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ABSTRACT 

Large quantities of bulk grain are moved using graincars in Canada and other 

parts of the world. Automation has not progressed significantly in the grain industry 

probably because the market is limited for automated systems. A prototype of a robot 

(“Grain-o-bot”) using machine vision to automatically open and close graincar hopper 

gates and detect the contents of the graincar was built and studied. The “Grain-o-bot” was 

a Cartesian robot equipped with two cameras and an opening tool as the end-effector. 

One camera acted as the eye to determine the sprocket location, and guided the end-

effector to the sprocket opening. 

For most applications, machine vision solutions based on pattern recognition were 

developed using images acquired in a laboratory setting. Major constraints with these 

solutions occurred when implementing them in real world applications. So the first step 

for this automation was to correctly identify the hopper gate sprocket on the grain car. 

Algorithms were developed to detect and identify the sprocket under proper lighting 

conditions with 100% accuracy. The performance of the algorithms was also evaluated 

for the identification of the sprocket on a grain car exposed to different lighting 

conditions, which are expected to occur in typical grain unloading facilities. 

Monochrome images of the sprocket from a model system were acquired using different 

light. Correlation and pattern recognition techniques using a template image combined 

with shape detection were used for sprocket identification. The images were pre-

processed using image processing techniques, prior to template matching. The template 

image developed from the light source that was similar to the light source used to acquire 
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images was more successful in identifying the sprocket than the template image 

developed using different light sources.  

A sample of the graincar content was taken by slightly opening and immediately 

closing the hopper gates. The sample was identified by taking an image using the second 

camera and performing feature matching. An accuracy of 99% was achieved in 

identifying Canada Western Red Spring (CWRS) wheat and 100% for identifying barley 

and canola. 
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1. INTRODUCTION 
 

Canada is known worldwide as a consistent supplier of quality grains (cereals, oilseeds, 

and legumes) (CIGI 1993; Anonymous 2011a).  In Canada about 52.7 Mt (million 

tonnes) of grains are produced annually and about 60-70% of the product is exported 

around the globe (FAOSTAT 2009). Grain produced on farms is usually stored in bins. 

There are approximately 120,000 grain-producing farms in Canada. Grain not used for 

consumption on the farms is transported from the bins to primary or country elevators to 

process and transfer or to terminal elevators (Anonymous 2011b).  Primary elevators are 

those that receive grain directly from producers; process elevators process grain and 

oilseeds for domestic human consumption; and transfer and terminal elevators handle 

grain destined for export. Usually, trucks are used to transport the grain from the farms to 

the primary elevators. Some large producers load grain themselves into graincars 

(graincars) for direct shipment to terminal elevators. There are around 360 primary 

elevators in Western Canada (Anonymous 2011c). The primary elevators are situated 

adjacent to railway lines for ease of loading graincars for transportation.  From the 

primary elevators, grain is transported to terminal or transfer elevators. Terminal 

elevators hold the grain until the grain is moved for domestic or export use. Grain from 

the primary elevators is transported to the terminal elevators in graincars.  Each graincar 

holds 98-113 t of grain. The graincars are also called hopper cars as they are equipped 

with three or four hoppers at the bottom. These hoppers are used to unload grain 

contained in the graincars (Anonymous 2011d). The process of transporting grain from 

the primary elevator to a terminal elevator begins by moving one or more graincars to the 

trackside of the primary elevator. Individual graincars are opened and inspected for 
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soundness and cleanliness. Following this the loading spout is placed on an opening at 

the top to fill the grain. An elevation leg lifts the grain to the top of the elevator and drops 

it into a distributor. The distributor directs the grain to the loading spout from where the 

grain is filled into the graincar. Once the graincar is loaded with grain, the hatches of the 

opening are closed and sealed with a metal strip. Once the graincar is filled and secured, 

an I-90 tag is affixed to the car. Canadian Grain Commission requires the I-90 tag 

indicating the name and the specifications of the content of the graincar (Anonymous 

2011e, 2011f). The identification number of the graincar and the volume of grain are 

recorded with the grain company and the railway. A passing train usually picks up the 

graincar and transports it to the elevator or leaves it at a transfer point for another train to 

pick the graincar and transport it to the terminal elevator. Trains transport about 90 

graincars at a time. At the terminal elevators graincars are left in the docks until 

unloading. Usually 30-40 graincars are combined and unloaded. Opening the hopper 

gates at the bottom of the graincar and allowing the grain to flow down by gravity into a 

pit accomplishes unloading of the graincar at the terminal elevator. Prior to unloading, 

there is no physical verification as to the contents of the graincar. The person opening the 

hopper gate visually determines the contents and then matches with the information in the 

I-90 tag. 

 

The pit contains a conveyor belt that transports the grain into the desired bin or 

processing unit. The unloading process of one graincar is completed in about 6 min. 

There are a lot of movements in the graincars between the primary elevator and the 

terminal elevator. As a result, there is a possibility of a mix-up of graincars. This problem 
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in addition to manual inspection, physical verification at the unloading point at the 

terminal elevator, creates a possibility of unloading a “wrong” car. The Canadian grain 

movement system is mainly designed for export and is thus a one-way system. Hence, if 

a “wrong” car is unloaded, it is very expensive to clean the system and potential exists for 

contamination of the grain in the elevator.  

 

Another problem in unloading of graincars is the opening of the hopper gates. At present, 

a special tool is used to open the hopper gates. The tool is operated either manually or 

semi automatically. Unloading by the manual or the semi-automatic method is 

accomplished by fitting the tool into a sprocket on the hopper gate opener and turning it 

clockwise or counter clock wise, to open or close the hopper gate. A few elevators use an 

operator to control the opener with a joystick. To open the hopper gate, the operator 

positions the tool to a sprocket using images captured by a camera. Though the process of 

unloading is semi-automated, the tool and the sprocket are seldom fine-tuned to align 

perfectly. (The face of the tool is never aligned to the face of the sprocket hole, causing a 

hammering effect). This causes tool breakage that slows the unloading process. Also, if 

the sprocket is rounded by the hammering effect, the grain in the graincar remains there 

for a prolonged time as fixing the sprocket cannot be done at the elevators. 

 

Introducing the “Grain-o-bot” could eliminate the above-mentioned problems. The 

“Grain-o-bot” is a robot, capable of identifying the sprocket location and aligning the tool 

to the sprocket and unloading the graincar. Also, by partially opening the hopper gates 

and immediately closing it will allow collection of a small sample for identifying the 
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contents of every graincar, prior to unloading. Hence the objectives for this Ph. D. 

dissertation were to:  

(i) review the existing automation systems in the agricultural industry;  

(ii) design a “Grain-o-bot” for automation of grain unloading from graincars; 

(iii) fabricate the “Grain-o-bot” and interface it with user friendly operating system; 

(iv) test the performance of the “Grain-o-bot” (with different variables such as varied 

lighting conditions, multiple backgrounds and human interventions); and 

(v) to calibrate the “Grain-o-bot” to identify different grains. 
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2. REVIEW OF LITERATURE 

2.1. Automation in the Agricultural Industry 

Automation is replacing human involvement in many industries. This replacement is 

needed to reduce the production cost, to raise product quality and to fill a shortage of 

skilled labor. Agriculture has always been a very demanding industry that uses a very 

large labour force to fulfill many repetitive and tiresome tasks. However, even the most 

sophisticated machines, which perform multiple automation tasks in the manufacturing, 

and mining industries cannot perform the same tasks in the agriculture industry because 

of the diversity in the agriculture industry (Anonymous 2011b, 2011g). There is diversity 

both in the product, like non-uniform shape, size and colour and in the environment like 

varied terrain, ambient conditions, temperature, humidity and dust (Sistler 1987). 

Imaging devices, image processing techniques and robotics are used to solve many tasks 

in the agricultural industry. Informed decisions regarding the variation in the environment 

along with characteristics of the product (size and other physical properties, vibration 

characteristics, optical properties, and electrical properties), imparted to a robot to 

accomplish a task, becomes the most viable and optimal automation solution for the 

agricultural industry to produce more consistent, low cost and high quality products (Bye 

and Chanaron 1986). Research and implementation have contributed to the advances in 

the harvesting, post harvesting, and grading sectors of agriculture, and food industries. A 

review of the various robotic systems and classification techniques is necessary to 

facilitate the design of an optimal system for the graincar unloading process.  
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2.2. Robotic Systems in Agriculture 

2.2.1. Orange harvesting robot Harvesting of oranges using robotics and machine 

vision is crucial because the economical system looks to technological progress as a 

means of reducing production costs and improving the product quality. However, the 

softness of the fruit, significant variations in shape, size, and colour pose many 

challenges (Grasso and Recce 1997). A spherical co-ordinate robot consisting of two 

revolute joints and a prismatic joint was seen to be advantageous for the process of 

orange harvesting, because of the simplicity of using the visual feedback, from a machine 

vision system (MVS) located at the end of the manipulator to control the robot’s motion. 

The geometry of the robot was such that, a fruit centred in the image, lay along the axis 

of its prismatic joint. By having an arm with a cross sectional diameter slightly larger 

than the fruit, the prismatic joint could be extended in the canopy of the tree, to harvest 

the fruit (Slaughter and Harrel 1987). Chrominance information from outdoor conditions 

was used to enhance the contrast between the orange and the other variables like the 

leaves, branches and the sky. Slaughter and Harrel (1989) used both chrominance and 

intensity information for the decision making by the harvesting robot. This was 

implemented using a multivariate statistical pattern classification technique to find an 

orange and eliminate the risk of the robot picking a limb instead of an orange. 

Considerable progress with respect to fruit detection and speed was achieved with the 

exceptions of occluded fruits and fruits with very bright backgrounds (Lu et al. 2011). 

Allotta et al. (1990) investigated the act of detaching the fruit from the stem during 

orange harvesting. It was important to cut the peduncle at a certain length from the fruit 

and not by just grasping the fruit and pulling it to detach it. This act might result in the 
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peduncle being cut longer and thereby damaging the neighbouring fruit. The method used 

six degrees of freedom (DOF) robot attached to a three-fingered hand. The efficiency of 

orange harvesting was improved by using neural networks, given the same complex 

images, 86% of the fruits were correctly identified, but false positives were a major 

setback (Recce et al. 1996). Using neural network and shape-recognition algorithm, 

Grasso and Recce (1997) further improved the overall detection efficiency to 90%, which 

was comparable to a human operators’ recognition rate similar to Hannan et al. (2009) 

who used segmentation, region labelling, size filtering, perimeter extraction, perimeter-

based detection and enhancing the segmentation using the red chromaticity coefficient 

which in turn enabled adaptive segmentation under variable outdoor illumination 

correctly and identified 90% of the fruits. The algorithm also included detection of fruits 

which are in clusters by using shape analysis techniques A laser-based machine vision 

system, for automated orange detection was studied and tested in real time using 

AGRIBOT, an orange harvesting robot (Jimenez et al. 1999). Interferences in object 

recognition due to varied illumination were eliminated when the images with range and 

reflectance were recorded using an infrared laser-range sensor. The above suggested 

system was robust than any colour or monochrome-camera-based image system and 

provided good correct detection rates, and unlikely false alarms, as the variation in 

illumination or the maturity stages of the fruit did not influence the decision making 

process. 

 

2.2.2. Tomato harvesting robot  Automation of tomato production has been a 

challenge owing to the non-uniform shape and size factors coupled with the delicate 
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nature of tomatoes. The diversity of the environment and product demanded a robot with 

high flexibility and dexterity. When harvesting tomatoes, collision on obstacles like 

leaves, stems, stem supporting poles and unripe fruits have to be considered. A five DOF 

robot capable of turning left or right, and up and down about a fixed axis and moving up 

and down in a traverse motion, moving in and out and bending its wrist, coupled with a 

3-D vision sensor consisting of a red and infrared diode attached to the end-effector 

mounted on a frame was used to study the efficiency of harvesting tomatoes (Gotou et al. 

2003). The 3D vision sensor was chosen to make informed judgements on the fruit 

maturity and the fruit position by measuring the reflected light of the laser beams through 

a position sensitive device. The robot was situated at the turning back point of a mobile 

cultivation bed.  This position was chosen because open spaces existed on either side of 

the cultivation bed along with the front portion of the plant for easy approach and reach. 

Tomatoes, which overlapped each other, were recognised because the peak produced by 

the reflection of the red and infrared signal was at a maximum at the fruit centre.   

 

A tomato plucking robotic system with a human interface was developed and tested for 

seniors who were bed ridden but had not lost their passion for gardening (Takahashi et al. 

2001). The system consisted of a three DOF robotic arm equipped with a hand system. A 

scissor tool and a colour camera were attached to the hand. The senior on one end 

monitored the images, captured by the camera and transmitted to a remote computer near 

his or her bed side. The senior observed the images on the computer and harvested the 

tomato by positioning the tomato to the screen centre and clicking on the tomato 

displayed on the screen. This process sent a signal to the hand system, which 
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automatically cut the stalk of the tomato by recognising the red colour of the tomato and 

by automatically centering the recognised object.  

 

2.2.3. Melon harvesting robot   Melons are delicate, fleshy and grow scattered in 

beds either singly or in groups and are usually hidden by leaves. The variation in size, 

shape and growing location demands a complex robotic harvester. Adding to the 

complexity is the difference in time for individual melons to ripe, which necessitates 

evaluating every melon for ripeness before harvesting. A melon harvester was designed 

and a prototype was built and tested (Edan et al. 1994). The prototype consisted of a 

robotic arm mounted on a tractor to move in the field and two vision sensors, namely a 

near-infrared vision sensor on the robot manipulator to provide motion updates and target 

orientation, and far-vision sensor at the front of the tractor to detect melon locations. The 

robotic arm was a Cartesian manipulator to position the end-effector at the appropriate 

position to pick the melon and place it on a trough which was to be replaced by a 

conveyor in real time. The end-effector was a gripping device capable of initially 

gripping and holding from under, retaining the melon, rather than gripping continuously, 

and also had a cutting attachment to detach the melon from the stem. Tests were 

conducted with grey level intensities, colour images, infrared and laser images, in 

sunlight and artificial lighting conditions.  The fruit detections ranged from 82-88% for 

colour images, 82-87% for monochrome images and 74% for laser systems. Nearly 80-

85% of the fruits were detected and picked under laboratory conditions with artificial 

lighting. A similar system equipped with two monochrome cameras for the near and far 

sensing, for visual feedback to pick melons was studied (Edan et al. 2000). In this study 
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the results of melon picking improved to 85% as opposed to 80% melon picking in the 

previous experiment.  

 

2.2.4. Grape harvesting robot Flat canopies of grapevines develop on trellis, situated at 

a height of 1700-1900 mm from the ground. For a labourer working in a grape field it is 

extremely difficult to perform operations like harvesting, thinning, bagging and spraying.  

These processes require the labourers to continuously hold their hands raised for 

extended periods of time. The tasks are more suited for a vision equipped robotic 

operation, as the fruit identification is much simpler as the fruit hangs downwards; 

separating itself from other obstacles like leaves and stem. A multi-purpose robot 

consisting of a manipulator, visual sensor, a travelling device and four end-effectors was 

tested for the multiple operations in grape production (Monta et al. 1995).  The four end-

effectors were made based on the physical properties of the plant. The harvesting end-

effector had fingers to grasp the fruit bunch and the pushing attachment to incline the 

branch and a cutter to detach bunches one after another. The thinning end-effector had 

three parts. The top part separated huge bunches as individual bunches connected by 

branches, the middle part penetrated the bunch and shed berries to make an even bunch 

and the lower part cut a bunch to unify the length. The spraying end-effector was 

designed to spray a target evenly at a constant speed. The bagging end-effector had 

fingers and a bag feeder to hold on to the top of each bunch and press the bag shut, when 

the bag feeder pulled up a bag on the bunch, thereby bagging each bunch. The spraying 

end-effector consisted of a plunger pump to supply the chemical to the end-effector and a 

manipulator. The results of the study were promising. However studies need to be done 
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on the safety aspects of the robots, if robots have to work alongside humans in the same 

field or green houses. 

 

2.2.5. Hand held robot system for floral harvesting Harvesting of flowers requires 

trained pickers to harvest quality cutting at the required production rate.  The pickers 

execute operations like localizing the flowers, judging the quality of the flowers, 

determining the cutting spot, followed by cutting and storing the flowers. In order to 

automate few of the processes, a manipulator was developed to act as a harvesting aid to 

facilitate the harvesting of Chrysanthemum plants (Rosier at al. 1996). The harvesting aid 

was capable of storing cuttings in a well-defined position and orientation and also 

assisted in improving the quality of the cuttings.  The harvesting aid was a hand held 

device with two sets of belts and a cutting device. When the aide was positioned near the 

plant by the picker, the first set of belts grabbed the stem and brought it under the belt 

and cut the plant using knives.   Once the cutting was accomplished a sensor recognized 

the presence of the cutting and activated the second belt which in turn moved it away 

from the cutting point. Path planning routines by varying the belt speeds were used, so as 

to position the cuttings at a distance of 10 mm from one another. After 50 such cuttings 

were collected they were transferred to a storage location. 

 

2.2.6. Robot for horticulture Ornamental horticulture is a growing industry. The 

container plants growing in the nurseries have to be lifted and conveyed to and from 

trailers. This is a laborious process and requires a large amount of costly unskilled 

manpower (Schempf and Graham 2002). Hence a system capable of handling 35,000 
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containers per 8-h day was designed and tested. The system consisted of a self-mobile 

platform powered by an internal combustion engine and a laser range-finder to guide the 

system. The system was controlled by a programmable logic controller board fitted to a 

computer which actuated a set of electro-hydraulic and electro-mechanical systems to 

grab, lift, lower and transport the containers. The field trials indicated the reliability of 

handling 29,000 containers in an 8-h period with a failure rate of less than 3%. 

 

2.2.7. Robot for micro propagation  Micro propagation is a tissue culture technique to 

produce a large number of genetically identical plants. Plants when they are 30-40 mm in 

height are dissected into pieces, which are then grown under appropriate environmental 

conditions until they are further dissected for multiplication. The task of harvesting, 

cutting and replanting needs skilled labour and is a very time-consuming process. The use 

of a Cartesian robot coupled with a colour camera, image processing algorithms and a 

human operator acting as an interface has assisted in semi-automating the process (Tillet 

et al. 1990). The operator used a tracker ball to guide the graphics cursor to the cutting 

point. This information was used to process the appropriate coordinate transform and 

positional update to facilitate the robot movement. The robot was equipped with a 

pentagonal turret tool holder as the end-effector to perform variety of operations. These 

tools assisted in harvesting, dissecting and planting of the cuttings. The harvesting tool 

consisted of fingers and a cutter to hold on to the shoot after cutting. The dissection tool 

consisted of a cylindrical blade to excise y-shaped cuts on the plant by a rapid punching 

and slicing motion. The planting tool consisted of a T shaped wire attached to a motor. 
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Rotation of the motor caused the stem to be planted into the medium in an upright 

position.  

 

Manually transplanting of the orchid Phalaenopsis plantlets consisted of usually grasping 

the root or the stem since the leaves were fragile and were easily damaged. Huang and 

Lee (2009) built a robot to ease this transplantation. The robot was equipped with a 

gripper suitable for grasping the plantlets and using a binocular stereovision algorithm to 

compute the 3D coordinates of the grasping point was able to identify 78.2% correct 

positions. 

 

2.2.8. Autonomous agricultural vehicle Tractors have changed the farming practice of 

using horses and cattle (Li et al. 2009). The advancement from a tractor is the robotic 

tractor, where the tractor is automated to do many operations without the involvement of 

the human work force (Richey and Richey 1986). Many operations like pesticide 

spraying, fertilization and selective harvesting could be accomplished using robots, rather 

than using human labour. Usually, autonomous vehicles are tractors, combine harvesters 

and other farm vehicles equipped with sensors for feed back to the control system to do 

particular operations which might require the involvement of a person. Automatic turning 

during harvesting was one of the more complicated tasks in a list of tasks for automating 

an agricultural vehicle (Ito 1990). The control of the tractor used sensors for various tasks 

like row detection, measuring feed rate, calculating cutting height and straw feeding 

position for optimum threshing. But the turning of the harvester was complicated because 

the machine drifted away partly or fully from the field by the time the automatic turning 
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sensor acted with feedback information from the row detector sensor. This problem was 

initially addressed using a training process. An operator made the first run in the training 

process, so that information of the plant row length was recorded, and using this 

information the subsequent runs were carried out. A prototype of an autonomous tractor 

powered by 4 direct current motors and steered by two pulse motors was designed and 

tested (Toda et al. 1993). It was equipped with two sensors, an ultrasonic sensor and a 

flux gate digital compass. A fuzzy control model controlled the whole setup. The 

computer system on the vehicle had two modules, a lower level module and a higher-

level module. The lower level module using sensors controlled the driving and the 

steering using the data received from the high-end module. The high-end module handled 

complicated decision making and inferences like path planning, based on the data 

received from the low level module. The vehicle had a -0.007 to 0.01 m error from the 

goal. The need to reduce a waste in time and money owing to the overlaps caused by the 

lack in concentration of the agricultural vehicle operators was studied (Klassen et al. 

