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Abstract
Genomic data hold salient information about the characteristics of a living

organism. Throughout the last decade, pinnacle developments have given us more

accurate and inexpensive methods to retrieve our genome sequences. However, with

the advancement of genomic research, there are growing security and privacy concerns

regarding collecting, storing, and analyzing such sensitive data. Recent results show

that given some background information, it is possible for an adversary to re-identify

an individual from a specific genomic dataset. This can reveal the current association

or future susceptibility of some diseases for that individual (and sometimes the kinship

between individuals), resulting in a privacy violation.

This thesis has two parts and proposes several techniques to mitigate the privacy

issues relating to genomic data. In our first part, we target the data privacy issues

while using any external computational environment. We propose privacy-preserving

frameworks to store genomic data in an untrusted computational environment (i.e.,

cloud). In particular, we employ prefix and suffix tree structures to represent

genomic data while keeping them under encryption throughout its computational life-

cycle. Therefore, the underlying methods perform different string search queries and

arbitrary computations under encryption without requiring access to the raw sensitive

data. We also propose a GPU-parallel Fully Homomorphic Encryption framework

that optimizes existing algorithms and can perform string distance metrics such as

Hamming, Edit distance and Set Maximal Matching. The GPU-parallel framework

is 14.4 and 46.81 times faster for standard and matrix multiplications, respectively

compared to the existing techniques.

The second part of the thesis targets another privacy setting where the outputs

from different genomic data analyses are deemed sensitive. Here, we propose several
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differentially private mechanisms to share partial genome datasets and intermediate

statistics providing a strict privacy guarantee. Experimental results demonstrate that

the proposed methods are effective for protecting data privacy while computing and

analysis of genomic data. Overall, the proposed techniques in this thesis are not

specialized for genomic data but can be generalized to protect other types of sensitive

data.



Copyright Notices and Disclaimers

Sections of this thesis have been published in different journals and conference

proceedings, either previously or forthcoming at the time of publication. Following

is a list of publications in which portions of this work appeared, organized by chapter:

Chapter 2

• Md Momin Al Aziz, Md Nazmus Sadat, Dima Alhadidi, Shuang Wang,

Xiaoqian Jiang, Cheryl L. Brown, and Noman Mohammed. Privacy-preserving

techniques of genomic data—a survey. Briefings in bioinformatics, 20(3), 887-

895 pages, 2019. (impact factor 11.62). [1]

Chapter 3

• Md Momin Al Aziz, Parimala Thulasiraman, and Noman Mohammed.

Parallel Generalized Suffix Tree Construction for Genomic Data. In Proceedings

of the 7th International Conference on Algorithms for Computational Biology,

Missoula, Montana USA, April 2020. [2]

• Md Momin Al Aziz, Parimala Thulasiraman, and Noman Mohammed.

(2020). Parallel and Private Generalized Suffix Tree Construction and Query

on Genomic Data. BMC Genomic Data, to appear.

Chapter 4

• Luyao Chen, Md Momin Al Aziz, Noman Mohammed, and Xiaoqian Jiang.

Secure large-scale genome data storage and query. Elsevier Computer methods

and programs in Biomedicine, 165, 129-137 pages, 2018 (impact factor 5.42).

[3] (co-first author)

Chapter 5

• Toufique Morshed, Md Momin Al Aziz, and Noman Mohammed. CPU and

GPU accelerated fully homomorphic encryption. In Proceedings of the IEEE

International Symposium on Hardware Oriented Security and Trust (HOST),

San Jose, California USA, December 2020. [4].

iv



Copyright Notices and Disclaimers v

• Md Momin Al Aziz, Toufique Morshed, and Noman Mohammed. Secure

Genomic String Search queries using accelerated Parallel Fully Homomorphic

Encryption. (under preparation for journal submission)

Chapter 6

• Md Momin Al Aziz, Shahin Kamali, Noman Mohammed, and Xiaoqian

Jiang. (2021). Online Algorithm for Differentially Private Genome-wide

Association Studies. ACM Transactions on Computing for Healthcare, 2(2),

1-27, 2021. [5]

Chapter 7

• Md Momin Al Aziz, Md Monowar Anjum, Xiaoqian Jiang, and Noman

Mohammed. Generalized Genomic Data Sharing for Differentially Private

Federated Learning. Elsevier Journal of Biomedical Informatics, to appear

(impact factor 6.317).



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Copyright Notices and Disclaimers . . . . . . . . . . . . . . . . . . . . . . iv
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction 2
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 Part 1: Protecting Data Privacy . . . . . . . . . . . . . . . . . 7
1.3.2 Part 2: Protecting Output Privacy . . . . . . . . . . . . . . . 9

1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Background 12
2.1 General Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Entities in Genomic Data Computations . . . . . . . . . . . . 12
2.1.2 Problem Architecture . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Threat or Adversary Models . . . . . . . . . . . . . . . . . . . 14

2.2 Privacy-Preserving Techniques . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Homomorphic Encryption . . . . . . . . . . . . . . . . . . . . 16
2.2.2 Garbled Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.3 Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . 22

I Protecting Data Privacy on Untrusted Environment 27

3 Privacy-Preserving Indexing and String Queries using Generalized
Suffix Trees 28
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



Contents vii

3.2.1 Haplotype Data . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Generalized Suffix Tree . . . . . . . . . . . . . . . . . . . . . . 32
3.2.3 String Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.1 Problem Architecture . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.2 Parallel GST Construction . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Privacy Preserving Query Execution . . . . . . . . . . . . . . 43

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Evaluation Datasets and Implementation . . . . . . . . . . . . 50
3.4.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 51
3.4.3 Query Execution . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.4.4 Limitations and Discussions . . . . . . . . . . . . . . . . . . . 56

3.5 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 Privacy-preserving String Search . . . . . . . . . . . . . . . . 57
3.5.2 Parallel GST Construction . . . . . . . . . . . . . . . . . . . . 59

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Large-Scale Genome Data Storage and Query with Privacy-
Preserving Techniques 62
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Data Representation . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.2 Graph Database . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2.3 System Architecture Overview . . . . . . . . . . . . . . . . . . 66

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.1 Data Preprossessing . . . . . . . . . . . . . . . . . . . . . . . 68
4.3.2 Counting Tree Construction . . . . . . . . . . . . . . . . . . . 69
4.3.3 Indexing the Counting Tree . . . . . . . . . . . . . . . . . . . 70
4.3.4 Encryption of the Tree . . . . . . . . . . . . . . . . . . . . . . 73
4.3.5 Search Operation . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.2 Storage Requirements . . . . . . . . . . . . . . . . . . . . . . 76
4.4.3 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Genomic String Search using Parallel Fully Homomorphic
Encryption 82
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



Contents viii

5.2.1 Torus FHE (TFHE) . . . . . . . . . . . . . . . . . . . . . . . 85
5.2.2 Sequential Framework . . . . . . . . . . . . . . . . . . . . . . 87
5.2.3 CPU-based Parallel Framework . . . . . . . . . . . . . . . . . 88
5.2.4 String Search: Problem Definition . . . . . . . . . . . . . . . . 90

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.1 GPU-based Parallel Framework . . . . . . . . . . . . . . . . . 91
5.3.2 Secure String Search Operations . . . . . . . . . . . . . . . . . 101

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.4.1 GPU-accelerated TFHE . . . . . . . . . . . . . . . . . . . . . 106
5.4.2 Compound Gate Analysis . . . . . . . . . . . . . . . . . . . . 107
5.4.3 Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5.4.4 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.4.5 Karatsuba Multiplication . . . . . . . . . . . . . . . . . . . . . 111
5.4.6 String Search Operations . . . . . . . . . . . . . . . . . . . . . 111

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.6 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6.1 Parallel Frameworks for FHE . . . . . . . . . . . . . . . . . . 113
5.6.2 Secure String Distances in Genomic Data . . . . . . . . . . . 116

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

II Privacy Preserving Outputs from Genomic Data
Analysis 118

6 Online Algorithm for Differentially Private GWAS 119
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 125
6.2.2 Privacy Models . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2.3 Genomic Data and GWAS . . . . . . . . . . . . . . . . . . . . 127
6.2.4 Online Algorithms and Bin Packing . . . . . . . . . . . . . . . 129

6.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.3.1 Differentially Private GWAS . . . . . . . . . . . . . . . . . . . 131
6.3.2 Global Model A . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.3.3 Local Model Al . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3.4 Privacy Composition with Online Bin Packing . . . . . . . . . 142

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.4.2 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . 146
6.4.3 Global Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 148



Contents ix

6.4.4 Local Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

6.5.1 Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
6.5.2 Utility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.5.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . 153

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7 Generalized Genomic Data Sharing for Differentially Private
Federated Learning 159
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.2.1 Differential Privacy . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2.2 Federated Learning . . . . . . . . . . . . . . . . . . . . . . . . 162

7.3 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.4.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 166
7.4.2 Summary of the proposed method . . . . . . . . . . . . . . . . 167
7.4.3 Reducing the Data Dimension . . . . . . . . . . . . . . . . . . 168
7.4.4 Privacy Preserving Mechanism . . . . . . . . . . . . . . . . . . 169
7.4.5 Federated Learning Mechanism . . . . . . . . . . . . . . . . . 174

7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.5.1 Dataset and Experimental Setup . . . . . . . . . . . . . . . . 176
7.5.2 Area Under Curve (AUC) . . . . . . . . . . . . . . . . . . . . 176
7.5.3 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.5.4 Other Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8 Conclusion 187
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Bibliography 219



List of Figures

1.1 Research objectives considered in this thesis . . . . . . . . . . . . . . 6

2.1 Different entities involved in a genomic data computation . . . . . . . 13
2.2 Centralized architecture for sharing and compute on private genomic

data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Timeline of the evolution of genomic data studies and seminal

development of different privacy preserving techniques . . . . . . . . . 16
2.4 Example of homomorphic operations on encrypted values . . . . . . . 18
2.5 Garbled Circuit Execution . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Uncompressed Suffix Tree (Trie) construction . . . . . . . . . . . . . 32
3.2 GST from Figure 3.1 where gray and white vertices are from S1 and

S2, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Computational architecture where data owner has the dataset D while

a researcher submits query q . . . . . . . . . . . . . . . . . . . . . . 37
3.4 Vertical partitioning with path graphs (%1,%2) merging . . . . . . . 38
3.5 Example of Bi-Directional partitioning scheme . . . . . . . . . . . . . 40
3.6 Reverse Merkle Hash for Suffix Tree on S1 = 010101 where we hash

the value of each node in a top-down fashion . . . . . . . . . . . . . . 43

4.1 Representation of relational and graph database . . . . . . . . . . . . 65
4.2 System Architecture and secure query process . . . . . . . . . . . . . 67
4.3 Building the tree from genomic sequence according to Algorithm. The

numbers under SNP values in (b) are the counts . . . . . . . . . . . 68
4.4 Setting position tags on each level and their nodes. The numbers in

the parenthesis are sequential labels (position tags) of each layer to be
used for generating node ranges for quick indexing . . . . . . . . . . . 72

4.5 Range of position tags from underlying child in each nodes. The range
of each node is the union of ranges of its children . . . . . . . . . . . 74

4.6 Execution time (seconds) for searching one leaf node on different
number of SNPs in the Counting Tree . . . . . . . . . . . . . . . . . 77

x



List of Figures xi

4.7 Execution time (seconds) for searching different number of SNPs
(randomly selected) in the Counting Tree . . . . . . . . . . . . . . . 79

4.8 Increment of the number of nodes with number of patients . . . . . . 80

5.1 Bitwise addition of two n-bit numbers A and B. ai, bi, ci, ri are ith-bit
of A,B, carry, and the result . . . . . . . . . . . . . . . . . . . . . . 89

5.2 Arbitrary operation between two bits where BS, KS key represents
bootstrapping and key switching keys, respectively . . . . . . . . . . . 92

5.3 Coalescing n-LWE samples (ciphertexts) for n-bits . . . . . . . . . . . 93
5.4 1-bit Increment and Decrement using Half-adder or subtractor where

the xi is the input Bit and the Carry bit is propagated into the next
bit’s operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.5 Accumulating n = 8 LWE samples (Lij) in parallel using a tree-based
reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.6 Performance analysis of GPU-accelerated TFHE with the sequential
and CPU || frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Privacy preserving Genome-wide Association Studies (GWAS) models
where data owners share the data (or results) with a central aggregator 126

6.2 Single Nucleotide Polymorphisms (SNPs) in DNA, where C and A are
major and minor allele respectively . . . . . . . . . . . . . . . . . . . 128

6.3 Packing 17 items of different size (0, 1] according to next fit algorithm 130
6.4 Accuracy of GWAS (LD, HWE, CATT and FET) averaged over 1000

queries and 10 iterations with three different privacy budgets . . . . . 148
6.5 Privacy loss and accuracy relation for LD, HWE, CATT and FET

where x-axis and y-axis denotes privacy loss ε and accuracy respectively 149

7.1 Overview of the privacy problem and proposed solution where multiple
data owners are targeting to train a model collaboratively using
arbitrary machine learning algorithm given a privacy guarantee over
the data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.2 Generating differentially private histogram to release genomic data for
federated machine learning algorithm . . . . . . . . . . . . . . . . . . 172

7.3 Accuracy difference with different privacy budgets and methods with
a fixed reduced dimension m′ = 20 . . . . . . . . . . . . . . . . . . . 175

7.4 AUC results for Naive Bayes, Random Forest and XGBoost on different
ε values (m′ = 20) with custom historgram . . . . . . . . . . . . . . . 177

7.5 Accuracy difference for Naive Bayes and XGBoost on different
dimension of data (m′) while training privately with ε = 5 or without
any privacy mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.6 Execution time for Naive Bayes Random Forest, and XGBoost on
different dimension size and LAN, WAN settings . . . . . . . . . . . 182

7.7 Summary of the differentially private data sharing methods . . . . . . 186



List of Tables

1.1 Notable privacy attacks with the help of public genomic data . . . . . 3

2.1 Mathematical Notations used in the thesis along with their description 13
2.2 Comparison of popular HE implementations . . . . . . . . . . . . . . 17
2.3 A comparative analysis of existing Homomorphic Encryption schemes

for different parameters on 32-bit number where Size is in kilobytes
and Additions, Multiplications time in milliseconds . . . . . . . . . . 18

3.1 Sample haplotype data representation where si ∈ {0, 1} are the
different positions on the same sequence . . . . . . . . . . . . . . . . 35

3.2 Horizontal and Vertical partition scheme execution time (in minutes)
to build GSTs with number of processors p = {1, 2, 4, 8, 16} . . . . . . 50

3.3 Execution time (in seconds) of bi-directional partitioning to build GST
on different datasets with number of processors p = {1, 4, 8, 16} . . . 50

3.4 Maximum Execution time (seconds) of Tree Building (TB), Add Path
(AP) and Tree Merge (TM) for D1000 . . . . . . . . . . . . . . . . . . 52

3.5 Speedup analysis on D1000 for all methods with p = {2, 4, 8, 16} . . . 53
3.6 Exact Matching, SMM and TSMM (Query 3.2.3, 3.2.5 and 3.2.6)

using GST considering different datasets and query lengths (time in
milliseconds) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.7 Secure Exact Matching (EM), SMM and TSMM (Query 3.2.3, 3.2.5
and 3.2.6) using HI considering different datasets and query lengths
(time in milliseconds). QP, GC, |q| denotes query processing time,
Garbled Circuit, and Query Length respectively. . . . . . . . . . . . 56

3.8 Related works in different privacy-preserving genomic string search . 59
3.9 Design-level comparison of previous and our method in parallel GST

construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Example genomic data containing multiple patients . . . . . . . . . . 66
4.2 Operations and their required time . . . . . . . . . . . . . . . . . . . 76
4.3 Size of different elements of the Counting Tree in the Neo4J database 76
4.4 Relationship of the execution time with query size on different scenarios 78

xii



List of Tables xiii

4.5 Comparison of related works on Secure Count Query chronologically . 81

5.1 A comparison of the execution times (sec) of TFHE [6] and our CPU,
GPU framework for 32-bit numbers . . . . . . . . . . . . . . . . . . 84

5.2 Computation time (ms) for Bootstrapping, Key Switching and Misc.
for sequential and GPU framework . . . . . . . . . . . . . . . . . . . 105

5.3 Execution time (sec) for the n-bit addition . . . . . . . . . . . . . . . 108
5.4 Execution time (sec) for vector addition . . . . . . . . . . . . . . . . 108
5.5 Multiplication execution time (sec) comparison . . . . . . . . . . . . . 110
5.6 Execution time (min) for vector multiplication . . . . . . . . . . . . . 110
5.7 Execution time (in seconds) for variable size query and target sequence

m for different distance metrics . . . . . . . . . . . . . . . . . . . . . 111
5.8 A comparative analysis of existing Homomorphic Encryption schemes

for different parameters on 32-bit number. . . . . . . . . . . . . . . . 113

6.1 A summary of the accuracy results for seven GWAS with different
privacy budgets (details on Section 6.4) . . . . . . . . . . . . . . . . . 124

6.2 Sample Data (DB) representation for GWAS . . . . . . . . . . . . . . 126
6.3 Notations used in the proposed method . . . . . . . . . . . . . . . . 128
6.4 Contingency table for SNP1 with C and A as the major and minor

allele, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.5 Privacy loss for each GWAS query on different budget classes without

any dataset partitions . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.6 Comparison between Simmons et al. [7]’s (εA = 7, εB = 5 and εC = 2)

and our method on EigenSTRAT and LMM GWAS on top-5 SNPs . 157
6.7 Local model accuracy using both Laplace and Randomized Response

methods for LD, HWE, CATT and FET . . . . . . . . . . . . . . . . 157
6.8 Benchmarking on TDT with Wang et al. [8] (εA = 7, εB = 5 and εC =

2) on top-10 SNPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.9 Average and standard deviation of the accuracy and privacy loss values

of LD, HWE, CATT and FET over 1,000 random queries and 10 iterations158
6.10 Local model accuracy using Laplacian methods for HWE, CATT and

FET from 3, 6, and 9 data owners . . . . . . . . . . . . . . . . . . . . 158

7.1 Gene Expression data collected at individual data owner (BC-TCGA) 168
7.2 Different experimental parameters considered in this work . . . . . . 174
7.3 AUC for GSE2034 and GSE25066 datasets using Naive Bayes and

Random Forest on different parameters such as reduced dimensionm′ ∈
{20, 50} and privacy budget ε ∈ {5, 10, 15}. The maximum baseline
AUC (w/o privacy) on GSE2034 and GSE25066 was 0.71 and 0.79
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

7.4 Official benchmarking results from the iDASH 2021 . . . . . . . . . . 183



Acknowledgments

I would like to express my gratitude to Almighty God for granting me the

opportunity to write this thesis.

I would like to thank my supervisor, Dr Noman Mohammed for giving me the

opportunity to work under his supervision. I am very grateful for his guidance,

suggestions, and feedback throughout the preparation of this thesis. I am thankful to

the other members of my committee, Drs. Parimala Thulasiraman and Yang Zhang

for the comment and advice they provided.

I am also grateful to all my collaborators, Drs. Xiaoqian Jiang, Shuang Wang,

Shahin Kamali, Dima Alhadidi (in no particular order) for their guidance. I am also

thankful to my colleagues Md Waliullah, Zahidul Hasan, Nazmus Sadat, Kazi Wasif

Ahmed, Tanbir Ahmed, Toufique Morshed, Monowar Anjum and Safiur Rahman

Mahdi for their valuable consults and time. I am equally grateful to all the faculties

of UofManitoba Computer Science and Bangladesh University of Engineering and

Technology who shaped my research and academic standing.

Finally, I would like to thank my wife and family for their countless sacrifices

and inspirations throughout the years.

1



Chapter 1

Introduction

1.1 Motivation

The achievements in genomics research have resulted in an abundance of human

genomic data over the past decade. Genomic data have largely impacted the health

sciences and related scientific researches extending our understanding of different

diseases and our overall well-being. Multiple areas of medical genomics are currently

realistic due to such accumulation of genomic data [9]. Throughout the world, large

and varied genomic datasets now help researchers understand the relation between

our genomic codes, our ancestry and future disease susceptibility [10, 11].

However, human genomic data are highly sensitive as it can be used to uniquely

identify ourselves from any publicly available datasets. Furthermore, it provides

critical information about the susceptibility of several genetic diseases for any

individual that is sensitive and considered private information. Also, these unique

genomic sequences impose a greater privacy risk as Table 1.1 reveals various privacy

attacks using such data. For example, one of the seminal work by Homer et al. [15]

showed the vulnerability of publicly available data and as a result, public access to any

genomic dataset was restricted. Notably, these datasets are also storage exhaustive

(varying in range of 100-200 GB [24]) and require a high-performance computation

when processed.

During the last decade, external computation services (i.e., cloud computing

2
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Table 1.1: Notable privacy attacks with the help of public genomic data

Author Year Summary

Malin and
Sweeney [12]

2000 Identifying of DNA sequence based on available health
records and disease background knowledge

Gottlib [13] 2001 Finding employees who are susceptible to genetic
diseases depending on genomic data

Lin et al. [14] 2004 Identifying a person by only 75 independent SNPs
Homer et al.
[15]

2008 Telling if a user is present in a DNA mixture

Goodrich [16] 2009 Revealing information about the full identity of an
encrypted genomic query sequence

Humbert et
al. [17]

2013 Inferring close relatives’ genomes using statistical
inference

Sweeney et al.
[18]

2013 Identify the individuals in the Personal Genome Project
(PGP) by Name

Gymrek et al.
[19]

2013 Identifying personal genomes from surnames by profiling
short tandem repeats on the Y-chromosome

Fredrikson et
al. [20]

2014 Predicting genetic markers using machine learning
models on differentially private data

Shringarpure
and
Bustamante
[21]

2015 Identifying participants from a genomic database (with
beacon services) with limited number of queries

Raisaro et al.
[22]

2016 Modifying attack on beacon services with better
adversarial knowledge

Harmanci
and Gerstein
[23]

2016 Linking phenotypes to genotypes from publicly known
genotype-phenotype correlation

solutions) became popular for large-scale storage and computations. These

commercial systems enable organizations to tap into larger on-demand infrastructure

at a lower price point. Therefore, it is a viable solution for genomic data researchers

as it reduces the hardware and software investments for their arbitrary computation

requirements based on different research studies. Despite the upfront benefits, health

care institutes are reluctant to adopt the commercial cloud infrastructure or external

servers as it mandates outsourcing sensitive data to an untrusted service provider

that might result in a security breach or privacy violation. Nevertheless, using



Introduction on Privacy-Preserving Techniques for Genomic Data 4

personal or organizational infrastructure for health-care data is not risk-free as there

has been ever-growing reports of data breach (Data breach reports [25]). Overall,

the underlying privacy concerns for outsourcing computations on genomic data is a

major hurdle in advancing our knowledge.

These genomic data privacy attack models can be classified into two major groups

[26, 27]: a) re-identification attack with background knowledge or other online data

source and b) inference about physical attributes (phenotype) or disease association.

One popular approach to mitigate these problems is to enforce strict privacy policies

on sharing data. This strategy is effective but challenging as different laws and

regulations are followed around institutions worldwide which govern the sharing and

disclosure of these sensitive data. Though these policies are protecting the privacy

of the participating individuals, they are not the final answer. For example, the time

needed by a governing body to review researchers’ applications requesting the access

of datasets is tedious, and it adversely affects timely research outcomes. This delay

often demotivates researchers to pursue specific studies. Furthermore, we cannot

foresee the future attacks on genomic data, resulting in a much more generalized

policy settings or they can fall short for a new or advanced attack strategy [15].

Privacy attacks can occur at different stages of genomic data: from data

collection, storage, computation or even result dissemination [28]. In this thesis,

we target two such attack surfaces: a) Privacy while storage and computation and b)

Privacy for the outputs (Figure 1.1). In general, we propose cryptographic solutions

to propose privacy-preserving mechanisms to supplement the existing policy-based

privacy solutions to mitigate the privacy issues in these areas. Since, cryptography

is a mature area of research, it can provide a much needed assistance protecting

the sensitivity of genomic data. Also, with seminal developments in multiple

crypto-primitives in recent years, it should positively impact towards formulating

privacy-preserving solutions tailored for genomic data. Therefore, state-of-the-art

cryptographic techniques can guarantee both privacy and utility of genomic data

which is the underlying research problem.
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1.2 Research Objectives

In this thesis, we target the privacy concerns of genomic data storage, computations

and outputs. Here, we categorize the privacy threats into two major areas:

Objective 1: Protecting data privacy on untrusted environment. The first

objective is to protect the privacy of the genomic data when data are stored

in an untrusted environment for computation. Here, we intend to investigate

cryptographic approaches to perform different statistical operations protecting

the privacy of individual records. The proposed frameworks and methods should

allow the genomic data owners such as research organizations or hospitals to

utilize external services such as low-cost cloud infrastructure for their sensitive

records and offshore their computational requirements to a third-party provider.

Thus, the objective is to protect the confidentiality of the underlying data while

performing computation. However, privacy breaches can still happen through

the computation outputs. Research Objective 2 addresses these kinds of indirect

inference attacks.

Objective 2: Privacy preserving outputs from genomic data analysis. Multiple

re-identification attacks have demonstrated that outputs (e.g., aggregate query

results) can also cause inference attacks against the underlying participants.

Over the last decade, these findings have amplified concerns over data analysis

performed on genomic data (see Table 1.1). Even with the state-of-the-

art privacy-preserving mechanisms around data storage and computations

(Research Objective 1), the outputs need to be protected. These inference

attacks against the aggregated results [21, 29] have surfaced recently, and there

is a need to propose practical solutions to address these problems. In this

thesis, we intend to answer some of these problems using differentially private

mechanisms.

In Figure 1.1, we see the first research objective (in red) where we assume that the

central server (i.e., cloud) is untrusted. This server is acting as the primary storage for
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Figure 1.1: The two objectives considered in this thesis where the data owners
outsource the underlying genomic data collected from different participants to a
centralized environment (i.e., cloud). A researcher or data analyst performs his/her
genomic queries or operations on this server in a privacy-preserving fashion.

genomic data where majority of the computations happen. The proposed solutions

in this part (Part I) will propose novel privacy preserving methods using different

cryptographic techniques that will be computationally efficient and provide a provable

security guarantee. Here, the primary objective is to protect the genomic data from

any breach which is becoming more frequent against health-care data systems [25].

It is noteworthy that several privacy-preserving techniques for genomic data storage

and computations have been proposed as they are discussed and compared in the

corresponding chapters.

On the other hand, for privacy, we consider the outputs generated from any

analysis of the genomic data to be sensitive. For example, the result from a statistical

analysis reveals the presence of an individual on a particularly sensitive dataset. Now,

privacy for individuals or certain groups in a genomic dataset can be achieved with

different techniques. We target two of such settings in this thesis, taking a look at

the problem from two completely separate angle. In the first approach, we provide

privacy over the outputs generated from any genomic data analysis (Chapter 6). The

second attempt (Chapter 7 takes a more generalized approach to protect the privacy of

the individual participants providing a holistic view of the problem while performing

federated machine learning.



Introduction on Privacy-Preserving Techniques for Genomic Data 7

1.3 Contributions

As we consider two threats, one from the computational environment and the other

one posed by the performed analysis or results, we divide the topics accordingly into

two parts. We summarize the core contributions of our research below:

• We propose several string index based on prefix and suffix trees for large-scale

genomic datasets that allows different search operations and privacy-preserving

queries (Chapters 3 and 4).

• We implemented a GPU-parallel fully homomorphic encryption framework

along with several optimizations to perform genomic search operations under

encryption (Chapter 5).

• We present two different differentially private [30] methods to protect the output

privacy from any genomic data analysis: a) Online algorithms to release private

statistics (Chapter 6) and b) Private Federated learning mechanisms (Chapter

7).

The individual contributions in these parts are described in the following section.

1.3.1 Part 1: Protecting Data Privacy

The underlying chapters in this part discuss the privacy of genomic data in an

outsourced environment and propose several indexing and cryptographic techniques

to adhere the issues:

1.3.1.1 Privacy-Preserving Indexing and String Queries using

Generalized Suffix Trees

Due to the massive size and scale of real-world genomic data, different indexing

techniques and data structures have been proposed to handle these dataset. We

investigate one such technique: Generalized Suffix Tree (GST) to execute secure

queries on genomic data. In this work, we introduce an efficient parallel generalized
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suffix tree construction algorithm that is scalable for arbitrary genomic datasets.

Our construction mechanism employs shared and distributed memory architecture

collectively while not posing any fixed, prior memory requirement as it uses external

memory (disks). We also proposed privacy-preserving techniques to further index

and outsource the genomic data into an untrusted cloud server. The experiments

on different datasets and parameters on a realistic cloud environment exhibit the

scalability of the execution time of these methods on different string queries as they

also perform better than the state-of-the-art method [31]. The results of this chapter

are published in the 7th International Conference on Algorithms for Computational

Biology, 2020 [2] and an extended version is under revision on the journal, BMC

Genomic Data.

1.3.1.2 Large-Scale Genome Data Storage and Query with Privacy-

Preserving Techniques

In this work, we propose a novel, privacy-preserving mechanism to support secure

count queries on an graph database (Neo4j) and evaluated the performance on a real-

world dataset of 735,317 Single Nucleotide Polymorphisms (SNPs). In particular, we

propose a new tree indexing method that offers constant time complexity (proportion

to the tree depth), which was the bottleneck of existing approaches. The proposed

method significantly improves the runtime of query execution compared to the existing

techniques. It takes less than one minute to execute an arbitrary count query on

a dataset of 212 GB, while the best-known algorithm takes around 7 minutes. The

results of this chapter are published in the Elsevier Computer Methods and Programs

in Biomedicine [3] (impact factor 3.8).

1.3.1.3 Genomic String Search using Parallel Fully Homomorphic

Encryption

In this work, our objective is to improve the performance of Fully Homomorphic

Encryption (FHE) schemes by designing an efficient parallel framework. We first

extended the gate operations from an existing scheme, TFHE [32], to algebraic circuits
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such as addition, multiplication, and employ Graphics Processing Units (GPU) to

parallel the cryptographic operations. Then, we applied the GPU-parallel FHE

framework into a much needed genomic data operation: String Search. Specifically, we

employed the most popular string distance metrics (hamming distance, edit distance,

set maximal matches) to capture the difference between multiple genomic sequence.

The parallel FHE framework is published in the IEEE International Symposium

on Hardware Oriented Security and Trust (HOST) 2020 [4] while the extension is

submitted to the Elsevier Journal of Information Security and Applications.

1.3.2 Part 2: Protecting Output Privacy

Parallel to Part 1.3.1, another research objective in this thesis is to ensure that no

inference attacks are possible using the output from a genomic data analysis. In this

part, we will also rely on ‘Differential Privacy’ [30] as the core technique (detailed in

Section 2.2.3) against these inference attacks.

1.3.2.1 Online Algorithm for Differentially Private Genome-Wide

Association Studies

Due to the private nature, we investigate an approach that only releases the in-

between outputs or statistics from genomic data rather than publishing the whole

dataset. The work proposes a generalized Differentially Private mechanism for

Genome-wide Association Studies (GWAS) based on private statistics. Our methods

provide a quantifiable privacy guarantee that adds noise to the intermediate outputs

but ensures satisfactory accuracy of the private results as well. Furthermore, the

proposed method offers multiple adjustable parameters that the data owners can

set based on the optimal privacy requirements. These variables are presented as

equalizers that balance between the privacy and utility of the GWAS. The method

also incorporatesOnline Bin Packing technique [33], which further bounds the privacy

loss linearly, growing according to the number of open bins and scales with the

incoming queries. Finally, we implemented and benchmarked our approach using

seven different GWAS studies to test the performance of the proposed methods.
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The experimental results demonstrate that for 1000 arbitrary online queries, our

algorithms are more than 80% accurate with reasonable privacy loss and exceed the

state-of-the-art approaches on multiple studies (i.e., EigenStrat, LMM, TDT). This

chapter is published in the ACM Transactions on Computing for Healthcare.

1.3.2.2 Differentially Private Federated Learning on Genomic Data

In this work, we propose a generalized gene expression data sharing method for

Federated Machine Learning using a differentially private mechanism. Due to the

large number of genes available, the data dimension is also reduced to accommodate

smaller privacy budgets as we utilize an exponential mechanism to create a private

histogram from numeric expression data. The output histogram can be used in

any federated machine learning setting having multiple data owners. The proposed

solution was submitted to genomic data security and privacy competition, iDash 2020

where it ranked third among 55 teams. This work is recently accepted in the Elsevier

Journal of Biomedical Informatics.

1.4 Organization

This thesis is organized as follows:

• Chapter 2 explores some of the necessary background which are utilized by the

different methods proposed in this thesis.

• Chapter 3 presents our work on parallel suffix construction and privacy-

preserving Techniques query execution.

• Chapter 4 discusses a scalable and secure graph database solution using prefix

trees for count queries.

• Chapter 5 demonstrates a GPU accelerated Fully Homomorphic Encryption

(FHE) framework and employed in secure string search operations over genomic

data.



Introduction on Privacy-Preserving Techniques for Genomic Data 11

• Chapter 6 provides online methods for differentially private Genome-Wide

Association Studies.

• Chapter 7 presents our methods on private federated learning algorithms for

gene expression profiles.

• Finally, Chapter 8 concludes the thesis discussing the potential future works.



Chapter 2

Background

In this chapter, we discuss the different entities and computational settings for

genomic data. We also discuss the threat model and security assumptions for general

architecture. Finally, 2.2 overviews the privacy-preserving techniques utilized in this

thesis.

2.1 General Architecture

In this section, we specify the possible entities and the computational architecture

along with the considered threat model. We give a brief overview of the mathematical

notations used in the thesis in Table 2.1.

2.1.1 Entities in Genomic Data Computations

In a genomics study, the collaborating parties can be categorized into four general

entities: a) end-point users or researcher layer, b) computation layer, c) data owner

layer, and d) data storage and operations layer (Figure 2.1). Often times these

entities can be merged together or generalized according to their individual objective.

For example, data owners can have their own infrastructure to store large quantities

of genomic data or their own data storage layer. Also, there are several proposals

for introducing a fully trusted entity as well. Regardless of any alteration to the

12
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Table 2.1: Mathematical Notations used in the thesis along with their description

Notation Description
Z set of integers
Bn set of n bits
N set of non-negative integers
Zq set of integers modulo q
R ring where R[X] denotes the coefficients

v or −→v vector representation
M upper-case bold letters for matrix representation

〈a,b〉 or a · b inner product of matrix a and b (a1b1 + . . .+ anbn)
v⊗w tensor (Kronecker) product of two vectors v,w, (vi, wj)i,j

Figure 2.1: Different entities involved in a genomic data computation

structure, these entities are often assigned with different trust models (i.e., malicious,

semi-honest or fully trusted).

2.1.2 Problem Architecture

Two different architecture: Centralized and Federated are present in different

literature and real-life use cases as it will mostly denote whether the genomic data

is stored in one central location or not. In this thesis, we will pursue both the

centralized and federated models for the underlying privacy problems. For example,

in Figure 2.2, all the data owners from different geographical locations submit their

data to a central server through which researchers can execute their queries. Here,
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the genomic data is shared with some degree of privacy protection as transferred to

the central server. Therefore, the server cannot leak any additional information about

the participating individuals without the secret key. This approach is more popular

as it reduces or often mitigates the individual data owners (i.e., hospitals, clinics and

research organizations) from auxiliary costs involved in managing such magnitude of

data. Also, one single entity can manage the access control compared to a distributed

credentialing system. In the federated model, the data never leave individual data

owners premises, only in-between results or statistics are shared.

Sometimes another trusted party, Crypto Service Provider (CSP) is added which

is solely responsible for generating the cryptographic keys required by the protocols.

Here, each data owner receives a key from CSP and uses it to encrypt its local result of

the query. CSP also sends the public key to the central server to perform computation

on the encrypted results accumulated from data owners. The secret key is sent to the

researchers who need it for final decryption.

2.1.3 Threat or Adversary Models

In general, the goal of this thesis is to ensure the external or third parties (i.e., central

server, CSP etc.) learn nothing about the genomic data or the individuals beyond

what is released by the final query results. Formally, in a secure computation, there

are three different threat or adversary models present in literature: a) Malicious,

b) Semi-Honest, c) Honest or Trusted. As the name suggests, the level of trust is

the least when considering malicious parties whereas honest parties are the most

trusted. Semi-Honest parties (also known as honest-but-curious) lie in the middle

which follow the underlying protocol but try to gain more information than allowed

from the computations or its in-between outputs [34].

Semi-honest adversary models which often realistic external computation or

outsourcing settings. Here, different organizations are collaborating to securely store,

share or compute on their data for scientific and social benefits. For example,

a research organization can use commercial cloud services like Amazon AWS for

storage and computation. Therefore,these service providers have no intention to act
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Figure 2.2: Centralized architecture for sharing and compute on private genomic data

maliciously due to the contract and service agreements. As a result, the data owners,

the cloud server, nor the CSP has any motivation to maliciously behave and alter the

mechanism in the hope of producing incorrect outputs.

However, the underlying computational environment (i.e., central server) can

get compromised by internal (employees) or third parties which is not uncommon at

present. Data breaches [35] often cost millions in fine [36] and damages hard-earned

reputation. We consider such compromised servers to be malicious and will try to

infer sensitive data as much as possible.

2.2 Privacy-Preserving Techniques

In this section we discuss the different cryptographic techniques we will use for secure

computations or storage of genomic data. Some of the seminal developments in this

ecology of privacy preserving techniques and genomics are shown in Figure 2.3 [27].

