On the Statistical Analysis of
Functional Data Arising from

Designed Experiments
by

Monica Sirski

A Thesis submitted to the Faculty of Graduate Studies
of the University of Manitoba
in partial fulfillment of the requirements

for the degree of

DoCTOR OF PHILOSOPHY

Department of Statistics
University of Manitoba
Winnipeg, Manitoba

Copyright (©) 2012 by Monica Sirski



Abstract

We investigate various methods for testing whether two groups of curves are sta-
tistically significantly different, with the motivation to apply the techniques to the
analysis of data arising from designed experiments. We propose a set of tests based
on pairwise differences between individual curves. Our objective is to compare the
power and robustness of a variety of tests, including a collection of permutation
tests, a test based on the functional principal components scores, the adaptive Ney-
man test and the functional F' test. We illustrate the application of these tests in
the context of a designed 24 factorial experiment with a case study using data pro-
vided by NASA. We apply the methods for comparing curves to this factorial data
by dividing the data into two groups by each effect (A, B, ..., ABCD) in turn. We
carry out a large simulation study investigating the power of the tests in detecting
contamination, location, and shift effects on unimodal and monotone curves. We
conclude that the permutation test using the mean of the pairwise differences in L,
norm has the best overall power performance and is a robust test statistic applica-
ble in a wide variety of situations. The advantage of using a permutation test is
that it is an exact, distribution-free test that performs well overall when applied to
functional data. This test may be extended to more than two groups by construct-
ing test statistics based on averages of pairwise differences between curves from the
different groups and, as such, is an important building-block for larger experiments

and more complex designs.
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CHAPTER

ONE

INTRODUCTION

Data where the response is a curve is becoming more prevalent with the advent
of sophisticated data collection techniques and increased computing power. Such
data are often called functional data. Corresponding to the increased availability
of functional data are questions regarding the analysis of data of this form. This
dissertation is a comprehensive exploration of various approaches to analyzing func-
tional data, focusing on methods for testing for significant differences between two
groups of curves. The emphasis is on data generated from designed experiments,

although the techniques used are in general more broadly applicable.

We have several goals in writing this dissertation. Our first goal is a comprehen-
sive examination and synthesis of the current status of the literature in areas dealing
with data that are curves. Second is the development of new tests appropriate for
testing whether two groups of curves are different. Third is a simulation study which
is the systematic comparison between various testing procedures, including the new

tests we propose. Our final goal is the application of the testing procedures to a



set of real data whereby we develop a strategy for analyzing functional data arising
from 2% and 2¥~P designed experiments, using both cross-sectional and functional

approaches.

The problem of comparing two groups of curves is a fundamental question at the
heart of more sophisticated techniques such as analysis of variance and regression.
Comparing two groups is also the foundation of the analysis of data arising from
2% factorial experiments or 277 fractional factorial experiments, serving as build-
ing blocks for tests used in larger experiments and more complex designs. Thus,
although the research in this dissertation focusses on the properties of test proce-
dures for comparing two groups of curves, we also illustrate how the procedures can

be applied in analyzing data from a 2* experiment.

In the traditional case, where the response is scalar, we compare data points
from two groups using a parametric approach, such as a t-test, or a nonparametric
approach, such as a rank-sum test — or, with more than two groups, parametric
or nonparametric analysis of variance techniques. These established techniques are

included in many introductory statistics textbooks.

When the responses become curves, the situation becomes more complicated.
This situation arises when a series of points is recorded over time, for example.
There are several approaches to the analysis of such data. It is possible to analyze
these data as a series of points and carry out a multivariate analysis or longitudinal
data analysis. However, using multivariate methods may lead to issues if the dimen-
sion of the data is high, for example, if we have many points collected over time.
As discussed in Faraway [1997, p. 256], multivariate statistics “become dominated

by variation in unimportant directions” as the dimension of the data grows. Longi-



tudinal data analysis techniques are designed for quite sparse data and the model
structures are potentially quite restrictive. Another technique, the focus of this re-
search, is to smooth the data (using a B-spline, for example) and treat the series of
points as a curve. In this dissertation we limit ourselves to the case where the data
are smooth curves. We do not concern ourselves with issues related to smoothing,
the number of points (or the locations of points) at which observations have been
made, or the possibility of missing data; these are problems to be addressed at a

different time.

Denote the jth observation from the ith group as Y;;(t). We use t because these
data are often collected over time, in which case the index is a natural one. This is
not always the case, however, as in the data set that inspired this work. This data,
displayed in Figure 1.1, was provided by Peter Parker of the United States’ National
Aeronautics and Space Administration (NASA). The NASA data were collected on
a fairly coarse grid; in Figure 1.1, the discrete data are simply joined by straight
lines to form “curves.” The data in tabular form is located in Appendix A. This
data arose from a full 2* screening computer experiment that was conducted by
NASA to examine the effects and importance of four factors: Tower Length (A),
Tower Diameter (B), Tip Fineness Ratio (C), and Tip Shape (D), on the response,
Drag. The experiment was run at 10 different Mach numbers, in unequally-spaced
intervals from Mach 0.7 to 4.0 — so, in this case, t represents Mach number, not
time. Here, for each combination of factor levels there are 10 responses, one for
each of the 10 Mach numbers. The question is how to test for significant effects
using these curves. As a starting point, consider testing for a factor B effect by

separating the curves into two groups based on the level of B. These curves are
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Figure 1.1: Response data as collected, a series of points.

plotted in Figure 1.2, with different line types indicating the two levels of factor B,
Tower Diameter. This time, we have smoothed the curves using splines. This is the

type of data that we focus on in this dissertation.

There are a number of approaches to comparing two sets of curves. One option
is to run tests at each recorded time point along the curve. This is a fairly naive
solution to the problem, as it does not account for the functional nature of the data,
and it suffers from a scale problem: for example, a data set with data recorded at
1000 time points would require carrying out 1000 ¢-tests and will suffer from the
multiple comparisons problem. Instead, we could use procedures that treat the data
as curves. A few parametric approaches have been developed, such as the functional
F test [Shen and Xu, 2007]. Alternatively, some tests use dimension reduction to

express the curves in a smaller number of coefficients, as in the adaptive Neyman
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Figure 1.2: Response data as curves, grouped by factor B.

test [Fan, 1996a, Fan and Lin, 1998] which tests the coefficients of the Fourier
transformation, or the method proposed by Sturino et al. [2010], which compares

the functional principal components scores.

Another method is the permutation test, also called the randomization test,
that dates back to the early years of statistics. This method was proposed by
Pitman [1937a] (see also Pitman [1937b]). The permutation test is distribution-
free; it uses the data to assess the probability that the observed result (or something
more extreme) would be obtained under the null hypothesis. The drawback of the
technique is that carrying out a permutation test is very calculation intensive and
therefore has traditionally been limited in application to small data sets. Happily,
with the increasing computing power that has yielded functional data has also come

the ability to run permutation tests on larger and larger data sets, and as a result



permutation tests have enjoyed a bit of a renaissance of late. Sturino et al. [2010]
consider permutation tests based on summary curves (such as the mean curves) in
the context of functional data, and Ramsay et al. [2009] use a permutation test as

the basis for their t-test-like test.

In this dissertation we propose our solution to the problem of comparing two
groups of curves — a collection of permutation tests that we have developed. These
permutation tests are calculated in a pairwise fashion, that is, we calculate the
distance between pairs of curves, one from each group, and base the test statistic
on averages of these pairwise comparisons. The pairwise approach used with these
new tests is in contrast to the permutation tests used by Sturino et al. [2010], which
are based on comparisons of a summary measure calculated for each group. This
idea of constructing test statistics based on pairwise comparisons is central to the
methods that we propose. The concept of using pairwise comparisons in this context
is not something that we have seen in the literature, although it does seem to be
a natural thing to do. One difficulty with using tests based on summary curves
is that the shapes of the summary curves may not resemble the individual curves
at all. By comparing the curves at the individual level we avoid the risk of losing
information about the differences between individual curves that may be masked

by considering only differences between summary curves.

Having been presented with several options for testing whether two groups of
curves are different, and adding our own technique as an option, we then ask:
which test should we use? The answer to this question is not clear and is the
motivation factor for the simulation study we conduct. The comparisons between

testing procedures are limited since most articles in the literature consider only a few



test statistics to compare at a time. Shen, in his thesis [Shen, 1999], used simulated
data having various covariance structures to compare the power of the functional
F test with a test proposed by Faraway [1997] and one discussed by Ramsay and
Silverman [1997]. He found that the functional F test is rarely the most powerful
test compared to the other two. In follow-up work [Shen and Faraway, 2004], the
authors compared the F' test to Faraway’s bootstrapping test [1997], and two other
tests. The functional F' test has the best power of the statistics they consider but
they find the F' statistic to be sensitive to the error structure of the data, indicating
that the functional F test may not be very robust. Simulations performed by Sturino
et al. [2010] compare the permutation tests they define to the tests they developed
based on principal components. The power of the tests depends on the structure
of the simulation and the effect being tested. However no comparisons were made

between the tests in the paper and other options.

Therefore, we see that no comprehensive comparison has been done between the
many testing procedures. The lack of comparisons makes it difficult to determine
which test to use under which conditions. In order to gain a better understanding
of the nature of the various testing procedures, we carry out a simulation study in
order to examine the behaviour of various tests, including our proposed pairwise-
based testing procedures, to assess how powerful and robust the tests are under
varying conditions. A robust statistic is one that is not sensitive to the testing
conditions; it performs well in a variety of situations, for example, it is not sensitive

to the shape of the underlying curves or the correlation structure of the data.

The rest of this dissertation is structured as follows: We begin with a synthesis of

the literature in Chapter 2, briefly discussing terminology and presenting examples



of areas of application where data are curves. We continue with a review of the lit-
erature relating to testing for significance between two groups of curves, and expand
the discussion to the current status of the research relating to the three areas where
data as curves are most prominent: profile analysis in statistical process control,
functional data analysis, and longitudinal data analysis. This literature review is
extensive and is presented in the hopes that by bringing together the three disci-
plines using data that are curves, there will be opportunities for cross-collaboration
between the distinct areas, allowing them to learn from each other, thereby making
each field stronger. Chapter 3 begins with the development of the pairwise permuta-
tion tests we have proposed, and continues with the presentation of the other testing
procedures under consideration. We present a case study in Chapter 4, where we
analyze the NASA data. We use this case study to demonstrate the development
of a strategy for approaching the analysis of data that are curves. We first take a
cross-sectional approach and show how these techniques can illuminate features of
interest. We then move to a functional approach, applying the testing procedures
discussed in the previous chapter. Here, we use the techniques designed for compar-
ing curves to analyze the data, generated by a 2* factorial design. We carry out the
tests exploiting the natural form of this data, by grouping the data into two groups
according to the effect being tested. Following are the results of simulation studies
that explore the accuracy, robustness, and power of the statistical procedures in
Chapter 5. Finally, we conclude with Chapter 6, where we summarize the results,

discuss the limitations of this work and outline some directions for future research.



CHAPTER

TWO

LITERATURE REVIEW

The structure of this chapter is as follows. First is an overview of the areas of
application involving data where the response is a curve. Second is a review of the
methods proposed to test whether two groups of curves are significantly different.
The current status of the research in areas that commonly deal with data as curves is
reviewed. Finally, we consider permutation tests as applied to data that are curves.
We discuss how most of the permutation tests used in application are carried out
using pointwise techniques and that there has been little comparison done between

permutation tests and other functional data tests.

It is important to note that the term functional data analysis means different
things to different people. For example, Cardot focuses on functional covariates
with a scalar response (as examples, see Cardot et al. [2003], Cardot et al. [2004],
and Cardot et al. [2007a]). The focus of this research is on the case where the

response is a curve with scalar covariates.



One person who addressed the problem of how to compare two sets of curves
some time ago was Rao [1958], who discusses how to compare groups of growth
curves. He proposes several approaches to testing. A basic test is estimating the
rate of growth and then comparing the mean rates between groups. He also defines
a likelihood ratio test. Miiller [2005] says “Rao (1958) developed preliminary ideas

on functional principal components in applications to growth curves.”

Other early papers in the field of functional data analysis include the follow-
ing: Ramsay and Dalzell [1991], who divide functions into structural and residual
components in an extension of linear regression to the functional case; Rice and
Silverman [1991], who discuss how to estimate the mean and covariance of a set of
curves; and Besse and Cardot [1996], who adapt principal components analysis for

functional data.

Since these early papers, the area of functional data analysis has experienced
an explosion of interest and the techniques that have been developed have been
applied in a vast variety of situations. One area where data is treated as a curve
is statistical process control, for example: mayonnaise product quality monitoring
[Sahni et al., 2005]; wood products manufacturing [Staudhammer et al., 2005, 2007];
injection moulding, where the compression strength of foam is measured over dif-
ferent levels of compression in a robust design study [Nair et al., 2002]; tonnage
signals in stamping, torque signals in tapping, and force signals in welding [Jin and
Shi, 2001]; semiconductor manufacturing [Kang and Albin, 2000]; and automobile
manufacturing [Lawless et al., 1999]. Another aspect of statistical process control
is calibration, which has also used functional data techniques: Stover and Brill

[1998] discuss calibration of chromatographs using ion chromatography calibration

10



data, while Mestek et al. [1994] deal with calibration curves of the photometric

determination of Fe*™ with sulfosalicylic acid.

The field of medicine is rich with functional data: growth curves (Gasser et al.
[1985], James et al. [2000], among others); developmental toxicity studies in lab
animals [Hall and Severini, 1998]; 4C-folate in plasma of healthy adults [Yao et al.,
2003]; periodically stimulated fetal heart rates [Ratcliffe et al., 2002b,a]; neuron
firing in electrophysiological studies [Behseta et al., 2007]; monitoring gene expres-
sion using a microarray experiment [Li et al., 2002, Lopez et al., 2004]; EEG data
[Abramovich et al., 2004]; primary biliary cirrhosis studies [Miiller, 2005]; tobacco-
treatment clinical trials [Hall et al.; 2001b, Yang et al., 2007]; density profiles of
brain tissue (using chromatography) in the study of aging [Munoz Maldonado et al.,
2002]; medical imaging [Kelemen et al., 1997, Yushkevich et al., 2001]; opthamology
[Loncatore et al., 1999]; and forecasting mortality and fertility rates [Hyndman and

Ullah, 2007].

Finally, we mention a selection of other applications: radar range profiles [Hall
et al., 2001a], the study of brightness of stars over time [Hall et al., 2000], ergonomics
data studying driver movement in an automobile [Faraway, 1997, Shen and Faraway,
2004], profiles of atmospheric radioactivity [Hlubinka and Prchal, 2007], oceanology
[Nerini and Ghattas, 2007], and the weight loss behaviour of garlic [Castano et al.,

2006].

11



2.1 Background Information

The analysis of data that are curves falls under the purview of several areas of
statistics, primarily profile analysis, which is a subdiscipline of statistical process
control (SPC, also known as quality control), functional data analysis (FDA) and
longitudinal data analysis (LDA). These three fields have developed separately, with
different goals and foci, based on the nature of the data and the motivations of the

disciplines.

Statistical process control has two separate goals depending on the situation,
which we will briefly outline. See Woodall et al. [2004] for a more in-depth discus-
sion. One goal is to use a group of curves to set control limits, the other goal is to

use these established control limits to monitor a curve with data collected in real

time and detect processes that have deviated from the control situation. The data

under consideration in this field is usually fairly high frequency.

Functional data is also characterized in general by data collected regularly at
a high frequency, while longitudinal data is usually more sparse and collected at
irregular intervals [Rice, 2004]. Consequently, functional data analysis focuses more
on dimension reduction. In addition, longitudinal data analysis is more model-
based and inferential, while functional data analysis has a more exploratory and
non-parametric point of view with a focus on describing the data (with principal
components, smoothing, etc.). The nature of each subject is revealed by comparing
the classic FDA text, Ramsay and Silverman [2005], with the classic LDA text,
Diggle et al. [2002]. Happily, cross-collaboration between the two areas has begun

over the past few years (see Rice [2004], Marron et al. [2004], and Miiller [2005]),

12



reducing the distinction between the fields.

2.2 Comparing Curves

At the root of these three disciplines is the issue of comparing curves. Given two
or more sets of curves, how can we know if they differ? There are various ways
for curves to differ — level shifts, different shapes or different peaks, for example.
There has been much interest in this area, with many different approaches to the
problem. We begin with a discussion of how the disciplines of FDA and LDA
approach the problem of comparing two sets of curves. The field of profile analysis
does not feature prominently in this section because the motivations in this area are

generally not about testing whether two groups of curves are significantly different.

