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Abstract 

Despite advancements in Kalman filtering and the dozens of published works on the subject, 

the performance of Kalman filtering in terms of structural damage quantification is limited to 

structural systems with low dimension state vectors. Furthermore, Kalman filters cannot 

accurately identify damage in structures with unknown excitations. Therefore, This 

dissertation introduced two methods to overcome these fundamental limitations. 

The first method is called the iterated modified cubature unscented Kalman filter 

(IMUKF). It is developed by a careful combination of sigma points deriving from the 

unscented Kalman filter (UKF) and cubature points from the Cubature Kalman filter (CKF) 

and adding iterative convergence criterion to the algorithm. Extensive numerical analysis 

reveals that the IMUKF outperforms the traditional nonlinear Kalman filtering by increasing 

the number of unknown parameters.  

The second method eliminates the uncertainties related to the unknown excitations by 

extracting the free vibration response of the underlying structure. This idea introduces an 

output-only damage quantification method. The free vibration response is fed into the UKF, 

which estimates the unknown states without any need to input information for damage 

quantification. This proposed output-only method, referred to as RD-UKF, is evaluated using 

numerical and full-scale experimental data.  

Bridge scour is a leading cause of catastrophic bridge failures in North America. In 

order to accurately estimate the level of scour, a new numerical model for a bridge pier is 

derived based on the Euler beam theory. The new model is able to simultaneously consider 

soil-structure interaction, bridge bearings, deck mass, water force, and traffic loading. The 

model is then integrated with the proposed RD-UKF method for bridge scour quantification. 

In addition to the numerical simulation studies, the method is implemented on a real bridge 

in the province of Manitoba, Canada. The estimated soil height is verified with two different 

independent bathymetries in two different seasons. 

Results of the numerical and experimental investigations indicated that eliminating 

input excitation from the measured response decreases the uncertainty in the estimation 
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process. Furthermore, it shows that the introduced RD-UKF method can be used for damage 

quantification in different structures without any information about the input excitation. 
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Chapter One: 

Introduction  

 

 

 

 

 

This chapter begins with a short introduction to the concepts of structural identification and structural 

damage identification. Damage identification approaches are presented and categorized based on their 

capabilities. The current state of the field, the problem statement, the scope of the work, the research 

objective, the proposed methodology for achieving this objective, and the research contribution are also 

explained in this chapter. An outline of the thesis is presented at the end. 
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 Background 

According to a report from the American Road & Transportation Builders Association 

(ARTBA), almost 8.86% of the 612,000 total bridges in the USA are structurally deficient 

and rapidly approaching the limit of their design service life [1, 2]. The conditions in Canada 

are even worse; out of about 75,000 highway bridges, almost one-fourth have structural or 

functional deficiencies [3]. The newly constructed bridges are designed based on the 

Canadian Highway Bridge Design Code for a service life of 75 years [4], but about 40% of 

the bridges are under operation more than the designed life because of the lack of resources. 

Therefore, identification and quantification of any damage or deterioration state that might 

occur is necessary to prevent catastrophic failures. 

The process of monitoring the conditions of and identifying damage in civil, 

mechanical, and aerospace engineering structures in order to evaluate the system's remaining 

life span is called structural health monitoring (SHM). Damage is defined as any change that 

could affect the current or future performance of the system, such as changes to the material 

or geometric properties, the boundary conditions, or the system connectivity. These damages 

change the stiffness, mass, or energy dissipation properties of a system, altering the system's 

measured dynamic response. This datum acts as the foundation for vibration-based damage 

identification methods [5, 6].  

Vibration-based damage identification is the process that detects any change in the 

dynamic’s specification (stiffness, mass, and damping) of the structural responses over time 

to avoid catastrophic failures. The damage identification process generally consists of three 

steps. In the first step, the occurrence of the damage has to be acknowledged (damage 

detection), the location of the damage must then be identified (damage localization), and 

finally, the extent of the damage to the structure (damage quantification) must be evaluated 

[7]. 

There are two significant branches of vibration-based damage identification 

approaches; there are data-driven approaches, which only use the measured structural 

responses from sensors installed in a structure to identify the damages; and physics model-
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based approaches, which use a mathematical model in addition to the measured structural 

responses for damage identification.  

In the data-driven-based approaches, the measured responses are analyzed to identify 

damage-sensitive features either with or without input excitations. Different damage-

sensitive features can be defined for structural damage identification. Natural frequency, 

damping ratio, and mode shape function (modal parameters) are the common features 

extracted from vibration data that are usually used for damage identification in structures [8-

11]. However, these data-drive features can hardly reach the damage quantification step of a 

damage identification process. Physics model-based approaches are developed to cover the 

limitation of data-based approaches. 

Physics model-based approaches are able to quantify the level of detected damage in a 

structure. There are two broad branches of this physic model-based approach. The first uses 

modal updating to solve an inverse problem using heuristic optimization techniques. The 

numerical model developed based on the structural drawing is then updated to get the same 

natural frequencies and mode shapes observed in the monitored structure. Factors such as 

stiffness matrix, mass matrix, and the location and extent of the damage can then be 

quantified based on the updated model. However, this model updating is based on heuristic 

optimization methods that usually require a high computational cost to optimize [12-14].  

The other branch uses Bayesian-based recursive filters such as Kalman filters and 

particle filters. These methods require a numerical model of the structural system and their 

input excitations and output responses to estimate structural properties such as stiffness and 

mass. In these methods, the output responses predicted by the mathematical model and the 

corresponding measured outputs are compared with the goal of minimizing a specific loss 

function. This process updates the mathematical model parameters through a recursive 

process that converges the simulation response with the measured one. It requires relatively 

low computational cost compared to the inverse solving approaches using heuristic searches 

and can even make real-time processing possible depending on the dimension of the 

mathematical model [15].  
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 Problem definition 

The Kalman filtering-based methods use a mathematical model and the output responses due 

to input excitations to update the mathematical model parameters using an iterative process. 

These approaches were initially widely used for structural system identification purposes 

but, due to their fast-processing time, their applications have been extended to include 

damage identification problems [16-18]. However, the evidence (literature review and 

simulation study) shows that their estimation accuracy significantly decreases as the number 

of unknown parameters increases, thereby increasing the dimension of the mathematical 

model. Conversely, increasing the dimension of the mathematical model (number of DoF1) 

improves the accuracy of its response in terms of the actual system behaviour [19]. This 

trade-off, as one of the main weaknesses of these approaches, is addressed in this study. 

In the process of Kalman filtering-based damage identification of real structures, such 

as a bridge in a routine operation or a building under seismic excitation, cannot generally 

measure the input excitation. The uncertainties related to these unknown excitations 

drastically decrease the performance of these methods. The literature review reveals that all 

previous research on this topic has tried to estimate or reconstruct input excitation in the 

estimation process. There are always uncertainties related to these input identification 

processes that eventually decrease the accuracy of the estimated parameters. An output-only 

Kalman filtering damage quantification method is introduced in this thesis in order to 

overcome this drawback. 

For example, identifying the unknown input excitations acting on a structure like a 

bridge and developing an accurate mathematical model to represent bridge pier behaviour is 

one of the main challenges in the model-based bridge scour monitoring process. Bridge 

scouring, the excavation and removal of sediment around a bridge pier by the flowing water's 

erosive action, cause more than 50% of bridge failures in the U.S. [20]. In addition to the 

loss of human life, economic loss and disruption to transportation systems may also occur 

 

1 Degree of freedom 
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because of bridge scour. The failure of the Bonnybrook Bridge in Calgary in 2013 and the I-

10 bridge in southern California in 2015 are two recent notable cases of bridge failure in 

North America due to pier and abutment scour, as shown in Figure 1-1.  

   

(a) (b) 

Figure 1-1: Bridge failures due to scour. a) the Bonnybrook bridge in Calgary in 2013 [21]; b) the 

I-10 bridge in Southern California in 2015 [22] 

The extensive literature review has revealed that no reliable model-based approach 

exists to quantify the scour level around a bridge pier in real-time. Developing a scour 

monitoring system that can provide the level of scour in a near real-time manner is critical 

to prevent catastrophic bridge failure. 

 Scope of work 

The Kalman filter is an optimal Bayesian recursive filter that can be used to estimate a 

structure’s dynamic specifications. The filter adjusts updateable variables (i.e., Kalman 

Gain) in a recursive scheme to reduce the difference between the predicted state vector in 

two time-steps [23]. The linear Kalman filter was initially developed to track a system state 

vector with noisy data in the 1960s by Kalman and Bucy [24]. It has shown accurate results 

in identifying a linear system with a small number of parameters; the measured data follows 

the Gaussian distribution.  

The unscented Kalman filter (UKF), the ensemble Kalman filter (EnKF), and the 

cubature Kalman filter (CKF) are other forms of Kalman filters capable of identifying 
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nonlinear systems. Kalman filters are more efficient computationally than other model-based 

methods and have therefore received more attention. For example, the particle filter, another 

model-based method, which works based on the Markov chain Monte Carlo approach, has 

optimal estimation in terms of nonlinear and non-Gaussian environments. However, it is 

computationally extensive and slow in converging to the clean response [25]. Therefore, this 

study focuses on Kalman filtering methods. 

In this work, the Kalman filtering methods are integrated with other methods (either 

model-based or data-based) to improve the Kalman filtering estimation performance for 

high-dimensional mathematical models. Each novel method is evaluated under extensive 

linear and nonlinear numerical models and full-scale experimental studies.  

 Objective of research 

The main objective of this study is to improve the performance of traditional Kalman filtering 

and develop an output-only Kalman filtering that is capable of identifying a high-

dimensional mathematical model with a large number of unknown parameters for damage 

quantification. This goal is divided into two steps: 

1- Improving the performance of the Kalman filtering for damage quantification of 

structural systems with high dimensional state vectors (unknown parameters). It is 

assumed that enough information about the input excitation is available in this step. 

2- Developing an output-only Kalman filtering-based damage quantification method 

and the proposed method performance is verified with experimental data with 

completely unknown input excitation. 

Adopting the introduced output-only Kalman filtering method for bridge scour 

quantification is the next objective of this dissertation. A novel physics-based model 

representing pier behaviour is developed to consider the necessary boundary conditions at 

both ends of the pier, the soil effect, and induced vibrations due to crossing cars, pedestrians, 
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and the water beating the pier. The model is examined for output-only scour quantification 

of a bridge prone to scour located in Manitoba, Canada 

 Methodology 

The UKF and CKF are the types of Kalman filtering most frequently used for structural 

damage identification. They are a derivative-free type of Kalman filtering algorithm that, 

instead of linearizing the transition and measurement functions, calculate the covariance 

matrix of the desired parameters using some predefined points called sigma points [26-28]. 

The UKF or CKF propagates these sigma points through the transition and measurement 

functions in each iteration. 

The sigma points are calculated using prior information ( ,m  and
0P ) distributed around 

the mean of states in each iteration. The number of sigma points and their distribution is an 

essential parameter in the estimation process. The sigma points and their corresponding 

sigma weights are calculated using these three equations: 

2n

i

i 0

w 1,
=

=   (1.1) 

2n

i i

i 0

w ,
=

= χ m   (1.2) 

. ( )( )
2n

T

i i i 0

i 0

w , 
=

− − = m m P . (1.3) 

where 
i ,χ and 

iw  are sigma points and their corresponding sigma weights, respectively, and 

n  represents the number of states. The two most popular solutions of these equations lead to 

the UKF sigma points [28] and the CKF sigma points [29]. 
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The UKF or CKF can estimate the desired states of highly nonlinear systems but 

increasing the number of unknown states weakens their estimation accuracy. A new method 

called the Iterative Modified Unscented Kalman filter (IMUKF) is introduced to compensate 

for the weaknesses of the pure UKF or CKF in systems with a large number of unknown 

parameters. The IMUKF is developed by combining the sigma points of the UKF and CKF 

to achieve more precise information about the system in each iteration. Following that, the 

propagated states are distributed twice for more symmetric distribution of data around the 

mean vector in each iteration. The proposed method results are more accurate than pure UKF 

or CKF results for systems with 20 or more unknown parameters. 

In the proposed IMUKF, as with any Kalman filtering process, the desired parameters 

are accumulated using a vector called a state vector. The state vector can contain either the 

system-desired parameters only or a combination of the system desired parameters and the 

system input excitation when the input excitation is non-informative. Accumulating both 

input parameters and desired parameters in the same state vector is an output-only Kalman 

filtering method known as the joint state-input estimation method [30]. This combination 

reduces estimation accuracy compared to a pure state vector that only contains the desired 

parameters. One possible solution involves eliminating the forced vibration response from 

the underlying system's total measured vibration. The remaining response is the system's free 

vibration response, which carries information about its dynamic specifications.  

Random decrement (RD) is a method that extracts the free vibration response of a 

system from its corresponding total vibration response. The RD is categorized as a data-

based method [31] that works by averaging a limited number of time segments in the total 

vibrational response. The free vibration response is extracted without any complicated or 

extensive mathematical operations. The RD technique was initially defined for white noise 

excitations but has recently been developed for use in systems with periodic, ambient, and 

non-stationary excitations [32]. It has also been developed for use with nonlinear systems 

[33]. Therefore, the RD and the Kalman filtering are integrated to identify unknown 

parameters of a structural model. This combination improves the performance of the Kalman 

filter in the identification of mathematical models with a large number of unknown 

parameters. The performance of the introduced method is examined by the data measured 
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from a seven-story building located at the University of California San Diego. The building 

was excited with different levels of earthquakes, and the vibration response of the building 

on each floor after each excitation is recorded. The introduced method was used to quantify 

the level of damage in each floor for each state of damage. 

The RD method can extract the free vibration response of a bridge pier under routine 

operation. The extracted free vibration response is dependent on the boundary condition of 

the bridge pier, which is equivalent to soil height around the bridge pier. Therefore, 

developing an accurate mathematical model that represents bridge pier behaviour and 

employing that model in the introduced RD-UKF will quantify the soil height around the 

bridge pier. A continuous Euler beam theory is used to develop an accurate mathematical 

model for the bridge pier that considers all external boundary conditions affecting pier 

behaviour, such as soil effect, bearings, and river water beating the pier. The mathematical 

equations are derived and, after simplification and discretization, transformed into state-

space forms that are compatible with Kalman filtering. 

A 300-meter length mid-span bridge, named Morris bridge, was selected to quantify 

the level of scour around the bridge pier using the introduced continuous model and the RD-

UKF method introduced in this dissertation. An accelerometer was attached to the top of the 

deepest pier of the bridge near the girder bearing. The vibration response was recorded 

monthly during the normal operation of the bridge. The data is used to estimate the soil height 

around the pier, and the estimated soil height during months are compared to identify scour 

in its early stages.  

 Research contribution 

The first contribution of this dissertation is the introduction of IMUKF, which is developed 

through the combination of the UKF and CKF sigma points. Its convergence is assured by 

the addition of another convergence criterion, although this also increases computational cost 

as compared to using pure UKF or CKF. Different numerical models are employed to 

evaluate the performance of the introduced method as compared to pure UKF or CKF. A 
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nonlinear Bouc-Wen model, a three DoF linear system, and a ten DoF linear system with 

about 40 states are employed to compare the performances of the UKF, CKF, and IMUKF 

in systems with different DoFs. The results confirm that the proposed method is superior to 

pure UKF or CKF for state estimation of a system with 20 or more states. The mathematical 

background of the IMUKF, the details of the proposed method, and the simulation studies 

are explained in Chapter 3.  

A novel output-only structural damage quantification method is introduced as the 

second contribution of this dissertation. The proposed method combines the RD, a data 

driven-based approach, and the UKF, a model-based approach into RD-UKF. This 

integration offers a new approach in terms of SHM called the hybrid damage detection 

approach. This hybrid RD-UKF takes advantage of both data-based and model-based 

approaches to define new methods of structural damage quantification. For example, the solo 

free vibration response analysis barely includes information on damage location and cannot 

reach the third step of the damage identification process (damage quantification). Therefore, 

as a novel idea, the extracted free vibration response (data-based result) refers to the UKF, 

or any other form of Kalman filter, to estimate the desired parameters in a model-based 

scheme. The estimated states are used for damage quantification of the underlying structure. 

The proposed RD-UKF simplifies the transition and measurement functions in the 

filtering process because it does not require any stochastic parameter related to excitation in 

the transition and measurement functions. This both reduces the uncertainties associated with 

the identification process and decreases the size of the state vector in the identification 

process. The RD-UKF performance and estimation accuracy are evaluated in Chapter 4 using 

extensive numerical and experimental studies. Following that, various sensitivity analyses 

are carried out in Chapter 5 to assure the robustness of the method.  

The next contribution of this dissertation involves using the RD-UKF method to 

develop a comprehensive scour quantification method. A suitable physical model is 

developed to represent pier behaviour; it assumes that the bridge bier is an Euler beam and 

considers the necessary boundary conditions at both ends of the beam model. The pier is 

excited using water beating the pier, a live traffic load, and some additional white noise as 

other unknown excitations. Therefore, the previously developed RD-UKF method is used to 
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eliminate unknown excitations and estimate the soil stiffness around the pier. A profile is 

also defined for the soil around the pier to estimate its height.  

The performance of this method is then examined in a simulation study; the method is 

shown to be capable of scour quantification. The method is examined using data measured 

from a full-scale 300-meter bridge located in Morris, Manitoba, to show the effectiveness of 

the research on Canada's infrastructure system. An accelerometer is installed at the top of 

one of the bridge piers and the vibration data is recorded periodically. The soil stiffness and 

height around the pier are estimated.  

As verification for the vibration-based results, the soil height around the pier is 

measured in both winter and summer using an independent bathymetry. The vibration-based 

result and the bathymetry results are in good agreement; each step is explained in detail in 

Chapter 6. 

 Dissertation outline 

This dissertation is based on a group of papers; the candidate peer-reviewed papers in various 

stages of publication are enclosed in Chapters 3-6.  

This chapter includes the framework of the research and the main ideas behind the 

work. Chapter 2 presented the mathematical background of the linear Kalman filter, which 

demonstrates the assumptions involved in the Kalman filtering derivation process. Following 

that, the main idea behind the nonlinear Kalman filtering is presented, eventually leading to 

the unscented Kalman filter and cubature Kalman filter. This chapter provides the 

background that will be used to develop the mathematical equations in the subsequent 

chapters. 
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Chapter 3 includes the first peer-reviewed paper published in the Journal of Sound and 

Vibration1. The paper focuses on improving the performance of the UKF for a system with 

a large number of states. This chapter reviews the basics of the unscented Kalman filter, 

cubature Kalman filter, and iterative Kalman filter in detail. It then discusses how these three 

filters are combined to achieve better accuracy in large-scale systems. The proposed method 

is evaluated using numerous simulation studies on linear and nonlinear models.  

Chapter 4 includes a peer-reviewed paper published in the Journal Mechanical Systems 

and Signal Processing 2that introduces the RD-UKF method for output-only system 

identification purposes. The method combines the random decrement (as a data-based 

method) and the unscented Kalman filter (as a model-based method) to quantify structural 

damage level. This method can be used for any structure with any kind of excitations and 

has been verified with data measured from a full-scale seven-story building located at the 

University of California, San Diego.  

In Chapter 5, a conference paper, published and presented in the 10th European 

Workshop on Structural Health Monitoring (EWSHM 2020)3, explains an extensive 

sensitivity analysis performed on the RD-UKF method to check its robustness under different 

uncertainties related to output-only system identification and damage identification. The RD-

UKF is evaluated for the Monte Carlo simulation study, missing sensor, different excitations, 

and uncertainties related to the system's mass matrix. The analysis confirms the robustness 

of the RD-UKF under different uncertainties associated with a damage quantification 

process.  

 

1 E. Ghorbani, and Y. J. Cha, “Iterated cubature unscented Kalman filter for large-DoF systems identification with noisy data”, Journal 

of Sound and Vibration, 420, 21-34, (2018). 

2 E. Ghorbani, O. Buyukozturk, and Y. J. Cha, “Hybrid output-only structural system identification using random decrement and Kalman 

filter”, Mechanical Systems and Signal Processing, 144 (2020): 106977.  

3 E. Ghorbani and Y. J. Cha, “Analyzing the robustness of hybrid, output-only, Kalman filtering–based system identification method”, 

European Workshop on Structural Health Monitoring. EWSHM 2020. Lecture Notes in Civil Engineering, vol 127, pp 533-542. Springer. 
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This dissertation's potential positive impact on the safety of Canada’s infrastructures 

is demonstrated in Chapter 6. A scour level quantification method is introduced and its 

performance is tested on data measured from a bridge prone to scour. The method also 

estimates the soil level around the pier. The estimated result was successfully verified with 

independent bathymetry measurements. The results from this chapter have been submitted 

to the peer-reviewed journal Structural Health Monitoring1. 

Chapter 7 includes a summary of the accomplishments of this research and suggestions 

for future work.  

 

 

1 E. Ghorbani, D. Svecova, D. J. Thomson and Y. J. Cha, “Bridge pier scour level quantification based on output-only Kalman filtering”, 

Journal Structural Health Monitoring, [Submitted, Dec. 22, 2020]. 

 



  

 

Chapter Two: 

Mathematical Background 

 

 

 

 

This chapter provides the mathematical basis for linear Kalman filtering and emphasizes its limitations. 

The ways that these limitations directed the studies to develop the extended Kalman filter and, following 

that, the unscented Kalman filter and the cubature Kalman filter will be discussed. These mathematical 

equations provide adequate background for the introduction of some solutions in the following chapters. 
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 Linear Kalman filter 

The Kalman filter, defined by Rudolf Kalman [24, 34], is a recursive algorithm that estimates 

the parameter of interest in a prediction and correction process, assuming the Gaussian 

distribution of measured data. The word filter, in this case, refers to an algorithm that infers 

a desired quantity at the time t  using the data measured from time zero to t , including the 

time t  itself [35].  

The dynamic governing equation of a structural system in a discrete state-space domain 

has the form of 

n 1 n n n n

n n n n n

f ( , , ) : (0, ),

g ( , , ) : (0, ),

+ =

=

x x u v v Q

y x u w w R
 (2.1) 

where n  is a time step, 
nx  presents the state vector, 

nu  represents the input (driving force) 

vector, 
nv  and 

nw  define the process and measurement noises with Q  and R  as their 

respective covariance matrices. The term  represents the Gaussian distribution. The f  and 

g  can be any arbitrary functions representing the process and measurement functions in 

sequence. These functions can also be written as transition and measurement matrices in a 

linear system. The linear Kalman filter was initially developed based on linear state-space 

equations; Eq. (2.1) can be simplified for a linear system with deterministic excitation as 

follows: 

 
n n,n 1 n 1 n 1 n

n n n n n

, : (0,Q),

ˆ , : (0,R),

− − −= +

= +

x F x v v

y G x w w
 (2.2) 

where n,n 1−F  and 
nG  are the transition and measurement matrices, respectively. The 

analytical filtering solution of Eq. (2.2) is called the Kalman filter, assuming Gaussian 

measured data [24]. It is assumed that the process and measurement noises components are 

independent under the Kalman filter derivation process ( T

n m nmE[ ] ,=v v Q  T

n m nmE[ ] ,=w w R ) 

as are both the measurement and process noises and states ( T

n mE[ ] 0,=x v  T

n mE[ ] 0=x w  ) too 
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[35]. The Kalman filter primarily estimates the mean and covariance of a Gaussian posterior 

distribution as the distribution of desired parameters [35].  

