Jurdak, C. V. Lopes, and P. Baldi, “A survey, classification and comparative
analysis of medium access control protocols for ad hoc networks,” IEEE Commu-
nications Surveys & Tutorials, vol. 6, no. 1, First Quarter 2004.

[4] S. Stanczak, M. Wiczanowski, and H. Boche, Fundamentals of Resource Allocation
in Wireless Networks: Theory and Algorithms, Springer, 2009.

[5] M. Ergen, Mobile broadband: including WiMAX and LTE, Springer, 2009

[6] A. Bachir, M. Dohler, T. Watteyne, and K. K. Leung, “MAC essentials for wireless
sensor networks,” IEEE Communications Surveys & Tutorials, vol. 12, no. 2,
Second quarter 2010.

[7] A. Chandra, V. Gummalla, and J. O. Limb, “Wireless medium access control
protocols,” IEEE Communications Surveys & Tutorials, vol. 3, no. 2, Second
quarter 2000.

[8] M. Felegyhazi and J.-P. Hubaux, “Game Theory in Wireless Networks: A Tuto-
rial,” EPFL Technical Report, LCA-REPORT-2006-002 (February 2006).

[9] A. B. MacKenzie and S. B. Wicker, “Game theory and the design of self-
configuring, adaptive wireless networks,” IEEE Communications Magazine, Nov.
2001, pp. 126–131.

[10] A. B. MacKenzie and L. DaSilva, Game Theory for Wireless Engineers, Morgan
and Claypool, 2006.

[11] R. J. Aumann, “Game theory,” The New Palgrave Dictionary of Economics,
Eds. S. N. Durlauf and L. E. Blume, Palgrave Macmillan, 2008.

[12] A. B. Mackenzie and S. B. Wicker, “Game theory in communications: Moti-
vation, explanation, and application to power control,” in Proceedings of IEEE
Global Telecommunications Conference 2001 (IEEE GLOBECOM), pp. 821–826,
November 2001.



167

[13] R. J. Aumann, “Subjectivity and correlation in randomized strategy,” Journal
of Mathematical Economics, vol. 1, no. 1, pp. 67-96, 1974.

[14] K. Ritzberger, Foundations of Noncooperative Game Theory, Oxford University
Press, New York, 2002.

[15] M. L. Littman, “Markov games as a framework for multi-agent reinforcement
learning,” in Proceedings of the 11th International Conference on Machine Learn-
ing, pp. 157-163, 1994.

[16] N. Vlassis, A Concise Introduction to Multiagent Systems and Distributed Arti-
ficial Intelligence, Morgan & Claypool Publishers, 2007.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An introduction, MIT
Press, Cambridge, MA, 1998.

[18] Z. Han and K. J. Ray Liu, Resource Allocation for Wireless Networks: Basics,
Techniques, and Applications, Cambridge University Press, New York, 2008.

[19] J. W. Weibull, Evolutionary Game Theory, The MIT Press, 1997.

[20] W. Saad, Z. Han, M. Debbah, A. Hjørungnes, and T. Basar, “Coalitional game
theory for communication networks,” IEEE Signal Processing Magazine, vol. 26,
no. 5, pp. 77–97, September 2009.

[21] A. T. Hoang and Y.-C. Liang, “Dynamic spectrum allocation with second-price
auctions: When time is money,” in Proceedings of 3rd International Conference on
Cognitive Radio Oriented Wireless Networks and Communications 2008, pp. 1–6,
May 2008.

[22] J. W. Huang and V. Krishnamurthy, “Transmission control in cognitive radio as
a Markovian dynamic game: Structural result on randomized threshold policies,”
IEEE Transactions on Communications, vol. 58, no. 1, pp. 300–310, January 2010.

[23] Y. Wu, B. Wang, and K. J. R. Liu, “Repeated spectrum sharing game with self-
enforcing truth-telling mechanism,” in Proceedings of IEEE International Confer-
ence on Communications (IEEE ICC 2008), pp. 3583–3587, May 2008.

[24] F. Wu, S. Zhong, and C. Qiao, “Globally optimal channel assignment for non-
cooperative wireless networks,” in Proceedings of 27th IEEE International Con-
ference on Computer Communications (IEEE INFOCOM 2008), pp. 1543–1551,
April 2008.

[25] Y. Narahari, D. Garg, R. Narayanam, and H. Prakash, Game Theoretic Problems
in Network Economics and Mechanism Design Solutions, Spinger, 2009.

[26] W. Noh, “A distributed resource control for fairness in OFDMA systems:
English-auction game with imperfect information,” in Proceedings of IEEE Global
Telecommunications Conference (IEEE GLOBECOM 2008), pp. 1–6, November–
December 2008.



168

[27] D. N. C. Tse and S. V. Hanly, “Multiaccess fading channels-Part I: Polymatroid
structure, optimal resource allocation and throughput capacities,” IEEE Trans-
actions on Information Theory, vol. 44, no. 7, pp. 2796–2815, November 1998.

