
Repeated Auction Mechanisms for
Multi-Access Edge Computing

by

Ummy Habiba

A Thesis submitted to The Faculty of Graduate Studies of

The University of Manitoba

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Electrical and Computer Engineering

University of Manitoba

Winnipeg

December 2022

© Ummy Habiba, 2022

Abstract

Mobile edge computing (MEC) is one of the promising technolo-

gies that ensures high data rate and ultra low service latency with

the computational capabilities at the edge of 5G wireless/cellular net-

works and beyond. Due to the scarcity of the computing resources at

the edge servers, it is crucial to develop an efficient resource allocation

mechanism that benefits both the resource sellers and offloading mobile

users with heterogeneous QoE requirements. Despite extensive studies

on MEC offloading, existing research lacks efficient resource allocation

mechanism addressing the stochastic nature in resource demands as well

as computational capacities of the servers. Besides, there is a signifi-

cant research gap reflecting the economical efficiency in a computation

offloading service market, which supports the growing market size of

MEC-enabled applications, and the competition among different busi-

ness rivals, e.g., mobile network operator, wireless or computing service

providers, etc. In a competitive market scenario, the auction game the-

ory has been widely popular for designing efficient resource allocation

mechanisms, as it particularly focuses on regulating the strategic inter-

actions among the self-interested players. In this thesis, I investigate

auction-based approaches to model a dynamic MEC offloading service

market model, addressing the resource allocation problem with the goal

of ensuring consistent QoE for offloading users as well as maximizing

the auction revenue. To achieve this research goal, I develop repeated

auction mechanism considering the network dynamics in computation

offloading, and design a novel generalized second price (GSP) mecha-

nism to obtain efficient offloading task assignment and resource allo-

ii

cation pricing decisions. Furthermore, I study adaptive best-response

bidding strategies that maximize the profits of the resource sellers, and

guarantee the stability and effectiveness of the auction by satisfying

desired economic properties. To this end, I validate the performance

of the proposed repeated auction mechanisms and bidding strategies

through numerical result analysis.

iii

Table of Contents

1 Introduction 1

1.1 Multi-Access Edge Computing (MEC) 3

1.1.1 Computation Offloading in MEC 5

1.1.2 Resource Allocation for MEC Offloading Services 7

1.2 Motivation . 9

1.2.1 Research Challenges 10

1.2.2 Research Problem 12

1.3 Related Work . 13

1.4 Thesis Contribution . 17

1.5 Organization of the Thesis 19

2 Repeated GSP Auction Model for MEC Offloading 21

2.1 GSP Auction Mechanism Design 22

2.1.1 Basic Features of GSP Auction 22

2.1.2 Allocation and Pricing Rules of GSP Auction . . 24

2.2 Repeated GSP Auction and Equilibrium Solutions 26

2.2.1 Equilibrium Concepts in GSP Auction 27

2.2.2 Optimal Repeated GSP Auction Design 29

2.2.3 Repeated GSP Auction Model for MEC Offloading 30

2.2.4 GSP-Based Resource Allocation Algorithm Design 34

2.3 Conclusion . 36

3 Profit-Maximizing Repeated GSP Auction Model for

MEC Offloading 38

iv

3.1 Introduction . 39

3.1.1 Research Contribution 41

3.2 System Model and Assumptions 41

3.2.1 MEC Offloading System Model 43

3.3 Repeated GSP-Based Reverse Auction Model 47

3.3.1 Bidding Strategy of MEC Servers 48

3.3.2 Winner Determination Problem Formulation . . . 49

3.3.3 Resource Allocation and Pricing Algorithm 52

3.4 Analysis on Auction Efficiency 54

3.5 Numerical Results . 55

3.6 Conclusion . 58

4 A Repeated Auction Model for Load-Aware Dynamic

Resource Allocation in MEC 59

4.1 Introduction . 60

4.1.1 Research Contribution 61

4.2 System Model . 62

4.2.1 Wireless Network and Communication Model . . 62

4.2.2 MEC Service Provisioning Model 65

4.2.3 MEC Orchestration Model 66

4.2.4 Utility Model of MEC Servers 72

4.2.5 Utility Model of Offloading Users 72

4.3 GSP-Based Auction Mechanism Design for Dynamic Com-

putation Offloading and Resource Allocation 74

4.3.1 Winner Determination Problem Formulation . . . 75

4.3.2 WDP Solution Approaches 75

4.3.3 GSP-Based Resource Allocation and Pricing Mech-

anism . 77

4.3.4 Repeated GSP-Based Dynamic Resource Alloca-

tion and Pricing Mechanism 79

4.3.5 A Toy Example 80

v

4.4 Analysis of Bidding Strategies in GSP-Based Dynamic

MEC Offloading Auction 84

4.4.1 Adaptive Balanced Bidding Strategies of Servers . 85

4.4.2 Analysis of Bidding Dynamics on Auction Effi-

ciency . 88

4.5 Numerical Results . 91

4.5.1 Convergence of Bidding Strategies 92

4.5.2 Auction Revenue and Profits of Servers 96

4.5.3 Social Welfare and QoE Analysis 99

4.6 Conclusion . 101

5 Conclusion and Future Research Direction 102

5.1 Conclusion . 102

5.2 Future Research Directions 104

Bibliography 107

Appendix A: Proof of Propositions in Chapter 3 113

A.1 Proof of Proposition 1 113

A.2 Proof of Proposition 2 114

A.3 Proof of Proposition 3 121

Appendix B: Proof of Theorems in Chapter 4 122

B.1 Proof of Theorem 1 . 122

B.2 Proof of Theorem 2 . 123

B.3 Proof of Theorem 3 . 126

B.4 Proof of Theorem 4 . 129

vi

List of Tables

1.1 Qualitative comparison of the state-of-the-art 15

2.1 List of key notations used in Chapter 2 24

3.1 List of key notations used in Chapter 3 46

3.2 System parameters used for simulation in Chapter 3 . . . 55

4.1 List of key notations used in Chapter 4 64

4.2 System parameters used for simulation in Chapter 4 . . . 91

4.3 VM Configuration Model used for simulation in Chapter 4 92

vii

List of Figures

1.1 SDN-based multi-tier multi-access edge computing in-

frastructure and communication network architecture. . . 6

2.1 An example demonstrating GSP allocation and pricing . 36

3.1 An MEC offloading scenario. 42

3.2 Proposed resource allocation and pricing mechanism . . . 50

3.3 Performance of the proposed algorithm: Percentage of

served users, total execution delay of all the served users,

and their utilities in terms of satisfaction functions. . . . 56

3.4 Performance of proposed algorithm on WDP and the

system’s resource utilization rate. 57

4.1 Service-based MEC system architecture. 63

4.2 Workflow of the computation offloading mechanism in

MEC framework. 67

4.3 An illustration of incoming offloading requests and VMs

at MEC processors. 82

4.4 An example demonstrating the assignment of offload-

ing tasks to VMs, and corresponding GSP-based pricing

mechanism. 83

4.5 Convergence analysis for the proposed RBB bidding strate-

gies, based on (a) average bid prices of each server, bni ,

and (b) average allocation prices, pn, considering I = 2

servers with varying number of VMs, Rn
i 94

viii

4.6 Comparison of average allocation prices for (a) varying

number of UEs, J ; and (b) different number of MEC

servers, I. 95

4.7 Performance comparison between knapsack-based VCG

mechanism and GSP mechanism with different balanced

bidding strategies, based on: (a) Submitted bids vs allo-

cation prices; (b) Profit margin ratio (%) of servers. . . . 97

4.8 Performance evaluation of proposed RBB strategy in

comparison with other bidding strategies, based on (a)

average profits of servers; and (b) sum allocation valua-

tion . 98

4.9 Performance comparison between proposed GSP and VCG

mechanism for varying number of VMs, based on: (a)

Social welfare; (b) Average utility gain of UEs. 99

4.10 QoE Analysis for the proposed GSP and VCG mech-

anisms for varying offloading task sizes, based on: (a)

average offloading cost; (b) average offloading service la-

tency. 100

A.1 Feasible outcomes to verify envy-free allocation 115

ix

Abbreviations

5G Fifth-generation.

AB Altruistic Bidding.

AF Application Function.

API Application Programming Interface.

AR Augmented Reality.

BB Balanced Bidding.

CB Competitor Busting.

CE Computational Efficiency.

CPU Central Processing Unit.

CR Computing Resource.

CSP Computation Service Provider.

CTR Click-through-rate.

EGW Edge Gateway.

eNB Evolved Node B.

ETSI European Telecommunications Standards Institute.

GFP Generalized First Price.

GSP Generalized Second Price.

IC Incentive Compatibility.

IoT Internet-of-Things.

IR Individual Rationality.

ISG Industry Specification Group.

x

LEFE Locally Envy-Free Equilibrium.

LTE Long-Term Evolution.

MCC Mobile Cloud Computing.

MDMCK Multi-dimensional Multiple Choice Knapsack Problem.

MEC Mobile Edge Computing / Multi-access Edge Computing.

MNO Mobile Network Operator.

NE Nash Equilibrium.

NFV Network Function Virtualization.

OTT Over-the-Top.

QoE Quality-of-Experience.

QoS Quality-of-Service.

RAN Radio Access Network.

RBB Restricted Balanced Bidding.

SDN Software-Defined Network.

SNE Symmetric Nash Equilibrium.

SP Service Provider.

UAV Unmanned Aerial Vehicle.

UE User Equipment.

UPF User Plane Function.

VCG Vickrey-Clarke-Groves.

vCPU Virtual CPU.

VM Virtual Machine.

VR Virtual Reality.

WAP Wireless Access Point.

WDP Winner Determination Problem.

WR Wireless Resource.

xi

Chapter 1

Introduction

The exponential growth of mobile internet traffic and the rising popu-

larity of diverse high-performance wireless applications drive the enor-

mous advancements in wireless applications in 5G networks and be-

yond. To satisfy users’ growing demand, the wireless communication

technologies have advanced through numerous intelligent applications

such as virtual reality (VR), augmented reality (AR), IoT data analytic,

autonomous vehicles, UAV/drone-based communication, advanced so-

cial networking, etc. All these intelligent applications give rise to the

requirements for higher computing efficiency, real-time communication,

and ubiquitous network connectivity. As a result, the network edge has

been getting crowded with large number of requests for computational

capabilities from various types of mobile or IoT smart devices.

This large-scale deployment of intelligent wireless applications in-

volves numerous computationally-intensive and latency-critical tasks.

Although advanced smart devices possess a significant computational

processing capacity, they suffer from limited battery life. Besides, tra-

ditional cloud computing model where computationally-intensive and

latency-critical tasks are forwarded to the centralized cloud computing

1

data center is not a viable solution due to long propagation delays and

degradation of quality-of-service (QoS). Hence, the Mobile Edge Com-

puting, also called Multi-access Edge Computing (MEC) has emerged,

which offers higher computation performance computing capabilities

(e.g., data, computation, and storage solutions) at the edge of cellular

network in compare to the existing Mobile Cloud Computing (MCC)

[44] architecture. In MEC networks [45], the computing servers are de-

ployed within the cellular radio access network (RAN), which allows end

users to offload their computation-intensive and delay-sensitive compu-

tation tasks to nearby edge servers instead of forwarding them to the

remote cloud server. Thus, communication and processing delay with

increased energy consumption due to spatial distance between the mo-

bile devices and cloud servers are significantly reduced in MEC. MEC

enhances users’ quality of experience (QoS) and also provides them

with high bandwidth, ultra-low latency, reduced energy consumption,

lower offloading cost, real-time and location-aware services [47].

In this chapter, we first introduce MEC network architecture in sec-

tion 1.1, detailing the concepts of computation offloading and dynamic

resource allocation for MEC using the SDN functionalities. In sec-

tion 1.2, I discuss the motivation of this thesis, outlining the chal-

lenges in implementing MEC offloading in practice, stating the research

problems I investigate in this thesis, and the methodology to address

the problems. The state-of-the-art of related work on MEC offloading

mechanisms is discussed in section 1.3. I summarize the contributions of

this thesis in section 1.4 and finally conclude the chapter in section 1.5

by presenting a snapshot of each chapter in this thesis.

2

1.1 Multi-Access Edge Computing (MEC)

Multi-Access Edge Computing (MEC) is one of the key emerging tech-

nologies that enables the implementation Network Functions Virtual-

ization (NFV) and Software-Defined Networking (SDN)) functionalities

in 5G wireless networks and beyond. The MEC refers to the comput-

ing platform, where computing servers are located in close proximity

of data sources, i.e., user equipment (UEs) or mobile devices. The

computation-intensive tasks, which are requested by the UEs to be at

the MEC platform, are executed by harvesting idle computing resources

and storage from the edge servers. Thus, the end-to-end communication

delay is reduced significantly in compare to cloud computing paradigm

where computing tasks are forwarded to the remote data centers.

The main difference between the MEC and cloud computing archi-

tectures is that MEC is primarily focused on the cellular/wireless data

network instead of general internet. MEC avoids internet data trans-

mission between users and cloud servers, by deploying the computing

servers at the wireless access points (WAPs) within the radio access

network (RAN), e.g., base stations, radio network controllers, or multi-

technology cell aggregation sites [38]. Thus, MEC manages to provide

computing services with ultra-low latency and offers highly reliable,

bandwidth efficient and secure connections, so that wireless service or

infrastructure providers can serve their customers with high quality-of-

experience (QoE). Therefore, MEC has become the prominent choice

to provision emerging wireless applications, which include but not lim-

ited to over-the-top multi-media streaming services [5], online interac-

tive games [6], augmented-and virtual reality, and tactile internet [50],

3

video analytics [57], smart city [52] and healthcare services [3], auto-

mated vehicular applications [63], factory automation using industrial

internet of things (IIoT) devices [18].

The MEC concept enables the wireless service- and infrastructure

providers to access to heterogeneous fixed and mobile wireless access

technologies in WiMax, 4G/LTE, 5G networks and beyond. The SDN

functionalities facilitates the integration of MEC with the existing 3GPP

network architecture without making significant changes to the hard-

ware infrastructure specifications [34]. Recently, the Industry Specifi-

cation Group (ISG) within European Telecommunications Standards

Institute (ETSI) has released new specifications on MEC 5G integra-

tion, detailing the application programming interfaces (APIs) which

deploys the MEC platform as an application function (AF) for inter-

acting with the 5G system [33]. Hence, MEC can be easily deployed

within the RAN, by installing the a site-controller at WAPs, routers or

gateways, which bascially host the MEC service APIs. The MEC site-

controller can also be deployed in central locations like data centers of

network operators or on moving nodes like passenger vehicles or UAVs.

As such, the MEC system can utilize local radio-network contextual

information to guarantee secure, reliable, and privacy-preserving ser-

vices based on intelligent analysis and data processing capabilities at

the edge [3].

With the integration of MEC into the wireless networks, new busi-

ness opportunities emerge where mobile network operators (MNOs)

can capitalize on the computation capabilities of MEC by opening up

their networks to authorized third-parties, independent software ven-

4

dors, over-the-top (OTT) market players, and application developers.

In a SDN-assisted MEC system, a single MEC node can with multi-

ple 5G network operators, and vice versa; through service specific APIs.

This creates a multi-vendor MEC market, where a service provider (i.e.,

vendor) can deploy its application utilizing the MEC service delivery

platform and serve his/her customers belonging to different network

operators. Hence, rivalry arise when a number of entities, ranging from

MNOs to mobile application developers, compete with each other to

access MEC infrastructure resources for their service delivery.

1.1.1 Computation Offloading in MEC

Computation offloading is one of the popular applications of MEC,

where UEs get to execute their computation intensive or delay sensi-

tive tasks at a nearby edge server instead of execute them at their local

CPUs. Computation offloading not only speeds up the task execution

process but also saves energy which improves users’ QoE significantly.

However, computation offloading involves several critical decision mak-

ing at the user ends, such as : (a) whether to offload to a server or

compute locally, (b) which task to offload, and (c) how much data to

offload for each task. The user decides to offload if he/she finds the cost

of offloading is cheaper than running it by itself at the local processor.

Generally, there are two offloading scenarios [31]:

• Full Offloading: The entire computing task of an application is

offloaded and executed at the MEC.

• Partial Offloading: A part of the computing task is offloaded

and computed at the MEC, and the rest is processed locally.

5

When the end users decides to offload to MEC (either full or par-

tial offloading), the further task processing decisions are taken care at

the MEC platform is taken care either in centralized or decentralized

manner [31]. In this research, I explore the prospects of provision-

ing computation offloading as a service in a multi-vendor MEC market

environment. Hence, in order to enforce regulated offloading service

trading between the computing resource sellers and offloading users, I

consider a software-defined centralized service broker which is referred

to as the MEC orchestrator throughout the thesis.

A deployment scenario for computation offloading in a multi-vendor

MEC network architecture is presented in Fig. 1.1, where the network

components are divided into the following tiers:

• Tier 1: The first tier comprises several heterogeneous 5G wire-

less application devices within the access network. Each device,

referred to as user equipment (UE), is compatible with LTE and

LTE Core

(EPC)

MEC

Application

Server

IoT and 5G application devices/

user equipments (UEs)

LTE/5G Access Network with

Multi-Access Edge Nodes

Edge Gateways

(EGWs)

eNB

HNB

eNB

HNB

Smart

building

Smart

industry

Serving

Gateway

WAPs

BBUsHNB

WAP

MEC Site

Controller

MEC

Application

Server

MEC Site

Controller

Router

Industrial IoT devices

IoT home devices

Smart

phone

AR/VR

headgears

DroneWearables

Heterogeneous wireless devices

Automated

Vehicles

Laptop

Tablet

PGW

WLAN Core

WLAN

Aggregation

Router

WLAN Controller
Internet

SDN

SDN

Controller

EPC Controller

MEC VM instances
MEC

Virtualization

Infrastructure

Manager

MEC

Platform

Manager

MEC

Orchestrator

SDN-based MEC operational network

MME Cloud Computing

LTE HetNet

Figure 1.1: SDN-based multi-tier multi-access edge computing infrastructure and
communication network architecture.

6

WiFi wireless communications standards. Examples include smart-

phones, AR/VR devices, drones, and IoT devices.

• Tier 2: The second tier includes distinct wireless access nodes

such as eNodeB (eNB) within the LTE and WLAN access net-

works. These wireless access points (WAPs) are the MEC nodes/sites

deployed onto cellular base stations, buildings, and vehicles. Phys-

ical servers and site controllers locate within the premises of the

WAPs and gather the computation offloading requests from UEs

via the associated WAPs.

• Tier 3: In this tier, the computation offloading requests received

by the MEC nodes are forwarded to the edge gateways (EGWs)

using wireless routers and aggregation switches. The offloading

requests are pre-processed at the EGWs and then directed to the

MEC system-level controller node in the core network tier.

• Tier 4: The core tier is enabled with software-defined network

(SDN) capabilities, where a central unit coordinates all the opera-

tional functionalities of LTE, WLAN, and MEC via different con-

troller nodes. Due to the scarcity of resources, the servers might

be unable to process all of the offloaded tasks. In that case, they

forward some of them to the cloud computing platform and central

data centers. In our model, a broker or hypervisor, namely, the

MEC orchestrator, manages all the MEC components.

1.1.2 Resource Allocation for MEC Offloading Services

In a service-oriented MEC system architecture, computation offloading

process can be deployed as a service, where the orchestrator partitions

7

available resources, and allocates a certain partition/slice from one of

the edge servers to a particular UE. A monetary amount, as the pay-

ment for utilizing the allocated resources, is then paid by the UE to the

service provider who owns the server via the orchestraor. The orches-

trator is in-charge of overall computation offloading service provisioning

process, which include: (a) receiving offloading requests, (b) determin-

ing offloading task assignment decision, and (c) allocating computing

resources from the server to the assigned tasks, and (d) deciding the

offloading service price for the allocated resources. The orchestrator

interacts with the MEC sites, EGWs and UEs through control and

user plane functions (UPFs), and implements the offloading services

with the help of two other SDN controllers: (a) MEC virtualization

infrastructure manager and (b) MEC platform manager.

The MEC virtualization manager mainly oversees the computing in-

frastructure resources (i.e., servers) of the MEC system. It abstracts

and partitions the computing resources into virtualized CPU (vCPU)

resource units, using SDN and NFV functionalities. The virtualization

manager defines a set virtual machine (VM) instances for each server,

by assigning vCPUs as required to meet the computation processing re-

quirements of each application type. The virtualization manager thus

maintains a resource pool, which consists of VM resources available at

edge server, and monitors their computational workloads, CPU perfor-

mance and resource utilization metrics. The MEC platform manager

supervises the offloading task execution process, by managing the sep-

arate task processing queues for different wireless service/applications.

The platform manager tracks the overall task execution process, start-

8

ing from arrival at the processing queue, to the assignment of a task to

a server and exiting the queue after task computation is finished.

The orechestrator filters each incoming offloading request by the

requested application type, and then adds the task to the respective

processing queue. The orchestrator matches each offloading task to a

suitable VM which satisfies the QoE of the requesting UE, and maps

the VM to the offloading task to compute the offloaded data. After

the assigned VM finishes computing the task, the orchestrator collects

the payment from the UEs and forwards it to the respective service

provider. A single VM can be mapped to multiple tasks, sharing the

computing resources by all the assigned task. This model would be

suitable for offloading tasks of smaller data sizes. Conversely, a single

offloading task can be matched to more than one VM. In such a case, the

offloading data is computed in parts over the assigned VMs. This model

helps process the delay-sensitive computation intensive tasks faster. In

both model, the maximum number of VMs that can be matched to a

computation task or the maximum number of tasks that a VM can pro-

cess simultaneously, is limited and is defined by the vendor or service

provider. For simplicity, I consider one-to-one matching for offloading

task assignment decisions in this thesis. Detailed MEC service provi-

sioning model is described in Chapter 4.

1.2 Motivation

The main motivation of this thesis to address the research challenges

related to the large scale deployment of MEC-based applications in 5G

wireless networks and beyond. Therefore, it is crucial to develop an

9

efficient resource management policies, so that the growing demand for

computation offloading can be met using the limited resources at the

MEC servers. In practice, the allocation of computing resources to

implement MEC-based services is associated with several challenges,

as I outline in the following section.

1.2.1 Research Challenges

One of the driving factors behind the advent of MEC technology is to

minimize the end-to-end task execution latency and energy consump-

tion at the UEs. Hence, the primary objective of any MEC service

delivery platform is to provide UEs with high quality service at a min-

imal cost. In case of wireless networks, it becomes more challenging

to meet UEs’ QOS requirements due to the randomness, e.g., time-

varying radio channel conditions, mobility of UEs, stochastic arrival of

offloading requests, uncertainties in the task lengths, etc. Apart from

that, there exists high level of competition among the UEs, over the

limited resources at the servers, in a ultra-dense network setup. So, it

becomes difficult to determine the optimal matching pairs between the

offloading tasks and server, such UEs’ QoS requirements are satisfied

using the limited computing resources.

Besides, the computational workloads of the MEC servers are highly

variable, due to varying length of computing tasks in an online com-

putation offloading scenario. Although existing research considers the

heterogeneity in resource demands and offloading task sizes, the dynam-

ics in the workload-based computational performances of the servers are

overlooked. Despite having, high configuration computation resources

an overloaded server may not be able to finish the assigned tasks within

10

the task completion deadlines. Hence, the efficiency of MEC offloading

resource management policy not only depends on the optimality of the

offloading task assignment decisions, but also the dynamics of servers’

QoS performance metrics.

Addressing the competition among UEs and limited resource capac-

ity constraints at the servers, MEC resource allocation problem has

been extensively studied in literature. Existing researches mostly focus

on maximizing UEs’ QoE in terms of offloading cost and task execu-

tion latency. Some recent works consider maximizing the social welfare,

i.e., the sum utility of UEs and servers, and maximizing the profits of

the MEC service provider or network operator. However, these studies

mostly assume a single MEC service provider and/or network opera-

tor without addressing the competition when a number of profit-driven

computing service providers may coexist in the same service location.

Therefore, it is imperative to develop a standard MEC ecosystem and

value chain, so that various new generation wireless service providers

are motivated to deploy their services using the MEC platform. To do

so, the MEC service delivery platform requires an efficient resource al-

location and pricing mechanism that monetarily benefits both the UEs

(i.e., resource buyers), and computing service providers (i.e., resource

sellers).

Towards developing an efficient resource allocation mechanism for

MEC offloading, the existing research investigates several distributed

game- and optimization-based approaches [11, 62, 15, 30, 39]. However,

auction theory appear as a popular choice in cutting-edge research, to

study strategic interactions between rational entities in a competitive

11

market scenario. Especially, auction-based resource allocation and pric-

ing strategies in dynamic computation offloading settings, are proven

to be efficient, due to its inherent economic properties. Moreover, auc-

tion theory assists to implement fairness in service pricing, satisfying

the demand-supply equilibrium criteria in the dynamic allocation of

computing resources in MEC. Nevertheless, several challenges remain

unaddressed in cutting edge research; particularly in designing com-

petitive pricing strategies for computation offloading auction process

in the MEC platform. The self-interested MEC service providers tend

to apply their own bidding strategies to maximize their own profits. So,

it is highly likely that bidders may misreport the bid prices, intending

to manipulate the auction outcomes. In the dynamic auction setting,

where service providers get the opportunity to learn other competitors

offloading prices, it becomes harder to maintain the market equilib-

rium preventing the bidders from overbidding. Hence, it is crucial to

study optimal bidding strategies so that such vindictive behavior can

be prohibited, preserving the stability of the auction mechanism.

1.2.2 Research Problem

In this thesis, I study the resource allocation and pricing problem, con-

sidering an online auction-based MEC offloading service delivery plat-

form, with multiple users and multiple computing service providers.

The main objective of my research is to develop an economically effi-

cient resource allocation mechanism, addressing the competition among

the different service providers. Towards this goal, I investigate the fol-

lowing problems:

12

1. determine optimal resource allocation and pricing decisions for

MEC offloading, such that total revenue of the service providers is

maximized, under the constraint of satisfying users’ heterogeneous

resource demands.

