
Applications and Extensions of

The Bin Packing Problem

by

Pooya Nikbakht

A Thesis submitted to the Faculty of Graduate Studies of

The University of Manitoba

in partial fulfilment of the requirements of the degree of

MASTER OF SCIENCE

Department of Computer Science

University of Manitoba

Winnipeg

Copyright © 2021 by Pooya Nikbakht

Acknowledgements

I wish to express my deepest gratitude to my supervisor, Dr. Shahin Kamali,

who made my master’s program an experience far beyond what I expected - beyond

just studying. Even though without his generous and persistent help and support,

I would never have been able to accomplish my thesis to the level that I did, he

generously allowed me to experience a feeling of confidence and fulfillment from

every single step we took throughout the thesis process. He is a wonderful person

both professionally and personally, and I feel very fortunate to have had the chance

to learn from him. My master’s was a period of my life that I will cherish forever.

Furthermore, I thank Dr. Stephane Durocher and Dr. Helen Cameron, my

committee members; your encouraging words and detailed feedback have been very

valuable to me.

And my sincerest thanks to my wonderful wife, Elahe, who has always been a

source of selfless support and love for me. Elahe, without you and all your support,

I would not even be here to write these words; thanks for everything you have done

for me...

Abstract

Bin packing is a classic optimization problem with many applications and vari-
ants. In its basic form, the goal is to pack items of different sizes in the range (0, 1]
into the minimum number of bins of unit capacity. In doing so, an “offline” algorithm
has access to all items before packing any of them, while an “online” algorithm re-
ceives items one by one and places each item into a bin without any prior knowledge
about the forthcoming items. In this thesis, we study two variants of the bin packing
problem: square packing, and fault-tolerant bin packing. Our goal is to design the
algorithms that work well under the worst-case scenarios, where algorithms are eval-
uated based on their approximation factor (in the offline setting), and competitive
ratio (in the online setting).

In the “square packing problem”, items are squares of various side lengths, and
bins are unit squares. We study this problem in both offline and online settings.
Unlike previous work, we allow an algorithm to rotate items by any degree. This
modification is consistent with the applications of square packing in stock cutting.
We prove that the offline problem is NP-Hard and provide an asymptotic polynomial-
time approximation scheme (APTAS) under an augmented resource setting. For the
online setting, we present an online algorithm with a competitive ratio of at most
2.306. We also introduce an online algorithm with a competitive ratio of at most
1.897 for a related problem in which the goal is to pack “tans” (half-square triangles)
into unit squares.

In the “fault-tolerant bin packing problem”, items are replicas of tenants (such as
applications or databases), and bins are servers of uniform capacity. As servers fail
on a regular basis, a valid packing should tolerate the failure of a certain number of
bins. Applications of this problem are mostly online as requests for hosting tenants
are made sequentially and over time. The best existing online algorithm is known to
have a competitive ratio of at most 2, and works under a setting in which bin failures
take place after the packing process is concluded. We study a more practical setting
where the bin failures might take place during the packing process, and introduce
an algorithm with an improved competitive ratio of at most 1.75 for this general
setting.

Contents

Acknowledgements i

Abstract ii

Contents iii

List of Figures vi

List of Tables ix

1 Introduction 1

2 Literature Review 4
2.1 One-dimensional bin packing . 4
2.2 Two-dimensional bin packing . 7
2.3 Fault-tolerant bin packing . 8

3 Problem Statement and Contribution 11
3.1 Offline square packing with rotation 11

3.1.1 Contribution . 12
3.2 Online square packing with rotation 13

3.2.1 Contribution . 13
3.3 Online fault-tolerant bin packing . 14

3.3.1 Contribution . 16

4 Offline Square Packing with Rotation 17
4.1 A Review of the 1-Bin Square Packing (1BSP) Problem 18

4.1.1 NP-Hardness . 18

iii

Contents iv

4.1.2 Congruent Square Packing . 21
4.1.3 Existential Theory of the Reals 21

4.2 An APTAS for Square Packing with Rotation 22
4.2.1 Overview . 22
4.2.2 Triangle & trapezoid packing 23
4.2.3 Packing large items . 26

4.3 Packing arbitrary input . 30
4.3.1 Item classification . 30
4.3.2 Packing algorithm . 31
4.3.3 Analysis . 32

5 Online Square Packing with Rotation 34
5.1 Square-Rotate algorithm . 35

5.1.1 Item classification . 35
5.1.2 Packing regular items . 36
5.1.3 Packing tiny items . 37
5.1.4 Algorithm’s analysis . 38

5.2 Online tan packing . 42
5.2.1 Half-square-Rotate algorithm 42

5.2.1.1 Packing regular items 44
5.2.1.2 Packing tiny items 45
5.2.1.3 Algorithm’s analysis 45

6 Online Fault-tolerant Bin Packing 48
6.1 Harmonic-Stretch algorithm . 49

6.1.1 Item classification . 51
6.1.2 Maintaining bin groups . 51
6.1.3 Packing strategy . 53
6.1.4 Adjustment strategy . 57

6.2 Competitiveness of Harmonic-Stretch 60
6.3 Concluding remarks . 64

7 Conclusion 66
7.1 Future work . 67

Contents v

Bibliography 68

List of Figures

2.1 An illustration of the Primary-standby model. (a) A tenant of work-
load x has one primary replica of size x and f standby replicas of size
x/η where η > 1. (b) When a server hosting some primary replicas
fails, for each failed primary replica in the server, a standby replica is
selected as the new primary replica, and its size increases from x/η

to x. 10

3.1 If all items in the input have length
√

2/(2
√

2 + 1) ≈ 0.35, allowing
rotation allows packing 5 items per bins instead of 4. 13

3.2 Packing sequence σ = (0.4, 0.6, 0.3, 0.2), where f = 2 and η = 2.0.
Replicas of the same items have the same color; primary replicas have
the letter p. 16

4.1 To pack and cover a rectilinear polygon with a multi-set of squares,
no square should be rotated. 20

4.2 The smallest known container for placing 11 (left) and 18 (right) unit
squares into a larger square [55]. 22

4.3 (a) Applying the Nfdh algorithm for packing a right-angled triangle
T with squares of size at most δ. The algorithm places items in the
non-increasing order of their sizes in shelves that are packed from left
to right. The pink squares and the green triangles are respectively
the covering squares and triangles. (b) When no item can be packed
into T, the area of T is less than (3h/2 + a/2)δ. 24

4.4 Any trapezoid can be partitioned into four right-angled triangles. . . 25
4.5 An illustration of packing squares of side sizes at most x into the

resulted four right-angled triangles of a trapezoid with side sizes of
at most δ by applying the introduced triangle Nfdh algorithm. The
striped red lines show the wasted area of the trapezoid. 26

vi

List of Figures vii

4.6 (a) A set of 14 square items that are tightly packed into a unit square.
The numbers (i, j) for a square indicate its respective indices in πx and
πy. (b) The packing of squares into an augmented bin of size 1 + α,
where items are separated from each other by at least α/14. A square
with indices (i, j) is shifted by (iα

16 , jα
16). 27

4.7 (a) The five horizontal line segments drawn for each square to parti-
tion the unused area of a bin with m items into at most 5m trapezoids.
(b) The five trapezoids associated with square s1 after drawing the 5
lines corresponding to it. 31

4.8 (a) An illustration of Nfdh algorithm [58]: it places items in the non-
increasing order of their sizes in shelves that are packed from left to
right. The horizontal red lines show the shelves, and the diagonal red
lines illustrate the wasted area of the bin, which is at most 2x where
x is the largest side size of the squares inside the bin [58]. (b) When
we apply NFDH on relatively small items (for example, the small and
medium items in our classification, which have sizes smaller than ξ),
the bins are almost full, and the wasted area of each bin is small. (c)
Instead, if we apply NFDH on relatively large items, the wasted area
of the bin is large. 32

5.1 Placement of regular square items of class i ∈ [1, 12] in their respective
bin. It is possible to pack i square items of class i into a single square
bin [60]. 37

5.2 Placement of regular tan items of class i ∈ [1, 6] in their respective
bin. It is possible to pack i tans of class i into a single square bin [60]. 43

6.1 An illustration of the group structure for (i, j)-items where i = 2, j =

4, and f = 3: There are j primary bins each partitioned into i spots
of capacity 1/i. There are f i standby bins formed by f sets of bins,
each containing i standby bins. Each standby bin is partitioned into
j spots of size 1

j+η−1 , which leaves a reserved space for the expansion
of one standby replica of class j into the primary replica of class i. . . 53

6.2 An illustration of the Harmonic-Stretch packing for regular (i, j)-
items in a complete group, where i = 2, j = 5, and f = 3. 54

6.3 An unavailable and incomplete group of bins for (i, j)-items, where
i = 2, j = 5, and f = 3. 55

List of Figures viii

6.4 An illustration of the Harmonic-Stretch packing for placing small
items, where f = 3. 56

List of Tables

5.1 Optimal or best-known u(j) values for 1 ≤ j ≤ 36 when the goal is
to pack j identical squares of the largest size u(j) into a unit square.
Values of u(j) are the scaled values of the known results on congruent
square packing [60]. 35

5.2 A summary of item classification and details on item weights and
densities, as used in the definition and analysis of Square-Rotate. 36

5.3 All fourteen possible cases in which we have a combination of items
of class 2 (C2) and 3 (C3) together with one item x of class 1 (C1) in
a single bin B. Here, “sum of weights (W)” and “sum of areas (A)”
indicate, respectively, the total weight and area of items of the first
three classes in B. “Remaining area” is the area left in the bin that
is used for packing items of class 4 or higher. “Weight of items in the
remaining area” is an upper bound for the total weight of items of
class 4 or higher in B (these items have density no more than 1.543).
Finally, “the total weight of items in the bin” indicate the sum of
weights of all items (from all classes) in B. 40

5.4 Maximum total weight of items of size ∈ (0, 1/2) in a bin B of an
optimal packing in all nineteen possible cases in which there is no
item of class 1 but a combination of items of class 2 (C2) and 3 (C3)
in B. 41

5.5 A summary of item classification and details on item weights and den-
sities, as used in the definition and analysis of Half-square-Rotate. 43

5.6 Optimal or best-known t(j) values for 1 ≤ j ≤ 20 when the goal is
to pack j identical tan of the largest leg size t(j) into a unit square.
Values of t(j) are the scaled values of the known results on congruent
tan packing [60]. 44

ix

List of Tables x

6.1 A summary of the replica classes used in the definition and analysis
of the Harmonic-Stretch algorithm. The weight and density of
classes is used in the analysis of the algorithm. 52

For Elahe, my wife,

the most kind-hearted and humane person I know...

In honor of my father, who I lost unbelievably before my

thesis defense, who taught me the way of critical thinking,

my most valuable asset...

For my mother, to whom I owe my existence...

Chapter 1

Introduction

Bin packing is a well-known problem in optimization theory with many variants

and applications in practice. Each variant of the problem can be studied in offline

or online settings. In the most basic form of the problem, an input to an offline

algorithm is a multi-set of items with different sizes in the range (0, 1], and the

target is to pack them into the minimum number of bins of uniform capacity. An

input to an online algorithm, on the other hand, is not revealed at once, and items

appear one by one. An online algorithm can either place a revealed item in an open

bin that has enough space, or open a new bin for the item. The decisions of an

online algorithm are irrevocable in the sense that, after placing an item into a bin,

the algorithm cannot move the item into another bin. Note that the objective is the

same under both settings, that is, to minimize the number of opened bins.

The bin packing problem and almost all its variants are NP-hard problems.

Therefore, in the offline setting, approximation algorithms are devised to achieve

a polynomial running time at the expense of the optimality. A (polynomial-time)

approximation algorithm Aoff has asymptotic approximation ratio of r iff for any

input σ, we can write Aoff(σ) ≤ r Opt(σ) + c, where Aoff(σ) and Opt(σ) are,

respectively, the number of bins opened by Ao f f and Opt for packing σ, and c is

a constant independent of the length of σ. When c = 0, the ratio r is called the

absolute approximation ratio of Aoff. Our focus on this thesis is on the asymptotic

approximation ratio. If one can devise an algorithm with an asymptotic approxima-

tion ratio of 1 + ε, for some arbitrary small ε > 0, then such an algorithm is called

1

1. Introduction 2

an asymptotic polynomial-time approximation scheme (APTAS). The running time

of an APTAS needs to be polynomial in the number n of items, but it can be a

super-polynomial function of ε.

The standard worst-case measure for comparing online algorithms is the com-

petitive analysis, which compares the cost of an online algorithm with that of an

optimal offline algorithm Opt [1]. Note that Opt not only knows the entire in-

put (i.e., is offline), but also has unbounded computational power. An online algo-

rithm Aon has asymptotic competitive ratio of r iff for any input σ, we can write

Aon(σ) ≤ r Opt(σ) + c, where Aon(σ) and Opt(σ) are, respectively, the number

of bins opened by Aon and Opt for packing σ, and c is a constant independent of

the length of σ. When c = 0, the ratio r is called the absolute competitive ratio of

Aon.

Resource augmentation [2] provides a relaxed framework for the analysis of ap-

proximation and online algorithms. Let A be an approximation/online algorithm

that packs items into augmented bins of capacity 1+ α, where α > 0 is a parameter.

Under the augmented setting [3], the competitive ratio of A is the maximum ratio

(over all sequences) between the number of bins opened by A when packing items

into augmented bins of capacity 1+ α, and the number of bins opened by Opt when

packing items into unit-sized bins.

In this thesis, we consider the following two variants of the bin packing problem:

(I) We study the offline and online square packing problems, where items are

squares of various sizes and bins are unit squares. The problem has applications

in cutting stock. Unlike previous work, we allow the algorithm to rotate items

when placing them into a bin.

(II) We study the online fault-tolerant bin packing problem, where bins represent

servers of uniform capacity, and items are tenants’ replicas of different work-

load. The tenants of the server can be for example some databases or applica-

tions hosted on the server. Given that servers might fail on a regular basis, we

are interested in algorithms that tolerate the failure of up to f bins, where f is

an input parameter of the problem. To be fault-tolerant, it is necessary to pack

1. Introduction 3

at least f + 1 replicas of each item in separate bins to ensure the availability

of at least one replica at any given time.

For (I) in the offline setting, we show that the problem is NP-Hard, and then

provide an APTAS under a resource augmented setting. For (I) in the online setting,

we introduce an algorithm that provides an upper bound of 2.306 for the competitive

ratio attainable by online algorithms. We also studied and introduced an algorithm

for two other online variants of the problem where: (I-1) square items have side sizes

of at most 1/2, and (I-2) items are half-square triangles (instead of squares). Our

algorithms achieve an asymptotic competitive ratio of at most 1.732 and 1.897 for

(I-1) and (I-2), respectively.

Applications of the fault-tolerant bin packing problem are mostly online. This is

because requests for hosting tenants are made sequentially and over time. Therefore,

we study (II) only under the online setting. We introduce a more practical model

than the existing models, which assume the bin failures take place only after the

packing process. We assume that the failures might also happen during the packing

process, and for this general model, provide an algorithm with a competitive ratio of

at most 1.75. Given that our algorithm also works under the weaker model (where

bins fail only after packing is concluded), our result provides an improvement over

the best existing competitive ratio of 2 for that model.

Roadmap. We will start by reviewing the existing models and results for the bin

packing problem in Chapter 2. We do not aim to be exhaustive, but rather present

the highlights that are related to other parts of the thesis. In Chapter 3, we provide

the formal definition of the problems that we study, present the motivation behind

them, and briefly review our contribution for each problem. In each of the three

chapters that follow, we present our results in detail for one of the main problems

that we studied. Section 4 elaborates our results for the offline square packing with

rotation problem, Section 5 is related to the online square packing with rotation

problem, and Section 6 is focused on the online fault-tolerant bin packing problem.

Finally, we provide a conclusion in Chapter 7.

Chapter 2

Literature Review

In this chapter, we review the models and existing results for the variants of the bin

packing problem that are related to our research. We will start with an overview of

classic bin packing in Section 2.1. We then review the extensions of this problem

into two dimensions in Section 2.2. Finally, in Section 2.3, we will review the fault-

tolerant bin packing and its applications in cloud systems.

2.1 One-dimensional bin packing

In the classic bin packing problem, the input is a multi-set of items of various sizes

in the range (0, 1], and the goal is to pack these items into the minimum number of

unit bins of capacity 1.

In the offline setting, the bin packing problem is known to be NP-hard

(see, e.g., [4]). The hardness can be proved using a reduction from the parti-

tion problem. Yet, an Asymptotic Polynomial Approximation Scheme (APTAS)

has been introduced for the problem [5], such that, for any 0 < ε ≤ 1 and in-

put σ, there is a polynomial-time algorithm that uses at most (1 + ε)Opt(σ) + 1

bins to pack any input where Opt(σ) is the cost of Opt to pack σ. Karmarkar

and Karp [6] proposed an algorithm that opens at most Opt(σ) +O(lg2 Opt(σ))

bins to pack any σ. Rothvoß [7] designed a better solution that opens Opt(σ) +

O(lg Opt(σ) lg lg Opt(σ)) bins. It should be mentioned that these algorithms use

Linear Programming solvers, which make them undesirable in practice due to their

4

2. Literature Review 5

super-linear complexity. There are more practical offline algorithms such as First-

Fit-Decreasing (FFD) and Best-Fit-Decreasing (BFD), which first sort all

the items in decreasing order of their sizes and then use a simple greedy algorithm to

pack them. For example, FFD and BFD, respectively, apply First-Fit (FF), which

places each item into the first bin with enough space, and Best-Fit (BF), which

places each item into the fullest bin with enough space (FF and BF open a new bin

if no bin with enough empty space exists). Johnson [8] proved that both FFD and

BFD algorithms have an approximation ratio of 11/9.

The resource augmented setting for the bin packing and related problems have

also been studied in several previous works [3, 9–12]. In particular, the makespan

scheduling problem can be considered as a resource-augmented variant of the bin

packing problem (see, e.g., [13–15]).

In the online setting, the simplest algorithm, called Next-Fit (NF), main-

tains only one open bin at each time. When packing an item x, if there is enough

space for x in the open bin, Next-Fit places x in the open bin; otherwise, it closes

the current open bin and opens a new one. NF has a competitive ratio of 2 [8].

Most other algorithms can be categorized into two general groups. The first group,

called Any-Fit algorithms, are greedy algorithms that never open a new bin for an

incoming item if there is enough space in at least one of the existing bins. A sub-

group of Any-Fit algorithms, called Almost-Any-Fit algorithms, treat items like

any Any-Fit algorithm with an extra constraint: they do not pack an item into the

emptiest bin (unless there is no other choice). FF and BF are both Almost-Any-

Fit algorithms. Johnson [8] and Johnson et al. [16] proved that the competitive

ratio of all Almost-Any-Fit algorithms is 1.7.