1993). An average of 10 % of the field was being covered twice and could be avoided by 

the use of an automatic guided system on agricultural vehicles. A reduction in mental 

fatigue caused by operating the equipment for extended periods of time was seen to be 

one of the primary reasons for the problem. So a guidance sensor was developed and 

tested that was capable of demarking tilled and untilled soils and cut standing crops. 

However as further investigation using high-powered computers was needed and various 

tests on all conditions had to be performed to fool-proof the system the need for an 

operator at present was needed. Ollis and Stentzi (1997) describe a vision-based 

perception system to guide an automated harvester cutting fields of alfalfa hay. The 
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system was designed to track the boundary between cut and uncut crop, identify the end 

of a crop row, and note the obstacles in the path of travel. A New Holland 2550 speed 

rover, retrofitted with wheel encoders and servos to control numerous functions like 

throttle, steering and cutter bar on the machine, was used. It was also equipped with a 

GPS receiver and two RGB cameras equipped with auto-iris lenses mounted on either 

side of the cab roof. The system was adapted to varied crop and lighting conditions. The 

efficiency of the vehicle was comparable to the human operating speeds. An autonomous 

vehicle for crop and weed registration with a special emphasis on the control system was 

studied (Nielsen et al. 2002). The problem of wasteful (excess) spraying of fertilizers, 

pesticides and herbicides was considered. The system incorporated an autonomous 

vehicle that mapped the field and later used the map to arrive at the appropriate spraying 

quantities. The frame-work for the control system consisted of a hierarchical four layer 

model capable of handling steering control propulsion, motion control, and path 

execution based on the images collected.   

 

2.2.9. Strawberry sorting robot Strawberry cultivation envelopes a major portion of the 

fresh fruit market. Since harvesting and sorting are done manually, the trend to cultivate 

strawberry is slowly diminishing as a result of expensive labour. So to automate the 

process a machine vision system equipped with a five-arm robot was developed and 

tested using Akihime variety strawberries (Bato 1999). The machine vision system 

consisted of a colour camera and a conveyor system to present the strawberries to the 

camera. An accuracy of 98.6 to 100% detection based on the shape and size features 
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regardless of the orientation of the fruit was achieved. The robot arm based on the 

feedback from the image analysis sorted the strawberries accordingly.  

 

2.2.10. Fruit grading robot The operations of grading and sorting have become highly 

advanced with the recent developments in mechatronics and Robotic technology (Kondo 

2009).  Grading of deciduous fruits (peaches, pears, and apples) was tested using three, 

three DOF robots (Kondo 2003). There were six suction cups as end-effectors on two 

robots and 12 suction cups on one robot. This was combined with an image processing 

system comprising of 12 colour cameras and 28 direct lights. These in combination 

worked as follows.  Containers holding fruits, which were initially arranged in a set 

fashion inside the container, were sent to the working area by a pusher. The two three 

DOF Cartesian robots with six suction pads as end-effectors came down and sucked 5-6 

fruits each and transferred the fruits to a halfway stage.  The third three DOF with 12 

suction cups was a cylindrical robot containing one rotational joint and two prismatic 

joints. The cylindrical robot, which was the grading robot, sucked up the fruits and 

activated the cameras that took the bottom images of the fruits followed by capturing 

images of the four sides of the fruits by rotating the fruits by 270°. Once the images were 

acquired the grading robot placed the fruits in the appropriate trays based on the results 

from the acquired images. An accuracy of 85 – 90% was achieved, and the decrease in 

the accuracy was due to short term, less experienced operators who stopped the robot or 

the lines when a specific line was full with the same grade and size fruits in it.   

 

2.2.11. Fish processing Present fish processing techniques result in material losses due to 

current practices of feeding, indexing, holding and cutting the fish. An automated fish 
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processing system was studied (de Silva 1991). The feeding mechanism currently 

practised has four labourers at the sorting station. Two labourers align a fish from a 

holding tank, and the other two labourers push the fish on to the flipper gates while 

aligning the gills of the fish to reference pins. The fish is then dropped on to a conveyor, 

which then moves the fish to a cutter. Apart from the workload of positioning 60 fish per 

minute per person, there existed the possibility of introducing errors in positioning the 

fish (for example, when the fish was dropped on to the conveyor system, the tossing and 

turning of the fish could impart considerable error in the position of the fish).   Aligning 

the noses of the fish to a guide plate and measuring the length of the fish with a sensor 

and using a double indexing mechanism to position the fish with a finer tolerance on the 

conveyor could simplify this problem. The gill position was determined by using a MVS. 

Two methods: the boxing method and the directional averaging method were suggested 

for gill positioning. In the boxing method, the image was first intensity reversed to have a 

higher intensity and avoid double edges. Following this the gill-edge shadow image was 

enhanced by low-pass filter to reduce high frequency noise and through a directional 

high-pass filter in the direction perpendicular to the edge to intensify the edge. The image 

was then thresholded and a connectivity procedure was used to connect the edges, which 

had a minimum intensity level to result in a single contour segment. The length by the 

width determined the gill position. In the directional averaging method, the image was 

filtered and intensity reversed as per the first method. Following that the grey-level of the 

2-D image was averaged onto a single line perpendicular to the nominal direction of the 

gill edge. The nominal direction was known as a result of the manner in which the fish 

were fed. The projected average provided a 1-D profile of the image. The signature 
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possessed a peak at a point corresponding to the gill position, as the curvature of the mid 

region of the gill edge was very small. This method was faster than the boxing method.  

The orientation of the fish utilized three methods. The first method employed a direct 

geometrical definition of orientation. The second method used the second moment of area 

to establish orientation. The third method used the orientation of the major axis of the 

fundamental ellipse that fit the border of the object to define the orientation of the object. 

The prototype consisted of a feeding system that was composed of a mechanical feeding 

wheel, guide plate, cylindrical holding pans on the conveyor, sensing device to measure 

the length of each fish, a piston rod arrangement to laterally fix the fish according to its 

length and double indexing mechanism to position the fish with finer tolerance.  A 

carousel of positioning cells synchronically moved with the conveyor and each cell was 

equipped with a pneumatic suction device to hold the fish in position and then cut it at the 

appropriate position. De Silva and Saliba (1992) developed a gripper mechanism to the 

existing setup where the conveyor chain transported the fish to the cutter and a driver belt 

held on to the fish that was being conveyed and cut. A CCD camera attached to the 

system decided the best lateral position for the cutter blades. A displacement sensor 

measured the thickness of the fish head and this information was used to drive the fish 

entry platform. However, the setup had a few drawbacks pertaining to holding the fish. 

Introducing a modified gripper consisting of two fingers made up by four links and 

controlled by two actuators rectified these problems. The fingers were able to confirm the 

varied shape of the fish by the autonomous sequential switching of the actuators between 

the links. A frictional switch protected the actuator from overloading. This setup was 

more rugged in the fish processing application. Automated fish processing was further 
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developed and executed to process fresh Cod with a robotic manipulator and a vision 

sensor increasing the yield of the process (Buckingham et al. 1996). 

 

2.2.12. Fish catching Fish catching using a robotic manipulator equipped with a net was 

studied (Suzuki and Minami 2002). The behaviour of the fish and the intelligence of the 

fish to escape the net were noted. The manipulator had visual sensing coupled with a 

genetic algorithm to process recorded data on the behaviour patterns of the fish and act 

accordingly and this was an effective technique in catching fish using a robot.  

 

2.2.13. Broiler singulation The poultry industry, similar to the fish industry faces 

problems posed by the variations and complexity of the product and thereby hampering 

the automation of various processes. The problem of automating the process of 

transferring live broilers from a conveyor to a moving shackle was studied (Lee et al. 

1998). Singulating and later orienting a bird is essential for the subsequent processes in 

the poultry industry.   Since both the mechanical forces and the birds’ natural reflexes 

make the problem complex a prototype of a singulator was designed and evaluated. It 

was observed that the singulating of the bird was influenced by drop-off-height, 

inclination surface roughness of the entry conveyor, conveyor speed, multiple clustered 

birds at the entry, illumination, and bird’s experience. 

 

2.2.14. Robotic milking Milking of cows presented a bottleneck in the dairy industry 

owing to the high cost and unavailability of skilled labour. A milking station capable of 

allowing cows to be milked and identifying the cows that have already been milked by 

recognising the transponder mounted on their collars was integrated with a robot capable 



 20 

of searching and localizing the udder and teats with the help of infrared laser sensor 

(Cosmi et al. 1997).  The system was also equipped with biosensors to monitor the 

animals’ physiological parameters and issue an appropriate warning to the farmer thereby 

improving the health of the cow and food safety. The results were validated and 

commercial systems were to be developed. 

 

2.2.15. Robotic egg handling In the egg processing industry along the packaging lines a 

small quantity of eggs was found to be cracked. These damaged eggs have to be removed 

to maintain the quality of the packaging. Using two robots and a mono chrome camera 

the damaged eggs were removed (Bourely et al. 1986). The camera recorded the bright 

lines of the cracks and imparted the information to the robots and the robots in turn 

removed the damaged eggs. Identification accuracies of 90% were recorded. Uneven 

lighting conditions were identified to be the cause of the reduction in accuracies. Later 

investigations carried out using colour cameras and monochrome cameras coupled with 

ANN provided better rates of detection of fertile eggs, cracks, dirt stains and blood spots 

(Das and Evans 1992; Patel et al. 1993; Patel et al. 1995). 

 

2.3.16. Grain unloading system The graincars, which arrive at the terminal 

elevators, are unloaded by opening the hopper gates and allowing the grain to flow down 

by gravity into a pit. The grain falls from the hoppers through a floor gate and onto a 

conveyor belt which in turn delivers the grain into the elevator. In order to open the 

hopper gates during unloading of graincars a special tool is used. The tool is operated 

either using a graincar gate opener (Fig. 1a) or semi-automatically from a remote cabin 
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using a joy stick and aligning the opener tool to the sprocket with the images from a 

camera located near the opener (Figs. 1b, 1c). 
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Figure 1. Graincar opening.  a) Graincar gate opener; b) Semi automated graincar 

gate opener; c) Operator opening graincar gate using semi-automated opener 

Though the process of unloading is partially automated there are a few shortcomings that 

are yet to be addressed, like the merging of the tool with the sprocket in a non-aligned 

manner. This is due to human intervention where errors are due to fatigue, and lighting 

conditions. Also the problem in unloading a wrong car is yet to be addressed.  
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2.3. Classification 

2.3.1. Prune sorting  The sorting of prunes is done manually which is a laborious and 

difficult task. Hence, a system consisting of a vibratory trough and a chute to singulate 

and feed the prunes to a main conveyor was designed and built (Delwiche et al. 1993). 

The main conveyor consisted of six circular cross-section plastic belts, arranged to form a 

U-shaped trough. The belts at the top of the trough moved faster than the belts at the 

bottom causing the prunes to align with their major axes parallel to the direction of travel. 

The initial feed at the vibratory trough controlled spacing between the prunes. The 

aligned prunes moved to an inspection chamber consisting of three, 256 pixel line scan 

cameras positioned at 120° intervals around the chamber aperture. The speed of the main 

conveyor was set at 2 m/s to correspond to a sorting rate of 20 fruits per second. A 

combined sample of naturally conditioned prunes, which contained 28% defective 

prunes, was tested. A sorting error of 5.6% for good prunes and 10.8% for damaged 

prunes was achieved.  

 

2.3.2. Rice inspection  Packers and stock yard administrators require the total broken 

kernels in an official inspection of milled rice. A premium is usually paid for whole rice 

(Sistler 1990). The process of identifying the broken kernels is carried out using sieves 

and visual inspection and the time taken to make an inspection of a 25 g sample is about 

20 min. Hence to automate the process of inspection and to reduce the inspection time a 

commercial automated imaging grain inspection machine was developed and tested. The 

rice sample entered through a feeder and onto an endless belt with traverse grooves 

coupled with an image acquisition device. Using artificial neural networks (ANN) the 
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possibility of using the machine as an official industrial inspection system was studied 

(Wishna 1999). The results from the system were comparable to human inspectors and 

the time to inspect a 25 g sample was reduced to 3 min. 

 

2.3.3. Cereal classification Classification of bulk grain is necessary to facilitate 

automation at many points along the line of grain movement to facilitate decision making 

for the next operation. The grain at the receiving pit in elevators is sampled for test 

weight, varietal purity, soundness, foreign material content, insect infestation, and 

vitreousness by inspectors (Luo et al. 1999). To automate the testing process 

investigations on automatic classification of bulk grain, single kernels, variations in 

cultivars of grain, grades, and levels of insect infestation were studied (Cogdill et al. 

2004; Choudhary et al. 2008, 2009; Karunakaran 2002; Karunakaran et al. 2004; 

Maghirang et al. 2003; Mahesh et al. 2008; Majumdar and Jayas 2000 a, b, c, d; 

Manickavasagan et al. 2008; Paliwal et al. 2004). Using colour, textural and wavelet 

features extracted from bulk images of barley, Canada western amber durum (CWAD), 

Canada western red spring (CWRS) wheat, oats and rye, and using ANN namely back 

propagation neural network, classification accuracies close to 100% were obtained (Visen 

2002). Majumdar and Jayas (2000 a, b, c, d) applied image processing to classify clean 

cereal grains. They extracted and used texture, colour, morphological features of the 

colour images and their combinations to classify individual kernels of CWRS wheat, 

CWAD wheat, barley, oats, and rye. They achieved classification accuracies of 99.7 and 

99.8%, respectively for CWRS and CWAD when texture, colour, morphological features 

were combined and 20 most significant features were used as the input to the 
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discriminant classifier. Paliwal et al. (2003) classified cereal grains (CWRS, CWAD, 

barley, oats, and rye) and detected the dockage present in the grain. Morphological, 

colour, and textural features from 42 digital colour images were used to obtain features 

and develop a model using a BPNN classifier. The model correctly classified most of the 

cereals with well-defined characteristics; however, particles with irregular and undefined 

features gave lower classification accuracy (90%).  

 

Choudhary et al. (2008) used a colour machine vision system to classify CWRS wheat, 

CWAD wheat, barley, oats, and rye. Extracting colour, morphological, textural and 

wavelet features from the non-touching single kernels, classification algorithms were 

developed using linear discriminant analysis (LDA) and Quadratic discriminant analysis 

(QDA) and different combination of extracted features. Using LDA and combining the 

colour, morphological, textural and wavelet features a classification accuracy ranging 

between 89.4 to 99.4% was achieved. 

 

2.3.4. Fish grading Many regulations in the European community specify that all fish 

pertain to marketing standards and have to be graded for freshness, species and size prior 

to selling. Sorting of fish by size and species is at present done mainly by hand and is a 

slow and labour-intensive task (Misimi et al. 2008; Sistler 1990; Strachan and Nesvadba 

1990). Automation to identify and quantify a large number of fish consistently and 

accurately for real time purposes is imminent. Invariant moments, minimum mismatch 

factor, and shape descriptors were used for classification of six species of fish. The shape 
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descriptors gave the highest classification of 90% followed by invariant moments with an 

accuracy of 73%, and the mismatch factor with an accuracy of 63%. 

 

2.3.5. Fish counting Migratory fish in certain rivers are disappearing over the years due 

to the construction of dams or other environmental factors. Introduction of fish-ways 

allow the fish to swim upstream and reproduce. The usefulness of fish-ways has to be 

tested for the effectiveness of the system. Presently the counting of fish species is carried 

out by manually capturing the fish passing through the fish-ways or by introducing a 

video camera in the fish-ways. Cadieux et al. (2000) discussed an automated system for 

counting fish by species. The system comprised of a silhouette sensor to acquire the fish 

silhouettes. These silhouettes were then processed for fish count and species 

identification. Classification by the system used a combination of statistical and neural 

network classifiers. The results obtained were comparable to the recognition rate of an 

expert who surveyed the video images.  

 

2.3.6. Poultry classification A transportable spectrometer system was developed and 

tested for classification at slaughter plants with an accuracy of 93% classifying the 

carcasses as normal, septicemic (blood poisoned), and cadaver classes using the visible 

and the near infrared regions of the spectrum (Chen et al. 1994).  This classification was 

necessary to eliminate real time organoleptic inspection (smelling) of birds, as this was to 

become mandatory. Employing the inspectors to inspect all birds would make the job 

tedious and the processing slow. A poultry carcass screening system for implementation 
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at slaughterhouses, to facilitate an improvement in consumer confidence and to reduce 

the workload on human inspectors, was proposed based on the results. 
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3. DESIGN: CONCEPT AND METHOD 

3.1. Graincar Hopper Gate 

Each graincar transporting grain from the country elevators to the terminal elevators has 

three or four hoppers at the bottom. The positioning of the hoppers is to ease grain 

unloading by gravity. The hopper has a sliding gate to keep the grain secure. The opening 

mechanism of the sliding gate consists of a rack and pinion attachment, a shaft and a 

sprocket with a key hole. The rack is mounted to the sliding gate, the pinion to the shaft 

and is attached to the hopper. The shaft is attached in such a way that it could rotate about 

its own axis. Hence by turning the shaft, the sliding gate is opened or closed. To ease the 

turning of the shaft, the sprocket with a key hole is fixed to the ends of the shaft. Turning 

the sprocket by using the opener tool in the key hole opens the hopper (Fig. 2). 

 

 

 

 

 

 

 

 

Figure 2. Hopper opening mechanism in graincars 

 

Hopper 

Sprocket and key hole 
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3.2. Hopper Gate: Prototype 

A prototype of the hopper assembly was constructed and mounted on a frame (Fig. 3). 

The frame consisted of 25.4 mm (outer diameter) pipes joined together to form the 

connecting lines of a rectangular parallelepiped structure. The connections were designed 

to allow variations in the locations of the sprocket, i.e., the connecting points were 

designed so that the pipes could slide vertically and collapse into a rectangular structure. 

The hopper was mounted on the top of two pipes, which were the longest sides of the 

rectangular structure (Fig. 3).  

 

 

 

 

 

 

 

 

 

 

Figure 3. Prototype of the hopper and opening mechanism 

 

The sprocket was fitted to the shaft with a play, so that it would be a loose fit to mimic 

the variations in sprocket orientation of graincars. The variations in orientations of the 

sprocket may be due to the aging of the sprockets or could possibly be damage caused by 
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opening by unconventional methods (e.g., opening using a crowbar). The hopper, 

sprocket and the hopper gate opening mechanisms were all painted in a reddish brown 

colour (lead oxide paint), to minimize the contrast.  

3.3. Design of “Grain-o-bot” to open the Hopper Gate 

A robot capable of fitting a key to the sprocket was designed.  The motion of the end-

effector, i.e., the key or opener tool was parallel to the axis of the shaft housing the 

sprocket. A cylindrical or a Cartesian robot could be used for the above motion. However 

stability, ruggedness and ease in operation for this application made the Cartesian robot 

an ideal choice. A vision system connected to a computer acted as the eye of the robot 

and a vision system connected adjacent to the robot acted as a sample identifier to 

identify the contents of the graincar. 

 

The components of the “Grain-o-bot” are shown in Fig. 4. The three axes of the Cartesian 

robot namely the x, y and z axes are used to locate and fit the key to the sprocket. 

Locating the sprocket requires traveling along the rails of the graincar which forms one of 

the axes and once the sprocket is located the other two axes are used to fit the opener tool 

to the sprocket. Hence, positioning of the robot (adjacent to the rails) and the orientations 

of the three axes are fixed (Figs. 5a, 5b, 5c, 5d). Aligning the tool to the sprocket requires 

linear motion along the three axes. To avoid excess positional errors, the linear motion 

along the three axes, was made with ball screw assemblies and motors fitted to the ball 

screws.  
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Figure 5. “Grain-o-bot”. a) Back View; b) Front View; c) Top View; d) Side View. 

