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“ - And bear with patience, and your patience is only because of the help of Allah

and do not grieve over them, nor feel distressed by their evil plans”

—Al Quran, (16:127)

This is dedicated to my mother and the ones I love
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Abstract

The goal of efficient anomaly or outlier detection is to learn the hidden represen-

tation of the data by identifying independent factors and minimizing information

loss. Variational Autoencoder (VAE) and its extensions have shown great promise

to learn the data distribution. In this manuscript-based thesis, I propose a novel

architecture of generative framework to investigate the following objectives: (a) Ef-

fectively learn disentangled representations of data by optimizing total correlation

(TC) loss. (b) Minimize information loss using mutual information theory for bet-

ter reconstruction ability and appropriate sample generation. (c) Address sample

reconstruction error vs. reconstruction quality trade-offs. In the first manuscript, I

review the architectures of autoencoders divided into three main categories: classi-

cal, variational, and regularized autoencoders. Then, I present their mathematical

foundation and explore their ability to detect anomalies, reconstruct samples and

learn latent factors. In the second manuscript, I proposeD isentangledConditional

V ariational Autoencoder (dCVAE), which combines the frameworks of 𝛽-VAE,

conditional variational autoencoder (CVAE), and the principle of total correlation

(CorEx). Through experiments, I show that the accuracy of anomaly detection

methods can be improved while learning disentangled factors and minimizing in-

formation loss. This can be done by connecting multivariate information theory

and regularizing the posterior-variant of VAE. Finally, I conclude this thesis by

discussing limitations, and I give a brief overview of future research directions for

VAE architectures in high-dimensional image datasets.
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Chapter 1

Introduction

Over the last decade, data sources are becoming more prominent and ubiquitous.

As a result, anomalous data points now present themselves in a more complex and

various ways. Due to the volume of data, the nature of anomalous points changes

over time and heavily depends on the context of the application. As a result,

anomaly detection (AD) or outlier detection (OD) can prove essential to many

applications and is considered a non-trivial task. Moreover, benign or erroneous

AD compromises the data quality and integrity, which leads to ineffective data

analysis or implementation of pattern recognition techniques.

Anomaly or outlier detection has imposed several challenges over the year. De-

tecting such anomalous and corrupted data, understanding the high-dimensional

complex data, and effectively decoding it into a convenient information set are con-

sidered primary goals of unsupervised statistical deep learning frameworks. The

contributions of deep learning models for anomaly detection spread over several

applications over the years, including but not limited to: data cleansing, computa-

tional biology, ecosystem disturbance detection, medicine, clinical trials, financial

transactions, weblogs, telecommunications, geographic information systems, net-

work intrusion, and fault/damage detection. More recently, unsupervised anomaly

detection (UAD) methods have emerged as one of the most promising approaches

to achieving breakthrough performance on different tasks.

The downstream tasks of UAD are non-trivial and heavily depend on the appro-

priate definition that is often problem specific. The high dimensionality of image

data creates difficulties for UAD methods due to the diverse number of attributes

1



2 Chapter 1. Introduction

or features, the amount of available data, and the increasing sparsity in data. Data

sparsity generally rises due to unnecessary factors and variables, multicollinearity

among features, irrelevant attributes, and high noise levels. This issue is exten-

sively acknowledged as the curse of dimensionality. Prior to using generative and

variational deep learning approaches, including Variational Autoencoder (VAE)

and Generative Adversarial Networks (GAN), heuristic statistical methods were

the primary tools for UAD in restricted application domains.

Current VAEs and its variants primarily focus on the following four directions:

• Improving the quality of reconstruction or image generation.

• Enhancing the disentanglement for VAEs.

• Enforcing regularization to address trade-offs between efficient training and

model loss.

• Developing Bayesian models using prior-variant or prior-variance based on

the data distribution.

VAE poses solid theoretical background to control the distribution of the latent

representation, learn the smooth latent representations of the input data, and gen-

erating new meaningful samples. However, VAE struggles to disentangle highly

correlated high-dimensional data. Disentanglement learning is defined as the iden-

tification of independent or uncorrelated representations of high-dimensional data.

The idea of learning disentangled representations is to map the high-dimensional

input data to a lower-dimensional representation such that the original input or

code can be approximately reconstructed without losing valuable information. Al-

though recently proposed deep learning architectures such as 𝛽-VAE [2], 𝛽-TCVAE

[3], Factor VAE [4], InfoVAE [5], VFAE [6], and DIP-VAE [7] utilized the architec-

ture of VAE to address the disentangled factors issues, determining how effective

such learned representation is for UAD task is not yet well understood. Hence, it

is critical to understand which VAE backbone is appropriate for learning disentan-

glement and how generic mutual information theories are useful in enforcing losing

valuable information in such settings.

Additionally, maximizing the reproducibility and minimizing the computational

cost is still an active research area yet to be adequately addressed for such deep
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learning frameworks. The tasks of detecting anomalies on real-world image datasets

vs. generated synthetic image datasets are distinct. Real-world datasets exhibit

more prominent variability due to the heterogeneity in abnormality presentation

across data points or cohorts and differences in acquisition colors or encoding fea-

tures. Anomalies in such datasets tend to have a finer resolution or more local-

ized features that are incredibly challenging to distinguish. Using representation

learning to learn disentangled factors in a pixel-wise image is widely adopted and

exercised [8]. However, utilizing the disentangled factors to detect anomalies in a

whole image is a challenge that has yet to be addressed appropriately. Moreover,

an unsupervised deep learning framework heavily depends on the number of fea-

tures and artifacts of a dataset (such as color, boundaries, strokes, and size) and

often leads to losing valuable attributes. Thus, learning disentangled factors and

minimizing information loss is a highly challenging UAD task in the context of

image data.

1.1 Contributions

The immediate contribution of this thesis is a new architecture of generative model

based on multivariate mutual information theory combined with a conditional VAE

architecture for the UAD task. The technique is tailored to image data type and

can be applied to various image sets. The other contributions of this thesis follow.

In Chapter 3, “A Comprehensive Study of Autoencoders for Anomaly Detection:

Efficiency and Trade-Offs,” I present an overview of the architectures and theoret-

ical foundation of autoencoders. Through Experiments, the baseline comparison

method for different autoencoders is identified and ranked based on their overall

performance. Then, I Perceived the trade-offs between reconstruction error and re-

construction quality and proposed a method to learn disentangled representation.

Finally, this review concludes with the pros and cons of different VAE architectures

and proposes future research directions.

In Chapter 4, the capacity of a disentangled representation learning for VAE is

comprehensively explored, which includes conditional generations (CVAE) and the

principle of total correlation (CorEx) as a reference implementation. The potential

of CVAE in combination with VAE and CorEx for AD is thoroughly investigated by
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learning efficient disentangled factors to minimize information loss. To the best of

my knowledge, this is the first attempt to explore disentangled learning and multi-

variate information theory in anomaly detection. Afterward, my proposed method

is evaluated extensively on a range of image data, including MNIST, Fashion-

MNIST, EMNIST, and KMNIST, for a better understanding of the results tested

in real-world datasets. Finally, through several experimental techniques, such as in-

specting latent variables, sample reconstruction, and evaluating accuracy metrics,

I pursued the widely acknowledged challenge of “reconstruction vs. loss” trade-off.

By proposing a new objective function, I provide empirical evidence to minimize

such trade-offs effectively.

1.2 Thesis Outline

In this thesis, I consider the problem of UAD with autoencoders and propose a

new architecture of variational autoencoder techniques that enables a generative

model to learn useful disentangled representations of the input data and effectively

perform AD in an unsupervised fashion.

The thesis is structured as follows: in Chapter 2, I review the background and

literature on UAD methods. The reviewed methods primarily focus on VAE ar-

chitectures and their variants, applied to image data. I provide a brief overview of

UAD frameworks that includes variants of VAE, multivariate information theories,

meta-priors, and emphasis applications of AD. This chapter concludes by providing

a connection between VAE architectures and information theory.

The following two chapters present the original contributions from two manuscripts.

Chapter 3 briefly reviews different autoencoder methods, provides an overview of

their architecture, and concise experimental observations to audit the task of UAD.

It also includes future research directions for VAE architectures. Then, Chapter 4

introduces my proposed Disentangled Conditional Variational Autoencoder for Un-

supervised Anomaly Detection (dCVAE) framework. In that chapter, I provide the

background studies, several VAE approaches, and the mathematical background

of the newly proposed objective function. Additionally, I explain the details of

dCVAE’s experimental design, discuss the results, and analyze the framework’s
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performance. Through several evaluation tasks, I show how dCVAE leads to bet-

ter results and improves the downstream tasks of UAD compared to common VAE

architectures. Finally, I conclude my thesis (Chapter 5) by summarizing the con-

tributions, and by discussing the limitations and future research directions.



Chapter 2

Literature Review

As discussed in the Chapter 1, this thesis focuses on unsupervised anomaly de-

tection and perceiving the relationship between sample reconstruction and mini-

mizing reconstruction loss. More specifically, I look forward to acquiring empirical

evidence of learning efficient anomaly detection and disentangled factors’ effects for

efficient loss function minimization. Therefore, I focus on the following two topics

in this chapter: variations of VAE architectures, including regularizing posterior-

variant, and conditional generations, utilizing total correlation, and learning meta-

priors. Firstly, I define different types of anomalies and provide an overview of

anomaly detection methods (Section 2.1). Later, I review the taxonomy of anomaly

detection methods (Section 2.2). Finally, in Section 2.3, a comparison between dif-

ferent UADs is characterized, followed by the architectures of autoencoders. This

chapter concludes by briefly summarizing the association between different VAE

architectures.

2.1 Anomaly and Anomaly Detection

Gladitz [9] defines an outlying observation, or outlier, as an observations that

deviates markedly from other sample observations. Johnson et al. [10] defines an

outlier as an observation in a data set that appears inconsistent with the remainder

of that data set. In statistical regression, anomalies or outliers are observations

that derive abnormal distances from other instances in a random sample from

a population. In general, identifying or detecting such observations is known as

6



Chapter 2. Related Works 7

outlier or anomaly detection. Chandola et al. [11] defined AD as “the problem of

finding patterns in data that do not conform to expected behavior.” Outlier or

novelty detection are synonyms for AD.

2.2 Classification of Anomalies

In this section, a brief classification of anomaly types is presented. Through this

classification, the latter sections are organized to identify and extensively evaluate

the different models and architectures for detecting anomalies.

2.2.1 Nature of the Input Data

In general, based on the nature of the input data, the anomalies are classified into

three categories:

1. Point Anomalies

Point anomalies or global anomalies represent the deviation or irregularity

of a specific data point without any pattern or interpretation compared to

the whole dataset. Point anomalies can be classified as a context anomalies

if the specific data instance is considered a joint of several point anomalies.

Therefore, defining the boundary value of the anomalies is crucial. Figure 2.1a

provides an illustrated example of this type.

2. Contextual Anomalies

A contextual anomaly or a conditional anomaly is defined based on the data’s

structure. Often, contextual anomalies are identified by considering both con-

textual and behavioral features [12]. Depending on the context the problem

is defined, a data point can be defined as normal or anomalous based on

the exterior behavioral point of view that explicitly describes that context.

Time series data is a classical example of defining contextual anomalies. For

example: observing data over time series or time-related concepts such as

days, weeks, months, and time off can disclose anomalous instances directly

related to such anomalies.
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3. Collective Anomalies

Collective or group anomalies refer to a collection of related data points or

instances that are anomalous concerning the entire dataset. An individual

data point in a group anomaly may not be anomalous within themselves but

may occur together as a collection or anomaly group. In time series data, a

collective anomaly can be identified as a peaking value in a particular time

and stays in the medium range throughout the rest of the series.

(a) Point Anomaly (b) Contextual Anomaly

(c) Collective Anomaly

Figure 2.1: The subplots illustrate the three types, as mentioned earlier, of
anomalies [1]. 2.1a presents a point anomaly. Data points marked as red are
anomalous since they do not belong to the standard data points group (green).
2.1b represents a group anomaly (green points) since those group of instances
derives further from the standard behavior. Finally, 2.1c forms a contextual
anomaly compared to their normal series of behaviors.

2.2.2 Data Labels

The labels attached to a data point denote if the data point is normal or anomalous.

Data labeling is often done manually by humans; therefore, it requires substantial
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effort to acquire the correct label [11]. Likewise, anomalous behavior can change

if the data instance attribute changes. For instance, data points with seemingly

normal collective behavior are more difficult to detect within distribution-based

group instances. In these cases, point wise anomaly detection methods can be

used in group anomalies by characterizing certain properties. Compared to the

expected group pattern in image-based applications, distribution-based anomaly

detection methods have a distinctive combination of visual features.

Given a dataset D =
{
x(1) , x(2) , . . . , x(𝑛)

}
, two possible scenarios can happen for

AD methods:

• Supervised: We can assume the normal and anomalous or outlier data are

labeled accordingly.

• Unsupervised: Both standard and anomalous data can be unlabeled and

mixed.

Based on the context in which the labels are available, the AD models are roughly

categorized into the following three classes:

1. Supervised Anomaly Detection (SAD)

The supervised anomaly detection models train a supervised multi-class or

binary classifier using both normal and anomalous data class labels. In gen-

eral, the SAD techniques are classified into Decision Tree (DT), Support

Vector Machine (SVM), and Neural Network (NN) based methods [11]. In

the majority, the performance of a supervised classifier uses a sub-optimal

class imbalance to detect an outlier, resulting in better accuracy than semi-

supervised and unsupervised methods [13]. Although the supervised models’

accuracy is superior, there is a substantial chance of misclassifying normal and

anomalous classes in complex and non-linear feature space. Multi-Class su-

pervised models are a potential solution to this complexity [14]. Multi-Class

classifier learns to distinguish anomalous classes from all data instances. Gen-

erally, the Multi-Class models are divided into two sub-networks: a feature

extractor network followed by a sub-classifier [15]. Max-Margin Classifier [16],

Effective Discrimination [17], and SVM [18] are some of the most compelling

feature classifiers to date. However, while training with high-dimensional
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data that learn the image’s hidden representation, the classifier’s complexity

is a concern. The training complexity increases linearly with the number of

hidden layers and requires considerable computational complexity to learn

those models.

2. Semi-Supervised Anomaly Detection (SSAD)

Unlike the SAD methods, in SSAD techniques, the training set has only

labeled instances of the normal class and does not require labels for the

anomaly class. Compared to SAD and UAD, SSAD performs well under the

assumption that only data from a single class is available for training. As a

consequence, the multi-class classification does not achieve satisfactory per-

formance on class imbalance problems. Local Outlier Factor (LOF) [19, 20],

One-Class Support Vector Machine (ocSVM), iForest [21, 22], Support vec-

tor data description (SVDD) [20, 23, 24], and Näıve Bayes [25, 26] are a few

SSAD methods that efficiently work with such one-class classifications. How-

ever, due to the lack of objects representing normal classes, the SSAD often

suffers from outlining the boundaries between normal classes and anomalous

classes. Min et al. [27] proposed such methods to learn the discriminative

boundary throughout the normal data points. Additionally, training autoen-

coders in conjunction with a one-class method is a widely exercised process

of SSAD [28]. Techniques like Corrupted Generative Adversarial Networks

(CorGAN) [29], RandNet autoencoder, Deep Feature Consistent VAE [30],

and EncoderForest(eForest) [31] presented similar ideas of learning hidden

representation among the high-dimensional image dataset by extracting at-

tributes from highly complex feature space. For such training techniques,

losing information and reconstruction are often observed. Adequate training

data of normal class would produce low constructions error for autoencoders

over anomalous instances [32, 33]

3. Unsupervised Anomaly Detection (UAD)

Methods that function in unsupervised techniques implicitly assume that the

anomalous data is distant from the normal data. As a result, the unsuper-

vised methods do not require training data labels, making these techniques

widely popular and adopted. Recurrent Neural Networks (RNN), One-Class

Support Vector machines, K-means, and Genetic Algorithms are the distinct

categories of UAD methods [11]. However, the two most used methods in un-

supervised learning are neural network-based models such as Autoencoders
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and Transformers. The autoencoders are the typical architecture where the

optimization problem is generally non-convex and has a quadratic computa-

tional cost. The computational cost depends on the parameter, hidden layers,

and the total operation performed. Compared to Principal Component Anal-

ysis (PCA) and Spatial Transformer Networks (STN) [34]; Adversarial Au-

toencoders (AAE) [35], Variational Autoencoders (VAE) [36] and, Denoising

Autoencoders (DAE) [37] have higher computational complexity since they

are not based on matrix decomposition. Furthermore, Semi-Supervised meth-

ods can also be transformed into unsupervised methods simply by removing

the data label of anomalous class. Additionally, Meng et al. [38] proposed

relational encoders for feature extraction for better interpretation; however,

such UAD methods lack accuracy due to the higher sensitivity of noise and

corruption data.