The second group of online algorithms, known as the Harmonic-Family of algo-

rithms, classify items by their sizes and pack items that belong to each class sepa-

rately from items of other classes. In the most basic version of these algorithms [17],

we have K classes: classes C1, C2, . . . , Ck, where class Ci, for 1 ≤ i ≤ K − 1, contains

items with sizes in the range (1
i+1 , 1

i], and class CK contains items with sizes in the

range (0, 1
k]. The algorithm uses Next-Fit to pack the items of each class, and has

a competitive ratio that converges to 1.691 when K goes to infinity, which is better

2. Literature Review 6

than the competitive ratio 1.7 of Any-Fit algorithms. Many other algorithms have

been designed based on the same idea. To improve the competitive ratio, the main

strategy of these algorithms is to combine some smaller classes with larger ones so

that the wasted space in bins of the larger classes, like C1 = (1
2 , 1], is avoided. For ex-

ample, Refined-Harmonic breaks class C1 : (1
2 , 1] into two sub-classes C1a : (1

2 , α]

and C1b : (α, 1], and class C2 : (1
3 , 1

2] into C2a : (1
3 , 1 − α] and C2b : (1 − α, 1

2], where

α ∈ (1
2 , 2

3). Then, it considers a specific proportion, δ of the bins of class C1a to pack

items of subclass C1a together with items of subclass C2a. By optimizing parameters

α and δ, Refined-Harmonic achieves a competitive ratio of 1.636 [17]. Modified-

Harmonic [18] is another algorithm that combines items of class C1 : (1
2 , α] with

items of the sub-classes from different classes (not limited only to class C2 : (1
3 , 1

2]).

Modified-Harmonic-2 [18] breaks the class C1 : (1
2 , 1] into more than two sub-

classes (i.e., unlike Refined-Harmonic, it does not use only one parameter α),

leading to further combination of items. These two algorithms achieve a competitive

ratio of at most 1.61562 and 1.612, respectively [17]. Harmonic++ uses a more

complicated combination of items, improving the previous bounds by providing a

competitive ratio of 1.588 [19].

All harmonic algorithms introduced so far belong to a general framework called

Super-Harmonic for which Seiden [19] proved a lower bound of 1.58333. Heydrich

and van Stee [20] introduced a new framework called Extreme-Harmonic and

claimed a competitive ratio of 1.5813 for algorithms that belong to it. Unlike previous

harmonic algorithms that reserve a space equal to the the largest item in the class,

Extreme-Harmonic uses the exact size of the items in the range (1
3 , 1

2] to combine

with items of size larger than 1/2. Later, however, the correctness of the claimed

competitive ratio for this algorithm was questioned by Balogh et al. [21]. They also

introduced a new algorithm, called Advanced-Harmonic, which, in addition to

using the exact size of some items, allows the items of the smallest class to be placed

together with the items of all larger classes. The competitive ratio of this algorithm

is at most 1.57829 [21], which is the best existing upper bound for the online bin

packing problem.

In terms of lower bounds, Balogh et al. [22] showed that no online bin packing

2. Literature Review 7

algorithm can have a competitive ratio smaller than 1.54278. Thus, there is still a

gap of around 0.04 between the best existing upper bound and lower bound. As a

result, the online bin packing problem is still recognized as an open problem in terms

of the asymptotic competitive ratio.

2.2 Two-dimensional bin packing

There are many ways to extend bin packing to higher dimensions (see [23] for a

survey). Packing square items into square bins, called the square packing problem,

is perhaps one of the most straightforward extensions. In this problem, the goal is

to place a multiset of square items of various side lengths in (0,1] into a minimum

number of square bins of uniform side length 1 such that two square items placed in

the same bin do not overlap (but they possibly touch each other).

In the offline setting, the square packing problem is known to be NP-hard [24].

Bansal et al. [25] provided an APTAS for this problem (indeed, for the more general

d-dimensional cubes). In the online setting, the best existing upper bound [26–29]

and lower bounds [26–28, 30, 31] have been improved a few times. The best existing

algorithm has a competitive ratio of 2.1187 [29], while the best existing lower bound

is 1.7515 [31].

A generalization of square packing assumes that the items are rectangles with

width and lengths in (0, 1], while the bins are still unit squares. This problem has also

been studied extensively (see [23] for details). In some variants, rectangles are allowed

to be rotated by exactly ninety degrees (see, e.g., [32]). Another two-dimensional

variant of the bin packing problem concerns packing equilateral triangles into unit

square bins in an online manner. For this variant, Kamali et al. [33] provided an

algorithm that applies the same idea as the Harmonic family algorithms for the

classic bin packing and achieves a competitive ratio of 2.474, and proved that no

online equilateral triangle packing algorithm can achieve a competitive ratio better

than 1.509.

2. Literature Review 8

2.3 Fault-tolerant bin packing

Server consolidation is an application of the online bin packing problem in the Cloud.

Service providers such as Amazon EC2 [34] or Microsoft Azure [35] host client ap-

plications, called tenants, on their servers. Upon the arrival of a tenant, an online

algorithm assigns it to a server that has enough resources available for the tenant.

For each tenant, the service provider commits to a Service Level Agreement (SLA)

that specifies the minimum performance requirement for the tenant [36]. In particu-

lar, different tenants have various loads that are indicated in their SLAs. The goal of

the service provider is to satisfy the SLA requirements while minimizing operational

costs. To achieve this goal, Cloud providers often consolidate tenants on shared

computing machines to improve utilization [37]. Such consolidation can be modeled

via online bin packing, where each item represents a tenant and each bin represents

a computing machine (a server).

In Cloud systems, the SLA requires the service to be available and uninterrupted

at all times. Servers fail on a regular basis, however, and if a tenant is placed only in a

single server, the failure of that server interrupts the service. To avoid this situation,

client applications are often replicated in multiple servers. In order to maintain a

fault-tolerant packing where the services stay uninterrupted against the failure of up

to f services, it is necessary to replicate each tenant in at least f + 1 different servers.

In the case of database tenants, each tenant has a primary replica, which handles

read/write queries, and multiple standby replicas, which act as backup replicas in

anticipation of server failures. Naturally, the computational resources required for

hosting primary replicas are more than that of standby replicas [38].

The following two models have been studied for fault-tolerant bin packing:

1. Uniform-replica model: In this model, the load l of an arriving item is

evenly divided among all its replicas. In other words, to tolerate against failure of

up to f servers, f + 1 replicas of the same loads l/(f + 1) are maintained. This

model assumes that the bin failures occur only after all items have been packed. The

first online algorithm proposed for this model is called the Mirroring algorithm [39].

The algorithm is designed to tolerate against failure of only one server. To do so, it

considers two replicas for each item (a blue replica and a red replica), each with a

2. Literature Review 9

load equal to half of the load of the original job. As a result, the load of each replica

is in the range (0, 1
2]. The algorithm packs the blue and red replicas separately using

the Next-Fit algorithm while considering a capacity of 1/2 for each bin. When a

server fails, say a bin with red replicas fails, then the load of all its replicas will be

transferred into its corresponding mirroring bin with blue replicas. Given that the

capacity of the bin is assumed to be 1/2 at the time of packing replicas, the total

size of any pair of bins remains at most 1. Despite its simplicity, which makes it

desirable in practice, the Mirroring algorithm is not efficient because it wastes half

of the capacity of all bins. Daudjee et al. [40] analyzed this algorithm and showed

that it has a competitive ratio in the range [2.6, 3]. They also proposed a new more

efficient algorithm called Horizontal-Harmonic (HH), which works based on the

Harmonic algorithm for classic bin packing [40]. More precisely, it considers different

classes of items in terms of their sizes, and then packs each class separately, using

Next-Fit, such that each bin maintains an empty space for one item of the class

(which is used when a load is redirected from failed bins). Besides, items are packed

such that no two bins of a class share more than one item. This guarantees a valid

packing for every input. Dadujee et al. [40] showed that the competitive ratio of HH

converges to 1.59 for an arbitrarily large number of classes. They also showed that no

online algorithm can have a competitive ratio better than 10/7 for the fault-tolerant

server consolidation problem.

2. Primary-standby model: This model was introduced in 2017 [41] and ex-

tends the previous model (with replicas of equal loads) to a more practical model

that considers a real-world design assumption. In this model, each tenant is repli-

cated into multiple servers, that is, f + 1 replicas of each tenant are maintained for

handling up to f possible server failures. As before, it is assumed that all items

are first packed, and then the bin failures happen. Moreover, one replica of each

item is designated as the primary replica and the remaining replicas as standby repli-

cas. In the database tenant application, the read queries can be answered by any

replica, while the write queries should be handled by the primary replica before being

propagated to other replicas. As such, the load of the primary replica is more than

that of the standby replicas. More precisely, a tenant of workload x has a primary

2. Literature Review 10

𝑥/𝜂 𝑥/𝜂 𝑥/𝜂

. . .

primary
replica standby replicas

bins

(a)

𝑥/𝜂 𝑥/𝜂

. . .

𝑥/𝜂

𝑥

failed
primary

new
primary

𝑥/𝜂

standby replicas

(b)

Figure 2.1: An illustration of the Primary-standby model. (a) A tenant of
workload x has one primary replica of size x and f standby replicas of size
x/η where η > 1. (b) When a server hosting some primary replicas fails, for
each failed primary replica in the server, a standby replica is selected as the
new primary replica, and its size increases from x/η to x.

replica of size x and f standby replicas of size x/η where η > 1 (see Figure 2.1a).

When a server with primary replicas fails, for each failed primary replica in the

server, a standby replica should be selected as the new primary replica, increasing

the load of the selected replica from x/η to x (see Figure 2.1b). Consequently, the

placement of replicas should guarantee that no server overflow takes place after trans-

ferring the load of the failed primary replicas into the new primary replicas. Li and

Tang [42] used the ideas from the two algorithms introduced for the previous model,

namely Mirroring and HH algorithms, and proposed two online algorithms called

Mirroring and Harmonic-Shifting. They proved a competitive ratio of at most

(2η(1 + f))/(η + f) for the Mirroring algorithm, and 2 for Harmonic-Shifting.

Here, η denotes the ratio between the loads of primary and standby replicas. Later,

in [43], an algorithm with improved average-case performance was presented. Our

focus in this thesis, however, is on the worst-case performance, that is, algorithms

with improved competitive ratios.

Chapter 3

Problem Statement and

Contribution

In this chapter, we provide a formal definition of the three main problems that we

study and provide the motivation behind them. For each problem, we will briefly

review our contribution as well. We first consider the square packing problem with

rotation, a variant of the square packing problem (as discussed in Section 2.2), under

the offline setting (Section 3.1) and under the online setting (Section 3.2). We

then visit the primary-standby model of the fault-tolerant bin packing problem in

Section 3.3. Due to the online nature of its applications, we will consider this problem

only under the online setting.

3.1 Offline square packing with rotation

Two-dimensional bin packing problems (where both items and bins are two-dimensional

shapes) have many applications in practice. One application is cutting stock, where

the bins represent the stock (e.g., wood boards), and items are demanded pieces

of stock of different sizes. An algorithm has to cut the stock to provide the pieces

that match the requests. This cutting process is equivalent to placing items into

bins. Note that the goal of cutting stock is to minimize the amount of stock cut.

When the pieces of stock and demanded pieces are square-shaped, the cutting stock

is consistent with the objective of the square packing problem. Recall that, in the

11

3. Problem Statement and Contribution 12

square packing problem, the goal is to place a multi-set of square items of various

sizes into a minimum number of square bins of equal size, where items have various

side lengths of at most 1, and bins have uniform side length 1.

As reviewed in Section 2.2, despite being studied previously, the existing models

for the problem do not allow rotation of items, that is, the sides of all items should be

parallel to the edges of the bins. While this assumption makes combinatorial analysis

of the problem easier, it comes at a price. Consider, for example, an instance of the

problem formed by n items of size
√

2/(2
√

2 + 1) ≈ 0.369. If we do not allow

rotation, any bin can include at most 4 items, which gives a total cost of dn/4e.

Allowing rotation, however, 5 items fit in each bin and we can reduce the cost to

dn/5e (see Figure 3.1). As a result, by using rotation, the number of required bins

decreases by n/20, a notable saving in practice (e.g., for cutting stock applications).

Therefore, we consider the square packing problem in the presence of rotation.

More formally:

Problem 3.1. The input to the (offline) square packing with rotation problem

is a multi-set of squares (items), defined with their side lengths σ = {x1, ..., xn}, where

0 < xi ≤ 1. The goal is to pack these squares into the minimum number of squares

of unit size (bins) such that no two items overlap (while they can touch each other).

When placing a square into a bin, an algorithm can translate it to any position and

rotate it by any degree, as long as the item remains fully inside the bin.

We note that, in the offline setting, an algorithm has all the input items of σ in

hand, and then pack them into some bins.

3.1.1 Contribution

We will show that the problem is NP-hard. We then study the problem under a

resource augmented setting where an approximation algorithm can use bins of size

1 + α, for some α > 0, while the algorithm’s packing is compared to an optimal

packing into bins of size 1. Under this setting, we show that the problem admits an

asymptotic polynomial time scheme (APTAS) whose solutions can be encoded in a

poly-logarithmic number of bits.

3. Problem Statement and Contribution 13

Figure 3.1: If all items in the input have length√
2/(2

√
2 + 1) ≈ 0.35, allowing rotation al-

lows packing 5 items per bins instead of 4.

3.2 Online square packing with rotation

As mentioned in Section 3.1, cutting stock is one of the applications of the offline

square packing problem. Unlike in the offline setting, in many practical applications,

requests appear in an online manner, that is, one by one, and the stock should be cut

without any prior knowledge about the future requests. Since the cutting process

is irrevocable, such applications of the square packing problem have online nature.

As a result, we consider the online square packing problem with rotation, which is

defined as follows.

Problem 3.2. In the online square packing with rotation problem, the input

is a sequence σ = 〈x1, x2, . . . , xn〉 of squares that is revealed in an online manner.

Each value of xi ∈ (0, 1] indicates the side length of a square that needs to be packed

into square bins of unit size. When packing an item into a bin, an online algorithm

can translate the item into any position in the bin and rotate it by any degree, as long

as the item does not overlap other square items in the bin. The goal is to pack all

squares in the input sequence into a minimum number of unit bins. The decisions

of the algorithm are irrevocable and are made without knowing the values of xt′ for

t′ > t.

3.2.1 Contribution

We present an online algorithm that achieves a competitive ratio of at most 2.306.

Our algorithm works by classifying squares based on their sizes and placing the

squares of similar sizes tightly (and possibly using rotations) in the same bins. This

approach is previously used to introduced different families of Harmonic algorithms

for bin packing in both one dimension and higher dimensions. The presence of

rotations, however, makes our classification and analysis different from the previous

work.

3. Problem Statement and Contribution 14

In addition, we consider the following two related problems:

(i) a setting where the square item sizes are at most 1/2, and

(ii) a problem where items are right isosceles triangles (half-squares instead of

squares), called “tans” [44], while bins remain unit squares.

For (i), we show that our algorithm (for the online square packing with rotation

problem) achieves a competitive ratio of at most 1.732. For (ii), with a relatively

similar approach, we introduce an algorithm of competitive ratio at most 1.897.

3.3 Online fault-tolerant bin packing

Server consolidation is widely used by the service providers in the cloud systems (see

Section 2.3). There is usually a formal agreement between these service providers

(e.g., Amazon) and clients (owners of tenants (items), e.g., the companies that own

database tenants). Such an agreement requires the service to be available and unin-

terrupted at all times. In order to avoid interruptions in the case of server failures,

each tenant should be replicated in multiple servers. Such a setting can be mod-

eled by online fault-tolerant bin packing. Clearly, a good fault-tolerant bin packing

algorithm that minimizes the number of used bins (in addition to ensuring the fault-

tolerance) can help in decreasing the operational cost of a data center.

In Chapter 2, we reviewed two existing models for such settings, and observed

that the primary-standby model is a more relevant model for certain applications.

In this model, each item has one primary copy of workload x, and f standby copies

with smaller workloads of x/η (for some η > 1). Li and Tang [42] presented a

Harmonic-based algorithm named Harmonic-Shifting with a competitive ratio

of at most 2, which is the best existing algorithm for the problem. The existing

algorithms, in particular the Harmonic-Shifting algorithm, however, assume that

an online sequence is first packed and then a set of up to f bins might fail. In practice,

however, the packing is an ongoing process, and the servers might fail (and recover

later) while the input is still being revealed.

In this thesis, we study the fault-tolerant bin packing problem with the primary-

standby scheme under a more relaxed and practical setting where bins can fail and

3. Problem Statement and Contribution 15

recover in an online manner during the execution of the algorithm so that at most f

bins have failed at each given time. More precisely:

Problem 3.3. In the (f , η)-fault-tolerant bin packing problem, a sequence of

n items, each having a size in the range (0, 1], is revealed in an online manner.

When an item of size x arrives, an algorithm places a primary replica of size x and

f standby replicas, each of size x/η, into bins of unit capacity, without any prior

information about the forthcoming items. Throughout the packing process, some bins

might fail and some of the previously failed bins might recover, so that the number

of failed bins is at most f at any time. In a valid packing, a primary replica of

each item should be always available. Therefore, upon failure of a bin with a primary

replica of an item x, a standby replica of x (in a non-failed bin) needs to be selected

and promoted to become the new primary replica of x. The subsequent increase in the

size of the promoted standby replica (from x/η to x) should not cause an overload

in any bin. The objective is to maintain a valid packing with a minimum number of

bins.

We assume that the packing of the f + 1 replicas of any item takes place con-

currently, that is, no bin fails when a group of f + 1 replicas is being packed. Note

that an algorithm can change the status of a replica from primary to standby and

vice versa, but it cannot move replicas from one bin to another. In order to achieve

a valid packing, the f + 1 replicas of each item need to be packed in f + 1 different

bins; otherwise, failure of the up to f bins that contain all replicas of an item makes

that item inaccessible.

Example 3.1. Figure 3.2 illustrates an example instance of Definition 3.3. Each

item of size x has a primary replica of size x and f = 2 standby replicas of size

x/η, where η = 2.0. The packing (a) is a valid packing. The failure of any single

bin or a pair of bins at any time can be addressed by promoting a standby replica

into a primary replica without overloading any bin. For example, the arrows in the

figure point to the standby replicas that are selected to become primary replicas after

the simultaneous failure of bins B1 and B2 at time t1. The packing (b), on the other

hand, is not a valid packing of σ: if B1 and B2 fail, it is not possible to select standby

replicas to replace the failed primary replicas without overloading a bin.

3. Problem Statement and Contribution 16

0.4

0.3

0.6

0.15

0.15
0.2 0.2

0.3
0.3

0.2 0.1 0.1

B1 B2 B3 B4

0.4

0.3

0.6

0.15

0.2

0.3
0.2 0.1

B1 B2 B3 B4

0.3
0.4

0.6
0.2

p

p
p

p

X X
0.2

0.6

0.15
0.1

B2 B3 B4

0.6

X
0.4

0.3

0.2

B1

p

p

p

p

p

0.15
0.2

0.3
0.1

p

pp

p
p

p

p

t0 t1 t2

(a) A valid solution: four items are packed at time t0. Bins B1
and B2 fail at time t1, and standby replicas in other bins replace
primary replicas in the failed bins. B1 recovers at t2, and the
algorithm gives back the primary status to replicas in B1.

0.4

0.3
0.6

0.15

0.15
0.2 0.2

0.3
0.3

0.2
0.1 0.1

B1 B2 B3 B4

p

p
p

p

t0

(b) An invalid solu-
tion at time t0.

Figure 3.2: Packing sequence σ = (0.4, 0.6, 0.3, 0.2), where f = 2 and η =
2.0. Replicas of the same items have the same color; primary replicas have
the letter p.

We note that all possible inputs to the previous primary-backup model (as studied

in [41]) are only special cases for our introduced model, where up to f bins fail once

and only after all items have been packed. This implies that any algorithm for our

model is also a valid algorithm for the previous model. Similarly, given that our

model is a generalization of the previous model, an upper bound for the competitive

ratio of any algorithm under our model extends to the previous model.