The Bayes rule is commonly used to estimate the posterior of the desired states using 

the measured data as follows: 

n n n
n n

n

p( | )p( )
p( | ) ,

p( )
=

Y x x
x Y

Y
 (2.3) 

where 
n 1 2 n[ , , , ]=Y y y y  is the measured data vector. Assuming the first Markov process for 

the measurements and some simplification, the Eq. (2.3) is rewritten as: 

n n 1 n n n 1
n n

n n 1

p( | , )p( | )
p( | ) ,

p( | )

− −

−

=
y Y x x Y

x Y
y Y

 (2.4) 

where 
n n 1 np( | , )−y Y x  represents the likelihood, 

n n 1p( | )−x Y  defines the prior information on 

the system, and 
n n 1p( | )−y Y  is the normalizing constant. Based on the initial assumption of 

white noise Gaussian distribution for process and measurement noises, the mean and 

covariance of the predicted states are calculated as follows: 

 

 

n n 1 n,n 1 n|n 1 n n,n 1 n|n 1 n|n 1

n n 1 n n|n 1 n|n 1 n|n 1

ˆ| E ,

ˆCov | Cov Cov ,

− − − − − −

− − − −

  = + = = 

   = − = =   

x Y F x v F x x

x Y x x e P
 (2.5) 

where n|n 1
ˆ

−x  represents the state prediction at the time step n  given all the observations up to 

the time step n 1− , n|n 1−e defines the state error vector, and n|n 1−P  corresponds to its covariance 

matrix. Therefore, the Gaussian distribution of the prior information is: 

T 1

n n 1 1 n n|n 1 n|n 1 n n|n 1

1
ˆ ˆp( | ) C exp[ ( ) ( )],

2

−

− − − −= − − −x Y x x P x x  (2.6) 

where ( ) x
1/2N /2

1 n|n 1C 2
−−

−= P . 
xN  is the size of the vector 

nx . The same steps will be followed 

to find the parameters of the Gaussian distribution of likelihood:  
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n n n n n n n

n n n n

E[ | ] E[ ]

Cov[ | ] Cov[ | ] .

= + =

= =

y x G x w G x

y x w x R
 (2.7) 

Therefore, the probability density function (pdf) of the likelihood is given by: 

T 1

n n 2 n n n n n n

1
p( | ) C exp[ ( ) ( )],

2

−= − − −y x y G x R y G x  (2.8) 

where ( ) y 1/2N /2

2C 2
−−

= R and yN  is the size of the vector 
ny . Substituting the Eq. (2.6) and 

Eq. (2.8) into the Bayes equation (2.4) results in the following: 

T 1

n n n n n n n n

T 1

n n|n 1 n|n 1 n n|n 1

1
p( | ) Cexp[ ( ) ( )

2

1
ˆ ˆ( ) ( )],

2

−

−

− − −

 − − −

− − −

x Y y G x R y G x

x x P x x

 (2.9) 

that 1 2C C C= , and as the normalizing constant does not affect the optimal filtering process, 

it has been removed to simplify the future calculations. In the Bayesian inference, optimal 

filtering is achievable under different conditions like maximum likelihood (ML) and 

maximum a posterior (MAP) [35]. In this study, followed by the derivation presented by 

Chen [35], the MAP criteria is used to derive the linear Kalman filtering algorithm as below:  

n MAP

n n
ˆx x

n

log p( | )
 | 0.=


=



x Y

x
 (2.10) 

The Eq. (2.9) is substituted into Eq. (2.10), and after some simplification, the 
MAPx̂  is 

extracted as 

MAP

n n|n 1 n n n n|n 1
ˆ ˆ ˆ( ),− −= + −x x K y G x  (2.11) 

where 
nK  is the Kalman Gain and is extracted as 
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T T 1

n n|n 1 n|n 1 n n n|n 1 n( ) ,−

− − −= +K F P G G P G R  (2.12) 

that based on Eq. (2.5), n|n 1 n|n 1Cov− −
 =  P e . The n|n 1−e  is given by 

MAP

n|n 1 n n|n 1 n,n 1 n 1 n 1 n,n 1 n 1

MAP

n,n 1 n 1 n 1

ˆ ˆ

,

− − − − − − −

− − −

= − = + −

= +

e x x F x v F x

F e v
 (2.13) 

Therefore, 

T

n|n 1 n|n 1 n,n 1 n 1 n,n 1Cov ,− − − − −
 = = + P e F P F Q  (2.14) 

 and with the same terminology, the MAP

n 1 n 1Cov− −
 =  P e  is given by 

MAP

n n n n|n 1 n,n 1 n n n|n 1
ˆCov[ ] .− − −= − = −P x x P F K G P  (2.15) 

Thus, the linear Gaussian Kalman filter has been derived based on MAP criteria for 

optimal filtering [35]. The algorithm is summarized in Figure 2-1. It should be noted that the 

updated state vector and covariance matrix will be used as the inputs for the next iteration. 

This process continues until the difference between two different iterations is less than a 

specific threshold. 
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Figure 2-1: The linear Kalman filter algorithm 

The algorithm above is developed based on MAP criteria. The same result is achievable 

under ML criteria as well [35, 36]. It should be noted that the algorithm can also be derived 

under minimizing mean square error (MMSE) criteria [37]. The MMSE is equivalent to ML 

for Gaussian distribution. 

The linear Kalman filter is derived for linear systems under the Gaussian distribution 

assumption for the estimated states and measured data. Ignoring the linearity assumption 

causes a biased estimation and deviation from the exact answer. Several different 

experiments have been conducted to answer this limitation.  

 Nonlinear Kalman filter 

 The extended Kalman filter (EKF) is an improved version of the linear Kalman filter that is 

more suitable for nonlinear systems based on linearization using the Taylor series [38]. 

Linear Kalman filter algorithm 
 

define an initial 0x , and 0P , 
 

set R , Q , t , and endT   

for 1: endT
n

t
=


  

 

prediction:  

| 1 , 1 1
ˆ

n n n n n− − −=x F x  

 | 1 , 1 1 , 1 ,T

n n n n n n n− − − −= +P F P F Q  

1

| 1 | 1 | 1( ) ,T T

n n n n n n n n n n

−

− − −= +K F P G G P G R  

update:  

| 1 | 1
ˆ ˆ ˆ( ),MAP

n n n n n n n n− −= + −x x K y G x  
 

| 1 , 1 | 1 .n n n n n n n n n− − −= −P P F K G P  

end  
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Referring to Eq. (2.1), the transition and measurement matrices for the EKF are calculated 

as below: 

x

x x

x

1 1 1

1 2 N

2 2

1 2x x

N N

1 N

f f f

x x x

f f
f

x x ,
x

f f

x x

=

   
   
 
  
 
 = =  

  
 
  
 
  

F  (2.16) 

x

y y

x

1 1 1

1 2 N

2 2

1 2x x

N N

1 N

g g g

x x x

g g
g

x x ,
x

g g

x x

=

   
   
 
  
 
 = =  

  
 
  
 
   

G  (2.17) 

where 
xN ,  and yN  indicate the length of the state vector and the measurement vector, 

respectively. Considering the level of nonlinearity in the system, Eq. (2.16) and Eq. (2.17) 

can be derived for the second order of the Taylor series. The EKF algorithm is as same as 

the linear Kalman filter algorithm, the only difference is related to the extraction of the 

transition and measurement matrices from their corresponding nonlinear functions. 

However, the EKF does not converge to a clean answer for highly nonlinear systems. 

Furthermore, the calculation of first or second derivatives is a difficult task for many systems 

[39]. The unscented Kalman filter (UKF) and the cubature Kalman filter (CKF) are 

derivative-free types of Kalman filtering developed to address the limitations of EKF [26-

29]. The UKF and CKF focus on calculating the covariance matrices as opposed to 

linearizing the transition and measurement functions, a much more straightforward job. The 

main idea of these derivative-free Kalman filters is inspired by the linear Kalman filter 
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derivation process. Lets in Eq. (2.14) defines the covariance of the states (
n

XX
P ) in each 

iteration as shown below: 

T

n|n 1 n|n 1 n,n 1 n 1 n,n 1 nCov ,− − − − −
 = = + = 

XX
P e F P F Q P  (2.18) 

so the 
n

YY
P and 

n

XY
P  is given as: 

T

n n n n n n n|n 1 n n n n n|n 1

T

n n|n 1 n

ˆ ˆCov( E( )) E[( )( ) ],

.

− −

−

= − = + − + −

= +

YY
P y y G x w G x G x w G x

G P G R
 (2.19) 

T

n n n n n

T

n,n 1 n|n 1 n n,n 1 n|n 1 n n n n n|n 1

T

n,n 1 n|n 1 n

E[( E( ))( E( )) ]

ˆ ˆ[( )( ) ],

.

− − − − −

− −

= − −

= + − + −

=

XY
P x x y y

F x v F x G x w G x

F P G

 (2.20) 

Following that, the Kalman Gain in Eq. (2.12) is calculated as shown below: 

T T 1

n n,n 1 n|n 1 n n n|n 1 n

1

n n( ) ( ) .−

− − −

−
= + =

XY YY
K F P G G P G R P P  (2.21) 

Additionally, Eq. (2.15) is rearranged as: 

n

MAP

n n n n|n 1 n,n 1 n n n|n 1

T

n n n

ˆCov[ ]

.

− − −= − = −

= −XX YY
K K

P x x P F K G P

P P
 (2.22) 

Eq. (2.18), Eq. (2.21), and Eq. (2.22) show that 
n
,K and 

nP  are calculated using the 

n ,XX
P  n ,YY

P  and n

XY
P  in each iteration. The n ,XX

P  n ,YY
P  and n

XY
P  can be calculated using the 

sigma points calculated from Eqs. (1.1) - (1.3) in each iteration of the Kalman filtering. The 

sigma points are propagated through the transition and measurement functions in each 

iteration. Therefore, the Kalman filtering process would be viable for any arbitrary nonlinear 

transition and measurement functions within a derivative-free process (UKF or CKF).  
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 Normality assumption 

This study assumed that the measured data, process noise, and measurement noise follow the 

normal distribution. Normality assumption improves the efficiency of the Kalman filtering 

process and simplifies the filtering algorithm. Furthermore, based on the central limit 

theorem, a large variety of statistical data can be approximated with a Gaussian distribution 

[29]. However, this assumption is not valid for many engineering problems. Some other 

methods have been developed to estimate desired parameters for non-Gaussian data. 

For example, the particle filter is a Monte Carlo-based recursive Bayesian method that 

does not have a normality assumption and estimates posterior distribution with a group of 

weighted samples. Increasing the number of samples improves the convergence of the 

estimated parameters to the ground values. However, particle filter-based methods are 

computationally extensive, and they are not applicable for systems with a large number of 

states [35].  

Another approach could be a general Bayesian method that considers any type of 

distribution. This approach does not generally lead to a closed-form distribution function, 

and different sampling methods should be used to estimate the desired parameters from 

posterior distribution [40]. Again, these approaches are computationally extensive and need 

many samples to pass the burn-in step and converge to a clean response.  

Skewed Kalman filtering is an extension to the Kalman filtering-based method, which 

introduces a skewness to the measured data and noise incorporated in the state-space model. 

The skew-normal distribution assumption increases the applicability of the Kalman filtering 

methods for a broader range of systems. However, the skewed Kalman filtering has a 

complicated algorithm compared with the general Kalman filter [41].  

In this dissertation, the UKF is widely used for damage quantification. The UKF can 

capture the mean and variance of the posterior distribution accurately up to the 3rd order of 

the Taylor series expansion, assuming Normal distribution for any arbitrary nonlinear 

function. However, the estimation accuracy decreases to the 2nd order of the Taylor series 

expansion for non-Gaussian distributions. Comparing the skewed UKF and general UKF 
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reveals that the two methods have almost the same accuracy in estimation for small sampling 

rate values [42]. As it has been tried to choose small values for the sampling rates of 

numerical and experimental case studies, the normality assumption is reasonable enough to 

catch a clean response. 

 Conclusion 

The mathematical background of the linear Kalman filter and the initial assumptions 

involved in its derivation process are introduced in this chapter. Following that, the extended 

Kalman filter is presented, which works based on Taylor series linearization. Derivative-free 

Kalman filtering is developed to compensate for the drawbacks of the extended Kalman 

filter. The mathematical basics of derivative-free Kalman filtering are presented in this 

section as well. The unscented Kalman filter and the cubature Kalman filter are the two most 

frequently used derivative-free Kalman filters and are able to estimate the desired states of 

nonlinear systems, but increasing the number of unknown states weakens their estimation 

accuracy. Additionally, an unknown input (excitation) will make the situation worse. The 

challenges associated with these derivative-free estimation methods are the subject of interest 

in this study. Some information about the Normality assumption of the data is given, and the 

main reason associated with this assumption is explained. 

 

 



  

 

Chapter Three: 

An Iterated Cubature Unscented Kalman Filter for Large-

DoF Systems Identification with Noisy Data 

 

This chapter allocates to the paper published in the peer-reviewed Journal of Sound and Vibration1 

introduced in the Co-authorship section. The paper improves the performance of the UKF for systems 

with a large number of states. In the beginning, the mathematical basics of the UKF and the CKF are 

presented. Following that, it will be explained how the sigma points of the UKF and the CKF are 

combined to improve the performance of the solo UKF or CKF. The convergence of the proposed 

method is assured by additional convergence criteria. The method is verified with extensive numerical 

simulation studies using linear and nonlinear models. Followed by the paper abstract in the next 

paragraph, the paper's detailed explanations are presented in this chapter.  

 

1 E. Ghorbani, and Y. J. Cha, “Iterated cubature unscented Kalman filter for large-DoF systems identification with noisy data”, Journal 

of Sound and Vibration, 420, 21-34, (2018).  
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Abstract, Structural and mechanical system identification under dynamic loading has been 

an important research topic over the last three or four decades. Many Kalman-filtering-based 

approaches have been developed for linear and nonlinear systems. For example, to predict 

nonlinear systems, an unscented Kalman filter was applied. However, from extensive 

literature reviews, the unscented Kalman filter still showed weak performance on systems 

with large degrees of freedom. In this research, a modified unscented Kalman filter is 

proposed by the integration of a cubature Kalman filter to improve the system identification 

performance of systems with large degrees of freedom. The novelty of this work lies in 

conjugating the unscented transform with the cubature integration concept to find a more 

accurate output from the transformation of the state vector and its related covariance matrix. 

To evaluate the proposed method, three different numerical models (i.e., the single-degree-

of-freedom Bouc–Wen model, the linear 3-degrees-of-freedom system, and the 10-degrees-

of-freedom system) are investigated. To evaluate the robustness of the proposed method, 

high levels of noise in the measured response data are considered. The results show that the 

proposed method is significantly superior to the traditional UKF for noisy measured data in 

systems with large degrees of freedom. 

 Introduction 

Many aerospace, civil, and mechanical engineering systems are used despite their ageing and 

the associated potential for damage accumulation. It is clear that degradation and the process 

of replacing infrastructure cost billions of dollars and has many other inevitable impacts. 

This presents a potential for research in this field to develop systems that detect damage in 

the initial stages. A linear Kalman filter was developed to track system states by 

compensating noisy data in the 1960s by Kalman and Kalman and Bucy [24]. It showed 

remarkable results in the identification of dynamic specifications when there is a linear 

assumption for a mathematical model, while the state vector dimension is limited. 

The Kalman filter prediction accuracy decreases drastically when systems are assumed 

as linear by omitting their nonlinear nature. The extended Kalman filter (EKF) has been 

developed that works based on the first-order linearization of the mathematical model using 
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the Taylor series [17, 37, 38]. There are other techniques, such as the Monte Carlo method, 

which can be used for nonlinear systems, but they often require a large amount of data and 

are, therefore, computationally expensive [43]. The EKF as a standard local filter (using the 

standard linearization method) is a suitable technique that is used to identify mechanical 

systems [17, 44-46]. However, it has two significant problems that limit its applications in 

high nonlinear systems and systems with large degrees-of-freedom (DoF) systems and high 

loading [26, 29]. The first problem is that the EKF uses Taylor expansion for the first-order 

linearization. Therefore, the calculation of the Jacobian and Hessian matrix of the transition 

and measurement matrices is unavoidable, which is sometimes impossible or very 

complicated in some cases. Second, when the system has a high order of nonlinearity, the 

first-order linearization leads to divergence, and the accuracy of the predicted responses 

decreases significantly. To resolve these drawbacks, other kinds of filters are introduced that 

do not use the Taylor series expansion and are derivation free.  

With the background knowledge of stochastic filtering, Bayesian statistics, and Monte 

Carlo techniques, the sequential Monte Carlo approach, also known as the particle filter (PF), 

is a useful technique for system identification [47]. This technique handles both nonlinearity 

in the posterior distribution of states as well as systems with non-Gaussian noises. To deal 

with unknown input systems, the PF is used for joint parameter and state estimation, and 

many developments are achieved using the PF in structural health monitoring [48]. Refer to 

[25], although PF techniques are more robust than the UKF, in real-time simulation, the UKF 

is significantly faster and more efficient. 

The unscented Kalman filter (UKF) is a local derivation-free filter that transforms the 

posterior error covariance matrix of states instead of the transition and measurement matrix 

[28]. It can be shown that when data have a Gaussian distribution, the UKF prediction is 

equal to the third order of the Taylor series. The UKF uses symmetric points around the 

mean, which are named sigma points and are propagated with the nonlinear transition and 

measurement matrix function. They capture the true mean and covariance up to the second 

order for any level of nonlinearity. If the prior (initial distribution) distribution is Gaussian 

distribution, the posterior mean and covariance are accurate to the third order for any 

nonlinearity [23]. Considering the robustness of the UKF, several studies have focused on 
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system identification [49]. Some researchers have attempted to develop methods for worse 

cases (high order of nonlinearity and severe loading) to improve their convergence rate [50], 

for the parameter identification of materials in finite element models [51], for the 

identification of noise adaptive models in a joint state and parameter estimation scheme [52], 

for damage detection purposes [53], and when the input is unknown [54-57]. Further, the 

most recent studies have integrated the UKF with the computer vision technique [58]. An 

extensive review of the published papers shows that no comprehensive studies have proposed 

the UKF for large-DoF systems with high levels of noisy measured data.  

The main purpose of this study is to develop an UKF-based system identification 

method for large-DoF systems with noisy measured acceleration. The contents of this paper 

are divided as follows. The central concept of the UKF is explained briefly in section 3.2.1, 

and a modified UKF is proposed in section 3.2.2, which uses another sigma point calculation 

step during the recursive process. The main concept of the proposed method is a combination 

of cubature integration and unscented transform in the sigma point calculation process. 

Further, the propagation of new sigma points over the transition and measurement matrix is 

integrated with the iterated UKF to improve the accuracy of state prediction, as discussed in 

section 3.2.3. Section 3.3 presents three different numerical models for evaluating the 

performance of the newly proposed methods with noisy data in contrast to the traditional 

UKF. 

 UKF-based system identification methods 

In this section, a quick review of the UKF is presented with a flowchart of the algorithm 

given in section 3.2.1. This flowchart is useful for comparison with the newly proposed 

method introduced in section 3.2.2. The modified UKF is proposed by the integration of the 

UKF and cubature Kalman filter. It is also adapted with the iterated Kalman filter, leading to 

more accurate state prediction, as shown in section 3.2.3.  
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3.2.1. Original UKF 

The UKF was initially developed to overcome the limitation of the EKF in the linearization 

process of the mathematical model of a system using derivation-free local filters by an 

unscented transform (UT). The UT is found based on the fact that it is easier to approximate 

a probability distribution than an arbitrary nonlinear function or transformation [28]. A set 

of deterministically weighted points, which have an identical sample mean and sample 

covariance, named sigma points, are chosen so that their posterior mean and covariance are 

calculated over the propagated nonlinear transition and measurement functions. To 

determine the sigma points and related weights, Eqs. (3.1) - (3.3) must be solved, considering 

that the initial states mean is m  and its covariance error matrix is
0P : 

2n

i

i 0

w 1,
=

=   (3.1) 

2n

i i

i 0

w ,
=

= m   (3.2) 

( )( )
2n

T

i i i 0

i 0

w ,
=

− − = χ m χ m P  (3.3) 

where χ  is a sigma point, w  is the weight, and n  is the number of states. The most common 

solution, sigma points, of the above three equations are given below. 

( )( )

( )( )

0

i 0 i

i 0 i n

n    i 1,2,....,n

n i n 1,n 2,....,2n



 −

=

= + + =

= − + = + +

χ m

χ m P

χ m P

 (3.4) 

where   is a scaling parameter, and i  index is a column vector number. To calculate the 

square root of the P  matrix, based on linear algebra, there is a V as lower unit triangular 

(unit triangular) matrix and D  a diagonal matrix, as shown below: 
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where S  can be defined as  

1

1

n

D 0

,
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−

 
 
 

=  
 
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and 

1 1

1 1 12 2( )(( ) .− − −= = =SS VD V VD V VDV P  
(3.7) 

 

In sum, Cholesky decomposition is a stable numerical method that is used for UKF 

implementation, considering that the eigenvectors of the P  and S  matrices are the same. 

The weakness of this decomposition technique is that the P  matrix must be positive definite. 

With the sigma points, the weighting functions can be calculated, as shown below: 

( )

( )

m

0

c 2

0

m c

i i

w ,
n

w 1 ,
n

1
w w , i 1, ,2n,

2 n






 





=
+

= + − +
+

= = =
+

 (3.8) 

2 (n ) n,  = + −   (3.9) 
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Where   determines the spread of sigma points and is a positive number ( )0 1  ,   a 

secondary scaling parameter which is usually equals to 3 n− . 2 =  is optimal for Gaussian 

distributions.  

The transition function of a continuous system in a general form of a state-space model 

can be defined as follows: 

f( (t), (t), (t)),=X X u w   (3.10) 

and the measurement function is 

(t) h( (t), (t), (t)),=Y X u v   (3.11) 

where (t)u is the input, and (t),w and (t)v  are the process noise vector and measurement noise 

vector, respectively. To implement the UKF, the above equations must be rewritten in 

discrete time with observation t k t=  , 

k 1,k k k kF( , , ),+ =X X u w   (3.12) 

k k 1,k k kH( , , ),+=Y X u v   (3.13) 

where k  is a time step, 
kX  is a state variable vector, 

kw  is a discrete process white noise, Q  

is its covariance matrix, 
kY  is the measurement vector, 

kv  is a discrete measurement process 

noise vector, and R  is its covariance value, and 

(k 1) t

k k k k

k t

F( , , ) f( (t), (t), (t))dt ,

+ 



= + X u w X X u w   (3.14) 

where F  is the transition matrix function in the discrete domain, and X  is the state variable 

vector. The above integral can be solved using numerical methods, and here is solved using 

the Euler method. For each time step k , the UKF procedure is presented in Figure 3-1 below, 

and more details can be found in [28]. 
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( )k 1|k k kF ,+ =χ χ u  (3.15) 
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2n
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=
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( )
1

XY YY

k 1 k 1 k 1

−

+ + +=Κ P P  (3.22) 

( )k 1 k 1 k 1 k 1 k 1
ˆ ˆ ˆ− −

+ + + + += + −X X Κ y Y  (3.23) 

XX YY T

k 1 k 1 k 1 k 1 k 1+ + + + += −P P Κ P Κ  (3.24) 

k 1+P  and k 1
ˆ

+X  will be used for the next iteration 

to calculated new sigma points. 

Figure 3-1: UKF algorithm (left) and a simple flowchart (right) 

3.2.2. Modified UKF 

In section 3.2.1, the original UKF algorithm and its concept were explained with its 

flowchart. This section mainly presents the improvement of the UKF to obtain more accurate 

results for large-DoF systems while noisy data are measured. 

In this paper, the original UKF approach is integrated with the cubature Kalman filter 

(CKF) [29] in the sigma point calculation step, and the transformed sigma points from the 

transition matrix function are rearranged by another scaling parameter in the process to 

improve the performance of the UKF for large-DoF systems with noisy measured 

acceleration response. CKF is a nonlinear filter that can be applied to solve a wide range 

(from low to large dimensions) of nonlinear systems. It is a non-product rule (i.e., uses equals 
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weights for specific points to carry out numerical integration) that yields reasonable accuracy 

and is easily extendable to arbitrarily large-dimensional systems [29]. In the cubature 

integration, 2n equal weight spherical points (n is the number of function variables) are used 

for the numerical calculation of ( )f y dy , in which ( )f y  is an arbitrary function. These 

constant weights, which are independent of ( )f y , reduce the computational cost and also 

provide more accurate numerical results than the UKF due to the lower rand-off error for 

large-DoF systems [59]. However, in the UKF, there is no guarantee of consistently having 

positive weights, which can lead to negative covariance matrix; this can lead to some 

instability in the filter while the CKF weights are always positive.  