[28] F. Shams, G. Bacci, and M. Luise, “A coalitional game-inspired algorithm for re-
source allocation in orthogonal frequency division multiple access,” in Proceedings
of 2010 European Wireless Conference, pp. 238–245, April 2010.

[29] F. Meshkati, M. Chiang, H. V. Poor, and S. C. Schwartz, “A game-theoretic
approach to energy-efficient power control in multicarrier CDMA systems,” IEEE
Journal on Selected Areas in Communications, vol. 24, no. 6, pp. 1115–1129, June
2006.

[30] C. A. St Jean and B. Jabbari, “Bayesian game-theoretic modeling of transmit
power determination in a self-organizing CDMA wireless network,” in Proceedings
of IEEE 60th Vehicular Technology Conference (IEEE VTC 2004-Fall), pp. 3496–
3500, September 2004.

[31] A. Feiten and R. Mathar, “Optimal power control for multiuser CDMA chan-
nels,” in Proceedings of International Information Theory 2005, pp. 1903–1907,
September 2005,

[32] H. Inaltekin and S. Wicker, “The analysis of a game theoretic MAC protocol for
wireless networks,” in Proceedings of 3rd Annual IEEE Communications Society
on Sensor and Ad Hoc Communications and Networks (IEEE SECON 2006),
pp. 296–305, September 2006.

[33] Y. Cho, C. S. Hwang, and F. A. Tobagi, “Design of robust random access pro-
tocols for wireless networks using game theoretic models,” in Proceedings of 27th
IEEE International Conference on Computer Communications (IEEE INFOCOM
2008), pp. 1750–1758, April 2008.

[34] H. Lee, H. Kwon, A. Motskin, and L. Guibas, “Interference-aware MAC proto-
col for wireless networks by a game-theoretic approach,” in Proceedings of 28th
IEEE International Conference on Computer Communications (IEEE INFOCOM
2009), pp. 1854–1862, April 2009.

[35] D. Wang, C. Comaniciu, H. Minn, and N. Al-Dhahir, “A game-theoretic ap-
proach for exploiting multiuser diversity in cooperative slotted aloha,” IEEE
Transactions on Wireless Communications, vol. 7, no. 11, pp. 4215–4225, Novem-
ber 2008 .

[36] H. Tembine, E. Altaian, and R. El-Azouzi, “Delayed evolutionary game dynamics
applied to medium access control,” in Proceedings of IEEE International Confer-
ence on Mobile Adhoc and Sensor Systems 2007, pp. 1–6, October 2007.

[37] R. T. B. Ma, V. Misra, and D. Rubenstein, “An analysis of generalized slotted-



169

ALOHA protocols,” IEEE/ACM Transactions on Networking, vol. 17, no. 3,
pp. 936–949, June 2009.

[38] M. Felegyhazi, M. Cagalj, and J.-P. Hubaux, “Efficient MAC in cognitive radio
systems: A game-theoretic approach,” IEEE Transactions on Wireless Commu-
nications, vol. 8, no. 4, pp. 1984–1995, April 2009.

[39] M. Felegyhazi, “Noncooperative Behavior in Wireless Networks,” Ph.D. disser-
tation, EPFL, Switzerland, April 2007, nr. 3791.

[40] J. Konorski, “A game-theoretic study of CSMA/CA under a backoff attack,”
IEEE/ACM Transactions on Networking, vol. 14, no. 6, pp. 1167–1178, December
2006.

[41] R. Bolla and M. Repetto, “Dynamic bandwidth allocation for wireless networks
in high-mobility environments,” in Proceedings of IEEE Global Telecommunica-
tions Conference (IEEE GLOBECOM 2006, pp.1–5, November–December 2006.

[42] B. Wang, S. Sen, M. Adler, and D. Towsley, “Optimal proxy cache allocation
for efficient streaming media distribution,” in Proceedings of 21st Annual Joint
Conference of the IEEE Computer and Communications Societies on Computer
Communications (IEEE INFOCOM 2002, pp.1726–1735, June 2002.

[43] V. Mancuso and G. Bianchi, “Streaming for vehicular users via elastic proxy
buffer management,” IEEE Communications Magazine, vol. 42, no. 11, pp. 144–
152, November 2004.

[44] C. Wu, B. Li, and Z. Li, “Dynamic bandwidth auctions in multioverlay P2P
streaming with network coding,” IEEE Transactions on Parallel and Distributed
Systems, vol. 19, no. 6, pp. 806–820, June 2008.

[45] S. Baskar, S. Verma, G. S. Tomar, and R. Chandra, and B. Li, “Auction-based
bandwidth allocation on the Internet” in Proceedings of IFIP International Con-
ference on Wireless and Optical Communications Networks, pp. 5, April 2006.

[46] A. A. Lazar and N. Semret, “Design and analysis of the progressive second price
auction for network bandwidth sharing,” Journal of Telecommunication Systems
(Special issue on Network Economics), 1999.