3.3.1 Contribution

For the fault-tolerant bin packing problem, as defined in Definition 3.3, we introduce

an algorithm named Harmonic-Stretch that maintains fault-tolerant packings

for an online sequence of items. We prove that Harmonic-Stretch has a com-

petitive ratio of at most 1.75, which is an improvement over the competitive ratio

2 Harmonic-Shifting [45] for the previous primary-backup model. In summary,

Harmonic-Stretch is designed to work in a more general setting, and yet achieves

a better competitive ratio when compared to the previous algorithms.

Chapter 4

Offline Square Packing with

Rotation∗

In this chapter, we will study the offline square packing with rotation problem and

present our results. As introduced in Section 3.1, an instance of the offline square

packing problem with rotation is defined with a multi-set of squares-items of side

lengths at most 1. The goal is to place these squares into a minimum number of unit

square bins in a way that two squares-items placed in the same bin do not overlap, but

potentially touch each other; unlike previous work on the square packing problem,

when placing square items into square bins, the algorithm is allowed to rotate the

items by any degrees (see Definition 3.1 for a formal definition). Since the problem is

a variant of the classical bin packing problem, we refer to the square items simply as

“items” and square bins as “bins”. A square item can be recognized by its side length,

which we refer to as the size of the item. Throughout, we refer to the number of bins

used by an algorithm as the cost of the solution. As discussed in Section 3.1, allowing

item rotations can lead to considerable savings in applications such as cutting stock

where bins are identical size square-shaped pieces of stock (i.e., wood stock) and items

are demanded square-shaped pieces of various sizes (see Figure 3.1 as an example).

In Section 4.1, we review a decision problem that asks whether a multi-set of

squares can be placed into a single bin (where item rotations are allowed). We refer

∗A summary of the results in this chapter has been in published in the Proceedings of the 14th
International Conference on Combinatorial Optimization and Applications (COCOA’20) [46]

17

4. Offline Square Packing with Rotation 18

to this problem as the 1-Bin Square Packing (1BSP) problem and show that it is

NP-hard. It turns out that allowing rotation makes the problem much harder. It is

not even clear how to answer the 1BSP problem when all square items have uniform

size, as there has been little progress in the congruent square packing problem [47]

(see Section 4.1.2 for details). The source of difficulty is that it does not appear that

one can effectively discretize the problem and apply standard algorithmic techniques.

A recent study [48] shows that similar packing problems are ∃R-hard, that is, their

verification algorithms need exponential bit-precision (see Section 4.1.3 for details).

The same is likely true for the 1BSP problem.

In Section 4.2, we present our main result, which is an APTAS for the problem

under a relaxed augmented setting. Precisely, given small, constant values for ε, α >

0, we present an algorithm that runs in polynomial time and packs any input σ in

at most (1 + ε)Opt(σ) + 3 augmented bins of size 1 + α. Here, Opt(σ) denotes the

number of bins in an optimal packing of σ when packed into unit bins. The extra

space given in the augmented bins enables free translation and rotation of squares,

which ultimately allows packing items with encodable bit-precision.

4.1 A Review of the 1-Bin Square Packing (1BSP)

Problem

Given a multi-set S of squares, the 1-Bin Square Packing (1BSP) problem asks

whether items in S can be placed into a square of size c, called a container, where

translation to any position and rotation by any degree is allowed. The 1BSP problem

is a decision variant of the square packing problem introduced in Definition 3.1 (scale

everything to ensure the container has size 1). In this section, we make some basic

observations about the complexity of the 1BSP problem.

4.1.1 NP-Hardness

Many geometric packing problems are known to be NP-hard. Examples include

packing squares into squares without rotation [24], packing circles into equilateral

triangles [49], packing triangles into rectangles [50], and packing identical simple

4. Offline Square Packing with Rotation 19

polygons into a larger polygon [51]. Despite similarities, none of these results estab-

lish the hardness of the 1BSP problem. As such, we provide a proof to show the

problem is NP-hard, even if the container and all items have integer sizes. We start

with the following lemma:

Lemma 4.1. Let S be a multi-set of squares with integer side lengths and of total

area A, and let P be a rectilinear polygon of area A. It is possible to pack all squares

in S into P only if no square is rotated.

Proof. Assume S is fully packed into P, that is, P is fully covered by the squares

in S. We show that no square is rotated in such packing. We start with a simple

observation and then use an inductive argument.

Let r be an arbitrary convex vertex of P, that is, a vertex with an interior angle

of 90°. Note that there are at least four convex vertices in any rectilinear polygon.

Since P is fully covered by S, there should be a square s ∈ S that includes or touches

r. As Figure 4.1 illustrates, the only case where s remains fully inside P is when it

has a vertex located at r and has no rotation (Figure 4.1(a)); in all other cases, a

portion of s lies outside of P, which is not possible.

Given the above observation, we use an inductive argument on A to prove the

lemma. For the base of induction, when A = 1, S is formed by one square of size 1

packed into a square P of size 1. Clearly, packing S into P involves no rotation. Next,

assume we have a multi-set S of squares of total area k packed into a polygon P of

area k. Consider an arbitrary convex vertex r of P. By the above observation, r is

covered by a square s ∈ S that is not rotated. Let an integer x ≥ 1 denote the area

of s. Removing the area covered by s from P results in a packing of the multi-set

S − {s} of squares into a smaller polygon P′, where both S − {s} and P′ have area

k − x. By the induction hypothesis, none of the squares in S − {s} are rotated when

packed into P′. Given that s was not rotated either, no square is rotated in the

original packing of S into P.

Theorem 4.1. The 1-Bin Square Packing (1BSP) problem (which allows rotation)

is strongly NP-hard, even if the container and all items have integer sizes.

4. Offline Square Packing with Rotation 20

P

s
r

P

s
r

P

s
r

P

sr

P

s
r

P

s
r

(a) (b) (c) (d) (e) (f)

Figure 4.1: To pack and cover a rectilinear polygon with a multi-set of
squares, no square should be rotated.

Proof. Given a multi-set S0 of squares with integer side lengths and an integer

c, Leung et al. [24] proved that it is strongly NP-hard to decide whether S0 can

be packed, without rotation, in a square container of side length c. Refer to this

problem as the 1-bin square packing without rotation (1BSW) problem. We provide

a reduction from 1BSW to 1BSP.

Assume we are given an instance of 1BSW that asks whether a multi-set S0 of

squares can be packed into a square container B of side length c. Let u be an integer

that denotes the total area of all items in S0. Define an instance of the 1BSP problem

through a multi-set S formed as the union of S0 and c2 − u squares of unit size 1.

We show that S can be packed into B with rotation if and only if S0 can be packed

into B without rotation.

Consider a c × c grid formed on B, where the grid vertices have integer coordi-

nates. Assume S0 can be packed into B without rotation; the total area of items

in S0 is u, and the empty area in B is c2 − u. Since S0 is packed without rotation,

we can translate squares downward and towards the left such that their corners lie

on the vertices of the grid (see the proof of Lemma 3.4 in [25] for details of such

translation). The unused area in the resulting packing is formed by c2 − u grid cells

of size 1 × 1. We can use the same packing and place the small squares in S − S0 in

the empty grid cells. This gives a valid packing of S. Next, assume S can be packed

into B. Since the total area of items in S is exactly c2, there is no empty (wasted)

area in B. By Lemma 4.1, the packing does not involve rotation of any item. Since

no rotation is involved, removing unit squares in S − S0 from this packing gives a

valid packing of S0 (without rotation).

4. Offline Square Packing with Rotation 21

4.1.2 Congruent Square Packing

The congruent square packing problem, first studied by Erdős and Graham [47],

asks for the minimum size s(i) of a square that can contain i unit-sized squares.

The problem is equivalent to finding the largest value of x such that i congruent

squares of size x fit into a container of unit size. Clearly, an algorithm for the 1BSP

problem can be used to find s(i), using a binary search approach. Without rotation,

it is easy to answer if a set of congruent squares fit in a square container. Allowing

rotation, however, makes the problem harder. Despite being extensively studied (see,

e.g., [52–55]), the value of s(i) is not known for small values like i = 11. Figure 4.2

shows the packings that give the smallest known upper bounds for s(11) and (18).

We refer to the survey by Friedman [55] for more details on congruent square packing.

4.1.3 Existential Theory of the Reals

An Existential Theory of the Reals (ETR) formula can be stated as

ψ = ∃x1, . . . , xn Φ(x1, . . . , xn),

where Φ is a well-formed sentence over alphabet {0, 1, x1, . . . , xn, .,=,≤,<,∧,∨,¬} [12].

A decision problem belongs to the complexity class ∃R-complete iff it is equivalent

to deciding (in polynomial time) whether an ETR formula is true or not. In partic-

ular, these problems are ∃R-hard in that a witness, which certifies the problem is in

NP, might need an exponential number of bits in any numerical representation [12].

Abrahamsen et al. [48] have recently proved that a set of problems similar to the

1BSP problem, such as deciding whether a set of simple polygons fit into a square

container, are ∃R-hard. It is not clear, however, whether packing convex objects

(in particular squares) into a square container is ∃R-hard. Nevertheless, Erickson et

al. [12] proposed to augment a square container in order to avoid (a potential) expo-

nential bit precision for encoding the packings. They showed that if the container’s

size is augmented, where a slight perturbation is applied to the augmentation pa-

rameter (as in the smoothed analysis [56]), the bit precision for encoding a solution

is expected to be logarithmic in the input size. Our APTAS in the next section

4. Offline Square Packing with Rotation 22

Figure 4.2: The smallest known
container for placing 11 (left) and
18 (right) unit squares into a
larger square [55].

uses the augmentation of bin sizes, along with some of the ideas from [12], to ensure

logarithmic precision when packing squares into augmented bins.

4.2 An APTAS for Square Packing with Rotation

In this section, we describe an APTAS for placing square items, with rotation, into

augmented square bins. The algorithm has two constant parameters α and ε, which

are both small, positive values. The algorithm places any input σ into at most

(1+ ε)Opt(σ) + 3 augmented bins of size 1+ α, where Opt(σ) is the number of bins

in an optimal packing of σ into unit squares. Throughout, we assume the total area

of σ is arbitrarily large. Furthermore, we let ξ = ε/1081.

4.2.1 Overview

The algorithm classifies items into small, medium, and large items. The classification

is similar to the one in [25] for square packing without rotation. Medium and small

items are smaller than ξ (large items can also be smaller than ξ). Medium items have

a negligible total area. As such, we place them separately from others into a set of

at most ξ · Opt(σ) + 1 medium bins.

We place large items into augmented large bins. For that, we round up item sizes,

as suggested by de la Vega and Lueker [57], to get a constant number of possible

item sizes. The resulting instance is then packed, using an exhaustive approach,

into a minimum number of augmented bins. The extra space in the augmented bins

enables us to discretize the problem, using the ideas from [12]. We show that the

number of large bins will be no more than (1 + ξ)Opt(σ).

After placing large items, we partition the empty area in each large bin into a set

of trapezoids and show that small items can be tightly packed into these trapezoids.

4. Offline Square Packing with Rotation 23

For that, we partition trapezoids further into right-angled triangles and use the

Next-Fit-Decreasing-Height (Nfdh) algorithm of Coffman et al. [58] to pack these

triangles. If all small items are placed in the trapezoids of the large bins, the resulting

packing is almost-optimal, as the packing of large items is almost optimal (and no

new bin is opened for small items). If some small items do not fit in the large bins,

we place them, using the Nfdh strategy, into small bins. In this case, we prove that

all bins are “almost full”, which eventually gives the claimed guarantee.

In what follows, we first describe how small items can be packed into trapezoids,

then we explain the placement of large items into augmented bins, and finally describe

the packing of arbitrary inputs.

4.2.2 Triangle & trapezoid packing

Let T be a given right-angled triangle with two legs of size a and h (assume h ≤ a).

In what follows, we show how to pack a set of items of size at most δ into T without

wasting too much area in T. In our solution, items are packed without rotation so

that their sides are parallel to the legs of T. Later, we use this packing to show items

of size at most δ can be packed into a trapezoid container, with rotation, so that not

too much area is wasted.

In order to pack items into T, we use the Next-Fit-Decreasing-Height (Nfdh)

strategy [58]. We sort items in non-increasing order of their sizes and place them

one by one in the following manner. Without loss of generality, assume the legs of

T extend along the x- and y-axes; we refer to the two legs as ‘left leg’ (of length h)

and ‘lower leg’ (of length a). We place the first item in a way that it is tangent to

the two legs of T. Let h1 denote the size of the first item. The area within a distance

h1 from the lower leg of T forms a shelf of height h1. We place subsequent items on

this shelf such that the left side of each item touches the right side of the previous

item, while its lower side touches the lower leg of T. At some point, the next item

might not fit in the shelf; at this point, we “close” the shelf and recursively pack the

remaining items in the right-angled triangle formed by removing the shelf from T

(see Figure 4.3a). The algorithm stops when it cannot open a new shelf. Note that

4. Offline Square Packing with Rotation 24

R1

T1

h1

h2

hm

a

h

≤δ

a1h1

c1

(a)

a

h

s1

p ≤ δ

(b)

Figure 4.3: (a) Applying the Nfdh algorithm for packing a right-angled
triangle T with squares of size at most δ. The algorithm places items in
the non-increasing order of their sizes in shelves that are packed from left to
right. The pink squares and the green triangles are respectively the covering
squares and triangles. (b) When no item can be packed into T, the area of
T is less than (3h/2 + a/2)δ.

it is possible that no item is placed in T, which happens when the largest square in

the input (the first square in the sorted order) does not fit in T (see Figure 4.3b).

Lemma 4.2. Assume we apply Nfdh to pack a multi-set of items, each having a

size at most δ, into a right-angled triangle T with legs of sizes a and h, where h ≤ a.

If the algorithm stops before packing all items (if not all items can be packed into T),

then the wasted area in T is less than (3.5a + h)δ.

Proof. First, assume no item can be packed into T. Then placing the first square

s1 of the multi-set in T so that its two sides are tangent with the legs of T results

in a part of s1 lying outside of T (see Figure 4.3b). In this case, a square p that is

tangent to the legs of T and touches its third side is fully contained in s1 and, hence,

has side length less than that of s1 (consequently less than δ) and also less than h.

So, the area of T can be partitioned into p (of area less than hδ), a triangle above

p (of area less than hδ/2), and a triangle on the right of p (of area less than aδ/2).

Consequently, the total (wasted) area of T is less than (3h/2+ a/2)δ < (3.5a+ h)δ.

Next, assume there are m ≥ 1 shelves in the final packing (see Figure 4.3a). The

wasted area in the ith shelf can be partitioned into two areas: the area on the right of

the last item placed on the shelf (call it Ri), and the area on top of the squares placed

on the shelf (call it Ti). Ri can be covered by two components: a covering square of

area h2
i and (if required) a right-angled covering triangle of area hiai/2, where ai is

4. Offline Square Packing with Rotation 25

Figure 4.4: Any trapezoid can be partitioned into four right-angled triangles.

the base of the covering triangle (see Figure 4.3a). The bases of covering triangles

of different shelves do not intersect when projected into the base of T. To see that,

consider the top-right corner ci of the covering square of shelf i. Since ci appears

outside T and just below shelf i + 1, the covering triangle of shelf i + 1 appears on

the left of ci, while the covering triangle of shelf i appears on its right. Consequently,

given that Ri < h2
i + hiai/2 < δ(hi + ai/2), and summing over all values of i, we

can write ∑m
i=1 Ri < δ ∑m

i (hi + ai/2) < δ(h + a/2). For the wasted area on top of

the ith shelf, we can write Ti ≤ a(hi − hi+1); this is because all items placed on the

shelf have a height at least hi+1. Summing over all but the very last shelf, we get

∑m−1
i=1 Ti ≤ a ∑m−1

i=1 (hi − hi+1) = a(h1 − hm) < aδ. The wasted area on top of the

last shelf is no more than aδ, which is an upper bound for the size of the shelf. So,

we have ∑m
i=1 Ti < 2aδ. Finally, the unused area U on top of the whole packing (the

dark area in Figure 4.3a) has a size of no more than aδ. The total wasted area is

thus ∑m
i=1(Ri + Ti) + U < (a/2 + h)δ + 2aδ + aδ = (3.5a + h)δ.

Lemma 4.3. Let Z be a trapezoid in which every side has length at most x, and S

be a multi-set of squares of size at most δ. There is an algorithm that packs items

from S into Z such that either all items are packed into Z or a subset of S is packed

while the wasted area in Z is at most 54xδ.

Proof. First, we partition Z into four right-angled triangles. This can be done by

partitioning Z into two triangles by drawing a diagonal. By the triangle inequality,

any side of these two triangles has side lengths less than 2x. Then, we partition each

triangle into two right-angled triangles by drawing an altitude that lies inside the

triangle (see Figure 4.4). In each of the four resulting triangles, one edge is within

a side of the trapezoid (of the size at most x), another edge is within an edge of the

two previous triangles (of the size of at most 2x), and hence the last side is shorter

than the sum of the other two, i.e., 3x. Overall, each of the four triangles has sides

4. Offline Square Packing with Rotation 26

Figure 4.5: An illustration of packing squares of side sizes at most x into the
resulted four right-angled triangles of a trapezoid with side sizes of at most δ
by applying the introduced triangle Nfdh algorithm. The striped red lines
show the wasted area of the trapezoid.

of side length no more than 3x. So, we can apply Lemma 4.2 to pack any of the

resulting right-angled triangles with items in S. The wasted area in each of these

triangles is less than (3.5 × 3x + 3x)δ = 13.5xδ. Consequently, the total wasted

area in the trapezoid is no more than 4 × 13.5xδ = 54xδ. Figure 4.5 illustrates a

final packing of a trapezoid after applying the Nfdh algorithm on it to pack its four

resulted right-angled triangles.

4.2.3 Packing large items

We explain how to pack large square items into augmented bins. The following

lemma implies that augmenting bins enables us to encode the translation (position)

and the rotation of items in a given packing, using logarithmic bit-precision. Erickson

et al. [12] proved a more general statement about packing convex polygons. For

completeness, we include their proof for square packing.

Lemma 4.4. [12] Let S be a multi-set of m squares that can be packed into a unit

bin. For any α > 0, it is possible to pack S into an augmented bin of size 1 + α such

that the translation and rotation of each item can be encoded in O(log(m/α)).

Proof. [Sketch] The extra space given by an augmented bin can be used to

ensure all items can be placed at a distance of at least α
m+2 from each other and

the boundary of the bin, which enables free translation and rotation of squares to a

certain encodable degree. Consider a packing of S into a unit bin. Form a partial

4. Offline Square Packing with Rotation 27

(5,11)

(10,14)(6,13)

(9,9)

(14,5)

(12,8)

(11,3)

(3,6)

(7,12)

(1,1)

(8,4)

(13,10)

(4,7)

(2,2)

(a) packing into a unit bin

α

(5,11)

(10,14)(6,13)

(12,8)

(11,3)

(3,6)

(7,12)

(2,2)(1,1)

(8,4)

(13,10)

(9,9)

(14,5)

(4,7)

(b) packing into an augmented bin

Figure 4.6: (a) A set of 14 square items that are tightly packed into a unit
square. The numbers (i, j) for a square indicate its respective indices in πx
and πy. (b) The packing of squares into an augmented bin of size 1 + α,
where items are separated from each other by at least α/14. A square with
indices (i, j) is shifted by (iα

16 , jα
16).

ordering of items along the x-coordinate in which, for items a, b ∈ S, we have a < b

iff there is a horizontal line that passes through both a and b and crosses a before

b. Let πx be a total ordering of items that respects the above partial ordering, and

πy be another ordering defined symmetrically based on a partial ordering through

crossings of vertical lines. Let a ∈ S be the ith element in πx and jth element in

πy (we have i, j ∈ {1, . . . , m}). In the augmented bin, we shift a towards the right

by iα
m+2 and upwards by jα

m+2 (see Figure 4.6). At this point, any two squares are

separated by at least α
m+2 . So, it is possible to shift items towards left or right

by O(α/m) and/or rotate them by O(α/m) degrees such that squares still do not

intersect. Consequently, there is a positioning of squares in the augmented bin in

which the position (translation) and rotation of each square can be presented with

O(log(m/α)) bit-precision. For details, see the proof of Corollary 26 in [12].