Interestingly, much of the literature in the field of functional data analysis is
concerned with describing the data (with principal components, smoothing, etc.)
as opposed to formal hypothesis testing, including assessing statistical significance
between groups of curves. The texts by Ramsay and Silverman [1997, 2002, 2005]
barely touch on the subject while the text by Ferraty and Vieu [2006] does not
discuss hypothesis testing at all. Even when testing is done, it is often poorly
structured. For example, Ramsay and Silverman [2005] use pointwise F' tests to
test for significant effects, completely ignoring the issue of multiple comparisons.
Others have attempted to use common tests from multivariate data analysis in the
functional case, which may not be advisable, as multivariate techniques break down

as the number of time points increases, as discussed by Faraway [1997].
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2.2.1 Comparing Curves Using Functional Data Analysis

Techniques

Despite the emphasis on describing curves, researchers in the functional data area
offer several methods for comparing curves. Ramsay and Silverman [2005] suggest
calculating the F-test statistic at each time point, but do not address how to deal
with the resulting statistics. Faraway [1997] presents a regression analysis technique
for data having a functional response. This approach is affected by the number of
points sampled per curve and requires bootstrapping. Chiou et al. [2004] also use
functional linear regression. Cuevas et al. [2004] develop a one-way ANOVA for
functional data that does not require homoskedasticity. This is an asymptotic test.
Both the test by Faraway [1997] and that of Cuevas et al. [2004] require heavy use
of computer simulations to carry out the procedures. Simplifying matters greatly,
Shen and Faraway [2004] extend Faraway’s work and propose a functional F test for
nested functional linear models. This test is easy to calculate, it does not require any
computer simulations, and its performance is not affected by the number of points
sampled per curve. The data does not need to be smoothed to carry out this test
and uses the unbiased least-squares estimator. Shen and Faraway derive the null
distribution of their F' test and show how it can be approximated. They compare
their test to Faraway’s bootstrapped test, the multivariate log-likelihood ratio test,
and a method based on data smoothed with B-splines. Their simulations show that
the power of the tests depends on the data. However, they argue that the F' test has
the benefit of avoiding the risk that the other two comparison tests have with being
influenced by “unimportant directions of variation” (the two comparison tests may

declare effects statistically significant that are not of practical importance) [Shen
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and Faraway, 2004].

The text by Ramsay et al. [2009] does address the issue of hypothesis testing
(see Chapter 10). They discuss functional analysis of variance (FANOVA) to test for
effects. They fit basis functions to their data to reduce the dimension of the data
and use penalized least squares to estimate the coefficients of the model, usually
penalizing derivatives of the functions. In terms of hypothesis testing, they use
permutation tests based on the absolute value of the test statistic similar in form
to the t-test statistic at each point in time. They take the maximum value of the
statistic and compare it to the maximums calculated for 200 random regroupings
of the data. They also propose a functional F' statistic and use a permutation test

based on the maximum F' value over time.

Another group of tests are based on expansion techniques. Fan [1996a] de-
velops an adaptive Neyman test and a thresholding statistic to compare two sets
of curves. Fan uses the Neyman approach with the Fourier transform and the
thresholding approach with wavelet transforms. Fan [1996a] compares the power
of the Kolmogorov-Smirnov, Cramér-Von Mises, Anderson-Darling, and Shapiro-
Wilk tests to the adaptive Neyman test and the thresholding test. He finds that
the thresholding test has highest power in detecting local features, followed by the
adaptive Neyman test. For global features both of Fan’s proposed tests have high
power compared to the other tests. Fan and Lin [1998] extend this idea for use with
k groups of curves. They transform the data using a Fourier transformation and
test the coefficients of the transformed data using an adaptive Neyman test. They
expand their method into a functional ANOVA, which they call high dimensional

ANOVA, for use with multiple sets of curves.

15



Of a similar nature is the work by Abramovich et al. [2004], who use wavelet
decompositions in their non-adaptive and adaptive methods for testing main effects
and interactions in the functional ANOVA model. They argue that their methods
are asymptotically optimal non-adaptive and adaptive procedures. The carry out a
simulation study to examine how their test performs against two alternatives. The
results show that the tests have proper 5% rejection rate under the null hypothesis
and increase satisfactorily as the alternative deviates from the null. They do not

compare the power of their test to any other tests.

Others have proposed techniques based on principal components analysis, re-
ducing the curves to a smaller set of coefficients. Sturino et al. [2010] fit principal
components to the centred curves and use the principal component scores as the
basis for testing. Benko et al. [2009] also use principal components in a func-
tional extension of the common principal components concept introduced by Flury
[1988]. Compared to the former test, the test by Benko et al. has a far more com-
plicated structure and requires bootstrapping to carry out the hypothesis testing.
Another approach is that of Horvath et al. [2009], who compare two sets of curves
by modelling the relationship between effect and response variables with linear op-
erators, and testing whether the operators are the same, although they deal with the
case where both explanatory and response variables are functions. To accomplish
this testing procedure they expand the data using functional principal components.

Their test statistics have an asymptotically x? distribution.

Some procedures use alternative data-reduction techniques to reduce the infor-
mation in the curves into a smaller set of variables or coefficients and then use the

reduced information to test hypotheses. Ferraty et al. [2007] discuss specifically the
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problem of how to compare two sets of curves from the perspective of cluster anal-
ysis. They use a basis expansion (as they say, the basis can be anything: “splines,
Fourier functions, wavelets, functional PCA components, ...”) to express the data
and test hypotheses based on the coefficients of the expansion. They also discuss
testing hypotheses based on the derivatives of the curves rather than on the curves

themselves.

Munk and Dette [1998], Dette and Derbort [2001], and Neumeyer and Dette
[2003] provide methods for testing differences between groups of curves under various
sample size and variance conditions. Munk and Dette [1998] develop a consistent
test for two independent samples that accommodates unequal sample sizes. This
test is based on the weighted L, distance between the two regression functions. They
compare the power of their test to the procedure proposed by Delgado [1993] that
is restricted to equal sample sizes and equal time points. They find that Delgado’s
test performs better when the difference between the two functions is close to linear.
Munk and Dette’s procedure has larger power when the difference is “more wiggly.”
Dette and Derbort [2001] focus on nonparametric regression and deal with testing
higher order interactions. Neumeyer and Dette [2003] discuss how to compare two
regression curves by testing the mean functions where the data is unequally-spaced
with unequal variances. They propose a bootstrapping procedure to carry out the
test. The authors compare their test to two others and conclude that they prefer

their test.

Some procedures take a Bayesian approach. Behseta and Kass [2005], Behseta
et al. [2005] and Behseta et al. [2007] use an MCMC-based approach called Bayesian

adaptive regression splines (BARS) as a dimension-reduction technique to fit splines
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to curves and test the equality of two or more functions. They are concerned
with methods for very noisy functions. Behseta et al. [2007] modify multivariate
ANOVA techniques, using BARS to fit curves and using likelihood ratio tests and
approximating the distribution of the test statistic with a x? distribution. Note

that the code for running BARS is readily available in R and S.

Testing procedures have the potential to get very complicated. Hastie and Tib-
shirani [1993] present a varying coefficients model, where the coefficients of model
parameters are allowed to change over time. Guo [2002] proposes a maximum likeli-
hood ratio test for smoothing spline ANOVA (SS ANOVA) models. This model and
test combination can be used to test for significant fixed effects in the functional
model, including testing for a significant difference between two groups of curves.
SS ANOVA was shown to be connected to mixed effects models by Speed [1999].
Antoniadis and Sapatinas [2007] instead suggest using wavelet decompositions as
a means for testing model effects, both fixed and random. Cuesta-Albertos et al.
[2007] propose a random projection model to test for goodness of fit to paramet-
ric families that can also be used to test for goodness of fit to other models (such
as the Black-Scholes model). They use bootstrapping to carry out the hypothesis
testing. Kuelbs and Vidyashankar [2010] develop one- and two-sample tests for
high-dimensional data making extensive use of asymptotic results. Morris and Car-
roll [2006] develop a method for functional mixed-effects modelling using a Bayesian

wavelet-based approach.

Others have taken very basic ideas and adapted them to the realm of FDA.
Heckman and Zamar [2000] discuss the problem of defining a measure of similarity

of shape using rank correlation and use it to divide a collection of curves into groups,
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and also use the measure to study monotonicity. Using this measure for testing is
problematic because the estimator is not consistent. Fraiman and Muniz [2001] dis-
cuss trimmed means for functional data in order to measure the median of a group
of curves. Hall et al. [2001b] point out that a permutation test is an alternative
to other formal tests as it requires few assumptions, although they caution that
the method becomes complicated with a complex design and requires programming
competency. Munoz Maldonado et al. [2002] use permutation tests to carry out
hypothesis testing. They carry out a small power analysis limited to comparing the
tests they develop in the paper. James and Sood [2006] use the permutation tech-
nique to test whether a curve or set of curves is equal to an estimated mean curve.
Sturino et al. [2010] also use a permutation test to compare groups of curves but
compare their method only to the principal components method they also propose
in their paper. We will return to the permutation test shortly, in Section 2.4, where

we provide a greater overview of this technique.

In this section we have reviewed the various approaches developed to test whether
two groups of curves are significantly different. These tests vary greatly in simplicity,
required computing resources, and assumptions. We discussed the situations where
power comparisons between procedures have been done. We now briefly discuss
how the area of longitudinal data analysis approaches the problem of comparing

two sets of curves.
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2.2.2 Comparing Curves Using Longitudinal Data Analysis

Techniques

One may also approach the problem of comparing curves from the LDA point of
view, treating the observations of individual curves as repeated measures. In ran-
dom effects models, the regression coefficients are not restricted to be the same
for all individuals [Diggle et al., 2002]. These models accommodate both discrete
and continuous covariates and the covariates are allowed to vary over time. The
difference between the random effects model approach and the model-based ap-
proach of Shen and Faraway [2004], for example, is that the former model assumes
an explicit structure for the covariances among the responses. The choice of co-
variance structure may affect parameter estimates and their variances (see Hand
and Crowder [1996], p. 73). In contrast, Shen and Faraway’s model makes no such
assumptions and therefore avoids the inherent risk of misspecifying the covariance
structure. Computationally, random effects models use complex algorithms to ap-
proximate solutions but the code is readily available in statistical analysis software.
However, increasing the dimension of the data (that is, more frequently collected
data) causes problems with these models. Most LDA techniques are not equipped

to handle high-dimensional data.

2.2.3 Discussion

We have discussed many procedures for testing whether two groups of curve are
different. There is no shortage of options for comparing curves and we have our

choice of approach to take. Some techniques are fairly complex, some are limited in
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scope. What is not clear is which test to choose. In the literature there is limited
comparison of various testing procedures for comparing two sets of curves. Articles
that compare tests and carry out simulation studies consider only a few options and

have limited simulation studies.

Few comparisons have been done between longitudinal and functional approaches.
One investigation by Yang et al. [2007] analyzes a set of data using both Shen and
Faraway’s regression structure and a linear mixed-effects model with a random in-
tercept. The former model allows the model effects to change over time. Plotting
these effects allows us to see how the parameter effects change over time, which can
be enlightening. The mixed-effects model yields merely a point estimate for each
parameter, which is not nearly as revealing. Yang et al. [2007] run simulations to
compare the performance of the functional F' test to linear mixed-effects models
and Wilks’ Lambda test using a Fourier transformation. They find that the power
of the tests depends on the assumed covariance structure of the error process being
simulated, although the functional F' test has higher power than the linear mixed-
effects model overall. They point out that the functional F' test takes much less

time to simulate than the linear mixed-effects models.

We have spent some time reviewing techniques for comparing curves. We have
presented the few comparisons that have been done between procedures. These
limited comparisons are the motivation for a more comprehensive examination of the
power performance between testing procedures. This simulation study is presented
in Chapter 5. We now expand our scope and offer a review of the literature of the
fields of statistical process control, functional data analysis, and longitudinal data

analysis, beyond the realm of comparing curves. This is a broader review of the
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major topics that arise in the three fields.

2.3 A Brief Summary of Research Using Data

that are Curves

In this section we present a brief overview of the research activity in three areas:
statistical process control, functional data analysis, and longitudinal data analysis,
which have developed separately over the years. We hope that bringing everything
together in one document sets the stage for more encompassing research that spans
two or all of these fields, taking the strength of each and creating better methods
applicable in wider settings. There have been some beginning steps towards this
goal, with cross-over between functional and longitudinal data analysis, and this

activity is summarized.

2.3.1 Quality Control

In this section, we discuss current research in statistical process control, where
the analysis of curves is called profile monitoring. The curve is usually called a
profile, although terminology varies. Jin and Shi [2001] call profiles “waveform
signals,” while Gardner et al. [1997] refer to a signature instead of a profile in their

methodology applied to equipment fault detection.

In statistical process control, Woodall et al. [2004] and Woodall [2007] are thor-
ough reviews of the status of research in the area. The problem of dealing with data
as curves arose while considering alternatives to summary (univariate) measures of

quality. Ding et al. [2006] discuss the difficulties in applying a nonlinear perspective
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to profiles and the drawbacks of using summary statistics such as the maximum
magnitude or the average value. Summarizing the data in such a way squanders the
richness of the information contained in the curves. Consequently, “a monitoring
system based merely on the simple statistics often suffers from a high false-alarm

rate and/or a high miss-detection rate,” (Ding et al. [2006], p. 200).

In lieu of univariate measures, as a very simple alternative, the profile may
be modelled by a straight line, which may be useful, if not over the whole curve,
then on a region of the index variable (usually time). For example, Mahmoud
and Woodall [2004] focus on linear profiles, which can be modelled using linear
regression analysis. The slope and intercept can be monitored using a multivariate
T? control chart [Stover and Brill, 1998, Kang and Albin, 2000]. Kang and Albin
[2000] also suggest monitoring the residuals using exponentially weighted moving
average (EWMA) and range (R) charts. They demonstrate through simulation
studies that monitoring both the regression parameters and residuals work well to
detect a shift in the slope, intercept (or both), and the standard deviation. Kim
et al. [2003] propose modifications of the techniques of Kang and Albin [2000].
Mahmoud and Woodall [2004] use indicator variables and an F' test to monitor the
error variance. Jensen et al. [2007] investigate estimation methods that are robust

with respect to outliers.

More sophisticated models to analyze profiles have been considered. These tech-
niques are usually applications of methodologies borrowed from other areas of statis-
tics, such as time series analysis and longitudinal data analysis. Staudhammer et al.
[2005] incorporate autocorrelation using time-series models but conclude the models

are not especially helpful in statistical process control applications. Jensen et al.
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[2008] use linear mixed models, pooling information from the profiles to improve the
fit of the model. These types of models include a correlation structure, allowing the
model to reflect the relationship between profiles and between measurements within
a profile. They report that for balanced data, the additional correlation structure
does not add any benefit. For unbalanced data or when there is missing data, they

find that the linear mixed model approach is preferable.

At the same time, Woodall et al. [2004] say, “Most of the current work on the
topic of profile monitoring, however, still relies fundamentally on standard ideas
from classical regression and multivariate analysis,” (p. 311). The field is ripe with

opportunities for future research using functional techniques.

2.3.2 Current Topics in Functional and Longitudinal Data
Analysis

The term functional data analysis was coined in a landmark paper by Ramsay and
Dalzell [1991]. The term is not universal; searching functional data analysis as a
keyword does not uncover all references for the analysis of data that are curves. A
broad overview of the key topics in the field is found in Ramsay and Silverman’s
book Functional Data Analysis, Second Edition [Ramsay and Silverman, 2005] (the
first edition was published in 1997 [Ramsay and Silverman, 1997]). A new text in the
field, The Ozford Handbook of Functional Data Analysis [Ferraty and Romain, 2011]
provides a slightly different perspective and gives a good summary of the common
current topics in functional data analysis. The classic reference for longitudinal

data analysis is Diggle et al. [2002].
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In this section, some of the key areas of research in functional and longitudinal

data analysis are discussed.

Smoothing

Smoothing is frequently the first step in a data analysis using curves. Rice [2004]
discusses the different approaches to smoothing between longitudinal and functional
data analysis. He says that in general, LDA smoothing procedures are model driven,
with smoothing parameters determined using maximum likelihood estimation and
therefore not explicitly chosen. In contrast, FDA smoothing is more likely to con-
sider several bandwidths and choose one based on plots of the smoothing effect,
or will use cross-validation, which is driven by the data instead of an imposed
model structure. Rice [2004] applies a typical LDA smoothing procedure to func-
tional data, and notes how this can provide better-fitting smooths of the individual
curves. Fan and Zhang [2000] apply functional linear models to longitudinal data
analysis and propose a two-step smoothing approach which is not as computation-

ally intensive as spline and kernel methods.

Rice [2004] says, “One of the main advantages of the basis function approach is
that the reduction to a finite dimensional representation allows subsequent use of a
variety of standard statistical tools,” (p. 641). This technique is ripe for exploitation
in applications. For instance, Hall et al. [2001a], use FDA to reduce the dimension
of radar range profiles and then apply multivariate analysis techniques to analyze
the data. Shi et al. [1996] convert curves into B-splines and use principal compo-
nents of the covariance matrix to reduce the number of parameters in their mixed

effects model. Rice and Wu [2001] also fit splines to curves to fill in sparse curves,
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estimate the covariance matrix using the EM algorithm and use a cross-validated

log-likelihood to evaluate the fit of the model.

An issue to consider is that Hall and Van Keilegom [2007] (see also their technical
report written in 2006 on the same issue, Hall and Van Keilegom [2006]) discuss
how using different smoothing parameters for different curves has the potential
to reduce power when conducting two-sample hypothesis testing. Based on their
investigations they recommend that the same smoothing parameters be used for all
curves when the curves are used in hypothesis tests. This is an interesting problem

that deserves further attention.