From the earlier sequencing techniques in 1975 to the very recent developments using

Intel SGX in 2017, the genomic data evolution and the cryptographic techniques are

presented in a chronological fashion in Figure 2.3. We use the green color and the

orange color to describe the contributions in genomic data and privacy preserving

techniques, respectively.
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Figure 2.3: Timeline of the evolution of genomic data studies and seminal
development of different privacy preserving techniques

2.2.1 Homomorphic Encryption

Homomorphic Encryption (HE) allows one party to compute arbitrary functions over

encrypted data without ever decrypting it (Figure 2.4). Though encryption and

computation in conjunction might sound contradictory, it is an active area of research

in the crypto community. Though, the scheme was defined soon after RSA in 1978

[37], it remained mostly theoretical until the breakthrough from Gentry [38] in 2009.

HE is an important privacy-preserving technique due to its ability to keep the

data under encryption at all time. For example, a genomic data owner can encrypt

the whole dataset and store it on an untrusted environment. The computations can

be performed under HE schemes and the final result is send back to the owner for

decryption. Throughout the data life-cycle, it is never kept in plaintexts (except data

owner) which protects the privacy of the participants.

2.2.1.1 Categories and Implementations

Homomorphic Encryption techniques are often categorized according to their

generalizability of computation. A Fully Homomorphic Encryption (FHE) can

compute any function any number of times given a set of encrypted inputs. This
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Table 2.2: Comparison of popular HE implementations

Feature HElib SEAL FV-NFLlib TFHE
Crypto scheme BGV [45] FV [46] FV [46] BGV [45]
Fully HE 3 7 7 3

Language C++ C++ C++ C++
Library dependency NTL & GMP 7 NFLlib Any FFT
Relinearization 3 3 3 7

Bootstrap 3 7 7 3

Fixed-point support 7 3 7 7

GPU enabled 3[47] 7 7 3[4]
Wrapper available Python C# 7 7

is the most applicable form of HE as it offers an arbitrary number of computations.

However, the current FHE schemes are computationally expensive and not applicable

in any real-life security applications.

Another important category is the SomeWhat Homomorphic Encryption

(SWHE) which guarantees that a specific circuit will evaluated and will provide the

correct results upon decryption. If the depth of the circuit (generally the number

of the multiplications) is given as a parameter, SWHE are extended to Leveled

Homomorphic Encryption. SWHE schemes are more applicable as as there are

multiple computationally efficient SWHE schemes available [39, 40]. Regardless of

the definitions, FHE, SWHE (or LHE), all supports additions and multiplications

over encrypted data. Partial HE is the primitive and third category which allows

only additions or multiplications (i.e., Paillier [41], RSA[37]).

Regardless of the recent theoretical breakthroughs for FHE, it is still inefficient

for general computation. Recent SWHE schemes are quite popular since they offer

faster execution time compared to FHE for a limited computational depth [39].

However, some recent endeavours [42, 43, 44] are making FHE schemes faster and

more applicable to a real-world problem scenario. Notably, we will utilize FHE over

other schemes since it allows arbitrary number of computations without introducing

any errors.
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Figure 2.4: Example of homomorphic operations on encrypted values

Table 2.3: A comparative analysis of existing Homomorphic Encryption schemes
for different parameters on 32-bit number where Size is in kilobytes and Additions,
Multiplications time in milliseconds

Year Homomorphism Bootstrapping Parallelism Bit security Size Add. (ms) Mult. (ms)
RSA [48] 1978 Partial × × 128 0.9 × 5
Paillier [49] 1999 Partial × × 128 0.3 4 ×
TFHE [32] 2016 Fully Exact AVX [50] 110 31.5 7044 4,89,938
HEEAN [51] 2018 Somewhat Approximate CPU 157 7,168 11.37 1,215
SEAL (BFV) [52] 2019 Somewhat × × 157 8,806 4,237 23,954
cuFHE [53] 2018 Fully Exact GPU 110 31.5 2,032 1,32,231
NuFHE [54] 2018 Fully Exact GPU 110 31.5 4,162 1,86,011
Cingulata [55] 2018 Fully Exact × 110 31.5 2,160 50,690
Our Method 2020 Fully Exact GPU 110 31.5 1,991 33,930

2.2.1.2 Current Techniques in Fully Homomorphic Encryption

The homomorphic encryption schemes can be divided into three major categories:

Partially, Somewhat, and FHE schemes. Partially Homomorphic schemes only

support one type of operation (e.g., addition or multiplication); such schemes are

not useful in performing arbitrary computations on encrypted data.

Somewhat Homomorphic Encryption (SWHE) schemes are more equipped than

partially homomorphic encryption schemes. These schemes support both addition

and multiplication operations on encrypted data, but for a limited (or pre-defined)

number of times. In addition, these schemes are relatively efficient (see Table 5.8

for comparison) and therefore are practical for certain applications. However, even

these schemes require complex parameterization and are not powerful enough for



Background on Privacy-Preserving Techniques 19

complicated applications such as deep learning.

FHE schemes support both addition and multiplication operations for an

arbitrary number of times. This property allows computing any function on the

encrypted data. Both SWHE and FHE use the Learning with Error (LWE) paradigm,

where an error is introduced with the ciphertext value to guarantee security [56].

This error grows with each operation (especially multiplication) and causes incorrect

decryption after a certain number of operations. Therefore, this error needs to be

minimized to support arbitrary computation. The process of reducing the error

is called Bootstrapping. FHE employs bootstrapping after a certain number of

operations resulting in higher computation overhead, while SWHE provides faster

execution time by limiting/pre-defining the number of operations on the encrypted

data.

The above discussion provides an intuition about the applications of different HE

schemes. That is, SWHE is better suited for the applications where the computational

depth is shallow and known (/fixed) prior to the computations [57]. However,

these schemes are not suitable for applications that require arbitrary depth like

deep learning. In order to compute complicated functions like deep learning, the

researchers have proposed alternative models that require the existence of a third

party [58, 59, 60]. The aim is to minimize the propagated error without executing the

costly bootstrapping procedure for SWHE schemes. However, such an assumption

(i.e., the existence of a trusted third party) is not always easy to fulfill. In this thesis,

we assume that the computational entities (i.e., cloud server) is often standalone,

and we show that parallel operations can be used to lower the cost of FHE instead of

relaxing the security assumptions for the computation model.

2.2.2 Garbled Circuit

A Garbled Circuit (GC) is a constant round privacy-preserving technique which allows

arbitrary function to be computed between multiple parties, hiding both their inputs

from each other. This concept was first defined by Yao [61] in 1982. An example is

shown in Figure 2.5 of a GC for a simple AND function with two secret input bits I1
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Figure 2.5: Garbled Circuit Execution

and I2. We give an example of an application of GC with ‘The Millionaire Problem’:

Example 2.2.1 (Millionaire Problem). Two individuals want to determine who is

wealthier than the other but do not want to reveal their exact net worth. They initiate

a GC protocol between them that results in a boolean value which denotes whose

wealth is greater than the other. One party generates the whole circuit (generator) for

the computation and keys whereas the other one evaluates the underlying comparison

function (evaluator).

2.2.2.1 Garbled Circuit Mechanism

In this section, we describe the details of a GC execution protocol. Suppose there are

two parties p1 and p2 with inputs i1 and i2, respectively. They want to compute some

arbitrary function f(i1, i2) and know the result, but do not want to reveal the inputs

i1 and i2. Ideally, only the output from f(i1, i2) will be public while their inputs

remain hidden from each other. Formally, the inputs to the function are boolean

along with the output as well, f : {0, 1}n → {0, 1} and i1, i2 ∈ {0, 1}n. For simplicity,

the AND gate only has two bits of input, therefore n = 1. Here, functions are often

named as Circuits (or Boolean Circuits) due to the construction solely using boolean

gates.

In a GC protocol, the parties perform special duties to evaluate f(i1, i2) to

maintain the secrecy of the inputs where one party generates the circuit f while the

other party evaluates f . Lets assume p1 is the generator who constructs the circuit
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for f(i1, i2) with boolean gates and encrypts it. Here, each value on the truth table is

encrypted with different keys (K0x, K1x, K0y, K1x) as shown in Figure 2.5. Afterwards,

p1 randomly shuffles the four encrypted values and sends them (encrypted AND circuit)

along with Ki1x to p2 for evaluation.

The evaluator p2 needs the other set of keys Ki2y where i2 ∈ {0, 1} to execute

the circuit. For example, if p2’s input i2 = 0, then it will need the key K0y from p1,

but it does not want to reveal i2 to p1. This is done using Oblivious Transfer (OT)

protocol (described next) [62]. After receiving the corresponding Ki2y’s from p1 with

OT, p2 decrypts the encrypted AND circuit with Ki1x and Kiy. Finally, p2 will send

all four decrypted value to p1 which matches whether the final output is K0z or K1z,

representing 0 and 1, respectively.

2.2.2.2 Oblivious Transfer

In plaintext, Oblivious Transfer (OT) is a protocol that allows a party p2 to pick an

element from a list of elements residing in another party p1 without p1 having no

knowledge about it. Formally,

Definition 2.2.1 (Oblivious Transfer). If p1 has a list of n elements (x0, . . . , xn−1)

where p2 wants to select the i-th element (i ∈ {0, . . . , n − 1}, an OT protocol will

only output xi to p2 while the value of i is hidden from p1.

This is known as the 1-out-of-n OT protocol as it can be reduced to 1-out-of-2

where n = 2. Though there are many different methods to achieve the aforementioned

OT definition [63, 62, 64, 65], we give a simple example based on Diffie-Hellman-

Merkle key exchange.

Suppose p1 and p2 agrees on a prime p and a base g ∈ G (primitive root modulo

p) where G is a cyclic group. p1 generates a random number a← G and sends A = ga

to p2. Based on the input i ∈ {0, 1}, p2 generates B = {gb, Agb} where b ← G and

sends it to p1.

Upon receiving B, p1 performs a hash operation (H : G → {0, 1}n) and creates

two keys k0 = H(Ba) and k1 = H((B/A)a). These keys are utilized to encrypt the

two elements x0, x1 and sent to p2. Hence, p2 receives two encrypted messages Ek0(x0)
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and Ek1(x1). Before decrypting the two ciphertexts, p2 uses the same hash function

to generate its own key ki = H(Ab). With ki, p2 will try to decrypt both Ek0(x0) and

Ek1(x1). However, only one decryption will be successful here as if i = 0 then p2 will

know x0.

Undergoing much optimizations of the original protocol throughout the years

[66], currently there are several implementations available: ObliVM [67], FastGC

[68], TinyGC [69] and EMP-Toolkit [70].

Use Case. Conventionally GC is employed on a 2-party setting where each party

have a strict requirement of not revealing their data or input to the computation.

Also, the final output should not be revealed publicly, but only to the two parties.

GC has seen real-life applications, specially on the Secure Multi-Party Computation

(SMPC) settings [71, 72, 73]. However, the major drawback of this technique is the

network communication which is proportional to the computational circuit depth. In

other words, the communication overhead increases along with the complexity of the

functions. However, this is quite realistic as communication costs are much cheaper

than storage these days.

2.2.3 Differential Privacy

Differential privacy (DP) was proposed around 2006 [30, 74] and since then it has

become a gold standard of privacy [75]. It can theoretically offer quantifiable bound

of privacy on the disclosure of data or any query result. Formally,

Definition 2.2.2 (ε-Differential Privacy). A randomized algorithm A is a

differentially private over a set of neighbouring databases DB and DB′ where DB
is different from DB′ in at most in one record (i.e., DB∆DB′ ≤ 1) and for all possible

databases D̂B,

P [A(DB = D̂B)] ≤ eεP [A(DB′ = D̂B)]

Here, ε is a privacy budget which regulates the amount of noise allowed in the output

(informally). This parameter ε > 0 is (usually) public and predefined by the data
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owner or publisher. Lower values (i.e., (0, 0.5]) of ε denotes the ratio of the probability

space of A(DB1) and A(DB2) being almost the same (ε(0, 0.5) ∼ 1) which refers

stringent privacy. Thus, larger ε values (i.e., (ln(2), ln(4)]) will loosen the privacy

guarantee (less noise) but improve the accuracy of the analysis [76].

There is an alternative definition available with an additional factor δ (Definition

2.2.3). Traditionally, the value for δ is set less than the inverse of any polynomial in

the size of the dataset |DB|.

Definition 2.2.3 ((ε,∆)-Differential Privacy). A randomized algorithm A is a

differentially private over a set of neighbouring databases DB and DB′ where DB
is different from DB′ in at most in one record (i.e., DB∆DB′ ≤ 1) and for all possible

databases D̂B,

P [A(DB = D̂B)] ≤ eεP [A(DB′ = D̂B)] + δ

Definition 2.2.3 is also known as Approximate DP as we get the same privacy

guarantee as Pure DP (Definition 2.2.2) with probability 1 − δ. However, with

probability δ, the randomized mechanism will not provide any privacy which is why

the value of δ is kept small. For example, δ in order of 1/|DB| will be critical as it will
reveal the records coming from a small number of participants. In short, δ provides

an additional factor in favor of the randomized mechanism A picking DB′ over DB.
Here, we will consider real and linear functions f : DB → Rd which narrates

a function f being executed on DB and mapping them to a set of d real numbers

R. These can be referred to as the queries we perform in the dataset which is a

fundamental operation. Thus, functions and queries are used interchangeably and

can be visualized as database operations (i.e., count, max, etc.).

2.2.3.1 Sensitivity

Sensitivity of the underlying function f is an important property in differential

privacy. It captures the effect of f on the different rows of DB = {r1, r2, . . . , rn}.
For example, every record ri is iterated for a count query to check whether it satisfies
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the query conditions, fcount(DB) =
∑n

1 cond(ri) where cond(ri) ∈ {0, 1}. Hence, l1
sensitivity can be defined as,

Definition 2.2.4 (l1-sensitivity). Sensitivity for any real valued function f : DB →
Rd is defined as,

∆f = max
DB1,DB2

||f(DB1)− f(DB2)||1

The aforementioned definition shows the sensitivity of one record in DB1,DB2

since ||DB1 − DB2||≤ 1 according to definition 2.2.2. For example, one record in a

count query can only effect fcount by 1 (absent/present); hence ∆fcount = 1. However,

for maximum (or minimum, average, median etc.) queries, the sensitivity will not be

1, since one record can change the output measurably. In a nutshell, ∆f provides the

data publisher an estimation of the upper bound on the noise to be added to protect

privacy of the data under the queries f . We can also define an l2-sensitivity with

maxDB1,DB2||f(DB1)− f(DB2)||2 which is based on the l2 distance which is less than

or equal to l1-sensitivity.

2.2.3.2 Privacy Compositions

One of the most important property of a DP algorithm is the privacy compositions.

Specifically, there are two separate composition theorem available that allows us to

bound the privacy loss or budget ε:

Definition 2.2.5 (Sequential Composition [77]). For any arbitrary dataset DB and

ε > 0, the privacy loss from any differentially private algorithm for k queries on will

be
∑k

i=1 ε.

Definition 2.2.6 (Parallel Composition [78]). For k different queries on disjoint

datasets, {DB1, . . .DBk} ∈ DB, k differentially private algorithms each with

{ε1, . . . , εk} ∈ ε will incur a total privacy loss of max(ε)).

The fundamental difference between sequential and parallel composition is the

accumulated privacy cost. For example, if we employ a ε-DP algorithm for k queries

subsequently, we will accrue kε privacy budget. In other words, the randomized

mechanism will be kε differentially private for the total k number of operations.
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However, if we can partition the dataset into k individual splits for each query and

ensure that there are not overlapping records then we can utilize parallel composition.

It is a more efficient way to manage the privacy budget ε compared to Definition 2.2.5.

For example, we can spend larger epsilon (or budgets) for queries that will positively

impact the analysis and spend less otherwise. However, partitioning the dataset can

prove to be tedious as no single individual can appear into two partitions, in which

case the privacy loss will rely on the sequential composition.

2.2.3.3 Laplace Mechanism

Laplace Mechanism (AL) depends on the Laplace distribution which has a probability

density function Lap(x|λ) =
1

2λ
exp

(
−|x|
λ

)
with variance 2λ2. Plainly, Laplace

Mechanism AL executes a function f(DB) and adds a noise from the independent

and identically distributed (i.i.d.) Laplace distributions:

f(DB)′ = f(DB) + Lap(λ), (2.1)

where, Lap(λ) simply denotes the random noise. Here, λ is computed from the

aforementioned sensitivity of the functions ∆f (∆ hereafter) and privacy budget ε as,

λ = ∆f/ε.

Theorem 2.2.1 ((ε, 0) Differential Privacy). For any numeric function f : DB → Rd,

DP algorithm AL that adds i.i.d. random noise from Lap(λ) where λ = ∆f/ε to each

f(DB) satisfies (ε, 0) differential privacy.

2.2.3.4 Exponential Mechanism

Apart from adding noise to numerical answers (Laplace Mechanism), there is another

algorithm, Exponential Mechanism [79] in differential privacy literature that has been

effectively used with lower εs to answer a query. For example, mere addition of noise

will be detrimental to applications where we operate on non-numeric outputs (i.e.,

online bidding, recommendation system etc.). Here, for a possible input, we calculate

the probability for all possible outputs o ∈ O with respect to a utility function:



Background on Privacy-Preserving Techniques 26

Theorem 2.2.2 (Exponential Mechanism). For any numeric utility function u :

(DB ×O)→ R, if a randomized mechanism A chooses an output o with probability

proportional to exp(εu(DB, o)/2∆u) satisfies (ε, 0)-differential privacy.

Here, the utility function u : (DB × O) → R assigns a real valued score to all

outputs o as higher scores represent better utility. Therefore, exponential mechanism

generates a probability distribution over O and outputs a class o with probability

proportional to exp(εu(DB, o)/2∆u). Importantly, we get an output from a finite set

whereas in Laplace (or Gaussian) mechanism acted differently.

Here, the sensitivity ∆u is calculated with maxDB,DB′,o|u(DB, o) − u(DB′, o)|.
This assures that the final output from an exponential mechanism will represent a

higher utility score compared to rest of the classes which can be useful for more

accurate analysis.

Use Case. The major motivation behind using differentially private mechanisms are

the theoretical privacy guarantee of the input and the output. Though it introduces

some inaccuracies in the final result, applications where privacy of the data is more

important might benefit from these concepts. However, as the accuracy rely on the

privacy parameters of the DP algorithm, it can be properly tuned for a specific

dataset and the underlying queries. For example, privacy issues like the Genomic

Beacon Service [22, 21], Data Dissemination [80] might benefit from a differentially

private solution. Also it can be combined with the aforementioned three cryptographic

techniques to achieve privacy over the input and output.



Part I

Protecting Data Privacy on

Untrusted Environment
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Chapter 3

Privacy-Preserving Indexing and

String Queries using Generalized

Suffix Trees

In this part, we discuss the privacy of genomic data when outsourcing the

computations into any untrusted environment. Notably, untrusted environments are

not necessarily confined to cloud or external computing services but also can be any

organizational infrastructure or personal computer with limited security. There have

been several reports of data theft and leaks with internal and external forces at play

when it comes to sensitive genomic data [36]. In this Chapter, we propose a suffix tree-

based index on genomic data and show its efficacy while executing privacy-preserving

string queries on untrusted environment.

3.1 Introduction

The scientific achievements in human genomics have advanced the understanding of

different diseases and our well-being. It has also given us concepts like genomic (or

personalized) medicine and genetic engineering which are slowly becoming a reality

that seemed impossible a decade before. We are now capable of storing thousands

of genome sequences from patients along with their medical records. Today, medical

28
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professionals utilize these large-scale data to study associations or susceptibility to

certain diseases [81].

The recruitment for different genomic research is increasing as the cost for genome

sequencing is ever-reducing through technological breakthroughs in the last few years.

This growth in genomic data has resulted in consumer products where companies

offer healthcare solutions and ancestry search based on human genomic data (e.g.,

Ancestry.com, 23AndMe.com). Interestingly, all these applications share one major

operation: String Search. Informally, the string search denotes the presence (and

locations) of an arbitrary query nucleotide sequence in a large dataset. The search

results comprise the individuals who carry the same nucleotides in the corresponding

positions. Thus, we can perceive the relation between an unknown sequence to pre-

existing sequences with such search queries.

On the other hand, the suffix tree is proven useful for searching different patterns

or arbitrary queries on genomic data [82]. However, their construction suffers from

the locality of reference, as reported in the initial work [83]. The locality of reference

denotes the memory accesses in the same locations within a short period while

building the suffix tree. Moreover, it gets severe as suffix trees perform best when the

tree (vertices and edges) completely fits in the main memory. Unfortunately, this is

quite impossible with off-the-shelf implementations and large scale genomic data.

Privacy is also one of the important aspects of genomic data as multiple attacks

have been proposed over the years [27]. Since our genomic data are unique and can

potentially reveal our presence in sensitive datasets, they are usually kept under a

curtain of regulations and stringent access control mechanisms that hinder scientific

discoveries. Therefore, privacy-preserving query execution on a genomic dataset is an

important research area that has attracted the cryptographic community in general.

Specifically, the large-scale volume and the computational complexity have made

these problems challenging as researchers want to adhere to the participant’s privacy

and also get a timely response from secure computations.

In this work, we initially construct a Generalized Suffix Tree (GST) in parallel,

then propose privacy-preserving string query techniques on such indexing. It is

important to note that building a suffix tree efficiently and in parallel is an well-
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studied area and not our primary contribution. Instead, we target GSTs which

can represent multiple genomic sequences [84]. Here, we employed two different

memory architectures for our parallel GST construction: a) distributed and b) shared

memory. In a distributed architecture, we utilized multiple machines with completely

separate main memory systems interconnected within a network. On the contrary,

these processors have several cores, which share the same main memory. These

cores are employed in our shared memory model. Furthermore, we employ a data

specific parallelism based on the fixed nucleotide set in this construction for the

shared memory architecture. Finally, our GSTs are built on the external file system

to remove the dependency for a sizeable memory requirement.

Our primary contribution is the privacy-preserving method for performing

different string queries. The proposed method relies on a hash-based scheme combined

with cryptographic primitives. With two different privacy-preserving schemes, we

demonstrate that the proposed methods provide a realistic execution time for a large

genomic dataset. We can summarize our contributions below:

• Initially, we lay the groundwork by proposing a parallel framework using the

distributed and shared memory model to construct GST for a genomic dataset.

We also utilized the external memory (or disks) since GSTs for large-scale

genomic data require notable memory size, usually not available in a single

machine.

• The primary contribution of this chapter is the privacy-preserving query

execution techniques that incorporate a tree-based structure (Reverse Merkle

Hash) that serves as a secure index to execute different string queries. We

further extend this method with a more formal cryptographic primitive named

Garbled Circuit [61].

• We test the efficiency of our GST and the privacy-preserving queries with

multiple string searches. Specially, we analyze the parallel speedup in terms

of dataset size, the number of processors, components of the hybrid memory

architecture and different indexing.
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• Experimental results show that we can achieve around 4.7 times speedup

compared to the sequential algorithm with 16 processors to construct the GST

for a dataset with 1000 sequences, where each sequence has 1000 nucleotides.

• Our privacy-preserving query mechanism also demonstrates promising results

as it only takes around 36.7 seconds to execute a set-maximal match in the

aforementioned dataset. Additionally, we compared with a the state of the

art solution utilizing Burrows Wheeler Transform [31] (under the same setting)

which takes around 160.85 seconds giving us a 4× speedup.

3.2 Preliminaries

In this section we discuss the necessary background for the work including the

underlying data, problem definitions and briefly overview the generalized suffix trees.

3.2.1 Haplotype Data

Our genomic data inside the chromosomes consist of four nucleotide values represented

by A, T, G and C. However, each location of individual chromosome mostly have two

possible values which are named as alleles and these locations are named bi-allelic.

These bi-allelic genome data can be represented as a binary sequence containing 0’s

and 1’s where 0 and 1 denotes the reference and observed allele, respectively. Multi-

allelic such as tri-allelic sites are rare (around 2% in human genome [85]) as it can

have three different alleles present at a single location.

Therefore, we consider the bi-allelic genomic data which is also called haplotype

data, where each allele (or position) on the chromosome is inherited from a single

parent. In other words, in one specific location, we can only perceive two variations for

such a dataset; therefore, we utilize a binary representation. However, our proposed

method is not limited to such binary representation and generalizable over any dataset

with a fixed character domain (Table 3.1).

Formally, a S be a haplotype sequence with m alleles such as S = s1s2 . . . sm

over a fixed size alphabet
∑
∈ {0, 1}. A substring of S is another string S : ij =
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Figure 3.1: Uncompressed Suffix Tree (Trie) construction

sisi+1 . . . sj where 1 ≤ i ≤ j ≤ m. A suffix is a specialized substring where S : i =

sisi+1 . . . sm with length m− i.

3.2.2 Generalized Suffix Tree

Suffix Trie and Tree:

Trie (from retrieval) is a data structure where each data point is placed in the vertex

of a tree. Here, the edges represent the relation of one data to the other. In our

problem scenario, each nucleotide of a sequence can be seen as the other data points

or vertices of a Trie. We can differentiate two notable categories of Trie in literature:

a) Prefix or b) Suffix. Specifically, we are interested in suffix tries in this work,

though the proposed method is generalizable towards prefix trie/tree construction as

well (§ 3.3.2).

Definition 3.2.1 (Suffix Trie [86]). a trie is a rooted tree where each node represents

a symbol from the alphabet
∑

(except root) and no two sibling (children of the same

node) share a common symbol.

Similarly, the Suffix Tries from sequence S is a rooted tree which contains all
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possible suffixes of S at its leaf nodes. Notably, the memory requirements of the such

suffix trie is significant as it needsO(m2) form characters. However, Suffix Trees are a

compressed version of their Trie counterpart as it reduces the quadratic size to a linear

one. For example, if a single vertex has only one child on a suffix trie, they are joined

and denoted as a single vertex on the Suffix Tree. In Figure 3.1, we show two suffix

tries S1 and S2 from sequences 010101 and 101010 respectively. For any sequence

S1= 010101, we consider all possible suffixes such as [1, 01, 101, 01010, 10101, 010101]

and construct the tree.

Definition 3.2.2 (Suffix Tree [87]). A Suffix Tree for an m character string S is a

Trie (Definition 3.2.1) consisting of exactly m leaf nodes. Each node (except root and

leaves) have at least two children where the edges represent a non-empty substring

of S and no two sibling can have the same starting character. Finally, the m strings

obtained from m leaf nodes should represent every suffix of S : i where i = 1, 2 . . . ,m.

The suffix tree will also represent the end of the sequence with a special end

character ($). For example, the suffix 01 (left Figure 3.1-S1) has an end character

with label S1:4 which denotes the sequence number and the start position of the

suffix. Here, a node is labeled as Sx:y s.t. x ∈ {1, n} and y ∈ {0,m − 1} for n

sequences of m length.

Generalized Suffix Tree (GST): Generalized Suffix Tree is a collection of suffix trees

(following Definition 3.2.2) constructed for multiple sequences. Here, we merge two

suffix trees S1 and S2 from Figure 3.1 and construct S12 in Figure 3.2. Fundamentally,

there are no difference in constructing GST as we need to build individual suffix tree

per sequence and merge them afterwards. Thus, the runtime for one GST construction

depends on these suffix tree construction and size. For example, the traditional

Ukkonen algorithm to build the suffix tree has a linear runtime O(m) for m length

sequences [88]. Therefore, n sequences with m characters will require O(nm) in the

worst case.
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Figure 3.2: GST from Figure 3.1 where gray and white vertices are from S1 and S2,
respectively

3.2.3 String Queries q

We considered different string queries to test privacy-preserving methods proposed

based on the GST and other cryptographic scheme (Section 3.3.3). The four queries

discussed here are connected as they are challenging, incrementally. Nevertheless,

the input to these queries will be a genomic dataset D consisting n individuals with

m nucleotides. Since we are considering n × m haplotypes, D will have {s1, . . . sn}
records where si ∈ [0, 1]m. The query can be of arbitrary length (1 ≤ |q|≤ m).

Definition 3.2.3 (Exact Match-EM). For a genomic dataset D and an arbitrary

query q, an exact match will only return the record (s) xi which observe q[0,m] =

xi[0,m] where m is the number of nucleotides available on each genomic sequence in

D.

Definition 3.2.4 (Exact Substring Match-ESM). An exact substring match will

only return the records xi which observe q[0, |q|−1] = xi[j1, j2], where q[0, |q|−1]

denotes the full query and xi[j1, j2] is a substring of the record xi given j2 ≥ j1 and

j2 − j1 = |q|−1.
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Table 3.1: Sample haplotype data representation where si ∈ {0, 1} are the different
positions on the same sequence

# SNP1 SNP2 SNP3 SNP4 SNP5 . . . SNPm

1 1 0 0 0 1 . . . 0
2 1 1 1 0 1 . . . 0
3 1 1 0 0 0 . . . 1
4 0 1 0 1 1 . . . 0

...
n 0 1 0 1 0 . . . 1

Definition 3.2.5 (Set Maximal Match-SMM). For the same inputs, a set maximal

match will return the record xi, which have the following conditions:

1. there exists some j2 > j1 such that q[j1, j2] = xi[j1, j2];

2. q[j1 − 1, j2] 6= xi[j1 − 1, j2] and q[j1, j2 + 1] 6= xi[j1, j2 + 1], and

3. for all i′ 6= i and i′ ∈ n, if there exist j′2 > j′1 s. t. q[j′1, j′2] = xi[j
′
1, j
′
2] then it

must be j′2 − j′1 < j2 − j1.

Definition 3.2.6 (Threshold Set Maximal Match-TSMM). For a predefined

threshold t, the TSMM will report all records following the constraints from SMM

(definition 3.2.5) and j2 − j1 ≥ t.

A haplotype dataset X is presented in Table 3.1 which is of size n ×m. Exact

queries (definition 3.2.3) with q = {1, 0, 0, 0, 1, . . . , 0} perfectly matches the first row

xi; hence the output set for this input q will be the first sequence in X. Now, for

another q = {1, 1, 1}, the output for Query 3.2.5 (Exact Substring Match) should

contain row 2 as q is present there as a substring. Similarly for q = {1, 1, 0, 1} and

Query 3.2.5, we will have the records {3, 4, n} as outputs since they have 110, 101, 101

substrings respectively.
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3.3 Methods

As we fist build the GST in parallel prior to the private execution of different queries,

the proposed methods are divided into two major components. However, the problem

architecture are common and summarises the methods of this work:

3.3.1 Problem Architecture

The architecture consists of three entities: a) Data Owner, b) Cloud Server and c)

Researchers as outlined in Figure 3.3. Here, the genomic dataset D|n×m| is collected

by the data owner where the researchers want to perform different queries q. The

queries are dealt by an intermediary cloud server as the data owner generates the

GST and stores it privately on the cloud. We assume that the researcher has limited

computational power compared to the data owner since s/he is only interested in a

minuscule portion of D. Also, researcher have no interaction with the data owner

as all query operations are handled by the cloud server. In summary, the proposed

method presented in this article has two steps: a) constructing the GST in parallel,

and b) executing q with a privacy guarantee over the data.

3.3.1.1 Parallel GST Construction

To construct the GST in parallel, firstly, the genomic data is evenly partitioned among

different computing nodes by the data owner. Here, we consider two types of memory

environment: distributed and shared. In the distributed memory, the machines are

connected via network as they each have mutli-core processors and fixed-size memory

(RAM). The multi-core processors on these machines collectively use the physical

memory, which is called as shared memory. Hence, we have |p| computing nodes that

construct our desired GST jointly.

Our memory dispersion tackles one of the significant disadvantages of the GST

construction: the sizeable memory requirement for longer sequences. For example, a

thousand length sequence can create atleast thousand vertices, and n sequences can

lead to an order of nm. Thus, for an arbitrary genomic dataset, it often outruns the
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Figure 3.3: Computational architecture where data owner has the dataset D while a
researcher submits query q

memory. Hence, this motivates us to construct our targeted GST in a distributed

memory setting.

This leads to our proposed design, where we distribute the data (partition)

and build the suffix tree separately in different computing nodes. These nodes can

construct each sub-tree, which is later shared with the other nodes. These shared

sub-trees are then merged, and the final tree includes all suffix sub-trees combining

the outputs from all computing nodes (§ 3.3.2.4). The multiple processors in each

node will also use a shared memory model while constructing and merging their

individual GST in parallel (§ 3.3.2.2 and 3.3.2.3). Therefore our three design goals

can be summarized as follows:

1. Partition the dataset for different nodes in a distributed memory architecture

where individual computing nodes receive a part of the data and only constructs

a sub-tree of the final GST (Inter-node Parallelism)

2. As these nodes are equipped with multiple cores, and they will build the

individual GSTs in parallel using shared memory architecture (Intra-node

Parallelism)

3. Use external memory to store and share the resulting GSTs to reduce the

sizeable main memory requirement
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Figure 3.4: Vertical partitioning with path graphs (%1,%2) merging

3.3.1.2 Private Storage and Queries

After constructing the GST in parallel in a private cluster, the resulting GST is stored

in a third party cloud server. The utility of a commercial cloud service is motivated

by its low cost and higher storage requirement from GST. Furthermore, cloud service

provides a scalable and cost-effective alternative to the procurement and management

of required infrastructure costs, which will primarily handle queries on genomic data.

As shown in Figure 3.3, the researchers only interact with the cloud server, which

contains the parallel constructed GST.

However, using a third-party vendor for storing and computing sensitive data is

often not permissible as there have been reports of privacy attacks and several data

leaks [27]. Therefore, we intend to store the genomic data on these cloud servers

with some privacy guarantee and execute corresponding string queries alongside.

Specifically, our privacy-preserving mechanisms will conceal the data from the cloud
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server; in case of a data breach, the outsourced genomic data cannot be traced back

to the original participants. Further details on the threat model are available in

§ 3.3.3.4.

3.3.2 Parallel GST Construction

We propose multiple techniques to construct the GST in parallel. These approaches

fundamentally differ in partitioning and agglomeration according to the PCAM

(Partitioning, Communication, Agglomeration and Mapping) model [89]:

3.3.2.1 Data Partitioning:

We utilize different data partitioning scheme based on the memory locality,

availability and the number of computing nodes:

Horizontal partitioning groups a number of sequences for the existing computing

nodes. Each node will receive one such group and construct the corresponding GST

afterwards. For example, if we have n = 100 sequences and p = 4 nodes, then we will

split the data into 4 groups where each group will contain |ni|= 25 records or genomic

sequences. Each node, pi will build their GST on |ni| sequences ofm length in parallel

without any communication. Figure 3.1 depicts a simple case of this partition scheme

for n = p = 2.

Vertical partitioning divides the data across the columns and distributes it following

the aforementioned mechanism. However, this scheme will have some additional

implications while merging the resulting sub-trees (§ 3.3.2.2). For example, if we

have genomic data of length m = 100 and p = 4, we will have n×mi partitions where

each dataset will have |mi|= 25 columns.

Bi-directional data partitioning combines both the horizontal and vertical approach

as it divides the data into both directions. Notably, it can only operate for p ≥ 4

cases. Given n = 100, m = 100 and p = 4, each node will receive a ni×mi = 50× 50

sized data for their computations.
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Figure 3.5: Example of Bi-Directional partitioning scheme

3.3.2.2 Distributed Memory:

We use several machines (or nodes) to build the final GST in parallel (Inter -node

Parallelism), each with their individual global memory and connected via network.

After receiving the partitioned data, these computing nodes are required to build

their own GSTs. For example, if there are p0, . . . , p|p| nodes then we will have

GST0, . . . , GST|p| trees. Regardless of the partitioning mechanism, we use the same

linear time method to construct the suffix trees using Ukkonen’s algorithm [88]. After

these individual nodes build their GSTs, they need to share them for the merging

operation described next.

Definition 3.3.1 (Merge Generalized Suffix Trees). Given two suffix trees T1 and T2

from two sequences S1 and S2 with m length, the leaf nodes of the merged tree T12

will contain all possible suffixes of S1 : i and S2 : i s. t. i ∈ [1,m].

In Figure 3.1, we see a horizontally partitioned GST construction. Here, two

suffix trees are merged where the grey and white colored nodes belonged to different

trees. Notably, the merge operation did not duplicate any node at a particular depth.

For example, if there was already a node with the value 0 is present, then it will not
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create another node and simply merge onto its branches. This condition is applied to

all merge operations to avoid duplicate branches.

However, for vertical and bi-directional partitioning, the merging requires an

additional step for datasets where mi < m. We illustrate this in Figure 3.4 where n =

2, p = 2,m = 6 and we are creating GST for the sequences S1,S2= {010101, 101010}.
Here, p1 operates on {010, 101} partitions whereas p2 generates the tree for {101, 010}.
Here, the GST from p1 needs to have different end characters compared to p2 as each

end points in a suffix tree needs to represent that the suffix has ended there. However,

since we are splitting the data on columns, it needs to address the missing suffices.

Therefore, we perform a simple merge for all cases with mi < m as we add the

Path Graphs with m −mi characters on the resulting GST. For example, in Figure

3.4, we add the path graph of 101 (represented as %1) in all end characters of S1 in

p1 (after 010). Similarly, we need to add 010 for S2 represented as %2. During this

merge, we also do not create any duplicate nodes. The addition of these paths will

require the merge operation described next.

3.3.2.3 Shared Memory:

In the distributed memory environment, the individual machines get a partition of the

genomic data to build the corresponding GSTs. However, these machines or nodes also

have multiple cores available in their processor which share the fixed global memory.

Therefore, we also employ these cores to build and merge the GSTs in parallel.

We utilize the fixed alphabet size property of genomic data in our shared memory

model (Intra-node Parallelism). Since there can be only fixed number of children from

the root, we can use the separate cores to process the GSTs. For example, the first core

(or process) can handle the 0 leading suffixes whereas another core operates on 1’s. In

Figure 3.1, two processes p1 and p2 will generate the suffix tree of {01, 0101, 010101}
and {1, 101, 10101} respectively. The output will be two suffix trees, one from each

process which is joined to the root for the final tree.

It is noteworthy that the GSTs on the partitions can also be build with this

shared environment. Here, we will partition the data into the cores and they will
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build, merge the GST in parallel. However, the number of cores and memory is

limited which will restrict the construction for large datasets.