Lemma 4.4 enables us to use an exhaustive approach for packing large items,

provided that there is a constant number of item sizes.

Lemma 4.5. Assume a multi-set S of n squares can be optimally packed into Opt(S)

unit bins. Assume all items in S have size at least δ > 0, and there are only K

possible sizes for them, where δ and K are both constants independent of n. There

is an algorithm that packs S into Opt(S) augmented bins of size 1 + α in time

O(polylog(n)), where α > 0 is an arbitrary constant parameter.

4. Offline Square Packing with Rotation 28

Proof. Since all items are of side length at least δ, the number of items that

fit in a bin is bounded by m = d1/δ2e. Consider multi-sets of items described by

vectors of form (x1, x2, . . . , xK), where 1 ≤ xi ≤ m denotes the number of items

of type (size) i in the multi-set. We say a vector is valid if the multi-set that it

represents can be packed into a unit bin. According to Lemma 4.4, if a vector V is

valid, the multi-set of squares associated with it can be packed into an augmented

bin of size 1 + α in a way that the exact translation and rotation of each square can

be encoded in O(log(m/α)) bits. Since there are up to m squares in the bin and

each has one of the K possible sizes, at most C = O(m((log K) + log(m/α))) bits is

sufficient to encode how a multi-set associated with a valid vector should be packed

into an augmented bin. Since K, α, and δ (and hence m) are constant values, C is also

a constant. Therefore, if we check all 2C possible codes of length C, we can retrieve

all valid vectors and their packing into augmented bins in a (huge) constant time.

In summary, we can create a set {T1, . . . , TQ}, where each Ti is associated with a

unique, valid vector together with its translation and rotation and is referred to as a

bin type. Here, Q is the number of bin types and is a constant (since Q ≤ 2C). From

the discussion above, each bin type has an explicit description of how a multi-set of

items is placed into an augmented bin of size 1 + α.

The remainder of the proof is identical to a similar proof from [25]. Let Tij denote

the number of squares of type j in a bin type Ti, and let nj denote the number of

squares of type j in the input. Furthermore, let yi denote the number of bins of type

Ti in a potential solution. The following integer programs indicate the values of yi’s

in an optimal solution:

min
Q

∑
i=1

yi, s.t.

Q

∑
i=1

Tijyi ≥ nj for j = 1, . . . , K,

yi ≥ 0; yi ∈ Z for i = 1, . . . , Q,

This integer program has size O(log n) and a constant number of variables (recall

that Q is a constant). So, we can use Lenstra’s algorithm [59] to find its optimal

solution in O(polylog(n)). Such a solution indicates how many bins of each given

type should be opened, and as mentioned earlier, each bin type has an explicit

description of placements of items into an augmented bin.

4. Offline Square Packing with Rotation 29

Provided with Lemma 4.5, we can use the standard approach of de la Vega and

Lueker [57] to achieve an APTAS for large items.

Lemma 4.6. Assume a multi-set S of n squares, all of the size at least δ > 0, where δ

is a constant independent of n, can be optimally packed in Opt(S) unit bins. For any

constant parameters α, ξ > 0, it is possible to pack S into at most (1 + ξ)Opt(S) + 1

augmented bins of size 1 + α in time O(polylog(n)).

Proof. We use the same notation as in [25]. Consider an arrangement of squares

in S in non-increasing order of sizes. We partition S into K = dl/(ξδ2)e groups,

each containing at most g = dn/Ke squares. Let J be a multi-set formed from S by

rounding up the size of each square s ∈ S to the largest member of the group that it

belongs to. Let J′ be a multi-set defined similarly except that each square is rounded

down to the smallest member of its group.

In order to pack S, we use the described algorithm in Lemma 4.5 to pack J into

Opt(J) augmented bins of size 1 + α, where Opt(J) is the optimal number of unit

bins that J can be packed to. Note that there are K different item sizes in J, and

all have a size larger than δ, which means we can use Lemma 4.5 to pack J. Since

squares in S are rounded up to form J, the same packing can be used to pack S.

Note that it takes O(polylog(n)) to achieve this packing.

To analyze the packing, let Opt(J′) be the optimal number of unit bins that J′

can be packed to. We note that Opt(J′) ≤ Opt(S) ≤ Opt(J). This is because items

of S are rounded down in J′ and rounded up in J. Let x denote the size of squares in

group g of J′, and y denote the sizes in group g + 1 of J. Since y appears after x in

the non-increasing ordering of squares in S, we can assert any square in group g of J′

has a size no smaller than a square in group g + 1 of J. Therefore, if we exclude the

first group, any square in J can be mapped to a square of the same or larger size in

J′. Because S is formed by n squares, each of area at least δ2, we have nδ2 < Opt(S).

As a result, since there are q = dn/Ke ≤ dnξδ2e < dξOpt(S)e squares in the first

group, we can conclude Opt(J) ≤ Opt(J′) + q ≤ Opt(S) + q ≤ d(1 + ξ)Opt(S)e ≤

(1 + ξ)Opt(S) + 1.

4. Offline Square Packing with Rotation 30

4.3 Packing arbitrary input

We use the results presented in Sections 4.2.2, 4.2.3 to describe an algorithm for

packing arbitrary inputs. We start with the following lemma:

Lemma 4.7. Assume a multi-set of m squares is packed into a bin. The unused area

in the bin can be partitioned into at most 5m trapezoids.

Proof. Create an arbitrary labelling of squares as s1, s2, . . . , sm. Let t, b, l and

r respectively denote the topmost, bottom-most, leftmost, and rightmost points of

a square si (break ties arbitrarily). Draw the following five horizontal line segments

for si (see Figure 4.7a):

1,2) two line segments starting at l and b and extending towards the left until they

touch another square or the left side of the bin.

3,4) two line segments starting at r and b and extending towards the right until

they touch another square or the right side of the bin.

5) a line segment that passes through t and extends towards the left and right

until it touches other squares or boundaries of the bin

We label the line segments of si with the label i. When we draw the line segments

for all squares, the unused area in the bin will be partitioned into trapezoids. We

label each trapezoid in the partition with the label of its lower base. So, for each

square si, there will be at most five trapezoids with the label i (see Figure 4.7b).

Consequently, the number of trapezoids will not exceed 5m, which completes the

proof.

In the above proof, we treated the topmost point t and bottom-most point b of

squares differently. This is because the line passing b can be the lower base of two

trapezoids on the two sides of the square, while the line passing t can be the lower

base of one trapezoid on top of the square.

4.3.1 Item classification

Assume we are given an arbitrary input σ and small, constant parameters α, ε > 0.

Recall that ξ = ε/1081. Let r = d1/ξe, and define the following r + 1 classes

4. Offline Square Packing with Rotation 31

t

r
l

b

s1

5

1
3

2 4

(a) (b)

Figure 4.7: (a) The five horizontal line segments drawn for each square to
partition the unused area of a bin with m items into at most 5m trapezoids.
(b) The five trapezoids associated with square s1 after drawing the 5 lines
corresponding to it.

for items smaller than ξ. Class 1 contains items with sizes in [ξ3, ξ), class 2 contains

items in [ξ7, ξ3), and generally class i (1 ≤ i ≤ r+ 1) contains items in [ξ2i+1−1, ξ2i−1).

Since there are r + 1 classes, the total area of squares in at least one class, say class

j, is bounded from above by area(σ)/(r + 1) ≤ ξ · area(σ), where area(σ) is the

total area of the squares in σ. We partition square-items in the input σ into large,

medium, and small items as follows. Medium items are the members of class j, that

is, items with size in [ξ2j+1−1, ξ2j−1). Large items are items of size at least ξ2j−1, and

small items are items of size less than ξ2j+1−1.

4.3.2 Packing algorithm

We are now ready to explain how to pack items in σ. Medium items are placed

separately from other items into unit bins. For that, we apply the Nfdh algorithm

of [58] to place medium items into medium bins without rotation (see Figure 4.8a).

We use mm to denote the number of resulting medium bins. We apply Lemma 4.6

to pack the multi-set L of large items into augmented bins of size 1 + α. We refer to

these bins as large bins and use ml to denote the number of large bins. It remains to

pack small items. We use Lemma 4.7 to partition the empty area of any large bins

into a set of trapezoids. We pack small items into these trapezoids. For that, we

consider an arbitrary ordering of trapezoids and use the Nfdh strategy (as described

in Section 4.2.2) to place items into the first trapezoid (after partitioning it into four

right-angled triangles). If an item does not fit, we close the trapezoids and consider

the next one. The closed trapezoids are not referred to again. This process continues

4. Offline Square Packing with Rotation 32

(a) (b) (c)

Figure 4.8: (a) An illustration of Nfdh algorithm [58]: it places items in
the non-increasing order of their sizes in shelves that are packed from left
to right. The horizontal red lines show the shelves, and the diagonal red
lines illustrate the wasted area of the bin, which is at most 2x where x is
the largest side size of the squares inside the bin [58]. (b) When we apply
NFDH on relatively small items (for example, the small and medium items
in our classification, which have sizes smaller than ξ), the bins are almost
full, and the wasted area of each bin is small. (c) Instead, if we apply NFDH
on relatively large items, the wasted area of the bin is large.

until either all small items are placed into trapezoids or all trapezoids are closed. In

the latter case, the remaining small items are placed using the Nfdh strategy of [58]

into new bins that we call small bins.

4.3.3 Analysis

When we apply Nfdh to place square items of size at most ξ into square bins (without

rotation), the wasted area in each bin is at most 2ξ [58] (see Figure 4.8b). Since all

medium items have size at most ξ3 < ξ (for ξ < 1), the wasted area in each medium

bin will be at most 2ξ. On the other hand, the total area of medium items is at most

ξ · area(σ). So, the total number mm of medium bins is at most ξ·area(σ)
1−2ξ + 1, which

is at most ξ · area(σ) + 1 for ξ < 1/4. Note that area(σ) is a lower bound for the

optimal number of unit bins for packing σ. So, mm ≤ ξOpt(σ) + 1. We consider two

cases for the remainder of the analysis.

- Case I: Assume the algorithm does not open a small bin. By Lemma 4.6, the

number of large bins ml is no more than (1 + ξ)Opt(L) + 1. Clearly, Opt(L) ≤

Opt(σ) and we can write ml ≤ (1 + ξ)Opt(σ) + 1. For the total number of bins

in the packing, we can write mm + ml ≤ (1 + 2ξ)Opt(σ) + 2.

- Case II: Assume the algorithm opens at least one small bin. We show that the area

of all bins (except possibly the last small bin) is almost entirely used. Large items

4. Offline Square Packing with Rotation 33

are of size at least ξ2j−1 and area at least ξ2j+1−2. So, the number of large items

in each large bin is at most 1

ξ2j+1−2
. By Lemma 4.7, the number of trapezoids in

each bin is at most 5

ξ2j+1−2
. Given that bins are augmented (with a size of 1 + α),

any trapezoid has side length at most
√

2(1 + α)2 < 2(1 + α). Since we pack

small items of size at most δ = ξ2j+1−1 inside these trapezoids, by Lemma 4.3,

the wasted area in each trapezoid is less than 54ξ2j+1−1 × 2(1 + α). Summing up

over all trapezoids, the wasted area in each large bin is at most 5

ξ2j+1−2
× ξ2j+1−1 ·

108(1 + α) = 540ξ(1 + α).

So, any large bin includes squares of total area at least (1 + α)2 − 540ξ(1 + α) >

1 − 540ξ, assuming ξ < 1/270. Moreover, since packed by Nfdh, all small bins

(except potentially the last one), have a filled area of at least 1− 2ξ > 1− 540ξ. In

summary, with the exception of at most one bin (the last bin), any large or small

bin includes items of total area at least 1 − 540ξ. As such, for ξ < 1/1080, we

can write ml + ms ≤ darea(σ)/(1− 540ξ)e+ 1 ≤ area(σ)(1+ 540ξ/(1− 540ξ)) +

2 ≤ (1 + 1080ξ) · area(σ) + 2 ≤ (1 + 1080ξ) · Opt(σ) + 2. Adding the number of

medium bins, the total number of bins will be at most (1 + 1081ξ) · Opt(σ) + 3.

Recall that we have ξ = ε/1081. So, given any ε < 1, the number of bins in the

resulting packing will be at (1+ ε) ·Opt(σ) + 3. Our algorithm’s time complexity is

dominated by the sorting process used for classifying items and packing small items.

As such, the algorithm runs in O(n log n). We can conclude the following:

Theorem 4.2. Assume a multi-set σ of n squares can be optimally packed in Opt(S)

unit bins. There is a polynomial-time algorithm that, for any constant α > 0 and

ε ∈ (0, 1), packs S into at most (1 + ε)Opt(σ) + 3 augmented bins of size 1 + α.

Chapter 5

Online Square Packing with

Rotation

Recall that in the square packing problem, the goal is to place a multiset of square

items of different side lengths ∈ (0, 1] into a minimum number of square bins of

uniform side length 1. As opposed to the offline setting, where all square items

are given in advance, in the online setting, the multi-set of items forms a sequence

which is revealed in an online and sequential manner. When an item is revealed,

an online algorithm has to place it into a square bin without any priory knowledge

of the forthcoming items (see Section 3.2 for a formal definition). As we discussed

earlier, all existing results in both offline and online settings are restricted to the

case when square items are placed orthogonally to the square bins. We presented

our results for the offline setting in presence of item rotations in Chapter 4. In this

chapter, we study the problem in the online setting. We provide an algorithm that

achieves an asymptotic competitive ratio of 2.306 when square items have sizes in

the range (0, 1], and a better asymptotic competitive ratio of 1.732 when item sizes

are in the range (0, 1/2]. We also study another problem where items, instead of

being squares, are isosceles right triangles (half-square triangles) called “tans”, and

present an online algorithm with an asymptotic competitive ratio of at most 1.897.

34

5. Online Square Packing with Rotation 35

j u(j) Optimal? j u(j) Optimal?
1 = 1.0 optimal 19 ≈ 0.2047 best-known
2-4 = 0.5 optimal 20-22 = 0.2 best-known
5 ≈ 0.3694 optimal 23-25 = 0.2 optimal
6-9 ≈ 0.3333 optimal 26 ≈ 0.1779 best-known
10 ≈ 0.2697 optimal 27 ≈ 0.1752 best-known
11 ≈ 0.2579 best-known 28 ≈ 0.1716 best-known

12-13 = 0.25 best-known 29 ≈ 0.1685 best-known
14-16 = 0.25 optimal 30-33 ≈ 0.1667 best-known
17 ≈ 0.2139 best-known 34-36 ≈ 0.1667 optimal
18 ≈ 0.2073 best-known

Table 5.1: Optimal or best-known u(j) values for 1 ≤ j ≤ 36 when the
goal is to pack j identical squares of the largest size u(j) into a unit square.
Values of u(j) are the scaled values of the known results on congruent square
packing [60].

5.1 Square-Rotate algorithm

In this section, we introduce our square packing algorithm called Square-Rotate.

5.1.1 Item classification

Similar to the Harmonic family of algorithms, we classify squares by the size of their

side lengths (which we simply refer to as the “size” of the items). Square-Rotate

packs squares of each class separately from other classes.

In total, there are 13 classes of squares. Square items with sizes in the range

(0, 1.1752] are in class 13. We refer to class 13 as the “tiny class”, and items that

belong to this class are referred to as tiny items. We refer to items that belong to

class i ∈ [1, 12] as “regular items”. For each class i ∈ [1, 12], the range of items in

the class is specified as (xi, xi−1] (for convenience, we define x0 = 1). The values of

xi’s are defined in a way that a certain number of items, denoted by Si, of class i

can fit in the same bin. The specific range of item sizes for each class i ∈ [1, 12] and

values of Si is derived from the best-known or optimal results [60] on the congruent

square packing problem [47], which asks for the minimum size c(j) of a square that

can contain j unit-sized squares (see Section 4.1.2). A scaling argument, where the

container size is fixed to be 1, gives u(j) values when the goal is to pack j identical

squares of maximum size u(j) into a unit square. Table 5.1 provides the scaled best-

known/optimal u(j) values for 1 ≤ j ≤ 36. These scaled numbers gives the specific

5. Online Square Packing with Rotation 36

Class Side length x Si Occupied Area Weight Density
1 (0.5000, 1.0000] 1 > 1(0.250)=0.250 1 < 4.000
2 (0.3694, 0.5000] 4 > 4(0.136)=0.544 1/4 < 1.838
3 (0.3333, 0.3694] 5 > 5(0.111)=0.555 1/5 < 1.801
4 (0.2697, 0.3333] 9 > 9(0.072)=0.648 1/9 < 1.543
5 (0.2579, 0.2697] 10 > 10(0.066)=0.660 1/10 < 1.515
6 (0.2500, 0.2579] 11 > 11(0.062)=0.682 1/11 < 1.466
7 (0.2139, 0.2500] 16 > 16(0.045)=0.720 1/16 < 1.388
8 (0.2073, 0.2139] 17 > 17(0.042)=0.714 1/17 < 1.400
9 (0.2047, 0.2073] 18 > 18(0.041)=0.738 1/18 < 1.355
10 (0.2000, 0.2047] 19 > 19(0.040)=0.760 1/19 < 1.315
11 (0.1779, 0.2000] 25 > 25(0.031)=0.775 1/20 < 1.290
12 (0.1752, 0.1779] 26 > 26(0.030)=0.780 1/26 < 1.282
13 (0, 0.1752] > 0.702 1.425x2 ≈ 1.425

Table 5.2: A summary of item classification and details on item weights and
densities, as used in the definition and analysis of Square-Rotate.

ranges that we used for classifying items as follows: Items of class 1 have sizes in the

range (1/2, 1], and we have x1 = 1/2. Note that exactly S1 = 1 item of class 1 can

fit in the same bin. For i ∈ [2, 12], Si is the number of items of size xi−1 that fit in

the same bin. For example, for i = 2, we have S2 = 4 because x1 = 1/2, and 4 items

of size 1/2 fit in the same bin. Moreover, xi is defined as the largest value so that

Si + 1 items of size xi cannot fit in the same bin. For example, we have x2 = 0.3694

because, according to Table 5.1, S2 + 1 = 5 squares of size 0.3694 cannot fit in the

same bin.

The respective range of items for each class, as well as the values of Si, is presented

in Table 5.2. For example, a square is in class 1, 2, or 12 if its side size is in the

interval (0.5, 1], (0.3694, .5], or (0.1752, 0.1779], respectively. In Figure 5.1, it is

specified how Si items of the largest size in class i can fit into a square bin. We refer

to [60] for details on the unit square packing problem.