Principal Components

Principal components analysis (PCA) is a common technique in FDA as a method
for reducing the dimension of the data. The technique is primarily used as an
exploratory, descriptive tool rather than for hypothesis testing. The exceptions
are discussed in the section on comparing curves. Rice and Silverman [1991] and
Silverman [1996] develop smoothed principal components techniques. The book by
Ramsay and Silverman [2005] contains a chapter providing a good overview on using
principal components to describe characteristics of the data. James et al. [2000]
present a method for PCA with sparse functional data. Yao et al. [2003] propose
the use of shrinkage methods to improve functional PCA. Li et al. [2002] use PCA
combined with nested modelling to group genes in gene expression analysis. Jones
and Rice [1992] use principal components to select “representative” curves from a
large set of curves, in order to create summary displays of the data as an alternative

to superimposing a large set of raw curves on top of each other, where details might
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be hidden. While most common in FDA, some cross-over into applying these ideas
to LDA has begun. Yao et al. [2005a] develop a technique to apply functional PCA

to sparse longitudinal data.

Aligning Curves

Curve registration (also called warping or alignment) is a topic of interest, at least
from the FDA point of view. Consider the growth curves of children [Gasser et al.,
1985]. The timing of growth spurts varies among individuals, leading to a large
amount of variability in the growth curves. Aligning the growth spurts reduces
this variability and helps illuminate trends in the data. Kneip and Gasser [1992];
Gasser and Kneip [1995]; Capra and Miiller [1997]; Ramsay and Li [1998]; Wang and
Gasser [1999]; Kneip et al. [2000]; and Liu and Miiller [2003] all consider approaches

to align curves; Ramsay and Silverman [2005] cover the topic in some detail.

Kneip et al. [2000, p. 28] advise some caution when registering curves, because:

The registration problem has the potential to be ill posed. It seems
clear that amplitude and phase variation can only be separated if the lat-
ter varies slowly with respect to the former. In many problems, including
brain imaging, the amount of variation in amplitude will vary greatly
from one part of the domain to another. For example, a slice through
the middle of the brain shows high-frequency variation in various types
of neuroimages in the cortical regions near the outer boundaries of the
brain, but only low-frequency variation in central regions, where much

of the space is taken up by the ventricular chambers. This suggests that
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local algorithms will have to vary bandwidths to adapt to the frequency

of amplitude variation.

It seems one should be careful when registering curves. Curve registration may help

illuminate some characteristics of the curves but caution should be used. Further

investigation into combining curve registration with testing procedures is required.

Modelling Relationships

Model-based approaches are very popular in LDA (especially generalized estimating
equations (GEE)), but do not appear as much in the FDA literature, most likely
because of the descriptive nature of much of FDA analysis, or perhaps because good
inferential techniques are only now being developed. The high-dimensional nature

of most functional data may also be a limiting factor.

Yao et al. [2005b] and Miiller [2005] both propose extensions of functional lin-
ear models that accept sparse, irregularly-spaced longitudinal data. Ratcliffe et al.
[2002a] develop what they call functional logistic regression, using functional data
analysis with a binary response, and extend it to a covariate with a repeated stim-
ulus. Miiller [2005] also discusses a logistic regression method. Shi and Choi [2011]
discuss functional regression analysis for functional response variables and scalar
and functional covariates with a Bayesian perspective using Gaussian process re-
gression. Yang et al. [2007] apply a functional data analysis approach to longitudinal
data that was collected fairly frequently. Yang et al. [2007] make a good point: “By
applying both longitudinal and functional data analysis to the same set of data, the

overall time-averaged treatment efficacy and the dynamic time-changing effects of
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treatment can be jointly targeted so that we may obtain multi-faceted enhanced un-
derstanding of the studied phenomena,” (p. 1562). Fan and Zhang [2000] propose a
two-step process to fit a functional ANOVA model to longitudinal data whereby the

estimates are calculated on unsmoothed data and then those estimates are smoothed

in a secondary step. They do not do hypothesis testing, instead they use pointwise

confidence bands, and they require data recorded at the same time points for all

responses.

Graphical Techniques

Visual techniques have been developed to better understand and view the data.
Dawson et al. [1997] present two graphical techniques — draftman’s display and a
parallel axis system — to assist in determining the initial form of the covariance

matrix.

Chaudhuri and Marron [1999] and Chaudhuri and Marron [2002] introduce SiZer
(Slgnificant ZERo crossing of derivatives) analysis. Zhao et al. state, “The main
goal of SiZer analysis is to understand which clusters in the data (i.e., bumps in the
curves) represent important population structure, and which can be attributed to
sampling variability. .. The SiZer map uses colors to indicate statistical significance
of slopes, with blue for significantly increasing, red for significantly decreasing, and
the intermediate color of purple when the slope is not significant. The fourth color
of gray is used to indicate locations where the data are too sparse for statistical
inference,” [Zhao et al., 2004, p. 801]. This technique studies a range of bandwidths

at the same time.
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2.3.3 Cross-Disciplinary Opportunities Between Functional
and Longitudinal Data Analysis

We conclude this section with a discussion on bringing the fields of functional data
analysis and longitudinal data analysis together. While reading articles from FDA
and LDA, it became clear that each field had very different approaches to analyzing
data where the response is a curve, despite often facing similar issues. However,
in more recent years there seems to have developed a willingness towards cross-
disciplinary application of techniques, and an awareness of how this may afford
some benefits. For example, in a special issue of Statistica Sinica, Marron et al.
2004, p. 615], discuss the differences between longitudinal data and functional data

and call for a unifying theory between them:

Longitudinal data and functional data are both data collected over
a period of time on the same subject. They both depict the realiza-
tion of a smooth underlying process at discrete time points. However,
there are intrinsic differences between the two approaches, partly due
to different sampling schemes. ... The two fields have recently crossed
paths due to challenges faced in each and this has lead to the beginning
of fruitful interactions. From the longitudinal point of view, there is a
need to pursue more flexible non- or semi-parametric frameworks that
may better capture the complex data features that are present in many
longitudinal studies. From the functional side, there is a need to pro-
vide techniques that work for ‘sparse’ data commonly encountered in

longitudinal studies.
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The issue of the separation between FDA and LDA (that is, the development
of the two fields as separate, distinct areas) is raised by several authors (see for
example Zhao et al. [2004], Rice [2004], and Yang et al. [2005]). Rice [2004] dis-
tinguishes between typical longitudinal data and typical functional data. In Rice’s
opinion, functional data is more likely to be collected frequently, often using auto-
matic equipment, while longitudinal data is usually collected with bigger gaps be-
tween measurement times, and often with irregular measurement times. He points
out that the aims between the two approaches also differ: in FDA the focus is on
data exploration and feature discovery, while LDA is more interested in inference.
He also observes that the LDA literature is more concerned with missing data. He
notes that they do have many common goals, such as describing an average curve
over time, dealing with noisy data when describing curves, and relating covariates

to curve characteristics.

Miiller discusses the non-parametric tendencies of FDA and how this is bene-
ficial, “The prepubertal growth spurt that had almost vanished from paediatrics
textbooks of the 1980s, since the parametric models that had become popular for
fitting the human growth curve did not have room for such a second growth spurt
— it took a non-parametric analysis to bring this growth spurt (which had been
recognized in the pre-modelling era) back on the map (Gasser et al., 1985),” [Miiller,

2005, pp. 224-225]. There are advantages to exploring the data in different ways.

Researchers are beginning to realize the advantages of applying FDA to longi-
tudinal data, and vice versa. As Miiller [2005] says, “Functional methods provide
a variety of valuable and potentially powerful tools for longitudinal data analysis

if a bridge can be built in which longitudinal data, sampled on sparse designs, can
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be brought under the umbrella of functional tools,” (p. 225). In addition, Yang
et al. [2005] point out that repeated measurements on a subject could be treated
as samples from a curve, which can be smoothed and tested with FDA. “With
time-dependent coefficients, functional regression analysis captures the time-varying
exposure-response relationship, thus providing a simpler data structure with intu-
itive interpretations. A time series plot of the estimated coefficient function vividly
reveals how the effect of a predictor can change along the time axis,” (p. 4). They
also mention that FDA is more robust compared to LDA, because it does not make

as many assumptions about the correlation structure as LDA does.

In conclusion, just as the field of profile analysis stands to benefit from the
application of techniques from FDA and LDA, so too do longitudinal data analysis
and functional data analysis have opportunities to develop further by integrating

techniques between the fields.

2.4 Permutation Tests

In this section we discuss the permutation test. We briefly mentioned this approach
in the section on comparing curves and now we will discuss permutation tests in
greater detail. We begin with a short history of the test, and provide some examples
of applications using the permutation test with data that are curves, illustrating
how most of these tests are done in a pointwise manner instead of exploiting the
functional nature of the data. We conclude with a discussion of the advantages of

using a permutation test.

The permutation test, sometimes called a randomization test, is a non-parametric

approach to hypothesis testing that has been in use for many years, dating back
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to Pitman [1937a], (see also Pitman [1937b, 1938]) who references Fisher (1935).
The permutation technique is enjoying a renaissance for the same reasons functional
data analysis is growing: data collection has become more sophisticated, giving rise
to extremely large data sets, and computing power has grown, meaning computer-
intensive techniques are more doable. Texts by Edgington [1980] and Good [2006]
are classics in this area but they do not discuss permutation tests with functional
data. The text by Pesarin and Salmaso [2010] discusses permutation tests in great
detail, covering basic two-sample (univariate) tests, multivariate testing procedures,
repeated measurements (where the focus is mostly on testing with missing values),
survival analysis and shape analysis, but does not deal with tests for functional

data.

Permutation tests have been used with non-functional data in a wide variety
of applications: hydrology [Bardsley et al., 1999]; radar detection [Gonzdlez-Garcia
et al., 2005, Sanz-Gonzalez et al., 2007]; evolutionary biology [Griswold et al., 2008];
population genetics [Price et al., 2010]; ecology [Champley et al., 1997, Shipley,
2010]; shape discrimination [Terriberry et al., 2005]; chromatography [Munoz Mal-

donado et al., 2002]; and genetic epidemiology [Fang and Wang, 2009].

Two relatively new fields that make broad use of permutation tests are human
brain imaging and gene expression. In human brain imaging, functional magnetic
resonance images (fMRIs) are taken of the brain at a baseline control level and
under some stimulus. These images of the brain are then compared for each voxel
(which is like a pixel for 3D images). Based on the sheer number of voxels and
the correlation between voxels that are close together, a permutation test is often

carried out instead of using a model- or distribution-based hypothesis test (Holmes
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et al. [1996] and Arndt et al. [1996] are early papers, see also Locascio et al. [1997],
Bullmore et al. [1999] and Belmonte and Yurgelun-Todd [2001]; Nichols and Holmes
[2001] have a step-by-step article). However, the basis of the test is often simply
a t-test carried out at each voxel. Then the permutation test is used to adjust
for the multiple testing problem and reduce the false discovery rate [Benjamini
and Hochberg, 1995]. Similarly, Suckling and Bullmore [2004] analyze fMRI data
from a factorial experiment with an F' ratio combined with permutations. The same
techniques, applying a series of pointwise tests and using permutation tests to adjust
for multiple testing, are used in genetic mapping: Churchill and Doerge [1994] is
an early reference, followed up by Doerge and Churchill [1996]. Gene expression
analysis (also called microarray analysis) uses the same technique [Dudoit et al.,
2002, Landgrebe et al., 2002, Almind and Kahn, 2004], although the treatment of
comparisons can get quite sophisticated [Mclntosh et al., 2004, Barry et al., 2005,
Ptitsyn et al., 2006, Efron and Tibshirani, 2007, Barry et al., 2008, Distaso et al.,
2008, Nettleton et al., 2008, Pounds et al., 2009]. This technique is also applied in
other areas of genetics [Wu and Lin, 2006, Yap et al., 2009]. Chau et al. [2004] and

Teismann et al. [2007] use permutation tests in the area of magnetoencephalography.

Essentially, then, this technique is just a series of pointwise tests. The image
or microarray is not treated as a function. Other techniques in shape analysis in
medical imaging that do treat the image as a function reduce data dimension by
principal components [O’Connor et al., 2010] or wavelets [Bullmore et al., 2001,
Sendur et al., 2005, Nain et al., 2007] and then use permutations to calculate p-

values.

These pointwise techniques have crept into other fields. Cox and Lee [2008] use
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the same analysis structure wherein they calculate pointwise tests and then adjust
the p-value using a permutation test. Castano et al. [2006] also use permutation tests
to calculate p-values in a garlic storage application, using the techniques developed

for brain imaging in Nichols and Holmes [2001].

However, we are more concerned with methods that treat the data as curves.
Blair et al. [1994] investigated the applicability of permutation tests in place of
Hotelling’s T2 test in behavioural science research, when the T2 test is not appro-
priate, for example when the assumptions (such as normality) of the parametric test
are violated or when there are more variables than subjects in the study. This idea
dates back to Chung and Fraser [1958]. Another technique is adapting nonparamet-
ric tests for the functional case and then applying permutation tests. Bugni et al.
[2009] describe a method to test goodness of fit to a specified theoretical parametric
distribution using a generalization of the Cramér-von Mises test. Hall and Tajvidi
[2002] test the equality of two distributions based on a test statistic similar to the
Cramér-von Mises statistic and use permutation methods to determine the p-value.
They report that their test is quite sensitive, detecting alternatives close to the null
hypothesis. Fay and Shih [1998] (and also Shih and Fay [1999]) adapt the Mann-
Whitney test and use permutation tests for empirical distribution functions that are
applicable to repeated measures or censored data. Munoz Maldonado et al. [2002]
use Pearson’s sample correlation coefficient to measure the similarity between two

(registered) sample curves and then use permutations to calculate the p-value.

Sometimes a more model-based approach is used, fitting models and using per-
mutation tests to determine significance. Cuevas et al. [2004] adapts the F' test for

use with functional data using an asymptotic test and uses bootstrapping to calcu-
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late the distribution of the test statistic under the null hypothesis. Delicado [2007]
applies Cuevas et al.’s methodology, approaching the problem from an analysis of
distance point of view, but uses a permutation test instead of bootstrapping. Cardot
et al. [2007b] propose a functional F' statistic similar to Shen and Faraway’s [2004]
and a test statistic based on smoothing residuals and use permutations to calculate
the p-values of the tests. Cardot et al. [2004] use a permutation test approach for
a model with functional covariates and a scalar response (the opposite situation to
the focus here). Greenwood et al. [2010] fit penalized regression splines to wetland

hydrology data and use permutation tests to test hypotheses.

Others have used a wide variety of techniques in combination with the permu-
tation approach. James and Sood [2005] compute the residuals of the observed
curve from the mean curve and permute these residuals to carry out hypothesis
testing that a set of curves (or one curve) are generated from a specific shape.
Lépez-Pintado and Romo [2007] use a measure of depth to analyze the shape of a
set of curves (but do not test if two sets of curves are similar or not) which they
use to detect outliers. Chiou and Miiller [2007] use a randomization test for their
goodness-of-fit test to test the overall significance of the model parameters based
on functional principal components. Castano et al. [2006] fit a functional linear
model to their data and use permutation tests to test for significant model effects.

Schmoyer [1994] tests for correlation using a permutation approach.

More specifically related to the problem of comparing groups of curves, one can
measure the distance between curves using some sort of norm and use the norm
as the basis for a permutation test. This is the approach taken by Zerbe and

Walker [1977], who use a permutation technique to test whether the mean curves
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differ between groups over a specified interval. They use the L, norm to measure
the distance between the mean curves. They also discuss using only a sample of
permutations instead of the complete list. The test is applied to growth curves of
girls. Also, Sturino et al. [2010] measure the squared distance between the mean
curves of the two groups and use a permutation test to test for significance. They
also suggest two other measures of differences, the median curves and the area under

the mean curve of each group, as bases for permutation tests.

We see that there are a wide variety of ways to use permutation tests with func-
tional data. Thus far we have mentioned many ways to test whether two groups of
curves are significantly different from each other. Next we outline a few character-

istics of permutation tests that have been discussed in the literature.

Permutation tests have some very desirable properties. Good states that, “Per-
mutation tests correctly applied are exact, unbiased, and distribution-free,” [Good,
2006, p. 73]. We do have to ensure that our hypothesis is constructed in a valid way
for the permutation test to be appropriate. The only caveat is that the permutation
test assumes, under the null hypothesis, that the two samples come from the same

distribution [Good, 2006].

Along with the desirable properties, permutation tests also have good power.
As Good [2006] states, “The power of permutation tests is quite high. For small
samples, a permutation test may be the most powerful test available. For very large
samples, a permutation test will be as powerful as the most powerful parametric

test.”

Edgington [1964] discusses the advantages of permutation tests compared with

nonparametric tests:
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A desirable property of rank-order tests is freedom from the normal-
ity assumption and other parametric assumptions about the shape of
the populations. The major limitation of rank-order tests is their lack
of power: When parametric assumptions are met, rank-order tests are

less likely than parametric tests to reject false null hypotheses.

He continues:

Randomization tests combine the best features of parametric and
nonparametric tests. They are nonparametric yet have the power of
parametric tests because they use the numerical values of the scores.
A randomization test drives a sampling distribution of a statistic from
repeated computations of the statistic for various ways of dividing the
scores. The purpose of the test determines the appropriate divisions of
the score for computing the statistic. The significance of an obtained
statistic is the proportion of the statistics in the sampling distribution

that exceeds the obtained value.

Edgington adds, “Perhaps the most important aspect of randomization tests is the
fact that, because they produce their own probability tables, they can be used to
test any sort of quantitative relationship.” Thus it seems that permutation tests
applied to functional data may be a powerful method for comparing two groups of
curves.

