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Abstract 

 

This research includes two studies on estimating crop yield using satellite-based 

vegetation indices. For the first study, the objective is to compare eight different functional 

forms for estimating U.S crop yield using satellite based NDVI. For the second study, the 

objective is to examine 10 satellite-based vegetation indices for estimating U.S crop yield.  

For both studies, corn, soybeans, spring wheat, and winter wheat data for crop yield 

(bushel/acre) were obtained from the USDA NASS from 2008 to 2019 for a total of 12 years 

covering all 48 states in the United States except Hawaii and Alaska (though different states 

are included, based on where the crops are grown). Data for the vegetation indices were 

obtained from the MODIS satellite using 250m resolution level and selecting for maximum 

Vegetation Index values. The methodology used regression with crop yield as the dependent 

variable. The main independent variable is the selected vegetation index (e.g NDVI, GOSAVI, 

etc). A time trend variable is also included, and dummy variables for U.S States. 

Results for the first study indicated that relationship between NDVI and crop yield was 

mostly nonlinear, and piecewise regression was generally found to be the most suitable 

functional form. Results for the second study showed that for all 10 indices analyzed, that 

RDVI, GOSAVI, and GSAVI provided better estimates of crop yield than the commonly used 

NDVI. These results should be useful in providing a better understanding of various functional 

forms and various satellite based vegetation indices for improving crop yield estimation. 
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CHAPTER 1 

THESIS INTRODUCTION 

Estimating crop yield with satellite based remote sensing has a number of advantages 

over traditional on ground crop survey methods. Using remote sensing helps to lower costs by 

avoiding intense labor and time needed for crop surveys. As technology has improved, the cost 

of satellite data and computing has decreased, making satellite-based crop estimation more 

appealing. 

Satellite-based vegetation indices make use of spectral bands, and usually the visible 

spectrum bands and the near-infrared are of interest for satellite-based crop yield estimation. 

The most used vegetation index is the Normalized Difference Vegetation Index (NDVI) due to 

its simplicity and ability to measure vegetation cover (greenness) quite accurately. However, it 

may be possible to use improved vegetation indices rather than NDVI, and it may also be 

possible to find improved functional forms over the linear regression form, for estimating crop 

yield. 

Therefore, the first study of this thesis (Chapter 2) compares eight regression functional 

forms for estimating crop yield using the commonly used satellite-based vegetation index, 

NDVI. The eight regression functional forms include four groups: linear, polynomial (quadratic 

and cubic), piecewise/segmented (linear piecewise, quadratic piecewise, cubic spline, and 

natural spline), and Generalized Additive Model (GAM). NDVI is the main independent 

variable, other independent variables including the time trend and dummy variables for U.S. 

States. Crop yield is the dependent variable. Data is from 2008 to 2019 for the U.S., covering 

crop yield for corn, soybeans, spring wheat, and winter wheat. MODIS satellite data is used at 

the 250m resolution level. The relationship between NDVI and crop yield can be non-linear 

due to the limitations of NDVI, such as saturation. This study should be useful for those who 

1 
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seek to understand how using improved regression functional forms may help to more 

accurately estimate crop yield satellite-based vegetation indices.  

The second study (Chapter 3) compares 10 vegetation indices for estimating crop yield, 

using two functional forms. The selected vegetation index is be the main independent variable, 

other independent variables included time trend and dummy variables for U.S states, and crop 

yield is the dependent variable. This study should be useful to understand how improved 

satellite-based vegetation indices, rather than traditional NDVI, may help to more accurately 

estimate crop yield. 
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CHAPTER 2 

COMPARING VARIOUS REGRESSION FUNCTIONAL FORMS FOR 

ESTIMATING CROP YIELD USING SATELLITE-BASED NDVI 

2.1 INTRODUCTION 

The objective of this study is to compare various regression functional forms for 

estimating crop yield using satellite based NDVI. For this study, crop yield serves as the 

dependent variable and NDVI as a main independent variable.  

Traditionally, crop yield estimation has been done mainly through surveys. This 

approach is not only labor intensive but also time consuming. This can lead to slower 

generation of yield estimation because the data is not quickly available. However, as 

technology advanced, government and the agricultural industry has taken advantage of 

satellites to monitor large areas for mapping or observing crop and vegetation growth without 

having to physically be at the location. There are a number of advantages of using remote 

sensing such as lower cost, faster in obtaining data and updating data fairly frequently. Also, 

using data from remote sensing for vegetation and crop estimation has been relatively accurate.  

One type of data generated by remote sensing satellites is the different spectral bands that 

can be used to identify and classify certain landscape and terrain. Vegetation indices make use 

of these spectral band properties and often the visible spectrum and the near-infrared are of 

interest for such purposes. The most commonly used vegetation index is the Normalized 

Difference Vegetation Index (NDVI) due to its relatively simplicity that is able to measure 

vegetation cover quite accurately. NDVI, also called the measure of ‘greenness’ due to its 

correlation with photosynthetic capacity, has values ranging from -1.00 to +1.00 with higher 

values implying denser vegetation in the area (Pettorelli, 2013). Numerous literature has noted 
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the usefulness of NDVI for agriculture and ecology sector (Vescovo et al, 2012; Purevdorj et 

al, 1998; Baugh and Groeneveld, 2006; Carreiras et al, 2006, Roznik, 2021).  

But one limitation of NDVI is saturation at higher biomass density. This mean that as 

vegetation biomass gets higher, NDVI index value will not increase as much as expected. In 

other words, saturation is a situation where NDVI is not as sensitive to higher biomass (crop 

yield) and does not increase as much as it should. Knowing this situation, relationship between 

NDVI and crop yield may not be as linear and therefore using only linear regression functional 

form will lead to inaccurate estimation. Linear regression functional form is often used perhaps 

due to its simplicity in both form and interpretation (Carreiras et al, 2006), but in real 

applications, such form may oversimplify the relationship between crop yield and NDVI. 

A non-linear functional form may be needed instead to address this saturation issue and 

provide more accuracy. A polynomial regression functional form is one approach to estimate 

crop yield and NDVI relationships, rather than linear regression form (Abdolalizadeh et al, 

2020). Another nonlinear functional form, Generalized Additive Model (GAM) may be quite 

useful, as it is relatively flexible (Melin et al, 2017). However, one disadvantage is that a GAM 

approach may overfit the data given that it is a relatively flexible functional form. 

2.1.1 Objective and Importance 

Therefore, the focus of this study is to compare various regression functional forms for 

estimating crop yield using satellite based NDVI. The regression functional forms include 

linear regression form, polynomial regression form, piecewise (segmented) regression form, 

and Generalized Additive Model (GAM). NDVI will be one of the main independent variables 

and crop yield will be the dependent variable. This study can be useful for those who seek to 

understand how different nonlinear regression functions may help to better estimate yield of 

crops and identify which forms may be better for each crop. Using more suitable regression 
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functional forms to estimate crop yield should improve accuracy of crop yield estimations when 

using NDVI. 

The next part of this paper will discuss the literature about the various regression 

functional forms and how they may provide better estimation than linear regression form. The 

next section covers data, followed by methodology. Then results are presented, followed by a 

summary of the paper 

2.2 LITERATURE REVIEW 

2.2.1 Linear Regression Forms 

The linear regression form is the most used form due to its simplicity, though sometimes 

it may not be the most accurate. Many studies have used the linear functional form (Shi and 

Xingguo, 2011), (Mkhabela et al, 2005), (Rasmusen, 1992), (Benedetti and Rossini, 1993), 

(Quarmby et al., 1993), (Groten, 1993), and (Manjunath et al, 2002) often for reasons of 

simplicity, and a number of researchers felt that the linear form was sufficient (Zaigham Abbas 

Naqvi et al, 2021), (Bolton and Friedl, 2013), and (Stepanov et al, 2020).  

Despite its popularity, the linear regression form is not always the best form for 

estimation. This is due to saturation problem mentioned earlier involving nonlinearity when 

crop yield gets higher. More advanced functional forms may be needed to estimate the 

relationship of variables. (Kayad et al, 2019) used machine learning to estimate corn yield in 

Italy and found that machine learning, Random Forest technique, performed better and more 

robust than the simple regression forms.  

2.2.2 Polynomial Regression Forms 

Polynomial regression forms allow for more flexibility in estimation while still being 

easily interpretable. (Abrantes et al, 2021) used polynomial regression forms to help explain 

relationship of vegetation indices with soybean yield. Similarly, (Dadhwal and Sridhar, 1997) 
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compared linear and non-linear forms to try and estimate wheat grain yield in India and found 

higher R2 value (better fit) for the polynomial form compared to linear regression. Although 

(Jamali et al, 2014) did not focus specifically on agricultural crops, they indicated that 

vegetation amount/growth may progress non-linearly over time due to different external and 

natural factors such as insect infestation and change in moisture content, respectively. They 

fitted linear and polynomial regressions, including quadratic and cubic forms.  

In general, the polynomial regression is straight forward to use but may still 

underestimate how data is behaving because such a form only captures the general trend of 

data. (Cummings et al, 2021) compared different regression forms including polynomial with 

machine learning for determining the nitrogen status in corn as it influences the growth and 

yield. They found that linear and polynomial regression forms are easy to use but machine 

learning that may be a better functional form approach. 

2.2.3 Piecewise/Segmented Regression Forms 

Another interesting functional form with flexibility but does not lose its simplicity is 

piecewise/segmented regression. Piecewise regression is similar to linear and polynomial 

regression, but the independent variable divides data into segments (e.g two different 

regression line slopes) through the use of different intervals/breakpoints. The breakpoints/knots 

can be set arbitrarily based on visual inspection, or else prior understanding of the data. Some 

statistical software or machine learning may also be used to determine the best location of knots 

based for the data.  