2. determine optimal offloading service pricing strategies, that bene-

fits both the users and self-interested service providers, and achieves

a stable resource allocation solution under the dynamic MEC net-

work condition.

In order to address these problems, I study the optimization ap-

proaches, particularly auction game theory approaches. In the follow-

ing section, I discuss auction-related works on MEC offloading and

potential dynamic resource allocation approaches to solve the above

mentioned problems.

1.3 Related Work

The state-of-the-art in auction-based MEC offloading mechanism ex-

plores different approaches, addressing the following decision problems:

(i) Task-server association, (ii) Resource allocation/provisioning for

task-server pairs, and (iii) Computational resource pricing. In the

MEC offloading auction framework, the task assignment- and resource

allocation problems are jointly addressed as the winner determina-

tion problem. The winner is then solved using methods from con-

vex optimization, mixed-integer programming, dynamic programming,

bipartite graph matching, generalized assignment, etc. For economic

efficiency, existing research relies on classic pricing mechanisms such

as first-price, second-price, Vickrey-Clarke-Grove (VCG), and critical

13

value-based Myopic auction-based pricing rules. In Table 1.1, I present

a qualitative comparison of the existing studies on auction-based MEC

resource allocation mechanisms, comparing their research objectives,

QoS criteria, auction framework, and solution approaches.

Existing researches study several approaches of resource allocation

mechanism design that maximize offloading task completion rates, yet

there exists a significant gap in allocation pricing strategies to opti-

mize the network economics. The heterogeneity in computing resources

and wireless resources in a MEC offloading system is often addressed

based on: joint allocation of computing and wireless resources [27,

49], multi-dimensional computing resources [29, 46, 60], virtualized in-

stances of computing resources [14], or generalized computing resource

units. However, it is unclear how the MEC system model faces hetero-

geneity in application processors satisfying the task or service-specific

QoS criteria. Moreover, the homogeneous pricing strategies determine

the allocation prices based on the UE-server pairs. Such matching cri-

teria restrict each MEC server to at most one task offloaded by UE

during an offloading period. In a real scenario, however, a single UE

may offload multiple tasks with different computing resource require-

ments. For example, an online gaming UE may simultaneously require

computation offloading for the gaming application, VR application, and

location-aware navigation application. In such a scenario, to meet the

UE’s QoS requirements, the offloading tasks should be matched with

suitable servers to be processed immediately. Therefore, a heteroge-

neous resource valuation model implements the flexibility to provision

task-specific computing resources and handle multiple offloading re-

14

Table 1.1: Qualitative comparison of the state-of-the-art

Ref. Objective
Users’
QoS1 Resources2

Auction
Model

Payment
Rule

Matching
Model3

Allocation
Algorithm

Economic
Properties4

IC IR CE

[51] Maximize no.
of matched
pairs

No CR Double auc-
tion

Critical
Payment

many-to-
one

Breakeven and dy-
namic pricing-based
heuristic

✓ ✓ ✓

[58] Maximize sum
profit of MEC
clouds

Yes CR Multi-round
auction

Vickrey
auction

many-to-
one

Bid performance
ratio-based heuristic

- - -

[16] Maximize sum
profit of MEC
servers

Yes CR Online posi-
tion auction

GSP auc-
tion

many-to-
one

GSP-based heuristic - ✓ ✓

[28] Sum utility
of servers and
UEs

No CR Double auc-
tion

winning
bid

one-to-
one

Experience-weighted
attraction based
heuristic

- - -

[25] Maximize sum
utility of MEC
clouds and
MNO

No Bandwidth Randomized
auction

Fractional
VCG

many-to-
one

Greedy heuristic ✓ ✓ ✓

[29] Maximize long-
term social wel-
fare

Yes N -types CR Online double
auction

Critical
payment

many-to-
one

Matching probability-
based heuristic

✓ ✓ ✓

[46] Maximize sum
utility of UEs
and SP

No N -types CR Forward auc-
tion

VCG auc-
tion

one-to-
many

Dynamic
programming-based
heuristic

✓ - -

[14] Maximize so-
cial welfare

Yes VM Forward auc-
tion

Critical
payment

many-to-
one

Heuristic with (γ + 1)
approx. ratio

✓ ✓ ✓

[59] Maximize sum
profit of MEC
clouds

Yes CR Online multi-
round auction

Vickrey
auction

many-to-
one

Bid performance
ratio-based heuristic

✓ ✓ ✓

[27] Maximize ex-
pected utility
of macro BS

No CR & WR second price
auction

second
price auc-
tion

one-to-
one

optimal with sym-
metric Bayesian Nash
equilibrium

✓ - -

[64] Maximize sum
valuation of
QoS

Yes CR multi-round
auction

VCG auc-
tion

many-to-
one

Kuhn-Munkras algo-
rithm for bipartite
graph

✓ ✓ ✓

[17] Maximize so-
cial welfare

No CR double auc-
tion

winning
bid

many-to-
many

heuristic based on
minimum cost flow
model

✓ ✓ ✓

[60] Maximize prof-
its of MEC
nodes

No N -types CR reverse auc-
tion

first price many-to-
one

heuristic based on ex-
pected utility theory

✓ ✓ ✓

[26] Maximize
profit of MEC
SP

No CR Myerson auc-
tion

virtual bid
payment

one-to-
one

second price ✓ ✓ ✓

[49] Maximize so-
cial welfare

Yes CR & WR Combinatorial
auction

Critical
payment

many-to-
one

Combination of opti-
mal and heuristic

✓ ✓ ✓

1 Users’ QoS requirements in terms of service latency and energy consumption constraints.
2 Resources that sellers provides include computing resources (CR), virtual machine (VM) instances, wireless channel
resources (WR), and bandwidth
2 Matching model represents the maximum number of UE (i.e. buyer) that is assigned to a single MEC server/cloud
(i.e. seller): one-to-one model means one UE can be served at one MEC server/cloud, one-to-many model means one
UE can be served by more than one MEC servers/clouds at the same time, and many-to-one model means multiple
UEs can be served at the same MEC server/cloud simultaneously.
3 Essential economic properties in the design of auction mechanism: incentive compatibility (IC), individual rational
(IR), and computationally efficient (CE).

15

quests from the same UE at task-specific offloading service prices.

Besides, existing works consider heterogeneous MEC servers with dif-

ferent computing capacities under a single MEC cloud (i.e., the seller)

or multiple MEC clouds. A large body of research allows for compe-

tition among the UEs by submitting bids to win the computing re-

sources from the MEC servers. The existing studies do not investigate

the competition among the MEC clouds in the presence of multiple

SPs or MNOs. In such a competitive scenario, a MEC cloud behaves

strategically to sell as much of its underutilized resources, by choosing

an asking price that can attract more UEs to offload computing tasks.

Hence, the pricing strategy should ensure stable outcomes so that the

bidders cannot degrade others’ utility by manipulation. Some existing

works consider the double auction model [51, 28, 29, 17] and reverse

auction model [60], where MEC servers submit bids expressing their

preferences; nevertheless, only a few investigate the convergence and

strategic stability of resource allocation pricing policies. For example,

[28] proposes a reinforcement learning-based double auction mechanism

that allows service providers and users to learn their bidding policies

without prior information with homogeneous users’ QoS constraints

and MEC systems capabilities. Reference [16] proposes adaptive best-

response bidding strategies that guarantee computationally efficient re-

source allocation and locally envy-free equilibrium prices. In [60], the

authors develop a federated learning-based reverse auction mechanism,

where MEC servers submit their bid preferences along with their re-

spective resource quality scores, and the auction winners are identified

according to the sorted scores. However, the main objective of this

16

work is to encourage high-quality MEC servers to participate in a col-

laborative learning process.

Furthermore, existing studies do not investigate resource allocation

and pricing strategies in a dynamic environment. Reference [65] elab-

orates on the online auction-based dynamic computation offloading

strategies under task deadline constraints and resource allocation strate-

gies under the capacity constraints of the cloudlets. In [14], the authors

propose a virtual machine (VM) allocation approach with dynamic

transmission delays in a wireless environment; Nonetheless, they do not

investigate the dynamics in the processing servers, whereas the compu-

tation offloading performance greatly depends on the current computa-

tional workloads of allocated VM resources. Therefore, it is imperative

to design a service-oriented MEC offloading framework which can be

implemented in practice, and guarantees that participating resource

sellers are buyers are well off with the resource allocation and pricing

strategies for the computation offloading services.

1.4 Thesis Contribution

This thesis introduces the Generalized Second Price (GSP)-based posi-

tion auction to model the dynamic computation offloading mechanism

for MEC-enabled wireless networks. Furthermore, this thesis investi-

gates repeated GSP auction mechanism design to address the resource

allocation problem in a dynamic MEC offloading service provisioning

framework. As one of the main contributions, this thesis presents a

profit-maximizing repeated auction model that determines efficient re-

source allocation and pricing decisions using GSP-based allocation algo-

17

rithm. Furthermore, this thesis studies adaptive best-response bidding

strategies that ensures efficient allocation prices and satisfies economic

properties of auction mechanism design.

The key contributions of this thesis are as listed follows:

• I design a service-oriented multi-user multi-vendor MEC system

architecture, specially outlined for deploying the computing of-

floading as a service trading between wireless UEs and MEC servers.

• I present a basic GSP-based MEC offloading resource allocation

mechanism, applying the concepts of position auction model. Con-

sidering the proposed auction as a static game of full information,

I describe the GSP allocation and pricing rules to determine of-

floading task assignment and offloading service pricing decisions

for MEC offloading.

• I investigate a profit-maximizing repeated GSP mechanism to im-

plement MEC offloading service provisioning via auction in a dy-

namic wireless network environment. Considering such an online

auction as a dynamic game of incomplete information, I design a

dynamic resource allocation and pricing mechanism where bidders

get the opportunity to maximize their utilities by adapting their

bids in every auction round.

• In addition, I study bidding behavior of the competitive MEC re-

source sellers, and analyze several best-response balanced bidding

strategies by applying them on the proposed repeated GSP auc-

tion model. I present a novel restricted balanced bidding (RBB)

strategy that ensures stable auction outcomes in a dynamic envi-

18

ronment.

• In order to address the network dynamics in the MEC offloading

system, I analyze the dynamic arrival of offloading requests and

time-varying computational workloads of the servers using the fea-

tures of dynamic queuing and priority queuing. I investigate the

auction efficiency in terms of satisfying users’ QoE and servers’

profit gain, by introducing workload-aware dynamic resource man-

agement policies in the repeated GSP-based MEC offloading auc-

tion mechanism. The main objective of this dynamic auction is to

maximize the total valuation of the allocated resources. Further-

more, I derive a novel balanced bidding strategy for the resource

sellers that guarantees a symmetric Nash Equilibrium (SNE) re-

source allocation solution for every auction round. The proposed

resource allocation and pricing algorithm for the MEC offloading

auction mechanism is computationally efficient and satisfies the

economic property of individual rationality.

• Besides theoretical analysis, we perform intensive numerical exper-

iments to validate the proposed repeated auction mechanisms and

compare the performance of the proposed GSP mechanism with

existing mechanisms.

1.5 Organization of the Thesis

The remainder of the thesis is organized into four chapters as follows

• Chapter 2 discusses the basic concepts GSP auction model, and

the approach to design optimal GSP-based resource allocation al-

19

gorithm in the context of MEC offloading service provisioning

• Chapter 3 presents a profit-maximizing repeated GSP auction

model for MEC offloading, and studies the bidding strategies of the

resource sellers. Detailed MEC offloading system model, auction

efficiency analysis, and numerical results are presented.

• Chapter 3 presents a computational workload-aware repeated

GSP auction model for MEC offloading, addressing the heterogene-

ity in QoS requirements in dynamic offloading scenario. A detailed

communication and offloading workflow is presented, along with

the utility-maximizing adaptive bidding strategies for resource sell-

ers. The chapter also presents analysis on auction economic prop-

erties and equilibrium solution concepts for the proposed resource

allocation mechanism. Related system model assumptions and nu-

merical results are given.

• Chapter 4 provides a summary of the research presented in this

thesis, along with discussion future directions, and potential ap-

plications of proposed auction-based MEC offloading mechanism

in wireless networks.

Symbols and notations used throughout the chapters are given in a

table at the beginning of each chapter.

20

Chapter 2

Repeated GSP Auction Model for
MEC Offloading

The GSP mechanism,also known as, position auction has been intro-

duced as keyword auction in the online advertising industry. GSP has

been proven to be a successful business model and has been commer-

cially used by the major search engines (e.g. Google, yahoo) for online

advertising. In the sponsored search industry, Google introduced the

GSP auction to handle the stability issues of the generalized first price

auction mechanism (GFP). Over the years, GSP is now considered as

the gold standard for revenue maximizing mechanisms in the spon-

sored search market [40]. Inspired by the practical success of GSP,

I investigate the theoretical properties of GSP to design new auction

mechanisms that enhance MEC offloading system performance and also

provide incentives to the service providers.

In this chapter, I first discuss the basics of designing a generalized

second price (GSP) auction model, along with allocation and pricing

rules, and optimal GSP auction concepts. Then, the equilibrium solu-

tion concepts for GSP mechanism and the idea of optimal GSP auction

design are described.

21

and present a simplistic GSP auction-based resource allocation and

pricing framework for MEC offloading. Next, I discuss the prospects of

GSP-based repeated auction mechanisms to deploy MEC services and

efficiently manage the computing resources at the MEC servers.

2.1 GSP Auction Mechanism Design

This section introduces the basic features of a generalized second price

(GSP) mechanism and various equilibrium concepts of GSP auctions.

Next, I present a GSP auction-based resource allocation and pricing

framework for MEC offloading.

2.1.1 Basic Features of GSP Auction

The standard GSP mechanism for keyword auctions, consists of the

following features [54, 12]:

• A set of k advertising slots, i.e., the positions on the web page.

– Each slot is associated with a click-through-rate (CTR) αi,s =

qiθs, which represents the rate of getting clicks from user on

the ad of bidder i when it is placed at position s. Here, qi is

bidder-specific term that denotes that a user will click on the

ad of bidder i , and the position-specific term θs denotes the

probability that a user clicks on the ad in slot s.

– The probability of receiving clicks in the higher position is

higher than the position at the bottom, i.e., θ1 > θ2 > · · · > θk.

• A set of n advertisers, who want to sell some sort of products or

services and thus participate in the ad auction to advertise their

22

products.

– Typically, it is assumed that n > k because large number of

bidders compete for a limited number of ad slots in most of

the practical scenarios.

– Each advertiser has its own private valuation vi > 0 for a user

click.

– An advertiser has preference over higher slot as it has higher

probability to get more user clicks.

– Each advertiser i chooses a set of keywords related the product

and determines a bid bi with for each keyword that basically

represents the amount it is willing to pay if a user clicks on its

ad.

– The bid bi does not necessarily equal to the value vi due to

the strategic behavior of the bidders. The bid vector or bid-

ders’ strategic profile is mathematically represented as b =

(b1, . . . , bn).

• An auctioneer or search engine, that determines the allocation

and pricing decisions based on mathematical structure similar to

existing two-sided matching models [42].

In the theoretical studies, the basic setting of the GSP mechanism is

considered as a static one-shot game with complete information, where

the bidders have full knowledge of the advertising slots and correspond-

ing CTRs. Furthermore, it is assumed that the bidders have no budget

constraint, and submit a single-dimensional bid based on the CTR in-

formation [40].

23

Table 2.1: List of key notations used in Chapter 2

Notation Description

k Number of advertising slots

n Number of advertisers/bidders

vi Private valuation/user-click of advertiser i

bi Amount that bidder i offers to pay for each user-click

θs Rate of user clicks on the s-th advertisement slot

qi Probability that a user clicks on the bidder i’s advertisement

αi,s Rate of user clicks on bidder i’ advertisement in the s-th slot

ri Ranking score of bidder i

πs Index of the advertiser assigned to the s-th slot

ps Allocation price for the s-th slot

ui,s Utility gain of bidder i from slot s

N Number of MEC applications

I Number of MEC servers

Kn Number of offloading tasks of n-th application

λk Computing resource consumption rate of k-th task position

dk Offloading data size of k-th task

Ln Computation processing density of n-th application

wi Number of vCPUs at i-th server

ui Utility of i-th server

2.1.2 Allocation and Pricing Rules of GSP Auction

The GSP mechanism has mainly two fundamental principles [40]:

• Ranking rule: The ranking rule basically helps determine the

allocation of ad slots to the bidders. The ranking is determined

by a ranking function ri(qi, bi) that computes a score for ranking

based on the CTR value of the bidder’s ad and the bid value.

24

There are mainly two ranking approaches:

– Rank-by-Bid : Bidders are ranked in descending order of their

bids with the ranking score ri(qi, bi) = bi.

– Rank-by-Revenue: The ranking is determined as descending

order of the ranking score ri(qi, bi) = qibi.

In the literature, there are other ranking approaches to model the

ranking function based on CTR or even without CTR [1, 24, 53,

41].

The allocation of k slots is done according to the ranking scores.

The bidder i ≤ k is matched to slot in position i, where the slot

with the highest CTR to the bidder with highest bid, the second

best slot to the second highest bidder, and so on. I denote the

allocation πs = i which represents the identity of the advertiser i

that is assigned to slot s.

• Pricing rule: The pricing rule determines the price that each

bidder pays to the search engine when user clicks on its ad. The

pricing rule depends on the ranking approach that has been taken

to determine the allocation.

– In the Rank-by-Bid approach, the allocation price is equal to

the bid submitted by the bidder ranked next to him, i.e., ps =

bi+1.

– In the Rank-by-Revenue approach, the allocation price is com-

puted as,

ps =
qi+1bi+1

qi
.

25

The net profit or utility that an advertiser i can expect to gain

from winning the slot s is given by, ui,s = (vi − ps)θs.

The standard GSP mechanism can be defined as follows:

Definition 1 The generalized second price (GSP) mechanism for key-

word auctions determines the allocation and pricing decisions as fol-

lows:

• Bidders are allocated slots in decreasing order of their ranking score

ri.

• For each slot s, the payment ps of bidder πs is determined based

on bid bi+1 of the bidder ranked next to winner i.

Bidders who do not win a slot make no payment and and gain no utility.

2.2 Repeated GSP Auction and Equilibrium Solu-

tions

The GSP or position auctions are generally repeated over discrete time

slots for applications in real world scenario. This repeated GSP auc-

tion mechanism can be considered as a dynamic game of incomplete

information when implemented in wireless network environment. Al-

ternatively, a single round of GSP auction can be thought as a static

game of complete information, which is then repeated at different time

intervals avoiding the complex multi-period information sets. Although

the auction is repeated with same set of allocation and pricing rules,

the auction may result into different sets of outcomes depending on the

current information set. The different auction outcomes in different

26

rounds or time slots are referred to as the states in a set of equilibria

for the auction game.

The following section briefly introduces some of the equilibrium con-

cepts used in literature to study the repeated GSP auction mechanism

under both full-information and incomplete-information settings. Next,

I discuss different approaches to design an optimal GSP auction, satis-

fying the equilibrium conditions in the dynamic environment.

2.2.1 Equilibrium Concepts in GSP Auction

In game theory, a Nash equilibrium [36] is considered as the stable

outcome of a game, that is, a situation where no player can improve

his or her payoff (utility) by a unilateral strategy change. The Nash

equilibrium in an auction framework holds the following inequality:

ui(bi, b−i) ≥ ui(bi′, b−i),∀bi′, (2.1)

where ui is the utility of bidder i, b−i represents the bids of all other

bidders, and bi′ is alternative bid of bidder i.

In case of GSP auction game, there always exists a Nash equilibrium

in the complete-information setting, when no bidder would have an

incentive to obtain a different slot other than the currently assigned

one [12, 54]. When a bidder changes the bid in order to change his or

her utility it also changes his or her slot. Thus, the Nash equilibrium

in the GSP auction can be defined as follows:

Definition 2 A set of bids b is a Nash Equilibrium, if for every

27

slot s the allocation of every bidder satisfies the following inequalities:

θs (vs − ps) ≥ θj (vs − pj) , ∀j > s, (2.2)

θs (vs − ps) ≥ θj (vs − pj−1) , ∀j < s, (2.3)

In GSP auction under complete-information setting, the notion of

the symmetric Nash equilibrium (SNE), is the stable outcome when

every bidder prefers to purchase the slot it is currently in rather than

some other slot. So, there should be no incentives for any pair of bidders

to swap their slots. The SNE is a subset of Nash equilibria and achieves

the maximal revenue among all Nash equilibria [54]. The definition of

SNE is as follows:

Definition 3 A set of bids b is a Symmetric Nash Equilibrium

(SNE), if satisfies the following inequalities:

θs (vs − ps) ≥ θj (vs − pj) , ∀j, s, (2.4)

Another popular notion of GSP equilibrium in the complete informa-

tion game setting, is the locally envy-free equilibrium (LEFE), which is

also a subset of Nash equilibria and has an equivalent concept as SNE

[12]. The definition of LEFE is given as follows:

Definition 4 A set of bids b is a Locally Envy-Free Equilibrium

(LEFE), if no bidder can improve his or her utility by exchanging bids

with the bidder ranked one position above him or her:

θs (vs − ps) ≥ θs−1 (vs − ps−1) , ∀s, (2.5)

28

2.2.2 Optimal Repeated GSP Auction Design

When a static game is repeated over an extended period of time in the

dynamic environment, the players get the opportunity to learn many

characteristics about the game. In case of repeated GSP auction mech-

anism, bidders can learn about the allocation and pricing rules based

on the auction outcomes from the previous round. So, they can adjust

their bids accordingly, intending to maximize their utilities. However,

the main challenge lies in identifying the optimal equilibrium, which

yields maximum utility gain for each participating players. When the

repeated GSP auction reaches the optimal equilibrium point, it is de-

sired that no player deviates from the current state by overbidding/un-

derbidding. The criteria of selecting the optimal equlibirum is to find

the most relevant approximation of the equilibrium of the dynamic

game, out of a set of equilibria from the static games of complete in-

formation. The idea of designing optimal repeated GSP auction is to

determine an upper bound on the allocation valuation from the equi-

libria of the static games, and then excluding the equilibrium of the

dynamic setting that exceeds the upper bound [13].

Besides, in an optimal auction it is desired that every bidder truth-

fully reports their actual valuation as bids. However, repeated GSP

auction is designed to enable strategic interactions among the players.

The bidders in the GSP auction do not necessarily behave truthfully;

rather they bid strategically to maximize their bids [12]. Therefore,

it becomes more challenging to identify optimal equilibrium in GSP

auction, that efficiently regulates the strategic interactions among the

players. One of the effective approaches to enforce such regulations,

29

is to design the pricing mechanism in GSP auction with some reserve

prices. The analysis of reserve prices on the GSP auction reveals direct

and indirect impacts on bidders’ bidding behavior. In the repeated

GSP auction model, the optimal reserve price is independent of the

CTR rate. Moreover, As long as there are more positions than the

number of bidders, the reserve price directly affects the lowest bidder

and the lower bidder’s payment becomes equal to the reserve price [13].

This implies the impact of reserve prices on the equilibrium behavior of

the bidders. When reserve price increases, the total payment of every

bidder who wins a slot (except the last winning bidder) increases by the

same amount. The optimal reserve price also affects the total surplus

and auctioneer’s revenue.

The GSP auction has successfully been applied in commercial search

engines for online advertising. There still exist quite a number of open

research problems on GSP auctions, which include but not limited to:

approximation of optimal efficiency in online auctions, estimation of

CTRs considering stochastic factors of the dynamic environment, mech-

anism design with certain revenue guarantee, learning bidders’ behav-

ior considering externalities, optimal allocation mechanism with budget

constraints [40].

2.2.3 Repeated GSP Auction Model for MEC Offloading

The simple mathematical structure, stable assignment outcomes of the

two-sided matching game, and economic properties GSP auction make

it a promising choice to implement dynamic resource provisioning in

the MEC platform. In this section, a reverse GSP auction is modeled

demonstrating howMEC offloading can be implemented using the GSP-

30

based position auction framework. This section mainly focuses on how

the resource allocation and pricing mechanisms for MEC offloading can

be modeled using the two-sided matching game structure of the GSP-

based keyword auction. Then, I describe the winner determination

problem formulation and discuss solution approaches to determine the

allocation and pricing rules. A walk through example, illustrating the

resource allocation and pricing procedures, is also given.

The GSP auction has certain characteristics that allows MEC plat-

form to efficiently manage the heterogeneity of users’ offloading resource

demands and also allow computing service providers to determine their

pricing strategies in an competitive environment. The MEC platform

accommodates the features of GSP auction by creating N different ap-

plication slots that can be considered as the keywords from the GSP

auction. The application slots are placed on top of the virtualization

infrastructure to compute the users’ offloaded data using the comput-

ing resources from the service providers. The SDN controller matches

the users’ offloading requests with application criteria and then pre-

pares the virtualization infrastructure manager to process the tasks.

The SDN controller also ensures the integrity and authenticity of of-

floading requests, application processing rules and requirements, and if

necessary adjusts the policies to comply with the latency and resource

availability constraints. Now, assume there are Kn offloading requests

for the mobile edge application in the slot n and thus MEC platform

manager defines at least Kn virtual machines (VMs) and maps them

to the corresponding tasks in the application slot.

The VMs associated with offloading tasks can be considered as the

31

resource consumers, that utilizes CPU, memory, power, storage, and

network resources of the MEC servers. The MEC virtualization in-

frastructure manager check whether there is enough available resources

before activating the VMs, and then compartmentalizes a resources

which is basically a logical abstraction of the resources available at

MEC servers across different service providers. The VMs are usually

defined with share-based percentage of the total CPU, memory, and

storage I/O [56]. For simplicity, I consider the virtual CPUs as the

smallest unit of resource partitions allocated to VMs. A VM can be al-

located more than one virtual CPUs depending on the user’s offloading

application requirements.