5.1.2 Packing regular items

For each class i (1 ≤ i ≤ 12), the algorithm has at most one active bin of type i.

When a bin of type i is opened, it is declared as the active bin of the class, and Si

square “spots”, each of which having a size equal to the largest square of class i, are

reserved in the bin. Upon the arrival of an item of class i, it is placed in one of the

5. Online Square Packing with Rotation 37

(a)
Class 1: x ∈
(0.5000, 1.0000]

(b)
Class 2: x ∈
(0.3694, 0.5000]

(c)
Class 3: x ∈
(0.3333, 0.3694]

(d)
Class 4: x ∈
(0.2697, 0.3333]

(e)
Class 5: x ∈
(0.2579, 0.2697]

(f)
Class 6: x ∈
(0.2500, 0.2579]

(g)
Class 7: x ∈
(0.2139, 0.2500]

(h)
Class 8: x ∈
(0.2073, 0.2139]

(i)
Class 9: x ∈
(0.2047, 0.2073]

(j)
Class 10: x ∈
(0.2000, 0.2047]

(k)
Class 11: x ∈
(0.1779, 0.2000]

(l)
Class 12: x ∈
(0.1752, 0.1779]

Figure 5.1: Placement of regular square items of class i ∈ [1, 12] in their
respective bin. It is possible to pack i square items of class i into a single
square bin [60].

Si spots of the active bin. If all these spots are occupied by previous items, a new

bin of type i is opened. This ensures that all bins of type i, except potentially the

current active bin, include Si items.

5.1.3 Packing tiny items

For the last class, i.e., tiny items, the algorithm uses a different approach, proposed

by Epstein and van Stee [61]. Briefly, it maintains at most one active bin for placing

tiny items. When a bin is opened for these items, the algorithm reserves four square

spots of size 1/2, i.e., the four squares of class 2 in Figure 5.1b. These square spots

are used as bins for placing tiny items. Then, the algorithm chooses one of the

innermost sub-bin squares that has enough space for the arrived item, and repeats

the procedure for the selected sub-bin until it cannot split any of the innermost sub-

squares into four new ones with enough space for the item. At this step, the item is

placed in one of those smallest sub-bins. When the next item arrives, if there is a

sub-bin of the smallest possible size in which the item can fit, the algorithm places

the item in that spot. Otherwise, the algorithm finds the smallest sub-bin that can

fit the item and repeats the previous procedure to split it into the smaller sub-bins

to reach an appropriate spot for the item. If no sub-bin with enough empty space

5. Online Square Packing with Rotation 38

is available in the bin, the algorithm closes the current bin and opens a new empty

active bin for the item and applies the whole process from the beginning (see [61],

for details). Note that the algorithm does not rotate any of the tiny items to pack

them. Epstein and van Stee proved the following result, which we will use in our

analysis later.

Lemma 5.1. [61] Consider the square packing problem (without rotation) in which all

items are of size at most 1/M for some integer M ≥ 2. There is an online algorithm

(as described above) that creates a packing in which all bins, except possibly one,

have an occupied area of size at least (M2 − 1)/(M + 1)2.

5.1.4 Algorithm’s analysis

In this section, we prove a competitive ratio of at most 2.306 for our algorithm.

We use a weighting function argument. For each item of size x, we define a weight

w(x) ≥ x for the item and prove that: (1) the total weight of square items in each

bin of the algorithm, except potentially a constant number of them, is at least 1, and

(2) the total weight of items in each bin of an optimal packing is at most 2.306. If

w(σ) denote the total weight of items in an input sequence σ, then (1) implies that

the number of bins opened by the algorithm is at most w(σ) + c, for some constant

value of c, and (2) implies that the number of bins in an optimal packing is at least

w(σ)/2.306. Therefore, the (asymptotic) competitive ratio of the algorithm would

be at most 2.306.

Recall that all bins opened for squares of class i (1 ≤ i ≤ 12), except possibly

the last active bin, include Si squares. We define the weight of items of class i to be

1/Si. This way, the total weight of items in bins opened for all squares of classes 1 to

12, except possibly 12 of them (the last bin from each class), is exactly 1. Therefore,

(1) holds for bins opened for regular items.

We define the weight of a tiny square of size x as x2/0.701(= 1.425x2). All tiny

items are of size at most 0.1752. Therefore, by Lemma 5.1, the occupied area of all

bins opened for tiny items (except possibly one of them) will be at least 0.701. This

implies their total weight is at least 0.701/0.701 = 1.

5. Online Square Packing with Rotation 39

Table 5.2 gives a summary of the weights of items in different classes. From the

above argument, we conclude the following lemma.

Lemma 5.2. The total weight of squares in each bin opened by Square-Rotate,

except possibly a constant number of them, is at least 1.

Next, we provide an upper bound for the total weight of items in a bin of the

optimal offline algorithm (Opt).

Lemma 5.3. The total weight of items in a bin of Opt is less than 2.306.

Proof. We first define the density of an item of size x as the ratio between its

weight and area, i.e., w(x)/x2. Given the lower bound for the size of each square

belonging to class i (1 ≤ i ≤ 12), we can calculate a lower bound for the density

of each item in the class. For tiny items, the density is simply 1.425x2/x2 = 1.425.

Densities for all classes have been reported in Table 5.2.

Defining densities comes handy in the following case analysis to prove that the

total weight of items in any bin B of an optimal packing is at most 2.306.

Case 1: First, assume there is no item of class 1 in B. Since the density of items of

other classes are less than 1.838, even if B is fully packed with items of the largest

density, the total weight of items cannot be more than 1.838 which is less than 2.306.

Case 2: In the second case, we assume there is one item x of class 1 (note that no

two items of class 1 fit in the bin). Without loss of generality, we assume the size of

x is 1/2 + ε, where ε is a small real value greater than zero. Clearly, a larger size

for x does not increase the total weight of other items in B because it would leave

less space to occupy more items in the bin (while the weight of x stays 1). Next,

we consider all possible cases in which we have some items of class 2 and 3 together

with x in B. As presented in Table 5.3, there will be 14 sub-cases to analyze. To see

how we reach these 14 sub-cases, first note that it is not possible to accommodate

4 or more items of class 2 in addition to x in B (i.e., a total number of 5 or more

items from these classes 1 and 2). This is because no five items with size larger than

0.3694 can fit in B [60]. A similar argument shows that we cannot have 6 or more

items from classes 1, 2, and 3 together in a bin, otherwise we could accommodate

5. Online Square Packing with Rotation 40

C1 C2 C3
Sum of
Weights

(W)

Sum of
Areas

(A)

Remaining
Area

(Ar = 1 − A)

Weight of Items in
the Remaining Area

(Wr = Ar × 1.543)

Total Weight of
Items in the Bin
(Wmax = W + Wr)

Number
of items
of each
class c ≤ 3
in B

1 0 0 1.00 > 0.250 < 0.750 < 1.157 < 2.157
1 0 1 1.20 > 0.361 < 0.639 < 0.986 < 2.186
1 0 2 1.40 > 0.472 < 0.528 < 0.815 < 2.215
1 0 3 1.60 > 0.583 < 0.417 < 0.644 < 2.244
1 0 4 1.80 > 0.694 < 0.306 < 0.472 < 2.272
1 1 0 1.25 > 0.386 < 0.614 < 0.948 < 2.198
1 1 1 1.45 > 0.497 < 0.503 < 0.776 < 2.226
1 1 2 1.65 > 0.608 < 0.392 < 0.605 < 2.255
1 1 3 1.85 > 0.719 < 0.281 < 0.434 < 2.284
1 2 0 1.50 > 0.522 < 0.478 < 0.738 < 2.238
1 2 1 1.70 > 0.633 < 0.367 < 0.566 < 2.266
1 2 2 1.90 > 0.744 < 0.256 < 0.395 < 2.295
1 3 0 1.75 > 0.658 < 0.342 < 0.528 < 2.278
1 3 1 1.95 > 0.769 < 0.231 < 0.356 < 2.306

Table 5.3: All fourteen possible cases in which we have a combination of
items of class 2 (C2) and 3 (C3) together with one item x of class 1 (C1) in
a single bin B. Here, “sum of weights (W)” and “sum of areas (A)” indicate,
respectively, the total weight and area of items of the first three classes in B.
“Remaining area” is the area left in the bin that is used for packing items
of class 4 or higher. “Weight of items in the remaining area” is an upper
bound for the total weight of items of class 4 or higher in B (these items
have density no more than 1.543). Finally, “the total weight of items in the
bin” indicate the sum of weights of all items (from all classes) in B.

6 identical squares of size strictly larger than 0.3333 which is a contradiction to the

fact that no six items of size larger than 0.3333 can fit in the same bin [60]. We

can conclude that the 14 sub-cases summarized in Table 5.3 cover all possibilities for

items of the first three classes in Case 2.

According to Table 5.2, the density of items belonging to class i (4 ≤ i ≤ 12) as

well as tiny items is at most 1.543 (which is the density of class-4 items). Using a

similar argument made for Case 1, we suppose that, after placing a certain number

of items of class 2 and 3 beside x in B, in each sub-case, we are able to completely

fill the remaining empty space of B with the items of the maximum density 1.543.

This makes us able to calculate an upper bound for the maximum total weight of

items in B for each of the sub-cases. The resulting bounds for each sub-case can be

found in the last column of Table 5.3, where the maximum upper bound among all

sub-cases is 2.306, which happens when we have one item of class 1 in B together

with 3 items of class 2 and one item of class 3.

5. Online Square Packing with Rotation 41

C2 C3 Total Weight of
Items in the Bin

C2 C3 Total Weight of
Items in the Bin

Number of items
of each class
c ∈ {2, 3} in B.

0 0 < 1.543 1 4 < 1.698
0 1 < 1.572 2 0 < 1.623
0 2 < 1.601 2 1 < 1.652
0 3 < 1.629 2 2 < 1.681
0 4 < 1.658 3 0 < 1.664
0 5 < 1.687 3 1 < 1.692
1 0 < 1.583 3 2 < 1.721
1 1 < 1.612 4 0 < 1.704
1 2 < 1.641 4 1 < 1.732
1 3 < 1.669

Table 5.4: Maximum total weight of items of size ∈ (0, 1/2) in a bin B of
an optimal packing in all nineteen possible cases in which there is no item of
class 1 but a combination of items of class 2 (C2) and 3 (C3) in B.

As a result, in both Case 1 and Case 2, the total weight of items in B cannot be

more than 2.306.

Provided with the above two lemmas, we can derive the main result of this section.

Theorem 5.1. There is an online algorithm for the square packing problem with

rotation problem which achieves a competitive ratio of at most 2.306.

Proof. For an input σ, let SR(σ) and OPT(σ) denotes the cost of Square-Rotate

and Opt, respectively. Let w(σ) denote the total weight of items of σ. Lemmas 5.2

implies that SR(σ) ≤ w(σ) + c, where c is a constant independent of the length of σ.

Meanwhile, Lemma 5.3 implies that Opt(σ) ≥ w(σ)/2.306. From these inequalities,

we conclude SR(σ) ≤ 2.306 OPT(σ) + c, which proves an upper bound 2.306 for

the competitive ratio of Square-Rotate.

In the analysis of the bin packing problem and its variants, it is common to study

algorithms in restricted settings in which there is an upper bound for the maximum

size of items. In what follows, we study Square-Rotate when all items are of size

at most 1/2. Similar approaches can be used to study the competitive ratio when

all items are smaller than x for any x ≤ 1/2.

Theorem 5.2. When all items have a size of less than 1/2, Square-Rotate

achieves a competitive ratio of 1.732.

Proof. We employ the same approach and weighting function as the one we used

to analyze the upper bound of Square-Rotate for the general setting, except that

5. Online Square Packing with Rotation 42

we exclude items of class 1, that is, items of size more than 1/2. By lemma 5.2, the

total weight of items in each bin of Square-Rotate, except for a possibly constant

number of them, is at least 1. Therefore, to prove the theorem, it suffices to show the

total weight of items in any bin B of an optimal packing is at most 1.732. To study

the maximum weight of items in B, we consider all possible combinations of items

from classes 2 and 3 in B. For that, we consider the following two limitations: (i) we

cannot have more than 4 items of class 2 in B; otherwise, we could accommodate

5 squares of size more than 0.3694, which is not possible [60]. (ii) we cannot have

more than 6 items of class 2 or 3 in B. Otherwise, one could place 6 squares of size

more than 0.3333, which is is known to be impossible [60]. Altogether, we will have

19 cases to consider as presented in Table 5.4. We have used the same method as in

Lemma 5.3 to calculate the upper bound for the total weight of items in each case.

Table 5.4 summarizes the final results for all cases. The maximum weight, 1.732,

happens when we have four items of class 2 together with one item of class 3 packed

in B.

5.2 Online tan packing

In this section we study a problem similar to the online square packing problem,

called the online tan packing problem, defined as follows:

Definition 5.1. In the online tan packing with rotation problem, the input

is an online sequence σ = 〈x1, x2, . . . , xn〉, where xi ∈ (0, 1] denote the leg sizes of

right isosceles triangles (half-square triangles), referred to as “tans”, that need to be

packed into unit bins. The goal is to pack the input into a minimum number of bins.

The decisions of the algorithm at any time t are irrevocable and are made without

knowing the values of xt′ for t′ > t.

5.2.1 Half-square-Rotate algorithm

We will introduce an online algorithm, called Half-square-Rotate, to pack tans

into unit-square bins. In a similar way to Square-Rotate, we classify tans by their

5. Online Square Packing with Rotation 43

Class Side length x Ti Occupied Area Weight Density
1 (0.7072, 1.0000] 2 > 2(0.250)=0.500 1/2 < 2.000
2 (0.5593, 0.7072] 4 > 4(0.156)=0.626 1/4 < 1.599
3 (0.5000, 0.5593] 5 > 5(0.125)=0.625 1/5 < 1.600
4 (0.3828, 0.5000] 8 > 8(0.073)=0.586 1/8 < 1.706
5 (0.3056, 0.3828] 12 > 12(0.047)=0.560 1/12 < 1.785
6 (0.2843, 0.3056] 20 > 20(0.040)=0.808 1/20 < 1.237

Tiny (0, 0.2843] > 0.557 1.795(x2/2) 1.795

Table 5.5: A summary of item classification and details on item weights and
densities, as used in the definition and analysis of Half-square-Rotate.

leg sizes, and the algorithm packs tans of each class separately from other classes.

There are 7 classes, as presented in Table 5.5. We refer to items that belong to

classes i ∈ [1, 6] as regular items and those in class 7 as tiny items. Tiny items have

sizes in the range (0, 1.1752]. For each class i ∈ [1, 6], the range of items in class

i is specified as (yi, yi−1] (for convenience, we define y0 = 1). The values of yi are

defined so that a certain number Ti of tans of class i can fit in the same bin.

The specific range of item sizes for each class i ∈ [1, 6] and values of Ti is derived

from the best-known or optimal results on the congruent tan packing problem [60],

which asks for the minimum size s(j) of a square that can contain j tans of unit leg

size. A scaling argument, where the container size is fixed to be 1, gives t(j) values

when the goal is to pack j identical tans of maximum leg size t(j) into a unit square.

Table 5.6 provides the scaled best-known/optimal t(j) values for 1 ≤ j ≤ 20. These

scaled numbers gives the specific ranges that we used for classifying items as follows:

Tans of class 1 have sizes in the range (0.7072, 1], and we have y1 = 0.7072. Note

that exactly T1 = 1 item of class 1 can fit in the same bin (for tans of size ≤ 0.7072,

it is possible to pack at least two tans in the bin). For i ∈ [2, 6], Ti is the number of

(a)
Class 1: x ∈
(0.7072, 1.0000]

t = 1.000

(b)
Class 2: x ∈
(0.5593, 0.7072]

t = 0.7072

(c)
Class 3: x ∈
(0.5000, 0.5593]

t = 0.5593

(d)
Class 4: x ∈
(0.3828, 0.5000]

t = 0.5000

(e)
Class 5: x ∈
(0.3056, 0.3828]

t = 0.3828

(f)
Class 6: x ∈
(0.2843, 0.3056]

t = 0.3056

Figure 5.2: Placement of regular tan items of class i ∈ [1, 6] in their respective
bin. It is possible to pack i tans of class i into a single square bin [60].

5. Online Square Packing with Rotation 44

j t(j) Optimal? j t(j) Optimal?
1 = 1.0 optimal 11 ≈ 0.4143 best-known
2 = 1.0 optimal 12 ≈ 0.3828 best-known
3 ≈ 0.7072 optimal 13 ≈ 0.3720 best-known
4 ≈ 0.7072 optimal 14 ≈ 0.3614 best-known
5 ≈ 0.5593 best-known 15 ≈ 0.3536 best-known
6 ≈ 0.5163 best-known 16 ≈ 0.3536 optimal
7 ≈ 0.5003 best-known 17 ≈ 0.3367 best-known
8 = 0.5 optimal 18 ≈ 0.3333 optimal
9 ≈ 0.4531 best-known 19 ≈ 0.3124 best-known
10 ≈ 0.4179 best-known 20 ≈ 0.3056 best-known

Table 5.6: Optimal or best-known t(j) values for 1 ≤ j ≤ 20 when the goal is
to pack j identical tan of the largest leg size t(j) into a unit square. Values of
t(j) are the scaled values of the known results on congruent tan packing [60].

items of size yi−1 that fit in the same bin. For example, for i = 2, we have T2 = 4

because y1 = 0.7072, and 4 items of size 0.7072 fit in the same bin. Moreover, yi

is defined as the largest value so that Ti + 1 items of size yi cannot fit in the same

bin. For example, we have y2 = 0.5593 because, according to Table 5.6, T2 + 1 = 5

tans of size 0.5593 cannot fit in the same bin. The respective range of items for each

class as well as the values of Ti are presented in Table 5.5. Figure 5.2 shows how Ti

items of the largest size in class i can fit into a square bin.

5.2.1.1 Packing regular items

For each class i (1 ≤ i ≤ 6), the algorithm has at most one active bin of type i.

When a bin of type i is opened, it is declared as the active bin of the class, and Ti tan

“spots”, each of which having a size equal to the largest tan of class i, are reserved

in the bin. Upon the arrival of an item of class i, it is placed in one of the Ti spots of

the active bin. If all these spots are occupied by previous items, a new bin of type i

is opened. This ensures that all bins of type i, except potentially the current active

bin, include Si items.

5. Online Square Packing with Rotation 45

5.2.1.2 Packing tiny items

In order to pack tiny items, Half-square-Rotate uses the same approach as

Square-Rotate for packing tiny tans. Namely, the algorithm maintains a parti-

tioning of any tiny bin into sub-bins formed by tans of various sizes. The only dif-

ference, compared to the algorithm of Epstein and van Stee [61], is that the square

bin is originally divided into 2 tans (of side length 1) instead of four sub-bins, and

subsequently, instead of partitioning larger square sub-bins into four sub-squares, we

partition large tan sub-bins into two smaller tan sub-bins. One important observa-

tion is that it is possible to partition a tan into two sub-tans, which allows using the

same approach as in [61]. Using an identical proof to the one in [61], we can show

this adapted algorithm almost fully packs each bin:

Lemma 5.4. [61] Consider the tan packing problem in which all items are of size

at most 1/M for some integer M ≥ 2. There is an online algorithm that creates a

packing in which all bins, except possibly one, have an occupied area of size at least

(M2 − 1)/(M + 1)2.

