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Abstract

Research into statistical clustering techniques has grown tremendously in the

past several years due to advances in both theory and computational capability.

Despite this growth, there has been little documented research pertaining to

clustering within the context of the casino industry - likely due to the proprietary

nature of data. However, clustering results can help identify structure within a

given dataset and provide valuable information to stakeholders. In particular,

the segmentation of casino patrons may allow casino operators and researchers

to develop insight into gambling behaviour and tendencies. Consequently, it

is a worthwhile endeavour to explore the application of clustering methods

to casino data. First, we discuss in detail several clustering algorithms along

with a variety of metrics to assess clustering validity. Next, we apply these

algorithms to casino data provided by a local industry partner and compare

the resulting partitions. Furthermore, we examine strategies for interpreting

these clustering results. Finally, we propose different candidate models which

have satisfactory statistical performance and result in meaningful clusters from

a pragmatic perspective.
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Chapter 1

Introduction

The casino industry is a multi-billion dollar global enterprise. Millions of

people each year flock to casinos across the world for entertainment and the

opportunity to gamble. As of 2019 in the U.S. alone, there were almost 1000

casino gaming locations employing 1.8 million people, and the indsutry was

valued at an overall 261 billion USD (American Gaming Association, 2019).

As a result, it is crucial for casino operators to invest time and resources into

creating an enjoyable experience for their customers. Such experiences will

encourage retention of existing customers in addition to attracting new ones.

It is necessary, then, that casino operators are able to understand and cater

towards to their customers.

One of the most popular forms of gambling within casinos is the slot machine.

Unsurprisingly, for the casinos themselves, slot machines happen to be one of

the most profitable activities. For the average Las Vegas casino in 2017, it was

found that 50.5% of gaming revenue was from slot machines alone (Schwartz,

2017). In some states, this number is estimated to be even higher; between 65

1
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and 80 percent (Schwartz, 2018). It should be evident, then, that slot machines

are an activity in which patrons choose to spend a large portion of their time

and wallet. Consequently, it is important that casino operators analyze slot

machine usage to develop valuable insight into their player base.

1.1 Motivation

We obtained a casino dataset from a local industry partner with seven months

of slot machine activity for several thousand casino patrons. Within the casino,

there were over 400 machines active during this time. The dataset included

variables such as date and time of play, unique machine identifiers, duration of

slot machine play, and the number of spins a patron played on the machine.

Furthermore, the dataset excluded all demographic information such as gender

and age. Despite this absent information, we wish to analyze the behaviour

of casino patrons based on the present variables. Ideally, this analysis should

result in actionable conclusions for casino operators.

A common method of analyzing customer behaviour within a variety of

industries is known as “clustering”. Statistical clustering, or just clustering, is

the process by which similar objects are placed together into a group (called a

cluster), while simultaneously placing differing objects into separate groups.

By partitioning the dataset into distinct clusters, it is possible to discover

structure within the data that may have important, real-world applications.

For instance, clustering has been used to study customer behaviour within
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industries such as online retail (Fry and Manna, 2016), credit card, (Wu and

Lin, 2005), banking (Farajian and Mohammadi, 2010), and several others. By

using clustering methods, stakeholders within these industries may be able to

learn new information about their customers and apply this knowledge through

wise marketing strategies to ultimately increase profitability. In particular, the

application of clustering methods to casino patrons based on their slot machine

usage can help operators and researchers answer a variety of questions. For

example:

• How are customers spending their time?

• Where are customers spending their money?

• What changes can be made within the casino to cater towards customer

needs?

Clustering is a form of unsupervised learning, which means that there is an

absence of ground truth. In other words, we are unsure of which customer(s)

belongs to a given cluster, or if any clustering even exists in the first place.

This is in contrast to supervised learning, in which there is ground truth

present and we are training an algorithm to classify data or predict an outcome

(Delua, 2021). Thus, clustering is often a complicated task that requires careful

attention.

There are several clustering algorithms available which result in different

clustering outputs and therefore different interpretations. We present, explore,

assess, and contrast several of these algorithms in detail. Since each algorithm

results in a different output, it is of great importance to present metrics and
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techniques to distinguish among “good” and “bad” clustering results. Without

any ground truth, determining the validity of outputs can be challenging.

Therefore, we also present and discuss several evaluation metrics that can be

used to assess clustering outputs.

Although some research has been conducted in clustering casino patrons

(Iaci and Singh, 2012), results are difficult to reproduce due to the confidentiality

of casino data. Instead, most clustering research tend to focus on the motivation

of gamblers instead of actual gambling behaviour within the casino (Phillips

et al., 2004) (Lee et al., 2006) (Chen et al., 2013). These studies are often

conducted using questionnaires or surveys rather than data obtained from the

casino itself. Without this demographic information present in our dataset,

clustering casino patrons becomes a different challenge. Nevertheless, such an

endeavour may prove worthwhile for operators. In the context of slot machine

gambling, for example, stakeholders may gain beneficial information into which

patrons are attracted to certain slot machines and why that may be.

Using the aforementioned casino dataset, we apply various clustering algo-

rithms and techniques. In particular, we cluster casino patrons in two different

ways. Firstly, we cluster patrons based solely on their slot machine activity

using variables such as their frequency and duration of play. To accomplish

this, we use continuous covariates within the cluster analysis. Secondly, we

cluster casino patrons based on their slot machine preference. That is, we

determine if certain patrons gravitate more towards certain machines. For this

cluster analysis, we use binary covariates (covariates that can only take on
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two distinct values). Furthermore, we analyze the results of both clustering

methods using evaluation metrics and present visualizations that aid in un-

derstanding the output partitions. Finally, we give meaning to the resulting

clusters by discussing possible interpretations. This last step is likely the most

important step for stakeholders who may eventually utilize this information to

make evidence-based business decisions.

1.2 Thesis Overview

In Chapter 2, we present in detail several clustering algorithms that can be

used on a wide variety of data. In Chapter 3, we present various clustering

evaluation metrics that are used to assess and validate clustering outputs from

the algorithms in the previous chapter. Chapter 4 pertains to the application

of these algorithms, techniques, and evaluation metrics to real casino data.

Furthermore, we discuss a strategy to interpret clustering output in order to

ultimately provide value to stakeholders. Finally, in Chapter 5 we conclude

the thesis with a brief discussion of the results and potential topics for future

research.



Chapter 2

Clustering Methodology

2.1 Principal Components Analysis

Principal Components Analysis (PCA) (F.R.S., 1901) is a technique developed

in the early 1900’s used to reduce the dimension of a dataset while maximizing

the amount of information retained in doing so. The purpose of dimension

reduction, in this context, may be to increase the interpretability of analyses

by focusing on fewer variables and to enable visualization of the dataset by

reducing it to 2 or 3 dimensions. PCA reduces the dimension of a dataset and

minimizes information loss by discovering variables that are uncorrelated with

one another and are linear combinations of the original variables.

Suppose we have a dataset X with n observations on p variables (i.e. the

dimension of the dataset is p). X may be written as an n× p matrix,

X =
(
x1 x2 . . . xp

)
.

Our objective is to find a linear combination of these original variables that

6
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maximizes the variance. Given a p×1 vector of constants, a = (a1, a2, . . . , ap)
T ,

linear combinations of xi are of the form

p∑
i=1

aixi = Xa

The variance of this linear combination is

Var(Xa) = aTVar(X)a.

However, in order to ensure a unique solution, there is an additional constraint

that the vector a must have unit norm. That is,

‖a‖ = aTa = 1.

Therefore, to recapitulate, our overall objective is to find an a that maximizes

aTVar(X)a, under the constraint that aTa = 1.

Differentiation, in conjunction with Lagrange multipliers, is applied to the

above to obtain the following equation:

Var(X)a = λa,

where λ is a scalar quantity. Therefore, it is clear that a is an eigenvector of

Var(X), and λ is a corresponding eigenvalue. Note that

Var(Xa) = aTVar(X)a

= aTλa

= λaTa
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= λ since aTa = 1.

So, it is clear that we must choose the largest eigenvalue of Var(X) to maximize

Var(Xa). The linear combination, Xa, is known as a principal component

(PC). Furthermore, the elements of the vector a are known as the PC loadings,

and the elements of Xa are known as the PC scores.

Consider two distinct PC’s, Xai and Xaj , with i 6= j. Then, the covariance

between them is

Cov (Xai,Xaj) = aTj Var (X) ai

= aTj λiai

= λia
T
j ai,

which is 0 if aTi a
T
j = 0. Moreover, the correlation is 0 (i.e. the two PC’s are

uncorrelated) if this is the case, since

Cor (Xai,Xaj) =
Cov (Xai,Xaj)√

Var (Xai) Var (Xaj)
.

Therefore, to find subsequent PC’s, we can proceed as before, but with the

additional constraint that aTi a
T
j = 0 for all i 6= j to ensure that distinct PC’s

are uncorrelated. The result is that subsequent PC’s are calculated by finding

the subsequent eigenvectors of Var (X). So, for example, to find the second PC,

we would find the eigenvector of Var (X) corresponding to the second largest

eigenvalue. In this manner, we can calculate up to p principal components.
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Of course, since the variance of X is usually unknown, in practice we must

estimate the PC loadings using the eigenvalues of the sample covariance matrix,

S, which is defined as

S =
1

n− 1
(X− 1nx̄)T (X− 1nx̄) ,

where x̄ is a 1× p mean vector and 1n is a n× 1 vector of 1’s. Note that the

resulting matrix, S, is of dimension p× p.

One final (and important) note is that because the variance matrix of X is

dependent upon the scale of the variables, the resulting PC’s may be greatly

affected if the scales of variables differ drastically. Thus, it is common to

standardize the variables (by subtracting their mean and dividing by their

standard deviation) prior to calculating any PC’s.

2.1.1 Dimension-Reduction using PCA

Recall that our dataset is of dimension p. To reduce the dimension from p to k

with k < p, PCA is often employed and the first k components are selected. The

k components are often selected based on the proportion of explained variance

by the components. Recall that the ith principal component has variance λi.

Then, the following equations hold true:

Total Variance =

p∑
i=1

λi
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Variance Explained by k components =
k∑
i=1

λi

Proportion of Explained Variance =

∑k
i=1 λi∑p
i=1 λi

.

A technique used to visualize the proportion of explained variance is a scree

plot (Cattell, 1966). A scree plot shows the principal components along the

horizontal axis, along with their respective proportion of explained variance on

the vertical axis.

By inspecting the scree plot and identifying the start of any “elbows” in

the plot, one can determine a reasonable number of components to select. The

elbow represents the point at which there are diminishing returns in terms of

increasing the number of PC’s to increase the proportion of explained variance.

2.2 K-Means

K-means clustering (Macqueen, 1967) is one of the most popular clustering

methods. The algorithm works by partitioning a dataset into a pre-specified

number of non-overlapping clusters. That is, each data point belongs to one

(and only one) of the clusters resulting from the algorithm.

The k-means problem minimizes the within-cluster variation of each cluster.

That is, let C1, C2, . . . , Ck represent the dataset partitioned into k clusters.
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Then, the k-means algorithm will choose C1, C2, . . . , Ck in the following manner:

min
C1,C2,...,Ck

(
k∑
i=1

W (Ci)

)
,

where W (Ci) is the within-cluster variation of cluster i, defined as

W (Ci) =
∑

x(j)∈Ci

∥∥x(j) − µi
∥∥2
,

where µi denotes the center of cluster i and ‖·‖ denotes the Euclidean norm.

That is, the within-cluster variation defined above is the sum of squared

Euclidean distances between each data point in a given cluster and that

cluster’s center.

Therefore, using the above, we obtain the following objective function:

min
C1,C2,...,Ck

 k∑
i=1

∑
x(j)∈Ci

∥∥x(j) − µi
∥∥2

 .

Then, the objective of k-means is two-fold: choose the center of each cluster so

that it is as close as possible to the data points assigned to that cluster, and

assign the data points that are close to a center to that cluster.

There are several algorithms that implement k-means clustering, one of

which is Lloyd’s algorithm (Lloyd, 1982). First, Lloyd’s algorithm begins by

randomly choosing k different initial cluster centers. Then, each data point is

assigned to the cluster with the nearest center. The centers are then updated
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using the mean of all points belonging to that cluster. The steps of assigning

data points to the nearest cluster and then recalculating the centers reoccurs

until some stopping criterion is achieved. Lloyd’s algorithm is given in full in

algorithm 1.

Algorithm 1: Lloyd’s Algorithm

1 Generate k initial cluster centers, denoted µi, with 1 ≤ i ≤ k
2 For each data point x, calculate:

‖x− µi‖2 , 1 ≤ i ≤ k

and assign x to the cluster with the smallest distance to the center.
3 Recalculate the centers as the mean of the data points currently assigned

to that cluster:

µi =
1

ni

∑
x(i)∈Ci

x(i),

where ni is the number of data points currently in cluster Ci.
4 If there has been no reassignment of data points, then end the algorithm.

otherwise, go to step 2.

Note that Lloyd’s algorithm is sensitive to the choice of initial cluster centers

in the first step. Therefore, a wise choice of initial centers is vital to the efficient

convergence of the algorithm. There are several ways of accomplishing this

task, such as using previous knowledge, assigning k random observations in

the dataset as initial centers, or choosing k random points in the appropriate

dimension.

In the statistical software, R (R Core Team, 2020), the kmeans function

provides an “nstart” argument that allows the user to specify a number of

starts to the algorithm. The function will then return the clustering partition
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with the smallest within-cluster variance based on these starts.

2.3 K-medoids

K-medoids (Kaufman and Rousseeuw, 1990) partitions a dataset into a pre-

specified number of non-overlapping clusters, similar to k-means. However,

unlike k-means, k-medoids uses actual data points in the dataset as the cluster

centers, known as the cluster medoids. Using cluster medoids can greatly

reduce the effect of noise and outliers on cluster outputs. Another advantage

of using k-medoids is that the within-cluster variation can be defined using

metrics other than the Euclidean distance, such as the Manhattan distance

(Krause, 1973). As a result, k-medoids clustering allows for greater flexibility

compared to k-means clustering.

Like the k-means problem, the k-medoids problem minimizes the within-

cluster variation of each cluster:

min
C1,C2,...,Ck

(
k∑
i=1

W (Ci)

)
,

where W (Ci) once again denotes the within-cluster variation of cluster i. As

mentioned above, the within-cluster variation can be defined using a variety

of distance metrics. In general, let this distance be denoted d. Then, the

k-medoids objective function becomes

min
C1,C2,...,Ck

 k∑
i=1

∑
x(j)∈Ci

d(x(j), yi)

 ,
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where yi denotes the medoid of cluster i. Note that each medoid is a member

of the dataset. That is, if we let X represent the full dataset, then

y1, y2, . . . , yk ∈ X .