I now present a GSP-based MEC offloading system model, where the

SDN controller acts as the auctioneer who manages the overall func-

tionalities of offloading process starting from receiving users’ requests

to determining the resource allocation and pricing decisions. The set of

K auction slots in the proposed GSP-based auction mechanism, repre-

sents the offloading tasks in the MEC system. The offloading tasks with

the highest resource consumption rate is placed at the top position, the

task with the second highest resource consumption rate is located at

the second position, and so on. Thus, I consider the offloading tasks ar-

ranged in K hierarchical positions with distinct resource consumption

rates, e.g., λ1 > . . . , > λK . Each user can request at most one type of

application during an offloading period. However, the same application

may be requested by more than one user and the tasks are scheduled

according to their resource consumption rates.

I consider a set of offloading tasks K = {K1}∪ · · · ∪ {KN} consisting

32

of all offloading requests over N applications. I assume that the MEC

platform prioritizes the tasks based on the amount of CPU resources

actively used by the VMs assigned to the offloading tasks. Hence, I

define the parameter resource consumption rate

λk = dkLn (2.6)

where dk is the data size of the offloading task (in bits) and Ln is

the application-specific computation processing density (in CPU cy-

cles/bit) required to run the application of type n. The offloading task

with the higher resource consumption rate has higher resource demands

which also increases the probability of getting higher profits from re-

source provisioning.

I consider a set of I MEC servers owned by different computing ser-

vice providers, who participate into the auction to sell their computing

resources to offloading users. Let wi be the amount of virtual CPUs

available at MEC server i and vi > 0 be the server’s private valuation

of each virtual CPU. In the auction mechanism, the MEC servers com-

pete with each other to win the offloading tasks and bids rationally with

the objective of maximizing their own profits.The bid bi represents the

minimum amount the MEC server i wishes to receive for the alloca-

tion of each virtual CPU. Therefore, the bid value does not necessarily

equal to the value vi. Each MEC server has preference over offloading

tasks in the higher positions due to the probability of receiving higher

payments.

33

2.2.4 GSP-Based Resource Allocation Algorithm Design

In the GSP-based MEC offloading auction model discussed above, the

SDN controller takes into the bids submitted by MEC servers and the

offloading requests from users, and then matches the offloading tasks to

suitable MEC servers. Following are the ranking and allocation rules

to assign the offloading task slots to the bidders:

• Considering the rank-by-revenue approach, I define the ranking

score for MEC server as ri = wi/bi, such that bidders with lower

bid and higher resource availability get higher ranking positions.

• The proposed mechanism then assigns the K offloading task slots

according to the descending order of ranking scores, such that bid-

der with the highest ranking score gets the offloading task with the

highest resource consumption rate.

I consider the simple one-to-one matching scenario as the basic

GSP auction model, where one offloading task is assigned to at

most one MEC server, and vice versa. If there is less number of

tasks than the MEC servers then a dummy task slot is considered

with a data size equal to zero. However, it is more likely that

a MEC server need to handle multiple offloading tasks simulta-

neously in the practical scenario, which I study in the following

chapter.

• I denote the assignment of the offloading task in slot k to the MEC

server i as πk = i.

• Next, the mechanism partitions and allocates the computing re-

sources from the winner MEC server i into the VM that computes

34

the assigned offloading task in slot k. The amount of CPU re-

sources allocated to each task assignment is computed as follows:

xi,k =

⌈︃
min

{︃
λk

ci
, wi

}︃⌉︃
, (2.7)

where ci is the computing processing capacity of each CPU from

MEC server i.

• The resource allocation price is determined based on his or her

resource availability and the ranking score of the next bidder in

the rank as follows,

pk =

⎧⎨⎩ wi/ri+1, if 1 ≤ k ≤ K, rank(i) < I,

wi/ri + ϵ, otherwise
(2.8)

where ϵ a small positive constant.

• The utility of each bidder is thus given by

ui = (pk − vi)xi,k (2.9)

Example 2.1 A walk through example on how GSP-based

auction outcomes are computed for MEC resource allocation

and pricing decisions.

To better understand the GSP mechanism for the MEC offloading

system, consider K = 3 users request for offloading services on N = 3

different applications. I represent the set of users’ offloading tasks as

K = {k1, k2, k3, k4}, edge applications as N = {n1, n2}, and set of

bidders’ as I = {i1, i2, i3, i4}. I assume that users k1 and k2 request

for the application n1 and the other user k3 request application n2.

Consider, the offloading data sizes are given as dk = {6, 5, 3, 2}, and

35

k1

k2

k3

k4

dk

6

5

3

2

λk

60

50

15

10

πk

i2

i3

i4

i1

ri

20

15

14

10

k vi

2

1

2

3

wi

40

15

28

30

ci

3

2.5

3

2

xi,j

20

20

5

5

pk

2.7

1.1

2.8

3.1

ui

14

2

4

0.5

N
1

N
2

Figure 2.1: An example demonstrating GSP allocation and pricing

applications’ computation processing densities are Ln1
= 10 and Ln2

=

5. Therefore, the resource consumption rates are computed as λk =

{60, 50, 15, 10} as shown in Fig. 2.1.

Assume, the bids and available resource units of MEC servers are

bi = {3, 2, 1, 2} and wi = {30, 40, 15, 28} respectively. The ranking

scores can be computed as ri = {30/3, 40/2, 15/1, 28/2} = {10, 20, 15, 14}.

Then, I rank the bidders according to their ranking scores as r2 > r3 >

r4 > r1 and assign the tasks starting from matching the top task slot to

the bidder with the highest slot (See Fig. 2.1). Considering the CPU

computing capacity ci = {2, 3, 2.5, 3} (GHz), I compute the amount of

allocated resource units and the allocation prices using eqn. (2.7) and

eqn. (2.8) respectively. For an instance, task k1 is assigned to MEC

server i2, with the decision variables as πk1 = i2, xi2,k1 = 60/3 = 20,

and pk2 = 40
15 = 2.7. Therefore, the utility of MEC server i2 becomes,

ui2 = (2.7− 2) 20 = 14.

2.3 Conclusion

In this chapter, the basics of GSP auction model is described along

with the characteristics of designing repeated GSP mechanisms. The

notions of the optimal GSP auction and corresponding equilibrium so-

36

lution concepts are also presented. Then, a simple MEC offloading

framework is presented applying the GSP mechanism design concepts,

followed by an walk-through example on how to obtain GSP-based re-

source allocation and pricing decisions for computation offloading. In

the next chapter, a detailed repeated GSP mechanism is modeled for

MEC offloading that maximizes the profits of the computing service

providers.

37

Chapter 3

Profit-Maximizing Repeated GSP
Auction Model for MEC Offloading

Addressing the heterogeneity of users’ demands for computation of-

floading in a multi-vendor MEC network, I investigate the resource

allocation problem in this chapter, with the goal of maximizing the

profits of MEC servers. This chapter presents a reverse GSP auction

framework based on position auction, addressing the winner determi-

nation, resource allocation pricing, and bidding strategy optimization

problems for deploying computation offloading in MEC networks.

An overview of the MEC offloading resource allocation problem and

related challenges are discussed in Section 3.1. The MEC offloading sys-

tem model and related assumptions to design the GSP-based resource

allocation mechanism are outlined in Section 3.2. Next, I present the

proposed GSP-based reverse position auction, along with the formu-

lation and solution approach to the winnper determination problem

(WDP) in Section 3.3. In Section 3.4, the analysis on the auction

efficiency is given. Numerical results in Section 3.5 demonstrates the

performance of the proposed auction mechanism, and finally Section 3.6

concludes the chapter.

38

3.1 Introduction

One of the fundamental challenges of mobile edge computing (MEC),

which allows the mobile users to offload their computationally-intensive

tasks to the servers located at the network’s edge, is to develop meth-

ods to efficiently allocate the limited computational resources of the

edge servers to the offloading users. To address this challenge, existing

researches study designing efficient computation offloading scheduling

and resource allocation methods, focusing on optimizing the perfor-

mance metrics from the users’ perspectives.

Considering the heterogeneity of users’ demand in a multi-MEC

server scenario, Zhang et al. [61] propose a combinatorial auction model

to study a matching problem, where an MEC server is assigned to the

users with allocation of the requested bundle of resources. In such an

auction framework, the crucial job of the bidders (i.e. users) is to eval-

uate the computing resources across MEC servers and to decide which

server they prefer to offload their tasks to. Bahreini et al. [4] com-

bine the features from position auction with combinatorial auction to

model the users’ preferences over the computing resources at the edge

and cloud servers. They propose a bidding preference model for users

that ensures envy-free allocation, i.e. no user can improve her utility

by exchanging the allocation with other users. The online resource

auction mechanism in [65] allows the users to dynamically evaluate the

computing resources at the edge servers that maximizes their long-term

utility. However, the following question remains open: How the users

can characterize the true evaluation of the optimal bid such that the

auction does not result in unfair allocation prices?

39

From the economical point of view, an efficient resource allocation

or trading mechanism ensures non-negative profit for the participating

edge providers. Abbas et. al. [22] consider a profit maximization prob-

lem for the service providers with limited resources. Considering, users

as the bidders, the authors propose a two time-scale auction-based ap-

proach to solve the resource allocation and pricing problem. The edge

providers can also be modeled as strategic players alongside the of-

floading users in a double auction framework. Jin et. al. [19] propose a

double auction mechanism, where the auctioneer matches mobile users

with cloudlets for trading computing resources. The outcome of such a

procedure is a one-to-one matching between the cloudlet and the user,

which is not realistic for practical implementation. This issue has been

addressed in [51], where the double-auction mechanism allows an edge

server to serve more than one user at a time; however, it ignores the

heterogeneity of offloading requests for different tasks/application.

In order to address the shortcomings of the current literature as

discussed above and I consider a novel approach to develop a reverse

auction model based on the GSP-based position auction, solving the

resource allocation problem. The main goal is to efficiently allocate the

computational resources of the edge servers to the offloading users with

different computational capacity requirements. The allocation should

guarantee the users’ QoE and provide both the users and the providers

with positive economical gain, which corresponds to lower service cost

for users and higher efficiency in the resource utilization for servers. In

addition, each edge server can serve multiple users at the same time.

40

3.1.1 Research Contribution

The main contributions of this chapter are summarized as follows:

• I model a reverse auction framework for MEC offloading using the

features of position auction and generalized second price (GSP)

pricing rules.

• I propose a greedy bidding strategy for the MEC servers to com-

pute their bids maximizing their utilities.

• I formulate a combinatorial optimization problem as the winner

determination problem (WDP) for the proposed auction model

and design an approximation algorithm to solve the problem in

polynomial time.

• I provide theoretical and numerical analysis on economic and com-

putational performance for the proposed auction mechanism.

3.2 System Model and Assumptions

I consider an MEC offloading system where a software-defined network

(SDN) controller acts as a broker between the offloading users and

computation service providers (CSPs). I denote the set of offloading

users and computation service providers (CSPs) as K = {1, . . . , K} and

I = {1, . . . , I}, respectively. Each CSP has a single multi-core MEC

server and I use index i ∈ I to denote a CSP and an MEC server

interchangeably. Users in different cells use orthogonal radio channels

to transmit to their corresponding base stations and thus to the SDN

controller in the core network. The MEC servers of the CSPs can com-

41

UE 2

t1

t2

t1

UE k

t2

CSP 1

UE 3

t2

Cell 1

Cell 2 Cell 3

UE 1

CSP 3
CSP i

CSP 2

ch1

ch2

ch3

ch4

ch5

Figure 3.1: An MEC offloading scenario.

municate with the BSs through the core network. The communication

delay in the core network is assumed to be negligible.

The offloading mechanism operates in discrete time slots of equal

offloading period ∆t. At the beginning of each offloading period, the

SDN controller receives the offloading requests. The task of SDN is to

schedule each offloading request to a suitable MEC server and also to

efficiently allocate the computational resources. To perform this task,

the SDN runs a reverse auction to get the computing resources from

MEC servers as much as required to satisfy users’ demands and allocate

them for computing the offloading tasks. The resource allocation is

performed depending on the arrival of offloading requests in each time

slots. The system remains idle if there no offloading request during a

time slot. Moreover, when all the MEC servers are busy and there is

no resource available, then the incoming offloading requests will remain

unassigned1 and will eventually be rejected at the end of the time slot.

1The unassigned tasks can be buffered in a queue so they can be computes in the next time slot.
This will change the dynamics of resource allocation mechanism and therefore I left this as future
work.

42

I describe the procedure in detail throughout the chapter. The symbols

and notations used in this chapter is listed in Table 3.1.

3.2.1 MEC Offloading System Model

Users can request for N different types of applications of tasks for MEC

offloading, gathered in a set N . The task type n ∈ N is identified by

its computation processing density requirement, denoted by Ln in CPU

cycles/bit. I represent the popularity of the task types by its hit ratio2,

θ1 ≥ θ2 ≥ · · · ≥ θN , where 0 ≤ θn ≤ 1.

A user’s offloading request is represented by the tuple ⟨dk, gk⟩, where

dk ∈ [0, dkmax] is the offloading data size (in bits) which may vary over

different offloading periods and gk ∈ N denotes the requested task type.

Each user requests for only a single type of application during each

offloading period; however, the same application n can be requested by

more than one user.

The CPU consumption rate for k-th task of type n is given by

λk
n = dkLn. The offloading tasks that require large amount of CPU

resources has higher priority over the less computationally-intensive

tasks. Consequently, offloading requests for each task type are sorted

in decreasing order of their CPU consumption rates, i.e. the amount of

CPU cycles utilized during each offloading period.

The offloading transmission rate of a user depends on the wireless

channel condition and the spectrum allocation. I assume that the chan-

nels’ condition remain unchanged during each offloading period. Let Bi

be the allocated bandwidth. Also, pk indicates the transmission power

2The hit ratio is the ratio between number of users requesting for a particular app and the total
number of requests observed over a period of time.

43

of user k and hk is the channel power gain between user k and the

corresponding BS. The achievable uplink data rate (in bits/sec) of user

k is then given by

rk,upi = Bi log2

(︃
1 +

pkhk

σ2

)︃
, (3.1)

where σ2 is the noise power. Similarly, the downlink transmission rate

rk,downi can be calculated when the downlink transmit power is being

pi. Thus the uplink and downlink transmission delays yield δk,upi =

dk/rk,upi and δk,downi = d̂
k
/rk,downi respectively, where d̂

k
is the size of

the computation result. The computation delay at server i is δk,comp
i =

λk
n/ci.

The waiting time of user k at the MEC server depends on the com-

putation time of the users who are ahead of user k at the server end.

Since the tasks are ranked according to their CPU consumption rate,

the waiting delay of user k can be represented as

δk,waiti =

rankk−1∑︂
k′=1

{︂
δk

′,comp
i | rk′ < rk, k

′ ̸= k
}︂
. (3.2)

The total execution delay consists of the uplink transmission delay,

waiting delay at the server, computation (processing) time, and the

downlink transmission delay. The total execution delay for computing

user k’s task can be expressed as

δki =
I∑︁

i=1

(︂
δk,upi + δk,waiti + δk,comp

i + δk,downi

)︂
yki,n , (3.3)

where yki,n ∈ {0, 1} is a binary decision variable which represents whether

CSP i is assigned to compute the task of type n or not.

The resource demand of user k is considered as the amount of CPU

resource units required to compute the requested task of type n, which

44

is given by aki,n =
⌈︂
λk
n

ci

⌉︂
. Thus, the amount that user k pays for alloca-

tion of aki,n units of computation offloading is given by

βk
i =

I∑︂
i=1

πna
k
i,ny

k
i,n. (3.4)

Naturally, the users’ utility functions shall measure the satisfaction

level with the computation offloading service taking the total delay

and monetary cost into account. Considering δmax
k and βmax

k as user k’s

maximum tolerable delay and a monetary budget, respectively, I define

the satisfaction function of user k for the computation service received

from MEC server i as

ϕk
i = αa

ka
k
i,n − αd

k

δki
δkmax

− αp
k

βk
i

βmax
k

, (3.5)

where αa
k, α

d
k, and αp

k are the scaling parameters. I define the satisfac-

tion index γk
i which indicates how much the user k is satisfied with the

MEC server i. It is given by [32]

γk
i = 1− e−θnϕ

k
i . (3.6)

The utility of an MEC server for winning tasks of different types

depends on her expected profit and related allocation cost. Each MEC

server incurs some energy cost for allocating its resources for computing

offloading tasks. The energy consumption cost of MEC server i for each

resource unit is estimated as ei = αe
i

(︁
P0 + κic

3
i

)︁
, where P0 is the fixed

initial power required for server activation, κi is a constant parameter

that represents the effective switched capacitance of each core. Here,

αe
i is the scaling parameter to define the monetary cost for each unit of

energy consumption. Moreover, the value of each CPU resource unit to

45

Table 3.1: List of key notations used in Chapter 3

Notation Description

N Number of MEC applications

K Number of Offloading users

I Number of MEC servers

Ln Computation processing density of n-th application

θn Task popularity or hit-ratio of n-th application

λk
n CPU consumption rate of k-th task of type n

dk Offloading data size of k-th task

gk Offloading task type

rk,upi Uplink data rate of user k

δki Total execution delay of k-th task at server i

ci Computation power of server i

aki,n Number of vCPU resource unit required for k-th from server i

βk
i Amount paid by user k to server i for computation offloading

ϕk
i Level of satisfaction of user k with server i

γk
i Satisfaction index of user k for server i

ei Energy consumption cost of server i

ρi Private valuation of server i

vi Valuation of a vCPU resource unit at server i

bi Bid price of server i

wi Number of vCPU resource units available at server i

xi,n Allocation decision variable

yki,n Amount of vCPUs allocated to k-th task from server i

πn Allocation price of task type n

V Auction welfare

ui,n Utility of server i for task type n

ηi Effective bid of server i

46

MEC server i depends on a private value ρi ∈ [0, ρmax
i] as well as the hit

ratio θn, which is known. The hit ratio indicates the bidder’s preference

over different task types based on the task popularity. Therefore, the

server’s total valuation of each resource unit can be represented as

vi = ρi + ei.

Considering that xi,n is the amount of SDN decides to procure from

MEC server i to compute tasks of type n and allocation price is equal

to πn, the MEC server’s utility function yields

ui,n = (πn − θnvi)xi,n, (3.7)

3.3 Repeated GSP-Based Reverse Auction Model

In this section, I present a GSP-based reverse auction model for MEC

offloading is discussed in details. I first design a position auction in the

reverse auction format where the SDN controller acts as the auctioneer

and the users participate as buyers who wish to purchase computing

capacities to execute their computation-intensive tasks. In this reverse

auction model, the MEC servers play the roles of bidders who want

to sell their residual computing capacities as virtual instances of CPU

resource units and provide computation as a service to offloading user

via the SDN controller. Next, I study the bidding strategy of MEC

servers’ from sellers’ perspectives in a reverse auction and formulate

the winner determination problem that the auctioneer solves to obtain

the auction outcomes. Then, I propose solution approach for solving the

optimization problem and discuss the pricing function designed based

on generalized second price (GSP) mechanism [54]. Finally, I analyze

the computational complexity and economic properties of the proposed

47

auction mechanism.

I design a position auction where the SDN controller creates n =

1, . . . , N auction slots/positions for each task type and then captures

users’ offloading requests ⟨dk, gk⟩. Upon the arrival of users offloading

requests, the SDN controller determines users’ resource demands, and

then issues request for proposal (RFP), looking for suitable CSPs. The

RFP specifies the task types, task hit ratio θn, and allocation prices

π
(t−1)
n from the previous round of auction.

I define MEC server i has wi units of CPU resources which they

want to sell via auction, and the difference of the auctioned comput-

ing capacities is determined by ci = mifi , where mi is the number of

CPU cores and fi is the CPU-cycle frequency of each core in i-th MEC

server. In response to the RFP, an MEC server employs a greedy bid-

ding strategy to determine her bid in a way that maximizes her utility

(as defined in the following subsection). Let bi = (bi,1, bi,2, . . . , bi,N) be

the set of ask prices, where bi,n is the price per CPU resource unit for

each task type n ∈ N . The bid submitted by i-th MEC server is thus

represented as ⟨bi, wi⟩.

3.3.1 Bidding Strategy of MEC Servers

I propose an adaptive bidding strategy for MEC servers using the re-

stricted balanced bidding (RBB) approach [9]. I consider N (t) is the set

of task types to be assigned in the current time-slot t and N (t−1)
i is the

set of task types that the MEC server i has won in the (t − 1) round.

The MEC server i chooses the same bid as previous for the task types

n′ ∈ Ni, assuming that she would still win tasks for same the types in

the next round as other bidders do not change their bids. In fact, the

48

MEC server i targets to win task type(s) that she has not won in (t−1)

round and thus updates bids only for the task types n ∈ N (t)\N (t−1)
i ,

where θn ≤ θn′.

Given the allocation outcomes from the last auction round, the MEC

server i chooses her bid such that marginal bid for each task type is at

least equal to the marginal valuation and satisfies

π
(t−1)
n−1 x

(t−1)
i,n−1 − b

(t)
i,nx

(t−1)
i,n ≥ θn−1x

(t−1)
i,n−1vi − θnx

(t−1)
i,n vi, (3.8)

where b
(t)
i,n is the bid submitted by MEC server i for task type n in the

auction round t. The RBB strategy for the proposed position auction

is defined as follows.

Definition 5 Given the allocation outcomes (x
(t−1)
i,n , π

(t−1)
n) for all of

the announced task types, the Restricted Balanced Bidding (RBB) strat-

egy of the MEC server i is defined as follows:

(i) Target the task types n ∈ N (t)\N (t−1)
i with lower task popularity

θn′ ≤ θn than the ones won in the previous round, and choose the

next bid as

b
(t)
i,n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
θnvi, if n = 1

θnvi +
x
(t−1)
i,n−1 + x

(t−1)
i,n

2

(︂
π
(t−1)
n−1 − θn−1vi

)︂
,

if 2 ≤ n ≤ N.

(3.9)

(ii) The bids for all other task types that bidder i has already won

remain same as the previous round, b
(t)
i,n = b

(t−1)
i,n

3.3.2 Winner Determination Problem Formulation

After receiving the bids ⟨bi, wi⟩ from MEC servers, the SDN controller

decides how to allocate the offered CPU resources that would satisfy

49

Buyers Broker/ Auctioneer Sellers/ Bidders

Offloading

requests

(d
k
, g

k)

Users MEC Servers

Request for
service offers
(ai,n ,θn , πn)

Submit bids

(bi ,wi)

Algorithm 1

Resource Allocation and Pricing

(xi,n ,yi,n
k
, πn)

GSP Pricing Rule

πn RBB Strategy

Payment

 βi
k Payment

zi,n

n = 1

n = N

...

SDN Controller

Task types

Algorithm 2

Greedy Resource Allocation

(xi,n ,yi,n
k)

bi,n*

Figure 3.2: Proposed resource allocation and pricing mechanism

users demands. With the goal of determining the winning bidders, the

SDN controller first sorts the bidders in the decreasing order based on

their bid efficiency, i.e. the ratio of total value to the total weight that

an MEC server can offer for computing an offloading task. I define the

effective bid for MEC server i as

ηi = log
(︂
âi/b̂i

)︂
, (3.10)

where âi =
N∑︁
n=1

K∑︁
k=1

aki,n and b̂i =
N∑︁
n=1

K∑︁
k=1

γk
i θnbi,nwi. Note that in the de-

nominator of (3.10), the valuation of the bidder for each task type is

scaled according to the users’ satisfaction level γk
i . This approach en-

sures that bidders with higher satisfaction indices are given preference

over those who failed to satisfy the users so far. Moreover, in (3.10), I

use the logarithmic function that transforms the larger values of effec-

tive bids in logscale.

Next, the SDN controller formulates the following optimization prob-

lem, referred to as the winner determination problem (WDP) to deter-

50

mine the winning bidders who get offloading tasks for each task type

n ∈ N :

P1 : max
xi,n,yki,n

V =
I∑︂

i=1

ηi xi,n

s.t. (C1)
I∑︂

i=1

xi,n ≥
I∑︂

i=1

K∑︂
k=1

aki,n y
k
i,n, ∀ n ∈ N ,

(C2)
N∑︂
n=1

xi,n ≤ wi, ∀ i ∈ I,

(C3)
I∑︂

i=1

yki,n ≤ 1, ∀ n ∈ N , k ∈ K,

(C4) xi,n ∈ {0, 1, . . . , wi}, ∀ i ∈ I, n ∈ N ,

(C5) yki,n ∈ {0, 1}, ∀ i ∈ I, n ∈ N , k ∈ K, (3.11)

.

Here, the objective is to select MEC servers who provide compu-

tation service at lower price and to allocate their resources in a way

that maximize users’ level of satisfaction, i.e. total valuation of effec-

tive bids. The constraint (C1) ensures that total amount of allocated

resources meets users’ the resource requirements. The constraint (C2)

ensures that total amount of allocated resources does not exceed the

assigned MEC server’s available resource capacity. The constraint (C3)

ensures that an offloading task is assigned to at most one MEC server.

The constraints (C4) and (C5) state weight/values of the decision vari-

ables xi,n and yki,n, respectively. The mixed integer program P1 is a

variant of generalized assignment problem with minimum quantities

which is NP-complete [23]. However, it could be solved optimally in

51

polynomial time if the profit of assigning a task is independent of the

edge server it is assigned to and the maximum resource capacity of

the edge servers as well as number of offloading tasks are fixed. The

computational complexity of P1 also comes from the fact that for a

given offloading data size, the amount of CPU resources required from

each MEC server is different. To simplify the computation, the integer

constraints can be relaxed as 0 ≤ xi,n ≤ wi and yki,n ≥ 0 to allow frac-

tional amount of resource allocation and derive the upper bound of P1.

Then, the optimal solution can be obtained by solving the upper bound

of P1 using the classic Branch and Bound technique. Although such

procedure involves high computational complexity, commercial solvers

(e.g. CPLEX) could be used for practical implementation. In the fol-

lowing section, I propose an approximation algorithm with polynomial

solution time.