[47] M. Blomgren and J. Hultell, “Demand-responsive pricing in open wireless access
markets,” in Proceedings of IEEE 65th Vehicular Technology Conference (IEEE
VTC 2007-Spring), pp. 2990–2995, April 2007.

[48] H. Shen and T. Basar, “Differentiated Internet pricing using a hierarchical net-
work game model,” in Proceedings of the 2004 American Control Conference, vol.
3, pp. 2322–2327, June–July 2004.

[49] S. Pal, S. K. Das, and M. Chatterjee , “User-satisfaction based differentiated ser-
vices for wireless data networks,” in Proceedings of IEEE International Conference
on Communications (IEEE ICC 2005), vol. 2, pp. 1174–1178, May 2005.



170

[50] Y. Wang, K. Zheng, X. Shen, and W. Wang, “A distributed resource allocation
scheme in femtocell networks,” in Proceedings of IEEE 73rd Vehicular Technology
Conference (IEEE VTC 2011-Spring), pp. 1–5, May 2011.

[51] X. Wang, D. Wang, H. Zhuang , and S. D. Morgera, “Fair energy-efficient re-
source allocation in wireless sensor networks over fading TDMA channels,” IEEE
Journal on Selected Areas in Communications, vol. 28, no. 7, pp. 1063–1072,
September 2010.

[52] P. Zarchan and H. Musoff, Fundamentals of Kalman filtering: a practical ap-
proach, American Institute of Aeronautics & Astronautics, 2009.

[53] G. Bianchi and I. Tinnirello, “Kalman filter estimation of the number of compet-
ing terminals in an IEEE 802.11 network,” in Proceedings of 22nd Joint Conference
of the IEEE Computer and Communications Societies on Computer Communica-
tions(IEEE INFOCOM 2003), pp. 844–852, March-April 2003.

[54] M. Johansson and M. Sternad, “Resource allocation under uncertainty using the
maximum entropy principle,” IEEE Transactions on Information Theory, vol. 51,
no. 12, pp. 4103–4117, December 2005.

[55] R. M. Neal, Bayesian learning for neural networks, Springer, 1996.

[56] D. H. T. Huang, S. H. Wu, and P. H. Wang, “Cooperative spectrum sensing and
locationing: A sparse Bayesian learning approach,” in Proceedings of IEEE Global
Telecommunications Conference (IEEE GLOBECOM 2010), pp. 1–5, December
2010.

[57] A. V. Gheorghe, Decision processes in dynamic probabilistic systems, Springer,
1990.

[58] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive MAC for
opportunistic spectrum access in ad hoc networks: A POMDP framework,” IEEE
Journal on Selected Areas in Communications, vol. 25, no. 3, pp. 589–600, April
2007.

[59] Y. Xiao, X. Shan, and Y. Ren, “Game theory models for IEEE 802.11 DCF
in wireless ad hoc networks,” IEEE Communications Magazine, vol. 43, no. 3,
pp. 22–26, March 2005.

[60] V. Srivastava and L. A. Dasilva, “Equilibria for node participation in ad hoc
networks - An imperfect monitoring approach,” in Proceedings of IEEE Interna-
tional Conference on Communications (IEEE ICC 2006), vol.8, pp. 3850-3855,
June 2006.

[61] G. Zhang, H. Zhang, and L. Zhao, “A novel MAC scheme for wireless LANs from
the perspective of game theory,” in Proceedings of IET Conference on Wireless,
Mobile and Sensor Networks 2007, pp. 112–116, December 2007.



171

[62] M. Felegyhazi, M. Cagalj, S. S. Bidokhti, and J.-P. Hubaux, “Noncoopera-
tive multi-radio channel allocation in wireless networks,” in Proceedings of 26th
IEEE International Conference on Computer Communications (IEEE INFOCOM
2007), pp. 1442–1450, May 2007.

[63] C. W. Sung and W. S. Wong, “A noncooperative power control game for mul-
tirate CDMA data networks,” IEEE Transactions on Wireless Communications,
vol. 2, no. 1, pp. 186–194, January 2003.

[64] Z. Han, R. Zheng, and H. V. Poor, “Repeated auctions with Bayesian nonpara-
metric learning for spectrum access in cognitive radio networks,” IEEE Transac-
tions on Wireless Communications, vol. 10, no. 3, pp. 890-900, March 2011.

[65] M. B. Hassan and M. Hassan, “A Markov chain model of streaming proxy for
disconnecting vehicular networks,” in Proceedings of IEEE 69th Vehicular Tech-
nology Conference (IEEE VTC 2009-Spring), pp. 1–5, April 2009.

[66] B. Shrestha, D. Niyato, Z. Han, and E. Hossain, “Wireless access in vehicular
environments using BitTorrent and bargaining,” in Proceedings of IEEE Global
Telecommunications Conference (IEEE GLOBECOM 2008, pp. 1–5, November
2008.