The most common algorithm for finding a solution to the k-medoids problem

is known as the Partitioning Around Medoids algorithm (PAM) (Kaufman

and Rousseeuw, 1990). PAM is implemented in R within the “cluster” library

(Maechler et al., 2019).

2.4 Hierarchical Clustering

Hierarchical clustering (Kaufman and Rousseeuw, 1990) is a form of clustering

in which a certain hierarchy of clusters are created. In particular, clusters are

nested within each other. In the following sections, we will explore the two

types of hierarchical clustering: agglomerative and divisive.

Unlike k-means, hierarchical clustering does not need to be initialized with

a choice of the number of clusters. Instead, all choices of the number of clusters,

from 1 to n, where n is the number of data points in the dataset, are created by

the hierarchical clustering algorithms. Obviously, it is still necessary to actually

choose an appropriate number of clusters for the data after the algorithm has

completed. The output of hierarchical clustering is often viewed in the form

of a “dendrogram” and may be used to help inform the choice of number of

clusters. Dendrograms will be discussed in further detail.

It should be noted that, unlike k-means, hierarchical clustering does not
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depend on any kind of random initialization. Therefore, the result of hierarchical

clustering are reproducible. On the other hand, hierarchical clustering is more

computationally expensive with large datasets.

2.4.1 Agglomerative Hierarchical Clustering

In agglomerative clustering (Kaufman and Rousseeuw, 1990), each observation

in the dataset begins in its very own cluster (i.e. n distinct clusters). As the

algorithm runs, clusters are joined together until, eventually, all clusters have

joined together (i.e. one single cluster remains).

With the above in mind, the obvious question is how to appropriately join

the clusters together. In each step of the algorithm, the two most similar

clusters are joined together to create one cluster. However, “most similar” is a

somewhat more complicated term than it may initially appear to be, especially

since we are now dealing with groups of observations. In fact, there are

numerous options to define similarity in the context of hierarchical clustering.

Similarity is defined using a combination of a particular distance metric

and linkage criterion. The linkage criterion is how the (dis)similarity between

groups of observations is defined. For example, we could calculate the pairwise

distances between all observations in two distinct groups and then take the

maximum of those distances. This is known as complete-linkage. We can also

use single-linkage, which is taking the minimum of all pairwise distances in

two distinct groups instead of the maximum. Or, we can use centroid-linkage,

whereby we calculate the centroid of both groups and then simply use the
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distance between these centroids. Another popular choice of linkage is the

average-linkage, which is using the mean of all pairwise distances between data

points in the two groups. These linkage criteria are summarized in Table 2.1.

Note that several other linkage criteria are available. Furthermore, when

calculating a particular linkage criterion, a distance metric must be chosen.

Potential distance metrics include the Euclidean distance, squared Euclidean

distance, Manhattan distance, Mahalanobis distance, and more.

With a chosen linkage-criterion and distance metric, the agglomerative clus-

tering algorithm proceeds as shown in algorithm 2. Agglomerative hierarchical

clustering is implemented in R using the agnes function from the “cluster”

library (Maechler et al., 2019).

Linkage Criterion Formula

Complete-linkage max d(xa, xb) : xa ∈ Ci, xb ∈ Cj
Single-linkage min d(xa, xb) : xa ∈ Ci, xb ∈ Cj

Centroid-linkage d(ci, cj), where ci is the center of cluster Ci and cj is the
center of cluster Cj.

Average-linkage 1
ninj

∑
xa∈Ci

∑
xb∈Cj

d(xa, xb) , where ni and nj are the

respective number of data points in cluster i and cluster
j.

Table 2.1: Linkage criteria for agglomerative hierarchical clustering

2.4.2 Divisive Hierarchical Clustering

Divisive hierarchical clustering (Kaufman and Rousseeuw, 1990) is simply the

inverse of agglomerative clustering. Here, all observations start in one single
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Algorithm 2: Agglomerative Hierarchical Clustering

1 Begin the algorithm with each observation in its own cluster (i.e. n distinct
clusters).

2 Calculate the dissimilarity, using the chosen linkage criterion and distance
metric, between each cluster.

3 Fuse the two least dissimilar clusters (i.e. the most similar clusters).
4 Go to step 2 and continue iterating until only one cluster remains.

cluster. Each step of the algorithm proceeds by splitting a cluster into two

distinct clusters until n clusters remain. However, it is evident that when a

dataset contains n points, the first step of the algorithm (splitting the dataset

into two distinct clusters) must consider 2n−1 − 1 ways of splitting the data.

Thus, even in relatively small datasets, this computation is infeasible. Instead

of considering all possible ways of splitting the data, a smarter algorithm that

only considers a subset of possibilities is employed.

In the first step of the algorithm, a dissimilarity matrix is calculated

between all observations of the dataset. Note that this dissimilarity matrix

may be calculated using a variety of distance metrics. The most dissimilar

observation then creates a “splinter” cluster. Then, the dissimilarity matrix of

the original cluster (minus the splintered observation) is recalculated, along

with each observation’s dissimilarity to the one splintered observation. If any

observations in the original clusters are more similar to the splintered cluster

than to its current cluster, then the most dissimilar observation is moved to

the splintered group. Once again, the dissimilarity matrix is recalculated for

the two clusters. The movement between observations of the original cluster to
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the splintered cluster and recalculation of the dissimilarity matrix continues

until all observations of the original cluster are more similar to each other than

to the splintered cluster. This completes step one of the algorithm.

Now that we have two cluster (i.e. the original and the splintered cluster),

we have to decide which of these to divide. This is decided by finding the

cluster with the largest dissimilarity between any two of its observations. Once

again, the most dissimilar observation in that cluster forms the new splinter

group. As in step one, dissimilarity matrices are calculated for each cluster

and compared to the dissimilarity of observations in the original clusters to

the splinter observation. The most dissimilar observation is then moved to the

splinter group and the algorithm proceeds. These steps are continued until

each observation is in its own cluster.

The algorithm discussed above is summarized in algorithm 3. Furthermore,

divisive hierarchical clustering is implemented through the diana function from

the cluster library Maechler et al. (2019) in R.

2.4.3 Dendrograms

A dendrogram is a way of visually representing hierarchical clustering. An

example is shown in Figure 2.1. At the bottom of the dendrogram, each

observation in the dataset is a single “leaf”. As we move up the tree, leafs join

together based on their similarity to each other and create branches. That is,

leafs that are joined together closer to the bottom of the dendrogram are more

similar to each other than leafs that are joined to a branch further up the tree.
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Algorithm 3: Divisive Hierarchical Clustering

1 Begin the algorithm with all observations in a single cluster.
2 If this is the first iteration of the algorithm, calculate the dissimilarity

matrix and move the most dissimilar observation to form a splinter
cluster. Otherwise, find the cluster with the largest dissimilarity between
any two of its observations and use the most dissimilar observation from
this cluster to form a splinter cluster.

3 Recalculate dissimilarity matrices. If any observations are more similar to
the splinter cluster than to its current cluster, move the most dissimilar
observation to the splinter cluster.

4 Go to step 3 and repeat until all observations are more similar to their
current cluster than to the splinter cluster.

5 Go to step 2 until all observations are in their own clusters (i.e. n clusters
exist).

The vertical axis, then, is a measure of dissimilarity. By producing a horizontal

“cut” across the dendrogram, we can therefore obtain our desired clusters. The

branches that intersect our horizontal cut are the distinct clusters, and each

observation/leaf belonging to that branch is in that particular cluster.

2.5 Fuzzy c-means

Up until this point, we have only considered clustering methods that partition

the data into one cluster or the other with absolute certainty. That is, there

has been no probability or uncertainty associated with the output. This is

known as hard clustering. Conversely, in fuzzy clustering (also known as soft

clustering (Dunn, 2008), each data point can belong to more than one partition

with a certain probability. One such popular soft clustering technique is known
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Figure 2.1: Example Dendrogram
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as fuzzy c-means. The description of fuzzy c-means is given as follows:

Let X = {x1, x2, . . . , xn} be our dataset that we wish to partition into

c fuzzy clusters. Then, the following loss function, f , is used for the fuzzy

c-means algorithm:

f [U,X , V ] =
n∑
i=1

c∑
k=1

umik ‖xi − vk‖
2 ,

where vk is the centroid of cluster k, uik is the degree of membership of data

point i to cluster k, and m is a parameter that determines the “fuzziness” of

the clusters and is between [1,∞]. The value of m is often defaulted to 2.

The degree of membership, uik, must satisfy the following conditions:

uik ∈ [0, 1] ∀i, k

c∑
k=1

uik = 1 ∀i

n∑
i=1

uik > 0 ∀k.

Then, in order to minimize the objective function, f , with the constraints

above, the following formulas for uik and vk are used in the fuzzy c-means

algorithm (Bezdek, 1981):

uik =
1∑c

j=1

(
‖xi−vk‖
‖xi−vj‖

) 2
m−1

vk =

∑n
i=1 (uik)

mxi∑n
i=1 (uik)

m .



22 CHAPTER 2. CLUSTERING METHODOLOGY

The full algorithm for fuzzy c-means is given in algorithm 4. The fuzzy c-means

algorithm is implemented in R under the “ppclust” package (Cebeci, 2019).

Algorithm 4: Fuzzy c-means Algorithm

1 Given a pre-specified number of clusters c and dataset X = {x1, . . . , xn},
choose c random cluster centers, v1, v2, . . . , vc.

2 Calculate the degree of membership:

uik =
1∑c

j=1

(
‖xi−vk‖
‖xi−vj‖

) 2
m−1

, for 1 ≤ i ≤ n and 1 ≤ k ≤ c

3 Compute the new cluster centers:

vk =

∑n
i=1 (uik)

mxi∑n
i=1 (uik)

m , for 1 ≤ k ≤ c

4 If max
∣∣∣u(t+1)
ik − u(t)

ik

∣∣∣ < ε, where ε is a small positive number chosen as a

stopping criterion, and t tracks the number of iterations, then the
algorithm stops. Otherwise, return to step 2.

2.6 Model-based Clustering

Model-based, or distribution-based, clustering is a method in which it is

assumed the data originate from some mixture of probability distributions.

Unlike other techniques such as k-means or hierarchical clustering which are

heuristic in nature, model-based clustering relies on an underlying model. In

this type of clustering, each component of the mixture model corresponds

to a cluster. Similar to the fuzzy c-means algorithm, model-based clustering

partitions the dataset using soft clustering. An observation’s assignment to a
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particular cluster is the probability that the observation originated from that

component. An advantage to using model-based clustering is that we are able

to use the Bayesian information criterion (BIC) (Schwarz, 1978) and/or Akaike

information criterion (AIC) (Akaike, 1974) for model selection.

Concretely, suppose that we have a dataset of n observations, X = {x1, x2, . . . , xn}.

The data is assumed to have been generated from an underlying mixture dis-

tribution (McLachlan and Peel, 2000):

f(xi|Θ) =
k∑
j=1

πjfj (xi|θj) .

The variables in the equation above are as follows:

• πj is the mixing weight of the jth component with

k∑
j=1

πj = 1

πj > 0 for all j

• fj is the probability density function of the jth component.

• θj are the parameter(s) of the jth probability density function

• Θ is the full set of model parameters. That is, Θ = {π1, . . . , πk, θ1, . . . , θk}.

2.6.1 The Gaussian Mixture Model

The most popular form of model-based clustering is Gaussian mixture models

(GMM), where the underlying model is a mixture of Gaussian distributions.
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Given a p-dimensional dataset and a number of clusters, k, the goal of the

model-based clustering algorithm is to fit a Gaussian mixture distribution with

k components to the dataset.

The Gaussian Mixture distribution can be written as (Bishop, 2006)

f(xi|Θ) =
k∑
j=1

πj φ (xi|µj,Σj) ,

where φ (xi|µj,Σj) denotes the multivariate normal probability density function

with p-dimensional mean vector µj and p× p covariance matrix Σj . This p.d.f.

is defined as

φ (x|µ,Σ) =
exp

[
−1

2
(x− µ)T Σ−1 (x− µ)

]
√

(2π)p|Σ|
.

The multivariate normal distribution is ellipsoidal and centered at the the

mean-vector µ. The covariance parameter, Σ, controls aspects of the geometry

of the distribution such as its volume, shape, and orientation (Scrucca et al.,

2016a). Therefore, by imposing constraints upon the covariance matrices of

the mixture components, we can obtain a number of different clustering results.

We will examine some of these constraints in a later section and investigate

the resulting clustering output.

To fit a mixture of Gaussians to the dataset, we will proceed by examining

the log-likelihood of the distribution (Bishop, 2006). Note that we have assumed

that each xi is independent and identically distributed. Therefore, the likelihood
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can be written as

L(Θ|x1, . . . , xn) =
n∏
i=1

f(xi|Θ).

To simplify, we take the logarithm of both sides to obtain the log-likelihood,

denoted `:

`(Θ|x1, . . . , xn) =
n∑
i=1

log f(xi|Θ)

=
n∑
i=1

log

[
k∑
j=1

πj φ (xi|µj,Σj)

]
.

Recall that Θ = {π1, . . . , πk, θ1, . . . , θk}. Our goal is to find the value of Θ that

maximizes the log-likelihood, given our observed data. However, maximizing

the log-likelihood using analytical methods is often difficult or impossible. As

such, we can simplify the task by introducing a latent variable.

A latent variable is a variable that is not directly observed and thus has

to be inferred in some way from the data. Therefore, latent variables are also

known as hidden variables. For instance, we will introduce a latent variable

to our mixture model that indicates from which component a particular data

point was drawn.

Let this latent variable be denoted zi = {zi1, zi2, . . . , zik}, where zij takes

on the value 0 if xi was not drawn from component j, and 1 if xi was drawn

from component j. Then, we can write the following:

zi ∼ Multinomial(1,π) where π = {π1, . . . , πk}
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f(xi|zi,Θ) =
k∏
j=1

fj(xi|θj)zij .

Suppose that we could observe the zi’s, this would result in

f(xi, zi|Θ) = f(xi|zi,Θ)f(zi|Θ)

=
k∏
j=1

fj(xi|θj)zij
k∏
j=1

π
zij
j Since zi is multinomial distributed

=
k∏
j=1

(πjfj(xi|θj))zij .

Therefore, we can proceed with deriving the log-likelihood of the above den-

sity. In this instance, the log-likelihood is known as the “complete-data

log-likelihood”.

L(Θ|z1, . . . , zn, x1, . . . , xn) =
n∏
i=1

f(xi, zi|Θ)

=
n∏
i=1

k∏
j=1

(πjfj(xi|θj))zij

`(Θ|z1, . . . , zn, x1, . . . , xn) =
n∑
i=1

k∑
j=1

zij log
[
πjfj(xi, |θj)

]
.