3.3.2.4 Merging GSTs:

As mentioned earlier, the merge operation takes two different GSTs and adds all

their vertices. Hence, all |p| GSTs are merged into the final GST where GST =

GST0 + . . . + GST|p|. Here, we employed the shared memory parallelism as the

children of the root (0/1) are totally separate and do not have any common edges.

In other words, we can treat the root’s 0 branch separately from child 1. This allows

us to perform the merge operation in parallel and utilize the Intra-node parallelism

in each computing nodes.

Notably, merging one branch of a tree is a serial operation as multiple threads

cannot add or update branches simultaneously. This creates a bottleneck as we need

to perform merge operation in all GSTi’s and add the path graphs mentioned in

§ 3.3.2.2. However, we can use multiple cores for different branches as mentioned in

§ 3.3.2.3. For example, we can create two processes for handling the 0 and 1 branch

from the root. This can be extended for the suffixes starting with 00, 01, 10, 11 as well.

Notably, this parallel operation can be followed for any dataset with fixed character

set.

The full merge operation is depicted in Figure 3.5 where we perform the bi-

directional partition and merge accordingly. Inherently, the bidirectional strategy

employs both vertical and horizontal merging strategies as the end columns do not

include the m−mi characters.

3.3.2.5 Communication and Mapping:

We use a sequential distribution of work where incremental computing nodes

receive contiguous segments of the data. For example, with horizontal and vertical

partitioning, each node pi will receive dn/pc×m and n×dm/pc records, respectively.
As pi constructs its GSTi, it stores it in the file system for further processing.

Upon completion, all GSTs are sent via network to the nearest processor based on
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Figure 3.6: Reverse Merkle Hash for Suffix Tree on S1 = 010101 where we hash the
value of each node in a top-down fashion

latency. For example, in Figure 3.5, P3 and P4 will send their GST to P1 and P2

respectively and P1, P2 will merge these trees in parallel. We utilize external memory

as the suffix tree are arbitrarily large for a genomic dataset and can overflow the main

memory of a single computing node.

3.3.3 Privacy Preserving Query Execution

In this section, we discuss the mechanisms that allow privacy preserving queries on

suffix trees.

3.3.3.1 Merkle Tree

Merkle tree is a hash-based data structure which is often used as a data compression

technique [90]. Here, the data are represented as leaf nodes of a binary tree and

they are hashed together in a bottom-up fashion. The individual node values

are determined from its children as they are concatenated and hashed with any

cryptographic hash function (i.e., MD5, SHA-2 etc.). For example, the parent

A of leaf nodes with value 0 and 1 will denote A = Hash(Hash(0)||Hash(1)).

Similarly, if its sibling is denoted by B and then their parent will have C =

Hash(Hash(A)||Hash(B)) (|| is a concatenation).
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3.3.3.2 Reverse Merkle Tree

In this work, we utilize a reverse of the Merkle Tree hash where the data is hashed

in a top-down fashion. For example, a child node will have the hash value A =

Hash(P ||Hash(0)) where 0 and P is the hash value of the node and its parent,

respectively. The sibling will have B = Hash(P ||Hash(1)), analogously as shown in

Figure 3.6(b). We initialize the root’s hash value with a random value (SALT) for

additional security which is mentioned in § 3.3.3.

Here, as the GST is constructed in parallel, we hash the content of the individual

nodes alongside the SNP values. The hash values are passed down to the children

nodes and added with their hashed SNP value. In Figure 3.6, we show the example

of a reverse hash tree for the sequence S1 = 010101. Here, in each node, we take

the hash of the parent node and add it to the hash of that node’s value. Notably,

in Figure 3.6, we write H(AB) to replace H(H(A)||H(B)) in short. The leaf nodes

will also have the position of the suffix appended together with the nucleotide value

(represented as $ in Figure 3.6(b)).

The rational behind using the reverse Merkle tree is to represent the suffixes

using the hash values for faster matching. Here, the hash values on the leaf nodes

represent the corresponding suffixes of that edge in the GST. For example, the longest

path in Figure 3.6 will represent S1 : 0 and contains the hash for suffix 010101. We

also keep the position of the suffix alongside the hash values. These leaf hash values

are kept separately for incoming queries which accelerate the search process as we

describe it in § 3.3.3.

3.3.3.3 Cryptographic Hash Function

The cryptographic function employed to hash the values in each node is quite

important. As there are multiple hash functions available (i.e., MD5, SHA-1, etc.),

they ultimately serve a similar purpose. These functions provide a deterministic, one-

way method to retrieve a fixed bit size representation of the data. Therefore, it can

also be considered as a compression technique that reduces the genomic data size in

this problem.



Privacy-Preserving Indexing and String Queries 45

We utilized MD5 as an example function throughout the work as it was executed

on every node as described in § 3.3.3.2. Here, it is important to consider the size

of the hashed values as MD5 provides a fixed 128-bits output. Using another hash

function with better collision avoidance or more security (i.e., SHA-1) may result in

longer (256 bits) hash values, which will increase the execution time linearly in order

of the bit size. Nevertheless, MD5 is given as an example that can be replaced with

any cryptographic hash function.

3.3.3.4 Privacy Model

The first goal here is to ensure that the privacy of the data (or GST) in an untrusted

cloud environment. Therefore, we expect the cloud to learn nothing about the

genomic sequences beyond the results or patterns that are revealed from the GST

traversal. Note that the proposed method do not guarantee the privacy derived from

the query results as it might be possible for the researchers to infer private information

of an individual using the query results. The proposed secure techniques do not defend

the genomic data against such privacy attacks, where researchers may act maliciously.

Nevertheless, we discuss some preventive measures in § 3.4.4.

However, the privacy model is different for the cloud service provider (CS) as

we adopt the semi-honest adversary model [66]. We assume that CS will follow the

implicit protocols but may attempt to retrieve additional information about the data

from the underlying computations (i.e., logs). This is a common security definition,

and it is realistic in a commercial cloud setting since any cloud service providers

comply with the user agreement and cannot use/publish the stored data without

lawful intervention.

In addition, the system has the following properties: a) the CS does not collude

with any third party or researchers to learn further information, b) in case of an

unwanted data breach in the cloud service, the stored GST (or genomic data) does

not reveal the original genomic sequences, and c) Researchers are assumed honest as

they do not collude with other parties to breach the data.
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3.3.3.5 Privacy-Preserving Outsourcing

As the GST is constructed in parallel in a private cluster, the resulting suffix tree is

stored (or outsourced) in a commercial cloud server (CS). The researchers will present

their queries to this CS, and CS will search on the GST for the corresponding queries.

For example, if we consider the four queries from § 3.2.3, each will warrant a different

level of search throughout the GST.

Since we intend to ensure the privacy of the genomic data in an untrusted

environment, we remove the plaintext nucleotide values from the GST. While storing

the GST in CS (from the private cluster), we only consider the hashed values after

following the Reverse Merkle Tree method, as mentioned in § 3.3.3.2. For example,

the hash tree in Figure 3.6 (b) is only stored on the CS which points to the leaf nodes

(sequence number and suffix position) of the GST and do not contain any data.

Since a genomic dataset will only have limited input characters (A, T, G, C),

hashing them individually will always produce the same output. As a result, CS (or

any third party) can infer the hashed genomic sequences. Therefore, to protect the

privacy of the data, we utilize two methods: a) A random byte array is added to the

root of the GST, kept hidden from the CS, and b) the final hash values are encrypted

with Advanced Encryption Standard (AES) in the block cipher mode (AES-CBC)

prior to storage.

As the one-way public hash function reveals the genomic sequence with a limited

alphabet size, we need to randomize the hash values so that CS cannot infer additional

information. This inference is avoided with a standard random byte array, namely

SALT. Here, the root of the GST (Figure 3.6 (a)) contains this SALT byte array which

is no revealed to CS. As this SALT array of the root node is appended to its children

nodes, it will cascadingly alter all the hash values downstream.

For example, while generating Figure 3.6 (b) from (a), the left and right child

of root S1 will contain the value H(SALT ||H(0)) and H(SALT ||H(1)), respectively.

The random SALT byte has the same length as of the hash function output (128

random bits for MD5). Since CS does not know these SALT bits, it will be challenging

to guess an arbitrarily long genomic dataset since the hashing is also done repeatedly.
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Algorithm 1: Encrypted Reverse Merkle Tree (RMT)
Input: rootNode, SALT bytes, secret key
Output: encrypted nodes using AES-CBC and reverse merkle hashing

2 Procedure ReverseMerkleTree(node, previousValue)
3 node.val ← Hash(randomBytes||node.val)
4 foreach child of node do
5 ReverseMerkleTree (child, node.val)
6 end
7 encryptedNode← AES − CBC(node, key)
8 return encryptedNode
9 ReverseMerkleTree (root, SALT)

The SALT bytes are also sent to the researcher as it is required to construct the query

as well.

These individual hash values are also encrypted with AES-CBC with 128 bit keys.

This AES mode requires an random Initialization Vector (IV) which is also shared

with the researcher but kept hidden from CS. This encryption is done to provide an

additional layer of security if the server ever gets compromised as it should prevent any

data leakage. The procedure to get the Encrypted Reverse Merkle tree is described

in Algorithm 1.

Therefore, according to our privacy model in § 3.3.3.4, the Reverse Merkle Tree

containing the encrypted hash values of the original dataset is safe to transfer over to

a semi-honest party. As we also assume the CS to be honest-but-curious, it will follow

the assigned protocols and will not attempt any brute force attacks on the hashed

values. However, under any data breach, the proposed encrypted tree will suffer the

same limitations of symmetric encryption.Notably, some of them can be avoided by

using asymmetric encryption or separate secret keys for different heights or depth of

the GST which will strengthen the security; we discuss this in § 3.4.4.

3.3.3.6 Privacy-Preserving Query Execution

The four queries mentioned in § 3.2.3 will be executed using the AES-CBC encryption

and Reverse Merkle Tree-based hash values (as outlined in § 3.3.3.2). These hash

values compress the nucleotides available on each edge to a fixed number of bits (size
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Algorithm 2: Encrypted query using RMT (EH)
Input: Query String q, SALT bytes, secret key
Output: Encrypted Query String, EH

2 hashV al← SALT foreach character of query q do
3 hashV al← Hash(hashV al||Hash(character))
4 end
5 return AES-CBC(result,key)

of the hash) and offer an advantage when searching over the whole GST.

Hash Index (HI): We created another intermediate index on these encrypted hash

values using a traditional binary tree (B-tree). Since our hash function will always

provide a fixed sized output (in bits) for each node, we can construct a B-Tree based

on the symmetrically encrypted bits. For example, MD5 will always output the same

128-bit hash for the same SALT and series of nucleotides along the Reverse Merkle

tree. Encrypting these fixed size values with AES-CBC with the same key will produce

ciphertexts which can later be utilized for searching as the researchers can come up

with the same ciphertexts given a matching query.

The output from the AES-CBC bits are kept in a binary tree having a fixed depth

of 128 (from root to leaf) as we use 128 bit encryption. Here, the leaf nodes will point

towards the hash value or the nodes appearing on the Reverse Merkle Tree. We name

this B-tree as HI as it replaces an exhaustive search operation on GST. Notably,

we incorporate the positions of the suffixes from GST into the HI using the end

character S symbol which was appended with the genomic sequences. This positional

value (i.e., S0) contained the starting index of the suffix which was necessary for all

queries with a targeted position.

We can demonstrate the efficacy of HI for the Exact Match (EM) query as

defined in Definition 3.2.3. Here, the researcher initiates the query as s/he can

have one or multiple genomic sequences to search for in the dataset D. The

researcher constructs the hash representation of the query using the secret key

and random byte array (SALT) that was employed to make the GST stored in

the CS. For example, if the query is 010101, then the query hash will be: QH =

H (H(. . .+H((H(0) +H(SALT )) +H(1)). Later, it will be encrypted with the key
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EH = E(QH , key, IV ) and sent to CS for matching. The procedure to retrieve EH is

briefed in Algorithm 2.

CS will search for this EH in the fixed size (HI) first. If the hash exists on the

B-tree, CS returns the leaf node that HI is referencing. Here, only the leaf nodes of

HI keep a reference of the Reverse Merkle Tree nodes which is sent as the final result

to the researcher (in case of a match). For a mismatch, we will not have a node on

HI for the query hash, resultingly, do not need to check GST anymore.

Lemma 3.3.1 (Runtime for Exact Match). For a hash function H with fixed output

size |H|, Exact Match (definition 3.2.3) will require a runtime in order of O(log|H|)
for any arbitrary query.

In Lemma 3.3.1 we consider the output size of the hash function for simplicity

as AES will produce the same number of bits as inputs. Nevertheless, we can extend

the method for EM (Lemma 3.3.1) to execute the rest of the queries. For example,

a substring Match can be an extension of EM where we will consider a query length,

|q| smaller than the sequence length (≤ m) and should match in the exact positions

of the dataset sequences. This is also possible employing HI which represents the

strings residing in a GST.

Similarly, for the Set Maximal Matching (SMM-definition 3.2.5), the researcher

and CS perform an iterative protocol. The researcher initially searches for the whole

query following Lemma 3.3.1 on the HI leading to the GST residing in CS with the

specific position. For a mismatch, it reduces the query length by one and iterates the

search until there is a match. The worst-case running time for such operation will

be in order of O(|q|log|H|). PVSMM (definition 3.2.6) is an extension of the same

protocol where we have a threshold constraint which further reduces the computations

(O(t log|H|) given t > |q|).

3.4 Results

Before discussing the findings, we will describe the implementation and underlying

dataset details:
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Table 3.2: Horizontal and Vertical partition scheme execution time (in minutes) to
build GSTs with number of processors p = {1, 2, 4, 8, 16}

Horizontal Partitioning

Data Serial Distributed Shared Hybrid
1 2 4 8 16 2 4 8 16 2 4 8 16

200 0.08 0.23 0.09 0.09 0.10 0.14 0.05 0.04 0.03 0.14 0.07 0.05 0.05
300 0.27 1.04 0.23 0.2 0.23 0.38 0.15 0.11 0.08 0.37 0.16 0.12 0.12
400 0.59 2.03 0.55 0.38 0.38 1.18 0.35 0.21 0.2 1.12 0.31 0.23 0.25
500 1.53 3.14 1.32 1.06 1.01 2.27 0.57 0.36 0.28 2.09 0.52 0.38 0.41
1000 14.55 16.23 8.34 6.31 6.09 17.38 5.56 3.27 2.28 17.14 4.18 3.12 3.08

Vertical Partitioning
1 2 4 8 16 2 4 8 16 2 4 8 16

200 0.08 0.19 0.08 0.05 0.03 0.16 0.07 0.04 0.02 0.14 0.05 0.03 0.02
300 0.27 0.56 0.28 0.17 0.09 0.48 0.22 0.16 0.08 0.39 0.13 0.10 0.06
400 0.59 1.41 1.05 0.36 0.16 1.44 1.01 0.34 0.19 1.21 0.32 0.21 0.13
500 1.53 3.07 1.49 1.08 0.37 3.18 1.49 1.08 0.36 2.35 0.58 0.40 0.24
1000 14.55 25.24 12.25 9.06 5.20 22.56 13.11 7.2 4.37 18.22 6.31 4.49 3.10

Table 3.3: Execution time (in seconds) of bi-directional partitioning to build GST on
different datasets with number of processors p = {1, 4, 8, 16}

Data Serial Distributed Shared Hybrid
1 4 8 16 4 8 16 4 8 16 32

200 4.8 94.2 90 87 43.8 42.6 38.4 70.8 73.2 75.6 1.51
300 16.2 121.8 107.4 106.2 72 48.6 43.2 88.8 75 75.6 1.37
400 35.4 168.6 148.2 124.8 102.6 54 57.6 114 87 96 1.36
500 91.8 231.6 151.8 154.8 145.2 76.2 62.4 146.4 103.8 105 1.36
1000 873 1135.2 428.4 291.6 856.8 202.2 154.8 635.4 312 214.2 1.36

3.4.1 Evaluation Datasets and Implementation

We evaluate our framework on uniformly distributed synthetic datasets as it allows

us to perturb the dimensions and check the performance of the underlying methods.

Hence, we generate different datasets with n,m ∈ {200, 300, 400, 500, 1000} and

name them accordingly. We agree that genomic data of n,m in millions will portray

the true benefit of our proposed parallel constructions, but due to our computational

restrictions, we limited our experiments as we were only able to access a small

computing cluster [91]. However, we argue that larger datasets will denote the same

trend in terms of execution time as we increase the parallel computational power.
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3.4.2 Performance Analysis

We analyze our proposed approach in terms of n,m, p and all three (distributed,

shared and hybrid) memory models. Here, the distributed memory model will not

incorporate any intra-node parallelism instructions as discussed in § 3.3.2.3 whereas

the hybrid method will utilize both.

The shared memory architecture distributes the work into different co-located

processors (cores) on one single node. Notably, in this model, we do not require

any communications between two processes whereas the distributed model will incur

communicating the GST s. However, the number of processors and memory available

in shared model is fixed and limited as we can add new machines in the distributed

model. Nevertheless, this comparison will denote the difference in the two memory

architecture.

In Tables 3.2 and 3.3, we show the execution time of horizontal, vertical and

bi-directional partitioning, respectively. Each method is executed on p = {2, 4, 8, 16}
processors, whereas p = 1 denotes the serial or sequential execution. The sequential

method is plaintext Ukkonen’s algorithm [88]. Furthermore, the proposed hybrid

approach uses both distributed and shared memory model with two cores on each

processor of distributed machines for the 0 and 1 branches of GSTs. All experiments

are conducted on the mercury cluster at UofManitoba Computer Science (www.cs.

umanitoba.ca/computing).

In Table 3.2, The GST building time for smaller datasets (n,m ≤ 200) are

almost same for all settings. However, as the dataset size increases, the difference in

execution time starts to diverge. For example, the sequential execution of D200 takes

0.08 minutes whereas D1000 requires 14.55 mins. The same operation takes 3.08 mins

on the hybrid approach with p = 16. Similarly, the distributed model takes 6.09 mins,

which shows the impact of intra-node parallelism.

However, one interesting outcome is the shared model’s performance. It takes the

minimum time of 2.28 mins with p = 16 which is the lowest in all three experimental

settings. However, it is noteworthy that it ran out of memory for datasets n,m >

1000. This depicts the necessity of the distributed or hybrid model as a shared

www.cs.umanitoba.ca/computing
www.cs.umanitoba.ca/computing
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Table 3.4: Maximum Execution time (seconds) of Tree Building (TB), Add Path
(AP) and Tree Merge (TM) for D1000

Horizontal Vertical Bi-directional
p TB AP TM TB AP TM TB AP TM
4 113.35 - 70.02 292.97 2.7 66.8 4.01 0.37 3.85
8 47.38 - 85.4 138.87 2.9 61.1 0.62 0.16 1.8
16 15.6 - 98 64.4 3.2 57.6 0.12 0.07 1.2

memory model is more suitable for datasets which only fits the main memory.

Table 3.2 also shows the impact of vertical partitioning where we need to add

the path graphs. This addition is the only difference from the horizontal approach

as all the nodes working on data mi < m, needs to merge m −mi characters to the

underlying GSTs. For example, with vertical method it takes 25.24 mins to process

D1000 whereas it took only 16.23 on horizontal approach. The rest of the execution

time also follows the same trend as more processor leads to faster executions overall.

The performance gain with shared model compared to hybrid is also lost due to the

thread synchronization as the threads operate on mi < m requires more time for

sequential path graph addition.

In Table 3.3, we show our best results where the data is partitioned into both

directions. Here, the tree building cost is reduced compared to the prior two

approaches as it resulted in smaller sub-trees. For example, with n = m = 100

and p = 4, each processor pi will work on 25× 25 sized matrix whereas it will lead to

25× 100 and 100× 25 partitions for horizontal and vertical, respectively.

Table 3.4 demonstrates the granular execution time for tree building, path graph

addition and the merge operation. We took the maximum time from each run as these

functions were executed in parallel. Notably, these values are the building blocks for

Table 3.2 and 3.3. For example, the tree building time decreases with the increment

of processors p. Furthermore, the bi-directional tree build cost decrements with the

increment in processors as it divides the data by half.

In Table 3.5 we summarize the speedup (= Tpar/Tseq) results for D1000. Here,

the shared model performs well compared to distributed model due to its zero

communication cost. Notably, the distributed one is competitive for all p > 2 cases.
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Table 3.5: Speedup analysis on D1000 for all methods with p = {2, 4, 8, 16}

Method Distributed Shared Hybrid
4 8 16 4 8 16 4 8 16

Horizontal 1.19 1.61 2.80 1.11 2.02 3.33 2.31 3.24 4.69
Vertical 1.74 2.31 2.39 2.62 4.45 6.38 3.48 4.66 4.72

Bi-directional 0.77 2.04 2.99 1.02 4.32 5.64 1.37 2.80 4.08

Nevertheless, the shared model could not finish the D10,000 as it ran out of the shared

memory. On the contrary, both distributed and our hybrid model constructed the

targeted GST as it did not depend on the limited, fixed main memory of one machine.

One of the limitations of the proposed framework is the size of the resulting

suffix tree. Since the node contents are hashed and encrypted, it also increases

the memory requirements as we utilized file-based memory to handle queries. For

example, for a dataset of {500 × 500, 1000 × 1000, 2000 × 2000, 5000 × 5000} takes

around {109, 433, 1754, 11356} megabytes of storage space. Notably, this storage

accounts for the hashed tree and the AES-CBC encrypted node values on the Merkle

tree. Furthermore, we opted to experiment with a relational database (MySQL) to

save the encrypted tree, which is detailed in our code repository [92].

3.4.3 Query Execution

3.4.3.1 Experimental Setup

In this section, we analyze and discuss the execution time of the four queries in private

and non-private settings as defined in § 3.2.3. We utilized an Amazon EC2 cloud

server (specification g4dn.xlarge) as the CS while the researcher was in Winnipeg,

Canada. The average network latency between the CS and the researcher was around

49ms. The key components of the result analysis are as following:

1. Execution time for all queries with worst-case inputs,

2. Effect of dataset size and query length

3. The impact of GST and HI, and
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4. The runtime comparison between hashing and GC

We targeted the worst-case input queries as it will highlight the maximum execution

time for each type of query. For example, for exact matches (EM), we randomly

picked a query sequence from the dataset. As any mismatch on the HI will forcefully

reduce the computations, we chose to pick available sequences for Query 3.2.3. For

SMM and TSMM Queries (3.2.5 and 3.2.6), we preferred a random query sequence

which was not present in the dataset. As for a mismatch, SMM (and TSMM) will

redo the search altering the query sequence. This will show the maximum execution

time required. Alternatively, if we picked a sequence from the dataset (similar to

EM), it was not necessary to traverse the HI and it will output the same execution

time as EM.

Therefore, our targeted four queries can be reduced to EM. For example, we

do not discuss the exact substring matches in this section as it took the same time

as the EM. We also limit the execution time for two datasets D1000 and D500 as

the data size will increase the size of the GST but not HI. Therefore, we examine

the scalability issues with different query lengths |q|∈ {300, 400, 500} and (n,m) ∈
{(1000, 1000), (500, 500)}.

3.4.3.2 Execution Time for GST (w/o privacy)

Initially, we analyze the execution time of the targeted queries on plaintexts without

any privacy guarantee in Table 3.6. Here, we only execute the queries on the

generalized suffix tree (GST) as they are outsourced on CS and simulate the researcher

on the same server to avoid the random network latency. The execution time from

the Table 3.6 clearly shows that longer query sequences (i.e., |q|= 500) require more

time than smaller queries. As we are searching on the suffix tree, our GST indexing

presents a runtime linear to the order of the query length of |q|. Notably, GST allowed

us to remove the runtime dependency with the number of sequences or nucleotide (n

or m) which is often higher for genomic datasets.

One interesting observation here is the scalability property of GST on different

sized datasets. As we considered two different datasets D1000 and D500 with
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Table 3.6: Exact Matching, SMM and TSMM (Query 3.2.3, 3.2.5 and 3.2.6) using
GST considering different datasets and query lengths (time in milliseconds)

Query
Length |q|

D1000 D500

EM SMM TSMM EM SMM TSMM
300 0.5 140 94 0.3 80 70
400 0.5 140 150 .4 130 120
500 0.6 210 220 0.5 190 180
1000 1.1 680 720 - - -

n,m = {1000, 500}, it seems that the runtime does not increase significantly. Ideally,

traversing the GSTs from D1000 or D500 for a query should not be different but the

increased number of nodes on memory adversely affects the query execution.

3.4.3.3 Execution Time for HI (with privacy)

Since the query length |q| can also be arbitrarily large, we reduce its impact on

execution time by employing HI. This index HI, built on the GST allows us only

to search up to the hash output length |H| rather than |q|. We see its effect in Table

3.7, as for different |q|’s, the execution time for EM did not increase which was the

opposite for plaintext GST as shown in Table 3.6.

Since we considered the worst-case inputs (non-matching query sequences) for

SMM and PVMM, both types of queries required more matching requests on the

cloud server. These iterative query executions increased the runtime incrementally.

The effect of the dataset size is also analogous with our earlier argument as the time

vary slightly for different sized datasets. We do not show the results for SMM over

the garbled circuit as they required over an hour each on the worst-case inputs.

We also benchmark with recent work from Shimizu et al. [31] which utilized

positional Burrows-Wheeler Transformation with Oblivious Transfer (OT-secure

protocol) for input privacy. From the results in Table 3.6, it is evident that our

Merkle hash along with HI provides a 4× speedup compared to the earlier work as it

takes 160.85 seconds to execute a set maximal match on D1000 (our method required

36.76s). However, since this benchmarking method only used OT rather than more

expensive GC operations, it was faster than the GC protocol.
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Table 3.7: Secure Exact Matching (EM), SMM and TSMM (Query 3.2.3, 3.2.5
and 3.2.6) using HI considering different datasets and query lengths (time in
milliseconds). QP, GC, |q| denotes query processing time, Garbled Circuit, and Query
Length respectively.

|q|
Reverse Merkle Hash with HI GC Shimizu et al. [31]
D1000 D500 D1000 D500 D1000 D500

QP EM SMM PVSMM EM SMM PVSMM EM EM SMM SMM
300 0.79 41.4 11599 2862 37.1 11100 2761 63246 63583 50358 43163
400 0.84 43.9 15337 3901 36.9 15385 3760 63194 62639 64867 55609
500 0.9 42.7 18563 4836 37.2 18477 4875 63439 62048 70754 67965
1000 1.58 45.2 36761 9368 - - - 63391 - 160854

3.4.4 Limitations and Discussions

Parallel construction of GST: GST provides an efficient index to the genomic data

which can be utilized in different search queries, fundamental to the utility of the

data. However, the best sequential algorithm is linear to the sequence length which

can prove to be significant for a large dataset with longer genomic sequences n,m.

Therefore, constructing such an expensive tree-based data structure is handled by

the proposed parallel mechanism, which is required to be executed only once while

pre-processing any dataset.

Storage complexity of GST: On the other hand, we use a file-based GST due to the

limited main memory in comparison to the cheaper disk-memory. This also warrants

the usability of cloud servers, which offers less-expensive storage solutions. Here, GST

levies an expensive storage cost as the number of suffixes increases linearly in order

of the length of the sequence (m). For example, a genomic sequence of length m has

m + 1 suffixes which increases for larger n,m. Resultingly, we incorporate another

fixed-size index HI on GST, which acts as the principal component while searching

and can fit into the main memory.

Privacy guarantee from encrypted hash value: The privacy of the data relies on

the symmetric AES cryptosystem along with the random SALT bytes kept on the

root node of Reverse Merkle Hashing. We did not use any asymmetric public-key

encryption scheme due to the resulting ciphertext size expansion. Nevertheless, the

recently improved homomorphic encryption schemes might be beneficial in this task
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and provide additional security guarantee [38, 93]. This is an interesting future work.

Output privacy: To protect the data against researchers with malicious intent, we

can perturb the outputs from CS with some privacy guarantee. This can be done

by adding noise to the query results, and these techniques have been studied in the

literature (i.e., anonymization [94], differential privacy [27]). However, we did not opt

for these strategies as they will thwart the exact results from any query and validity

is quintessential in any scientific research. The popular model in genomic research

also assumes the researchers to be honest as they adhere and understands the privacy

requirements of genomic data.

3.5 Related Works

Since we target two different research area concerning genomic data, we discuss the

related works separately below:

3.5.1 Privacy-preserving String Search

There are different types of string search functions targeted on genomic data using

different cryptographic protocols. Table 3.8 summarizes some of the the existing

approaches for privacy-preserving searches where we show the high-level difference

among them.

Apart from these cryptographic computation approaches, there has been several

works on publishing genomic data with theoretical privacy guarantee. Chen et al. [95]

proposed a differentially private [30] mechanism to publish n-grams with variable-

lengths. These n-grams can be used for count queries or mining string patterns.

However, due to the Laplace noise utilized, the outputs will have inaccuracies which

we do not have in this work.

Secure exact string search has been a popular since the realization of the privacy

aspects of human genomic data. In 2003, Atallah et al. [96] proposed a dynamic

programming algorithm to compare two sequences using homomorphic encryption.

Other contemporary approaches utilized finite automata with Recursive Oblivious
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Transfer (ROT) to solve the DNA searching problem [97]. Troncoso et al. [98]

proposed a similar approach for approximate string matching requiring (amortized)

linear time. Sudo et al. [99] presented a unique algorithm employing secure wavelet

matrix and additive homomorphic encryption to search for substrings in logarithmic

time. Using Garbled Circuits (GC) and tree-based index, Mahdi et al. [100, 101]

proposed count queries on genomic data which relied on exact string matching. In

this work, we avoid the expensive GC protocols with Reverse Merkle Hashing.

Secure exact substring search targeting a specific position is a related but a different

problem where the SNP position plays an important part. In this chapter, we

proposed a secure model to find a match between query and dataset sequences,

where a starting position can be specified. In 2016, Ishimaki et al. [102] addressed

this problem with a look-up table constructed from positional Burrows-Wheeler

transform (PBWT) and utilized Fully Homomorphic Encryption (computation under

encryption).

Set-maximal match is another important problem that is employed in genealogy

queries popular in ancestry searching. Shimizu et al. [31] introduced a secure variable

length prefix or suffix matching on SNP genomic sequences. The authors utilized

Positional Burrows Wheeler Transform (PBWT) as proposed by Durbin et al. [103]

for preprocessing the raw genomic data (alternatively, we employed the GSTs).

To ensure the privacy, we utilized the reverse Merkle hash with random SALT,

whereas the authors used the Recursive Oblivious Transfer (ROT) with additive

homomorphic encryption. Yamada et al. [104] utilized a fully (and somewhat)

homomorphic encryption schemes to formulate a string search framework. However,

the query lengths were only selected from [5, 25] taking a maximum of 80 seconds. In

comparison, our method only takes around 40 seconds for a query size of 1000.

In iDASH 2019 competition [105], there was a separate track for secure set-

maximal matching due to its popularity on ancestry applications. The winning

solution was proposed by Sotiraki et al. [106] using Goldreich-Micali-Wigderson

(GMW) protocol [107]. Here, the problem required two parties (data owner and

researcher) and needed a private evaluation of XOR, AND and NOT operation

between them. In comparison, here, we propose a secure mechanism to outsource
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Table 3.8: Related works in different privacy-preserving genomic string search

Work Exact Substring Set-Maximal Query Pos
Atallah et al. [96] 3 3 7 7

Sudo et al. [99] 3 3 7 7

Ishimaki et al. [102] 3 3 7 3

Shimizu et al. [31] 7 7 3 3

Sotiraki et al. [106] 7 7 3 3

Our Work 3 3 3 3

genomic data to public cloud and execute similar queries. Our secure query method

is also faster as it takes around 12 seconds for a query size 300 and database size of

1000× 1000 where Sotiraki et al. takes around 60 seconds.

In 2021, Mahdi et al. proposed another privacy preserving query framework using

Suffix trees [108]. Their experimental results show that a dataset of 2184 records,

each containing 10000 SNPs, requires approximately 2 seconds for a set maximal

match. They employed the garbled circuit technique but did not hash the tree

contents. Therefore, the matching heavily relied on GC protocol whereas our proposed

framework is secure due to the encrypted data.

3.5.2 Parallel GST Construction

Suffix tree construction is a fairly mature and well-studied problem as there have been

multiple works which are shown in Table 3.9. Since Generalized Suffix Tree of a large

genomic dataset does not fit a sizeable memory, there have been attempts to construct

the tree in a file system [84]. These disk-based suffix trees usually store the individual

subtrees on file similar to our approach [109]. For example, Tian et al. [110] showed

a different suffix tree merging method ST-Merge using the Top-Down Disk (TDD)

Algorithm.

Wavefront [112] and its successor ERA (Elastic Range) [113] both targeted disk-

based and parallel approach to construct suffix trees. However, these works only

considered a suffix tree and distributed memory model, whereas, in this work, we

propose a hybrid method and GST. Comin and Farreras [114] proposed Parallel
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Table 3.9: Design-level comparison of previous and our method in parallel GST
construction

Work Parallelism model Disk-based GSTDistributed Shared
TDD [110] 7 7 3 7

TRELLIS [111] 7 7 3 7

Wavefront [112] 3 7 3 7

ERA [113] 3 7 3 7

PCF [114] 3 7 7 7

DGST [115] 3 7 3 3

Our Work 3 3 3 3

Continuous Flow (PCF) which efficiently distributes the lexical sorting process into

multiple processors. Analogous to this work, Shun and Belloch [116] also proposed a

parallel construction scheme utilizing cilk (shared memory) in 2014. Flick and Alura

[117] proposed another distributed in-memory suffix tree construction solving the All

Nearest Smaller Values (ANSV) problem. However, both works targeted suffix trees

whereas GST can contain a large number of sequences which is more complicated and

at the same time more useful.

There have been some Hadoop MapReduce based solutions to create suffix trees

[118]. Li et al. [119] proposed a spark implementation of ERA to construct GST

where it was parallel to the number of sequences. In a recent work in 2019, DGST

[115] offered a 3× speed up with such data-parallel platform which is better than the

state-of-the-art method ERA [113]. Nevertheless, it did not employ the shared or

hybrid model as we performed better with 4× speedup. Notably, Mišić et al. report

speedup up to 6× utilizing parallelism from Graphics Processing Units (GPUs) [120].

However, we do not use any specialized hardware and could not benchmark as their

implementations are unavailable.

In this work, we target an out-of-core GST construction using distributed

processors along with their multiple cores in parallel. We utilize a simple data

partitioning scheme to demonstrate that our methods are comparable to these

proposed methods in terms of speed-ups. Nevertheless, this parallel construction

is not the primary contribution as it served as a gateway for the privacy-preserving
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queries on genomic data.

3.6 Conclusion

In this work, we constructed GSTs for genomic data in parallel using external memory.

We also analyzed its performance using different datasets and sample string queries.

Furthermore, we proposed a novel hash-based method to outsource and execute

privacy-preserving queries on the GST structure. The proposed parallel constructions

and privacy-preserving queries can also be generalized for other data structures (e.g.,

prefix trees [3], PBWT [31]) and thus can be useful for different genomic data

computations.

Availability of materials

The evaluation source code can be found at

https://github.com/mominbuet/ParallelGST

https://github.com/mominbuet/ParallelGST


Chapter 4

Large-Scale Genome Data Storage

and Query with Privacy-Preserving

Techniques

4.1 Introduction

Seminal breakthroughs in genome sequencing have provided us with an abundance

of genomic data. The next generation sequencing techniques made this growth

somewhat exponential as we are starting to observing datasets in volume of Petabytes

[121]. This increasing availability of genome data of different individuals gives us an

opportunity to zoom into the micro level and analyze the complex correlation or

causation. However, this is increasingly challenging due to the size of the data, novel

methods, computational complexity, and inherent privacy issues.

As mentioned earlier, the immense size of genome data comes at a price of

higher storage space. An economical solution will be leveraging the cost-efficient

commercial cloud computing services (i.e., Amazon EC2, Microsoft Azure, or Google

Cloud Platform, etc.) to host data and conduct required analysis on demand. For

example, Amazon S3 and Azure Storage Services charge only $0.0208 to store 50

terabytes on a monthly base [122, 123]. More importantly, these cloud services also

reduce the operational costs of running large scale experiments on such large-scale

62
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data.

Surely the commercial cloud services can provide a cost-effective and efficient

solution to the ongoing genome data storage and computation issues. However,

the privacy of these records is another notable aspect as public (or unrestricted)

access of genome data might lead to re-identification attacks [124], surname recovery

[125], facial and voice traits reconstruction [126, 127]. Thus, genome data are highly

sensitive because they are irrevocable and have stigmatizing consequences to both the

individuals and their family, particularly first-degree relatives [128]. There are some

surveys that demonstrate and discuss these privacy and security issues [26, 27].

Due to these concerns and reported vulnerability of the public cloud [129],

data custodians are not comfortable in depositing sensitive genome data in a third-

party untrusted environment without enforcing necessary protection [130]. An ideal

approach is to develop a secure genome database, i.e., encrypting the data and

providing a security layer on top of the operations interface for safeguarding the

data analysis process. Assuming the cloud service provider is semi-honest (honest

but curious [131]), and we only want to protect the data from external malicious

users, data custodians can run queries on the encrypted data without establishing a

complete, trusted relationship.

However, this computation on encrypted data induces a cost on performance as

these security primitives are not efficient as their plaintext counterparts. Scalability is

another challenge as large memory consumption imposed by these security protocols

might hinder the practicability of a realistic system. Therefore, in this chapter, we

look into the balance between privacy and efficiency of the computation of genome

data. We consider the count query operation which is the building block for various

statistical analysis on genome data. A count query procedure to obtain the number

of individuals satisfying a SQL-like query can be represented as:

SELECT count(*) FROM Sequences
WHERE SNP1=‘A’ AND SNP2=‘T’ AND ...
AND Disease = Yes

Single Nucleotide Polymorphism (SNP) refers to a variation of a single position

on a DNA sequence (of a certain individual) such that more than 1% of the population
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does not carry the same value. Although not all SNPs correspond to disorders, some

of them are known to be associated with some diseases. A count query between SNPs

and a specific condition is the first step to explore the correlations and serves as the

building block for Genome-Wide Association Studies (GWAS).