[67] S. Yousefi, E. Altman, R. El-Azouzi, and M. Fathy, “Analytical model for connec-
tivity in vehicular ad hoc networks,” IEEE Transactions on Vehicular Technology,
vol. 57, no. 6, pp. 3341–3356, 2008.

[68] M.-F. Jhang and W. Liao, “On cooperative and opportunistic channel access
for vehicle to roadside (V2R) communications,” in Proceedings of IEEE Global
Telecommunications Conference (IEEE GLOBECOM 2008, pp. 1–5, November
2008.

[69] M. J. Osborne and A. Rubinstein, A course in game theory, The MIT Press,
1994.

[70] M. Rudack, M. Meincke, and M. Lott , “On the dynamics of ad hoc networks
for inter vehicle communications,” in Proceedings of the International Conference
on Wireless Networks, 2002.

[71] H. J. Reumerman, M. Roggero, and M. Ruffini, “The application-based cluster-
ing concept and requirements for inter-vehicle networks,” IEEE Communications
Magazine, vol. 43, no. 4, pp. 108–113, April 2005.

[72] T. Yamada, R. Shinkuma, and T. Takahashi, “Connectivity and throughput en-
hancement by inter-vehicle packet relay in road vehicle communication systems,”
in Proceedings of IEEE Global Telecommunications Conference 2006, pp. 1–5,
November–December 2006.

[73] Y. Yamao and K. Minato, “Vehicle-roadside-vehicle relay communication net-
work employing multiple frequencies and routing function,” in Proceedings of the



172

6th International Symposium on Wireless Communication Systems 2009, pp. 413–
417, September 2009.

[74] H. Su and X. Zhang, “Clustering-based multichannel MAC protocols for QoS
provisionings over vehicular ad hoc networks,” IEEE Transactions on Vehicular
Technology, vol. 56, no. 6, pp. 3309–3323, November 2007.

[75] D. Niyato, P. Wang, W. Saad, and A. Hjørungnes, “Coalition formation games
for bandwidth sharing in vehicle-to-roadside communications,” in Proceedings
of IEEE Wireless Communications and Networking Conference (WCNC) 2010,
pp. 1–5, April 2010.

[76] W. Saad, Z. Han, A. Hjørungnes, D. Niyato, and E. Hossain, “Coalition for-
mation games for distributed cooperation among roadside units in vehicular net-
works,” IEEE Journal on Selected Areas in Communications (JSAC), Special issue
on Vehicular Communications and Networks, vol. 29, no. 1, pp. 48–60, January
2011.

[77] W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in delay tolerant networks: A
social network perspective,” in Proceedings of 10th ACM International Symposium
on Mobile Ad Hoc Networking and Computing (ACM MobiHoc 2009), pp. 299–
308, May 2009.

[78] E. Daly and M. Haahr, “Social network analysis for routing in disconnected
delay-tolerant MANETs,” in Proceedings of 8th ACM International Symposium
on Mobile Ad Hoc Networking and Computing (ACM MobiHoc 2007), pp. 32–40,
September 2007.

[79] S. Pai, T. Roosta, S. Wicker, and S. Sastry, “Using social network theory towards
development of wireless ad hoc network trust,” in Proceedings of 21st International
Conference on Advanced Information Networking and Applications Workshops,
pp. 443–450, May 2007.

[80] S.-L. Hew and L. White, “Cooperative resource allocation games in shared net-
works: Symmetric and asymmetric fair bargaining models,” IEEE Transactions
on Wireless Communications, vol. 7, no. 11, pp. 4166– 4175, November 2008.

[81] S. C. Nelson, M. Bakht, and R. Kravets, “Encounter-based routing in DTNs,” in
Proceedings of 28th IEEE International Conference on Computer Communications
(IEEE INFOCOM 2009), pp. 846–854, April 2009.

[82] T. Spyropoulos, A. Jindal, and K. Psounis, “An analytical study of fundamen-
tal mobility properties for encounter-based protocols,” International Journal of
Autonomous and Adaptive Communications Systems, vol. 1, no. 1, pp. 4–40, July
2008.

[83] W. Gao and G. Cao,“On exploiting transient contact patterns for data forwarding



173

in delay tolerant networks,” in Proceedings of 18th IEEE International Conference
on Network Protocols (ICNP) 2010 , pp. 193–202, October 2010.”

[84] Z. Xinjuan and X. Bo, “A traffic resource diffusion scheme in vehicular net-
works,” in Proceedings of International Forum on Information Technology and
Applications 2009, pp. 318–321, May 2009.

[85] R. Groenevelt, P. Nain, and G. Koole, “The message delay in mobile ad hoc
networks,” Elsevier Journal of Performance Evaluation, vol. 62, no. 1-4, October
2005.

[86] I. R. Chen, F. Bao, M. Chang, and J. H. Cho, “Trust management for encounter-
based routing in delay tolerant networks,” in Proceedings of IEEE Global Telecom-
munications Conference (IEEE GLOBECOM 2010), pp. 1–6, December 2010.