3.3.3 Resource Allocation and Pricing Algorithm

I propose an approximation algorithm based on the greedy heuristic

approach in combinatorial optimization. The proposed resource alloca-

tion and pricing mechanism is depicted in Fig. 3.2. The SDN controller

performs the mechanism during each offloading period. Algorithm 1

summarizes the solution steps of the proposed resource allocation and

pricing approach.

I define Kn as the set of users who request for task type n. Moreover,

w̄i is the remaining capacity of MEC server i in terms of the number

of virtual CPU resource units. As described in the algorithm, the SDN

controller first calculates the effective bids, given the MEC servers sub-

mitted bids and users’ feedback. Then, it rearranges the MEC server

52

Algorithm 1: Resource Allocation And Pricing

Input: dk, gk, bi, wi

Output: V, xi,n, y
k
i,n, πn

1 V ← 0,xI×N ← 0,yI×N×K ← 0, πN ← 0
2 for i← 1 to I do
3 Calculate γk

i using (3.6)
4 Calculate ηi using (3.10)

5 end
6 Rearrange the MEC servers as η1 ≥ η2 ≥ · · · ≥ ηN
7 for n← 1 to N do
8 Let Kn = Kn ∪ {k | gk = n}
9 Rearrange the users in Kn as λn

1 ≥ λn
2 ≥ · · · ≥ λn

K

10 Let w̄i = wi

11 Call Algorithm 2: Greedy Resource Allocation

12 end
13 Find allocation prices, πn, using eqn. (3.12)

indices in a decreasing order of ηi. Afterward, the SDN controller con-

siders the offloading tasks one by one according to the task types. For

each task type n, it calls the greedy procedure in Algorithm 2. The

outcome is the assignment of tasks to the available MEC servers one by

one unless the remaining capacity is smaller than the resource demand

aki,n. For each feasible allocation, the algorithm updates the following

parameters: (i) yki,n = 1, xi,n = xi,n + aki,n, (ii) V = V + ηi xi,n, and (iii)

w̄i = w̄i − aki,n.

When Algorithm 2 returns the task assignment decision yki,n, re-

source allocation decision xi,n, and the auction welfare V to Algo-

rithm 1, the allocation prices are determined according to the GSP

rule of position auction. I consider πn as the unit resource price for the

assignment of an MEC server to tasks of type n. By the GSP rule, πn

is determined according to the bid of the next bidder who wins n + 1.

I define i0 is the index of the last MEC server who wins any task of

type n. Moreover, i′ is the MEC server ranked next to the bidder i0

53

according to decreasing order of effective bids.

The allocation price for task type n is determined as follows:

πn =

⎧⎨⎩ bi′,n, if 1 ≤ n ≤ N, rank(i′) ≤ I,

bi0,n + ϵ, otherwise
(3.12)

where ϵ is a very small positive real number. The bidders who are not

assigned to any task type receive no payment and thus they have no

utility gain.

Algorithm 2: Greedy Resource Allocation

Input: N,Kn, w̄i, a
k
i,n

Output: V, xi,n, y
k
i,n

1 V ← 0,xI×N ← 0,yI×N×K ← 0
2 for k ∈ Kn do
3 if (lk = 0) AND (aki,n + xi,n) ≤ w̄i) then
4 Let yki,n = 1, xi,n = xi,n + aki,n, V = V + ηi xi,n

5 Let w̄i = w̄i − xi,n

6 end

7 end

3.4 Analysis on Auction Efficiency

The proposed GSP-based reverse auction framework is economically

robust by satisfying the individual rationality and envy-free proper-

ties. The following propositions show the stability and efficiency of the

proposed resource allocation mechanism.

Proposition 1 The proposed reverse auction mechanism is individu-

ally rational, this means that if MEC servers bid according to RBB

strategy, they would be guaranteed with non-negative utilities for each

winning task type, i.e. ui,n ≥ 0.

54

Parameters and values

N = 3, I = 5 Bi = [5, 30] MHz dkmax = [100, 500] KB

L1 = 2640, L2 = 1760, L3 = 8250 pk = 20 dBm, pi = 40 dBm

θ1 = 0.6, θ2 = 0.3, θ3 = 0.1 δkmax = {300, 500, 1000} msec

Mi = {2, 4, 8, 16} with fi[2, 4] GHz/core βk
max = 10, αa

k = 1

σ2 = −100 dBm, P0 = 0.01 watts αd
k = 0.005, αp

k = 0.1

ρi = [0.002, 0.004] $ / CPU resource unit αe
i = 0.001, κi = 0.01

Table 3.2: System parameters used for simulation in Chapter 3

Proof. See Appendix A.1.

Proposition 2 The proposed reverse auction mechanism is locally envy-

free with allocation prices πn,∀n ∈ N . This characteristic guarantees

that no bidder can improve her utility by exchanging her allocation with

any other bidder for the same task type.

Proof. See Appendix A.2.

Proposition 3 The proposed GSP-based reverse auction mechanism

is computationally efficient, i.e., approximation solution to WDP in P1

can be obtained in polynomial time.

Proof. See Appendix A.3.

3.5 Numerical Results

I consider an MEC offloading scenario where the number of users K

varies from 100 to 1000 over different offloading periods. The MEC

servers and users are randomly deployed in 5 km2 area. I use the

distance-dependent path-loss model −140.7−36.7 log10(distance to find

the channel power gain hk between users and their BSs. I run the sim-

ulation for 1000 times. During each run, each user randomly requests

55

0 200 400 600 800 1000

Total number of users, K

0

0.2

0.4

0.6

0.8

1

P
er

ce
n

ta
g

e
o

f
se

rv
ed

 u
se

rs

(a)

w
max

=500

w
max

=1500

w
max

=2000

(b)

100 200 300 400 500 600 700 800 9001000

Total number of users, K

0

200

400

600

800

1000

1200

T
o

ta
l

ex
ec

u
ti

o
n

 d
el

ay
 (

m
se

c)

w
max

=500

w
max

=1500

w
max

=2000

0 200 400 600 800 1000

Total number of users, K

0

50

100

150

200

250

U
ti

li
ty

 o
f

o
ff

lo
ad

in
g

 u
se

rs

(c)

w
max

=500

w
max

=1500

w
max

=2000

Figure 3.3: Performance of the proposed algorithm: Percentage of served users, total
execution delay of all the served users, and their utilities in terms of satisfaction
functions.

one of the N = 3 task types. The offloading data size is random and

belongs in the interval [0, dkmax]. The simulation parameters used for

analysis are listed in Table 3.2.

I first investigate the users’ satisfaction level. The results in Fig. 3.3

(a) show that the percentage of the served user decreases as the number

of users rise, due to limited resource capacities of the servers. If the

MEC servers can offer more resources, e.g. wmax = 2000, the number

of the served users would increase. Fig. 3.3(b) shows the increase in

total execution time for larger number of served users. The overall

satisfaction level of the served users is shown in Fig. 3.3(c). It can

be concluded that when the offered computing capacities is higher,

specifically for wmax = 1500 and 2000, the sum utilities of the served

users is significantly higher than that of with wmax = 500. This results

from the users experiencing longer delays when MEC servers have low

computing capacity.

Next, I evaluate the performance of the proposed algorithm in solving

the WDP. Fig. 3.4 (a) shows the objective function of WDP V , which

increases with the increase in number of offloading users. Such trend

56

0 200 400 600 800 1000

Total number of users, K

0

0.5

1

1.5

2

2.5

V

10
5

(a)

w
max

=500

w
max

=1500

w
max

=2000

0 200 400 600 800 1000

Total number of users, K

0

0.2

0.4

0.6

0.8

1

R
e
so

u
rc

e
 u

ti
li

z
a
ti

o
n

 r
a
te

(b)

w
max

=500

w
max

=1500

w
max

=2000

Figure 3.4: Performance of proposed algorithm on WDP and the system’s resource
utilization rate.

implies that the bidders’ offered resources are allocated efficiently as to

satisfy user demands. It should be also noted that changing wmax (the

maximum availability of computing resource units for MEC servers),

impacts the total valuation of the WDP solution dramatically. More-

over, the valuation of the WDP solution is low for wmax = 500 compared

to other tested values. The reason is the following: In this setting, the

MEC servers compete over a low number of offloading tasks and thus

the efficiency of bids decreases. I define the rate of resource utilization

as the ratio of the total amount of allocated resource units to the total

amount of available resource units, considering the maximum user ca-

pacity of the system is Kmax = 1000. Then, from Fig. 3.4(b), although

the system’s efficiency is low for smaller number of users, it gradually

reaches the 90% of resource utilization.

57

3.6 Conclusion

In this chapter, have designed a reverse auction model for an MEC

offloading system, and formulated the winner determination problem

(WDP) as a combinatorial optimization problem. To solve the WDP,

I have designed an approximation algorithm that determines resource

allocation and prices in polynomial time. I have also proposed an adap-

tive greedy bidding strategy that allows the MEC servers to o maximize

their utilities. Finally, I have demonstrated the auction efficiency and

performance of our proposed auction mechanism through theoretical

and numerical analysis.

58

Chapter 4

A Repeated Auction Model for
Load-Aware Dynamic Resource
Allocation in MEC

In this chapter, I investigate MEC offloading service provisioning ad-

dressing the wireless network dynamics and competition among multi-

ple MEC service providers. Considering dynamic arrival of offloading

requests and computation workload-dependent computational perfor-

mance metrics for the servers, I present a service-oriented MEC offload-

ing architecture, and apply repeated GSP auction model to develop an

efficient resource allocation and pricing mechanism.

In Section 4.1, I briefly discuss the research problem I address in this

chapter and summarize the contributions. In Section 4.2, I outline the

MEC offloading service provisioning system model and assumptions,

and also describe the overall MEC service provisioning and communi-

cation workflow. Section 4.3 presents the repeated GSP-based load-

aware dynamic resource allocation model and Section 4.4 provides the

analysis of competitive bidding behavior of the MEC servers. Finally, I

present the numerical results in Section 4.5, and conclude the chapter

in Section 4.6.

59

4.1 Introduction

In a multi-user multi-vendor MEC offloading market environment, ef-

ficient resource allocation and pricing strategies are vital, since the

users’ hetereogeneous QoS demands needs to be met using the limited

resources of the servers at a minimal offloading cost. At the same time,

is it crucial to guarantee that no service providers encounter any profit

loss, so they are motivated to deploy various wireless applications via

MEC service delivery platform. The deployment of MEC services in-

volves several challenges within the wireless network environment itself.

Thus it becomes more challenging to ensure allocation efficiency along

with economic benefits, addressing the competition among the resource

sellers.

Firstly, task arrivals are highly dynamic in the wireless environment

as computing resource demands and QoS requirements evolve. Hence, it

is challenging to accurately model the uncertainties, including task ar-

rivals and QoS criteria. Secondly, the computing resources at the MEC

servers are scarce, and the computational workloads of these servers are

highly variable due to the heterogeneity in offloading tasks’ length and

computational capacity requirements of different services. That heav-

ily affects the offloading performance. Besides, self-interested MEC

service providers design their bidding strategies to sell more resource

and maximize their revenue.

The auction game theory offers promising tools to address efficient

resource allocation and pricing policies, and model the offloading ser-

vice provisioning process considering the demand-supply trend and fair-

ness. In order to address the challenges in provisioning MEC services

60

in the dynamic environment, I present a novel service-oriented MEC

offloading system architecture that deploys the offloading as a service

through a repeated GSP auction mechanism. The proposed repeated

auction model supports the network dynamics and allocates resources

to offloading users accordingly. In order to guarantee the stability of

allocation outcomes in such a dynamic offloading scenario, I investigate

the adaptive best-response bidding strategies and corresponding equi-

librium pricing strategies, so that economic properties are satisfied for

the proposed repeated auction mechanism.

4.1.1 Research Contribution

The key contributions of this chapter are as follows:

• I develop a generic service-oriented multi-user multi-vendor MEC

system architecture suitable for SDN-enabled 5G networks.

• I present computational workload-aware resource management poli-

cies, which implement dynamic resource allocation through a re-

peated GSP auction mechanism.

• In addition, I propose best-response restricted balanced bidding

(RBB) strategies for the resource sellers (i.e., MEC servers), that

ensures equilibrium resource allocations under a dynamic environ-

ment.

• I provide theoretical analysis on competitive bidding behavior of

MEC servers, and presents numerical results to evaluate the per-

formance of the proposed auction mechanism.

61

4.2 System Model

4.2.1 Wireless Network and Communication Model

Considering I MEC sites gathered in the set I = {i}Ii=1, I assume each

site is equipped with a WAP, a computing server, along with a site

controller node. I assume that different computation service providers

operate each site while competing to earn more revenue by providing

computation offloading as services for N applications. The physical

servers at the MEC sites have SDN functionalities to host N applica-

tion processes simultaneously. I consider a centralized SDN hypervisor,

referred to as the MEC orchestrator or orchestrator. The orchestrator

coordinates all the control functionalities across the MEC sites and

deploys the computation offloading service between MEC servers and

UEs.

Let {j}Jj=1 be the set of UEs uniformly distributed across the MEC

sites, and each UE j is associated with the nearest WAP i′ ∈ I. The

UEs get exclusive OFDMA sub-carriers to transmit on the wireless links

without interference. For simplicity, I assume the UEs are stationary so

the user association remains fixed. Therefore, the same WAP handles

all the offloading requests from a user on the MEC site. However,

when the offloading requests are forwarded to the MEC system, they

can be processed at a different MEC site depending on the tasks’ QoS

requirements and the server’s computational capabilities.

The offloading data rate (in MBps) in the uplink between the UE j

and the associated WAP i′ is given by

γi′,j = BWi′ log2

(︃
1 +

P up
j hi′,j

σ2
N

)︃
, (4.1)

62

MEC

Orchestrator

MEC Platform

Manager

MEC Virtualization

Infrastructure

Manager

K

MEC App 1

K
1

K

MEC App 2

K
2

s=1K

MEC App N

K
N

Edge Gateways

(EGWs)

U
se

r
P

la
n

e
F

u
n

ct
io

n
s

(U
P

F
s)

j1

j2

jJ

U
ser E

q
u

ip
m

en
ts

(U
E

s)

M
E

C
 N

o
d

es

i1

i2

iI

U
s
e
r L

e
v
e
l

M
E

C
 S

y
stem

 L
ev

el

Data plane components Control plane components

MEC Virtualization Infrastructure
M

E
C

 P
la

tfo
rm

MEC Service 1 MEC Service 2 MEC Service N

MEC Host

R
1r1 r2 rR2

1

r1 r2 rR1

1

r1 r2 rRI

1

R
2r1 r2 rR2

2

r1 r2 rR1

2

r1 r2 rRI

2

R
Nr1 r2 rR2

N

r1 r2 rR1

N

r1 r2 rRI

N

{d
1

, d
1 }k1 k2

{d
2

, d
2 }k1 k2

d
1
k1

d
2
k1

d
1
k2

d
2
k2

d
N

kJ

{d
N }kJ

s=1s=1

d
N

kJ
d

2
k1

d
2
k2

d
1
k1

d
1
k2

Figure 4.1: Service-based MEC system architecture.

where σ2
N is the noise variance, BWi′ the bandwidth of the channel

assigned by WAP i′, and P up
j the transmit power of UE j.

I consider a generic transmission loss model [37], assuming both

UEs and WAPs are below the rooftop level regardless of their antenna

heights. Thus the basic transmission loss (in dB) for short-range out-

door communication yields

hi′,j = 10µd log10 (disti′,j) + µ0 + 10µf log10 (ft) (4.2)

where disti′,j (in meter) is the distance between UE j and WAP i′,

and ft is the wireless channel’s operating frequency. Besides, µd and

µf are the coefficients that describe the growth of transmission loss

with distance and frequency, respectively. Also, µ0 is the coefficient

associated with the offset value of the basic transmission loss.

63

Table 4.1: List of key notations used in Chapter 4

Notation Description

N Number of MEC application processors

J Number of offloading UEs

I Number of MEC servers

γi′,j Uplink data rate between UE j and MEC node i′

Rn Set of VMs at processor n

Rn
i Number of VMs of type n at server i

rnim m-th VM of type n at server i

Cni Computing power of each VM of type n at server i

W n
i Number of vCPUs in each VM of type n at server i

βn Computational capacity requirements of each task in processor n

ηni,rm Workload (MB) of the m-th VM of type n at server i

Γn
i,rm Load per capacity of the m-th VM of type n at server i

ϕn
i,rm Resource utilization rate of the m-th VM of type n at server i

θni,rm Expected quality score of the m-th VM of type n at server i

vni,rm Valuation of the m-th VM of type n at server i

bi,rm Bid submitted by server i for the m-th VM of type n

yni,rm Ranking score of the m-th VM of type n at server i

Kn Task queue with K = J positions at processor n

kn
j Computing task of type n offloaded by UE j

dnkj Length of task (MB) offloaded by UE j to processor n

λn
sj

Task priority index of UE j in processor n

xn
s,rim

Offloading task-VM matching decision variable

pns Allocation price ($/VM-hour) decision variable

un
i,rm Utility gain of the m-th VM of type n at server i

64

4.2.2 MEC Service Provisioning Model

I model a service-oriented MEC system architecture [35] to implement

computation offloading as a service. As depicted in Figure 4.1, the

orchestrator is in charge of the overall computation offloading service

provisioning process. It starts by receiving offloading requests from the

UEs to allocate computing resources to process the offloaded tasks and

manage corresponding resource allocation payments. The orchestrator

interacts with the MEC sites, EGWs, and UEs through control and

user plane functions (UPFs), and implements the offloading services

with the help of two other SDN controllers: (a) MEC virtualization

infrastructure manager and (b) MEC platform manager.

The virtualization manager mainly oversees the computing infras-

tructure resources (i.e., servers) of the MEC system. It abstracts and

partitions the computational resources into virtualized CPU (vCPU)

resource units using SDN functionalities. For each server i, the vir-

tualization manager defines N different sets of virtual machine (VM)

instances and then allocates vCPUs into these instances aligning with

the computational processing requirements for N MEC applications/

services. As shown in Figure 4.1, each processor n has a resource

pool consisting of Rn =
∑︁I

i=1 r
n
i VMs, where Rn

i indicates the number

of VMs available at server i to process the tasks of application n. I

represent the m-th VM at server i by rnim, which has computing power

Cn
i (MBps) and W n

i vCPUs each with CPU frequency fn
Ci

(in Hz).

The platform manager supervises the offloading task execution pro-

cess by managing the N MEC application processors via the MEC

platform. The platform maintains a task queue Kn for each processor

65

n to handle the incoming offloading requests for application n. Each

queue Kn has a fixed (K = J) number of positions. Each position

s is associated with a user-specific task priority index λn
sj

that helps

prioritize the requests.

To complete each offloading task of application type n is within the

deadline τnmax (msec), the minimum average processing speed (MBps)

for the UE j’s request yields fn
Cmin
≥ (d̄

n
j /τ

n
max) [2]. Therefore, I consider

a delay-aware task prioritizing policy defining the task priority index

for the s-th task position as

λn
sj
=

d̄
n
j

τnmax

(4.3)

that prioritizes offloading requests with larger data sizes and shorter

task completion deadlines. The platform manager handles the incom-

ing offloading requests according to the requested task type n. The

platform manager forwards the requests to the corresponding proces-

sor n and places them into the task queue Kn according to the request-

ing UE j’s priority index λn
sj
. The orchestrator then coordinates the

auction process that matches the tasks and suitable VMs. I consider

non-preemptive priority-based task assignments at each processor; that

means allocated VMs are not released until task processing finishes.

4.2.3 MEC Orchestration Model

The orchestrator manages the end-to-end computation offloading ser-

vice provisioning process through an auction. I model the orchestration

process as a dynamic position auction game between two sets of players:

UEs and MEC servers, while the orchestrator is the auctioneer. It runs

the auction mechanism at discrete offloading time slots, t = 1, 2, . . . ,

66

Place the task in position sj

Initiate auction at each processor, n

Activate VMs

Arrange VMs in
R

n rank positions
Update on VM rankings

VM setup notification

Platform

Manager

UEs

j = {1, 2, .., K}

MEC

Orchestrator

MEC Nodes/

Servers

i = {1, 2, .., I}

Forward

offloading requests

Request for bids

Virtualization

Infrastructure

Manager

Establish computation offloading
transmission between VMs and UEs

VM setup response

Offloading task completion response

Forward task computation results

Update service
payment

Notification to release assigned VMs

VM release notification response

1. Check application/service type n

2. Add task in processor queue Kn

Update on task placements

Receive offloading requests

Collect bids, bn
i,r

Update on offloading pricing decisions

Acknowledgement for payment decisions

Forward submitted bids

For each processor n, run Algorithm 1:

GSP_Mechanism

Begin task

execution

Notification to activate VMs

App/Service

Processor,

n = {1,2, « N}

Task execution

Update computation results

Deactivate and release VMs

1. Assign VMs to tasks

2. Map UPFs with

respective host servers

1. Update workloads ηn
i,r and

quality scores θn
i,r of VMs

2. Calculate VM ranking
scores yn

i,r

Figure 4.2: Workflow of the computation offloading mechanism in MEC framework.

67

with a duration of ∆t, at N processors. Thus, it obtains N sets of

independent allocations. For each auction round in processor n, K = J

UEs are the resource buyers. The I servers are then the sellers with Rn

VMs as the auction commodities.

Formally, at processor n and time slot t > 0, I express the offloading

service provisioning state as ⟨Kn(t),Rn(t),X n(t),Pn(t)⟩, where

• Kn(t) represents the task queue with K distinct positions. When

the UE j’s request arrives at the processor n, its computing task

knj with length dnkj (MB) takes position sj ∈ Kn(t) with the priority

index λn
sj
,

- Rn(t) represents the list of ranked VMs in processor n, where each

VM rnim has a position m. The position is updated every time slot

based on the current computing processing score θni,rm(t) and bid

bni,rm(t),

- X n(t) represents the offloading task-VM matching decisions, where

xns,rim(t) ∈ {0, 1} is the decision variable indicating if the task in

position s is assigned to the m-th VM at server i in time slot t,

- Pn(t) represents the allocation pricing decisions. The decision vari-

able pns (t) ≥ 0 indicates the amount (in $/VM-hour) that the UE

pays for offloading the task in position s ∈ Kn(t).

I describe the orchestration stages below and summarize the overall

workflow in Figure 4.2.

(i) Dynamic Queuing of Incoming Offloading Tasks: At the

beginning of time slot t, the orchestrator gathers the incoming

68

offloading requests and forwards them to the platform manager.

The platform manager checks their task types and arranges them

into respective processing queues Kn(t). The offloading requests

arrive dynamically, i.e., the orchestrator does not have any prior

information about the number of tasks in the current time slot

until the requests arrive.

(ii) Dynamic Resource Management Based on Computational

Workloads: The virtualization manager uses dynamic resource

management policies and maintains separate queues to monitor

the computational workloads of VMs at each processor n. At the

beginning of every time slot t, it checks the status of VMs and

updates their workloads in the queue denoted by ηni,rm(t). The

workload of each VM queue thus evolves as

ηni,rm(t) = ηnrem,i,rm
(t− 1) +

K∑︂
s=1

dnkj(t)x
n
s,rim

(t) (4.4)

where

ηnrem,i,rm
(t− 1) = max

{︄
K∑︂
s=1

dnkj(t)x
n
s,rim

(t− 1)− Cn
i ∆t, 0

}︄
represents the remaining workload of the VM rnim after computing

the task assigned in round (t − 1). Therefore, the current com-

putational workload per capacity (Byte per CPU cycle (BPC)) on

the m-th VM at server i can be estimated as [48]

Γn
i,rm

(t) =
ηni,rm(t)

Cn
i ∆t

. (4.5)

Based on the VM’s workload per capacity, the resource utilization

69

metric follows as

ϕn
i,rm

(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if Γmax ≤ Γn

i,rm
(t)⃓⃓⃓

Γn
i,rm

(t)− Γmax
⃓⃓⃓

Γmax
,if Γmin ≤ Γn

i,rm
(t) < Γmax

1, otherwise

(4.6)

where Γmax indicates the maximum load allowed per capacity on

each VM. Task assignment beyond this limit would overload the

VM with the lowest utilization score (i.e., ϕn
i,rm

= 0). In contrast,

it scores the highest (i.e., ϕn
i,rm

= 1) when the VM is underloaded,

i.e., the existing load is smaller than the minimum resource uti-

lization threshold Γmin; otherwise, the scoring function determines

the resource utilization scores for the VMs under normal workload

between 0 and 1.

The expected computation performance quality score of a VM is

updated in each time slot t, according to its current resource uti-

lization as

θni,rm(t) =
W n

i f
n
Ci

fn
Cmin

ϕn
i,rm

(t). (4.7)

(iii) Collecting Bids from Servers: After queuing the incoming of-

floading requests and updating VMs’ expected computation per-

formance quality score, the orchestrator initiates the auction with

the bid collection process by requesting servers to submit bids for

each processor n. Also, it provides the servers with information

on service provisioning state values from the previous round of the

auction.

The servers determine their bids for each round, following their

best-response bidding strategies (as I discuss in Section 4.4). For

70

each server i, I use bn
i (t) =

[︂
bni,r1, b

n
i,r2

, . . . , bni,rRn
i

]︂
to denote its bids

for its VMs in processor n in round t.

(iv) Determining Resource Allocation Decisions: After receiv-

ing the updated bids, the orchestrator runs the resource alloca-

tion and pricing algorithm at each processor n. I consider GSP-

based resource allocation and pricing rules to determine the task

assignment decisions, xns,rim(t), and VM allocation pricing deci-

sions, pns (t). I outline the resource allocation and pricing in Algo-

rithm 3.

(v) Executing Offloading Tasks at Servers: In the next stage, the

orchestrator notifies the virtualization manager to set up the VMs

according to the task-VM matching decisions. The virtualization

manager then maps the VMs and tasks to the host servers and

UPFs, respectively. It updates the orchestrator after setting up the

VMs and then activates the VMs to execute tasks after receiving

the notification from the orchestrator. In the end, it sends the

computed results back to the UEs via the orchestrator.

