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A B S T R A C T

We propose the concept of situated spatial temporal data (spatio-temporal) analytic as

a tool that support user’s ability to access data that of situational nature at loca-

tion and time of the captured data (in-situ). The tool allows user to perform in-situ,

trajectory data analytic tasks. Spatio-temporal visual analytic research to date has

primarily focused on analytics in traditional computing paradigms and separated

analytical processes of data representation and its context. With the advancement

in Augmented Reality (AR), Head-Mounted Display (HMD), and sensor technologies,

an emerging computing paradigm, i.e. situated analytics, enables access to spatio-

temporal data nearly any time and place. Situated analytics involves inspecting the

data in the context of the environment where it has been collected in. Although, situ-

ated spatio-temporal analytics has the potential to transform the way we engage with

data comparing to traditional computing paradigms, it is necessary to explore the

key design aspects of situated spatio-temporal analytics that enable in-situ analytic

tasks and improve users’ analytic skills and experience.

We empirically validated the potential of situated spatio-temporal analytics by com-

paring situated and non-situated analytics and found the situated group was more

accurate compared to the non-situated group. We explored different user-generated

spatio-temporal data visualization designs and interactions for an in-situ setting and

proposed design recommendations to support in-situ data exploration and analyti-

cal activities. Based on design recommendations, we developed Situated Space-time

Cube Analytics (SSCA) that utilizes two-dimensional (2D) and three-dimensional (3D)

visualization, interactive data filtering, and embodied interaction. We conducted the

SSCA prototype evaluation study to establish an understanding of in-situ data explo-

ration activities, Visual Information Seeking Mantra (VISM) interaction taxonomy, and

challenges in view visualization. From the SSCA evaluation study, we propose further
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design recommendations that reduces challenges found in the SSCA prototype and

would improve the users’ exploration and interaction with the data. We used these

design recommendations to develop Situated Spatio-temporal Multiple-Views Ana-

lytics (SSMA).
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Obstacles are those frightful things you see

when you take your eyes off your goal.

Ð Henry Ford
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1 I N T R O D U C T I O N

Spatial temporal data (spatio-temporal) is high-dimensional multivariate data that in-

cludes both time- and space-related attributes to describe phenomena or events in a

certain location and time. Spatio-temporal data can be collected from various sources

such as sensors, Internet of Things (IoT), Global Positioning System (GPS) devices, and

video surveillance technologies [68]. Object trajectory data is one of the common ex-

amples of spatio-temporal data where an object occupies a single location at a given

time. Object trajectory movement provides critical insights into a variety of phenom-

ena and supports in making informed decisions. For example, in public safety, such

data include the discrete event(s) [103, 119] (e.g., public property vandalism, or a

car accident), stationary event(s) (e.g., a group of individuals meeting at a location),

and/or continuous movement [103, 119] (e.g., an individual walking from point A to

B, vehicles driving on a highway, or animal movement in the wild) [120, 161]. Scien-

tists and laypeople make use of trajectory data to extract important patterns within

the natural or physical environment and build knowledge of various events. Table 1

shows a simple example of a spatio-temporal dataset of an individual movement

within a geographic region and time span. For convenience, from this point forward,

the terms "spatio-temporal data", "trajectory data", and "movement data" will be used

interchangeably to refer to objects’ trajectory data.

Table 1: A simple example of a movement dataset of individuals walking inside a building.

ObjId Date Time xLoc yLoc

...
...

...
...

...

25 2019-05-10 13:08:29 114.9898587 30.522544

26 2019-05-10 13:08:29 114.9890013 30.522301

26 2019-05-10 13:08:30 114.9890015 30.522302
...

...
...

...
...
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introduction

Figure 2: An illustration of STC visualization of spatio-temporal data from Table 1

Data visualization is a powerful tool for transforming raw movement data into a

meaningful visual representation. Map, two-dimensional (2D), and three-dimensional

(3D) visualization are examples of various visualization methods that give the data

visual context and allow users to comprehend more easily than text alone. Data visu-

alization allows users to explore movement data, identify relevant events, and gain

interesting insights from the data. For several decades, data visualization research has

mainly focused on using traditional computing paradigms (i.e., analysis on a com-

puter while using classical desktop interfaces) to explore movement data [60, 70, 87,

100, 110, 114, 142, 165]. These visualizations are displayed on different display devices

that range from small hand-held to desktop displays. Traditionally, an analyst would

physically sit in front of small monitors, explore the event of interest in the data, in-

teract with spatio-temporal data using input modalities (e.g., mouse, keyboard, and

traditional screen), and filter data using a graphical user interface (Graphical User

Interface (GUI)) controls (e.g., buttons and sliders). In the last few decades, the com-

puting paradigm has shifted from large computing equipment that took up whole
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rooms to compact portable computers , and this shift continues toward immersive

realities and wearable computing devices that support a new form of interaction.

The vast majority of spatio-temporal data visualizations were designed for tradi-

tional computing paradigm without considering the physical environment and spa-

tial context in which data is collected, structured, and displayed. This is primarily

due to technological constraints, visualization design requirements, or the absence

of a need to combine analytical activities for both data representation and its spatial

context. In certain situations, the separation of analytical processes for data represen-

tation and physical environment will not only impose an additional cognitive load on

the user to mentally link data with the physical space, recall the physical environment

when looking at a visualization out of its context, but also limit users’ understanding

and sense-making [144, 156, 160]. The notion is that the distance between the data

visualization and their references is essential. In fact, Tobler’s first law of geography,

as cited in [153], stated that "everything is related to everything else, but near things

are more related than distant things." This statement promotes the notion that could

be applied to the relationship between users, data, and the physical context. By min-

imizing this distance and enabling individuals to more immediately connect with

representations and their references (i.e., being in-situ), it becomes possible to make

it simpler for users to make sense of data and act on it in the real world.

Situated analytics is an emerging field of research that aims at removing the gap

between users, data, and analytical tools, and considers the physical environment

and spatial context in which data is collected, organized, and displayed. It helps re-

searchers and analysts to better understand relationships between data visualization

and the physical environment while being in-situ. Situated analytics leverages multi-

ple technologies such as Human-Computer Interaction (HCI), 3D Immersive realities,

data visualization, and visual analytics. Immersive realities technologies, e.g., AR and

Virtual Reality (VR), support spatio-temporal data visualization [54, 83, 156]. AR en-

ables users to see digital information overlaid on the physical world around them

and interact with data visualization and physical world at the same time [38, 144],
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while VR enables users to enter a completely virtual environment with no or little

possibility of direct interaction with the physical world [54, 144]. Although VR and

AR enable users to immerse with visualization, they are quite different in terms of

how users interact with and navigate their respective environments. In VR, users are

limited to a small navigation space, and their analytical activities mainly are focused

on understanding the data. In contrast, AR users are not limited by navigation space

and their analytical activities can also include understanding the data and context

in which the data is related to the physical world. This difference is due to the fact

that VR creates a fully artificial environment that isolate users from the real world,

while AR builds upon the existing physical world. As a result, AR has the potential

to support situated movement data visualization and provide a more immersive and

realistic experience for users.

Situated analytics facilitates greater comprehension of spatio-temporal data repre-

sentation than traditional visualization tools. Urban planning is one of the fields that

clearly demonstrates the advantages of situated visualization and in-situ data analy-

sis. Urban planners use maps to visualize air quality data collected throughout the

city. Although maps are effective in providing an overview of the air quality around

the city, they are separated from the physical sites and do not provide sufficient in-

formation for making decisions on future city plans. Therefore, planners visit sites

throughout the city to collect additional data such as population density, traffic pat-

terns, and vegetation, to make decisions regarding future plans. SiteLens has been

proposed to map the carbon monoxide concentration data in physical space at the lo-

cation where they were collected, enabling city’s planners to perform in-situ analysis

of data related to sensors and physical sites [156].

In the remaining of this chapter, we begin with a set of simple scenarios that shows

the potential benefits of situated spatio-temporal visual analytics. Next, we outline

the dissertation’s research objective, research path route, and contributions.
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1.1 scenarios

1.1.1 Technical analytics task scenario

First, we meet Mahmood on one of his daily routine, see Figure 3. Mahmood works in

the information technology department as a computer and network technician. Two

days ago, he has received emails regarding interference with Wi-Fi connections in a

building’s atrium. To determine the cause of the issue, Mahmood needs to analyze the

wireless network. Mahmood puts on an HMD and walks around the building testing

the Wi-Fi signal, in term of strength and speed, at various points of interest. Mah-

mood visualizes wireless signal data on October 26. As he moves around the space,

virtual coloured labels begin to appear on the floor to indicate the signal strength

at various locations. Green, yellow, and red colours represent a strong, average, and

weak signal, respectively. Mahmood notices the wireless single was strong on Octo-

ber 26. Then, Mahmood filters and visualizes more data between October 26 and 28.

Mahmood finds the wireless signal quality significantly dropped between October 27

and 28. As Mahmood follows the visualization data point and makes his way near

the space’s router, he notices a large display has been mounted close to the router,

potentially interfering with Wi-Fi connections. With the help of the visualization and

being in-sit, Mahmood can decide to increase the number of routers or relocate the

router.
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Figure 3: An example of situated visual analytics to troubleshoot a wireless router (orange
box). The network signal quality is visualized and mapped into the space (Red:
Weak signal, Yellow: Average signal, Green: Strong signal). The visualization enables
the technician to examine the wireless router’s signal strength over the last several
days in order to determine the cause of the network interference.

This instance exemplifies the potential of SA. Primarily, it covers a common prob-

lem that many technicians regularly face, such as network interference. The task is

performed in-situ during the technician’s regular checking. Also, the task has an ana-

lytic component, involving the exploration of data and filtering datapoints based on

router signal quality for different dates. In addition, being in-situ helps the technician

to identify the change in the environment that causes issues.

1.1.2 Movement Trajectories of Individuals Scenario

In a safety and security context, Ahmed is a security personnel working at a university

campus. One day, Ahmed receives a call from the security department to investigate

and report a spray paint vandalism incident on a building atrium. Ahmed is required

to report the course of the incident, location of graffiti, individuals involved in the

incident, etc. Ahmed quickly responds to the call and moves to the incident location.

As he moves to the atrium and wears the HMD, movement trajectories data of in-
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dividuals - from ubiquitous sensors, GPS devices, cellphones, or video footage - are

virtually appeared and mapped to the space, see Figure 4. Each coloured movement

path represents an individual movement in the space. With a movement path, each

sphere represents the locations of individuals at a specific time. Ahmed walks toward

the locations of graffiti and the individuals meeting point, then, he applies filters on

data at locations of interest. The tool helps Ahmed to locate and describe in details

the graffiti, identify the number of individuals involved in the vandalism act, and a

location where they met before leaving the atrium.

(a) The security personnel has quickly noticed two individuals’ movement trajectories (blue and red).
By tracking the individual movement trajectories, he spotted the location of graffiti (two on the left
wall and two on the right wall).

(b) The security personnel filtered the movement data by selecting regions of interest (i.e., yellow cylin-
ders) to show the location where two individuals met, and locations of the painting, individuals’
movement direction.

Figure 4: An example of situated visualization of vandalism incident.

These two scenarios illustrate the type of tasks involved in spatio-temporal data

analysis. They cover common analytical tasks related to spatio-temporal data, in this
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case, analysis of spatio-temporal data. For example, the task is carried out in-situ,

with movement data being mapped onto the space and changes to the physical envi-

ronment being observed (e.g., viewing graffiti and estimating damages). Additionally,

the task has an analytical component, which includes filtering movement data based

on specified locations and times. Also, being in-situ enables the user to establish the

connection between individuals’ actions and the effects of the actions in the environ-

ment.

Individuals in the previous examples were interested in finding, understanding,

and conveying important patterns in data directly related to, embedded into, phys-

ical environment, artifacts, and people around them. Situated analytics involves the

inspection and filtration of data within the actual context it was collected [144]. Sit-

uated visualization and user interfaces support a novel paradigm that gives users

access to data in the location and context of a primary, non-digital task (e.g., asso-

ciating data sources with real world physical objects). Thus, situated interfaces and

visualizations are akin to an ªinformation companionº. Situated visualization sup-

ports data access when needed, and integrates the data into the user’s surrounding

environment, under varied physical body movements and mobility contexts, whether

the user is standing, turning, or walking.

We envision the shift of spatio-temporal data analysis methods/techniques from

non-situated paradigms to situated which integrates spatio-temporal analytics tools

and activities into the physical environment. We are interested in exploring the po-

tential of this suggested approach and whether it enhances the reliability of the ana-

lytical tasks and expand the understanding of data and its context. We are interested

in designing and implementing a situated spatio-temporal visual analytic tool that

supports spatio-temporal analytical tasks and enables a suitable form of user interac-

tion.
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1.2 research objective and overview

The following is the primary research objective of this thesis:

Explore the key design aspects of situated spatio-temporal analytics that enable in-situ ana-

lytic tasks and improve users’ analytic skills and experience.

The route from this aim to the goal starts with exploring the literature of current

spatio-temporal data visualization analytics. The following are the stages along this

route (described in Figure 5):

a. We undertake a comprehensive analysis of the literature surrounding situated

analytics. This review reveals a gap in the literature. Only little is known about

how to benefit from in-situ exploration of spatio-temporal data since situated an-

alytics is still an emerging area [49, 144]. This raises the question of whether sit-

uated analytics facilitates task performance compared to non-situated settings.

Also, the literature review helps with the most updated and appropriate design

for spatio-temporal data visualization (Chapter 2).

b. We conduct an empirical study to investigate spatio-temporal data analysis ac-

tivities in both non-situated and situated analytic activities. We compare par-

ticipants’ performance in both conditions in term of accuracy, completion time,

and confidence (Chapter 3).

c. An elicitation workshop is carried out which includes sketching and ideation

activities for situated analytics. This workshop aims to capture visualization

designs to support situated spatio-temporal data visualization, and potentially

enhance the analytical process in an AR environment (Chapter 4).

d. We implement a SSCA tool. SSCA, with the help of interactive data filters and

proxemics and embodied interaction, visualizes data using Space-Time Cube
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(STC) and supports users’ data analytic tasks to allow them to make informed

decisions regarding spatio-temporal data (Chapter 5).

e. An evaluation, through an initial exploratory study, for our SSCA tool to allow

for situated data exploration. Through set questions for users to answer regard-

ing the dataset, we quantitatively and qualitatively record user interactions and

metrics along with subjective experience data to allow us to evaluate our system

(Chapter 6).

f. We implement an alternative SSMA that addresses concerns and challenges as-

sociated with the situated STC visualization and integrates visual information

seeking mantra processes based on user location around the visualization phys-

ical space (Chapter 7).

1.3 contributions

This thesis provides many contributions to the research community, some of which

are as follows:

1. Examine and evaluate spatio-temporal analysis activities between non-situated

and situated analytic activities. We conduct an empirical study comparing Sit-

uated and Non-situated spatio-temporal Analytics. We were the first to empiri-

cally show the effectiveness of situated compared to non-situated analytics (in

terms of accuracy).

2. Explore design aspects of situated analytics and how participants would visu-

alize data that is spatio-temporal in nature, such as events and movement data.

We report user-generated visualization designs and interfaces to support in-situ

video analytic tasks.

3. Analyze user-generated visualization using our generated knowledge on how to

exploit the user’s immediate environment to place and represent visualizations.
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4. Design and develop SSCA prototype that allows situated spatio-temporal ana-

lytics, i.e., movement trajectories in STC visualization. STC visualization embeds

movement trajectories into the actual environment where the data was captured.

5. Explore embodied interaction (proxemics, orientation, and mid-air gestures) as

means to perform analytic tasks such as visual inspection of spatio-temporal

filtering of the trajectories.

6. Address various approaches for evaluating the SSCA prototype, such as observ-

ing video recordings of users during their interaction with the tool, logging

prototype events to understand users’ analytic tactics and strategies, and inter-

viewing users regarding their subjective experience of the system.

7. Develop SSMA using multiple-view visualizations. SSMA is an alternative in-

teractive situated visualization that is aware of users’ locations within physical

space to enable suitable visual information seeking mantra steps and address

challenges users faced during SSCA evaluation study.

Each step on this route leads to the next, with the complete route including all

the prerequisites for a comprehensive exploration of Situated spatio-temporal data

analytics.
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Figure 5: An overview of the research route taken in this dissertation, from the initial explo-
ration of in-situ analytics to the final goal of proposing alternative visualization to
support situated spatio-temporal data visual analytics. Each step along this path
leads to the next, with the complete path encompassing all the initial requirements
in a holistic exploration of Situated spatio-temporal data analytics.
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2 S TAT E O F T H E A RT L I T E R AT U R E

This chapter introduces comprehensive literature of important areas that inspire this

dissertation, including spatio-temporal data, exploratory spatio-temporal data analy-

sis, spatio-temporal data visualization techniques, situated analytics and embodied

interaction. We start with explaining what is spatio-temporal data, frameworks of

questions that can be asked about spatio-temporal data, and STC technique to vi-

sualize spatio-temporal data in traditional and VR computing paradigms. Next, we

discuss current progress on spatio-temporal data visualization tools and techniques

in traditional and immersive computing (i.e., AR) platforms. Then, we present con-

cepts, characteristics, and definitions of situated analytics. After that, we briefly cover

related work in embodied interaction, where the user’s body is used as a means to

interact with devices and data. Finally, we outline the gap in the literature regarding

situated spatio-temporal visual analytics.

2.1 what is spatio-temporal data?

Any phenomenon or event in life has spatial and temporal attributes. Spatial is a

term that refers to the physical location of the event. Temporal is a term that refers

to a certain point in time of the event. When data of the phenomenon is recorded in

both spatial and temporal aspects, the collected data is called spatial-temporal data

(or spatio-temporal data for short). The complexity of spatio-temporal data varies de-

pending on the data sources and recording precision (i.e., the precision of location

and time of the collected data). For example, spatio-temporal data extracted from

video footage contains basic attributes such as object identifier, date, recording time,

and location coordinates (e.g., x ± y coordinates of a video footage space) whereas
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spatio-temporal data recorded from an airplane with a high-precision tracking sys-

tem and high-rate data capture contains more attributes such as altitude, speed, etc.

Spatio-temporal data analysis is a developing field of research. Application domains

that benefit from spatio-temporal data analysis include, but are not limited to, secu-

rity, criminology, transportation, zoology, biology, meteorology, and urban planning.

In this dissertation, the spatio-temporal data used in this research will be taken from

video footage for the sake of simplicity.

2.2 information visualization interaction taxonomies

Several information visualization interaction taxonomies have been proposed [4, 23,

133, 138, 149, 152]. As part of visual analytics research and agenda, these taxonomies

aim at characterizing the design space of interaction approaches to facilitate analytic

reasoning and sense-making [55]. Although many of the proposed taxonomies have

similarities in some aspects, they have differed in terms of their granularity [163].

For example, researchers have proposed taxonomies classification such as low-level

interaction taxonomies [23, 32, 43, 86, 133], dimensional taxonomies [138, 149] (e.g.,

to describe interaction types, directness, and modes), space and parameters of inter-

action [152], and user tasks [4, 169].

Figure 6: An example of visual information seeking mantra by Shneiderman [133]. In the first
step, a user views the all data points to make sense of the data as a whole (two
categories). In the second step, he zooms into the centre of the graph and filters out
the orange dataset. Finally, the user shows details information about one data point.
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VISM is a well-known and general navigation and exploration taxonomy [133]. The

mantra is Overview first, Zoom and filter, then Details-on-demand. In overview step, an

analyst views a visualization with all data plotted. This step provides a general sense

of data as a whole. In the second step, i.e., zoom and filter, the analyst focuses on

particular areas of interest in the visualization (zoom) and selects a subset of the data

(filter) to only see relevant information. Finally, details-on-demand step allows the

analyst to request additional information about a particular data point, see Figure 6.

VISM is a low-level interaction taxonomy and it highlights the fundamental aspects

of dealing with data visualization [133]. In high-density visualizations, exploration

techniques often sequentially move from obtaining an overview of the data, zoom-

ing and filtering the data, to finally viewing specific details of the remaining data

[134]. VISM can be a repetitive process, depending on the task complexity and the

exploratory activity, until the user finds the answer to the query. VISM is widely used

in visualization tools on desktop environments to support information visualization

interaction [133, 134].

2.3 exploratory spatio-temporal data analysis

In general, data analysis often starts out with an exploratory search to formulate ten-

tative and broad queries. These queries often narrow down the data to be examined.

These primary explorations then lead to further questions and newly revealed infor-

mation, hypotheses generation, and ultimately answers to the questions [5, 8, 15, 41,

119].

Several frameworks for visualization exploratory search have been proposed, for

example, by Bertin [15], Peuquet [119], Andrienko, Andrienko, and Gatalsky [8], and

Amini et al. [5]. Bertin [15] introduced a theoretical framework for developing and

assessing information graphics based on two notions question type and reading level.

Question type relates to variables that are presented in a dataset: ªThere are as many

types of questions as components in the informationº [15]. For instance, a dataset
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with individual locations by hours contains two main components, hour and location.

Therefore, two possible questions can be asked:

Q 1. At a given hour what is the location of individual x?

Q 2. For a given location, at what time was the individual at that location?

In Bertin’s framework, each question type has three stages of reading: ‘elementary’,

‘intermediate’, and ‘overall’. The reading level reflects whether the question references

a single data element, a set of elements, or all elements forming a phenomenon as a

whole [15].

Although Bertin presents the framework for general data, other researchers specif-

ically proposed conceptual models for spatio-temporal data [5, 8, 119]. For example,

Peuquet [119] introduced three types of questions in spatio-temporal data. Analysis

task queries could be about the event ‘what’, the moment in time it occurred ‘when’,

or location where it happened ‘where’. With the knowledge of two of the questions,

Three questions can be formulated as:

• when + where → what: A description of a single object or group of objects pre-

sented at a given location or set of locations at a given time or multiple times.

• where + what → when: A description of the single or multiple point(s) in time of

a single or multiple objects that are located at one or more points in space.

• when + what → where: A description of an object or set of objects located at one

or more points in space at a single or multiple point(s) in time.

Andrienko, Andrienko, and Gatalsky [8] developed a conceptual model based on

Bertin framework. They noted that an analyst has certain requirements in terms of

what task has been given and what is to be discovered. Their model introduced two

search tasks: 1) an elementary question where the question is related to a single event,

or 2) a general question where the question is related to multiple events (See Figure 7).

In the first search task, the analyst focuses more on identifying the characteristics of
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Figure 7: Andrienko, Andrienko, and Gatalsky typology focus on ªsearch levelsº which adds
more exploration dimensions to spatio-temporal data [8]. Adopted from [8].

objects or locations, whereas in the second search task, the focus is more toward

comparing or summarizing characteristics at different locations or times.

Amini et al. [5] built on previous frameworks in [15, 119] and proposed a taxonomy

that classified questions related to spatio-temporal datasets. Amini et al. [5] consid-

ered numerous common question variables (i.e., object, time, space, or speed and

other derived variables) related to movement datasets. Each question variable may

have a value that the question is referring to (e.g., an object, a moment in time, or

one point in time), or multiple values (e.g., number of objects, or number of events).

Amini et al. used the terminology singular or plural to differentiate between the two

cases. Also, they considered each question variables’ values to be provided or need

to be discovered (known or unknown), see Figure 8. This updated framework provides

a better understanding of the task design space, and aids in estimating a task’s total

difficulty level.
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Figure 8: The taxonomy of questions for spatio-temporal data proposed by Amini et al. [5].
An example of a complex question, presented in the blue line, would be: How many
times the individual x has been stationary for 3 hours? In this question, the location
is unknown and singular, the time is unknown and plural, and the object is known
and singular. Adopted from [5].

2.4 spatio-temporal data visualization techniques

Exploratory spatio-temporal data analysis leverages human visual-cognitive and ana-

lytical skills in conjunction with scientific visualization tools and techniques to effec-

tively explore movement datasets [8, 15]. In the following sections, different spatio-

temporal visualization techniques will be presented.