[87] D. Li, Y. Xu, X. Wang, and M. Guizani, “Coalitional game theoretic approach
for secondary spectrum access in cooperative cognitive radio networks,” IEEE
Transactions on Wireless Communications, vol. 10, no. 3, pp. 844–856, March
2011.

[88] K. Makino and T. Uno, “New algorithms for enumerating all maximal cliques,”
Algorithm theory: SWAT 2004, Lecture Notes in Computer Science, vol. 3111,
pp. 260–272, Springer, 2004.

[89] J. Rutten, M. Kwiatkowska, G. Norman, and D. Parker, Mathematical Tech-
niques for Analyzing Concurrent and Probabilistic Systems. P. Panangaden and
F. van Breugel (eds.), American Mathematical Society, vol. 23, 2004.

[90] K. S. Trivedi, Probability and Statistics with Reliability, Queueing, and Computer
Science Applications. Wiley, New York, 2002.

[91] K. S. Trivedi, M. Malhotra, and R. M. Fricks, “Markov reward approach to per-
formability and reliability analysis,” in Proceedings of 2nd International Workshop
on Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems 1994, pp. 7–11, January–February 1994.

[92] Z. Han, D. Niyato, W. Saad, T. Basar, A. Hjørungnes, Game Theory in Wireless
and Communication Networks: Theory, Models, and Applications, Cambridge
University Press, 2011.

[93] E. K. P. Chong and S. H. Zak, An Introduction to Optimization. Wiley-
Interscience, July 2001.

[94] K. R. Apt and A. Witzel, “A generic approach to coalition formation,” in Proceed-
ings of the First International Workshop on Computational Social Choice (COM-
SOC), pp. 21–34, December 2006.

[95] T. Arnold and U. Schwalbe, “Dynamic coalition formation and the core,” Journal
of Economic Behavior & Organization, vol. 49, no. 3, pp. 363–380, November 2002.



174

[96] S.-S. Byun, “A survey on the cooperative game theoretic solution concepts in
wireless communications,” submitted to IEEE Communications Surveys and Tu-
torials, 2010.

[97] B. Peleg and P. Sudhölter, Introduction to the Theory of Cooperative Games.
Springer, New York, 2007.

[98] E. Tomitaa, A. Tanakaa, and H. Takahashi, “The worst-case time complexity
for generating all maximal cliques and computational experiments,” Theoretical
Computer Science, pp. 28–42, vol. 363, no. 1, October 2006.
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Appendix A

A.1 Proof of the Uniqueness of Bayesian Nash equi-

librium

Theorem 3 The noncooperative game in Section 4.5 of Chapter 3 has a unique

Bayesian Nash equilibrium.

Proof.

Since the strategy space bi of each player i is convex, compact, and nonempty,

the expected payoff function E[Pi(·)] is continuous in both bi and �b−i, and E[Pi(·)]
is concave for any �b−i. Therefore, it is guaranteed that at least one Bayesian Nash

equilibrium (or Nash equilibrium) exists (please see reference [125]).

Let us consider equation (3) of the revised manuscript. The Karush-Kuhn-Tucker

(KKT) conditions yield the necessary and sufficient conditions for BNE in this game.

In other words, �b∗ = �(p)
∗
is a BNE if and only if the following conditions hold:

∑
j

f
′j
T (�t−i)

dP j
i (bi,

�b−i, ti,�t−i)
dbi

≤ 0, if b∗i = pmin (A.1)

∑
j

f
′j
T (�t−i)

dP j
i (bi,

�b−i, ti,�t−i)
dbi

= 0, if pmin < b∗i < pmax
i = min{ρmax

i , pi(gi = qi)}

(A.2)∑
j

f
′j
T (�t−i)

dP j
i (bi,

�b−i, ti,�t−i)
dbi

≥ 0, if b∗i = pmax
i = min{ρmax

i , pi(gi = qi)} (A.3)

where pmin is the minimum bid price defined by the wireless access point, ρmax
i is the

maximum bid price that mobile node i affordably pays, and pi(gi = qi) is the bid

price such that with gi ≥ qi, mobile node i cannot gain higher utility even if mobile

node i offers a higher bid price (i.e., the payoff will decrease when pi > pi(gi = qi) and
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hence, mobile node i will not offer a bid price higher than pi(gi = qi)). Then, pmax
i

is the maximum bid price that mobile node will pay, which is the minimum value

between ρmax
i and pi(gi = qi).

Now we prove the uniqueness of the BNE of the game by using contradiction.

Suppose that �b∗1 and �b∗2 are two different BNEs. We consider the following cases:

(i) g1i = g2i , where g1i = gi(�b
∗1) and g2i = gi(�b

∗2)

(ii) g1i �= g2i .

We show that both the cases lead to a contradiction if the BNE is not unique.