In the CKF, the fully symmetric spherical-radial cubature points and non-negative 

weights are selected in a way that yields the required accuracy for the first and second 

momentum of the posterior. The placement of the UKF sigma points and the CKF predefined 

points are shown in Figure 3-2. There are more points distributed around the mean point, 

whilst the CKF points are closer to it. In addition, as mentioned above, the CKF weights are 

always positive, and considering that its points are also closer to the mean point, the 

probability of convergence increases, as negative weights can be a reason for divergence. 

Using the advantages of the both techniques at the same time is the main reason for merging 

of these two techniques, which leads to a higher convergence rate.  

Therefore, in this paper, using the advantages of the CKF to improve the performance 

of the UKF, an efficient cubature unscented filter is derived to have more sigma points, which 

are employed in the propagation of the transition function. These transformed sigma points 

are rearranged again to have a more symmetric distribution of the propagated data. To realize 

this, the modification process contains two parts: the first is the addition of CKF points to 

the UKF sigma points, and the next one is the rearrangement of the transformed sigma points 

by another scaling factor within the transition matrix. The conditions mentioned in section 

3.2.1 in Eqs. (3.1)–(3.3) must be satisfied with these new sigma points as well.  
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Figure 3-2: The UKF and CKF points’ placement 

The cubature points are defined in below, considering that I  is a unit n n  matrix [29], 

and n  is the number of states. First, the matrix E  is defined as shown below: 

( )

( )

i i

i i n

n , i 1,2, ,n ,

n , i n 1,n 2, ,2n ,−

=  =

= −  = + +

E I

E I
  (3.25) 

where i is the column vector index. By using the above E  matrix, the CKF points can be 

defined as: 

T

i i , i 1,2,3, ,2n,= +  =χ m P E   (3.26) 

where m  and P  are the state matrix and the covariance matrix, respectively. The related 

weights of each sigma point are: 

( )
i

1
w , i 1,2,3, 2n.

2 n
= =   (3.27) 

In the modification process, the UKF and CKF points are used together to have more 

predetermined points. This means that there will be 4n 1+  points (i.e., 2n 1+  from UKF and 

2n  from CKF) as sigma points, which leads to more points for the calculation of the means 

and covariance of states. In addition, for the new method, the summation of weighting 

functions and the weighted means must equal one and the predicted mean from the previous 

step, respectively. To achieve these conditions, some modifications of the cubature points 
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are required when they are mixed with the UKF sigma points to satisfy Eqs. (3.1)–(3.3); then, 

the new sigma points can be defined as 
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( )( )

0

i 0 i

i 0 i n

T
c

i 0 i

,

n , i 1,2,....,n ,

n , i n 1, n 2,...., 2n ,

, i 2n 1, 2n 2, , 4n 1,



 −

=

= + + =

= − + = + +

= +  = + + +

χ m

χ m P

χ m P

χ m P E

 (3.28) 

where c
E  is defined as 
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and the corresponding weighting functions are given as 

( )

( )

( )

m

0

c 2

0

m c

i i

c,m

i

w ,
(n )

w 1 ,
(n )

1
w w , i 1, ,2n ,

4 n

1
w , i 2n 1, 2n 2, 2n 3, , 4n 1,

4 n






 







=
+

= + − +
+

= = =
+

= = + + + +
+

 (3.30) 

2 (n ) n.  = + −   (3.31) 

This modified UKF (MUKF) is explained in Figure 3-3 through both formulation and 

a flowchart. 
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k 1+P  and k 1
ˆ

+X  will be used for the next iteration 

to calculate the new sigma points. 

Figure 3-3: MUKF algorithm (left) and a simple flowchart (right) 

3.2.3.  Iterated MUKF 

As explained in section 3.2.2, the UKF and CKF were integrated to reduce the divergence 

probability. This MUKF can be improved by the iteration of the Kalman filtering process 

[50]. To iterate the algorithm, an j  index is defined for the parameters as follows [50]: 
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For j 2=  to N , i.e., the number of iterations, a new iteration-based MUKF is defined as: 

1. For Eq. (3.28), k 1, j 1+ −=m x  and 0 k 1, j 1+ −=P P  sigma points are calculated.  

2. Eqs. (3.32)-(3.39) are recalculated. 

3. The new state vector in this iteration is calculated as: 

( )k 1, j k 1, j 1 k 1 k 1 k 1, j 1
ˆ ˆG− −

+ + − + + + −= +  −x X Κ y Y  instead of Eq. (3.40), where G is equal to one 

in the first iteration and is reduced based on   in each iteration and   is the reduced 

rate, which is 0 1  . 

4.  The following parameters are calculated to check the inequality: 

k 1, j k 1, j

k 1, j k 1, j k 1, j 1

k 1, j k 1, j k 1, j

ˆ h( ),

,

ˆ ,

+ +

+ + + −

+ + +

=

= −

= −

y x

x x x

y y y

  (3.43) 

5. The following inequality is defined:  

T 1 T 1 T 1

k 1, j k 1, j 1 k 1, j k 1, j k 1, j k 1, j k, j 1 k 1, j k, j 1 .− − −

+ + − + + + + − + −+ x P x y R y y R y   (3.44) 

6. For each iteration j j 1= +  , and G G= . The iteration continues until the above 

inequality is satisfied and j N . 
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 Numerical examples 

The UKF was presented in the previous section with its limitations. To overcome the 

drawbacks, this paper proposed a modified UKF integrated with the CKF, referred to as 

MUKF, and the IMUKF method was also proposed to improve the MUKF approaches when 

dealing with large-DoF systems and noisy measured data. The main idea of the MUKF is 

that it uses symmetrical points calculated from the UKF and CKF and rearranges the 

covariance cloud around the mean value of the state vector. The proposed MUKF was also 

combined with the iterated Kalman filtering process to improve the accuracy of the state 

prediction. 

To test the proposed method, three different system models are used to compare the 

results between the proposed methods along with the original UKF approach for predicting 

the system states. For the first problem, a nonlinear system model using a Bouc–Wen 

hysteretic formulation is employed with a high level of noise, and then linear 3-DoF and 10-

DoF systems with a high level of noise are used to evaluate the proposed method. To validate 

the performance of the proposed method, the methods are first compared when there is a low 

level of noise and are then tested with a high level of noise. 

3.3.1. Bouc–Wen hysteretic model 

The proposed method, including the traditional UKF, is tested on a single-DoF Bouc–Wen 

model subject to EI Centro earthquake ground motion with a high level of noise in the 

measured acceleration response. The Bouc–Wen mathematical model is written below: 

gmx(t) cx(t) r(t) ma ,+ + = −   (3.45) 

where m,  c,  and ga  are the mass, damping coefficient, and earthquake ground acceleration, 

respectively, and r(t)  is the Bouc–Wen hysteretic component expressed as 
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e e y BWr(t) k x(t) (1 )k x z (t), = + −   (3.46) 

Further,  

n 1 n

BW BW BW BW

y

1
z (t) ( x(t) z z (t) x(t) z (t) Ax(t)).

x
 

−
= − − +   (3.47) 

where yk 50000 N/m, c 300 N.s/m, m 500 kg, 0.1, x 0.01, 0.45, 0.55, n 2,  = = = = = = = =

and A 1=  are chosen for the simulations. A duration of 50 s of the EI Centro earthquake 

acceleration record, as shown in Figure 4, is used in this example.  

  

(a) (b) 

Figure 3-4: EI Centro earthquake ground motion: (a) clean and noisy signals (two different SNRs of 

40 and 15) and (b) a detailed view of the signals. 

The state vector is defined as follows: 

   
T T

1 2 3 4 5 6 7 8x x x x x x x x x x x z k c  = =X  (3.48) 

where x,  x,  and x  are the displacement, velocity, and acceleration responses, respectively. 

The system transition and measurement matrix are defined as shown below in the continuous 

form: 



3.3 Numerical examples 39 

 

 

2

3

n 1 n

7 2 4 4 8 2 4 2

y

x

x

0

1
( x x x x x x x Ax )

f(x, t) (t),x

0

0

0

0

−

 
 
 
 
 
  

 − +   = = +  
 
 
 
 
 
  

X ω   (3.49) 

g 6 2 1 5 5 y 4

1
y h(x, t) v(t) a (x x x x (1 )x x x ) v(t).

m
 = + = − − +  + −   +   (3.50) 

To express the robustness of the proposed method for noisy data, white noise with SNR 

40 and 15 is added to the measured acceleration. The SNR is defined as
2

signal signal

2

noise noise

P A
SNR

P A
= =  

where
t

2

x

0

P A (t)dt,=   and A is the root mean square (RMS) of the amplitude. The EI Centro 

ground motion accelerations with two white noise levels (i.e., SNRs of 40 and 15) from 

seconds 45 to 50 are shown in Figure 3-4.  

Considering the above equations, the system is simulated in the MATLAB Simulink 

Toolbox and the system response is recorded using the fourth-order Runge-Kutta numerical 

technique with initial values m 500 kg,= k 30000 N/m,= c 200 N.s/m,= 0, = yx 0,= 0, =

and 0, =  and the predicted parameters by the UKF and IMUKF are shown in Figure 3-5–

Figure 3-7. In Table 3-1 the prediction results of stiffness, damping, , , and hysteresis loop 

by the UKF and IMUKF are presented and compared. To examine the robustness of the 

proposed method, two different levels of noise are compared (i.e., SNRs of 40 and 15). In 

each case, the percentage of measurement and process noise level are the same, but to obtain 

the best prediction for each filter, the initial covariance matrix estimates are different whilst 

the initial value of parameters (state vector mean) are the same for both techniques, and the 
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sampling frequency is set to 500 Hz. The duration for the IMUKF identification is 

approximately 119 s on a core i7 6700K 4.00 GHz processor. 

When SNR = 40, as shown in Figure 3-5(a), there is no noticeable difference between 

the UKF and IMUKF. However, when SNR = 15, there is a significant difference between 

the proposed method and the traditional UKF, as shown in Figure 3-5(b). As mentioned 

above, the initial covariance matrix estimate is different for both techniques to obtain the 

best prediction for each case.  

  

(a) SNR = 40 (b) SNR=15 

Figure 3-5: Predicted hysteretic loops 

Similar to the case of the hysteresis loop, comparisons are made for the stiffness values 

between the UKF and IMUKF. No considerable difference can be seen between the two 

methods in Figure 3-6(a) for SNR = 40, but the discrepancy is significant for SNR = 15, as 

seen in Figure 3-6(b). Figure 3-7(a) and (b) are related to the prediction of the damping value 

by the UKF and IMUKF for SNRs of 40 and 15, respectively. The results show that the 

proposed method provides a more accurate prediction than the traditional UKF at the two 

different noise levels. A summary of all the predicted parameters of the model is presented 

in Table 1. 
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(a) SNR=40 (b) SNR=15 

 Figure 3-6: Predicted stiffness value 

  

(a) SNR=40 
(b) SNR=15 

Figure 3-7: Predicted damping coefficient 

Table 3-1 Predicted results of the single-DoF nonlinear system using the Bouc–Wen model 

SNR 

Parameter m  c  k  β γ 

Exact values 500 300 50000 0.55 0.45 

Initial values 500 200 30000 1 2 

40 

UKF 

Predicted  265 49500 0.5 0.48 

Error (%)  11% 1% 9% 6% 

IMUKF 

Predicted  270 49500 0.49 0.48 

Error (%)  10% 1% 10% 6% 
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15 

UKF 

Predicted  230 48200 0.39 0.51 

Error (%)  23% 3% 29% 13% 

IMUKF 

Predicted  230 49300 0.43 0.53 

Error (%)  23% 1% 18% 14% 

3.3.2. Linear 3-DoF system 

In this section, the results of the proposed IMUKF and traditional UKF are compared for a 

linear 3-DoF system. The 3-DoF state vector X is expressed as 

 
T

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4x x x x x x x x k k k k c c c c .=X  

With the known ,M  and g ,a  the governing equation of motion is 

g .+ + = −Mx Cx Kx Ma  (3.51) 

The governing equation is expressed in a state-space form: 
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(3.53) 

As measured responses, the absolute accelerations in floors 1 and 3 of the system are 

used. The sampling frequency of EI Centro ground motion acceleration and the acceleration 

response measured from the floors are 100 Hz. The duration for the IMUKF identification is 

approximately 125 s on a core i7 6700K 4.00 GHz processor. 

Considering the above equations, the system is simulated in MATLAB with values 

1 2 3m m m 500kg,= = =  
1 2 3k k k 50000N/m,= = =  and 

1 2 3c c c 300N.s/m.= = =  The initial 

values for the structural identification are m 500 kg, k 30000 N/m, c 200 N.s/m,= = =  and 

x x x 0.= = =  The simulation results are presented in Figure 3-8 and Figure 3-9. 



3.3 Numerical examples 44 

 

 

 
 

 
 

 

Figure 3-8: Predicted stiffness (k1–k3) values for the 3-DoF system with SNR = 15 

 

 
Figure 3-9: Predicted damping coefficient (c1–c3) values for a 3-DoF system with SNR = 15 
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Figure 3-9: Predicted damping coefficient (c1–c3) values for a 3-DoF system with SNR = 15 

As can be seen from Figure 3-8 and Figure 3-9, for the 3-DoF system, there is no 

considerable discrepancy between the results of the proposed method and the traditional 

UKF. The main reason is that UKF is a strong filter for identification purposes when there is 

a finite number of states [23, 25, 49, 53]. This example is thus used to compare the results of 

the UKF when there are different numbers of states (i.e., 12 states for the 3-DoF system and 

40 states for the 10-DoF system as the next example) with noisy measured responses.  

3.3.3. Linear 10-DoF system 

The proposed method is examined for a 10-DoF system with 40 states predicted, which a 

relatively large DoF system with large states is. The frequency sampling is 100 Hz for both 

the earthquake ground motion and measured acceleration. The simulation constant values 

are 
1 2 10m m m 500 kg,= = 1 2 10k k k 50000 N/m,= = and 

1 2 10c c c 300 N.s/m.= =  The 

predicted values of the stiffness and damping are shown in Figure 3-10 and Figure 3-11, 

respectively.  

The duration for the IMUKF identification is approximately 560 s on a core i7 6700K 

4.00 GHz processor. Tuning parameters and initial values are expressed in Appendix A. As 

mentioned previously, all the parameters are the same except the initial covariance matrices, 

which are selected in a way that ensures the best prediction for each one. 



3.3 Numerical examples 46 

 

 

 
 

Figure 3-10: Predicted stiffness (k1–k10) values for a 10-DoF system with SNR = 15 



3.3 Numerical examples 47 

 

 

 

Figure 3-10: Predicted stiffness (k1–k10) values for a 10-DoF system with SNR = 15 

As shown in Figure 3-10, for stiffness, the IMUKF is more accurate than the UKF and 

CKF techniques. Neither the UKF nor the CKF have a stable prediction trend in all DoFs, 

and in some cases, their predictions are quite far off, such as k3, k8, and k10, while IMUKF 

has the same trend in all DoFs. 
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Figure 3-11: Predicted damping coefficient (c1–c10) values for a 10-DoF system with SNR = 15 
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Figure 3-11: Predicted damping coefficient (c1–c10) values for a 10-DoF system with SNR = 15 

 Figure 3-10 and Figure 3-11 illustrate that the IMUKF method provides quite superior 

results to the UKF and CKF methods. Of course, as far as the computational cost is 

concerned, the UKF method is considerably faster, while the UKF and CKF methods seem 

to perform quite poorly. 

A review of previous works in this field indicates that all the results for previous works 

are accurate in the case of a few DoFs, such as the previous 3-DoF system. In this paper, we 

propose a new method that is more powerful for high rates of noise in a large-DoF system. 

It must be mentioned that, for this system, only three measured acceleration responses from 

floors 1, 3, and 10 are used for prediction. Thus, seven other unknown states are added to the 

40 states that have to be predicted. It is clear that the traditional UKF method diverges 
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specifically in the prediction of the damping coefficients, while the proposed method 

provides better results in the case of SNR 15, as shown in Figure 3-10 and Figure 3-11. 

Although there is some discrepancy for predicted damping using the proposed method, the 

method yields a constant value, while the UKF and CKF predicted values are unstable in 

each DoF and cannot be used. 

 Conclusion 

A new system identification technique based on the unscented transform and cubature 

integration has been proposed in this paper. To improve the performance of UKF-based 

system identification, points calculated from the CKF are added to the UKF sigma points, as 

well as the iterative Kalman filtering concept, which is also adopted for the modified UKF. 

The main idea of the proposed method is the use of more sigma points than in the ordinary 

UKF, as well as the rearrangement of the nonlinear transformed data within the state 

transition function before substitution in the measurement function.  

To demonstrate the performance of the proposed method, the method is applied to three 

different numerical examples. First, it is applied to the Bouc–Wen model with two different 

noise levels. The results showed that the proposed method (i.e., IMUKF) had better 

performance in predicting model parameters in high noise levels. Moreover, two linear 3-

DoF and 10-DoF systems were investigated for comparative studies with high noise levels 

for large DoF systems. The results showed that in the 3-DoF systems, the results are similar 

to each other. However, in the 10-DoF system, the UKF showed weak performance, similar 

to methods described in previous journal articles, but the newly proposed IMUKF showed 

significantly better accuracy in predicting the stiffness values for the 10-DoF system with 

high noise levels.  In the prediction of damping coefficient values, the proposed method still 

performed better than the traditional UKF. 

 



  

 

Chapter Four: 

Hybrid Output-only Structural System Identification Using 

Random Decrement and Kalman Filter  

This chapter encloses the paper published in the peer-reviewed Journal Mechanical Systems and Signal 

Processing1 introduced in the Co-authorship section. The paper introduces an output-only damage 

quantification method with the combination of two data-based and model-based methods. The method 

extracts the free vibration response of a dynamic system under any type of excitations or combination 

of them; then feeds the free vibration to the unscented Kalman filter to quantify the desired parameters 

of the underlying system. The capabilities of the proposed method are examined with numerous 

numerical models and one full-scale experiment. The method is capable of the quantification of the 

level of damage under different damage scenarios. A detailed explanation about the method and its 

implementation details are explained in this chapter, followed by the paper abstract.   

 

1 E. Ghorbani, O. Buyukozturk, and Y. J. Cha, “Hybrid output-only structural system identification using random decrement and Kalman 

filter”, Mechanical Systems and Signal Processing, 144 (2020): 106977.  
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Abstract, A novel hybrid output-only structural identification and damage identification 

method is proposed. The method is developed by integration of Kalman filtering as a model-

based technique, and random decrement, as a data-driven technique. The random decrement 

method extracts free vibration from the structural system's measured responses under various 

types of loadings. The extracted free vibration is inputted into the Kalman filtering system 

to estimate the status of the structural system. In contrast to the traditional output-only 

techniques using the Kalman filter, it is not required to estimate the input excitation in the 

damage detection process. The Kalman filter uses only the free vibration responses extracted 

from the random decrement. This also leads to downsizing the size of the unknown state 

vector, which consequently decreases computational cost significantly. Since it is not 

required to use any parameter related to excitations in the mathematical model, the 

uncertainty of the physical model decreases. The proposed approach is numerically verified 

in three degrees of freedom and ten degrees of freedom systems under three different loading 

conditions. It is shown that the approach is robust to provide an accurate estimation of states 

under physical changes due to structural damage assuming the input data is unknown. As 

another verification, the stiffness and damping matrices of a seven-story building on a shake 

table are estimated to show the capability of the method for damage identification of real 

structures. These numerical and experimental case studies demonstrate that the proposed 

technique is capable of detecting, localizing, and quantifying the extent of damage in a 

structure under a combination of any kinds of loadings. 

 Introduction 

Monitoring the condition of and identifying damage to civil, mechanical and aerospace 

engineering structures to evaluate the remaining life and performance of a system constitutes 

structural health monitoring (SHM). Damage identification usually consists of three different 

steps: damage detection, damage localization, and damage quantification. The damage 

identification techniques within vibration-based approaches are usually categorized into 

three approaches of data-driven techniques, model-based techniques, and hybrid techniques. 

Data-driven techniques entirely work based on the measured data and mostly reach the 
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second step of damage identification. Model-based techniques need a physics-based model 

in addition to the measured data. These approaches are capable of evaluating the extent of 

damage (damage quantification). For this reason, more research is focusing on the 

development of model-based techniques. However, these approaches have drawbacks 

because developing an accurate physics-based numerical model is difficult and tedious. 

Some studies have recently attempted to combine both model-based and data-driven 

approaches as hybrid techniques [60]. 

Vibration-based damage identification methods generally use both input excitation and 

the measured vibration response to estimate the physical status [61-63] of the underlying 

system. However, it is not almost viable to measure the input excitation forces in many civil 

infrastructures in normal operation [64]. Three different approaches have commonly been 

used to overcome the difficulties in measuring input excitation in a system. In the first 

approach, shakers are used to simulate the excitations on the structure, and the system 

response by this sophisticated excitation is used for damage identification. However, this is 

not a beneficial way to apply a shaker test on a massive infrastructure due to the tremendous 

mass on the shakers, in addition to the inaccuracy of the reproduced excitation rather than 

the real one. In some cases, although small-scale lab tests are applicable, but scaling issues 

and modelling complex boundary conditions are some of the main obstacles leading to the 

deviation between the result of the experimental test and the field results [9]. Therefore, the 

tendency for developing output-only techniques has grown up among researchers during the 

last decade.  

The second approach is based on the estimation of the input using different filters, such 

as Kalman filtering. Kalman filtering as a model-based technique has been used for structural 

system identification and damage detection purposes. There are two different main 

approaches developed based on the Kalman filtering as an output-only system identification 

technique. The first group is joint input-state techniques, which count an input as a state that 

will be identified in the recursive process within other unknown states [65-67]. However, 

this approach increases the number of unknown states, which will decrease the estimation 

accuracy of the Kalman filters significantly [68]. Dual Kalman filtering is another solution 

that has been widely used for output-only system identification. At first, a Kalman filter is 

used to identify the input excitation, and the other Kalman filter is used for state estimation. 
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Obviously, the estimated states' accuracy is strongly dependent on the estimated input 

excitation by the first Kalman filter [53, 57]. Adding some auxiliary constraints to the system 

can be an alternative remedy to estimate the input excitation. As another example, Al-

Hussain and Haldar [54, 55] set apart Rayleigh damping for the underlying system and used 

the least square technique to estimate the input followed by an unscented Kalman filter 

(UKF) to extract the system dynamic properties. Their Rayleigh damping assumption does 

not always fit for all the systems. Furthermore, they used the least square technique to extract 

the input, which is not an appropriate choice as a general approach working for any kind of 

loadings. 

The third approach involves the reconstruction of the input using mathematical 

methods [69]. Autoregressive moving average (ARMA) methods, subspace methods, and 

Markov chain Monte Carlo (MCMC) methods are used to reconstruct the input in the damage 

identification process. In the subspace method [70], the input is usually assumed as a white 

noise signal for the frequency or time-domain techniques. Considering this, the result of the 

fast Fourier transform (FFT) of a white noise signal is a flat signal in the frequency domain; 

therefore, the transfer function is only dependent on the measured output’s FFT. Because of 

this assumption, the input is replaced with a constant parameter in the nominator of the 

transfer function. For instance, Allen et al. [71] used this approach as an output-only modal 

analysis method for linear time-periodic systems. This is not a reliable assumption for 

situations where the input does not follow white noise behaviour. 