2.4.1 Static Spatio-Temporal and STC Visualization

Static paper photography and maps were the earliest visualization techniques used

to visualize spatial, temporal, and spatio-temporal data [148]. For instance, the classic

photograph Napoleon’s march towards Moscow illustrates Napoleon’s army status

during the Russian campaign in 1812 [148]. The visualization represents multivariate

data, such as the size of the army, the distance travelled, the temperature, latitude and

longitude, army travel direction, and position in relation to various dates. The visual-
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ization uses a combination of a map (to show the spatial data of the army) and time

series techniques (to show the changes in the army size over time). Also, a detailed

map was used to represent spatio-temporal data of the cholera pandemic. In 1854, a

famous historical cholera pandemic visualization was presented to spatially identify

locations of cholera cases in London over a period of time. In the visualization, the

black cluster bar represents the number of deaths at a specific location in the city.

Figure 9: STC’s core notion is to use 2D visualization of spatial data and add time as z-axis.
Object’s spatial data (the x- and y-axis) are plotted at its corresponded time slices
(z-axis), the result will be a multivariate spatio-temporal visualization of objects in
the dataset.

STC was first introduced in the regional science domain to study and visualize

humans’ space-time activities, as well as relations between various constraints affect-

ing human movement [66]. Space and time are seen as inseparable components of

time-geography research. The horizontal plane (x, y or latitude, longitude) indicates

an object’s position in space, while the vertical axis represents its position in time.

To help users comprehend the information, the representation generates a 3D visual

environment to convey spatio-temporal patterns and their relationships, see Figure 9.

This visual representation facilitates the accurate viewing of spatio-temporal datasets

such as individuals’ trajectories features, including changing speed, meeting location,

stationary duration, etc. [99]. The use of the initial STC representation was restricted

for several decades, since it involved manual redrawing to inspect alternate points of

view. Unlike static spatio-temporal visualization, computer-based visualization tech-

niques offer two major properties: interaction and dynamics. These properties enable

and support exploratory spatio-temporal data analysis. There have been several tools
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developed based on the STC in different computing paradigms, such as desktop, AR,

and VR.

2.4.2 Desktop-based STC Tools

With the emergence of computer-based visualization, the STC concept has been imple-

mented and integrated into visualization tools of various domains [25, 30, 61, 88, 89,

91, 113, 162, 170]. For instance, STC has been commonly used to visualize movement

trajectories in air-traffic analysis [25], historical events [78, 91], human trajectories [61,

118], and animal migration [89]. A broader usage of STC is to explore other types

of spatial-temporal data, such as event-based [88, 113, 170] and origin-destination-

based [30, 162] datasets. STC may be used with small datasets of movement data to

emphasize the perception of particular movement features. It may also be used with

much larger movement datasets to discover cumulative similarities and differences

in the behaviours of population subsets. With the increasing amount of movement

data, the need for new visualization techniques is increasing. There is a need for new

visualizations that aid in looking at movement data from different perspectives.

In recent years, STC has gained popularity as a visualization method in geovisual-

ization and visual analytics [5, 7, 25, 52, 54, 76, 118]. Kristensson et al. [92] conducted

a user study on the STC, in an attempt to identify tradeoffs associated with the use

of STC to visually present spatio-temporal data to users. The study findings suggest

that STC supports the comprehension of simple and complex spatio-temporal data.

Occlusion is a common issue with the STC visualization [5]. When data is occluded,

it is overlapping or hiding other data points from view and the user cannot see it. This

can affect the user’s ability to understand the data and can also lead to decreased

performance. Thus, STC has been enhanced using common interaction techniques

that reduce the effect of the data occlusion through changing user viewpoint or filter

data [57]. For example, visualization tools should give users the ability to pan, zoom,

and change the view of the visualization space. This would allow them to see more of
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the data and would make it easier for users to understand data. Another approach, to

reduce data occlusion issue is to include a timeline as the primary interaction method,

temporal zooming or focusing, and map linkage with matching symbols [90]. Since

then, several desktop STC visualizations have been developed using these common

interaction techniques [5±8, 78, 118].

Andrienko, Andrienko, and Gatalsky [8] presented a web-based and desktop tool

called ‘CommonGIS’. It visually represents large-scale geographic data to highlight

interesting patterns and important events. The tool is a web-based software designed

to be publicly available and allows experts and laypeople to use the tool. The tool

interface supports interaction via focusing, brushing, and providing multiple visual-

izations, including 2D and STC.

Huisman et al. [78] examined the STC’s suitability for application in archaeology

research. They extended STC via implementing graph-theoretical techniques to visu-

alize basic archaeological events. For example, the tool visualizes the spatial-temporal

relationships between artifacts discovered at various places during different time

spans. The tool enables different visual representations (e.g., base map, STC, and scat-

terplot), and interaction (e.g., zooming, panning, filtering) to support users’ analytical

tasks. The modified version of STC allows for a better understanding of potential in-

teractions or clashes between different cultures discovered through archaeological dig

sites.

Orellana et al. [118] have used STC to visualize GPS spatio-temporal data collected

from visitors in natural recreational areas. The tool helps in understanding visitors’

movement patterns such as 1) movement suspension patterns (e.g., visitors walked

and stopped at places of interest), 2) generalized sequential patterns (e.g., the se-

quence of common locations visitors went to irrespective of their movement trajecto-

ries). These two movement patterns were examined within the context of a geograph-

ical location to characterize the aggregated flow of visitors and to present visitors’

preferences and interactions with the surrounding environment.
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Andrienko et al. [6] have proposed a modification on STC to overcome the chal-

lenge of exploration of a large dataset of vehicle trajectories of a city spread over

a long time period. The authors proposed a technique, called Trajectory Wall, that

visualizes the set of spatially similar trajectories into a stack of bands. Each band is

divided into units that is coloured based on the trajectory attributes such as speed,

acceleration, and distance. Also, the bands can be sorted based on temporal order.

Amini et al. [5] have implemented a tool called Space-Time Visualizer (STV) that vi-

sualizes the trajectory data of individuals. The tool’s interface allows users to switch

between STC and 2D map. In the STC and 2D visualization, users can change the

camera viewport by clicking the left mouse button and then dragging the mouse to

pan the viewport. To zoom in or out of the trajectory data, users scroll the mouse

wheel. To tilt and rotate the scene in the 3D view, users click and drag the right

mouse button anywhere in the main viewport. In the STC visualization, users can

make a right mouse click and drag anywhere in the main viewport, which results in

tilting and rotating the view. To show detailed information such as date and time (i.e.,

tooltip) for a specific individual’s movement data point, users hover the mouse cursor

over that data point. Another desktop application was introduced by Andrienko and

Andrienko [7] which demonstrated the use of STC to support the process of data anal-

ysis, reasoning, and sense-making of vessel movement data. The tool helps analysts to

explore and analyze Automatic Identification System data as well as analytical tasks,

such as finding when, where, and how long vessels have been stopped. These stop

events could show the pattern of vessels entering or exiting a bay or port.

A commercial desktop software, called GeoTime, is another tool for spatio-temporal

data analysis, [59]. The tool visualizes spatio-temporal in both STC and 2D. An event

is presented in a sphere shape and connected with a tube. In addition, the tool allows

users to view the data from different viewpoints via performing rotating the STC

canvas. The tool supports data subset selection of space and time using dragging

on a slider widget. Also, GeoTime interface allows users to combine two visualiza-
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tion techniques: time flattening, where the only spatial attribute is shown; and space

flattening, where one spatial and one temporal attributes are shown.

Video surveillance technologies are another desktop application that uses spatio-

temporal data to enhance video data analysis. Video analysis is a sequential and

time-consuming process. Often, a video analyst is required to watch a long video seg-

ment of individual movements to understand the movement event as a whole. There-

fore, most video analysis tools integrate spatio-temporal data visualization. These

tools can extract spatio-temporal data of objects in the video, visualize objects’ move-

ment trajectories in STC, support sense-making, and understand events of interest.

For instance, VATAS is a visualization system that allows for the automated analy-

sis and annotation of movement trajectory events in videos [99]. VATAS processes a

video through four phases. In the first phase, the input video is processed through

registration and frame alignment. Next, moving objects in the video images are de-

tected, and the shape and boundaries of each object are defined. In the third phase,

all detected object movements are tracked across all video frames. Finally, the moving

object trajectories are classified in a 2D graph. Another method for visualizing object

movement is to use a 3D graph (e.g., space-time cube). Video Summagator prototype

summarizes and navigates objects in video footage by showing keyframe images of a

movement [114].

Another method used to visualize object movement data is to extract movement

data from a video, and then lay the extraction results on top of the same video [139,

140]. In Stein et al. [140] and Stein et al. [139], for instance, proposed tools extract

objects’ movement from a live video stream (i.e., soccer game) and then combined

it with the visualization of movement data with a live video stream again. This tool

detects moving objects (i.e., players or a ball), simultaneously generates a panoramic

view of the pitch, extracts the moving object’s location, and visualizes the object’s

movement on top of the original video. This tool also visualizes the empty and dom-

inant regions of the soccer field.
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Action-Based Multi-field was leveraged to present snapshots of video keyframes,

along with object movement trajectories, in another video visualization system [17]

This system first processes and extracts objects from a given video, then allows for

the hand-labelling of object features (e.g., object size, id, action type, relationship

information, and plausibility), which are then plotted in a volumetric visualization.

Other video tools allow interactive exploration of spatio-temporal data and video

content. To illustrate, a video visual analytic system was proposed that visualizes

object movement trajectories from a given video [73]. This system displays different

frames (i.e., from the beginning, middle, and end of the video) along with their tempo-

ral position, in addition to a coloured line that represents an object trajectory connect-

ing the frames. Moving object trajectory compression and clustering algorithms have

also been implemented in video interaction and navigation. For example, clustering

and schematic techniques were used to visualize moving object trajectories in 2D [72,

74]. These techniques provide the ability to visually cluster moving object trajectories

based on object location, orientation, and velocity. Furthermore, Fast-Forward Video

Visualization tool presents two techniques: Object Trail Visualization and Predictive

Trajectory Visualization [75]. The Object Trail Visualization technique visualizes an

object’s movement with a persistent transparent trail of detected objects, supporting

object identification. Predictive Trajectory Visualization displays arrows on an object’s

movement path to support motion perception and prediction. An interactive visual-

ization tool was proposed to visualize surveillance video data [110]. This tool extracts

object movement data from video, then provides three unique interactive exploration

visualizations of the movement data.

2.4.3 Virtual Reality-Based Visualization

In the field of information visualization, researchers have been wary about using 3D

representations for abstract data and hence have seen a little benefit in using spatially

immersive technology [106]. Early research has focused on interaction techniques for
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2D data visualization on desktop computers [80]. When the first 3D visualization

was introduced around 1980-1990, researchers were persuaded that 3D visualizations

based on linear perspective, shading, and shadows provided advantages over typical

2D visualization [106]. Therefore, researchers have conducted user studies to con-

firm the advantages of 3D over 2D visualization on desktop paradigms. However,

the results of studies did not show any advantages for 3D representations over stan-

dard 2D representations in abstract data visualization [34, 35]. Different factors could

contribute to this finding, such as limited display devices (i.e., flat desktop display

screens) and the lack of human spatial judgment on 2D displays. With the emergence

of immersive displays, researchers started seeing the potential in 3D visualization

compared to the previous one in the ’80s as these visualizations were originally ren-

dered on a flat (i.e., 2D) display screen [106]. With the advancement in technology,

the new immersive HMDs are equipped with advanced sensors and binocular dis-

plays that enhance users’ stereoscopic depth perception. Human depth perception is

known as the visual capacity to see the environment in 3D as well as the ability to

judge the distance between an object far from users. Several factors such as height

in the visual field, occlusion, relative density, relative size, etc, affect human depth

perception in stereoscopic displays [37]. We refer the reader to [37, 106] for more

detailed information about depth perception cues. In the research community, 3D

visualization has become associated more with a binocular presentation [47, 106].

Recently, researchers have studied the effect of depth cues and the choice of tech-

nology on 3D visualization effectiveness. Ragan et al. [124] conducted a study to

investigate the effect of combining binocular presentation and head-tracked view on

users’ performance of a task that required accurate spatial inspections of visual ge-

ometries. The study result showed this combination improved participants’ spatial

judgment accuracy. McIntire, Havig, and Geiselman [108] have reviewed studies com-

paring binocular (3D) displays to monocular (2D) displays across research domains.

They found that binocular displays have performance benefits in 60% of the studies

with the suggestion that 3D is only inherently useful if the phenomenon of interest
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actually uses the third dimension. Authors in [108] concluded that binocular 3D is

more effective for depth-related activities, such as spatial comprehension of compli-

cated visualization and spatial manipulation.

In recent years, researchers have shown more interest in virtual environment sys-

tems in an attempt to overcome the barriers in the traditional computing paradigm

such as limited screen sizes, resolutions, and data visualization FOV. Researchers have

started exploring the potential of virtual reality display technologies that can be used

to improve visual analytic systems [25, 52, 83, 144]. Several tools have been presented

to visualize complex and large spatio-temporal data in VR. For example, Kjellin et

al. [88] developed a tool that visualizes movement data in a virtual reality projec-

tor. The tool provides three visualizations, such as a static 2D map, 2D animation,

and stereoscopic STC [88]. The author conducted user studies on movement datasets

to compare the performance of the three visualizations. The authors concluded that

STC outperform 2D map and animation in terms of accuracy and completion time

for tasks related to identifying individuals’ meeting locations, whereas 2D map was

more precise in predicting future meeting locations.

Theuns [143] proposed different movement data visualization prototypes for VR

headsets, including STC. In the STC prototype, the author used a different design

where the spatial attributes are presented on vertical axes and temporal attribute is

presented on a horizontal axis. The author’s design decision for this unconventional

design choice is to allow users to scale up the visualization while giving users the

ability to navigate and view the movement data.

Okada et al. [116] presented a large-scaled STC prototype in VR to visualize spatio-

temporal social media data (i.e., micro-blogs of tweets) at Disneyland Tokyo. The tool

helps users to better understand the overall tendency of tweets by aggregating tweets

of each coordinate at different time steps, calculating scores, and then visualizing

them as piled cubes. Due to the height of the piled cubes, flying around the visual-

ization is used as an exploration and navigation technique. In addition, the authors

developed a user interface to allow users to interact with these cubes and view tweets’
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details. Nguyen et al. [115] proposed I-Flight, a VR-based visualization prototype, for

bees’ spatial movement data. The bees’ movement data (i.e., flight paths) is collected

from Radio-Frequency Identification (RFID) tags attached to bees’ backs. The tool aims

at mapping the insect flight data in a simulated 3D geo-spatial environment to help

scientists study bee behaviour.

Buschmann et al. [25] presented a real-time visualization tool that visually repre-

sented large air-traffic spatio-temporal trajectory data. The authors investigated the

use of 3D animation in the analysis of air-traffic. The tool provides interactive data

filters, mapping trajectory characteristics to geometric representations and appear-

ances. Also, the tool supports different visualization metaphors such as temporal

focus + context, density maps, and overview + detail techniques.

Filho, Freitas, and Nedel [52] and Filho, Stuerzlinger, and Nedel [54] also presented

an STC visualization, called VirtualDesk, that visualizes multidimensional and move-

ment trajectory data in a VR platform. The visualization is virtually placed on top

of an analyst’s physical work desk while the analyst is seated in front of the desk.

The visualization is scaled to fit the desk at the analyst’s arm reach. The tool enables

embodied interaction, such as mid-air gestures (i.e., virtual hands) to directly ma-

nipulate data and the visualization viewpoint. The Mid-air gestures corresponded to

a common visualization interaction: one or two hands grabbing to pan, two hands

stretching to scale, and two hands spinning to rotate the visualization.

Homps, Beugin, and Vuillemot [76] implemented a VR tool for trajectory datasets

(e.g., players’ performance, flow simulation, car traffic, and turbulent flows) explo-

ration and manipulation. Also, the tool supports time-based trajectory animation,

where a small sphere follows each trajectory path from a start point to an end point.

In this research, the authors proposed the usage of configurable volumetric probes

that virtually attached to a VR controller (i.e., spheres, cuboids, and cylinders) as a

means of trajectory filtering and selection. Users can make an arm movement to se-

lect part of the dataset they are interested in via touching them with 3D probes. For

example, the sphere is used to select trajectories that pass through a region of interest,
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or it is used to select specific trajectories (a detached pointer) that are some distance

away from the user. A cuboid is used to specify a 3D region of space and then de-

limit all trajectories that go through this 3D region. The cylinder is used as a slicer

to allow users to select similarly oriented trajectories. To filter data, users can use the

controller buttons to create Boolean operations to show or hide the trajectories they

selected.

Whitlock, Smart, and Szafir [158] have studied the perception of five visual ele-

ments (size, colour, height, orientation, and depth) and how to best visualize data

across multiple computing paradigms (i.e., AR, VR, and Desktop). The authors in-

vestigated how users interpreted visualizations across various computing displays

by measuring users’ accuracy and completion time of three analytic tasks (extrema,

quadrant means, and trend detection tasks) over the visual elements. The analysis of

the data suggested that the visual elements of depth and size are more effective and

easier to distinguish in AR and VR compared to a desktop. This indicates that stereo

viewing resolves some of the challenges of desktop 3D visualizations.

2.4.4 VR 3D Visualization Challenges

Despite the fact that VR supports complex spatio-temporal visualization and an im-

mersive experience than the traditional desktop [25, 52, 54, 76, 158], two main chal-

lenges would prevent users from leveraging both data representation and its context

during the analytical processes such as physical-world isolation and limited naviga-

tion space.

First, although VR headset provides users with an immersive experience, it isolates

them from the physical world. Thus, in AR users are restricted from incorporating

the physical environment during the data analytical processes when it is needed. In

some situations, it is possible to virtually replicate the physical environment in VR

and then map the data representation on it. Nonetheless, this procedure will not only

be complex and time-consuming, but it will also fail to capture the ongoing changes
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in the physical environment [144, 156, 160]. In addition, VR poses a safety concern

that must be considered. For instance, users may be focused on the visualization

and virtual world that they forget to pay attention to their surroundings, potentially

leading to accidents due to tripping or running into physical objects placed in their

surroundings.

In addition to the VR physical-world isolation, the ability to move within the vir-

tual environment, referred to as locomotion, remains an active research challenge

[42]. Typically, the size of space, in which VR is installed, often restricts users’ navi-

gation which can be time-consuming and frustrating. Locomotion is one of the most

often performed activities since it enables the user to access spatially different re-

gions within the virtual environment for data exploration and search tasks [109, 141].

Researchers have proposed different VR locomotion techniques that allow users to

experience a similar level of freedom and naturalness as they would in the real world

[42, 45].

Boletsis [16] conducted a comprehensive literature review of 36 prevalent VR loco-

motion techniques and identified four categories of locomotion: Motion-based, Room-

scale-based, Controller-based, and Teleportation-based techniques. Similarly, Al Za-

yer, MacNeilage, and Folmer [1] reviewed over 200 VR locomotion techniques papers

and classified them into the same four categories as in Boletsis. Zhang et al. [166]

concluded that these strategies mostly relate to movement on the ground plane and

proposed to add another category for locomotion techniques based on whether the

user may move beyond the ground (i.e., fly) or not.

Despite advancements in VR technologies, 25 - 60 % of the population experience

VR sickness symptoms [58]. VR sickness is caused by three main factors: VR hard-

ware (e.g., refresh rate and resolution), content (e.g., navigation speed, scene, graphics

changes), and human factor (i.e., individual differences, exposure duration) [28, 31,

95, 130]. Researchers have proposed different techniques in an attempt to reduce the

effect of VR sickness during locomotion including, but not limited to adjusting frames

rate [167], adding peripheral Visual Effects [51, 117], and reducing the user field of
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view [22]. However, these techniques do not show significant effects in reducing VR

sickness.

A recent study investigated whether presenting data virtually or physically affects

user comprehension and recollection [126]. In the study, the authors compare two

identical representations of the same dataset, one in physical form and the other

in VR. Participants completed comprehension questions while having access to the

model, then they were asked data-related questions after the model was removed.

The study concluded that while physicalization helps reduce the completion time,

the virtual representation and technical VR configuration (i.e., VR lag) significantly

reduce the participants’ experience quality.

Data analysis in VR might be difficult with VR visualization. Inadequate implemen-

tation of the aforementioned VR factors, for instance, might negatively impact users’

focus and experience during analytical activities.

2.5 situated analytics

Since the primary goal of visual analytics is to support users’ analytic reasoning and

decision-making process via the use of visualization, situated analytics use situated

visualization to achieve the same goal [144, 160]. In this section, important aspects

and terms are introduced to describe and understand situated visualization, the def-

inition of situated visualization, its conceptual framework, and examples of spatio-

temporal situated visualization tools. In addition, we present interaction techniques

that potentially support situated analytics.

2.5.1 Situated Visualization Key Characteristics

White [155] highlighted three common situated visualization characteristics. The first

characteristic is that data in the visualization must be related to the physical context.

In situated visualization, regardless of what data we are interested in visualizing, data
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often has embedded spatial, temporal, or spatio-temporal attributes. These attributes

are necessary when data is being visualized. For example, data such as locations of

objects, Wi-Fi signal strengths, or temperature readings are geo-referenced; it implies

spatio-temporal relationships that should be considered when visualizing the data.

Identifying the context is an important aspect of situated visualization because it in-

fluences the visualization and the relationship between the visualization and context.

Depending on the application domain, the context could include a single or multiple

objects [48, 157, 172] or entire physical scene [62, 131, 156, 172]. In the case of a phys-

ical object being considered as context, the visualization is registered and attached

to the object in the view of the user. For example, ElSayed et al. [48] proposed a

prototype that displays product’s information (e.g., price, ingredient, and nutritional

information) on one or more product packages. When the scene becomes the context,

situated visualization is mapped into the entire space. For instance, Fraga-Lamas et al.

[56] reviewed AR tools that are used in industry to support shipbuilding and main-

tenance; then proposed an AR tool, called Shipyard 4.0, that enables decision makers

to analyze data on its context to aid in the decision-making process.

The second characteristic is that visualization must be based on the relevance of the

data to the physical context. Once the context has been identified, the relationship

between physical context and visualization will be established to what is referred

as relevance. In this dissertation, we are interested in three relationships: semantic,

spatial, and temporal. In semantic relationship, the relevance between the context

and data comes more from the users’ understanding of the context. For instance, an

individual does shopping at a store and identifies product items, regardless of their

location in the store, and displays related information in a simple and meaningful

way. In the spatial relationship, the data has a specific position with respect to the

context such as visualizing the trajectory movement of individuals or infrastructure

in a geographical location. In the temporal relationship, the relationship would occur

in conjunction with a semantic or spatial relationship. For example, data about an
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individual being stationary at a geographical location could be presented at the exact

location and in a semantic representation (e.g., stacking data points at one location).

The third characteristic is the display where presentation of the visualization must

take place in the physical context. After the relevance of data to the physical context

has been recognized, it is essential to consider the means to display, spatial presenta-

tion, representation, and interaction to support in-situ user experiences [155]. There are

many methods to display visualizations relative to the user and the context. In this

dissertation, the focus will be on see-through immersive AR displays (i.e., HMDs).

We are interested in this type of display for a few reasons. First, AR displays sup-

port visualization that is associated with the users and the context provides users with

immersive experiences. Second, it lacks some of the AR challenges such as sickness,

restricted space, limited mobility, etc (see Section 2.4.4). Finally, AR displays enable

complex presentation and a wide range of interactions, as discussed in Section 2.5.4.

Spatial presentation specifies the coordinate system that can be used to place the

data to an object or space [155]. Researchers have presented different coordinate sys-

tems to place GUI and virtual contents in 3D environments [94, 155]. Examples of

coordinate systems, including but not limited to body-referenced, object-referenced,

and world-referenced [50]. For other coordinate systems, we refer the reader to [50,

94]. A presentation that is body-referenced, is one that is attached to the user’s body.

A visualization or GUI, for example, can be anchored to the hand of the user via

wearing a sensor or using computer vision to track the hand. The visualization or

GUI will remain in the user’s hand independently of the head or display movement.

A presentation that is object-referenced presentation is attached to an object in the

world. An example of this would be product visualization on a package that remains

attached regardless of changes in position of the package relative to the world. Finally,

world-referenced refers to a visualization that is mapped into the physical environ-

ment, such as a room, field, or geographical location. An example of this would be

STC visualization of individuals’ movement data that is mapped and fixed to the
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physical location regardless of the movement or orientation of the user or display, see

Section 1.1.2.