Choudhury et al (2015) used piecewise regression to detrend crop yield and stated that 

this form may be more useful at identifying patterns and threshold points over time than linear 

or polynomial approaches. (Prasad et al, 2007) used the linear piecewise form to estimate wheat 

and rice crop yield in India and found this form to be quite promising for estimating yield. 
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Bateman et al (2020) used piecewise regression to determine the best planting date to maximize 

yield of soybeans by observing change of slope when the crops are planted at different times. 

2.2.4  Generalized Additive Model (GAM) Regression Form 

GAM is a very flexible form that combined the generalize linear model and additive 

models in which the response (dependent) variable effect is captured by smoothing function of 

the explanatory (independent) variable(s). There are many different smoothing functions in 

GAM and user can based on need (Wood, 2006). A main reason for choosing GAM over other 

functional forms is that it allows nonlinearity without the user having to identify which order 

or forms to fit.  

Chen et al (2019) compared linear regression with GAM for predicting wheat yield in 

Australia and found that GAM model had better goodness of fit measures than linear 

regression. Crane-Droesch et al (2013) used GAM to estimate relationship of biochar on crop 

yields and some soil properties and found GAM performed quite well. Similarly, (Marcillo et 

al, 2021) used GAM to predict soybean time to maturity. Bera et al (2021) compared linear, 

polynomial, and GAM functional forms to measure canopy cover of forestry in India and found 

that non-linear forms performed better than linear, though by a small margin. 

2.3 DATA  

2.3.1  Crop Yield Data 

For the dependent variable, crop yield, this study focuses on analyzing four U.S crops 

including corn, soybeans, winter wheat, and spring wheat. Data are obtained from the USDA 

NASS database and are measured as bushels per acre yield. This county crop yield data spans 

from 2008 to 2019 for total of 12 years of crop yield data for each crop. The data initially cover 

all 48 states in the United States except Hawaii and Alaska, though different U.S states are 

included, based on where the crops are grown. Also, even though the USDA NASS database 
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include most counties that produce corn and soybeans, only some counties that produce spring 

wheat and winter wheat are included. Therefore, there will be a lesser number of counties 

analyzed for spring wheat and winter wheat. 

Data for corn covers 28 states, which are Alabama, Arkansas, Colorado, Delaware, 

Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Maryland, Michigan, 

Minnesota, Mississippi, Missouri, Nebraska, New York, North Carolina, North Dakota, Ohio, 

Pennsylvania, South Carolina, South Dakota, Tennessee, Texas, Virginia, and Wisconsin. 

There are a total of 651 counties for corn, giving total of 7812 data observed for 12 years. For 

soybeans, there are 27 states, which are Alabama, Arkansas, Delaware, Illinois, Indiana, Iowa, 

Kansas, Kentucky, Louisiana, Maryland, Michigan, Minnesota, Mississippi, Missouri, 

Nebraska, New Jersey, New York, North Carolina, North Dakota, Ohio, Oklahoma, 

Pennsylvania, South Carolina, South Dakota, Tennessee, Virginia, and Wisconsin. There are 

7524 data observation for soybeans, coming from 627 counties over 12 years.  

There are six states for Spring Wheat, which are Minnesota, Idaho, Montana, North 

Dakota, South Dakota, and Washington. This gives total data of 384 coming from 32 counties 

over 12 years. There are 19 states included for Winter Wheat data, which are Colorado, 

California, Idaho, Illinois, Indiana, Kansas, Maryland, Michigan, Missouri, Montana, 

Nebraska, North Carolina, Ohio, Oklahoma, Oregon, South Dakota, Texas, Virginia, and 

Washington, giving total data of 2196 observation across 183 counties over 12 years. 

2.3.2  NDVI Data 

NDVI is used as the main independent variable. For this and other vegetation indices 

data, the USDA NASS provide a program called Cropland Data Layer (CDL). CDL uses 

satellite imagery to identify major crop types and to produce digital, crop-specific, categorized 

geo-referenced output products to the Agricultural Statistics Board. Using NASA’s Moderate 
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Resolution Imaging Spectroradiometer (MODIS), the vegetation indices data series (e.g NDVI) 

are extracted from location specified by the Cropland Data Layer. MODIS then creates 16-day 

vegetation index products based on different spectral reflectance bands, and for this paper, 

250m spectral band resolution level is used. The reflectance bands are measured daily and 

sometimes there may be some obstruction, such as cloud cover, that may cause errors to the 

data. MODIS will apply algorithms to choose best pixel value over the 16-days period, creating 

less errors in the image, correlations, etc.  

There are many NDVI metrics that can be used to estimate crop yield (Wilton, 2021) but 

for this study, the maximum NDVI will be considered because it is known to be relatively 

accurate in measuring productivity (biomass) and crop yield. First, the NDVI data is averaged 

over the county, selecting for the maximum value of the index. Then it is merged with the 

corresponding county crop yield per year. Through this process, the maximum vegetation index 

series (e.g MaxNDVI), along with corresponding yield for each county, the dataset is 

completed. 

2.4 METHODOLOGY 

The basic goal of this study is to use NDVI (main independent variable) to estimate crop 

yield (dependent variable), using various regression functional forms for comparison. Three 

steps are used: 

Step 1. Processing the satellite data to select for maximum NDVI and its corresponding crop 

yield data for all counties across the United States from 2008 to 2019.  

Step 2. Fit data into different regression forms using the software R and plot the results.  

Step 3. Compare the regression forms based on visual inspection, coefficient of determination, 

R2, and whether the functional form appears theoretically correct. 
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In general, the above are the steps to generate results for this paper. Although within Step 1 and 

Step 2, some preliminary statistical tests are also conducted to ensure that estimation is done 

acceptably. 

2.4.1 Comparing Eight Regression Functional Forms for Estimating Crop Yield using NDVI 

This paper compares eight different functional forms: the linear regression, polynomial 

regression (quadratic and cubic), piecewise/segmented regression (linear piecewise, quadratic 

piecewise, cubic spline, and natural spline), and Generalized Additive Model (GAM). Crop 

yield (dependent variable) is in bushels per acre and the main explanatory (independent) 

variable is NDVI. Also a Time trend is used to capture improvement in technology that may 

influence crop production, and a U.S State dummy variable is used to capture yield variation 

across states, due to soil type, weather, and other factors. 

2.4.1.1 Linear Regression Form 

Linear regression is the most basic functional form used here to estimate the relationship 

between variables.  

𝑌𝑖𝑒𝑙𝑑𝑡 =  𝛼𝑡 + 𝛽1,𝑡𝑁𝐷𝑉𝐼 + 𝛽2,𝑡𝑇𝑖𝑚𝑒 + 𝛽3,𝑡𝑆𝑡𝑎𝑡𝑒 + 𝜀𝑡   (2.1) 

Equation (2.1) represents the linear regression equations used where 𝑌𝑖𝑒𝑙𝑑 is the 

𝑛 × 1 vector of crop yields (i.e corn, soybeans, winter wheat, and spring wheat) and 𝑁𝐷𝑉𝐼 

is the vegetation index used for the analysis. Time is a time trend variable and State represent 

a dummy variable for each U.S State in data except one, which will act as reference state to 

avoid the dummy variable trap. These dummy variables are used to control for variation 

between states in data.  

 

 



11 
 

2.4.1.2 Polynomial Regression Form 

The relationship between NDVI and crop yield is not linear due to several factors 

including the saturation problem at higher biomass density (yield). Saturation arises when 

crop yield increases in value, NDVI value does not increase as much, leading to a nonlinear 

relationship between crop yield and NDVI. Therefore, using a linear form for this study may 

lead to inaccurate estimation of the data. Some polynomial regression forms are therefore 

used here including a polynomial up to the third degree, which are quadratic and cubic 

regression forms. 

𝑌𝑖𝑒𝑙𝑑𝑡 =  𝛼𝑡 + 𝛽1,𝑡𝑁𝐷𝑉𝐼 + 𝛽2,𝑡𝑁𝐷𝑉𝐼2 + 𝛽3,𝑡𝑇𝑖𝑚𝑒 + 𝛽4,𝑡𝑆𝑡𝑎𝑡𝑒 + 𝜀𝑡         (2.2) 

𝑌𝑖𝑒𝑙𝑑𝑡 =  𝛼𝑡 + 𝛽1,𝑡𝑁𝐷𝑉𝐼 + 𝛽2,𝑡𝑁𝐷𝑉𝐼2 + 𝛽3,𝑡𝑁𝐷𝑉𝐼3 + 𝛽4,𝑡𝑇𝑖𝑚𝑒 + 𝛽5,𝑡𝑆𝑡𝑎𝑡𝑒 +  𝜀𝑡   (2.3) 

Equation (2.2), and (2.3) represent the quadratic regression and cubic regression 

equations used respectively, where 𝑌𝑖𝑒𝑙𝑑 is the 𝑛 × 1 vector of crop yields (i.e corn, 

soybeans, winter wheat, and spring wheat) and 𝑁𝐷𝑉𝐼 is the vegetation index used for the 

analysis. Time is a time trend variable and State is a dummy variable.  

2.4.1.3 Piecewise (Segmented) Regressions Form 

Piecewise/segmented regression allows setting of breakpoints to divide the data into 

“segments” and fit separate regression lines through each one. For example, if the data looks 

linear (e.g in low yield and low NDVI) for the first half but quadratic for the rest (e.g in high 

yield and high NDVI), then by making use of the dummy variables feature in piecewise, 

one can address such situation and fit the data better. 

Equation (2.4) and (2.5) represent the linear piecewise and quadratic piecewise 

equations used in this paper. Basically, piecewise regressions are created by specifying a 

dummy variable for each side of breakpoint/knot value and to avoid discontinuity problem, 

the piecewise functions are constrained to be continuous for the entire domain. 