2.2.3 Output of Anomaly Detection

Although the training method for any anomaly detection model is crucial, the

model’s output or reporting aspects also play an important role. The output value

enables the results interpretation process and helps to understand the workflow.

Typically, it is categorized into two types:

1. Anomaly Score

Based on the degree of anomaly and domain-specific threshold, the anomaly

score technique attaches a score to each data point. In general, this score

defines the level of “outlierness” for each data instance [11]. Sometimes, this

scoring approach is a decision-making criterion to determine the distance or

how far the actual data points are from average scores.

2. Anomaly Label

Although the anomaly score is an effective way to rank the data instance,

the anomaly label helps to analyze domain-specific threshold to identify the

most relevant outliers. The binary labels allow controlling of the parameter

or magnitude of the reconstruction errors within each technique.
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Classifying anomalous and normal classes from unlabeled data is more challenging

and is the primary domain this thesis focuses on. Specifically, identifying anoma-

lous data points from image is a more challenging task as the image dataset contains

a more complex hidden representation and higher dimensions of factors.

2.3 UAD Techniques

As discussed in Chapter 2.2.2, based on the label of the data, the outlier detection

methods are roughly categorized into supervised, semi-supervised, and unsuper-

vised learning. Considering the scope of this thesis, we confined our next step of

literature to unsupervised methods. In unsupervised learning, it is widely assumed

regarding anomaly detection that learning the density distribution is more complex

than learning the boundary of data. UAD techniques are categorized into cluster-

ing and manifold learning methods based on data mass boundary and distribution.

Principal component analysis (PCA) and autoencoders are two other general cate-

gories where the linearity of the data is considered as the separation criteria. Table

2.1 provides a generic classification of UAD techniques discussed in this thesis.

Table 2.1: UAD Techniques

Learning Type Techniques

Clustering
Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) [39]

Expectation-Maximization (EM) [40]

K-Means Clustering [41]

Manifold Learning Isomap Embedding [42]

Locally Linear Embeddings (LLE) [43]

Hessian Eigenmapping [44]

Multi-dimensional Scaling (MDS) [45]

t-distributed Stochastic Neighbor

Embedding (t-SNE) [46]

PCA Kernel-PCA [47]

Robust PCA [48]

Logistic PCA [49]

Quadratically regularized PCA [50]
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Singular value decomposition

(SVD) [51]

Autoencoder (AE) Non-generative Autoencoders

Variational Autoencoders

Regularized Autoencoders

Data visualization and observing the hidden pattern of the data get significantly

more complex for a high-dimensional dataset. More often, the number of samples

in the dataset is much lower than the number of dimensions in each data sample.

To aid the visualization of data, learn latent representation, and disentanglement

learning, effective application of AD methods is required to retain the structure,

and essential features of the data as well as not lose valuable information. PCA uses

a linear technique to capture maximum data variance by finding low-dimensional

projections. Although PCA solves the problem of complex data visualization, it

often fails to capture the mapping of non-linear data. Another variation of PCA,

Kernel-PCA or KPCA, introduces the idea of non-linearity in PCA to overcome

complex dimension problems and achieve implicit mapping. However, PCA and

KPCA need to be regularized as they become inconsistent estimators due to fewer

replicates/samples than measure features [52].

Similar to KPCA, Manifold learning generalizes the linear structure to learn the

smooth manifold curve from the multi-dimensional space. Compared to PCA and

KPCA, the manifold learning algorithms such as t-SNE, MDS, and LLE perform

better in capturing the non-linear relation of the complex data. However, when we

consider the task of unsupervised anomaly detection, the embedding space of the

data often gets non-linear, and the latent representation transforms into a complex

projection. The effectiveness of manifold learning drops back in such cases [53].

2.3.1 Why Autoencoders?

In general, the task of dimension reduction and AD in an unsupervised manner is

divided into the following sub-problem:
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1. Visualize the high-dimensional representation of the data into a low-dimensional

subspace (i.e. compressing and compacting the original data).

2. Learn the latent variable representation from the low-dimensional space.

3. Using that learning outcome from latent representation, reconstruct the orig-

inal or standard data points, and categorize the anomalous data points using

the reconstruction error.

The advantage of autoencoder over other UAD techniques is the powerful abil-

ity to learn the complex latent representation and reconstruct original input. For

instance, recently proposed methods show that the PCA, KPCA, and their vari-

ants, including Sparse PCA and Robust PCA, can only reduce the dimension for

linear and non-complex hyperspace data [52]. The latent representation for such

models cannot capture complex patterns since it only performs better with lin-

ear data [53]. Hence, KPCA methods and manifold learning, such as t-SNE and

LLE, lacks to reconstruct multi-dimensional complex hyperspace data. In contrast,

the autoencoder combines the recognition modeling (encoder) and generative reg-

ularization modeling (decoder) techniques to learn compressed representation and

construct the latent representation of the data simultaneously. Additionally, the

autoencoder models the low dimensional latent space without losing substantial

information from compressed input or code, mostly known as tackling the curse

of dimensionality of the complex data. Motivated by such advantages, this thesis

focuses on the autoencoder and its extensions.

2.4 Taxonomy of Autoencoders

Autoencoders are deep neural networks trained to reproduce their input as their

output. AE learns the hidden representation of the input, ℎ and reconstructs the

original input as output. In general, the learning process is defined as an encoder

𝑓 (𝑥), and the final output defined as a decoder, 𝑔( 𝑓 (𝑥)), 𝑥 = 𝑔(ℎ). In some

architectures, the latent representation can be defined as the bottleneck that holds

the compressed information from the input code ℎ.
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2.4.1 Variational & Generative Modeling

Recently, VAE and Generative Adversarial Networks (GANs) stood up as the two

most powerful approaches to generative modeling. VAE enhances classical au-

toencoders by including a Bayesian component to learn structure representing the

probability distribution of the data and imposing a prior on the probability of the

encoder [54]. VAE models the Gaussian random variable that results in the regu-

larization to explain the probability of the input implicitly. Moreover, VAE avoids

the marginal likelihood probability estimation by introducing a variational lower

bound. Another complication of estimating the Markov chain sampling process is

resolved by the reparameterization trick. Combing such techniques enables con-

trolling the distribution of the latent representation vector z and thus contribute

to effective sample generation. Concise technical details and the mathematical

foundation is mentioned in Chapter 3.3.5.

Despite having the aforementioned advantages, VAE suffers from blurry image gen-

eration, limitations in priori to track mixed data distributions, less interpretable

latent representation, and, most prominently suffering, the “curse of dimension-

ality” [55]. To solve the limitations mentioned above, modifications to the VAE

architecture were proposed based on several criteria: regularization of the encoding

distribution [5], learning disentangled and discrete representations [2, 56, 57], Prior

Variant [58], regularizing posterior-variant [4, 59], conditional generations [60], ex-

tracting continuous features [37, 61], optimizing Gaussian mixture [62], modeling

distributions on discrete variables [63], learning correlated features [64], data clus-

tering, and generation [65]. Such extensions have shown great promise to learn the

data distribution and generate meaningful generations from encoded distribution.

However, using current VAE architectures, addressing both learning disentangled

factors and improving anomaly detection accuracy still remain a challenging re-

search domain.

Unlike VAE, GAN attempts to balance the generator and the discriminator to pro-

duce more empirically higher quality and higher definition results than variational

models. However, GANs are criticized for mode collapse (i.e. the generator only

generates data from a single mode of the distribution) and inflexibility in evaluat-

ing performance on UAD tasks. Moreover, GAN lacks in sample generations in a

context where the negative training instances exceed positive instances. DCGAN
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[66], CGAN [67], Info GAN [68], and WGAN [69] are a few GAN architectures to

address these issues.

2.4.2 Learning Meta-Priors

Bengio et al. [70] introduced the meta-priors for unsupervised representation learn-

ing tasks. According to Bengio et al. [70], “the meta-priors are derived from gen-

eral assumptions about the world, such as the hierarchical organization or disen-

tanglement of explanatory factors, the possibility of semi-supervised learning, the

concentration of data on low-dimensional manifolds, clusterability, and temporal

and spatial coherence [71].” Considering the scope of this thesis, learning disen-

tanglement representation and regularizing total correlation are two preliminary

meta-priors focused on in this section.

Learning disentangled factors is critical for efficient downstream tasks and im-

proving reconstruction quality. Assuming the data is initialized with variations

of independent variables in the representation, disentangled factors often depend

on multiple variables. As an accord, similar factors should control distinct fea-

tures, and learning those features results in structured representation learning.

For example, shapes, colors, and strokes in the MNIST [72] dataset are controlled

by distinct independent factors. VAE architectures concentrated on regularizing

posterior-variant, such as 𝛽-VAE and its variants [2, 3, 73], FactorVAE [4], Rele-

vance FactorVAE (RFVAE) [59], InfoVAE [5], and VFAE [6], mainly focusing on

this representation learning issue.

On the other hand, The principle of Total Correlation Explanation (CorEx) in-

troduces the learning process of disentangled factors and interpretable represen-

tations utilizing multivariate information theory [74]. Instead of assuming the

data is generated using independent factors, CorEx inspects latent variable z to

retrieve meta-priors and provides insights into progressive disentangled learning.

Previously, Ver Steeg and Galstyan [75], Gao et al. [74], Ver Steeg and Galstyan

[76], Ver Steeg and Galstyan [77] proposed methods based on multivariate infor-

mation theory to learn featured representations. Additionally, Chen et al. [78],

Khemakhem et al. [79], Kim et al. [80] emphasizes regularizing total correlation

(TC) or total correlation loss (TC-loss) in an information-theoretic way.
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2.5 Connecting VAE Architectures

In this thesis, we propose a new architecture that captures the disentangled repre-

sentation of the data using the extension of CVAE and CorEX as well as modeling

latent variables and data, both conditioned on known sources of variation.

𝛽-VAE, CVAE, and CorEx heavily depend on maximizing the latent representa-

tion’s informativeness. With VAEs, we introduce a recognition model 𝑞𝜙 (z | x)
whose purpose is to approximate 𝑝𝜃 (z | x). The goal is then to derive a variational

bound that can be optimized. Consequently, the recognition model (i.e., the en-

coder) can be learned jointly with the generative model (i.e., the decoder). Two

interesting observations are derived from the recognition model of VAE:

• What are the generative factors of the data that are captured by the latent

variable? The latent variable is usually heavily diverse since the factors are

encoded in the multiple interdependent components of z.

• How can we overcome the limitation of generating data with VAE, which does

not have any control over the kind of data it generates? In general, the VAE

model can be trained to generate random samples with good reconstruction

quality; however, it has no control over generating specific samples.

Current literature shows 𝛽-VAE attempts to force z to learn a disentangled rep-

resentation of the data (e.g., to force the components of z to be independent). 𝛽

changes the degree of applied learning pressure during training that encourages dif-

ferent learned representations. Compared to VAE, where 𝛽 = 1, enforcing stronger

constraint 𝛽 ≥ 1 on the latent bottleneck encourages the model to learn the most

efficient or disentangled representation by conditioning independent factors. How-

ever, while constraining the value of 𝛽, a trade-off between reconstruction fidelity

and the quality of disentanglement is often observed. As a consequence, penalizing

𝐾𝐿 (𝑞(𝑧)∥𝑝(𝑧)) makes 𝑞(𝑧) to factorized as prior 𝑝(𝑧) in most scenarios. On the

other hand, penalizing 𝐼 (𝑥; 𝑧) reduces the amount of information about 𝑥 stored

in 𝑧, which leads to poor reconstruction. Therefore, current literature still shows

limitations in addressing the first observation.

For the second observation, the current architectures of CVAE provide an excel-

lent graphical modeling approach. CVAE is necessarily another extension of VAE
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where conditioning on known sources 𝑐 is added directly to the encoding and de-

coding processes. In terms of conditional distributions, we want to investigate

𝑝𝜃 (x | 𝑐) instead of 𝑝𝜃 (𝑥). In other words, the generative model of CVAE becomes

𝑝𝜃 (x | z, 𝑐), and the recognition model becomes 𝑞𝜙 (z | x, 𝑐). On the other hand,

CorEx is the opposite of VAE and CVAE in terms of choice of prior. The objective

function of CorEx defines an encoder 𝑝𝜃 (z | x) and evolves a decoder 𝑞𝜙 (x | z)
via variational approximation to the true posterior [74]. However, instead of the

essential variational approximation to the posterior in VAE, CorEx requires varia-

tional distribution as true data distribution 𝑝𝜃 (x), which is unknown or intractable.

Consequently, utilizing conditioning variables with information theory can greatly

benefit learning disentangled representation by controlling sample approximation.

Considering the observations mentioned above, the subsequent two manuscripts

seek to explain the potential anchoring ground for VAE architectures and connect

the UAD frameworks. Firstly, Chapter 3 explores VAE and its extensions to an-

alyze several UAD downstream tasks described above. Then, Chapter 4 proposes

dCVAE to address the two questions above.



Chapter 3

A Comprehensive Study of

Autoencoders for Anomaly

Detection: Efficiency and

Trade-Offs

Preamble to Manuscript 1. As I discussed in Chapters 1 and 2, VAE archi-

tectures are diversely utilized in miscellaneous applications. Therefore, finding

the exact mathematical foundation and observing the changes in both qualitative

and quantitative approaches are crucial. Over the summer of 2021, Dr. Turgeon

and I started going over the mathematical foundation of different VAEs. We dis-

cussed the formulation of VAEs over other methods, learning how objective function

works, decoding the operations of generative models, and gathering resources for

reproducing the current autoencoder architectures. In general, the purpose of the

manuscript presented in this chapter was to review various autoencoder methods

and rank them based on their overall performance in AD tasks. Additionally, we

seek to observe the following:

• Sensitivity of autoencoder in a noisy dataset and how they respond to such

environment.

• An efficient way to minimize cost function weights for re-sampling in the

Evidence Lower Bound (ELBO)

19
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• Observe how the autoencoders retain information in lower dimensions while

optimizing the reconstruction quality.

• Perceiving the trade-offs among different architectures.

Through the study of performance and limitations of these architectures, I iden-

tified the important properties that an autoencoder architecture must possess in

order to provide good performance on AD tasks.

This manuscript will soon be submitted at the IEEE Transactions on Knowledge

and Data Engineering (TKDE) journal.
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Abstract

Unsupervised Anomaly detection (UAD) is a diverse research area with application

in many different domains. Over the years, many anomaly detection techniques

such as clustering, generative modeling, or variational inference-based methods

have been developed to solve certain deficiencies and improve on state-of-the-art

techniques. Recently, deep learning and generative models (such as autoencoders)

have led to major advances in the field of UAD. In this study, we review 11 au-

toencoder (AE) architectures divided into three distinct categories and conduct

experiments to understand their capabilities in four different domains: data recon-

struction, sample generation, latent space visualization, and anomaly detection.