 

(5d) 

( Dimensions are in mm) 

 



 35 

The components in the “Grain-o-bot” are as follows (Fig. 4): 

1. Motor for the x-axis motion 

2. Motor for the z-axis motion  

3. Motor for the y-axis motion 

4. Motor for the rotational motion of the key 

5. Base for the x-axis assembly 

6. Support block along the motor end of the x-axis 

7. Support block along the non-motor end of the x-axis 

8. Ball screw for the motion along x-axis 

9. Support rod / feed rod for the motion along x-axis 

10. Linear support bearing to slide on x-axis support rods and attach to the z-axis base 

11. Nut for the x-axis ball screw 

12. Base for the z-axis assembly 

13. Support block along the non-motor end of the z-axis 

14. Support block along the motor end of the z-axis 

15.  Ball screw for the motion along z-axis 

16. Support rod / feed rod for the motion along z-axis 

17. L-Angle bracket to support x-axis motor and connect the motor with the x-axis ball 

screw  

18. L-Angle bracket to support z-axis motor and connect the motor with the z-axis ball 

screw  

19. Linear support bearing to slide on y-axis support rods and attach to the tool casing  
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20. L-Angle bracket to support y-axis motor and connect the motor with the y-axis ball 

screw  

21. Y-axis support block/base on the non-motor side 

22. Linear support bearing to slide on z-axis support rods and attach to the y-axis base 

23. Support rod / feed rod for the motion along y-axis 

24. Ball screw for the motion along y-axis 

25. Casing to house the sprocket key mechanism 

26. Y-axis support block/base on the motor side 

27. Sprocket key 

28. Hex-nut to fasten the x-axis support rod 

 29. Hex-nut to fasten the z-axis support rod  

30. Hex-nut to fasten the y-axis support  

 

The construction of the Cartesian robot was split into four sub-assemblies to facilitate the 

design process, namely three assemblies to provide motion along the three axes and the 

fourth comprising the end-effector (the opener tool). The x-axis assembly was used to 

locate the sprocket and therefore formed the base. This assembly consisted of a base plate 

to fasten the robot in a fixed position and to provide a support for the support blocks. The 

ball screw was mounted on the base using two supporting blocks that were fastened to the 

base. The ball screw was mounted on the support blocks using bearings which were in 

turn mounted on the support blocks. The bearings allowed the necessary rotary motion to 

the ball screw while supporting the ball screw on either side. The ball screw on either end 

had a step machined to rest against the face of the bearings, to ensure the presence of 
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rotational movement and avoid unwanted lateral movements. One end of the ball screw 

was extended beyond the supporting structures to connect to a motor to actuate the linear 

motion. The ball screw and the motor were connected with a rigid L-angle flange bracket 

to avoid positional errors. The shaft of the motor would slide into a bore in the ball screw 

and the sliding motion was arrested using a key. There were two support rods or feed 

rods on either side of the ball screw to help support the z-axis assembly and act as a guide 

along the motion.  

 

The z-axis assembly was similar to the x-axis assembly in functional construction but 

was located perpendicular to the x-axis assembly. This construction facilitated in moving 

the opener tool in and out of the sprocket hole. The base of the z-axis assembly was 

mounted on to the x-axis assembly, using two linear bearings present in the base of the z-

axis assembly, to aid in the sliding over the feed rods in the x-axis assembly. The ball nut 

in the ball screw assembly mounted on the x-axis assembly was fastened to the lower 

portion of the z-axis assembly. Hence by actuating the ball screw in the x-axis assembly, 

the z-axis assembly was moved linearly along the z-axis.  

 

The y-axis assembly was different from the x and z-axis assemblies, as the x and z-axes 

assemblies facilitated linear motion in the horizontal direction, the y-axis assembly 

facilitated linear motion in the vertical direction. This assembly comprised of two square 

support blocks connected by four feed rods which acted as supporting rods and the 

assembly formed a rectangular cube.  Along the center of the supporting blocks a ball 

screw was connected that facilitated the motion of the end-effector, comprising the 
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sprocket key and the associated mechanisms. The y-axis assembly was connected to the 

z-axis assembly by one of the supporting blocks passing through the feed rods of the y-

axis assembly, assisted by linear bearings. The ball nut in the z-axis assembly was 

fastened to the face of the support block of the y-axis assembly and the whole y-axis 

assembly moved along the z-axis by actuating the ball screw in the z-axis assembly. A 

motor was connected to the ball screw in the y-axis assembly on the opposite support 

block. Actuating this motor the end-effector assembly moved along the y-axis.   

 

The end-effector assembly was a steel box housing the sprocket opener tool, a motor to 

actuate the opener tool and a coupling connecting the motor and the opening tool. The 

end-effector assembly moved along the support rods of the y-axis assembly on linear 

bearings fastened to the four corners of the steel box. The centre of the steel box was 

fastened to the nut of the ball screw assembly of the y-axis assembly. The end-effector 

assembly also comprised of a clamp attachment on one face to attach the camera in order 

to guide the tool along all the three axes and orient the tool. 

 

Once the “Grain-o-bot” located the sprocket, it aligned itself and opened the sprocket 

partially and closed it. A small portion of the contents of the simulated graincar dropped 

down, which were collected and tested to identify the contents of the simulated graincar. 

Once the identity of the content was confirmed the robot allowed the hopper gate to fully 

open and let the contents flow down.  
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3.4. Vision  The vision system that guides the “Grain-o-bot”, to locate the sprocket 

consisted of, a Sony XCD-X700 monochrome camera (Sony of Canada Limited, Toronto, 

ON) and used a 1/2 type progressive scan charge coupled device sensor with square 

pixels. The resolution of the camera was 1024 x 768 pixels at 15 frames per second. The 

camera delivered uncompressed 8-bit monochrome images. It was also equipped with a 

10 mm focal length enhanced resolution lens to maintain focus over a varied length 

ranging over 2–6 times the original focal length. The images acquired by the camera were 

transferred to a personal computer through a Meteor II-1394 card (Matrox Electronic 

Systems Ltd, Montreal, PQ) and the information in the images was processed to locate 

the position of the sprocket. The vision system to identify the grain was a Dalsa 2M30 

camera (DALSA Corporation, Toronto, ON), with a resolution of 1600 by 1200 pixels at 

30 frames per second. A Matrox Camera-Link frame grabber card (Matrox Electronic 

Systems Ltd, Montreal, PQ) acted as the interface between the computer and the camera. 

It was also equipped with a 35 mm modular lens assembly having a 0.1 x 0.1 m field of 

view at a working distance of 0.37 m. 

 

3.5. Design Selection of the ball screw assembly comprising of the ball screw and the 

ball nut, mounted on the x-axis assembly was the most critical component as it was to 

linearly move the other components. The steps in selecting the ball screw are as follows 

(Anonymous 2004g). Assuming a weight of 100 kg, initial calculations were performed 

and once all the components were selected (Table.1), their actual weights were tabulated 

and the selection was made on the actual values. 

1. The axial force required to move the load is        
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  = axial force 

  = coefficient of friction of the guidance system 

  = load (Weight of the end-effector assembly + y-axis assembly + z-axis 

assembly and was 95.11 kg) 

Considering a factor of safety of 1.5  

N = 95.11 * 1.5 = 142.67 kg 

  = 0.0013  

  = 142.67 * 0.0013 = 0.18 kg  0.002 kN 

Hence the screw must produce an axial load of 0.002 kN to move the mass of 145 

kg. 

 2. Average velocity was calculated as, distance/time 

Distance = 2 m  

Total time = 3.5 min = 210 s 

Average velocity = 2/210 = 0.0095 m/s. 

3. Maximum velocity = 2 * Average velocity = 2 * 0.0095 = 0.019 m/s  

(Considering acceleration = deceleration with a constant velocity travel)  

4. Total unsupported length = 1.9 m. 

5. End fixicity = Type “C” (i.e., both ends were supported by roller bearings). 

6. Using the column load chart and the critical speed chart (Fig. 24, 25 in Appendix A) 

the selected screw was 32 x 5 (32 mm root diameter and 5 mm lead), which was the same 

as the selected ball screw.  
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Similar selections were made for the other ball screws, support rods, ball and linear 

bearings, and couplings. 

 

Table 1. Major components list and specifications  

(Source : Faculty of Mechanical Engineering 1978; Anonymous 2011g) 

 

Part 

Material/ 

Specification 

Length 

m 

Width / 

Diameter 

m 

Height 

m 

Quantity Weight 

kg 

Total 

kg 

End-effector Assembly 

End-effector 

housing 

Steel 0.20 0.20 0.20 1 2.4 2.4 

Motor  0.25 0.12 Ø  1 7 7 

Opener Tool Tool steel 0.30 0.02- aver  1 1 1 

Double row 

angular contact 

ball bearing 

SKF 3304 0.0222 0.0200 

Bore Ø 

0.052 1 0.35 0.35 

Self-aligning 

linear bearings  

XLMC16 0.0261 0.016 

Bore Ø 

0.036 8 0.3 2.4 

Vision system  0.116 0.044 0.033 1 0.5 0.5 

Clamp 

attachment 

Steel plate 0.10 0.05 0.05 1 0.05 0.05 

Y-axis Assembly 

Support blocks Aluminum 0.2 0.2 0.02 2 2.16 4.4 

Support rod / 

feed rod 

Steel 0.85 0.016  4 1.57 6.32 

Ball screw 

assembly 

SS 0.85 0.02575  1 2.8 2.8 

Motor  0.25 0.12 Ø  1 7 7 

Double row 

angular contact 

ball bearing 

SKF 3304 0.0222 0.0200 

Bore Ø 

0.052 2 0.35 0.7 

Self-aligning 

linear bearings  

XLMC16 0.0261 0.016 

Bore Ø 

0.036 4 0.3 1.2 

Z-axis Assembly 

Base Aluminum 1 .25 0.05 1 33.75 33.75 

Support blocks Aluminum 0.25 0.05 0.1 2 3.375 6.75 

Support rod / 

feed rod 

Steel 1.01 0.016  2 1.59 3.19 

Ball screw SS 1.01 0.02575  1 3.6 3.6 
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assembly 

Motor 1 0.25 0.12 Ø  1 7 7 

Double row 

angular contact 

ball bearing 

SKF 3304 0.0222 0.0200 

Bore Ø 

0.052 2 0.35 0.7 

Self-aligning 

linear bearings  

XLMC25 0.058 0.025 

Bore Ø 

0.0401 4 0.5 2 

X-axis Assembly 

Base Aluminum 2.2 1 0.03 1 81 81 

Support blocks Aluminum 1 0.05 0.15 2 20.25 40.5 

Support rod / 

feed rod 

Steel 2.3 0.025  2 2.5 5 

Ball screw 

assembly 

SS 2.3 0.0421 Ø  1 9.5 19 

Motor 1 0.25 0.12 Ø  1 7 7 

Double row 

angular contact 

ball bearing 

SKF 3306 0.0720 0.0300 

Bore Ø 

0.0302 2 0.35 0.7 

 

3.6. Electrical Drive  Four, SIGMA 20-4266TS-22770 (Yaskawa Motoman Canada, 

Pointe-Claire, PQ) slow synchronized AC motors, actuated the robot. Three of the motors 

facilitated the control of the linear motions along x, y, and z directions and the fourth 

motor controlled turning of the opening tool in the end-effector assembly. The motors 

were rated as 72 rpm, 60 Hz, 120 VAC, 0.52 kg.m torque, capable of achieving the full 

rpm rating within 3º of rotation and a complete stop within 3º of rotation. The motors 

were controlled by an Omega PCI-DIO24 card (Omega Engineering Inc, Laval, PQ) and, 

a control box (to control the starting and stopping of the motor and direction of rotation 

of the motor). The control box sensed the signals from the interface card and powered the 

motors.   
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3.7. Lighting  Proper illumination is essential for acquiring images because no image 

processing technique could process information that is not captured (Paulsen and 

McClure 1986). Hence the illumination by four different types of lights was tested 

namely: a fluorescent ring light, two incandescent light systems, and an AI RL36120 red 

LED (light emitting device) ring light. The fluorescent ring light was a ring bulb of 32 W 

fixed on a wooden base and was housed in a concave container painted inside with white 

paint to focus all reflected light in one direction. The first incandescent light system 

consisted of eight bulbs, 100 W each, arranged in a circular fashion in a circular drum. It 

was designed to provide diffuse light using shades. The second system consisted of eight 

bulbs, 46 W each, arranged in a circular fashion as the first system. The beam was 

directed using a semicircular stainless container painted white using magnesium oxide. 

The fluctuations in the systems were controlled using a photodiode light sensor. The LED 

ring light was red ring light connected to a strobe controller and was capable of 

producing 710 Lux at a working distance of 0.1 m and was used to increase contrast on 

edges. The above sources with the exception of the LED were connected to a voltage 

stabilizer. The lights were tested with the variations (Table 2), and arranged as shown in 

Fig. 6, to mimic the ambient lighting condition. 

 

A Kodak white card was used as a reference to calibrate the camera. The image of the 

white card was acquired and five areas, one from each corner and one from the centre 

containing 100 X 100 pixels were tested and illumination within  1 grey value on the 

viewing area was obtained. 
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Table 2. Lighting Experiments for the Variations 

 

 

 

 

 

 

 

 

 

Light sources Variations 

1. Fluorescent ring light 

2. Incandescent light 

a. Direct 

b. Diffuse 

3. LED ring light 

1. Human intervention: Presence or absence 

2. Position of light source: At a distance of 1 m with 

respect to the sprocket:  Straight, top left and top 

right, bottom left and bottom right. 

 

3. Stray Light:  

1. Light from back right of sprocket;  

2. Light from back left of sprocket;  

3. Light from both back right and back left of 

sprocket;  

4. Light from front right of sprocket;   

5. Light from front left of sprocket;  

6. Light from both front right and front left of 

sprocket;  

7.   Light from the ceiling 

 

4. Background variation: 

1. White Sheet; 

2. Galvanized Steel Sheet;  

3. Lead-Oxide;  

4. Stainless Steel Sheet;  
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Figure 6. A Schematic showing different location of the light source and stray lights:  

1 = camera; 2 = position of light source in front of the sprocket; 3 and 4 = alternate 

positions of light source to the top and bottom right of the sprocket; 5 and 6 = 

alternate positions of light source to the top and bottom left of the sprocket, 7 

through 10 = positions of stray light source from the front right of the sprocket, 

back right of the sprocket, back left of the sprocket, and front left of the sprocket, 

respectively; 11 = sprocket; and 12 = hopper. 

 

A total of 1440 images were collected with all combinations and tested. 

 

3.8. Sprocket Identification 

Algorithms were developed in MATLAB 7.0 (The MathWorks, Inc., Natick, MA) on a 

windows platform and were used to determine the presence of the sprocket in a given 

image. Initially a template was chosen by visual inspection from an image, which had 

good contrast, and the region encompassing the sprocket was selected. The template 

image was 101 X 101 pixels. Some of the images acquired with backlight or excess light 

reflected from the background contained bright patches and stray light. The grey levels of 

the bright patches were over 240 and were identified and eliminated by pre-processing 

the regions with an averaging filter (Gonzales and Woods 1998). The edges of objects in 

both the target and the template images were detected using the Canny operator and the 

1 m 

2.5 m 

1 
3, 4 5, 6 

2 

7 
10 

8 
9 

12 

11 



 46 

target images were further analysed using three types of algorithms. The three types of 

algorithms developed to identify the sprocket are: 

1. Algorithm I: Correlation 

2. Algorithm II: Correlation followed by regional correlation on sub images 

3. Algorithm III: Correlation followed by shape detection on sub images 

 

Algorithm I 

The edge detected template image was correlated with the edge detected target image by 

scanning the template over the target image (Gonzalez and Woods 1998). The highest 

pixel value of the correlated image represented the existence of the template in the target 

image. Pixels with values ranging between the highest pixel value and the highest pixel 

value minus 10 from the correlated images were recorded as the sprocket locations. 

However, the highest value was also obtained when the edges of the template were 

correlated with a bright patch in the target image. Hence, additional processing was 

required to confirm the existence of the sprocket. 

 

Algorithm II 

The images were first analysed using algorithm I. Sub images of 100 X 100 pixels around 

the pixels identified by algorithm were separated from the original image. Edge detection 

was performed on the sub images. A second template containing only the sprocket was 

correlated with the sub images. The highest pixel value in each correlated sub image was 

compared and the sub image with the highest correlated pixel value was selected as the 

image containing the sprocket. 
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Algorithm III 

Though the accuracy of the sprocket identification by algorithm II was higher than 

algorithm I, there were many false positives (objects other than the sprocket were 

identified as the sprocket). To prevent the detection of false positives, the process of 

identification by using the second correlation was replaced by a shape detection function. 

The shape detection function was used to determine the presence or absence of both the 

ellipse and the square in the sub images. 

 

The top 20 points were selected by performing the first correlation and were treated as 

the possible locations of the sprocket. The area encompassing the selected pixels were 

separated from the original image and the recorded as individual sub image (101 X 101 

pixels). Edge detection was performed on the sub images using a canny operator. 

Individual objects within the sub images were identified and labelled using the eight-

connectivity function. Following labelling, objects with less than 10 pixels were 

eliminated. Objects within 35 pixels from the centre of the sub-images were tested for the 

sprocket hole, which was a square, and objects that were 40 pixels from the boundary 

were tested for an ellipse. To test the presence of the square, a straight-line equation was 

fitted for adjacent pixel locations. If a change in slope was observed for more than four 

pixel pairs consecutively, then it was said to represent a corner and the location was 

noted. By obtaining three such locations, a square was constructed. The location of the 

pixels from the object was compared to the connected square. If the deviation of the 

pixels in the object and the constructed square was within 3 pixels, the identified object 

was considered to be the square. The location of the centre of the square was recorded. 
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The objects within 40 pixels from the edges were tested by constructing an ellipse with 

the locations of the pixels in the object. The object was divided into three sections. The 

pixel locations connecting the sections were recorded as four locations to fit the ellipse 

using the determinant method and the centroid of the ellipse was recorded. If, the centroid 

of the fitted ellipse, and the centroid of the square, were within 3 pixels of each other, 

then, it was determined that the sprocket was identified in the sub image. Otherwise the 

subsequent sub images were tested.  

3.9. Training and Operation of the “Grain-o-bot”  

The process of operating the robot included a training process where images were 

acquired in the following order to act as templates. 

1. When the tool was properly fit inside the sprocket 

2. The instance, the tool was initially disengaged from the sprocket and moved linearly 

along the z-axis towards the 0
th

 position in the z-axis.  

3. When the tool was disengaged from the sprocket and moved linearly along the z-axis 

to the 0
th

 point in the z-axis.  

4. When the tool was moved linearly along the y-axis to the 0
th

 point in the y-axis. 

5. The first instance when the sprocket was fully available inside the frame when moving 

along the x-axis, from the 0
th

 position of the x-axis. 

Once these frames were recorded, the robot was initially allowed to move along the x-

axis from the 0
th

 position. Initial investigations showed, the frame captured along the x-

axis at a distance of 1.5 m, encompassed a length of 0.6 m. So images were recorded 

every 0.3 m to capture the sprocket fully in the first frame. Once the sprocket was 

identified, the location of the sprocket with respect to the x-y plane was determined with 
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template-5.  The motion of the robot along the x-axis was fine tuned to bring the sprocket 

to the exact location as in the template-5. Since the other positions were already known, 

using the time taken for moving from one position to another and using templates 2, 3, 

and 4 as references the tool was moved until it reached its position. Here the orientation 

of the tool and the sprocket was aligned by fine tuning the tool to the acquired image with 

template 5 and the fit was made. The tool was now turned in a clockwise direction for 3 s 

and immediately in an anticlockwise direction to open and shut the hopper gate.  This 

resulted in a sample of the material in the hopper to fall down.  This was collected in an 

inclined trough, which was transported, to a plate for identification. Once the 

identification was made and the material was found to be the required material (matching 

information on the I-90 tag) then the robot opened the hopper gate to allow material to 

flow.      

 

3.10. Grain Identification Previous studies have indicated the classification of bulk 

grain with very high classification accuracy (Cogdill et al. 2004; Choudhary et al. 2008, 

2009; Karunakaran 2002; Karunakaran et al. 2004; Maghirang et al. 2003; Mahesh et al. 

2008; Majumdar and Jayas 2000 a, b, c, d; Manickavasagan et al. 2008; Paliwal et al. 

2004; Visen 2002). The images, features and network from these studies was integrated 

and utilized. 
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4. RESULTS AND DISCUSSION ON SPROCKET IDENTIFICATION 

 

 

4.1. Sprocket Identification 

Different types of images acquired using different lights and variables were tested for the 

identification of the sprocket location as shown in Fig. 6. The original and the edge 

detected images are shown in Fig. 7. Direct lighting sometimes produced reflections from 

nearby objects. The intensity of the light beams sometimes smoothed information, which 

would have been helpful in the identification. The images analyzed by the algorithms 

were visually inspected to confirm the correct identification. The results obtained by 

applying the three algorithms and the results confirmed visually were tabulated. The 

number of instances where the manual verification reported a positive identification was 

referred to here as the reported identification.  