Now, it is much easier to derive maximum likelihood estimators for the param-

eters πj, µj, and Σj with the complete-data log-likelihood. This is done in the

usual way (taking the derivative with respect to each variable and setting it
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equal to 0), although πj has a constraint of
∑k

j=1 πj = 1 and so a Lagrange

multiplier must be used. The end results are:

π∗j =
1

n

n∑
i=1

zij

µ∗j =

∑n
i=1 zijxi∑n
i=1 zij

Σ∗j =

∑n
i=1 zij(xi − µ∗j)(xi − µ∗j)T∑n

i=1 zij
.

So, if we knew all of z1, . . . , zn, we would be able to easily fit a mixture of

multivariate Gaussians using the maximum likelihood estimators above and

infer which data points were drawn from which component with a certain

degree of confidence. However, given that this is not the case, we have to turn

to an iterative algorithm known as Expectation-Maximization.

2.6.2 Expectation-Maximization Algorithm

The Expectation-Maximization, or EM, algorithm (Dempster et al., 1977) is

used to find maximum likelihood estimates for parameters when latent variables

are present. First, we initialize all of π, µ,Σ. Then, we treat these parameters

as fixed and compute a “guess” of zij. In other words, we will find estimates

for all of zij given our current parameters (E-step). Then, we update these

parameters using our estimates of zij from the previous step in combination

with the maximum likelihood estimator formulas (M-step).
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In the E-step, we calculate the probability that a data point belongs to

each cluster (often referred to as the responsibility) using current values of the

parameters:

τij = f(zi = j|xi,Θ)

=
f(xi|zi = j,Θ)f(zi = j|Θ)

f(xi|Θ)
by Bayes’ Theorem

=
φ(xi|µj,Σj)πj∑k
l=1 φ(xi|µl,Σl)πl

.

In the M-step, we update our parameters using τij, calculated in the E-step:

πnew
j =

1

n

n∑
i=1

τij

µnew
j =

∑n
i=1 τijxi∑n
i=1 τij

Σnew
j =

∑n
i=1 τij(xi − µnew

j )(xi − µnew
j )T∑n

i=1 τij
.

Finally, the log-likelihood is computed using the new parameter values found

in the M-step:

`(Θ|x1, . . . , xn) =
n∑
i=1

log

[
k∑
j=1

πj φ
(
xi|µnew

j ,Σnew
j

)]
.

If convergence of the log-likelihood has been reached according to some criterion,

then the algorithm stops. If not, the E and M steps are repeated until it has

been reached.
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A full treatment of the EM algorithm for Gaussian mixture models can be

found in (Bishop, 2006).

2.6.3 Constraints on Covariance in the Gaussian Mix-

ture Model

Recall that the Gaussian Mixture model is written as

f(xi|Θ) =
k∑
j=1

πj φ (xi|µj,Σj) .

where the covariance matrix, Σj , defines certain geometric properties of the jth

Gaussian component. Thus, by imposing some constraints upon the covariance

matrix of each component, we may, in turn, control the shape of the resulting

clusters.

The covariance matrix of the jth component can be decomposed using

eigendecomposition into

Σj = λjDjAjD
T
j ,

where Dj is an orthogonal matrix of eigenvectors, Aj is a diagonal matrix with

det(A) = 1 and the elements on the diagonal are the normalized eigenvalues of

Σj, and λj = det(ΣJ)
1
d (d is the dimension). With this decomposition, it can

be shown that Dj controls the orientation of the ellipsoid, Aj determines the

shape of the density contours, and λj determines the volume of the ellipsoid

(Scrucca et al., 2016a). Some mixture models allow each component’s covariance
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matrix to vary, while others assume a fixed covariance. Table 2.2 shows the

available models in the “mclust” (Scrucca et al., 2016b) package in R. Using the

Model Σj Distribution Volume Shape Orientation

EII λI Spherical Equal Equal –

VII λjI Spherical Variable Equal –

EEI λA Diagonal Equal Equal Coordinate Axes

VEI λjA Diagonal Variable Equal Coordinate Axes

EVI λAj Diagonal Equal Variable Coordinate Axes

VVI λjAj Diagonal Variable Variable Coordinate Axes

EEE λDADT Ellipsoidal Equal Equal Equal

EVE λDAjD
T Ellipsoidal Equal Variable Equal

VEE λjDAD
T Ellipsoidal Variable Equal Equal

VVE λjDAjD
T Ellipsoidal Variable Variable Equal

EEV λDjAD
T
j Ellipsoidal Equal Equal Variable

VEV λjDjAD
T
j Ellipsoidal Variable Equal Variable

EVV λDjAjD
T
j Ellipsoidal Equal Variable Variable

VVV λjDjAjD
T
j Ellipsoidal Variable Variable Variable

Table 2.2: Types of Gaussian mixture models

“USArrests” dataset included in the R software, we can visualize the different

types of models available and the resulting shape, volume, and orientation of

the resulting Gaussian densities. The dataset itself provides the number of

arrests per 100,000 residents in each of the 50 states in 1973 for three categories

of crime: murder, assault, and rape. The dataset also contains the percent

of the population living in urban areas. Each plot presented in Figure 2.2 to

Figure 2.15 shows a Gaussian mixture model with 4 components where each

colour represents a different cluster.
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Figure 2.2: Gaussian mixture model: EII
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Figure 2.3: Gaussian mixture model: VII
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Figure 2.4: Gaussian mixture model: EEI
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Figure 2.5: Gaussian mixture model: VEI
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Figure 2.6: Gaussian mixture model: EVI
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Figure 2.7: Gaussian mixture model: VVI
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Figure 2.8: Gaussian mixture model: EEE
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Figure 2.9: Gaussian mixture model: EVE
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Figure 2.10: Gaussian mixture model: VEE
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Figure 2.11: Gaussian mixture model: VVE
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Figure 2.12: Gaussian mixture model: EEV
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Figure 2.13: Gaussian mixture model: VEV
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Figure 2.14: Gaussian mixture model: EVV
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Figure 2.15: Gaussian mixture model: VVV
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2.6.4 Bernoulli Mixture Model

Suppose that instead of continuous data, as in the Gaussian Mixture Model, we

are concerned with binary data. That is, data comprised only of two categories

such as the presence or absence of some quality. Similar to the GMM, we can

fit a mixture of Bernoulli distributions to this data (Bishop, 2006). Recall that

the general form of a mixture model is

f(xi|Θ) =
k∑
j=1

πjfj (xi|θj) .

Now, our distribution, f (xi|θj), will be a multivariate Bernoulli distribution

with a D-dimensional probability vector, θ:

f (x|θ) =
D∏
d=1

(θd)
xd (1− θd)1−xd .

Then, the likelihood can be written as

L(Θ|x1, . . . , xn) =
n∏
i=1

f(xi|Θ),

where Θ = {π1, . . . , πk, θ1, . . . , θk}. We find the log-likelihood, `, in the following

manner:

`(Θ|x1, . . . , xn) =
n∑
i=1

log f(xi|Θ)

=
n∑
i=1

log

[
k∑
j=1

πj f (xi|θj)

]
.
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Once again, this is problematic since this log-likelihood cannot be maximized

by traditional means. Consequently, as in the Gaussian mixture model, we will

introduce a latent variable denoted zi = {zi1, zi2, . . . , zik}. As a reminder, zij

takes on the value 0 if xi was not drawn from component j, and 1 if xi was

drawn from component j. Then, we can write the conditional distribution as

zi ∼ Multinomial(1,π) where π = {π1, . . . , πk}

f(xi|zi,Θ) =
k∏
j=1

fj(xi|θj)zij .

As in the Gaussian mixture model, we can derive the complete log-likelihood:

f(xi, zi, |Θ) = f(xi|zi,Θ)f(zi|Θ)

=
k∏
j=1

fj(xi|θj)zij
k∏
j=1

π
zij
j

=
k∏
j=1

(πjfj(xi|θj))zij

L(Θ|z1, . . . , zn, x1, . . . , xn) =
n∏
i=1

f(xi, zi, |Θ)

=
n∏
i=1

k∏
j=1

(πjfj(xi|θj))zij

`(Θ|z1, . . . , zn, x1, . . . , xn) =
n∑
i=1

k∑
j=1

zij log
[
πjfj(xi, |θj)

]
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=
n∑
i=1

k∑
j=1

zij log
[
πj

D∏
d=1

(θjd)
xid (1− θjd)1−xid

]

=
n∑
i=1

k∑
j=1

zij

[
log πj +

D∑
d=1

(xid log θjd + (1− xid) log (1− xid))
]
.

The responsibility of a component given a data point can be found using Bayes’

theorem, and is once again denoted τij:

τij =
f(xi|θd)πj∑k
l=1 f(xi|θl)πl

.

Recall that τij is computed in the E-step of the EM algorithm using the current

values of the parameters. In the M-step, we update our parameters using τij.

In the Bernoulli mixture model, this is done as follows:

πnew
j =

1

n

n∑
i=1

τij

θnewj =

∑n
i=1 τijxi∑n
i=1 τij

.

Finally, we calculate the complete log-likelihood found earlier and check for

convergence. If convergence has not been reached, we repeat the E and M

steps. For further details, see (Bishop, 2006).

In R, the package we will use for fitting Bernoulli mixture model is called

“flexmix” (Leisch, 2004), and uses the EM algorithm just discussed. There is

another package, “BayesBinMix”, (Papastamoulis and Rattray, 2017), that

uses a Bayesian approach to fitting Bernoulli mixture models.
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2.7 DBSCAN Clustering

Density-based Spatial Clustering of Applications with Noise (DBSCAN) (Ester

et al., 1996) is a clustering algorithm that belongs to a larger family of algorithms

known as density-based clustering. In density-based clustering, clusters are

created in areas where observations are dense. There is no implicit or explicit

assumptions about the shape or underlying distribution, unlike some of the

techniques we have previously examined. As such, the shapes of the clusters

can take on countless forms.

DBSCAN works with two parameters: ε and MinPts. The main challenge

with practical usage of DBSCAN is tuning these parameters, as we will later

see. The ε parameter defines the radius of an ε-neighbourhood around any

given point p. This neighbourhood is denoted Nε(p). If there are more

than MinPts points within Nε(p), then p is considered a core point. That

is, p is a core point if |Nε(p)| ≥ MinPts. Furthermore, a point q is directly-

reachable by a core point p if q is within |Nε(p)|. A point q is reachable by a

core point p if there is a path of points, p1, p2, . . . , pn such that pi+1 is directly-

reachable by pi for 1 ≤ i ≤ (n − 1). Here, p1 = p and pn = q. Then, since

the definition of directly-reachable applies only to core points, it implies that

all but potentially the last point, q, are core points (i.e. p1, . . . , pn−1 are core

points). If q is not a core point (i.e. |Nε(q)| < MinPts), but is within the

ε-neighbourhood of some core point, then q is a border point. Finally, two

points (not necessarily core points), p and q, are density-connected if there is a
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common core point, s, such that p and q are both reachable from s.

With these definitions in mind, the algorithm for DBSCAN turns out to

be relatively simple. Given a dataset X = {x1, . . . , xn}, the algorithm for

DBSCAN is provided in algorithm 5.

Algorithm 5: DBSCAN clustering

1 For every point xi in X , find the points within Nε(xi). If
|Nε(xi)| ≥MinPts, record xi as a core point.

2 For each core point, find all points that are reachable from that core point
and assign them to the same cluster. Then, it is evident that any two
points in the same cluster are density-connected.

3 If a point is neither a core point nor reachable from a core point, then
assign it as noise (i.e. not belonging to any cluster).

The DBSCAN algorithm is advantageous in the sense that a pre-specified

number of clusters is not required. Moreover, because the algorithm does not

completely partition the dataset, DBSCAN is able to find observations that

are considered noisy.

On the other hand, in datasets that have clusters of varied density, DBSCAN

may struggle to find the appropriate clustering structure. Additionally, choosing

an appropriate distance metric for ε requires careful consideration, especially

in high-dimensions when the Euclidean distance may become an inappropriate

choice.

2.7.1 Parameter-Tuning

As previously mentioned, the parameters ε and MinPts are of great importance

to the algorithm and require further consideration.



50 CHAPTER 2. CLUSTERING METHODOLOGY

The MinPts parameter is usually chosen based on domain knowledge.

Generally, as the value of MinPts increases, the number of clusters will

decrease, as the requirement for a point to be considered a core point is stricter.

Conversely, a low value of MinPts will generally result in a higher number

of clusters. With a lack of domain knowledge, a rule of thumb is to choose

MinPts to be equal to 2 ∗ dim where dim is the dimension of the dataset

(Sander et al., 1998).

The ε parameter is often chosen based on a plot known as the k-nearest

neighbour plot (Schubert et al., 2017). The plot is constructed as follows:

1. For k = MinPts, calculate the distance to the nearest k neighbours for

each data point in the dataset.

2. Take the maximum value of these distances (i.e. the distance from a

point to its k-nearest neighbour) for each point.

3. Sort the values from step 2 from smallest to largest.

4. Plot the distances on the y-axis and an index on th x-axis.

Once this has been plotted, the distance on the y-axis that corresponds to

an “elbow” in the plot will be taken to be an appropriate ε value. The elbow

method works because if a value of ε is chosen that is too small, there will be

an overwhelming amount of data points considered to be noise. On the other

hand, if ε is chosen to be too large, it is possible that clusters will begin to

merge together and too many data points are assigned to be in a given cluster.

Therefore, by investigating the distance at which the elbow of the k-nearest

neighbour distance plot occurs, we can hypothetically observe the ε value at
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which this changeover occurs.

DBSCAN is implemented in R under the “dbscan” package (Hahsler et al.,

2019).



Chapter 3

Clustering Evaluation

3.1 Clustering Tendency

Before applying clustering methods to a given dataset, the clustering tendency

of the data should be measured. In other words, we seek to answer if there is

any inherent clustering structures present in the data. One common way of

assessing clustering tendency is known as the Hopkins statistic.

3.1.1 Hopkins Statistic

The Hopkins statistic is defined as follows (Hopkins and Skellam, 1954): suppose

we have a dataset, X, of dimension d and composed of n observations. To see

if there are any clustering structures present in X, it is a necessary condition

that X is not uniformly distributed. Therefore, to test this condition, we

will first take a random sample of m observations from X, with m < n,

denoted S = {s1, s2, . . . , sm}. Then, we randomly generate m observations

52
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with dimension d from a uniform distribution, denoted Y = {y1, y2, . . . , ym}.