As another example, Erazo and Nagarajaiah [72] considered a first-order Markov chain 

to parametrize the input excitation and used the Metropolis-Hasting sampling technique to 

estimate the input. This technique strongly depends on the selection of an appropriate 

sampling distribution and needs a high computational cost due to its iterative approach using 

many samples compared to the Kalman filter. All MCMC methods are time-consuming and 

are never comparable with KF methods. There are many references emphasizing that Kalman 

filters are significantly faster than MCMC [72, 73]. As model-based approaches, ARMA 

models have complicated mathematical equations, and many iterations are required for 

accurate response estimation. Their main weaknesses are related to their inaccuracy for the 

estimation of systems with combined excitations and systems with a high level of noise in 
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the measured data [74]. Moreover, for the ARMA model (as a time series statistical model), 

the selection of the order of ARMA coefficients is critical to avoid incorrect estimation [75].  

To overcome the drawbacks of the current output-only approaches, in this study, a new 

hybrid method is proposed by a combination of random decrement (RD), as a data-driven 

approach, and Kalman filter, as a model-based approach. The RD extracts a free vibration 

response from the measured responses of the structure. This free vibration response is the 

input of the Kalman filter, and such a response is the only data used for identification by the 

Kalman filter, as the system uses a free vibration dynamic equation of motion for its state-

space equation. The proposed method can perform damage quantification without estimation 

of input excitation. This is the main advantage of the proposed method compared to the 

traditional Kalman filter-based output-only approaches. As the input variables are omitted in 

the mathematical model of the system, the complexity and uncertainty of the state-space 

model of the Kalman filter are decreased [29, 76]. It also helps that the proposed method 

works for the damage identification of large state-space systems. Moreover, it will be shown 

that the proposed hybrid technique identifies the damage of structures under different kinds 

of loadings or combinations of them. 

This paper is organized as follows. In Section 4.2, the overall proposed method is 

introduced with the mathematical basics of the RD technique and the formulation and 

algorithm of the UKF. In Section 4.4, three illustrative systems are selected to demonstrate 

the efficacy of the proposed method. The first system, a 3- degrees of freedom (DoF) 

numerical model, is used to show the accuracy of the proposed method's results and 

robustness considering three different loading conditions. For the second system, an iterated 

modified unscented Kalman filter (IMUKF) (which is introduced by the authors in their 

previous work [77] for identification of relatively large scale systems) is implemented as a 

renovation of the UKF in order to identify the stiffness and damping values of a 10-DoF 

numerical model. Finally, for experimental verification of the proposed approach, vibration 

responses of a seven-story shear building, mounted on a shake table, are analyzed by the 

proposed method when different levels of damage are localized in the building. Comparing 

the estimated values with respect to the existent works and their robustness to the change of 

physical parameters due to the different levels of damage demonstrates the proposed 

method's accurate performance while there is no input history available. 
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 Problem description 

For a linear l-DoF system with stationary random zero-mean excitation, the equation of 

dynamic motion can be represented in the following state-space form: 

(t) g( (t), (t), (t)),=x x f u  (4.1) 

(t) h( (t), (t), (t)),=Y x f v   (4.2) 

where x  is a state vector, completely assumed observable and controllable, and g  and h  are 

transition and measurement functions. (t),u  and (t)v  are the zero-mean white stationary 

process noise and measurement noise vectors, respectively. (t)f  is the excitation vector 

which can have any form of white noise and stationary excitation, periodic excitation, 

ambient vibration, or any combination of these.  

When both input and output data are measurable, Kalman filtering methods estimate a 

system stiffness and damping matrices effectively [73]. For situations that the input data are 

not available, some techniques are defined to estimate the input at first, followed by the 

traditional Kalman filtering techniques for estimation of stiffness and damping matrices, 

which these techniques are introduced in the introduction. 

 In reference to the literature review, current output-only approaches are faced with 

difficulties in finding the excitation information of an underlying system. This augmented 

computation process to identify input excitation information considerably reduces the 

accuracy of the results of system identification. In the present study, a new hybrid output-

only method is proposed, and it does not require input excitation in the damage and system 

identification process. This idea contradicts that of traditional output-only approaches, which 

try to estimate or reconstruct the input excitation using the Kalman filter. 

Conceptually, the total dynamics response of a linear system subjected to any kind of 

excitation contains free and forced responses. Considering this concept, in the output-only 

system identification problem addressed in this paper, instead of estimation or reconstruction 
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of the input data for the Kalman filtering process, the input excitation effect will be 

eliminated from the total measured response of the system. 

The overall approach of the output-only system identification problem in the paper 

stands on the extraction of the free vibration responses from the measured total responses of 

a system using the RD method. Following that, the free vibration will be used in the Kalman 

filtering (KF) approach as output-only system identification. The schematic view of the 

proposed method is shown in Figure 4-1. The details of the RD method and nonlinear KF 

will be explained in the following section. 

 

Figure 4-1: The proposed output-only method flowchart based on the nonlinear KF. 

 Methodology 

In this section, at first, the basic of RD is introduced and following that the UKF algorithm 

is presented. 

4.3.1. Random decrement method 

The RD method was initially proposed by Cole [31] to extract the free vibration response 

from the measured response of a dynamic system subjected to random or ambient excitation. 

The RD method is data-driven and can only reach to the second step of the damage 

identification process. The technique has been adequately improved to determine the free 

vibration response of a system under different loading conditions [32]. In brief, it follows a 

simple process of averaging time segments of the measured system responses with a common 

initial or triggering condition. By using the procedure, the responses are transformed into the 

RD functions. At any time t , the total response can be decomposed into three parts, 

including:  
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i) the step response from the initial displacements; 

ii) the impulse response from the initial velocity; and, 

iii) the random response from the excitation applied to the structure in the period 

[9, 78].  

Therefore, the dynamic response ( x ) of jth DoF of the system at a time t  is written as: 

j j x(0) j x(0) j f (t )(t) (t) | (t) | (t) | , j 0,1,2, l,= + + =x x x x   (4.3) 

where, 
ba | means that a conditional b . Based on this understanding, we use the RD method 

to extract the free vibration responses from the system responses. In order to realize this, a 

trigger point ( x0 ) is defined as shown in Figure 2.  

 

Figure 4-2: The Random decrement procedure 

If jx (t) is reached to this x0 , a predefined segment of the signal is captured with a 

constant length ( ). This constant length ( ) will be the length of the free vibration signals 
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as an output of the RD method. As shown in Figure 3-1, there are possibly more than one 

number of segments of the signal. All of these segments start from ( x0 ) with the same length 

( ) (i.e., the first segment 1j(t )+x  starts at time 1t  to time 1t + ). These extracted multiple 

segments (i.e., r  equal to 1: N in Figure 3-1) are eventually plotted in a new coordinate 

system by averaging as an output for each DoF.  

The average of these segments, the free-response for each DoF, is calculated by: 

N

N j r

r 1

1
(t) (t ) .

N


=

= +δ x   (4.4) 

Users have to carefully choose the amplitude of the trigger point ( x0 ) and constant 

length ( ) by trial and error. With an increasing number of segments (N), the contribution 

of the response due to the initial velocity (the second part of Eq.(4.3)) will average out due 

to its sign alternates. The third part of the Eq. (4.3) will average out due to the random zero-

mean nature of the force response; therefore, the remnant is the response of the system due 

to the initial displacements, which have the free vibration form. Some mathematical 

equations of the RD technique are explained in Appendix B and the RD algorithm is 

summarized as follows: 

i) Set the trigger point and the segment length that the selection depends on 

experiences; 

ii) Gather the segmented responses with the same length when the trigger point is 

satisfied; and;  

iii) Average the segments, and the result provides the free vibration response of the 

system.  

The selection of the triggering level is an important aspect of the RD technique. Using 

a trigger point with low values might negatively affect the free vibration response by noise; 

however, a trigger point with a high value decreases the number of segments. To overcome 

this trade-off, a suitable level should be selected to ensure an adequate number of segments 

containing most of the crucial specifications of the underlying system. Brincker proposed 
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using 2  (  is the standard deviation of the response time history) as a trigger point [79], 

and, usually, 20% of that is the trigger band [80]. For multi DoF systems, Ibrahim et al. 

suggested using the vector triggering random decrement technique [81]. In terms of the 

segment length, it is better to have a sufficient time length to see the complete decay of the 

response. Thus, the length of the segment should be large enough to cover some of the low 

frequencies of the structure because the length of the segments is inversely proportional to 

the frequency [79, 80]. 

As it was mentioned in the beginning, the input excitation has to be a zero-mean 

random signal. For other cases, such as periodic excitation and a combination of them, some 

modifications are necessary, which will be explained in the following section via numerical 

examples. The Natural Excitation Technique (NExT) [82] is another technique that also 

extracts the free vibration response. However, NExT needs the whole response while the RD 

just needs to save some of the segments of the signals. Moreover, RD uses simpler algorithms 

than NExT [83], so RD was used to extract the free vibration response. 

4.3.2. Kalman filtering 

As a model-based technique, Kalman filtering is strong enough to quantify the severity of 

the damage in a structure (it reaches the third step of damage identification). It requires input 

excitation, which is not proficient in many real situations. To overcome the aforementioned 

limitation, as a novel idea, the free vibration extracted by RD was used in the Kalman 

filtering for system and damage identification purposes. The state-space model for the free 

vibration motion of the Kalman filter does not require any input excitation. Regarding this, 

the state-space model of the system will be derived for identification of dynamic properties 

of the system using the KF as: 

(t) g( (t), (t)),=x x u  (4.5) 

(t) h( (t), (t)),=Y x v   (4.6) 
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where x  is a state vector, and g  and h  are transition and measurement functions. (t),u  and 

(t)v  are the process noise and measurement noise vectors, respectively. In order to estimate 

structural dynamic properties, such as stiffness and damping values, an unscented Kalman 

filter [27] is selected to be applied to the free vibration response of the system. Consider the 

discrete state-space model of Eq. (4.5) and Eq. (4.6): 

k 1,k k kG( , ),+ =x x u  (4.7) 

k k 1,k kH( , ),+=Y x v  (4.8) 

where 

(k 1) t

k k k

k t

G( , ) g( (t), (t))dt ,

+ 



= + x u x x u and H h= . t  is a time-step, 
kx  is a state variable 

vector, 
ku  is a discrete process white noise, Q is defined as its covariance matrix, 

kY  is the 

measurement vector, 
kv  is a discrete measurement process noise vector, and R  is defined 

as its corresponding covariance matrix value. The UKF is as same as a linear Kalman filter 

consisting of two measurement and time-update steps, which calculates Kalman gain in the 

measurement step and updates the state vector and posterior estimation error for the next 

iteration in the update step [84].  

Let us assume that states follow a Gaussian distribution with an initial assumption for 

the state’s vector mean m and covariance error matrix XX

0P , sigma points ( i
χ ) can be defined 

as follows:  

( )( )

( )( )

0

i XX

0 i

i XX

0 i n

 ,

n  ,    i 1,2,....,n

n , i n 1,n 2,....,2n



 −

=

= + + =

= − + = + +

χ m

χ m P

χ m P

 (4.9) 

where n  is the number of states,   is a scaling parameter, and i  index is a column vector 

number. Cholesky decomposition as a stable numerical method will be used for the square 
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root calculation of the covariance matrix. The corresponding weights for the sigma points 

are given by: 

0

mw ,
n




=

+
 

(4.10) ( )0 2

cw 1 ,
n


 


= + − +

+
 

( )
i i

m c

1
w w , i 1, ,2n,

2 n 
= = =

+
 

while 2 (n ) n,  = + −    determines the spread of the sigma points and is a positive 

number ( )0 1  ;   as a secondary scaling parameter equals to 3 n− , and 2 =  are 

optimal for Gaussian distributions.  

The measurement step of the UKF consists of the calculation of a state vector, and 

output vector covariance matrices leading to the calculation of the Kalman gain is as follows: 

( )i i

k 1|k k kF ,  ,+ =χ χ u  (4.11) 

T
2n 2n 2n

XX i i i i i i i

k 1 c k 1|k m k 1|k k 1|k m k 1|k k

i 0 i 0 i 0

w w w  ,
+ + + + +

= = =

= − − +
   
      

  P χ χ χ χ Q  (4.12) 

( ) ( )

( ) ( )

2n 2n
YY i i i i

k 1 c k 1|k k m k 1|k k

i 0 i 0

T
2n

i i i

k 1|k k m k 1|k k k

i 0

w , w ,

, w ,  ,

+ + +

= =

+ +

=

= −

− +

 
 
 

 
 
 

 



P H χ v H χ v

H χ v H χ v R

 (4.13) 

( ) ( )
T

2n 2n 2n
XY c i i i i i i

k 1 i k 1|k m k 1|k k 1|k k m k 1|k k

i 0 i 0 i 0

w w , w , .
+ + + + +

= = =

= − −
   
      

  P χ χ H χ v H χ v  (4.14) 
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( )
1

XY YY

k 1 k 1 k 1 .
−

+ + +=G P P  (4.15) 

The time update step of the UKF is: 

( )
2n 2n

i i i i

k 1 m k 1|k k 1 k 1 m k 1|k k

i 0 i 0

ˆ w w H , ,+ + + + +

= =

 
= + − 

 
 x χ G δ χ v  (4.16) 

XX YY T

k 1 k 1 k 1 k 1 k 1 .+ + + + += −P P Κ P Κ  (4.17) 

The time-step k is incremented. The 
k 1

ˆ
+x  in Eq. (4.16) is the estimated state’s vector 

of the dynamic system. 

An algorithm for the application of the RD-UKF approach for system identification is 

presented below in Figure 4-3 . This proposed technique will work for any linear system with 

any kind of excitation (e.g., random, periodic, and earthquake excitations).  

In contrast to the joint input-state technique, where the number of states increases due 

to the append of the inputs to the state vector, in the proposed method, the number of states 

does not change, and this is a critical advantage of this technique. Likewise, in the dual 

Kalman filtering technique, at the first step, the input has to be estimated by the assumption 

of other states, which inaccurate in many cases and strongly depends on the initial guess of 

other states. Here, the effect of external excitation will be eliminated from the response, and 

the system parameters are identified only by using the free vibration response. In the next 

section, the performance of the proposed technique will be demonstrated using two 

numerical models under different loadings and one experimental case study to show the 

capability of the technique for real structures. 
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 RD-UKF Algorithm 

 N
(t)δ =RD ( (t)x , t ), 

1 Initialize 
0x , and  , 

2 set  N 0,=  

3 for 
rt 0: t : t=  , 

4      if 
j r 0(t ) x x  for jth DoF, 

5           save 
r(t )+x , 

6          N N 1= + , 

      end if, 

 end for, 

8 
N

N r

r 1

1
( ) (t ) .

N
 

=

= +δ x  

 ( )x, P =UKF (
N( ), G( ), H( )  δ ) 

10 initialize 
0 0, and x P , 

11 set Q, R , , ,  and  . 

12 for i 1:
t

=


  

13 
 calculate sigma points, χ , using Eq. (4.9), and their weights, w , using  Eq. 

(4.10). 

 14 propagate the sigma points using Eq. (4.11). 

15 update xx xy yy

i i i, ,P P P  using Eqs. (4.12)–(4.14). 

16 
estimate the new state vector 

ix  using Eq. (4.16) and the covariance matrix  

iP  using Eq. (4.17) 

 end for 

Figure 4-3: The RD-UKF algorithm 
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 Implementation of the approach to numerical and real examples 

In order to examine the proposed output-only identification method, extensive numerical 

studies have been conducted. In Case 1, a 3-DoF system is analyzed with a white noise 

excitation. Case 2 used different stiffness and damping values of the 3-DoF with the same 

excitation to evaluate the robustness of the algorithm to the change of stiffness and damping 

values. In Case 3, a periodic excitation is applied on the same 3-DoF system to the Case1, 

and Case 4 used an earthquake excitation to that 3-DoF system. In the 5th case, the stiffness 

and damping values of a 10-DoF system were identified to show the applicability of the 

proposed technique for large DoF systems, and, in Case 6, as the application of the technique 

on a real structure, the vibration response of a seven-story shear building is analyzed to 

estimate its stiffness and damping matrices and following localized building damage on 

different floors under various damage levels. The details of each numerical example applied 

the RD scenarios, and the UKF and IMUKF implementation parameters are described in the 

following sections.  

4.4.1.  Case 1: A 3-DoF system with white noise excitation 

As the first numerical implementation, the proposed method is applied to a 3-DoF system 

with white noise excitation. The governing equation of motion is: 

[ ]{ (t)} [ ]{ (t)} [ ]{ (t)} { (t)} .+ + =M X C X K X f  (4.18) 

The system is simulated via MATLAB software with the mass value 500 kg, stiffness 

value 50000 N/m, and damping value 300 N.s/m for each DoF for 50 s while the input 

excitation is white noise with the power of 10-4.  

For identification purposes, the simulated system acceleration response (including 

noise) is processed using the RD technique to extract the free vibration response data. For 

the RD, the trigger point selected equals to 10.3 var( )x , and 30 s (i.e.,   in Eq.(4.4)) as the 

length of each segment while the response of the 1st DoF is selected for evaluation of the 

trigger point. The acceleration response of the system and the RD processed the free vibration 
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responses are shown in Figure 4-4. The white noise information is assumed as unknown in 

the identification process. 

 

 

(a) 
1
(t)x  

 

(b) 
1
(t)δ  (c) 

Figure 4-4: a) The acceleration response of the 1st DoF of the 3-DoF system, b) the RD processed 

response as the free vibration response of the 1st DoF of the system, c) Power spectral density 

(PSD) of free vibration response from the 1st DoF 

The analytical natural frequencies of the system are 0.7 Hz, 1.98 Hz, and 2.86 Hz. 

Based on Figure 4-4-c, the natural frequencies of the free vibration response calculated using 

the RD technique are 0.7 Hz, 2.1 Hz, and 3.2 Hz using spectral analysis; these are close 

enough to the analytical responses. The free vibration responses (t)δ obtained from the RD 

will be employed in the UKF as a model-based system identification technique. In this case, 

the system governing equation will change to: 

        (t) + (t) + (t) = .M δ C δ K δ 0  (4.19) 

In the state-space model of the new governing equation without the input information, 

the state vector is defined as below: 



4.4 Implementation of the approach to numerical and real examples 67 

 

 

 
T

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4x x x x x x x x k k k k c c c c ,=x  

where the state space model is presented in Eq. (4.20) and Eq. (4.21). The prior information 

of the UKF for the structural identification are assumed as 

m 500 kg, k 30000 N/m, c 200 N.s/m,= = =  and x x 0= =  for each DoF.  
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(4.20) 

( ) ( )

( )

( )

( ) ( )

1 7 8 1 8 2 10 11 4 11 5 1

2 8 1 8 9 2 9 3 11 4 11 12 5 12 6 2

3 9 2 12 5 12 6 9 3 3

x x x x x x x x x x x ] / m
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(4.21) 

The simulation results based on the sampling rate of 1000 Hz are shown in Figure 4-5 

and Figure 4-6.  
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Figure 4-5: Case 1: Estimated stiffness (k1–k3) values with white noise excitation. 

 

 

Figure 4-6: Case 1: Estimated damping (c1–c3) values with white noise excitation. 
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Figure 4-6: Case 1: Estimated damping (c1–c3) values with white noise excitation. 

Obviously, an accurate model leads to an accurate result. In this study, no states or 

parameters related to the excitation input are involved in the state’s vector in Eq. (4.20) and 

Eq. (4.21), which reduce the complexity and uncertainty of the physics-based mathematical 

model. In contrast, in the traditional model-based output-only approaches, the input 

parameter is induced to the state’s vector [30], or it is estimated at first, and the estimated 

input is used in the identification process of states [53]. Both approaches increase the level 

of uncertainty in the state-space model. Considering this, in our proposed approach, the 

uncertainty level of the mathematical model decreases dramatically, which leads to a better 

performance of the Kalman filtering for large DoF systems, as well. 

The proposed method has estimated the stiffness and damping values accurately based 

on Figure 4-5 and Figure 4-6. However, in Figure 4-4, the free vibration response does not 

appear as a usual free vibration response form. In addition, for the new RD-UKF technique, 

the trigger point and segment length, as two new constant values, are added to the other 

constant parameters of the UKF. In the following numerical example, Case 2, the stiffness 

and damping values of the system are changed to show the independence of the proposed 

method to these predefined constant values and the robustness of the technique, while all the 

predefined constant values of the RD-UKF are fixed based on the Case 1. 

4.4.2. Case 2: Damage identification of the 3-DoF with white noise excitation 

In Case 2, the new stiffness and damping values 
1 2 3k k k 55000N/m,= = =

1 2 3c c c 270N.s/m,= = =  (10 percent change from the original value) are used, but the same 

mass matrix is used in comparison with Case 1. With the same prior information for the UKF 
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and other constant parameters for the RD as Case 1, the new stiffness and damping values 

are estimated as shown below: 

 

 

 

Figure 4-7: Case 2: Estimated stiffness (k1–k3) values with white noise excitation.  

 

 

Figure 4-8: Case 2: Estimated damping (c1–c3) values with white noise excitation. 
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Figure 4-8: Case 2: Estimated damping (c1–c3) values with white noise excitation.  

The robustness of the proposed method was validated from Figure 4-7 and Figure 4-8 

with accurately estimated stiffness values using the same parameters as used in Case 1. As 

we simulated, the estimated stiffness values increased by 10 percent, and the estimated 

damping values decreased by 10 percent. The proposed method has estimated the new 

stiffness values accurately, and, for the damping values, it works well except for the second 

DoF of the system. 

As a sensitivity analysis, this section addresses the capability of the technique to 

identify damage to the system under the same white noise loading condition but with 

different stiffness and damping values. The tuning parameters of the algorithm were the same 

as those used in Case 1. Thus, the proposed method is robust for tracking the changes in the 

stiffness values of the system, while the tuning parameters are fixed. 

4.4.3. Case 3: A 3-DoF system with periodic excitation 

The RD basically works well for excitations with random nature; then, to overcome the 

weakness of the RD for excitations with periodic components, some modifications are 

proposed [85, 86]. For a linear system, based on the superposition rule, the main idea comes 

from the elimination of that part of the total response caused by the periodic excitation.  

In linear systems, a periodic excitation leads to a periodic response, which is repeated 

based on the excitation frequency. If there is more than one periodic excitation component, 

the component with the lowest frequency is defined as the main frequency of all periodic 

excitations. Dividing the measured response to   segments with equal length and averaging, 

the resultant averaged signal can be used to subtract the effect of periodic components from 

the total response. The remaining signal, after subtracting the periodic parts, is the sum of 
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the random excitations and the initial value responses that can be processed by the RD 

technique.  

From a mathematical point of view, the signal will be divided into portions 
sbTF =  

where b is an arbitrary integer, T is the main period, which is equal to the inverse of the main 

frequency, and 
sF  is the sampling rate of the measured response. The average,

px , of the 

segments is given by: 

 

 ( j)

p

i 1

1
( j) ( j i ),   j 1,2, ,

( j)



 


−

=

= + =
 −

x x  (4.22) 

where j is a time-step of the mean average, x  is the response with size   and 
px  is the mean 

average of the segments, and [ ] is the floor function operator. In the next step, the 
px  will 

be subtracted from the total response and the remnants are the responses due to the random 

excitations and initial values (
Rx ). 

R p ,= −x x x  (4.23) 

. ( ) ( )  R p( i : i 1 1) ( i : i 1 1) i 0,1,2, ( ) .     + − = + − − =  −x x x . (4.24) 

Now, the 
Rx  can be processed by the RD technique to eliminate the component of the 

response related to the random excitation. Based on the defined 3-DoF system (Case 1) in 

the previous section, the input excitation is changed to a combination of random white noise 

(
RF ) with the power 10-4 and two sinusoid signals with different amplitude and frequencies 

(
RF(t) F (t) 7sin(3 t) 6sin(2 t) = + + ). The excitation and, following that, the response of the 

system due to the combined excitation are shown in Figure 4-9. 
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(a) (b) 

Figure 4-9: a) The periodic excitation, and b) the system total response.  

Based on the linear system theory, the system response contains three different parts: 

1) the response of the periodic excitations; 2) the response of the random excitation; and 3) 

the response of the system due to initial conditions of the system.  