In this dissertation, we are interested in world-referenced visualization as our focus

will be on spatio-temporal movement data. Representation is concerned with alterna-

tive visualizations and interaction between the visualization and physical context. Af-

ter determining world-referenced as a coordinate system, we need to consider how to

present information in the physical context. This includes factors such as size, colour,

and visualization type. Each of these can affect perception in different ways. For exam-

ple, if two values are mapped to different colours, but those colours are very similar,

it may be difficult for a user to tell them apart. Similar to presentation, interaction

describes the coordinate system that the user uses to interact with the visualization.

The interaction may consist of any mix of display-referenced, body-referenced, object-

referenced, and world-referenced coordinate systems depending on user analytical

activities (e.g., data exploration, and data filtering). Interaction and presentation are

often associated and occurred in distinct reference frames. More details will be dis-

cussed in Section 2.5.4. These three characteristics are what make situated visualiza-

tions unique, and what allow them to effectively communicate information about the

physical world.

2.5.2 What is Situated Visualization?

The term situated visualization refers to an emerging idea within the area of informa-

tion visualization. The concept of situated visualization has received attention from

several academic fields including AR, visualization, and HCI. Thus, a variety of re-

search and implementations of this concept have been proposed which concentrate

on the operational elements of the situatedness. However, there is inconsistency in

the terminology and adoption of the concept of situatedness [19].

There have been two primary definitions of situated Visualization in the research

community during the last two decades [157, 160]. The early definition of situated
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visualization was introduced by White, Feiner, and Kopylec [157]. White, Feiner, and

Kopylec [157] presented a definition of situated visualization, referring to visualiza-

tion that is ªrelated to and displayed in its environmentº. This definition is broad and

does not provide more information about the environment. Furthermore, the defini-

tion does not go into depth on where the visualization should be placed in relation

to the environment. Willett, Jansen, and Dragicevic [160] extended the definition of

White, Feiner, and Kopylec by introducing the concept of physical referent where data

is visualized. Willett, Jansen, and Dragicevic [160] differentiated between embedded

and situated visualization and data representations. In the embedded visualization,

visualization is mapped into the physical referent as closely as possible. On the other

hand, the authors in [160] considered the situated visualization to ªplace the entire

visualization in a relevant location, but do not necessarily physically align individual

data presentations or visual marks with their corresponding referentsº. Bressa et al.

[19] reviewed 44 publications that explicitly use the phrase ªsituated visualization".

All 44 publications used either one of the two definitions or both of them. In this

dissertation, however, we adopt the definition presented by Willett, Jansen, and Drag-

icevic [160]. We are interested in trajectory data that physically align with the location

where the data was captured.

2.5.3 Situated Visualization Tools

The primary benefit of using situated visualization techniques over traditional and

AR visualization techniques is that they provide the spatial relationship between the

data and the physical environment and enable in-situ user experiences [48, 62, 84, 121,

156, 157, 168, 171]. Situated visualization has been used to show a wide range of data

types, including engineering, science, and environmental data [19]. In this section,

we will present situated visualization techniques for data that have spatio-temporal

attributes.
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Situated visualization supports data collection and analysis in earth science. For

example, Whitlock, Wu, and Szafir [159] highlighted challenges in data collection

and analysis practice in environmental research and public safety. The fieldwork pro-

cedures require analysts to first pre-plan their activities based on data from earlier

collecting attempts and archive data streams. The next step is for analysts to physi-

cally transport updated data to a central location so it can be synchronized with other

sources and used to update future collecting efforts and operating procedures. This

method decontextualizes data acquired from the environment, restricts analysts from

responding to new data, and obscures any error in data gathering by creating spatial

and temporal gaps between data collection and analysis. Authors in [159] introduced

a visualization tool that integrates data collection (using mobile devices) and situated

visualization that simulates the changing status of field sites.

Urban planning and maintenance is another domain that took advantage of sit-

uated visualization. For example, SiteLens is a tool that visualizes spatial data of

Carbon Monoxide (CO) from different sensor datasets [156]. SiteLens represents CO

measurement points in the context of the physical site where the CO measurement

was recorded. Each measurement point is represented as a sphere, with the sphere

location being based on the location of the measurement. Additionally, the altitude

of each sphere represents the level of CO in each region of space. SiteLens’s users

use a handheld AR device to visualize CO data as they walk within a city. Another

application domain that leverages situated visualization is in underground infras-

tructure maintenance. A mobile AR system was developed to assist field workers at

underground infrastructure inspecting and scheduling maintenance via visualization

of their physical locations [131].

In addition, situated visualization has been used to identify points of interest

around a city. For example, Yelp Monocle is a commercial mobile application that

allows users to locate businesses in the area around them [135]. The application uses

a user’s location to provide a list of businesses that are nearby. Virtual cards with

business information (e.g., name, address, phone number, ranks, and hours of opera-
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tion) are displayed through a mobile device camera. It should be noted, however, that

the data displayed in this AR mobile application is not physically related to viewing

real-world buildings which could lead to challenges such as limited visibility and

information clutter [62, 172]. Other situated visualization tools take the aspect of lay-

out and presentation of when to visualize buildings’ names around a city. Several

techniques have been proposed to address such challenges [62, 172]. For example,

Grasset et al. [62] introduced an image-based method that combines a visual saliency

algorithm with edge analysis to identify potentially important image regions and ge-

ometric constraints for annotation placement. Zollmann, Poglitsch, and Ventura [172]

proposed situated visualization techniques for buildings’ labels including dynamic

annotation placement, dynamic label alignment and occlusion culling. The basic con-

cept behind the algorithms is to utilize spatio-temporal data as an input source for

modifying the visualization rather than just presenting it.

Beside Urban planning and points of interest identification, situated visualization

has been used for indoor and outdoor navigation. For instance, Guarese et al. [64]

proposed a prototype that helps event’s attendants to navigate and access indoor

spaces (e.g., auditorium). The prototype displays 2D trajectories to chairs in the space

and information for each specific chair (e.g., temperature, hearing aid, power plugs,

and wheelchair accessibility). The attendants can interact with the prototype via AR

interface, and refine their search by toggling and combining the displayed attributes.

One of the key uses of AR is outdoor navigation. Guarese and Maciel [65] introduced

AR-based outdoor GPS navigation, called HoloNav. The prototype uses Microsoft

HoloLens to display virtual trajectory lines and arrows on terrain to guide users to

different locations around geographical space in the city. The Microsoft HoloLens

communicates with a mobile device and receives GPS data via Google Maps API.
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2.5.4 Interaction for Situated Visualizations

Interaction is another fundamental component of situated visualizations. Due to the

unique challenges inherent in situated visualizations, suitable interaction modalities

and interfaces are required for each visualization platform, to elicit the appropri-

ate/desired user behaviour [24]. One of the main benefits of situated visualization

is the ability to visualize information at multiple scales. Additional benefits include

the visualization of information at large scales, and the navigation of information via

physical and virtual means[24].

Two decades-old, Dourish [44] introduced hypotheses about embodiment that form

the conceptual basis for HCI and defined embodied interaction in a more general way

as ªthe existence and occurrence of a thing in the worldº, which incorporates physi-

cal objects, dialogues, and actions. A more recent and specific definition of embodied

interaction, which we have adopted in this dissertation, has also denoted interactive

systems controlled by the body’s parts, e.g., mid-air and feet gestures [26, 77]. Since

then, the HCI community has shown a growing interest in embodied interaction and

explored its potential for the new emerging platforms [9, 39, 54, 137]. More research

has been focusing on understanding and incorporating proxemics and embodied in-

teraction due to the natural use of physical navigation in immersive and situated

analytics. Greenberg et al. [63] applied Proxemics Behaviour theory by Hall [67] into

ubiquitous computing. Proxemics is the study of applying interpersonal distance to

better understand interactions between individuals. Greenberg et al. [63] considered

ªinter-entityº distance usage, in which an ªentityº can be a variety of people, de-

vices, or digital content. Jakobsen et al. [81] built on Greenberg et al.’s work and ex-

plored proxemics-based interactions with visualizations. These forms of navigation

and interaction can be efficient for situated visualization and require/warrant further

exploration.

In the context of situated visual analytics, the objective is to include multi-sensor

and proxemics that allow users to communicate and immerse themselves in their
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data to help the actual analysis activities involved in the environment. Although

proxemics was originally specified for user-to-user distances [105], it has since been

extended to user-display proximity and movement perception for interaction [12, 97].

Several embodied interactions have been studied to interact with spatio-temporal

data visualizations including through hands-touches [39], mid-air gestures [54, 112,

145], foot gestures [39], and various proxemic dimensions related to digital artifacts

[12, 105, 145] (i.e., user distance, user body orientation, movement, location). Body

movement has also been used to explore the visualization space [12, 158]. Prouzeau

et al. [122] observed that some users have used their body movement to reach di-

rectly into 3D scatter plots to inspect points of interest. Similarly, Batch et al. [13]

reported that participants used their body movements to navigate the virtual space,

arrange different visualizations within the space, and revisit them to report their find-

ings. Finally, Simpson, Zhao, and Klippel [136] conducted a study to compare body

movement and orientation in place to explore 3D scatter plots; preliminary results

showed that participants with poor spatial memory were more efficient in the body

movement condition.

As the benefit and use case of proxemic interaction is clear, we look to enable these

forms of interaction for situated spatio-temporal data analytics pertaining to spatio-

temporal trajectory data. Furthermore, being in-situ, and allowing for many forms

of interaction through AR HMD (i.e., proximity, orientation, mid-air gestures) we

look to leverage these affordances to create a prototype to perform situated analytical

tasks.

2.6 lessons learned

Based on the above state-of-the-art review, several gaps were identified in the litera-

ture as follows:

First, to date, the majority of spatio-temporal trajectory data analytics and visual-

ization research has mainly focused on using traditional computing paradigms (i.e.,
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analysis on a regular desktop monitor, using classical desktop interfaces and input

modalities) to explore data and detect patterns [5, 7, 25, 76, 118]. The visualization

community explored the potential of AR for data visualization and proposed visu-

alization prototypes for large and complex trajectory data that would be difficult to

understand on a traditional desktop [52, 54].

Second, although VR headset has advantages over desktop-based visualizations in

terms of immersive experience and complex data visualization, it still has several

limitations, including limited navigation space [42, 45], VR sickness symptoms [28,

31, 95, 130], physical-world and context isolation [144, 156, 160].

Third, situated visualization has the potential to provide several benefits over desk-

top and VR platforms; however, little is known about how to take advantage of in-situ

exploration of spatio-temporal. One of the primary benefits is that situated visualiza-

tions enable users to have in-situ experiences [144], a better understanding of the

spatial relationships between data and the physical world [156]. This is especially

important for data that is highly contextual, such as geographical data. Given the

emerging area of situated analytics, new technologies are evolving with the ability to

generate spatio-temporal data and different use cases. Consequently, it is necessary

to empirically validate the potential of situated analytics by comparing Situated and

Non-situated analytics.

Fourth, we have not come across situated visualization designs recommendation

that supports situated spatio-temporal data visualization. There is a need to explore

further design choices for situated visualization through elicitation studies and work-

shops [150]. This can be achieved through a process of participants’ sketching situated

visualization, and being in-situ which influence the participants’ integration of their

designs.

Fifth, although several design choices for STC have been proposed in the literature,

we could not find any situated visualization that utilized STC to visualize trajec-

tory data of individuals and map visualization into the environment where the data

was collected for in-situ exploration. STC is a well-known visualization technique

39



2.6 lessons learned

to visually represent spatio-temporal data and has been used in different computing

paradigms, such as traditional desktop and VR. An elicitation study and updated STC

design from the literature review will help in implementing a prototype for situated

STC visualization.

Sixth, to understand how users leverage the proposed situated STC visualization

prototype, a preliminary exploratory evaluation is needed. This evaluation will not

only help us determine whether the prototype supports situated data exploration, but

also explores interaction taxonomy, i.e. VISM by Shneiderman [133], and identifies

challenges users might face while using the prototype. Additionally, the evaluation

study can help to address concerns and challenges associated with the situated STC

visualization and to propose alternative situated visualization that integrates VISM

into the prototype and overcomes concerns and challenges.
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3 S I T U AT E D V S . N O N - S I T U AT E D D ATA A N A LY S I S

In this chapter, our focus is primarily on whether situated data analytics facilitates

task performance. We restate the definition of situated visualization as to ªplace the

entire visualization in a relevant location, but do not necessarily physically align indi-

vidual data presentations or visual marks with their corresponding referentsº [160].

For a better comprehension of the study, in situated condition, data is not visualized

onto the physical environment (using AR), but the participants watch the video clips

(i.e., spatio-temporal data) and check the video in the physical environment where

data were collected. Thus, we conducted an empirical study comparing participants’

spatio-temporal data analytics performance in in-situ analysis group and non-in-situ

analysis group. To illustrate, we conducted a study that observed video-analysis ac-

tivities in two settings, in-situ (i.e., situated) vs. as traditionally done, at the desk (i.e.,

non-situated). The dependent variables for each video scenario were based on the

exploratory search tasks found in video analysis tools in the literature [11, 14, 27, 36,

72, 96, 99, 102, 114, 123, 139]. Additionally, for an exploratory purpose, we assessed

participants’ confidence levels for their own judgements.

3.1 participants

The study was advertised using posters at a local university. Forty (40) participants

(M = 18, F = 21, other = 1) volunteered. Their age ranged between 18 and 41 (M =

24.70, SD = 6.59). They were randomly assigned to either the Situated or Non-Situated

condition. 20% of the participants reported English as their first language, and none

of the participants had any language issues throughout the study. All participants

reported normal or corrected-to-normal vision.
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3.2 apparatus

For visual analysis, a Microsoft Surface Pro 2 was used in both the Situated and

Non-Situated conditions. Its screen size was 10.8 inches (27 cm) by 12 inches (30 cm)

and the resolution was 1920 x 1080. To support the participants’ mobility during the

study in the Situated condition, they were able to switch between laptop mode and

tablet mode via a detachable keyboard. Participants were allowed to switch between

the two modes as needed. For example, when a participant wanted to explore the

scene physically, they would choose tablet mode for a better video viewing experi-

ence. Furthermore, they were provided with two measurement tools (a ruler and a

measurement tape), pen, paper, and a stopwatch to help them answer the analytic

tasks. To develop video stimuli (i.e., video clips), a video camera (the Canon HF-M52)

was used, see Section 3.4 for detailed video scenarios.

3.3 method

A two by two mixed between (1: Situated vs. 2: Non-Situated) within (1: On-Camera

vs. 2: Off-Camera) design study was conducted. The scenario clips and questions were

uploaded on an online survey system, Qualtrics. Upon arrival of the participants and

their signing of the consent form, a research assistant explained to them the general

procedure. Their main task was to perform visual analytics to answer questions. Thus,

participants were asked to watch video clips on the Microsoft Surface Pro 2 first. Par-

ticipants were instructed to be as fast and accurate as possible, but no time limit was

set. The participants in the Situated condition were instructed to walk around and

gather information that could help them to answer the questions, see Figure 11. The

questionnaire (on Qualtrics) consisted of three main sections. The first section was

a practice session. The next section gathered participants’ demographic and vision

data. The last section provided stimuli and questions: There were five blocks in this

section. Each block had its own purpose (i.e., scenario types): 1) projectile trajectories
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[21, 87], 2) key changes in the environment [110], 3) movement direction [73, 82, 87],

4) movement/action duration [110], and 5) absolute measurements [14, 21]). Further,

each block contained four questions focusing on its scenario type. The selection of

scenario types was made based on common video analysis activities found in [14, 21,

73, 82, 87, 110]. Participants were presented with one scenario block at a time, each

containing video clips, questions related to an event in each video, and questions

about participant confidence. To minimize the order effect, scenario order was coun-

terbalanced for all the participants. Participants were allowed to analyze freely: replay,

pause, rewind, and frame-step, as well as watch the video multiple times. We collect

participants’ completion time, clicks coordinates on images, answers to questions, and

confidence level. Participants used the imperial or metric system when reporting their

measurements, based on their preference. Figure 10, show an example of a question

after watching a projectile trajectories scenario. Each study lasted roughly 75 minutes

and each participant received a $15 gift card for their participation.
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Figure 10: An example question of projectile trajectories scenario where camera optical axis
was perpendicular to ball trajectory and part of the event was off-scene.
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Figure 11: After a situated group participant watched video clips and read questions related
to the scenario, the participant walks to the location of events in the video to find
(a,b) the ball’s location when it touched the ground and reached its apex, (c) the
marker’s colour used in the vandalism act, and (d) the ball’s locations after it left
actors’ hands, (e) the time it took the actors to reach a predefined location, and (f)
the newspaper stand height.
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3.4 video clips

Five scenarios were acted out by three actors (two males and one female). Two con-

ditions for each scenario were produced: video clips in the on-camera condition cap-

tured all of the action within the camera field of view (FOV), whereas, in the off-

camera condition, some parts of the action occurred outside of the camera FOV. The

researcher showed a video clip of the actors in a local university building’s atrium

which was empty at the time. We positioned our camera at a height akin to that of the

actual security cameras there. All videos were recorded in 1920 x 1080 resolution at

30 frame per second (fps). We used an open source software called ªTrackerº [21] to

identify the accurate/correct responses (i.e., answer keys) from the video to be shown

to participants. Twenty-six unique video clips were recorded. There were 4 to 8 clips

in each scenario block. 44.125 seconds was the mean duration of all videos with a

minimum of 5 and maximum of 215 seconds as the range of duration for all videos.

The experiment was comprised of original and unaltered footage (no added special

effect or modification was present). The following scenario types were used in the

study:

3.4.1 Projectile Trajectories

Participants viewed eight videos. Four variations of this scenario were created using

two types of camera optical axes (perpendicular or parallel) and two types of FOV

(on- or off-camera) (Figure 12). In the on-camera clip, an actor threw a soccer ball and

the trajectory ends within the camera FOV, see Figure 12 (a) and (c). However, the

trajectory ends on the outside of the FOV in off-camera clips, see Figure 12 (b) and

(d). Questions asked were regarding the ball’s trajectory; 1) after it left the actor’s

hands, 2) at its apex, 3) at contact with the ground.
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Figure 12: (a) and (b) show the ball being thrown perpendicular to the camera, with (a) in
FOV and (b) not entirely in FOV. Image (c) and (d) show the ball being thrown
parallel to the camera, with (c) in FOV and (d) not entirely in FOV. Note the red
arrows and white dots were not shown to participants.

3.4.2 Key Environment Changes

Four videos explored questions related to physical changes that happen within a

scene’s environment (in this case, a vandalism event). Four white sheets of paper

were posted in four different locations to simulate this event: two were placed on-

camera while others were placed off-camera, see Figure 13. An actor walked into the

camera FOV, sat down at a table next to the wall for a few seconds, walked toward

one of the white papers, draw a shape with a colour marker, then left the scene. Each

sheet was marked with a different colour (black, red, green, or blue). The participants

were asked to report the colour.
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Figure 13: A stitched image of the actor acting in the four video clips. The figure shows
different locations of posted white papers. The locations (1) and (2) in the camera
FOV whereas (3) and (4) are outside of the camera FOV. Please note that the red
boxes were not shown to the participants.

3.4.3 Movement Directions

Four videos explored participants’ abilities in tracking object movements and direc-

tions. In on-camera clips, three actors stood in a circle facing each other and threw a

soccer ball between themselves (five passes in). Participants’ tasks were to; 1) click on

the location of the ball after it left an actor’s hand, and 2) draw the ball’s movement

and direction on a piece of paper. For off-camera clips, a red bag was placed on a

table: the first actor picks up the bag, walks in a straight-line path and leaves the cam-

era FOV for a few seconds. The actor then passes the bag to the second actor, who

walks in straight-line into camera FOV for several seconds, then exits the camera FOV.

Then the bag is passed to the third actor. The third actor then walks in a straight line

into camera FOV for a few seconds and stops. Participants were asked to identify the

location and direction of the bag exchanges, using mouse clicks.
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3.4.4 Duration of Movement/Action

Four videos explored the participants’ measurement perception and estimation of

event duration. For the on-camera material, three meeting points were predefined. In

the video clips, three actors meet at each location for a certain amount of time, then

disperse. Participants’ tasks were to 1) measure the duration of each meeting. For the

off-camera material, two actors sit at a table and talk for several seconds, then stand

up to walk out of the camera FOV. Participant’s tasks were to 1) estimate the time the

actors spent to arrive at a predefined location, outside of the camera FOV.

3.4.5 Absolute Measurements

Participants’ perception regarding absolute measurements was explored with four

videos. For the on-camera material, an actor places a piece of duct tape on the floor

or on a newspaper stand next to the wall (two scenarios), then leaves the camera FOV,

see Figure 14-b. Participants’ tasks were to 1) report the length of the duct tape, and

2) height of the newspaper stand. For the off-camera material, one actor begins on a

lower floor, then walks halfway up a flight of stairs, stands for a few seconds, then

walks back down to the lower floor, see Figure 14 (a). The upper half of the actor’s

body was shown to the camera FOV and was visible within the clip. Participants’

tasks were to 1) report the height of the actor. The same action was repeated in

another video clip by an actor of a different height.
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Figure 14: Image (a) shows a snapshot from the absolute measurement scenario off-camera
material. The actor walked up the stair and stood where the red arrow is pointing.
Image (b) shows the actor put duct tape on the ground where the red arrow is
pointing. Participants were asked to report the actor’s height and the length of the
duct tape. Please note that the red arrows were not shown to participants.

3.5 results

After checking assumptions, mixed two by two ANOVAs were conducted throughout

Study 1, to explore the effect of condition (Between: Situated vs. Non-Situated) and

the analysis type (Within: On-camera vs. Off-camera) on each dependent variable.

Participants’ familiarity with the building did not differ across conditions, F(1, 38) =

.28, p = .60. Participants’ responses were compared against the answer keys we had

generated. We report a significant value when p <= .05.

3.5.1 Projectile Trajectories

Response error: The distance between the participants’ responses (i.e., where the par-

ticipants clicked on the monitor) and the correct response (in pixels) were computed

to indicate the magnitude of the participants’ response error. A significant condition

effect emerged, F(1, 38) = 16.66, p = .0002, ηp2 = .31. Scene type effect was also signif-

icant, Wilks’ Lambda = .73, F(1, 38) = 14.14, p = .0006, ηp2 = .27. Further, a significant

interaction effect emerged, Wilks’ Lambda = .38, F (1, 38) = 7.25, p = .011, ηp2 =
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.16. Simple main effect analyses confirmed that for both on- and off-camera scenes

while participants in Situated condition made less error(ps < .05, see Figure 15 for the

means. Being in the scene allows participants to view the video clips from different

view-points, and this reduced their levels of errors. Hence, interestingly, participants

in Non-Situated analysis made greater errors, compared to Situated condition, even

when the video clip captured the entire scene within the camera FOV, indicating that

revisitation is essential when we need to make an accurate evaluation.

Completion time: There was a significant condition effect, F(1, 38) = 21.79, p =

.00004, ηp2 = .36. Compared to the Situated condition, participants spent less time

when they were in the Non-Situated condition to complete their tasks. Further, the

scene type effect was also significant, Wilks’ Lambda = .30, F(1, 38) = 88.73, p < .000001,

ηp2 = .70. There was a significant interaction effect, Wilks’ Lambda = .56, F(1, 38) =

29.41, p = .000004, ηp2 = .44, see Figure 16. Pairwise comparisons indicated that in

both on-camera and off-camera materials, participants in the Situated condition spent

longer time than their counterparts did.

Figure 15: The interaction effect on the response error for projectile trajectories (p = .01).
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Figure 16: The interaction effect on the completion time in projectile trajectories (p = .000004).

3.5.2 Key Changes In the Environment

Response accuracy: For the dependent variable, the percentage of the participants’

correct responses in a colour detection task was used. No interaction effect nor scene

type effect emerged (ps > .14). A main effect of condition emerged, however; F(1, 38)

= 667.45, p < .000001. As predicted, participants in the Situated condition responded

perfectly (M = 1.00, SD = .00) on colour detection task while participants in the Non-

Situated condition did poorly (M = .18, SD = .14). Once again, even when the scenes

were captured completely within the Camera FOV, Non-Situated participants could

not perform equally well as their situated counterparts.