Contributions

In this work, we propose a framework that provides better scalability and

handles security issues of large-scale computations on genome data outsourced

(transferred/stored) to a third party, public cloud server. Furthermore, we utilized

a homomorphic cryptographic combined with garbled circuit scheme to ensure the

security and tree structure to represent the arbitrary genome data for computational

efficiency. The major contributions of this work can be summarized below:

• We propose a method utilizing graph-based database to store and allow

computations on real-world genome data securely.

• A novel indexing scheme is proposed on such database to make the secure query

operations more efficient.

• We test the proposed approach along with the corresponding indexing scheme

on a large-scale genome dataset containing 736, 317 human SNPs (∼ 200GB

data).

• Experimental results show that it takes less than a minute for a query compared

to best-known attempts where it required around 7 minutes [132, 133].

The rest of the chapter are organized as follows. Necessary backgrounds are

discussed in Section 4.2. We discuss the proposed methods in Section 4.3 and show

the results in 4.4. In Section 4.6 we discuss some of the related work. Finally, we

conclude and discuss some future works in Section 4.7.
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Figure 4.1: Representation of relational and graph database

4.2 Preliminaries

In this section, we introduce some of the concepts (related to cryptography and

genome data) required in understanding the proposed method.

4.2.1 Data Representation

In this work, we consider Single Nucleotide Polymorphism (SNP) of human DNA and

its association with specific disease. For example, a mutation in BRCA1/2 genes has

been reported to be associated with Breast cancer. A variant in BRCA1, rs1799950 is

one of the 25 SNPs to express an increased risk for breast cancer [134]. We considered

a similar SNP dataset with a specific disease association. The data is represented in

Table 4.1.

4.2.2 Graph Database

Graph database uses different interconnected graph compositions to represent the

data. In contrast to relational (traditional) database, graph database considers data

points as the nodes and the relation between them as edges. This approach has

proved much useful [135, 136] in different literature and use cases as most of the



Large-Scale Genome Data Storage and Query with Privacy-Preserving Techniques 66

Table 4.1: Example genomic data containing multiple patients and corresponding
SNPs

Genomic Sequence Phenotype
Patient SNP1 SNP2 SNP3 . . . SNP5 Disease

1 A T G C Yes
2 T C C G No
3 A T C C No
4 A C C C Yes

relational data can be represented as a hierarchical data where one record is closely

related to another. Graph database consists of nodes and edges where the nodes are

interconnected with edges. Furthermore, there might be directional edges defining

the connectivity of the nodes, though for simplicity we will only consider the non-

directional edges throughout the rest of the chapter. Regardless of the directions, the

edges usually represent the relation between the nodes. In Figure 4.1 we depict the

difference between a relational and graph database.

Formally, in a graph database (compared to relational tables), there are

relationships which connect the entities. These entities can have specific properties.

The relationships commonly described by verbs, for example, a patient ‘get’ certain

conditions or a patient ‘has’ many SNPs. A relationship also has properties, for

instance, the property ‘has’ describes the detail data of SNP.

4.2.3 System Architecture Overview

We consider four different parties involved in our proposed architecture:

1. Data Owners: Data owners are the parties who sequence human genomic data.

They have the proprietary rights over the data. Due to their technical limitation

or the data aggregation requirements, they do not share the data directly.

Instead, they hand over (or outsource) the data to the certified institutions.

2. Certified Institution: The certified institution is the trusted entity who generates

and manages the cryptographic keys and responsible for the security of the
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Figure 4.2: System Architecture and secure query process

proposed solution. We assume that a government organization such as NIH can

play the role of a certified institution.

3. Cloud Service Provider: Cloud is responsible for storing and executing different

queries over the encrypted data. We assume that the cloud service provider is

a semi-honest entity and it only receives the public key. Hence, the cloud is

unable to decrypt the encrypted data or the query.

4. Researchers: Researchers gain access to the query system from the Certified

Institution. They acquire the public key to encrypt their query data and private

key to decrypt the corresponding results.

Our proposed architecture is shown in Figure 4.2. We briefly overview the major

steps of the architecture below:

• Key distribution: The certified Institution sends the public key to the Cloud

and distributes the public and private keys to authorized researchers.

• Data processing: This task is done by the certified institution (CI) prior to

sending the encrypted data to the cloud. Initially, the CI collects the data from

different data owners. Then, CI builds a count tree on the aggregated data and



Large-Scale Genome Data Storage and Query with Privacy-Preserving Techniques 68

(a) Initialize the tree with all records (b) Group individual SNPs and store the count

Figure 4.3: Building the tree from genomic sequence according to Algorithm. The
numbers under SNP values in (b) are the counts

uses the count tree to build the index. Finally, it encrypts the tree and data

before sending it to the cloud.

• Query execution: The cloud receives an encrypted query from researchers and

executes them on the encrypted index. This operation is performed by executing

a garbled circuit protocol (Section 2.2.2) between the Cloud and researcher.

Finally, the Cloud sends the encrypted query result to the researcher who

decrypt the result using the private key.

4.3 Methods

In this section, we describe the techniques applied to represent the genome data in a

graph database. Furthermore, we explain the secure execution of count query using

two cryptographic primitives (HE and GC) described in the earlier section.

4.3.1 Data Preprossessing

Initially, we consider the data to be in a raw tabular format similar to Table 4.1 and

stored in a text file. In some earlier attempts [133, 137], such row-wise data were
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preprocessed to a relational table and stored in a SQL database. In this work, we

incorporate a graph database to store such data and essentially convert the relational

tables into a tree structure. This approach is more realistic as we can model the data

into three entities: a) patients, b) conditions (diseases), and c) SNPs. Then these

entities are connected with relationships such as a specific patient has a particular

condition and several SNPs.

4.3.2 Counting Tree Construction

We generate the tree containing all the SNPs and the patients from a comma-

separated values (CSV) file (similar to Table 4.1). We outline the algorithm to import

the data to in Algorithm 3. Initially, we also sort the SNPs according to their Entropy

so that the SNPs with more diversity are considered later when constructing the tree.

Then, we generate an empty tree node and mark it as the root. Then for all SNPs

from each patient (row-wise in Table 4.1) are linked sequentially in the tree. The first

SNPs will be linked back to the root node (Figure 4.3a).

Subsequently, for each level of the tree, we group the nodes by their values

(nucleotide values ‘A/T/G/C’) and keep the unique ones. Thus, the resulting tree will

only contain unique nodes on a particular level, along with the number of occurrences.

For example, if the nucleotide ‘A’ appears 3 times in level 1 of the tree, the aggregated

node will have 3 as the count value. Figure 4.3a shows the initialization of the tree

where we create all the nodes according to the CSV file (Table 4.1). Then,the nodes

are aggregated only storing the unique SNP values in Figure 4.3b. The algorithm for

creating this Counting Tree is provided in Algorithm 3.

This process is also much simpler than the earlier work [133] where the authors

opted for processing the data row-wise. On the contrary, we considered the data

column-wise and grouped on each level according to their nucleotide values. Here, we

reordered the tree after generating the tree as it reduces the size of the final counting

tree. The ordering according to the SNPs entropy also ensures that the early levels of

the tree has less branching, which positively impacts the size of the tree. This order

is also stored for transforming the query sequences as well.
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Algorithm 3: Generate a Counting Tree structure from human genome data
Input: CSV file of SNP datase
Output: Counting Tree in graph database

2 Sort the SNPs according to their entropy
3 Create empty root node
4 foreach patient do
5 Load SNP sequence with default quantity 1
6 Link SNP sequence using relationship ‘Next’
7 Link the first SNP in the sequence to root node
8 end

// a tree generated but has all nodes with quantity 1
9 for i← 1 to h // h is the height of the tree do

10 N ← Group SNP data of level i by the same SNP value
11 foreach N where sum(N) > 1 do
12 Create a new node n with SNP value and count Link node n to the

parent level delete the old nodes N Link those child nodes whose
parent in N to new node n

13 end
14 end

4.3.3 Indexing the Counting Tree

We propose an indexing scheme on top of the tree structure compared to the earlier

work from Hasan et al. [133]. In our search algorithm, one of the important feature

is to confirm the linkage between a parent node and his children. The fundamental

tree search functions result in a logarithmic runtime without any indexing [138],

while the runtime in our graph database is linear to the depth or height of the tree.

Thus, experimental results (Figure 4.6) demonstrates that on a million depth tree

constructed from genome data (according to Algorithm 3) takes around 10 minutes

from root to leaf nodes (empirically).

Our indexing scheme assigns position tags and stores the corresponding range

information into the nodes along with the other information such as nucleotide value,

count of patients. Initially, we take all the nodes residing at the same level (siblings)

and number them sequentially. We show this next to the nucleotide value inside

parenthesis in Figure 4.4. Then, the range of the child nodes are added to the data
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Algorithm 4: Number of records with specific SNP values
Data: Search string, S (formatted as SNP1=A and SNP2=T . . .
Result: The encrypted count of patients that meet the query string

2 Function SearchTree (S)
3 Q← Parse the search string, S // Q will be an array representing

the query
4 Sort Q by the depth of the SNP according to the Counting Tree
5 result← 0, range← [0,∞]
6 foreach SNPi in Q do
7 N ← Nodes in SNPi // traversal utilizes position tags and

ranges QSNP ← the encrypted value of the SNP nucleotide from the
query

8 tmp← 0
9 foreach node n in N do

10 currentRange← range stored in n
11 if currentRange is between range then
12 tn ←encrypted nucleotide encoding+rn // random number rn
13 if rn == tn −QSNP then
14 tmp← 1
15 result← the encrypted count value stored in n
16 range← currentRange

17 end
18 end
19 end
20 if tmp = 0 then
21 return E(0)// no matches were found
22 end
23 end
24 return result

of each node. It is noteworthy that this range information inherits all the position

tags of its underlying children.

Figure 4.4 and 4.5 details the corresponding steps which we describe in details

here. The process works in two steps: First, we traverse the tree level-wise and assign

an incremental number to each node. For example, in level 1 we assign 0 and 1 to

the two nodes (A, T) available. Sequentially, at level 2, we assign 0, 1 and 2 to the

nodes T, C and C respectively. Thus, we label each of the nodes residing at the same

level of the newly constructed tree.
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Figure 4.4: Setting position tags on each level and their nodes. The numbers in the
parenthesis are sequential labels (position tags) of each layer to be used for generating
node ranges for quick indexing

In the second step, we start from the last level which denotes the n-th SNP of

each patient. These are the leaf nodes of the tree where there are no children nodes.

We assign the range of nodes according to their position tags and its connection with

their children. For the leaf nodes, the range denotes their sequence number. For

example, in Figure 4.5 (from Table 4.1), the first leaf node has a range of (0, 0) which

denotes the first sequence. Its sibling C(1) also represents the second sequence. As

both these leaf node has the same grand-parent T (0), it will include the whole range

of sequences (0, 1). Therefore, all parents include the range of their children positions.

The root node will contain the range for all sequences appearing on the tree which is

(0, 3). These range information are kept alongside the SNP nucleotide value, counts

and the position as mentioned above.

During the validation, we only need to compare the ranges of parent and child

nodes. If the range of the parent node covers the child’s, then they are connected. For

example, node A in level 1 has a range of (0, 2), so it has connectivity with the child

nodes with position 0 to 2. Thus even the leaf nodes that belong to this range (0, 2)
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are connected to node A in level 1. However, any node having a position not included

in the range (0, 2) are not connected. For example, the leaf node G at position 3 is

not covered by A’s range in level 1 ((0, 2)). Thus, this denotes that (leaf) node G is

not connected with A (level 1).

4.3.4 Encryption of the Tree

The SNP nucleotide value and count will then be encrypted to protect the privacy of

the data. We use the additive homomorphic encryption scheme, Paillier to encrypt

the nucleotide and count values of each SNPs. However, before encrypting the value

of the nucleotides we utilize a numerical encoding for each value A,C,G, T to 0, 1, 2, 3

respectively. Therefore, an encryption, E(A) will be stored as E(0) in the counting

tree. This encoding scheme will also be public as the researcher will know the encoding

of {A,C,G, T} = {0, 1, 2, 3}.
As the applied cryptographic scheme (Paillier [49]) produces a randomized

ciphertext, as they are indistinguishable under chosen plaintext attack. Therefore, the

same numeric values for the SNPs will have different ciphertexts after encryption. For

example, encryption of ‘A’ (or 0) will be different each time and seemingly random.

Thus, an adversary cannot distinguish between two encryption of the same value

(known as semantic security [49]). Paillier is also partially homomorphic which allows

additions under encryption.

4.3.5 Search Operation

In our framework, the search operation is based on queries like ‘How many patients are

there with SNP1=A and SNP2=C ...’ from a particular dataset containing a specific

disease. In our scheme, the cloud server has the public key only where the researcher

has the private key as well. We utilize the tree structure (and index) mentioned above

and encrypt the data of the query (with encoding) accordingly. Our proposed method

uses reference SNP IDs (rs ids) [139], which is equivalent to chromosome and position

in the following example.

Initially, the researcher encodes his/her query parameters such as SNP1 = 0,
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Figure 4.5: Range of position tags from underlying child in each nodes. The range of
each node is the union of ranges of its children

SNP2 = 1. Then it encrypts them as SNP1A = E(0), SNP2C = E(1) and sends to

the cloud server as:

SELECT count(*) FROM Sequences
WHERE SNP1=E(0) AND SNP2=E(1) AND ...
AND Disease = E(1)

Here, the presence of the disease is also encrypted as a boolean value of 0 or 1.

The cloud server separates the incoming query parameters (i.e., SNP1A = E(0) and

SNP2C = E(1) . . .) and sort them according to the tree order based on the entropy

as discussed in Section 4.3.2.

For example, based on the tree in Figure 4.5, SNP2 is the child of SNP1, the

array would be queried in the order of [SNP1A = E(0), SNP2C = E(1)]. For each of

these query SNP positions, we search along the tree with the assistance of the index

created by position tags and ranges. For SNP1, let us assume it is positioned on the

first level of Figure 4.5, which has two nodes A and T. The cloud service provider

generates two random values r1 and r2, which are added to the SNP values of A and



Large-Scale Genome Data Storage and Query with Privacy-Preserving Techniques 75

T, SNP1′A = E(0 + r1) and SNP1′T = E(3 + r2). These values are returned to the

researcher, who subtracts its encrypted SNP1A and retrieves two random numbers

r01 = decrypt(SNP1′A − SNP1A) and r02 = decrypt(SNP1′T − SNP1A). This

subtraction is essentially an inverse addition (SNP1′A = E(−0 − r1)) and possible

with the additive property of partially homomorphic Paillier Encryption scheme.

A Garbled Circuit protocol is then executed to check whether r01 = r1 or r02 =

r2. As only r1 = r01 is true in this case, the cloud server only proceeds further on the

left side and checks the branches connected to SNP1 = A. However, which equality

is true is only known to the cloud server and not revealed to the researcher. Suppose,

SNP2 is positioned on Level n (due to the sorting of SNPs), we only need to check

the three C nodes under the branch of node A in Level 1 (as their position ranges are

falling between 0 and 2, which follows the range of children for node A). There is no

need to check on the other node with SNP value G at Level n, which has a position

range of (3,3), outside the child range of node A at Level 1.

The same verification procedure for SNP1 is repeated for SNP2 and the counts

on the satisfying nodes (with SNP values equal C) are summed up at the cloud service

provider to be E(3) because there are three C nodes under the branch of A (at Level

1) falling between 0 and 2. The final layer is about the disease/phenotype diabetes,

which has a binary value (yes/no). If 2 out of the 3 C nodes from Level n have 1’s

(1 means positive), the final count will be E(2). This encrypted value is returned to

the researcher, who gets a final count of 2.

4.4 Results

For the experiments, we used a realistic and large-scale genome dataset from PGP

[140]. The dataset had 173 patients, each with 736,317 (∼0.75 million) SNPs.

4.4.1 Experimental Setup

We utilized the cloud services from Amazon AWS m4.xlarge instances (4 CPUs,

16GB memory, 500GB disk space) to store and perform the required computations.
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Table 4.2: Operations and their required time

Operation Time
Load raw data and preprocessing 3 hours
Building the tree structure 8 hours
Adding position tag and range values 8 hours
Encryption of the tree nodes 5.5 days

Table 4.3: Size of different elements of the Counting Tree in the Neo4J database

Store Sizes Size (GB)
Node Store 1.80
Property Store 27.97
Relationship Store 12.13
String Store 170.37
Total Size 212.27

Furthermore, for comparison with the earlier works [132, 133], we executed these

algorithm with 7 patients and 736K SNPs in the same environment. Unfortunately,

the programs ended with ‘Stack Overflow’ error during the early phase of encryption

process. It indicated that the encrypted data is unduly excessive to be handled in

the main memory. This also motivates the utility of using external memory and

a database system like GraphDB. In Table 4.2, we show the running times of the

different phase.

4.4.2 Storage Requirements

The generated tree from the aforementioned dataset generated 120 million nodes and

required 223.41 GB of disk space. We used Neo4j as the graph database on a Linux

system. Table 4.2 indicates that the most time-consuming task was the encryption

of the contents of the nodes. Hence, we utilized a multi-threaded architecture where

multiple nodes were encrypted at the same time due to the non-atomic nature of the

process. Furthermore, this process can be made faster using clustered programs on

several cloud servers.

Table 4.3 scrutinizes the space requirements of different component of the
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Figure 4.6: Execution time (seconds) for searching one leaf node on different number
of SNPs in the Counting Tree

Counting Tree on the database. As the content of the nodes (SNP values) are

encrypted, it takes the most space (String Store) of 170 GB. This can be reduced

with different encryption scheme which is not under consideration in this work.

4.4.3 Execution Time

In Figure 4.6, we demonstrate the execution time for searching one node in different

number of SNPs available in the database. We selected leaf nodes as the query SNPs

to search as this would result the time required to traverse the whole tree. Evidently,

the execution time of the count query increases with more SNPs, though it takes 410

seconds (6 minutes) to search in around 700k SNPs. For a query on 100k SNPs, it

takes only 31 seconds and it generated around a million nodes on the tree.

In Figure 4.7, we depict the effect of the query size on any given query. Here,

we experimented with different number of SNPs on the query sequence (50, 100,

200, 500 ) and analyze the execution time of retrieving the results. Furthermore, the

effect of caching on the graph database was considered as well. We evaluated three

scenarios:

1. ColdDB: Execution of a query with no caching

2. HotDB: Execution of multiple queries with same SNPs (full caching)
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Table 4.4: Relationship of the execution time with query size on different scenarios

SNPs in the Query
Scenarios 50 100 200 500
Parse Query 51 95 277 519
ColdDB 86 631 998 2090
HotDB 24 33 74 93
WarmDB 35 47 87 270

3. WarmDB: Execution of multiple queries with random SNPs (Figure 4.7)

Table 4.4 shows the effect of the aforementioned three scenarios where parsing

a query depends on the number of SNPs and takes a significant amount of time.

Caching effects are also available in this result where a fully cached query is returned

much faster than the other two.

One critical implication of constructing a tree from genomic data is the increment

in the number of nodes related to the patients and their SNPs. In Figure 4.8 we depict

the number of nodes required for storing total 736,317 SNPs and different number of

patients. It is apparent from the figure that the number of the nodes (proportional

to storage overhead) are not quite linear in order to the number of patients. For

example, the system required 800,074 nodes for 5 patients where for 10 patients it

needed 1,512,961 nodes. Though, in worst case, the expansion can be 2736,317 (if we

see every variant of bi-allelic SNP), in our case we only observed 8,283,083 nodes after

constructing the full tree for 173 patients. This is much smaller than the worst-case

scenario as the ratio of the bi-allelic SNPs follow beta distribution [141].

4.5 Discussion

Limitations: Regardless of the encrypted sensitive data or the node values, we are

not immune to these security leakages:

1. Search pattern of the researcher: Since the tree traversal depends on the GC

outputs and researcher’s query input, the corresponding path will be revealed

to the Cloud. It is important to analyze this leakage as even with this search
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pattern the cloud will not acquire the sensitive information unless it colludes

with the researcher. Furthermore, as all the nucleotide values are encrypted to

random ciphertexts, the cloud server cannot infer any information about them.

ObliviousRAM [142, 143] concepts can be used to mitigate this issue which will

add additional computational complexity.

2. Dishonest researcher: In this work, we do not consider malicious researchers as

they have the private key which decrypts the results. We can overcome this

at an additional cost of involving the data owner on every decryption. This

will incur further communication and computational cost which will be deemed

inefficient.

Future Work: The principal direction for extension will be utilizing the proposed

framework to answer complex queries. Though count queries are the building blocks

of different statistical analysis (i.e., GWAS), different aggregation functions might also

be useful in many cases [144]. The other key area of interest might be performing

different machine learning algorithms.

Regarding the crypto primitives, instead of Paillier [49], we can analyze recent

homomorphic schemes[145]. This will reduce the ciphertext size and speed-up the

encryption time which seems to be a performance overhead.
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4.6 Related Work

Our proposed methods offers significant modifications to Hasan et al. [133] where the

authors proposed a solution for secure count query on encrypted genomic data using

an Index tree. Their Index tree is a subset of our Counting tree but it lacks the

indexing scheme proposed in Section 4.3.3. Their encryption and security models are

similar as both of these works are provably secure under the semi-honest trust model

[146]. However, our storage scheme has a significant difference as Hasan et al. solely

relied on volatile memory. Previously, Hasan et al. ’s method was only tested in a

small database containing 300 SNPs. So, we also tested on a large number of SNPs to

see the scalability of methods. As a result, Hasan et al. ’s method was not practical

for real size genome data (e.g., 736, 317 SNPs in our setting) and their program

ended with memory error during the early phase of encryption process, while ours

took less than 50 seconds for a query consisting of 100 SNPs (on the same 16G RAM

environment).

Similar problem of secure outsourcing and count query execution has been

proposed by Ghasemi et al. [147], Canim et al. [148] and Kantarcioglu et al. [149] in

2016, 2012 and 2008 respectively. In most of these works, data were kept encrypted

though un-indexed and tested in smaller datasets. However, in reality, providing
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Table 4.5: Comparison of related works on Secure Count Query chronologically. It
is noteworthy that we experimented with a real world dataset and our scheme is
invariant to the number of records

Authors Year Method SNPs Time (s)
Kantarcioglu et al. [149] HE 2008 40 6900

Canim et al. [148] Hardware 2012 50 600
Hasan et al. [133] HE, GC 2016 300 6

Ghasemi et al. [147] HE 2016 50 90
Our Work HE, GC 2017 736, 317 40

security and efficiency in a realistic size of genomic data is much harder and reflected

in our work. The prior works are summarized in Table 4.5.

4.7 Conclusion

In this chapter, we demonstrate a realistic use case of secure genome data storage

and retrieval application using graph database. Our new mechanisms are more

scalable compared to the previous work due to the proposed indexing schemes. A

demonstration responding arbitrary queries on different number of SNPs from ∼ 700k

SNPs (per person) within one minute shows the feasibility of our methods. However,

the encryption mechanism (offline) is a major bottleneck of the scheme considering

frequent database updates. This can be replaced by the recent state of the art HE

mechanisms [46, 145] to improve efficiency.



Chapter 5

Genomic String Search using Parallel

Fully Homomorphic Encryption

5.1 Introduction

Fully Homomorphic Encryption (FHE) [38] has been an active area of research in

modern cryptography on its own right. FHE cryptosystems provide a strong security

guarantee and can compute arbitrary number of operations over encrypted data. Due

to the emergence of various data-oriented applications [150, 151, 152] on sensitive

data, the idea of computing under encryption has recently gained momentum.

Therefore, FHE is the ideal cryptographic tool that addresses this privacy concern by

enabling computation on encrypted data.

Regardless of the promises from the cryptosystem, FHE is still prohibitively

slow when applied to generic computations. As a result we do not see a widespread

adoption of FHE and very limited real-world applications. For example, addition

of two 32-bit encrypted numbers requires around 7 seconds whereas multiplications

are even slower; taking around 8 minutes (Table 5.1). Therefore, to utilize FHE in

any real-world application, it needs to get a speed-up; whether from a theoretical

perspective (reduced computational complexity) or with parallel computations.

In this work, we target a parallel framework for FHE computations using the

Graphics Processing Units (GPUs). In recent years, GPU architecture has positively

82
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impacted different machine learning algorithms by speeding up the model training

mechanisms over large datasets. Taking similar route, we utilize the multi-core

architecture of GPUs and propose a parallel FHE framework employing on the Torus

FHE (TFHE) cryptosystem [32, 93].

In this work, we intend to connect FHE operations on genomic data as several

security issues has surfaced while keeping such sensitive data in plaintext [26, 27].

For example, keeping the genomic data under encryption, while storing or computing

should provide a better security in face of a data breach or compromised system.

Therefore, alongside the speed-up, we also extend the proposed parallel FHE

framework for three string search operations: Hamming Distance, Edit Distance and

Set-Maximal Matches. These search algorithms play a key role in several applications

such as Ancestry Search [153] and Similar Patients Query [154, 155] operating on

sensitive private data. The effectiveness of these search operations are paramount as

they recently uncovered a high-profile crime case known as the ‘Golden State Killer’

[156].

Undoubtedly, our genomic data have several privacy issues as they can uniquely

identify us and reveal our ancestry and certain disease susceptibility which can be

deemed private. Therefore, we cannot share or store genomic data without any

security guarantee [1]. Hence, an efficient and secure FHE framework can play a vital

role in securing the data which is another objective of this Chapter. Here, we divide

the underlying contributions into two steps: a) propose a parallel FHE computation

framework, and b) string search operations using the proposed framework. We

highlight the major contributions of this work below:

Contributions

• At first, we extend the boolean gates (i.e., XOR, AND etc.) from an

existing FHE framework [32] to secure algebraic circuits such as addition and

multiplication.

• We utilize the recent advancements of GPU architecture and propose parallel

FHE operations. Furthermore, we propose several optimizations such as bit
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Table 5.1: A comparison of the execution times (sec) of TFHE [6] and our CPU, GPU
framework for 32-bit numbers

Gate Op. Addition Multiplication
Regular Vector Regular Matrix (mins)

TFHE [32] 1.40 7.04 224.31 489.93 8,717.89
CPU-Parallel 0.50 7.04 77.18 174.54 2,514.34
GPU-Parallel 0.07 1.99 11.22 33.93 186.23

coalescing, compound gates, and tree-based additions to implement the secure

algebraic circuits.

• We have conducted several experiments to compare the execution time of

the sequential TFHE [32] with our proposed GPU parallel framework. From

Table 5.1, our proposed GPU method is 14.4× and 46.81× faster than the

existing technique for regular and matrix multiplications, respectively. We have

also benchmarked our performance with existing TFHE frameworks on GPU,

namely, cuFHE [53], NuFHE [54].

• Finally, we target different string search operations in genomic dataset

(Hamming Distance, Edit Distance and Set-Maximal Matches) and perform

them under encryption. Experimental results show that it takes around 12

minutes to perform Hamming distance and Set-Maximal matching on two

genomic sequences with 128 genomes. Furthermore, for 8 genomes, the

framework takes 11 minutes for an edit distance operation whereas it took 5

hours on an earlier attempt from Cheon et al. [157].

Notably, existing GPU enabled TFHE libraries, cuFHE [53] and NuFHE [54],

have implemented the TFHE boolean gates using GPUs, whereas our goal was

to construct an optimized arithmetic circuit framework. Our design choices and

algorithms reflect this improvement and resultantly, our multiplications are around

3.9 and 4.5 times faster than cuFHE and NuFHE, respectively. The code is readily

available at https://github.com/UofM-DSP/CPU-GPU-TFHE.

The rest of the work is organized as follows: We discuss the required background

of the work in Section 5.2. Section 5.3 discusses the underlying methods including

https://github.com/UofM-DSP/CPU-GPU-TFHE
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the GPU-parallel framework and the string search operations using such parallel

operations. In Section 5.4, we show the experimental analysis whereas Section 5.5

discusses them in details. Section 5.6 denotes the related works and finally concluded

in Section 5.7.

5.2 Preliminaries

In this section, we describe the employed cryptographic scheme, TFHE [32] and later

define the string search problem.

5.2.1 Torus FHE (TFHE)

We employ Torus FHE (TFHE) [32] in this work where the plain and ciphertexts are

defined over a real torus T = R/Z, a set of real numbers modulo 1. The ciphertexts

are constructed over Learning with Errors (LWE) [56] and represented as Torus LWE

(TLWE) where an error term (sampled over a Gaussian distribution χ) is added to

each ciphertext. For a given dimension m ≥ 1 (key size), secret key s ∈ Bm (m-bit

binary vector), and error e ∈ χ, an LWE sample is defined as (a, b) where a ∈ Tm

s. t. a is a vector of torus coefficients of length m (key size) and each element ai is

drawn from the uniform distribution over T, and b = a · s + e. The error term (e) in

LWE sample grows and propagates with the number of computations (e.g., addition,

multiplication). Therefore, bootstrapping is introduced to decrypt and re-encrypt the

ciphertexts under encryption to remove the noise.

TFHE considers the binary bits as plaintext and generates LWE samples as

ciphertexts. Hence, LWE sample computations in ciphertext are analogous to binary

bit computations in plaintext. As a binary vector represents an integer number, an

LWE sample vector (Ln) can represent an encrypted integer. For example, an n-bit

integer becomes n-LWE sample after encryption. Thus, the boolean gate operations

of an addition circuit between two n-bit numbers correspond to the similar operations

on LWE samples of encrypted numbers. Throughout this chapter, we use bit and LWE

sample interchangeably. Here, we choose TFHE for the following reasons:
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• Fast and Exact Bootstrappping. TFHE provides the fastest with exact

bootstrapping requiring around 0.1s. Some recent encryption schemes [51,

158] also proposed faster bootstrapping and homomorphic computations in

general. However, they do not perform exact bootstrapping and erroneous after

successive computations on the same ciphertexts.

• Ciphertext Size. Compared to the other HE schemes, TFHE offers smaller

ciphertext size as it operates on binary plaintexts as shown in Table 5.8.

Nevertheless, this minimal storage advantage allowed us to utilize the limited

and fixed memory of GPU when we optimize the gate structures.

• Boolean Operations. TFHE also supports boolean operations that can be

extended to construct arbitrary functions. These binary bits can then be

operated in parallel if their computations are independent of each other.

Existing Implementation: The current TFHE implementation comes with the

basic cryptographic functions (i.e., encryption, decryption, etc.) and all binary gate

operations. Although the gates are computed somewhat sequentially in the original

implementation [32], the underlying architecture uses Advanced Vector Extensions

(AVX) [50]. AVX is an extension to x86 instruction set from Intel which facilitates

parallel vector operations. The bootstrapping procedure requires expensive Fast

Fourier Transform (FFT) operations (O(n log n)). The existing implementation uses

the Fastest Fourier Transform in the West (FFTW) [159] which inherently uses AVX.

Why TFHE? There have been several attempts in improving the asymptotic

performance and numerical operations of FHE [160, 161, 46], which are pivotal to this

work (Section 5.6 for details). Torus FHE (TFHE) [32] is one of the most renowned

FHE schemes that meets the expectation of arbitrary depth of circuits with faster

bootstrapping technique. TFHE also incurs lower storage requirement compared to

the other encryption schemes (Table 5.8). The plaintext message space is binary in

TFHE. Hence, the computations are based solely on boolean gates, and each gate

operation entails a bootstrapping procedure in gate bootstrapping mode.

Why GPU? Most of the FHE schemes are based on the Learning With Errors
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(LWE), where plaintexts are encrypted using polynomials and can be represented

with vectors. Therefore, most computations are operated on vectors that are highly

parallelizable. On the contrary, Graphics Processing Units (GPUs) offer a large

number of computing cores (compared to CPUs). These cores can be utilized to

compute parallel vectors operations. Therefore, we can utilize these cores to parallel

the FHE computations. However, we also have to consider the fixed and limited

memory of GPUs (8-16GB) and their reduced computing power compared to any

CPU core.

5.2.2 Sequential Framework

In this section, we present a brief overview of the sequential arithmetic circuit

constructions using boolean gates as background which we extend later.

Addition

A carry-ahead 1-bit full adder circuit takes two input bits along with a carry to

compute the sum and a new carry that propagates to the next bit’s addition.

Therefore, in a full adder, we have three inputs as ai, bi and ci−1, where i denotes

the bit position. Here, the addition of bit a1 and b1 in A,B ∈ Bn requires the carry

bit from a0 and b0. This dependency enforces the addition operation to be sequential

for n-bit numbers [162]. In this work, we have also used half-adders for numeric

increment and decrements.

Multiplication

Naive Approach: For two n-bit numbers A,B ∈ Z, we multiply (AND) the

number A with each bit bi ∈ B, resulting in n numbers. Then, these numbers

are left shifted by i bits individually resulting in [n, 2n]-bit numbers. Finally, we

accumulate (reduce by addition) the n shifted numbers using the addition.

Karatsuba Algorithm: We consider the divide-and-conquer Karatsuba’s

algorithm for its improved time complexity O(nlog3
) [163]. It relies on dividing
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Algorithm 5: Karatsuba Multiplication [163]
Input: X, Y ∈ Bn
Output: Z ∈ B2n

2 if n < n0 then
3 return BaseMultiplication(X, Y)
4 end
5 X0 ← X mod 2n/2

6 Y0 ← Y mod 2n/2

7 X1 ← X/2n/2

8 Y1 ← Y/2n/2
9 Z0 ← KaratsubaMultiply(X0, Y0)

10 Z1 ← KaratsubaMultiply(X1, Y1)
11 Z2 ← KaratsubaMultiply(X0 + Y0, X1 + Y1)
12 return Z0 + (Z2 − Z1 − Z0)2n + (Z1)22n

the large input numbers and performing smaller multiplications. For n-bit inputs,

Karatsuba’s algorithm splits them into smaller numbers of n/2-bit size and

replaces the multiplication by additions and subsequent multiplications (Line 12 of

Algorithm 5). Later, we introduce parallel vector operations for further optimizations.

5.2.3 CPU-based Parallel Framework

We propose a CPU framework utilizing the multiple cores available in computers.

Since the existing TFHE implementation uses AVX2, we employ that in our CPU

framework.

5.2.3.1 Addition

Figure 5.1 illustrates the bitwise addition operation considered in our CPU framework.

Here, any resultant bit ri depends on its previous ci−1 bit. The dependency restricts

incorporating any data-level parallelism in the addition circuit construction.

Here, it is possible to exploit task-level parallelism where two threads execute

the XOR and AND operations (Figure 5.1), simultaneously. We observed that the

time required to perform such fork-and-join between two threads is higher than

executing them serially. This is partially due to the costly thread operations and
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Figure 5.1: Bitwise addition of two n-bit numbers A and B. ai, bi, ci, ri are ith-bit of
A,B, carry, and the result

eventual serial dependency of the results. Hence, we did not employ this technique

for CPUs.

5.2.3.2 Multiplication

Out of the three major operations (AND, left shift, and accumulation (addition)

in multiplications, AND and left shifts can be executed in parallel. For example, for

any two 16-bit numbers A, B (∈ B16), and four available threads, we divide the AND

and left shift operation among four threads.

On the other hand, the accumulation operation is demanding as it requires n (for

n-bit multiplication) additions. The accumulation operation adds and stores values

to the same variable, which makes it atomic. Therefore, all threads performing the

previous AND and left shift have to wait for such accumulation which is termed as

global thread synchronization [164]. Given that it is computationally expensive, we

do not employ this technique in any parallel framework.

We utilized a custom reduction operation in OpenMP [164], which uses the global

shared memory (CPU) to store the in-between results. This customized reduction

foresees additions of any results upon completion and facilitates a performance gain

by avoiding the global thread synchronization. The custom reduction resulted in

much better performance compared to the straightforward approach of waiting on all

threads to complete their tasks (global thread synchronization).
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5.2.4 String Search: Problem Definition

We are proposing privacy-preserving methods to measure the string distances using

Hamming, Edit Distance and Set-maximal matching. We define the query string as

q whereas the target genomic sequence is denoted as y. For simplicity, we assume

that all sequences have an equal number of m genes where each gene is bi-allelic.

Bi-allelic genes are represented as {0, 1}, resulting query to be a bit vector where

q = [q1, q2, . . . , qm] as qi ∈ {0, 1}. On the other hand, any target sequence is defined

as y = [y1, y2, . . . , ym] as yi ∈ {0, 1}.
In this problem, the query, q and data y are encrypted with Fully Homomorphic

Encryption (FHE) scheme [32]. Upon encryption, we denote the query as a vector of

encrypted bits and represented with q. The encrypted data y is hosted in a cloud

environment where a researcher is sending his/her encrypted query. Notably, the

target can be a set of genomic sequences, denoted by Y . The target is to calculate

exact or approximate a string distance score for q against y under FHE with a certain

algorithm such as Hamming or Edit Distance. Since it is a asymmetric encryption

scheme, we assume that the cloud server only has access to the public key. On the

other hand, the researcher and data owner has the private key to decrypt the result

and encrypt the genomic data, respectively. The targeted string distance metrics are

formally defined below:

Definition 5.2.1 (Hamming Distance). The hamming distance hd(q,y) measures the

difference or number of genes that are different in two sequences q and yi: hd(q,y) =∑
k∈[1,m](q[k] 6= y[k])

Definition 5.2.2 (Edit Distance). The edit distance ed(q,y) between two sequences

(q,y) is defined as the minimum cost taken over all edit sequences that transform

query q into y. That is ed(x,y) = min{C(s)|s is a sequence of edit operations (insert,

update or delete) transforming q into y}.