Throughout the experiments, we also carefully monitor the scope of reproducibil-

ity with different training parameters. Fashion-MNIST (FMNIST) and MNIST

are the two selected datasets utilized in these experiments. Finally, we discuss

the advantages, trade-offs, and limitations of different AE architectures for future

research directions.
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3.1 Introduction

Anomaly detection (AD), also referred to as Outlier Detection (OD) or Novelty

Detection (ND), is an application of machine learning that focuses on detecting

unconventional observations in a sample dataset [11]. Primarily, AD focuses on

identifying noisy or erroneous measurements in a dataset based on the lower sim-

ilarity compared to standard observations. In other words, an anomaly is a data

point likely to result from a different data distribution than normal data [81].

By their very nature, anomalies are rare events. Often, the definition of anoma-

lies heavily depends on the set of a problem or the context of the data. In close

problem contexts, where the boundaries between normal and anomalous data are

not clearly drawn, traditional deep learning models, including supervised and hy-

brid learning approaches to anomaly detection, tend to perform poorly due to

a significant imbalance between anomalous and normal classes. Similarly, accu-

rate labeling of anomalies can be expensive and time-consuming. Therefore, most

training datasets for AD have either no labels or very few labels. Unsupervised and

semi-supervised approaches have thus shown more success in AD tasks than super-

vised approaches [12]. For example, unsupervised and semi-supervised approaches

can potentially find unknown types of anomalies, whereas supervised approaches

can only learn the labeled anomaly types.

In the era of big data, data is increasingly more complex and consists of higher

dimensions. Therefore, there is a real need for unsupervised learning methods

that deal with unlabeled and complex high-dimensional data. In recent years,

deep learning architectures have successfully produced effective data representa-

tions using supervised and semi-supervised methods in AD tasks [82]. Specifically,

recent work on Variational Autoencoders (VAEs) [54] and Generative Adversarial

Networks (GANs) [83] has shown great promise. Both approaches are generative:

they estimate a latent representation of the data, along with the decoding function

that can generate the data starting from the latent distribution.

Generative models are especially well suited for AD. Indeed, by comparing a data

point with its reconstruction, we can naturally define an anomaly score. A good

reconstruction can be interpreted as evidence that the observation comes from the

main distribution, and therefore it is unlikely to be an anomaly. The presence of
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some labeled data can then be used to tune cutoff values for the reconstruction

error.

From an accuracy perspective, GANs are capable of generating highly realistic im-

ages. However, from a computational perspective, GANs are known to be difficult

to tune accurately, and they suffer from the “mode collapse” phenomenon (i.e.,

data is generated around a single mode of the distribution) [69]. On the other

hand, even though VAEs may be less accurate than GANs for some tasks, they are

easier to train and do not suffer from mode collapse.

The most significant advantage of VAEs over other unsupervised techniques is their

powerful ability to learn complex latent representations and reconstruct original

inputs using the generative modeling background. VAE combines the method of

generative modeling and regularization to compress the original data and then

reconstruct it from its compressed form simultaneously by controlling the latent

distribution.

3.1.1 Focus and organization of this study

In this article, we review different VAE architectures and assess their suitability for

AD using benchmark datasets. For the sake of completeness, we also include non-

generative autoencoders. To be specific, this review seeks to address the following

objectives:

1. Present a mathematical background for VAE architectures to understand the

generative functions better.

2. Conduct a comparative analysis of reconstruction quality, sample generation,

and latent space for each AE.

3. Regulate downstream tasks of AD and draw conclusions about efficiency vs.

trade-offs for future research avenues.

The remainder of this paper is organized as follows: Section 3.2 provides further

background information on anomaly detection and autoencoders. Then Section 3.3

presents the different architectures included in our study. Section 3.4 describes the

different model configurations and our experimental setup. We use the MNIST
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and FMNIST datasets to conduct our experiments and follow the parameters and

hyper-parameters mentioned in the main reference research papers (wherever pos-

sible). Finally, in Section 3.5, the experimental results are presented and discussed.

The paper concludes with Section 3.6 presenting the future research directions for

VAEs in AD tasks.

3.2 Taxonomy of Autoencoders

AEs are generally used in various areas of application, including semi-supervised

learning, generative modeling, clustering, dimension reduction, unsupervised anomaly

detection, data compression, and information retrieval. Considering the different

architectures, regularizing methods, and encoding processes, the AEs are generally

categorized into the following three categories:

1. Non-Generative AEs: Non-Generative AEs are originally proposed as ar-

tificial neural networks that perform dimension reduction [84]. Similar to

non-linear PCA, the idea of AE is to build input and output layers retain-

ing identical dimensions. Additionally, constructing an intermediate layer

(referred to as a bottleneck) to reduce the dimension and project the data

into lower dimensions. Undercomplete AE is a classic example of a non-

Generative single layer autoencoder that uses a linear activation function in

combination with the mean squared error loss function, which results in an

equivalence of the PCA algorithm [85]. Denoising autoencoder (DAE) [86],

stacked convolutional autoencoder (scAE) [87], and robust deep autoencoder

(RDA) [88] are a few extensions of AEs modifying the encoding and decoding

functions.

2. Variational Models: Variational Autoencoders (VAE) are a special type

of AE that extends the original AE architecture by using the variational

Bayes inference and generative modeling frameworks. The main difference

between AE and VAE is that VAE includes a Bayesian model that learns the

compressed representation of data and generates samples using that input

data. The primary goal of VAE is to learn the representation of the data

and generate samples using that learned representation. In general, VAE is

a combination of a recognition model or encoder followed by a generative
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model or decoder. Using the same component and architecture of VAE,

several extensions have been proposed. In this review, we chose the following

extensions of VAE: Self-Adversarial Variational Autoencoder (adVAE) [89],

𝛽-VAE [2], Conditional Variational Autoencoder (CVAE) [60], and Vector

Quantized Variational Autoencoder (VQ-VAE) [58].

3. Regularized Models: Regularized AEs are the extension of VAE and AE

architectures that combine the following objectives: latent regularization,

learning disentangled and discrete representations, and regularizing posterior-

variants. Often, regularized models combine “bottleneck” techniques with a

probabilistic perspective to enforce restrictions into the VAE architecture

(e.g., introducing sparsity, weighted loss functions, and probabilistic model-

ing). Considering the scope of this review, we chose: Adversarial Autoen-

coder (AAE) [90], Sparse Autoencoder (SAE) [91], Contractive Autoencoder

(CAE) [92], Importance Weighted Autoencoder (IWAE) [93], and Probabilis-

tic Autoencoder (PAE) [94] from this category.

The AE architectures selected from the three criteria mentioned above, we con-

sidered the elemental architectures introduced from each criterion. For example,

we chose VAE as the first variational model that introduced the Bayesian model-

ing approach into an AE architecture, and 𝛽-VAE included constraints to control

disentangled factors. The authors intended to investigate the architecture in a

fundamental structure to propose further scopes.

3.3 Mathematical Preliminaries

This section gives the mathematical formulation of each autoencoder architecture

that appears in the experiments in Section 3.4. Table 3.1 summarizes the notation

used throughout the paper.

Table 3.1: Main notation used throughout the paper

Notation Definition

D
The training dataset, D =

{
x(1) , x(2) ,

. . . , x(𝑛)
}
, with 𝑛 data points.
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X(𝑖) Each data point 𝑖 is a vector of 𝑑 dimensions,

x(𝑖) =
{
𝑥
(𝑖)
1 , 𝑥

(𝑖)
2 , . . . , 𝑥

(𝑖)
𝑑

}
X Sample data point from Dataset, x ∈ D
x′ Reconstructed data from input data X

x̃ Corrupted data point

Z Compressed data from bottleneck layer

W 𝑑′ × 𝑑 weight matrix

b Bias vector

𝑎
(𝑙)
𝑗

Activation function with 𝑗-th neuron

and 𝑖-th hidden layer

𝑔𝜙 (.)
Encoder function with

𝜙 parameter

𝑓𝜃 (.)
Decoder function with

𝜃 parameter

𝑞𝜙 (z | x)
Probabilistic encoder or estimated

posterior probability function

𝑝𝜃 (x | z)
Probabilistic decoder or likelihood

function.

3.3.1 Basic Autoencoders

The basic architecture of autoencoder is simply a neural network designed to learn

the hidden representation h ∈ R𝑑 ′ of the input data x ∈ R𝑑 in an unsupervised way.

The hidden representation is often denoted as an identity or deterministic function

h = 𝑓𝜃 = 𝜎(𝑊𝑥 + 𝑏), where 𝜃 = {𝑊, 𝑏}, that reconstructs the original input by

compressing the input data. The core idea of autoencoders was first discussed in

the 1980s, and it was later promoted by Hinton and Salakhutdinov [61]. The basic

autoencoder contains an encoder function 𝑔𝜙 (.) parameterized by 𝜙, a bottleneck

layer z = 𝑔𝜙 (x) with an input of 𝑥 and reconstructed output x′ = 𝑓𝜃
(
𝑔𝜙 (x)

)
, where

the decoder function 𝑓𝜃 (.) is parameterized by 𝜃.
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3.3.2 Denoising Autoencoder (DAE)

The objective of DAE is to reconstruct the original data 𝑥 using a noisy version x̃ as

input. Noisy reconstruction resolves several limitations of non-generative autoen-

coder such as over-fitting, learning compressed data representation and generate

samples from corrupted input [86]. The input is corrupted by adding noise or

masking in the input layer by input vector in a stochastic manner. the objective

function of DAE combines x̃ ∼ MD (x̃ | x) and defined as:

x̃(𝑖) ∼ MD
(
x̃(𝑖) | x(𝑖)

)
𝐿DAE(𝜃, 𝜙) =

1

𝑛

𝑛∑︁
𝑖=1

(
x(𝑖) − 𝑓𝜃

(
𝑔𝜙

(
x̃(𝑖)

)))2 (3.1)

Here, MD refers to the mapping from the original data samples to the noisy ones.

In order to remove the noise from original input x and reform the reconstructed

sample as y = 𝑓𝜃 ′ (ℎ) = 𝜎 (𝑊′ℎ + 𝑏′). Finally, the denoising autoencoder is trained

to find the latent representation h = 𝑓𝜃 (𝑥) = 𝜎(𝑊𝑥 + 𝑏).

3.3.3 Sparse Autoencoder (SAE)

The main motivation of sparse autoencoder (SAE) is to learn the sparse represen-

tation using only a single hidden layer with a feed-forward neural network [91]. In

SAE, a sparsity enforcer of L1 regularization directs a single-layer network to learn

and minimize the error in reproducing the input. A simple construction of SAE is

illustrated in Equation 3.2:

x̃ = 𝐻𝑊,𝑏 (x) ≈ 𝑥. (3.2)

Here, 𝑥 denotes the input vector, and x̃ is the output vector. The weight matrix and

this part’s bias are represented by𝑊 (1) and 𝑏 (1), respectively. The decoder connects

the corresponding weight matrix 𝑊 (2) and 𝑏 (2) with the hidden layer to the output

layer. Compared to the basic architecture of autoencoder, the SAE introduces

sparsity constraint by enforcing 𝐻. Sparsity constraint controls the weight and

bias to have a small number of layers activated at the same time. Finally, using
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the same weight 𝑊 and bias 𝑏 parameters, 𝐻𝑊,𝑏 (x) acts as a non-linear function

of SAE that predicts the output vector x̃ based on the input vector 𝑥.

3.3.4 Contractive Autoencoder (CAE)

Similar to SAE, the contractive autoencoder (CAE), proposed by Rifai et al. [92]

aims to learn a sparse latent representation, but it is more robust to small variations

in the data. CAE is another regularization technique, just like DAE and SAE.

However, in order to penalize the sensitivity to input representation, CAE adds

a variable term in the loss function. With this extra term, CAE improves the

robustness to small variations. The Frobenius norm of the Jacobian matrix 𝐽 𝑓 (𝑥)
of the encoder measures the sensitivity with respect to input and can be represented

as follows:



𝐽 𝑓 (x)

2𝐹 =
∑︁
𝑖, 𝑗

(
𝜕 𝑓 𝑗 (x)
𝜕𝑥𝑖

)2
. (3.3)

Using Jacobian matrix from Equation 3.3, the loss function of CAE is defined as:

JCAE(𝜃) =
∑︁
𝑥∈𝐷𝑛

(
𝐿 (𝑥, 𝑔( 𝑓 (𝑥))) + 𝜆



𝐽 𝑓 (𝑥)

2𝐹 ) . (3.4)

The idea of Equation 3.4 is to penalize the


𝐽 𝑓 

2𝐹 term while staying more invariant

such that it carves a representation that corresponds to a lower-dimensional non-

linear manifold.

3.3.5 Variational Autoencoder (VAE)

The concept of Variational Autoencoder (VAE, proposed by Kingma and Welling

[54]) adapts the idea of variational inference for graphical models into the autoen-

coder framework. Instead of mapping the input into a fixed vector, the VAE maps

into a distribution which results in a specific estimator for a training algorithm

called Stochastic Gradient Variational Bayes (SGVB). For a distribution denoted

by 𝑝𝜃 and parameterized by 𝜃, the association between the input x and the latent
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encoding vector z is defined by a prior 𝑝𝜃 (z), a likelihood 𝑝𝜃 (x|z), and a posterior

𝑝𝜃 (z|x). Since the posterior is typically intractable, we approximate it using a

distribution 𝑞𝜙 (z|x).

In order to quantify the distance between the posterior and its approximation,

Kingma and Welling [54] use the Kullback-Leibler divergence (KLD) 𝐷KL(𝑞 | 𝑝).
The main idea is to minimize 𝐷KL(𝑞𝜙 (z|x) | 𝑝𝜃 (z|x)) with respect to 𝜙 using the

reversed KL 𝐷KL(𝑄 |𝑃) = E𝑧∼𝑄(𝑧) log
𝑄(𝑧)
𝑃(𝑧) and Forward KL divergence 𝐷KL(𝑃 |𝑄) =

E𝑧∼𝑃(𝑧) log
𝑃(𝑧)
𝑄(𝑧) . Furthermore, using conditional distribution 𝑝𝜃∗ (x|z = z(𝑖)), VAE

reconstructs the encoding vector as 𝑝𝜃

(
x(𝑖)

)
=

∫
𝑝𝜃

(
x(𝑖) | z

)
𝑝𝜃 (z)𝑑z. Additionally,

to derive the ELBO bounds, we imposes the KLD and update the approximation

as:

𝐷KL
(
𝑞𝜙 (z | x)∥𝑝𝜃 (z | x)

)
= log 𝑝𝜃 (x)+

𝐷KL
(
𝑞𝜙 (z | x)∥𝑝𝜃 (z)

)
− Ez∼𝑞𝜙 (z|x) log 𝑝𝜃 (x | z)

(3.5)

Based on Equation 3.5, we can define the loos function 𝐿VAE(𝜃, 𝜙) as follows:

𝐿VAE(𝜃, 𝜙) = − log 𝑝𝜃 (x) + 𝐷KL
(
𝑞𝜙 (z | x)∥𝑝𝜃 (z | x)

)
= −Ez∼𝑞𝜙 (z|x) log 𝑝𝜃 (x | z) + 𝐷KL

(
𝑞𝜙 (z | x)∥𝑝𝜃 (z)

)
.

(3.6)

Finally, in Variational Bayesian Models, the loss function is often referred to as

the variational lower bound or evidence lower bound. As the KLD is always non-

negative, −𝐿VAE is a lower bound for log 𝑝𝜃 (x). Therefore, minimizing the loss

function is equivalent to maximizing the evidence lower bound:

−𝐿VAE = log 𝑝𝜃 (x) − 𝐷KL
(
𝑞𝜙 (z | x)∥𝑝𝜃 (z | x)

)
≤ log 𝑝𝜃 (x).

(3.7)

The loss function 3.6 of VAE consists of two terms: the first maximizes the re-

construction likelihood by penalizing reconstruction error; and the second term

encourages learning distribution, similar to the true prior distribution.
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3.3.6 Conditional Variational Autoencoder (CVAE)

The Conditional Variational Autoencoder (CVAE), proposed by Pol et al. [60], is

an extension of VAE where the generative model is conditioned on known factors c.