Completion time: The effect of analysis type was found, Wilks’ Lambda = .34, F(1,

38) = 75.34, p < .001, with a large effect, ηp2 = .67. Participants processed the on-

camera materials faster (M = 109.88, SD = 45.82) than the off-camera materials (M =

186.03, SD = 73.62). There were no significant interaction nor condition effects (ps >

.05).

3.5.3 Duration of Movement/Action

Response accuracy: No significant effects were found (ps > .15).

52



3.5 results

Completion time: A significant condition effect was found, F(1,38) = 21.57, p <

.00004, ηp2 = .36. Further, there was a significant analysis type effect, Wilks’ Lambda

= .52, F(1, 38) = 34.81, p < .000001, ηp2 = .48. Finally, there was a significant interaction

effect (Wilks’ Lambda = .76, F(1, 38) = 12.11, p = .001, ηp2 = .24). Simple main effect

analysis confirmed that the only off-camera, participants in Situated condition took

significantly longer than those who were in Non-Situated condition, but not with on-

camera(p < .00001, see Figure 17. This was because participants in Situated condition

often imitated actors in the video clips to obtain their answer. Whereas, participants

in Non-Situated condition simply quickly guessed the time the actors took to get to

their destinations.

Figure 17: The interaction effect on the completion time in duration of movement/action (p =
.00001).

3.5.4 Movement Direction

Response accuracy: No significant effects were found (ps > .19).

Completion time: No significant condition effect nor interaction effects were found

(ps > .28). An analysis type effect emerged, however (Wilks’ Lambda = .66, F(1, 38)

= 19.98, p = .00007, ηp2 = .35. On average, processing on-camera material required
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longer time (M = 575.40, SD = 475.15) than processing off-camera materials (M =

366.23, SD = 231.20) regardless of the condition.

3.5.5 Absolute Measurements

Response accuracy: A main effect of condition emerged, F(1, 38) = 28.61, p = .000004,

ηp2 = .43. The analysis type effect was not found (p > .05); however, an interaction

effect emerged, Wilks’ Lambda = .89, F(1, 38) = 4.91, p = .03, ηp2 = .11. Simple main

effect analyses yielded that only with In-scene material, participants in Non-Situated

condition made larger errors than the participants in the Situated condition did(p =

.00001).

Completion time: A condition effect emerged; F(1, 38) = 13.95, p = .001, ηp2 = .27.

Participants in the Situated condition spent longer time (M = 181.83; SD = 65.23) than

their counterparts did (M = 107.75, SD = 60.06). An effect of analysis type was also

found: Wilks’ Lambda = .77, F(1, 38) = 11.64, p = .002, ηp2 = .23. Participants spent

longer time when they were analyzing on-camera materials (M = 118.88, SD = 51.32)

than off-camera materials (M = 170.69, SD = 113.16). There was no interaction effect

(p =. 06).

Figure 18: The interaction effect on the response error for absolute measurements: Estimated
marginal means of response error magnitude (p = .03).
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3.5.6 Overall Confidence

A question (ªHow confident are you about the answer you provided above?º) as-

sessed the participants’ confidence level regarding their own analytical performance

using a 7-point Likert scale. This question was provided immediately after each task.

For the analysis, the mean of each task confidence was used. A main effect of con-

dition and analysis type was found. When participants were in Situated condition,

their confidence was significantly higher; F(1, 38) = 8.74, p = .005, M = 5.52, SD = .41,

than their counterparts’ (M = 4.90, SD = .84). Further, analyzing on-camera materials

made the participants feel more confident about their analytic performance; F(1, 38) =

21.38, p = .00004, ηp2 = .36, M = 5.36, SD = .75, compared to the off-camera materials,

M = 5.09, SD = .75. No interaction effect was found. This generally higher confidence

level (note mid-point is 3.5) was surprising. Thus we further looked at the level of

confidence when participants were not in the situation nor able to see the entire scene.

Their mean confidence level was 4.76 with SD = .84.

3.6 discussion

Significant effects around the response error/accuracy confirmed potential benefits of

situated analytics in comparison to the traditional Non-Situated analytic method. Par-

ticipants’ errors were generally larger when they analyzed the videos in an office as

opposed to the actual location, as expected. Furthermore, participants’ Non-Situated

analysis performances were often affected by the type of analysis; the magnitude of er-

rors the participants made varied depending on the type of analysis (on/off-camera)

when they performed estimations on projectile trajectories and absolute measurement

tasks. It is somewhat alarming that, when Non-Situated analyses were conducted,

participants’ errors were greater compared to the Situated analyses, even when the

video clip contained the whole incident within the Camera FOV. This finding poten-

tially implies the importance of situated analyses.
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The accuracy came with a cost, however. Although the situated analytic method

improved accuracy, users moving through the scene naturally increased the amount

of time it takes to make estimate judgements. This trade-off is further justified when

we observed that certain participants express frustration about the lack of informa-

tion obtained from the physical environment. One can argue that in the non-situated

settings, a better video quality or multiple camera angles could somehow mimic bene-

fits similar to situated video analysis. However, going over multiple video clips could

be impractical. Finally, situated video analysis boosted the participants’ confidence

in their judgements; such increased levels of confidence could be important when

they are using visual analyses to make decisions, for example. Surprisingly, partici-

pants who were not in the location also showed rather high confidence level, even

when they could not see the entire scene: such somewhat undeserving confidence

level could be potentially costly. In summary, the results of Study 1 generally indicate

sufficient potentials for us to explore SA further, with the caveat that it can take par-

ticipants longer. In the next step, thus, we head towards an exploration of situated

analytics platform, using AR.
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4 S I T U AT E D V I D E O D ATA V I S U A L I Z AT I O N

In this chapter, we present an elicitation workshop that included sketching and ideation

activities. The goal of this workshop is to capture visualization designs to support sit-

uated video data visualization, with the potential to improve the analytic process

in AR environment. In addition, we examine user-generated visualization to gain a

better understanding of how to exploit the user’s immediate surroundings and the

design recommendations that help manifest these needs in the design of situated

visualizations.

4.1 participants

The study was advertised on campus bulletin boards at a local university. Twelve

participants (8 males and 4 females) were recruited, none of whom partook in the

first study. Their ages ranged between 20 and 31 (M = 24.50, SD = 4.37). 25% of them

reported that English was their first language and 16% preferred not to report their

first language. No language issues were exhibited during the study. All participants

reported normal or corrected-to-normal vision. Each session was conducted with two

participants (i.e., pair). Two people were required so the participants could bounce

back and forth their ideas with their partner. For the time constraint, we did not in-

clude more than 2 people in a session. Participants took turns throughout the session.

They received a $20 gift card as compensation for their time.
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4.2 apparatus

A Microsoft Surface Pro 2 and Microsoft HoloLens were used for the following rea-

sons, 1) to familiarize participants with the experiences of video viewing while being

mobile and in-situ, 2) to have platforms which incorporate participants’ sketches us-

ing AR while making them aware that their drawings will not be in VR in the study,

3) to help participants understand the mapping of the events they see in the video

clip in the actual location. Once again, for the ability to switch from laptop mode to

tablet mode and vice-versa, a detachable keyboard was provided to the paired par-

ticipants to support their mobility. A video camera, the Canon HF-M52, was used to

record video scenarios in a manner similar to that of study in Chapter 3. All five sce-

narios were performed in FOV and on one clip (1:24 mins). The video clips’ size and

format were the same for both the Microsoft Surface Pro 2 and Microsoft HoloLens

to counterbalance the large screen size difference between the two devices. A4 sheets

of paper (21 cm X 29.7 cm) were provided to participants with a 2D and 3D repre-

sentation of the space in the video that was captured in. Coloured pens for use in

sketching activities were also provided to participants. This technique shows positive

results in previous situated visualization studies [20].

4.3 method

Six workshop sessions were coordinated with two participants each. Each session

took between 1.5 and 2 hours (including 10 minutes of interview). At the beginning

of each session, a research assistant was introduced as a moderator/note taker. Af-

ter signing a consent form, participants filled out a short demographic questionnaire.

The Microsoft Surface 2 and Microsoft HoloLens were introduced, and an instruc-

tion for watching video on both devices was provided. The two participants, were

then taken to a university atrium where the video was captured, thus now situated.

Participants sat at a table next to each other, and were informed that their help was
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4.4 result

needed to develop a situated visualization in 3D space of event data from a video

scenario. Participants were provided with one scenario at a time, each containing a

set of instructions. The order of scenarios was counterbalanced for all groups. First,

participants were asked to watch the video using both the Microsoft Surface 2 and

the Microsoft HoloLens, and to walk toward the location where the event(s) took

place. Second, participants were asked to discuss how they would visually represent

an event in the video. Third, participants were asked to sit at a table and sketch their

visualization ideas on the provided paper, to represent the events from the video. Par-

ticipants were asked to produce two 2D sketches to describe their ideas per scenario;

they processed one scenario at a time.

A post-study interview with participants was conducted to explore participants’

experiences further related to 1) potential benefits of the sketched visualization ap-

proaches when used for analysis, 2) how the drawings would enhance understanding

of events, 3) challenges faced while transforming a 2D video event into a 3D drawing,

4) preference in using 2D or 3D to visualize extracted video data, and 5) preferences

for future situated analysis platforms.

4.4 result

We systematically coded the transcripts, sorted the photos based on ideas, analyzed

the use of different form factors in participants’ sketches, and created a summary of

all findings with relevant quotes from the transcripts. Sixty sketches were generated

in total (i.e., 6 pairs x 2 per scenario x 5 scenarios). These sketches were redrawn

digitally, see Appendix Section A.1, copying the original drawings as closely as pos-

sible. Each digital sketch was summarized and analyzed in detail. For the analysis, a

research assistant watched the video clip participants had watched, looked at the par-

ticipants’ drawings, then drafted a short explanation of what each drawing expressed.

These processes yielded three major components from the participants’ ideas: 1) In-
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4.4 result

formation Density Levels, 2) Interactivity, and 3) Event-Narrative. Examples of the

emergent sketch themes are provided in Table 2.
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Table 2: The distribution of theme categories of participants’ sketches.

Scenario
Information Density Levels Interactivity Event-Narrative

Low-density High-density Interactive Non-interactive Narrative Non-narrative

Projectile Trajectories 4 8 2 10 3 9

Key Changes in the Environment 7 5 3 9 1 11

Movement Direction 8 4 1 11 4 8

Duration of Movement/Action 7 5 2 10 3 9

Absolute Measurements 10 2 1 11 2 10

Total (%) 36 (60.00%) 24 (40.00%) 9 (15.00%) 51 (85.00%) 13 (21.67%) 47 (78.33%)

6
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4.4 result

4.4.1 Information Density Levels

We split the data into two, low- and high-density levels, based on the level of infor-

mation density. While low-density drawings did not include details of any event data,

they provided an abstract view of the event and a quick sense of the event. Partici-

pants were generally inclined to produce sketches that revealed a minimum amount

of event data. An example of a low-density drawing in which a character is shown

throwing a ball is demonstrated in Figure 19 (b). Drawings falling into the category of

high-density detail of visualization with more detailed information about the events

such as time, location, duration, etc, can be seen in Figure 19 (a), Figure 19 (c), and

Figure 19 (f). High-density drawings captured important and relevant event data (see

Figure 19). Sixty percent (60.00%) of drawings fell into the low-density category. The

level of analysis (i.e., Low vs. High) varied depending on the video event scenarios,

see Section 3.4. For example, the absolute measurements scenario is a simple scenario

where data, (e.g., the height of person) can be communicated with a simple visual

representation, see Table 2; more overview drawings (10) than detailed drawings (2)

were produced by participants. On the other hand, users were prompted to create

more high-density detail drawings than low-density detail drawings for more com-

plex scenarios such as in the projectile trajectories scenario.

4.4.2 Interactivity

Only 15% of the sketches contained an interactive component. Various interactive

functions were introduced by participants. For example, functions such as clicking on

a vandalized wall to reveal more information such as the time of occurrence, duration

of the act, and height of the actor, see Figure 19 (f). The use of physical movement was

also proposed in the sketches. In Figure 19 (c), a participant indicates that standing

on the location of an individual or object could reveal more situational information.
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4.4.3 Event-Narrative

Annotations were included by some participants to directly instruct a user to explore

(e.g., asking users to click, and stand at the location of interest) for further infor-

mation, Figure 19 (c). Another example of annotation usage leveraged chronological

order of events in the video to inform users, Figure 19 (d). Twenty-one point sixty-

seven percent (21.67%) of the sketches included event narratives.

Figure 19: Sample of participants’ sketches.
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4.4.4 Interview

Participants were interviewed after the design session, to capture their thoughts about

their experiences and drawings. Analysis of the participants’ interviews revealed the

following four themes.

2D and 3D Data Visualization: First, all the participants preferred 3D data repre-

sentations over 2D representations supporting in-situ video analysis. Physical mobil-

ity between events, and different viewpoints of the data were among the rationales

given by participants for preference of 3D. For example, P1 mentioned that a 3D vi-

sualization ª. . . helps you to move around different event in the video and can look

at them as you are part of the eventº [sic]. P2 reported ª. . . video events happened

in 3D space and to make sense of the event data it should be visualized in the same

3D spaceº [sic]. Further, participant P10 stated that ª. . . you can see the object from

all viewpointº [sic]. Other participants suggested that 3D visualization supports a

multivariate representation of events where ªyou can add depth into it you can add

more informationº [sic] (P3). Thus, all the participants recognized the strength of 3D

visualizations.

Benefits of Situated Video Visualization: Participants reported several anticipated

benefits of the video visualization techniques; 1) reduction of video browsing time (P1,

P2, P3), 2) providing a better understanding of events (P3, P4, P5, P8, P11), and 3)

supporting interactivity which increases engagement with events (P4, P5, P9, P12).

Participants felt that visualizing the information could reduce the time and effort of

event exploration. For example, P1 mentioned that ªin the video you have to watch 1

to 2 minutes where in the picture drawing (drawing of the video events) you can see

the data and people can look at it in like 10 seconds . . . video watching is sequential

you have to watch all the video." In addition, participants felt that their drawings

could enhance user understanding of video events. As reported by P3 and P4 ªI think for

people less trained, our drawing will help them understand the 3D aspect by adding
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depth into the scenarioº [sic] (P3), and ªdata that we draw has all the necessary

information that someone needs to examine events in the videoº [sic] (P5).

Situated Video Analysis Platform: Participants reported their analysis platform

preference (i.e., Microsoft Surface 2 vs. Microsoft HoloLens) if they were to conduct fu-

ture analysis of a 3D drawing of a video. Forty one point sixty seven (41.67%) of them

preferred tablet use, whereas 58.33% preferred the HMD; X2(1, N = 12) = .33, p = .56.

Despite a stated appreciation for a HMD, device weight, size, complex interactions,

and social acceptability were the main reasons and limitations participants cited for

preferring the tablet. Interestingly, however, none of these comments refer to the ef-

ficacy of an HMD. Freehand interactions, mobility, and a better sense of immersion

between the virtual and physical environment were among the rationales provided

by participants who felt positive about the HMD. For example, P1 felt that using an

HMD will help her to focus on the task, stating ª. . . (you) are not distracted and you

can focus on the objectsº [sic]. Participants P9, P11, and P12 mentioned that tablets

do not support full immersion with a digital world. For example, P11 stated ª. . . I

was seeing the same video using the tablet, it was very hard for me to generate the

sense of the location, time, and direction.º [sic]. Participants P5, P7, and P8 expressed

the ease of mobility in a 3D scene using an HMD. For example, P8 stated ª. . . It gives

the ability to move easily and have your hand free.º (P8). Thus, they recognized the

potential of an HMD.

Situated Video Visualization Challenges: One participant felt that the visualiza-

tion of the extracted video data could capture important and relevant data, such that

it could replace traditional videos, stating that ªThe drawing we come up with will

make it easy for video analyzers to understand and make sense of what happened

even if they did not see the videoº [sic] (P6). On the other hand, several participants

expressed their concerns about possible errors made in the process of transferring

and encoding extracted data from a video to visualization. For example, P4 men-

tioned that ª. . . the hindrances of transforming video events is that if designers made

mistakes or wrongly transform the data.º [sic].
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4.5 discussion

Participants’ responses revealed interesting visualization themes, insight, and chal-

lenges. The information density levels in visualization, which was found in our par-

ticipants’ sketches, is a common finding in information visualization [134]. The high-

density visualization is considered as a first step in visual investigation and explo-

ration techniques, ªOverview first, zoom, filter, and then focus details-on demandº

[134]. Participants expressed interaction in their drawings to support event explo-

ration. For example, hand gestures (i.e., clicking) and physical body movement (i.e.,

standing at a certain location). Further investigation is required to explore different

interaction techniques that are suitable for situated video visualization. Furthermore,

narrative visualization incorporates information, communication, and exploration vi-

sualization to convey a story [79]. Some of the participants maintain a narrative of the

events when they sketched video clips of the scenarios. Textual annotation is a design

tactic used to leverage the information presented, to direct user attention, stress the

chronological order of events, or show transitions in an event [79]. When extracting

data from the video, it is important to use tools that ensure the validity and accuracy

of the data. Based on the observation of the studies, a shortcoming of the situated

video analysis technique would be the physical effort required by users when they’re

in the place of the event. However, situated video analysis techniques could be bene-

ficial for different application domains. For example, during a sport training session

(e.g., a soccer player visualizing kicked ball trajectories using situated video analysis,

may obtain a better understanding during training regarding how to replicate such a

kick).
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5 S I T U AT E D S PA C E - T I M E C U B E A N A LY T I C S

In Chapter 3, the analysis of the data indicates that situated analytics has many

possible benefits, such as accuracy and deeper exploration, over traditional desktop

platforms. Also, in Chapter 4, the analysis of user-generated visualization design in-

formed us how to exploit the user’s immediate environment to place and represent

visualizations [20, 46]. In this chapter, we present our approach for SSCA prototype

as well as the core principles and design choices of the tool. The emerging knowl-

edge from Chapter 3 and 4 coupled with STC design choices from the literature, see

Table 3, will be used to develop SSCA prototype. SSCA uses STC to visualize trajec-

tory data of individuals and maps visualization into the environment where the data

was collected to support in-situ exploration; see Figure 20. SSCA prototype should

account for the situated nature of the visualizations and can consider new forms of

interaction, such as proxemics and embodied interaction, and utilize flexible displays

such as AR display.

Figure 20: A top down view of the mapped objects’ data in SSCA and four virtual video
displays on the visualization’s walls.
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5.1 ssca design choices

Two studies investigated situated video analysis ( in Chapter 3) and visualization

sketches (in Chapter 4) in a rather holistic manner. The results of the first study repeat-

edly indicated the potential benefit of situated video analysis. Furthermore, results

from the second study revealed meaningful themes and design considerations for fu-

ture prototypes. The following take-aways are presented for future consideration by

designers of situated video analytic interfaces:

• For situated video analysis, future analytic programs should incorporate a low-

and a high-level detailed visualization of events, to provide the capability to

interact with the event data and narrative.

• Visualizations for situated video analysis should include the original video

footage as a tool for validation or reference.

• The use of annotations in situated video analysis visualization supports event

narrative via grabbing users’ attention, clarifying chronological order of events,

and indicating event transitions. Also, textual annotation could be used as a

way to capture and exchange user insight and conclusions.

• Situated video analysis visualization could incorporate multiple levels of con-

textual information to support multivariate types of analyses (e.g., including

fine details relating to, but not limited to, the variables of time, duration, object

classification, object location, object direction, object velocity, event summary,

etc).

• Interaction with situated visualizations should consider not only the location

but also the user’s physical body movements as an input modality.
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Table 3: Design principles from the literature that have been considered during the SSCA prototype implementation.

Design Aspect Principle Year Authors/Citation Title

Visual Encoding

Colour and Shape

2003 Andrienko et al. [8] Exploratory Spatio-temporal Visualization ...

2009 Huisman et al. [78] Developing a Geovisual Analytics Environment ...

2012 Orellana et al. [118] Exploring visitor movement patterns in natural ...

2020 Filho et al. [54] Evaluating an Immersive Space-Time Cube ...

2020 Homps et al. [76] ReViVD: Exploration and Filtering of Trajectories ...

Movement direction

2015 Amini et al. [5] The Impact of Interactivity on Comprehending ...

2016 Buschmann et al. [25] Animated visualization of spatial±temporal ...

2019 Filho, Freitas, and Nedel [52] Comfortable Immersive Analytics With the ...

2020 Filho et al. [54] Evaluating an Immersive Space-Time Cube ...

2021 Andrienko and Andrienko [7] Visual Analytics of Vessel Movement

2014 Andrienko et al. [6] Visualization of Trajectory Attributes in Space-Time

2015 Amini et al. [5] The Impact of Interactivity on Comprehending ...
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Time axis downward 2016 Buschmann et al. [25] Animated visualization of spatial±temporal ...

2019 Filho et al. [52] Comfortable Immersive Analytics With the ...

2020 Filho et al. [54] Evaluating an Immersive Space-Time Cube ...

2021 Andrienko and Andrienko [7] Visual Analytics of Vessel Movement

Visual Encoding Support 2D/STC

2010 Kjellin et al. [88] Evaluating 2D and 3D Visualizations of ...

2012 Orellana et al. [118] Exploring visitor movement patterns in natural ...

2014 Geotime [59] GeoTime

2015 Amini et al. [5] The Impact of Interactivity on Comprehending ...

2016 Buschmann et al. [25] Animated visualization of spatial±temporal ...

Relative motion

2003 Andrienko et al. [8] Exploratory Spatio-temporal Visualization ...

2010 Kjellin et al. [88] Evaluating 2D and 3D Visualizations of ...

2014 Geotime [59] GeoTime

2015 Amini et al. [5] The Impact of Interactivity on Comprehending ...

2003 Andrienko et al. [8] Exploratory Spatio-temporal Visualization ...
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2012 Orellana et al. [118] Exploring visitor movement patterns in natural ...

Text direction
2012 Grasset et al. [62] Image-driven view management for augmented ...

2015 Amini et al. [5] The Impact of Interactivity on Comprehending ...

Video player
2018 Lawrence, Dey, and Billinghurst [98] The Effect of Video Placement in AR ...

2014 Damen et al. [40] You-Do, I-learn: Discovering Task Relevant ...

Interaction

2014 Andrienko et al. [6] Visualization of Trajectory Attributes in Space-Time

Panning, zooming,

rotating, and

time slider

2015 Amini et al. [5] The Impact of Interactivity on Comprehending ...

2016 Buschmann et al. [25] Animated visualization of spatial±temporal ...

2020 Homps et al. [76] ReViVD: Exploration and Filtering of Trajectories ...

2021 Andrienko and Andrienko [7] Visual Analytics of Vessel Movement

Play animation

2003 Andrienko et al. [8] Exploratory Spatio-temporal Visualization ...

2012 Nguyen et al. [114] Video Summagator: An Interface for Video ...

2015 Amini et al. [5] The Impact of Interactivity on Comprehending ...

2021 Andrienko and Andrienko [7] Visual Analytics of Vessel Movement
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Mid-air

2012 Grasset et al. [62] Image-driven view management for augmented ...

2015 Müller et al. [112] A Study on Proximity-Based Hand Input ...

Interaction

2020 Trajkova et al. [145] Move Your Body: Engaging Museum ...

2020 Filho et al. [54] Evaluating an Immersive Space-Time Cube ...

Proxemic

2019 Prouzeau et al. [122] Scaptics and Highlight-Planes: Immersive ...

2020 Batch et al. [13] There Is No Spoon: Evaluating Performance ...

2016 Badam et al. [12] Supporting visual exploration for multiple ...

Orientation
2015 Marquardt and Greenberg [105] Proxemic interactions: From theory to practice

2020 Trajkova et al. [145] Move Your Body: Engaging Museum ...
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5.2 prototype implementation

To enable in-situ exploration of an STC visualization, we designed and developed

SSCA, an AR application that supports 2D/3D visualizations of trajectory data. SSCA

can import a spatio-temporal dataset and map it onto the environment in which the

event took place.

5.3 trajectory dataset

In this dissertation, we decided to use video footage as a source of trajectory data

for two reasons. First, video footage provides a rich source of important data such

as trajectories corresponding to individual moving objects, activities and interactions

between objects, and relevant events. These data not only support the in-situ spatio-

temporal data analysis activities but also provide detailed information about the

objects within the video. Second, we were interested in capturing objects’ spatio-

temporal data from a physical environment that we have access to and can revisit

during the development and testing of the prototype, especially during the COVID-

19 lockdown. Nevertheless, the proposed prototype should be capable of using trajec-

tory data from different sources, such as sensors, GPS, and other tracking devices.