Definition 5.2.3 (Set Maximal Distance). A set maximal score or distance sd(q,y)

denotes the maximum number of consecutive matching genes between q and y, which

have the following conditions:
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1. there exists some index k2 > k1 such that q[k1, k2] = y[k1, k2] (same substring);

2. q[k1 − 1, k2] 6= yi[k1 − 1, j2] and q[k1, k2 + 1] 6= y[j1, j2 + 1], and

3. for all other genes, k′ 6= k and k′ ∈ [1,m], if there exist k′2 > k′1 s. t. q[k′1, k
′
2] =

y[k′1, k
′
2] then it must be k′2 − k′1 < k2 − k1.

The set maximal distance is defined as, sd(q,y) = k2 − k1.

5.3 Methods

In this section, we outline our proposed solutions to compute the string distance

metrics for the targeted algorithms. Firstly, we propose the GPU parallel FHE

framework on top of which we build the string search operations described later.

5.3.1 GPU-based Parallel Framework

In this section, we present three generalized techniques to introduce GPU parallelism

(GPU ) for any FHE computations. Then, we adopt them to implement and

optimize the arithmetic operations. Notably, our CPU framework is also described

in Section 5.2.3.

5.3.1.1 Proposed Techniques for Parallel HE Operations

This section introduces general techniques adopted for the GPU-based parallel

framework.

Parallel TFHE Construction: We depict the boolean circuit computation in

Figure 5.2. Here, each LWE sample comprises of two variables: a and b. It is

noteworthy that a is a 32-bit integer vector defined by the secret key size (m)

which has a lower memory requirement compared to other FHE implementations

(Section 5.6). In our parallel TFHE construction, we only store the vector a on the

GPU’s global memory.
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Figure 5.2: Arbitrary operation between two bits where BS, KS key represents
bootstrapping and key switching keys, respectively

In addition to all vector operations inside the GPU, we also employ the native

cuda enabled FFT library (cuFFT) which uses the parallel cuda cores for FFT

operations. Here, the parallel batching technique from cuFFT supports multiple

FFT operations to be executed simultaneously. However, cuFFT also limits such

parallel number of batches. It keeps the batches in an asynchronous launch queue,

and processes a certain number of batches in parallel. This number of parallel batches

solely depends on the hardware capacity and specifications [165].

Bit Coalescing (BC): Bit Coalescing combines n-LWE samples in a contiguous

memory to represent n-encrypted bits. The encryption of a n-bit number, X ∈ Bn

requires n-LWE samples (ciphertext), and each sample contains a vector of length m.

Instead of treating the vectors of ciphertexts separately, we coalesce them altogether

(dimension 1×mn) as illustrated in Figure 5.3.

The intuition behind such construction is to increase parallel operations by

extending the vector length in a contiguous memory. Coalescing the vectors increases

the vector length but we incorporate more threads to maximize parallelization and
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Figure 5.3: Coalescing n-LWE samples (ciphertexts) for n-bits

reduce the execution time.

Compound Gate: Since addition is used in most arithmetic circuits, we propose a

new gate structure, Compound Gates which allows further parallel operations among

encrypted bits. These gates are a hybrid of two gates, which takes two 1-bit inputs as

an ordinary boolean gate but gives two different outputs. The motivation behind this

novel gate structure comes from the addition circuit. For R = A+B, we compute ri
and ci with the following equations:

ri = ai ⊕ bi ⊕ ci−1 (5.1)

ci = ai ∧ bi | (ai ⊕ bi) ∧ ci−1 (5.2)

Here, ri, ai, bi, and ci denotes ith-bit of R,A,B, and the carry, respectively. Figure 5.1

illustrates this computation for an n-bit addition.

While computing the equations 5.1, and 5.2, we observe that AND (AND) and

XOR (OR) are computed on the same input bits. As these operations are independent,

they can be combined into a single gate, which then can be computed in parallel. We

name these gates as compound gates. Thus, a⊕ b and a∧ b from Equation 5.1 and 5.2
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can be computed as,

s, c = a⊕ b, a ∧ b︸ ︷︷ ︸
CONCAT

Here, the outputs of s =AND and c =aORb are concatenated. The compound gates

construction is analogous to the task-level parallelism in CPU, where one thread

performs AND, while another thread performs OR.

In GPU , the compound gates operations are flexible as AND or OR can be

replaced with any other logic gates. Furthermore, the structure is extensible up to

n-bits input and 2n-bits output.

5.3.1.2 Algebraic Circuits on GPU

The presents different algebraic circuit constructions in GPU-based parallel

framework using the general techniques.

Addition: Bitwise Addition (GPU1): From the addition circuit in Section 5.2.3.1,

we did not find any data-level parallelism. However, we noticed the presence of task-

level parallelism for AND and XOR as mentioned in the compound gates construction.

Hence, we incorporated the compound gates to construct the bitwise addition circuit.

We also implemented the vector addition circuits using GPU1 to support complex

circuits such as multiplications (Section 5.3.1.2).

Number-wise Addition (GPUn): We consider another addition technique to benefit

from bit coalescing. Here, we operate on all n-bits together. For R = A + B, we

first store A in R (R = A). Then we compute, Carry =AND, R = RORB, and

B = Carry � 1, for n times.

Here, we utilize compound gates to perform AND and RORB in parallel. Thus,

in each iteration, the input becomes two n-bit numbers, while in bitwise computation

the input was two single bits. On the contrary, even after using compound gates,

the bitwise addition (Equations 5.1 and 5.2) has more sequential blocks (3) than the

number-wise addition (0). We analyze both in Section 5.4.3.

Numeric Increments and Decrements: We also propose half-adders for numeric

increments and decrements which is required for several operations in string search.
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(a) Half Adder (b) Half Subtractor

Figure 5.4: 1-bit Increment and Decrement using Half-adder or subtractor where the
xi is the input Bit and the Carry bit is propagated into the next bit’s operation

For example, algorithms 7 and 8, 9, we need to perform increments and decrements

of an encrypted number, respectively. We use half adders and subtractors to perform

the operations. In Figure 5.4, we show the difference of the operations. For the half

adder, we perform the XOR and AND operation for all input bits for the encrypted

number while the other input is set to 1 (or 0) under encryption. The only difference

for the half-subtractor is that the input bit is inverted before the AND operation

which represents the carry bit.

The sign bit for these encrypted numbers (most significant bit), also goes through

the same operation as the rest of the bits. However, in this work, we cannot protect

the increment against overflow as the number of bits for each encrypted numbers are

set prior to the execution. For example, if we are incrementing a 16-bit encrypted

number, and it gets a value of 215 +1 (1-bit reserved for the sign bit), it will not get a

correct decrypted value. On the other hand, while decrementing by 1 for Algorithm 8

and 9, we will eventually get into negative numbers which is represented by the sign

bit. Therefore, we perform an OR operation in Algorithm 6 on Line 10.

Multiplication

Naive Approach: According to Section 5.2.2, multiplications have AND and �
operations which can be executed in parallel. It will result in n-numbers where each

number will have [n, 2n]-bits due to the �. We need to accumulate these uneven

sized numbers which cannot be distributed among the GPU threads. Furthermore,

the addition presents another sequential bottleneck while adding and storing (+ =)

the results in the same memory location. Therefore, this serial addition will increase



Genomic String Search using Parallel FHE 96

�02

�00

�01

�04

�05

�07

�06

�03

�10

�13

�11

�12

�20

�21

�30

LW
E	
	S
am

pl
es

Final	
Result

Figure 5.5: Accumulating n = 8 LWE samples (Lij) in parallel using a tree-based
reduction

the execution time. In the framework, we optimize the operation by introducing a

tree-based approach.

In this approach, we divide n-numbers (LWE vectors) into two n/2 vectors. This

two n/2 vectors are added in parallel. We repeat the process as we divide the resultant

vectors int two n/4 vectors and add them in parallel. The process continues until we

get the final result. Notably, the tree-based approach requires log n steps for the

accumulation. In Figure 5.5 for n = 8, all the ciphertexts underwent AND and � in

parallel, and waited for addition. Here, Lij represents the LWE samples (encrypted

numbers), i is the level, and j denotes the position.

Karatsuba Multiplication: We used Karatsuba’s algorithm with some modifications

in our framework to achieve further efficiency while performing multiplications.

However, this algorithm requires both addition and multiplication vector operations

which tested the efficacy of these components as well. We modified the original

Algorithm 5 to introduce the vector operations and rewrite the computations in
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Algorithm 6: Determine if Input Number is Greater than Zero
Input: Encrypted number x with |x| bits, boolean flag hasSign if x has sign

bit
Output: One bit representing whether x is greater than 0, result

2 Procedure greaterThanZero(x,hasSign)
3 i← 0
4 result← E(0)
5 while i < |x|−1 do
6 result← result ŌR x[i]
7 i← i+ 1

8 end
9 if hasSign then

10 result← result ¯AND ( ¯NOT x[|x|])
11 end
12 return result

Line 9-12 as:

〈Temp0, T emp1〉 = 〈X0, X1〉+ 〈Y0, Y1〉

〈Z0, Z1, Z2〉 = 〈X0, X1, T emp0〉 · 〈Y0, Y1, T emp1〉

〈Temp0, T emp1〉 = 〈Z2, Z1〉+ 〈1, Z0〉

Z2 = Temp0 + (Temp1)′

In the above equations, X0, X1, Y0, Y1, Z0, Z1, and Z2 are taken from the algorithm.

〈. . .〉 and · are used to denote concatenated vectors and dot product, respectively.

For example, in the first equation, Temp0 and Temp1 store the addition of X0, Y0

and X1, Y1. It is noteworthy that in the CPU framework, we utilized task-level

parallelism to perform these vector operations as described in Section 5.2.3.

5.3.1.3 Bit-wise Operations

In this section, the general bit-wise operations required for determining the string

distances are discussed. These algorithms will inherit the aforementioned algorithms

and extend them accordingly based on the corresponding use-cases:
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Greater than Zero

Our string distance methods on encrypted data relies on Algorithm 6, to check

whether input > 0. Here, the algorithm takes an encrypted number as an input

and checks whether it is greater than zero. This allows us to judge whether there are

any set bits on the encrypted version of the number. In order to output that result, in

line 6, an encrypted bit-wise OR (ŌR) operation is performed between an encrypted

bit X[i] and the current result.

The final result also considers the sign bit as the number can be negative. Here

the sign bit is set as the most significant bit (MSB) or X[|X|] which is inverted and

placed on another OR operation with the result variable. To get whether the input is

less than 0 is also can be achieved by this bit. Notably, the value of the result is kept

encrypted throughout the computations which is utilized in the upcoming algorithms.

Longest Consecutive Ones

Algorithm 7 finds the longest or maximum consecutive set bits of value 1 from an

encrypted number or bit-stream. Here, the input encrypted number X is left shifted

once on each iteration till we reach the end of the bit stream (|X| many times).

The core operation happens on line 6 where the encrypted X is left shifted by one.

Following the left shift, we also perform an encrypted bit-wise ¯AND operation with

the previous X. Then, we find whether the newly formed X has any 1-bit (whether

X > 0) and increment a counter. This counter is the representative of the result

which uses the aforementioned Algorithm 6 and increments by one if X > 0. It is

important to note that, this algorithm will only be used only for Set Maximal Distance

where encrypted haplotypes are inputted as X. Since greaterThanZero takes the

sign bit into consideration which is not required for Set Maximal operations, line 10

is ignored in this case.

Lets assume we have an encrypted number x = E(011101) with sign bit E(0) and

it contains 3 consecutive ones. Here, the result bit is set to 1 since x > 0. In the

first iteration, we perform an encrypted AND operation of x (011101) and x << 1

(111010). Since the resulting x is greater than 0, the encrypted result number is



Genomic String Search using Parallel FHE 99

Algorithm 7: Find Longest Consecutive Ones
Input: Encrypted number x
Output: result representing the number of the longest consecutive ones

2 Procedure maxConsecutiveOnes(X )
3 numbits← |x|
4 result← greaterThanZero(x, false)
5 while numbits > 0 do
6 x← x ¯AND (x� 1)
7 result← result+ greaterThanZero(x, false)
8 numbits← numbits− 1

9 end
10 return result

Algorithm 8: Get Minimum Number among x1,x2, . . . ,xn encrypted
positive numbers (xi ≥ 0)
Input: Positive Numbers x1,x2, . . . ,xn
Output: Minimum encrypted number result

2 Procedure getMin(x1,x2, . . . ,xn)
3 numinter ← 2|x0|

4 result← 0
5 while numinter > 0 do
6 gtZero← E(1)
7 foreach xi ∈ {x1, . . . , xn} do
8 gtZero← gtZero ¯AND greaterThanZero(xi)
9 xi ← xi − 1

10 end
11 result← result+ gtZero
12 numinter ← numinter − 1

13 end
14 return result

incremented. In the following iteration, x = E(011000) is multiplied (AND) with

E(110000) which results in 010000. The result number is incremented again. However,

in the subsequent iterations (|x| many times), the x values are set to 0 and result is

not incremented anymore. Finally, the result from Algorithm 7 is retrieved as E(3).
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Algorithm 9: Get Maximum Number among x1,x2, . . . ,xn encrypted
positive numbers xi ≥ 0

Input: Positive numbers x1,x2, . . . ,xn
Output: Maximum encrypted number result

2 Procedure getMax(x1,x2, . . . ,xn)
3 numiter ← 2|xi|

4 result← E(0)
5 while numiter > 0 do
6 gtZero← E(0)
7 foreach xi ∈ {x1, . . . , xn} do
8 gtZero← gtZero ŌR greaterThanZero(xi)
9 xi ← xi − 1

10 end
11 result← result+ gtZero
12 numiter ← numiter − 1

13 end
14 return result

Finding Minimum and Maximum Number

Algorithm 8 and 9 are two mirroring algorithms where we target the minimum and

maximum number from n numbers, respectively. Here, the encrypted numbers,

x1,x2, . . . ,xn are decremented by one for each bit (|xi| bit size). Then, we check

if it has any set bit or its value equals to 0. For finding the minimum number, if

all numbers are greater than zero, then the encrypted result variable is incremented.

On the other hand, to find the maximum number, we performed an encrypted ŌR

operations to check if any of the numbers are greater than 0.

Here, we need to perform a numeric decrement for both algorithms to achieve

xi ← xi − 1. In this case, a binary half subtractor is employed which is described

next. However, these decrements will incur underflow as input numbers xis can get

negative at any given iteration. Therefore, on Algorithm 6, we have an operation with

MSB as greaterThanZero(xi) outputs a single bit representing xi > 0. To retrieve

the minimum or maximum among n numbers, this single bit, gtZero on Algorithm

8 and 9 is added with the result for all numbits times. The final result is under

encryption and utilized in Edit Distance Approximation (Section 5.3.2.2) and Set
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Algorithm 10: Hamming Distances between a query and encrypted
sequences
Input: Encrypted target sequence y and query q
Output: Encrypted distances between y and q, hd

2 Procedure HammingDistance(q,y)
3 result← q ¯XOR y
4 foreach bit r ∈ result do
5 hd← hd + r
6 end
7 return hd

Maximal Matches (Section 5.3.2.3).

Alternative Approach: To retrieve the minimum or maximum numbers, we

can also utilize full-adders. For example, the maximum between x and y can be

determined by performing x − y. If the sign bit is not set, then x > y. Similarly,

the minimum between two numbers can also be denoted by the sign bit as well. We

consider this method due to the exponential number of iterations considering the

number of bits in line 3 on Algorithm 9 and 8. Since, |x|> 16 will require many

rounds of computations under encryption, we utilize the aforementioned algorithms

for |x|≤ 16.

5.3.2 Secure String Search Operations

5.3.2.1 Hamming Distance

Hamming Distance hd(q,y) represents the bit-wise difference of the input query q

and stored sequence y. Therefore, we do an encrypted ¯XOR operation between q

and y where the result will have set bits (value of 1) on all occasions of mismatches.

Now, we need to perform a summation of all these bits on the XOR result to get the

Hamming distance (definition 5.2.1). Notably, we assume that the query q and the

encrypted sequences are of the same length.

In Algorithm 10, we outline the mechanism to generate the hamming distance

hd where it contains encrypted distance value for one target sequence y and query q.
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Algorithm 11: Banded edit distance on encrypted sequence
Data: query q, sequence y, and band length b
Result: b-banded Edit Distance d(q,y) [166]

1 m← |q|+1
2 set each element of matrix dm×m to E(0)
3 for i← 1 to m do
4 d[i, 0]← E(i);
5 d[0, i]← E(i);
6 end
7 for i← 1 to m do
8 if i− b < 1 then low ← 1;
9 else low ← i− b;

10 if i+ b > m then high← m;
11 else high← i+ b;
12 for k ← low to high do
13 same_bit← q[i− 1] ¯XNOR y[k − 1]
14 sub← d[i− 1, k − 1] + same_bit
15 ins← d[i, k − 1] + 1
16 del← d[i− 1, k] + 1
17 d[i, k]← getMin(sub, ins, del)

18 end
19 end
20 return d[m,m];

This can be iterated through all sequences and performs the XOR operation between

the query q and yi sequence. Subsequently, it also adds the bits to formulate the

hamming distance on line 5. Since, the result variable is under encryption, the

addition (or increment) is oblivious as we perform the operation for every encrypted

bit in result.

5.3.2.2 Edit Distance Approximation

Edit distance is more complicated than Hamming Distance as it considers more than

the bit-wise difference (insertion, deletion and subtraction). Furthermore, under

plaintext, it has a O(m2) complexity wherem is the length of the sequence. Therefore,

to reduce the complexity, we opt for Banded Edit Distance [166, 155] where we only

compute on a band of fixed size.
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Algorithm 11 outlines the proposed method where we set a fixed parameter b

along with the encrypted input sequences q and yi. Apart from the initialization,

we also calculate the variables low and high that dictates the number of expensive

operations in line 11. Here, we calculate whether the q[i] and yi[k] bits are the same

or not using an encrypted XNOR gate. If they are not the same then, the encrypted

number d[i − 1, k − 1] needs to be incremented which is done with the half-adder.

Since we do not know the output of same_bit, we push that bit as carry and initialize

the substitution variable. Similarly, the insertion and deletion values are set from the

existing distance matrix. Finally, we calculate the minimum getMin(ins, del, sub) to

predict the distance at that specific position. This is set as the the new value of

d[i, k]. Here, the three half-adder operations are run in parallel before the minimum

operation.

5.3.2.3 Set Maximal Distance

Set maximal distance or match (SMM) represent the length of the longest matching

substring in two sequences [106]. This allows a health-care researcher to identify

genomic sequences that have more genes in common and probably be identical in

their physical attributes. The distance also has applications over similar patients

queries [154], secure positional Burrows-Wheeler Transformation [167, 103] etc.

The proposed secure set maximal match using Homomorphic Encryption

operation depends on Algorithm 7, maxConsecutiveOnes. Initially, we perform an

encrypted XNOR between two sequences yi and query q. Here, XNOR operation

(NOT XOR) sets a value of 1 to the positions where the sequences are matching.

Now, from this XNOR result, we can perform the maxConsecutiveOnes algorithm

and get the highest number of set bits that are grouped together.

Suppose for a query q = 01100111 and some input sequence yi = 10000110

where yi ∈ Y, then q XNOR yi will be 00011110. Now, if we perform

maxConsecutiveOnes(q XNOR yi, false), then the output should provide us with

the encrypted result of 3. This result denotes the number of set bits on the encrypted

XNOR operation, hence the set maximal distance between q and yi.
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Algorithm 12: Thresholded Set Maximal Matching
Input: Encrypted query q, encrypted sequence yi ∈ {y1, . . . ,yn} and

threshold t
Output: Encrypted SMM distance between q and yi if it is greater than

some value t
2 Procedure SMMDistance(q,yi, t)
3 enc_t← E(t)
4 result← maxConsecutiveOnes(q ¯XNOR yi, false)
5 smm_distance← getMax(result, enc_t)
6 gt_threshold← AND all bits in(smm_distance ¯XNOR enc_t)
7 smm_distance←! gt_threshold ¯AND smm_distance
8 return smm_distance

Threshold SMM: In a threshold version of this match, we need to output

only the distances that is beyond an input threshold t. Here, an extra operation

proceeding the maxConsecutiveOnes is required where a simple numeric comparison

with threshold t would output the result. Therefore, we can use an encrypted

MUX operation [93] for this comparison. However, encrypted MUX is an expensive

operation and we can replace it with a subtraction. Therefore, we negate the E(t)

value from the resulting maxConsecutiveOnes(q XNOR yi, false). Then, we use the

greaterThanZero algorithm on the result which represents if the SMM distance is

beyond the threshold t.

We outline the algorithm in Algorithm 12 where the threshold value is encrypted

at first. The matching bits of the query and the sequence is calculated next with

the XNOR operation. Subsequently, we perform the comparison operation with

a maximum between result and E(t). If E(t) ≥ result, then gt_threshold is

set as the OR of all bits among the smm_distance ¯XNOR enc_t bits. Here,

XNOR represents whether two vectors are same or not and doing another logical

OR among them. Lastly, we perform AND operation with the distance. If the value

of gt_threshold is 0, the we get all unset bits on the output whereas set maximal

distance in the other case.
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Figure 5.6: Performance analysis of GPU-accelerated TFHE with the sequential and
CPU || frameworks (5.6a), and comparison with the existing GPU-assisted libraries
(5.6b). Figure 5.6c presents the performance of compound gates against 2-single gate
operations while x-axis and y-axis represents bit size and time in seconds

Table 5.2: Computation time (ms) for Bootstrapping, Key Switching and Misc. for
sequential and GPU framework

Bit Size Sequential GPU
n Bootstrapping Key Switch Misc. Total Bootstrapping Key Switch Misc. Total
2 68.89 17.13 27.04 113.05 19.64 2.65 0.45 22.74
4 138.02 34.18 47.97 220.17 18.86 2.69 0.08 21.63
8 275.67 68.31 96.48 440.46 27.83 2.69 0.06 30.58
16 137.25 137.25 425.22 699.72 40.70 2.91 0.44 44.06
32 274.3 274.30 852.51 1401.10 66.74 3.34 0.42 70.50

5.4 Results

The experimental environment included an Intel(R) Core™ i7-2600 CPU having 16 GB

system memory with a NVIDIA GeForce GTX 1080 GPU with 8 GB memory [165].

The CPU and GPU contained 8 and 40, 960 hardware threads, respectively. We used

the same setup to analyze all three frameworks: sequential, CPU , GPU .

We use two metrics for the comparison: a) execution time and b) speedup =
Tseq
Tpar

. Here, Tseq and Tpar are the time for computing the sequential and the parallel

algorithm. In the following sections, we gradually analyze the complicated arithmetic

circuits using the best results from the foregoing analysis.
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5.4.1 GPU-accelerated TFHE

Initially, we discuss our performance over boolean gate operations, which is deemed

as a building blocks of any computation. Figure 5.6a depicts the execution time

difference among the sequential, CPU and GPU framework for [4, 32]-bits. The

sequential AND operation takes a minimum of 0.22s (4-bit) while the runtime increases

to 1.4s for 32-bits.

In the GPU framework, bit coalescing facilitates storing LWE samples in

contiguous memory and takes advantage of available vector operations. Thus, it

helps to reduce the execution time from 0.22 − 1.4s to 0.02 − 0.06s for 4 to 32-bits.

Here, for 32-bits, our techniques provide a 20× speedup. Similar improvement is

foreseen in the CPU framework as we divide the number of bits by the available

threads. However, the execution time increases for CPU framework since there is

only a limited number of available threads. This limited number of threads is one of

the primary motivations behind utilizing GPU.

Then, we further scrutinize the execution time by dividing gate operations into

three major components—a) Bootstrapping, b) Key Switching, and c) Miscellaneous.

We selected the first two as they are the most time-consuming operations and fairly

generalizable to other HE schemes. Table 5.2 shows the difference in execution

time between the sequential and the GPU for {2, . . . , 32}-bits. We show that

the execution time increment is less compared to the sequential approach.

We further investigated the bootstrapping performance in GPU framework for

the boolean gate operations. Our cuda enabled FFT library takes the LWE samples

in batches and performs the FFT in parallel. However, due to the h/w limitations,

the number of batches to be executed in parallel is limited. It can only operate on

a certain number of batches at once and next batches are kept in a queue. Hence,

a sequential overhead occurs for a large number of batches that can increase the

execution time.

Under the same h/w setting, we benchmark our proposed framework with the

existing GPU-based libraries (cuFHE and NuFHE). Although our GPU framework

outperforms NuFHE for different bit sizes (Figure 5.6b), the performance degrades
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for larger bit sizes w.r.t. cuFHE. As the cuFHE implementation focuses more on

the gate level optimization, we focus on the arithmetic circuit computations. In

Section 5.4.3, we analyze our arithmetic circuits where our framework outperforms

the existing GPU libraries.

5.4.2 Compound Gate Analysis

According to Section 5.3.1.1, the compound gates are used to improve the execution

time for additions or multiplications. Since, the existing frameworks do not provide

these optimizations, we benchmark the compound gates with the proposed single gate

computations. Figure 5.6c illustrates the performance of one compound gate over

2-single gates computed sequentially. We performed several iterations for different

number of bits (1, . . . , 32) as shown on the X-axis while the Y-axis represents the

execution time. Notably,a 32-bit compound gates will have two 32-bit inputs and

output two 32-bits.

Here, bit coalescing improves the execution time as it takes only 0.02s for

one compound gates evaluation, compared to 0.04s on performing 2-single gates

sequentially. However, Figure 5.6c shows an interesting trend in the execution time

between 2-single gates and one compound gates evaluation. The gap favoring the

compound ones tends to get narrower for higher number of bits. For example, the

speedup for 1-bit happens to be 0.04/0.02 = 2 times whereas it reduces to 1.01 for

32-bits. The reason behind this diminishing performance is the asynchronous launch

queue of GPUs.

As mentioned in Section 5.3.1.1, we use batch execution for the FFT operations.

Hence, the number of parallel batches depends on the asynchronous launch queue

size of the underlying GPU which can delay the FFT operations for a large number

batches. This ultimately adversely affects the speedup for large LWE sample vectors.

Nevertheless, the analysis shows that the 1-bit compound gates is the most efficient,

and we employ it in the following arithmetic operations.
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Table 5.3: Execution time (sec) for the n-bit addition

Frameworks 16-bit 24-bit 32-bit
Sequential 3.51 5.23 7.04
cuFHE [53] 1.00 1.51 2.03
NuFHE [54] 2.92 3.56 4.16
Cingulata [55] 1.10 1.63 2.16

Our Methods
CPU 3.51 5.23 7.04
GPUn 0.94 2.55 4.44
GPU1 0.98 1.47 1.99

Table 5.4: Execution time (sec) for vector addition

Length 16-bit 32-bit
` Seq. CPU GPU Seq. CPU GPU
4 13.98 5.07 1.27 28.05 10.02 2.56
8 27.86 9.96 1.78 56.01 19.29 3.58
16 55.66 19.65 2.82 111.3 38.77 5.70
32 111.32 38.99 5.41 224.31 77.18 11.22

5.4.3 Addition

Table 5.3 presents a comparative analysis of the addition operation for 16, 24, 32-

bit encrypted numbers. We consider our proposed frameworks: sequential, CPU ,

and GPU , and benchmark them with cuFHE [53], NuFHE [54] and Cingulata

[55]. Furthermore, we present the performance of two variants of addition operation:

GPUn (number-wise) and GPU1 (bitwise) as discussed in Section 5.3.1.2.

Table 5.3 demonstrates that GPUn performs better than the sequential and

CPU circuits. The GPUn provides a 3.72× speedup for 16-bits whereas 1.58×
for 32-bit. However, GPUn performs better only for 16-bit additions compared

to GPU1 . For 24 and 32-bit additions, GPU1 performs around 2× better than

GPUn . This improvement in essential as it reveals the algorithm to choose between

GPU1 and GPUn .

Although, both addition operations (GPUn and GPU1 ) utilize compound

gates, they differ in the number of input bits (n and 1 for GPUn and
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GPU1 , respectively). Since the compound gates performs better for smaller bits

(Section 5.4.2), the bitwise addition performs better than the number-wise addition

for 24/32-bit operations. Hence, we utilize bitwise addition for building other circuits.

NuFHE and cuFHE do not provide any arithmetic circuits in their library.

Therefore, we implemented such circuits on their library and performed the same

experiments. Additionally, we considered Cingulata [55] (a compiler toolchain for

TFHE) and compared the execution time. Table 5.3 summarizes all the results, where

we found our proposed addition circuit (GPU1 ) outperforms the other approaches.

We further experimented on the vector additions adopting the bitwise addition

and showed the analysis in Table 5.4. Like addition, the performance improvement

on the vector addition is also noticeable. The framework scales by taking similar

execution time for smaller vector lengths ` ≤ 8. However, the execution time increases

for longer vectors as they involve more parallel bit computations, and consequently,

increase the batch size of FFT operations. The difference is clearer on 32-bit vector

additions with ` = 32 which takes almost twice the time of ` = 16. However, for

` ≤ 8, the executions times are almost similar due to the parallel computations. In

Section 5.4.2 we have discussed this issue which relies on the FFT batch size. Notably,

Figure 5.6c also aligns with this evidence as the larger batch size for FFT on GPUs

affects the speedup. For example, ` = 32 will require more FFT batches compared to

` = 16 which requires more time to finish the addition operation. We did not include

other frameworks in Table 5.4, since our GPU performed better comparing to the

others in Table 5.3.

5.4.4 Multiplication

The multiplication operation uses a sequential accumulation (reduce by addition)

operation. Instead, we use a tree-based vector addition approach (discussed in

Section 5.3.1.2) and gain a significant speedup. Table 5.5 portrays the execution

times for the multiplication operations using the frameworks. Here, we employed all

available threads on the machine. Like the addition circuit performance, here GPU

outperforms the sequential circuits and CPU operations by a factor of ≈ 11 and
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Table 5.5: Multiplication execution time (sec) comparison

Frameworks 16-bit 24-bit 32-bit
Naive

Sequential 120.64 273.82 489.94
CPU 52.77 101.22 174.54
GPU 11.16 22.08 33.99
cuFHE [53] 32.75 74.21 132.23
NuFHE [54] 47.72 105.48 186.00
Cingulata [55] 11.50 27.04 50.69

Karatsuba
CPU 54.76 - 177.04
GPU 7.6708 - 24.62

Table 5.6: Execution time (min) for vector multiplication

Length 16-bit 32-bit
` Seq. CPU GPU Seq. CPU GPU
4 8.13 3.25 0.41 32.56 12.15 1.61
8 16.29 6.17 0.75 65.12 23.48 2.96
16 32.62 11.93 1.40 130.31 46.39 5.62
32 65.15 23.58 2.68 260.52 92.44 10.79

≈ 14.5, respectively for 32-bit multiplication.

We further implemented the multiplication circuit on cuFHE and NuFHE.

Table 5.5 summarizes the results comparing our proposed framework with cuFHE,

NuFHE, and Cingulata. Our GPU framework is faster in execution time than

the other techniques. Notably, the performance improvement is scalable with

the increasing number of bits. This is due to tree-based additions following the

reduction operations and computing all boolean gate operations by coalescing the

bits altogether.

Besides, we also analyze vector multiplications available in our framework and

present a comparison among the frameworks in Table 5.6. We found out an increase

in execution time for a certain length (e.g., ` = 32 on 16-bit or ` = 4 on 32-bit), which

is similar to the issue in vector addition (Section 5.4.3). Hence, the vector operations

from ` ≤ 16 can be sequentially added to compute arbitrary vector operations. For

example, we can use two ` = 16 vector multiplication to compute ` = 32 multiplication
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Table 5.7: Execution time (in seconds) for variable size query and target sequence m
for different distance metrics

Method m
8 16 32 64 128 256

Hamming Distance 2.89 11.84 47.95 189.81 758.73 3035.0
Set-Maximal 3.76 13.3 51.24 195.72 771.08 3061.48
Set-Maximal (with t) 7.15 20.67 64.43 223.14 827.76 3173.34
Edit Distance 662 2,577 9,989 39,022 154,194 612,435

resulting around 11 mins. In the vector analysis, we did not add the computations

over the other frameworks since our framework surpassed their achievements for a

single multiplications.

5.4.5 Karatsuba Multiplication

In Table 5.5, we provide execution time for 16 and 24-bit Karatsuba multiplication

over encrypted numbers as well. In the CPU construction of the algorithm, the

execution time does not improvement, rather it increases slightly. We observed

that for both 16 and 32-bit multiplication, Karatsuba outperforms naive GPU

multiplication algorithm on GPU by 1.50 times. Karatsuba multiplication can also

be considered a complex arithmetic operation as it comprises of both addition,

multiplication, and vector operations. However, the CPU framework did not provide

such difference in performance as it took more time for the fork-and-join threads

required by the divide and conquer algorithm.

5.4.6 String Search Operations

In Table 5.7, we report the execution time for the three string search operations. Here,

we report the execution time in seconds where we change the size of the genomic data.

The values of m = {8, 16, . . . , 256} denote the number of genes for the query q and

target y.

The results show that Hamming distance requires the least amount of time. It

is also clear from the definition 5.2.1 as it requires an XOR operation. The set-
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maximal matches (definition 5.2.3) needs more operations as maxConsecutiveOnes

in Algorithm 7 employs the half-adder for all bits. Furthermore, the threshold-version

of SMM takes more time since we need to perform the getMax operation. For example,

for a target and query sequence size of m = 128, it takes around 14 and 13 minutes

for with and without an existing threshold. However, for lower size of m, we can see

that the time difference is more significant as it takes 3.76 seconds to perform SMM,

compared to 7.15s.

Edit distance (5.2.2 takes the highest amount of time for the same genome size

m. For example, for a sequence of size m = 32, edit distance under FHE takes around

2 hours whereas hamming or set maximal matches take less than a minute. Notably,

in these methods, we use Algorithm 9 and 8 for m < 32 whereas use the alternative

(subtraction) method for larger sequences.

5.5 Discussion

In this section, we provide answers to the following questions about our proposed

framework:

Is the proposed framework sufficient to implement any computations? In

this article, we show how to implement boolean gates properly using GPUs to gain

performance improvement. We then show how to compute addition, multiplication,

and matrix operations using the proposed framework. Implementing more complex

algorithms such as secure machine learning [168, 169] are beyond the scope of this

work. In future work, we will investigate how to further optimize the framework for

machine learning algorithms.

For GPU framework, how do we compute on encrypted data larger than

the fixed GPU memory? The fixed GPU memories and their variations in access

speeds are limitations for any GPU application. Similar problems also occur in

deep learning while handling larger datasets. The solution includes batching the data

or using multiple GPUs. Our proposed framework can also avail such solutions as it

can easily be extended to accommodate larger ciphertexts.

How can we achieve further speedup on both frameworks? On the CPU
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Table 5.8: A comparative analysis of existing Homomorphic Encryption schemes for
different parameters on 32-bit number.

Year Homomorphism Bootstrapping Parallelism Bit security Size (kb) Add. (ms) Mult. (ms)
RSA [48] 1978 Partial × × 128 0.9 × 5
Paillier [49] 1999 Partial × × 128 0.3 4 ×
TFHE [32] 2016 Fully Exact AVX [50] 110 31.5 7044 4,89,938
HEEAN [51] 2018 Somewhat Approximate CPU 157 7,168 11.37 1,215
SEAL (BFV) [52] 2019 Somewhat × × 157 8,806 4,237 23,954
cuFHE [53] 2018 Fully Exact GPU 110 31.5 2,032 1,32,231
NuFHE [54] 2018 Fully Exact GPU 110 31.5 4,162 1,86,011
Cigulata [55] 2018 Fully Exact × 110 31.5 2,160 50,690
Our Method - Fully Exact GPU 110 31.5 1,991 33,930

framework, we have attempted most H/W or S/W level optimizations to the best of

our knowledge. However, our GPU framework partially relied on the global GPU

memory, which is slower than its counterparts. This is critical as different device

memories offer variant read/write speeds. Notably, shared memory (L1) is the fastest

memory after register. Our implementation uses a combination of shared and global

memory due to the ciphertext size. In the future, we would like to utilize only the

shared memory, which is much smaller but should provide better speedup compared

to the current approach.

How the bit security level would affect the reported speedup? The current

framework is analogous to the existing implementation of TFHE [170] providing

110-bit security which might not be sufficient for some applications. However, our

GPU framework can accommodate any change for the desired bit security level.

Nevertheless, such change will change the execution times as well. For example, any

less security level than 110-bits will result in faster execution and likewise for a higher

bit security. We will include and analyze the speedup for the dynamic bit security

levels in future.

5.6 Related Works

5.6.1 Parallel Frameworks for FHE

In this section, we discuss the other HE schemes from Table 5.8 and categorize schemes

based on their number representation: a) bit-wise, b) modular and c) approximate.
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Bitwise Encryption usually takes the bit representation of any number and encrypts

accordingly. The computations are also done bit-wise as each bit can be considered

independent from another. This bit-wise representation is crucial for our parallel

framework as it offers less dependency between bits which we can operate in parallel.

Furthermore, it provides faster bootstrapping and smaller ciphertext size, which can

be easily tailored for the fixed memory GPUs. This concept is formalized and named

as GSW [42] around 2013, and it was later improved in subsequent works [161, 32, 6].

Modular Encryption schemes utilize a fixed modulus q which denotes the size of the

ciphertexts. There have been many developments [171, 172] in this direction as they

offer a reasonable execution time (Table 5.8). The addition and multiplication times

from FV [46] and SEAL [52] show the difference as they are much faster compared to

our GPU-based framework.

However, these schemes do a trade-off between the bootstrapping and the

efficiency as they are often designated as somewhat homomorphic encryption. Here, in

most cases, the number of computations or the level of multiplications are predefined

as there is no procedure for noise reduction. Furthermore, the encrypted data

evidently suffers from larger ciphertexts as the value of q is picked from large numbers.