(i) When g1i = g2i :

Since gi(�b = �p) = piti∑
∀i′ (pi′ ti′ )+ε

C, if b1i < b2i (i.e., p1i < p2i ), we get

∑
∀i′

(
p1
i
′ ti′
)
+ ε <

∑
∀i′

(
p2
i
′ ti′
)
+ ε (A.4)

and if b1i > b2i (i.e., p1i > p2i ), we have

∑
∀i′

(
p1
i′ ti′
)
+ ε >

∑
∀i′

(
p2
i′ ti′
)
+ ε. (A.5)

Suppose b1i < b2i . Then, we get b1i < pmax
i and b2i > pmin. Hence, from the KKT

conditions, we have

∑
j

f
′j
T (�t−i)

dP j
i (b

1
i ,
�b1
−i, ti,�t−i)

db1i
≤ 0

=⇒
∑
j

f
′j
T (�t−i){tiαi

1

ln(10)(1 + γig1i )

γiti∑
∀i′
(
p1
i′ ti′
)
+ ε

(C − g1i )−

δiti(
g1i
C
(C − g1i ) + g1i )} ≤ 0

(A.6)

and
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∑
j

f
′j
T (�t−i)

dP j
i (b

2
i ,
�b2
−i, ti,�t−i)

db2i
≥ 0

=⇒
∑
j

f
′j
T (�t−i){tiαi

1

ln(10)(1 + γig2i )

γiti∑
∀i′
(
p2
i′ ti′
)
+ ε

(C − g2i )−

δiti(
g2i
C
(C − g2i ) + g2i )} ≥ 0.

(A.7)

However, since we assume that g1i = g2i and b1i < b2i (i.e., p
1
1 < p2i ), using (A.4),

the term γiti∑
∀i′

(
p1
i
′ ti′

)
+ε

in (A.6) is greater than the term γiti∑
∀i′

(
p2
i
′ ti′

)
+ε

in (A.7).

Therefore, the left hand side of (A.6) has to be greater than the left hand side

of (A.7). This leads to a contradiction. Also, if we assume that b1i > b2i (i.e.,

p11 > p2i ), we will arrive at a contradiction. Hence, it is proved that �b∗1 = �b∗2.

(ii) When g1i �= g2i :

Let us consider two subcases, which are
∑
∀i′
(
p1
i′ ti′
)
+ ε ≥∑∀i′

(
p2
i′ ti′
)
+ ε and∑

∀i′
(
p1
i′ ti′
)
+ ε <

∑
∀i′
(
p2
i′ ti′
)
+ ε.

• (Subcase 1)
∑
∀i′
(
p1
i′ ti′
)
+ ε ≥∑∀i′

(
p2
i′ ti′
)
+ ε:

Since g1i �= g2i , there exists a player i such that g1i > g2i . Then, we obtain

that b1i > b2i (i.e., p11 > p2i ). Also, we obtain b1i > pmin and b2i < pmax
i .

Hence, from the KKT conditions, we have

∑
j

f
′j
T (�t−i)

dP j
i (b

1
i ,
�b1
−i, ti,�t−i)

db1i
≥ 0

=⇒
∑
j

f
′j
T (�t−i){tiαi

1

ln(10)(1 + γig1i )

γiti∑
∀i′
(
p1
i
′ ti′
)
+ ε

(C − g1i )−

δiti(
g1i
C
(C − g1i ) + g1i )} ≥ 0

=⇒
∑
j

f
′j
T (�t−i)

⎧⎨
⎩tiαi

1

ln(10)(1 + γig1i )

ti(C − g1i )(γi − δip
1
i ti)∑

∀i′
(
p1
i′ ti′
)
+ ε

− δitig
1
i

⎫⎬
⎭ ≥ 0

(A.8)
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and

∑
j

f
′j
T (�t−i)

dP j
i (b

2
i ,
�b2
−i, ti,�t−i)

db2i
≤ 0

=⇒
∑
j

f
′j
T (�t−i){tiαi

1

ln(10)(1 + γig2i )

γiti∑
∀i′
(
p2
i′ ti′
)
+ ε

(C − g2i )−

δiti(
g2i
C
(C − g2i ) + g2i )} ≤ 0

=⇒
∑
j

f
′j
T (�t−i)

⎧⎨
⎩tiαi

1

ln(10)(1 + γig2i )

ti(C − g2i )(γi − δip
2
i ti)∑

∀i′
(
p2
i
′ ti′
)
+ ε

− δitig
2
i

⎫⎬
⎭ ≤ 0.

(A.9)

Since gi ≤ C and we have assumed that g1i > g2i , from (A.8) and (A.9),

we obtain 1
ln(10)(1+γig1i )

< 1
ln(10)(1+γig2i )

, −δitig
1
i < −δitig

2
i , and (C − g1i ) <

(C − g2i ). Now, from (A.8) and (A.9), we have

(γi − δip
1
i ti)∑

∀i′
(
p1
i′ ti′
)
+ ε

>
(γi − δip

2
i ti)∑

∀i′
(
p2
i′ ti′
)
+ ε

. (A.10)

Since we have assumed that
∑
∀i′
(
p1
i
′ ti′
)
+ ε ≥ ∑∀i′

(
p2
i
′ ti′
)
+ ε , from

(A.10), we get

(γi − δip
1
i ti) > (γi − δip

2
i ti). (A.11)

However, p1i > p2i ; hence, this leads to a contradiction.