Compared to VAE, CVAE generates data by modelling the latent variable z using

both the input x and the class information of each instance. Recall Equation 3.7

from VAE:

𝐿VAE(𝜃, 𝜙) = −Ez∼𝑞𝜙 (z|x) log 𝑝𝜃 (x | z) + 𝐷KL
(
𝑞𝜙 (z | x)∥𝑝𝜃 (z)

)
. (3.8)

CVAE achieves this goal by learning a decoder 𝑝𝜃 (x | z, c) and a recognition model

𝑞𝜙 (z | x, c) , where c is the conditioned variable. Updating the VAE function with

this conditioned variable, we get:

𝐿CVAE(𝜃, 𝜙) = −Ez∼𝑞𝜙 (z|c,x) log 𝑝𝜃 (x | z, c) + 𝐷KL
(
𝑞𝜙 (z | x, c)∥𝑝𝜃 (z | c)

)
. (3.9)

Conditioning on c can be very advantageous for AD tasks, as the extra information

can help distinguish between point and contextual anomalies [11]. The variational

lower bound (Equation 3.9) for CVAE is derived similarly as for VAE.

3.3.7 𝛽-VAE

𝛽-VAE (proposed by Higgins et al. [2]) is a modification of the VAE objective func-

tion that emphasizes learning disentangled latent factors. Under a small constant 𝛿

while keeping the distance between the actual and estimated posterior distributions

small, 𝛽-VAE maximizes the probability of generating accurate data:

max
𝜙,𝜃
Ex∼D

[
Ez∼𝑞𝜙 (z|x) log 𝑝𝜃 (x | z)

]
,

where 𝐷KL
(
𝑞𝜙 (z | x)∥𝑝𝜃 (z)

)
< 𝛿.

(3.10)



Chapter 3. Review Paper 31

The representation can be identified as disentangled or factorized when each vari-

able in latent representation is invariant primarily to other factors and only sensi-

tive to one single generative factor [73]. Therefore, the loss function can be defined

as:

𝐿BETA(𝜙, 𝛽) = −Ez∼𝑞𝜙 (z|x) log 𝑝𝜃 (x | z)+

𝛽𝐷KL
(
𝑞𝜙 (z | x)∥𝑝𝜃 (z)

)
.

(3.11)

When 𝛽 = 1, it represents the original VAE. When 𝛽 > 1, the 𝛽-VAE limits the rep-

resentation capacity of z by applying a constraint on the latent bottleneck. Larger

𝛽 suggests more effective latent encoding and further encourages disentanglement.

As the value of 𝛽 largely depends on the KLD, it may result in lower latent chan-

nel capacity than the number of generating factors. The lower latent channel will

result in a lower-rank projection of the true data generative factors.

3.3.8 Self-Adversarial Variational Autoencoder (adVAE)

Traditional VAEs only regularize the encoder network and not the decoder network.

As a consequence, it is difficult to create powerful and expressive decoders from

such architecture, as they tend to overfit the data and learn a representation that

is not dependent of the latent variables. As we will illustrate later, this is especially

problematic for unsupervised anomaly detection.

In order to regularize the decoder so that it learns representations that are useful

for anomaly detection, adVAE [90] introduces a third network 𝑇 , called a Gaus-

sian transformer. The network 𝑇 transforms the latent representation of a normal

observation into an anomalous latent representation. In a first training step, the

decoder 𝐷 learns to generate normal and anomalous samples that are far apart,

while the network 𝑇 competes with 𝐷 by trying to reduce the KL divergence be-

tween the normal and anomalous codes; during this step, the weights of 𝐸 are fixed.

Then, in a second training step, the weights of 𝐷 and 𝑇 are fixed. To update the

weights of 𝐸 , the loss function is designed as a combination of the usual VAE loss

function and discrimination factors that explicitly turn 𝐸 into a discriminator: it

directly learns to distinguish between normal and anomalous observations. In this
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way, adVAEs combine the generative power of GANs, while completely avoiding

the problem of mode collapsing [68].

3.3.9 Importance Weighted Autoencoder (IWAE)

The importance weighted autoencoder (IWAE) uses a similar generative network

and recognition network architecture as the VAE [93]. The main difference between

VAE and IWAE is the simple derivation of importance sampling in the evidence

Lower Bound (ELBO). The loss function of IWAE is defined as follows [93]:

L𝑘 (x) = Eh1,...,h𝑘∼𝑞(h|x)

[
log

1

𝑘

𝑘∑︁
𝑖=1

𝑝 (x, h𝑖)
𝑞 (h𝑖 | x)

]
= Eh1,...,h𝑘∼𝑞(h|x)

[
log

1

𝑘

𝑘∑︁
𝑖=1

𝑤𝑖

]
.

(3.12)

The right part of the Equation 3.12,
[
log 1

𝑘

∑𝑘
𝑖=1 𝑤𝑖

]
is the unnormalized impor-

tance weights. The IWAE is trained to maximize the lower bound on log 𝑝(x). To
estimate the log-likelihood, the IWAE utilizes this lower bound corresponding to

the 𝑘-sample importance weighting. Finally, the importance weighted ELBO op-

timizes by considering a fixed number of samples from the variational distribution

and further uses the expectation with respect to Deterministic Encoder:

L𝑘 (x) =
∫
𝑞 (h1 | x) · · ·

∫
𝑞 (h𝑘 | x)[

log
1

𝑘

𝑘∑︁
𝑖=1

𝑝 (x, h𝑖)
𝑞 (h𝑖 | x)

]
𝑑h1 · · · 𝑑h𝑘 .

(3.13)

3.3.10 Probabilistic Autoencoder (PAE)

The probabilistic autoencoder (PAE) comprises an AE with a two-stage genera-

tive model. After training with a Normalizing Flow (NF), the AE is interpreted

probabilistically [94]. As a result, the PAE generalizes the idea of regularization to

reduce the effect of undesirable singular latent space variables on non-linear mod-

els. Equation 3.14 defines the loss function of PAE containing the Normalizing

Flow [94]:
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Lflow-VAE = −E𝑝(𝒙)
[
E𝑞𝜙 (𝒛 |𝒙) [ln 𝑝𝜃 (𝒙 | 𝒛)] −DKL

[
𝑞𝜙 (𝒛 | 𝒙)∥𝑝𝛾 (𝒛)

] ]
(3.14)

The first part of the objective function of PAE (Equation 3.14) is a likelihood

term. The term gives a high value when the encoder and decoder are matched,

and the latent variable 𝒛 makes 𝑥𝑖 more closer to the original input. On the other

hand, KL-term is a penalizer for normalized latent space probability density es-

timator. As a result, PAE optimizes the reconstruction ability and the sample

quality individually.

3.3.11 Robust Deep Autoencoders (RDA)

The robust deep autoencoder (RDA) is inspired by the Robust Principal Com-

ponent Analysis (RPCA), which is a method to reduce the sensitivity of PCA to

outliers [88]. Equation 3.15 defines the objective function of a RDA:

min
𝜃,x̃



𝑥𝑖𝑛𝑝𝑢𝑡 − 𝑓𝜃
(
𝑔𝜙 (𝑥𝑑)

)


2
+ 𝜆 ∥x̃∥2,1 ,

where 𝑥𝑖𝑛𝑝𝑢𝑡 − 𝑓𝜃 − x̃ = 0.
(3.15)

Similar to RPCA, the RDA splits the input into two parts: 𝐿𝐷 , d-dimensional

input; and x̃ with 𝜆 parameter that tunes the level of sparsity (Equation 3.15).

The well-represented data is presented by a hidden layer of encoder 𝑔𝜙 (.). On the

other hand, the noisy and outlier data, which is difficult to reconstruct, is presented

by the x̃. Additionally, as the objective function


𝑥𝑖𝑛𝑝𝑢𝑡 − 𝑓𝜃

(
𝑔𝜙 (𝑥𝑑)

)


2
does not

specify a particular form of the 𝑔 and 𝑓 pair of the Encoder 𝑔𝜙 ( · ) and Decoder

𝑓𝜃 ( · ) with 𝑊 weight and 𝑏 bias for both of them and can be denoted by:

𝑔𝜃 (𝑥) = 𝑔𝑊,𝑏 (𝑥) = logit
(
𝑊𝑥 + 𝑏𝑔

)
,

𝑓𝜃 (𝑥) = 𝑓𝑊,𝑏 (𝑥) = logit
(
𝑊𝑇𝑔𝑊,𝑏 (𝑥) + 𝑏 𝑓

)
.

(3.16)

3.3.12 Vector Quantised-Variational Autoencoder (VQ-VAE)

The vector quantised-variational autoencoder (VQ-VAE) is an extension of VAE

that learns discrete latent variables by the encoder. VQ-VAE incorporates the
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Vector quantisation method, which uses K-Nearest Neighbour (KNN) to map K-

dimensional vectors into a finite set of “code” vectors [58]. After going through the

KNN lookup, the encoder’s input 𝐸 (x) = z𝑒 becomes the decoder’s input 𝐷 (.):

z𝑞 (x) = Quantize(𝐸 (x)) = e𝑘 ,

where 𝑘 = argmin
𝑖

∥𝐸 (x) − e𝑖∥2 ,
(3.17)

𝐿 = ∥x − 𝐷 (e𝑘 )∥22 + ∥sg[𝐸 (x)] − e𝑘 ∥22 + 𝛽 ∥𝐸 (x) − sg [e𝑘 ] ∥22 (3.18)

Here, 𝐷 is the embedding size, and 𝐾 is the number of latent variable cate-

gories. For the loss function 𝐿, ∥x − 𝐷 (e𝑘 )∥22 denotes the reconstruction loss,

∥sg[𝐸 (x)] − e𝑘 ∥22 denotes the VQ loss and finally 𝛽 ∥𝐸 (x) − sg [e𝑘 ] ∥22 denotes the

commitment loss. For each part of Equation 3.18, the sg[ · ] refers to the stop

gradient operator.

3.4 Experimental Setup

The areas of application of UAD are numerous: it can be applied to text, voice,

images, videos, and time-series data. However, this study focuses on UAD methods

for image data using autoencoders. This type of data is common in applications

ranging from biomedical sciences to cybersecurity, genome sequencing, structural

fault detection, and disease diagnosis. In this section, we present a description of

the experimental setup, datasets, model selection, parameter tuning, and evalua-

tion criteria of the models.

3.4.1 Datasets

Modified National Institute of Standards and Technology (MNIST) [72] and Fashion-

MNIST (FMNIST) [95] are the two datasets selected to train the models and

evaluate the performance on AD tasks. MNIST and FMNIST comprised of hand-

written digits and pieces of clothing, respectively. Both of the datasets are widely



Chapter 3. Review Paper 35

adopted as a benchmark for several AE models for UAD tasks. MNIST and FM-

NIST datasets both contain 60,000 training samples and 10,000 test samples having

28 × 28 gray-scale pixels with 10 classes.

Figure 3.1: Example images from MNIST and FMNIST datasets

3.4.2 Evaluation Metric

To separate anomalous and standard samples, they are defined as negative and

positive instances, respectively. Therefore, downstream the anomaly detection task

is often referred to as a two-class classification problem. It is essential to identify

the properties of the positive and negative categories. In general, the primary

criteria to define anomalies is to calculate reconstruction error or error metrics

such as MSE, binary-cross entropy, and z-score in conjunction with a loss function.

Anomalous samples illustrate higher reconstruction errors compared to normal data

samples. Based on the higher reconstruction error, anomalous and normal data can

be classified.

Consequently, defining a threshold for either reconstruction error or accuracy met-

rics in the loss function is a primary step for accurate classification. Methods

related to VAEs often overlook the importance of defining this threshold and em-

phasize the distribution of the data [96]. Considering the scope of this research, we

took both reconstruction error and error metrics as a measurement of the anomalies,

taking reference from the loss functions of AEs described earlier in the classifica-

tions of AEs (section 3.2). However, to create a similar baseline to compare the

accuracy of the autoencoders, we utilized both the Average Precision Curve (AP)
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and Receiver operator characteristic (ROC-AUC) as a single threshold evaluation

metric alongside the loss function.

3.4.3 Platform Configurations

One of the major contributions of the study is to inspect the reproducibility of the

existing autoencoder methods. In recent years, deep learning and neural network

models have been heavily criticized for lacking reproducibility in different platforms

[97]. Also, reproducing results incurs a high computational cost, which creates

a significant barrier for other authors to replicate the codes for the algorithm.

We gathered publicly available references from GitHub to replicate and reproduce

the models. All codes taken from the GitHub repository was converted back to

python 3.7.11 version file, which can either run on Windows 10 or any Linux

system. Moreover, an environment configuration file with required python packages

is provided by the authors1 to easily re-configure in different platforms (e.g., python

shell, Jupyter Notebook, or Google Colab machine). In Table 3.2, the configuration

is provided for the machine where the coding and reproducibility tasks took place.

Table 3.2: Machine configuration

Machine Configuration

CPU
Intel® Core (TM) i5-6200U CPU

@ 2.30GHz - 2.40 GHz

GPU
Intel® HD Graphics 520 (2GB)

and NVIDIA GeForce 920MX (2GB)
RAM 8.00 GB
OS Windows 10, python 3.7.11

3.4.4 Challenges For Reproducibility

Reproducing any existing model is a challenging task. While we tried to implement

the selected architecture as closely as intended by the original authors, we faced

the following challenges:

• For officially available open-source repositories, we only converted the python

version to 3.7.11. No changes were made to the original implementation.

1See this GitHub repository: https://github.com/UMDimReduction/

autoencoder-Efficiency_vs_Tradeoffs.

https://github.com/UMDimReduction/autoencoder-Efficiency_vs_Tradeoffs
https://github.com/UMDimReduction/autoencoder-Efficiency_vs_Tradeoffs
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However, there were often issues with deprecated modules or libraries. For

such cases, we converted the function into the newer version. For example,

loss functions of tensorflow-estimator are only available to use as API in

version 2.1.0 directly. Therefore, every architecture using a newer version

than 2.1.0 had to revert to 2.1.0.

• For the architecture with no publicly available reference implementation or

repository, we reproduced the results taking the reference paper into account,

and implemented the methods. Moreover, we also took partial references from

resources mentioned in Table 3.4.

Table 3.3: Open source references for the selected architectures

Model Link API Reference Type

DAE
https://git.io/J15fg TensorFlow Partial Reference
https://git.io/J15fP TensorFlow Partial Reference

SAE https://git.io/J15v7 PyTorch Partial Reference
CAE https://git.io/J15vH TensorFlow Partial Reference

VAE
https://git.io/J15fY TensorFlow Partial Reference
https://git.io/J15fW PyTorch Official Repo

𝛽-VAE https://git.io/J15J3 PyTorch Official Repo
adVAE https://git.io/J15fR PyTorch Official Repo
CVAE https://git.io/J15vA PyTorch Official Repo
IWAE https://git.io/J15fs Theano Partial Reference
PAE https://git.io/J15fD TensorFlow Official Repo
RDA https://git.io/JfYG5 TensorFlow Official Repo

VQ-VAE https://git.io/J15fT PyTorch Official Repo

3.5 Results

In this section, we present the results of the experiments on the MNIST and FM-

NIST datasets described in the previous section. The results are divided into two

parts: a qualitative part where we visually assess the reconstructed images, and

a quantitative part where we assess the performance of each architecture on the

anomaly detection task.

https://git.io/J15fg
https://git.io/J15fP
https://git.io/J15v7
https://git.io/J15vH
https://git.io/J15fY
https://git.io/J15fW
https://git.io/J15J3
https://git.io/J15fR
https://git.io/J15vA
https://git.io/J15fs
https://git.io/J15fD
https://git.io/JfYG5
https://git.io/J15fT
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3.5.1 Training Time

Training time is a crucial part to determine the computational cost and ability

to reproduce. Instead of using a resourceful GPU machine, the experiments were

conducted on a general setup that most machine learning researchers can avail.

Therefore, it is expected that the training time might fluctuate between 20%-25%,

varying the hyperparameters in different reproductive configurations. The training

times mentioned in Table 3.4 provide a generalized estimate of time to prepare the

models using both MNIST and FMNIST.