For example, we selected the ciphertext modulus of 250 and 881 bits for FV-

NFLlib [46] and SEAL [52], respectively. The polynomial degrees (d) were chosen

13 and 15 for the two frameworks as it was required to comply with the targeted

bit security to populate Table 5.8. It is noteworthy that smaller q and d will

result in faster runtime and smaller ciphertexts, but they will limit the number of

computations as well. Therefore, this modular representation requires to fix the

number of homomorphic operations limiting the use cases.

Approximate Number representations are recently proposed by Cheon

et al. (CKKS [39]) in 2017. These schemes also provide efficient Single Instruction

Multiple Data (SIMD) [173] operations similar to the modular representations

as mentioned above. However, they have an inexact but efficient bootstrapping

mechanism which can be applied in less precision-demanding applications. The

cryptosystem also incurs larger ciphertexts (7MB) similar to the modular approach as

we tested it for q = 1050 and d = 15. Here, we did not discuss HELib [174], the first
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cornerstone of all HE implementations since its cryptosystem BGV [172] is enhanced

and utilized by the other modular HE schemes (such as SEAL [52]).

The goal of this work is to parallelize an FHE scheme. Most HE schemes

that follow modular encryption are either somewhat or adopt inexact bootstrapping.

Besides, their expansion after encryption requires more memory. Hence, we choose

the bitwise and bootstrappable encryption scheme: TFHE.

Hardware Solutions are less studied and employed to increase the efficiency of

FHE computations. Since the formulation of FHE [38] with ideal lattices, most of the

efficiency improvements are considered from the standpoint of asymptotic runtimes. A

few approaches considered the incorporation of existing multiprocessors (e.g., GPU)

or FPGAs [175] to achieve faster homomorphic operation. Dai and Sunar ported

another scheme LTV [176] to GPU-based implementation [47, 177]. LTV is a variant

of HE that performs a limited number of operations on a given ciphertext.

Lei et al. ported FHEW-V2 [161] to GPU [178] and extended the boolean

implementation to 30-bit addition and 6-bit multiplication with a speed up ≈ 2.5.

Since TFHE extends FHEW and performs better than it predecessor, we consider

TFHE as our baseline framework.

In 2015, a GPU based HE scheme CuHE [47] was proposed. However, it was not

fully homomorphic as it did not have bootstrapping, hence we do not include it in our

analyses. Later in 2018, two GPU FHE libraries cuFHE [53] and NuFHE [54] were

released. Both the libraries focused on optimizing of the boolean gate operations.

Recently, Yang et al. [179] benchmarked cuFHE and its predecessor TFHE, and

analyzed the speedup which we also discuss in this chapter (Table 5.8).

Our experimental analysis shows that only performing the boolean gates in

parallel is not sufficient to reduce the execution time of higher level circuit (i.e.,

multiplication). Hence, besides employing GPU for homomorphic gate operations,

we focus on arithmetic circuit. For example, we are 3.9 times faster than cuFHE in

32-bit multiplications.

Recently, Zhou et al. improved TFHE by reducing and performing the serial

operations of bootstrapping in parallel [180]. However, they did use any hardware

acceleration to the existing FHE operations. We consider this work as an essential
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future direction that can be integrated to our framework for better executing times.

5.6.2 Secure String Distances in Genomic Data

One of the earlier attempt with a secure multi-party setting, Jha et al. [181] proposed

a privacy preserving genomic sequence similarity in 2008. Their paper showed three

different methods to mirror the Levestein distance algorithm using a garbled circuit.

However, for a sequence of 25 nucleotides, it took around 40 seconds to compute

the distance metric between two strings. In 2015, Wang et al. [182] proposed an

approximation of the original edit distance in a more realistic setting where the

authors utilized a reference genomic sequence to compute the edit distance. However,

we have analyzed its accuracy on one of our earlier works [155] and showed the

accuracy drops for longer input sequences.

In a recent attempt, Shimzu et al. [183] proposed a Burrows-Wheeler

transformation for finding target queries on a genomic dataset. The authors

attempted the set-maximal matches using oblivious transfer on a 2-party privacy

setting. However, we employ completely different cryptographic technique as we

do not require the researcher to stay active upon providing their encrypted queries.

Therefore, the whole computation can be offloaded to a cloud server and harness its

full computational capacity. One of the first attempts with FHE to compute edit

distance was conducted by Cheon et al. [39]. Given with the advances in 2017, their

cryptographic scheme was impressive though taking 16.4 seconds to compute a 8×8

block of string inputs. However, the underlying techniques have improved allowing

larger string comparison using FHE techniques as we show in this work.

5.7 Conclusion

In this chapter, we constructed the algebraic circuits for FHE, which can be

utilized by arbitrary complex operations. Furthermore, we explored the CPU-level

parallelism for improving the execution time of the underlying FHE computations.

Our notable contribution is the proposed GPU-level parallel framework that utilizes
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novel optimizations such as bit coalescing, compound gate, and tree-based vector

accumulation. Experimental results show that the proposed method is 20× and 14.5×
faster than the existing technique for computing boolean gates and multiplications

respectively (Table 5.1).
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Chapter 6

Online Algorithm for Differentially

Private Genome-wide Association

Studies

In this part, we describe the privacy aspects of genomic data analysis, specially

regarding sensitive outputs. Here, the proposed solutions rely on the Differential

Privacy (Section 2.2.3) protection. We utilize differentially private mechanisms due

to its ability to provide theoretical guarantee over the published data or the results and

bounding the privacy loss in the process. The proposed methods are also generalized

and can be applied to other sensitive data types.

6.1 Introduction

A surge of technical contributions facilitated the storage and computation of a large

volume of electronic healthcare records for scientific research. These healthcare

data are accumulated every day in different formats (and of different modalities)

from hospitals, clinics, and research organizations located in multiple geographical

locations. From Internet of Things (IoT) devices tracking our body weights to the

Intensive Care Unit (ICU) monitoring the critical conditions of a patient, all these

interconnected components are constantly generating a large volume of data. Such
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rich healthcare datasets are stored and often disseminated as datasets for future

research on a specific disease (i.e., cancer) or to improve health care systems in

general [184, 185].

Among different healthcare data types, the genomics data is unique as

it represents our hereditary information and susceptibility to certain diseases.

Regardless of the scientific significance of human genomics data, they are intrinsically

private and should not be shared without any protective mechanism [26, 27, 186].

Therefore, this sensitive information requires rigorous sensitization or privacy

mechanism before any public dissemination [187]. Currently, access to these datasets

demands consent forms, certifications, and lengthy administrative processes which

impede timely scientific discoveries [186] as they are often protected by the law (i.e.,

PIPEDA [188], HIPAA [189]).

Therefore, there have been several attempts to attain the privacy of the human

genomics data acceding some cryptographic approaches. One of the pragmatic

cryptographic mechanism is Differential Privacy (DP) [74, 30] as it provides rigorous

privacy guarantee [75] through the theoretical and quantifiable privacy bounds on the

disclosure of arbitrary data/query results. Furthermore, it provides a certain accuracy

threshold based on the privacy mechanism. DP algorithms, however, have not seen

its due applicability partly because of the complexity and intricate parameterization.

In this work, we manifest the difference between different settings of DP algorithms,

emphasizing on the privacy-utility tradeoff.

The DP algorithms often fall short on their accuracy expectations due to the noise

added to the process or individual query outputs [190, 20, 191]. The accuracy of the

statistical tests is essential to statistical tests on human genomics data or Genome-

Wide Association Studies (GWAS). Noisy but private results can be misleading and

render the study useless. Therefore, in this work, the accuracy of the proposed

methods is analyzed precisely along with acceptable privacy guarantee.

The proposed methods also investigate online algorithms, which are employed

on sequential inputs that are not known prior to the algorithms. For example, an

online sorting algorithm will not get all input numbers simultaneously as they will

appear sequentially. In this case, genomic data appear serially, any optimal decision
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taken at a specific time might prove to be sub-optimal at a later time considering

a different continuation of the input. Similarly, in arbitrary genomics analysis, a

DP mechanism might not know the queries from a researcher. This is because the

researcher is looking for some Single Nucleotide Polymorphisms (SNPs), which are

associated with an unknown disease. Therefore, s/he performs an exploratory search

sequentially on a list of SNPs based on the outputs or previous GWAS. As the queried

domain is unknown to the DP algorithm, an online mechanism is required [192], which

adheres the data privacy providing the maximum accuracy.

6.1.1 Related Works in Differentially Private GWAS

There have been several notable attempts employing DP algorithms in multiple

genomics data analysis. The contributions of these works often lie either in altering

the underlying functions or addition of differentially private noise into the calculations.

Another approach is to use a preprocessing step that allows privacy-preserving

outputs. Nevertheless, we propose a generalized DP noise generation mechanism that

is simply added to the intermediary statistics of GWAS without any preprocessing.

One of the earlier attempts proposed a differentially private logistic regression,

perturbing the objective functions [193]. In this work, we do not change the GWAS

functions but dynamically change the inputs to them. Wang et al. [94] proposed a

more generalized framework to share genomics data with DP guarantees. In this

work, the authors partition the data into blocks and construct a tree-like structure.

Then, the privacy-preserving methods (anonymization and DP) are applied to it

before dissemination. Notably, this work aligns with private data sharing, whereas

we target the privacy of the outputs from genomics data computations. In addition,

we also do not require any complex preprocessing of the dataset. Uhlerop et al. [194]

also proposed an approach to publish the minor allele frequencies using ε privacy

guarantee.

Johnson and Shmatikov [195] proposed a private χ2 test, where the researchers

did not know the number of queries they would require prior to the analysis (similar to

our online query mechanism). Their method handled GWAS datasets containing the
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disease association or case-control studies as the researcher performed an exploratory

ab initio search and utilized distance-score mechanism. Similarly, Sei and Ohsuga

[196] proposed two methods for the χ2 test. Their RandCHI method applied a

Laplace noise based on the global sensitivity to the final χ2 value. The other

method RandCHIDist utilized the noisy χ2 values to correctly predict the statistical

significance and reject the null hypothesis. In comparison to both of these works, our

mechanism only operates on the in-between outputs from the count queries and can

be utilized towards arbitrary GWAS function.

In 2015, Tramèr et al. [197] considered a weaker adversarial model proposing a

DP mechanism for membership privacy. The authors showed that for a constant pre-

fixed privacy budget and adversaries with bounded priors, their solution would incur

lower noise into the data. We do not make any assumptions on adversarial capacities

or fix the privacy budgets for GWAS. In 2016, Simmons and Berger [198] defined

the search for significant SNPs on DNA by modeling it as an optimization problem

and relaxed the problem while solving it in constant time. It is noteworthy that the

previous work utilized the χ2 values to determine the order of the SNPs succeeding

in the earlier attempts [194, 195, 199].

On a different work, Simmons et al. [7] proposed differential techniques for two

new GWAS: EigenStrat and Linear Mixed Model (LMM), extending the earlier

approach from [198]. Both these methods are utilized for population stratification,

which shows the difference in allele frequencies in a subset of a population compared

to the entire population. The proposed method relies on private χ2 statistics, which

are then utilized for EigenStrat statistics. Their proposed method outputs the top-

k highly correlated SNPs for a given disease based on the EigenStrat and LMM

statistics. In this work, we are only interested in benchmarking the accuracy of the

corresponding top-k SNP list as they are generated from our proposed method and

[198].

In 2017, Wang et al. [8] proposed DP mechanism to privately perform a family-

based study: Transmission Disequilibrium Test (TDT). Here, the authors employed

the shortest Hamming distance score and exponential mechanism to ensure a

quantifiable privacy guarantee over the TDT statistics. However, any distance-based
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method will require additional pre-processing, which might prove to be expensive for

large-scale genomics data, as mentioned in [8]. Though [8] considers the privacy of

family linkages (whereas we consider individual), we compare our method with this

work in terms of accuracy of the TDT results.

The federated or de-centralized model for GWAS operations is also targeted

in SAFETY [200], where the authors showed a hardware-oriented approach to

securely aggregate the results from multiple data owners. SAFETY bridges recent

cryptographic technique, homomorphic encryption (HE), which allows computations

under encryption [46] and proprietary Intel Software Guard Extensions (SGX) to

securely aggregate data in untrusted cloud servers. The authors demonstrated the

efficacy of using HE in SGX and later utilized for four different types of GWASs. In

this work, we incorporate these GWASs along with three new studies. However, this

work is fundamentally different than [200] as SAFETY operates on encrypted inputs

in a de-centralized setting and does not offer any privacy guarantee. Meanwhile, we

propose both centralized and de-centralized models that consider the privacy of the

data and outputs with a novel DP mechanism. In other words, we focus on the privacy

of the participants in this work, whereas, in SAFETY, the data, and computational

security on a cloud environment were the main concern.

In this work, we will not discuss theoretical differential privacy approaches,

which are related in the online setting [192, 201]. Furthermore, we avoid the

details of DP mechanisms applied to the traditional database SQL queries [78, 202].

Nevertheless, some other attempts are utilizing DP mechanisms combined with

different cryptographic approaches in the context of genomics data [203, 204]. We

will only discuss the related works that operate in the privacy-preserving GWASs area

using DP algorithms solely. We propose a generalizable DP mechanism for genomics

data executing arbitrary GWAS by managing the privacy budgets and answering

sequential online queries without any prior assumptions.
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Table 6.1: A summary of the accuracy results for seven GWAS with different privacy
budgets (details on Section 6.4)

GWAS Global Local ε
LD 99.7 99.6 0.7
HWE 88.9 81.1 3.3
CATT 94.7 89.7 2.76
FET 91.4 84 6.4
Benchmark Ours [7, 8]
EigenStrat 90 80 7
LMM 80 70 7
TDT 69 25 7

6.1.2 Contributions

In this chapter, we propose a method that suits an online GWAS setting that

targets an online GWAS setting, where the targeted SNPs (or query parameters)

are not known or fixed from the researchers prior to a study. To illustrate the

efficacy and benchmark of our proposed model, we selected seven different queries

based on the following Genome-Wide Association Studies (GWAS): 1. Linkage

Disequilibrium (LD), 2. Hardy-Weinberg Equilibrium (HWE ), 3. Cochran-Armitage

Test for Trend (CATT ), 4. Fisher’s Exact Test (FET ), 5. EigenStrat, 6. Linear Mixed

Models (LMM ), and 7. Transmission Disequilibrium Test (TDT ). We demonstrate

the accuracy (mismatch with non-private/original results) of these studies using an

ensemble of DP algorithms with different privacy budgets. Hence, the contributions

of the work can be summarized as follows:

• We propose an online algorithm that dynamically manages the privacy budget

ε of a differential privacy mechanism. We demonstrate the efficacy of such

mechanisms in both centralized and decentralized trust settings using the global

and local differential mechanisms, respectively.

• Our method employs harmonic series to classify the privacy budgets to uneven

groups offering higher accuracy results for the seven online GWAS functions in

both global and local privacy models.
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• Furthermore, we incorporate the Bin Packing to optimize the privacy loss

allowing sequential and parallel compositions for a set of queries on a partitioned

genomics dataset.

• Finally, we implement the proposed algorithms and exhibit the accuracy

(summary in Table 6.1) for the aforementioned seven GWAS tests. The

proposed algorithms achieve over 80% accuracy in the global setting, while

the performance remains competitive in the distributed local model.

6.2 Preliminaries

In this section, we describe our problem settings and the corresponding privacy or

trust models, bin packing and some other required backgrounds. In Table 6.3, we

outline the related mathematical notations used throughout the chapter.

6.2.1 Problem Description

In GWAS, a data analyst intends to perform statistical queries on a database DB
containing genomics data from many different individuals (Figure 6.1). Ideally, these

data owners are geographically distributed and collect their participants’ genomics

data pertaining to different populations. Therefore, considering each data owner has

their own DBi, the data analysts desire to retrieve results for their GWAS on the

whole DB = DB1 + . . .+DBn (for n data owners).

Formally, we define a genomics DB containing m individuals represented

by r1, . . . , rm records, where each record has d positions (or Single Nucleotide

Polymorphisms) (a1, . . . , ad), where ri ∈ Rd. Furthermore, the records ri also have

demographic information and disease association (phenotype), which are required in

GWAS studies. We show an example of the dataset in Table 6.2, where the analyst

will execute his/her queries on DB defining the demographics, phenotype information

and the nucleotide value in position ai. Notably, the proposed work does not target

a privacy-preserving mechanism to publish DB but achieves privacy on the query

outputs.
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Figure 6.1: Privacy preserving Genome-wide Association Studies (GWAS) models
where data owners share the data (or results) with a central aggregator

Table 6.2: Sample Data (DB) representation for GWAS

Sequence Demographics Phenotype
ri a1 a2 a3 Age Sex Ethnicity Cancer
1 CC AG AA . . . 54 M Caucasian Positive
2 CA - TA . . . 50 F Asian Negative
3 AC AA AT . . . 35 M Hispanic Positive
4 - CT CC . . . 33 F Asian Positive

...
...

...
...

m AA GA - . . . 38 F Asian Negative

Here, we consider the queries from the analyst to be completely unknown to the

data owners. For example, a query, q can be q = {aq1, . . . , a
q
d} which can arbitrarily

cover any SNP or phenotype based on the study. Since the demographic features often

carry some importance in genomic studies [205], they can also come as additional

parameters on q. This form of input queries to DB can be perceived as ‘online’ since

the proposed differetially private algorithm handles them serially without any clue

about the subsequent queries. Therefore, the proposed privacy-preserving mechanism

is termed as an online algorithm.

6.2.2 Privacy Models

In this work, our primary privacy goal is to produce a privacy-preserving output to

GWAS results. In other words, rather than publishing the whole dataset DB, we are

targeting a privacy-preserving GWAS mechanism that outputs differentially private

results. Since this mechanism will add noise to the intermediate calculations, the
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accuracy or correctness of the private GWAS needs to be at compared against the

non-private or plaintext GWAS as well.

While considering the privacy of the genomic data in DB, two different privacy

models: a) Global and b) Local. In the global model, all data owners send their

genomics data to the Central Aggregator (CA) without any privacy guarantee over

the data. CA handles the different incoming queries from the analysts while the data

owners can become unavailable after sharing. The aggregator is trusted unequivocally

by all parties (data owners and analysts) as it is responsible for protecting the privacy

of the underlying genomics data.

On the contrary, in the local model, the data owners do not trust a central

authority over its data and guarantee privacy prior to sharing any in-between results.

Therefore, instead of the aggregator, the data owners employ a differential privacy

mechanism for each query and need to communicate with CA. For example, each

query from the analyst is propagated by CA to the individual data owners. Then, the

results for these queries are sent to CA with a privacy guarantee, which is aggregated

and returned to the analyst.

Notably, in both models, we expect the data owners and CA to be honest-but-

curious but not malicious against the protocols [206]. Since CA can be a third-party

server (e.g., cloud), it will adhere to the outlined protocols but may try to learn all

possible information from incoming messages or intermediate logs from the program.

However, we did not consider any collusion attacks as we detail this in Limitation

(Section 6.5.3).

6.2.3 Genomic Data and GWAS

Our genomic data consist of nucleotides (A, T, C, or G) that are located at different

positions on a chromosome. The different variants on a specific position or locus are

called alleles. These genetic variations in DNA sequences have significant influences

on diseases and phenotypes. The most common form of genetic variants is called

Single Nucleotide Polymorphisms (SNPs), which refer to an alteration of a single

nucleotide on a DNA block, as denoted in Figure 6.2. Here, for a particular DNA,
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Table 6.3: Notations used in the proposed method

Notation Description
Ai differentially private algorithm
εi privacy budget of A
pi selection probability of A
k number of queries from the analyst
n number of DP algorithms considered
m number of individuals in DB or
bi bins for online bin packing with size (0,m]
d number of SNPs per individual in DBi

we see the major allele C is replaced by A in one or both strands. Notably, this

permutation is normal and happens in every thousand nucleotides on average.

Figure 6.2: Single Nucleotide Polymorphisms (SNPs) in DNA, where C and A are
major and minor allele respectively

However, they often prove to be interesting as some of these SNPs are unique

to a population or result in a physical trait or expression. Furthermore, they are

employed to find genetic markers and identify a gene’s functions or association with

a disease. Therefore, an analyst is often interested in whether a target SNP (i.e.,

SNP1) is correlated with a specific disease.

Genome-Wide Association Studies (GWAS ) are statistical tests on genomic data

that answer the questions mentioned above, like susceptibility towards a particular

disease or physical traits by analyzing these genetic variations. For example, GWAS

on breast cancer will require a dataset with the case, control individuals (with/out
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disease), and the targeted SNPs, which are suspected to be associated with the

disease. Here, the number of subjects or individuals in the dataset is crucial as it leads

to a more reliable and robust result from the underlying statistical tests. Therefore,

researchers tend to collect or utilize the largest available dataset on specific SNPs for

their desired analysis.

In this chapter, we target the aforementioned statistical tests in Section 6.1.2

to analyze the proposed algorithms. The details and significance of these statistical

tests in GWAS can be found in [207] as we do not discuss the details of these GWAS

functions in this work. However, it is noteworthy that all these statistical functions

can be decomposed into arbitrary database queries, where each query can be answered

with a DP guarantee. Therefore, the final result from the GWAS tests will be private,

and its accuracy will demonstrate the efficacy of the proposed algorithms.

6.2.4 Online Algorithms and Bin Packing

Online Algorithms deal with serial inputs that are unknown to the algorithm prior

to execution. In our problem setting (Section 6.2), the GWAS queries from the

analysts are similarly not known beforehand. Therefore, the central aggregator needs

to handle these queries in an online manner ensuring the privacy of the genomic data.

Hence, the privacy of the DP algorithm needs to be adjusted according to the serially

incoming queries as the analyst wants to retrieve arbitrary statistics from DB for

his/her exploratory ab initio study. Apart from the privacy preliminaries, we utilized

another algorithmic concept named Bin Packing:

Definition 6.2.1. (Bin Packing) In a bin packing problem with n items a1, . . . , an

where ai ∈ (0, 1], the goal is to pack them in the minimum number of bins where each

bin is of unit (1) size.

In the online version, the input items are not known initially to the algorithm as they

come serially. Fundamentally, the vanilla bin packing is an optimization problem

consisting of n items of fixed size (0, 1] and bins with a fixed capacity. It can be

formulated as a minimization problem, where we minimize the number of bins and fit
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Figure 6.3: Packing 17 items of different size (0, 1] according to next fit algorithm

every item with their variable size. In the online variant of bin packing, the sequence

of items is considered to be arriving continuously while the items’ sizes are unknown to

the algorithm. Hence, the target is to utilize the least number of bins to accommodate

these items. Notably, the offline bin packing is an NP-Hard problem [208].

In Figure 6.3, we show an online bin packing with items of {0.9, 0.3, . . . , 0.5}
sizes where the maximum capacity of a bin is 1 and item sizes are ∈ (0, 1]. The two

constraints are: a) the individual item sizes are not known prior to their arrival at

time t, and b) re-arrangement of the items are not allowed. Figure 6.3 shows an

example of the Next Fit algorithm, where only one bin is kept open at a given time.

Therefore, the current item will be stored in the already opened bin only if it had

sufficient space. For example, at t = 2 we cannot store items with size 0.3 (30% of

DB) on the first bin as it already contains items with 0.9 size. Hence, we open a new

bin and close the first bin. The leftover space 0.1 in the closed bin is not used in the

future.

On the contrary, according to the First Fit algorithm, the items are put into

the first bin that has sufficient space for it. Nevertheless, we relate the online bin

packing to our private GWAS scenario where queries (or functions) f appear online.

As with each result (even with noise), we disclose some information about our DB,
which is represented by the size of that particular item. Here, items are the equivalent

of online queries. Therefore, we can quantify the privacy loss for each GWAS query

based on the number of opened bins.
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6.3 Methods

In this section, we discuss our differentially private (DP) mechanisms for different

GWAS settings. As our proposed methods are generalizable for GWAS studies

requiring statistical queries, we divide the proposed methods into three parts: a)

the generalized GWAS mechanism, b) Global, and c) Local Model using differential

privacy. Here, Section 6.3.1 discusses the GWAS operation along with the dataset

partition strategies while the intricacies of generating the differentially private noise

is detailed in Section 6.3.2 and Section 6.3.3.

6.3.1 Differentially Private GWAS

6.3.1.1 Dataset Partition

The genomic datasets contain some demographic features (i.e., age, sex), which can be

utilized in the genomics association study. Therefore, prior to the privacy-preserving

mechanism, we partition the dataset based on the available different demographic

attributes on the dataset. For example, individuals aged between 50 to 60 can be

in one group. Here, this grouping (age 50-60) is done according to the histogram

or frequency of the individuals available in the dataset. These partitions are also

extended on composite attributes like age 50-60, male and Hispanic.

The dataset partitioning is a preprocessing step that is executed before any

GWAS queries are considered. As the researchers specify their inclusion criteria

for their GWAS study and only if their criteria match the dataset partitions, it is

considered for the analysis. Notably, the query criteria can lie between multiple

groups, in which we consider all such partitions.

Also, this is not a mandatory step as queries can blanket the whole DB. However,
such partitions will only allow lower privacy costs which we discuss later in Theorem

6.3.3 (Section 6.3.4.2). Therefore, the privacy analysis of the proposed algorithms

should consider the whole dataset for the worst-case scenario, which is the absolute

maximum the researcher may query for.
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Table 6.4: Contingency table for SNP1 with C and A as the major and minor allele,
respectively

Value, i Case Control Total
0 (CC) 10 12 22
1 (CA/AC) 12 11 23
2 (AA) 2 1 3
Total, S 24 24 48

6.3.1.2 GWAS Operation

GWAS functions depend mostly on the statistics retrieved from the genomics datasets

that contain different SNPs. During this process, a summary or contingency table is

needed that outlines the relationship of the targeted SNP and case/control variables.

For example, the GWAS contingency table will contain the different count statistics of

one (or multiple) targeted SNP(s) based on the query parameter(s) and may contain

a disease association (i.e., CATT, FET).

Table 6.4 denotes an example contingency table for SNP1 where case and controls

implies the presence or absence of the disease. It is a summarized version of the

dataset (Table 6.2) which replaces the nucleotides with their counts. For example,

if C and A are the major and minor allele for SNP1 respectively, then there are three

possible permutations (i.e., CC, CA/AC, AA) available. These combinations are

represented as 0, 1 and 2 in this table.

Following a query from the analyst, this contingency table is generated by the CA

from the underlying dataset according to the query parameters (SNP, disease etc.).

However, CA has no knowledge of these parameters or the list of the targeted SNPs.

The server will only get queries, q = {aq1, . . . , a
q
d}, sequentially and the corresponding

GWAS function. For example, if aq1 =SNP1, then CA will build Table 6.4 and later

add differentially private noise as discussed later in Section 6.3.2.

We outline an example of a contingency table for GWAS function: Cochran-

Armitage Test for Trend (CATT) which identifies whether a certain SNP is related

with a disease or not. To get the CATT statistics on SNP1 (from Table 6.2), the

frequency of the three possible alleles CC, CA/AC, and AA (or 0, 1 or 2, respectively)
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are required. CA needs to calculatem0,m1,m2 upon the arrival of the query reporting

the counts of the individuals who has these alleles on their SNP1. Furthermore, CA

also gets mcase
0 ,mcontrol

0 which represents the case-control instances. For example, in

Table 6.4, mcase
0 = 10,mcontrol

1 = 11 whereas the sums are represented as Scase =

24, Scontrol = 24. The equation for CATT is:

T =
3∑
i=1

wi(m
control
i Scase −mcase

i Scontrol),

χ2 =
T 2

V ar(T )

where wi are weights which are set as i − 1 for linear trends (co-dominant model).

Finally, CA utilizes the χ2 value to determine null or alternative hypothesis based on

a p-value test and sends the binary result to the analyst. The corresponding statistics

for the p-value test can also be sent to the analyst as they can compute the result

themselves or re-use these values for another GWAS query. Nevertheless, the values

to construct the contingency table is queried in an online manner which are unknown

to the CA beforehand.

We add differentially private noise to these count query values of alleles as the

query arrives (except randomized response in Section 6.3.3.2). Therefore, the analyst

receives a differentially private output from CA on each query. Since, CA as no clue

on the query parameters or their sequence, it is termed as ‘online’ as we propose

generalized algorithms to output privacy-preserving results.

In the global model, CA knows the original statistics (w/o noise) from the data

owners. On the contrary, the local model avoids this issue as the data owners ensure

a privacy guarantee and send noisy values to the aggregator. Here, each query is

forwarded to the data owners as they send their individual (noisy) contributions for

the contingency table. CA merely aggregates the values from the data owners, and

the further privacy-preserving mechanism is not considered.
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6.3.2 Global Model A

In this section, the proposed generalized differentially private mechanism is described

which is later extended in the local (decentralized) model in Section 6.3.3.

6.3.2.1 Initialization

The initialization step is required prior to the query execution where an ensemble

of DP algorithms is created, which collectively defines the original algorithm ABP ⊆
{A1,A2, . . . ,An}. Hence, it results in n different DP algorithmsA, where eachABP (i)

will differ in terms of their privacy budgets according to harmonic series. Details on

the privacy budget, ε is available in Section 2.2.3.3.

Harmonic distribution of budget ε: We utilize harmonic series to determine

the different privacy budgets for our ABP (i)’s. Harmonic is a divergent series, which

denotes that the partial sum of the series (of k terms) offers a finite limit [209]. The

series is defined as follows,

∞∑
k=1

= 1 +
1

2
+

1

3
+

1

4
+

1

5
+ . . .

Furthermore, the partial summation of any fixed sequential k numbers from this series

will result in a harmonic number while the infinite sum will result in ∞ (divergent

series).

The central server has a maximum and minimum privacy budget defined by

εmin, εmax > 0. We can define n different classes between this range [εmax, εmin) such

that each class, i ∈ [1, n] will be (
εmax
i+ 1

,
εmax
i

] given
εmax
i+ 1

≥ εmin. Here, each class

will have their own domain of privacy budgets and is disjoint with the preceding one.

Lemma 6.3.1 (Number of classes). For εmin, εmax > 0 and εmax ≥ εmin, there will be

n ≥ εmax − εmin
εmin

number of classes available for ABP .

Proof. In each class, the privacy budget is being reduced at most (
1

i
− 1

i+ 1
) amount.
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Thus, at nth class (i = n), the budget will be
εmax
n+ 1

which is at most εmin. Thus,

εmax
n+ 1

≤ εmin

⇒n ≥ εmax
εmin

− 1 =
εmax − εmin

εmin
.

Notably, we can replace the harmonic series values with another mathematical series

(i.e., geometric series) while defining the privacy budgets. We selected harmonic series

as it allows an uneven distribution of the ε’s. This adds different privacy classes in

our method which differ in the level of privacy and ultimately utility which we discuss

next.

Suppose we have εmin = 0.2 =
1

5
and εmax = 1, hence n ≤ 1− 0.2

0.2
= 4.

Therefore, we will have 4 classes of privacy budgets to pick where the maximum

and minimum is defined as, {(1

2
,
1

1
], (

1

3
,
1

2
], (

1

4
,
1

3
], (

1

5
,
1

4
]}. Here, the first class will

have a εmin and εmax as
1

2
and 1, respectively.

Ensemble of ABP (i): We use these categories of global privacy budget from

harmonic series to initiate different classes of DP algorithms ABP (i). Here,

ABP (1),ABP (2), . . . ,ABP (n) DP algorithms are defined that operate on ε1, . . . , εn

budgets where εi is initially chosen between [
εmax
i
,max(

εmax
i+ 1

, εmin)), at random.

There will be at most
εmax − εmin

εmin
algorithms according to Lemma 6.3.1.

The necessity of ABP (i) ensemble can be viewed as the block-stacking problem

[210] where items with the same dimensions are stacked on top of each other.

Similarly, in our scheme, we support the less noisy (and more accurate) DP algorithms

with multiple noise-prone algorithms. Therefore, the harmonic series can be replaced

with any uneven divergent series as long as it adheres to Lemma 6.3.1. Next, we

introduce the selection criteria of these algorithms upon answering each query.

Selection Probability, pi: Each DP algorithm ABP (i) will have an associated

selection probability, pi where
∑n

i pi = 1. This probability will determine if any
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particular algorithm is more likely to answer an incoming query at a given time,

t. Initially, this pi is set uniformly s. t. every algorithm has an equal chance to

answer the currently imposed query. Let the central aggregator has set εmax = 1 and

εmin = 0.2. Therefore, we will have 4 classes of DP algorithms where ε can be picked

randomly from,

ε ∈4
i=1

{[
εmax
i
,max(εmin,

εmax
i+ 1

)

)}
=

{[
1

1
,
1

2

)
,

[
1

2
,
1

3

)
,

[
1

3
,
1

4

)
,

[
1

4
,
1

5

)}

As n = 4, there will be four DP algorithms where each ABP (i) takes a random ε(i)

value from the range [εmin,max(εmin, εmax/(i+ 1))]. Now, all the selection probability

will be set uniformly as pi = 1/n = 1/4. This denotes that each algorithm ABP (i)

is equally likely at t = 0. This probability changes according to the generated noise

which we describe next.

6.3.2.2 Query Execution

After initializing all ABP (i) with {ε(i), pi}, the aggregator can answer the online

queries as they are represented as ft where t ∈ [0, k] while k is the maximum number

of queries allowed (t = 0 denotes the initialization according to Section 6.3.2.1).

Noise Addition with ε(i): For the privacy guarantee, the proposed method rely

on the Laplace mechanism as mentioned in Section 2.2.3.3. For an arbitrary query

ft(DB), we pick an ABP (i) = {ε(i), pi} based on the selection probability, pi. Now,

for an Algorithm ABP (i), Equation 2.1 will be:

ft(DB)′ = ft(DB) + Lap(∆ft/ε(i)), (6.1)

where ∆f is the sensitivity of the query and ε(i) is the predefined privacy budget for

ABP (i). According to the Laplace mechanism,
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Theorem 6.3.1 (Privacy bound for ABP (i)). Algorithms ABP (i) ∈
{ABP (1),ABP (2), . . . ,ABP (n)} individually holds ε(i) differential privacy.

The proof is available below and can be extended for n instances of ABP (i) with

the sequential composition property [77] (more detail in Section 6.3.4 and Lemma

6.3.4.2). This property defines that the n DP algorithms in conjunction also holds∑n
i=1 ε(i) differential privacy.

Proof. Let DB and DB′ are two database only differing in one row, ||DB −DB′||≤ 1

and ft is a function such that ft(DB) → Rk. If pDB(x), p′DB(x) are the density

functions of one algorithm ABP (i) with budget ε(i), then for arbitrary points z ∈ Rk

we have:

pDB(x)

p′DB(x)
=

k∏
t=1

( exp(−|ft(DB)− xt|
∆f/ε(i)

)

exp(−|ft(DB
′)− xt|

∆f/ε(i)
)

)

≤
k∏
t=1

exp(
ε(i)|ft(DB)− ft(DB′|

∆f
)

= exp(
ε(i)||ft(DB)− ft(DB′||1

∆f
)

= exp(
ε(i)

∆f
)

≤ exp(ε(i)).

Here, sensitivity ∆f ≥ 1 and ||ft(DB)− ft(DB′||1= 1 as ||DB − DB′||≤ 1.

Noise Threshold, T : We define the added noise at time t as et = ft(DB)′−ft(DB).

If this error et is greater than a predefined threshold T then we update the selection

probability of the corresponding DP algorithm ABP (i). The value of T can be set as

1/
√
m, where m is the size of |DB| [192]. If the added noise is below T , algorithm 13

does not change pi.
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Algorithm 13: Query (∆f = 1) Execution
Input: n DP algorithms ABP (i) = {ε(i), pi}, Threshold T , query ft(DB)
Output: Differential Private answer ft(DB)′

2 ABP (i)← Select one DP algorithm from ABP based on selection probability
pi

3 ε← pick ε(i) randomly from ABP (i)
4 ft(DB)′ ← ft(DB) + Lap(1/ε(i))
5 if |ft(DB)′ − ft(DB)|> T then

6 pnewi ← poldi
εmin(i)

εmax(i)
7 update← pnewi − poldi
8 foreach j ∈ [1, n] do
9 if j 6= i then

10 pnewj ← poldj +
update

n− 1
11 end
12 end
13 end

Updating Selection Probabilities: The random noise et to answer ft(DB)′ can

be high which will decrease the accuracy of the GWAS analysis. Hence, our proposed

method reduces the selection probability pi for such algorithm ABP (i), which incurs

larger noise and erroneous results. This selection probability reduction of a DP

algorithm is named as penalty hereafter.

Since the range of each DP class depends on the harmonic series with uneven

range of privacy budgets, the penalty should accurately reflect this property. In other

words, the penalty for any pi will also depend on its range
[
εmax
i
,max(εmin,

εmax
i+ 1

)

)
such that:

pnewi = poldi ×
[
1− 1

εmax/i

(
εmax
i
−max(εmin,

εmax
i+ 1

)

)]
= poldi ×

[
1− εmax(i)− εmin(i)

εmax(i)

]
= poldi

εmin(i)

εmax(i)

Here, the amount of penalty, pnewi − poldi reflects the range of the privacy budgets
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that ABP (i) operates on as it is normalized by epsilonmax. Conceptually, the range

εmax(i) − εmin(i) (penalty) for the more noisy (or lower ε’s) algorithms will be lower

than the less noisy ones. For example, for i = 0 and i = 4, the new probability

will be proportionate to
1/2

1
= 0.5 and

1/5

1/4
= 0.8, respectively. In other words, the

less noisy class (i = 0) will loose 50% of its current selection pi as more noisy class’s

(i = 4) pi will only loose 20%.

This allows the method to reuse the more private DP classes along with less noisy

ones. However, the difference of the selection probability for such penalties poldi −pnewi

are also redistributed evenly among the other class:

pnewj = poldj +
pnewi − pmini

n− 1
,∀i 6= j (6.2)

In Algorithm 13 we outline the steps for answering a query ft(DB). Here,

the update value denotes the probability that will be equally distributed in line 7.