For each yi ∈ Y, we find its nearest neighbour in the original dataset X and

record the distance between the two points:

ui = min
x∈X

d(yi, x),

where d(·) is a distance metric. Similarly, we record the distance between each

si and its nearest neighbour in X (excluding the observation si):

wi = min
x∈X,x 6=si

d(si, x).

The Hopkins statistic is then defined as

H =

∑m
i=1 u

d
i∑m

i=1 u
d
i +

∑m
i=1w

d
i

,

where the d in the exponent is the dimension of the dataset. The Hopkins

statistic lies in the interval (0, 1).

Consider a scenario in which X is uniformly distributed. Then, it is clear

that
∑m

i=1 u
d
i and

∑m
i=1w

d
i would be close to one another, and so H would be

close to 0.5. Conversely, if X were not uniformly distributed, then
∑m

i=1 u
d
i

should be larger than
∑m

i=1w
d
i . Therefore, in this scenario, H should be closer

to 1.

The choice of m is crucial to the calculation of the Hopkins statistic. It

has been suggested to choose m so that it is large enough to ensure the 2m

nearest neighbour distances are statistically independent, but small enough
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that certain distributional assumptions hold (namely, that the test statistic H

follows a beta distribution with parameters m and m). A common value of m

is chosen to be m = 0.1n.

In R, there are two functions that implement the Hopkins statistic. The

first is the hopkins function from the “clustertend” (YiLan and RuTong,

2015) package. Note that when using this function, the Hopkins statistic is

reported as 1−H (where H is as defined in subsection 3.1.1). Thus, values

closer to 0 indicate a highly clusterable dataset. The second function is the

get clust tendency function from the “factoextra” (Kassambara and Mundt,

2020) package (the Hopkins statistic calculated from this function is the same

as we defined earlier).

3.2 Internal Validation Metrics

Internal validation metrics is one of the two types of metrics used to assess the

validity of clustering results. Internal metrics uses only information available

within the dataset itself, as opposed to external validation metrics which

uses external information such as class labels. Thus, internal metrics can

be calculated on any given clustering output and are much more common in

clustering analysis. Four of the most commonly-used internal validation metrics

for clustering algorithms are explained in this section.
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3.2.1 Dunn Index

Before introducing the Dunn Index, we must define a few variables used in

the calculation of the index. Let m be the number of clusters, Ci and Cj be

two particular clusters, δ be a measure of inter-cluster distance, and ∆ be a

measure of intra-cluster distance. δ and ∆ can be defined, respectively, in

many different ways. For instance, δ, the inter-cluster distance, can simply be

defined as the distance between the centers of two particular clusters. Similarly,

∆, the intra-cluster distance can also be defined in a number of ways, such as

the average distance between a point and the center of the cluster to which it

belongs. Then, the Dunn Index, or DI, is defined as (Dunn, 1974)

DIm =
min

1≤i<j≤m
δ(Ci, Cj)

max
1≤k≤m

∆k

.

That is, DI is the ratio of the smallest inter-cluster distance to the largest

intra-cluster distance.

If we consider a clustering in which the individual clusters are compact

and well-separated, then the numerator of DI will be large as a result of the

separation between clusters. Conversely, the denominator will be small due to

the compactness within the clusters. Therefore, DI has a value between 0 and

infinity and ought to be maximized.
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3.2.2 Silhouette Value

The silhouette value is defined as follows (Rousseeuw, 1987). Let Ci be a

cluster, x be a point belonging to cluster Ci, and ni be the number of total

points in Ci. We define a(x) as

a(x) =
1

ni − 1

∑
y∈Ci,y 6=x

d(x, y),

where d(x, y) is the (Euclidean, Manhattan, etc.) distance between x and y.

Note that if a(x) is relatively small, it means that point x ∈ Ci is similar to

other points in Ci. We can then define b(x) as

b(x) = min
j,j 6=i

 1

nj

∑
y∈Cj

d(x, y)

 .

That is, b(x) is the minimum mean distance between Ci and another cluster, Cj .

Cj is determined by calculating the distance between point x and every point

belonging to Cj , and then dividing by the number of points in Cj . Finally, the

silhouette value for point x is defined as

s(x) =

 b(x)−a(x)
max(a(x),b(x))

, if ni > 1

0, if ni = 1
.

If a(x) is small, it means that the average distance between x and the points

within the same cluster is small. On the other hand, if b(x) is large, it means
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that the average distance between x and the neighbouring cluster of Cj is large.

As a result, x is a poor match to the neighbouring cluster, which is a desirable

quality. Consequently, a small a(x) and a large b(x) will result in a silhouette

value close to 1. Conversely, a small b(x) and a large a(x) will result in a

silhouette value close to -1.

If the mean silhouette value is taken across all points within a cluster, it

can be thought of as a measure of the compactness of the data in that cluster

and how well the points belong to a given cluster. Values close to 1 indicate

desirable clustering results, whereas values close to -1 indicate poor clustering.

3.2.3 Davies-Bouldin index

The Davies-Bouldin index is defined as follows (Davies and Bouldin, 1979). Let

the scatter of cluster i be denoted Si and defined by:

Si =
1

ni

∑
x∈Ci

d(x, ci),

where ci is the center of cluster i. This distance function can be, for example,

the Euclidean distance between the point x and the centroid of the cluster.

This scatter, then, is a measure of the compactness of Ci. Furthermore, let a

measure of separation between two clusters be defined as

Mi,j = d(ci, cj).
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Then, let Ri,j be defined as

Ri,j =
Si + Sj
Mi,j

.

In an ideal clustering scenario, the scatter of cluster i and cluster j is low (i.e.

the clusters are compact) and the distance between these two clusters is large

(i.e. the clusters are well-separated). That is, Si and Sj are small and Mi,j is

large. Therefore, Ri,j will be relatively small in a desirable clustering output.

Next, we define Di as

Di = max
j 6=i

Ri,j.

That is, we seek another cluster j which maximizes the quantity Ri,j. Note

that this is the “worst-case” scenario. We repeat the process for each cluster

in the partitioned data and take the average of Di across all clusters. This is

how we obtain the Davies-Bouldin index, defined as

DB =
1

m

m∑
i=1

Di.

Here, m is the total number of clusters obtained from the clustering algorithm.

In summary, the Davies-Bouldin index considers the compactness within clusters

and separation between clusters and should be minimized.
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3.2.4 Connectivity Index

The connectivity index of a clustering partition, as its name implies, measures

how “connected” a clustering output is. Here, connectedness is defined as the

degree to which a clustering partition groups data points into the same cluster

as their nearest neighbour(s). The connectivity index is defined as (Handl

et al., 2005)

Connectivity Index =
N∑
i=1

K∑
j=1

xi,nni(j)
,

where N is the total number of data points in the dataset, K is a parameter

that determines how many nearest neighbours to use in the calculation, nni(j)

is the jth nearest neighbour of data point i, and xi,nni(j)
is defined as

xi,nni(j)
=

1
j
, if data points i and nni(j) belong to different clusters

0, if data points i and nni(j) belong to the same cluster
.

If a large number of the nearest neighbours of observations in the dataset

belong to different clusters, then it is clear that the connectivity index will be

large. Thus, the connectivity index takes on values between [0,∞] and should

be minimized for valid clustering partitions.

In R, the connectivity index is implemented using the connectivity function

in the “clValid” package (Brock et al., 2008). Note that the function uses a

default of 10 nearest neighbours (i.e. K = 10).
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3.3 External Validation Metrics

Unlike internal evaluation metrics, which are calculated solely based on the

clustering partitions obtained from clustering algorithms, external evaluation

metrics rely on external information. This external information is often in

the form of class labels known beforehand (Palacio-Niño and Galiano, 2019).

However, this is somewhat paradoxical, as clustering algorithms are often used

in the absence of any ground truth. Therefore, external validation metrics are

uncommon when validating clustering outputs. Nevertheless, if labels happen

to be available, external validation metrics can be valuable in determining

which candidate clustering partition is best suited for the data. Therefore, we

will present the most common external validation metrics in this section.

3.3.1 Rand Index

Consider a dataset X = {x1, . . . , xn} and two different clustering partitions of

X , denoted U = {u1, . . . , uR} and V = {v1, . . . , vC}. Here, R and S are the

respective number of clusters and need not be the same. Note that in practice,

one of these clustering partitions is known to be correct (i.e. the ground truth)

and will be used for assessing accuracy of the clustering algorithm. For example,

the correct clustering partition can be assessed prior to analysis by a domain

expert. The rand index (Rand, 1971) is a way of measuring the agreement

between the clustering partitions of U and V . For example, consider any pair

of elements of X . There are four possible outcomes:
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1. The pair is placed in the same cluster of U and the same cluster of V .

2. The pair is placed in two distinct clusters of U and two distinct clusters

of V .

3. The pair is placed in the same cluster of U and two distinct clusters of V .

4. The pair is placed in two distinct clusters of U and the same cluster of V .

The first two outcomes above are considered to be agreements between U and

V , whereas the last two would be disagreements. It is evident that agreements

between U and V are desirable. The rand index is defined as the ratio of total

agreements to the total number of agreements and disagreements:

R =
agreements

agreements + disagreements
.

Note that the denominator is simply the total number of outcomes (i.e. the

total number of pairs). Therefore, this can be expressed as

R =
agreements(

n
2

) .

The rand index is defined on the interval [0, 1] and larger values indicate a

higher agreement between two clustering partitions.

3.3.2 Adjusted Rand Index

Consider the following motivating example for the Adjusted Rand Index (ARI):

suppose that X is some dataset that contains n observations (where n is a

large integer), U is a clustering partition on X composed of n partitions (each
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partition contains 1 observation), and V is a different partition containing

n− 1 partitions (where all but one partition each contains one observation). If

a pair of observations is randomly drawn from X , then it is guaranteed that

they belong to different cluster partitions of U , and it is extremely likely that

they also belong to different partitions of V . Therefore, if the Rand index were

calculated on U and V , it would be very close to 1 and so one may conclude

that the clustering partitions agree very closely. Thus, just by increasing the

number of clusters in U and V for a fixed n, the Rand index increases. The

ARI attempts to solve this issue by correcting for chance.

The clustering partitions of U and V can be visualized as in the table below

(Wikipedia contributors, 2021), where ui is a particular cluster of U , vj is a

particular cluster of V , and nij is the number of observations that are shared

between ui and vj.

v1 v2 · · · vC sums

u1 n11 n12 · · · n1s a1

u2 n21 n22 · · · n2C a2
...

...
...

. . .
...

...

uR nR1 nR2 · · · nRC aR

sums b1 b2 · · · bC

Then, the ARI is defined as (Hubert and Arabie, 1985)

ARI =
Index - Expected Index

Max Index - Expected Index
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=

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/ (
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/ (
n
2

) .
The ARI has a maximum value of 1 (indicating identical cluster partitions),

and has a value of 0 when the Rand Index equals its expected value.

3.3.3 Mutual Information

Mutual Information (MI), like the Rand index, is a method of quantifying

the similarity between two clustering partitions, U and V . There is also a

corrected-for-chance version of the MI called the Adjusted Mutual Information

(AMI), which will be described in the next section.

The RI and ARI belongs to a class of metrics that are calculated based

on pair-counting. However, the MI metric belongs to a different class with its

origin in information theory. Research has shown that the ARI may be an

appropriate metric when clusters are large and approximately equal in size

(Romano et al., 2016). Conversely, the AMI may be appropriate when clusters

are small and potentially imbalanced.

Once again, let U and V be the two non-overlapping clustering partitions

we wish to compare with R and C partitions, respectively. The entropy of a

discrete random variable, X, that can assume values X = {x1, . . . , xn}, and

with probability mass function p(x), is defined as (Shannon, 1948)

H(X) = −
∑
x∈X

p(x) log p(x).
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The Mutual Information is a way of quantifying the amount of information

shared between random variables X and Y . With H(X, Y ) denoting the joint

entropy between X and Y, the MI is defined as (Shannon, 1948) (Kreer, 1957)

I(X, Y ) = H(X) +H(Y )−H(X, Y )

=
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
.

In the context of clustering, the MI is found as follows:

Let P (i) denote the probability of an observation drawn randomly belonging

to partition ui of U . Then,

P (i) =
|ui|
n
,

where n is, again, the number of observations in our dataset and |ui| is the

number of observations in partition ui. Similarly,

P ′(j) =
|vi|
n

would be the probability of an observation drawn randomly belonging to

partition vj of V . The entropy for U and V , according to the definitions above,

would then be calculated as

H(U) = −
R∑
i=1

P (i) log P (i)

H(V ) = −
C∑
j=1

P ′(j) log P ′(j).
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The MI of U and V is then

I(X, Y ) =
R∑
i=1

C∑
j=1

P (i, j) log
P (i, j)

P (i)P (j)
,

where P (i, j) is defined as the probability that an observation belongs to both

cluster ui and vj:

P (i, j) =
|ui ∩ vj|

n
.

The mutual information is a non-negative quantity, where a value of 0 indicates

that no information is shared between two clustering partitions. On the other

hand, the mutual information is bounded above by the entropy of U and V ,

and a higher value indicates more information in common between the two

partitions (i.e. similar clusters).

3.3.4 Adjusted Mutual Information

The MI of two clustering partitions has the same issue that the Rand Index

did. That is, as the number of clustering partitions in U and V increases for a

fixed n, the MI will also increase. To adjust for chance, the AMI is corrected

in a similar fashion:

AMI =
MI - Expected MI

Max MI - Expected MI
.

The actual formula for AMI is quite complicated, but is provided with a full

explanation in (Xuan Vinh et al., 2010).
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The AMI is bounded above by 1, indicating identical cluster partitions, and

below by 0, which is when the MI between the two clustering partitions equals

its expected value (Xuan Vinh et al., 2010).

3.4 Stability Metrics

Stability is an important concept in clustering solutions. The main idea is

that once we have obtained a valid clustering partition, the structure of those

clusters should not disappear when the input data is changed in a non-essential

manner (Hennig, 2007). In other words, a new dataset that is similar to our

original input dataset should produce similar clusters (Ben-David and Luxburg,

2008). However, there are a few questions that must be answered before we

can define stability metrics. Namely,

1. How do we change the data in a non-essential way. That is, how do

we obtain data that is different enough from the original data to assess

stability, while ensuring that the underlying structure of the data is

preserved?

2. How do we compare the two clustering partitions obtained from the

original data and the “new” data?

These questions will be answered in the next two sections.
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3.4.1 Resampling schemes

To assess stability, one must first obtain a new dataset that is similar to the

original data. Because we are unaware of the true generating mechanism from

which the data was obtained, or the structure of the true clusters, one must

generate new data by perturbing the original data in some manner. Each of

the resampling schemes described below does so in a different manner.