5.2.1.3 Algorithm’s analysis

In this section, we use a weighting argument to analyze the competitive ratio of our

algorithm and prove a competitive ratio of at most 1.897 for it. Corresponding to

each tan of size x, we define a weight w(x) as follows. Recall that all bins opened for

tans of class i (1 ≤ i ≤ 6), except possibly the last active bin of each class, include

Ti tans. We define the weight of items of class i to be 1/Ti. For a tiny tan of leg size

x, we define its weight as 1.795(x2/2) where x2/2 is the area of the tan. Table 5.5

gives a summary of the weights of the items in different classes.

Lemma 5.5. The total weight of tans in each bin opened by Half-square-Rotate,

except possibly a constant number of them, is at least 1.

Proof. In every bin of class i (1 ≤ i ≤ 6), except possibly the last bin, there

are Ti items, each having a weight of 1/Ti. As a result, the total weight of the items

in each bin of such classes, except possibly 6 of them, is exactly Ti × 1/Ti = 1. For

bins of tiny items, we know, by Lemma 5.4 and considering 1/M = 0.2843, that the

5. Online Square Packing with Rotation 46

occupied area of all bins (except a constant number of them) will be at least 0.557.

The total weight of items in such a bin is therefore at least W = 1.795 × 0.557 = 1.

Next, we provide an upper bound for the total weight of items in a bin of the

optimal offline algorithm (Opt).

Lemma 5.6. The total weight of items in a bin of Opt is less than 1.897.

Proof. We first define the density of a tan item of leg size x as the ratio between

its weight and its area, i.e., w(x)/(x2/2). Given the lower bound for the leg size

of items in each class i (1 ≤ i ≤ 6), and, hence, their area, we can calculate an

upper bound for the density of each item in the class. For tiny items, the density is

simply equal to 1.795(x2/2)/(x2/2) = 1.795. The densities of items from different

classes are reported in Table 5.5. In what follows, we use a case analysis approach

to prove that the total weight of items in a bin B of an optimal packing is at most

1.897. There are three cases to consider: either 0, 1, or 2 tans of class 1 exist in the

bin. Note that it is not possible to accommodate 3 or more items of class 1 in a bin

because their total area would exceed 1.

Case 1: No class-1 item in B: Since the density of items of class 2 or larger is at

most 1.795, even if all area of B is filled with items of the largest density, the total

weight of items cannot exceed 1 × 1.795 which is less than 1.897.

Case 2: Exactly one class-1 item in B: If there is exactly one item of class

1 (with weight 1/2 and the area of at least (0.7072 × 0.7072)/2 = 0.25) in B, the

remaining area in the bin will be at most 0.75. Items of classes other than class 1

have a density of at most 1.795. Even if we fill the remaining area with such items of

the highest density, the total weight of items in B will not exceed 1.346. As a result,

the total weight of items in B cannot be more than 1/2 + 1.346 = 1.846 which is

again less than 1.897.

Case 3: Exactly two class-1 items in B: If there exists exactly two items of class

1 with weight 1/2 (and total weight of 1) and total area of at least 2 × (0.7072 ×

0.7072)/2 = 0.50, the remaining area in B will be at most 0.50. If this remaining

area is filled by items of the highest density, that are items of the last class with

5. Online Square Packing with Rotation 47

a density of at most 1.795, the total weight of items in B will not be more than

1 + 0.50 × 1.795 = 1.897.

In conclusion, the total weight of items in a bin B of an optimal packing cannot

be more than 1.897 in all cases.

Now, we can give the main result of this section.

Theorem 5.3. There is an online algorithm for the tan packing with rotation that

achieves a competitive ratio of at most 1.897.

Proof. For an input σ, let HR(σ) and OPT(σ), respectively, denote the cost of

Half-square-Rotate and Opt. Let w(σ) denote the total weight of items of σ.

Lemmas 5.5 implies that HR(σ) ≤ w(σ) + c, where c is a constant independent of

the length of σ. Meanwhile, Lemma 5.6 implies that Opt(σ) ≥ w(σ)/1.897. From

these inequalities, we conclude HR(σ) ≤ 1.897 OPT(σ) + c, which proves an upper

bound 2.306 for the competitive ratio of Square-Rotate.

Chapter 6

Online Fault-tolerant Bin Packing∗

In this chapter, we study the primary-standby scheme for the fault-tolerant bin

packing problem (see Sections 2.3 and 3.3 for more details). In this problem, the

goal is to pack an online sequence of items (tenants) into a minimum number of bins

(servers) such that each item of size x has a primary replica of size x and f standby

replicas, each of size x/η, for some parameter η > 1. Over time, some servers might

fail, and some of the previously failed servers might recover. An algorithm has no

knowledge about how servers fail or recover, but it is guaranteed that the number of

failed servers at each given time is at most f . To ensure the service is fault-tolerant,

the primary replica of each tenant should be available at any given time. Therefore,

when a server that hosts the primary replica of an item x fails, a standby replica of

x should be selected to become its new primary replica. The subsequent increase in

the load of such replica (from x/η to x) should not cause an overflow in the bin (see

Definition 3.3 for a formal definition).

As discussed in Section 3.3, we make two assumptions that make our model

more practical compared to the existing primary-standby models for the bin packing

problem. First, we assume that bins might fail during the execution of the algo-

rithm (before all items are packed). Second, we assume that the failed bins might

later recover again after a failure. Our main contribution is an algorithm, named

Harmonic-Stretch, which maintains fault-tolerant packings under these two as-

sumptions. We prove that Harmonic-Stretch has an asymptotic competitive
∗A summary of the results in this chapter will be published in the Proceedings of the 6th

International Workshop on Algorithmic Aspects of Cloud Computing (ALGOCLOUD’21) [62]

48

6. Online Fault-tolerant Bin Packing 49

ratio of at most 1.75. Given that our model is a generalization of the existing model

for the problem (as discussed in Section 3.3), our result is also an improvement over

the best existing asymptotic competitive ratio 2 of an algorithm by Li and Tang [45]

(see Section 2.3), which works under a model that assumes bins fail only after all

items are packed.

6.1 Harmonic-Stretch algorithm

In this section, we introduce our algorithm, Harmonic-Stretch, which maintains

fault-tolerant packings for an online sequence of items. As the prefix “Harmonic”

suggests, Harmonic-Stretch classifies items by their sizes. The classification and

treatment of items in each class is, however, different from the existing Harmonic-

based algorithms. In particular, unlike the algorithms in [41, 45] (see Section 2.3),

which classify items based on the size of their standby replicas, Harmonic-Stretch

classifies items based on the size of both their primary and standby replicas.

As mentioned before, in our model (see Definition 3.3), we assume that bins can

fail and recover in an online manner so that at most f bins are failed at any given

time. As such, an algorithm in this model requires a packing strategy, which allocates

items to bins, and an adjustment strategy, which makes necessary adjustments (i.e.,

promoting a standby replica to a primary replica and vice versa) when bins fail

or recover. The packing and adjustment strategies in Harmonic-Stretch are

designed in a flexible way that maintains valid packings, that is, primary replicas

are available for all items, and no bin is overloaded throughout the packing and

adjustment processes.

First, we provide an overview of the main components of the algorithm.

Item classification. Items are partitioned into classes, based on the size of their

primary and standby replicas. There are 7 possible classes for primary replicas and

b6ηc+ 1 classes for standby replicas. An item that has a primary replica of class

i (1 ≤ i ≤ 7) and a standby replica of class j (1 ≤ j ≤ b6ηc + 1) is called an

(i, j)-item. When i = 7 and j = b6ηc + 1, the (i, j)-items are called small items,

while other items are called regular items (see Section 6.1.1 for details).

6. Online Fault-tolerant Bin Packing 50

Items that have the same primary and standby classes are packed separately from

other items, that is, a replica of an (i, j)-item is never placed with a replica of an

(i′, j′)-item together in the same bin if i 6= i′ or j 6= j′.

Maintaining bin groups. To place (i, j)-items, the algorithm maintains groups

of bins. Each group is formed by a constant number of (initially empty) bins. At

any given time, there is one “active” group for (i, j)-items, into which the incoming

(i, j)-items are packed. When no more items can fit into the active group, the group

becomes “complete”, and another group becomes the active group. If a bin of the

active group fails, the algorithm declares that group as “unavailable”, leaves that

group “incomplete” and selects a new active group. When all failed bins of an

incomplete group recover, that group becomes “available” again. When a new active

group is required (i.e., when the currently active group becomes complete or one of

its bins fails), an (incomplete) available group is selected as the new active group.

If no available group exists, the algorithm opens a fresh group with empty bins as

the active group. Given that at most f bins can fail at the same time, the algorithm

maintains up to f + 1 incomplete groups for (i, j)-items, out of which one group

is the active group, and f groups are either unavailable or include bins that have

recovered from a failure (see Section 6.1.2).

Packing strategy. When placing (i, j)-items inside their active group, primary and

standby replicas are packed in separate bins, which are, respectively, called primary

and standby bins. Items in primary bins are packed as tightly as possible, while items

in the standby bins are packed so that there is enough space for the promotion of

exactly one replica. The packing strategy ensures that a primary bin shares replicas

of at most one item with any standby bin. For small items, a consecutive number of

them are merged to form “super-replicas”; each super-replica is treated in the same

way that regular items are packed (see Section 6.1.3).

Adjustment strategy. When a bin B fails, for each primary replica x in B, a

standby replica of x in a non-failed bin should be promoted to become the new

primary replica. This is done through maintaining an injective mapping h. The

domain of h is the set of primary replicas like x residing in the primary bins that

6. Online Fault-tolerant Bin Packing 51

are failed, and the range of h is a set of non-failed standby bins in the same group

such that h(x) contains a standby replica of x. The injective nature of the mapping,

and the fact that there is enough space for expansion of one standby replica in h(x),

implies that one can promote the standby replica in h(x) to replace x as the primary

replica, without causing an overflow in h(x). The assignment of standby replicas as

primary replicas is temporary, that is, upon the recovery of B, its primary replicas

like x will retain their primary status and are removed from the domain of h, while

the promoted replica in h(x) is demoted to become a standby replica again (see

Section 6.1.4).

In what follows, we explain the above components in more detail.

6.1.1 Item classification

There are seven classes for primary replicas and b6ηc+ 1 classes for standby replicas

(see Table 6.1 for details). An item has primary class i ∈ {1, 2, 3, 4, 5} if its primary

replica is of size in the range (1
i+1 , 1

i], primary class 6 if its primary replica is of

size in the range (1
7−1/η , 1

6], and primary class 7 if its primary replica is of size at

most 1
7−1/η . We refer to items of primary class i ≤ 6 as regular items, and items of

primary class 7 as small items. An item has standby class j ∈ {1, 2, . . . , b6ηc − 1}

if its standby replica has size in the range (1
j+η , 1

j+η−1], standby class j = b6ηc if its

standby class has size in the range (1
7η−1 , 1

b6ηc+η−1], and standby class b6ηc+ 1 if

its standby replica is of size at most 1
7η−1 .

In what follows, we refer to an item of primary class i and standby class j as an

(i, j)-item. Primary replicas of small items (with i = 7) are in the range (0, 1
7−1/η],

and their standby replicas are in the range (0, 1
7η−1]. Therefore, an (i, j)-item is a

small item if i = 7 and j = b6ηc+ 1, and a regular item otherwise.

6.1.2 Maintaining bin groups

For each pair of i, j, the algorithm maintains one group of bins, which are all non-

failed, as the active group. As (i, j)-items are revealed, they are packed into bins of

the active group, as will be explained in Section 6.1.3. In the beginning, a group

of all-empty bins is opened and declared as the active group for (i, j)-items. A new

6. Online Fault-tolerant Bin Packing 52

primary replicas

class size weight density

i = 1 (1
2 , 1] 1 < 2

i = 2 (1
3 , 1

2]
1
2 < 3

2
...

i ∈ [1, 5] (1
i+1 , 1

i]
1
i < i+1

i

i = 6 (1
7−1/η , 1

6]
1
6 < 7

6

i = 7 p ∈ (0, 1
7−1/η]

3
2 p 3

2

standby replicas

class size weight density

j = 1 (1
η+1 , 1

η] 1 < η + 1

j = 2 (1
η+2 , 1

η+1]
1
2 < η+2

2
...

j ∈ [1, b6ηc − 1] (1
η+j ,

1
η+j−1]

1
j < η+j

j

j = b6ηc (1
7η−1 , 1

η+b6ηc−1]
1

b6ηc < η+b6ηc
b6ηc

j = b6ηc+ 1 s ∈ (0, 1
7η−1]

3
2 s 3

2

Table 6.1: A summary of the replica classes used in the definition and analysis
of the Harmonic-Stretch algorithm. The weight and density of classes is
used in the analysis of the algorithm.

active group is needed when either i) one of the bins in the active group fails or ii)

enough items are placed inside the active group, and the group becomes complete;

before that, the group is incomplete. A group is said to be available if none of its

bins are failed. An active group is always available. When a new active group is

required, the algorithm checks whether an incomplete and available group exists.

Such a group, if it exists, is a former active group that, at some point lost its

active status due to a bin failure. Since the group is now available, its failed bins

should be recovered. If such a group exists, it is selected as the new active group

(if multiple such groups exist, one is chosen arbitrarily). On the other hand, if no

incomplete, available group exists, the algorithm opens a fresh group of all-empty

bins and declares it as the active group.

Lemma 6.1. There are at most f + 1 incomplete groups at any given time during

the execution of the algorithm.

Proof. Consider otherwise, that is, at some point, there are at least f + 2

incomplete groups. Let t denote the time at which the (f + 2)th group G is initiated.

There are at most f groups that contain at least one failed bin at any given time,

in particular, at time t. So, out of the f + 1 incomplete groups at time t (before G

is initiated), at least one group G′ has been incomplete and available. Therefore, G′

had to be selected as the new active group instead of G, a contradiction.

6. Online Fault-tolerant Bin Packing 53

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

1

22

1

22

primary bins standby bins

spots
1 1

spots

𝐵0 𝐵1 𝐵2 𝐵3 𝛽0
1 𝛽0

2 𝛽0
3

Figure 6.1: An illustration of the group structure for (i, j)-items where i = 2,
j = 4, and f = 3: There are j primary bins each partitioned into i spots of
capacity 1/i. There are f i standby bins formed by f sets of bins, each
containing i standby bins. Each standby bin is partitioned into j spots of
size 1

j+η−1 , which leaves a reserved space for the expansion of one standby
replica of class j into the primary replica of class i.

6.1.3 Packing strategy

We explain how the algorithm packs (i, j)-items inside their active group. The

placement is slightly different for regular and small items:

Regular items. We describe how (i, j)-items are packed, where i ≤ 6 and j ≤ b6ηc.

Each bin group for (i, j)-items, in particular the active group, is formed by j + f i

bins and has enough space for ij items. The group becomes complete when ij items

are placed in it. There are j primary bins B0, B1, . . . , Bj−1 that are each partitioned

into i spots of capacity 1/i. There are f i standby bins formed by f sets of bins, each

containing i standby bins. We use βk
0, βk

1, . . . βk
i−1 to denote the standby bins in the

kth set (k ≤ f). Each standby bin is partitioned into j spots of size 1
j+η−1 . This

leaves a reserved space of size η−1
j+η−1 in the bin. The spots in the standby bins are

labeled from 0 to j− 1. Figure 6.1 illustrates the structure of a group for (2, 4)-items

where f = 3.

Let at be the tth item that is to be packed into the group (0 ≤ t ≤ ij − 1). Let

w = (t mod j) and z = bt/jc. Note that w and z are in the ranges [0, j − 1] and

[0, i − 1], respectively. The algorithm places the primary replica of at in the spot z

of the primary bin Bw in the active group. Standby replicas of at are placed in the

spot w of bins β1
z, β2

z, . . . , β
f
z of the active group.

6. Online Fault-tolerant Bin Packing 54

a0 a1 a2 a3 a4

a5 a6 a7 a8 a9

β1
0 β1

1 β2
0 β2

1 β3
0 β3

1

primary bins standby bins

B1 B2 B3 B4B0

Figure 6.2: An illustration of the Harmonic-Stretch packing for regular
(i, j)-items in a complete group, where i = 2, j = 5, and f = 3.

Example 6.1. Figure 6.2 illustrates packing items of class (i, j), where i = 2, j = 5,

and f = 3 in a complete group. There are j = 5 primary bins B0, . . . , B4, each

partitioned into i = 2 spots. There are f = 3 groups of standby bins, each containing

i = 2 bins that are partitioned into j = 5 spots. For an item like a4 (the red item),

we have w = 4 and z = 0. The primary replica of a4 is thus placed in the 0th spot of

the 4th bin, while standby replicas of a4 are placed in the 4th spot of the bin βk
0 for

k ∈ [1, 3].

Example 6.2. Figure 6.3 shows an incomplete group of bins opened for (i, j)-items

where i = 2, j = 5, and f = 3. The group includes j + f i = 11 bins. Each of the

primary bins and standby bins has i = 2 and j = 6 spots, respectively, out of which

the black spots have not been filled yet. The algorithm has placed items a0, . . . a6 in

their respective bins when the group was active (and available). At some time t, bins

B0 and B4 failed. At this point, the group becomes unavailable, and the adjustment

strategy processes a0, a5, and a4 to assign new primary replicas for them. After

time t, the group will not be active anymore (because it is not available), and the

algorithm does not place upcoming items in this group until it is selected as the active

group later again; this requires the group to become available again, that is, B0 and

B4 must be recovered.

Small items. In order to pack replicas of small items, Harmonic-Stretch merges

sets of consecutive small items into super-replicas (SRs). Given that the size of small

primary and standby replicas are, respectively, at most 1
7−1/η and 1

7η−1 , it is possible

to group consecutive primary and standby replicas into SRs with sizes in the range

6. Online Fault-tolerant Bin Packing 55

a0 a1 a2 a3 a4

a5 a6

β1
0 β1

1 β2
0 β2

1 β3
0 β3

1

primary bins standby bins

B1 B2 B3 B4B0X X

Figure 6.3: An unavailable and incomplete group of bins for (i, j)-items,
where i = 2, j = 5, and f = 3.

(1
7−1/η , 2

7−1/η) and (1
7η−1 , 2

7η−1), respectively. The algorithm maintains an (initially

empty) open primary SR of capacity 2
7−1/η and places consecutive primary replicas

in the open SR until placing the next replica causes the total size of replicas in the

SR to exceed its capacity. At this point, the SR is closed and a new SR is opened.

Similarly, the algorithm maintains f (initially empty) open standby SRs, each of

capacity 2
7η−1 , and places the f standby replicas in these bins until a replica does

not fit in the open SRs, at which point the f open SRs are closed and a set of f

new SRs are opened. Since the primary and standby SRs are opened and closed at

the same time, we can think of a set of small replicas that are placed in an SR as a

single regular replica. In what follows, we describe how the newly opened SRs are

placed into bins.

Each group G of bins opened for small items contains f standby bins that mirror

each other∗ and one primary replica which is “committed” to G. There are also “free”

primary bins that are not committed to any group. Upon the arrival of a small item,

its standby replicas are placed into the open SRs located on (mirroring bins) of

the active group, and its primary replica is placed into the open SR located on the

committed bin. As before, if any bin of the active group fails, the group becomes

unavailable, and the algorithm declares another incomplete, available group as the

active group (or creates a new one if no such group exists). There is a reserved space

of size 2(η−1)
7η−1 + 2

7η−1 = 2(η−1)
7η−1 inside each of the f mirroring bins of a group, which is

used for the promotion of the standby SRs when required. When it is needed to open
∗Two bins “mirror” each other iff they contain the same set of replicas.