Table 3.4: Training times for each architecture on both datasets

Model
Training Time
(HH: MM: SS)

MNIST FMNIST
DAE 0:47:00 0:56:45
SAE 1:07:21 1:45:10
CAE 0:13:25 0:22:27
VAE 0:35:50 0:42:45
𝛽-VAE 0:23:33 0:55:27
adVAE 0:59:45 1:01:45
CVAE 0:35:21 0:59:40
IWAE 0:34:18 0:37:16
PAE 0:20:17 0:33:21
RDA 0:59:21 1:02:10

VQ-VAE 0:30:33 0:40:21

3.5.2 Reconstructing Images and Generating Samples

The reconstruction quality of the autoencoders is a key criterion to distinguish dif-

ferent methods. If the reconstruction quality is excellent, that algorithm primarily

performs well in classification and anomaly detection.

3.5.2.1 DAE

The task of DAE is to reconstruct an image from a corrupted noisy image. The

noise was added sequentially from 20% to 52%.
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(a) (b) (c) (d)

Figure 3.2: Figure 3.2a and 3.2c illustrates the 27% noisy input data by MNIST
and FMNIST respectively. Figure 3.2b and 3.2d is the reconstruction from the
noisy input.

3.5.2.2 RDA

Similar to the DAE, the RDA task defines in such a way to generalize the DAE and

where no clean, noise-free data is available. Using the 𝑙1 or 𝑙(2,1) regularization,

penalize the noisy data and reconstruct the original input.

(a) (b)

Figure 3.3: Figure 3.3a and 3.3b is the 29% improved anomaly data recon-
struction by using regularization observed from MNIST and FMNIST datasets,
respectively. The leftmost column represents the original anomalous sample, fol-
lowed by a reconstructed improved sample in the column afterward.

3.5.2.3 adVAE

The adVAE inspects the restoration of the original input using the Gaussian prior

distribution. Adversarial learning predicts whether a sample comes from the hidden

core of the autoencoder or the prior distribution.
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(a)

(b)

Figure 3.4: Figure 3.4a and 3.4a shows the reconstruction process on MNIST
and FMNIST dataset respectively. Three steps accommodate the process: the
first image shows the sample. The second image is a sample reconstruction. The
final image is acquired after Gaussian transformer 𝑇 is applied on reconstruction.

3.5.2.4 VAE

The experiment of VAE focuses on learning the latent representation. The latent

representation regulates the easy reconstruction of the learned input data. VAE

reconstructs samples using low construction probability from a corrupted input or

anomalous sample.

(a) (b) (c) (d)

Figure 3.5: Figure 3.5a and 3.5c represents some sample anomaly data from
MNIST and FMNIST dataset. Similarly, Figure 3.5b and 3.5d shows the recon-
struction from the sample anomaly data.
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3.5.2.5 𝛽-VAE

𝛽-VAE emphasizes learning the disentangled representation. Based on the tuned

value of 𝛽, the VAE and 𝛽-VAE are distinguished. While training the model, when

the 𝛽 value is 1, the objective function is simply VAE, but when the value is set to

𝛽 >1, we obtain the 𝛽-VAE.

(a) (b)

Figure 3.6: Figure 3.6a and 3.6b shows randomly generated samples from
MNIST and FMNIST dataset where 𝛽 value varied from 1.5 to 2.

3.5.2.6 CVAE

CVAE is an extended method of VAE where the data generation is controlled

by optimizing the variational lower bound. The experiment of CVAE consists of

generating specific data points based on the label and reconstructing them based

on 𝑄(𝑧 | 𝑥, 𝑐) distribution.

(a) (b) (c) (d)

Figure 3.7: Figure 3.7a and 3.7c represents the initial step (epoch-1) of sample
generation from MNIST and FMNIST dataset respectively. On the other hand,
Figure 3.7c and 3.7d shows the final output (epoch-50) of sample generation.
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3.5.2.7 VQ-VAE

VQ-VAE is derived from the original VAE, where the learning of latent represen-

tation is discrete. The challenge of the experimental setup was to train discrete

latent embeddings and visualize their importance. The reconstruction uses dis-

crete network blocks, and the latent representation is acquired afterward. As a

result, the latent representation and reconstructed image are more compacted and

serrated than the original VAE.

(a) (b)

Figure 3.8: Each column in both Figure 3.8a and 3.8b represents the recon-
struction of anomalous samples from different classes from the MNIST and FM-
NIST datasets, respectively.

3.5.2.8 SAE

The SAE uses the “sparsity penalty” while reconstructing the original input. The

sparsity penalty uses the 𝑙1 regularization and minimizes the loss function. The

primary intention of the SAE experiment is to visualize the learned weight from

the input vector.

(a) (b)

Figure 3.9: Figure 3.9a represents the random sample with a sparsity of 0.45,
and the reconstruction from that sparse input is illustrated in Figure 3.9b.
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3.5.2.9 CAE

CAE is a deterministic autoencoder that adds a regularizer to the loss function.

The intention of the regularizer is to make the encoding less sensitive to minor

variances. The end result illustrates the learned representation is less sensitive

towards the training input.

(a) (b)

Figure 3.10: Both Figure 3.10a and 3.10b shows the anomalous data sam-
ples reconstruction on MNIST and FMNIST dataset using 2-depth deterministic
CAE.

3.5.2.10 IWAE

The IWAE focuses on deriving the better lower bound on the marginal likelihood by

minimizing the cost. The cost function weights the re-sampling in the ELBO. The

derivation provides the importance sampling in ELBO by the distinction acquired

from a mini-batch of the sample from samples and reconstructions.
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(a)

(b)

Figure 3.11: Using two stochastic layers and 𝑘 = 50, Figure 3.11a and 3.11b
represent the sample generation from MNIST and FMNIST dataset. In both
Figures, the left, middle and right image presents the “ground truth sample,”
“reconstructed sample,” and “mini-batch samples,” respectively.

3.5.2.11 PAE

The PAE is the minimalist generative autoencoder that targets to achieve minor

reconstruction errors. Besides the minimal error, the PAE is easy to train in low

hyper-parameter tuning to reach lower reconstruction error and less training time.

A similar reconstruction like the VAE or RDA is showed in Figure 3.12, but it

occupied using significantly fewer hyperparameters and training time.
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(a) (b) (c) (d)

Figure 3.12: Figure 3.12a and 3.12c represents the samples from MNIST and
FMNIST dataset whether Figure 3.12b and 3.12d shows the reconstruction using
sampling quantities of 𝑘 = 50.

3.5.3 Latent Space Representation

Latent space representation enables lower-dimensional views from a high-dimensional

presentation. Each point in the images presented in Figure 3.13 and 3.14 is the

latent code from the test set, and different colors are used to distinguish digits.

The x and y-axis scales vary due to the models’ representation but do not affect

representation.

3.5.4 Interpolation and Manifold

In order to visualize the high-density regions, the task of extracting 2-D manifold

and interpolation is efficient for autoencoders. After the latent space representation

task, the manifold and interpolation show the most populated regions. If this

representation accurately describes the original data, we can conclude that the

corrupted input is effectively canceled out. Based on the interpretation, the latent

space representation can be evaluated as well (MNIST- Figure 3.15 and FMNIST

Figure 3.16).

3.5.5 Quantitative Comparison

Along with comparing the results with qualitative observations such as 2-D mani-

fold, latent space representation, and sample reconstruction, we also demonstrated

ROC-AUC for each method. Table 3.5 reports the result of evaluation metrics
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reconstructed. Since ROC-AUC is not reported on the references paper, the nu-

merical results mentioned in this table might be inconsistent with the referenced

result. However, the quantitative comparison stated in Table 3.5 provides the dis-

tinguishable ground to compare autoencoders for the downstream tasks of UAD.

Table 3.5: Results of ROC-AUC for all architectures on both datasets

Model MNIST FMNIST
DAE 0.73 0.56
SAE 0.83 0.66
CAE 0.81 0.22
VAE 0.78 0.61
𝛽-VAE 0.87 0.59
adVAE 0.93 0.87
CVAE 0.80 0.66
IWAE 0.87 0.57
PAE 0.89 0.64
RDA 0.82 0.60

VQ-VAE 0.82 0.56

3.6 Discussion

In these experiments, we focused on three evaluation criteria: 1) Reconstruction

and generation of sample inputs; 2) Latent space representation; and 3) Manifold

learning and interpolation. Along with these three comparisons, one of the core

focus of this study is the efficiency vs. trade-offs hypothesis that is mentioned in

section 3.6.1. The ability to reconstruct and generate samples are the two most

common ground to differentiate autoencoders for the task of UAD.

If we consider noisy input, DAE performs better reconstruction if the noise is

less than 25%. As we increase the noisy inputs, SAE performs better than DAE.

However, DAE and SAE seem to have a complication in 5 and 9 reconstructions.

On the other hand, RDA barely can reconstruct the noisy inputs; the digits 6, 4,

2, and 9 are similarly reconstructed.

Among variational methods (VAE, 𝛽-VAE, VQ-VAE, CVAE), VQ-VAE and CVAE

produce sharper reconstructions. For the former, this is likely due to the discrete

latent space. Compared to VQ-VAE, 𝛽-VAE generates more accurate and sharp
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pixel outputs. On the other hand, VAE introduces noise while sampling but min-

imizes it efficiently. 𝛽-VAE tends to find additional latent factors and learn the

characterization of disentanglement than the other models.

For the other methods (PAE, CAE, IWAE), we observe the abnormality in recon-

structing some specific digits like 6, 9, 2, and 4. CAE shows blurry reconstruction,

but they are interpretable, IWAE has less blurry reconstructions, but the inter-

pretation is unclear. PAE has both clear and sharp reconstructions, but some

reconstructions (e.g. 5, 8, and 9) are somewhat inaccurate.

Interestingly, there are few similarities in latent space representation both in MNIST

and FMNIST datasets. If we ignore the rotation of clusters, VAE, SAE, CAE, and

PAE separate the digits 0, 5, 6, and 7 more efficiently for MNIST. For FMNIST,

IWAE, VAE, and 𝛽-VAE, CVAE show some similarities while presenting clustered

labels, but most of them are not clearly distinguished. We can derive the following

observations from the latent space visualizations:

• For both datasets, the latent representation of RDA, CVAE overlaps with

most of the sample. One of the reasons for RDA can be the split input with

two layers (Deep Autoencoder and Noisy input).

• 𝛽-VAE, VAE, VQ-VAE have some apparent similarities between the plots in

MNIST. The clusters of zero, three, and seven are nicely separated. In both

cases, the latent layer seems to encode the structural similarities. Also, the

plots of VAE and 𝛽-VAE show the influence of the KLD loss as the latent

occupy less space than the other methods by restricting the samples of a

standard Gaussian.

• SAE, PAE, CAE has the most efficient way to separate the clusters (MNIST).

SAE and PAE both contain the Weight decay parameter that equally dis-

tributes the denoising data. IWAE and adVAE also illustrate similar prop-

erties but are not efficient in separate clusters like the others.

2-D manifolds and interpolation show latent space interpretation more accurately

than reconstruction. Most anomalous data are re-generated along with the mani-

fold to evaluate reconstruction and generation techniques for different architectures.

For both MNIST and FMNIST, similar to latent space, the VQ-VAE illustrates the
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KLD loss effect in manifold structure. Surprisingly, 𝛽-VAE shows no outcome of

disentangled latent factors in latent space. However, for the 2-D manifold, 𝛽-VAE

shows the lenient latent factors. One possible interpretation for such behavior is

the rotation of each digit in terms of coloring; if we reroute the digits to their orig-

inal axis (similar to 𝛽-VAE in the FMNIST dataset), the effect of showing more

substantial latent factors can be observed.

• For sample generation, we only considered adVAE, VAE, VQ-VAE, SAE, 𝛽-

VAE and eliminated the other autoencoders. The elimination is to narrow

down the generative models and only compare them with the typical ground

architecture.

• The variance of samples is relatively small. Only the 𝛽-VAE generated the

most satisfactory sample. The 𝛽-VAE has the highest emphasis on discharg-

ing Gaussian prior. Therefore, the encoder output is the most similar to

standard Gaussian samples, and the decoder generates the same latent code

sampled from a true standard Gaussian. On the other hand, the construction

of CVAE and VQ-VAE is a bit surprising as they resemble the MNIST digits

poorly.

• The rest of the autoencoders generates average samples with a fade-out and

noisy pixels. In some cases (SAE and adVAE), they are bend out due to

similar class distributions.

3.6.1 Efficiency and Trade-offs

All the results and discussions mentioned above lead towards formulating our hy-

pothesis: efficiency vs. trade-offs in experimented autoencoders. Table 3.6 sets the

background to lead towards our conclusion as follows:

3.7 Conclusion

In summary, we conclude that:
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• General variational methods are more efficient when enforcing special condi-

tions to control discrete latent representation. For example, the performance

of VQ-VAE, 𝛽-VAE, and CVAE is superior to that of the original VAE, as

VQ-VAE uses the auto-regressive prior to pair representations, while 𝛽-VAE

emphasizes locating disentangled latent factors.

• A better reconstruction from noisy data can be obtained by removing un-

wanted noisy corrupted input if we introduce a hidden activation layer to

activate a specific layer at a time and improve robustness, avoid over-fitting

of the data. For example, SAE has a sparse hidden layer unlike DAE or RDA,

and the generated output from SAE has better pixels and classification ac-

curacy than the other ones.

• Adversarial and generative methods model arbitrary latent space that im-

poses a prior that may not fit the data distribution well. Therefore, the ad-

versarial generator networks with precious structural latent space sampling

adaptability and the ability to normalize the space are more efficient. In

particular, learning the positive and negative latent representations to avoid

over-smoothing is the key for such types of autoencoders.

Although this study provides a brief overview and experiments of AE architec-

ture, including recent extensions of such methods including InfoVAE [5], Cluster-

ing VAE [98],VFAE [6], DIP-VAE [7], FactorVAE [3], 𝛽-TCVAE [3], RFVAE [59],

extensions of GANs [67–69], and extensions of feature extraction methods [37, 61]

will enhance this literature with the further foundation for VAE architectures.

3.7.1 Scope and Future Research Directions

The conclusion from the efficiency and trade-off study perceives few vital research

directions for VAEs. Firstly, we drew an overview of qualitative and quantita-

tive results from different AEs based on reconstruction quality, sample generation,

latent space visualization, and anomaly detection accuracy. Then, based on the

empirical evidence, we derive the efficiency and trade-off observations. We find

the following two crucial avenues of improvement for VAE architectures: efficiently

enforce disentangled factors for retaining valuable information and learning struc-

tured distribution to combine posterior variants of VAEs.
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Based on these two avenues, we can discuss future research on VAEs into the

following three general categories:

• Posterior distribution: Understanding the principle of posterior loss and

introducing the complete disentangled feature within VAEs by regularizing

the posterior distribution. Finding the proper way to resolve this issue will

improve the quality of generated samples from autoencoders, especially VAEs.

• Structured distribution: The structured prior distribution is crucial for

accomplishing better representation clustering of data. VAEs in some data

samples generate blurry and erroneous output; this can be tackled by impos-

ing Gaussian Mixture Model (GMM) prior and the architecture of Vectorized

Quantization (VQ). Moreover, GMM prior can also improve the variational

optimization while decoding the information bottleneck.

• Models Architecture: Combining and enhancing different AE architecture

to improve bottleneck decoding is the most acceptable way to tweak the AEs.

e.g., VAEs or CVAEs combined with PAE can decrease the blurred effect on

the generated samples.

Address the categories mentioned above; future research on VAEs can be effectively

utilized in applications like detecting serious diseases using Bio-signal applications,

speech processing, image generation, and controlling data distributions.
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Figure 3.13: Latent Space Representation (MNIST)
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Figure 3.14: Latent Space Representation (FMNIST)
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Figure 3.15: 2-D Manifold (MNIST)
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Figure 3.16: 2-D Manifold (FMNIST)
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Figure 3.17: ROC-AUC (MNIST)
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Figure 3.18: ROC-AUC (FMNIST)
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Table 3.6: Efficiency and Trade-off Comparison

Autoencoder Efficiency Trade-offs

DAE
• Efficient in correcting corrupted input.