After sending the task computation results, the orchestrator up-

dates the UEs about the total offloading service payment informa-

tion and notifies the virtualization manager to release the assigned

VMs. Once the UEs acknowledge the service billing, the orchestra-

tor ends the current offloading transmission session. I consider pay-

per-CPU cycle payment methods for processing offloading tasks,

where payments are collected at the end of the billing cycle (e.g.,

bi-weekly, monthly, annually).

71

4.2.4 Utility Model of MEC Servers

I consider the utility model for the servers based on the profits earned

from VM allocation in each auction round. The profit for each VM is

given by the price difference between the allocation price settled by the

auctioneer (orchestrator) and the VM’s private valuation.

Let vni,rm be the private valuation ($/VM-hour) of the m-th VM at

server i in processor n, and is determined based on the CPU power

consumption at the processor [62],

vni,rm = ρiκW
n
i

(︁
fn
Ci

)︁2
(4.8)

where ρi is a scaling parameter to convert the CPU power consumption

into monetary value. Besides, κ is the effective switched capacitance of

the processor.

Therefore, if server i allocates m VMs to task position s in processor

n in time slot t, its profit follows as

uni,rm(t) =
K∑︂
s=1

λn
sj
θni,rs(t)

(︁
pns (t)− vni,rs

)︁
xns,ri(m=s)

(t) (4.9)

The total utility of server i in time slot t thus yields

Ui(t) =
N∑︂
n=1

Rn
i∑︂

m=1

uni,rm(t). (4.10)

4.2.5 Utility Model of Offloading Users

The utility of the offloading users depends on their QoE in terms of both

task offloading cost and task execution latency. The total execution

time of task knj offloaded by UE j consists of (i) upload, (ii) queue at

the MEC platform, (iii) computation at the allocated VM, and (iv)

72

sending back the results. Often, the size of the computed results is

negligible compared to uploading the data; Hence, I ignore the time

to send back the results in the downlink. Therefore, the end-to-end

offloading service latency (in sec) for the task knj in time slot t can be

written as

δnkj(t) = δnkj ,up(t) + δnkj ,wait(t) + δnkj ,comp(t) , (4.11)

where for UE j, the upload time to MEC node i′ is given by δnkj ,up(t) =
dnkj

(t)

γi′,j
(t). At server i, the computation time is δnkj ,comp(t) =

dnkj
(t)

Cn
i
. The

waiting latency for each request depends only on the computation time

of the tasks placed ahead in the task queue. Thus, for a task in position

s ∈ Kn(t), it can be estimated as δnkj ,wait(t) =
∑︁s−1

s′=1 δ
n
ks′

j
,comp

(t), where

ks′j denotes the task in an upper position (s′ < s) in the queue.

To quantify UE j’s level of satisfaction with the overall service la-

tency for a task knj , I define the following performance metric:

αn
kj
(t) =

⎧⎪⎨⎪⎩
|τnmax − δnk (t)|

τnmax

, if 0 < δnkj ≤ τnmax

0, otherwise

(4.12)

Therefore, UE j’s QoE in terms of offloading service latency can be

estimated as the following mean opinion score

Qlatency
j (t) =

1

N

[︄
N∑︂
n=1

K∑︂
s=1

Rn∑︂
r=1

αn
kj
(t)xns,rim(t),

]︄
(4.13)

Next, considering āj ($) as the UE j’s monetary budget, I model

the UE’s QoE in terms of offloading service cost using the budget cost

savings ratio as

Qcost
j =

⃓⃓⃓⃓
āj − aj(t)

āj

⃓⃓⃓⃓
, (4.14)

73

where aj(t) represents the cost (in $) to process the offloading tasks,

which depends on the processing time spent by the allocated VMs.

Formally,

aj(t) =
N∑︂
n=1

K∑︂
s=1

Rn∑︂
r=1

δnkj ,comp(t) p
n
s (t)x

n
s,rim

(t) (4.15)

The overall utility gain of the UE j thus becomes

Qj = ql Q
latency
j + qcQ

cost
j , (4.16)

where ql ∈ [0, 1] and qc ∈ [0, 1] are the QoE coefficients to adjust

the trade-off between the offloading service latency and offloading cost,

respectively.

4.3 GSP-Based Auction Mechanism Design for Dy-

namic Computation Offloading and Resource

Allocation

I develop a GSP-based auction mechanism for offloading service provi-

sioning at N MEC processors at every time slot t. Indeed, the orches-

trator performs the task assignment and resource allocation using the

auction mechanism. The goal is to maximize the total valuation of the

allocated VM resources in each time slot.

I first formulate the winner determination problem (WDP) by con-

sidering an offline version of computation offloading as a snapshot.

Then, I study the WDP solutions and decide on resource pricing at the

current auction round. Later, I describe the repeated auction mecha-

nism enabling the orchestrator to allocate the resources for each pro-

cessor n in any time slot t in a dynamic computation offloading setting.

74

4.3.1 Winner Determination Problem Formulation

I consider a static computation offloading scenario at the n-the proces-

sor. There are K computing tasks in the queue Kn and I servers, each

having a distinct set of VM resources, {Rn
i }. Given the quality scores of

the VMs, θni,rm, and the bids submitted by the servers, bni,rm, the orches-

trator formulates the following optimization problem that maximizes

the total allocation valuation by determining the winners (i.e., VMs)

for each processor n.

max
K∑︂
s=1

I∑︂
i=1

∑︂
rim∈Rn

i

zns,rim xns,rim

s.t. (C1)
I∑︂

i=1

∑︂
rim∈Rn

i

xns,rim = 1, ∀ s

(C2)
K∑︂
s=1

∑︂
rim∈Rn

i

xns,rim ≤ Rn
i , ∀ i

(C3) xns,rim ∈ {0, 1}, ∀ s, rim (4.17)

where zns,rim = λn
sj
θni,rm/b

n
i,rm

represents the allocation valuation for the

VM rim ∈ Rn
i , who wins the s-th offloading task. In (4.17), constraint

(C1) guarantees that each offloading task is matched with exactly one

VM. The constraint (C2) ensures that the total number of tasks as-

signed to a server i does not exceed its VM resource constraints. Fur-

thermore, (C3) means that the offloading task assignments are binary

decision variables.

4.3.2 WDP Solution Approaches

The orchestrator determines the corresponding resource allocation prices,

{pns}, based on the offloading task assignment decisions, {xns,rim} ob-

75

tained through solving the WDP in (4.17). To achieve socially-efficient

allocation outcomes, one can adopt the classic VCG pricing mechanism

[55] so that the allocation algorithm solves the WDP by selecting the

VMs that gives maximum allocation valuation for each offloading task.

It then settles the allocation prices for each bidder equivalent to the

amount it contributes to social welfare. However, the VCG mechanism

is often unsuitable for practical auction design, especially for time-

sensitive computation offloading services in MEC. The reasons include

NP-hardness of WDP, revenue deficiency, and difficulties handling the

bidders’ information when the auction is part of a larger sequence of

commercial transactions [43].

To address the computational complexity of the WDP, I design an

approximation algorithm that finds the allocation decisions in polyno-

mial time. I notice that (4.17) is an instance of a multidimensional

multiple-choice knapsack problem (MDMCKP) [20]. In that problem,

a single knapsack consists of I containers/dimensions, each dimension

with a resource constraint of Rn
i , and the knapsack packs exactly one

task from each offloading UE in s ∈ Kn applying the ”multiple-choice”

constraint of MDMCK. It is well-known that MDMCKP is an NP-hard

problem [21]. So, assuming a single dimension by relaxing the resource

constraints in (C2), (4.17) boils down to an MCKP. Although MCKP

is still NP-hard, it is solvable in pseudo-polynomial time using dynamic

programming as long as the number of choices is low for each item [21].

Thus I use the knapsack dynamic programming-based resource al-

locations as the upper bound to the WDP (4.17). Afterward, I apply

the VCG pricing rules to obtain a benchmark solution to the resource

76

allocation prices for computation offloading services. However, still, a

more practical auction design to support dynamic resource allocations

and the long sequences of service-oriented payment transactions for on-

line auctions in MEC. Hence, I develop a computationally efficient and

practically viable repeated auction model in the subsequent section,

using the features from dynamic position auction and GSP mechanism

[54].

4.3.3 GSP-Based Resource Allocation and Pricing Mecha-
nism

In this section, I first outline a GSP-based allocation mechanism ad-

dressing the WDP (4.17). I summarize the modified GSP allocation

and pricing algorithm in Algorithm 3 that determines the offloading

task assignment decisions, xns,rim, and corresponding allocation prices,

pns , given the tasks’ priority scores, VMs’ quality scores, and bids, as

inputs.

For each processor n, I assumeK distinct task positions following the

position auction framework. Each position has a task priority index λn
sj
.

So, the proposed mechanism first arranges the tasks in decreasing order

of the requesting UEs’ task priority indices as in λn
s1
≥ λn

s2
≥ · · · ≥ λn

sK
.

Besides, I consider the pool of VM resources, Rn, as the list of items

to allocate to the offloading task positions. I also define a function to

rank the VMs according to their expected computation performance

quality scores, θni,rm, and the bids, bni,rm, submitted by their host server

i. The ranking score of the m-th VM at server i is given by

yni,rm =
θni,rm
bni,rm

. (4.18)

77

So, the proposed mechanism arranges the VMs into distinct rank po-

sitions as in: yni,r1 ≥ yni,r2 ≥ · · · ≥ yni,rRn . Next, the mechanism sequen-

tially matches the tasks and VMs according to their positions using the

GSP auction allocation rules. That is, the task in the i-th position is

matched to the VM in the i-th rank.

Besides, according to the GSP pricing rule, the corresponding allo-

cation price is equal to the bid that the winning VM rnim requires to

maintain its current m-th ranking position. Hence, the allocation price

for the task position s, matched to the VM at rank m = s, satisfies

bni,rs ≤
θni,rs
θni,rs+1

bni,rs+1
. (4.19)

Thus, I define the price adjustment rate with respect to the VM in

the m-th rank position as

Θn
m =

θni,rm
θni,rm+1

. (4.20)

The monotonicity in allocation prices means that a VM that wins

a task in a higher position receives more than lower VMs. To satisfy

that, I arrange the price adjustment rates in a decreasing order intoΘn
R.

Finally, the proposed modified GSP mechanism settles the allocation

price for the s-th position as

pns =

⎧⎨⎩ Θn
Rs
bni,rs+1

, if 1 ≤ s < K

bni,rs + ϵ, if s = Rn
(4.21)

where ϵ is a small positive constant to guarantee that a VM is paid more

than its bid, when it is the last one in the ranked list (i.e., Rn = K).

78

4.3.4 Repeated GSP-Based Dynamic Resource Allocation and
Pricing Mechanism

In this section, I model the repeated GSP mechanism as a dynamic

game of incomplete information. I consider a dynamic computation

offloading environment, where the number of offloading tasks and the

workloads of the VMs are uncertain until the offloading requests arrive

at the processors.

Algorithm 3: GSP Mechanism

Input: λn, θn, bn

Output: πn = (xn,pn)
1 Update the tasks’ positions in the queue according to their priority indices,
Kn ← sort(λn, descend)

2 Find each VM’s ranking score,
3 for m = 1 to Rn do

4 yni,rm =
θni,rm
bni,rm

5 end
6 Arrange VMs according to their ranking scores, Rn ← sort(yn, descend)
7 Find the price adjustment rates,
8 for m← 1 to (Rn − 1) do
9 rm ← Rn[m], r(m+1) ← Rn[m+ 1],

10 Θn
m =

θni,rm
θni,rm+1

11 end
12 Arrange price adjustment rates in decreasing order,

Θn
R ← sort(Θn, descend)

13 Sequentially match the tasks in Kn with ranked VMs in Rn, and find
corresponding allocation prices.

14 for s← 1 to K do
15 if (1 ≤ s < K) then
16 xn

s,ris
= 1

17 pns = Θn
Rs
bni,rs+1

18 end
19 else if (s == Rn) then
20 pns = bni,rs + ϵ

21 end

22 end

79

I summarize the repeated GSP-based resource allocation and pricing

method in Algorithm 4. The algorithm begins with all the state

information on UEs and VMs as inputs. At regular intervals with

length T , the algorithm updates the priority indices for each processor

n using (4.3) based on UEs’ offloading historical data.

The algorithm continues the provisioning of offloading services at

time t = 1, 2, . . . with a duration of ∆t. At the beginning of each slot

t, it gathers incoming offloading requests and places them into the queue

Kn(t) according to the requested application type n. Any request that

arrives after that will be processed in the next time slot. After queuing

the offloading task in each processor n ∈ {1, 2, . . . , N}, it initiates the

bid collection process by sending a request for bids to the servers along

with information on tasks’ priority indices λn and resource allocation

decisions from the previous round, i.e., πn(t− 1). For initialization, it

uses random task assignments.

Next, the algorithm updates the expected computation performance

quality scores, θni,rm(t), for the VMs based on their current workloads.

Upon receiving the bids from all the servers, each processor runs Al-

gorithm 3 to obtain the allocation and pricing decisions πn(t) for the

current round. Finally, the algorithm updates the workloads of the

VMs according to the new allocation decisions before moving to the

next auction round.

4.3.5 A Toy Example

Consider a MEC offloading scenario as illustrated in Figure 4.3, con-

sisting of J = 4 offloading UEs, and I = 2 servers offering MEC services

for N = 3 different applications. The MEC orchestrator gathers the

80

Algorithm 4: Repeated GSP for MEC Offloading

Input: I,J ,N}
Output: {πn(t)}

1 Initialize offloading service provisioning states,
Kn ← ∅,Rn ← ∅,X n ← ∅,Pn ← ∅

2 Update task priority scores at every interval T .
3 for n = 1 to N do
4 for j = 1 to K do

5 λn
sj
=

γ̂i′,jβ
n

d̂
n
sj
τnmaxf

n
Cmin

6 end

7 end
8 Begin offloading service provisioning,
9 while (t ∈ {1, 2, . . . }) do

10 Gather incoming offloading requests according to the requested task type,
11 for n = 1 to N do
12 for s = 1 to K do
13 Kn(t)[s] = dnkj(t)

14 end
15 Request servers to submit bids for this round,

bn(t)← Request Bids (λn
sorted(t), π

n(t − 1))
16 Update VM’s computation quality scores,
17 for i = 1 to I do
18 for m = 1 to Rn

i do
19 Find resource utilization metric ϕn

i,rm(t) using eqn. (4.6)

20 θni,rm(t) =
Wn

i fn
Ci

Cn
i

ϕn
i,rm

21 end

22 end
23 Obtain resource allocation and price decisions,

πn(t)← GSP Mechanism (λn,θn(t),bn(t))
24 Update workloads for allocated VMs,
25 for i = 1 to I do
26 for m = 1 to Rn

i do
27 for s = 1 to K do
28 if (xn

s,rim
(t) == 1) then

29 ηni,rm(t) = dnkj(t)

30 end

31 end

32 end

33 end

34 end

35 end

81

incoming offloading requests and forwards them to the task processing

queues. Each processor has a task queue with K = 4 distinct positions,

where the task offloaded by UE j is placed in position s = j. For ex-

ample, the tasks in processor n = 3 (i.e., K3) are listed in positions

s = 2, s = 3, and s = 4 as per the UEs’ indices.

The pool of VM resources represented by R1, R2, and R3, respec-

tively in Figure 4.3, includes VMs from different servers. The VMs in

processor n = 1 consists of R1
1 = 1 and R1

2 = 3 VMs from server i = 1

(shaded in grey color) and i = 2, respectively. Similarly, R2 consists of

R2
1 = 3 and R2

2 = 2 VMs, and R3 has R3
1 = 2 and R3

2 = 2 VMs.

Consider the MEC system, with the set of offloading tasks and VM

resources presented in Figure 4.3. I present an example describing

the proposed GSP mechanism. The task priority indices of UEs are

given as λ1 = [0.31, 0.20, 0.15, 0.09], λ2 = [0.13, 0.23, 0.14, 0.38], and

λ3 = [0.26, 0.11, 0.24, 0.20]. Beside, Figure 4.4 shows the VMs’ quality

scores and bids submitted for each application type.

Example 1 Considering a MEC system, with the set of offloading tasks

and VM resources as presented in Fig. 4.3, I hereby present an ex-

ample describing how the proposed GSP mechanism determines the

allocation decisions. I assume, the task priority indices of UEs are

1

2

3

4 M
E

C
 o

rc
eh

st
ra

to
r

K
1

K
2

K
3

Task queues

k1
1

k2
1

k1
2

k2
2

k3
2

k4
2

k2
3

k3
3

k4
3

{k2 , k2 , k2}
123

{k1 , k1}
12

{k3 , k3}
23

{k4 , k4}
23

R
1

R
2

R
3

r11r21r22r23

r11r12r13r21r22

r11r21r22r23

1111

22222

3333

VM Resources

Figure 4.3: An illustration of incoming offloading requests and VMs at MEC proces-
sors.

82

given as: λ1 = [0.31, 0.20, 0.15, 0.09], λ2 = [0.13, 0.23, 0.14, 0.38], and

λ3 = [0.26, 0.11, 0.24, 0.20]. Given the VMs’ quality scores and bids sub-

mitted for each application type, as in Fig. 4.4, the proposed mechanism

for task assignment and pricing is described as follows.

At first, the arriving tasks are sorted in decreasing order of their

priority scores in their respective task queues. As demonstrated in

Figure 4.4), the tasks in K1 are arranged as λs11
> λs12

. Similarly,

the tasks in K2 and K3 are arranged as λs24
> λs22

> λs23
> λs21

, and

λs33
> λs24

> λs32
, respectively.

K1
R1

n
 =

 1

s1

s2

s3

s4

imrn

5.2

4.2

0.22r1
11

r1
22 0.23

23.64

18.26

1.238

1.053

k1
1

k1
2

r1
11

r1
22

r1
23

r1
21

r1
23

r1
21

4

3.8

0.24

0.24

16.67

15.83

1.05

1

1

1

0

0

K2
R2

n
 =

 2

s1

s2

s3

s4

imrn

4.9

4.7

0.28r2
13

r2
12 0.28

17.5

16.79

spn

0.3

0.294

k2
4

k2
2

r2
13

r2
12

r2
11

r2
21

r2
11

r2
21

4.5

4.2

0.28

0.30

16.07

14

0.313

0.312

1

1

1

1

r2
22 4 0.30 13.33 00

k2
3

k2
1

r2
22

K3
R3

n
 =

 3

s1

s2

s3

s4

imrn

5

4.8

0.29r3
11

r3
22 0.29

17.24

16.55

spn

0.366

0.315

k3
3

k3
4

r3
11

r3
22

r3
21

r3
12

r3
21

r3
12

3.8

3.5

0.29

0.29

13.10

12.06

0.302

0

1

1

1

0

k3
2

bn
i,rm

yn
i,rm

�
 n
i,rm

xn
s,rim

xn
s,rim

yn
i,rm

bn
i,rm

�
 n
i,rm

xn
s,rim

yn
i,rm

bn
i,rm

�
 n
i,rm

p1
 =

2
b1

2,r3

p2
 =

1
b2

1,r2

p2
 =

2
b2

1,r1

p2
 =

3
b2

2,r1

p2
 =

4
b2

2,r2

p
3
 =

1
b3

2,r2

p3
 =

2
b3

2,r1

p3
 =

3
b3

1,r2

spn

0.285

0.253

0

0

s
Θ

n
R p1

 =
1

b1
2,r21

�
1

R

2
�

1

R

1
�

2

R

2
�

2

R

3
�

2

R

4
�

1

R

1.071

1.05

1.044

1.043

1

s
Θ

n
R

1
�

3

R

2
�

3

R

3
�

3

R

1.263

1.086

1.042

1

s
Θ

n
R

Figure 4.4: An example demonstrating the assignment of offloading tasks to VMs,
and corresponding GSP-based pricing mechanism.

83

Next, the VMs in each processor are arranged according to their

ranking scores. VMs in R1 are ranked as y11,r1 > y12,r2 > y12,r3 > y12,r1.

Similarly, other VMs are ranked as y21,r3 > y21,r2 > y21,r1 > y22,r1 > y22,r2 in

R2. Finally, I have y31,r1 > y32,r2 > y32,r1 > y31,r2 in R3.

Now, the GSP resource allocation and pricing mechanism (Algorithm 3)

sequentially matches the tasks in each queue Kn to the VMs in the

queue Rn, as shown by directed arrows in Figure 4.4. For example,

task k11 in the first position in K1 is matched to VM r111, which is in the

top rank in R1. The corresponding task assignment decision variable

is then updated as x11,r11 = 1.

The allocation prices are then determined based on the price ad-

justment rates and the bid of the VM ranked next. For example,

the allocation price for the first task position yields p11 = Θ1
R1
b12,r2 =

(1.238 × 0.22) = $0.285/VM-hr. The same procedure follows for all

other tasks in the processors.

4.4 Analysis of Bidding Strategies in GSP-Based

Dynamic MEC Offloading Auction

In this section, I study the strategic behavior of MEC servers. The

servers who participate as bidders can adjust their bids in every time

slot. They can learn about competitors’ bids through interactions over

successive auction rounds and adjust their strategies to maximize their

utility. To that end, I study best-response bidding strategies for servers

to adjust bids within a certain range. That also guarantees to achieve a

Nash equilibrium in every round, which maximizes the utility for every

participating server.

84

4.4.1 Adaptive Balanced Bidding Strategies of Servers

I consider myopic best-response strategies [8], where every server i ad-

justs its bids for the current auction round t under the assumption that

other servers repeat their bids of the previous round. In the dynamic

computation offloading setting, the CPU utilization and the compu-

tation performance qualities of VMs fluctuate based on their compu-

tational workloads. Hence, I consider an adaptive balanced bidding

policy, where each server devises the current bidding strategies consid-

ering the VMs’ expected computation performance quality scores and

adjusts the bids accordingly.

In the position auction framework, the offloading tasks in the higher

positions return higher profits for VMs, due to the monotonicity in GSP

prices. Hence, every bidder adjusts its bids for each VM by targeting

a higher task position that can maximize the VM’s profit in the next

auction round. To win a task with a higher offloading rate, a lower

value is necessary so that the VM can obtain a higher-ranking position

in the auction. On the contrary, self-interested bidders tend to bid

higher for their VMs with higher expected quality scores to earn more

profits.

Therefore, I propose a balanced bidding strategy that allows a server

to adjust the bids for its VMs within a certain range, and yet maximize

the profit. To restrict servers from overbidding, I use the restricted

balanced bidding (RBB) strategy [10]: A server determines the bid

for each of its VMs by aiming for the desired task position s∗m that

maximizes the m-th VM’s utility. It then adjusts its bid based on the

allocation price of the target slot pns∗m(t − 1) in the previous round.

85

The core concept of balanced bidding is limiting the degree to which

a server acts greedy while adjusting the bids for VMs. In the RBB

strategy, when a server adapts its bid for each VM rnim, it can only

aim for task positions with no higher priority indices than the position

that the m-th VM has already won in the previous round. That allows

the server to bid as low as essential to secure the s∗m-th rank in the

next auction round. Moreover, it adjusts the bid in a balanced way so

that if the VM cannot win the target slot, it does not end up with a

profit lower than the previous round. Below, I define the RBB strategy

formally.

Definition 6 Assuming other servers’ bids remain fixed at their pre-

vious values, and ŝm be the position that the m-th VM at server i has

won in the previous round (t−1), the Restricted Balanced Bidding

(RBB) strategy is to:

(i) find the target task position s∗m among the positions ranging from

ŝm to K, that maximizes the VM’s utility:

s∗m = argmax
s′

{︂
λn
s′j
θni,rm(t)

(︂
pns′(t− 1)− vni,rs′

)︂
,
}︂
,

If the VM has not been allocated to any position is the previous

auction round, then the server looks for the target position within

the range: 1 ≤ s′ ≤ K.

(ii) adjust the bid for the current auction round t, in a way that satis-

fies the following

λn
s∗m
θni,rm(t− 1)

(︂
pns∗m(t− 1)− vni,rm

)︂
= λn

s∗m−1θ
n
i,rm

(t)
(︁
bni,rm(t)− vni,rm

)︁
.

86

Algorithm 5: Restricted Balanced Bidding Strategy

Input: λn, xn(t− 1), pn(t− 1)

Output: bni (t)
1 Upon receiving bid request from processor n,
2 for m = 1 to Rn

i do
3 Find whether the VM has won any task position in the previous time slot

(t− 1),
4 for s = 1 to K do
5 if (xn

s,rim
(t− 1) == 1) then

6 ŝm = s
7 else
8 ŝm = 1
9 end

10 end

11 end
12 Find the target slot s∗m that maximizes utility,
13 for s′ = ŝm to K do

14 ûn
s′,m = λn

s′j
θni,rm(t)

(︂
pns′(t− 1)− vni,rs′

)︂
15 end
16 s∗m ← argmax(ûn)
17 Adjust bid according to RBB strategy in eqn. (4.22),
18 if (s∗m == 1) then

19 Πn
i,rm =

θni,rm(t− 1)

2 θni,rm(t)

20 end
21 else

22 Πn
i,rm =

λn
s∗m
θni,rm(t− 1)

λn
s∗m−1θ

n
i,rm

(t)

23 end

24 bni,rm(t)← vni,rm +Πn
i,rm

(︁
pns∗m(t− 1)− vni,rm

)︁
25 end

Using the RBB strategy as defined above, the updated bid for the

current auction round t for the m-th VM at server i yields

bni,rm(t) = vni,rm +Πn
i,rm

(︂
pns∗m(t− 1)− vni,rm

)︂
(4.22)

where Πn
i,rm

=
λn
s∗m
θni,rm(t− 1)

λn
s∗m−1θ

n
i,rm

(t)
. If the target task position is the topmost

one, i.e., s∗m = 1, then I assume λn
0 = 2λn

1 to adjust the bid. In Al-

87

gorithm 5, I describe adapting the bid by a server following the RBB

bidding strategy for the VMs in every processor n.