We video recorded actors performing in-situ tasks based on pre-defined scenarios

in the University of Manitoba Engineering building atrium. Videos were recorded

in 1920 x 1080 resolution and 30 fps. We implemented a computer vision tool for

processing video frames and extracting movement data, see Figure 21. We used mo-

tion detection and tracking algorithms from Open Source Computer Vision (OpenCV)

library version 3.0 to track and extract objects’ movements and locations [18]. The pro-

cess to extract the trajectory data using the software as follows: First, a user selects the

source of the trajectory data from video footage or a live stream via camera. Second,

the user chooses one of object tracking algorithms. Then, the user specifies perspec-

tive transformation points where the position of the image’s pixels is calculated and
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5.3 trajectory dataset

transformed into a top-down, birds-eye-view. Next, key points are measured in the

video and physical scene to perform perspective transformation from the image to

the measurement. With these transformations, we could map the actor’s trajectories

to the physical space. Finally, when the user selects to log the trajectory data and run

the analysis, the system exports the trajectory data as Comma Separated Value (CSV)

files.

Figure 21: The implemented computer vision software used to extract trajectory data into
CSV file.

Prior to data visualization of data on HoloLens 2, we preprocessed the raw data

using filters to reduce data clutter, without reducing information content. These filters

reduce data clutter when individuals are stationary, removing all datapoints between

the first location where the individual became stationary and the last location before

they become mobile. The trajectory data is then embedded into the physical scene
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5.4 2d/stc visualization

to match the individuals’ movement in the scene. Unity1 3D was used to process

the trajectory data CSV files, to generate the STC visualization, and to build out the

interactions and user interfaces. The Mixed Reality Tool Kit (V2.6) [154] was used in

conjunction with the Microsoft HoloLens 2 [111]. The HoloLens 2 has a 2K resolution

per eye, a 43◦ horizontal and 29◦ vertical field of view, and image rendering at 60 fps.

To map the visualization on the physical space, the user is required to stand on a

pre-defined reference point to calibrate and run the SSCA prototype.

Based on the literature (see Table 3) and our findings (i.e., in Chapter 3 and Chap-

ter 4), we considered six critical components in the design of our prototype: 1) a

situated STC visualization to map the extracted spatio-temporal data to the environ-

ment [144, 156], 2) an easy-to-access interface [10, 101, 154, 164], 3) a video player to

view the video data content for data integrity and validation (Chapter 4, [40, 71, 98]),

4) two analytical modes to view video content and trajectory data [5, 59], 5) an inter-

active data filtering to filer and interact with video and spatio-temporal data [5, 133] ,

and 6) embodied interactions to support data filtering [62, 122, 145]. In the following

sub-sections, we detail the design choices for each component, and how some design

recommendations cannot be applied in the context of situated analytics.

5.4 2d/stc visualization

We used similar 2D/STC design choices (e.g., use of a cone shape for visualized dat-

apoints, a measurement plane, a time axis, and relative motion of visual elements)

[5, 25, 54, 61, 91]. Thus, we implemented 2D and STC visualizations of individu-

als’ trajectory data that can display data within the environment, see Figure 22. The

main difference between these two visualizations can be seen in their mapping of

data within the scene. While 2D visualization places all data on the ground, the

STC visualization spreads out the data within the air around the user. The different

coloured capsules within our visualization represent unique individuals and objects

1 A cross-platform game engine used to create three-dimensional (3D) and two-dimensional (2D) games.
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5.5 relative motion of visual elements

in the scene. Spheres represent objects’ locations at a point in time. Furthermore, the

tapered line segments between two spheres indicate the direction of movement.

Figure 22: The implemented 2D (left image) and STC (right image) visualizations of individ-
uals’ trajectory data.

5.5 relative motion of visual elements

Relative motion of visual elements is used to show how objects move with respect

to each other. A red 2D measurement plane was implemented in STC visualization

mode to show the selected time on the time axis, a green sphere along each trajectory

shows the selected location of the actor or entity at specific time, and a vertical pink

line from the datapoint to the ground shows the object’s location similar to previous

work [5]. Amini et al. [5] discussed two approaches to control relative motion of ob-

jects in desktop STC. The first method is to fix the ground map plane and trajectories

to the camera view and then user drag the measurement plane, up or down, to show

user location changes. The second method is to fix the measurement plane to the

camera view and drag ground map plane and trajectories up and down to show the

change in location. The second method causes the trajectory data to move along the

time axis, thus it is not in the place where the object was. Through pilot testing, we

found the first approach more suitable in situated visualization contexts, therefore,

trajectory data has to be mapped into the environment.
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5.6 time axis and direction

One important design decision for our situated STC visualization is to decide on the

direction in which time is displayed. We implemented the time passing in a down-

ward direction, similar to the approach of previous works [5, 54]. This direction of

time places the current inspection of time closer to where the user is standing. In

most of STC visualizations, the time axis is fixed at one [5, 53, 85], two [128], or three

[53] of the visualization’s back walls. However, we found this to be not applicable for

situated STC visualization. During our pilot testing, we asked our colleagues to use

the prototype to explore data and provide feedback in terms of recommendation and

suggestions. We noticed that they were constantly exploring data at locations far from

or facing the opposite direction of the horizontal axis. Thus, to support this case, we

placed a time axis in each of the four corners of the situated STC visualization walls.

(a) The initial around-hand interface design. (b) The crossing-based target selection inter-
face.

Figure 23: The redesign of the around-hand interface during the pilot study feedback.

5.7 around-hand interface

We built our User Interface (UI) on the Mixed Reality Tool Kit 2.6 around-hand UI

and controllers [154]. The main UI allows the user to quickly access interface ele-

ments when needed, watch and scrub video data, switch between 2D and STC visu-

alizations, and filter data using different embodied interactions. The main interface

appears/disappears with the raising of a hand into one’s field of view. To avoid
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5.7 around-hand interface

false interface activation, the user is required to look at their hand. Once the main

interface is no longer needed, the user drops their hand to cover the interface. The

interface is divided into two areas: 1) a video player aligned to the left of the interface,

and 2) controllers aligned to the right; see Figure 24. We ran an initial pilot study

with colleagues to test the interface and the placement of the controllers, asking for

their feedback. One of the three colleagues was left-handed. Users had reported dif-

ficulties interacting with controllers due to an initially small size, see Figure 23 (a).

Furthermore, users reported the issue of hand-video occlusion and overlapping, es-

pecially when interacting with the UI. Through iterative upgrades to the UI, we got

inspired by crossing-based target selection technique known for better performance

[10, 101, 164], see Figure 23 (b). Crossing-based target selection is commonly used

in AR and VR platforms to move virtual characters and select both stationary and

moving objects [164]. To address hand-video occlusion and overlapping, video player

and controllers were implemented so they automatically get positioned to the left or

the right of each other based on the hand used to activate the interface. For instance,

if the user activates the interface with the right-hand the video will be aligned to

the right of the interface and the controllers aligned to the left and vice versa, see

Figure 24.

Figure 24: Around-hand interface is activated and anchored to the person’s hand once one
of their hands is raised. On the left, interface buttons are automatically placed to
the right side. On the right, the opposite behaviour occurs when the right hand is
raised.
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5.8 video player

Video players have been added to the around-hand interface and the walls of the

visualization. Within the UI, the user can play, pause, and scrub the video timeline

using mid-air hand gestures (i.e., pinch and drag). Also, scrubbing through the video

timeline will animate the virtual capsules along trajectories paths. When the user is

playing and/or scrubbing the video, the visualization elements embedded into the

actual environment will move with respect to the video. Based on the enabled visual-

ization type, playing the video will result in different behaviour. For example, when

playing video with the 2D visualization selected, the visualization elements move in

x and y axes and trajectory data gradually appears in 2D over time. In this 2D ani-

mated mode, the focus is more on the spatial aspect of the data, see Figure 25. When

playing video in STC visualization mode, the capsule objects move in x and y, and

trajectory data gradually appear in 3D over time. Each capsule object projects a line

to a datapoint that represents the spatial and temporal aspect in 3D, see Figure 25.

Users can jump into a different part of the video using a timeline slider that updates

the locations and movements of the virtual capsule objects. The user has to activate

the around-hand interface to be able to watch the video. One downside of this ap-

proach is that if the video is long, user will need to hold his/her hand up for a long

period which is prone to fatigue and lead to a feeling of heaviness in the upper limbs

[71]. A possible solution would be adding extra video screen(s) in the user FOV. This

raises another design question regarding the placement of the video. Researchers have

looked at the placement of Video-based content in AR [40, 98]. Video windows can

be either fixed to a specific physical environment or attached to the Head-Mounted

display HMD FOV. Depending on the tasks and the data content, placing the video

on top or very close to data causes occlusions [40]. To prevent this issue, the video

should be located in a proper location that does not occlude the data. Therefore, we

placed wide video screens, size 4 by 3 meters each, on four sides of the visualization
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5.9 two analytic modes

walls. The user can play video from the around-hand interface, drop their hand, and

continue watching it on the video screens.

Figure 25: The result of playing the video in sequential analysis mode in (a) 2D and (b) STC.
In data-centric mode, (c) shows video played in 2D whereas (d) shows video played
in STC.

5.9 two analytic modes

The tool provides two analytic modes: Sequential Analysis, and Data-centric. When

sequential analysis mode is enabled, the trajectory data points are revealed as they

would over time, see Figure 25 (a) and (b). In this mode, the user uses the video player

to show the data points in a sequential manner. Within this mode, users can view data

through both visualization methods. In data-centric mode, all movement data points

are shown at once, see Figure 25 (c) and (d). When STC or 2D visualization is enabled

and video is playing, the moving capsules behave similarly as in sequential analysis

mode; however, all points within the data are shown at once.
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5.10 interactive data filtering

Data filtering is an important procedure by which a subset of a dataset is chosen

to narrow down the exploration and investigation process. Our prototype allows

interactive data filtering through ROI, POI, trajectory path selector, datatips, and a

measurement plane that moves up or down the time axis with the current time of

the plane displayed. These filters can be applied to either the 2D or STC visualization

through the use of different embodied interactions.

5.10.1 Region of Interest (ROI)

When a Region of Interest (ROI) filter is created using one of the embodied interac-

tions, a yellow cylinder with a height of 10 cm is placed at user’s current location.

Then, the user adjusts the cylinder’s radius using a slider to select the desired area

of interest. As the cylinder radius and user location change, only datapoints located

within the cylinder area (πr2) will be highlighted in green colour as a visual cue to

the user, see Figure 26. Once the user enables a filter of the data, selected datapoints

are shown, and video frames segments within the created ROI will only be shown

when the user plays video.

5.10.2 Period of Interest (POI)

In Period of Interest (POI) filter, the user can select trajectory data based on a time span

of interest. Based on the selected embodied interaction, the user moves the selected

time window over the entire timeline to select the desired POI, and all datapoints

within that POI will be highlighted, see Figure 27.
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5.10 interactive data filtering

(a) First, the user selects ROI filter from
the Around-hand menu.

(b) Then, the user adjusts the cylinder’s
radius using a slider to select the de-
sired area of interest.

(c) As the cylinder’s radius and user loca-
tion change, only data points located
within the area of the cylinder (π r2)
will be highlighted in green as a visual
cue to the user. Then the user confirms
the selection.

(d) After that, the user has created two
ROI filters and viewed them from a
distance.

Figure 26: Steps on how to create ROI filter.

(a) The user enables the POI filter. (b) A virtual popup window that allows
the user to narrow the time range of
interest widow.

(c) The user selects time span of interest. (d) The image shows the result of visual-
ization after applying the POI filter.

Figure 27: Steps on how to create a POI filter.
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(a) When the user selects trajectory path
selector and proximity interaction, a
yellow cylinder will appear. Any tra-
jectory’s datapoint located above the
cylinder, the trajectory will be high-
lighted.

(b) Only red trajectory path is highlighted
in green.

(c) The user confirms the selection by cre-
ating the filter.

(d) All trajectories were filtered out except
the red one.

Figure 28: Steps on how to create Trajectory path filter.

5.10.3 Trajectory Path Selector

The trajectory path selector is a filter used for selecting single or multiple trajectories.

In this filter, once the user selects the desired trajectory, all points that belong to the

path trajectory will be highlighted. When users confirm the selection, only selected

trajectories will appear to them, see Figure 28. The selection method depends on

embodied interaction chosen by the user, discussed in details in the next section.

5.10.4 Datatips

A datatip is a small text box that displays detailed information about individual dat-

apoint (e.g., trajectory id, location value, and time). Also, datatips orient themselves
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5.10 interactive data filtering

to face the users regardless of their position with the immersive STC visualization.

Users can show/hide datatips using Mid-air gesture and hide all shown datatips at

once by resetting the filter from the around-hand menu. When datatip is enabled, a

solid line is projected from the each datapoint location to the floor and the datatips

will be placed in the floor. In addition, there is another effect of showing the detailed

information of a data point on the video player: when playing and pausing the video,

showing detailed information of a data point, the video player jumps to the frame of

that data point in the video.

(a) The user selects the Measurement plane fil-
ter from the Around-hand menu.

(b) For example, here the plane is located be-
neath the user’s head level and the datatips
appear at the upper end of the pink lines.

(c) When the plane is above the user’s head,
the datatips appear at the bottom end of the
lines.

(d) Once the user confirms the selection, the
datatips for selected datapoints will appear.

Figure 29: Steps on how to show datapoints’ datatips using Measurement plane.

5.10.5 Measurement Plane

The measurement plane was implemented, only in the 3D visualization, to allow

users to select one or more datapoints that share the same location at the time axis.
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Once the measurement plane is selected, a red 2D plane appears to the user. When the

plane touches datapoints, datatips will be shown at once. Whenever the user moves

the 2D plane along the time axis (upward or downward), all points that intersect with

the plane will show pink lines and their datatips. As the plane touches trajectories’

datapoints, datatips for these datapoints will be shown at once. Depending on the

location of the plane (i.e., above or beneath the user’s head), datatips (path id and

time) of the datapoints will be shown at the end of the lines, see Figure 29.

When users apply the same filter multiple times on the data, the resulted data will

be a union of the applied filters, see Figure 26 (d). On the other hand, when different

filters are applied to the data, the resulted data will be an intersection of the applied

filters.

5.11 embodied interaction

We implemented embodied interactions, more specifically body proximity, orienta-

tion, and mid-air gesturing for use in our situated visualization contexts. Users can

use these embodied interactions to explore, navigate, and filter data. Users can make

different combinations of visualization types, filters and embodied interactions, see

Table 4 for the different crossing-base selection combination possibilities.

Table 4: Each visualization has three embodied interactions. The interface will show the appli-
cable data filtering based on the user’s selection of the visualization and embodied
interaction.

VisualizationEmbodied Interaction
Applicable Data Filters

ROIs POIs Path Plane Detailed information

Proximity ✓ ✓ ✓ ✓

STC Orientation ✓ ✓ ✓

Mid-air gesture ✓ ✓

Proximity ✓ ✓ ✓

2D Orientation ✓ ✓

Mid-air gesture ✓
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5.11.1 Proximity

Since the trajectory data to be explored is mapped into the environment, in-situ ex-

ploration is supported through body proximity to data and through simple body

movement throughout the environment. This allows for closer exploration of certain

areas of the visualization and even enables exploration of a scene’s environment that

is not captured in video data. In both 2D and 3D visualization views, users can move

around, physically navigate, and explore the trajectory data in the main view-port.

When no embodied interactions are enabled, the user’s location and head movement

(position and orientation) are used to change the user viewpoint to the situated vi-

sualization of trajectory data (e.g., translate viewpoint up, down, left, and right). Ad-

ditionally, Proximity can be used as a brushing tool to allow the user to perform

three-dimensional geometric queries on the dataset. For instance, when users enable

Proximity and an ROI filter, a user’s location and set interpersonal distance zones,

via a dialogue box, are considered as input parameters to the filter. In the POI filter,

Proximity, through a user’s cardinal movements (moving forward, backward, left, or

right), enables the selection of a time period, again with the length of the period cho-

sen through a dialogue box. This combination of filter and interaction results in a

highlighting of the selected filtered data. To emulate the choice of period, users walk

forward or left to move the period forward and back or right to move the period back.

For the measurement plane approach, users similarly use proximity interaction. The

user uses their body proximity to move the measurement plane, up or down, over

the time axes. As the measurement plane touches trajectories’ datapoints, a solid line

is projected from each datapoint selected to the floor, and the datatips appear placed

on the floor.

To select a path, the user needs enable Proximity, Path filter, and specify the in-

terpersonal zone radius. Once the visual interpersonal zone is created, users move

and allow the visual interpersonal zone to intersect with the x, y location of any dat-
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apoint belonging to any trajectory. When the interpersonal zone intersects with any

trajectory, the trajectory gets highlighted with a green shader.

5.11.2 Orientation

We define the body or head orientation as the direction the body or head is facing.

In our prototype, we considered an absolute orientation of the head relative to Earth-

vertical and Earth-horizontal axes. For vertical head rotation, we limit the head rota-

tion to range between 20◦ above the Earth-vertical and 30◦ below the Earth-vertical in

order to make head movement more natural and convenient. Similarly, the range of

the horizontal head rotation was between 30◦ above the Earth-vertical and 30◦ below

the Earth-vertical.

Orientation interactions are enabled for POI, measurement plane, and trajectory

path selector. During the prototype design stage and initial pilot study, with col-

leagues, participants tried vertical and then horizontal head orientation (and vice

versa) to create POI filters. Participants reported that vertical head rotation was more

convenient and made them focus on data ahead of them comparing to horizontal

head rotation. Therefore, we considered using the vertical orientation for user interac-

tion with the POI filter. After users create the filter and specify the time span, a green

shader highlights part of the dataset. Then, users rotate their head up or down which

results in the movement of the green shader over the timeline forward or backward.

Similar to POI, vertical head movement will make the measurement plane move up

or down, over the time axis. The users can move around and freely make horizontal

head movements before confirming their selection.

In trajectories paths selector filter, the concept of visible raycasting was used to

enable users to select trajectories. When users enable orientation and trajectory path

selector, a 2D customized raycast will be shot from the users’ location and onward.

Users are given the ability to adjust the width and length of the raycast for better

trajectories selection. Users can make 360◦ horizontal head rotation which will cause
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the raycast to rotate as well. Trajectories that intersect with the raycast area (i.e. width

x length) will be highlighted with the green shade.

5.11.3 Mid-air Gesture

We refer to the mid-air gesture interaction as Pointer in our prototype. The user uses

an index finger to point at the Plane, performs a pinch gesture, then moves their hand

up and down to adjust the location of the Plane in the time axis. The Pointer inter-

action provides fast access to a data point’s detailed information (i.e., datatip) when

movement data is shown. For example, pointing at a data point highlights it with a

green sphere. Then, performing a single pinch gesture shows a datatip to aid in de-

termining actual temporal information and the trajectory it belongs to. Repeating the

same gesture to that point will hide the detailed information. Furthermore, pointer

interaction is used to interact with filter dialogue box controllers when the dialogue

box is far from user reach.
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(a) In the ROI filter, users’ proximity is used for
environment navigation and data brushing.
Users enable proximity to select the region
of interest where users’ location and inter-
personal distance zones (circle area (πr2))
are considered as input parameter to the
ROI filter.

(b) In the POI, users can use 1) forward and
backward movement, 2) left or right move-
ment, or 3) vertical head-rotation to move
the selected time window over the entire
timeline to select the desire POI and all dat-
apoints within POI will be highlighted in
green colour.

(c) In measurement plane, users can use 1) for-
ward and backward movement, 2) left or
right movement, 3) mid-air gesture, or 4)
vertical head-rotation to move the measure-
ment plane, up or down, over the time axes.

(d) In trajectories paths selector, user can use 1)
proximity or 2) length and width adjustable
rotate-able virtual ray-cast (orientation) to
select trajectories when the interpersonal
zone or the ray-cast intersects with any tra-
jectory.

Figure 30: Four interactive filters of the data implemented in the tool are (a) ROI, (b) POI, (c)
measurement plane, and (d) trajectories paths selector.
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6 E VA L U AT I N G S I T U AT E D S PA C E - T I M E C U B E A N A LY T I C S

The purpose of the chapter is to: 1) establish an understanding of in-situ spatio-

temporal data exploration activities using our SSCA prototype, 2) explore interaction

taxonomy, i.e. VISM by Shneiderman [133], to determine whether the VISM taxonomy

supports situated visualization and interaction techniques. As part of the evaluation,

we deployed the SSCA prototype on an HMD device, through which the prototype

logs and video records participants’ interactions with the visualization (filters and

embodied interactions used), as well as their body and head movement, orientation,

and additional in-situ environment information.

6.1 in-situ user study

As part of the study, we deployed the SSCA prototype on the HMD device, through

which the prototype logs and video records participants’ interaction with visualiza-

tion (filters and embodied interaction used), as well as their body and head move-

ment, orientation, and additional in-situ environment information.

6.1.1 Participants

We recruited eight participants (P1-8; one female and seven males) from a local uni-

versity by advertising through posters and messaging platforms. Participants’ ages

ranged from 18 to 44 years old (M = 28.75, SD = 9.19). All participants reported

normal or corrected-to-normal vision and successfully passed the Ishihara colour

blindness test [132]. Prior to the study, a 7-point Likert scale assessed participants

familiarity with the location used for the study, VR and AR exposure, video analysis
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experience, and 3D visualization analysis. To assess participants’ familiarity with the

location, a 7-point Likert scale (1= Not familiar at all; 7 = Extremely familiar) used

where participants’ responses ranged between two and seven (M = 5.86, SD = .69), in-

dicating that they were rather familiar with the building where the study took place

(M = 5.86, SD = .69). Fifty percent (50%) of participants had exposure to AR, while

70% of participants had exposure to VR prior to the study. Their perceived expertise

for AR was (M = 2.50, SD = 1.51) and VR was (M = 3.42, SD = 2.22). Also, partici-

pants were asked whether they had conducted any video analysis prior to the study,

and 37.50% (n = 3) reported ’Yes’, 50.00% (n = 4) reported ’Maybe’, and 12.50 % (n =

1) reported ’No’. We further explored how frequently they conducted such analyses.

Participants did not conduct video analyses very often (M = 2.86, SD = 1.07). More-

over, participants were asked whether they had conducted visual data analysis using

3D visualization. Sixty two point five (62.5%) of participants reported that they had

analyzed data in 3D visualization. Only one participant (12.5%) reported that she/he

had used AR or VR walkthroughs (like the one used in our study).

6.1.2 Study Procedure

SSCA has the capability to import a spatio-temporal dataset and then map that data

into the environment in which the event took place. In the study, trajectory datasets

were extracted from short video recordings of a group of individuals, one for prac-

tice session, and one for the actually study. Videos were recorded in 1920 x 1080

resolution and 30 fps. The video clips recorded actors performing in-situ tasks based

on pre-defined scenarios in a building atrium. In total, 12 questions were asked of

each participant for each video; these questions and their related categories can be

seen in Table 5. The questions were created such that they followed the taxonomy

for questions related to movement data by Amini et al. [5]. Using this taxonomy,

our questions were constructed such that they ranged in complexity and the use of

known/unknown and individual/multiple datapoints.
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6.1.2.1 Pre-study Preparation

The day before the study, a research assistant share with participants a link to an on-

line tutorial video regarding the SSCA prototype to watch (22 minutes long) before

coming to the university to participate in the study. The video provided the partic-

ipants with introductory information regarding what movement/trajectory data is,

the type of visualizations used, the filters available, and how to use the SSCA UI and

interaction. This step was implemented for three reasons; 1) so the participants can

familiarize themselves with the system at their own speed, 2) to prevent potential

cognitive fatigue/overload during the study, and 3) to minimize the study duration

for COVID-19 related safety reasons.

6.1.2.2 Tutorial and Practice

As SSCA is a prototype, and many of the components were novel to participants,

the tutorials and practice sessions were important in creating a positive experience

for participants while allowing us to collect more robust data. The elements shown

within the introductory video that participants watched on their own prior to ar-

riving were discussed, with the participants given ample time to ask any questions

they had. Furthermore, the filters, analytic modes, and visualizations available were

described in more detail with a corresponding video that was played for each partic-

ipant (17 minutes long). Throughout, videos were used for two main reasons: 1) to

allow for increased social distancing, and 2) so that we could better guarantee that all

participants received the same information (i.e., equal treatment).