• More sensitive to noise when

more than 45% input is corrupted.

• Extracting and selecting robust

features after denoising the input.

• Too much lossy construction and

hard to interpret the latent space.

RDA

• With deep layers, the RDA can both

denoise the input and classify data

effectively.

• No clear interpretation in latent

space.

• Splitting the reconstructed input data

noise or outlier data improves the

robustness of the standard deep

autoencoders.

• Poor and blurry reconstructed

and generated sample compared

to VAE and adversarial models.

adVAE

• Compared to VAE, the adVAE doesn’t

introduce any deterministic bias for

optimizing the lower bound on the log-

likelihood, as a result, it generates less

blurry samples.

• For some training samples, the

encoder/decoder fails to adapt

the latent space to match the

prior distribution.

• adVAE is more efficient in intro-

ducing discrete latent variables.

• If the discriminator variable

is not accurately perceived,

the loss can spike unpredictably.

CVAE

• Combine VAE and output

prediction using a conditioned

variable.

• Due to the conditioned variable,

the computational complexity is

too high.

• Effective in improving classification

Accuracy using the labeled condition.

• To distinguish latent space, the

testing sample requires more data.

• Comparatively scalable in respect to

other conditional variational models.

VAE

• Incorporates the probabilistic distri-

bution with generative modeling.

• The curse of dimensionality

limitation in Gaussian prior

distribution.

• Improves the unsupervised models

in generating samples.

• Constructed sample tends

to get blurry.

• Learning smooth latent represen-

tation and visualizing latent space.

• Latent representation does

not show interpretable results.
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𝛽-VAE

• Combing the VAE features for

more efficient learning.

• For tasks like classification and

disentangled representation, there

is no clear correlation.

• Capable of automatically

learning the disentangled represen-

tation.

• Might ignore latent variable

or under-fitting model.

• More scalable than the

VAE and easy to train.

VQ-VAE

• Removes the noise and corrupted

details.

• Exhibit high entropy and very

low interpretation from a latent

variable.

• Combing the VAE features for

discrete representation learning.

• Not stable in complex sampling

setup.

CAE

• Improve reconstruction of the

generative models using a penalty term

• Penalty in a contractive layer

can result in useless construction.

• Efficient in capturing the local

directions of variations on the data.

• CAE calculates the local infor-

mation, hence may face lower latent

reconstruction.

IWAE

• Using the same architecture of VAE,

IWAE more accurately identifies tighter

log-likelihood lower bound.

• Require fine-tuning based on the

training data.

• Compared to VAE, more effective in

learning latent space representations,

improving test log-likelihood.

• The accuracy of the classification

heavily depends on the approximate

posterior.

SAE

• Compared to DAE, the SAE is more

efficient in denoising input.

• L1 regularization can fail where it

is robust to outliers.

• Sparsity condition in activation layers

enables the control of the dependency of

features.

• A small number of layers may fail

to decode the complex latent space

representation.

• As it activates layers based on the

condition, for certain uses it is very

scalable.

PAE

• Without parameter tuning, the PAE

achieves a small reconstruction error

than the VAE.

• Can wrongly estimate the recons-

truction error.

• Easy to train and more scalable.
• Require more metrics to verify the

classification.
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Chapter 4

Disentangled Conditional

Variational Autoencoder for

Unsupervised Anomaly Detection

Preamble to Manuscript 2.

While working on the first manuscript, I experimented with several architectures of VAE

with different baseline comparisons, i.e., reconstruction, sample generation, classification

of anomalies, ROC-AUC, and latent space visualization. Visualization of the latent vari-

ables and quantitative results from anomaly classification highlighted a few important

observations. Firstly, we observed blurry reconstruction from the original VAE frame-

works, which were resolved using the adVAE. Among different criteria of evaluation, we

observed that the following two properties hugely improve anomaly detection:

• Minimizing information loss in posterior-variants of VAE (i.e., 𝛽-VAE, VQ-VAE)

leads to improving the reconstruction quality.

• The nearer we minimize the negative ELBO score, the better it gets in anomaly

detection accuracy.

However, such an interpretation is intractable without experimenting with several loss

functions by either modifying the loss function or proposing a new loss and objective

function. Around the same time, I started implementing different VAE architectures and

tested their accuracy in the MNIST dataset. In total, I implemented 31 architectures of

autoencoder using both PyTorch and TensorFlow packages. As I started training these
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large models, I faced reproducibility issues and little or no resources with verifying the

implementation. I greatly suffered from compatibility issues with Python and Tensor-

Flow, such as: deprecated packages or libraries and version compatibility with python

3.6.3 and TensorFlow 2.1. After facing such issues, I took the issue of reproducibility

as a part of my experiments and created a python implementation to reproduce the re-

sults easily. Going forward, while reading the meta-priors literature and multivariate

information theory, I started introducing the regularization of loss function using the

CorEx techniques. Meanwhile, I worked on finding appropriate datasets for testing the

different methods. After several months of training the models and testing them in a

different context, I chose several MNIST-type datasets to illustrate the results. Thus,

this manuscript focuses on both dCVAE experiments and the issue of reproducibility.

Currently, this manuscript is under review at the Eleventh International Conference on

Learning Representations (ICLR 2023).
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Abstract

Recently, generative models have shown promising performance in anomaly detection

tasks. Specifically, autoencoders learn representations of high-dimensional data, and

their reconstruction ability can be used to assess whether a new instance is likely to be

anomalous. However, the primary challenge of unsupervised anomaly detection (UAD)

is in learning appropriate disentangled features and avoiding information loss, while

incorporating known sources of variation to improve the reconstruction. In this paper, we

propose a novel architecture of generative autoencoder by combining the frameworks of 𝛽-

VAE, conditional variational autoencoder (CVAE), and the principle of total correlation

(TC). We show that our architecture improves the disentanglement of latent features,

optimizes TC loss more efficiently, and improves the ability to detect anomalies in an

unsupervised manner with respect to high-dimensional instances, such as in imaging

datasets. Through both qualitative and quantitative experiments on several benchmark

datasets, we demonstrate that our proposed method excels in terms of both anomaly

detection and capturing disentangled features. Our analysis underlines the importance

of learning disentangled features for UAD tasks.
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4.1 Introduction

Unsupervised anomaly detection (UAD) has been a fertile ground for methodological

research for several decades. Recently, generative models, such as Variational Autoen-

coders (VAEs) [54] and Generative Adversarial Networks (GANs) [69, 99], have shown

exceptional performance at UAD tasks. By learning the distribution of normal data,

generative models can naturally score new data as anomalous based on how well they

can be reconstructed. For a recent review of deep learning for anomaly detection, see

[100].

In a complex task like UAD, disentanglement as a meta-prior encourages latent factors

to be captured by different independent variables in the low-dimensional representa-

tion. This phenomenon has been on disply in recent work that has used representation

learning as a backbone for developing new VAE architectures. Some of the methods

proposed new objective functions [2, 73], efficient decomposition of the evidence lower

bound (ELBO) [3], partitioning of the latent space by adding a regularization term to the

mutual information function [5], introducing disentanglement metrics [4], and penalizing

total correlation (TC) loss [74]. Penalized TC efficiently learns disentangled features and

minimizes the dependence across the dimension of the latent space. However, it often

leads to a loss of information, which leads to lower reconstruction quality. For example,

methods such as 𝛽-VAE, Disentangling by Factorising (FactorVAE) [4], and Relevance

FactorVAE (RFVAE) [59] encourage more factorized representations with the cost of

either losing reconstruction quality or losing a considerable among of information about

the data and drop in disentanglement performance. To draw clear boundaries between

an anomalous sample and a normal sample, we must minimize information loss.

To address these limitations, we present Disentangled Conditional Variational Autoen-

coder (dCVAE). Our approach is based on multivariate mutual information theory. Our

main contribution is a generative modeling architecture which learns disentangled rep-

resentations of the data while minimizing the loss of information and thus maintaining

good reconstruction capabilities. We achieve this by modeling known sources of varia-

tion, in a similar fashion as Conditional VAE [60].

Our paper is structured as follows. We first briefly discuss related methods (Section 4.2),

draw connection between them, and present our proposed method dCVAE (Section 4.3).

In Section 4.4, we discuss our experimental design including competing methods, datasets,

and model configuration. Finally, experimental results are presented in Section 4.5, and

Section 4.6 concludes this paper.
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4.2 Related Work

In this section, we discuss related work on autoencoders. We focus on two types of

architecture: extensions of VAE enforcing disentanglement, and architectures based on

mutual information theory.

4.2.1 𝛽−VAE

𝛽-VAE and its extensions proposed by Higgins et al. [2], Chen et al. [3], Mathieu et al.

[73] is an augmentation of the original VAE with learning constraints of 𝛽 applied to

the objective function of the VAE. The idea of including such a hyper-parameter is to

balance the latent channel capacity and improve the reconstruction accuracy. As a result,

𝛽-VAE is capable of discovering the disentangled latent factors and generating more

realistic samples while retaining the small distance between the actual and estimated

distributions.

Recall the objective function of VAE proposed by Kingma and Welling [54]:

𝐿VAE(𝜃, 𝜙) = −Ez∼𝑞𝜙 (z |x) log 𝑝𝜃 (x | z) + 𝐷KL
(
𝑞𝜙 (z | x)∥𝑝𝜃 (z)

)
. (4.1)

Here, 𝑝𝜃 (x | z) is the probabilistic decoder, 𝑞𝜙 (z | x) is the recognition model, KLD is

denoted by 𝐷KL(𝑞𝜙 (z | x)∥𝑝𝜃 (z | x)) parameterized by the weights (𝜃) and bias (𝜙) of

inference and generative models. As the incentive of 𝛽-VAE is to introduce the disentan-

gling property, maximizing the probability of generating original data, and minimizing

the distance between them, a constant 𝛿 is introduced in the objective VAE to formulate

the approximate posterior distributions as below:

max
𝜙,𝜃
E𝒙∼X

[
E𝑞𝜙 (𝑧 |𝒙) [log 𝑝𝜃 (𝒙 | 𝑧)]

]
such that 𝐷KL

(
𝑞𝜙 (𝑧 | 𝒙) | |𝑝(𝑧)

)
< 𝛿. (4.2)

Rewriting the Equation in Lagrangian form and using the KKT conditions, Higgins et al.

[2] derive the following objective function:

L𝛽𝑉𝐴𝐸 (𝜃, 𝜙) = E𝑞𝜙 (𝑧 |𝑥) [log 𝑝𝜃 (𝑥 | 𝑧)] − 𝛽𝐷KL
(
𝑞𝜙 (𝑧 | 𝑥)∥𝑝(𝑧)

)
, (4.3)
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Here, 𝛽 is the regularization coefficient that enforces the constraints to limit the capacity

of the latent information z. When 𝛽 = 1, we recover the original VAE. Increasing the value

of 𝛽 > 1 enforces the constraints to capture disentanglement. However, Hoffman et al.

[101] argue that with an implicit prior, optimizing the regularized ELBO is equivalent to

performing variational expectation maximization (EM).

4.2.2 FactorVAE

Disentangling by Factorising or FactorVAE is another modification of 𝛽-VAE proposed

by Kim and Mnih [4]. FactorVAE emphasizes the trade-off between disentanglement

and reconstruction quality. The authors primarily focused on the objective function of

the VAE and 𝛽-VAE. The authors propose a new loss function to mitigate the loss of

information that arise while penalizing both the mutual information and the KLD to

enforce disentangled latent factors.

According to Hoffman and Johnson [102] and Makhzani and Frey [103], the objective

function of 𝛽-VAE can be further extended into:

E𝑝data (𝑥) [𝐾𝐿 (𝑞(𝑧 | 𝑥)∥𝑝(𝑧))] = 𝐼 (𝑥; 𝑧) + 𝐾𝐿 (𝑞(𝑧)∥𝑝(𝑧)), (4.4)

Here, 𝐼 (𝑥; 𝑧) is the mutual information between 𝑥 and 𝑧 under the joint distribution

𝑝data (𝑥)𝑞(𝑧 | 𝑥). FactorVAE learns the second term of 𝐾𝐿 (𝑞(𝑧)∥𝑝(𝑧)) and resolved the

aforementioned issues by introducing total correlation penalty and density-ratio trick to

approximate the distribution 𝑞(𝑧) generated by 𝑑 samples from 𝑞(𝑧). The loss function

of the FactorVAE is as follows:

E𝑞(𝑧 |𝑥 (𝑖) )
[
log 𝑝

(
𝑥 (𝑖) | 𝑧

)]
− 𝐾𝐿

(
𝑞

(
𝑧 | 𝑥 (𝑖)

)
∥𝑝(𝑧)

)
− 𝛾𝐾𝐿 (𝑞(𝑧)∥𝑞(𝑧))

(4.5)

4.2.3 The principle of total Correlation Explanation (CorEx)

Gao et al. [74] introduced CorEx to mitigate the problem of learning disentangled and

interpretable representations in a purely information-theoretic way. In general, for VAE,

we assume a generative model where x is a function of a latent variable z, and after-

ward maximize the log likelihood of x. On the other hand, CorEx follows the reverse

process where z is a stochastic function of x parameterized by 𝜃, i.e., 𝑝𝜃 (z | x), and seek



66 4.2. Related Work

to estimate the joint distribution 𝑝𝜃 (x, z) = 𝑝𝜃 (z | x)𝑝(x). The underlying true data

distribution maximizes the following objective:

L(𝜃; x) = 𝑇𝐶𝜃 (x; z)︸      ︷︷      ︸
informativeness

− 𝑇𝐶𝜃 (z)︸  ︷︷  ︸
(dis)entanglement

= 𝑇𝐶 (x) − 𝑇𝐶𝜃 (x | z) − 𝑇𝐶𝜃 (z).

(4.6)

Recall the definition of the total correlation (TC) in terms of entropy 𝐻 (x) [104]:

𝑇𝐶 (x) =
𝑑∑︁
𝑖=1

𝐻 (x𝑖) − 𝐻 (x) = 𝐷𝐾𝐿

(
𝑝(x)∥

𝑑∏
𝑖=1

𝑝 (x𝑖)
)
. (4.7)

By non-negativity of TC, Equation 4.6 naturally forms variational lower bound 𝑇𝐶 (x)
to the CorEx objective, i.e., 𝑇𝐶 (x) ≥ L(𝜃; x) for any 𝜃. Equation 4.6 can be rewritten

in terms of mutual information 𝐼 (x; z) = 𝐻 (x) − 𝐻 (x | z) = 𝐻 (z) − 𝐻 (z | x). Further

constraining the search space 𝑝𝜃 (z | x) to have the factorized form 𝑝𝜃 (z | x) = ∏𝑚
𝑖=1 𝑝𝜃 (z𝑖 |

x) and the mutual information terms can be bounded by approximating the conditional

distributions 𝑝𝜃 (x𝑖 | z) and 𝑝𝜃 (z𝑖 | x) and parameterized by variational parameters 𝛼

and 𝜙 with arbitrary distribution 𝑟𝛼 (z). Finally, we can further rewrite and derive the

lower bound for the objective function:

L(𝜃; x) =
𝑑∑︁
𝑖=1

𝐼𝜃 (x𝑖 : z) −
𝑚∑︁
𝑖=1

𝐼𝜃 (z𝑖 : x)

≥
(
𝑑∑︁
𝑖=1

𝐻 (x𝑖)
)
+ 𝐸𝑝𝜃 (x,z)

©­­­«log 𝑞𝜙 (x | z)︸     ︷︷     ︸
decoder

ª®®®¬
− 𝐷𝐾𝐿 (𝑝𝜃 (z | x)︸     ︷︷     ︸

encoder

∥𝑟𝛼 (z)).

(4.8)

4.2.4 Total Correlation Variational Autoencoder (𝛽−TCVAE)

Chen et al. [3] proposed disentanglement in their learned representations by adjusting the

functional structure of the ELBO objective. The authors argued that each dimension of

a disentangled representation should be able to represent a different factor of variation in

the data and be changed independently of the other dimensions. 𝛽-TCVAE modifies the

originally proposed ELBO objective by Higgins et al. [2] forcing the algorithm to learn
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representations without explicitly making restrictions or reduction to the latent space.