As we have stated, the p-value produced by the permutation test is exact if
we examine all possible rearrangements. However, for large samples of curves the

number of permutations becomes prohibitively large. In such cases we may consider
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taking a random sample of permutations and use these to calculate the p-value,
which is discussed by Edgington [1969] and Good [2006]. This p-value will not
be exact. Happily, Keller-McNulty and Higgins [1987] found that a permutation
test based on a subset of 1600 permutations had power reasonably close to the
power of the test using all permutations. Note that the simulations done by Keller-
MecNulty and Higgins in 1987 required the use of a supercomputer to carry out the

calculations. We have access to much greater computing power today.

Alternatively one could consider other methods to increase the computational
efficiency of permutation tests. Heckel et al. [1998] use a greedy algorithm to reduce
the number of computations required for each subsequent permutation, recalculating
only the summary measure for the elements that have changed groups. Zhou et al.
[2009] and [Zhou and Wang, 2009] obtain the first four moments of the Pearson
distribution series to approximate the distribution of the permutation test statistic
to avoid the computational cost of the usual permutation test. This is based on
something similar to what Kazi-Aoual et al. [1995] have done but for a specific
application. Raz [1990] uses an approximation based on the gamma distribution,

which Pitman [1937a] also did.

In conclusion, permutation tests have a number of advantages over other ap-
proaches. They are widely used in certain fields of research, however most appli-
cations are based on a series of pointwise tests and do not exploit the functional
nature of the data. Since permutation tests are not very widely applied to actual
curves, we have limited information regarding how they compare with other tests
used in functional data analysis, nor has anyone compared the variety of tests devel-

oped in the functional data analysis area. In the literature, a proposed test is often
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compared with one of two other tests based on a limited number of simulations.
What is missing is a systematic examination of the performance of a wide variety

of tests for functional data, including permutation tests.
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CHAPTER

THREE

TESTS AND NOTATION FOR COMPARING TWO
GROUPS

In Chapter 2 we discussed the various testing procedures that have been developed
to test whether two groups of curves are different. We also discussed the limited
comparisons that have been done between the various testing procedures. We re-

viewed the benefits of permutation tests.

In this chapter we begin by presenting a set of new permutation tests that we
have developed based on the idea of comparing the curves in a pairwise fashion.
These tests have all the benefits of permutation tests as discussed in the previous
chapter on page 37, that is, they are exact, nonparametric tests. In addition, unlike
the permutation tests proposed by Sturino et al. [2010], the test statistic is based on
comparisons between the individual curves, which may provide a more powerful test
because for tests based on summary curves, the summary curve may not resemble
the shapes of the individual curves, and differences between curves in the two groups

may be obscured. Determining if it matters whether we use a permutation test
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with pairwise comparisons between curves or base the test on summary curves is
one motivation for a simulation study comparing the power performance of these

two approaches to comparing curves.

Based on our literature review, we know there exist many other testing proce-
dures for comparing two sets of curves. We include some of these tests to compare
with the two types of permutation tests. These tests will be applied in the case
study in Chapter 4 and studied further in the simulation study in Chapter 5. We
are interested in comparing different approaches to dealing with functional data and
therefore include tests based on the nature of their approach to testing. The test
proposed by Sturino et al. [2010] is based on data reduction, expressing the curves
in terms of principal components and using the principal component scores as the
basis for testing. Another reason for including this test is that it is the functional
data approach that Sturino et al. [2010] take as in comparison to their permutation
tests, thus, it seems prudent to include. The adaptive Neyman test proposed by Fan
and Lin [Fan, 1996a, Fan and Lin, 1998] is selected as an example of a testing pro-
cedure using data expansion techniques. The functional F' test developed by Shen
and Faraway [Shen and Faraway, 2004, Shen and Xu, 2007] is included because it

is a functional version of the familiar F' test used in the non-functional situation.

We also include a permutation test by Ramsay et al. [2009] because it is included

in the fda package that we use to carry out some of our data analysis.

The purpose of this chapter is to outline the structure of all of the tests under
consideration along with all relevant notation. We introduce each test in turn
and conclude the chapter with a discussion regarding the relative benefits of each

approach.

42



Consider an observed response curve Y;;(t) for the jth observation in the ith
group, ¢ = 1,2, 5 = 1,...,n;. The index variable here is ¢ which usually indicates
time although it does not have to be. We take ¢ € [0, 1] for simplicity, although this

is not necessary.

3.1 Permutation Tests

In this section we will describe a large number of permutation tests. These per-
mutation tests are divided into three categories: permutation tests based on calcu-
lating pairwise differences between curves, permutation tests based on calculating
differences between summary curves, and a permutation test based on a t-test-like

statistic.

3.1.1 Pairwise Permutation Tests

We propose a set of permutation tests based on pairwise comparisons between
curves. In this approach, we begin by defining a distance measure between two
curves, with one curve taken from each group. One option for the distance measure
is to use the integrated absolute difference (L; norm) between two curves fi and f,

on the interval [0, 1], given by

1
51(Fis fo) = / A() = fo)ldt for fi € Fiofoe Fo.
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There are ny X ny possible pairs of curves between the two groups. Then we compute

the test statistic T, which is the mean of these integrated absolute differences,

Ti= DY alf f). (3.1)

fie€F1 fa€F2

This test statistic, Ty, is a distance measure, d,(Fy, F2), between two groups of
curves. Here we use the subscript ; to indicate the type of norm (distance measure)
being used. The type of hat on the 7" denotes the type of summary statistic. The
value of the statistic in equation (3.1) is for one grouping of the variables. To carry
out the permutation test we need to recalculate this test for all reorderings of the
curves into two groups. Let B = %(”1:1"2) be the number of unique groupings of the
curves into two groups. We repeat the calculations for each grouping of the curves
into two groups, computing T; each time, for b = 1,..., B. Then we compare the
value of the test statistic T; for the original grouping of curves to those of the
permuted groups. The p-value is the proportion of T,’s which are greater than or
equal to the observed value of T (the value of the test statistic for the original

groups of curves),

where Z(+) is the indicator function.

This permutation test is only one approach among many. Instead of using the
Ly norm, one could use alternative measures of how different two curves are, such

as the integrated squared difference (which for simplicity we will call the Ly norm
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although we do not take the square root),

Sa(f1, fo) = /0 [f1(t) = fo(t)]* dt forf1 € F1, fo € Fo,

or the maximum absolute difference (L., norm),

000 (f1, f2) = sup |f1(t) — fo(t)] forfi € F1, fo € Fa.

te(0,1]

Another option is to calculate the absolute difference in area under each curve,

1
5A(f1, fz) = (t)dt — /0 fg(t)dt‘ fOI“fl € fl, f2 € Fo.

We could also change the summary measure and compute the median, trimmed
mean or another m-estimator, rather than the mean. Define the trimmed mean as
follows: Let oj; be the ith ordered pairwise difference between two curves, d;) <
Of2) < *+*O[nyny)- Let the integer k, where k < %nlng, be the number of observations
trimmed from each end of the ordered statistics, calculated by k = ¢nyny (where the
right hand side is rounded to the nearest integer), for ¢ = 0.10,0.20. Then define

the /-trimmed mean as

nings—2k

T, = o1 (f1,
14 n1n2 — 2/{3 Z (2] fl f2
k+1
Combining the various summary statistics and distance measures results in sev-
eral test statistics. We use a bar () to indicate that the mean was used as the
summary statistic, tilde () to indicate median, and a bar with a subscript to

indicate the 10% and 20% trimmed means ( 19, 20, respectively) .
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These combinations result in the pairwise mean Lo norm,

To=b(FF) = —— 3 S 0olfi ),

nin
172 fi€F1 faEF2

the pairwise mean L., norm,

To = dalFr ) = —— 3 S 0ulfi, fo),

nin
172 f1E€EF1 f2€F2

and the pairwise mean difference in integrated area,

Ta=da(F, Fo) = ! Z Z5A(f1,f2)‘

nin
12 fLEFL faEF2

The statistics using other summary statistics are computed similarly. The no-

tation is laid out in Table 3.1.

3.1.2 Method without Pairwise Comparisons

Next, consider an alternative to doing pairwise comparisons, instead taking the

summary statistic of the group first and then calculating the distance measure.

This is the approach taken by Sturino et al. [2010], and here we describe the test

statistics as defined in their paper. Define the sample mean curve for the ¢th group

as

and the sample median curve as

fi(t) = median;e,, {Y;;(1)}.
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Table 3.1: Pairwise permutation test statistics notation.

pairwise mean L; norm T,
pairwise mean Ly norm T,
pairwise mean L., norm Too
pairwise mean difference in area Ty
pairwise median L; norm fl
pairwise median Lo norm TQ
pairwise median L., norm T;o
pairwise median difference in area Ta
pairwise 10% trimmed mean L; norm 71071
pairwise 10% trimmed mean L, norm 71072
pairwise 10% trimmed mean L., norm Tlo,oo
pairwise 10% trimmed mean difference in area Tl(), A
pairwise 20% trimmed mean L; norm 72071
pairwise 20% trimmed mean L, norm 72072
pairwise 20% trimmed mean L., norm TQO’OO
pairwise 20% trimmed mean difference in area T20, A

When dealing with discrete points, it is possible to calculate the summary measures
at fixed time points and then smooth the resulting curve to carry out the rest of
this procedure. This is the approach taken by Sturino et al. [2010]. When dealing
with smooth curves we take a sample of points from each curve and use those points

to calculate the sample median curve.

Sturino et al. [2010] define the squared difference between the mean curves,
1
= = 2
S:= [ [A0 - RO]
0
while using the L; norm with the median curves we obtain

1
51:/
0

fi(t) = fa (1) dt.
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The L., norm is

S0 = sup [71(0) = Fat0)].

te(0,1

and the integrated area difference is

/01 fi.(t)dt — /01 fz.(t)dt‘ :

To calculate p-values, the statistics are recalculated for each regrouping of curves

Sy =

as described in the previous section.

3.1.3 Ramsay’s Permutation Test

Ramsay et al. [2009] discuss a permutation test between two groups based on the
t-test. This test is included in the fda R package [Ramsay et al., 2011]. They begin

by taking the absolute value of a t-test-type statistic at each point along the curve

The test statistic is the maximum value of T'(t),

R = sup T(t).
t€(0,1]
Then they use a permutation test to assess significance, by randomly reordering
the curves and recalculating the test statistic with the new groups of curves. The
test uses 200 random reorderings by default. By nature, then, this test is similar

to the test using the L., norm but scaled by variances and calculated pointwise on
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the mean curves instead of computing the maximum along a smoothed curve. In

principle this test is done continuously but it is carried out at discrete points as

necessary.

Other Test Statistics as Permutation Tests

The beauty of the permutation test is that one can use any test statistic as the
measure and apply the permutation test methodology to that measure in order to
obtain a p-value. We calculate the test statistic for each regrouping of the curves into
two groups. Then we take the test statistics calculated for the original groupings
of curves, compare them with all of the other values computed for the regroupings,
and count how many are as extreme as the original test statistic. The proportion

of values as extreme as the observed value gives the p-value.

In this manner we will carry out permutation test versions based on test statis-
tics outlined in the following sections: the principal components test, adaptive
Neyman test, and functional F' test. We will compare the power performance of
these permutation versions of the test statistics to the performance of the original

forms.

3.2 Test Based on Principal Components

Sturino et al. [2010] define a test based on functional principal components. We

have Y;;(f) as the jth observed response curve for the ith group, i = 1,2, and

j = 1,...,n;. Centre the observations by subtracting the mean curve Y (t) =

L_y2 > ey Yij(t), resulting in the centred data }U/;j (t) = Y;(t) — Y(t). The

ni+n2
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covariance function o(s,t) is estimated by

ng

1 v y
5(5,1) = ———— Yii(s)Yi;(2).
(s, n1+n2_1;j:1 i(s)Yi;(t)

Similarly to the multivariate case, we use the eigenequation

/ o (s, ) (E)dt = A(s) (3.2)

to solve for the eigenvalues A\; > Ay > ... > 0 and eigenfunctions (), ¥s(%), .. ..

Sturino et al. [2010] use the Karhunen-Loéve expansion, approximating every

centred functional observation Yy, (t) by
K
Yii(t) = > yigwtu(t),
k=1

with 7, as the principal component scores, 7, = ff/w (t)r(t)dt. The ~,;j; are
random variables with zero mean and cov(v;jx, Viji) = Z(l = k)Ay, where Z(-) is the
indicator function. They argue that the resulting estimates 9;;, are approximately
Normal, 4, &~ Normal(u;, 0% ) and that they are approximately independent across

1 and k. With two principal components, they test Hy : 11 = o1 and fi2 = fioo.

The test statistic for the first principal component is

Dot Agi/ma = 3002 e /e
\/)\1/711 -+ )\1/712

Then the p-value is calculated, py = P(Z > |z|). The calculations for the second

principal component follow similarly. The authors propose an alternative rejection
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region, rejecting Hy if either p; < aA;/(A + A2) or pa < ads/(A1 + o), where p; is
used to test the first principal component and p, the second one. They state that

weighting the rejection regions in this way greatly increases the power of the test.

3.3 Adaptive Neyman Test

Fan [1996a] proposes an adaptive Neyman test to compare two sets of curves in an
overall test. This test is further discussed in Fan and Lin [1998]. First consider a
single set of curves Yi(t),...,Y,(t), an iid sample from a distribution F(t). The
authors begin by testing goodness of fit of the distribution F'(¢) against a given

distribution function Fy,
Hy : F(t) = Fy(t) versus  Hy: F(t) # Fo(t).

The traditional method of attack for such a problem is a Kolmogorov-Smirnov test
or a Cramér-Von Mises test. However, Fan [1996a] notes that one can transform

this test into the equivalent form
Hy: F(t) =U(t) Versus H,: F(t) £ U(t),

where U(t) is the CDF of the uniform distribution over the unit interval. He then

considers the Fourier transform

1
- / cos(2rrt)dP (1),
0

1
Oy = / sin(27rt)dF(t), r=1,2,....
0
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The ér, r =1,2,..., are the empirical Fourier coefficients. Then the test can be

expressed as
Hy:0,=0, r=12,... Versus H; : at least one 6, #£ 0. (3.3)

Fan proceeds to express the Kolmogorov-Smirnov and Cramér-Von Mises tests in
terms of the Fourier coefficients and shows that they are based on only the first few
Fourier coefficients. The consequence of this phenomenon is that such distribution-
based tests have limited power when testing distributions that have high-frequency
components (that is, distributions having large Fourier coefficients 6, for some large
7). Another consequence is that these tests are not good at detecting local features,
such as bumps. Fan sets out to find an alternative form of such tests that do not

exhibit such power problems.

2 9

Fan [1996a] points out that under the null hypothesis in (3.3), the coefficients

~

6, are asymptotically independent and normally distributed: 6, ~ N (0,,n~1) for

r=1,..., N, where N/n — 0. This led him to the Gaussian white noise model.

Fan [1996a] and Fan and Lin [1998] consider Y ~ N(@, I,,), an n-dimensional

normal random vector. The test of interest is

H,:0=0 VS Hi:0#£0.

They suggest modifying the maximum likelihood test statistic || Y||?, which considers

the entire Y, by testing only the first m components, determining m by

m = arg max {m1/2 Z(YZ2 — 1)} :

m:1<m<n -
=1
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The form of the adaptive Neyman test statistic is

Ty = (Vo) S v - 1)

_ mx@ﬂm*muﬁJ},

1<m<n
i=1
which is equivalent to rejecting Hy when

Tan = /2loglognTy — {2loglogn + 0.5logloglogn — 0.5 log(4m)}.

The authors provide a table of simulated distribution quantiles in their paper.

To compare two sets of curves, they suggest the following process. Assume the

first group of curves are a random sample from

Yii(t) = fi(t) +€(1), t=1,...,T, j=1,...,n,
and the second group of curves are a random sample from

Ya;i(t) = folt) + €(t), t=1,...,T, j=1,...,no.

The errors €;(t) and €)(t) are assumed to have mean 0. It is assumed that the

time observations t are equally-spaced, in order to facilitate the Fourier transform

applied later. The hypotheses of interest are
Ho: fi(t) = fo(t)  vs  Hi: fi(t) # f2(0).

For the case of independent errors, it is assumed for all j and ¢ that

€;(t) ~ N(0,01(t)) and €}(t) ~ N(0,03(t)). Then, define

— 1 &
Yi(t) = - ZYU’
=1
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7j=1
1 -
~2 _ 2
O_I(t) - (nl _ 1) ;{}/1] - Yl (t)} )
and
- RS

, (3.4)

leading to Z = (Z(1),...,Z(T))". The next step is to apply the Fourier transform,
obtaining the vector Z*. Then the adaptive Neyman test is carried out on the vector
Z".

For the case where €(t) and €'(t) are stationary error processes, Fan and Lin [1998]
suggest performing Fourier transforms for each individual curve before running the
testing procedure, which they argue gives approximately independent Normal er-
rors. The rest of the adaptive Neyman test procedure can then be applied to the
transformed data, with one modification — it is no longer necessary to run the
Fourier transform on the vector Z. Note that there is no explicit structure imposed
on the stationary error process; it is not necessary to model the covariance structure

in order to run the testing procedure.

54



3.4 Functional F Test

Shen and Faraway [2004] focus on developing a test for the functional regression

model similar in form to the traditional F' test that was not sensitive to the number

of points sampled along the curve. They are motivated by a collection of ergonomics

data.