• (Subcase 2)
∑
∀j
(
p1j tj
)
+ ε <

∑
∀j
(
p2j tj
)
+ ε:

Since g1i �= g2i , there exists a player i such that g1i < g2i . Then, we obtain

that b1i < b2i (i.e., p11 < p2i ). Also, we obtain b1i < pmax
i and b2i > pmin.

Next, we use the KKT conditions and follow the similar procedure as in

the previous subcase to arrive at a contradiction.

From the proofs of both the subcases, we conclude that �b∗1 = �b∗2.
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Appendix B

B.1 Markov Chain Model for Cooperative Packet

Delivery

We focus only on a particular coalition S ⊆ M = {1, . . . ,M} of mobile nodes. A

continuous-time Markov chain (CTMC) with absorbing states can be formulated for

the scenario in which one mobile node in the coalition is considered as the destination

of a packet transmitted from the base station, and the rest of the mobile nodes in

the coalition help the base station to deliver the packet to the final destination.

Specifically, the CTMC is used to obtain the average packet delivery delay (di) of a

mobile node which is the final destination of the packet originally transmitted from

the base station. Also, the CTMC is used to obtain the average cost of other mobile

nodes (cij) in the same coalition in delivering the packet to the final destination.

Subsequently, the expected payoff of a mobile node can be calculated.

B.1.1 Formulation of the CTMC

Let K ∈ S be the mobile node which is the final destination for a packet transmitted

from the base station. The state space of the Markov chain model for the cooperative

packet delivery scheme can be expressed as follows:

Ψ = {(X );X ⊆ S,S ⊆ M} (B.1)

where X is the set of mobile nodes which already have the packet destined to node K

in the same coalition S. M is the set of all mobile nodes. The state space Ψ can be

partitioned into ΨA (absorbing states) and ΨT (transient states), i.e., Ψ = ΨA ∪ΨT .

State X ∈ Ψ is an absorbing state if mobile node K is a member of X . Otherwise, it
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is a transient state.

Let Y = X ∪ {0} and Z = X ∩ X ′
, where X ′

is another state. The total state

transition rate from X , which is a transient state, to another state X ′
is defined as

follows:

qX ,X ′ =

{ ∑
i′∈Y,i′′∈Z ri′i′′ , (|Z| = 1) & (|X ′ | − |X | = 1) & (K /∈ X )

0, otherwise
(B.2)

where |X | and |X ′ | are the cardinalities of sets X and X ′
, respectively, and & denotes

the logical AND operator. Recall that ri′i′′ denotes the rate that mobile node i′ meets

mobile node i′′ for i′ �= i′′ and ri′0 = r0i′ is the rate that mobile node i′ meets the base

station. Hence, the state transition rate qX ,X ′ is the rate that any mobile node in X ,

or the base station (i.e., any member of set Y) will meet another mobile node which

does not have the packet destined to mobile node K. Then, the state changes from

X to X ′
.

Given the state transition rate of the Markov chain model, the corresponding

discrete-time Markov chain (DTMC), which is called the embedded Markov chain [32],

can be obtained. As an example, Figure. B.1 shows the DTMC for a packet delivery

scenario when there are 3 mobile nodes in the same coalition. Mobile nodes 1 and 2

help the base station to deliver a packet to mobile node 3. The shaded states are the

absorbing states.
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Figure B.1. DTMC for cooperative packet delivery from a base station to the desti-
nation mobile nodes.

Let ρii′i′′ denote the belief probability of mobile node i that a packet is successfully

sent by mobile node i′ to another mobile node i′′ according to the types ti′ and ti′′ of

mobile node i′ and i′′, respectively. This probability is defined regardless of whether
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mobile node i′ observes that mobile node i′′ completely receives the packet or not.

This belief probability is given in (B.3), where | is the logical OR operator and ςii′

and ςii′′ are mobile node i’s belief probabilities that mobile node i′ and mobile node i′′

refuse to deliver a packet. Note that if mobile node i′ is the destination (i.e., i′ = K),

mobile node i′ will not drop the packet.

ρii′i′′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1− pe), ti′ = Tw &

(ti′′ = Tw | (ti′′ = Tm & i′′ = K))

(1− pe)(1− ςii′′), ti′ = Tw & (ti′′ = Tm & i′′ �= K)

(1− ςii′)(1− pe), ti′ = Tm & ti′′ = Tw

(1− ςii′)(1− pe)(1− ςii′), ti′ = Tm & (ti′′ = Tm & i′′ �= K).

(B.3)

Let qX =
∑
X ′∈Ψ qX ,X ′ be the summation of state transition rates from state X to

any state X ′
. Then, the probability of state transition can be obtained from (B.4).

pX ,X ′ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑
i′∈Y,i′′∈Z

ρi
i′i′′ri′i′′
qX

, (qX �= 0) & (|Z| = 1) &

(|X ′ | − |X | = 1) & (K /∈ X )

1−∑X ′′∈Ψ,X ′′ �=X pX ,X ′′ , (qX �= 0) & (X = X ′
)

1, (qX = 0) & (X = X ′
)

0, otherwise.