4.4.2 Analysis of Bidding Dynamics on Auction Efficiency

In this section, I analyze the efficiency of the GSP mechanism un-

der dynamic MEC offloading setting considering synchronous bidding

model [54], where servers update their bids simultaneously. I show that

no server encounters a negative utility gain through their participa-

tion in the auction satisfying the Individual Rationality (IR) property,

when each server follows the RBB strategy in every round of auction

(Theorem 1). First, I define the Individual Rationality (IR) property.

Definition 7 In the GSP-based MEC offloading mechanism, the Indi-

vidual Rationality (IR) is satisfied, if the resource allocation prices

pns (t) guarantee non-negative utility gain, i.e., uni,rm(t) ≥ 0 for every

VM rnim at server i that participates in the computation procedure at

processor n during the time slot t.

Theorem 1 The GSP-based MEC offloading auction at each processor

n guarantees the individual rationality for every participating VM, when

the servers follow the proposed RBB strategy in every round of auction.

Proof. See Appendix B.1.

Next, I analyze the stability of the GSP-based resource allocation

outcomes in a dynamic setting, the same auction mechanism is repeated

in every time slot t with new sets of offloading requests at N processors.

In this scenario, the concept of stability in the auction mechanism in

each processor n is represented in terms of an equilibrium point with

88

a set allocation price decisions, where every server is well-off with the

resource allocation decisions and do not wish to exchange any of the

VM allocation with another VM during the time slot t. Therefore, the

auction reaches N distinct equilibrium points at different processors

in every time slot t. In Theorem 2, I show that the proposed GSP-

based MEC offloading mechanism results into a set of Symmetric Nash

Equilibrium (SNE) allocation prices in every auction round, where no

server prefers to exchange the assigned task positions for any of its

VM, with another task position within the same processor. Instead

the servers are well-off with their utilities at SNE, and thus maintain

the equilibrium by following the RBB strategy for the future auction

round. I formally define the SNE allocation prices in a dynamic MEC

offloading scenario, as follows:

Definition 8 The set of resource allocation prices pn(t) at processor n

during the time slot t, is in Symmetric Nash Equilibrium (SNE)

if the following holds for any task positions s and s′ in Kn(t):

λn
sj

(︁
pns (t)− vni,rs

)︁
≥ λn

s′j

(︂
pns′(t)− vni,rs′

)︂
, (4.23)

Theorem 2 There exists a set of symmetric Nash equilibrium (SNE)

allocation prices for GSP-based MEC offloading auction at each proces-

sor n, when every server i follows the proposed RBB strategy in every

round of auction.

Proof. See Appendix B.2.

In the dynamic setting, the auction has a set of SNEs and thus may

reach different SNE points at various auction rounds. However, the

bidders can vary their bids within a certain range without violating the

89

stability of the allocation outcomes. Theorem 3 presents the upper and

lower bound to the SNE for the proposed GSP-based resource allocation

mechanism.

Theorem 3 For any task type n, the upper- and lower bounds for the

bid to satisfy the SNE conditions are given by

bn,UB
i,rs

xn(s−1),r(s−1)
=

vni,rs
Θn

R(s−1)

xn(s−1),r(s−1)

+
λ∗Θn

Rs

Θn
R(s−1)

(︂
bni,r(s+1)

− vni,rs

)︂
xns,rs, (4.24)

bn,LBi,rs
xn(s−1),r(s−1)

=
vni,r(s−1)

Θn
R(s−1)

xn(s−1),r(s−1)

+
λ∗Θn

Rs

Θn
R(s−1)

(︂
bni,r(s+1)

− vni,r(s−1)

)︂
xs,rs. (4.25)

where λ∗ =
λn
sj

λn
(s−1)j

, r(s−1), rs, and r(s+1) denotes the VMs allocated to

the task positions (s− 1), s, and (s+ 1), respectively.

Proof. See Appendix B.3.

To validate that the proposed GSP-based MEC offloading auction

reaches the equilibrium point within a polynomial time in every auc-

tion round, I analyze the computational complexity of the proposed

resource allocation and pricing algorithms. Using Algorithm 4 in ev-

ery time slot t, one can obtain the computation offloading task assign-

ment and allocate VM resources. The algorithm has prior knowledge

about the task priority indices. Theorem 4 states some results about

the computational efficiency of our proposed mechanism.

90

Theorem 4 The proposed GSP-based MEC offloading auction is com-

putationally efficient, i.e., the resource allocation outcomes are deter-

mined in polynomial time in every auction round t.

Proof. See Appendix B.4

4.5 Numerical Results

In this section, I first study the convergence properties of the proposed

RBB bidding strategy considering the static scenario of computation

offloading. Next, I compare the auction’s revenue properties of the pro-

posed GSP mechanism with the well-known welfare-maximizing VCG

mechanism. I also investigate the mechanism’s performance from the

users’ and overall MEC system’s perspectives concerning welfare max-

imization.

Table 4.2: System parameters used for simulation in Chapter 4

Parameters and values

N = 1, I = 2 J = 150, K = J ∆t = 1 min

fCmin
= 3.2 GHz Ft= 5.8 GHz

[τmin, τmax] = [20, 200] msec Pu = 20 dBm

BW = 80 MHz σ2
N = -100 dBm

[Γmin,Γmax] = [0.01, 0.90] µd = 2.12, µ0 = 29.2, µf = 2.11

dk ∼ Poisson(davg) MB davg ∼ [10, 40] MB

κ = 10−24, ϵ = 0.001 qc = 0.5, ql = 0.5

ā = $20/month

I consider a dynamic simulation setup for the MEC system that man-

ages computation offloading service provisioning within a 250× 250m2

91

Table 4.3: VM Configuration Model used for simulation in Chapter 4

MEC Server Rn
i Wi RAM fn

Ci
Ci ρi

i (GB) (GHz) (MIPS) ($/VM-hr)

i = 1 60 2 4 3.3 GHz 32 0.0452

i = 2 60 2 4 3.5 GHz 24 0.0435

i = 3 40 2 4 3.2 GHz 24 0.0385

i = 4 50 1 2 3.2 GHz 16 0.0186

i = 5 50 1 2 3.3 GHz 16 0.0175

area. There are I = 5 servers/nodes and J = 150 wireless UEs, ran-

domly located within this area following uniform and non-uniform dis-

tribution, respectively. The UEs are associated with the nearest physi-

cal MEC node. The offloading requests are generated randomly in each

auction round, where the offloading data sizes follow the Poisson distri-

bution with the parameter davg. Table 4.2 lists the MEC offloading and

wireless channel parameters. Table 4.3 provides the VM configuration

model. Each server offers a single type of VM instance compatible with

the n = 1-th MEC application. To capture the dynamics of the wireless

channel and offloading process more accurately, I simulate 1000 times

for each time slot and use the average for that auction round.

4.5.1 Convergence of Bidding Strategies

To analyze the convergence properties for the proposed GSP-based

mechanism, I consider a static offloading scenario assuming all J = 150

UEs offload the same length of computing tasks in every round of auc-

tion. Furthermore, there are I = 2 servers with private valuations

v1 = $0.0354 and v2 = $0.0366, respectively. I study their competitive

92

bidding behavior by following the proposed RBB strategy. I investigate

three cases with the various number of available VMs, i.e., R = [150, 1],

R = [1, 150], and R = [80, 80], representing different levels of compe-

tition among the servers. The first two cases represent the monopoly

market scenario where server i = 1 and server i = 2 dominate the sup-

ply of VM resources, respectively. The third case corresponds to fair

competition among servers. To identify the convergence point, I set the

convergence tolerance to 0.0001.

Figure 4.5 shows the average bids of the servers and the respective

allocation prices according to the submitted bids by each server for the

above three cases. The solid- and dashed lines represent the bids sub-

mitted by the server i = 1 and the server i = 2, respectively. In all three

cases, the servers bid no less than their private valuations (as shown

by the green lines in Figure 4.5(a)), ensuring non-negative profit/u-

tility gain. Every server tends to increase its bid prices to beat the

opponent, which gradually converges to some fixed points after a finite

number of auction rounds. Figure 4.5(b) shows the corresponding

allocation prices, where I compare the proposed GSP-based allocation

prices with the VCG-based prices obtained from the Knapsack-based

dynamic programming solution approach for (4.17). In all three cases,

the VCG-based allocation prices are constant and lower than the pro-

posed GSP-based prices, confirming that VCG mechanism is welfare-

maximizing (i.e., buyer-friendly).

In the first case, the bids submitted by server i = 1 and server

i = 2 converge to b∗1 = $0.0371/VM-hr in time slot t = 11 and

b∗2 = $0.0384/VM-hr in time slot t = 6, respectively (Figure 4.5(a)).

93

5 10 15 20 25

Auction rounds, t

0.032

0.033

0.034

0.035

0.036

0.037

0.038

0.039

0.04

B
id

s
($

/V
M

-h
r)

v
1

b
1
, R=[150,1]

b
1
, R=[1,150]

b
1
, R=[80,80]

v
2

b
2
, R=[150,1]

b
2
, R=[1,150]

b
2
, R=[80,80]

5 10 15 20

Auction rounds, t

0.032

0.033

0.034

0.035

0.036

0.037

0.038

0.039

0.04

A
ll

o
ca

ti
o
n

 p
ri

ce
 (

$
/V

M
-h

r)

Proposed GSP, R=[150,1]

Proposed GSP, R=[1,150]

Proposed GSP, R=[80,80]

VCG, R=[150,1]

VCG, R=[1,150]

VCG, R=[80,80]

(a) (b)

Figure 4.5: Convergence analysis for the proposed RBB bidding strategies, based
on (a) average bid prices of each server, bni , and (b) average allocation prices, pn,
considering I = 2 servers with varying number of VMs, Rn

i .

In this case, server i = 1 dominates the market supply. Thus the major-

ity of the offloading tasks go to VMs at that server. The corresponding

allocation prices reach the equilibrium point p∗ = $0.0371/VM-hr in

round t = 22 (Figure 4.5(b)). There is a similar trend for the sec-

ond case. When server i = 2 dominates the market supply, it wins

the majority of the tasks. Server i = 1’s bid converges to b∗1(t = 6) =

$ 0.0385/VM-hr, which is significantly higher than the previous case

indicating that the server tries to beat the opponent despite its lower

supply of VM resources. The bid prices of the other server i = 2 with a

higher supply of VM resources converge to b∗2(t = 7) = $ 0.04/VM-hr,

which indicates the server’s influence over the allocation prices con-

verging to the equilibrium point p∗(t = 9) = $0.04. When the mar-

ket has a fair level of competition as in the third case, both servers’

bids converge to lower values, i.e., b∗1(t = 13) = $0.0370/VM-hr and

b∗2(t = 13) = $0.0393/VM-hr, respectively. The corresponding alloca-

tion prices, shown in Figure 4.5(b), confirm that bringing more sellers

94

100 200 300 400 500

No. of UEs, t

0.035

0.036

0.037

0.038

0.039

A
ll

o
ca

ti
o
n

 p
ri

ce
 (

$
/V

M
-h

r)

p
RBB

 (Dynamic case)

p
RBB

 (Static case)

p
VCG

 (Dynamic case)

p
VCG

 (Static case)

10 20 30 40 50

Auction rounds, t

0.025

0.03

0.035

0.04

0.045

A
ll

o
ca

ti
o
n

 p
ri

ce
,
($

/V
M

-h
r)

I=2

I=3

I=5

(a) (b)

Figure 4.6: Comparison of average allocation prices for (a) varying number of UEs,
J ; and (b) different number of MEC servers, I.

into the offloading service market influences the market to settle at a

lower equilibrium price, p∗(t = 14) = $0.0381/VM-hr, which is more

favorable to the UEs.

Next, I analyze the convergence of the proposed RBB strategies con-

sidering the dynamic offloading scenario, where the size of the comput-

ing tasks changes following the Poisson distribution. In Figure 4.6(a),

I compare the average allocation prices for the proposed GSP mecha-

nism with the VCG mechanism for varying numbers of UEs, starting

from J = 50 to J = 500. Furthermore, I assume the size of the of-

floading task queue is the same as the number of UEs, i.e., K = J ,

and the number of VMs at the servers as R = [250, 250]. As shown

in Figure 4.6(a), the average allocation prices for both the static and

dynamic cases are very close for a lower number of UEs. Eventually,

as the number of UEs increases, they coincide. In the beginning, with

J = 50, the resource utilization is low. Hence, the proposed GSP mech-

anism selects low allocation prices, i.e., pGSP = $0.0378/VM-hr and

pGSP = $0.0379/VM-hr for the static and dynamic cases, respectively.

As the number of UEs, thus resource utilization and competition among

the server, increases, the corresponding allocation prices increase. They

95

reach the maximum of pGSP = $0.0383/VM-hr for both the static and

dynamic cases at J = 250. At this point, the servers exhibit the max-

imum level of competition since, for each UE, the probability of being

matched with either server is equal. When the number of UEs grows

to even larger values, the allocation prices start to drop because the

increasing workloads at the VMs restrict the servers from raising the

bids further. In both the static and dynamic cases, the VCG-based

allocation prices remain fixed at pVCG = $0.0354/VM-hr, lower than

the proposed GSP-based prices.

In Figure 4.6(b), I compare average allocation prices for the pro-

posed GSP mechanism for different numbers of resource sellers in the

offloading service market. Considering a dynamic offloading scenario

with J = 120 UEs and a total of R = 120 VMs, I study three different

cases with I = 2, I = 3, and I = 5, each server having Ri = 60, Ri = 40,

and Ri = 24 VMs, in each case respectively. As the number of servers

increases, the competition among the resource sellers grows, which in-

creases the average allocation prices. When the number of servers

I = 5, the average allocation prices converge to p∗ = $0.0448/VM-

hr which is approximately 11%, and 14% higher than the cases with

I = 2 and I = 3, respectively.

4.5.2 Auction Revenue and Profits of Servers

In this section, I evaluate the auction performance of the proposed

GSP-based offloading mechanism for the proposed RBB strategy and

compare the results with the other bidding strategies. For comparison,

I consider the greedy bidding strategies in GSP mechanism [9], which

include: (i) balanced bidding (BB) strategy, where servers can target

96

0

0.01

0.02

0.03

0.04

0.05

($
/V

M
-h

o
u

r)

RBB

BB

CB

AB

VCG

0

1

2

3

4

5

6

R
a

ti
o
(%

)

RBB

BB

CB

AB

VCG

Bids Allocation price
(a) (b)

Profit margin

Figure 4.7: Performance comparison between knapsack-based VCG mechanism and
GSP mechanism with different balanced bidding strategies, based on: (a) Submitted
bids vs allocation prices; (b) Profit margin ratio (%) of servers.

any task position maximizes its utility gain, (ii) altruistic bidding (AB)

strategy, where servers always bid lower than the allocation price of the

target task position favoring the buyers, and (iii) competitor busting

(CB) strategy, where the servers act vindictively by bidding higher than

the allocation price of the target task position so that the competitor

ends up with a lower utility gain.

Considering I = 2 servers with R = [80, 80] VMs and J = 150

UEs, I first compare the equilibrium bids (i.e., the point of bid conver-

gence) and allocation prices of the proposed strategy with other greedy

strategies and truthful bidding in VCG mechanism. As shown in Fig-

ure 4.7(a), the CB strategy results in the highest average bid, thus

the highest allocation price; nevertheless, it is not suitable for both

sellers and buyers. Among other strategies, the RBB strategy gives

higher bids and allocation prices with b∗BB = p∗BB = $0.0393/VM-hr,

whereas our proposed BB strategy converges to slightly lower values,

i.e., b∗RBB = $0.0383/VM-hr and p∗RBB = $0.0384/VM-hr. That is be-

cause the BB strategy allows servers to choose their preferable target

positions without any restriction, unlike our proposed strategy. The

97

10 20 30 40 50

Auction rounds, t

-5

0

5

10

A
v
g

.
p

ro
fi

t
o

f
se

rv
er

s
($

/V
M

-h
r)

107

u
1
 (RBB) u

2
 (RBB)

u
1
 (CB) u

2
 (CB)

u
1
 (VCG) u

2
 (VCG)

10 20 30 40

Auction rounds, t

1.9

2

2.1

2.2

S
u

m
 a

ll
o
ca

ti
o
n

 v
a
lu

a
ti

o
n

($
/V

M
-h

r)

109

RBB

CB

VCG

(a) (b)

Figure 4.8: Performance evaluation of proposed RBB strategy in comparison with
other bidding strategies, based on (a) average profits of servers; and (b) sum allocation
valuation

BB strategy also performs well in terms of a profit margin ratio of

4.44% (Figure 4.7(b)). However, our proposed RBB strategy results

in 2.811%, which is still better than the AB strategy and the VCG

mechanism.

Next, I analyze the average profit of each server and the auction

revenue, i.e., the sum valuation of task computation at the allocated

resources. I compare the results for the proposed RBB strategy with

the truthful bidding in the VCG mechanism and the CB strategy, rep-

resenting the best-case and the worst-case scenarios from the users’

perspectives. As shown in Figure 4.8(a), the average profits of server

i = 1 and i = 2 for the proposed RBB strategy converge to u∗i =

$6.07 × 107/VM-hr and u∗i = $1.67 × 107/VM-hr, respectively. For

the CB strategy, although the average profit of server i = 1 becomes

even higher than the proposed RBB strategy (shown with the solid red

line), server i = 2 ends up with a negative utility gain because of the

vindictive bidding behavior. The servers’ gains for the VCG mecha-

nism remain zero. A similar trend appears in Figure 4.8(b), where

98

100 200 300 400 500

No. of UEs, J

80

100

120

140

160

180

200

S
o

ci
a

l
w

el
fa

re

GSP (R=300)

VCG(R=300)

GSP(R=450)

VCG (R=450)

100 200 300 400 500

No. of UEs, J

0.2

0.4

0.6

0.8

1

1.2

1.4

A
v

g
.

U
E

 u
ti

li
ty

 g
a

in

GSP (R=300)

VCG(R=300)

GSP(R=450)

VCG (R=450)

(a) (b)

Figure 4.9: Performance comparison between proposed GSP and VCG mechanism
for varying number of VMs, based on: (a) Social welfare; (b) Average utility gain of
UEs.

the proposed RBB strategy yields a higher sum allocation valuation

than the VCG mechanism, whereas the CB strategy exceeds the total

valuation due to higher allocation prices.

4.5.3 Social Welfare and QoE Analysis

In this section, I analyze the performance of the proposed GSP-based

offloading mechanism addressing the QoE of UEs and the overall social

welfare of the MEC system. With I = 3 servers and K = 300, I com-

pare the social welfare and the average utility of UEs of the proposed

GSP mechanism with the VCG mechanism in Figure 4.9. To that

end, I change the number of UEs from J = 50 to J = 550. I evaluate

the results for two cases, R = 300 and R = 450, with Ri = 100 VMs

and Ri = 150 VMs in each server i, respectively. Figure 4.9(a) shows

that the social welfare for the GSP- and VCG mechanisms increases as

the number of UEs increases. It then remains fixed after the cut-off

point J = K = 300 when the number of UEs surpasses the capacity

limit. Furthermore, the proposed GSP mechanism provides higher so-

cial welfare than the VCG mechanism for both cases. Although the

VCG mechanism guarantees higher utility gain for the UEs than the

99

100 200 300 400 500

No. of UEs, J

0

1

2

3

4

5

U
E

s'
 a

v
g
.

o
ff

lo
a

d
in

g
 c

o
st

 (
$
/t

a
sk

)

10
-6

GSP, d
avg

=[5,20]

VCG, d
avg

=[5,20]

GSP, d
avg

=[10,40]

VCG, d
avg

=[10,40]

GSP, d
avg

=[20,100]

VCG, d
avg

=[20,100]

100 200 300 400 500

No. of UEs, J

0

0.2

0.4

0.6

A
v

g
.
ta

sk
 e

x
ec

u
ti

o
n

 l
a
te

n
cy

 (
se

c)

GSP, d
avg

=[5,20]

VCG, d
avg

=[5,20]

GSP, d
avg

=[10,40]

VCG, d
avg

=[10,40]

GSP, d
avg

=[20,100]

VCG, d
avg

=[20,100]

max
 = 200 msec

(b)(a)

Figure 4.10: QoE Analysis for the proposed GSP and VCG mechanisms for varying
offloading task sizes, based on: (a) average offloading cost; (b) average offloading
service latency.

proposed GSP mechanism (Figure 4.9(b)), the latter results in higher

social welfare than the former because the profit of the servers is always

higher. Figure 4.9(b) also reveals that the average utility gain of UEs

for the GSP- and VCG mechanisms coincide for both cases. When the

MEC system has the same resource availability as the system capacity

limit, i.e., R = 300, then the average utility gain increases until the

number of UEs hits the system capacity, i.e., K = 300. It then de-

creases until it reaches the fixed point at Q∗ = 0.567. For the second

case with R = 450, the average utility gain of UEs improves with more

supply of VM resources for both mechanisms. In this case, the UEs’

average QoE reaches its maximum when J = 400 and then goes down

to the fixed point of Q∗ = 1.291. In the case of social welfare, the

changes in VM resource supply (e.g., R = 300 and R = 450) have no

significant impact on the mechanisms (Figure 4.9(b)).

Next, I study the QoE of UEs for three different cases by varying the

average offloading task sizes: (i) davg = [5, 20], (ii) davg = [10, 40], and

(iii) davg = [20, 100]. With R = 450 and K = 400, I plot the average

100

offloading cost and service latency of UEs in Figure 4.10. The results

are almost the same for both mechanisms. The average offloading cost

and service latency of UEs tend to increase as the number of UEs

increases until it reaches the system’s capacity limit, i.e., K = 400, and

then remain fixed. Moreover, when the average offloading data sizes

increase, the corresponding average offloading cost and service latency

of UEs rise significantly. To be specific, when the average offloading task

size is davg = [20, 100], the average offloading service latency exceeds

the maximum task completion threshold, τmax = 200 msec, after the

number of UEs reaches J = 200. The average offloading cost for the

case with davg = [20, 100] is more than double the offloading compared

to others.

4.6 Conclusion

In this chapter, I presented a dynamic resource allocation mechanism

for MEC offloading, which implements computation offloading as a ser-

vice via a repeated GSP auction process. The main objective of the

proposed mechanism is to maximize the sum valuation of the com-

puting resources at the servers while satisfying the QoE of offloading

users. Furthermore, I proposed a restricted balanced bidding (RBB)

strategy for the servers, which guarantees the symmetric Nash equilib-

rium (SNE) condition for the proposed GSP mechanism in every round

of auction. To validate the performance of the proposed solution ap-

proach, numerical results are given along with theoretical analysis.

101

Chapter 5

Conclusion and Future Research
Direction

In this chapter, I briefly summarize the research contributions and con-

clude the thesis. I also discuss about the open problems in MEC offload-

ing, which can be addressed using repeated GSP auction framework in

future research.

5.1 Conclusion

This thesis introduces a novel application of GSP-based position auc-

tion into MEC-enabled wireless networks, specifically for deploying

computation offloading services for 5G networks and beyond. I pre-

sented a generic business model to implement service-oriented MEC

offloading in the presence of multiple competitive computation service

providers. This MEC service delivery pltaform implements computa-

tion offloading as a service trading betweeen wireless UEs and MEC

servers through an online auction process, which centrally manages the

overall resource allocation and service pricing mechanisms.

Furthermore, I investigate efficient resource allocation and pricing

mechanism design approaches, considering the realistic network dy-

102

namics and the challenges related to satisfying hetereogeneous QoS

requirements of users in wireless environment. The main research ob-

jective of this thesis is to design an efficient auction mechanism, so

that the limited computing resources are allocated in a way that sat-

isfies offloading users’ QoS demands and also ensures profit gain for

MEC service providers.

Towards achieving this goal, I design a novel GSP-based reverse auc-

tion model in Chapter 3, which efficiently allocates computing resources

satisfying users’ resource demands and also maximizes the profits of

MEC servers. To guarantee the stability and allocation efficiency of

the proposed resource allocation mechanism, I propose adaptive bal-

anced bidding strategies for MEC servers so they cannot overbid and

manipulate the resource pricing mechanisms in a dynamic offloading

environment. Numerical results are presented to evaluate the perfor-

mance of the proposed mechanism from both the users’ and servers’

perspectives.

I perform further investigation on enhancing users’ QoE in a dynamic

wireless environment, addressing the challenges in allocating resources

when offloading requests arrival at random intervals, and computa-

tional workloads and corresponding CPU performance of the servers

vary in each offloading period. I develop effective dynamic resource

management policies using the concepts of priority queuing and net-

work function virtualization approaches, and present a flexible MEC

offloading framework in Chapter 4. This MEC service delivery plat-

form can be integrated into the existing wireless network architecture,

to deploy MEC services for various applications using SDN function-

103

alities. A detailed orchestration workflow is presented to model the

communication and offloading service provisioning process.

To implement this MEC service provisioning process, I design a re-

peated GSP auction mechanism addressing the competition among the

computing resource sellers. The dynamic resource allocation problem in

the auction procedure involves the offloading task assignment decision

problem (i.e., WDP) and offloading service pricing decision problems. I

mathematically formulate the WDP as an optimization problem, that

maximizes the total allocation valuation for different types of MEC

application under the resource capacity constraints of the servers. I

present new load-ware ranking and pricing rules to the develop the

GSP-based resource allocation and pricing algorithm. Moreover, to

enforce regulation over the competitive bidding behavior of the MEC

servers, I propose new restricted-balanced bidding strategies so that the

auction results stable and economically efficient allocation outcomes in

every offloading period. A through analysis of the bidding strategies

and auction properties is presented. An extensive numerical analysis

is also given showing the performance of the proposed mechanism in

achieving social welfare and allocation efficiency in comparison with the

existing approaches.

5.2 Future Research Directions

In the next generation of MEC networks, the efficient management of

limited resources of MEC servers is continued to be the fundamen-

tal problem, as the number of wireless traffic increases exponentially.

Therefore, when multiple computation service providers enter into the

104

MEC service market, the resource allocation problem turns into multi-

fold, such as, satisfying heterogeneous QoS demands at minimal offload-

ing cost, and handling the competition among the service providers.

Furthermore, the trade-off between the offloading cost and QoS always

exist in the MEC offloading scenario.