12 
 

𝑌𝑖𝑒𝑙𝑑𝑡 =  𝛼 + 𝛽1,𝑡𝑁𝐷𝑉𝐼 + 𝛽2,𝑡(𝑁𝐷𝑉𝐼 − 𝑥(𝑘))𝑋𝑘 + 𝛽3,𝑡𝑇𝑖𝑚𝑒 + 𝛽4,𝑡𝑆𝑡𝑎𝑡𝑒 + 𝜀𝑡    (2.4) 

𝑌𝑖𝑒𝑙𝑑𝑡 =  𝛼 + 𝛽1,𝑡𝑁𝐷𝑉𝐼 + 𝛽2,𝑡 𝑁𝐷𝑉𝐼2 + 𝛽3,𝑡(𝑁𝐷𝑉𝐼 − 𝑥(𝑘))𝑋𝑘 + 𝛽4,𝑡(𝑁𝐷𝑉𝐼 − 𝑥(𝑘))
2

𝑋𝑘 +

𝛽5,𝑡𝑇𝑖𝑚𝑒 + 𝛽6,𝑡𝑆𝑡𝑎𝑡𝑒 + 𝜀𝑡              (2.5) 

where   𝑋𝑘 = {1 𝑖𝑓 𝑁𝐷𝑉𝐼 >𝑥(𝑘)
0 𝑖𝑓 𝑁𝐷𝑉𝐼 ≤ 𝑥(𝑘)

 

The x(k) term represents the location of breakpoint or commonly referred as the knot value. 

In this paper, the knot value for linear piecewise and quadratic piecewise will be set based 

on visual observation on crop yield versus NDVI plot to determine best location for 

specifying the breakpoint/knot. More details on knot value selection will be discussed later. 

The Xk term represents dummy variable depending on what side the values fall from the 

knot. In here, the dummy variable Xk will be 0 if NDVI value is less than equal to the 

specified knot value, x(k) and the dummy variable Xk will be 1 if NDVI value is more than 

the specified knot value.  

Another extension of piecewise regressions that will be considered in this study are the 

cubic spline and natural spline. Cubic spline is a third-order polynomial piecewise that 

enforce continuous first and second derivatives at the knot, meaning the function has 

continuous slope and continuous slope of the slope. But one attribute of the cubic spline that 

may be undesirable is that it has higher variability in the boundary region, leading to higher 

uncertainty (standard errors). Such a problem can be addressed by using a natural cubic 

spline or commonly referred to as natural spline that imposed another constraint on top of 

constraints for cubic spline, that the function will be linear in the boundary region. This 

constraint smooths the boundary region, making it more robust between data points that 

leads to lower variability.  
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The cubic spline and natural spline are fitted using bs() function and ns() function 

respectively in R software included in package splines. The dependent variable for these 

two functional forms is crop yield and independent variables are NDVI as well as Time and 

State dummy variables. In linear piecewise and quadratic piecewise only one knot value is 

used to make the model simple but for the cubic spline and natural spline, a few knot values 

will be considered to see whether applying more knots will improve the fitness of the 

functional forms. Looking at Figure 2.1, corn and soybeans knot location seems apparent, 

for example. 

2.4.1.4 Generalized Additive Model (GAM) Regression 

If one does not want to assume any form, but knows that the data has nonlinearity, the 

Generalized Additive Model (GAM) may be useful because it is very flexible. GAM 

combines the generalized linear model and additive models in which the response variable 

effect is captured by smoothing function of the explanatory variable(s). GAM is fitted using 

the mgcv package available in R and the thin-plate spline smoother function will be applied 

as the default choice (Wood, 2006). Similar to cubic spline and natural spline, Time and 

State dummy variables will be added as independent (explanatory) variables in this 

functional form. 

2.5 RESULTS  

This study compares eight different regression functional forms: the linear regression, 

polynomial regression (quadratic and cubic), piecewise/segmented regression (linear 

piecewise, quadratic piecewise, cubic spline and natural spline), and Generalized Additive 

Model (GAM). Crop yield (dependent variable) is estimated for corn, soybeans, spring wheat, 

and winter wheat. The independent variables used are NDVI (main variable), and Time trend, 

and U.S State dummy variables.  
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There are three approaches here for assessing functional form suitability: goodness of fit 

(adjusted R2 value), visual inspection, and theoretical considerations. The intercept will be a 

focus as theoretically, in a single variable model with crop yield as the dependent variable and 

NDVI is the independent variable, if NDVI is zero, then crop yield should likely be somewhere 

around zero as well. Therefore, the intercept should likely be within range of zero. In other 

words, if NDVI value is zero, then estimated crop yield value should likely be not too far from 

zero as well.  

The Augmented Dick-Fuller with lag one test was done to check for stationarity of the 

data. Based on the results, the p-value for all variables is small (< 0.05), therefore the null 

hypothesis can be rejected, concluding that the data does not have unit root problem. To correct 

for heteroscedasticity, robust standard error for all functional forms were used (White, 1980). 

In general, robust standard errors generated were about the same or slightly higher than the 

normal standard errors for all crops and functional forms. 

 

2.5.1 Corn: Regression Functional Form Results 

Figure 2.1 shows plots of crop yield with NDVI for all four crops using linear piecewise 

regression. Results for corn shows that the linear regression functional form provides poorer 

goodness of fit (adjusted R2) in estimating crop yield using NDVI. The linear piecewise 

regression form on the other hand, provided a better adjusted R2 value and intercept value, that 

is suitable. 

In general Table 2.2 shows that, the Time Trend variable is significant and has positive 

coefficients for all functional forms, as expected. This means that corn yield increased over 

time. This was due to several reasons such as improved technology, improved crop 

management, and improved seeds and inputs over time. For corn, Alabama is the reference 
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state for the U.S State dummy variable and in general, there were at least 15 states out of 26 

included that are significantly different (<0.05) from corn yield in Alabama. About half of 

those have a positive coefficient, indicating higher yields than Alabama, which may be due to 

several factors such as weather, soil conditions, and geographic location related factors.  

Figure 2.1 All Four U.S. Crops: Linear Piecewise Regression Function for NDVI Plotted for 

Crop Yield vs NDVI data, 2008 to 2019 
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Figure 2.1 (continued) 

 

(c)  

 

 

 

 

(d)  

 

 

 

 

Notes: Figures (a), (b), (c), (d) Linear Piecewise Regression for corn, soybeans, spring wheat, and 

winter wheat respectively. Knot values (x(k)) used for corn: NDVI = 0.785, soybeans: NDVI = 0.75, 

spring wheat: NDVI = 0.65, for winter wheat: NDVI = 0.6. 

Note: Corn: N=7812 (651 counties x 12 years), Soybeans: N=7524 (627 countries x 12 years), Spring 

Wheat: N=384 (32 counties x 12 years), and Winter Wheat: N=2196 (183 counties x 12 years). 

Note: Compared to all eight functional forms used in this study, linear piecewise is able to provide 

suitable balance between the visual nonlinear relationship between NDVI and yield at higher NDVI 

levels, suitable intercept and sufficiently high adjusted R2 value. 

 

The relationship between corn yield and NDVI became more curved (greater upward 

slope) with NDVI above approximately 0.7, but more linear below that. The selected knot value 

found was x(k):NDVI=0.785 for linear piecewise functional form (Figure 2.1) and 

x(k):NDVI=0.775 for quadratic piecewise functional form (not shown Figure 2.1). Knot values 
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for the piecewise cubic spline and natural spline were selected to be NDVI=0.5,0.7,0.85 (values 

not shown in Figure 2.1 for both functions). 

Table 2.1 All Four U.S. Crops: Adjusted R2 Values for All Functional Forms [Dependent 

Variable: Crop Yield, Independent Variables: NDVI, U.S State Dummy Variables, 

Time Trend], 2008 to 2019 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Knot value selected (x(k)): Corn for Linear Piecewise: NDVI = 0.785, for Quadratic Piecewise: 

NDVI = 0.775, for Cubic Spline and Natural Spline: NDVI = 0.5, 0.7, 0.85. Soybeans for Linear 

Piecewise: NDVI = 0.75, for Quadratic Piecewise: NDVI = 0.8, for Cubic Spline and Natural Spline: 

NDVI = 0.65, 0.75, 0.85. 
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Table 2.1 (continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Knot value selected (x(k)): Spring Wheat for Linear Piecewise: NDVI = 0.65, for Quadratic 

Piecewise : NDVI = 0.625, for Cubic Spline and Natural Spline : NDVI = 0.6, 0.7. Winter Wheat for 

Linear Piecewise: NDVI = 0.6, for Quadratic Piecewise: NDVI = 0.561, for Cubic Spline and Natural 

Spline: NDVI = 0.5, 0.7.  

Note: For estimating crop yield using NDVI (and U.S States dummy variables and a time trend), based 

on goodness of fit, adjusted R2, all functional forms fit fairly similar. Though linear functional form for 

corn showed a slightly worse fit than the other functional forms. 
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Based on Table 2.1, the Generalized Additive Model had the best adjusted R2 (0.653), 

followed by Cubic Spline (0.6525), Natural Spline (0.652) and Quadratic Piecewise (0.6519), 

so all had about the same values. Table 2.2 shows regression coefficients and its p-values for 

all variables in linear piecewise regression for all crops.  

Table 2.2 All Four U.S. Crops: Regression Coefficients and p-values for Linear Piecewise 

Regression [Dependent Variable: Crop Yield; Independent Variables: NDVI, U.S 

State dummy variables, Time Trend], 2008 to 2019 

CORN       SOYBEANS 
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Table 2.2 (continued) 

SPRING WHEAT     WINTER WHEAT 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: Knot values (x(k)) used for corn: NDVI = 0.775, soybeans: NDVI = 0.8, spring wheat: NDVI = 

0.625, for winter wheat: NDVI = 0.561. 

Note: As expected, Time Trend variable had positive coefficients for all functional forms, meaning 

yield increased over time. U.S State dummy variables are mostly significant and positive for all crops. 