One of the most popular ways of obtaining new data is to generate non-

parametric bootstrap samples from the original dataset Hennig (2007). The

bootstrap samples are obtained by simple random sampling with replacement

from the original dataset. That is, if the original dataset, X contains n points,

points are repeatedly drawn from X until a new dataset is formed consisting

of n points. This process is repeated for the appropriate number of bootstrap

samples. Bootstrapping works because of the assumption that the sample

taken, X is a good approximation of the true population. By generating new

samples from the empirical distribution of X , we can investigate the quality of

inferences on this empirical distribution. Furthermore, our assumption that

the original sample approximates the true population (which is reasonable

for large sample sizes), allows us to draw an analogy between the inferences

on the empirical distribution and the inferences on the true population. One

of the disadvantages with bootstrapping methods is that by sampling with

replacement, there may be repeated data points in the new dataset, which may

result in the creation of new “mini-clusters”. Alternatively, one may create
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bootstrap samples and then simply remove any duplicate points.

To avoid multiple points, one may also create new subsets of the original

data by sampling without replacement (Hennig, 2007). However, one must

then choose an appropriate number of points, m, which is smaller than n. If m

is too large, the resulting dataset may not be different enough from the original

dataset. On the other hand, an m that introduces too much variation may

result in clustering outputs that are entirely unrecognizable. Hennig suggests

using the floor of n/2 for the value of m.

Another method of contaminating the data is to replace some observations

by noise points Hennig (2007). These points may be allowed to lie far away

from the existing data, or may be allowed to lie in between existing data to

interfere with the separability of clusters (or both). This requires choosing the

number of data points to replace and a distribution from which these noisy

points should be drawn.

A somewhat similar method is to add noise to existing observations (Hennig,

2007). This is known as adding “jitter”. Again, this involves choosing a

distribution from which n errors, denoted e, are generated. The new data

points, yi, are then simply yi = xi + ei for i = 1, . . . , n.

3.4.2 Comparing Original and Resampled Partitions

Once one has obtained a perturbed dataset by means of the previous of the

section, we can compare clustering partitions from this dataset and the original
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dataset.

One approach to comparing two clusters is to use the Jaccard similarity

coefficient (Jaccard, 1901). Let A and B be two sets. The Jaccard similarity

coefficient is defined as

γ(A,B) =
|A ∩B|
|A ∪B|

.

It is apparent that this 0 ≤ γ(A,B) ≤ 1, with 0 implying that the sets share

no points in common.

One approach to assessing cluster-wise stability is suggested by Hennig and

requires the following steps.

Let S be the desired number of resampled datasets. Then, for i = 1, . . . , S,

1. Obtain data using one of the resampling schemes from the previous

section, where X = {x1, . . . , xn} denotes the original dataset and Yi =

{yi1, . . . , yim} is the new dataset. Note that n does not necessarily equal

m.

2. Let U = {u1, . . . , uk} be the original clustering partition on X with k

clusters. Induce a new clustering on Yi, denoted Vi = {vi1, . . . , vik}, also

consisting of k clusters.

3. Let Zi = X ∩ Yi. Then, Zi consists of the points that are both in the

original dataset and the new dataset.

4. Let Ci = U ∩ Zi. Furthermore, let ∆i = Vi ∩ Zi. If Ci is nonempty, then

compute the Jaccard similarity coefficient between Ci and each D ∈ ∆i
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and record the largest Jaccard similarity coefficient. That is,

γC,i = max
D∈∆i

γ (Ci, D) .

On the other hand, if Ci is empty, then set γC,i = 0. In other words, for

each cluster in the original partition, we are finding the cluster in the

new partition that is most similar.

Once the above loop has completed and the maximum Jaccard coefficient has

been recorded for each cluster in each iteration, we then calculate the mean

similarity coefficient for each cluster across all iterations:

γ̄C =
1

S∗

S∑
s=1

γC,i,

for 1 ≤ j ≤ k, where S∗ is the number of new datasets for which Ci is nonempty.

Therefore, if the mean similarity coefficient is close to 1 for a given cluster,

then it is likely stable. On the other hand, values close to 0 indicate unstable

clusters.

In summary, the above resampling methods and comparison methodology

allows us to assess cluster-wise stability of a given clustering partition by

measuring how likely we are to retrieve similar clusters given (slightly) perturbed

data. The above algorithm is implemented in R using the clusterboot function

in the “fpc” package (Hennig, 2020).



Chapter 4

Clustering Application to

Casino Data

4.1 Description of Data

The original data provided by our local industry partner tracks individual user

sessions on slot machines. This session data provides information such as a

unique identification number for each patron, the date and time of the session,

the duration of the session, and the number of coins entering (i.e. bets) the

slot machine during a given player’s session. These individual sessions were

then aggregated into “casino visits”, which allows us to examine the players’

time spent in the casino and their gambling behaviour over the span of several

months. In this context, a visit from a casino patron is comprised of one or

more slot machine sessions from that particular patron. When an extended

period of no slot machine activity is detected from a patron, the visit ends

and a new visit begins the next time that player starts a slot machine session

71
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at the casino. The clustering methods and evaluation metrics discussed in

Chapter 2 and Chapter 3 are then applied to the visit data with the objective of

identifying any discernible clusters of patrons based on their behaviour within

the casino. The covariates shown in Table 4.1 were used in the cluster analysis.

Variable Name Description

total visits The total number of times a player visited the casino in
the time period of the dataset.

mean duration The mean length of time a player spent in the casino
during their visits.

sd duration The standard deviation of time spent in the casino during
a player’s visits.

mean games The average number of games (spins) played on a slot
machine during a player’s visits.

sd games The standard deviation of games (spins) played on a slot
machine during a player’s visits.

mean machines The average number of different slot machines a player
used during their visits.

sd machines The standard deviation of slot machines used during a
player’s visits.

Table 4.1: Description of covariates

4.2 Principal Components

Each covariate was scaled and principal components analysis was conducted

on the dataset. The purpose of PCA was to simultaneously reduce the di-

mensionality of the data and construct pairwise uncorrelated covariates. In

order to preserve the structure of the data, a cut off of 80% of the (cumulative)

proportion of explained variance was used as a rule of thumb. In this manner,
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the numbers of dimensions was reduced from the seven original covariates to

three principal components that explain 85.7% of the variance as shown in

Table 4.2.

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 1.868 1.235 0.994 0.768 0.533 0.306 0.159

Proportion of Variance 0.498 0.218 0.141 0.084 0.040 0.013 0.0036

Cumulative Proportion 0.498 0.716 0.857 0.942 0.983 0.996 1.000

Table 4.2: Proportion of variance explained by principal components

We can also examine a table of the PC loadings to discover the contributions

of the covariates to each principal component. The loadings are shown in

Table 4.3. The first three principal components will be used as covariates in

PC1 PC2 PC3

total visits -0.07 0.12 0.98

mean duration -0.48 0.23 -0.09

sd duration -0.35 0.30 -0.17

mean games -0.48 0.14 0.00

sd games -0.47 0.18 0.02

mean machines -0.30 -0.63 0.03

sd machines -0.30 -0.62 0.05

Table 4.3: Principal Component loadings of each covariate

the subsequent sections for use in the clustering algorithms described above

and are shown in Figure 4.1.
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Figure 4.1: First three PC’s of casino data

4.3 Measuring Cluster Tendency

To measure cluster tendency, we calculate the Hopkins statistic, detailed in

subsection 3.1.1. The parameter necessary to calculate the statistic, m, is

chosen to be 0.1n. Since there are 2422 patrons in the dataset,we round up so
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that m = 25.

Using the get clust tendency function, the Hopkins statistic is found to be

H = 0.9400715.

This indicates that the dataset is highly clusterable and we can therefore

proceed with the clustering algorithms discussed in Chapter 2. It should be

noted that a high value of the Hopkins statistic does not necessarily mean that

clustering on a dataset will be meaningful. Instead, it can be interpreted as an

indication that the dataset is not uniformly distributed and so one or more

clusters is likely to be present within the data.

4.4 Application of Clustering Algorithms

One of the main challenges in many clustering algorithms is determining an

appropriate number of clusters. We will determine this by varying the number

of clusters in the algorithm and then computing the internal validation metrics

discussed in Chapter 3: Dunn’s index, silhouette value, Davies-Bouldin index,

and connectivity index. In all evaluation methods, the Euclidean distance was

chosen as our distance metric.

4.4.1 K-Means

Using the principal components calculated in the previous section as covariates,

the results of the k-means clustering are shown in Table 4.4 for a pre-specified

number of clusters between two and eight. That is, the number of clusters was
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specified, the k-means clustering was performed, and evaluation metrics were

calculated. The numbers in bold indicate the best value for each evaluation

metric.

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3066 0.0044 0.4145 160.04

3 1.2858 0.0037 0.4157 202.63

4 1.1441 0.0060 0.4184 242.77

5 1.0557 0.0056 0.3483 322.88

6 1.0423 0.0071 0.3478 371.53

7 1.0873 0.0049 0.3117 391.48

8 1.0806 0.0048 0.2959 464.26

Table 4.4: Results of k-means algorithm

Both the DB Index and Dunn’s Index indicate that the ideal number of

clusters is six, while the silhouette value and connectivity metric suggest a

lower number of clusters. This discrepancy and problem of finding the “correct”

number of clusters is a common issue that may arise when using a method

such as k-means where the number of clusters needs to first be specified by the

user without any ground truth.

4.4.2 K-Medoids

As in k-means clustering, k-medoids clustering requires that the user first

specify a number of clusters. We proceed as before and calculate evaluation

metrics to investigate the ideal number of clusters. Unlike k-means, however,

k-medoids allows us to specify a metric other than the Euclidean distance.

Therefore, we will use both the Euclidean and Manhattan (city-block) distance
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to calculate the clustering output. Table 4.5 shows evaluation metrics for the

k-medoids clustering using Euclidean distance, and Table 4.6 shows evaluation

metrics for the k-medoids clustering using Manhattan distance.

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3171 0.0057 0.3849 177.23

3 1.4671 0.0032 0.3470 303.82

4 1.4225 0.0034 0.2655 372.19

5 1.1472 0.0040 0.2907 358.57

6 1.1238 0.0046 0.2723 435.45

7 1.0865 0.0042 0.2889 509.06

8 1.1259 0.0021 0.2668 530.55

Table 4.5: Results of k-medoids algorithm using Euclidean distance

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3197 0.0029 0.3744 202.43

3 1.6074 0.0029 0.2597 330.36

4 1.4341 0.0036 0.2637 348.09

5 1.1580 0.0036 0.2903 402.48

6 1.1163 0.0034 0.2691 438.70

7 1.1445 0.0033 0.2704 511.65

8 1.1333 0.0026 0.2965 542.08

Table 4.6: Results of k-medoids algorithm using Manhattan distance

In both cases, the DB index indicates that a higher number of clusters

should be preferred, while the other metrics indicate a lower number of clusters

is ideal.
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4.4.3 Agglomerative Hierarchical Clustering

Unlike k-means and k-medoids, hierarchical clustering does not require the

user to pre-specify a number of clusters before the output is provided. Instead,

we must choose a particular distance metric and linkage method that will be

used by the algorithm. For the distance metric, we use both the Euclidean and

Manhattan metrics. We try three different linkage methods for each distance

metric - single-linkage, complete-linkage, and average-linkage, all of which are

described in Table 2.1. For each combination, a different number of clusters is

chosen and once again the evaluation metrics are computed.

Table 4.7 through Table 4.12 provides the computed evaluation metrics for

each combination of linkage method and distance metric.

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 0.2449 0.2484 0.7036 2.93

3 0.2389 0.1908 0.6975 5.86

4 0.2667 0.1693 0.6165 8.90

5 0.2619 0.1542 0.6180 14.75

6 0.3208 0.1609 0.6177 17.77

7 0.3092 0.1590 0.6145 21.20

8 0.3704 0.1767 0.6168 24.55

Table 4.7: Results of agglomerative hierarchical clustering using single-linkage
and Euclidean distance
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Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.1958 0.0125 0.4159 98.89

3 0.9925 0.0147 0.4268 109.91

4 0.9158 0.0156 0.4096 120.72

5 1.0212 0.0186 0.3341 157.83

6 0.9705 0.0190 0.3080 166.27

7 1.0931 0.0210 0.2791 199.85

8 1.0964 0.0111 0.3148 303.98

Table 4.8: Results of agglomerative hierarchical clustering using complete-
linkage and Euclidean distance

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 0.4767 0.1908 0.7108 5.73

3 0.5922 0.0713 0.6288 22.26

4 0.8348 0.0461 0.5077 63.07

5 0.8711 0.0539 0.4675 87.19

6 0.8633 0.0539 0.4645 88.42

7 0.7225 0.0539 0.4635 88.54

8 0.7545 0.0539 0.4610 92.84

Table 4.9: Results of agglomerative hierarchical clustering using average-linkage
and Euclidean distance

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 0.2449 0.2484 0.7036 2.93

3 0.2389 0.1908 0.6975 5.86

4 0.2667 0.1693 0.6165 8.90

5 0.3080 0.1488 0.6203 15.27

6 0.3843 0.1488 0.6198 18.60

7 0.3635 0.1488 0.6169 21.53

8 0.2913 0.1309 0.6161 23.86

Table 4.10: Results of agglomerative hierarchical clustering using single-linkage
and Manhattan distance
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Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 0.8255 0.0318 0.5345 39.39

3 0.7832 0.0332 0.5004 64.82

4 1.1006 0.0426 0.4860 88.29

5 1.3259 0.0092 0.2871 250.39

6 1.2106 0.0102 0.2820 257.32

7 1.1552 0.0108 0.2797 263.05

8 1.0986 0.0108 0.2746 263.05

Table 4.11: Results of agglomerative hierarchical clustering using complete-
linkage and Manhattan distance

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 0.2449 0.2484 0.7036 2.93

3 0.5399 0.0365 0.5892 23.71

4 0.6028 0.0339 0.5149 50.69

5 0.7330 0.0407 0.4742 84.60

6 0.8131 0.0459 0.4550 87.92

7 0.8089 0.0473 0.4446 94.84

8 0.8053 0.0473 0.4255 100.22

Table 4.12: Results of agglomerative hierarchical clustering using average-
linkage and Manhattan distance
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4.4.4 Divisive Hierarchical Clustering

In divisive hierarchical clustering we can decide to use the Euclidean or Manhat-

tan distance metric to compute dissimilarity, but there are no linkage methods

involved. Thus, Table 4.13 shows metrics computed by performing divisive

hierarchical clustering using the Euclidean distance, while Table 4.14 uses the

Manhattan distance.