 

 

 

 

 

 

(a) (b) 

Figure 7. Sprocket identification. a) Image with illumination from incandescent light 

source; b) Sprocket location correctly identified 

 

4.1.1. Sprocket identification using Algorithm I 

The influences of the light positions, namely, light source at top right with respect to the 

sprocket, light source at the top left with respect to sprocket, light source at the bottom 

Sprocket Identified 
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right with respect to sprocket, and light source at the bottom left with respect to sprocket 

and the light source centred and directly facing the sprocket were analyzed. Using 

Algorithm I and testing for sprocket identification provided 100% accurate results with 

all four lighting types (Table 3a). When examined manually there were instances where 

there was more than one point identified as the sprocket. The presence of false positives 

had increased the efficiency of identification.  

 

Table 3a. Influence of light position on sprocket classification accuracy using  

Algorithm I.   

Light Type 
Light Position 

1 2 3 4 5 

Incandescent-direct 100% 100% 100% 100% 100% 

Incandescent-diffuse 100% 100% 100% 100% 100% 

Fluorescent 100% 100% 100% 100% 100% 

LED 100% 100% 100% 100% 100% 

* Twenty replicates were tested in all cases 

1. Light source at top right with respect to sprocket; 2. Light source at top left with 

respect to sprocket; 3. Light source at bottom right with respect to sprocket; 4. 

Light source at bottom left with respect to sprocket; 5. Light source centred at the 

sprocket. 

 

The influences of varied background (behind the sprocket) namely, white, lead-oxide, 

galvanised steel and stainless steel, on sprocket identification were tested using 

Algorithm I and recorded (Table 3b). The incandescent-direct light source proved to be a 

better choice than the other three light systems and LED proved to be the worst choice. 

All instances where there were more than one point were identified.  
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Table 3b. Influence of varied background on sprocket classification accuracy using  

Algorithm I.  

Light Type 

Background 

White Lead-Oxide Galvanized 

Steel 

Stainless Steel  

(Star Pattern) 

Incandescent-direct 100% 100% 100% 95% 

Incandescent-diffuse 90% 100% 95% 100% 

Fluorescent 100% 100% 100% 70% 

LED 70% 100% 95% 90% 

 Twenty replicates were tested in all cases 

 

The influence of personnel present in the background (behind the sprocket) was tested as 

a variable for the classification of the sprocket and the classification accuracies were 

recorded (Table 3c). The incandescent-direct light source proved to be a better light 

source between the tested sources and fluorescent light source performed badly. 

Table 3c. Influence of human presence in the background on sprocket classification  

accuracy using Algorithm I. 

Light Type 

Person in Background 

Present Absent 

Incandescent-Direct 90% 100% 

Incandescent-Diffuse 55% 100% 

Fluorescent 20% 100% 

LED 35% 100% 

  * Twenty replicates were tested in all cases 

 

The influence of stray light was tested as a variable and the classification accuracy of the 

sprocket was recorded (Table 3d).  Identification of the sprocket when the stray light was 
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directed towards the image from the front (along the direction of the light coming from 

the lighting systems), adding to the original lighting systems was the cause of the low 

identification accuracies.  Identification of the sprocket using the LED was better in the 

case of stray light compared to the other lighting systems with a slight dip in the accuracy 

of identification when the stray light came from the front left and both front right and 

front left of the sprocket. 

 

Table 3d. Influence of stray light on sprocket classification accuracy using  

Algorithm I. 

Light Type 
Light Variations  

1 2 3 4 5 6 7 

Incandescent-Direct 100% 100% 100% 100% 0% 0% 100% 

Incandescent-Diffuse 100% 100% 85% 100% 100% 0% 80% 

Fluorescent 20% 85% 90% 100% 100% 95% 100% 

LED 100% 100% 100% 100% 75% 50% 100% 

* Twenty replicates were tested in all cases 

 Stray light from back right of sprocket; 2. Stray light from back left of sprocket; 

 Stray light from both back right and back left of sprocket; 4. Stray light from front 

right of sprocket; 5. Stray light from front left of sprocket; 6. Stray light from both 

front right and front left of sprocket; 7.  Stray light from the ceiling 

 

This probably happened because the stray lighting systems with their higher luminance 

flushed the information in the image. 
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4.1.2. Sprocket identification using Algorithm II  

To improve on the identification of the sprocket and to eliminate the false positives, 

Algorithm II was used on the images. The accuracy of LED light source dropped down 

when the light was held at the top right corner with respect to the sprocket (Table 3e). 

However there were a few false positives, indicating the sprocket location to be at the 

correct position and also at a different location.  

 

Table 3e. Influence of light position on sprocket classification accuracy using 

Algorithm II.  

Light Type 
Light Position 

1 2 3 4 5 

Incandescent-Direct 100% 100% 100% 100% 100% 

Incandescent-Diffuse 100% 100% 100% 100% 100% 

Fluorescent 100% 100% 100% 100% 100% 

LED 30% 100% 100% 100% 100% 

* Twenty replicates were tested in all cases 

1. Light source at top right with respect to sprocket; 2. Light source at top left with 

respect to sprocket; 3. Light source at bottom right with respect to sprocket; 4. Light 

source at bottom left with respect to sprocket; 5. Light source centred at the sprocket. 

 

 

Applying Algorithm II to the set of images with varied backgrounds indicated that the 

incandescent-direct light source and the fluorescent light source had a sprocket 

identification accuracy of 100% in all the variations provided by the different 

backgrounds, but the LED light source performed poorly when used with a white 

background (Table 3f). This could be attributed to the fact that the LED was red and 

when the light impinged on the white background flushed the sprocket information from 

the resulting image as the sprocket was also red. 
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Table 3f. Influence of varied background on sprocket classification accuracy using 

Algorithm II 

Light Type 

Background 

White Lead-Oxide Galvanized 

Steel 

Stainless Steel  

(Star Pattern) 

Incandescent-Direct 100% 100% 100% 100% 

Incandescent-Diffuse 95% 100% 90% 100% 

Fluorescent 100% 100% 100% 100% 

LED 65% 100% 100% 100% 

* Twenty replicates were tested in all cases 

 

The images with the presence and absence of personnel in the background of the sprocket 

were tested with Algorithm II. The images from the diffuse and LED light sources when 

processed with Algorithm II, dropped in the identification accuracy to 50% and the 

fluorescent light source fared poorly (25% accuracy) when a person was present in the 

background (Table 3g).  Here again a few false positives were observed, which would 

hamper in the decision of the exact location of the sprocket. 

 

Table 3g. Influence of human presence in the background on sprocket classification 

accuracy using Algorithm II 

Light Type 
Person in Background 

Present Absent 

Incandescent-Direct 100% 100% 

Incandescent-Diffuse 50% 100% 

Fluorescent 25% 100% 

LED 50% 100% 

* Twenty replicates were tested in all cases 
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When Algorithm II was tested for identification of the sprocket, on images acquired with 

stray light, identification of the sprocket when the stray light entered from both directions 

in the front namely right and the left, the identification capacity dropped drastically 

compared to the other variations, similar to the performance of Algorithm I. Images from 

all the light sources on an average performed similarly in the identification of the 

sprocket in the other conditions (Table 3h).  Here again false positives were observed, 

when the resulting images were manually verified. 

 

Table 3h. Influence of stray light on sprocket classification accuracy using 

Algorithm II. 

Light Type 
Light Variations  

1 2 3 4 5 6 7 

Incandescent-Direct 100% 100% 100% 90% 80% 0% 100% 

Incandescent-Diffuse 100% 100% 100% 95% 80% 0% 100% 

Fluorescent 100% 95% 100% 100% 100% 0% 100% 

LED 100% 100% 100% 80% 100% 5% 100% 

* Twenty replicates were tested in all cases 

1. Stray light from back right of sprocket; 2. Stray light from back left of sprocket; 

3. Stray light from both back right and back left of sprocket; 4. Stray light from 

front right of sprocket; 5. Stray light from front left of sprocket; 6. Stray light 

from both front right and front left of sprocket; 7.  Stray light from the ceiling 

2.  

 

4.1.3. Sprocket identification using Algorithm III 

To further enhance the identification of the sprocket, Algorithm III was developed and 

tested. Identification accuracies on the image where the light sources were placed in five 

locations in front of the sprocket were recorded (Table 3i). The identification had 

dropped down from the 100% identification in Algorithm I and II to a range from 0 – 
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95%. On an average the fluorescent and the incandescent-diffuse light source performed 

better than the LED and the incandescent-direct light source (Table 3i).  This was due to 

the use of shape detection techniques, which failed to identify the sprocket when the 

minimum conditions were not met. However in the images where the sprocket was 

identified, there were no false positives.  

 

Table 3i. Influence of light position on sprocket classification accuracy using 

Algorithm III.  

Light Type 
Light Position 

1 2 3 4 5 

Incandescent-direct 15% 45% 0% 45% 50% 

Incandescent-diffuse 30% 60% 5% 80% 50% 

Fluorescent 10% 95% 25% 85% 75% 

LED 0% 75% 0% 65% 45% 

* Twenty replicates were tested in all cases 

1. Light source at top right with respect to sprocket; 2. Light source at top left with 

respect to sprocket; 3. Light source at bottom right with respect to sprocket; 4. 

Light source at bottom left with respect to sprocket; 5. Light source centred at the 

sprocket. 

 

 

 

Algorithm III was applied on images acquired with varied backgrounds and the results 

are tabulated in Table 3j. The results indicate that stainless steel and galvanized steel had 

low effect in influencing the identification of the sprocket, whereas the white and lead-

oxide backgrounds had an effect on the details of the image and thereby hampering the 

identification process. 
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Table 3j. Influence of varied background on sprocket classification accuracy using 

Algorithm III.  

Light Type 

Background 

White Lead-Oxide Galvanized 

Steel 

Stainless Steel 

(Star Pattern) 

Incandescent-Direct 90% 50% 70% 70% 

Incandescent-Diffuse 70% 50% 85% 80% 

Fluorescent 0% 75% 55% 80% 

LED 60% 45% 100% 90% 

* Twenty replicates were tested in all cases 

 

On an average all the light sources performed equally in capturing the details of the 

sprocket to assist in identification of the sprocket in the images.  

 

Images with and without personnel in the background were processed with Algorithm III 

and the results indicated that images with personnel in the background were better for the 

identification of the sprocket with all light sources (Table 3k). This could be attributed to 

the fact that the plain background merged with the features of the sprocket and when a 

person was introduced into the frame, the features of the sprocket were better highlighted 

because of the non-uniformity of the persons’ image in the background. LED light source 

performed better than the other light sources in highlighting the features of the sprocket 

for identification but performed poorly when the personnel was absent in the background. 
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Table 3k. Influence of human presence in the background on sprocket classification 

accuracy using Algorithm III. 

Light Type 
Person in Background 

Present Absent 

Incandescent-Direct 80% 50% 

Incandescent-Diffuse 75% 50% 

Fluorescent 80% 75% 

LED 95% 45% 

* Twenty replicates were tested in all cases 

 

The fluorescent light source fell to second position for identifying the sprocket in both 

instances where a person was present or absent.  

 

Testing the influence of stray light on the capability of Algorithm III to identify the 

sprocket showed results, which were not very promising (Table 3l).  

 

Table 3l. Influence of stray light on sprocket classification accuracy using Algorithm 

III. 

Light Type 
Light Variations  

1 2 3 4 5 6 7 

Incandescent-Direct 50% 0% 0% 0% 0% 5% 75% 

Incandescent-Diffuse 35% 100% 55% 0% 0% 0% 70% 

Fluorescent 10% 20% 0% 0% 0% 0% 0% 

LED 75% 25% 45% 0% 0% 50% 10% 

* Twenty replicates were tested in all cases 

1. Stray light from back right of sprocket; 2. Stray light from back left of sprocket; 3. 

Stray light from both back right and back left of sprocket; 4. Stray light from front 

right of sprocket; 5. Stray light from front left of sprocket; 6. Stray light from both 

front right and front left of sprocket; 7.  Light from the ceiling 
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Further investigation needs to be carried out to minimize the influences of stray light. 

Since Algorithm III used shape detection as its base for processing the images and 

identifying the sprocket, the images where stray light was introduced flushed the features 

and limited the capacity of the algorithm in the sprocket identification.  

 

No identification was made when the stray light was introduced from the front right and 

from the front left of the sprocket. However when the stray light was introduced from 

both sides the LED light source was able to pick up features by cancelling out the 

interferences and making identification in 50% of the instances. 
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5. FABRICATION OF THE “GRAIN-O-BOT” 

The fabrication of the “Grain-o-bot” was completed as per the description in Chapter 3 

with a few modifications.  

5.1. Fabrication of the “Grain-o-bot” structure 

The frames for the x-axis and z-axis were made of 6 gauge square steel tubing with 

guide rails mounted on the top face to assist motion of the other assemblies as shown in 

Fig. 8. Plummer blocks were used on the ends to support the ball screw assemblies.  

 

 

Figure 8. Structure of “Grain-o-bot” 

 

The end-effector was changed from a one piece tool as described in the design 

conceptualization (Chapter 3) to a four piece tool, primarily consisting of 

Y-Axis 

Assembly 

Z-Axis 

Assembly 

Plummer 

Block 

X-Axis 

Assembly 

Motor 

For Y-Axis 

movement 
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1. a tapered part to mate with the sprocket on one end and cylindrical on the other 

end, 

2.  a cylindrical shaft with bores on either ends, 

3. a connector shaft, and 

4. a spring. 

This change was made so that the tapered tool can move linearly within the shaft by 12 

mm when a pressure was applied at the end of the tool where the tool was not properly 

fitted in the sprocket hole. The extended position was held by the force of the spring 

located between them.  

 

(a)        (b) 

Figure 9. End-effector. a) Image showing the full end-effector; b) End-effector 

retracting mechanism 

The setup without the linear movement of the tool could accommodate the mating of the 

sprocket with the tapered tool in all instances with the exception when the corner of the 

square in the tapered tool mated with the face of the square in the sprocket. In this 

instance if the end-effector was actuated, would produce a hammering effect both on the 
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sprocket and the “Grain-o-bot”. To eliminate the hammering effect the tool was thus 

modified as shown in Fig. 9. 

 

5.2. Limit Switch design and assembly 

The motors were connected with clamps designed to specifically position the motors in 

line with the ball screw rods for motion along the axes and the end-effector.  

 

 

 

 

 

 

 

 

 

 (a) 

 

 

 

 

(b)                                                     (c) 

Figure 10. X-axis limit switch design and assembly. a) Image showing limit switch 

locations in the x-axis assembly; b) Image showing detailed view of limit switch 

location; c) clamp for limit switch assembly (Dimensions are in mm) 
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A second set of clamps were designed and mounted on the frame to position 8 extended 

straight plunger limit switches capable of withstanding an operating force of 0.0034 kN, 

return force of 0.001 kN, and with a pre-travel of 0.4 mm, an operating travel of 5.5 mm, 

movement differential of 0.05 mm and an operating position at 21.5 mm to control 

motion.  

 

The limit switches to control the x-axis movement were mounted on a clamp designed as 

shown in Fig. 10 (b) using a seven gauge metal sheet and assembled on the shorter side of 

the x-axis assembly frame as shown in Fig. 10 (a) and Fig. 10 (c). The inclusion of the 

limit switches controlled the range of motion along the x-axis to not travel beyond 1950 

mm and assisted in powering off the motors when the switches were activated.  

 

 

  

 

 

(a)                                                                          

(b) 

Figure 11. Y-axis limit switch design and assembly. a) Image showing limit switch 

locations in the y-axis assembly; b) clamps for limit switch assembly in y-axis  
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A similar set up was designed, fabricated and assembled for the  y-axis to control motion 

up to 900 mm and for the z-axis to control motion up to 900 mm and the hopper to 

control motion up to 275 mm as shown in Fig. 11, 12, and 13, respectively. 

 

 

(a) 

 

 

 

(b)  (c)                                                                       

Figure 12. Z-axis limit switch design and assembly. a) Image showing limit switch 

locations in the z-axis assembly; b) clamp location and limit switch assembly on z-

axis forward movement; c) clamp location and limit switch assembly in reverse 

movement (Dimensions are in mm) 

 

Clamp Limit 
Switch 
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(a) 

 

 

 

 

 

 

 

 

(b) 

Figure 13. Limit switch design and assembly on the hopper. a) image showing limit 

switch locations in the hopper elevation; b) image showing limit switch locations in 

the hopper plan 
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5.3. Control Assembly 

The control box (Fig. 14) to control the motor consisted of 16 solid state input/output 

modules mounted on a 24 position backplane with LED indicators to indicate signal 

status, and equipped with pull-up resistors to avoid undefined states, and power fuses for 

overload protection on each channel. The control box was connected to the PCI-DIO 24 

card (Omega Engineering Inc, Laval, PQ) using a 1 m ribbon cable with 50 pin 

connector, and was housed in an enclosure equipped with an emergency stop switch.  

  

 

 

 

 

 

(a)                                                          (b) 

Figure 14. Control Box. a) image showing control box enclosure with emergency 

switch indicated by the arrow; b) image showing solid state input and output devices 
 

5.4. Motor Control 

A motor control program was designed in VB.Net using universal library to externally 

control the motors, and the interface is shown in Fig. 15. The interface controlled the 

motors using the clicking of check boxes. It was designed to have two check boxes for 

each motor motion, namely x-axis motor clockwise motion, x-axis motor counter 

clockwise motion, y-axis motor clockwise motion, y-axis motor counter clockwise 

motion, z-axis motor clockwise motion, z-axis motor counter clockwise motion, hopper 

Emergency 

Switch 
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opening motor clockwise motion, hopper opening motor counter clock wise motion as 

shown in Fig. 15. 

 

 

Figure 15. Motor control interface 

 

Checking the check box activated the motor to rotate in the appropriate direction, and 

checking it off switched the motor activation. The program also deactivated the control if 

the limit switches were activated, and alerted the users by changing the color of the text 

box of the control. The program during launch switched off all the motors by writing 

zeros to all the bits in the ports. Port A was used to control the motors and port B was 

used to read the input from the limit switches.  

This was designed to control and study the speeds of motion along the different axes, and 

to record the template image when the tool was at the fully retracted position in the z-

axis. A housing to position the camera was constructed and attached to the y-axis 

assembly so that the camera could navigate along with the tool to record the tools 

position.  
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6. IMPLEMENTATION OF GRAIN IDENTIFICATION 

Three grain types namely CWRS wheat, barley, and canola, were acquired for the 

classification algorithm development. The samples for bulk image analysis were 

obtained by pouring 1 kg of grain kernels into a large plastic bag and shaking it to mix 

the grain thoroughly. The grain was then slowly poured into a petri dish until it was 

completely filled. Excess grain was removed from the dish so that the top level of grain 

was almost horizontal and matched the rim of the petri dish. The position of the petri 

dish was marked so that the placing of the petri dish would be consistent throughout the 

sample collecting process. This process was repeated 1000 times for each grain type 

resulting in a total of 3000 bulk sample images.  

6.1. Image acquisition setup 

 

The camera set up consisted of a mono-chrome CCD camera (Model no.: DS-21-02M30 

DALSA Corporation, Toronto, ON) with a 1600 x 1200 resolution. 

 

 

 

 

 

 

 

 

Figure 16. Camera setup to identify grain 
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The camera was connected to the PC for image acquisition using a Matrox Solios Single-

Base 85MHz, Camera Link® PCI-X frame grabber (Matrox Electronic Systems Ltd, 

Montreal, PQ) with 64 Mb DDR SDRAM (Fig. 16).  

The camera was mounted on a camera stand (M3, Bencher Inc., Chicago, IL). A circular 

fluorescent tube light with a 305 mm diameter 32-W circular lamp (FC12T9/CW, Philips, 

Singapore) with a rated voltage of 120 V was in a lighting enclosure.  

An enclosure was made up of a semi-spherical steel bowl of 390 mm diameter. The inner 

side of the bowl was painted white and smoked with magnesium oxide to reflect the light 

and produce diffuse reflectance.  

6.2.  Image Acquisition and Algorithm Development 

 

As described above 1000 images each of CWRS wheat, barley, and canola were collected 

for algorithm development.  

 

(a)                        (b)        (c) 

Figure 17. Raw images. a) barley; b) CWRS wheat; c) canola 

 

To eliminate the petri dish boundary an area of 600 pixels x 600 pixels was selected. The 

area encompassing the selected pixels were separated from the original image and the 

recorded as individual sub image (600 X 600 pixels) Fig. 17. 
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The histograms of the raw images were processed to visually identify the differences 

in pixel intensities (Fig. 18). 
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(c) 

Figure 18. Raw image histograms. a) barley; b) CWRS wheat; c) canola 

 

 

The histograms displayed in Fig. 18, show a significant change in the pixel intensity 

distribution ranging from 175 to 250 grey values between barley, CWRS wheat, and 

canola.  