(B.4)

The transition probability matrix of the absorbing DTMC can be partitioned [33] as

follows:

P =

[
T F

0 I

]
(B.5)

where T is the transition probability matrix corresponding to the transitions among

the transient states, I is an identity matrix, 0 is a zero matrix, and F is the transi-

tion probability matrix corresponding to transitions from the transient state to the

absorbing state.

For an absorbing DTMC with transition probability matrix P, the matrix M =
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(I−T)−1 is called the fundamental matrix. The entry mX ,X ′ of M gives the expected

amount of times that the process is in transient state X ′
if it starts in transient state

X before the Markov chain reaches any absorbing state. The transition probability

matrix P and the element of fundamental matrix (i.e., mX ,X ′ of M) depend on the

types of all the mobile nodes in the coalition S believed by mobile node i or �tiS and

the destination of packet (i.e., mobile node K). Therefore, we denote mX ,X ′ (�t
i
S , K)

as the element mX ,X ′ of M.

B.1.2 Average Utility

Let mobile node i with type ti be the destination of the packet (i.e., i = K). Given

�tiS , which is the belief vector of node i about the types of all the mobile nodes in

the coalition S, we can obtain the packet delivery delay from the base station to the

destination mobile node i by using the DTMC described above. Let state X = ∅ be

the initial transient state (i.e., the state that none of the mobile nodes in coalition

S obtains the packet destined to mobile node K). Then, the average packet delivery

delay to the final destination (i.e., mobile node K) is defined as follows:

di=K =
∑
X ′∈ΨT

�X ′mX=∅,X ′ (�t
i
S , i = K) (B.6)

where �X ′ is the mean sojourn time in state X ′
(i.e., the amount of time spent in

state X ′
before the process leaves state X ′

) given as follows:

�X ′ =
1∑

X ′′∈Ψ qX ′X ′′
, where X ′′ ∈ Ψ. (B.7)

Then the utility of a mobile node as defined in Section III-A of Chapter 6 can be

calculated.
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B.1.3 Average Cost

We can obtain the average cost (cij) that mobile node i( �= K) incurs for delivering

the packet destined to mobile node j(= K), which is defined as follows [91]:

cij =

{ ∑
X ′∈ΨT

cX
′

ij mX=∅,X ′ (�t
i
S , j = K), (i �= j) & (j = K)

0, i = j
(B.8)

where cX
′

ij is the average cost that mobile node i incurs for delivering the packet to

mobile node j(= K) in state X ′
. If mobile node i is in set X ′

, where X ′
is the set of

mobile nodes which already have the packet for mobile node K, there will be a cost

incurred to mobile i for packet forwarding. If mobile node i is not in set X ′
, there will

be only an average cost of receiving the packet from the base station or from other

mobile nodes, i.e.,

cX
′

ij =

⎧⎨
⎩
∑

i′∈S∩X ′
ρii′rii′∑

X′′∈Ψ qX′ ,X′′
cfii′ , i ∈ X ′

∑
i′∈X ′∪{0}

ρi′iri′i∑
X′′∈Ψ qX′ ,X′′

crii′ , i /∈ X ′
.

(B.9)

Then the average cost of a mobile node as defined in Section III-A in Chapter 6

can be calculated.
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Appendix C

C.1 Result of Running Algorithm 2 with Ten Ve-

hicles

We have used the system model in Chapter 4 conducted new simulations considering

10 vehicles which are labeled as V1-V10. The parameter setting for this simulation

is shown in Table C.1. Given the ten vehicles and the parameter setting, we have

run Algorithm 2 and found that the bid price and corresponding allocated amount

of bandwidth of each vehicle converge to the Nash equilibrium solution within 12

rounds.

Table C.1. Parameter Setting
Parameter Values for vehicles (V1 to V10, respectively)

Connection time (seconds) 30, 20, 25, 20, 20, 25, 30, 30, 25, and 35
Disconnection time (seconds) 60, 60, 70, 70, 65, 70, 70, 60, 60, and 70

Target buffer underrun probability 0.25, 0.20, 0.40, 0.30, 0.35, 0.25, 0.40, 0.30, 0.25, and 0.40
Transmission modes 5, 4, 6, 5, 6, 4, 4, 5, 5, and 6

Speed of vehicles N(mean, variance) (km/h) N(70, 21), N(90, 27) , N(90, 27) , N(70, 21), N(80, 24),
N(80, 24), N(70, 21), N(80, 24), N(90, 27), and N(70, 21)

Data transfer rate (packets/second) 20, 15, 25, 25, 25, 20, 30, 20, 20, and 30
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Figure C.1. Bid price and amount of bandwidth for ten vehicles at each bidding
round.
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