Related to the proposed repeated GSP auction-based MEC offload-

ing mechanisms presented in Chapter 3 and Chapter 4 of this thesis,

I outline few potential enhancements and extensions as the future re-

search:

• In the multi-user multi-vendor MEC offloading scenario, it is cru-

cial to preserve the users’ private information, e.g., physical lo-

cations, the network operator/ service provider they belong to,

payment information, etc. In order to protect users from cyber

attacks, block-chain technology can be integrated with the MEC

offloading architecture. Similarly, the block-chain enabled security

can also be enforced for MEC servers for a regulated interaction

during the bidding process.

• In order to accurately model the uncertainties in users’ QoS re-

quirements, mathematical tools such as Markov decision processes

and reinforcement learning can be applied. This will help model

the randomness in offloading task arrivals and users’ mobility, then

efficiently allocate the resources as the users’ offloading status

evolve.

• To ensure fairness and effectiveness considering the dynamic prior-

ity queuing of the offloading tasks and corresponding load-aware

105

computation resource management policies, stochastic optimiza-

tion approaches can be investigated with the goal of maximizing

social welfare of the offloading system.

• In addition, the optimal bidding strategies for the competitive

MEC servers can be studied, using the probabilistic mathemat-

ical models to predict the resource utilization and expected profit

gain, and then adjust bid prices with revenue guarantee.

• As the truthful bidding is not the dominant strategy in GSP auc-

tion, it is difficult to identify vindictive bidding and prevent bid-

ders from trying to manipulate the allocation prices. So, to en-

sure payment fairness and price stability, rational pricing strategies

need to be devised correcting the utility loss caused by vindictive

bidding.

106

Bibliography

[1] Gagan Aggarwal, Ashish Goel, and Rajeev Motwani. “Truthful Auctions for
Pricing Search Keywords”. In: InProceedings of 7th ACM Conference on Elec-
tronic Commerce. ACM, 2006, pp. 1–7.

[2] Ali Alnoman. “Delay-aware Scheduling Scheme for Ubiquitous IoT Applications
in Edge Computing”. In: 2021 International Symposium on Networks, Comput-
ers and Communications (ISNCC). 2021, pp. 1–4. doi: 10.1109/ISNCC52172.
2021.9615690.

[3] Syed Umar Amin and M. Shamim Hossain. “Edge Intelligence and Internet of
Things in Healthcare: A Survey”. In: IEEE Access 9 (2021), pp. 45–59. doi:
10.1109/ACCESS.2020.3045115.

[4] T. Bahreini, H. Badri, and D. Grosu. “An Envy-Free Auction Mechanism for
Resource Allocation in Edge Computing Systems”. In: 2018 IEEE/ACM Sym-
posium on Edge Computing (SEC). Oct. 2018, pp. 313–322.

[5] Alcardo Alex Barakabitze et al. “QoE Management of Multimedia Streaming
Services in Future Networks: A Tutorial and Survey”. In: IEEE Communica-
tions Surveys Tutorials 22.1 (2020), pp. 526–565. doi: 10.1109/COMST.2019.
2958784.

[6] Kashif Bilal and Aiman Erbad. “Edge computing for interactive media and
video streaming”. In: 2017 Second International Conference on Fog and Mobile
Edge Computing (FMEC). 2017, pp. 68–73. doi: 10.1109/FMEC.2017.7946410.

[7] Ester Camina. “A generalized Assignment Game”. In: Mathematical Social Sci-
ences, Elsevier 52.2 (Sept. 2006), pp. 152–161.

[8] Matthew Cary et al. “Convergence of Position Auctions under Myopic Best-
Response Dynamics”. In: ACM Transactions on Economics and Computation
2.3 (July 2014), pp. 1–20.

[9] Matthew Cary et al. “Greedy Bidding Strategies for Keyword Auctions”. In:
Proceedings of the 8th ACM Conference on Electronic Commerce. EC ’07. San
Diego, California, USA: ACM, 2007, pp. 262–271. isbn: 978-1-59593-653-0. doi:
10.1145/1250910.1250949. url: http://doi.acm.org/10.1145/1250910.1250949.

[10] Matthew Cary et al. “Greedy Bidding Strategies for Keyword Auctions”. In:
Proceedings of the 8th ACM Conference on Electronic Commerce. EC ’07. San
Diego, California, USA: ACM, 2007, pp. 262–271. isbn: 978-1-59593-653-0. doi:
10.1145/1250910.1250949. url: http://doi.acm.org/10.1145/1250910.1250949.

107

https://doi.org/10.1109/ISNCC52172.2021.9615690
https://doi.org/10.1109/ISNCC52172.2021.9615690
https://doi.org/10.1109/ACCESS.2020.3045115
https://doi.org/10.1109/COMST.2019.2958784
https://doi.org/10.1109/COMST.2019.2958784
https://doi.org/10.1109/FMEC.2017.7946410
https://doi.org/10.1145/1250910.1250949
http://doi.acm.org/10.1145/1250910.1250949
https://doi.org/10.1145/1250910.1250949
http://doi.acm.org/10.1145/1250910.1250949

[11] Xu Chen et al. “Efficient Multi-User Computation Offloading for Mobile-Edge
Cloud Computing”. In: IEEE/ACM Transactions on Networking 24.5 (2016),
pp. 2795–2808. doi: 10.1109/TNET.2015.2487344.

[12] B. Edelman, M. Ostrovsky, and M. Schwarz. “Internet Advertising and the Gen-
eralized Second-Price Auction: Selling Billions of Dollars Worth of Keywords”.
In: American Economic Review 97.1 (2007), pp. 242–259.

[13] Benjamin Edelman and Michael Schwarz. “Optimal Auction Design and Equi-
librium Selection in Sponsored Search Auctions”. In: American Economic Re-
view 100.2 (May 2010), pp. 597–602. doi: 10.1257/aer.100.2.597. url: https:
//www.aeaweb.org/articles?id=10.1257/aer.100.2.597.

[14] Guoju Gao et al. “Auction-based VM Allocation for Deadline-Sensitive Tasks in
Distributed Edge Cloud”. In: IEEE Transactions on Services Computing 14.6
(2021), pp. 1702–1716. doi: 10.1109/TSC.2019.2902549.

[15] Hongzhi Guo and Jiajia Liu. “Collaborative Computation Offloading for Multi-
access Edge Computing Over Fiber–Wireless Networks”. In: IEEE Transactions
on Vehicular Technology 67.5 (2018), pp. 4514–4526. doi: 10.1109/TVT.2018.
2790421.

[16] Ummy Habiba, Setareh Maghsudi, and Ekram Hossain. “A Reverse Auction
Model for Efficient Resource Allocation in Mobile Edge Computation Offload-
ing”. In: 2019 IEEE Global Communications Conference (GLOBECOM). 2019,
pp. 1–6. doi: 10.1109/GLOBECOM38437.2019.9014240.

[17] Hsiang-Jen Hong et al. “Optimizing Social Welfare for Task Offloading in Mobile
Edge Computing”. In: 2020 IFIP Networking Conference (Networking). 2020,
pp. 524–528.

[18] Che-Wei Hsu, Yung-Lin Hsu, and Hung-Yu Wei. “Energy-Efficient Edge Of-
floading in Heterogeneous Industrial IoT Networks for Factory of Future”.
In: IEEE Access 8 (2020), pp. 183035–183050. doi: 10.1109/ACCESS.2020.
3029253.

[19] A. Jin, W. Song, and W. Zhuang. “Auction-Based Resource Allocation for Shar-
ing Cloudlets in Mobile Cloud Computing”. In: IEEE Transactions on Emerging
Topics in Computing 6.1 (Jan. 2018), pp. 45–57.

[20] Hans Kellerer, Ulrich Pferschy, and David Pisinger. “Knapsack Problems”. In:
Springer, 2004. Chap. The Multiple-Choice Knapsack Problem.

[21] Terence Kelly. “Generalized knapsack solvers for multi-unit combinatorial auc-
tions: analysis and application to computational resource allocation”. In: Pro-
ceedings of the 6th AAMAS international conference on Agent-Mediated Elec-
tronic Commerce: theories for and Engineering of Distributed Mechanisms and
Systems. July 2004, pp. 73–86.

[22] A. Kiani and N. Ansari. “Toward Hierarchical Mobile Edge Computing: An
Auction-Based Profit Maximization Approach”. In: IEEE Internet of Things
Journal 4.6 (Dec. 2017), pp. 2082–2091.

108

https://doi.org/10.1109/TNET.2015.2487344
https://doi.org/10.1257/aer.100.2.597
https://www.aeaweb.org/articles?id=10.1257/aer.100.2.597
https://www.aeaweb.org/articles?id=10.1257/aer.100.2.597
https://doi.org/10.1109/TSC.2019.2902549
https://doi.org/10.1109/TVT.2018.2790421
https://doi.org/10.1109/TVT.2018.2790421
https://doi.org/10.1109/GLOBECOM38437.2019.9014240
https://doi.org/10.1109/ACCESS.2020.3029253
https://doi.org/10.1109/ACCESS.2020.3029253

[23] S. O. Krumkea and C.Thielen. “The generalized assignment problem with min-
imum quantities”. In: European Journal of Operational Research 228.1 (2013),
pp. 46–55.

[24] Śebastien Lahai and David M.Pennock. “Revenue analysis of a family of rank-
ing rules for keyword auctions”. In: InProceedings of 8th ACM Conference on
Electronic Commerce. ACM, 2013, pp. 50–56.

[25] Tra Huong Thi Le et al. “Auction Mechanism for Dynamic Bandwidth Alloca-
tion in Multi-Tenant Edge Computing”. In: IEEE Transactions on Vehicular
Technology 69.12 (2020), pp. 15162–15176. doi: 10.1109/TVT.2020.3036470.

[26] Haemin Lee et al. “Auction-based Deep Learning Computation Offloading for
Truthful Edge Computing: A Myerson Auction Approach”. In: 2021 Interna-
tional Conference on Information Networking (ICOIN). 2021, pp. 457–459. doi:
10.1109/ICOIN50884.2021.9334016.

[27] Feixiang Li et al. “Auction Design for Edge Computation Offloading in SDN-
based Ultra Dense Networks”. In: IEEE Transactions on Mobile Computing
21.5 (2022), pp. 1580–1595. doi: 10.1109/TMC.2020.3026319.

[28] Quanyi Li et al. “Reinforcement-Learning- and Belief-Learning-Based Double
Auction Mechanism for Edge Computing Resource Allocation”. In: IEEE In-
ternet of Things Journal 7.7 (2020), pp. 5976–5985. doi: 10.1109/JIOT.2019.
2953108.

[29] Yuqing Li et al. “Online Cooperative Resource Allocation at the Edge: A
Privacy-Preserving Approach”. In: 2020 IEEE 28th International Conference
on Network Protocols (ICNP). 2020, pp. 1–11. doi: 10.1109/ICNP49622.2020.
9259382.

[30] M. Liu and Y. Liu. “Price-Based Distributed Offloading for Mobile-Edge Com-
puting With Computation Capacity Constraints”. In: IEEE Wireless Commu-
nications Letters 7.3 (June 2018), pp. 420–423.

[31] P. Mach and Z. Becvar. “Mobile Edge Computing: A Survey on Architecture
and Computation Offloading”. In: IEEE Communications Surveys Tutorials
19.3 (2017), pp. 1628–1656.

[32] B. Al-Manthari et al. “Fair Class-Based Downlink Scheduling with Revenue
Considerations in Next Generation Broadband Wireless Access Systems”. In:
IEEE Transactions on Mobile Computing 8.6 (June 2009), pp. 721–734.

[33] Multi-access Edge Computing (MEC); MEC 5G Integration. Group Report. Oct.
2020.

[34] Multi-access Edge Computing (MEC); Study on MEC support for alternative
virtualization. Group Report. Nov. 2019.

[35] Multi-access Edge Computing (MEC); Study on MEC support for alternative
virtualization technologies. Group Report. Nov. 2019.

[36] John Nash. “Non-Cooperative Games”. In: The Annals of Mathematics 54.2
(Sept. 1951), pp. 286–295.

109

https://doi.org/10.1109/TVT.2020.3036470
https://doi.org/10.1109/ICOIN50884.2021.9334016
https://doi.org/10.1109/TMC.2020.3026319
https://doi.org/10.1109/JIOT.2019.2953108
https://doi.org/10.1109/JIOT.2019.2953108
https://doi.org/10.1109/ICNP49622.2020.9259382
https://doi.org/10.1109/ICNP49622.2020.9259382

[37] P.1411-11 - Propagation data and prediction methods for the planning of short-
range outdoor radio communication systems and radio local area networks in
the frequency range 300 MHz to 100 GHz. Tech. Rep. Sept. 2021.

[38] Jianli Pan and James McElhannon. “Future Edge Cloud and Edge Computing
for Internet of Things Applications”. In: IEEE Internet of Things Journal 5.1
(2018), pp. 439–449. doi: 10.1109/JIOT.2017.2767608.

[39] Quoc-Viet Pham et al. “Coalitional Games for Computation Offloading in
NOMA-Enabled Multi-Access Edge Computing”. In: IEEE Transactions on
Vehicular Technology 69.2 (2020), pp. 1982–1993. doi: 10 .1109/TVT.2019 .
2956224.

[40] Tao Qin, Wei Chen, and Tie-Yan Liu. “Sponsored Search Auctions: Recent
Advances and Future Directions”. In: ACM Trans. Intell. Syst. Technol. 5.4
(Jan. 2015), 60:1–60:34. issn: 2157-6904.

[41] Ben Roberts et al. “Ranking and Tradeoffs in Sponsored Search Auctions”. In:
In Proceedings of 14th ACM Conference on Electronic Commerce. ACM, 2013,
pp. 751–766.

[42] Alvin E. Roth and Marilda Sotomayor. “Chapter 16 Two-sided matching”. In:
vol. 1. Handbook of Game Theory with Economic Applications. Elsevier, 1992,
pp. 485–541. doi: https ://doi . org/10 .1016/S1574 - 0005(05)80019 - 0. url:
https://www.sciencedirect.com/science/article/pii/S1574000505800190.

[43] Michael H. Rothkopf. “Thirteen Reasons Why the Vickrey-Clarke-Groves Pro-
cess Is Not Practical.” In: Operations Research 55.2 (2007), pp. 191–197.

[44] Z. Sanaei et al. “Heterogeneity in Mobile Cloud Computing: Taxonomy and
Open Challenges”. In: IEEE Communications Surveys Tutorials 16.1 (Jan.
2014), pp. 369–392.

[45] M. Satyanarayanan. “The Emergence of Edge Computing”. In: Computer 50.1
(Jan. 2017), pp. 30–39.

[46] Ziyu Shen, Jinshui Zhang, and Haisheng Tan. “A Truthful FPTAS Auction
for the Edge-Cloud Pricing Problem”. In: 2020 6th International Conference
on Big Data Computing and Communications (BIGCOM). 2020, pp. 140–144.
doi: 10.1109/BigCom51056.2020.00027.

[47] W. Shi et al. “Edge Computing: Vision and Challenges”. In: IEEE Internet of
Things Journal 3.5 (Oct. 2016), pp. 637–646.

[48] Stavros Souravlas et al. “A Fair, Dynamic Load Balanced Task Distribution
Strategy for Heterogeneous Cloud Platforms Based on Markov Process Mod-
eling”. In: IEEE Access 10 (2022), pp. 26149–26162. doi: 10.1109/ACCESS.
2022.3157435.

[49] Yi Su et al. “A Truthful Combinatorial Auction Mechanism towards Mobile
Edge Computing in Industrial Internet of Things”. In: IEEE Transactions on
Cloud Computing (2022), pp. 1–1. doi: 10.1109/TCC.2022.3155495.

110

https://doi.org/10.1109/JIOT.2017.2767608
https://doi.org/10.1109/TVT.2019.2956224
https://doi.org/10.1109/TVT.2019.2956224
https://doi.org/https://doi.org/10.1016/S1574-0005(05)80019-0
https://www.sciencedirect.com/science/article/pii/S1574000505800190
https://doi.org/10.1109/BigCom51056.2020.00027
https://doi.org/10.1109/ACCESS.2022.3157435
https://doi.org/10.1109/ACCESS.2022.3157435
https://doi.org/10.1109/TCC.2022.3155495

[50] Sukhmani Sukhmani et al. “Edge Caching and Computing in 5G for Mobile
AR/VR and Tactile Internet”. In: IEEE MultiMedia 26.1 (2019), pp. 21–30.
doi: 10.1109/MMUL.2018.2879591.

[51] W. Sun et al. “Double Auction-Based Resource Allocation for Mobile Edge
Computing in Industrial Internet of Things”. In: IEEE Transactions on Indus-
trial Informatics 14.10 (Oct. 2018), pp. 4692–4701.

[52] Tarik Taleb et al. “Mobile Edge Computing Potential in Making Cities Smarter”.
In: IEEE Communications Magazine 55.3 (2017), pp. 38–43. doi: 10 . 1109/
MCOM.2017.1600249CM.

[53] David R. M. Thompson and Kevin Leyton-Brown. “Revenue optimization in the
generalized second-price auction”. In: InProceedings of 14th ACM Conference
on Electronic Commerce. ACM, 2013, pp. 837–852.

[54] Hal Varian. “Position auctions”. In: International Journal of Industrial Orga-
nization 25.6 (2007), pp. 1163–1178.

[55] William Vickrey. “Counterspeculation, auctions, and competitive sealed ten-
ders”. In: The Journal of Finance 16.1 (Mar. 1961), pp. 8–37.

[56] vSphere Resource Management. Documentation. Mar. 2021. url: https://docs.
vmware . com/en/VMware - vSphere/7 . 0/vsphere - esxi - vcenter - server - 702 -
resource-management-guide.pdf.

[57] Junjue Wang et al. “Bandwidth-Efficient Live Video Analytics for Drones Via
Edge Computing”. In: 2018 IEEE/ACM Symposium on Edge Computing (SEC).
2018, pp. 159–173. doi: 10.1109/SEC.2018.00019.

[58] Quyuan Wang et al. “Incentive Mechanism for Edge Cloud Profit Maximization
in Mobile Edge Computing”. In: ICC 2019 - 2019 IEEE International Confer-
ence on Communications (ICC). 2019, pp. 1–6. doi: 10.1109/ICC.2019.8761241.

[59] Quyuan Wang et al. “Profit Maximization Incentive Mechanism for Resource
Providers in Mobile Edge Computing”. In: IEEE Transactions on Services Com-
puting 15.1 (2022), pp. 138–149. doi: 10.1109/TSC.2019.2924002.

[60] Rongfei Zeng et al. “FMore: An Incentive Scheme of Multi-dimensional Auction
for Federated Learning in MEC”. In: 2020 IEEE 40th International Conference
on Distributed Computing Systems (ICDCS). 2020, pp. 278–288. doi: 10.1109/
ICDCS47774.2020.00094.

[61] Heli Zhang et al. “Combinational Auction-Based Service Provider Selection in
Mobile Edge Computing Networks”. In: IEEE Access 5 (2017), pp. 13455–13464.
doi: 10.1109/ACCESS.2017.2721957.

[62] Jing Zhang et al. “Joint Computation Offloading and Resource Allocation Opti-
mization in Heterogeneous Networks With Mobile Edge Computing”. In: IEEE
Access 6 (2018), pp. 19324–19337. doi: 10.1109/ACCESS.2018.2819690.

[63] Jun Zhang and Khaled B. Letaief. “Mobile Edge Intelligence and Computing
for the Internet of Vehicles”. In: Proceedings of the IEEE 108.2 (2020), pp. 246–
261. doi: 10.1109/JPROC.2019.2947490.

111

https://doi.org/10.1109/MMUL.2018.2879591
https://doi.org/10.1109/MCOM.2017.1600249CM
https://doi.org/10.1109/MCOM.2017.1600249CM
https://docs.vmware.com/en/VMware-vSphere/7.0/vsphere-esxi-vcenter-server-702-resource-management-guide.pdf
https://docs.vmware.com/en/VMware-vSphere/7.0/vsphere-esxi-vcenter-server-702-resource-management-guide.pdf
https://docs.vmware.com/en/VMware-vSphere/7.0/vsphere-esxi-vcenter-server-702-resource-management-guide.pdf
https://doi.org/10.1109/SEC.2018.00019
https://doi.org/10.1109/ICC.2019.8761241
https://doi.org/10.1109/TSC.2019.2924002
https://doi.org/10.1109/ICDCS47774.2020.00094
https://doi.org/10.1109/ICDCS47774.2020.00094
https://doi.org/10.1109/ACCESS.2017.2721957
https://doi.org/10.1109/ACCESS.2018.2819690
https://doi.org/10.1109/JPROC.2019.2947490

[64] Lei Zhang et al. “Joint Service Placement and Computation Offloading in Mo-
bile Edge Computing: An Auction-based Approach”. In: 2020 IEEE 26th In-
ternational Conference on Parallel and Distributed Systems (ICPADS). 2020,
pp. 256–265. doi: 10.1109/ICPADS51040.2020.00043.

[65] Chongyu Zhou and Chen-Khong Tham. “Where to Process: Deadline-aware On-
line Resource Auction in Mobile Edge Computing”. In: 2018 IEEE International
Conference on Pervasive Computing and Communications Workshops (PerCom
Workshops). 2018, pp. 675–680. doi: 10.1109/PERCOMW.2018.8480192.

112

https://doi.org/10.1109/ICPADS51040.2020.00043
https://doi.org/10.1109/PERCOMW.2018.8480192

Appendix A: Proof of Propositions
in Chapter 3

A.1 Proof of Proposition 1

Proof. As described before, for each task type n, the MEC server

demands a price according to the bidding strategy given by (3.9). To

prove the individual rationality property for the participating bidders,

we need to show that the utility of each MEC server i is non-negative,

i.e., ui,n ≥ 0.

Assume that some MEC (bidder) i wins some tasks from the task

type n. Moreover, a total of xi,n units of resources are allocated at

a unit price πn. Therefore, the utility of MEC i for the allocation of

a resource unit yields ui,n = (πn − θnvi)xi,n. By definition, we have

xi,n ≥ 0; Consequently, to establish the individual rationality, we need

to show that πn ≥ θnvi. According to the payment rule given by (3.12),

it is sufficient to show that

bi′,n ≥ θnvi. (A.1)

The MEC bidders are sorted in the decreasing order of their effective

bids as

η1 ≥ · · · ≥ ηi ≥ ηi0 ≥ ηi′ ≥ · · · ≥ ηI .

Therefore, from the definition of effective bids in (3.10), we can con-

113

clude

bi,n ≤ bi0,n ≤ bi′,n, (A.2)

which implies vi′ ≥ vi0 ≥ vi.

According to Definition 5, the minimum bid that MEC server i′

reports for task type n is given by

bi′,n ≥ θnvi′. (A.3)

Since vi′ ≥ vi and θ ≥ 0, we can write

θnvi′ ≥ θnvi. (A.4)

From (A.3) and (A.4), we obtain the individual rationality constraint

as in (A.1). This ensures that no bidder incurs a loss from participating

in the proposed auction mechanism.

A.2 Proof of Proposition 2

Proof. To prove that the proposed auction mechanism is locally envy-

free, we need to show that no MEC server can profitably be re-matched

with the position (task type) just right above to the one she is currently

assigned to. In our system model, the auction positions represent the

different types of offloading requests, which are determined based on

the service providers’ offered application types. In the proposed auction

mechanism, the resource allocation prices πn for the offloading tasks of

type n are identical irrespective of the MEC servers to whom they are

assigned. Therefore, we need to verify the locally envy-free property for

the auction scenario where N ≥ 1. Moreover, the number of auction

positions is limited by the number of MEC servers, i.e., I ≥ N .

114

 1

2

3

4

 n
=

 1
 n

=
 2

 n
=

 3

 Offloading

Users k

MEC

Servers

4

5

6

1

 5

 6

2

 3

 (a) (b)

 1

2

3

4

 n
=

 1
 n

=
 2

 n
=

 3

 Offloading

Users k

MEC

Servers

4

5

6

3

 5

 6

2

 1

i

i'

i''

 (c)

 1

2

3

 n
=

 1
 n

=
 2

 n
=

 3

 Offloading

Users k

MEC

Servers

4

3

 5

 6

2

 1

 (d)

 1

2

 n
=

 1

 Offloading

Users k

MEC

Servers

4

3

2

 14

 n
=

 2
 n

=
 3

5

6

3

 i'

 i''

 i*

 i

 i

i''

 i'

Figure A.1: Feasible outcomes to verify envy-free allocation

Hence, we consider N = 3 to investigate the locally envy-free prop-

erty for the proposed auction mechanism. In Fig. A.1, we illustrate

different feasible outcomes1, which can be classified into the following

three scenarios: (i) The number of MEC servers is exactly same as the

number of offloading tasks, i.e., I = K (e.g., Fig. A.1(a) and (b)); (ii)

There are more MEC servers than the requested offloading tasks, i.e.,

I > K (e.g., Fig. A.1(c)); (iii) There is strong competition among the

bidders (MEC servers) as I < K (e.g., Fig. A.1(d)).

Case 1 : We first show the locally envy-freeness for the auction sce-

nario when there are equal number of MEC servers and offloading tasks.

Moreover, there is one-to-one matching for the task assignment as de-

1A feasible outcome µ represents the outcome of matching an object to a seller, which is com-
patible with the allocation outcome pair (x,π). At a feasible assignment, each seller (MEC server)
obtains some utility ui,n ≥ 0 for allocating xi,n ≥ 0 units at price πn ≥ 0 for each object (offloading
tasks). If the seller gets no allocation, her utility is zero. In other words, a feasible outcome is
individually rational [7].