 

However to further enhance the classification and extract additional features the images 

were processed using the “imadjust” function where the function mapped the intensity 

values in the selected image to new values in J such that 1% of data was saturated at low 

and high intensities of original image. This increased the contrast of the output image 

(Fig. 19). The respective histograms are shown in Fig. 20. 
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(a)      (b)     (c) 

 

 

Figure 19. Intensity adjusted images. a) barley; b) CWRS wheat; c) canola 
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(b) 

 

 

 

 

 

 

 

 

 

 

(c) 

Figure 20. Intensity adjusted image histograms. a) barley; b) CWRS wheat; c) 

canola 
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This process introduced a change in the pixel intensity distribution of the canola image 

but reduced the variation between CWRS wheat and barley in the 175 – 200 pixel 

intensity range. So a further processing of the histogram was done prior to finalizing the 

level of processing required, thus the images were further processed using a range filter 

function, where each output pixel contained the range value (maximum value − minimum 

value) of the 3-by-3 neighbourhood around the corresponding pixel in the input image 

(Fig. 21). The process however further reduced the ease of classification capability 

between CWRS wheat and barley as seen in the histograms (Fig. 22).  

 

 

 

 

 

(a)            (b)              (c) 

Figure 21. Histogram equalized images. a) barley; b) CWRS wheat; c) canola 
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(c) 

Figure 22. Histogram equalized image histograms. a) barley; b) CWRS wheat; c) 

canola 

 

 

 

Five features were collected for the classification namely, count of pixels ranging 

between 45 and 55, 175-185, 195-205, 205-215 and the count of pixels with an intensity 

of 200. If the count of the pixels in the intensity of 200 was greater than 0 or less than 

250, and the count of pixels in the intensity range of 205 – 215 was greater than 100 or 

less than 1000, and the count of the pixels in the intensity range of 175-185 was greater 

than 1000 or less than 5000 and the count of the pixels in the intensity range of 195-205 

was greater than 100 or less than 2000, the image was classified as barley. If the count of 

the pixels in the intensity of 200 was greater than 250 or less than 700, and the count of 

pixels in the intensity range of 205 – 215 was greater than 2500 or less than 4000, and the 
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count of the pixels in the intensity range of 175-185 was greater than 6000 or less than 

9000 and the count of the pixels in the intensity range of 195-205 was greater than 3500 

or less than 6000, the image was classified as CWRS wheat. If the count of the pixels in 

the intensity of 200 was equal to zero, and the count of pixels in the intensity range of 

205 – 215 was equal to zero, and the count of the pixels in the intensity range of 175-185 

was equal to zero and the count of the pixels in the intensity range of 195-205 was equal 

to 0, and the count of the pixels in the intensity range of 45-55 was greater than 100 or 

less than 5000, the image was classified as canola. Otherwise it was classified as 

unknown. 

Twenty images were used as training images and the rest were used as test images. The 

results of the classifications are given in Table 4.  

Table 4. Initial classification accuracy of the grain identification algorithm using 

raw and processed images. 

 

Grain 

Classification Accuracy 

Raw-Image Image 

adjusted Image 

Range 

filtered image 

Barley 100% 78% 62% 

CWRS 100% 32% 28% 

Canola 99.9% 82% 36% 

 

Similar to the inspection of the visual information from the histograms the results using 

the above features had dropped.  

Following the initial study, an additional 1000 images of each grain were collected and 

tested with the algorithm for raw images, and the results were a 100% classification for 

barley, 99.9% for CWRS wheat and 99.9% for canola. 
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7. IMPLEMENTATION OF THE “GRAIN-O-BOT” FOR 

GRAINCAR UNLOADING 

 
The fabrication of the “Grain-o-bot” structure was followed by the integration of the 

programs to control the “Grain-o-bot”. The Vb.net program was designed as per the flow 

chart shown. The programs are given in Appendix B.  
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• Stop z axis motor in 
CCW direction   

• Start y axis motor in 
CCW direction   

Sleep for 60 seconds 

• Stop y axis motor in 
CCW direction   

• Start y axis motor in CW 
direction   

Sleep for 5 seconds 

 

Stop y axis motor in CW 
direction   

Activate : 
• System1 

• Digitizer 1 

• Memory allocation 1 

• Image 1 

 

Grab Image1 
Save as 1.tif in specified folder 
Kill /Free 
System1, Digitizer 1, Memory 
allocation 1, Image 1 
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Figure 23. Flowchart indicating the flow of “Grain-o-bot” logic 

 

As illustrated in the flow chart (Fig. 23), the steps were followed and the program for the 

“Grain-o-bot” was built and tested. The “Grain-o-bot” initially returns to the start 

position irrespective of where it was positioned. This step was necessary to avoid the 

“Grain-o-bot” from starting from an unknown position, in the event of a failure or an 

emergency stop in the previous run. The length of time it moved in all axes to arrive at 
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the known location was determined by the time it took the “Grain-o-bot” to travel along 

the respective axes to reach the other ends of the axes. Once the “Grain-o-bot” arrived in 

the known position, it moves upward along the y-axis for 5 s. The camera at the start of 

the y-axis was not able to capture the sprocket in its field of view. Hence it was necessary 

to raise the camera to a position where the sprocket would be visible, during the scan. At 

this point motion along all axes was stopped and the Matrox - Metero II 1394 digitizer 

was initialized and the Sony XCD-X 700 camera was activated to capture an image. The 

captured image was saved as a tiff file in a pre-determined location for the sprocket 

identification using the Matlab program. The Matlab program was started as an object 

and the captured image was tested for the presence of the sprocket using the program. If 

the sprocket was not identified, a “0” was returned by the Matlab program and the Matlab 

object was killed. The x-axis motor was activated to move in the clockwise direction 

which in turn moved the “Grain-o-bot” along the x-axis for a period of 60 s. The 60 s was 

calculated and later confirmed by the time taken to move the end-effector across 50% of 

the camera’s previous view. This was necessary to ensure that a partially exposed 

sprocket in the 1
st
 field of view would be completely visible in the second shot. This 

process was repeated until the sprocket was identified. If the sprocket was not identified 

within 6 iterations a message was programmed to appear requesting the end user to check 

for the existence of the sprocket manually. If the Matlab-program identified the sprocket 

then the location of the sprocket was returned and the Matlab object was killed.  

The position the end-effector needed to be in order to mate exactly with the sprocket was 

identified based on first manually mating the end-effector to the sprocket and retracting 

the “Grain-o-bot” back along the z-axis to the zeroth position of the z-axis. An image was 
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captured and stored and the co-ordinates were recorded as the location the sprocket 

identified by the Matlab program had to be in order to get a prefect lock. The difference 

between the location returned by the Matlab program and the location identified by the 

pre-determined image was used to move the grain-o-bot along the x-axis and followed by 

moving along the y-axis by actuating the motors in the appropriate direction. Once the 

location was reached the z-axis motor was actuated to travel toward the sprocket for 73 s. 

The time was calculated as the rate of feed and confirmed. Following this the end-

effector motor turned in the clockwise direction for 0.5 s and then turned counter 

clockwise for 0.5 s. This motion was to facilitate the contents of the grain car dropping 

into a predetermined area for content identification.  

The Matrox Solios frame grabber was activated to trigger the Dalsa camera, which in turn 

captured the content image and saved it to a known location. Following this, frame 

grabber and the memory were released and the content identification program was 

launched using the Matlab object. The program identified the content as CWRS wheat, 

barley, or canola or returned ”not identifiable” as a message. A button needed to be 

clicked to open the hopper gate or another button to return to the base location if the 

content was not acceptable.  
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8. CHALLENGES IN IMPLEMENTATION 

The integration of the program with the hardware posed challenges unanticipated in the 

initial plan.  

Thorough analysis of lighting conditions that affected sprocket detection and using the 

findings in the implementation greatly assisted in the subsequent steps. 

The Matrox Meteor II frame grabbers during the integration of the sub programs stopped 

functioning. To solve this problem the frame grabbers were removed and the software 

was re-installed. However this was met with compatibility issues with Kaspersky 

Antivirus program. Uninstalling the antivirus program resolved the issue of loading the 

software and connecting them with their respective cameras to function as expected. 

Following the identification of the issue with the Meteor II frame grabbers were replaced 

with Meteor Solios frame grabbers to completely resolve the imaging errors.  

The location of the Sony camera which was used to detect the sprocket was lower than 

the field of view to capture the sprocket. The issue was eliminated by raising the start 

location of the y-axis, so that the sprocket would be visible when moved on the x-axis. 

This is acceptable as the graincar will always be at a fixed height with respect to the 

tracks and so the sprocket location along the y-axis will vary marginally and the range of 

2-4 cm will be visible within the field of view at this height. 

The rate of feed which was designed to be the same across all the axes was actually 

different between the different axes. This was identified as a result of the non-

coordination of the movement using the calculated values. This was eliminated by 

initially capturing an image and running each motor for a fixed time and re-capturing an 

image. A known object was selected and its displacement over the two images was 
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measured over the time of travel to calculate the rate of travel. This was repeated for each 

axis in both directions to arrive at the exact feed. 

The “Grain-o-bot” was completely controlled by “on” and “off” of motors in one 

direction or the other. One of the solid state relays that controlled the motor to open the 

hopper gate was stuck on “On” and had to be replaced. However the failing of the 

hardware hammered the gate.  

The Matlab programs that were initially constructed to detect the sprocket had used an 

image where the camera was placed around 1 m from the sprocket. The size of the 

sprocket obtained from this image was 98 x 98 pixels. However in real time the camera 

was much closer to the sprocket and the size of the sprocket obtained was 125 x 125 

pixels. The Matlab programs were altered to work with the new size.  

The closeness of the camera to the sprocket brought out more features than the previous 

images. This was addressed by adding a pre-processing function which eliminated the 

noise prior to identifying the sprocket.  

Performance as a result of multiple  programs running at the same time was an issue. The 

main program started to slow its responses as a result of all the frame grabbers and the 

images that were stored. This was addressed by using the programs and hardware 

resources as needed and once they had completed their intended operation, they were 

immediately released and the memory was freed up. 
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9. CONCLUSIONS AND RECOMMENDATIONS 

The research work conducted in this thesis explored the potential of robotics and image 

processing in automating the unloading of grain in elevators. A Cartesian robot equipped 

with a camera acting as an eye and another camera acting as a grain identifyier was 

integrated as a “Grain-o-bot” to perform this automation.  

Using three types of light sources, three algorithms were evaluated for their performance 

in detecting the hopper gate sprocket on a model of a graincar hopper gate. Three 

algorithms were developed based on correlation and shape detection techniques. The 

algorithm using correlation followed by shape detection performed better than the other 

two algorithms in detecting the sprocket with no false positives. The images acquired 

using the diffuse incandescent light source were less influenced by external variations. 

Under proper illumination, the sprocket was correctly identified at all times, and external 

variables had minimal influence on the identification. Although the processing speed of 

Algorithm III was three times longer than Algorithms I and II, it is beneficial to use 

Algorithm III as it produced no false identifications. 

The “Grain-o-bot” was able to accurately reach, open and close the hopper gate to release 

a small portion of the contents. The grain identification was possible using five features. 

A classification accuracy of 99-100% was achieved between CWRS wheat, barley, and 

canola.  

The programs are written for the test setup which replicates the real time situations. 

However, implementing this project at a work site needs studying of the site carefully and 

fine-tuning the programs and the lighting conditions to the particular site.  The 
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occurrence of extreme lighting conditions needs to be investigated at each location, and 

precautionary methods relevant to the site need to be applied.  

The rate of motion of the “Grain-o-bot” had been intentionally reduced for the study. 

This needs to be improved in the future.  The “Grain-o-bot” currently uses a computer to 

process the programs. Furture studies need to transfer the programs and computing to a 

micro controller to optimize design.  

The “Grain-o-bot” can also be used to unload all granular products that are discharged 

through a hopper. Hence studying other granular materials that are transported and 

incorporating their identification algorithms will make the “Grain-o-bot” more useable.  
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Figure 24. Critical Column Strength  (Source: (Anonymous 2011g) 
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Figure 25. Critical speed chart (Source: Anonymous 2011g) 
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1. Vb.Net Program to Control Motor 

Public Class Form1 

    Inherits System.Windows.Forms.Form 

    Private DaqBoard As MccDaq.MccBoard = New MccDaq.MccBoard(0) 

    Public CheckBox As System.Windows.Forms.CheckBox() 

 

#Region " Windows Form Designer generated code " 

 

    Public Sub New() 

        MyBase.New() 

 

        'This call is required by the Windows Form Designer. 

        InitializeComponent() 

 

        'Add any initialization after the InitializeComponent() call 

 

    End Sub 

 

    'Form overrides dispose to clean up the component list. 

    Protected Overloads Overrides Sub Dispose(ByVal disposing As 

Boolean) 

        If disposing Then 

            If Not (components Is Nothing) Then 

                components.Dispose() 

            End If 

        End If 

        MyBase.Dispose(disposing) 

    End Sub 

 

    'Required by the Windows Form Designer 

    Private components As System.ComponentModel.IContainer 

 

    'NOTE: The following procedure is required by the Windows Form 

Designer 

    'It can be modified using the Windows Form Designer.   

    'Do not modify it using the code editor. 

    Friend WithEvents CheckBox1 As System.Windows.Forms.CheckBox 

    Friend WithEvents CheckBox2 As System.Windows.Forms.CheckBox 

    Friend WithEvents CheckBox3 As System.Windows.Forms.CheckBox 

    Friend WithEvents CheckBox4 As System.Windows.Forms.CheckBox 

    Friend WithEvents CheckBox5 As System.Windows.Forms.CheckBox 

    Friend WithEvents CheckBox6 As System.Windows.Forms.CheckBox 

    Friend WithEvents CheckBox7 As System.Windows.Forms.CheckBox 

    Friend WithEvents CheckBox8 As System.Windows.Forms.CheckBox 

    Friend WithEvents Label1 As System.Windows.Forms.Label 

    Friend WithEvents Label2 As System.Windows.Forms.Label 

    Friend WithEvents Label3 As System.Windows.Forms.Label 

    Friend WithEvents Label4 As System.Windows.Forms.Label 

    Friend WithEvents Label5 As System.Windows.Forms.Label 

    Friend WithEvents Label6 As System.Windows.Forms.Label 

    Friend WithEvents Timer1 As System.Windows.Forms.Timer 

    <System.Diagnostics.DebuggerStepThrough()> Private Sub 

InitializeComponent() 

        Me.components = New System.ComponentModel.Container 

        Me.CheckBox1 = New System.Windows.Forms.CheckBox 
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        Me.CheckBox2 = New System.Windows.Forms.CheckBox 

        Me.CheckBox3 = New System.Windows.Forms.CheckBox 

        Me.CheckBox4 = New System.Windows.Forms.CheckBox 

        Me.CheckBox5 = New System.Windows.Forms.CheckBox 

        Me.CheckBox6 = New System.Windows.Forms.CheckBox 

        Me.CheckBox7 = New System.Windows.Forms.CheckBox 

        Me.CheckBox8 = New System.Windows.Forms.CheckBox 

        Me.Label1 = New System.Windows.Forms.Label 

        Me.Label2 = New System.Windows.Forms.Label 

        Me.Label3 = New System.Windows.Forms.Label 

        Me.Label4 = New System.Windows.Forms.Label 

        Me.Label5 = New System.Windows.Forms.Label 

        Me.Label6 = New System.Windows.Forms.Label 

        Me.Timer1 = New System.Windows.Forms.Timer(Me.components) 

        Me.SuspendLayout() 

        ' 

        'CheckBox1 

        ' 

        Me.CheckBox1.Location = New System.Drawing.Point(104, 72) 

        Me.CheckBox1.Name = "CheckBox1" 

        Me.CheckBox1.Size = New System.Drawing.Size(88, 16) 

        Me.CheckBox1.TabIndex = 0 

        Me.CheckBox1.Text = "CheckBox1" 

        ' 

        'CheckBox2 

        ' 

        Me.CheckBox2.Location = New System.Drawing.Point(200, 72) 

        Me.CheckBox2.Name = "CheckBox2" 

        Me.CheckBox2.Size = New System.Drawing.Size(88, 16) 

        Me.CheckBox2.TabIndex = 1 

        Me.CheckBox2.Text = "CheckBox2" 

        ' 

        'CheckBox3 

        ' 

        Me.CheckBox3.Location = New System.Drawing.Point(104, 96) 

        Me.CheckBox3.Name = "CheckBox3" 

        Me.CheckBox3.Size = New System.Drawing.Size(88, 16) 

        Me.CheckBox3.TabIndex = 2 

        Me.CheckBox3.Text = "CheckBox3" 

        ' 

        'CheckBox4 

        ' 

        Me.CheckBox4.Location = New System.Drawing.Point(200, 96) 

        Me.CheckBox4.Name = "CheckBox4" 

        Me.CheckBox4.Size = New System.Drawing.Size(88, 16) 

        Me.CheckBox4.TabIndex = 3 

        Me.CheckBox4.Text = "CheckBox4" 

        ' 

        'CheckBox5 

        ' 

        Me.CheckBox5.Location = New System.Drawing.Point(104, 120) 

        Me.CheckBox5.Name = "CheckBox5" 

        Me.CheckBox5.Size = New System.Drawing.Size(88, 16) 

        Me.CheckBox5.TabIndex = 7 

        Me.CheckBox5.Text = "CheckBox5" 

        ' 

        'CheckBox6 
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        ' 

        Me.CheckBox6.Location = New System.Drawing.Point(200, 120) 

        Me.CheckBox6.Name = "CheckBox6" 

        Me.CheckBox6.Size = New System.Drawing.Size(88, 16) 

        Me.CheckBox6.TabIndex = 6 

        Me.CheckBox6.Text = "CheckBox6" 

        ' 

        'CheckBox7 

        ' 

        Me.CheckBox7.Location = New System.Drawing.Point(104, 144) 

        Me.CheckBox7.Name = "CheckBox7" 

        Me.CheckBox7.Size = New System.Drawing.Size(88, 16) 

        Me.CheckBox7.TabIndex = 5 

        Me.CheckBox7.Text = "CheckBox7" 

        ' 

        'CheckBox8 

        ' 

        Me.CheckBox8.Location = New System.Drawing.Point(200, 144) 

        Me.CheckBox8.Name = "CheckBox8" 

        Me.CheckBox8.Size = New System.Drawing.Size(88, 16) 

        Me.CheckBox8.TabIndex = 4 

        Me.CheckBox8.Text = "CheckBox8" 

        ' 

        'Label1 

        ' 

        Me.Label1.Location = New System.Drawing.Point(128, 40) 

        Me.Label1.Name = "Label1" 

        Me.Label1.Size = New System.Drawing.Size(32, 24) 

        Me.Label1.TabIndex = 8 

        Me.Label1.Text = "CW" 

        Me.Label1.TextAlign = 

System.Drawing.ContentAlignment.MiddleCenter 

        ' 

        'Label2 

        ' 

        Me.Label2.Location = New System.Drawing.Point(224, 40) 

        Me.Label2.Name = "Label2" 

        Me.Label2.Size = New System.Drawing.Size(32, 24) 

        Me.Label2.TabIndex = 9 

        Me.Label2.Text = "CCW" 

        Me.Label2.TextAlign = 

System.Drawing.ContentAlignment.MiddleCenter 

        ' 

        'Label3 

        ' 

        Me.Label3.Location = New System.Drawing.Point(24, 72) 

        Me.Label3.Name = "Label3" 

        Me.Label3.Size = New System.Drawing.Size(56, 24) 

        Me.Label3.TabIndex = 10 

        Me.Label3.Text = "X-Axis" 

        Me.Label3.TextAlign = 

System.Drawing.ContentAlignment.MiddleCenter 

        ' 

        'Label4 

        ' 

        Me.Label4.Location = New System.Drawing.Point(24, 96) 

        Me.Label4.Name = "Label4" 
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        Me.Label4.Size = New System.Drawing.Size(56, 24) 

        Me.Label4.TabIndex = 11 

        Me.Label4.Text = "Y-Axis" 

        Me.Label4.TextAlign = 

System.Drawing.ContentAlignment.MiddleCenter 

        ' 

        'Label5 

        ' 

        Me.Label5.Location = New System.Drawing.Point(24, 120) 

        Me.Label5.Name = "Label5" 

        Me.Label5.Size = New System.Drawing.Size(56, 24) 

        Me.Label5.TabIndex = 12 

        Me.Label5.Text = "Z-Axis" 

        Me.Label5.TextAlign = 

System.Drawing.ContentAlignment.MiddleCenter 

        ' 

        'Label6 

        ' 

        Me.Label6.Location = New System.Drawing.Point(24, 144) 

        Me.Label6.Name = "Label6" 

        Me.Label6.Size = New System.Drawing.Size(56, 24) 

        Me.Label6.TabIndex = 13 

        Me.Label6.Text = "Hopper" 