This means most states had higher crop yield than their reference states. Alabama is the reference state 

for corn and soybeans, Minnesota is the reference state for spring wheat, and Colorado is the reference 

state for winter wheat. 

 

Linear piecewise and GAM seem to provide the most suitable functional forms to 

estimate crop yield. However, the linear piecewise regression was able to estimate the 

relationship of corn yield and NDVI slightly better than other functional forms. A possible 
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challenge of the GAM function is the tendency to overfit the data, given that it has a relatively 

large number of parameters. The linear piecewise had the best balance between relatively 

simple functional form, higher adjusted R2 value and suitable intercept value that is within a 

suitable range.  

2.5.2 Soybeans: Regression Functional Form Results 

From Table 2.1, adjusted R2 values showed that the linear function fit was very similar 

to fit of other functions. However, the linear piecewise regression functional worked quite well, 

with a suitable R2 value and an intercept value is suitable. 

The selected knot value was 𝑥(𝑘): 𝑁𝐷𝑉𝐼 = 0.75 for the linear piecewise form (Figure 

2.1), for Cubic Spline and Natural Spline: 𝑥(𝑘): 𝑁𝐷𝑉𝐼 = 0.65, 0.75, 0.85 (not shown in Figure 

2.1) and 𝑥(𝑘): 𝑁𝐷𝑉𝐼 = 0.8 for quadratic piecewise form (not shown in Figure 2.1), similar to 

corn values. These knot values provided sufficient balance between higher adjusted R2 value 

and intercept value that is suitable. Based on Table 2.1, all eight functions had similar adjusted 

R2 values.  

The linear piecewise and GAM form seem to provide a more suitable fit for soybeans 

data and capture increase in slope as NDVI value gets higher. Overall, the piecewise 

regressions were able to estimate the relationship of soybeans yield and NDVI better than other 

functional forms. While the GAM function appeared reasonable, it may overfit the data, as it 

uses more parameters.  

The linear piecewise offered the best balance between relatively simple functional forms, 

higher adjusted R2 value and intercept value relatively suitable for estimating soybeans yield 

using NDVI.  
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2.5.3 Spring Wheat: Regression Functional Form Results 

Results for spring wheat (Table 2.1 and Figure 2.1) are different than for corn and 

soybeans. The linear regression form may be appropriate for estimating spring wheat yield due 

to more linear relationship between spring wheat yield and NDVI, based on visual inspection 

of plots. But in general, the piecewise regression forms are able to provide better results of 

adjusted R2 value and intercept value that is suitable. 

The knot value selected was 𝑥(𝑘): 𝑁𝐷𝑉𝐼 = 0.65 for linear piecewise form (Figure 2.1), 

for Cubic Spline and Natural Spline 𝑥(𝑘): 𝑁𝐷𝑉𝐼 = 0.6, 0.7 (not shown in Figure 2.1) and 

𝑥(𝑘): 𝑁𝐷𝑉𝐼 = 0.625 for quadratic piecewise form (not shown in Figure 2.1). These knot 

values provided balance between a higher adjusted R2 value and reasonable intercept value.  

Based on Table 2.1, the GAM has adjusted R2 (0.591) value, Cubic Spline (0.5896), 

Quadratic Piecewise (0.5839), and Natural Spline (0.5822), were all fairly similar.  

2.5.4 Winter Wheat: Regression Functional Form Results 

The linear regression form looks suitable in estimating winter wheat yield using NDVI. 

However, the piecewise regression forms able to provide a relatively suitable balance between 

adjusted R2 value and intercept value closer to that is suitable. 

The knot value selected was 𝑥(𝑘): 𝑁𝐷𝑉𝐼 = 0.6 for linear piecewise form (Figure 2.1), 

for Cubic Spline and Natural Spline: 𝑥(𝑘): 𝑁𝐷𝑉𝐼 = 0.5, 0.7 (not shown in Figure 2.1) and 

𝑥(𝑘): 𝑁𝐷𝑉𝐼 = 0.561 for quadratic piecewise form (not shown in Figure 2.1).  

Based on Table 2.1, the Generalized Additive Model with adjusted R2 (0.746) value, 

followed by Cubic Spline (0.7453), Quadratic Piecewise (0.7444), and Linear Piecewise 

(0.7444). GAM had the highest R2 though not much higher than other functional forms. 
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Similar to spring wheat, nonlinearity is not as observable for winter wheat compared to 

corn and soybeans. This may be due wheat having less biomass density. Results also show that 

intercepts of linear piecewise for winter wheat have a negative value, similar to other crops. 

Although linear regression may be a suitable functional form to estimate winter wheat yield, 

the linear piecewise functional form may provide a suitable balance between relatively simple 

functional forms and an intercept with a reasonable value. 

2.5.5 Results Summary 

The goal of this study was to compare various regression functional forms for estimating 

crop yield (dependent variable) using satellite based NDVI (main independent variable), and a 

Time Trend and U.S State dummy variables were also included. The linear regression 

functional form was not suitable for all crops except spring wheat while GAM may require a 

larger number of parameters and may overfit the data. The linear piecewise regression provides 

the best balance between adjusted R2 values and intercept value for all crops. Therefore, given 

linear piecewise provides a higher adjusted R2 and is theoretically suitable, the linear piecewise 

functional form may be the appropriate functional form to estimate four crop yields here using 

NDVI.  

2.6 SUMMARY 

The objective of this study is to compare various regression functional forms for 

estimating crop yield (dependent variable) using satellite based NDVI (main independent 

variable). There are many advantages of using satellite based remote sensing to estimate crop 

yield compared to the traditional approach of using surveys. These advantages include lower 

cost, faster in obtaining data and updating data fairly frequently. Also using data from remote 

sensing is relatively accurate. 
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The linear regression form is the most commonly used functional form due to its 

simplicity in form and interpretation. But in real applications, the relationship between NDVI 

and crop yield maybe not linear due to several factors such as saturation of NDVI. In other 

words, at high levels of NDVI, crop yield may increase but NDVI may not increase enough in 

response. Therefore, this paper examined eight functional forms: linear regression, polynomial 

regression (quadratic and cubic), piecewise/segmented regression (linear piecewise, quadratic 

piecewise, cubic spline and natural spline), and Generalized Additive Model (GAM). The 

purpose was to estimate crop yield using NDVI and examine how those functional forms 

compare to the linear regression functional form. 

Data for the crop yield was from USDA NASS database and was measured in bushel per 

acre. These county crop yields were from 2008 to 2019 for total of 12 years for corn, soybeans, 

spring wheat, and winter wheat. For each crop, the data cover all 48 states in the United States 

except Hawaii and Alaska, although fewer states are used as some states grow very small 

amounts of some of the crops. Data for NDVI was obtained using the MODIS at the 250m 

resolution level. The NDVI data was averaged over the county. Then NDVI data is merged with 

the corresponding county crop yield each year and maximum NDVI (i.e MaxNDVI) values is 

used for the analysis. 

The methodology of this study can be summarized into three steps. First, the data is 

processed to select for maximum NDVI and its corresponding crop yield data for all counties 

across the United States from 2008 to 2019. The second step is to fit the data with various 

regression functional forms using the software R and plot the results. Third, the functional forms 

are compared based on visual inspection, coefficient of determination (R2), and theoretical 

considerations. A dummy variable for U.S states and a time trend are also included as 

independent variables. 
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Results show that the crop yield vs NDVI data plot exhibits nonlinear relationship. This 

can be more obviously seen for corn, soybeans, and winter wheat crop. However, for spring 

wheat, the yield and NDVI relationship is somewhat more linear. For piecewise/spline 

regressions, knot value placements were selected based on visual inspection. Generally, the 

Generalized Additive Model (GAM) resulted in a slightly higher adjusted R2 value compared 

to all eight functional forms tested for all crops, but GAM may have the tendency to overfit the 

data as this function uses a larger number of parameters. Instead, the linear piecewise functional 

form provides a suitable balance between producing a sufficiently high adjusted R2 value and 

an intercept value that is reasonable. 

Overall, this study may be useful for those who seek to understand how different 

regression functional forms may help to estimate crop yield and identify which functional forms 

may be better for each crop. 
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CHAPTER 3 

COMPARING VARIOUS VEGETATION INDICES FOR ESTIMATING CROP 

YIELD USING TWO REGRESSION FUNCTIONAL FORMS 

3.1 INTRODUCTION 

The objective of this study is to compare 10 satellite-based vegetation indices for 

estimating crop yield using two functional forms. The study uses crop yield as the dependent 

variable and vegetation index (e.g SAVI, etc) as the main independent variables (and also time 

trend and dummy variables for U.S states). 

One of the most well-known satellite based indices is NDVI, though it has a few known 

limitations that can cause inaccuracy in estimating crop yield. Therefore, there is a need to 

explore other vegetation indices that may possibly overcome NDVI limitations. 

The Normalized Difference Vegetation Index (NDVI) is the most commonly used index 

in agriculture and ecology due to its simpler calculations, relying solely on vegetation 

reflectance and absorption of ultraviolet region on red and near-infrared (NIR). NDVI, also 

called measure of ‘greenness’ due to its correlation with photosynthetic capacity, has values 

ranging from -1.00 to +1.00 with higher values implying denser vegetation (e.g higher crop 

yield) in the area (Pettorelli, 2013). Despite the advantages of NDVI, some limitations of this 

index include sensitivity towards atmospheric contaminants, sensitivity towards soil-

reflectance for sparsely vegetated areas, and saturation in densely vegetated areas (Pettorelli, 

2013). The saturation problem in NDVI is due to absorption saturation in red and reflectance 

saturation of NIR in high biomass (yield), leading to sensitivity degradation of the vegetation 

index from moderate to high biomass (Dong et al, 2015). For the soil background sensitivity, 

it was noted that dark soil often resulted in higher vegetation indices value compared to the 

bright-colored soil (Mróz and Sobieraj, 2004) for this type of vegetation index. Therefore, soil 
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conditions such as the water content and organic matter may influence index values. Also, the 

atmospheric effect may create “noise” as molecules, such as gasses or aerosols, influence the 

radiation and absorption activity and cause variation in the vegetation index from proper values 

(Myneni and Asrar, 1994).  