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.2265 0.0082 0.4792 123.08

3 1.0988 0.0103 0.4580 150.92

4 1.0189 0.0127 0.4221 167.89

5 0.8505 0.0133 0.4135 167.89

6 0.9175 0.0139 0.3793 183.01

7 1.0305 0.0163 0.3443 263.30

8 1.0014 0.0166 0.3440 269.04

Table 4.13: Results of divisive hierarchical clustering using Euclidean distance

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.2402 0.0063 0.4825 134.63

3 1.0997 0.0079 0.4636 169.98

4 1.0247 0.0089 0.4286 184.91

5 1.0946 0.0098 0.3921 202.02

6 1.2145 0.0098 0.3313 288.16

7 1.0813 0.0120 0.3289 288.16

8 0.9788 0.0120 0.3285 291.09

Table 4.14: Results of divisive hierarchical clustering using Manhattan distance



82 CHAPTER 4. CLUSTERING APPLICATION TO CASINO DATA

4.5 Fuzzy c-means

For the fuzzy c-means algorithm, a distance metric and a pre-specified number

of clusters must be provided. As before, we used both the Euclidean and

Manhattan distance, while varying the number of clusters. For the purposes of

our analysis, we have varied the value the fuzzy parameter m.

Recall that fuzzy c-means results in a soft clustering output. That is,

each patron will have some degree of membership in every cluster. Thus, the

evaluation metrics we have used so far are calculated by assuming that a patron

belongs to the cluster in which they have the largest degree of membership.

This is an assumption that may not hold true in reality and eliminates some

of the usefulness of the fuzzy c-means algorithm. In other words, we are “de-

fuzzying” the soft clustering output and transforming it into a hard clustering

output.

Table 4.15 to Table 4.27 shows evaluation metrics for the fuzzy c-means

algorithm using Euclidean distance and a variety of values for the fuzzy param-

eter m. When the fuzzy parameter was above 2.2, the algorithm was unable to

distinguish to which cluster each patron should belong. In other words, the

clusters became too fuzzy.

Table 4.28 to Table 4.37 shows evaluation metrics for the fuzzy c-means

algorithm using Manhattan distance and a variety of values for m. For values

of m above 1.9, the clustering output once again became too fuzzy.
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Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3066 0.0044 0.4145 160.04

3 1.2858 0.0037 0.4157 202.63

4 1.2967 0.0052 0.3381 287.67

5 1.3223 0.0090 0.3457 362.75

6 1.0423 0.0071 0.3478 371.10

7 1.0792 0.0076 0.3140 422.54

8 1.0933 0.0076 0.3083 464.85

Table 4.15: Results of fuzzy c-means clustering using Euclidean distance and
m = 1.0

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3082 0.0025 0.4104 186.57

3 1.3050 0.0052 0.4134 212.55

4 1.2982 0.0048 0.3247 315.97

5 1.0576 0.0056 0.3475 326.90

6 1.0428 0.0071 0.3481 379.42

7 1.0878 0.0049 0.3115 403.64

8 1.0811 0.0015 0.2958 485.21

Table 4.16: Results of fuzzy c-means clustering using Euclidean distance and
m = 1.1
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Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3096 0.0059 0.4068 180.64

3 1.3566 0.0052 0.3977 241.88

4 1.3259 0.0034 0.3103 342.53

5 1.0650 0.0031 0.3398 361.77

6 1.0556 0.0041 0.3436 404.14

7 1.1043 0.0049 0.3065 431.07

8 1.1365 0.0049 0.3110 458.78

Table 4.17: Results of fuzzy c-means clustering using Euclidean distance and
m = 1.2

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3118 0.0029 0.4005 174.01

3 1.4329 0.0068 0.3693 281.49

4 1.3761 0.0066 0.2940 377.75

5 1.1332 0.0030 0.3182 399.84

6 1.0703 0.0044 0.3182 417.60

7 1.1158 0.0049 0.2939 530.82

8 1.1100 0.0051 0.3042 474.64

Table 4.18: Results of fuzzy c-means clustering using Euclidean distance and
m = 1.3

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3127 0.0034 0.3960 172.86

3 1.5246 0.0028 0.3408 292.25

4 1.4219 0.0042 0.2803 400.16

5 1.5801 0.0051 0.2568 480.76

6 1.5696 0.0052 0.2560 545.72

7 1.1503 0.0032 0.2657 541.33

8 1.2161 0.0057 0.2417 541.55

Table 4.19: Results of fuzzy c-means clustering using Euclidean distance and
m = 1.4
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Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3134 0.0029 0.3907 181.07

3 1.6405 0.0039 0.3059 309.98

4 1.4847 0.0044 0.2659 407.65

5 1.8328 0.0051 0.2248 504.48

6 1.8588 0.0036 0.2112 642.55

7 1.5042 0.0019 0.1988 592.51

8 1.5742 0.0028 0.1810 696.72

Table 4.20: Results of fuzzy c-means clustering using Euclidean distance and
m = 1.5

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3143 0.0049 0.3853 173.36

3 1.7553 0.0038 0.2740 337.27

4 1.5814 0.0037 0.2472 380.24

5 2.2512 0.0020 0.1981 532.28

6 2.8106 0.0046 0.1798 671.99

7 2.9532 0.0026 0.1583 798.18

8 4.1523 0.0019 0.1419 862.89

Table 4.21: Results of fuzzy c-means clustering using Euclidean distance and
m = 1.6

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3147 0.0058 0.3817 190.27

3 1.8487 0.0050 0.2440 318.35

4 2.0445 0.0038 0.2021 464.44

5 2.6726 0.0041 0.1710 581.75

6 3.4242 0.0029 0.1500 734.21

7 3.8039 0.0020 0.1343 841.21

8 4.2745 0.0019 0.1268 892.75

Table 4.22: Results of fuzzy c-means clustering using Euclidean distance and
m = 1.7
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Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3148 0.0016 0.3798 186.44

3 1.9314 0.0022 0.2195 318.99

4 2.8886 0.0041 0.1840 475.10

5 3.0265 0.0014 0.1528 601.27

6 3.4004 0.0032 0.0898 667.29

7 3.8277 0.0022 0.1199 772.39

8 4.0814 0.0016 0.0774 837.21

Table 4.23: Results of fuzzy c-means clustering using Euclidean distance and
m = 1.8

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3153 0.0057 0.3748 191.93

3 2.0143 0.0017 0.1994 357.02

4 3.6885 0.0017 0.1503 460.70

5 3.1546 0.0017 0.1514 493.44

6 3.0742 0.0016 0.1458 537.26

7 4.2856 0.0026 0.1105 640.17

8 3.7303 0.0041 0.1033 660.61

Table 4.24: Results of fuzzy c-means clustering using Euclidean distance and
m = 1.9

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3149 0.0054 0.3719 192.04

3 2.0829 0.0030 0.1821 384.40

4 2.0514 0.0021 0.1811 367.64

5 2.0286 0.0029 0.1826 335.45

6 3.8914 0.0037 0.1394 508.46

7 3.5366 0.0035 0.1371 543.31

8 3.2921 0.0032 0.1327 509.99

Table 4.25: Results of fuzzy c-means clustering using Euclidean distance and
m = 2.0
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Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3149 0.0029 0.3703 193.58

3 2.1460 0.0029 0.1650 358.77

4 2.1329 0.0020 0.1656 371.63

5 2.0944 0.0049 0.1639 355.43

6 2.0745 0.0041 0.1696 338.81

7 2.0714 0.0050 0.1695 334.76

8 4.1642 0.0037 0.1260 530.95

Table 4.26: Results of fuzzy c-means clustering using Euclidean distance and
m = 2.1

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3137 0.0041 0.3678 196.21

3 2.2542 0.0043 0.1498 354.81

4 2.2203 0.0051 0.1478 362.44

5 2.1903 0.0016 0.1479 373.03

6 2.1473 0.0016 0.1464 387.10

7 2.1409 0.0016 0.1486 389.15

8 2.1451 0.0050 0.1462 361.83

Table 4.27: Results of fuzzy c-means clustering using Euclidean distance and
m = 2.2

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3065 0.0044 0.4148 162.20

3 1.3637 0.0051 0.3901 240.55

4 1.3400 0.0049 0.3124 348.85

5 1.3167 0.0063 0.3378 384.08

6 1.1493 0.0043 0.3026 464.75

7 1.1053 0.0036 0.3028 478.10

8 1.1379 0.0069 0.3065 493.29

Table 4.28: Results of fuzzy c-means clustering using Manhattan distance and
m = 1.0
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Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3081 0.0047 0.4110 164.57

3 1.6221 0.0041 0.3033 298.22

4 1.3310 0.0049 0.3112 378.90

5 1.3413 0.0052 0.3253 401.02

6 1.0480 0.0053 0.3553 439.22

7 1.1026 0.0040 0.3021 475.58

8 1.1496 0.0074 0.3051 492.39

Table 4.29: Results of fuzzy c-means clustering using Manhattan distance and
m = 1.1

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3107 0.0041 0.4041 182.82

3 1.3282 0.0065 0.3994 249.19

4 1.3482 0.0025 0.3007 397.14

5 1.3720 0.0030 0.3160 451.17

6 1.0604 0.0053 0.3458 428.84

7 1.1222 0.0019 0.2967 499.15

8 1.1233 0.0041 0.3014 544.38

Table 4.30: Results of fuzzy c-means clustering using Manhattan distance and
m = 1.2

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3120 0.0043 0.3991 179.68

3 1.4183 0.0070 0.3744 272.53

4 1.4049 0.0044 0.2825 422.66

5 1.1808 0.0032 0.3111 422.19

6 1.0690 0.0062 0.3299 438.12

7 1.1618 0.0034 0.2751 572.02

8 1.1478 0.0019 0.2775 596.72

Table 4.31: Results of fuzzy c-means clustering using Manhattan distance and
m = 1.3
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Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3133 0.0053 0.3930 176.09

3 1.7324 0.0050 0.2758 335.86

4 1.4876 0.0025 0.2670 400.07

5 1.6700 0.0044 0.2411 597.61

6 1.2666 0.0033 0.2421 579.79

7 1.3254 0.0034 0.2317 583.42

8 1.3345 0.0046 0.2209 599.36

Table 4.32: Results of fuzzy c-means clustering using Manhattan distance and
m = 1.4

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3141 0.0057 0.3866 177.00

3 1.8151 0.0021 0.2509 334.29

4 1.5697 0.0025 0.2539 379.16

5 2.3156 0.0044 0.2008 574.10

6 2.8671 0.0036 0.1755 741.05

7 2.5300 0.0030 0.1588 814.66

8 2.0662 0.0026 0.1551 832.44

Table 4.33: Results of fuzzy c-means clustering using Manhattan distance and
m = 1.5

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3147 0.0058 0.3819 192.63

3 1.8823 0.0033 0.2239 307.41

4 3.0634 0.0041 0.1773 561.27

5 2.8361 0.0038 0.1596 701.45

6 2.7536 0.0025 0.1100 729.15

7 3.5486 0.0030 0.1606 859.70

8 4.1193 0.0021 0.0737 1001.45

Table 4.34: Results of fuzzy c-means clustering using Manhattan distance and
m = 1.6
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Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3153 0.0016 0.3782 203.56

3 1.9637 0.0021 0.1954 342.37

4 3.6629 0.0029 0.1520 486.98

5 4.3956 0.0050 0.1408 606.98

6 4.4001 0.0023 0.0318 671.45

7 4.8229 0.0021 0.1104 769.33

8 5.9282 0.0048 0.1021 784.14

Table 4.35: Results of fuzzy c-means clustering using Manhattan distance and
m = 1.7

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3159 0.0029 0.3721 190.68

3 2.0770 0.0041 0.1651 370.35

4 3.8464 0.0029 0.1186 365.18

5 4.3921 0.0023 0.1326 521.88

6 3.8806 0.0049 0.1227 529.60

7 3.9024 0.0034 0.0982 558.28

8 5.3970 0.0023 0.1001 633.26

Table 4.36: Results of fuzzy c-means clustering using Manhattan distance and
m = 1.8

Clusters DB Index Dunn’s Index Silhouette Value Connectivity

2 1.3160 0.0041 0.3695 191.39

3 2.1485 0.0041 0.1335 344.41

4 2.1140 0.0022 0.1327 366.64

5 2.1095 0.0024 0.1358 360.17

6 2.0699 0.0021 0.1318 344.12

7 2.0815 0.0016 0.1344 350.50

8 3.3861 0.0016 0.0855 400.27

Table 4.37: Results of fuzzy c-means clustering using Manhattan distance and
m = 1.9



4.6. DBSCAN 91

4.6 DBSCAN

To implement the DBSCAN clustering algorithm, the two parameters of k and

ε must be chosen. As discussed in section 2.7, a common choice of k is chosen

to be twice the dimension of the dataset. Here, we are using three principal

components as our covariates, and so we will k = 6. We will then use this k

for the k-nearest neighbour plot, shown in Figure 4.2.

Figure 4.2: K-nearest neighbour plot (k = 6)

According to the plot, a reasonable value of ε is 0.7, which is indicated by

the elbow of the plot. The dashed horizontal line within the plot shows this

value.

With k = 6 and ε = 0.7, the DBSCAN algorithm found three distinct

clusters. The evaluation metrics for the output are shown in Table 4.38.
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Clusters DB Index Dunn’s Index Silhouette Value Connectivity

3 0.5920 0.0769 0.3996 136.13

Table 4.38: Results of DBSCAN clustering with k = 6 and ε = 0.7

4.7 Gaussian Mixture Model

When fitting a Gaussian mixture model to the data, there is some randomness

involved in terms of estimating parameters due to initialization and updates of

the EM algorithm. As a result, to identify an optimal number of clusters, one

run of the EM algorithm is insufficient and may be misleading. Therefore, we

will initialize and run the algorithm several times and plot the output of the

optimal number of clusters based on the BIC. Figure 4.3 shows the plot, where

the horizontal axis represents iterations of the EM-algorithm and the vertical

axis shows the optimal number of clusters. As can be seen, between 11 and 13

clusters seems to be ideal.

Next, we must decide if any constraints should be placed upon the covariance

matrix. By plotting the BIC of all different available models (see Table 2.2),

we can determine which fits best to the data. Figure 4.4 shows the BIC for

all available models on the vertical axis, while the horizontal axis shows the

number of components for the GMM (between 11 and 13 based on our previous

analysis).

The best model, then would either be not constraining the covariance matrix

at all (VVV), or constraining the covariance matrix to to have equal orientation

(VVE), while allowing the volume and shape to vary.
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Figure 4.3: Optimal Number of Clusters for a Gaussian Mixture Model

Therefore based on these results, we will limit our analysis to Gaussian

mixture models between 11 and 13 clusters with either no constraint on the

covariance, or constraining the orientation of the covariance.