3.4.1 General Case

Consider first the more general case discussed by Shen and Xu [2007], where we ig-

nore groups and have n = n;+ny, where i = 1,...,n. Shen and Xu [2007] model the
relationship between the functional response, with the form Y;(¢), i=1,...,n, t €
[a, b], and a vector of predictors, x; = (%1, ..., %)’ . We write these functions are

written in terms of time, ¢, which is the usual convention. The regression model is

of the form:

Yi(t) = xTB(t) + ei(t), (3.5)

with unknown parameter functions 3(t) = (81(¢), ..., 8,(t))", where the ¢(t) follow
a Gaussian stochastic process with mean 0 and covariance function 7(s,t). The
errors €;(-) and €;(-) are assumed to be independent for i # j. Note that the

covariance function is not assumed to have any specific structure.

To carry out the functional regression, Shen and Xu [2007] estimate the unknown
functions B(¢) by minimizing >, ||V — xF' 8%, where || f|| = ([ f(t)*dt)"/? is the
Ly norm of the function f = f(¢). This results in the least squares estimates B(t) =

(XTX)'XTY (t), where X = (x1,...,%,)T is the n X p model matrix (as in linear
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regression models) and Y (t) = (Yi(¢),...,Y,(¢t))" is the vector of responses. The

predicted responses are Yi(t) = x73(t), with residuals ¢(t) = Y;(t) — Yi(t). The

)

residual sum of squares is
rss =3l = Z/éi(t)th. (3.6)
i=1 i=1

Shen and Xu [2007] discuss how to compare two nested linear models w and
), where w has ¢ parameter functions, {2 has p parameter restrictions, and w is a
subset of Q (that is, p > ¢). The functional F test defined by Shen and Faraway

[2004] is of the form

(rssw —rssa)/(p —q)
rssq/(n —p)

F =

Y

where rss,, and rssq are residual sums of squares under models w and 2 calculated

according to equation (3.6).

Shen and Faraway [2004] derive an approximation for the distribution of this
F test. They suggest using an ordinary F' distribution with df; = A(p — ¢) and

dfy = A(n — p), where the degrees of freedom adjustment factor, A, is defined as

where the \; are the eigenvalues of the covariance function.

Shen and Xu [2007] discuss how to use the functional F' test to perform tests

and calculate the p-value for stepwise model selection, testing fx(t) = 0. To carry
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out this test, fit the reduced model without the kth covariate. The form of the test
is
rSSE — ISS

TR

where rssy, is the residual sum of squares under i (t) = 0. More simply, Shen and

Faraway [2004] showed that Fj can be calculated using

[EAS _ J Brat
(rss/(n —p)(XTX)L — (rss/(n —p))(XTX) "

k:

where (X7X):! is the kth diagonal element of (X7X)™!, f(t) is the estimate of
Bi(t), and rss is the residual sum of squares under the full model. This form of the
test is more convenient as it does not require the fitting of a new model for each of
the k parameters. Under the null hypothesis, F}, is approximately distributed as an
F distribution with degrees of freedom df; = A\ and dfs = A\(n — p), where X is the

degrees of freedom adjustment factor.

3.4.2 Method Using Equally-Spaced Time Points

When data are collected at evenly-spaced fixed time points, ¢, ...%¢ys, Shen and Xu

[2007] suggest a simplification. In this case the model equation (3.5) becomes

Yi(tn) = X?B(tm) + €(tm),

fore = 1,...,n, m = 1,...,M . Then instead of integration, summation is
used, with [|&]2 = M &(tn)?/M and ||G]> = M, Be(tm)?/M. The co-

A

variance function 7y(s,t) is estimated by the empirical covariance matrix 3 =
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(Oor  E(te)é(t)/(n — p))mxm- The degrees of freedom adjustment factor can be

estimated by

~

A = trace(X)?/trace(3?).

The authors state that large degrees of freedom (n —p > 30) are desired for a good
estimation of A. They also state that if the data are collected at different time

points for different i, smoothing techniques can be used to obtain fixed time points.

3.5 Discussion

In this chapter we have introduced several tests in detail. The tests presented here
differ in their approach to measuring and testing differences between curves. We

briefly discuss the relative benefits of the various measures.

The advantage of the pairwise permutation approach is that there is no risk that
the differences between the curves will be obscured by a summary measure that
does not capture the essence of any on the individual curves. These are exact tests
that do not depend on a distribution. Therefore, they are more flexible and more
widely applicable than many other tests. The data do not have to follow a specific
structure in order for the test to work. Within the pairwise permutation framework
we have offered many combinations of distance measures and summary measures.
We expect that the performance of the various tests within this framework depends
on the nature of the problem begin studied. For example, we would expect tests
based on comparing the area under the curves to do poorly in detecting a location

shift, but do well in detecting level shifts between two sets of curves.

The permutation tests proposed by Sturino et al. [2010] take the opposite order
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of calculating the distance and summary measures. We are curious to see whether
the order matters. Because they do permutations only on the summary curves,
these tests will run faster than the pairwise permutation tests. The tests proposed
by Sturino et al. [2010] have the same advantages other permutation tests in that

they are exact and distribution free.

As discussed when it was presented, Ramsay et al.’s [2009] permutation test is
similar in spirit to the test based on the L., norm, therefore we expect that it will
perform similarly to the other permutation tests using that measure. This test uses
only a sample of the permutations (in fact, it samples with replacement). However,
we do not have any guidelines as to how large a sample to take to obtain an accurate

test with adequate power.

The test introduced by Sturino et al. [2010] is based on reducing the amount of
data from a set of curves into a set of principal components scores. This is a popu-
lar data-reduction technique applied to a hypothesis test in the functional setting.
This test will run much faster than any permutation test, which is an attractive
characteristic. One issue with this test is that we do not have any indication as to
how many principal components to include, nor how sensitive the test is to using

too few or too many principal components.

The adaptive Neyman test developed by Fan and Lin [1998] uses the Fourier
transformation as its expansion method. Consequently, the test is going to perform
well insofar as the Fourier transform gives a good representation of the curves. This
is most likely the case for periodic functions. In other situations, with curves not
well described by the Fourier transform, we do not expect that the test will perform

well.
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The functional F' test is an intriguing adaptation of the scalar case to functional
data. Again we have the same issues that arise with the adaptive Neyman test,
because this test assumes a specific model structure to the data, and if this model
does not accurately describe the data our inferences will be affected. An issue we will
have is that we are dealing with small samples and this test needs approximately 30
degrees of freedom to accurately calculate the degrees of freedom adjustment factor.
With the small sample sizes used in this dissertation we will be unable to accurately

calculate this value and this may adversely affect the performance of this test.
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CHAPTER

FOUR

MOTIVATING EXAMPLE

In this chapter we use a set of data generated from a 2% factorial experiment and
explore several approaches for analyzing the data. We carry out analyses from
two points of view. In the first approach, we ignore the functional nature of the
data and base the analysis on a series of F' tests at points along the curve. We
discuss some graphical techniques that illuminate the behaviour of the effects. We
have not seen this strategy outlined anywhere in the literature with respect to the
analysis of functional data. Then, we apply the tests designed for comparing curves,
outlined in Chapter 3, to the data, testing each effect by dividing the data into two
groups based on the effect. We introduce a graphical technique that displays the

interaction effects over the index variable. We offer some comments on the non-

functional and functional approaches but leave a detailed discussion of the latter to

the next chapter, following the simulation studies.
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4.1 Description of NASA Experiment

As part of the next generation of space exploration, NASA is developing new space-
craft to transport humans and cargo into space. The Ares I Crew Launch Vehicle
(CLV) is one component of the program which has since been cancelled [NASA,
2012]. One segment of the development of the CLV is an analysis of the aerody-

namic performance of the launch abort system.

A full 2 screening computer experiment was conducted by NASA to examine
the effects and importance of four factors: Tower Length (A), Tower Diameter (B),
Tip Fineness Ratio (C), and Tip Shape (D), on the response, Drag. The experiment
was run at 10 different Mach numbers, in unequally-spaced intervals from Mach 0.7
to 4.0. Thus, for each combination of factor levels there are 10 responses, one for
each of the 10 Mach numbers. These points can be interpolated, resulting in a curve
as the response. The data, provided by Peter Parker of NASA, are included in a
table in Appendix A and are plotted as points joined by straight lines in Figure 4.1.

The purpose of this chapter is to use the NASA data as a case study and apply
some of the techniques discussed in Chapter 3. All of the analysis is carried out

using the R statistical software package [R Development Core Team, 2011].

4.2 Cross-Sectional Analysis

As a very simplistic method one can fit a model at a chosen Mach number and take
this model as a representation of the entire process over all Mach numbers. This

approach is only applicable if the system does not change over Mach number. A
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Figure 4.1: Response data plotted as points joined by straight lines.
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glance at the response curves displayed in Figure 4.1 shows that drag clearly changes

as Mach changes, and therefore this approach is not appropriate in this situation.

4.2.1 Pointwise Analysis at Each Mach Number

A better approach is to conduct a separate regression analysis at each Mach number.
This approach is only applicable if the data are collected at the same Mach numbers
for each response. If this is not the case, it is possible to smooth the data and sample
at the same Mach number for each curve. However, if undertaking this process one
might just be tempted to treat the responses as curves, as we will do in the next

section.

In any case, here regressions were run at each Mach number, in each case reduc-
ing the model to the significant effects in a step-wise fashion. A summary of these
regressions with the significant effects, their F' statistics, and corresponding p-values

can be found in Table 4.1. Note that Int refers to the intercept of the models.

In general, the results are fairly consistent. The effects C, D, and CD appear
in most of the models. The main effect B also appears quite consistently. Other
interactions, such as BC and BD, seem to come and go, while the rest of the effects
do not appear in most models. Mach level 6 seems to be a special case, as the model

contains far more significant effects there than at other levels.

4.2.2 Graphical Approaches

We can also present these results in graphical form. The goal of these plots is to

illustrate which effects are large at each Mach level, and to indicate the size of the

64



Mach Level
Factor 1 2 3 4 5 6 7 8 9 10
Int 0.198 0.337 0445 0.577 0.599 0.546  0.557 0.664  0.645 0.598
<001 <001 <001 <001 <001 <001 <001 <0.01 <001 <o0.01
A -0.007 -0.004 -0.005 0.003
<0.01 <0.01 <0.01 < 0.01
B -0.001  -0.002 -0.001  -0.006 -0.043 -0.023 -0.026
0.07 0.03 0.02 <0.01 <0.01 <0.01 <0.01
C 0.003 0.006 0.016 0.010 0.025 0.006 0.007 0.034 0.017 0.022
<0.01 <0.01 <0.01 0.17 <0.01 <0.01 <001 <0.01 <0.01 <0.01
D -0.002 -0.005 -0.016 -0.014 -0.029 -0.013 -0.011 -0.009 0.002
<0.01 <0.01 <0.01 0.08 <0.01 <0.01 <0.01 <o0.01 < 0.01
AB 0.002
< 0.01
AC -0.004 -0.003
< 0.01 0.05
AD 0.004  0.003
< 0.01 0.03
BC 0.002 -0.003 -0.004 0.007  0.008
< 0.01 < 0.01 0.01 <0.01 <0.01
BD -0.002 -0.001 0.002
< 0.01 0.02 0.01
CD 0.002 0.004 0.015 0.014 0.028 0.011 0.0010 0.014 0.002
<0.01 <0.01 <0.01 0.08 <0.01 <0.01 <0.01 <o0.01 0.02
ABC
ABD 0.001
0.02
ACD -0.003
< 0.01
BCD 0.002
< 0.01

Table 4.1: Pointwise results: estimated effects with p-values below.
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Figure 4.2: Estimated effects for each factor
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effects as Mach level changes. To produce these plots separate regressions were run
at each Mach level, with all models containing the four main effects and six two-way
interactions. The magnitude of the estimated effect at each Mach level is plotted
in Figure 4.2, while Figure 4.3 displays the ratio of the sum of squares of the effect
to the total sum of squares. The largest effects are highlighted with different line

types. Other effects are included as grey lines.

These graphs are quite enlightening. The main effect A does not explain much of
the variation in the models. Its highest percentage of explained variation is approx-
imately 10% at the sixth Mach level. This demonstrates that A is not an important
factor in the models. In contrast, effect C has consistently high percentages of ex-
plained variation, although the effect seems to explain less of the variation at the
middle Mach levels, and more at the lower and higher extremes. Effects B and D
are intriguing. Effect B is not important at the lower Mach levels, but increases in
importance at the seventh Mach level and explains much of the variation at levels
eight through ten. On the other hand, effect D shows the reverse pattern: it is more
important at the lower Mach levels and explains very little of the variation at Mach
levels eight through ten. This graph also reveals a great deal about the interac-
tions, namely that the CD interaction is the only interaction term of influence. It

is interesting to note how the CD effect drops off at the highest three Mach levels.

Figure 4.4 is a plot of the residuals generated by running regressions at each
Mach level. There is a great deal more variation in the residuals at Mach levels 3, 4,
and 5, corresponding to Mach 0.95, 1.05, and 1.10. This suggests that the models
do not fit as well at these Mach levels. From an engineering point of view, this

variation is explainable due to the changes in aerodynamic phenomena associated
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Figure 4.4: Residual boxplots.
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with the transition from subsonic to supersonic speed, and may indicate the need

for a more complex model (personal communication with Peter Parker).

The cross-sectional analysis is insightful, but it does not account for the fact
that the responses are curves and there are some issues with treating the responses
as individual sets of points. The first issue is that these sets of points are not
independent, but rather are correlated along the response. We would like to account
for this dependence in the analysis. Another issue is that we do not get an overall
picture of the significance of the effects, instead we have ten separate groupings of
significant variables, not all of which are the same. Certainly the separate tests are
informative, but they do not summarize the overall situation. To fully exploit the
functional characteristics of the data, we need to consider other approaches. We

begin in the next section.

4.3 Smoothing

Our data set consists of a series of points, with points collected over the range of
a variable, in our case Mach number, but which is often time. How do we convert
these points into curves? The answer is smoothing. We fit splines to the data
points using the interpSpline function in the splines R package [R Development
Core Team, 2011]. The splines fit a smooth curve to the points; this curve may then
be used as the basis for testing. If necessary, we are able to sample points from the
curves. We may sample only a few points or many, depending on our requirements.
In this manner it is possible to obtain equally-spaced points even when the data

itself has unequally-spaced points.
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One sees, then, why those who deal with functional data as functions do not
concern themselves about missing data along a curve. We literally smooth away the

problem, generating curves and producing the points we require, if necessary.

The smoothed NASA curves are plotted in Figure 4.5. These are the curves we

will use in the rest of this chapter.

0.7

Drag
0.5

0.4

0.3

0.2

I I I I I I I
10 15 20 25 30 35 40

Mach Number

Figure 4.5: Smoothed response curves.
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4.4 Analysis with Curves as Functions

We have 16 curves and 15 effects. We can test for the significance of an effect
by separating the data into two groups of eight curves based on the high and low
values of the effect of interest. Then we apply the techniques for comparing curves
on the data as two groups. We continue in this manner for each effect in turn. By
carrying out this procedure we obtain assessments of significance for each effect. In

this section we apply each testing procedure and present the results.

4.4.1 Permutation Tests

The idea of a permutation test was introduced in Section 2.4. We will use two
of the permutation tests here as examples, the mean of the pairwise integrated
squared differences between curves and the mean of the pairwise integrated absolute

differences between the curves.

Mean of Squared Differences

Consider the permutation test based on the mean of the pairwise integrated squared

differences between the curves. We calculate the value of this statistic for each effect.

These effect sizes are plotted in a dot chart in Figure 4.6 and the p-values calculated
using the permutation test are provided on the right hand side of the plot for each
effect. From this plot it is easy to see that effects D and CD have the largest
calculated pairwise integrated squared difference and these effects correspond to
significant p-values of 0.016 and 0.015, respectively. Effect C is the next largest;

the p-value in this case is 0.476, which is not significant. However, since there is a
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the hierarchy principle.

Mean of Absolute Differences

test statistic we choose. We do so in the next section.
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Figure 4.6: Dot plot and p-values of NASA experiment effects, calculated using
pairwise integrated squared differences.

significant CD interaction the effect C should be considered important because of

Consider also the mean of the pairwise integrated absolute differences between the
curves. The results here are consistent with the mean pairwise integrated squared

differences; the effect C has a larger test statistic but still tests as not significant.

Recall also that we may apply the methodology of the permutation test to any
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Figure 4.7: Dot plot and p-values of NASA experiment effects, calculated using
pairwise integrated absolute differences.
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4.4.2 A Functional Response Model

Shen and Xu [2007] propose a functional F' test that accounts for the functional
nature of the responses. This test is similar in spirit to the usual F' test, and it is

used to test nested designs as discussed on page 56.

The data are not equally spaced, so there are two options: 1) to use the data as
it is and apply the F' test method using integrations instead of the method using
summations, or 2) to smooth the data and choose equally-spaced points from the
smooths. We choose the latter option since we are smoothing the curves for other
purposes as well. One question of interest is how much of an effect smoothing has

on the power of this I’ test. This is a point for further study.