Currently, there are numerous types of vegetation indices for monitoring and analyzing 

vegetation and some indices may have a slight advantage over others. This study analyzes nine 

other indices in comparison to NDVI as the benchmark, to determine which index best estimate 

the crop yield. Corn, soybeans, winter wheat, and spring wheat are analyzed. Given that NDVI 

is the most common and studied index, this study will be using NDVI as the performance 

benchmark when comparing with other indices being analyzed. The nine indices include: 

Renormalized Difference Vegetation Index (RDVI), Transformed Difference Vegetation Index 

(TDVI), Wide Dynamic Range Vegetation Index (WDRVI), Two-Band Enhanced Vegetation 

Index (EVI2), Soil Adjusted Vegetation Index (SAVI), Green Optimized Soil Adjusted 

Vegetation Index (GOSAVI), Green Soil Adjusted Vegetation Index (GSAVI), Modified Soil 

Adjusted Vegetation Index 2  (MSAVI2), and Optimized Soil Adjusted Vegetation Index 

(OSAVI). 

3.1.1 Objective  

The objective of this study is to compare various vegetation indices for estimating crop 

yield using two functional forms. In the previous study (Chapter 2), several functional forms 

were considered to estimate crop yield. This study aims to compare performance of NDVI with 

the nine other vegetation indices mentioned above using two functional forms which are: linear 

regression form and linear piecewise form. The two forms are being used as they are considered 

to have a relatively suitable fit for corn, soybeans, spring wheat, and winter wheat. 
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The next part of this paper includes a literature review of the various vegetation indices 

used in this study. Next data and methodology are discussed. Finally, results are presented, and 

a summary of study is presented.  

3.1.2 Background 

Remote sensing often includes satellites that allow mapping of the earth’s land surface, 

oceans, or atmosphere by recording the unique properties of electromagnetic energy emitted 

by areas or objects. This allows for distinctions and identification of the areas or objects 

(Khorram et al, 2012). Moderate-resolution Imaging Spectroradiometer (MODIS) is a program 

installed in NASA Terra and Aqua satellites that produce a wide spectral range used to generate 

images of earth every one to two days. There are many applications of remote sensing using 

MODIS for agriculture such as for field mapping, nitrogen management, and monitoring plant 

conditions for stress or water content. Crop yield estimation can also use vegetation indices, 

which exploit the vegetation property of absorbing the red and blue visible spectrum and 

reflecting the near-infrared, enabling them to be recognized (Pettorelli, 2013). When using 

vegetation indices to monitor crop development, one must be aware that vegetation reflectance 

is influenced by many factors including soil background, atmospheric conditions, leaf 

structure, and many others. Therefore different vegetation species in a particular area may 

respond differently towards a specific index (Gitelson, 2013). 

3.1.2.1 Soil-Adjusted Vegetation Indices: [SAVI, MSAVI2, OSAVI, GOSAVI, GSAVI, 

TDVI, RDVI] 

Different vegetation indices have been developed in order to make improvements over 

NDVI. The soil-adjusted vegetation index group aims to take into account the effect of soil 

background in arid and semi-arid environments. Sensitivity of indices towards soil brightness 

is important especially for areas that are sparsely vegetated. There are several indices that fall 

into this category and some of them are analyzed in this study, including Soil-Adjusted 
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Vegetation Index (SAVI), Modified Secondary Soil-Adjusted Vegetation Index (MSAVI2), 

Optimized Soil-Adjusted Vegetation Index (OSAVI), Green Optimized Soil Adjusted 

Vegetation Index (GOSAVI), and Green Soil Adjusted Vegetation Index (GSAVI).  

SAVI includes a soil conditioning index (L) that ranges from 0 to 1, with a higher value 

implying that the soil background has no effect on the vegetation information, while the lower 

it is, the closer the index to NDVI (Xue and Su, 2017). Most common value for L being used 

in SAVI is 0.5 as it is considered the median value that can be a suitable fit in various 

environment. Many have identified SAVI as the appropriate index for agricultural areas 

(González-Dugo and Mateos, 2008; Liaqata et al, 2017; da Silva et al, 2020), but depending on 

the type of vegetation, soil conditions such as the amount of organic matter, and atmospheric 

conditions, this index may still produce some errors. 

OSAVI is one extension of soil-adjusted index that does not require any preliminary 

knowledge of the soil line parameters (Rondeaux et al, 1996). OSAVI is not only more sensitive 

to leaf chlorophyll area, it removes the soil effect more effectively than others and it may also 

work better for agricultural crops than SAVI (Rondeaux et al, 1996; Piegari et al, 2021). 

MSAVI2 is proposed to reduce the effect of bare soil on SAVI and incorporate other 

properties than the soil line principle (Xue and Su, 2017). For MSAVI2, it uses a dynamic soil 

adjusting factor, compared to SAVI and OSAVI, that use a fixed adjusting factor. However, all 

three indices are suitable to measure above ground vegetation (Celleri et al, 2019). 

GOSAVI and GSAVI are also indices proposed to help eliminate the soil background 

effect. However, rather than using the near-infrared and red band, GOSAVI is similar to 

OSAVI but using the near-infrared and green band, while GSAVI is similar to SAVI but using 

the near-infrared and green band (Sripada et al, 2006). In terms of mapping, the GSAVI may 

be able to differentiate between crops and weeds better than NDVI. It also is less sensitive to 
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changes between crop growth phases (e.g changes from bare soil to crop presence) (Stroppiana 

et al, 2018). 

Another index that was proposed to be better on sparsely vegetated area is Transformed 

Difference Vegetation Index (TDVI). It is claimed to not only be minimally affected by soil 

background compared to SAVI, but will not saturate as easy as NDVI in a densely vegetated 

area (Bannari et al, 2002). 

The Renormalized Difference Vegetation Index (RDVI) is a ratio-based index that was 

developed to lessen the influence of soil reflectance but was derived from a different method 

than the SAVI group. RDVI combined the property of Band Difference (DVI) to be less 

affected by soil background and perform better in both low and high-density areas than NDVI 

(Roujean and Breon, 1995, Payero et al, 2004; Dong et al, 2015).  

3.1.2.2 High Biomass and Atmospheric Resistant Index: [WDRVI, EVI2] 

It is noted above that one limitation of NDVI is that it saturates as the vegetation density 

gets higher. Some indices were proposed to address such issues including the Wide Dynamic 

Range Vegetation Index (WDRVI) and Two-Band Enhanced Vegetation Index (EVI2). EVI2 

is an extension of EVI (Enhanced Vegetation Index) which aimed to improve vegetation 

monitoring in high density area (full canopy cover) by taking advantage of blue band rather 

than just red and near-infrared (Vescovo et al, 2012). By using the blue band, the index become 

more aerosol resistant and therefore able to control for atmospheric influence better (Wang et 

al, 2016). EVI2 was developed to be a comparable index to EVI when the blue band is low or 

unavailable.  

On the other hand, WDRVI was developed in trying to resolve the saturation problem, 

meaning this index is supposed to be better than NDVI in a high biomass area, by applying a 

weighted coefficient to the near-infrared reflectance, therefore increasing the dynamic range of 
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NDVI while still using the same bands (Xue and Su, 2017). (Towers et al, 2019) also found 

that in dense green biomass, e.g when NDVI is more than 0.4, WDRVI shows better accuracy 

and sensitivity than NDVI for several types of vegetation, including cropland. 

3.2 LITERATURE REVIEW 

3.2.1 Normalized Difference Vegetation Index (NDVI) 

NDVI is the benchmark to be used in this study and is the most extensively used 

vegetation index. There are several studies throughout the years that have discussed the 

suitability of NDVI for remote sensing on croplands. On average, NDVI performs satisfactory 

in monitoring crop development, many have found the index to have a suitable correlation with 

crop yield in United States (Labus et al, 2002 and Becker-Reshef et al, 2010) and other parts 

of the world (Ren et al, 2008; Mkhabela et al, 2011; Dempewolf et al, 2013).  

NDVI works reasonably well for estimating yield of various type of crops but there is a 

need to explore other vegetation indices that may potentially be able to address NDVI 

limitations, including saturation, especially for yield estimation. There are a few studies that 

have compared NDVI with other indices such as by (GopalaPillai and Tian, 1999; Panda et al, 

2010, Kayad et al, 2019) for corn and (Bolton and Friedl, 2013) for soybeans. Stepanov et al 

(2020) assessed relationship of soybean yield and NDVI in the Khabarovsk District, Russia. 

They also incorporated different variables in their model including soil humidity and 

temperature, and a seasonality factor. 

3.2.2 Soil-Adjusted Vegetation Indices: [SAVI, MSAVI2, OSAVI, GOSAVI, GSAVI, TDVI, 

RDVI] 

As mentioned, NDVI has some limitations, typically in very high or very low-density 

areas. The SAVI was one of the pioneer indices proposed to correct soil influence on NDVI 

using its L factor that can be adjusted based on vegetation coverage. As the L value approaches 

to 0, that is when the area is densely vegetated, and SAVI approximates NDVI. Although for 
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balance, L=0.5 is most commonly used in typical research. Some studies found SAVI to be a 

better index than NDVI such as (Baugh and Groeneveld, 2006), who compared the two indices 

in shrubland area with low vegetation cover in Colorado. While for agriculture, (da Silva et al, 

2020) found that SAVI is more suitable than NDVI. They found that NDVI that is better suited 

for forest lands, while SAVI is better suited for agricultural and native fields.  