6. Online Fault-tolerant Bin Packing 56

primary bins standby bins

2(η − 1)
7η − 1

B1 B2 B3 B4 B5 B6 β1
0 β2

0 β2
0 β1

1 β2
1 β3

1

x
x x x

y y y

y

Figure 6.4: An illustration of the Harmonic-Stretch packing for placing
small items, where f = 3.

a new SR (when the new replicas do not fit in the open SR), Harmonic-Stretch

first places f standby SRs and then a single primary SR as follows. For the f standby

SRs, if the available space in the mirroring standby bins of the active group is at

least 2η
7η−1 , then the new SRs will be placed into the existing open standby bins.

Otherwise, the active group gets complete, and either another incomplete, available

group is selected as the active group, or (if there is no such an available group) a

new group is opened. For placing a new primary SR, the algorithm first frees the bin

committed to the active group, and then selects any free primary bin B′ that i) has

an empty space of size at least 2
7−1/η and ii) is not sharing an SR with any of the

f standby bins in the active group. If no such bin B′ exists, the algorithm opens a

new primary bin B′. The bin B′ is then declared as the new primary bin committed

to the active group, where the new primary SR is placed.

Example 6.3. Figure 6.4 illustrates how Harmonic-Stretch packs small items,

where η = 2 and f = 3. Replicas of items that form the same SR have the same color.

SRs of primary replicas have sizes in the range (1
7−1/η , 2

7−1/η), that is, (2/13, 4/13).

Standby SRs have sizes in the range (1
7η−1 , 2

7η−1), that is, (1/13, 2/13). The algo-

rithm maintains a reserved space of 2(η−1)
7η−1 = 2/13 inside each standby bin. The

initial small items are placed into the yellow SRs. Note that the standby SRs are

placed in f = 3 open mirroring bins (β1
0, β2

0, and β3
0) and the primary SR is placed

in bin B1, which is the initially committed bin to the active group. At some point,

replicas of an item x do not fit in the standby SRs of the active group. This is because

6. Online Fault-tolerant Bin Packing 57

the total size of primary and standby yellow replicas exceeds 4
13 and 2

13 , respectively,

if replicas of x are included in the yellow SRs. As such, a new SR (the light green

SR) is opened for x. Given that the empty and non-reserved space in the mirroring

bins of the current group is enough to fit another standby SR of size at most 2/13, the

standby replicas of the new SR are placed in the open mirroring bins. Meanwhile, B1

is freed, and a new bin B2 is selected as the new committed primary bin to the active

group, where the new primary SR is placed. Note that B1 is freed because it already

shares yellow SR with the standby bins of the active group. Similarly, the standby

replicas of the subsequent SRs (of colors orange, blue, and pink) are placed in the

mirroring bins of the active group while their primary replicas are placed in separate

primary bins (each becoming the new committed bins upon freeing the previous one).

At some point, replicas of some item y cannot fit in the current (pink) SRs. So, a

new SR (of color red) needs to be opened. The current mirroring bins do not have an

available space of 2
7η−1 = 2/13; as such, the active group gets complete, and a new

group with f = 3 standby bins (β1
1, β2

1, and β3
1) is opened, where the new standby

SRs are placed. At this point, the primary replica of the new SR (the red SR) can be

placed in any of the primary bins B1 to B6, that is, any of B1 to B6 can be selected

as the committed bin to the new active group. This is because none of these primary

bins are related to this new set of open standby bins. In the figure, B1 is initially

selected as the primary bin committed to the new group.

6.1.4 Adjustment strategy

We describe an adjustment strategy that ensures a primary replica is available at

any given time during the execution of Harmonic-Stretch.

Two bins in the packing of Harmonic-Stretch are said to be related through

item x if they both contain (primary or standby) replicas of item x. Clearly, any two

related bins should belong to the same group of bins.

Lemma 6.2. In a packing maintained by Harmonic-Stretch, if a primary bin

Bp is related to a standby bin β1 through an item x and to a standby bin β2 through

an item y 6= x, then β1 and β2 are not related through any item.

6. Online Fault-tolerant Bin Packing 58

Proof. Let P be the packing maintained by Harmonic-Stretch. First, we

show that (i) any pair of standby bins that are related mirror each other, and (ii)

any primary bin in P shares replicas of at most one item with any standby bin. For

(i), note that the algorithm places the standby replicas of each regular item in bins

that mirror each other. The same holds for the small replicas because the standby

SRs are placed into mirroring bins (see Figures 6.2 and 6.4). For small items, (ii)

follows directly from the definition of the Harmonic-Stretch. This is because the

algorithm places each primary SR into a primary bin that does not share an SR with

any (standby) bin of the active group. We use proof by contradiction to prove (ii) for

the regular items. Assume a primary bin B includes primary replicas of items x and

y of class (i, j) while a standby bin β′ also includes replicas of x and y. Given that x

and y are regular items, they belong to the same set of the ij items that are placed

in the same group (with j + f i bins) in P . Let tx and ty, respectively, denote the

indices of x and y in the group (tx 6= ty). Since x and y have their primary replicas in

B, we should have (tx mod j) = (ty mod j). Similarly, since their standby replicas

are placed in β′, we should have btx/jc = bty/jc. This contradicts tx 6= ty.

Provided with (i) and (ii), we are ready to prove the lemma. Suppose the lemma

does not hold, that is, a primary bin Bp in P is related to a standby bin β1 through

an item x and to standby bin β2 through an item y (y 6= x), while β1 and β2 are

also related. Since β1 and β2 are related, by (i), they should mirror each other, that

is, β1 includes replicas of both x and y, and so does β2. Thus, Bp shares replicas of

both x and y with β1 (and β2), contradicting (ii).

We use Lemma 6.2 to develop the adjustment strategy of Harmonic-Stretch:

Theorem 6.1. There is an adjustment strategy that ensures the packing of

Harmonic-Stretch stays valid, that is, a primary replica of each item is always

present in a non-failed bin.

Proof. We describe an adjustment strategy that maintains an injective mapping

h that maps each primary replica x placed originally in a failed primary bin into a

non-failed standby bin h(x) that hosts a standby replica of the same item. For each

primary replica x in a failed primary bin, the standby replica in h(x) replaces x as

the new primary replica. Since the mapping is injective, at most one replica in each

6. Online Fault-tolerant Bin Packing 59

standby bin will be promoted to a primary replica. Given that each standby bin with

a replica of size s has an empty space of at least (η − 1)s, no bin is overloaded. In

what follows, we describe an adjustment strategy that maintains the desired injective

mapping as bins fail and recover. In this process, the standby bins that are in the

range of h are referred to as “marked” bins.

We describe how to maintain the mapping h at time t. Suppose that such mapping

is maintained in the previous t − 1 steps. Let fp denote the number of primary bins

that are failed (and not recovered) before time t (we have 0 ≤ fp ≤ f). Suppose that

out of these fp failed primary bins, rp bins are recovered at time t (0 ≤ rp ≤ fp). A

bin B is said to be critical iff it fails at time t while containing a primary replica. Let

k denote the number of critical bins. All primary bins that fail at time t are critical

(non-failed primary bins contain primary replicas). Marked standby bins that fail at

time t are also critical (they are in the range of h and, hence, a replica in them has

replaced the primary replica of a failed primary bin). For the packing to stay valid,

the primary replicas in the critical bins should be mapped to some non-failed bins.

The adjustment algorithm first ensures that the primary replicas in the rp recov-

ered primary bins are removed from the domain of h, and retain their primary status;

this means the standby replicas in the range of h that were previously upgraded to

primary replicas become standby again and their bins become unmarked. At this

point, the number of failed, unmarked standby bins is at most f − (fp − rp + k);

this is because, out of at most f failed bins, fp − rp of them are primary bins that

are failed before t, and k of them are critical and, hence, are either primary bins or

marked standby bins.

Consider an arbitrary ordering (B1, B2, . . . , Bk) of the critical bins. We process

the critical bins, one by one, in this order. When processing a bin Bq, we process

primary replicas in Bq in an arbitrary order (q ≤ k). Let a be a replica in Bq that

is being processed, and let A be the set of f standby bins that include replicas of a.

We need to map a to an unmarked bin β ∈ A and then mark β. We show that it is

always possible to find such an unmarked bin β. Consider a previously processed bin

B′ (whose primary replicas are mapped), that is, either B′ failed previously at t′ < t

or B′ is Bq′ for q′ < q. We claim that during the processing of B′, at most one bin

6. Online Fault-tolerant Bin Packing 60

from A has become marked. At the time B′ is processed, it has been critical and,

hence, either a primary bin or a marked standby bin. If B′ was a marked standby

bin, then it contained at most one primary replica (since the mapping is injective),

and the claim holds. To prove the claim when B′ is a primary bin, consider otherwise,

that is, assume two standby bins βx, βy ∈ A have been marked during the process

of B′ . This means B′ is related to βx and βy through two different items. On the

other hand, βx and βy are also related to each other (because they are both in A

and, hence, contain a replica of a). This is not possible, however, given the result in

Lemma 6.2.

There are fp − rp + q − 1 failed bins that are processed before Bq. By the above

argument, processing any of these bins results in marking at most one standby bin

from A. Therefore, at the time of processing a, at most fp − rp + q − 1 standby

bins from A are previously marked. Note that a is replicated on f standby bins.

As a result, there are at least f − fp + rp − q + 1 unmarked standby bins that host

standby replicas of a. Among these bins, at most f − (fp + rp − k) bins are failed.

So, there are at least f − fp + rp − q + 1 − (f − fb + rp − k) = k − q + 1 non-failed

and unmarked standby bins in A. Given that q ≤ k, there is at least one unmarked

bin that a can be mapped to.

6.2 Competitiveness of Harmonic-Stretch

In this section, we use a weighting argument to provide an upper bound for the

competitive ratio of Harmonic-Stretch. We assign a weight to each replica in the

final packing of the algorithm. The weights are defined in a way that the total weight

of replicas placed in each bin of the algorithm, except possibly a constant number

of them, is at least 1. Therefore, if w(σ) denotes the total weight of all replicas in

the input sequence, the number of bins in the packing of Harmonic-Stretch is

no more than w(σ) + c, for some constant c independent of the input length (but

possibly a function of parameters f and η). At the same time, we show that any

bin in an optimal packing has a weight at most 1.75, which means the number of

6. Online Fault-tolerant Bin Packing 61

bins in an optimal packing is at least w(σ)/1.75. As such, the competitive ratio of

Harmonic-Stretch will be at most 1.75.

Weighting: For regular items, define the weight of a primary replica of class i (≤ 6)

as 1/i, and the weight of standby replicas of class j (≤ b6ηc) as 1/j. For small items,

a primary or standby replica of size x has weight 3x/2 (see Table 6.1).

Lemma 6.3. The total weight of replicas in any bin of Harmonic-Stretch, except

for at most a constant number of bins, is at least 1.

Proof. First, we investigate regular bins. Consider the bins in the complete

groups (see Figure 6.2). In any such group, a primary bin of class i ≤ 6 includes

i replicas, each of weight 1/i. Similarly, a standby bin of class j ≤ b6ηc includes

j replicas, each of weight 1/j. Therefore, all regular bins, except for those in the

incomplete groups, have weight 1. We show that the total number of bins inside

incomplete groups is a constant independent of the input length. By Lemma 6.1,

there are at most f + 1 incomplete groups for (i, j)-items. There are j+ f i ≤ 6(η + f)

bins inside each group. So, there are at most 6(f + 1)(η + f) partially-filled bins

for (i, j)-items. Given that i ≤ 6 and j ≤ 6η, there are at most 36η possible pairs

of (i, j). In total, the number of partially filled bins for regular items is at most

(36η)6(f + 1)(η + f) = O(1). In summary, the total weight of items in any regular

bin, except for at most O(1) of them, is at least 1.

Next, we look into small items. Let x be the primary SR that causes opening

the last primary small bin. Also, let m be the number of standby SRs packed in the

standby bins of the active group at the time x was placed. There are m primary

bins that are related to the f standby bins, and thus cannot host x. By Lemma 6.1,

there are up to f incomplete groups other than the active group. The primary bins

committed to these groups also cannot host x. The remaining primary bins could

not host x only because they did not have enough space. So, all primary small bins,

except at most m+ f of them, are filled to a level of at least 1− 2
7−1/η = 5η−1

7η−1 ≥ 2/3.

Given that any small item of size s has weight 1.5s, the total weight of replicas in

any of these bins is at least 1.5 (2/3) = 1. Next, we show that m is a constant

with respect to the input length. Each standby bin has a non-reserved space of size

6. Online Fault-tolerant Bin Packing 62

1 − 2(η−1)
7η−1 = 5η+1

7η−1 , which is used to pack SRs of size at least 1
7η−1 . As such, we

have m ≤ 5η + 1. So, all primary small bins, except for at most 5η + 1 + f ∈

O(1) of them, have weight at least 1. Standby small bins have a reserved space

of 2(η−1)
7η−1 . Except for the bins inside the incomplete groups, other bins have an

additional empty space of at most 2
7η−1 , giving them a total empty space of at most

2η
7η−1 . By Lemma 6.1, there are up to f + 1 incomplete groups, each containing f

mirroring bins. Therefore, the filled space in each standby bin, except for at most

f (f + 1) = O(1) of them, is at least 5η−1
7η−1 ≥ 2/3. Given that any standby small

replica of size s has weight 1.5s, the weight of any of these standby bins is then at

least 1.5 (3/2) = 1.

Lemma 6.4. The total weight of items in any bin of an optimal packing is at most

1.75.

Proof. Define the density of each item as the ratio between the weight and the

size of the item. A primary replica of class i ≤ 6 has a size in the range (1
i+1 , 1

i] and

weight 1/i, which gives a density of at most i+1
i . Similarly, standby replicas of class

j ≤ b6ηc have size in the range (1
j+η , 1

j+η−1] and weight 1/j, giving them a density

of at most (j + η)/j. Small replicas (both primary and standby) have a density of

3/2. We consider three possible cases and show that the total weight of items in any

bin B∗ of an optimal packing is at most 1.75 in each case. To follow the proof, it

helps to consult Table 6.1.

Case 1: No standby replica in B∗: Suppose B∗ does not include any standby

replica. In this case, B∗ includes 0 or 1 primary replica of class 1 (it cannot include

more than 1 such replica since all replicas of class 1 have sizes larger than 1/2). If

it includes no replica of class 1, the density of each of the items (of other classes)

is at most 1.5, giving a total weight of at most 1.5 for items in B∗. If B∗ includes

one item of class 1 (with weight 1), the total size of other items will be less than

1/2, and since their density is at most 3/2, their total weight will be no more than

3/2 · 1/2 = 3/4, giving a total weight of at most 1 + 3/4 = 1.75 for items in B∗.

Case 2: Some standby replicas in B∗ are regular: Suppose B∗ includes at

least one regular standby replica. Let x be the largest standby replica in B∗ and j

6. Online Fault-tolerant Bin Packing 63

denote the class of x; we have 1 ≤ j ≤ b6ηc. There should be enough empty space in

B∗ so that if all f bins containing other replicas of x are failed, x can be declared as

a primary replica. Increasing the size of x by a factor η should not cause an overflow,

that is, there should be empty space of at least (η − 1)x > (η − 1)/(j + η) in B∗

(recall that replicas of class j are of sizes at least 1/(j + η)). So, the total size of

items in B∗ is less than 1− η−1
j+η = j+1

j+η . There are two cases to consider: either j = 1

or j ≥ 2:

i) Suppose j = 1, that is, there is a standby replica x of size more than 1/(1+ η)

in B∗. The total size of items in the bin is less than j+1
j+η = 2

η+1 , and items other

than x in B∗ have a total size less than 1
η+1 . As a result, there is no primary

replica of class 1 (of size at least 1/2 > 1
η+1) or standby replica of class 1 (of

size more than 1
η+1) in B∗. So, primary replicas in B∗ have class 2 or more and

hence density at most 1.5. Similarly, standby replicas other than x have class 2

or more and hence density no more than η+2
2 . So, all replicas other than x in

B∗ have a density at most max{1.5, η+2
2 } = η+2

2 . Since the total size of these

replicas is at most 1
η+1 , their total weight is at most 1

η+1 ·
η+2

2 = η+2
2η+2 . Adding

the weight 1 of x, the total weight of replicas in B∗ is at most 3η+4
2η+2 , which is

at most 1.75, given that η > 1.

ii) Suppose j ≥ 2. Recall that the total size of items in B∗ is less than j+1
j+η . First,

assume there is also a primary replica y of class 1 in B∗. This is possible only

if 1
j+η + 1

2 < j+1
j+η , that is, η < j. The size of replicas other than y in B∗ is

less than j+1
j+η − 1/2 = j+2−η

2j+2η , and their density is at most max{1.5, (j + η)/j}

(primary replicas of class ≥ 2 have density at most 3/2, and standby replicas

have density at most (j + η)/j). The total weight of replicas other than y is

hence less than max{3j+6−3η
4j+4η , j+2−η

2j } ≤ max{3/4, j+2−η
2j }, which is at most

0.75, given that η > 1 and j ≥ 2. Adding the weight 1 of y, the total weight

of replicas in B∗ will not be more than 1.75. Next, assume there is no primary

replica of class 1 in B∗. In this case, the total size of replicas in B∗ is at most
j+1
j+η , and their density is at most max{1.5, (j + η)/j}, giving them a total

weight of at most max{ 3j+3
2j+2η , (j + 1)/j}, which is at most max{1.5, (j + η)/j}

= 1.5, given that η > 1 and j ≥ 2.

6. Online Fault-tolerant Bin Packing 64

Case 3: All standby replicas in B∗ are small: Assume there is no regular

standby replica in B∗, but there is at least one small standby replica in B∗. We

consider two cases: either there is a primary replica of class 1 in B∗ or not:

i) If there is a primary replica y of class 1 in B∗, the remaining space of B∗ is

less than 1/2 (as y is of size more than 1/2). No other primary replica y′ of

class 1 can be in B∗ because each of y and y′ would have a size more than 1/2.

Therefore, the remaining space in B∗ (of size less than 1/2) can be filled with

primary replicas of class i ≥ 2 (of the density of at most 3/2) and with other

standby small replicas (of density 3/2). So, the total weight of items other

than y in B∗ is at most 1.5(1/2) = 3/4. Given that the weight of y is 1, the

total weight of items in B∗ will be at most 1.75.

ii) If there is no primary replica of class 1 in B∗, then B∗ is filled with primary

replicas of class i ≥ 2 (of density at most 3/2) and standby replicas of class

j = b6ηc+ 1 (of the density of 3/2). As a result, the total weight of B∗ will

be no more than 3/2.

Theorem 6.2. Harmonic-Stretch has a competitive ratio of at most 1.75.

Proof. Let σ be any input sequence, and w(σ) be the total weight of items

in σ. Let HStr(σ) be the number of bins that Harmonic-Stretch opens for σ.

By Lemma 6.3, we have HStr(σ) ≤ w(σ) + c for some constant c independent of

|σ|. On the other hand, by Lemma 6.4, we have Opt(σ) ≥ w(σ)/1.75. We can

write
HStr(σ)
Opt(σ)

≤ w(σ) + c
w(σ)/1.75

,

which converges to 1.75, given that c is a constant.