To implement the output-only UKF, the first two parts should be eliminated. At first, 

using Eqs. (4.22)-(4.24), the periodic parts are removed. In this study, as the input force is 

known for simulation, the main frequency is set to 2π Hz, and the sampling rate is equal to 

1000 Hz. For constant value, b equals π, and the signal will be divided into 500 parts. After 

averaging and subtracting the periodic part from the total response, the remnant is the system 

response due to random excitation and initial values. The effect of the random excitation will 

be omitted by the RD. To implement the RD, the trigger point is selected 1.2 var(x)  of the 

first DoF and only 30 s of the response is considered for averaging. The remnant will be the 

system response to the initial condition (named as free vibration response), which is used for 

the output-only UKF system identification, as shown in Figure 4-10.  
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Figure 4-10: The free vibration response of the system after removing external forces using the RD 

method. 

To implement the UKF, per the previous section, the state-space model (Case 1) of the 

previous section is used for identification with the same initial condition. The estimated 

stiffness and damping values are shown in Figure 4-11 and Figure 4-12. In this case, as like 

as case 1 and case 2, only the simulated system acceleration response is used for the 

identification process. 

 

Figure 4-11: Case 3: Estimated stiffness (k1–k3) values with periodic excitation. 
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Figure 4-11: Case 3: Estimated stiffness (k1–k3) values with periodic excitation. 

  

 

 

Figure 4-12: Case 3: Estimated damping (c1–c3) values with periodic excitation. 

Based on Figure 4-11 and Figure 4-12, the iteration converges to the clean response 

after 10 s (10,000 time-steps). The duration for the proposed RD-UKF technique for output-

only identification is approximately 58 s on an Intel® core™ i5 2400 K CPU @ 3.10 GHz. 

To calculate the main period (T) in field tests (since there is no information about the input), 

pre-signal processing of the measured response and using fast Fourier transform (FFT) can 

be helpful to find the lowest periodic frequency component (T). 
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4.4.4. Case 4: A 3-DoF system with earthquake excitation 

Heretofore, the proposed output-only UKF technique is applied on a 3-DoF system with 

random and periodic excitation. Also, it is shown how the periodic part of a linear system 

response can be removed from the system response. In this section, the proposed technique 

is applied to extract the stiffness and damping values of the pre-defined linear 3-DoF system 

while it is excited with the EI-Centro earthquake data, shown in Figure 4-13 during 50 s. 

This record is only used for the simulation of the system, and it is assumed as unknown in 

the identification process. Therefore, only the acceleration response of the system is used. 

 

Figure 4-13: EI-Centro earthquake acceleration time history.  

The system acceleration response by the earthquake excitation is averaged using the 

RD technique to extract its free vibration response as shown in Figure 4-14. The trigger point 

of the RD is selected 10.5 var( )x  of the first DoF, and only 30 s of the response is considered 

for averaging. Similar to the previous sections, the sampling rate is equal to 1000 Hz. The 

estimated values are converged to the true one after 15 s as shown in Figure 4-15 and Figure 

4-16. 
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(a) 
1(t)x  (b) 

1(t)δ  

Figure 4-14: a) system response due to El-Centro earthquake excitation, and b) the system free 

vibration response using the RD method. 

 

Figure 4-15: Case 4: Estimated stiffness (k1–k3) values with earthquake excitation. 
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Figure 4-16: Case 4: Estimated damping (c1–c3) values with earthquake excitation. 

For the UKF implementation, the same as previous sections, the prior information of 

the UKF for the structural identification are m 500 kg, k 30000 N/m, c 200 N.s/m,= = =  and 

x x 0,= =  for each DoF. As earthquakes are random in nature, the basic RD can be used to 

extract the free vibration response. It should be mentioned that the selection of the trigger 

point and length of the segments strongly depend on the data and experience. The duration 

for the proposed RD-UKF technique for output-only identification is approximately 60 s on 

an Intel® core™ i5 2400 K CPU @ 3.10 GHz.  

4.4.5. Case 5: A 10-DoF system with earthquake excitation 

In this section, the proposed algorithm is applied to a 10-DoF system. With four unknown 

states (i.e. x, x, k,and c  ) for each DoF, a total of 40 unknown states have to be estimated for 

this system. The UKF has limitations in the identification of large state-space systems [68, 

87]; therefore, in our previous study, an iterated cubature unscented Kalman filter (IMUKF) 

was introduced to overcome this limitation [77]. To develop an output-only system 
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identification method viable for large state-space systems, the UKF used in Cases 1-4 is 

replaced with the IMUKF, meaning that the RD technique is jointed with the IMUKF method 

as an output-only system identification technique for large state-space systems. The 

flowchart in Figure 4-1 is modified and showed again in Figure 4-17. Notably, the main 

difference between UKF and IMUKF relies on the number of the sigma points and the two 

scaling parameters in the IMUKF. The details of the IMUKF are found in Ghorbani and Cha 

[77]. 

 

Figure 4-17: The proposed output-only method flowchart based on the IMUKF.  

Based on the flowchart in Figure 4-17, at first, the system is simulated with the El-

Centro earthquake excitation (see Figure 4-13) across 50 s. The constant values for 

simulation are 
1 2 10m m m 500 kg,= = 1 2 10k k k 50000 N/m,= =  and 

1 2 10c c c 300 N.s/m, = = with the sampling rate of 500 Hz. As in previous cases, the EI-

Centro earthquake excitation is only used for simulation purposes, and it is unknown in the 

identification process. The simulated system acceleration response is only recorded for 

identification purposes. 

Based on our experience, putting the sensors on the lower floors results in a more 

accurate estimation of the stiffness and damping of all the floors. In the identification process 

using the RD-IMUKF the segment length is 30 s, and the trigger point of RD is selected as 

0.5 var( )x  once on the first DoF and another time on the fifth DoF of the system to show the 

effect of the trigger point on the estimation of parameters. The prior information of the state’s 

vector in the IMUKF identification process is assumed as . 
 x x K C  Its each 

component is set to: zeros (10,1), zeros (10,1),= =x x 30000 ones (10,1) , = K  and 

200 ones (10,1).= C  Furthermore, the initial error covariance matrix is defined as 

 x x k cdiag P P P P  where
x x ones (10,1)=P = P , 7

k 10 ones (10,1), = P and
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6

c 10 ones (10,1)= P . The IMUKF tuning parameters are 
1 23 and 5 = =  as scaling 

parameters, and 0.04 =  is the reduce rate of the iterated Kalman filter with 10 iterations. 

The process and measurement noise covariance matrices are 12

4010  −
I , and 4

1010  −
I , 

sequentially. The duration for the RD-IMUKF identification is approximately 540 s on an 

Intel® core™ i5 2400 K CPU @ 3.10 GHz. 

  

  

  

  

  

Figure 4-18: Case 5: Estimated stiffness (k1–k10) values for the 10-DoF system.  
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Figure 4-19: Case 5: Estimated damping (c1–c10) values for the 10-DoF system.  

The estimated values of the stiffness and damping are shown in Figure 4-18 and Figure 

4-19 respectively, for two different trigger points. Based on these figures, the stiffness 

estimation converges to the clean response after approximately 10 s for both trigger points. 

Comparison with previous work [77] shows that the stiffness values were accurately 

estimated, while the damping values presented some deviations for both trigger points in 

certain DoFs (c7–c10) because of the large difference between the stiffness and damping 

values. However, this result is inevitable [88].  

4.4.6. Case 6: A seven-story residential load bearing wall building 

The test structure, as shown in Figure 4-20 represent a slice of a seven-story residential load-

bearing wall building located at the University of California at San Diego (UCSD). It consists 
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of a main wall (web wall) providing lateral force resistance in the East-West direction, a back 

wall perpendicular to the main wall (flange wall) for transversal stability, a concrete slab at 

each floor level (except at the base), an auxiliary post-tensioned column to provide torsional 

stability, and four gravity columns to transfer the weight of the slabs to the shake table plate 

[89]. More details about the building are available in [90]. 

The building was instrumented with a dense array of over 430 data channels consisting 

of different kinds of sensors. In this study, data from 14 longitudinal acceleration channels 

(on the web wall at each floor level and at mid-height of each story) were used to estimate 

the stiffness and damping matrices at different damage states of the building. The measured 

acceleration responses sampling rate is 240 Hz (Nyquist frequency of 120 Hz). These 

measured data were band-pass filtered between 0.5 Hz and 25 Hz using a high order (1024) 

FIR filter [89]. 

The building was excited with four different earthquake records simulated by the shake 

table. The four historical earthquake records applied to the building are as follows: (1) 

longitudinal component of the 1971 San Fernando earthquake (magnitude = 6.6) recorded at 

the Van Nuys station (EQ1); (2) transversal component of the 1971 San Fernando earthquake 

recorded at the Van Nuys station (EQ2); (3) longitudinal component of the 1994 Northridge 

earthquake (magnitude. = 6.7) recorded at the Oxnard Boulevard station in Woodland Hill 

(EQ3); and, (4) 360_ component of the 1994 Northridge earthquake recorded at the Sylmar 

station (EQ4). Excitations based on white noise consist of eight-minute-long realizations of 

a banded white noise (0.25–25 Hz) process with root-mean-square (RMS) amplitudes of 0.03 

g. Table 4-1 reports the dynamic tests used in the present study of the building at various 

damage states. Obviously, it is assumed that these records are not available in the 

identification process. The data coming from test numbers 39, 41, 46, 49, 61, and 64 are only 

used in the identification process without any information about the applied earthquakes. 
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Figure 4-20: The building test structure [89]. 

Table 4-1: List of the dynamic tests to induce damage and ones used in the identification process.  

Test No. Test discerption State 

39 8 min WN (0.03 g) + 3 min AV D0 

40 EQ1  

41 8 min WN (0.03 g) + 3 min AV D1 

43 EQ2  

46 8 min WN (0.03 g) + 3 min AV D2 

48 EQ3  

49 8 min WN (0.03 g) + 3 min AV D3-1 

61 8 min WN (0.03 g) + 3 min AV D3-2 

62 EQ4  

64 8 min WN (0.03 g) + 3 min AV D4 

WN: white noise base excitation test, 

AV: ambient vibration test. 

 

For the identification purpose, the building geometrical information and its 

construction material specifications, such as the elasticity modulus (Young’s modulus), are 
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used to estimate prior information. Regarding that, as the building slice is on the shake table, 

each floor’s initial stiffness can be calculated by the equation
3

12EI

L
. E is Young’s modules, 

I is the second-moment inertia of the web wall, and L is the web wall height in each floor. 

The initial critical damping ratio ( ) is assumed equal to 0.02.  

 

   

   

  

Figure 4-21: The free vibration response of the building each story without any damage (D0). 

The free vibration response vibration is extracted from the measured response, 

numbers 39, 41, 46, 49, and 61 (see Table 4-1), of each floor for all damage states (D0-D4) 

using the RD technique. The trigger point is selected equal to 61.4 var ( )x  of the sixth floor, 

and each segment length is set to the total signal length divided by 30. The free vibration 

response of the building for each story are shown in Figure 4-21, using data number 39 for 

damage state D0. The free vibration responses of the building under different damage states 

are shown in Appendix C. It should be mentioned that only the system response is involved 

in the extraction of free responses.  

The extracted free vibration responses are used for the identification of the stiffness 

and damping matrices of the building, only considering the knowledge of the mass matrix 

without any information about the input excitation. For the identification process, the UKF 

is employed. The mathematical equation of a linear 7-DoF damped mass-spring model is 
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derived in the state-space form, and the parameters are extracted by the unscented Kalman 

filter. The state vector ( x) with the dimension of 28 is in the form of: 

 
T

1 7 1 7 1 7 1 7x x x x k k c c ,=x  

and the dynamic equation of motion is: 

        (t) + (t) + (t) = .M δ C δ K δ 0  (4.25) 

Based on Table 4-1, the excitation force lasted for a total of 11 min; the excitation for 

the first 8 min was white noise vibration and that for the remaining 3 min was ambient 

vibration. Regarding excitation, existing studies [89, 91] have reported that all the damage 

scenarios (D0–D4) have different natural frequencies, thus presenting different levels of 

damage for these scenarios due to successive tests as well as their accumulated damage.  

In order to assess how our proposed method estimates the changed natural frequencies 

from the excitation tests, we applied our method using the excitations presented in Table 4-1. 

The sampling rate of measured responses from each floor is 240 Hz. The UKF is tuned with 

the constant parameters, process noise matrix, measurement noise matrix, and initial values. 

The process and measurement noise matrices are tuned 4.3

28 2810−

I  , and 9

7 710−

I , 

respectively, where I is the unit matrix. The initial state’s vector , 
 
X X K C  is set to 

zeros (7,1),= =X X  each story equivalent mass (
im ), initial stiffness ( K ), and other 

geometrical information are presented in Table 4-2. The initial damping can be calculated by 

2 (i) m ones (7,1) =  iC K where i 1 7.=  The initial error covariance matrix of the 

UKF,  XX

0 x x c=diag ,kP P P P P  is equal to 
x x ones (7,1),= =P P 13.510 ones (7,1),= kP and 

9.5

c 10 ones (7,1).= P  As mentioned above, for the identification process, both the white 

noise and ambient vibration responses are used together without any separation. The duration 

for the identification is approximately 33 s on a processor Intel® core™ i5 2400 K CPU @ 

3.10 GHz.  
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Table 4-2: The building lumped seismic each floor mass and the web wall geometrical information. 

Floor 
Mass value 

(kg) 

Initial stiffness 

(kN/m) 

Wall thickness 

(m) 

Wall width×length 

(m) 

1 4

1 3.3 0m 1=   7

1k 4 10=   0.203 3.658 × 2.743 

2 4

2 2.9 0m 1=   7

2k 4 10=   0.152 3.658 × 2.743 

3 4

3 2.9 0m 1=   7

3k 4 10=   0.152 3.658 × 2.743 

4 4

4 3.07 0m 1=   7

4k 4 10=   0.152 3.658 × 2.743 

5 4

5 2.9 0m 1=   7

5k 4 10=   0.152 3.658 × 2.743 

6 4

6 2.9 0m 1=   7

6k 4 10=   0.152 3.658 × 2.743 

7 4

7 2.5 0m 1=   7

7k 4 10=   0.203 3.658 × 2.743 

 

The estimated stiffness and damping values are shown in Figure 4-22 and Figure 4-23, 

respectively. Ideally, the estimated stiffness values should be compared to the results of the 

solo UKF using input excitations. However, Erazo and Nagarajaiah [72] noted that the solo 

UKF is unable in output-only parameter estimation of large state-space systems. Moreover, 

the information about the excitation is unclear. In fact, these are the evident limitations of 

the traditional Kalman filtering-based method. Therefore, instead of a direct comparison, we 

compared the natural frequencies calculated from the results obtained using our method to 

the natural frequencies from the existing studies [89, 92].  

As expected, the calculated natural frequencies match well with the results of the other 

works, as shown in Table 4-3. For example, we compared our calculated natural frequencies 

with those calculated using stochastic subspace identification (SSI) [92, 93] and the multiple-

reference natural excitation technique combined with the Eigensystem realization algorithm 

(MNExT-ERA) [92, 94]. Based on Table 4-3, the natural frequencies extracted from RD-

UKF are in good agreement with the other two techniques for each damage state.  

The estimated stiffness values in Figure 21 also show the same trend as the reduction 

tendency of the natural frequencies due to the accumulated damage within the seven-story 

structure. For example, it is expected that the stiffness value decreases when the level of 

damage increases from D0 to D4, as shown in Figure 21. The stiffness value 
1k  gradually 
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decreases in the order of D0, D1, D3-2, D2, D3-1, and D4. The values of
2k , 

3k , and 
4k  

decrease in the order of D0, D1, D2, D3-2, D3-1, and D4. Those of 
5k  and

6k  decrease in 

the order of D0, D1, D2, D3-2, D4, and D3-1. The value of 
7k  decreases in the order of D1, 

D0, D2, D3-2, D2, D4, and D3-1. Based on these results, we conclude that our proposed 

method could correctly estimate the stiffness values of the seven-story building.  
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Figure 4-22: Estimated stiffness (k1– k7) values of the building within all damage states.  

  

  

  

 

 

Figure 4-23: Estimated damping (c1– c7) values of the building within all damage states. 

Two of the damage scenarios are more extended than the case of state D3-1, but we 

expect that the structure’s stiffness increases somehow after this stiffening process because 

of the stiffening of the bracing system between the slabs of the building and the post-

tensioned columns after this state of damage (D3-1) [89]. Then, based on Figure 4-22, the 
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damage state D3-1 will have a lower level of stiffness rather than D3-2 regarding this and 

what is mentioned in other work [92], which is evident in Figure 4-22, as well. Figure 4-22 

shows that the estimated damping values do not follow a clear trend as a function of structural 

damage. The inaccuracy in the estimation of the damping matrix also has been seen in other 

works [39, 88, 92].  

The 1st natural frequencies estimated by the RD-UKF in the D0 and D1 are slightly 

lower (i.e., 0.29 Hz) than those of the other two methods (i.e., MNExT-ERA and SSI), as 

shown in Table 3. However, the other two methods always provide different estimated 

natural frequencies for the same damage state under different excitations (i.e., 0.03g WN and 

AV). The discrepancies presented in Table 4-3 are a maximum of 0.55 Hz for the 1st natural 

frequency and 2.61 Hz for the 2nd natural frequency, respectively, which are nonnegligible 

discrepancies. However, the RD-UKF provides consistent estimated natural frequencies for 

the same damage state under different excitations that are more reasonable. The natural 

frequencies estimated by the RD-UKF show quite identical results for the different damage 

scenarios except D0 compared to those of the other two methods. Therefore, it appears that 

the estimated natural frequencies by the RD-UKF are more reasonable, based on the fact that 

we do not know the ground truth. 
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Table 4-3: Comparison of the extracted natural frequencies 

 

State/ 

test No. Method 
 

0.03 g RMS WN 0.05 g RMS WN AV Discrepancy in  

1st –L 

 mode 

2nd –L  

mode 

1st –L 

 mode 

2nd –L  

mode 

1st –L 

 mode 

2nd –

L 

 mode 

1st NF 2nd NF 

D0 

test39 
RD-UKF 1.4 11.1 ̶ ̶ 1.4 11.1 0 0 

MNExT-E

RA 
1.71 11.49 ̶ ̶ 1.92 10.49 

0.21 1 

SSI 1.66 ̶ ̶ ̶ 1.89 10.53 0.23 ̶ 

D1 

test41 
RD-UKF 1.37 10.01 ̶ ̶ 1.37 10.01 0 0 

MNExT-E

RA 
1.54 11.35 1.39 10.78 1.86 10.27 

0.47 1.08 

SSI 1.51 11.25 1.4 11.38 1.86 10.24 0.46 1.14 

D2 

test46 
RD-UKF 1.25 9.25 ̶ ̶ 1.25 9.25 0 0 

MNExT-E

RA 
1.22 10.88 1.12 10.41 1.67 10.34 

0.55 0.54 

SSI 1.25 11.1 1.14 10.24 1.67 10.16 0.53 0.94 

D3-1 

test49 
RD-UKF 1.15 8.54 ̶ ̶ 1.15 8.54 0 0 

MNExT-E

RA 
1.11 10.24 1.05 10.22 1.46 10.60 

0.31 0.38 

SSI 1.13 9.87 1.06 10.23 1.46 9.28 0.4 1.18 

D3-2 

test61 
RD-UKF 1.22 9.01 ̶ ̶ 1.22 9.01 0 0 

MNExT-E

RA 
1.18 11 ̶ ̶ 1.58 8.39 

0.4 2.61 

SSI 1.2 10.89 ̶ ̶ 1.58 8.52 0.38 2.37 

D4 

test64 
RD-UKF 0.97 7.9 ̶ ̶ 0.97 7.9 0 0 

MNExT-E

RA 
0.83 4.68 0.8 4.62 1.02 5.68 

0.22 1.06 

SSI 0.85 4.68 0.81 4.52 1.02 5.69 0.21 1.17 

 

In general, the proposed method is defined for linear systems, while it is clear that 

damage leads to nonlinear behaviour in the system. Then, with increasing the level of 

damage, the assumption of a linear model for the UKF process is violated, and a quasi-linear 

or nonlinear model is suitable to represent the system behaviour. Defining a specific 

nonlinear precise model and customizing the RD technique for this nonlinear model will 

improve the estimated result dramatically, which will be considered in future works. 

Furthermore, in contrast to other works which had separately identified the modal 

properties in two loading conditions (white noise excitation and ambient vibration), in this 

work, the data of both excitations are considered together, and we have shown that the 
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estimated stiffness values follow a clear trend as like as previous researches. This is another 

confirmation, emphasizing that this technique works for any kind of excitation.  

The comparison of the performance of the technique with MCMC techniques shows 

that the computational time of the UKF-MCMC technique developed by Erazo and 

Nagarajaiah [72] for the UCSD experimental setup (case 6) was about 7 minutes, whereas 

that for the RD-UKF method was less than 33 s in a standard desktop computer. The UKF-

MCMC method only used 1,000 samples for identification, which is a small number in the 

MCMC because of the burn-in phenomena of the algorithm. The RD-UKF used free 

vibration data with 2,400 samples (10 s with a sampling rate of 240 Hz). Furthermore, 

Figures 21 and 22 show that the algorithm reaches a steady condition just after 6 s. The RD-

UKF technique is, therefore, significantly faster than the UKF-MCMC technique. 

Constant values for the Q and R matrices are assumed during the estimation process 

since the condition of the model and the sensing systems are fixed throughout the estimation 

process of a simulation study. However, in real applications, assuming constant Q and R 

values will decrease the performance of the UKF. The harmonic errors observed in the 

figures are due to the R values, which are not adaptive to the system response. Obviously, 

the level of noise in a real measurement changes over time. To solve this problem, some 

researchers have suggested an adaptive adjustment of noise covariance for the Kalman 

filtering approach [95]. In the current study, the level of harmonic error decreased during the 

estimation time. 

One limitation of the proposed method is that it does not follow a real-time scheme in 

the identification process, as RD is a data-driven approach and requires a set of measured 

time history data to extract the free vibration response of the structural system. Another 

limitation is that RD needs to be derived based on each specific problem. In other words, as 

RD was initially defined for linear systems, there is no general approach that can apply the 

technique in different nonlinear systems. It has to be separately solved case by case for 

different nonlinear systems. With this limitation considered and based on the inherent 

nonlinearity of the seven-story building, the UCSD case study, the small deviation in the 

estimated results from the comparison with previously published works can be justified 

because we used the linear RD procedure for the data of the seven-story building. However, 
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the estimated stiffness and corresponding natural frequencies are still consistent with the 

expected results compared with those of other published works. 

 Conclusion 

A new hybrid output-only system identification method based on the Kalman filtering and 

the random decrement technique was proposed in this paper. Traditional methods have tried 

to identify or estimate the input excitation (step one) and use it for state estimation (step two) 

to estimate system parameters. However, in this proposed method, the output responses of 

the excited structural system were processed by the RD method to extract free vibration 

responses only. The extracted free vibration was inputted to the state-space equation of the 

Kalman filter to estimate the system parameters to detect structural damage. Therefore, the 

input excitation parameter was not involved in the state-space model because the free 

vibration dynamic equation of motion was used. It reduces the order of the state-space 

equation and also reduces uncertainties and complexities of the system. 

Furthermore, the proposed method has advantages compared to the traditional output-

only approaches:  

1. The proposed method can detect, localize, and quantify the extent of damage, 

whereas data-driven methods can only cover the first two missions. 

2. In contrast to pure model-based output-only system identification techniques, 

the proposed method works for high-dimensional state vectors by reducing the 

overall order of state-space equation though the removal of input excitation 

states. 

3. The proposed method does not require any physics-based numerical model to 

estimate input excitations.  