Once the tutorials were finished, the participant had a chance to see how each filter,

analytic mode, and visualization looked through the HMD itself. Here, a dataset

created solely for this purpose was used. Finally, upon arriving in the atrium in

which the remainder of the study would be conducted, participants completed a

full practice session which involved participants answering data-driven and situated

environmental questions. This session utilized a unique dataset created solely for
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practice, with a procedure identical to that of the recorded task completion. This

allowed users to fully explore the SSCA prototype with no pressure of evaluation.

6.1.2.3 Study Session

Participants attended a 90-minute in-person study session, which included informed

consent, a demographic survey, further tutorials, practice tasks, the recorded study

tasks, and discussion. Finally, at the conclusion of the study, the research assistant

answered questions that participants had about the study1. Participants were asked

to verbalize what they were thinking and talk through their thought process to use

the prototype to answer the task question. This helps us to explore whether: 1) partic-

ipants used Visual Information Seeking Mantra and in which order during their in-situ

interaction with situated STC visualization, and 2) participants faced challenges dur-

ing the study.

Before participants start the actual study, the research assistant loads a new dataset,

starts video recording in HMD, sanitizes the device, and hands back the HMD to

the participants to start the study. Participants were encouraged to use their own

analytic strategies to answer the study questions. Also, participants were asked to

think-aloud during the study, wherein participants would speak their thoughts aloud

throughout the experiment [29]. Then, participants start the actual study by viewing

the question to answer. If participants were not in the center of the atrium, a message

is shown to participants asking them to move to a white marker at the center of

the atrium. Then, a question will appear to participants asking them to 1) use filter

and embodied interaction to visually answer the question, 2) stand in front of their

answer for 4 seconds to show entire filtered data, and 3) select "Done" in the question

window to confirm their answer and move to the next task. Participants were asked

to be as fast and accurate as possible to complete the study. After completing the

1 Since the study was conducted in 2021, COVID-19 precautions were taken throughout (i.e., sanitizing
of the HMD, social distancing, continued mask use, electronic forms), with the study session and
procedure approved by an internal committee designed to ensure safety during the pandemic.
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study, participants were asked to remove the HMD and fill out, on a computer, post-

exposure to SSCA and NASA Task Load Index (TLX) questionnaires [69].

6.1.3 Quantitative and Qualitative Data

The user study captured both quantitative and qualitative data. This included recorded

video from the HMD on-device cameras as well as think-aloud audio recorded from

the microphones. Furthermore, we recorded log data (i.e., participant’s location, move-

ment, orientation, filter/mode/interaction selection, etc.) from the prototype’s inter-

actions and usage. Finally, we additionally collected demographic, user experience,

and TLX questionnaire data.

6.1.4 Coding Procedure

Participants’ think-aloud audio files were extracted and transcribed. These, along

with visualizations of participants’ movement data were used for coded analysis.

Three graduate students (2 Ph.D. and 1 master), close to the project, performed the

coding.

We established our codebook based on the VISM [134], and common challenges

that can be found in HMD. The codebook included the operational definitions for

VISM activities and situated prototype challenges related to information visualization.

Thus, the codebook presents two scoring indices: (1) VISM (i.e., Overview First (O-F),

Zoom and Filter (Z&F), and Detail on Demand (DoD), and (2) Data Visualization

Challenges (i.e., limited field of view (LFOV) and data occlusion (DC)). LFOV is a

common problem with head-mounted displays HMDs. Most HMDs have a small

FOV, typically between 30-40 degrees. This can cause issues for users, as they may

have difficulty seeing objects that are outside of their field of view. DC is a common

issue in 3D visualization where one or more datapoints overlap other datapoints. This

results in users being unable to differentiate between datapoints in the visualization.
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We provide raters with operational definitions for three VISM activities and sit-

uated prototype challenges. In VISM, the rater has to use the operational defintions

and identify the VISM event that participants have used during each think-aloud task

done. In situaed prorotype challenges, each rater has to use the operational definition

to identify the challenge participants faced during each study task. A sample of the

codebook can be found in Appendix A, see Section A.3.

The codebook and coding instructions were given to all 3 raters. Raters indepen-

dently coded the transcribed text of think-aloud of each task for all participants. After

coding independently, raters convened in triads to reach consensus on the partici-

pants’ usage of VISM, sequence of VISM steps occurred, and the challenges partici-

pants faced. The sessions involved a two-step process. First, the group facilitator sepa-

rately recorded each rater’s codes assigned independently and combined them in one

file. The facilitator then pointed out instances where there was total consensus among

the group and instances where unanimity was lacking. If there was unanimous agree-

ment among the three parties, the codes were then inserted into the database, ending

the session. If agreement could not be obtained separately, raters debated each case

to establish a consensus.

6.2 results

Our user study captured both quantitative and qualitative data. Using the SSCA pro-

totype, the analysis of the data enables us to provide an early exploration and eval-

uation of the general experience and usage, including the exploration strategies for

in-situ spatio-temporal trajectory data.

In the following section, we report on; 1) users’ overall performance, 2) analytic tac-

tics involving the SSCA prototype, 3) proxemics interaction, 4) measuring reliability

of three raters for participants’ think-aloud of interaction taxonomy, and challenges

in STC situated information visualization, 5) general user experience and feedback.
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6.2.1 Users Performance

We analyzed participants’ performance in terms of completion time and accuracy. We

measured participants’ completion time for all tasks, see Figure 31. The participants’

mean completion time was 35.36 minutes (SD = 12.78). Participants used different

visualization types, filters, embodied interactions to answer the questions, see Fig-

ure 32 and Figure 33 for examples. The analysis of participants’ answers to questions

via visual representation shows high accuracy. Participants provided correct answers

for all questions, except questions 2 and 4 (M = 0.88, SD = 0.35) where one participant

verbally found the answer to questions 2 and 4 but did not filter the data out.

Figure 31: Stacked bar shows participants’ completion time for all tasks. The dashed line
represents mean completion.

6.2.2 User Analytical Tactics Using SSCA

As it one of our main goals, we were interested in analyzing how users explore the

spatio-temporal data leveraging the SSCA prototype to perform their in-situ analyti-

cal tasks. This was done through exploration of the analytic tools used in the SSCA
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prototype and the use of proxemics and embodied interaction. The following sections

describe how participants performed visual data analysis using SSCA.

6.2.2.1 Analytic Modes

All the participants used only the data-centric mode (i.e., all trajectory data was

shown at once) to answer the questions given.

6.2.2.2 Visualizations

Over the course of the study, all participants combined, enabled the STC visualization

for 238 mins and 57 seconds (M= 2.4891) as opposed to the 2D visualization which

was only used for 43 minutes and 56 seconds (M= 0.457). STC was used as the sole

visualization by all participants for 6 questions (Q1, Q7, Q9-Q12), while both 2D

and STC visualizations were used for the other 6 questions. For example, questions

Q2, Q3, Q4, Q5, Q6, and Q8 were used by 2, 5, 6, 5, 3, 1 participants respectively.

During the data exploration of all questions, some participants (22.91%) tested both

visualizations by switching between them frequently to find the right visualization

that help them to find the answer. Subsequently, they selected one, and applied the

final filters to answer the questions. Participants P1, P2, P3, P7, for example, preferred

2D over STC for path selection because they found it difficult to do so in STC. This is

due to the fact that they were unaware of datapoints above their heads at the locations

where they were standing. Participants were looking at the floor to select a path using

proximity.

6.2.2.3 Filters

Participants utilized different analytical tools/filters to answer the questions. Yet,

commonly, participants followed a similar approach. This included, to firstly set a

visualization type, secondly, to filter or to take action on the data in some way, and

finally to use interactions to discover the correct answer.
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A range of filters were used by participants throughout the study; for a complete

breakdown please see Table 5. As an example, in Q1, 5 participants (62.5%) used STC,

Tooltip, and Pointer to show which object was stationary the longest, whereas the

other 3 participants used different combinations to uncover the answers. Some partic-

ipants used similar visualization, filter, and interaction but in different order (Q1, Q4,

Q5, Q6, Q8). For example, in Q1, participant (P8) used STC, Path, Proximity first then

STC, ROI, Proximity whereas participant (P3) used STC, Tooltip, and Pointer then

STC, Path, Proximity. Also, all participants used STC, Plan, and Proximity when the

question related to detailed information (trajectory id, location (x,y), and time) about

objects (Q6). During the video analysis process and logged data, we noticed that for

questions that have a period of time component (i.e., Q3 and Q8), participants (P7

and P8) created the POI filter after exploring the data points since the POI filter will

select the time window directly without the need to move into data points location

(i.e., physical zooming). In addition, most of the participants chose to highlight data

points that were relevant to the answer while keeping data points of other objects

within the scene (see Figure 32) whereas other participants highlighted data points

that were relevant to the answer while also filtering out other objects’ data points,

(see Figure 33).
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Figure 32: P2’s visual representation of Question 1 answer. P2 used STC, Tooltip, and Pointer
to select the starting point for the longest stationary object (the blue object).

Figure 33: P8’s visual representation of Question 1 answer. P8 first used STC, Path, and Prox-
imity to filter out red, white, and grey objects; then they used STC, ROI, and Prox-
imity to select the location of the object that was stationary the longest.
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Table 5: List of questions, question complexity (using Amini et al. [5]), question category, analytical tactics used to answer the 12 questions by
participants.

No. Question Question
Complex-

ity

Question
Category

Visualization, Filter/Action, Embodied Interaction Percentage

Q1

[STC, Tooltip, Pointer] 62.5%

Which one of the object was
stationary the longest?

Somewhat
High

Movement
Data

[STC, ROI, Proximity] 12.5%

[STC, Toolip, Pointer],[STC, Path, Proximity] 12.5%

[STC, Path, Proximity],[STC, ROI, Proximity] 12.5%

Q2
Where is the meeting location
where four object first met?

Somewhat
Low

Movement
Data

[STC, Play Video, Pointer],[STC, ROI, Proximity] 71.4%

[STC, Play Video, Pointer] 14.3%

[STC, Toolip, Pointer] 14.3%

Q3
Select the walking path of white
object between 11:08:14 and
11:09:20?

High Movement
Data

[STC, Path, Proximity],[STC, POI, Proximity] 62.5%

[STC, Path, Proximity],[2D, POI, Proximity] 25.0%

[2D, Path, Proximity],[2D, POI, Proximity] 12.5%

Q4

Select the location where the
white object was the close to the
blue object.

Somewhat
High

Movement
Data

[STC, Tooltip, Pointer] 25.0%

[STC, Path, Proximity],[STC, ROI, Proximity] 25.0%

[2D, Path, Proximity],[2D, ROI, Proximity] 12.5%

[2D, Path, Proximity],[STC, Tooltip, Pointer] 12.5%

[2D, Path, Proximity] 12.5%

[2D, ROI, Proximity],[STC, Path, Proximity] 12.5%

Q5

Select the movement path of
white, grey, and red object when
they walking next to each other in
the same direction?

High
Movement

Data

[STC, POI, Proximity] 28.6%

[STC, Path, Proximity],[2D, Play Video, Pointer],[STC, POI, Proximity] 14.3%

[STC, Tooltip, Pointer] 14.3%

[STC, Path, Proximity],[STC, Play Video, Pointer],[STC, POI, Proximity] 14.3%

[STC, Play Video, Pointer],[STC, POI, Proximity] 14.3%

[2D, Path, Proximity],[2D, Play Video, Pointer],[2D, ROI, Proximity] 14.3%

1
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Q6

Show detail information of white,
grey, and red locations at
11:10:31?

Somewhat
Low

Movement
Data

[STC, Plane, Pointer] 50.0%

[STC, Plane, Proximity] 25.0%

[STC, Path, Proximity],[STC, Plane, Proximity],[STC, ROI, Proximity] 12.5%

[2D, Path, Proximity],[STC, Plane, Proximity] 12.5%

Q7 Was there any coffee shop in the
scene?

Somewhat
Low

Scene Data [STC, NA, Physical Navigation] 100%

Q8
At what individuals were looking
at between 11:10:41 and 11:10:45?

Somewhat
Low

Scene Data

[STC, POI, Proximity] 37.5%

[STC, POI, Proximity],[STC, Play Video, Pointer] 25.0%

[STC, POI, Proximity],[STC, Plane, Pointer] 12.5%

[STC, Plane, Proximity],[STC, Tooltip, Pointer] 12.5%

[STC, Tooltip, Pointer],[STC, Play Video, Pointer] 12.5%

Q9
What was written inside the
biggest logo on the wooden
board next blue object?

Somewhat
Low

Q10
Show detailed information of
white, grey, and red locations
at 11:10:31?

Somewhat
Low

[STC, NA, Physical Navigation] 100%

Q11

The white object was standing
next to EITC wall. How many
public televisions were placed
on the wall?

Somewhat
Low

Q12

What was the name of the
building board next to the
wooden board?

Somewhat
Low

1
0
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6.2.2.4 Video Player

We examined individual differences in the usage of the video player provided through-

out the study. Except for one participant (P3), everyone interacted with the video

player. Their total interaction frequency for all the 12 tasks ranged from 0 to 26 min-

utes (M = 9.13; SD = 8.15). As indicated by relatively large SD, the variability in

participants’ interaction frequency was high, reflecting individual differences.

Interestingly, no participants interacted with the video player in answering Q3

(Movement Data with high complexity), Q6 (Movement Data with somewhat low

complexity), or Q12 (Scene Data with low complexity). However, Q1, 7, 9, and 10

also required rather short time despite the fact some participants used video player

for these items, implying that the use of video player might not be a direct reason

for longer task completion time; see Figure 61 in Appendix A. In contrast, for Q2

(Movement Data with somewhat low complexity) and Q5 (Movement Data with high

complexity), approximately 63% of the participants interacted with the video player

at least once. A closer look at the video player data revealed that participants used it

1.5 times on average when they were answering Q2 while their average was 3 times

in answering Q5. Taken together, it appeared that the task type or the complexity

level did not influence the participants’ video player use. However, we would like to

note that while having a range of complexities as in Amini et al. [5]’s study, we believe

that being in-situ may have helped participants. For instance, being in-situ might have

helped the participants’ information seeking process. They had more advantages in

our context as participants in our study had access to different filters, visualization

and interaction. It is also possible that the motive for the use of video player could

be more closely linked to the participants’ desire for seeking more detailed/specific

information.

6.2.2.5 Proxemics and Embodied Interactions

In most commercial and research settings for desktop STC visualizers, and in a

broader set of visualization software, tools are implemented with several interaction
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features (i.e., zooming, rotating, panning, filtering, and selecting) that support users’

ability to answer various queries [5]. Within our study, in both 2D and STC visualiza-

tion, the analysis of video recordings showed that users performed panning, zoom-

ing, and rotating mainly through the use of body proximity, compared with the use

of head orientation during their exploration. Furthermore, all participants preferred

the Proximity interaction over Orientation interaction. Participants were asked to rate

their perceived convenience regarding filters using proximity; Figure 34 illustrates

the averages of participants’ ratings. Importantly, proximity as a form of interaction,

was seen as convenient or extremely convenient (a score of 6 or 7 on the Likert scale

respectively) across all four filters by majorities of participants; this includes 62.5%

of participants for the Plane filter, 87.5% of participants for the Path filter, 62.5% of

participants for the POI filter, and 87.5% of participants for the ROI filter.

6.2.3 Measuring Reliability

Fleiss kappa [107] was computed to assess the agreement between three raters in iden-

tifying 1) the three VISM activities and its sequence in the 8 participants’ think-aloud

activities, i.e., (a) O−F, (b) Z&F, (c) DoD; 2) the challenges participants encountered

during the study, i.e., (a) LFOV, (b) DC, or of both (a) and (b).

The three raters had an excellent agreement in recognizing the three VISM steps

and its sequence (Kappa = 1, z = 42.9, and p = 0.0000). Raters identified 18 VISM

sequence combinations in 96 tasks, please refer to the supplementary materials for a

list of these 18 combinations. These VISM sequence combinations range from single

activity, such as O−F or Z&F, to a multiple steps, such as O−F, O−F, Z&F, Z&F, DoD

or O−F, O−F, Z&F, Z&F, Z&F.
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Table 6: A summary of VISM patterns and their usage during the study.

VISM Total number Percentage

O-F, Z&F, DoD 42 43.75%

O-F+, Z&F+ 27 28.13%

Z&F+ 13 13.54%

Z&F+, DoD+ 11 11.46%

Z&F+, O-F, Z&F, DoD 1 1.04%

O-F+ 1 1.04%

O-F+, DoD+ 1 1.04%

6.2.4 VISM Structure Patterns

A VISM structure pattern is a given sequence of VISM steps and the number of

units composing them. Our analysis of 18 VISM sequence combinations revealed that

the bulk of the step sequences exhibit recurring patterns. Two VISM sequences, for

example, comprised a single Z&F and three consecutive Z&Fs. Another example is

three VISM sequences were 1) one O−F followed by one Z&F, 2) one O−F followed

by two Z&Fs, and 3) two O−Fs followed by three Z&Fs. We labelled these patterns

using regular expressions, composed of VISM steps: [Step+] where Step is one of

[O−F, Z&F, DoD] and the ª+º sign indicates repetition of the preceding step. For

example, Z&F+ patterns means that Z&F step has been used one or more times.

Similarly, O−F+, Z&F+ pattern indicated that O−F was used one or more, followed

by one or more Z&F times. Table 6 contains 7 unique VISM sequence patterns used

and the usage percentages during the study.

6.2.5 SSCA Challenges

Similar to VISM steps, there was an excellent agreement between the three raters

for identifying the challenges participants encountered during the study, Kappa =
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1, z = 25.1, and p = 0.0000. Raters identified challenges (LFOV and DC) that were

faced by the participants during the study. During participants’ think-aloud activities,

raters noted that participants mentioned LFOV in HMD headset to be a challenge in

31.25% of tasks. Furthermore, raters recorded that participants mentioned DC to be

a challenge in 10.42% of the tasks. Also, raters mentioned that in 8.33% of the tasks,

participants stated both LFOV and DC to be a challenge.

Figure 34: Participants’ overall rating on how convenient they found Proximity interaction in
conjunction with all filters. As well, how participants felt about the around-hand
interface and the usage of the prototype for future video analysis are reported.

6.2.6 User Experience and Feedback

Upon completion of the tasks using SSCA, our final questionnaires gathered partici-

pants’ perception and feedback of our prototype. We asked participants’ general ex-

perience with SSCA; ªHow much did you enjoy using this technology?º on a 7-point

Likert scale (1; Did not enjoy at all, 7; Enjoyed it a lot). All the participants enjoyed

their experience of using SSCA, with responses ranging from 5 to 7 (M = 6.25, SD =

.89).
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Figure 35: Average scores and standard deviations for the NASA TLX and its six sub-
components (lower is better except for the performance sub-component where
higher is better).

In terms of workload, as measured by the NASA-TLX questionnaire, see Figure 35,

results were favourable for the SSCA tool2. First, SSCA required relatively low men-

tal workload (M = 8.37, SD = 2.28). Second, since participants moved around in-situ

to explore data and find answers to questions, we were expecting a higher physi-

cal workload rating. Yet, participants rated the physical workload lower than mental

workload (M = 7.37, SD = 4.66). For temporal demand, participants rated tasks with

a mean of 9.50 (SD = 3.64). In terms of perceived performance, participants felt they

were quite successful in completing study tasks (M = 14.87, SD = 3.25). This could

be because the prototype is new technology to participants. Finally, participants did

not need to work hard to maintain their level of performance (M = 5.37, SD = 3.42)

with frustration the lowest rated perceived workload variable (M = 5.37, SD = 1.40).

Thus, on average, participants scored lower than midpoints when they were asked

about their levels of mental/physical workloads, temporal demand, required effort,

and experienced frustration associated with their experience of using SSCA. Their av-

erage perceived performance success was high, in contrast. Altogether, participants’

responses to NASA-TLX questionnaire indicates they had favourable reactions to-

wards using SSCA.

Finally, participants were asked what they disliked about the prototype. Seven par-

ticipants reported that the limited HMD FOV was a common issue. For instance,

2 Note the midpoint for each question was 10.
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during participants’ attempts to answer question 5, P8 stated ª... I need to stand at

the visualization corners to have a complete view of all objects’ movement.º and P3

stated ª... I will stand over there for a better view.º The limited FOV impacts partici-

pants’ data exploration and analysis process, forcing participants to move away from

the area they were interested in to better view the data before creating filters (P1, P2,

P4). Also, data occlusion in 3D visualization is another challenge participants faced.

For example, during participants’ exploration, in question 3, P3 stated ª... It is hard to

view all movement data at once as data points overlap.º and P7 states ª... I am looking

for uncrowded space so I can select the white path.º Another example for LFOV and

DC challenges, while P1 was exploring data for question 2 (see Table 5), participant

stated ªThe objects’ movement paths are colliding with one another, which makes it

a bit hard to find the answer... I forget data points that are above my head level.º

Figure 36: Participants’ movement heat map during the study overlay the building’s atrium.
The bright yellow square is the location where participants start the task. Partici-
pants moved around to explore the data to answer the questions. Due to the HMD
limited FOV, participants tended to move to the visualization canvas edges when
they were asked to visually present their answers.
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O− F

SSCA task startSSCA task start

Z&F DoD

Zoom / Filter

Overview

Required detail

Required detail

Figure 37: We generated a deterministic finite-state automaton for VISM in SSCA prototype.
Initially, participants start with overview of the visualization first as the initial state.

6.3 discussion

In our study, participants’ data exploration provided a better view of the data as

a whole because the visualization could be viewed throughout the space they were

occupying. Over the course of the study, STC visualization was used 84.70% compar-

ing to 15.30% for 2D visualization. One possible explanation is that participants are

interested in simultaneously examining spatial and temporal attributes for compli-

cated tasks (e.g. what and when, or when and where). When participants have difficulty

finding the answer, they break down complex queries (i.e., focusing on where), use

2D visualization, narrow down the exploration area, then use STC to complete the

task. Another explanation would be that participants choose one visualization over

another with consideration of the filter type. Participants P1, P2, P3, and P7, for in-

stance, favoured 2D over STC for route selection because they found it challenging

in STC. In addition, participants would change between 2D and STC to overcome

challenges such as LFOV or DC, for instance, when participants were unaware of

datapoints above their heads at the locations where they were standing.

All participants have used data-centric mode (i.e., all trajectory data was shown at

once) to answer study questions. This might be due to not only that the sequential

method takes substantially more time to analyze data compared to the data-centric
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approach but also that participants can see and follow trajectories paths all the time

during their analysis activities.

Although participants used STC visualization over the course of the study com-

pared to 2D visualization, STC suffers from the challenges such as limited field of

view and data occlusion. Such challenges may restrict how information is displayed

and explored, which could lead to more head orientation and body movement be-

ing required. In addition, large virtual interfaces result not only in data occlusion

but also in physical environment object occlusion. For example, virtual video players

placed in the physical space were occluded with some of the physical objects in the

environment. P10 stated ª I see it. It is behind the large display.º P9 stated ª... I think

it is behind this big virtual screen.º This will impact user performance in terms of

completion time. Researchers in [146] have shown the effect of FOV and information

density on search performance in stationary setting, yet in-situ this is less explored,

however equally as important.

Navigation and exploration are one of the fundamental activities that exemplify

the exploratory nature of information visualization and adhere to the information-

seeking process (overview, zoom and filter, then details on demand) [133]. The anal-

ysis of participants’ qualitative and quantitative data during the study provide us

a better understanding of how participants utilized VISM via SSCA to complete

study tasks. For example, the majority of the VISM sequences began or included

an overview first (i.e. O−F with 75.00%). Raters’ ratings, the analysis of logged data,

and video recordings revealed that after participants read each question, they moved

to the edges of the visualization to get a high-level overview and context of the space

and data, see Figure 36. Participants often then moved, i.e. zoomed, to the area of in-

terest then applying an appropriate filter resulting in 98.96% of the VISM sequences

to include Z&F. In most commercial and research settings for desktop STC, tools are

implemented with several interaction features (e.g., zooming, rotation, and panning)

that support users’ ability to answer various queries similar to our study [5]. In both

2D and STC visualization, the analysis of the study video recordings showed users
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performed panning, zooming, and rotating through the use of physical navigation of

the space (i.e., body proximity and head orientation) especially when the data had

a natural spatial embedding into the physical environment. Finally, participants con-

cluded the exploration pattern, as needed, by obtaining more detailed information by

inspecting elements with 57.29% including DoD.