6.3 Concluding remarks

We proved that the competitive ratio of Harmonic-Stretch is at most 1.75, which

is an improvement over the competitive ratio 2 of the best existing algorithm. We

6. Online Fault-tolerant Bin Packing 65

note that this upper bound holds for all values of f and η. When η is close to

1, the existing lower bounds for the classic online bin packing extend to the fault-

tolerant setting. In particular, no fault-tolerant bin packing algorithm can achieve

a competitive ratio better than 1.54 [63, 64]. As a topic for future work, one may

consider tightening the gap between the lower bound of 1.54 and the upper bound

of 1.75.

Chapter 7

Conclusion

In this thesis, we studied two variants of the bin packing problem, that is, square

packing, which is a variant of the two-dimensional bin packing, and fault-tolerant

bin packing, which has wide applications in cloud systems. Packing squares into

squares of unit size is a well-studied variant of the bin packing problem. It has been,

however, studied only in a setting where square-items are not allowed to be rotated.

We considered, for the first time, square packing in the presence of item rotations,

which is a more realistic assumption for applications such as stock cutting. We first

proved that the problem is NP-Hard, and then provided an APTAS for a relaxed

augmented setting where bins have a capacity of (1 + α) for some small α > 0 . We

also studied the online setting of the problem where square items are revealed one

by one (which is another realistic assumption), and introduced an online algorithm

with a competitive ratio of at most 2.306. We also considered a similar problem in

which the goal is to pack tans (half-square triangles) of various sizes into unit square

bins. With a similar approach, we presented an online algorithm with a competitive

ratio of at most 1.897 for this problem.

We also studied the fault-tolerant bin packing problem, which has applications

in server consolidation in the Cloud. In this problem, bins represent servers of unit

capacity, and items are databases (tenants) of various workloads hosted in the Cloud

servers. The problem is online by nature, as requests for hosting tenants appear in an

online manner. We introduced a practical and general model in which servers might

fail and recover before all jobs/tenants (items) are assigned (packed) into servers.

66

7. Conclusion 67

In the existing models for the problem, server failures happen only after all items

are packed. We designed an algorithm with a competitive ratio at most 1.75, and

showed that it is also valid for the (less practical) existing models, where the best

existing algorithm had a competitive ratio of at most 2.

7.1 Future work

For the offline square packing with rotation problem, we showed that the problem

admits an APTAS under a resource augmented setting. As a topic for future work,

one might investigate if such a result also holds when bin sizes are not augmented.

For online square packing with rotation, we presented an upper bound of at

most 2.306. This competitive ratio might be improved by allowing square-items

of similar classes placed in the same bins as in, e.g., the Modified-Harmonic

algorithm [18] for the 1-dimensional bin packing problem. Another potential topic

for future work concerns providing lower bounds for the competitive ratio attainable

by online algorithms for this problem.

As for the online fault-tolerant bin packing problem, we introduced an algorithm

with a competitive ratio of at most 1.75. It is easy to derive a lower bound of 1.54

(from 1-dimensional bin packing). Therefore, there is a gap between the two bounds.

Closing/tightening this gap can be a topic for future work.

Bibliography

[1] J. L. Bentley and C. C. McGeoch, “Amortized analyses of self-organizing se-

quential search heuristics,” Communications of the ACM, vol. 28, pp. 404–411,

1985. [Cited on page 2.]

[2] D. Sleator and R. E. Tarjan, “Amortized efficiency of list update and paging

rules,” Communications of the ACM, vol. 28, pp. 202–208, 1985. [Cited on

page 2.]

[3] L. Epstein and R. van Stee, “Online bin packing with resource augmentation,”

Discrete Optimization, vol. 4, no. 3-4, pp. 322–333, 2007. [Cited on pages 2

and 5.]

[4] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the

theory of of NP-Completeness. Freeman and Company, 1979. [Cited on page 4.]

[5] W. F. de la Vega and G. Lueker, “Bin packing can be solved within 1 + ε in

linear time,” Combinatorica, vol. 1, pp. 349–355, 1981. [Cited on page 4.]

[6] N. Karmarkar and R. M. Karp, “An efficient approximation scheme for the

one-dimensional bin-packing problem,” in Annual Symposium on Foundations

of Computer Science (FOCS), 1982, pp. 312–320. [Cited on page 4.]

[7] T. Rothvoß, “Approximating bin packing within o(log opt * log log opt) bins,”

in Annual Symposium on Foundations of Computer Science, 2013, pp. 20–29.

[Cited on page 4.]

[8] D. S. Johnson, “Near-optimal bin packing algorithms,” Ph.D. dissertation, MIT,

Cambridge, MA, 1973. [Cited on page 5.]

68

Bibliography 69

[9] L. Epstein and A. Ganot, “Optimal on-line algorithms to minimize makespan

on two machines with resource augmentation,” Theory of Computing Systems,

vol. 42, no. 4, pp. 431–449, 2008. [Cited on page 5.]

[10] J. Boyar, L. Epstein, and A. Levin, “Tight results for Next Fit and Worst Fit

with resource augmentation,” Theoretical Computer Science, vol. 411, no. 26-28,

pp. 2572–2580, 2010.

[11] D. R. Kowalski, P. W. H. Wong, and E. Zavou, “Fault tolerant scheduling of

tasks of two sizes under resource augmentation,” Journal of Scheduling, vol. 20,

no. 6, pp. 695–711, 2017.

[12] J. Erickson, I. van der Hoog, and T. Miltzow, “A framework for robust realistic

geometric computations,” CoRR, 2019. [Cited on pages 5, 21, 22, 26, and 27.]

[13] S. Albers, “Better bounds for online scheduling,” SIAM Journal on Computing,

vol. 29, no. 2, pp. 459–473, 1999. [Cited on page 5.]

[14] R. Fleischer and M. Wahl, “Online scheduling revisited,” in Proceedings of the

8th Annual European Symposium, vol. 1879, 2000, pp. 202–210.

[15] S. Albers and M. Hellwig, “Online makespan minimization with parallel sched-

ules,” Algorithmica, vol. 78, no. 2, pp. 492–520, 2017. [Cited on page 5.]

[16] D. S. Johnson, A. Demers, J. D. Ullman, M. R. Garey, and R. L. Gra-

ham, “Worst-case performance bounds for simple one-dimensional packing al-

gorithms,” SIAM Journal on computing, vol. 3, pp. 256–278, 1974. [Cited on

page 5.]

[17] C. C. Lee and D. T. Lee, “A simple online bin packing algorithm,” Journal of

the ACM (JACM), vol. 32, pp. 562–572, 1985. [Cited on pages 5 and 6.]

[18] P. V. Ramanan., D. J. Brown, C.-C. Lee, and D.-T. Lee, “On-line bin packing

in linear time,” Journal of Algorithms, vol. 10, pp. 305–326, 1989. [Cited on

pages 6 and 67.]

Bibliography 70

[19] S. S. Seiden, “On the online bin packing problem,” Journal of the ACM (JACM),

vol. 49, pp. 640–671, 2002. [Cited on page 6.]

[20] S. Heydrich and R. van Stee, “Beating the harmonic lower bound for online bin

packing,” in 43rd International Colloquium on Automata, Languages, and Pro-

gramming (ICALP 2016). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,

2016. [Cited on page 6.]

[21] J. Balogh, J. Békési, G. Dósa, L. Epstein, and A. Levin, “A new and improved

algorithm for online bin packing,” in Annual European Symposium on Algorithms

(ESA), 2018, pp. 5:1–5:14. [Cited on page 6.]

[22] J. Balogh, J. Békési, G. Dósa, L. Epstein, and A. Levin, “A new lower bound for

classic online bin packing,” in International Workshop on Approximation and

Online Algorithms. Springer, 2019, pp. 18–28. [Cited on page 6.]

[23] H. I. Christensen, A. Khan, S. Pokutta, and P. Tetali, “Approximation and on-

line algorithms for multidimensional bin packing: A survey,” Computer Science

Review, vol. 24, pp. 63–79, 2017. [Cited on page 7.]

[24] J. Y. T. Leung, T. W. Tam, C. S. Wong, G. H. Young, and F. Y. L. Chin,

“Packing squares into a square,” Journal of Parallel and Distributed Computing,

vol. 10, no. 3, pp. 271–275, 1990. [Cited on pages 7, 18, and 20.]

[25] N. Bansal, J. R. Correa, C. Kenyon, and M. Sviridenko, “Bin packing in multiple

dimensions: Inapproximability results and approximation schemes,” Mathemat-

ics of Operations Research, vol. 31, no. 1, pp. 31–49, 2006. [Cited on pages 7,

20, 22, 28, and 29.]

[26] D. Coppersmith and P. Raghavan, “Multidimensional on-line bin packing: al-

gorithms and worst-case analysis,” Operations Research Letters, vol. 8, no. 1,

pp. 17–20, 1989. [Cited on page 7.]

[27] S. S. Seiden and R. van Stee, “New bounds for multidimensional packing,”

Algorithmica, vol. 36, no. 3, pp. 261–293, 2003.

Bibliography 71

[28] L. Epstein and R. van Stee, “Online square and cube packing,” Acta Informatica,

vol. 41, no. 9, pp. 595–606, 2005. [Cited on page 7.]

[29] X. Han, D. Ye, and Y. Zhou, “A note on online hypercube packing,” Central

European Journal of Operations Research (CEJOR), vol. 18, no. 2, pp. 221–239,

2010. [Cited on page 7.]

[30] D. Blitz, S. Heydrich, R. van Stee, A. van Vliet, and G. J. Woeginger, “Im-

proved lower bounds for online hypercube and rectangle packing,” arXiv preprint

arXiv:1607.01229, 2017. [Cited on page 7.]

[31] J. Balogh, J. Békési, G. Dósa, L. Epstein, and A. Levin, “Lower bounds for

several online variants of bin packing,” Theory of Computing Systems, vol. 63,

no. 8, pp. 1757–1780, 2019. [Cited on page 7.]

[32] L. Epstein, “Two-dimensional online bin packing with rotation,” Theoretical

Computer Science, vol. 411, no. 31-33, pp. 2899–2911, 2010. [Cited on page 7.]

[33] S. Kamali, A. López-Ortiz, and Z. Rahmati, “Online packing of equilateral

triangles,” in The Canadian Conference on Computational Geometry (CCCG),

2015. [Cited on page 7.]

[34] EC2, “Amazon EC2 instance types.” [Online]. Available: https://aws.amazon.

com/ec2/ [Cited on page 8.]

[35] Azure, “Azure virtual machine series.” [Online]. Available: https://azure.

microsoft.com/en-ca/ [Cited on page 8.]

[36] L. Wu and R. Buyya, “Service level agreement (sla) in utility computing sys-

tems,” in Performance and Dependability in Service Computing: Concepts,

Techniques and Research Directions. IGI Global, 2012, pp. 1–25. [Cited on

page 8.]

[37] Y. Ajiro and A. Tanaka, “Improving packing algorithms for server consolida-

tion,” in Proc. the 33rd International Computer Measurement Group Conference

(CMG), 2007, pp. 399–406. [Cited on page 8.]

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://azure.microsoft.com/en-ca/
https://azure.microsoft.com/en-ca/

Bibliography 72

[38] H. Yanagisawa, T. Osogami, and R. Raymond, “Dependable virtual machine

allocation,” in Proc. the 32nd IEEE International Conference on Computer

Communications (INFOCOM), 2013, pp. 629–637. [Cited on page 8.]

[39] J. Schaffner, T. Januschowski, M. Kercher, T. Kraska, H. Plattner, M. J.

Franklin, and D. Jacobs, “RTP: robust tenant placement for elastic in-memory

database clusters,” in International Conference on Management of Data (SIG-

MOD13), 2013, pp. 773–784. [Cited on page 8.]

[40] K. Daudjee, S. Kamali, and A. López-Ortiz, “On the online fault-tolerant server

consolidation problem,” in ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA), 2014, pp. 12–21. [Cited on page 9.]

[41] C. Li and X. Tang, “Brief announcement: Towards fault-tolerant bin packing

for online cloud resource allocation,” in Proceedings of ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA), 2017, pp. 231–233. [Cited

on pages 9, 16, and 49.]

[42] ——, “On fault-tolerant bin packing for online resource allocation,” IEEE

Transactions on Parallel and Distributed Systems, vol. 31, no. 4, pp. 817–829,

2019. [Cited on pages 10 and 14.]

[43] B. Li, Y. Dong, B. Wu, and M. Feng, “An online fault tolerance server consol-

idation algorithm,” in 2021 IEEE 24th International Conference on Computer

Supported Cooperative Work in Design (CSCWD). IEEE, 2021, pp. 458–463.

[Cited on page 10.]

[44] E. Friedman, “Tans in squares.” [Online]. Available: https://erich-friedman.

github.io/packing/taninsqu/ [Cited on page 14.]

[45] C. Li and X. Tang, “On fault-tolerant bin packing for online resource allocation,”

IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 31, no. 4,

pp. 817–829, 2020. [Cited on pages 16 and 49.]

[46] S. Kamali and P. Nikbakht, “Cutting stock with rotation: Packing square

items into square bins,” in Proceedings of the 14th International Conference on

https://erich-friedman.github.io/packing/taninsqu/
https://erich-friedman.github.io/packing/taninsqu/

Bibliography 73

Combinatorial Optimization and Applications (COCOA), ser. Lecture Notes in

Computer Science, W. Wu and Z. Zhang, Eds., vol. 12577. Springer, 2020, pp.

530–544. [Online]. Available: https://doi.org/10.1007/978-3-030-64843-5_36

[Cited on page 17.]

[47] P. Erdős and R. L. Graham, “On packing squares with equal squares,” Journal of

Combinatorial Theory, Series A, vol. 19, pp. 119–123, 1975. [Cited on pages 18,

21, and 35.]

[48] M. Abrahamsen, T. Miltzow, and N. Seiferth, “Framework for ∃r-completeness

of two-dimensional packing problems,” in 2020 IEEE 61st Annual Symposium

on Foundations of Computer Science (FOCS). IEEE, 2020, pp. 1014–1021.

[Cited on pages 18 and 21.]

[49] E. D. Demaine, S. P. Fekete, and R. J. Lang, “Circle packing for origami design

is hard,” CoRR, vol. abs/1008.1224, 2010. [Cited on page 18.]

[50] A. Chou, “NP-hard triangle packing problems,” manuscript, 2016. [Cited on

page 18.]

[51] S. R. Allen and J. Iacono, “Packing identical simple polygons is NP-hard,”

CoRR, vol. abs/1209.5307, 2012. [Cited on page 19.]

[52] F. Göbel, “Geometrical packing and covering problems,” Math Centrum Tracts,

vol. 106, pp. 179–199, 1979. [Cited on page 21.]

[53] W. Stromquist, “Packing 10 or 11 unit squares in a square,” The Electronic

Journal of Combinatorics, pp. R8–R8, 2003.

[54] T. Gensane and P. Ryckelynck, “Improved dense packings of congruent squares

in a square,” Discret. Comput. Geom., vol. 34, no. 1, pp. 97–109, 2005.

[55] E. Friedman, “Packing unit squares in squares: A survey and new results,” The

Electronic Journal of Combinatorics, vol. 1000, pp. DS7–Aug, 2009. [Cited on

pages vi, 21, and 22.]

https://doi.org/10.1007/978-3-030-64843-5_36

Bibliography 74

[56] D. A. Spielman and S. Teng, “Smoothed analysis of algorithms: Why the

simplex algorithm usually takes polynomial time,” The Journal of the ACM

(JACM). [Cited on page 21.]

[57] W. F. de la Vega and G. S. Lueker, “Bin packing can be solved within 1+ε in

linear time,” Combinatorica, vol. 1, no. 4, pp. 349–355, 1981. [Cited on pages 22

and 29.]

[58] E. G. Coffman, Jr., M. R. Garey, D. S. Johnson, and R. E. Tarjan, “Performance

bounds for level-oriented two-dimensional packing algorithms,” SIAM Journal

on Computing, vol. 9, no. 4, pp. 808–826, 1980. [Cited on pages vii, 23, 31,

and 32.]

[59] H. W. Lenstra, “Integer programming with a fixed number of variables,” Math-

ematics of Operations Research, vol. 8, no. 4, pp. 538–548, 1983. [Cited on

page 28.]

[60] E. Friedman, “Packing unit squares in squares: A survey and new results,” The

Electronic Journal of Combinatorics, pp. 1–24, 2000. [Cited on pages vii, ix, 35,

36, 37, 39, 40, 42, 43, and 44.]

[61] L. Epstein and R. van Stee, “Optimal online bounded space multidimensional

packing,” in Proceedings of the fifteenth annual ACM-SIAM symposium on Dis-

crete algorithms, 2004, pp. 214–223. [Cited on pages 37, 38, and 45.]

[62] S. Kamali and P. Nikbakht, “On the fault-tolerant online bin packing

problem,” CoRR, vol. abs/2107.02922, 2021. [Online]. Available: https:

//arxiv.org/abs/2107.02922 [Cited on page 48.]

[63] J. Balogh, J. Békési, and G. Galambos, “New lower bounds for certain classes

of bin packing algorithms,” Theoretical Computer Science (TCS), vol. 440–441,

pp. 1–13, 2012. [Cited on page 65.]

[64] J. Balogh, J. Békési, G. Dósa, L. Epstein, and A. Levin, “A new lower bound

for classic online bin packing,” in Proc. the 17th International Workshop on

https://arxiv.org/abs/2107.02922
https://arxiv.org/abs/2107.02922

Bibliography 75

Approximation and online algorithms (WAOA), vol. 11926, 2019, pp. 18–28.

[Cited on page 65.]

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Literature Review
	2.1 One-dimensional bin packing
	2.2 Two-dimensional bin packing
	2.3 Fault-tolerant bin packing

	3 Problem Statement and Contribution
	3.1 Offline square packing with rotation
	3.1.1 Contribution

	3.2 Online square packing with rotation
	3.2.1 Contribution

	3.3 Online fault-tolerant bin packing
	3.3.1 Contribution

	4 Offline Square Packing with Rotation
	4.1 A Review of the 1-Bin Square Packing (1BSP) Problem
	4.1.1 NP-Hardness
	4.1.2 Congruent Square Packing
	4.1.3 Existential Theory of the Reals

	4.2 An APTAS for Square Packing with Rotation
	4.2.1 Overview
	4.2.2 Triangle & trapezoid packing
	4.2.3 Packing large items

	4.3 Packing arbitrary input
	4.3.1 Item classification
	4.3.2 Packing algorithm
	4.3.3 Analysis

	5 Online Square Packing with Rotation
	5.1 Square-Rotate algorithm
	5.1.1 Item classification
	5.1.2 Packing regular items
	5.1.3 Packing tiny items
	5.1.4 Algorithm's analysis

	5.2 Online tan packing
	5.2.1 Half-square-Rotate algorithm
	5.2.1.1 Packing regular items
	5.2.1.2 Packing tiny items
	5.2.1.3 Algorithm's analysis

	6 Online Fault-tolerant Bin Packing
	6.1 Harmonic-Stretch algorithm
	6.1.1 Item classification
	6.1.2 Maintaining bin groups
	6.1.3 Packing strategy
	6.1.4 Adjustment strategy

	6.2 Competitiveness of Harmonic-Stretch
	6.3 Concluding remarks

	7 Conclusion
	7.1 Future work

	Bibliography