4. The technique reduces the complexities and uncertainties of the numerical 

model induced by the input excitation parameters while improves the 

observability rank of the system. 
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5. It is applicable to various systems subjected to different kinds of excitations 

(i.e., random noises, periodic excitations, and earthquake excitations) or any 

combination of these excitations. 

6. The proposed method was validated for an actual large-scale structure by 

comparing its results against those of existing works. 

The proposed hybrid method uses the positive point of RD to overcome the drawbacks 

of traditional model-based methods by using input excitations or related methods to replace 

the input excitations. These advantages demonstrate that the proposed method is more 

reliable and practical than pure data-driven or model-based methods, and it is applicable for 

the damage identification and quantification of large state-space systems. In the future, we 

will conduct more extensive numerical and experimental studies with more real cases, such 

as nonlinear systems and 3D frames. We will also conduct a sensitivity analysis of different 

tuning parameters for the RD and the UKF. 

 

 



  

 

Chapter Five: 

Analyzing the Robustness of Hybrid, Output-only Kalman 

Filtering–based System Identification Method 

This chapter encloses the conference paper published in the 10th European workshop on structural 

health monitoring1 introduced in the Co-authorship section. The paper has examined the performance 

and robustness of the RD-UKF method, which was introduced in Chapter 4. The method estimation 

accuracy and robustness were evaluated under different types of excitations, 100 independent 

simulations, missing sensor information, and uncertainty related to the structure's mass matrix. The 

mathematic basics related to each scenario are developed in this chapter, and the tuning parameters are 

mentioned for the sake of reproducibility for future readers. The results demonstrate that the method is 

robust to these worse-case scenarios associate with the identification process, and it is easy and 

straightforward to implement it on real structures. 

  

 

1 E. Ghorbani and Y. J. Cha, “Analyzing the robustness of hybrid, output-only, Kalman filtering–based system identification method,” 

10th European Workshop on Structural Health Monitoring, Palermo, Italy, 225, November 2020.  
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Abstract: This paper investigates, in detail, the robustness of a previously introduced 

approach to output-only structural system identification using the random decrement method 

and unscented Kalman filter (RD-UKF) in chapter 4, [96]. Unscented Kalman filters have 

been widely used for structural system identification and damage detection purposes. These 

filter's divergence in estimating the desired states of a structural system with unknown 

excitations is a well-known weakness, considerably limiting their application. To overcome 

this difficulty, the current study initially employs the random decrement method to extract a 

system's free decaying response from its measured responses. Subsequently, it applies an 

unscented Kalman filter to the extracted free response in order to estimate the system's 

dynamic properties. Our previous study demonstrated this method's proficiency. The present 

study conducts further sensitivity analysis to show the RD-UKF method's robustness vis-à-

vis different uncertainties in the process of identification. First, we estimate the stiffness and 

damping matrices of a three-degrees-of-freedom (DoF) system with three different kinds of 

excitations. Next, we examine the RD-UKF method's robustness in 100 experiments (Monte 

Carlo simulation). Besides, it will be shown that the method is robust in addressing 

uncertainties related to mass distribution and missing data (sensor malfunction or a loss of 

communication connectivity) during the modelling and measurement process. The results of 

the study show that the RD-UKF method is sufficiently robust for all the uncertainties of the 

system identification process. 

 Introduction 

The structural damage identification process comprises three main steps: damage detection, 

damage localization, and damage quantification. Damage identification methods can be 

categorized into three groups: data-driven methods, model-based methods, and hybrid 

methods. Model-based methods use the advantages of a physics-based model, compared to 

data-driven approaches, to evaluate the extent of the damage. Recently, some studies have 

attempted to combine both model-based and data-driven approaches as a hybrid method in 

order to harness both method's advantages for damage identification purposes [60, 77, 97]. 
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Measuring excitation is not viable in the course of the normal operation of many civil 

infrastructures for their damage identification purposes [60]. Many studies have attempted 

to identify a solution for extracting excitation information for the identification process 

during the last decade. As the first solution, shakers and actuators simulate excitations on the 

structure level, and the corresponding system response is used for damage identification. 

However, the shaker’s' enormous mass changes a structure's modal parameters [9]. 

Estimating input with the help of a mathematical model and the measured response of 

the system using different methods, such as Kalman filtering, could constitute another 

approach. Joint input-state methods [66] and dual Kalman filtering [53] are two of the main 

methods that have been widely used for output-only system identification, utilizing this 

approach. The predicted state's accuracy strongly depends on the first Kalman filter's 

estimated input excitation [53]. Reconstruction of the input using mathematical methods 

[69]—such as autoregressive moving average (ARMA) methods, subspace methods [70], 

and Markov chain Monte Carlo (MCMC) methods [72]—is the third solution to unknown 

excitation problems. Selecting an appropriate sampling distribution plays a vital role in these 

kinds of approaches. Also, these approaches are not robust enough for combined excitations 

[72].  

This study investigates the robustness of a previously introduced output-only damage 

quantification approach that takes advantage of both data-driven and model-based methods 

[96]. We believe that estimating input causes an estimation error during the damage 

identification process. We extract a free decaying response from the measured response of a 

structure using a data-driven method called random decrement (RD) [31], and we input the 

free-response into an unscented Kalman filter (UKF) for damage identification. This 

approach reduces the complexity and uncertainty of the physical model, and the combined 

method (RD-UKF) [96] could be used for damage identification of large-scale systems under 

the various kinds of loading involved in the identification process. Therefore, in this paper, 

we investigate the RD-UKF method's robustness in resolving various uncertainties 

associated with the structural damage quantification process.  

This paper is organized as follows. Section 5.2 briefly introduces the basics of the RD 

and UKF methods. This section also presents RD-UKF's algorithm. Section 5.3 outlines 
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extensive studies on 1) RD-UKF's robustness for damage identification, using a 3-DoF 

numerical model subjected to three different loading conditions, 2) the method's robustness 

for about 100 Monte Carlo simulation experiments, 3) the method's robustness for 

uncertainty in a model's mass matrix, and 4) the effect of a missing sensor signal in the 

identification process, which could be due to sensor malfunction or a loss of communication 

connectivity. The results emphasize that the RD-UKF method is robust enough for all four 

cases of uncertainty. 

 RD-UKF 

Conceptually, the vibration response  of a linear system subjected to any excitation 

consists of a linear combination of free and forced vibration responses, as expressed in Eq. 

(1).  

x(0) x(0) f (t )(t) (t) | (t) | (t) | .= + +x x x x  (5.1) 

The first two parts of Eq.(5.1), x(0) x(0)(t) | (t) |+x x , refer to the system's free vibration 

response carrying information about the system's modal parameters and the third part of 

Eq.(5.1), f (t )(t) |x , returns to the forced vibration response. In this study, we eliminate the 

third part of the system's total vibration response using the RD method.  

The RD method was proposed by Cole [31] to extract the free vibration response from 

the vibration response of a dynamic system subjected to random or ambient excitation. The 

method averages out the time segments of the measured responses with a standard initial or 

triggering condition. To implement the RD method, a trigger point 2  (  is the standard 

deviation of the measured response) should be defined, and a segment of the signal is saved 

when the signal’s amplitude yields the trigger point. The average of these segments 

represents the system's free vibration response (mathematically provable) [96]. The extracted 

free vibration response is input into the UKF to estimate the desired state.  

( )x t
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UKF is a derivative-free Kalman filtering method defined for the state estimation of 

nonlinear systems [96]. This model-based method has been widely used for structural system 

identification and damage detection purposes [84, 98]. A discrete state-space model of the 

system has been derived to identify the system's dynamic properties, using UKF, as: 

k 1,k k kG( , ),+ =x x u  (5.2) 

k k 1,k kH( , ).+=Y x v  (5.3) 

t  is a time-step, 
kx  is a state variable vector, 

ku  is process white noise, Q its 

covariance matrix, 
kY  is the measurement vector, 

kv  is a discrete measurement noise vector, 

and R  its corresponding covariance matrix. In contrast to the linear Kalman filter, the UKF 

propagates a set of predefined points named sigma points through the transition and 

measurement functions and calculates the covariance matrix in each iteration. Assuming 

prior information of a Gaussian distribution with mean m and covariance error matrix XX

0P , 

sigma points ( i
χ ) and their corresponding weights can be defined as follows:  
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2 n 
= = =
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where n  is the number of states,   is a scaling parameter, and  is a column vector number. 

Using these points and the state-space model, the algorithm for the proposed RD-UKF is 

followed by: 

i
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Figure 5-1: The RD-UKF algorithm 

 RD-UKF robustness studies 

Extensive numerical studies have examined the robustness of the proposed output-only 

damage identification method. We should mention that the algorithm's tuning parameters are 

the same in all cases. Thus, the proposed technique is assured to be robust for tracking a 

system's clean stiffness values. 

 RD-UKF Algorithm 

 ( )N tδ =RD ( ( )tx , t ), 

 Initialize trigger point ( 0x ), and segment length ( ), set  0,N =  

 for 0 : :rt t t=  , 

 if 
0( )j rx t x  for jth DoF, 

 save ( )rt +x , for all the DoFs 

 1N N= + , 

 end if, 

 end for, 

 
1

1
( ) ( ) .

N

N r

r

t
N

 
=

= +δ x  

 ( )x, P =UKF ( ( ), ( ), ( )N G H  δ ) 

 initialize 0 0, and x P , and set ,Q R , , ,  and . 

  for 1:i
t

=


  

 calculate, χ , and, w , using Eq. (5.4), and propagate ( )1| ,  ,i i

k k k kF+ =χ χ u  

 
2 2 2

1 1| 1| 1| 1|

0 0 0

 ,

T
n n n

XX i i i i i i i

k c k k m k k k k m k k k

i i i

w w w+ + + + +

= = =

   
= − − +   

   
  P χ χ χ χ Q  

 

( ) ( ) ( ) ( )
2 2 2

1 1| 1| 1| 1|

0 0 0

, , , ,  ,

T
n n n

YY i i i i i i i

k c k k k m k k k k k k m k k k k

i i i

w H w H H w H+ + + + +

= = =

   
= − − +   

   
  P χ v χ v χ v χ v R

( ) ( )
2 2 2

1 1| 1| 1| 1|

0 0 0

, ,  .

T
n n n

XY c i i i i i i

k i k k m k k k k k m k k k

i i i

w w H w H+ + + + +

= = =

   
= − −   

   
  P χ χ χ v χ v   

( )
1

1 1 1 ,XY YY

k k k

−

+ + +=Κ P P  

( )
2 2

1 1| 1 1 1|

0 0

ˆ , ,
n n

i i i i

k m k k k k m k k k

i i

w w H+ + + + +

= =

 
= + − 

 
 x χ Κ χ v  

1 1 1 1 1 .XX YY T

k k k k k+ + + + += −P P Κ P Κ  

 end for 

 



5.3 RD-UKF robustness studies 100 

 

 

5.3.1. Case 1: 3-DoF system under different loading conditions 

A 3-DoF damped mass-spring system was simulated in MATLAB software for 50 seconds 

with a sampling rate of 1,000 Hz. The mass, stiffness, and damping values were 500 kg, 

50,000 N/m, and 300 N.s/m for each DoF, respectively. The input excitations are white noise 

with a power of 10-4, the periodic force with a frequency of 2π, and the historic EI Centro 

earthquake as an ambient / shows the estimated stiffness and damping matrices for three 

different loading cases. 

  

  

  

Figure 5-2: Estimated stiffness (left column) and damping values (right column) 

Figure 5-2 shows that the RD-UKF method is capable of tracking a clean response for 

the three kinds of loadings. Only small fluctuations for the periodic forces were observed, 

which might be due to the elimination of periodic force from the measured response. For 

identification purposes, the RD method was used to extract the free vibration response data 
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with a selected trigger point equal to 10.3 var( )x  of the 1st DoF and 10 seconds selected as 

the segment length. Prior information on UKF for structural identification was assumed as 

m 500 kg, k 30000 N/m, c 200 N.s/m,= = =  and x x 0= =  for each DoF. Detailed information 

about the model's transition and measurement functions, as well as the procedure to remove 

the periodic signal from the measured acceleration response, is available in our previous 

work [96]. 

5.3.2. Case 2: RD-UKF robustness under Monte Carlo simulations  

Because we were working with stochastic models and stochastic signals, Monte Carlo 

simulations were necessary to show the RD-UKF method's robustness under different initial 

conditions. Therefore, we generated 100 signal realizations using a simulation model with 

different seed numbers (that is, random signal generation), estimated the dynamics, and 

presented the estimates for all realizations. We also added white noise with a signal-to-noise 

ratio (SNR) of 30 to each measurement for a more realistic evaluation. 
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(a) (b) 

Figure. 5-3: a) Stair-step graphs and b) box-and-whisker plots, of stiffness values for each floor 

with 100 tests (signal-to-noise ratio = 30). 

Figure. 5-3 shows that the error rates for k1–k3 are about 0.14%, 0.34%, and 0.18%, 

respectively. The error rates for C1–C3 are about 2.1%, 2.6%, and 2.3%, respectively, in 

Figure. 5-4. In Figure. 5-3 and Figure. 5-4, the orange lines are related to the estimated 

stiffness and damping value of the previous case study. It should be noted that different seed 

numbers are assigned to each test, and white noise (SNR = 30) is added to the measured 

signal. The figures show that the results are repeatable. 
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(a) (b) 

Figure. 5-4: a) Stair-step graphs and b) box-and-whisker plots, of damping values for each floor 

with 100 tests (signal-to-noise ratio = 30). 

5.3.3. Case 3: Mass matrix sensitivity analysis 

We examined the RD-UKF method's robustness vis-à-vis changes in stiffness and damping 

from the previous study [96], while we had assumed that enough information about the mass 

matrix is available. However, to show the method's proficiency regarding mass matrix 

uncertainty, we randomly changed the mass values in the transition and measurement 

functions by 5%. The updated transition and measurement equations are provided in Eq. (5.5) 

and Eq. (5.6). The estimated results are shown in Figure. 5-5. 
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Figure. 5-5: Estimated stiffness (left column) and damping values (right column) of the model 

under mass distribution uncertainty. 
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(5.6) 

Figure. 5-5 also shows that RD-UKF is not too sensitive to changes in mass. One 

damping value cannot track the correct response because of a significant difference in 

absolute values between K and C. This damping value deviation is inevitable, and it is a well-

known limitation of Kalman filter-based system identification in many journal articles [39]. 

5.3.4. Case 4: Missing sensor sensitivity analysis 

This section aims to show the RD-UKF method's robustness in situations where the response 

of some DOFs is not available (not measured due to an absence of sensors). For the 3-DOF 

system using earthquake excitation, we assumed that the second-floor acceleration response 
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was not available, and the estimated stiffness and damping values are shown here. Because 

we expected no differences in the transition function, we have just rewritten the new 

measurement function in Eq. (5.7). 
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Figure. 5-6: Estimated stiffness (left column) and damping values (right column) of the model in 

missing-sensor situations. 

Figure. 5-6 shows that the missing measurement has no significant effect on the 

stiffness estimation and that it only leads to some overestimation of damping values (c2), 

which we saw in our previous study as well [77]. However, we should mention that the RD-

UKF method is more sensitive to missing information than mass matrix uncertainty. This 

difference in sensitivity could be due to the equation’s stochastic nature, which yields 

uncertainties in the model while missing information reduces the rank of observability for 

the system as well as estimation accuracy. 
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 Conclusion 

This paper conducted a sensitivity analysis of a hybrid, output-only system identification 

method based on an unscented Kalman filter and the random decrement method (RD-UKF) 

[96]. The proposed hybrid method takes advantage of the RD to overcome the drawbacks of 

traditional model-based methods (which require both input and output for damage 

quantification). This study demonstrates that the RD-UKF method is robust, with various 

loadings exciting the structure and different initial conditions for different realizations. The 

study also examined the method's robustness vis-à-vis missing data and mass matrix 

uncertainty in the identification process. These extensive numerical investigations emphasize 

that the RD-UKF method is sufficiently capable of damage quantification in different real 

structural systems. 

 

 



  

 

Chapter Six: 

Bridge Pier Scour Level Quantification Based on Output-only 

Kalman Filtering 

This chapter encloses the paper submitted in the peer-reviewed journal Structural Health Monitoring1 

introduced in the Co-authorship section. The paper initially develops a new physical model for a bridge 

pier, which is used for bridge scour quantification. The model is developed based on continuous Euler 

beam theory. With the advantage of the RD-UKF, an output-only scour quantification method is 

introduced, which only uses the vibration measured from the top of the bridge pier. The method is 

numerically evaluated with the help of MATLAB software, and it is shown that it is capable of scour 

quantification. In the next step, the acceleration of vibration at the top of a bridge pier is measured for 

scour quantification. The method estimates the height of soil around the pier, which is in agreement 

with the independent bathymetry carried around the pier simultaneously with the vibration 

measurement.  

 

1 E. Ghorbani, D. Svecova, D. J. Thomson and Y. J. Cha, “Bridge pier scour level quantification based on output-only Kalman filtering”, 

Journal Structural Health Monitoring, [Submitted Dec. 22, 2020]. 
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Abstract: Soil scour near a bridge pier foundation is one of the leading causes of bridge 

failures. Traditional vibration-based scour monitoring methods are nearly incapable of 

quantifying scour levels using a single acceleration response without knowledge of excitation 

information. In this paper, a new output-only scour level prediction method is introduced via 

the integration of an unscented Kalman filter, random decrement, and newly derived 

continuous Euler beam addressing river water, traffic loads, and the linear and nonlinear 

behaviour of sediments around the pier as external effects. We conducted extensive 

simulation studies and applied this method to an existing medium span bridge with a steel 

girder and concrete deck in service in the province of Manitoba, Canada. These studies show 

that our proposed method can accurately estimate scour levels using only one accelerometer, 

which was validated by an independent bathymetric survey of the soil level at the pier 

foundation. Furthermore, three different linear and nonlinear soil profiles representing the 

soil behaviour around the pier were investigated as case studies in the scour level prediction 

process. The results confirm that a cubic function exhibits the best performance in the 

quantification of the scour level around bridge piers.  

 Introduction 

Scour is one of the leading causes of bridge failures, which happen suddenly without any 

warning [99]. Until 2010, around 80 percent of 614,387 bridges in the United States were 

built over water streams, and all of these bridges experienced floods frequently during their 

life spans [20, 100]. Failure analysis of 1,000 bridges in the U.S. determined that foundation 

scour was the first cause of failure for about 60 percent of bridges [100]. Therefore, 

developing a scour monitoring system is critical to prevent catastrophic bridge failures in 

transportation systems. The failures of the Bonnybrook Bridge in Calgary in 2013 and the I-

10 bridge in southern California in 2015 are two recent notable cases of bridge failure in 

North America due to scour around their piers and abutments. 

Many approaches have been proposed to detect scours or quantify the severity of 

scours around the foundations of bridge piers and abutments. These approaches can be 

categorized into two groups. The first group focuses on directly measuring scour depth using 



6.1 Introduction 111 

 

 

instruments installed in critical places under the water. The most straightforward technology 

uses buried switches, which detect the scour when it reaches the buried sensors [101]. 

However, these sensors are only for one-time use, and the sensor installation process is 

challenging. Other research has used electromagnetic signals to track changes in physical 

properties in areas where soil and water interact [102]. With this technique, it is almost 

impossible to replace the sensor in the case of damage or dysfunctionality. Placing a gravity 

rod protected by tubes beside the bridge pier has been another approach. The rod moves 

down when the soil level goes down due to scour [103]. However, the protection of these 

tubes during the flood season is a massive challenge considering the processes involved in 

their reinstallation and calibration [104]. Some other techniques, such as fibre sensors [105], 

piezo sensors, [106] and electrical conductivity devices [107] are also used for scour 

monitoring.  

Electromagnetic sensors are another type of probe that have been installed around 

bridge piers and piles to track changes in the dielectric permittivity of the surrounding bridge 

foundation [108]. These wireless probes send information about the scour depth and hole 

refill in a real-time manner [109]. Still, the installation of these probes, their protection during 

flood season, and the calibration of the sensor response after flood seasons are significant 

challenges associated with these sensors. Recently, a technology called “BridgeCat” [110] 

has been used in the U.K. that puts a sonar scanner, a high-resolution camera, and a digital 

altimeter on a hydraulic arm. The whole system is installed on a vehicle, and the riverbed 

height is measured using these sensors. This technique is costly and requires closing the 

bridge, causing traffic issues [111]. Considering the pros and cons of the direct approaches, 

they are expensive, and most of them are one-time use only. Also, the uncertainty related to 

the measurement due to the nature of sensors installed underwater is a big challenge for these 

kinds of methods [112]. Therefore, structural vibration-based methods have been developed 

to overcome the disadvantages of direct methods [113].  

The second group of approaches uses changes in dynamic modal properties (e.g., 

natural frequencies and mode shapes) due to scour in piers and foundations by analyzing 

vibration measurements [114, 115]. The stiffness of a bridge pier depends on the mechanical 

properties of its structural components and their boundary conditions. Scour phenomena 
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change the boundary condition of a bridge pier by reducing the height of the soil that supports 

the pier and pier foundation. Consequently, the stiffness of the pier is changed, which 

changes the natural frequencies and mode shapes. Many researchers have reported that the 

natural frequencies of bridges were reduced due to increased scour depth [116, 117]. 

Therefore, to facilitate the use of changes in natural frequencies and mode shapes due to 

scour, researchers have developed a bridge-soil interaction model using the finite element 

method (FEM) [118]. The core concept of this method is to compare the natural frequencies 

calculated from actual measurements with the natural frequencies calculated from the 

developed tuned models. As the comparison index, a frequency response function (FRF) with 

the Winkler model considering the mass of soil surrounding the pier was used, and modal 

updating using an iterative method was conducted [119]. The limitation of this method is 

that it requires a specific vehicle FEM model in the developed bridge-soil interaction model; 

therefore, its application is limited to problems subjected to a specific vehicle vibration only.  

Xiong et al. [120] used a flexibility matrix based on FEM to predict the scour level in 

a bridge pier. The flexibility matrix is a combination of natural frequencies and their mode 

shapes. Some experimental studies have been conducted to investigate the effects of scour 

on the change of mode shapes [121]. Choudhury et al. [122] developed a FEM model and 

updated the model with the actual natural frequencies of the pier; they then used the updated 

model to estimate scour depth with empirical equations and a modal updating process. To 

apply these methods to real structures, the mode shapes are required, but it is very 

challenging to extract accurate mode shapes from measured vibrations, which also requires 

that many sensors be installed. Furthermore, these methods require very accurate modal 

updating, and it is unclear which mode shapes and natural frequencies should be used; 

therefore, extensive simulations and case studies are required to determine sensitive modal 

properties. Palanisamy and Sim [123] used an extended Kalman filter (EKF) to estimate the 

change in foundation stiffness due to scour. This method requires accurate excitation time 

history information and its structural responses, but measuring excitation is very challenging, 

and the EKF does not perform well in predicting complex FEM model parameters. 

The literature above shows that traditional approaches can detect whether a scour has 

occurred using natural frequencies or can localize the scour by comparing the mode shapes 
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of bridge systems. Some of these approaches require specific excitations, such as impact or 

cyclic loadings, or specific loading such as a specific vehicle type, while most can quantify 

the level of scour to some degree using ambient vibration data.  

In this paper, an output-only Kalman filtering–based scour quantification approach is 

proposed with a continuous Euler beam model of a bridge pier that considers the soil-bridge 

interaction. The advantages of this proposed method include the following: 1) the proposed 

method does not require many sensors; rather, only a single accelerometer is attached to the 

top of the pier close to the girder; 2) the proposed method does not require information on 

excitation sources in that it can consider any type of excitation source, such as ambient 

vibration, impact, or vehicle-induced vibration, etc.; 3) this method can quantify the scour 

level of the bridge pier; and 4) the different boundary conditions of bridge piers and different 

soil properties can be considered. 