MSAVI2 is one extension of SAVI that has self-adjusting L value so prior knowledge of 

vegetation density in the area is not required (Qi et al, 1994). MSAVI2 is able to raise the 

vegetation signal while keeping the soil noise low in both sparsely vegetated and higher density 

biomass areas even better than SAVI. (Baugh and Groeneveld, 2006) have found MSAVI2 to 

have higher a R2 value than SAVI. (Barillé et al, 2011) conducted studies to compare 

background reflectance among indices and found that MSAVI2 performed better than SAVI. 

However, they mentioned that the two are affected by soil background color that can cause 

variation in both indices. The literature also noted that MSAVI2 and SAVI still saturate at 

higher biomass values.  

Another extension of SAVI is OSAVI, which used 0.16 as the fixed adjustment L factor. 

According to (Celleri et al, 2019), OSAVI does not exhibit superiority compared to SAVI and 

MSAVI2 in sparse vegetated areas, and one reason may be because L=0.5 is the optimal value 

in a semiarid moderately vegetated area. OSAVI had a reasonable correlation with the 

vegetation in their study, but an important aspect in their findings is that OSAVI had a 

significant correlation with soil salinity, leading to the ability to indicate water stress in 

vegetation. Shang et al (2015) showed that OSAVI performed better than NDVI in their spring 

wheat and canola regression on estimating the green effective plant area index. They also 

indicated that combination of OSAVI and Transformed Chlorophyll Absorption Reflectance 

Index (TCARI) could potentially perform well in dense canopy leaf chlorophyll content 

estimation.  
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Other indices in the SAVI family that are potentially more robust, are GOSAVI and 

GSAVI. These two indices are not as extensively used as the ones mentioned previously, but 

there are some studies that noted the benefit of using green bands for monitoring crop growth. 

(Cao et al, 2015) used many indices, including GOSAVI and GSAVI, in their study to help 

estimate winter wheat nitrogen status in China and they mentioned that GOSAVI seemed to 

perform quite well to measure above ground biomass, while both GOSAVI and GSAVI 

performed quite well to measure plant nitrogen concentration. They also mentioned the 

importance of using green band indices to measure nitrogen status in vegetation as that has a 

high correlation with the nitrogen concentration.  

(Barzin et al, 2020) showed that GOSAVI has a reasonable correlation with corn yield in 

their study conducted in Mississippi, but many other studies actually showed the usefulness of 

GOSAVI and GSAVI in evaluating nitrogen content in plants such as by (Sripada et al, 2006) 

for corn crops and (Sripada et al, 2007) for winter wheat crops as well. Nitrogen is an essential 

nutrient for crops to grow and mature so it is quite important to be able to assess plant health 

status for nitrogen deficiency, which impact yield. (Diego et al, 2021) emphasized this in their 

study regarding coffee in Brazil. Their literature indicated that among indices they used, 

GOSAVI was one of the best indices to differentiate between nitrogen content class in the 

coffee plantation and they attributed this to the use of the green band rather than red band, such 

as in NDVI. 

There are some indices derived to address the soil influence problem as well, but more 

NDVI-like as they are not based on SAVI. One is RDVI and (Haboudane et al, 2004) tried to 

quantify the green leaf area index for corn, soybeans, and wheat crops in Canada. RDVI 

performed quite well as it does not saturate as easily as NDVI but tended to overestimate 

soybeans and corn canopies while underestimating the wheat canopy as density gets higher. 

(Dong et al, 2015) used RDVI as one of the vegetation indices for estimating crop fraction of 
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absorbed photosynthetically active radiation in China, and according to their findings, RDVI 

does not saturate as easily in higher leaf area index compared to NDVI and performed at least 

as good as NDVI for winter wheat, and slightly below for corn. They also mentioned that RDVI 

is less influenced by background effects and is able to perform well in denser canopies.  

TDVI does not have many applications in agriculture but (Chandel et al, 2021) showed 

that TDVI appeared to estimate alfalfa yield relatively well. (Suarez et al, 2020) used TDVI as 

one of vegetation indices to estimate carrot yield in Australia, and found that RDVI was the 

best index, while TDVI had potential to perform better than NDVI and SAVI in certain cases. 

(Morier et al, 2015) included TDVI to estimate potato yield in Canada and again, TDVI was 

not the best index used as OSAVI, MSAVI, and NDVI outperformed TDVI in this case. (Al 

Shidi et al, 2019) found similar results when comparing the performance of NDVI and TDVI.  

3.2.3 High Biomass and Atmospheric Resistant Index: [WDRVI, EVI2] 

A limitation of NDVI is the saturation effect, as the vegetation gains higher leaf area 

index/biomass. As NDVI is influenced by the soil-background effect, NDVI is also influenced 

by the atmospheric particles that can hinder accuracy of the index value. 

EVI2 was developed specifically to address the issue of both saturation and atmospheric 

influence effect of NDVI, while still using the red and NIR bands, unlike the EVI that also 

included the blue band. (Sun et al, 2012) successfully mapped the major winter wheat-

producing regions in China using MODIS EVI2 data to classify land-cover information that 

can be used for yield assessment or agricultural management. They chose EVI2 specifically 

due its advantages to be less influenced by soil background and atmospheric effect with less 

saturation compared to NDVI, while also simpler than EVI that requires the blue band which 

is only available on 500m MODIS resolution.  

In the United States, (Bolton and Friedl, 2013) used EVI2 as one of the indices to estimate 

corn and soybeans yield. They indicated that EVI2 has a reasonable correlation with both corn 
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and soybeans. Based on R2 values, they found that EVI2 models estimate yield better than 

NDVI models for both crops. In their study, EVI2 is better used in non-semi arid counties for 

predicting corn and soybeans yield, therefore they suggested to have a different model for semi-

arid and non-semi-arid areas to estimate yield, especially for corn. (Zhang and Zhang, 2016) 

measured global cereal production and yield using EVI2 as measure of greenness because 

compared to NDVI, EVI2 was able to differentiate between vegetation diversity better, 

measure vegetation conditions better, and perform better at estimating yield of crops including 

corn, soybeans, and coffee. 

WDRVI is another index proposed to perform better than NDVI especially in higher 

biomass areas. WDRVI is quite widely used in ecology and agriculture due to lower saturation 

at higher leaf area index levels compared to NDVI. (Viña et al, 2004) noted this characteristic 

and suggested that WDRVI would be suited for use in croplands and more humid areas. Several 

studies proved strong relationships of WDRVI with crop yield such as (Sakamoto et al, 2013), 

who estimated corn yield across U.S using WDRVI, as the index is believed to have close to 

linear relationship with corn (Guindin-Garcia et al, 2012; Sibley et al, 2014). (Dempewolf et 

al, 2013) which compared indices including WDRVI to best estimate wheat yield in the Punjab 

Province of Pakistan and found that WDRVI exhibited less deviation with tighter distribution 

around mean. (de Souza et al, 2015) compared NDVI and WDRVI in their study of mapping 

corn and soybeans field in Brazil and found that WDRVI was able to identify crops better than 

NDVI. 

 

3.3 DATA 

3.3.1 Crop Yield Data 

Data for crop yield used in this study is the same as Chapter 2. 
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3.3.2 Vegetation Index Data 

Data for vegetation indices used in this study is similar to Chapter 2. Equations for all 

vegetation indices can be found below. 

Equations for all Vegetation Indices 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4 METHODOLOGY 

The basic goal of this study is to use various vegetation indices (main independent 

variable) to estimate crop yield (dependent variable) using regression with various vegetation 

indices for comparison, and NDVI is a benchmark. 
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Methodology of this study can be summarized into three steps, which are similar to 

Chapter 2. 

3.4.1 Regression Functional Forms: [Linear Regression and Linear Piecewise Regression] 

NDVI and nine other vegetation indices used: RDVI, TDVI, WDRVI, EVI2, SAVI, 

GOSAVI, GSAVI, MSAVI2, and OSAVI. Two functional forms are used including linear 

regression and linear piecewise regression. Linear piecewise regressions appear to estimate 

crop yield for corn, soybeans, spring wheat, and winter wheat quite well using NDVI. 

Piecewise regressions offer the advantage of being more flexible yet still simple at the same 

time. While for the linear regression form, there are two reasons for the inclusion of this 

functional form. First, linear regression form is the most commonly used and simplest 

functional form, therefore one may be curious as to how it fits using different vegetation 

indices.  

Second, other vegetation indices such as the SAVI group or WDRVI were developed to 

mitigate the saturation problem appearing in NDVI. Therefore, it is expected when using 

vegetation indices other than NDVI that the data will behave more linear like and the linear 

regression form may be adequate to explain the crop yield. In all functional forms, the output 

(dependent variable) is crop yield (bushels per acre) and the explanatory (independent) 

variables are the vegetation index (VI), U.S. State dummy variables, and Time trend. 

According to Chapter 2, linear piecewise regression seems to be an appropriate form to 

estimate crop yield using NDVI as the explanatory variable as this functional form give not 

only a higher R2 value but also has intercept that is reasonable and is suitable visually. 

Piecewise regression forms can be hypothesized to produce a suitable estimation for corn and 

soybeans yield using different vegetation indices, as when using NDVI. For both spring wheat 

and winter wheat on the other hand, relationship between yield and NDVI appear more linear 
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compared to corn and soybeans, so one may be able to estimate wheat yields using linear 

regression. The piecewise regressions may capture the slight nonlinearity in spring wheat and 

winter wheat.  

Equation (3.1) and (3.2) represent the linear regression form and linear piecewise 

equations used in this study. Basically, piecewise regressions are created by specifying a 

dummy variable for each side of breakpoint/knot value and to avoid discontinuity problem, the 

piecewise functions will be constrained to be continuous for the entire domain. 