We smooth the data and sample 32 equally-spaced points from the smooths.
These points are used to assess signficance in two ways. The first method proceeds
as outlined in Section 3.4, using the parametric assumptions for the test, that is,
using the F' distribution to calculate the p-values. The second method uses the
functional F' statistic as the basis for a permutation test, as discussed in Section
3.1.3. We call the former the parametric version of the functional F' test, and the
latter the permutation version of the functional F' test. This will be the convention
for our terminology with the adaptive Neyman test and the test based on principal

components as well.

The F statistics and p-values for both the functional F' tests and permutation
tests are displayed in Figure 4.8. From the dot chart we see that B, C, D and CD
have the largest F' test statistics. According to the parametric test p-values, all four

effects are significant with small p-values. The permutation test p-values show the
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Figure 4.8: Dot plot and p-values of NASA experiment effects, calculated using
functional F' test, with p-values calculated using the parametric normal assumption

and the permutation test technique.
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three main effects B, C, and D as significant at o = 10% but the CD interaction

p-value is 0.113.

A final point is that the degrees of freedom were small for this experiment,

n — p = 14. Shen and Xu recommend having n — p > 30.

4.4.3 Adaptive Neyman Test

The adaptive Neyman test uses the Fourier transform, which requires data collected
at equally-spaced points, thus, the first step is to smooth the data. The data are
smoothed in the same manner carried out for the functional F' test, using the
function interpSpline [R Development Core Team, 2011}, which fits splines to the
points. The code used for the adaptive Neyman test was written by Fan and is

available on his website [Fan, 1996b].

We then sample 32 points from the curves, apply the Fourier transform, and
calculate the adaptive Neyman test statistics for each effect. Again, we may use
the adaptive Neyman test statistic for each effect as the basis for a permutation
test. The values of the test statistics are plotted and permutation test p-values are
displayed in Figure 4.9. This plot also contains a vertical reference line indicating
the critical value of the adaptive Neyman test statistic at a = 10% for 30 points,
which is the closest value to 32 available in the table. Here we have an interesting
dilemma. On the one hand, based on the critical value for the test statistic, all
effects except AD, ABD, ACD and ABCD are significant. On the other hand,
according to the permutation test p-values none of the effects are significant. Note
that the effect sizes are so large that they are highly significant according to the

parametric test regardless of the level of o chosen.
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Figure 4.9: Dot plot and p-values of NASA experiment effects, calculated using the
adaptive Neyman test. The dashed vertical line is the critical value of the parametric
version of the test for n = 30, with a = 0.10. The p-values are calculated using the
permutation version of the test.

78



4.4.4 Test Based on Principal Components

To carry out the test based on principal components, we first need the curves to
be recognized as functional data objects by R. We begin by defining a basis for the
curves, using the create.bspline.basis function in the fda package [Ramsay et al.,
2011]. Then we fit the basis to the points, without doing any additional smoothing
than we have already done to the curves. This step gives us a functional data
object. We fit two principal components to the functional data object. The first
principal component accounts for most of the variation (82%). The second principal
component accounts for 15% of the total variation. We use the eigenvalues and

eigenfunctions of the principal components to calculate the test statistics.

The test using the normal distribution combines the results of the tests on the
first and second principal components (PCs) and rejects the null hypothesis if either
the test on the first PC is rejected or the test on the second PC is rejected. The test
statistics and p-values for each component are displayed in Figure 4.10. The p-values
are calculated both using the normal distribution assumption and the permutation
test procedure. The tests on the first principal component reveal B and C to have
the largest test statistics, followed to a much lesser extent by CD. According to the
parametric test, significant effects are B and C, with p-values of 0.02 and 0.04. The
results are similar using the permutation test with the same effects having small

p-values.

Examining the results for the second principal component, we see the largest
effects are D and CD, followed by effect B. The p-values calculated using the para-

metric assumptions yield D and perhaps CD as significant effects, with p-values
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Figure 4.10: Dot plot and p-values of NASA experiment effects, calculated using
the principal components test, with p-values calculated using the parametric normal
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of 0.038 and 0.064, respectively. The permutation test has the same conclusions,

albeit with smaller p-values of 0.009 and 0.030, respectively.

Recall that we reject the null hypothesis if either the first or second component’s
p-values are < /2 = 0.05 for a 10% level test. Thus, the significant effects are B,
C, and D based on the parametric p-values and B, C, D and CD based on the

permutation test p-values.

In their article, Sturino et al. [2010] suggest using alternative rejection regions
which weight the rejection regions based on the size of the eigenvalues. That is, in-
stead of using the same rejection region for each principal component, we calculate
a different region for each PC, based on that PC’s eigenvalue. For an o = 0.10 level
test the rejection regions are p; = 0.08423402 and p, = 0.01576598. Comparing
these cut-off values to the p-values found in Figure 4.10 based on the parametric
version of the test, we have effects B and C significant by the test based on the
first principal component and nothing significant based on the test using the second
principal component. The permutation p-values indicate that B and C are signif-
icant according to the first principal component and D is significant according to

the second principal component.

Alternatively we could combine the tests and use the x? test. The test statistics
and p-values calculated using both parametric and permutation approaches are
shown in Figure 4.11. Effects B, C, D, and CD have the largest test statistics in
this case. The significant effect according to the parametric test is B with a p-
value of 0.075. The p-values calculated using the permutation test indicate that B

(p-value < 0.001), D (0.029), and CD (0.077) are significant at oz = 0.10.
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Sturino PCA Chi—Square Test Statistic
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Figure 4.11: Dot plot and p-values of NASA experiment effects, calculated using
principal components test using y? option, with p-values calculated using the para-
metric normal assumption and the permutation test technique.
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4.4.5 Summary

The results of these tests are summarized in Table 4.2, which lists the significant

effects according to each test and the p-values where appropriate.

Table 4.2: Significant effects according to each test.

Test

Significant Effects (p-value)

Mean pairwise squared difference
Mean pairwise absolute difference
Functional F' test, parametric
Functional F' test, permutation
Adaptive Neyman test, parametric
Adaptive Neyman test, permutation
PC test, normal, parametric

PC test, normal, permutation

PC test, alt. cut-offs, parametric
PC test, alt. cut-offs, permutation
PC test, 2, parametric

PC test, x?, permutation

D (0.016), CD (0.015)

D (0.019), CD (0.015)

B (0.001), C (< 0.001), D (0.022), CD (0.021)
B (0.011), C (< 0.001), D (0.100)

A, B, C, D, AB, AC, BC, BC, CD, ABC, BCD
(none significant)

B, C, D

B, C, D, CD

B, C

B, C, D

B (0.075)

B (< 0.001), D (0.029), CD (0.077)

The conclusions differ based on the test used, although there are some consistent

patterns. Effects B, C, and D appear regularly, and the CD interaction is the most

common interaction showing significance. Note that the pairwise permutation tests

detect the CD interaction while several others do not. Not all the tests agree and

we would like to know more about the nature of the robustness of the tests under

consideration.

4.5 Examining Interactions

In the progression of analysis, it became clear that an interaction effect exists in

the data. The CD interaction consistently appears as a significant effect according

to several of the testing approaches. It was of interest to explore this effect further.
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There is very little discussion in the literature about interaction effects with
functional regression. The book by Ramsay and Silverman [2005] does not discuss
interactions, nor do Shen and Xu [2007] in the residual analysis techniques they
develop. Nair et al. [2002] discuss control-by-noise interactions in robust design
studies but do not specifically examine the relationship between two interacting

variables in functional regression.

The NASA data plotted in terms of high/low C and D effects are found in
Figure 4.12. Another way of viewing the CD interaction effect is to examine the
mean curves of each factor combination. These curves, calculated pointwise along
a very fine grid of points sampled from the smoothed curves, are plotted in Figure
4.13. The curves have a different overall shape for the C-D+ factor combination,
most obvious at the first smaller peak which has a different characteristic at these
levels. We also see that the top peaks are lower for C- regardless of the level of D.
Note also in this plot that the height of the second peak in the response appears to
be related to the level of factor B. When B is high this peak is not as high as it is

when B is set to the low level.

Let us consider a way of plotting the interactions as Mach number changes. The
starting point is the usual interaction plot constructed in design of experiments.
Consider the first Mach level, y = 0.7. Referring to the data on page 132, the CD

interaction effects are tabled as
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Figure 4.12: Response curves separated by high and low levels of factors C and D,
with different line types indicating the level of factor B.
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Figure 4.13: Mean response curves, mean calculated over high and low levels of
factors C and D.

D-| D+

0.199 | 0.196

C- 10.198 | 0.196
0.202 | 0.183
0.200 | 0.185
0.200 | 0.200

C+ [ 0.199 | 0.199
0.203 | 0.203
0.201 | 0.201

The average effects are calculated to be

D- D+
C- 10.19975 | 0.19000
C+ | 0.20075 | 0.20075

Normally, plotting these numbers is simple because there is only one response
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level. However, as there are data for ten Mach numbers, this process is repeated at
each level of the response. The resulting average effects are plotted on one graph

to simultaneously illustrate the interaction effects for all levels. See Figure 4.14.

This plot illustrates many aspects of the interaction effects. Note how the av-
erage effects mimic the pattern of the response curves. The interactions are more
pronounced at the middle Mach levels than at either tail. At Mach levels 9 and 10,
the lines are parallel, indicating that there is no interaction between C and D at
these levels. This result is consistent with Figure 4.2, the plot of estimated effects,

where the CD interaction effect tailed off at the higher Mach numbers.

In terms of the effect on the response, this plot shows that the effect of D is
negligible when C is at its high level. In contrast, D has a large effect when C is
at the low level. When C is low, moving from D low to D high reduces the average
Drag. The combination of C low and D high produces the least amount of Drag.
This outcome is not indicated in any of the other graphs generated in this paper,

but may be important from a design point of view.

This graph is a new tool for use with designed experiments having a functional
response. It demonstrates the interaction effects in a clear manner and greatly aids
in their interpretation. It does not require equally-spaced points; if necessary one
may smooth the data to obtain the desired points. It does require curves to be

discretized in some way.

4.6 Discussion

We have considered cross-sectional and functional approaches to analyzing a set of

functional data. Let us summarize our impressions of each approach.
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Figure 4.14: CD interaction effects for each Mach level.
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4.6.1 The Cross-Sectional Approach

Advantages:

e The pointwise approach is simple and easy to carry out.

e It uses familiar tests.

e Examining the significant effects at each point gives us a good picture of the

behaviour of the curve overall and indicates the important effects.

e The effect plot, ratio of effects plot, and boxplots are valuable and informative
and give an excellent illustration as to how the effects vary in strength over

time.
e The interaction plot allows us to examine the nature of the interactions over
Mach number in a way not possible using the functional point of view.

Disadvantages:

e We do not get an overall assessment of significance.

e It is awkward and labour-intensive in that we have to build a model at each

point along the curves. If we needed to do a cross-sectional analysis at a large

number of points this could get tedious.

e We have some concerns regarding smoothing and its effect on the power of

the tests.

e It does not treat the data in its true form, a curve, and does not account for

the relationship between points along the curve at each analysis point.
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Overall we feel this approach has merit. We find it informative and feel that
it reveals a great deal about the nature of the effects in the data. An interesting
note is that the points at which to carry out analyses are up to the user. We could
potentially choose to carry out the analysis cross-sectionally at points of interest
along the curves (for example, at peaks or along a steep climb or fall on the curves).
This could give us a picture of interesting features without having to carry out an
abundance of tests along data collected at finely-spaced time points. Then the cross-
sectional analysis becomes an exploratory technique and formal testing procedures

could be carried out using functional testing procedures.

4.6.2 The Functional Approach

With the variety of testing procedures used here, the advantages and disadvantages
depend on the test under consideration. We will discuss each test in turn.
Pairwise Permutation Tests
Advantages:

e These tests are simple to understand and calculate.

e No distributional assumptions are needed.
Disadvantages:

e Some programming sophistication is required.

e The time to compute the test may be lengthy. It took 14 minutes to calculate

all of the NASA effects based on 16 curves, which is not a large sample size.
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Functional FI' test

Advantages:

e The form of the test is familiar.

e (Calculations are quick.

e [t is relatively simple to carry out the procedure.

Disadvantages:

e The distributional assumptions may not be true.

e The test is sensitive to the error structure [Shen and Faraway, 2004].

Adaptive Neyman Test

Advantages:

e [t is simple to carry out with the code provided.

Disadvantages:

e The test depends on Fourier transform and assumptions which may or may

not be appropriate for the data.
e Complex argument is used to develop the test statistic.

e No simple p-value calculation.
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Test based on Principal Components

Advantages:

e [t is easy to fit functional principal components to the data and carry out the

test.

Disadvantages:

e The test as structured treats each principal component separately. It is not
clear how many principal components to fit to the data, nor do we know if the

procedure is sensitive to having not enough or too many principal components.

The choice between these tests is not clear at this point. Further investigation

is needed, which is the basis for the simulation study in the next chapter.

4.7 Conclusions

In this chapter we explored various methods to analyze data with a functional
response. The first approach fit separate least-squares regressions at each Mach
level. The estimated effects and sums of squares were plotted to illustrate which
effects were significant at each Mach level. Boxplots were plotted to show changes

in variation across Mach levels.

We then applied a number of testing procedures designed for comparing two
groups of curves to a set of data from a 2% experiment, including pairwise permu-

tation tests, the functional F' test, the adaptive Neyman test, and tests based on
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principal components. The results differed between the tests but for the most part

gave a fairly consistent message about the significant effects.

Having applied these tests, we would now like to know how robust the para-
metric tests are to deviations from assumptions. How do the powers of the tests
compare? Is there a “best” test that has good power and performs well in a variety
of situations? Which permutation test is preferred? Does it matter whether the
permutation tests are carried out pairwise or on summary curves? These are the

questions that will be addressed in the simulation study in the next chapter.

Finally, we attempted to illustrate interaction effects using some graphical tech-
niques. By plotting the interaction effect between two variables in series across all
levels of the response, it became simple to characterize the nature of the interac-
tion. This technique is a useful additional tool in the analysis of functional data

generated by a designed experiment.
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CHAPTER

FIVE

SIMULATION STUDY AND RESULTS

In this chapter we discuss the structure and results of the simulation study. We
discuss how we generate curves for the simulations and how we use these curves in
simulations. Then we discuss the results of the simulations, examining the power
of the test statistics and comparing and contrasting the results over the varying
conditions. All simulations are carried out in R [R Development Core Team, 2011].
We wish to make two points very clear regarding the purpose and structure of these
simulations. One point of consideration to remember is that our goal is merely
to generate a set of smooth curves on which to carry out some statistical tests.
We do not require the data to follow a specific model or structure in any way.
All we require is the ability to change the shape of the curves to account for the
changing alternative hypothesis. Another point is that in developing our process for
generating curves, we are in no way attempting to mimic the shape of the NASA
curves used in the previous chapter. While the NASA data is a very interesting

data set to analyze, we are not concerned with capturing the spirit of this data in
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the curves we generate. The NASA data set is fairly sparse and requires smoothing
while our focus here is on creating a set of smooth curves. That is, we assume that
the smooth curves generated through the process are our data. Our objective is to

examine the analysis of data where the data are smooth curves.

5.1 Making Curves

The first step in carrying out a simulation study is to generate curves. One possi-
bility is to start with a baseline curve and perturb it in some way. We will explain
this multi-step process in this section, and then provide the notation. We restrict
the data, without loss of generality, to the interval [0, 1]. We generate two types of

curves, unimodal and monotone. We begin by describing how we generate unimodal

curves.

5.1.1 Unimodal Curves

First, we need to specify a baseline curve. We use a Beta probability density
function. This curve is not viewed as a density function but rather just “a curve.”
A Beta density is a convenient baseline because it is flexible; it has two shape
parameters on the interval [0, 1], allowing level shifts to the curve as well as the
ability to change the shape and peak of the curve. Notationally we refer to the
baseline parameters as aj and 7. There is a ; subscript because this is the first
group of curves. Later we will specify a second baseline curve with a5 and 335 to

generate the second group of curves in order to test hypotheses.

Once the baseline curve is defined, the second step is to generate a set of ng

curves around this baseline curve by perturbing the parameters of the baseline with
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multiplicative lognormal noise. This results in n; Beta curves, with parameters ay;
and By;, 1 =1,2,...ny. [At this stage, noise variability parameters 0%, and o7, must
be specified.]

These curves are still smooth, since they are simply Beta densities. The third

step in the process introduces randomness around the curves, using multiplicative

autoregressive errors. [To do this, we need to specify the autoregressive coefficient,

2
w1?

71, the error variability parameter, - , and J, the latter giving us J 4+ 1 equally-

spaced points on [0,1] at which the errors will be introduced.]

Now that we have a set of points that outline n; curves following noisy paths,
the final step is to fit splines to these points, giving us n; smooth curves. In our
case we fit splines to the points using the interpSpline command in R to obtain

the smooths. These curves are our data.
More formally, having specified of, 57, 01,, 0%, 71,05, and J, the curves in the

first group are given by

Yu(ﬂﬂ) = spline[(aco, y1i0)> (xla ylil)a (1'2, yuz), S (xJa qu)](x)a

for0<z<1,i1=1,2,...,ny, where
T =

and, fori=1,...,nyand j=1,...,J,
y1;; = €M [dBeta(x;, ay;, 1i)],

where
ai; O bi; QO
oy = etay, Bri = e by,
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and

Mo =  Wii0,

Mi; = Tlﬂli(j,1)+wlij, izl,...,nl,jzl,...,J,

wig; ~ N(0,02 ), i=1,...,n1, j=0,...,J
with all of the ay;’s, by;’s and wy;;’s being independent.