This paper is organized as follows: In Section 6.2, the continuous governing equation 

of motion of a bridge pier is developed based on the Euler beam theory. This model is used 

for the state-space formulation of Kalman filtering; then, we introduce the unscented Kalman 

filter (UKF) [28]. Original UKF needs corresponding measured excitation information for 

estimation, while it is not viable to measure the bridge excitations [124]. Therefore, the 

random decrement technique [96, 125]is introduced as a data-driven technique that extracts 

the free vibration of a bridge pier, which is used as an input of the UKF to predict the scour 

level. In Section 6.3, two illustrative systems are selected to demonstrate the efficacy of the 

proposed method. At first, simulation studies are done to show the capability of the proposed 

method. As a full-scale experiment, the proposed method is validated with the vibration data 

measured from an in-service bridge pier located in the province of Manitoba, Canada. A 

survey and an Acoustic Doppler Profiler (ADP) system are used to measure the soil level 

around the pier of interest to verify the estimated results of the proposed method. 
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 Proposed method 

In order to predict the scour level, a physics model-based scour prediction method is 

proposed. The proposed method is composed of the random decrement (RD) method and the 

UKF. The role of RD is to extract free vibration responses from the ambient acceleration 

vibrations measured from the accelerometer installed on a bridge pier. The extracted free 

vibration response is fed into the UKF to predict the soil level, an indicator of the scour level. 

The UKF estimates the variables of the state-space equation with a newly developed 

continuous Euler pier model. Therefore, the proposed scour monitoring method is an output-

only approach, since it does not use any bridge excitation information Figure. 6-1. The 

proposed method’s details, including the RD, UKF, and newly developed continuous Euler 

pier model methods, are described in the next sections. 

 

Figure. 6-1: Overall procedure of the proposed method  

6.2.1. Random decrement method 

RD is a data-driven algorithm for extracting the free vibration response of a dynamic system 

from its measured response and subjected to random or ambient vibrations. The technique 

averages out to a finite number ( r ) of segments, j r(t ),+x  with length   from the response 

measured when the signal amplitude reaches a specific trigger threshold point ( ) for the 

first time, as shown in Figure. 6-2.  



6.2 Proposed method 115 

 

 

 

Figure. 6-2: Schematic view of the RD method  

j(t)x is the jth  measured response of the system, e.g., it can be the acceleration 

response of a bridge pier, and the trigger threshold point ( ) set on the signal usually equals 

2  (  is the standard deviation of the time history response), as proposed by Brincker and 

Rodrigues [124]. When the signal reaches a trigger point, a segment of the signal is stored. 

The free vibration response, j (t)δ , is then calculated by averaging these segments as 

formulated in Eq. (6.1). The initial idea of the method was developed for the system subjected 

to random excitations. However, it works for impact and ambient excitations as well. More 

detail on the algorithm with the mathematical background is available in [96]. 

N

j j rr 1

1
(t) (t ).

N


=
= +δ x   (6.1) 

where N  is the number of extracted segments from each measurement. Increasing the 

number of segments improves the accuracy of the extracted free vibration response. 

6.2.2. Eulerian beam model for a bridge pier 

In this paper, the UKF uses the extracted free vibration, j (t)δ  in Eq. (6.1) by the RD 

algorithm, to estimate the scour level around the pier foundation. To determine the level of 

scour, we track the changes in the soil stiffness and damping values of the underlying pier. 

The changes in these values are predicted by the UKF using a state-space equation, which is 
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driven from the dynamic equation of pier motion. Therefore, we establish a dynamic equation 

of motion by developing a continuous Euler beam model for a bridge pier in this section. A 

schematic view of the bridge pier is shown in Figure. 6-3. 𝜔 is the transverse displacement 

of a beam (i.e., pier), P is an axial force due to the mass of the bridge deck (
DM ), 

sk is 

stiffness, and 
sc  is the damping of the soil over time, t,  respectively. Also, 

bk  and 
bc  denote 

the stiffness and damping of the rocker bearing in this study, respectively.  

 
 

Figure. 6-3: Schematic view of Euler beam model of a bridge pier with rocker bearings 

Considering an Euler beam with a modulus of elasticity E, moment inertia I, cross-

section area A , and density of the bridge pier  , the beam partial differential equation is 

written as: 

4 2 2

4 2 2

(x, t) (x, t) (x, t)
EI A P F(x, t),

x t x

  


  
+ + =

  
 (6.2) 

where t  is time, and 
4

4

(x, t)
EI

x




is defined as the relationship between the bending moment 

and deflection based on Euler beam theory: 
2

2

(x, t)
M(x, t) EI

x


=


. M is the bending moment 

through the centroidal axis of the beam. 
2

2

(x, t)
A

t







 is the inertia force of the beam, and 
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2

2

(x, t)
P

x




is given by the dead weight of the bridge decks and girders, while the external 

force F(x, t)  is applied as water flowing around the pier: 

( ) ( ) ( )

water

s s

2

b b D 2

F(x, t) f (x, t)[ (x a) (x b)]

(x, t)
k (x, t)[ (x) (x a)] c [ (x) (x a)]

t

(x, t) (x, t)
k (x, t) x L c x L M x L ,

t t




 
   

=  − − −


−  − − −  − −



 
− − − − − −

 

 
(6.3) 

while 
nm  is the Dirac delta function, and 

0

0

0

1 x x
(x x )

0 x x


 − = 


  is the Heaviside function. 

For any arbitrary function, g(x),  
0

L L

0
0 x

g(x) (x x )dx g(x)dx − =  , where 
0x  is a constant value 

in the domain  0, L , and L is the length of the pier. 

Based on the assumed mode approach [126], 
N

n n

n 1

(x, t) X (x)q (t)
=

=  is defined, where 

N  is the number of modes, 
nX (x)  is the mode shape function of the beam for each mode, 

and
nq (t)  is a time-depended generalized coordinate function [127]. (x, t)  is substituted in 

Eq. (6.2) and Eq. (6.3), respectively. Considering the orthogonality of the mode shapes, 

n m nmX (x)X (x)dx ,=  the equation is integrated over the length of the beam, and each 

component with a Dirac function is zero when m n  (The derivation is detailed in Appendix 

D). Considering the mode shape orthogonality as follows: 

2 2

mn D m n s nm b m n

b
2

mn mn s nm b m n water m
a

( AB M X (x L))q (t) (c D c X (x L)) q (t)

[EIV PQ k D k X (x L)]q (t) f (x, t)X (x)dx,

 + = + + =

+ + + + = = 
 (6.4) 

where 
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n

L L
4

mn m mn m n
0 0

L a

mn m n nm n m
0 0

V X (x)X (x)dx , B X (x)X (x)dx,

Q X (x)X (x)dx, D X (x)X (x) dx.

= =

= =

 

 
 (6.5) 

The following equation derived from Eq. (6.4)has a standard dynamic equation of 

motion form as follows: 

(t) (t) (t) (t),+ + =Mq Cq Kq F  (6.6) 

where 2

mn s nm b mC c D c X (x L),= + = and 2

mn mn mn s nm b mK EIV PQ k D k X (x L),= + + + =  

2

mn mn D mM AB M X (x L),= + = and 
b

m water m
a

F (t) f (x, t)X (x)dx.=   This set of equations can be 

numerically simulated based on different boundary conditions. This study assumes a fix-free 

boundary condition in which the corresponding mode shape function is introduced in the 

following section. 

6.2.3. Kalman filtering 

Kalman filtering [34, 128] is a type of Bayesian recursive filter assuming a Gaussian 

distribution for measured data and a least square loss function in a Bayesian inference 

framework. A linear Kalman filter works for a limited number of states showing linear 

behaviour. An extended Kalman filter (EKF) [129] is defined to compensate for the linear 

Kalman filter's incapability for nonlinear systems identification. The EKF works based on 

the first-order linearization of the Taylor series, but it still does not estimate an actual value 

for systems with a high level of nonlinearity. Besides, for the first-order Taylor series, the 

derivative of the transition and measurement function needs to be calculated, which is in 

some cases hardly viable [27]. The UKF, is a derivative-free filter, developed to answer the 

drawbacks of the EKF. The UKF tries to approximate the distribution of the states of the 

dynamic equation of motion (Eq. (6.6)) using carefully chosen sigma points instead of 

approximating nonlinear functions. There have been some applications and improvements 

of the UKF due to damage identification problems in structural systems [77, 130, 131]. In 

this paper, we use the UKF for scour detection and quantification around a bridge pier. We 
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need to convert Eq. (6.6) into a state-space form considering the desired states for estimation 

purposes. 

The transition and measurement functions of a dynamic system in a general form of 

the state-space model in the discrete domain are defined as follows: 

k 1|k k k kF( , , ),+ =X X u z   (6.7) 

k k 1|k k kH( , , ),+=Y X u v   (6.8) 

where k  is a time step, 
kX  is a state variable vector, and, in the simplest form, it could be 

equal to  
T

k (k t) (k t)=  X q q in Eq. (6.6). It could also include any other parameter desired 

to be estimated, like the stiffness and damping of a structure. 
kz  is a discrete process white 

noise, Q is its covariance matrix, 
kY  is the simulation measurement (simulation output) 

vector, 
kv  is a discrete measurement process noise vector, and R  is its covariance value. 

ku  

is the excitation vector, which can have any form of white noise and stationary excitation, 

periodic excitation, ambient vibration, or any combination.  

To begin the UKF algorithm, we take advantage of some predefined points, sigma 

points, to approximate the desired parameter distributions of each iteration. Let us assume 

0X  is an initial value for a desired state vector and 
0P  is its covariance error matrix; then, 

the equations  Eq. (6.9) to Eq. (6.11) need to be solved to find the sigma points. 

s
2n

i

i 0

w 1,
=

=   (6.9) 

s

0

2n

i i

i 0

w ,
=

= Xχ   (6.10) 
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( )( )
s

0 0

2n
T

i i i 0

i 0

w ,
=

− − = X Xχ χ P  (6.11) 

where χ  is a sigma point, w  is the corresponding weight, and 
sn  is the number of states. 

There is not a unique solution for the above system of equations. The most common solution, 

sigma points, of the above three equations are given below. 

( )( ) ( )( )
s

0,0 0 i ,0 0 0 i i n ,0 0 0 i n ss s
, n , n , i 1,2,...., n , 

+ +
= = + + = − + =χ X χ X P χ X P  (6.12) 

where   is a scaling parameter, and i  is the index of  column vector number. With the sigma 

points, the weighting functions can be calculated, as shown below: 

m

0

s

w ,
n




=

+
 ( )c 2

0

s

w 1 ,
n


 


= + − +

+
 

( )
m c

i i s

s

1
w w , i 1, ,2n ,

2 n 
= = =

+
 (6.13) 

where  determines the spread of the sigma points and is a positive number ( )0 1  , and 

2

s s(n ) n  = + − .   is a secondary scaling parameter, which usually equals 
s3 n− . 2 =  

is optimal for Gaussian distributions.  

For each time step k, the UKF procedure is presented in Eq. (6.12) to Eq. (6.21), and 

more detail can be found in [28]. 

( )i,k 1|k i,k kF , ,+ =χ χ u  (6.14) 

s s s
T

2n 2n 2n
XX c m m

k 1 i i,k 1|k i i,k 1|k i,k 1|k i i,k 1|k k

i 0 i 0 i 0

,  + + + + +

= = =

   
= − − +   

   
  P χ χ χ χ Q  (6.15) 

( )i,k 1|k i,k 1|k kH , ,+ +=Ψ χ u  (6.16) 
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s s s
T

2n 2n 2n
YY c m m

k 1 i i,k 1|k i i,k 1|k i,k 1|k i i,k 1|k k

i 0 i 0 i 0

,  + + + + +

= = =

   
= − − +   

   
  P Ψ Ψ Ψ Ψ R  (6.17) 

s s s
T

2n 2n 2n
XY c m m

k 1 i i,k 1|k i i,k 1|k i,k 1|k i i,k 1|k

i 0 i 0 i 0

,  + + + + +

= = =

   
= − −   

   
  P χ χ Ψ Ψ  (6.18) 

( )
1

XY YY

k 1 k 1 k 1 ,
−

+ + +=Κ P P  (6.19) 

( )
s2n

m

k 1 k 1 k 1 i i,k 1|k

i 0

ˆ k 1 ,−

+ + + +

=

 
= + + − 

 
X X Κ δ Ψ  (6.20) 

XX YY T

k 1 k 1 k 1 k 1 k 1.+ + + + += −P P Κ P Κ  (6.21) 

The term ( )k 1+δ  in Eq. (6.20) refers to the real output of the system, which would be 

the extracted free vibration of the system. 
k 1+

P  and 
k 1+

X  are the estimated covariance matrix 

and desired state vector, respectively. They would be used in the next iteration to calculate 

the new sigma points.  

The bridge pier is excited by the river water and other external excitations, such as 

traffic, pedestrians crossing the bridge, and wind. In the Kalman filtering approach, we need 

to define a process error for the system, compensating for the mathematical model's 

uncertainty and other assumptions involved in the estimation process. For this specific 

problem, it is almost impossible to measure the external excitations of the bridge pier. To 

deal with this issue, we introduced the RD, which extracts the free vibration response of the 

vibrating system. This means the reference measured data aimed for in the UKF would be 

independent of the excitation—whatever it is [96]. 
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 Case studies 

In the previous sections, Euler beam theory was employed to determine a general dynamic 

equation of a bridge pier. This model could be adapted for any bridge pier with any boundary 

condition and different external excitations, water levels, and soil height around the pier. 

After this, the UKF and the RD method were introduced briefly. In this section, we simulate 

a bridge pier vibration using MATLAB [132] software and use the output vibration response 

for scour quantification. We also implement our proposed approach on a real bridge pier 

located in Morris city of Manitoba province, Canada. The detail on each of these studies is 

presented in the following subsections. 

6.3.1. Numerical simulations 

In this section, the mathematical model of a virtual bridge pier, Eq. (6.6), is used for 

simulation studies via MATLAB software. We consider a concrete pier with a rectangular 

cross-sectional area and a length ( L ) equal to 20 m, cross-sectional area, 2A 13 1.7 m ,=   and 

modulus of elasticity equal to 10
E 3 10 Pa=   with a density of 33000 kg m .  Soil stiffness and 

damping values are 8

sk 8 10 N m=   and 6

sc 18 10 N m.s=  , respectively. The soil height is 

assumed to equal 5 m, and the water level is assumed to be 5 m from the top of the soil. 

3

D
M 42 10 kg=   and 

DP M g,= and 2g 9.81m s .=  We use a rocker bearing, and the stiffness 

and damping of the bearing is set to 6

bk 56 10 N m=   and 4

sc 2.4 10 N m.s=  , respectively 

[133]. 

The first three vibrational mode functions of the Euler beam are considered for 

analysis. We apply a combination of a triangle impulse force with a 0.5 s width, a random 

vibration with an amplitude of 0.02, and an El-Centro earthquake time history (dividing the 

total signal amplitude by 10) as ambient vibration, all of which are external excitations 

applied to the bridge (Figure. 6-4 (a)). We assume a fixed-free boundary condition for the 

beam with mode shape function  N N N N N N

1
X (x) (sin x sinh x) (cos x cosh x) ,

L
    = − − −  which 
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N N

N

N N

sin L sinh L
,

cos L cosh L

 


 

+
=

+
 and N  is a mode number. 

N
L  is equal to 1.87, 4.65, 7.85, and 10.99 

for the first four modes [126]. 

 
 

(a)  (b) 

Figure. 6-4: a) The excitation applied to the simulating structure; b) the total acceleration vibration 

response of the structure  

We define the desired states and transfer Eq. (6.6) to the state-space form. We conduct 

some case studies to predict soil stiffness directly and predict the height of the soil too; then, 

we choose to predict the soil parameters as desired states, which is more convenient for 

quantifying the scour level. We assume that no damage exists on the bridge pier itself. The 

desired state vector consists of: 

   
T T

1 2 3 1 2 3 s s 1 2 3 4 5 6 7 8
x x x x x x k c x x x x x x x x .= =X  (6.22) 

Due to the nature of our proposed output-only scour quantification method, we just 

need to extract the free vibration response of the bridge pier from its ambient vibration, as 

shown in Figure. 6-5(a). The RD is applied to the measured response in Figure. 6-4(b), with 

trigger point 1.9 var( )x  and 3000 (six seconds) samples for each segment. The sampling rate 

is 500 Hz. Based on this trigger point, the algorithm picks about 420 segments for averaging. 

Based on these tuning parameters for the RD, the first five seconds of the free vibration 

response and its corresponding fast Fourier response (FFT) are shown in Figure. 6-5(b) . 
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(a) (b) 

Figure. 6-5: a) The free vibration response of the system; b) The FFT of the free vibration response 

The free vibration response reduces the uncertainty of the mathematical model due to 

unknown excitations. Considering Eq. (6.6), desired state vector Eq. (6.22), and the free 

vibration response, the discrete domain state space transition and measurement functions of 

the model are expressed as: 

1 4

2 5

3 6

8 11 11 4 8 12 12 5 8 13 13 6

11

11 11 7 1 12 12 7 2 13 13 7 3

8 21 21 4 8 22 22 5 8 23 23 6k 1|k

22

21 21 7
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x t x
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− +

+
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(K D x )x (K D x )x ],
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[ (x D C x (x D C x (x D C x
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x

x
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− + − +


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= 
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(6.23) 
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(6.24) 

where 2

mn b m
C c X (x L),= =  and 2

mn mn mn b m
K EIV PQ k X (x L).= + + =  Using these state-space 

equations, the stiffness and damping of the soil around the pier are estimated using the RD-

UKF technique. The soil stiffness and damping values for the constant soil profile are 

estimated in Figure. 6-6.  

  

(a) (b) 

Figure. 6-6: a) The estimated stiffness and b) damping value of the soil  

The initial information for displacement and velocity is assumed to be zero, 0= =x x , 

for the stiffness value 8

7,int .x 1 10  N/m=  , and for the damping value 6

8,int .x 1 10  N.s/m.=   

Also, the initial error covariance matrix is defined as  x x k c
diag P P P P , where

x x
ones (3,1)=P = P , 12.5

k
10 , =P and 12

c
10 .=P  The UKF tuning parameters is set as 1. =  The 

process and measurement noise covariance matrices are 20

8
10 I

−
 , and 5

8
10 I

−
 , sequentially. 

To show the technique's ability to quantify scour, we assumed a 20 percent scour in the model 

and used the previously tuned RD-UKF algorithm for scour quantification without any 
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change in the tuning parameters of the algorithm. The technique quantifies the scour within 

an acceptable range, as shown in Figure. 6-7. 

  

(a) (b) 

Figure. 6-7: The estimated a) stiffness and b) damping value of the soil with constant profile 

affected by scour 

Based on the results from Figure. 6-6 to Figure. 6-7, the proposed approach showed 

good performance in estimating the stiffness and damping of the soil around the pier, with 

acceptable accuracy for both non-scour and scour scenarios. Even though the soil stiffness 

was estimated accurately, the damping value has been slightly overestimated, as shown in 

Figure. 6-7. It should be noted that this poor estimation of damping estimation has been seen 

before [96]. 

We could estimate the soil stiffness around the pier accurately; however, to estimate 

the soil height around the pier, we need to define a soil profile as a function of the soil height. 

Eq (6.25) represents the lateral soil response around the pier (soil reaction, p,  lateral 

displacement curve , ). Details on the equation and constant values are available in the 

American Petroleum Institute (API) design code [134].  

u

u

kx
p p tanh ,

Ap


 
=   

 
 (6.25) 

where
up  is the ultimate resistance of the soil at depth x . The detail information about ,  

and -3k(kN.m ) -constant values related to the soil specification- are available in the API 

standard. The first derivative of the soil reaction equation is approximately equal to the soil 
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stiffness because the amplitude of the lateral displacement of the soil around the pier is small 

and remains in the linear region [135].  

u

s 0 u 0

2

u

kx

pdp
k p kx,

kxd
cosh ( )

p

 


= = =



  (6.26) 

where 
sk  in Eq. (6.26) has a unit of -2kN.m  [135]; then, by multiplying it by the soil height, 

it will have the stiffness unit. Considering this simplification, we define different soil profiles 

around the pier to evaluate the proposed method's ability to estimate the soil height under 

linear, quadratic, and cubic profiles. 

The initial values of and details on the state estimation process are mentioned in Table 

6-1 for the three profiles for the sake of reproducibility for future users. As we are going to 

estimate the soil height using different profiles, 
s 7h x=  will be defined as the soil height, and 

we will have only seven states in each case.  

   1 2 3 1 2 3 s 1 2 3 4 5 6 7
x x x x x x h x x x x x x x .= =X  (6.27) 

Then, Eq. (6.23) and Eq. (6.24) are rearranged as follows in Appendix E. 
s

7kf (x )  and 

s
c 7

f (x )  define the soil stiffness and damping functions as dependent on the soil height. Their 

different forms based on soil profiles are given in Table 6-1. 

Table 6-1: Initial and tuning parameters for different soil profiles 

Soil profile Equation 0m  
0P  Q  R  

Linear 
7s

8

k 7 xf (x ) 1.6 10→   0= =x x  0

x x
10=P = P  

9.16

7 710
−

I  2

3 310
−

 I  

7s

6

c 7 xf (x ) 1.6 10→   7,int .x 0 m=  
7

0.5

x 10=P  

Quadratic 
s

7 2

k 7 7xf (x ) 3.2 10→   0= =x x  0

x x
10=P = P  

9.34

7 710
−

I  5

3 310
−

 I  

s

5 2

c 7 7xf (x ) 3.2 10→   7,int .x 0 m=  
7

0.6

x 10  =P  
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Cubic 
s

6 3

k 7 7xf (x ) 6.4 10→   0= =x x  0

x x
10=P = P  

11

7 710
−

 I  15

3 310
−

 I  

s

4 2

c 7 76.4 xf (x ) 10→   7,int .x 0 m=  
7

0.849

x 10=P  

 

The estimated soil height is shown in Figure. 6-8(a). 

  

(a) no-scour  (b) one-meter scour 

Figure. 6-8: Results of soil height estimations:  

To show the technique's ability to quantify scour, we applied a one-meter scour to the 

model and used the previously tuned RD-UKF algorithm for scour quantification without 

any change in the tuning parameters of the algorithm. The technique could quantify the scour 

within an acceptable range. Based on Figure. 6-8(b), the accuracy of the scour quantification 

improves with the increase in the order of the stiffness function.  

To compare the data-driven approach to this proposed method, we have illustrated the 

FRF of the model under scour in Figure. 6-9. The first natural frequency of the pier has 

changed from 3 Hz to 2.83 Hz. When 20 percent of scour was assumed for the soil around 

the pier, the natural frequency decreased by about seven percent. This means that the natural 

frequency-based scour monitoring technique is not reliable in scour quantification. Data-

based approach can only detect the existence of scour [112]. This is one of the advantages of 

the proposed method over other data-based approaches. 
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(a) (b) 

Figure. 6-9: a) The free vibration response under scour; b) The FFT of the free vibration response 

of the system under scour 

This section has shown the capabilities of the proposed method for scour quantification 

in a simulation study. In the next section, the proposed method will be examined with a full-

scale study. 

6.3.2.  A full-scale study of a bridge pier 

In the previous section, we demonstrated the capability of the proposed method in scour 

quantification of a bridge pier in simulation studies. To investigate the performance of this 

method on an actual structure, an ambient vibration of a multi-span bridge under normal 

operation, located in Morris, Manitoba, Canada, was recorded over the duration of a year, 

starting in October 2019. This five-span continuous bridge system is about 300 meters long 

and is supported on ten piers.  

Approximately 7,500 trucks travel across the bridge each month. We have installed a 

uniaxial accelerometer to Pier 5, to measure ambient vibration due to the river water beating 

the piers, crossing traffic, wind, and pedestrians. We selected Pier 5 because it is surrounded 

by water all year, and it is vulnerable to scour, as shown in Figure. 6-10. Images of the bridge 

and the installed sensor on the Pier 5 are shown in Figure. 6-11. 
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Figure. 6-10: Side view of the large-scale bridge system drawing 

    

(a) Pier 5 (b) close view of Pier 5 (c) installed sensor (d) data acqusition 

Figure. 6-11: Views of the bridge and installed sensor and data acquisition system 

A MEMS-Piezoresistive BDI model A1316 accelerometer with an amplitude range of 

± 2 g, a frequency range (min) of 0–300 Hz, and a voltage sensitivity of 1000 mV/g is used. 