In our study, we identified seven VISM patterns used by participants during in-

situ data analysis to accomplish study tasks. However, further VISM patterns could

be presented depending on the users analytical task, tasks’ question, and size of the

situated visualization. Therefore, we present a deterministic finite-state automation

for VISM in the SSCA prototype that could generate a wide range of VISM patterns.

Our future work would be to implement this determinate finite-state to support par-

ticipants in-situ navigation and exploration activities.

Several factors could influence analysts’ analytical strategies and tasks to explore

and gain insights from data. For instance, in our user study, the environment where

the data are mapped was indoor and uncrowded with people. Participants were pre-

occupied with the study tasks and did not notice when a few bystanders passed by.

It is interesting to explore the implications of situated analytics in outdoor, crowded

places, and/or under different weather conditions. It is worth mentioning that our

system can extract and visualizing outdoor and/or crowded places; however, one

limitation could be due to HoloLen’s computational power and limited FOV. An-

other important aspect is the characteristics of dataset. For example, our tools visu-

alize datasets that were previously stored on HMD. Our tool has the capability to

visualize spatio-temporal data stream. Also, the level of dataset detail presented in

the visualization is another important aspect. In our tool, data was preprocessed to

reduce data clutter without reducing information content or disrupting data. How-

ever, limiting the amount of visualized data may result in the omission of pertinent

and critical data in some application domains.

Interestingly, no participants used Orientation as a form of interaction to explore

data. Although participants had first-hand experience with Proximity and Orientation
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interactions with all filters (via the video tutorial and practice session), all participants

preferred to use Proximity over Orientation during the actual study. We believe this

can be mainly attributed to the fact that as Orientation is used, loss of data occurs as

data leaves the FOV. Another possible reason could be that Proximity is simply easier

to learn, less physically demanding, and natural to use compared to Orientation.

Further investigation is needed into the proper mechanics of using Proximity to allow

for natural and efficient exploration.

Also, participants had high confidence (i.e., they felt they performed well, accord-

ing to NASA-TLX) with little frustration, physical, and cognitive workload. Moreover,

all the participants indicated that they enjoyed using SSCA, and for visual analytics,

having both video and trajectories data would be effective. Altogether, considering

how little effort, mental, and physical workload were required (all lower than mid-

points in the scale) in performing visual data analytics with SSCA, we would like to

conclude that SSCA has a great potential in situated data analytics.
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7 S I T U AT E D S PAT I O - T E M P O R A L M U LT I P L E - V I E W S

A N A LY T I C S ( S S M A )

In this chapter, we propose design recommendations and alternative situated visu-

alization implementation that reduces challenges found in the SSCA prototype and

would improve the users’ exploration and interaction with the data. First, we start

with lessons learned from the SSCA evaluation, including the SSCA challenges par-

ticipants experienced (i.e., LFOV and DC) and the in-situ data exploration activities

conducted during the SSCA prototype evaluation study. Then, we introduce design

recommendations based on lessons learned from the SSCA challenges and in-situ

data exploration. Next, we present an implementation of SSMA, a visual encoding

system we use to support design recommendations and represent trajectory data,

and the notion of multiple views and placement of multiple views to help in reduc-

ing the limited field of view and data occlusion challenges in the SSCA. Finally, we

present the integration of visual information seeking mantra and multiple views to

support the data navigation and exploration.

7.1 ssca evaluation : lessons learned

In the following section, we summarize our lessons learned from SSCA evaluation

study.
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7.1.1 SSCA Challenges Summary

We present LFOV and DC challenges and discuss possible factors that contribute

to these challenges. This will help us in proposing the design recommendation to

address these challenges.

7.1.1.1 Limited Field of View (LFOV)

Based on the data analysis and our observation during the SSCA evaluation, we have

identified several factors that contribute to LFOV. The first factor is the HMD’s lenses

and screens. The SSCA was implemented and deployed on Microsoft HoloLens 2.

The display has 3:2 aspect ratio which provides a 43◦ horizontal and 29◦ vertical field

of view1, see Figure 38. Human FOV is around 210◦ horizontal and 29◦ vertical [125].

The HoloLens 2 narrow FOV makes it difficult for users to perceive the visualization

and negatively impacts users’ performance. The second key factor that influences how

users view situated visualization is the size of the physical space in which situated

visualization is mapped. As seen in previous chapters, one of the fundamental aspects

of situated trajectory data visualization is to maintain the spatial relationship between

the visualization and the physical space. When the spatio-temporal trajectory data

is collected from a small space, the situated visualization can be displayed within

the HMD’s field of view and the user will view the entire visualization. However,

when the situated trajectory data visualization is collected from a large space, the

HMD’s LFOV causes users to view different parts of the visualization and increase

their physical exploration within the large space. In addition, the temporal aspect of

the trajectory data is the third factor that impacts how users explored the situated

visualization. For instance, the time axis scale (i.e., height of the time axis) in the

SSCA was higher than the participants’ heights, which makes the datapoints out of

the HMD’s FOV. As a result, participants were unaware of datapoints above their

1 For Microsoft HoloLens 2 technical specifications, Please visit the official website at this link.
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heads’ level at the locations where they were standing at during the SSCA evaluation

study.

Figure 38: Microsoft HoloLens 2 field of view. The device has an aspect ratio of 3:2 which
results in 43◦ horizontal and 29◦ vertical using the basic Pythagorean theorem. The
figure was redrawn from [147].

7.1.1.2 Data Occlusion (DC)

Similar to 3D visualization, DC is a common issue in situated visualization, where

data points are obscured by other datapoints. This happens when 1) datapoints are

plotted on top of each other, 2) datapoints markers (i.e., spheres representing objects’

locations) are significantly larger when near to the user’s view than those that are fur-

ther away, or 3) too many datatpoints are presented at once. DC may complicate the

interpretation of the visualization and could lead to an inaccurate conclusion. To elab-

orate, datapoints near the users’ viewpoints could divert users’ attention away from

other regions that are farther away from where they stand. During the SSCA evalu-

ation, participants used several strategies to overcome DC, including changing their

physical position around the datapoints and changing their viewpoint by reorienting

their heads. Nevertheless, users will continually encounter DC issues, resulting in an
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increase in users’ physical movements (changing locations and viewpoints) during

data exploration activities with the physical space of situated visualization.

7.1.2 In-situ Data Exploration

In-situ data exploration is an initial step in situated spatio-temporal data visualiza-

tion. Often, data exploration is conducted with and without previous preconceptions

of what one is seeking. During the SSCA evaluation study, participants were given

questions related to the trajectory data and instructed to explore the data and then de-

termine the answers to the questions. In this case, participants’ data exploration activ-

ities take on a narrower exploratory approach in which they visually inspect the data,

move about the physical environment, and filter out data to answer questions posed

by the tasks. VISM has been used as a design framework for designing non-situated

information visualization tools to support users’ data exploration activities [133]. Our

SSCA design and evaluation study showed that VISM also applies to situated trajec-

tory data visualization. For instance, participants have used VISM to perform in-situ

data exploration and analytical tasks. In the overview’s first step, participants viewed

the trajectory data visualization to get a general sense of data and its context as a

whole. To acquire the general sense of the data and its context, participants walked

to the edges of the visualization and examined different areas using head orientation,

as shown in Figure 36. During the zoom and filter step, participants often moved,

i.e. zoomed, to the area of their interest. Participants performed panning, zooming,

and rotating through the use of physical navigation of the space (i.e., body proximity

and head orientation) particularly when the data had a natural spatial embedding

into the physical environment. The current SSCA implementation enables users to

zoom in to the area of interest to obtain a more detailed view of the data. However,

while zooming in on a particular area, the datapoints for other areas remain visible,

which can result in data occlusion and loss of focus. To address this issue, situated

visualization should consider two methods of zooming. The first method is to allow
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users to zoom in on an area of interest while displaying all datapoints. This method

helps users to perform comparisons between the area of interest and neighbouring

areas to identify the relationships or patterns in the data. The second method is to

allow users to zoom in on an area of interest while hiding all datapoints that are not

currently of interest. This approach reduces data occlusion and directs users’ focus

on the most relevant data. It is important to allow users to easily switch between

the two zooming modes, depending on their intended navigation and exploration

objectives. After zooming in on an area of interest, users can use different interactive

filters to further filter out irrelevant data. To reduce users’ data exploration activities,

the situated trajectory data analytics tool can identify and create filters for common

trajectory data patterns, then place filters at the location of the detected patterns. For

example, the situated trajectory data analytics tool can run a pattern analysis script

to detect common patterns such as meeting locations, stationary locations and du-

rations, and walking paths of individuals, then automatically create and map data

filters for these patterns within the physical environments. In the final step, detailed

on demand, participants concluded the exploration pattern, as needed, by obtaining

more detailed information and inspecting datapoints.

One of the important findings from the SSCA evaluation study analysis is that

VISM steps of overview first, zoom and filter, then detailed on demand were not

always followed in that sequence due to participants’ different exploration and ana-

lytical tactics, see Table 6. This finding is important since it contributes to the design

requirements of situated trajectory data analytics tools. Thus, situated visualization

should support VISM, enable a simple transition between each step, and communi-

cate immediate visual feedback of the current step status, enabling users to perform

data exploration activities effectively.
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7.2 situated spatio-temporal analytics design recommendations

We outlined the design recommendations that are applicable for situated trajectory

data visualization, reduce challenges in the SSCA, and support in-situ data explo-

ration. These recommendations were based on the lessons learned from the SSCA

evaluation, which can help inspire new designs for situated trajectory data. We ex-

plained each of the design recommendations and how it’s implemented in the proto-

type in Section 7.3.

D1. Situated trajectory data analytics tool should reduce the limited field of view

and data occlusion issues using multiple views and 2D/3D visualization.

D2. Situated trajectory data analytics tool should maintain the mapping of the tra-

jectory data in physical space at the location where data were collected.

D3. Situated trajectory data analytics tool should facilitate the accurate viewing of

trajectory data features including movement direction, meeting location, station-

ary duration, etc.

D4. Situated trajectory data analytics tool should enable in-situ data exploration via

incorporating visual information seeking mantra (VISM).

D5. Users should be able to switch easily between visual information seeking mantra

(VISM).

7.3 ssma prototype implementation

We based our SSMA implementation on the SSCA prototype and design recommen-

dations. We reused some of the SSCA components such as video player controls, four

video screens, interactive data filtering, and proxemics and embodied interactions

(Mid-air gesture). The around-hand menu is updated with new controllers that will
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be explained in the upcoming sections. We also added new trajectory data visualiza-

tions based on the design recommendations in Section 7.2. We illustrated each design

recommendation and how we implement it. Also, the same trajectory dataset ex-

tracted from our computer vision tool will be used in the SSMA prototype. Microsoft

HoloLens 2 [111], Mixed Reality Tool Kit (V2.6) [154], and Unity 3D tool was used

as a development framework. The raw data were preprocessed to reduce data clutter

without reducing information content. Unity 3D is used to process the trajectory data

CSV files, generate the 2D/3D visualization, as well as build out the interactions and

user interfaces. To map the visualization on the physical space, the user is required

to stand on a pre-defined reference point to calibrate and run the SSMA prototype.

We began with the visual encoding systems used to represent situated trajectory

data visualization. We then introduced the concept of multiple views, the transforma-

tion of STC into multiple views, and integrating the multiple views visualization and

visual information seeking mantra interaction.

7.3.1 Visual Encoding Systems

Visual encoding is the process by which visual elements are used to visually repre-

sent data, and it is a key factor in determining how users interpret and understand

visualizations. A few studies have looked at the basic visual encoding elements of

information visualizations and provided recommendations on their effectiveness for

designers Bertin [15], Cleveland and McGill [33], and Mackinlay [104]. Bertin [15] has

defined a matrix for encoding mechanisms that are used to provide visual representa-

tion of data and their suitability for supporting common tasks such as association (or

similarity), selection, order, and quantity. Bertin [15]’s matrix consists of Size, Position,

Texture, Colour, Orientation, and Shape. Figure 39 shows the list of visual marks and

their effectiveness.
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Figure 39: Bertin’s ranking of the different visual variables for different tasks. Adapted from
[15].

Cleveland and McGill [33] have introduced a wider range of visual variables, called

elementary perceptual tasks, that deal with the representation of quantitative data on

common graphs. Cleveland and McGill have ranked these visual perceptual tasks

(from most to least accuracy) based on empirical examination into Position, Length,

Angle and slope, Area, Volume, Colour, and Density. Figure 40 shows the ranks of Cleve-

land and McGill Visual encoding matrix.

Figure 40: Cleveland and McGill’s visual encoding system. This encoding system matrix is an
extension of Bertin’s visual matrix [33]. Adapted from Cleveland and McGill.
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One of the drawbacks of Cleveland and McGill’s approach is that it only considers

the quantitative data; an extension to Cleveland and McGill has been introduced by

Mackinlay [104]. Mackinlay looked at the visual encoding system not only for quan-

titative data but also for non-quantitative data [104]. Mackinlay considers examining

the visual encoding system for a different data type. Mackinlay has categorized the

efficacy of visual variables based on the characteristics of three data types: ordinal,

nominal, and quantitative, see Figure 41.

Figure 41: Mackinlay’s ranking of the different visual variables for different tasks. Adapted
from [104].

The vast majority of 2D and 3D visualizations are using one of the aforementioned

visual encoding systems. These visual encoding systems can present trajectory data in

a situated visualization context, while taking into account the challenges associated

with situated visualizations, such as limited field of view and data occlusion. By

using the appropriate visual encoding system, it is possible to create an effective

situated visualization for trajectory data. Mainly, we find Mackinlay’s visual encoding

matrix more general and suitable for encoding trajectory data attributes [104]. In

Section 7.3.3, we explained visual variables used during the design process to encode

trajectory data attributes.

120



7.3 ssma prototype implementation

7.3.2 Multiple Views

In data visualization, a multiple views system is defined as two or more distinct

views to support the exploration of a dataset’s attributes [2, 129]. The need for mul-

tiple views arises when trying to make sense of a multivariate dataset (e.g., trajec-

tory data), where a single visualization is complex to comprehend all the dataset

attributes. Often, single visualization could be insufficient to fully understand the

relationship between different attributes. There are several potential reasons for this,

including the display’s limited size, the user’s cognitive limitations in processing a

huge dataset, and the necessity to switch between various viewpoints on the same

data to understand the attributes [129]. The multiple views concept has been used in

different application domains, such as network topology, NFS file system, and geo-

graphic web server data visualization [129]. We saw a potential for using the multiple

views concept in the context of situated trajectory data visualization, and the pro-

totype is named after this notion. Participants who used the SSCA prototype often

faced complex queries and LFOV when exploring data. Multiple views visualization

can simplify the data exploration process by breaking down complex queries and

decreasing the limited field of view challenges. When analysts have different visual-

ization views of the same data, they can break down complex queries and focus on

the attributes of interest. For example, analysts may be investigating a query that has

spatial (location of an object) and temporal (between time span), they break down

the query and inspect the visualization view that shows location of the object while

inspecting another visualization that shows time.

7.3.3 Multiple Views Design

We outlined trajectory data attributes that will be used in the multiple views. Then,

we demonstrated how these attributes get encoded for each view. After that, we illus-

trated how STC gets transformed into multiple views. In the SSCA prototype, STC vi-
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sualization represents trajectory data attributes in one 3D visualization, including ob-

ject id, objects’ spatial locations (i.e. latitude and longitude), objects’ spatio-temporal

changes, movement direction, meeting and stationary location, and movement speed.

We took advantage of multiple views to represent these attributes into different vi-

sualization views and make them available to users at the same time. We decided

to have three visualization views: 1) Situated spatial 2D visualization, 2) Situated

time-longitude 2D visualization, and 3) Situated time-latitude 2D visualization.

Figure 42: The STC visualization (left graph) and the corresponding 2D visualization of the
same dataset (right 2D graph). The Colour Hue represents different object Id. The
Shape (i.e., circle mark) was used to represent each datapoint of the object trajectory.
The Position of the circle was used to represent latitude and longitude. The Position,
Shape, and Orientation, i.e., arrow marks, were used between a consecutive pair of
datapoints to represent the movement direction of the object. The position is used
to map the latitude and longitude.

Figure 43: In the STC visualization, the vertical arrow indicates the stationary duration of the
object. In 2D visualization, the Size of the circle encodes the meeting and station-
ary duration of the object. Also, the Colour Saturation (i.e., intensity of Colour Hue)
encodes the time.

122



7.3 ssma prototype implementation

7.3.3.1 View 1: Situated Spatial 2D Visualization

Situated spatial 2D visualization allows users to mainly focus on spatial attributes

(i.e., latitude and longitude) besides other attributes (e.g, object id, movement di-

rection, etc.). We use Cleveland and McGill’s visual encoding matrix to encode the

trajectory data attributes, see Figure 41. Thus, we encoded object trajectory data using

Colour Hue where each datapoint is encoded in Shape (i.e., circle). The object’s location

within the physical environment is encoded using Position (i.e., X-and Y-axis). We also

used Shape (i.e., triangle shape) to encode the object’s movement direction between

two consecutive datapoints, see Figure 42. The triangle does not connect the data-

points which helps in reducing the overlapping between the datapoints. Although

the situated spatial 2D visualization helps users to focus only on spatial attributes,

we provided users with the ability to enable/disable further visual encodings, via a

virtual popup configuration window from the around-hand interface, such as time

and meeting and stationary location when needed. To illustrate, we used Colour Satu-

ration (i.e., the intensity of colour hue) to encode the time. So, when the circle colour

is solid, the time is at the beginning and vice versa, see Figure 43. In addition, we

used Area of the datapoint (circle shape) to encode the meeting and stationary lo-

cation and duration. For example, the diameter of the circle indicates the duration

when the object is stationary. The larger the circle diameter the longer the object has

been stationary, see Figure 43. The situated spatial 2D visualization design supports

design recommendations (D1, D2, and D3), see Section 7.2. This visualization design

reduces the limited field of view challenge by flattening the time axis in STC and

then encoding it with Colour Saturation, and the data occlusion challenge by reducing

the visual marks in visualization such as shape and size of datapoints and movement

direction.
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Figure 44: The time-longitude 2D visualization design. In this visualization, Mackinlay’s vi-
sual encoding matrix is used to encode time and longitude attributes of the trajec-
tory data. Then, the visualization was placed into the left wall of 3D visualization.

Figure 45: The time-latitude 2D visualization design. In this visualization, Mackinlay’s visual
encoding matrix is used to encode time and latitude attributes of the trajectory
data. Then, the visualization was placed into the right wall of 3D visualization.

7.3.3.2 View 2 and 3: Situated Time-longitude and Time-latitude 2D Visualization

In situated time-longitude 2D visualization, the emphasis is on time, a spatial at-

tribute (i.e., longitude). Also, it visualizes other attributes such as movement direc-

tion, movement speed, meeting, stationary location, and duration. We used vertical

2D plane to encode the trajectory data attributes, see Figure 44. The horizontal axis

(i.e. X-axis) represents and maps object’s longitude location with the physical space.

The vertical axis (i.e., Y-axis) represents the time where the axis starts at from the
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top to graph plane, similar to the approach we used in the SSCA. Similar to Situated

spatial 2D visualization, we used Colour Hue to encode different objects and Shape

(i.e., circle) to encode each datapoint. The time and longitude attributes of each data-

point is encoded using Position (i.e., X-and Y-axis). Also, we used Shape (i.e., triangle

shape) to encode the object’s movement direction and Orientation (i.e., triangle slope)

to encode the speed of object movement, see Figure 44. In the visualization view, the

triangle mark does connect the datapoints to help users to observe and understand

the changes in time, longitude, movement direction, and speed. The time-latitude 2D

visualization, in Figure 45, is identical to time-longitude 2D visualization in terms

of design and visual encoding; however, the only difference between them is instead

of visualizing time and longitude, it visualizes the time and latitude. The situated

time-longitude and time-latitude 2D visualization supports design recommendations

(D1, D2, and D3), see Section 7.2. Also, these two 2D visualizations reduce the limited

field of view challenge by resizing time axis so it is below the user’s head level, thus

it is easy for users to view the time axis and minimize the vertical head movement.

7.3.3.3 Placement of Multiple Views

The placement of data representation, in terms of position and orientation, is impor-

tant in situated visualization, especially when data has embedded spatial attributes

and multiple views. It is important to maintain the spatial relationship between data

and the physical world, and the correct position and orientation of visualization to

create an immersive experience for users. In addition, the placement of multiple

views should enable and support users’ analytical tasks. Based on the structure of

the physical environment and trajectory data, we mapped the data into the physical

environment within a cuboid shape, see Figure 46. The cuboid has six rectangular

faces, which are the outside surface of the situated trajectory data visualization. This

is beneficial, as it allows for more flexibility when managing the placement of multi-

ple views into the physical environment. Therefore, we utilized these faces to place
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different aspects of the data visualization. We are interested in using five of the faces

to place the multiple views.

Figure 46: The mapping of the multiple views into the cuboid shape within the physical envi-
ronment. In cuboid’s first face, i.e., Face 1, will be used to place the Situated spatial
2D visualization. Face 2 and 3 will be used to place Situated time-longitude 2D
visualization whereas Face 4 and 5 will be used to place Situated time-latitude 2D
visualization.

The cuboid’s first face will be used as a canvas for Situated spatial 2D visualization.

This face maintains the mapping of objects’ locations into the physical environment

floor. The second and third faces will be used as canvases for time-longitude 2D vi-

sualization. Similarly, the fourth and fifth faces will be used as canvases for situated

time-latitude 2D visualization. The reason for using two faces for the same time-

longitude is to allow users to access trajectory data that is out of their field of view.

In general, multiple views should be placed in such a way that they are easily acces-

sible and visible to the users. For example, when users stand in the middle of the

situated visualization while facing one of time-longitude or time-latitude 2D visual-

ization, the users will have access to data that is located behind where they stand. This

multiple views layout is effective because it allows users to see the data from differ-

ent perspectives and understand the relationships between them. Therefore, placing
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time-longitude and time-latitude visualizations on cuboid’s faces supports design rec-

ommendations (D1, D2, and D3). Figure 47 and Figure 48 show an example of STC

visualization of trajectory data into multiple views.

Figure 47: This figure shows a step-by-step transformation of STC visualization into multiple
views that is applicable to situated visualization.
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Figure 48: This illustration shows the difference between SSCA and SSMA prototypes and
how multiple views are placed on the cuboid’s faces.
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7.3.4 Visual Information Seeking Mantra (VISM) Interaction

Navigation and data exploration is a fundamental activity that exemplifies the ex-

ploratory nature of situated and non-situated information visualization. VISM is a

well-known and general navigation and exploration taxonomy [133] and it is used by

users in situated visualization. Hence, we are interested in enabling interactive VISM

to support users’ in-situ data exploration and navigation. Therefore, we integrated

the VISM: overview first, zoom and filter, and detail on demand. For the sake of im-

plementation simplicity, we broke the zoom and filter step into two steps. We aim

at 1) allowing a simple and dynamic transition between the first two VISM steps, 2)

communicating immediate visual feedback of the current step status, and 3) enabling

users to perform data exploration activities effectively. We considered taking advan-

tage of the user’s location within the physical environment, around-hand interface,

and floating AR controllers as means to achieve such objectives and to support design

recommendations (D4 and D5), see Section 7.2.

Figure 49: An integration of overview first step into SSMA visualization. The user stands in
one of the blue areas to activate the overview first step, where the situated spatial,
time-longitude, and time-latitude 2D visualizations are shown.
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7.3.4.1 Overview First

In the overview first step users view all multiple views visualizations of trajectory

data to get a general sense of data and their context as a whole. By understanding

how users interacted and explored situated visualization, we considered the situated

visualization edges and the users’ location to activate the overview first step. Thus, we

created four interactive zones at the four edges of the cuboid, as shown in Figure 49.

As the user walks into and stands within one of the zones, this results in showing

multiple views. We also allowed the user to keep the overview step regardless of

the user’s location. For example, the user can activate the overview by selecting the

"Overview" button on the around-hand menu or pointing and pinching the floating

AR "Overview" button, see Figure 50.