        Me.Label6.TextAlign = 

System.Drawing.ContentAlignment.MiddleCenter 

        ' 

        'Timer1 

        ' 

        Me.Timer1.Enabled = True 

        Me.Timer1.Interval = 1000 

        ' 

        'Form1 

        ' 

        Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13) 

        Me.ClientSize = New System.Drawing.Size(344, 266) 

        Me.Controls.Add(Me.Label6) 

        Me.Controls.Add(Me.Label5) 

        Me.Controls.Add(Me.Label4) 

        Me.Controls.Add(Me.Label3) 

        Me.Controls.Add(Me.Label2) 

        Me.Controls.Add(Me.Label1) 

        Me.Controls.Add(Me.CheckBox5) 

        Me.Controls.Add(Me.CheckBox6) 

        Me.Controls.Add(Me.CheckBox7) 

        Me.Controls.Add(Me.CheckBox8) 

        Me.Controls.Add(Me.CheckBox4) 

        Me.Controls.Add(Me.CheckBox3) 

        Me.Controls.Add(Me.CheckBox2) 

        Me.Controls.Add(Me.CheckBox1) 

        Me.Name = "Form1" 

        Me.RightToLeft = System.Windows.Forms.RightToLeft.No 

        Me.Text = "Motor Control" 

        Me.ResumeLayout(False) 

 

    End Sub 

 

#End Region 
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    Private Sub CheckBox1_Checkstatechanged(ByVal sender As Object, 

ByVal e As System.EventArgs) Handles CheckBox1.CheckStateChanged 

        Dim PortNum1 As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

            Dim ULStat1 As MccDaq.ErrorInfo 

            Dim PortType1 As MccDaq.DigitalPortType 

            Dim DataValue1 As UInt16 

        'DataValue1 = Convert.ToUInt16(254) 

            ULStat1 = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

            PortType1 = PortNum1 

        If CheckBox1.Checked = True Then 

            CheckBox2.Checked = False 

            'CheckBox3.Checked = False 

            'CheckBox4.Checked = False 

            'CheckBox5.Checked = False 

            'CheckBox6.Checked = False 

            'CheckBox7.Checked = False 

            'CheckBox8.Checked = False 

            DataValue1 = Convert.ToUInt16(254) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

 

        Else 

            CheckBox1.Checked = False 

            DataValue1 = Convert.ToUInt16(255) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        End If 

 

 

    End Sub 

    Private Sub CheckBox2_Checkstatechanged(ByVal sender As Object, 

ByVal e As System.EventArgs) Handles CheckBox2.CheckStateChanged 

        Dim PortNum1 As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

        Dim ULStat1 As MccDaq.ErrorInfo 

        Dim PortType1 As MccDaq.DigitalPortType 

        Dim DataValue1 As UInt16 

        'DataValue1 = Convert.ToUInt16(253) 

        ULStat1 = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

        PortType1 = PortNum1 

 

        If CheckBox2.Checked = True Then 

 

            CheckBox1.Checked = False 

            'CheckBox3.Checked = False 

            'CheckBox4.Checked = False 

            'CheckBox5.Checked = False 

            'CheckBox6.Checked = False 

            'CheckBox7.Checked = False 

            'CheckBox8.Checked = False 

            DataValue1 = Convert.ToUInt16(253) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        Else 

            DataValue1 = Convert.ToUInt16(255) 
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            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        End If 

 

    End Sub 

    Private Sub CheckBox3_Checkstatechanged(ByVal sender As Object, 

ByVal e As System.EventArgs) Handles CheckBox3.CheckStateChanged 

        Dim PortNum1 As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

        Dim ULStat1 As MccDaq.ErrorInfo 

        Dim PortType1 As MccDaq.DigitalPortType 

        Dim DataValue1 As UInt16 

        'DataValue1 = Convert.ToUInt16(251) 

        ULStat1 = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

        PortType1 = PortNum1 

 

        If CheckBox3.Checked = True Then 

            'CheckBox1.Checked = False 

            'CheckBox2.Checked = False 

            CheckBox4.Checked = False 

            'CheckBox5.Checked = False 

            'CheckBox6.Checked = False 

            'CheckBox7.Checked = False 

            'CheckBox8.Checked = False 

            DataValue1 = Convert.ToUInt16(251) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        Else 

            DataValue1 = Convert.ToUInt16(255) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        End If 

 

 

 

    End Sub 

    Private Sub CheckBox4_Checkstatechanged(ByVal sender As Object, 

ByVal e As System.EventArgs) Handles CheckBox4.CheckStateChanged 

 

        Dim PortNum1 As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

        Dim ULStat1 As MccDaq.ErrorInfo 

        Dim PortType1 As MccDaq.DigitalPortType 

        Dim DataValue1 As UInt16 

        DataValue1 = Convert.ToUInt16(247) 

        ULStat1 = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

        PortType1 = PortNum1 

 

        If CheckBox4.Checked = True Then 

            'CheckBox1.Checked = False 

            'CheckBox2.Checked = False 

            CheckBox3.Checked = False 

            'CheckBox5.Checked = False 

            'CheckBox6.Checked = False 

            'CheckBox7.Checked = False 
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            'CheckBox8.Checked = False 

            DataValue1 = Convert.ToUInt16(247) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        Else 

            DataValue1 = Convert.ToUInt16(255) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        End If 

 

 

 

    End Sub 

    Private Sub CheckBox5_Checkstatechanged(ByVal sender As Object, 

ByVal e As System.EventArgs) Handles CheckBox5.CheckStateChanged 

 

        Dim PortNum1 As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

        Dim ULStat1 As MccDaq.ErrorInfo 

        Dim PortType1 As MccDaq.DigitalPortType 

        Dim DataValue1 As UInt16 

        'DataValue1 = Convert.ToUInt16(239) 

        ULStat1 = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

        PortType1 = PortNum1 

 

        If CheckBox5.Checked = True Then 

 

            'CheckBox1.Checked = False 

            'CheckBox3.Checked = False 

            'CheckBox4.Checked = False 

            'CheckBox2.Checked = False 

            CheckBox6.Checked = False 

            'CheckBox7.Checked = False 

            'CheckBox8.Checked = False 

            DataValue1 = Convert.ToUInt16(239) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        Else 

            DataValue1 = Convert.ToUInt16(255) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        End If 

 

 

 

    End Sub 

    Private Sub CheckBox6_Checkstatechanged(ByVal sender As Object, 

ByVal e As System.EventArgs) Handles CheckBox6.CheckStateChanged 

        Dim PortNum1 As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

        Dim ULStat1 As MccDaq.ErrorInfo 

        Dim PortType1 As MccDaq.DigitalPortType 

        Dim DataValue1 As UInt16 

        'DataValue1 = Convert.ToUInt16(223) 

        ULStat1 = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

        PortType1 = PortNum1 
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        If CheckBox6.Checked = True Then 

 

            'CheckBox1.Checked = False 

            'CheckBox3.Checked = False 

            'CheckBox4.Checked = False 

            CheckBox5.Checked = False 

            'CheckBox2.Checked = False 

            'CheckBox7.Checked = False 

            'CheckBox8.Checked = False 

            DataValue1 = Convert.ToUInt16(223) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        Else 

            DataValue1 = Convert.ToUInt16(255) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        End If 

 

 

 

    End Sub 

    Private Sub CheckBox7_Checkstatechanged(ByVal sender As Object, 

ByVal e As System.EventArgs) Handles CheckBox7.CheckStateChanged 

        Dim PortNum1 As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

        Dim ULStat1 As MccDaq.ErrorInfo 

        Dim PortType1 As MccDaq.DigitalPortType 

        Dim DataValue1 As UInt16 

        'DataValue1 = Convert.ToUInt16(191) 

        ULStat1 = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

        PortType1 = PortNum1 

 

        If CheckBox7.Checked = True Then 

            'CheckBox1.Checked = False 

            'CheckBox3.Checked = False 

            'CheckBox4.Checked = False 

            'CheckBox5.Checked = False 

            'CheckBox6.Checked = False 

            'CheckBox2.Checked = False 

            CheckBox8.Checked = False 

            DataValue1 = Convert.ToUInt16(191) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        Else 

            DataValue1 = Convert.ToUInt16(255) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        End If 

 

 

    End Sub 

    Private Sub CheckBox8_Checkstatechanged(ByVal sender As Object, 

ByVal e As System.EventArgs) Handles CheckBox8.CheckStateChanged 

        Dim PortNum1 As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

        Dim ULStat1 As MccDaq.ErrorInfo 

        Dim PortType1 As MccDaq.DigitalPortType 

        Dim DataValue1 As UInt16 

        'DataValue1 = Convert.ToUInt16(127) 



 109 

        ULStat1 = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

        PortType1 = PortNum1 

 

        If CheckBox8.Checked = True Then 

 

            'CheckBox1.Checked = False 

            'CheckBox3.Checked = False 

            'CheckBox4.Checked = False 

            'CheckBox5.Checked = False 

            'CheckBox6.Checked = False 

            CheckBox7.Checked = False 

            'CheckBox2.Checked = False 

            DataValue1 = Convert.ToUInt16(127) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        Else 

            DataValue1 = Convert.ToUInt16(255) 

            ULStat1 = DaqBoard.DOut(PortType1, DataValue1) 

        End If 

 

 

    End Sub 

    Private Sub Form1_Closing(ByVal sender As Object, ByVal e As 

System.ComponentModel.CancelEventArgs) Handles MyBase.Closing 

        Dim ULStat As MccDaq.ErrorInfo 

        Dim DataValue As UInt16 

        Dim DataValue1 As UInt16 

        Dim PortNum As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortB 

        Dim PortNum1 As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

        Dim ULStat1 As MccDaq.ErrorInfo 

        Dim I As Integer 

        ULStat1 = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

        DataValue1 = Convert.ToUInt16(255) 

        DataValue = Convert.ToUInt16(0) 

 

        ULStat = DaqBoard.DIn(PortNum, DataValue) 

        ULStat1 = DaqBoard.DOut(PortNum1, DataValue1) 

        If ULStat1.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        End 

    End Sub 

    Private Sub Form1_Load(ByVal sender As Object, ByVal e As 

System.EventArgs) Handles MyBase.Load 

        Dim ULStat As MccDaq.ErrorInfo 

        Dim ULStat1 As MccDaq.ErrorInfo 

        Dim DataValue As UInt16 

        Dim DataValue1 As UInt16 

        Dim PortNum As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortB 
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        Dim PortNum1 As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

        Dim I As Integer 

 

        ULStat = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortB, 

MccDaq.DigitalPortDirection.DigitalIn) 

        ULStat1 = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

        DataValue = Convert.ToUInt16(0) 

        DataValue1 = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DIn(PortNum, DataValue) 

        ULStat1 = DaqBoard.DOut(PortNum1, DataValue1) 

        'If ULStat1.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        'If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

    End Sub 

 

    Private Sub Timer1_Tick(ByVal sender As Object, ByVal e As 

System.EventArgs) Handles Timer1.Tick 

        Timer1.Stop() 

        Dim ULStat As MccDaq.ErrorInfo 

        Dim ULStat1 As MccDaq.ErrorInfo 

        Dim BitValue As MccDaq.DigitalLogicState 

        Dim BitNum As Integer 'Changed from Short to Integer 

        Dim J As Integer 

        Dim PortType As MccDaq.DigitalPortType 

        Dim PortNum As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortB 

        Dim Direction As MccDaq.DigitalPortDirection = 

MccDaq.DigitalPortDirection.DigitalIn 

        Dim DataValue As UInt16 

        Dim I As Integer 

        PortType = PortNum 

        J = BitNum 

 

        ULStat = DaqBoard.DIn(PortNum, DataValue) 

        If (Convert.ToInt32(DataValue) And CInt((2 ^ 0))) <> 0 Then 

            CheckBox1.Checked = False 

            Me.CheckBox1.ForeColor = System.Drawing.Color.Red 

        Else 

            Me.CheckBox1.ForeColor = System.Drawing.Color.Black 

        End If 

 

        If (Convert.ToInt32(DataValue) And CInt((2 ^ 1))) <> 0 Then 

            CheckBox2.Checked = False 

            Me.CheckBox2.ForeColor = System.Drawing.Color.Red 

        Else 

            Me.CheckBox2.ForeColor = System.Drawing.Color.Black 

        End If 

 

 

        If (Convert.ToInt32(DataValue) And CInt((2 ^ 2))) <> 0 Then 

            CheckBox3.Checked = False 

            Me.CheckBox3.ForeColor = System.Drawing.Color.Red 
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        Else 

            Me.CheckBox3.ForeColor = System.Drawing.Color.Black 

        End If 

 

 

        If (Convert.ToInt32(DataValue) And CInt((2 ^ 3))) <> 0 Then 

            CheckBox4.Checked = False 

            Me.CheckBox4.ForeColor = System.Drawing.Color.Red 

        Else 

            Me.CheckBox4.ForeColor = System.Drawing.Color.Black 

        End If 

 

 

        If (Convert.ToInt32(DataValue) And CInt((2 ^ 4))) <> 0 Then 

            CheckBox5.Checked = False 

            Me.CheckBox5.ForeColor = System.Drawing.Color.Red 

        Else 

            Me.CheckBox5.ForeColor = System.Drawing.Color.Black 

        End If 

 

 

        If (Convert.ToInt32(DataValue) And CInt((2 ^ 5))) <> 0 Then 

            CheckBox6.Checked = False 

            Me.CheckBox6.ForeColor = System.Drawing.Color.Red 

        Else 

            Me.CheckBox6.ForeColor = System.Drawing.Color.Black 

        End If 

 

 

        If (Convert.ToInt32(DataValue) And CInt((2 ^ 6))) <> 0 Then 

            CheckBox7.Checked = False 

            Me.CheckBox7.ForeColor = System.Drawing.Color.Red 

        Else 

            Me.CheckBox7.ForeColor = System.Drawing.Color.Black 

        End If 

 

 

        If (Convert.ToInt32(DataValue) And CInt((2 ^ 7))) <> 0 Then 

            CheckBox8.Checked = False 

            Me.CheckBox8.ForeColor = System.Drawing.Color.Red 

            'BitNum = 7 

            'Dim PortNum1 As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

            'Dim ULStat1 As MccDaq.ErrorInfo 

            'Dim Direction1 As MccDaq.DigitalPortDirection = 

MccDaq.DigitalPortDirection.DigitalOut 

            'Dim DataValue1 As UInt16 

            'BitValue = MccDaq.DigitalLogicState.High 

            'ULStat1 = 

DaqBoard.DBitOut(MccDaq.DigitalPortType.FirstPortA, BitNum, BitValue) 

        Else 

            Me.CheckBox8.ForeColor = System.Drawing.Color.Black 

        End If 

 

        Timer1.Start() 

    End Sub 

End Class 
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2.a. Cor2.m (Program to Identify sprocket location) 

clc; 
clear all; 
close all; 
tic 
dirname = 'C:\Documents and 

Settings\Aravind\Desktop\Grain_o_bot\EndY'; 

 
out = 'C:\Documents and Settings\Aravind\Desktop\Grain_o_bot\EndY'; 

 
n= length(dirname); 
index=strfind(dirname,'\'); 
index_len=length(index); 
cur_path = ''; %Current Path 
cur_path = strcat(cur_path,dirname(1:index(index_len)-1)); 
cur_dir  = ''; %Current directory 
cur_dir  = strcat(cur_dir,dirname(index(index_len)+1:n)); 
files = dir(fullfile(cur_path,cur_dir)); 
temp_name = ' '; 
temp_name = strcat(temp_name, cur_path,'\',out); 
disp('Writing the data to the file');disp(temp_name); 
fid = fopen(temp_name,'W'); 
ftr.name = 'blank'; 
ftr.num_points = 0; 
ftr.locationx = 0; 
ftr.locationy = 0; 

  

  
ftr(2).name = 'blank'; 
ftr(2).num_points = 0; 
ftr(2).locationx = 0; 
ftr(2).locationy = 0; 

  
A=imread('C:\Documents and 

Settings\Aravind\Desktop\Grain_o_bot\Template\Template.tif'); 
C= A(25:145, 28:148); 
F= edge(C, 'canny'); 
for i = 3:length(files) % the files start from the 3rd index 

  
 disp ('Processing file:'); disp(files(i).name); 
 [B, map]=imread('C:\Documents and 

Settings\Aravind\Desktop\Grain_o_bot\EndY\1.tif'); 
% 
img_size = size(A); 
xx=median(median(B)); 
E = edge(B, 'canny'); 
D = real(ifft2(fft2(E) .* fft2(F,768,1024))); 
thresh = max(D(:))-10;  
H=(D > thresh);   
img_size = size(A); 
temp_size = size(F); 

  
points = sum(sum(H)); 
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location = zeros(points,2); 

  
ii=1; 
    for l=1:img_size(1) 
        for m=1:img_size(2) 
             if (H(l,m)==1) 
                 location(ii,1)= round(l-(temp_size(1)/2)); 
                 location(ii,2)= round(m-(temp_size(2)/2)); 
%                  xxx=location(ii,1); 

  
                  if (location(ii,1)< 1) 
                      location(ii,1)= 1; 
                      %disp('Invaild X indentification!'); 
                  end 
                  if (location(ii,2)< 1) 
                      location(ii,2)= 1; 
                      %disp('Invaild Y indentification!'); 
                  end 

                                     

                  
                 ii= ii+1; 
             end 
        end 
    end 

     

  
ftr(i).name=files(i).name; 
ftr(i).num_points = points; 

  

   
    for j=1:points 
       temploc=location(j,:); 
         oriDat=imread('C:\Documents and 

Settings\Aravind\Desktop\Grain_o_bot\EndY\1.tif'); 
        IsPoint=eltest(oriDat,B,temploc); 
        if IsPoint==1 
       tempFinal=imread('C:\Documents and 

Settings\Aravind\Desktop\Grain_o_bot\EndY\1.tif'); 
                        tempFinal(location(j,1),location(j,2))=255; 
            x=location(j,1); 
            y=location(j,2); 
            for j=j+1:points 
                H(location(j,1),location(j,2))=0; 
            end 
            break; 
        else 
            H(location(j,1),location(j,2))=0; 
            x=0; 
            y=0; 
        end 
    end 

     
end    
t=toc; 
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2.b. eltest.m ( function for Cor2.m) 

 
function RetValue=eltest(original,final,loc) 
RetValue=0; 
A1=original;A=final; 
img_size = size(A); 
l=loc(1,1); m=loc(1,2); 
%%l=82; m=85; 
% %   For l=1:img_size(1) 
% %        For m=1:img_size(2) 
% % % %              if (A(l,m)==255) 
if l>65 && l<700 && m>65 && m<1100 
%B= A1(l-50:l+50,m-50:m+50); 
B= A1(l-60:l+60,m-60:m+60); 
%Imshow(B); 
C = imadjust(B,[0.3 0.7],[]);%Imshow(C); 
%S = rangefilt(C); 
T = edge(C,'canny');%imshow(T); 
U = strel('disk', 4, 4); 
V = imdilate(T,U); %imshow(V); 
%%W = imfill(V,'holes'); 
%%imshow(W); 
%%X = strel('square',3); 
%%Y = imerode(V,X); imshow(Y); 
Z = bwperim(V,8);  
%imshow(Z); 

  
% %  
% % C= edge(B, 'canny'); 
% % Imshow(C) 
C = bwareaopen(Z,100); 
%imshow(C),title('mask'); 
[C,num] = bwlabel(C,4); 
[sx sy]=size(C); 
sq1=zeros(sx,sy); 
sq2=zeros(sx,sy); 
eli1=zeros(sx,sy); 
eli2=zeros(sx,sy); 
 sq1=(C==3); 
 %Imshow(sq1); 
 sq2=(C==4); 
 %Imshow(sq2); 
 eli1=(C==1); 
 %imshow(eli1); 
 eli2=(C==2); 
%imshow(eli2); 
try 
eli1 = bwlabel(eli1,4); 
eliprop1=regionprops(eli1,'Centroid'); 
eliprop3=regionprops(eli1,'MajorAxisLength'); 
eliprop4=regionprops(eli1,'MinorAxisLength'); 
eli2 = bwlabel(eli2,4); 
eliprop2=regionprops(eli2,'Centroid'); 
eliprop5=regionprops(eli1,'MajorAxisLength'); 
eliprop6=regionprops(eli1,'MinorAxisLength'); 



 116 

sq1 = bwlabel(sq1,4); 
sqprop1=regionprops(sq1,'Centroid'); 
sqprop3=regionprops(sq1,'MajorAxisLength'); 
sqprop4=regionprops(sq1,'MinorAxisLength'); 
sq2 = bwlabel(sq2,4); 
sqprop2=regionprops(sq2,'Centroid'); 
sqprop5=regionprops(sq2,'MajorAxisLength'); 
sqprop6=regionprops(sq2,'MinorAxisLength'); 
if ((sqprop3.MajorAxisLength - sqprop4.MinorAxisLength)<5) 
    if ((eliprop3.MajorAxisLength - eliprop4.MinorAxisLength)<40) 
        if ((sqprop1.Centroid - eliprop1.Centroid)<15)  
            oriCent=(sqprop1.Centroid+eliprop1.Centroid)/2; 
            if((oriCent-[65 65])<15)%#ok<BDSCA,BDSCA> 
                RetValue=1; 
            end 
        end 
    end 
end 
if ((sqprop3.MajorAxisLength - sqprop4.MinorAxisLength)<5) 
    if ((eliprop5.MajorAxisLength - eliprop6.MinorAxisLength)<40) 
        if ((sqprop1.Centroid - eliprop2.Centroid)<15)  
            oriCent=(sqprop1.Centroid+eliprop2.Centroid)/2; 
            if((oriCent-[65 65])<15)%#ok<BDSCA,BDSCA> 
               RetValue=1; 
            end 
        end 
    end 
end 
if ((sqprop5.MajorAxisLength - sqprop6.MinorAxisLength)<5) 
    if ((eliprop3.MajorAxisLength - eliprop4.MinorAxisLength)<40) 
        if ((sqprop2.Centroid - eliprop1.Centroid)<15)  
            oriCent=(sqprop2.Centroid+eliprop1.Centroid)/2; 
            if((oriCent-[65 65])<15)%#ok<BDSCA,BDSCA> 
                RetValue=1; 
            end 
        end 
    end 
end 

  
if ((sqprop5.MajorAxisLength - sqprop6.MinorAxisLength)<5) 
   if ((eliprop5.MajorAxisLength - eliprop6.MinorAxisLength)<40)  
        if ((sqprop2.Centroid - eliprop2.Centroid)<15)  
            oriCent=(sqprop2.Centroid+eliprop2.Centroid)/2; 
            if((oriCent-[65 65])<15)%#ok<BDSCA,BDSCA> 
                RetValue=1; 
            end 
        end 
   end 
end 

 
catch 
    Retvalue=0; %#ok<NASGU> 
end 
end 
return; 
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2.c. Grain_O_Bot.exe  

 

Public Class Grain_O_Bot 

    Inherits System.Windows.Forms.Form 

    Private DaqBoard As MccDaq.MccBoard = New MccDaq.MccBoard(0) 

 

#Region " Windows Form Designer generated code " 

 

    Public Sub New() 

        MyBase.New() 

        'This call is required by the Windows Form Designer. 