Recall the ELBO objective function (Equation 4.3) of 𝛽-VAE:

L𝛽𝑉𝐴𝐸 (𝜃, 𝜙) = E𝑞𝜙 (𝑧 |𝑥) [log 𝑝𝜃 (𝑥 | 𝑧)] − 𝛽𝐷KL
(
𝑞𝜙 (𝑧 | 𝑥)∥𝑝(𝑧)

)
(4.9)

To introduce TC and disentanglement into the original 𝛽-VAE, Chen et al. decomposed

the original KLD into Index-Code MI, Total Correlation and Dimension-wise KL

terms. Furthermore, in the ELBO TC-Decomposition, each training samples are identi-

fied with a unique index n and a uniform random variable that refers to the aggregated

posterior as 𝑞(𝑧) = ∑𝑁
𝑛=1 𝑞(𝑧 | 𝑛)𝑝(𝑛) and can be denoted as:

E𝑝 (𝑛) [KL(𝑞(𝑧 | 𝑛)∥𝑝(𝑧))] = KL(𝑞(𝑧, 𝑛)∥𝑞(𝑧)𝑝(𝑛)) + KL

(
𝑞(𝑧)∥

∏
𝑖

𝑞 (𝑧𝑖)
)

+
∑︁
𝑖

KL (𝑞 (𝑧𝑖) ∥𝑝 (𝑧𝑖))
(4.10)

Finally, with a set of latent variables 𝑧𝑖, with known factors 𝑣𝑘 , the authors introduced a

disentanglement measuring metric called mutual information gap (MIG) and defined in

terms of empirical mutual information 𝐼𝑛 (𝑧𝑖; 𝑣𝑘):

1

𝐾

𝐾∑︁
𝑘=1

1

𝐻 (𝑣𝑘)

(
𝐼𝑛

(
𝑧𝑖 (𝑘) ; 𝑣𝑘

)
− max
𝑖≠ 𝑗 (𝑘)

𝐼𝑛 (𝑧𝑖; 𝑣𝑘)
)

(4.11)

Here, 𝑗 (𝑘) = argmax 𝑗 𝐼𝑛 (𝑧𝑖; 𝑣𝑘) and 𝐾 is the number of known factors under 𝑣𝑘 .

4.3 Disentangled Conditional Variational Autoen-

coder (dCVAE)

Our approach builds on CorEx and models known sources of variation in the data, in a

manner similar to Conditional Variational Autoencoder (CVAE) [60]. In what follows,

we will represent this known source of variation using the variable 𝐶. In the experiment

below, 𝐶 is discrete and represents the class of each image. Modifying Equation 4.6 to

incorporate 𝐶, we get

L(𝜃; 𝑥, 𝑐) = 𝑇𝐶𝜃 (𝑥 | 𝑐) − 𝑇𝐶𝜃 (𝑥 | 𝑧, 𝑐) − 𝑇𝐶𝜃 (𝑧 | 𝑐). (4.12)
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Recall that the first two terms measure the amount of correlation explained by 𝑧, and by

maximizing it, we maximize the informativeness of the latent representation. The third

term measures the correlation between the components of 𝑧, and by minimizing it, we

maximize the disentanglement between the latent dimensions.

Using Mutual Information Theory [104], we can define the conditional differential entropy

of 𝐻 (𝑥) given 𝑐 and interpret mutual information as a reduction in uncertainty after

conditioning:

𝐼 (𝑥; 𝑧 | 𝑐) = 𝐻 (𝑥 | 𝑐) + 𝐻 (𝑧 | 𝑐) − 𝐻 (𝑥, 𝑧 | 𝑐)

𝐼 (𝑥; 𝑧 | 𝑐) = 𝐻 (𝑥 | 𝑐) − 𝐻 (𝑥 | 𝑧, 𝑐) = 𝐻 (𝑧 | 𝑐) − 𝐻 (𝑧 | 𝑥, 𝑐).
(4.13)

We can now rewrite Equation 4.12 using derived mutual information theory from Equa-

tion 4.13:

L(𝜃; 𝑥, 𝑐) =
𝑛∑︁
𝑖=1

𝐼 (𝑥𝑖; 𝑧 | 𝑐) −
𝑚∑︁
𝑖=1

𝐼 (𝑧𝑖; 𝑥 | 𝑐) . (4.14)

Now, consider the KLD between 𝑝𝜃 (x | z, 𝑐) and an approximating distribution 𝑞𝜙 (x |
z, 𝑐). In terms of expectations with respect to the joint distribution 𝑝𝜃 (x, z | 𝑐), we can

write:

− 𝐻 (𝑥 | 𝑧, 𝑐) = 𝐸 (log 𝑝𝜃 (𝑥 | 𝑧, 𝑐)) ≥ 𝐸 (log 𝑞𝜙 (𝑥 | 𝑧, 𝑐)). (4.15)

Combing Equation 4.14 and 4.15 and assuming an approximating arbitrary distribution

𝑟𝛼 (𝑧𝑖 | 𝑐) under variational parameter 𝛼 and 𝜙 for 𝑝𝜃 (𝑧𝑖 | 𝑐), we obtain two inequalities:

𝐼 (𝑥𝑖; 𝑧 | 𝑐) = 𝐻 (𝑥𝑖 | 𝑐) − 𝐻 (𝑥𝑖 | 𝑧, 𝑐) ≥ 𝐻 (𝑥𝑖 | 𝑐) + 𝐸 (log 𝑞𝜙 (𝑥 | 𝑧, 𝑐)), (4.16)

𝐼 (𝑧𝑖; 𝑥 | 𝑐) = 𝐷𝐾𝐿 (𝑝𝜃 (𝑧𝑖 | 𝑥, 𝑐) ∥𝑟𝛼 (𝑧𝑖 | 𝑐)) . (4.17)

Combining these bounds with 𝛽, we finally derive a lower bound for the objective function

for dCVAE:

L(𝜃; 𝑥, 𝑐) ≥
𝑛∑︁
𝑖=1

𝐻 (𝑥𝑖 | 𝑐) + 𝐸
(
log 𝑞𝜙 (𝑥 | 𝑧, 𝑐)

)
−

𝑚∑︁
𝑖=1

𝛽𝐷𝐾𝐿
(
𝑝 (𝑧𝑖 |𝑥,𝑐) ∥𝑟 (𝑧𝑖 |𝑐)

)
. (4.18)
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Equation 4.18 illustrates the lower bound objective function of dCVAE where 𝑞𝜙 (x | z, 𝑐)
is the generative model or decoder and 𝑝𝜃 (z𝑖 | x, 𝑐) is the recognition model or encoder.

4.4 Experiments

In the experiments below, we compare our dCVAE method to five baseline methods:

VAE, CVAE, 𝛽-VAE, Factor-VAE, and RFVAE. The first two methods were selected as

well-known baselines that do not explicitly enforce disentanglement; on the other hand,

the latter three methods seek to achieve a disentangled representation of the data.

4.4.1 Datasets

We evaluate dCVAE and other baseline models on the following four datasets. MNIST [72],

Fashion-MNIST (FMNIST) [95] are considered as the benchmark dataset whether-as the

KMNIST [105] and EMNIST [106] are used for testing accuracy on a real-world dataset

to assess overall performance. A more detailed description of these datasets follows:

• MNIST and FMNIST: Firstly, we apply all models to two benchmark datasets,

MNIST and FMNIST, for a fair comparison with other baseline methods. We used

all 10 classes with 60000 and 10000 training and testing samples for both datasets

with 28 × 28 × 1 pixels channel.

• KMNIST: Secondly, we applied the same training process to another complex

real-world dataset, Kuzushiji-MNIST or KMNIST. KMNIST is a drop-in replace-

ment for the MNIST dataset, a Japanese cursive writing style. KMNIST contains

similar 10 classes with 60000 and 10000 training and testing samples with 28×28×1

pixels channel.

• EMNIST: Finally, all models are tested on the Extending MNIST or EMNIST

Dataset to further assess the performance. EMNIST has extended 62 classes (digit

0-9, letters uppercase A-Z and lowercase a-z) with 700000 and 80000 training and

testing samples with 28 × 28 × 1 pixels channels. As a result, this dataset posses

more challenges for the methods while conducting the downstream tasks. The

EMNIST dataset was processed from NIST Special Database 19 [107] and contains

handwritten digits and characters collected from over 500 writers.
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4.4.2 Reconstruction error and Anomaly Score

Leveraging methods for the discriminator as the anomaly score and drawing separa-

tion between normal and anomalous data is challenging for the divergent architectures

of autoencoders. Depending on the task the architecture is trained for, the discrimi-

nator varies greatly. In general, the UAD methods utilize reconstruction error [108],

distribution-based error [109], and density-based error [110] scores to distinguish normal

and anomalous data. Formally, for each input 𝑥, a test input 𝑥̂𝑙 is considered to be

anomalous if reconstruction error or Anomaly score(A) is greater than the minimum

threshold value and denoted as follows:

A(𝑥) = ∥𝑥 − D(G(𝑥))∥2. (4.19)

4.4.3 Performance Metrics

One of the challenges of measuring the performance of disentanglement is to apply appro-

priate metrics based on the nature of the dataset, not of latent factors or dimensions in

the latent space. Therefore, considering the different model architectures and datasets,

we first measure the performance using Numerical AUC Score, reconstruction error (A),

and negative ELBO score (E). These metrics provide a quantifiable method of accuracy,

while also measuring the disentanglement among the latent factors.

We also measure performance qualitatively by visualizing the latent space and the 2D-

manifold. Both allow us to visualize the orthogonality between latent features and demon-

strate the accuracy of the models to handle reduced latent variables and the ability to

reconstruct samples.

4.4.4 Model configuration

A fixed set of hyper-parameters are chosen to formulate a similar platform for all models

and identify the computational cost and reproducibility of the models. Although base-

line models that we chose, 𝛽-VAE, FactorVAE, RFVAE are highly sensitive to hyper-

parameters tuning, the hyper-parameters throughout the experiment are kept consistent

to observe how the models perform under similar values. A minimal 50 epochs are used

to train the datasets. For MNIST, FMNIST, and KMNIST the batch size is kept to

64, with primary and secondary learning rates as 𝛼 = 10−5 and 𝛼 = 10−3 respectively.
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However, for the EMNIST dataset, the batch size increased to 128, and learning rates as

𝛼 = 10−6 and 𝛼 = 10−5.

4.5 Results and Discussion

In this section, we evaluate the results of dCVAE and other baseline methods on the

downstream task of anomaly detection. A considerable volume of results was produced

from our exhaustive evaluation. However, accounting for limitations of space here, we

elected to focus on the results from EMNIST and KMNIST datasets in the main text.

The remaining results (MNIST and FMNIST) are presented as Supplementary Material.

We show the results of our evaluation in three stages: firstly, using sample reconstruction

and the negative ELBO score (E) with reconstruction error A, we evaluate and compare

the disentanglement ability of dCVAE with baseline architectures. Secondly, we use the

UMAP algorithm [111] to reduce dimensions and visualize both latent representation, as

well as interpolation of the 2D-manifold to distinguish the TC by comparing information

loss and effects of modeling known sources of variation. Finally, we present AUC scores

and training time to summarize the overall accuracy of the experimented methods.

We evaluate the quality of disentanglement by considering explicit separation of A be-

tween normal and anomalous data and minimization of E. A better disentanglement is

achieved when:

(a) A higher reconstruction error A for anomalous sample and lower reconstruction

error A for normal sample is obtained and

(b) E is minimized by enforcing regularization that either minimizes the negative

ELBO decomposition 𝐷𝐾𝐿
(
𝑝 (𝑧𝑖 |𝑥,𝑐) ∥𝑟 (𝑧𝑖 |𝑐)

)
or regularizes the approximate poste-

rior 𝑞𝜙 (z | x).

A clear boundary in terms of learning efficient disentanglement between dCVAE and

baseline methods can be observed from both EMNIST (Figure 4.1) and KMNIST (Fig-

ure 4.2) reconstruction. The first row corresponds to anomalous reconstruction and the

second row shows normal sample reconstruction. Both E and A score suggests that

dCVAE captures more independent factors and identifies anomalous and normal samples

efficiently. This observation strongly justifies one of our primary claims, namely that

dCVAE incorporates the disentanglement learning through enforcing TC and restrict in-

dependent latent variables to prioritize the minimization of the divergence. The other
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disentanglement methods presented here either only emphasize TC (indicated by the

dependence between random variables) or introduce 𝛽 (weighing the prior enforcement

term), which limits the ability to learn randomness in a case when the hyperparameters

are not tuned for certain dimensions.

(a) E = -
235
A = 0.97

(b) E = -
248
A = 0.90

(c) E = -
245
A = 0.91

(d) E = -
246
A = 0.91

(e) E = -244
A = 0.92

(f) E = -246
A = 0.92

(g) E = -
171
A = 0.33

(h) E = -
199
A = 0.48

(i) E = -180
A = 0.53

(j) E = -185
A = 0.52

(k) E = -
195
A = 0.57

(l) E = -190
A = 0.55

Figure 4.1: Reconstruction for digit zero (0) and the capital letter O. Here,
E refers to Negative ELBO score and A is the reconstruction error or anomaly
score. Only dCVAE and FactorVAE show steady improvement for both types
of reconstruction. All the other methods misclassify the samples. Moreover, we
can observe higher reconstruction error and ELBO scores compared to MNIST
(Figure A.1) and FMNIST (Figure A.2).
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(a) E = -
251
A = 0.98

(b) E = -
281
A = 0.90

(c) E = -
279
A = 0.98

(d) E =-266
A = 0.97

(e) E = -277
A = 0.97

(f) E = -270
A = 0.96

(g) E = -
188
A = 0.28

(h) E = -
211
A = 0.47

(i) E = -185
A = 0.41

(j) E = -201
A = 0.57

(k) E = -
183
A = 0.41

(l) E = -170
A = 0.38

Figure 4.2: In KMNIST dataset, without dCVAE, all other methods fail to
classify both anomalous and normal samples. Reconstruction scores suggest
FactorVAE, VAE almost fail to distinguish normal and anomalous observations.
Since the stroke of the samples are similar in this dataset, methods that only
emphasize disentanglement or empirical approximation lose more information in
latent variable resulting in false anomaly detection.

The second observation is drawn using latent representation (Figure 4.3) and 2D-manifold

embeddings (Figure 4.4 and 4.5). Through this experiment, we observe the effect of

modeling using a known source of variation (i.e. introducing conditional variable 𝐶 into

the objective function) and minimizing information loss through multivariate mutual

information theory (i.e. decomposition of TC). We can observe clear similarities between

KLD loss and modeling with known score of variance in a reduced latent space. Due to

enforced divergence loss, the plot of VAE and 𝛽-VAE are noticeably different from other

architectures. Feature space is more compact for VAE, 𝛽-VAE, and we can see the cluster

of the different classes are not well separated. However, conditioning the generative

function (encoder) of CVAE and dCVAE provides the leverage to construct higher feature

space and retain more accurate information in 2D-manifold (EMNIST, Figure 4.4; and

KMNIST, Figure 4.5). Furthermore, TC reduces the correlation among disentanglement

degrees when a specific feature is learned (shape, strokes, color, boundaries). Such classes

can be observed to cluster together and the other gets scattered with higher feature

space (Figure 4.3). Compared to other methods, it is evident that dCVAE maintain

consistent latent space and create separate clusters more accurately. This indicates that

more disentangled variables are captured, and they retain more information through

conditioning the generative model by minimizing the ELBO 𝐷𝐾𝐿
(
𝑝 (𝑧𝑖 |𝑥,𝑐) ∥𝑟 (𝑧𝑖 |𝑐)

)
.
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(a) EMNIST

(b) KMNIST

Figure 4.3: Latent Representation of EMNIST and KMNIST

(a) dCVAE (b) VAE (c) CVAE (d) FactorVAE (e) 𝛽-VAE (f) RFVAE

Figure 4.4: Manifold Embeddings (EMNIST)

(a) dCVAE (b) VAE (c) CVAE (d) FactorVAE (e) 𝛽-VAE (f) RFVAE

Figure 4.5: Manifold Embeddings (KMNIST)
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Finally, Table 4.1 illustrates the results of model evaluation through AUC score and train-

ing time. dCVAE outperforms other methods in terms of AUC score. However, for larger

divergent datasets like KMNIST and EMNIST, VAE shows lower training time compared

to dCVAE. Since VAE only optimizes the negative log-likelihood, reconstruction loss and

prior enforcement term, the training takes fewer latent variables to regularize, resulting

in less training time. Nevertheless, compared to methods that incorporate TC (e.g. Fac-

torVAE and RFVAE) or a constraint on the posterior (𝛽-VAE), our proposed dCVAE

scales to all larger datasets with higher classification accuracy.