Furthermore, the threshold T was set according to the number of individuals, 1/
√
m

which is essential in updating pi. The runtime of the query execution will be linear

to O(n) for n number of DP algorithms.

6.3.3 Local Model Al

In the local differential privacy (LDP) model, Al, we will incorporate the same ε

splitting and categorization technique, as mentioned in Section 6.3.2.1. Here, the

data owners will share individual statistics for each online query (Section 6.3.3.1) or

the whole genomics data with a privacy guarantee (Section 6.3.3.2) to the central

aggregator. We propose two randomized mechanisms to achieve such a privacy

guarantee:

6.3.3.1 Laplace Mechanism

The naive approach to achieve Al will be to extend the aforementioned method from

the global model in a local setting. Initially, the query is broadcasted to all data

owners by the central aggregator, and each owner employs the Laplace mechanism
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Algorithm 14: Randomized response on genomics data
Input: n DP algorithms Al(i) = {εi, pi}, genomics sequence of one

individual DBu from the dataset DB, Threshold T
Output: Local Differentially Private Sequence DBi

2 Al(i)← Select one DP algorithm based on pi
3 ε← pick εi from Al(i)
4 rand← uniform(0, 1)
5 noise← 0
6 foreach randomly selected individuals do

7 if rand <
1

1 + exp(ε)
then

8 SNP ← SNP ′

9 noise← noise+ 1

10 end
11 if noise > T then

12 pnewi ← poldi
εmin(i)

εmax(i)
13 update← pnewi − poldi
14 foreach j ∈ [1, n] do
15 if j 6= i then

16 pnewj ← poldj +
update

n− 1
17 end
18 end
19 end
20 end

on the count statistics. Later, the query results are accumulated by the aggregator

to output the final result. Here, the data owners will add the noise according to the

method demonstrated earlier in Algorithm 13.

However, since data owners set their different privacy budgets for their datasets,

the final output from the central party will contain more errors. Furthermore, in the

global model, only the aggregator added noise to the whole analysis, whereas in the

local model, individual owners are adding noise to the in-between results. Therefore,

the central server also accumulates all errors from the data owners, resulting in a

more erroneous analysis. Notably, the local noise is added to the contingency table,

as detailed in Section 6.3.1.
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6.3.3.2 Randomized Response

Another approach to achieve LDP is to use Randomized Response (RR) [211]. The

technique was proposed in 1965 as a statistical tool to remove potential bias and add

probabilistic noise to surveys or consensus results. Originally, for a given boolean

question, the oracle can answer in/correctly based on a random coin toss. There have

been several variants and applications of this mechanism utilized in the context of

differential privacy.

In this work, we utilize RR to manage the variable privacy budgets ε(i). In

our local model, the data owners alters the nucleotide values of the SNPs based on
1

1 + exp(ε)
probability. The algorithm 14 denotes the method where we do such

perturbation in line 8. For example, if the original SNP value was 0, it will be either

1 or 2 (with same probability) after alteration. Similar to line 5 in algorithm 13,

line 11 reduces the probability of a erroneous ε class. The noise threshold T is set as

1/
√
m where m = |DB|.

Theorem 6.3.2 (
∑n

i=1 ε(i) differential privacy). Algorithm 14 is
∑n

i=1 ε(i) differential

private.

Proof. For any local DP algorithm Al(i) following Algorithm 14 which randomly

picked an εi, it can change any SNP with p =
1

1 + exp(εi)
probability. On the

contrary, the probability for that corresponding SNP keeping its original value will

be p′ = 1− 1

1 + exp(εi)
=

exp(εi)

1 + exp(εi)
. Notably, as all εi > 0, we will have p′ > p. In

other words, the probability for a SNP to keep its original value will always be higher

as it is necessary for the accuracy of the GWAS.

Now, lets assume an input genomics sequence DBi = {SNP1, . . . , SNPn} differs
in at least one SNP as DB′i = {SNP ′1, . . . , SNPn} where SNP1 6= SNP ′1 after
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following Algorithm 14. Therefore,

P [Al(DBi) ∈ D̂B]

P [Al(DB′i) ∈ D̂B]
=
P [Al → SNP1] . . .P [Al → SNPn]

P [Al → SNP ′1] . . .P [Al → SNPn]

≤P [Al → SNP1]

P [Al → SNP ′1]
[as only SNP1 6= SNP ′1]

≤p
′

p
=

exp(εi)

1 + exp(εi)
1

1 + exp(εi)

≤ exp(εi).

As Algorithm 14 utilizes n DP algorithms with ε1, . . . , εn, according to Lemma 6.3.4.2

(composition property), it will lead to
∑n

i=1 ε(i) differentially private.

6.3.4 Privacy Composition with Online Bin Packing

The privacy loss from the proposed method can essentially be composed of summing

the εs from each query. However, in this section, we utilize a modified version of

Online Bin Packing [33] to employ the sequential and parallel composition technique

[201] to reduce the privacy loss.

6.3.4.1 Online Bin Packing

We alter the traditional bin packing problem which is discussed in Section 6.2.4. Here,

we change the size of each bin and add a new constraint. Traditionally, the bins have

a capacity of (0, 1] and items can be of {s ∈ R|0 < s ≤ 1} size. The goal of the

problem is to minimize the number of bins to fit all available items. We modified the

bin packing problem as,

Definition 6.3.1 (Modified Bin Packing). Suppose, a query q covers a disjoint

dataset sampled from the original dataset DB where it considers n′ records where

n′ ≤ |DB|. Now, for bins of maximum size |DB|, Bin Packing will require placing

these n′ items into the minimum number of bins. Additionally, same records cannot

get packed into the same bin.
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In this modified version, the bins represent the full DB, whereas the items denote

the individuals present in the dataset. Hence, we altered the bin size into (0, |DB|)
and made the items non-fractional. For example, if a query outputs n′ = |DB| (full
dataset), then it will require a whole bin to fit every item.

These modifications will allow us to use online bin packing to reduce privacy loss

via parallel composition. We can process each record from the query output (disjoint

dataset) and potentially perform dataset partitions, which we discuss in Section 6.3.1.

The last constraint does not permit the same records to be put together in the

same bin. Hence, if any bin contains a certain item (or record), it cannot hold the

same item in that bin for any of the upcoming queries. This constraint is available in

popular applications of bin packing, such as audio mixtapes or disks. For example,

no compiled mixtape will repeat any track as it will waste precious track time.

In Algorithm 15, we show the bin packing mechanism where |bi| denotes the

current size of the ith bin whereas bi(ε) is the highest privacy budget spent for all

items stored in that bin. We can pack incoming (online) items into an existing bin

only if it satisfies the three conditions. Firstly, the bin needs to have at least |n′| empty

space to accommodate the new items. Then, if bi(ε) is greater than the query’s privacy

budget, we can pack these items according to the non-repeating constraint in Line 5

of Algorithm 15.

Furthermore, the privacy budget of a bin, bi(ε) is updated if the size of the bin

|bi| is smaller than |n′| (current query size). It allows us to utilize the empty spaces

of an existing bin with lower ε. For example, with the three conditions as mentioned

above, a bin with a minimum budget bi(ε) = εmin will waste the leftover space as we

can only add items with εmin here. However, if we have a query with higher privacy

cost q(ε) > εmin and its size |n′| is larger than the bin’s current size |bi|, we can add

new items to it. Additionally, we will be updating the ε of the bin to bi(ε) = εmax.

Suppose we have a dataset containing 1000 individuals where an analyst is

interested in a set of 500 individuals, which is defined by his/her inclusion criteria.

As the dataset was partitioned earlier, the private output will be given only on this

partitioned dataset of 500 participants. If the query was answered with εmax budget

randomly, and the ids (as items) used on this query were stored to the first bin, the
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budget of the first bin b1(ε) will be set as εmax.

For the next query, the analyst queries for the other 500 individuals partitioned

from the original dataset. Suppose the query is answered with εmin randomly and

can consider packing these with the first bin. However, if there is an intersection on

one individual from the first query set with the second one, we cannot place the new

items in the same bin. Hence, in that case, a new bin is created that only contains

the intersecting item and set b2(ε) = εmin.

Now, if the next query requires any subset (|n′|< 1000), we can pack it on this

second bin, updating the b2(ε) with the query budget q2(ε) if it is larger than εmin.

Here, the first bin is completely full of 1000 items, which is the maximum capacity.

Notably, if the second query required more than 500 individuals, then a new bin was

required.

Notably, Line 3 of Algorithm 15 dictates that the bins have at least the query size

|n′| as empty space to be considered for packing. This constraint allows us to perform

the costly intersections only between the items from query and items in the bi bin.

However, this constraint can be omitted if we can pack fewer records n′′ into bi where

n′′ ∈ n′. In worst case, bi already contains n′′ and we proceed to next bin bi+1.

Nevertheless, the constraint on Line 4 and 7 only allows us to pack into the bins

with higher budgets. In summary, Algorithm 15 allows us to mix disjoint queries with

higher budgets with lower ones as we utilize sequential and parallel composition,

which is discussed next.

6.3.4.2 Privacy Analysis

Generally, privacy composition in DP algorithms denotes the sequential composition

property. For example, if a DP algorithm with ε budget is applied k times sequentially

over the same dataset DB, it will correspond to be
∑k ε differentially private.

Formally,

[Sequential Composition [77]] For k queries on DB answered with ABP (i)

algorithms each providing specific ε(i) privacy guarantee (s. t. i ∈ [1, n]), any

composition ABP = {ABP (1)(DB), . . .ABP (n)(DB)} will be
∑k

i=1 ε(i) differentially
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private. Furthermore, there is a parallel composition available where we take the

maximum privacy loss from n DP algorithms [78]. For example, we partition the

original dataset DB into k independent partitions and have DB1 . . .DBk disjoint

datasets. Now, if we apply DP algorithms with different budgets ε(i) on these

datasets, the final privacy loss will be the maximum of these individual budgets.

[Parallel Composition [78]] For k queries on disjoint {DB1, . . .DBk} ∈ DB and

DP algorithms each with ε(i) loss, the total privacy loss from ABP = {ABP (1)(DB1),

. . .ABP (n)(DBk)} will be max(ABP (ε)) where n ≤ k. We can extend this Lemma

6.3.4.2 to the following proposition:

Proposition 6.3.1 (Privacy loss of items in a bin). Each bin bi ∈ b will follow the

parallel composition and have a privacy loss of the maximum of all budgets from the

items packed in that specific bin max(bi(ε)).

Theorem 6.3.3 (Privacy bounds of Parallel Composition). For k queries, if l bins

b ∈ {b1, . . . bl} each with budget bi(ε) were employed where l ≤ k, the privacy loss

will be
∑l

i=1max(bi(ε)).

Proof. The existing bins from the online bin packing keep track of the records covered

by each query from the analysis. Here, the records do not represent the outputs of

a query but all records that were required by the incoming online queries. As the

maximum ε used for each bin represents only the privacy loss for that individual bin

(Proposition 6.3.1), collectively, all bins will fall under the sequential composition

according to Lemma 6.3.4.2.

Here, each bin denotes a copy of the full dataset without any (disjoint) partitions.

Therefore, the final privacy loss will accrue all the maximum losses from each bin

according to Proposition 6.3.1 and be
∑l

i=1 max(bi(ε)).

6.4 Results

In this section, we analyze the accuracy and utility (or accuracy) of the privacy-

preserving GWAS functions considering different settings. Specifically, we are

interested in understanding the relations among: a) global or local privacy model
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(de/centralized setting), b) accuracy of DP algorithms, and c) corresponding privacy

loss.

6.4.1 Dataset

For the first four GWAS analysis, we generated a synthetic dataset from publicly

available 1000genomes dataset [212]. We recorded the allele frequency of the

underlying population and generated random SNP values based on these ratios.

Later they were divided into case, control groups randomly and named as synthetic

data. Nevertheless, our synthetic dataset had 500 individuals with 2,000 SNPs. For

the distributed local model, we randomly split the whole dataset into three data

owners. The four aforementioned functions (LD, HWE, CATT, FET) were then

executed on this dataset in three settings–a) no noise in f(DB), b) noisy f(DB)′

with A, and c) noisy fl(DB)′ with Al. The accuracies were calculated by taking the

absolute difference of f(DB)−f(DB)′. The other three benchmarking GWASs (TDT,

EigenStrat, LMM) employed the dataset publicly available from Wang et al. [8].

6.4.2 Experimental Setting

We analyze the utility of the proposed methods in terms of accuracy and the

accumulated privacy loss from each query. Here, accuracy is defined as the frequency

of mismatches between the differentially private and non-private GWAS results. For

example, for 100 queries, if our private GWAS outputs do not agree on 10 queries with

the regular (w/o privacy) results, the accuracy will be 90%. We iterated this process

for a fixed number of times as we implement the following GWAS considering different

privacy budgets: a) Linkage Disequilibrium (LD), b) Hardy-Weinberg Equilibrium

(HWE ), c) Cochran-Armitage Test for Trend (CATT ), and d) Fisher’s Exact Test

(FET ).

Here, one example LD or HWE query from the analyst can be: ‘Does rs140068132

holds LD or HWE?’. This GWAS query will require a contingency table (Section

6.3.1.2) where we introduce the differentially private noise and calculate the outlined

statistical function. The results for these four GWAS are given as 0 or 1, which can
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denote the disease correlation with the query SNP. The accuracy of the result is then

determined by taking the absolute difference between the private and non-private

binary GWAS output. This process is represented as a single GWAS query as we

simulate 1,000 of such queries, randomly selecting a different SNP. Furthermore, as

we select the ε values randomly from the harmonic series, we iterate these thousand

queries for 10 times and report the average here.

Furthermore, three other GWAS tests were included Transmission Disequilibrium

Test (TDT ), EigenStrat, and Linear Mixed Models (LMM ) to benchmark our

algorithm with two previous works [7, 8] as their codes were readily available online.

We follow the same experimental setup from [7, 8] and compare the accuracy of

our method on the same privacy budget. One fundamental difference between the

first four and these three functions is the output retrieved from the GWAS. TDT,

EigenStrat, and LMM were used to generate a top-k SNP list, whereas previously, we

received binary outputs. Here, the accuracies were computed by considering the set

intersection between the list coming from non-private and private mechanisms.

Since our DP algorithms offer differentially private noise addition over a fixed

budget in an online query setting. This demonstrated the applicability of the proposed

method towards arbitrary GWASs. The implementation is readily available on

GitHub [213].

We run the GWAS studies for different classes as they differ on the amount of

noise it can allow into the GWAS analysis. We vary the (εmin, εmax] values of these

classes as they will demonstrate the relationship between ε and accuracy:

1. Class A: (0.5, 3] (low noise),

2. Class B: (0.02, 1] (medium noise), and

3. Class C: (0.05, 0.25] (high noise)

Here, Class B, for example, has four DP algorithms (example 6.3.2.1) where εmin
and εmax will be 0.2 and 1, respectively. The individual ε values for these four DP

algorithms are also selected randomly among the corresponding intervals according

to Section 6.3.2.
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Figure 6.4: Accuracy of GWAS (LD, HWE, CATT and FET) averaged over 1000
queries and 10 iterations with three different privacy budgets

6.4.3 Global Model

Accuracy: Our global model considers a single source of noise added by the CA

as it has a centralized trust model (Section 6.3.2). We show the results from 1000

random queries over 10 iterations for LD, HWE, CATT, and FET studies in Figure

6.4. The accuracy values over all four studies agree on the producing lower accuracy

from more noisy class. For example, Class C performed inadequately on Fisher’s

Exact Test (FET) as it attained 67.5% accuracy, which increased to 91.4% for Class

A. Similar trend is present in other GWAS studies as well. The detail of these average

accuracy values and their standard deviation from 10 separate executions are reported

in Table 6.9) as well.

Privacy: We also calculated the corresponding privacy loss to perform these

GWASs. Table 6.5 shows the average privacy loss for all three classes and four studies.

Analogous to the accuracy results in Figure 6.4, the more accurate results came at a

price incurring higher privacy budgets. Notably, we considered all queries done on the

whole dataset without any parallel composition, as discussed in bin packing (Section

6.3.4), as we wanted to portray the worst-case privacy loss.



Online Algorithm for Differentially Private Genome-wide Association Studies 149

0 0.5 1 2 3 5 7
60

70

80

90

95

100

privacy loss ε

ac
cu
ra
cy

%

LD
HWE
CATT
FET

Figure 6.5: Privacy loss and accuracy relation for LD, HWE, CATT and FET where
x-axis and y-axis denotes privacy loss ε and accuracy respectively

Table 6.5 demonstrates that the privacy losses gradually reduce from A towards

C. For example, the highest loss is 6.53 for Fisher’s test using class A. Here, losses are

also linear to the number of queries required by the underlying GWAS. For example,

CATT and FET require more queries to construct their contingency table compared

to HWE or LD as they required case, control populations. We discuss this privacy

loss in detail in Section 6.5.1.

From Figure 6.4 and Table 6.5, we see that there is reciprocal relation between

accuracy and privacy. We compile these values and show the relationship between

privacy and utility for all four GWAS studies in Figure 6.5. The figure demonstrates

the accuracy decay with a lower ε values. For example, the CATT accuracy decreases

from 98% to 83% as ε decreases by 5.57. Similar downward trends are visible for the

other studies as well in Figure 6.5. However, the amount of accuracy (or privacy) loss

or gain is not uniform for all GWAS, which is clear from the four studies.

Benchmarking Results: In Table 6.6, we benchmark the global model against

Simmons et al. [7] which considers privacy-preserving EigenSTRAT and LMM

studies. The authors proposed a privacy-preserving GWAS study using the DP

mechanism relying on preprocessing the genomics dataset prior to the study. These
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studies output a list of top-k SNPs for population stratification [214]. Here, we set

k = {5, 10} as we generate a top-5 or top-10 list based on our differentially private

methods.

We compare the accuracy of both top-10 lists, comparing them with the original

non-private top-10 list using the same privacy budgets. The accuracy metric here

relies on the number of matches in the top-10 most significant SNPs. For a higher

budget with class A, we have a 90% match (9 out of 10) compared to the non-private

list incoming from EigenSTRAT while our method match 8 among the top-10 on

LMM study. However, on the same dataset and privacy budget, Simmons et al. [7]

offered 80% and 70% accuracy, which is comparable to our results.

6.4.4 Local Model

In our local model, individual data owners add noise before sending intermediary

results to the CA. Compared to the global model 6.3.2, the local (decentralized

trust) model will have multiple source of noise as we discussed in Section 6.3.3.

In Table 6.7, we show the results for the local model from the Laplace mechanism

and randomized response, considering the four GWAS functions. The experimental

settings and data are the same as accuracy values are averaged on 1,000 random

queries over 10 iterations considering three different budget classes. Here, we equally

distribute the statistics among three data owners. All queries are answered from these

three separate datasets as noise values are added according to the Laplace mechanism

(Section 6.3.3.1). For the randomized response mechanism, the SNPs on the sequences

are perturbed prior to any query, and the statistics are sent to the aggregator (Section

6.3.3.2).

Analogous to the earlier results from the global model, higher privacy budgets

lead to a more accurate study, whereas the lowest budgets are erroneous. For example,

even with the highest budget in HWE analysis, Laplace and RR both gained around

81% and 86% accuracy. However, accuracy from the Laplace mechanism and RR is

apparent for multiple studies as RR performed better in most cases. The laplacian

noise addition here is the same as the global model, only differing on the number of
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sources. We show the effect of varying the number of data owners in Table 6.10. In

comparison, RR perturbs the SNPs (randomly), which is essentially different than

both of these methods. This is discussed further in Section 6.5.2.

Benchmarking Results: We also benchmark our local (and global) method with

Wang et al. [8]’s work, where the authors proposed multiple approaches (i.e., lap, exp

stats) for another GWAS: Transmission Disequilibrium Test (TDT). Similar to the

EigenStrat or LMM studies mentioned above, it also depends on a contingency table

from SNP statistics as it returns a list of top-k SNPs. We incorporate our local and

global model to the TDT queries and show the top-10 accuracy in Table 6.8.

Here, our global model performs better in comparison to lap.stats and exp stats

[8] as we have an accuracy of 72% . The accuracy results are also comparable in

the naive local setting, as it was 64% accurate. We could not benchmark our RR

technique as their proposed method used summary statistics from the genomics data,

and the original sensitive genomics sequence (data) were not available on the public

repository. As our Laplace mechanism performs better than their baseline, we argue

that the results from RR should be competitive as well.

6.5 Discussion

Experimental results in Section 6.4 demonstrate the conflict between privacy and

accuracy as it shows that accuracy improvements involves privacy loss, which is a

parameter controlled by CA or data owners. In this section, we discuss the other

intricate details of privacy and utility results and note the limitations of the work.

6.5.1 Privacy

The privacy loss from the proposed private methods are related to the total ε value as

higher values imply more privacy loss. In this work, we used for a maximum privacy

budget (or loss) of 7 for the top-k queries on TDT, EigenStart and LMM studies

(Table 6.7, 6.8). It is important to understand the implications of higher ε values as

the ideal privacy is ε = 0, which can prove to the challenging from utility standpoint.
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For example, in Definition 2.2.2, ε = 0 will result in P [A(DB1) ∈ D̂B] ≤ P [A(DB2) ∈
D̂B] which denotes that the probability for choosing DB1 (original) is equal (or less)

compared to DB2. Details on the privacy budget is further discussed in Section 2.2.3.

On the contrary, higher ε values will tilt the balance towards P [A(DB1)] which

denotes that the queries will be answered from the original dataset DB1. Therefore,

the privacy losses were higher for class A compared to B or C as the maximum

allowed ε was 3. Nevertheless, it did not take ε = 3 per query due to the random

selections, which is highlighted in Table 6.5. As HWE requires three different queries

to get the final binary result, the total loss was only 3.3 for class A. Similarly, class

C only required ε = 0.39 although the budget (εmax, εmin] were between (0.25, 0.05].

This demonstrates that the privacy loss does not accumulate εmax for all intermediate

queries but utilizes the different DP algorithms defined over (εmax, εmin].

Nevertheless, the total privacy loss for a GWAS query relies on the number of in-

between queries that are performed to get the genomics statistics (i.e., mcase
i ,mcontrol

i

as discussed in Section 6.3.1.2); not solely on the targeted accuracy. For example, the

GWAS requiring a higher number of queries will entail more privacy loss. In Table

6.5, FET or CATT requires more ε compared to LD or HWE studies under all privacy

class. As CATT and FET both require 6 count queries compared to 4 and 3 for LD

and HWE, respectively, the privacy losses are equivalent to the number of queries

performed. Therefore, for an arbitrary GWAS function, the number of queries needs

to be considered while setting the privacy loss.

6.5.2 Utility

Noise susceptibility of GWAS: In this work, we analyze utility in terms of

accuracy for all GWAS studies. As discussed earlier, the accuracy of the studies

depends on the allowed privacy loss ε. However, it is be easily seen that not all

GWAS behave similarly in terms of accuracy given the same privacy budgets. Here,

accuracy depends on the sensitivity of the functions along with the noise. For example,

CATT gains 83.6% accuracy with class C privacy, whereas FET reports around 67.5%.

Hence, the formulations for FET is more sensitive compared to CATT and needs more
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privacy budget to achieve higher accuracy.

Top-K accuracy: In both benchmark GWAS, we have comparable results with [8, 7].

Given the same privacy budgets, we perform similarly for EigenStrat and LMM as

our methods attain the lowest of 70% accuracy. For TDT, we actually perform better

than the earlier approach for top-10 queries. However, larger noise values from Class

B and C DP algorithms reduce the accuracies as they are less than 80%. Especially,

the top-10 accuracy is around 50% for some cases on TDT study, which denotes the

error susceptibility of TDT for noisy inputs. Nevertheless, with ε = 7, we attain 72%

according to the outlined setting, which is the best result compared to [8].

Accuracy in global and local model: Fundamentally, the accuracy in the local

model should be lower than the global one in our current experimental setup. As

every data owners individually add noise into the final results on the local model,

these additional noise sources adversely impact the intermediary statistics. Though

the privacy is ensured from the individual owners here, the global (/central) model

can be less error-prone as the aggregator is the only responsible party for adding

impurities into the analysis. Therefore, the global Laplacian mechanism, which has

three noise sources compared to its local counterpart (with one source), performs

better in all four GWASs. For example, FET attains 91.4% accuracy using Class

A, whereas it drops to 81% in the local method. However, Randomized Response is

different than randomized noise addition as it performed better against the Laplace

mechanism. Even on the local model, it was comparable with the global one as we

consider it as essential future work.

6.5.3 Limitations and Future Work

Privacy Preserving Data Publishing: In this work, we target the ‘Privacy-

Preserving Data Analysis’ (PPDA), where the data analysts can only present their

queries and get answers in return. However, there is another model with ‘Privacy-

Preserving Data Publishing’ (PPDP), which disseminates the whole data to the

analyst (with privacy guarantee). Here, PPDP models are more pragmatic for the

researchers compared to the results from PPDA due to their arbitrary queries, and it
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allows them to utilize the data at will. However, the privacy risks from publishing the

whole dataset are considerable for opting towards the PPDA model. Nevertheless, in

the future, we plan to extend the current models to an applicable privacy-preserving

genomics data publishing one.

Inference attack: The proposed methods are not immune to the limitations

inherited by the PPDA models [215]. For example, if an adversarial analyst repeats

certain queries, s/he can infer more information as we did not sanitize or save results

for such queries. In summary, we did not consider adversarial queries in this work

which is an important future direction.

Abort Mechanism: In this work, we did not consider an abort mechanism based on

a fixed privacy budget. For example, CA can set a constant value as the permissible

privacy loss. When a set of queries accumulate ε’s and go beyond that constant value,

CA might prefer not to answer any more queries. Similarly, on the local model,

individual data owners may also target a specific privacy loss and stop answering

any queries after that. In both cases, previously given GWAS query results can be

re-used as differentially private mechanisms are immune to post-processing attacks

[201]. Nevertheless, this is an important future direction to consider.

Theoretical guarantees over accuracy: In this work, we did not investigate any

theoretical accuracy guarantees from the GWAS functions and did not relate it to

the privacy loss. We took a more experimental approach with different statistical

studies relating the privacy and utility. In the future, we want to analyze the privacy

of genomics data given an accuracy guarantee.

Randomized Response on Global Model: As Randomized Response (RR)

performed better than the laplacian noise mechanism on the local model, in the

future, we intend to use RR primarily. However, the original genomic data from the

data owners need to be shared with CA, which will require a different trust model.

Nevertheless, it will be interesting to examine the impact of alternating SNPs on the

aggregated dataset.
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6.6 Conclusion

In this work, we have shown an efficient way of managing the privacy budgets

using an ensemble of differentially private algorithms. We further introduced online

bin packing concepts to calculate the total privacy loss effectively. Our results

for interactive or online settings show the efficacy of our scheme as it provides

almost accurate results on Genome-Wide Association Studies. In the future, we

would like to experiment on larger datasets and GWAS functions with different

sensitivity (∆f 6= 1), which will emphasize the applicability of these schemes in

realistic scenarios.

Availability of materials

The evaluation source code can be found at:

https://github.com/mominbuet/DifferentialPrivacyGWAS

https://github.com/mominbuet/DifferentialPrivacyGWAS
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Algorithm 15: Privacy composition under bin packing according to

Definition 6.3.1
Input: n′ records for query q, privacy budget used for query q(ε), and all

bins B
2 Procedure Pack(b_i,n’)
3 res ← array()
4 foreach ri ∈ n′ do
5 if ri /∈ bi and |bi|≤ |DB| then
6 insert ri → bi
7 end
8 else
9 res.add(ri)

10 end
11 end
12 return res
1 Algorithm main()

2 foreach b_i∈ B do

3 if |DB|−|bi|≥ |n′| then

4 if bi(ε) ≥ q(ε) then

5 n′ ← Pack(bi, n
′)

6 end

7 else if |bi|≤ |n′| then

8 n′ ← Pack(bi, n
′)

9 bi(ε)← q(ε)

10 end

11 end

12 end

13 if |n′|> 0 then

14 create new bin b′

15 Pack(b′, n′)

16 end
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Table 6.5: Privacy loss for each GWAS query on different budget classes without any
dataset partitions

LD HWE CATT FET
Class A 5.57 3.3 6.36 6.53
Class B 2.24 1.3 2.75 2.88
Class C 0.68 0.39 0.79 0.74

Table 6.6: Comparison between Simmons et al. [7]’s (εA = 7, εB = 5 and εC = 2) and
our method on EigenSTRAT and LMM GWAS on top-5 SNPs

Work Mechanism Budget ε
A B C

Simmons et al. EigenSTRAT 0.8 0.8 0.7
LMM 0.7 0.7 0.5

Our method EigenSTRAT 0.9 0.8 0.8
LMM 0.8 0.7 0.7

Table 6.7: Local model accuracy using both Laplace and Randomized Response
methods for LD, HWE, CATT and FET

GWAS Laplace Randomized Response
Class A Class B Class C Class A Class B Class C

LD 99.84 99.74 99.64 99.86 99.76 99.6
HWE 81.1 76.3 73.1 86.6 83.4 78.6
CATT 96.1 89.7 68.7 97.7 90.6 84.8
FET 84 72.3 53.3 86.1 81 78

Table 6.8: Benchmarking on TDT with Wang et al. [8] (εA = 7, εB = 5 and εC = 2)
on top-10 SNPs

Methods Mechanism Budget ε
A B C

Wang et al. lap.stats 0.54 0.52 0.51
exp.stats 0.57 0.56 0.52

Our method global 0.72 0.63 0.48
local (Laplace) 0.64 0.52 0.51
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Table 6.9: Average and standard deviation of the accuracy and privacy loss values of
LD, HWE, CATT and FET over 1,000 random queries and 10 iterations

GWAS Privacy
Class

Accuracy Loss
Average StdDev Average StdDev

LD
A 99.8 0.11 5.57 0.45
B 99.74 0.12 2.24 0.18
C 99.7 0.29 0.67 0.15

HWE
A 88.96 1.02 3.3 0.24
B 82.81 1.95 1.31 0.12
C 76.51 1.58 0.39 0.09

CATT
A 98.12 0.33 6.36 0.45
B 94.76 0.45 2.75 0.22
C 83.56 2.78 0.79 0.17

FET
A 91.43 0.78 6.52 0.55
B 83.97 1.71 2.88 0.32
C 67.49 2.33 0.74 0.14

Table 6.10: Local model accuracy using Laplacian methods for HWE, CATT and
FET from 3, 6, and 9 data owners

Privacy Class Class A Class B Class C
Data Owners 3 6 9 3 6 9 3 6 9
HWE 81.1 75.5 74.9 76.3 74.5 74.4 73.1 72.7 70.2
CATT 96.1 95.1 91.7 89.7 86.3 82.8 68.7 64.8 64.2
FET 84 78.9 77.8 72.3 68 63.9 53.3 53.2 50.6



Chapter 7

Generalized Genomic Data Sharing

for Differentially Private Federated

Learning

7.1 Introduction

Machine Learning (ML) techniques have penetrated every branch of computational

studies due to their capability to to find hidden patterns and general abstractions

by analyzing significant amount of data. Due to the nature of these methods, the

inherent data dependency is paramount. The higher the volume of the data and the

greater the variance in the data, the more generalized and useful abstractions these

ML models can derive. This particular aspect makes dataset construction one of

the most critical aspect of any ML system. However, dataset construction can be

tedious and costly. Therefore, it is often considered ideal if multiple parties share

their respective dataset in a federated setting to train a model.

Although sharing data to train model can help in constructing a robust model,

it is often not practical or desirable due to privacy concerns associated with the data.

For instance, sharing medical information of patients (i.e., patient’s medical history,

diagnosis) or financial information of clients (i.e., credit score, transaction history) are

highly sensitive information, hence are prohibited from being shared among parties.

159
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Most importantly, genomic data are one key area of sensitive data, revealing our

well-being and disease susceptibility in some cases are also lawfully protected from

public access. However, with the proliferation of data storage techniques, more and

more organizations have access to significant amount of user data that can be better

utilized by machine learning techniques for the advancement of healthcare research.

Federated Learning (FL) methods can reconcile between these seemingly

opposing conditions and provide a general framework which can be used to execute

ML algorithms over data that are shared among multiple parties and the subset

of data that each party holds are mutually exclusive. Federated learning can have

two settings namely trusted settings and untrusted settings. In a trusted federated

learning setting, all the parties share raw data or aggregate information about the

data or model parameters with the central entity which all the parties trust. The

central entity trains the model and shares the final parameters with all the parties.

An example of this setting is the government or national health authorities who often

collaborate with hospitals and clinical organizations in order to determine efficacy of

certain clinical trials or drug tests across a wide spectrum of population.

On the other hand, in untrusted settings, the parties don’t trust the central

entity and employ various privacy preserving methods in order to prevent leakage of

private information. A prominent example of this type of setting is when multiple

collaborating parties decide to use cloud computing platforms as central authority

to perform the model computation. Since cloud computing platforms are owned by

third parties who in most cases are not healthcare providers and are considered to

have privacy violating properties, the data shared with them are usually encrypted

(Homomorphic Encryption) or have noise added to them (Differential Privacy).

Contributions. In this work we propose a generalized data sharing framework for

Federated Learning (FL) in an untrusted setting. Our framework has two steps. The

first step comprises of differentially private feature selection and the second step is ML

analysis on the selected features. The contributions can be summarized as follows:

• We propose a privacy-preserving feature selection mechanism based on variance
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ranking of gene expression data to maximize the utility of the ML models. The

proposed mechanism is also locally implemented as individual data owners can

protect their participants before sharing their data.

• We employ a differentially private histogram-based discretization technique to

enable privacy-preserving data sharing among collaborating parties.

• We demonstrate the effectiveness of our proposed technique by experimenting

on iDASH 2020 competition dataset [216]. Our proposed method achieves 99.9%

accuracy with a privacy budget of 3 and takes 10.84 seconds for training on a

federated training setting. In this paper, we also added several other datasets

and enhanced the mechanism while testing the method on different settings.

The paper is organized as follows. Section 7.2 describes the required background

on the research problem addressed. Section 7.4 contains the proposed methods for

privacy-preserving data sharing for federated learning mechanism. Experimental

results are shown and discussed in Section 7.5 as we discuss them in Section 7.6.

Finally, Section 7.7 presents the conclusion of the work.

7.2 Preliminaries

In this section we will provide a brief overview on some of the core concepts that are

used to develop our proposed framework.

7.2.1 Differential Privacy

Differential Privacy has become the de-facto standard for privacy analysis as it

provides one of the strongest privacy guarantees. The mathematical rigor of the

privacy mechanisms in the domain of differential privacy makes them ideal to use for

data sharing under a particular privacy budget. In this section we will describe the

basics of differential privacy and explain the particular differential privacy method

we used in this work.
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Differential privacy was first proposed by Dwork et al. in [201]. Let’s assume two

databases D and D′ that differs in at most 1 entry which we denote as ‖D−D′‖≤ 1.

A randomized functionM with domain N ‖D‖ is called (ε, δ) differentially private if

the following equation holds for all S ⊆ Range(M).

Pr[M(D) ∈ S] ≤ expε Pr[M(D′) ∈ S] + δ (7.1)

Some of the most popular differential privacy mechanisms that are used in practice

are noisy max count, exponential mechanism and laplacian mechanism. In this work

we used exponential mechanism which will be described in the following paragraph.

Exponential Mechanism Exponential mechanism is a building block for

preserving privacy of queries that have utility values associated with the result of

each query. Let us assume that we have a database D on which we can run queries

where the corresponding results have a fixed range R. The utility function can be

denoted as u : D × R → R. For a fixed database, the user will prefer that the

mechanism in question returns the query result r ∈ R with the maximum utility score.

We denote exponential mechanism as ME(D,R, u) that selects output from

every possible outputs of the query with probability equal to εu(D,R)
∆u

where ε is the

privacy budget and ∆u is defined as follows:

∆u = max
rεR
‖u(D, r)− u(D′, r)‖ (7.2)

In equation 7.2 D and D′ are two databases that differ by at most one entry. In other

words, ‖D − D′‖≤ 1. Exponential mechanism provides (ε, 0) differential privacy

guarantee.

7.2.2 Federated Learning

Federated learning is a ML technique by which a model can be trained on multiple

hosts or devices using their own dataset. FL allows multiple parties to build a shared
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ML model without sharing the data and thereby addressing issues such as data

privacy, data security and data access control. Each host runs the model on their own

dataset and shares the parameters or intermediate results. In our framework design,

we used Naive Bayes Classifier and XGBoost as machine learning algorithms in the

federated setting. The following subsections give a brief details on them.

Naive Bayes Classifier Naive Bayes Classifier is a supervised ML algorithm that

uses Bayesian interpretation of probability where probability expresses the degree of

belief in an event. Naive Bayes is a conditional probability model. Let us assume that

we have a classification problem at hand with k classes {C1, C2, . . . , Ck}. Consider, a
data vector with n features, x = {x1, x2, . . . , xn}. For all k classes, Naive Bayes

classifier assigns a probability of x being a member of that class. This can be

mathematically represented by:

P(Ci | x) =
P(Ci)× P(x | Ci)

P(x)
for i ∈ [0, k) (7.3)

In a simplified manner it can be represented as posterior =
prior×likelihood

evidence . The class

with the maximum probability is considered the result of the classification problem.

Naive Bayes requires only a small amount of data to estimate the necessary parameters

for classification. This is a big advantage compared to the other ML models used in

literature.

Naive Bayes is an algorithm which is easy to implement in federated setting.