        InitializeComponent() 

        'Add any initialization after the InitializeComponent() call 

        InitUL() 

    End Sub 

 

    'Form overrides dispose to clean up the component list. 

    Protected Overloads Overrides Sub Dispose(ByVal disposing As 

Boolean) 

        If disposing Then 

            If Not (components Is Nothing) Then 

                components.Dispose() 

            End If 

        End If 

        MyBase.Dispose(disposing) 

    End Sub 

 

    'Required by the Windows Form Designer 

    Private components As System.ComponentModel.IContainer 

    'NOTE: The following procedure is required by the Windows Form 

Designer 

    'It can be modified using the Windows Form Designer.   

    'Do not modify it using the code editor. 

    Friend WithEvents Button1 As System.Windows.Forms.Button 

    Friend WithEvents AxMDisplay1 As AxMatrox.ActiveMIL.AxMDisplay 

    Friend WithEvents AxMGraphicContext1 As 

AxMatrox.ActiveMIL.AxMGraphicContext 

    Friend WithEvents AxMDigitizer1 As AxMatrox.ActiveMIL.AxMDigitizer 

    Friend WithEvents AxMImage1 As AxMatrox.ActiveMIL.AxMImage 

    Friend WithEvents AxMSystem1 As AxMatrox.ActiveMIL.AxMSystem 

    Friend WithEvents AxMApplication1 As 

AxMatrox.ActiveMIL.AxMApplication 

    Friend WithEvents AxMImage3 As AxMatrox.ActiveMIL.AxMImage 

    Friend WithEvents AxMImage7 As AxMatrox.ActiveMIL.AxMImage 

    Friend WithEvents AxMImage6 As AxMatrox.ActiveMIL.AxMImage 

    Friend WithEvents AxMGraphicContext4 As 

AxMatrox.ActiveMIL.AxMGraphicContext 

    Friend WithEvents AxMGraphicContext3 As 

AxMatrox.ActiveMIL.AxMGraphicContext 

    Friend WithEvents AxMGraphicContext2 As 

AxMatrox.ActiveMIL.AxMGraphicContext 

    Friend WithEvents AxMDigitizer2 As AxMatrox.ActiveMIL.AxMDigitizer 

    Friend WithEvents AxMDisplay2 As AxMatrox.ActiveMIL.AxMDisplay 

    Friend WithEvents AxMImage2 As AxMatrox.ActiveMIL.AxMImage 
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    Friend WithEvents AxMSystem2 As AxMatrox.ActiveMIL.AxMSystem 

    Friend WithEvents AxMApplication2 As 

AxMatrox.ActiveMIL.AxMApplication 

    Friend WithEvents TextBox1 As System.Windows.Forms.TextBox 

    Friend WithEvents Label1 As System.Windows.Forms.Label 

    Friend WithEvents Button2 As System.Windows.Forms.Button 

    Friend WithEvents Button3 As System.Windows.Forms.Button 

    <System.Diagnostics.DebuggerStepThrough()> Private Sub 

InitializeComponent() 

        Dim resources As System.Resources.ResourceManager = New 

System.Resources.ResourceManager(GetType(Grain_O_Bot)) 

        Me.Button1 = New System.Windows.Forms.Button 

        Me.AxMDisplay1 = New AxMatrox.ActiveMIL.AxMDisplay 

        Me.AxMGraphicContext1 = New 

AxMatrox.ActiveMIL.AxMGraphicContext 

        Me.AxMDigitizer1 = New AxMatrox.ActiveMIL.AxMDigitizer 

        Me.AxMImage1 = New AxMatrox.ActiveMIL.AxMImage 

        Me.AxMSystem1 = New AxMatrox.ActiveMIL.AxMSystem 

        Me.AxMApplication1 = New AxMatrox.ActiveMIL.AxMApplication 

        Me.AxMImage3 = New AxMatrox.ActiveMIL.AxMImage 

        Me.AxMImage7 = New AxMatrox.ActiveMIL.AxMImage 

        Me.AxMImage6 = New AxMatrox.ActiveMIL.AxMImage 

        Me.AxMGraphicContext4 = New 

AxMatrox.ActiveMIL.AxMGraphicContext 

        Me.AxMGraphicContext3 = New 

AxMatrox.ActiveMIL.AxMGraphicContext 

        Me.AxMGraphicContext2 = New 

AxMatrox.ActiveMIL.AxMGraphicContext 

        Me.AxMDigitizer2 = New AxMatrox.ActiveMIL.AxMDigitizer 

        Me.AxMDisplay2 = New AxMatrox.ActiveMIL.AxMDisplay 

        Me.AxMImage2 = New AxMatrox.ActiveMIL.AxMImage 

        Me.AxMSystem2 = New AxMatrox.ActiveMIL.AxMSystem 

        Me.AxMApplication2 = New AxMatrox.ActiveMIL.AxMApplication 

        Me.TextBox1 = New System.Windows.Forms.TextBox 

        Me.Label1 = New System.Windows.Forms.Label 

        Me.Button2 = New System.Windows.Forms.Button 

        Me.Button3 = New System.Windows.Forms.Button 

        CType(Me.AxMDisplay1, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMGraphicContext1, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMDigitizer1, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMImage1, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMSystem1, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMApplication1, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMImage3, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMImage7, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMImage6, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMGraphicContext4, 

System.ComponentModel.ISupportInitialize).BeginInit() 
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        CType(Me.AxMGraphicContext3, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMGraphicContext2, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMDigitizer2, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMDisplay2, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMImage2, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMSystem2, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        CType(Me.AxMApplication2, 

System.ComponentModel.ISupportInitialize).BeginInit() 

        Me.SuspendLayout() 

        ' 

        'Button1 

        ' 

        Me.Button1.Location = New System.Drawing.Point(40, 136) 

        Me.Button1.Name = "Button1" 

        Me.Button1.TabIndex = 7 

        Me.Button1.Text = "Start" 

        ' 

        'AxMDisplay1 

        ' 

        Me.AxMDisplay1.Enabled = True 

        Me.AxMDisplay1.Location = New System.Drawing.Point(168, 32) 

        Me.AxMDisplay1.Name = "AxMDisplay1" 

        Me.AxMDisplay1.OcxState = 

CType(resources.GetObject("AxMDisplay1.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMDisplay1.Size = New System.Drawing.Size(768, 400) 

        Me.AxMDisplay1.TabIndex = 13 

        Me.AxMDisplay1.Visible = False 

        ' 

        'AxMGraphicContext1 

        ' 

        Me.AxMGraphicContext1.Enabled = True 

        Me.AxMGraphicContext1.Location = New System.Drawing.Point(256, 

0) 

        Me.AxMGraphicContext1.Name = "AxMGraphicContext1" 

        Me.AxMGraphicContext1.OcxState = 

CType(resources.GetObject("AxMGraphicContext1.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMGraphicContext1.Size = New System.Drawing.Size(32, 32) 

        Me.AxMGraphicContext1.TabIndex = 12 

        Me.AxMGraphicContext1.Visible = False 

        ' 

        'AxMDigitizer1 

        ' 

        Me.AxMDigitizer1.Enabled = True 

        Me.AxMDigitizer1.Location = New System.Drawing.Point(288, 0) 

        Me.AxMDigitizer1.Name = "AxMDigitizer1" 

        Me.AxMDigitizer1.OcxState = 

CType(resources.GetObject("AxMDigitizer1.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMDigitizer1.Size = New System.Drawing.Size(32, 32) 
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        Me.AxMDigitizer1.TabIndex = 11 

        Me.AxMDigitizer1.Visible = False 

        ' 

        'AxMImage1 

        ' 

        Me.AxMImage1.Enabled = True 

        Me.AxMImage1.Location = New System.Drawing.Point(224, 0) 

        Me.AxMImage1.Name = "AxMImage1" 

        Me.AxMImage1.OcxState = 

CType(resources.GetObject("AxMImage1.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMImage1.Size = New System.Drawing.Size(32, 32) 

        Me.AxMImage1.TabIndex = 10 

        Me.AxMImage1.Visible = False 

        ' 

        'AxMSystem1 

        ' 

        Me.AxMSystem1.Enabled = True 

        Me.AxMSystem1.Location = New System.Drawing.Point(192, 0) 

        Me.AxMSystem1.Name = "AxMSystem1" 

        Me.AxMSystem1.OcxState = 

CType(resources.GetObject("AxMSystem1.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMSystem1.Size = New System.Drawing.Size(32, 32) 

        Me.AxMSystem1.TabIndex = 9 

        ' 

        'AxMApplication1 

        ' 

        Me.AxMApplication1.Enabled = True 

        Me.AxMApplication1.Location = New System.Drawing.Point(160, 0) 

        Me.AxMApplication1.Name = "AxMApplication1" 

        Me.AxMApplication1.OcxState = 

CType(resources.GetObject("AxMApplication1.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMApplication1.Size = New System.Drawing.Size(32, 32) 

        Me.AxMApplication1.TabIndex = 8 

        Me.AxMApplication1.Visible = False 

        ' 

        'AxMImage3 

        ' 

        Me.AxMImage3.Enabled = True 

        Me.AxMImage3.Location = New System.Drawing.Point(688, 16) 

        Me.AxMImage3.Name = "AxMImage3" 

        Me.AxMImage3.OcxState = 

CType(resources.GetObject("AxMImage3.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMImage3.Size = New System.Drawing.Size(32, 32) 

        Me.AxMImage3.TabIndex = 31 

        Me.AxMImage3.Visible = False 

        ' 

        'AxMImage7 

        ' 

        Me.AxMImage7.Enabled = True 

        Me.AxMImage7.Location = New System.Drawing.Point(752, 16) 

        Me.AxMImage7.Name = "AxMImage7" 
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        Me.AxMImage7.OcxState = 

CType(resources.GetObject("AxMImage7.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMImage7.Size = New System.Drawing.Size(32, 32) 

        Me.AxMImage7.TabIndex = 30 

        Me.AxMImage7.Visible = False 

        ' 

        'AxMImage6 

        ' 

        Me.AxMImage6.Enabled = True 

        Me.AxMImage6.Location = New System.Drawing.Point(720, 16) 

        Me.AxMImage6.Name = "AxMImage6" 

        Me.AxMImage6.OcxState = 

CType(resources.GetObject("AxMImage6.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMImage6.Size = New System.Drawing.Size(32, 32) 

        Me.AxMImage6.TabIndex = 29 

        Me.AxMImage6.Visible = False 

        ' 

        'AxMGraphicContext4 

        ' 

        Me.AxMGraphicContext4.Enabled = True 

        Me.AxMGraphicContext4.Location = New System.Drawing.Point(848, 

16) 

        Me.AxMGraphicContext4.Name = "AxMGraphicContext4" 

        Me.AxMGraphicContext4.OcxState = 

CType(resources.GetObject("AxMGraphicContext4.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMGraphicContext4.Size = New System.Drawing.Size(32, 32) 

        Me.AxMGraphicContext4.TabIndex = 28 

        Me.AxMGraphicContext4.Visible = False 

        ' 

        'AxMGraphicContext3 

        ' 

        Me.AxMGraphicContext3.Enabled = True 

        Me.AxMGraphicContext3.Location = New System.Drawing.Point(816, 

16) 

        Me.AxMGraphicContext3.Name = "AxMGraphicContext3" 

        Me.AxMGraphicContext3.OcxState = 

CType(resources.GetObject("AxMGraphicContext3.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMGraphicContext3.Size = New System.Drawing.Size(32, 32) 

        Me.AxMGraphicContext3.TabIndex = 27 

        Me.AxMGraphicContext3.Visible = False 

        ' 

        'AxMGraphicContext2 

        ' 

        Me.AxMGraphicContext2.Enabled = True 

        Me.AxMGraphicContext2.Location = New System.Drawing.Point(784, 

16) 

        Me.AxMGraphicContext2.Name = "AxMGraphicContext2" 

        Me.AxMGraphicContext2.OcxState = 

CType(resources.GetObject("AxMGraphicContext2.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMGraphicContext2.Size = New System.Drawing.Size(32, 32) 

        Me.AxMGraphicContext2.TabIndex = 26 

        Me.AxMGraphicContext2.Visible = False 
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        ' 

        'AxMDigitizer2 

        ' 

        Me.AxMDigitizer2.Enabled = True 

        Me.AxMDigitizer2.Location = New System.Drawing.Point(952, 16) 

        Me.AxMDigitizer2.Name = "AxMDigitizer2" 

        Me.AxMDigitizer2.OcxState = 

CType(resources.GetObject("AxMDigitizer2.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMDigitizer2.Size = New System.Drawing.Size(32, 32) 

        Me.AxMDigitizer2.TabIndex = 25 

        Me.AxMDigitizer2.Visible = False 

        ' 

        'AxMDisplay2 

        ' 

        Me.AxMDisplay2.Enabled = True 

        Me.AxMDisplay2.Location = New System.Drawing.Point(304, 56) 

        Me.AxMDisplay2.Name = "AxMDisplay2" 

        Me.AxMDisplay2.OcxState = 

CType(resources.GetObject("AxMDisplay2.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMDisplay2.Size = New System.Drawing.Size(672, 328) 

        Me.AxMDisplay2.TabIndex = 24 

        Me.AxMDisplay2.Visible = False 

        ' 

        'AxMImage2 

        ' 

        Me.AxMImage2.Enabled = True 

        Me.AxMImage2.Location = New System.Drawing.Point(656, 16) 

        Me.AxMImage2.Name = "AxMImage2" 

        Me.AxMImage2.OcxState = 

CType(resources.GetObject("AxMImage2.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMImage2.Size = New System.Drawing.Size(32, 32) 

        Me.AxMImage2.TabIndex = 23 

        Me.AxMImage2.Visible = False 

        ' 

        'AxMSystem2 

        ' 

        Me.AxMSystem2.Enabled = True 

        Me.AxMSystem2.Location = New System.Drawing.Point(632, 16) 

        Me.AxMSystem2.Name = "AxMSystem2" 

        Me.AxMSystem2.OcxState = 

CType(resources.GetObject("AxMSystem2.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMSystem2.Size = New System.Drawing.Size(32, 32) 

        Me.AxMSystem2.TabIndex = 22 

        ' 

        'AxMApplication2 

        ' 

        Me.AxMApplication2.Enabled = True 

        Me.AxMApplication2.Location = New System.Drawing.Point(600, 16) 

        Me.AxMApplication2.Name = "AxMApplication2" 

        Me.AxMApplication2.OcxState = 

CType(resources.GetObject("AxMApplication2.OcxState"), 

System.Windows.Forms.AxHost.State) 

        Me.AxMApplication2.Size = New System.Drawing.Size(32, 32) 
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        Me.AxMApplication2.TabIndex = 21 

        Me.AxMApplication2.Visible = False 

        ' 

        'TextBox1 

        ' 

        Me.TextBox1.Location = New System.Drawing.Point(232, 160) 

        Me.TextBox1.Name = "TextBox1" 

        Me.TextBox1.Size = New System.Drawing.Size(264, 20) 

        Me.TextBox1.TabIndex = 32 

        Me.TextBox1.Text = "TextBox1" 

        ' 

        'Label1 

        ' 

        Me.Label1.Location = New System.Drawing.Point(232, 120) 

        Me.Label1.Name = "Label1" 

        Me.Label1.Size = New System.Drawing.Size(176, 24) 

        Me.Label1.TabIndex = 33 

        Me.Label1.Text = "The Grain Identified is" 

        ' 

        'Button2 

        ' 

        Me.Button2.Location = New System.Drawing.Point(224, 208) 

        Me.Button2.Name = "Button2" 

        Me.Button2.Size = New System.Drawing.Size(96, 32) 

        Me.Button2.TabIndex = 34 

        Me.Button2.Text = "Open" 

        ' 

        'Button3 

        ' 

        Me.Button3.Location = New System.Drawing.Point(400, 208) 

        Me.Button3.Name = "Button3" 

        Me.Button3.Size = New System.Drawing.Size(88, 32) 

        Me.Button3.TabIndex = 35 

        Me.Button3.Text = "Do Not Open" 

        ' 

        'Grain_O_Bot 

        ' 

        Me.AutoScaleBaseSize = New System.Drawing.Size(5, 13) 

        Me.ClientSize = New System.Drawing.Size(1008, 454) 

        Me.Controls.Add(Me.Button3) 

        Me.Controls.Add(Me.Button2) 

        Me.Controls.Add(Me.Label1) 

        Me.Controls.Add(Me.TextBox1) 

        Me.Controls.Add(Me.AxMImage3) 

        Me.Controls.Add(Me.AxMImage7) 

        Me.Controls.Add(Me.AxMImage6) 

        Me.Controls.Add(Me.AxMGraphicContext4) 

        Me.Controls.Add(Me.AxMGraphicContext3) 

        Me.Controls.Add(Me.AxMGraphicContext2) 

        Me.Controls.Add(Me.AxMDigitizer2) 

        Me.Controls.Add(Me.AxMDisplay2) 

        Me.Controls.Add(Me.AxMImage2) 

        Me.Controls.Add(Me.AxMSystem2) 

        Me.Controls.Add(Me.AxMApplication2) 

        Me.Controls.Add(Me.AxMDisplay1) 

        Me.Controls.Add(Me.AxMGraphicContext1) 

        Me.Controls.Add(Me.AxMDigitizer1) 
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        Me.Controls.Add(Me.AxMImage1) 

        Me.Controls.Add(Me.AxMSystem1) 

        Me.Controls.Add(Me.AxMApplication1) 

        Me.Controls.Add(Me.Button1) 

        Me.Name = "Grain_O_Bot" 

        Me.Text = "Grain_O_Bot" 

        CType(Me.AxMDisplay1, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMGraphicContext1, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMDigitizer1, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMImage1, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMSystem1, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMApplication1, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMImage3, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMImage7, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMImage6, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMGraphicContext4, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMGraphicContext3, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMGraphicContext2, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMDigitizer2, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMDisplay2, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMImage2, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMSystem2, 

System.ComponentModel.ISupportInitialize).EndInit() 

        CType(Me.AxMApplication2, 

System.ComponentModel.ISupportInitialize).EndInit() 

        Me.ResumeLayout(False) 

 

    End Sub 

 

#End Region 

#Region "Universal Library Initialization - Expand to change error 

handling, etc." 