Table 4.1: Evaluation metrics score

Model
MNIST FMNIST EMNIST KMNIST

AUC

Training

Time (min)

AUC

Training

Time (min)

AUC

Training

Time (min)

AUC

Training

Time (min)

dCVAE 88.31 37 88.63 44 78.98 102 61.02 95

VAE 88.21 37 84.12 39 67.23 92 51.13 78

CVAE 87.57 43 83.31 48 66.01 117 42.35 104

FactorVAE 87.11 53 82.78 50 62.91 138 49.23 117

𝛽-VAE 85.31 51 82.31 53 65.12 123 50.01 119

RFVAE 85.31 55 81.11 57 55.03 130 49.51 132

The only trade-offs in our proposed method seem to occur when minimizing the negative

ELBO loss. In certain conditions, dCVAE reaches a lower reconstruction loss (anomalous

sample) yet minimizes the negative ELBO score (Figure 4.3, 4.4). In general, negative

ELBO loss should illustrate symmetrical change with reconstruction error. Such incon-

sistency could lead to a significant drop in the classification accuracy, thus leading to a

false anomaly detection result.

4.6 Conclusion

In this research, we present a novel generative variational model dCVAE, to improve the

unsupervised anomaly detection task through disentanglement learning, TC loss, and

minimizing trade-offs between reconstruction loss and reconstruction quality. Introduc-

ing a conditional variable to mitigate the loss of information effectively captures more

disentangled features and produces more accurate reconstructions. Such architecture

could be used in a wider range of applications, including generating controlled image

synthesis, efficient molecular design and generation, source separation for bio-signals and

images, and conditional text generation. Future research direction includes investigat-

ing in the gap between the posterior and the prior distribution, resolving the trade-offs

between loss function and reconstruction, and inspect dCVAE using different disentan-

glement metrics.
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Reproducibility statement

In this research, we carefully considered reproducibility in designing and conducting all

experiments. In our supplemental texts, we have attached our source code. The experi-

ments are designed independently to make the results reproducible. Image reconstruction

and generation, 2D-Manifold embeddings, training time, and ELBO score calculation are

performed separately from other downstream tasks like classification accuracy, recon-

struction error, and latent representation. Furthermore, we used both TensorFlow and

PyTorch frameworks to remove package dependencies. To remove the library dependen-

cies and installation issues, virtual environment and package requirement files are also

added. Finally, to make the results more accessible, we also provided randomly generated

images with supplementary texts.
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Chapter 5

Conclusion

5.1 Summary

In this thesis, I presented two manuscripts corresponding to chapters 3 and 4. Firstly, in

Chapter 2, I defined anomaly and anomaly detection, and then I explained the primary

background of types of anomalies, anomaly detection methods, and framework related to

unsupervised methods. Afterward, I presented the comparison between the autoencoder

and other unsupervised methods to illustrate the autoencoder’s appeal as the primary

technique for this thesis. Finally, I presented a few closely related VAE techniques,

namely CVAE, 𝛽-VAE, FactorVAE, RFVAE, FVAE, InfoVAE and CorEX, to present

the association between utilizing multivariate information theory for efficient disentangled

learning and improving the ability of anomaly detection.

In Chapter 3, I reviewed the architectures of the autoencoder for the task of UAD. As

discussed in Chapter 2, a key feature for efficient anomaly detection is learning the meta-

priors. In particular, VAEs and their extensions addressing meta-priors have shown great

potential in detecting anomalies in images dataset. However, two essential parts remained

unanswered: how to combine VAE architecture to balance information loss and retain

the quality of generated samples. Then, identify disentangled factors to regularize VAEs

loss function to efficiently retain information loss. Separated in three distinct categories,

I experimented with 11 autoencoder architectures to identify such capabilities and lever-

age the connection between VAE architectures with meta-priors. Through experiments

and extensive evaluations, it became evident that posterior-variant autoencoders(e.g.

CVAE, 𝛽-VAE, VQ-VAE) are more efficient than VAE at AD tasks. Observations from

77
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latent visualization and sample generations show that posterior variants utilizes the auto-

regressive prior to pair representation. For Example 𝛽-VAE emphasizes locating disen-

tangled latent factors, CVAE conditions the generative models, CorEx introduces TC for

minimizing information loss. I also showed that structured prior distribution is crucial for

learning data representation and improving the blurry reconstruction of VAEs. Finally, I

pointed out the advantages and limitations of current VAE extensions and propose future

research directions for VAE architectures.

Finally, in Chapter 4, I showed how the idea of the literature review and the manuscript

can be combined to improve unsupervised anomaly detection using disentangled learn-

ing and minimize information loss for efficient sample reconstruction. Specifically, I

studied the trade-off between reconstruction loss and reconstruction quality. The back-

bone of VAE was combined with conditional VAE, which conditions on known sources

of variation, and mutual information theory, which learns disentangled data represen-

tations while minimizing the loss of information. As a consequence, we expected good

reconstruction capabilities and superior performance for AD tasks. Using four different

datasets, I showed using anomaly score and ROC-AUC metrics that this was indeed the

case: the reconstruction quality heavily depends on retaining information by minimiz-

ing the loss of the objective function. Additionally, I emphasized model configuration

while training the models to attain training times for observing model complexity and

reproducing interpretable and constructive results. A clear improvement in sample re-

construction, optimizing TC, and overall improving the UAD can be observed from the

proposed dCVAE framework. However, it is also observed that there is a trade-off be-

tween the negative ELBO score optimization and the anomaly score. In general, the

dCVAE shows excellent potential in a broad range of applications, including generating

controlled image synthesis, efficient molecular design and generation, source separation

for bio-signals and images, and conditional text generation.

5.2 Limitations

In Chapter 2, I demonstrated the advantage and limitations of different VAE architec-

tures using the reconstruction, training time, AUC score, and latent space visualization.

However, selecting the VAE architectures is not robust. I chose the principle architec-

tures, although recent literature reviews show such architectures and improved and new

frameworks are already proposed. Model Selection and discovering highlights and chal-

lenges can be improved by selecting diverse model categories of VAE architectures such
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as: Adversarial Conditional AE [112], Stochastic Recurrent Networks [113], Sparse Gaus-

sian Process VAE [114], and Hypergraph VAE [115]. Another area of improvement is

using variations of accuracy metrics and inspecting the latent variables using numerical

estimations.

In Chapter 4, introducing disentangled metrics for dCVAE and improving baseline com-

parisons are still due in this study. Compared to other meta-priors, disentangled repre-

sentation depends on the factors and variants of the data. It can produce wrong premises

about the data if they are measured using inadequate metrics. Therefore, further study

is required to find the right accuracy metrics for dCVAE. Furthermore, previously pro-

posed disentangled learning models, such as 𝛽-VAE and FactorVAE, deliberately depend

on tuning parameters according to datasets and model configuration. In my proposed

framework, the hyperparameters are kept uniform for all methods, that might result in

lower accuracy for datasets like EMNIST and KMNIST. However, Tuning parameters

can also affect the overall baseline comparison criteria, such as accuracy metrics, classi-

fication accuracy, and training time. For this reason, I excluded the ablation study of

hyperparameters from consideration for this thesis.

5.3 Future work

The main chapters of this thesis, Chapters 3 and 4, highlight three potential directions

for future research. First, reviewing autoencoder and dCVAE frameworks are applied

in a uniform set of datasets: MNIST, Fashion-MNIST, EMNIST, and KMNIST. The

latter two datasets contain highly diverse real-world data samples and larger classes

and samples. Despite having such miscellaneous samples, dCVAE shows great accuracy

over other methods. A potential avenue for dCVAE can be applying this framework for

structural anomaly detection and detecting abnormalities in molecular generations where

segmenting and classifying images in a supervised manner is critical. In such a context

where the samples are high-dimensional and contain correlated features, learning disen-

tangled factors and minimizing loss of information can significantly improve detecting

abnormalities.

The second and third avenues for dCVAE are improving pixel-wise class detection and

introducing contextual anomaly detection [116]. In an unsupervised manner, defining

anomalous data boundaries highly depends on the course of the problem and changes

over time. Current literature depends on a non-trivial attention-based mechanism. The

dCVAE framework can be an exciting experiment to apply in diverse examples like molec-

ular controls and generating chemical substances, particularly in the genome-sequence
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research domain. I am interested in applying dCVAE in discrete datasets (textual, video)

and acquiring experimental observations to improve this framework.



Appendix A

Appendix to Manuscript 1

Since we couldn’t accommodate all results in our main paper, in this section we present

results produced from MNIST and FMNIST datasets. The results are categorized into

three sections: Reconstructions (A.1), Latent Representation (A.2), and 2D-Manifold

embeddings (A.3).
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A.1 Reconstruction

(a) E = -152,
A = 0.88

(b) E = -181,
A = 0.71

(c) E = -170,
A = 0.75

(d) E = -166,
A = 0.78

(e) E = -176,
A = 0.76

(f) E = -178,
A = 0.81

(g) E = -106,
A = 0.23

(h) E = -140,
A = 0.48

(i) E = -136,
A = 0.32

(j) E = -132,
A = 0.32

(k) E = -126,
A = 0.30

(l) E -131,
A = 0.31

Figure A.1: The reconstruction from the MNIST dataset shows similar neg-
ative ELBO and reconstruction error (A) values for CVAE, 𝛽-VAE, and RF-
VAE. our proposed model dCVAE performs best in terms of both reconstructing
anomalous observation (first row) and normal observation (second row). We can
observe a trade-off in FactorVAE with respect to 𝛽-VAE and RFVAE. Factor-
VAE performs better in reconstructing the anomalous observation whether as
the 𝛽-VAE shows good performance in normal observations.

(a) E = -187
A = 0.94

(b) E = -198
A = 0.79

(c) E = -192
A = 0.82

(d) E = -221
A = 0.90

(e) E = -231
A = 0.85

(f) E = -229
A = 0.92

(g) E = -151
A = 0.12

(h) E = -170
A = 0.37

(i) E = -162
A = 0.40

(j) E = -165
A = 0.41

(k) E = -155
A = 0.38

(l) E = -162
A = 0.42

Figure A.2: Similar to the MNIST dataset, the FMNIST illustrates similar
trade-offs among FactorVAE, RFVAE, and 𝛽-VAE. However, for some samples,
𝛽-VAE mis-classifies the closely matched classes. dCVAE constrains the blurry
reconstruction by enforcing conditions in the prior.
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A.2 Latent Space Visualization

Figure A.3: Latent Space Representation (MNIST)

Figure A.4: Latent Space Representation (FMNIST)



84 A.3. Latent Manifold

A.3 Latent Manifold

(a) dCVAE (b) VAE (c) CVAE (d) FactorVAE (e) 𝛽-VAE (f) RFVAE

Figure A.5: Latent Embeddings (MNIST)

(a) dCVAE (b) VAE (c) CVAE (d) FactorVAE (e) 𝛽-VAE (f) RFVAE

Figure A.6: Latent Embeddings (FMNIST)
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A.4 Random Generation



86 A.4. Random Generation



Appendix A. Appendix to Manuscript 1 87



88 A.4. Random Generation



Appendix A. Appendix to Manuscript 1 89



Bibliography

[1] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. Anomaly detection in
large graphs. In In CMU-CS-09-173 Technical Report. Citeseer, 2009. viii, 8

[2] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot,
Matthew Botvinick, Shakir Mohamed, and Alexander Lerchner. 𝛽-VAE: Learn-
ing basic visual concepts with a constrained variational framework. In ICLR 2017
: 5th International Conference on Learning Representations, 2017. 2, 15, 16, 25,
30, 63, 64, 66

[3] Ricky TQ Chen, Xuechen Li, Roger Grosse, and David Duvenaud. Isolating sources
of disentanglement in VAEs. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, pages 2615–2625, 2018. 2, 16, 49, 63,
64, 66

[4] Hyunjik Kim and Andriy Mnih. Disentangling by factorising. In International
Conference on Machine Learning, pages 2649–2658. PMLR, 2018. 2, 15, 16, 63, 65

[5] Shengjia Zhao, Jiaming Song, and Stefano Ermon. Infovae: Information maximiz-
ing variational autoencoders. arXiv preprint arXiv:1706.02262, 2017. 2, 15, 16, 49,
63

[6] Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The
variational fair autoencoder. arXiv preprint arXiv:1511.00830, 2015. 2, 16, 49

[7] Abhishek Kumar, Prasanna Sattigeri, and Avinash Balakrishnan. Variational in-
ference of disentangled latent concepts from unlabeled observations. arXiv preprint
arXiv:1711.00848, 2017. 2, 49

[8] Xiao Liu, Pedro Sanchez, Spyridon Thermos, Alison Q. O’Neil, and Sotirios A.
Tsaftaris. Learning disentangled representations in the imaging domain. Medical
Image Analysis, 80:102516, 2022. ISSN 1361-8415. doi: https://doi.org/10.1016/j.
media.2022.102516. URL https://www.sciencedirect.com/science/article/

pii/S1361841522001633. 3

[9] J Gladitz. Barnett, v. & lewis, t.: Outliers in statistical data, john wiley & sons, chi-
chester–new york–brisbane–toronto–singapore, 1984, xiv, 463 s., 26 abb.,£ 29.95,
isbn 0471905070, 1988. 6

[10] Richard A Johnson, Dean W Wichern, et al. Applied multivariate statistical anal-
ysis. New Jersey, 405, 1992. 6

90

https://www.sciencedirect.com/science/article/pii/S1361841522001633
https://www.sciencedirect.com/science/article/pii/S1361841522001633


BIBLIOGRAPHY 91

[11] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):1–58, 2009. 7, 9, 10, 11, 22, 30

[12] Hongchao Song, Zhuqing Jiang, Aidong Men, and Bo Yang. A hybrid semi-
supervised anomaly detection model for high-dimensional data. Computational
intelligence and neuroscience, 2017, 2017. 7, 22

[13] Arman Mohammadi Gonbadi, Seyed Hasan Tabatabaei, and Emmanuel John M
Carranza. Supervised geochemical anomaly detection by pattern recognition. Jour-
nal of Geochemical Exploration, 157:81–91, 2015. 9

[14] Sarah Erfani, Mahsa Baktashmotlagh, Masud Moshtaghi, Xuan Nguyen, Christo-
pher Leckie, James Bailey, and Rao Kotagiri. Robust domain generalisation by
enforcing distribution invariance. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence (IJCAI-16), pages 1455–1461. AAAI
Press, 2016. 9

[15] Vilen Jumutc and Johan AK Suykens. Multi-class supervised novelty detection.
IEEE transactions on pattern analysis and machine intelligence, 36(12):2510–2523,
2014. 9

[16] Sangwook Kim, Yonghwa Choi, and Minho Lee. Deep learning with support vector
data description. Neurocomputing, 165:111–117, 2015. 9

[17] Magnus Almgren and Erland Jonsson. Using active learning in intrusion detection.
In Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004., pages
88–98. IEEE, 2004. 9

[18] Matheus Gutoski, Nelson Marcelo Romero Aquino, Manassés Ribeiro, E Lazzaretti,
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