Firstly, parties calculate their individual components from their data. After that

parties can take part in a secure aggregation protocol which can be implemented

by homomorphic encryption, secure multiparty computation or trusted hardware. A

central server usually manages the aggregation part. Based on the aggregation and

subsequent computation, the final model is calculated and the result is shared with

all the parties. Several implementations have been proposed over the years for both

horizontal and vertical partitioned data. Kantarcioglu et al. proposed a distributed

learning protocol where parties compute the probability from their local data and then

use secure sum protocol to compute the global result [217]. Vaidya et al. proposed a
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similar protocol for vertically partitioned data in [218].

Random Forest and XGBoost Random Forest is a supervised learning algorithm

that can be used for both classification and regression problem. During training phase

it creates multiple decision trees from different subsets of the data. In the testing

phase, the incoming data is predicted by all the decision trees. Majority decisions

or voting method is used to reach the final decision for the class prediction. For

example, consider the example from Naive Bayes classifier section. We assume that

the random forest has b number of trees. Their class predictions are {y1, y2, . . . , yb}.
Therefore, the predicted class y is given by the following equation:

y = argmax(
k∑
j=1

b∑
i=1

(yi = j)) (7.4)

Random Forest classifier removes the bias problem of the decision trees as decision

trees tend to overfit the training data. However, they usually can not outperform

gradient boosted tree algorithms. Therefore, here, we use train gradient-boosted

decision trees using XGBoost [219] on a federated setting and also show the difference

with Random Forest algorithm.

In a federated setting, parties each train their own decision tree. These decision

trees go through some privacy preserving mechanism such as differential privacy,

homomorphic encryption or secure multiparty computation and get aggregated at

the central server. The final ensemble is shared with all the parties at the end of

the training. Several approaches have been proposed in literature which follow this

“locally learn and globally merge" pattern [220, 221, 222].

7.3 Related Works

Federated Learning (FL) frameworks symbolizes a data-distributed machine learning

training setting, where the data never leave their location on its raw form [223]. This is

a powerful mechanism as it restricts the data owners by enforcing a privacy-preserving

method over the sensitive data. Recent works demonstrate the advantages of using
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FL techniques over traditional centralized ML models for several health applications

[224]. However, FL techniques are venerable to privacy attacks including inference

[225], reconstruction [226], and backdoor [227] attack.

Therefore, there have been several academic research that considered the

contradicting notions of privacy and data dependency in constructing FL or ML

models. Abadi et al. showed a stochastic gradient descent model for preserving

privacy while training large deep learning models [228]. In this work, the authors

considered adding differentially private noise to the training process to prevent the

network from memorizing private information about data. However, implementing

the proposed method in a federated setting is a significant challenge which was

noted by the authors. Geyer et al. proposed compressive sensing to minimize error

during federated training session [229]. The authors of [229] argued that adding noise

proportionally with the number of model’s parameters can have detrimental effects

on models with large number of parameters. Moreover, the authors did not specify

any general model compression scheme for parameter sharing. Yang et al. utilized

blockchain to enable data sharing in cloud [230]. The authors in [230] used the

blockchain for the validation of the privacy budget.

However, generalized protocol for sharing private data to train machine learning

models in a federated setting is a challenging problem and not yet fully explored

in the literature. Ji et al. proposed a differentially private data sharing method

for performing logistic regression in biomedical data in [231]. The authors of [231]

modified the update step of Newton-Raphson method to perform distributed logistic

regression on both public and private data. Li et al. also proposed a differentially

private data synthesizing method that can enable data sharing among participants

[232]. However, this method was not particularly targeted towards federated learning.

Some researchers viewed differentially private histogram publication as a secure

method of sensitive data release [233]. However, the authors did not explore the

viability of this process for machine learning algorithms in a federated settings.

On the other hand, differential privacy has been previously used in genomic data

analysis by machine learning algorithms. Chen et al. proposed a differential privacy

based mechanism for protection against membership inference attack in machine
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learning algorithms in [234]. In that work the authors showed that the relationship

between privacy budget and the models in question can be represented as a log-like

curve which essentially means that the higher the privacy of the model , the lower the

accuracy will be of that model in case of genomic data. Azencott et al. explored the

trade-offs between privacy and accuracy of usage of machine learning models in patient

data in [235]. Raisaro et al. explored the genomics data privacy protection problem

using differential privacy over i2b2 dataset [204]. Olivia et al. used differential privacy

for secure federated learning over sensitive health data [236]. Their work proved that

there are practicality issues in implementation of federated learning where the number

of participants are small. There are several surveys for privacy-preserving genomic

data operation available to this day [26, 1, 186, 237] that elaborate major privacy

research areas and techniques used to tackle privacy issues concerning genomic data.

7.4 Methods

In this section, we describe the proposed methods detailing the privacy-preserving

techniques. Firstly, we describe the problem below:

7.4.1 Problem Description

In this problem, we target a federated architecture where genomic data are collected

in different location. Due to the privacy constraints, this data cannot be shared

publicly or even to other data owners. However, these data owners want to train a

ML model collaboratively that considers all data sources.

Figure 7.1 demonstrates a simplified version of the the problem scenario where

two data owners intend to jointly train a ML model based on their dataset. The

underlying ML algorithm and the hyperparameters are set as public knowledge.

However, the genomic data required for the training are sensitive and need to be

shared with a privacy guarantee. In summary, the privacy goal of this chapter can

best be described as follows: a) protect the sensitive genomic data of the participants

and b) output the final results with a privacy guarantee.
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Figure 7.1: Overview of the privacy problem and proposed solution where multiple
data owners are targeting to train a model collaboratively using arbitrary machine
learning algorithm given a privacy guarantee over the data

In this work, we are considering numeric gene expression data that are categorized

into two classes: normal and cancerous. For example, individual data owners can

have a dataset of n×m size (n records with m genes) that are divided into two label

groups. The goal here is to propose a cancer prediction model using arbitrary ML

technique that can identify cancerous gene set. In other words, given a set of gene

expression data from a new participant, the generated model should predict whether

it will progress towards breast cancer [238]. We provide an example of the BC-TCGA

dataset in Table 7.1

7.4.2 Summary of the proposed method

Our proposed method targets a privacy-preserving data sharing mechanism for any

ML task on the genomic data. Firstly, it focuses to reduce the dimension of the

data. For example, from a set of m genes, we only consider a smaller subset of size

m′. Then, we utilized Differentially Private (DP) mechanisms to discretize the gene

expression data.

The proposed DP method converts the numeric gene expression data into bins.

Lets assume, the number of bins are set as b = 10 where the minimum-maximum

range of the gene expression can be (0, 100]. Now, if a certain gene expression had

a value of 80, it will be under 8th bin given each bin has an individual range of
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Table 7.1: Gene Expression data collected at individual data owner (BC-TCGA)

# Gene1 Gene2 Gene3 . . . Genem Cancer
1 0.204 -0.242 0.591 0.538 1
2 0.869 0.878 -0.024 0.819 0
3 0.064 -0.814 0.478 0.29 1
... . . .
n -0.186 -0.746 0.701 0.234 1

(bi, bi + b] where i ∈ {0, 9}. Notably, gene expression values are numeric and the

minimum-maximum value for each gene differs. In the differentially private setting,

we select the bins using an exponential mechanism which precedes the ML training.

Such difference in the values of the genes along with the number of bins are of

much importance in our proposed method. Therefore, let us define a particular gene

expression value gi to be in the range of [gi(min), gi(max)]. Data owners are denoted

with j as each owner can have their own range of gene expression values defined

as [gji (min), gji (max)]. In specific, the subscripts define local variables whereas the

superscripts denote global ones. In Figure 7.7, we summarize the the differentially

private data sharing protocol proposed in this work.

7.4.3 Reducing the Data Dimension

The first fundamental problem to solve here is the large number of genes available

in a genomic dataset. It requires any ML algorithm to process a large dimension of

data which often results in a poor performance. This is also termed as the curse of

dimensionality [239] as some genes do not provide additional value to the analysis.

Therefore, in our first step, we reduce the number of genes that we consider for

the underlying ML algorithm. The main challenge here is to select the genes on a

federated environment. Since all data owners need to agree on the selected genes,

the simplest solution would be to share the data among themselves. However, as the

data are sensitive and individual owners are not releasing anything publicly which

will require a privacy preserving mechanism.

However, any differentially private mechanism to reduce such large dimensions
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will incur heavy privacy cost (in terms of ε). For example, if we want to use Principal

Component Analysis (PCA) to select the genes in a differentially private manner, we

will loose privacy budgets on PCA operations. Resultingly, we will end up with less

budget on the ML which is the primary target of this work. Therefore, the variance

among the different gene expression values is set as the selection criteria.

Variance among the gene values allows us to realize how these are spread with

respect to their mean value. Most importantly, it can be utilized to rank the genes and

perform set intersection among the data owners without loosing any privacy budgets.

In other words, we assume the rank of the different genes based on their variance at

their individual datasets are safe to share.

Individual data owners calculates the variances vi from the gene expressions gi
for all available genes. Then the genes are sorted according to the highest variance.

As the targeted dimension is m′, data owners select 2m′ genes for a set intersection.

Then, these 2m′ number of genes are shared among themselves and only the top m′

matching genes are selected for the ML operations.

However, for smaller m′ values, there is a risk of lower cardinality of the reduce

dataset. For example, if the data owners set m′ = 5, then there might not be a

intersection of size 5 from a set of 10 genes. Therefore, the data owners may opt for

larger multipliers for lower m′ values or sparse gene expression datasets. We discuss

this issue and potential solution in Section 7.6.

7.4.4 Privacy Preserving Mechanism

In our proposed method, the data owners publish a subset of genes for federated

learning utilizing a differentially private method. In this section, we discuss the

proposed mechanism to use exponential mechanism to privately share the gene

expression data.

The proposed mechanism will create a histogram for the subset of genes selected

from the reduced dimension (Section 7.4.4.1) that is differentially private and safe to

share. Notably, the gene expression values can vary between arbitrary ranges. Hence,

to create the histogram, the data owners need to know the min-max values and
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agree on a predefined interval that will dictate the number of bins. We propose two

approaches: a) Normalized and b) Private min-max, to retrieve the global min-max

values which are described below:

7.4.4.1 Regular min-max

In this method, the data owners agree on minimum and maximum values and the

interval required for the histogram. The predetermined min-max values will allow

them to normalize the gene expressions into a generalized range among all data

owners. Let the gene value be gi while the preset min-max values are gi(min) and

g
(
imax),

g′i =
gi − gi(min)

gi(max)− gi(min)
(7.5)

Now, if the min-max value for these normalized gene is g′i(min) and g′i(max),

respectively and the fixed interval for the histogram be agreed as an integer value

b, then, the number of bins on the histogram would be:

hi = dg
′
i(max)− g′i(min)

b
e (7.6)

Using hi, we can create b bins where each bin will contain the values from

[g′i(min) + jh, g′i(min) + jh+ h) where j ∈ [0, b− 1]. This will allow the data owners

to discretize the gene expressions into fixed bins. For example, if the normalized gene

value is g′i = 15, and b = 10 on a (0, 100] min-max range, it will be pointed to the

second bin. This process is iterated for all m′ genes selected according to Section .

Next, these fixed 0, b− 1 values will go through a differentially private process and

shared for ML algorithms.

7.4.4.2 Private min-max

Since normalization and arbitrary min-max values limits the shared data and

subsequent ML accuracies, we propose another method to generate the histograms.

In this case, we utilize a portion of the privacy budget (ε) to gather the minimum

and maximum values of the selected genes.
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Algorithm 16: Generate private histogram for gene expression dataset
Input: Gene expression dataset G of size n×m, reduced dimension size m′,

privacy budget ε
Output: Private histogram H of size n×m′

1 Use variance to select 2m′ genes from G
2 Collaborate with the other data owners and agree on m′ genes
3 ε′ ← ε
4 if private min-max then
5 ε′ ← ε/2
6 end
7 foreach gene expression g^j∈ G[m′] do
8 calculate the local min-max at individual data owner’s site
9 Use regular or private min-max (using ε′) to generate the global min and

max expression values from all data owners
10 create the local histogram H of size n×m′ using the min-max value
11 end
12 ε′ ← ε′/m′

13 foreach individual bin value b_i^j∈ H do

14 select a new bin b′ with probability ∝
exp(

ε′u(g, bji )

2∆u
)∑

i∈|b| exp(
ε′u(g′i, i)

2∆u
)

15 update bji ← b′

16 end
17 Share H for any federated learning task

Here, the data owners use a noisy-min and alternatively noisy-max algorithm to

share the private min-max values respectively [201]. As a result, the final min-max

value can be agreed from all owners and represented as ḡi(min), ḡi(max). Each data

owner can then calculate the range of the histogram following equation 7.5. However,

we alter the number of bins by 2 as,

hi = d ḡ
′
i(max)− ḡ′i(min)

b′
e (7.7)

We used b′ = b−2 as the ḡi(min), ḡi(max) values are not accurate representations

of the minimum and maximum, respectively. Due to the additional noise from the

noisy min-max procedure, we keep two extra bins that can hold gene expressions that
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Figure 7.2: Generating differentially private histogram to release genomic data for
federated machine learning algorithm

are either less than ḡi(min) or greater than ḡi(max).

7.4.4.3 Differentially Private Histogram Publishing

After creating the histogram, the data owners utilize a differentially private

mechanism to share the data for training using a specific ML algorithm. Here, we

define the utility function according to the histogram values retrieved after the min-

max procedure. Notably, this is process is added regardless of the selected method

either from Section 7.4.4.1 or 7.4.4.2. The following procedure will make sure that

the published data is private and safe to share for ML tasks.

Here, we use exponential mechanism [201] to select the bin to place a gene

expression value. The aforementioned process results in a histogram that represents

the original values but neatly packed into fixed sized bins. For example, if there are

10 bins between an input range of [0, 100], then a gene with value (normalized) of 12

will be on the second bin. With the exponential mechanism, this bin selection will

be probabilistic according to exp(εu/∆u) where u is a utility function.

The utility function u : R → R is defined as the opposite of the absolute distance

between a particular bin number and the exact one. Considering the earlier example,

the gene expression value 12 has a distance of 3 with the 4th bin. Therefore, for a

total of 10 bins the utility of the 4th bin is considered as 7 whereas the first bin is 10.

Calculating the scores of all the candidate bins, exponential mechanism selects
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a bin b′i according to the following probability:

p(bi) =
exp(

ε′u(g, bi)

2∆u
)∑

i∈|b| exp(
ε′u(g′i, i)

2∆u
)

(7.8)

We are using ε′ here which is split among the m′ dimensions. Notably, for private

min-max 7.4.4.2 operation, ε is further split into two as we one half is used to retrieve

the min-max values whereas the other half is used to generate the private histogram.

The sensitivity of the utility function u is set as 1as it is represents a histogram query.

We outline the process in Algorithm 16.

In Figure 7.2 we depict this mechanism where the inputs are numeric values of

size n × m′. Using Algorithm 16, the data is discretized into fixed range of values.

This private histogram is later shared for the federated learning mechanism described

below.

Privacy Analysis The privacy of the proposed mechanism relies on the privacy

budget ε set by the individual data owners. In our proposed privacy preserving

method, there are two specific places where we spend the privacy budget ε: Firstly,

to select the m′ genes according to private min-max mechanism (line 9). However,

if the data owners normalize their data and utilize the regular min-max method, we

do not spend any ε in this step. The main consumer of the budget would be the

exponential mechanism as shown in line 14 of algorithm 16. Therefore, we prove the

following by composition,

Theorem 7.4.1 (Differential privacy proof). The proposed mechanism is ε-

differentially private.

Proof. Lets assume that the data owners use the private min-max mechanism. Here,

the data owners use a portion of their privacy budget ε′ = ε/2 to generate a noisy

version of the gene expression. Noisy min-max method uses a Laplacian mechanism

which adds probabilistic random noise to the original data. Since the noise is

generated according to ε′, we can state that the private min-max mechanism is ε′-
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Table 7.2: Different experimental parameters considered in this work

Dataset ML Methods budget ε dimensions
BC-TCGA Naive Bayes 10
GSE2034 Random Forest 20
GSE25066 -

[0.5, 1, 3, 5, 10]
50

differentially private (according to [201]).If the data owners are using the regular

min-max method, then no ε is spend in the dimension reduction phase (ε′ = 0).

The remaining budget ε′ = ε − ε′ is split among the top-m′ genes such as,

ε′ = ε′/m. Since we use the exponential mechanism to discretize the data, that

mechanism would be ε′-differentially private as well. Therefore by composition, we

have ε/2 + m′ε/(2m′) = ε budget spent which proved that the proposed mechanism

is ε-differentially private.

7.4.5 Federated Learning Mechanism

The private histogram generated at individual data owners are then utilized for

federated learning. In this work, we utilize with three different ML algorithms: a)

Naive Bayes Classifier, b) Random Forests and c) gradient boosted decision trees with

XGBoost [219] to validate the efficacy of the proposed method.

In Figure 7.7, we depict the privacy preserving mechanisms to generate the

histogram that is utilized on the machine learning algorithms. Here, the data owners

perform the same steps and share only the summary statistics with a differential

privacy guarantee to generate the final dataset. This aggregate data is only forwarded

to the ML operation. For example, the statistics required for the Random Forest and

Naive Bayes are initially done at the owner’s premises (on private data) and then

shared among themselves for the final result. For XGBoost, data owners share the

private histogram data which is used to train the gradient boosted decision trees.

Nevertheless, in all cases, we select one data owner to be the aggregator of these

in-between outputs.

Since the underlying histogram data is differentially private, the local statistics

are safe to share. Therefore, we do not add any additional privacy-preserving
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Figure 7.3: Accuracy difference with different privacy budgets and methods with a
fixed reduced dimension m′ = 20

mechanisms to further convolute the results. However, since we are proposing a

private generalized data sharing mechanism, the ML algorithms are not limited to

the ones experimented in this work. We can use the same data in different ML pipeline

in a federated setting and achieve privacy over the local data produced at different

owner.

7.5 Results

In this section, we describe the results varying several parameters. Since the proposed

method is a generalized data sharing mechanism for down the line ML applications,

we experiment with different settings as portrayed in Table 7.2. We utilized AWS

cloud machines over us-east-1 and us-west-1 regions to conduct the Wide Area

Networks (WAN) experiments. The average latency between the servers were around

62 milliseconds. The implementations is written in python which is freely available

at [240].
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7.5.1 Dataset and Experimental Setup

Since the problem is conceptualized from iDASH 2020 competition [216] which tested

the proposed solutions with a single dataset: BC-TCGA [241]. However, we utilized

two more breast cancer datasets that was publicly available. These additional datasets

allowed us to test the generalization of the proposed method.

1. BC-TCGA: 17,814 genes with 424 positive labels and 50 negative labels

2. GSE2034: 12,634 genes with 144 and 84 positive and negative patients,

respectively

3. GSE25066: Similar dataset with 17 negative and 100 positive instances

We use a 10-fold cross validation set for the accuracy results. The training data

for the ML models were randomly selected according to a 80:20 split where 80% of

the data were used in training. Since the positive and negative number of records

are imbalanced in all three datasets, we created balanced sets with equal amount of

positive-negative labels for testing first. The training data were split equally into

two for both Naive Bayes and Random Forest (trained with XGBoost) in a 2-party

setting.

We also experiment with different parameters, privacy budget ε, data dimension

m′ and privacy preserving min-max method (Section 7.4.4.1 and 7.4.4.2). We set the

size of the bins as 10 while normalizing the data between [0, 100] for regular min-max

(Section 7.4.4.1). We outline these settings in Table 7.2.

7.5.2 Area Under Curve (AUC)

As the outlined ML algorithms will be binary classifiers, we will use Area Under Curve

(AUC) as the primary accuracy metric to judge the models. Since AUC consider

True Positive and False Positive rates (TPR and FPR) to create the curve (receiver

operating characteristic), it genuinely depicts the picture of a binary classifier. It

selects different thresholds from [0, 1] and calculates the TPRs and FPRs.
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Figure 7.4: AUC results for Naive Bayes, Random Forest and XGBoost on different
ε values (m′ = 20) with custom historgram

Here, an AUC value of 1 is the highest meaning that the model is accurately

predicting all data instances for all thresholds. On the other hand, an AUC

≤ 0.5 reveals that the model is no better than a random coin toss for any binary

classification. For example, a binary classifier always outputs positive value for all

data points and can never classify the negative instances. AUC metric will reveal such

behavior with lower scores since the false positive rates will be higher. Therefore, AUC

allows us to measure the TPR and FPR combinedly which is essential in this problem.

In Figure 7.3, we depict the relation between privacy budget, ε and Area Under

Curve (AUC) for different methods (regular vs private min-max and Naive Bayes vs

XGBoost ). In Figure 7.3 a, we show the difference of regular and private min-max

method, contributing to the AUC values using Naive Bayes algorithm. It shows that

private min-max method provides higher AUC values for the BC-TCGA dataset.

The reduced dimension is set to be m′ = 20 for this experiment. Figure 7.3 b
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depicts similar experiment replacing Naive Bayes with XGBoost trained Random

Forest algorithm. It shows that that XGBoost method performs better and can

deliver maximum AUC for as low ε value of 5.

In Figure 7.4, we compare the ML training algorithm: Naive Bayes and XGBoost

for different ε values. Here, we use the custom histogram since its performance was

better than the regular one and tested how good these algorithms performed based

different privacy budget. Since we propose a generalized DP mechanism to share

genomic data, arbitrary ML algorithms are better suited to test the quality of the

privacy-preserving mechanism. The maximum accuracy was achieved by XGBoost of

0.92 AUC whereas the baseline accuracies (w/o privacy) were beyond 0.9 Notably,

the competition results are based on Naive Bayes which is available on Table 7.4.

We also conducted an experiment on the size of the reduced dimensionm′ ranging

from 5 to 100 that is available in Figure 7.5. We utilize a budget of ε = 5 for both

Naive Bayes and XGBoost with m′ = {5, 10, 20, 50, 100} and depict the AUC values

on the y-axis. It seems that larger m′s does not provide higher accuracy which is

discussed in Section 7.6.

7.5.3 Execution Time

The execution time is split into two parts: a) Training and b) Testing. Notably, the

privacy preserving mechanism only effects the training part which is scrutinized more

carefully. In Figure 7.6, we depict the training execution time, changing the reduced

dimension m′ for both Naive Bayes and XGBoost . We utilized two network setting

here: a) Same Machine and b) Wide Area Networking (WAN). In our first setting,

both parties were setup on the same machine. This was done to check the execution

time of the proposed algorithm without any network latency. On the other hand,

one party was setup on a AWS Cloud (c5.xlarge instance) in us-east-1 region and the

other one on Manitoba, Canada during our WAN experiment. The average latency

between these machines were 38ms. We see that the network communication delays

the execution due to the latency.
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Table 7.3: AUC forGSE2034 andGSE25066 datasets using Naive Bayes and Random
Forest on different parameters such as reduced dimension m′ ∈ {20, 50} and privacy
budget ε ∈ {5, 10, 15}. The maximum baseline AUC (w/o privacy) on GSE2034 and
GSE25066 was 0.71 and 0.79 respectively.

Dataset Method m′ ε AUC Dataset Method m′ ε AUC
5 0.6 3 0.6720 10 0.64 20 5 0.70
5 0.58 3 0.70NB

50 10 0.62

NB
50 5 0.73

5 0.56 5 0.6220 10 0.66 20 10 0.66
5 0.53 5 0.53
10 0.58 10 0.64

GSE2034

RF
50

15 0.65

GSE25066

RF
50

15 0.68

7.5.4 Other Datasets

In Table 7.3, we show the results for two different breast cancer datasets: GSE

2034 and GSE 2056. Here, we intend to analyze the performance of the proposed

mechanism and test its generalizability for different dataset. We see a similar trend

in terms of accuracy as higher ε values provide higher AUCs. However, the overall

AUC values are quite low compared to the competition dataset. Also, the increasing

number of dimensions m′s, also require more privacy budgets to attain the same level

of AUC.

7.6 Discussion

The privacy problem tackled in this work was proposed in a world-wide competition

in 2020 where the organizers received a total of 55 solutions from different teams.

Apart from the academic research labs, there were several teams affiliated with the

industry also submitted their solutions. The organizers provided a sample dataset

(BC-TCGA) and set some ground rules [216]:

• All submissions must meet the differential privacy requirement under a given
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privacy budget, ε

• Solutions will be ranked based on their performances which is measured in

terms of prediction accuracy, wall-clock running time, and the communication

cost between the two-parties

• All solutions will be tested with same privacy budgets, and ranked accordingly.

If two solutions provide the same accuracy (within 1%), they will be further

compared against their execution time and then communication cost.

• The code execution must finish between 24 hours

The organizers evaluated these submitted projects with a different train-test

dataset (BC-TCGA) on a Intel Xeon E3-1280 v5 processor (4 physical cores) and

64 GB memory. The final results are published in Table 7.4 where the training

and testing times are separated. Accuracy represents the percentage of the positive

and negative classes detected accurately from a class-balanced test dataset. Here,

training times are higher than their testing counterpart as this step generates the

model in private which is later tested. Notably, the model evaluation or testing was

not required to be private since the input training data while training was already

private.

Table 7.4 presents the best comparison of our proposed method with the

other submissions. The best performing result proposed by Carpov et al. [242],

Manticore presents a real number and boolean arithmetic-based secure multiparty

computation framework. Splitting the computation between online and offline phase,

the framework performs a Principal Component Analysis (PCA) to reduce the features

and finally use logistic regression to classify the gene expressions. Importantly,

their work takes a different route of using secure-multiparty computations using

Garbled circuits whereas we employ differentially private mechanism to share the

data. Fundamentally, Carpov et al. [242] and our methods are different in terms

of underlying cryptographic techniques and approach whereas both solving the same

problem.
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Figure 7.5: Accuracy difference for Naive Bayes and XGBoost on different dimension
of data (m′) while training privately with ε = 5 or without any privacy mechanism

Figure 7.3a and 7.3b shows that the private min-max method offers better

accuracy given the same privacy budget ε. Since the private histogram constructs the

input to the federated ML, customized min-max values of the original data represents

the gene expressions better. In comparison, the regular min-max method normalizes

the data within a static range of [0, 100] for each party. Therefore, it does not adhere

to the overall min-max value from all data sources. This adversely affects the accuracy

of the underlying ML model which is clear from both Naive Bayes and XGBoost runs.

Since the output from the histogram data is categorical in nature, we see

that XGBoost trained decision trees and random forest provide better AUC values
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Figure 7.6: Execution time for Naive Bayes Random Forest, and XGBoost on different
dimension size and LAN, WAN settings

compared to the Naive Bayes method. In Figure 7.4, we see notable AUC difference

among Naive Bayes and the other methods given the same amount of privacy budget ε.

Different budgets along with fixed a data dimension of m′ = 20 shows that XGBoost

performs better than the other ML techniques. For example, with ε = 5, we see 0.91

AUC for XGBoost compared to 0.8 achieved with Naive Bayes. Notably, without any

data privacy mechanism over the training phase, we have around 0.95, 0.96, and 0.98

AUC for all three methods respectively.

Figure 7.5 depicts the same behavior in terms of AUC regarding the data

dimension, using m′ values where XGBoost provides higher AUC results. We also

show the non-private accuracy results on the same figure as it shows that larger data

dimension leaves a positive impact on the AUC values for XGBoost whereas its the
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Table 7.4: Official benchmarking results from the iDASH 2021 participating teams
showing the accuracy, privacy budgets, and execution time (in seconds) on BC-TCGA
dataset

Team Affiliation Accuracy Running Time (sec) DP CriteriaTrain Test
Manticore [242] Industry (Inpher) 100% 0.68 0.71 ε = 3
DP-FL Purdue University 99.1% 1.18 0.63 ε = 3
DSP UofManitoba 99.1% 10.84 2.67 ε = 3
FLR Industry (Owkin) 99.1% 2.26 0.6 ε = 3, δ = 1e− 05
Angle PowerFL Industry (Tencent) 100% 36.12 1.22 ε = 3, δ = 1e− 05
PrivCom Industry (Baidu) 100% 104.43 2.42 ε = 3, δ = 1e− 05
Morse Industry (Ant Group) 94.87% 168.59 1.99 ε = 3
SDS Research Industry (Samsung) 89.1% 13.47 11.74 ε = 2, δ = 1e− 05
Team GersteinLab Yale University 85.47 243.28 5.16 ε = 1

same (around 0.98) for m′ = {20, 50, 100} with Naive Bayes.

Figure 7.5 depicts the behavior for multiple data dimensionm′ as both larger and

smaller values adversely affect the results. Smaller m′s loose too many data points

whereas larger m′s consume much ε that adds excessive noise to the data.Therefore,

m′ = 20 performs well for ε = 5 compared to the other m′s. We also see the trend of

XGBoost having a better performance than Naive Bayes in terms of accuracy similar

to our earlier results.

However, given the AUC difference, we also see higher execution time for Random

Forest and XGBoost algorithm since it requires more computations compared to Naive

Bayes. For example, the execution time for Random Forest and Naive Bayes are 40

and 8 seconds, respectively on a federated training environment. The execution time

for the WAN setup also show similar trend as the latency between the two-parties

(average 38ms) slow down the training process.

Limitations: In Table 7.3, we see that our proposed mechanism is not providing the

same performance on other datasets compared to the competition one, BC-TCGA.

However, the baseline accuracy on these datasets (around 0.7 AUC) reveal that the

maximum achievable accuracy is not too different from our proposed one. We also

see that the random forest method is a bit behind in terms of AUC on GSE25066

compared to Naive Bayes which was not the case for BC-TCGA. However, the number
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of genomic expressions available in these datasets are too limited which did not allow

us to train the model properly resulting a lower AUC value.

The competition results in Table 7.4 denote our execution time to be longer than

the other participating teams. Specially our training time includes a pre-processing

step (Section 7.4.4), which guarantees the privacy of the individual gene expressions.

In future, we are trying to reduce them to become more comparable to the other

solutions.

In this work, we worked with numerical data from gene expressions and converted

them to a private histogram that can be shared for any federated learning. However,

genomic data can also represent nucleotides or Single Nucleotide Polymorphisms

(SNPs) containing only fixed digits. Here, we did not test our mechanism for other

data types (except gene expressions) where the proposed mechanism may require some

modifications. Furthermore, individual data owners may opt for different privacy

budget or levels which is not explored in this work.

We also utilized variance as a method to reduce the dimensions of the dataset.

This technique might not be optimal for other datasets or population specific gene

expression values. Therefore, a centralized dimentionality reduction needed to be

investigated. However, this can prove to be difficult as it often requires exhaustive

privacy budgets for larger datasets which we deem as an important future work.

During the feature selection (in Section 7.4.4.1), we assumed that each data

owner can fix m′ common genes from a set of 2m′ genes. However, there can be

less than m′ genes from the 2m′ set after the differentially private set intersection

operation. For example, if the gene expression variance values for both data owners

are significantly different and produce a completely different set of 2m′ genes, then

we will end up with any gene for the federated learning process. Since we cannot

spread a reasonable privacy budget ε into the thousands of genes and expect realistic

accuracy, we need to formulate a better solution. There are multiple approaches that

can be utilized to avoid this which we describe below.

Firstly, for an m′ = ∅, we can increase the multiplying factor of 2m′ to Cm′

where C is a constant that dictates how many genes are selected for the private-set

intersection. However, it increases the expense of ε as the primary goal of using a
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smaller set (i.e., 2m′) for intersection was to reduce the usage of it in the first place.

We can also perform the intersection in multiple rounds. Suppose, we have < m′ genes

after the private intersection, we resort to spend more budget ε for the next round.

The privacy budget can also be split unevenly where we use the larger portion on the

initial round and eventually spend less on the future ones [5]. However, we did not

see < m′ genes in all three genomic datasets and different m values while performing

the experiments. Nevertheless, it is an important future research direction to find x

items from multiple data owners with a differentially private guarantee [243].

7.7 Conclusion

In this chapter, we propose a privacy-preserving data sharing mechanism for a

federated learning setting. Initially, the number of genes considered for the ML

operation from a gene expression dataset are reduced. Later, we constructed

histograms using exponential mechanism on individual data sites that was used for any

further operation. We experimented with different parameters and the competition

results show the efficacy of the proposed solution. In future, we would like to extend

our dimensionality reduction mechanism and employ Principal Component Analysis

(PCA) on a privacy-preserving federated setting. It will enhance the accuracy as we

conducted some initial experiments and has shown promise on a centralize machine

learning scenario. The proposed mechanism can also be utilized into different areas.

Once good example can be the online user profile building where user’s data is

accumulated from multiple sources and privately aggregated. Different use-cases of

such models are also available in the literature: clinical trial data sharing [244], graph

sharing [245], and time series data release for traffic management [246]. In future, we

would like to test the viability of the proposed mechanism into different areas as well.



Generalized Genomic Data Sharing for Differentially Private Federated Learning 186

Data Owner 1 Data Owner 2
Input: Input:

1 : Genomic Dataset Similar Dataset
of size n1 ×m with n2 ×m
Dimension Reduction

2 : Calculate the variance vi Follow the same steps

3 : Rank the genes based on vi share 2m′ gene list generate similar rank

4 : Pick the top-m′ genes Pick the top-m′ genes
Regular Min-Max: Regular Min-Max:

5 : For each gene expression gi, Generate the min-max
generate values: values for local dataset

gi(min) and gi(max) share gi(min), gi(max) −

6 : Normalize the gene −
expr. according to eqn 7.5
Private Min-Max: Private Min-Max:

7 : For each gene expression gi, Mirror the same steps to
generate the noisy values: generate noisy min and

with ε′, ḡi(min) and ḡi(max) ḡi(min) and ḡi(max) maximum values

8 : Normalize the gene −
expr. according to eqn 7.7, −

9 : Generate the histogram for Follow the same steps
local dataset n1 ×m′ and generate n2 ×m′

using Algorithm 16 −

10 : The ML operations share nj ×m′ The final model is shared

are performed only on these among all data owners
private nj ×m′ datasets −

Figure 7.7: Summary of the differentially private data sharing methods, which is
utilized on a machine learning training mechanism



Chapter 8

Conclusion

In this thesis, different mechanisms and algorithms are presented for the privacy

of genomic data and any outputs generated from it. To this day, two conferences and

three journal articles have been published (Chapter 2, 7, 3 and 6), whereas another

journal article (Chapter 5) is currently under review. Following, we summarize the

contributions of this thesis.

8.1 Summary

In Chapter 3, we proposed generalized suffix trees for genomic data, constructing

them in parallel using external memory. Primarily, we investigated a novel hash-

based method to outsource and execute privacy-preserving queries on the GST

structure. The proposed parallel constructions and privacy-preserving queries can

also be generalized for other data structures (e.g., prefix trees [3], PBWT [31]) and

thus can be useful for different genomic data computations.

Chapter 4 discussed privacy-preserving genome data storage and querying using

a graph database. Our proposed mechanisms deem scalable compared to the previous

attempts as a result of the proposed indexing scheme. Experimental results show that

different numbers of SNPs from ∼ 700k SNPs (per person) execute within one minute

showing the feasibility of our methods. However, the encryption mechanism (offline)

is a major bottleneck of the scheme considering frequent database updates. This

187
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can be replaced by the recent state-of-the-art HE mechanisms [46, 145] to improve

efficiency.

In Chapter 5, we initially constructed the required circuits for FHE, which can

be utilized by arbitrary complex operations. Furthermore, we explored the GPU-

level parallelism for improving the execution time of the simple gate operations

and arithmetic computations. We also extended those parallel operations to string

operations and distance metrics. Experimental results show that the proposed method

is 20× and 14.5× faster than the existing technique for computing boolean gates and

multiplications, respectively.

Chapter 6 proposed an efficient technique of managing the privacy budgets using

an ensemble of differentially private algorithms. We introduced online bin packing

concepts to calculate the total privacy loss effectively. Our results for interactive or

online settings show the efficacy of our scheme as it provides almost accurate results

on Genome-Wide Association Studies. Overall, this chapter proposed a privacy-

preserving data analysis framework for genomic data.

In comparison, Chapter 7 proposed a privacy-preserving data sharing mechanism

for a federated machine learning setting. Initially, we reduced the data dimension

or the number of genes considered for the ML operation. Later, we constructed

histograms using an exponential mechanism on individual data sites that were used

for any further operation. We experimented with different parameters and the

competition results show the efficacy of the proposed solution.

8.2 Future work

Protecting Data Privacy One of the other prominent avenues we did not pursue

in this thesis is the hardware-based security techniques, where custom hardware

such as Field Programmable Gate Arrays (FPGAs) and Intel SGX processors are

employed. In our previous attempts, [200, 247] we tested Intel SGX enabled processors

to compute different statistics from genomic data under a strict security guarantee.

The capabilities of these processors have increased in the past few years alongside

the research in their real-world applications which make them a primary candidate
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to extend this work.

Along the same line, our work on GPU-based FHE can be applied to more

applications that rely on parallel bit computations. Since the framework cannot

break the barrier of the sequential computations of additions (propagate the carry

bit), we tested it on string matching problems. There are other index and search

operations on genomic data as discussed in Chapter 3 and 4 using garbled circuit-

based approach. Therefore, replacing the two-party trust setting with a secure FHE

framework can be an important future work.

Protecting Output Privacy While in terms of data privacy, new attacks are

surfacing utilizing sensitive consumer data, warranting further applications of the

privacy-preserving methods. Differential privacy provides a theoretical guarantee of

privacy with a tune-able budget around the mechanism. However, we did not focus on

Group Privacy [248, 30] as Chapter 6 and 7 mainly consider each participant’s data

as private. In future, we would like to extend the work towards the group privacy

setting. The privacy-preserving techniques proposed in this thesis are also not specific

only to genomic data. They can be generalized towards other sensitive data such as

social media [249], medical text [250, 251], and trajectory data. [252].

To conclude, security and privacy issues for any data or application cannot be

solved only by privacy-preserving mechanisms or novel algorithms. There is an an

urgent need to bridge the gap between the technologies and their proper enforcement

using privacy laws and standard policies. Cross-disciplinary research among privacy

laws and policies, computer science, and the genomic research community is much

needed in this area to propose and mandate best practices.
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