𝑌𝑖𝑒𝑙𝑑𝑡 =  𝛼 + 𝛽1,𝑡𝑉𝐼 + 𝛽2,𝑡𝑆𝑡𝑎𝑡𝑒 + 𝛽3,𝑡𝑇𝑖𝑚𝑒 +  𝜀𝑡           (3.1) 

𝑌𝑖𝑒𝑙𝑑𝑡 =  𝛼 + 𝛽1,𝑡𝑉𝐼 + 𝛽2,𝑡(𝑉𝐼 − 𝑥(𝑘))𝑋𝑘 + 𝛽3,𝑡𝑆𝑡𝑎𝑡𝑒 + 𝛽4,𝑡𝑇𝑖𝑚𝑒 + 𝜀𝑡     (3.2) 

where   𝑋𝑘 = {1 𝑖𝑓 𝑉𝐼 >𝑥(𝑘)
0 𝑖𝑓 𝑉𝐼 ≤ 𝑥(𝑘)

 

where 𝑌𝑖𝑒𝑙𝑑 is the 𝑛 × 1 vector of crop yields (i.e corn, soybeans, winter wheat, and spring 

wheat) and VI represent the specific vegetation index being used. Time is a time trend variable 

and State represent a dummy variable for each U.S state in data except one, which will act as 

reference State to avoid the dummy variable trap. These dummy variables are used to control 

for variation between states in data. 

The x(k) term represents the location of breakpoint or commonly referred as the knot 

value and as in Chapter 2. The Xk term represents the dummy variable depending on what side 

the values fall from the knot. Here, the dummy variable Xk will be 0 if the vegetation index 

value is less than equal to the specified knot value, x(k) and the dummy variable Xk will be 1 

if the vegetation index value is more than the specified knot value.  

 

 



39 
 

3.5 RESULTS 

The focus of this study is to use various satellite-based vegetation indices (independent 

variable) to estimate crop yield (dependent variable) using regression. Each vegetation index 

is fitted using two different regression forms, to determine whether the nine other vegetation 

indices are an improvement over the benchmark, NDVI. The performance of an index is 

analyzed over the two regression forms and the other vegetation indices.  

There are three approaches used here for assessing functional form suitability: goodness 

of fit (adjusted R2 value), visual inspection, and theoretical considerations. To correct for 

heteroscedasticity, a robust standard error for all functional forms is used (White, 1980).  

All ten vegetation indices behaved very similarly often showing very high correlations 

between the various indices of around 0.90 or higher. In fact, some of the indices have very 

similar formulas, such as OSAVI and GOSAVI, as well as SAVI with GSAVI. 

Overall, results show that the relationship between a vegetation index and crop yield is 

mostly nonlinear, especially for larger vegetation index values. However, there is less 

nonlinearity for some vegetation indices such as GOSAVI, GSAVI, and WDRVI, because 

those indices were developed to solve the saturation problem of NDVI. Functional forms using 

these indices can be expected to perform better than functional forms using NDVI (which is 

subject to saturation). The breakpoint/knot value for piecewise regressions is based on 

goodness of fit and theoretical considerations. 

3.5.1 Corn: Various Vegetation Indices Results 

Results for corn shows that the top three vegetation indices that have relatively higher 

adjusted R2 values and suitable intercept values relatively reasonable, and they are RDVI, 

GOSAVI, and GSAVI. In terms of functional forms, the piecewise regressions perform better 
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compared to linear regression for corn. Similar functional form results were obtained in 

Chapter 2 using NDVI.  

The Time Trend variable was statistically significant and had positive coefficients for all 

indices, indicating increasing corn yield over time. This is due mostly to improvement in crop 

management, technology, and inputs.  

Based on Table 3.1, the linear piecewise functional form performs relatively better than 

the linear functional form. RDVI showed a similar adjusted R2 value for the linear piecewise 

form. The top three indices with relatively higher adjusted R2 value were GOSAVI (0.66), 

GSAVI (0.66), and RDVI (0.67) when averaging the adjusted R2 values over the two forms. 

Most indices performed better than NDVI based on R2 goodness of fit. However, TDVI, 

MSAVI2 and OSAVI had overall R2 values slightly lower than NDVI.  

Figure 3.1 All Four U.S. Crops: Plot of Crop Yield vs RDVI using Linear and Linear Piecewise 

Functions, 2008 to 2019  

Corn 

 

 

 

 

 

 

(a)                                                                      (b) 

Soybeans 

 

 

 

 

 

 

(c)                                                                 (d) 
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Figure 3.1 (continued) 

Spring Wheat 

 

 

 

 

 

 

 

   (e)      (f) 

Winter Wheat  

 

 

 

 

 

 

 

   (g)      (h) 

Notes: Plot (a) and (b) represents Linear Regression and Linear Piecewise Regression, respectively, 

using RDVI to estimate corn yield. Knot values (x(k)) used for Linear Piecewise: RDVI = 49. Plot (c) 

and (d) represents Linear Regression and Linear Piecewise Regression, respectively, using RDVI to 

estimate soybeans yield. Knot values (x(k)) used for Linear Piecewise: RDVI = 52. Plot (e) and (f) 

represents Linear Regression and Linear Piecewise Regression, respectively, using RDVI to estimate 

spring wheat yield. Knot values (x(k)) used for Linear Piecewise RDVI = 50. Plot (g) and (h) represents 

Linear Regression and Linear Piecewise Regression, respectively, using RDVI to estimate winter wheat 

yield. Knot values (x(k)) used for Linear Piecewise RDVI = 50. 

Note: Corn: N=7812 (651 counties x 12 years), Soybeans: N=7524 (627 countries x 12 years), Spring 

Wheat: N=384 (32 counties x 12 years), and Winter Wheat: N=2196 (183 counties x 12 years). 

Note: For corn, the linear regression may not be suitable to estimate corn yield due to nonlinearity at 

higher index value. But there is less saturation (nonlinearity) by using RDVI instead of NDVI. Soybeans 

have similar pattern as corn, linear piecewise able to address nonlinearity issue although RDVI able to 

lessen the saturation problem compared to other indices. Linear regression fit spring wheat and winter 

wheat quite well so linear piecewise may not be needed. Nonlinearity due to saturation does not seem 

to be a problem for spring wheat due to lesser biomass compared to corn and soybeans. Therefore, linear 

functional form may be suitable to estimate wheat. 
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Overall, there seems to be less saturation at higher index values for RDVI, GOSAVI, and 

GSAVI. Figure 3.1 shows visual description of RDVI using linear regression and linear 

piecewise functional form for all crops. Apart from having high adjusted R2 value, the RDVI, 

GOSAVI, and GSAVI also have intercepts relatively suitable (consistent with theoretical 

considerations). 

 

Table 3.1 All Four U.S. Crops: Adjusted R2 Values for All Vegetation Indices [Dependent 

Variable: Crop Yield; Independent Variables: Vegetation Index, U.S State Dummy Variable, 

Time Trend], 2008 to 2019 

Corn      Soybeans 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Corn: Knot value (x(k)) used for Linear Piecewise: NDVI = 0.785, RDVI = 49, TDVI = 1.3, 

WDRVI = 0.3, EVI2 = 1.79, SAVI = 1.18, GOSAVI = 0.64, GSAVI = 0.96, MSAVI2 = 0.865, OSAVI 

= 0.785. Soybeans: Knot value (x(k)) used for Linear Piecewise: NDVI = 0.75, RDVI = 52, TDVI = 

1.22, WDRVI = 0.5, EVI2 = 1.5, SAVI = 1.1, GOSAVI = 0.65, GSAVI = 1.1, MSAVI2 = 0.8, OSAVI 

= 0.75.  
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Table 3.1 (continued) 

Spring Wheat     Winter Wheat 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: Spring Wheat: Notes: Knot value (x(k)) used for Linear Piecewise: NDVI = 0.55, RDVI = 50, 

TDVI = 1.05, WDRVI = 0.2, EVI2 = 1.7, SAVI = 0.9, GOSAVI = 0.6, GSAVI = 0.9, MSAVI2 = 0.7, 

OSAVI = 0.75. Winter Wheat: Notes: Knot value (x(k)) used for Linear Piecewise: NDVI = 0.6, 

RDVI = 50, TDVI = 1, WDRVI = 0.25, EVI2 = 1.7, SAVI = 0.9, GOSAVI = 0.6, GSAVI = 0.9, 

MSAVI2 = 0.65, OSAVI = 0.6.  

Overall, RDVI, GOSAVI, and GSAVI are the top three indices with relatively higher adjusted R2 for 

all crops. Linear piecewise may be the better option instead with suitable balance between adjusted R2 

value and intercept relatively suitable, although visually linear regression is sufficient for spring 

wheat and winter wheat. 

 

3.5.2 Soybeans: Various Vegetation Indices Results 

Results for soybeans analysis follow very similarly to corn. The top three vegetation 

indices that produce relatively higher adjusted R2 value and suitable intercept are RDVI, 

GOSAVI, and GSAVI. In general, the piecewise regressions functional forms appear more 

suitable than linear regression for soybeans, although for RDVI, linear regression may provide 

a suitable fit.  
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The presence of Time Trend is significant and has positive coefficients for all indices, 

indicating increase in soybean yield over time due to advancement in technology, management, 

and inputs. Many U.S state dummy variable are statistically significant, likely due to difference 

across states such as weather, soil type, and geographic location. 

Soybeans follow similar pattern as corn in general. However, based on Table 3.1, by 

using RDVI to estimate soybeans yield, linear regression may be a suitable form. The top three 

indices with relatively higher adjusted R2 value are GOSAVI (0.7), GSAVI (0.69), and RDVI 

(0.69), averaged over the two functional forms. Most indices being considered perform better 

than NDVI, except for TDVI and MSAVI2 which overall R2 values are slightly lower than 

NDVI.  

Overall, there seem to be less saturation at higher index values for RDVI, GOSAVI, and 

GSAVI. These indices have higher adjusted R2 value and suitable intercept.  