The evaluation metrics are shown in Table 4.39 for the six different combi-

nations of cluster numbers and model types. To calculate these metrics, as in

fuzzy c-means, we assign patrons to the cluster with the highest probability of

membership. Again, this will eliminate some of the flexibility of soft clustering

outputs by transforming it into a hard clustering and is only done for the

purpose of analysis.
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Figure 4.4: BICs of all Gaussian mixture models

Clusters Model DB Index Dunn’s Index Silhouette Value Connectivity

11 VVV 1.608 0.002 0.058 1138.60

11 VVE 1.854 0.001 0.065 1084.34

12 VVV 1.904 0.000 -0.001 1517.80

12 VVE 2.297 0.002 0.040 1298.75

13 VVV 2.008 0.001 0.025 1548.01

13 VVE 1.773 0.002 0.072 1267.09

Table 4.39: Evaluation Metrics for Gaussian Mixture Models

Additionally, the classification can be visualized using a pairs plot with the

first three principal components, shown in Figure 4.5 through Figure 4.10. The

plots also show the shape and orientation of the Gaussian densities. Notice the

difference in orientation for the two different types of models presented.
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Figure 4.5: Gaussian Mixture Model - 11 components, Model type: VVV
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Figure 4.6: Gaussian Mixture Model - 12 components, Model type: VVV
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Figure 4.7: Gaussian Mixture Model - 13 components, Model type: VVV
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Figure 4.8: Gaussian Mixture Model - 11 components, Model type: VVE
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Figure 4.9: Gaussian Mixture Model - 12 components, Model type: VVE
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Figure 4.10: Gaussian Mixture Model - 13 components, Model type: VVE
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4.8 Bernoulli Mixture Model

Instead of using the covariates in Table 4.1 to cluster casino patrons, as we

have done up to this point, clustering can be accomplished in a different

manner. Consider a matrix in which the rows represent patrons and the

columns represent slot machines. If a player has used a slot machine in the

time period, then a 1 is placed in the cell of that row and column. Conversely,

if they have not used that slot machine, a 0 is placed in the cell. The resulting

matrix is a binary matrix and can be visualized in the form of a heatmap

shown in Figure 4.11. Each red block in the cell indicates a 1, while a yellow

block indicates a 0.

To cluster patrons, ideally we would like to place patrons that have used

similar slot machines into their own clusters. The Bernoulli mixture model is

utilized to do so. First, we use the flexmix (Leisch, 2004) package to fit this

model. As with the Gaussian mixture model, we initialize and run several

iterations of the EM algorithm, each time keeping track of the optimal number

of clusters based on the calculated BIC of the resulting model. As can be

seen in Figure 4.12, the optimal number of clusters is most frequently 4 or

5. Therefore, we fit Bernoulli mixture model with both 4 and 5 components.

Figure 4.13 to Figure 4.16 shows each cluster in a separate heatmap for the

Bernoulli mixture model with 4 components. Figure 4.17 to Figure 4.21 shows

each cluster for a Bernoulli mixture model with 5 components.
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Figure 4.11: Heatmap of binary player matrix
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Figure 4.12: Optimal Number of Clusters for Bernoulli Mixture Model
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Figure 4.13: Cluster 1 of Bernoulli Mixture Model with 4 components
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Figure 4.14: Cluster 2 of Bernoulli Mixture Model with 4 components
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Figure 4.15: Cluster 3 of Bernoulli Mixture Model with 4 components
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Figure 4.16: Cluster 4 of Bernoulli Mixture Model with 4 components



108 CHAPTER 4. CLUSTERING APPLICATION TO CASINO DATA

Figure 4.17: Cluster 1 of Bernoulli Mixture Model with 5 components
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Figure 4.18: Cluster 2 of Bernoulli Mixture Model with 5 components
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Figure 4.19: Cluster 3 of Bernoulli Mixture Model with 5 components
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Figure 4.20: Cluster 4 of Bernoulli Mixture Model with 5 components
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Figure 4.21: Cluster 5 of Bernoulli Mixture Model with 5 components
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4.9 Interpretation of Clustering Results

In the previous sections, we have explored several candidate clustering partitions

for the provided casino dataset. Determining the most suitable output among

the candidates, however, is a challenging issue. For instance, despite excellent

internal validation metric performance, a clustering output may have little to

no practical meaning. As a result, choosing a clustering partition is often a

combination of both statistical performance and domain-specific knowledge.

The above scenario is exemplified using the results from agglomerative

hierarchical clustering in subsection 4.4.3. Despite excellent performance

metrics when using two distinct clusters, the clustering algorithm placed nearly

all patrons into one cluster, leaving only two patrons in the second cluster. This

output resulted in some of the best performance metrics, but interpreting the

results may be meaningless to stakeholders as the output does not adequately

explain the structure of the dataset, and only serves to highlight the presence

of two likely outliers in the data.

On the other hand, consider the output of the k-means algorithm using six

clusters. Although the evaluation metrics may not be as favourable as those

obtained from hierarchical clustering, the output is much more meaningful.

The number of patrons placed into each cluster is shown in Table 4.40.

To interpret these clusters, we will gather the patrons placed into each

cluster and examine the mean values of the original covariates. These values

for each cluster is shown in Table 4.41.
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Cluster Number of Patrons

1 144

2 978

3 126

4 172

5 462

6 540

Table 4.40: Number of patrons placed into each cluster using k-means clustering
(six clusters)

total mean sd mean sd mean sd

Cluster visits duration duration games games machines machines

1 111.02 3995.25 2768.32 812.12 533.93 4.07 2.56

2 16.56 2274.97 1652.22 389.19 268.95 2.56 1.48

3 32.89 14542.37 9369.55 2731.41 1475.61 5.18 3.13

4 22.08 7473.61 4243.76 1569.10 844.82 14.69 8.02

5 23.50 7426.01 5864.43 1343.95 812.96 3.74 2.23

6 19.26 4283.09 2675.18 851.69 520.36 6.71 4.07

Table 4.41: Mean values of the original covariates for the patrons placed into
each cluster

Finally, these values are converted to z-scores by subtracting the column

mean across the whole dataset and dividing by the standard deviation of that

column. By transforming the values to z-scores, we are able to easily see how

the cluster means relate to the original covariates. Note that positive values

indicate that the cluster mean is higher than average, while negative values

indicate that the cluster mean is lower than average. The z-scores of each

cluster is shown in Table 4.42.

Using the z-scores, we can then apply meaning to each cluster. For example,
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total mean sd mean sd mean sd

Cluster visits duration duration games games machines machines

1 3.03 -0.23 -0.18 -0.13 -0.04 -0.19 -0.12

2 -0.31 -0.70 -0.55 -0.70 -0.70 -0.57 -0.61

3 0.27 2.69 1.95 2.49 2.33 0.10 0.14

4 -0.12 0.73 0.29 0.91 0.75 2.53 2.37

5 -0.07 0.72 0.82 0.60 0.67 -0.27 -0.27

6 -0.21 -0.15 -0.21 -0.07 -0.07 0.49 0.57

Table 4.42: Z-scores of the original covariates for the patrons placed into each
cluster

the patrons in the first cluster tend to have a much high number of visits

(total visits) compared to the other clusters. On the other hand, patrons in

the third cluster tend to have a relatively average number of visits but tend to

stay at the casino for a much longer duration and play more games. Patrons

in cluster 4 tend to stay at the casino for a relatively average duration, but

tend to use a large number of machines within their visit.

This strategy of converting cluster means to z-scores can be applied to the

various clustering outputs we have explored in previous sections. By applying

such interpretations to clustering partitions, stakeholders may find value and be

able to use this knowledge to their advantage. It is worth noting that different

clustering partitions will undoubtedly result in different interpretations and

there is likely no single “best” answer. Therefore, choosing a clustering partition

may become a somewhat subjective task. This issue is pervasive throughout

the field of unsupervised learning.

The strategy discussed above is applicable to clustering methods using
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quantitative data. When using binary data, however, z-scores become mean-

ingless. Thus, a different method must be adopted to provide meaning to the

clusters. We will now discuss an interpretation of the Bernoulli mixture model

output given in section 4.8.

Recall that in the Bernoulli mixture model, we clustered patrons based only

on the specific machines they used within their visits to the casino across the

entire time period. To provide meaning to the clusters of the Bernoulli mixture

model, we will use the parameters output by the model. Each parameter is

denoted θjd, where j indicates a particular component (cluster), and d indicates

a particular machine, with 0 ≤ θjd ≤ 1. Furthermore, θjd is interpreted as the

probability that a patron from component j has played machine d. All θ values

are given in Table 4.43. Furthermore, we can display these theta values in the

form of a heatmap Figure 4.22.

Comp.1 Comp.2 Comp.3 Comp.4

Machine 1 0.15 0.04 0.38 0.01

Machine 2 0.43 0.26 0.69 0.12

Machine 3 0.22 0.42 0.64 0.04

Machine 4 0.23 0.43 0.64 0.04

Machine 5 0.26 0.43 0.67 0.05

Machine 6 0.21 0.07 0.36 0.04

Machine 7 0.04 0.23 0.47 0.01

Machine 8 0.06 0.20 0.45 0.01

Machine 9 0.23 0.04 0.42 0.02

Machine 10 0.01 0.05 0.18 0.00

Machine 11 0.20 0.04 0.44 0.01

Machine 12 0.13 0.02 0.24 0.01

Continued on next page
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Comp.1 Comp.2 Comp.3 Comp.4

Machine 13 0.18 0.05 0.28 0.03

Machine 14 0.01 0.04 0.13 0.00

Machine 15 0.25 0.06 0.44 0.02

Machine 16 0.01 0.03 0.19 0.00

Machine 17 0.03 0.09 0.34 0.01

Machine 18 0.02 0.12 0.36 0.01

Machine 19 0.02 0.08 0.30 0.00

Machine 20 0.28 0.18 0.73 0.03

Machine 21 0.28 0.07 0.59 0.02

Machine 22 0.28 0.09 0.57 0.02

Machine 23 0.10 0.01 0.20 0.00

Machine 24 0.26 0.41 0.68 0.04

Machine 25 0.32 0.18 0.47 0.12

Machine 26 0.37 0.13 0.54 0.07

Machine 27 0.39 0.26 0.76 0.05

Machine 28 0.05 0.25 0.54 0.01

Machine 29 0.13 0.22 0.49 0.04

Machine 30 0.21 0.05 0.44 0.02

Machine 31 0.23 0.03 0.44 0.02

Machine 32 0.35 0.16 0.58 0.06

Machine 33 0.45 0.45 0.83 0.07

Machine 34 0.41 0.22 0.68 0.08

Machine 35 0.18 0.03 0.35 0.02

Machine 36 0.21 0.04 0.39 0.02

Machine 37 0.23 0.12 0.39 0.05

Machine 38 0.21 0.03 0.43 0.01

Machine 39 0.21 0.06 0.43 0.02

Machine 40 0.28 0.12 0.56 0.03

Machine 41 0.33 0.38 0.58 0.16

Machine 42 0.04 0.21 0.40 0.01

Machine 43 0.01 0.05 0.14 0.01

Continued on next page
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Comp.1 Comp.2 Comp.3 Comp.4

Machine 44 0.08 0.12 0.25 0.02

Machine 45 0.20 0.11 0.45 0.03

Machine 46 0.06 0.03 0.14 0.01

Machine 47 0.28 0.08 0.42 0.04

Machine 48 0.15 0.19 0.41 0.03

Machine 49 0.16 0.05 0.25 0.02

Machine 50 0.01 0.04 0.20 0.00

Machine 51 0.01 0.07 0.27 0.00

Machine 52 0.03 0.06 0.28 0.00

Machine 53 0.02 0.15 0.36 0.01

Machine 54 0.13 0.07 0.25 0.01

Machine 55 0.20 0.09 0.32 0.05

Machine 56 0.18 0.15 0.55 0.02

Machine 57 0.03 0.10 0.31 0.01

Machine 58 0.02 0.07 0.21 0.01

Machine 59 0.01 0.12 0.15 0.02

Machine 60 0.05 0.02 0.15 0.00

Machine 61 0.03 0.15 0.33 0.02

Machine 62 0.26 0.10 0.52 0.03

Machine 63 0.15 0.05 0.26 0.03

Machine 64 0.01 0.09 0.31 0.00

Machine 65 0.03 0.07 0.06 0.06

Machine 66 0.10 0.02 0.22 0.01

Machine 67 0.22 0.04 0.40 0.02

Machine 68 0.06 0.01 0.10 0.01

Machine 69 0.13 0.04 0.27 0.01

Machine 70 0.21 0.08 0.41 0.03

Machine 71 0.10 0.04 0.20 0.01

Machine 72 0.11 0.02 0.22 0.01

Machine 73 0.13 0.03 0.32 0.01

Machine 74 0.20 0.08 0.44 0.02

Continued on next page
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Comp.1 Comp.2 Comp.3 Comp.4

Machine 75 0.25 0.16 0.50 0.02

Machine 76 0.27 0.07 0.57 0.02

Machine 77 0.27 0.07 0.47 0.04

Machine 78 0.30 0.09 0.56 0.03

Machine 79 0.04 0.01 0.09 0.00

Machine 80 0.08 0.04 0.21 0.01

Machine 81 0.07 0.05 0.11 0.02

Machine 82 0.21 0.03 0.41 0.02

Machine 83 0.14 0.06 0.28 0.01

Machine 84 0.26 0.04 0.47 0.02

Machine 85 0.02 0.20 0.33 0.01

Machine 86 0.00 0.06 0.18 0.00

Machine 87 0.03 0.08 0.24 0.01

Machine 88 0.02 0.10 0.32 0.01

Machine 89 0.21 0.04 0.32 0.02

Machine 90 0.02 0.13 0.33 0.01

Machine 91 0.07 0.01 0.20 0.00

Machine 92 0.03 0.13 0.36 0.01

Machine 93 0.24 0.05 0.44 0.02

Machine 94 0.04 0.20 0.48 0.01

Machine 95 0.01 0.07 0.23 0.00

Machine 96 0.30 0.17 0.51 0.04

Machine 97 0.03 0.31 0.41 0.01

Machine 98 0.06 0.02 0.22 0.01

Machine 99 0.02 0.12 0.32 0.00

Machine 100 0.07 0.13 0.28 0.03

Machine 101 0.01 0.10 0.15 0.02

Machine 102 0.30 0.13 0.58 0.03

Machine 103 0.09 0.05 0.26 0.02

Machine 104 0.03 0.14 0.22 0.02

Machine 105 0.22 0.39 0.59 0.03

Continued on next page
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Comp.1 Comp.2 Comp.3 Comp.4