115

picted in Fig. A.1(a). Let MEC servers i, i′, and i
′′
win the task types

n = 1, n = 2, and n = 2, respectively. Then we need to verify the

following two cases

• Case 1-A: Let us exchange the allocation of bidder i′ with bidder

i; i.e., bidder i′ is re-matched with allocation of xi′,1 units at price

π1. Thus, to establish the locally envy-free property, we need to

ensure that the utility of MEC server i′ does not improve with this

exchange; formally,

(π2 − θ2vi′)xi′,2 ≥ (π1 − θ1vi′)xi′,1. (A.5)

According to the pricing rule in (3.12), we get

π1 = bi′,1, and π2 = bi′′ ,2, and π3 = bi′′ ,3 + ϵ, (A.6)

where ϵ is a very small positive constant. By substituting the

prices given by (A.6) into (A.5), we obtain the following condition

that is sufficient to show the locally envy-freeness:

bi′,1xi′,1 − bi′′ ,2xi′,2 ≤ (θ1xi′,1 − θ2xi′,2) vi′. (A.7)

According to the bidding strategy in (3.9), we have

bi′,1 = θ1vi′, and bi′,2 ≥ θ2vi′.

Therefore,

bi′,1 xi′,1 − bi′′ ,2xi′,2 ≤ θ1vi′xi′,1 − θ2vi′′xi′,2. (A.8)

Moreover, we know that vi′′ ≥ vi′. Hence,

θ1vi′xi′,1 − θ2vi′′xi′,2 ≤ θ1vixi′,1 − θ2vi′xi′,2. (A.9)

116

Therefore, the condition in (A.7) is satisfied and the locally envy-

free property holds for this case.

• Case 1-B : Let the allocation of bidder i
′′
is exchanged with that

of bidder i′, when xi′′,2 units are allocated to bidder i
′′
at price

π2. We need to show that the utility of MEC server i
′′
does not

improve due to this exchange, i.e.,

(π3 − θ3vi′′)xi′′ ,3 ≥ (π2 − θ2vi′′)xi′′ ,2. (A.10)

By substituting the payment prices as given by (A.5), we obtain

the condition for locally envy-freeness as following

bi′′ ,2 xi′′ ,2 − (bi′′ ,3 + ϵ)xi′′ ,3 ≤ (θ2xi′′ ,2 − θ3xi′′ ,3)vi′′ . (A.11)

Due to the assumption of the exchange of allocation, we have

x
(t−1)
i′′ ,1

= x
(t−1)
i′′ ,2

= 0 for bidder i
′′
. Thus, the bidding strategy in

(3.9) yields

bi′′ ,2 = θ2vi′′ +
x
(t−1)
i′′ ,1

+ x
(t−1)
i′′ ,2

2
(π

(t−1)
1 − θ1vi′′) = θ2vi′′ (A.12)

By a similar argumentation, we conclude

bi′′ ,3 = θ3vi′′ +B∗, (A.13)

where B∗ =
x
(t−1)

i
′′
,2

+x
(t−1)

i
′′
,3

2 (π
(t−1)
2 − θ2vi′′) > 0.

Using (A.12) and (A.13), we can write

bi′′ ,2 xi′′ ,2 − bi′′ ,3 xi′′ ,3 = θ2vi′′xi′′ ,2

− (θ3vi′′ +B∗ + ϵ)xi′′ ,3

(A.14)

117

Hence it becomes evident that

θ2vi′′xi′′ ,2 − (θ3vi′′ +B∗ + ϵ)xi′′ ,3 ≤

(θ2xi′′ ,2 − θ3xi′′ ,3)vi′′
(A.15)

From (A.14) and (A.15), we can conclude that the locally envy-free

condition in (A.11) holds for this case.

Case 2 : Here, we investigate the many-to-one matching scenario

when there are equal number of MEC servers and offloading tasks. We

consider MEC server i∗ as the bidder who wins tasks of multiple task

types, as shown in Fig. A.1(b). Here, we consider MEC server i wins

the task of type n = 2 and MEC server i′ wins the task of type n = 3.

Moreover, we assume that MEC server i
′′
loses the auction and receives

no allocation.

The exchange of allocation between the bidders i and i′ cannot im-

prove their utilities, which can be shown by following the similar steps

as in Case 1-B. Therefore, we verify the following two cases:

• Case 2-A: At first, we show that bidder i cannot improve her

utility by exchanging her allocation with bidder i∗ who is ranked

above her; i.e.,

(π2 − θ2vi)xi,2 ≥ (π1 − θ1vi)xi,1 + (π2 − θ2vi)xi,2, (A.16)

which, by xi,1 ≥ 0, is equivalent to

π1 − θ1vi ≤ 0 (A.17)

By the pricing rule in (3.12), we have

π1 = bi′,1, and π2 = bi′′ ,2, and π3 = bi′′ ,3. (A.18)

118

Moreover, from the bidding strategy given by (3.9), we can con-

clude that

bi′,1 = θ1vi′, bi′,2 ≥ θ2vi′, and bi′′ ,3 ≥ θ3vi′′ . (A.19)

From (A.18) and (A.19), it is obvious that π1 = bi′,1 = θ1vi′ and

thus locally envy-free condition in (A.17) holds for this case.

• Case 2-B : Next, we show that bidder i
′′
cannot improve her utility

by exchanging her allocation with bidder i′ ranked above her, i.e.,

(π3 − θ3vi′′)xi′′ ,3 ≤ 0. (A.20)

Alternatively, we can write

π3 ≤ θ3 vi′′ . (A.21)

From the fact that x
(t−1)
i′′ ,2

= x
(t−1)
i′′ ,3

= 0 in this scenario, we conclude

from the bidding strategy (3.9) that π3 = bi′′ ,3 = θ3vi′′ . Therefore,

the the sufficient condition for locally envy-freeness in (A.21) is

satisfied.

Case 3 : When there is more MEC servers than the offloading tasks,

the bidders compete to win the tasks from a higher level of task types.

Consequently, every bidder i tends to bid lower as minimum as θnvi.

Let us consider such a competitive scenario where the first-ranked MEC

server (e.g., bidder i) wins all the tasks of type n = 1, n = 2, and n = 3.

Fig. A.1 (c) illustrates such scenario. We consider the MEC server i
′′

as the bidder ranked next to bidder i and loses the auction with no

allocation.

In order to establish the locally envy-free property, we need to show

119

that bidder i
′′
cannot improve her utility by exchanging its allocation

with bidder i. Formally,

(π1 − θ1vi′′)xi′′ ,1 + (π2 − θ2vi′′)xi′′ ,2

+(π3 − θ3vi′′)xi′′ ,3 ≤ 0,
(A.22)

or equivalently,

π1xi′′ ,1 + π2xi′′ ,2 + π3xi′′ ,3 ≤

(θ1xi′′ ,1 + θ2xi′′ ,2 + θ3xi′′ ,3)vi′′
(A.23)

According to the pricing rule in (3.12), we have

π1 = bi′′ ,1, π2 = bi′′ ,2, and π3 = bi′′ ,3. (A.24)

Since bidder i
′′
didn’t win any task before the assumption of exchange

of allocation, we have x
(t−1)
i′′ ,1

, x
(t−1)
i′′ ,2

= x
(t−1)
i′′ ,3

= 0. By following the

bidding strategy in (3.9), we obtain

bi′′ ,1 = θ1vi′′ , bi′′ ,2 = θ2vi′′ , and bi′′ ,3 = θ3vi′′ . (A.25)

Therefore we have

π1xi′′ ,1 + π2xi′′ ,2 + π3xi′′ ,3 =

(θ1xi′′ ,1 + θ2xi′′ ,2 + θ3xi′′ ,3)vi′′ ,
(A.26)

which satisfies the locally envy-free condition in (A.23).

Case 4 : Finally, we show that locally envy-free property holds also

for the case where the number of incoming requests for offloading tasks

is larger than the available MEC servers. In such a scenario, there

can be some unassigned offloading tasks when all of the MEC servers

are assigned for computing the offloading tasks with higher resource

demand and higher position in task popularity (i.e., task type n). The

120

unassigned tasks don’t affect the utilities of the winning bidders. Here,

all of the bidders win some tasks. The proof for locally envy-freeness is

similar to the cases 1 and 2-A if the MEC servers are assigned to tasks

of different task type.

In the extreme case of the aforementioned scenario, all the resources

of MEC servers are allocated to the tasks of type n = 1. This satisfies

the users’ excessive demand for computational resources and all other

tasks remain unassigned, as depicted in Fig. A.1 (d). Also in this case,

the locally envy-free property still holds. This is due to the following

reason: Since only the tasks of type n = 1 are allocated, all the winning

bidders receive the same payment prices π1 = bi′,1+ϵ, where i′ is the last

bidder who wins the auction. Thus no bidder can improve her utilities

by exchanging allocations. Consequently, we can conclude that the

proposed auction mechanism is locally envy-free.

A.3 Proof of Proposition 3

Proof. In Algorithm 1, the sorting of MEC servers can be performed

in O(I log I) time (e.g. quicksort algorithm). Similarly, the sorting of

user list takes O(K logK) time for each task type n. When the algo-

rithm calls Greedy allocation procedure for each type n, Algorithm

2 takes O(K) time. As Algorithm 1 calls the Greedy allocation pro-

cedure N times, in the worst-case, O(I log I) + O(NK + NK logK)

operations are needed. Thus, the proposed approximate solution for

P1 can be obtained in polynomial time.

121

Appendix B: Proof of Theorems in
Chapter 4

B.1 Proof of Theorem 1

Proof. To prove the individual rationality property for the proposed

MEC offloading auction mechanism, we need to show that every server

achieves a non-negative utility gain for each of its VM, i.e., uni,rm(t) ≥ 0,

for each processor n in any time slot t.

According to (4.9), the utility of the VM allocated to position m = s

at server i is given by:

uni,rs(t) =
K∑︂
s=1

λn
sj
θni,rs(t)

(︁
pns (t)− vni,rs

)︁
xns,ris(t). (B.1)

By definition, we know that λn
sj
≥ 0, θni,rs(t) ≥ 0, and xns,ris(t) ≥

0. Hence, the sufficient condition to satisfy the individual rationality

property yields,

pns (t)− vni,rs ≥ 0. (B.2)

The GSP pricing rule as proposed in (4.21) guarantees that pns (t) ≥

bni,rs(t). Moreover, the adaptive RBB strategy, ensures that no server

bids lower than actual valuation of a VM, by restricting the server

to choose the target position in a way that the VM does not deviate

from the current ranking position. This results into a positive value for

122

the bid adjustment factor
(︂
pns∗m(t− 1)− vni,r(m=s)

)︂
in (4.22), and conse-

quently satisfies bni,rs(t) ≥ vni,rs. Therefore, using the transitive property

of inequalities, we can conclude pns (t) ≥ vni,rs, satisfying the individual

rationality condition in (B.2).

B.2 Proof of Theorem 2

Proof. To prove the existence of symmetric Nash equilibrium (SNE),
we need to show that the set of allocation prices pns (t) satisfies the SNE
inequalities in (4.23) for all task positions s ∈ Kn(t) in any given time
slot t. This means, every VM allocated to some task position s at pro-
cessor n in the time slot t, is better off with the resulting utility gain
and does not wish to exchange its current allocation with any other
position within the processor.

As shown in [54], when GSP allocation prices satisfy the SNE con-
dition for the positions s+1 and s− 1, then it satisfies the inequalities
for all positions s. Therefore, we verify SNE conditions considering two
cases: (1) exchanging task allocation between positions (s − 1) and s;
and then (2) exchanging between positions s and (s+ 1).

Case 1 : Let task positions s − 1 and s be originally assigned to
VMs at the ranks m = s − 1 and m = s, respectively (i.e., rni(s−1) and

rnis), at a given time slot t. Thus, after the exchange, VM rni(s−1) will be

matched to the s-th position with priority score λn
sj
and the allocation

price pns (t); and VM rnis will be matched to the (s− 1)-th task position
with priority score λn

s−1j and a allocation price of pns−1(t).
The SNE condition for the positions s−1 and s requires the following

inequalities to be satisfied:

λn
(s−1)j

θni,rs−1
(t)

(︂
pns−1(t)− vni,rs−1

)︂
≥ λn

sjθ
n
i,rs−1

(t)(︂
pns (t)− vni,rs−1

)︂
, (B.3)

λn
sjθ

n
i,rs(t)

(︁
pns (t)− vni,rs

)︁
≥ λn

(s−1)j
θni,rs(t)

(︁
pns−1(t)− vni,rs

)︁
(B.4)

Now, we can re-write the SNE condition by combining inequalities

(B.3) and (B.4) as:(︂
λn
(s−1)j

− λn
sj

)︂
vni,rs ≥λ

n
(s−1)j

pns−1(t)− λn
sj
pns (t) ≥(︂

λn
(s−1)j

− λn
sj

)︂
vni,rs−1

(B.5)

123

Besides, by definition λn
(s−1)j ≥ λn

sj
≥ λn

(s+1)j
≥ 0, and by GSP pric-

ing rule we have pns−1(t) ≥ pns (t) ≥ pns+1(t). Therefore, we obtain

λn
sj
pns−1(t) ≥ λn

sj
pns (t), which results,

λn
(s−1)jp

n
s−1(t)− λn

sj
pns (t) ≥

(︂
λn
(s−1)j − λn

sj

)︂
pns−1(t). (B.6)

According to GSP pricing rule (4.21), the allocation prices for the task

positions (s− 1) and s result as

pns−1(t) = Θn
R(s−1)

bni,rs(t) ≥ bni,rs−1
(t), and

pns (t) = Θn
Rs
bni,rs+1

(t) ≥ bni,rs(t), (B.7)

respectively. Moreover, the proposed RBB strategy (4.22) ensures that

bni,rs−1
≥ vni,rs−1

. So, we can obtain pns−1(t) ≥ vni,rs−1
, and rewrite (B.6) as

λn
(s−1)jp

n
s−1(t)− λn

sj
pns (t) ≥

(︂
λn
(s−1)j − λn

sj

)︂
vni,rs−1

, (B.8)

satisfying the right side of the SNE inequality in (B.5).

Next, using GSP-based prices in (B.7) we obtain,

λn
(s−1)jp

n
s−1(t)− λn

sj
pns (t)

= λn
(s−1)jΘ

n
R(s−1)

bni,rs(t)− λn
sj
Θn

Rs
bni,rs+1

(t),

where, price adjustment rates satisfies: Θn
R(s−1)

≥ Θn
Rs
≥ Θn

R(s+1)
≥

1, according to our modified GSP pricing mechanism. Besides, the
ranking order of VMs ensures that

bni,r1(t)... ≤ bni,rs−1
(t) ≤ bni,rs(t) ≤ bni,rs+1

(t) ≤ ... bni,rK (t).

Thus, we can apply
(︂
Θn

R(s−1)
bni,rs(t) ≤ Θn

Rs
bni,r(s+1)

(t)
)︂
into (B.8), which

yields:

λn
(s−1)jΘ

n
R(s−1)

bni,rs(t)− λn
sj
Θn

Rs
bni,rs+1

(t)

≤
(︂
λn
(s−1)j − λn

sj

)︂
Θn

R(s−1)
bni,rs(t) (B.9)

124

Moreover, the proposed RBB strategy ensures bni,rs(t) ≥ vni,rs. So, even

if the server bids the minimum and and gets the same as the bid (i.e.,

(ΘR(s−1)
= 1), the SNE condition in the left side of the inequality (B.5)

is still satisfied. This means,

λn
(s−1)jΘ

n
R(s−1)

bni,rs(t)− λn
sj
Θn

Rs
bni,rs+1

(t)

≤ (λn
(s−1)j − λn

sj
)vni,rs (B.10)

Case 2 : Now, we consider the exchange of allocations between the

task positions s and s+ 1, and verify the SNE condition. In this case,

the VM rni(s) will be matched to the s+1-th position with priority score

λn
s+1j

and the allocation price pns+1(t); and VM rni(s+1) will be matched

to the (s)-th task position with priority score λn
sj
and a allocation price

of pns (t). The SNE condition for this case thus becomes:(︂
λn
sj
− λn

(s+1)j

)︂
vni,rs+1

≥λn
sj
pns (t)− λn

(s+1)j
pns+1(t) ≥(︂

λn
sj
− λn

(s+1)j

)︂
vni,rs (B.11)

The GSP pricing rule (4.21) results the allocation prices for positions

s and s+ 1 as,

pns (t) = Θn
Rs
bni,rs+1

(t) ≥ bni,rs(t), and

pns+1(t) = Θn
R(s+1)

bni,rs+2
(t) ≥ bni,rs+1

(t) (B.12)

Similar to Case 1, we obtain pns (t) ≥ vni,rs by the proposed RBB strategy

which ensures bni,rs(t) ≥ vni,rs. Thus, we get

λn
sj
pns (t)− λn

(s+1)j
pns+1(t) ≥

(︂
λn
sj
− λn

(s+1)j

)︂
vni,rs,

satisfying the right side of the SNE inequality (B.11).

Besides, the ranking order by the proposed GSP mechanism, which

125

still holds for this case, gives us
(︂
Θn

Rs
bni,r(s+1)

(t) ≤ Θn
R(s+1)

bni,r(s+2)
(t)

)︂
. Thus,

we can write:

λn
sj
Θn

Rs
bni,r(s+1)

(t)− λn
(s+1)j

Θn
R(s+1)

bni,rs+2
(t)

≤
(︂
λn
sj
− λn

(s+1)j

)︂
Θn

Rs
bni,r(s+1)

(t) (B.13)

This completes the SNE condition in (B.11) for this case, as the pro-

posed RBB strategy ensures bni,r(s+1)
(t) ≥ vni,r(s+1)

and satisfies the follow-

ing, even if the server gets the minimum payment (i.e., Θn
R(s)

= 1),

λn
sj
Θn

Rs
bni,r(s+1)

(t)− λn
(s+1)j

Θn
R(s+1)

bni,rs+2
(t)

≤
(︂
λn
sj
− λn

(s+1)j

)︂
vni,r(s+1)

. (B.14)

Finally, we can conclude that the proposed GSP allocation prices

satisfies the SNE condition for all task positions. Subsequently, the

mechanism reaches to the SNE point at each processor n, when every

bidder (i.e. server) follows the proposed RBB strategy in any time slot

t.

B.3 Proof of Theorem 3

Proof. Let, VMs rA, rB, and rC are allocated to the tasks in positions

s− 1, s, and s+ 1, respectively in some time slot t. The ranking order

by the proposed GSP mechanism ensures,

Θn
R(s−1)

≥ Θn
Rs
≥ Θn

R(s+1)
≥ 1, and

bni,rA ≤ bni,rB ≤ bni,rC . (B.15)

126

Besides, the allocation prices for the positions (s − 1) and s, which

satisfy the SNE condition during the time slot t are given by,

pn(s−1) = Θn
R(s−1)

bni,rB , and (B.16)

pns = Θn
Rs
bni,rC . (B.17)

After reaching the SNE at time slot t, a server can still adjust the

bid for the next round, while maintaining the current payment or rank

position. So, the proposed GSP mechanism would result into a new set

of auction outcome reaching to another equilibrium point in SNE. We

can derive the upper bound to the SNE, by considering the scenario

when a server i sets the bid for VM rB in a way so it can move one

slot up by beating VM rA and make at least as much profit as the VM

rB makes now. The highest break-even bid for this case satisfies the

following condition:

λn
(s−1)j

(︂
p

′n
(s−1) − vni,rB

)︂
xn(s−1),rA

= λn
sj

(︁
pns − vni,rB

)︁
xs,rB (B.18)

where p
′n
(s−1) is the amount that the VM rB believes to get after moving

up, and pns is the amount that VM currently gets for the task position

s. We can re-write eqn. (B.18) as,

λn
(s−1)j

(︂
Θn

R(s−1)
b
′n
i,rB
− vni,rB

)︂
xn(s−1),rA

= λn
sj

(︁
Θn

Rs
bni,rC − vni,rB

)︁
xns,rB . (B.19)

127

Solving for b
′n
i,rB

gives us the highest bid ensuring that VM rB gets the

profit as minimum as the current one.

b
′n
i,rB

xn(s−1),rA =
vni,rB

Θn
R(s−1)

xn(s−1),rA

+
λ∗Θn

Rs

Θn
R(s−1)

(︁
bni,rC − vni,rB

)︁
xns,rB (B.20)

where λ∗ = λn
sj
/λn

(s−1)j . So, the general expression of the upper bound

to the SNE can be written as,

bn,UB
i,rs

xn(s−1),r(s−1)
=

vni,rs
Θn

R(s−1)

xn(s−1),r(s−1)

+
λ∗Θn

Rs

Θn
R(s−1)

(︂
bni,r(s+1)

− vni,rs

)︂
xns,rs (B.21)

Next, in order to find the lower bound to the SNE we consider the

scenario when a server i bids defensively, with the belief that if he/she

bids too low then it will squeeze the profit of the VM above so much

that the opponent might prefer moving down to lower position. The

lowest break-even bid for this case, satisfies the condition to match

the profit that VM above makes right now and the profit that VM in

position (s− 1) would make if it goes down to the position s, i.e.:

λn
(s−1)j

(︂
p∗n(s−1) − vni,rA

)︂
xn(s−1),rA

= λn
sj

(︂
p

′n
s − vni,rA

)︂
xns,rB (B.22)

where p∗n(s−1) is the amount that the VM rA currently gets from being

in the position (s− 1), and p
′n
s represents the amount that the VM rA

would get if it moves down to the position s. Thus, (B.22) becomes,

λn
(s−1)j

(︂
Θn

R(s−1)
b∗ni,rB − vni,rA

)︂
xn(s−1),rA

= λn
sj

(︁
Θn

Rs
bni,rC − vni,rA

)︁
xns,rB (B.23)

128

Solving for b∗i,rB leads to the lower bound to the SNE,

b∗ni,rBx
n
(s−1),rA

=
vni,rA

Θn
R(s−1)

xn(s−1),rA

+
λ∗Θn

Rs

Θn
R(s−1)

(︁
bni,rC − vni,rA

)︁
xs,rB (B.24)

Therefore, the general expression of the lower bound of SNE yields:

bn,LBi,rs
xn(s−1),r(s−1)

=
vni,r(s−1)

Θn
R(s−1)

xn(s−1),r(s−1)

+
λ∗Θn

Rs

Θn
R(s−1)

(︂
bni,r(s+1)

− vni,r(s−1)

)︂
xs,rs . (B.25)

B.4 Proof of Theorem 4

Proof. TheAlgorithm 4 is run atN processors simultaneously, which

determines N distinct sets of resource allocation outcomes for different

processors in every time slot t. In the first step, the incoming offloading

requests at the processor n are gathered into respective task positions

which takes a constant time in the order of O(1). After initiating the

request for bids to I servers, the algorithm updates the computation

performance quality scores of the available VMs where the loop func-

tion runs (I × Rn) times. Upon receiving the bids from servers, the

algorithm obtains the resource allocation and pricing decisions using

the Algorithm 3.

The Algorithm 3 takes O(K logK) and O(Rn logRn) time to sort

the offloading tasks, VMs and price adjustment rates, respectively.

Then, corresponding task assignment and pricing decisions are then

made in a constant time in the order of O(1). So, the overall time

complexity of Algorithm 3 becomes O(Rn logRn) for each processor.

129

After Algorithm 3 returns the results back, the Algorithm 4 finishes

the remaining task of updating the workloads of VMs in O(1) time. Fi-

nally, the worst-case time complexity of the Algorithm 4 becomes

O(IRn), ignoring the lower order of O(Rn logRn).

On the other side, each server uses the Algorithm 5 to determine

his/her bids for each processor during time slot t. In this algorithm,

each server requires O(Rn
i) time to find the target slot, and then a

constant time of order O(1) to update the bid for each VM. So, the

Algorithm 5 also has a polynomial time complexity of O(Rn
i) for each

processor n.

During the time slot t, when the overall offloading service provision-

ing process is performed, the algorithms are run at N processors, the

same number of operations are repeated across N processors and I

servers. So, we can conclude that the proposed GSP-based MEC of-

floading mechanism is computationally efficient as the polynomial time

complexity holds for every time slot.

130

	Introduction
	Multi-Access Edge Computing (MEC)
	Computation Offloading in MEC
	Resource Allocation for MEC Offloading Services

	Motivation
	Research Challenges
	Research Problem

	Related Work
	Thesis Contribution
	Organization of the Thesis

	Repeated GSP Auction Model for MEC Offloading
	GSP Auction Mechanism Design
	Basic Features of GSP Auction
	Allocation and Pricing Rules of GSP Auction

	Repeated GSP Auction and Equilibrium Solutions
	Equilibrium Concepts in GSP Auction
	Optimal Repeated GSP Auction Design
	Repeated GSP Auction Model for MEC Offloading
	GSP-Based Resource Allocation Algorithm Design

	Conclusion

	Profit-Maximizing Repeated GSP Auction Model for MEC Offloading
	Introduction
	Research Contribution

	System Model and Assumptions
	MEC Offloading System Model

	Repeated GSP-Based Reverse Auction Model
	Bidding Strategy of MEC Servers
	Winner Determination Problem Formulation
	Resource Allocation and Pricing Algorithm

	Analysis on Auction Efficiency
	Numerical Results
	Conclusion

	A Repeated Auction Model for Load-Aware Dynamic Resource Allocation in MEC
	Introduction
	Research Contribution

	System Model
	Wireless Network and Communication Model
	MEC Service Provisioning Model
	MEC Orchestration Model
	Utility Model of MEC Servers
	Utility Model of Offloading Users

	GSP-Based Auction Mechanism Design for Dynamic Computation Offloading and Resource Allocation
	Winner Determination Problem Formulation
	WDP Solution Approaches
	GSP-Based Resource Allocation and Pricing Mechanism
	Repeated GSP-Based Dynamic Resource Allocation and Pricing Mechanism
	A Toy Example

	Analysis of Bidding Strategies in GSP-Based Dynamic MEC Offloading Auction
	Adaptive Balanced Bidding Strategies of Servers
	Analysis of Bidding Dynamics on Auction Efficiency

	Numerical Results
	Convergence of Bidding Strategies
	Auction Revenue and Profits of Servers
	Social Welfare and QoE Analysis

	Conclusion

	Conclusion and Future Research Direction
	Conclusion
	Future Research Directions

	Bibliography
	Appendix A: Proof of Propositions in Chapter 3
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3

	Appendix B: Proof of Theorems in Chapter 4
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