A four-channel wireless data acquisition system was used for data communication (BDI 

model, STS-PRIME-0337).  

The river water always flows around Piers 5 and 6 of the bridge during a year, but the 

water level changes during flood seasons in early spring and fall. We recorded the ambient 

vibration of Pier 5 during four months, including February, July, August and October. The 

soil stiffness around the pier was estimated each time. The ambient vibrations of Pier 5 in 

February 2020 and August 2020, both measured around 3 pm, are shown in Figure. 6-12.  
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(a) February 2020 (b) August 2020 

Figure. 6-12:Ambient vibrations of Pier 5 

The sampling rate of the data acquisition system is 100 Hz, and the data is recorded for 

about 30 minutes each time. Considering that the bridge length is about 300 meters and the 

maximum speed limit on the bridge is 50 km h,  it takes at least 21.6 seconds for a car to 

cross the bridge. This time is useful for selecting a reasonable length of segments for the 

random decrement to extract the free vibration of the pier using the recorded ambient 

vibration. For RD implementation, 0.01 var( )x  is selected as a trigger point, with a segment 

length equal to 30 seconds. Figure. 6-13 shows the first 20 seconds of the extracted free 

vibration of Pier 5 in February 2020 and August 2020. 

  

(a) February 2020 (b) August 2020 

Figure. 6-13: Free vibration responses of Pier 5 

Similar to the simulation study, the fixed-free boundary condition is considered for the 

modelling of the Euler beam, as shown in Figure. 6-3. Four rocker bearings are at the top of 

the pier, and they are connected to the girders, as shown in Figure. 6-14. The stiffness and 

coefficient of friction of this bearing are 6

bk 14 10 N m=   and 0.04, =  respectively [133]. 

The equivalent damping corresponding to the 0.04 =  is calculated based on 
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b p p pC (4 N ) ( X ) = , where pN  is the normal force, p  is the fundamental natural 

frequency, and pX is the maximum displacement [126]. As we have four bearings on the top 

of the Pier 5 and they are installed in parallel, the total stiffness and damping of the bearings 

is four times the stiffness and damping of each bearing. 

 

Figure. 6-14: The high type rocker bearing of Pier 5 and its detailed drawing  

We consider Pier 5 as an Euler beam with a rectangular shape cross-section with a 

dimension of 2A 14 1.5 m=  and a length of 20 meters. The concrete modulus of elasticity is 

set to 9E 15 10 Pa=   with a density of 33000kg m . The initial soil stiffness and damping 

values and their corresponding covariance values for the UKF tuning are 0 7

sk 1 10 N m=  , 

0 3 2

sc 1 10 N m ,= 
s

17

k 10 ,=P  and 
s

15

c 10 ,=P  respectively. Also, 10.8

8 810−

I  for the covariance 

of process noise, with 3.210−  for the covariance of measurement noise. The estimated stiffness 

value at each time of measurement is shown in Figure. 6-15. The equivalent stiffness of the 

sediments around Pier 5 is estimated using the mathematical model developed in Section 

6.2.2 and Pier 5’s geometrical specification. 
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 Figure. 6-15: Estimated soil stiffness around the bridge pier in different months 

Figure. 6-15 demonstrates the estimated stiffness value around 8

sk 1.5 2.3 10 N m= −   

for all the seasons. The difference between February and the other months should be 

addressed because of the thick ice around the pier during wintertime. The ice thickness can 

be about 60 cm and increases the stiffness of the pier [136]. Gonzales and his coworkers 

[137] have shown that the natural frequency of structures increases by up to 35% during 

winter. Similar behaviour was observed in the bridge considered in this study.  

 The simulation study results in section 6.3.1 show that the soil stiffness behaviour 

leads to a more accurate estimation of the soil height around the pier using a cubic function 

rather than the two other functions. Therefore, the soil height will only be estimated using 

the cubic function. The initial soil height is assumed to be zero, with 
s

0.8195

h 10 ,=P  and 

18.6

7 710−

I  for the covariance of process noise, and 10.310−  for the covariance of 

measurement noise. The estimated soil height for each month is shown in Figure. 6-16. The 

estimated soil height is between 4-5 meters. To estimate the soil height, the average stiffness 

estimated for each month in Figure. 6-15 was used. 
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Figure. 6-16: Estimated soil height around the bridge pier in different months 

In order to verify the estimated soil height in Figure. 6-16, we excavated the river ice 

in February 2020 and measured the height of the sediment around the pier based on the 

Canadian Geodetic Vertical Datum of 2013 (CGVD2013) [138]. We measured the water 

height and water level using a surveying rod equipment shown in Figure. 6-17(a). The pier 

footing elevation is available from the bridge drawings. The soil height around the pier was 

extracted, as shown in Figure. 6-17(b). The thick ice in February caused the difference 

between the estimated soil height and the measured height. The model does not consider the 

temperature effect. However, as we assumed all other components have fixed stiffness 

values, the RD-UKF intelligently increases the soil stiffness (height) to compensate for this 

difference.  
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(a) (b) 

Figure. 6-17: a) The survey used for the soil height around the Pier 5; b) and schematic of the 

height of the soil around the Pier 5 

In Figure. 6-17(b), the orange colored points denote the height downstream, and the black 

points denote the height upstream. The estimated soil height is almost in agreement with 

Figure 18; both show that the soil height is between 4-5 meters, with an average of 4.7 meters. 

This height can be used for future analysis to create an initial estimate for the sediment 

profile. In addition to the February measurement, for further confirmation, we verified our 

estimated soil height in August 2020 as well. A highly accurate Acoustic Doppler Profiler 

(ADP) system measured the river soil height around the pier, as shown in Figure. 6-18. Based 

on the second field measurement, the soil height around the pier was between 4-5 meters, 

with an average of 4.67 meters. Then, the RD-UKF algorithm estimated the soil height 

around the pier accurately in summer and fall, but not in winter.  
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Figure. 6-18: An Acoustic Doppler Profiler (ADP) boat and measured soil height around the Pier 5 

in August 2020 

 In addition to model-based scour quantification, we have shown the FFT of the 

extracted free vibration response for the four months considered in this study in Figure. 6-19. 

The model natural frequencies are calculated to compare the accuracy of the pier model's 

estimated stiffness matrix with the ground truth. Since we have considered the first three 

modes of the pier model, the first three natural frequencies of the pier's Euler model are 2 

Hz, 5.3 Hz, and 11 Hz, respectively. The first extracted natural frequencies are close to the 

first natural frequency based on Figure. 6-19. The second and third natural frequencies are 

very close to the other frequencies in Figure. 6-19. There is another peak that can be observed 

at 11.4 Hz in all the months as well. However, in February, another peak is observed at about 

6 Hz, which is not observed in other months. In addition, the peaks around 11.4 Hz increased 

to about 12.3 Hz in February. In February, the river was frozen, and the ice thickness was 

about 60 cm. The entire system's stiffness matrix would be affected by this phenomenon and 

cold temperatures, which could be the reason for the additional 6 Hz peak [137]. Based on 

Figure. 6-15, the stiffness has increased by about 30 percent in February, while the natural 

frequency (11.4 Hz) of the pier increased by about 10 percent  (12.3 Hz) at the same time. 
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Figure. 6-19:FFT of the free responses of the Pier 5 in different months 

Compared to the FFT analysis as a data-driven approach, the proposed method requires 

complicated mathematical equations featuring extensive trial-and-error solutions to identify 

the best set of tuning parameters and the initial information for the UKF. However, the 

proposed model-based method could predict the levels of scour accurately. On the other 

hand, using the FFT analysis, it is not an easy task to find the dominant peak caused by the 

soil effect to track its change for scour monitoring as shown in Figure. 6-19. For example, it 

cannot be recognized which of the peaks between 1.5–4 Hz will be affected by scour; scour 

could affect all of these peaks. Moreover, we cannot define a clear relationship between the 

rate of change in the natural frequency and the soil stiffness because of scour. Therefore, this 

model-based method could be beneficial to overcome the limitations in the traditional data-

driven methods. 

 Conclusion 

The scour phenomenon around bridge piers and foundation systems is one of the most critical 

problems threatening the safety of bridge systems. The physics model-based approach using 

vibration measurement for estimating the level of the scour are currently nonexistent.  

Therefore, in this paper, a new scour quantification method was proposed. The technical 

contributions of this paper include the following: 
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1. A new output-only physics model-based scour level quantification method was 

proposed. 

2. The proposed method was integrated with the UKF, RD, and continuous pier model. 

3. The new continuous Euler pier model was developed to account for loads due to traffic, 

water flow, wind, and sediments around the pier as external loadings. 

4. Any kind of vibration sources can be used for acceleration responses. 

5. The proposed method only requires one uniaxial acceleration response measurement. 

6. The proposed method can predict the level of scour accurately. 

7. The proposed approach was verified using comprehensive simulation and field study 

considering the linear and nonlinear behaviour of the soil around the pier.  

8. The results were demonstrated by an independent bathymetric survey through actual 

measurement and an ADP system, and the results were well in agreement with actual 

measurements.  

More accurate mathematical equations of the model will be done in our future study.  
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Chapter Seven: 

Conclusions and Future Work 

 

 

 

 

 

 

This chapter reviews the conclusions of this dissertation and proposes potential avenues for future 

research associated with each contribution of the dissertation. The conclusions are divided into three 

sections based on the research contribution introduced in the first chapter and briefly discuss their 

advantages and limitations in order to offer up some ideas for future work.  
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 Conclusions 

The main goal of this thesis was to improve Kalman filtering performance in terms of 

estimating the unknown parameters of a high-dimensional system under unknown 

excitations. The uncertainties associated with the system identification process is reducing 

by increasing the number of sigma points or eliminating the indeterministic inputs. The 

skeleton of the work in Chapters 3 through 6 their advantages and drawbacks. 

Iterated cubature unscented Kalman filter1: The IMUKF filter was developed to improve the 

filtering performance of the UKF for the identification of a system with a large number of 

states. The results showed that IMUKF and pure UKF or CKF offer similar results for a 3 

DoF model. However, the newly proposed IMUKF outperformed the pure UKF and CKF in 

terms of estimating the stiffness values for the 10-DoF system with high noise levels. 

• Findings:  

1. The method does not have a complicated mathematical equation and follows the 

original UKF steps as opposed to other research studies introduced for the same 

purpose which does not.  

2. The performance of the method showed improvement as compared to pure UKF 

for nonlinear systems with a large number of states.  

3. It is more robust to noisy data rather than the original UKF because of the 

additional iteration added to the algorithm.  

• Drawbacks: 

 

1 E. Ghorbani, and Y. J. Cha, “Iterated cubature unscented Kalman filter for large-DoF systems identification with noisy data”, 

Journal of Sound and Vibration, 420, 21-34, (2018). 
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1.  Although the method does not have complicated mathematical equations, 

converging a clean response is time-consuming. There is a trade-off between the 

convergence time and the convergence rate.  

2. Although the IMUKF performs better than pure UKF for damping estimation, 

there are still some discrepancies for some DoFs. 

Output-only Kalman filtering1: The RD-UKF as an output-only method that is defined by the 

integration of a data-based method and a model-based method in order to quantify the level 

of damage in a structure. The method is categorized as a hybrid method and could be an 

avenue to combine other methods in these two fields to introduce more hybrid methods. The 

method has been verified with several numerical models and its superior performance has 

been shown. The RD-UKF successfully estimated the stiffness matrix and mass matrix of a 

full-scale seven-story building under different damage scenarios.  

• Findings:  

1. The RD-UKF method can reach the third step of the damage identification 

process (damage quantification) while data-driven methods can hardly localize 

the damage. 

2. The proposed method estimates high-dimensional state vectors accurately by 

reducing the overall order of the state-space equation through the removal of 

input excitation states. 

3. The RD-UKF eliminates the input excitation from the measured response and 

does not require estimating or reconstructing them.  

 

1 E. Ghorbani, O. Buyukozturk, and Y. J. Cha, “Hybrid output-only structural system identification using random decrement 

and Kalman filter”, Mechanical Systems and Signal Processing, 144 (2020): 106977. (Ph.D. degree). 
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4. The method reduces the complexities and uncertainties of the numerical model 

induced by eliminating the input excitation parameters as it improves the 

observability rank of the system. 

5. RD-UKF is viable for a variety of structures subjected to different types of 

excitations such as random noises, periodic excitations, and earthquake 

excitations, or any combination thereof. 

6. The RD-UKF is robust to the uncertainty in the mass matrix of the underlying 

structures and missing information (missing sensors) during measurement.  

7. The proposed method was validated for an actual large-scale structure by 

comparing its results against those of existing methods. The results confirmed 

that RD-UKF method is capable of damage quantification in different real 

structural systems. 

•  Drawback:  

1. The performance of the RD method decreases as the order of nonlinearity in the 

structure increases. The RD method must be specialized for specific nonlinear 

systems; there is no general algorithm of RD for nonlinear systems.  

2. RD is not a real-time method; it needs the whole response to extract the free 

vibration response.  

 

Output-only Kalman filtering for scour quantification1: The mathematical model developed 

in this thesis accurately considers all the external parameters affecting scour level around a 

bridge pier. The method can estimate the soil stiffness around the pier and the corresponding 

 

1 E. Ghorbani, D. Svecova, D. J. Thomson and Y. J. Cha,, “Bridge pier scour level quantification based on output-only Kalman 

filtering”, Journal Structural Health Monitoring, (under review) (Ph.D. degree) 
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soil height based on a defined soil profile. The estimated soil height was also in good 

agreement with the independent bathymetry conducted around the pier. 

• Findings:  

1. The novel output-only physics model-based method is capable of scour level 

quantification.  

2. The use of Euler beam theory to account for loads due to traffic, water flow, wind, 

and sediments around the pier as external loadings was proved to be sufficient 

and reduced the complexity of the problem.  

3. The structural response from only one uniaxial accelerometer attached at the top 

of the pier provided sufficient input for determining the height of the soil at the 

pier.  

4. The proposed method can accurately estimate the scour level. 

5. The proposed approach estimated the soil height around the pier in both the 

simulation and field study considering the linear and nonlinear behaviour of the 

soil around the pier.  

6. The results were verified by actual measurement in an independent bathymetric 

survey and an ADP system and the results were well in agreement with actual 

measurements.  

• Drawback: 

1.  The mathematical model was developed based on a beam with a uniform cross-

sectional area.  

2. The temperature effect was not considered in the model.  
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 Future work 

Several paths have been identified for potential future research based on the results 

presented here.  

1. This study has assumed that the measured data, process noise, and measurement noise 

follow a Gaussian distribution. Developing the introduced methods for non-Gaussian 

data would be an exciting topic of research. Also, comparing the estimated 

parameters using both Gaussian and non-Gaussian data under different sampling 

rates would reveal the capabilities of the currently introduced method for the 

identification of non-Gaussian data. 

2. Developing the RD for nonlinear systems would be an exciting topic of research. 

Comparison of the results of the specialized RD and the general RD will indicate the 

ways in which different levels of nonlinearities affect the estimation result.  

3. Further investigation into the effect of different criteria on the trigger point of the 

RD could be additional revenue for future research.  

4. Another potential avenue involves defining an Euler beam with various cross-

sections along the beam length. This would take into account the effect of piles with 

different moduli of elasticity and areas.  

5. An important issue not addressed in this study is the effect of thermal conditions on 

scour quantification results. As the site temperature changes from -30 Celsius in the 

wintertime to 25 Celsius in summer, the parameter associated with temperature could 

be considered in a future study. The soil height was estimated to be one meter higher 

than its actual height in February due to river ice thickness, and so considering this 

effect could address this wintertime issue.  
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Appendix A 

The initial values and tuning parameters for the 10 DoF system are as follows: 

Initial values:   X X K C   

zeros (10,1), zeros(10,1)= =X X   

30000 ones (10,1) , 200 ones  (10,1)=  = K C   

Initial state covariance matrix for the UKF:  x x k cdiag P P P P   

Initial state covariance matrix for the CKF:  x x k cdiag P P P P   

x x ones (10,1)= =P P   

7

k c 10 ones  (10,1)= = P P   

Initial states covariance matric for the IMUKF:  x x k cdiag    P P P P   

x x ones (10,1) = =P P   

9 7

k c10 ones  (10,1) ,  10 ones  (10,1) =  = P P   

Constant parameters: 

Process noise covariance: 14

4010  −
I   

Measurement noise covariance: 2

310  −
I   
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UKF: scaling parameter ( ) 0 =   

IMUKF: 
1 23 and 5 = = −   

Number of iterations= 80 

Reduce rate ( ) 0.04 =  
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Appendix B 

In order to promote better understanding of the mathematical meaning of the RD method, 

the dynamic motion equation of a linear l-DoF system with stationary random zero-mean 

excitation is reintroduced: 

[ ]{ (t)} [ ]{ (t)} [ ]{ (t)} { (t)} ,+ + =M X C X K X f   (B-1) 

where ,M  ,C  ,K  and f  are the mass, damping, stiffness, and external force matrices, 

respectively, and t, ,X  ,X  and X  are also time, displacement, velocity, and acceleration 

vectors, respectively. We define an operator ijp  as: 

2

j j

ij ij ij ij j2

d x dx
p (x) m c k x  ,

dt dt
= + +  (B-2) 

where i, and j  both start from 1 to number of DoF, and ijm , ijc , and ijk are components of the 

mass, damping, and stiffness matrices, respectively. Using this operator, the Eq.B-1 is 

rearranged as: 

11 12 1l 1 1

21 22 2l 2 2

l1 l2 ll l l

p p p x f

p p p x f
 ,

p p p x f

     
     

     =   
     
          

  (B-3) 

where jf is a component of the force vector.  
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In systems with more than one DoF, users have to define a trigger point for the response 

of one specific DoF. Based on this specific DoF response within a system and the defined 

trigger point, the segments for all the other responses of the system will be automatically 

extracted without considering whether the other responses reach the trigger point or not. 

Since the trigger point was applied to only one specific response, an equal number of 

segments from all responses will be extracted. An averaging of all the N segments of all the 

DoFs will form:  

 

11 12 1l 1r 1r

N N
21 22 2l 2r 2r

r 1 r 1

l1 l2 ll lr lr

p p p x ( ) f ( )

p p p x ( ) f ( )1 1
 ,

N N

p p p x ( ) f ( )

 

 

 

= =

     
     

     =   
     
          

    (B-4) 

The right-hand side of Eq. B-4 is equal to zero because the force is a random zero-

mean signal. For the left-hand side of the equation, the operator and summation can swap. 

Then, based on what has heretofore been explained, what remains is the free vibration 

response of the system by an initial virtual displacement as described below: 

11 12 1l 1

21 22 2l 2

l1 l2 ll l

p p p ( ) 0

p p p ( ) 0
 .

p p p ( ) 0







     
     

     =   
     
         

δ

δ

δ

  (B-5) 

The Eq. B-5 shows that j( )( j 1,2, ,l) = δ  is the free response of the system due to 

initial virtual displacement. 
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Appendix C 

The free vibration response of each floor under different damage scenarios (D1-D4) are 

shown here. 

   

   

 

  

 

 

Figure C-1: The free vibration response of the building within the damage state one (D1)  
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Figure C-2: The free vibration response of the building within the damage state two (D2) 

 

   

   

 

  

Figure C-3: The free vibration response of the building within the damage state three (D3-1) 
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Figure C-4: The free vibration response of the building within the damage state four (D3-2) 

 

   

   

 

  

Figure C-5: The free vibration response of the building within the damage state five (D4) 
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Appendix D 

The partial differential equation of a Euler beam under external excitation presents by: 

4 2 2

4 2 2

(x, t) (x, t) (x, t)
EI A P F(x, t),

x t x

  


  
+ + =

  
 (D.1) 

where the external force is: 

( ) ( ) ( )

water

s s

2

b b D 2

F(x, t) f (x, t)[ (x a) (x b)]

(x, t)
k (x, t)[ (x) (x a)] c [ (x) (x a)]

t

(x, t) (x, t)
k (x, t) x L c x L M x L .

t t




 
   

=  − − −


−  − − −  − −



 
− − − − − −

 

 
(D.2) 

In order to solve a continuous model, different techniques are mentioned in advance 

vibration books [126]. In this study, the assumed mode method is used to solve the equation. Based 

on the assumed mode approach, 

N

n n

n 1

(x, t) X (x)q (t),
=

=  (D.3) 

nX (x) : is an admissible function 

nq (t) : is s generalized coordinate 

By substituting Eq. (D.3) into Eq. (D.2) and Eq. (D.1), and rewriting the equation: 
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4 2 2N N N

n n n

n n n4 2 2

n 1 n 1 n 1

N N

n

s n n s n

n 1 n 1

N N

n

b n n b n

n 1 n 1

D

d X (x) d q (t) d X (x)
EI( q (t)) A( X (x) ) P( q (t))

dx dt dx

dq (t)
k ( X (x)q (t))[ (x) (x a)] c ( X (x))[ (x) (x a)]

dt

q (t)
k ( X (x)q (t)) (x L) c ( X (x)) (x L)

dt

M (



 

= = =

= =

= =

+ +

+  −  − +  − −

+ − + −

+

  

 

 

2N

n

n water2

n 1

q (t)
X (x)) (x L) f (x, t)[ (x a) (x b)].
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Considering the orthogonality of the mode shapes 
n m nmX (x)X (x)dx =  while: 

nm

1 n m

0 n m


=
= 


, both sides of the Eq (D.4) are multiplied to 

mX (x)  and integrate the whole 

equation over the length of the beam 
L

0
dx   

n

N N
L L

4

m n m n n
0 0

n 1 n 1

N
L

m n n
0

n 1

N N
L L

s n m n b n m n
0 0

n 1 n 1

N

s n m n

n 1
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
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Rearranging the equation: 



Appendix D x 

 

 

n

N NL L
4

n m n m n
0 0

n 1 n 1

N NL L

n m n s n n m
0 0

n 1 n 1

N NL

s n n m b n n m
0

n 1 n 1

EI q (t) X (x)X (x)dx) A q (t) X (x)X (x)dx

P q (t) X (x)X (x)dx k q (t) X (x)X (x)[ (x) (x a)]dx

c q (t)( X (x)X (x)[ (x) (x a)]dx k q (t) ( X (x)X (x)) (x





= =

= =

= =

+

+ +  − −

+  − − +

  

  

 
L

0

N NL L

b n n m D n m n
0 0

n 1 n 1

L

water m
0

l)dx
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where H is Heaviside function: 
1 x a

(x a)
0 x a


 − = 


 , then: 

L L

0 a
f (x) (x a)dx f (x)dx − =  . Based on 

the mode shapes orthogonality, each component will be nonzero, when m n=  , then the summation 

will disappear, and will have: 
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P[ X (x)X (x)dx]q (t) k [ X (x)X (x) dx]q (t)
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 


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b
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a
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=





 

Defining some constant values: 

(D.7) 

 

n

L L
4

mn m mn m n
0 0

L a

mn m n nm n m
0 0

V X (x)X (x)dx , B X (x)X (x)dx ,

Q X (x)X (x)dx , D X (x)X (x) dx.

= =

= =

 

   (D.8) 

The equation can be written as below: 
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 and rearranged as: 

2 2
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b
2
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a
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 (D.10) 

The following equation has the form of a standard vibrating equation and can be transformed 

to state-space domain for Kalman filtering estimation purposes. 
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

+ + =

= + =

= + =

= + + + =

= 

 (D.11) 

 

 



 

Appendix E xii 

 

 

Appendix E 

The new form of  Eq. (6.23) and Eq. (6.24) are rearranged as follows. 
s

7kf (x )  and 
s

c 7
f (x )  define the 

soil stiffness and damping functions as dependent on the soil height. 
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