Figure 50: The implementation of the ‘Overview first’ step into SSMA visualization. At the
top, the floating AR buttons Overview, Zoom, and Filter. The user can activate
overview first step by pointing and pinching the Overview button.
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Figure 51: An integration of zoom step into SSMA visualization. The cuboid of situated tra-
jectory data visualization is divided into four equal cuboids that represent distinct
parts of the physical environment. Four yellow areas at the corners of the cuboid
to activate the zoom step.

7.3.4.2 Zoom

Zoom step is effective in facilitating navigation in large datasets and large physical

space. We considered two methods of zooming. The first method is to allow the user

to perform physical zooming into the area of interest while showing multiple views

of the trajectory data. This strategy assists users in identifying links or trends in the

data by comparing the area of interest to neighbouring regions. The second method

is to allow the user to zoom in on an area of interest and hide all datapoints that

are not currently of interest, this method reduces data occlusion and directs users’

focus on the most relevant data. This is especially useful when navigating datasets

mapped into large space, as it can be difficult to find the specific datapoint one is

looking for. We divided the cuboid of situated trajectory data visualization into four

equal cuboids that cover different areas of the physical environment. Then, we used

five of the faces to place the multiple views, see Section 7.3.3 for trajectory data for

each area of the physical environment. Users can zoom into the cuboid of interest

while the other cuboids are hidden. To create this effect, we created four interactive

zones at the four corners of the cuboid, see Figure 51. The prototype tracks the user’s

movement and determines their location within the visualization. Once the user’s
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location has been determined within one of the zones, the system then renders the

appropriate cuboid of the scene and hides other cuboids, Figure 52. Additionally, we

provided users with the option to maintain the zoom step even when they are not

positioned in one of the interactive zones located at the cuboid’s four corners. When

the user activates the zoom step by selecting the "Zoom" button on the around-hand

menu or the floating AR "Zoom" button, the prototype detects the cuboid where the

user is standing and then activates the zoom step, see Figure 50.

Figure 52: The implementation of the zoom step into SSMA visualization. As the user ap-
proaches a corner, they may zoom in on the cuboid of interest while the other
cuboids are concealed. Other methods to activate the zoom step are to use a float-
ing AR button or around-hand menu "Zoom". The user can activate overview first
step by pointing and pinching the Overview button.
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7.3.4.3 Filter

The use of the filter step is yet another essential stage in the process of navigating and

exploring data. It enables the user to focus on the most relevant data. We created an

interactive zone at the base face of the cuboid to enable the user to activate the filter

step. When the user enters the filter step zone, interactive data filtering can be used to

filter data such as ROI, POI, trajectories paths selector, and a measurement plane. An-

alysts often identified and posed common inquiries related to trajectory data, such as

which object stayed stationary the longest, where a group of objects met, and which

objects walked the same path. We created pre-defined filters (a yellow cylinder with

a height of 10 cm) for such common inquiries and automatically place them in the

physical environment, namely at the location where the events happened. Each pre-

defined filter has a unique symbol placed at the top that distinguishes it from the

others and assists the user in determining which queries or patterns they are inter-

ested in. When the user approaches a specified pre-defined filter, the filter’s symbol

disappears, and data within the filter area (i.e., cylinder area) transform into 2D or

STC visualization. The user can configure the type of visualization, i.e., 2D or STC,

shown from the virtual popup configuration window from the around-hand interface.

We considered showing STC when viewing the filter data for the following reasons.

First, the filter area is not a big area and the effect of data occlusion and limited field

of view challenges are limited. Second, in the binocular display, 3D is more effective

for depth-related activities such as spatial comprehension of complicated visualiza-

tion and spatial manipulation [88]. If the user moves away from the filter, it turns to

its original status. The user can keep the pre-defined filter in STC by enabling the

interactive button "Keep". The user can repeat the same process for all pre-defined

filters or create their own interactive data filtering. The pre-defined filters support the

user’s analytical tasks by reducing the user’s cognitive load to access data and time

to explore and navigate data. Figure 53 demonstrates an example of the pre-defined

filter of two objects walking the same path whereas Figure 54 shows the implementa-

tion of the redefined filter concept.
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Figure 53: The integration of the filter step into SSMA visualization. At the top of the figure,
three pre-defined filters are created for common inquiries such as object stationary,
meeting location, and same walking path. In the multiple views visualization, the
same walking path filter is located where the event occurred at the filter zone. As
the user gets closer to the pre-defined filter, data within the filter area is shown
in STC or 2D. The user can retain the STC or 2D visualization when enabling the
interactive "Keep" button.
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Figure 54: An example of a filter created by the user which shows the datapoints in 2D visu-
alization.
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7.3.4.4 Detailed on Demand

The last step of the VISM gives, on demand, more information about each datapoint.

We used datatip, a small text box that displays detailed information similar to the

one used in the SSCA, to display detailed information about individual datapoint

(e.g., trajectory id, location value, and time). Users can show/hide datatip for any

datapoint in any visualization view. Datatips orientate themselves to face the users

regardless of their position with the immersive multiple views visualization. Users

can toggle the visibility of datatips using the Mid-air gesture and hide all visible

datatips at once by resetting the filter from the around-hand menu. The way datatip

is displayed differs based on the visualization view. When datatip is enabled in the

situated spatial 2D visualization view, for instance, a solid line is projected from a

datapoint on the floor to 50 cm above the floor, where the datatip will be positioned.

In situated time-longitude and time latitude 2D visualization, when datatips are en-

abled, a solid line is projected from a datapoint to 20 cm below the datapoint, and

then the datatip is placed. In addition, we reused the effect of showing the datatip

of a datapoint on the video player: when playing and pausing the video, showing

detailed information about a datapoint, the video player jumps to the frame of that

datapoint in the video.
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This dissertation provides a detailed report on the exploration of interactive situated

spatio-temporal data analytics to support in-situ data analytics for HMD devices. We

investigated a range of topics including spatial-temporal data visualization, infor-

mation visualization interaction, embodied interaction, AR technology, and situated

analytics to meet our research objective as stated in the introduction chapter:

Explore the key design aspects of situated spatio-temporal analytics that enable in-situ ana-

lytic tasks and improve users’ analytic skills and experience.

In the following sections, we provide summaries of this dissertation and our find-

ings based on results presented in chapters 3-7 and discuss several assumptions and

limitations of this work. In exposing these limitations, we aim to shed light on the

many future opportunities that the dissertation opens up for researchers in the sit-

uated analytics field. We then state our final conclusions which will inspire future

research.

8.1 summary

In this dissertation, we explored and implemented situated spatio-temporal data ana-

lytics that supports users’ in-situ analytical tasks. In Chapter 3, We conducted a user

study that empirically compared analytical activities for spatio-temporal data in Sit-

uated and Non-situated groups. The study results suggest that there is significant

effect around the tasks’ response error/accuracy which confirmed possible benefits

of situated analytics in comparison to the traditional Non-Situated analytics. Partici-

pants’ errors were generally larger when they analyzed the spatio-temporal data in an
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office as opposed to the actual location where data was collected. Participants largely

benefited from environmental cues for many analytic tasks.

After validating the potential of situated analytics, we were interested in exploring

possible visualization designs for situated spatio-temporal analytics and how being

in-situ influenced the users’ visualization designs and integration of their designs. In

Chapter 4, we conducted elicitation workshops to explore end-users’ views on how to

design different situated visualization and interaction for spatio-temporal data. The

detailed analysis of sketches resulted in emergent themes, interaction, and revealed

design considerations for situated visualization prototypes.

In order to implement a novel situated spatio-temporal analytics, we took into ac-

count both design recommendations from the literature and design considerations

from elicitation workshops. In Chapter 5, we implemented SSCA that enables users

to explore the spatio-temporal data, in 2D and STC visualization, in the environment

where the data was captured. SSCA prototype supports in-situ data exploration activ-

ities via a range of interactions (proxemics, orientation, and gestural interaction), and

different interactive data filters (region of interest, period of interest, measurement

plane, and trajectory path selector).

SSCA demonstrated the advantage of mapping spatio-temporal data into the phys-

ical space and enabling data filtering and interaction. However, there is a need to

establish an understanding of in-situ spatio-temporal data exploration activities us-

ing our SSCA prototype, and to explore interaction taxonomy, to determine whether

the VISM taxonomy supports situated visualization and interaction techniques. In

Chapter 6, we evaluated SSCA tool through a usability study within the space where

the data was originally captured. The analysis of collected data revealed that users’

exploration and navigation activities adhere to VISM. In addition, LFOV and DC were

challenges participants faced during the study. Also, SSCA obtained a good overall

assessment for its proximity interaction with all filters, around-hand interface, and

the usage of the prototype for future data analysis.
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Based on our acquired knowledge regarding challenges inherent in SSCA as well as

the in-situ data exploration activities, in chapter Chapter 7, we presented design con-

siderations that includes proper visual encoding, multiple views visualization, and

proper placement of each multiple views within the physical space. These design

considerations help situated visualization designers to improve user experience, in-

teract with data, and reduce the negative effects of LFOV and DC. We implemented

SSMA using the design considerations to effectively visualize spatio-temporal data

and integrate VISM interaction taxonomy to support the in-situ data exploration and

navigation.

8.2 situated spatio-temporal analytics design considerations

Situated spatio-temporal data analytics, where data is extracted from video footage,

is still in its early stages. There are various opportunities for researchers to contribute

to the body of knowledge in this area. Elicitation and SSCA evaluation studies results

revealed important design considerations for situated spatio-temporal data analytics

designers and developers. Therefore, we suggest the following design recommenda-

tions to the visualization community:

D1. For situated video analysis, future analytic programs should incorporate a low-

and a high-level detailed visualization of events, to provide the capability to

interact with the event data and narrative.

D2. Visualizations for situated video analysis should include the original video

footage as a tool for validation or reference.

D3. The use of annotations in situated video analysis visualization supports event

narrative via grabbing users’ attention, clarifying chronological order of events,

and indicating event transitions. Also, textual annotation could be used as a

way to capture and exchange user insight and conclusions.
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D4. Situated video analysis visualization could incorporate multiple levels of con-

textual information to support multivariate types of analyses (e.g., including

fine details relating to, but not limited to, the variables of time, duration, object

classification, object location, object direction, object velocity, event summary,

etc).

D5. Interaction with situated visualizations should consider not only the location

but also the user’s physical body movements as an input modality.

D6. Situated trajectory data analytics tool should reduce the limited field of view

and data occlusion issues using multiple views and 2D/3D visualization.

D7. Situated trajectory data analytics tool should maintain the mapping of the tra-

jectory data in physical space at the location where data were collected.

D8. Situated trajectory data analytics tool should facilitate the accurate viewing of

trajectory data features including movement direction, meeting location, station-

ary duration, etc.

D9. Situated trajectory data analytics tool should enable in-situ data exploration via

incorporating visual information seeking mantra (VISM).

D10. Users should be able to switch easily between visual information seeking mantra

(VISM) based on users’ location within the physical space.

8.3 ssca applications and usage scenarios

As discussed earlier in Chapter 3, the ability to explore information in-situ has the

potential to provide a benefit of situated spatio-temporal analytics over traditional

desktop analysis. We envision several application domains to take advantage of sit-

uated spatio-temporal analytics. Here, we highlight two examples of potential usage

scenarios for viewing and exploring spatio-temporal in-situ.
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8.3.0.1 Sport Coaching

Typical coaching routines involve coaches and players watching back game footage

to try and better understand both positive and negative actions taken during a game.

The analysis of this footage helps to ascertain future decisions on how to best play

and to create training routines necessary to make those changes. However, a current

drawback of this routine is the separation of the video analysis, containing spatio-

temporal player movement trajectories, to the practice area within the game’s typical

environment. By utilizing a tool similar to SSMA, coaches and players can, while

situated, view the trajectory data taken from the game footage. This could potentially

be beneficial, as players and coaches could then physically place themselves in the

environment where change needs to occur, further being able to explore the data

in-situ and in real-time.

8.3.0.2 Factory Traffic Patterns

Factories and other workplaces at times track the movement of employees in an at-

tempt to ensure efficiency. Regularly, this is done through video surveillance footage

captured around the work environment. However, a birds-eye-view may not at times

be able to capture the nature or reason for things like aggregation of employees or

slow movement. Thus, exploring the movement data itself while being in-situ can add

potentially beneficial information (i.e., environmental factors, positioning of items,

etc.) to managers looking to streamline processes. Again, by providing a means for

combined data and environmental exploration, a prototype such as ours could prove

helpful outside of traditional desktop exploration.
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8.4 assumptions and limitations

Given that situated spatio-temporal data analytics is an emerging and broad research

area, thus it requires few assumptions and entails a number of constraints. In this

section, these assumptions and constraints for each chapter are discussed as follows:

Our user study empirically validated the potential of situated via comparing users’

data analysis performance between Situated and None-situated groups. One potential

limitation of our study is that almost all participants (97.5%) had no prior expertise

with video analysis or physical scene investigation because we lacked access to a

pool of professional participants with expertise in the areas of video analysis and

scene investigation. While university students are typically skilled at critical thinking

and abstract reasoning, they may not have the same level of expertise as professionals

in these fields. As a result, the findings of our study may not be generalizable to the

wider population. However, we believe that the insights gained from our study are

valuable, as they provide a fresh perspective on the potential of situated analytics.

An in-situ elicitation study was conducted to explore how participants captured

spatio-temporal in a video footage, and generated situated visualization designs to

represent such data into the physical environment where video clips were captured.

The step-by-step instructions and producers of the study aided participants in com-

prehending the task, and generating interesting visualization designs, themes, and in-

sight. In order to expand upon the findings of this study, it will be essential to include

participants with experience in both HCI and art. This will provide a more diverse

range of perspectives and could lead to new visualization designs, themes, and in-

sights. Additionally, this approach would allow for a more thorough understanding

of important aspects of the two fields. Participants, with HCI and art background,

could suggest interaction and visualization designs different than what has been pro-

posed in this study. This could expand emerging themes and distribution of theme

categories. Also, our study analysis and results are based on five video clips (five sce-

narios) from the literature [11, 14, 27, 36, 72, 96, 99, 102, 114, 123, 139] which includes
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Projectile Trajectories, Key Environment Changes, Movement Directions, Duration of

Movement/Action, and Absolute Measurements. Other scenarios such as crowd and

traffic analysis, object’s key postures, individual walking patterns, etc., could yield

different themes and their categories.

We introduced our approach for SSCA prototype, core principles, and design choices

of the prototype. Our SSCA prototype employs STC visualization to display common

trajectory movement datasets (i.e., latitude, longitude, and time) in a small to medium

physical space. However, the prototype is inapplicable to more complicated spatio-

temporal data with multiple spatial attributes. For example, the trajectory movement

of a projectile, as seen in Section 3.4.1, required the visualization of latitude, longitude,

altitude, and time. STC can express latitude, longitude, and time with relative ease.

To represent altitude in STC, there exist two possible solutions: 1) adding additional

visual encoding (e.g., colour hue), or 2) utilizing the z-axis to indicate altitude rather

than time. Consequently, while SSCA is used for displaying basic spatio-temporal

information, it is not clear how it is suitable for datasets with a greater number of

spatial attributes.

We conducted an evaluation study to comprehend in-situ spatio-temporal data ex-

ploration using our SSCA prototype and examined interaction taxonomy, i.e., VISM,

to see if it supported situated visualization and interaction. As part of the assessment,

we deployed the SSCA prototype on the HMD headset, and collected and analyzed

qualitative and quantitative data of user interaction with the prototype. Several fac-

tors could influence analysts’ analytical strategies and tasks to explore and acquire

insights from data such as environment (indoor or outdoor), environment crowd-

edness, and/or environment light conditions. For instance, in our user study, the

environment where the data are mapped was indoor and uncrowded with people.

Participants were preoccupied with the study tasks and did not notice when a few

bystanders passed by. This raised the questions of whether conducting the same study

at outdoor and/or environment that is crowded with people will yield similar results

or not. Also, in-situ data analysis in public and crowded places has a significant
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stigma attached to wearing HMD devices, especially the ones equipped with cam-

eras, in public [3, 173]. This can lead to users’ anxiety and self-consciousness, which

can in turn negatively impact their performance. In some cases, users may avoid us-

ing HMD headsets altogether when around other people. This is an important future

direction to consider, as the use of in-situ data analysis techniques is likely to become

available. Another HMD’s issue is that the environment must be lit in a certain way

for the HMD to function properly. For example, if an environment is too bright, the

cameras on the headset can become saturated and cause visualization to appear as a

white blur. Conversely, if an environment is too dark, the cameras may not be able

to pick up enough information, and visualization will not appear. The ideal lighting

situation for HMD is therefore one in which the environment is evenly lit enough

that a human can see without difficulty. If HMD is used in an environment that does

not meet these criteria, it is likely that user performance will be negatively impacted.

In addition, our SSCA evaluation was conducted during COVID-19 pandemic re-

strictions with little access to participants. Our small (N = 8) sample may limit the

generalizability of our findings. Studying with a larger participant pool would likely

produce an increased set of diverse results and/or more clear standout combinations

of tools used within our SSCA prototype. However, we note that in previous AR/VR

prototype exploration works, this number of participants is often used [93, 127]. Due

to the unavailability of experts, through our exploratory study, we recruited lay in-

dividuals. These two groups of users have the potential to produce different results.

While this may be the case, we do note that our participants followed the typical in-

formation seeking mantra and were still successful in answering the questions given.

Furthermore, as seen in our potential applications and usage scenarios, increasingly

lay individuals, rather than data analysts, could benefit from a tool much like our

SSCA prototype.

We provided design recommendations and implementation of SSMA prototype

to reduce challenges found in the SSCA prototype (i.e., LFOV and DC) and would

improve the user’s exploration and interaction with the data via VISM integration.
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SSMA leverages visual encoding and multiple-views visualization to overcome SSCA

challenges. However, one important consideration for situated spatio-temporal ana-

lytics is the structural features of the physical environment including but not limited

to shape and floor. Spaces can have different 3D shapes, such as cubes, cuboids, cylin-

ders, spheres, etc. The shape of the space is an important factor in the way spatio-

temporal data visualization is mapped into the space and integration of VISM. In

our case, for instance, the physical environment in which the spatio-temporal data

was collected is a cuboid shape. Cuboid shape faces are not only used to map the

data visualization and place the multi-views but also to anchor the VISM interactive

zones.

8.5 some areas deserving future work

In this section, we highlight a few aspects that are relevant to situated spatio-temporal

analytics. These have received some attention, but are currently unexplored research

areas in relation to the concepts presented in this dissertation.

8.5.1 Evaluate SSMA user performance

Finally, in order to validate our assumption that SSMA reduces LFOV and DC chal-

lenges and improves in-situ data analysis, it is important to assess SSMA’s users’

performance. Also, we are planning to conduct an empirical study to compare SSCA

and SSMA users’ performance, analytics tactics, and advantages or disadvantages in

typical tasks.
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8.5.2 Multivariate Spatio-temporal Data Visualization

In addition to the visualization of individuals’ trajectories data demonstrated in Chap-

ter 5 and 7, other important considerations for situated spatio-temporal visualization

need to be explored further. For instance, future research is to visualize multivari-

ate situated spatio-temporal visualization that includes individuals’ estimated pose

over time. Human pose estimate is often defined as the process of estimating the

articulated joint positions of a human body from an image or video footage of that

individual [151]. Wang et al. [151] conducted a survey of recent 3D human pose

approaches that could extract individuals’ poses. As a consequence, it is feasible to

develop a more sophisticated computer vision tool that not only extracts individu-

als’ spatio-temporal data from video footage but also extracts 3D individuals’ human

pose. To illustrate, it would be beneficial to visually represent individuals’ poses with

multiple 3D skeletons over time along with trajectory data into the physical environ-

ment. Such situated visualization will enrich analysts’ understanding of events and

individuals’ actions compared to situated spatio-temporal data analytics. Therefore,

an elicitation workshop is an important step in the design of a situated visualization

to represent trajectory data and 3D human poses. This type of workshop allows for

designing visualizations that are more effective in conveying the desired information.

Also, we implemented computer vision tool to extract spatio-temporal data from

video footage, then loaded it to the SSCA to visualize and map the data. As we

envision situated spatio-temporal analytics in Section 1.1.2, we believe that the full

potential of our prototype can be realized when spatio-temporal data is available

and accessible on demand - from ubiquitous sensors or video footage - in near real-

time. Our SSCA visualizes datasets that were previously stored on HMD. Our tool

has the capability to visualize spatio-temporal data stream. Also, the level of dataset

details presented in the visualization is another important aspect. In our tool, data

was preprocessed to reduce data clutter without reducing information content or

disrupting data. However, limiting the amount of visualized data may result in the
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omission of pertinent and critical data in some application domains. A future research

direction would be toward supporting Closed-circuit Television (CCTV) with built-in

robust and advanced computer vision software that extracts and broadcasts spatio-

temporal data, via wireless networks, to immersive displays (e.g., HMDs) in real-time

rather than after the footage has been collected.

8.5.3 Support In-situ Data Exploration

In Chapter 2, Section 2.5.1, we presented situated visualization characteristics and

how data mapping onto its physical context is an important aspect White [155]. How-

ever, when the data is mapped onto a large physical space, HMDs LFOV remains an

open challenge where users cannot view the whole data (i.e., an overview) or a subset

of the data (i.e., zoomed/filtered) unless they change their positions within the visu-

alization canvas. The question is: How to maintain data mapping onto the physical

environment while enabling an overview of the data or a subset of the data? One

possible future direction is to add a mini-interactive STC visualization to the SSCA or

SSMA tool. Basically, the mini visualization visually represents the same dataset used

in SSCA or SSMA tool. Also, the mini visualization will be attached to the around-

hand to support easy access when an overview of data or a subset of data is required.

The interaction with the mini-STC visualization could lead to future research. For ex-

ample, what would be a suitable interaction with mini-STC visualization to interact

and manipulate data? Can we use the interaction with mini-STC and simultaneously

reflected it on SSCA or SSMA? We are interested in further exploring how best to

enable users to interact and view a large amount of data on the AR platform.

8.5.4 Situated visualization on different space shape

As a future direction, we are interested in exploring other physical space shapes and

how the SSMA prototype can be used for different space shapes. Also, the floor’s
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structure (e.g., flat, slopped, or stepped floor) could cause safety issues during users’

in-situ data exploration and navigation. For instance, during in-situ data exploration

and navigation, users could lose their balance and get injured. The space we used to

develop SSCA has a flat floor. Based on our observation of the participants during the

study, participants did not have any safety issues with the flat floor. This might not

be the case for slopped or stepped floors. Ultimately, consideration of physical spaces’

structure is essential during the designing of situated spatio-temporal analytics.

8.6 a final word

In summary, we foresee the transition of spatio-temporal data analysis methods/tech-

niques from non-situated paradigms to situated paradigms that incorporate situated

analytics and embodied interaction to enable in-situ data exploration and navigation

at the surrounding environment. We believe situated analytics is an emerging and

exciting field of research that has the potential to transform how we interact with the

world around us. We strongly believe that our contribution of this dissertation adds

valuable knowledge to the research community.
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A S T U D Y M AT E R I A L S

a.1 participants’ sketches

Sixty sketches were generated by six groups (in pair of two). All the groups were

asked to draw two visual representations for each of the following video scenarios: 1)

Projectile Trajectories, 2) Key Changes in the Environment, 3) Movement Direction, 4)

Duration of Movement/Action, and 5) Absolute Measurements. We digitally redrew

participants sketches as the following:
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a.1.1 Group one sketches

Figure 55: A redraw of group one sketches.
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a.1.2 Group two sketches

Figure 56: A redraw of group two sketches.
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a.1.3 Group three sketches

Figure 57: A redraw of group three sketches.
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a.1.4 Group four sketches

Figure 58: A redraw of group four sketches.
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a.1.5 Group five sketches

Figure 59: A redraw of group five sketches.
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a.1.6 Group six sketches

Figure 60: A redraw of group six sketches.
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a.2 ssca evaluation study

a.2.1 Participants’ completion time

Figure 61: Each sub-graph represents the mean completion time (red bar) and the completion
time for each participant (blue bar for P1 to P8).
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a.3 ssca evaluation study

a.3.1 Simple of codebook for Participant 8
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