Figure 5.1 on page 98 shows (a) the baseline curve, (b) six Beta curves with
random «y;’s and f31;’s, (¢) the six curves with a layer of autoregressive error added,
and (d) the spline fits, which are considered the observed data. The parameter
values for this set of curves are: oy =2, 8y =5, J =7, 03, = 03 = 03)1 = 0.09, and
1 = 0.7.

The second group of curves is the comparison group which is generated under the
alternative hypothesis conditions. One feature we may want to add to the second
group is a mixture of another curve, that is, a second bump, as contamination. This
mixture could be generated by anything, but for now let’s simply add a proportion
p of another Beta density defined by a*° and §*°, where these parameter values
are generated similarly to the error process used for the main curve’s a° and °,

obtaining a collection of «’s and j3;’s.

The curves in the second group are generated from
Yai(x) = spline[(zo, y2i0), (21, Y2i1), (T2, Y2i2), - - -, (27, Y2i)] (1),
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Beta Curves with Random Pars
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(d)

Figure 5.1: Generation of noisy curves for group 1: (a) is the baseline curve, (b)
six Beta curves with random «y;’s and (y;’s, (¢) the six curves with a layer of
autoregressive error, and (d) the spline fits.
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for0<z<1,i1=1,2,...,n9, where

Fori=1,...,npand j=1,...,J,

Yy, = €™9[(1 — p)dBeta(z;, ag;, fa;) + pdBeta(z;, of, ;)]

where
ag; . O bo; QO
Qg = e g, Bai = €™ 33,
* a¥ *o * b* pxo
af =e'ia’™ B =e" 3™,
2 .
as; ~ N(0,03,), i=1,...,n9,

by ~ N(0,03,), i=1,...,n9,
a; ~ N(0,02.), i=1,...,n9,
b ~ N(0,02), i=1,...,n9,
(these are all independent). The autoregressive error term is added using the same

procedure used for the first group of curves.

To illustrate, to generate a second group of six curves, the entire curve generation
process is repeated with the same parameter values, but adding in a p = 0.1 mixture

of a*® =4, ™ = 8. These curves are displayed in Figure 5.2.

To generate the data for simulations, the baseline is fixed, we simulate new
curves from it, evaluate a number of measures, and calculate test statistics. The
output from the simulations are smooth curves. We consider these curves to be the
data. That is, for inference we will not be making use of the model that we know

produced the curves. We certainly could, but that is not the focus of this research.
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Figure 5.2: Generation of noisy curves for group 2: (a) is the baseline curve, (b)
six Beta curves with random ay;’s and [y;’s, (¢) the six curves with a layer of
autoregressive error, and (d) the spline fits.
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5.1.2 Simulation Study

We have discussed how to obtain the data and some methods for testing whether
or not two groups of curves are different. Now we will discuss how to compare the
methods. The objective is to compare the performance of the various procedures
discussed in Chapter 3 in a variety of contexts. We carry out a simulation study
that systematically changes the experimental conditions and allows us to assess the
performance of the tests as conditions change. The construction of the curve gen-
eration developed in the last section is complex but flexible and it can be simplified

(by making all of the variances identical, for example).

We set the parameters in the second group in terms of the first group’s values,
by setting
ay = ApAgay, By =Aghy.
Then we change the parameters in the simulation by changing the A’s. We call Ay
the location parameter because changing it moves the mean of the curve along the

x axis. We call Ag the shift parameter because it changes the height of the peak of

the curve.

The values of the variables are set to: o = 2, f{ = 5, a* =5, * = 5,
Ola = O1p = Ogr = Opr = 0y, = 0, = 0.2, and 71 = 0.8. We set J = 10 and the
number of curves per group is n; = 5, ¢ = 1,2. Then we generate groups of curves

by changing the parameters according to:
p€(0,0.1,0.2,0.3,0.4,0.5,0.75,0.95),

Ag € (1.0,1.5,2.0,2.5,3.0,3.5,4.0),
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Ay €(1.0,1.5,2.0,2.5,3.0,3.5,4.0),
and keeping the rest of the parameters constant at their original values.

Note that the combination p =0, Ag = 1.0, Ay = 1.0 generates the null distri-
bution. We change one variable at a time. We investigated changing the parameters
using a factorial structure in a pilot study but the results proved difficult to interpret
and present; it was challenging to detect differences and examine the results. The
change one variable at a time structure required 20 simulation runs. We ran 1000

simulations at each variable combination. This number of simulations is a balance

between computer resources and accurate capture of the results. We are confident
that this is a large enough number based on the results of our pilot study where we
found that the permutation tests, which are exact, unbiased tests, had appropriate
size under the null distribution. In addition, we find the power curves are smooth,
indicating that we have enough simulations to overcome random error and see the
overall large-sample trends. Another confirmation that 1000 simulations is large
enough is we found that the power plots are consistent between the pilot study we
conducted and the larger full study. Both studies used 1000 simulations, and both
exhibited the same patterns. Simulations were run on the Statistics Department’s
network of computers using Xgrid, which is a parallel processing software. Each set
of 1000 simulations took approximately 10 hours. Running the 20 simulations in

parallel means the entire simulation experiment ran in half a day.

5.1.3 Monotone Curves

We adapted the curve-generating structure specified in 5.1.1 to generate monotone

curves. We changed the underlying curves to Beta cumulative density functions.

102



The rest of the process progressed as described to generate unimodal curves.
The values of the variables for this set of simulations are set to: af = 2, 7 = 5,
ot = 57 B*O =0, O1qg = O1p = Ogx = Opr = 02, Ouy = Opy = 005, and 7, = 0.995.

We set J = 10 and the number of curves per group is n; =5, ¢ =1, 2.

This set of simulations uses the same parameter values as in the unimodal case:
p € (0,0.1,0.2,0.3,0.4,0.5,0.75,0.95),
Ag € (1.0,1.5,2.0,2.5,3.0,3.5,4.0),
Ap € (1.0,1.5,2.0,2.5,3.0,3.5,4.0),

keeping the rest of the parameters constant at their original values. Again, we ran

1000 simulations at each variable combination.

5.2 Simulation Results

In this section we present the results of the simulations. We compare the power
performance of the various statistics as p, Ag, and Ay change, and compare and
contrast the results in the unimodal and monotone cases. We investigate many
questions in turn. We compare power between distance measures and summary
measures. We investigate whether the order of calculating the summary measure
and the distance measure matters. We compare the various tests based on principal

components and compare parametric- and permutation-based versions of the tests.

Then we examine more closely the behaviour of some of the statistics. We check
if the p-values are relatively uniformly distributed over the null hypothesis. We also
examine the distribution of the p-values as p, Ag, and A change. We conclude

with a discussion and summary of the results.
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5.2.1 Comparing Power
Comparing Distance Measures

Let us first examine the power plots for some of the pairwise permutation statistics,
comparing the four distance measures. We keep the mean as the summary method
and study the power as each variable, p, Ag, and Ay, changes. The power plots
of the statistics based on Ty, Ts, T and T4 by the three variables are shown in
Figure 5.3. The first column of this figure contains power plots of the test statistics
under unimodal curves and the second column contains power plots under monotone
curves. In each plot only one parameter is changing at a time, the others are held
at their baseline values. For example, in the top row of plots, when plotting power

as p changes, Ag = 1.0 and Ay = 1.0.

This figure tells an interesting story. Note that all of these test statistics have ac-
curate behaviour under the null hypothesis, with rejection of the null approximately
10% of the time when v = 0.10. One characteristic of note is that the difference in
area (T 4) does a poor job of detecting differences between two groups of unimodal
curves regardless of the effect under scrutiny. This is not surprising because the uni-
modal curves as we designed them are based on probability density functions and
as such have an integrated area consistently close to one. On the other hand, with
monotone curves 74 does detect differences in p and Ay, although not as well as the
other measures. Another message is that the three norm measures do a very similar
job of detecting differences for p over both univariate and monotone curves. The

biggest difference is in Ag where the L; norm distinguishes itself as best method of

detecting differences in a shift. T+ has slightly lower power in the unimodal case
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Figure 5.3: Power plots comparing norms, with mean as summary statistic.
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but has slightly higher power in the monotone case. This test statistic does not do
as well as the tests based on the L; and L, norms in detecting differences in Ay, in
the unimodal case. Thus, overall, based on the mean, the pairwise L; norm is the

best measure of differences between groups of curves under a variety of situations.

Comparing Summary Measures

Now let us examine the behaviour of the pairwise permutation tests based on the

L; norm using different summary measures. Let us compare the power curves of
the mean (T), median (73), 10% trimmed mean (Ty9;) and 20% trimmed mean

(T'2.1), which are overlaid in Figure 5.4. In these sets of curves we consistently see
that the pairwise mean L; norm has the highest power over all variables for both

unimodal and monotone curves, while the median consistently has the lowest power.

In contrast, the power curves of the pairwise permutation tests using the Lo
norm are plotted in Figure 5.5. Using the Ly norm, in most cases there is very little
difference in performance between the three summary statistics that use means.
Interestingly, the trimmed 20% mean L, norm is the best at detecting a shift in
unimodal curves. Comparatively, the median does not perform as well overall. None
of the measures are good at detecting a shift in the monotone case over the range

of values considered in the simulation.

Comparing the Order of Calculating Summary Measure

We focus mostly on pairwise comparisons of distance measures, but we also consider

test statistics where we calculate the summary statistic first and then compute the
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Figure 5.4: Power plots for pairwise comparisons with various summary methods,
using L; norm as distance measure.