3.5.3 Spring Wheat: Various Vegetation Indices Results 

Results for spring wheat show that the RDVI index provide the best balance of having 

higher adjusted R2 as well as suitable intercept. The linear regression form provides a 

reasonably goodness of fit. 

According to the adjusted R2 value on Table 3.1, the top three indices with relatively 

higher adjusted R2 value are GOSAVI (0.59), GSAVI (0.59), and RDVI (0.58), averaged across 

the two forms. Most index being considered perform quite similarly as NDVI with about 57% 

of variability in spring wheat yield explained by the respective index, except for WDRVI with 

overall R2 values are slightly lower than NDVI. The linear piecewise may be less beneficial for 

some indices given that it has an insignificant coefficient (p-value>0.05), for indices such as 

SAVI.  

Visually, there is very slight nonlinearity observed in spring wheat, which may be due to 

wheat having lower biomass compared to corn and soybeans. Based on visual inspection, 
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piecewise regressions may not be necessary for spring wheat, using most of indices being 

considered. Instead, linear regression provides a suitable fit for all indices compared to linear 

piecewise. Figure 3.1 shows visual description of RDVI using linear regression and linear 

piecewise functional form for all crops. Even though linear regression provides a good fit, using 

linear piecewise may help to attain suitable intercept values, which is favorable.  

Overall, even though GOSAVI and GSAVI have adjusted R2 values similar to RDVI, 

their intercepts are quite far off. Therefore, based on these results, RDVI may provide a suitable 

balance between adjusted R2 value, intercept, and visual inspection for spring wheat. 

3.5.4  Winter Wheat: Various Vegetation Indices Results 

Similar to spring wheat results, the winter wheat crop analysis shows that RDVI provides 

a reasonable balance of having higher adjusted R2 as well as suitable intercept. In general, 

linear regression provides a suitable fit for winter wheat, although for some indices, using linear 

piecewise allows intercepts to be relatively suitable. 

According to the adjusted R2 value on Table 3.1, the top three indices with relatively 

higher adjusted R2 value are GOSAVI (0.74), GSAVI (0.74), and RDVI (0.74), averaged over 

the two forms. Most indices being considered perform quite similarly to NDVI with about 73% 

of variability in winter wheat yield explained by the respective index, except for MSAVI2 

which overall adjusted R2 values are slightly lower than NDVI. For some indices, linear 

piecewise functional form had insignificant coefficient (p-value>0.05), such as for MSAVI2. 

There appears to be some nonlinearity present for all vegetation indices being considered 

here, although not as much for winter wheat compared to corn and soybeans. Based on visual 

inspection, piecewise regressions may not be needed for winter wheat using most of indices 

being considered. Linear regression may be sufficient compared to linear piecewise regression. 

Figure 3.1 shows visual description of RDVI using linear regression and linear piecewise 

functional form for all crops. Similar to spring wheat, even though linear regression provides 
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a good fit, using linear piecewise may help to attain suitable intercept values, which is 

favorable. GOSAVI and GSAVI have adjusted R2 values similar to RDVI, their intercepts are 

less acceptable. Therefore, based on these results, RDVI is able to provide a suitable balance 

between adjusted R2 value, intercept, and visual for spring wheat. 

 

3.5.4 Results Discussion 

3.5.4.1 Regression Functional Forms 

Based on the results, the linear piecewise fit well for corn and soybeans (for most indices) 

among the two forms being considered which are linear regression and linear piecewise. Using 

piecewise functional forms gives a better fit visually, but also intercepts relatively suitable, and 

higher adjusted R2 value.  

For spring wheat and winter wheat, the use of piecewise regressions is not as beneficial 

because linear regression form seems to fit quite well visually for these two crops. Index 

saturation does not seem to be much of a problem for both wheats compared to corn and 

soybeans which could be due to the characteristic of wheat that does not grow as dense as corn 

and soybeans at maturity. The only downside of using just linear regression is the inability to 

have the intercept value relatively reasonable. For some indices, piecewise regressions may not 

be needed unless specific knot value is assigned, although using linear piecewise can provide 

relatively higher adjusted R2 value and intercept that is relatively suitable compared to linear 

regression. 

3.5.4.2 Potential of Vegetation Indices that Use Green Reflectance Band 

Although overall the performance of vegetation indices are quite similar to NDVI based 

on adjusted R2 value, the top three that stand out are RDVI, GOSAVI, and GSAVI. GOSAVI 

and GSAVI use the green band in place of red for a vegetation index and overall, the green 
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band helps to increase the sensitivity of the index as vegetation gets denser (compared to NDVI 

or other indices using the red band), resulting in less saturation. The OSAVI and SAVI have 

the exact same equations as GOSAVI and GSAVI but they use red spectral band instead of the 

green band. The results showed that both OSAVI and SAVI were not any better than NDVI 

(i.e similar adjusted R2 values), yet GOSAVI and GSAVI are. Therefore, this higher fitness of 

GOSAVI and GSAVI compared to NDVI is entirely due to the use of green band.  

3.5.4.3 Potential of Using RDVI in Estimating Crop Yield 

RDVI performed as well as GOSAVI and GSAVI while still using the red band. RDVI 

provides balance between low and high vegetation, and may be suitable for agricultural land. 

Based on this study, RDVI may have less saturation than NDVI, therefore, RDVI can provide 

more accurate estimation than NDVI when using linear regression functional form, or when 

the green band is not available to use.  

 

3.6 SUMMARY 

The objective of this study was to compare various satellite-based vegetation indices for 

estimating crop yield, and two functional forms were used. Crop yield was the dependent 

variable and vegetation index (e.g SAVI) was one of the independent variables, along with 

time trend and dummy variables for U.S states. There are many advantages of using satellite 

based remote sensing to estimate crop yield compared to the traditional crop surveys. Such 

advantages include lower cost, faster in obtaining data and updating fairly frequently. Data 

from remote sensing is also relatively accurate.  

NDVI is the most commonly used vegetation index for agricultural or ecology purposes. 

However, there are a few limitations of NDVI such as saturation with high density biomass, 

such as high crop yield or very green crops nearing maturity. Therefore, this paper discusses 



48 
 

nine other vegetation indices to understand their performance compared to NDVI for 

estimating crop yield. The data and methodology of this chapter is the same as in Chapter 2. 

There is benefit of using linear piecewise functional form for corn but less for soybeans. 

For spring wheat and winter wheat, although linear piecewise form produced a higher adjusted 

R2 value, both wheat data appear more linear (less saturation) compared to corn and soybeans, 

leading to using piecewise regression being unnecessary. Linear regression fit well in 

estimating spring wheat and winter wheat yield. 

For corn, soybeans, spring wheat, and winter wheat, the top three indices that provide 

highest adjusted R2 value are GOSAVI, GSAVI, and RDVI. Interestingly, OSAVI and SAVI 

indices, have same equation as GOSAVI and GSAVI except they used red band instead of 

green band. However, they are not performing any better than NDVI for estimating crop yield, 

whereas GOSAVI and GSAVI are. It can be seen quite clearly that what made GOSAVI and 

GSAVI perform better than NDVI is the presence of green band, which seems overall more 

robust than red band. RDVI was derived to provide a balance between environments with dense 

biomass and environments that have sparse vegetation and may be suitable for agricultural 

land.  

For future research of this type, researchers may wish to provide more focus on the 

green reflectance band rather than only red reflectance band. The green band is as widely 

available through MODIS as red band, unlike the blue band. This paper only discussed two 

green band based indices, GOSAVI and GSAVI, but further research could compare them with 

other green band indices such as Green Difference Vegetation Index (GDVI), Green 

Normalized Difference Vegetation Index (GNDVI), Green Chlorophyll Index (GCI), or many 

others.  
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CHAPTER 4 

THESIS SUMMARY 

Traditionally, crop yield estimation has been done mainly through crop surveys, and this 

process can be labor intensive and time consuming. This can lead to slower yield estimation 

because the data takes considerable time to collect. As technology has advanced, satellite-based 

remote sensing has become more popular for monitoring and observing vegetation growth and 

estimation of crop yield. There are a number of advantages regarding remote sensing for crop 

yield estimation such as lower cost, faster in obtaining and updating data, and data from remote 

sensing is also relatively accurate. Two studies are undertaken in this research. 

The first study investigates eight regression functional forms for estimating crop yield 

using satellite based NDVI. Crop yield is used as the dependent variable and NDVI as the main 

independent variable (along with a time trend and dummy variables for U.S. States). The 

analysis includes eight regression functional forms from four groups: linear regression, 

polynomial regression (quadratic and cubic), piecewise and spline regression (linear piecewise, 

quadratic piecewise, cubic spline, and natural spline), and Generalized Additive Model (GAM). 

Crop yield data is from USDA, for corn, soybeans, spring wheat, and winter wheat and MODIS 

satellite data is used. Results for the first study show that by using piecewise regression, the 

knot/breakpoint values can be set to create a reasonable intercept, sufficient R2 value, and 

reasonable visual fit at a high vegetation index level, where fit can be more challenging. 

The second study investigates 10 vegetation indices for estimating crop yield using two 

functional forms. Crop yield is the dependent variable and vegetation index (e.g SAVI) is the 

main independent variable (along with a time trend and dummy variables for U.S. States). 

Results show the benefit of using piecewise regression compared to linear regression, 
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particularly for corn. Results also suggest that GOSAVI, GSAVI, and RDVI perform somewhat 

better than other indices, particularly for corn.  

Future research could further explore GOSAVI and GSAVI. They use the green band 

instead of the red band, and so are somewhat different than the traditional NDVI, that uses the 

red band. RDVI was able to perform similarly to indices that use the green band, even though 

it uses the red band. RDVI is designed to provide balance between an environment with dense 

biomass and sparse vegetation, and maybe suitable for agricultural land. RDVI also has a 

relatively simple equation and relatively favorable performance. 
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