Machine 106 0.18 0.03 0.38 0.01

Machine 107 0.21 0.06 0.38 0.03

Machine 108 0.00 0.04 0.18 0.00

Machine 109 0.12 0.02 0.25 0.01

Machine 110 0.25 0.04 0.46 0.02

Machine 111 0.25 0.23 0.47 0.08

Machine 112 0.20 0.05 0.47 0.01

Machine 113 0.13 0.06 0.36 0.01

Machine 114 0.43 0.26 0.55 0.16

Machine 115 0.14 0.02 0.33 0.02

Machine 116 0.00 0.05 0.14 0.00

Machine 117 0.20 0.05 0.47 0.02

Machine 118 0.27 0.09 0.44 0.03

Machine 119 0.22 0.04 0.45 0.01

Machine 120 0.01 0.12 0.29 0.01

Machine 121 0.00 0.04 0.10 0.00

Machine 122 0.02 0.11 0.32 0.00

Machine 123 0.13 0.03 0.36 0.01

Machine 124 0.36 0.11 0.60 0.03

Machine 125 0.18 0.06 0.36 0.01

Machine 126 0.04 0.06 0.19 0.01

Machine 127 0.01 0.03 0.12 0.00

Machine 128 0.30 0.10 0.53 0.04

Machine 129 0.37 0.26 0.77 0.05

Machine 130 0.17 0.12 0.52 0.01

Machine 131 0.01 0.07 0.23 0.00

Machine 132 0.00 0.06 0.25 0.00

Machine 133 0.02 0.11 0.33 0.01

Machine 134 0.17 0.05 0.40 0.01

Machine 135 0.14 0.05 0.36 0.01

Machine 136 0.14 0.02 0.27 0.01

Continued on next page
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Comp.1 Comp.2 Comp.3 Comp.4

Machine 137 0.27 0.05 0.47 0.02

Machine 138 0.22 0.06 0.34 0.03

Machine 139 0.26 0.06 0.44 0.03

Machine 140 0.12 0.02 0.28 0.01

Machine 141 0.07 0.02 0.11 0.01

Machine 142 0.32 0.09 0.60 0.02

Machine 143 0.17 0.06 0.36 0.02

Machine 144 0.16 0.04 0.32 0.02

Machine 145 0.22 0.05 0.35 0.03

Machine 146 0.08 0.02 0.25 0.01

Machine 147 0.40 0.15 0.57 0.05

Machine 148 0.22 0.03 0.40 0.02

Machine 149 0.16 0.10 0.49 0.01

Machine 150 0.10 0.02 0.34 0.01

Machine 151 0.01 0.10 0.32 0.00

Machine 152 0.00 0.01 0.09 0.00

Machine 153 0.03 0.20 0.44 0.01

Machine 154 0.02 0.12 0.34 0.01

Machine 155 0.05 0.02 0.12 0.00

Machine 156 0.07 0.06 0.22 0.01

Machine 157 0.01 0.06 0.19 0.01

Machine 158 0.15 0.04 0.29 0.02

Machine 159 0.04 0.02 0.09 0.01

Machine 160 0.24 0.02 0.38 0.03

Machine 161 0.01 0.16 0.26 0.02

Machine 162 0.22 0.05 0.51 0.01

Machine 163 0.02 0.32 0.47 0.01

Machine 164 0.17 0.13 0.57 0.01

Machine 165 0.03 0.31 0.41 0.01

Machine 166 0.02 0.07 0.28 0.00

Machine 167 0.07 0.06 0.18 0.02

Continued on next page
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Comp.1 Comp.2 Comp.3 Comp.4

Machine 168 0.17 0.03 0.34 0.01

Machine 169 0.01 0.04 0.15 0.00

Machine 170 0.05 0.03 0.15 0.01

Machine 171 0.03 0.13 0.33 0.01

Machine 172 0.01 0.04 0.17 0.01

Machine 173 0.09 0.02 0.16 0.02

Machine 174 0.02 0.04 0.20 0.00

Machine 175 0.03 0.08 0.28 0.01

Machine 176 0.00 0.02 0.06 0.00

Machine 177 0.01 0.06 0.19 0.00

Machine 178 0.13 0.04 0.24 0.01

Machine 179 0.20 0.09 0.34 0.05

Machine 180 0.01 0.06 0.13 0.00

Machine 181 0.01 0.08 0.16 0.01

Machine 182 0.11 0.07 0.29 0.01

Machine 183 0.00 0.02 0.04 0.00

Machine 184 0.00 0.12 0.17 0.01

Machine 185 0.04 0.01 0.08 0.00

Machine 186 0.02 0.01 0.08 0.00

Machine 187 0.02 0.10 0.35 0.00

Machine 188 0.01 0.07 0.30 0.00

Machine 189 0.08 0.20 0.30 0.05

Machine 190 0.05 0.04 0.17 0.00

Machine 191 0.05 0.02 0.16 0.00

Machine 192 0.05 0.01 0.12 0.00

Machine 193 0.02 0.01 0.05 0.00

Machine 194 0.10 0.02 0.24 0.01

Machine 195 0.02 0.04 0.13 0.00

Machine 196 0.00 0.01 0.04 0.00

Machine 197 0.02 0.01 0.04 0.00

Machine 198 0.00 0.02 0.11 0.00

Continued on next page
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Comp.1 Comp.2 Comp.3 Comp.4

Machine 199 0.00 0.01 0.02 0.00

Machine 200 0.16 0.02 0.32 0.02

Machine 201 0.00 0.00 0.02 0.00

Machine 202 0.04 0.04 0.15 0.00

Machine 203 0.01 0.06 0.21 0.00

Machine 204 0.01 0.10 0.26 0.01

Machine 205 0.01 0.04 0.18 0.01

Machine 206 0.02 0.02 0.08 0.00

Machine 207 0.04 0.07 0.09 0.03

Machine 208 0.00 0.01 0.02 0.00

Machine 209 0.01 0.03 0.06 0.00

Machine 210 0.02 0.09 0.04 0.04

Machine 211 0.00 0.03 0.05 0.00

Machine 212 0.02 0.02 0.08 0.00

Machine 213 0.03 0.01 0.06 0.00

Machine 214 0.00 0.05 0.07 0.01

Machine 215 0.00 0.03 0.06 0.00

Machine 216 0.00 0.01 0.03 0.00

Machine 217 0.00 0.01 0.03 0.00

Machine 218 0.01 0.02 0.02 0.01

Machine 219 0.00 0.00 0.01 0.00

Table 4.43: Theta values for the Bernoulli mixture model
with 4 components
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Figure 4.22: Heatmap of θ values for Bernoulli mixture model with 4 compo-
nents

From the heatmap and table provided, we can immediately make a few

important observations. Firstly, patrons from the fourth component are unlikely

to play any machines. On the other hand, patrons from the third component

are extremely likely to play a large number of machines. The first and second

component offer a middle ground between the other two components. These
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findings are in agreement with the cluster heatmaps shown in section 4.8.

With auxiliary information available about the slot machines themselves,

further analysis can be performed. For instance, we can obtain the top five

slot machines that a patron from each cluster is most likely to play. Then, we

can examine any commonalities between these machines to investigate what

qualities patrons from each component is attracted to in a slot machine. Using

the second cluster as an example, it was found that the top five machines most

likely to be played (i.e. with the highest θ value) had the same theoretical hold,

the same manufacturer, and were essentially the same game. Similarly, the

same can be done for the machines least likely to be played. Using auxiliary

information to aid in the interpretation of clusters is an important tool and

can ultimately reveal important characteristics of each cluster.

4.10 Discussion

By applying the clustering methods discussed in Chapter 2 to casino data,

a wide variety of clustering outputs was found. Furthermore, by applying

internal evaluation metrics to the resulting clusters, we were able to examine

which cluster outputs were valid from a statistical standpoint. In particular,

agglomerative hierarchical clustering using single-linkage with two clusters

performed best in terms of the calculated metrics. On the other hand, these

clusters did not have much practical meaning due to a large imbalance in the

number of patrons placed in each cluster. Instead, a combination of domain-

specific knowledge, evaluation metrics, and an appropriate clustering algorithm
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for the data is necessary to choose one of the candidate outputs. Consequently,

choosing a single best output is extremely difficult and sometimes impossible

without prior class labels provided, which is rarely provided. Rather, the best

clustering output is often the one that makes sense to stakeholders and provides

meaningful clusters.

On that note, one of the clustering methods that stood out to our industry

partner was the Gaussian mixture model due to its advantages over other

methods. These advantages include being able to specify the shapes of the

clusters through constraints on the covariance matrix, providing an underlying

model to the clustering rather than just clustering based on a heuristic, and

being able to use the Bayesian Information Criterion to suggest the appropriate

number of clusters. Based on the evaluation metrics of the six different Gaussian

mixture models, the two best models were the “VVV” model with 11 clusters

or the “VVE” model with 13 clusters. The number of patrons placed into each

cluster is given in Table 4.44 and Table 4.47.

In the previous section, we discussed a strategy for interpreting clusters

based on converting the cluster means to z-scores; these scores for the two

Gaussian mixture models are given in Table 4.45 and Table 4.48.

We can also calculate the stability metrics discussed in section 3.4 for

both of these clustering partitions. The cluster-wise mean Jaccard similarity

coefficients for each GMM model are given in Table 4.46 and Table 4.49 for

100 bootstrap iterations. As a reminder, values close to 1 indicate that the

clustering partitions are stable, while values close to 0 indicate unstable clusters.
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The cluster-wise similarity coefficients indicate that some of the clusters in

each model may be unstable, while others are relatively stable. In other words,

given bootstrapped samples, some of the clusters in the original partition were

able to be consistently recovered, while others were not.

The Bernoulli mixture model applied to the binary data also found mean-

ingful clusters. The visualization of the clusters in the form of heatmaps is

especially convincing regarding the validity of the output. However, due to

the large number of parameters output by the model, interpretation of these

models may be slightly more difficult. Further investigation into both candidate

Bernoulli mixture models is needed to determine valid interpretations and a

selection among them.

Cluster Number of Patrons

1 71

2 132

3 378

4 329

5 181

6 207

7 172

8 404

9 269

10 89

11 190

Table 4.44: Number of patrons placed into each cluster of the Gaussian mixture
model (VVV) with 11 components
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total mean sd mean sd mean sd

Cluster visits duration duration games games machines machines

1 0.29 2.83 1.89 2.75 2.66 0.21 0.30

2 -0.03 0.96 0.48 1.13 0.87 2.70 2.42

3 -0.62 -0.41 -0.37 -0.43 -0.42 -0.33 -0.35

4 -0.22 -0.69 -0.53 -0.68 -0.65 -0.58 -0.59

5 1.67 -0.46 -0.34 -0.41 -0.36 -0.36 -0.27

6 -0.59 -1.02 -0.82 -1.01 -1.09 -0.78 -0.90

7 0.11 -0.44 -0.43 -0.36 -0.38 0.32 0.36

8 -0.51 0.08 -0.07 0.14 0.12 0.61 0.69

9 -0.18 0.93 1.20 0.69 0.73 -0.10 -0.05

10 3.33 0.59 0.31 0.74 0.77 0.22 0.24

11 0.27 0.48 0.52 0.41 0.60 -0.66 -0.66

Table 4.45: Z-scores of the original covariates for each cluster of the Gaussian
mixture model (VVV) with 11 components

Cluster Mean Jaccard Similarity Coefficient

1 0.5075

2 0.5394

3 0.3909

4 0.5209

5 0.5760

6 0.5411

7 0.4763

8 0.5123

9 0.4882

10 0.3077

11 0.4783

Table 4.46: Cluster-wise mean Jaccard coefficient for Gaussian mixture model
(VVV) with 11 components (100 iterations)
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Cluster Number of Patrons

1 200

2 106

3 360

4 261

5 119

6 213

7 154

8 246

9 148

10 141

11 187

12 118

13 169

Table 4.47: Number of patrons placed into each cluster of the Gaussian mixture
model (VVE) with 13 components
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total mean sd mean sd mean sd

Cluster visits duration duration games games machines machines

1 1.16 -0.47 -0.29 -0.44 -0.36 -0.44 -0.38

2 -0.57 -0.54 -0.51 -0.49 -0.51 0.40 0.52

3 -0.07 0.35 0.21 0.40 0.37 0.15 0.18

4 -0.13 -0.68 -0.54 -0.67 -0.66 -0.57 -0.59

5 -0.40 0.83 1.84 0.17 0.44 -0.71 -0.77

6 -0.61 -0.68 -0.57 -0.68 -0.68 -0.37 -0.34

7 -0.63 -1.05 -0.85 -1.04 -1.13 -0.78 -0.92

8 -0.49 0.11 -0.01 0.17 0.20 0.81 0.96

9 -0.52 -0.68 -0.49 -0.76 -0.75 -0.80 -0.91

10 0.45 1.97 1.36 1.93 1.90 -0.29 -0.24

11 -0.57 -0.00 -0.07 0.01 0.02 -0.18 -0.22

12 3.32 0.22 0.11 0.35 0.44 0.13 0.19

13 0.05 1.08 0.55 1.25 1.02 2.37 2.16

Table 4.48: Z-scores of the original covariates for each cluster of the Gaussian
mixture model (VVE) with 13 components
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Cluster Mean Jaccard Similarity Coefficient

1 0.4051

2 0.6497

3 0.7377

4 0.5285

5 0.5754

6 0.6674

7 0.4601

8 0.5739

9 0.2407

10 0.4727

11 0.3659

12 0.3604

13 0.5855

Table 4.49: Cluster-wise mean Jaccard coefficient for Gaussian mixture model
(VVE) with 13 components (100 iterations)



Chapter 5

Conclusion

Several clustering methods, evaluation metrics, and strategies for interpretation

were explored throughout this work. By applying these practices to a dataset

obtained from a casino, we were able to find potential clusters of patrons that

had visited that casino in a certain time period. In particular, the clusters

selected were found through model-based clustering (Gaussian mixture models

and Bernoulli mixture models). These clusters enabled us to find structure

within the dataset and learn new information about how these patrons behaved

and how they used the slot machines within the casino. We hope that the

practices discussed will generalize to data from other casinos so that others are

also able to find meaningful clusters among their patrons.

Furthermore, despite growth in clustering research over the past several

years, the clustering of casino patrons is not well-studied and there is a lack of

literature in this area. This may be due to the confidentiality of casino data

and the competitive nature of the casino industry. We hope that this work will

132
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encourage casinos and researchers to collaborate so that further research into

gambling behaviour can occur. Clustering casino patrons may be used in the

future for purposes such as identifying problematic gambling behaviour. As a

result, research in this area is of great importance.
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