 

    Private Sub InitUL() 

 

        Dim ULStat As MccDaq.ErrorInfo 

        'Initiate error handling 

        '  activating error handling will trap errors like 

        '  bad channel numbers and non-configured conditions. 

        '  Parameters: 

        '    MccDaq.ErrorReporting.PrintAll :all warnings and errors 

encountered will be printed 
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        '    MccDaq.ErrorHandling.StopAll   :if any error is 

encountered, the program will stop 

 

        ULStat = 

MccDaq.MccService.ErrHandling(MccDaq.ErrorReporting.PrintAll, 

MccDaq.ErrorHandling.StopAll) 

 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

            Stop 

        End If 

 

    End Sub 

 

#End Region 

 

    Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles Button1.Click 

        Dim MatLab As Object 

        Dim Result, Result_1 As String 

        Dim MReal(1, 3) As Double 

        Dim MImag(1, 3) As Double 

        Dim x As Object 

        Dim y As Object 

        Dim Gr_Id As Object 

        Dim Image1 As Object 

 

        'For Test commented on 17th Dec 

        Dim ULStat As MccDaq.ErrorInfo 

        Dim BoardNum As Integer 

        BoardNum = 0 

        DaqBoard = New MccDaq.MccBoard(BoardNum) 

        Dim A, B, C, D, F, G, I, J, K, L, M, N As Integer 

 

        Dim BitValue As MccDaq.DigitalLogicState 

        Dim BitNum As Integer 'Changed from Short to Integer 

        Dim PortType As MccDaq.DigitalPortType 

        Dim PortNum As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

        Dim Direction As MccDaq.DigitalPortDirection = 

MccDaq.DigitalPortDirection.DigitalOut 

        Dim DataValue As UInt16 

        PortType = PortNum 

        ULStat = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

 

        'Bring X to Base 

        DataValue = Convert.ToUInt16(253) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(1000) 'Change to Length of X 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 
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        'Bring Y to Base 

        DataValue = Convert.ToUInt16(251) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(1000) 'Change to Length of Y 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

        'Bring Z to Base 

        DataValue = Convert.ToUInt16(223) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(1000) 'Change to Length of Z 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

        'Bring Y to Base+View 

        DataValue = Convert.ToUInt16(247) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(10000) 'Change to Length of Z up 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

        'Grab(Image) 

        'Till This Commented on 17th Dec 

        Image1 = Me.AxMImage1 

        AxMDigitizer1.Grab() 

        Image1.Save("C:\Documents and 

Settings\Aravind\Desktop\Grain_o_bot\EndY\1.tif") 

 

        'Start This Commented on 17th Dec 

        'Analyse with Matlab for the 1st time 

        MatLab = CreateObject("Matlab.Application") 

        Result = MatLab.Execute("C:\Documents and Settings\Aravind\My 

Documents\MATLAB") 

        Result = MatLab.Execute("cor2") 

        x = MatLab.GetVariable("x", "base") 

        y = MatLab.GetVariable("y", "base") 

        'MsgBox(x & "," & y) 'Remove this later 

        ''MatLab.Quit() 

 

        'If Image is not found move grab and analyse 

        For I = 1 To 2 

            If x = 0 Then 

                'Move 

                DataValue = Convert.ToUInt16(254) 

                ULStat = DaqBoard.DOut(PortType, DataValue) 
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                If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors 

Then Stop 

                System.Threading.Thread.Sleep(60000) 'Change to Length 

of half a frame 

                DataValue = Convert.ToUInt16(255) 

                ULStat = DaqBoard.DOut(PortType, DataValue) 

                If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors 

Then Stop 

 

                'Grab Image 

                Image1 = Me.AxMImage1 

                AxMDigitizer1.Grab() 

                Image1.Save("C:\Documents and 

Settings\Aravind\Desktop\Grain_o_bot\EndY\1.tif") 

 

                'Analyze 

                MatLab = CreateObject("Matlab.Application") 

                Result = MatLab.Execute("C:\Documents and 

Settings\Aravind\My Documents\MATLAB") 

                Result = MatLab.Execute("cor2") 

                x = MatLab.GetVariable("x", "base") 

                y = MatLab.GetVariable("y", "base") 

                'MsgBox(x & "," & y) ' Remove this later 

                'MatLab.Quit() 

            Else 

                Exit For 

            End If 

        Next I 

 

        'Readings for Y End 

        A = 568 

        B = 63 

 

        'Aligning Idenified Image with base template 

        F = A - (x + 60) 

        D = B - (y - 60) 

        'MsgBox(D & "," & F) 

        If D > 0 Then 

            D = ((Math.Abs(D) / 11) * 1000) 

            DataValue = Convert.ToUInt16(254) 

            ULStat = DaqBoard.DOut(PortType, DataValue) 

            If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

            System.Threading.Thread.Sleep(D) 

            DataValue = Convert.ToUInt16(255) 

            ULStat = DaqBoard.DOut(PortType, DataValue) 

            If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        Else 

            D = ((Math.Abs(D) / 11) * 1000) 

            DataValue = Convert.ToUInt16(253) 

            ULStat = DaqBoard.DOut(PortType, DataValue) 

            If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

            System.Threading.Thread.Sleep(D) 

            DataValue = Convert.ToUInt16(255) 

            ULStat = DaqBoard.DOut(PortType, DataValue) 
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            If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        End If 

 

        If F > 0 Then 

            F = ((Math.Abs(F) / 11.5) * 1000) 

            DataValue = Convert.ToUInt16(247) 

            ULStat = DaqBoard.DOut(PortType, DataValue) 

            If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

            System.Threading.Thread.Sleep(F) 

            DataValue = Convert.ToUInt16(255) 

            ULStat = DaqBoard.DOut(PortType, DataValue) 

            If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        Else 

            F = ((Math.Abs(F) / 11.5) * 1000) 

            DataValue = Convert.ToUInt16(251) 

            ULStat = DaqBoard.DOut(PortType, DataValue) 

            If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

            System.Threading.Thread.Sleep(F) 

            DataValue = Convert.ToUInt16(255) 

            ULStat = DaqBoard.DOut(PortType, DataValue) 

        End If 

 

        'Move in Z till stop 

        DataValue = Convert.ToUInt16(239) 'Change for Z (223) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(73000) 'Will engage (Check) ' 

Change Back to 73000 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

        ''Move in Rot for a sec 

        'DataValue = Convert.ToUInt16(191) 

        'ULStat = DaqBoard.DOut(PortType, DataValue) 

        'If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        'System.Threading.Thread.Sleep(250) 'half a second change if 

needed 

        'DataValue = Convert.ToUInt16(255) 

        'ULStat = DaqBoard.DOut(PortType, DataValue) 

        'If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

 

 

        ''Move in Z for a sec and stop 

        'DataValue = Convert.ToUInt16(239) 'Change for Z (223) 

        'ULStat = DaqBoard.DOut(PortType, DataValue) 

        'If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 
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        'System.Threading.Thread.Sleep(250) 'Will engage 

        'DataValue = Convert.ToUInt16(255) 

        'ULStat = DaqBoard.DOut(PortType, DataValue) 

        'If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

 

        'Move in opp for a sec and move back *Assuming the sprocket is 

closed* 

 

        'Opening the sprocket 

 

        DataValue = Convert.ToUInt16(191) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(1000) 'Will engage 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

        'Closing the sprocket 

 

        DataValue = Convert.ToUInt16(127) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(1000) 'Will engage 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

        'Start 2nd camera and acquire image, and Identify the image and 

provide message if 'Yes' then open If 'No'then move back 

        Dim Image2 As Object 

        'Dim Image3 As Object 

        'Dim Image4 As Object 

        'Dim Image5 As Object 

        Image2 = Me.AxMImage2 

        'Image3 = Me.AxMImage3 

        'Image4 = Me.AxMImage6 

        'Image5 = Me.AxMImage7 

        AxMDigitizer2.Grab() 

        Image2.Save("C:\Documents and 

Settings\Aravind\Desktop\Grain_o_bot\Grainimg\1.tif") 

        'Image3.Save("C:\Documents and 

Settings\Aravind\Desktop\Grain_o_bot\Grainimg\2.tif") 

        'Image4.Save("C:\Documents and 

Settings\Aravind\Desktop\Grain_o_bot\Grainimg\3.tif") 

        'Image5.Save("C:\Documents and 

Settings\Aravind\Desktop\Grain_o_bot\Grainimg\4.tif") 

 

 

        'AxMImage2.Clear() 

        'AxMImage3.Clear() 
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        'AxMImage6.Clear() 

        'AxMImage7.Clear() 

        'AxMDisplay2.Free() 

        'Run Matlab to find Grain 

        MatLab = CreateObject("Matlab.Application") 

        Result_1 = MatLab.Execute("C:\Documents and Settings\Aravind\My 

Documents\MATLAB") 

        Result_1 = MatLab.Execute("GrainId") 

        Gr_Id = MatLab.GetVariable("Iam", "base") 

        'MatLab.Quit() 

        Dim Grain As String 

        If Gr_Id = 1 Then 

            Grain = "Barley" 

        ElseIf Gr_Id = 2 Then 

            Grain = "CWRS" 

        ElseIf Gr_Id = 3 Then 

            Grain = "Canola" 

        ElseIf Gr_Id = 4 Then 

            Grain = "Unknown" 

             

        End If 

        TextBox1.Text = Grain 

        TextBox1.Visible = True 

        Label1.Visible = True 

        Button2.Visible = True 

        Button3.Visible = True 

 

        'Close all 

 

    End Sub 

 

    Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles MyBase.Load 

        Dim ULStat As MccDaq.ErrorInfo 

        Dim DataValue As UInt16 

        Dim PortNum As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

        Dim PortType As MccDaq.DigitalPortType 

        PortType = PortNum 

        ULStat = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortNum, DataValue) 

        TextBox1.Visible = False 

        Label1.Visible = False 

        Button2.Visible = False 

        Button3.Visible = False 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

    End Sub 

 

    Private Sub Grain_O_Bot_Closing(ByVal sender As Object, ByVal e As 

System.ComponentModel.CancelEventArgs) Handles MyBase.Closing 

        Dim ULStat As MccDaq.ErrorInfo 

        Dim DataValue As UInt16 
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        Dim PortNum As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

 

        AxMDigitizer1.Free() 

        AxMSystem1.Free() 

        AxMApplication1.Dispose() 

        AxMDigitizer2.Free() 

        AxMSystem2.Free() 

        AxMApplication2.Dispose() 

 

        ULStat = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortNum, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        End 

    End Sub 

 

    Private Sub Button2_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles Button2.Click 

        'To Open 

        Dim ULStat As MccDaq.ErrorInfo 

        Dim BoardNum As Integer 

        BoardNum = 0 

        DaqBoard = New MccDaq.MccBoard(BoardNum) 

        Dim A, B, C, D, F, G, I, J, K, L, M, N As Integer 

 

        Dim BitValue As MccDaq.DigitalLogicState 

        Dim BitNum As Integer 'Changed from Short to Integer 

        Dim PortType As MccDaq.DigitalPortType 

        Dim PortNum As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

        Dim Direction As MccDaq.DigitalPortDirection = 

MccDaq.DigitalPortDirection.DigitalOut 

        Dim DataValue As UInt16 

        PortType = PortNum 

        ULStat = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

 

        'Open Sprocket 

 

        DataValue = Convert.ToUInt16(191) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(2000) 'Will engage 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(10000) 

 

        'Close Sprocket 

        DataValue = Convert.ToUInt16(127) 
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        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(2000) 'Will engage 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

        'Return Back to oroginal location 

        'Bring z back to base 

        DataValue = Convert.ToUInt16(223) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(1000) 'Change to Length of Z 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

        'Bring Y to Base 

        DataValue = Convert.ToUInt16(251) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(1000) 'Change to Length of Y 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

        'Bring X to Base 

        DataValue = Convert.ToUInt16(253) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(1000) 'Change to Length of X 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

    End Sub 

 

    Private Sub Button3_Click(ByVal sender As System.Object, ByVal e As 

System.EventArgs) Handles Button3.Click 

        'To Close 

        Dim ULStat As MccDaq.ErrorInfo 

        Dim BoardNum As Integer 

        BoardNum = 0 

        DaqBoard = New MccDaq.MccBoard(BoardNum) 

        Dim A, B, C, D, F, G, I, J, K, L, M, N As Integer 

 

        Dim BitValue As MccDaq.DigitalLogicState 

        Dim BitNum As Integer 'Changed from Short to Integer 

        Dim PortType As MccDaq.DigitalPortType 



 133 

        Dim PortNum As MccDaq.DigitalPortType = 

MccDaq.DigitalPortType.FirstPortA 

        Dim Direction As MccDaq.DigitalPortDirection = 

MccDaq.DigitalPortDirection.DigitalOut 

        Dim DataValue As UInt16 

        PortType = PortNum 

        ULStat = 

DaqBoard.DConfigPort(MccDaq.DigitalPortType.FirstPortA, 

MccDaq.DigitalPortDirection.DigitalOut) 

        'Bring z back to base 

        DataValue = Convert.ToUInt16(223) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(1000) 'Change to Length of Z 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

        'Bring Y to Base 

        DataValue = Convert.ToUInt16(251) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(1000) 'Change to Length of Y 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

 

        'Bring X to Base 

        DataValue = Convert.ToUInt16(253) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

        System.Threading.Thread.Sleep(1000) 'Change to Length of X 

        DataValue = Convert.ToUInt16(255) 

        ULStat = DaqBoard.DOut(PortType, DataValue) 

        If ULStat.Value <> MccDaq.ErrorInfo.ErrorCode.NoErrors Then 

Stop 

    End Sub 

End Class 
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2.d. Grainid.m  

clc; 
clear all; 
close all; 

  
dirname = input('Please enter the directory name to analyse: ','s'); 
out = input ('Please enter the results file name: ', 's'); 

  
%======================================================================

==== 
%  Finding the file names from the given directory 
%======================================================================

==== 

  
n= length(dirname); 
index=strfind(dirname,'\'); 
index_len=length(index); 

  
%======================================================================

==== 
% Getting Current path and directory information  
%======================================================================

==== 
cur_path = ''; %Current Path 
cur_path = strcat(cur_path,dirname(1:index(index_len)-1)); 
cur_dir  = ''; %Current directory 
cur_dir  = strcat(cur_dir,dirname(index(index_len)+1:n)); 

  
%======================================================================

==== 
% Getting Files Information 
%======================================================================

==== 
files = dir(fullfile(cur_path,cur_dir)); 
temp_name = ' '; 
temp_name = strcat(temp_name, cur_path,'\',out); 
disp('Writing the data to the file');disp(temp_name); 
fid = fopen(temp_name,'W'); 

  
%======================================================================

==== 
% Getting Files Information 
%======================================================================

==== 

  
ftr.name = 'blank'; 
ftr.num_points = 0; 
ftr.locationx = 0; 
ftr.locationy = 0; 

  

  
ftr(2).name = 'blank'; 
ftr(2).num_points = 0; 
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ftr(2).locationx = 0; 
ftr(2).locationy = 0; 

  

  
for i = 3:length(files) 
    disp ('Processing file:'); disp(files(i).name); 
   %[A, map] = imread(strcat(dirname,'\',files(i).name)); 
    %[B, map] = imread(strcat(dirname,'\',files(i).name)); 
[C, map] = imread(strcat(dirname,'\',files(i).name)); 
%A= imread('C:\Documents and 

Settings\Aravind\Desktop\Grain_Identification\BARLEY\BARLEY1.tif'); 
%B= imread('C:\Documents and 

Settings\Aravind\Desktop\Grain_Identification\CWRS\CWRS1.tif'); 
%C=imread('C:\Documents and 

Settings\Aravind\Desktop\Grain_Identification\CANOLA\CANOLA1.tif'); 
%D=A(500:1100, 191:791); 
%imshow(C); 
%E=B(225:825, 300:925); 
%imshow(D); 
F=C(550:1150, 225:825); 
%G=imadjust(F);%Change to appropriate subimage 
G=F; 
%H=imadjust(E); 
%I=imadjust(F); 
%GG = rangefilt(G);  
%HH = rangefilt(H);  
%II = rangefilt(I);  
%imshow(D), figure,imhist(D),figure,imshow(E), figure, imhist(E), 

figure,imshow(F),figure,imhist(F),figure,imshow(G),figure, 

imhist(G),figure,imshow(H),figure, imhist(H),figure, imshow(I),figure, 

imhist(I),figure, imshow(GG),figure,imhist(GG),figure, 

imshow(HH),figure,imhist(HH),figure,imshow(II),figure, imhist(II);   

  
CountA = 0; 
for I = 1 : 600 
    for J = 1 : 600 
        if G(I,J)>160 && G(I,J)<165 
            CountA = CountA+1; 
        end 
    end 
end 

  
CountB = 0; 
for I = 1 : 600 
    for J = 1 : 600 
        if G(I,J)>75 && G(I,J)<85 
            CountB = CountB+1; 
        end 
    end 
end 

  
CountC = 0; 
for I = 1 : 600 
    for J = 1 : 600 
        if G(I,J)>100 && G(I,J)<105 
            CountC = CountC+1; 
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        end 
    end 
end 
CountD = 0; 
for I = 1 : 600 
    for J = 1 : 600 
        if G(I,J)>105 && G(I,J)<115 
            CountD = CountD+1; 
        end 
    end 
end 

  
CountE = 0; 
for I = 1 : 600 
    for J = 1 : 600 
        if G(I,J)>195 && G(I,J)<205 
            CountE = CountE+1; 
        end 
    end 
end 
CountF = 0; 
for I = 1 : 600 
    for J = 1 : 600 
        if G(I,J)>175 && G(I,J)<185 
            CountF = CountF+1; 
        end 
    end 
end 
CountG = 0; 
for I = 1 : 600 
    for J = 1 : 600 
        if G(I,J)>205 && G(I,J)<215 
            CountG = CountG+1; 
        end 
    end 
end 
CountH = 0; 
for I = 1 : 600 
    for J = 1 : 600 
        if G(I,J)>145 && G(I,J)<155 
            CountH = CountH+1; 
        end 
    end 
end 

  
CountI = 0; 
for I = 1 : 600 
    for J = 1 : 600 
        if G(I,J)>25 && G(I,J)<35 
            CountI = CountI+1; 
        end 
    end 
end 

  
CountJ = 0; 
for I = 1 : 600 
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    for J = 1 : 600 
        if G(I,J)>45 && G(I,J)<55 
            CountJ = CountJ+1; 
        end 
    end 
end 

  
CountK = 0; 
for I = 1 : 600 
    for J = 1 : 600 
        if G(I,J)==150 
            CountK = CountK+1; 
        end 
    end 
end 
CountL = 0; 
for I = 1 : 600 
    for J = 1 : 600 
        if G(I,J)==200 
            CountL = CountL+1; 
        end 
    end 
end 

  
if CountL >0 && CountL < 250 && CountG >100 && CountG < 1000 && CountF 

>1000 && CountF < 5000&& CountE >100 && CountE < 2000 
    Iam = 1; 

  
elseif CountL >250 && CountL < 700 && CountG >2500 && CountG < 4000 && 

CountF >6000 && CountF < 9000&& CountE >3500 && CountE < 6000 
     Iam = 2; 

  
elseif CountL == 0 && CountG == 0 && CountF == 0 && CountE ==0 && 

CountJ >100 && CountJ < 5000 
      Iam = 3; 
else 
      Iam = 4; 

      

         
end 

     

  
ftr(i).name=files(i).name; 
ftr(i).CountA = CountA; 
ftr(i).CountB = CountB; 
ftr(i).CountC = CountC; 
ftr(i).CountD = CountD; 
ftr(i).CountE = CountE; 
ftr(i).CountF = CountF; 
ftr(i).CountG = CountG; 
ftr(i).CountH = CountH; 
ftr(i).CountI = CountI; 
ftr(i).CountJ = CountJ; 
ftr(i).CountK = CountK; 
ftr(i).CountL = CountL; 
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ftr(i).Iam = Iam; 
fopen(out, 'wt'); 
fprintf(fid,'%s 

\t%6d\t%6d\t%6d\t%6d\t%6d\t%6d\t%6d\t%6d\t%6d\t%6d\t%6d\t%6d\t%6d \n', 

ftr(i).name,ftr(i).CountI,ftr(i).CountJ,ftr(i).CountA, ftr(i).CountB, 

ftr(i).CountC, ftr(i).CountD, ftr(i).CountE, ftr(i).CountF, 

ftr(i).CountG, ftr(i).CountH, ftr(i).CountK, ftr(i).CountL,ftr(i).Iam); 
%  
% CountW = 0; 
% for K = 1 : 600 
%     for L = 1 : 600 
%         if HH(K,L)>150 
%             CountW = CountW+1; 
%         end 
%     end 
% end 

  
end 
fclose(fid); 

 

 