107



Power

Power

Power

00 02 04 06 08 1.0 00 02 04 06 08 10

00 02 04 06 08 10

Unimodal

— Pairwise Mean L2 norm

Pairwise Median L2 norm

. Pairwise 10% Trimmed Mean L2 norm
-=-- Pairwise 20% Trimmed Mean L2 norm

— Pairwise Mean L2 norm

Pairwise Median L2 norm

~~~~~ Pairwise 10% Trimmed Mean L2 norm
-=-- Pairwise 20% Trimmed Mean L2 norm

—— Pairwise Mean L2 norm

Pairwise Median L2 norm

. Pairwise 10% Trimmed Mean L2 norm
=+~ Pairwise 20% Trimmed Mean L2 norm

1.0 15 2.0 25 3.0

'

3.5

4.0

Power

Power

Power

00 02 04 06 08 1.0 00 02 04 06 08 1.0

00 02 04 06 08 1.0

Monotone

— Pairwise Mean L2 norm
- Pairwise Median L2 norm

Pairwise 10% Trimmed Mean L2 norm
-=-- Pairwise 20% Trimmed Mean L2 norm

— Pairwise Mean L2 norm

- - - Pairwise Median L2 norm

-+++  Pairwise 10% Trimmed Mean L2 norm
=+~ Pairwise 20% Trimmed Mean L2 norm

—— Pairwise Mean L2 norm
- Pairwise Median L2 norm

Pairwise 10% Trimmed Mean L2 norm
=+~ Pairwise 20% Trimmed Mean L2 norm

1.0 15 2.0 25 3.0

A

3.5

4.0

Figure 5.5: Power plots for pairwise comparisons with various summary methods,
using Ly norm as distance measure.
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distance measure. The power curves for these statistics, Sy, S2, Ss and S, and are
found in Figure 5.6. We also include the Ramsay test in this figure. The results here
are not clear. The L; norm performs well for detecting a shift in the unimodal case.
The Ly norm has the highest power in the other cases. We also see that switching
the order does not help the performance of the test using the difference in area in
the unimodal case, and that overall the statistics do not do well detecting a shift in
the monotone case. The Ramsay test does not perform well overall, with low power

curves throughout.

Now let us compare the performance of two of the pairwise permutation tests,
the pairwise mean L; norm and the pairwise mean L, norm, with two of the non-
pairwise permutation tests, those based on the L; and L, means. The power curves
for these tests are plotted in Figure 5.7. We see that the order in which we calculate
the distance and summary measures matters in some cases but not in others. Both
methods work equally well for detecting p and Ay in the unimodal case. Note
that in these power plots, we often see the pattern that the non-pairwise L; norm
performs slightly worse than the other methods being considered here. In detecting
differences in Ag, the pairwise mean L; norm is the clear winner. Therefore, we see
that in some cases, there is no difference between the top pairwise and non-pairwise
procedures. However, in other cases the order in which we calculate the distance
and summary measures does matter. The non-pairwise approach is never better

overall than the pairwise approach.
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Figure 5.6: Power plots for comparisons with summary statistic computed first,

then distance measure.
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Figure 5.7: Power plots comparing order of calculating summary measure (that is,
comparing pairwise and non-pairwise tests).
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Comparing Tests Based on Principal Components

Shifting attention from permutation tests for a moment, consider the test statistics
based on principal components as developed by Sturino et al. [2010]. The authors
discuss a test based on the normal distribution and one defined using alternative
rejection regions. We also consider the permutation version of the test based on
the normal distribution as well as a y? approach combining the two principal com-
ponents’ statistics. The power curves of these tests are plotted in Figure 5.8. One
feature of note in these sets of curves is that the method using the normal distribu-
tion assumption rejects the null hypothesis when the null is true about 25% of the
time. This is not a promising characteristic for a test statistic. Happily, the other
versions of the test are better behaved. As p changes in the unimodal case, the
method using the alternative cut-offs is slightly better overall than the x? version,
and both have higher power than the permutation version of the test. This is also
the case over Ay. The reverse is true for monotone curves, where the y? version
edges out the method using the alternative cut-offs over both p and Ay. Changing
the nature of the curves has a slight effect on the performance of the test statistics
although the difference between the alternative cut-offs and x? versions is very small

over p and Ay.

Over Ag we see a much more gradual slope in the power curves, but still steadily
increasing in the unimodal case. Again we see the issue the normal test has at the
null hypothesis. The other three tests perform reasonably similarly, but it seems
that the x? version does the best job of detecting changes in shift in the unimodal

case. None of the tests distinguish themselves in detecting shifts in the monotone

case.
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Figure 5.8: Power plots for Sturino PCA methods.
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Note that the permutation test uses the same test statistic as the method using
the normal distribution assumption. We see that the distribution-free permutation
test has a much more accurate size, ~ 10%, than the test using distribution theory.
Overall, excluding the test statistic using the normal distribution, the Sturino test
statistics based on principal components do a fairly good job of detecting differences
between two groups of curves. The test with highest power depends on the type of

effect under consideration but overall the x? test seems the best candidate.

Comparing Parametric- and Permutation-Based Versions of Tests

Let us now compare the behaviour of some of the parametric tests and their
permutation-based counterparts. Power curves are plotted in Figure 5.9 for the
Shen-Xu F' test, the adaptive Neyman test, and the Sturino PCA tests for both
parametric and permutation versions. We see that the Shen-Xu F test rejects the
null hypothesis too frequently, about 30% of the time, when the null hypothesis is
true, but that the power curve of the permutation version of the test behaves well.
The adaptive Neyman test does not perform admirably under these conditions; nei-
ther the test statistic as designed nor the permutation version have any strength as
tests compared to the other tests’ power performances, although it is interesting to
note that the permutation version of the test has better power in most cases than
the test as designed. The adaptive Neyman test is especially poor in detecting dif-
ferences in the monotone case. Considering that this test is based on Fourier basis
expansions this behaviour is not unexpected; the nature of a Fourier expansion does
not lend itself well to describing a monotone function. This indicates that this test

would most likely do best if the underlying curves were periodic in nature. Overall,
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it seems that the best performance here is given by the permutation version of the

F test.

Top Performers

We have seen several plots, now let us compare the top power performers out of
all candidates. The power curves for the measures with the highest power that we
have reviewed thus far are plotted in Figure 5.10. The pairwise L; norm performs
very well overall. It is consistently at the top amongst the power curves. The next
best statistic is the pairwise 20% trimmed mean. This is followed by the Sturino
PCA statistic with alternative cut-offs, which has slightly higher power at lower
levels of p in the monotone case but with the reverse pattern for larger values of p.
Following these tests in the rankings are the Sturino PCA method with alternative
cut-offs and the permutation version of the Shen-Xu F' test. These two tests are
competitive with the pairwise L; norm for detecting differences in p and Ay but do

not do as well detecting differences in Ag.

5.2.2 Examining Probability of Rejection

The power curves tell part of the story as far as the performance of statistical tests
go, and we will return to them, but now let us examine the behaviour of some of

the measures in a slightly different way.

Norm Based on Absolute Difference

First consider the plots in Figure 5.11. Here we have a histogram of the p-values at

the null hypothesis, side-by-side boxplots of the p-values over the range of p, and
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Figure 5.10: Top power performers.
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Hist. of p—values under Ho Pairwise Mean L1 Norm Power Plot, o = 0.10
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Figure 5.11: Histogram, boxplots, and power plot for pairwise mean L; norm per-
mutation test on unimodal curves, plotting over p.
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Figure 5.12: Histogram, boxplots, and power plot for pairwise mean L; norm per-
mutation test on monotone curves, plotting over p.

the power curve over p, all for the pairwise mean L; norm in the unimodal case.
The corresponding curves over Ag and Ay, are included in the Appendix, in Figures

B.1 and B.2 on page 133.

The histogram looks fairly flat over the null distribution. Under the null, we
would expect the distribution of p-values to be fairly even, because when the null
is true we would expect 5% of the observations to be rejected under an o = 5%

test, 10% of the observations to be rejected under at 10% test, et cetera. By this
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Hist. of p—values under Ho Shen—-Xu F Test Power Plot, o = 0.10
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Figure 5.13: Histogram, boxplots, and power plot for parametric Shen-Xu F' test
on unimodal curves, plotting over p.

argument the histogram of p-values should be fairly evenly distributed when a test
has accurate size. We do note the consideration that it is not possible to obtain
a true zero p-value since for a permutation test the minimum value is 1/(number
of combinations). Thus, this flat histogram is in line what we would expect under
the null distribution. The p-values get smaller as p increases, as illustrated in the
boxplots in the middle cell. This is consistent with what we would expect. And
finally, in the third cell, again we see the power curve for the variable, exhibiting
the same pattern we have repeatedly seen. The results are similar for the monotone
case, as illustrated in Figure 5.12. The plots over Ag and A; are included the

Appendix, see Figures B.3 and B.4 on page 134.

Shen-Xu F test

The same plots for the Shen-Xu parametric F' test are shown in Figure 5.13. Here
we see a histogram behaving badly; it is certainly not reasonably flat over (0, 1).
The p-values plotted in the boxplots in the middle cell do decrease as p increases

but based on the histogram and the power plot with its over-active null hypothesis
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Hist. of p—values under Ho Perm Version of Shen-Xu F Test Power Plot, a = 0.10
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Figure 5.14: Histogram, boxplots, and power plot for permutation version of Shen-
Xu F test on unimodal curves, plotting over p.

rejection, this statistic is not behaving as an ideal test statistic. Contrast this
with the behaviour of the permutation version of the F' test, shown in Figure 5.14.
In these plots we see a nice, fairly flat histogram, p-values that decrease as Ag
increases, and a power curve with an increasing trend and the proper rejection
probability under the null hypothesis. The parametric version of the F' test does
not perform well under the experimental conditions we have created, but the test
statistic can be used with the permutation technique to get a more accurate testing
mechanism. Plots for both the parametric and permutation versions over Ag and
Ay and all plots for the monotone case are included in Appendix B beginning on

page 135.

Norm based on Squared Difference

Let us examine the behaviour of the test statistics using the Ly norm with various
summary measures, shown in Figure 5.15 for the unimodal case and Figure 5.16 for
the monotone case. Other plots can be found in Appendix B beginning on page

139.  There is little difference between the plots arising from the mean measures.
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Hist. of p—values under Ho Pairwise Mean L2 Norm Power Plot, a = 0.10
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Figure 5.15: Histogram, boxplots, and power plots for L, norms with varying sum-
mary statistics on unimodal curves, plotting over p
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Hist. of p—values under Ho Pairwise Mean L2 Norm Power Plot, a = 0.10
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Figure 5.16: Histogram, boxplots, and power plots for L, norms with varying sum-
mary statistics on monotone curves, plotting over p
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The difference lies in the median. Recall that the median L, norm had lower power
than the other L, norm statistics. We see more evidence against the use of the
median summary measure in the histogram, which is certainly not flat, while the
histograms for the other test statistics are relatively evenly distributed over (0, 1).
The side-by-side boxplots for all of the test statistics follow the expected decreasing
pattern as p increases. Results are similar for the other cases, see Appendix B for

the plots.

5.3 Discussion

At the end of the functional data analysis section of the NASA case study, we
briefly discussed some of the advantages and disadvantages of each of the tests we
considered. Now, with more information regarding the comparative power of the

tests, we consider each test in turn.

We considered a large number of pairwise permutation tests. The version with
the best power performance was the test based on the mean of the pairwise L,
norms. This test has all the advantages of a permutation test. It is simple to
understand, it is easily carried out once the programming code is complete, and
there are no distributional assumptions. The disadvantages are that it may take
a long time to compute for large sample sizes and it requires some programming

sophistication to code.

The non-pairwise permutation tests did not perform as well as the pairwise tests
did. These tests have the same advantages as the pairwise tests: they are simple to
understand, easily carried out once the programming code is complete, and there are

no distributional assumptions. The disadvantages are that it may take a long time
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to compute for larger sample sizes, some programming sophistication is required,
and the power isn’t as good as the test based on the L; norm. We feel that if one is
going to spend the time to carry out a permutation test, one might as well do the

full pairwise test because it has higher power.

The permutation test proposed by Ramsay et al. [2009] did not perform well.
As we found that the permutation tests using L., norm-based measures had poor

power compared to the other norms, this is not so surprising.

The parametric version of the functional F' test had a poor performance. The
test rejected the null hypothesis too often when the null hypothesis was true. The
good performance of the permutation version of the test indicates that the test
statistic measures the effect well but that the distributional assumptions are not

met here. This test has been found to be sensitive to the error structure. The error

structure of the curves in the simulations is not a Gaussian stochastic process and
this may have contributed to the poor performance. This test is based on assuming
a specific model structure to the data, if the data do not follow this structure then
the test will perform well. However, considering that the permutation version using
the test statistic as a basis for a permutation test performed well, this suggests
that the issue relates to the parametric assumptions. The test statistic does in fact
do well in detecting differences between groups of curves, as shown by the good
performance of the permutation version of the test. This suggests that the issue
is with the translation to the parametric test parameters. Contributing to this
problem may be the small sample size in this case. Shen and Xu recommend having
enough observations (curves) to allow for 30 degrees of freedom after parameters

are accounted for. In this situation we are nowhere near 30 degrees of freedom.
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This may at least partly explain why the parametric approach performs so poorly.
Another possibility is that we made an error in the calculation of this test statistic,
perhaps in a denominator division or in the calculation of A — that is, in an area
that affects the translation to the parametric assumptions. This is entirely possible
but if a mistake was made, it has not been found in many uses of the code. One

advantage of the functional F' test is that it does not require intensive calculations.

The adaptive Neyman test did not do well in either its original or permutation-
based form. This result indicates that this test statistic does not do a good job of
capturing the differences between two groups of curves in our simulations. Since
this test is based on Fourier transformations, perhaps these transformations did not
adequately capture the features we were studying. This test may do better with

periodic data.

The tests based on principal components were much more satisfactory. They
had good power. The permutation test was outperformed by the distribution-based
tests, indicating that the distribution theory was of some benefit in this case. The
test based on alternative cut-off values is moderately easy to apply once one has
figured out basis functions and principal components in the functional realm. It is

quick to calculate and has good power performance.

In conclusion, our simulations suggest that the pairwise permutation test based
on the L; norm is the best test to use, with our second choice being the principal
components method using alternative cut-offs. Both of these tests perform ad-
mirably in a wide variety of situations. The permutation test is desirable for several
reasons. It performs well in a variety of conditions, detecting various differences

between two groups of curves. It is exact, unbiased, and model free. Many other

125



testing procedures depend on a model, and these types of tests run into problems
when the model is mis-specified. Consider for example the functional F' test. The
permutation version of this test performs more accurately than the parametric ver-

sion. The drawback is that it does take some time to calculate. A faster test is the

principal components method using alternative cut-offs. However, we do not have
information on how sensitive this test is to having too few or too many principal

components.

5.4 Summary

We have examined the behaviour of many test statistics under varying conditions.

These simulations suggest:

e The L norm is the best distance measure.
e The mean is the best summary measure.

e Taking the distance measure before the summary measure yields a more pow-

erful test.

e Methods using principal components perform well using alternative cut-offs

or the y? assumption.

e In general, the permutation versions of the parametric tests perform better

than the parametric versions.

We conducted simulation studies using both smaller and larger standard devia-

tions and the results were similar. The overall patterns did not change.
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Based on the results of the simulation studies, we recommend using the pairwise
permutation test based on the L; norm to test for differences between two sets of
curves. Our second choice is the principal components method using alternative

cut-offs.
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CHAPTER

SIX

CONCLUSIONS

We have explored methods for comparing two sets of curves. We began with an

extensive literature review which summarizes the current status of research in areas

concerned with data that are curves. We proposed a set of tests using pairwise
comparisons between curves. We reviewed a number of tests, both parametric and
nonparametric. We conducted a case study based on a set of data from NASA,
demonstrating various approaches to analyzing the data. In the case study we ap-
plied techniques for comparing two groups of curves to a factorial experiment by
grouping the data into two curves by each effect. Not all approaches exploited the
functional nature of the data. We introduced a graphical technique to examine
interaction effects for functional data. Finally, we carried out a series of simula-
tion studies exploring the power performance and robustness of a large list of test

statistics under varying conditions.

We have seen that overall, permutation tests are good tests to use for conducting

tests on functional data. We found that the test based on the mean of the pairwise
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Ly norms performed very well in detecting different effects in both the unimodal
and monotone cases. While a parametric test may be more convenient and faster to
calculate, the permutation test is more robust and is applicable in a wider variety

of settings.

We find that applying techniques for comparing curves to functional data gen-

erated by a factorial design is a useful approach to analyzing such data.

We do believe that the cross-sectional analysis method has some merit. The
graphical methods are very revealing and informative regarding the changing nature
of the effects over time. Carrying out a cross-sectional analysis on a set of functional

data will illuminate features of interest and allow us to examine interaction effects.

This information could be used as an exploratory analysis before formal testing
procedures or considered a complement to the overall perspective provided by tests

using the entire curve at once.

There are some limitations to the research. While we conducted an extensive

simulation study it is not possible to examine every possible set of circumstances
(curve shapes, effects to detect, error structure, amount of noise, number of points
sampled along the curve, etc.). There are many other power simulation studies
that could be carried out. Further investigation is needed towards the missing data
problem, which is so important in the field of longitudinal data analysis, and the

impact that smoothing away missing data has on the power of the various tests.

Permutation tests have two main limitations. They become prohibitively large
to carry out for even medium-sized samples. In this situation it is possible to take a
sample of permutations but little research has been done into the effects of doing so

on power. Permutation test also require a very specific hypothesis testing structure.
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The null hypothesis must be stated in a way that under the null hypothesis the two

samples come from the same distribution [Good, 2006].

We carried out multiple testing procedures on the NASA data but did not adjust
for multiple comparisons. However, in our framework, with 2* and 2¥~? experiments,
the purpose of such studies is generally on identifying the important factors, that
is, on screening. It is not common in screening experiments to account for multiple
comparisons. We feel that the approach taken in this dissertation illuminates the
key factors in the NASA data and therefore that we achieved what we set out to
do.

Another limitation is that our sample sizes were small. The large sample case

may be very different.

We propose some future directions of research:

e Extending pairwise permutation tests to comparing more than two groups.
For three groups of curves, we could take one curve from each group and
compute a distance measure between each pair of curves: 1 vs 2, 2 vs 3, and
1 vs 3. We then calculate the average, obtaining a measure of the average
distance between pairs of curves. We repeat this process for all sets of three
curves among the three groups, and end by computing an overall measure of
average distance between pairs of curves. Then we regroup the curves and

repeat the computations to carry out the permutation test.

e Detecting outliers as part of model diagnostics. Could permutation tests
be used to compare one specified curve to all others as an outlier detection
method? These could be of use in model-building and testing and perhaps

even in profile analysis.
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Investigating the effects of smoothing on power.

Investigating the effects on power of taking a subset of the permutations in-

stead of using every single regrouping of the curves into two groups.

We would have liked to include a method based on wavelet decompositions
but our curves were much too smooth to carry out a wavelet method to great
satisfaction. Carrying out a simulation study on much rougher curves and

exploring how wavelet methods perform is an area for future research.

Investigating the application of permutation tests treating data as curves in

other settings.

Further simulations. Other covariance functions for the error could of course

be examined in separate power analyses. There are many options to consider.
One we have mentioned is the AR(1) structure. A compound symmetry struc-

ture has constant variance and constant covariance. Or we could follow in the

spirit of Shen [1999], who used five different covariance functions in his simu-
lations, not all of which have a formal structure: a constant variance process,

a unimodal process, two random processes and a fluctuating variance process.
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APPENDIX

A

NASA DATA TABLE

Effects Response at each Mach Number
A B C D 0.7 0.9 095 1.05 1.1 1.3 146 196 2.74 4.0
-1 -1 -1 -110.199 0.342 0.460 0.593 0.640 0.571 0.580 0.707 0.661 0.607
1 -1 -1 -110.198 0.340 0.458 0.591 0.616 0.548 0.564 0.690 0.661 0.615
-1 1 -1 -1{0.202 0.340 0.461 0.596 0.645 0.575 0.576 0.616 0.602 0.539
1 1 -1 -1]0.200 0.338 0.461 0.596 0.625 0.557 0.562 0.598 0.583 0.541
-1 -1 1 -1{0.200 0.345 0.462 0.591 0.638 0.571 0.582 0.740 0.677 0.632
1 -1 1 -1]0.199 0.343 0460 0.588 0.616 0.544 0.565 0.730 0.678 0.638
-1 1 1 -1]0.203 0.345 0.463 0.586 0.631 0.561 0.563 0.661 0.643 0.591
1 1 1 -1[0.201 0.341 0.458 0.582 0.615 0.541 0.550 0.642 0.643 0.601
-1 -1 -1 1]0.19 0.324 0.412 0.568 0.541 0.513 0.529 0.654 0.656 0.605
1 -1 -1 1019 0.330 0.434 0.566 0.539 0.516 0.535 0.650 0.657 0.614
-1 1 -1 1(0.183 0.317 0.375 0.453 0.435 0.511 0.523 0.560 0.604 0.542
1 1 -1 10185 0.317 0.374 0.568 0.551 0.526 0.533 0.565 0.600 0.547
-1 -1 1 1]0.200 0.345 0.462 0.591 0.637 0.569 0.581 0.745 0.680 0.637
1 -1 1 170199 0.343 0.459 0.588 0.612 0.542 0.565 0.737 0.681 0.641
-1 1 1 1]0.203 0.344 0.462 0.587 0.630 0.552 0.557 0.673 0.649 0.602
1 1 1 10201 0.340 0.457 0.584 0.614 0.537 0.547 0.657 0.652 0.612

Table A.1: NASA data
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APPENDIX

B

ADDITIONAL FIGURES

Hist. of p—values under Ho Pairwise Mean L1 Norm Power Plot, a = 0.10
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Figure B.1: Histogram, boxplots, and power plot for pairwise mean L; norm per-
mutation test on unimodal curves, plotting over Ag.
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Hist. of p—values under Ho Pairwise Mean L1 Norm Power Plot, a = 0.10
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Figure B.2: Histogram, boxplots, and power plot for pairwise mean L; norm per-
mutation test on unimodal curves, plotting over Aj.
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Figure B.3: Histogram, boxplots, and power plot for pairwise mean L; norm per-
mutation test on monotone curves, plotting over Ag.
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Figure B.4: Histogram, boxplots, and power plot for pairwise mean L; norm per-
mutation test on monotone curves, plotting over Aj.
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Hist. of p—values under Ho Shen-Xu F Test Power Plot, a = 0.10
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Figure B.5: Histogram, boxplots, and power plot for parametric Shen-Xu F test on
unimodal curves, plotting over Ag.
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Figure B.6: Histogram, boxplots, and power plot for parametric Shen-Xu F test on
unimodal curves, plotting over Ay.
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Figure B.7: Histogram, boxplots, and power plot for parametric Shen-Xu F test on
monotone curves, plotting over p.
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Hist. of p—values under Ho Shen-Xu F Test Power Plot, a = 0.10
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Figure B.8: Histogram, boxplots, and power plot for parametric Shen-Xu F test on
monotone curves, plotting over Ag.
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Figure B.9: Histogram, boxplots, and power plot for parametric Shen-Xu F test on
monotone curves, plotting over Aj.

Hist. of p—values under Ho Perm Version of Shen—-Xu F Test Power Plot, a = 0.10
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Figure B.10: Histogram, boxplots, and power plot for permutation version of Shen-
Xu F test on unimodal curves, plotting over Ag.
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Hist. of p—values under Ho Perm Version of Shen—Xu F Test Power Plot, a = 0.10
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Figure B.11: Histogram, boxplots, and power plot for permutation version of Shen-
Xu F test on unimodal curves, plotting over Aj.
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Figure B.12: Histogram, boxplots, and power plot for permutation version of Shen-
Xu F' test on monotone curves, plotting over p.
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Figure B.13: Histogram, boxplots, and power plot for permutation version of Shen-
Xu F test on monotone curves, plotting over Ag.
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Hist. of p—values under Ho Perm Version of Shen—-Xu F Test Power Plot, a = 0.10
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Figure B.14: Histogram, boxplots, and power plot for permutation version of Shen-
Xu F' test on monotone curves, plotting over Ajp,.
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Hist. of p—values under Ho Pairwise Mean L2 Norm Power Plot, a = 0.10
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Figure B.15: Histogram, boxplots, and power plots for L, norms with varying
summary statistics on unimodal curves, plotting over Ag.
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Hist. of p—values under Ho Pairwise Mean L2 Norm Power Plot, a = 0.10
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Hist. of p—values under Ho Pair. 20% Trim. Mean L2 Norm Power Plot, a = 0.10
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Figure B.16: Histogram, boxplots, and power plots for L, norms with varying
summary statistics on unimodal curves, plotting over Ay .
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Hist. of p—values under Ho Pairwise Mean L2 Norm Power Plot, a = 0.10
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Figure B.17: Histogram, boxplots, and power plots for L, norms with varying
summary statistics on monotone curves, plotting over Ag.
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Figure B.18: Histogram, boxplots, and power plots for L, norms with varying
summary statistics on monotone curves, plotting over Ay.
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